Definitions, units and conversion factors
Units are given for the cgs/emu system and SI, for defining relations of the magnetization, B = H + 4πM, B = µ0(H + M) and B = µ0H + M, respectively. µ0 = 4π⋅10–7 VsA–1m–1, A: molar mass, ρ : mass density. Quantity
cgs/emu
SI
B
G = (erg cm–3)1/2 1G≡ 1 Oe = (erg cm–3)1/2 1 Oe ≡ B = H + 4πM G 1G≡
T = Vs m–2 10–4 T A m–1 103/4π A m–1 B = µ0(H + M) A m–1 103 A m–1
B = µ0 H + M T 4π⋅10–4 T
P = MV G cm3 1 G cm3 ≡ σ = M/ρ G cm3 g–1 1 G cm3 g–1 ≡ σm = σA G cm3 mol–1 1 G cm3 mol–1 ≡
P = MV A m2 10–3 A m2 σ = M/ρ A m2 kg–1 1 A m2 kg–1 σm = σA A m2 mol–1 10–3 A m2 mol–1
P = MV Vsm 4π⋅10–10 V s m σ = M/ρ V s m kg –1 4π⋅10–7 V s m kg –1 σm = σA V s m mol–1 4π⋅10–10 V s m mol–1
χ
P = χH cm3 1 cm3 ≡
P = χH m3 4π⋅10–6 m3
P = χ µ0 H m3 4π⋅10–6 m3
χV
χV = χ/V cm3 cm–3 1 cm3 cm–3 ≡
χV = χ/V m3 m–3 4π m3 m–3
χV = χ/V m3 m–3 4π m3 m–3
χg
χg = χV/ρ cm3 g–1 1 cm3 g–1 ≡
χg = χV/ρ m3 kg–1 4π⋅10–3 m3 kg–1
χg = χV/ρ m3 kg–1 4π⋅10–3 m3 kg–1
χm
χm = χg A cm3 mol–1 1 cm3 mol–1 ≡
χm = χg A m3 mol–1 4π⋅10–6 m3 mol–1
χm = χg A m3 mol–1 4π⋅10–6 m3 mol–1
R0 , Rs
ρH = R0B + 4πRsMs Ω cm G–1 1 Ω cm G–1 ≡
ρ H = R 0 B + µ0 R s M s m3 C–1 100 m3 C–1
ρH = R0B + RsMs m3 C–1 100 m3 C–1
H M
P
σ σm
Ref. p. 1881
6.1 Amorphous 3d-M alloys (M = 4d, 5d, or main group element)
1
6 Liquid-quenched alloys 6.1 Liquid-quenched and sputtered alloys of 3d elements and main group elements 6.1.1 Introduction 6.1.1.1 General remarks Recently, the development of new solidification techniques has made available a variety of new materials with composition ranges unattainable in crystalline alloys. Amorphous metallic alloys can be obtained by rapid solidification from the liquid state. Typical cooling rates are of the order of, or higher than, IO6K/s. Existing and possible applications of amorphous magnetic materials are in context with their soft magnetic properties, sometimes in combination with high electrical resistivity, their production-inherent low thickness and magnetomechanical properties. Magnetic cores with low losses and specifically designed hysteresis loops, magnetic heads, magnetic sensors and other applications are developed and partly commercially used. For application-addressed magnetic properties see sect.7.1 in subvolume 111/19i. This data compilation will concentrate on the intrinsic magnetic properties of amorphous alloys, i.e., their susceptibility in the paramagnetic region, magnetic moments and saturation magnetization, phasediagrams and transition temperatures of ferromagnetically ordered alloys as well as of those alloys with more complicated magnetically ordered structures (e.g.amorphous spin glasses).Nonmagnetic properties are included if they are in some respect related to the magnetic properties, e.g. crystallization temperature, density. Out of scope are systemscontaining rare earth elements, e.g. transition metal (TM) - rare earth (R) alloys; they are dealt with in sect. 6.2, and also such alloys containing TM, R and other elements, cf. also [88 H 21. Data for amorphous alloys produced by methods other than the liquid-quenching or sputtering, e.g. electrodeposition, evaporation, ion implantation, solid-state reaction, spark erosion, etc.,are not included in this chapter. Further on, we do not deal with the diamagnetic properties of amorphous alloys, since the latter are closely related to superconductivity. For an introduction to the problems of amorphous magnetic alloys the following books and review articles are recommended: [80 H 1,83 L 1,84 M 7,84 K $84 E I,87 0 11.A survey with an extensive bibliographical part r is given in [83 F 2, 86 K 31.
6.1.1.2 Preparation methods Widely used techniques for the production of amorphous materials are: splat cooling and melt spinning [SSG 23. For research purposes small samples can be obtained by solidification of a liquid droplet in a pistonand-anvil or two-piston device. Melt spinning technique permits the formation of continuous ribbons (e.g.,by quenching the molten alloy on a rotating copper wheel or betweentwo rotating cylinders). The ribbons are one millimeter to several centimeters wide and 30. ..50 pm thick. Wider ribbons (up to 10.. .30 cm) can be produced by the planar-flow-casting method. Another method for the production of amorphous alloys is sputter deposition: the material of interest is bombarded at the cathode with positive ions of a rare gas. Thereby the atoms of the target are released and collected on a substrate at the anode. See [84 M 73 for a review, and also [88 W I]. The inclusion of sputtered thick amorphous samples, separated from the substrate or not, and, to some extent, of sputtered films was dictated by the similarity in the values of the magnetic parameters of both groups of amorphous alloys for the samechemical composition, together with the wider range of alloy composition which can be prepared in amorphous form by sputtering. As most of the data compiled concern liquid-quenched amorphous alloys, this is not specially indicated in the tables and figures, whereas the data for sputtered samples are identified as such.
Landolt-Bijmstein New Series III/l9h
Kobe, Ferchmin
2
6.1 Amorphous 3d-M alloys (M =4d, 5d, or main group element)
[Ref. p. 188
6.1.1.3 Structure It is hardly possible to specify the atomic structure of a noncrystalline solid as precisely asthat of a crystal. An amorphous alloy can be characterized by the absenceof long-range order or periodicity’in the microscopic structure. The range of the short-range order is about 10A (1 nm). The local order in the neighbourhood of a given atom may be noncrystalline (e.g.the local atomic arrangement of icosahedral symmetry) or that of a nearly crystalline equilibrium or nonequilibrium phase [87 0 1-J.To decide whether a substanceis amorphous or not, X-ray, electron and neutron diffraction can be used. In contrast to crystalline materials, the diffraction pattern consists of diffuse rings which sharpen as the materials transform, on heating, into polycrystalline phases (sometimesbeginning with a quasicrystalline phase).However, it is not possible to distinguish an amorphous structure from one that is crystalline on a scale of lessthan about 20 8, (2 nm) [84 M 7-J.An example of a reduced radial distribution function, which is related to the probability of finding an atom at somedistance from a given atom, is shown in Fig. 1 [82A 4, 84 E l] for Fe,,B,,.
600 nmm2
-300I 0.1
0.2
0.3
0.1
0.5
0.6
0.7 nm 0.8
r-
Fig. 1. Reduced radial distribution function 4rrr[e(r)e,-Jas a function of distance r from an averageorigin atom for Fe,,B,,. e(r): density of atomsat distancer, eo: averagedensity [82A4,84El].
Systems with structures other than amorphous, which can also be obtained by rapid solidification or sputtering, are not included in this data compilation. It concerns micro- and nanocrystalline materials and the recently observed “quasicrystals” (systemspossessingnoncrystalline short-range order and quasiperiodic longrange order) as well as mixed amorphous/crystalline systemsin caseswhere partial crystallinity has been found by the authors. The magnetic properties of powdered systemsgenerally differ from those of the ribbons and depend on the details of the process of powder preparation. Because of the resulting spread in magnetic properties they, too, are omitted. An amorphous alloy is in a thermodynamically metastable state. Such a state cannot be as uniquely defined as a crystalline stable state. There exists a multitude of possible amorphous structures with grossly different atomic arrangements and it is claimed that at least two different amorphous phasescan coexist 186Z 1,87 B 5-j. The consequencesof metastability for the presentation of data on magnetic and other properties are twofold: (i) Firstly, liquid-quenched alloy samples of the same composition from different batches can presumably have somewhat different thermal histories (in the caseof amorphous alloys, mostly a different quenching rate) leading. similarly to the situation in ordering or segregating crystalline alloys (cf. 171V 11, chapter 21, 5), to different local configurations of magnetic atoms, in particular different numbers of magnetic neighbours of magnetic atoms. A practical rule states that the magnetization data of liquid-quenched alloys of the same
Kobe, Ferchmin
LandolbB6mstein New Series IW19h
Ref. p. 1881
6.1 Amorphous 3d-M alloys (M = 4d, 5d, or main group element)
3
composition usually differ by no more than several percent. Whenever possible, a typical value is given together with the upper and lower limit data. Quite different metastable statescan be obtained by imposing well defined external conditions during the quenching process,e.g.by applying strong external magnetic fields (see[87 E I]). Such conditions are indicated by remarks. (ii) On the other hand, a metastable state tends to transform continuously towards progressively more stable states.This process is driven by the annealing temperature and time, sometimesalso by a magnetic field and is accompanied by structural relaxation phenomena. Data on magnetic properties measured after structural relaxation are given together with the annealing conditions. Starting from the as-preparedstate the relaxation by annealing leads mostly to a relief of stress induced during the preparation process. For commercial amorphous alloys nominal compositions only are usually available. For a few other alloys solely nominal compositions are available as well. Such cases,representing an obvious source of uncertainty, are indicated in the “remark” column and should serve for provisional orientation. Another source of uncertainty in magnetic data stemsfrom the nonuniformity of the samples:as a rule, due to the conditions of preparation, a surface layer differs chemically and structurally from the bulk and the surfaces can differ from each other as well [87 S 51.
6.1.1.4 How to find the data of a specific alloy in this chapter? As a consequenceof the preparation conditions there are more amorphous alloys than crystalline materials with the same components. The following rules should help the reader to find a specific alloy. In principle, the rules of order for the amorphous materials follow the system of Chemical Abstracts (CAS). Becausethe alloys under consideration are transition-metal-based, these elements determine the ordering. (i) First, all alloys with a single TM element are listed following their order in the respective row of the Periodic Table (Ti, V, Cr, Mn, Fe, Co, Ni, Cu). The other elements are arranged with decreasing atomic percentage (e.g. Fe,,Si,5B,,). (ii) Next, for a given TM element (e.g.Fe) the alloys are ordered alphabetically according to the first (i.e. the most abundant) non-TM element (e.g.FeB, FeC, FeSi, . . .). Alloys composed of the sameelements are arranged with increasing TM content (e.g.Fe7aBz1,Fe,,B,,, . . .). If the composition range of an alloy has to be given, the right place is before the alloy with the lowest TM concentration (e.g.Fe,,, - XB, (17 5 x 5 21), Fe,aBzl, . . .); less precise formulae are placed before more precise ones. (iii) Alloys with more than one non-TM element are arranged in alphabetical order immediately after the alloys with only one non-TM element and so on (e.g. Fe,,B,,, Fe,,B,,Mo,, Fe,,B,,Mo,, Fe,,B,,Mo,, . . .). Please note that entries are not given, so that e.g. FMWbSi5, WA7Nb5, %3bW@L Fe,,B&3,, can be found only after the Fe-B alloys, whereas Fe,,Si,,B,, only after Fe-Si. Sometimesa given composition range covers two formulae (e.g. Fe,,B,S-.$3i, with 12sx5 14 covers Fe,,B,,Si,, and Fe,,Si,,B,,). The formula is then situated only at the first place in the materials table (in the above example, before Fe,,B,,Si,,). (iv) In a formula for alloys with two TM elements,in general, the TM element with the higher atomic number in the Periodic Table is inserted preceding the TM element with the lower number. In this connection we consider Cu as a TM element. However, becauseit is usual in the literature to write e.g. Fe-Ni instead of Ni-Fe (and Co-Ni instead of Ni-Co), we keep the place an alloy should have in the table according to the above rules, but once the place is chosen, we write the alloy formula in priority order: Co, Fe, Ni, Cu. The ordering rule is illustrated by the following example for some Ni-Mn and Ni-Fe alloys: Ni,,Mn,Zr,,, Fe,,Ni,,B,,, Fe,,Ni,B,,. (v) For alloys with three TM elements first the ordering principles for the respective alloys with two TM elements are used and then the third TM element is added according to the Periodic Table order. (vi) With respectto the non-TM element in a given alloy, the materials are inserted in the order of increasing content of the sum of all TM elements.If this sum is equal for alloys with the sameelements,the alloy with the lower content of the first-written TM element is given first. Examples for these rules are to be found in the list of materials (subsect.6.1.2). The reader is advised to start his search with the materials list for the following reasons: the information he needscan be included either in a table or in a figure. Moreover, it occurs that more than one alloy is contained in one figure. Then the figure is placed according to the material which occurs first according to the foregoing rules.
Land&-Biirnstein New Series III/19h
Kobe, Ferchmin
6.1.2 Materials and properties - guide Composition range
Properties
Figures
Cr-Ge CflOO-,Gex
Tables
22 22 8 9
Mn-B M%,B,,
2 22 10
15x57
ti
CrPdGe
-
XPdGe)-
’
22
Mn5A8
4
10
vs. T Mn-P-C MwP&o
2 22 11
Mn-Pd-Ge Mn,Pd,,-,Ge,,
15x57
ti
12
MnPdGc -
XPdGe)
- ’
vs. T Mn alloys
Mn20Ah
Figures
Mn-Al-Si Mn, 7A158Si25 Mn-Au-!3 Mn,Au,,Si,,
Cr-PdSi Cr,Pd,$i,, Cr,Pd,,Si,, Cr,Pd,,Si,, Cr.,Pd,,Si,, CrsPd,,Si,, Cr,Pd,,Si,, Cr,Pd,,Si,,
Mn-Al MnxA400-, MnlsA185
Properties
Mn 22.~4177~ Mn 24.JA17S.7
Cr alloys
Crd+e72 Crdk4 Crdh %8Ges2 Crs7Geb3 Cr-Pd-Ge CrxPd82-xGe18
Composition range
Tables
15~x524
@(x) x&9 x.c T vs. T L,(T) (log scale) x'. 09 CgrPerr xac(T) (log scale) C8
7 5 6 6
2 2
Mn-Pd-Si Mn,Pd,,Si,, Mn,Pd,,Si,, Mn,Pd,,Si,, Mn,Pd,,Si,, M&i Mn~oo-xS4
2 2 2 2
0 0 0 0 255x575
TW' ~(Tm4.2 vs. x
69 w
Land&Biimstein New Series IIIIl9h
Kobe, Ferchmin
Composition range
Properties
Figures Tables
Fe-B (continued)
Fea4B16
Fe85.4 B 14.6
D
12
critical exponents
20
4, as Tc Tc 4 To TX Tc(hAT&-a) 4 To TX
21 22 22 21 22
129 83
21 22 12 21 22 21 22 21 22 21 22 21 22
D 4, a, TC 4
Fe,.&,
F%.,B,,.a
TC
Fea7B13
4,~s To TX 4, Tc
Fe81.5 B 12.5 %A2
F’Fe Tc
Fe-B-Al Fe84B16-xAlx Fe84B,3A13 Fe-B-AI-Si
05x53
o,, T,, TX vs. x Tc
84 22 21
Fe,,B,,A16Si2 Fe-B-Au Fe80-xB20Aux Fe82-xB18Aux
b6B20Au4 Fed, ,Au2
O~x
liFdX)
21x56
T,, TX vs. x AT, per at% Au BFc as. PFe
85 86 87
Fe-B-Be Fea2-,%d%
Composition range
Properties
Figures
06x510
i&d4 T,(x)
88 89 90 91 92
O~x~lO
jFctx) a4
05x512 FeaoB14Be6 hoBdN Fea2B12B% Fea2B14Be4 Fea2B16B% Fe-B-C FGb3 -,G Fe78B22 Xx FexB1oo--x--yCy Fe80B20-xG Fe80%&o Fe80B20 Xx FeaoB12G FeaoBl G F%o’%.& FedhG F%oBd% FeaoBl& ‘%B&6
Tc TC
Tc TC
755x587 OlxllO -8OSx188, -06y$9 45x512 --
PFdX) 44 as,
4
vs.
Y
78 57 93
BFC
94
2(X)
57
21 12 22 12 12 12 12 21 22 22 21 22
D r,, TX D D D D
O~x~lO
F%&C,
22 22 22 22 22
TC
Fe81.5B 13.5C 5 Fed%& Fed&2
21 21
T,(x)
Tables
r, T,(x) 44 D 4, as Tc 4
95 57 12 21 22 21
12 22
D TC
Fe-B-C-M0 Feo.&oo.&oB,oC,o Fe-B-C-P-Si FeslB13.&l.J’~.~Sii.8 Fe-B-C-Si Fe,,B,C&, FesoWW~ Fe,,(B-C-Si)19
Fe,,-,%,,Ga,
21
0~~~26, O
Fe-B-Hf-Si-Al Fe71B12Hf9Si5A13 Fe n.&&f~.sS&Al, Fe,,BizHf&A13
0s Tc 0, ternary diagram Tc
21 22 96 22 21 22 22
0s Tc Tc cs ternary diagram i)Fe(X) T,, TX vs. x Tc
98 99 22 21 22 22
05x415 - -
o<x<3 _ -
PF.(X) Tc Qs Tc PFe
T,, T,vs. x OFFS, Hf FFe,
Hf
BFs.
Hf, ijFe
21
0s D D as Tc TC %(T) D as Tc 0s D
102
2<x16 _ _
AT, per at% MO D Qs Tc D Tc
Tc Q,,Bs
Fe80%5Mo~ FesoB17M03
T,, T,vs. neutron dose critical exponents D 0s D Tc Tc dTc/dx,
Fe-B-Mo-Si Fe,,%,,Mo.$i,
To TX
METGLASTM 2605A
22 21 22
21 21
100 101
Fe77.6B2&02.4 Fe7sB20M02
94
98 99
cm pDFF. MO(X)
Tc Fe,,-,B,,Mo, Fe76%20M04
97
Qs Tc Tc
Fes4B13Ga3 Fe-B-Ge FesoB20-,Ge, Fesl.A3.4h F%2.5Bl~G%.s Fes3B12Ge5 Fe 83-xB17Gex
05x50.18
22
G
Fe8d13.dCW~ Fes2B12.4C2.sSi2.~ Fes3B12(CW~ Fes3B14Cl.5%.5 Fe-B-Ga FelOo-x-yBxGay
Fe-B-M0 (Fe,-,Mo.&B,,
Tc
12 21 12 12 21 22 22 12 21 22 21 12 22 87 12 21 22 12 22 22 21 22 103 20 12 21 12 22 22 104 22
Composition range
Properties
Figures
Fe-B-N Fe2d%J%2 Fe42B33N25 %J%.3~~
AT, per at% Nb
FNbVUS DC u,
Tc 4
Nb, us,
Tc
D BFe, Tc
D
Fe-B-P Fe,,‘%d’, FexByP1~~--r--y
FesoB,P20-. FeeoBzo-.P. WdLJ’~~
75<x183, - oI;y<22 o<x<20 _ 05x520
Fe-B-P-M0 (%.93 M%dmB,d’,o Fe-B-Pd F+P2J% Fes3-,Bl,Pd,
01x52 - -
Nbv Us
4
21 22 12 21 22 12 21 22
T,, T, T,, TX I, us, T, vs. x
Figures
Tables
Fes3-,B17Pt, %J%Pt3 FeslB17Pt2
22
P.1 Pat(Y)
Tc (Y) PFc(X)
21 110 III 112 94
Fx) C
22
D 0% Tc
12 21 22
4 BFC
21 113 II4 21 22
4 Tc
FeslB17Pd2 Fe-EPt Fes2-.BlsR
22 108 109 107
To T,
T,. TX vs. x
104
dTc/&, BFc.
0~x~0.115
79sx<88 F~~~@b, ask B12Sisa-~ (Feo.go5Nb~.d~3B12%
12 21 22 12 21 22 12 21 22 21
9 Nb’ u= DC
pFe.Nb,
Fe,,B,,Nb,& (Fe,-,Nb,),,B,2-
87 101
D
(Fe~.dJb~.d~~.~B 15.5
Properties
Fe4bNb-Si
105 105 105 106 105 106 105 106
Fes6B12N2
Feo.g6~~.d~4.~B 15.5
Composition range
Tables
25x56 05x56
AT,perat%Pt PFe
T,, TX vs. x
87 113 114 21 21
Fe-B-Re W%0Re80-x Fe-B-Rh F%A7Rh3 Fe-B-Ru %dG7Ru3 Fe-B-Ru-Si Fe,,B,,Ru&& Fe,,B,,Ru,Si, Fe-B-SC Fe8Ao% Fe-B-Si Fe,B,Si,
501x580 --
x>65,y,zs35 -
PFe, 7-c vs. x
dTCl&th
104
dTc/dx,,
104
0s 0s
21 21
Tc
22
T, ternary diagram 4 4 Tc Tc To TX Tc AT, per at% Si as, 4
21 22 21 22 22 22 22 87 21 22 22 22 22 22 21
4
Fe7Jh5% Fe78B13Si9
METGLASTM 2605 S-2
PFe,
as
To
TX
To
TX
4
Tc. TX Tc To TX Tc,TX To TX fls Tc M-7 D 4 To TX
To TX 44 At(x) We(x) TFe(X)
116
TC
21x16 --
B T&-a) To TX 0s % To TX
115
21 22 117 12 21 22
TC
.
&&& FC-32 (China) Fed%& Fe81BloSi9 Fe,lB13% Fe81B15SL Fe81B16Si3 Fe81B16.5SL5
To
TX
Tc TC
hdL3i~ hdWi6
Tc 0s Tc 4 To TX
FC-31 (China) Rdh& METGLASTM 2605 S
20 118 22 21 21 22 22 119 120 121 94 21 22 22 21 22 22 22 12 21 21 22 21 22 22 22 21 22 21 22 21 22
0s TC Tc 0s
21 22 22 21
Composition range Fe-B-Si (continued) Fes3BloSi7 Fes3B12% Fe83B16.5%.5 Fe-B-Si-AI (Feo.d%.~4Si0.10hA12 Fe,,B,,Si,Al, Fe,,B,,Si,Al, Fe,,B,&Al, Fe,9.,lB14Si6&89 Fes,B,,Si,Al, Fe,,B,,-,Si,Al, Fe,,B,,-&Al, Fe-B-Si-Al-Hf Fe,,B,,Si,Al,Hf,
Properties
D Tc
21 22 12 22
To TX
22
To TX Tc To TX To TX
22 22 22 22
=s To TX
21 05x53 06x53
a,, T,, TX vs. x as, T,, TX vs. x &(M=FeorHf) PFe.
Fe78.J312Si,A13Hf, 5 Fe79.5 B 12- ’ Si,Al,Hf,., Fe-BSi-Be (Feo.76Bo.14-
Hf
jkl(M=FeorHf) PFe
&(M=FeorHf)
84 84 21 21 21 21 21
PFC
To
TX
22
si0.10)98Be2
Fe-B-Si-C (Feo.76Bo.t4si0.10)98c2
WA5.&&2 FJ-301Z (China) Fe,mihiSi&o.16 Feso.sBiz%&
Composition range
Figures Tables
Figures
Properties
22 21
To TX 4
Feao.sB,&Co.s Fe8,B,,Si4C2 VITROVAC 7505 F%,B,&Cz AMOMET F%Bd&
21 22 21 22
Fe&.&%.&
METGLASTM 2605 SC F%,B,,.&.,Cz Fe-B-SK-Al Fe,,B,Si,-&Al, Fe-B-Si-Ge Fe,,B,,Si,-,Ge, Fe-B-Si-Mo Fe,,-,B,,Si,Mo, Fe,,B,,Si,Mo, Fe,,B,,Si,Mo, Fe,,B,,Si,Mo, Fe-BSi-Nb Fe,,-,B,,&Nb, (Feo.95Nbo.05hBdis (Feo.76B0.14-
20
B 84
05x52
a,, T,-, TX VS.
05x15
T,. TX vs. x
122
15x56
T,(x) To TX Tc. TX To TX
123
15x66
T,(x) To TX
123
x
22 22 22
22
To TX
22
To TX To TX To TX
22 22 22
si0.10)98~2
Fe,,B,,Si,Nb4 Fe,,B,,Si,Nb, Fe,8B,,Si,Nbl
To TX
22
BS
21
FeB-Si-P Fed&,-x&P,
To TX Tc. TX
22 22
Fe19.984 B 14si6pO.O16
Tables
O~x~I.5 O~x~I.7
4STa) B,(x) To TX
I24 125 22
Fe-B-Si-Ru Fe,,B,,Si,Ru, Fe,,B,,Si,Ru,
FedboW 21 21
0s 0s
22
To TX
T,
22
Tc, TX
123
TC
Fe-B-Si-Zo Fe 79.5B15%Zno.5 Fe-B-Si-Zr Fe 81.13B13%
TC
D
12
D
12
D
12
OS
Zr0.8,
Fe 81.84 B 13Si5Zr0.16 Fesl.dh3Si5Zro.02
(Fel-xWxh4.5B 15.5
0~~~0.1
601x180 _ -
PFe,
TdX)
101
Tc
115
PFe,
VS. X
TC 7.4QS9.5, 01x~lO -01x10.1 _ _
W vs*
e(x) %(4 Wcx>
4’3~ 47
Tc
@
01x18 _
_
T,(x)
W
TC
Fe80B17W3
Fe-B-Y Fedh7Y3 Fe-B-Zr Fe7$boZr5 (Fe1 -xZG.hB,, W&&o F%oB,.&4 Fe80B17Zr3 Fe~oJ%9.3Zro.7 Fe8AoZr5 Fe-Be-B Fe80Be12B8 Fe-C FGoo-x Fe too-x C x
126 127 100 101 129 102
Fe&~0 Fed& Fe-C-B ‘+%&oB6 Fe-C-B-Si Fe,,C,B,Si,
128
Fe-C-P Fe 77.9G5P7.1 Fe80CxP20 -=
B 15.5
W
D
Fe&15W5
22
as~ PFe,
PFe,
(Feo.9Wo.lh4.5Fe85-xB15Wx
PFe,
Fe 79.4f%5.5W5.1
Evwyos
hi,.sB,,.,W,.,
21 22
PFw
W
D
Fe81.1B15.5W3.4
Fe-B-Si-Sn Fe,,B,,Si,Sn,
Fe-B-W FexBZOW80-x Fe70B25W5 Fe8+A5Wx
PFe,
PFe.
123
22 12 21 12 21 12 21 22 21 12 21 21
D
Fe 77.7Bl5.5W6.8
Fe-B-S23 Fe79.94B14Si6So.06 Fe-B-Si-Sb Fe,,B,,Si,Sb, Fe 79.984B14Si6Sb 0.016
Fe-B-Ta (Fe,-.Ta,),,.,B 15.5
T,
Fe 76.OBl5.5W8.5
PFe,
W
PFe,
W
dTcldx,
104 22
TC
O~x~O.1
$Fe, ZAX)
101 22 22
C
&dxzr ToTX Tc
104 22 22 22
Tc 191x150 -191x149 --
XC m p(x)
11 14 130
i
21 21
Tc
22 21
O~x~15
Tc PFe
22 112
Composition range Fe-C-P
(continued)
Tables
22 22 22 22 22 21
4
21 12 21 12 21 12
D B, D 4 D
7.55x539
145x536 14Sx148 -14sxs27
FeslHf19 Fed-S 0 FeglHf9 Fed%
Figures
=c =c
FesoC13P7 FesoC15P5 Fe-C-!3 %&+4 5 Fe70C15Si15 Fe70GoSito Fe-C-!%-B Fe7&di6B2 Fe-Gese %&e&h Fe7G-Me5 Fe7&+e17% Fe&e&% Fe&e&~ Fes7Gel ,Se2 Fe-Hf FexHfloo - x Feloo-xHfx
Properties
XC =cW A =&I d T,ldp vs. x =cW FFe(X) PFC
11 131 132 133 134 80 135 22 22 22 22
=c
=c.TX =c.TX
Fe-La Fe s7.sLa12.5 Fe92.&a7.5
=c, =r vs. P =sg(P!
Fe-M0 RMolOO-x
XC
136 136 11
Composition range FeMo-P-B-Al Fe~.7Mod7~P,tAA~, Fe-Nb Fe,Nbloo-, Fel~d%
Properties
Figures
=c 186x531
22
11
XC pFdx) T,(x)
Fe7JW2 Fe-P Fe,-3, Fe75P25 Fe80P20 Feloo-xPx Fes2Pls Fed17 %.P16 Fes6P14 Fe-P-Al Fed17A13 Fe-P-Al-C Fe72PllA41G Fe7P13AW7 Fe7Pl lAW6 Fe-P-As FeslP17As2
I.@%,
0.35 r&51.4
14$X$19 131x118 --
l/x
A,( VtlJ =c D pFetx)
ge’“’
Tables
vs.
=
135,137 134 138 139 22 12 80 79
=c D =c
12 22 12 22
=c
22 21 21 21 21 22 l&l6
D =c =c =c
12 22 22 22
Fe-P-B-Al Fe75P16WQ
12 20 22
D critical exponents TC
P&~(T) Fe-P-C Fe75P15Clo
D critical exponents Tc Tc Tc T, Tc Tc D critical exponents L-7 T,” Tc Tc Tc Tc Tc Tc Tc
Fe-P&e Fe75P17Ges Fe77P17Ge6 Fe79P17Ge4 Fes0P20-xGex Fe-P-MO-B-AI (Fe~.&foo.2)75P&Al,
140
05x57
12 20 22 22 22 22 22 22 12 20 22 141 22 22 22 22 22 22 22 22
Y Tc
20 22
r, Tc Tc &e(x)
22 22 22
critical exponents Tc
112 20 22
critical exponents Tc Tc
(%s5Moo.15hPdW, O%.&foo.lhPI.&%
20 22 22
Fe-P-Si FesoP20-,Si,
OlxllO - -
PFecd
112
Fe-Pd-B-Si Fe,Pd,,-,B,,Si,,
65x540
Pat vs. x
142
Fe-Pd-Si Fe,Pd,,-,Si,,
x520
magnetic phase diagram TC Tc Tc Tc Tc Tc Tc critical exponents Tc critical exponents Tc critical exponents Tc Tc critical exponents Tc Tc critical exponents Tc Tc critical exponents Tc Tc
143
magnetic phase diagram
144
Fe,Pd,,Si,, Fe,Pd,,Si,s Fe,Pd,,Si,, Fe,Pd,,Si,, Fe,Pd,,Si,, Fe,Pd,,Si,, FesPd,$i,, Fe,Pd,,Si,,
FM%S&~ Fe-Ru-Zr FexRU90-xZr10
701x590
22 22 22 22 22 22 22 20 22 20 22 20 22 22 20 22 22 20 22 22 20 22 22
Composition range
Properties
Figures
4O~x~70
Tc, T,, vs. x
145
125x560
685x183 -691x183 -19sx+10529
Tables
Xm Tc. TX Tc
3 22 22
Tc
22
Xm
3
PoMs(X> Tc
146
T,(x) D(x) PFeW Pdx + 10) T,(x + IO)
149 58 148 147 150 147 1.50
BFe(X+ 12) T,(x + 12) =s
22
21 12 20 22 22 22 22 12 21 22
D
critical exponents Tc To TX Tc Tc
D =s Tc Tc(~,hATcG'-a) =s
151 21
Composition range
Fe-Si-B-MO Fe~~%Bl&fo2 Fe7s%2BloMoJ Fe&-C %s%oCls b4%5Clo Fe70Si20Go Fe73%G Fe4WB Fe-%Hf Fe,=&,-,Hf,
Fe-Ta kTa~~~-x Feloo-xTax
55x57
125x534 205x532 145x432 146x526.2
Fe78Ta22 Ft+Ttl Fe,Tbo-, Fe-U Fe73U27 Fe-W FexWloo-x FelOO-xWx Fe-Y FexYloo-x Fes8Y12
Properties
Figures
Tables
Tc To TX
22 22
To TX To TX To TX Tc Tc
22 22 22 22 22
ibe, Tcvs.x
152
XC T,(x) aFew h(x) PoMs(4 PoMU) qclqs.Tc
134 135 137 153 154 16
11
XC
11 22
525x666 14.55x525.3 155x525.3 205x560 4Osx1;80
XC T,(x) POWT) PoM,W T,(x) IMX) B
11 155 156 157 159 158 21
critical exponents
Fe,Jr,
11 141x160 --
Tc SAT),Tc T,(P) Tc Tc
160 3
15~x~40 165x540
134 80
95x535
133
3 22 3 91x130 -145x528
71x125 --
891x193 --
K(x) Bdx) 0
161 135
%PJ 0 T, 0 TC 0 TC TC %(X> T,(x) 0 TC
162
3 22 3 22 3 22 3 22 22 163 164 3 22 20 22 3 12 20 21 22
critical exponents TC 0 D critical exponents fls
To TX GYT) POW(T) ATO,), Tc T,
critical exponents Tc
17 165 166
Fe-Zr-Al (Fe,~,A1J,,Zr,, (Feo.g4Alo.o.shoZrlo Fe-Zr-B (Fe,-,BJ,,Zr,, @b,Bo.o.s)goZrlo Fego(Zrl-xWlo F%,(Zr,-x&h Fe-Z&e. (Feo.g,Geo.o&oZrlo Fe-Zr-H Fe 86.7zrgH4.3 Fe 88.6zr7.8H3.6 F%,.,Zr&,.,
167 170 22 22
0.02~~~0.10
ATc(TahTc ATc(Ta),Tc
168 166
0.02~~~0.10
AT&-a), Tc ATcPA Tc
168 166
O~x~O.4 01x10.2 - -
T,(x) T,(x)
169 169
ATc(TzJ,Tc
166
Tc Tc Tc Tc
~~$2~o~;gg.g53H 0.047
22 22 22 22
T,(P)
170
ATc(TahTc
166
Fe-Zr-Si (Fe0.94si0.06)90-
Zrlo Co alloys Co-Al-Zr CogoAl,Zrlo
22 20 22
20 22
OlxllO - -
171
Co-B C%,b COIOO-3x
23 24 165x534
PC,, To Tx vs. x
172
Composition range
Properties
Co-B (continued) Cod,, Co,B Co,-A Co,oB,o Co,,B,, Cod&
Figures
174 4 0.20 5 x 5 0.30
0, pen. cm x, l(T) pco vs. x/( 1 - x)
Conb,
0s Tc B, Tc Tc
'37J322
PC0
%3820
as, 4 Tc
18
173 23 24 23 24 24 24 23 24
Co-B-C
~G3sa-.Ct2
564x172 -56sxs76
Co7d32oGo
Co-B-Hf Corn -x&d-K Co,oBnHf, Co,J%,Hfn CO-B-MO C07rd322M0,
Co,oBnNbs Co,oB,oNb,o CO-B-P Co782J'm
11 175 175 24
&a. “XX) To TX To TX
176 177
45x412
$3, $x1 0 x
176 177
45x512
Pco. Id4 To TX =s
176 177
45x512
Co,oB,,Mo, CO-B-Nb C07d322~.
XC T,-, TX vs. x Tc, TX vs. x Tc
critical exponents Pcc.30s Tc
Co-BSi Co60b%o C%oo-x(Bo.5Sio.5), ~06dWil~
225x532
Coad,,.w Si 15.75
Co70B30-xSix
55x518
Co70J%6%4 Co70%%2 Co70B25% Co 70.5 B 14.75Si 14.75
lO~xIl6 -24
20 23 24
Figures
dT,ldp, Tc as, PC~. Tc vs. x
174 179 180
d’l &J Tc
23 24 181 24
23 24 24 23 23 23 24 Tc
T,vs. (x+12)
185 23 24 178 23 23 24 24 24 24 23
i&h &o~ 0, Tc Tc Tc Tc 96x513 55x525 5~x~17.5
Tables
182 183 184
%(X) &m T,(x) PC, Tc Tc PC.3 h fls TC
Co71B14.5%4.5
23
Properties
a,, T, vs. x as Tc 49, Tc Tc
176
TC
Cd324C7a5--x
Composition range
Tables
kvs. (x+12) poM, vs. x a,, T, vs. x
147 186 187
23 24 23 24 24 23 24
PC0
G 4 T, T,
=s Tc 4T) G Tc Tc 4 Tc
Co-B-Ta Co,,-xB,,Ta, Co70B22Tas Co-B-W Co,,-xb,Wx ComBmWs Co-B-Zr Co7s-xB22Zrx %&Jrs Co74%Zr12 Co7&Jr12 Co~dWh Coddrlo WdWb W&G% co-Be-zr Co90-xBe,Zr10 Co-I-If Corn--Xx Co-Hf-Pd Co,,,-x-,HfJ’d,
24 24 24 23 24 13 23 24
a* Tc
41x112 --
176 177
45x112 --
176 177
45x412
OlxllO --
Pco, n(x) T,, TX To TX To TX cm PC!0
55xjl5,y56
CO-MO-B CowMomB, Co-MO-Zr (Co,-.MoJ,,Zr,,
05x50.2
188
D
god%&
Co-Hf-Pt Co,,,-,-,Hf,Pt,
176 177 24 24 171 23 23 23
&O PC0
Co74Mo16Zrlo CodJol.Jrlo Co76Mo12.2Zrll.s C~&hJrlo CogO-xMo,Zr10 OlxllO - co sl.5M09.5Zr9.0 CO-M, CoxNbmo-x Corn--xNbx Coioo-,Nbx Co, -.Nb, co 83.5 Nh5.5 ‘%,Nb,o Co-Nb-B ~C%.*55Nbo.mho-x Co,,Nb,,B, Co,,.,Nb,,.,B,., WwNb,,Bs CosoNbdk
B, ternary diagram
191
dTcldp> Tc
174
a, vs. (l-x) dT,ldpvs. (1 -x) dT,ldp vs. T,
192 193 194 174 174 174 174 171
dTcldp> dTcl+, dTcldp, dTcldp. dx) 4
Tc Tc Tc Tc
23
701x190 _ lOIx129.6 - 154x$23.5
PoMm 4 T,, TX vs. x in
195 189 197
0.12<x
(Co, -xN’ds,Nb,, fJs@) 4 4
196
cs,, T,, TX vs. x
198
21x110 --
23 23
Bx 174 23 23 23 24 199
OlxllO --
%(X)
171
61x518 --
4
189
5~x$lS,y~lO
B,ternarydiagram
190
Cos,Nb&s Cos,Nb,,B, WDW%
23 23 23 24 199
Composition range Co-Nb-Ru C%N’-‘&u, CO-Nb-Zr Co65NbloZr5 Cod%Zrl 1-x C“d%x,Zr,., Co9dW.7Zr2.s C%mNb.+.&r,.6 Co-Nb-Zr-Ta Co63~llZr4Ta2 Co-P-B Cod’,,B, Cd’& Co-P-B-Al CO, 81 dk’%
Properties
Figures
4 O~x~ll
Tables
23
con.&d,, Co~o-xWlo
23
Co90-xW%o Co75Si15Blo
Properties
lO~x~17 115x617
~,vs.(x+lO)
200 23 23 23 23
Co-!+B-MO Co&l5BloMo2
Jko
23 23
Co-SK
IkO
co67.5si20c12.5
23 24
0.25 < x < 0.36
P.1
23
4
23
Tc Tc
24 24
j&vs. x/(1-x) Tc P Tc
173 24 23 24 201
Tc
24
Co70%oC10 Co+%Zr Co,,-,Si,Zr,, CWSII Codn48 Co-Ta Co,Taloo-., Co,,,-,Ta,
Co-Ta-Zr Co,,,-,-,T%Zr, co-w co100-xwx Co-W-Zr Coqo- xWxZrqO CO-Y c0,y100-x
Tc
T,vs. (x+10) D 4
Tc ko
C%,%,Bq CoG%.J%
B*
140 Co-Pd-P Co.to%oP,o Co-PdSi ColoPd70Si20 Co23 Co&.+., Co65%5 Co,-,Si, CG%7 Co75Si25 CGh Co-Si-B co100-.Pi0 6B0.4)x Co,oS’i,,B,,
Composition range
O~x~lO
Figures
24 147 178 13 23 24 173
Tc Tc
24 24
4 To TX
23 24
4 4
23 23
64 X-‘(T)
171 19
735x586 16<x127 _ _ 156x426 115x524
POKW moms cloMsV-9 4
xi30, ~530
B. ternary diagram 204
15$x525
B,(x)
205
64
171
06x610
Tables
XC
195 202 203 189
11
C%Y2s co1-xyx Co-Zr CoxZrloo-x Co19Zrsl Coloo-xZrx Co20Zr80 Co2Jr78 Co2sZrls Co&rlo Cos3Zr67 co 33.3Zr66.1 Co3sZr6s co 3s.sZr64.s Co4&ko Co4Jrss Cos2h8 Co(lOO-x)Zr(x) Coloo-xZrx CfMh Co12h4 Co8&% %oo-xZrx Co, -XZrX Co89Zrl 1 Co90Zrlo Co-Zr-Au co 81.2(Zrl
4 cm 191x135.5 --
23 196 22 4
455x680
20 21 4 4 4 4 4 4 4 4 4 4 4
xm 81x128 -5<xs33
p,-&@), x in wt % 207 206 PoMm
4 51x117 -0.07~x~0.17
01x10.02 --
4 4 B&3 fdx) 4
23 23 23 189 196 23 24
Tc, TX Pots
195
~&f,, TXvs.x
208
4 2 4
23 23
4
23 24
To TX
Co-Zr-Mo-Si Co,,Zr,,Mo,Si, Co-Zr-W co 83.5Zr10.sW6.0
4 To TX
23 24
BS To TX
23 24
To TX
24
Ni alloys Ni-Ag W&loo-, Ni-Au NiAU1OO-x Ni-B Ni 81.S B 18.5 M-B-P NisoBd’,, Ni 81.5 B 18.5-x Ni 8l.SJ316.7Pl.8
01x118.5 -
NisoPds
XC
11 Sa
xlm
5a 23 5a
xs
TC
Ni-Nb %Wso Ni srxDba.6 Ni 59.8 Nbo.2
Ni,d’,sb
11
I&f
Px
Ni-B-Si Ni,,B,,Si,
Ni-P Nil~o-xPx N&P-B NinP,,Bs
XC
xs
26
XP Xe Xe xg
Ni&b
-xA~)12.8
co 9db.lAu1.2 co 94.0Zr4.sAu1.s Co-Zr-Mo C%&d”f%.s
Co-Zr-MO-B Co18Zrl 1M09B2
186x522
Xm-Xcore vs. x
5a 5a 5a 5a 24 5a 25 5a 25 5a 25
Composition range Ni-Pd-P (Ni,Pd,-,),,P,O 0.25x50.8 Wio.5Pdo.5)loo-,- 165x526.4 166x520 PX Ni-Pd-Si (NW1 -J13Si 17
(xnl-xcor.) vs. x (xm-xcor.)vs. x xl&4 xm(T)
25 26 27 28
x,(x) xw xs-l vs. T
31 30
Composition range
Tables
Properties
Figures Tables 5c 5c 5c 25
Ni 87.2 Y 12.8 Nb.,Y,., Nb3Y7 Ni,,Y,
Ni-Zr 5d
xs,xg-l
vs. T
315x579 225x567
29
5d 5d 5d 5d 5d 5d 5d 5d 5d
Ni22Zr7,
0.25x50.7
Wio.20Pt0.80)75P25 (Ni0.30Pt0.70)7$25 Wio.40R0.60)75P25 W0.50R0.50)75P25
P25
(Nlo.64pto.36)75p25
Wo.68Pto.32)75P25 Ni-Y NiY1OO-, Ni, -.Y, Ni 33.5 Y 66.5 Niloo-xYx Ni15Y2, Ni 75.5 Y 24.5 Ni 76.3 Y 23.7 Ni83Y17 N400-xYx Ni 83.3 Y 16.7
Figures
Ni,oZr,o
0.05~x~0.50 0.05 5 x 5 0.20 0.30~~~0.50
Ni-Pt-P (Ni,Pt,-J15P,,
Wb.6,~,.4,)75
Properties
7.04~125 --
(x~-x~~~,)VS.x xnl-Lore Xg-Lore Xg-Xsore X*-Lore Xg-Xcore Xg-Xcore Xg-Xcorc XC qclqsvs. Tc f,
25
11 15 ’ vs. T
4
jjNi. Tc vs. x 9c3 Xm
Ni 33.3zr66.7 Ni38Zr6, Ni63Zl.37 Nis7Zr33
Ni-Zr-H WZr2)loo-xK Ni-Zr-P
36
x=0,13,33
5d 5d 5d 5d
5c 25 25 25
0s
35x516.7
Ni,,Zr,,
33 32
0,
$Niv
Ni28zr72
5c
0
xg, (x,-f)Lll-‘V? 40 Xm
Ni24Zr76
5b 5b 5b 5b 5b 5b 5b
Co alloys
209 5c Choo-xyr
x=67,28
38 39
%00-A CuxZrloo-,
4osxg75 271x160 --
Cu27Zr73 Cu2sZr72
xl&) x,(x) XP XIII-xcor.
34 22 >Tc,dxTi (Fe,-xTi,),,B,6 (Feo.,,Tio.o&%
Cu33.3Zr66.7
0.01 $x50.04
Fe 81.5Ti3.1B15.5
D 0s T, o,(T) D as T, o,(T) TC
Fe-Ti-P-C %.sTi,P, SC,
=s
36
CuZr, Cu50Zr50
Cu56Zr44 %7Zr43 Cu60&0
Cu62Zr3s Cu-Zr-Al CU50Zr50-xAlx Cu-Zr-H (CuZr2ML
01x<40 -=
x,(x) XIII X&7
40 6 36
401x170 -261x159 -455x570 201x138 -2l~x~40
11
X0 P&) T?(x) P.,(x) T,, 0 vs. x T,(x) %(X) p
213 214 210 211 215 212 80,135
ACT, vs. p. T,
216
W-ITi2, Fe80Ti20 Fe-Ti-B Fe7JiloB20 Fed’%B20
Fe~2-xVxJ%~
TC Tc
219 14 27 28 219 28 27
11
XC D
21x16 _ -
FesoV3B17
To TX AT,perat%V JFFe
Fe 79.3V4.2B16.5
14 29 30
PFc
cs dT,ldxv
87 217 218 104 29 30
PTiU
Tc 28
TC
AT, vs.p, T, TC
Fe-V FeYloo-x Fe-V-B Fe75V5B20
&?.f,
28
Fe7,Ti2,
14 27 28
Fe-V alloys
Fe-Ti alloys Fe-Ti FexTilOO-x
PFe,TiCX)
218 104 101
216 28 28 28
(Fe,-,VJ,,B,, F%VsB,, Fe7,Vd-h F%,V,B,, F‘%uV2B,,
O$xSO.l
iiFs,dx)
as as Qs =s
101 29 29 29 29
Composition range Fe-V-B-P (Fe 1 - rV.ho-
Properties
Figures
Tables
Composition range
Properties
Figures Tables
Fe-Cr alloys
7.152576
220
BIOPIO Fe-V-BSi (Fe 1-Y377-
Who Fe7~-.V,B16Sis Feao-XV,B,,,Si, Fe76V.AsSis
7.15257.6 0.25x50.4 15x56 2sx514
ihh@l
magnetic phase diagram T,(x) T,(x)
BFe,
PFe,
AM TC
as a, 6 Tc 6 Tc
123 223 29 30 29 30 29 30
as
as
r, PFe,
D
221 222
Tc
as
Tc
critical exponents BFe Tc
Fe-V-Bsi-N
Fe,,-,V,B,,Si,+O.Ol at % N Fe71V12B14%+O.Ol at % N Fe73VloJWk +O.Ol at % N Fe,5V,B,,SiJ+ 0.01 at % N Fe-V-P-C Fe77V3P13C7 Fe-V-Zr (Feo.94Vo.od~oZrlo
31 15 31 32 31 31 20 32 20 32 20 31 32 20 20 31 32 20 31 32
B,
05x512
Tc, TX vs. x
critical exponents critical exponents
224
D as D as as
14 29 14 29 29
as
29
BFC Tc
critical exponents dFe Tc
x<34
magnetic phase diagram critical exponents critical exponents
225 20 20 31 32 15 31 32 31 31
PFc
ATcVal. Tc
Tc
166
D h,PFe To
TX
B* a,
25x56
AT,perat % Cr
87
D
31 217 218 104 Fe 80.7%2B16.1
(Fe1-xW84B16 O%.7~ro.3h4B16
x,-(T)
CT,,Tc vs. x
05x50.25
-xRh4B16
x=0,0.05,0.1,0.2
&,cr(x>
15 31 32 15 31 32 15 31 32
D PTM T, D
B 16
(Feo.&ro.lo)s4B 16
PTM TC
(J%.95 Cro.b&-
D
B 16
TC ~es2Cr2B16
BS
T,, Tx 7.65258
&M(Z) T,(x) q&s. Tc
*s
15 31 32
PTM TC Tc
16
Fe&rloJ%l%o Fe,,-,Cr,B,,Si, Fe,,-,Cr,B,,Si, Fe,,Cr,B,,Si,
To
TX
Td.
Tx
0s To
TX
To
TX
7.34Zs7.8
PTMQ
220
01x10.10, --
CT,,T,, TX vs. x
231
ik.d-9
221 232
228 229 16
D
q&w
Pe ~dJr~.A4.~ Fe 80.6Cr5.0B14.4 Fe 84.9Cr0.8B14.3 Fe 80.8Cr5%2 Fe 81.5Cr4.5B14.0 Fe ~~.dh.J%~.~ Fe-Q-B-P 0% -xWsoBmPm Fe-Cr-B-Si (Fe, l,CrJ,
15 31 32 31 32
PTM
15 31 32 31 32 32 31 32 32
PTM
102
as(T)
128
T,(x)
D Tc
227 101
D PTM T,
@~.&ro.15h4-
01x17 --
15 31
o,(T)
15 31
PTM
100
%(4 D
230
D
31 32
PTM
PTM Fe1
Tc A T&l
41 226
TC
(Fe,-$r,),,B,, Fe63%lB16
G
31 32 x=0.46,0.42,0.38 0$x50.35
15 31 32 32
PTM
15x46 25x516
magnetic phase diagram 0s 0s 0s 0s Tc %(T) 0s T,(x) T,(x) FFe, Tc
us
31 31 31 31 32 117 31 123 223 31 32
Composition range F&I-B-!!Ji (continued) Fe,sCr,B,,Sis Fe,sCr,B,,Si,
Properties
Figures
(Fe,Crl-3~ 31 31 32 31 32
4 PFe.
=a
TC
Fe,,Cr,B,,Si,
PFo
u,
Tc
Fe,,-,Cr,B,,Si, 0.5~~~6 O~x~O.1 Fe1 -Pxh~BIG% Fe65.2Cr19.3B12.&.6 METGLASTM 2605 S-3A Fe-Cr-B-S-C Fe76.s5Cr2.0B~di.+.&o.~~ Fe-Cr-B-S-N Fe65.2Cr19.3B 1d%.&.+ Fe-Cr-C-P Fe&r&P~ Fe-Cr-C-P4 Fe6&rllCloP8S4.9 Fe72CrsC11Ps%.6 F@&GJ’G%~ ~~74Cr.&P9Sil.6 Fe-Cr-P bdhF’l 5 Fe&rloP15 Fe-Cr-P-B-Al 0.2sx1;0.6 Fel-,W75P,JW, Feo.6s Cr0.3&P,.Jb%
Tables
T,. TX vs. x
233 108
T,-(tJ, alternating
234
a)
anneals
PI,&& (Feo.7oCr0.30h P,,Wl, Feo.77Cro.23hP,&,Al, ~~eo.&ro.~ohP~d’bAl, F&r-P-C Fe,,-,Cr,P,,C,
T,(td, alter-
234
nating anneals 32
Tc
7a 7a 7a 7a
Jeff Jeff Pcff Bcff
q&s.
Tc
qck. Tc magnetic phase diagram Tc
16 16
Fet&rJ’&~
232 32
Properties
Figures
0.7IxSl
D(x)
59
D(T)
Fe-Cr-P-C-Ru Fe74Cr3P&7Ru3 Fe-Cr-Si-B Fe71.6~r3.4%B~o
60 32
Tc
05x520 06x510
kc. T, vs. x D(x) Ad4 Tc critical exponents h4 Tc a* Tc as T, critical exponents Tc 0% Tc critical exponents as Tc as
Tables
32
Tc
D
32
Tc
Composition range
235 61 236 32 15 20 31 32 31 32 31 32 20 32 31 32 20 31 32 31 31
Tc
32
32 32 32
Tc TC To TX
Fe72Cr3%dh~
Fe72,7Cr2.3Si15B10 (Feo.97cro.o3)76-
%4%o Fe-Cr-Zr
(Fe,-,Cr,),,Zr,,
OsxsO.2
(Feo.g4Cro.06)go-
pm, Tc vs. x dTc/dp vs. x A Tc(Tah Tc
237 238 166
Zrl0
Fe-Mu alloys 16 33 34
D
(Feo.g50.05 &i:7,-
100-x
Bx
)
ijTM
$Fc
Tc,
TX
15~~~20
Tc, TX vs. x
239
151x<20 --
T,-. T,vs. x
239
Mno.o~Aoo-rBx
33
44
Fe,,MnJh7
217 218 104
PFe
:W%.
Fes1.sM%.6B16.6 (Fe,--xMnx)84B16 05x50.2 o<x117 Fe84-,MnxB16 _ F%Mn2B16 (Fe,-,Mn&B,, O$xsO.lO Fe-Mu-B-P (Fe,-XMnJsoBIoP10
7.65257.9
Fe-Mu-B-Si 0% -,Mn377B&lo
7.66217.8 0.2Ix10.8 --
Fe,,-,Mn,B,,Si, Fe,,-,Mn,B,,Si, Fe,,Mn,B,sSi,
33
BTM PFe.hdX)
101 240
Fe 79.56Mno.db% Fe71MnloW% Fe,,MnsB&, Fe,,Mn,B&, Fe,,Mn,B,,Si, Fe,,Mn,B,,Si, Fe,,-,Mn,B,,Si,
Tc
OS
da.
Tc
magnetic phase diagram Tsp
15 242 34 34
Tc
34 34 34
PI db’%
229
(Feo.&no.dw
220
(Feo.ssoMno.,o)w PI ,Bd%
PI &,A13
PFsr
33
PThl
P16B6A13
(Feo.wMno.3&-
14x52 25x514
233
1 sxs6
Fe-Mu-P Fe7,Mn5P20 (Fe0,5Mn0.5M17 Fe-Mn-P-B-A 0.25x50.8 (Fe, -,MnJ,sPI 6%‘% Wo.41 Mno.5g)75PI ,%A13 (Fe0.47Mno.&~PI 6BciA13 (Feo.50Mno.sd7~PI &s’% (Fe,,,, Mn0.47)75-
PI,%%
magnetic phase diagram T,(x) Tc(x)
33 33 33 33 33
(Feo.55Mno.4&~-
33
PfMQ
33 34 34
Fe,,Mn,B,,Si,
221 241
(Fe0.65Mn0.35)75P,JW, (Fe0.68Mn0.32)75-
123 223
PI ,h% (Feo.6&no.3J75-
33 34
PI &,A13
34 critical exponents Tsg critical exponents Tsp Tc critical exponents Tf, Tc critical exponents
Tt. Tc Tr, Tc
20 34 20 34 20 34 20 34 34
Composition range Fe-Mn-P-B-AI (continued) Feo.70 Mno.30hPI,%% Feo.7s Mno.25hPM&& (Feo.,s3Mno.247)75PdW, (Feo.765-P16B6A13 Mno.235hP,tP& (Fep~.$“f’fcm)w 16
6
Figures
Composition range
Tables
critical exponents Tr. Tc T,
20 34 34
T,
34
Tf. Tc
34
=c
34
PdkAI,
critical exponents T,. Tc Tc
20 34 34
Mno.&,-
P,JV&
Fe-Mu-P-C (Feo.lMnd75-
7b 42 7b
Fl%O.8h-
43 44
&%o.,h(F~~$l$,s-
45
0.3ixSO.6 _ _
(F~CG~O.,,W P,5ClO (Fe, -PnhF~C%O.‘JW Pl5ClO
Fe76Mn.P13G Fe-Mn-Si-B (Fee.,, Mno.&6Si&o Fe70MnloSi12B8 Fe,,Mn,Si,,Bs FeMnZr OlxllO Fe90-,Mn,Zrlo - (Fe,-,Mn~,,Zr,,, 05x50.06 01x~O.l -(Fe~.~4Mn~.~&~-
7b
34 33
critical exponents Tc critical exponents 1, as
20 34 20 34 33
4 To TX Tc Tc
33 34 34 34
&M(x) j& T, vs. x d T,/dp vs. x d T&‘-J. Tc
240 237 238 166 33 34 33 34
Fe88Mn2zrlo
Co-Ti alloys
48
ih Tc
Tables
Tc hl
Aho Q, Tc &u, bs Tc
47 243
01;x60.4
Figures
Zr10
Fe8&n4Zrlo
46
(F~~%..6h-
Properties
33 34 34 33
3
Feo.80Mno.20)75-
(Feo.90
Properties
33 34
Co-Ti CO,,Ti,, Woo-,Ti,
145x621
B B,(x)
35 205
79sx<88
POW(X)
15~x~20
B,(x) BS 4
0.05~x~O.2 01x112 --
T,, TX vs. x PCo.dX) To
0.05~x~O.2 0.055x50.2
TX
T,, TX vs. x T,, TX vs. x dT,ldp, Tc To TX
Co-Cd-P
195 189 35 35 244 176 177 244 244 174
01x112 _ _
36
CO-V-B-P (Co1 -xVxho-
8.25258.8
PTMQ
220
B13Silo Co-V-Zr Co90-Y,Zrlo Co.30VloZrlo
8.25258.7
PTMQ
221
OSXSIO - -
%(X) 4 To TX 4 To TX 4 To TX
hdz)
221
Co&rlJrlo Co75Cr15Zrlo Co90-,Cr,Zrlo (Co,-,CrJ,,Zr,,
x=0.17,0.19,0.21 O~x10.19
OlxllO - Ojxjl
01x112 - -
&cm To TX
4
39
4 4
39 39
~TcI~P, Tc AT,vs.p CT,vs. (1 -x) dTcldp> Tc ~Tc@P, Tc %(X) dT,-/dpvs. (1 -x) dT,/dp vs. Tc
174 246 245 174 174 171 193 194
Co-Cr-Zr-Mo 4
39
171 37 38 37 38 37 38
Co-Cr alloys
Cowl
8.4sZs8.7
Co,,Cr,Zr,Mo,
co 79.5V8Zr10.5MO, Co80.5V7Zr9.5M03
Co-Cr-B Co78-,W%2
220
Co-Cr-Nb-Zr-Mo Co8dh5NWL5M02 Co-Cr-Si-B C~&r3%J%0 co 72.7Cr2.3%Blo Co-Cr-Zr (Co1 -xW90Zr10
BIOPIO
Co-V-B-Si (Co1 -Yxh7-
hdz)
Co71Cr19Zr10
176 177
Co,oVJ%,
Co-Cr-B-Si (Co1 -xGJ77-
8.45258.8
B13Silo
Co-V alloys Co-V-B Cox+-xVx%~
(Co,-,C&,B,,P 10
176 177
Co-Mu alloys dTc&,
x=0.1,0.2,0.3 OlxlO.4 --
(Co,-,MnJ,oo-,BY CO&~&O W&W%, Co70Mn6B24
125~532, O~x~O.4
Tc
x,‘, @ ,& vs. x Pm. 7-c vs. x dT,/dp vs. x Pm@) dTcldp, Tc To TX Tc, TX
174 18 247 248 249 174 41 41
Composition range Co-Mn-B (continued) 05x512 Co78-Nn,B22 Co6sMnloB22 Co70Mn8B22 Co-Mn-B-P (Co,-,Mn,),,8.45258.8 B,oP,o Co-Mn-BSi (Co,-,MnJ,,8.4~2~8.7 Bdilo
Properties
Figures Tables
41
h4(z)
221
Feo.odw&,.s -x)~oB20 8.1~2~9 O~X~I
40
(Co,-,Mn,),,05x50.08 Nb,, Co-Mu-P-B-AI (Coo.&fno.~d7~PI ,Bd% (coo.ss Mno.45)75PI t&Al,
T,, TX vs. y
250
T,, TX vs. x
197
41
228 120 121 251 252
(C~~.beo.7,),,B20
D
43 I7 43 I7
(COo.w&o.6&o-
D
17
B Co4~~40B20
4
(Coo.75
D
42 17
4 Tc 4
42 43 42
41
PI ,b’%
critical exponents T. Tc critical exponents
(Coo.7oMno.&~PI t&Al, (Coo.~oMno.2d75-
20 41 20 41
G. Tc
PI ,‘h%
40 05x510
Feo.2d~o-
B Co,%e,B,,
41
Mno.40)75-
Co-MnSi-B C%,M%%‘h, Co-Mn-Zr Co90-XMnXZrI0
505x580 Co.Feso-.B20 Co6Fe74B20 (Coo.12sFeo.87s)so-
l%M(z) At(x) fJTTM(X) G4 B,(x) TC
D
TC O~y~lO
4x)
171
Tables
42 17
D
(CoJ-el
MnyNb15...14
(coO.6O
4
71 6’%.g’h.s z,,,,-
220
Figures
Co-Fe-B
177
&M(z)
Properties
Co-Fe alloys
176
4 CO-MII-Nb co 85...86-y -
Composition range
Co75Fe5B20 CoxFeg2-A8 Co3FesoB17
25x56
AT, per at % Co Am, 6, PFe
>Tc,db 0,
87 42 217 218 104 42
=s
42
as
42
(Coo.deo.40h3(Cf~:oFeo.30h3(Cf~.k&o.26h3B (Coo.77Feo.z3)s3(C~~~oF~o.20)s3~~?k-F~o.13,3(c~~.ho,og),3(Cf~~3Feo.07h3KJf~~5Feo.05),3(C~~?,,5Feo.035h3=s (~~~.b~o.02)83(C~~?,,Fe,olh3=s B
42 42 42
17
d~7Fe~o.5B16.4 ColoFe74B16 (CoxFel-x)s5J%5 ColJ%7B15 Co7gFe6.5B14.5 %sFe6gB13 Co-Fe-B-C Co,Fe,,B,,-,C, Co-Fe-B-Ge co 70.5Fe4.5b4Gel Co-Fe-B-M0 %&4%4M02
01x10.2 _ _
0$x$6
Tc TC T,(x)
cs, B, vs. x
42 42
tjTd-9
43
BS Tc
42 43
6, T,-, TX vs. x
42 42
co70.5%5B15-
42 42
42 42 42 43 43 229 42 42 42 253
42
Si 12.5
Si,, AMOMET co 70.5Fe4.5%5-
220
TC
(Coo.g4Feo.06L753 5 79 (Bo.5Sio.5hoo-x Co70Fe5B15Silo (Coo.g3sFeo.062)75(Bo.&5)~5 co70.4Fe4.6B12.5-
42
4
Co-Fe-B-P 8.1~2~9 (Co1 -.WsoBIOPIO Co-Fe-B-Si (Coo.95Peo.045)70(Bo.&o.4)30 Co67Fe5Bls%o
254
TC 4
43 42
TC
43
4
42
4
42
4 TC
42 43 43 43 42 43 43
%0
co 71.4Fe4.6B14.4Sig., Co,,Fe,B,,Si, Co,,Fe,B,,Si, Co2Fe74.4sB13.72(~~?J+4.6~77,75(C!y&,:B13Silo co
[email protected] (Co 0.93c g;;;&;:;;*
TC TC 0s To TX Tc
8.1 sZ$8.9 Olxll --
221 255 42 D
17
Composition range Co-Fe-B-S (continued) co 72.7Fe5.0~k&.&~ (C%.9,,Fe0.064)77.74(b&.d22.2~ OSxSl (Co1 -.W7sB12% 05x51 (Co I -,Fe&,x=0,0.1,0.5,0.9 (C:::.g;bj,,B,kk W+deo.5)78B I2.39.5 ~~.de38%2Sil~ (Co~.7Feo.3)7~Bd%.~ Co,,-,Fe,B,,Si,, C~d%Bl
1Sil 1
P~.gFeo.l)7sB 12.893 Co72b&%l co 72.8Fe5.2B,ISill Co,,Fe,B,,Si, Co4e2Bl l%l (C%.,,,%.064)78.36(B~.7%.3)21.64 Co73.4Fe5.0(B~.7%.3)21.6
x=0, 2, 6, 8
Properties
Figures
Tables
4
42
D
17
a)
257
h(x) a(T) D Q, D 0, 4 Tc D
258 259
&Cl IJOWT) 4 Tc D Q, 4 Tc Tc
62 256
17 42 17 42 42 43 17 42 42 43 17 42 42 43 43
4 4 Tc D
42 42 43 17
4
42
Composition range
e%.9w Fe0.0d78.9s(B,.7%.d21.,2
Co,.,Fe,&dio.4)2~ co 74.5Fes.lFb.5%5Lo.4 (c%.936Fe~.cd79.~@d~.d20.4 Co,Fe,,B,,Si, AMOMET Co,,Fe,B,,Si, co 7d%&SiS co 73.sFe~.sB15% Co7,FeSB,,Si, Co,,Fe,B,,Si,
co7d%.A5% co76.5Fedh5%
Co,,Fe,B,,Si, Col&~7JLSil METGLASTM 2605 CO WFe67%Sil Co-Fe-FB-Si-Mo (Coo,s62Feo.04sMo~.&dWi~ 0 o.92Peo.075)73Bl&2M02 Co72FcJ%5Si,Mo2 METGLASTM 2705 MN
Properties
Figures
Tables
D
17
4
42
4
42
D
17
4
42 42 42 42 42 42 43 42 42 42 42 43
Tc B,
PFe?
OS
42
B.
42
4
42 43 42 43
T, 4 To TX
Co-Fe-B-Si-Nb (Co 0.86d+0.044Nbo.d7sB14% Co-Fe-B-f&W (Coo.856Feo.054Wo.09)7sB14Sis Co-Fe-B-Ta Co,,Fe,B,,-,Ta, 0~~~10 Co74Fe4Bl,Ta4 Co,,Fe,B,,-,Ta, Osxs6 co 75.25Fe4.75B14Ta6 Co-Fe-Nb co 05.. 26 -v05ys40
FeyNb15:. .14
(Co,-,Fe,),,Nb,, Cos7Fe2Nbl 1 Co-Fe-P (CoJ% -3soP20 Co20Fe60P20 Co40Fe40P20 Co60Fe20P20 Co-Fe-P-B (CoxFel -3,~ P,,Bs Co-Fe-P-B-Al (Coo.2Feo.s)75PI rAiA~, (Cod%.4)75PdW, Co7Pe3P16B6A13 Co-Fe-P-C (CoxFel-x)sop13c7 Co35Fe45P13C7
42 43
4 To TX
42 43
4 To TX B,(x) 4 B,(x) 4
260 42 260 42
Co-Fe-Si-B Co65.7Fe4.3Si17B13 C~66%%sBll Co,,-,Fe,Si,,B, (Col-.W73Si17Blo Co69Fe4.9Si 15.7 B 10.4
BS Tc
85x512 Olxll _ _
(Co0.94Fe0.06)74.5%~Fedidbo Co4P&hBlo
250
T,, T,vs.x D
197
Co45Fe30Si15Blo Co50F@i15Blo
05xsO.06
85258.8
(CoxFel
17 228 42 42 42
Olxll --
Pm, Tc vs. x POWT)
261
140
42 43
4 TC 01x10.8 _ _
B,(x) 4
-J7~-
%Blo Co55Fe20%5Blo Co,,-,Fe,Si,,B,, Co60Fe15%Blo Co65%o%5Blo (Col-.W75%d%o (Coo.s8Feo.12)75Si15Blo co 6&%.5Sil A0 Co7J%%Ao
43
Tc
262 42
43
B,, T,vs.x PThm
263 264
To TX
43
Tc
43
4 B-3 4 4 4 B,(x)
42 42 42 42 42
Si 13.5 B 12 Co3Pe40%Ao
Tc, Tx vs. Y
42
Co,,Fe,Si,,B, co 7o.3Fe4.7%Blo co ,,.,Fe4.,%A0 (Co 0.~3~Feo.od7~%A0
0.7<x51
262 42 63 265
05x515
42 42 01x10.12 - _
266
4
42
4
42
4 To TX 47 Tc Wo)AW, Tc asp4
42 43
To TX
267
4
43 42 43 42 43
Composition range Co-Fed-B (continued) llS~x~15.5 (Coo.,,Feo.od90.s-= WLs
co70.SFe4.s%SJ%o Co7~Fe4%sBlo Co,,Fe,Si,,B, Co73Fe2%Blo co 71.7h.3Si13Bll (Co,-,Fex)76.713.3
05x51
Si 13.5 B9.5 Co73Fe,Si,3Bs Co7s.2FesSilsBll.~ co 7g.lFes%Blo.9 GdWW%o co ~0.9FGidh co ~l.d%%sB~.2 ~o~~Fe~Si~.sB~.s Co-F&i-B-MO Co,,Fe,Si,,B&o, VITROVAC 6025 co 66.4Fe3.6%6B12M02 Feo.24)71-
%sBdb (Coo.*0 %sB&%
Figures
To TX vs. x
268 42 43 42 43 42 43
4 To TX 4 Tc 4 Tc.TX A-M(x)
Tables
264
10
~C~.g4~o.06)77-
(COO.76
Properties
Feo.20)71-
4
42
Tc 4
43 42
4
42
B, 4 4 Tc
42 42 42 43
B, Tc
42 43
4 4 Tc 4 Tc
42 42 43 42 43
Composition range
(Cod-o.&SWloMo3 (Coo.agFeo.ll)72SidLW3 Co,dK.2Sid%No~ Co6s.3Fe3.7GJ%o.~Mo~.~ (Coo.soFeo.2d73SilsBloMo2 (Coo.sgFeo.ll)73%BloMo2 Co6g.sFes.o%A,Mo,.s co70.0Fe4.sSi13Bl~Mol.s co70.3Fe4.2%&~Mo~.s Co70.6Fe3.g%3BllMol.s Co-F&i-B-MO-C co 70.Pe4.2Si I~.SBIIMOI.SC0.2 Co-Fe-S-B-Nb Co67.&4.1%BllW Co-Fe-S-B-Ta Co6g.sFe4.2%J%,Ta2 Co-Fe-S-C W0.94Feo.od~7.~Si20C12.s
Properties
Figures
Tables
4 Tc 4 Tc. TX 4
42 43 42 43 42
4
42
4 Tc 4 Tc To TX
42 43 42 43 43
To TX
43
To TX
43
Tc.TX
43
To TX
43
Tc. TX
43
To TX
43
42
Co-Fe-Y (Co,-,FeX)sOYzO Co-Fe-Zr Co,FegO-xZrlo (Co,Fe,-X),,Zr,,
(Co,Fe,-&Zr,, (Coo.olFeo.99ho-
Ni-V alloys 0.4<=x<=l.O
269 270
Ni-V-Zr W0.33Zf0.67)95-
01x510 OSxSl
O$x~O.15
Zri0
(Coo.02Feo.~~)goZrl0
(Co,Fe,-X),oZr,o O.lSxSO.8 (Coo.1 Feo.g)goZr~o (Coo.2Feo.s)goZr~o (Coo.3Feo.Adho CogO-xFexZr10
PTM(x) T,(x)
0$x510
Pm. Tc vs. x Pm(x) fi-m. Tc vs. x T,, TX vs. x dT,ldpvs.l-x dT,ldp vs. T, dT,ldp vs. x critical exponents Tc critical exponents TC f&4 4 Tc 4 Tc 4 %(X)
V,
271 272 237 214 193 194 238
(NG.33Zro.67h5-
W2Z3Zro.67h0-
V’20 Wio.33Zr0.67)75-
V 25 20 43 20 43
213 42 43 42 43 42
Ni-Ti-Zr (Nio.33Zro.67)95Ti,
Tiz5
401xS70 --
XIII(X)
Ni-Cr-Zr (Nio.33Zr0.67)95-
Q23Zro.67hs$2Zro.67ho(520
171
N&Mu alloys Ni-Mn-P-B (Nil -&fn,hP&3 Ni-Mn-P-B-Al
Ni-Ti alloys Ni-Ti Ni,,,-,Ti,
Ni-Cr alloys
34
xm
8a
Xm
8a
xm
8a
xm
8a
Xm
8a
W;
-;M;f75-
16 6 3 Vi1 -,Mn375-
0.011x~0.10 --
@(x)
50
0.11x10.7 --
T,,(x)
275
x=0.25,0.3,0.4
xv(T)
51a
P,,KsA~3
~io.sMno.2>7~P,JW, Ni-Mu-Zr
(~~-f)-%s.
Xg(T) X,(T) x3Peri, @, c
T
51b
13 52
Composition range
Properties
Figures
Tables
8d 8d
Composition range
Fed%& Fe17Ni63B20 F%&i&~
D
critical exponents fl*, 4 Tc AT, vs. proton 280 and electron fluence, respectively 4 Tc
8d 8d
Fe30Ni50B20 Fe,,Ni,,&
(Fe,-,NiJ,,B,, (F%.,,Nio.&,-
06x60.7
(F?h ddt5 (F%.mNib.&,B Fe,,$i,6B,, (Fe,-.Ni&,B,, (Fe,Ni,&,B,, Fe,Nil.-,),J%-,
(Fe,-XNiX),,B,,
85259.5 O.l~x~l 0.16 x 5 0.9 O.l9Sy/(l -Y) 5 0.25, x=0.5, 0.6,0.7,1 05x50.7
276
C
45
Tc Tc
45 45
critical exponents Tc h-M(z)
20 45
T,, D/T, vs. x h& A-M vs. Y/U -Y)
D as, Bs To TX Tc D 4 Tc D 4 Tc 4 Tc Tc Tc as 0s 0s as 0,
45 20 45
Tc
critical exponents Tc ;mw
228 64 277 279
Fe7.&% Fe,,Ni
63.8
Figures
Tc us
8d
Fe-Ni-B (Feo.2Nio.8)75B25 FedJidb~
Properties
B 19.2
(Fed%.hB,9 (F%.6Nid~~B~9 (Feo.7Nid~lB~9 (&dJid2% (F%.6Niddb Feo.7Nio.3h2Bl~ %2-xNixBl~
278 120 121
G%.J%.dd~~ @%.J%6)d&~
25x56
2Tc per at % Ni
Tc. TX a*
Tables
45 44 18 20 44 45
44 45 18 44 45 45 18 44 45 18 44 45 44 45 45 45 44 44 44 44 44 44
87 45 44
44 44 44 44 44 44 217 218 104 45 44 44 44
Fe59Ni23B14M04 Fedh4B14M02
us,4 T,, TX %(T) To TX To TX
281
44 45 45 45
Fe-Ni-B-Mo-Si Fe,,-,Ni,B,,Mo,Si, Fe82--x--yNixB,,Mo,Si,
05~56
B,(Y)
282
o<x112, - y=2,3,4
T,(x)
283
Fe-Ni-B-P (Fe, -xWso-
8gZs9.8
PTt.d?)
220
0.036x~O.4
T,(x)
287
229
Fe,,Ni,B,,-,C, Fe-N&B-MO Fe 54.5Ni 22.5 B 14.5-
06x510
Tc Tc TC T,, TX Tc Tc Tc
45 45 45 45 45 45 45
4 Tc 4 Tc
44 45 44 45
u,, B, vs. x
253
METGLASm 2826MB
(Feo.13Nio.s7)soBIOPIO (Feo.l~Nio.s4)so(F~~~$hJso10
Tc
45
Mot3.5 Fe40%BlsMo4
(F$$?&,BIOPIO (Fe~.~7Nio.&oBIOPIO Fe6Ni74BloPlo (Feo.~NLho‘%oP,o J%oNGoB16P4
10
(Feo.22Nio.7sho-
Tc qcle. Tc
q/s.Tc
45 15 16 45
C
q&s. Tc
15
critical exponents Tc T,
q&s, Tc Tc
Tc qc/qs Tc Tc
20 45 45 15 45 45 16 45
‘%oP,o
D Y
18 20 44 45 18 44 44 45
as,4 Tc
281
Fe20Ni60J-W4
critical exponents Tc
D Tc Tc
20 45 18 45 45
Tc
45
Composition range Fe-Ni-B-P (continued) Fe40Ni40BloPlo Fe40Ni40B12P8 Fe40Ni4& P4 FedJk7.2B,,.J’,.,
Fe-Ni-5Si F%Nd%%o Fe36.&6.5hSG.6 Fe~~Ni60B15Silo
Few.sNi,,.z-
B,,.&s F’%8..&7.,bdi7.5 Feo.76Bo.14-
Properties
Figures
Tables
B,7.6%.6 Fe34.3Ni42.,B17.5%7 FeJ% -J7~BG%
Properties
Aff.m,
=c q&s. =c h+ 4 =c B,ur 4 =c Perr,0 critical exponents =c X,-V-I
45 44 45 44 45 9a 20 45 53
BS =c =c
44 45 45
0.6sxsO.9 0.85x50.95 85259.8 Feo.tNid77B13%o (Feo.,,Nio.&,B13%o (Feo.,Nio.dvB13Silo Fego.3;0.7)7713 50.4~o.d7713
Fe,Ni78-,B,3Si,
=c
45
Fe,,Ni,,B,,Si,
as
44
=c
45
TC
45 vs.
=c
15
X,‘(T)
magnetic phase diagram PTdz) =c
x
55 a 55b 284 54 285
221 45
D
18
=c
45
TC
45
=c
45
10
=c
q&s
P-fTM vs.
Tables
10
45 45
To TX
C,,
Figures
0, T, vs. x a,G”h T
15
si0.10)98-
Ni, Fe30.9Ni45.9-
Composition range
(Feo.4Nio.d78%% Fe39Ni3P12Silo (Feo.6Nio.4)78Bdi8 Fe,,Ni,,B,,Si, AMOMET Fe,,Ni,,B,,Si, (Feo.,Nio.,),,Bdilo (Feo.8Nio.,hBd’i8 Fe62.4Nid-h5Si7 Fe,+,Ni,B,,Si,
25x69
15x56
magnetic phase diagram critical exponents
286
T 4 =c =c 4 =c 4
20 45 44 45 45 44 45 44
=c 4 =c =c
45 44 45 45
=c T,(x)
45
123
11 11 9a 45 9a 45 9a 45 20 45 20 45 45 20 45 18 20 44 45 20 45 45 20 44 45 20 45
Fe,Ni,,-,B,,Si, Fe,Ni,,-,B,,Si, Fe,Ni,,B,,Si,
Tc 0 TC 0
1 Fe,Ni,,B,,Si, 1 Fe,Ni,,B,,Si,
T,
critical exponents TC Y Tc T, critical exponents
1 Fe,Ni,,B&G, FesNi,,B,,Si,
Tc
D critical as Tc critical Tc Tc critical as Tc critical Tc M-.l critical Tc critical Tc Tc TN-
Fe,,Ni,,B,,Si,
Fe,,Ni,,B,,Si, Fe ~~.~~~d%9% Fe,,Ni,,B,,Si,
Fe,,Ni,,B,,Si,
Fe,,Ni,,B,,Si, Fe,sNi,,B,sSi,
Fe~~Ni~oBlo%o Fe,,Ni,,B,,Si, Fe25%BloSilo Fe,,Ni,sB,,Si, Fe40Ni40BloSilo Fe,,-,Ni,B,,Si, Fe,,Ni,OB,,Si,
exponents
exponents
exponents
exponents 291
20 45 20 45 45 45
exponents exponents
T&J T,
288
a,Dvs.x Tc
289
Tc
05x540
Fe5~Ni30Blo%o Fe60Ni20Blo%o Fe,Ni,,-,B,,Si, Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si, Fe,,NisB,,Si, Fe,,Ni,B,,Si, Fe,,Ni,B,,Si, Fe,,Ni,B,,Si, Fe 79.59Nio.41Bl& Fe,dJi4,.2B G% Fe,,Ni,,B,,Si,
55x53
*
.1
Fe-Ni-B-Si-Mo FedLJbSi,Mo, VITROVAC 4040 Fe39Ni3&2Si,Mo, Fe-Ni-Nb Fe,Ni,,Nb,, FeloNLoNb50 Fe-N&P
FexNisO -xP2o (Fe,W -xhoP20 W%o-,P20 (Fe,Ni,-,),,P,, (Feo.152Nio.s.&o-
Tc Tc Pm, Tc vs. x Tc Tc Tc Tc Tc Tc To TX
45 45 290 45 45 45 45 45 45 45
Tc
45
To TX
45
4
44
To TX
45
Peff,@
9a 9a
Peff,
@
11 8.55259 55x520 - 0.15spsO.37
;Tx;a
(+c.D)z vs. p Tc
228 292 65 45
Tc
45
Tc
45
45 45
Tc
45
45
T,
45
Composition range
Properties
Figures
Fe-Ni-P (continued) FedJi~oP20 (%.~~5Nio.745)so-
&:oJ’Jio.,&o(F?.hio.675)soP Fe,$Ji,,P,, F%oNi,oP,o Feo.5Nio.5h3P17 Fe-Ni-P-B Fe,,.,Ni 38.8 P 16X (F:zNi&PI,& (Fe0.0t
Nio.&~-
FZ.~~~io.&9PI,% (Feo.03Nio.&9P1383 (Feo.o,Nio.,&P13b Wo.05Nio.&9-
(FePb.C~i0.9&-
&??~io.93h-
44 45
=c =c =c
(F~~~~lNio.71d60-
Tables
(F:r3zo &p9.;B, ’
Fe&
-,JaoPd6 Fe,Ni,,-,P,,B, 3sxsl9 96x450 14~x~40
45 45 45
Fe3Nb7P14B6 Fe5Nb5P14B6 %Nb3P14B6 Feo.09Nio.dso-
Properties
Figures
P. magnetic phase diagram
296
PNIW D(x) =c =c =c 0
Tables 11
294 66 45 45 45 9a
PI.236
44 44 45 D
Olxll _ _
&,,
F%Ni71P14B6 FeioNi70P14B6 Fe,
~Ni,,P,.d%
18 T, vs. x
0,c* =c 0,c, =c 0,c, =c 0,c* =c =c 0,c* =c =c
293 9a 45 9a 45 9a 45 9a 45 45 9a 45 45
P13J3, (Feo.otJ%&9-
Composition range
9a 45 9a 45
F%Ni,,P,,B, Fe,,Ni,,P,,B, Fe 17.8 Fe~,Ni,,P,.& %oNi,oP,,B,
6221&
Pm,4 =c ho 4 PTW Bs =c he 4
critical exponents as TC
295 as*xg-I vs. T AT, vs. proton and 280 electron fluence, respectively Y PTM =c
critical exponents 4
=c =c 4 =c
44 45 20 44 45 44 45 44 44 45 44 20 44 45
20 44 45 20 44 45 45 44 45
Fe40Ni40P12b
FJ-111 (China) %Pi4J’12Bs Fe.did14B6 METGLASTM
4
44
BS
44
18
D D(T)
67
critical exponents 4 Tc
2826
Tc Tc
20 44 45 44 45 45 44 45 44 45 44 45 45 45
PC
11
PTM,
4
TC
Fe40W2P17Bl Fe45NL5Ps.5Bl.5 Fe-N&P-B-Al (Fe& -&PI&& @,Nil -Jw
P&Al, (Feo.04Nio.&5PdW, Feo.06Nio.94hPI,&% (Feo.0sNio.92hPdWs (Fe,d%.d5P&iAL (Fe0.14Ni0.s6hPI.A~ (Fe~.Gi~.t&PdW,
o<xso.4
9a 45 20 45 20 45 44 44 20 45 20 45 18 20 44 45 20 45 18 20 44 45 18 20 44 45 44 18
magnetic phase diagram Tsg
4
critical exponents Tc, Ts, critical exponents To Tsg D
critical exponents critical exponents Tc D
(Feo.50Nio.50h5Pdk%
287 45 45
45
45
D
critical exponents BS Tc 4 D
45
45
critical exponents BS Tc
(Feo.7Nio.3hPM’%&
D 42 Tc D vs. (T/Tc)5’2 D
18 44 45 68
18
Composition range Fe-Ni-P-J&AI (continued) (Feo.sNio.2)75P,JW,
(Feo.9Nio.l)75PdW,
Properties
Figures
Tables
Composition range
18 20
9b
45
9b
140 18
9b 18 45 18 44 18 45
45 44
D Tc. TX D as D
Tc
45
D
20 44
critical exponents Tc
20 45
B
20 45
&PI
TC
162 18 45 18 45
Tc
D
(Feo.&io.06)90-
Fe-Ni-Si-B
Fe,,Ni,,Si,,B, VITROVAC 4
xi=n
critical exponents us, 4 Tc. TX 4
Pl3G
Fe72Ni8P13C7
Tables
44
FeNi-P-C
(Feo.2Nio.dso-
Figures
9b D critical exponents B* Tc POW(T) D
FeNi-P-B-S
Fe,,Ni,gP,,B,Si, METGLASTM 2826B Fez,Ni,gP,,B,Si,
Properties
f&ah
Tc
166
Zr10 Feo.dio.&o-
AT&P)
162
Zrlo
Fe-NiSi-B-MO
Fe,,Ni,,Si,,B,Mo,
D 4
18 44
FeNi-Zr
Fes&Zrlo
(Feo.96Nio.d90Zr10
(Fe,-,Ni&,Zr,,
05x61 06x50.9
hp.,, To T, vs. x h,, Tc vs. x
Fe,Wo.33Zr0.67h00-r FedNio.33Zro.67h0
0$x530
L-07
d T,ldp vs. x
Xm
Fe,,Ni,Zr,,
297 237 238 56
(Feo.99Nh)90Zr10
9b
D Tc critical exponents Tc D Tc critical exponents Tc
18 45 20 45 18 45 20 45
--
I
Co-Ni alloys Co-N&B (Co-Wd20 Co40NL0%0 Co-Ni-B-Si Ccdi&&o cc; -ph13 10 ColoNidG%o (Col-,N&s-
p,forZ=9.5 =s
228 46 47
94259.8
Tc &M(z)
221
0.051x10.8 _
as df-.l
298
G%o co 15.6Ni62.4G%o Co39Ni39B12%o co 54.6Ni23.4B&lo Co,,Ni,,B,,Sis co 70.2W.8G%o
46 46
as
46 46 46 46
(Coo.50Nio.&~P,,Wl, (Coo.60Nio.40)75P,,WL
critical exponents 4 critical exponents POMSUJ
Co-Ni-Si-B (Co,-,Nih-
POMAX)
%Blo Co,,Ni,,Si,,B, Co,,Ni,Si,,B, Co,,Ni,Si,,B,
05x10.4 - 0.08<x
9.35259.8
ihhdz)
228
Co-N&P-B (Co,Nil-37s-
Olxll - -
%(X)
299
20
critical exponents
20
critical 4 critical 4 critical 4 critical BS
20 46 20 46 20 46 20 46
exponents exponents exponents
47 47 47
Co-Ni-Zr co,,Wo.33Zro.67h5 co,,-
9c 9c
Wo.33Zr0.67h0
Co-Ni-Zr-Mo
Co,sNi,Zr,,Mo,
BS
Co,,Ni,Zr,,Mo,
To TX 4 To TX
Cu-Ti C~lOO-xTix
6
exponents
300 301
46 47 46 47
Cu-Ti alloys
P,,Bs Co-Ni-P-B-AI (Coo.30Nio.70h5PI&& (Coo.32Nio.6BhP,c&‘% (Coo.34Nio.66)7sPdW, (Coo.36Nio.64hPM-B&L (Coo.3sNio.62)75PI,&% (c00.40~0.60),5PI,%&
140
Tc Tc Tc
Co-Ni-P
(Co,-,NiJ,,P,,
T,, TX vs. x
20 46 20
40$x560
XIII(X)
34
Cu-Mu alloys Cu-Mn-Al
CuzMnAl
48
cu-M&In
Cu,MnIn
48
Cu-Mn-Pd-Si
Cu,Mn,,Pd 67.5Si16.5
IOa
Composition range
Properties
Figures Tables
Cu-Mn-Sn Cu,MnSn
48
Cu-Mn-Zr Cu50MnloZr40
48
Composition range
Properties
Figures
49 50 49 50 49 50
Fe*0.6Cuo.4B 16.5Si2.5 Fesl.2 Cuo.sB13Si~ Fesl.6Cuo.4Bdi5
Fe-Cu alloys Fe-Cu-Ag Fe,,(Cuo.Ao.As Fe-Cu-B Fe75Cu5B2o Fe77Cu3B20 Fe7gCulB20 Fe~s.zCuo.J%o
49 50
BFe TC
49 49 49 49 50 49 50
FeTg.,Cuo..&o
Fe-Cu-Zr FeOGXo FGu57Zr40 Fe6Cu54Zr40 Fe&u&& FeloCu&h
10a 1Oa 1Oa 50 50
1Ob 1Ob
217 218 Fe-Cu-B-S Fe,,Cu,B,,Si,
PFo
Fe7g.5CU0.SB15Si5
PFe.
TX
To
TX
50
To
TX
50
PFe,
Us
49 50
Tc
Fe79.62CUO.3Ls B14% Fe79.*5cuo.15JL& Fe‘79.92s Cuo.dL& Fe.30.2c%.,%&.,
lob 49 50 49 50 50
us
a,
Tc To
Tc
Tables
lob lob Co-Fe-Ti alloys Co-Fe-Ti Co,,-,Fe,Ti,,
10~~~60
PFetX) us T,(x)
213 214 215
Co-Fe-Mn alloys Co-Fe-V alloys Co-Fe-V-B-Si
Co,dFe,V,B,,Si8 FJ-103 (China) Co,,Fe,V,B,,Si, co 68.7Fe4.3V217.7Si7.3 tCEo.864Feo046-
V0.0g)78Bh8 Co-Fe-V-B&-MO (Coo.gOFeo.05-
51
4 0s Bs To TX 4 To TX To TX
51 52
51 52 52
Vo.o2M00.03)74-
B15Sill c06,Fe4V2-
51
Qs
B,,Si,Mo, Co-Fe-Cr alloys Co-Fe-Cd-P cO,,Fe,Cr,BgP6
Co-Fe-Cr-B-Si (c6o.c&o.odn.sCr2Bz2SL.5 (COo.,oFeo.o6Cro.04~77B1&o
Co,,Fe,Cr,B,,Si, (COo.s&o.osCr0.0g)78J%4Si8 osxs14 Co.Fego-Zx- _ Cr,B,,Si, Co,,Fe,Cr,B,,Si, Co-Fe-Cr-Si-B (Co0.83Feo.17)71Cr4Si15Blo
53
BS
54
TC
Tc,
TX
4 4 302 c&‘-)/a,(O) vs. T/T, 303 4
54 53 53
h(x)
Tc
53
Co-Fe-Mn-B (Coo.g6Feo.04)-r6Mn,Bzo (Co0.g75Fe0.02d84MnzB,, Co-Fe-Mn-B-Si co ,o.d%.6Mn2Bll.5%l.5 co ,,.,Fe2.5-
4 Tc, TX 4 Tc. TX
55 56 55 56 55 56 55
Mn3B15Si8 (Coo.g5Feo.od74kfn6B1& (COo.mFeo.o75)76Mn,B,,Si, (Co71.5Fe2.5- ’ Mn3180/77B&h (cOo.gz&o:o&sMn4Bl& (cOo.mFeo.oxhMn4B16si2 (Co om&o.oz5hMn4B12si, Co-Fe-Mn-Si-B co 68.2Fe3.8MnlSi15B12 (COo.91&o.oo5Mno.o7h.3-
55 56 55 56
56 55 56
I P!f.?J s E
ch !A b E 0
4
BS Tc,TX BS To TX BS Tc, TX
55
BS
55
4
55
4
55
BS
55
56 55 56 55 56
zM 5 s 2 a 4
Si 12.7 B 9.0
54
Co-Fe-Mu-Si-B-MO CO,,Fe,Mn,-
Si,,B,Mo, Co,,Fe,Mn,Si,,B,Mo,
ti
Composition range Co-Fe-Mn-Si-B-MO (continued) Co,,Fe,Mn,Si,,B,Mo, Co,,Fe,Mn,Si,,B,Mo,
Properties
4
55
4
55
Fe-Ni-Ti alloys Fe-Ni-Ti Fe,Ni,,-,Ti,,
106x560
P&(X) &4 T,(x)
213 214 215
Fe-Ni-V alloys Fe-Ni-V-B-S Fe,,Ni,,V,B,,Si, FC-23 (China)
57
To TX Fe-Ni-Cr alloys
Fe-Ni-0-B %6NL&rl.J%~ J%sNL&r12B~~ Fe3d%&rlJb %2NLGJh~ FtdG&Wb Fe36Ni4&r4B~~ W+JL&r2Jb Fe-Ni-Cr-B-S Fe, ,Ni,,Cr,Bd% Fe,,Ni,,Cr,Bd%~
Composition range
Figures Tables
Tc Tc Tc Tc Tc Tc Tc
59 59 59 59 59 59 59
Tc
59
Tc 49
59 117
C%.dh.~~Cro.ddb% Fe-Ni-Cr-B-Si-Mo Fe,,Ni,,Cr,,B,,Si,Mo, Fe,,Ni,,Cr,,B,,Si,Mo, Fe-Ni-0-P-B Feo.5Nid~~CrloPIJ% G%.5Nio.5hCr6P14B6 (Feo.5Nio.5h6Cr.Pd% (Feo.5Nio.shCr3P14B6 Feo.5Nid~~Cr2Pl.& Fe~.~%.&Cr,Pd, Fe,,Ni,,Cr,,-
Properties
Figures
To TX
59
Tc
59
Tc
59
To TX
59
To TX
59
To TX
59
Tc. TX
59
To TX
59
To TX
59
4
58
critical exponents Patrus,4 Tc
20 58 59
PI236
FeJzNi,,Cr,,P,,B, METGLASTM 2826A Fe-Ni-CrSi-B-MO Fe,,-X,zNi,,-X,2- 05x55 Cr,Si,,B,Mo, Fe37.5Ni37.5Cr,Si,,B,Mo, Fe,sNi,,Cr,Si,,B,Mo, hdhCr,Si,,B,Mo,
Tables
G4
poMs, T,, TX vs. x D
::
19
D
19
D
19
19
D
Fe39.5Ni39.5Cr,Si,,B,Moz
ATcU’al
c33$s2jp.0750.4
-
(Bo.6Sio.dz7
Tc
62
To TX
62
Tc
62
4
61
Tc, TX
62
Tc Tc
62 62
B, ternary diagram 310 T, ternary diagram 311 4 T,> TX Tc
61 62 62
4
61
Co-Fe-Ni-B-Si-ALNb co 65.&4.2Ni3-
Tc
62
B 14.8si9.8A1,Nbl Co65.2Fe4.2Ni,.,B,,.,Si,.sAl,.@‘,
To TX
62
(COo.633Feo.067-
Fe-Ni-Mu alloys
307
Nio.&3(Bo.6Sio.dm
Fe-Ni-Mu-B-Si
Fe,,-,-,Ni,MnA&
y=o, 540, 01X15.5 --
44
306
co
NiloBdill co
Co-Ni-Mn Co-Ni-Mn-B-Si
61.3Fe5.3&4&&o
alloys
60
Co,,Ni,,,Mn,B13%
58.3Fe4.7-
Co-Fe-Ni alloys
Co,,Fe,Ni,B15Silo Co,,Fe,Ni,B,,Si,o FC-12 (China) Co,,Fe,Ni,B1,$i8 (COo.,,&o.oss-
Co-Fe-N&B-C
Co,Fe,,Ni,B,CG Co-Fe-Ni-B-C-Si
Co,Fe,,Ni,B,C5Si2 Co-Fe-Ni-B-Si (COo.ssFeo.o6Nio.ochoBzo%o (Coo : 7Feo.07Nlo.mhBdin
Co,,Fe,Ni,B18Silo Co,,Fe,.5NigBdi11.5 Co,,Fe,Ni,,B16Sill VITROVAC 6010 Co,,Fe,Ni,,B16%
Nio.&7;
4
61
4
61
4 Tc, TX 4 Tc a,
61 62 61 62 61
4
61
4
61
T,
62
(Bo.6Sio.4)23 (Col-,-yFexNi,hBdis (Co, : .Fe,.,N1o.dm%& (Co0.55Feo.lNio.&sh& (Coo.82Feo.09N1o.o9hBdis
.
01x11,0~y~0.8 _ -
Composition range Co-Fe-Ni-BSi-MO Co6sFe,Nt,B,,Si,,Mo, METGLAf? 2705M CO67.4Fe,.,Ni,B d%d%~ CO69.0Fe4.1Nil.4B l~.o%Mo~.~ Co-Fe-Ni-B-S-Nb Co,,Fe,Ni,B,,SiioNb, co ~d%.J%.5Bdidb~.~ Cos,Fe,Ni,B,,Si,,Nb, FC-14 (China) Co,,Fe.,Ni,B,,Si,,Nbl FC-I3 (China) Co-Fe-NiSi-B O~x~l [Co1 -x(Feo.5N1o.dxlw %A0 (Coo.~Peo.o~Nio.3d75%5Blo co B7.5Fe4.5W.oSi17Bs co,,., Fe4.1N4.4SilgB6 Co-Fe-Ni-Zr (Co, -=-,.Fe.OjxSI, Osyz50.8 Ni,hZrlo (Coo.lFeo.sNhd~oZrlo
Properties
Figures
61 62
BS Tc
Composition range
Tables
Coo.2Feo.7Nio.AoZrlo
Properties
Figures
Tables
61 62
4 Tc Fe-Cu-Ti alloys
4
61
4 Tc
61 62
as
61
4
61
To TX
62
To TX
62
Fe-Cu-Ti Fe,Cu,o-,Tiso
285x563 145x563
h(X) T,(x) I,
213 215 214
Alloys containing four transition metal elements
308 309 61 62 61 61
B, ternary diagram 312
4 Tc
61 62
Co-Fe-V-Cr-B-S Co,,Fe,V,Cr,B&i, Co-Fe-Cr-Ma-B-S (Cogl.sFeo.5Mn7.dso.9~rdb.&.~ Co-Fe-Ni-V-B-S (Coo.ssFeo.06Nio.03Vo.03)75J%5Silo Co,,Fe,Ni,V,I%% Co,,Fe,Ni,V,B2& Co-Fe-Ni-Cr-B-S-Nb CO60.7Fe4.gW.lCrd%~.~%.~Nh.o Co-Fe-Ni-Mn-B-S co 75.0sFel.g2Ni,Mn,B,,Si, CO64.S Fe,.,Nb.lMnsB,,Si,
as
63
4
63
0s 4
63
0%
63
*s
63
as
63
J-4 To TX 4 Tc. TX
63 64 63 64
Ref. p. 1881
6.1.3 Amorphous
3d-M: paramagnetic properties
47
6.1.3 Paramagnetic properties The magnetic (dimensionless) susceptibility, xv, as defined by the relation dM xv= jj$ (SI units, basedon the relation B = u&Z+ M)) consists of temperature-dependent and temperature-independent parts. (i) The temperature-independent (or weakly temperature-dependent) part may be expressedas: 2” = its + Xcore + Xorb
[SSD 11, where xs is the Pauli (valence) spin susceptibility X0 xs =
1 -
Z,,,N,(E,)
*
x0 is the spin susceptibility of noninteracting electrons, Zeffis the effective exchange integral and No@,) is the density of electron statesat the Fermi energy E,. Moreover, x,,,, representsthe diamagnetic susceptibility of core electrons and xorbis the orbital (Van Vleck) magnetic susceptibility. The Pauli paramagnetism characterized by xs shows but a very weak temperature dependence due to the very weak temperature variation of the Fermi energy (cc T’) and can mostly be neglectedinmagnetic substancesin comparison with the strongly temperaturedependent contributions to x. (ii) The magnetic moments localized on the ions give the magnetic susceptibility obeying in general the Curie law
for noninteracting magnetic moments, or the Curie-Weiss law C NP& ‘g= 3,&(7-e- 0) = &j
(3)
for interacting magnetic moments. xpis the magnetic masssusceptibility, N is the number of atoms per unit mass, iI2 0 is the paramagnetic Curie temperature, .Z is the total angular momentum quantum Peff=w,cw + 111 number, J= L+ S, and C, is the Curie constant per unit mass.In the caseof different magnetic ions, pzffin eq. (3) is replaced by the appropriate average value, pzfr. (iii) Substancesordering magnetically at low temperatures exhibit a transition region between Curie-Weisstype behaviour (linear x- ’ vs. T dependence)and the critical behaviour near the phase transition temperature, T-T, -y XK yC > ( (cf. subsect.6.153). It is believed that a wide temperature range of curvature in the temperature dependenceof inverse susceptibility x-‘(T) is characteristic of amorphous metals [84 K I]. In addition to standard methods of measuring the magnetic susceptibility, Hall effect has been used to determine the temperature-dependent valence (Pauli) susceptibility xs of amorphous alloys [88 T 3,88 T 41 from the relation between the Hall coefficient R, and xs: R, = QJB = R, + R,x.
(4)
(in SI units), where en is the Hall resistivity, whereas R, and R, are the ordinary and spontaneous Hall coefficients, respectively. The temperature dependenceof the low-field susceptibility xacof some alloys shows a cusp-like maximum at some temperature Tsp.This points to a transition to the spin-glass state at the freezing temperature Eg (cf. Figs. 9, 51). Usually, the itinerant magnetic moments are lesspolarizable in an external magnetic field than the local ones; hence, the moment obtained from magnetization in the ferromagnetic phase is less than the moment obtained from C,. The ratio of the numbers of magnetic carriers, qcand q., calculated from C, and B,,respectively, indicates the degree of itineracy of magnetic carriers.
Kobe, Fercbmin
[Ref. p. 188
6.1.3 Amorphous 3&M: paramagnetic properties
48
Rhodes-Wohlfarth plot. This is a plot of the ratio qJq, at zero temperature vs. T,. Here, qc is defined by &r = qE(qC + 2)d. where Pcff is the average effective magnetic moment per atom derived from the Curie-Weiss constant, C,, and &=qspB is the average magnetic moment per atom from the saturation magnetization, 0,. at 0 K. For the itinerant electron systems(metallic alloys) this ratio is predicted to be a Tcw’ (cf. [83 W 21); deviations seenin the amorphous metallic alloys (Figs. 1516) are explained as due to concentration fluctuations [83 W2]. Since to get the internal magnetic field one has to subtract the demagnetizing field equal to NM (N: demagnetization factor, M: magnetization) from the applied magnetic field, &!a,=x; r + N, and N- ’ represents the upper limit for xmcaz.
6.1.3.1 Cr alloys Table 1. Cr alloys. Paramagnetic properties. The apparent change in magnetic properties at about 50at% Ge is not uncommon to TM-Ge amorphous alloys [83 F 23. x” 10e6 cm3/g 2.24 2.46 3.62 3.39 3.32
Cr2&e7z Crd-ksa CrJ%s G&es2 CrJh~ Cr,Pd,,Si,, Cr,Pd,,Si,, Cr,Pd,,Si,, Cr,Pd,,Si,, Cr,Pd,sSi,, Cr,Pd,,Si,, Cr,Pd,,Si,,,
Q K
Ref.
48 22 6 -15 12 -19 -35 -50 -67 -80 -90 -91
84Sl 84Sl 84Sl 84Sl 84Sl 70Hl 70Hl 70Hl 70Hl 70Hl 70Hl 70Hl
0
50
100
150
200
250
300 K 350
Fig.2. Cr,OO.lGe,,x=72, 64, 55, 52, 43. Reciprocal of the Curie-Weiss temperature-dependent magnetic susceptibility, (x,-f)- ‘, asa function of temperature,T. See
15.0 Xl-6 -cm3 9
Table 1 for f and 0 from the lit to the Curie-Weiss law (eq. 3) [84Sl].
2.5
0
50
100
150 T-
200
250
300 K 350
Fig. 3. Cr,OO.,Ge,, x=72, 64, 55, 52, 43. Magnetic susceptibility, xs, as a function of temperature, T[84Sl].
Kobe, Ferchmin
Landolt-B6msIein New Series 111/19h
Ref. p. 1881
6.1.3 Amorphous 3d-M: paramagnetic properties
49
I 6.0
-i 45 -2 . a
Fig.4. Cr,Pd,,-,Ge,s, x= 1, 2, 4, 7. Reciprocal of magnetic susceptibility difference, (Ax,)-‘, betweenthe Cr-doped alloys, and the host alloy, Pd,,Ge,,, for sputteredsamples,asa function of temperature,T. [8211]. 0
120
80
160 K 200
T-
6.1.3.2 Mn alloys Table 2. Mn alloys. Paramagnetic properties. x” 1()-@
IO-62
0
c,
Deff,Mn
K
cm3K 10-6 g
PB
0 100 100
240(20)
g 0.9(l)
3w
0.2
Mn,Pd,,Si,, Mn,Pd,,Si,, Mn,Pd,,Si,, MnlJrs5
241
-15 -1 -4 -9 -12 -8.5
Mn 32.5Zr67.5
358
-12
0.83
Mn50Zr50
979
-14
0.87
Mn&r33
1670
-13.5
0.72
Mn75P15Clo Mn,Pd,,Si,,
Land&-Biimstein New Series III/l9h
0.62
1.0
Kobe, Fercbmin
Remarks
Ref.
sputtered sputtered from low-field susceptibility at high temperature q,=o.14
88B2 88Ll 88L2
flakes of dc sputtered films scraped from the substrate; x,,,= 302. 10m6cm3/mol at 300K sputtered (seeMn15ZrsJ x,,,= 442 * 10e6 cm3/mol at 300K sputtered (seeMnl 2&J ~m=1270~10-6cm3/mol at 300K sputtered (seeMndh) ~,,,=2030. 10-‘jcm3/mol at 300K
71 Sl 70Hl 70Hl 70Hl 70Hl 84H3
84H3
84H3
84H3
[Ref. p. 188
6.1.3 Amorphous 3d-M: paramagnetic properties
50
80 .m6 cm3 9
=w o*
60 I ” 50 x”
40
1
10-’
K 10
IMn,,AI,,. Magnetic ac suscepFig.6. Mn,,Als,, tibility at 115 Hz, x80 for sputtered samples as a function of temperature, T(logarithmic scale) [SSLl].
80 I 60 L..
Ob 0
10
20
30
40
50
60
70 K 80
I-
(a) Low field (2 Oe) magnetic ac Fig. 5. Mn,,Al,,. susceptibility, xSc, at 113 Hz for sputtered samples as a function of temperature, T In (b) x.,T vs. T is plotted [88B2].
10.0
12.5
15.0
17.5 x-
20.0
22.5
25.0
Fig. 7. MnxAllOO-x. Paramagnetic Curie temperature, 8, for sputtered samples, as a function of Mn concentration, x [8863].
Kobe, Ferchmin
Land&-B6mstein New Series 111/19h
Ref. p. 1881 5 40" cm3
T
6.1.3 Amorphous 3d-M: paramagnetic properties
51
8 405
I I
Mn17A’58 “25
-1
’ cm3
‘,
:“: 6
\
,,'.' \..
3
. x, .:. ..” .:. .: .:
\ % t* \
I
2
.
_5
-1
‘.’; .‘...
-4-i
x”
-3
111’ 0
80
I
0 120
Fig.8 Mn,,Al,sSi,,. Magnetic mass susceptibility, x,, and the inverse magnetic susceptibility, xi l, as a fimctton of temperature, T: Note the Curie-Weiss linear temperature dependence of xi1 above 130 K [88F3].
10
20
30 T-
40
50
60 K 70
40
50 K 60
T-
Fig. 9. Mn,Au,,Si,,. Magnetic ac susceptibility, xao at IO kHz for sputtered samples as a function of temperature, T. (1) as deposited at 77 K, (2) annealed at 293 K, sample 13 pm thick, deposited at a rate of 93 A/min, (3) annealed at 293 K, sample 15 pm thick, deposited at a rate of 131 A/min. The characteristic maximum of a form of a cusp indicates the transition from the paramagnetic to the spin-glass phase [78H3].
0
50
100
150
200
250 K 300
T-
Fig. IO. Mn,sB,,, Mn,,B,s. Temperature dependence of the low-field magnetic susceptibility, xg, of rf sputtered samples in the field of 5 Oe. Open circles: increasing T, solid circles: decreasing T [87B6].
Land&-Biimstein New Series III/l9h
I
30
20
160 K 2000
TT-
0
10
Fig.11. Mn,,P,,C,s. Reciprocal of magnetic susceptibility, xi l, as a function of temperature, T. The dashed line is extrapolated [7lSl].
Kobe, Ferchmin
6.1.3 Amorphous 3d-M: paramagnetic properties
52
[Ref. p. 188
25 .lo-6 Y- 3
I 15 x" 10
0
0
50
100
150
200
50
100
150
200
250 K 300
Fig. 13. Mn,,Zr,,, N&,,Zrs,,, Ni,,Mn,Zr,,. Magnetic susceptibility, xs, of sputteredsamplescomposedof flakes scraped from the substrates, as a function of temperature, T. Measurementsin 12.8 kOe for Mn-Zr, and in 4.3 kOe for the other samples.The solid lines are Curie-Weisstits of the data with the valuesof parameters given in Table 2 for Mn,,Zr,,, and x,=196. 10e6 cm3/mol at OK, x,=213. 10e6 cm3/mol at 300 K, Q= -2.2K, ~.~~,~~=1.06uafor Ni,,Mn,Zr,6 [84H3].
K 250
I-
Fig. 12. Mn,Pd,,-,Ge,,, x= 1, 2, 5, 7. Reciprocal of magnetic susceptibility difference, (AxI)-‘, betweenthe Mn-doped alloys and the host alloy, Pds2Gele,for sputteredsamples,asa function oftemperature, T[8211].
6.1.3.3 Fe alloys Table 3. Fe alloys. Paramagnetic properties. Xm 10e4 cm3/mol
0 K 0 6 50 50
C K
Aff. Fe
0.62 1.42 0.53 0.95
3 4 3 4
176 193 206 248 305 330 331 346 362
Kobe, Ferchmin
Remarks
Ref.
sputtered sputtered sputtered sputtered RT RT rf sputtered rf sputtered rf sputtered rf sputtered rf sputtered rf sputtered rf sputtered rf sputtered rf sputtered, Hall effect
84W3 84W3 84W3 84W3 8821 8821 8584 8584 8.584 8584 8584 8584 8584 8584 84 S 9
PB
Landolt-BBmstein New Series 111/19h
Ref. p. 1881
0
6.1.3 Amorphous 3d-M: paramagnetic properties
IO
20
30
40
50
0
100
200
X---L
53
300
400
600 K 700
500
4 -
Fig. 14. FeleO&. Magnetic susceptibility per Fe atom, xFe, at 4.7 K for sputtered samples in a magnetizing field of 2 T as a function of C concentration, x. The increase at x= 19 may be attributed to a heterogeneous magnetic/atomic structure, the step at x N 31 corresponds to a specific C concentration, x,, corresponding to a rapid change in slope of the magnetic moment versus C concentration (Fig. 130) [87B5].
Fig. 15. Fe,,P,,As,; Ni,.,Y,; Wo.5Mndd’17; (Fe,Ni,Js,B,,,P,,, x=0.07, 0.1, 0.13,0.5; (Fe,Ni,J,,B13Silo. Ratio of the number of magnetic carriers per atom calculated from the Curie-Weiss constant and from the saturation magnetization at OK, qc/qs (defined by & = qc(qc+ 2) ng and j,, = q,pg, respectively), as a function of Curie temperature, T, (Rhodes-Wohlfarth plot). The line represents the prediction of the theory of weak itinerant ferromagnets: qc/qs ET<’ [83W2]. Fe-P-As, FeMn-P and Fe-Ni-B-P alloys [77Sl], sputtered Ni-Y alloys [78Ll], Fe-Ni-B-Si alloys [80Gl]. After [8234].
10 1
I
25
I ho
Zoo
20
I 15 'T, x IO
2l
";i"
‘l..l
%&&qq 5
0
100
200
300
r,-
400
500
600 K 700
Fig. 16. FesiP,,As,, Fe,sTa,,, Fe,&r,,B,,, Fe,,Cr20B15, Fe6&rd15, Fe75CrloP15, R$LBloPl,, Ratio of the number of magnetic car%N6~Bl~Plo. riers per atom calculated from the Curie-Weiss constant and from the saturation magnetization at OK, qc/qs (defined by& = qc(qc+ q)&, andp,, = qspB,respectively), as a function of Curie temperature, Tc (RhodesWohlfarth plot). The line represents the prediction of the theory of weak itinerant ferromagnets: qc/qsmT; ’ [83W2]. After [8392].
Land&-Biimstein New Series IWl9h
0 200
240
280 T-
320
360
K 400
Fig. 17. Fe,,Zr,,. Inverse zero-field paramagnetic susceptibility, xi1 (dimensionless, in SI units) as a function of temperature, T. Note the wide temperature range of upward curvature characteristic of disordered magnetics [88Rl].
Kobe, Ferchmin
6.1.3 Amorphous 3d-M: paramagnetic properties
54
[Ref. p. 188
6.1.3.4 Co alloys Table 4. Co alloys. Paramagnetic properties. XP lo+ cm3/g
Xm-Lore 10-4cm3/mo!
Xm Q 10U6cm3/moI K
Remarks
Berr,co T pa K
Ref.
460 3.6 1.81
RT RT RT RT RT RT
70.8 1.81 1.86 71.1 2.28
co 33.3Zr66.71.92 CGh
temperatureindependent in the range 4.2...3OOK
RT RT
74.4
contribution of ferromagnetic inclusions subtracted
1.97
1.97
RT RT RT RT
89.6 102.8 151
4.00 PB
3.75 1 3.50 2 ia” 3.25
300
300
400 l-
500
82B2 85B2 85B2 85B2
K
@ 350
200
82B2 85B2 84Rl
500
550 1 LOO
a
86Yl 82B2 85B2 82B2 82B2 85B2 84E2
3.00
600 K 700 b
x-
Fig. 18. (Co,.,Mn,),B, x=0.3,0.2,0.1,0. (a) Reciprocal of magnetic susceptibility, xi l, as a function of temperature, T. (b) Paramagnetic Curie temperature, 9, and the effective magnetic moment per transition metal atom, ficR.TM, as a function of Mn content, x [86Yl].
Kobe, Ferchmin
Landolt-Kmstein New Series 111/19h
Ref. p. 1881
0
6.1.3 Amorphous 3d-M: paramagnetic properties
100
50
150
200
250 K 300
45
55
55
65
85
15
x-
TReciprocal magnetic volume susFig. 19. Co,,Sn,,. ceptibility, H/4nM (dimensionless, in cgs-units) of a sputtered specimen as a function of temperature, T [82MlO].
magnetic Fig. 20. Co,O,,-xZrx. Room-temperature susceptibility, xg, as a function of Zr concentration, x. A field-dependent contribution, attributed to ferromagnetic Co-rich clusters, is subtracted from the observed susceptibility to get xg. Triangles [82B2], circles [86F2].
52 40-6 -cm3 9 4.4
I t-7
4.0 2.2 2.0 1.8 1.6
0
50
100
150 T-
200
250
300 K 350
Fig. 21. ColOO-xZrx. Magnetic susceptibility, xs, as a function of temperature, T. A field-dependent contribution, attributed to ferromagnetic Co-rich clusters, is subtracted from the observed susceptibility to get xs [86F2].
Land&BBmstein New Series III/19h
0
10
20
30
x-
40
50
60
70
Fig.22. Co,Zrl,,,,-xr Ni,Zr,,,-,, Cu,Zrlo,,.x. Roomtemperature magnetic susceptibility, xs, as a function of transition metal concentration, x [82B2].
Kobe, Ferchmin
[Ref. p. 188
6.1.3 Amorphous 3d-M: paramagnetic properties
56
6.1.3.5 Ni alloys Table 5a. Ni alloys. Paramagnetic properties.
x’
xg
XI
IO+ cm3/g
%J4J’l~
Ni
56.4 m43.6
%.gNb40., Ni,dh Ni7T14B8 NV&% %Pl Jb
cg
K
10S6cm’ K/g
Remarks
Ref.
identified with f
87B2
pa
4
Ni 81.5B 18.5 Ni 8dh6.7Pl.8 Ni5J%
@
77Sl 87B2 77Gl
0.45 3.3 temperatureindependent in the range 4.2-e-396K Pauli paramagnet RT RT RT
2
4.0 6.4 6.9 1.60 1.96 2.30
CZO k%O -5
88W2 88W2 88W2 76A2 76A2 76A2
116 118 125
1.6 .v cm3 mol 1.2
1
0
8
12
16
20
15
x-
17
19
21
23
25
x-
Fig.23. Ni81.5B18.5J’r. Zero-temperaturemolar susceptibility, x,,, extrapolated from above 5 K, as a function OfPconcentration, x [87B2].
Fig. 24. Ni,,,S,P,. Room-temperature (295 K) magnetic susceptibility, corrected for the diamagnetism of the cores,x,,,-L~~ versusPconcentration, x [81H2].
Kobe, Ferchmin
Land&-BCmstein New Series 111/19h
Ref. p. 1881
0
6.1.3 Amorphous 3d-M: paramagnetic properties
0.2
0.4
0.6
0.8
1.0
-15.0
‘7.5
20.0
22.5 x-
x-
25. C.Ni,PdIJ,J’20, (NixPtiJ75PZ~. Roomtemperature (T = 295 K) magnetic susceptibility, x,,,, corrected for diamagnetism by using a weighted average of the ion core diamagnetic susceptibilities of the pure elements, xcore,as a function of Ni content, x [80H4]. Fig.
I
25.0
Fig. 26. Wio.5Pdo.5ho-xPx. (T = 295 K) magnetic susceptibility, diamagnetism by using a weighted core diamagnetic susceptibilities of x fOre,as a function of P concentration,
1.6,
2.0
57
I
21.5
30.0
Room-temperature I,,,, corrected for average of the ion the pure elements, x [80H4].
(2.00
I
I
'A$ (Ni0.5Pd0.5)100-xPx -
1 I.0
mol I.5
I.25
x’
I 1.0
x’ 0.8
1.00
G 0.5
\
\J.
0.6
0.75
20
O’jOO
Fig. 27. (NiO,SPdO,S)IoO~,P,. Molar magnetic susceptibility, x,,,, at 300 K as a function of P concentration, x [85W2].
Land&-BBmstein New Series III/19h
600
K
700o.50
Fig. 28. (Ni,,5Pd0.5)1,,0~xPx. Molar paramagnetic susceptibility, x,,,, as a function of temperature, T. The broken lines mark the glass transition range [85W2].
Kobe, Ferchmin
6.1.3 Amorphous 3d-M: paramagnetic properties
58
[Ref. p, 188
0 6 I 4 N” 2
lFig.29. (Ni,Pd,&Si,,, x=0.30, 0.40, 0.50. Magnetic ac susceptibility, xB(circles), and inverse susceptibility, x; 1(triangles),asa function of temperature,T [78Zl]. For Fig. 30, see next page 5.5 40-6
I
rn3
0
I
(Ni,Pd,-xh3Si17 ’
0.1
0.2
0.3
0.6
0.5
I6
x-
Fig. 31. (Ni,Pd,J,,Si,,. Magnetic ac susceptibility, xs, in a field of ~60 A/m, as a function of Ni content, x. Upper curve:constantpart (4.2 K.. . RT) of x*(T) [78Zl].
Kobe, Ferchmin
Landolt436mstein New Series 111/19h
Ref. p. 1881
6.1.3 Amorphous 3d-M: paramagnetic properties
59
6 XP m3 kg
01 ~0
100
200
300 T-
400
500
K
Fig. 30. (Ni,Pd,-,),,Si,,, x=0.05, 0.10, 0.15, 0.20. Magnetic susceptibility, xs (circles), and inverse susceptibility, x,’ (triangles), as a function of temperature, T [7821].
Land&Bknstein New Series III/l9h
Kobe, Ferchmin
lo 600
60
6.1.3 Amorphous 3d-M: paramagnetic properties
[Ref. p. 188
Table Sb. Ni-Pt-P alloys. Paramagnetic properties. For this series of alloys the magnetic susceptibility value given in the column, x,,,-xeorer is corrected for core diamagnetism by subtracting lEorcra weighted average of the core diamagnetic susceptibilities of the pure elements [SOH 43. Xm-Lore 10V4cm3/moI
T K
0.35 0.31 0.37 0.34 0.52 0.38 0.52 0.42 0.57 0.46 0.56 0.46 0.56 0.49
77 295 77 295 77 295 77 295 77 295 77 295 77 295
Table 5c. Ni-Y alloys. Paramagnetic properties.
Xm
x’
10m4cm3/mol Ni 33.5 Y 66.5 Ni75Y25 N&,.,Y,,,, Ni 87.2 Y 12.8 Ni 90.5 Y 9.5 Nig3Y7
0
Q
10m6cm3/g 2.2
K
100
150
200
250
T K
0.31 0.37 0.47 0.61 0.77
0 0 0 0 0
-7
15 14 7.2 4.9 2.4
50
4c
300 K 350
Remarks
Ref.
low-temperature tit sputtered sputtered sputtered sputtered sputtered
88Y1
78Ll 78Ll 78Ll 78Ll 78Ll
Fig. 32. Ni,,,,Y,. Inverse of the low-field paramagnetic susceptibility, xi’, for dc sputtered samplesas a function of temperature,T[78Ll].
T-
Kobe, Ferchmin
Land&-BBmstein New Series 111/19h
Ref. p. lSS]
6.1.3 Amorphous
61
3d-M: paramagnetic properties
3.5 -Iv cm3 9
I
1.5 0
50
100
a
150 T-
200
250 K 300
20
0
60
40
80 K 100
T-
b
Fig. 33. Ni,,,,Ys6,,. (a) Magnetic susceptibility, xs, in u,H= 1.5T, and (b) inverse magnetic susceptibility, (x,-x”)-‘, as a function of temperature,‘T:x*=2.20. 10m6cm3/g[88Yl].
Table 5d. Ni-Zr alloys. Paramagnetic properties.
xs
XIII
Xm- x”
@
Peff,Ni
T
K
PB
K
0
0
Remarks
Ref.
sputtered sputtered
84H3 84H3 82B2 82B2 82B2 84El 82B2 82B2 81Bl 82B2 87B3 87B3 87B3 87B3
“I
Xcore
10m6cm”/g
172
Ni20Zrso Nidh Ni,,Zr,, KJr72
10e6 cm3/mol 172
1.55 1.54 1.53 145
Ni&6,
Ni 33.3zr66.7 Ni3Jr62 Ni,,Zr,,
Ni67Zr33 WiGr0.&P7 (NiGh&P3 (Ni0.&.&8P2 Wo.5Zh5)9qPl
300 RT RT RT RT RT RT RT 0 0 0 0
1.48 1.44 1.19 1.19 77.5 85.0 88.5 92.0
I
1.25
Fig. 34. Nil,,O-xZrx, Cul~dk, Niloo-,TL CulOO-xTix. g 1.00 Magnetic susceptibility, x,,,,asa function of Ti or Zr concentration, x. Ni-Zr: inverted open triangles [82B2], in0.75 verted solid triangle [87Yl]; Cu-Zr: solid circle [7632], solid square[77M3], open squares[82B2];Ni-Ti [88Kl]; Cu-Ti [83M7]. Figure after [88Kl]. 0.50 0
Landok-Biimstein New Series IW19h
Kobe, Ferchmin
20
40
x-
60
80
100
62
6.1.3 Amorphous 3d-M: paramagnetic properties
0
100
200
300
K
[Ref. p. 188
0 400
Fig.35 Ni,,Zr,,. Magnetic susceptibility, xg, as a function of temperature,T[84E2]. 0
50
100
200
150 T-
250 K :
Fig. 36. (NiZr,),,,-,H,, (CuZr,),,,~,H,. Magnetic dc susceptibility, x,,, versus temperature, T, for several H contents, x. Open circles: Ni alloys, solid circles: Cu alloys. Doped with H by electrolytic method, % H volumetrically determined[88Dl].
0
1
2
3
4
5
6
7
Fig.37. o\li,,,~Zro~50),oo~~P~.Magnetic susceptibility, lrn, with the Curie-law temperature-dependent term C,,,/T subtracted,at 300K as a function of P concentration, x. C, < 10e4cm3K/mol [87 B 33.
6.1.3.6 Cu alloys Table 6. Cu alloys. Paramagnetic susceptibility.
&
10T6cm3/g
Cu27Zr73 Cu2gZr72 cu 33.3Zr66.7
ChZr50 CkZr44 Cu57Zr43 Cu60Zr40 Cu62Zr38 CuZr, + 11at% H
Xm
10e5 cm3/mol
Xm-Xcore
Remarks
Ref.
RT
82B2 82El 82B2 82El 82El llM3 82B2 82El 88Dl
10m5cm3/mol
1.27
13.1 1) 1.23
RT 8.43 ‘) 8.18 ‘)
1.1 0.80
RT 6.90 ‘) 8.5
RT
r) Corrected by substracting xcoroa weighted average of the ion core diamagnetic susceptibilities of the pure elements.
Kobe, Ferchmin
Land&-B6mstein New Series 111/19h
63
6.1.3 Amorphous 3d-M: paramagnetic properties
Ref. p. ISS]
4 Fig.38. CU~~~-~Y~, x=67, 28. -Paramagneticdc susceptibility, xa,at 300K as a function of Y concentration, x [88L3].
,‘;;I
2.0 .w6 -cm3 9
0
20
1.25 .m6 cm3 77 I.“00
40
x-
60
80
100 I g1.0
I
I
0.5
Cu50 Zr50-xAlx 0
I 0.75
50
100
150 T-
200
250 K 300
Fig. 39. Cua3Ys7,Cu,,Y,,. Paramagneticdc susceptibility, xs, as a function of temperature,T. The full circles for CuT2Y2s denote the sample melt-spun in nitrogen enrichedatmosphere[88L3].
x" 0.50
0.25
4 Fig.40. Cu,aZr,,-,Al,. Magnetic susceptibility, xg, at 300K asa function of Al concentration, x [87M5].
x-
6.1.3.7 Fe-0 and Fe-Mn alloys Table 7a. FeeC!r alloys. Paramagnetic effective moment from high-temperature susceptibility measurements [88 K 43. Psff,Fe
I
PB
Fe6gCr11GJ’&9‘) %GCllPsSil.~ ‘) Fe72CrgCloPgSio.3‘) ~~dWl~Pg%~ ‘)
I
1
\\x=O.38
0.75 1.12 1.05 1.44
‘) Nominal composition, the original composition data do not add to 100%.
Fig.41. (Fe,-,Cr,)s,BI,, x=0.46, 0.42, 0.38. Lowfield ac magnetic susceptibility, x.,, as a function of temperature,T[85Z3].
Land&-B8mstein New Series IIU19h
0
Kobe, Ferchmin
2.5
5.0
7.5 T-
10.0
12.5 K I: i.0
[Ref. p. 188
6.1.3 Amorphous 3d-M: paramagnetic properties
64
Table7b. Fe-Mn alloys. Paramagneticproperties. 8 K
Lff.TM
0.81 1.19
-16 -18 g 0
0
50
100
150
qc
Ref.
0.22 0.44
71 Sl 71 Sl
PB
8485
2.7
200
250 K 300
0
50
100
Fig.42. (Feo.,Mn,,,),,P,,C,o. Reciprocal of magnetic susceptibility, xi’, as a function of temperature, T. The dashed line is extrapolated [71Sl].
200
150
250 K :
I-
l-
Fig.43. (Fe,,*Mn,,,),,P,,C,,. Reciprocal of magnetic susceptibility, xi l, as a function of temperature, T. The dashed line is extrapolated [71Sl].
1
0
50
150
100
200
250 K 300
0
0.2
0.5
0.6
0.8
l-
x-
Fig.44. (Fe,,3Mn,,,),SP,5C,o. Reciprocal of magnetic susceptibility, xi ‘, as a function of temperature, T. The dashed lines represent linear extrapolations of two different portions ofthe plot [71Sl].
Fig.45. (Fe,.,Mn,),,P,,C,O. Average effective magnetic moment per transition metal atom, fjeff,TM, as a function of Mn content, x. Circles refer to moments deduced from Curie-Weiss-law fits to those portions of plots extrapolating to positive paramagnetic Curie temperatures and triangles to those portions extrapolating to negative paramagnetic Curie temperatures [71Sl].
Kobe, Ferchmin
Landolt-BErnstein New Series 111/19h
65
6.1.3 Amorphous 3d-M: paramagnetic properties
Ref. p. 1881
I I IF (Fe0.4Mn0.6)75 45G0 cm31
0
50
100
150
200
250 K 300
T-
Fig.46. (Fe,,,Mn,.,)7,P,,C,,. Reciprocal of magnetic susceptibility, xi’, as a function of temperature,T. The dashed lines represent extrapolations of two different Curie-Weisstits, one with the paramagneticCurie temperature0 = 50 K and another one with 0 = - 14 K [71Sl].
12 ,103
I
0
50
100
150 T-
200
250 K 300
Fig.47. (Feo.5Mn,,5),5P,,C,o. Reciprocal of magnetic susceptibility, 1, ‘, as a function of temperature,T. The dashed lines represent extrapolations of two different Curie-Weiss fits, one with paramagnetic Curie temperature0 = 66 K and another one with 0 = - 32 K [71Sl].
I
9 (Fe06Mn0J75W10 3 . 10
i/ T-
2 0 0
50
100
1 '
I
: 1
250 K’ :
Fig.48. (Fe,,6Mn,,,)7JP,,Clo. Reciprocal of magnetic susceptibility, XL’, as a function of temperature,T. The straight line (full and dashed)representsthe CurieWeisslaw, 1, ‘=(T-@)C~‘with@=140K[71S1].
Land&-Biimstein New Series III119h
I 00
I 50
I 100
I 150 T-
I / 200
I I 250 K 300
Fig. 49. (Fe,.,Mn,,,),,P,,C,o. Reciprocal of mag(Fe,.,Mn,,,),,Pl,C,o. netic susceptibility, xi ‘, as a function of temperature,T. The straight line (full and dashed)representsthe CurieWeisslaw,X;‘=(T-O)C;‘withO=210 K[71Sl].
Kobe, Fercbmin
66
[Ref. p. 188
6.1.3 Amorphous 3d-M: paramagnetic properties
6.1.3.8 Ni-Ti, Ni-V, Ni-Cr and Ni-Mn alloys Table 8a. Ni-Ti alloys. Paramagnetic susceptibility at 4.2 K [89 M 11.
Table 8b. Ni-V alloys. Paramagnetic susceptibility at 4.2 K [89 M 1-J.
Xm 10m4cm3/mol
xm 10-4cm3/moI
(N&.&~.&~Ti~ (Nio.33Zro.&~Til~ (Nio.33Zro.d~s% Wio.33Zro.67h~Ti~~ (Ni0.33Zr0.&5Ti2~
1.22 1.31 1.33 1.38 1.42
1.26 1.36 1.45 1.50
(Nio.33Zr0.67)95V5 (Nio.33%67h5Vk5
O\lio.33Zro.67h0V20 W0,33Zr0.&5V25
Table 8c. Ni-Cr alloys. Paramagnetic properties [89 M 1-J. xrn (4.2w 10-4cm3/moI
PJio.33%67)95Cr5 0%.33ZbJ&r~5
Wo.33Zro.67hoCr20
0.81 1.83 47.2
0 K
All. c-r PB
0.20
C, 10p4cm3 K/mol
-2.3
7.58
Table 8d. Ni-Mn alloys. Paramagnetic properties [89 M 11.
Wo.33Zro.67)9sMns Wio.33Zro.67hoMnl~ Wo.33%.~4~JW~ ~io.33Zro.&Nn~~ Wo.33Zro.d7J%~ (Nio.33Zro&&fn3~
xrn (4.2K) 10T4cm3/mol
Pcrr.Mn
0
G
PB
K
10T4 cm3 K/mol
8.23 14.9 24.9 20.3 25.1 18.7
0.91 0.89 1.02 0.78 0.80 0.61
2 0 Fig. 50. (Ni,v,Mn,),,P,,B,. Paramagnetic Curie temperature, 0, as a function of Mn content, x [77Al].
-3.2 -3.3 -4.1 -4.1 -5.1 -5.1
20
52 99 194 153 200 141
40
60
80
K 100
TFig.51 a. (Ni,-,Mn,),sP,,B,AI,, x=0.4, 0.3, 0.25. Low-field (100 Oe) magnetic susceptibility, xv (dimensionless, in cgs-units), from SQUID magnetometer on warming from the zero-field-cooled state at 5 K. The maxima correspond to the spin-freezing temperatures [84K8].
Kobe, Ferchmin
Landolt-BBmstein New Series III119h
Ref. p. 1881
6.1.3 Amorphous
3d-M: paramagnetic properties
67
25 10-4 cm3 mol 15 I H' IO
I 0
I 50
I 100
I 150 T-
I 200
I I 250 K 300
Fig. 51 b. (Ni,.,Mn,.,),,P,,B,Al~. Temperature dependencc of the inverse high-field magnetic susceptibility, x; 1 (dimensionless, in cgs-units), corrected for the
100 T-
200
Fig. 52. (Ni,,,,Zr,,,,),,,-,Mn,.
K 300"
Temperature depen-
dence of dc magnetic susceptibility, x,,, [89Ml].
temperature-independentbackground susceptibility, x”, attributed to the Ni-alloy matrix with Ni carrying no magnetic moment. Fields up to 15 kOe. The continuous line is a fit to a modified Curie-Weiss law, I, where C is the Curie-constant
6.1.3.9 Fe-Ni and Co-Ni alloys Table 9a. Fe-Ni alloys. Paramagnetic properties. 0
c,
K Fe,,Ni ci7.2B15.3P4.5 Fe,Ni,,B,,Si, Fe,Ni,,B,,Si, Fe,Ni,,B,,Si, Fe,Ni,,Nb,, %N40Nb50 (Feo.olNio.~~),9P~3Bs (Feo.o~Nio.~~)~~P13Bs ~~:~:~::~:~:;:$$~ (Feo.o~Nio.~4)~gP13Bs (Fe~.oeNio.~~),~P13Bs (Feo.lNio.gh9Bs (Feo.ogNio.~l)~0P14B~ Fe12Ni63PlJW13
10e4 cm3K/g
118 150 -134 -79 30
45 56 85 121 133 152 140 140
1.69 1.65 6.0 15.1 20.0 29.0 52.2 60.0 78.0
Kobe, Ferchmin
Ref.
PB
3.191)
228 85
‘) Data above 270 K. Land&B&stein New Series 111/19h
peff,TM
86Sl 8421 8421 8421 77Gl 77Gl 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 88L2 88L2
[Ref. p. 188
6.1.3 Amorphous 3d-M: paramagneticproperties i-
i
I-
,-
I---
150
I 1 (bxNixh Wh
190
230 T-
270
310
w1
cm3K I--
K 350
Fig. 53. Fe,,Ni,,,,B,,,,P,,,. Inverse magnetic susceptibility, xi’, as a function of temperature, T. The straight line represents a fit of the Curie-Weiss law to the data above 270 K, leading to the paramagnetic Curie temperature, 8 =228 K [86Sl].
6z . 2
1
1
0 800 K
0
Ob 0
0.2
0.L
0.6
0.8
1.0
x0
100
200
300
400
500
600 K 700
T-
Fig.54 (Fe,.,Ni,),,B,,Si,,. Inverse paramagnetic as a function of temperature, susceptibility, xi’,
T[IOGl].
Fig. 55. (Fe,~,Ni,),,B,,Si,,. (a) Average effective magnetic moment per transition metal11atom, atom, j~~rr,~, Peff.m, ment per Curie constant, C,, and average magnetic moment mtent, x. transition metal atom, j&, at 0 K versus Ni content, (b) Paramagnetic Curie temperature, 8, and Curie ent, x (80GlJ. [80Gl]. temperature, T,, as a function of Ni content,
Kobe, Ferchmin
Landolt-B6mstein New Series 111119h
Ref. p. 1881
6.1.3 Amorphous
69
3d-M: paramagnetic properties
Table 9b. Fe-Ni alloys. Paramagnetic properties - continued [S9 M 11. xrn (4.2w 10e4 cm3/mol
Fe&h33Zr~.&~ %&%.~&.d~~ Fe20(Nio.33Zro.67)so Fed%.3Jr~.& Fe3dNio.3Jr~.&o
&ff,
Fe
PB
1.64 3.92 87.6 294 979
0
C,
K
10e4 cm3K/mol 115 1160 3110
-54 2.3 73
0.78 2.15 3.15
Table 9c. Co-Ni alloys. Paramagnetic susceptibility at 4.2 K [89 M 11.
Al
Fe,(Ni 0.33Zr0.67h00-x
XIII 10e4 cm3/mol
CodN3.33Zro.67h5 ~od%.33Zro.67)so
1.03 2.27
1 -cm3 mol 10-I
I 10-2 s
Fig. 56. Fe,CNi,,,,Zr,.,,),,,-,. Temperature dependenceof dc magnetic susceptibility, x,,,.The chain curve shows the temperaturedependenceof the ac magnetic susceptibility on an arbitrary scalefor x = 25 and 30 [89Ml].
In-3
10-k 0
50 100 150 200 250 K 300 r
6.1.3.10 Cu-Mn, Fe-Cu and Ni-Cu alloys Table IOa. Cu-Mn and FeCu alloys. Paramagnetic properties.
x” cm3/g
0
Peff,TM
K
PB
-11 -2.2 -3.9 - 4.5
1.23 1.51 1.41
5.2 0.77 0.81 0.57
Table lob. Ni-Cu alloys. Paramagnetic susceptibility at 4.2 K [89 M I]. Xm 10e4 cm3/mol 1.09 1.05 0.97 0.92 0.84 Land&-Biknstein New Series III/l9h
Kobe, Ferchmin
Remarks
Ref.
&ff,Mn
in
PB
&ff,Fe
in
PB
peff,Fe
in
PB
kff,Fe
in
PB
84H8 7632 7632 7682
70
6.1.4 Amorphous 3&M: magnetization
[Ref. p. 188
6.1.4 Magnetic moments, saturation magnetization 6.1.4.1 Definitions The average magnetic moment per atom, pa,, is usually derived from the saturation (spontaneous) magnetization, cr, (the magnetic moment per unit mass), in the ferromagnetically ordered state, where the moments are mutually parallel. If the ferromagnetic ordering persists down to absolute zero temperature, lowtemperature measurements are most reliable. (This is not the case for the so-called reentrant amorphous ferromagnetic alloys, with ferromagnetic ordering at moderate temperatures and local magnetic moments frozen in various directions at low temperatures, forming a spin-glass or other random phase.)The atomic magnetic moments can also be measureddirectly, for example by neutron scattering. For other methods of measuring see the next subsect.6.1.4.2. The saturation (spontaneous) magnetization a,(T) is usually obtained as the value obtained for the fielddependent (massor specific) magnetization a(i”, H) by extrapolation to zero internal field (the applied field with demagnetizing field subtracted) at the temperature I: The magnetization per unit volume, M(7; H), is related to u(7;H) through the density, and so is the saturation magnetization, M, (or saturation induction &=u,,M,, as uOH-+Oby definition of the spontaneous magnetization). Other physical quantities appearing in the tables are: pFc- or the like: average magnetic moment per, say, Fe atom (excluding other components of the alloy), fin,,: averagemagnetic moment per transition metal atom (say,Pv,re-average magnetic moment per V or Fe atom), &,,: average magnetic moment per metal atom (excluding metalloid elements), j$Fe) - or the like: average Fe atom magnetic moment, etc.
6.1.4.2 Selectedmethods of measurement All standard methods of measurement sufficiently sensitive to deal with small amounts of matter (thin ribbons or film specimens)are applicable to amorphous alloys. Since for all samplesof large area/volume ratio surface contamination or oxidation can play a role, those measurements performed under protective atmospheresare more reliable. Temperature variations can influence the state of these metastable alloys even if complete crystallization is avoided, seesubsect.6.151.
6.1.4.2.1 Neutron scattering Magnetic moments can be determined by neutron scattering. Neutron scattering has also been applied to detect magnetic excitations (magnons, spin waves) and to measuretheir dispersion relations (seesubsect.6.1.4.4 for more details).
6.1.4.2.2 Hall effect The Hall effect provides information on saturation induction, B, [59 J 1,80 B 3,80 M 23.In this tabulation we use Hall effect data only for the purpose of extracting such intrinsic quantities as paramagnetic x5,B, or Tc from them, since otherwise they depend strongly on the structural and magnetic state of the substance.
6.1.4.2.3 Brillouin scattering Brillouin scattering of light on magnons in an amorphous alloy has been applied to find the saturation magnetization M, and the spin-wave stiffnessconstant D. For flat samples,which is the natural form for liquidquenched alloys and sputtered films, the angular frequency w by which the Stokes or anti-Stokes scattered light differs from that of the incident light is o=y~o[H(H+4nM,)]“2
(5)
(where y is the gyromagnetic ratio, y= -gu,/h) for samples magnetized in the plane, i.e. for scattered bulk magnons with q-vectors perpendicular to the magnetization M, and q+O. For q parallel to M, (surfacemagnons) and q-+0 one has w=yp,H.
Kobe, Ferchmin
(6) Land&-BBmstein New Series 111/19h
Ref. p. 1881
6.1.4 Amorphous
3d-M: magnetization
71
In not-too-thick sputtered films the bulk magnon peak can show a substructure, attributed to scattering on nonzero-q standing spin waves for which the component of 4 perpendicular to the film is quantized. The generalization of eq. (5) to spin waves with nonzero 4 is of the form w=y~o[(H+Dq2)(H+41M,+Dq2)]“2.
(7)
A simplified form of the quantized q is q = nrr/L (n: integer, L: film thickness); in general the details of the quantization depend on the surface properties [79 P 21.With the help of the formula (7), the spin-wave stiffness constant D can be determined from experiment [82 B 7,82 S 21.Although the equations (5) and (6) have the same form as those concerning FMR, one should bear in mind that while microwave FMR absorption occurs through direct excitation of the magnetic fluctuations by the electromagnetic field, in the caseof Brillouin scattering the interaction occurs mainly through fluctuations of the dielectric constant and spin-orbit coupling [82 S 21.
6.1.4.2.4 Ferromagnetic resonance (FMR) For the same simple geometries the above formulas (5) and (6), with H including the anisotropy and demagnetizing fields apply despite the difference in electromagnetic field frequency (optical/microwave). Similarly as for Brillouin scattering, the magnetization, D-constant and g-factor can be determined from FMR. The results obtained for amorphous alloys using these two methods usually do not differ much (cf. [SOG 41).If the amorphous alloys, despite their inherent isotropy, reveal uniaxial or some other magnetic anisotropy due to mechanical strain or other reasons, the above quantities can be determined by those methods as well, using slightly more general expressions.
6.1.4.2.5 Spin wave resonance (SWR) In sputtered films, multiple-peak spin wave resonance (SWR) can be observed. A generalization of eq. (6) to spin waves with nonzero q applies: o = yue(H + Dq’) . (8) A simplified form of quantized q is q = nrr/L, where n is an integer and L is the film thickness. In general the details of quantization depend on the surfaceproperties [79 P 21.Seesubsect.6.1.4.4.1for values of the spin wave stiffness constant D from SWR experiments.
6.1.4.2.6 Miissbauer effect Mijssbauer spectroscopy is specially suited for studies of Fe-containing amorphous alloys becausethe 57Fe isotope can be profitably used.The Mossbauer effectgives the possibility to observethe magnetic hyperline fields at the nuclei by way of the hyperfme splitting. In most, but not all, casesthe hyperfine field is proportional to the magnetic moment. However, the problem of a reference system arises when it comes to finding the proportionality factor, which is no simple task in the case of metastable systems.In addition, the disordered structure broadens the spectral lines. The temperature dependenceof the hyperfine fields will be used here only to find the relative temperature changesin magnetization and to derive the spin-wave stiffnessconstant D therefrom (subsect.6.1.4.4.1).The six-line pattern characteristic of ferromagnetic ordering vanishes at Tc,which enablesone to determine this temperature.
6.1.4.3 Zero-temperature magnetization The magnetic moments of many binary or pseudobinary alloys A 100-,B,, crystalline or amorphous, present in some range of x a linear dependence on concentration:
d& L,,(x)= A&o) + -dx (x -x0) 3
(9)
or on a related parameter. The difference between the behaviour of P,, for amorphous and crystalline alloys consists in a more smooth concentration dependenceof the magnetic moment of the former due to the absenceof transformations between various crystalline structures. Another difference resides in the broader range of concentrations available and the possibility of forming amorphous alloys of components which do not form homogeneous (one-phase)crystalline alloys. Land&-Biimstein New Series III/l9h
Kobe, Ferchmin
72
6.1.4 Amorphous 3d-M: magnetization 6.1.4.3.1 Zero magnetization
at critical
[Ref. p. 188
concentration
Table 11. Critical concentration for ferromagnetism, x,. See [84V 21 for critical concentration of alloys obtained using methods different from liquid-quenching or sputtering.
Fe alloys FeiB1OO-x FexGOO-x FeWloo-, FerMolOO-x FeJ%o-, FerTalOo-x
XC
Remarks
Ref.
38 65
sputtered sputtered, extrapolated at 47 K to zero moment
82C2 87B5
40 12 60 ~62
sputtered sputtered sputtered, extrapolated to zero moment and Tc
45 73 38
sputtered
84V2 81 F4 82Cl 81 F4 79B3 81 F4 84V2
Co alloys WW,cs c0xy100-,
-x
54 45
88P3 82BlO
Ni alloys WAgtoo-x NixAU1OO-x NLYIoo-x
41 42e.44 83
sputtered dc sputtered
75Hl 77E2 78Ll
Fe-Ti alloy Fer%o-x
43
sputtered
84L5
Fe-V alloy FexV1oo-x
66
sputtered
81 F4
Fe-Ni alloys Fe,Ni,,-,B,,Si, Fe,Ni,,-,B,,Si, Fe,%0 -PZO (FQJit -JsoPI.& (FeJ% -phP1&%
3 2.5 11 8 12
liquid-quenched in He pc=o.l p,=O.165
85M3 85D4 84M4 88Jl 88Jl
The attaining of zero magnetization on changing the composition can sometimesbe understood as an effect of simple dilution ofthe magnetic speciesby a nonmagnetic one. The limiting caseis then encountered at a critical concentration, x,, predicted by percolation theory, at which the remaining magnetic moments do not interact on amacroscopic scale,most of their interactions being disrupted by the presenceof nonmagnetic atoms, and do not order ferromagnetically presenting no net spontaneous magnetization. The critical concentration dependson the range of magnetic interactions, related to the spin-wave stiffness constant D (see subsect.6.1.4.4.1).Having available a seriesof alloys with different concentrations x, one can searchfor x, in two ways: either by proceeding along the x-axis at zero temperature and observing the vanishing of spontaneous magnetization at x,, or by proceeding along the curve of critical temperatures ‘PCuntil Tc reacheszero at x,. The approach of the magnetic moment and T, to x, follows an (x-x$-type of concentration dependence,e.g. (x-x,)8 for &. In metallic transition metal-transition metal (TM-TM) alloys, simple dilution does not explain the data satisfactorily, and in particular in many casesthe values of x, are far from those predicted by percolation theory
Kobe, Ferchmin
Landolt-Biknstein New Series II1/19h
Ref. p. 1881
6.1.4 Amorphous
3d-M: magnetization
73
(in its form assuming random dilution - though taking into account segregation or ordering phenomena in amorphous alloys might help in reconciling them). In the itinerant (wandering) electron picture of magnetic amorphous alloys, an additional reason for attaining the critical concentration may be the vanishing of the moments themselves rather than the lack of their ordering.
6.1.4.3.2 Finite magnetization at T = 0 K - concentration dependence The older plots of the concentration dependencefor magnetic amorphous alloys are of a Slater-Pauling-like form, showing the magnetic moment as a function of the number of outer electrons, Z (cf. Figs. 220,221,228).The linear concentration dependenceof magnetic moments in metallic alloys, eq. (9),can be interpreted and predicted in several ways. Simple rigid-band charge-transfer interpretations are now regarded as obsolete, as neither does the theory support the rigid-band behaviour on alloying, nor does the experiment confirm the amount of charge transfer neededto explain the actual values of the moments. Two of the more recent models are basedon Friedel’s concept of virtual bound states,generalized for nondilute alloys as the so-called magnetic valence model, or on the local-environment concept of Jaccarino and Walker, developed to the form of coordination bonding model [87 0 1-J. 6.1.4.3.2.1 Magnetic valence model The magnetic valence model leads to the following concentration dependence of the magnetic moment: pat= v: + 2NJ, + x( v: - v:, ,
(10)
where N&, is the number of spin-up sp electrons and V,A(B)denotes the magnetic valence of the alloy component A(B) defined as the negative of the valence charge, V,= -Z, for all elements except Fe, Co, Ni, for which V, = 10-Z (Z = 8 for Fe, 9 for Co and IO for Ni). If 2N&, does not vary for somerange of concentration, eq. (10) representsa linear relation of the form (9). Physically, the reason for a concentration-independent NJ, can be a gap or deep minimum in the conduction band DOS. Williams et al. [83 W I] take 2N& = 0.6 as typical, while 2N,b=O.75 for Co-B [87 0 I]. Alternatively, & may be plotted as a function of V, to give the so-called generalized Slater-Pauling plot, Fig. 139, which succeedsin representing the magnetic moments of a wide class of alloys qualitatively, if not quantitatively. 6.1.4.3.2.2 Coordination bonding model The earlier Jaccarino-Walker model was based on the assumption that a TM atom A bears its magnetic moment, pA, unless the number of his A neighbours falls below a certain minimum, in which case it loses its magnetic moment completely. This is to say that in order to have magnetic moments on A atoms, the number of A-B bonds should not be too high. Similarly, the coordination bonding model [87 0 I] is based on the assumption that a d orbital engagedin a covalent spd bonding does not contribute to the magnetic moment of its atom. For a binary metal-metalloid alloy this leads to the following concentration dependenceof the average atomic magnetic moment: i&,=PA[l
-x(1
+tzt)l,
(11)
where Z$ denotes the A coordination of the metalloid (the maximum of A neighbours around a B atom); examples are Zt = 6 for boron and 9 for phosphorus (if A = Co). It is basedon the assumption that each of the Z$ nearest-neighbour A atoms of the central B atom forms a nonmagnetic covalent spd bond with the latter. The quotient l/5 comesfrom the fact that the atom A has five d electron orbitals and l/5 of its total magnetic moment is contributed by each orbital. These theoretical approaches should be considered mainly as guides to the complexity of the actual behaviour of alloys, providing a physical insight, but not as a source of accurate formulas.
Land&-BBmstein New Series III/19h
Kobe, Ferchmin
74
6.1.4 Amorphous 3d-M: spin wave stiffness constants
[Ref. p. 188
6.1.4.4 Temperature dependence of magnetization 6.1.4.4.1 Low-temperature range The saturationmagnetizationM,(T) is reduced with respect to M,(O) due to thermal magnetic excitations. For localized spin (Heisenberg) systems as well as itinerant-electron systems (metals and alloys) the temperature dependenceis represented by M,(T)=M,(0)[l-BT3’2-B1T2-CT5’2-...],
(12)
whereinsteadof the term BIT2 due to Stonerexcitationsanother term of the form B,exp(- A/k,T)T3/*
is sometimes used alternatively [87 N I]. A denotes the gap between the top of the full sub-band and the Fermi energy. By comparison with crystalline alloys, many amorphous alloys are characterized by a very wide range of temperature where the T3/* term in eq. (12) (the so-called Bloch T 3’2 law) predominates. For the amorphous alloys this range can be extended from OK up to temperatures as high as l/3 T,. The coefficient B can be related with the spin-wave stiffness constant D defined by the quadratic spin-wave dispersion relation: E(q)=A+D(T)q*+*..,
(13)
where A is an effective anisotropy gap originating mainly from dipolar interactions, and E(q) denotes the energy of a spin wave of wavevector value q. This relation has the form E = 2.612gpB(kB/4nD)“*/M,(0),
(14)
D(T)=D(O)[l -Dz(T/Tc)“*].
(15)
where D = D(0) and However, the values of D obtained from magnetization using eqs.(13) and (14), although usually close to those obtained from Mtjssbauer spectroscopy or specific heat measurements [Sl M 23, show for some amorphous alloys a large discrepancy with the values derived from neutron scattering (Tables 12...19). The reason for this discrepancy is as yet unclear. One practical, but unproven, hint invokes Invar-type properties, as similar discrepancies are observed in crystalline Invars, other concepts invoke various excitations unseen by neutrons but contributing to the thermodynamics of the ferromagnet (see[87 N I] and referencestherein). 6.1.4.4.1.1Fe alloys and Co alloys Table 12. Fe alloys. Spin wave stiffness constant D at OK, unless stated otherwise. D
T
meV A*
K
106 96 92 83 98 82 120 71 74 165
71(7) W5) 104
288 4.2
285 < 170 4.2
Remarks
Ref.
MU-) M(T) MT) M(T)
79H2 79H2 79H2 79H2 81S9 82Sll 82Sll 79H3 81 M2 87Fl 87Nl 87Nl
Mijssbauer effect sputtered, SWR sputtered, SWR M(T) low-temperature specific heat neutron scattering, 98.5% l*B isotope M(T), usual fit to the Bloch T312 law M(T), a tit with contributions from excitations other than spin waves taken into account sputtered, SWR sputtered, M(T) sputtered, SWR
Kobe, Ferchmin
82Sll 82Sll 82Sll continued Landolt-BBmslein New Series 111/19h
Ref. p. 1881
6.1.4 Amorphous 3d-M: spin wave stiffness constants
75
Table 12 (continued) D
T
meV A2
K
77 131; 122 132 120 129 128 116 64.9 72.8 46.4 52 45 52 60 65 77 79 92 59.8 62.4 65.7 67.7 70.7 85 67 87 192 110 125 85 98 105 59.9 59.3 62.6 69 106 144 61 237 36 244 135 120 108 62
RT 77 RT 77 RT 77
Remarks
Ref.
M(T) two different samples of the same nominal composition, 98.5% llB isotope, neutron scattering M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) MU’) M(T) M(T) neutron scattering M(T) M(T) neutron scattering M(T) neutron scattering M(T) M(T) M(T) M(T) MU9 M(T) M(T) rf sputtered, SWR rf sputtered, SWR rf sputtered, SWR rf sputtered, SWR rf sputtered, SWR rf sputtered, SWR M(T), read from a figure by the author of [82 M 41 M(T), read from a figure by the author of [82M4] M(T), read from a figure by the author of [82M4] specific heat
8524 87Fl 83Ml 83Ml 83Ml 83Ml 83Ml 79H3 79H3 8524 8524 82S10 82SlO 82s 10 82s 10 82S10 82SlO 82SlO 8433 8483 8483 8483 8483 77A3 77A3 84Gl 85M5 79H2 79Rl 8423 8423 8423 8524 8524 8524 8524 79Wl 79Wl 79Wl 79Wl 79Wl 79Wl 78K2 87K2 78K2 79Dl continued
Land&-Biimstein New Series III/19h
Kobe, Fercbmin
[Ref. p. 188
6.1.4 Amorphous 3d-M: spin wave stiffnessconstants
76 Table 12 (continued)
D
T
meV A2
K
134 117 115 149.5 98 130 220 127 31
113 296
Remarks
Ref.
neutron M(T) neutron neutron W’J W’J neutron M(T) M(T)
78B2 78B2 75Al 75Al 74Kl 84D3 85M5 84D3 84K9
69
scattering scattering scattering scattering
70
71
72
73
74
75
76
77
78
79
80
81
82
xFig. 57. Fe78B22-rCx,FeeoBzo&, Fe84B16&. Spin wave stiffness constant, D, at OK from a(T) measure- Fig. 58. Fe,Si,,~,B,,. Spin wave stiffnessconstant, D, at OK from thermomagneticdata asa function of Fe conments as a function of C concentration, x. Fe,,B,,&, centration, x [85D5]. Fc~.+B~&~ [8OL41,FesoB20&, [83Mll. Table 13. Co alloys. Spin wave stiffness constant D at OK.
D
Remarks
Ref.
M(T) M(T)
84Gl 77Yl
meV A2 223 189
Co7aB12&.~ Co75%BIo
6.1.4.4.1.2FeTi and Ft+V alloys Table 14. Fe-Ti and Fe-V alloys. Spin wave stiffness constant D at OK.
D
Remarks
Ref. 82Cl 82Cl 86D2 82R3 8213
meV A2
Feo.9~T&ddI~
79.4
M(T)
(Feo.~~kdd%~ %SVSB20 Fe71V12B14Si3 Fe73VIoBdi3
93.6 gg
M(T) M(T)
70 70
M(T), 0.01at%N M(T), 0.01at% N
Kobe, Ferchmin
Landolt-Bknstein New Series 111/19h
Ref. p. 1881
6.1.4 Amorphous 3d-M: spin wave stiffness constants 6.1.4.4.1.3 F&r
77
and Fc+Mn alloys
Table 15. Fe-0 alloys. Spin wave stiffness constant D at OK. D
Remarks
Ref.
M(T)
80Dl 86D2 80Dl 8524 82Cl 82Cl 82Cl 82Cl 80Dl 80Dl 80Dl 80Dl 82X1 82X1 77Yl
meV A2 92.3 84 71.2 46.5 48 56 67 71.4 36.5 39.5 43.0 52.2 60 54 ’ 57
M(T), upper limit M(T), lower limit
M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) M(T) neutron scattering M(T), lower limit M(T), upper limit
150
I
I
mev12 (Fe,Crl-,)75P16B6A13
Fig. 59. (Fe,Cr,J,,P,,B,Al,. Spin wave stiffness constant, D, at OK as a function of Fe content, x, calculated from thermomagneticdata [81Y3].
30 meVA2
25
0
40
80
120
160
K 200
T-
x-
Fig. 60. (Feo,,,Cr,,,,),,P,,B,Al,. Spin wave stiffnessconstant, D, from neutron scatteringdata asa function of temperature, T. An arrow marks the Curie temperature[84W5].
Fig. 61. Fe,,-,Cr,P,,C,. Spin wave stiffness constant, D, at OK from thermomagneticdata as a function of Cr concentration, x [77Yl].
Land&-BBmstein New Series 111/19h
Kobe, Ferchmin
6.1.4 Amorphous 3d-M: spin wave stiffness constants
78
[Ref. p. 188
Table 16. Fe -Mn alloy. Spin wave stiffnessconstant D at OK [86D2].
D
Remark
meV AZ 96
Fe7sMnsB20
M(T)
6.1.4.4.1.4 Co-Fe alloys Table 17. Co-Fe alloys. Spin wave stiffness constant D at OK, unless stated otherwise.
D
T
meV A2
K
59
RT
137 175 180 239 169 115 113 173 179 223 137 139 142 300
RT RT
RT RT RT RT
Remarks
Ref.
M(T) M(T) M(T) M(T) M(T) M(T) M(T) W’9 MU9 M(T) M(T) M(T) JW’? M(T) sputtered, SWR
82K8 8lD2 81 D2 81 D2 81D2 82K8 82K8 q4Gl 84Gl 84Gl 84Gl 82K8 82K8 82K8 87K4
270 mel!A' 250 I 230
2 z
190 meVA7 180
2'o 190
I 170 Q 160
680
700
720
710
760
K 780
I,----
x-
Fig.62. CoT8.,Fe,B,,Si, I, x=0, 2, 6, 8. Spin wave stiffness constant, D, at OK from thermomagneticdata vs. Curie temperature,T, [88Sl I].
Fig.63. Co,5-IFe,Si,SB,0. Spin wave stiffness constant, D, at OK from thermomagneticdata as a function of Feconcentration, x [77YI].
Kobe, Ferchmin
LmdoMt6mstein New Serin 111/19h
Ref. p. 1881
6.1.4 Amorphous 3d-M: spin wave stiffness constants
79
6.1.4.4.1.5 Fe-Ni alloys
Table 18. Fe-Ni alloys. Spin wave stiffness constant D at OK. D
Remarks
Ref.
sputtered, M( 7) sputtered, annealed at 598K, M(T) sputtered, annealed at 598K, M(T) sputtered, M(T) Miissbauer effect sputtered, M(T) sputtered, annealed at 598K, M(T) M(T) RT, sputtered, SWR, nominal target composition RT, neutron scattering M(T) Miissbauer effect Miissbauer effect specific heat RT, neutron scattering M(T) Mossbauer effect, data of [77 C 31, calculated by [SOM 31 M(T) neutron scattering low-temperature FMR low-temperature FMR M(T), FMR M(T), lower limit neutron scattering M(T), FMR, upper limit M(T) M(T) neutron scattering M(T) M(T) M(T) M(T) liquid-quenched in He, M(T) liquid-quenched in Ar, M(T) neutron scattering liquid-quenched in He, M(T) liquid-quenched in vacuum; neutron scattering liquid-quenched in He, M(T) liquid-quenched in vacuum, neutron scattering liquid-quenched in vacuum, neutron scattering
85Ll 85Ll 85Ll 85Ll 81S9 85Ll 85Ll 79K2 81Rl
meV A2 107 94 162 139 122 137 154 110 117
Fe,eNi,,BIgSil Fe39.oNi~J’I&&.o Fe,ONi,,P,,B, METGLASTM 2826
80 46 44 55 75 100 78 92 61 36 35 35 115 94 91 115 112 114 115 114 120 134 115 101 71 111 88 74 52 47
Fe,,Ni,Zr,,
25
Kobe, Ferchmin
79Rl 81H3 81H3 81S9 79Dl 79Rl 77Kl 80M3 78B2 78B2 80B4 80B4 79Bl 78B2 78B2 79Bl 82B5 78B2 78B2 82B5 82B5 82B5 82K9 85D3 84K9 86Fl 85D3 88Fl 85D3 88Fl 88Fl
[Ref. p. 188
6.1.4 Amorphous 3d-M: spin wave stiffness constants
80
40 40,
I
(A2) I ( A2
)
I
30
I
I
I
0.3
0.4
0.5
NI ? 20 t.5
10
I
0 0
0
0.2
0.6
0.4
0.8
1.0
x-
Fig. 64. (Fe,Ni,J,eB,,. Curie temperature, Tc, and ratio of spin wave stiffness constant at OK to Curie temperature, D/T,, as a function of Fe content, x. D from thermomagnetic data [81S9].
0.1 0.1
I
/4 I 0.2
P(TJD)* as a function of Fe Fig.65. (Fe,Ni,&,,P20. content, p. D: spin wave stiffness constant from thermomagnetic data. A straight-line-fit at low Fe content yields a critical value for ferromagnetism, p,=O.14 (corresponding to 11 at % Fe) [84M4].
125 125, m&t2
I
I
I
100
200
meVX’ I 75
150 -
50
I 100 25 50
I 0 I
0 0
10
I
20
30
40
50
xZero-temperature spin wave Fig. 66. Fe,Ni,,~,P,,B,. stiffness constant, D, as a function of Fe concentration, x. Calculated from temperature dependence of magnetization measured by FMR [84W2].
Fig. 68. (Fe,,65Ni,,,,),,P,,B,Al,. Spin wave stiffness constant, D, from neutron scattering, as a function The Ts/* law, D=115[1by the line. Mag[88L4] after [78Tl].
I 100
I 200
I 300
T-
II I 500 K 600
I 400
Temperature dependence of Fig. 67. Fe,eNi,,P,,B,. the spin wave stiffness constant, D, for METGLASn” 2826 from neutron scattering [84M6].
120 meVA2
80 70 0
Kobe, Ferchmin
-u
0.1
0.2
0.3 0.4 (I/Tc p-
0.5
0.6
0.7
Land&-BBmstein New Series 111/19h
Ref. p. 1881
6.1.4 Amorphous
3d-M: magnetization
81
6.1.4.4.1.6 Fe-Ni-Cr alloys Table 19. Fe-NiCr alloys. Spin wave stiffness constant D at OK, derived from the temperature dependence of magnetization [82 K 91. D meV A2 Fe3di37.5 Cr,Si,,B,Mo, Fe,,Ni,,Cr,Si,,B,Mo, Fe ~dhSi10B8M02 Fe ~dJrlSilJbMo2
90 95 100 115
6.1.4.4.2 Intermediate-temperature range Characteristic of many amorphous alloys in the intermediate-temperature region between the lowtemperature range close to OK (but extending sometimes to l/3 T,) and the critical region close to T,, is the flattening of the o,(T)/a,(O)vs. T/T, plot with respectto the theoretical Weissmolecular field plot for the localized magnetic moment model. One guessis that this flattening may be bound with Invar-type properties, as crystalline Invar alloys show a similar behaviour. Anyway, the flattening is a widely encountered but not general feature. Anomalous magnetization temperature dependence plots can occur for inhomogeneous alloys consisting eventually of two or more phases,or different concentration regions, as is well known for crystalline alloys (see e.g. [Sl B I] Fig. 8-46, p. 303 and Fig. 14-13, p. 722). Coexistence of two amorphous phases has been repeatedly postulated to explain magnetic properties of alloys (see [86Z I] or [87B 51 for the magnetic susceptibility of Fe-C, Fig. 14). A small admixture of a crystalline phase in an amorphous matrix affects the temperature dependence of magnetization as well [83 S4]. Another source of anomalous a(T) behaviour can reside in the coexistence of different magnetic phases[81 M 41. A theoretical molecular field model due to Handrich explains the flattening, whenever it occurs, as a consequenceof exchange interaction fluctuations, a natural assumption for structurally disordered matter. His formula has become popular due to its simplicity, enabling one to tit the experimental data using one adjustable parameter, 6 (seeFig. 303). Handrich’s formula has the form [69 H I, 80H I]: (16) where 3s M(T) T, X=s-lM(0)rr’
with 6 = ((h2> - (h>2Y2 (h) measuring the fluctuation of the local exchangefield h = 1 JijSj (Jij: exchange interaction between the local spins at sites i and j, B,: Brillouin function for spin S). A useful evaluation of the physics lying behind the eq. (16), including the possible use of a modified temperature-dependent 6(T) parameter, is presented in Egami’s review [84 E I], seealso 184B 5,84 K 21. Somecriticism, both experimental and theoretical, concerning eq. (16) may be found in [78 B I,79 S 2, 81 F 1, 83 F 21.
6.1.4.4.3 High-temperature range - the critical region near T, The magnetization falls to zero at T, according to a power law with exponent /3(seesubsect.6.1.5.3).Before reaching the asymptotical regime very close to T,, this exponent varies with temperature [84 F 21, so that the available data vary in reliability depending on whether the true asymptotic regime has been achieved or not.
Landok-Biimstein New Series 111/19h
Kobe, Fercbmin
82
6.1.5 Amorphous 3d-M: T, and critical behaviour
[Ref. p. 188
6.1.5 Curie temperature and magnetic phasediagrams 6.1.5.1 Introduction The Curie temperature, Tc, is the temperature at which the spontaneous magnetization vanishes for zero magnetic field. T, is modified by relaxation of the amorphous structure, i.e. the exchangeintegrals are sensitive to the distancesbetween neighbour atoms and vary as the initial free volume relaxes. Another source of T, change is the alteration of chemical short-range order. Changes in T, due to neutron, proton or electron irradiation are demonstrated in Figs. 103 and 280. An example for reversible parts of Tc changes at subsequent annealing at different temperatures is shown in Fig. 234. The spin freezing temperature, 7&, is a temperature at which the spin-glass magnetic order setsin. The term “reentrant spin glass” (RSG) has been used to denote systems which show both ferromagnetic behaviour at intermediate temperatures and spin-glass like properties at lower temperatures. On cooling from the paramagnetic phase the ac susceptibility first exhibits a sharp increase at Tc attributed to a ferromagnetic transition, and then reachesa plateau value. It finally decreasesat a lower temperature, T,. This behaviour has been ascribed to a reentrant transition from ferromagnetism to a spin-glass like state. This situation occurs in many A,B, -I disordered and amorphous alloys with competing ferromagnetic and antiferromagnetic exchange interactions but with predominant ferromagnetism [SSH 63. By varying the composition, x, an evolution from the RSG behaviour toward “true” spin glass behaviour, characterized by a cusp in the low-field xacvs. T plot, is observed at a given composition x,. Magnetic phase diagrams for systemsshowing reentrant behaviour are shown in the Figs. 72,136,143,144, 222, 225, 232, 285-287,296.
6.1.5.2 Selectedmethods of measurement 6.1.5.2.1 Thermomagnetic measurements In genera!, al! types of magnetometer (e.g. vibrating-sample magnetometer, pendulum magnetometer, SQUID magnetometer) can be used to determine the temperature dependence of the spontaneous magnetization. Thermogravimetry usesthe Faraday balance method: with a sensitive balance the force on a ferromagnetic samplein a magnetic field gradient can be determined while sweepingtemperature. From such measurementsthe Curie temperature can be estimated either as the temperature at which the linear part of the b, vs. T [87 R l] and o,’ vs. T (according to the Landau theory of a second-order phase transition) plots, respectively, extrapolates to zero or by the maximum of daJdT. The Curie temperature can be also determined by susceptibility measurements using a bridge of mutual induction. In this method the sample servesas a core of a transformer. A possible measuring schemeis given in [87 R 11.The secondary coil consists of two identical parts wounded in seriesopposition. Therefore, without the presence of a core they produce no output signal, if an ac signal is supplied to the primary coil. When a ferromagnetic sample, e.g.the amorphous sample, is inserted in one of the secondary coils, the output signal is proportional to the induction changesand reflects directly the susceptibility x of the sample.The temperature at which x approaches to zero can be detected. T, is estimated by the inflection point of the ac susceptibility, the midpoint of the induction changesor the end of the “tail” of the ~(7) curve. Other authors estimate T, from the temperature dependenceof the permeability. The Curie temperature can be obtained from a(?;H) measurements as the kink point observed in the magnetization versus temperature curve taken at a small external field [Sl K 43 or from an Arrott-plot analysis. Arrott-plot. This is a plot of u2 vs. H/a for various temperatures, where H is the field within the sample. According to the mean-field theory (Landau theory), the isotherms should represent straight lines near the magnetic transition temperature (T,). Then, T, is found as characterizing the critical isotherm passing through the origin. In practice, often, and especially for amorphous alloys, the isotherms present a marked curvature which causesuncertainty in the T, value. The Arrott-Kouuel plot, 02.5 vs. (H/cJ)~,“, is based on a magnetic equation of state of the form (H/a)l’y=ac+bd’~
(17)
with /?=2/5 and r=4/3, E=(T- T,)/T, (whereas for the Arrott plot jl=1/2, y=l), with the critical isotherm passing through the origin [84K 43. The Arrott-Kouve! plot is empirical.
Kobe, Fercbmin
Landolt-B6mstein New Series 111/19h
Ref. p. 1881
6.1.5 Amorphous
3d-M: T, and critical behaviour
83
The modified Arrott plot [87 K 21, allP vs. (H/a)‘ly uses/I and y values adjusted so as to obtain a set of, as closely as possible, straight lines for isotherms in the neighbourhood of the critical isotherm. It is practical to do this with the help of a loga vs. log(H/a) plot.
6.1.5.2.2 Calorimetric measurements Changes in internal energy including those associatedwith magnetic transitions can be detected directly by differential scanning calorimetry (DSC) as the temperature at which the DSC endotherm has a minimum or by differential thermal analysis (DTA). Practically, these methods are unable to identify TC for alloys, where the magnetic transition is not well pronounced, and is accompanied by rather small changes in enthalpy.
6.1.5.2.3 Other methods The magnetic phase transition temperature can be determined by Miissbauer measurements, cf. subsect.6.1.4.2.6.Using the thermal scan method the counts are recorded at zero velocity while the temperature is raised. The number of counts show a rapid decreaseat the magnetic ordering temperature since the six-line magnetic spectrum then collapses to a paramagnetic doublet [82 S 31. Magnetostriction is very sensible in respect to variation of the spontaneous magnetization. Therefore, sometimes measurements of magnetoelastic properties are used for determination of T,, e.g. by fitting of &(T)oc(T,T)” in the critical region [87 V l] or by the vanishing of the A&effect with increasing temperature. Electrical resistiuity data depends on the magnetic state of the sample. Therefore, the Curie temperature can be taken from de/dT vs. T curves as the temperature at which de/dT begins to fall rapidly with increasing temperature ([83 B 4, 85 M 31, see also subsect.6.153) or from the sharp drop in the Hall resistivity at T,.
6.1.5.3 Critical exponents A second-order phase transition from a paramagnetic state to a ferromagnetic state is characterized by critical behaviour near T,. Exponents in the power laws of the deviations of various thermodynamic quantities from their values at T, are referred to as critical. They are defined in terms of the dimensionless variable E= (T- T,)/T, as follows, spontaneous magnetization: T
initial susceptibility:
critical g vs. H isotherms:
XCC(--E)-~‘, for T-CT,, xd4-y, for T>T,;
(19)
for
(21)
HKd,
(20)
T=T,;
specific heat : C,cc$[(-e)-“‘-l]+B-, c,cc $(e-“-l)+B+
for ) for
T-CT,, T>T,,
(22)
(23)
where B- and B+ are constants. It is possible to determine the critical exponent a also from resistivity measurements,because the magnetic contributions to the temperature derivative of the electrical resistivity, de,/dT, and the specific heat, C,, of magnetic systemsexhibit the same temperature dependencein the critical region. The plots [e(TC)] - ‘de/dT vs. Ehave been used to analyze the critical exponent a [83 B 4,84 K 4,85 M 31. Only two of the critical exponents (a, a’, b, y, y’, 6) are mutually independent. They fulfill the scaling relations: Y’Y’, a=a’,
a=2(1 -b)-y, ps=p+y.
Land&Biirnstein New Series III/l9h
Kobe, Ferchmin
(24)
6.1.5 Amorphous
84
[Ref. p. 188
3d-M: T, and critical behaviour
As an example, the critical exponent acalc= -0.19 is calculated from the measuredvalues /I= 0.42and y = 1.35 for Fe,,Ni,,B,,Si, [82K3] and can be compared with CL=-0.17(5), which is obtained by an analysis of resistivity data [83B4]. For a comparison of experimental values with critical exponents predicted by the isotropic three-dimensional Heisenberg model see [85 K 1-J. The methods of analysis that have been used to determine the exponents from the experimental data taken in the critical region on amorphous ferromagnetic alloys are given by Kaul [85 K l] together with a collection of relevant data. The critical exponents CL, a’, fl, y, and 6 are given in Table 20. The spread ofthe data is causedby the uncertainty in determination of the T, values and the different analysis methods as well as the used temperature range E in the critical region in which the fitting procedure was performed. Table 20. Critical exponents a, a’, /?,y, 6 taken from measurements.Upper and lower limits are given, when different values are obtained by the authors. Values concerning the ferromagnetism-spin glass transition are marked by an asterisk (*); results for the critical exponents a and a’ obtained from resistivity measurementsare denoted by a cross (‘). a
a’
B
Fe52Cr28B20 Fe53Cr27b~ Fe53Cr27B20
-0.18
-0.125
-0.3
6
Ref.
80H5 79M1, 79M3, 85Kl 83B3 0.34 84B5 0.31 4.8 80R 1, 0.38 1.2 82B5 76C1, 0.33 7782 4.47 75Y 1, 0.38 1.30 8011 79Ml 1.1 4.80 82B4 0.41 4.80 82B4 0.41 5.0 82D3 0.40 5.0 82D3 0.40 3.5* 82D3 0.40* 5.0 82D3 0.40 5.0 82D3 0.40 5.0 82D3 0.40 5.0 82D3 0.40 4.29 85Pl 0.372 1.2 5.31 87W3 0.47 2.00 0.36...0.560 1.36...1.87 4.78...5.10 83Y 2, 84Y2, 87W3, 88K2, 88Rl 86K 1, 0.36 1.36...1.38 4.78...4.8 88K2 83Y2, 0.33...0.620 1.387...1.92 5.0...5.82 84Y 2, 88K2 0.402...0.410 1.303...1.342 4.203.,.4.39 73 M 1, 74Ml 6.35 8207 6.7 8207 7.0 8207 0.38 0.42
-0.18
Y
1.38 1.31***1.7
4.30
(annealed for 3 h at 300“C)
Kobe, Ferchmin
Landolt-B6mstein New Series 111/19h
Ref. p. 1881
85
6.1.5 Amorphous 3d-M: Tc and critical behaviour
Table 20 (continued)
Y
6
~~55CMbo
1.55,..1.58
5.25...7.0
Fe&r2Jho F%AW%~ k&-d~~
1.48 1.55
2.5 4.2 3.8
1.32...1.43
3.8...4.2
1.30 1.30
4.8 4.3
CI
of B
Ref. 8207, 88H3 88H3 8207 8207
(annealed for 3 h at 300 “C)
-0.125 -0.125 -0.125
-0.3 -0.3 -0.3 2.5 2.2...2.5
0.4 0.4 1.55
5.0..*5.3
0.40 0.4* 0.40. *so.41
1.42
4.4* 5.3 4.5* 4.o.s.5.0
0.4* 0.40..*0.41
1.45
4.5* 3.5..*5.1
1.68 1.63 1.33...1.35 1.4 1.33...1.35
5.0 4.8* 5.2 4.80 4.89 5.0 4.8 4.9
0.30...0.42
-0.125 -0.125
-0.3 -0.3
-0.07+ . ..-0.15+
-0.07
0.40 0.38* 0.40 0.45 0.44 0.35 0.40 0.35..*0.37
1.7
RdKJLJh
METGLASTM 2826 MB ~fd%oB16P4 Fe2&60B16P4 Fe,,Ni ~,.&.d’~s Fe,,Ni,,B,,Si, Fe,Ni,,B,,Si, Fe,Ni,,B,,Si, Fe,,Ni,,B,,Si,
0.44 0.44 0.39 0.38
Kobe, Ferchmin
1.63 1.42 1.56 1.36 1.48 1.35 1.36
4.82 4.78 5.2 4.58 5.03 4.24
8207, 88H3 88H3 88H3 8011 8011 8011 81Yl 81 S2, 81Yl 81 G2, 81K6, 81Y1, 83M3 81Gl 81Yl 81Yl 81G2, 81Y1, 83M3 81Yl 81 G2, 81Y1, 83M3 8011 8011 81Yl 81Yl 81Yl 87W3 87W3 87K2 83M5 83B4, 85K 1, 87K2 79Ml 82Ml2 84K6 86Sl 84K6 85D6 85D6 85D6 continued
86
[Ref. p. 188
6.1.5 Amorphous 3d-M: T, and critical behaviour
Table 20 (continued)
u
a’
B
Y
6
Ref.
0.55
81 K4, 83B4, 85K1, 88K3 85D6 1.45 4.87 1.35.e.I.386 4.44...4.48 82K3, 83B4, 85K1, 88K3 83M2, 1.44...1.50 5.02...5.1 85D6 83B4, 1.33...1.387 5.0 87K1, 87K2, 88K3 85D6 1.24 4.08 82K2 4.40.. *4.45 81 K I, 1.33 83B4, 85Kl 79M2 1.54 87K2 1.34 4.8 77c1, 1.31...1.6 4.46 79M1, 8IK2, 85KI 8IG2 5.2 81 G2 5.0 8lY1, 4.5*..5.0 8lG2, 81 S2, 82K2 8lYl 3.6* 81 G2, 3.7..*5.0 81 Y 1, 82B5 80R 1, 1.7 5.2 82B5 81 Y I, 2.8.e.5.0 8IG2 1.58...1.7 5.0..*5.05 80R I, 81 B4, 81 Y 1, 82B5 82B5 5.2 1.3 4.3,**5.03 81 B4, 8lYI 78M2, 1.7 5.25 79Ml 8011 87B7
0.44
1.82
Fe,ONi,,,B,,Si,
-0.19+ *a*-0.20+
0.40.. eO.42 1.35.e.1.388 4.39..*4.49
Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si,
+0.17+
0.39...0.42
Fe,,Ni,,B,$i,
-0.29+
Fe,,Ni,,B,,Si,
-0.19+
0.33...0.34
-0.38+ -0.11+
0.39
-0.29
0.375
0.34..*0.37 0.32...0.38
-0.37+
0.40
0.48* 0.40 0.42 0.40 0.39..*0.40
(Fe,.,Ni,.,),5Pt,B,A1, ~e,.,Ni,.,),,Pt,B,A1,
0.39 0.35...0.38
Fe,,Ni,,P,,B,Si, METGLAS” 2826 B FeJ%P& Fe,,Ni,,Si, 1B7 VITROVAC 4 Feo.96Nio.d9Jrt~
0.40 -0.125
-0.3
Kohe, Ferchmin
5.17
87W3 continued LandolbB6mstein New Series 111/19h
Ref. p. 1881
6.1.5 Amorphous 3d-M: T, and critical behaviour
87
Table 20 (continued)
c!
Y
6
Ref.
1.70
0.40
4.95 4.3 4.o.a.4.3
0.40 0.40
5.0 4.6.a.5.1
0.40 0.40 0.38 0.42 0.40...0.43
5.3 5.0 5.0 5.0 4.3.s.4.43
87W3 81Y2 81Y1, 81Y2 81Yl 81Y1, 81G2 81Yl 81Yl 81Yl 81Yl 76F1, 80K1, 81 G 1, 83B2, 85Kl
0.45
(Coo.,,Nio.~2)75Pl,B,A13 00~oN~o.cioM’~dk% ~~oo:~oNi,,,),,Pl~B,A1, (Coo.~0Nio.40)75Pl,B,A1, Fe32Ni36Cr14P12B6
1.32.a.1.49
METGLASTM 2826 A
6.1.5.4 Pressuredependenceof the Curie temperature According to the theory of homogeneous weak itinerant ferromagnetic alloys [75 W 11 the pressure derivative of the Curie temperature dTc/dp should be approximately proportional to Tc-l. It is assumedthat the exchange interaction and the density of states at the Fermi level vary but slightly with pressure. The above relation has been observed in someFe-Ni alloys [80 K 41,but divergencestherefrom have been found for FeCr, Fe-Mn [83 T 1,82 F 51 and Fe-Zr alloys [81 S 8,82 S 6,83 S 33.These systemscan be characterized by magnetic inhomogeneities, cf. also a theory of Wagner and Wohlfarth [81 W 11. For alloys with T, > TXthe derivative dTJdp cannot be measureddirectly under pressure.Therefore, an indirect method is adopted to estimate dTJdp by measurement of the forced volume magnetostriction do/dH using the relation dw/dH
= (edeo~so)
&WdH)o
+ ~oeoT(dddT)
(dTJ&Wc
2
(25)
where w = Av/K Qis the density, 0, is the spontaneous magnetization (in Am’/kg) and the index 0 denotes the quantities at zero temperature, see [87 T 23.
6.1.6 Magnetic moment, saturation magnetization, Curie temperature Tables and Figures The following tables contain as a rule data for particular alloys and setsof data lying outside of the range of the figures. The reader is advised to consult the materials and properties guide (subsect.6.1.2),and, if he/she is interested in data for given alloy compositions, to seeif they are contained in the form of a figure or table, and which. In the following, unless otherwise stated, ambient temperature is implicit as the temperature of measurementof magnetization, as common in the literature. However, the atomic moment, &, is conceived of as that corresponding to low temperatures, most frequently extrapolated to absolute zero, if not indicated otherwise. Those alloys with no mention of the preparation method are obtained by conventional liquidquenching, usually in ribbon or foil form, and with no further special treatment indicated by the original author. Alternatively, they are indicated as “sputtered”, or details of the treatment of the samplesare provided. Due to differencesin thermal history and the resulting different chemical (atomic) order, the available data may differ for samples prepared by the same method (i.e. either liquid-quenched or sputtered) within the limits of several percent. This can be attributed to the ordering or segregating processesin alloys [71 V I]. In such cases,typical values are given in the table together with the upper and lower limiting values. In the tables and figures on Curie temperatures sometimesthe crystallization temperature, TX,is additionally given for orientation about the onset of the crystallization process, mostly determined by DSC or DTA measurements. Land&-BBmstein New Series III/l9h
Kobe, Ferchmin
88
6.1.6 Amorphous Fe-M
[Ref. p. 188
6.1.6.1 Mn alloys and Fe alloys Table 21. Fe alloys. Atomic magnetic moment and saturation magnetization. The mean magnetic moments per atom, p, are deduced from low-temperature data at high magnetic fields, or are measured using other methods such as neutron scattering. The saturation magnetization, 0, (the magnetic moment per unit mass), and saturation induction, B,, are limiting values for internal field u,H+Oand are taken at room temperature, RT, if the temperature, T is not specified. Nevertheless, RT is at some places written to stress the fact of roomtemperature measurement.The list of Fe-B alloys starts with Fe,sB,, since for Fe concentrations lower than z37at% Fe, they do not show spontaneous magnetization, and behave like spin glassesat low temperatures [84 W 33 (cf. also Table 11). In some cases,typical values, lower and upper limit data are given (seesubsect. 6.1.1.3). P PLI
;m’/kg
B
T
TS
K
1.74 1.54 1.76 2.21 0 0.56 0.69 0.75 98 0.81 0
1.94
Remarks
Ref.
j&, sputtered &, sputtered jr0 sputtered &, sputtered fiFe), Miissbauer effect sputtered, FMR sputtered, FMR sputtered, FMR sputtered sputtered, FMR
82M9 82M9 82M9 82M9 82C2 8425 8425 8425 7983 8425 78Hl 78K3 8OL4 78Hl 8OL4 7983 82Al 8OL4 82Al 77El 82M2 87T4 81H4 81H4 79L2 7702 78Fl 8OL4 79Ml 84L2
PFc
sputtered
1.4 196 4.2 0
1.97 196 1.34 163 203 175 1.77 1.6 1.8
%oB20
172 190 206 190 190 210
RT 0 RT 77
sputtered nominal composition
typical value upper limit RT 77 77 4.2 0 0
1.56 1.58
PFC
293
1.60 1.65 1.66
lower limit upper limit lower limit upper limit Hall effect sputtered foil 10 urn thick, separated from the substrate Brillouin scattering, bulk magnons vacuum-cast, as-quenched, FMR vacuum-cast, annealed for 1 h at 300X!, FMR
0 1.66 1.67 1.63
Kobe, Ferchmin
vacuum-cast, as-quenched, FMR vacuum-cast, annealed for 1 h at 3OO”C,FMR
78B3 8486 84H6 8OL4 84H6 84H6 77Hl continued
Land&-BCmstein New Series 111/19h
6.1.6 Amorphous
Ref. p. 1881
89
Fe-M
Table 21 (continued)
P PB
:m’/kg
B
T
T”
K
1.61 1.60 1.62
Fe83.8 B 16.2 Fe,4B16
212 F%hs
Fe85.4 B 14.6 Fe&h4
0
RT
1.58
RT RT
1.55 1.96
Fe87.5 B 12.5 Fe,,B,,Al,Si, Fe76B2du4 Fe,7BllAu2
2.14 1.92 1.72 2.46
0 4.2 RT
179 223 177 178
Fe&lsC2 Fe84BloC6
177
sputtered
4.2
low-field magnetization 1.70 1.74 1.78
Fe81 B 13.6 C 1.8 P 1.8 Si 1.8
178
Fe,,B,C,Si, kdh4C2.&2.8
171 178
Fe8& ,Ga3
178
FesdbGe6.s
178 1.35 1.41 1.58 1.68
RT RT
ks&oM%,
79
Fe70B20Molo
90
4.2
Fe73B20M07
108
4.2
76
as-received annealed at 270 “C! for 2 h from smoothed data, should serve for provisional orientation only from smoothed data of [80 L3], should serve for provisional orientation only from smoothed data, should serve for provisional orientation only from smoothed data of [Sl L 51, should serve for provisional orientation only
4.2 4.2 4.2 4.2 4.2
Land&B6mstein New Series IIIjl9h
PFFe
1.68 1.64
Fes6B7C7
Fe&&f%
PFe
PFe
zeta& Fe,lB&
Fe,,B,,Hf,Si,A1, Fe7db&.&% Fe,,B,,Hf,Si,Al,
vacuum-cast, as-quenched, FMR vacuum-cast, annealed for 1 h at 3OO”C,FMR
0
162.8
FeB7B13
vacuum-cast, as-quenched, FMR vacuum-cast, annealed for 1 h at 300°C FMR
1.43 1.54 1.58 1.56 215
Fe86.2 B 13.8
Fe88Bl2
Remarks
RT
Kobe, Ferchmin
PFe,Hf PFe,Hf PFe,Hf
BFe), p(Hf) = 0 assumed lower limit, no full saturation in 9 kOe lower limit, no full saturation in 9 kOe lower limit, no full saturation in 9 kOe
Ref. 77Hl 84H6 84H6 8OL4 77Hl 77Hl 84H6 84H6 8OL4 77Hl 78F2 77Hl 77Hl 79H2 84D2 82M9 82S5 8235 79L2 80K3 82M 14 78W2 79H3 8OLl 79H4 79H4 81L6 8012 81L6 81L6 81L6 84D6 84D6 84D6 84D6 84D8 84D8 84D8 7802 continued
90
6.1.6 Amorphous Fe-M
[Ref. p. 188
Table 21 (continued)
B CLB
:rn’/kg
B T”
131
4.2
METGLASTh’ 2605A
1.21 1.6 152
4.2
143
0 0
157
0
162
0 0 0
1.57
1.71 1.74 1.29 0.96
FeB8,+Jb3 FeBIBdJbs
4.2 0
187
0 0 0
1.48 140 1.5 1.69
4.2 0 RT RT
2.19 1.67 123 135
82Al 78Ml 78M7 84D8
lower limit upper limit lower limit, no full saturation in 9 kOe pFe.Nb
extrapolated from above 1.5K, external field up to 70 kOe extrapolated from above 1.5K, external field up to 70 kOe jFc.Nb pFc.Nb
extrapolated from above 1.5K, external field up to 70 kOe
extrapolated from above 1.5K, external field up to 70 kOe jFc.Nb PFc.Nb
extrapolated from above 1.5K, external field up to 70 kOe Pat
0 RT RT RT
1.2 1.42 1.59 172
sputtered RT
1.55 190
annealed double roller quench
RT 1.56
annealed in 8OOA/m at 280°C for 2h
2605 S-2 174 175
RT RT 4.2
1.83 169
hA5Si5 %~Bd% Fe81Bdi4
84D8
jFc.Pt
196
%JMilo AMOMET %&% %Bl& METGLAZ? %JWi6 Fed4& %Jh&
lower limit, no full saturation in 9 kOe
pFc.Nb
158 177 1.88 1.96
FeBlB17Pt2 Fe,,B,,Ru,Si, Fe,,B,,Ru,Si, FM% G% Fe4Ji12 %A.&~
Ref.
RT
1.7
%5B,pP6 (Fe,.p,Mo,.,,)B,Bl,Pl~ %JW4 FeBlB17Pd2 %8, J’t3
Remarks
RT
149
%BB2&fo2
T K
1.57 1.67 1.6
Kobe, Fercbmin
ijFC
8483 8433 8483 8483 8483 8483 87R3 8204 8203 8205 8483 8483 8483 8433 76Dl 77A3 87B4 82F4 84P2 84P2 82F4 8012 8012 78K3 80Nl 82Ml4 82Ml3 82M2 82Bl 8682 8012 8012 84D2 84D2 8OW2 82Ml4 80H3 continued
Landolt-BBmstein New Series IIl/lPh
6.1.6 Amorphous Fe-M
Ref. p. 1881
91
Table 21 (continued)
P PB
B Ts
zm’/kg 197 174 159...164
FedLdi4
T K
Remarks
77 RT RT 1.6 1.56 1.59
RJh& hdWi6 METGLASTM 2605 S
1.61
Fe78.5~12&W%.5 Fe7g.5~12WW%5
82N3
& upper limit pi+ lower limit PFe, Hf
fiFe), p(Hf) = 0 assumed PFe,Hf
j(Fe), ji(Hf) = 0 assumed FFe,Hf
p(Fe), p(Hf) = 0 assumed
1.60
in 800A/m
82M2
1.61
field-annealed at 365 “C for 2 h, typical value lower limit upper limit
8632
170 141 161
RT RT RT
177 195
RT 77 0 0 0 0 4.2 0 0 RT RT RT RT
2.04
PFFe
1.33 1.58 1.75 160 1.80 1.79 1.92 0.65 1.31 172 169
82C8
1.5
4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2
1.55 1.68 Fe,,B,,Si,Ru, Fe,,B,,Si,Ru, Fe7d15Wn~.5
79Sl 82C8 82C8
1.61
1.87 1.59 1.72 1.78 1.81 1.85 1.87 1.88
Fe7~Bd%.dA FJ-301Z (China) FeslB13W2 VITROVAC 7505 Fe81Bl&C~ AMOMET Fe~tBd%.dA METGLASTM 2605 SC
81 H4 81 H4 82Al
81 H4 8lH4 77H2 85D5 84D2 84D2 84D6 84D6 84D6 84D6 84D6 84D6 84D6 89Yl
77 RT RT 4.2
171 183 192 173 Fe,,B,&Al,Hf,
dependent on wheel velocity during quenching from the liquid state annealed as-quenched polished and field-annealed for Ihin IkOeat 300°C unpolished, annealed for 1 h in 1 kOe at 300 “C
Ref.
PFe, W PFe,W pFe,W
pFe,W FFe, W PFe, W
sputtered sputtered
87Al 87T4 82Al 8012 8012 8lH4 8lH4 8lH4 8524 8524 8524 84P2 84P2 8524 8524 78H4 78H4 8012 8012
continued
Land&-BBmstein New Series III/19h
Kobe, Ferchmin
92
6.1.6 Amorphous Fe-M, Mn-M
[Ref. p. 188
Table 21 (continued)
P
:rn’/kg
PB
Fe7&e17% ‘1
B T”
T K
Remarks
Ref.
0.26 0.38 0.32 0.46 0.54 0.89
RT 77 RT 77 RT 77 RT RT RT 0
sputtered, FMR sputtered, FMR sputtered, FMR sputtered, FMR sputtered, FMR sputtered, FMR
78Wl 78Wl 78Wl 78Wl 78Wl 78Wl 8012 8012 8012 75Sl 75Sl 85D5 85D5 85D5 82C9 84K9
134.5 135 139 1.5 1.80
BFC
153 173 185
4.2 4.2 4.2 4.2 0
1.96 140
dc sputtered liquid-quenched in Ar, measured in 16T field
‘) Composition from electron-probe X-ray analysis, doesnot add to lOO%,probably due to a round-off error of the original author. Table 22. Mn and Fe alloys. Magnetic transition temperatures. In general, the Curie temperature, T, is given in the third column. In somecases,it concerns the spin glasstransition temperature, ‘&, and the NCel temperature, TM respectively, and then it is noted as a remark. The crystallization temperature, TX,is given as an indication about the onset of the crystallization process.
T,
K
T, 7.4 10 16 10
10.5 680 ~760 x745 x735 x723 x690 x670 647
FeJb 673
Remarks
Ref.
7& cusp of ac susceptibility !&, cusp of ac susceptibility Kg, rf sputtered thin films (x2 pm), peak of static susceptibility I&, rf sputtered thin films (x2 pm), peak of static susceptibility TN sputtered crystallizes below Tc crystallizes below T, crystallizes below T, crystallizes below T, crystallizes below T, crystallizes below Tc typical value, Arrott plot
88T5 88T5 87B6
K
632 647 650 685 590 635 636 644
DSC Hall effect sputtered Mossbauer effect stress relieved for 1 h at 620 K M(T) Arrott plot M(T)
Kobe, Fercbmin
87B6 71H2 83Bl 78Hl 78Hl 78Hl 78Hl 78Hl 78Hl 76Hl 80G2 78M3 84L2 77c3 85Hl 8OL4 78Hl 81 S6 continued Land&-BBmstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-M
93
Table 22 (continued)
TX
K Fe82.5 B 17.5 Fes3B17
745
Fe83.2 B 16.8 Fe83.4 B 16.6 Fe83.8 B 16.2 F’%,B, 6
Fe84.5 B 15.5 F%B, 5 Fe85.4 B 14.6 Fed%,
x660 625
Fe86.2 B 13.8 Fed%, 610 Fe87.5 B 12.5 Fe,&, Fes4B13A13 FesoBd% F‘%oh 8% F‘%zB, zB% Fes2B14Be4 F%zB,,B‘% F%oB&, ~es&Cz Fed, 0c.s F%.d%C, (Feo.,,Moo.o,)soB,oC,o F%oB,&Si), Fesdi3.5(CSih F%d%z(CSi), F%B&,.,Si,., &oh 5% Fedl7Ga3 Fes4B13Ga3 Fesl.5B13.5Ge5 Fes3BlzGe5 Fe70B20Molo Fe70B25M05 Fe73B20M07
Land&-Bknstein New Series III/19h
663 670 689 720
T,
Remarks
Ref.
K
610 E 600 615 659 608 644 587 588 589 598 584 %570 574 562 556 573 577 531 546 505 510 538 509 510 567 621 669 576 586 612 641 703 607 584 450 677 640 614 630 683 688 631 690 673 673 253 477 x 320 340 410 440 480
DSC estimated from E(T) Arrott plot sputtered Mijssbauer effect M2 vs. T M(T)
Arrott plot DSC Arrott plot M(T) Arrott plot ‘rB enriched Arrott plot M(T) kink point thermogravimetry upper limit Arrott plot M2 vs. T
M(T) M(T) M(T) DSC M(T)
vanishing of AE effect thermogravimetry thermogravimetry thermogravimetry thermogravimetry thermogravimetry thermogravimetry inductance method Mijssbauer effect inductance method Mossbauer effect
Kobe, Ferchmin
87A2 80K6 78Hl 79Fl 81L3 77Hl 79M5 80H5 8OL4 78Hl 8433 8711 78Hl 89Pl 80Hl 81 G4 77Hl 78Hl 8583 81Tl 80T2 77Hl 78Hl 81T2 81L6 81Hl 81Hl 81S6 81S6 81S6 87L7 78W2 79H3 79H3 77A3 8OL3 8OL3 8OL3 8263 81L6 81L6 81L6 81L5 81L5 81L5 81Dl 80N4 84D9 81Dl 80N4 81 D 1 78C2 C:ontinued
94
6.1.6 Amorphous
Fe-M
[Ref. p. 188
Table 22 (continued)
T,
K
FeA&W Fe77.&Mo2.4 ~e7db&W
T,
Remarks
Ref.
477 535 503
Mossbauer effect vanishing of AE effect
81 Dl 78C2 78T2
K
METGLASTM 2605A 510 565
Fe79B20Mo, %J4 90,
Fe,,B,,Mo,Si, (Fe,.~~Nb,.l~)~~.5B~s.5 (Fe,.9,Nb,.,,),,.5B,s.5 (F~,.,,N~,.,,),,.~B,s.s %lBl.Jb5 (F~,.~,N~,.,,),,.~B,s.s (Fe,.,,Nb,.,,),,.5B,5.5 Fe,,B,,Nb,Si, (Feo.905Nbo.oss)s~B,zSis ~e80BloPlo (Fe,.,,Mo,.,,),,B,,P,, FeslB,J’4 ~ed4& FGL% ~ML&~ Fe7G&.&.J2s Fe75Bdi6 Fe7s.4B14.8i10.Q
821
hA4Silo F+45% Fe77.4B13Si9.6 Fe7dldi5.~ Fe77.6B19.7%7 %J42Si,o
803 756 790 779
%A&
818
827 817
777
METGLASTh’ 2605S-2
F&A& Fedh5Si6
FC-33 (China) %J46Si5 %JWi7
798 z770 776 746 798 819
585 668 555 326 506 414 458 471.5 407 512 545 517 418 637 450 658 390 757 728 703 770 701 738 737 x710 684 709 706 610 690 733 701 710 691 692 696 710 x660 668 650 685 662
Hall effect typical value, vibrating-sample magnetometer Miissbauer effect upper limit inductance method thermogravimetry
thermogravimetry inductance method M(T), vibrating-sample magnetometer M(T) Mossbauer effect field-annealed sputtered Miissbauer effect annealed at 782K, Mijssbauer effect Miissbauer effect
liquid-quenched without field liquid-quenched in 0.1T field upper limit DSC extrapolated from D vs. T thermogravimetry DSC, inductance method peak in da(T)/dT annealed thermogravimetry DSC DSC thermogravimetry
Kobe, Ferchmin
79Ml 85Kl 78C2 81M8 81 Dl 80N4 88Bl 8483 8483 8483 8204 8483 8483 88Bl 85Sl 7682 77A3 82F4 87Gl 80N3 80Nl 78Sl 84Pl 8102 8102 82M13 80D3 8583 87L3 87L3 87El 87El 81 Ml 8722 88Y2 87Rl 87Rl 87Rl 87Y2 8525 88Bl 87L7 8722 88B3 continued
Landok-BBmstein New Series 111119h
Ref. p. 1881
6.1.6 Amorphous
Fe-M
95
Table 22 (continued)
~edb%
FC-32 (China) Fe&G% Fe~~Bd% Fe~~B~dL Fe,lB17Si2 Fe81.d43.5Si5 Fe81.5J%4.5Si4
T, K
T, K
x710
645 690 ~670
763
x770 780
679 793 803 811 785 783 803 790 803
%B~d3.&
METGLASTM 2605 SC
Fe,,B,,Si,Mo, Fe,,B,,Si,Mo, Fe,,B,,Si,Mo, (Fe,.,,Nb,.,,),sBl,Si, (Fe,.,,B,.t,Si,.l,)gsNb, Fe,,B,,Si,Nb, Fe,,B,,Si,Nb, Fe,sB,,Si,Nb, Fe~~.~dL&P0.016 Fe~~.dL&%.06 Fe~~.~JL&Sb.016 FedW%Zno.5
Land&B6mstein New Series III/l9h
788
814 801 796 859 838 816 810 794 797 793 791
Remarks
Ref.
lower limit M(T), upper limit annealed
81K8 81H4 8525
678.e.685 713 645 M(T) 653 648 632...634 nominal composition, quenching-ratedependent 643.~~644 nominal composition, annealed in vacua at 600 K for 2 h %660 annealed
77c4 87L3 81H4 81M7 79L3 82A3 82A3 8525
658
Mijssbauer effect
8003
550 610 633 613 734 696 696 699 666 735 741 669 753
M(T) stress relieved for 1 h at 620K inductance method
81H4 85Hl 85Sl 79Rl 82M13 8722 8722 8722 88B3 82M13 82M13 88B3 88S2
649 652 673 646 668 698 643 646 653 658 580 611 642 565 664 580 613 650 666 664 664 740
DSC DSC DSC thermogravimetry thermogravimetry M(T), independent of the ribbon
thickness DSC thermogravimetry kink point Miissbauer effect Miissbauer effect, upper limit inductance method thermogravimetry DSC peak in da(7’)fdT thermogravimetry thermogravimetry thermogravimetry inductance method thermogravimetry thermogravimetry thermogravimetry thermogravimetry thermogravimetry thermogravimetry M(T)
Kobe, Ferchmin
81 L4 81L4 81B7 81R2 8283 84B5 87Rl 87Rl 87Rl 87Rl 88Bl 88Bl 88Bl 85Sl 82M13 88Bl 88Bl 88Bl 88B3 88B3 88B3 81H4 continued
96
6.1.6 Amorphous Fe-M
[Ref. p. 188
Table 22 (continued) 7-4 K
706
782 765 780 874 863 805
Fes3Pl A Fes3P14.A3 Fe7316B6A13
Fe7815C9 Fe77.5P16C6.5 Fed’, A Fe78.5pISc6.5 Fe8J’,2.5C7.5 FesoP13G Fe8d13C6.5 Fe80.5P~5G.5 Fe8d’15C3.5 Fes2Pl
,G
Fe82P11.5C6.5 Fes2P&,
Fea2.5P1sG.5
T, K 561 469 399 405 569 382 531 648 411 522 608 583 693 600 631 640 635 295 233 182 155 26 553 560 561 570 576 602 618 594 652.s.653 610 630...640
591 619 599 593 584 589 586 568 588 584 584 577 586 580 572 565
Remarks
Ref.
annealed at 423 K for 15 h
Mtissbauer effect DSC thermogravimetry thermogravimetry thermogravimetry sputtered, M(T), Mijssbauer effect xac,kink point x.~, kink point xao kink point Miissbauer effect rf sputtered, thermogravimetry thermogravimetry thermogravimetry Miissbauer effect M(T)
5
Hall effect Miissbauer effect NMR with Fe enriched to 99.93% in 56Fe NMR with natural-Fe-sample Miissbauer effect
Miissbauer effect lower limit typical value
Kobe, Ferchmin
8712 8712 87R2 87R2 8101 8101 8101 84F5 8101 81Hl 79M5 81 B8 80Tl 8OS2 8712 8712 8712 82C4 8717 8717 87R7 79c3 88Ml 82K6 82K6 7862 75Sl 8OVl 78W2 80G2 77c4 80Rl 78B2, 79c3 77Rl 77Rl 76C2 73Cl 73Cl 77Tl 73Cl 68Tl 76Kl 8012 73Cl
73Cl 73Cl 77Tl 73Cl 77Tl 73Cl continued Iandolt-BBmstein New Series W19h
Ref. p. 1883
6.1.6 Amorphous
Fe-M
97
Table 22 (continued) Remarks
863
800
833 798 737 770
Land&-Biimstein New Series III/19h
608...613 618 560 590 516 596 592 146 162 264 380 3.5 < 4.2 13 19 34 < 4.2 26 28 56 37 48 75 40 95 85 99 108 113 146 162 170 285 99 100 298 z 560 715 750 713 723 683 566 586 593 561 640 653 693 32.6 255 285
DSC Miissbauer effect Hall effect Miissbauer effect
Mijssbauer effect M(T), vibrating-sample magnetometer M(T), vibrating-sample magnetometer Miissbauer effect Mijssbauer effect Mijssbauer effect Mossbauer effect M2 vs. T
Miissbauer effect Arrott plot M2 vs. T
M(T), vibrating-sample magnetometer M(T), vibrating-sample magnetometer M(T), vibrating-sample magnetometer Arrott plot M2 vs. T M(T), vibrating-sample magnetometer
Arrott plot M2 vs. T M(T), vibrating-sample magnetometer
Arrott plot M2 vs. T M(T), vibrating-sample magnetometer
xacpeak Mlissbauer effect Mijssbauer effect Hall effect Arrott plot held-annealed M(T) M(T) thermogravimetry thermogravimetry thermogravimetry rf sputtered rf sputtered Kg, sputtered sputtered, M(T) and Miissbauer effect
Kobe, Ferchmin
Ref. 81G3 81G3 79Ml 77c3 81S5 81S5 81 S5 79c3 82B4 82B4 79c3 78C3 79D2 78C3 78C3 81T3 79D2 78C3 81T3 81T3 82D3 82D3 82D3 81T3 81T3 82D3 81T3 81T3 82D3 81T3 81T3 82D3 80D2 85D2 87Gl 87Gl 81L7 85Pl 8583 77Nl 80Nl 81N2 81N2 87Y2 8712 8712 8712 81T4 81 T4 88F2 79H7 82C4 continued
98
6.1.6 Amorphous Fe-M, Mn-M
[Ref. p. 188
Table 22 (continued)
TX
K
854
FegzZr, Fe92.2Zr7.s Fe&r7 FeB~.7Zr9H4.3 Fess.Jr7.JJ,., Fess.Jr9H2.3 Fe8dhH1.8
Remarks
T,
Ref.
K
265 255 276 228 265.5 244 224 x30 201 213 226 228 230 232 235 >290 230 215 226 175 186 220 163 283 255 253 247
sputtered, permeability vs. T sputtered, permeability vs. T xac vs. T xac vs. T
Arrott-Noakes plot sputtered, ‘& modified Arrott plot Miissbauer effect x.c vs. T Arrott plot, pendulum magnetometer Arrott-Noakes plot M(T), vibrating-sample magnetometer DSC sputtered
xx vs.T M2 vs. T
Arrott plot, pendulum magnetometer xacvs. T M2 vs. T x.c vs. T M2 vs. T M2 vs. T M2 vs. T M2 vs. T
32
7987 79H7 81 K5 81 KS 8718 8718 87W3 8884 88Rl 8301 87R8 84Y2 87W3 85D3 84W6 8884 85Bl 8718 82F2 84Y2 8718 82F2 87R8 82F2 82F2 82F2 82F2
4.0
K
28
3.5 3.0
20 er-16
2.5 I 2.0Qr
12
1.5
8
1.0
4
0.5
00
20
40
x-
60
*a0
Fig. 69. Mn,e,,-Si,. Mn,e,,-.Si,. Spin-glasstemperatureTsg(solid circles) and susceptibility ratio R=x(T,,)/x(~.~ K) (open circles) vs. Si concentration, x, for sputtered samples. Thearrows indicate T,,<4.2 K [7985].
Kobe, Ferchmin
Iandolt-LEimstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-M
99
Fe-AL-B H=4OkA/m 0.9 T 0.8 I s?” g 0.7 0.6 I5 0
Fe Fig. 70. Fe-Al-B. Ternary diagram of room-temperature magnetic induction Bin the field of 40 kA/m, which corresponds nearly to the saturation magnetic induction. The amorphous structure region is bounded by the dashdotted lines [88Sl].
401
3000
4000
K 312
6000
Fig. 71. Fe,,Al,,B,,. Temperature dependence of the saturation magnetization, u&f,, deduced from ferromagnetic resonance. Linear dependence of M, on T3j2 confirms the validity of Bloch’s law in an amorphous alloy [85Yl].
800lK
30(l-
600l-
I 400 b-2
I 20[Ik
200-
100l-
25
30
35 x-
40
45
50
Fig. 72. Fe,Bl,,,,-,. Proposed magnetic phase diagram for sputtered samples. Triangles: Curie temperature Tc [82C7], open circles: spin-glass temperature Tspfrom the maximum in the magnetic dc susceptibility, solid circles: reentrant spin-glass temperature T,. The dotted lines are guides to the eye [84W4].
Fig. 74. Fe,,,,,B,. Low-temperature magnetic moment per Fe atom, &, as a function of B concentration, x. Liquid-quenched ribbons: squares [83Bl], open circles [78F4], solid circles [78Hl]; sputtered samples: crosses [83Bl], triangles [8385]. The lines represent two different theoretical tits illustrating the uncertainty in extrapolating the data towards the pure hypothetical amorphous iron [84M2].
Land&Bknstein New Series III/19h
2000
T 312_
K
0 t!O
1000
0 0
20
40
80
60
100
xFig. 73. Fe,B,,,-,. Curie temperature, Tc, vs. Fe concentration from Mossbauer measurements for sputtered samples. The critical concentration is about x,=38 [82C7]. 2.5,
0
Kobe, Ferchmin
I
I
I
I
I
I
IO
20
30
40
50
60
[Ref. p. 188
6.1.6 Amorphous Fe-M
loo
I 700 6.Y ,-600
500
0
150
300
150
600
750 K 900
LOO1 0
10
20
30
3
LO
I-
x-
Fig.75 Fe,cO.,B,. Tempcraturc dependenceof the saturation magnetization, MS,for as-depositedsputtered films. SQUID magnetometerin the temperature range 5.. .400 K, magnetic balancein the range 300.. .850 K, constantheating rate of4 K/min [8488].
Fig. 76. Fe,,cw,B,. Curie temperature, Tc, from thermogravimetry and crystallization temperature, Tx. vs. Bconccntration, x [88N2].
1600.
I
2.6r
I
I
I
76
78
80
I
I
I
I
82
84
86
88
pBI I I I I I I I 600 LOO 10.0
2.0
12.5
15.0
17.5
20.0
22.5
250
1.8 74
x-
xFig. 77. Fe,,,-,B,. Compositional depcndencc of saturation magnetization, MS, at 473 K, 293 K and extrapolated to 0 K. The vertical line correspondsto the eutecticcomposition [84M5].
Fig. 78. Fe,Bloo.,, FerB9&,. Magnetic momentper Fe ion, fire, as a function of Fe concentration, x, at 4.2 K and 77 K [7982].
Kobe, Ferchmin
hndolt-BGmstein New Series 111,!19h
Ref. p. 1881
6.1.6 Amorphous
Fe-M
h
101
Fe100-x Mx
M=B
2.0
‘-10
12
14
16 x-
18
20
22
‘P
24
Fig. 79. Fel,,,,-xBx, Fel,,a+Pn. Low-temperature magnetic moment per Fe atom,&, as a function of metalloid concentration, x [79F2].
I
Fig. 80. Feioo-XBX, Fe,,,.,Hf,, FeloO-,P,, Fe,,,-,Zr,, FeiOO-XTi,. Low-temperature magnetic moment per Fe atom,&, vs. concentration, x [83S2].
120
650 L-u I
80
6&O
I 745 e
b
8
740
630
0
100
200
300
400
500
600 K 700
620 0
T-
16
17
18
19
20
log,0 /-I -
Fig. 81. Fes,B,,. Magnetization, cr, in the field of p,, H =0.8 T, as a function of temperature, T. Below the temperature of about 500 K (-0.8 Tc) the values of 0 are equivalent, within experimental error, to saturation values, a,. 0 does not vanish at T, = 647 K because of the applied field [7801].
Land&-Biimstein New Series 111/19h
735 15
Fig.82. Fe,,B,, (METGLASTM 2605). Changes in Curie temperature, Tc, and crystallization temperature, Tx, both from DSC, for neutron irradiated samples as a function of the logarithm of the fast-neutron dose, n. Ribbons were irradiated with neutrons (EaO.1 MeV) up to total doses between 2. 1016 and 10” fast neutrons/cm’. The closed symbols are for unirradiated specimensannealedat 570 K for 3 h [83Gl].
Kobe, Ferchmin
[Ref. p. 188
6.1.6 Amorphous Fe-M
102
620.
600
t 600
--0
I
0
I
I
I
25
50
15 to -
a
Y
I 100
I I 125 min 150
6001
I
I
600 K 610
0
1
2
I
660 K
I 620 e 600
560 5kO b
550
560
570 10-
580
590
Fig.83. Fe,,B,,. (a) Effect of isothermal annealing on Curie temperature, Tc. Tc vs. annealing time, r,, with annealing temperature, T,, as parameter. (b) Effect of isochronal annealing on Curie temperature. 7’c vs. annealing temperature, T., with annealing time, I,, as parameter (7’c determined by thermogravimetry in a 10 K min-’ run) [8711].
x-
3
5
Fig.84. Fe,,B,eV,AI,, Fe,0B,6$i,AI,, Fe,,B,,-,Si,AI,, Fe,,B,Si,&AI,. Room temperature saturation magnetization, 0, (a), Curie temperature, Tc, determined by thermogravimetry (b), and crystallization temperature, TX (c), as a function of Al concentration, x [81L6].
Kobe, Ferchmin
Land&-BBmsIein New Series 111/19h
6.1.6 Amorphous Fe-M
Ref. p. 1881
K
2.0 0
2
4
6
8
10
12
Fe8o-xBzoAux
710
I
I
6501 0
2
4
/-
/t-
,---
-__
10
8
6
Tc
12
x-
Fig.85. Fe,,-,B,,Au,. Magnetic moment per Fe atom, j&, of N 3 mm thick sputtered samples as a function of Au content, x. Zero K values are extrapolated from above 77 K by using the T3/’ law [82F4].
Fw-Adx
I
BIE
b-xTMx
Fig. 86. Fes,,-xB2,,Aux. Curie temperature, Tc, and crystallization temperature, Tx, of ~3 mm thick sputtered samples as a function of Au concentration, x. Curie temperature is estimated from thermogravimetry [82F4].
I-LB 1.6
,g 1.5 M.TM=Co
MO
Nb
V
Pt
Ni
Au
Si
1.4
Average atomic moment, Bat, Fig.88. Fe,,-,BrsBe,. as a function of Be concentration, x, at 4.2 K [81Hl].
Cr
1
725 K
-40 Element added
700
Fig.87. Fe,,-,B,sM, with M=Au, MO, Nb, Pt, Si, Fe,,-,TM,Brs with TM=V, Cr, Co, Ni. Change in Curie temperature, ATc, per at% M or TM addition, respectively. The values are taken from samples with x =2, 4, and 6. Tc values are determined from M(r) using vibrating-sample magnetometer [85Wl].
I 675
I-Y
650 625 0
2
4
6
8
10
x-
Fig.89. Fe,,-,B,,Be,. Curie temperature, T,, function of Be concentration, x [81Hl].
Land&Biimstein New Series III/l9h
Kobe, Ferchmin
as a
104
6.1.6 Amorphous Fe-M
2.1 PR
I
170 @ kg 160
I I Feg&o-x Be,
2.0
I 150 e
,g
1.9
140
$ error bors
1.8
0
[Ref. p. 188
2
4
x-
6
8
10
12
Fig. 90. FeaOB~O~xBer. Magnetic moment per Fe atom, &, as a function of Be concentration, x, at 4.2 K [81Hl].
130 0
2
4
6
8
10
I2
Fig. 91. FesoB20.xBe,. Saturation magnetization, a,, as a function of Be concentration, x, at 295 K. Applied magneticfield of720 kA/m [81Hl].
700 K 1.70 1 l.65-*t
1.60 540 0
2
4
6
8
10
12
0
2
4
x-
8
6
10
Y-
Fig.92. Fea,,B2,J3er. Curie temperature, T,, as a function of Beconcentration,x [81Hi].
Fig.93. Fe,B,oo+,Cy. Room-temperaturesaturation magnetization, a, (left), proportional to the saturation magnetic induction, B, (right), for a constant density of 7.5.103 kg/m3, for several Fe concentrations, x, as a function of C concentration, y [78H2].
226 PR 2.15 620 K I 610 600 c_y 590
4
8
12
16
20
xFig.94. FesOB20-xM,with M=C, Ge, P, Si. Lowtemperature magnetic moment per Fe atom, pFeras a function of concentration, x, of the secondmetalloid, M, substitutedfor B in iron-boron alloys [78M6].
580 0
2
4
6
8
10
12
xFig. 95. Fes4B,,&. Curie temperature, T,-, as a function of C concentration, x [7882].
Kobe, Ferchmin
Land&-BCmstein New Series III/19h
Ref. p. 1881
6.1.6 Amorphous Fe-M
105
Fe-B-Go 2,,
0
FeB,(B,C,SI),~
T=77K
IO at%
14 at%
A 70
80
75
205 208 *lj 209 ato/o
go
0
a
at 14 5
IO
15
at%
0 19
0 b
B-
Fe-
Fig. 96. Fe,,(B, C, Si),,. Ternary diagram of the room-temperature saturation magnetization, [Am’kg-‘1. Samples field-annealed at 300” C for 30 rnz [82M14].
2.26
IO T=373K \ at%
20
70
75
2.22
at%
90
Fig. 97. Fe-B-Ga. Ternary diagram of the saturation magnetization, Q~,versus composition. Numbers mark the values of 6, in Am’/kg measured at (a) 77 K, (b) room temperature and (c) 373 K. The dashed line indicates the boundary between the preparation of amorphous vs. crystalline alloys by melt quenching [81L6].
2.18 I$ 2.14 2.101 0
85
80 Fe-
Ps
2
4
6
8
10
xFig. 98. Fe,,-,B,,Ga,, Fess-,B1,Ge,. Low-temperature magnetic moment per Fe atom, &, as a function of composition [83F5].
Fig. 99. Fe,,-,B,,Ga,, Fes3-xBi7Gex. Curie temperature, I”, (light symbols), from M(r) and crystallization temperature, Tx (solid symbols), as a function of Ge (circles) and Ga (triangles) concentration, respectively. The extrapolated Curie temperatures for Tc > TX are given by a broken line [83F5].
650
600 0
2
4
6 x-
Land&-BBmstein New Series III/19h
Kobe, Ferchmin
8
10
[Ref. p. 188
6.1.6 Amorphous Fe-M
106
0
0.05
0.10
0.15
0.20
0.25
1.8
0.8
Fig.l@J. (Fel-,MQd%o. Fel.,W,h4,$l~.~, (Fe,.,-
Cr,),,B,,. Saturation magnetization, Q,, at 0 K as a function ofcomposition, x [8524].
1.0 0
0.04
0.12
0.08
016
0.20
x-
150 &d kg 100
Fig. 101. (Fel-,Mo,)60B,o,(Fe,-,Nb,),,.,Bl,.,, (Fe,.,TaJ8.d15.5~ Wl-xW1kdh5.5~ (Fe1-iW8&~ (b-,W84Bl~~ (Fe,-,V,hJL+ Wl.,W84B~6~ (Fe,.,Low-temperature average magnetic moM~,hJh.
ment per metal atom, fire,“, of Fe-B alloys substituted with M=Mo, Nb, Ta, W, Zr, Ti, V, Cr, Mn, as a function of M content, x. MO, Nb, Zr alloys - right-hand scale, Cr, Mn, Ti, V and Ta, W alloys - left-hand scale
[8522].
0 150 &J kg I 100 a" 50
530 K Fe 520
780 K
770 510 I
760I b.5
11 L_"500
750 0
100 Am’ kg
490 740 480E 0
15
16
50
18
17 wl,,n
19
20
-
Fig. 103. Fe,,B,,Mo, (METGLAS” 2605A). Changes in Curie temperature, T,-, and temperature of 0 onset of crystallization, TX, both from DSC, for neutron 600 800 1000 K 1200 -0 200 400 irradiated samples as a function of the logarithm of the lfast-neutron dose, n. Ribbons were irradiated with Fig. 102. Wo.gMoo.lhoB20~ (Feo.9Wo.l)6~.~Bl,.,, neutrons (EzO.1 MeV) up to total doses between 2.1016 (Fe,,&r,.,),,B,,. Saturation magnetization, a,, as a and 10” fast neutrons/cm’. The closed symbols are for function of temperature, T[85Z4]. unirradiated specimens annealed at 570 K for 3 h [83Gl].
Kobe, Ferchmin
Iandolt-Emstein New Series 111/19h
Ref. p. ISS]
107
6.1.6 Amorphous Fe-M 250 AmZ kg 200
1
150 I 5’ 100 -20
I
I
I
/I
1
I
I
+---&J/I
Ti
V
Tr
Mn
FD
Y
i;
,,
M’o
,“’
k;
i
I
Co Rh
Ni
Fig. 104. Fe,,B,,M, with M=Mo, Nb, Rh, Ru, Y, Zr, Fe,,TM,B,, with TM=Ti, V, Cr, Mn, Fe, Co, Ni. Change in Curie temperature per at % addition for Fe-B alloys substituted with 4d and 3d transition metal elements. Curie temperatures were determined from DSC [8262].
0
40
2il
60
80 at% IIti0
Fe -
Fig. 105. Fe,,B,,N,,, Fe42B33N25, Fe66B24Nlo, Saturation magnetization, a,, %&N6, Fes6hJ% at 77 K for sputtered samples, as a function of Fe concentration. Microstructure analyzed with transmission electron microscopy indicates the presence of two amorphous phases [85K2].
I6OC K
I \I(
’
hd%.Odx
I
, 200
B,2 si88-x
55[I-
5ocII 2 45c 125 4ocI100
0
20
40
60
80 at% 100
350I_ 78
80
82
84
86
88
90
xFig. 106. Fe,,B,,N,,, Fe7AoN6, Fes6%& Magnetic moment per Fe atom, jFe, extrapolated to 0 K from 77 K using the T3/’ law, as a function of Fe concentration. Sputtered samples. Microstructure analyzed with transmission electron microscopy indicates the presence of two amorphous phases [85K2].
Landolt-Biirnstein New Series III/19h
Fig. 107. (Fe 0.95Nb0.05)xB1ZSiss-x. Room-temperature saturation magnetization, o,, and Curie temperature, Z’c, measured with inductance bridge method as a function ofx [8311].
Kobe, Fercbmin
[Ref. p. 188
6.1.6 Amorphous Fe-M
108
200 Am2 kg t 150 &$oo 50 0 0
0
0.02
0.06
0.06 x-
0.08
0.10
0.02
O.OL
x-
0.06
0.08
0.10
0.12
Fig. 109. (Fel-XNbZ)r,3Br2Si5. Room-temperature saturation magnetization, a,, as a function of Nb con012 tent, x [84Y3].
Fig. 108. (Fe,.,NbZ),,BIzSis, (FetJW83B,zSi~. Curie temperature,Tc, measuredwith inductancebridge method. and crystallization temperature, Tx, as a function of x [84Y3].
1.80
I
x=83 C 82
IJB Fe, B,P~oo-x-~~ 1.75
0
5
10
15
20
;15
Y-
Fig. 111. FerByP,c,O+y Curie temperature T, as a function of B content, y, for various Fe concentrations,x 1.50I
0
I
5
I
I
10
15
I
20
I
(756xs83)[77D2].
2.lOr
I
I
1.901 0
4
8
I
I
I
12
16
20
25
Y-
Low-temperaturemeanatomic Fig. 110. FeXByP1OO-r-y. moment,pa,,as a function of B content, y, for various Fe concentrations,x (75sx s 83)[77D2].
x-
Fig. 112. FesoB,P20-X, FesOCxP20-x, FeBOP20.rGexr Fe,OP,,$Si,. Low-temperature magnetic moment per Fe atom, jFcr as a function of concentration, x, of the second metalloid, M, substituted for P in ironphosphorusalloys [78M6].
Kobe, Ferchmin
Land&-Bcimstein New Series I11/19h
109
6.1.6 Amorphous Fe-M
Ref. p. 1881
650 2.101 0
4
2
8
6
10
625
I
I
I
xFig. 113. F,,-,B,,Pd,, Fe,,.,B,,Pt,. Low-temperature magnetic moment per Fe atom, j&, as a function of concentration, x, of the second metal, M, substituted for Fe in iron-boron alloys [82F4].
L.4 l-b 2.0
700 K
1.6
600
I ’ 1.2 I$
500
0.8
400 I
0.4
300e
0
200 100
50
55
60
65 x-
70
75
8:
Fig. 11.5. Fe,B,,,Res,-,, Fe,BzoWeo-, (nominal composition). Low-temperature magnetic moment per Fe atom, PFe (light symbols), and Curie temperature, Tc (solid symbols), determined from x.,(T) curves vs. Fe concentration, x [88Pl].
Fig. 117. Fe,,B,,Si,,, Fe,,Cr,B,,Si,,, Fe,,Ni,,Cr,Saturation magnetization, es, as a function of B12%. temperature, T. X-ray and electron diffraction indicates the presence of two amorphous phases, one of them with higher Fe concentration [82H2].
600 0
0.
2
6
4
1
8
xFig. 114. Fe,,-,B,,Pd,, Fe,,-,B,,Pt,. Curie temperature, T, (light symbols), from thermogravimetry and crystallization temperature, TX (solid symbols), as a function of Pd and Pt concentration, x, respectively [82F4].
" 20
" 10
/ Fe,, 45
200,
at%
" 30
F&,Si,, Si Fig. 116. Fe-B-Si. Contours of constant Curie temperature, T,, measured with the DSC and vibratingsample magnetometer in a ternary diagram [82Dl]. I
I
\
50 I
0
Land&-Biimstein New Series III/l9h
I 0. M=Pd Pt
Kobe, Ferchmin
I
I
200
400 T I-
600
K
8
O
6.1.6 Amorphous Fe-M
[Ref. p. 188
I
I
T=77K/
b/*
0.6
0.8
ro” 125 100 75
500
550
600
650 10-
700
750 K 800
/*
/’ ‘./ ,
0.2
0.4
Fig. 119. Fe,,(B,Si,J,,. Saturation magnetization, us,at 77 K and 300 K as a function of B content [84L3].
Fig. 118. Fe,,B,,Si,. Changes in Curie temperature, Tc, from DSC measurements after having been subjected to 2 h anneals vs. annealing temperature, T, [89Ll].
1
1.5
2.0
E ‘a
lh
1.5
1.0 0.5
I = 1.0 ‘4
01 0
I 0.2
I 0.1
I 0.6
I 0.8
I 1.0
x-
Fig.121. Fe,O(B,SiIJ,O, (Co,Fe,.,)80B,,,, (Fe,-,-
0.5
-0
Ni,),,B,,. Low-temperature average magnetic moment per transition element atom, PTLI,as a function of composition [84L3]. 0.2
0.1
0.6
0.8
1.0
x-
Fe,,(B,Si,&, (Co,Fe,.,)8Jb,, (Fe,-,NhoB20. Low-temperature average magnetic mo-
Fig. 120.
ment. p.,, per alloy atom as a function of composition [84L3].
760 7&O I I? 2720 Fig. 122. Fe,,B,&,Ge,. Curie temperature, Tc, and crystallization temperature, Tx. vs. Ge conccntration, x. Triangles: as quenched samples, solid circles: preannealed at least 20 K above Tc. Open circles indicate the onset of crystallization forming small regions of a-Fe in the amorphous matrix [84K2]. x-
Kobe, Ferchmin
LandolbB6mstein New Series 111119h
Ref. p. 1881
6.1.6 Amorphous
800,
I
I
Fe-M
111
4 Fig. 123. Fe,,-,B,,Si,M, with M=Mo, Nb, Sb, Sn, Fe,9-xTM,B,,Si, with TM=V, Cr, Mn, Ni. Curie temperature, Tc, from thermogravimetry vs. concentration, x, of Mand TM, respectively [88S3]. 1.1 T 1.0
Sb 0
Mn I 0.8 x4 0.7
1.1 T 0.6
1.C
0.5
0.9
OX 0
I 0.E d
1.2 1.6 2.0 xFig. 125. Fe,sB,,-,Si,P,. Room-temperature saturation induction, B,, versus P concentration, x, for samples as-cast, or annealed in a longitudinal magnetic field of 1000 A/m for 2 hat 553,613,633 and 673 K [87R5].
0.7 Of 0.5 c
0.4
3 575600r,-
625
650
0.8
4 Fig. 124. Fe,,B,,$$,P,. Room-temperature saturation induction, B,, in samples with P concentration x = 0, 675 K 700 0.1 and 1.5, annealed in a longitudinal magnetic field of 1000 A/m for 2 h. versus annealingY temnerature T, I [87R5]: ’ 300 dlsm kg
I 2.5
250
1Of
ki$ 9.5
I
I
Fe85-x B15w~
200I c
,22.0
150
1.0 1.4
1.7
8.0
8.3
8.6
8.9do3kg/m3$
IO0
QFig. 126. Fes5-xB15Wx. Saturation magnetization, es, at 0 K and average magnetic moment per metal atom, &w, as a function of density, ,Q,for W concentration, x, in the range 05x$10. Use Fig. 127 to find x for a given density [84K7]. Land&-BGmstein New Series III/19h
7.0I 0
2
4
Fig. 127. Fess-nB,,W,. concentration, x [84K7].
Kobe, Ferchmin
6 8 IO xDensity, Q, as a function of W
6.1.6 Amorphous Fe-M
112
[Ref. p. 188
20:
\I
20: Am2 kg
x = 0.04
100
\
I b" 20: &+ &+ kg kg
I x = 0.06
100
0 2011 @ kg
600
K
x = 0.08
550
100-
‘-
500
20:
\<
I (50 I-Y
nm2 kg
x = 0.10
100 350 3ooi 300 0
2
4
6
8
10
12
0 0
x-
200
400 T-
600
K
800
Fig. 128. Fe,,-,B,,W,, Fess.,Cr,B,s. Curie tempera- Fig.129. (Fe,-xWx)84,5B,5,5, x=0, 0.02, 0.04, 0.06, 0.08, 0.10. Saturation magnetization, a,, versus ture, Tc, tuk 1 vs. W and Cr concentration, x, rcspcctively, temperature, T. Arrows mark the Curie temperatures, from thermomagnetic measurements [85N3]. T,: 584 K for x=0, 540 K for x=0.02, 494 K for x = 0.04,463 K for x = 0.06,420 K for x = 0.08,368 K for x=0.10[86c1].
Kobe, Ferchmin
Land&-BBmstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-M
113
350 K 300
p1
200
0.50I 15
20
25
30
x-
35
40
45
50
Mean magnetic moment per Fe Fig. 130. Fe,c,o&. atom, &, at 4.7 K (triangles downward) and 291 K (circles) for sputtered samples as a function of C content, x [87B5]. The figure shows an unexplained discrepancy between those data and room-temperature data for samples sputtered using an Fe& target (solid triangles upward) and an Fe& target (open triangles upward) [78Kl]. A possible source of the discrepancy might represent the heterogeneous structure of the latter two sets of samples [87B5]. The solid symbols at x=25 and 28.6 represent data of [84F6] on Fe& (cementite) and Fe& (HBgg carbide), respectively.
150 0
IO
20
30
x-
40
I
Fig. 131. Fe,,,-,Hf,. Curie temperature, T,, vs. Hf concentration from Arrott-Noakes plots. Open circles: alloys with nominal composition up to 9 at % Hf were prepared by melt quenching and with 21 at % Hf and higher by sputtering [85H3], solid circles: [85F2].
K
kbar -2
I -4 4 7 k.Y = -6
-8 -50 0
2
4
6
8 kbar IO
-10 0
P-
Fig. 132. Fe,,,.,Hf,. Shifts in the Curie temperatures, AT,, vs. pressure, p, with Hf concentration as a parameter. Cf. also Fig. 131[85F2].
Land&-Biirnstein New Series IIIIl9h
IO
20
x-
30
40
Fig. 133. FeIoo., Hf,, FelOO-xZrx. Pressure derivative of the Curie temperature, dTc/dp, vs. Hf and Zr concentration, respectively. Cf. also Figs.131 and 132 [85F2].
Kobe, Ferchmin
[Ref. p. 188
6.1.6 Amorphous Fe-M
114 350
koo-&x1 1
K 300
FelOO-xMx I I
250 200 I b-Y
150 100
0.50 0.25
50 \
0
Nb
15
20
25 x-
30
^
UI
35
40
45
Fig.134. Fe,O,,.XM, with M=Hf, Nb, Ta, Zr. Curie temperature, Tc, vs. concentration of Hf, Nb, Ta, and Zr for sputtered samples [81F4].
10
I
I
15
20
I
I
I
35
40
45
I
25 x-
30
Fig. 135. FeleaVrMr, M =Hf, Nb, Ta, Zr; FeleeVxTir. Magnetic moment per Fe atom, fire. as a function of second component concentration, x, for sputtered samples. Based on SQUID data taken at 4.2 K, calculated under assumption of 7.5 * lo3 kg/m3 as the extrapolated density of amorphous iron [81F4].
200 1.25
150
I
Lb
I
Feloo-XMX
100 50
n IJ”
K 100D
P
1,
I k 50
SG
n.b -0
Fe92.5 Lo 7.5
5
10
15
20 kbor 25
10
P-
Fig.136. Fes,,sLa,z,s, Fesz,sLa,,,. Curie temperature, Tc, reentrant spin-glass temperature, Tr, and spinglas temperature, 7”,r, vs. pressure, p, for high-rate dc sputtered samples of Fe,,,,La,,,, (a) and Feg2,sLa,,, (b) (nominal composition). P: paramagnetic, F: ferromagnetic, SG: spin-glass region. 7’r values were determined by the shoulder in xJ7’) curves [8864].
15
20
25
x-
30
35
3
Fig. 137. Fe,,,,-,Nb,, FeleemxTaX. Magnetic moment per Fe atom, jFc, for sputtered samples at 4.2 K versus concentration of the second element, x [83F4].
Kobe, Ferchmin
Landok-B6mslein New Series 111/19h
0.7 1
115
6.1.6 Amorphous Fe-M
Ref. p. 1881 I
I 3.0
Fe7ENbZ2
/.
0.6
I
I'B Fe+,P, L
2.5
12
d
1.5
o.5/l 50
100
150
200
250 K 300
.b /
/
1.0
0
.O
01
A
I
I
I
I
I
-1.0
-0.5
0
0.5
1.0
1.5
2.0
TFig. 138. Fe7sNb,,. Saturation magnetization, t.@f,, and inverse magnetic susceptibility, x- ’ (arbitrary units), as a function of temperature, T, for a sputtered sample [81F4].
Fig. 139. Fe,-,P,. Generalized Slater-Pauling plot average magnetic moment per atom, pa,, versus atomaveraged magnetic valence, r,,,. Data taken from [77D2] (open circles) and [78M6] (solid circles). The line corresponds to the assumption of concentration-independent 2N,b = 0.6 (IV.&:number of spin-up sp electrons per atom) in the formula&=2N&+ v,,, [84M3].
1200,
I
I
I
I
I
1.0
I
.g 0.8 z 0.6
\ \
200
0
50
100
150 T-
200
250 K 300
100
300
200
\ 400
"C 500
T-
Fig. 140. TM,,P,,B,Al,, TM =Fe, Co, Fe,,,Co,,,, Fe,,sNi,,,, Co,,,Ni,,,. Saturation magnetization, pJ4,, as a function of temperature for some metallic glasses [7592]. Land&-Biimstein New Series III/l9h
0
Saturation magnetization, MS, Fig. 141. Fe,,P,,C,. as a function of temperature, T. The arrow indicates the Curie temperature [79Tl].
Kobe, Ferchmin
[Ref. p. 188
6.1.6 Amorphous Fe-M
116
1.5
Ps
1
1100 I
I
FP..Pri,, ..RqnSi,n
I
I
IA /
1
I
k 75 50 3 0 0
20
10
30 x-
50
40
60 x-
Fig. 142. Fe,Pd,O.,B,,Si,,. Average magnetic moments per atom j,, at 4.2 K in 80 kOe for splat-cooled foil-like samples obtained from arc-melted droplets as a function of Fe concentration, x. (I) Total moment per atom. (2) Moment assumed to be associated with Fe atoms, each with 2.0 ug. (3) Difference of curves (1) and (2). moment associated with Pd atoms, due to spin polarization by neighbouring Fe atoms [8424].
Magnetic phase diagram. P: Fig. 143. Fe,Pds&Si,,. paramagnetic, F: ferromagnetic, SG: spin-glass region. Curie temperatures were determined from M(7) measurements with vibrating-sample magnetometer [82D3].
. .. 140 z00
250 K
200 I 150 b. 100
01
70
I
I
I
I
I
71,
78
82
86
90
60
100
x-
xFig. 144. Fe,RusO-,Zr,e. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region [88N3].
Fig. 145. FerSb,c,O-r. Curie temperature, Tc, and spin-glass temperature, TsB, vs. Fe concentration for sputtered samples. The magnetic order temperatures were determined either from Miissbauer effect measurements or from M(7) obtained with SQUID magnetometer [85C2].
Kobe, Ferchmin
Land&-Btimstein NW Series 111/19h
117
6.1.6 Amorphous Fe-M
Ref. p. 1881 1.25 T
I
0.25 01 0
1.8
1.1 1.0 20
IO
40
30
x-
50
60 0.9
Fig. 146. Fe,,,.,Si,. Room-temperature saturation magnetization, Qf,, of dc sputtered samples versus Si content. Solid circles: FMR data, open circles: Hall effect data [84L6]. 2.1I Ps
I
I
I
I
0.8
20
i8
22
24
26
28
30
32
Metalloid contentFig. 147. Fe,&Si,B,,,
Fess.,Si,Blz,
Co,O-xSi,B,,,
Cose.,Si,B12.Zero-temperature magnetic moment per
transition metal atom, j&u, versus metalloid content, x+ IO or x+ 12, for alloys with IO or 12 at % B, respectively [78Nl].
2.0 I 1.9 lb 1.8 I 72
I.71 68
I 80
I 76
x-
84
Fig. 148. Fe,Si,O-xBI,. Magnetic moment per Fe atom, pFe, as a function of Fe concentration, x, at 4.2 K [85D5]. 750 K ,I
700
/
I
I
I
I
“.
725
\ \I
I
I 700 hu 675
68
72
76
80
84
x-
Fig. 149. Fe,SiaO.,Blc,. Curie temperature, Tc, measured with DSC, vs. Fe concentration, x [85D5].
Land&-Biirnstein New Series III/19h
650 175
30.0 32.5 27.5 25.0 22.5 Metalloid contentCurie temperaFig. 150. Fe,O.,Si,B,,, Fes,.,Si,B,,. ture, T,, vs. metalloid content, x + IO or x+ 12, for alloys with 10 or 12 at % B, respectively. Curie temperature obtained from M(T) using vibrating-sample magnetometer [78Nl]. . .
Kobe, Ferchmin
20.0
[Ref. p. 188
6.1.6 Amorphous Fe-M
118 740 K I 720 I-!? 700
680 0
50
100
150
200 min 250
a 2.4 Ps
1000 K
2.0
800
-16 la”
I 600c
1.2
0
400
2
4
6
8
10
x-
720 K 750 690 10Fig. 151. Fe,,Si,,B,. (a) Effect of isothermal annealing on the Curie temperature, T,. Tc vs. annealing time, r,, with annealing temperature, T,, as parameter. (b) Shift in Curie temperature, AT,, during isochronal annealing at an annealing time r, = 15 min, vs. annealing temperature, T,, for the sample with the given nominal composition. Curie temperatures were determined with DSC. Tc=686 K for the as-received sample. Annealing at T, > 725 K produces primary crystallization [84B2]. 600
630
660
Fig. 152. Fe,$i,,-,Hf,. Magnetic moment at 0 K per Fe atom, jrc, and Curie temperature, T,, as a function of Hf concentration, x. Calculated from magnetization measured above 77 K and extrapolated to 0 K [88K5].
b
1.0 1 0.8
0.6
1.5f)I 1 FelOO-xlOx RT I1.00
ST z 0.4
I ST =To!xIcl0
I
0
xFig. 153. Feree-,Ta,. Room-temperature saturation magnetization, u,M,, of rf sputtered samples as a function of Ta concentration, x. The increase in the roomtemperature magnetization with x in the range 20-25 at% Ta is due to the increase in Tc in this range [SlNl].
ion
200 -300
400
500 K 600
I-
Fig. 154. Fe,eeVXTaX. Temperature dependence of the saturation magnetization, uJ4,, of rf sputtered samples [81Nl].
Kobe, Ferchmin
Landolt-B6mstein New Series 111/19h
6.1.6 Amorphous
Ref. p. 1881
Fe-M
119
0.30 T 0.25
07 50
53
56
59
62
x-
65
68
Fig. 155. FexW1,,emx. Curie temperature, Tc, vs. Fe concentration, x, for sputtered samples. The solid line is drawn through the point with the critical concentration for ferromagnetism (x = 52) and the Curie temperature of crystalline Fe (1043 K). In the Fe concentration region between x = 31 and x = 52 antiferromagnetic interactions and spin-glass behaviour are observed [86Hl].
0
100
200
300
400
K 51
TFig. 156. FeloO.,W,. Temperature dependence of the saturation magnetization, I@&, of rf sputtered samples [81Nl].
2.5 PB 2.0 1.5 t lb 1.0 0.5
0
10
13
16 0 x-
0
19O0.a
0
2Y
o
25
Fig. 157. Fe,,,-,.,W,. Room-temperature saturation magnetization, y,M,, of rf sputtered samples as a function of W concentration, x [81Nl].
0 0
20
40
x-
60
80
100
Low-temperature magnetic moFig. 158. Fe,Y,,,-,. ment per Fe atom, jFe, as a function of Fe concentration, x [8811].
300 K 1 200 hu 100
0 0
Fig. 159. FexY,oO-x. Curie temperature, Tc, vs. Fe concentration, x [8811]. Measurements were performed using vibrating-sample magnetometer. T, values were 20
40
60
80
100
determinedfrom Arrott plots. Seealso [88H2],p. 152.
xLand&-BBmstein New Series III/19h
Kobe, Ferchmin
[Ref. p. 188
6.1.6 Amorphous Fe-M
120
0
20
40
60
80
100
xMagnetic moment per Fe atom, Fig. 160. Fe,,a-,Zr,. prc, at 4.2 K as a function of Zr concentration, x. Solid circles: liquid quenched samples [8382], open circles: sputtered samples, but x = 60 sample: liquid-quenched [86H2]. For x nearly equal to 10 the data are close in values to those in [8002], but for unknown reasons differ in character ofconcentration dependence.
Fig. 161. FeIr,ePXZrX. Saturation magnetization, M,, at 0 K for liquid-quenched (full circles [SOOZ])and sputtered samples (open circles [86Il]) as a function of Zr concentration, x. The difference in slope of the two sets of data is a consequence of two different methods of preparation. The vertical dashed line marks the upper concentration limit for crystallinity of sputtered samples [8611]. 150 Am7 kg 125
-40 1 b.? Q -60
-80
25 0 85.0
87.5
90.0
92.5 x-
95.0
925
98.0
Fig. 163. Fe,ZrIr,a-,. Saturation magnetization, es,,as a function of Fe concentration, x. Values extrapolated to T=OK [84R2].
I
-60ib
-60 0
4
8
12
4 Fig. 162. FeIOa~,Zr,, (Fe,.,Ni,),,Zr,,,. Shift in the Curie temperature, AT,, as a function of pressure, p. (a) x=7, 10, 12, 15 - high-rate sputtered samples; (b) Fe80Zr20 - sputtered sample, (Fe,,,,Ni,,,,),c,Zr,r, [81S8]; (c) Fe,,Zr,,, (Fe,,aNi,,,),,Zr,, [81S8]. Curie temperatures were determined from permeability vs. temperature curves [83S3]. 16 kbor 2[1
Kobe, Fercbmin
Land&-B6mstein New Series 111/19h
121
6.1.6 Amorphous Fe-M
Ref. p. 1881
0.6 r
85.0
87.5
92.5 x-
90.0
95.0
97.5
0 175
9 8.0
Curie temperature, Tc, vs. Fe Fig. 164. Fe,Zr,,,-,. concentration, x, from Miissbauer effect measurements (triangles) and from inverse magnetic susceptibilities (circles) [84R2].
I
180
I
185
190 T-
195
200
205 K :
magnetization, Fig. 165. Fe,,Zr,,. Spontaneous u&f,, as a function of temperature, T[88Rl].
40 & kg
h.db.dgoZrlo
30
I
-3
g
20
1 4 hy
a
-5
-IF
0 100
I.
155
160
165 T-
170
175 K 180
Fig. 167. Feg,Zrs. Spontaneous magnetization, bs, as a function of temperature, T. The values of cs determined from Arrott plots. Samples liquid-quenched in Ar, the Curie temperature T,= 174.6 K marked by an arrow [84Y2].
I -: I-Y -f a
-!
4 Fig. 166. FegOZr,,, (FeO,p~M,~,,),,ZrI, with M=Al, B, Ge, Si; (Feo,94TM0,06)90Zr10 with TM=V, Cr, Mn, ‘Ni. Change in Curie temperature. AT,, due to isochronal annealing (annealing time t, = 20 mitt) vs. annealing temperature, Ta. Dashed lines: Fe,,Zr,, (Tc=204K). (a) M=Al (T,=269 K), B (T,=310 K), Ge (Tc=304K), Si (T,=304K). (b) TM=V (Tc=256K), Cr (T,=260 K), Mn (Tc=190K), Ni (T,=322 K). Curie temperatures were determined from permeability vs. temperature curves [8206].
Kobe, Ferchmin
122
6.1.6 Amorphous Fe-M
3
I
I
K (Fe,-,A[, IgoZr,,
f, = 2Omin I
I
[Ref. p. 188
1
280 K -18 a
91
I
I
x=0.10
6 I
260
to= 20min
K (Fe,-,BxlgoZrlo
ee-l
I
I
I
Id
I 240
t-Y 220
3
200 -3 250
I
350
450
550
650 K 750
10-
1601 160 0
I
I
0.1 0.1
0.2
I 0.3
I
I
04
5
x-
Fig. 168. (Fe,.,Al,),,Zr,,, (Fe,.,B,),Jr,,. Change in Curie temperature, AT,, due to isochronal annealing (annealing time I, = 20 min) vs. annealing temperature, T.. Dashed lines: Fe,,Zr,, (7’,=204K). (a) (Fe,.,Al,),,Zr,,. x=0.02 (Tc=235 K), 0.04 (7’,=246 K), 0.06 (Tc=269 K), 0.10 (Tc=293 K). (b) (Fe,.,B,),,Zr,,. x=0.02, 0.04, 0.06, 0.10. Curie temperature were determined from permeability vs. temperature curves [8206].
Fig. 169. Feg,,(Zr,S,B,),,, Fe&Zr,-,B,)s. Curie temperature, Tc, vs. B content, x, obtained from Miissbauer measurements (open symbols) and from modified Arrott plots (solid symbols) [86K2].
IDUl
I
0
2
,
4
6
8 kbar 10
PFig. 170. (FeO,azZr,,,s)H,. Curie temperature, Tc, determined from M2 vs. T curves as a function of pressure,p. x = 0 and 0.047 [82F6].
Kobe, Ferchmin
Land&-Birmstein New Series W19h
Ref. p. lSS]
6.1.6 Amorphous Co-M
123
6.1.6.2 Co alloys Table 23. Co alloys. Low-temperature magnetic moments and saturation magnetization at room temperature, unless stated otherwise.
P PB
:rn’/kg
B T’
T K
Remarks
Ref.
0.55...0.56
298
poMs, sputtered, as-deposited, deposition-angle-dependent sputtered
8852
1.00
RT 0 RT RT 295
90 115 118 1.15 89
sputtered
0.85 70.6 18.7 0.80 0.81 0.91 47.2 0.88 0.93 66 0.94 1.07 1.10 0.77 81.5
0 300 0 0 0 300 0 0 300 0 0 0 RT 300
data reanalyzed in [SSK I] PC, PC0 PC,
i%O PC, PC0
1.11 105
0 0 0 0
1.19 1.22 1.26 0.73 1.2 0.9 67.3 83.5
RT RT
PC, PC, PC0
water-quenched from a temperature above T, (498 “C) dc sputtered dc sputtered
295 0.8 295 4.2
73.6 77 0.90
PTM
88.5 61.4 1.09
PTM
96 96
295 4.2 1.0 1.04 0.95 1.10
sputtered sputtered sputtered, 5% sample thickness uncertainty
8501 87R3 7801 8501 7601 8204 76Ml 74Ml 88K7 82M3 82M3 82M3 88K7 82M3 821113 88K7 82M3 82M3 82M3 87R3 88K7 7701 84Gl 88Gl 88Gl 88Gl 8lN3 82Nl 82Nl 8204 8204 8204 8204 8205 8203 8204 8204 8203 8204 8205 8204 83Sl 83Sl 871112 continued
Land&-Biimstein New Series III/l9h
Kobe, Ferchmin
124
6.1.6 Amorphous C-M
[Ref. p. 188
Table 23 (continued)
s
B
T
TS
K
Co92.5Nb4.7Zr2.8
1.19
RT
Co92.sNb4.6Zr2.6
1.18
RT
Co,,Nb, ,Zr,Ta,
0.74
RT
0.77
RT
PB
:m’/kg
1.15 1.10 0.97
0.9 urn thick, rf sputtered, in 65 Oe magnetic field 0.75pm thick, rf sputtered, in 100Oe magnetic field sputtered, vibrating-sample magnetometer sputtered, FMR
87Cl 87Cl 87Sl 87Sl 76Al 79Hl 7582 80Rl 77Ml 71 Hl 77Vl
lkc,
0.66
RT
0.038
RT 4.2
0.87 0.54 0.67 0.86 0.70 0.49
0.55 0.56 0.3 0.4 0.75 1.08
pendulum magnetometer Hall effect P.1
extrapolated from the data for Co7AB% lower limit typical value upper limit
RT
0.54
RT
RT
Co,,Zr, ,Mo,Si,
Ref.
PC0
0.453
Codrldfo9.5 Co7Jr, ,Mo&
Remarks
0.73 0.62 0.60
Kobe, Ferchmin
as-quenched, applied field of 1OOOe as-quenched, applied field of 1OOOe water-quenched after annealing for 1 h at 493K, measured under applied field of 1OOOe sputtered
79Kl 7822 81N2 81N2 8713 8713 8713
8387 82KlO 82K 10 82K 10 sputtered, 5% sample thickness 87412 r: uncertainty rd diode sputtered, 1-..2pm thick, 84 S 3 composition - electroprobe analysis rf diode sputtered, 1-.-2pm thick, 84 S 3 composition - electroprobe analysis 82N4 82N4 82N4
Landolf-BBmstein
New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Co-M
125
Table 24. Co alloys. Curie temperature, T,, and crystallization temperature TX.
TX
K
x 720
z 620 ~670 706 x725 ~780 x830 453 731 453
873
889 878
791 770 843 838 864 851
Land&-BBmstein New Series IIIIl9h
Tc
K
355 325 420 434 486 480 560 585 658 669 663 675 678 737 753 740 725 > 750 707 714 > 750 701 723 825 1023 630 305 455 703 810 391 475 483 660 607 707 566 998 771 634 614 726
Remarks
Ref.
rf sputtered, vanishing of domain structure estimated, crystallized below T, M2 vs. ‘I: thermogravimetry estimated, crystallized below Tc estimated, crystallized below T, estimated, crystallized below T,
8852 79Hl 83Hl 79Hl 79Hl 7801 73Ml 82Kl 73M1, 74Ml 88K7 81B3 81 B3 83Hl 88K7 81B3 81B3 88K7 83Hl 83Hl 79T2 81B3 83Hl 83Hl 83Hl 88K7 83Hl 81B3 88Sll 7701 81B3 82Kl 82Kl 8204 8204 7582 81A2 81A2 81A2 81A2 87Vl 81B3 87Vl 76Kl 83Hl 83Hl 80N5 8252 82N4 82N4 82N4 81N3
M( 7’), vibrating-sample magnetometer M(T) M( 7) extrapolated M(T), extrapolated M2 vs. ‘I: thermogravimetry M(T) M(T), extrapolated M(T), extrapolated M(T) M2 vs. ‘I: thermogravimetry M2 vs. ‘I; thermogravimetry M(T), extrapolated M2 vs. ‘I: thermogravimetry M2 vs. ‘I: thermogravimetry M2 vs. ?; thermogravimetry
M(T) M2 vs. I: thermogravimetry M(T), extrapolated, crystallized below T, M(T), extrapolated M(T), extrapolated, crystallized below T, M(T) M(T)
sputtered sputtered sputtered sputtered fitting a power law I,@ T, - T) M(T), extrapolated fitting a power law 1, cc(T, - T) M2 vs. T, thermogravimetry M2 vs. ‘I: thermogravimetry M(T), M(T), M(T), M(T), M(T),
extrapolated pendulum magnetometer pendulum magnetometer pendulum magnetometer pendulum magnetometer
Kobe, Fercbmin
[Ref. p. 188
6.1.6 Amorphous Co-M
126
1200 K 800 I..? “;400 --
0
2
4
x-
6
8
10
M=AI, B, Be, MO, Si, W, V, Fig. 171. Co,,-,M,Zr,,, Cr, Mn, Fe. Room-temperature saturation magnetization, u,, as a function of M concentration, x [82N4].
0 0
5
10
15
x-
20
25
30
35
Fig. 172. C~ree.~B~. (a) Low-temperature magnetic moment per Co atom, j& (b) Curie temperature, Tc, and crystallization temperature, TX, as a function of B concentration, x. Light symbols [89K2], solid symbols [88Tl], see also [79Hl].
n.
1.50, 1 lb 7=77K
I
I
-1.5
I -2.0 2 s = -2.5
II
. CO,~MO,‘ Zr,a(4701
I / Ifl 1
-
Co,,Mo,,.2Zr,,.,(S65) -3.0 -3.5
aso[
Co,,Nb,,8, (5101, I I
-4.0
01 -0
I 0.2
I 0.4 x/U-x)-
- \
I
0.6
a8
1.0
Fig. 173. Co,.,B,, Co,-,Si,, Coo.75Sio.~~Bo.lo. Magnetic moment per Co atom, &,, as a function of metalloid-to-cobalt content ratio, x/(1-x), for samples rf sputtered in Ar. Values calculated from saturation magnetization at 77 K [88M3].
-4.5 40
50
CoT8Mo,,Zr,, (592), I I 60 70 80 Y-n-
90
1100
’
Fig. 174. CoS6BJ4, Co,(M-M),,,+ with M=B, MO, Nb, Si, Ti, Zr, Co,(fM-M),,,-, with TM =Cr, Mn and M=B, Zr. Pressure derivative of the Curie temperature, dT,/dp, vs. Co concentration, x. The Curie temperatures in K are given in parenthesis [82S8].
Kobe, Ferchmin
Landolt-B6mstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Co-M
127 -78-x
1.2
I7 I 4 I I I I 800
0
I
Ps
E d la”
0.8
A
I z d la”
e
A 0
c
04
1.;
700 0
A co, BXC76.X 0 Co, b-x
600 b 50
I 55
42
0.8 I 60
65
70
75
80
0.4 Fig. 175. Co,B,,C!,,-,, CO,B~~&~. (a) Curie temperature, Tc, from thermogravimetry and (b) crystallization temperature, TX, vs. Co concentration, x [87Pl].
1.2 Ps
0.8
I x d la”
I z 13
Fig. 176. Co,,.,B,,M,, M=Hf, MO, Nb, Ta, W, Zr, Ti, V, Cr, Mn. Low-temperature average magnetic moment per metal (Co or M) atom,&,,M, as a function of M concentration, x (lower scale) or Co concentration, 78-x (upper scale). Samples liquid-quenched in air. (a) Arranged according to the atomic number of M. (b) Arranged according to the atomic group (4A, 5A, 6A) of M [8202].
1.2
0.4
0.8
0
OX
Olb 0
4
8 X-
Land&-Biknstein New Series 111/19h
Kobe, Fercbmin
12
I 16
6.1.6 Amorphous Co-M
128
Co70B22M8
I
[Ref. p. 188
I I 700 IIU 600
Metalloid contentFig. 178. Coss.,BrzSi,, CogO-,Si,B,,. Curie temperature, T,, vs. metalloid content, x + 12 or x + 10, for alloys with 12 or 10 at % B, respectively. Curie temperature is obtained from M(T) using vibrating-sample magnetometer [78Nl].
600 L-u
4A
6A 5A Atomicgroup
7A
125. ClVsm kg 100
I
.\
I
COIOO-~(Bdidx \ I I
Fig. 177. Co,cB,,Ms with M=Hf, MO, Nb, Ta, W, Zr, with TM=Ti, V, Cr, Mn. Curie Co,o’Wh temperature, Tc, and crystallization temperature, Tx. vs. atomic group number of M and TM, respectively. Circles: 3d, triangles: 4d, inverted triangles: 5d elements [SZKl].
K
&I? kg 80
700
600 I b!? 500
t 60 5 40 20 01 20
23
26
29
\ 32
: 0.8
400
0.6
1300 35
0.4 20
xFig. 180. Co 100-X(B0.5Si0,5)X.Saturation magnetization, 0,. at 300 K, and Curie temperature, 7’,, as a function ofcomposition, x [84Kll].
23
26
x-
29
32
35
Fig. 179. Co Ioo.,(B,,,Si,,,),. Saturation magnetization, a,, at 0 K and at 300 K, Curie temperature, T, and magnetic moment per Co atom, jcO, as a function of metalloid content, x. Zero-temperature data extrapolated on the p/z scale from above 4.2 K or from above 75 K [88K<73.
Kobe, Ferchmin
Landolt-Biim5kin New Series 111119h
Ref. p. 1883
6.1.6 Amorphous Co-M
129
I_ &I2 kg 80 &I2 kg I 70
I
d 65 60 0
150
300
450
551 55 0
600 K 750
5
10
Fig. 181. Co,,B,,Si,,. Saturation magnetization, Q~, as a function of temperature, T. The arrow marks the Curie temperature [88K7].
15
20
25
x-
T-
Fig. 182. Co,OB,,-,Si,. Zero-temperature saturation magnetization, o,, as a function of Si concentration, x [82B3].
600, 1.0
I
I
I Co70B30-xSix
I
I
I
I
I
I
15
20
25
550
Ps
500 I b-5 450
I 0.9 0.8
,g 0.7
400 0.6 0
5
10
15
20
25
Fig. 183. Co,,B,,~,Si,. Low-temperature magnetic moment per Co atom, &, as a function of Si concentration, x [82B3].
80 DVsm kg 60
350I 0
5
10 x-
Fig.184. Co,,B,,-,Si,. Curie temperature, TO. as a function of Si concentration, x [82B3].
1.00 1.00
I
I
T
yco75Bx RT
t 0.75
si25-x
t
I 40 k? 20
0
150
300
T-
450
600 K 750
Fig. 185. Co 70.5Bi4.75Si14.75. Saturation magnetization, a,, as a function of temperature, T. The arrow marks the Curie temperature [88K7]. Land&-Bhnstein New Series 111/19h
001 0
I
50 30 40 xFig. 186. Co,,B,Si,,-,. Room-temperature spontaneous magnetization, Q4,, as a function of B concentration, x [88H4].
Kobe, Ferchmin
10
20
[Ref. p. 188
6.1.6 Amorphous Co-M
130 750 K
120
700
m kg 100
II 650 c-u 600
I
550 90 Am? kg 80
80
a" 60
I 6 70 60 50 0
5
15
10
20
0
25
150
300
x-
Saturation magnetization, a, Fig. 187. Co,sB,Si,,-,. at 300 K and Curie temperature, Tc, versus B concentration. x. The Curie temperatures determined by graphical interpolation of temperature-dependent a* to zero [77vl].
1.75 1 K=Zrl 1.50
450
600
K 7
lFig.188. Co,6B12Si12. Saturation magnetization, u,, as a function of temperature, T. The arrow marks the Curie temperature [88K(73.
Hf
$4
1.25
I 1.00 6 0.75
0.50 -
0.25 -
oM=Zr 0 HI l l
;;
Ti
0
0 0
I 5
15
20
25
:
84
x-
Fig.189. CO~~~.~M~,M=Hf, Nb, Ta, Zr, Ti. Roomtemperature saturation induction, B,. of sputtered Co alloys as a function of second alloy component concentration, x. Hf and Zr alloys [82S7j, Nb alloys [82Nl], Ta alloys [82N2], Ti alloys [81Al]. The arrows indicate the concentration limiting the amorphous state of sputtered alloys. After [84F4].
86
88
90 co -
92
94 oi% 96
Fig. 190. Co-Hf-Pd. Room-temperature saturation induction, B,, ternary diagram for rf magnetron sputtered samples ofvarious compositions [87Tl].
Kobe, Ferchmin
Land&-BBmstein Ne\v Series III/19h
6.1.6 Amorphous Co-M
Ref. p. 1881
131
Co- Hf- Pt RT
" 88
84
90
co-
92
94 at%
96 l-x-
Fig. 191. Co-Hf-Pt. Room-temperature saturation induction, B,, ternary diagram for rf magnetron sputtered samples ofvarious compositions [87Tl].
Fig. 192. (Co,.,Mo,)gOZr,,. Saturation magnetization, o,, at 0 K as a function of Co content, l-x. The magnetization, o(H), first reduced to zero fields using Arrott plots, thereafter es extrapolated to zero temperature from above 77 K [87T2].
0 40-4 -K bar
-60 -70 0
-70 0.2
0.4 l-x-
0.6
0.8
1.0
Fig. 193. (Co,~,Mo,),,Zr,,, (Co,-,TM,)gOZr,, with TM = Cr, Fe. Pressure derivative of the Curie temperature, dTc/dp, vs. Co content, l-x. Solid symbols: dTc/dp estimated indirectly from dw/dH [cf. eq. (2511,open symbols: dT,Jdp measured directly under pressure [8288]; [87T2], TM=Cr [87T2], TM =Fe K%-,MoxhZrlo [86Tl]. Curie temperatures were determined by Arrott plots for T,< TX and estimated from M(r) using Brillouin function for Tc > 7’x [87T2]. Cf. Fig. 194.
Land&-Biirnstein New Series IIU19h
0
250
500
750 TC-
1000
1250 K 1500
Fig. 194. (Co1-XMo,)90Zr10, (Co,-,TM,),,Zr,, with TM = Cr, Fe. Pressure derivative of the Curie temperature, dTc/dp, vs. T,. Solid symbols: dTc/dp estimated indirectly from dw/dH [cf. eq. (25)], open symbols: dTc/dp measured directly under pressure [8288]; (Co,.,Mo,),,Zr,, [87T2], TM=Cr [87T2], TM=Fe [86Tl]. Curie temperatures were determined by Arrott plots for T, < TX and estimated from M( 7) using Brillouin function for T,> TX [87T2]. Cf. Fig. 193.
Kobe, Ferchmin
132
6.1.6 Amorphous Co-M
[Ref. p. 188
200 pVsm kg I 150 100
d
0 60
70
80 x-
90
100
0.05
0.10
0.15
0.20
0.25
x-
Fig. 195. Co,Nb,,,.,, Co,Taloo-,~ c%z~,oo-x~ Co,Ti~oo+ Room-temperature saturation magnetization, ~JU,. of sputtered Co-Nb, Co-Ta (81Nl], Co-Zr [SON61 and Co-Ti [81Al] versus Co concentration, x [82Nl].
900 K (Co,.,Fe,)85Nb,5 L --800 -r
0
Fig. 196. Co,-,Nb,, CO,.~Y~, Co,-xZrr. Composition dependence of the room-temperature spontaneous magnetization, u,, of sputtered samples [84S4].
.--_ r,
700 900 I K (Coi-xMnxI~5NblS soo”---+-~-‘~-‘.L
/’ 70
/J\, 'X
I ” c 700 g 900 K
540
I 60 6
800
I
50
I’\
I
I t-2 500 hi
700
40
L60
600
30
420
500 0
0.02
0.04
0.06 x-
0.10
Fig. 197. Co-Nb, (Co,.,TM,),,Nb,5 with TM=Mn, Fe. Curie temperature, Tc, from M(7) and crystallization temperature, TX, vs. x, for high-rate sputtered samples [82K5].
20 0
2
4
x-
6
8
380 10
Fig. 198. (Coo.85~Nb0.145)100-rBI. Room-temperature saturation magnetization, o,, Curie temperature, T,, and crystallization temperature, TX, as a function of B concentration, x [82Sl].
Kohe, Ferchmin
LandoM36mstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Co-M 1250 !a
m
1000 A
I
6
60
750
1
I
1
I I 21
I
I
I
I
I 2
I 4
I 6
I 8
40
1
0
I
I
100
200
I
I
300 T-
400
I
'500
I
I
600 "C 700
Fig. 199. Saturation ‘%wNbJ%, Co,Pb,oB,. magnetization, a,, in a field of u,,H = 0.5 T, as a function of temperature, T Crystallization begins before reaching Tc [8401].
1.0 T
I
I
01 0
I IO
I 12
xFig.200. Co,,Nb,Zr,,.,. Saturation magnetization, M,, of rf sputtered samples as a function of Nb concentration, x. Solid triangle [85Al], open triangle [87M2], circles [88H5].
I
COIOO-~( %6Wx
0.8 I 0.6 St” 0 zL 0.4 0.2 0I 0
5
IO
15 x-
20
25
30
Fig. 201. Co,,,JSi,,6Bo,.Jx. Room-temperature spontaneous magnetization, uJ&, as a function of metalloid content, x [88H4].
1.5 T
1.25
I hdax
I 0.25
IUU
xFig. 202. Co l,,,,-xTax. Room-temperature saturation magnetization, uJ&, of rf sputtered samples as a function of Ta concentration, x [81Nl]. Land&-Biimstein New Series III/19h
200
300 T-
400
500 K 600
Fig. 203. Co,,,.,Ta,. Temperature dependence of the saturation magnetization, @I,, of rf sputtered samples [81Nl].
Kobe, Ferchmin
6.1.6 Amorphous Co-M
134
[Ref. p. 188
Co-To - Zr RT
Fig. 204. Co-Ta-Zr. Room-temperature saturation magnetic flux density, B,, ternary diagram. Sputtered samples. The lines represent linear tits to the measured data Only a selection of data for nearly zeromagnetostrictive compositions is shown [87Hl].
1.0 1 1 RT
o2
l
l . 0.3
QYa5.
l
0< 0 co,o~-xwx
0 0
l
Co,OO.xlix I 5
00 15
10
20
00 ” 25
xFig.205. CO~~~.~W~,Co,OO.rTix. Room-temperature saturation induction, B,, as a function of composition, x. Co-W alloys [82N2], Co-Ti alloys [81Al]. Samples prepared by rfsputtering [84El].
0 0
5
10
15 x-
20
25
30
35
Fig. 206. Co,Oo-xZrx. Room-temperature saturation magnetization, poM,, for sputtered samples as a function of Zr concentration, x [83Yl]. 1.50 1
1000
K I 1.25 I 1.75 1.50 f
0 =J. 1.25
s
800 I
1.00
e-
z 0.75 600
0.75 0
15 20 25 wt% 30 ZrFig. 207. Co-Zr. Room-temperature saturation magnetization, p,M,, of rfmagnetron sputtered samples as a function of Zr content [84Y 11. 5
10
0.50 0
O.OOL
0.008 x-
0.012
0.016
0.020
magFig.208. Cos,.z(Zr1-rAu,),2.s. Saturation netization, p,M,, and crystallization temperature, TX of rf sputtered samples as a function of Au content, x [8433].
Kobe, Ferchmin
Ref. p. 1883
6.1.6 Amorphous Ni-M
135
6.1.6.3 Ni alloys Table 25. Ni alloys. Low-temperature atomic magnetic moment and saturation magnetization at room temperature, unless stated otherwise. Amorphous Ni alloys are preferably prepared by other methods rather than by liquid-quenching or sputtering, hence the following table is rather short (see,however, the following figure for further data). In addition, it is well known that Ni ions bear no magnetic moment when alloyed with other components (low critical concentration for ferromagnetism), hence it is not absolutely certain that the measured low magnetic moments listed below do not come from very low crystalline Ni admixtures undiscovered by structural investigations. T K
BS
T
Ni78P14Bs
0.76
%P13Bs
0.78 0.80 0.787 0.838
%J’12b Ni75.5Y24.5 Ni 76.3 Y 23.7
Nb3Y17
Ref.
0 0 0
0.03
4.2 4.2 4.2 4.2
0.04
%Y6
Remarks
0.3 0.376
76A2 76A2 76A2 8OLl 8OLl 78M5 78M5 78M5 78M5
sputtered sputtered &, sputtered sputtered PNi
Table 26. Ni alloy. Curie temperature [83 K 31.
T,
Remarks
248
Arrott plot
K Nis,B,,Si,
0
8
x-
12
16
20
Fig. 209. Ni,,O-,YX. (a) Spontaneous magnetic moment per Ni atom at 0 K, jNi, and (b) Curie temperature, T,, for sputtered samples as a function of Y concentration, x [78Ll, 84F3]. Land&BBmstein New Series III/l9h
Kobe, Ferchmin
136
6.1.6 Amorphous Fe-Ti-M
[Ref. p. 188
6.1.6.4 Fe-Ti alloys Table 27. Fe-Ti alloys. Low-temperature atomic magnetic moment and saturation magnetization. The critical concentration for magnetic ordering, xc, in Fe-Ti alloys amounts to about 60 at% Fe [83 S 63, hence the data shown in the figures (seebelow) stop at about that concentration. Additions of other elementsalter the situation, as seenfrom the table. P PB
1.53 173 180 146.3
T K
Remarks
Ref.
RT 0 0 RT
&, nominal composition extrapolated extrapolated
82Tl 82Cl 82Cl 8012
Table 28. Fe-Ti alloys. Curie temperature.
T,
Remarks
Ref.
238 240 255 400...416 516...583 599 640 538
sputtered, ac susceptibility sputtered, ac susceptibility sputtered fitting a power law ca(T,-T>B fitting a power law ca(T,-v thermogravimetry thermogravimetry
82F3 82F3 85Cl 8527 8527 82Cl 82Cl 81L3
K
.
with /?=1/2...1/3 with /?=1/2+..1/3
1.2 Pa I 0.8 Id az
0
xFig.210. Fe,OO-,Ti,. Magnetic moment per atom, p,,, of sputteredsamplesas a function of Ti concentration, x. T=4.2 K [8SS9].
20
40
x-
60
80
100
Fig. 211. FelO,,-xTir. Curie temperature, Tc, estimated from Arrott plots and paramagnetic Curie temperature,0, of = 50 urn thick sputteredsamplesas a function ofTi concentration,x [88S9].
Kobe, Ferchmin
Land&-BCmstein New Series 111/19h
I””
137
6.1.6 Amorphous Fe-Ti-M
Ref. p. 1881
1
f
FelooMx Ti,
‘
T= 4.2K
1 75 50
00
k?
0 25 0 0 0
IO
20
x-
30
n 40
50
0
20
60
80
100
x-
Fig. 212. Ferc,,-,Ti,. Saturation magnetization, es, at 4.2 K of sputtered samples as a function of Ti concentration, x [8336].
Fig.213.
Fe,TiIO,,-,,
I
60
Co,,,.xFe,Ti,,,
Fe,Ni,,-,Ti,,,
Fe,Cu,,.,Ti,,. Fe atomic magnetic moment, pFe, from magnetic hypertine field measurements at 4.2 K as a function of Fe concentration, x. Several-pm-thick samples obtained by high-rate sputtering. The magnetic moments of Co, Ni, and Cu are assumed to be 1.17, 0.17, and 0 pa, respectively [87L4].
500,
I
I
I
60
80
I I-u
d 40
20
-0 Fig.214.
40
Fe,Tir,,,,-,,
40
60
x-
Co,,-,-,Fe,Ti,,,
80
100
Fe,Ni,,-,Ti,,,
Fe,Cu,O~,Ti,O.Spontaneous magnetization, (T,, at 6 K of several-pm-thick samples prepared by high-rate magnetron stuttering as a function of Fe concentration, x [87L4]. -
Land&-BBmstein New Series III119h
0
20
40
IO0
x-
Fig.215. Fe,TiiOO.,, Fe,TM,O.xTi,, with TM= Co, Ni, Cu. Curie temperature, rc, vs. Fe concentration for thick high-rate magnetron sputtered samples [84L3, 87L43.
Kobe, Fercbmin
6.1.6 Amorphous Fe-Ti-M
0
2
4
6
8
10 kbor 12
0 Ti
[Ref. p. 188
V
Cr
Mn
Fe
Co
Ni
cu
PFig.216. Fe,sTi,s, Fe,,Ti,,. Shift in the Curie temperature, AT,, as a function of pressure, p, for highrate sputtered samples (~0.3 mm thick). Fe,sTi,, (Tc=238 K),Fe,,TiZ,(Tc=240K)[82F3].
Fig.217. Fe,,TM,B,,, TM =Ti, V, Cr, Mn, Fe, Co, Ni, Cu. Average magnetic moment per Fe atom, jFe. for Fe-B alloys substituted with various TM elements [8262].
--
9
m2 G
200 &F kg 180
1.50
I 100 d
I 160 t3”
120 li
I V
Cr
Mn
Fe
Co
Ni
Cu
0
150
300
450
600
K 750
T-
Fig.218. FesoTMJB,,, TM=Ti, V, Cr, Mn, Fe, Co, Ni, Cu. Room-temperature saturation magnetization, a,, for Fe-B alloys substituted with various TM elements. Melt temperature before quenching: 1520 K [81L3].
Fig.219. (Fe,.,Ti,),,B,,. Saturation a,, versus temperature, T[82Cl].
Kobe, Ferchmin
magnetization,
Land&-BGmstein New Series 111119h
6.1.6 Amorphous Fe-V-M
Ref. p. 1881
139
6.1.6.5 Fe-V alloys Table 29. Fe-V alloys. Atomic magnetic moment at low temperature, unless stated otherwise, and saturation magnetization. Remarks
>m’/kg
T K
137 160 181 186 170
4.2 300 RT 0 0 0 0 0
Ref.
PTM
p(Fe), p(V) = - 0.6 uB assumed PTM
extrapolated from 77 K Es,.
165 137 186
77 293 0
extrapolated from 77 K
2.02
PFe
182 156 185
77 293 0
extrapolated from 77 K
1.99
PFe
182 163 108 123 136 133
Fe,,V,,B,,Si, +O.Ol at% N Fe,,V,,B,,S& +O.Ol at% N Fe,,V,B,,Si, +O.Ol at% N Fe77Vd’t&,
Table 30. Fe-V alloys. Curie temperature, T,, and crystallization temperature, Tp TX T, K K FemVdm Fe7~V5Jh Fe76V4JWi5 Fe,,V,B,$i, Fe7gVlB15Si5
Remarks
Ref.
500 81L3 763 537 87P2 495 M(T), estimated 81 565 M(T), estimated 81 H H44 690 M(T), estimated 81 H 4
77 293 0 0 0 RT
I2.E lJ4
o TM=Fe-V A Fe-Cr v Fe-Mn o Co-Fe x Fe -Ni . co-v . Co-Cr . Co-Mn
l”80
2.0l-
I I5 I<
86D2 86D2 82Tl 8422 8422 8422 8422 81H4 8lH4 81H4 81H4 81H4 8lH4 8lH4 8lH4 8lH4 8lH4 81H4 81H4 82R3 82R3 82R3 8012
,-
1.cI-
i.0
1.5
8.0
8.5
9.0
9.5
Fig. 220. TM,,B,,P,,, TM = Fe-V, Fe-Cr, Fe-Mn, Co-V, Co-Cr, Co-Mn, Co-Fe, Fe-Ni. Low-tem-
perature averagemagnetic moment per transition metal atom, pTM,as a function of averageouter electron concentration Z per TM atom [74M2]. Land&-B&n&n New Series III/19h
Kobe, Fercbmin
[Ref. p. 188
6.1.6 Amorphous Fe-V-M, Fe-O-M
140
300 K 250
200 150 1.0
100
0.5
0 7.0
/
I
50
I
0 0 1.5
8.0
t-J.5
9.0
9.5
zFig.221. TM,,B,sSita, TM = Fe-V, Fe-Cr, Fe-Mn, Co-V, Co-Cr, Co-Mn, Co-Fe, Fe-Ni, Co-Ni. Average magnetic moment per transition metal atom, &,. at 0 K as a function of the average number of 3d+4s valence electrons per transition metal atom, Z. Fe-V, Fe-Cr, FeMn, Co-V, Co-Cr, Co-Mn alloys [88M5]. Co-Fe, Fe-Ni alloys (extrapolated to 0 K from above 77 K) [78Gl]. Co-Ni alloys (extrapolated to 0 K from above 77 K) [80Gl]. Figure taken from [88M5].
0.1
Q6
0.8
1.0 1
xFig.222. (Fe,-,V,),,B,,Si,,. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. Curie temperatures are obtained by Arrott plots [SSMS].
I 600
I 600
L-" ml
&y 500
400
300 0
0.2
10.0
600
2.5
5.0
25
10.0
12.5
300 0
15.0
2.5
5.0
25
10.0
12.5
15.0
x-
xFig.223. Fe,,,-ITM,B,,Si6 with TM=V, Cr, Mn. Curie temperature, Tc, vs. concentration, x, of V, Cr and Mn, respectively [8853].
Fig. 224. Fe,3.xV,B,,Si,+ ~0.01 temperature,
at
%N. Curie
T,-, from thermogravimetry
and tempera-
ture at which crystallization begins, TX,vs. V concentration, x [82R3].
6.1.6.6 Fe-0
alloys
Table 31. Fe0 alloys. Atomic magnetic moment at low temperature and saturation magnetization at room temperature, unless stated otherwise.
P IlB
2m2/kg
B T’
T K
0.6
1.65
Remarks
Ref.
sputtered
78K3 80Dl 82Al 82Al continued
FTM
120 135
RT
Kobe, Ferchmin
nominal composition nominal composition
Landolt-BCmstein New Serim 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-Cr-M
141
Table 31 (continued)
P PB
:rn’/kg
B
T
T’
K
0.31 0.65 0.99 1.38 1.60 1.34 1.80
4.2 300 124
RT RT
1.88 1.41 1.47 0.33 0.43 0.73 1.03 j.36 1.77 1.4
137 114 80.9 77.9 108 123 79.6 136
Fe,,Cr,B,,Si,
1.43 1.41 1.40 150 177 182 1.98 2.02 164 186 190 1.24 80.4 106 123 137 145 112
Land&-BBmstein New SeriesIII119h
RT
RT RT RT RT RT RT RT 293 0 77 0
162 166
Fe,,Cr,B,,Si,
8207 8207 8207 8702 86D2 86D2 8702 87B4 82Al 84P2 84P2 87R3 82Tl 8524 8524 8524 8524 8524 8524 87B4 80Dl 80Dl 80Dl 80Dl 82Al 82Al 8012 8012 8012 8012 8012 81H4 81H4 81H4 81 H4 87Bl 87Bl 87Bl 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81 H4 77Yl 8012 8012 8012 8012 8012 8012
PFe @FFe PTM
fiFe), p(Cr) = - 0.6 pB assumed nominal composition
PTM PTM PTM PTM PTM PTM PTM PTM
1.85
Fe,&r,B,,Si,
0 RT RT
0.54 0.78 1.15 1.65
Fe,,Cr,B,,Si,
PFe PFFe
AM
179
Fe69crloBllsilo
Ref.
PFe
1.4
Fe~o.7Cr3.2B16.1 Fe~dh5.2B16 Fe&r2A6 Fe67.D 16.8B 16 Fe71.4Cr12.6B16 Fe~db.dh Femd&.& W&-A6 Fe&r,,‘%, Fe70Cr15B15 Fe75CrloB15 FesoCrP15 F’%z.,Cr,.,%., Feso.sCr5B14.2 F‘%sCr,oB,,Sl,o F%sCr,oB,,Si, Fe,,Cr,B,,Si, Fe,,Cr,B,,Si,
Remarks
293 77 0 0 293 77 0 4.2 RT RT RT RT RT RT
Kobe, Fercbmin
PTM PTM PTM
nominal composition nominal composition
PFe
extrapolated from 77 K as-quenched annealed at 473 K for 30 min annealed at 473 K for 60 min extrapolated from 77 K PFe PFS
extrapolated from 77 K PTM
6.1.6 Amorphous
142
Fe-Cr-M
[Ref. p. 188
Table 32. Fe-Cr alloys. Curie temperature, Tc, and crystallization temperature, T,. T-i K
723
650
680 630 650 640
Fe7~.s~Cr~.oB,~.~Si,.,~C~.~~ ‘1 METGLASTh’ 2605 S-3A
T, K
Remarks
Ref.
522 26 20.5 34 120 226 232 441...470
inductance method xBC x.c x vibrating-sample magnetometer vibrating-sample magnetometer
80N4 8207 8207 8207 8207 8207 8207 8527
491 515 542 152 285 340 340 555 505 145 213 330 410 450 537 430 480 620 530 535 635 611 614 616 623 683 25 85 265 134 360 365.5 418 463 505 505 540 548 525 543 570 656
&ing a power law acc(T,-T>8 with /I= 1/2...1/3 inductance method vibrating-sample magnetometer thermogravimetry thermogravimetry thermogravimetry thermogravimetry thermogravimetry M(T)
M(T)
inductance method M(T)
M(T), estimated M(T), estimated M(T), estimated inductance method thermogravimetry DSC peak in da(T)/dT Miissbauer effect multicritical point
Arrott plot, neutron critical scattering specific heat measurements specific heat measurements specific heat measurements M(T) M(T) M(T) permeability vs. T
80N4 87P2 81 L3 82Cl 82Cl 82Cl 82Cl 82Cl 89Pl 80Dl 80Dl 82F5 80N4 89 P.1 88P3 88P3 88P3 81 Sl 81H4 81 H4 81 H4 87Rl 87Rl 87Rl 87Rl 83F3 81Y3 81Y3 81Y3 87Ml 82X1 8011 8012 8012 8011 8012 8011 8012 81N2 81N2 81 N2 8201
‘) The original composition data do not add to 100%.
Kobe, Ferchmin
Landok-Bhstein New Sericr 111/19h
143
6.1.6 Amorphous Fe-Cr-M
Ref. p. 1881
I300 I300
7oc K
I I K (Fe,-,cr, )&j
60C
K
250 -Am2
600 600,,
2o"x
I
.
-150 150 I ro"
^_40° - 100 .0's (OK) I
200 200
- 50 200
n
n n8n -0
0.1
0.2
0.4
0.5
x-
100 0
0.3
5
lo
a
15
20
25
30
X-
Fig. 226. (Fe,-,Cr,),,B,,. Concentration dependence of saturation magnetization, us, at 0 K and Curie temperature, Tc, from temperature dependence of magnetization [83Y3]. 200 -Am* kg 150
I 100 G
0 10
b
15
20
25
30
35
x-
0
Fig.225. Feso$Zr,Bzo. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. The transition temperatures were determined with DSC (solid circles), dc magnetization (squares), ac susceptibility (diamonds), ac susceptibility after annealing at 570 K for 3 h (downward triangle) [8207], open circle [79H2], upward triangle [79Nl], cf. also [88Hl]. (a) x=0...25,(b)x=22...34.
Fig.228. (Fe-Cr),,B,,, (Co-Fe)sOB,,, (Co-Fe),aP,,, (Fe-Ni),,B,,, (Fe-Ni),,P,,, (Co-Ni)sOB,,, (CoN9soP20. Slater-Pauling curve of transition metal metalloid alloys: low-temperature average magnetic moment per transition metal atom, jTM, as a function of the mean number of outer electrons, Z [84El].
200
400 T-
K
800
Fig. 227. (Fe,.,Cr,),,B,B. Saturation magnetization, c~,versus temperature, T[82Cl]. ,.
3.0 P0
. (CO-F~)~~B~~
2,; 0
Fe 8
co 9
zLandolt-Biirnstein New Series III/19h
600
Kobe, Ferchmin
Ni IO
4;
[Ref. p. 188
6.1.6 Amorphous Fe-Cr-M 700 K 600 0 K -10 I r;;” -20 \I
I
I
I
h.rMnl I I
I
.
100
Cr 0. 0
0.05
0.10 x-
0.15
0.20
0.25
-30
-40 0
2
4
6
8
kbor 10
P-
Fig.229. (Fe,-,TM,),sB,, with TM=Cr, Mn, Co, Ni. Curie temperature, Tc, from Arrott plots vs. TM content, x [85X1].
Shift in the Curie temperaFig.230. Fe,,Cr,,B,s. ture, AT,, vs. pressure, p. Curie temperature obtained from thermogravimetry [82F5J.
180 AmZ kg 163 t 140 tr” 120
600 r “C
I
I
I
I
I
300,
500
250
I 400
200
\\I
I
I
\.\
I 150 k
LT 300 s
---
200
loo
: .
0 0
I
79 81 83 I 0.02
50
0 0 0.04 x-
0.06
0.08
1 I
\.\ \4
1 I
I
0.4
0.6
J&!qSG 0.2
( Fe,.,Cr,IT7EJ3Silo (FelJr,175 PI6B6Al I
I Ci8
1
x-
0.10
Fig.232. (Fel-rCrr)77B13Si10,(Fe,.,Cr,),,P,,B,AI,.
Fig.231. (Fe,.,Cr3,(B,,,Si,,,),,,.,, z=75, 79, 81, 83. Room-temperature saturation magnetization, Q,, Curie temperature, Tc, and crystallization temperature, T,, versus Cr content, x [8111].
Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. Curie temperatures are obtained by Arrott plots [88M51. (Fe,.,Cr,),,P,,B,AI, [81Y3].
Kobe, Ferchmin
LandolbB6mstein New Series IW19h
Ref. p. 1881
6.1.6 Amorphous Fe-Cr-M
I IUI
0
1
2
4
3
5
I
I
6
7
0
145
3
6
15 h
12
9
18
f-
Fig.233. Fe,,-,Cr,B,,Si,, Fe,,-,Mn,B,,Si,. Roomtemperature saturation magnetization, us, of asquenched alloys versus Cr and Mn content, x, respectively [8796].
2.0,
I
I
I
I
Fk.234. %2No.4.
Fes5.2Cr,,.sBt,.,Si,.~,
%5.2Cr19.3B12.,-
Reversibility of the Curie temperature, Tc, exhibited upon the alternating anneals at 623 K for 60 min and at 673 K for 30 min [82 K 1I].
I1000
2.0
I I& T,I I\l ,1 1---111
b!
I bO-Jrx
I P13C7
1.2
0.8
0
+----+q
400
1.k.
o.1;j200
0
4
8
x-
12
1.2 16
zoo
U
z
6
4
8
4
IO
x-
Fig. 235. Fe,,-,Cr,P,,C,. Magnetic moment per Fe atom, jr+, at 0 K and Curie temperature, Tc, plotted versus Cr concentration, x. The Curie temperature determined using magnetization squared versus temperatureplots [83X1].
Land&-Biirnstein New Series III/l9h
P
Fig.236. Fe,,-,Cr,P,,C,. Low-temperature average magnetic moment per TM (TM = Fe, Cr) atom, jTM;- as a function of Cr concentration, x [77Yl].
Kobe, Ferchmin
146
6.1.6 Amorphous Fe-Cr-M
0
0.2
0.4
0.6
0.8
1.0
0
0.2
0.L
0.6
x-
x-
Fig.237. (Fe,.,TM,),,Zr,,, TM=Cr, Mn, Co, Ni. Low-temperature average magnetic moment per transition metal atom,&,,, and Curie temperature,Tc. asa function of secondtransition metalcontent [83S2].
[Ref. p. 188
0.8
1.0
Fig.238. (Fe,.,TM,),,Zr,, with TM=Cr, Mn, Co, Ni. Pressure derivative of the Curie temperature, dT,/dp, vs. content ofTM, x [83S2].
Kobe, Ferchmin
Landok-BBmstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-Mn-M
147
6.1.6.7 Fe-Mn alloys Table 33. Fe-Mn alloys. Atomic magnetic moment at low temperature and saturation magnetization at room temperature, unless stated otherwise. t-j
:rn’/kg
PB
T
K
1.34
4.2 300 RT RT RT
1.75 1.54
&dW%7
Fe~d%6B16.6 b&W%6 Fe,,Mn,B,,Si,
1.57 1.3 2.02
0
181 176 145 Fe,,Mn,B,,Si,
PTM
j$Fe), AMn) = 0.78 uB assumed PTM PFe
extrapolated
77 RT
2.09
0
187 183 157 97 118 127 165 170
Fe,~Mndh2Si7
Fe,,Mn,B,,Si, Fe,,Mn,B,,Si, Fe,,Mn,B,,Si, Fe,,Mn,B,,Si, Fe75Mn5P20 F’e~.&fn~.4)75P15Clo (Feo.7Mno.3h5P15Go F’eo.&fno.2h5P15Clo (Feo.~Mno.l)75P15Clo %&hJ’& Feo.97Mn 0.&$i14B10
Remarks
B
T”
77 RT
1.83 0.22 0.70 1.15 1.62
PFe
extrapolated extrapolated
PTM
4.2 4.2 4.2 4.2 RT
132 1.40 105
FedhZrlo
4.2
1.2
PTM PTM PTM PTM
annealed at 673...793 K measured in 10 Oe field extrapolated to zero field from above 2 kOe PTM
120
extrapolated to zero field from above 2 kOe
1.4
PTM
Ref. 86D2 86D2 87R3 82Tl 87B4 81H4 81 H4 81H4 81H4 81H4 81H4 81H4 81H4 871116 87M6 87M6 871116 87M6 7703 71 Sl 71Sl 71Sl 71 s 1 8012 8201 8301 8301 8301 8301
Table 34. Fe-Mn alloys. Magnetic phase transition temperatures, T,, and crystallization temperatures,Tp In general, the Curie temperature, T,, is given in the third column. In some cases,in this column the spin glass transition temperature, Tsg,or the reentrant spin glass freezing temperature, T,, is given and then noted as a remark.
T,
Remarks
K
K
751
543 490 565 651 25 27 35 29
M(T), estimated M(T), estimated thermogravimetry TSP Tsa Mijssbauer effect Tsa
T,
Fe7&Wbo
Fe,,Mn,B,,Si, Fe,,Mn,B,,Si, 788
Land&Biimstein New Series 111/19h
Kobe, Fercbmin
Ref. 87P2 81H4 81H4 88B3 81Yl 81Yl 79Cl 81Yl continued
6.1.6 Amorphous Fe-Mn-M
148
[Ref. p. 188
Table 34 (continued) T
T,
K?
K
(Fe,.,,Mn,.,,),,P,,B,AI,
Remarks
Ref.
25 30 40...42
(Fe,.,,Mn,.,,),,P,,B,AI, (Fe,.,,Mn,.,,),,P,,B,AI, (Fe,.,,Mn,.,,),,P,,B,AI,
42 42 42...63
(Fe,.,,Mn,.,,),,P,,B,Al,
58 98 100 100 101 104 38 88 100 57 98 31...54 85 107 112 143 221 220 g 30 248 267 14 280
797
293 342 460 140 210 > 300 > 300 362 466 676 495~..518
Fe,,Mn,Si,2B,
551..*583
Fes6Mn.Jrl~ b&fn2Zr, o
214 221
T, from inflexion point of xac
T T,, Arrott plot T,, lower limit Mossbauer effect M(T), vibrating-sample magnetometer Arrott plot T,, upper limit T T,, SANS critical scattering T, from inflexion point of xaC T, T, T T,, Miissbauer effect T, from inflexion point of xac
Arrott plot SANS critical scattering SANS critical scattering SANS critical scattering T T,, SANS critical scattering Arrott plot T T,, typical value T, from inflexion point of xac SANS critical scattering Miissbauer effect
specific heat measurements specific heat measurements permeability vs. T fitting a power law gcc(Tc-T)fl with fl=1/2...1/3 fitting a power law acc(Tc-- T)fl with j?=1/2...1/3 Mossbauer effect Miissbauer effect
Kobe, Ferchmin
81Yl 81Yl 81 C 1, 81 G2, 82B6 81Yl 81Yl 81 Cl, 81 G2, 84Al 82M8 81 Cl 81K6 81Yl 82M8 81G2 81Yl 83Al 81Yl 82B6 82B6 81G2, 81 Y 1, 82M7 79Cl 81Yl 82M7 83Al 83Al 88H6 88M2 8886 8532 81Yl 79c1, 81 G2, 83M3 81Yl 83Al 79Cl 71 Sl 71 Sl 71 Sl 71 Sl 8011 8011 8201 8527 8527 8301 8301
Landolt-B6mstein New Sericc 111!19h
Ref. p. 1881
6.1.6 Amorphous
Fe-Mn-M
149
2.25 PB
2.00 1.75 I 1.50 12 1.25 1.00
15
16
17
18
19
20
Fk.239. (Fe,.,,Mn,.,,),,,-,B., (Fe,.,,,Mn,.,,,),,,-,-
B,. Curie temDerature.T,. and crvstallization temneraI t&e, TX, vs. B concentration, x [84A2].
0.75
I
I \
I
,
0.50 0.50I 0
4
8
12
16
\
20
x-
Fig. 240. Fe,,-,Mn,B,,, Fe,O-xMn,Zr,,. Low-temperature average magnetic moment per transition metal atom,&,, as a function of Mn content, x [88S5].
3501
K1
I 1 (Lo.
I Mn
\-
p B Al ii6631
250 t 200 h 150
50
0.2
0.4
0.6
0.8
1
x-
Fig.241. (Fe,-,Mn,),,B,,Si,,. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. Curie temperatures, Tc, are obtained by Arrott plots [87M4].
Land&-Biirnstein New Series III/19h
0 0
0.2
0.4
x-
0.6
0.8
0
Fig.242. (Fe,-,Mn,),,P,,B,Al,. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spinglass region [8OYl]. Solid circles: Curie temperatures, Tc, obtained from SANS data, open circles: the positions of the low-temperature anomalies in the Q = 0.02 A- ’ SANS data [83Al].
Kobe, Ferchmin
6.1.6 Amorphous Fe-Mn-M,
150
Co-Ti-M
[Ref. p. 188
Fig.243. (Fe,.,Mn,),5P,5C,0. Average magnetic moment per TM atom (TM=Fe, Mn), PTM,at 0 K as a function of Mn content, x. Data extrapolated from 4.2 K [71Sl].
6.1.6.8 Co-Ti alloys Table 35. Co-Ti alloys. Atomic magnetic moment at 4.2 K and saturation magnetic induction at room temperature. T K
BS T
PC. PB
Remarks
Ref.
sputtered
82B9 8286 87Ll
4.2
0.8 0.90 1.05
300
800 K
Table 36. Co-Ti alloy. Curie temperature, T,, and crystallization temperature, TX 182K I]. Remark
K
Tc
K
758
686
M(T)
T,
700 I 600
Co7,Til&h
LX e500 400 300 0
0.05
0.10
0.15
0.20
0.25
Fig. 244. (Co,-,Ti,),sB,,, (Co1-XTiX)80B20,(Co,-,T&B18. Curie temperature, Tc (open symbols),and crystallization temperature, TX (solid symbols), vs. Ti content, x [83K2].
Kobe, Fercbmin
Land&B6mstein New Series III119h
6.1.6 Amorphous Co-V-M, Co-Cr-M
Ref. p. 1881
6.1.6.9 Co-V alloys
Table 38. Co-V alloys. Curie temperature, Tc, and crystallization temperature, TX[82 N 41.
Table 37. Co-V alloys. Saturation magnetic induction at room temperature [82 N 41.
Tc
Remarks
K
K
CosoVloZrlo
798
712
M(T), pendulum
Co79.5VJrldfo~
823
711
Coso.5V7Zr~.5Mo~
808
735
TX
BS T CosoVloZrlo
Co7g.sVsZrlo.5M02 Coso.sV7Zrg.sMo3
0.73 0.74 0.80
magnetometer M(T), pendulum magnetometer M(T), pendulum magnetometer
6.1.6.10 Co-Cr alloys Table 39. Co-Cr alloys. Saturation magnetic induction at room temperature. 4 T
Remarks
Ref.
Cos,Cr,.,Nb,Zr,,,Mo,
1.1
sputtered
Co7KMi15Blo Co72.7Cr2.3SilsBlo
0.67 0.75 0.68
sputtered
83Sl 81N2 81N2 83Sl
Co,,Cr,Zr,Mo,
12.5 K 125 km' kg 100
10.0
1.5 75
I h" a 5.0
I (O"50
2.5
I
0.84
0.88
0.92
0.96
1.c
0
2
4
6
8
10 kbor'
P-
Fig.245. (Co,$&,Zr,,. Saturation magnetization, o,, at 0 K asa function of Co content, l-x. The magnetization, o(H), first reducedto zero fields using Arrott plots, thereafter a, extrapolated to zero temperature from above77 K [87T2]. Landolt-Biimstein New Series III/I9h
Fig.246. (Co,-,Cr&,Zr,,. Shifts in the Curie temperatures,AT,, vs. pressure,p[82S8].
Kobe, Fercbmin
152
6.1.6 Amorphous Co-Mn-M
[Ref. p. 188
6.1.6.11 Co-Mn alloys
Table 40. Co-Mn alloys. Saturation magnetic induction at room temperature.
BS
Ref.
0.96 0.83
7902 83Y4
T
(Co,.,,Mn,.,9),,B,,Si, WJN&Jh2
Table 41. Co-Mn alloys. Magnetic phase transition temperatures, Tc, and crystallization temperatures,TX:,. In general, the Curie temperature, T,, is given in the third column. In some cases,in this column the spin glass transition temperature, T#&or the reentrant spin glass freezing temperature, T,, is given and then noted as a remark.
T,
Remarks
T,
K
K
788 739 725
597 707 686 90 80 50 38
Ref.
110 < 10
T, from inflexion point of xac
298
Tc from inflection point of xac
Tf
K
1.0
82Kl 82K1 82Kl 81Yl 8lYl 81Yl 8lYl 81Yl 81Yl 81Yl
0
$jy
KS
3.8
I -0.4
3.6
50.6 I.? n -0.8
3.2
-1.0
3
-1.2 0
xFig. 247. (Co,-,Mn,),B. Composition dependenceof the averagemagneticmomentper transition metal atom, &,. at 0 K and of the Curie tempcraturc,T,-,determined from the 0,’ vs. Tplot [8436].
0.3 0.4 i xFig. 248. (Co,-,Mn,),B. Pressure derivative of the Curie temperature, dTc/dp, vs. Mn content, x. T, decreaseslinearly with increasinghydrostatic pressureup top=6 kbar [8436].
Kobe, Ferchmin
0.1
0.2
Landott-BBmslein New Series 111/19h
Ref. p. 1881
Co-Mn-M,
6.1.6 Amorphous
Co-Fe-M
153
h 1.6
JJ”
I
K
I
[email protected]&t$
6501 0
1
IO
20
Nb,5...,4
30
40
c
Y-
Fk.250. Co,,...,,,Mn,Nbt,..,t,,
xFig. 249. (Co,~,Mn,),,,,B,. Average magnetic moment per transition metal atom, &,, (TM = Co, Mn), at 4.2 K for various B concentrations, y, as a function of Mn content, x [8001].
co 85...8&ey-
Nb 15,..14. Curie temperature, Tc (open symbols), and crystallization temperature, TX (solid symbols), vs. Mn (circles) and Fe (triangles) concentration, y, respectively, for sputtered samples. Squares - pure Co-Nb alloys [84F4].
6.1.6.12 Co-Fe alloys Table 42. Co-Fe alloys. Low-temperature atomic magnetic moment and saturation magnetization at room temperature, unless stated otherwise.
P PB
zm’/kg
B
T
TS
K
Remarks
82K8
1.06 1.5 1.04
7703
sputtered, target composition
1.18 2.17
PTM
0 0 0 0 0 0 0 0 0 0 0 0
208 200 190 177 169
159 154 151 150 144 141 136
Land&Bikmstein New Series III/19h
Kobe, Ferchmin
Ref.
extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated extrapolated
78H4 77Tl 84P2 84P2 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl continued
154
6.1.6 Amorphous
Co-Fe-M
[Ref. p. 188
Table 42 (continued)
P PB
s;;nz/kg
B Ts
135 132 131 129 1.81 1.35 (1.13*.*1.4) 1.91
T K
Remarks
Ref.
0 0 0 0 RT
extrapolated extrapolated extrapolated extrapolated
82Wl 82Wl 82Wl 82Wl 7901 79B2
RT
0.99 1.5 0.65 0.86 0.85
heat-treated in vacuum
0.83 0.94 173 1.05 1.04 187 155
typical (lower...upper limit) sputtered, bias-voltagedependent marginal stability, upper limit, maximum saturation induction ever published (till 1989) for this group of alloys heat-treated in vacuum sputtered
RT RT RT 0 0
annealed
1.39
0 0
151 1.08 1.02 111 1.05 0.99 1.05 1.0 0.93 1.04 1.05 1.04 1.60
Co,,Fe,B,,Si, Co7Pe2B, A l Co,,.,Fe,.o(B,.,Si,.3),,.6 Co74Wb.6Sio.4)21 Co,,.SFes.,(B,.,Si,.s)2~.~ Co,Fe,,B,,Si, AMOMET Co,,Fe,B,,Si, Co7de7.A& Co7ded& Co,,Fe,B,$i, Co,,Fe,B,,Si, Co75.5Fe4.5B,5Si5 Wdd%& Co,,Fe,B,,Si, Cod’e67B~4Si, METGLASTM 2605CO
1.15 1.14 1.13 1.12 1.10 1.11 1.10 1.09 1.80 175
293 0 0 293 0 293 RT RT RT after magnetic anneal RT RT RT RT RT
in 1OkOe in 1OkOe in 1OkOe in 1OkOe rotating-field anneal in 1OkOe annealed in 1600A/m at 365 “C for 2 h
RT
Kohe, Ferchmin
7901
87Hl 78K3 79Fl 80K7 82M2 87Hl 80R2 82M13 82K8 82K8 84Gl 84Gl 7701 84Gl 88Sll 88Sll 84Gl 88Sll 88Sll 85H2 88Sll 88Sll 82K8 82K8 82K8 78F5 84H4 8484 84H4 84H4 81M3 8484 84H4 84H4 8682 82Al continued
Landolt-BBmrtein New Series 111/19h
6.1.6 Amorphous
Ref. p. 1881
Co-Fe-M
155
Table 42 (continued) P PB
zm2/kg
B T”
T K
190 2.1 195
co75.25Fe,.i5B14Ta6 Co2&60P20
82Fl 82Fl 82Fl
0.51 0.62 0.998 1.0
7902 7902 85H2 85H2 7703 7703 7703 7703 7703 7703 7703 7582 7822 8713
1.82
PTM
135
RT RT PTM
116
RT
96
RT
1.30
PTM
0.63 1.1 0.53
1.31 1.19 1.13 1.10 1.07 1.01 0.93 1.26 0.86 1.0 0.86 0.65
field-annealed water-quenched after annealing above T, (=420K) at 723K for 1 h RT RT RT RT RT RT RT 4.2 RT RT
1.2(4)
iiTM
preannealed
ZXCO)
elastic neutron scattering We) elastic neutron scattering as-quenched field-annealed
- 3(5)
Landok-Bibstein New Series 111/19h
as-quenched &, as-quenched annealed for 10min in 6.1 kOe at 369 “C
7902 82H5 8887
1.09
co70.5Fe4.s%Blo Co71R2hBlo Co7Pe2Si15Blo (Coo.& o.o&Si1dL5 co~d’e&&.~ co7g.lFe5%5Blo.9 ~od’e5Si15Blo
Ref.
0.61 0.78 1.2
1.60
co70.4%.6%5Blo
Remarks
0.64 0.80 0.84 67 0.84 0.81 0.78 0.86 0.58 0.64 0.73
RT RT
nominal composition field-annealed
RT RT
Kobe, Ferchmin
measured in 10 Oe
87R3 87R3 87R3 87R3 87R3 87133 87R3 77Yl 87123 84Ml 87R3 77Tl 82W5 82W5 76F2 76F2 87R3 82Al 79H6 87R3 87R3 82Mll 88G2 8862 8862 continued
156
6.1.6 Amorphous
Co-Fe-M
[Ref. p. 188
Table 42 (continued) P
:rn’/kg
PB
B
T
TS
K
Remarks
0.82 0.87 0.55
Co8dVWbl Co81.8FesSils%2
Co,,Fe,Si,,B,,Mo, VITROVAC 6025 Co66.4Fe,.6Si16B12M02 (Coo.,6Feo.24),,Si,sB,oMo4 (Coo.~Feo.2),,SilsB,oMo4 (Coo.,Feo.2),2Si,sB,oMo~ (Coo.s9Feo.ll)~2Si~sB,,Mo, Co6,.~Fe4.2Sl,sB12Mol
Ref.
8862 8862 82H3
0.24 0.80 0.71 0.85 0.76 0.62
453 RT RT RT RT
0.35 0.96 0.79 0.434
453
1.16 1.57 1.67
RT RT RT
heat-treated in vacuum above 480°C but below T,=556”C
as-quenched, measured in 1OOOe
82W4 81N2 81N2 81N2 81N2 87Hl 82W4 81N2 81N2 8713 80N6 80N6 80N6
Table 43. Co-Fe alloys. Curie temperature, T,, and crystallization temperature, TX.
%Fe74bo
TX
T,
K
K 733...763
r 840 684 760 ColoFe74B16 (Coo.~ssFeo.04s)~o(Bo.6~~o.4~~o 493 593 WdWh~Si~o 693 Co7&sB~&o 689 Cod+4.& 2.& 2.5 730 Co,,.4Fe4.6B,4.4Si9.6 Co,,Fe,B,,Si, 775 Co,,Fe,B,,Si, 767 Co,Fe 74.d43.49.8 793 741 756 (Co70.4Fe4.6hdl dl l.s 806 Co4&3Jh2Silo 738 ~07dWh~Sill 732 Co72Fe6B,,Sil, co 7des.A 685, 743 lSil 1
Co74Fe6B20
Remarks
Ref.
fitting a power law aa(T,- T)B with /!?=1/2...1/3 fitting a power law aa(Tc- T)B with /I= 1/2..,1/3 crystallizes below T,
8527
Co,,,Fe 80.5B 16.4
CG%Bl~Si,l Co,SFesB,,Si,
722 690 ~860
Mossbauer effect sputtered
M2 vs.T M2 vs.T
M(T), estimated, crystallizes below T, M(T), estimated, crystallizes below T,
8527 7801 81 L3 80B5 78K4 79Fl 80Ml 79Sl 80R2 83Hl 83Hl 82M13 79Sl 7701 88Sll 88Sll 88Sll
for two different phases, M(T), estimated, crystallizes below T, M(T), estimated, crystallizes below T, 88Sll M(T), estimated, crystallizes below T, 81 M3 continued
Kobe, Ferchmin
Ref. p. 1881
6.1.6 Amorphous
Co-Fe-M
157
Table 43 (continued)
~%&4%.&
TX K
Tc K
Remarks
Ref.
703
688 840
nominal composition, field-annealed nominal composition, thermogravimetry inductance method
85Dl 87Rl
METGLASTM 2605 CO
(Co,.92,Fe,.,,,),,Bl,Si,,Mo, Co,,Fe,B,,Si,Mo, METGLASTM 2705 MN (Co,.,,,Fe,.,,,Nb,.,,),,B,,Si, (Co,.,,,Fe,.,,,W,.,g),,B,,Si, (Co,.,Fe,.,),,Pl,B,A1, Co7J%P16B6A13 ~~&e&Pll ~o~Pe4.gSi15.7Jh4 (Co,.9,Fe,.,,),,.,Sil~.~B12 Code&&
803 819 815
773 721
Co,,Fe,Si,,B, co d%~%B10 (Co,.9,gFe,.,,l),,Sil,Bl, co 7dcdkAo Co,,Fe,Si,,B, co 71.7Fe4.3%3Bll Co,,Fe,Si,,B, Qd’e5%.5B2.5
Co,,Fe,Si,,B,,Mo, VITROVAC 6025 (Co,.,,Fe,.2,),lSil,B,,Mo, (Co,.,,Fe,.2,),lSil,Bl,Mo, (Co,.,,Fe,.2,),2Sil,Bl,Mo, (Co,.,9Fe,.,,),2Sil,B,,Mo, (Co,.,,Fe,.2,),,Sil,B,,Mo, (Co,.,9Fe,.ll),,Sil,B,,Mo, co 69.5Fe,.,Sil,BllMol., co 70.0Fe,.,Sil,BllMol., co 70.3Fe,.2Sil,BllMol., co 70.6Fe,.gSil,BllMol., co 70.3Fe,.2Si12.sBllMol.~C~.2 co ~d’e4.1&BllNb4 Co,9.,Fe,.2Sil,BllTa2 (Co~.~lFeo.gg)goZrlo (Coo.02Feo.g8)goZrlo (Coo.lFeo.g)goZrlo (Coo.2%8)goZrlo
Land&-Biimstein New Series III/19h
763 750 819
640 680 533 585 715 600 700 643 646 640 676 664 654 658 653 620 654 658 763 600 610 670 750 513
798 828 825 823 825 831 833 831
595 569 615 581 677 624 622 625 618 618 616 604 631 252 279 470 620
pendulum magnetometer pendulum magnetometer
Mijssbauer effect M(T) toroid M2 vs. T
resistivity thermogravimetry M(T), vibrating-sample magnetometer M2 vs. T
torque magnetometer, at 2 kOe extrapolated, crystallizes below T, as-quenched, Q(T) electron irradiated (2.5MeV, 1O1’cmm2)at 318K, ~(7’) electron irradiated and annealed, ~(7) annealed, Q(T)
torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe torque magnetometer, at 2 kOe Arrott-Noakes plot Arrott-Noakes plot
Kobe, Fercbmin
82H5 88S7 7902 7902 75S2 75S2 8OP2 84Cl 85Nl 81 M4 81K8 83Hl 81W2 81L2 8289 7803 83Hl 88H7 79Fl 81Ll 81Ll 81Ll 81 Ll 82H3 81N2 81N2 81N2 80N5 81N2 81N2 88H7 88H7 88H7 88H7 88H7 88H7 88H7 87W3 87W3 80N6 80N6
158
6.1.6 Amorphous Co-Fe-M
[Ref. p. 188
1.5 1 1.4 1.3 I &
1.2 1.1 1.0 1
Fig.251. (Co,Fe,&,B,,. Saturation magnetization, us, at 77 K and at 300 K as a function of Co content, x [84L3].
1851
,
I
I
4
60
65 x-
70
75
80
Fig. 252. Co,FegO-XB20. Room-temperature (295 K) saturation induction, B,, in a field of u,H=0.8 T, versus Co concentration, x [7602].
il.75
1.70
180
1.65 I 4 1.60
I 175 b" 170
0
55
2
4
x-
6
8
10
Fig.253. CojFegjB1,,&, Fe,,Ni,B,,&. Roomtemperature saturation magnetization, u,, and saturation magnetic flux density, II,, as a function of C concentration, x [7882].
630
89
590
87 , 85
75
76
77
78
79
550 80
x-
Fig.254 (Co,.94Fe,,os)l(B,,SSi~,~)~~~-~. Room-temperature saturation magnetization, us, Curie temperature, Tc, from thermomagnetic data, and crystallization temperature, TX, determined by DTA, as a function of total TM content, x [81S4].
lig. 255. (Co,Fe,J,,B,,Si,,. Magnetic moment per transition metal atom, &, (TM =Co or Fe), at 0 K, as a function of Co content, x. Values extrapolated from saturation magnetization data measured above 77 K
1.25
1.00 0
0.2
0.1 x-
0.6
0.8
1.0
[78Gl].
Kobe, Ferchmin
Landok-BBmstein
New Swim 111119h
159
6.1.6 Amorphous Co-Fe-M
Ref. p. 1881
180 emz kg I 160
1.0
?gl40
0.8 I $” 0.6 z
120 100 0
0.2
0.2
0.4
x-
0.6
0.8
1.0
Fig.257. (Co,Fe,&B,,Si,,,. Room-temperature saturation maanetization. u.. as a function of Co content, x[77Fl]. ’ “’
0
150
450
300
600
K
750
T-
x=0, 2, 6, 8. Saturation Fig.256. Co,,-xFe,B,,Si,,, magnetization, FL,&&, as a function of temperature, T [8SSll].
200,
$$I
I
I
e
I
I
I
1 (Co, Fe,-,)78B12:5Si9.5 tl ,,
150
0.5 -;
0
0.2
0.k
0.6
0.8
1S
xFig.258. (Co,Fe,_3,,B,,,,Si,,,. Low-temperature average magnetic moment per transition metal atom, &, as a function of Co content, x [84Gl].
I
125
b 100 75 50
25! 0
150
300
450
600
K
750
T-
Fig. 259. (Co,Fe,_,),,B,,.,Si,,~. Magnetization, (r, in the applied field of p,,H= 1.2 T as a function of temperature,T,forx=0,0.1,0.5,and0.9[84G1].
Landolt-Bknstein New Series 111/19h
xFig.260. Co,,Fe,B,,VxTa,, Co,,Fe,B,,-,Ta,. Roomtemperature saturation magnetic flux density, B,, after rotating-field annealing, as a function of Ta concentration, x [85H2].
Kobe, Ferchmin
160
6.1.6 Amorphous Co-Fe-M
[Ref. p. 188
0.a 0.6
x-
1
Fig. 261. (Co,Fe,&,P,,B,. Low-temperature mean ma-Tctic moment per transition metal atom, fiTh,, and Cune temperature, Tc, versus Co content, x. Nominal concentrations [79D2]. 500 "C 153
I
I
C080..xFejSi,,B, II ,.
Y.2 1 - 0.8 - 0.7 ILn
\
(Co, Fe,., )75S&, BIO 0.2
0.4 x-
0.6
0.8
1.0
Fig.262 (Co,Fe,.,hJ’&, (W%.,hSi,A~. Room-temperature saturation induction, B,, as a function of Co content, x [76F2].
no
I
I
0
l
\
2.2
ps 1.8
.
\
-nkQ Y.”
300
IEl.4
IQ - 0.5
250'
1.0 200
8
9
11
10
~(C0~-,Fe,)76.7Si13.3B,~
12
xFig.263. Co,,,.lFe,Si,,B,. Saturation induction, B,, and Curie temperature, Tc, of toroidal samples, versus B concentration. x [8763]. 1.30 IlB
0.61 0
0.2
0.6
0.4
0.8
1I.1 1
xFig.264. (Co,.,Fe,)73Si,7Blo~ (Co,-,Fe,),,.,Si,,.,B,,. Low-temperature average magnetic moment per transibon metal atom, jTM, as a function of Fe content, x [78Nl].
1.25 1.20
I El.15
IQ
L
8
12
x-
16
20
Fig. 265. Co,,-,Fe,Si, sB,,. Low-temperature average magnetic moment per TM (TM = Co, Fe) atom, &. as a function of Fe concentration, x [77Yl].
Kobe, Ferchmin
Landoh-BBmstein New Series 111119h
Ref. p. 1881
1.00 T T I 0.75 -
6.1.6 Amorphous Co-Fe-M
161
80 Am2 -6
(Cq-, Fe,)75 Si15Blo d ‘
60
RT
I
I 40 d
Fig.266. (Co,~,Fex),5Si,,B,,. Room-temperature spontaneous magnetization, p,M,, as a function of Fe content, x [88H4].
Fig. 267. Co,,Fe,Si,,B,,. Saturation magnetization, a,, as a function of temperature, T [76F2].
2.5 Jb IL6
I
I
(Cal-,Fe, )80Y20
2.0
I I<
1.5 1.0 0.5
6501 11
0
12
13
14
15
16
0
0.4
0.2
xFig.268. (Coo,94Fe,,,,),,.,-,Si~B~,~. Curie temperature, Tc, and crystallization temperature, TX, vs. Si concentration, x [82Ml I].
1.0
Fig.269. (Co,+Fe,),,Y,,. Low-temperature average magnetic moment per transition metal atom, jTM, as a function of Fe content, x [8811]. 2.1,
800
0.8
0.6
x-
I
I
I
pe Co, Fego-, Zr,,
I
K (Co,-,Fex IsoY
I
I
I
I
I
I 500 < K
1.9
600. I ,400
300
1.5 . ,&,(4.2K)
0
I
I
I
I
0.2
0.4
0.6
0.8
Fig. 270. (Co,-,Fe&,Y,,,. Fe content, x [8811].
Land&-BBmstein New Series III/l9h
? 1.0
Curie temperature, T,, vs.
1 0
‘L 2
4
6
I 8
1200 200 IO
Fig.271. Co,Feg,,-xZrl,,. Average magnetic moment per transition metal (TM=Co, Fe) atom, jTM, at 4.2 K and Curie temperature, T, versus Co concentration, x. Samples initially cooled to 4.2 K in zero magnetic field. T, from q temperature dependence in low field [84Dl].
Kobe, Ferchmin
3 Jls t
[Ref. p. 188
6.1.6 Amorphous Co-Fe-M, Ni-Mn-M
162
170 Am2 kg
2
150 19’ 1 0 0
t? 130 0.2
0.4 x-
0.6
0.8
1.0
Fig.272. (Co,Fe,.&,Zr,,. Low-temperature average magnetic moment per transition metal TM (TM=Co, Fe), jjTh,. versus Co content, x. Open symbols [8OSl], closed symbols [86Tl]. 2000,
I
I
0.2
0.4
I
1
0.6
0.8
110 0
0.2
0.4 x-
0.6
0.8
1.0
Fig.273. (Co,Fe,J,,Zr,,. Room-temperature saturation magnetization, u,, as a function of composition [8284].
1
500
0 0
1.0
xFig.274. (Co,Fe,&,Zr,O. Curie tempcraturc, Tc, and crystallization temperature, TX, vs. Co content x. Solid symbols [86Tl], open symbols [8OSl].
6.1.6.13 Ni-Mn
alloys
80 K 60
I 40 I.7
20
-0
0.2
0.4
Fig.275. (?G,-,Mn,),,P,,B,AI,. ture, T,g, vs. Mn content, x [84K8].
0.6
0.8
1.0
Spin-glass tempcra-
Kobe, Ferchmin
LandolbB6mstein New Sericc IWl9h
Ref. p. 1881
6.1.6 Amorphous Fe-Ni-M
163
6.1.6.14 Fe-Ni alloys Table 44. Fe-Ni alloys. Low-temperature atomic magnetic moment and saturation magnetization at room temperature, unless stated otherwise.
P PB
:rn’/kg
B
T
TS
K
40.8 34.2
Fe30Ni50B20
0.54 0.55
240
0.56
240
0.74 0.84 1.0 1.05 1.05 1.2
h~Ni4&o
Fe,,Ni,, “B,,
4.2
240 240
93.3
RT
89.6
RT
87.0
RT
93.3
RT
89.2
RT
FeAoNi,, “Bzo
95.5
RT
Fe,,Ni,, llBzo
92.4
RT
Ref.
Pm
85Gl 85Gl 79Kl 85Ll
sputtered, annealed at 598K as-sputtered lower limit upper limit lower limit upper limit as-sputtered sputtered, annealed at 598K as-cast, containing r”B isotope irradiated with 1018 thermal neutrons per cm2 irradiated with 5 x 101* thermal neutrons per cm2 as-cast, l”.‘B (natural boron) irradiated with 101* thermal neutrons per cm’, containing natural boron as-cast,containing “B isotope irradiated with 1018 thermal neutrons per cm2
1.2 1.35 1.46
240
as-sputtered
1.49
240
sputtered, annealed at 598K
1.5 127 144 160 131 144 161 115 133
Land&Biimstein New Series III/19h
Remarks
Kobe, Ferchmin
85L1, 84K9 78M3 79Kl 7703 78M3 85Ll 85Ll 84Hl 84Hl 84Hl 84Hl 84Hl
84Hl 84Hl 78M3 78M3 79K1, 85Ll 85Ll 77Bl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl 82Wl continued
164
6.1.6 Amorphous
Fe-N&M
[Ref. p. 188
Table 44 (continued)
P PB
2m2/kg
CFeo.d%4)B3Bl 7
150
Feo.~%.3h3Bl 7
162 177 194
Feo.J%.2h3B,7 (Feo.9%.lh3B17 hdWt7 1.85 Fd%.ddl~ F%J%.&Bt6 F’eo.d%.3h4Bl~ Fe41Ni4AsC2 Fe62Ni2tBlsC2 ~~40%JWh METGLASTh’ 2826MB
B TS
T K
Remarks
0.96 1.33 0.88
typical value typical value thickness-dependent, ribbons 30...48 pm thick
99
0
114 100 110 100
300 0 300
0.92..*0.99
0.89 1.21 0.87 1.17
poM in a field of IO mT, nearly equal to B,, depending on the melt temperature before quenching RT 0 RT 0
0.95 0.90 0.81 172
RT 0.63 1.05 1.3
Fe,,Ni,eB,,Sis AMOMET (Feo.J%2)7~B12Silo Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si, Fe,,Ni,,B, ,Si,Mo, VITROVAC 4040
Bht PTM as-cast irradiated with 5. lOI neutrons per cm2 irradiated with 10’s neutrons per cm2 annealed
RT magnetic annealing
1.3 43 52
0 0 0.77
as-quenched
0.79
annealed for 0.5 h at 250°C
0.46 27.0 1.15 71.4
82Wl 82Wl 82Wl 82Wl 82Tl 82Wl 82Wl 82Wl 78W2 78W2 87T4 82Al 88Rl
BTU
134 150 169
0.85...0.91
(Fe,.7,B,.l,Si,.l,)9,Ni2 Feo.4%.6)78h& Feo.J%.4~7dL&
Ref.
0.70
1.58 120
Kobe, Ferchmin
4.2 RT 4.2 RT 4.2 RT
FTM
BTU
PTM
82W3 82W3 82W3 82W3 82W3
77Bl 77Bl 77Bl 77Bl 8222 8222 8222 82M14 77M2 77M2 77M2 77M2 81 K4 81K3 84B6, 82B8 82B8 7703 7703 7703 7703 7703 7703 continued
Landolt-BBmstein New Series IIIil9h
6.1.6 Amorphous
Ref. p. 1881
FeNi-M
165
Table 44 (continued)
P PB
4
:rn’jkg
T
T
0.25 0.21 0.35 0.30 0.44 0.35 0.38 0.54 0.43
0
”0.63 0.49 0.72 0.58
Fedi60P14J% Fed%P14B6 Fe30Ni50P14B6 Fe4&oPllBg Fe40NLoPdb
55
PTM,FMR, extrapolated FMR, extrapolated pTM,FMR, extrapolated FMR, extrapolated PTM,FMR, extrapolated FMR, extrapolated static (vibrating-sample magnetometer) pTM,FMR, extrapolated FMR, extrapolated jTM, FMR, extrapolated FMR, extrapolated pTM,FMR, extrapolated FMR, extrapolated
84W2 84W2 84W2 84W2 84W2 84W2 82M5
PTM,FMR, extrapolated 0.58 0.92 0.90 0.80
Fek&oP14B6 METGLASTM 2826 Fe40WoP14B6
0.75 0.83 1.08
RT with tension of 10kp/mm’ lower limit typical value upper limit depending on quenching conditions PTM,FMR, extrapolated
69.5.+e78.5 1.1 1.0 1.0 1.13 1.6 1.2 0.33 0.48 0.6 0.63 0.33 0.84 0.4 0.83 1.0 1.1
Fe&i6oPdk% Fe, &,P, c&& (Feo.sNio.,),5P,,B,A1, (Feo.,Nio.,),5P,,B,A1, (Feo.4Nio.,),5Pl6B,A1, (Feo.,Nio.,),SP,,B,A1, %&,P,.&‘h (Feo.65Nio.,,),sP,,B,Al, (Feo,rrNio.,),gP16B6A13
Land&-BBmstein New Series IIU19h
Ref.
0
0.85
FJ-111 (China) Fe40%oP12Bs
Fe,gNi,,P,,B6Si, METGLASTM 2826 B FezsNi,,P1,B6Si, Fe,,Ni,,Si,,B,Mo, bJ%Jrlo
Remarks
K
53 0.49 0.78 0.8 150
77 0 RT 0 0 0 0 RT 0 RT 0 0 RT RT RT 77 4.2
Kobe, Fercbmin
PTM
FMR Hall effect FMR Hall effect FMR Hall effect typical value
84W2 84W2 84W2 84W2 84W2 84W2 84K3 84W2 78M3 77Bl 89Yl 77M4 87T4 84Ll 77Kl 82Al 84W2 75El 77Ll 78W2 77Bl 77Bl 82M5 82M5 78B2 79Bl 80Rl 79Bl 80Rl 82M5 78B2 80Rl 82Al 76Rl 77El 80H6 84K9
166
6.1.6 Amorphous Fe-Ni-M
[Ref. p. 188
Table 45. Fe--Ni alloys. Magnetic phase transition temperature, Tc, and crystallization temperature, 7,. In general, the Curie temperature, T,, is given in the third column. In some cases,in this column the spin-glass transition temperature, TJg,or the reentrant spin-glass freezing temperature, T,, is given and then noted as a remark. Tf K
714
T, K
Remarks
Ref.
284 373 413 611 630 710 305...306
calorimetry modified Arrott plot calorimetry calorimetry Mossbauer effect calorimetry
339 413 425
thermogravimetry de/d T typical value
446 572 573 575 657 665...672
fitting a power law R,(T)oc(T,-T) lower limit Hall effect Arrott plot lower limit DSC
669 676 680 700 725 725 738 738 750 733 729.. .761
Ha!! effect thermogravimetry thermoelectric power
with
81 Bl 87K2 81 Bl 81 Bl 8OVl 81Bl 83F1, 83M5, 84Wl 80T2 83B4 80B I, 85K I, 87K2 87Vl 80Bl 78M3 7801 84C4 81 L4, 82Gl 78M3 81 L4 81 PI 77Bl 77Bl 78M3 77Bl 78M3 81 PI 77Bl 8527
with
8527
721.,.745 Fe,,Ni
63.8
B 19.2
(Feo.2~Nio.soh3B~7
615
Feso.s%2&.3 Fe59Ni2JL, Fe61%B,4 Fe64Ni22B,4 Fe67Ni,gB,4 680 F‘%o”‘i,,B,, Fe74Ni,2B,4 %JWL, Fe41Ni42B&2 Fe62%B& Fe54.5Ni~ALL@~,.,
339 440 643 730 730 730 725 750 704 695 660 663 733 570
Hall effect extrapolated Ha!! effect thermoelectric power extrapolated fitting a power law aoc(T,- v fl= l/2.,.1/3 fitting a power law ccc(T,-v jI=l/2...1/3 kink point Miissbauer effect vibrating-sample magnetometer vibrating-sample magnetometer vibrating-sample magnetometer vibrating-sample magnetometer M(T), torque magnetometer vibrating-sample magnetometer vibrating-sample magnetometer vibrating-sample magnetometer M(T) MT) M(T), torque magnetometer
Kobe, Ferchmin
81 Tl 88Nl 81 L3 80H2 80H2 80H2 80H2 82A2 80H2 80H2 80H2 78W2 78W2 82A2 continued Landolt-BBmstein New Series IIIi19h
Ref. p. 1883
6.1.6 Amorphous
Fe-Ni-M
167
Table 45 (continued)
T,
K
%d%A&04
METGLASTM 2826 MB
710 662 698 686
T,
688 609 610 610 618 663 688 655 635 40 ~60 71 191 120 E 143 180 351 275 389 391 400 410 446 549 %570 609 616 180 z 628 501 531
x 650
Remarks
Ref.
annealed in 800A/m at 628 K for 2 h thermogravimetry DSC inductance method peak in do( T)/dT
8632 87Rl 87Rl 87Rl 87Rl 82W3 82W3 82A2 82A2 77Sl 80G3
K
~180 524 551 535 562 479 507 539
torque magnetometer torque magnetometer wires, determined from changes in e-‘dQ/dT vibrating-sample magnetometer wires, determined from changes in Q-‘d~/dT wires, determined from changes in e.ld@fdT wires, determined from changes in ~-‘de/dT fitting a power law &(T)cc(T,-T) vibrating-sample magnetometer
Arrott plot another phase with T, ~425 K also present kink point preannealed at 598 K for 30 min, kink point Mossbauer effect kink point preannealed at 598K for 30 min, kink point kink point preannealed at 598K for 30 min, kink point preannealed at 598K, kink point kink point preannealed at 598K for 30 min, kink point
90 241 381 410
Land&-Biirnstein New Series III/19h
77Sl 82M12 80G3 77Sl 80G3 81S5 80G3 86Vl 84K6 80Bl 79Rl 81 S5 81S5 77Sl 77Bl 77Bl 86Sl 8OPl 81Tl 81Tl 87K3 81Tl 81Tl 8lTl 81 Tl 81Tl 8lTl 81Tl 8OWl 80Wl 80Wl 80Tl continued
Kobe, Fercbmin
168
6.1.6 Amorphous Fe-Ni-M
[Ref. p. 188
Table 45 (continued) T, K
Feo..+%6hBl~%
Remarks
T, K 514 311 314 550 606 673 730 729 733 730 19.5
Arrott plot
Fe,Nir6B,,Si,
40
Arrott plot
Fe,Ni,,B,,Si,
60
Fe,Ni,,B,,Si,
82.s.83
Fe,Ni,,B,sSi,
144...147
hJ%JL$iIo
155 187...189
Miissbauer effect
Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si,
187 244
x.c
Fe12.&Ji.sdb% Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si,
272 269 308
Xac xSC
316 319 341 351 370 455 400 409
Hall effect Arrott plot x Edified Arrott plot
Fe,,Ni,sB,,Sis
Feo.4%.6h8Bl.& %J%Bl&l~ O%db)7sB14Sis Fe,,Ni,eB,,Si, (Fe,.,Ni,.,),sBl,Sil, O%&A8B14% Fe6dJi 1d,& Fe,Ni,,B,,Si,
Fe,,Ni,,B,,Si, Fe,,Ni,,B,,Si, F%~Ni60Blo%o Fe,,Ni,,B,sSi,
from intersection point of (d(lnX-l)/dT)-l vs. T with Taxis
thermoelectric power Hall effect
Fe,,Ni,,B,,Si, kJ%A~Sil~ Fe,,Ni,,B,,Si,
537 650 464 484
%~Ni30BloSilo Fe6&20BloSilo F%,Nl,,B,&,
695 710 318.5 188.5
Fe,,Ni,,B,,Si,
fitting a power law 1,(T)a(T,-T) vibrating-sample magnetometer
thermogravimetry thermoelectric power kink point preannealed at 598 K for 30min, kink point thermoelectric power thermoelectric power
Kobe, Ferchmin
Ref. 80Wl 86Vl 84K6 77M2 7701 77M2 8OP2 77M2 77M2 79Pl 8521, 8721 8521, 8721 85M3, 85Zl 85D6, 85M3, 8721 85D6, 85M3, 8521, 8721 88P2 85D6, 85M3, 8721 88K3 85D6 79C2 88K3 85D6, 85M3 8411 8721 88K3 87K2 80B2 81 PI 8411 85D6, 85M3 80T2 81 PI 81 Tl 81 Tl 81 Pl 81 Pl 8721 8721 continued Land&-Bdmstein New Series 111119h
Ref. p. 1881
6.1.6 Amorphous Fe-Ni-M
169
Table 45 (continued) TX K Fe,,Ni,B,sSi, Fe,,NisB,,Si, Fe,,Ni,B,sSi, Fe,,Ni,B,,Si, Fe Fe Fe,zNiloB,& Fe,,Ni,,B,,Si,Mo, VITROVAC E 4040 (Feo.t52Nio.8~8)80P20 (Feo.1~1N10.839)80P20 (Feo.~81Nio.81~)80P20 (Feo.202Nio.~98)80P20
Fe34NLJ’14B~ Fe40Ni40Pl 1% Fe40N40PlJb
METGLASTM 2826
Land&Biimstein New Series III/l9h
793 685 725
Remarks
T, K 146.5 83 40 19.5 668 543 680 543 575 x 34 = 50 109 122 146 186 210 235 249 483 1.80 3.35 5.45 7.35 9.85 12.2 15.6 23.5 54 5.9 9.7 25 50 60 60 122 160 164.5 228 234
thermogravimetry preannealed at 598K for 30 min, kink point Mijssbauer effect
thermogravimetry
kink point Hall effect Mossbauer effect
kink point, lower limit typical value
262 360 430 445
upper limit
448 453 577 506 525 533 600
modified Arrott plot
kink point, lower limit typical value
low-field susceptibility, lower limit kink point Hall effect upper limit
Kobe, Ferchmin
Ref. 8721 8721 8721 8721 88B3 8lTl 88Nl 81B7 84B4 85M4 85M4 85M4 85M4 85M4 85M4 85M4 85M4 85M4 87R4 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 77Dl 7804 7804 7804 8lK3 78M3 77C2 80K8 80K8 79c2 81K3 77C2, 78M3 80K8 79M2 8lK3 77C2, 78M3 87K2 81F2 77Bl 79Ml 8lK3 78M3 80Cl continued
6.1.6 Amorphous Fe-Ni-M
170
[Ref. p. 388
Table 45 (continued)
T,
Remarks
T,
K
K
663
601 503 607 619 623 628 520 588 5.7 8.2 10.2 15 13.2 18 20...20.8
Hall effect M(T) Hall effect M(T), estimated
22...25
31 32 45...47 38 673.~68
70 92
T,, Hall effect, lower limit T,, typical value
118 lg...29
T,, upper limit Tsg
149...154
T,
221 245.e.250
T,, lower limit T,, Hall effect
258 281 330...340
Miissbauer effect inflection point of xaC Hall effect
330 346
as-quenched same sample, annealed at 473 K for 10min same sample, further annealed at 573K for 10min
361
Ref. 87X1 77Bl 77Bl 78M3 78W2 78M3 76Sl 80El 80Fl 80Fl 80Fl 81Yl 80Fl 81Yl 80F1, 81 G2, 81Yl 80F1, 81 G2, 81Y1, 88s 10 81G2 81Yl 81 G2, 87M3 87M3 81 G2, 87M3 81 C 1, 81 Y 1, 87M3 80B4 81 S 10, 87M3 81 L8 81Y1, 87M3 81 G2, 81Y1, 87M3 81G2 80B4, 80Rl 78B2 81Yl 80B4, 80Rl 81 B4
continued
Kobe, Ferchmin
Landolt-BBmstein New Series IIl,U9h
Ref. p. 1881
6.1.6 Amorphous
Fe-Ni-M
171
Table 45 (continued)
TX
K
Fe,,Ni,,P,,B,Si, METGLASTM 2826 B 672 (%2N&dsoP13G Fe72NisP13C7 Fe,,Ni,,Si,,B, VITROVAC 4 F’eo.7Wd90Zrlo F’eo.8WdgoZrlo ~esoNiloZrlo F’e~.&%.lh~Zrlo Fe,,Ni,Zr,, (Fe~.d%.d~Jrl~ Fe,,Ni,Zr,, U%.d%d9Jrlo
754
T,
Remarks
Ref.
334 365 482 512 576 590 600 342 375...390
inflection point of xac upper limit Miissbauer effect quasielastic neutron scattering Mijssbauer effect Hall effect inflection point of xac low-T, type, annealed at 573 for 1 h Hall effect, samples from different batches
81Yl 81L8 78B2 78Tl 78B2 80Rl 81Yl 77A2 79Ml
K
385 %300 605 510 521 455 359 350 306 281 248 242
specific heat measurements Mossbauer effect vibrating-sample magnetometer vibrating-sample magnetometer vibrating-sample magnetometer Arrott-Noakes plot Arrott-Noakes plot
2.5
I
83Pl 73M2 8011 87B7 85D3 85D3 88Fl 85D3 88Fl 87W3 88Fl 87W3
I
pB (Fe, Ni,_, )80B20
Fig.276. (Fe,-,Ni,),,B,,. Low-temperature average Fig.277. (Fe,Ni,J,,B,,. Low-temperature average magnetic moment per transition metal atom, jTM, as a magnetic moment per transition metal atom, jTM, as a function of Ni content, x [82C6]. function of Fe content, x [81S9]. Land&-Biimstein New Series 111/19h
Kobe, Ferchmin
172
6.1.6 Amorphous Fe-Ni-M
[Ref. p. 188
200 -Am? kg
0.4 x-
0.6
0.8
1.0
1.6
Fig.278 (Fe,~,Ni,),,B,,. Saturation magnetization, a,, at 77 K and at 300 K as a function of Ni content, x [84L3].
1.5 1.4 1.3 0 I
2o”
5 I
Proton fluence 10 15 20 I
a10’5cms2 30
Fe20Ni60 B20
I
0.20
I
0.22 y/U-y)-
0.24
I 6
Fig. 279. (Fe,Ni,J,B1,. Average magnetic moment per transition metal (TM=Fe, Ni) atom, j+,,. at low temperature as a function of the relative TM content with respect to B, y(l-y)-‘. x=1 [78Hl] and x=0.7,0.6, 0.5 [82Wl].
120 f&+ kg 100 80 i t$ 60
20 0 0
25
50
75 100 -1016cm-2150 Electron fluence -
Fig. 280. Fe,,Ni,,B,,, Fe2eNi,,P,,B,. Change in Curie temperature, AT,, due to irradiation with 2.25MeV-protons and 1.25-MeV-electrons for as-quenched samples of (a) Fe,,Ni,,B,, (T,=437 K) and (b) Fe,,Nt,,P,,B, (Tc=260 K) [82D2].
0
o Fe,oNi3~B20 Mo2 200
400 l-
600
800 K 1000
Fig.281. Fe,ONi,r,B,,Mo,, Fe,,Ni,,B,,Mo,. Saturation magnetization, u,, as a function of temperature, T, in an applied field ofp,H= 1.2 T [82W3].
Kobe, Fercbmin
Landok-B6mstein New Series IIIi19h
Ref. p. 1881
6.1.6 Amorphous Fe-Ni-M
173 200 &? kg
1.5
120 80
I 1.0 co"
40
\r\
40
0.5
\ -
0 w-w 0 0
2
4
6
8
IO
Y-
Fig. 282. Fe,s.,Ni,B,,Mo,Si,. Saturation induction at room temperature, B,, as a function of MO concentration, y [82Hl].
80
10.2
120
\
801
0
40
0 120 80 40 I OG
700 K
I
k&x-y
650
I
I
I
Ni,Bj6MoySi2
y=2
600 I h-Y 550
0 40
500
0 4501 0
0 2
4
6
8
IO
12
0
x-
Fig. 283. Fe,,-,,Ni,B,,Mo,Si,. Curie temperature, T,, determined by inductance technique, vs. Ni concentration, x, with MO concentration, y, as parameter [82Hl].
Land&Biimstein New Series IIIIl9h
200
400 T-
1.0 600
K
800
Fig. 284. (Fe,~,NiJ,,B,,Si,,. Temperature dependence of the saturation magnetization, bs, for various values of Ni content, x. The vertical arrows show the Curie temperatures, Tc, obtained from the c,’ vs. T plots [83M6].
Kobe, Fercbmin
[Ref. p. 188
6.1.6 Amorphous Fe-Ni-M
K
250 t200’
I
1ool
I
I
I
\
50 01l-----H 0.70
Y J!
1 0.75
0.80
0.85
0.
Fig.285. (Fe,-,Ni,),,B,,Si,,. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. Circles [83T2], squares [81H3], triangles [80Gl], seealso Fig. 55b.
K I
I
I
,--I /.
.l”U
400
0 (Fe, Ni,-x)80 B,. P,,, l IF~,N~,.,)F,P,F,B~AI~ k I
I
/
300
b.
200 100
0 0
0.1
60
40
0.1
I
x-
80 P
P
k
0.3
0.2
a
zr --+-tT-... 2-L I 6.
60
40
5
6
x-
b
Fig.286. Fe,Ni,,~,B,,Si,. Magnetic phase diagram. P: paramagnetic. F: ferromagnetic, SG: spin-glass region [83M4].
I 0.20
I 0.25
0
x-
Fig. 287. (Fe,Ni,J,OB,,P,,, (Fe,Ni,-,),,P,,B,Al,. Magnetic phase diagram. P: paramagnetic, F: ferromagnetic, SG: spin-glass region. (Fe,Ni,J,,B,,P,,, Curie temperature, Tc, vs. Fe content, x [8284], (Fe,-
Ni,AP,J%AI,, (a)WB61,(b)[82W. Kobe, Ferchmin
Landok-BCmstein New Series III/l9h
465 K
-
I
I
/
Fe25Ni55 4,
ml
I j’fo=
200 !ir& kg 150
I SiltI
\ 106s
I
,/
‘o5
J
250 meVH2 200
I b 100
V
450
175
6.1.6 Amorphous Fe-Ni-M
Ref. p. 1881
150 1 Q 100
--. / K--in&
I
%5 440 435 4301 450
I 500
I
I
I
550
600
650
I 700 K 750
Fig. 289. FesO-XNi,B,,Sis. Magnetization, cr’, at 4 K in loH= 3 T and spin wave stiffness constant, D, at 0 K from a(T) measurements, as a function of Ni concentration, x [88K6]. 20
Fig.288 Fe,,Ni,,B,,Si,,. Effect of isothermal annealing on Curie temperature, T,. T, vs. annealing temperature, T,, with annealing time I,, as parameter [85M6].
250 K
0.5
200
0.4
PB
I 150 h"
kg 16
0.3 I r 0.2 IQ
100 50
005 290 290
294 294
298 298
302
306
K 310
T-
0.1
Spontaneous magnetizaFig.291. Fe15NrS5B1sSr2. . tion, us, as a function of temperature, T [83M2]. 00
2
4
6
8
IO
12'
xFig. 290. Fe,NisO-XB,,Si,. Low-temperature average magnetic moment per transition metal atom, j&+ and Curie temperature, T,, versus Fe concentration, x [85D4].
50 501 AmZ $kg 40 40
/I
FexNiso-,P20 I T=4.2K
I
I 30 k?
20
Spontaneous magnetization, Fig. 292. Fe,Nis,-,P,,. crs,as obtained from the C? versus H/a (Arrott) plot at 4.2 K by extrapolation to zero field, as a function of Fe concentration, x [84Vl]. Land&Biirnstein New Series III/19h
Kobe, Ferchmin
[Ref. p. 188
6.1.6 Amorphous Fe-Ni-M
176
800 K
I
I
if
(kl-xNix)79P13B8
2.0
600
I LOO<
I 1.5 1: 1.0
200 0.5 0 0
0.2
0.6
0.L
0 1.0
0.8
xFig.293. (Fe,.,Ni,),,P,,B,. Mean magnetic moment per transition metal atom, &,,. at 4.2 K and Curie temperature, Tc, as a function of Ni content, x [77Dl].
“.J Ps
I ’
212
216
220 l-
224
228 K 232
Fig. 295. Fe2eNi6,P,,B,. Temperature dependence of saturation magnetization, a,, and inverse magnetic susceptibility, xi’ [84K4].
I
k’,Ni8o-,P,&
0.2 .5 IQ
208
0 0
0.1
’
0 t,o
0 0
10
20
30
40
50
xFig. 294. Fe,Ni,,-,P,,B,. Low-tempcraturc average Ni atom magnetic moment, p(Ni), as a function of Fe concentration. x, under the assumption ofp,,=2.2 pa for x 560 and an estimated density of 7.5. IO3 kg/m3. Solid circles (77C2,81K3], open circles [84W2]. 300 K
800
200
I 600 +.?-
I k
hy 400 100 200 0 -0
2
8
12
16
20
xFig. 296. Fe,Ni,,.,P,,B,. Magnetic phase diagram. P: paramagnctic, F: ferromagnetic, SC: spin-glass region. Squares: Curie temperature, T,, determined from the rapid rise in the maximum slope of the hysteresis loop, open triangle: spin glass temperature, T,s, determined from the cusp in the low-field susceptibility, circles: reentrant spin-glass freezing temperature, Tr, [82K7, 82M5]; solid triangles [7804].
0 0
0.2
0.6
0.6
0.8
1.0
magFig. 297. (Fel-,Ni,)aeZr,e. Low-temperature netic moment per 3d transition metal (Fe or Ni), &,r, Curie temperature, T,-, and crystallization temperature, TX, versus Ni content, x, for two sets of data: open symbols [8286, 81S71,solid symbols [88T2], see also [8485j. The moderate spread in values is typical of amorphous alloy samples with different unidentified thermal history.
Kobe, Ferchmin
Land&BCmstein New Series III,/19h
6.1.6 Amorphous
Ref. p. 1881
Co-Ni-M
177
6.1.6.15 Co-Ni alloys Table 46. Co-Ni alloys. Saturation magnetization.
0s
T
K
67.5 0 0 43 70
Co4&oB20 Col&&% ColS.6Ni62.4%2%0 Cos&A2%~ Co5.di 23.4B12Si10
0.95
Co,,Ni,,B,,Si, co 70.2Ni7.8B12Si10 (Co,.s4Ni,.6,),,Pl,B,A13 (Co,.s,Ni,.,,),,Pl,B,Als (Co,.,sNi,.,2),,Pl,B,Als (Co,.,,Ni,.,,),,Pl,B,Als (Co,.,,Ni,.s,),sPl,B,Als Co,,Ni,Zr,,Mo, Co,,Ni,Zr,,Moa
Ref.
Remarks
T
BS
Am’Frg
90 0.148 0.151 0.176 0.201 0.308 0.71 0.62
0 RT RT RT RT RT RT 0 0 0 0 0 RT RT
nominal nominal nominal nominal nominal
composition composition composition composition composition
sputtered metal multilayer alternating with SiO,
Table 47. Co-Ni alloys. Curie temperature, T,, and crystallization temperature, T,.
T,
Remarks
Ref.
K
TX
K
irradiated (5 * 10z2neutrons/m’) irradiated (10z2neutrons/m’) irradiated (5. 10zl neutrons/m’)
844 851
104.2 106.1 107.7 109.3 484 537 584 695 669
85Tl 85Tl 85Tl 85Tl 83Hl 83Hl’ 83Hl 85H4 85H4
Co47Ni2SBls%o
Co,,NiISSi,,B, Co,,Ni,Si,,B, Co,,Ni,Si,,Ba Co,,Ni,Zr,,Mo, Co,,Ni,Zr,,Mo,
M2 vs. T M= vs. T M2 vs. T M(T), pendulum magnetometer
100
Am2 kg 80
t 60
d 40 20 0
0
0.2
0.4
0.6
0.8
1.0
x-
Fig. 298. (Co,-,Ni,),,B,PSiI,,. Saturation magnetization, us (open circles), at 77 K, and the Curie temperature, Tc (solid circles),versusNi content, x [85M7]. Land&BBmstein New Series III/19h
Kobe, Ferchmin
7801 82Bl 82Bl 82Bl 82Bl 82W4 82Bl 8732 8782 87S2 8732 8732 82N4 87H3
6.1.6 Amorphous Co-Ni-M,
178
100,
I
I
[Ref. p. 188
Cu-Mn-M
I
I
0.6
0.8
A
ti (Co,Ni;-, )7sP,kEl8 “)I
-0
0.2
0.1
1.0
x-
Fig.299. (Co,Ni,&P,,B,. Room-temperaturesaturation magnetization,u,, versusCo content, x [76Al].
Ijqqqzq 0
OS
0.2
0.3
0.4
0.5
0
0.2
0.1
0.3
0.4
0.5
xRoom-temperature Fig. 301. (Co,.,Ni,),5Si15B,0. Curie temperature, Tc, Fig. 300. (Co,.,Ni,),,Si,sB,,. spontaneousmagnetization, p,M,, as a function of Ni from electrical resistivity measurements(open triangles) and crystallization temperature,TX,from DSC (solid circontent, x [88H4]. cles) and electrical resistivity measurements(open circles) vs. Ni content, x [8762]. Solid triangles: Tc values from [86V2]. x-
6.1.6.16 Cu-Mn alloys Table 48. Cu-Mn alloys. Spin-glass temperature.
Tss
Remarks
Ref.
65 60 59
sputtered sputtered sputtered
83K3 83K3 83K3
K Cu,MnAl Cu,MnIn Cu,MnSn ~u50MG%o
< 1.3
Kobe, Fercbmin
79Gl
LandoIl-Btimstein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous Fe-Cu-M
179
6.1.6.17 Fe-Cu alloys Table 49. FeCu alloys. Low-temperature atomic magnetic moment and saturation magnetization at room temperature, if not stated otherwise.
Zm2/kg
Fe35(Cuo.5Ago.5)65 Fe75Cu5J%o Fe77Cu3B20 Fe7&ulbo Fe,dJ~o.sbo Fe,&uo.Ao
T K
2.4
4.2 117 143 159
2.07
Remarks
Ref.
sputtered, ijFe nominal composition nominal composition nominal composition
8888 82Al 82Al 82Al 81 H4 81 H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81 H4 81H4 81 H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4 81H4
PFFe
194 175
77 RT
192 173
77 RT
197 170
77 RT
189 173
77 RT
197 173
77 RT
196 176
77 RT
200 173
77 RT
196 171
77 RT
2.03
Fe,,Cu,B,,Si,
2.15
Fe79.5Cu0.5J%5Si5
2.04
Fe~d%d4.4L5
2.1
Fe80.6Cu0.4B16.5%.5 Fe81.2Cu0.8Bi3Si5
2.1 2.17
Fe8~..&u0..&Si5
2.12
Table 50. FeCu alloys. Curie temperature, T,, and crystallization temperature, T,.
TX
K ~~,,L3~b.sgAg,.,),.,s 0.8
20
Few.@o.&o Fe,,Cu,B,,Si, Fedh.&Si5 Fem~50.38w~6 Fe o.I&% Fe79.925cuo.odWi6 Fe80.2CUo.8B16.5%5 Feso.&Uo.&i.,%, Fesi.zCuo.s%% FesusCUo.aBdis FeloCu50Zr40 %&u60Zr30
Land&Biimstein New Series III/l9h
732 791 792
T,
Remarks
Ref.
sputtered, Mijssbauer effect A4(T), estimated it4(7’), estimated M(T), estimated M(T), estimated thermogravimetry thermogravimetry thermogravimetry M(T), estimated M(T), estimated M( 7’), estimated M(T), estimated
88S8 81H4 81H4 81H4 81H4 88B3 88B3 88B3 81H4 81H4 81H4 81 H4 79Gl 83V2
K
E400 720 720 585 825 667 664 663 615 690 585 600 E4 3.3
l&
Kobe, Fercbmin
180
6.1.6 Amorphous
3d-M alloys with three 3d elements
[Ref. p. 188
6.1.6.18 Co-Fe-V alloys Table 51.Co-Fe-V alloys. Saturation magnetization at room temperature. B
zm’/kg Co,,Fe,V,B,,Si, Co,,Fe,V,B,,Si,
FJ-103 (China)
0.69 70 0.7 0.54
(Co,.s,,Feo.046V,.,9),,B,,Si, Co,,Fe,V,B,,St,Mo,
Ref.
TS
59.8
89Yl 87Wl 82W2 7902 87Wl
Table 52. Co-Fe-V alloys. Curie temperature, Tc, and crystallization temperature, TX.
TX
Co,s.,Fe,.,V,B,,.,Si,.~ (Co,.s~4Fe,.~4~V~.09)78B,,Si, (Co,.9,Fe,.,,V,.,,Mo~.~~),~B~,Si,
I
T,
Remarks
Ref.
K
K
803 793 843
673 539 473
pendulum magnetometer inductance method
84Cl 7902 85Sl
6.1.6.19 Co-Fe-0 alloys Table 53. Co-Fe0
alloys. Saturation magnetization at room temperature.
Co, ,Fe,Cr,B,P, Co,,Fe,Cr,B,,Si, (Co,.,,Fe,.,,Cr,.,9),,B,,Si, Co,,Fe,Cr,B,,Si,
Table 54. Co-Fe-0
BS T
Remarks
Ref.
1.15 0.58 0.60 0.63
sputtered, target composition toroid, at 0.003Hz
78H4 84B7 7902 82M2
alloys. Curie temperature, T,, and crystallization temperature, TX.
T,
T,
Remarks
Ref.
K
K
773
743 643 578
inductance method MUI
8lS7 85Sl 8lN2
Kobe, Ferchmin
Landolt-BGmstein New Seriec 111/19h
6.1.6 Amorphous
Ref. p. 1881
181
3d-M alloys with three 3d elements
I
0.50I 0
I 2.5
I 5.0
I 7.5 x-
I 10.0
I 12.5
‘k
IE
Fig. 302. Co,Fe,,.&r,B,,Si,. Average magnetic moment per transition metal (TM = Co, Fe, Cr) atom, j&, as a function of Co-Cr concentration, x, at 4.2 K, and at 300K [84D5].
Fig. 303. Co,Fe,,&r,B,,Si,. Reduced spontaneous magnetization, o,(T)/a,(O), as a function of reduced temperature, T/T,-, for various component concentrations, x. For comparisonsakemolecular-field-theoretical curvesfor various exchangefluctuation parameters6 are shown. Cf. eq. (16)[84D5].
6.1.6.20 Co-Fe-Mn
alloys
Table 55. Co-Fe-Mn alloys. Saturation magnetization at room temperature. 2m’/kg
4
Remarks
1.22 1.15 95.2 0.95 1.09 1.12 rotating field annealed
110’) 1.22 1.31 1.26 0.70 0.93 0.77 0.82 0.82 0.84 ‘) Read from a figure by H. Fujimori. Land&-BBmstein New Series III/l9h
Ref.
T
Kobe, Ferchmin
heat-treated in vacuum at 100e
82R2 82R2 79Sl 79Sl 82R2 82R2 81 S4 82132 82R2 82R2 87Hl 82Mll 8764 87G4 87G4 8764
182
6.1.6 Amorphous
[Ref. p. 188
3d-M alloys with three 3d elements
Table 56. Co-Fe-Mn alloys. Curie temperature, T,, and crystallization temperature, TX. T, K
Tc K
Remarks
Ref.
701 675
693 654 725 721 665 693 922 656 684 636
inductance method inductance method
82R2 82R2 79Sl 79Sl 8212 82R2 81 S4 82112 82R2 82R2
723 728 699 692 684
inductance inductance crystallizes inductance inductance inductance
method method below Tc, thermogravimetry method method method
6.1.6.21 Fe-Ni-V alloy Table 57. Fe-Ni-V alloy. Curie temperature, T,, and crystallization temperature, TX [85 Z 51.
T,
Fe,,Nt,,V,B,,&
FC-23 (China)
T,
K
K
Z770
r570
Remarks nominal composition, magnetically annealed
6.1.6.22 Fe-Ni-Cr alloys Table 58. Fe-Ni-Cr alloys. Atomic magnetic moment and saturation magnetization.
4
T K
0.46 0.5
77 300 0 0
T F%,%Cr,,P,,B6 F%d%6Cr14Pj86 METGLASTM 2826 A
60 0.54
Kobe, Ferchmin
Remarks
Ref.
L
75El 78Ml 76Fl 84K4
Lmdolt-Bknstein New Series 111/19h
Ref. p. 1883
6.1.6 Amorphous
3d-M alloys with three 3d elements
183
Table 59. Fe-Ni-Cr alloys. Curie temperature, T,, and crystallization temperature, T,. T,
K
Fe2.&40Cr14B20 Fe2sNi40Cr12B20 Fe~~Ni4&&o Fe~~~GW~~ Fe34Ni40Wbo F%N40Cr4B20 F%9Ji4&rAo
Fe,,Ni,,Cr,B,,Si,, Fe,,Ni,,Cr,B,,Si,, F’e~.d%.~s Cr~.d&G% Fe,,Ni,,Cr,,B,,Si,Mo,
740
Fe,,Ni,,Cr,,B,,Si,Mo,
(Fe,.,Ni,.s)7,Crl,P14B6 (Fe,.,Ni,.,),4CrsP14B, (Fe,.sNi,.s)76Cr4P14B6 (Fe,.sNi,.s)77CrsP14B6 (Fe,.sNi,.s)7sCr,P14B, (Fe,.sNi,.s)7,CrlP14B, Fe32NWr14P12B6
671 676 690 673 668 666
METGLASTM 2826A
0
1
3
2
T,
Remarks
Ref.
inductance method x.,, neutron irradiated x.0 neutron irradiated Xac xae,neutron irradiated x.0 neutron irradiated xac
84C4 84C4 84C4 84C4 84C4 84C4 84C4 81Sl 81Sl 85Sl 8886 8836 8836 8886 8886 8886 87X1 87X1 87X1 87X1 87X1 87X1 79Ll 7982 78M4
K
262 311 359 412 475 533 599 120 600 448 218 249 255 250 276 282 365 425 453 542 558 580 P210 221 252...295
4
(5. 10ls cmm2) (5. 101’ cm-“) (5. 1O1’cmm2) (5. lO1’ cme2)
at 110kbar, Miissbauer effect Mijssbauer effect, lower limit Hall effect, heating-cycle-dependent
5
x-
Fig. 304. Fe40-x,2Ni,,-,,,Cr,Si,,BBMo,. Saturation magnetization, us,at 4.2 K in fields up to poH= 2 T, as a function of Cr concentration, x [82K9].
Landolt-Biimstein New Series 111/19h
Fig. 305. Fe4,W,,,Ni4,-,,,CrxSi,,B,Mo,. Roomtemperaturesaturation magnetization, u&f,, crystallization temperature, TX, and Curie temperature, Tc, as a function of Cr concentration, x [82K9].
Kobe, Ferchmin
184
6.1.6 Amorphous
3d-M alloys with three 3d elements
[Ref. p. 188
6.1.6.23 Fe-Ni-Mn alloys and Co-Ni-Mn alloys 200r
I
& kg
I
I
I
,-,Ni,MnxB12Si8 , \
180
i T=kK,ji,H=31.
Table 60. Co-Ni-Mn alloy. Saturation magnetization at room temperature [SOH 73.
160 I t3 140
4
T Co,,Ni,,Mn,B,,Si,,
0
1
2
.. *-
3
4
5
0.6
6
Fig.306. Fe,,-,,Ni,Mn,B,,Si,. Magnetization, Q, in an applied field of p,H= 3 T at 4 K, as a function of Mn content, x. The numbers indicate data corresponding to alloys of Ni concentration y = 0, y = 5 and y = 40 [88K6].
6.1.6.24 Co-Fe-Ni alloys Table 61. C-Fe-Ni
alloys. Saturation magnetization at room temperature.
B zm2/kg Co,Fe,,Ni,B& Co,Fe,,Ni,B,C,Si, (Coo.ssFec.e,N1e.e,),oB,,SI,, co so.40Fe,.e,Ni,6.s6B,6Si12 Co,,Fe,Ni,B,,Si,, Co,~Fe,.,NigB,,Si,l.~ Co,aFe,Ni,,B,,Si,, VITROVAC 6010 Co,,Fe,Ni,B,,Si,, (Co,.,,Fe,.,~Ni,.S~)78B,,Si, (Co,.s2Fee.,,Nie.,g),~B,,Sis Co,,Fe,Nt,B,,S1,,Mo, METGLA!?’ 2705M Co,,.,Fe,.tNi,B,2.sSi,,.,Mot., co 69.0Fe,.tNi,.,B,2Si,2Mo,.s Co,,Fe,Ni,B,,Si,,Nb, Co,,.~Fe,.,Ni,.,B,,Si,,Nb2.2 (Co,.,2Fe,.,,Ni,.,,),,Si,,B,, Co,,.sFe,.sNi,.,Si,,Bs Co,g.sFe,.tNi,.,Sit,B, (Co,.tFe,.,Ni,.t)9,Zr,, (Coe.2Fe,.,Ni,.t),,Zrte
Remarks
Ref.
T” 1.69 1.75 0.54 0.44
annealed thermomagnetic treatment
78 0.63 0.60
toroid, at 0.003Hz
0.81 0.61 1.09 0.7
toroid, at 0.003Hz thermomagnetic treatment
0.72 0.73
annealed in 800 A/m at 380 “C (50 “C above Tc) for 0.5 h heat-treated in vacuum
74.2 0.71 0.52 0.73 0.73 1.36 1.46
Kobe, Fercbmin
heat-treated in vacuum heat-treated in vacuum
78H2 78H2 82Pl 7803 78Wl 84B7 84B6 84B7 82Pl 7902 8682 82H.5 87Hl 87Wl 82M2 79Sl 87Hl 87Hl 82M6 82M6
Landolt-B6msfein New Series 111/19h
Ref. p. 1881
6.1.6 Amorphous 3d-M alloys with three 3d elements
185
Table 62. Co-Fe-Ni alloys. Curie temperature, Tc, and crystallization temperature, T,.
TX
(Co~.~sFeo.o~Nio.o~),,B,,Si,, (Coo.,Feo.o,Nio.2~)72B16Si12
Co,,Fe,Ni,,B,,Si,, (Coo.,33Feo.o~~Nio.,o),~(Bo.,Si0.4)27 co ~~.Pe~.~%B1&l Co,t.,Fe,.!Ni,.,B,,Si,, Co,,Fe,Nr,B,,Si,, FC-12 (China) Co,,Fe,Ni,B,,Si, Nio.,o),,(Bo.,Sio.,)2~ I~~~:~;ike~~~~~~S),aB14Si8
K
835
480 440 531 458 585 603 623
789 795
813
CosJFe,Nt,B,,Sr,,Nb, FC-14 (China) Co,,Fe,Ni,B,,Si,,Nb, FC-13 (China) 00 deo.08Nio 30h5Si15B10 ~~o,‘,Fe, sNi ) Zr (Co,:,Fe,:,Ni~::)~~Zr:~
Ref.
kink point inductance method
M2 vs. T
746 463 503 633 633 543 543 603
.690
(coo.,s FeO.~NiO.&JWis Co,,.2Fe,.2Ni,Bl,.sSig.sA12Nbl Co,,.2Fe,.,Ni,.2B,,.sSig.sAl~.sNbt Co,,Fe,Nr,B,,Si,,Mo, METGLASTM 2705 M Co~~.~Fe~.tNil.~B12.0~~12~~l.s
Remarks
T,
K
~810
623 625 635 E 590
87Rl 87Rl 87Rl 8525
~810
r590
magnetically annealed
8525
I
I
1
79Sl 80N6 80N6
I
(Co0.525FeO.O75NiO.~)73( Bo.6Sio.h
1
0 400 450 500 550 600 650 700K 750
Effect of Fk.307. (Coo.szsFeo.07~Nio.4)73(Bo.~Sio.~)2~. isochronal annealing (annealing time t, = 10min) on Curie temperature, T,. AT, vs. annealing temperature, T,. Triangles: as-quenched sample ( Tc = 385 K, crystallization temperature TX= 783 K), circles: preannealed at 700 K for 10 h, solid circles: heating cycle, open circles: cooling cycle. Curie temperatures were determined by inductance method [84Y4]. Land&-Biimstein New Series III/l9h
83Hl 78K4 7803 8526 8526 84C2 84Cl 8632
annealed in 800 A/m at 653 K for 0.5 h inductance method thermogravimetry, DSC peak in da(T)/dT annealed
475 550 718
I
7803 7803 83Vl 78K4 85Y2 8lF3 8525
Kobe, Ferchmin
186
6.1.6 Amorphous 3d-M alloys with three 3d elements
[Ref. p. 188
800 K I 700 e 600 500 0
0.2
0.4
0.6
0.8
1.0
x-
xFig.308. [Co,-,(Fe,,,Ni,,S)J,5Si,,B,,. Room-temperature spontaneous magnetization, p&j,, as a function of Fe-Ni content, x [88H4].
Fig. 309. [Co,.,(Feo.sNi,.,)~,,Si,,B,,. Curie temperature, Tc, as a function of Fe-Ni content, x [85N23.
(Co-Fe-Ni)7861ksi8 0 100 A ot%TM
80
LO 80ot%TMlOO 60 coFig. 311. (Co-Fe-Ni),,B,,Sis. Contours of constant Curie temperature, Tc, in a ternary diagram [85Ml]. 0
Fig. 310. (Co-Fe-Ni),,B,,Si,. Room-temperature saturation magnetic flux density, B,, ternary diagram [UMI].
20
Fig. 312. (Co-Fe-Ni),,Zr,,. Room-temperature saturation magnetic induction, B,, in a field of p,H=lT, ternary diagram [80N6].
Kobe, Ferchmin
Landolt-BBmstein New Series III,/19h
6.1.6 Amorphous 3d-M alloys with four 3d elements
Ref. p. 1881
187
6.1.6.25 Alloys containing four TM elements Table 63. Alloys containing four transition metal elements. Saturation magnetization at room temperature.
Co-Fe-V43 Co,,Fe,V,Cr,B,,Si,
T K
4 T
2m2jkg
Remarks
87Wl
61.2
Co-Fe-O-Mn (CO91.8Fe,.,Mn,.,),,.,Cr,.,B9.~Si~.~
at 100e
0.91
Co-FeNi-V (Coo.88Feo.o~Ni0.03V0.03h5B15Si10
60.4
Co,,Fe,Ni,V,B,,Si,, Co,,Fe,Ni,V,B,,Si,
75.0 73.4
0.68
70
RT
293
Co-Fe-Ni-Mn co 75.0sFe,.,2Ni2Mn,B,,Si, co 64.sFe,.lNi,.,Mn,Bt2Si,
T,
Remarks
K
K
664 683
660 666
inductance method inductance method
T,
Land&-Bkstein New Series III/l9h
Kobe, Ferchmin
82Mll 82C5 82C5 87Wl 87Wl 84H2 82R2 82132
1.12 1.30
Table 64. Alloys containing four transition metal elements. Curie temperature, T,, and crystallization temperature TX [82 R 21.
co 75.08Fel.g2Ni2Mn,Bl,Si, co 64.sFe,.,Ni,.,Mn,B,2Si,
Ref.
188
References for 6.1
6.1.7 Referencesfor 6.1 51 Bl 59Jl 68Tl 69Hl 70Hl 71Hl 71H2 71 Sl 71Vl 73Cl 73Ml 73M2 74Kl 74Ml 74M2 75Al
75El 75Hl 75Ml
75Sl 7532
75Wl 75YI 76AI 76A2 76Cl 76C2 76Dl 76FI 76F2 76Hl 76H2 76Kl 76Ll
Bozorth, R. M.: Ferromagnetism, New York: Van Nostrand Reinhold 1951. Jaggi, R., Hulliger, F., in: Landolt-Bornstein, Electrical Properties I, Vol. 2, part 6, Hellwege, K.-H., Hellwege, A.M. (eds.), Berlin, Giittingen, Heidelberg: Springer 1959,p. 205. Tsuei, C. C., Longworth, G., Lin, S.C. H.: Phys. Rev. 170 (1968) 603. Handrich, K.: Phys. Status Solidi 32 (1969) K55. Hasegawa, R., Tsuei, CC!.: Phys. Rev. B 2(1970) 1631. Hasegawa, R.: Phys. Lett. 37A (1971) 233. Hasegawa, R.: Phys. Rev. B3(1971) 1631. Sinha, A. K.: J. Appl. Phys. 42 (1971) 338. Vonsovskii, S.V.: Magnetizm, Moskva: Nauka 1971(in Russian). Chen, H. S.: Phys. Status Solidi (a) 17 (1973) 561. Mizoguchi, T., Ueda, N., Yamauchi, K., Miyajima, H.: J. Phys. Sot. Jpn. 34 (1973) 1691. Mizoguchi, T., Yamauchi, K., Miyajima, H., in: Amorphous Magnetism, Proc. International Symposium on Amorphous Magnetism, August 17-18, Detroit, MI, Hooper, H.O., de Graaf, A.M. (eds.),New York, London: Plenum Press1973,p. 325. Kazama N., Masumoto, T., Watanabe, H.: J. Phys. Sot. Jpn. 37 (1974) 1171. Mizoguchi, T., Yamauchi, K.: J. Phys. (Paris) 35 (1974) C4-287. Mizoguchi, T., Yamauchi, K., Miyajima, H., in: Proceedings of the International Conference on Magnetism ICM-73, Vol. II, 22-28 August, 1973,Moscow, Moscow: Nauka 1974,p. 54. Axe, J.D., Passell, L., Tsuei, C.C., in: AIP Conf. Proc. Number 24, Magnetism and Magnetic Materials 1974,2Oth Annual Conf. on Magnetism and Magnetic Materials, December 36,1974, San Francisco, Graham jr., C.D., Lander, G.H., Rhyne, J. J. (eds.), New York: American Institute of Physics 1975,p. 119. Egami, T., Flanders, P. J., Graham jr., C. D.: Appl. Phys. Lett. 26(1975) 128. Hauser, J. J.: Phys. Rev. B 12 (1975) 5160. Mook, H. A., Pan, D., Axe, J.D., Passell, L., in: AIP Conf. Proc. Number 24, Magnetism and Magnetic Materials 1974,2Oth Annual Conf. on Magnetism and Magnetic Materials, December 36, 1974, San Francisco, Graham jr., C.D., Lander, G. H., Rhyne, J. J. (eds.), New York: American Institute of Physics 1975,p. 112. Schneider, J., Wiesner, H.: Phys. Status Solidi (a) 29 (1975) 151. Sherwood, R. C., Gyiirgy, E.M., Chen, H.S., Ferris, S.D., Norman, G., in: AIP Conf. Proc. Number 24, Magnetism and Magnetic Materials 1974, 20th Annual Conf. on Magnetism and Magnetic Materials, December 3-6, 1974, San Francisco, Graham jr., C. D., Lander, G. H., Rhyne, J. J. (eds.),New York: American Institute ofPhysics 1975,p. 745. Wohlfarth, E.P.: IEEETrans. Magn. MAG-ll(l975) 1638. Yamada, K., Ishikawa, Y., Endoh, Y., Masumoto, T.: Solid State Commun. 16 (1975) 1335. Amamou, A., IEEE Trans. Magn. MAG-12 (1976) 948. Amamou, A., Durand, J.: Commun. Phys. l(l976) 191. Chien, C.L., Hasegawa, R., in: AIP Conf. Proc. Number 31, International Topical Conference on Structure and Excitations of Amorphous Solids, March 25-27, 1976, Williamsburg, Lucovsky, G., Galeener, F. L. (eds.),New York: American Institute of Physics 1976,p. 366. Chien, C. L., Hasegawa, R.: J. Phys. (Paris) 37 (1976) C6-759. Durand, J.: IEEE Trans. Magn. MAG-12 (1976) 945. Figueroa, E., Lundgren, L., Beckman, O., Bhagat, S.M.: Solid State Commun. 20 (1976) 961. Fujimori, H.; Kikuchi, M., Obi, Y., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 26 (1976) 36. Hasegawa,R., G’Handley, R. C., Tanner, L. E., Ray, R., Kavesh, S.: Appl. Phys. Lett. 29 (1976) 219. Hasegawa, R., O’Handley, R.C., Mendelsohn, L.I., in: AIP Conf. Proc. Number 34, Joint Magnetism and Magnetic Materials - Intermag Conf., June 15-16, 1976, Pittsburgh, Becker, J. J., Lander, G. H. (eds.),New York: American Institute of Physics 1976,p. 298. Kazama, N., Kameda, M., Masumoto, T., in: AIP Conf. Proc. Number 34, Joint Magnetism and Magnetic Materials - Intermag Conf., June 15-16,1976, Pittsburgh, Becker, J. J., Lander, G. H. (eds.),New York: American Institute of Physics 1976,p. 307. Lynn, J. W., Shirane, G., Birgeneau, R. J., Chen, H. S., in: AIP Conf. Proc. Number 34, Joint Magnetism and Magnetic Materials - Intermag Conf., June 15-16, 1976, Pittsburgh, Becker, J.J., Lander, G. H. (eds.),New York: American Institute of Physics 1976,p. 313.
Kobe, Ferchmin
Land&-BBmzfein New Series 111119h
References for 6.1 76Ml 7601 7602 76Rl 76Sl 7682 77Al 77A2 77A3 77Bl 77Cl 77C2 77c3 77c4 77Dl 77D2 77El 77E2 77Fl 77Gl 77Hl 77H2 77Kl 77Ll 77Ml 77M2 77M3 77M4 77Nl 7701 7702 7703 77Rl 77Sl 7732 77Tl
189
Mizoguchi, T., in: AIP Conf. Proc. Number 34, Joint Magnetism and Magnetic Materials - Intermag Conf., June 1516,1976, Pittsburgh, Becker, J. J., Lander, G. H. (eds.),New York: American Institute of Physics 1976,p. 286. O’Handley, R. C., Hasegawa, R., Ray, R., Chou, C.-P.: Appl. Phys. Lett. 29 (1976) 330. O’Handley, R. C., Mendelsohn, L. I., Nesbitt, E. A.: IEEE Trans. Magn. MAG-12 (1976) 942. Rao, K.V., Malmhlill, R., Backstrom, G., Bhagat, S.M.: Solid State Commun. 19 (1976) 193. Swift, W. M., Foster, K.: Mater. Sci. Eng. 23 (1976) 267. Szofran, F. R., Gruzalski, G. R., Weymouth, J. W., Sellmyer, D. J., Giessen, B.C.: Phys. Rev. B 14 (1976) 2160. Amamou, A., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27,1976, Troy, NY, Levy, R. A., Hasegawa, R. (eds.), New York, London: Plenum Press1977,p. 265. Anderson III, P. M., Lord jr., A. E.: J. Appl. Phys. 48 (1977) 4839. Axe, J. D., Shirane, G., Mizoguchi, T., Yamauchi, K.: Phys. Rev. B 15 (1977) 2763. Becker, J. J., Luborsky, F. E., Walter, J. L.: IEEE Trans. Magn. MAG-13 (1977) 988. Chien, C. L., Hasegawa, R.: Phys. Rev. B 16 (1977) 3024. Chien, C.L., Musser, D.P., Luborsky, F. E., Becker, J. J., Walter, J.L.: Solid State Commun. 24 (1977) 231. Chien, C. L., Hasegawa, R.: Phys. Rev. B 16 (1977) 2115. Chen, H. S.: Ser. Metall. 11(1977) 367. Durand, J., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27, 1976, Troy, NY, Levy, R.A., Hasegawa, R. (eds.), New York, London: Plenum Press 1977,p. 305. Durand, J., Yung, M., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27,1976, Troy, NY, Levy, R. A., Hasegawa, R. (eds.), New York, London: Plenum Press1977,p. 275. Egami, T.: J. Am. Ceram. Sot. 60 (1977) 128. Eno, H. F., Tyler, E. H., Luo, H. L.: Bull. Am. Phys. Sot. 22 (1977) 457. Fujimori, H., Morita, H., Obi, Y., Ohta, S., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27,1976, Troy, NY, Levy, R.A., Hasegawa, R. (eds.), New York, London: Plenum Press1977,p. 393. Gruzalski, G. R., Weymouth, J. W., Sellmyer, D. J., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27, 1976, Troy, NY, Levy, R.A., Hasegawa, R. (eds.),New York, London: Plenum Press1977,p. 235. Hargitai, C., Lovas, A., in: Third International Conference on Soft Magnetic Materials, September 14-16, 1977, Bratislava, Czechoslovakia, Proc. SMM-3, part 2, Benda, O., Mayer, I., Slama, J. (eds.), European Physical Society 1977,p. 564. Hoselitz, K.: Phys. Status Solidi (a) 44 (1977) K191. Kronmiiller, H., Grimm, H.: J. Magn. Magn. Mater. 6 (1977) 57. Luborsky, F.E., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27,1976, Troy, NY, Levy, R. A., Hasegawa, R. (eds.), New York, London: Plenum Press1977,p. 345. Marzwell, N. I.: J. Magn. Magn. Mater. 5 (1977) 67. Masumoto, T., Watanabe, K., Mitera, M., Ohnuma, S., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27, 1976, Troy, NY, Levy, R.A., Hasegawa, R. (eds.),New York, London: Plenum Press1977,p. 369. Mizoguchi, T., von Molnar, S., Cargill III, G. S., Kudo, T., Shiotani, N., Sekizawa, H., in: Amorphous Magnetism II, Proc. Intern. Symp. on Amorphous Magnetism, August 25-27,1976, Troy, NY, Levy, R. A., Hasegawa, R. (eds.),New York, London: Plenum Press1977,p. 513. Mohri, K., Korekoda, S.: Mem. Kyushu Inst. Technol. Engn. 7 (1977) 25. Narita, K., Yamasaki, J., Fukunaga, H.: IEEE Trans. Magn. MAG-13 (1977) 1544. Obi, Y., Fujimori, H., Morita, H.: Sci. Rep. Res. Inst. Tohoku Univ. Ser.A 26 (1977) 214. O’Handley, R. C.: Solid State Commun. 22 (1977) 485. O’Handley, R. C., Hasegawa, R., Ray, R., Chou, C.-P.: J. Appl. Phys. 48 (1977) 2095. Raj, K., Durand, J., Budnick, J. I., Tsuei, C. C., Skalski, S.: Solid State Commun. 24 (1977) 189. Schneider, J., Handstein, A., Hesske,R., Zaveta, K.: Physica 86-88B (1977) 301. Schowalter, L. J., Salamon, M. B., Tsuei, C. C., Craven, R. A.: Solid State Commun. 24 (1977) 525. Tsuya, N., Arai, K.I.: J. Magn. Sot. Jpn. 1(1977) 14.
Land&-BBmstein New Series IIIIl9h
Kobe, Ferchmin
References for 6.1
190 77Vl 77Yl 78Al 78Bl 78B2 78B3 78Cl 78C2 78C3 78Fl
78F2 78F3 78F4
78F5
78Gl 78G2 78Hl 78H2 78H3 78H4 78Kl 78K2
78K3
van der Borst, J., den Broeder, F. J. A., Scheffers,T.: J. Appl. Phys. 48 (1977) 1724. Yamauchi, H., Kameda, M., Kazama, N., Watanabe, H., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 26 (1977) 208. Amamou, A., Krill, G.: Solid State Commun. 28 (1978) 957. Balogh, J., Vincze, I.: Solid State Commun. 25 (1978) 695. Birgenau, R. J., Tarvin, J.A., Shirane, G., Gyiirgy, E. M., Sherwood, R.C., Chen, H. S., Chien, C.L.: Phys. Rev. B 18 (1978) 2192. Buschow, K. H. J.: Solid State Commun. 27 (1978) 275. Chang. P.H., Malozemoff, A.P., Grimsditch, M., Senn, W., Winterling, G.: Solid State Commun. 27(1978)617. Chien, C. L., Hasegawa, R.: J. Appl. Phys. 49 (1978) 1721. Chien, C. L.: Phys. Lett. 68A (1978) 394. Ferrer, R., Harris, R., Sung, S.H., Zuckermann, M. J., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex, 3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 137. Fukamichi, K., Kikuchi, M., Hiroyoshi, H., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, Suppl. June 1978,p. 199. Fukamichi, K., Kikuchi, M., Hiroyoshi, H., Masumoto, T.: Kotai Butsuri 13 (1978) 322 (Japan). Fukamichi, K., Kikuchi, M., Hiroyoshi, H., Masumoto, T., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex,3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 117. Fujimori, H., Kato, T., Masumoto, T., Morita, H., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex, 3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 240. Goto, M., Tange, H., Tokunaga, T.: Jpn. J. Appl. Phys. 17 (1978) 1877. Gyorgy, E. M., in: Metallic Glasses,Gilman, J. J., Leamy, H. J. (eds.), Metals Park, OH: American Society for Metals 1978,p. 275. Hasegawa,R., Ray, R.: J. Appl. Phys. 49 (1978) 4174. Hatta, S., Egami, T., Graham jr., C.D.: IEEETrans. Magn. MAG-14(1978) 1013. Hauser, J. J., Waszczak,J.V.: Phys. Rev. B 18 (1978) 6206. Heiman, N., Hempstead, R. D., Kazama, N.: J. Appl. Phys. 49 (1978) 5663. Kazama, N., Heiman, N., White, R. L.: J. Appl. Phys. 49 (1978) 1706. Kazama, N. S., Mitera, M., Masumoto, T., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex, 3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 164. Kobliska, R. J., Aboaf, J. A., Gangulee, A., Cuomo, J. J., Klokholm, E.: Appl. Phys. Lett. 33 (1978) 473.
78K4 78Ll 78Ml
78M2 78M3
78M4 78M5 78M6 78M7 78Nl 7801 7802
Kohmoto, O., Yamaguchi, N., Ohya, K., Fujishima, H., Ojima, T.: IEEE Trans. Magn. MAG-14 (1978) 949. Lienard, A., Rebouillat, J.P.: J. Appl. Phys. 49 (1978) 1680. Malmhlll, R., Backstrom, G., Rao, K.V., Bhagat, S.M., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex,3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 145. MalmhLll, R., Backstrom, G., Rao, K.V., Bhagat, S.M., Meichle, M., Salamon, M. B.: J. Appl. Phys. 49 (1978) 1727. Marohnic, Z., Babic, E., Ivkov, J., Hamzic, A., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex,3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978,Vol. 2, p. 149. MaImhIll, R., BHckstr8m,G., Bhagat, S.M., Rao, K.V.: J. Non-Cryst. Solids 28 (1978) 159. McGuire, T. R., Gambino, R. J.: IEEE Trans. Magn. MAG-14 (1978) 838. Mitera, M., Naka, M., Masumoto, T., Kazama, N., Watanabe, K.: Phys. Status Solidi (a) 49 (1978) K163. Mohri, K., Korekoda, S., Sudoh, E.: IEE of Japan, Technical Meeting on Applied Magnetics, AM78 1978, p. 15-l. Narita, K., Yamasaki, J., Fukunaga, H.: IEEETrans. Magn. MAG-14(1978) 1016. O’Handley, R. C.: Phys. Rev. B 18 (1978) 930. O’Handley, R.C., Chou, C.-P.: J. Appl. Phys. 49 (1978) 1659.
Kobe, Ferchmin
Land&-BBmstein New Series 111119h
References for 6.1 7803 7804 78Sl 78Tl 78T2 78Wl 78W2 7821 7822 79Bl 79B2 79B3 79Cl 79C2 79c3 79Dl 79D2 79Fl 79F2 79Gl 79Hl 79H2 79H3 79H4 79H5 79H6 79H7 79Kl 79K2 79Ll 79L2 79L3 79Ml 79M2 79M3 79M4 79M5 79Nl 7901 7902 79Pl 79P2 79Rl 79Sl 7932 7933 7984 79Tl
191
Ohnuma, S., Masumoto, T., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex, 3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978, Vol. 2, p. 197. Onn, D. G., Antoniuk, T. H., Donnelly, T. A., Johnson, W. D., Egami, T., Prater, J. T., Durand, J.: J. Appl. Phys. 49 (1978) 1730. Shimada, Y., Kojima, H.: Phys. Status Solidi (a) 47 (1978) K119. Tarvin, J. A., Shirane, G., Birgenau, R. J., Chen, H. S.: Phys. Rev. B17 (1978) 241. Tiiriik, E., Hausch, G., in: Rapidly Quenched Metals III, Proc. Third Int. Conf. on Rapidly Quenched Metals, Sussex, 3-7 July 1978, Cantor, B. (ed.), London: The Metals Society 1978, Vol. 2, p. 105. Watanabe, I., Kawauchi, M., Shim&u, T.: Solid State Commun. 25 (1978) 1133. Wolf, W.: J. Magn. Magn. Mater. 9 (1978) 200. Zentko, A., Do-Cong-Vinh, Zentkova, A., Duhaj, P.: J. Phys. (Paris) 39 (1978) (X-951. Zielinski, P., Matyja, H.: Hutnik45 (1978) 22. Bhagat, S.M., Spano, M. L., Rao, K. V.: J. Appl. Phys. 50 (1979) 1580. Brunsch, A.: J. Appl. Phys. 50 (1979) 7600. Buschow, K. H. J., van der Kraan, A.M.: Phys. Status Solidi (a) 53 (1979) 665. Chien, C. L., Hsu, J. H., Stokes,J. P., Bloch, A. N., Chen, H. S.: J. Appl. Phys. 50 (1979) 7647. Chen, Y.-N., Egami, T.: J. Appl. Phys. 50 (1979) 7615. Chien, C. L., Chen, H. S.: J. Appl. Phys. 50 (1979) 1574. Donnelly, T. A., Egami, T., Onn, D. G.: Phys. Rev. B 20 (1979) 1211. Durand, J., Alliaga-Guerra, D., Panissod, P., Hasegawa, R.: J. Appl. Phys. 50 (1979) 7679. Fujimori, H., Kazama, N. S.: Sci. Rep. Res. Inst. TohokuUniv. Ser. A 27 (1979) 177. Fukamichi, K., Hiroyoshi H, Kikuchi, M., Masumoto, T.: J. Magn. Magn. Mater. 10 (1979) 294. Gruzalski, G. R., Sellmyer, D. J.: Phys. Rev. B 20 (1979) 184. Hasegawa, R., Ray, R.: J. Appl. Phys. 50 (1979) 1586. Hasegawa, R., Ray, R.: Phys. Rev. B 20 (1979) 211. Hatta, S., Egami, T.: J. Appl. Phys. 50 (1979) 1589. Hatta, S., Egami, T., Graham jr., C. D.: Appl. Phys. Lett. 34 (1979) 113. Hauser, J. J., Hsu, F. S.L., Kammlott, G. W., Waszczak,J.V.: Phys. Rev. B 20 (1979) 3391. Hasegawa, R., O’Handley, R.C.: J. Appl. Phys. 50 (1979) 1551. Heiman, N., Kazama, N.: Phys. Rev. B 19 (1979) 1623. Kronmiiller, H., Flihnle, M., Domann, M., Grimm, H., Grimm, R., Griiger, B.: J. Magn. Magn. Mater. 13 (1979) 53. Krishnan, R., Prasad, S., Branska, K.: J. Appl. Phys. 50 (1979) 7639. Liu, C. M., Ingalls, R., Whitmore, J. E., Rao, K. V., Bhagat, S.M.: J. Appl. Phys. 50 (1979) 1577. Luborsky, F. E., Flanders, P. J., Liebermann, H. H., Walter, J. L.: IEEE Trans. Magn. MAG-15 (1979) 1961. Luborsky, F. E., Becker, J. J., Walter, J. L., Liebermann, H. H.: IEEE Trans. Magn. MAG-15 (1979) 1146. Malmhall, R., Bhagat, S.M., Rao, K. V., Backstrom, G.: Phys. Status Solidi (a) 53 (1979) 641. Malmhall, R., Backstrom, G., Rao, K. V., Egami, T.: J. Appl. Phys. 50 (1979) 7656. Majumdar, A. K.: Solid State Commun. 29 (1979) 85. Malozemoff, A. P., Chang, P. H., Grimsditch, M.: J. Appl. Phys. 50 (1979) 5896. Musser, D., Chien, C. L., Luborsky, F. E., Walter, J. L.: J. Appl. Phys. 50 (1979) 1571. Nielsen, H. J.V.: J. Magn. Magn. Mater. 12 (1979),187. O’Handley, R. C., Chou, C.-P., DeCristofaro, N.: J. Appl. Phys. 50 (1979) 3603. Ohnuma, S., Masumoto, T.: J. Appl. Phys. 50 (1979) 7597. Prokoshin, A. F., Molotilov, B. V., Gratsianov, Yu. A., Zhelnov, A. N.: Pis’ma Zh. Eksp. Teor. Fiz. 29 (1979) 676. Puszkarski, H.: Prog. Surf. Sci. 9(1979) 191. Rhyne, J. J., Lynn, J. W., Luborsky, F. E., Walter, J. L.: J. Appl. Phys. 50 (1979) 1583. Sakakima, H., Senno, H., Yanagiuchi, Y., Hirota, E.: Nat. Tech. Rep. Matsushita Electr. Ind. Co. Osaka 25 (1979) 858. Schurer, P. J., Morrish, A. H.: Solid State Commun. 30 (1979) 21. Shimada, Y., Kojima, H.: J. Appl. Phys. 50 (1979) 1541. Shimada, Y., Kojima, H.: Phys. Status Solidi (a) 47 (1979) K119. Takahashi, M., Miyazaki, T.: Jpn. J. Appl. Phys. 18 (1979) 743.
Land&-BBmstein New Series III/19h
Kobe, Ferchmin
192 79T2 79Wl 80Al 80Bl 80B2 80B3
80B4 80BS 80B6 80B7 8OCl 80Dl 80D2 80D3 80El 80Fl 80Gl
80G2 80G3 80G4 80Hl 80H2 80H3 80H4 80H5 80H6 80H7 8011 8012 80Kl 80K2 80K3 80K4 80KS 80K6 80K7 80K8 80Ll 8OL3 8OL4 80Ml 80M2 80M3 80Nl 80N2
References for 6.1 Takahashi, M., Miyazaki, T., Watanabe, A.: J. Jpn. Inst. Met. 43 (1979) 339. Watanabe, I.; Kawauchi, M., Shim&, T.: Jpn. J. Appl. Phys. 18 (1979) 453. Arai, K. I., Tsuya, N.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, Suppl. 28 (1980) 247. Babic, E., Marohnic, Z., Saub, K., Fogarassy, B., Kemeny, T.: J. Magn. Magn. Mater. 15-18 (1980) 249. Babic, E., Krsnik, R., Liebermann, H. H.: Preprint, 1980 Annual Conference of the EPS Condensed Matter Division, April 9-l 1, Antwerp, Belgium, 1980. Berger, L., Bergmann, G., in: Hall Effect and its Applications (1980) Proc. Commemorative Symposium, Baltimore, MD, 13 November 1979, Chien, C.L., Westgate, C.R. (eds.), New York: Plenum Press1980,p. 55. Bhagat, S.M., Spano, M. L., Chen, H. S., Rao, K. V.: Solid State Commun. 33 (1980) 303. Bhanu Prasad, B., Bhatnagar, A. K.: Solid State Commun. 36 (1980) 661. Biihnke, G., Rosenberg, M.: J. Phys. (Paris) 41(1980) C8-481. Butvin, P., Duhaj, P., Frait, Z.: J. Magn. Magn. Mater. 15-18(1980) 1404. Cochrane, R. W., Strom-Olsen, J.O., Rebouillat, J.P., Blanchard, A.: Solid State Commun. 35 (1980) 199. Dey, S., Gorres, U., Nielsen, H. J.V., Rosenberg, M., Sostarich, M.: J. Phys. (Paris) 41 (1980) C8-678. Dublon, G.: Phys. Status Solidi (a) 60 (1980) 287. Dubois, J.M., LeCaer, G.: J. Phys. E 13 (1980) 1002. Enokizono, M.: Daibun University, Machine Design Faculty Report Nr. 7,1980, p. 49. Figueroa, E., Gramm, K., Beckman, O., Rao, K.V.: Uppsala University, Institute of Technology Report UPTEC 8034R, April 1980. Goto, M., Tokunaga, T., Tange, H., Hamatake, T.: Jpn. J. Appl. Phys. 19 (1980) 51. Greer, A. L., Gibbs, M. R. J., Leake, J. A., Evetts, J. E.: J. Non-Cryst. Solids 38 & 39 (1980) 379. Gregor, V., Kadlecova, J.: Phys. Status Solidi (b) 97 (1980) K49. Grimsditch, M., Malozemoff, A., Brunsch, A., Suran, G.: J. Magn. Magn. Mater. 15-18(1980) 769. Handrich, K., Kobe, S.: Amorphe Ferro- und Ferrimagnetika, Berlin: Akademie-Verlag 1980. Hasegawa,R.: J. Phys. (Paris) 41(1980) C8-701. Hatta, S., Mizoguchi, T.: Bull. Jpn. Inst. Metals 19 (1980) 246. Hines, W. A., Glover, K., Clark, W. G., Kabacoff, L.T., Modzelewski, C. U., Hasegawa, R., Duwez, P.: Phys. Rev. B 21(1980) 3771. Hiroyoshi, H., Hoshi, A., Fujimori, H., Nakagawa, Y.: J. Phys. Sot. Jpn. 48 (1980) 830. Hilzinger, H. R.: NTG-Fachber. 76 (1980) 283. Hilzinger, H.R., Kunz, W.: J. Magn. Magn. Mater. 15-18 (1980) 1357. Ikeda, S., Ishikawa, Y.: J. Phys. Sot. Jpn. 49(1980) 950. Ito, S., Aso, K., Makino, Y., Uedaira, S.: Appl. Phys. Lett. 37 (1980) 665. Kaul, S.N.: Phys. Rev. B 22 (1980) 278. Kazama, N. S., Fujimori, H., Watanabe, H.: J. Magn. Magn. Mater. 15-18 (1980) 1423. Kazama, N. S., Masumoto, T., Mitera, M.: J. Magn. Magn. Mater. 15-18 (1980) 1331. Kamarad, J., Arnold, Z., Schneider, J., Krupicka, S.: J. Magn. Magn. Mater. H-18(1980) 1409. Kemeny, T., Schaafsma, A.S., Donald, I.W., Davies, H.A., Fogarassy, B., Vincze, I., van der Woude, F.: J. Phys. (Paris) 41(1980) C8-878. Kikuchi, M., Fukamichi, K., Masumoto, T.: IEEETrans. Magn. MAG-16(1980) 913. Kohmoto, O., Fujishima, H., Ojima, T.: IEEE Trans. Magn. MAG-16 (1980) 440. Krause, J.K., Long, T. C., Egami, T., Onn, D. G.: Phys. Rev. B 21(1980) 2886. Lienard, A., Rebouillat, J. P., Garoche, P., Veyssie,J. J.: J. Phys. (Paris) 41 (1980) C8658. Luborsky, F. E., Walter, J. L.: IEEE Trans. Magn. MAG-16 (1980) 572. Luborsky, F. E., Walter, J. L., Liebermann, H. H., Wohlfarth, E.P.: J. Magn. Magn. Mater. 15-18 (1980) 1351. Matsuyama, T., Ohta, K., Kajiura, M., Teranishi, T.: Jpn. J. Appl. Phys. 19 (1980) 55. McGuire, T. R., Gambino, R. J., O’Handley, R. C., in: Hall Effect and its Applications (1980) Proc. Commemorative Symposium, Baltimore, MD, 13 November 1979, Chien, C. L., Westgate, C. R. (eds.),New York: Plenum Press1980,p. 137. Motoya, K., Nishi, M., Ito, Y., Mizoguchi, T.: J. Phys. Sot. Jpn. 49 (1980) 115. Narita, K., Fukunaga, H., Yamasaki, J., Hara, K.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, Suppl. 28(1980)251. Narita, K., Yamasaki, J., Fukunaga, H.: IEEE Trans. Magn. MAG-16 (1980) 436.
Kobe, Ferchmin
Landok-B6msfein New Series 111,/19h
References for 6.1 80N3 80N4 80N5 80N6 8001 8002 8003 8OPl 8OP2 80Rl 80R2 8OSl 8OS2 8OS3 80Tl 80T2 80T3 8OVl 8OWl 8OW2 8OYl 81Al 8lA2 81Bl 81B2 81B3 81B4 81B5 81B6 81B7 81B8 81Cl 81Dl 81D2 81Fl 81F2 81F3 81 F4 81Gl 81 G2 81G3
193
Narita, K., Fukunaga, H., Yamasaki, J., Hara, K.: J. Magn. Magn. Mater. 19 (1980) 145. Nielsen, H. J.V.: J. Magn. Magn. Mater. 19 (1980) 138. Nielsen, 0. V., Nielsen, H. J. V.: Solid State Commun. 35 (1980) 281. Nose, M., Masumoto, T.: Sci. Rep. Res. Inst. TohokuUniv. Ser.A, Suppl. 28 (1980) 222. Obi, Y., Morita, H., Fujimori, H.: IEEE Trans. Magn. MAG-16 (1980) 1132. Ohnuma, S., Shirakawa, K., Nose, M., Masumoto, T.: IEEE Trans. Magn. MAG-16 (1980) 1129. Ok, H. N., Morrish, A. H.: Phys. Rev. B 22 (1980) 4215. Potocky, L., Zentko, A., Novak, L., Duhaj, P.: J. Magn. Magn. Mater. 19 (1980) 147. Prokoshin, A.F., Molotilov, B.V., Gratsianov, Yu. A., Zhelnov, A.N., in: Pretsizionnye splavy, Skvortsov, E. E. (ed.), Moskva: Metallurgiya 1980,p. 7. Rao, K. V., MalmhHll, R., Bhagat, S. M., Backstrom, G., Chen, H. S.: IEEE Trans. Magn. MAG-16 (1980) 896. Rabenberg, L., Mishra, R. K., Thomas, G., Kohmoto, O., Ojima, T.: IEEE Trans. Magn. MAG-16 (1980) 1135. Shirakawa, K., Ohnuma, S., Nose, M., Masumoto, T.: IEEE Trans. Magn. MAG-16 (1980) 910. Shingu, P. H., Chudo, M., Ozaki, R.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A, Suppl. 28 (1980) 85. Stubicar, M., Ivezic, T., Babic, E., in: Amorphous Metallic Materials, Proc. Conf. Smolenice 1978, Physics and Applications, Vol. 5, Duhaj, P., Mrafko, P. (eds.), Bratislava: VEDA 1980,p. 317. Takahashi, M., Ishio, S., Sato, F.: Sci. Rep. Res. Inst. Tohoku Univ. A, Suppl. 28 (1980) 287. Tarnoczi, T., Nagy, I., Hosso, M.: Central ResearchInstitute for Physics, Budapest, Preprint KFKI1980-40,198O. Tyagi, S., Steinberg, J., Lord jr., A. E.: Appl. Phys. Lett. 37 (1980) 618. Vincze, I., van der Woude, F., Kemeny, T., Schaafsma,A. S.: J. Magn. Magn. Mater. 15-18 (1980) 1336. Wagner, D., Wohlfarth, E. P.: J. Magn. Magn. Mater. 15-18(1980) 1345. Wolf, W., Mohs, R., Kiinig, U.: J. Magn. Magn. Mater. 19 (1980) 177. Yeshurun, Y., Salamon, M. B., Rao, K.V., Chen, H. S.: Phys. Rev. Lett. 45 (1980) 1366. Aboaf, J. A., Klokholm, E.: J. Appl. Phys. 52 (1981) 1844. Afonso, C. N., Giron, S., Lagunas, A. R., Vicent, J. L.: IEEE Trans. Magn. MAG-17 (1981) 2849. Babic, E., Marohnic, Z., Fogarassy, B., Kemeny, T., Lovas, A., in: Conf. on Metallic Glasses: Science and Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central ResearchInstitute for Physics 1981,Vol. I, p. 389. Babic, E., Ristic, R., Miljak M., Scott, M. G., Gregan, G.: Solid State Commun. 39 (1981) 139. Baczewski, L. T., Maszkiewicz, M., in: Conf. on Metallic Glasses:Scienceand Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central Research Institute for Physics 1981,Vol. II, p. 3. Beckman, O., Gramm, K., Lundgren, L., Rao, K.V., Chen, H.S.: Solid State Commun. 39 (1981) 777. Bhanu Prasad, B., Bhatnagar, A. K., Jagannathan, A., in: Proc. Symposium on Solid State Physics, Dept. Atomic Energy India 1981,p. 97. Bhagat, S. M., Geohegan, J. A., Spano, M. L., Chen, H. S.: J. Appl. Phys. 52 (1981) 1741. Boll, R., Hilzinger, H.-R.: Elektrotech. Z. 102 (1981) 1096. Borisov, V. T., Dukhin, A. I., Kachalov, N. D., Markelov, N. D., Srebryanskii, G. A., in: Amorfnye pretsizionnye splavy, Molotilov, B. V. (ed.), Moskva: Metallurgiya 1981,p. 68. Chu, C. W., Wu, M. K., Jin, B. J., Lai, W. Y., Chen, H. S.: Phys. Rev. Lett. 46 (1981) 1643. Dey, S.: Thesis, Bochum University, Bochum, FRG, 1981. Dey, S., Deppe, P., Rosenberg, M., Luborsky, F. E., Walter, J. L.: J. Appl. Phys. 52 (1981) 1805. Ferchmin, A. R., in: Magnetism in Solids, Some Current Topics, Proc. 22 Scottish Univ. Summer School in Physics, Dundee, Aug. 1981, Cracknell, A.P., Vaughan, R.A., (eds.), Edinburgh: SUSSP1981,p. 61. Franz, W. T., Steck, G., Kramer, J. J., Murray, R. B., Onn, D. G.: J. Appl. Phys. 52 (1981) 1883. Fujimori, H.,Yoshimoto, H., Masumoto, T.: J. Appl. Phys. 52 (1981) 1893. Fukamichi, K., Gambino, R. J.: IEEE Trans. Magn. MAG-17 (1981) 3059. Gaunt, P., Ho, S.C., Williams, G., Cochrane, R. W.: Phys. Rev. B 23 (1981) 251. \ Geohegan, J.A., Bhagat, S.M.: J. Magn. Magn. Mater. 25 (1981) 17. Greneche, J.-M.: Thesis, Universitt Paris, France, 1981.
Land&-BBmstein New Series III/19h
Kobe, Ferchmin
References for 6.1
194
8102 81Pl
Gukasov, A.G., Mikhailova, V.E., Okorokov, A.I., Runov, V.V., Makarov, V. A., Mal’tsev, E.I., Puzey, I.M., in: Tezisy dokladov soveshchaniya pretsizionnye amorfnye materialy i ich primenenie v priborostroenii, Krichevskaya, E. M., Grzheskevich, N. R. (eds.), Moskva: Chermetinformatsiya 1981,p.41. Hasegawa,R.: J. Appl. Phys. 52 (1981) 1847. Hines, W.A., Modzelewski, C.U., Paolino, R.N., Hasegawa, R.: Solid State Commun. 39 (1981) 699. Hilscher, G., Haferl, R., Kirchmayr, H., Miiller, M., Giintherodt, H.-J.: J. Phys. F ll(l981) 2429. Hoselitz, K.: Phys. Status Solidi (a) 65 (1981) K91. Inomata, K.,Hasegawa, M., Shimanuki, S., Sahashi, S.: J. Magn. Sot. Jpn. S(1981) 57. Ishikawa, Y., Yamada, K., Tajima, K., Fukamichi, K.: J. Phys. Sot. Jpn. 50 (1981) 1958. Kaul, S.N.: Phys. Rev. B 23 (1981) 1205. Kaul, S.N.: Phys. Rev. B 24 (1981) 6550. Kaul, S.N.: IEEETrans. Magn. MAG-17 (1981) 1208. Kaul, S.N., Rosenberg, M.: Philos. Mag. B44 (1981) 357. Kaneko, T., Shirakawa, K., Ohnuma, S., Nose, M., Fujimori, H., Masumoto, T.: J. Appl. Phys. 52 (1981) 1826. Keller, H., Rao, K.V., Debrunner, P.G., Chen, H. S.: J. Appl. Phys. 52 (1981) 1753. Kohmoto, O., Ohya, K.: J. Appl. Phys. 52 (1981)928. Kopasz, C., Stefan, M., Boc, I., in: Conf. on Metallic Glasses: Science and Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.)., Budapest: Central Research Institute for Physics 1981,Vol. II, p. 69. Larikov, L. N., Usov, Yu.V., Shachov, 0. P., Shmatko, 0. A.: Dopov. Akad. Nauk Ukr. RSR, Ser. A 1981,No. 9, p. 78. Liebermann, H.H.: IEEE Trans. Magn. MAG-17 (1981) 1286. Lovas, A., Potocky, L., Novak, L., Kisdi-Koszo, E., Zambo-Balla, K., in: Conf. on Metallic Glasses: Science and Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central ResearchInstitute for Physics 1981,Vol. II, p. 87. Luborsky, F. E., Liebermann, H. H.: Mater. Sci. Eng. 49 (1981) 257. Luborsky, F. E., Walter, J. L.: IEEE Trans. Magn. MAG-17 (1981) 1204. Luborsky, F. E., Walter, J. L., Liebermann, H. H.: IEEE Trans. Magn. MAG-17 (1981) 3467. Lucinski, T., in: Materialy III Ogolnopolskiej Konferencji Fizyka Magnetykow 81, Morkowski, J., Fechner, B. (eds.), Poznan: Institute of Physics, A. Mickiewicz Univ., Institute Molecular Physics, Polish Academy of Sciences1981, p. 352. Lynn, J. W., Erwin, R. W., Rhyne, J. J., Chen, H. S.: J. Appl. Phys. 52 (1981) 1738. Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 29 (1981) 265. Matsuura, M., Mizutani, U., Yazawa, Y.: J. Phys. F ll(l981) 1393. Makino, Y., Aso, K., Uedaira, S., Hayakawa, M., Ochiai, Y., Hotai, H.: J. Appl. Phys. 52 (19811 2477. Mei, L.-M., Zhang. W.-X., Kuo, Y.-C.: J. Appl. Phys. 52(1981) 1856. Modzelewski, C., Savage,H.T., Kabacoff, L.T., Clark, A.E.: IEEE Trans. Magn. MAG-17 (1981 ) 2837. Mohri, K., Sudoh, E.: IEEE Trans. Magn. MAG-17 (1981) 1317. Mohri, K., Takeuchi, S.: IEEE Trans. Magn. MAG-17 (1981) 3379. Mohri, K.,Takeuchi, S., Satoh,Y.: J. Magn. Sot. Jpn. 5(1981) 173. Mohri, K., Takeuchi, S., Satoh, Y., in: Technical Meeting of IEE of Japan, Conf. Materials on Magnetism Research,Vol. MAG-81,1981, p. 63 (Japan). Naoe, M., Kodaira, M., Hoshi, Y., Yamanaka, S.: IEEE Trans. Magn. MAG-17 (1981) 3062. Nielsen, H. J.V., Nielsen, O.V., in: Conf. on Metallic Glasses: Science and Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central Research Institute for Physics 1981,Vol. II, p. 95. Nose, M., Kanehira, J., Ohnuma, S., Shirakawa, K., Masumoto, T.: J. Appl. Phys. 52 (1981) 1911. Ohnuma, S., Nose, M., Shirakawa, K., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 29 (1981) 254. Ok, H.N., Baek, K. S., Kim, C. S.: Phys. Rev. B 24 (1981) 6600. Pekala, K., Pekala, M., Latuszkiewicz, J., Trykozko, R., Matyja, H.: IEEE Trans. Magn. MAG-17
81 Rl
Rivoire, M., Krishnan R., Rougier, P., Sztem, J., Sella, C.: J. Appl. Phys. 52 (1981) 1853.
81 G4
81Hl 81H2 81H3 81 H4 8111 8112 81Kl 81K2 81K3 81K4 81 KS 81K6 81K7 81K8 81Ll 81 L2 81 L3 81 L4 81 LS 81L6 81 L7 81L8 81 Ml 81M2 81M3 81M4 81M5 81M6 81M7 81M8 81M9 81Nl 81 N2 81N3 8101
(1981) 2846.
Kobe, Ferchmin
’
References for 6.1 81 R2 81Sl 81 S2 81S3 81S4 81S5 81S6 81S7 81S8 81S9 81SlO 81Sll 81Tl 81T2 81T3 81T4 81Wl 81W2 81Yl 81Y2 81Y3 82Al 82A2 82A3 82A4 82Bl 82B2 82B3 82B4 82B5 82B6 82B7 82B8 82B9 82BlO 82Cl 82C2 82C3 82C4 ‘_ 82C5 82C6
195
Roy, R., Majumdar, A. K.: J. Magn. Magn. Mater. 25 (1981) 83. Sadate-Akhavi, H., Hadjipanayis, G., Sellmyer, D. L.: Phys. Rev. B 24 (1981) 5318. Salamon, M. B., Rao, K.V., Yeshurun, Y.: J. Appl. Phys. 52 (1981) 1687. Salzmann, P., Hubert, A.: J. Magn. Magn. Mater. 24 (1981) 168. Sakakima, H., Senno H., Yanagiuchi, Y., Hirota E.: J. Appl. Phys. 52 (1981) 2480. Schneider, J., Arnold, Z., Kamarad, J., Handstein, A.: Phys. Status Solidi (a) 64 (1981) K133. Severin, C. S., Chen, C. W., Bevolo, A. J., Lin, M. C.: J. Appl. Phys. 52 (1981) 1850. Shiiki, K., Otomo, S., Kudo, M.: J. Appl. Phys. 52 (1981)2483. Shirakawa, K., Kaneko, T., Nose, M., Ohnuma, S., Fujimori, H., Masumoto, T.: J. Appl. Phys. 52 (1981) 1829. Sostarich, M., Dey, S., Deppe, P., Rosenberg, M., Czjzek, G., Oestreich, V., Schmidt, H., Luborsky, F. E.: IEEE Trans. Magn. MAG-17 (1981) 2612. Spano, M. L., Bhagat, S.M.: J. Magn. Magn. Mater. 24(1981) 143. Swartz, J. C., Kossowsky, R., Haugh, J. J., Krause, R. F.: J. Appl. Phys. 52 (1981) 1908. Tarnoczi, T., Nagy I., Albert B., Hosso, M., in: Conf. on Metallic Glasses:Scienceand Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central Research Institute for Physics 1981, Vol. II, p. 335. Takahashi, M.: Preprint, 1981. Tima, T., Zentko, A., Duhaj, P., in: Sedma konference ceskoslovenskych fyziku, Praha, August 1981,Part 1, Vol. 2, Praha: Fyzikalni Vedecka SekceJCSMF, 1981,paper 07-45. Tsunashima, S., Mitsuya, S., Uchiyama, S.: Jpn. J. Appl. Phys. 20 (1981) 727. Wagner, D., Wohlfarth, E.P.: J. Phys. F ll(l981) 2417. Wolny, J., Soltys, J., Calka, A., Oles, A., in: Conf. on Metallic Glasses: Science and Technology, Budapest 1980, Proc., Hargitai, F., Bakonyi, I., Kemeny, T. (eds.), Budapest: Central Research Institute for Physics 1981, Vol. I, p. 377. Yeshurun, Y., Salamon, M. B., Rao, K. V., Chen, H. S.: Phys. Rev. B 24 (1981) 1536. Yeshurun, Y., Rao, K. V., Salamon, M. B., Chen, H. S.: J. Appl. Phys. 52 (1981) 1747. Yeshurun, Y., Rao, K. V., Salamon, M. B., Chen, H. S.: Solid State Commun. 38 (1981) 371. Allia, P,, Vinai, F.: Phys. Rev. B 26 (1982) 6141. Allia, P., Andreone, D., Sato Turtelli, R., Vinai, F., Riontino, G.: J. Magn. Magn. Mater. 26 (1982) 139. Allia, P., Ferro Milone, A., Vinai, F., Fratucello, G., Ronconi, F.: J. Appl. Phys. 53 (1982) 7750. Aur, S., Egami, T., Vincze, I., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. I, p. 351. Babic, E., Ocko, M., Marohnic, Z., Davies, H.A., Donald, I. W., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982, Vol. II, p. 857. Babic, E., Ristic, R., Miljak, M., Scott, M. G., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.),Sendai: Jpn. Inst. of Metals 1982,Vol.11, p. 1079. Baczewski, L. T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 815. Barton, L. S., Salamon, M. B.: Phys. Rev. B 25 (1982) 2030. Beckman, O., Figueroa, E., Gramm, K., Lundgren, L., Rao, K.V., Chen, H. S.: Phys. Ser. 25 (1982) 726. Beckman, O., Gramm, K., Lundgren, L., Svedlindh, P., Rao, K.V., Chen, H. S.: Phys. Ser. 25 (1982) 676. Borovik-Romanov, A. S., Kreines, N. M.: Phys. Rep. Sl(l982) 351. Bork, J.: J. Magn. Magn. Mater. 26 (1982) 143. Buschow, K. H. J.: J. Magn. Magn. Mater. 28 (1982) 20. Buschow, K. H. J.: J. Appl. Phys. 53 (1982) 7713. Chan, W. S., Shen, B. G., Lo, H. Y., Yu, B. L., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1137. Chien, C. L., Unruh, K.M.: Nucl. Instrum. Methods Phys. Res. 199 (1982) 193. Chien, C. L., Unruh, K. M., Liou, S.H.: J. Appl. Phys. 53 (1982) 7756. Chien, C. L., Unruh, K.M., Levy, A., Liou, S.H., Stokes, J.P., Gambino, R. J., Fukamichi, K.: J. Appl. Phys. 53 (1982) 2307. Chang, W.-S., Han, Y.-C.: J. Appl. Phys. 53 (1982) 7825. Chattopadhyay, S.: J. Appl. Phys. 53 (1982) 2291.
Land&-B&n&n New Series III/l9h
Kobe, Ferchmin
196 82C7 82C8 82C9 82Dl 82D2 82D3 82El 82Fl 82F2 82F3 82F4 82F5 82F6 82Gl 8262 8263 82Hl 82H2 8283 82H4 82H5 8286 8211 8212 82Jl 82J2 82Kl 82K2 82K3 82K4 82K5 82K6 82K7 82K8 82K9 82KlO 82Kll 82Ml 82M2 82M3 82M4
References for 6.1 Chien, C. L., Unruh, K. M.: Phys. Rev. B 25 (1982) 5790. Cochran, J. F., Myrtle, K., Heinrich, B.: J. Appl. Phys. 53 (1982) 2261. Coey, J. M. D., Ryan, D., Gignoux, D., Lienard, A., Rebouillat, J. P.: J. Appl. Phys. 53 (1982) 7804. DeCristofaro, N., Freilich, A., Fish, G.: J. Mater. Sci. 17 (1982) 2365. Donnelly, T. A., Fisher, D. G., Murray, R. B., Swann, C. P.: J. Appl. Phys. 53 (1982) 7801. Dublon, G., Yeshurun, Y.: Phys. Rev. B 25 (1982)4899. Eifert, H.-J., Elschner, B., Buschow, K. H. J.: Phys. Rev. B 25 (1982) 7441. Ford, J. C., Hines, J. I., Paoluzzi, A., Pease,D. N., Kabacoff, L.T., Modzelewski, C.U.: J. Appl. Phys. 53 (1982) 2288. Fujimori, H., Nakanishi, K., Hiroyoshi,H.,Kazama, N. S.: J. Appl. Phys. 53 (1982) 7792. Fukamichi, K., Hiroyoshi, H., Kaneko, T., Masumoto, T., Shirakawa, K.: J. Appl. Phys. 53 (1982) 8107. Fukamichi, K.,Satoh, T., Masumoto,T.: J. Appl. Phys. 53(1982)7741. Fukamichi, K., Shirakawa, K., Kaneko, T., Masumoto, T.: J. Appl. Phys. 53 (1982) 2246. Fujimori, H., Nakanishi, K., Shirakawa, K., Masumoto, T., Kaneko, T., Kazama, N. S., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1629. Gerling, R., Wagner, R.: J. Nucl. Mater. 107(1982) 311. Granasy, L., Lovas, A., Kiss, I., Kemeny, T., Kisdi-Koszo, E.: J. Magn. Magn. Mater. 26 (1982) 109. Guyot, F., Fouquet, F., Mai, C., Perez,J.: J. Phys. (Paris) 43 (1982) C9-595. Hasegawa, R., Fish, G. E., Ramanan, V. R.V., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.),Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 929. Hadjipanayis, G. C., Yadlovsky, E. J., Wollins, S. H., Sellmyer, D. J.: J. Appl. Phys. 53 (1982) 2270. Hilzinger, H.-R. in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 791. Hosoma, T., Nanao, S., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1125. Hasegawa, R.: J. Appl. Phys. 53 (1982) 7819. Hattori, M., Maehata, Y., Tsunashima, S., Uchiyama, S.: J. Magn. Sot. Jpn. 6(1982) 47. Ilonca, G., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 843. Ishikawa, Y., Xianyu, Z., Onodera, S., Ishio, S., Takahashi, M., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1093. Jagielinski, T., Wegrzyn, A., Ohnuma, S., Masumoto, T.: Solid State Commun. 44 (1982) 225. Jurczyk, M., Szymanski, B., Wrzeciono, A., Janicki, A. J.: Phys. Status Solidi (a) 74 (1982) K69. Kanehira, J., Ohnuma, S., Shirakawa, K., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1019. Kiillbiick, O., Gudmundsson, H., Rao, K.V., Astrom, H.U.: Phys. Ser. 25 (1982) 755. Kaul, S.N., Rosenberg, M.: Solid State Commun. 41(1982) 857. Kabacoff, L., Dallek, S.: J. Non-Cryst. Solids 48 (1982) 375. Kazama, N. S., Fujimori, H., Hirose, K.: IEEE Trans. Magn. MAG-18 (1982) 1185. Kikuchi, M., Fukamichi, K., Satoh, T., Masumoto, T., Ohmori, K., Tsuya, N.: J. Phys. F 12 (1982) 2427. Kistler, L. M., Bhagat, S.M.: J. Phys. C 15 (1982) L929. Kohmoto, 0.: J. Appl. Phys. 53 (1982) 7486. Krishnan, R., Dancygier, M., Tarhouni, M.: J. Appl. Phys. 53 (1982) 7768. Krishnan, R., Dancygier, M., Tarhouni, M., Gangulee, A.: J. Appl. Phys. 53(1982) 2243. Kudo, T., Egami, T., Liebermann, H.H., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol.11, p. 1187. Majewska, I., Thijsse, B. J., Radelaar, S., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. I, p. 483. Masumoto, T., Suzuki, K., Fujimori, H., Hashimoto, K.: Materials Science of Amorphous Metals, Tokyo: Ohmsha, 1982. Maszkiewicz, M.: J. Appl. Phys. 53 (1982) 7765. Matsuura, M., Mizutani, U., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1291.
Kobe, Ferchmin
Land&-BBmstein New Seriec 111[19h
References for 6.1 82M5 82M6 82M7 82M8 82M9 82M 10 82Mll 82M12 82M13 82M14 82Nl 82N2 82N3 82N4 8201 8202 8203 8204 8205 8206 8207 8208 82Pl 82Rl 82R2 82R3 82R4 82Sl 8282 8283 8234 8285 8286 8237 8238
197
Manheimer, M., Bhagat, S.M., Kistler, L. M., Rao, K. V.: J. Appl. Phys. 53 (1982) 2220. Masumoto, T.: Technocrat (Japan) 15 (1982)No. $20. Manheimer, M. A., Bhagat, S. M., Chen, H. S.: J. Appl. Phys. 53 (1982) 7737. Manheimer, M. A., Bhagat, S.M., Chen, H. S.: Phys. Rev. B 26 (1982) 456. McGuire, T. R., Aboaf, J.A.: J. Appl. Phys. 53(1982) 2313. McGuire, T. R., Aboaf, J. A., Klokholm, E.: J. Appl. Phys. 53 (1982) 8219. Meguro, T., Sawada, Y., Ogata, Y., Miyazaki, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982, Vol.11, p. 1043. Meyer, R., Kronmiiller, H.: Phys. Status Solidi (b) 109 (1982) 693. Mitera, M., Fujimori, H., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1035. Mitera, M., Fujimori, H., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1011. Naka, M., Kazama, N.S., Fujimori, H., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 919. Naoe, M., Kazama, H., Hoshi, Y., Yamanaka, S.: J. Appl. Phys. 53 (1982) 7846. N. N.: Vitrovac Amorphe Metalle. Producer’s brochure, Hanau: Vacuumschmelze GmbH 1982. Nose, M., Esashi, K., Kanehira, J., Ohnuma, S., Shirakawa, K., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1191. Ogata, Y., Sawada, Y., Miyazaki, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 953. Ohnuma, S., Kanehira, J., Shirakawa, K., Egami, T., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1047. O’Handley, R. C., Corb, B., Grant, N. J., Hines, W.: Bull. Am. Phys. Sot. 27 (1982) 411. O’Handley, R. C., Corb, B. W., Hara, Y., Grant, N. J., Hines, W.: J. Appl. Phys. 53 (1982) 7753. O’Handley, R. C., Grant, N. J., in: Rapidly Solidified Amorphous and Crystalline Alloys, Proc. MRS Annual Meeting, Nov. 1981, Boston, MA, Kears, B. H., Giessen, B.C., Cohen, M. (eds.), Amsterdam: Elsevier 1982,p. 217. Ohnuma, S., Shirakawa, K., Nose, M., Kanehira, J., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1203. Olivier, M., Strom-Olsen, J. O., Altounian, Z., Williams, G.: J. Appl. Phys. 53 (1982) 7696. Onn, D. G., Obi, Y., Wang, L. Q.: J. Appl. Phys. 53 (1982) 7762. Puzei, I. M., in: Fizika kondensirovannogo sostoyaniya, Drabkin, G. M. (ed.), Leningrad: Leningrad Institute of Nuclear Physics 1982,p. 3. Rapp, c)., Flodin, M., Hedman, L., in: Superconductivity in d- and f-Band Metals, Weber, W., Buckel, W. (eds.), 1982,p. 351. Ramanan, V. R.V.: J. Appl. Phys. 53 (1982) 7822. Rao, K.V., Steinback, M., Liebermann, H. H., Barton, L.: J. Appl. Phys. 53 (1982) 7795. Rao, K.V., Phys. Ser. 25 (1982) 742. Sakakima, H., Yanagiuchi, Y., Satomi, M., Senno, H., Hirota, E., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 941. Sandercock, J. R., in: Topics in Applied Physics, Vol. 51, Light Scattering in Solids III, Recent results, Cardona, M., Gtintherodt, G. (eds.), Berlin: Springer 1982,p. 173. Saegusa,N., Morrish, A.H.: Phys. Rev. B 26(1982) 10. Schneider, J., Zaveta, K., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1067. Severin, C. S., Chen, C. W.: J. Appl. Phys. 53 (1982) 7744. Shirakawa, K., Kanehira, J., Ohnuma, S., Fujimori, H., Masumoto, T., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1083. Shimada, Y., Kojima, H.: J. Appl. Phys. 53 (1982) 3156. Shirakawa, K., Ohnuma, S., Kaneko, T., Masumoto, T.: J. Appl. Phys. 53 (1982) 2264.
Land&-Biimstein New Series III/19h
Kobe, Fercbmin
198 8239 82SlO 82Sll 82812 82Tl 8212 82Vl 82Wl 82W2 82W3 82W4 82W5 82X1 8221 8222 83Al 83A2 83Bl 83B2 83B3 83B4 83Fl 83F2 83F3 83F4 83F5 83Gl 83Hl 83H2 8311 83Kl 83K2 83K3 83K4 83Ll 83Ml 83M2
References for 6.1 Shimada, Y., Yaga, M., Kojima, H., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.),Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 807. Sostarich, M., Dey, S., Rosenberg, M., Nielsen, H.J.V., Gorres, U., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1109. Sumiyama, K., Nakamura, Y., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1549. Sunakawa, Y., Niitsu, Y., Ishio, S., Takahashi, M., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol.11, p.1157. Takacs, L., Vertes, A., Lovas, A., Kovacs, P., Farkas, J., Kiss, L.: Nucl. Instrum. Methods Phys. Res. 199(1982)281. Takahashi, T., Toita, K., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol.11, p. 1055. van der Kraan, A, M., Buschow, K. H. J.: Phys. Rev. B 25 (1982) 3311. Ward, K. D., Crangle, J., Davies, H. A., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981,Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982,Vol. II, p. 1141. Wang, X. L., Sun, G. Q., Wang, J. J., Chen, X. H., Yang, Y. S., Li, Y. G.: IEEE Trans. Magn. MAGlS(1982) 1188. Wang, Z.-X., Fong. M.-Y., Shie, X.-Y., Roth, M., Zhang, Z.-Y.: J. Magn. Magn. Mater. 28 (1982) 143. Warlimont, H., Boll, R.: J. Magn. Magn. Mater. 26 (1982) 97. Williams, D.E.G., Ziebeck, K.R.A., Fujimori, H., in: Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai 1981, Masumoto, T., Suzuki, K. (eds.), Sendai: Jpn. Inst. of Metals 1982, Vol. I, p. 323. Xianyu, Z., Ishikawa, Y., Onodera, S.: J. Phys. Sot. Jpn. 51(1982) 1799. Zaveta, K., Schneider, J., Handstein, A., Kalva, Z.: Phys. Status Solidi (a) 72 (1982) K79. Zentko, A., Frait, Z., Duhaj, P.: Czech. J. Phys. B 32 (1982) 359. Aeppli, G., Shapiro, S.M., Birgeneau, R. J., Chen, H. S.: Phys. Rev. B 28 (1983) 5160. Altounian, Z., Strom-Olsen, J. 0.: Phys. Rev. B 27 (1983)4149. Bayreuther, G., Enders, G., Hoffmann, H., Korndiirfer, U., Oestreicher, W., Roll, K., Takahashi, M.: J. Magn. Magn. Mater. 31-34(1983) 1535. Back, P. J., Campbell, S.J.: J. Magn. Magn. Mater. 31-34(1983) 1543. Bhatnagar, A. K., Ravi, N.: Phys. Rev. B 28 (1983) 359. Biihnke, G., Kaul, S.N., Kettler, W., Rosenberg, M.: Solid State Commun. 48 (1983) 743. FIhnle, M., Herzer, G., Kronmiiller, H., Meyer, R., Saile, M., Egami, T.: J. Magn. Magn. Mater. 38 (1983) 240. Ferchmin, A. R., Kobe, S.: Amorphous Magnetism and Metallic Magnetic Materials - Digest, Amsterdam, New York, Oxford: North-Holland Publ. Comp. 1983. Foumier, P., Henry, M.: Rev. Gen. Electr. 5 (1983) 314. Fukamichi, K., Gambino, R. J., McGuire, T. R., in: High Field Magnetism, Date, M. (ed.) Amsterdam: North-Holland Publ. Comp. 1983,p. 117. Fukamichi, K., Satoh, T., Masumoto, T.: J. Magn. Magn. Mater. 31-34 (1983) 1589. Grundy, P. J., Parker, S.F. H., Jones, G. A.: Nucl. Instrum. Methods 209-210(1983)421. Hayashi, K., Hayakawa, M., Ochiai, Y., Matsuda, H., Ishikawa, W., Uedaira, S., Aso, K.: Jpn. J. Appl. Phys. 22 (1983) 1745. Hiroyoshi, H., Fukamichi, K., Hoshi, A., Nakagawa, Y., in: High Field Magnetism, Date, M. (ed.), Amsterdam: North-Holland Publ. Comp., 1983,p. 113. Inomata, K.,Hasegawa, M., Kobayashi, T., Sawa, T.: J. Appl. Phys. 54(1983)6553. Kaul, S.N.: Phys. Lett. 93A (1983) 141. Kikuchi, M., Fukamichi, K., Kimura, H., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 31(1983) 79. Krusin-Elbaum, L., Malozemoff, A.P., Taylor, R. C.: Phys. Rev. B27 (1983) 562. Krishnan, R., Dancygier, M., Rougier, P.: J. Magn. Magn. Mater 31-34 (1983) 1501. Luborsky, F.E., Livingston, J.D., Chin, G.Y., in: Physical Metallurgy, Cahn, R.W., Haasen, P. (eds.).,Amsterdam, Eisevier 1983,p. 1674. Majumdar, A. K., Oestreich, V., Weschenfelder,D.: Phys. Rev. B 27 (1983) 5618. Marohnic, Z., Drobac, D., Babic, E., Zadro, K.: J. Magn. Magn. Mater. 38 (1983)93.
Kobe, Ferchmin
Land&-B6mstein New Series II1119h
References for 6.1 831113 83M4 83M5 83M6 83M7 8301 83Pl 83Sl 8332 8383 8384 83S5 8386 8337 83Tl 83T2 83Vl 83V2 83Wl 83W2 83X1 83Yl 83Y2 83Y3 83Y4 84Al 84A2 84Bl 84B2 84B3 84B4 84B5 84B6 84B7 84Cl 84C2 84C3 84C4 84Dl 84D2 84D3 84D4 84D5
199
Manheimer, M. A., Bhagat, S.M., Chen, H. S.: J. Magn. Magn. Mater. 38 (1983) 147. Manns, V., Brand, R. A., Keune, W., Marx, R.: Solid State Commun. 48 (1983) 811. Meyer, R.: Ph.D. Thesis, Stuttgart University, FRG 1983. Miyazaki, T., Hisatake, K., Takahashi, M.: Jpn. J. Appl. Phys. 22 (1983) 1277. Mizutani, U., Akutsu, N., Mizoguchi, T.: J. Phys. F 13 (1983) 2127. Onodera, H., Hosoyama, K., Yamamoto, H., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A31 (1983) 28. Parashar, R. S., Bhatnagar, A. K.: J. Magn. Magn. Mater. 36 (1983) 56. Sakakima, H.: IEEE Trans. Magn. MAG-19 (1983) 131. Shirakawa, K., Fukamichi, K., Kaneko, T., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 31(1983)54. Shirakawa, K., Fukamichi, K., Kaneko, T., Masumoto, T.: Physica 119B(1983) 192. Stobiecki, F., Stobiecki, T.: J. Magn. Magn. Mater. 40 (1983) 111. Stobiecki, T., Stobiecki, F.: J. Magn. Magn. Mater. 35 (1983) 217. Sumiyama, K., Hashimoto, Y., Yoshitake, T., Kanamura, Y.: J. Magn. Magn. Mater. 31-34 (1983) 1495. Suran, G., Rivoire, M., Sella, C.: J. Magn. Magn. Mater. 31-34 (1983) 1511. Tange, H., Goto, M., Ishio, S.: Physica 119B (1983) 188. Takahashi, M., Okamoto, I., Ishio, S., Miyazaki, T.: J. Magn. Sot. Jpn. 7 (1983) 159. Vazquez, M., Fernengel, W., Kronmtiller, H.: Phys. Status Solidi (a) 80 (1983) 513. von Lohneysen, H., Lecomte, G. V., KHstner, J., Schink, H. J., van den Berg, R.: Phys. Lett. 98A (1983) 47. Williams, A. R., Moruzzi, V. L., Malozemoff, A. P., Terakura, K.: IEEE Trans. Magn. MAG-19 (1983) 1983. Wohlfarth, E. P., in: Amorphous Metallic Alloys, Luborsky, F. E. (ed.), London: Butterworths 1983, p. 283. Xianyu, Z., Ishikawa, Y., Ishio, S., Takahashi, M.: J. Magn. Magn. Mater. 30 (1983) 331. Yamagata, T., Ito, S.: J. Magn. Magn. Mater. 31-34 (1983) 1475. Yamamoto, H., Onodera, H., Hosoyama, K., Masumoto, T., Yamauchi, H.: J. Magn. Magn. Mater. 31-34 (1983) 1579. Yang, F.-M., Wu, Y.-S., Wang, Y.-Z., Zhao, X.-C., Shen, B.-G., Liu, Z.-Y., Pan, S.-T., in: High Field Magnetism, Date, M. (ed.) Amsterdam: North-Holland Publ. Comp. 1983,p. 121. Yokota, R., Matusita, K., Komatsu, T., in: Amorphous Materials - Physics and Technology, Sakurai, Y. (ed.), Osaka: Editorial Committee of the Special Project Research on Amorphous Materials c/o Dept. of Control Eng., Fat. Eng. Sci., Osaka 1983,p. 89. Aeppli, G., Shapiro, S.M., Maletta, H., Birgeneau, R. J., Chen, H. S.: J. Appl. Phys 55 (1984) 1628. Arai, S., Nagakura, M.: J. Inst. Electrical Installation Eng. Jpn. 4 (1984) 35. Babic, E., Zadro, K., Marohnic, Z., Drobac, D., Ivkov, J.: J. Magn. Magn. Mater. 45 (1984) 113. Baro, M.D., Surinach, S., Clavaguera-Mora, M. T., Clavaguera, N.: J. Non-Cryst. Solids 69 (1984) 105. Bhanu Prasad, B., Bhatnagar, A. K., Ganesan, D., Jagannathan, R., Anantharaman, T. R.: J. NonCryst. Solids 6162(1984) 391. Bhanu Prasad, B., Bhatnagar, A.K., Venkataraman, S., Chandrasekharaiah, M.N.: Bull. Mater. Sci. 6(1984) 21. Bhatnagar, A. K., Bhanu Prasad, B., Jagannathan, R.: Phys. Rev. B 29 (1984) 4896. Bork, J., Hempel, K. A.: J. Magn. Magn. Mater. 45 (1984) 339. Butvin, P., de Ronzyova, B.: J. Magn. Magn. Mater. 41(1984) 324. Chen, D.-X.: Central Iron Steel ResearchInstitute Technical Bulletin 4 (1984) 85. Chen, D.-X.: Wuli 13 (1984) 482. Coey, J. M.D., Ryan, D.H.: IEEETrans. Magn. MAG-20 (1984) 1278. Czarnecki, P., Wrzeciono, A., Jurczyk, M., in: II Krajowe Seminarium Magnetyczne Materialy Amorficzne, Abstracts, Poznan: Instytut Fizyki Molekularnej PAN 1984,p. 48. Deppe, P., Fukamichi, K., Li, F. S., Rosenberg, M., Sostarich, M.: IEEE Trans. Magn. MAG-20 (1984) 1367. Dini, K., Dunlap, R. A., Stroink, G.: J. Phys. F 14 (1984) 2009. Dmowski, W., Matyja, H., Puzniak, R.: J. Magn. Magn. Mater. 41(1984) 188. Dose, V., Hartl, A., Kraus, H., Langhoff, H., Rogozik, J.: J. Phys. F 14 (1984) 1541. Drozdova, M. A., Zhelnov, A. N., Prokoshin, A. F.: Fiz. Met. Metalloved. 57 (1984) 1094.
Landolt-BBmstein New Series III/l9h
Kobe, Ferchmin
200
References for 6.1
Dunlap, R. A., Jones,D. F., Stroink, G.: J. Appl. Phys. 55 (1984) 1743. Dunlap, R.A., Stroink, G.: J. Appl. Phys. 55 (1984) 1068. Dunlap, R. A., Stroink, G.: Can. J. Phys. 62 (1984) 714. Dunlap, R. A., Stroink, G.: J. Phys. F 14 (1984) 3083. Dunlap, R. A.: J. Phys. F 14 (1984) 549. Egami, T.: Rep. Prog. Phys. 47 (1984) 1601. Eifert, H.-J., Elschner, B., Buschow, K. H. J.: Phys. Rev. B 29 (1984) 2905. FIhnle, M., Herzer, G.: J. Magn. Magn. Mater. 44 (1984) 274. Fihnle, M.: J. Magn. Magn. Mater. 45 (1984) 279. Fremy, M. A., Gignoux, D., Lienard, A.: J. Magn. Magn. Mater. 44 (1984) 263. Fujimori, H., Kazama, N.S., Hirose, K., Zhang, J., Morita, H., Sato, I., Sugawara, H.: J. Appl. Phys. 55 (1984) 1769. Fukunaga, H., Fuchigami, S., Narita, K.: J. Magn. Sot. Jpn. 8(1984) 197. 84F5 Fruchart, D., Chaudonet, P., Fruchart, R., Rouault, A., Senateur, J.P.: J. Solid State Chem. 51 84F6 (1984) 246. Guo, H.-Q., Shen, B.-G., Yu, B.-L., Zhan, W.-S., Pan, X.-S.: Acta Metall. Sin. 20 (1984) B205. 84Gl Hajko, V., Zentko, A., Timko, M., Hajko jr., V.: Phys. Status Solidi (a) 82 (1984) K159. 84Hl Hargitai, C., Hosso, M., Nagy, I., Tarnoczi, T., Kopasz, C.: J. Magn. Magn. Mater. 41(1984)97. 84H2 Hauser, J. J., Waszczak,J.V.: Phys. Rev. B 30 (1984) 2898. 84H3 Hayashi, K., Hayakawa, M., Ochiai, Y., Matsuda, H., Ishikawa, W., Aso, K.: J. Appl. Phys. 55 84H4 (1984) 3028. Heinemann, K., Bgmer, K.: J. Magn. Magn. Mater. 42 (1984) 291. 84H5 Heinrich, B., Rudd, J. M., Urquhart, K., Myrtle, K., Cochran, J. F.: J. Appl. Phys. 55 (1984) 1814. 84H6 Hedman, L., Rapp, 0.: Phys. Lett. IOOA(1984) 251. 84H7 Herlach, D. M., Klstner, J., Heller, A., Wassermann,E. F.: J. Appl. Phys. 55 (1984) 1706. 84H8 Ivkov, J., Marohnic, Z., Babic, E., Dubcek, P.: J. Phys. F 14 (1984) 3023. 8411 Kaneyoshi, T.: Amorphous Magnetism, Boca Raton, Florida: CRC Press,Inc. 1984. 84Kl Kaneyoshi, T., Tamura, I.: Phys. Status Solidi (b) 23 (1984) 525. 84K2 Kaul, S.N.: Phys. Lett. 1OOA(1984) 254. 84K3 Kaul, S.N.: IEEE Trans. Magn. MAG-20 (1984) 1290. 84K4 Kaul, S.N.: Solid State Commun. 52 (1984) 1015. 84K5 Kellner, W.-U.: Diploma Thesis, Stuttgart University, FRG 1984. 84K6 Konczos, G., Kisdi-Koszo, E., Lovas, A., Kajczos, Zs., Potocky, L., Daniel-Szabo, J., Kovac, J., 84K7 Novak, L.: J. Magn. Magn. Mater. 41(1984) 122. Kote, G., Hedman, L., Dahlberg, D., Rao, K.V.: J. Appl. Phys. 55 (1984) 1726. 84K8 Krishnan, R., Rao, K.V., Liebermann, H. H.: J. Appl. Phys. 55 (1984) 1823. 84K9 84K 10 Kronmtiller, H., Lenge, N., Habermeier, H.-U.: Phys. Lett. 1OlA (1984) 439. Kulik, T., Matyja, H., Lisowski, B.: J. Magn. Magn. Mater. 43 (1984) 135. 84Kll Lanotte, L., Luponio, C., Porreca, F.: Nuovo Cimento 4D (1984) 219. 84Ll Laridjani, M., Krishnan, R., Okoniewska Pszczolkowska, E., Dancygier, M., Sadoc, J.F.: Appl. 84L2 Phys.A34(1984)111. Lau, B.-W., Kim,T.-K., Ihm,Y.-E.: J. Non-Cryst. Solids61-62(1984) 1289. 84L3 Lanotte, L., Matteazzi, P., Tagliaferri, V.: J. Magn. Magn. Mater. 42 (1984) 183. 84L4 Liou, S.H., Chien, C.L.: J. Appl. Phys. 55 (1984) 1820. 84L5 Lucinski, T., Baszynski, J.: Phys. Status Solidi (a) 84 (1984) 607. 84L6 84Ml Madurga, V., Hemando, A., Nielsen, 0. V.: J. Phys. E 17 (1984) 813. Maksymowicz, A. Z., Stobiecki, T., Jarocki, E., Karas, W.: Phys. Status Solidi (b) 126 (1984) 191. 84M2 Malozemoff, A. P., Williams, A. R., Moruzzi, V. L.: Phys. Rev. B 29 (1984) 1620. 84M3 Meichle,L.S.,Salamon,M.B.:J.Appl.Phys.55(1984)18l7. 84M4 Miyazaki, T., Takahashi, M.: J. Magn. Magn. Mater. 42 (1984) 29. 84M5 Mook, H. A., Lynn, J. W.: Phys. Rev. B 29 (1984) 4056. 84M6 Moorjani, K., Coey, J. M. D.: Magnetic Glasses, Amsterdam, Oxford, New York, Tokyo: Elsevier 84M7 1984. O’Handley, R. C., Corb, B. W., Grant, N. J.: J. Appl. Phys. 55 (1984) 1808. 8401 Pekala, K., Pekala, M., Latuszkiewicz, J., Bara, J. J., Bogacz, B. F., Jaskiewicz, P., Trykozko, R.: 84Pl IEEETrans. Magn. MAG-20 (1984) 1338. Potocky, L., Daniel-Szabo, J., Kovac, J., Kisdi-Koszo, E., Lovas, A., Zambo-Balla, K.: J. Magn. 84P2 Magn. Mater. 41(1984) 125.
84D6 84D7 84D8 84D9 84DlO 84El 84E2 84Fl 84F2 84F3 84F4
Kobe, Fercbmin
References for 6.1 84Rl 84R2 84Sl 8482 84S3 8484 8485 8486 8487 8488 8489 84Ul 84Vl 84V2 84Wl 84W2 84W3 84W4 84W5 84W6 84Yl 84Y2 84Y3 84Y4 8421 8422 8423 8424 8425 85Al 85Bl 85B2 85Cl 85C2 85Dl 85D2 85D3 85D4 85D5 85D6 85Fl
201
Rapp, b., Hedman, L.: Phys. Rev. B 30 (1984) 5135. Read, D.A., Moyo, T., Hallam, G. C.: J. Magn. Magn. Mater. 44 (1984) 279. Sato, T., Shimono, K., Iida, K., Jono, A., Ohata, E., Sakata, M.: J. Magn. Sot. Jpn. 8 (1984) 137. Schneider, J., Handstein, A., Zaveta, K.: J. Magn. Magn. Mater. 42 (1984) 73. Shen, B.-G., Zhan, W.-S., Zhao, J.-G., Li, J.-Y .: Acta Phys. Temp. Humilis Sin. 6 (1984) 254. Shimada, Y.: J. Appl. Phys. 56 (1984) 2996. Shimada, Y.: Phys. Status Solidi (a) 83 (1984) 255. Shirakawa, K., Fukamichi, K., Kaneko, T., Masumoto, T.: J. Phys. F 14 (1984) 1491. Shirakawa, K., Kaneko, T., Masumoto, T.: J. Magn. Magn. Mater. 44 (1984) 342. Stobiecki, F.: J. Magn. Magn. Mater. 41(1984) 195. Stobiecki, T., Przybylski, M., Sokulski, J.: J. Magn. Magn. Mater. 41(1984) 199. Unruh, K. M., Chien, C. L.: Phys. Rev. B 30 (1984) 4968. Varga, L.K., Toth, J., Hilscher, G., Grossinger, R., Sassik, H.: J. Magn. Magn. Mater. 41 (1984) 131. van der Kraan, A. M., Buschow, K. H. J.: IEEE Trans. Magn. MAG-20 (1984) 1284. Walz, F.: Phys. Status Solidi (a) 85 (1984) 503. Webb, D. J., Bhagat, S.M.: J. Magn. Magn. Mater. 42 (1984) 109. Webb, D. J., Bhagat, S. M., Moorjani, K., Satkiewicz, F. K., Poehler, T. O., Manheimer, M.A.: J. Non-Cryst. Solids 61-62 (1984) 1377. Webb, D. J., Bhagat, S.M., Moorjani, K., Poehler, T. O., Satkiewicz, F. K., Manheimer, M. A.: J. Magn. Magn. Mater. 44(1984) 158. Wicksted, J. P., Shapiro, S.M., Chen, H. S.: J. Appl. Phys. 55 (1984) 1697. Wronski, Z. S., Morrish, A. H., Stewart, A. M.: Phys. Lett. 1OlA (1984) 294. Yamada, K., Maruyama, T., Tanaka, H., Kaneko, H., Kagaya, I., Ito, S.: J. Appl. Phys. 55 (1984) 2235. Yamauchi, H., Onodera, H., Yamamoto, H.: J. Phys. Sot. Jpn. 53 (1984) 747. Yoshino, H., Inomata, K., Hasegawa, M., Kobayashi, T., Sawa, T.: J. Appl. Phys. 55 (1984) 1751. Yokota, R., Takeuchi, M., Komatsu, T., Matsusita, K.: J. Appl. Phys. 55 (1984) 3037. Zadro, K., Babic, E., Miljak, M.: J. Magn. Magn. Mater. 43 (1984) 261. Zhan, W.-S., Shen, B.-G., Zhao, J.-G., Zhang, S.-H.: Acta Phys. Sin. 33 (1984) 1084. Zhang, Z.-Y., Guo, H.-Q., Shen, B.-G., Zhan, W.-S.: Acta Metall. Sin. 20 (1984) B217. Zhao, J. G., Sellmyer, D. J.: Phys. Rev. B 30 (1984) 2913. Zuberek, R., Stobiecki, F., Wosik, J.: Phys. Status Solidi (a) 82 (1984) K177. Attino, P.: Olivetti Res. Tech. Rev. 4 (1985) 29. Beck, W., Kronmiiller, H.: Phys. Status Solidi (b) 132 (1985) 449. Batalla, E., Altounian, Z., Strom-Olsen, J.O.: Phys. Rev. B 31(1985) 577. Chien, C. L., Liou, S.H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985, Vol. II, p. 1243. Chien, C. L., Xiao, G., Unruh, K. M.: Phys. Rev. B 32 (1985) 5582. Datta, A., Smith, C.H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985, Vol. II, p. 1315. Day, R. K., Dunlop, J. B., Foley, C. P., Ghafari, M., Pask, H.: Solid State Commun 56 (1985) 843. Deppe, P., Khan, Y., Rosenberg, M., Sostarich, M., Schoene-Warnefeld, A., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wi.irzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.),Amsterdam: North-Holland Publ. Co. 1985, Vol. II, p. 1223. Deppe, P., Park, T.S., Ressler, L., Rosenberg, M., Sostarich, M., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.),Amsterdam: North-Holland Publ. Co. 1985, Vol. II, p. 1227. Dmowski, W., Puzniak, R., Matyja, H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985, Vol. II, p. 1291, Drobac, D., Marohnic, Z., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7,1984, Steeb,S., Warlimont, H. (eds.), Amsterdam: NorthHolland Publ. Co. 1985, Vol. II, p. 1133. Fisher, D. G., Murray, R. B., Swann, C. P.: J. Appl. Phys. 58 (1985) 460.
Land&-Bbstein New Series III/l9h
Kobe, Ferchmin
202 85F2 8SGl 8SG2 85Hl 8582
85H3 85H4 85Kl 85K2 85K3 85K4 85Ll 85Ml 85M2 85M3 85M4 85M5 85M6 85M7 85Nl 85N2 85N3 8501 85Pl
References for 6.1 Fukamichi, K., Shirakawa, K., Kaneko, T., Masumoto, T., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7, 1984, Steeb, S., Warlimont, H. (eds.),Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1165. G&singer, R., Kirchmayr, H., Schotzko, C., Tarnoczi, T., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1259. Giintherodt, H.J., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1591. Hausch, G., Toeroek, E., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1341. Hayakawa, M., Hayashi, K., Ishikawa, W., Yamauchi, K., Ochiai, Y., Matsuda, H., Uedaira, S., Aso, K., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1683. Hiroyoshi, H., Noguchi, K., Fukamichi, K., Nakagawa, Y.: J. Phys. Sot. Jpn. 54 (1985) 3554. Hosono, A., Shimada, Y.: Technical Meeting of IEE of Japan, Conference Materials on Magnetism Research,Vol. MAG-85, paper MAG-85-185,1985, p. 33. Kaul, S.N.: J. Magn. Magn. Mater. 53 (1985) 5. Karamon, H., Masumoto,T., Makino,Y.: J. Appl. Phys. 57(1985)3527. Kemeny, T., Vincze, I., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1111. Kopcewicz, M., Wagner, H.-G., Gonser, U.: J. Magn. Magn. Mater. 51(1985) 225. Lenge, N., Kronmiiller, H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg. Germany, September3-7,1984, Steeb,S., Warlimont, H. (eds.), Amsterdam: NorthHolland Pub!. Co. 1985,Vol. II, p. 1183. Makino, Y., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wfirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1699. Manns, V., Brand, R.A., Keune, W., Schulz, R.F., Wassermann, E.F., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.),Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1145. Marohnic, Z., BabiC, E., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. I, p. 1063. Meichle, L. S., Salamon, M.B., Walter, J.: Phys. Rev. Lett. 55 (1985) 1022. Minor, W., Lebech, B., Clausen, K., Dmowski, W., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7,1984, Steeb,S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1149. Mizoguchi, T.: J. Magn. Sot. Jpn. 9 (1985) 292. Morita, H., Obi, Y., Fujimori, H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7,1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: NorthHolland Pub!. Co. 1985,Vol. II, p. 1283. Nasu, S.: J. Magn. Sot. Jpn. 9 (1985) 312. Nielsen, O.V., Barandiaran, J. M., Hernando, A., Madurga, V.: J. Magn. Magn. Mater. 49 (1985) 124. Novak, L., Potocky, L., Kisdi-Koszo, E., Lovas, A., Daniel-Szabo, J.: Acta Phys. Slovaca 35 (1985) 244. Ohnuma, S., Nakanouchi, Y., Masumoto, T., in: Rapidly Quenched Metals, Proc. Fifth Intemational Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Pub!. Co. 1985,Vol. II, p. 1117. Puzniak, R., Dmowski, W., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7,1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: NorthHolland Pub!. Co. 1985,Vol. II, p. 1141.
Kobe, Ferchmin
References for 6.1 85Sl 8532 8533 85S4 85Tl 85Wl 85W2 85X1 85Yl 85Y2 8521 8522 8523 8524 8525 8526 8527 86Cl 86Dl 86D2 86Fl 86F2 86Hl 86H2 8611 86Kl 86K2 86K3 86Sl 8632 86Tl 86Vl 86V2 86Yl 8621 87Al 87A2 87Bl 87B2
203
Sahashi, M., Sawa, T., Hasegawa, M., Inomata, K., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September3-7,1984, Steeb,S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1251. Senoussi,S., Oener, Y.: J. Phys. (Paris) 46 (1985) 1435. Shen, B.-G., Zhan, W.-S., Zhao, J.-G., Chen, J.-C.: ActaPhys. Sin. 34(1985) 1009. Stobiecki, T., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1043. Timko, M., Zentko, A., Tima, T.: Acta Phys. Slovaca 35 (1985) 330. Walter, J.L., Berkowitz, A.E., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7,1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: NorthHolland Publ. Co. 1985,Vol. II, p. 1303. Wachtel, E., Haggag, H., Godecke, T., Predel, B.: Z. Metallkd. 76 (1985) 120. Xianyu, Z., Ishikawa, Y., Ishio, S., Takahashi, M.: J. Phys. F 15(1985) 1787. Yan, L., Bhagat, S.M., Mazumdar, P., Moorjani, K., Kistenmacher, T. J.: J. Appl. Phys. 57 (1985) 3730. Yokota, R., Miyazaki, M., Komatsu, T., Matsusita, K.: J. Appl. Phys. 58 (1985) 4237. Zadro, K., Miljak, M., Liebermann, H., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wtirzburg, Germany, September 3-7, 1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publ. Co. 1985,Vol. II, p. 1129. Zhan, W.-S., Shen, B.-G., Zhao, J.-G.: ActaPhys. Sin. 34 (1985) 1613. Zhan, W.-S., Shen, B.-G., Zhao, J.-G., Guo, H.-Q.: Acta Phys. Temp. Humilis Sin. 7 (1985) 41. Zhan, W.-S., Shen, B.-G., Zhao, J.-G., Pan, X.-S.: ActaMetall. Sin. 21(1985) B199. Zhang, L., Liu, G.-D., Shi, S.-Y., in: Rapidly Quenched Metals, Proc. Fifth International Conf., Wiirzburg, Germany, September 3-7,1984, Steeb, S., Warlimont, H. (eds.), Amsterdam: NorthHolland Publ. Co. 1985,Vol. II, p. 1679. Zhang, Y.-Z., Cheng, D., Zhang, D. P.: J. Magn. Magn. Mater. 51(1985) 75. Zych, W., Milczarek, J. J.: Phys. Status Solidi (a) 90 (1985) K165. Chen, J.-C., Shen, B.-G., Zhan, W.-S., Zhao, J.-G.: ActaPhys. Sin. 35 (1986) 979. Dmowski, W., Puzniak, R., in: Proc. Soft Magnetic Materials 7, Blackpool 1985, Thompson, J.E. (ed.), Cardiff: Wolfson Centre of Magnetic Technology 1986,p. 338. Drozdova, M.A., Batyrev, I.T., Prokoshin, A.F., Makhotkin, V.E., Korytov, V.V.: Fiz. Tverd. Tela 28 (1986) 2486. Fernandez-Baca, J. A., Rhyne, J. J., Fish, G. E.: J. Magn. Magn. Mater. 54-57 (1986) 289. Flodin, M., Hedman, L., Rapp, 0.: Phys. Rev. B 34 (1986) 4558. Hauser, J. J.: Phys. Rev. B 33 (1986) 5073. Hiroyoshi, H., Fukamichi, K., Nakagawa, Y.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 33 (1986) 68. Iskhakov, R. S., Brushtunov, M. M., Turpanov, I. A.: Fiz. Metal. Metalloved. 62 (1986) 269. Kaul, S.N., Hofmann, A., Kronmiiller, H.: J. Phys. F 16 (1986) 365. Kobayashi, H., Onodera, H., Yamauchi, H., Yamamoto, H.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A33(1986)49. Kobe, S., Ferchmin, A. R., Nose, H., Stobiecki, F.: J. Magn. Magn. Mater. 60 (1986) 1. Shen, B.-G., Zhan, W.-S., Chen, J.-C.: ActaPhys. Sin. 35 (1986) 124. Smith, C.H., Barberi, L., in: Proc. Soft Magnetic Materials 7, Blackpool 1985, Thompson, J.E. (ed.), Cardiffi Wolfson Centre of Magnetic Technology 1986,p. 329. Tange, H., Inoue, K., Shirakawa, K.: J. Magn. Magn. Mater. 54-57 (1986) 303. Vazquez, M., Hernando, A., Kronmiiller, H.: Phys. Status Solidi (b) 133 (1986) 167. Vazquez, M., Hernando, A., Nielsen, O.V.: J. Magn. Magn. Mater. 61(1986) 390. Yoshida, H., Kaneko, T., Shirakawa, K., Masumoto, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 33 (1986) 36. Zentko, A., Duhaj, P., Timko, M., Kavecansky, V.: Phys. Status Solidi (a) 93 (1986) 685. Allia, P., Vinai, F., Beatrice, C., Mazzetti, P.: J. Appl. Phys. 61(1987) 1237. Altounian, Z., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M.C., Vazquez, M. (eds.),Amsterdam: North-Holland Publ. Co. 1987,p. 80. Bahadur, D., Bilas, R., Chand, P., Dunlap, R. A.: J. Mater. Sci. 22 (1987) 2477. Bakonyi, I., Ebert, H., Socher, W., Voitliinder, J., Wachtel, E., Willmann, N., Predel, B.: J. Magn. Magn. Mater. 68 (1987) 47.
Land&-Biimstein New Series 111/19h
Kobe, Fercbmin
204 87B3 87B4
87B5 87B6 87B7 87Cl 87El 87Fl 87F2 87Gl 87G2
8763
8764
87Hl 87H2 87H3 8711 8712 8713 87Jl 87Kl 87K2 87K3 87K4 87Ll 87L2 87L3 87L4 87L5 87L6 87L7 87Ml 87M2 87M3 87M4 87M5 87M6 87Nl 8701 8702
References for 6.1 Bakonyi, I., Ebert, H., Voitllnder, J., Tompa, K., Lovas, A., Konczos, G., Banki, P., Schone, H.E.: J. Appl. Phys. 61(1987) 3664. Barandiaran, J.M., Gutierrez, J., Plazaola, F., Zabala, I., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hemando, A., Madurga, V., Sanchez-Trujillo, M. C., Vazquez, M. (eds.), Amsterdam: North-Holland Pub!. Co. 1987,p. 142. Bauer-Grosse,E., Le Ca&r,G.: Philos. Mag. B56 (1987)485. Bryden, W. A., Morgan, J. S., Kistenmacher, T. J., Moorjani, K.: J. Appl. Phys. 61(1987) 3661. Brzozka, K., Gawronski, M., Jezuita, K., Szlanta, J.: Acta Phys. Pol. A 72 (1987) 133. Choh, K. K., Judy, J. H., Sivertsen, J. M.: IEEE Trans. Magn. MAG-23 (1987) 2539. Etimov, Yu. V., Shkatova, T. M., Dmitriev, V. N.: Metallotizika 9 (1987) No. 1,33. Femandez-Baca, J. A., Lynn, J. W., Rhyne, J. J., Fish, G. E.: Phys. Rev. B 36 (1987) 8497. Femandez-Baca, J. A., Lynn, J. W., Rhyne, J. J., Fish, G. E.: J. Appl. Phys. 61(1987) 3406. Ghafari, M., Day, R. K., Dunlop, J. B., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C., Vazquez, M. (eds.), Amsterdam: North-Holland Publ. Co. 1987,p. 58. Gomez Sal, J. C., Rodriguez Fernandez, J., Fernandez Barquin, L., Barandiaran, J. M., Plazaola, F., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hemando, A., Madurga, V., Sanchez-Trujillo, M.C., Vazquez, M. (eds.), Amsterdam: North-Holland Publ. Co. 1987,p. 185. Glazer, A. A., Potapov, A. P., Startseva, I. E., Shulika, E. E., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmldena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C., Vazquez, M. (eds.), Amsterdam: North-Holland Publ. Co. 1987,p.48. G&singer, R., Piinninger, A., Herzer, G., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmidena, Spain, 2529 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C., Vazquez, M. (eds.), Amsterdam: North-Holland Publ. Co. 1987,p. 203. Hasegawa,R.: J. Appl. Phys. 61(1987) 3234. Hayashi, K., Hayakawa, M., Ochiai, Y., Matsuda, H., Ishikawa, W., Iwasaki, Y., Aso, K.: J. Appl. Phys. 61(1987) 3234. Hosono, A., Shimada, Y.: IEEE Trans. Magn. MAG-23 (1987) 2149. Illekova, E., Ambrovic, P., Czomorova, K.: J. Therm. Anal. 32 (1987) 9. Inoue, A., Furukawa, S., Masumoto, T.: Metall. Trans. A 18 (1987) 715. Inoue, A., Furukawa, S., Masumoto, T.: J. Mater. Sci. 22(1987) 1670. Jagielinski, T.: J. Appl. Phys. 61(1987) 3237. Kaul, S.N., Kellner, W.-U., Kronmiiller, H.: Key Eng. Mater. 13-15 (1987) 669. Kellner, W.-U., FBhnle, M., Kronmiiller, H., Kaul, S.N.: Phys. Status Solidi (b) 144 (1987) 397. Kopcewicz, M., Kopcewicz, B., Gonser, U.: J. Magn. Magn. Mater. 66 (1987) 79. Krishnan, R., Saint Martin, F., Sztern, J., Ounadjela, K.: J. Appl. Phys. 61(1987)4179. Le Dang, K., Veillet, P., Suran, G., Ounadjela, K.: J. Appl. Phys. 62 (1987) 3328. Le Gal, G., Henry, M., Varret, F.: Rev. Phys. Appl. 22 (1987) 729. Li, Y.-L., Xu, T.-H. et al.: Digest of the Sixth National Conference on Magnetism, Wuhan/China, 1987,10,15-20, Li You-hao, Shi Gu-shan (eds.), 1987,Pt. 1, p. 317. Liou, S.H., Ge, S.H., Taylor, J. N., Chien, C. L.: J. Appl. Phys. 61(1987) 3243. Liu, Y.-H., Mei, L.-M., Wang, D.-X., Guo, Y.-C.: Acta Metall. Sin. 23 (1987) B227. Liu,Y.-H.,Mei,L.-M.,Wang,D.-X.,Kuo,Y.-C.:IEEETrans. Magn.MAG-23(1987)3812. Lung, Y.-D., Chiang, D.-P., Lin, S.-T.: Chin. J. Phys. (Taiwan) 25 (1987) 361. Mangin, P., Boumazouza, D., Tete, C., Erwin, R. W., Rhyne, J. J.: J. Appl. Phys. 61(1987) 3619. Mateme, A., Geynet, J., Moriceau, H.: J. Chem. Res. Synop. No. 5 (1987) 139. Mazumdar, P., Bhagat, S.M.: J. Magn. Magn. Mater. 66 (1987) 263. Miyazaki, T., Yamada, K., Ando, Y., Okamoto, I.: IEEE Trans. Magn. MAG-23 (1987) 3584. Mizutani, U., Yamada, Y., Mishima, C., Matsuda, T.: Solid State Commun. 62 (1987) 641. Murakami, S., Okumura, H.: Technical Meeting of IEE of Japan on Magnetism Records 1987, paper MAG-87-19, p. 39. Nakai, I., Yamada, O., Mimura, M., Ishio, S., Takahashi, M.: J. Phys. Sot. Jpn. 56 (1987) 4056. O’Handley, R. C.: J. Appl. Phys. 62 (1987) R15. Olivier M., Strom-Olsen, J. O., Altounian, Z.: Phys. Rev. B 35 (1987) 333.
Kobe, Ferchmin
Land&-B6mstein New Series 111/19h
References for 6.1 87Pl 87P2 87Rl 87R2 87R3 87R4 87R5 87R6 87R7 87R8 87Sl 8782 8783 8784 8785 8786 87Tl 87T2 87T3 87T4
87Vl
87Wl 87W2 87W3 87X1 87Yl 87Y2 8721 8722 88Bl 88B2 88B3 88Dl 88Fl 88F2 88F3
205
Pont, M., Rao, K. V., Inoue, A., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., SanchezTrujillo, M. C. Vazquez, M. (eds.),Amsterdam: North-Holland Publ. Co. 1987,p. 200. Prokoshin, A. F., Drozdova, M. A., Batyrev, I. G., Karpenko, M. M.: Fizikokhimiya amorfnykh (stekloobraznykh) metallicheskikh materialov, Kovneristyi, Yu.K. (ed.), Moskva: Nauka 1987, p. 138. Rabinkin, A.: IEEE Trans. Magn. MAG-23 (1987) 3874. Ramasamy, S., Lundgren, L., Ganesan, K., Narayanasamy, A.: J. Phys. F 17 (1987) 753. Rezende,A. T., Sato Turtelli, R., Missell, F.P.: IEEE Trans. Magn. MAG-23 (1987) 2128. Roig, A., Munoz, J. S., Salamon, M. B., Rao, K.V.: J. Appl. Phys. 6i (1987) 3647. Rudkowski, P., Strom-Olsen, J. O., Schulz, R., Roberge, R.: Mater. Res. Sot. Symp. Proc. Vol. 30, Mater. Res. Sot. 1987,p. 171. Ryan, D. H., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C., Vazquez, M. (eds.),Amsterdam: North-Holland Publ. Co. 1987,p. 244. Ryan, D. H., Coey, J. M. D., Strom-Olsen, J. 0.: J. Magn. Magn. Mater. 67 (1987) 148. Ryan, D.H., Coey, J.M.D., Batalla, E., Altounian, Z., Strom-Olsen, J.O.: Phys. Rev. B 35 (1987) 8630. Sakakima, H., Osano, K., Omata, Y.: IEEE Trans. Magn. MAG-23 (1987) 3707. Salamon, M. B., Yeshurun, Y.: Phys. Rev. B 36 (1987) 5643. Stadnik, Z. M., Griesbach, P., Dehe, G., Gi.itlich, P., Stroink, G., Miyazaki, T.: IEEE Trans. Magn. MAG-23 (1987) 2560. Stobiecki, T., Karas, W.: Acta Phys. Pol. A72 (1987) 223. Stobiecki, F., Fritzkowski, G., Waligora, W., Rys, J., Szlaferek, A., Orlewicz, K.: Acta Phys. Pol. A 72 (1987) 201. Sun, J. S., Zhai, H. R., Shi, S.Y., Xu, Q. Z.: Chin. J. Met. Sci. Technol. 3 (1987) 219. Takino, H., Tsuruoka, M., Hayakawa, K.: IEEE Trans. Magn. MAG-23 (1987) 2485. Tange, H., Inoue, K., Shirakawa, K.: J. Magn. Magn. Mater. 68 (1987) 102. Tange, H., Inoue, K., Shirakawa, K.: J. Magn. Magn. Mater. 71(1987) 95. Tejedor, M., Hernando, B., Garcia, J. A., Carrizo, J., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmbdena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C.,Vazquez, M. (eds.), Amsterdam: North-Holland Publ. Co. 1987,p. 54. Vazquez, M., Nuiiez de Villavicencio, C., Madurga, V., Barandiarin, J.M., Hernando, A., Kronmtiller, H., in: Proceedings of the Symposium on Magnetic Properties of Amorphous Metals, Benalmadena, Spain, 25-29 May 1987, Hernando, A., Madurga, V., Sanchez-Trujillo, M. C.,Vazquez, M. (eds.),Amsterdam: North-Holland Publ. Co. 1987,p. 327. Wang, Q., Ho, K. Y.: Acta Phys. Sin. 36 (1987) 95. Wang, Q., Ho, K. Y.: IEEE Trans. Magn. MAG-23 (1987) 2557. Winschuh, K., Rosenberg, M.: J. Appl. Phys. 61(1987) 4401. Xu, S.-S., Zhan, W.-S., Zhao, J.-G., Chen, X.-N., Wang, X.-W.: Digest of the Sixth National Conference on Magnetism, Wuhan/China, 1987, 10, 15-20, Li You-hao, Shi Gu-shan (eds.), 1987, Pt. 2, p. 590. Yamada, Y., Itoh, Y., Matsuda, T., Mizutani, U.: J. Phys. F 17 (1987) 2313. Yao, Z., in: Digest of the Sixth National Conference on Magnetism, Wuhan/China, 1987, 10, 15-20, Li You-hao, Shi Gu-shan (eds.), 1987,Pt. 1, p. 315. Zadro, K., Babic, E., Marohnic, Z., Drobac, D., Liebermann, H. H.: Phys. Ser.35 (1987) 710. Zhao, X.-B., Shi, S.-Y. et al.: Digest of the Sixth National Conference on Magnetism, Wuhan/China, 1987,10,15-20, Li You-hao, Shi Gu-shan (eds.), 1987,Pt. 1, p. 249. Barrue, R., Bigot, J., Faugieres, J. C., Perron, J. C., Rialland, J. F., Robert, J., Schwartz, F.: Phys. Ser.37 (1988) 356. Berger, C., Lasjaunias, J. C., Paulsen, C.: Solid State Commun. 65 (1988) 441. Budurov, S., Spassov,T., Stephani, G., Roth, S., Reibold, M.: Mater. Sci. Eng. 97 (1988) 361. Dubcek, P., Kokanovic, I., Leontic, B., Lukatela, J.: Mater. Sci. Eng. 99 (1988) 191. Fernandez-Baca, J. A., Lynn, J. W., Rhyne, J. J., Fish, G. E.: J. Appl. Phys. 63 (1988) 3749. Freitas, P. P., Plaskett, T. S., McGuire, T. R.: J. Appl. Phys. 63 (1988) 3746. Fukamichi, K., Goto, T., Wakabayashi, H., Bizen, Y., Inoue, A., Masumoto, T.: Sci. Rep. Res. Inst. TohokuUniv. Ser.A34 (1988) 93.
Land&-BBmstein New Series III/l9h
Kobe, Fercbmin
.
206 88F4 88Gl 8862 8863 8864 88Hl 88H2 88H3 88H4 88H5 88H6 88H7 8811 8851 88J2 88J3 88Kl 88K2 88K3 88K4 88K5 88K6 88K7 88Ll 88L2 88L3 88L4 88Ml 88M2 88M3 88M4 88M5 88Nl 88N2 88N3 88N4 8801 88Pl 88P2 88P3 88Rl 88Sl 8882 88S3 88S4 88S5
References for 6.1 Fukamichi, K., Goto, T., Wakabayashi, H., Sakakibara, T., Morita, H.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 34 (1988) 101. Ghemawat, A.M., McHenry, M. E., O’Handley, R. C.: J. Appl. Phys. 63 (1988) 3388. Glazer, A. A., Potapov, A.P., Startseva, I.E., Shulika, V.V., Pilipenko, A.V.: Fiz. Met. Metalloved. 66(1988)497. Goto, T., Sakakibara, T., Fukamichi, K.: J. Phys. Sot. Jpn. 57 (1988) 1751. Goto, T., Murayama, C., Mot-i, N., Wakabayashi, H., Fukamichi, K., Komatsu, H.: J. Phys. (Paris) 49(1988)C8-1143. Hargraves, P., Dunlap, R. A.: J. Phys. F 18 (1988) 553. Hansen, P., in: Landolt-Bornstein, New Series, Vol.19, Subvolume g, Magnetic Properties of Metals, Wijn, H. P. J. (ed.), Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1988, p. 136. Hargraves, P., Dunlap, R. A.: J. Magn. Magn. Mater. 75 (1988) 378. Hemando, A.: Phys. Scr.T28 (1988) 11. Heller, G., Bayreuther, G., Hoffmann, H.: J. Phys. (Paris) 49(1988) C8-1745. Hennion, M., Hennion, B., Mirebeau, I., Lequien, S., Hippert, F.: J. Phys. (Paris)49(1988) C8-1121. Ho Kai-Yuan, Lu Xing, Ba Qi-Xian: Mater. Sci. Eng. 99 (1988) 87. Ishio, S., Aubertin, F., Limbach, T., Engelman, H., Dezsi, L., Gonser, U., Fries, S., Takahashi, M., Fujikura, M.: J. Phys. F 18 (1988) 2253. Jackson, E. M., Bhagat, S.M., Liao, S.B., Manheimer, M. A.: J. Appl. Phys. 63 (1988) 4089. Jeong. In-Seop, Walser, R. M.: IEEE Trans. Magn. MAG-24 (1988) 1725. Jen, S.U., Yang, SM.: J. Appl. Phys. 63 (1988) 4303. Kanemaki, S., Suzuki, M., Yamada, Y., Mizutani,U.: J. Phys. F 18 (1988) 105. Kaul, S.N.: J. Phys. F 18 (1988) 2089. Kaul, S.N.:Phys. Rev. B38 (1988)9178. Kadiri, H., Djega-Mariadassou, C., Rougier, P., Dormann, J. L., Berrada, A., Renaudin, P.: J. Phys. (Paris) 49 (1988) C8-1371. Kamimori, T., Tanita, E., Takagi, H., Tange, H., Goto, M.: J. Phys. (Paris) 49 (1988) C8-151. Krishnan, R., Le Dang, K., Veillet, P.: J. Appl. Phys. 63 (1988) 2992. Kulik, T., Matyja, H., Lisowski, B.: Mater. Sci. Eng. 99 (1988) 77. Lasjaunias, J.C., Berger, C., Hasselbach, K., Paulsen, C., Fourcaudot, G., Grieco, J.C., in: I.L.L. Codest Workshop on Quasicrystalline Materials, March 1988, Grenoble, Janot, C., Dubois, J.M. (eds.),Singapore: World Scientific 1988,p. 389. Liao, S.B., Bhagat, S.M., Manheimer, M. A., Moorjani, K.: J. Appl. Phys. 63(1988) 4354. Li, Y.F., Hedmann, L., Rapp, t).: Phys. Status Solidi (a) 106 (1988) 233. Lynn, J. W., Rhyne, J. J.: Spin Waves and Magnetic Excitations, Borovik-Romanov, A. S., Sinha, S.K. (eds.),Amsterdam: North-Holland Publ. Co. 1988,p. 177. McCally, R. L., Morgan, J. S., Kistenmacher, T. J., Moorjani, K.: J. Appl. Phys. 63 (1988) 4124. Mirebeau, I., Hennion, M., Lequien, S., Hippert, F.: J. Appl. Phys. 63 (1988) 4077. Misawa, M., Tanaka, Y., Nagai, H., Tujimura, A.: J. Phys. (Paris) 49 (1988) C8-1373. Miyazaki, T., Okamoto, I., Ando, Y., Takahashi, M.: J. Phys. F 18 (1988) 1601. Mizutani, U., Hasegawa,M.: Physica B149 (1988) 267. Narendrababu, T.G., Jagannathan, R., Bhatnagar, A. K.: Hyperfine Interactions 42 (1988) 947. Nakajima, T., Kita, E., Ino, H.: J. Mater. Sci. 23 (1988) 1279. Nagarajan, V., Paulose, P. L., Vijayaraghavan, R.: J. Phys. (Paris) 49 (1988) C8-1135. Nishi, Y., Harano, H.: J. Appl. Phys. 63 (1988) 1141. Ounadjela, K., Suran, G.: J. Appl. Phys. 63 (1988) 3244. Paulose, P. L., Nagarajan, V., Nagarajan, R., Vijayaraghavan, R.: J. Phys. (Paris) 49 (1988) C8-1137. Pollard, R. J., Foley, C. P.: Hypertine Interactions 42 (1988) 951. Potocky, L., Kisdi-Koszo, E., Lovas, A., Pogany, L., Kren, E., Kovac, J., Novak, L., Kollar, P.: J. Phys. (Paris)49 (1988) C8-1315. Reisser,R., Fahnle, M., Kronmiiller, H.: J. Magn. Magn. Mater. 75 (1988) 45. Sato, F., Ishio, S., Miyazaki, T.: Phys. Status Solidi (a) 107 (1988) 355. Sato, T., Otake, H., Miyazaki, T.: J. Magn. Magn. Mater. 71(1988) 263. Schwartz, F., Bigot, J.: Mater. Sci. Eng. 99(1988) 39. Senoussi,S., Hadjoudj, S., Jouret, P., Bilotte, J., Fourmeaux, R.: J. Appl. Phys. 63 (1988)4086. Shen, B.-G., Zhan, W.-S., Zhao, J.-G., Chen, J.-C.: Acta Phys. Sin. 37 (1988) 804.
Kobe, Ferchmin
Landolt-BCmstein New Series 11149h
References for 6.1 8886 8887 8838 88S9 88SlO 88Sll 88Tl 88T2 88T3 88T4 88T5 88Wl 88W2 88Yl 88Y2 8821 89Ll 89Ml 89Pl 89Yl
207
Skorvanek, I., Idzikowski, B., Zentko, A., Mosiniewicz-Szablewska, E.: Phys. Status Solidi (a) 108 (1988) 747. Stephan, R., Provost, J., Maignan, A., Dural, J., Groult, D., Jousset, J. C., Raveau, B.: Rev. Phys. Appl. 23 (1988) 873. Sumiyama, K., Kawawake, Y., Nakamura, Y.: J. Phys. Sot. Jpn. 57 (1988) 1395. Sumiyama, K., Yasuda, H., Nakamura, Y.: J. Phys. (Paris) 49 (1988) C8-1275. Svedlindh, P., Nordblad, P., Lundgren, L.: Phys. Rev. B 37 (1988) 2383. Swierczek, J., Szymura, S.: Phys. Status Solidi (a) 109 (1988) 559. Tange, H., Tanaka, Y., Kamimori, T., Goto, M.: J. Phys. (Paris) 49 (1988) C8-1283. Tange, H., Tanaka, Y., Shirakawa, K.: J. Phys. (Paris) 49 (1988) C8-1281. Trudeau, M., Cochrane, R. W., Baxter, D.V., Strom-Olsen, J. O., Muir, W. B.: Phys. Rev. B 37 (1988) 4499. Trudeau, M., Cochrane, R. W., Destry, J.: Mater. Sci. Eng. 99 (1988) 187. Toyota, N., Fukamichi, K., Inoue, A., Matsuzaki, K., Masumoto, T.: J. Phys. Sot. Jpn. 57 (1988) 1724. Wijn, H. P. J., in: Landolt-Bornstein, New Series,Vol. 19, Subvolume g, Magnetic Properties of Metals, Wijn, H. P. J., (ed.), Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1988, p. 35. Wu, B.-M., Chen, Z.-J.: ActaPhys. Sin. 37 (1988) 29. Yartsev, S.V., Prekul, A. F., Rassokhin, V. A., Galoshina, E.V.: Fiz. Met. Metalloved. 65 (1988) 512. Yu, S.C., Lynn, J. W., Rhyne, J. J., Fish, G. E.: J. Appl. Phys. 63 (1988) 4083. Zingg, T., Richmond, T., Leemann, G., Jenny, H., Bretscher, H., Giintherodt, H.-J.: Mater. Sci. Eng. 99 (1988) 179. Liebermann, H. H., Marti, J., Martis, R. J., Wong, C. P.: Metall. Trans. 20A (1989) 63. Mizutani, U., Mishima, C., Goto, T.: J. Phys. Condens. Matter. 1 (1989) 1831. Potocky, L., Kollar, P., Juranek, Z., Novak, L., Kisdi-Koszo, E., Vertesy, Z.: Phys. Ser. 40 (1989) 540. Yang, Y.-S., in: Proc. 4th Int. Conf. on Physics of Magnetic Materials, Szczyrk-Bila(Poland), 1988, Gorzkowski, W., Lachowicz, K.H., Szymczak, H. (eds.),Singapore: World Scientific 1989, p. 298.
This work was supported in part by the Polish Academy of Sciencesunder Project No. CPBP-01.12.
Landolt-Biirnstein New Series 111/19h
Kobe, Fercbmin
Ref. p. 3421
6.2.1 Amorphous
R-3d: introduction
209
6.2 Liquid-quenched alloys of 3d elements and rare earth elements 6.2.1 Introduction 6.2.1.1 General The first amorphous rare-earth-transition-metal (R-TM) alloys, reported in 1972, had the composition TbFe, and were prepared by sputtering [72 R 11. It took about five years for the first liquid-quenched R-TM amorphous alloys to be produced and investigated [77D 11. Since then a great number of articles has been published about the properties of binary, ternary or multicomponent amorphous alloys with rare earths and 3d-transition metals, many of which also contain glass-forming elements as B, Si, Ga or Al. The interest in these amorphous alloys (or metallic glasses)is mainly due to their magnetic properties, which qualify them for technological applications. Also, the complex magnetic behaviour of R-TM amorphous alloys is of fundamental interest. Determinant for this magnetic behaviour are: (a) the existence of two magnetic subnetworks, that of the localized 4f-moments on the R-atoms and that of the more or less itinerant magnetic 3d-electrons of the transition metals, a subnetwork being the ensemble of chemically identical magnetic atoms which have similar magnetic interactions; (b) the lack of structural long-range order resulting in spatial fluctuations of the exchange interactions and/or of the magnetic moment amplitudes. Besides,in glassescontaining anisotropic rare-earth atoms the local anisotropy axes are oriented at random as a rule, leading to non-collinear magnetic structures. Quantitative descriptions of random magnetic anisotropy (RMA) systemsfrequently make use of the simple Heisenberg model proposed by Harris, Plischke and Zuckermann (HPZ) [73 H I]. In this model each rare-earth spin has the samemagnitude and the sameexchange interaction with its neighbours, but is subjected to a local uniaxial anisotropy field of random orientation. The transition metal component is neglectedin the original form of the model. The HPZ Hamiltonian in the absenceof an external magnetic field has the form i.j
1
Here $ is the nearest-neighbour exchange coupling constant, D is an averagelocal uniaxial anisotropy due to the electric field gradients of neighbouring atoms, J(i) is the total angular momentum operator for the magnetic ion on site i, and zi refers to the local direction of anisotropy at site i. The HPZ model has become a point of reference for understanding the magnetic behaviour of amorphous alloys containing rare earth atoms as depending on the relative magnitudes of the local anisotropy energy D and exchange integral f. A large D/$ ratio implies a random noncollinear magnetic structure in the ground state, whereas for small D/f almost collinear ferro-, antiferro- or ferrimagnetic structures are expected. There are several possible types of random noncollinear structures (Fig. l), for which Coey’s taxonomy [78 C l] is now mostly used in the literature. The one-subnetwork structures are denominated speromagnetic or asperomagnetic,depending whether the spins are frozen into random orientations or there are preferential directions of the spins, respectively. A speromagnet resemblesa spin-glass state, having no spontaneous magnetization. Two-subnetwork amorphous magnets have sperimagnetic structures if the moments of one or both subnetworks are frozen into random orientations. Denominations like spero-, aspero- or sperimagnetism are usedhere for spin configurations having ground states which can be described statistically only and not in terms of magnetic spacegroups. As a matter of fact each such configuration has many nearly degenerate ground states. The present chapter deals with intrinsic magnetic properties, the most important quantities being briefly discussed below.
Land&-BBmstein New Series III/l9h
6.2.1 Amorphous R-3d : introduction
210
ferromognet
ontiferromognet
speromognet
[Ref. p. 342
osperomognet
a
ferrimognet
b
i
Fig. 1. Possibleone-subnetwork(a) and two-subnetwork (b) magnetic structuresin amorphous alloys. The spatial distribution of momentdirections is shown schematicallybelow eachstructure. A subnetwork is a chemicalsublattice definedasthe ensembleof atomscarrying a magneticmomentand having similar magneticinteractions [84M 11.
(a) Magnetization, magnetic moment and magnetic susceptibility The magnetization M is defined by M=B/p,-H,
(2)
where B is the magnetic induction, H is the magnetic field strength and p. is the permeability of vacuum (pO=4~. lo-‘Vs A-’ m-l). While M is a magnetic moment per unit volume, experimentally it is mostly more convenient to determine the magnetic moment per unit mass,the specific magnetization 6. The two quantities are related by M=ae,
(3)
where e is the mass density of the sample. Accordingly, one defines the magnetic susceptibility either as: xv = MIH
(4)
Xg=dH,
(5)
or as:
the first quantity being dimensionless.xgrthe massmagnetic susceptibility, has the dimension of e-l. In static(or low-frequency) fields the susceptibility is a real quantity, whereasin alternating magnetic fields ofsufficiently high frequencies the ac susceptibility xECbecomescomplex, reflecting the fact that the magnetization lags in phase behind the field. From the specific saturation magnetization at 0 K, a,(O),the magnetic moment per averageatom, &,, may be calculated by:
_
d3Mrn
pat= -.
nNA
Sostarich
(6) Landolt-Bdmstein New Series 111,!19h
Ref. p. 3421
6.2.1 Amorphous
R-3d: introduction
211
Here M, is the molar mass of the substance,
the number of molecules per mole and IZthe number of atoms per molecule. patis usually expressedin units of p~=9.27~10-24J/T=9.27~10-24Am2, the Bohr magneton. Setting n = 1 in eq. (6) yields the magnetic moment per molecule (or formula unit), p,,,. Strictly speaking, eq. (6) is applicable to collinear ferromagnetic structures only. For any other magnetic structure additional information (e.g.from Mossbauer spectroscopy) is necessaryfor obtaining the magnitudes and relative orientations of the atomic magnetic moments. With many anisotropic amorphous alloys a problem in determining a,(O)arises from the fact that magnetic saturation is not attained even in the strongest fields available. In most such cases the low-temperature spontaneous magnetization M,, (or a,,) is determined and used to calculate the magnetic moment, which is correct for ferromagnets and at 0 K only. Two methods are employed for obtaining Msp, the linear extrapolation of the high-field portion of the magnetization curve to H =0, or, alternatively, the fit of low-temperature magnetization data to the law of approach to saturation:
In the above equation xHFis the high-field magnetic susceptibility, the coefficient A, is determined by defects, nonmagnetic inclusions, or other inhomogeneities within the sample, while the coefficient A, is determined by magnetic anisotropies. (b) Magnetic ordering temperatures The designation Curie temperature (Tc) is commonly used in the literature on amorphous magnetism for the temperature of the transition between the paramagnetic (P) state and any magnetically ordered state having a spontaneous magnetization. This is a second-order phase transition, and standard scaling behaviour is expected in the critical region (cf. (g)).There are, however, amorphous alloys (e.g.someTb-, Dy- or Er-based alloys) with a speromagnetic (S)ground state. The P-S ordering temperature, at which a cusp in the x.,(T) dependenceoccurs, is not a Curie point since the speromagnetic state has no spontaneous magnetization. The trouble with many RMA systemsis that the magnetic ground state is not unique and may be altered by an external field H of the order of magnitude usually employed in magnetic measurements.Consequently, it is not always clear if below the alleged Curie temperature the “true” ground state of the systemyields a spontaneous magnetization or not. Even more so, the critical behaviour at the transition paramagnetic -magnetically ordered state may depend upon the strength of the applied field, too. For example, in amorphous Gd,,Tb,,Co,, standard ferromagnetic scaling is obtained with fields above 1 kOe, whereas at lower fields (50’. .700 Oe) the scaling behaviour becomesnonlinear, i.e. similar to that found in spin-glasses[87 L 11.Becauseof these ambiguities the broader designation magnetic ordering temperature T, is frequently usedin the present section for the transition point from the paramagnetic to somemagnetically ordered state. Finally, someferromagnetic amorphous alloys exhibit reentrant behaviour, i.e. besides Tc there is a second magnetic transition temperature, T,< T,. (Other symbols encountered in the literature instead of Tf are Kr, Kg, Z& or &) The transition from a ferro- or ferrimagnetic-like to a spin-glass-like state at Tf is generally attributed to spin freezing, T, being the freezing temperature. The possibility of a true phase-transition occuring at T, is also considered, as scaling behaviour has been observed in the temperature range near Tf [85 0 11. (c) Paramagnetic susceptibility For temperatures above the magnetic ordering temperature, T > To,the spontaneous magnetization is zero. The application of a magnetic field will, nevertheless,give rise to a magnetization proportional to this field, the quotient being the paramagnetic susceptibility. In many casesits temperature dependencefollows a Curie-Weiss law,
WC*, &= 3k,(T-0)
’
where Peffis the effective magnetic moment per average atom, N the number of atoms per unit mass, 0 the paramagnetic Curie temperature, and k, the Boltzmann constant.
Land&-Biirnstein New Series IIII19h
Sostarich
212
6.2.1 Amorphous R-3d: introduction
[Ref. p. 342
(d) Magnetic anisotropy Random anisotropy materials can be thought of as consisting of magnetic domains with randomly oriented uniaxia! anisotropy K,. Minimizing the energy of such a material in an applied field H one obtains,
where M, is the remanent magnetization [Sl H 23.The integral corresponds to the area between the M(H)-curve and the magnetization axis, therefore using this geometrical correlation to obtain K, is called magnetizationarea method. Its main limitation is due to the fact that magnetic saturation is not always attained experimentally, in which casesthe magnetization-area method gives too small K, values. Another method for obtaining K, is to fit the high-field magnetization data to the empirical law of approach to saturation, eq. (7) in which the coefficient A, is
A -AK,2 ‘-
15 MS’P’
Fairly good fits are obtained at high fields taking the coefficient A, to be zero [84C 11. For someamorphous systemsthe ferromagnetic resonancetechnique (FMR) has been used for obtaining the uniaxia! anisotropy constant K, and also the effective g-values, g being the spectroscopic splitting factor (LandC factor). While K, represents the anisotropy energy per unit volume, the average anisotropy constant per R ion, D = K&r, is frequently encountered in the literature (cf. eq. (I)), n being the number of R ions per unit volume. Sometimes the quantity D, =K,/(&,)=
TA
(11)
is used,which has the dimension of a temperature. The ratio T,/T, indicates the relative importance ofanisotropy and exchange energies. (e) Hyperfine interactions Miissbauer effect (ME) spectroscopy and nuclear magnetic resonance(NMR) provide information, which is local in character, concerning the hyperfine interactions of the different nuclei. The main Miissbauer isotope is 57Fe.For rare-earth containing glassesfurther isotopes like I 5*Eu, 155Gd, I6 1Dy or 169Tmare also used. From Miissbauer spectra the corresponding distributions of the magnetic hypertine fields, P(B,,,), can be obtained by Fourier deconvolution. The average “Fe hyperfine field, Bbypris often considered to depend on the average atomic Fe magnetic moment, AFe), only: Bhgp= Ap(Fe) ,
(12)
with the constant AZ 15T/pg. Equation (12) is used for calculating fi(Fe) from Miissbauer data, especially in the caseof amorphous alloys with noncollinear magnetic structures. However, this equation should be employed with caution, as it neglectsthe contribution of the rare-earth magnetic moments to the magnetic hyperhne fields at the Fe sites. Two further quantities currently determined from ME measurements are the isomer shift IS and the quadrupole splitting A. The isomer shift is a measureof the s-electron density at the nucleus, being due to the shift of nuclear levels induced by the electrostatic interaction between the (spherical) nucleus and the s-electron charge cloud surrounding and penetrating it. IS values are given relative to a referencesubstance,such as u-Fe in the caseof 57FeME data. The quadrupole splitting is the result of the interaction of the nuclear quadrupole moment (which reflects the deviation of the nucleus from spherical symmetry) with the gradient of the electric field produced by the other chargesin the material. A data yield information on the local environments, as the local electric field gradients are determined by the actual atomic configurations in the vicinity of resonant nuclei. The few NMR investigations on rare earths and 3d-transition metals containing metallic glassesare mainly concerned with static structural properties and hyperfine interactions. The s9Co spin-echo NMR spectrum reflects the on-site magnetic hypertine field distribution in an amorphous alloy.
Sostarich
Land&-B6mstein Nea’ Series III119h
Ref. p. 3421
6.2.1 Amorphous
R-3d: introduction
213
(f) Magnetovolume effects The spontaneous volume magnetostriction, w,, is defined as the relative volume difference between the ferromagnetic and a hypothetical paramagnetic state of the sample at the sametemperature. The value of ~~(7’) may be obtained from the equation QM”,I= 3 J(~p--YT,
(13)
where clPis the thermal expansion coefficient of the alloy in the hypothetical paramagnetic state and c1is the measured thermal expansion coefficient [83 F 11. When in some temperature range below Tc the spontaneous volume magnetostriction w, is comparable with the usual thermal volume expansion due to anharmonicity, the measured thermal expansion is almost zero, a phenomenon known as Invar effect. The forced volume magnetostriction, &o/aH, is obtained from the slope of the linear portion of the w(H)-dependenceand is given by:
a.
fjjy =4 +2h,, where h,, and h, are the slopes of the magnetostriction curves in the parallel and perpendicular directions to the magnetic field, respectively. The pressure coefficient of the Curie temperature, aT,/ap, is related to the spontaneous volume magnetostriction, materials with large o, values exhibiting large aT,/i3p coefficients, too. In the literature most experimental results on the pressure dependence of the Curie temperature are alternatively fitted with one of the following expressions [83 F l] (15) where A is a constant depending on such factors as the compressibility and the density of states, or
where q and 1 are some fitting parameters. (g) Critical exponents In the temperature range about T,, the second-order phase transition temperature, the behaviow of a magnetic systemis said to be critical. In the critical region the deviations of different thermodynamic quantities from their values at T, are described by power laws. The exponents in these power laws are called critical exponents, the most frequently encountered being defined by: McclEl@, E
E>O
MKH”~,
E=O
G~14-a,
(IW (174 (174
where E=(T-
(174
T,)/T,
(18)
is the reduced temperature and CH is the specific heat. According to the scaling hypothesis, only two of these critical exponents are independent, as scaling leads to relations between them. Examples of scaling relations are: LY=2(1 -j?)-y
(19)
ps=p+y.
(20)
The static critical behaviour is described by the magnetic or scaling equation of state, m=.f*@),
where rn=MI~l-~
and I~=Hlsj-~~
(21) (22)
represent the reduced (or scaled)magnetization and field, respectively. Equation (21)implies that m as a function of h falls on two branches of a universal curve: f-(h) for T< Tc and f+(h) for T> T,.
Land&-Biimstein New Series IIU19h
Sostarich
6.2.1 Amorphous
214
R-3d: introduction
[Ref. p. 342
A scaling description of the P-S transition in RMA systemshas been shown to hold in somecases,however, with so-called nonlinear reduced magnetization, mn,, and field, h,,, which are defined differently from eqs(22) [87 L 1J. As already mentioned above, scaling of the magnetic isotherms in the temperature range about T,, the freezing temperature, had also been obtained, but, with critical exponents differing considerably from those at the P-F transition. This fact was interpreted as being due to a lack of universality in the critical behaviour [85 0 11. On the other hand, it has recently been pointed out that a possible dependenceof the critical exponent values on the temperature range used for the scaling plot should be taken into account when considering RMA systems [87 F I]. Scaling analyses including data from above 1~1 =O.l are likely to yield critical exponents which differ considerably from their true values for .s+O [88 S 23. The topic of the present chapter is restricted to melt-quenched amorphous alloys, with somedata on vapourquenched lilms and on crystalline compounds included for the sakeof comparison. A large number of alloys with rare-earth elements or with Y, most of them containing either Fe or Co as 3d-transition metal component, has beensurveyed.Data on the influence of hydrogen on the magnetic properties have beenincluded where available. All of the alloys considered are amorphous unless otherwise specified. According to the importance of the R-component for the magnetic behaviour of the alloy, the survey is divided into sections on (i) alloys with nonmagnetic R and Y; (ii) alloys with Gd, an S-state (L=O) ion with negligible single-ion anisotropy; (iii) alloys with anisotropic, non-S-state (L+O) R ions, light and heavy rare earths being considered separately, as the rare-earth and transition metal magnetic moments tend to align parallel for light rare earths and antiparallel for heavy rare earths; (iv) alloys with two rare-earth species. Usually, rare earths have a trivalent 4f-configuration in most non-crystalline alloys, and therefore a survey of magnetic properties of the lanthanide ions is given in Table 1. Table 1. Magnetic properties of lanthanide ions, After [SOL 11, S
L
Ground- g states)
J
PAR) Cid gvm
La3+, Ce4+ Ce3+
Pr3+ Nd3+ Pm3+ Sm”+ Eu3+ Eu*+ Gd3+ Tb3+ Dy3 + Ho3+ Er3+ Tm3 l Yb3+
Lu3+, Yb*+
0
0
l/2 1 312 2 s/2 3 712 712 3 512 $2
3 5 6 6 5 3 0 0 3 5 i
1 l/2 0
5 3 0
0
512 4 g/2 4 5f2 0 712 712 6 1512 1512 8
‘SO *b/2 3H4
41912 ‘1, x,2
‘FO % 712 5 712 ‘F6
6H % lSl2
411 s/2 jH6 6 712 2F7/2 ‘SO 0
obs.
0
P(R) Cid
DeGennes factor
gJ
G=(g-l)*J(J+l)
obs. “)
0
6f7 415 8/l 1 315 2/7
2.54 3.58 3.62 2.68 0.85
2.51 2.56 3.4
2 2 312 413 514
7.94 7.94 9.72 y;
615 716 817
9.58 7.56 4.54 0
8.48 7.98 9.77 10.83 11.2 9.9 7.61
1.74
2.14 3.20 3.27 2.40 0.71 0 7.00 5.9 7.00 7.63 9.00 9.34 10.00 10.33 10.00 10.34 9.00 9.1 7.00 7.14 4.00 0
0
0.18 0.80 1.84 3.20 4.46 0 15.75 15.75 10.50 7.08 4.50 2.55 1.17 0.32 0
*) Spectroscopic designation *‘+’ X,, with X=S, P, D, F, G, H, I as L=O, 1, 2, 3, 4, 5, 6, respectively. b, Antiferromagnetic ordering in the light rare earths prevents the measurement of the saturation magnetic moment. In addition to the review articles and handbooks mentioned in this section, e.g. [78 C 1,84 B I,84 M l] the reader is also referred to reviews on the subject by R. W. Cochrane, R. Harris and M. J. Zuckermann [78 C 21 and J. J. Rhyne [79 R 11. Throughout the literature on magnetic properties the use of the international system of units (SI) is still an exception rather than the rule, so it was not always possible to present the surveyed data in SI units.
Sostarich
Land&-BCmstein New Series 111~19h
6.2.1.2 Survey Index of compositions and magnetic properties surveyed. The compositions are listed in alphabetical order of the rare earths. Alloys of the same rare earth speciesare arranged considering the alphabetical order of the transition metals and, where necessary,also that of further constituents. Hydrogenated alloys appear directly below their unhydrogenated counterparts. For any composition the numbers in the different columns indicate the tables (T) and/or the figures (F) in which information about the property mentioned on top of the column is to be found. Composition
Magnetic moments
Magnetization
Ordering temperatures
Susceptibility Permeability
Hypertine interactions
Magnetic anisotropy
Type of Other magnetic properties ‘) order
T: 19 F: 172
T: 19 F: 171, 185...188, 222,225 T: 19 F: 221
T: 19 F: 173, 185, 200, 202, 269,270 T: 19 F: 170,200
T: 21 F: 185,186, 188, 200, 202 T: 21 F: 200
T: 24 F: 233,234
T: 21,22 F: 232
T: 19
T: 19, 31 F: 274
T: 21 F: 231
T: 19
Binary alloys Ce 75.5CO24.5 DYIOO-xcox
T: 19
T: 19 T: 19 F: 172
ErlOO-xFex
T: 19
Erloo-,Nix
T: 19
‘F: 189 T: 19 F: 171, 196, 197, 224, 225 T: 19 F: 193.a.195
T: T: F: T: F:
19 19 271 19 173, 198..-200, 203, 204, 269, 270 T: 19 F: 195,200 T: 19 F: 271
F: 189 T: 21 F: 196, 198.v.200, 203 T: 21 F: 193, 194, 200
T: 31 F: 235, 274
F: 2313, 275.. -277‘) T: 19
T: 25”)
T: 21,22
T: 19
T: 22 b, F: 236.e.238”)
T: 21
T: 19 F: 275’) T: 19
F: 201
Wdum ‘Woo-xcox
T: 9
T: 9
F: 51.-e53, F: 50, 66...70, 86 85, 87, 171
T: 9
F: 157 “) T,: 22 b, F: 232 “), 237 3, 238 “)
T: 11
F: 54.v.56, 66, F: 66, 67, 69, 70, 103...106, 108, 88,106,202 109, 202, 269, 270
T: 12 F: 96..-lo0
T: 12, 13, 22,29 F: 101
T: 9
T: 14”) F: ill”), 113”) T: 12’*3, 13 “), 14 “), 22 “), 29 “) F: 103...I05 3, 102“), 108 3, 109 9. 111.::1143 (continued)
Survey (continued) Composition
Magnetic moments
Magnetization
Ordering temperatures
Susceptibility Permeability
Gdm-xCoG-4
T: 9
T: 9 F: 70
T: 9 F: 109
F: 70.107
Hyperfine interactions
G%oo-0,
Type of magnetic order
T: 9 F: 64,65
F: 63 T: 9 F: 71
T: 19 T: 19
T: 31 F: 94,274
T: 9 F: ilO]), 27%277j)
T: 9 T: 9
T: 9 T: 9
T: 9 F: 56.170
Other properties ‘)
F: 1048),109”) T: 12’*‘)
T: 12 F: 101 T: 9
Homo-xc%
Magnetic anisotropy
F: 192 T: 19 F: 190,191,223
T: F: T: F: T: F:
9 56,271 19 269,270 19 191
F: 71 T: 21
T: 12
T: 9
T: 21,22
T: 19
T: 21 F: 190
T: 123 F: ill “), 13”) T: 22 b,
T: 19 T: 2
F: 274
Ndmo-,Cox
F: 274
F: 274 T: 15 F: 122
F: 140
F: 121
F: 119, 135,155
F: 136,137,141, 225
T: 15 F: 122 T: 15
F: 136 T: 15 F: 118, 134, 154
T: 2 T: 2
T: 31 F: 35,274 T: 15 F: 129,136,203, 269 T: 15 F: 121,126,128 F: T: F: F:
152 15 271 129,136
T: 15 F: 136,138,149, 203 T: 15 F: 120
F: 121,162 F: 152
T: 15 F: 136 T: 17
F: 125, 128
F: 160’), 275s..277j)
T: 15 F: 275.e.277’)
T: 15
T: 15
T: 15
T: 15 F: 144
T: 15 T: 15 F: 124 T: 15 T: 19
’ Tb ml-XC%
T: 19
F: 141...143 T: F: T: F:
15 123, 139,140 19 183, 184,220, 225 T: 19 F: 180, 182,219
T: 19 T: 19 T: 2 F: 4
Yloo-xFex
F: 16, 17, 22, 24
T: F: T: F:
15 271 15 129, 142,269, 270 T: 15 F: 127, 128, 139 T: 19 F: 169, 202,269, 270 T: 19 F: 182 T: 19 F: 271 T: 19 T: 2 F: 7, 8
T: 2 F: 2, 10, 13 F: 11, 12, 14, 15, 18...20
T: 2 F: 5, 6, 15
T: 2
T: 2
T: 15 T: 15 F: 142, 143 T: F: T: F:
17 150 21 183, 202
T: 21
DyxW, -x’hs Dy,La,(Fe,.,,B,.,,),, Er 100-x-zFexBz
T: 15
T: 21,22,29 F: 230
T: 19
T: 21
T: 19
F: 275’) T: 22 “), 29 “) F: 2303
F: 275j)
T: 2 F: 23
F: 8 T: 3, 6, 7 F: 26.a.34, 36, 37, 41, 42, 274 T: 3 F: 32.e.34
T: 2
T: 2 F: 3
F: 9 ‘), 43...46’), 236...238 ‘) F: 47’), 48’), 49 ‘), 277 ‘)
T: 2 T: 2
F: 7
Ternary and multicomponent C&o-Fe-Si-B ‘)
Dy-Co-Fe-Si-B Dyloo-x-zFexBz
T: 31 F: 274
T: 17
T: 19
F: 23
Y1oo--xNix
T: 31 F: 274
alloys F: 268 T: 32j) F: 131 F: 268
‘)
F: 179 F: 249 T: 20 F: 179,206,226, 227,229
F: 272 T: F: F: F: T: F:
20 219,272 252 273 20 272
T: 20 F: 216, 245,246 F: 264
T: 25 d), 32j) F: 245 d), 246 “)
F: 252 T: 20
T: 32’)
I
F: 206 continued
I 4E
Survey (continued) Composition
Magnetic moments
T: 20 T: 20
Magnetization
Ordering temperatures
T: F: T: F: T:
T: F: T: F: T: T: F: F: T: T: T: F: F:
20 178 20 228 20
F: 257
F: 58
F: 74 F: 73
F: 74 F: 73 F: 268
20 178 20 218 20 28,29 253 273 27 27 IO, 28 58,250 61
F: 59 F: 57
Susceptibility Permeability
Hyperfine interactions
T: 23 F: 218 T: 23
Magnetic anisotropy
Type of magnetic order
T: 23
T: 20
T: 23 T: 29
T: 20 T: 28 F: 253
F: 265
F: F: F: F:
Other properties ‘)
T: 29 b,
T: IO,28 F: 250 F: 61
78 83 81 80 F: 100
T: 10 F: 72, 89, 131, 227,229 T: 10, 11,26 F: 90...92
F: 92 F: 60,115
T: 10 F: 272 F: 61 T: IO,26 F: 75 T: F: T: F:
lo,26 76 10 62
T: 10 F: 72 F: 78 T: 11 F: 75, 76, 83, 90
T: 32’)
F: 95
T: 11
F: 61 T: 10
T: 10 F: 76 T: 10 F: 62
T: 14d) F: 115d)
T: 13
T: 10
T: 13b)
T: 13
T: 10
T: 13b)
F: 77 F: 78
T: 10 F: 82 F: 93
T: 10 F: 84
F: 83,84
F: 93 F: 60
Gd72-xNixGa18B10
T: 10 F: 84 F: 62
Gd72-xTWai8Blo G4
T: 10, 13
-xGa390Blo
G4La6+,Co2Ao
F: 247 Gd,La,(Fe,.,,Bo.,,),,
F: 116,256 F: 255
T: T: F: F:
10 28 250 273
T: F: F: T: F: T:
28, 29 252 263 26 251 26
F: F: T: F: F:
254 177,217 20 176,272 273
T: F: F: F: F: T: F: F:
2 272,273 273 273 273 27 273 273
G4La72-xGalJQo ‘-Xx-xTb,Co,,
F: 117, 244, 249 T: 26
T: 10 F: F: F: T:
84 79 78 11
F: 62 T: II,13
T: 10 T: 28 F: 250
T: 13b), 14”) T: 14”) F: 116”)
T: 29
T: 28 F: 252
T: 14d) T: 14% 25 d), 29b) F: 117d), 244”)
F: 258...260
F: 262 F: 263 F: 261 F: 261
(GdI -,YJ&u, Fe, Ni HGo,o-J&o HolOO-x-zFexBz Ho,La,(Feo.,2Bo.,,),o La-Co-Fe-Si-B 2, Laloo-x-,FOz
F: 175
F: 268 T: 2 F: 255 F: 255
La,Nd,(Feo.,2Bo.,,),o ‘La,Pr,(Feo.,,Bo.,,),, La,Sm,(Feo.,2Bo.,,),o Bz La,Tb,Fe 100-2x-z La,o-.Tb,(Feo.,2Bo.,,),o LWe~o-xB20 MmFe,B
F: 174,179,205
F: 248
T: 27 F: 255 F: 248,255
T: 30 F: 267 T: 32’)
T: 27 F: 229 T: 16
Wo.,oCoo.,o),oB,o Wo.80Gao.20hoCo20 Nd-Co-Fe-Si-B N400-x-zFexBz
F: 254 F: 239,240 F: 239,240 “) T: 32’) T: 20
F: 217
T: 16 F: 153 T: 16
T: 17
T: 16
F: 153 T: 16 F: 215
“) T: 16
F: 268 T: 16 F: 131, 147,148
T: 16 F: 132, 272
T: 18 F: 166...168
T: 16
T: 32’) continued
Survey (continued) Composition
Magnetic moments
T: N45Fe77B8H23 (Nd~.~~Ga~.20)~oo-,Fe,T:
Magnetization
16 16
Ordering temperatures
Susceptibility Permeability
T: 16 T: 16
Hyperfine interactions
Magnetic anisotropy
Type of magnetic order
Other properties ‘)
T: 18 F: 152
Pro.soGao.20hoCo20
Pr-Co-Fe-Si-B *) ro.&ao.20)soCr20 ~~~o.~oGao.20),oCu20 Pr~oo--Fe,B,
Pr,,Fe,,B,Si, (Pr~.~~Gao.20)~oo-,Fe,
T: 16
T: 16
T: T: T: F: T: T:
T: 16 T: 16
F: 268
T: 16 F: 130,229 T: 16
Pr~.&a~.20)soMn20 Pr~.80Gao.20hoN120 SmCo,B SmCo,FeB Sm-Co-Fe-Si-B *) Smloo-,-,Fe,B,
T: 16 F: 145
16 16 16 272 16 16
F:158,159”)
F: 146,151,156 T: T: T: T:
16 16 16 16
T: F: F: T:
16 133,272 266 20
T: 18 F: 163...165
T: 16 T: 16 T: 16
F: 268 F: 131,133,229
SmTbFe, (~~.&a~.20)80C020
T: 32j) F: 161 “*‘) F: 266 T: 20 F: 215
T: 20 F: 241
~5d+m%J%o T: 20 T: 20
T: 20, 27 F: 229 T: 2426
T: F: T: F:
20, 27 272 20, 26 209,212,243, 251 T: 26
T: 23 F: 209...214, 243
F: 213,214 Tb,Fe, -,Ni,
F: 181
T: 20
T: 25 d, F: 241 d), 242 d,
T: 20
T: 25d) F: 243 d,
F: 207, 208,241, 242
T: 23
T: 20
T: 20
T: 20 F: 209
T: 23
T: 23 F: 209
T: 20
F: 179
TmxFeso-,B20 Y100-z(Fe,Col-3z , Y&k% -3~
T: F: T: F:
6...8 39,41,42 6,8 40...42
T: 2 F: 25,227 T: 2 F: 10
F: 10
Y100-zWxW-3z Yd%05Zn~.~5)34 Yb-Co-Fe-Si-B
2,
F: 268
‘) These properties are: ‘) Resistivity and magnetoresistivity. b, Exchange interaction strength. “) Coercive force. “) Scaling behaviour, critical exponents. “) Effective g-values. ‘) Ferromagnetic resonance. 3 Pressure dependence of Curie temperature. h, Thermal expansion. ‘) Spin wave stiffness constant. j) Magnetostriction. ‘) Actual composition: [R,.,,(Coo.sFeo.l)o.~,],~Si, sB,W
T: 4...7 F: 36.v.38, 41, 42 T: 6...8 F: 40...42 T: 6 F: 40...42
F: 10
6.2.2 Amorphous alloys with Y and nonmagnetic rare earths (La, Lu) 6.2.2.1 Magnetic moments, ordering temperatures and type of magnetic order Table 2. Y-, La- and Lu-based amorphous alloys. Magnetic moments, ordering temperatures and magnetic susceptibilities. The type of magnetic order is given only where it is explicitly mentioned in the reference.
hi
T, T,
PB
K
xg
Magnetic order
Ref.
asperomagnetic
85Cl 82Cl 85Cl
0.2 “) 12b) 1.1”)
YFe, (tryst.)
1.07’)
200
1.30d) 1.49‘)
270 b,
1.43d) 1.55‘) Fig. lqa) 1.96(8)‘) 2.08 “)
548 b,
2.24(5)‘) 2.243
z 270 “) 109(4)“) 350 410(20)
Remarks
IO-*m3 kg-’
88Sl asperomagnetic
82C2
Upon hydrogenation the critical Fe concentration for the onset of magnetic moment formation is reduced from r38at% to r26at% Fe (cf. also [SS R 13). F = 40 K = T,, temperature of magnetization maximum for zero-field cooled alloy (cf. Fig. 15) 0 z 255 K after [82 C l] For sputtered amorphous Y,,Fe,, a magnetic ordering temperature of 58 K (dc susceptibility cusp) is reported in [79 F 21 and associated with a spinglass transition.
82C2 Fig. IO(b) asperomagnetic
8811 82C6
ferromagnetic ferromagnetic
84C3 82C6
With increasing hydrogen content the magnetic order seemsto evolve continuously towards collinear ferromagnetism.
Table 2 (continued).
y&030 y&04, y55co45 y50c050
Y&o54 y45co55 y3,co,8
PTM
Tc, T,
xg
PB
K
IO-* m3 kg-’
Fig. 4 Fig. 4 Fig. 4 0.14j) 0.28‘) 0.30’) 1.20’)
42 72 Fig. 7 0.25
La69Co3l La69Ni3l 1
La, ,F‘+
“1
Fig. IO(a) x 230 “)
YmF%,M% Y,,Fe,,Bs
359 408
,Bs
b#%wBo.,s),o
1.73 2.0 “)
Ref.
Remarks
xp is nearly temperature-independent xg is nearly temperature-independent xp is nearly temperature-independent
Fig. 8 Fig. 8 Fig. 8 Fig. 8 Pauli paramagnet Pauli paramagnet Pauli paramagnet Pauli paramagnet Pauli paramagnet Fig. 10(b)
80 B 2, 84 B 1 80 B 2, 84 B 1 82Bl 82B1, 84Bl 84Bl 82B1,84Bl 83Bl 80B3, 84Bl 84Bl 80B3 84Bl 81B1, 84Bl 8811 86A2 86A2 82Kl
27 3.1 3.0
Y6Pi3,
Lud% Lu60Fe40
Magnetic order
Fig. 273
Fig. 140
‘) p(TM), deduced from average hypertine field value at 4.2 K. “) Obtained from Arrott plots (a2 vs. H/o). “) From cr, at 4.2K. d, From c value at 20 K and p,,H = 1.6T (cf. Figs. 13 and 19). ‘) From u value at 20K and p,H = IOT (cf. Figs. 13 and 19). ‘) Sputtered sample. 3 p(TM), obtained from BhYpvalue at 0 K, assuming a conversion factor of 14.5T/pi+ “) Temperature of dc susceptibility maximum. ‘) From a,, at 4.2K. j) From rr value at 4.2 K and p,,H = 1.8 T. k, B h,,p,eff<2.0T at 4.2 K, derived from the position of the outermost peaks in the 57Fe Mijssbauer spectrum. ‘) From CJat room temperature and p,,H = 1.OT (cf. Fig. 248). “) From low-temperature c value (cf. Fig. 255).
224
[Ref. p. 342
6.2.2 Amorphous Y-3d, La-3d, Lu-3d 2.5 lb 2.0 1.5 1 1%1.0 0.5
n -30
40
50
70
60 x-
80
90
Fig.2. Y1OOPXFer. Average magnetic moment per Fe atom, jFer obtained from the magnetization value at 20 K in a field of p,,H= 10 T, plotted as a function of Fe concentration. The open circles represent data for meltspun amorphous alloys, whereas the triangles are for crystalline intermetallic phases. The full circles are the moments of melt-spun alloys calculated from spontaneous magnetization values, which were obtained by extrapolating the linear high-field portion of the magnetization curve at 20 K to zero field [82C 11. Cf. also [86I I].
boo-xFex 0
x=57 b
x=32 a
x=71 c
x=82 d
Fe e
Fig. 3. Y 10,,-xFeX Some conceivable asperomagnetic structures consistent with the experimental data on amorphous alloys (a-d). Also shown is the magnetic structure ofcrystalline Fe(e) [Sl C5].
Sostarich
Land&BGmstein New Series 111,/19h
Ref. p. 3421
225
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
I
I 400 c 300 200 0.4 0 0
100
20
40
60
80
100
‘“lIIlmtn 0 30
40
50
60
70
80
90
x-
x-
Fig. 4. Y,,,JZo,. Average magnetic (saturation) moment per Co atom, PC0at 4.2 K, as a function of Co concentration. The circles refer to amorphous alloys: open circles: melt-spun [82B I]; full circles: vapour-quenched [77 B 11. The triangles refer to crystalline intermetallics [82 B I]. Ferromagnetism persists down to about 50 at% Co in the amorphous state, whereas the crystalline YCo, compound is no longer ferromagnetic. Cf. also [82B3, 86F4,87M3].
Curie temperature Tc of melt-spun Fig. 5. Y,,,,-,Fe,. amorphous alloys (circles) vs. Fe concentration. The Tc values were determined from high-held (ueH> 1 T) a2 vs. H/B plots (Arrott plots). Tc data of some crystalline intermetallic phases (triangles) are included for comparison [82C I]. Cf. also [8611].
60
70
80
90
100
Fig. 6. Y1O,,-xFerH?. Magnetic ordering temperature T, of asperomagnettc vapour-quenched alloys vs. x. T,, is marked by the peak in the low-field susceptibility [84C3].
Landolt-BBmstein New Series IIUl9h
50
60
70
80
90
100
Fig. 7. Y,,,-,TM,. Curie temperature Tc vs. transition metal content for amorphous alloys with TM = Co and Ni. The data for Y 100-xNi, are taken from 178L I] and were obtained on sputtered samples [84 B I].
Sostarich
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
226
[Ref. p. 342
1000 I 801 4D 600
0
10
40
30 Y-
20
2.0 Ps
50 al% 60
I
I
Y20(Fel-xMnx180
1.6
Fig. 8. Y,O,-,.rC~r. Magnetic phase diagram (ordering temperature vs. composition) of amorphous sputtered alloys (open symbols) as compared to that of crystalline compounds (closed symbols). The Curie temperature of amorphous alloys is much higher than that of their crystalline counterparts above about 25 at % Y. A cusp present in the ~~~(7)curves of the amorphous alloys with about 50 at % Y is correlated to spin-glass behaviour. (F: ferromagnetic: P: paramagnetic; SC: spin-glass) [86 F4].
1000 meVX2 800 I 600 cl LOO
0 0
200
0.2
0.6
OX
0.8
1.0
x0 0
10
20
30
40 ot% 50
Y-
Fig.9. Y,,,$o,. Spin wave stiffness constant D vs. Y concentration in sputtered amorphous alloys. D was calculated from the coefftcient of the T3j2 term in the temperature dependence of the magnetization. The thermomagnetization curves were measured in a field of p,H=2T by an induction method. The values of D, given in [87M 31,are 170,477, 594,764 and 743 meVA2 for x=60, 67, 75, 83.3 and 89.5, rcspectivcly. It is remarked that the D values for low Y content are much larger than those reported for crystalline Co in the literature [86F4]. Cf. also [87M 31 for data on lowtemperature specific heat.
Fig. 10. Y,,,(Fe,.,Mn,),,. (a) Average magnetic moment per transition metal atom, pTh,, and (b) magnetic ordering temperature, T,, as functions of the Mn content. Open circles and solid lines are for amorphous mcltspun alloys. pTM values are calculated from the magnetization at p,,H= 1.5 T. Curie temperatures were determined by Arrott plots. Earlier data from the literature for crystalline Y,(Fe,-,Mn,),, compounds [79K 11 are shown by broken lines. The symbols in the magnetic phase diagram (b) are: P for paramagnet, F for ferromagnet, Fi for ferrimagnet and SG for spin-glass. The spin-glass freezing temperatures of the crystalline Y6Fel-,Mn,)23 compounds with x=0.4 and 0.6 are marked by crosses (x) and agree well with those of the corresponding amorphous alloys [88 Ill.
Sostarich
Landolt-Rknstein New Seriec 111’19h
Ref. p. 3421
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
227
6.2.2.2 Temperature dependence of magnetization 60 -Am2 kg 50
110 &lj kg 100
I 40
b 3o 70 60 I b 50 0
100
300
200
400
K
500
T-
Fig.11. Yre,,-,Fe,. Specific magnetization 0 vs. temperature for several melt-spun alloys with the Fe content given as parameter. The measurements were performed on a vibrating-sample magnetometer in a field of p,,H= 1.6 T. Powdered samples were used, prepared by either crushing or chopping the ribbons [82C I].
I
100
I
I
200
I
300 T-
400 -
600 K 7
500
Fig. 12. Y1OO-xFex. Specific magnetization e measured in a field of poH= 1.6 T vs. temperature. Meltspun amorphous alloys with x= 67 (closed triangles) and x = 75 (closed circles) are compared with their crystalline intermetallic analogs YFe, (open triangles) and YFe, (open circles), respectively. The crystalline samples were obtained by annealing a portion of the master alloy ingots at 1100” C [82 C 11.
I 00
1.25
0
P
1
y33Fe67 I I poHo=1.6T
1.00
Fig. 13. Y,,Fe,,. Average magnetic moment per Fe atom, jFe, vs. temperature. Values obtained from magnetization measurements in different applied fields Ha are represented by circles; solid lines denote the results of molecular field analyses. The lower and the middle curves (both experimental and theoretical) are for the melt-spun amorphous alloy in fields poH,= 1.6 T and 10 T, respectively. The upper curves are for the crystalline intermetallic YFe, phase in p,,H,= 1.6 T. A reasonable agreement between the calculated curve and the experimental data is found only for this last case [82 C2]. Cf. also Fig. 19. Landolt-Biirnstein New Series III/l9h
I ,g 0.75
0.25
Sostarich
0
Id0
200
300
400
500
600 K 700
228
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
[Ref. p. 342
120 I
100
\I
\
I
I
I
12.5
I b 80
u2 10.0 z
60
% 7.5
40
5.0 2.5 \
0
100
200
300 T,-
400
500 K 600
Fig.14. Y,,Fe,,. Temperature dependence of the specific magnetization u measured in a field of p,,H= 1.6 T on a melt-spun amorphous sample (full circles) and, for comparison. on its crystalline intermetallic analogue YbFe2s (open circles). The triangles arc for p,H=1.6 T[82Cl]. crystallineY,Fe,,at
100 150 K 175 125 ISpecific magnetization d of a meltFig. 15. Y,,Fe,a. quenched alloy as a function of temperature in applied fields of poHa= 50 mT and 200 mT, respectively. The solid lines represent measurements after zero-field cooling and the dashed lines indicate data for field-cooled samples. Tr=40K[88Sl]. O-
25
50
75
16 em’ kg 14 15.0 @ kg 12.5
I” II 88 b 10
I 10.0
b
6
r, 7.5
4
5.0
2
80 K 100 60 lFig.16. Y,,,-,Co,. Specific magnetization 0 as a function of temperature for several melt-spun alloys. The magnetization was measured by means of the Faraday method inaiield ofp,H=0.9 T[84W I]. 0
20
0
40
40
80
120
160
K 200
l-
Fig. 17. Y,,,~,Co,. Temperature dependence of specific magnetization Q measured by means of an adaption of the Faraday method on two melt-spun alloys. Broken lint: x= 50 in a field of p,H=0.3 T. Full lines: x=55 in fields of 0.3 T (lower curve), 0.9 T (middle curve), and 1.8 T (upper curve) [82 B 11.
Sostarich
Landolt-BBmstein New Series III,/19h
Ref. p. 3421
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
229
6.2.2.3 High-field magnetization and susceptibility
I
I
I
2
4
I
I
I
6 8 T IO &H-----L Fig. 18. YI,,,,.xFex. High-field specific magnetization Q vs. magnetic field H for several melt-spun alloys at 20 K. The magnetization was measured with a vibratingsample magnetometer using powdered samples prepared either by crushing or chopping the ribbons [82C 11. 0
100 Am2 kg
I
‘33 Fe 67 I
y57 Fe43 I
T=4.2K
60
sl lIT?kmI
I b
40
20
0
2
I 4
I 6
I 8
I IO
T l-b&Fig. 19. Y,,Fe,,. Specific high-field magnetization (r vs. applied field Ha for a melt-spun alloy at several temperatures. Magnetic measurements were made on powdered sample with a vibrating-sample magnetometer. At 20 K the p,,H.= 1.6 T and 10 T magnetizations correspond to pFe of 1.30 and 1.49 pa/Fe, respectively. These values are smaller than the 1.43 and 1.55 pa/Fe determined for crystalline YFe, under the same conditions [82 C 21.Cf. also Fig. 13. Land&-Biimstein New Series III/19h
2.5
5.0
1.5
10.0
12.5 T It
POH,-
Fig.20. Y,,Fe,,. Specific magnetization u vs. applied field Ha for a melt-quenched sample at various temperatures. A large susceptibility persists up to the highest value of the applied field, p,,H, = 14 T, indicating that the spin structure remains noncollinear [88 S I].
Sostarich
[Ref. p. 342
6.2.2 Amorphous Y-3& La-3d, Lu-3d
230 200 Am7 kg
200 @ kg
150
150
I 100 b
I 100 b
50
50
0
2.5
5.0
a
10.0
1.5
12.5 T 15.0
0
0.25
0.50
b
PC&J-
0.75
1.00
1.251 1.50
PO%-
Fig.21. Y,,F,,H,. (a) Specific magnetization Q at 4.2 K as a function of the applied field H, for a sputtered thick-film sample before (dashed line) and after hydrogenation with y=36 (full line). (b) Shows magnetization curves for Y,,Fe,,H, alloys at 296 K [84C3]. Cf.also[82C6].
140 &j kg 120
I’
100
10 4n.10-g m3/kg
8
I 80 b
60
I
LO
t x& 2
20 I 0
6
I
I
I
I
2
1
6
8
1
0 0
I 10
10
20
30
LO ot% 50
Y-
KIHFig. 22. Y 100$Zo,. Spccitic high&Id magnetization Q vs. magnetic field H as measured at 4.2 K on several sputtered amorphous thick films (0.1. . .0.2 mm). Magnetization measurements up to poH=8T wcrc pcrformed by an induction method using a superconducting magnet. The alloys with x=89.5, 83.3, 75 and 67 correspond to the compositions Y&o,,, YCo,, YCo, and YCo,, respectively [86 F4].
Fig. 23. Y l,,O-xCo,. High-field magnetic susceptibility ~nr as a function of composition for amorphous (sputtered) alloys. The ~nr values were obtained from the slope of the saturated o(H) isotherms at 4.2 K shown in Fig. 22. The xHFvalue of a pure crystalline hcp Co sample is given for comparison [86 F4].
Sostarich
Landolt-BBmstein Ne\v Series 111119h
Ref. p. 3421
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
231
12.5r flrj kg 10.0
I.5 I b
5.0 2.5
0
^_
U.3
U.6
0.9 l%H-
1.2
1.5 T 1.8
Fig. 24. Y&o,,. Specific magnetization fs as a function of the magnetic field H applied either parallel (1I) or perpendicular (I) to the plane of the ribbon-shaped amorphous sample. The measurements were performed at 4.2 K using a (PAR) vibrating-sample magnetometer. The high-field susceptibility, xHF, is larger in the perpendicular than in the parallel direction 184W I].
4 I 3 b
2
0
2
4
6
T
8
PO&-
Fig. 25. (Y,,,,Fe,,,,)s,B,,. High-field specific magnetization o vs. applied field Ha for a splat-cooled alloy at various temperatures (1.3.. .83 K). The magnetization was measured using a vibrating-sample magnetometer [79 G I].
Land&-Biirnstein New Series III/l9h
Sostarich
[Ref. p. 342
6.2.2 Amorphous Y-34 La-3d, Lu-3d
232
6.2.2.4 Miissbauer effect
Table 3. “Fe Miissbauer effect parameters of someY l,,O-xFex alloys: isomer shift IS relative to iron metal, quadrupole splitting A, average hyperfine field Bhyp,and spectra! linewidth r. Numbers in parentheses give the uncertainty in the least significant figure. IS mms-’
A mms-’ 0.34b) 0.362“) 0.34 b) 0.35 b)
-0.16”) -0.167’) -0.15”) -0.14”) -0.19d)
r mms-’
Bhm’ T
cf. Fig. 29 30.1(2)‘)
78B2 81T2 78B2 78B2 82C6
32.5(U)')
82C6
0.34‘)
-0.049
Ref.
*) Calculated from IS(3OOK) relative to s7Co in Pd given in the reference. “) At 300K. ‘) Average value for three samples at room temperature. d, At 290K. ‘) Measured at 4.2K. f, Obtained by extrapolating data in the range 80...3OOK to OK. 8) Sputtered sample.
-z’5..“”
,-.
YIOO ..
.
-x
Fe x
‘;
RT .
.. . ..- . . . . .. ..I..-‘..-“.‘.-.“..‘-
:
57Fe
:
I
I
I
I
I
-2
-1
0
1
I
-1.0
mm/s
V-
I
I
-0.5
0
I
I
0.5 mm/s 1.0
V-
Fig. 26. Y,,,OVrFer. 57FeMiissbauer effect spectra of three melt-spun alloys. The spectra were obtained at room temperature on a conventional constantacceleration spcctromcter using a 57Co (Pd) source [78 B 21.
Fig.27. Y,,Fe,,. s7Fe Miissbauer absorption spectrum taken at room temperature using a 57Co (Rh) source and a constant-acceleration electromechanical drive. The open circlesare the actual data points and the full line is the result of least-squaresfitting the spectrum to two slightly broadenedLorentzian lines. The zero of velocity is with respectto u-Fe [Sl T 11.
Sostarich
Land&-BBmstein New Series III119h
233
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
Ref. p. 3421
I
I -6
-3
I
I
I
0
3 mm/s 6
IO
20
30
Bhyp-
V-
Fig. 28. YIO,,.,Fe,. 57Fe Mossbauer spectra at 1.6 K of several sputtered thick film samples with different Fe concentrations indicated by the corresponding numbers. The full curves through the data are tits with the hypertine field distributions, P(BhyP), shown on the right. The shaded portions of these distributions correspond to nonmagnetic atoms. The fitting was made using a Fourier deconvolution routine [81 C 51.Cf. also Fig. 32.
-- ,,
TI vm-A?, I Fig. 29. Y Ioo.,Fe,. Average hyperfine field, BhyP,obtained from s7Fe Mossbauer effect spectra at 4.2 K as a function of Fe concentration. Amorphous alloys: (open circles) evaporated [79 H l] and (solid circles) sputtered [81 C 51;crystalline compounds (triangles) [74G 11.Given on the right-hand scale are the corresponding values of the average Fe magnetic moment, j(Fe), obtained taking &,&Fe) = 14.5(4) T/pa. For the sake of comparison the Fe moments derived from magnetization data on amorphous alloys in a field of 5 T are also given (crosses). An asperomagnetic structure is suggested for explaining the latter lower moments [81 C 51.
I
30
1
-12.5
Ps I
2.0 1.5 5
,20
la
IQ5
1.0 IO 0.5
0 0
+ 1 20
I 40
Sostarich
0 60
x-
Land&-B&n&n New Series III/l9h
I
80
100
234
6.2.2 Amorphous Y-3& La-3d, Lu-3d
[Ref. p. 342
III-o.13 mm/s
-0.15 I -o.l7?
0.37 mm/s I 0.36
-0.19
- 0.35 03
25
29
37 41 45 xFig. 30. Y 10,,-xFex. Linewidth I’, isomer shift IS, and quadrupole splitting A obtained from “Fe Miissbauer effect spectra at room temperature, as functions of composition. The samples are prepared by splat-cooling to foils. Full lines arc only guides for the eve. The IS values are relative to u-Fe [81 T 11.
0 mm/s y
33
I
IOO-~Fe, I -0.04 RT
-0.16 -0.20 0
20
40
60
80
100
Fig. 31. Y1OO-xFex. Room-temperature isomer shift IS of “Fe Miissbauer spectrum relative to iron metal, as a function of composition for sputtered amorphous alloys (full circles). Also shown are IS values for melt-spun amorphous alloys (triangles) from [78 B 21 as well as for crystalline compounds (open circles) from [74G 11.The full curve is only a guide to the eye [81 CS].
Sostarich
Land&-BSmstein New Series 111,/19h
Ref. p. 3421
235
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
-4
-2
0
2
4 mm/s 6 0
T Bhyp-
I/-
Fig. 32. Y,,,+Fe,H,. 57Fe Mijssbauer spectra at 4.2 K of three melt-spun alloys with (a) y=O and (b) y 9 0, together with the corresponding hyperfine field distributions P(B,,,) (smoothed fits). The spectra were measured in transmission geometry with a constantacceleration spectrometer and a 57Co (Rh) source. P(Bhyp)were deduced using Window’s Fourier expansion method. The effect of hydrogen on the isomer shift in each of the samples is a positive displacement [85Rl]. Cf. also Fig. 33 b.
Land&-Biimstein New Series III/l9h
Sostarich
I
I
I
-2.0
-1.0
0 I/-
0.60 0.55
0.30 0.25 I d
Q
0.50 O
0.20
*O
120
160
I
mm/s 1.3
A-
0.35 mm/s
0.55
I
I
1.0 mm/s 2.0 2.5
mm/s
I 0.50
b
[Ref. p. 342
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
236
0.15 200
Fig. 33. Y,,Fe,eH,. (a) Paramagnetic “Fe Mdssbauer spectra at room temperature for increasing hydrogen loadings y, together with the corresponding quadrupole splitting distributions P(d). P(d) was obtained using the Hesse-Riibartsch procedure. (b) Mean isomer shift IS, quadrupole splitting A, and standard deviation of the quadrupole splitting distributions u,, at room temperature as functions of the hydrogen loading y [85 R 11.
Y-
Sostarich
Landolf-Bkmtein New Series 111119h
Ref. p. 3421
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
941
1 -6
1 -3
I I 3 mm/s 6
I 0 I/-
Fig.34. Y,,Fess. 57Fe M&batter spectra at room temperature of sputtered thick film sample before (I) and after hydrogenation (2,3). The numbers adjacent to curves (2) and (3) give the times (in days) elapsed since hydrogenation was completed [84 C 31.
2.10 xl6 counts
1.951 -6
Lu 60 Fe40
I -4
I -2
I 0 L/-
I 2
I I 4 mm/s 6
57Fe Miissbauer spectrum of a Fig. 35. Lu,,Fe,,. melt-spun sample at 4.2 K. The spectrum was recorded with a constant-acceleration type spectrometer in combination with a 57Co (Rh) source. The effective hyperfine field, &yp,eff9 derived from the position of the outermost peaks in the spectrum is smaller than 2.0 T [81 B I].
Land&-Bbstein New Series III/19h
Sostarich
237
238
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
[Ref. p. 342
Table 4. “Fe Miissbauer effect (ME) data of splat-cooled Y,,(Fe,Mn, -JS4 alloys at room temperature: quadrupole splittings (A,, AJ, isomer shifts (IS,, IS,) relative to o-Fe, linewidth (r). The data were obtained by fitting the ME spectra to two Fe sites, site 1 being an Fe environment which has primarily Y near-neighbours, whereas site 2 are the Fe atoms with a significant number of Fe and Mn near-neighbours. 1,/I, is the ratio of the spectral intensities corresponding to the two sites. The atomic density Q,measured using a microbalance and a toluene bath, is listed in the last column. Parametersresulting from a one-site fit to the x = 1.00spectrum are also given for comparison. For all experiments the material from a single foil was used as an absorber, powders from different foils were not mixed [8OT I]. Cf. also Fig. 37. Al
X
0.05 0.25 0.50 0.75 1.00 l.OOb)
IS1
A2
mms-l
mms-’
mms-’
0.467(8) 0.468 0.466 0.467 0.472 0.363
- 1.53(S) -0.155 -0.157 -0.160 -0.164 -0.164
0.174(8) 0.180 0.192 0.212 0.226
IS2
ra)
mms-’
mms-’
-0.094(8) -0.113 -0.130 -0.147 -0.165
0.29(l) 0.29 0.29 0.28 0.28 0.34
IllI
e
10z2atoms crne3 0.89 0.88 0.96 0.95 1.07
3.97 3.97 3.99 4.00 4.04
‘) The linewidth F observed for the inner two lines of a thin iron foil using this system was 0.221mm s-r. “) One-site tit.
1
-1.0
I
-0.5
I
0
I
0.5 mm/s
I
1.0
Room-temperature Fig. 36. Y66(Fe,Mnl&,. (a) “Fe Miissbauer effect (ME) spectra for three meltquenchedmetallic glasses.The full curve passingthrough the data points representsa least-squarestit of the spectra to two pairs of lines. The peak positions and intensities of the pairs are shown above the data by the vertical bars. The zero of velocity is with respectto a-Fe. The ME experimentswere performed using a “Co (Rh) source and a constant-acceleration electromechanical drive. The lincwidth F observedfor the inner two lines of a thin Fe foil using this systemwas0.221mm s- *. (b) ME data for x = 1 fitted to a single pair of Lorentzians. It is concluded that the tit to two pairs of lines gives a better representationofthedata[80Ti, 81T3].
VSostarich
Land&-Biimstcin New Series IIIil9h
Ref. p. 3421
6.2.2 Amorphous
Y-3&
La-3d,
239
Lu-3d
-0.08 mm/s -0.10
I
I -0.12 2
-0.14
-0.16 -0.18 -0.181 0
0.2
0.4
0.6
0.8
Fig.37. Y,,(Fe,Mn,-J,,. Isomer shifts IS, and IS, obtained by fitting the room-temperature 57Fe Miissbauer effect spectra of melt-quenched metallic glasses to two Fe-sites, plotted against Fe concentration. Site 1: lower points; site 2: upper points. Site 1 is ‘identified as an Fe environment with primarily Y nearneighbours, whereas site 2 represents Fe atoms which have a significant number of Fe and Mn nearneighbours. The isomer shift is with respect to a-Fe 1.0 [80T I]. Cf. also Fig. 36 and Table 4.
x-
Table 5. Quadrupole splitting A and isomer shift IS calculated from 57Fe Mijssbauer spectra of meltquenched Y,,(Fe,Mn, -Jsc alloys. The spectra were measured at room temperature on crushed powder samples using a conventional transmission spectrometer with a source of 57Co in Rh [SS I I]. X
0.1
0.5 0.7 0.8
A
IS
mms-l
mms-’
0.32 0.38 0.37 0.40
-0.15 -0.13 -0.13 -0.12
I
I
I
I
-6
-3
0
3mm/s6
I
I
20 Bhyp-
T
Fig. 38. Y,,(Fe,Mn,-J,,. 57Fe Mossbauer spectra of metallic glasses with x=0.1, 0.5, 0.7 and 0.8 at 4.2 K. The spectra were measured on crushed powder samples using a conventional transmission spectrometer with a source of 57Co in Rh. The spectra were analysed using a modified peak shape, assuming a random distribution of the hyperfine field orientations with respect to the principal axes of the electric field gradient tensor. The results of the fitting procedure and the distributions of hypertine fields, P(B,,,,), are also shown in the figure. Literature values of the hypertine fields at the four Fe sites, b, d, fi and fi, in crystalline Y,(Fe-Mn),, are represented by open circles [88 I I]. Land&-B&n&n New Series III/19h
Sostarich
[Ref. p, 342
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
240
Table 6. 57Fe Mossbauer effect (ME) data for splat-cooled Y,,(Fe,,,,TM,.,,),, glassesat room temperature: quadrupole splittings (d 1,4J, isomer shifts (IS,, IS,) relative to u-Fe, spectra! linewidth (r). The data were obtained by fitting the ME spectra to two Fe sites, 1,/I, being the corresponding intensity ratio (cf. caption to Table 4). For a!! experiments either an as-quenched foil or the powder from a single foil was used as an absorber [Sl T3]. Cf. also Figs. 41 and 42. TM
A, mm s-l
Mn
0.467(8) 0.472 0.490 0.508 0.595 0.730
Fe co Ni cu Zn
ISI mms-’
A2 mms-’
-0.153(8) -0.164 -0.162 -0.158 -0.174 -0.152
1% mms-’
0.174(8) 0.226 0.225 0.286 0.358 0.443
-0.084(S) b, -0.165 -0.170 -0.160 -0.178 -0.138
ral mms-’
IllI,
0.29(1) 0.28 0.29 0.28 0.30 0.32
0.89 1.07 1.04 1.08 1.12 0.75
‘) The linewidth r observed for the inner two lines of the “Fe hyperhne structure for a thin Fe foil was 0.221mm s-r. “) A value of -0.094(8) is given for the same alloy in [8OT l] (cf. Table 4).
Table 7. “Fe Miissbauer effect (ME) parameters for crystalline Y(Fe,.,, TM,.,,), compounds (Laves phases)given for the sake of comparison with data in Table 6. The ME experiments were performed using a 57Co (Rh) source and a constant acceleration electromechanical drive [Sl T 33. Cf. also Fig. 41. TM
A mms-’
Mn Fe co Ni
0.218(7) 0.480 0.466 0.553
IS mm s-l
Imm s-l
-0.007(7) - 0.095 -0.120 - 0.080
0.24(l) 0.28 0.26 0.32
Table 8. “Fe Miissbauer effect data for some splat-cooled Ye,(Fe,TM, -JS4 glassesat room temperature. The symbols have the same significance as in Table 6 [Sl T3]. TM
X
A, mms-’
co co co
0.05 0.25 0.50 0.05 0.25 0.50 0.05 0.30 0.50 0.70
0.490(8) 0.507 0.513 0.508 0.504 0.494 0.595 0.595 0.582 0.536
Ni Ni Ni cu cu cu cu
ISI mms-’ -0.162(8) -0.158 -0.162 -0.158 -0.152 -0.160 -0.174 -0.177 -0.175 -0.169
A2 mms-’ 0.225(8) 0.229 0.238 0.286 0.253 0.242 0.358 0.284 0.272 0.266
Sostarich
1% mms-’
r mm s-l
IllI,
-0.170(8) -0.168 -0.160 -0.160 -0.158 -0.160 -0.178 -0.177 -0.175 -0.174
0.29(l) 0.28 0.28 0.28 0.28 0.28 0.30 0.31 0.30 0.29
1.04 1.03 0.95 1.08 1.08 1.08 1.12 0.91 0.89 1.13
Land&-Bbnstein New Series 111119h
Ref. p. 3421
I -1.0
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
I - 0.5
I 0
I
241
I
0.5 mm/s 1.0
-1.0
-0.5
0
0.5 mm/s 1.0
I/-
Fig.39. Y66~Feo.05C00.95h. Room-temperature
57Fe Mossbauer effect spectrum of a splat-cooled sample and tits to two Fe sites (top) and to two asymmetric Lorentzian lines (bottom) [81 T3]. Cf. also caption to Fig. 40.
Fig.40. Y66(Fe,.,,TM,,,,),,, with TM=Ni, Cu, Zn. Room-temperature 57Fe Mdssbauer effect (ME) spectra for splat-cooled alloys. The solid line is a leastsquares tit of the data to two Fe sites. ME experiments were performed using a 57Co(Rh) source and a constantacceleration electromechanical drive. The linewidth observed for the inner two lines of the 57Fe magnetic hypertine structure for a thin Fe foil was 0.221 mm s-l [81 T 31.
0.8 mm/s 0.7
0.6 0 mm/s
I 0.5 Q
-0.05
!
Ok
-0.10
0.3
2 -0.15
-0.20 Mn
/
Fe
co
Ni
CU
/' / -
Zn
0.2 0.1 Mn
TM
co
Ni
cu
Zn
TM
Fig. 41. Y66(Feo.05TMo.95)34. Room-temperature 57Fe Miissbauer spectrum isomer shift IS,, for splatcooled metallic glasses as a function of TM species. The IS values for some Y(Fe0,05TM,,,,), Laves phase compounds are also given for comparison. The zero of the IS scale is with respect to a-Fe [81 T3]. Cf. also Tables 6 and I. Land&Biimstein New Series IIUl9h
Fe
Fig. 42. Room-temperature Y66(Feo.05TMo.95h. quadrupole splittings A r and A 2, for splat-cooled metallic glasses with different TM. The solid and dashed lines are put in as an aid in viewing the data [81 T 31. Cf. also Table 6.
Sostarich
242
[Ref. p. 342
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
6.2.2.5 Ferromagnetic resonance properties S-bond
I 0.5
0 a
1
I 1.5
I 1.0
2
3
b
I kOe 2.0
4
kOe
5
H-
Q-bond
------I &A
,
X-bond Aa 4 S-bond
2
c
I
I
I
8
9
10
I
I
11
12
I
13
I
v
0
I
11 kOe15
30
LO K
50
H-
T-
Fig.43. Y,sCo,s. Typical ferromagnetic resonance (FMR) spectra of a melt-spun alloy obtained at 4.2 K with parallel (I]) and perpendicular (I) orientation of the static magnetic field H. The dotted line was obtained fitting the FMR spectra by a Lorentzian-type derivative with a variable dispersion/absorption ratio, D/A. The ordinate in these diagrams is the derivative of the absorption with respect to the high-frequency electromagnetic field [84W 11.(a) S-band 3.5 GHz; (b) X-band 9.3 GHz; (c)Q-band 34 GHz.
Dispersion to absorption ratio, Fig.44 Y.&o,,. D/A, as a function of temperature and frequency. The D/A ratio was obtained by the fitting procedure mentioned in the caption to Fig.43. D/A is very frequencydependent and increases slightly with the temperature. An asymmetric line shape corresponding to D/A = 1 is to bc expected because of the skin effect in metals. When the ratio of the magnetization to the field for resonance increases (this is brought about either by decreasing the frequency v or by lowering 7) a symmetric line should be observed. This corresponds to a D/A-ratio of 0, and is in qualitative agreement with the above results [84W l].Cf. Fig. 43.
Sostarich
Land&-BBmstein New Series 111,/19h
0.8
kOe 0.7 "6
I
243
6.2.2 Amorphous Y-3& La-3d, Lu-3d
Ref. p. 3421 I
YIOO-x cox 1
I
I
Fig.45. Y1,,O-xCox. Linewidth of FMR spectral lines r as a function of temperature for melt-spun alloys with x=53.5, 54.0, 55.0, 55.5. (a) S-band; (b) X-band; (c) Qband; cf. caption to Fig. 43. Below the ordering temperature in samples with relatively higher Co concentration, r is approximately constant and it increases near T,. In samples of lower Co concentrations an additional strong rise of the linewidth is observed at low temperature. This feature is almost frequency-independent [84 W 11.
S-bond I
,
I
0” I.L
kOe 1.1 1.0 1 0.9 L
0.8
1.75 kOe 1.50
1.25
2.0 kOe 1.9
1 1.00 e 0.75
1.7 0.50
I 1.6 L 1.5
0.25
1.4 0
1.1 1.0 0
IO
‘.
Land&Biimstein New Series IIIIl9h
20
30
$0 T-
50
60
70 K 80
10
20
30
GHz
40
Fig.46 Y1e,-,-$ox. Linewidth r,, as a function of the frequency v for melt-spun alloys with x= 53.5,54.0, 55.0, 55.5. The values of To correspond to the constant part of the temperature dependence of r in Figs. 45 a and b and to the value of the r( 2”)minimum in Fig. 45 c. The curves represent tits based on equation, To = uv + b 1/;T with a and b constants [84 W 11.
Sostarich
244
[Ref. p. 342
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
6.2.2.6 Magnetovolume effects
4
0
2
I
0 0
100
200
300 400
500 K 600
0
lFig.47. Y,OO~XFer. Relative length change Al/I as a function of temperature for several rapidly quenched alloys with different Fe-contents. The samples with 89.5 and 30 at% Fe are crystalline, whereas the rest is amorphous. Curie temperatures Tc determined by Arrott plots, are indicated by arrows. The thermal expansion was measured by a dilatometer employing a differential transformer at temperatures above 300 K, and by a three-terminal capacitance method at temperatures below 300 K. Invar behaviour is observed in the amorphous Y,,Fe,, alloy but disappears with decreasing x. Both the as-quenched Y,,,,Fe,,,, and the crystallized Y,eFe,e alloys show the Invar property below about room temperature [86I 11.
20
40 Y.B-
60 ot% 80
Fig.48. Y1eeM,Fe,. (a) Forced volume magnetdstriction &o/aH and (b) spontaneous volume magnetostriction o, vs. composition of melt-quenched ribbons. The value of o, is defined by the volume difference between the ferromagnetic state and a hypothetical paramagnetic one Solid circles: values at 0 K; open circles: values at Tc. For the sake of comparison data on four amorphous B1OO-rFexalloys are included (0 K: solid triangles; T,: open triangles). The value of w, for amorphous Y,eFe,, is 0.8. lo-’ and is much smaller than those of the B-Fe alloys, which are typical amorphous Invar alloys. On the other hand at 0 K, (awlaH) of the amorphous Y-Fe alloys is about twice of the B-Fe alloys in spite of their lower w, [86 I 1-j. Cf. also [85 I 1-J.
Sostarich
Land&Bdmstein New Series 111!19h
Ref. p. 3421
6.2.2 Amorphous Y-3d, La-3d, Lu-3d
245
200 .10-'0 Oe-' 150
100 I % I
0
50
50
0 0
0
50
100
150
200 T-
250
300
350 K 400
Fig.49. Y1,,O-xFex. Forced volume magnetostriction aw/aH of melt-quenched ribbons vs. temperature. The alloys in the composition range from x=40 to 80 are amorphous. The forced volume magnetostriction was measured by a three-terminal capacitance method in magnetic fields from 10 to 20 kOe. Tc values determined by Arrott plots are indicated by arrows. For amorphous Y,,Fe,, aw/H is about 66. IO-r0 Oe-’ at OK, it increases monotonously with T, and reaches a maximum of 160. 1O-1o Oe-’ at To Such a large variation of aw/aH with T is a common feature of Invar alloys. The value of awlaH for x= 30.~~60 does not show an appreciable change with temperature. For Y,,Fe,, and Y,,Fe,, the value (H&p) N - 29 K/GPa is evaluated from forced volume magnetostriction data using the equation aT,lapc2 (aw/aH) &?o,“/aT)@ at T,, where Qis the mass density [86 I I].
Land&Biimstein New Series III/l9h
Sostarich
246
6.2.3 Amorphous Gd-3d
[Ref. p. 342
6.2.3 Alloys with Gd (L = 0) 6.2.3.1 Magnetization, magnetic moments, ordering temperatures and type of magnetic order 6l
I
” I Gd,OO-xtox 250 AmZ kg
5
T=L2K
I
I
I
1
( 1
4
I 50
I 60 Gd-
I w
t 200 d 150
100 0
10
20
30
40
50
71 -40
60
x-
Fig. 50. GdIoO-$o,. Spontaneous specific magnetization bs,, vs. Co concentration at 4.2 K. Open circles: melt-spun ribbons with exception of the Gd,,Co,s sample prepared by high-rate dc sputtering. The magnetization was measured by an induction method using a 10 T superconducting magnet, and the bsP values were obtained by extrapolating the high-field portion of the magnetization curves to zero of the external magnetic field [86Fl]. Included are data on two sputtered films (solid circles) from [74T 11.Cf. also Fig. 171.
1.2
1
I 70 at%
I 80
Magnetic moment per average Fig.51. GdIooJo,. atom, j&,, as function of the Gd concentration in liquidquenched amorphous alloys The pa, values were derived from data of magnetization at 4.2 K in a field of poH= 1.4 T (cf. Fig. 171). The broken line represents the contribution of Gd to the average magnetic moment assumingp(Gd)=7p, [88Y 11.
I
pa Gd,OO-xCox 0.8
I
T=4.2K I
, I
0.4
/’ I
x
I
91
I
/1
I I I I I 30 50 60 40 70 xFig. 52. Gd,,&Zo,. Average Co magnetic moment I at 4.2 K as a function of Co concentration. Closed circles: melt-spun ribbons save the Gd,Jo,, sample prepared by high-rate dc sputtering. Open circles: data on evaporated samples from [77B 11. The two sets of j(Co) values are derived by assuming the average Gd magnetic moment to be 7 pa and 7.5pR, respectively [86Fl]. -0.8I 0
I 10
I 20
I I I 60 70 ot% 80 GdFig. 53. GdlOOVrCoX. Average effective magnetic moment per atom, &r, as function of Gd concentration in liquid-quenched amorphous alloys. Jcrr values were obtained from the slopes of the 1;’ vs. T lines using the Curie-Weiss law (cf. Fig. 66). The broken line represents the equation J?,~~=[(~OO-X)p:,r (Gd)/lOO]“’ in which p&Gd) is the effective magnetic moment of the free Gd’+ ion whereas the contribution of Co atoms is neglected [88Y 11.
Sostarich
41 40
I 50
Land&Biimstcin New Series IIIi19h
6.2.3 Amorphous Gd-3d
Ref. p. 3421
247
350 K 300
I 250 c-" 200
100 25
30
35
40
45
50
55
Fig. 54. Gdioo-$0, (25 5x 5 55). Curie temperature Tc vs. Co concentration for liquid-quenched alloys. I [80A2]; 2 [82Ml]; 3 [86F2]; 4 [78Dl]; 5 [78Gl]; 6 [80Bl; 80A2]; 7 [83A3]; 8 [80Al; 80Bl]; 9 [85Sl] (sputtered); IO [8602]; II [82B2]. Cf. also [88Y I].
Fig. 55. Gdie,,-$ox. Curie temperature T, vs. Co concentration. Closed circles: melt-quenched samples save Gd,&o,, prepared by high-rate dc sputtering. The Curie temperatures were obtained from curves of permeability as a function of temperature [85Sl]. Included are data on the crystalline Gd-Co compounds (open circles) from 173B I] and on amorphous sputtered and evaporated Gd-Co films (triangles) from [74T I] and [75 L I], respectively. Cf. also [80 B2].
600 K
100
0 0
20
40
60
80
100
x-
Fig. 56. Gd,,,.,TM, (TM =Fe, Co, Ni). Curie temperature T, as function of transition metal content for various amorphous alloys. The data for x>50 pertaining to vapour-quenched films are taken from [75Ll] and [79B2], whereas those for x5 50 measured on melt-spun samples (ribbons) are from [80B2] and [80 B 31. Data with error bars for Gd-Fe alloys are from [81 Bl]. (Remark: according to [75H l] the Curie temperature of amorphous Gd should be 253 K.) Cf. also Fig. 170. Land&-Biirnstein New Series IIIIl9h
Sostarich
Table 9. Liquid-quenched Gd-TM alloys. Magnetic moments, ordering temperatures and magnetization data. The type of magnetic order is given only where it is explicitly mentioned in the reference. Ferromagnetic order implies here that the TM atoms carry no magnetic moment. k
Gd “1
PB
Is,,
“1
PB
0
T,
tY
M,
K
K
Am2 kg-’
106Am-’
5.3 b) 6.0 b, 5.8 b, 5.7 b) 7.5 ‘) 5.0 b,
Gd,,C%
8.4 ‘) 8.04 ‘) 8.6 ‘)
7.91’) 6.84’) 6.6 b,
8.38 ‘)
7.07(7)“) 7.31”) j?(Gd)=7.5pB @o)r -0.6 lB cf. Fig. 52 6.3‘)
8.19’)
173’) 183’)
187(3)‘)
290 “) 310’) 380 400 “) 568 “) 598 “) 443 “) 145“) 190C) 171’) 173’) 176’) 170’) 170’) 169.9(2)“) 1759)
182d)
ferri
164d)
ferri
130d)
ferri
ferro 1.58 1.62 242 ‘) 21Ok) 1.68 212(2)P) 2191 Fig. 50
ferro ferri ferri
1W) “1 218’)
212(5)‘)
186(l) “) 175“) cf. Fig. 202 183.5“) 200 9) 193‘) 220”) 230 “)
7.8 “)
SOB1 79Bl SOBI, SIB1 79Bl,80Bl,81Bl 88Sl 79Bl,SOBl,SlBl 87A3 87A3 87A3 85Sl 80A2 80A2 86F2 86F2 SOBI, SOB2 80A2 78Dl 82Ml 86Fl
ferro
ferro
82Ml 82Ml 80A2 82A2,83A3
ferri
200.33 1.65 215’)
2187)
Ref.
78Gl 80A2 8751 8602 82B2
1.62 195(l)‘)
7.05“) 8.1’“)
Magnetic order
230 “)
6.6 “)
10.0(2)‘)
h,
8382 88Al
Table 9 (continued). ii,ff,
Gd ‘1
PB
Gd,Co, WJWh.,,, Gd&o,s
7.80 3 7.62 ‘) 8.3 ‘)
7.62 ‘) 7.313
“) “) ‘) “) ‘) ‘) “) “) 3 j) ‘) ‘) “‘) “) r)
1
“1
PB
7.14j) 6.93‘) 6.8 “)
0
T,
Q
Ms
K
K
Am2 kg- ’
106Am-’
198k, 192k,
138(5)‘)
222 “) 223 ‘) 230 ‘) 230 =) 276 =) 277 “) 278 “) 281’) 300 “) 330 “) 130(S)“)
212(2)P) 220.3‘)
122’)
125“) 125“) 118”)
230 ‘)
5.9“)
GdmCom
Gdd&
&d
6.96‘) 5.72‘) 6.17b)
9.0 1)
7.0 b)
8.4 ‘)
7.0 “) 7.45“) 8.0b)
‘9
Magnetic order
1.54 ferro 1.36 180k) 148k, ferro 1.27 ferro ferro ferro
Ref.
86F2 86F2 80Bl 80A2 80A1, 80Bl 80A2 86F2 86F2 80A1,80Bl 80A2 78 B 1, 80B 1, 80B3 77D1,78Dl 82Ml 80A1,80Bl
The average effective magnetic moment, peff,od, and the average magnetic moment, pod, are given per Gd atom. Calculated from magnetization value at 4.2 K in a field of F~H = 1.8 T. Derived from plots of the magnetization squared versus temperature. Measured at 4.2 K in a field poH = 1.8T with a vibrating-sample magnetometer. Calculated from the magnetic moment per molecule which was derived from rr, at 4.2K. Sputtered sample. “) Determined by standard ac bridge. Obtained from the temperature dependence of the magnetic permeability p. ‘) CT,at 4.2K. Measured at 4.2 K with a vibrating-sample magnetometer. “) Obtained from the temperature dependence of the coercive field H,. Calculated from values of qc, the number of magnetic carriers per atom, I) Spontaneous magnetization at low temperatures. according to the formula ~~ff,Gd=q,(q,+2)100/(100-x), where x is the Co “) From xac vs. T plots. concentration in Gdl,,O-xC~x alloys. “) Obtained from the lowest-temperature part of the xl’ vs. T Calculated from moments per average atom given in the reference. dependence above T,, as this dependence does not conform to the 6, value at about OK. Curie-Weiss law (cf. Fig. 69a). “) Obtained from 6, value at 4.2 K. Derived from Curie-Weiss plots (x-l vs. 7’). “) Estimated from the temperature dependence of magnetization. Calculated from the value of Q given in column six. ‘) Obtained from the temperature dependence of electrical resistivity. Obtained from Arrott plots (a’ vs. H/a). cr, value at 2 K measured by the Faraday method (maximum field poH = 7.5 T). 3 Amorphous state induced by hydrogenation.
Table IO. Liquid-quenched ternary alloys with Gd and 3d transition metals. Magnetic ordering temperatures, specific magnetization and type of magnetic order. Magnetic order ‘)
Ref.
Am2 kg- ’ Fig. 92 200.7“), 200 ‘) 220 d,
ferro-like ferro-like ferri ferro-like
z 67”) 77 “) 220”) 219”) 197”) 263(5)“)
Fig. 92
spero
82Rl 82Rl 84Cl 84S1, 8532 82Rl 84Sl 82Rl 84Cl 82Rl 79Gi
504 ‘q 566 ‘y z 160”) 116”)
Fig. 229
T,, T
K
T,
K
151”) 174”) 172”) 175”)
u
177.5“). 178‘) Fig. 89
ferro-like ferri ferro-like ferri
Remarks
xacvs. T in Fig. 75 ‘1 ‘)
xacvs. T in Fig. 75 the spontaneous moment per average magnetic atom is PGd. Fe = 3.9(1
26 ‘)
98 “) 46 ‘) 124”) 122”) 125 “) 112(l)‘) 135.5(2)‘)
Fig. 93 9’) 41 ‘) 40(3)‘) Fig. 62
220.9b), 220 ‘) 212k)
ferro ferro for T,
87A2 86A2 87Sl 8201 83Sl 83Sl 8201, 83Sl 84Cl 84Sl 8501
T
ferri for T, < T < T, spin-glass for
T
8851
1 PB
cf. Fig. 250 xac vs. T in Fig. 84 (cf. also Fig. 83) xacvs. T in Fig. 84 (cf. also 3) ,yacvs. T in Fig. 82
cf. also Figs. 61, 75, 78 and [SS 0 21
“) Obtained from the temperature dependence of the ac susceptibility xac. “) osPat 4.2 K obtained from law-of-approach-to-saturation tits (cf. also Table 11). ‘) osPat 4.2 K obtained by linear extrapolation of high-field magnetization data to H =O. “) a,, at 4.2 K obtained by fitting magnetization data to the equation: a(H)=o,,(l -AH- 1/2)+~HFH (cf. Fig. 90). ‘) In [85 S 21 the possibility that the apparent ferromagnetic-like state below Tc could actually be a correlated speromagnetic state, a concept introduced by Chudnovsky and Serota [83 C l] is discussed. ‘) The introduction of hydrogen changed the magnetic structure to speromagnetic. Hydrogen increased the anisotropy and decreasedthe exchange energy. (The xac peak temperature, T, = T,, increased from z 67 K to z 77 K after annealing for one week at room temperature, cf. Fig. 76.) 3 Estimated from c2 vs. T plot. “) Determined from the temperature dependence of magnetization. i, Temperature of ac susceptibility drop on the xaEvs. T cooling curve. j) Deduced from scaling analysis. ‘) Saturation magnetization at 4.2K. ‘) Ferro-like indicates a ferromagnetic-like state with infinite magnetic susceptibility below Tc
6.2.3 Amorphous
252
Gd65FexC035-x
,701 0
2.5
I
1
5.0
[Ref. p. 342
Gd-3d
.I
10.0
7.5 x-
12.5
1
15.0
Fig.57. Gd,,Fe,Co,,-,. Curie temperature Tc of splat-cooled alloys (foils) vs. Fe concentration. The magnetic ordering temperatures were determined by using an ac susceptibility bridge operating at a frequency of 270 Hz in a field of u,H=250uT [84P2]. Cf. also Fig. 80.
160 . 0
2
8
6
4
10
xFig. 58. @4,&oo.~shoo-x Bx’ Paramagnetic Curie temperature 0 and effective moment per average magas functions of B concentration. netic atom, i%ff.Gd+CoT The samples were prepared by splat-cooling [80 H 11.
180 K
’
.
(Gbo,dOo.;5)
160 I hu 110
120 0
4
I
E 8
loo-xsix
I .
* 12
-a
16
20
x-
Fig. 59. (Gd,,,,Coo.35),00-rSir. Curie temperature Tc of splat-cooled alloys vs. Si concentration. Tc values were determined from xacmeasurements [84P2]. Cf. also Fig.81.
Sostarich
LandolbBi5mstein New Series 111119h
Ref. p. 3421
250 nz
Frg.60. GdTzmXTM, Ga,, B,,. Composition dependence of specific magnetization Q for two splat-cooled alloy systems. The magnetization was measured at 4.2 K with a vibrating-sample magnetometer in fields up to poH=7.5 T. For TM =Ni the spontaneous magnetization cr.,,determined by extrapolating the high-field slope back to zero magnetic field, is plotted. The solid line represents the dependence expected if Ni carries no magnetic moment and Gd carries a moment of 7.0 un. For TM =Mn the d values measured at poH=7.5 T are directly plotted and the line through the data points is only a guide to the eye [88 J I].
Gdn-xTMxb810
0
10
I
K Gh,TM, 150
,
K 200
I
I
/TM=Fe
Gd72- xT MxGale ho I I
125) ,’
I
I
I
I
175
250
253
6.2.3 Amorphous Gd-3d
I
20
30
x-
40
50
/ 08
ho
I
I
P
I
\ I\41
60
I TM=Mn
I
I
/
I 1501
25 I‘..
K,
^
TM=Co
P -4
100 75 I 6.F
0 125 K
I TM=Ni
F
25
0
5
10
15
20
25
0 0
30
x-
10
15
20
25
30
35
40
x----r
Fig. 61. Gd,,-,TM,Ga,sB,,. Magnetic phase diagrams (ordering temperatures as functions of x) of two splat-cooled systems: (a) TM =Fe. The sample with x=24 is estimated to be about 2% crystalline. (b) TM = Co. The SG transition lines are only tentative since no alloys in the ranges 0.. .2 at% Fe and 2.. .4 at% Co were studied [87A I]. P: paramagnetic; F: ferromagnetic; SG: spin-glass.
Land&-BGmstein New Series III/i9h
5
Fig.62. Gd,,-, TM, Ga,s B,,. Magnetic phase diagrams for two splat-cooled alloy systems with x s 40 and TM = Mn (a) or Ni (b). The P+F and F+SG transition temperatures were determined from the point of steepest increase and decrease, respectively, of the ac susceptibility curves. The P+SG transition temperature was determined from the position of the ac susceptibility peak [88Jl]. P: paramagnetic; F: ferromagnetic; SG: spin-glass.
Sostarich
[Ref. p. 342
6.2.3 Amorphous Gd-3d
254
6.2.3.2 Temperature dependence of magnetization and susceptibility
160 Fg 120 I b
80
0
50
100
150
200
250 K 300
Fig.63. Gd,,Mn,,. Specific magnetization u vs. = 0.3T (lowercurve), temperature in applied fields pOHa 0.9 T (middle curve), and 1.8 T (upper curve). The measurements were made with an adaption of the Faraday method [80B 11.
200 M kg 160
120 I b 80
0
TFig. 64. Gd,OO-xFer. Specific magnetization u of two melt-spun alloys (x=40 and 50) measured in a field of p,H=0.9 T as function of temperature. An adaption of the Faraday method was used for the measurement [78 B 11.
50
100
150 l-
200
250
300 K 350
Fig.65. Gd6aFeJ2. Specific magnetization u of a melt-spun alloy vs. temperature at three different field strengths p0H=0.3T (lower curve), 0.9 T (middle curve), and 1.8 T (upper curve). The magnetization was measured by means of an adaption of the Faraday method [79 B 11.
Sostarich
Landoll-B6mstein New Series 111119h
Ref. p. 3421
6.2.3 Amorphous Gd-3d
255 ...lo” 45% jg m3 2.5
I 2.5,_ x 0 2.5
0
100
200
300
400
K
500
T-
Fig. 66. GdiO,&ox. Temperature dependence of poH= 1.4 T specific magnetization and inverse susceptibility, a and xi ‘, respectively, for some liquid-quenched alloys. The sample with x = 60 is crystalline, whereas the other ones are amorphous. The measurements were performed using a Faraday-type magnetic balance. Ferromagnetic and paramagnetic Curie temperatures, Tc and 0, respectively, are indicated by arrows [88 Y 11.Cf. also [80A2,80B2,88Y2]. 240 Amz kg 7nrJ
250 Am2 kg 200
II
I G&o ho I
.~ “I- - I T=42K
7
76
160
I 150
b
120
‘z? 100
80
0
0.25
0.50
0.75
1.00
1.25 T 1.50
T-
Fig. 67. Gd&Zo,, (Gd,Co). Spontaneous specific magnetization aspand inverse initial susceptibility ~0’ vs. temperature. Magnetization measurements were carried out by the Faraday method. At low temperatures aspwas defined by extrapolating to zero field the high-field part of the a vs. H isotherms. For temperatures close to T,, aspwas determined from a3 vs. H/a plots [78 D 11. Land&-Biimstein New Series III/19h
Fig. 68. Gd,,Co,,. Isothermal magnetization curves, a vs. H, for a liquid-quenched amorphous alloy at various temperatures. The measurements were performed using a Faraday-type magnetic balance [88 Y 11.
Sostarich
256
6.2.3 Amorphous
160 !I$ kg 120
Gd-3d
[Ref. p. 342
250 &q
8
Jls G kg Tiir
112.5 12.5
Jo) 457 kg Tiij I.5I T&?
80 150
I
I
b
100
5.0
50
2.5
0 0
I
I
I
100
200
300
I IO 0 400 K 500
TFig. 70. Gd,&o,eH,. Specific magnetization e and inverse magnetic susceptibility xi’ in p,H=0.5T vs. temperature for melt-spun sample before (full curves) and after hydrogenation (y=6, dashed curves). Q is decreased but Tc is hardly changed by hydrogenation. The temperature dependence of the magnetization was measured with a magnetic balance [86 F2].
160 I 120 b 80
-0
50
100
150 T-
200
250 K 300
Fig.69. Gd,,Co,,. (a) Specific magnetization v and inverse magnetic susceptibility xi’ of a melt-quenched alloy vs. temperature. The measurements were performed in a magnetic field of p,H=0.7 T. (b) Specific magnetization u measured down to 4.2 K in an applied field of p,H=0.4 T. The susceptibility was investigated by a magnetic translation balance, while for measuring the magnetization a vibrating-sample magnetometer was used [83A3].
250
!I$ kg 200
I
150
b 100
TFig. 71. Gdb0Ni4,,. Specific magnetization d in applied fields poHa=0.3 T (lower curve) and 0.9 T (upper curve) and reciprocal magnetic susceptibility 1,’ vs. temperature. The measurements were made with an adaption of the Faraday method [80 B 11.
Sostarich
Land&-BBmstein Ne\vSerics III119h
Ref. p. 3421
257
6.2.3 Amorphous Gd-3d
4:
Fig. 72. (Gd,,,65Fe,,,,),,B,,. Square of spontaneous magnetization OS’,and inverse magnetic susceptibility xi ’ vs. temperature for a rapidly quenched alloy prepared by the hammer-anvil technique. The magnetization was measured using a vibrating-sample magnetometer and e,“, was obtained by extrapolation to zero field of the nearly linear high-field portions of the e2 vs. H/a isotherms. Susceptibility measurements were made with a Faraday balance. A Curie-Weiss analysis of the xi ‘(2) data lead to an unreasonably large effective moment per average magnetic atom perrod +re = 9.7 u,/at. It is suggested that conduction electron polarization might be responsible for enhancing the susceptibility in the paramagnetic state [79G I].
I
I
kg iiF I
A2m4 (Gd0.65Fe0.35) 90 BIO kg’ 3
I N:: 2 b
5.07$
2.5
0
80
160
240
K
I
I
320
T-
If0
I
d
I
I
I
I
-I”
IL”/” =0.8T
I
120
120
b go
16 90
60
60
I
30 I
,
0
40
80
120 160 200 T-
1
240 280 K 320
Specific magnetization 0 of a Fig. 73. Gd,,Fe,Co,,. splat-cooled alloy as a function of temperature. The magnetization was measured with a Faraday balance in an applied field of poHa=0.8 T. The average magnetic moment at 77 K is found to be about 3.6 urJat [84P2].
Landolt-Biimstein New Series III/l9h
0
40
80
120 160 200 T-
240 280 K 320
Fig.74. (Gd0,&o,,&,sSi5. Specific magnetization cr of a splat-cooled alloy as a function of temperature. The magnetization was measured with a Faraday balance in an applied field of poHa=0.8 T. The average magnetic moment at 77 K is found to be about 3.3 uu,/at [84P2].
Sostarich
[Ref. p. 342
6.2.3 Amorphous Gd-3d
258 I
I
(Gd0.80Ga0.20)loo-~Fe,
50
100
150
200
250
K
300
Fig. 75. (Gdo,s0Ga0.20),00-IFer. AC susceptibility xac vs. temperature for glasses with various Fe contents. The glass with x=0 is actually (Gdo,soGao.20)s0Blo. The susceptibility was measured using a balanced pair of coils, a driving field of about 30 VT and a frequency of 280 Hz. Samples of equal mass, which were rectangular strips measuring about 1 mm x 4 mm x 50 pm, were placed with their long axes parallel to the applied ac magnetic field. The scale on the vertical axis is chosen by averaging several measurements on infinite-susceptibility glasses, for which the maximum value of xac is l/N, with N the demagnetization factor. The value of N is taken to vary by less than 10% for these samples. Apparent ferromagnetic transitions are seen at Tc= 122,172, and 219 K, for x = 0, 10, and 20, respectively [84 C 11.
10.0
I 7.5 u *; 5.0 2 -” A 2.5
0
50
100
150 200 250 K 300 lFig.76. (Gd,,,,Ga,,,o)90Fe,,H,. AC susceptibility xac vs. temperature for unhydrogenated (full line), hydrogenated (dashed line), and hydrogenated with a subsequent one-week anneal at room temperature (dashdotted line), splat-cooled samples. The introduction of x55 at% hydrogen (y = 130) altered the temperature dcpcndencc of xac from a ferromagnetic-like curve (Tc = 174 K) to a speromagnetic-like curve with a single peak at 267 K [82R 11.Cf. also Fig. 92.
Sostarich
LandolbB6mstein Ne\r Series IIIi19h
0 0
259
6.2.3 Amorphous Gd-3d
Ref. p. 3421
50
100 T-
150 K 200
1.0 N’
Fig. 71. Gd,,-,Mn,Ga,,Bie. In-phase ac susceptibility xac vs. temperature for splat-cooled alloys. The measurements were made in an rms field of 100 uT at a frequency of 280 Hz [88 J I]. N is the demagnetization factor.
0.5 K!!!
t
Gd72-xNix~aldlo
I
2 A
Id
I
I 1.0 N-1 0.5 0
III
III
\I
x=oI
1.00 N-1 I
0.75
1
.:: 0.50 x 0
0 0
50
100 150 K 200 TIn-phase ac suscepFig. 79. Gd,,~,Ni,Gal,B1~ tibility rHEvs. temperature for spiat-cooled alloys. The measurements were made in an rms field of 100 uT at a frequency of 280 Hz [88 J 11. N is the demagnetization factor. Landolt-BBmstein New Series 111/19h
0
30
60
90 T-
120
150 K 180
Fig. 78. Gd,,-,TM,Ga,,B,,,. AC susceptibility xacvs. temperature for several splat-cooled alloys with TM = Fe and Co as well as, for the sake of comparison, Th and MO. The susceptibility was measured in an 100 uT rmsfield at a frequency of 280 Hz. Samples were in the form of stacks of 0.8 cm long strips, aligned with their long axis parallel to the applied magnetic field [87Al]. N is the demagnetization factor.
Sostarich
[Ref. p. 342
6.2.3 Amorphous Gd-3d
260
I
I
I
I
I40
160
180
200
I
I
I
I
I
220 240 260 280 K 300
TVariation of ac susceptibility Fig. 80. Gd,,Fe,Co,,-,. x,~ with temperature for alloys with various Fe contents. Measurements were performed using an ac susceptibility bridge operating at a frequency v = 270 Hz in a typical magnetic field strength of p,H=250 pT. X-ray studies established that for x510 the samples are amorphous, whereas for 105x 5 15 mixtures of amorphous and crystalline phases are obtained. The temperature at which the relatively sharp susceptibility drop occurs is taken to be the Curie temperature Tc of the glass [84P2]. Cf. also Fig. 57.
170 190 210 Z3UK L 3 lVariation of ac suscep1 100-x Six. Flg.81. (Gdo.6sCoo.x tibility xac with temperature for glasses with various Si concentrations. Measurements were performed using an ac susceptibility bridge operating at a frequency of v=270 Hz in a typical magnetic field strength of p,H=250 pT. The temperature at which the relatively sharp susceptibility drop occurs is taken to be the Curie temperature Tc. With increasing Si concentration the Curie temperature decreases considerably [84 P2]. Cf. also Fig. 59. 90
Sostarich
110
130
150
Land&-BBmsfein New Series 111!19h
Ref. p. 3421
261
6.2.3 Amorphous Gd-3d
0
50
100 T-
150
K
200
Fig. 82. GdssNi,zB,,. Temperature dependence of the ac susceptibility xae of a splat-cooled alloy measured at a frequency of 280 Hz in rms applied fields of less than 1 PT. The samples were in the form of strips of approximate dimensions 4 mm x 1 mm. The ac susceptibility, x,,=dM/dH,, where Ha is the applied field, is limited by the demagnetization factor N when the true susceptibility, x=dM/dHi, diverges. Hi is the field inside the sample, Hi= Ha-NM [82 0 I].
(Gdo.80Gao.zo) ooTM20 ~-pl=Fe - co -
I I (Gdo.8oGao.2o)~0Nj20Hy
I
50
I
100
I
I
150 T-
200
I
250 K 31
Fig. 83. (Gd,~soGaO,zo)soTMzo with TM = Fe, Co, Ni. Temperature dependence of the ac susceptibility xac measured at a frequency of 280 Hz and in rms fields of 5 10 PT. xacapproaches the demagnetization limit (N- ‘) at Curie temperatures, Tc, which decrease as the exchange interaction becomes weaker. The decrease of xBc in the Ni-containing glass at low temperatures suggests the entrance into a spin-glass-like phase [85 S 21.
Land&-B&n&n New Series III/19h
0
50
100
150
K
200
Fig. 84. (Gd,,soGa,,,,),,Ni,,H,. AC susceptibility xac vs. temperature for amorphous samples with y =0 and ~~120. The sample without hydrogen exhibits a ferromagnetic-like transition at Tc = 98 K. In contrast, the hydrogenated sample has the character of a speromagnet with T,, = Tp N 46 K. It is inferred that the major influence of hydrogen is to increase D/y, so that a ferromagnetic-like state is driven towards a speromagnetic one [83 S 11.Cf. also Fig. 93. N is the demagnetization factor.
Sostarich
262
[Ref. p. 342
6.2.3 Amorphous Gd-3d
6.2.3.3 High-field magnetization and susceptibility
160
12
0
3 I-lo",-
4
5
6T
I
0
2
6
18
~04-
Fig.85 Gd,,Co,,. Specific magnetization Q as a function of applied magnetic field Ha for a splatquenched alloy at several temperatures below and above Tc= 170 K. Magnetization measurements were carried out by the Faraday method [78 D 11.The dashed line corresponds to vanishing internal magnetic field.
Fig.86. Gd,,Co,,. Average magnetic moment per atom, j.,, as a function of applied magnetic field Ha for a melt-quenched alloy at several temperatures. The measurements were performed with a vibrating-sample magnetometer [78 G I].
250 Am2 kg 200
50 I 0
a
1
2
3
PO”,-
4
5
16
b
0
0.1
0.2
0.3
04
0.5 T
0.6
lb”,-
Fig. 87. Gd,,Co,s (Gd,Co,). (a) Specific magnetization Q as a function of the applied magnetic field Ha for the melt-spun alloy at 4.2 K (upper curve) and 77 K (lower curve). (b) Low-field region of the initial magnetization curves at different temperatures [83A 31.
Sostarich
Landolt-BCmstein New Series 111/19h
Ref. p. 342)
t 49-c ii? m3 ks
I
6.2.3 Amorphous Gd-3d
Won-x Co, , !
263
I
T=C2K
4
R
2
0
I
30
40
50
60
0
x-
I
I
1
2
3
4
5
6
Fig. 89. (Gd,.,,Feo.35)90B,, Specific magnetization 0 vs. applied magneticfield H, for a splat-cooledalloy at different temperatures in the range 4.2.s.293K. The magnetization was measuredusing a vibrating-sample magnetometer[79 G I].
Table 11. Spontaneous specific magnetization asp, high-field susceptibility xHF and uniaxial anisotropy constant K, for several Gd-based amorphous alloys at 4.2 K. The data were obtained from fits to the law of approach to saturation, a(H)= o,,(l -AI/H-AZ/Hz..
.)+ xHFH,
in which the coefficient A, was taken to be zero at high fields, and for A, the expression A, = (4/15)(Ki/M$) was used (cf. introduction). B
XHF
Ku
A=L2kg-l
4n.10-gm3kg-1
lo6 Jmm3
W~.~&a~.&Pl~
220.9
~G~o.soGa~.2dgoFelo
200.7 220 b) 177.5 215c)
91
57 38.9b, 127 40 “)
“) Obtained using the magnetization-area method. “) Values obtained from a fit to equation: a(H)=a,,(l Fig. 90). “) Saturation magnetization. “) Paraprocess susceptibility. Land&-Biirnstein New Series 111/19h
I
8
POHO-
Fig. 88. Gdl,&I!ox. High-field susceptibility xHF at 4.2 K vs. Co concentration. ,~,r was obtained from the slope of the linear portion of the magnetization curve at high fields. The magnetization was measuredby an induction method with a 10 T superconducting magnet. Solid circles: amorphous melt-quenchedalloys, savethe x = 25 samplewhich was preparedby dc sputtering; open circle: crystalline Gd,Co, alloy [86F I].
K%.d%2&,Fe20 Gd&o,,
I
7T
Sostarich
2.5 1.5”) 1.1 0.7 “) 0.6 0.1”) - AH-1’2)+~HFH
Ref. 84Cl 84Cl 84Cl 85S2 84Cl 83S2 (cf. also
[Ref. p. 342
6.2.3 Amorphous Gd-3d
264
300 300r kg 200
100
I
I
215
I b"
b
-100 205 -200
1951
0
I 10
I 20
I 40
I 30
I
I
50
60
I I kOe 80
-300 I -300 -8 -8
I -4 -4
I 00
I
I 4
18
H-
Fig.9f). (Gd,.*0Ga,,20)90Fe,o.Specific magnetization Q as a function of magnetic field H for the amorphous alloy at 4.2 K (open circles). The full line represents the theoretical dependence (predicted for a “correlated speromagnetic state” [83 C I]) a=a,(l-A H-"2)+~HFH, with
0,=220 Gcm3g-‘,
A=3.48 Oe”2,
and xHF=
Fig.91. (Gd,,,,Ga,,2,),,o.,Fe,. Specific magnetization u vs. applied field Haat 4.2 K (x=0,10,20). The arrows indicate spontaneous magnetization values calculated assuming antiparallel alignment of Gd and Fe spiq, with gJ= 7 ua for Gd and 2.2 pa for Fe. The x =0 alloy is actually (Gd,,,,Ga,,20)P0B,,, boron being required to stabilize the glassy phase in this case [84C 11.
38.9.10-6cm3g-'[85S2j.
300 Am7 -6 200
II II y=o (Gda8oGao.20 1, “,,,“.y,,=_Il^...bhdh.2o 190Fe10 H, [.-,--
I
f
l= 4.2K
I
I
(Gd0.80b'd80
N&o!,
200
. .130 . , . . , ...-.
i *s-I *.'
100
b
300
/=ir
I' 0
-100 .... -2oc -300, -8
..... ..
...
b
:!* 2 :: : .I i.
-100
-200.
..--..-----..
. . . . ..A__-_-.
-4
o
0 PO4 -
4
1
8
Specific magnetizaFk.92. (Gd,.60Gao.20)90Fe,oH~. tion e of a splat-cooled alloy vs. applied field Haat 4.2 K, for unhydrogenated and hydrogenated sample (y = 130), respectively. The magnetic anisotropy energy, which is proportional to the area between the a(H) curve and the u axis, clearly increases by hydrogenation [82Rl]. Cf. also Fig. 76.
-3001 -8
I -4
I 0 I@, -
I 4
18
I
Fig.93. (Gdo,soGa0,20)soNi20H,. Specific magnetization Q as a function of the applied field H, for amorphous samples with y =0 and ~~120, respectively. The unhydrogenated sample is magnetically soft, while the hydrogenated sample is rather hard [83Sl]. Cf. also Fig. 84.
Sostarich
Land&-BBmstein NW Series 111119h
Ref. p. 3421
6.2.3 Amorphous Gd-3d
265
6.2.3.4 Hyperfine interactions: Miissbauer effect and nuclear magnetic resonance
1.78 *IO6 counts T=300K
1.77
11.26
I
I
I
I
I
I
-6
-4
-2
0
2
&mm/s6
I
I
I
I
I
I
I
I
-6
-4
-2
0
2
4mm/s 6
I
V-
V-
Fig. 94. Gd,eFe,,,. “Fe Miissbauer spectra of a meltspun alloy recorded with a constant-acceleration type spectrometer in combination with a 57Co (Rh) source. The spectra were obtained at 300, 77, and 4.2 K, respectively. The effective hyperfine field at 4.2 K derived from the outermost peaks of the spectrum is (Bhy,,eff= 31.OT [Sl Bl].
GdtdO33 T = 1.3 K
o" To 0" 0
H, = 0
I
00000
Fig.95. (Gd,,,,Fe,,,,),,B,,. 57Fe Miissbauer spectra of splat-cooled sample at 300 and 80 K. A conventional sinusoidal-acceleration spectrometer with a 57Fe source was used for the measurements [80 H I].
5gco
0
1
0
I
7.75
s
0
'-
7.50
0
7.25 0 000
0
20
00
00
0
40
60
80
MHz 100
7.008 0
Y-
Fig.96. spectrum hyperfine Gd,,Co,,
0.L h4
Gd,,Co,,. Zero-field 5gCo spin-echo NMR of a splat-cooled sample at 1.3 K. The mean field at the 5gCo nuclei in the amorphous alloy is estimated to be 7.0 T [78 D 11.
Land&-Biimstein New Series III/l%
0.2
0.6
0.8
T
-
Fig. 97. Gd.&oS3. The centre of gravity, $,,r, of the 5gCo hyperfine field distribution in the melt-spun sample at 1.4 K as a function of the applied field Ha. The slope of the line indicates the value of ~(~~Co)/2n: = 10.103 MHz/T. From the positive frequency shift with the applied field, it is concluded that the 5gCo hyperfine field in amorphous Gd67C033 is positive [82M I].
Sostarich
266
[Ref. p. 342
6.2.3 Amorphous Gd-3d
I
I
1
Gd611C04D T = 4.2 K %o
unsoturoted sample
-0.8
Fig.98. Gde&oSe,S and Gd&o,c. Zero-field “Co spin-echo NMR spectra of melt-spun samples at 1.4 K. The spectra are corrected for the frequency dependence of the signal intensity. The corrected spinecho amplitude is the ordinate variable. Below 3 T the spectra are truncated by the cut-off frequency of the NMR set-upused (v,=30 MHz) [82M 11.
-0.3 BhyP-
0
0.2 1
Fig. 99. Gde,&o,e. 5gCo spin-echo NMR spectrum of a melt-spun sample at 4.2 K. The spectrum was taken with an NMR set-up in which the frequency is kept constant, v= 12 MHz, while the applied field is sweeping between poHa=Oand 2 T. The spectrum indicates that for Gd,,Co,e there are some Co atoms with zero net hyperfine field. The lineshape for hyperfme fields Bhyp> 0.5 T is not reliable because the sample was not in a saturated state [82M I].
Fig. 100. Gd,,Co,Ni,g and Gd,,Co,,. Zero-field “Co spin-echo NMR spectra of melt-spun samples at 1.4 K. The spectrum for GdS7CoS3 is truncated on the low-field side due to the cut-off frequency of the NMR set-up employed (v,=30 MHz). The spectra are corrected for the frequency dependence of the signal intensity. It is remarked that the above spectrum for Gd,,Co,, is very similar in shape to that given in Fig.96 which had been obtained with a different set-up [82 M 11. Bhsp-
Sostarich
Land&-BBmstein New Series III119h
6.2.3 Amorphous
Ref. p. 3421
267
Gd-3d
6.2.3.5 Ferromagnetic resonance and magnetic anisotropy
Table 12. Liquid-quenched Gd-TM alloys. Data from ferromagnetic resonance(FMR) experiments: uniaxial anisotropy constant &effective g-values, and the field for parallel resonance, H,. The FMR spectra were taken at 77 K using a conventional ESR spectrometer operating at about lOGHz, in magnetic fields up to p,,H = 1 T applied parallel to the plane of the ribbonshaped samples. K”“) g 10’ Jmm3
poHr
Ref.
50 40"
J/m3 40
mT 30 I 30
Gd,,Co,, 4.0 Gd,,Co,, 3.0 Gd,,Co,, 1.5 Gd.ssCo,s 0.56 Gd,,Co,, -0.14 Gd,,Co,, ~0.1 b, GdssCo,s 0.51 GdsoCoso 1.80 -0.16 Gd&oss 1.26 -0.15 Gd60Wo 9.42 Gd,oCu,o 5.15 3.1 Gd,,Cu,, -0.20
1.99 1.99 2.00 2.00 2.00
97.5 87.5 72.5 70.0 67.5
2.01 75.0 71.7 2.02 75.0 82.5 2.03 81.0 81.7 85.1 1.99 87.0 1.99 74.2
80A2 80A2 80A 2 80A2 80A 2 82A2,83A3 80A2 80A 1,80B 80A 2 80A 1,80B 80A2 80A 1,80B 80A 1,80B 80A2 80A2
$ 20 20 10
0 1 1 1 1
‘) The mostly positive K, values are taken to indicate that the Gd spins align preferably perpendicular to the plane of the ribbons. “) Anisotropy energy obtained from the curve of initial magnetization at 4.2 K by the area method.
-10 -10 0
20 20
40 Gd-
Gds,Co,,
Land&Biimstein New Series 111/19h
0.03 2.90 3.22 0.93 0.61
ot %
Fig. 101. GdiOO-$ox. Uniaxial anisotropy constant Ku as a function of composition. Triangles: data on
evaporatedfilms at room temperatureobtained by force balance and FMR measurements,taken from [76Tl]. Open circles: data on melt-spun alloys at 77K deduced from FMR experiments.Solid circles:data on melt-spun Gd,,,-,Cu, alloys at 77 K included for comparison.The fact that in theselatter alloys Ku is of the sameorder of magnitude asin the Co allyos, is interpreted asan indication that the main contribution to the anisotropy comes from Gd [80A2]. Cf. also Table 12.
Table 13. Magnetic anisotropy per Gd ion, D,, and nearest-neighbour exchange strength acting on a Gd ion, $r, for several amorphous Gdbased alloys. D, = K&k, and $I = z$/kB = (3/2)0/G, where K, is the uniaxial anisotropy constant, n is the number density of Gd ions, z is the number of nearest neighbours, f is the exchange integral between nearest neighbours, 0 is the paramagnetic Curie temperature and G = (g - l)‘J(J+ 1) is the DeGennes factor (cf. introduction).
Wo.soGao.20hB~o G&.d%.20M% Gddi&~ G4sGa32Blo
60
20.20 11.7 11.0 8.9 15.8
Sostarich
0.0015 0.25 0.29 0.105 0.04
8382 8201 8201 8201 8201
268
6.2.3 Amorphous Gd-3d
[Ref. p. 342
6.2.3.6 Magnetovolume effects 90 GdCo2 .18-~ / 75 /
0
/’
01 0
I /I 200 400
I I 800 K 1000
I-
a
150
0.3 P-
0.4
0.5 GPO0.6
300 K 350
100 b
I 600
0.2
Fig. 103. Gdleo.$o,. Shift of the Curie temperature, AT,, as a function of the hydrostatic pressurep for meltspun alloys with x = 30, 35, 45, 50. The Curie temperature and its pressure effect were obtained from measurements of the permeability p as a function of temperature at various pressures. Pressure was applied to the sample in a teflon pressure cell filled with silicon oil using a piston -cylinder-type device [85 S 11.Cf. also Fig. 106.
-0
15
0.1
I-
Fig.102. Invar-type anomalies in the thermal expansion, AI/I: (a) crystalline Gd-Co compounds; (b) amorphous Gdleo+Co, alloys with x=40 and 50, after [79 F 11. The smallest thermal expansion coefficient measured on these amorphous alloys is about 1. low6 K-r for Gd,,Co,e around 200 K. The Curie temperatures arc indicated by arrows [84 B 11.
‘y=o
-10 0
0.1
0.2
^
0.3
0.4
I 0.5 GPO0.6
IJ-
Fig. 104. Gd,ee-,Co,HY. Shift of the Curie temperature, AT,-, as a function of hydrostatic pressure p for hydrogen-free and hydrogenated alloys, x = 30, y = 6; x=30, y=O; x=50, y=5; x=50, y=O. The alloys were prepared by melt-spinning and hydrogen absorption was carried out at 373 K under a hydrogen pressure of 5 MPa. The pressure effect on Tc was determined from the permeability vs. temperature curves under various hydrostatic pressures [86F2]. Cf. also Fig. 107.
Sostarich
269
6.2.3 Amorphous Gd-3d
Ref. p. 3421
-2
Shift of the Curie temperature, Fig. 105. Gd,Co,. AT,., as a function of hydrostatic pressure p for amorphous (Gd,,Co,,: open symbols) and crystalline (closed symbols) samples (cf. also caption to Fig. 103). The spontaneous volume magnetostriction w, estimated from thermal expansion is about 4. 10m3[85 S I].
I -4 e Q -6 -8
0
0.1
0.2
0.4
0.3
0.5 GPO0.6
P-
Gd50C050
I
260
I
I
I
265
270
275
I
280 K ;
7
T-
I
155
I
160
I
165
I
170
I
175 K 1’
I
I
I
I
270
275
280
285
I
290 K ;
T-
T-
Fig.106. (a) Gd,,Co,,, (b) Gd,&o,,. Magnetic permeability p as function of temperature for melt-spun samples under various hydrostatic pressures p. The method for obtaining the Curie temperature Tc is shown [85S I].
Landolt-BBmstein New Series III/l9h
1
265
Fig. 107. Gd,,Co,,H,. Magnetic permeability p as function of temperature for the hydrogenated sample under various hydrostatic pressures p. The alloy was prepared by melt-spinning and hydrogen absorption was carried out at 373 K under hydrogen pressure of 5 MPa [86F2].
Sostarich
270
[Ref. p. 342
6.2.3 Amorphous Gd-3d
-401 0
1
1
2
I
3 k l/T, -
I
5
I
@K-l
I
-40 150
7
Fig. 108. Gd,,,a-$oX. Pressurecoefficient oftheCurie temperature, dT,-/dp, vs. l/T, for amorphous alloys (open circles) and crystalline compounds (solid circles). The data for crystalline compounds with high Co content were taken from [73 B 11.The amorphous alloys are mcltspun with the exception of the Gd7&oz5 alloy, which was prepared by high-rate sputtering. In amorphous Gd5,Cod3 and crystalline Gd,Co, almost the same values are found for the Curie temperatures as well as for the corresponding pressure derivatives [85S 11. Cf. also Fig. 105.
175
200
225 ‘c -
250
275 K 30G
Fig. 109. Gd,oo-,Co,Hy. Pressure coefficient of the Curie temperature, dTc/dp, vs. Tc for melt-spun alloys with 305 x 5 50 for hydrogen-free samples (y =0) and hydrogenated alloys with y=6. The pressure effect on the Curie temperature is weakened to about half by hydrogenation [86F2]. Cf. also Fig. 104.
50 .1p Oe“ 50 .l(p Oe-’
0
I 50 x 9 3
0
‘OO
50 $ co
I x
0
50
250 300 350 K 400 200 TFig. 110. GdIO,,.,Fe,. Forced volume magnetostriction, awlaH, of several melt-spun alloys as function of temperature. aw/dHis defined by aw/aH=a(l., + 2).l)/aH, where I.,, and A, are the values of linear magnetostriction along directions parallel and pcrpcndicular to t bc magnetization, respectively. The magnetostriction was measured by a three-terminal capacitance method and dw/aHwas evaluated using data between 10 kOe and 20 kOe. It is seen that awlaH
50
100
150
Sostarich
Land&-BBmstein New Series IIIU9h
Ref. p. 3421
6.2.3 Amorphous Gd-3d
271
6.2.3.7 Magnetoresistivity
p!km 330
I
I P.l “.,
/....’
,,....... ....’
325
-51 0
;; 320 Qr 315
286 &km 284
310 220 @cm
~‘Gd~RNi,, 1...... 215wi’ i ., “..... -3........
/’
.,i.
210
“1.. Q.. *-..., ‘..
282 I c. 0 280g
1
2
3 4T 5 Po”oFig. 112. Gd,,Co,,. Magnetoresistivity, Add’% with AQ=Q(E+Q(O), as a function of magnetic field Ha for a splat-cooled sample at 4.2 and 22 K. The spontaneous magnetoresistivity at 4.2 K (defined by extrapolating the high-field portion of the magnetoresistivity vs. H curve to zero field) is roughly half the value given in [77 D l] (cf. Fig. 113) [80 K 11.
278
: & 205
; :
0
200 / ,:’ 195t 0
w3
50
150 200 250 K 300 TFig.111. Gd,,Co,,, Gd,sNi,,, GdsOAu,,. Zerofield electrical resistivity e(0) vs. temperature for splatcooled alloys. The arrows indicate the Curie temperatures. The resistivities of amorphous Gd,Co and Gd,Ni exhibit a broad maximum at temperatures close to their respective Curie temperatures, whereas the resistivity of amorphous Gd,Au increases monotonically with temperature [77 D I].
-2
100
I
0 -4 9= d” -6
-8 -10 3.U 4.5 6.0 T 7.5 .Po4 Fig. 113. Gd,,Cos,, Gd6sNis2, GdsaAu,,. Differential longitudinal magnetoresistivity, AQ ,/e(O) vs. applied magnetic field Ha for splat-cooled for.i s at 2 K. The magnetoresistivity was measured with the field parallel to the foil plane. The data on ferromagnetic Gds,,Au,, are given for the sake of comparison. AQ,,=Q(H,,~Q(O), where @(HI,)is the electrical resistivity in a magnetrc field parallel to the electric current and e(0) is the zero-field resistivity [77 D I]. 1.5
Landolt-Biimstein New Series 111/19h
Sostarich
272
[Ref. p. 342
6.2.3 Amorphous Gd-3d
.,0-j -2
5
6 1 1
Fig. 114. Gd,,Co,,. Differential transverse magnetoresistivity, Ael/e(O), vs. applied magnetic field Ha for splat-cooled foils at temperaturesbelow and above the Curie temperature (Tc= 175K). The magnetoresistivity was measuredwith the applied field parallel to the foil plane. Apl =e(Hl)-e(O), where@(HI) is the electrical resistivity in a magnetic field perpendicular to the electric current and e(O) is the zero-field resistivity [77Dl].
6.2.3.8 Scaling bebaviour and critical exponents Table 14.Experimental values ofthe critical exponents /I, y, 6, and a in someGd-based metallic glassesat the P-F transition (standard scaling). Included are data for the Gd single-crystal and theoretical values for the threedimensional Heisenberg ferromagnet. The Gd,,Tb,,Co,, alloy is considered here, as it has been found that its high-field magnetization exhibits standard ferromagnetic scaling behaviour in spite of the strong random magnetic anisotropy (RMA) present. P: paramagnetic; F: ferromagnetic.
3D-Heisenberg Gd (single crystal) Wdu,, Gd,,Co,, GW-hAo W3hJhJ4~ WJd%8to GdsohsCoxB,o’) G4s-%oCo,s d,
B
Y
6
0.3645(25) 0.381(15) 0.44(2) 0.41(2) 0.48(2) 0.43(2) 0.46(2) 0.55(2) 0.46(l)
1.386(4) 1.196(3) 1.29(5) 1.16(5) 1.60(4) 1.46(l) “) 1.61“) 2.2(2)“) 1.38b,
4.80(4) 3.615(2) 3.96(3) 3.6(l) 4.7(2) 4.40) 4.5(2) W2) 4.W)
a
-0.115(9) 0.04(3)“) -O.l7(9)b) - 0.74 b) -0.32(9) b, -0.53 b) - 1.3(2)b, -0.3b)
Ref. 85Kl’) 71D1,85Kl 77Pl 78Dl 8501 88Jl 8501 87Sl 87Ll
‘) And referencestherein. b, Calculated using the scaling relations y =jJ(s - 1) and a= 2(1-/I)-y. ‘) The deviation of the critical exponents from the range of standard values is attributed to a propensity for chemical short-range order which produces magnetic inhomogeneities. d, For high magnetic fields between 0.1 and 8T. Sostarich
Landolt-BCmstein New Series 111/19h
Ref. p. 3421
6.2.3 Amorphous Gd-3d 1.2 ic2 -
I
213
I
I
Gd6,Mn&,nhn
kg 0.8
I
YL 0.6 -
w
s
0.4
0
1
2
3
4
5 6 , .RR
7
8
9.103T IO
ILOH/l&l r”-
Fig.115. Gd,,MnsGa,,B,,. Reduced magnetization, a/ ]EIa,vs. reduced field, koH/ ]EISa,for splat-cooled sample at the P+F transition. E= (T-Tc)/Tc is the reduced temperature. j? and 6 are critical exponents (cf. Table 14). The range of magnetic field used for the scaling was p,-,H= 5.. . 50 mT. The Curie temperature Tc determined by plotting the inverse slope of the magnetic isotherms (which corresponds to the inverse initial susceptibility) vs. temperature, is found to be 135.5(2) K. The temperatures of the magnetic isotherms are for T> T,: (I) 141.2 K; (2) 140.2 K; (3) 139.0 K; (4) 138.0 K; (5) 137.0 K; (6) 136.0 K; for T-e T,: (I) 135.0 K; (4) 133.7 K; (5) 132.2 K; (7) 131.2 K 188J 11.
kg -
Gd50La15 co25 BIO
4 1
T
Fig. 116. Gd50La15C025Blo. Standard scaling analysis: log-log representation of scaled magnetization, a/ IsIs, vs. scaled field, loH/ ]EISa,for data above and below T, = 100.0(2) K. E= (T- T&/T, is the reduced temperature. The symbols represent the following temperatures for TX T, (T> Tc): (I) 94.2 (100.7) K; (2) 96.0 (101.5) K; (3) 97.2 (102.4) K; (4) 99.1 (104.0) K; (5) 99.4 (105.5) K. The fields ranged from 5 to 70 mT. The resulting critical exponents j?, 6 and y=j?(&l)aregiveninTable14[87Sl]. Land&-BBmstein New Series III/19h
Sostarich
[Ref. p. 342
6.2.3 Amorphous Gd-3d
274
kg t 4.5 @a 0 7 b 3.0
0
0.5
1.0
2.0 1.5 /lo/f/l E Vd -
10'
103 poH/lelDd -
a
2.5
3.0
3.5 .10314.0
2.103 @lJ kg 103 8 6 t
102 8 10
b
10L
T
10s
ferromagnetic Fig. 117. Gd,,Tb,,Co,,. Standard scaling of magnetic isotherms above and below Tc= 104.8(2) K for a splat-cooled sample in high magnetic fields (uaH=O.l . . .8 T), (a) linear plot; (b) logarithmic plot. a/lsl@ and H/IEI~’ are the scaled magnetization and scaled field, respectively, while .s=(T-T&l’, is the reduced temperature. j? and S are critical exponents (cf. Table 14). The linear plot is cut off one decade below the logarithmic plot in reduced field so that the scaling can bc resolved at intermediate fields. The temperatures of the magnetic isotherms for T< T, (T> Tc) are (I) 104.1 (111.3)K; (2) 102.4 (109.8)K; (3) 101.0 (108.4)K; (4) 99.7 (106.8) K; (5) 98.5 (105.4) K. It is found that standard critical behaviour is induced in this random magnetic anisotropy (RMA) system by application of a large enough magnetic field. At low fields the system shows nonlinear critical behaviour (cf. Fig.244 and Table 25) [87L 11.
Sostarich
Land&BBmsfein Nea Series III119h
275
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
Ref. p. 3421
6.2.4 Alloys with light rare ‘earth elements (Ce, Pr, Nd, Sm) 6.i.4.1 Magnetization, magnetic moments, ordering temperatures and type of magnetic order
/-
1!il b-7-4 1=20K ,,/-0’
1 ’
. /” /’
100
-
,,
l
,,:’
.
b
/’ ,A 50
l
01 o 501 40
0
.p,,H=O . 9.5T
/
60
70 x-
80
90
40
100
Fig. 118. Prl,,O-xFeX. Spontaneous specific magnetization b,r and specific magnetization at poH=9.5 T of melt-spun alloys at 20 K vs. Fe concentration. 4sp was obtained by extrapolating the high-field magnetization data linearly to zero field. The dashed lines included with the data represent calculated values based on (I) a ferromagnetic alignment between ordered Pr and Fe sublattices (Prt Fe?) and (2) a sperimagnetic alignment assuming completely disordered Pr with ferromagnetically ordered Fe sublattices (Pr(0) Fe?). The calculations are based on a free-ion moment value for Pr (3.58 p*(B)and a composition-dependent Fe moment ranging from 2.04 ur, to 1.45 pB for the PrzFe,, (x=89.5) and PrFez (x 2: 66.7) compositions, respectively [81 C 31.
50
60
80
90
100
Fig. 119. NdlcemxFex. Spontaneous specific magnetization a,, and specific magnetization at ~~H=9.5 T and 20 K vs. Fe concentration. Q, was determined by extrapolating the high-field magnetization data linearly to zero field. The curve represents the calculated magnetization for the modified sperimagnetic structure proposed by Taylor et al. [78 T I] in which the Fe and Nd moments are distributed on cones of half anglez45” and 120”, respectively (cf. Fig.120). The calculation implies a composition-dependent Fe moment, ranging from 2.04 ltB to 1.45 pr, for x -89.5 and 66.7, respectively, and a Nd moment of 2.7 pr, [81 C 11.Cf. also [81 C2].
b
a
Fig. 120. Nd-Fe. Schematical representation of (a) classical sperimagnetic structure and (b) the sperimagnetic structure proposed for amorphous Nd-Fe alloys in [78 T I]. For the classical sperimagnet in a weak applied magnetic field the transition metal magnetic moments are ferromagnetically aligned, whereas the rare-earth magnetic moments are distributed in a hemisphere with the polar direction parallel to the field. In the structure shown in (b) the Fe and Nd moments are distributed on cones of half angle r~45” and 120”, respectively [81 C I]. Land&Biimstein New Series III/19h
70 x-
Sostarich
2.5 %LL\Q Ii I
I 22
7n -.-
[Ref. p. 342
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
276
-x I
I
I
b
1,
I390
i I I t
/
‘9 1.5 I$
0
’
, I..!?
“330
1.0III300
0 0
10
20
30 Nd-
40
50 al% 60
I
Fig. 121. NdlOO-xFel. Composition dependence of several magnetic quantities in melt-spun alloys [87S2]. Average magnetic moment per atom, p,,, obtained from the high-field magnetization value at 4.2 K and p,,H= 15 T. The magnetization was measured by a vibrating-sample magnetometer installed at a highpower Bitter coil. Even the field of poH= 15 T is not sufficient to saturate the magnetization at 4.2 K. Average Nd magnetic moment p(Nd) calculated from j,, assuming a constant Fe moment j(Fe) = 2.0 pe, as suggested by the constant hyperfine field. Average 57Fe hypertinc ticld B,,, at 77 K, cf. also Fig. 162. Curie temperature Tc obtained from low-field magnetization measurements with a magnetic balance (cf. also Figs. 126 and 128).
I
RIOO-xCox 4 % I 22 3.
\t
Pe
I
R = Nd I .
I
u
14
I
3 3
‘. ‘P
t =
Pr
I
2 14"
19"
t-i
I
i
2a
5 P
\T
31b 40
50
60 R-
70 of%
I 80
Fig.122. Rloo.,Co, (R=Pr, Nd). (a) Effective magnetic moment per average atom, jell, and (b) average effective moment per rare earth atom, perr,R,vs. rare earth concentration. The jcn values are obtained by fitting the xi r vs. T data to the Curie-Weiss law (cf. Fig. 136). jerf.R was determined from the equation 100&=(100-x) j$r,R. Thcj,,, value for the Nd6.+Cojg alloy marked by a full circle is that given in [78G 11.The broken lines in (b) mark the effective moments of the free tripositive Nd3+ and Pr3+ ions, respectively [87Y 11.
Sostarich
Landolt-Biimstein New Series 111,‘19h
Ref. p. 3421
6.2.4 Amorphous
277
R-3d (R = Ce, Pr, Nd, Sm)
I SmlOdex 120
I 80
b
0 0
20
40
60
80 at% 100
Sm-
Fig. 123. Sml,,O-XFe,. Specific magnetization u of melt-spun alloys at 77 K and in a magnetic field of koH= 1.5 T as function of Sm concentration. The magnetization was measured using a vibrating-sample magnetometer [86 M I].
x-
Sm -
Fig. 124. SmiOO~XCoX.(a) Effective magnetic moment per average atom, Fern and (b) average effective moment vs. Sm concentratton. The perf per Sm atom, Aff,k values were obtained from experimental data at Tc (cf. also Fig. 142) and the corresponding peff,smwere calculated from the equation loo~~~f=(loo-x) j~z~r,s,,,. The broken line in (b) marks the theoretical effective Bohr magneton number of 0.84 for the free Sm3+ ion [87Y I].
Land&-Bknstein New Series III/19h
Fig. 125. PrIoO.,Fe,. Curie temperature Tc of meltspun alloys as a function of Fe concentration. The Curie temperatures were obtained from a2 vs. H/a plots (Arrott plots) [81 C 31.
Sostarich
[Ref. p. 342
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
278
600 K
Nd 1oo-x Fe, d-o 7
Olll
30
40
60
50
70
80
2001 0
0 91
I 20
x-
I 60
I 40
I I 80 ot% 100
Sm-
Fig. 126. Nd,,,,,-,Fe,. Curie temperature Tc vs. Fe concentration. Open circles - data for melt-spun alloys determined from Arrott plots. For the sake of comparison data for a series of evaporated Nd-Fe films from Ref. [78Tl] are included (solid circles). It is suggested that the discrepancy between the two sets of data at lower Fe content could imply that melt-spun alloys are less amorphous than their evaporated counterparts
Curie temperature Tc of meltFig. 127. Sm,,,-,Fe,. spun alloys vs. Sm concentration. T, values were determined from 6’ vs. Tplots [86M 11.Cf. also Fig. 128.
[81Cl].
160 K 120
I 80
8
200 0
20
40
60
0 50
80 ot% 100
50
60
70 ot%
80
R-
RFig. 128. R,OO-xFer(R=Pr, Nd, Sm). Curie temperature Tc as function of rare earth content for amorphous melt-spun alloys (closed symbols) and intermetallic compounds (open symbols). The ordering temperatures of the amorphous alloys were determined from a2 vs. T plots [86M 11, whereas those of the crystalline compounds were taken from [79 K 11.
Fig. 129. RIO,&ox (R=Pr, Nd, Sm). Ferromagnetic Curie temperature Tc (open symbols) and paramagnetic Curie temperature 0 (closed symbols) vs. rare earth concentration for three melt-quenched alloy series [87Y 11. (I) and (2) in the case of SmrOJox are Tc data of [80B2] and [83A 31, respectively. The T, values of NdlaO-$ox indicated by (3) and (4) are from [78 G l] and [85 W 31,respectively. Cf. also Table 15 and [88 Y 21.
Sostarich
Landolf-BCimstein New Series III/19h
Table 15. Magnetic moments, ordering temperatures and magnetization data of liquid-quenched R-TM alloys with R = Pr, Nd, Sm, and TM = Fe, Co, Ni. The type of magnetic order is given only where it is explicitly mentioned in the reference. peff,R
“1
PB
3.6“) z3.379
PR =I
0
T,,
PB
K
K
Am2 kg-’
cf. Fig. 125 cf. Fig. 125
40 166
1.34”) 1.91b) Lo=) x l.Ob)
2 ~6~)
Fig. 12.I 2.4 “) 3.75‘)
3.59
1.4(1)9 ‘) “) ‘) “) ‘) ‘) 3 “) ‘) j) k,
35(3)“)
1.33 1.1”) 1.51”)
T,
15(5)“1 >400 llO(l)d)
CT
353 11 48Oh) 330’) 31(2)‘) 45 “) 31.7’) 38(2)“) 38(2)‘) 92(5)‘) 90(5)‘) 18(5)k, >300 >400 60 “) 57.8‘) llO’), 114”) (T,=55K)
Fig. 119
Magnetic order
Ref.
Remarks
speri “) speri “) ? SG-like spero speri
8OC2 8OC2 80B3 84C2 82C4 81 Cl, 82C5 8782 85W3 80B2 82B2 78Gl 85W3 85W3 85W3 80B3 81Bl 83S2 80B2 82B2 82A2,83A3
d value at 20 K d value at 20 K
Fig. 137 SpXi
Fig. 140 32
? speri 3 speri “)
“)
xacpeakat T,
magnetic structure in Fig. 120
cf. Fig. 203 cf. Fig. 149 cf. Fig. 149 B,,,(Fe) = 30 T at 4.2 K ts, value at 4.2K weak x,c maximum Tf = T,: temperature of magnetization maximum
/ The effective magnetic moment j!eff,Rand the magnetic moment pR,given above are averages per rare earth atom. Calculated from the value of c given in column six. Sperimagnetic structure in which the Pr magnetic moments are random and the Fe magnetic moments are ferromagnetically aligned. Derived from Curie-Weiss plots (x-l vs. 7’). Calculated from magnetization value at 4.2 K in a field of p&Z = 1.8T. Noncollinear arrangement of R magnetic moments; p(Ni) E 0. ‘) Calculated from the value of the effective moment per average atom c,,, at 4.2K determined by fits to the law of approach to saturation. given in the reference. Obtained from Arrott plots (a2 vs. H/a). “) Obtained from the temperature dependence of the coercive field H,. Determined from the temperature dependence of low-field magnetization. “) After [86M I]. Determined from xac vs. T plots. P) Ferromagnetic interaction between Sm atoms for Tf < T< T, and Obtained from low-field o2 vs. T plots. spin-glass-like state for T < Tf. It is assumed that p(Co) r 0.
Table 16. Liquid-quenched ternary alloys with light rare earth elements, 3d transition metals, and B or Ga as glass formers. Average Fe magnetic moment, magnetic ordering temperatures and specific magnetization. The type of magnetic order is given only where it is explicitly mentioned in the reference. tl Am2kg-’
Magnetic order
Ref.
9.5 b) 21 b)
spero spero
13b) Sd), 375d)
spero
82C4,82R I 82C4 84C2 82C4,82RI 82C3
07 I.67 ‘) I.97 ‘) gI.60’) z2C)
Fig. 145
SG-like (at 4.2K)
21Sf) I.69 ‘)
(Pro.BoGao.2d&% ‘1 ro.dh 20)40Fe60 ‘) ~~ro.BoGao:20~20Fe.o 9
475 h) lob) 460 h, 455 h) 783, 1053
22.5 “) 22.7 “) 75.15 “) 153.22“) 50.5 ‘) 93.5 ‘)
414’) 413’) 418 ‘) 142”) 171.5‘) 9.5 b) 13b) 6.2 b, gb) cf. Fig. 152 24 b, 455 ‘) 4W) “1 436 ‘)
spero spero spero
149(10)3
84C2 8IC4 82C4 84C2 82HI,84HI 82C4 82H1,84Hl 82HI,84Hl 82HI,84HI
12b)
speri “)
Remarks
82K2
The two Curie temperatures indicate the presence of two magnetic phases in the alloy. a, values (cf. Fig. 130)
87A2 84H2 86A2 82K2
a, values (cf. Fig. 130)
82RI 82C4 82C4 82C4 84C2 82RI 87A2 88CI 86192
Table 16 (continued).
d Am2 kg-’ z 2.0 ‘) 1.58‘) 1.60“) 1.25“) 1.16”) 0.89 “)
W,.,,Co,.&mJ%o SmFe,B Sml 5Fe77Bs SmFeCo,B SmCo,B
460 “) 558“) 531”) 469 “) 427 “) 370“) 27 “) 38”) 457 3 479 “) x 673“) 503‘)
Magnetic order
182p) 17OP) 139P) l16p) 114P)
ferro ferro ferro ferro ferro spero
481
speri
Ref. 88Cl 88A2 88A2 88A2 88A2 88A2 82Rl 85H2 87A2 86A2 87A2 87A2
Remarks
j!(Fe) “) = 1.97pB p(Fe)“)= 1.89pB p(Fe)“)=1.49prr jj(Fe)“)=1.12pB j$Fe)“) = 1.05pB sharp speromagnetic transition (cf. Fig. 215) cf. Fig. 153
3 Calculated from the average 57Fe hyperhne field Bhypby the formula jj(Fe)/pB=B,,p/15 T. “) Temperature of peak in the xacvs. T dependence. ‘) At 300K. “) DC susceptibility peak temperature. ‘) At 4.2K. ‘) a,, at 4.2K obtained by extrapolating the high-field part of the magnetization isotherm to H =O. 3 Room-temperature value in a field of p,H =2T. “) From c vs. T measurement. A low-temperature x,, peak at about 8 K is also reported and interpreted as an indication of the presence of two amorphous phases, a PrGa-rich one (T,r 8 K) and a PrFe-rich phase ordering magnetically below about 470 K (cf. Fig. 151). j) Partially crystalline sample. ‘) From c vs. T dependence. ‘) At 0 K (extrapolated). “) Determined with a differential scanning calorimeter. “) The Nd magnetic moments (3.27uB)are distributed over a cone of half angle x 60”, whereas the magnetic moments of the Fe sublattice are assumed to be collinear. P) o, value at 4.2 K (measured on saturated sample). 3 a, at 4.2K from the law of approach to saturation. “) Calculated from c, values in column four, assuming a constant Nd magnetic moment of 3.4 pa. t, A general property of these alloys seemsto be the segregation into Fe-rich and Fe-deficient regions having different magnetic transition temperatures.
282
[Ref. p. 342
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
175
160p_ . .
Am? -G 150 I 125
,
,
I
I
6
7
120
t?
b"
100
10
15 Pr-
20
25 ot% 30
Fig. 130. Pr,,,JPeO,sBO,,),. Specific saturation magnetization 6, of melt-spun alloys as a function of Pr content The magnetization was measured at room temperature and at 4.2 K using a vibrating-sample magnetometer [82K 21.
100
60 0
12
3
4
5
Fig. 131. R,Fesov,BZo (R=Ce, Nd, Sm, Gd). Specific saturation magnetization a, as function of rare earth concentration for melt-spun alloys at room temperature [88Gl].
700 "C 600
200 Am2 kg 190
I 500 I-Y 400
180 I 6 170
300 200l150 0
Fig.132. Nd,Fe,,B,,-,. Curie temperature Tc of melt-quenched alloys as a function of Nd content [87M2].
160
12
3
6
5
6
xFig. 133. Sm,Fes,,-,Bzo. Curie temperature 2-c and specific saturation magnetization fl%at room temperature as functions of Sm content in melt-spun alloys with 0 5 x 5 6. The Curie temperatures were determined from a, vs. Tcurves [88 IS].
Sostarich
Land&-BBmstein New Series III119h
283
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
Ref. p. 3421
6.2.4.2 Temperature dependenceof magnetization and susceptibility
175 & kg 150
125
bI IN
75
5[
2:
1
100
200
300
400
500 K 600
Fig. 134. Pr,,,,,-,Fe,. Specific magnetization 0 vs. temperature for melt-spun alloys with the Fe concentration given as parameter. The magnetization was measured in a field of p,H=1.6 T on finely powdered specimens. The anomalous increase in the magnetization of the Pr,,Fe,, alloy at low temperatures is interpreted as due to the presence of a small amount of crystalline Pr [81 C3].
2!
100
200
300
/-I
400
500 K 600
Fig. 135. Ndl,,O-nFex. Specific magnetization (I vs. temperature for several melt-spun alloys. The data were taken in a field of pLoH= 1.6 T applied prior to cooling the samples. The slight increase in the magnetization of the Nd-rich alloys (40 5 x 5 60) at low temperatures is interpreted as possibly indicating the presence of a second component (amorphous or crystalline) with a lower magnetic ordering temperature [81 C 11. Land&-B6mstein New Series 111/19h
’
Sostarich
284
Am? kg 40 k
6.2.4 Amorphous R-3d (R= Ce, Pr, Nd, Sm)
4 Fig.136. R 100-rC~x (R=Pr, Nd). Specific magnetization Q in a field p,,H= 1.4T and inverse magnetic susceptibility xc’ as functions of temperature for several melt-quenched alloys. The measurements were made using a Faraday-type magnetic balance and the samples were cooled to 4.2 K in zero field prior to the measurements. The ferromagnetic Curie temperatures Tc determined from Arrott-plots, are indicated by solid arrows, whereas the open arrows indicate the paramagnetic Curie temperatures 0 obtained by fitting susceptibility data to the Curie-Weiss law [87Y 11.
phl-xCox poH=l.CT
1,
20
I 10
2 10' 'cn 5kg
b
0
0 10
1 I 'ixDa 0
0 10
[Ref. p. 342
80 & kg I 60
1
b LO 0
0
10
1
0
0 0 Ndloo-xcox
50
100
150 l-
200
250 K 300
Fig. 137. Nd,&oJ1. Specific magnetization d of a melt-spun alloy as a function of temperature. The magnetization was measured by an adaption of the Faraday method. The solid curve is for heating in an applied field of poHa=0.9 T. The broken line was obtained after cooling the sample in the presence of the magnetic field [80 B 21.Cf. also Fig. 136.
x-60
I
20
25 43G "i3J m3
20
b lo
6 0
15 I
0
x"10 10
0 0 0
0 20
0 50
100
150 l-
200
40
60
80
K
l-
250 K 300
Fig. 138. Nd,,Co,,. DC magnetic susceptibility xs measured with a Faraday balance as function of temperature. The temperature of the susceptibility peak, 38 K, is taken to be the magnetic ordering temperature [78Gl].
Sostarich
Land&BBmstein New Series 111/19h
Ref. p. 3421
285
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm) 140 &9 kg 120
I40 w kg
80
80 60
80
80 60 20 I
I
b
b " 60 40
20 40
40
-Am2 kg
20
30 I
20 0 20 0
50
100
150 T-
200
0 250 K 300
Fig. 140. R,,Fe,,, with R= Sm and Lu. Specific magnetization (Tof melt-spun alloys vs. temperature. The magnetization was measured during heating in an applied field of poHa= 1.8 T by means of an adaption of the Faraday method [81 B I].
Land&-Biimstein New Series III/19h
20 0 0
Fig. 139. Sm,,,-, Fe,. Specific magnetization D as function of temperature for several melt-spun alloys. The magnetization was measured in a field of l,,H = 1.4 T using a magnetic balance (Faraday method) in the temperature range from 4.2 to 300 K and a vibratingsample magnetometer above room temperature. The open and solid circles represent the data taken on heating the samples after cooling them to 4.2 K from room temperature in p,,H= 0 and 1.4 T fields, respectively. The downward solid arrows indicate the Curie temperatures Tc obtained from cr* vs. T plots. The upward arrows indicate the temperatures Tb around which shoulders exist in the xac vs. T curves (cf. Fig. 150). Field-cooling effects are observed at temperatures below T, (open downward arrows), and it is suggested that an unfreezing process of Sm-rich spin-glass clusters occurs between Tk and Tr on heating the samples [88 Y 31.
Sostarich
286
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
[Ref. p. 342
4 Fig. 141. R,,,CO~~ (R= Sm, Nd). Specific magnetization Q as function of the applied magnetic field H, at various temperatures. The magnetization isotherms were measured on zero-field cooled samples using a Faradaytype magnetic balance. The amorphous alloys were produced in ribbon form by rapidly quenching from the melt [87Y I].
--A---+43 -
53
-
63
-
68 ^-
71
8 lO’/ln kg/m3 3 8
T=4.2K
15 25
2
35
0
39
0 2
I 8 y&C
46
0
0
49
2
43
T-
76
- - - 106
ol-----z-r-ot. . ..r OlPZ 01 -_--
.f
Z”
- - -157 f - : 215
--
I
1
I
0
0.3
0.6
- -293K I
0.9 PO”,-
t
l.2
I
1.5 1
,1.8
Fig. 142. Sm 100-xCo,. Specific magnetization d in a field of poH= 1.4 T and inverse magnetic susceptibility x; 1as functions of temperature for several melt-quenched alloys. The measurements were performed on heating the samples using a Faraday-type magnetic balance. Open circles: zero-field-cooled; solid circles: field-cooled. The broken lines represent the theoretical temperature dependence of the inverse magnetic susceptibility calculated using Van Vleck’s theory. The downward arrows indicate the Curie temperatures Tc determined from Arrott plots, whereas the upward arrows indicate the temperatures T, of transition from a mictomagnetic (spin-glass-like) to the ferromagnetic state [87Y 1,88Y3].
Sostarich
Landok-BBmstein New Series 111119h
Ref. p. 3421
6.2.4 Amorphous R-3d (R= Ce, Pr, Nd, Sm)
40 .4& 107 m3 G
I
287
40 106 4% kg i?
I
pr80 Ga20
I 207s
I 20 -2 10
0 70
85
100
115 T-
130
0 145 K 160
0
Fig. 143. Sm,,Co,, (Sm,Co,). Specific magnetization e and inverse magnetic susceptibility xi 1vs. temperature. The measurement was performed by magnetic translation balance in a magnetic field p,,H=0.7 T [83A3].
Land&-Biimstein New Series IIU19h
I_ 100
150 T-
1 . 250 K :
200
Fig. 144. Pr,,Ga,,. Magnetic susceptibility xE as well as inverse susceptibility xi1 as functions of temperature for a rapidly quenched alloy [84 C 21.
0
Ftg. 145. (Pr,,,,Ga,,&s,,Fe,,,. Spontaneous specific magnetization uspof a splat-cooled alloy vs. temperature. The Q,~ values were obtained by linearly extrapolating the high-field portions of the magnetization isotherms to H= 0. The dashed line represents the contribution of the magnetic Fe atoms to the reversible magnetization, estimated from 57Fe Miissbauer effect measurements to be 13.8 and 11 Amz/kg at 4.2 and 300 K, respectively [84C2] (cf. also [82 C 31).
50
50
100
150 T-
200
250 K
O
Fig. 146. Magnetic suscep(Pr,.,,Ga,.,,),,Fe,,. tibility xs vs. temperature. Susceptibility data were taken with a Faraday balance system in a field of poH= 70 mT as the sample temperature was raised. Open circles are values obtained after cooling in the field of 70 mT, whereas the solid circles are data taken after cooling in zero field [81 C4]. Cf. Fig. 144.
Sostarich
[Ref. p. 342
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
288
150 w kg
125 100 I b
I5
25
0
200
kO0
600
K
0
800
100
200
l-
Fig.147. Nd,Fe,,B,. Specific magnetization u as function of temperature. u was measured by means of an adaption of the Faraday method in an applied field of lo6 Am-‘. (I) Amorphousmelt-spun sample. (2)CrystaL line sample [86B 11.
I 0
I 50
I 100 l-
I 150
K
300 l-
400
500
600 K 700
Specific magnetization u as Fig. 148. NdFe,,B,. function of temperature. tr was measured by an adaption oftheFaradaymethodinanappliedfieldof 1440 kAm-‘. (I) Amorphous melt-spun sample. (2) Crystalline sample. Curve (2) was obtained after correction for the presence of second phases [86 B 11.
I I-
21
1
II
I
I
II
0 O
20
60
60
I
I
K
80
l-
AC susceptibility Fig. 149. Nd,,Co,, and Nd,,Co,,. x,~ vs. temperature. Peak temperatures taken to be the magnetic ordering temperatures T, are listed in Table 15 [85W3].
Fig. 150. Sm,,,-, Fe,. Temperature dependence of the ac susceptibility xac of several melt-spun alloys. The susceptibility was measured in an alternating field of 340 uT at 110 Hz using a Hartshom bridge-type apparatus. The temperatures Tb of the susceptibility shoulders are indicated by arrows [SSY 31.
Sostarich
Land&-BBmstein New Series IIIN9h
Ref. p. 3421
289
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
x =20
(Ndo.soho.zohoo-xFex
4
I
I
I
I
(%.&h.&oFe3o I I -z
I
I
I
I
3
2
t22 c1 0
50
100
150
200
0
250 K 300
50
100
150 T-
l-
Fig. 151. (Pro,soGa,,zo),oFe~o. Temperature dependence of the ac susceptibility xac measured in a rms field of 1 pT and at a frequency of 280 Hz. The solid curve is for the as-cast sample, whereas the broken curve is for a sample heat-treated at 460” C for 5 minutes. The xacvs. T dependence is consistent with microstructural studies, which show on a 400 8, scale the presence of two amorphous phases, namely a PrGa-rich (T,,-8 K) and a PrFe-rich phase (T, -470 K). The drastic increase in the magnitude of the low temperature peak (~8 K) after heat-treatment is believed to indicate that high-T,, phase regions have transformed to the low-T,, phase by crystallization [82H 1, 84Hl]. (Te is the magnetic ordering temperature.)
200
250 K 300
Fig. 152. (Nd,,,,Gao.ZO)lOO-nFe~. Temperature dependence of the ac susceptibility xac for metallic glasses with x = 0, 10,20. The measurements were performed at a frequency of 280 Hz with a driving field of p,He 30 FT. For Nd,,,Ga,, (x = 0) the low-temperature peak is observed in dc measurements at 14 K and an ordinary Curie-Weiss behaviour is found to hold above this temperature. In the alloys with x > 0 the low-temperature peak still appears, but a second peak is apparently being approached slightly above room temperature as the Fe concentration increases beyond 10 at % [84 C 21.Cf. also xacvs. Tfor (Nd,~,,Gar,&&ozo in Fig.215.
( Ndo.so Coa4o190BII
Fig. 153. (Nd,,60Co,,4,,)9,,B10. AC susceptibility xac vs. temperature for a melt-spun amorphous (I) and a crystallized sample heat-treated at 240” C for 15 min (2). The susceptibility was measured with an ac technique in a rms field of 1 pT and at a frequency of 280 Hz. The asquenched sample exhibits a single sharp peak at 38 K, close to that observed in the amorphous Nd6eCo4e ribbons (cf. Fig. 149). After the first crystallization two new phases are formed with ordering temperatures 17 K and 45 K. It is suggested that these phases may be associated with Nd and a ternary Nd-Co-B phase, respectively [85H2].
L2 -1 I
I
I
I
20
40
60
80
TLand&-Biimstein New Series 111/19h
Sdstarich
K
II
290
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
[Ref. p. 342
6.2.4.3 High-field magnetization and susceptibility. Anisotropy constants, Magnetoresistivity. Magnetostriction
160
/I
I
120
b
a
o-
2
1
6
8
1
10
0
2
6
b
PoH-
8
1
10
POH---
Fig. 154. Prree.,Fe,. Specific magnetization u vs. magnetic field H for a series of melt-spun alloys at 20 K. (a) 45 5x $90. All of the data for the Pr-richer alloys (45sxs66) were taken with the sample in a field poHo= 0.2.. -0.3 T prior to cooling from room temperature to 20 K. (b) x = 55. The magnetization curves are labeled with the field Ho to which the sample was subjected prior to cooling from room temperature to 20 K. The magnetization behaviour shown above is typical of that found for alloys with 45 5 x $60 [81 C 31.
125 nm7 kg IOC
15 I
b SC
O
a
2
4
6
PO”-
8
1
10
0
b
2
4
6
8
1
10
POH-
Fig. 155. Nd,OO-xFer. High-field specific magnetization u of several melt-spun alloys at 20 K as a function of the magnetic field H. (a) 45sx1;80. The samples were exposed to fields slightly greater than their room temperature intrinsic coercivities prior to cooling to 20 K. (b) x =60. The magnetization curves are labeled with the field H,, to which the sample was subjected prior to cooling to 20K. Linearity over the entire field range was not obtained until pLoH,=0.3 T, i.e. slightly greater than the room-temperature coercivity of the alloy [81 C 11.
Sostarich
Lsndolt-BBmstcin New Series III~19h
Ref. p. 3421
291
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm) 1 I
/I ( Pro.80b.dloo-x
I Fe,
1.25 I -p.oo 0.75
0
50
100
150 T-
200
250 K 300
Fig. 156. (Pr,,,,Gao,20)100-xFex. Inverse high-field magnetic susceptibility x,$ vs. temperature for several melt-quenchedsamples.xHFis obtained from fits to the law of approachto ferromagneticsaturation: a=a,,(l-AI/H-AZ/HZ..
.)+xHFH
(cf. introduction) [84C 21.
Table 17. Uniaxial anisotropy constant, K,, and magnetic susceptibility of the paraprocess above technical saturation, xHF, for some metallic glasses containing light rare earths. KU 106Jmm3
XHF
21.5”) 1”) 0.04b) 1.2”)
Ref.
Remarks
84C2 8382 8OSl 85H2
at 20K at 4.2K at 293 K at 4.2 K
10-7m3kg-i 3
3 Calculated with the magnetization-area method from data in [Sl C 31. b, First-order anisotropy constant, K,, estimated from the magnetization curves assuming a hexagonal local symmetry. “) From the law of approach to saturation.
Land&-Biirnstein New Series III/l9h
Sostarich
[Ref. p. 342
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
292
IRelative deviation of the elecFig. 157. Ce7&02.,s. trical resistivity, e(H,T), from its value in zero-field at 70 mK, ~(0, 0.07 K), measured as function of temperature in different applied magnetic fields H on a melt-spun sample. The magnetic field was oriented parallel to the ribbon [82F 11.
is~
I -4
l/l.0 9 d a -1.5
cil ‘-I d"
-12
-2.0
-2.51 0
-8
I 0.1
I &8
I 1.2
1
-16 0
11.6
P,HFig. 158. PrrFe80-rB20. Magnetic field dependence of the reduced transverse magnetoresistivity, A&a, of two melt-spun alloys measured at 290K in “low” constant fields up to 1.6T by a four-point dc technique with an accuracy of 1. lo-‘. The magnetic held was in the plane of the ribbon [88 C 23.
8
12
16
20 1
PoHMagnetic field dependence of Fig. 159. PrzFe,,B,,. the reduced transverse magnetoresistivity, Ael/eo, for a melt-spun sample measured at 77 K and 290 K in high pulsed magnetic fields using a compensation method with an accuracy of 7. 10W4.The magnetic field was in the plane of the ribbon. The dependence of the transverse magnetoresistance on magnetic held was found to be typical of ferromagnetic alloys [88 C2]. See also Fig. 158.
Sostarich
Land&-BBmstein New Series 111/19h
Ref. p. 3421
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm) .I@ Oe-’ 300.
250
200
150 I ~100~ 3 (D 50
0
60 :n IU
0
01 01 0
-----. 50
100
c
150
-
I
I
I
I
200 T-
250
‘300
350
K 4
Fig. 160. NdiO,,.,Fe,. Forced volume magnetostriction, awlaH, of several melt-spun alloys as function of temperature. Curie temperatures Tc indicated by arrows were determined by Arrott plots. For x=80 the awlaH value is about 55.10-” Oe-’ at 77 K and increases to about 295.10-l’ Oe-’ at Tc. For alloys with x570 hysteretic magnetostriction vs. magnetic field curves are measured below TH, (broken arrows) [8812]. (Cf. also caption to Fig. 110)
40 .m6
Fig. 161. Sm,Feso-,Bzo. Composition dependence of saturation magnetostriction 1, and coercive field H, of melt-spun alloys at room temperature. The magnetostriction was measured using the three-terminal capacitance method, while the coercive field was determined from quasi-static hysteresis loops taken with a loop tracer at a reversal frequency of 0.02 Hz. The saturation magnetostriction was found to decrease from 37.10m6 for Sm,Fe,,B,, to 12.10s6 for Sm,Fe,,B,, [8815].
Land&-BBmstein New Series 111/19h
40 A/m
35
35
I 30
30
4
I 25
25 *
20
20
151 0
Sostarich
I 12
I
I 3
4
5
A15 6
294
[Ref. p. 342
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
6.2.4.4 Miissbauer effect
I -8
I
I
-6
-4
I
I
I
I
-2
0
2
4
I
mm/s
8
V-
Fig. 162. NdrsFes5. 57FeMdssbauerspectraof meltspun alloy at room temperatureand 77 K. The bar graph in the lower part of the figure showsthe line positions in the Miissbauer spectrumof u-Fe at 77 K. The hyperfine field at 77 K is found to be about 30 T and almost independent of the alloy composition [87S2]. Cf. also Fig. 121.
Table 18. Average s7Fe hyperf’me field, i$,r,,, and isomer shift relative to a-Fe, IS, obtained from MGssbauer-effectinvestigations on some ternary amorphous alloys containing light rare earths and iron.
BhYP
T
25.0 29.5 27.1 30.0 23.7 24.0 18.7 17.4 13.3
IS mms-’
-0.18 -0.22 -0.23 -0.24 -0.23
Ref.
Remarks
82C3 82C3 88Cl 88Cl 88A2 88A2 88A2 88A2 88A2
at 300K at 4.2K ?b ’1 at 300K at 300K at 300K at 300K at 300K
‘) Extrapolated &,rP value at T=OK. b, Hydrogen increases the s7Fe hyperhne field in the amorphous alloy substantially, whereas its influence on the saturation hypertine field is slight in the crystalline phase Nd,Fe,,B.
Sostarich
Land&-B6mstein New Series 111119h
Ref. p. 3421
295
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
a
0
IO
b
-3.5
b
0
0
3.5
mm/s
7.0
20
30
T
40
Bhyp-
Fig. 163. (Pr,,s,Ga,,,,),,Fe,O. (a) “Fe Miissbauer spectrum at 300 K (data points) and a fit to the spectrum using the Window [71 W I] technique (solid line). (b) P(I&,) vs. BhYpcurve giving the hyperfine field distribution deduced from the above spectrum [84C 21. See also caption to Fig. 164.
1 IO
20
30
T
40
Bb’p -
Fig. 164. (Pr,.s,Gao.zo)80Fe,,. (a) “Fe Miissbauer spectrum (points) of an enriched sample at 300 K and fit to the spectrum (solid curve) with the P(BhYp)curve given in (b). (b) Fourier deconvolution of the 300 K Miissbauer spectrum into an internal (hyperfine) field distribution function, P(B,,,). The first peak in the deconvolution curve is attributed to “nonmagnetic” or paramagnetic Fe contributions. The large peak at 25 T represents the magnetic Fe contribution and is 67% of the total intensity. The amorphous (Pro.soGao,zo)soFezo sample was prepared by a splat-cooling technique
a
v-
[82C3].
0 b
IO
20 Bhyp-
30
T
40
Fig. 165. (Pr,,sOGa,,,,),,Fe,,-,. (a) “Fe Mijssbauer spectrum at 300 K (points) and fit to the spectrum using the Window [71 W I] technique (solid line). (b) P(B,,,) vs. Bhypcurve representing the best fit to the above data and giving the hyperfine field probability distribution [84C2]. Seealso caption to Fig. 164. Land&-Biimstein New Series 111/19h
Sostarich
296
6.2.4 Amorphous R-3d (R=Ce, Pr, Nd, Sm)
[Ref. p. 342
(Nd,bxh&o
-1
0
1
mm/s
2
-9
a V28 Fig. 166. (Nd,Fe,.,)seB,,. 57Fe Mksbauer spectra T of severalmelt-spun alloys measuredabove the respective Curie temperatures.A constant-accelerationspec24 trometer with a Co-Pd sourcewas used for the measurement. The alloy samplesfor high-temperature spectra were powdered, mixed with boron nitride and mounted t $0 between beryllium discs in a resistively heated oven IQ? [88 R I].
I -6
I -3
0.05
0.10
I 0
I 3
0.15 x-
0.20
v-
I 6mm/s
16 12 0
b
a25
0.30
Fig. 167. (Nd,Fe,.,)s,.sB,,.s. (a) Room-temperature 57Fe Mijssbauer spectra of three melt-spun alloys; (b) averagehypertine field &, vs. Nd concentration. The spectra were obtained on a conventional constantacceleration spectrometer with a 0.2GBq “Co-Pd source. The &,, values were calculated from distributions of BhYpobtained using a Window [71W I] Fourier deconvolution technique188A 21.Cf. also Table 18.
Sostarich
Land&-BCmstein New Series III/19h
6.2.4 Amorphous R-3d (R = Ce, Pr, Nd, Sm)
Ref. p. 3421
-0.225 -0.250
Ia
/
0.65
t
TI
I
0
I\
0.05
0.10
0.15
0.20
0.25
0.30
x-
Fig. 168. (Nd,Fe,.X)lOO.yB,. (a) Isomer shift IS and (b) quadrupole splitting A obtained by least-squares litting of two independent Lorentzian lines to the Mossbatter spectra (cf. Fig.166). Most values from measurements at 480 K. For samples with Tcz480 K the IS and A values were measured at temperatures T= T,+20 K and then adjusted to 480 K using the experimentally found dependences: dZS/dT= - 7.15(6) . 10e4mm s-r K-’ and dA/dT= -1.00(7).10-4 mm s-l K- i. Isomer shifts are quoted with respect to a-Fe at room temperature [88 R 11.
Land&Bkmstein New Series IIUi9h
Sostarich
297
298
6.2.5 R-3d (R = Tb, Dy, Ho, Er, Tm)
[Ref. p. 342
6.2.5 Alloys with heavy rare earth elements (Tb, Dy, Ho, Er, Tm) 6.2.5.1 Magnetization, magnetic moments, ordering temperatures and type of magnetic order
800
I
600 K
K lb KID-xcox 600,
l-1-1 I 400
I p400
CJ 200
A
200
.
o
0 0 0 0
20
40
60
80
J 00
100 R-
xFig. 169. Tb,ea-$0,. Curie temperature Tc as a function of Co content for several melt-spun alloys: open circles [80B2]; full circle [82A 11.Also indicated by means of error bars are the values T,> 600K given for evaporated Tb-Co films in [75 L l] and by the triangle Tc for the polycrystalline Laves compound TbCo, from [78 K 11.
1001 40 50
60
Fig.170. R1O,,-xFer. Curie temperature T, vs. rare earth concentration for rapidly quenched amorphous ribbons with R = Dy and Gd, respectively [88 M 11.
70 R-
80
90 at% 100
Fig.171. R1cO.,Cox (R=Gd, Dy, Er). Specific magnetization u vs. rare earth concentration in liquidquenched amorphous alloys. The magnetization data were taken at 4.2 K in a field of uoH=1.4T using a Faraday-type magnetic balance [88 Y 11.
Sostarich
Landoh-BBmstein New Series IIIj19h
Ref. p. 3421
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
299
6 9 !!A at 8 I
6 40
100
80 I 0 60
40 201"
40
I
50
60
70 R-
80
90 at% 100
Fig. 173. RiOOJ!ox. Ferromagnetic and paramagnetic Curie temperatures Tc (open circles) and 0 (solid circles), respectively, vs. rare earth concentration in liquid-quenched amorphous alloys with (a) R = Dy and (b) R = Er. The Tc values were determined from Arrottplots, whereas the 0 data were obtained by fitting the x-l vs. T curves to the Curie-Weiss law. The triangles in the case of Dy-Co alloys mark Tc data from [81 G I] (cf. also Table 19and[88Y2])[88Y 11. Landolt-Biimstein New Series III/l9h
60
70 R-
80
90 at%100
Fig. 172. R1OO-xC~x. Average effective magnetic moment per atom, &, as function of rare earth concentration in liquid-quenched amorphous alloys with (a) R = Dy and (b) R = Er. The aen values were obtained by fitting the x-’ vs. T data to the Curie-Weiss law (cf. Figs. 185; 196). The broken lines are defined by the equation, Pen= [( 100-x)p~n(R)/lOO]‘I’, in which p&R) stands for the effective magnetic moment of the free R3+ ions, whereas the contribution of the Co atoms is neglected [88Y I]. Cf. also [88Y2].
120 K
,-
50
Sostarich
Table 19. Magnetic moments, ordering temperatures and specific magnetization of liquid-quenched R-TM alloys with R = Tb, Dy, Ho, Er, Tm and TM = Mn, Fe, Co, Ni. The type of magnetic order is given only where it is explicitly mentioned in the reference.
Feff.Ra) a “1 PB
PlI
10.2h) 10.4
5.9 b) 4.8 “) 4.7 d) 4.5 “) 5.3 “)
E(1) 8.8 6.2 8.9
3
82 b, 85 110 135 176 215
W) 140
13.0”) 10.81 10.7 11.6
5.4 “) 6.3 d,
58 61
9.4
5.Ob)
113
10.6 10.1
4.5b) 5.9 b) 8.35 d, 5.9 b) 6.4 “)
10.86
Ho&o,,
Er75bs Wd%~ W3Fe3, bFe.+, Er5dX3
K
5.0 b) 4.9 b) 4.8 d, 5.1 b)
10.0
DY,&o,o WoNi3o WgNi3 1 HoegFe3, Ho&%, Hod-h,
5.1”) 7.6(l) at 4.2K 9.8(l) at 60K 5.4 b) 2.5 b) 5.0 b)
0
9.64 9.40 9.20 9.9 “)
4.4 b) 4.7 b) 4.7 “) 4.5 d)
170 . 45
35.(5) 81
Tc,T.
K
240 ‘) 2206) >300 82*) 90 ‘) 90.4 J) 113’) 137.0(5) k) 165’) 210’) 55(5) ‘) 118’) 135’) 135’) 151’) 48 ‘) 43 ‘) 61 ‘) 69.5(5) ‘) 110’) 38(l) 4w ‘) 77 ‘) 1W93
T K
x60’)
u Am’kg-’
Magnetic order
Fig. 180 Fig. 180 130’) Fig. 183
60 ‘)
210’)
“1 aspero
60 ‘)
130’)
Fig. 186 170’)
8)
m.p)
Fig. 185
x55=)
Fig. 189 Fig. 190 225 ‘)
aspero 7
25
35 52 72 39
34(1)9 20 36’) 40C) 47 ‘) 25 ‘)
“1 Fig. 193
87
Fig. 194 120’)
Ref.
81 Bl 81 Bl 85A2 80B2 80B2 82B2 80B2 82A 1,82A2, 8382 80B2 80B2 80B3 81 Gl 81Bl 81Bl 83Al 80B2, 81Gl 82B2 81Gl 82A2,83Al, 83A2q) 81Gl 85Wl 80B3 81 Bl 86Al80B2 85Al 84Bl 79B1, 8lBl 81 Bl 81Bl 83Al
Remarks
&,,,(Fe) = 22.5 T at 4.2 K cf. Figs. 182,219
cf. Fig. 202 cf. Fig. 220
&,,(Fe) = 21 T at 4.2 K cf. Figs. 200, 221 cf. Fig. 202 cf. Figs. 187, 188, 222
cf. Figs. 191; 223 cf. Fig. 192
B,,,.,(Fe) = 7 T at 4.2 K cf. Fig. 195
Table 19 (continued). Peff,R=)
PR “1
0
T,,
PB
PB
K
K
9.81 9.67‘)
4.3 “)
9.3(l)
6.3 “) 7.6 ‘)
9.8 7.5
4.4 b)
3 1w3 22.0(5)
K
12(l)“) 10.3‘) 19.0(5)k)
T
d
K
Am2 kg-’
Magnetic order
speri c4.2
165 ‘)
“1
23 5 0
aspero
Ref.
80B2 78Gl 82B2 83Al,83A3 83A3 82A2 80B3 81Bl
Remarks
cf. Figs. 198, 199 cf. Figs. 203, 204 cf. Figs. 200, 224
‘) The effective magnetic moment, &ff,R, and the magnetic moment, pR,are averages given per rare earth atom. b, At 4.2K and in a field of poH = 1.8T. ‘) Determined from e vs. T dependence. “) Calculated from the value of B given in column seven. ‘) Determined as the temperature of the maximum in the zero-field c vs. T dependence. ‘) At 4.2 K and in a field of p,,H = 14T. This value of e is lower than that at 60 K (cf. Fig. 219). 3 Sperimagnetic for Tf < T< T, and spin-glass-like for T < Tp “) The Peff,aand 0 values are derived from Curie-Weiss plots (x-’ vs. T). ‘) Determined from a2 vs. T plots. j) Temperature of peak in the xac vs. T dependence. ‘) Obtained from Arrott plots (a2 vs. H/a). ‘) Technical saturation value at 4.2 K. “) Asperomagnetic (negligible Co magnetic moment assumed) for Tf < T-c T, and spin-glass-like for T< Tp “) Calculated from the Curie-Weiss constant given in the reference. “) Below Tf the spin-glass-like state coexists with the ferromagnetic one, the former becoming dominant below about 20K. q, pR values of 6.1, 4.5 and 5.5 uB at 4.2, 20 and 40 K, respectively, are given in [83 A 21. ‘) Estimated from zero-field 0 vs. T measurements. ‘) Determined from the saturation magnetization at 4.2K. ‘) Calculated from the effective moment per average .atom, peff, given in the reference. “) Defined as the temperature where the coercive field, H,, goes to zero. “) Derived from the value of magnetization extrapolated to saturation at 4.2 K, as the sample was not saturated in fields up to p,,H = 6 T. “) Alloy behaviour doesnot conform to the Curie-Weiss law. 0 and jjeffVR values are calculated from the lowest-temperature portion of the x- ’ vs. T dependence above T,. Cf. Figs. 188 and 200.
Table 20. Liquid-quenched ternary alloys with heavy rare earth elements, 3d transition metals, and B or Ga as glass formers. Magnetic moments per averaee magnetic atom (ion), R+TM, ordering temperatures and specific magnetization. The type of magnetic order is given only where it is explicitly mentioned in the reference. hf.R+TM
pR+-fM?
0
T,
kl
PB
K
K
10.4‘)
3.97 4.72
82 “) 63 ‘) 69 ‘) 97 ‘) 99 ‘) 101’)
3.97 8.45‘)
4.02 3.90 3.30
TbdN7B8 TblFe79B20 (Tbo.80Gao.20h&020 Dy60Fe30Blo
1.92
DyFe,B WI 8bB8 H%2Fe75.8B16
Fig. 175 H%2F%oB15.8 Ho,.,Fe 82.7 B 15.8 Hoo.,F%.,B,, (Ero.8&ao.2deoBlo
“1
Fig. 175 Fig. 175 Fig. 175 4.67 3.95 3.97 3.45
T,
167 “) 134’) 139C) 140.5(6)“) 180’) 114.38) 463 ‘) 439 ‘) 588 ‘) 69 ‘) 91.58) 400 ‘) 474 ‘) 582 ‘) Fig. 176 525 ‘) 577 ‘) 590 ‘) 20 ‘) 11 ‘) 23 ‘) 31 ‘) 31.5‘) 50 ‘)
Magnetic order
Ref.
Am2 kg-r 124.5d, 148
aspero ‘1
137
‘1
152d) 147.5
:;
137.1
2) spero
81C4 84Cl 82C4,82R 1 84Cl 82C4 82Rl 81C4 84Cl 8264 8682 84Cl 8582 87A2 86A2 85W2 82Rl 86Sl 87A2 86A2 84Dl 85Pl
ub)
179’) spero ‘1
Fig. 174 Fig. 174 Fig. 174 Fig. 174 140.1
Speli
Sp3-i Speli Speli
‘)
130.5 144
12
137.9
h,
84D1, 85Pl 84D1, 85Pl 84D1,85Pl 84Cl 82Rl 84Cl 84Cl 82Rl 84Cl
Remarks
cf. Fig. 209 cf. Fig. 209
cf. Figs. 209, 210 cf. Fig. 212 cf. Figs. 207,208
cf. also Fig. 215 cf. Fig. 216
K according to Fig. 176 cf. Fig. 176 cf. Fig. 176 cf. Fig. 176 cf. Fig. 218 T,r463
cf. Fig. 218 cf. Figs. 218, 228 cf. Fig. 218
Table 20 (continued).
~Ero.65Feo.35)90Blo
ErFe,B Er15Fed% (Er,.lG’e 0.875h0B12Si8
i%ff,R+TM
PR+TM’)
0
T,,
PB
PB
K
K
2.7 ‘)
Fig. 206
7.5(2)‘)
T,
37(3)“1
387 i, 370 3 500 i)
fJb)
Am2 kg-l
Magnetic order
Fig. 206 N aspero (cf. also Fig. 226) speri 108‘)
Ref.
Remarks
79Gl
p(Fe) z 0 assumed
80Hl 87A2 86A2 87Kl
cf. Fig. 178
‘) Calculated from the magnetization values in column six unless otherwise specified. “) osPat 4.2 K obtained from law-of-approach-to-saturation fits unless otherwise specified. “) Derived from Curie-Weiss plots (x-l vs. 7’). “) a,, at 4.2 K obtained by extrapolating the high-field magnetization curve to H = 0. ‘) Temperature of peak in the xac vs. T dependence. ‘) Magnetic structure designated as random spin-glass-like was seento become sperimagnetic or, if p(Fe) r 0, asperomagnetic in high applied magnetic fields. g, Obtained from scaling analysis. “) Cluster-glass with significant chemical short-range order suggested. ‘) Determined from cr vs. T dependence. j) 0, at room temperature. k, At T,=91.5 K - sharp speromagnetic transition to a spin-glass-like state. ‘) Spontaneous moment per magnetic atom. “) From extrapolations based on L? vs. H/a (Arrott) plots. “) Composition mentioned alternatively as (Er,.,,Ga,.,,)s,B,, in [84 C 11.
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
304
3 kl
10: ‘Gi 1Am? kg y1
I
I”* 1% 1
bl
0
2
2
6
8
10
0 0
2
6
x-
8
10
x-
Fig. 174. Ho,Feg.+IB,6. Specific saturation magnetization a, at 4.2 K as a function of the Ho content for several melt-spun alloys. The u, values were obtained by extrapolating the e vs. H dependences measured at 4.2 K towardsHe’=0[85Pl].
Fig. 175. Ho,Feg,,.rBlb. Average magnetic moment per metal atom, &+uo, vs. Ho content. Closed circles: values determined from a, at 4.2 K data (cf. Fig. 174). The solid line represents the calculated average magnetic moment, assuming collinear, antiparallel oriented Ho and Fe magnetic moments, with j@o)=lO.3 pa and J(Fe) = 2.05 pa. The dashed line is only a guide for the eye [85P I].
600 K I 550 e 500
450 0
0
2 x-
6
8
10
-2001 0
\ I 2
I 4
I 6
x-
Fig.176. Ho,Fe,,-,B,e. Curie temperature Tc as a function of Ho content for several melt-spun glasses [85P 11.
Fig. 177. Ho$o~~-~B~~. Curie temperature Tc and crystallization temperature Tx of several melt-spun alloys with 0 6 x s 8. Tc values were obtained from curves of specific magnetization squared, u*, vs. temperature. The crystallization behaviour was studied with differential thermal analysis at a heating rate of 11 K/min [88 141.
Sostarich
Landoh-B6msfein New Series llIi19h
Ref. p. 3421
305
6.2.5 R-3d (RF Tb, Dy, Ho, Er, Tm)
175 Am2 kg 150
f
I
I
I\~(RT)
I
125
-I750 L K
100
600 I c
75
450
b
I 0.025
501 0
I 0.050
I 0.075
I 0.100
125 I 6
I 0.125
100
501 0
2
4
x-
6
8
x-
Fig. 178. (Er,Fe,&,B,,Si,. Composition dependence of room-temperature specific magnetization 0 and Curie temperature Tc of melt-spun amorphous alloys. The magnetization was measured with a vibratingsample magnetometer in applied fields up to loH= 1.7 T. The Curie temperature was determined in an applied field of p,H N 10 mT [87 K I].
Fig.179. kFeso-xB,,(R=Dy, Ho, Er, Tm). Specific saturation magnetization a, as function of rare earth concentration for melt-spun alloys at room temperature [88G I].
6.2.5.2 Temperature dependenceof magnetization and susceptibility 15.0
.1p
I
1~
I
I
Tb2Fel_,NI,
Am* 12.5
I
1502 1o.u
~I
I e 1.5 '4
100
5.0 50 2.5 I’
0
I
I
I
I
50
100
150
200
I
c
I
0
250 K 300
su
100
150
200
K 250
l-
i-
Fig. 180. TblOO-xFex. Specific magnetization 0 of two melt-spun alloys (x=30 and 40) vs. temperature. The magnetization was measured while heating the samples in a field of poH=0.9 T by using an adaption of the Faraday method. The broken line was obtained after tield-cooling the x = 30 sample to 4.2 K prior to measurement [81 B I].
Fig. 181. Tb,Fe,.,Ni,. Temperature dependence of the average magnetic moment per Tb ion, jr,,, for some melt-spun alloys. prt, was calculated from the magnetization measured in a low applied field of poH=41 mT. The measurements were performed by an automated force magnetometer (P~H,,,~~= 7 T and 3 K < T < 300 K) [88G2]. 1 p,=9.27~10-24AmZ.
Land&-Biimstein New Series III/lW
Sostarich
6.2.5
306
[Ref. p. 342
R-3d (R=Tb, Dy, Ho, Er, Tm)
160 Am’ kg 120 I 80 b
0
30
60
90 T-
120
150 K 180 I-
Fig.182. TbS7Feh3. Specific magnetization u of a melt-spun alloy as function of temperature. The magnetization was measured in a constant field with increasing temperature after cooling the sample either in zerofield (solid line) or in a magnetic field of poH= 6 T (dashed line). There is a maximum at Tr~60 K in the a(7) dependence of the zero-field cooled sample [85A 21.
0
90 120 150 K 180 IFig. 184. Tb,,Co,,. Spontaneous specific magnetization cr,r (solid circles) and zero-field magnetization crO (open circles) as functions of temperature. A large temperature hysteresis is present in the zero-field measurements. The cr.,,values are derived from isotherms of initial magnetization (cf. Fig. 220) [82A 11.
80 40 I b
Specific magnetization u and Fig. 183. Tb6&oj,. reciprocal magnetic susceptibility xi1 ofa melt-spun alloy vs. temperature. The solid a(7) curve represents a heating curve measured in a field of poH= 0.9 T. The broken u(T) curve is a heating curve, too, obtained after cooling the sample to 4.2 K in the presence of a magnetic field. The measurements were performed by using an adaption of the Faraday method [80 B 21.
0 120
30
60
80 40 0 120 80 LO 0 T-
4 Fig. 185. Dyle&ox. Temperature dependence of poH= 1.4 T specific magnetization and inverse magnetic susceptibility, Q and xi l, respectively, for some liquidquenched alloys. The sample with x=60 is crystalline, whereas the other ones are amorphous. The measurements were performed using a Faraday-type magnetic balance. The open and solid circles represent data taken on heating the samples from 4.2 K after cooling them from room temperature in poH=O and 1.4 T fields, respectively. A field-cooling effect is observed only in the crystalline alloy, but not in the amorphous ones. Ferromagnetic and paramagnetic Curie temperatures, Tc and 0, respectively, are indicated by arrows [88Y 11.Cf. also Fig. 186. Sostarich
Iandolt436msfein New Series III!19h
Ref. p. 3421
200
I
4 xl5 -kg
I
DY,,CO,,
$
307
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
K3
3
kg I 170
(43
150
b’
140 0 -0
n 100
50
150 l-
200
130 0
250 K 300
Fig. 186. Dy,,Co,,. Temperature dependence of the specific magnetization Q of an amorphous sample measured in magnetic fields of poH= 1.8 T (upper curve) and 0.3 T (lower curve). The open circles are reciprocal paramagnetic susceptibility xi ’ data [84 B I].
35 351 jl$ kg 30
10
20
30
40
50
60 K 70
Fig. 187. DY&o~~. Spontaneous specific magnetization trSP as a function of temperature in the lowtemperature range. The cr,r values were obtained from initial magnetization curves taken in magnetic fields up to p,,H= 14 T (cf. Fig. 222) [83A2].
3.0 106 '631 kg
25
I
2.0
I 20
I
b
1.5-g
15
I
b
0 0
/ /I 100
r----l200 T-
LO: I 300
K T-
Fig. 188. Dy,,Co,,. Temperature dependence of specific magnetization Q and inverse paramagnetic susceptibility xi 1 above Tc- 69 K in an applied field of p0Ha=0.78T[83A2].Cf.also[82A2;83S2].
Land&-BBmstein New Series 111/19h
Fig. 189. Dy,,Ni,,. Temperature dependence of specific magnetization e in applied fields of poHa = 0.3 T (lower curve), 0.9 T (middle curve), 1.8 T (upper curve) and of reciprocal magnetic susceptibility xi ’ for a meltspun alloy. The measurements were performed with increasing temperature in the range 4.2.. .300 K using an adaption of the Faraday method [80 B 31.
Sostarich
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
308
200 @ kg
5 lo” 45x kg
150
I
H057Fe43
,‘077Tmt-t
?iij
t b 100
1 755
3 I T$
I b
2 50
0
I
1
-0
50
100
150 l-
200
0 250 K 300
0
30
60
a
90 T-
120
Fig. 190. Ho,,Fe, r . Temperature dependence of the specific magnetization u in applied fields of poH,=0.3 T (lower curve), 0.9 T (middle curve), and 1.8 T (upper curve), and of the reciprocal magnetic susceptibility xi1 for a melt-spun alloy. The magnetization was measured on heating the sample using an adaption of the Faraday method [81 B 11.
I 150 K 180
. 0 b
0.3
0.6
0.9 PO4 -
1.2
1.5 1 i.8
Fig. 191. Ho,,Fe,,. (a) Temperature dependence of the specific magnetization D of a melt-spun alloy in different applied fields Ha. The solid lines represent measurements after zero-field cooling, and the dashed lines are for field-cooled samples. A maximum in the u vs. Tdependence of zero-field cooled samples is observed at T, (Hopkinson effect). With increasing Ha this maximum shifts to lower temperatures and disappears for poHaz2 T(b)[86Al].
I
H057C043
1
I
I
I
0
10
20 l-
30
K
I
Spccitic magnetization u of a Fig. 192. Ho&o,,. melt-spun alloy vs. temperature for different values of the applied magnetic field Ha. The solid lines represent measurements after zero-field cooling. A monotonic decrease of d with increasing temperature is observed when the measurement is carried out in zero-field, too (lowest curve). A maximum in the u vs. Tdependence at a temperature Tt < Tc occurs when a relatively weak field (go Ha = 3 mT) is applied. Tr decreases with increasing Ha and disappears at poHa = 3 T. When the sample is cooled in the presence of the applied field (dashed lines) these thermomagnetic effects are not observed [85A I].
Sostarich
Land&-BBmstein Nca Scrics IIIU9h
309
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
Ref. p. 3421
T-
T-
Fig. 194. Er,,Fe,,. Temperature dependence of the specific magnetization Q in applied fields of ~~H,=0.3 T (lower curve) and 1.8 T (upper curve), and of the reciprocal magnetic susceptibility 2; 1 for a melt-spun alloy. The magnetization was measured on heating the sample using an adaption of the Faraday method [81 B I].
Temperature dependence of the Fig. 193. Er,sFe,,. specific magnetization c in applied fields of poHa= 0.3 T (lower curve), 0.9 T (middle curve), and 1.8 T (upper curve), and of the reciprocal magnetic susceptibility xi ’ for a melt-spun alloy. The measurements were performed by an adaption of the Faraday method [79 B I].
I
I
Er57 h3 I I unH = 1000mT
20 +
--A-,---
1
--& 15 2 G
u
/ /
E 10
s-
\
iw
mT I
I
0
\
200
/
IO
20
30 T-
1
I
40
50
K 6[I
Specific magnetization 0 of meltFig. 195. Er,,Feb,. spun alloy vs. temperature in different magnetic fields. The temperatures Tr and the amplitudes of the magnetization maxima, depend on the magnetic field applied (Hopkinson effect). The maxima disappear on cooling down from the paramagnetic state in a strong magnetic field (broken lines) [83A I].
Land&-Biimstein New Series III/19h
Sostarich
310 160 &IT kg 80 k0 0
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
6 106 G kg ii3 2 0 60
120 4 80
I 40 0 b 120
20 7s
0
4
0
1.5
1’0”Isothermal magnetization curFig. 197. Er,,Co,e. ves, u vs. H, for a liquid-quenched amorphous alloy at various temperatures (cf. also Fig. 196) [88 k 11.
80 40
1.2 1
0.9
0.6
0.3
2 0
120
16 .In 106
80
m3 xi
50 I
x”
0 Fig. 196. Er,eO.,Co,. Temperature dependence of poH= 1.4 T specific magnetization and inverse magnetic susceptibility, u and xc’, respectively, for some liquidquenched alloys. The sample with x=60 is crystalline, whereas the other ones are amorphous. The measurements were performed using a Faraday-type balance. The open and solid circles represent data taken on heating the samples from 4.2 K after cooling them from room temperature in poH=O and 1.4 T fields, respectively. A field-cooling effect is observed only in the crystalline alloy, but not in the amorphous ones. Ferromagnetic and paramagnetic Curie temperatures, T, and 0, respectively, are indicated by arrows [88Y 11.
8 4
0
20
40
60
80
100 K ’ 3
I-
Fig. 198. Er,,Co,,. DC magnetic susceptibility xe of liquid-quenched alloy, as a function of temperature. The susceptibility was measured with a Faraday balance and showed a peak at 12 K, which is taken to be the magnetic ordering temperature of the alloy [78 G I]. 5 106 ‘Gn kg ii3 3 I
Inverse magnetic susceptibility Fig. 199. Er,,Co,,. 1;’ of liquid-quenched alloy vs. temperature. The tit of the data to a Curie-Weiss law (solid line) yields the paramagnetic Curie temperature O= lO(2) K. The susceptibility was measured with a Faraday balance [78 G 11.
Sostarich
1
0
50
100
150 l-
200
250 K 300
Landoh-B6mstein New Series 111/19h
Ref. p. 3421
0
6.2.5 R-3d (R=Tb,
50
Dy, Ho, Er, Tm)
0
100
150 200 250 K 300 lFig. 200. RJ7TM4a (R=Dy, Er; TM =Fe, Co). Inverse oaramafmetic suscentibilitv r, i measured in a field peHf0.68 T;s. temperature. ?‘hl arrows indicate the paramagnetic Curie temperature 0, determined by using tangents (dashed lines) to the low-temperature portion of the measured curves (solid lines) [83A I].
10
20
30
LO
o
K
J-
Fig.201. Er,,N&. DC magnetic susceptibility xs measured in a field p,H=70 mT as a function of temperature. The solid circle represents a value measured after “field-cooling” the sample [80 H 21.
3 90.4K
‘1175K
R65C035 10.3 K
43K I
R=Er
-z
.-Y 5 ru L -; s?
lb
R=Oy
AJ 30
Nd
z a F -Lz x”
Gd
,\, LO
I 9
170 K 190
17
I 30 K
T-
Fig.202. R&o,, with R=Gd, Tb, Dy. AC susceptibility (v=35 Hz) of melt-spun alloys vs. temperature. The measurements were performed with a standard ac bridge. Magnetic ordering temperatures, estimated from the xac vs. T dependences, are indicated. The susceptibility maxima were found to be frequency-dependent [82B2].
Land&Biimstein I-&W series III/l9h
Fig.203. R,,Coa5 (R=Nd, Er). AC susceptibility (v= 35 Hz) of melt-spun alloys vs. temperature. The measurements were performed with a standard ac bridge. The xac peak temperatures, Tp= 10.3 K for R=Er and 31.7 K for R=Nd, were found to be frequencydependent [82 B 21(cf. also Fig. 204).
Sostarich
312
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
10.2, 14
NO
35
350
1400 3500 Hz14000 35000
Fig.204. Er,,Co,,. Temperature of the ac susceptibility peak, Tr! as a function of the measuring frequency v (cf. Ftg.203). Tp increases with v at a rate AT,,/Av=O.O6 K per decade of frequency. This frequency dependence of Tp is interpreted as a sign of a spin-glasstype magnetic order [82 B2].
2.5 .I03 Ln Am? kg I b
I
1.5
0.9
1.0
0.6
I
3.6 l/l,
0.3 "?+ 0.8
1.0
-1 %I
6;;
#e 0
I
\ /I .^ 4U
I ^^ bU
80
K
l-
-
Fig. 205. HoXFegq.XB,6. Specific magnetization a vs. reduced temperature, T/T,, for melt-spun alloys with various Ho concentrations. The measurements were made with a vibrating-sample magnetometer in the temperature range 4.2.. .300 K. At higher temperatures Forster probes were used [85P I].
Fig.206. (Er,,,,FeO,s&,,,B,,. Square of spontaneous magnetization CT& and inverse paramagnetic susceptibility xi 1 vs. temperature. The magnetization was measured by a vibrating-sample magnetometer, and cr.‘,was obtained by extrapolating to zero field the nearly linear high-field portions of the a2 vs. H/a isotherms. The magnetic ordering temperature is estimated to be 37(3) K. Susceptibility measurements were made with a Faraday balance. A tit of the susceptibility data to the Curie-Weiss relation xs = Njp~rr2[3kB(T-@)]- r yields &rr,ar+rc=7.5(2) pB, the effective magnetic moment per average magnetic ion [79 G I].
Sostarich
Landolt-BBmstein NenSeries 111/19h
Ref. p. 3421
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
II
~------QIS -__ x&.J /‘I 100
lb58 Mh
----------_ / 150 i-
313
ho
I 200 K
30 mT 0
T-
Fig. 207. Tb5sFeisAl14B10. Field-cooled ac susceptibility x.= vs. temperature in various dc applied magnetic fields. The solid lines are for the in-phase component, xi,, and the broken line for the out-of-phase component, By definition XL, of the ac susceptibility. x = [(xi,)‘+ (x,)~]“~. For larger values of p,H (18 and 3rmT) a distinct shoulder is seen in xi, at T> Tpeak= T,. The data were obtained at a frequency of 280 Hz and in rms fields of about 10 uT [85 S2].
Fig. 208. Tb,,Fe,,Al,,B,,. Temperature dependence of xl, the linear susceptibility for H=O (upper curve), and of x:, the nonlinear susceptibility, for poH=18 mT (middle curve) and u,H=6mT (lower curve). By definition x.,=&-x: [85S2]. Cf. also Fig. 207.
0.30 I 0.25 y 0.20 t-G 0.15
(a) AC suscepFig.209. (Tb,.eoGao.ZO)loo-.Fe,. tibility vs. temperature for rapidly quenched foils with various Fe contents. The glass with x=0 is actually (Tbo,soGao,zo)sOBIo. The scale on the vertical axis is normalized to that for similar Gd alloys (cf. Fig. 75) and all the measurement details are the same. The susceptibility peaks occur at 63,97,134, and 180 K for the samples with x=0, 10, 20, and 30, respectively. (b) shows results of measurements on the x = 20 sample in which the magnetic field was applied in the parallel (1I) and perpendicular (I) orientation. The large difference in ,yacfor the two orientations suggests that the value of xacis controlled by demagnetization effects. This is interpreted as indicating a large true susceptibility, x = dM/dH,, where Hi = H,,-NM is the magnetic field in the material and N is the demagnetization factor, the sample with x = 20 coming short of a ferromagnetic-like state [84C I].
Land&-Biimstein New Series 111/19h
U.&U
N-l 0.30
I y 0.20 x" 0.10
Sostarich
0
0
50
100
150
200
250 K 300
6.2.5 R-3d (R = Tb, Dy, Ho, Er, Tm)
[Ref. p. 342
( Tb 0.80Ga 0.20180Fe20
0
50
100
150 T-
200
250 K 300
Fig.210. (Tb,,,,Ga,,,,),,Fe,,. Temperature dependence of the dc susceptibility xs measured by the Faraday technique as the temperature was raised: (I) after cooling the sample in zero applied magnetic field; (2) after cooling in an applied field of poH=70 mT. The vertical arrow indicates the ordering temperature T, obtained from ac susceptibility measurements (peak in xBc,cf. Fig. 209) [84C 11. 100
125
150 T-
175
200
225 K 250
Fig. 211. (Tb0,soGa,,20),,Fe,,. AC susceptibility vs. temperature for melt-quenched alloy. The susceptibility was measured at 280 Hz. The amplitude of the ac field Hat was pLoHa,= 10 pT and a dc field H was applied parallel to Ha,. The top set of curves gives the total susceptibility, xaE, for poH=O, 4.8, 7.8, 12.0, 18.0, and 28.8 mT (top to bottom). The bottom set of curves gives the nonlinear susceptibility, fc, for ~~8328.8, 18.0, 12.0, 7.8, and 4.8 mT (top to bottom). (Here fc =&--x,,, with xl, the linear and xsc, the total susceptibility). The peak ofXaccorresponds to 0.10 N- ‘, where N is the demagnetization factor [86 S 21.
T,(Hl/T,
(0)----c
Fig.212. (Tb,s,Ga0,2,,)soFe,,. Field dependence of the ac susceptibility peak temperature Tr. Meltquenched (Tb o.&ao.zohoFe20 develops a random, spin-glass-like magnetic order below Tr. The curve is a tit to the experimental data ofthc form,
H= W-~,W/~,(0I1’,
with poHo=700.3 mT, 7’,(O)= 140.5 K, <=1.25(5). The field H in the above plot was corrected for demagnetization effects [8682]. Cf. also Fig. 211.
Sostarich
Landok-BGmstein New Series III,/19h
315
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
Ref. p. 3421
L
50
100
150 T-
200
0
250 K 300
50
100
150
Fig. 213. (Tb,,BoGao,20)8,Fe,,H,. AC susceptibility xac as a function of temperature for splat-cooled amorphous samples with y =0 (full line) and y = 170 (dashed line). The measuring frequency was 280 Hz [82 R I].
250 K 300
Fig. 214. (Tb,,,,Ga,,,,),,Fe,,H,. AC susceptibility xac vs. temperature for unhydrogenated (full line), hydrogenated (dashed line) and hydrogenated but after a two-week anneal at room temperature (dash-dotted line) splat-cooled samples. It is inferred that the origin of the two peaks in the temperature dependence of xac is likely to be a phase separation into Fe-rich and Fe-deficient amorphous regions [82 R 11.
(R0.80G~0.20h0C020
I’ b
0
25
50
75
100
125 K 150
T-
Fig. 215. (R O.soGao.zo)soCozowith R=Nd, Tb. Temperature dependence of the ac susceptibility xac measured at a frequency of 280Hz in rms fields of 10 PT. The curves are indicative of sharp speromagnetic transitions with 6T/T, as small as 0.07 for R=Nd, To being the speromagnetic transition (freezing) temperature and STthe FWHM of the transition [85 S 21.
Land&-BBmstein New Series III/l9b
200
T-
Sostarich
316
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
100
150 l-
200
K
-0200
2
Fig.216. Dy,,Fe,,B,,. Field-cooled and zero-tieldcooled ac susceptibility xac vs. temperature in various dc applied magnetic fields Ha. The ac susceptibility data were obtained at a frequency of 280 Hz and in rms fields poHa,=10pT (HJIH,,). The effect of Hais to decrease at the speromagnetic transition temperature, x ?:=91.5 K, and also to shift the susceptibility peak to lower temperatures. A perpendicular dc field (H,IH,,) up to 18 mT caused no change from the susceptibility behaviourat H,=O[86Sl].
.
L -150
-100
T-
-50
0
“C 50
Fig. 217. H~$o,u-~B~e. Temperature dependence of the normalized initial ac susceptibility, xsc/xacmarrof two melt-spun alloys with x = 6 and 8. The susceptibility was measured in an alternating field of 40 uT at a frequency of 15 kHz using a Hartshorn-type mutual inductance bridge. The vertical arrows indicate the Curie temperatures (cf. Fig. 177) [8814].
0.150 N-1 0.125
0.025
0
20
I-
60
Fig.218. (Er,,,,Ga,.,,),,,-,Fe,. AC susceptibilityvs. temperature for glasses with various Fe contents. The glass with x=0 is actually (Er,,,,Ga,,,,),,B,, (composition mentioned alternatively as (Er,.,,Ga,,,,),,B,, in the reference). The scale on the susceptibility axis is in units of N-r, where N is an average demagnetization factor for these samples as determined from the intinitesusceptibility (Gdo,sOGa0,20)100-IFeIglasses (cf. Fig. 75). Full scale (N- ‘) corresponds to about 5.65. low3 m3/kg. AC susceptibility peaks, apparently at speromagneticfreezing temperatures, occur at 20, 23, 31, and about 80 K 100 50 K for x = 0, 10,20, and 30, respectively [84C 11.
Sostarich
Landolt-BBmstein New Series Wl9h
6.2.5 R-3d (R=Tb,
Ref. p. 3421
317
Dy, Ho, Er, Tm)
6.2.5.3 High-field magnetization and susceptibility. Magnetic anisotropy
'I=60K-
0
2.5
5.0
10.0
z5
12.5 T I!
Fig.219. Tb,,Fe,,. Initial specific magnetization vs. internal magnetic field Hi for a melt-spun sample at several temperatures in the range 4.2. . .273 K. The jump of the 4.2 K magnetization at poHi=2.5... 3.0 T disappears after cooling the alloy from room temperature to 4.2 K in the presence of a strong magnetic field. The magnetization was measured with a vibrating-sample magnetometer [85A 21.
350
200 a kg 150
I
$ff Tb,,Co,,
T=f?llK
a
0 200 @ kg 150
1
!I
I
0
2.5
5.0
1.5 POHi
10.0
12.5 T 15.0
-
1
2
3
L
5T
6
ILOHi-
Fig. 220. Tb,,Co,,. Isotherms of the initial specific magnetization u as function of the internal magnetic field Hi for a melt-spun alloy at several temperatures between 4.2 and 160 K. The magnetization was measured by a vibrating-sample magnetometer in magnetic fields up to p,,H= 6 T and by a ballistic magnetometer in fields up to p,H=14T[82Al]. Land&-BBmstein New Series III/19h
0
Initial specific magnetization Fig. 221. Dy,,Fe,,. isotherms, (r vs. Hi, for a melt-spun alloy at various temperatures (a) above and (b) below Tr~60 K, the temperature at which the magnetization of the zero-fieldcooled sample is maximal. The magnetization was measured by means of a vibrating-sample magnetometer. Hi is the magnetic field in the sample [83 S 21.
Sostarich
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
318
250 !i$ kg 200
I
150 I b
b
100
0
2.5
5.0
10.0
I.5 PII4
12.5 T 15.0
0-
-
Fig. 222. Dy,,Co,,. Initial specific magnetization u vs. internal magnetic field Hi for a melt-spun alloy at various temperatures between 4.2 and 190 K. The magnetization was measured using a vibrating-sample magnetometer in magnetic fields up to poH= 6 T and a ballistic magnetometer in fields up to 14 T [83A2].
1
2
3 PiI4 -
4
5
T
6
Fig. 224. Er,,Co,,. Initial specific magnetization u vs. internal magnetic field Hi for a melt-spun alloy at various temperatures. The magnetization was measured by a vibrating-sample magnetometer [83A 31.
0.6 I 0.5 SO.4 2 2 0.3
0
2.5
5.0
I.5
10.0
‘5
12.5 T
Fig.223. Ho,,Fe,,. Initial specific magnetization isotherms. tr vs. Hi, for a melt-spun alloy at various temperatures. The magnetization was measured in magnetic fields up to n,H=14T by means of vibratingsample and extraction magnetometers. Hi is the magnetic field in the sample [86A 11.
Fig. 225. R,,CO~~, R=Nd, Tb, Dy, Er. Initial magnetization M vs. magnetic field for several melt-spun alloys at 4.2 K. The magnetization is normalized by the ionic (R-ions) saturation magnetization, N&I,. Co is not likely to carry a substantial magnetic moment in these alloys. For R = Nd, Dy and Er the magnetization extrapolated to zero-field gives roughly 0.5 NgJu, as predicted by the random uniaxial anisotropy approximation. The magnetization was measured by the induction method with amaximum field ofu,H=4.5 T[82B2].
Sostarich
LandolbB6mstein Ne\v Series III119h
Ref. p. 3421
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
319
125
I
b
25
0
2
4 PnH-
6
T
8
Fig. 226. (Er,,,,Fe,,,,),,B,,. Specific magnetization (r of a splat-cooled amorphous alloy as function of the magnetic field at various temperatures [81 HI].
200 !f
0
2
L la% -
6
T
8
Fig. 227. (R,,,,Fe,,,,),,B,,. High-field specific magnetization u at 4.2 K vs. applied’magnetic field Ha for splat-cooled alloys with R = Er and, for the sake of comparison, with R = Y and Gd [80 H 21.
,“Am2 kg
h~oG~o.dde2o
125
150
I 100 b
0
2
4 l-bl~-
6
T
8
Fig. 228. (Er,,,,Ga,,,,),,Fe,,. High-field specific magnetization e vs. magnetic field for rapidly quenched foils at different temperatures: (A) 10.8 K, (B) 17.5 K, (C) 25 K, (D) 34 K, (E) 49 K, (F) 63 K. The hatched area to the left of curve A is a measure of the anisotropy energy at 10.8 K [84C 11.
Land&-Bknstein New Series IWl9h
0
2
L Poh -
6
T
8
Fig. 229. RFe,B. Initial specific magnetization at 4.2 K, 6, vs. applied field Ha for melt-spun alloys with R = Pr, Sm, Gd, Tb, Er and Mm, the latter symbol standing for mischmetal[87A 21.
Sostarich
320
6.2.5 R-3d (R=Tb,
Dy, Ho, Er, Tm)
[Ref. p. 342
5 .llY
J/m3 4I 3 22
0
20
60
CO
80
100 K 120
lFig.230. TbJICoqj. Saturation anisotropy energy W,, and coercive field H, ofa melt-spun alloy as functions of temperature. The anisotropy energy, W,,= i’HdM, 0
is derived from isothermal curves of initial magnetization (cf. Fig. 220) [82 A 11.
1.25
3.5
,‘,“,I \ iy,, Fe;, 2L’
’
zol!
I
I
I
I
I
!
I (
1.00
406 ., 3 J/rnJ
0.75 -I 2.5
ml 6
8)
U
x
I
I
I
I
4
*:
2
Il.0 102
411io.5
8
0
20
40
60
80
60
10 100 K 120
0
T-
Fig. 231. Dy,,Fe,,. Magnetic anisotropy energy W,, and coercive force H, of a melt-spun alloy as functions of temperature. W., is estimated from the initial magnetization curves (cf. Fig. 221) whereas H, is determined from hysteresis loops [83A I]. Seealso caption to Fig. 230.
10
20
l-
30
CO K 50
Fig. 232. Dy,,Co,,. (a) Magnetic anisotropy energy W,, and coercive force H, vs. temperature in the lowtemperature range. The values of W,, and H, were obtained from the initial magnetization curves (cf. Fig. 222) and hysteresis loops, respectively. (b) shows H, vs. Ton a semilogarithmic plot. It is inferred that a temperature dependence of the type H,(T)= H,(O) exp(-a7) describes well the change of H,(r) for amorphous Dy,Co, in the temperature range 4.2...20 K [83A2]. See also caption to Fig. 230.
Sostarich
Landok-Bdmstein New Series 111/19h
Ref. p. 3421
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
321
Table 21. Uniaxial anisotropy constant, K,, obtained by the magnetization-area method from curves of initial magnetization at 4.2 K, and high-field magnetic susceptibility, xHF, defined as the susceptibility of the paraprocess above technical saturation at 4.2 K.
Ku7
XHF
106Jme3
10-‘m3kg-l
Th7Feb3 Tb,,Co,,
3 2.9
1.1 3.5
Dy57Fe43
3.2
5
D~57Co43
1.6
1.4 1.3 1.1
Remarks
85A2 82A2,8382
cf. Fig. 219 cf. also Figs. 220 and 230. According to [82A I] the anisotropy field is nearly 33 kOe at 4.2 K cf. Figs. 221 and 231
83Al,8392 82A2 83AI,8382 86Al 85AI 83A1, 8382 82A2, 83A1, 8332
5 3 IO 6 8
2.5 W7W3 Ho,,Co,, Er,,Fe,, Er,,Co,,
Ref.
cf. also Figs. 222 and 232 cf. Fig. 223 cf. also Fig. 224
“) The data listed in this column are designated as effective magnetic anisotropy energies, W,,, in the references.
Table 22. Magnetic anisotropy energy per R ion, D,, and nearest-neighbour exchange strength acting on a single R ion, A, for a number of amorphous R,,Co,, alloys. R stands for someheavy rare earths and Gd, the latter alloy being given for the sake of comparison as the single-ion anisotropy of Gd is negligible [83 S 2, 85 A I]. R57Co43
DI 7
R
K
Gd Tb DY Ho Er
0.03 8.48 4.60 3.55 3.28
Ku
WA
20.20 19.57 12.92 12.67 12.35
0.0015 0.43 0.36 0.28 0.27
“) Calculated by dividing the anisotropy energy per unit volume, K, (cf. Table 21), by the number density of R ions, n, and also by the Boltzmann constant, kB (seeintroduction). “) Obtained from $i =(3/2)O/G, where 0 is the paramagnetic Curie temperature and G = (g - 1)25(5+ 1) is the DeGennes factor, with J the total angular momentum and g the Lande factor.
Land&-Bknstein New Series 111/19h
Table 23. Uniaxial anisotropy constant, K,, and highfield magnetic susceptibility, ~nr, at 4.2 K for ternary amorphous alloys with heavy rare earths, iron, and glass formers [84 C I]. &IFb)
IO6Jmm3
IO-‘m3 kg-’
3.5“) 3.6b, 2.34‘) 2.28“) 1.67’) 1.87“) 1.503 1.9Ob) 4.2’) 3.1 b) 2.7’) 2.6 b, 2.4 “) 2.8 “) 2.8 “)
3.73 I.56 2.53 2.75 3.90 3.10 2.30 I.92
“) Determined by the magnetization-area method. b, Obtained from the law of approach to saturation. “) Composition mentioned alternatively as (Ero.soGa,,2,),,B,5 in the text of the reference.
Sostarich
[Ref. p. 342
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
322
6.2.5.4 Miksbauer effect
1.0000
a9975 1.0000
a9950 I 1.0000 c .o c 'E c" 0.9975 z I 1.0000
20
0
40
60
80
lO[
xFig.234. Dyle&oX. Room-temperature “‘Dy iso~ mer shift IS vs. composition in melt-spun amorphousalloys (triangles) and crystalline compounds(open circles). The full circle indicates the IS value of DyCo, from [66Nl]. The full line shows the concentration dependenceexpectedon the basis of a charge transfer model. Isomer shifts are referred to that of DyF3 at 298 K [81G 11.Cf. also [82B 31and Table 24.
0.9975
1.0000 0.9975
I -20
I
-10
I
0 V-
I
I
10 mm/s 20
Fig. 233. DyleO$oX. r6rDy Miissbauer spectra for two melt-spun amorphous alloys (x=50, 31) and two crystalline intermetallics @y,Co, DyCo,) at 295 K, and for DyCo, at 4.2 K (upper spectrum).The 25.6keV yrays emitted in the decay of r6rTb present in a TbF, source were used for the Mossbauer investigation [81Gl].
Table 24. Room-temperature r6’Dy isomer shift, IS, in melt-spun amorphous DylOO-XC~x alloys (x=31, 40,50), crystalline Dy-Co compounds, and in pure Dy. Th e isomer shifts are given relative to DyF, [81 G 11. Cf. Fig. 234. Composition
IS mm s-’
Composition
IS mm s-r
D~soCo,o
2.2(2) 2.2(2) 2.2(2) 1.2(2)
DYCO, DY.@+
2.5(2) 2.W) 242) 2.8(2)
DY,oC%o
DY&o, DY+I,
Sostarich
1
DY,CO
Dy
Landolt-BBmstein New Series 111/19h
6.2.5 R-3d (R=Tb, Dy, Ho, Er, Tm)
Ref. p. 3421
323
T=77K
-6
-4
-2
0
2
Lmm/s 6
V-
57Fe Mijssbauer spectra of a Fig. 235. Er,,Fe,,. melt-spun alloy recorded with a constant-acceleration type spectrometer in combination with a 57Co (Rh) source. The spectra were obtained at 77 K and 4.2 K, respectively [81 B I].
6.2.5.5 Magnetoresistivity 7.5 .1o-3
1
5.0 2.5 I_ ZO
$
d" -2.5
\,
A’
\ -4-.-4-----
,IlryH
Er
P
-5.0 -7.51 0
I 5
I IO
I 15
I 20
I 25
T
I 30
Fig. 236. R,,CoSS (R = Y, Er). Magnetic field dependence of the reduced incremental magnetoresistivity, A&+,, at 4.2 K, with the applied magnetic field Ha parallel (full lines) or perpendicular (dashed lines) to the electrical current. Magnetoresistivity measurements were performed in pulsed fields up to p,H=30 T. e. is the zero-field resistivity at 4.2 K [82 B 21. Land&-BCmstein New Series III/l9h
-7.5 [
I
I
I
I
5
10
15
20
Fig.237. R,$o,, (R=Y, pic magnetoresistivity Aedeo=W3)
Dy, Er).
I
25 T
I
30
Reduced isotro-
(AejI+2Aedleo
vs. applied magnetic field Ha for melt-spun alloys at 4.2 K [82B2].
Sostarich
6.2.5 R-3d (R=Tb,
324
[Ref. p. 342
Dy, Ho, Er, Tm)
I ,I? R,,Co,, 5.0
I
I
2.5
‘4 2 -2.5
-7.51 0
I
I 10
5
I 20
I 15
I 25
I 1
30
Fig.238. R&o,, (R=Y, Dy, Er). Reduced anisotropic magnetoresistivity hleo = (AelrAedleo vs. applied magnetic field Ha for melt-spun alloys at 4.2 K [82B2].
w3 0.75
HoJo~~-~B~~ I=77K
X=4)
,
#
-0.251 0
0.4
0.8
1.2
1
63
I
0
4
‘lo‘ Ho,Co70-xB30 I
1.6
12
8
16
T 20
IL0H-
POH-
Fig. 239. Ho$o,~.~B~~. Magnetic field dependence of the reduced transversemagnetoresistivity,AQJe,,, of three melt-spun alloys at 77K measuredin “low” constant fields up to 1.6T by a conventional four-point dc technique with an accuracy of 1 . IO-‘. The magnetic field was in the plane of the ribbon [88 C 2, 88143.
Fig. 240. H~$o,e.~B~e. Magnetic field dependence of the reduced transversemagnetoresistivity,Ae&, of two melt-spunalloys at 77 K and 290K measuredin high pulsed magnetic fields up to 22T by a compensating method with a relative accuracy of 7. 10T4. The magnetic field was in the plane of the ribbon. Sperimagnetic ordering is suggested[88 C 2, 88143.
Sostarich
Land&B6msfein New Series III/19h
Ref. p. 3421
6.2.5 R-3d (R=Tb,
Dy, Ho, Er, Tm)
325
6.2.5.6 Scaling behaviour and critical exponents
Tb58 48
44
40
I
lYt+I ---A
1 3.751;
1
l=llB3K
~ 3.50.z z F 3.25 “2
2.501
2.5
J
/
//
4.5 3.5 4.0 In H 1H in Oe)-
5.0
5.5
6.0
Fig.241. Tb,,Fe,,Al,,B,,. Logarithm of the nonlinear magnetic susceptibility, In x:, vs. logarithm of the magnetic field, lnH, at the temperature T= To= 114.3 K. The relationship xE= C PI6 permits the determination of the critical exponent 6. In the lowfield region (u,H$6 mT) the value 6 = 3.6 is found [85 S 21.Cf. also Figs. 207 and 208.
1
I
I
II
,” -Tb58Fe18Ah4 BIO I I II A 4 I I I I ~,=2.3Y
lo-'
1
2
4
6
d
10 8 6
d I/~~=24
4
4
6 K lo2
/
B
+A
I
f
IO
2
I- t
T-T,-
Fig. 242. TbSsFelsAl,,B,,. Log-log plots of inverse nonlinear magnetic susceptibility (l/x$ - left-hand curve) and inverse linear magnetic susceptibility difference (l/Axl - right-hand curve) as function of (T- Z’,), with To - the speromagnetic freezing temperature. The straight lines represent the relations (for T > To) x:~=C(T-TJ~“+X~ and ~5 = C( T- T,+
,
respectively. Ax~~=x~,-x~, where xi is the contribution of ferromagnetic correlations to the susceptibility. The values of the critical exponents yH and y,, thus determined are 2.3 and 2.4, respectively [8532]. Cf. also Fig. 208 and Table 25. Land&Bhstein New Series III/l9h
Sostarich
326
6.2.5 R-3d (R = Tb, Dy, Ho, Er, Tm)
[Ref. p. 342
106
105 t
Fig. 243. (Tb,,,,Ga,,,,),,Fe,,. Scaling of z&,/lsla as function of H2/~e~BtY,where $c is the nonlinear magnetic susceptibility (cf. caption to Fig. 21 l), E= (T- T,)/T, is the reduced temperature and b, y are critical exponents. Both the susceptibility and the magnetic field have been corrected for demagnetization effects. The demagnetization corrections were at most 10% of xac and H. The range of reduced temperature is 0.002 5 )E)SO.13 (with T > To). The field values are as follows: 4, 7.8, 12, 18, 24, 28.8 mT. For details of the plot cf. Fig. 2 of the reference. The critical exponents obtained are b = 1.7(i) and y = 3.7(l), with To= 140.5(6)K [86 S 23. Cf. also Table 25.
-Am2 kg
W5~bsoCo35
Nonlinear scaling of the magnetic isotherms for a splat-cooled alloy in low magnetic Fig. 244. Gd,sTb,,Co,s. fields (5..70mT). a,,(T)=~c(7)H - a(T) is the nonlinear magnetization and x,,(T) is the zero-field magnetic susceptibility calculated from the initial slope of the magnetic isotherm at temperature 7. E=(T- T,)/T, is the reduced temperature which varies in the range 0.005 =<1s)~0.04. The temperatures of the magnetic isotherms for T > T,(T< To) are (I) 108.1(103.3)K, (2) 106.7(102.8) K, (3) 105.8(102.4)K, (4) 105.0(102.1)K, (5) (
[email protected])(101.7)K.The speromagnetic ordering (freezing) temperature is To= 104.5(2).The values of the critical exponents are given in Table 25 [87 L 11 (cf. also Fig. 117).
Sostarich
Land&-BSmstein New Series 111,/19h
Ref. p. 3421
1
6.2.5 R-3d (R=Tb,
327
Dy, Ho, Er, Tm)
Dy60 Fe 30 BIO 'III
\ y 10-2 1
2
1/Ax,", 4
6
810 T-T, -
2
4
1
6 K IO2
Fig.245 Dy,,FesOB,,. Log-log plots of inverse nonlinear magnetic susceptibility, l/x: (upper curve), and inverse linear magnetic susceptibility difference, l/A& (lower curve), vs. T - Te, (cf. caption to Fig. 242). The values of the critical exponents ya and ye determined from the plots are 2.4 and 2.3, respectively [86S11.Cf. also Fig. 216and Table 25.
2
4
6
810 POH -
2
4
6 mT IO2
Fig. 246. Dy,,Fe,,,B,,. Log-log plot of nonlinear (singular) magnetic susceptibility, x:~, as a function of the applied dc magneticfield. A changein slopeis seenat about 10mT. The relationship x: = C l? permits the determination of the critical exponent S, yielding a value 6 ~2.3 in the low-field region (I&< 10 mT) [88S21.
Table 25. Critical exponents obtained using the scaling hypothesis (nonlinear scaling) for the speromagnetic transition (P-S) at Toin several random magnetic anisotropy (RMA) systems with large D/kp ratios. The maximum reduced temperature range over which the scaling analysis was performed, ]E],,,~~, is also included, with E=(T- T,)/T,.The data are from ac susceptibility measurementsunless otherwise specified. P: paramagnetic; S: speromagnetic. B
Y
6
1.30(5)
3.7(2)
3.8(3)“)
3.7(l) “) 2.3 “) 2.4 “) 2.4 “) 2.3 “) 3.7(l) 3.5(l) 2.0(l) b*c)
3.2(2)b) 3.6 “) 5’) 2.3 “) 4’) 3.5(2) 3.5(2) 2.7(l)
1.7(l) r0.9b) 1.8b) 1.5(l) 1.4(l) 1.2(l) “)
0:
blmax Ref.
Remarks
-4.3 “)
0.04
87 L I, 88 S 2
-5.1”) -2.1”)
0.13
86 S 2, 88 S 2 85 S 2, 86 S 1
dc measurement; cf. Fig. 244 cf. Fig. 243 cf. Figs. 241, 242
86Sl
cf. Fig. 245
8832 8882 86Dl
dc measurement dc measurement“)
-3.9b) -4.7b) -4.3b) - 2.4 “)
0.1 0.1 0.25
‘) For magnetic fields in the range pOH= 5...70mT. In high magnetic fields (p&=0.1 .. .8 T) the alloy shows standard ferromagnetic scaling behaviour (cf.Table 14 and Fig. 117). “) Calculated using scaling relations y = B(S- 1) or CI= 2(1-/I) - y. ‘) Exponent yH for the nonlinear (singular) susceptibility x:. (x: = XL - X,,,where x:~ and xacare the linear and the total ac susceptibilities, respectively). “) Exponent y0 for the linear susceptibility xi= (H=O). “) Value obtained in low fields @,,H< IOmT). ‘) Value obtained in fields p,H> 10mT. “) Sputtered sample. “) In [86 D I] a critical exponent @= fiS = 3.2(l) is determined in addition to 6. Landolt-B&n&n New Series III/l9h
Sostarich
328
6.2.6 Amorphous
R-R’-3d
[Ref. p. 342
6.2.6 Alloys with two rare earth species 6.2.6.1 Magnetization, magnetic moments, ordering temperatures and type of magnetic order
Table 26. Magnetic ordering temperatures and magnetization data of splat-cooled amorphous Gd,,-,Tb,Ga,,Fe,,alloyswithandwithoutabsorbed hydrogen.Themagneticorderchangesovercontinuously from ferromagnetic (or ferrimagnetic if the Fe magnetic moments are considered, too) at x=0 to strong speromagnetic at x = 72. Addition of hydrogen enhancesthe spin-glass character of the alloys. Similar data for the systemGd,, -,La,Ga, sB,, (0 5 x 5 18)can also be found in [84 S I], whereas a magnetic phasediagram of it, is given in [85 0 11. T,> T,“) K 172 175 174 77 z 67 176 110 169 124 168 60 164.5 126 156 92 149.5 115 138.5 70 131 86 114 93 98 97 88 ‘) ‘) ‘) d, ‘) ‘)
T,“) K
30 ‘) 76 41.5 85 43
I7 Am2 kg-’
Ref.
Remarks
200 b), 200.7“) 220 d,
84Cl 84Sl 82Rl 84Sl 82Rl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Sl 84Cl 84Sl
cf. Figs. 75, 91
208 d,
137’)
cf. Figs. 76, 92 cf. Fig. 261 cf. Fig. 261 cf. Fig. 261 cf. Fig. 261 ‘)
cf. Fig. 261 cf. Fig. 261 ‘1 cf. Fig. 261 cf. Fig. 261 ‘) cf. Fig. 209 3
Determined from the temperature dependence of the ac susceptibility xac. a,, at 4.2 K obtained by extrapolation of high-field magnetization data to H =O. cs,,at 4.2K obtained from tits to the law of approach to saturation. a, at 4.2K. The alloys with x = 1,3 and 5 exhibit reentrant behaviour, passing into a spin-glass-like state belowT,. y value not given in [84 S 1-J.
Sostarich
Landolt-BBmstein New Series III!19h
Ref. p. 3421
329
6.2.6 Amorphous R-R’-3d Table 27. Curie temperatures and magnetization data of melt-spun amorphous Fe-rich alloys containing both heavy and light rare earth speciesas well as B as glass former.
0
Ref.
K
Am2 kg-’
588 3 578“) 563“) 553“) 594 634 370“) 4173 326“)
179b) 158“) 140”) 132b)
85W2 85W2 85W2 85W2 82Gl 82Gl 87A2 87A2 87A2
T,
TblFWbo Tb~LalFe78J%o TWa2Fe75bl TW@‘e7sB16 Tb,La,(Fe,.,sBo.z2)9d Tb,La,(Fe,.,,B,.,,),, %.Wde4B E~&%J%B MmFe,B “)
Fig. 229
‘) Determined from 0 vs. T curves. b, a, at room temperature deduced from magnetization measurements in fields up to uoH=2.6T. “) Mm stands for misch metal, a mixture of light rare earth elements, mostly Ce and La.
Table 28. Magnetic ordering temperature and type of magnetic order in splat-cooled Gd,, -xRxCo35 (R =Tb, Er) and Gd,,-,La,Co,,B,, glasses.
TOa)
Magnetic order
Ref.
Fe) smooth crossover from ferri- to sperimagnetic order with increasing Tb content “)
8602 8602 8602 8602 8602 87Ll 8602 8602 8602 8602 87Sl 87Sl
K Gd&o,, Gd,,TWo,, Gd,,Th&o,, Gd,,TboCo,, Gd,,Tb&o,, ‘W,T’+oCo,, WlEr4C035 Gd55ErloCo35 Gd45Er20%5 Gd&r30C035 W&o,& G~&Mo&~
186 181 175 158 142 104.5(2)“) 170 149 129 92 ~160 100.0(2)“)
double-transition behaviour in the Er concentration range 1 <x < 8. For x > 8 crossover to P-S transition behaviour (cf. Fig. 253)“) Fe) double-transition behaviour (cf. Fig. 250)
‘) Obtained from xacvs. T curves unless otherwise specified (cf. Figs. 259, 262, and 265). “) So, for instance, the magnetization of the 10 at% Tb alloy was found to be approximately that expected from a hemispherical fan of Gd and Tb magnetic moments and antiparallel Co magnetic moments [88 L I]. “) Obtained from scaling analysis. “) Er was found to introduce the smallest random magnetic anisotropy (RMA) in Gd,, -XRXCo35glassesof all the anisotropic rare earth metals. P: paramagnetic; S: speromagnetic (or sperimagnetic). ‘) F stands for ferromagnetic (or ferrimagnetic if the Co magnetic moments are considered, too).
Land&-Biimstein New Series III/19h
Sostarich
-1
[Ref. p. 342
6.2.6 Amorphous R-R’-3d
330
0
10
20
30 x-
‘+O
50
60
70
70
0
2
4
6
8
10
x-
Fig.247. La,S-,Gd,Co,SB,,. Spontaneous magnetic moment per average atom, pa,, at 4.2 K vs. Gd concentration for several splat-cooled alloys. j., values for compositions where there is a clear saturation of M(H) at low temperature were determined by extrapolation of high-field M(H) data (taken up to p,,H=8 T) back to H=O. Assuming a ferrimagnetic structure, a leastsquares fit to the data in the figure gives for the Gd and Co magnetic moments, j(Gd)=6.9(4) pa and j(Co) = 1.9(3)pa. respectively [87 S 11.
Fig. 248. La,o.lTb,(Feo.s2B,,,s)s0. Specific magnetization u of melt-spun alloys, measured at room temperature in a field of peH=l T, as a function of Tb concentration. The x=0 value corresponds to an average magnetic moment of 1.7 pa/Fe. Miissbauer effect measurements on the same samples showed that the Fe magnetic moment is essentially independent of x at this temperature. The linear decrease of u with increasing x is interpreted as due to the ferrimagnetic ordering of the Tb spins relative to those of the Fe. From its slope the average Tb magnetic moment is calculated to be 5.3 pa [82K 11.
I
200
K P
I
L~65-~~~x~~25~10
160
I b-5 120
80 I
- ml
40
0
10
20
30 x-
40
50
60
0 30
70
40
50
60
70
x-
Fig.249. Gd,,-,R,CoJS. Specific magnetization Q at p0H=7.5Tand4.2KasafunctionofxforR=Tband Dy. The magnetization was measured using a high-field vibrating-sample magnetometer. The increase of u at higher Tb concentrations is attributed to the existence of short-range correlations in the anisotropy axes induced by short-range structural order [88 L 11.
Fig.250. La,sV,Gd,Co,,B,,. Magnetic phase diagram for splat-cooled alloys with x240. The P, F, and SG regions have been identified from the ac susceptibility behaviour (cf. Figs.259 and 260). In the strongly ferromagnetic-like region an analysis of the spontaneous magnetization (cf. Fig.247) was found to be consistent with a simple local-moment ferrimagnetic structure with angular momentum Jvalues of about 3.5 and 0.9 for Gd and Co, respectively, assuming g= 2 for both Gd and Co. SG = spinP= paramagnetic, F = ferromagnetic-like, glass-like [87S I].
Sostarich
Landolt-BBmstcin New Series 111119h
Ref. p. 3421
80 0
IO
6.2.6 Amorphous R-R’-3d
20
30
40 x-
50
60
70
80
Fig. 251. Gd,,-,Tb,GalsFe,,,. Magnetic ordering temperature T, vs. Tb content. The linearity of this dependence is interpreted as an evidence that the changeover from ferromagnetism at x=0 to strong speromagnetism at x=72 occurs smoothly and continuously. The line drawn through the data points is only a guide for the eye [84 S I].
-0
10
20
30 X-
40
50
60
Landok-BBmstein New Series III/l9h
h(
0 0
70
Fig.253. Gd,,-,Er,Co,,. Magnetic phase diagram of the alloy system. The transition temperatures were determined from the peaks in the ac susceptibility vs. temperature curves (cf. Fig.265) [8602]. P: paramagnetic; F: ferromagnetic (ferrimagnetic, if I + 0); S: speromagnetic (sperimagnetic, ifj(C0) * 0).
20
30 x-
40
50
60
70
Fig. 252. Gd,,-,R,Co,,. Magnetic phase diagram for the splat-cooled alloy systems with R = Tb and Dy. The transition temperatures T,, were deduced from the temperature dependence of the ac susceptibility 188L I] (cf. also Figs.262 and 264). P: paramagnetic; S: speromagnetic (or sperimagnetic if the Co magnetic moment is considered, too).
K
0
10
Gd;-,VJ2Ti
0.2
OX
1
)
0.6
0.8
Fig. 254. (Gd,-,Y,),TM. Magnetic phase diagram for the melt-spun (amorphous) alloy systems with TM = Fe, Ni and Cu. On the Gd-rich side ferromagnetic behaviour is inferred, with Curie temperatures T,, decreasing with increasing Y content. It seems, however, that correlated speromagnetic (CSM) [83 C I] would be a more appropriate description, at least for amorphous Gd,Cu. With increasing Y content crossover from CSM to spin-glass behaviour occurs, accompanied by a kink in the T,vs. xcurve[8862].
Sostarich
332
[Ref. p. 342
6.2.6 Amorphous R-R’-3d
6.2.6.2 Temperature dependence of magnetization and susceptibility
t 100 125
b
75
0
100
200
300
400
500 K 600
Fig. 255. La,R,(Fe,,.s2B,.,,),, with R= La, Nd, Gd, and Tb. Specific magnetization e of melt-quenched alloys vs. temperature. The low-temperature u value for R=La corresponds to an average magnetic moment jjFe=2.0pa[82K1].
, 1.25 I I nm] kg Gd65-xErx CO35
1.00I
b
10
-20 -20
0
20
40
60 ml
I
0
40
120
80
160 K i IO
I-
PII”Fig.256. La,SGdS,,Co,SB,,. Specific magnetization u vs. magnetic field at various temperatures in the vicinity of the Curie temperature, Tcx 100 K. There is no observable hysteresis as this glass is found to be an exceedingly soft magnet at temperatures below Tc (at least down to Tr; cf. magnetic phase diagram in Fig. 250). The magnetization measurements were performed with a high-field vibrating-sample magnetometer [87 S 11.
Fig.257. Gd,,.,Er,Co,s. Field-cooled specific magnetization u vs. temperature for two splat-cooled glasses (x=4 and 10) in an applied field of poH= 180 PT. The measurements were made using a vibrating-sample magnetometer, the earth’s field being nulled out during these experiments [860 21.Cf. also Fig. 265.
Sostarich
Landolt-B6mstein New Series 111/19h
Ref. p. 3421
333
6.2.6 Amorphous R-R’-3d
0
I
I
I
I
25
50
75 T-
100
I
125 K
AC susceptibility xaevs. Fig. 258. La,,.,Gd,Co,,B,,. temperature for three splat-cooled samples (x =20, 30 and 35) showing apparent double transitions. However, the double peaks are believed to result from a microscopic phase separation into two (or more) types of regions with different chemical short-range orders [87 S I]. Cf. also caption to Fig. 259.
his-xGdxC025BlO x=65 -
I 0
I 40
I 120
80
I 160
K
25
200
T-
75
100
125 K It
T-
AC susceptibility xacvs. Fig. 259. La,,-,Gd,Coz~B,,. temperature for several splat-cooled alloys. The measurements were performed at a frequency of 280 Hz with a balanced pair of pickup coils, one of which contained the sample. The modulation amplitude was about 10 PT. The curves are shifted along the ordinate for clarity [87S I]. Land&-Biimstein New Series 111/19h
50
Fig.260. LazoGd&ozsB,,. AC susceptibility xac vs. temperature in the presence of various dc bias fields, H, applied parallel to the ac field. The general diminution of xac as H increases, is consistent with the freezing out of ac-field-induced domain wall motions as the dc field increases to large values [87 S I].
Sostarich
[Ref. p. 342
6.2.6 Amorphous R-R’-3d
334 I I Gdn-xTb,GmFelo
Gd65-xTbxC035
H
1.C N“ 0.E
0.E
2
I .:: a ox 4 10
0.2 / x=58
1
67 C
7i-l 40
80
50 120
30
20
160 K 2
l-
0
50
100
150
200
K 250
Fig.261. Gd,,.,Tb,Ga,,Fe,,H, (x= I, 5, 33, and 58). AC susceptibility xac vs. temperature for unhydrogenated and hydrogenated amorphous samples. Note the linear extrapolations used to determine Tr from the two uppermost curves. N is the demagnetization factor [84 S l] (cf. also Table 26).
Fig. 263. (Gd,-,Tb,)Ju. Temperature dependence of the ac susceptibility xac of (amorphous) m&-spun alloys. The susceptibility was measured with a standard mutual inductance apparatus. The magnetic ordering temperature To, derived from the xac (7) curve for x = 0 is 137 K. With increasing Tb content T, decreases linearly and becomes 67 K for x = 1[88 G 21.
Fig. 262. Gd,S.ITb,Co,,. AC susceptibility xac vs. temperature for several splat-cooled alloys. The lower panel shows the in-phase component xi, and the upper panel shows the out-of-phase component x,. By definition xacE hi,’ +x~~~]~/‘. The xb; curves are shifted with respect to each other for clarity. The demagnetization limit l/N corresponds to about 4~. lo-’ m3/kg. The measurements were made with an rms field of 100 uT at a frequency of 280 Hz 1860 21.
(Gdl-,Tb, I2 Cu
I -G .5_ z E -u H”
1
Sostarich
Landoh-B6mstein Ne\v Series IIId9h
Ref. p. 3421
6.2.6 Amorphous R-R’-3d
c
0.6 0.8
I
335
0.6
Gd65-xEr, COK
-u ‘N”
;i"
8 6
"7
OX
I
LO
0
80
120
160
I
’
w-l
-7
TFig. 264. Gd65.,Dy,Co,,. In-phase component of the ac susceptibility xi, vs. temperature for several splatcooled alloys. The measurements were made with an rms field of 100 uT at a frequency of 280 Hz [88 L I]. N is the demagnetization factor.
0.8
I .s
0.6
OX
0.2
0
0
40
80
120
160
K 200
T-
Fig. 265. Gd,,-,Er,Co,,. AC susceptibility vs. temperature for several splat-cooled alloys. The lower panel shows the in-phase component XL, and the upper panel shows the out-of-phase component & [8602]. Cf. also caption to Fig. 262. Nis the demagnetization factor.
50
Landolt-Biimstein New Series IIIIl9h
100
150 T-
200
250 K 3
Fig. 266. SmTbFe,. Temperature dependence of the ac susceptibility xBcmeasured in a rms field of 1 uT and at a frequency of 280 Hz. The solid curve is for the ascast sample, whereas the dashed curve is taken after a heat-treatment at 460” C. The xacmeasurements indicate the presence of a magnetic phase with Tc- 170 K and, not shown in the figure, of a second magnetic phase with Tc=650 K. After the heat-treatment the hightemperature peak increases at the expense of the lowertemperature peak suggesting that some of the low-T, phase has transformed to the high-T, phase [84H I].
Sostarich
6.2.6 Amorphous
336
[Ref. p. 342
R-R’-3d
6.2.6.3 Miissbauer effect and magnetic anisotropy Table 29. Anisotropy temperature, TA= D/k,, magnetic ordering temperature, To,and the ratio D/y= TJT, for several splat-cooled amorphous Gd,,-,R,Co,, alloys with R=Tb and Er. Here D is the average anisotropy constant and / the average nearestneighbour exchange strength, both per rare-earth ion. The estimated errors for TAand T, are 15% and OS%, respectively [86 0 23.
La5'lb5Fe7,B16
100 %
Gd,sCo,, Gd,,‘%Co,s Gd5sTb10Coss Gd,,Tb,,Co,, GdssTbaeCoss -%&oss Gd61Er4C03s G45Erlo%s Gd45Er20C03s Gd,,Er,,Co,,
I I
I
I
I
I
I
I
I
c
-8
-6
-1,
-2
0
2
4
mm/s
8
V-
a
TAB) K
Kb) K
0.21 0.61 1.3 2.1 3.0
186 181 175 158 142 Fig. 234 170 149 129 92
0.24
0.28 0.87 1.2
D/f 0.0011 0.0034
0.0075 0.0133 0.0211 04X6) ‘) 0.0014 0.0019 0.0068 0.0130
“) Calculated from values of the anisotropy energy obtained using the magnetization-area method. “) Determined from the temperature dependence of the ac susceptibility xaE.Cf. also Table 28. ‘) From [88Ll].
1.00-
2 0.50 co' 4 CL25-
0
b
I 10
20 BWP-
30
I
40
Fig. 267. La,Tb,Fe,,B,,. (a) 57Fe Mossbauer spectra of a melt-spun sample recorded at 295 K and 78 K, respectively. A constant-acceleration spectrometer and a 57Co (Cr) source have been employed. A high-purity Fe foil was used for calibrating the velocity u. The spectra were analyzed using least-squares-fitting programs and the distribution of hypertine magnetic fields, P(B,,,) vs. Bhyp,was determined (b), the thin-line diagram being for 295 K and thick-line diagram for 78 K [84P 11.
Table 30. Induced anisotropy constant, Kui, for amorphous field-annealed two transversely Tb,La,(Fe,B, -&,s alloys. During annealing a magnetic field (poH = 50 mT) was applied in the plane of the ribbon-shaped sample perpendicularly to its length. The anisotropy energy was determined by the magnetization-area method [82 G I].
Tb,La,(Fe,.,,B,.,,),, Tb,La,(Feu.7sB,.,3)9,
Sostarich
.
Kui
Jrne3
Annealed in vacuum for 15...16h at
360 310
295 “C 300 “C
Iandolt-BBmstein New Series 111/19h
6.2.7 Amorphous R-3d: R-series variation
Ref. p. 3421
337
6.2.7 Alloy series - variation of some magnetic properties with the rare earth species
125 &lJ (R 0.03 (Fe0.1 hhh5 kg
%5 BIO
100
I
75
Fk.268. Ob.dFeo 1Coo.s)o.97)73Si,sB,o. Specific
saturation magnetization cr, of melt-quenched alloys as function of the rare earth species. CT,was measured by a vibrating-sample magnetometer. Full circles: roomtemperature values; open circles: extrapolation to 0 K. Triangles: calculated values assuming mere dilution of the alloys by the rare earth, with the spins of the light rare earths aligned ferromagnetically and those of the heavy rare earths ferrimagnetically to the Fe and Co spins. The dashed-dotted and dashed lines indicate cs of (Fe,,,Co,,9)75Si,,B,o at room temperature and at 0 K, respectively [82 S I].
b” 50 0 T=O
25
. RT
0
LO
Pr Ce
Pm Nd
Eu Sm
Tb Gd
Ho Oy
Tm Er
Yb
‘r
La
Pr Ce
Pm Nd
Eu Sm
Tb Gd
Ho Oy
Tm Er
Yb
Fig. 269. R6J03r. Magnetic ordering temperatures, Tc or 0, vs. rare earth species. Tc values are derived from cz vs. T plots. For R=Ho and Er the paramagnetic Curie temperatures 0, derived from Curie-Weiss dependences, are given. The solid line represents the DeGennes factor, G=(g- 1)2J(J+ I), of the various trivalent rare earth ions (cf. Table I), normalized to the Curie temperature of the Gd6&03r glass. The broken line represents the function (g-l)‘J(J+l) -0.25(g- 1)(2-g)J(J+ I), normalized in the same manner. The correction to the DeGennes factor is taken to be present only if the electrons mediating the indirect exchange coupling between the localized 4f moments can give rise to spin-orbit splitting [80 B 21.Cf. also Fig. 270. Land&-BBmstein New Series III/l9h
Fig. 270. R5&ob3. Magnetic ordering temperatures, Tc and 0, vs. rare earth species. The experimental data are taken from [82A2,831\3,8332,85Al] (cf. Tables 9, 15 and 19). The solid line represents the DeGennes factor G = (g - l)‘J(J+ 1) of the R3 + ions (cf. Table I), normalized to the Curie temperature of Gd5&04s.
Sostarich
338
[Ref. p. 342
6.2.7 Amorphous R-3d: R-seriesvariation
Ce to
Nd Pr
Sm Pm
Gd
Dy
Eu
lb
Er Ho
Yb Tm
Lu
Fig.271. R,,Ni,,. Paramagnetic Curie temperature 8 vs. ram earth species. The full line represents the DeGennes fator G=(g-1)2J(J+l) of the R3+ ions (cf. Table l), normalized to the Curie temperature of Gd,,Ni,, [80B3].
0
500 -
-15 l
A
.
t
I
*550 -
o .
o
l.3
‘f
-10
? I’
0’ ml -
‘I’
. /
/
\* O\
I
\
o
-5
4
l ‘\ I I I I I\ 0 to Pr Pm Eu Tb Ho Tm Lu Ce Nd Sm Gd Oy Er Yb
m-
/’
,
,
I
4601 to
Fig. 272. R-Fe-B. Curie temperature Tc vs. rare earth species for two melt-spun alloy systems: R,,Fe,,B,, after [86A2] (solid circles). The T, values for the alloys with Ce and Ho are estimated from Fig.2 of the reference. RFe,B (open circles), after [87A2]. The variation of T, can be correlated with the behaviour of the DcGennes factor G= (g- l)‘J(J+ I), shown for the R3+ ions by the dashed line (cf. also Table 1).
I
I
Ce Pr
I
I
I
I
I
I
I
Nd Pm Sm Eu Gd Tb
I
I
Dy Ho Er
Fig. 273. La,R,(Fe,,s2B,.Is)90. Curie temperatures T, as derived from Arrott plots, for melt-spun alloys (open circles). The solid circles are ordering temperatures calculated by mean field theory, assuming the Fe subnetwork has an ordering temperature of 466 K in the absence of any magnetic rare earth. The rare earth - transition metal exchange was adjusted to give the correct magnetization at room temperature for the Tb alloys [82 K 11.
Sostarich
Land&-B6mrtein New Series 111,/19h
6.2.7 Amorphous
Ref. p. 3421
1.70
339
R-3d: R-series variation
I
I
I
1.75
1.80
I
1.85 8
12
Fig. 274. RlO,,.xFe,. Average “Fe hyperfine fields, &, in amorphous alloys plotted vs. the metallic radius of the R component, r,. The full circles pertain to data at N 5 K on evaporated films with x = 67 and R = La, Y and Lu from [79H I]. The open circles refer to data at 4.2 K on melt-spun alloys of Sm, Gd, Tb, Dy and Er with x=40. The magnetic moment scale on the right-hand side is valid for a conversion factor &,,,/~(Fe) = 15T/u, [81 B I]. Cf. [79 H I] for further Bhyp data of evaporated R,,Fe,, alloys with R=Nd, Gd, Tb, Dy and Ho.
Table 31. Effective hypetine
fields, Bhyp,eff, derived
from the outermost peaks of the s7Fe Miissbauer spectra at 4.2K of melt-spun amorphous R,,Fe,, alloys. The spectra were recorded with a constantacceleration-type spectrometer in combination with a 57Co(Rh) source [81 B 11. R B hyp,eff
CT1
Sm
Gd
Tb
Dy
Er
30
31
22.5
21
7
Lu <2
Table 32. Room-temperature magnetostriction value, IO6I,,, for severalmelt-spun R,Fese-,Bzo alloys. The magnetostriction was measured by the small-angle magnetization rotation method [SSG 11. R
Ce
Nd
Sm
Gd
Dy
Ho
Er
Lu
28.9 23.0
27.5 21.8 13.0
28.8 24.0 19.1
29.3 23.3 18.5
28.0 20.8 13.8
27.9 20.5 13.3
25.0 19.7
21.5 14.7
X \
2 4 6
Land&-BBmstein New Series 111/19h
Sostarich
340
6.2.7 Amorphous R-3d: R-series variation
*lo+ I
600
0
ho
I AR=Pr
50
100
150
Fe80
I
I
200
250
300
[Ref. p. 342
I.
I
350 K 400
T-
Fig.275. R,cFe,,. Temperature dependence of the linear magnetostriction It at poH=2 T for melt-spun alloys with R = Pr, Nd, Sm, Gd, Tb, Dy and Er. The magnetostriction was measured by a three-terminal capacitance method and 1 was calculated from R=(2/3)(111 - A,), where I,, and 1, are the values of linear magnetostriction along directions parallel and perpendicular to the magnetization direction, respectively. The values 1 for R =Pr, Sm and Gd are about 630.10e6, -400. 10e6 and 13. 10m6at 77 K, respectively. The Curie temperatures of these alloys range from 277 K for Er,,Fe,, to 504 K for Gd,eFeso. T,,, (broken arrows) is the temperature below which 1 vs. H curves become hysteretic [88 131.
Sostarich
Land&BBmstein New !Series111/19h
Ref. p. 3421
341
6.2.7 Amorphous R-3d: R-series variation
IOOO--=77K p,,H=ZT
../ /’
900 800 -- OY 700
I
/
I
600
I
cz
500
400
-1001 30 40
50
60 70 80 90 100 xFig. 276. Rre,,.,Fe,. Composition dependence of the linear magnetostriction A at 77 K and 2 T for melt-spun alloys with R = Pr, Nd, Gd and Dy. The I-values having error bars were obtained by extrapolation from data above TH. (cf. Fig. 275 in which examples of extrapolation are drawn by broken lines) [88 131.
T-77K
Fig.277. RlOO.XFeX. Composition dependence of forced volume magnetostriction, &u/aH, at 77 K for melt-spun alloys with R = Y, Pr, Nd, Gd and Dy. Results for amorphous Fe-B, Fe-Zr and Fe-Hf alloys are shown awlaH is defined by for comparison. aw/aH=a(~,,+2~,)/aH,whereI,,andLIarethevaluesof linear magnetostriction along directions parallel and perpendicular to the magnetization, respectively. The magnetostriction was measured by a three-terminal capacitance method and &o/aH was evaluated using data between 10 kOe and 20 kOe. Magnetization measurements yield magnetic compensation compositions x,,,r of 75 and 78 for GdroO-,Fe, and DylOO-xFex alloys at 77 K, respectively [88 121.(Cf. also Figs. 110 and 160.)
Landolt-Biimstein New Series 111/19h
I
I
I
c
60 x-
70
80
90
2 (D ,oo
58
0
-50 30
Sostarich
40
50
0
342
References for 6.2
6.2.8 References for 6.2
66Nl 71Dl 7lWl 72Rl 73Bl 73Hl 74Gl 74Tl 75Hl 75Ll 76Tl 77Bl 77Dl 77Pl 78Bl 78B2 78Cl 78C2 78Dl 78Gl 78Kl 78Ll 78Tl 79Bl 79B2 79Fl 79F2 79Gl 79Hl 79Kl 79Rl 80Al 80A2 80Bl 80B2 80B3 80Cl 8OC2 80Hl 80H2 80Kl 8OLl 8OSl 80Tl
Nowik, I., Ofer, S., Wernick, J.H.: Phys. Lett. 20 (1966) 232. Deschizeaux, M.N., Develey, G.: J. Phys. (Paris) 32 (1971) 319. Window, B.: J. Phys. E 4 (1971) 401. Rhyne, J. J., Pickart, S.J., Alperin, H. A.: Phys. Rev. Lett. 29 (1972) 1562. Brouha. M., Buschow, K. H. J.: J. Phys. F 3 (1973) 2218. Harris, R., Plischke, M., Zuckermann, M. J.: Phys. Rev. Lett. 31(1973) 160. Gubbens, P.C. M., van Appeldorn, J. H.F., van der Kraan, A.M., Buschow, K.H. J.: J. Phys. F 4 (1974)921. Tao, L. J., Gambino, R. J., Kirkpatrick, S., Cuomo, J. J., Lilienthal, H.: AIP Conf. Proc. 18 (1974) 641. Hauser, J. J.: Phys. Rev. B: Condens. Matter 12 (1975) 5160. Lee, K., Heiman, N.: AIP Conf. Proc. 24 (1975) 108. Taylor, R. C., Gangulee, A.: J. Appl. Phys. 47 (1976)4666. Buschow, K. H. J., Brouha, M., Biesterbos, J. W. M., Dirks, A. G.: Physica B+C (Amsterdam) 91 (1977) 261. Durand, J., Poon, S.J.: IEEE Trans. Magn. MAG-13 (1977) 1556. Poon,S.J.,Durand,J.:Phys.Rev.B16(1977)316. Buschow, K. H. J., Beekmans, N. M.: Proc. of the Third Int. Conf. on Rapidly Quenched Metals, vol. 2, Cantor, B. (ed.), London: The Metals Society 1978,p. 133. Buschow, K. H. J., van Diepen, A. M., Beekmans,N. M., Biesterbos, J. W. M.: Solid State Commun. 28(1978)181. Coey, J. M. D.: J. Appl. Phys. 49 (1978) 1646. Cochrane, R. W., Harris, R., Zuckermann, M. J.: Phys. Rep. 48 (1978) 1. Durand, J., Raj, K., Poon, S.J., Budnick, J. I.: IEEE Trans. Magn. MAG-14 (1978) 722. Gerber, J.A., Miller, D. J., Sellmyer, D. J.: J. Appl. Phys. 49(1978) 1699. Klimker, H., Rosen, M.: J. Magn. Magn. Mater. 7 (1978) 361. Liinard, A., Rebouillat, J.P.: J. Appl. Phys. 49 (1978) 1680. Taylor, R. C., McGuire, T. R., Coey, J. M. D., Gangulee, A.: J. Appl. Phys. 49 (1978) 2885. Buschow, K. H. J.: J. Less-Common Met. 66 (1979) 89. Biesterbos,J. W. M.: J. Phys. (Paris) Colloq. 40 (1979) (X-274. Fukamichi, K., Kikuchi, M., Masumoto, T., Matsuura, M.: Phys. Lett. A 73 (1979) 436. Forester, D. W., Koon, N. C., Schelleng, J. H., Rhyne, J. J.: J. Appl. Phys. SO(1979) 7336. Gerber, J. A., Comelison, S.G., Burmester, W. L., Sellmyer, D. J.: J. Appl. Phys. 50 (1979) 1608. Heiman, N., Kazama, N.: Phys. Rev. B 19 (1979) 1623. Kirchmayr, H. R., Poldy, C.A., in: Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Jr., Eyring, L. (eds.), Amsterdam: North-Holland Publ. Co., vol.2 1979, p. 55. Rhyne, J. J., in: Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K. A., Jr., Eyring, L. (eds.),Amsterdam: North-Holland Publ. Co., vol. 2 1979,p. 259. Algra, H. A., Buschow, K. H. J., Henskens, R. A.: J. Magn. Magn. Mater. 15-18 (1980) 1395. Algra, H. A., Buschow, K. H. J., Henskens, R. A.: J. Phys. (Paris) Colloq. 41(1980) C8-646. Buschow, K. H. J., Algra, H. A., Henskens, R. A.: J. Appl. Phys. 51(1980) 561. Buschow, K. H. J.: J. Appl. Phys. 51(1980) 2795. Buschow, K. H. J.: J. Magn. Magn. Mater. 21(1980) 97. Cornelison, S.G., Hadjipanayis, G. C., Sellmyer, D. J.: Bull. Am. Phys. Sot. 25 (1980) 271. Croat, J. J.: Appl. Phys. Lett. 37 (1980) 1096. Hadjipanayis, G., Comelison, S.G., Gerber, J. A., Sellmyer, D. J.: J. Magn. Magn. Mater. 21 (1980) 101. Hadjipanayis, G. C., Cornelison, S.G., Sellmyer, D. J.: J. Phys. (Paris) Colloq. 41(1980) C8-642. Kgstner, J., Schink, H. J., Wassermann,E. F.: Solid State Commun. 33 (1980) 527. Legvold, S., in: Ferromagnetic Materials, vol. I., Wohlfarth, E. P. (ed.), Amsterdam: North-Holland Publishing Company 1980,p. 183. Skumriev, V., Apostolov, A., Mikhov, M.: Phys. Status Solidi (a) 62 (1980) K139. Tenhover, M.: J. Phys. F 10 (1980) L293. Sostarich
Landolt-Kmstein New Series 111/19h
References for 6.2 81Bl 81Cl 81C2 81C3 81C4 81C5 81Gl 81Hl 81H2 81Tl 81 T2 81T3 82Al 82A2 82Bl 82B2 82B3 82Cl 82C2 82C3 82C4 82C5 82C6 82Fl 82Gl 82Hl 82Kl 82K2 82M3 8201 82Rl 82Sl 83Al 83A2 83A3 83Bl 83Cl 83Fl 83Sl 8382 84Bl 84Cl 84C2 84C3
343
Buschow, K. H. J., van der Kraan, A. M.: J. Magn. Magn. Mater. 22 (1981) 220. Croat, J. J.: J. Magn. Magn. Mater. 24 (1981) 125. Croat, J. J.: Appl. Phys. Lett. 39 (1981) 357. Croat, J. J.: J. Appl. Phys. 52 (1981) 2509. Cornelison, S.G., Sellmyer, D. J., Hadjipanayis, G. C.: J. Appl. Phys. 52 (1981) 1823. Chappert, J., Coey, J. M. D., Litnard, A., Rebouillat, J. P.: J. Phys. F ll(l981) 2727. Gubbens, P. C. M., van der Kraan, A. M., Buschow, K. H. J.: Phys. Status Solidi (a) 64 (1981) 657. Hadjipanayis, G. C., Sellmyer, D. J.: Phys. Rev. B 23 (1981) 3355. Hadjipanayis, G. C., Sellmyer, D. J., Brandt, B.: Phys. Rev. B 23 (1981) 3349. Tenhover, M.: J. Phys. Chem. Solids 42 (1981) 329. Tenhover, M.: J. Phys. F ll(l981) 2697. Tenhover, M.: J. Non-Cryst. Solids 44 (1981) 85. Apostolov, A., Hristov, H., Midlag, T., Mikhov, M., Skumriev, V.: Phys. Status Solidi (a) 69 (1982) K7. Apostolov, A., Hristov, H., Mydlarz, T., Mikhov, M., Skumriev, V., in: Crystalline electric field effects in f-electron magnetism, Guertin, R. P., Suski, W., Zolnierek, Z. (eds.),New York, L&don: Plenum Press1982,p. 493. Buschow, K. H. J.: J. Appl. Phys. 53 (1982) 7713. Berrada, A., Durand, J., Mizoguchi, T., Budnick, J.I., Loegel, B., Ousset, J.C., Askenazy, S., Gfintherodt, H. J.: Proc. of the Fourth Int. Conf. on Rapidly Quenched Metals, ~01.2, Masumoto, T., Suzuki, K. (eds.), Sendai: The Japan Institute of Metals 1982,p. 829. Buschow, K. H. J.: Phys. Ser. Tl(l982) 125. Croat, J. J.: J. Appl. Phys. 53 (1982) 6932. Croat, J. J., Herbst, J. F.: J. Appl. Phys. 53 (1982) 2294. Cornelison, S.G., Sellmyer, D. J., Zhao, J. G., Chen, Z. D.: J. Appl. Phys. 53 (1982) 2330. Cornelison, S.G., Sellmyer, D. J.: J. Appl. Phys. 53 (1982) 8237. Croat, J. J.: J. Appl. Phys. 53(1982) 3161. Coey, J. M. D., Ryan, D., Gignoux, D., Lienard, A., Rebouillat, J. P.: J. Appl. Phys. 53 (1982) 7804. Felsch, W., Kushnir, S.G., Samwer, K., Schriider, H.: Z. Phys. B: Condens. Matter 48 (1982) 99. Geohegan, J.A., Koon, N. C., Das, B.N.: J. Appl. Phys. 53(1982) 7816. Hadjipanayis, G. C., Wollins, S.H., Hazelton, R. C., Lawless, K. R., Prestipino, R., Sellmyer, D. J.: J. Appl. Phys. 53 (1982) 7780. Koon, N. C., Das, B.N., Geohegan, J. A., Forester, D. W.: J. Appl. Phys. 53 (1982) 2333. Kabacoff, L., Dallek, S., Modzelewski, C., Krull, W.: J. Appl. Phys. 53 (1982) 2255. Mizoguchi, T., Budnick, J. I., Panissod, P., Durand, J., Giintherodt, H. J.: Proc. of the Fourth Int. Conf. on Rapidly Quenched Metals, vol. 2, Masumoto, T., Suzuki, K. (eds.), Sendai: The Japan Institute of Metals 1982,p. 1149. O’Shea, M. J., Sellmyer, D. J.: J. Appl. Phys. 53 (1982) 7722. Robbins, C.G., Chen, Z.D., Zhao, J.G., O’Shea, M.J., Sellmyer, D. J.: J. Appl. Phys. 53 (1982) 7798. Shimada, Y., Yagi, M., Kojima, H.: Proc. of the Fourth Int. Conf. on Rapidly Quenched Metals, vol. 2, Masumoto, T., Suzuki, K. (eds.), Sendai: The Japan Institute of Metals 1982,p. 807. Apostolov, A., Christov, Ch., Mikhov, M., Mydlarz, T., Skumriev, V.: J. Magn. Magn. Mater. 31-34 (1983) 1499. Apostolov, A., Christov, Ch., Midlag, T., Mikhov, M., Skumriev, V.: J. Non-Cryst. Solids 55 (1983) 159. Apostolov, A., Christov, Ch., Mikhov, M., Skumriev, V.: Phys. Status Solidi (a) 75 (1983) 401. Buschow, K. H. J.: J. Appl. Phys. 54 (1983) 2578. Chudnovsky, E. M., Serota, R.A.: J. Phys. C 16 (1983) 4181. Fukamichi, K., in: Amorphous Metallic Alloys, Luborsky, F. E. (ed.), London: Butterworth 1983, p. 317. Sellmyer, D. J., O’Shea, M. J.: J. Less-Common Met. 94 (1983) 59. Skumriev, V.: Thesis, University of Sofia 1983. Buschow, K. H. J., in: Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K. A., Jr., Eyring, L. (eds.),Amsterdam: North Holland Publ. Comp., vol. 7 1984,p. 265. Cornelison, S. G., Sellmyer, D. J.: Phys. Rev. B 30 (1984) 2845. Cornelison, S.G., Zhao, J. G., Sellmyer, D. J.: Phys. Rev. B 30 (1984) 2857. Coey, J. M. D., Ryan, D. H., Boliang, Y .: J. Appl. Phys. 55 (1984) 1800.
Land&-BBmstein New Series III/19h
Sostarich
344 84Dl 84Hl 84H2 84Ml 84Pl 84P2 84Sl 84Wl 85Al 85A2 85Cl 85Hl 8582 8511 85Kl 8501 8502 85Pl 85Rl 85Sl 8582 85Wl 85W2 85W3 86Al 86A2 86BI 86Dl 86Fl 86F2 86F3 86F4 8611 86Ml 8601
References for 6.2 Dusa, O., Potocky, L., Novak, L., Zsoldos, E., Kisdi-Koszo, E., Ziimbb-Balla, K.: J. Magn. Magn. Mater. 41(1984) 119. Hazelton, R.C., Hadjipanayis, G.C., Lawless, K.R., Sellmyer, D. J.: J. Magn. Magn. Mater. 40 (1984) 278. Hadjipanayis, G. C., Hazelton, R. C., Lawless, K. R.: J. Appl. Phys. 55 (1984) 2073. Moorjani, K., Coey, J. M. D.: Magnetic Glasses, Amsterdam, Oxford, New York, Tokyo: Eisevier 1984. Pekala, K., Pekala, M., Latuszkiewicz, J., Bara, J.J., Bogacz, B. F., Jaskiewicz, P., Trykozko, R.: IEEE Trans. Magn. MAG-20 (1984) 1338. Paulose, P.L., Malik, S.K., Nagarajan, V., Dhar, S. K., Rambabu, D., Vijayaraghavan, R.: Mater. Res. Bull. 19(1984) 1129. Sellmyer, D. J., Robbins, C. G., O’Shea, M. J.: J. Non-Cryst. Solids 61-62 (1984) 655. Weissenberger,V., Eischner, B., Buschow, K. H. J.: J. Magn. Magn. Mater. 46 (1984) 19. Apostolov, A., Christov, ‘Ch., Mikhov, M., Sassik,H., Skumriev, V.: Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, vol. 2, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publishing Company 1985,p. 1161. Apostolov, A., Christov, Ch., Mikhov, M., Mydlarz, T., Skumriev, V.: Acta Phys. Pol. A68 (1985) 157. Coey, J.M.D., Ryan, D.H., Altounian, Z., Morin, P., Strom-Olsen, J.O.: Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, vol. 2, Steeb, S., Warlimont, H. (eds.), Amsterdam: NorthHolland Publishing Company 1985,p. 1573. Hadjipanayis, G. C., Wong, C. P., Tao, Y. F.: Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, ~01.2, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publishing Company 1985,p. 1307. Hadjipanayis, G. C., Aly, S.H., Sellmyer, D. J.: J. Appl. Phys. 57 (1985) 4133. Ishio, S., Takahashi, M.: J. Magn. Magn. Mater. 50 (1985) 93. Kaul, S.N.: J. Magn. Magn. Mater. 53 (1985) 5. O’Shea, M. J., Sellmyer, D. J.: Phys. Rev. B 32 (1985) 7502. O’Shea, M. J., Sellmyer, D. J.: J. Appl. Phys. 57 (1985) 3470. Potockjl, L., KoviE, J., Novak, L., Kisdi-Koszo, E., Lovas, A.: Proc. of the Fifth Int. Conf. on Rapidly Quenched Metals, vol. 2, Steeb, S., Warlimont, H. (eds.), Amsterdam: North-Holland Publishing Company 1985,p. II 53. Ryan, D.H., Cadogan, J. M., Devlin, E. J., Coey, J. M.D.: Z. Phys. Chem. Neue Folge (Wiesbaden) 145(1985) 113. Shirakawa, K., Fukamichi, K., Aoki, K., Masumoto, T., Kaneko, T.: J. Phys. F 15 (1985) 961. Sellmyer, D. J., Nafis, S.: J. Appl. Phys. 57 (1985) 3584. Wright, A.C., Hannon, A. C., Glare, A.G., Sinclair, R.N., Johnson, W. L., Atzmon, M., Mangin, P.: J. Phys. (Paris) Colloq. 46 (1985) C8-299. Wrzeciono, A., Jurczyk, M., Koczorowska, L., Samolczyk, J.: Proc. ofthe Fifth Int. Conf. on Rapidly Quenched Metals, vol. 2, Steeb,S., Warlimont, H. (eds.), Amsterdam: North-Holland Publishing Company 1985,p. 1311. Wong, C. P., Gudimetta, K., Dale, B., Hadjipanayis, G. C.: J. Appl. Phys. 57 (1985) 4155. Apostolov, A., Christov, Ch., Mikhov, M., Sheludko, N., Skumriev, V., Mydlarz, T., Sassik, H.: IEEE Trans. Magn. MAG-22 (1986) 560. Aly, S.H., Nicolaides, G. M., Tao, Y. F., Hadjipanayis, G. C.: J. Phys. F 16 (1986) L21. Buschow, K. H. J., de Mooij, D. B., van Noort, H. M.: J. Less-Common Met. 125 (1986) 135. Dieny, B., Barbara, B.: Phys. Rev. Lett. 57 (1986) 1169. Fukamichi, K., Goto, T., Sakakibara, T., Todo, S., Aoki, K., Masumoto, T.: J. Magn. Magn. Mater. 54-57 (1986) 239. Fukamichi, K., Shirakawa, K., Aoki, K., Masumoto, T., Kaneko, T.: Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 33 (1986) 173. Fang, R. Y., Dai, D. S., Lui, Z.X., Wan, H., Ji, Y. P.: J. Magn. Magn. Mater. 58 (1986) 273. Fukamichi, K., Goto, T., Satoh, Y., Sakakibara, T., Todo, S., Mizutani, U., Hoshino, Y.: IEEE Trans Magn. MAG-22 (1986) 555. Ishio, S., Fujikura, M., Ishii, T., Takahashi, M.: J. Magn. Magn. Mater. 60 (1986) 236. Miyazaki, T., Yang, X., Takakura, K., Takahashi, M.: J. Magn. Magn. Mater. 60 (1986) 211. O’Handley, R.C., McHenry, M.E., Li, H., Kofalt, D., Egami, T.: IEEE Trans. Magn. MAG-22 (1986)421. Sostarich
References for 6.2 8602 86Sl 86S2 87Al 87A2 87A3 87Fl 87Jl 87Kl 87Ll 87Ml 87M2 87M3 87Sl 8782 87Yl 88Al 88A2 88Cl 88C2 88Gl 8862 8811 8812 8813 8814 8815 88Jl 88Ll 88Ml 88Rl 88Sl 8832 88Yl 88Y2 88Y3
345
O’Shea, M. J., Lee, K. M., Othman, F.: Phys. Rev. B 34 (1986) 4944. Sellmyer, D. J., Nafis, S.: J. Magn. Magn. Mater. 54-57 (1986) 113. Sellmyer, D. J., Natis, S.: Phys. Rev. Lett. 57 (1986) 1173. Al-Sharif, A., O’Shea, M. J.: J. Appl. Phys. 61(1987) 3613. Aly, S.H., Hadjipanayis, G. C.: J. Appl. Phys. 61(1987) 3757. Aoki, K., Nagano, M., Yanagitani, A., Masumoto, T.: J. Appl. Phys. 62 (1987) 3314. FIhnle, M., Kellner, W.-U., Kronmiiller, H.: Phys. Rev. B 35 (1987) 3640. Jaswal, S.S., Sellmyer, D. J., Engelhardt, M., Zhao, Z., Arko, A. J., Xie, K.: Phys. Rev. B 35 (1987) 996. Krishnan, R., Lassri, H., Rougier, P.: J. Appl. Phys. 62 (1987) 3463. Lee, K. M., O’Shea, M. J., Sellmyer, D. J.: J. Appl. Phys. 61(1987) 3616. Meisner, G. P.: Appl. Phys. Lett. 50 (1987) 116. Miyazaki, T., Takada, H., Takahashi, M.: Phys. Status Solidi (a) 99 (1987) 611. Mizutani, U., Fukamichi, K., Goto, T.: J. Phys. F 17 (1987) 257. Sellmyer;D. J.,-Muench, Cr.; 0’Shea;M;J.: J.-Magn. -Magn. Mater. 65(1987)93;-- --- -. -Siratori, K., Nagayama, K., Ino, H., Saito, N., Nakagawa, Y.: IEEE Trans. Magn. MAG-23 (1987) 2302. Yang, X. B., Izumi, T., Miyazaki, T., Horie, C., Takahashi, M.: J. Magn. Magn. Mater. 67 (1987) 365. Apostolov, A., Sassik,H., Iliev, L., Mikhov, M.: Z. Phys. Chem. Neue Folge 157 (1988) 705. Altounian, Z., Ryan, D. H.: Mater. Sci. Eng. 99 (1988) 157. Cadogan, J. M., Ryan, D. H., Coey, J. M. D.: Mater. Sci. Eng. 99 (1988) 143. Czarnecki, P., Idzikowski, B., Wrzeciono, A.: Phys. Status Solidi (b) 147 (1988) K47. Griissinger, R., Sassik,H., Wezulek, R., Tarnoczi, T.: J. Phys. (Paris) Colloq. 49 (1988) C8-1337. de Groot, P. A. J., Rainford, B. D., Kilcoyne, S.H., El Khadi, M., Arnaudas, J. I., Soliman, A.: J. Phys. (Paris) Colloq. 49 (1988) C8-1243. Ishio, S., Fujikura, M., Takahashi, M., Fries, S.M., Aubertin, F., Gonser, U.: Z. Phys. Chem. Neue Folge 157 (1988) 301. Ishio, S.: J. Phys. (Paris) Colloq. 49 (1988) C8-1345. Ishio, S.: J. Phys. (Paris) Colloq. 49 (1988) C8-1347. Idzikowski, B., Wrzeciono, A.: J. Phys. (Paris) Colloq. 49 (1988) C8-1287. Idzikowski, B., Wrzeciono, A.: Phys. Status Solidi (a) 108 (1988) 375. Jantan, J., O’Shea, M. J.: J. Magn. Magn. Mater. 75 (1988) 175. Lee, K. M., O’Shea, M. J.: J. Appl. Phys. 63 (1988) 3740. Miyazaki, T., Hayashi, K., Yamaguchi, S., Takahashi, M., Yoshihara, A., Shimamori, T., Wakiyama, T.: J. Magn. Magn. Mater. 75 (1988) 243. Ryan, D. H., Liao, L. X., Altounian, Z.: Solid State Commun. 66 (1988) 339. Skumriev, V., Apostolov, A., Bozukov, L., Mikhov, M., Sassik,H.: Mater. Sci. Eng. 99 (1988) 113. Sellmyer, D. J., Nafis, S., O’Shea, M. J.: J. Appl. Phys. 63 (1988) 3743. Yang, X. B., Miyazaki, T.: J. Magn. Magn. Mater. 73 (1988) 39. Yang, X. B., Miyazaki, T.: J. Appl. Phys. 64 (1988) 5489. Yang, X. B., Yamada, K., Miyazaki, T.: J. Magn. Magn. Mater. 71(1988) 172.
Acknowledgment It gives me great pleasure to thank Professor Eckart Kneller for kindly suggesting and continuously supporting this work.
Land&-Biimstein New Series III/l9h