JAAKKO HINTIKKA
Concepts of Scientific Method from Aristotle to Newton
In
this
not
shall
I
paper,
to
try
any r...
32 downloads
816 Views
869KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
JAAKKO HINTIKKA
Concepts of Scientific Method from Aristotle to Newton
In
this
not
shall
I
paper,
to
try
any results concerning the
present
history of philosophers ideas concerning in middle the about the scientific method ages. Instead, I shall comment
history
of philosophy
the
or
on the conceptual frameworks which have been used, or can be used, in such historical studies. It seems to me that our understanding of what the
in
middle
actually
happened
suitable
conceptual framework
the
history
of
the
scientific
historical
problems
shall also suggest that in the study of
I
as
method,
philosophical scholarship, the best
be greatly enhanced by a
which the specific
in
can find their appropriate niche.
can
ages
so
in
walks
other
many
of
of finding the right framework (in
way
the sense of the historically relevant and useful framework)
is
go back
to
the main Greek philosophers, especially to Aristotle, and to try to reach a deeper understand of their ideas. Their philosophy was the most important backdrop of medieval thought, which often can be looked upon
to
as a gradual transition will
an appropriate
actual
historical
from Greek ideas to ours. In other respects, too,
map
of the conceptual situation help to
developments
as
together
pieces
of
a
different
fit
larger
overall
picture.
am
How
do we twentieth-century thinkers view the scientific process, and how do our ideas differ from Aristotle s ideas in this respect? This question might seem to be too In
this
spirit,
I
led
to
ask:
general and ambiguous to admit of a clear response, but in reality there and yet informative answer to it. A twentieth-century is a clear
philosopher
is
likely to think of scientific inquiry as consisting of
making
observations (and gathering other kinds of empirical evidence) and then of using step
them
as a stepping-stone to general explanatory theories.
form data to theories
is
sometimes called a (species that
this
inference.
It
deductive.
The main watershed between
science
the question whether there
is
is
generally agreed
is
so-called
of)
The
scientific
inference cannot be
different overall conceptions of
a nondeductive kind of inference,
usually called inductive inference, to mediate the step from observations
Concepts of Scientific Method
to
theories
general
whether
or
According to the
hypothesis.
this
step
in
is
73
a
principle
matter
of
we cannot infer theories or we can test them by comparing observations. Thus we obtain two of the
latter
idea,
other general truths from phenomena, but their deductive conclusions with
main types of modern models of
scientific inquiry:
the inductivist
model
and the hypothetico-deductive model. Although these two models do not quite enjoy any longer the monopoly they used to have among philo sophers of science, they are being widely used
tacitly
or
explicitly
by
1
historians of philosophy as a part of their conceptual framework.
The basic idea of the Aristotelian conception of scientific inquiry can also be indicated very simply. Aristotle conceives of scientific inquiry literally as inquiry, that is, a questioning procedure. This is shown amply by the Topics, among other things. One precedent for such a procedure were the Socratic questioning games practiced in the Academy. 2 Originally, even deductive inferences were simply special kinds of
moves
these
in
questioning
person would have to
given
give,
answers
viz.
games,
that
every
rational
admissions. Aristotle soon
earlier
his
realized the special role of such preordained answers or admissions tried to systematize
them
He
in his syllogistic logic.
and
even tried to make
syllogisms the only vehicle of putting the first principles of a science to use for the purpose of explaining various phenomena. But even then the road to these first principles remained a dialectical one.
The
interrogative
evidence
in
Aristotle.
called the dialectic
the long
way
or erotetic concept of inquiry In
a
method.
I
more
am
traditional
is
thus amply in
terminology,
it
would be
avoiding this label, however, because on
to twentieth-century philosophy
it
has acquired
all
sorts of
misleading associations. It
is
fairly
clear
that
something
like
the
interrogative
model of
science remained influential in the middle ages. For instance, the various
Their
restrictive
character
is
shown
by
the
difficulty
of
fitting
major
historical
figures into either pidgeonhole. Was Newton an inductivist or a hypothetico-deductivist? Neither shoe fits very well. And the same question can be raised about the medievals.
What
a wider and more realistic conceptual framework for understanding of philosophical, scientific, and theological thought. That is what I shall try to provide here for the history of the scientific method, just as I have (with several others) tried to provide a new framework for studying the history of the the
is
actual
needed
is
history
of being. That earlier attempt is documented in Simo Knuuttila and Jaakko Hintikka, editors, The Logic of Being: Historical Studies, Synthese Historical Library, D. Reidel, Dordrecht, 1986. 2 See here my paper, "The Fallacy of Fallacies", Argumentation vol. 1 (1987), pp. 211238, and the literature referred to there.
concept
74
Hintikka
commentaries on Aristotle terminology of
new
light.
If
Aristotle s
loaded
interrogatively
by the learner", etc. one facet of medieval thought into a enough put there indeed was a relevant element of interrogative
"admissions",
This fact
use
freely
"acceptances
to
is
in
knowledge-seeking
medieval epistemology and philosophy of science,
it
be expected that the logic of such interrogative procedures should have been studied in so many words. This expectation is fulfilled by the 3 important but incompletely understood obligationes tradition. Whatever is
to
problems there is about the interpretation of these questionanswer dialogues, in their standard form (antiqua responsio) they were not, and could not have been, a form of counterfactual deductive detailed
them one was not examining what
reasoning, as has been claimed. For in follows logically from the
but
rather
positiim
plus
follows
from,
logically
the rcsponder
of interrogative or
teristic
in
what
positum or what
initial
inconsistent with
inconsistent
is
admissions. This
earlier
s
or
is
is
by some
logicians.
But
this
it,
the
charac
fact
knowledge-seeking. Admittedly, later
"erotctic"
the fourteenth century obligation-games were given a
twist
in
with,
merely
my
illustrates
more deductive
recommendation of
viewing medieval thought as a transition from the Greek to the modern viewpoint.
might not seem to have a great deal to do with conceptions of scientific method. However, their Admittedly,
at
sight the obligationes
first
close link with the sophismata provides a bridge, for problems concerning
knowledge-seeking and science were frequently dealt with sophismata in logic, theology, and natural philosophy, and the obligations terminology In
general,
rogative
was
We
seeking by means of what 4
inquiry.
This
codification
form of
in this context
largely employed.
obligation-games
knowledge-seeking.
in the
I
illustrate
can
have
of the
study called
dialectical
several this
the
features
kind
of
interrogative
conception
of
inter
knowledge-
model of
of knowledge-
Here the work of Simo Knuuttila and his associates promises to be decisive. I here relying on their results. See, e.g., Simo Knuuttila and Mikko Yrjonsuuri, "Norm and Action in Obligational Disputations" in O. Pluta, ed., Die Philosophic im 14. und 15.
am
Jahrhundert, B.R. Griiner,
The work on
this
Amsterdam
model
is
1988, pp. 191-202.
largely
still
in
progress. For interim expositions,
cf.,
e.g.,
Representation and the Interrogative Model of Inquiry", forthcoming in a volume of new papers on epistemology, edited by Keith Lehrer and Marjorie Clay, Jaakko Hintikka and Merrill B. Hintikka, "Sherlock Holmes Confronts Modern Logic", in
my
"Knowledge
E.M.
Barth and J.L. Martens, eds., Argumentation: Approaches to Theory Formation, Benjamins, Amsterdam, 1982, pp. 55-76; and "The Logic of Science as a Model-Oriented
Concepts of Scientific Method
main conceptual framework
the
is
seeking
historians of scientific
The In
model seems
interrogative
may
inquirer
am recommending
I
the
to
method.
an idealized inquirer
it,
75
at
first
to
sight
from a given
starts
be simplicity
initial
itself.
The
premise T.
on the put questions to a source of information. Depending oracle" we may call this source of information
intended application,
"the
or nature. The inquirer may draw deductive conclusions from T together with the answers. The aim of the game (or the inquirer s aim) is to
prove a given conclusion or answer a question
C
or
(in
the
Normally,
not-B?"
"B
to
another variant of the model) of
presupposition
a
be asked. question must have been established before the question may from the differ How does this model, applied to scientific inquiry,
models of science?
received
turns out
It
be more
to
flexible
than
its
rivals in several respects.
For one
some
most
the
of
the Oracle
thing,
s
answers need not be observations. In variants
interesting
of
the
model,
controlled
But the experiments are conceived of as a scientist s questions to nature. oracle s answers may instead be intuitions of innate ideas or, as in Aristotle, well-established general opinions, endoxa.
be
all true, just
then
is
as endoxa
They need not even
sometimes are deceptive. But
all
that
happens
the inquirer has to ask further questions to establish the
that
veracity of the oracle
One
5
s
particular answers.
of especially important corollary of this wider conception
nature can
tell
the following:
we can
us or what
what
otherwise establish interrogatively
An
in the interrogative
model
is
is
the
important parameter the oracle can provide to the logical complexity of the answers that models of In the received science, both in the inductivist and in inquirer. the hypothetico-deductive model,
game (i.e.,
In
is
assumed
that
nature (who in the
of science plays the role of the oracle) can only provide particular s questions. quantifier free) propositions as answers to the inquirer
the
wider
"Atomistic
is
it
model,
Postulate",
there as
I
is
no longer
have called
it.
any
And
if
reason
to
accept
this
the Atomistic Postulate
not assumed, the rationale of both of these models collapses. For then
in P. Asquith and P. Kitcher, eds., PSA 19S4, vol. 1, Philosophy of Science Logic", Association, East Lansing, 1984, pp. 177-185. See also the work referred to in other notes.
5
For the concept of endoxa and for their role in Aristotle s argumentation, see. G.E.L. Owen, Tithenai ta Phainomena", in S. Mansion, ed., Aristote et les problemes de methode, Louvain, 1961, and. cf. my "The Fallacy of Fallacies", op. cit.
76
Hintikka
there
is
no reason
to conclude that general theories could not
be arrived
deductively from
at
Newton
nature s answers to the inquirer s questions or, as could not be deduced from the phenomena. 6 there are at least two historically important ways in which a
puts
Now
it,
can be thought of as being able to obtain general truths as to his or her questions.
scientist
immediate (non-inferential) answers
The
way
first
is
For
experimentation.
the
outcome
typical
of
has
It
proposition.
quantifier-free
The other way
Aristotle
is
It
s.
form of X. This
external one.
And
X
be
also
will
between
forms
if
is
so,
X
be
the
in
Y
one
for
way.
in
his
s
quantifier 8
s
psychology
soul to take
on
form as any
of the
which necessarily accompanies
Thus any necessary connection
soul.
ascertained
is
no longer a
is
existential
realization
genuine any other form
present
can
"answer"
deeply rooted
a
as
controlled
Newton
essentially is
of thinking according to which to think of the
successful
variables, the controlled
one
least
at
controlled
way
a
experiment and the observed one. The codification of such an
dependent on a universal one. This was
of
the
is
dependence between two
to find a
is
It
post-medieval.
simply
by
about
thinking
them,
9 according to this Aristotelian psychology (and metaphysics) of thinking. This means that for Aristotle general truths can be seen immediately
in
one
s
own
interrogative
soul,
model,
of course after suitable preparation. In terms of the this
means
the
that
oracle
assumed
is
to
give an
Aristotelian scientist general answers, and not only particular ones. In the
of what was said earlier,
light
it
is
therefore small
wonder
that neither
the inductivist nor the hypothetico-deductive model of science played any
appreciable role
in
medieval philosophy.
This does not mean, however, that the Aristotelian idea of direct access to general truths was universally accepted in the middle ages.
soon as
1
As
inference was conceptualized as involving a step from
scientific
Cf. note 4 above.
See
here my paper, 74 (1988), pp. 173-190.
Is
"What
the
Logic
of
Experimental
Inquiry?",
Synthese
vol.
t>
See
here
Interrogative
Jaakko Logic
Hintikka of
symposium on Newton
in
and
Inquiry",
James
Garrison,
forthcoming
in
the
"Newton s
Methodology and
proceedings
of
the
April
the
1987
Jerusalem,
o
This pecularity Aristotelian psychology of thought is so striking that it is barely been acknowledge in its full strangeness (strangeness from our twentieth-century viewpoint, that is to say). For indications of Philosophical Re\ iew vol. 75 (1966), pp. 197-219.
it,
cf.
my paper
"Aristotelian
Infinity",
Concepts of Scientific Method
particulars to a general truth,
it
became
77
was not
clear that such a step
unproblematic, and could not be thought of as nature
direct
s
answer to a
middle ages, the rise of nominalism seems to mark an important watershed in this respect. This is only to be expected in view of Aristotle s idea of the realization of universal concepts in the scientist s question. In the
form of
"forms"
source
a
as
soul
background helps us
Aristotelian
this
Indeed,
human
the
in
of scientific
truths.
understand why the
to
rejection of universals was as crucial a development in medieval thought
as in
understand the impact of nominalism general. For instance, nominalism cannot be construed as a skeptical in fact was. This helps us to
it
philosophy, as several speakers at this very congress will emphasize. Its
seen by comparison with Aristotle
s
methodology which
impact
is
means
giving up, at least partly, the idea that
in effect
nature can give us general
answers to suitable questions by means of a realization of the relevant
forms
in
one
Did
s
mind.
this
mean
The
process?
idea of the scientific
a radical change in philosophers
interrogative
no. For the interrogative
model suggests an
model shows
that
interesting answer,
on the oracle
the effects of an additional restriction
which
is
you can often compensate for s
(nature
s)
answers
10
In fact, logicians by strengthening the initial theoretical assumption T. know that even if answers to questions are restricted to (negated or
unnegated) atomic propositions, there can be theories T which jointly with nature s answers to questions enable the inquirer to establish any true proposition. (These are the theories that are known as modelcomplete ones.) These observations throw highly interesting light on developments in the medieval period. The very same philosophers who began to think of inference as a passage from particular observations to general
scientific
were also among the first ones to evoke prior general propositions back them up. Duns Scotus is an especially interesting case in point.
truths to
He writes
as follows:
11
As
for what is known by experience, I have this to say. Even though a person does not experience every single individual, but
is
Cf. here my The Logic of Science as Model-Oriented Logic", op. cit. In general, the possibility of partial trade off between strong assumptions as to what answerable and strong a priori premises is an extremely interesting fact which can
throw
light
Duns
on
several other historical
Scotus,
Opus
phenomena.
Oxoniense,
Philosophical Writings, p. 109.
i,
d.3,
q.4,
translated
in
Wolter,
Duns
Scotus:
Hintikka
78
only a great many, nor does he experience them at all times, but on frequently, still he knows infallibly that it is always this way and holds ror all instances. He knows this in virtue of this proposition reposing in his soul: "Whatever occurs in a great many instances by a cause that is not free, is the natural effect of that cause." This proposition is known to the intellect even if the terms are derived from erring senses, because a cause that does not act freely cannot in most instances produce an effect that is the very opposite of what it is ordained by its form to produce.
This quotation
interesting in that
is
Duns Scotus was
the
alternative
regularity
knows
intellect
with
of nature
a
idea
for a thinker like
nature
that
t
certainty
that
not
is
character
the
do so apud the
like
from sense-
derived of
answer
can
completely general truths
certain
They are therefore of
experience.
the
Even though nature doesn
questions concerning universals.
Scotum, the
what
illustrates
it
to
premises of
initial
the scientific enterprise rather than answers (new facts) contributed by nature.
What
important here
is
that
is
this
novelty docs
not
Scotus away from the interrogative conception of inquiry. is
to shift the focus
One symptom quoted
from nature
of this
passage,
viz.,
s
answers to
initial
turn
What
Duns does
it
theoretical premises.
what Duns Scotus says in so many words in the that the results based on the principle of the
is
regularity of nature are infallible, even though they are based only on a
sample of the individuals covered by the generalization. In can say, they are just like the results of an interrogative
Duns Scotus does the
Hume
not anticipate
twentieth-century conception
author
refers
in
this
context
s
inquiry.
I
Thus
doubts about induction nor even
even though one recent
of induction,
to
this respect,
Duns Scotus
s
12 "inductive
evidence".
Admittedly, soon afterwards Duns Scotus says that in this way we can But this very lowest degree of scientific knowledge". only reach inferior degree does not mean a lower level of certainty, for the principle "the
of
the
of
regularity
"uncertainty
Thus
and it
Duns Scotus
is
nature
is
said
to
remove
in
such
cases
all
infallibility".
in
principle misguided to see
anticipation of
Hume s
in
medieval thinkers
like
problems or even anticipations of the
hypothetico-deductive or the inductivist models of science. These models came about only when the skeptical ideas found two different inroads into 12
See N. Kretzmann, A. Kenny and J. Pinborg, eds., The Cambridge Later Medie\ al Philosophy, Cambridge University Press, Cambridge, 1982, p. 511. 13
Op.
cit.,
i,
d.3, q.5;
Wolter,
p. 119.
History
of
Concepts of Scientific Method
79
the interrogative conception of scientific inquiry. restrict
nature
like
why
was
is
all
nontrivial initial premises.
modern
crucially important for
Hume
Locke and
One
answers to negated or unnegated atomic ones.
s
has to eliminate in principle
reason
was not enough
It
It
is
to
also
for this
empiricist philosophers
to attack the doctrine of innate ideas.
The same observation
why Newton
explains
s
overall conception of
the structure of science bears striking resemblances to Aristotle in spite
of
mathematical character.
its
answers
general
a
to
14
For according to Newton nature can yield questions, of course not answers
scientist s
as in Aristotle but concerning necessary connections between answers taking the form of functional dependence between variables, "forms"
through a controlled experiment. No wonder Newton, too, believed that general truths can be deduced from phenomena. typically obtained
It
the
of interest to see a
is
abandonment of the
truths.
One
forms
Aristotelian
the
to
corollary
realization of
more
bit
little
of direct
idea
Aristotelian
in the soul is that
the nature of things in question, that
between
logical
and natural
involved in
is
access of
theory
to
general
thinking
as
a
whatever follows as a matter of is,
as a matter of their essential
forms, can be established in thought. There Aristotle
what
closely
therefore no distinction in
is
("formal")
necessity. This conclusion,
which has of course been misunderstood time and again, is shown to be a genuine Aristotelian doctrine in my monograph on Aristotle s theory of 15
Another corollary
modality. clearly
and
conclusion. rational
in
distinctly
Full-fledged
action
in
(i.e.,
a
her
or
akrasia
whoever does
that
is
his
mind,
as
is
syllogism).
avoid
drawing the
in
logic
as
All
these
Aristotelian
impossible 16
practical
realize the premises
cannot
it
is
in
views have their echoes in medieval thought. Of course, in order to be able to see what necessarily accompanies a
form one must
to
general
but
truths,
Accordingly, the
I.
realize
first
fully
an Aristotelian
crucial task for
the
the
form
in
one
s
mind. Hence the
scientist is not inference
formation
of
general
from particulars
concepts
("forms").
premises of an Aristotelian science are definitions,
first
See Hintikka and Garrison, op. cit. The view we reject is represented, e.g., by Bernard Cohen, The Newtonian Revolution, Cambridge University Press, Cambridge, 1980. Jaakko
Hintikka
and Determinism
(with
(Acta
Unto
Remes and Simo
Philosophica
Fennica,
vol.
Knuuttila), no. 1),
29,
Aristotle
on
Societas
Philosophica
Fennica, Helsinki, 1977.
See here
my
"Aristotle
s
Incontinent
Logician",
Ajatus
vol.
37 (1978), pp. 48-65.
Modality
80
Hintikka
and the way
them
to reach
definition of a concept
All
this
Aristotle
is
To
give
essential
its
and parcel of what
part
questions
answerable.
(i.e.,
the dialectial process which leads up to the
is
a full grasp of
concerning
up
this
general
17 "form").
meant by saying propositions were I
that
for
(directly)
answerability assumption can therefore take
the form of giving up the identification of logical (metaphysical) necessity
and natural
nomic
necessity. In so far as this natural necessity
necessity, the step
away from
is
construed as
Aristotle took the form of denying
the identification of unrestricted generality and metaphysical (conceptual)
As
necessity.
Knuuttila and others have spelled out, this step was taken
most resolutely by Duns Scotus. 18
Now we
can
see
scholastic philosophers
that
this
step
was not an
isolated
ideas about necessity and other
in
change
modal concepts.
It
affected their outlook on the entire structure of the scientific search of
knowledge.
These general observations can be illustrated by applying them to the history of one particular concept, that of induction. There exists a useful
study
of
the
of
history
this
assumes
he
concept
by Julius Weinberg,
but
his
unfortunately throughout essay something essentially tantamount to the twentieth-century notion of induction as an inference from particulars to general truths. 19
At
first
sight,
the
story
of
induction
within
an
interrogative
framework might look rather like the "curious incident of the dog in the in Sherlock Holmes: the dog didn do anything. Likewise, night-time" there does not seem to be any niche for the notion of induction in the t
interrogative conception of scientific investigation.
model and allow
Even
if
we
relax our
answers by nature that are true only with a certain probability (and hence can be false), the result is not the inductivist model of science but its mirror image. 20 In inductive logic, we study for
uncertain (nondeductive) inferences from data that are typically assumed to
17
be unproblematic. In the loosened interrogative model we are studying
Cf.
"The
Fallacy of
Fallacies",
op.
cit.
10 Cf.
Knuuttila
s
own
contribution
to
Simo
Knuuttila, ed., Reforging the Great Chain
of Being, Synthese Historical Library, D. Reidel, Dordrecht, 1981. 19
Julius
Weinberg,
History of Thought,
See
here
Inference",
The
and Induction: Three Essays Relation, Abstraction, University of Wisconsin Press, Madison and Milwaukee, 1965.
my paper, "The Interrogative Erkenntnis vol. 26 (1987), pp. 429-442.
Approach
to
Inquiry
and
in
the
Probabilistic
Con cepts of Scien tific Meth od deductive
hence
(and
inferences
certain)
from
81
answers
uncertain
by
nature.
This negative finding
nevertheless
is
itself
quite remarkable, just as
counterpart was in Conan Doyle. It is indeed remarkable how little the medievals had to say about induction in anything like the twentiethits
century acceptance of the term.
There
is
more
be said of
to
this
twentieth-century notion of induction of interrogative inquiry, there that arises naturally
This general
can
they
as
can
scientific inquiry.
Even
follows:
be
Even
concept, however.
an uninvited guest
if
if
21
nature
For instance,
partial.
answers
s
in
can
B
13),
number of
directly find out only
cf.
An.
what characterizes each of a
Likewise, an experimental
scientist
can
what functional dependence obtains between the variables he or she
find is
we can
subclasses of pride.
be
an Aristotelian
search for a definition of pride or magnanimity (megalopsychia, Post.
the
house
in the
a historically important namesake notion
from the idea of
be seen
truths,
is
is
interested in over a
variable.
number of
The experimentally
intervals of values
of the controlled
established dependence can even be different
over the different intervals. Such general but restricted answers lead to the problem of reconciling these partial answers with each other.
Thus
Aristotle writes:
mean, e.g., if we were to seek what pride is we should inquire, in the case of some proud men we know, what one thing they all have as such. E.g. if Alcibiades is proud, and Achilles and Ajax, what one thing do they all [have]? Intolerance of insults; for one made war one waxed wroth, and the other killed himself. Again in the case of others, e.g. Lysander and Socrates. Well, if Tiere it is being indifferent to good and bad fortune, I take these two things and inquire what both indifference to fortune and not brooking dishonour have that is the same. And if there is nothing, then there will be two sorts of pride. I
This reconciliation procedure,
what Aristotle elsewhere
calls
know when
earlier
I
wrote
pretation of Aristotle
my s
subsequent Aristotelians.
See here
Model of
my
paper,
Inquiry",
I
have shown elsewhere,
epagoge
or induction.
paper was
that
concept of induction was
Thus Aquinas
"The
forthcoming
22
is
What
essentially fairly
I
precisely
did not
this
inter
common among
assimilates to each other induction
Concept of Induction in
in the Light of the Interrogative the proceedings of the Pittsburgh Colloquium in the
Philosophy of Science. In
422^39.
"Aristotelian
Induction",
Revue Internationale de Philosophic,
vol.
34 (1980), pp.
Hintikka
82
and the method of looking division. in
the
same
the
"...
method of the
obtaining
quod
in the
thing happens
induction."
23
quid of a
by means of the method of
definition
for
Here
the
thing".
method of
division as
method of
The
context
division
makes
is
happens "used
clear
it
in
that
Aquinas is thinking of an interrogative search for definitions. This is shown by statements like the following: 24 For one who induces through singulars to the universal does not demosntrate or syllogize from necessity. For when something is proved syllogistically. it is not necessary to make further inquiry concerning the conclusion or ask that the conclusion be conceded; is necessary is that the conclusion is true, if the premises
what laid
down
Aquinas mistakenly thinks that the search for definitions An. Post. B 13 (by means of magnanimity example) is by Aristotle to be a method different from division and
However, described
in
intended alternative
famous
are true. [Emphasis added.]
to
it.
nevertheless
is
It
in
that,
significant
the
discussing
chapter of An. Post. B, Aquinas assimilates induction and the
last
search for definitions along the lines of
B
13 to each other, and even
one of the examples employed there. There identity of the two apparently
refers to
definition-seeking (seeking for the
different
quod quid of
of
processes
a thing) and induction
throws some
light on the history of the notion of induction. For instance, we can see in what sense Aristotelian induction must be complete: the different kinds of megalopsychia whose definitions have to be reconciled
with each other must collectively exhaust the entire field of of
magnanimity.
different
subclasses
magnanimity. Of the
reconciliation
exhaustion of
means
This
at
one
and
of magnanimity
course, of the
and
in Aristotle
definitions
all
the the
all
same time particular
instances
exhaust
to
of the
subspecies,
of
instances
the real action in induction
lies
in
not just in the
instances.
all
This shows
how
thin the line
modern conception. This
line
is
from Aristotelian induction to the
was repeatedly transgressed
as early as in
the middle ages.
What question the
is
is
facilitated
extension
An
the inductive reconciliation process like?
and
loc. cit.
this
by a comparison with the quantitative version of
reconciliation
Thomas Aquinas, Commentary Books, Albany, N.Y., 1970, p. 177. Thomas Aquinas,
answer to
on
problem.
the
In
Posterior
this
problem,
Analytics
of
different
Aristotle,
Magi
Concepts of Scientific Method
83
of definition are to partial functions with exclusive ranges
be subsumed
under one single comprehensive functional dependence. I have shown elsewhere that this kind of reconciliation problem occurs often in the of
history science.
and
science
crucial
at
the
in
junctions
development
of
25
It
cannot be subject to simple
easily seen that the reconciliation
is
experimentation with the mathematical expressions of the different functions to be reconciled with each other, and hence has a rules.
involves
It
definite
It it. represents a type of use of mathematics in science, that
element of conceptual analysis to
scientific
including
reasoning,
the
much by philosophers. between the reconciliation problem
has not been discussed very
Here the science
and
megalopsychia to
definitions
similarity
induction
Aristotelian
is
close.
particularly
endoxa.
Here
One
is
One
is
reconciliation
qualitative forms.
some of
tempted to say that Aristotelian induction
modern
to
try
open both
Another problem
is
to systematic
understand what goes
to
both
process,
the is
reconciliation process.
a couple of challenging tasks
research.
inductive
the
example shows Aristotle understood inductive search of contain a heavy dose of conceptual analysis and even
merely a qualitative version of the
historical
as
For,
conceptual reorganization, including the partial rejection of relevant
modern
in
in
its
the
and
its
quantitative
to understand the
and to
into
development of
Aristotelian sense into an integral (though
the concept of induction in
its
not
methodology of modern the functional extrapolation and reconciliation
always
explicitly
recognized)
part
of the
I have argued that what Newton meant by induction. But where he got his ideas from and, more generally, what happened to the notion between Aristotle and Newton largely remains to be investigated.
science.
task
is
Certain things can nevertheless be said.
modern conception
of
induction
began
fourteenth century. Such writers as
to
It
is
rear
unmistakable that the its
ugly
Ockham, pseudo-Scotus
head etc.
in
the
discuss
induction unmistakably as a step from particular cases to a general law that
falls
short
pseudo-Scotus
See op.
cit.,
of
who
necessity.
says
note 21 above.
This
that
is
for
incomplete
instance
stated
induction
explicitly
cannot
by
provide
Hintikka
84
necessity, only evidence.
26
This
is
a far cry
from the Aristotelian idea of
induction sketched earlier. In a wider perspective, an especially interesting point
connection between the
this
of nominalism.
rise
change This
seeking.
A in
to
be a
philosophers concept of induction and connection is shown by the Aristotelian
background mentioned above, and nominalism meant such a break with
a form
seems
in
it
helps
us
to
earlier ideas of
understand
why human knowledge-
nominalist could not conceptualize thinking as a realization of
one
mind and therefore could not assume
s
that
necessary connections between forms could be seen simply by realizing them in
one
s
mind.
A
nominalist, in brief, could not
general questions,
at
least
assume
that nature
answered
not directly, only particular ones. This helps
us to appreciate the impact of nominalism in general.
This
proposed
is
an
here
instructive
can
throw
philosophical thought.
Florida State University
26
Super
Pr.
Anal.
II, 9, 8.
example of how observations of the kind on major issues in the history of light