אאא
اﻟﻤﺆﺳﺴﺔ اﻟﻌﺎﻣﺔ ﻟﻠﺘﻌﻠﻴﻢ اﻟﻔﻨﻲ واﻟﺘﺪرﻳﺐ اﻟﻤﻬﻨﻲ א...
23 downloads
133 Views
2MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
אאא
اﻟﻤﺆﺳﺴﺔ اﻟﻌﺎﻣﺔ ﻟﻠﺘﻌﻠﻴﻢ اﻟﻔﻨﻲ واﻟﺘﺪرﻳﺐ اﻟﻤﻬﻨﻲ אאאא
א אא ٢٣٧
אא
א
٢٣٧
א
W،،אא،א
אאאאאאאאאא
אאא،א אאאאא
אאא אא א אאאאאא
K אא
אאאאאאא
א،אאא אאאאאאאא،
א א ،א אא אאאאאאאאאאאא
א אא، א Kאא،א
? א ? ? א א ? א א
Kאאאאאאא
אאאאאאא
،א،אאאא Kאאאאא
Kאאאאא
אאאא
אא
א
٢٣٧
א
Kאאאאאאא
אאא א،
אא אאאאאאא
K אא אאא אאאאא
א אKא Kאא،אא
K א אאאא אאא אאאא
W
אאאא א J ،אאאאא
אאאאא אאא א J
אאאאאאאא א J
E>אFאאאא J Kא J
אא אא
KאאאKא
אא
א
٢٣٧
א
Kאאאא
W
אא •
אאא •
א • אאא •
אאE5V٠Fא• א
אאא E١٠Fא
١٠אאאK אא Kאא
אErepeatersFאאאאאא • Kאאאאא
Wאא
אאאא •
Kאאא • א
אאא אאא
אאאאK א אאאאא
א،אא א
Kאאא
Kאא אא אא
אא א،א
א K
אא אאא،
Kאא
אא
א
٢٣٧
א
אאKא אא
Wא
אWא א J
אאWא א J
אאWא א J
אאאא אא א J
א J Kא J
אאא א J
J
אאאא א א
אאאאאאאאא
E אאFאאא، WKאאא אא א J
אאא J
W،אאאא אא א J
אא א J אא א J
אא
א
٢٣٧
א
אאאאאאאאאא Kאא
E אFא
WאאKאאא
א،אאאאאאא J
אאאא،א
אא אאאא J
אא אא
א אאאאא Kאאאאא
א אאאאK אא אאא
אא אאא K אאאאאא، א
،אאאא אאאאא Kאאאאאאא
א،אא א
K אאאאאא
אאא
اﻟﻤﺆﺳﺴﺔ اﻟﻌﺎﻣﺔ ﻟﻠﺘﻌﻠﻴﻢ اﻟﻔﻨﻲ واﻟﺘﺪرﻳﺐ اﻟﻤﻬﻨﻲ אאאא
אא
א
א
١
אא
אא
א
א
٢٣٧
א
אWאא Sampling
אאאאאאWאא
אאFאאאאאא אאאאKE
אאאאKאאא
אאאא
אKאאאא
Kאא
K٪٩٠אאאWאא
١٢Wאא
KאאאKאאWאא
KאאאאאWאא
-١-
אא
אא
א
א
٢٣٧
א
Wא١ J١ ESampling Theorem or Shannon TheoremF ،2fmfs fm אאאא Kאאאא
אאאא، אאא(base band signal)אא
Wאא
E١ J١Ffs ≥ 2fm
אאfsW
אאfm
Tsא E٢ J١FTsZ1/fs
WאאאאW א E١
1/2fmאאא E٢
Kאאאא E٣
،אאאא(aliasing error)א Nyquist Fאא٢fmא fs min= fN = 2fm (٣-١)
،Efrequency
TN = 1 / 2fm
ENyquist frequencyF fN W
KאTN
אP(t)V(t)אאא E٣-١)
K١ J١אאKEsampled signalFVs(t)אא Vs(t) = V(t) * P(t)
-٢-
אא
אא
א
א
٢٣٧
א
א
א
(אא)
(א) V(f)
V(t)
- fm
0
fm
(a)
f
(a )
P(f)
P(t) = a0+ ∑an cos 2π nfs t -
Ts 2Ts ……
/
t
2fs 3fs fs
(b/)
(b)
VS(f) = a0V(f) + ∑an V(f – nfs)
VS(t) = V(t) P(t) = V(t) a0 + ∑an V(t) cos(2π nfst)
-fm fm fs-fm fs+fm 2fs /
(c)
(c )
3fs
אאאאW١-١א
-٣-
אא
אא
א
א
٢٣٧
א
sampleאאF (gating)א
K١ J١אKEא hold א
KאאאאאWא
–fmfmאV(t)אאאאV(f)
E١
אאW٢ J١א
(٤-١)
(٥-١)
P(t)
E٢
א
E٣
P(t) = a 0+ ∑ an cos 2π n fs t
VS(t) = S(t) P(t) = a0V(t) + ∑an V(t) cos(2π nfst)
cos(2π nfst)V(t)א
E٤
אא٥–١א Wאאnאnfsאא،cos(2π nfst)א (٦-١)
VS(f) = a0V(f) + ∑an V(f – nfs)
E١–١אאFW
אFאא١ J١אאאא
אa0V(t)a0Ebase band signal oranalog signal אא K٥ J١אאאא
fs ≥ 2fm،אאאאא אE١ -٤-
אא
אא
א
א
٢٣٧
א
،א E٢ אאאאא
α 0 V(t)אאא E٣
א
V(f)FאfsאTsא • Eאאא
אfsאTsא، •
אא،EאאאV(f)F אfs ═2fmאKא Kאא
EAliasingFא٢ J١
אאא،EFאאאאאאא אאא،٣ J١אאא
K
fs < 2fm אאאאאאאאא
אאאאאא
KEAliasing errorsFא،K
KEאאאאFאW٣–١א
-٥-
אא
אא
א
א
٢٣٧
א
،אא
Elow pass filter LPFFאאא E١ KEanti-aliasing filterFאא
fmaxאאEcut off frequency fcut offF א E٢ (٧-١)
fcut off ≤ fmax
א، Nאאאא
tpא
،אאאאאfs • E٨ J١F N = fs tp = tp / Ts
ETypes of samplingFאW٣ J١
Kא
EIdeal samplingFWאאאW١ J٣ J١
אאKEunit weighted pulsesFאא
K٤–١אאKEPAMFא
-٦-
אא
אא
א
א
٢٣٧
א
אאאאא
١אאאא V(f)
V (t)
f -fm
fm
P( f ) =
-fs 3fs
t
0
1 T
∑ δ ( f − nfs)
Ρδ (t ) =
∑ δ (t − nTs )
n = −∞
f 2fs
fs
+∞
Ts
t
Vs(t) = V(t) Pδ(t)
1 Vs ( f ) = ∑V ( f − nfs ) T
t
-fm fm fs-fm fs+fm ………………….
אאאW٤ J١א
ENatural samplingFאאא٢ J٣ J١
אאאאא
Kא٥ J١אKא
-٧-
אא
אא
א
א
٢٣٧
א
אאW5 J١א
Wא
אEFETFאאW E١ א E٢
Kאא، E٣
Eflat-top samplingFאאא٣ J٣ J١
אאאאא KE٥ J١אFאאא
sample Fאאאאאא
KE7 J١אFKEand hold circuit
-٨-
אא
אא
א
א
٢٣٧
א
١אאאא
אאאא א
V(f) V(t)
t -fm
fm P(f) =
τ T
∑ Sa(πfτ )δ ( f − nfs) P(t) τ
X
X a0V ( f ) + ∑ anV ( f )
Vs( f ) =
τ T
+∞
⎛ nπτ ⎞ ⎟V ( f − nfs ) T ⎠
∑ Sa⎜⎝
n = −∞
= α0V(f) +
Vs(t)=P(t) * V(t)
+∞
∑ αn V(f-nfs) -∞
+3fs -fs
-fm
fm
fs
אW6 J١א
-٩-
אא
אא
א
א
٢٣٧
א
אאאאW7 J١א
Wא
אEFETFאא E١ א E٢
Kאא، E٣
אCאEsampleFאEFETFאאא E٤ KEholdF
אK٧ J١אאא
אאאאאאא
Kא
- ١٠ -
אא
אא
א
א
٢٣٧
א
אאאW8 J١א אא٤ J١
Ebase bandFאאPAMאא E١
אאFKfsאאאאאא
E٤ J١
א sin c( x) = sin x אאאאאא E٢ x
،אאאאKx
Wאאא E٣
E٩ J١F
B
T
=
K1
τ
א
cut off FאאאאK1א
KEfrequency fcut off
- ١١ -
אא
אא
א
א
٢٣٧
א
WPAMאא
PCMאא א TDMאא
١ J١
fs = א V(t)
Kτ = 40µs،5KHz
EאאFאאEאF KK1 = 1.0K1 = 0.5אאEF Kא 25 KHz אאEF ٢ J١
K8KHz٠אV(t)
אאאאאEאF
אאאEF ٣ J١
א١ J١אאאV(t) K6KHzאא
אאאאאאWF Kא
- ١٢ -
אא
אא
א
א
٢٣٧
א
٤ J١ K4 kHz dc،אV(t) אKאאאא
K٪٥٠אא
אEאF אאEF ٥ J١ KE10000 HzFא١٠٠٠٠א
אאאFאא،אא
K4KHzEguard bandאאא ٦ J١ K٪٢٥fm fs- fm،fm،fs=9KHz ٧ J١ K0.25ms 500 Hzא Kא18KHzאאאא
- ١٣ -
אא
אא
א
א
٢٣٧
א
٨ J١ K2 KHz1 KHz
אאאאKא0.1ms K35KHz
אאאאאאא٥ J١ (TDM of PAM signals) אאאאWאאאא אKאאKאא KEsequentiallyFא
אאW אאאאאאא
Kאא
אW٩ J١א
Wא
،TsE>אFא E١
Kאא،אאא
،אאאאאא E٢
KKKKאא،אאאאאא E٣
،EFאאאא E٤
Kאא،אאא E٥ - ١٤ -
אא
אא
א
א
٢٣٧
א
Wאא١ J٥ J١
Wאאא אE אא
E١F
KV2(t)V1(t)א٩ J١אא
אאW١٠ J١א
א٢١אא • ،אאאא
KETsFא • Kאאאאא
אאאE٢F
signal אאאא
E>אFKsignal #4#1
אאEcommutatorFא • KאEdecommutatorF
،אאאא • 11 J١א،אאא
Kאא
- ١٥ -
אא
אא
א
א
٢٣٧
א
ﺗﺠﻤﻴﻊ أآﺜﺮ ﻣﻦ إﺷﺎرﺗﻴﻦ ﺑﻄﺮﻳﻘﺔ اﻟﺘﻘﺴﻴﻢ اﻟﺰﻣﻨﻲ وﺑﺎﺳﺘﻌﻤﺎل ﺟﺎﻣﻊ وﻣﻔﻜﻚ:١١-١ اﻟﺸﻜﻞ
אאאאאאא E٣F
אEsampling theoremFא
(fN = 2fm).
אאאאאאאא E٤F א
٧א٧١١ J١א E٥F אאא
τ= Ts/7אאאא
KאאאKאא
Kאאאאאא
אאאKאא E٦F
K١٢ J١אאאא
- ١٦ -
אא
אא
א
א
٢٣٧
א
אא٧W١٢ J١א
אא
אאאא،אאאאE١F K١
τ
Tframe
אא אאאE١F
fs = fN= 2fm • אא •
Nא B
=
0.5
τ
א •
אאא • k =
Ts
τ
Wאאא
Kאאאk אW١٣ J١א - ١٧ -
אא
אא
א
א
٢٣٧
א
Wא
fmא،k
EF
אאאא K
Wאאא (١٠-١)
fs = 2fm,
1 2fm ,
Ts =
E F
Tframe =
אאk
1 2fm
E F
א
(١١-١)
τ=
Tframe k
(١٢-١) B =
=
0.5
τ
=
0.5 Tframe k
=
0.5 Ts/k
=
E F
0.5k Ts
0.5k 1/2fm = 0.5 k (2fm) = k X fm
BT = k fm (١٣-١)
for the ration B =
1
τ
BT = 2k fm.
= EאFאאאא KאאאXאאא
- ١٨ -
אא
אא
א
א
٢٣٧
א
W
،אאאא،אאאא •
W،אאאאא • fs = 2fm J
E١٤ J١FBT = L X fm
L = number of spaces + sync + data pulses
fs > 2fm E١٥ J١FBT = L x
Fs 2
W٩ J١א אאאאא PAMא٧ Kאא،BW = 1 kHz
- ١٩ -
אא
אא
א
א
٢٣٧
א
אאאאא PAMא٧W١٠ J١א Wאא،١٢ J١אא
אאא٧١٤ J١א Fs = 1.25 fN
אאאEא אא،אאאE Kאא
Wאאאא אE (Multiplexing of dissimilar channels) Kאאאאאאא KEsub and super commutationFאאאאאאא
- ٢٠ -
אא
אא
א
א
٢٣٧
א
אאא
אאאא •
E١
Efixed rateFאא •
אאאא •
אאאא
אאא •
Kאאאא • K16 kHz،15.5 kHz8 kHz
Wאאא
Wאאאאאא אאאא
80 kHzא J
40 kHzא J 10 kHz١٨ J
1250 Hzא٨ J 625 Hz١٦ J
K١٤ J١אא١٦אא
א٣٢אאאאW١٥ J١א
- ٢١ -
E٢
אא
אא
א
א
٢٣٧
א
؟א
Wא
אאאאK٦٢٥א E
א١٠٠٠٠אאאא E
،אאאאא אE
،אאאא10 kHz١٨א J א
،אא٤40 kHzא J
،אא٤40 kHzא J
،אא880 kHzא J
،אא٤40 kHzא J
،א10 kHzאאאאאא
،א1250 Hzאאא J
K16625 Hzאאא J
א1250 Hzאאאא
K0.1 msאא ،א١٢٥٠ ،א625א625 Hzאאא K0.2 msאא
- ٢٢ -
אא
אא
א
א
٢٣٧
א
W١١ J١ 2 τאא٦PAM/TDM אKτאאאKτ
KE>אFאא
1 אאאאא
KkHz
Kאא٦١٦ J١א Kfs = 1.5 fNאאEF אא،אאאאאא א W١٢ J١ Kfs = 2fN١١ J١א - ٢٣ -
אא
אא
א
א
٢٣٧
א
אא٦ J١
(Pulse Analog Modulation)
W١ J٦ J١
א :אא
EpositionFאEduration or widthFאאEamplitudeFא
Kא
(Pulse Amplitude Modulation: PAM)א •
אEאאאאאFאא
KאאאSTs(t) א Pulse height = V α Vs tאאא
KאVα
(Pulse Width Modulation: PWM)א •
אEאאאאאFא
KאאאSTs(t) א Pulse width = τα Vs
tאאאVs
Kא τα
(Pulse Position Modulation: PPM)א •
אאאאFאא
אאSTs(t) אאEאאאא Pulse position = td Vs
Kא
tאאאVs
Kא td
Kאאאא١٦ J١א - ٢٤ -
אא
אא
א
א
٢٣٧
א
Kאאאא١٧ J١א
:אא •
WאאEא
אאאאא o
אאאאאא o אאאאא
WאE
Kאא o
א٢ J٦ J١
(Pulse Amplitude Modulation: PAM)אEא
אEאאאאאFאא
KאאאSTs(t) א
א،א • א
E (Pulse Width Modulation: PWM) (Pulse Duration Modulation: PDM) - ٢٥ -
אא
אא
א
א
٢٣٧
א
אאSTs(t) אאEFא
Kא
،א،א
•
،א،א
•
Kא
•
אאא Kאא١٨ J١א
Kא١٨ J١א
Wא
א،STs(t)=1،אאא E١
אאא،STs(t)=2 E٢ ،STs(t)=1
Kאאא E٣ ١٩ J١אאאאא
אאא١٩ J١א
،אאאW Kאאאא
- ٢٦ -
אא
אא
א
א
٢٣٧
א
א
E (Pulse Position Modulation: PPM) אאSTs(t) אאEFא Kא אאא،א •
אאא • אאא
אא •
אאאאאא
KאEאFאא
אאא • Wא
אאאאאא o
Kאאא o Wאאא
אאא٢١ J١אKאאאא٢٠ J١א WאאKאא
S1(t)אאPAM K١
S2(t)אEramp generatorFאאא K٢
S3(t) S2(t) S1(t) K٣
S3(t) = S2(t) + S1(t)
אאא S3(t)א אK٤
Vcc אא(comparator)אEsaw toothFאא K٥ . S4(t) PWMאאאאא٠ S3(t) > Vref
ES5(t))אאאאEdifferentiatorF K٦ KS6(t)PPM
- ٢٧ -
אא
אא
א
א
٢٣٧
א
Kאאאא٢٠ J١א
- ٢٨ -
אא
אא
א
א
٢٣٧
א
Kאאאאא٢١ J١א
- ٢٩ -
אא
אא
א
א
٢٣٧
א
אאאא٧ J١ (Demodulation of PAM and PWM and PPM) Wאא١ J٧ J١
،ELPFFאאא،א E١
KאPAMאאא٢٢ J١א
א א ،EinstantaneousF א E٢
אEshaped transfer characteristicsFא
،EequalizerF
KאPAMאאא٢٣ J١א אא אE٣
K PAM PAM אא
E
אא٢ J٧ J١
EintegratorFאא PAM إﻟﻰPWM א
Esample pointFאEintegrationFא • ،אא،אKאא
- ٣٠ -
אא
אא
א
א
٢٣٧
א
אאאא אאא • ،א
א Kא ٢٣ J١ א • Wא
אאאא E א
KאPAMא E אא٣ J٧ J١
אא • אאא •
،PWMאאPPM א • KPAM إﻟﻰPWM אאא
٢٤ J١אא •
PWM
Ts
2Ts
3Ts
4T
t
PPM
t PAM
Ts
2Ts
3Ts
4T
t
KPAMPPMPWMא٢٤ J١א
- ٣١ -
אאא
اﻟﻤﺆﺳﺴﺔ اﻟﻌﺎﻣﺔ ﻟﻠﺘﻌﻠﻴﻢ اﻟﻔﻨﻲ واﻟﺘﺪرﻳﺐ اﻟﻤﻬﻨﻲ אאאא
אא
אא
אא
٢
אא
אא
א
אא
٢٣٧
א
אאWאא Digital modulation
אאאאאאאאאWאא
KאאאKEאאאאF
Kאאאאא אאאKאא
Kאאאא
K٪٩٠אאאWאא
١٥Wאא
אאWאא
אאאאאאאWאא
Kא
- ٣٢ -
אא
אא
א
אא
٢٣٧
א
אאא١–٢
EFאאWאא
אאאאאאאKאא
Kאאא
Kאאאאא١–٢א
א؟–א١ J١ J٢ Wא
אאאEFאאאא K١ אאאאא אאא
،
אאאא،אאא K٢
אאאאאא
،
אאאאא K٣ ،א
אאאא
Kאאאאאאא
אאאאאא
Kאאאאא
- ٣٣ -
אא
אא
א
אא
٢٣٧
א
אאאW١–٢א Wא
Kא،
Wאא٢ J١ J٢
Band Fאאאאאאא K١
Ecut frequency fmFאאאאאא Epass filter
،fs≥fN fsא K٢
אEPCMFאEPAMFאא K٣
ECode WordFאESampleFEEncoderF KE٨F
- ٣٤ -
אא
אא
א
אא
٢٣٧
א
FאאWא– K٤ ،אאEquantization levels
EאFE١٠ J٠Fאא K٥ ،Equantization intervalFאאא
،אאn2n٢א •
٠אאאא E28F٢٥٦אn=8 • K٢٥٥
٠א،אWא– K٦
EFאאאאאE٢٥٥Fא ،ECode WordFאאא
אא٣ J١ J٢
N،אא،אM ،אא
(١ J2)……….M = 2N
WNאMאא (2-2)…….N = Log2M = 3.32 Log10M
E١
W١–٢
M=٢٥٦Enormalized PCMFאא
א N = log2256= log228=8 bit W٢–٢
Kאא،א
K٧אאא،א٦{٦٤ 128 = 27 = 2NEN=7Fא
K١٠٠ - ٣٥ -
אא
אא
א
אא
٢٣٧
א
١–٢ N=100Nא ٢–٢
٨ K٣
אאW٢ J٢א
אאאאאא
KELow Pass Filter LPFFא
E٢
א٤ J١ J٢
אאEPCMFא
PAM FאאEAnalog signalFא
KEsignal
Kfmאא
fN=2fm
- ٣٦ -
E١
E٢
אא
אא
א
אא
٢٣٧
א
fs=fN=2fmא Rb = Nfs = 2Nfmא
BT = Rb = 2NfmWא
W٣ J٢
אאאא fm=4 KHZ, n=8 א א٥ J١ J٢
אא K٧
ED/A converterFאאאאא
،Equantization intervalFא ٢–٢א
Wא
+V-Vאא • V
אV2
WאאאN • (2-5) ……… ∆ =
2V volts 2N
אא •
∆ 2v V = /2 = n 2 2n 2
volts
אא •
(2-6)……………NQ= V2/22N
watts
אLא •
- ٣٧ -
E١
אא
אא
א
אא
٢٣٧
א
( N)
∴S
Q
=
⎛V2 SQ = V 2 ÷ ⎜⎜ 2 N NQ ⎝2
(2-7)……………..∴
⎞ ⎟⎟ = 2 2 N ⎠
(S N )
Q
= 22N
אאאא
אאKאא אא
EcharacteristicFENon linear amplifierFאא Kאאא
KאאאאאW
Kאא٣–٢א
- ٣٨ -
אא
אא
א
אא
٢٣٧
א
אא٣ J٢א
א٦ J١ J٢
EאFאא
E١
אאא
E٢
א
E٣
،אאאאא
אא
א • Kא •
W٤ J٢
אK
אEאF
١٠אEF אEF
אLאEF PS/QN J
N=10 bitSNR= 22N J 40dBאאאEF - ٣٩ -
אא
אא
א
אא
٢٣٧
א
אאא٧ J١ J٢
אאאא
(2-8)………
V0 = V0 max
⎛ Vi ⎞ ⎟⎟ ln⎜⎜1 + µ Vimax ⎠ ⎝ ln(1 + µ )
E١
for Vi ≥ 0
אVi אV0
אאVimax
אאV0max
E٢٥٥F Ecompression parameterFאµ
אאאW٤–٢א אאא
E٢
אאא
E٣
א
Wא
⎡ Vr ⎤ ⎢ ⎥⎤ Vi max ⎡ V0 max ⎦ ⎣ ⎢(1 + µ ) ⎥ forVr ≥ 0 V = (2-9)……….. ie µ ⎢ ⎥ ⎣ ⎦
- ٤٠ -
אא
אא
א
אא
٢٣٧
א
אאאVie LאFאאאא
KEcodec: coder/decoder
E٤
WA law (Europe) codec’א–א’ ⎛ 1 + lg Ax ⎞ ⎟⎟ sign V0 = V0 max ⎜⎜ ⎝ 1 + lg A ⎠
1/A < X <1…….(2-10)
⎛ Ax ⎞ ⎟⎟ V0 max ⎜⎜ ⎝ 1 + lg A ⎠
0 < X < 1/A…..(2-11)
A = 87.6
W٥ J٢א
אא Vimax =8V, V0max = 5V, µ=255 8v4v2vאא
אאא٨ J١ J٢
Mאאא
MאאLא Mא
E١
E٢
E٣
٩٨
٪١٢{٥א J ٪٥٠א J
Kאאא
- ٤١ -
אא
אא
א
אא
٢٣٧
א
אא٩ J١–٢
אאא
א،אאאא
K١אאאאEnormalized valuesF Wאאאא
actual I/P analog voltage full - scale voltage of A/D converter Vi X (t) = , where Vfs = 2.5, 5, 10, 20 .... V fs
normalizes I/P analog voltage =
،אLא
⎡actual out put ⎤ ⎡normalized value⎤ ⎡full scale voltage ⎤ ⎢analog voltage⎥ = ⎢of digital word ⎥ × ⎢of D/A converter⎥ ⎦ ⎦ ⎣ ⎦ ⎣ ⎣ Vo = X (t ) × V fs
KאLא
WאLאאא
١{٠٠{٠אאEunipolar encodingFאא J١{٠אאEbipolar encodingFאא
KH١{٠
٤אאאא
K١٦٠
- ٤٢ -
אא
אא
א
אא
٢٣٧
א
7/8=0.875 6/8=0.75 5/8=0.625 4/8=0.5 3/8=0.375 2/8=0.25 1/8=0.125 0 -1/8=-0.125 -2/8=-0.25 -3/8=-0.375 -4/8=-0.5 -5/8=-0.625 -6/8=-0.75 -7/8=-0.875 -8/8=-1
15/16=0.9375 14/16=0.875 13/16=0.8125 12/16=0.75 11/16=0.6875 10/16=0.625 9/16=0.5625 8/16=0.5 7/16=0.4375 6/16=0.375 5/16=0.3125 4/16=0.25 3/16=0.1875 2/16=0.125 1/16=0.0625 0
א
א
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
א 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000
אאאאאאW١ J٢א K٤א
אאא
∴ the range of
١ J٩ J١ J٢
EאאFאא the normalized signal X (t ) is
0 ≤ X < 1 אא
١אא
J٢אאא∴ N = 2 4 = 16 ٤
אאאאאא١
E١
E٢
WאאE١{٠אאF١{٠٠{٠
- ٤٣ -
אא
אא
א
אא
٢٣٧
א
אא EXnF
016 = 0
8 = 0.5 16
15 = 0.9375 16
אאא
אא 0000
0 × 2 3 + 0 × 2 2 + 0 × 21 + 0 × 2 0 1 × 2 3 + 0 × 2 2 + 0 × 21 + 0 × 2 0
١١١١אא
1000 א١{٠א LSBKKKKMSB
=8
1111
1 × 2 3 + 1 × 2 2 + 1 × 21 + 1 × 2 0 = 15
אא
E١٣ J٢FKKKKKKKKKKKKKKKKKK ∆Xu =
1 2N
אא E١٤–٢FKKKKKKKKKKKKKKKKKK ∆Vu = ∆ × u
Vfs =
E٣
E٤
V fs 2N
KאVfs Wא١ E١٥ J٢FKKKKKKKKKK Xu (max) = 1 - ∆ × u = 1 -
1 2N
E٥
W
١{٠א J
אאא J
١٠٠٠FאMSB=0אאא א J E٤
- ٤٤ -
אא
אא
א
אא
٢٣٧
א
א
٥ J٢אא
אאאאאא א
E
E٦
E
אאאאאא
א
אאא אא
E
FאאאEא J E1/16א1.47/162/16א1.67/16
1.67/16FאאE J E1/16א
٤אא٥ J٢א
٤אאאW٥ J٢א - ٤٥ -
אא
אא
א
אא
٢٣٧
א
א
E٧
EFא
א–א
∆×u 1 1 = N = N +1 = 2 −( N +1) 2 2 ×2 2 E١٦ J٢FKKKKKKKKK Where : Eu = the peak unipolar normalized error.
∴ Eu =
אאאא J E١٧ J٢FKKKKKKKKKKKKKKKKKK lu = Eu Vfs =
V fs 2
n +1
= 2 − ( n +1) . Vfs
W٦ J٢
אא٦L
א٢٠٠אא
Kא
∆ × u אאEאF ∆Vu אאEF
Xu(max)EF Vu(max)EF EuEF lu EF
אאא
٢ J٩ J١ J٢
אאא
− 1 ≤ X < 1 +1 -1אא
K١ J٢אא١٦٢٤،٤
- ٤٦ -
E١
E٢
E٣
אא
אא
א
אא
٢٣٧
א
אאא
Xb א
−8 = −1 8
אא
FXbE
0000
.
K
K
K
K
K
K
K
K
K
0
1000
K
K
K
K
K
K
K
K
K 1111
7 = 0.875 8
٤אאאאאאW١ J٢א
E1 LSBאF ( ∆X b ) אא E١٧ J٢F ∆X b =
1
2
n −1
V fs
2
N −1
E٤
= 2 − n +1
∆Vb אא E١٨ J٢F ∆Vb = ∆X b V fs =
E٥
= 2 − N +1V fs
אאאאאא אאא אאא
E١٩ J٢F X b (max) = 1 − ∆X b = 1 − 2 − N +1
E٦
- ٤٧ -
אא
אא
א
אא
٢٣٧
א
E١ J٢אFW ٨ •
E٢٠ J٢F
M = 2 N −1 2
٨ •
E٢١ J٢F
M − 1 = 2 N −1 − 1 2
MSBא٠אא١٠٠٠אא
אMSBאאEF٢אאא E٢٢
⎡ 1 010 → 2 8 ⎫8 J٢F complement aries ⎢⎢ ⎬ 0 010 → − 6 ⎭ 8 8 ⎣ MSB
0001 → − 7 ⎫⎪ 8 8 ⎬ 8 1 1001 → 8 ⎪⎭
אאא٦ J٢א א
∆Ε b אאאא• א ٢٣ J٢ ∆Ε b =
E٧
E٨
∆X b = 2 − N 2
אאאא• א
٢٤ J٢ l b = Eb V fs = 2 − N V fs
- ٤٨ -
אא
אא
א
אא
٢٣٧
א
א٢–٢ אאאאWא K
אאאאאאא١ J٢ J٢
Wאdcאא
١ E+V-VFאא • ٠0V
E١
-V١ +Vא • E٠F
אאdcאאאאאW אאאא،א
אאWduty cycleא - ٤٩ -
E٢
אא
אא
א
אא
٢٣٧
א
אאאNRZא • אאאRZ •
א Wא
אא •
E٣
אאאאא •
אאאאWאאאא
،אאאאKאא
E٤
אאא EBPRZFאאאאKאא
K
אא
אאאאא •
E٥
א
א،BPRBPNRZUPRZUPNRZא •
א،BPRZ-AMI
BPRZ-AMIאאKEF Kא
- ٥٠ -
אא
אא
א
אא
٢٣٧
א
אא
E٦
،+V/2 ،אאא 0Vאאא •
אEFאא• א אא
Kאאאא •
אא٢ J٢ J٢ (Non Return to Zero Level: NRZ-L)אא E١
אאEHIGHFאW١ • אאELOWFאW٠ •
W
J
אאאא J א
א J
אאאא
Kא
אF(Non Return to Zero Mark: NRZ-M)אא E٢ Edifferential Coding א
אאאW١ •
،אא J
،אא J
אאאאאW٠ • K
- ٥١ -
אא
אא
א
אא
٢٣٧
א
W
J
אאאא J
(Non Return to Zero Space: NRZ-S)אאא E٣
אאאאאW١ •
אאאW0 •
،אא J
،אא J
W
J
Kאאאא J
(Unipolar Return to Zero: UPRZ)Wאאא אE٤ אאאW١ •
אאא א J
אא א J
אא J
אאאW٠ • W
אא J
KNRZ J - ٥٢ -
אא
אא
א
אא
٢٣٧
א
Wאאא אE٥ (Bipolar Return to Zero: BPRZ) (Polar Return to Zero: BPRZ) אאאW١ •
0Vאאא א J 0Vאא א J
אאאW٠ •
0Vאאא א J
0Vאא א J
،אאאאאאא • E-V0V +VFא
אא •
אאW
KאאאW
Wאאא אE٦ (Return to Zero-Alternate Mark Inversion: RZ-AMI) אאאW١ •
0Vאאא א J
0Vאא א J
אא J
אאELOWFאW٠ • W
٠אאאא٠אאאא Kאאאא - ٥٣ -
אא
אא
א
אא
٢٣٧
א
W
Kאאאא J
W
J
KNRZ J Wאאא E٧ Biphase- Level (BI Φ –L) or Manchester II code אאאW١ • אא א J אא א J
אאW٠ •
אא •
W
J
KNRZ J
W
Kאאא J
Wאאא E٨ Biphase- Mark (BI Φ –M) or Manchester I code אאאW١ • אא א J אא א J
אאW٠ •
- ٥٤ -
אא
אא
א
אא
٢٣٧
א
W
J
KNRZ J
W
Kאאא J
Wאאאא E٩ Biphase- Space (BI Φ –S) code אאW١ •
אאאW٠ • אאא א J
אא א J
אא •
W
א J
KNRZ J
W
Kאאא J
Wא E١٠ Delay modulation (DM) or miller code אW١ •
א،٠אW٠ • אאאא
W
אא J
W
Kאאא J
KNRZ J - ٥٥ -
אא
אא
א
אא
٢٣٧
א
א
אא
DC
+V/2
3fb/2
UPNRZ
3O
3fP/2
BPNRZ
+V/4
fb
UPPZ
א
3O V
fb
BPRZ
3
3O V
3fb/2
א
א
BPRZ-AMI
אאאW٧ J٢א
- ٥٦ -
אא
אא
א
אא
٢٣٧
א
١١NRZ – L E١
٠٠
אא١NRZ –M E٢
אא٠ אא١NRZ –S E٣
אא٠ ١٠١URZ – E٤
٠٠ ١٠١BPRZPRZ E٥
J١٠٠
١٠א
١BRZ – AMI E٦
J١٠אא
٠٠
١٠١BIΦ-L E٧
٠١٠
٠١١٠١BIΦ – M E٨
אא٠
אא١BIΦ – S E٩ ٠١١٠٠
- ٥٧ -
אא
אא
א
אא
٢٣٧
א
אא١DM
E١٠
אאא٠ Kאאא
א٨ J٢א
- ٥٨ -
אא
אא
א
אא
٢٣٧
א
אאא٣–٢
PCM/TDM
EאFא Wאאא EFKא
K
אאא١ J٣ J٢
אאאE١ KEPAM/TDMFאא
KWאE٢
KfNא • Fs = fn = 2 f m • אאא •
אאאFאאא• א Eא
א٩ J٢אE٣ E
٢١ J٢F
Eframe timeFא •
Tf = TN =
1 2 fm
אאאW٩ J٢א
- ٥٩ -
אא
אא
א
אא
٢٣٧
א
Eword timeFא • E٢١ J٢F
=
1
Tω= Tf 2K fm
K
Ebit durationFא • E٢٢ J٢F
τ=
=
Tω N
1
2K N fm
Wאא
E٤
אאא ﻋﺮض ﻧﻄﺎق א:ﻻﺣﻆ Kאא
אא٢ J٣ J٢
אאאא،א
٣٢אאEUS – 24 Channel SystemF٢٤
K
EUS – 24 Channel SystemFWEאF٢٤١ J٢ J٣ J٢
אאKECode WordsF٢٤אE١ אאאאאאא K241אא •
E٢٤١FאאאאE٠Fא • Kאא
- ٦٠ -
אא
אא
א
אא
٢٣٧
א
א
٠ 1 ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩ ١٠ ١١ ١٢ ١٣ KKKKKKKKK ٢٠ ٢١ ٢٢ ٢٣ ٢٤ ١Fא ٨EFאאא٢٤ E
١٩٣Zא١H١٩٢Z٨х٢٤Wא
Kא٠א24אאאא • ١٢٥µs
1 א • 8000
K٠אאאאאאאא • KEFrame Alignment Word: FAWFאאא
אא،٢٤אא • TI FAWאאא١٢ ١٠٠٠١١٠١١١٠٠
ESuperframeFאEF١٢ •
W٢٤א
٢٤אETI MultiplexerFא K١ E١٢٥µsFאE٨FאPCM
אאאאאא K٢
אKאאא K٣
٨אא٨אא٨אW، K٢٤אאא،אא
אאאאאאאאאא K٤ KKKKאאאאא
TI FAWאאאא١٢א K٥ K
- ٦١ -
אא
אא
א
אא
٢٣٧
א
W٢٤א
אאKא٢٤א אאאEFאאK١٩٢
،א٨٠٠٠אאK١٩٣ Kא١٥٤٤٠٠٠א١٩٣x٨٠٠٠
٢٤W١٠ J٢א
W٣٢אא
EBandwidth = Bit rate אZאF
125µsאfs=8kHz א •
١٩٣Z٨C٢٤H١אאאא •
Tb =
Rb =
125µs ≈ 0.647668 µs 193
1 193 = = 1.544 Tb 125µs - ٦٢ -
אאא •
א •
Mbit / s
אא
אא
א
אא
٢٣٧
א
אאאא١{٥٤٤ •
B
T
=
1
T
= B
1 = 1.544 MHz 0.64766
٢٤אאאאאW١١ J٢א
E32 Channel SystemFWEאאF٣٢٢ J٢ J٣ J٢
אאECode WordsF ٣٢אE١ Kאא
K31٠אא •
אאאE١٦FאE٠Fאא •
אאE٣١١٧١٥١Fאא K
א
٠ 1 ١ ٢ ٣ ٤ KKKKKKKKK ١٣ ١٤ ١٥
١٦
١٧ KKKKKKKKK
٢٩
٣٠
٣١
Fאאא١٥ אאא١٥
א
٨E א
EF ٨
١٩٣Zא١H١٩٢Z٨х٢٤Wא Kא١٦٠א٣٠אאאא • ١٢٥µs
1 א • 8000
Synchronization Fאאאאאאאא •
K١٦٠אאאEand signaling - ٦٣ -
אא
אא
א
אא
٢٣٧
א
W٣٢א
٨FאPCM٣٠אא K١ E١٢٥µsFאE
אאאאאא K٢
،אKאאא K٣ ٨אא٨אא٨אאאW אKאא١٥אאא،אא
אאאאKאאא א،١٨א٨١٧א٨١٦א٨אא
K٣٢א٣١אא
אאאאאאאאאאאא K٤ KKKKאא
W٢٤אא
EBandwidth = Bit rate אZאF
125µsאfs=8kHz א •
٢٥٦Z٨C٣٢אאאא •
Tb =
Rb =
אאא •
125µs ≈ 0.488µs 256
1 256 = = 2 Tb 125µs
א •
Mbit / s
אאאא١{٥٤٤ •
B
T
=
1
T
= B
1 = 2 MHz 0.488
- ٦٤ -
אא
אא
א
אא
٢٣٧
א
W٣٢א
אאא٣٢אW١٢ J٢א
٣٢אאאאאא
٣٢אאאאאW١٣ J٢א
Kאאאא٣٢L٣٠א١٣ J٢א
- ٦٥ -
אא
אא
א
אא
٢٣٧
א
٤–٢
EDelta Modulation: DMF
א،אאאW Kאאאאא
Kאאא٠אאא١ • KאLאאLא •
ELinear Delta Modulation: DMFא١ J٤ J٢ אאאא א
אW١٤ J٢א
אא x(t) אאאאEdifferential circuitFאאאE١
K e(t) אz(t)
e(t) = x(t) – z(t)
אאאQ(t)אEsignal quantizerFאE٢
K e(t)אא e(t)
- ٦٦ -
אא
אא
א
אא
٢٣٧
א
e(t) אE+1Fe(t)אאאE٣ K e(t) אE+1F
KEstep sizeF∆ אאאE٤ ١٥ J٢אאאאא
אאאW١٥ J٢א W
K،אאא،אא
W
W • Estep sizeF∆א J fsא J
- ٦٧ -
אא
אא
א
אא
٢٣٧
א
Wא •
Eslope overloadFא J
KאאEgranular noiseFא א J Esignal to noise ratio S/NFא\אא
K∆א
Eslope overloadFאW١٦ J٢א
Egranular noiseFאאW١٧ J٢א
∆אES/NFאLאW١٨ J٢א
- ٦٨ -
אא
אא
א
אא
٢٣٧
א
Eadaptive delta modulationFא٢ J٤ J٢
،אא،א E١ אאא،
אאאא E٢
אאאא E٣ Estair case functionFאאא،אאא
Wאא،א E٤
،אאא J
אאKאא
אאאא J KאאKאאא
٣ J٢ J٤ J٢ Wא אE١
EintegratorFאא• א
אא،אא •
KEvariable gain amplifierFאאא • אאאאאא
K
Wא אE٢
אאאאא • ESong algorithmFא J
אא∆אאאאאא
אאאKאא∆אא
Kא
- ٦٩ -
אא
אא
א
אא
٢٣٧
א
ESong algorithmFאW١٩ J٢א
אאEdamped oscillationF
ESpace shuttle algorithmFאאא J
Kאאאאאאא ،אKא،אאאא
KאאאאKא
ESpace shuttle algorithmFאאW٢٠ J٢א
- ٧٠ -
אאא
اﻟﻤﺆﺳﺴﺔ اﻟﻌﺎﻣﺔ ﻟﻠﺘﻌﻠﻴﻢ اﻟﻔﻨﻲ واﻟﺘﺪرﻳﺐ اﻟﻤﻬﻨﻲ אאאא
אא
אא
אא
٣
אא
אא
א
אא
٢٣٧
א
אאWאא Band Pass Modulation (BPM)
אFאאאאאWאא KEאאFאאEא א،א،אWא
Wאא
(ASK)(Amplitude shift keying)אא J (FSK)(Frequency shift keying)אא J (PSK)(Phase Shift keying)אא J
K٪٩٠אאאWאא
١٥Wאא
אאWאא
אאאאאאא אWאא Kאא
- ٧١ -
אא
אא
א
אא
٢٣٧
א
(Baud rate)א(bit rate)אא1-3
(ASK,FSK,PSK)אאאאא
KEFא
W(Binary modulation)אא J١
אאאאא(bit)
W
Rb = Rs N
M= 2 2 N = logM = log 2 =1
(1-3) W
אאאאFאאWRb Ebit /secאאאא
אאאאאFאאאWRs KEאאאאWאא
KאאאWM
EאאאאאFאאWN
W(Quadrature modulation)אא J٢
WEאאאFאאא Rs = Rb/2 N
M= 2 = 22 = 4 N= log2 M = log 4 = 2
- ٧٢ -
(2-3)
אא
אא
א
אא
٢٣٧
א
WEאFאאא J٣
WEאFאאאא(N) Rs = Rb/N = Rb/log2 M N
M = 2 N = log 2 M
(3-3)
W(ASK)אא 2-3
אא(Ac cos wst)א(Ac sin wct)אאא
WאאאE١FאאאאאE٠Fאא
אאW
אאאFאאאEASK)
(1-3)(AM.DSBTC)אאאאאא +V 1 1 000 0 t -V אאאאE1-3F
א(NRZ-L)א Vm(t)אאE١ אא
Vc (t)= Ac cos 2π fct W(ASK)אאאאאE٢
VASK(t)
= [A±Vm(t)] cos 2π fct = [Ft±v] Cos 2π fct = A[1±V/A] Cos 2π fct = A[1±m] cost 2π fct (ASK)אא
VASK(t) = A [1±m] cos 2πfct
(4-3 )
.
א(m)W - ٧٣ -
אא
אא
א
אא
٢٣٧
א
(2-3)אא
EASKFE2-3Fא
(Efficiency) (ASK) אא
m = 1א
E2A٠VFאאא
(ASKF(ASK)
אאאאאאא
(3-3)א
(ASK)E3-3F
- ٧٤ -
אא
אא
א
אא
٢٣٧
א
EASKFEASKF
(Envelope detector)א
אאW
אא(DSB-SC)אאאאא
(ON-OFF KEYING) (OOK)אאא
Wאאאא
(modulating signal)EunipolarFאאאE١
Vm (t) ={ +1 V logic 1 or { 0V logic 0 אאאאאOOK E٢ Vook(t) =Vm (t) *Vc (t) =Vm * Ac cos wct = { Ac*cos wct for logic (1) {٠ for logic (0)
(5-3)א
(5-3)
( 4-3)אאא
- ٧٥ -
אא
אא
א
אא
٢٣٧
א
(OOK ) (4-3) (OOKF(OOK)
אאאאאאא
EאאF(Balanced Modulators) אאאEOOKF(5-3)א
EOOKאFE5-3F
- ٧٦ -
אא
אא
א
אא
٢٣٧
א
(OOK Detection)אא Wא
(coherent detection)אאאE١
(synchronous detection)אא
א(reference carrier)אאא
אאאאKאאאא
אאאאאאא אאאאאא
(phase & frequency mismatch distortion) אאאאאאאE6-3Fא (synchronous detection) ( ﺑﻮاﺳﻄﺔ اﻟﻜﺸﻒ اﻟﺘﺰاﻣﻨﻲAMDSB-SC)
EOOKאאF(6-3)
(Non Coherent Detection)אאאE٢
(Asynchronous detection)אא
אאאאאאאאא
(7-3)(Envelope detector)
EאאאאאאFE7-3F - ٧٧ -
אא
אא
א
אא
٢٣٧
א
Wא אEdiodeFאאאאאE١
Etime constant of chargeFאאאא
Eforward resistanceFאא
אאאEreverse biasedFא
אERFאאאא
אאTZR*C א
אאאאאאאאאE٢ א
binary FאאאאאאאE٣
(comparator)אאאrestoration)
EOOK BandwidthFEOOKFא
EpcmFVm(t)אאאE١ (ones followed by zeros)אא
Tm = 2Tb א
fm = 1/Tm =1/2Tb = Rb/2
)Vm(t)אא(Fc)אא(OOK)E٢
Eא
EFcFE8c-3Fאאא
EFcFEFmFאאא
- ٧٨ -
אא
אא
א
אא
٢٣٧
א
EOOKFאאאאE8-3F ERbFEdata rateFאEFmFאאE8c-3Fא Rb=1/Tb =1/(Tm/2) =2Fm
Wא
EFcFאאאאE٤
אאאאא
(BandwidthFאאאאא BT= Rb = 2Fm
WE3-3Fא
(6-3)
W1-3 (200 Kbit/sec)ENRZ-PCMF אאEASKFא
- ٧٩ -
אא
אא
א
אא
٢٣٧
א
EאאאאFWאא Performance: ( bit error rate & symbol error rate )
אאאאאאאE١
(PB) (Probability of bit error)אאא(BER)
(Probability of symbol error)אא א (PE) אאFאאאE٢ אאאאאEאאא
K
Wאא(SER)(BER)אE٣ (BASK,BFSK,BPSK)אא J
(1 bit)א(symbol)
KאאEאFא PB = PEBER = SERW
(QASK,QFSK,QPSK)אא J
PB = 1/2 PEBER = 1/2 SER(2 bit) (µASK,µFSK,µPSK)אא J
אאא(N)א(N) Wאא PB = PE / N = PE / log2M EאאאאFאאא:(M)
אKKKKKKKPB = PE/ 4 WN= log2 16 = 4 M = 16 (16-PSK)
אאאאאFא(BER)אאE٤ K
אאאאאFאFE٥
K
W(Es / No)(SER)(Eb / No) (BER)E٦ א=Eb,Es
(W/HZ)אאא=No
- ٨٠ -
אא
אא
א
אא
٢٣٧
א
א(BASK)א
(Performance of binary BASK)
אאאאאאא אאאאאא
Kאא
אאאאאאא
א
(Coherent detection) : אאאE١
PB=PE= 1/2 erfc = 1/2 erfc(
=1/2 erfc ( A 2 Tb / 8 No )
Eb / 2 No
C / 4N
) (7-3)
(Non Coherent detection): ( اﻟﻜﺸﻒ اﻟﻼ ﺗﺮاﺑﻄﻲ٢
PB = PE =
e
−( Eb / 2 No)
= 1/2 e
−(C / 4 N )
−( A2Tb / 8 No) e = 1/2 (8-3)
EF(bit)אEb = (E1+Eo) / ٢
א(9-3)אא
E1=C*Tb = A2 Tb/2
(OOKF(BASK)(9-3)
אאאאK
Eo = 0 - ٨١ -
אא
אא
א
אא
٢٣٧
א
אאאK :
Eb = E1+E2/2= C Tb /2 = A2*Tb/4 C1=C= A2/2
אאאאאאא
Co = 0
אאא
(A – Peak amplitude of the received carrier (v))EAFאאא No = N/BT= N/Rb = KT (W/HZ) אאא N= KT*BT (W) אא −23
K =(1.38*10 JK) T= ( TA+TR)
(K)אאא
TA: EאאFאאW(TA) TR=T1+T2/a1 =T3/a1+a2+……………. EאאאFא T1,T2,T3,…….. אאא G1,G2,G2,…. אאא C/N אאא
WEBERFאאEBASK)א
- ٨٢ -
אא
אא
א
אא
٢٣٧
א
EBERFE10-3F
W2-3
(10MHZ) א (OOK)אE10 Kbit/sF
(5*10(-5) W/HZ) אאאא (10 (-2)V) א (BER) אאא
אא3-3
Frequency Shift Keying (FSK)
אאEאאFEFsFאאאאאאא
Ebase bandFאאאאאEאFEFmF KEpolarFא
W
∆Fאאאאאאאאא EFCFא
WFSK
WאEFSKFאאE١ VFSK (t) = (Ac cos { 2 π (fc + VM(t)) ∆f ) t } (9-3) (אFSKF -VFSK : ﺣﻴﺚ (Volts)אא
-A
(HZ)EאאFאא JFc
(HZ)(Vm (t))אאאאא J∆f - ٨٣ -
אא
אא
א
אא
٢٣٧
א
( ± ١)אאאאא JVm (t)
Logic (1) = +1 , Logic (0) = -1
Wא(9-3)אE٢ (a) VFSK (t) = A cos [ 2 π (fc + ∆f) t ] = A cos 2 π fmt . (3-10) for a logic 1 , Vm (t) = +1 (b) VFSK (t) = A cos [ 2 π (fc - ∆f) t ]= A cos 2 π fst for a logic 0 , Vm (t) = -1 W
אא(Logic 1)(Logic 0)אאE WEאFא
Fm=Fc+∆FELogic 1Fא
Fs = Fc-∆F ELogic 0Fאא
אאאאא(Fc)א(Fm &Fs) אאאאE (Fc ± ∆F)
: (FSK)
( أوVCO) Eאאא EFSK) (١
אא ( Voltage Controlled Oscillator)
(VCO) (12-3)
:(VCO)( ﻣﺒﺪأ ﻋﻤﻞ ﺟﻬﺎز اﻟـ٢ KאאEVoltageFא
(FSK)א،אא
אEVCOFא،(Vm(t) = ± 1)אE٣
EF,FsF
- ٨٤ -
אא
אא
א
אא
٢٣٧
א
:(FSK)
EFSK)E13-3F
W
(sec)אא JTm
(HZ)(Vm (t))אאאא JFm (Rb= 2Fm) (bit/sec)אEbitsFא JRb
(Mark Frequency)א JFm ESpace Frequency Fאא JFs
WEFSKFEBaud rateFאאERbFEbitsFא
אאאאאEFSKFE١
Kאא
KאאאאE٢
WאאE٣
אאאW(Rb)Ebit rate)א
אאאW(Baud rate or symbol rate)אאא
(Fs)אא(Fm)אאא(9-3)אאE٤ Kאאאאאאא
Bit rate =Symbol rate (Baud rate) Rb (bit/sec) = Rs ( Symbol/sec) = Baud rate ( baud) - ٨٥ -
אא
אא
א
אא
٢٣٧
א
(FSK Bandwidth)W(FSK)אא
אEFSKF(BT)אאאE١
Fm = Rb/2
(3-11)א(אFM)א BT = 2 (∆f + fm) (11-3) (∆F =Fm-Fs/2) W
(Fc) אאאאאאא :
אEFאאאאאאW אאא
(١٢-٣)א (11-3)א (Fm ∆F)E٢
BT = 2 ∆ f + 2 fm = fm – fS + Rb
(12-3)
(FSK) אאא (BT)
EFSKFאאE14-3F
(sin x/x)אא(Pulsed sinusoidal waves)אאא
(12-3)אא(FSK)
W(Rb)אא(Fm)אא Rb = 2Fm
- ٨٦ -
אא
אא
א
אא
٢٣٧
א
אאאאאא (14-3)אאאא Kאאא
:3-3
E200 K bit / secFאאENRZ-LFאEPCMF K(150KHZ)אאאאאא،(FSKF
א
Wא
אאאאאא J١ K(Fs)א( Fm)
אאאא(Logic 1)אאא J٢ אאאא
(Logic 0)אא
(אPulsed RF Signal)אאאאא J٣ (base band)אא
Kאאאאא J٤
אאא J٥ Kא(Binary restoration)אאאא
- ٨٧ -
אא
אא
א
אא
٢٣٧
א
W(FSK)אאאE FSK Coherent detection
EFSKFאאאE15-3F
Wא
אאאאאאא K١ אאאאאא
א
Kאאאאאאא
WאאאELogic 1Fאאאא J Vr(t) = Acos wm(t) (13-3) Wאאאא J Vc(t) = 2A cos(2) wmt = A( 1+ cos 2wmt) (14-3) אאאאאE14-3)אאא אK٢ (differential amp.)אאא
אאאאא
: (15-3)א Vo (t) = Gv Vd(t) = A*Gv = positive constant (15-3) ELogic 1Fאאאאא
אELogic 0Fאאאאא K٣ Kאא
- ٨٨ -
אא
אא
א
אא
٢٣٧
א
W(Performance)אא WאאאEא
BER = PB = ½ erfc
⎛ Eb ⎞ ⎜ ⎟ ⎜ 2 No ⎟ ⎝ ⎠
= ½ erfc
⎛ PcTb ⎞ ⎜ ⎟ ⎜ 2 No ⎟ ⎝ ⎠
= ½ erfc
⎛ A Tb ⎞ ⎜ ⎟ ⎜ 4 No ⎟ ⎝ ⎠
(3-16)
2
Eb = PC Tb PC = No =
A2 2 PN BT W
א(EbF
אאEPcF
אאאENoF אאאE
BER = PB = ½ exp (
-Eb 2NO = ½ erfc
)
(3-17)
⎛ A2Tb ⎞ ⎜⎜ ⎟⎟ 2 No ⎝ ⎠
אאאאאא
אאא(bits)אאא
אאא(PB)אאE16-3F א
- ٨٩ -
אא
אא
א
אא
٢٣٧
א
PB =
F (
-Eb 2NO
) =F(C/N)
(FSK)אא (16-3) : 4-3
(FSK)אאאאאאאWא( BER)
(1KHZ,2KHZ):אאא(0.4 V)א(2sec)(bit)א (10(-12) w/HZ)אאא
(BER)א(13-3)אאא אא4-3 Phase Shift Keying (PSK)
אאאFאאאאא
WאאאEא
K( ASK)א J
K(FSK)אא J
- ٩٠ -
אא
אא
א
אא
٢٣٧
א
Wאאאא
(Binary PSK)אאאאאאPSKE١ Eאא
(Quadrature PSK)אאאאאא אPSKE٢ KEאא
(µ-PSK) ( אPSK)אPSKE٣
אEאאFאאEMFאאF Kאאא
W
(18-3)
W
EFא JNb
EאאאFאא JM W5-3 KאאאאKM= 2
EPSKF
(Binary PSK) אאא
(BPSK) אאא(17-3) - ٩١ -
אא
אא
א
אא
٢٣٧
א
א(PCM)U (t)אאא J١ KE-90°א٩٠°F
EאאFאא(i)א(Ui )אא J٢ Wא
(19-3 )
W
(volts)א JV
Ui ={+1 for logic (1) {-1 for logic (0)
אא JUi
W (19-3)א
-E π / 2 Fאlogic (1) J HE π / 2 Fאlogic (0) J
Wא(19-3)אאאא J٣
E20-3F - ٩٢ -
אא
אא
א
אא
٢٣٧
א
WEBPSKFא
א(BPSK)א E٠١Fאא
(BPSK) א(18-3)
E١
: ( اﻟﺤﺎﻣﻞ هﻮ٢ Vc (t)=Vsin wct
(BPSK) א (19-3)
- ٩٣ -
אא
אא
א
אא
٢٣٧
א
:V BPSK(t) (٣
א VBPSK(t)
t
BW=2fm=Rb f fc-fm fc+fm
EVBPSKFאאE20-3F
EFאאאאאאE٤ V BPSK(t) = sin 2 πFmt*sin2 πfct = 1/2[ cos 2 π (fc-fm)- 1/2 cos2 π (fc+fm)t ]
W
Wאא B= (fc+fm) – (fc+fm)=2fm=Rb BT = RbWא
EאאאאF
Wאא א B= 2(∆f+fm)=2fm+2∆f 2∆f=0 W
B= 2fm = Rb
- ٩٤ -
Wאא
אא
אא
א
אא
٢٣٧
א
(BPSK)אא
WEBPSK)E
(OOK)אאE21-3Fאא Kא(OOK)אא
ui= Binary
Balanced Modultor
Bw=Rs Ui V sin wct
BPF
Ui V sinωct VBPSK(t)
data VSinωct Reference
Carrier oscillator
(BPSK)(21-3)
W(BPSK)E
אאא(Ui)אאא
אאאאאאא
אא (balanced modulator)אא Kאאאא
- ٩٥ -
אא
אא
א
אא
٢٣٧
א
Vd(t)=2uiVsinwct
input signal Balanced VBPSK(t)= detector VUisinωct 2 sinωct
Vo=VUi={+v Logic 1 {-v logic 0 L Vo=V PF
Carrier oscillator
(BPSK)E22-3F
Wאא א J
Wאא א J
Wאא(LPF)אאאאאאא
- אאאאאא Kאאאאא
- ٩٦ -
אא
אא
א
אא
٢٣٧
א
: (Performance)
PB = PE = 1/2 erfc ( = 1/2 erfc (
EB / NO )
אא
c * Tb / No )
(21-3)
= 1/2 erfc (
v 2 Tb / 2 No )
(BER)(Eb/No PB) אאאא • (22-3) •
E23-3F
- ٩٧ -
אא
אא
א
אא
٢٣٧
א
: (QPSK)אאא Quadrature phase shift keying
אאא(QPSK)E١ Kאא
א (BPSK) (QPSK) E٢ : א
VQPSK = UiVcosωct + UQVsinωct
(٢٢-3)
W
(I)אא(BPSK)אאא J
(Q)א(BPSK) אאא J
Wאאא(V QPSK)אא J
UQV
VQPSK=V
│VQPSK │=
2
UIV
(UiV)2 + (UQV)2 =
- ٩٨ -
2v2
=V 2
(23-3)
אא
אא
א
אא
٢٣٧
א
W(47-3)א(46-3)אE٣
= cosΦcoswet + sinΦsinwet = cos(ωct-Φ ) Wא
cos(ωct – Φ) 2 VQPSK = V
: ﺣﻴﺚ إن
אאא - Φ Φ = tan-1 UQ UI
(24-3)
(π / 4 , 3π / 4 , 5π / 4 , 7π / 4) אא Φ
(UI,UQ)אאאא( א1-3)אא VQPSK (eq. 72)
Vcosωct+vsinωct
vcosωct+vsinωct
VQPSK (eq. 74)
Kא(QPSK)EΦFאאא Phasor
v 2 cos(ωct- π /4)
Φ=45
t Transmitted s bite UI
UQ
1
1
-1
1
-1
-1
1
-1
Φ=135 v 2 cos(ωct-3 π /4) Φ=225
-vcosωct-vsinωct
v 2 cos(ωct-5 π /4)
-vcosωct-vsinωct
v 2 cos(ωct-7 π /4)
Φ=315
E1-3F - ٩٩ -
אא
אא
א
אא
٢٣٧
א
Wאא
Wאא(PSK)(Rs)אE
Rs =
Rb symbols/s N
W
אא JRb
א JN
אאאאE
M = 2N symbols
אאאאE
2π rad M אאאE C = B log2 M W אא JB W(S/N)אאא ((PCM)א) WאאאאאאE١ W(BER)אאE א(Thermal noise)אאאאאא Kאא W(S/N)אאE (PCM) P =
360 M
=
- ١٠٠ -
אא
אא
א
אא
٢٣٧
א
W
(BER)אWאאא J W(Quantization noise)א J
Wא
(S/N)Q = 22N = M2
W
Kא JM
Kאאא JN
אאאאאאאE٢
ASK,FSK,PSK
V
*
RF
mixer
S
( /N) or
IF
detector
PCM
* P
B
D/A
*
LPF (S/N)
Eb No
א(PCM)אאא Wאא
- ١٠١ -
אא
אא
א
אא
٢٣٧
א
: 6-3 200fw (200x10-15W).אאאאא אא(300K)אאא
K(425K)
(PCM)אאא Wא(2Mbit/sec)EbitF
(PSK)אE
(ASK)אE
(ASK)אאאE ( QPSK) آﺸﻒ ﺗﺮاﺑﻄﻲE
- ١٠٢ -
אא
א
אא
٢٣٧
א
אא
1. Ashok Ambardar, ‘Analog and Digital Signal Processing’, Thomson Learning Inc, 1999.
2. John B. Anderson, ‘Digital Transmission Engineering’, Prentice Hall, 1999. 3. A.B.Carlson, ‘Communication Systems’ McGraw-Hill, 1992.
4. Simon Haykin: ‘Communication Systems’, 4th Edition, Wiley & Sons, 2001. 5. 6. 7. 8.
Simon Haykin and Barry Van Veen: ‘Signals and Systems’, John Willey & Sons, Inc, 1999. Simon Haykins, ‘Digital Communication’, John Wiley, 2001. B.P.Lathi, ‘Analog and Digital Communication Systems’, PHI, 1992. Douglas K. Lindner, ‘Signals and Systems’, McGraw-Hill International, 1999.
9. John Pearson : ‘Basic Communication Theory’, Prentice Hall, 2000 10. J. Proakis: ‘Digital Communications’, McGraw Hill, 1995. 11. J. Proakis and M. Salehi: ‘Contemporary Communication Systems Using MATLAB’, Bookware Companion Series, PWS Publishing, 1998. 12. Proakis, ‘Digital Communication’, McGraw-Hill, 1992. 13. Martin Roben: ‘Analog and Digital Communication Systems’, 4th Edition, Prentice Hall, 1998 14. K.Sam Shanmugam: ‘Digital and Analog Communication Systems’, John Wiley, 1985. 15. Bernard Sklar: ‘Digital Communications, Fundamentals and Applications’, Second Edition, Prentice Hall, 2001. 16. Taub & Schilling: ‘Principles of Communication’, McGraw-Hill Publication, 1990.
17. Wayne Tomasi: ‘Advanced Electronic Communication Systems’, Prentice Hall, 2001 18. Rodger E. Ziemer and Roger L. Peterson: ‘Introduction to Digital Communication’, 2nd Edition, Prentice-Hall, 2001.
19. Roger E. Zeimer et al.: ‘Signals and Systems, Continuous and Discrete’, McMillan, 2nd Edition, 1990.
- ١٠٣ -
אא
א
א
٢٣٧
א
א
............................................................................................................ ............................................................................................................ ١ .................................................................................... אWאא ٢ .................................................................................. Wא١ J١ ٥ ................................................................................... EAliasingFא٢ J١ ٦ .............................................................ETypes of samplingFאW٣ J١ ١١ .............................................................. אא٤ J١ ١٤ .................................. אאאאאאא٥ J١ ٢٤ ........................................................................ אא٦ J١ ٣٠ ..................... אאא א٧ J١ ٣٢ ............................................................................. אאWאא ٣٣ .......................................................................אאא١–٢ ٤٩ ......................................................................................... א٢–٢ ٥٩ ..................................... PCM/TDMאאא٣–٢ ٦٦ ......................................................................................... ٤–٢ ٧١ ......................................................................... אאWאא ٧٢ .......................................(Baud rate)א(bit rate)אא1-3 ٧٣ ................................................................. W(ASK)אא2-3 ٨٣ ........................................................................... אא3-3 ٩٠ ........................................................................... אא4-3 ١٠٣ ..................................................................................................... אא
- ١٠٤ -
אאאאאא אEאFאא GOTEVOT appreciates the financial support provided by BAE SYSTEMS