This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
+ (2) . pUSTX s 2. tOGDA DLQ 2() = 2=3 IME@T MESTO OCENKI (2.33)pI (2.36) OSTATO^NYH ^LENOW, SFORMULIROWANNYE DLQ SLU^AQ s 2. zDESX USLOWIE (1.27) WYPOLNQETSQ AWTOMATI^ESKI: 2(1 Q) p1 < 21 PRI = 2n + 1 3: 2
56
3 aNALOG FORMULY pLAN ERELQ{rOTAHA DLQ MNOGO^LENOW qKOBI
mNOGO^LENAMI qKOBI OPIYWAETSQ WSE MNOVESTWO KLASSI^ESKIH ORTOGONALXNYH MNOGO^LENOW, OPREDELENNYH NA KONE^NOM PROMEVUTKE. sTANDARTIZOWANNYE MNOGO^LENY qKOBI OPREDELQ@TSQ PO FORMULE rODRIGA 8] (;1)n ; ; +n +n (n) Pn(x ) = n!2n (1 ; x) (1 + x) (1 ; x) (1 + x) x 2 (;1 1) > ;1 > ;1: (3.1)
pOLINOMY (3.1) QWLQ@TSQ ORTOGONALXNYMI NA INTERWALE (;1 1) S WESOM h(x) = (1 ; x)(1 + x) : iZWESTNO 8], ^TO FUNKCIQ 0 1+1=2 0 1 +1=2
@cos A u( ) = @sin A P (cos ): (3.2) 2
2
n
UDOWLETWORQET LINEJNOMU DIFFERENCIALXNOMU URAWNENI@ WTOROGO PORQDKA 21 0 12 3 1 2 2 (3.3) u00 + 64 4 ; + 4 ; + @n + + + 1 A 75 u = 0: 4 sin2 2
2 4 cos2 2 oSNOWYWAQSX NA \TOM FAKTE, DOKAVEM SLEDU@]U@ TEOREMU pUSTX 0 < " < =2, 1 1 ; 2 ; 2 4 4 A= 4 B= 4
N = n + + 2 + 1 > ;1 > ;1
57
Q(cos
2 N ) = ; 64
3 A + B + N 275 sin2 cos2
I ( ) = I ( n ) = tEOREMA 3.1.
2
2
Z r =2
jQ(cos N )jd':
9n1 = n1(" ) 8n n1
NA OTREZKE
SPRAWEDLIWY SLEDU@]IE FORMULY 0 1+1=2 0 1 +1=2
@sin A @cos A Pn(cos ) = 2 2 2 8 0 19 < = 1 6 64C1(n) cos I ( ) + O @ 1 A + = r4 : n3
jQ(cos N )j
93 8 1 0 < 1 = + C2(n) :sin I ( ) + O @ 3 A 775 n
20 1+1=2 0 1 +1=2
66@ A @cos A Pn(cos 4 sin
2
2
r4
= jQ(cos
" ; "]
30 )775
=
2 8 0 19 < = 66 N )j4C1(n) :; sin I ( ) + O @ n13 A +
93 8 1 0 < 1 = + C2(n) :cos I ( ) + O @ 3 A 775 n
GDE
C1(n) = 2;
2 + +1 6 64Pn(0 2
8 < ; P (0 ;: 2 n
(3.4)
r4
) jQ(0
) ; Pn0 (0
0 0 N )j @1 + O @ 9 = ) r4
(3.5)
1 1A1A
n3 ;
1 jQ(0 N )j
0 O@
13 1 A77 3 5
n
(3.6)
58
C2(n) = 2;
28 + +1 6< ; 64 2 : 2 Pn(0
1 r4 jQ(0 N )j
0 0 @1 + O @
1
n3
) ; Pn0 (0
11 AA + Pn(0
9 = )
r4
) jQ(0
0 N )jO @
13 1 A77 : 3 5
n
(3.7)
oCENKI W FORMULAH (3.4) I (3.5) QWLQ@TSQ RAWNOMERNYMI PO
2 " ; "]. oCENKI W FORMULAH (3.4) { (3.7) NE QWLQ@TSQ RAWNOMERNYMI PO ".
zAFIKSIRUEM PROIZWOLXNYE " > 0, " 2 (0 =2), > ;1, > ;1. pOLXZUQSX ZAME^ANIEM, SDELANNYM OTNOSITELXNO KORNEJ PRI DOKAZATELXSTWE TEOREMY 2.1 (SM. ABZAC PERED FORMULOJ (2.11)), PRIMENQEM LEMMU 1.1 NA OTREZKE " ; "] K FORMULE (3.3). pUSTX n~ 0 = n~ 0(" ) TAKOE, ^TO 8n n~ 0 : Q(cos N ) < 0 PRI
2 " ; "]. pOLU^AEM DWA ^ASTNYH REENIQ URAWNENIQ (3.3) :
dOKAZATELXSTWO.
u12( ) = { r4 1 e 4 jQ(cos
0 1 r Z exp BB@{ jQ(cos ' N )jd'CCA N )j =2 (1 + 12( )) (3.8)
GDE j12( )j
41(" N Q) : 1 ; 21(" N Q)
fORMULY DLQ PROIZWODNYH IME@T WID u012( ) = r 4
= ;e{ 4 jQ(cos
(3.9)
0 1 r Z N )j exp BB@{ jQ(cos ' N )jd'CCA =2 (1 + 12( )) (3.10)
59
GDE
41(" N Q) + 1 ; 21(" N Q) 0 1 1 0 ;3=2 B@ 41(" N Q) CA + jQ jjQj 1+ : (3.11) 4 1 ; 21(" N Q) fORMULY (3.8){(3.11) IME@T MESTO PRI WYPOLNENII USLOWIQ (1.8). zAMETIM, ^TO 0 1 (" N Q) = O @ 13 A
j12( )j
n
A
1(" N
0 Q) = O @
1 1A
n3 PO\TOMU 9n0 = n0(" ) n0 n~ 0, TAKOE, ^TO 8n n0 USLOWIE (1.8) WYPOLNENO, I, SLEDOWATELXNO, SPRAWEDLIWY (3.8) I (3.10). pRI \TOM IZ (3.9) I (3.11) SLEDUET, ^TO OSTATO^NYE ^LENY IME@T OCENKI 12(
0 ) = O @
1 1A
0 ) = O @
1 1A
(3.12) n3 12( n3 RAWNOMERNO PO 2 " ; "]. oPREDELITELX wRONSKOGO REENIJ (3.8) IMEET WID u1( ) u2( ) W1 = u0 ( ) u0 ( ) = 1 2 = {(2 + 1( ) + 2( ) + 1( ) + 2( ) + + 1( )2( ) + 2( )1( )): w SILU (3.12) 9n1 = n1(" ) n1 n0 8n n1: W1 6= 0. pOLOVIM 8 ;{ { > > < v1( ) = e24 u1( ) + e 2 4 u2( ) (3.13) { ;{ > > : v2( ) = ; e 2 4 u1( ) ; e24 u2( ):
60
oPREDELITELX wRONSKOGO DLQ NOWOGO NABORA REENIJ RAWEN { ; { 4 4 1 e e W2 = 4 ;e;{ 4 ;e{ 4 W1 = ; {W2 1 : v1( ) I v2( ) { ^ASTNYE REENIQ URAWNENIQ (3.3), A PREOBRAZOWANIE (3.13) QWLQETSQ NEWYROVDENNYM. w SILU \TOGO 8n n1 v1( ) I v2( ) LINEJNO NEZAWISIMY. dLQ NIH IMEEM FORMULY 1 jQ(cos N )j
v1( ) = r4
I
2 0 66 BB Z r 4cos @ jQ(cos ' =2
1 jQ(cos N )j
1 N )jd'CCA + ^1(
3 )775
v2( ) = r4
2 0 66 BB Z r 4sin @ jQ(cos ' =2
1 N )jd'CCA + ^2(
3 )775
GDE DLQ OSTATO^NYH ^LENOW SPRAWEDLIWY OCENKI ANALOGI^NYE (3.12). pRIMENQQ IZWESTNU@ TEOREMU IZ TEORII DIFFERENCIALXNYH URAWNENIJ 6], MOVEM PREDSTAWITX FUNKCI@ (3.2) W WIDE LINEJNOJ KOMBINACII \TIH REENIJ u( ) = C1(n)v1( ) + C2(n)v2( ) (3.14) GDE KO\FFICIENTY MOVNO NAJTI IZ SLEDU@]EGO SOOTNOENIQ 8 + +1 > ; 2 > + C ( n ) v = 2 C ( n ) v 1 2 > 2 2 2 Pn(0 ) < 1 0 0 C 1 (n)v1 2 + C2 (n)v2 2 = > > + +1 + +3 > : = 2; 2 ( ; )Pn(0 ) ; 2; 2 Pn0 (0 ) (3.15)
61
KOTOROE SLEDUET IZ (3.14). pRIMENQQ FORMULY kRAMERA K (3.15), NAHODIM W TO^NOSTI FORMULY (3.6) I (3.7). dIFFERENCIRUQ RAWENSTWO (3.14), POLU^AEM (3.5). tEOREMA DOKAZANA. wY^ISLIM INTEGRAL I ( ), STOQ]IJ W ASIMPTOTI^ESKIH FORMULAH (3.4) I (3.5). dOKAVEM SLEDU@]EE UTWERVDENIE oBOZNA^IM t1 I t2 { KORNI MNOGO^LENA ;N 2t2 + 2(A ; B )t + 2(A + B ) + N 2 (3.16) PRI^EM t1 < t2. pUSTX v u u x(t) = ut tt2;;tt 1
( ) = arctg x(cos ) ; arctg x(0)
s 2 1+t2 1r 66 x(cos ) ; s ;1;t1 '1( ) = ; 4 ;(1 + t1)(1 + t2)4ln ; t2 x(cos ) + ;1+ 1;t1 s x(0) ; 1+t2 3 ;1;t1 77 s ; ln t2 5 x(0) + ;1+ 1;t1 s 2 t ; 1 2 1r 66 x(cos ) ; s 1;t1 '2( ) = 4 (1 ; t1)(t2 ; 1)4ln ; t ; 1 2 x(cos ) + 1;t 1 s x(0) ; t2;1 3 1;t s 1 775 ; ln x(0) + t12;;t1 1 r 2 v u u (1 + t1)(1 + t2) 66 1 + t1 u t arctg f 1( ) = ; x(cos )g ; 4
2
1 + t2
3 v u u 1 + t1 ; arctgfut x(0)g775
1 + t2
62
2( ) = ;
r
2 v u u (1 ; t1)(1 ; t2) 66 u 1 ; t1 x(cos )g ; 4arctgft
2
1 ; t2
3 v u u 1 ; t1 ; arctgfut x(0)g775:
1 ; t2
8" > 0, " 2 (0 =2), 9n2 = n2(" ) 8n n2, ^TO NA OTREZKE " ; "] SPRAWEDLIWY SLEDU@]IE FORMULY 8 > > 2N ( ) + '1( ) + '2( )] PRI 2 + 2 < 1=2 > > > 2N( ) + 1( ) + 2( )] PRI 2 + 2 > 1=2 > > > 2 2 > > < N ; 2 PRI = = 1=4 I ( ) = >> 2N ( ) + '1( ) + 2( )] (3.17) > > PRI 2 + 2 = 1=2 jj > j j > > > 2N ( ) + 1( ) + '2( )] > > > : PRI 2 + 2 = 1=2 jj < j j GDE 2 " ; "]. tEOREMA 3.2.
dOKAZATELXSTWO. v u Z u B A u u t 2 + 2 + N 2d = =2 sin 2 cos 2 v u Z u ;N 2 cos2 + 2(A ; B ) cos + 2(A + B ) + N 2 u t = d : 2 1 ; cos =2
dELAQ ZAMENU t = cos , POLU^IM r cos Z ;N 2t2 + 2(A ; B )t + 2(A + B ) + N 2 I ( ) = ; dt: 2 1 ; t cos =2 tAK KAK N 6= 0 PRI n 1, TO ;N 2t2 + 2(A ; B )t + 2(A + B ) + N 2
63
QWLQETSQ KWADRATNYM TREH^LENOM S DWUMQ RAZLI^NYMI KORNQMI r ; (A ; B )2 + 2N 2(A + B ) + N 4 ; (B ; A) t1 = t1(N ) = N2 r
(A ; B )2 + 2N 2(A + B ) + N 4 ; (B ; A)
t2 = t2(N ) = : N2 rASSMOTRIM PQTX RAZLI^NYH SLU^AEW: 1) A + B > 0 2) A + B < 0 3) A = B = 0 4) A + B = 0 B ; A > 0 5) A + B = 0 B ; A < 0. 9n2 = n2(" )8n n2 W WYEUKAZANNYH SLU^AQH SOOTWETSTWENNO WYPOLNENY SOOTNOENIQ 1) t1 < ;1 t2 > 1 2) ;1 < t1 < 0 0 < t2 < 1 3) t1 = ;1 t2 = 1 4) t1 < ;1 0 < t2 < 1 5) ;1 < t1 < 0 t2 > 1. s^ITAEM, ^TO n2 WYBRANO TAKIM OBRAZOM, ^TO t1 I t2 LEVAT WNE OTREZKA cos( ; ") cos "]. rASSMOTRIM PERWYJ SLU^AJ. r cos Z (t2 ; t)(t ; t1) I ( ) = ;N dt: (3.18) 2 1 ; t 0 zAMENA PEREMENNOJ r (t ; t)(t ; t ) (3.19) x = x(t) = 2 t ; t 1 1
64
DAET RAWENSTWO I ( ) = N (t2 ; t1)2
x(cos Z ) x(0)
2x2dx : (3.20) (x2 + 1)((t1 + 1)x2 + t2 + 1)((1 ; t1)x2 ; (t2 ; 1))
rAZLAGAQ DROBX POD INTEGRALOM (3.20) W SUMMU PROSTEJIH, POLU^IM
I ( ) = 2N
8 x(cos Z )> < 1 ; > 2+1 : x x(0)
1 1 ; (1 + t1)(1 + t2) + 2 (t1 + 1)x2 + t2 + 1 9 > = 1 1 dx: (3.21) + (1 ; t1)(t2 ; 1) 2 (1 ; t1)x2 ; (t2 ; 1) > |TO RAWENSTWO SPRAWEDLIWO I W SLU^AQH 2), 4), 5). iNTEGRIRUQ (3.21), POLU^IM (3.17) PRI j2 ; 1=4j + j 2 ; 1=4j 6= 0. sLU^AJ 3) RASSMATRIWAEM NEPOSREDSTWENNO
I ( ) =
Z
=2
! Nd = N ; 2 :
tEM SAMYM, TEOREMA DOKAZANA. rEZULXTATY PREDYDU]EJ GLAWY POZWOLQ@T NAZWATX FORMULY (3.4) I (3.5) ANALOGAMI FORMULY pLANERELQ{rOTAHA DLQ MNOGO^LENOW qKOBI I IH PROIZWODNYH. sLEDSTWIE 3.1. w SLU^AQH = = ;1=2 (MNOGO^LENY ~EBYEWA I RODA) I = = 1=2 (MNOGO^LENY ~EBYEWA II RODA) ANALOGOM FORMULY pLANERELQ{rOTAHA QWLQ@TSQ QWNYE FORMULY DLQ MNOGO^LENOW
Tn(x) = cos(n arccos x)
65
I
SOOTWETSTWENNO.
x Un(x) = sin(np+ 1) arccos 1 ; x2
nAIBOLEE INTERESNYM SLU^AEM QWLQETSQ = = 0 ( MNOGO^LENY lEVANDRA ). eGO SLEDUET RASSMOTRETX OTDELXNO. iZWESTNO, ^TO FUNKCIQ (1 ; x2)1=4 2 1=2 u ( ) = (sin ) Pn (cos ) = n!2n (x ; 1)n](n) jx=cos UDOWLETWORQET URAWNENI@ 2 0 12 3 u00 + 64 4 sin1 2 + @n + 12 A 75 u = 0 2 0 ]
(3.22)
(3.23)
8].
bUDEM ISSLEDOWATX NAE URAWNENIE NA OTREZKE " ; "], GDE 0 < " < =2. wY^ISLIM INTEGRAL, KOTORYJ WSTRE^AETSQ W OCENKAH, PRIWEDENNYH W LEMME 1.1. pOLAGAQ B = 2n + 1, IMEEM v u u u u t
v Z 1 1 uuut 1 2 = 2 2 + B d = 2 2 =2 sin =2 4 sin v u ! sin Z u 1 1 1 u t + B2 p = ( zAMENA y = sin ) = sign ; dy 2 2 2 2 y 1 ; y 1 v 2 u ! sin u Z 1 + B 2t dt 1 u 2 t = = ( zAMENA t = y ) = sign ; 4 2v 1 ; t t 1 u 2t u 1 + B u = ( zAMENA x(t) = t )= Z
0 12 1 + @n + A d
1;t
=
66
! x(sin Z 2 )
(B 2 + 1)x2 = sign ; dx = 2 ; 1)(x2 + B 2 ) 2 2( x +1 0 1 2 ! x(sin 2 Z ) B 1 1 B 1 CA dx = @ ; + 2 = sign ; 2 2 2(x p ; 1) 2(x + 1) x + B 2 +1 ! 1 2 sin2 ; j cos j 1 + B = sign ; ln p + 2 2 2 4 1 + B sinp + j cos j 1 + B 2 sin2 B ! B + arctg 2 B j cos j ; 4 :
w PREDPOSLEDNEM RAWENSTWE BYLO ISPOLXZOWANO RAZLOVENIE NA PROSTEJIE DROBI. dLQ RASSMATRIWAEMOGO ^ASTNOGO SLU^AQ IMEEM
Q = Q(
2 n) = ; 64
3
0 12 1 1 @ A 75 2 + n+ 4 sin 2
Q0 = Q0 ( n) = 2cos sin3 1 + 2 cos2 00 00 Q = Q ( n) = ; 2 sin4
(
3 0 0 121;5=2 2 5 1 1 1 n Q) = Q;5=2 4 8 Q00Q ; 32 Q025 = B@ 4 sin2 + @n + 2 A CA ! 2 3 1 2 2 2 66 (1 + 2 cos ) 1 + 4 n + 2 sin 5 cos2 777 6 64 ; = 64 sin6 128 sin6 75 12 ;5=2 0 1 1 A CA @ 2 + n+ 4 sin 2 1 2 1 2 2 2 2 ; cos + 8 n + 2 sin + 16 n + 2 cos2 sin2 : 128 sin6 0 = B@
1
67
zAMETIM, ^TO ( n Q) > 0 PRI 2 (0 ). fORMULY LEMMY OCENIWA@TSQ S POMO]X@ WELI^INY Z;" 1(" n Q) = j( n Q)jd " 0 1 1 B@ 1 0@ 1 1A2CA;5=2 + n+ 6 128 sin " 4 2 3 0 12 0 12 Z;" 2 1 1 642 ; cos2 + 8 @n + A sin2 + 4 @n + A sin2 2 75 d = 2 2 " 0 1 1 B@ 1 0@ 1 1A2CA;5=2 = + n+ 128 sin6 " 4 2 0 12 Z;" 3 cos 2 1 ; + 2 @n + A 3 ; 2 cos 2 ; cos 4 ] d = 2 2 " 2 0 0 121;5=2 1 1 = B@ + @n + A CA 4 2
3 2
( ; 2") +
sin 2" 2
1 2 2
+2 n+ 3( ; 2") + 2 sin 2" + 128 sin6 "
pOLXZUQSX NESLOVNYMI SOOTNOENIQMI sin 4" = sin 2" cos 2" sin 2" I sin 2" ; 2" 2 POLU^IM 0 121 0 ; 2" 1 1(" n Q) 5 B@2 + 12 @n + A CA : 2 128 sin6 " n + 12 rEENIQMI URAWNENIQ (3.23) SOGLASNO LEMME 1.1 BUDUT 1r
Z r
!
u12(n ) = { 4 4 exp { jQjd (1 + ) e jQj ;" IH PROIZWODNYE ! Z r r 4 0 { jQjd (1 + ) u12(n ) = ;e 4 jQj exp { ;"
sin 4" 2
:
68
GDE j j j j
41(" n Q) 1 ; 21(" n Q)
(3.24)
41(" n Q) 1 + jQ0jjQj;3=2 1 ; 21(" n Q) 4 0
1
41(" n Q) CA B@1 + : (3.25) 1 ; 21(" n Q) zDESX I DALEE DLQ UPRO]ENIQ POWESTWOWANIQ ^EREZ I (BEZ INDEKSOW) BUDUT OBOZNA^ATXSQ L@BYE OSTATO^NYE ^LENY, IME@]IE UKAZANNYE RAWNOMERNYE NA SEGMENTE OCENKI. oCENIM jQ0jjQj;3=2: 0 121;3=2 cos 0 1 1 jQ0jjQj;3=2 = 3 B@ 2 + @n + A CA 2 2 sin 4 sin 0 0 121;3=2 1 B@ 1 @ 1 A CA + n+ < 1
2 sin3 " 4
2
2 sin3 "
0 1;3 1 @n + A :
2
nEOBHODIMO, ^TOBY WYPOLNQLOSX USLOWIE LINEJNOJ NEZAWISIMOSTI POLU^ENNYH REENIJ. tOGDA, WZQW IH SOOTWETSTWU@]IE LINEJNYE KOMBINACII IH I IH PROIZWODNYH, POLU^IM ASIMPTOTI^ESKIE FORMULY DLQ FUNKCII (3.22) I EE PROIZWODNOJ. oPREDELITELX wRONSKOGO IMEET WID: W = 2{(1 + )(1 + ): wMESTO USLOWIQ W 6= 0 BUDEM RASSMATRIWATX BOLEE SILXNOE j + + j < 1: (3.26) KOTOROE UPRO]AETSQ S POMO]X@ OCENOK (3.24), (3.25). pOLOVIM u( ) = C1(n)u1( ) + C2(n)u2( ): (3.27)
69
iMEETSQ SISTEMA DLQ OPREDELENIQ KO\FFICIENTOW: 8 > < C1(n)u1 2 + C2(n)u2 2 = Pn(0) (3.28) > 0 0 : C1(n)u1 2 + C2(n)u2 2 = ;Pn0 (0): iZWESTNO, ^TO 8] P2m+1(0) = 0 P2m(0) = (;1)m 22(2m(mm)!!)2 0m(0) = 0: P P20m+1(0) = (;1)m (2(mm!)+2221)! 2 m
dALEE NAM POTREBU@TSQ SLEDU@]IE FORMULY p m! = 2mm+1=2e;m(1 + r1(m)) GDE 0 < r1(m) < e1=(4m) ; 1
(3.29)
1 = 1 + r2(x) 0 < x < 1 GDE ; x < r2(x) < 0 1+x
(3.30)
(1 + x)p = 1 + r3(x) 0 < x < 1 0 < p < 1 GDE 0 < r3(x) < px: (3.31) pERWAQ IZ NIH | FORMULA sTIRLINGA 5], DWE DRUGIE | SLEDSTWIE IZ TEOREMY OB OCENKE RQDA lEJBNICA, PRIMENENNOE K SOOTWETSTWU@]IM RQDAM tEJLORA. pOLXZUQSX IMI MOVNO POLU^ITX SLEDU@]IE ASIMPTOTIKI. 21=21=2(2m)2m+1=2e;2m(1 + r1(2m)) m P2m(0) = (;1) 2m 1=2 1=2 m+1=2 ;m 2 = 2 2 m e (1 + r1(m)) m (;1) (;1)m = p (1 + r1(2m))(1 + r4(m)) = p (1 + r5(m)) (3.32)
GDE
m
m
1;e
1=(2m)
< ; 2r1(m) + r (m) < r4(m) < 0 2 1
70
jr5(m)j maxfjr1(2m)j jr4(m)j(1 + jr1(2m)j)g e1=(8m)(e1=(2m) ; 1): sLEDOWATELXNO, (;1)mP2m
v u 0 12 u u 41 1 u (0)t + @2m + A
4
2
=
v u 0 12 u u 41 1 u t + @2m + A =
(2m)! 22m(m!)2 4
v u u 2 = ut (1 + "(2m))
2
(e1=(2m) ; 1) 1=(8m) 5=(8m) GDE j"(2m)j 1 + 3e +e : (3.33) 4
aNALOGI^NO (;1)mP20m+1(0) s
1 (2m + 1)! s 1 = = 2m (m!)2 4 1 41 2 3 2 3 2 4 + 2m + 2 4 + 2m + 2 v u u2 = ut (1 + "(2m + 1))
GDE j"(2m + 1)j e1=(8m)(e1=(2m) ; 1) + 1 1=(2m+1) 5=(8m) 1=(8m) + e +3 e ;e + 1 m 2 N : (3.34) 16m
dEJSTWITELXNO, W SILU (3.32) (2m + 1)! 2m + 1 = p (1 + r5(m)) 22m(m!)2 m GDE jr5(m)j < e1=(8m)(e1=(2m) ; 1): (3.35) dALEE 1 = 41 3 2 + 2m + 2 4
s
71
1;1=4 CA 2
0 B@1 +
1 1 + = 2m + 1 2(2m + 1) 2m + 1 1 =p (1 + r6(m)) 2m + 1 GDE 41 (1 ; e1=(2m+1)) < r6(m) < 0 (3.36) SOGLASNO (3.30) I (3.31). kROME TOGO v 0 11=2 u u 2 m + 1 1 1 u t = @1 + A = 1 + r7(m) GDE 0 < r7(m) < 2m 2m 4m (3.37) SOGLASNO (3.31). oB_EDINQQ (3.35){(3.37), POLU^AEM (3.34). iSPOLXZUQ FORMULY kRAMERA DLQ SISTEMY (3.28), POLU^IM KO\FFICIENTY C1(n) C2(n). pODSTAWLQQ IH W FORMULU (3.27), POLU^IM ( S U^ETOM USLOWIJ (1.8) I (3.26) ) ASIMPTOTI^ESKIE FORMULY DLQ MNOGO^LENOW lEVANDRA. dIFFERENCIRUQ (3.27), POLU^IM FORMULY DLQ IH PROIZWODNYH. dLQ OCENKI OSTATO^NYH ^LENOW POSTUPIM SLEDU@]IM OBRAZOM. w SLU^AE 2 (0 =2) POLAGAEM " = , A W SLU^AE 2 (=2 ) POLAGAEM " = ; . pRI = =2 FORMULY DLQ MNOGO^LENOW lEVANDRA SWODQTSQ K ZNA^ENIQM \TIH MNOGO^LENOW W NA^ALE KOORDINAT. oKON^ATELXNYJ REZULXTAT SFORMULIRUEM W WIDE TEOREMY. =p
pUSTX
1
0
1
0 12 1 j ; 2 j B@ n( ) = 1 5 6 1 + 6 @n + 2 A CA 64 n + 2 sin
n( ) = 1 ;42n( )( ) n
1 0@ 1 1A;3 n( ) = n( ) + 8 sin3 n + 2 (1 + n( ))
72
2 (0 ) n( ) < 1=2 n 2 I jn( )j + jn( )j + jn( )n( )j < 1
tEOREMA 3.3. pRI USLOWIQH
SPRAWEDLIWY SLEDU@]IE FORMULY v u u 1 u2 1=2 1) (sin ) Pn(cos ) = t s4 1 2 + n + 1 2 2 4 sin r 0 " ! 1 2 sin2 ; j cos j 1 + (2 n + 1) B + @cos sign ; ln r
2 4 1 + (2n + 1)2 sin2 + j cos j r 1 1 + (2n + 1)2 sin2 n ! n # 2n + 1 1 + "(n) + arctg ; ; + +Rn( )CA 2 (2n + 1)j cos j 4 2 2 1 + n( ) GDE
8 1=(2m) > (e ; 1) 1=(8m) 5=(8m) > 1 + 3e + e PRI n = 2m > 4 < j"(n)j >> e1=(8m)(e1=(2m) ; 1) + 161m e1=(2m+1) + 3 > : e5=(8m) ; e1=(8m) + 1 PRI n = 2m + 1 8 > < n( )n( ) PRI n = 2m jRn( )j >: 2n( ( ) )++n(2 () )+PRI n = 2m + 1 n n
jn( )j n( ) + n( ) + n( )n( ) v v u 0 12 u u u u 4 2 1 1 0 u @ A t 2) (sin )1=2Pn(cos ) = t u 2 + n+ r4 sin 2 0 ! 1 " 2 sin2 ; j cos j 1 + (2 n + 1) B @; sin sign ; ln r +
2 4 1 + (2n + 1)2 sin2 + j cos j r 1 1 + (2n + 1)2 sin2 n ! n # 2n + 1 1 + "(n) + arctg ; ; + +Sn( )CA 2 (2n + 1)j cos j 4 2 2 1 + n( )
73
GDE
8 > < 2n( ) + n2 ( ) PRI n = 2m jSn( )j >: ( ) + ( ) + ( ) ( ) PRI n n n n
n = 2m + 1 :
74
4 nOWYJ ANALOG FORMULY pLAN ERELQ{rOTAHA DLQ MNOGO^LENOW ~EBY EWA{lAGERRA
e]E ODNIM WAVNYM SLU^AEM KLASSI^ESKIH ORTOGONALXNYH MNOGO^LENOW QWLQ@TSQ MNOGO^LENY ~EBYEWA{lAGERRA 8] ns; es ( ; 1) c Ln(s ) = r s+ne;s (n) n!;( + n + 1) n = 0 1 2 : : : > ;1 (4.1) GDE s 2 (0 1). Lcn(s ) { MNOGO^LENY, ORTONORMIROWANNYE S WESOWOJ FUNKCEJ h(s) = se;s: wSPOMOGATELXNAQ FUNKCIQ w = e;s2=2s+1=2Lcn(s2 ) UDOWLETWORQET DIFFERENCIALXNOMU URAWNENI@ 7] 0 1 1 2 ; wss00 + B@4n + 2 + 2 ; s2 + 4 s2 CA w = 0: (4.2) 1 ;2 2 rASSMOTRIM FUNKCI@ Q(s n ) = 4n + 2 + 2 ; s + 4 s2 . zAMETIM, ^TO W DANNOM SLU^AE NELXZQ WYWESTI ASIMPTOTI^ESKU@ FORMULU W OKRESTNOSTI TO^KI s = 0, KAK \TO DELALOSX DLQ MNOGO^LENOW ~EBYEWA{|RMITA, W SILU OSOBENNOSTI FUNKCII Q(s n ) W \TOJ TO^KE. iSKL@^ENIE SOSTAWLQET SLU^AJ jj = 1=2, A \TO KAK RAZ I ESTX RASSMOTRENNYE RANEE FUNKCII ~EBYEWA{|RMITA. pOPYTAEMSQ POLU^ITX REZULXTAT DLQ POLUINTERWALOW, SODERVA]IH 1. fIKSIRUEM PROIZWOLXNOE > ;1. wWEDEM WSPOMOGATELXNU@ FUNKCI@ f : R ! R TAKU@, ^TO f () > 1 8 2 R : pUSTX = 4n + 2 + 2. pROWEDEM W (4.2) ZAMENU PEREMENNOJ x =
75
pfs () , y(x ) = w(s ). tOGDA URAWNENIE PRIMET WID 2 ; 41 ! 00 2 2 yxx(x ) ; f () f ()x ; 1 + x22f () y(x ) = 0: (4.3) k \TOMU URAWNENI@ MOVNO PRIMENITX LEMMU 1.2 IZ GLAWY I. nEOBHODIMO PROWERITX WYPOLNENIE USLOWIJ, SFORMULIROWANNYH W LEMME. dLQ DANNOGO SLU^AQ 0 1 1 2 ; Q(x ) = 2f () B@f ()x2 ; 1 + x22f (4) CA : bUDEM RASSMATRIWATX (4.3) NA PROMEVUTKE 1 1) S USLOWIEM Q(x ) > 0: (4.4) dLQ WYPOLNENIQ (4.4) DOSTATO^NO, ^TOBY PRI n 1
f () > 65 : 64
uSLOWIE (1.26) LEMMY 1.2 WYPOLNQETSQ, ESLI W KA^ESTWE WETWI KORNQ WZQTX GLAWNU@ WETWX. iMEEM
(x Q) =
1 !5=2 2; 1 f 1=2() f ()x2 ; 1 + x22f (4) 2 1 2 ;4 3 1 9 6 2 2 4; f ()x ; f () + ; 8 4 4 x22 1 1 23 2 2 1 ; 3 ; ; 4 2 4 + 6 4 24 75: (4.5) 4 x f () 8 x f ()
2 ; 1 4
pUSTX 1. tOGDA WYRAVENIE W KWADRATNYH SKOBKAH W (4.5) STROGO MENXE NULQ. dLQ OCENKI 2(1 Q) SWERHU MOVEM BRATX TOLXKO OTRICATELXNYE ^LENY W (x Q).
76
rASSMOTRIM SLU^AJ jj > 1=2. 1 Z1 2(1 Q) f 1=2() (f ()x21; 1)5=2 1 3 2 1 2 ; 3 1 3 664 f 2()x2 + f () + 4 2 4 775 dx = 8 4 4 x f () 1 Z1 83 f 2()x2 + 14 f () = 1=2 f () 1 (f ()0x2 ; 1)51=2 dx + 3 1 A Z1 dx 2 @ + 3 3=2 ; : 4 f () 4 x4(f ()x2 ; 1)5=2 1
pERWOE SLAGAEMOE BYLO UVE RAZOBRANO PRI DOKAZATELXSTWE TEOREMY 2.2. oNO MENXE WELI^INY 1
4xe 3()
GDE xe () OPREDELQETSQ PO FORMULE
v u u ex() = u t1 ;
1 f () :
zAMETIM, ^TO xe 3() ! 1. w INTEGRALE WTOROGO SLAGAEMOGO !1 POLOVIM r (4.6) 3 = f ()x: tOGDA ONO RAWNO 3 0@ 2 1 1A Z1 d3 : ; 43 4 pf () 34(32 ; 1)5=2 w DANNOM SLU^AE MY IMEEM DELO S BINOMINALXNYM DIFFERENCIALOM. sLEDUET PROWESTI ZAMENU
4
v u u = ut1 ;
1
32 :
77
wTOROE SLAGAEMOE W OCENKE 2(1 Q) RAWNO 2 3 3 0@ 2 1 1A 64 16 xe 3() e 3 1 75 ; 4 3 + 3 ; 3x() ; xe () + 3xe 3() : 43 tAKIM OBRAZOM, PRI jj > 1=2 3 0@ 2 1 1A " 16 xe 3() e 1 2(1 Q) 4xe 3() + 43 ; 4 3 + 3 ; 3x() ; 3 1 # 1 3 0@ 2 1 1A " 17 1 # ; e + e3 e3 + 3 ; + = x() 3x () 4x () 4 4 3 3xe 3() =
1
1
0 1" 1 @2 ; A 17 +
1 # xe 3() :
+ 4xe 3() 43 4 pUSTX jj < 1=2 I f () 65=64 + , GDE { NEKOTOROE POLOVITELXNOE ^ISLO, NE ZAWISQ]EE OT . iSPOLXZUQ ZAME^ANIE OB OCENKE 2(1 Q) SWERHU (SM. ABZAC POSLE FORMULY (4.5)), IMEEM 2(1 Q) f 1=12() "3 Z1 1 9 14 ; 2 # 1 2 2 dx = 5=2 f ()x + f () + 2 2 65 8 4 4 x 1 f ()x2 ; 64 1 Z1 83 f 2()x2 + 14 f () = 1=2 f () 1 f ()x2 ; 6564 5=2 dx + 9 41 ; 2 Z1 dx : + 3 1=2 4 f () 1 x2 f ()x2 ; 65 5=2 64
dELAQ ZAMENU (4.6), POLU^AEM W PERWOM SLAGAEMOM f 1=2() Z1 38 f ()x2 + 41 dx = 1 Z1 38 32 + 14 d = 1 f ()x2 ; 6564 5=2 pf () 32 ; 6564 5=2 3
78
=
GDE
3 2 77 1 666 3 Z1 d 323 Z1 d 3 3 = 64 p 3=2 + 5=2 775 = p 8 f () 32 ; 6564 512 f () 32 ; 65 64 0 11=21 0 65 = B@ zAMENA 5 = @1 ; 3;2A CA = 64 2 3 1 1 Z Z 1 1024 d5 2584 d5 77 = 664; 4225 ye() 52 + 4225 ye() 54 5 = 2 2 3 3 2584 1 75 1 64 2584 75 1 64 488 1024 1 12675 ; 4225 ye() + 12675 ye3() 12675 488 + ye3() v u u ye() = ut1 ;
65 : 64f ()
pOLXZUQSX TEMI VE ZAMENAMI, WO WTOROM SLAGAEMOM POLU^AEM dx 9 14 ; 2 1=2 Z1 f ( ) 5=2 = 65 4 3 2 2 1 f ()x f ()x ; 64 d3 9 14 ; 2 Z1 = = 4 3 pf () 32 32 ; 65 5=2 64 0 13 1 9 @ 64 A 4 ; 2 Z1 (1 ; 52)2 = 4 65 3 ye() 54 d5 = 2 3 9 0@ 64 1A3 14 ; 2 64 8 1 2 = + e3 ; e ; ye ()75 3 4 65 3 3y () y() 2 3 3 0@ 64 1A3 14 ; 2 64 1 75 4 65 3 8 + ye3() : tAKIM OBRAZOM, PRI jj < 1=2 IMEEM 3 3 2 2 1 64 2584 75 3 0@ 64 1A3 14 ; 2 64 1 75 2(1 Q) 12675 488 + ye3() + 4 65 3 8 + ye3() : 64 e3 tAK KAK f () 65=64 + , TO ye2() 65+64 , y () ! !1 1.
79
nA OSNOWANII PROWEDENNYH OCENOK PRI > ;1 0()8 0:
2 1 ; 4 1
90 =
2(1 Q) < 12 :
tOGDA URAWNENIE (4.3) SOGLASNO LEMME 1.2 IMEET REENIE y(x ) TAKOE, ^TO WYPOLNENY NERAWENSTWA, FIGURIRU@]IE W LEMME. iMEEM 2; 41 f ( ) x ; 2 x32f () jQ0(x )jjQ(x )j;3=2 = 1=2 f () f ()x2 ; 1 + 2; 14 !3=2 : x22f ()
(4.7)
oBOZNA^AQ
2 ; 14 A = A( ) = 2f () RASSMOTRIM PRI FIKSIROWANNYH I FUNKCI@ f ()x ; xA3 F (x) = 3=2 GDE x 1 f () > 65=64 > 4: A 2 f ()x ; 1 + x2 pRI RASSMATRIWAEMYH USLOWIQH ;2f 2()x2 ; f () + 10Af () x12 ; 3A x14 0 < 0: (4.8) Fx(x) = 1 5=2 2 f ()x ; 1 + A x2 sLEDOWATELXNO, FUNKCIQ F (x) DOSTIGAET MAKSIMUMA W KRAJNEJ LEWOJ TO^KE x = 1. iZ (4.7) SLEDUET 2; 14 f () ; 2f () 2 jQ0(x )jjQ(x )j;3=2 1=2 f () f () ; 1 + 2; 41 !3=2 : 2
f ()
80
aNALOGI^NO PRODELANNOMU W GLAWE II PRI DOKAZATELXSTWE TEOREMY 2.2
v 0 u u u BB r u 4 u Q t @
1 v 0 1 u 1 u 2 CCA = uut4 f () B@s2 ; + ; 4 CA:
s f () 1 pfs () v u u
0 BB@1 r
s CC = f () A
Z
1
s2
0 1 2; 1 u u t2f () B@f ()t2 ; 1 + 2 2 4 CAdt = t f () v u 2; 1 Zs u u u 4 d t 2 ; + =
pf ()
2
OTKUDA DLQ REENIQ URAWNENIQ (4.2) POLU^AEM FORMULU 1 ! 2; 1 tf () s2 ; + 2 4 s
w(s ) = vuu4
1 0 v u 2; 1 CC BB Zs u u u 4 2 CC (1 + (s )) B t ; + d exp B@;p 2 A f () r 2 1 GDE s 2 f () +1) ; 4 1
j(s )j
A DLQ EE PROIZWODNOJ
w0(s
42(1 Q) 1 ; 22(1 Q)
v u u 2; 41 u 4 s2 ; + u ) = ;ut f () s2 0 1 v u 2; 1 BB CC Zs u u u 4 2 B CC (1 + (s )) t ; + exp B@;p d 2 A f () r 2 1 GDE s 2 f () +1) ; 4 1
81
j (s )j
1 1 42(1 Q) + 1 ; 22(1 Q) 2 f 1=2() 2 1 1 f () ; 2f;(4) 0B 4 (1 Q ) 2 CA : @ 1 + ! 1 ; 22(1 Q) 2; 14 3=2 f () ; 1 + 2f ()
u^ITYWAQ, ^TO FUNKCIQ e;s2=2s+1=2Lcn(s2 ) UDOWLETWORQET (4.2), KAK I PRI DOKAZATELXSTWE TEOREMY 2.2 SPRAWEDLIWO e;s2=2s+1=2Lcn(s2 ) = Cn()w(s ) 2 GDE Cn() | NEKOTORYJ KO\FFICIENT r , = 4n +2 +2 j ; 1=4j 1 2 6= 1=4 > ;1 n 1 s f (). sTARIJ KO\FFICIENT MNOGO^LENA Lcn(s2 ) RAWEN 8] 1 n!;( + n + 1)
r
SLEDOWATELXNO, PRI FIKSIROWANNYH n I SPRAWEDLIWA FORMULA r w(s ) n!;( + n + 1) 1 = slim Cn() !1 e;s2=2s2n++1=2 : ~TOBY NAJTI \TOT PREDEL, DOKAVEM SLEDU@]EE UTWERVDENIE. oBOZNA^IM
D = D(
1 0 1 ) = 2 ; 4 @ 2 ; A
4
7(t) = 7(t
v pD u u ; u ) = uut t ; +2pD t s; 2 1 4 2 2 s ; + ; 4 Z
I (s) = I (s f ) = p
f ()
d
82
r p 8 s > p y; ;pD > > 1 +pD > < 2 ; D ln r +;ppDD y+ s K (y) = > s p +p D ! > D+ arctg y pD+ > : pD ; D;
2 ; 1=4 > 0 2 ; 1=4 < 0:
uTWERVDENIE 4.1. pUSTX f () > 65=64
>4 0<
2 ; 1 4
1 > ;1. tOGDA p + 1 I (s) = D 2( 2 7; 1) ; 4 ln 7 ; 1 ; 7 7 7(s2) p r ; D ; K (7) s f (): (4.9) 2 (f ()) 7
dOKAZATELXSTWO. s 1 4 2 2 s ; + ; 4 Z
pf ()
s
d = (6 = 2) =
1 Zs ; 6 + ; = d6 = 2 f () 6 2
0 BB = BBBB7 @
Zs
2 6
1 4
1 62 ; 6 + 2 ; 41 CCCC r C= + 2;4(2; 14 ) C A
s
=
2
6 ;
2 2 7
dp7 pD ! = + D ; 2 2 2
7(f ()) (7 ; 1) 7 2 ; 2 = ( RAZLAGAQ DROBX NA PROSTEJIE ) =
= ;D
2 7( )
83
7Z(s2) 2 pD 64 =; 2 2
7(f ()) (7 ; 1)
p
; D 1 + ; 2 72 ; 1 p 3 ; D 1 p 75 + d : 2 72 ; ;+pDD 7 iNTEGRIROWANIE W \LEMENTARNYH FUNKCIQH DAET REZULXTAT. fIKSIRUEM n. iZ OPREDELENIQ 7(s2) WYTEKA@T FORMULY p p 0 1 p D + D1 2 2 7 (s ) ; 1 = s2 + D 2 s4 + O @ s16 A p 0 1 D 2 7(s ) = 1 + 2s2 + O @ s14 A 0 p 1;=4 0 0 11 D 1 (7(s2) ; 1);=4 = B@ CA s=2 @1 + O @ 2 AA : 2 s iMEEM 1 0 2 2 p s ( s ) 7 B@ D ; CA = lim 2 2 s!1 2(7 (s ) ; 1) 20 1 pD 1 2 2 BB 1 + 2s2 + O s4 s ; s CCC = ; p B = slim !1 @ 1 + + 2D + O 14 2 2 A 4 2s s I 2 ;=4 ;=4 slim !1(7(s ) + 1) = 2 : oBOZNA^IM ^EREZ I1(s) ZNA^ENIE INTEGRALA (4.9) NA WERHNEM PREDELE. pOLU^AEM ;2n;;1=2 s slim !1 s4 s2 ; + 2;1=4 exp(I (s) ; s2=2) = 1 s2
84
p ! D ; ; 2n;;1 2 s exp 2 K (7(s )) = slim ! 2 !; 4 = !1 p 7(s2) 2 exp D 2( 72(s2);1) ; s2
77((ss2))+1 ;1 p p ! ! ; D ; D ; 2n;;1 s exp 2 K (1) 2n++1 exp 2 K (1) = slim s = 22 e4 : ; ; !1 D82 2e 4 D8 tAKIM OBRAZOM, v u = 8 u D uuu =2 =4 t
r
f () 0B@ 7(f ()) + 1 1CA=4 Cn() = 2 e n!;(n + + 1) (f ()) ; 1 7 0 p (f ()) + B @ exp ; D 2 7 2(7 (f ()) ; 1) p 1 ; D K ( (f ())) ; K (1)]CA 1 + 7 2 1 + (+1 ) GDE (+1 ) = s!lim (s ): +1 tEPERX MOVEM SFORMULIROWATX OSNOWNOJ REZULXTAT. oBOZNA^IM # 8 " 3 3 > s s 1 1 2 > + 43 ; 4 17 + (s2;)3=2 > 4(s2 ;)3=2 > > 1 > PRI j j > > < 2 3 2 3 E (s ) = >> 1 26 1 ; 2 3 3 3 75 + 3 64 4 648 + 75 2584s s 4 488 + > 3 3 = 2 3 = 2 12675 4 65 > (s2; 6564 ) (s2; 6564 ) > > > : PRI jj < 21
I1(s) =
p
E (+1 ) = s!lim E (s ) +1
p 2 D7(s ) ; ln 7(s ) + 1 ; ; D K ( (s2)) 7 2(72(s2) ; 1) 4 7(s2) ; 1 2 2
A DLQ FUNKCIJ D = D( ) 7(t) = 7(t ) I K (y) SPRAWEDLIWY OBOZNA^ENIQ UTWERVDENIQ 4.1.
85
tEOREMA 4.1. eSLI 65 64
n 1 > ;1 6=
1 4
2
, GDE = 4n + 2 + 2,
2 ; 1 4
1 s2 >
E (s ) < 21
TO SPRAWEDLIWY FORMULY 2 c (s2 ) = 1) e;s =2s+1=2L n =8 D 1 s = =2 =4 r 2 e n!;( + n + 1) 4
1 2 ;1=4 2 s ; + s2 0p 1 D ; K (1)CA exp (;I (s)) 1 + (s ) exp B@ 1 2 1 + (+1 )
GDE
j(s )j 2)
4E (s ) 4E (+1 ) j(+1 )j 1 ; 2E (s ) 1 ; 2E (+1 )
#0 2 =2 +1=2 c ; s 2 e s Ln(s ) s =
"
s
4 2 2;1=4 = 8 s ; + D s2 = ; =2 =4 r 2 e n!;( + n + 1) 0p 1 D ; exp B@ K (1)CA exp (;I1(s))
2
GDE
1 + (s ) 1 + (+1 )
2 s ; s;2 4 4E (s ) 1 1 + 2E (s ) j (s )j + : 1 ; 2E (s ) 2s s2 ; + 2; 41 !3=2 1 ; 2E (s ) 1
2
s2
zAME^ANIE 4.1. pOLXZUQSX FORMULOJ 8]
p Ln(s ) 0s = nLcn;1(s + 1) > ;1 n 2 N
c
(4.10)
IZ TEOREMY 4.1 MOVNO POLU^ITX ASIMPTOTI^ESKIE FORMULY DLQ L@BYH TAKIH, ^TO > ;1 I 6= ; 32 + m, GDE m 2 N .
86
zAME^ANIE 4.2. fORMULA 8]
r 0 c (4.11) s Ln(s ) s = nLn(s ) + (n + )nLcn;1(s ) S ISPOLXZOWANIEM REZULXTATOW TEOREMY 4.1 DAET NOWYE ASIMPTOTI^ESKIE FORMULY. c
zAME^ANIE 4.3. aSIMPTOTI^ESKIE FORMULY DLQ ISKL@^ENNYH SLU^AEW = ; 23 + m, GDE m 2 N , MOGUT BYTX POLU^ENY
S POMO]X@ REZULXTATOW TEOREM 2.1 I 2.2, FORMUL (4.10) I (4.11) I FORMUL 8]
d (x) = L c (x2 ;1=2) H 2n n d c 2 H 2n+1 (x) = xLn (x 1=2): |TOT SLU^AJ ZAME^ATELEN TEM, ^TO W OTLI^IE OT DRUGIH PARAMETROW ZDESX IME@TSQ ASIMPTOTI^ESKIE FORMULY W NA^ALE KOORDINAT.
zAME^ANIE 4.4. dOPUSTIMYE ZNA^ENIQ PARAMETRA W TEO
REME 4.1 MOVNO NESKOLXKO RASIRITX. oGRANI^ENIE 2 ; 14 1 ZDESX PRINQTO W SWQZI S O^EWIDNOSTX@ WOZNIKA@]IH W \TOM SLU^AE NERAWENSTW, KOTORYE W DANNOM TEKSTE PRIWODQTSQ NA SLOWAH (SM., NAPRIMER, NERAWENSTWO (4.8)).
w ZAKL@^ENIE GLAWY DOKAVEM UTWERVDENIE, S POMO]X@ KOTOROGO MOVNO SUDITX OB ASIMPTOTIKE KO\FFICIENTA K (1). 1 2 uTWERVDENIE 4.2. eSLI > ;1 0 < ; 4 1 = 4n + 2 + 2 n 1, TO 1) PRI 2 ; 14 > 0 2 K (1) = (;1) (1 + 1()) GDE 0 < 1() < 3(4 ; 6;22 + 2)
87
2) PRI
2 ; 14 < 0
2 1=2
2 ; K (1) = 1 : 1=2 (1 + 2()) GDE j2()j < 2 ; 1) ( 2 2 4 ; dOKAZATELXSTWO. dALEE WOSPOLXZUEMSQ RQDAMI tEJLORA LOGARIFMA I STEPENNOJ FUNKCII 2 3 x x ln(1 + x) = x ; + ; : : : (4.12) 2
(1 + x) = 1 + x +
1 4
3
( ; 1) x2 + ( ; 1)( ; 2) x3 + : : : : 2!
3!
(4.13)
sLEDU@]IE PQTX FORMUL QWLQ@TSQ SLEDSTWIEM (4.13):
1 = 1 + r1(x) GDE ; x < r1(x) < 0 PRI x 2 (0 1) 1+x
(4.14)
(1 + x)1=2 = 1 + r2(x) GDE 0 < r2(x) < x=2 PRI x 2 (0 1) (4.15) (1 + x)1=2 = 1 + r3(x) GDE ;
jxj < r (x) < 0 PRI x 2 (;1 0) 2(1 ; jxj) 3 (4.16)
x
1 ; (1 + x)1=2 = ; (1 + r4(x)) 2 GDE 0 < r4(x) <
x
jxj PRI x 2 (;1 0) (4.17) 2(1 ; jxj)
x
(1 + x)1=2 ; 1 = (1 + r5(x)) GDE 0 > r5(x) > ; PRI x 2 (0 1): 2 4 (4.18)
88
~TOBY POLU^ITX OCENKI OSTATO^NYH ^LENOW W FORMULAH (4.14), (4.15) I (4.18), SLEDUET PRIMENITX K (4.13) PRIZNAK lEJBNICA SHODIMOSTI ZNAKO^EREDU@]EGOSQ RQDA 3]. dLQ WYWODA OCENOK OSTATO^NYH ^LENOW W FORMULAH (4.16) I (4.17) PRIMENQETSQ FORMULA SUMMY BESKONE^NO UBYWA@]EJ GEOMETRI^ESKOJ PROGRESSII. rASSMOTRIM SLU^AJ 2 ; 1=4 > 0. iMEEM r r p 2 2 ; pD = ; r ; (4 ; 1) = 1 ; r1 ; 422;1 = + D ; 2 ; (42 ; 1) 1 + 1 ; 422;1 1 42 ;1 1 2 (1 + " ( )) ; 1 2 =2 = 2 4 (1 + "3()) (4.19) 2(1 + "2()) GDE IZ (4.17) SLEDUET OCENKA 42 ;1 2 4 ;1 2 0 < "1() < 42;1 = 2 2( ; (42 ; 1)) 2 1 ; 2 (4.16) DAET 1 42 ; 1 ; 2 < " () < 0 4 ; (42 ; 1) 2 A 1 0 j " ( ) j CA ; 1 = 0 < "3() = (1 + "1()) B@1 + 2 1 ; j"2()j j" ()j j" ()j = "1() + 2 + "1() 2 1 ; j"2()j 1 ; j"2()j 1 (42 ; 1) 4 2 ; 1 4 + + 2 2( ; (42 ; 1)) 2 ; 45 (42 ; 1) 1 4 2 ; 1 (42 ; 1) 4 + 2 2( ; (42 ; 1)) 2 ; 54 (42 ; 1) 2 1 2 1 3 2 + 2 + 2 2 = 2 : ;4 ;5 ;4 ;5 ;5
89
sOGLASNO (4.15) I (4.19) IMEEM v p u u u ; u t pD
GDE
+ D
=
; 2
0 < "4() <
pO\TOMU, OBOZNA^AQ
1 1=2 4
(1 + "4())
3 : 22 ; 10
v p u u u () = ut ; pD
+ D
IMEEM
s p 1 0 v v 0 1 0 1 p p u u ; D u u p BB 1 ; + D CC u ; D C u ; D C B B ln BB@ s ;pD CCA = ln BB@1 ; ut p CCA ; ln BB@1 + ut p CCA = + D + D 1 + +pD 1 0 1 0 3 2 3 2 ( ) ( ) ( ) ( ) ; ; : : : CA;B@() ; + ; : : : CA = = B@;() ; 2 3 2 3 v p u 1 0 u 4 2 u ( ) ( ) ; D + + : : : CA = ;2ut p (1 + " ()) = ;2() B@1 +
5 + D GDE, ISPOLXZUQ FORMULU SUMMY DLQ BESKONE^NO UBYWA@]EJ GEOMETRI^ESKOJ PROGRESSII, IMEEM OCENKU 2; 14 ) ( 3 2 1 2 1 + 2;5 1 () < 0 < "5() < 3 1 ; 2() 3 1 ; (2;2 14 ) 1 + 23 ;5 2 1 2;;52 12 1 2 ; 2 = : 3 1 ; 22;;25 12 3 4 ; 62 + 2 s POMO]X@ \TOJ FORMULY IZ OPREDELENIQ K (1) WYTEKAET PUNKT 1) UTWERVDENIQ.
3
5
90
rASSMOTRIM TEPERX SLU^AJ 2 ; 1=4 < 0.
r p 2 + (1 ; 42 ) + D + p = =r 2 2 D ; + (1 ; 4 ) ; r 1;42 +1 1 + 2(1 + " ()) = r 1;422 = 1 1;42 10 = 1 + 2 ; 1 2 2 (1 + "11())
2 = 1 2 (1 + "12()) (4.20) ; 4 GDE SOGLASNO FORMULAM (4.15) I (4.18) IMEEM OCENKI 1 ; 2 4 0 < "10() < 2
0 > "11() > ;
1 4
; 2
2 : aNALOGI^NO TOMU, KAK BYLA POLU^ENA OCENKA DLQ "3(), WYWODIM OCENKU DLQ "12(): 1 2! 1 2! ; 4 4 ; 1 1 2 2 2 2 ; ; 1 2 ! + 4 2 1 2 ! = 0 < "12() < 4 2 + 1 ; 4 ;2 1 ; 4 ;2
2
1 2 2 ; ; 1 4 = 2 + 2 1 2 + 2 1 2 2 ; 4 ; ; 4 ; 0 12 3 0 1 1 1 1 1 1 1 2 @ ; 2 A 4 2 + 2 + 2 2 5 = @ ; 2 A 2 : 4 ;1 ;1 4 ;1 s POMO]X@ FORMUL (4.15) I (4.20) POLU^AEM v p u u u D+ = u tp (1 + "13()) (4.21) D ; 41 ; 21=2 1 4
; 2
1 4
91
GDE
0 1 1 0 < "13() < @ ; 2A
4
1 2 ; 1 :
sPRAWEDLIWO SLEDU@]EE NERAWENSTWO x ctg x < 1 8x 2 (0 ): (4.22) eGO MOVNO WYWESTI, ISPOLXZUQ RQDY tEJLORA DLQ KOSINUSA I SINUSA. dEJSTWITELXNO, 0 x cos x ; sin x = ; @ 1
1 1A 3 0@ 1 1 1A 5 ; x + ; x ; ::: 2! 3! 0 4! 5! 1 : : : + : : : (;1)n B@ (21n)! ; (2n 1+ 1)! CA x2n+1 + : : : < 0: pOLAGAQ W (4.22) x = arcctg y, IMEEM 1 0 < arcctg y < PRI y > 0
y
A, TAK KAK
arcctg y + arctg y = 8y 2 R 2
TO IMEEM 2 arctg x = (1 + r6(x)) GDE 0 > r6(x) > ; x 2 (0 +1): 2 x
iZ \TOJ FORMULY I (4.21) IMEEM GDE
0v 1 p u u Bu D + CC CA = arctg "14() = arctg BB@ut p D;
(1 + " ()) 15 2
1=2 < "14() 1 2 4 ;
(4.23)
92
0 > "15() > ;
2
1 4
;
pEREMNOVAQ (4.21) I (4.23), POLU^AEM
2 1=2
:
v 0v 1 p p u u u u u D + arctg BBBuut pD + CCC = u tp @ D ; A D;
1=2 (1 + "13()) (1 + "15()) = 1=2 (1 + "16()) 1 2 2 2 2 4 ; 4 ;
= 1
GDE
"16() = "13() + "15() + "13()"15(): u^ITYWAQ, ^TO "13() > 0, "15() < 0, MOVEM ZAPISATX TAKOE NERAWENSTWO: j"16()j max fj"15()j + j"13()"15()j j"13()jg : iZ \TOGO NERAWENSTWA I TOGO, ^TO 0 1 1 2 1=2 2 4 ; 1 2 @ ; A 1 > (4.24) 4 2 ; 1 8 > 4 POLU^IM WTORU@ ^ASTX UTWERVDENIQ. uTWERVDENIE 4.2 DOKAZANO POLNOSTX@.
93
5 wESOWYE OCENKI DLQ MNOGO^LENOW ~EBY EWA{|RMITA I ~EBY EWA{lAGERRA
|TA GLAWA POSWQ]ENA REENI@ TREH ZADA^ 20], O KOTORYH GOWORITSQ W ZAKL@^ITELXNOJ ^ASTI wWEDENIQ. pUSTX DANY POSLEDOWATELXNOSTI fangn2N I fbngn2N , an 2 R , bn 2 R . pIEM an bn ESLI an = bn(1 + o(1)) (PRI n ! +1 ). nAZOWEM POSLEDOWATELXNOSTX fBngn2N , Bn 2 R , Bn 0, DOPUSTIMOJ, ESLI 9C1 = C1() ;1=2: x=2+1=4 e;x=2 jLcn(x )j nC1=14 x 2 0 Bn] n 2 N : iZ REZULXTATA TEOREMY 4 wWEDENIQ I FORMULY DLQ FUNKCII |JRI 13, 12] 2 0 1 3 !3 1 ;1 3 2 ; Ai(;z ) = 2 z 4 4cos @ z 2 ; A + O z ; 2 5 z > 0 z ! 1 3
4
WYWODITSQ SLEDU@]AQ ASIMPTOTI^ESKAQ FORMULA 16]: x=2+1=4 e;x=2 Lcn(x ) = 0 11=2 N (2 ; sin 2 ) ; ! ! 2 B C ; 1=4 = @ A (N ; x) cos + Rn(x ) (5.1) 4 GDE > ;1 N = 4n + 2 + 2, = arccos(x1=2N ;1=2), A DLQ OSTATO^NOGO ^LENA SPRAWEDLIWY FORMULY N 1=4 x1=4 (N ; x)1=4 ! (5.2) Rn(x ) = O (N ; x)3=2 + N 3=4 x1=2 PRI 0,
94
I
3=4 (N ; x)1=4 ! N Rn(x ) = O (N ; x)3=2 x1=4 + N 1=4 x PRI ;1 < < 0,
(5.3)
OBE SPRAWEDLIWYE PRI 0 < x N ; 4. zAMETIM, ^TO WYRAVENIE (5.2) DLQ OSTATO^NOGO ^LENA Rn(x ) PRI 0 OTLI^AETSQ OT WYRAVENIQ (5.3) DLQ OSTATO^NOGO ^LENA Rn(x ) PRI ;1 < < 0 MNOVITELEM Nx11==22 . tAKIM OBRAZOM, OCENKU (5.3) MOVNO RASSMATRIWATX PRI L@BOM > ;1 W UKAZANNOJ OBLASTI OPREDELENIQ. lEMMA 5.1. pUSTX 2 (0 1). pOSLEDOWATELXNOSTX Bn = N GDE N = 4n + 2 + 2 (5.4) QWLQETSQ DOPUSTIMOJ.
w SILU RANEE POLU^ENNYH REZULXTATOW POSLE0 DOWATELXNOSTX fBngn2N Bn0 = 1 8n 2 N DOPUSTIMA (\TO SLEDUET IZ REZULXTATOW PARAGRAFA 3 GLAWY VI KNIGI 8] SM. TAKVE STATX@ 20]). tEPERX OCENIM FUNKCI@ x=2+1=4 e;x=2 Lcn(x ) NA OTREZKE 1 Bn]. iMEEM: N 3=4 + (N ; Bn)1=4 (1 ; )1=4 (N ; Bn)3=2 N 1=4 OTKUDA jRn(x )j (1 ; )1=4(1 + o(1)) PRI x 2 1 Bn] ;1=2: sLEDOWATELXNO, ISPOLXZUQ ASIMPTOTI^ESKU@ FORMULU (5.1), POLU^AEM: sup x=2+1=4 e;x=2 jLcn(x )j x21Bn ]
dOKAZATELXSTWO.
95
0 11=2 2 @ A
1 1=4 N 1=4 (1 ; )1=4 1 + (1 ; ) (1 + o(1)) 0 11=2 2 2 @ A 1=4 n (1 ; )1=4 (1 + o(1))(PRI n ! +1), ^TO I TREBOWALOSX DOKAZATX. lEMMA 5.2. pUSTX > ;1, g (n){ NEKOTORAQ WE]ESTWENNOZNA^NAQ FUNKCIQ TAKAQ, ^TO n! lim g(n) = 0 g(n) ;1, +1
Bn = N (1 + g(n)) GDE N = 4n + 2 + 2: tOGDA 9fxngn2N xn 2 0 Bn] 8n 2 N : 2+1=4 ;xn =2 c x= e jLn(xn )jn1=4 ! +1 PRI n ! +1: n dOKAZATELXSTWO. dOPUSTIM SNA^ALA, ^TO
(5.5)
1 ; < g(n) < 0 8n 2 N 2
(5.6)
2=3 lim j g ( n ) j n = +1 n!+1
(5.7)
jg(n)j
4
N n 3:
pOSTROIM POSLEDOWATELXNOSTX xn = N (1 + ng(n)) GDE n 2 1 2] n POKA NE OPREDELENO, I PUSTX
n = arccos(x1n=2N ;1=2): iZ OPREDELENIQ SLEDUET, ^TO xn 2 (0 Bn]. tAK KAK 1 + ng(n) 1, TO lim = 0: n!+1 n
(5.8)
(5.9)
96
oBOZNA^IM
2 ) ; : F (N ) = N (2 ; sin 4 iSPOLXZUQ FORMULU tEJLORA DLQ SINUSA (2 )3 sin 2 = 2 ; + O( 5) ( ! 0) 3!
POLU^AEM
0
1
3
B F (N ) = ; 4 + N @ 3 + O( 5)CA ( ! 0):
pOLXZUQSX SOOTNOENIEM
r
arccos y = arcsin 1 ; y2 SPRAWEDLIWYM PRI y 2 0 1], POLU^AEM, ^TO r
r
(5.10)
r
arccos (1 + g(n)) = arcsin ;g(n) ;g(n) GDE \KWIWALENTNOSTX SPRAWEDLIWA W SILU USLOWIQ n!lim+1g(n) = 0.
aNALOGI^NO
r
r
arccos 1 + 2g(n) ;2g(n): pOLXZUQSX ASIMPTOTI^ESKIM RAZLOVENIEM (5.10), POLU^AEM: r
r
F (N arccos 1 + 2g(n)) ; F (N arccos 1 + g(n)) = N 3=2 3=2 = (;2g(n)) ; (;g(n)) (1 + o(1)) +
3 N 3=2 5=2 + O N (;g(n)) = (2 ; 1)(;g(n))3=2(1 + o(1)) 3 (n ! +1): (5.11) iZ USLOWIQ (5.7) WYTEKAET, ^TO 3=2 lim N ( ; g ( n )) = +1 n!+1
97
OTKUDA SLEDUET, ^TO GLAWNYJ ^LEN ASIMPTOTIKI (5.11) STREMITSQ K +1, A, ZNA^IT, I WSE WYRAVENIE STREMITSQ K +1 PRI n ! +1. tOGDA 9n0 2 N 8nr n0 : r jF (N arccos 1 + 2g(n)) ; F (N arccos 1 + g(n))j > 2: r w SILU NEPRERYWNOSTI FUNKCII F (N arccos 1 + tg(n)) PO PEREMENNOJ t 2 1 2] PRI FIKSIROWANNOM PARAMETRE n, GDE n n0, POLXZUQSX TEOREMOJ bOLXCANO O PROMEVUTO^NYH ZNA^ENIQH, POLU^AEM, ^TO 9n 2 1 2] I 9hn 2 Z: r F (N arccos 1 + ng(n)) = 2hn + 4 pOLOVIM n = 1 PRI n = 1 ::: n0 ; 1. tEPERX, KOGDA POSLEDOWATELXNOSTX fxngn2N OPREDELENA POLNOSTX@, DOKAVEM WYPOLNIMOSTX USLOWIQ (5.5). w SILU USLOWIQ (5.8) MOVEM WOSPOLXZOWATXSQ ASIMPTOTI^ESKOJ FORMULOJ (5.1) NA PROMEVUTKE (0 Bn] PRI n 3, PREDWARITELXNO PEREPISAW EE W WIDE: 2 (N cos2 )=2+1=4 e;N cos =2 Lcn(N cos2 ) = 0 11=2 2 = B@ CA
1 N 1=4 sin1=2
0 B@cos F (N
) + 0 11 1=2 3=4 1=4 N N sin CACA = + O B@ 3=2+1=4 3 + N sin cos1=2 N 5=4 cos2
0 0 11=2 1 2 B@cos F (N ) + = B@ CA 0 N 1=4 sin1=2 11 1=2 sin
1 CACA + O B@ + 3 1=2 2
N sin cos N cos
zAMETIM, ^TO W SILU (5.9) I
n 3: (5.12)
cos n 1 r
r
sin n n = arccos 1 + ng(n) ;ng(n)
98
OTKUDA N sin3 n cos1=2 n N n3 4n(;ng(n))3=2 n!!+1 +1 W SILU USLOWIQ (5.7). pODSTAWLQQ W ASIMPTOTI^ESKU@ FORMULU (5.12) POSLEDOWATELXNOSTX fxngn2N , POLU^AEM: 0 11=2 1 B@ 2 CA 2+1=4 ;xn =2 c x= e L ( x ) n n n N 1=4 sin1=2 n cos F (N n) 0 11=2 ! 2 1 B C @ A 1=2 1=4 n+ 2 n (;ng(n))1=4 cos 2h 4 p
1
2 1 2 (;g(n))1=4n1=4
1=2n1=4 OTKUDA SLEDUET (5.5) DLQ FUNKCII g(n), UDOWLETWORQ@]EJ USLOWIQM (5.6){(5.8). wOZXMEM TEPERX PROIZWOLXNU@ WE]ESTWENNOZNA^NU@ FUNKCI@ g(n) TAKU@, ^TO lim g(n) = 0: n!+1 tOGDA 1 4 9n00 8n n00 : jg(n)j + 1=2 < : N 2 fUNKCIQ 8 00 > < ;jg (n)j ; 41=2 PRI n n N ge (n) = >: 1 PRI 1 n < n00 ;3 UDOWLETWORQET USLOWIQM (5.6){(5.8) (S ZAMENOJ FUNKCII g(n) NA FUNKCI@ ge (n)) I n!lim+1ge (n) = 0. oTMETIM, ^TO ;1 < ge (n) < g(n) 8n n00 I W SILU DOKAZANNOGO 9fxngn2N : xn 2 0 N (1 + ge (n))] 0 N (1 + g(n))] PRI n n00 TAK ^TO WYPOLNENO (5.5). tEM SAMYM, LEMMA DOKAZANA POLNOSTX@.
99
zAME^ANIE 5.1. zAMENIW W FORMULIROWKE LEMMY 5.2 USLOWIE
lim g(n) = 0
n!+1
NA USLOWIE
lim g(n) = 0 n! +1
MOVNO UKAZATX TAKU@ POSLEDOWATELXNOSTX n1 < n2 < : : : < nk < : : : nk 2 N I fxnk gk2N , xnk 2 0 Bnk ], ^TO 1=4 2+1=4 ;xnk =2 c x= e j L ( x ) j n n n k ! +1 PRI k ! +1: nk k
n3 <
tEOREMA 5.1. pOSLEDOWATELXNOSTX fBngn2N DOPUSTIMA TOGDA I TOLXKO TOGDA, KOGDA
lim n!+1
Bn < 1 N
GDE
N = 4n + 2 + 2:
(5.13)
dOKAZATELXSTWO. nEOBHODIMOSTX. dOPUSTIM, ^TO n!lim+1 BNn 1. pOLOVIM 8 > < Bn N f Bn = >: BN ESLI n ESLI Bn < N:
tOGDA 0 Bfn] 0 Bn] I n!lim+1 BNen = 1: w SILU ZAME^ANIQ 5.1 9fxnk gk2N , xnk 2 0 Bfnk ]: 2+1=4 ;xnk =2 c x= e jLn(xnk )jn1k=4 ! +1 PRI k ! +1: (5.14) nk dOPUSKAQ, ^TO 9C2 = const: x=2+1=4 e;x=2 jLcn(x )jn1=4 C2 8x 2 0 Bn] 8n 2 N PRIHODIM K PROTIWORE^I@ S (5.14). dOSTATO^NOSTX.
100
pUSTX n!lim+1 BNn < 1: tOGDA DLQ NEKOTOROGO " 2 (0 1) 9m 8n
m:
Bn < (1 ; ")N: (5.15) pRI FIKSIROWANNOM n FUNKCIQ x=2+1=4 e;x=2 Lcn(x ) ;1=2 n 2 N OGRANI^ENA NA R , SLEDOWATELXNO, PRI FIKSIROWANNOM ;1=2 WSE TAKIE FUNKCII OT n = 1 DO n = m ; 1 MOVNO OGRANI^ITX W SOWOKUPNOSTI ODNOJ KONSTANTOJ, T.E. 9C3 = const: x=2+1=4 e;x=2 jLcn(x )j C3 8x 2 R n = 1 ::: m ; 1: (5.16) tAK KAK POSLEDOWATELXNOSTX f(1 ; ")N gn2N QWLQETSQ DOPUSTIMOJ SOGLASNO LEMME 5.1, TO, OTME^AQ NERAWENSTWO (5.15), POLU^AEM, ^TO 9C4 = const: x=2+1=4 e;x=2 jLcn(x )j nC1=44 8x 2 0 Bn] n m: (5.17) iZ (5.16) I (5.17) SLEDUET DOPUSTIMOSTX POSLEDOWATELXNOSTI fBngn2N . zAME^ANIE 5.2. uSLOWIE (5.13) \KWIWALENTNO USLOWI@
Bn < 4: n sTANDARTIZOWANNYE MNOGO^LENY ~EBYEWA-|RMITA WYRAVA@TSQ ^EREZ STANDARTIZOWANNYE MNOGO^LENY ~EBYEWA-lAGERRA PO FORMULAM 8], 7] H2n(x) = (;1)nn!22nLn(x2 ;1=2) lim n!+1
H2n+1(x) = (;1)nn!22n+1xLn(x2 1=2): |TI RAWENSTWA MOVNO PEREPISATX DLQ ORTONORMIROWANNYH MNOGO^LENOW, ISPOLXZUQ FORMULY 8] d (x) = r 1 H p Hn(x) n 2 N n n n! 2
101
v u u c n Ln(x ) = (;1) uut
pOLU^AEM
n! L (x ) > ;1 n 2 N : ;(n + + 1) n
d (x) = L c (x2 ;1=2) H 2n n
(5.18)
d c 2 H (5.19) 2n+1 (x) = xLn (x 1=2): dOMNOVAQ OBE ^ASTI KAVDOGO IZ RAWENSTW NA e;x2=2, WYWODIM SLEDSTWIE IZ KRITERIQ DOPUSTIMOSTI
sLEDSTWIE 5.1.
0 1 1 2 =2 d ; x sup e Hn(x) = O @ n1=4 A x2;An An]
(5.20)
TOGDA I TOLXKO TOGDA, KOGDA
2 A n < 4 lim n!+1 n 2
GDE
]{ ZNAK CELOJ ^ASTI, ILI, ^TO \KWIWALENTNO, p A n p < 2: lim n! +1
n tEOREMA 5.1 I SLEDSTWIE 5.1 POLNOSTX@ REA@T ZADA^I 1 I 3, SFORMULIROWANNYE W ZAKL@^ITELXNOJ ^ASTI wWEDENIQ (SM. TAKVE 20]).
oTWETOM NA ZADA^U 2 IZ wWEDENIQ QWLQETSQ SLEDU@]AQ TEOREMA.
tEOREMA 5.2.
d 2 =2 Hn (s) ; s e 1 + jsj!
0 = O@
1 A RAWNOMERNO PO 1=4
1
n
TOGDA I TOLXKO TOGDA, KOGDA
! 31 :
s2R
(5.21)
102
dOKAZATELXSTWO. dOSTATO^NO d ^ETNOSTI FUNKCII Hn(s) 8]. nEOBHODIMOSTX.
RASSMOTRETX SLU^AJ s 0 W SILU
dOPUSTIM, ^TO DLQ NEKOTOROGO ! > 09C5 = C5(!) TAKOE, ^TO d 2 =2 Hn (s) ; s e 1 + jsj! nC1=54 s 0: (5.22) wOZXMEM PROIZWOLXNOE l 2 (0 2=3). tOGDA 9n0 = n0(l)8n n0: 1 1 4 < I nl 2 nl 4n + 1 : 1
pOLAGAQ W LEMME 5.2
8 1 > < g(n) = >: ;;n1l
GDE n n0 GDE 1 n n0 ; 1 3 STROIM POSLEDOWATELXNOSTI NEOTRICATELXNYH ^ISEL frng, ftng TAKIE, ^TO rn 4n + 1 tn 4n + 3, p 0 1 1 e;rn=2Lcn @rn ; 2 A 1=22 1=4 nl=4;1=4 GDE n 2 1 2] 2 n 0 1 1A 1=2 ;tn =2 c @ tn e Ln tn
2
p 2
l=4;1=4 GDE 2 1 2]: n n 1=4
21=2n
tAKIE POSLEDOWATELXNOSTI MOVNO POSTROITX, ESLI ISPOLXZOWATX RASSUVDENIQ, PRIWEDENNYE W NA^ALE DOKAZATELXSTWA LEMMY 5.2. dALEE OPREDELIM NOWYE POSLEDOWATELXNOSTI fsng, fng PO FORMULAM p s2n = prn s2n+1 = tn 2n = n 2n+1 = n: w SILU (5.18) I (5.19) IMEEM p !l=4;1=4 n 2 2 d (s ) e;sn=2H GDE n 2 1 2] n n 1=4 2 1 = 2 2 n
103
p
p
s2m 4m + 1 s2m+1 4m + 3, OTKUDA SLEDUET, ^TO n !1=2 p sn 2n + 1 2 2 I d n !l=4;1=4;!=2 1 2 =2 Hn (sn ) ; s e n 1 + js j! 1=2 1=4 1=2+! 2 : n n 2 dLQ TOGO, ^TOBY BYLO WYPOLNENO (5.22), NEOBHODIMO, ^TOBY WYPOLNQLOSX USLOWIE l ;! 0 4
ILI
2
! 2l : pO USLOWI@ l 2 (0 2=3), T.E. MY MOVEM WYBRATX l = 2=3 ; , GDE > 0, SKOLX UGODNO MALO. sLEDOWATELXNO, ! 13 ; 2 : pRI ! 0 POLU^AEM TREBUEMOE NERAWENSTWO. dOSTATO^NOSTX.
pUSTX ! 1=3. iZ TEOREM 3 I 5, SFORMULIROWANNYH WO wWEDENII, DLQ ORTONORMIROWANNYH MNOGO^LENOW ~EBYEWA{|RMITA POLU^A@TSQ OCENKI 10] 0 1 1 2 =2 d ; s e Hn(s) = O @ n1=12 A s 0 (5.23) 0 d (s) = O @ e;s = H n
1
1 A
1 0 s (2n + 1)1=2: 2
(5.24) n1=4 |TI VE FORMULY MOVNO WYWESTI S POMO]X@ TEOREMY 2 wWEDENIQ I TEOREM 2.1 I 2.2. tOGDA IZ (5.23) SLEDUET, ^TO 9C6: d C6 C6 s > 1 (2n + 1)1=2 2 =2 Hn (s) ; s e 1 + jsj! n1=12+ !=2 n1=4 2 2 2
104
A IZ (5.24) SLEDUET, ^TO 9C7: d 2 =2 Hn (s) ; s e 1 + jsj! nC1=74 0 s 21 (2n + 1)1=2: |TI OCENKI DOKAZYWA@T DOSTATO^NOSTX USLOWIQ TEOREMY.
105
zAKL@^ENIE
w DANNOJ RABOTE NA PRIMERE KLASSI^ESKIH ORTOGONALXNYH MNOGO^LENOW RASSMOTREN ODIN IZ WOZMOVNYH SPOSOBOW PRIMENENIQ PRINCIPA SVIMA@]IH OTOBRAVENIJ W TEORII SPECIALXNYH FUNKCIJ. oKAZALOSX WOZMOVNYM POLU^ENIE FORMUL pLANERELQ{rOTAHA DLQ MNOGO^LENOW ~EBYEWA{|RMITA I NOWYH ASIMPTOTI^ESKIH FORMUL DLQ KLASSI^ESKIH ORTOGONALXNYH MNOGO^LENOW. kROME TOGO, \TI FORMULY DANY S ^ISLENNYMI OCENKAMI NA OSTATO^NYE ^LENY, ^TO OBUSLAWLIWAET IH WY^ISLITELXNU@ CENNOSTX. rABOTA MOVET BYTX PRODOLVENA W SLEDU@]IH NAPRAWLENIQH: 1) pRIMENENIE METODA K DRUGIM SPECIALXNYM FUNKCIQM. 2) rASSMOTRENIE WTOROGO AGA METODA POSLEDOWATELXNYH PRIBLIVENIJ. 3) pRIMENENIE POLU^ENNYH FORMUL DLQ OCENOK KO\FFICIENTOW RQDOW fURXE PO KLASSI^ESKIM ORTOGONALXNYM MNOGO^LENAM. 4) uTO^NENIE OCENOK W LEMME m.w. fEDOR@KA. 5) uLU^ENIE OCENOK OSTATO^NYH ^LENOW POLU^ENNYH ASIMPTOTI^ESKIH FORMUL (NAPRIMER, S POMO]X@ PRIMENENIQ BOLEE TO^NYH OCENOK OSTATO^NYH ^LENOW W RQDAH tEJLORA \LEMENTARNYH FUNKCIJ ILI W FORMULE sTIRLINGA 18]). aWTOR WYRAVAET GLUBOKU@ BLAGODARNOSTX SWOEMU NAU^NOMU RUKOWODITEL@ PROFESSORU pAWLU kONDRATXEWI^U sUETINU ZA POLEZNYE ZAME^ANIQ I SOZDANIE BLAGOPRIQTNOJ NAU^NOJ ATMOSFERY W PROCESSE RABOTY.
106
bIBLIOGRAFI^ESKIJ SPISOK ISPOLXZOWANNOJ LITERATURY
1] bOGOL@BOW a.n., kRAWCOW w.w. zADA^I PO MATEMATI^ESKOJ FIZIKE. { m.: iZD-WO mgu, 1998. { 350 S. 2] wAZOW w. aSIMPTOTI^ESKIE RAZLOVENIQ REENIJ OBYKNOWENNYH DIFFERENCIALXNYH URAWNENIJ. { m.: mIR, 1968. { 464 S. 3] kAMYNIN l.i. kURS MATEMATI^ESKOGO ANALIZA. tOM 2. { m.: iZD-WO mgu, 1995. { 624 S. 4] kOLMOGOROW a.n., fOMIN s.w. |LEMENTY TEORII FUNKCIJ I FUNKCIONALXNOGO ANALIZA. { 3-E IZD. { m.: nAUKA, 1972. { 496 S. 5] nIKOLXSKIJ C.m. kURS MATEMATI^ESKOGO ANALIZA. tOM 1. { m.: nAUKA, 1973. { 432 S. 6] pETROWSKIJ i.g. lEKCII PO TEORII OBYKNOWENNYH DIFFERENCIALXNYH URAWNENIJ. { m.: iZD-WO mgu, 1984. 7] sEGE g. oRTOGONALXNYE MNOGO^LENY. { m.: fIZMATGIZ, 1962. { 500 S. 8] sUETIN p.k. kLASSI^ESKIE ORTOGONALXNYE MNOGO^LENY. { 2-E IZD. { m.: nAUKA, 1979. 9] fEDOR@K m.w. aSIMPTOTI^ESKIE METODY DLQ LINEJNYH OBYKNOWENNYH DIFFERENCIALXNYH URAWNENIJ. { m.: nAUKA, 1983. { 352 S. 10] Askey R., Wainger S. Mean convergence of expansions in Laguerre and Hermite series// Amer. J. Math. { 1965. { Vol. 87. { Pp. 695{ 708. 11] Erdelyi A. Asymptotic forms for Laguerre polynomials// J. Indian Math. Soc. { 1960. { Vol. 24. { Pp. 235{250.
107
12] Erdelyi A. Asymptotic solutions of di!erential equations with transition points or singularities// Journal of Math. Phys. { 1960. { Vol. 1. { N 1. { Pp. 16{26. 13] Je!reys H., Je!reys B. Methods of mathematical physics. { 3d ed. { Cambridge, Univ.press, 1972. { 718 p. 14] Igashov S.Yu. Asymptotic approximation and weight estimate for the Laguerre polynomials// Integral Transforms and Special Functions. { 1999. { Vol. 8. { N 3-4. { Pp. 209-216. 15] Moecklin E. Asymptotische Entwicklungen der Laguerreschen Polynome// Commentarii Math. Helvetici. { 1934. { Vol. 7. { Pp. 24-46. 16] Muckenhoupt B. Mean convergence of Hermite and Laguerre series. I// Trans. Amer. Math. Soc. { feb. 1970. { Vol. 147. { Pp. 419-431. 17] Plancherel M., Rotach W. Sur. les valeurs asymptotiques n des polynomes d'Hermite Hn(x) = (;1)nex2=2 dxd n e;x2=2// Commentarii Math. Helvetici. { 1929. { Vol. 1. { Pp. 227-254. 18] Reinhard M. On Stirling's formula. { Amer. Math. Mon. { 2002. { Vol. 109. { N 4. { Pp. 388{390. 19] Scovgaard H. Asymptotic forms of Hermite polynomials// Technical Report 18, Contract Nonr-220(11). { Department of Mathematics, California Institute of Technology. { 1959. 20] Suetin P.K. The weight estimates for classical orthogonal polynomials// Integral Transforms and Special Functions. { 1994. { Vol. 2. { N. 3. { Pp. 239-242. 21] lARION^IKOW r.s. wESOWAQ OCENKA MNOGO^LENOW ~EBYEWA{ lAGERRA NA RASIRQ@]IHSQ SEGMENTAH// mIKRO\LEKTRONIKA
108
I INFORMATIKA { 2001. wOSXMAQ WSEROSSIJSKAQ MEVWUZOWSKAQ NAUNO{TEHNI^ESKAQ KONFERENCIQ STUDENTOW I ASPIRANTOW. { m.: mi|t, 2001. { s. 145. 22] lARION^IKOW r.s. oB ODNOJ NOWOJ ASIMPTOTI^ESKOJ FORMULE DLQ MNOGO^LENOW qKOBI// tRUDY XXIII kONFERENCII MOLODYH U^ENYH MEHANIKO{MATEMATI^ESKOGO FAKULXTETA mgu (9{ 14 APRELQ 2001 G.) { m.: mEH.{MAT. mgu, 2001. { s. 229{232. 23] lARION^IKOW r.s. aNALOG FORMULY pLANERELQ-rOTAHA DLQ PROIZWODNYH FUNKCIJ ~EBYEWA-|RMITA// X MEVDUNARODNAQ KONFERENCIQ "mATEMATIKA.|KONOMIKA.oBRAZOWANIE". II MEVDUNARODNYJ SIMPOZIUM "rQDY fURXE I IH PRILOVENIQ". tEZISY DOKLADOW. { rOSTOW{NA{dONU: siw, 2002. { s. 33. 24] lARION^IKOW r.s. fORMULA pLANERELQ-rOTAHA DLQ FUNKCIJ ~EBYEWA-|RMITA NA SUVA@]IHSQ K BESKONE^NOSTI POLUINTERWALAH// mATEMATI^ESKIE ZAMETKI. { 2002. { tOM 72. { wYP. 1. { s. 74-83. 25] lARION^IKOW r.s. aSIMPTOTI^ESKAQ FORMULA DLQ MNOGO^LENOW lEVANDRA// mATERIALY X mEVDUNARODNOJ NAU^NOJ KOFERENCII STUDENTOW, ASPIRANTOW I MOLODYH U^ENYH "lOMONOSOW", 15-18 APRELQ 2003 G. { m.: iZD-WO mgu, 2003. { s. 305. 26] lARION^IKOW r.s. fORMULA pLANERELQ{rOTAHA W OBLASTI, SODERVA]EJ NA^ALO KOORDINAT, I EE ANALOG DLQ PROIZWODNYH FUNKCIJ ~EBYEWA{|RMITA// mATEMATI^ESKIE ZAMETKI. { 2004. {
27] lARION^IKOW r.s. nOWYJ ANALOG FORMULY pLANERELQ{ rOTAHA DLQ MNOGO^LENOW ~EBYEWA{lAGERRA// iNTEGRALXNYE PREOBRAZOWANIQ I SPECIALXNYE FUNKCII. iNFORMACIONNYJ B@LLETENX. { 2004. { tOM 4. { N 1. { C. 32-41.