This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
?f9 [GOWAMH/ò:9
Z&;2A6ñh@?óW6Z 4ý-ó3NQP?]&Z$X3J3NQZ-úP
N+A HQZ&÷?J3Z&;?ñ}9pAMõ<õ^u@ $ hX39 B9 hqsplBpif p?ÞyMrt ghighfµ kI qs rtv$o v&w.iªghÉTuBi$jQf ro:qhvöghÉTuBi$jQf)g > Xs/G[:36C-9BXQRC541sQ>54J CP6/G9:êÎX4/ >X4[:C³þîÿ54JOC9KC 36R5-êGJ,^H14Q>C /GP6ëBZ DòêG/G9 [H369 C X4[:3658Q:[:P¬C-J<9:CC¸ý:J<X4[RZX¸JOX Z/B4/Gê2141iTHJ 3éD9>CJ<5 ,X4CDXs5[:/ 9:/G5q^:ò 9:yT 361sZ54X/29:ì054XsCÎ14^:9:ZDCX4C36T/G9:J 5qòR1sYBCCD54^:C P6X,3éJ<ê2W>^:/G14C^:XX4îv[H/2C1 Ô CZXs36;GCIÎ/BT:CPg? X4 [:C¸þ Z$14û 36Xs?3é ZqJ<PLþ 54^Hi1gû îÿJO-JZOC9:5TP6/B(/ ,þ P63iGû C /O36î0êGX4^H[H14C,C <5iJ T:CCS PgZû?Xs36J<;GNî9HC¿vT/GIÎ1(X4// XsTH[:C»CPg?Rþ I WBJ<ëû ýB^:36I,î5436^:9:v/2IêÓ1X49X4[:[H^HCÎCÒI,5iI WRJ
A Note on the Purely Recursive Dissection for a Sequentially n-Divisible Square
±
?ïQî âëé3ï}ë èA´
45
²u³§´ ¶µ
·D¸o¹:º§»O¼i»=½bº¿¾(ÀÁ¦ÂoÃÄRÄ ÅÆÇÃ=ÈrÉ)Ê ÈrËÄ ÅÌÍ0ÅÉaÇOÃ=ÎÏGÏÐ)$ªÑÂrÃ=ÒiÃÄ6ÃGÓ ÏÅ+Ä6ÌÍÎoËÅ)ÃÄqÎqÔaÎoË&ÇÃ=ÇOÃ=ÈrÉuÈÊ Î Ä ÌiÍÎrËÅ Ã=ÉaÇOÈ Ä ÅiÒÅËÎÏ-ÔCÈ[ÏÐ ÕrÈoÉÄ)Ö× Ã=Æ×/ÆÎoÉ¿ÓÅ)ËÅÎrË ËÎrÉoÕoÅÂÃGÉaÇÈÇOÖ:È Ä ÌiÍÎrËÅ&ÄRØAÇ×aËÅÅ Ä ÌiÍÎoËÅ ÄØ:ÎoÉ Â)Ä ÈDÈoÉØÙÍ&ÔuÇÈDÉ Ä ÌiÍÎoËÅ ÄÄ ÍÆÆRÅ&ÄÄ Ã=ÒiÅ&ÏÐÚ ·D¸o¹:º§»O¼i»=½bºuÛÀÜÅÇ© OÝ)ÞÓRÅ Ç×aÅ ÉaÍß+ÓRÅË)ÈÊÔÃ=ÅÆRÅ&Ä)ËÅÌÍÃ=ËÅÂÇÈÆÈoÉÄ ÇOË ÍÆiÇÝàÄ6ÍÓ&Ñ Ä ÌiÍÎoËÅ Ä ÚªáÊâo®ã° ÇOÅiÉ ÂÄÇOȬqÊ ÈrËÏÎrËÕrÅAÝ ØÙÇ×aÅ+ÂoÃÄRÄ ÅÆÇÃ=ÈrÉÃÄ`Ä6ÎrÃ=Â)ÇOÈ)ÓÅ+ÇÐÔaÅ&Ñ¬Ú ã ·D¸o¹:º§»O¼i»=½bºuäÀÁåÂrÃÄÄ ÅRÆÇOÃ=ÈoÉ,ÔCÎrÇÇOÅiË&ÉqÃÄæÎèçÕrÍËÅËÅ.ÔmËÅ Ä ÅÉaÇÃGÉoÕÎ+Ö:ÎoÐÈÊAÂrÃÄÄ ÅRÆÇOÃ=ÉoÕÎ Ä ÌiÍÎoËÅiÚÁéÆRÈrßÔaÈÄ Ã=ÇOÃ=ÈrÉqÔaÎoÇOÇÅË É ÃÄÎAçªÕoÍËÅ+Ä× ÈoÖ:Ã=ÉrÕ× ÈoÖÇOÈ)ËÅRÎrË ËÎrÉoÕrÅÄ Èoß+Å`ÔmÃ=ÅÆÅ Ä Ã=ÉaÇOÈqÎDÄ6ÌÍÎoËÅiÚ
b]&P:O3C-Z/óWóWP
AMHQñQ9<ñ}ñQZ&9
·D¸o¹:º§»O¼i»=½bºêÀÁëÂrÃÄÄ6ÅÆÇÃGÈoÉÊ ÈoË Î¿Ä ÅRÌÍÅiÉ ÇÃ=Î[Ï=ÏÐ$ªÑÂrÃ=ÒÃÄ Ã=Ó ÏÅ Ä ÌiÍÎrËÅÃÄ Ä6ÎrÃ=Â/ÇOÈ/ÓÅ ËÅÆÍ0Ë6Ä6ÃGÒiÅà ìíÃ=Ç§Ä ÎoÇOÃÄ=ç:Å&Ä,Ç×aÅèÊ È[Ï=ÏÈrÖ:Ã=ÉoÕqÆÈrÉaÂoÃ=ÇOÃ=ÈrÉÄ Ú î á ïëáRÇ:ÃÄ,ÈrÓiÇOÎoÃGÉaÅÂ)ÓÐqËÅÆiÍËÄ Ã=ÒÅÎ6ÔoÔ(ÏÃ=ÆÎoÇOÃ=ÈoÉÞÈÊÎ`çðoÅ ÂoÃÄRÄ ÅÆÇÃ=ÈrÉ+ÔaÎoÇOÇÅË É)ñ Ú î ááGïóò×aÅ,ÔCÎrÇÇOÅiË&ÉñôÃÄqÎÔoÔbÏÃ=ÅÂÇOÈ Ä ÌÍ0ÎrËÅ&Ä)ÍÉaÂoÅË`ÔmËÈÔaÈoË ÇOÃ=ÈoÉ ÎÏÙÎrÂõ ÍrÄ Çß+ÅÉaÇÈÊ Ç×aÅÄ6ÃYöiÅ&ØbÔCÈ[ÄÄ6ÃGÓ ÏÐqÖ:Ã=Ç× ÇÍË ÉaÃGÉoÕ)ÈrÒiÅË Ú áRÉÈrÇ× ÅiËÖ:ÈrËÂ[ÄRØ:ÎâÄ6ÃGßÃÏÎo˧çÕrÍËÅ+ÈÊAñ÷ÃÄÈrÒiÅËÏÎrÐÅÂ)ÇOÈ)Ç×aÅÄ ÌÍ0ÎrËÅ+ÇÈDÓÅÂrÃÄÄ6ÅÆÇÅÂrÚ î ááá=ïùø`ÐÇ×aÅç:ËÄ ÇÎÔrÔ(ÏÃGÆRÎrÇÃGÈoÉ/ÈÊñDØÇÖ:È
Ä6ÍÓ&Ä ÌiÍÎoËÅ ÄqúªûÎoÉaÂú§üuÆÎoÉ¿ÓÅÆÈrÉÑ Ä ÇË&Í0ÆÇOÅRÂrÚ î á0ýCïóò×aÅ+ÂoÃÄÄ ÅÆiÇOÃ=ÈrÉqÔaÎoÇOÇÅË ÉÃÄËÅRÆÍËÄ Ã=ÒÅ ÏÐqÎÔoÔbÏÃ=Å ÇOÈÈrÉaÅqÈÊ+Ç×aÅ+Ä ÍÓ Ä ÌÍ0ÎrËÅ&ÄØ Ä ÎoÐú§üÚ
PWF3AúñQZ$NADó3ó3õ<@?9<;3òñ úP
J3N%ñQ9
áRÇ:ÃÄÄ ÎoÃGÂ)ÇOÈ)ÓÅÔÍËÅ&ÏÐ+ËÅÆiÍËÄ Ã=ÒÅÃ ì
Ç×aÅèÊ È[Ï=ÏÈrÖ:Ã=ÉoÕqÆÈrÉaÂoÃ=ÇOÃ=ÈrÉ%ÃÄÎÏYÄ6ÈâÄ ÎoÇOÃÄ=ç:ÅÂoÚ
î ýï ò× ÅÆÈoßBÔaÈÄ Ã=ÇOÃ=ÈoÉ+ÔaÎoÇOÇOÅiË ÉÞÈÊAú§üü)ÃÄ Ä Ã=ß+ÃÏÎoËÇÈqÇ×aÎrÇÙÈÊAú§üÚ
Qñ:Z&ðrN}Îo;6ßB9^HbÔ(Ïñ}ÅO3Ú/Z/=óW>?AM9^NQ@?ñ}AD9^ñ}C69
¾(Àò×aÅËÅÃÄ ÉaÈ,ÔmÍËÅ&ÏÐ+ËÅÆÍ0Ë6Ä6ÃGÒiÅÂoÃÄRÄ ÅÆÇÃ=ÈrÉÊ ÈoË`Ä ÅÌiÍÅÉaÇÃGÎÏ=ÏÐ $ªÑÂrÃ=ÒiÃÄ6ÃGÓ ÏÅ Ä ÌiÍÎoËÅ Ø:Ö× ÈÄ Å+ÇÐÔaÅÃÄ ÏÅ ÄÄÇ× ÎoÉÇÖ:ÈrÚ
½ ½¿¾(ÀÁoÃGÐÎoß+ÎÑÎoÎrßÍËÎ ÄuÂoÃÄÄ ÅÆiÇOÃ=ÈrÉåÃÄuÈÔÇÃ=ß+ÎÏqÖ:Ã=Ç× ÇÐÔaÅ&Ø ÎrßÈrÉoÕ Ç×aÅBÔmÍËÅ&ÏÐ+ËÅÆÍ0Ë6Ä6ÃGÒiÅÂrÃÄÄ ÅRÆÇOÃ=ÈoÉÄ Ú
ËÅ ÄOÔaÅRÆÇ)ÇOÈÇ×aÅ
46
äÀG¾
Jin Akiyama et al.
åê3ëbë"!në"!$#&%('\ë ê'") æ
* ¸+,a¼½ -½(º/.&»10ª¸a¼»½bº
QH]&þ ÷?P:J3JWC-ó3AMóóWNQP:Z:P
H}F?HQZ9
A Note on the Purely Recursive Dissection for a Sequentially n-Divisible Square
47
abñQO3O3Z.Z&N}Z&ZXÿò:m Z[= e £ f ý.F3P:N}N Z&HQO6óZ&9 ]&úßñ}ñ}9
O3Z&Z/õ<@Bõ
=;6KZ&õ
48
Jin Akiyama et al.
u:¸ v v%Û-ÀR(Í&ÔoÔaÈÄ ÅqÇ× ÎoÇèÇ× ÅÅÌÍÎÏÃGÇÐ î ï×aÈ[ÏÂÄØÙÎrÉaÂ5)ÃÄ,ÅÒÅiÉaÚ î; ï j = ? `O j = ? £ ý`Ê ÈoËÅÒiÅÉ ¬bØ:ÎoÉa =LK?tk o m m =LK?k 9 K o m m î ï j = ? `O j = ? £Ê ÈoËÈÂoÂq¬Ú =LK?tk o m m =LK?k 9 K o m m u:¸ v v% ä-ÀR( Í&ÔoÔaÈÄ ÅqÇ× ÎoÇèÇ× ÅÆÈrÉaÂoÃ=ÇOÃ=ÈrÉ î ï)Ã=É)ܪÅiß+ß+Î ÃÄ ÒÎÏÃGÂoÚAò× ÅiÉ = ? £¤ m m à Êa E
C ÃÄ,ÈÂoÂrÚ ËÈÈÊ&Ú62 Z&ñbJÿHX3Z&;ÿP:ñQZRñQOÿZ/;?J3C ùWZ$NQHbPDúóWADN}ñQ9<]&J3õVAMNñQZ$NQCHTF = ? [ H`F?9<;6ñQOÿZ*WNQH}ñH}9^ò
CnA m m V9hû Z:û
bO3Z&N}ZúP:N}Z #
øþ û q£ AM;3X Y û øþ û £: øþ û " £ ¥ û £ a þ 9<;3]&Z/ADõ<õñ}O3Z&HQZ:ADõ<J3Z&HTF ÿ F3Z$ñQ]:û
û & û
¢£
£
£
û
£
ÅiÉ
m
û +£ û
ÿ
ðhabñÍO3úZ&P:;õ<õ
2Z&ñbJÿHbX3Z&;3P
ñQZo'
o £
?
£¤Ê ÈoËÅÒÅiË ÐqÈÂoÂ>CCÚ
j = ? `O j = ? {| zy =LK?tk o m m l= K?k 9 K o m m
A Note on the Purely Recursive Dissection for a Sequentially n-Divisible Square
49
bO3Z&;6a%ZLOA:Zo' j = ? -O j = ?{| U ? £ ? U `O U K? 2þ =LK?tk 9 K o =3?m m m m yz =lK?k o =?m m u:¸ v vêªÀR(Í&ÔoÔaÈÄ ÅqÇ× ÎoÇ, U ? £ oý Ú î; ï/áÊ ? £ CØ:Ç× ÅiÉ K? £O-Ú m m î ï/áÊ K? £¤ØèÇ× ÅiÉ ? £ rý Ú m m ËÈÈÊ&Ú#bO3Z. Z ?ó3NQZ$HQHQ9
50
Jin Akiyama et al.
bOBJÿHbaÞZ.]`AM;n]$P:;3]&õ<J3XÿZ/ñQOWAMñbñQO3Z.Z&÷?JWAMõ<9^ñh@ Oo%]`AM;\[ ñbO3P:õ<X-9^;ªAM;B@ ]TADHQZ
û ¤Pp¥º§½¦R¸0"§ u¸0ºª¼t.©¨Ù#bO3Z AMJ3ñQOÿP:NQH ADN}Zë:Z&N}@ò:NIAMñQZúsJ3õ ñ}P«ªNQPMúZ&HQH}P:NG û%K!û ü3ªN}NQZ&PMX3úZ&Z&H}N}HQ9<]IP:>?NH}#/P:;-û úþ P:ADN%>:ò:AD9Í9?PD9<úÙ;3ò/#P
ñ}O3>:Z&ADC¨9¬:;3AD9õ<:JWZ&ADN}ùÿHQ9<õ^ñhZb@69<;?úúsP
P:NNQC6O39
¤+,+:¸º/0ª»»
ò×aÅ:Ê&ÈÏ=ÏÈoÖ:Ã=ÉrÕ`ÔCÈ[ÏÐÉaÈrßÃGÎÏ7â ¼bÈoÒÅËÇ× Å:ç:Å&ÏÂVw)½OræÃÄ,ÃGË ËÅÂoÍÆÃ=Ó&ÏÅÚ
7q ¼(§£x¼ 9 QO
ý ÎoÉaÂO3U§`O ý£¤aÚ q ü\9
Ö×aÅËÅ(5
ÿ
¾ p[¼ ¾(À¥ÜÅÇ¡ÝàÓRÅ+ÎoÉuÃGÉaÇÅfÕrÅiË`ÕoËÅRÎrÇÅËÇ× ÎoÉ ÚAò×aÅÉØÇ× ÅÝ ÑÇ×%ËÈiÈrÇIW¥ÈÊ6O¿ÃÄÉaÈoÇ Ã=ÉV w ½rO Ú ËÈÈÊ&Ú þ J3ó3óP:H}Z.ñQOWAMñ6W¿ w ½rO QF:ñ}OWADñb9
9<;3]&Z
O`
U £O U 2þO - U £ Q ýQOaøþO`` U £å sþÀ ýi²OA¤ U ýi ÿ
A Note on the Purely Recursive Dissection for a Sequentially n-Divisible Square
51
aÞZ.OWA
Z e U £ þÀ ý AD;3X f U £ U ýo ðh;ò
Z&;3Z&NADõhF e ¯ K E OTf ¯ K E £í Le ¯ OQf ¯ OQ :£í re ¯ `;e ¯ Qf ¯ O¤ Le ¯ `f ¯ AD;3X-ñQO3Z$NQZúP
NQZ e ¯ K E £Áe ¯ `;e ¯ Qf ¯ AM;3X f ¯ K E £He ¯ Qf ¯ HQf P
õ^Jÿ K ñQ9< PDP:a£ ;/]bH}9
¾ p[¼)ÛÀuÜÅÇ,5 ÓRÅ+ÎoÉÃ=ÉaÇOÅfÕoÅËÕoËÅÎoÇOÅiËÇ×aÎrÉ ØèÎoÉaÂW¥Ç×aÅ 5ÑÇ×ËÈiÈrÇÙÈÊ6OÚܪÅiÇËÓÅÎ ÔCÈ[Ä Ã=ÇÃGÒiÅÃGÉaÇÅfÕrÅiË`ÏÅ ÄÄÇ× ÎoÉP5 î -Ù H5 ïoÚAò× ÅiÉPWbÌÃÄÉaÈrÇÙÃ=É£w½OrÚ 9<O HAû ËWÈÈ?Í Ê&FWÚ6H}9<2 ;3Z&]&ñZPR
W ù9 ZL£Äñ}O3OZ.¿Hò:N}Z`w ADñ}½rO Z&QHQûñÞ]&P:J3C-ñCñQO3P:9
52
Jin Akiyama et al.
KPDa ñ}O3Z/óP:õ<@?;3P:C-9pAMõ7q ¼b%9
abX39O3?Z&9^H}N}9
húð P:ñQHÍN}C%]&P:' ;3H}ñIAM;BñÍñQZ&N}CJ(¿&w 9
! #"%$&'%()*+,* /- .10234.157698&6;:=<4> ?/@BAC.10C?/DB.FEC6G3/69.IH#
òtóVôCõCö©÷{øùôCúOöó
û{.ü@B@OLý'PO.1?/0C@*?Gþ ÿ~?157Kt?/0C@§.ü@6PBDON15ÜýQ6G@[email protected]ýh6~L1Jê?9þ@OPON JC5ê.10ÜPOA L&86GPBACL8&69PO.1ýh6 @Oý.1L0 ýL@ 2 ýQ6G@[email protected]ýh6FDOL'@ON1P ?GþVPOA L ÒPBAïýL04PON DO545 ?©DO54<ê6Q69ýL/<?15769.Ò
D ,:9;/10 .$ 4'#< < ¯?4?t37! @ 4= 5 q.10CJCKtDOL0 ,> 2 /?0 .6846G0 J * DOLJ LDO.1ý+34@O?/0 ,:3;/101 ;34JCL t?/PBLJë@B? 1L15PO?POA L @OPBNCJC5?9þkJC.1@B@OLýPB.1?/0C;@ qL P @~L6*ÿ? 154K/?/0?t0POACL ÿ Q6G0 L 4B 2 AC>DEDFEGHICKJLNMá?9+þ ß.ü@©6*ÿ~69DOPO.1PB.ü?t0C.10CK?9+þ .107PB ? O @O$N Cÿ~? 157Kt?/0CP@ : Q;RR;REQ TSß@ON ý=AÜPBA~6GTP UIV$WTX+YUZV$W\["]@^ < (_`Ubadce_`Oï< ©ACLDB% L UZV$W JCL'0C?/PBL@PBACL.104POLDB.ü?tD©?Gfþ hgV69ý+
A X .1@©ýh6 >1LJïj6 ikCKFEGEF?9fþ Mlaþ 0C?/0CL§?Gþ POACL ÿC.1Lý'L@?9+þ M .1@©@O.18>. Q6GDVPBT? m< Mn©>. >)~Lý#6 >1LJï
6 LJLo1HIpCKq;CKrs JC.1@O@BLýPO.1?t0&?9fþ t J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 53-66, 2001. Springer-Verlag Berlin Heidelberg 2001
54
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
2 uo1AC>DEDvFEG;HZCwJLNM ?Gþx .1@6*ÿ~6GDBPO.1PO.1?t0C.10CK?Gþfß.ü04PB? @BNCÿ?154K/?/0 @zy ` S({ ©.1POAJ .ü@>|+?/.104PV.104POLDB.1?/DO@@ON ý=AÇPOA~69P¯PBACL5ý#6G0 L DOLh69@O@BL8"1LJPO?§þz?/DB8~}ÿ:?Q;154R;K/RR?tQ 0C@©6> @O.18.>Q6GD©PB? 2 JC.1@O@BLýPB.ü?t0ê?9þb .1@ýh6>üL'J-DvFE;FLHICKrsKs uo1ACwqC>DCK<sF.¶þ¯þa?/DLtLDO5cC< !_c(_
}q<4.1PO@©ÿC.1Lý'L@ýh690e~L6G@B@OL8"$üL'J@O?69@¯PB?*þz?/DB8@c ÿ?154K/?t0C@[email protected].Q69DVPO?j lX0 *.ü) K > 0z6 4<< ¯L©@BAC? ç6z7; XJC.1@O@BLýPB.ü?t0?GþF6{PODO.Q690CK1L*.1Kh> 0Kh46G0CJe0Qý4 @OAC?Ã6{0C?/0m ÒPBDO.>4.I6 7; XJC.1@O@BLýPO.1?t0È690CJ&6*@BL 4NCL04PO.Q6 15"6 ÒJC>. 4.1@O>. 1LJ .ü@B@OLý'PO.1?/0?GþVPBACL @=6G8LPBDO.Q6G0CK1L
;
1
I
>Á tÁ ° v+w gG`bWXWXU+[+_a`bd^o7Y^7d'^/_aZX`bl#`bYi vw gG`bWXWXU+[+_a`bd^Y'^7g Y©WXU+Ý#c7UB^/_a`bYiibu y'w gG`bl#`bWa`tibUgG`bWXWXU+[+_a`bd'^ deqY _aZX`bY^4|ibU#´
? 1.ü@B?/0 O<#@OLL6 1@B?ÿ~6GKtL ?Gþ K46 /L XJC.1@O@OL'ýPO.1?/0 @¯?9þFDOLKtN Q6GD ÒKt?/0C@ ©.1POA ?tD ²ÿC.1Lý'L@*þz?/D É?4JCJÜ?tD L tL0F< DBL@OÿLýPB. tL 15 >©ACL@BL&J .ü@B@OLý'PO.1?/0C@6 1? ©@NC@ PO?*ý?/0 @OPODBNCýP @OL 7N L04PO.Q6 15 XJC. 7.1@B. üL{JC.1@O@BLýPO.1?t0C@ ©.1POA ?/D «ÿC.1LýL@#<DOL@Bÿ~Lý'PO. /L 15 >©ACL?tDOL8 Ü.10êPBAC.1@ÿ~69ÿ~L'D E4L 4NCL04PB.I6 ü5 XJC. 7.1@B. üL JC.1@O@BLýPO.1?t0C@¯?9þF@ 4N~69DOL@A~6 /L LL0@BPONCJC.1LJ.10 ~< /< X0PBAC.1@Vÿ~6GÿLD ¯L{ÿCDOL'@OL04P @OL 4NCL'07PB.Q6 15 XJC. 4.ü@B. 1LFJC.1@O@BLýPB.ü?t0C@ ?Gþ~PBDO.Q6G0 K 1L@h<'ý?/0 tL 7N6GJCDB. Q69POLD+6 1@h<#6G0CJ ý?t0 tL ÿ~L'07P+6GKt?/0C@ ©.üPBA C< <~6G0 J ÿC.1Lý'L@DOL'@OÿLýPO. tL 15 ?/D©PODB.Q6G0CK üL'@ L ÿCDOL'@OL04P0 ?/0 XPODB. 4.Q6 @OL 7N L04PO.Q6 15 XJC. 7.1@B. üLJ .ü@B@OLý'PO.1?/0C@ ©.1PBA ÿC.1LýL'@ C?tD DOLKtN Q6GD ÿ? 154K/?/0 @ ©.1PBA /L'DOPO.1ýL'@h< ¯LÿCDBL@OL'07P XJC.1@O@BLýPB.ü?t0C@ ©.1POA Üÿ .üL'ýL@ ©AC.1ý+A 6 ü? NC@PO?©ý?t0C@OPBDONCý'Pk@BL 4NCL04PO.Q6 15 ÒJ . 4.1@O. 1LJC.1@O@OL'ýPO.1?/0 @ ©.1POA > +0,:;/ 3 ,:3;/Z4 ; z7; bV$ V ¡ ¢V "V 8 > < > } > $ \ 0Z}j£¤ 4V% ¥ T0Z}j£- 41Vt£ }" ¦7 > `0 §6 ¨4 > -} > $ 1 ; b ,> E©6 ;7;/1l > } > > ªz 8 ª ! «}(£7 $68}(£« =}(£&6 > 8¬* \ < > } > $ " «}N£® b* V&]@6O¯ x "7; T &V > z} > + "0Z}k£° ;41Vx£\} z7
Sequentially Divisible Dissections of Simple Polygons
55
ÿC.1LýL@;*C?tD\DCK±Pihs>FiJs²JLmD<40 ?/P0CLýL@B@=69DO.>15ý?t08tLªq<©.1POA VetLDOPB.üý'L@\LÿCDBL@OL'07P 6 6 XJC.1@O@BLýPO.1?t 0 ©.1PB A 7Vt£7*ÿC.1LýL@;C>©AC.1@61?©@NC@©PO?ý'?/0C@BPODON ýP"0Z«}z ³684´ ÒJ .ü@B@OLý'PO.1?/0C@ ©.1POA6GP8?t@Ob P 0Z7Vj£=74 }¬0Z7Vz ¤µ¶ Rh· £e684ÿC.1LýL@;h*.10~6>15 þz?tDbDHZrp!D?¸$rEiFEA!imJs²JLD< ¯L @BAC? Ã@O.18. Q69DVDOL@B N 1PO;@ >©ACLþz? >1?©.10CK0C?/P+6GPO.1?t%0 ©>. >~L©NC@BL+þzN POACDB?/NCKtAC?/NCP PBACL©ÿ~6GÿL;D ¹ >. tL0 P ? ÿ~?t.107PB@ º)690C J »!?t0POACL{ÿ Q6G0CLt8< ºT»d©>. >CJCL'0C?/PBL±PBAC\L 1.10CL©@BLK/8L04hP |+?/.10C.10CK PBACL= 8 9>©ACLÿ?/.104P 01 !£¤¼h4º¦ ½¼)»¾©>. > L&J L0C?/PBLJç69¢ @ ¼x0Zºj»T4x¿?tPOLPBA~6G" P ¼x0ZºT»T4§.1@JCÁ. ÀqLDOL04P*þzDB?/8 ¼+0I»TºT4<8* ?/DV
0 º< ©A L 0 ¼"]` !¯L{K/L\P »<7690C
J ©ACL'0 P ºT»"#E4.18>. Q6G1D 15/< 1LP ³~L©6ÿ~? 157Kt?/0~6 ¼"] : ¯L? CP+6G.10POA LV8.1Jÿ?/.104Pq?GþPOACLV@BLK/8L04+ 0QDBL@O+ ÿ H G6ÿ? 154K/?th0 4©.1PBTA /LDBPO.1ýLf@ » : QR;RREQ » ¶ <+POACL'¢0 ¼x0Zº Q z4)©>. GJ L0C?/PBLVPOA LVÿ~? 157Kt?/0~6 0QDBL@O+ ÿ 4PBACL ÿ~? 157Kt?/h0 4é.üPB
A tLDOPB.üý'L\@ ¼+0IºT» : 4 QR;R;R¨Q ¼x0ZºT» ¶ 4<lafþ ü.10CL©@BLK/8L04POb@ ºT» 690CJ ÄzÅ×6GDOLÿ~6GD+6 >1LX<¬
L ©>. >©DB.üPB L ºT»¯ÆeÄzÅflaþ±6ïÿ? 154K/?t0ëA~69%@ tLDOPB.1ýL @ Ç Ç ¯! L ©>. ?GþaPOL0DOLþzLD©PO?.1P©6G@POACL ÿ? 154K/?t
0 ©.1PON A /LDBPO.1ýLj@ yÇ :QR;R;R¨Q Ç ¶ { <4?/D@O.18: Q;$ÿ Rü5R;*REQ POA ¶ L ÿ~? 157Kt?/e 0 yÇ Ç { ¶ > ¯?ïÿ? :154QK/R;?tR;R¨0CQ !@ b 6G0C¤ J 69DOLýh6 1L¤ J GEJL²p<8F;LH§.bþPBACLDBL&.1@ 6ÈPOD=690C1@ Q69PO.1?/& 0 È< 6 DO?tP=6GPB.1?/= 0 Ä*
K Ë-¹+Ì (H Í Ì H @ONCý+AÜPOA6G%P Ëx0ZÎ)4z]¦ÏhÐ ¤¼)ÎF¬< ©A LDOTL Ï)Ð .1@6*ÿ~?t.ü04P.1 0 Ì H
M
©ø Fóô;úØfÙ1ÙÚß÷ú?Ûú1Ü4ú1Ý!Ù1ÖÃ÷{ú1ÜÜÖFùôCúOöVó!Üëö#Þ&ôCõCú1Ø óPßÙ1ÖxÜ 2@þz?tD¯PBDO.Q6G0 K1L@h<$¯L @BAC?)PBACL{þz?>1?©.10CK POACL'?/DOL'8=¹ Ô
ÕbÖ+× !Ö
àzáfâãhäâåçæhèTézLHIpCKrL²s>FT¸rD reDF¨;FL$HZCKrsKsN})o1ACKq;C>DCK<sF"AC>DEDvFEG;HZCwJLêp1F
qLP : : ~L6ØPODB.I690CK 1L ©.1POA /LDBPO.1ýL@ qL'P : L¯PBACL©JC.1@O@BLýPO.1?t0?Gþ R ? C + P G 6 1 . C 0 L J 9 6 @ z þ ? 1? © @ L P × G 6 C 0 J ¯ L B P C A ¯ L ÿ / ? 1 . 4 0 O P @ / ? 0 2 Ü@ONCý+A*POA~69P < 6G0CJ 1LP 6G0 J ~LPBACLÿ?/.104PO@@BNCý+A 6G0C: J : POA~69P 690CJ .1K z6 q>©A L0ÜPODB.I690CK 1L ©.1POA /LDBPO.1ýL@ .1@¯@B.ü8. I69D PO? : : 6G0CJPOACL.1D©D+6GPO.1?*?GþF@B.ü8. ü.1PBNCJCL.ü@ R ?tH PO: LPBA~6GP PODB.I690CK 1L H H ©.1POA tLDOPB.1ýL@ 6G0 JPOD+6GÿL ?t.üJ @ 690CJ ©.1POA tLDOPB.1ýL@ <~690CJ <4DOL@Bÿ~L'ýPO. /L ü54< ýh690 L&6GH @BR @OL8 üL'JëH .104PO?ë6ÈPODO.Q690CK 1L @O.18. Q6GD PB? : : ©.1POAD=6GPB.1??Gþ[email protected]. 1.üPBNCJCL©L 4N~6 qPO?
îbp1J;J1ï<ë\ x Eð ( by;ñ QEò"QEó { fM ¨ð > ¹ ô "õ- ! #ô@] ö 0Kñ ò 4 & %úüû
ñ óTQý û òTó þ§û¤ô"ú÷ &õ÷]ùøö 0Kñ ò 4 Tô"ú¯Æ õ Æ(ñ þçÆ(ñ 0Z* h> 0 44 ( <ð òjóTQ ý ó ý ò ö ¿ zy;ñ Q ô Q ú { > j Eð > <ð " zy òtQ õ QEý { ' <ð " <ð " ø y ô Q õ QEý"Q þ { -y ójQ ú Q þ Q¨ý { > < "$ %* )> 0 4 > ( Eð > øö l > e ¬ jM[e \[ ð ÿM + \[ ð M[ e ª&ñ cB7+* )ª }¤« ¬0ÊM £y <ð { 40>M £y ;ð { 4 RR;R =0ÊM £³y Eð { 4 tM E f ª « I 0 ( } £ 7 x 4 " 6 ¦ ] « ¢ } £ 7 " * ) 0 4< Eð < > } > $ + Eð * > > } > > h* ! !
> } > $
56
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
Á Á µ`^7gG`^4| Y{^4d^ w _aZX`bl#`bYi WXU+Ý#c7UB^/_a`bYiibu w gG`bWXWXU+[+_a`bd^ïd'eÙY _aZX`bY'^7|'ibUh´
>
~Á Á TVU+YhWXWXU+nØ/i`^7|_a\4U©gG`bWXWXU+[+_a`bd^`^µ`b| v 1â ;ä`^/_Xd4lhU{_aZX`bY^4|ibU+W+´
Ê
JC.1@O@BLýPO.1?t0M ?Gþ¯PBDO.Q6G0 K1L"yñ Q¨òtQ¨ó { 69@ @OAC?©0ï.10=*.1Kh:7$0z64<C>©ACL*8&69.10&?|+LýPB.>/L*?Gþ ?/NCD{8?4JCÁ. ~ýh69PO.1?/0<4.ü@{PO?8&693/L @ON DOLPOA6GPL</LDB5ï@OLý'?/0CJÜPBDO.Q6G0CK1L?Gþ þzDB?/8 PO?tÿëPB? ~?tPOPB?/8 PO?/N ý=A L@\ñ ò
L 1L+þzP*ÿC.1LýL?9"þ <PO?ÇPOACLL 1L8L04P?Gbþ M¯~L 1? .1
P 0POACDB?/NCKtAC?/N P PBAC.1@ ÿ~69D= 6 K/D+H 6GÿCAF<4j6 üLþzP 0DOL@B+ÿ CDB.1K/A4¨PH 4ÿC.1LýL 8L#6G0C@©6ÿ .üL'ýL A~;6 4.ü0
K 0QDBL@O+ÿ 0C?/PA~;6 4.10C8K 46G0LJCKtL ý?/04P+6G.10CL& J ©.1POA .ü³ 0 ñ 4<f¿L ª4P*@Oÿ 1.1!P .104PO?«P ¯?ÇÿC.1LýL@#
0 *F.1)K 7$0Kh4<lX06DBLýNCDB@O>. /jL Ó6#54< L±0 ? Ã@Oÿ 1.1P TX .104PO?6DB.1K/A4PVÿC.1Lý#L X¯690CJ 6 1L+þzPÿ .üL'ýL X@ONCý+A«POA~69P.¶þ U.ü@{?4JCJF
0 |+?/.1$ 0 X©PB?POACLÿC.1Lý'L?Gþ M ~L 1?Û.üP#+< U!a }q< @OLzL *.ü)K :70K)4lXP.1@¯0C? ÉLh69@O5PB?@OLL PBA~6GPPOACL{ÿC.1LýL@©?9þFPOACL{JC.1@O@BLýPO.1?t0&PBA4NC@¯? CP=69.10CLJ þz?/DB8 6@BL 4NCL04PO.Q6 >15 } XJC>. 4.ü@B>. 1L¯JC.1@B@OLýPB.1?/+0 $lX 0 *.1hK :«zL@OA ? ÃAC? ÃPB?Þ69@O@OL'" 8 1LPOA L ÿC.1LýL@{?Gþ POACL JC.1@O@BLýPB.ü?t0ï.1 0 *.1hK :70wh4.ü04PBT? htLPODB.Q6G0CK üL'@ ()
Sequentially Divisible Dissections of Simple Polygons
57
*bF;±%rp1uëÜLVýh6G0*8?4JC.¶þz5z 6 7 ÒJC.1@B@OLýPB.1?/0?9þ~PODB.I690CK 1L@ JCN L¯PB? ?>ü.1@B?/0"0Q@BLL\*.üKtNCDOL:9 .10%,:3;/Z4q6G0 J±@BAC?©0 .10°*.1Kh 6)0z64x0Q@B?1.1Jzü.10CL'@¨4PO?©?CP=69.10±J .ÀqLDBL04P#} XJC.>4.ü@B.>1LFJC.1@O@BLýPB.ü?t0C@ 6 1@O( ? ©.1POe A «}j£¤ ÿC.1Lý'L@h<@OL'L%*.üK) 6h0K)4
+,-
+/.0-
Á Á µ`^4gG`^7|*Y WXU+Ý#c7UB^/_a`bYii1u 'w Gg `bl#`bWa`tibUgG`bWXWXU+[+_a`bd'^Èd'eqY±_aZX`bY'^7|'ibU#´
> 21
êø!Øk÷{õCú1ÙØômÖõØfÙ1Ü ÜL0C? @OAC?T¹ 3
4
àzáfâãhäâå65¬èTézLeGEJLq;F27ÿrApC>s>rHIFprs+¸rD¢rNDFEF;LHICKrsKs>"})o1ACKq;C>DCK<sF(AC>DEDFEGHICKJL í CKH>¸(68}j£«¢ikCKFEGEF
qLxP %]Òyñ ô { ~LPOA L¯ý?t 0 /L ªT4N~69JCDO>. Q6GPBLD=6 4PO\? LJC.1@O@OL'ýPOLJxÜLV86#5 G6 @B@ONC8LPOA6GP 8 ñ- 9QE8 ò"ò QEóT_9Q :ë690CJ8 ò ;8 ó _9:f ÜL(~DO@BPK/.>/L6@BL4NCL04PO.Q615&7; XJC.>4.ü@B.>1L JC.1@B@OLýPB.1?/0³M?9þb ý[email protected]@BPO.10CK«?GþbhtL ÿC.1LýL@;¬qLPzõ¡ûñ ò"Q ú¡ûñô÷LPOACL§ÿ~?t.ü04PB@©@ONCý+AïPBA~6GPzõ¦] Rö 0Kñ ò 4 Q úd] Rö 0Kñô"4 6G0CN J 1LP ý ~L POA Lÿ~?t.107P?/0PBACL JC.Q6GK/?t0~6 )ñ ó @BNCý+A&PBA~6G\P õ ý Æ òjó 0@O? ú ý Æ\ô ó 4 qL" P þçû òjóTQ=< û½ô ó LPOA L&ÿ?/.104PO@§@ONCý+AêPBA~6G"P þ ] ö: 0 òTó 4 Q>< ] ö: 0Zô ó 4'<+1LP ?½û¦õ P ?+þ Ætñ ò 6G0CJ @B< Æ"ñô 6G0C& J 1LP ý"Q=@ û®ú ý ~LPBACLÿ?/.104PO@*@ONCý+A²POA~69A & L B P C A * L 8 1 . J X ~ ÿ t ? ü . 4 0 P G ? þ " + ? & þ ) q L P
D L B P C A * L ü . 4 0 B P L O D B @ L ý O P 1 . t ? Ü 0 ~ ÿ t ? ü . 4 0 { P G ? ¯ þ B P C A L % 1. 1 C 0 L ÿ G 6 O @ @B.10CK C POACDB?/NCKt A õ 6G0 JÜÿ~6GD+6 >1L PO ? ô ó 6G0CJ«POA " L ü.10CL*ÿ~69@[email protected]PBACDO?tNCK/F A E×6G0CJ«ÿ~69D=6 >1LVPB? < D .1@6ÿ?/.104P.ü0PBACLÿ~69D=6 >1L1?/KtD=698 ñôeE4.10CýL 8 ñ
8 ò _9:Ü6G0CJ 8 ò 8 ó _G: H y ò"Q õ Q ? Q þ { 4>©AC.1@ÿCDB?4JCNCýL@§POACL*JC.1@O@BLýPO.1?t0ë?9þ B©.üPBAïÿC.1LýL'" @ y E: ð: Q;RR;REQ E: ð ö { 6G@ @OAC? ©0§.ü(0 *F.1)K $0z6 4lXP.1@kL#6G@O5§PO?@BLL©POA6GPFPBAC.1@ .ü@ 6{@OL 4NCL04PB.I6 >ü5T7 ÒJC>. 4.1@O>. 1L JC.1@O@BLýPO.1?t0 ?Gxþ ü0Z*.1hK :$0Kh44 Ü L ©>. >40C? êP+6G3/L©PBACL©JC.1@O@BLýPB.ü?t0.10CJCNCýL'
J 4z5 M .1T0 PO? ? CP=69.ü0z6 «; XJC.1@O@BLýPO.1?t0 ?G!þ t5É.üPBLD=69PO.10CKÜPBAC.1@ÿCDO?4ýL@B@hb< LïKtLP&6«@BL 4NCL0CýLÜ:E?9ðþ: @OL 4NCL04PB.I6 >ü5-} XJC>. 7.1@B. $üL JC.1@O@BLýPO.1?t0C@©?Gfþ ©.1PB
A 68}j£«§ÿC.1LýL;@ () îbp1J;J1ï<ë\
FóôØ+ßöVó\Ü lX0PBAC.1@©@OLýPB.1?/0L ÿCDO?tL±PBACL þz?>ü?©.10CK DBL@ON1P;¹ I
JNÖ
58
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
O
W
N
X Y Z^ X YZY U Q T K
R X&Y Z [ S X Y Z\ L
X YZY V
P
X Y Z^ X Y Z\ X Y Z[ X Y Z]
X Y Z]
_a`cb
M
_ db
Á Á ° v w gG`bWXWXU+[+_a`bd^ïd'eÙY [+d'^/lhU+³*Ý#c7Y#gGZX`ibY#_XUOZOY'iz´
> 2e
àzáfâãhäâå6f¬èTézL(G¨JLq;F27!iF;LHZr;²JL"¸rDzrTDFE;8F;LHICKrswsz})o1ACKq;C>DCK<sF!AC>DEDFEGHICKJLNí KC H>¸ }°£6tikCKFEGEF
h â å&åFi&æ)è j+F;Hf§¨FertimF;LHIr²JLëk¬¸$FL³í FeG¨rL&s>rEFsbCKHwD¢q;F;pHZCwG¨F
;8 õqt:rl òjó ¦ ô 98 ôwt:-Jp 8 ôd x8 õ ó
p
:&¸Js>ADë
qLPx½LÓ6Øÿ~L'07P+6GKt?/0(©.üPBA.1PO@f/L'DOPO.1ýL'@ Q6L>üL'JTñ ô õÃ6G@ .10%qL'88&6! qLPzñ : ]¡ñ*< ò : ] Rö 0wñ ò 4'< <h<¬õ : ] Rö 0wñõT4'<¬ñ H ]Qfò"öH Q 0Zô(óTñzQ 4< Q ;< ó H ] Hö 0Zô ó 4< ô H ]dô<~690CJõ H ] Hö 0Iô"õT4)qLP\ú : ] ö: 0 òjó 4<6G0CJ ý : ] : 0 ò : ó : 4< E4.10CýL8 ò y8 óqp :e45POACLP~DO@BP©ý?/0 JC.1PO.1?/0 {.10 qL88&6TR t<4ÿ~L'07P+6GKt?/0C@!yñ : Q¨ò : Q { J y;ñ H Q¨ò H QEó H Q ô H Q õ H { A~;6 tL0C?*ý?t88?t0 .104POL'DO.1?/Dÿ~?t.107;P ¿{?/PBL±PBA~6GP ó : Q ô : Q õ : 690C J 8 ò F8 ózp :POA L G 6 C 0 J ñ A~;6 tL©POACL{@=698L üL'0CK/PB+A /E4.10Cý!L 8 ñ F8 p :&690C ò H H { PB? POòTD+6Gò 0C: @ I69PO.1?/0 POA~69P©8&69ÿC@ òjò : PB? ò H ñ H 86GÿC@POACL§ÿ~6GD+6 òq >1L1?/K/D+6G8 y ú ò"Q : QEý : Q¨ò : 6@BN C@BLP?9þ PBACL ÿ~L'07P+6GKt?/ 0 yñ H QEò H QEó H Q ô H Q õ H { ?/0C@B.üJ LD0CL ª4PPBACLÿL04P=6GKt?/& 0 ©.1PO A /L'DOPO.1ýL'@ ] ñ R ] : 0 ó H ñ H 4 QTò R ] :H 0 ó H ò H 4 Q ô R ] H: 0 ó H ô H 4 Q õ R ] H: 0 ó H õ H 4<|{Ø?/P+6Gó POL R ÿL04ó P=69H K/Q ?/t 0 yñ R Q¨H ò R Q;ó R Q ô R Q õ R { 92JCLKtDOLL@6GDB?/NC0C³ J ñ 6G@*@OAC? ©0É.1 0 *.ü)K :.0z6 4 PO?«? P=6G.10ÜPBACLÿ~L04P+6GK/?t& 0 ©.1POA /LDBPO.1ýL! @ yñ ø QEò ø QEó ø Q ô Rø Q õ ø { tb> ?ýh6G@BL@6GDB.1@OL ¹õ ø ~L 1?t0CK/@PO?PBACL .107PBLDO.1?tDV?Gø þFÿL0 P=69K/?/0 y;ñ ô õ { 6G@*.1
0 *.1hK :.0a6 4< ?/" D õ ø J ?7L'@ 0C?t%P 1.1L.10êPBACL.104POLDB.1?/D*?GþPOA L @=698LÿL04P=QE69ò"K/QE?tóT+0 Q Q lX0 PBACb L ~DB@OPVý#6G@OLtq@BAC? ×POA~69P POACLÿL04P=69K/?t0 TÓ ] yñ ö Q;R;RRQ õ ö { < ? CP=69.ü0 L J 45êPBD=690C1@ Q6GPB.10C& K yñ ø Q;R;RREQ õ ø { .10ê@ON ý=AÃÿ 6 Ó6#5ÜPBA~6GP ø
Sequentially Divisible Dissections of Simple Polygons
}
}
}~
}
}
~
~
~ /
59
} ~ !
}
}
}c
}> }c~
}c
Á Á µ`^7gG`^4| Y g9`bWXWXU=[+_a`bd'^&d'eFY [=d'^/l#U=³§mCUB^/_XYh|#d^´
> 2
õ ü.1L@?/ 0 ô >q0C?¤LDBLh61.>'h6$üL : Q H Q
&
Q
: { 0Z*.1Kh:.0wh414</>©A L õ
¡
¢
µ `b|t´ ´ ¤ S `bW{^7d#_ >2Á £ Á }#\7d'Ð `^7|_a\7U ZOU=|'ZOd'c/m/`^4|ïd'e¯_a\7U mt`bU+[=U+Wd'e¯_a\4U g9`bWXWXU=[+_a`bd'^ëe1ZOd#n Wa\7dÐ ^ 4\ UOZOU#ot/c4_ `b_V`bWYm4YZO_d'eÙU+Y#[X\ vw gG`bWXWXU+[+_a`bd^`iic7WX_aZOY#_XU+g\4UBZOUh´ £Á£ Í > #º (» ºT»³ >> £ Í ñõ > " § %§ 2 ¨ 2 §e ¬¨ p Q p p ½ ô x 8 ôw9: 8 ô½ x8 õ : f N 8 ñ ó p { ®iH¯â&æ)è ¨ ªy p Q §Â£
¹ l ) \õ < ø { ó ø Qó Q)ý
. /L0 P ?©ÿ~?t.ü04PB@ É6G0CJ < ©. GJCL0C?tPOLPOACL /LýPB?/D »t£º" £>L£ Í P¥ÿ] ñ£ Í ó"Q=¦ ] 6G0CJ«ý[email protected]D§POACL*NC0C. 4NCL*DOLh6 V04NC8 ~L'DO@ Ã6G0 J¨É@ON ý=A«POA6GP ñzô¾]©§ª¥ «¨ ¦ 1Lh6GD ü5 690CJ ÜL 6 ü@B?A~6;/Lv¨-_ ?tD§³a@ /<JCLÿL0CJC.10CK ï?tD 4>b?ýh6G@BL@±69DO.1@OL¹ ?/0 ©ACLPOA LD 86 : X0&PBAC.1@ýh69@OL/< L R @OAC? ×PBA~6GP ~L ü?t0CK/@©PB?PBACL.104POLDB.ü?tD©?Gbþ y ú : QójQó H Qò R Qhò ø Q {: *: PO?*ÿCDB? /L POA~69P©POACL§JC.1@O@OL'ýPO.1?/0@BAC? ©0.ü0*.1Kh:.0a64 .1@©DBLh61.>'h6$üLCE4.10CýL £££ Í £££ Í £1££ Í ö: 0&¥e£ 4 ] : ¦ ó ø õ ø ] R±° ó ø ó : ³²0´ Hµ° ° : ó ø ó H
60
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
G6 0CJÉ@B.ü0 ýL2¥a R±: ° a§ ï6G0CJ½2¥a ²¶´ H·° ° : a§ /<õ ø .1@&690Ã.104POLDB.ü?tDÿ~?t.107P?GþPOA L { E4.10CýLF8 ÿ~6GD+6>1L1?/KtD=6G8 y ò ø ñ ø õ ø a¸: < POA LJCL@B.1DOLJÉý?t0Cý[email protected]?t0 0C? Éþz?>ü?©@; ójQTó H Q"ó ø Q"ó : ®iH¯â5 è ¨_ç86ªy : §Â£
{ ¹ Ü\ L ©>. >~@BAC? )PBA~R 6GQP©.10POAC.1@©ýh69@OLPBACL JC.1@O@OL'ýPO.1?/0Ç@OAC?©0.ü0*.1Kh:.0wh4.ü@DOL#61.>'h61L > ?ï@OLLÇPOAC.1(@ ¯L@OA ? POA~69P ò ö 6G0 J ó ö 6GDBL&.104POL'DO.1?/D*ÿ~?t.107PB@ .10²POACLÿ~69D=6>1L1?/KtD=698 J ¨&_½ .10POÍ AC.1@ýh6G@BL Í y õ : õ ö õ H õ { ¿{?/PBL±PBA~6G" P § p RH 6G0Cm Q Q Q £>£ £ £>£ Í qLP¹690CJº\LN 0C.>7N L¯DBLh604NC8"~L'DO@ @ONCý+APOA~69P õ ò ]9¹ õ°ñ mº õ ó 0I]y¹+0?£ ¦ 4 J 8 ò x8 òTó õq«: < 2jayº%a¦ 6G0C J 2jat¹e_¦ º0'¥N£ 44E4.10Cý L 8 ñ G8 òqp :«6G0 » ¦ Ñ0PBACL ?/POA LDA~690CJF < L A~;6 /L £E££ Í £E££ Í £E££ Í ½ õ ö õ w¾À¿ ´ ½2Á ²¶´ ½ ¾ ° : Á õ ö õ õ ö ò ö ]Ò£ ö: , ¹+0?£ ¦ 4¬ ¼º0&¥N£ ¦ 4´/] : H 6G0CJ R H ² ² Í £1£ö £ Í ö £1£ö £ Í 1 £ £ £ ö õ ó ]Ò£ ö: 0&¥e£ 4"] ¦ R : ² õ õ : ²¶´ ¾H ° ² : Á õ õ H R J 2(a ²¶´ ¾H ° ² : Á _ H:
¯öó\Ü
ÄdÖ Å\Øxß
- ©E4ý+AC8LD1{þz?tNC0CJ×67; XJC.1@O@BLýPB.ü?t0)?9þ POA LÜDOLKtNQ6GDACLªC6GKt?/0¤©.1PBA¤htLëÿ .üL'ýL@h<Ø@OLL h *.üK):90z64 0@OLL61@B?°*.1K/N DOL$> 9{.10,:3;/Z4<¯5DBLýNCDB@O.>/L<ü5N @O.10CK E4ý+AC8LD1cg @ JC.1@O@BLýPO.1?t0.1P þz?>1?©@POA~69PFPOA LDOL69DOLV@BL4NCL04PO.Q6>15T} XJC.>7.1@B.$üL JC.1@B@OLýPB.1?/0C@f©.1POAT6}x£°«ØÿC.1LýL@;GM@B.10CK POAC L 7 ÒJC.1@B@OLýPB.1?/0É@OAC? ©0².1
0 *.1hK :90wh4TLýh6G0Ã6 ü@B?ë? CP=69.10ê@O
ÆÉ ÆÌ
ÆÊË
Æ'È
ÆË ÆÈ
ÆÊÉ
ÏÐÑ
ÆÎ
ÆÍ
ÆÎ
ÆÍ
Ï/Ò¶Ñ
>2Á Ó Á v+w g9`bWXWXU+[=_a`bd'^7Wd'eCZOU+|ctibYZ \7U+³GY#|hd'^7W+´4æUWa\7dЫ\4dÐë_Xd©[+d'^7WX_aZXc4[=_ d'^7Ude_zÐ dZOU+|ctibYZ \7U+³GY#|hd'^7W+´
Sequentially Divisible Dissections of Simple Polygons
61
©ø Fóô;úØfÙ1ÙÚß÷ú?Ûú1Ü4ú1Ý!Ù1ÖÃ÷{ú1ÜÜÖFùôCúOöVó!Üëö#ÞÈõÖ ß¯ø\ÙØkõ¬IÕsÖ;߯öVó\Ü M@B.ü0 K±PBACL.1PBLD=69PO.1?/0*ÿCDO?4ýL'@O@©NC@BLJ.10E4LýPB.ü?t0C@b7;©m <#POACLØþz?>1?©.10CK©DOL@BN1P¯0 ?Üþz?1?©@ zþ DO?t8 ? >1.1@O?t0 g @VDOL@BN 1P8L04PO.1?/0CL'J.ü0ïE4L'ýPO.1?/& 0 ¹ ÕbÖ+× !Ö
Ô
àzáfâãhäâåØ×+è j+F;H üEF%rNp1F²s>rp iJs²JLÿí CKH>¸"Vq;Fp
*C?tDDOL'K/ N Q6GD{ÿ~?157Kt?/0C@b©.1PBA=V=]Ò68O /LDBPO.1ýL@#<+L0C?×Kt.tL 6*0CL@7; XJC.1@O@BLýPO.1?t0 ©.1POAV²ÿC.1LýL@#< ©AC.1ý+Aê6>1?©@ NC@*PO?«ý.10C@OPBDONCýP@BL4NCL04PO.Q615&} XJC.>7.1@B.$üL*JC.1@O@BLýPB.ü?t0C@ ©.1POAe0Z}£ 4V!£ } e7ÿC.1Lý'L@ LPf¦~L 6DBLK/N$I69DVÿ?154K/?/0(©.1POA(68O@tLDOPB.1ýL@I6~L<üL'J ñ Ð Q;R;RREQ ñ S" : .10ÉPOACL«ý?/N 07PBLDOý<ü?4ý+3©.1@OL«JC.1DOLýPB.1?/0F< ©.üPBA¤ñ Ð ~L.10CK²POACL«PO?tÿC8?t@OP ø /LDBPOL ª?Gf þ
ß è |ß à éµê éà ë ßâá é ß0ã ÛÞä
cï ó |í î ïñð ï'ò ï'õ ï ôî ïô ó
ÛÞÝ ÞÛ èaè Ûè é àì è ÛÝ ç àì à Ûæ Ûå ÛÜ
! "$#
! )#
û öø÷ùHú>÷ ú ú ö ú ÷ ú û ö û H ö ÷ ú ü ú ý ú ý ú ö ü ö ú þ ú=ÿ ú ö
ÿ
öHý öøþ
! %
ö
öøÿ
! ($#
ö
! '$#
>&Á * Á j`bWXWXU+[=_a`^4|{ZOU=|'c/ibY'Z y+ mCdibuG|#d'^7W+´/®dh_a`b[+UV_a\4Yh_ m/`bU+[+U+WkÆ-, Ì Æ S/. Y'^7gÆ SQ `^âQg7äÙ\7Yl#U CU=UB^*ZOdh_XY#_XU+gY^4g10t`m/mCU+gC´ ?/0C@B.üJ LD 6@OLý'?/0CJ²DOLKtNQ6GDT6O ÿ?154K/?t032¦©.1PBA=tLDOPB.üý'L@ y Ð S# { ?Gþ O@ .>'L Hö PBA~6GP{?Gþf hÜL§ÿCDOL@BL04P!~DO@BP 6JC.1@O@BLýPO.1?t0ë?9þ42¥©.üPBA=7O ò ÿC.1LQýR;LR;@§R¨QE?ò CP+ø 6G.10CL: Jï6G@ þz?>1?©@¹ X{ < *C?tDLh69ý=AUO
62
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
+?/.10C.10CKï6ý'?/ÿ45Ü?Gþ%!ÓX ©.üPBAÜPOACLÿ?154K/?t0~6V?CP=69.10CLJ&45ÜDO?tP=6GPB.10CK!ÓX ;92J LK/DBLL@ 6GDB?/NC0CJÜPBACLÿ~?t.107P : 0 X Ð;4 69@ @BAC?©0É.ü0*.1Kh:$0z64±þz?/D*POACLýh6G@BLO§] «f*.10~6>15 1LTP X ð H L*POACLÿ?154H K/ò ?t0~H 6ò q?CP=69.10CLJþzDB?/8¯ X ð: 45DO?/P+6GPB.ü0 K.üP( 92*JCLK/DBLL@ 69DO?tNC0CJ POACL*ýL04PBLD?G-þ 2\>©ACL @BLP?9þ X ð: f< X ð H ¬< U] Q;RR;REQ O .ü0 JCNCýL@*6ÿ~69DOPO.1PB.ü?t0C.10CK?Gþ-2 .107PB
? 7O ÿC.1LýL;@ +qLP{NCz@ Q6L FPBACL DBLK/.1?t0C@?9þ PBAC.1@ ÿ~6GDBPO.1PO.1?/0 .ü0 KT H X=<)U ]B QR;R;R1Q 7Oï< 6G@ @OA ? ©0ë.1= 0 *.1hK :0wh4)Ã.1PBAïPOAC.1z@ Q6L 1.10C"K H XO+< U]¾ Q;R;RRQ OÇh< ©>. > ý?/04P+6G.1 0 /L'DOPO
? X k< U] L /L'DOPO.1ýL'@?Gþ H : 75 Q;RR;R1Q 7Oÿ¬qLz P : LPOACL*ÿ? 154K/?/0 Rö 0wñÐ Q %4<k LPNCz@ Q6L VPBAC" < U+]d2 Q;R;RREQ 68OÒ£ t< ©ACLDBL ó Ð ]¤ñ Ð ó XO *C?tD±L#6Gý+½ A N_ U°_nO¯1LP§NC@POD+6G0C@ Q6GPOL6Èý?/ÿ45ï?9bþ X @B?ïPOA~69TP /L'DOPO
0 *.1hK :0hJ 46 L qPOA L .18&6GKtL@?Gþ H X©NC0CJCL'D±?tNCbD É.üÿ ÿC.10CK&6 ü?t0CKPOA %L 1.10CL*JCLPOL'DO8.10CL' J 4 5 ñ Ð 6G0Cÿ J ñ H S@75 S# X + < U!] Oï< 6G@@BAC? ©0ë.10ÜPBACL@=698j L ~K/NCDBL üL#6G1D 15©A L 0 LDOEL ÉLýP H ´ H < Uz]¯ QR;R;R1Q OÇ
8
9 1ú ÜÜÖFùôCúOóPß`Ü7ú;:=<\ÙÖ><ö ÙÚbßöVó\Ü
/? [email protected]D±6*@B.18ÿ1Lÿ?154K/?t0Nn©.1PBAÂVtLDOPB.1ýL@ ÜL±0 ?)ÿCDBL@OL'07P*6(6 XJC.1@O@OL'ýPO.1?/0Ç?Gþ PBA~6GP NC@BL@*LªC6GýPü5&7V£7ÿC.1Lý'L@ 2 PBDO.Q6G0 K/NQ6GPB.1?/0 ?9þ .1@ 6Èÿ~6GDBPO.1PO.1?/0«?Gþ .107PB?¢VN£7*PBDO.Q6G0CK1L@Ty<W :QR;R;R¨Q W ¶ H { ©.üPBAïJC.1@|?/.104P¯.104POLDB.1?/DO@{?CP+6G.10CLJe45ýNCPBPO.10CK( 6 1?/0 K VN£¤«J .I69K/?t0~6 1@+|+?t.ü0 .ü0 Kÿ~69.üDB@ ?Gbþ /LDBPO.1ýL@*?Gþ
L *.1hK > ;20z6 4$ÜL ? C@OLD /L 0C? !POA~69P©.bþ LJC.1@O@BLýP Lh69ý=Â A W1Xû$ß.ü04PB"? 6@O.18. Q69DVPODB.I690CK 1Lz@ y<W1X ð:Q W1X ð HQ W1X ð RQ W1X ð ø { 75 ýNCPBPO.10CK.1P¯6 ü?t0CK POAC!L 1.ü0 L¯@BLK/8L04PO¬@ |+?/.10C.10CK{POACL{8.1Jÿ?/.104PO@?Gþq.üPB@VLJCKtLb@ L©? CP+6G.106 JC.1@O@BLýPO.1?t
0 M(Óq?Gfþ ©.1PON A 6h0IV"£&74PODO.Q690CK 1L@#<4@OL%L *.1hK > ;20K)4 üL#6G1D 15þz?/DLh6Gý+N A cC
L *F.1)K 0wh4 >©ACL ÿ .üL'ýL@?9þ M 69DO" L VÜÿ? 154K/?t0C@ Lh6Gý+A«?Gþ ©A .üý+A«ý?/04P+6G.10C@
Sequentially Divisible Dissections of Simple Polygons
?A@AB
63
? CDB
Á Á pZX`bY^4|ctibYh_a`^4|Y^4ggG`bWXWXU+[+_a`^7|Æ{´
> E
F
F G
H
G H
G G F H H
G
F F
G F
H I JAK
H
I LDK
Á /Á ¬ d'ibdZX`^4| Y'^7g*d4_XY`^t`^7|d'c/Zt^7Y'iFgG`bWXWXU+[+_a`bd^ïÄ ´
>
?tPO.1ýLPBA~6GP§Lh6Gý+AêPBDO.Q6G0 K1L.10F A6G@LªC69ýP115Ü?/0 L /L'DOPOL<ªê?GþL#6Gý+Aêý?1?/Df* ?/DLh69ý+A @ONCý+A&tLDOPBLªNM;X©?Gþb¾1LP!°X!~Lÿ~?157Kt?/0ï?CP=69.10CLJ&45%|+?t.ü0 .ü0 KPOA L@OL'P?GþPBDO.Q6G0CK1L@ .1t 0 A~6;4.ü0 KOM;X6G@?/0CLï?9þ.üPB@ tLDOPB.üý'L@bÜL?C@OLD/L«0C? POA~69PLh69ý=A!?GþPBACLï@OL'PO@
+[z]¦y<°X ¹PM;XRQSUT1VXWYZW[zc { < cT]` 7 «C<4.10CJCN ýL@6*JC.1@O@BLýPB.ü?t0?Gþ+ )*CNCDBPOACL'DO8?tDOL/< ?C@BL1D tLPBA~6GPþz?/DLh6Gý+\ A M X PBACLÿ? 154K/Q ?t0Q ?G¬þ M ý'?/04P=69.ü0 .ü0 K.1Ph
àzáfâãhäâ` å _¬1 è abq;FpPDCK±bi)sFxiJs>²JL"í CKH>¸\Vq;F;pHZCwG¨F
ÜL 0C? ß@BAC? AC? ßPB?&?CP=69.10
0I«}( ¤64I XJC.1@O@OL'ýPO.1?/0 @?Gþb¾©.1POAÜ6GP8?/@OP(0Z7Ve£ ÿC.1Lý'L@@BNCý+AêPOA6GP*POACLÿC.1LýL'@ýh6G0³~LDOLh69@O@OL'8"1LJêPB?ïþz?tDO8 ~< C< h<?/D R ÿ? 154K/?t0C@@B.18.>Q6GD©PO?t FE4.10CýL*POACLý'?1?/DB.ü0 K?Gþ©POACL(/LDBPO.1ýL@§?Gþ .10CJCNCýL'@6ïÿ~69DOPB.üPB.1?/0Ü?/0Ü.1PB@%tLDOPB.üý'L@h<POACLDBL.ü@6ý+ACDB?/8&69PO.1ýýQ6G@B@%©.1PBAç6GP*8?t@OP µ¶ tLDOPB.1ýL@E4NCÿCÿ?/@BLPBACL0PBA~6GPPOA Lý+ACDO?t8&69PO.1ý¯ý
64
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
ý?1?tDO@76G0CJ«C
0 L©ýNCPVPBACL©ÿC.1LýL'@¯?9þ¬M 61?/0CK{Lh6Gý+A?GþqPOACL@BLJC.Q69K/?/061@h<#POA L 04NC" 8 ~L'DV?GþFÿC.1Lý'L@©.10CýDOL#6G@OL'\@ 4¢5 7 <4@OLTL *.1hK > 7$GE4.10CýL POACL'DOL6GDBL±6GP8?t@OTP µ<¶¬R · tLDOPB.1ýL@ ©.1POAý'? 1?/T D t< ¯L A~;6 tL±PBA~6GP©PBACL 04NC"8 ~L'D¯?9þkÿC.1LýL'@±?9+þ M%Ó:Óq.1@69P©8?/@BP ¹ V
£¤ ^h R « g 5 s Ó ]nyTÓX ¹M X " { " ½ > E f¥| =7 =«$h \M d (M Ó:Ó " PM Ó:Ó "M (3; 7Vt£7 -7edf
Ñ\ @OLD /L0C?×PBA~6GP POA L ÿC.1Lý'L@?Gþ A~6G@ ý? ü?tD ©A L0Å69@O@BL8 1LJ ÿCDO?tÿ~L'D115Üþz?tDO8 6«ÿ? 154K/?t0 @B.18. Q6GD PO: ?
V
7V"£&7b
7idf
« g
V
£¤ Xh]¡0Z7Vt£74¬ -7V( =f
« g
V
« g
£&6
ÿC.1LýL@; 1Lh6GD15Lýh690ë0 ?×.üPBLD=69POL*?/NCD ÿCDBL4.1?/NC@ ÿCDB?7ý'LJCNCDBL?/0«POACL*ÿC.1LýL@ ?9þ¯?/NCD Q6G@OPJC.1@O@BLýPB.ü?t0?Gþ¬ ý'?/04P=69.ü0 .ü0 KPOACLztLDOPB.üý'L@?9þ+`©.1POAý?1?/Dz {PO?? P=6G.100I«}\ 684´ JC.1@O@BLýPO.1?t0C@©?Gþf ©.1PBA=0Z7V"£74¬
} 0Z7V( ¦µ<¶R · £684ÿC.1LýL'@ F
F G
G
H H
G G F H
G H
F F
G F
H H
I JAK
I LDK
Á CÁ 4_XY`^t`^7|Älk k1´
> â j
>©A7N @b¯L A~6;tL±ÿ DO?/L'J+¹ àzáfâãhäâå`m¬è1abq;Fp!DCK±Pihs>FfiJs²JL!Bí CKH>¸TVq;FpHICKGEF
R
ô kõ F÷ §ö ÙÚb߯öó\Ü 2 ÿ?154K/?t0e .1@ýh6>üL'Jë@BP=6GD @BA~6GÿLJÜ.¶þVPOACLDBL.1@ 6ÿ~?t.107PbÏÇ.ü0 @ONCý+AÜPBA~6GP POA L%1.10CL @OLKt8L04Pý?/0C0 LýPO.10CK§.üP PB? 69045?/PBACLDVÿ?/.104PF.10j .1@ ý?/04P+6G.10CLJ*.10T ÜL@OAC?²AC?êPB? ?CP+6G.10JC.1@O@BLýPB.ü?t0C@©?GþDHZrpbD1¸rvimFEAÿ~?ü54Kt?/0C@©.1POAVÂ/LDBPO.1ýL@©A~6;4.10CK%7}Vz - ÿ .üL'ýL@ n
Õ Ø ³ÜUo\Ø5
Sequentially Divisible Dissections of Simple Polygons
65
@ONCý+APOA~69P¯PBACL ÿC.1LýL@©?9þFPOACL@BL JC.1@O@OL'ýPO.1?/0 @©ýh6G0N~L DOL#6G@O@BL8"1LJPO? þz?tDO8B6<83
àzáfâãhäâårqhèTézLbDHIrpfD1¸$rEiF¨A imJs²JLPÒ¸$rDr6o1AC>DEDF¨G;HICKJLMBDCKL²b7V¬ ( i¬CKFEGEFD±l JLF(J1ïjí+¸CKGE¸CÊDr"DHIrp!D1¸rvimFEAjimJs²JLÿDCK±%CÊsrp!HZJ° ë ()
s
t s t
t s
s
s t
t s
s t
t s
s
t
s t
t
à å« >Áâ Á ° yw g9`bWXWXU+[=_a`bd'^&d'eFY WX_XYZWa\7Y'm;U+g*mCd'ibuG|hd'^&Ð `b_a\àl#UBZO_a`b[+U=W+oCàU+l#UB^~otc7Wa`^7| v m/`bU+[+U+W+´ qLPf¦L6 @OP+6GDV@BA~6GÿLJÿ?154K/?/06G0CJ(1LP+Ï"L6{ÿ~?t.107P.ü0*POA L©.ü04PBLDO.1?/D?Gþ) @BNCý+A POA~69PVPOA L\1.10CL©@OLKt8L04PVý'?/0C0CL'ýPO.10CKzÏPB? 6G045*ÿ~?t.107P-u .10( .1@PO?/P+6>15ý?t07P+6G.10CLJ.10(t E4NCÿCÿ?/@BL ~DO@BPVPOA6GPx A6G@V6G0*L/L'007N 8"~LD ?9þh/LDBPO.1ýL@; ?1?/DPOACLbtLDOPB.1ýL@?Gþ¦©.1POA ý? 1?tDOb@ ¯690CJ¢7{.10@BNCý+A6b©6#5POA~69PV6GJ|69ýL04P ý?1?tDO@ DOLý'L.>/L©JC.ÁÀqLDOL04PVý'?1?/DB@ ?t0C0CLýP Ï«PO?ï6 >VPBAC" L /LDBPO.1ýL@*?Gþ PO?? CP+6G.10Ü6@OLP§?G\þ VêPBDO.Q6G0 K 1L@6G@@BAC? ©0«.ü& 0 *.1hK > «$0z6 4< E4N JC>. 4.üJ LVPOACL©PBDO.Q6G0 K 1L@F? CP=69.10CLJ*.ü04PB\? 6@BN CPBDO.Q6G0CK 1L@ [email protected] POA L¯8.ümJ Òÿ?/.104PO@q?9þ~POACL'.üD LJCKtL@Þ69@@OA ? ©0ê.10ëPBACL@+6G8(L ~K/NCDBL x¿L ª4P*JCL 1LPOLPOACLLJCKtL@ý?/0 0CLýPB.ü0 K ÏÜPB?ïPOA L /LDBPO.1ýL@?G þ 69@k.1%0 *.1hK > ;«0K)4qPO? ? CP=69.ü0*6J .ü@B@OLý'PO.1?/j0 M ?9hþ d©.üPB%A 7V e ¯ÿ .üL'ýL@h
? q>©A L DOL86G.10C.10Ce K VêPBDO.Q6G0 K 1L@ýh690ê6 1@Oÿ ? ~LDOLKtDO?/N ÿ~LJ²PO?þa?/DO8 6þa?/NCDBPOAÜÿ? 154K/?/0«@O.18. Q69D PO(? C>©A L±ý#6G@OjL ©ACLe 0 ßA~6G@ 6G0?4JCJ07N "8 ~LD?Gþ tLDOPB.üý'L@ ýh6Ge 0 LJC?/0 L±.10ï6*@O.18. Q69D Ó6#54
wyxz{fã}|e~Zâ} )å&â{ ¯>©A L6GNCPBAC?/DB @ ?/N 1J(1.ü3tL¯PB?POA6G0C3 6906G0C?t04578?/NC@DOL+þaLDOLL{þz?tD AC.1@¯A L1ÿ4þzNý?/88L04PO@6G0CJN/61N~6$üL{@ONCKtK/L@BPO.1?/0 @
66
Jin Akiyama, Toshinori Sakai, and Jorge Urrutia
Á Á ° y'w gG`bWXWXU+[+_a`bd^ïd'ekY WX_XY'ZÓWa\4YmCU+gmCd'ibuG|hd'^ïÐ `b_a\&àl#UBZO_a`b[=U+W+oqàdGg/g o4c7Wa`^4| v à åÜ m/`bU+[+U+W+´ > 1
Ö)ÞÖFõÖóù¬ÖxÜ
h´°VrG`bu#Y#n±Yto¯t´bo®¯Y'rhY#n©c/ZOYto{´ F°^ÅU;[B`bUB^/_ g9`bWXWXU=[+_a`bd'^êeQd'Z YWXU+Ý#c7UB^/_a`bY'iiüuÉà w gG`bl#`bWa`tibU WXÝ#c4YZOU#U´ qZOdG[#´7d'eqjV`bWX[BZOU+_XUY'^7g¬ d#n{m/c4_XYh_a`bd'^7Y'iU+dhn U+_aZOuæd'ZXr/Wa\7d'm~oCpqd'rhY'`~s^/`bl#UOZOWa`b_au âX Gð#äBo x#^
Gx v ´°VrG`bu#Y#n±YtoCt´bo/®Yr#YhnØc/ZOYto {´bo/®d =Y'rG`Qo4°´¶o j +YÐ Yto ´ G°Ú^7d#_XU©d^_a\7Um/ctZOUOibu§ZOU+[Bc/ZOWa`bl#U g9`bWXWXU=[+_a`bd'^eQd'Z¯Y WXU=Ý#c4UB^/_a`bYiibuà w gG`bl#`bWa`tiüUWXÝ#c4YZOU#´t`^_a\/`bWm/ZOdG[+U+U+gG`^7|#W ´ °VrG`bu#Y#n±Yto~t´bot®¯Y'rhY#n©c/ZOYto {´bot®¯d +YrG`QoC°{´bo j +YÐ Yto ´¶o7}GY'rhY'`QoCp© ´ tp \7U{dm4_a`bn±Y'i`b_audeFY [+UBZO_XY`^*m/ctZOUBibuZOU+[Bc/ZOWa`bl#Ug9`bWXWXU=[+_a`bd'^eQd'Z Y{WXU+Ý#c7UB^/_a`bYiibuà w g9`bl#`bWa`/ibU WXÝ#c7Y'ZOU#´7pqd{Ymtm;U+Y'ZV`^ ¬ d#n{m/c4_XYh_a`bd'^7Y'i U+dhn U+_aZOUu Cp \7U+d'ZOuY'^7g°m/m/i`b[+Y#_a`bd^4W ´y c7WXWX[X\4dmo q ´ } ZOdti U= n U+WgtU |qU+ª d#nïU+ª _aZX`bU#´~®d'c7l#UOiibU¬ d'ZXZOU+Wam;d'^7gtY^4[+U ¨Y#_a\VU+ª n Yh_a`bÝ#c4U âX x ð ä xhX Gxhy G´©¬ d'ii`bWXd^oj{´¨ ´ TYh_a`bd'^7Y'i7|#U+dhn U+_aZX`b[ gG`bWXWXU+[+_a`bd^4Wkd'e7[+d'^/lhU+³mCd'ibuG|hd'^7W+´/#d'c/ZX^7Y'i/d'e7TVU+[BZOU w Y#_a`bd^4YiF¨Y#_a\7U+n Y#_a`b[=W â â v äØâX& GXð & x#
ä
# ´ ´µ4dctZXZOU=u#o4fV ´ 7¬c/ZX`bd#Wa`b_tU+ª lW U+ª dhnÇU+ª _aZX`bÝ#c7U+W+´ qY'ZX`bW Uqc/`CUBZO_U=_®¯d'^/uâX
ðhä ðG´µtZOU=gtUBZX`b[Xr/WXd'^~o {´#® ´ jV`bWXWXU+[+_a`bd^4W ibY^4RU «µ4Y^4[+uh´G¬ Y#n©/ZX`bgt|hUs^/`bl#UOZOWa`b_au qZOU+WXWVâX ð#ä ^ kdGd'rÜde¨Y#_a\7U+n Yh_a`b[+Y'i c BibU=WY'^7g x c´ YZOgtUB^7UBZoV¨ ´ p \7U v ^7g ´¯}G[B`bUB^/_aÀ` 7[°n±UBZX`b[+Y'N j`blhUBZOWa`bd'^7W+´®¯U+N Ð dZX}r 4}#`bn d^Y'^7g}9[X\Gc4WX_XUOZ âX ä /´ ZOY`b_X[\/`rCo¨ ´ /¨Y#_a\7U+n Yh_a`b[+Y'iFTVU+[BZOU=Y#_a`bd'^7W+´~®U+7 Ð Fd'ZX}r 7®d'ZO_a\7d'^&âX yGv ä
R´ `^7gt|ZOUB^o { ´ U+d#n±U+_aZX`b[{jV`bWXWXU+[+_a`bd^4W+´ ZX`^7[+U+_Xd^oC®´t ´ /j{´ Y^®dhWX_aZOY'^7g¬ d#nm4Y^/u âX #y ä h#´¯®d =Y'rG`Qo ° ´ j ^«_a\7U*gG`bWXWXU+[+_a`bd^Éde¯YWXÝ#c4YZOU§`^/_XdWXÝ#c7Y'ZOU=Wâ1`^Ú#Y'm7Y'^7U+WXUäB´ }c/c4|hY'rGc w }9U=n{`^4YZ©®¯dt´b v âX& ä v v ´ j +YÐ YtRo ´ Vfq^/_XUBZO_XY`^4UBZ`^ÃYë[BibY#WXWaZOdGdhn â1`^)#Ym4Y^4U+WXUäB´©}#ctc7|#YrGc w }GU+n{`^7Y#Zï®d/´¶
âX x#x ä [+dlhUBZm7Y#|hU ´¯sZXZXc7_a`bYtot ´ =°ZO_ YiibUBZOuY'^7g ]1iic4n{`^7Y#_a`üd' ^ qZOd'/ibU+n Wq`^ ¯Y'^7g9;dGd'r±d'^ ¬ dhn{m/c4_XYh_a`bd'^7Y'i U+d#n±U+_aZOu#´C}GY#[XrCoCt´ T©´/Y'^7gsZXZXc7_a`bYtoCt´7U+g/W+´4fqibWXU+l#`bUBZ}G[B`bUB^7[+ U qc/ti`bWa\7UBZOWâ v'
#
h
ä
"!#$ % &' ( )*#+ #, -/.10243+5#.136879;:=< >?-/@A@B9;:C,#2?@A3D9E<4FEGH7B7 IJLKEMONQPRNQSTNVUQSTW X$JYKEU[Z/XQ\%] NQPR^4_E`EXQaBPRacb$KEPRdeaDXQMfPgNh] W NjikaDXQlRPRK m ] ^TSEMONfXnEoT_qpjrtsDuEsBoevHikaAXQlwPRK p$aBq]hXfNt]/xe\y/aBz|K|{;N}~|EacY;] NQ
;aB\;]hyeNQ}hPw~B]Y|j lRPR]/]HJfJ bjKPRdeaDXQMfPgNt]hNZlRPgNaB BKPR]%Ta# ] Nt] lwSEK|;]T_q]/S]hXQe] lwlRZv // rYi ]hXQBaBlRZK]T_ Mfq]Kq¡ ] aBZKEMfPwEaDXNQ«a$EXQZ¬ElRaB\Z/U]/t^TPRKEHMfaBdeaAXt]/l=BZK;deaD®¯4Z/lRT/ZKM RP¢%K|NQ£Z'¤B¥B\¦h§qPRK¨/PR¥ª\H©SE\°MfPR±BaXQaBDNt]/KElRaBMBn`EZ/X¯NQ«PRMESEXQ4Z/MfaNQ«Ea4ZlgTZ/KM¯\%]²¬4a \ZhdeaªaBPgNQ«aDX¯¬|'NfXt]/KEMflw] NQPRZKEMZKElg|_kZ X¬|ªBZ/\H¬PRK] NQPRZKEMZ/UcNfXt]/KEMflw] NQPRZKEM ] Kq³XQZ/Nt]hNQPwZ/KMBn © aPRK;deaBMONQPRe]hNQa$¬4Z/NQ«%] MfaBMB_;NQ«q]hNkNQ«a4ZlgTZ/KM \%]BHZ daDXQlw]/ ´NQZ«E¬4aBK%aµ\¬4aBPRKEPRKPw\#PRq±B] aBA^eaB]/%K#Z aBXkPgNQNQ««aA] XNk¬4NQaµ«EaDPgNQ³M\8]hXQSaMO]NµZ/¬4Xa$PgNQTM¼PRM·4¶OaAZXQPRPwK|\Nn aAmNQaD«Xa#nJL¸QKc¹wºhNQ»«EaµZ U] ]cMfXQakaBZ DUNt] ZhKdeaDXflRa r lw]/EPRK#]/t^TPRKEcdeaDXf8aD½BPRaBK|Nk]/lRZ XQPRNQ«E\M ´ «EZMfaXQSK|NQPR\a PRMkBlRZMfaNQZ#lRPwKEa] X Z X%¾³¿ÁÀlRZµÀ¼Â+]/Kì4a%U·ZSEKq'aBdeaDK U·Z/X]/Kª] XQ¬EPRNfXt]hXfÃK;S\H¬4aAX8Z U$4Z/lgE/ZKEMBn pPRM·¶LZPRK|NjZ/ENQPR\%]/l?]/t^TPRKEHPRM^TKEZ ´ KNQZH¬4a$ÄrY«] XtU·Z X$]hXQ¬PgNfXt] Xf¯K;S\8¬4aDXQM Z U4ZlgTZKEMBn¼ÅjaDXQa_ aD½BPRaBK|N8]/lR/Z/XQPgNQ«\M+] XQa%/PwdaBKU[Z/XHEPRM·¶OZ/PwK|N+q] A^;PRKZ/U N ´ Z4Z/lgE/ZKEM ´ PRNQ«]¯XQSEK|NQPw\a#BlRZ/Mfa³NQZlRPRKa]hXcU·Z XcNfXt]/KMflw]hNQPwZ/KM+]/K¾³¿ÁÀ Æ Â U[Z/XjaBKEaDXt]/l PwMfZ/\aDNfXQPRaBMBn Ç ÈÉÊ4Ë?ÌcÍ8Î+ϼÊ?ÐQÌÉ 5#:ÒÑ10Ó¼FT@A3D9;:3ÔT-/FT0-h3D@AÑ·ÕFTÓ43DÑ10Ñ[Ö/9|3DÑ1FE:×Ó?@DFTØ=.1-/0ÙÑ[Ú3DF²Û :=<ÝÜÞFE@9²ÔEÑ1ßE- :àFTØ4áQ-Õ39 FTØ4áQ-Õ3ÜÞ@DFT0í9ÝÕ - @A3D9;Ñ[:îÕ .[9EÚAÚ/ï.[Ñ1ðE-ª9ñ@D-/Õh3D9;:=ÔT.[-Tïj9ñ3A@DÑ[9T:?ÔT.[-Tï$9 òâBã?FT@H3Dþ?Ñ[Ú³Ó=2?@AÓ¼FEÚA-3Aþ?-Ó¼FT. ÔEFT:=ÚH09 'ؼ-0F|ßE-/< - Ñ13Aþ?-/@Ø %3D@D9T:=Út.·9|3DÑ1FE:=ÚVFE:?. Eï;FT@Ø ÕhFE0¯Ø?Ñ[:=9;3AÑ[FT:=Ú FTܼ3D@D9T:=ÚA.[9;3AÑ[FT:=ÚV9T:=<@AFT3D9;3AÑ[FT:=Ú/õ 9;.·ÚtFÕ FT:=ÚAÑ[- @#3Qý$FÕ 9EÚt-Ú - Ñ13Aþ?-/@#3Dþ?-¯Ó¼FT. qÔTFT: Úc09 F|ßT-/@A.·9;Ó ýcþ?-/:'Ø -/Ñ1:=ÔÓ=9EÕBðT-/
J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 67-80, 2001. Springer-Verlag Berlin Heidelberg 2001
68
Helmut Alt and Ferran Hurtado
-hô?9;0Ó?.[-Õh243A3AÑ[:?ÔÓ=9;@A3DÚ$F;Ü 9Õ - @A3D9TÑ1: Útþ 9;Ó¼-8FE243cF;ܵ@D-/Õh3D9T:?ÔT.[-HÚAþ=9TÓ -<Út3AF4ÕBð09|3D- @DÑ[9T. .1Ñ[ðT-Õ .1FT3AþñFE@ÚAþ?- - 3¯0-h3D9T.$9T:=< 3A@ qÑ1:=Ô'3AFÃ0Ñ[:?Ñ[0Ñ[Ö -ý$9EÚQ3D-Tõk>?FT@Ó=9TÕBðqÑ[:?Ô ÕhFE:qßT-hô óOÔTFE:=Ú#Ñ[:3AF90Ñ1:?Ñ[0¯2=0 9T@A-9Ñ·ÚtFT3Aþ?- 3AÑ·Õ%@D-/Õ3B9;:?ÔE.1-¯þ?-ÔEÑ1ßE-/Ú89;: ö 6 .[FTÔ ü89;.1ó ÔTFT@DÑ13Aþ?0 2=ÚtÑ[:?Ô .[Ñ1:?-9;@Ó=@AFEÔT@B9;00Ñ1:?Ô²3A-ÕBþ?:?Ñ 2?-/Ú/õ þ?-'0FEÚt3ÔT-/:?- @B9;.cÓ=@AFEØ?.1-/0 ÜÞFE@ <4Ñ[Ú áQFTÑ[:3Ó 9TÕBðqÑ1:=ÔÃ2?:=<4-/@3A@B9;:=ÚA.[9;3AÑ[FT:=Úý9TÚ¯ÚAFT.[ßT-<ñØ Ý5#ßq:=9TÑ10Ù9;: < $FTÑ·ÚAÚAFT:=:=9|3÷ eû ýcþ?F ÜÞFT2?: <Ò9T: ö G ü G .1FEÔ ü9;.[ÔTFE@AÑ13Aþ=0ÙÜÞFT@Ó=9EÕBðqÑ1:?Ô Ò9;@DØ?Ñ13A@B9;@ ÝÚtÑ[0Ó?.[óLÔEFT:=Ú$Ñ[:E3DF9ÚtÑ[0Ó?.1- óLÔEFT:õ ,#- @D-Tïqý$-8ýcÑ[.[.YïqÜÞFE@9Út3D9T@t3ïÑ[:3Aþ?-<4Ñ·ÚÞáQFEÑ1:3#Õ 9EÚt-8FT:?. Õ FT:=ÚAÑ[- @j3QýjFÕhFE:ßE-hôÓ¼FT. Eó ÔTFT: Ú3AFñؼ-ÃÓ=9EÕBðT-/<õ f: Ü 9TÕ3ïÑ1Üýj-Ã9T.1.[F|ý°9T: 9;@DØ?Ñw3D@D9T@ ñ:=FT:4ófÕhFE:=ÚQ3B9;:3:q2?0¯Ø¼- @F;Ü Ó FE. qÔTFE:=Ú/ïE3Dþ?-Ó?@DFTØ?.[- 0*Ñ[Úðq:?F|ýc:3AFؼ- VóOþ=9T@D<- ßE- :CÑwÜk3Aþ?-³Ó¼FT. qÔTFT: Úc9;@D-8@D-/Õh3D9;:?ó ÔT.[-/ÚHöt÷ ò ûÞü9T:=<FT:=. 3A@B9;: Út.·9|3DÑ1FE:=Új9T@A-89;.[.1F|ý$-/<õ -8ýcÑ[.1.¼ÔTÑ[ßT-H9%.[Ñ1:=-/9;@AóL3AÑ[0-H9;.[ÔTFE@AÑ13Aþ?0 ÜÞFT@Ó=9TÕBðqÑ[:?Ô'3Qý$F²ÕhFE:qßT-hô Ó¼FT. ÔEFT:=ÚÑ[:E3DF²9ª0Ñ[:?Ñ[0¯2?0 ÚAÑ[Ö -Ñ·ÚAF;3Aþ=-h3AÑ·Õ@A-Õ3D9T:?ÔT.[-9T:=< ÜÞFT@³9;@DØ?Ñw3D@D9T@ @A-Õ3B9;:?ÔE.1-Ú#ý$-¯FTØ?3D9;Ñ[:ª9T: ö .1FEÔ ü89;.[ÔTFE@AÑ13Aþ?0°ýcþ?-/@A- Ñ[Ú+3Aþ?-¯3AFT3D9;. :2=0¯Ø¼- @F;Ü+ßE- @A3AÑ·Õh-/Ú/õ ²- 9;.·ÚtFªÔTÑ[ßT-9T: ö ü9;.[ÔTFT@DÑ13Aþ?0 ÜÞFT@3Aþ=-CÕ/9TÚA-F;Ü+9T.1.[F|ýcÑ[:?Ô 9;@DØ?Ñw3D@D9T@ ë·â ê;ãæ ç ë æhâ 3DFÓ=9TÕBð3Aþ?-Ó¼FT. qÔTFT: Ú õ f:9E<4Ñ13AÑ[FT:ïTýj-#9T.[ÚAFÕhFT: ÚtÑ·<4- @VÓ 9TÕBðqÑ1:=Ô ö ýcþ?Ñ·ÕBþÕ FT2?.·<Ø -+0FT3AÑ[ß|9|3A-< Ø Eï¼ÜÞFT@³-hô?9;0Ó?.[-Tï¼Û=: <4Ñ1:=Ô3Dþ?-Út09;.[.[-/Út3H@D-/Õh3D9;ëÁ:=ç CÔT2?ê .·|9;æ @Hå[9;ä @D-/9ýcþ=- @D-9CÚt- 3HFTÜjÔTÑ[ßT-/: 9;3 FTØ4áQ-Õ3DÚjÕ 9T:ؼ- âçfäTé Tæ /üõ ²-#ýcÑ[.[.¼<4-/ßT-/.1FEÓ- ÕhÑ[- :3j9;.[ÔTFE@AÑ13Aþ=0Ú- ßT-/:ÜÞFT@3Dþ?-#ÔE- :?-/@D9T. Õ 9TÚA-³F;Ü Õ FT:qßT- ôÓ FE. qÔEFT:=Ú$2?:=- @+9T@AØ?Ñ13A@B9;@ Ñ[ÚAFT0- 3A@DÑ1-Ú õ 5#.[.=FT2=@@D-/ÚA2?.w3BÚþ?FE.[<ÜÞFE@ؼF;3DþïE0Ñ[:?Ñ[0¯2?0 9;@D-/99T:=<0Ñ1:=Ñ102?0 Ó -/@AÑ[0-h3A-/@@D-/Õh3D9;:?ó ÔT.[-/Ú/õ þ?-<4Ñ ¼-/@A-/:E3ße9T@AÑ·9;:3BÚF;Ü$3Aþ?-Ó?@AFEØ?.[- 0 9;@D-?FE@j<4Ñ·Ú áQFTÑ[:E3jÓ=9TÕBðqÑ[:?Ô=ï;ý$-+<4-9;. ýcÑw3Dþ Ó FE. qÔTFE:=Ú9;: <²Õ/9;: ÚtFE.1ßE-¯3Dþ?-Ó?@DFTØ?.[- 0 Ø áQ2 ÚQ39E<4Ñ13AÑ[FT:=9T.1. ÃÕhFE:=ÚAÑ[<4-/@AÑ[:?ÔC3Aþ=@A- =-/Õh3A-<ßE- @BÚtÑ[FT:=Ú$FTܵ3Dþ?-Ó FE. qÔEFT:=Ú$Ñ[:ßEFT.[ßT-<õ f:3Aþ=-8Õ 9EÚt-cFTÜ3A@B9;:=ÚA.·9|3AÑ[FT: ÚVýj-89T<9³3Dþ?Ñ[@D<Ú q0¯Ø¼FT.LïT:=9T0- . ¯Ñ1Üý$-+9;.[.1F|ýÒFT:=. ö î9|ô4Ñ·ÚQóOÓ=9;@B9;.[.[- .Áü@D-/Õh3D9T:?ÔT.[-/ÚV9T:=< ÜÞFT@9T@AØ=Ñw3D@D9T@ %@D-/Õh3D9T:?ÔT.[-/Ú/õ 8Ø=ÚA- @DßT3Aë·â þ=ê|9;ç 3#?æ 2?çY:=ë é<4-/@#ÔT-/:?- @B9;.Ñ·ÚtFE0-h3A@DÑ[-/Új3Aþ?Ñ·Ú#<4Ñ·Út3AÑ[:=Õ3DÑ1FE:
#"
&%
$
+*
$(' )
%
$
10
2
$32
.-
/
4"
2
'
$
,
!
$
65
7
98:
7
#%
7
;%
2
2
2
2=<
>
5
@?
BA
DC E>
!F
HG
JI
6"
K
!
L
ML
%
PO
N
3S
NRQ
UT
U-
G
V>XW
Y
G
/
EG
G
5
N
4Z
@Z9[
7
BA
V^
`_
\ ]
7
ba
5#: ÝÕhFE0¯Ø?Ñ[:=9|3DÑ1FE:×FTÜ+3Aþ=-/ÚA-C.[-h3A3A-/@DÚÚt3D9;: =FT@#9ÕhFE0Ó?.1- 3A-³ßT-/@DÚAÑ[FT: Út-/-*÷ ûLõ
6
dcJ"Yef
g/he;O
Q
]
i
Mj
Packing Convex Polygons into Rectangular Boxes
69
VÏ cÐtÉ ÒÐfÊ Ë f:3Dþ?Ñ·Ú#Út-Õ3DÑ1FE:ý$-³ýcÑ1.[.9TÚDÚA2?0-83Dþ=9|3+Õ FT:qßT- ôÓ FE. qÔEFT:=Ú 6 ýcÑw3Dþ'9¯3DF;3B9;.FTÜ -/<4ÔE-/Ú Útþ=FT2?.·<%ؼ-Ó=9TÕBðE-/< ä;åÁå1ê ëÁèqìê eæ å1ä Ñ1:3DFH980Ñ1:?Ñ[0¯2=0 âë /æ öY9;@D-/9+FT@ Ó -/@AÑ[0-h3D- @ü @A-Õ3D9T:?ÔT.[- õ ²-ýcÑ[.1.µÕhFT: ÚtÑ·<4- @#9;ô4-/ÚtóLÓ?@B9;.[.[- .9;:=< 9T@AØ?Ñ13A@B9;@ @D-/Õ3B9;:?ÔE.1-Ú ïq3D@D9T:=ÚA.[9;3AÑ[FT:=Úc9T:=
l(m
on
prq
osutwv,x
zy{m}|
5
?
C >
~_
_
JF
2
'
1
!
#"e.%1S
"e.%
]
"
e;%
Q
_
Q
1D4U;h gDU \g@z33zP\ \
-h3#2 ÚcÑ[- :3AÑ1Ü 3Dþ?-%@D-/Õ3B9;:?ÔE.1-HýcÑ13Aþ'ýcÑ·
B
(¢
D5
¤
£
B¢
9c
P*
w¥
£
!f
¦
w"
1§
¢z£`^¨"
/ B¢
¥
£ ©^R§
0
ǻ
9¬
®
Pª
¬o° !F
¢
¬
£
+*
h¬
`¢
¡
¬
&¬
±¬
u®
¬
z
¯
{
¯
¢
B¬
¬
B5
£
¤
ª
´
>
44w\¶µ
?
A
JA
¤
Ã
ª
D¼ JA
>
>
A ¸·
BA
{·
³²
¹W
?
F
¬o° !F
{·
C >
½
BA
J¾7¿D!À\Á1Â
E>
BA
ª@º
·
A
¼
D>
·
>X>
· D> F
¬
h»
¬
»
¬
º
`F
Á
`j
{· Á
Ä
¢
¬ ,^
£
À
Ä
¢
!À
¬ ,^
£
¬ ,^
Å
¬
¥
¬
*
Ç ¬¶
À
¬
À
3Å
¬
Å
ed¬
Å
ed¬
B¬
0
Å
B¬
0
B¬
È
¡
¯
wc
!f
£
B¬
À À
Ç ¬
¬
ɬÊ^Ë®
5
z
Å
,Æ B¢
9Æ
À
B¬ ©^
À
Ì®
6>
Í
Å
B¬
Å
B¬
¬
VÈ
¬
70
Helmut Alt and Ferran Hurtado ÎYÒ
ÏÑÐ
Î\Ò
ÓÐ Ô}Õ
Ø©ÙÚÛ
Ö Õ
Ö
Î
Õ× Î
Z|B]/l|d/] XQPw] NQPRZK#Z U] K#aBKBlRZ/MfPwKEXQaDDNt]/KElRaµNQZ/St«PRK U[ZSEXdeaDXfNQPRBaBM Z/U;NQ«a4ZlgTZ/K
¦
EÜÝÞDß
9;@DFT2?:=< ï$9T:=< 9T.1.H3Aþ=- |óOFTÓ?3AÑ[09T.8@D-/Õh3D9T:?ÔT.[-/Ú9;@D-Ã3A@B9TÕ -/<õ f: Ü 9EÕ3C-/9TÕBþîFTÓ43DÑ109;. A@ -Õ3D9T:?ÔT.[-cÑ·Ú ÜÞFT2?: <3QýcÑ[Õ -TïTFE:=Õh-ÜÞFE@ÚAFT0-#ß|9;.[2?- +9;: <9;ÔE9TÑ1:ÜÞFT@ 4ï|@D- ßE- @BÚtÑ[:?Ô 3Aþ?-%@DFT.[-/ÚFTÜ ª9;:=< õ=58Ú#Ó?@DF|ßT-<Ñ[: - 009 Eï4ÜÞFT@#-9TÕBþ Út- 3+F;ÜVÕhFE:3D9TÕh3#ßT-/@t3DÑ[Õ -/Úý$FTØ43B9;Ñ[:Ã9;:'9;@BÕ³F;ÜV- .[.[Ñ1Ó=ÚA-Tõ qÑ[:=Õh-3Dþ?-¯ÚA-h3+FTÜÕhFT:3B9TÕ3#ßE- @A3AÑ·Õh-Ú#ÕBþ=9;:=ÔT-/Ú-9TÕBþC3AÑ[0-%FT:=F;Ük3Aþ?-%ÚAÑ[-/ÚF;Ük3Aþ=-@A-Õ3D9T:?ÔT.[-HØ -ÕhFT0-ÚcÓ=9;@B9;.[.[- .¼3AFFE:?-³F;Ük3Aþ?-%ÚAÑ[-/ÚF;Ü ïq3Dþ?- @D-%9;@Dø ÚA2=ÕBþ Út- 3DÚ/õ þ?-/@A- ÜÞFT@D-8ý$-³þ=9eßT-³Ó?@DF|ßT-<3Aþ=-³ÜÞFT.[.1F|ýcÑ[:?Ô.1-/009 =æå1êé qâê =ê|ëÁè ç âéBê Aæâ =ê|è ëÁèì'çOêç ?æ ë DæDé çLë ê|è¼ä;åÁå Ãê çYëÁãä|å AæBé ç ä|èìTå1æhâ+ç ?ä|çéBê|è çOä;ëÁèÃäHìTë |æhè =ê|å ìê|è ë·âHäéDê;è=çLëÁè =ê qâ#é å1ê|âhæ é eæ ö %ü ëÁç qëÁè ç =æ Bâç =ä Aä|è ç$ê éBê|è=âBë·âçLëÁèìê Hç =æ¯éBê|èéBä|çfæhèä|çLë ê|è²ê ³ä;çãö êe%âç ü ä Aéâê %æ å åRë â æ ?æ AææBäTé ªæ åÁåRë ¼âhæë·â%éBæ è=çfæ Dæ ä|çç ?æê ëwìTëÁè =æéö |ü æ ë·â³â |ããæ ç ë é ëÁç Aæâ =æBéhç$çOêç =æ%åwëÁè¼æ ä|è éBä|è BæéBê|ã 4çfæ ëÁè çLëÁãæ 5 Ó FE. qÔTFE: 9;:=
&¬
5
¸¬à
6¢
3£
H¡
ɬà
0
/
¯gá
Hj
Yâ
©ª
z
2
´
44&=
Â
z
A
E¼
·~F
BA
A
F
©ä©>
?
ºÉ?
AH>
C
,å ¼
>
A >
¹W
{·
F
¹W
z¼ ¼
!F
/ 2
D>
çæ
ÁÑÂ
F\¼
3ª
ã
A
¼U>XC ã %
Jº?
>
Vª
XW
2
°
}>
Vª
¼U>XC Éã
·
BA
>
BA
A
E>
£`^±¢º
A
VF
ª@º
¤@º
{·
JA
VF
hF
>X>
BA
°
{·
>
Á
Vª
è/
Ó
é
Ðê
Ò
ë
Ï
]/K ¿ Â
¦
Êî
ÜÉìzÞ í
Ø©ÙÚUÛ
í
>?FT@-/9EÕBþ 9;@BÕ F;Ü%- .[.[Ñ1Ó=ÚA- Ñ1: ö %ü3Aþ=- ÚA09;.[.1-ÚQ39T@A-9 öÞÓ¼- @DÑ10- 3A- @ü@D-/Õh3D9T:?ÔT.[Ñ[Ú3Aþ=-CÓ¼FTÑ[:30Ñ[:?Ñ[0Ñ[Ö Ñ[:?Ô 3Aþ=-Ó?@DF4<42=Õh3 kö Eü ö Eü'öÞ3Aþ?- Út2=0 µö Eü ö EüAüõ $2433Aþ=þ qÓ¼- @DØ FE.[9EÚ C9;: <3Dþ?-%ÚQ3D@D9TÑ1ÔEþ3.[Ñ[:?-/Ú C9;@D-³ÕhFT:qßE-hô9EÚcÚt-/- :ÜÞ@AFE0 3Aþ=FT@DÑ1ÔEÑ1:ï|ýcþ=Ñ1.[- Ñ[ÚÕ FT:=Õ/9eßT-Eï/3Dþ?- @D-hÜÞFE@A-$3Dþ?-c0Ñ1:?Ñ[0¯2=0 ß|9;.[2?-cÑ·ÚV:?-/Õ -/ÚDÚA9T@AÑ[. %9|3t3B9;Ñ[:?-/<Ñ[: #ï
ã
Vª
@¢
~¢z£
^Ë" ¸ï
B¬ {£ ¸¢
¬
0
ð¢
¬
0
£
B¬
£
^Ë"
©-
Packing Convex Polygons into Rectangular Boxes
71
9;:- :=<4Ó¼FTÑ[:3F;Ü õ qÑ[:=Õ -#Út2=ÕBþ9T:-/:=<4Ó¼FTÑ[:E3Õ FT@D@A-ÚtÓ¼FT:
bâ
gª
L
a
7
ò
Ui
44#ö1÷
]
¼U> BA >
Á\ù
>
ø
VW
zC
ø
ø
{·
'
º
ø
æ
'
º ÁÁÁ ø '
¢
à
ó
§9^Ë%
2
g2¨æ
>
¢
û
'
{·
?
>
BA
zC
º
·ø
%
BA
A
2
"`ó
á
ÁÁÁ
ôüû
º ø
'
V"
¢
'
2
¢
É"
{â
ø
%
á
w]
ò
*
/b" ^
A ÁÂ V" ô{û
"`ó
Á
j
0
¢ ý
'
2
L
"
á
û
E>
{·¸F
%
!f
«§ÿ^
>XC
> ?
JA9F
¼ `æ >
!F
>
i
"
ôüû
÷
Á
?
þc
ñ
Ñõ
¢°
>
F
BA
{wó\ôüû
d%
JA
?
¸¡
' 3/b"
!
D>
¢ ý
¢
A
?
õ
dæ
?
¼U>XC
> ©F
BA ʼ F³F >
¢
ÁÁÁ
!F
(¢ à
¡
{· Á
§
7ú
A
>
º
,· >
F
Ã
º
õ
A
º
}ø
*
{
©"
´
{â
ó\ô V"
Vó ô{û
ø
'
"
É"
©â
"
á
²-ÚD9 #3Dþ=9|3k9cÓ FEÑ1:3jö FT@9ßE-/Õh3AFT@ü ö 6 6 ü ê;ãëÁèä|çfæâ 9T:?F;3Dþ?- @FE:?-#ö G G üÑ1Ü 6 G 9;:=< õ þ?-<4FE0Ñ1:=9T:=Õh-@D- .·9|3DÑ1FE:²ÔEÑ1ßE-/Ú9 Ó=9T@t3DÑ[9T.VFT@B<4- @ Ñ[: 3Aþ?-Ó?.[9T:?-Tõµ5 Ó FEÑ1:3+6ö ?ü G îÕ FT@D@A-ÚtÓ¼FT:=<=Ú3DF%9+@D-/Õh3D9;:=ÔT.[-9TØ?.[-j3DFÕhFT:3B9;Ñ[:¯Ó¼FT. ÔEFT: ÒÑwÜ9;:=<FT:=. ÑwÜÑ13c<4FT0Ñ[:=9|3D-/Ú$ÚtFE0-8Ó FEÑ1:3Ñ1: ö 8ü 3Aþ?-/@A- ÜÞFT@D-#3Aþ=-8.[F4Õh2=ÚjF;ܵÚA2=ÕBþÓ¼FTÑ[:3DÚ$Ñ·Új9¯@A-/ÔTÑ[FT: ö 8üV9EÚ 3Aþ=-#FT:?-#ÚAþ=9E<4-/<Ñ[:>µÑ[ÔT2=@A- ò ïTýcþ?-/@A-3Dþ?-#Ö Ñ[Ô;óOÖ/9TÔHÕ 2?@DßT-³ ö 8ükؼFT2=:=<4Ñ[:?Ô%Ñ13Ñ[Ú 3Aþ?-c.[F|ýj-/@V- :qßT-/.1FEÓ -FTÜ ö HükýcÑw3Dþ@A-ÚtÓ¼-/Õh3V3AF³3Aþ=-cFT@B<4- @ õH ö 8ü Õ 9T:ؼ-#FEØ43D9TÑ1:?-<¯Ø Û=@DÚt3HÕ FT0Ó?243DÑ1:=Ô3Aþ=- ?óO.[F|ýj-/@+- :qßE- .[FTÓ¼-F;Ü ö Hüï ÜÞ@AFE0°ýcþ=Ñ[ÕBþÃý$-Õ FT0Ó?243D-¯:?- ôq3 Ñw3BÚ óL.[F|ýj-/@j-/:qßT- .[FTÓ¼-Tõ ýjF F;ÜHFT2?@9T@DÕ/ÚF;ÜH- .[.1Ñ[Ó=ÚA-'Ñ1:3A-/@DÚA-/Õh3Ñ1: 9|30FÚQ33Qý$F Ó¼FTÑ[:3DÚ/õ þ?-/@A- ÜÞFT@D-Tï 3Aþ=ÕhFT0Ó?.[-hô4Ñ13 F;ÜÃÑ[Ú qö ühïµýcþ=Ñ[ÕBþÝÑ·Úö "!$# % üï 9;:=<&'ÃÕ 9T:Ýؼ-ÕhFE0Ó?243A-<ÝÑ[: 3AÑ[0- ö ö üq.[FTÔ üVýcþ?Ñ·ÕBþÑ·Ú ö jö üq.[FTÔö üAüõ qÑ[:=Õh- Ñ·Ú9;: =óL0FE:?F;3DFT:?-HÕh.[FEÚA-/< Õh2?@DßT-Ñ13DÚ EóO.[F|ýj-/@H-/:qßT- .[FTÓ¼-(³ ö 8ü³Õ/9;:ñؼ-ÕhFE0Ó?243A-< -/9TÚAÑ[. ²Ø ÚAýj-/- Ó?Ñ[:?Ô)C ÜÞ@DFT0 .1- ÜÁ3c3AF@DÑ1ÔEþE3cÑ[:C3AÑ[0-Ó=@AFEÓ FE@t3DÑ1FE:=9;. 3AFÑ13DÚ#Õ FT0Ó?.[-hô4Ñ13 Tï4ÑLõ -Eõ1ï ö q ö üAüõ >?FT@jÓ?@DFTØ?.[- 0 ý$-#þ=9eßE- Ó¼FT. ÔEFT:=Ú þ=9eßqÑ1:=Ô ßT-/@t3DÑ[Õ -/Ú/ï
\; 33gDo~¶ ;rz \g
¾
½
B¢
½
¾ £ H¤
_
ã
©
!¾
g
½
!¾
½
`_
Eñ
_
_
_
ã
_
Ê¢
_
ã
¸£
{
9%
`ó
ó
2
< ʣ
2
%
2
Å
2
2
,
ý
/
2
oâ
2
¢
_
{
%
Vó
2
A@ -ÚtÓ¼-/Õh3AÑ[ßT- . Tï|ýcÑ13Aþ 6 G õ -cFTØ43B6 9;Ñ[: Õ 2?@AßE-/Ú ö 6 6 ü ö ü 9T:=< <4-h3D- @D0Ñ[:?-'3Dþ?-Ã@D- ÔEÑ1FE:=Ú ö ü ö ü9TÚ<4-/ÚDÕh@DÑ1ؼ-/<õ þ?Ñ·ÚÕhFE0Ó?243D9;3AÑ[FT:Ò3D9TðT-Ú 3AÑ[0+- * ,.- 6 ö , üq.[FTÔ , ýcþ?Ñ[ÕB6 þ Ñ·Ú ö ö üq.[FTÔ ü$ýcþ=Ñ[ÕBþCÑ[Ú ö $ö üq.[FTÔ üõ 9TÕBþ'@D- ÔEÑ1FE: ö , ü+Ñ[ÚHؼFT2?:=-/<ÃØ '9;: ?óO0FT:?FT3AFT:=-ÕBþ=9TÑ1:/³ö , ü+F;Ü ö 4ö , ütü - .[.1Ñ[Ó43AÑ·Õ$FT@VÚt3A@B9;Ñ[ÔTþ3 ÚA- ÔE0- :3DÚ/õ f:3AFT3D9T.4ýj-$þ=9eßT- ö * ,.- 6 0Eö , üAüï|ýcþ?Ñ·ÕBþÑ·Ú ö 0qö ütü Út-/ÔT0- :3DÚ/ï|ýcþ?Ñ·ÕBþÓ=9;Ñ[@AýcÑ·ÚA-$09 Ñ1:3A-/@DÚA-/Õh3 3QýcÑ[Õ -Tõ - 009 ò 3Aþ?-/Ñ1@2?Ó?Ó¼- @-/:ßE- .[FTÓ¼"Ñe(%1S
'
T
0
2
ó
<
2
«
Ñ"
2
0
_
0
2
%
2
_
'
^
"
³
2
_
2
'
D 2
_
ã
_
ã
,
'
ó
5
,_
<
2
Ñ%
2
&¢
2
Å
2
_
¸%
³-h¡
'
ó
2
'
_
'
2
%
©%
Vó
2
ó
2
72
Helmut Alt and Ferran Hurtado
Ó
ö 8ü
ö 8ü
_ ã
_
³ö Hü _
Ï
¦ 21 jaDPRZK¯Z/U¼4ZPRK|NQM ´ « PRt«BZ XfXQaBMf4ZK%NQZ+XQaBDNt] KlRaBMVDZK|Nt]/PRKPRKEH]+PRdeaBK%4ZlgTZ/K 3ÕhFTï0ýcÓ?þ=2?Ñ[3AÕB-/þ
oÞ
EÜ
7
Ê%
Vó
d
2
á
¢z£
¢
£
0
"`ó
V"
^
É"
<
¢
_
%
¢z£
^ð"
£ (
2
/
ý
Å
#
"
_
É"
'
¢
`
£þ^ð"
0
ñ
{ D-Ê¡
%
Vó
2
"`ó
á
V"
g D
z¼
æ >
"(eË%1S
A &C >
Â
{·¸2±C E>
BA
·@F
>
%
hæ W
D>
V/
2
BA
E> æ
ý
É"@Å
³æ DC
"
0
+ö
?
¹W
BA
2
6Å
2
Á
jb
2
%
2
zC 7úHF
¹C
©
"
JI
dæ
%
{
2
2
6/
ý
2
¸Å
2
ga
2
$
Å
$
2
ÉDog o\
f: 3Aþ?-Õ 9TÚA-ýcþ?-/@A-%FE:?. 3A@B9;: Út.·9|3DÑ1FE:=Ú#9;@D-%9;.[.[F|ýj-<3DFÓ=9EÕBð3Aþ=-%Ó FE. qÔEFT:=Ú/ï43Aþ=-¯Ñ·<4-/9EÚ ÜÞ@AFE0 3Dþ?-8Ó=@A-/ßÑ[FT2 ÚÚt-Õ3DÑ1FE:Õ 9;:Ø -HÚtÑ[0Ó?.1Ñ1Û=-<9;:=<Út.[Ñ1ÔEþ3A. ¯Ü 9EÚQ3D- @j9T.1ÔEFT@DÑw3Dþ?0ÚÕ 9T:ؼFTØ43B9;Ñ[:?-/<õ >?FT@89ÕhFE:ßE-hôÓ¼FT. qÔTFE: .1- 3 87 9T:=< 7×ؼ-%3Dþ?-%ýcÑ·
(_
¢
3£
._
}"
~
_
_
'
09;ô 87:9 7<; %9;:=<þ?- Ñ[ÔTþ3#09|ô "7:9 "7<; Eõ þ?Ñ·ÚcÚtÑ[0Ó?.[-FTØ=ÚA- @Dß|9|3AÑ[FT:CÚtþ=F|ý#Ú 3Aþ=9;3#3Aþ?-Ó?@DFTØ?.[- 0 Õ/9;: Ø -ÚtFE.1ßE-/
YÆ¢
¢
È
\Æ£
Ì"`e4%
Q
"Êew%
(_
2
¢
B¬
P£
Ñ
£
]
bÈ o
_
Q
B¬
9¬
_
B¬
Ѭ
®
¬
d_
5
B¬
P¢
£
B¬ ,^
£
À
£
!À
Å
À
B¬ ,^
À
Å
Å
ed¬
Å
ed¬
{j
{j
¸
{j
2
2
8
©_
_ ' 9"hew%
Q
2
_
P¬
B£
Ë£
á
B¬
"`ó
£
£
B¬
B¢
B¬
â
¢
=¢
¬
j
¢
¡
V"
É"
%
2
<
3¢
B¬
©%
«%
B¬
~
}_
2
!f
g_
B¬
¢
%
/ ©
¯gá
c
,¬
=
73
Å
V"
"
{
g%
2
á
{
"`ó
"
w¬
â
3
g D
A
>
A
"¶e%
A ÊF\> ³æ
Â
³æ DC
Q
_
Ræ
¹C
%
É"çÅ
2
"
æ W
Á
5 "
h"
7
4l(m
zn
p
5
&?
2
A D¼
DC E>
Ñ_
JF
a
{
B
D5
!
ñ
´
Mj
44
g
ù
{·
D>
BA
oC >
{·
{·
BA Ê>
BA FY> ³æ
BA >
¼ !A
7ú
Êæ
JF
BA«æ
F
_
?
!I
Á
A >
74
Helmut Alt and Ferran Hurtado
²- ýcÑ[.1.cÚAþ?F|ý 3Aþ?Ñ·ÚÓ?@DFTÓ¼- @A3 ÜÞFT@3Aþ?-'ÚAÑ10Ó?.[-/Út3ßE- @BÚtÑ[FT: ïµÑ133Aþ?-/: -/9TAÚAêÑ[ê. ÜÞFE.1.[F|ý#ÚjÜÞFT@3Dþ?-F;3Dþ?- @cßE- @BÚtÑ[FT:=Ú/õ j.1-9;@D. EïµÑ[:Ò9T:àFEÓ43AÑ[09;.Ó?.·9TÕ - 0- :3/ïV-9TÕBþÒÚtÑ·<4-CF;Ü+3Dþ?- @A-Õ3B9;:?ÔE.1- °3AFE2=ÕBþ?-/Ú9;3 .1-9TÚt3#FT:?-³F;Ük3Aþ=-FTØ4áQ-Õ3DÚ/õ 5+ÚDÚt2?0-³3Dþ=9|3#ý$-þ=9eßT-³9;: FEÓ43AÑ[09;.Ó?.·9TÕ - 0- :3cýcþ?-/@A--9TÕBþ ÚtÑ·<4-F;Ü Ñ·Ú 3AFE2=ÕBþ?-/<Ø %-hô?9EÕ3A. %FE:?-F;ܼ3Aþ?-cÓ¼FT. qÔTFT: Ú õ -cýcÑ1.[.=ÚAþ?F|ýñ3Aþ 9|3V3Aþ=Ñ[ÚV-/Ñw3Dþ?- @ .1-9TµÑ[ÔT2=@A-ø'9Eüü þ?-/:ïÕh.[-/9T@A. Tï<3Õ/9;: Ø -0F|ßE-/<²ýcÑw3Dþ?Ñ1: ýcÑw3Dþ?FT2?3+Õh@DFEÚDÚtÑ[:?Ô EkÚAF3Aþ=9;3#Ñw3c3DFT2=ÕBþ=-/Úc9ÚtÑ·<4-FTÜ õ Ø ü 3DFT2=ÕBþ=-/ÚV3Dþ?@D- -89T:=G< 3 FT:?-HÚtÑ·<4-+FTÜ ö ÚA- -8>kÑ[ÔT2?@D-+ø¯Ø üjü O:Ü EÑ·ÚjßT- @A3AÑ·Õ 9T.=ý$-+Õ 9T: Ã
>
{· Á
{
¥
./
e±O
Z
Q
(
B
-
{
_
7
(a
o
P_
}
1
w
3_
H
,5
J I
I H K
L0M
J
NM
¦ PO ]ÂPQÝNQZSEA«EaBM U·Z/SEXjMfP1TaBMZ/U
Ü
Ø©ÙÚUÛ
\Þ
3A@B9;:=ÚA.·9|3A-+3 Ñ[:ÃßT-/@t3DÑ[Õ/9;.<4Ñ[@D-/Õ3DÑ1FE:'2?:3AÑ[. Ñw3Hþ?Ñw3BÚ89þ?FT@DÑ1Ö/FT:3D9T.ÚAÑ[<4-F;Ü ýcÑw3Dþ?FT2?3 ÕBþ=9;:=ÔTÑ[:?Ô õ +3Dþ?- @DýcÑ·Út-Ñw3%Ñ·Ú-9TÚ 3AF'Út-/-3Aþ=9;33Õ 9;: ؼ-Út.[Ñ[< 9T.1FE:?ÔUEÚAFC3Aþ=9;3 3Aþ?-%9T@A-9¯FTÜ <4-/Õ @A-9TÚA-/Ú/õ Õ/ü *9T:=V< 3 ؼF;3Dþñ3AFE2=ÕBþ 3QýjF²ÚtÑ·<4-/Ú¯F;Ü ö ÚA- ->kÑ[ÔT2?@D- Eüõ 8Ø=Út-/@AßE-3Aþ=9;3¯Ø¼-/Õ 9T2=ÚAF;ÜÕ FT:qßT- ôqÑ13 3Dþ?-ÚAÑ·<4-/Ú+3AFE2=ÕBþ?-/< Ø *ö FT@W3üc02=Út38ؼ-¯Ñ[:=ÕhÑ·<4- :3õ 8Ø Út-/@AßE-³3Aþ=9;3 Ñ1:àÚtÑ13A2=9;3AÑ[FT:×9üFTÜ+>µÑ[ÔT2=@A- 4ïýcþ=- @D-3Aþ=-ÚA.1FEÓ -F;Ü E#Ñ·Ú:?FT:?:=- ÔE9;3AÑ[ßT-Eï Õ 9T:?:?FT3 Ø -FEÓ43AÑ[09;.LïÚAÑ[:=Õh-Ø '0F|ßqÑ[:?XÔ 3°<4F|ýc:qý9;@B< ýj-Õ 9T:²<4-Õh@D-/9TÚA-%3Dþ?-þ?- Ñ[ÔTþ3³F;Ü ýcÑw3Dþ?FT2?3µÑ[:=Õh@D-/9EÚtÑ[:?ÔcÑ13DÚýcÑ·
3
a
7
}
3_
{
P
©a
H_
=a
(
¦
É
5
6£
@¢
\
¸
B¢
£
Ñ_
¢
£ ~^Ë¢
6
¡
£
oK
¢
0
[
â
z^
0
½
®
[
£ ^
/ B¢
0
£
Packing Convex Polygons into Rectangular Boxes
å
H
K
I `
å
H Q ] KqTS
¦ 'd EÜ
Ø©ÙÚUÛ
zÞ
K a
Ò
I
75
åcb µ
Ò
NQZSEA«N ´ ZHMfP1TaBMZ/U
OÜVýj-%ÚA.1Ñ·<4-3 9T.1FE:?Ô(EQï43Dþ?-%9;@D-/9F;Ü 9EÚ#9ÜÞ2?:=Õh3AÑ[FT:'F;ÜPZ =óOÕ FFE@D
[ õ9¢
6
_
â
¾
¢ ½
0
©^
¾
½ ¢
0
¾
¢
/
®
½
B¢
1¢
{
©^¨/
B¢
j ü¢
0
½
0
(¢
¾
½ ¢
0
$egfUh
ö=
>?FT@3Aþ?-#Ó=@AFEØ?.1-/0 - 009ø@D-/<42=Õ -/Ú 3Dþ?-#:q2?0Ø -/@F;ÜÕ 9T:=<4Ñ·9|3D-/ÚVFTÜFTÓ43DÑ109;. Ó?.[9EÕh-/0-/:3DÚ³F;Üj3QýjFCÔTÑ[ßT-/:²Õ FT:qßT- ô ؼF4<4Ñ[-/Ú 9;: < 3 3AF =õ f:ªÜ 9EÕ3/ï9T.1. ÜÞFE2?@ÚtÑ·<4-Ú³F;Ü Õ/9;:ñؼ-Õ 9T:=<4Ñ·9|3D-/ÚÜÞFE@%3DFT2=ÕBþ?Ñ[:?Ô'ؼF;3DþÝØ F4<4Ñ[-/Ú9;:=< Ñ[:Ý-9TÕBþñÕ 9EÚt-3Dþ?- @D-9T@A-3Qý$F Ó FÚAÚAÑ1Ø=.1-³FT@B<4-/@DÚjÜÞFT@3Dþ?-³3Qý$F3B9;:?ÔE- :3cÓ FEÑ1:3BÚ õ þ?-/ÚA- Õ 9T:=<4Ñ·9|3D-/ÚÕ/9;:×ؼ-'<4-h3D- @D0Ñ1:?-<×Ñ[:Ò.1Ñ[:?-/9T@3AÑ[0-Eõ f:àÜ 9TÕ3ïVÑ1:ÒFT@B<4-/@¯3DF <4-h3D- @D0Ñ[:?-3Aþ=-Ó?.[9EÕh-/0-/:3DÚ³ýcþ?-/@A- 9;:=i< 3ÚAþ=9;@D-¯3Dþ?-@DÑ1ÔEþE3H3D9T:?ÔT-/:3³ý$-ÕhFE:=ÚtÑ·<4-/@ 3Aþ?-FE@AØ?Ñ13F;Üj3Aþ?-@DÑ1ÔEþ3A0FEÚt3Ó FEÑ1:3 F;jÜ 3 ýcþ?- : 3 Ñ[Ú¯Út.[Ñ[< 9;.[FT:=Ô3Dþ?-Ø FE2?:=9T@ ªF;Ü ö ÚA- -¯>kÑ[ÔT2?@D-%úEühõ þ?Ñ·Ú#FE@AØ?Ñ13#Ñ·Ú+9;Ô9;Ñ[:3Dþ?-%ؼFT2?: 9;@ FTÜV9Õ FT:qßT- ôÓ¼FT. qÔTFT: õ þ=-/<4ÔE-/ÚFTÜ 9T@A-FEØ43D9TÑ1:?-< Ñ1:ñ.[Ñ[:?-/9T@%3AÑ[0-Ø ²0-/@AÔEÑ1:?Ô 3Dþ?--<4ÔT-Ú%F;Ü 9T:=V< 3 9T:=< 3A@B9;:=ÚA.[9;3AÑ[:?Ô3Aþ=- 0 9TÕ Õ FT@B<4Ñ[:?ÔT. Tõ f: Ü 9EÕ3/ï Ñ[Ú893A@B9;:=ÚA.·9|3A-FTܵ3Dþ?G- k ëÁè Tê â ;ë â 4ã F;Ü 9;:=< Y3õ þ?-Ó?.[9EÕh-/0-/:3¯Õ 9;: <4Ñ[<=9|3A-Ú9;@D--h3A-/@A0Ñ[:?-/< Ø ÃÑ[:3A- @BÚA-/Õ3DÑ1:=Ô ýcÑ13Aþ 3Aþ?-@DÑ[ÔTþ3 ßT- @A3AÑ·Õ 9T.3B9;:?ÔE- :38FTÜ *õ þ?-F;3Dþ?- @³ÚtÑ1ôÃÕ 9T:=<4Ñ·9|3D-/ÚHÕ 9;:ªØ -ÜÞFT2?: <Ã9;:=9T.1FEÔTFE2=Út. Tõ¼>?FE@ -/9TÕBþFTÜ3Aþ?-8- Ñ[ÔTþ3$Õ/9;:=
]¡
Q
è_
Hò 5
3ò
©5
_
7
_
z
!
¸Z
U5
_
(Z
_
YZ
?
UI
I
° X¼
&e
É_
zâ
g D hæ W
ö=
BA
°
A `C D>
Â
D>
BA
a
%
E> æ
=%
2
' )
2
(Z
Y
2
{·
Â
³æ DC
A ÑF
³
JI
hF\> bæ
"
MC
%
2
Á
/ i ~5
2
wæ
²
76
Helmut Alt and Ferran Hurtado
s q
r p
t ¦ 'v m E« acZ/XQ¬EPRN'w Z U:x
Ü
Ø©ÙÚUÛ
$egfU'y
ö=
u
zÞ
-h3H2=Ú#:=F|ý .[FqFTðÜÞFT@H90Ñ1:?Ñ[09;. ÚtÑ[Ö -¯@A-Õ3D9T:?ÔT.[-%2?: <4- @+3A@B9;:=ÚA.[9;3AÑ[FT:C3Aþ 9|38Ñ·Ú8:?F;3+:=-/Õó -/ÚDÚA9T@AÑ[. Ñ·ÚAF;3Aþ=-h3AÑ·Õ;õ 82?@9;.[ÔTFT@DÑ13Aþ?0 ý$FT@DðqÚ³9EÚ+ÜÞFE.1.[F|ý#Ú -ÕhFE:=ÚtÑ·<4-/@HFEØ4áQ-/Õh3 9EÚ8Û?ô4-/< 9;:=
a
\
w_
è_
®
P¢
bñ
3_ ¡
/
¯
&_
Ê_
+*
_
,
=_
U
®
`/
¯
oa
}
³
?«_
æ
\5
É
Ì®
^Ë®
Ui
!
^Ë®
g_
½
5
j
/
j
/
X
¶_
½
}_
¾
}_
_
T
R
®
â
,
½
,
,
/
EC
¯
{
Y
¾
0
¯gá
â
6F
½
¾
/
_
g_
Packing Convex Polygons into Rectangular Boxes
77
X 6 r 6 q Õ
Õ
Ò
Ð
¦ JLKEU[Z/XQ\%]hNQPwZ/K\%] PwK|Nt] PwKEaTSEXQPRK8NQ«a$XQZ Nt] NQPRZKTXQZ|BaBMfM EÜ
Ø,ÙÚUÛ
UÞ
þ?-%.[Ñ[Út38FTÜk3 qÓ¼-hóf9- ßE- :3DÚ+Ñ[Ú+Ó?@D-/ÕhFE0Ó?243A-<'9;:=<ÃðT- Ó?3+Ñ1:²ÚtFE@t3D-/< FT@B<4-/@#Ñ1:Ã99|3B9 QÚ 3D@A2=Õh3A2?@D-Õ 9T.1.[-/< æ |æ è=ç ?ê;ëÁè=çjâhé ?æ 4å1æ ö ?üõ 5$3-/9EÕBþ - ßT-/:3Ó FEÑ1:33Aþ?-²- ßT-/:3DÚFTÜ3 Ó¼-/ÚØî9;: < Õ ÜÞFT@ ï ï$9T:=< -/9EÕBþ 9;@D2?Ó¼<=9|3A-<9T:=<@D- Ó?.·9TÕ -#3Dþ?-³FT.·<FT:?-Ú$Ñ1:3Aþ?- õ +F;3DÑ[Õ -Tï3Aþ= 9;3c 09T: FTÜ3Aþ=-/ÚA-8, -/ßT, - :3BÚ :?- ßE- @¯F4Õ/Õh2?@Ø -Õ 9;2 Út-3Dþ?- ñ9T@A-@D- Ó=.[9EÕh-/< Ø :?- ý ß|9T.12?-Ú õ$ö >=FT@-hô?9;0Ó?.[-Tï Út3D9T@t3BÚ 3AFT2 ÕBþ?Ñ1:=ÔÚAÑ·<4- F;Ü W|Ñ[:'>kÑ1ÔE2?@A-¯ù4ï4Ø -Õ 9;2 Út- ýcÑ[.1.@A-9TÕBþ3Aþ?--/:=<FTÜ -/9;@D.[Ñ1G -/@/õgü 5<4- 3D9TÑ1.[-/
{
EC
F
¼
JA
T,:â
{
½
1T,:â
Ê/
8
!¾
¾
j
2
%
b
èT,:Éâ
2
Uâ
³
g D
z¼
æ >
D>
{·@2
BA
$egf
°
A 3C D>
Â
C >
E> æ
{·F
Â
ç>
³æ DC
?
JI
Ëæ
C !ú¶F
¹C
%
?
¹W
2
2
A
«æ W
BA
Á
-h3#2 Ú:?F|ýÕ FT:=ÚAÑ[- @$3Aþ?-0FÚQ3cÔT-/:?- @B9;.ßE- @BÚtÑ[FT: eó W F;ÜV<4Ñ[Ú áQFTÑ[:3cÓ=9TÕBðqÑ[:?Ô9T.1.[F|ýcÑ[:?Ô 9;@DØ?Ñw3D@D9T@ Ñ·ÚAFT0-h3D@AÑ[-/Úk3DFHÓ 9TÕBð3Dþ?-c3Qý$FHÓ¼FT. qÔTFE:=Ú õ - 009³ø³ýj-09 9EÚAÚA2?0-$3Aþ=9;3 Ñ1:3Aþ?-FEÓ43AÑ[09;.ÚAFT.[243AÑ[FT:3Aþ?-³.[-hÜÁ3#þ=9T:=
H
¡
(/ üi
7
D-h¡
1
h£
¢
Ê¢
Y
\_
Ê_
¶ñ
¡
¡
6
½
^ÿj
¾
ñ
j
E 6
}_
9ò
_
©_
ýcÑ1.[.Õ 9T.1. 9;:=< ï?@D-/ÚAÓ -Õ3AÑ[ßT-/. Eõ ²-ýcÑ[.[.Õ 9T.1.9 ;óY3D2?Ó?.[78
Helmut Alt and Ferran Hurtado ½
U
¾
3j®
6 ¡ \ 6 ' \ 2 ¦ '¢ Ò4Z/MfMfPR¬lRaclw]/DaB\aBK|NZ/U:àQ ]/Kq+S ö üj3Dþ=9|3cÑ·ÚÓ FÚAÚAÑ1Ø=.1-³2?:=- @#9Õh- @A3D9TÑ1:CÓ?.·9TÕ - 0- :3cF;Ü 9;:=6
Ï
Õ
EÜ
Ø©ÙÚUÛ
½
½ i
½ < ½
J¾
zÞ
!¾ < ! ¾ ½ > UF
!¾
`æ
Õ
}_
!¾
}_
L
L
_
U
B
_
6_
¢
¥
ò
¡
Ñ[<4-/:3AÑ1Û=-/<õ -83Aþ?-/@A- ÜÞFT@D-8Õ 9T:Ñ·<4- :3DÑwÜ 3Dþ?-ÚtÓ=9EÕh-8F;ܵ9T.1.Ó¼FEÚDÚtÑ[Ø?.[-8Ó?.·9TÕ - 0- :3BÚ ïýcÑw3Dþ?Ñ[: ýcþ?Ñ[ÕBþÒý$- 9T@A-C.[FFEðqÑ1:?Ô²ÜÞFT@3Dþ?-'FTÓ43DÑ109T.#ÚtFE.1243DÑ1FE:ï ýcÑw3DþÒ3Aþ?-C3Qý$F;óf<4Ñ10-/:=ÚtÑ[FT: 9;.$Ø Feô ¥ÚtÓ¼FT:=÷ Ñ1:?Ô3DFû¦Ý3Aþ?÷-%Õ FT0¯ûOõ\Ø=Ñ1¥ :=9;Ñ·3AÚ8FE@AÓ Ñ·9;9;@A.3AÓ¼Ñ13AFEÑ[ÚAFTÑw:?3DÑ1-FE<':=ÚÑ1:F;3DÜFÛ=:=9;Ñw:=3D- F< . '03õ f9T:C: ÃÕÜ 9EhÕFT3/:=ï=:?Ñw3#-/þ?Õh3AFE-/.[<ª<=Ú Õh- .[.·ÚHÕ FT@D@A- ó
§ =æ Aæä Aæ ö ü ë ¨+æ Aæ è=çcéBê|ã hëÁèä|çfê ë ä|å =êeâëÁçYë ê;è?âê ä|è 3 j.1-9;@D. Eï3Dþ?- @D-9T@A-FT:?. ö ü¯ø;óL3A2?Ó?.[-/ÚCö eüõV>?FE@Ñ[:=Õh@D-/9EÚtÑ[:?/Ô z7 Út2=AÕBêþ ê 9øTóY3D2?Ó?.[-ÕBþ=9T:?ÔT-Ú#ýcþ?-/:?- ßE- @83Aþ?-FE@AÑ[- :3D9;3AÑ[FT:)6 z7 G Õ 9T2=ÚA-/Ú8FT:?-F;Ü3Dþ?--/<4ÔE-/Ú8F;Ü î3DFؼ-/Õ FT0-HßT- @A3AÑ·Õ 9T.=FE@$þ=FT@DÑ1Ö/FT:3D9T.Yõ þ?-/ÚA-8-/ßT-/:E3BÚÓ 9;@A3AÑ13AÑ[FT:3Dþ?-ÚtÓ 9TÕhW- ¥ Ø ö ü ßT- @A3AÑ·Õ 9T..1Ñ[:?-/Ú/õ Ñ[ðT-/ýcÑ[ÚA-T$ï ¥ Ñ[ÚÓ=9T@t3DÑw3DÑ1FE:?-/<Ø ö ü$þ?FE@AÑ[Ö FE:3D9;.¼.[Ñ1:?-ÚcÕhFE@A@D-/ÚAÓ FE:=<4Ñ[:?Ô 3AFñ3Dþ?-ªFE@AÑ[- :3D9;3AÑ[FT:=Ú z £ ýcþ?- @D-'3Aþ=-Ãø;óL3A2?Ó=.1-×ö 6 G üÕBþ=9;:=ÔT-/Ú/õ Ñ13Aþ?Ñ[:î-9TÕBþ F;Ü#3Dþ?- ö G üÕ - .[.[ÚFEØ43D9TÑ1:?-<ñÜÞ@DFT0 3Dþ?- þ?FT@DÑ1Ö/FT:3D9T.$9T:=<ÝßE- @A3AÑ·Õ 9T.j.[Ñ1:=-/Ú3Aþ?- ;óY3D2?Ó?.[ö üÑ·ÚCÑ1:qß|9;@DÑ·9;:3/õ O3@D- 09;Ñ[:=Ú3AFàÚA2?Ø<4Ñ[ßÑ·<4- ¥ ÜÞ2?@A3Aþ?-/@Ø 3Aþ?-6 .1Ñ[:?G -ÚHÚA- Ó 9;@B 9|6 3AÑ[h:?G ÔC<4Ñ - @D- :3³Ó=9;Ñ[@BÚö " üõ>kÑ1@BÚt38FTØ Út-/@AßE-%3Aþ 9|3H3Aþ?-/@A-Õ 9T:ÃØ -3Qý$F 3 Ó¼-/ÚFTÜ Õ FT:4Û ÔT2?@B9|3DÑ1FE:=ÚÜÞ@DFT0*ýcþ?Ñ[ÕBþC3Dþ?-H3AFT2 ÕBþ?Ñ1:=ÔÓ 9;Ñ[@#Õ 9;: ÕBþ=9T:?ÔT-HÑ1:'9;3.[-/9EÚQ33Qý$F <4Ñ - @D- :3#ý9 4ÚHöYÚt-/->µÑ[ÔT2=@A- Eühõ 9Eü9ßT- @A3A- ôF;Ü 3AFE2=ÕBþ?-/Úc9ßE- @A3A- ôF;5Ü 3õ z_
*
U
^
´
®
44
Ã
>
{· Á
/
®
¯
=
¥
A
Â
E>
/
¯
}_
>
%
2=< h
4%
_
>
U5
æ
D>
2
½
zF
½
·
_
2
J¾
É5
!¾ !¾ < ! ¾ ML
½
{
ML
9Í
6_
Á
¶%
P%
J¾
2
2
¾ !¾ DJ¾ < J¾
½ ½ ³ ½ ½ <
½ < ½
o¡
«%
B
6
Hò
Ø üC9;:C-/<4ÔE-F;Ü 3AFT2 ÕBþ?-/Úc9T:-<4ÔT-³F;Ü53õ
Packing Convex Polygons into Rectangular Boxes
79
}_
<ª
ª © © a ` ¦ '« kZK¬qSTXt] NQPRZKEM$]hNNQ«a¬4Z/SKqE] Xf¯¬4aDN ´ aBaBKNQZSt«PRKEHq] PgXQM+¿®¯±/° ÂV] Kq¿®²8¯c³4Â
Ò
EÜ
Ø,ÙÚUÛ
Ò
zÞ
j.1-9;@D. EïE3Dþ?- @D-³9;@D- ö G ü3 qÓ - óLØ ÕhFE:4Û=ÔE2?@D9;3AÑ[FT:=Újýcþ?Ñ·ÕBþC9T@A-³ÕBþ=9T@D9EÕ3A-/@AÑ[Ö -<Ø - 2=9;ó 3AÑ[FT:=ÚFTܵ3Dþ?-³ÜÞFT@D0 z7 z£ öò ü ÜÞFT@#ÚAFT0-ÕhFT: ÚQ3B9;:3 õ jFT:=ÚA- 2?-/:E3D. Eï´¥ Ñ·Ú%ÜÞ2=@t3Dþ?- @Ó=9;@A3AÑ13AÑ[FT:=-/< Ø ö G üÓ[email protected].[- .Út3A@B9;Ñ[ÔTþ3¯.[Ñ[:?-ÚA- ÔTó 0-/:3DÚcFTÜkÚA.1FEÓ - Eõ 5 <4-h3B9;Ñ[.1-< 9;:=9T. 4ÚAÑ[ÚÚAþ?F|ý#Ú3Dþ=9|33 qÓ¼-hóf9ñÕhFE:4Û=ÔT2=@D9;3AÑ[FT:=Ú9T@A-ÃÕBþ=9T@D9EÕ3D- @DÑ1Ö/-/<ÝØ - 2=9|3DÑ1FE:=ÚF;ܵ3Aþ?-³ÜÞFE@A0 z £ ¶µ 9T@DÕ/ÚtÑ[:ö VÚAÑ1:nö z 7 küAü öÞøqü ÜÞFT@#ÚAFT0-ÕhFT: ÚQ3B9;:3DÚ µï 9;:=< qõ qFØ ñöÞøqü#ý$-¯þ=9eßE- ö G ü89T<4Ñ13AÑ[FT: 9;. Õh2?@DßT-¯ÚA- ÔE0- :3DÚ8ýcþ?Ñ·ÕBþ'ÜÞ2?@A3Aþ?-/@8Ó=9T@t3DÑw3DÑ1FE: 3Aþ?-%ÚAÓ=9TÕ ·- ¥ñõ f:ªFT@B<4-/@83DFC9T:=9;. qÖ -3Aþ?-Õ FT0Ó?.[-hô4Ñw3 'FTÜ3Aþ=-Û :=9;.VÓ=9T@t3DÑw3DÑ1FE:ªFT'Ü ¥ñï.[-h32=Ú³ÕhFE2?:3 3Aþ?-c:q2?0Ø -/@F;ÜÑ1:3D- @BÚt-Õ3AÑ[FT:Ó¼FTÑ[:E3BÚVؼ-h3Qý$- - :3Dþ?-#ß|9;@DÑ1FE2=ÚVÕh2=@AßE-ÚA- ÔE0- :3DÚ/õ þ?- ö ü ßT- @A3AÑ·Õ 9T.V9;:=<²þ?FT@DÑ[Ö FT:3B9;.VÚQ3D@D9TÑ1ÔEþ3³ÚA- ÔE0-/:3DÚHÑ1:3D- @BÚt-Õ3³3Aþ?- ö G ü+3 qÓ¼-hóf9C9T:=<ª3 Ó¼-hó ØÒÚA- ÔE0-/:3DÚÑ1: ö üÓ FEÑ1:3BÚ õ5 <4- 3D9;Ñ[.[-/<ÒÕhFT: ÚtÑ·<4- @B9|3DÑ1FE:×ÚAþ?F|ý#Ú3Aþ=9;3Ñ[:3A-/@DÚA-/Õh3AÑ[FT: Ø - 3Qýj-/- :3Qý$F³3 Ó¼-hóf9³FT@3 Ó¼-hóOØÚt-/ÔT0- :3BÚVÑ[ÚFT:?. ¯Ó¼FEÚDÚAÑ1Ø?.[-#Ñ[:ßT-/@ ¯ÚAÓ¼-/ÕhÑ·9;. ÚtÑ13A2=9;3AÑ[FT:=Ú 9;:=<3Aþ=9;3/ï43Dþ?- @D-hÜÞFE@A-Eïq3Aþ?-/@A-%9T@A-HFT:=. ö G üÚA2=ÕBþ Ñ[:E3D- @BÚt-Õ3DÑ1FE:Ó¼FTÑ[:E3BÚ õ qF3Aþ?-³3DF;3D9T.9;@D@B9;:?ÔE- 0- :3F;ÜVÕh2?@DßT-ÚjÓ 9;@A3AÑ13AÑ[FT:?Ñ[:?GÔ ¥ þ=9TÚ ö ü$ßE- @A3AÑ·Õh-Ú õ qÑ[:=Õ Ñw3Ñ[Ú9ÃÓ=.[9T:=9;@ÔT@B9;Ó?þñÑ13þ 9TÚ ö üÜ 9EÕh-/Ú9TÚýj-/.1.LïkØ 2?.1-/@ Ú¯ÜÞFT@D0¯2?.·9?õ þ?-Ü 9EÕh-Ú ÕhFT@D@D-/ÚAÓ FE:=<3DF3Dþ?-%<4Ñ ¼-/@A-/:3+ÕhFT0Ø?Ñ[:=9|3DFT@DÑ[9T.¼Ó¼FEÚAÑ13AÑ[FT:=Ú/õ #F|ýîFE2?@#9;.[ÔTFE@AÑ13Aþ=0 3AFÛ=:=<3Aþ=-FTÓ43DÑ109;.Ó?.[9EÕh-/0-/:3Ó=@AF4Õh-/-/?FE@-/9EÕBþ F;Ü3Dþ?-/ÚA-ªÓ?.·9TÕ - 0- :3BÚý$-ªÕBþ?-/ÕBðÒýcþ?- 3Aþ?-/@Ñ13C.[Ñ1-ÚÑ[:îÕh-/.1. Z 9T:=<ïÑ1ÜÚtF ïðT-/- ÓÒ3A@B9TÕBðñFTÜH3Dþ?-ÃÚAÑ1Ö/-Ýö 9;@D-/9 FTÜHÓ¼- @DÑ10- 3A- @üF;ÜH3Aþ=-ªÕhFE@A@D-/ÚAÓ FE:=<4Ñ[:?Ô @A-Õ3D9T:?ÔT.[-Tõ þ?- 0Ñ[:?Ñ102?0 ÚAÑ[Ö -C@A-Õ3D9T:?ÔT.[-ÜÞFT2?:=<×3Aþ=Ñ[Úý9 Ø ×ÕBþ?-/ÕBðqÑ[:?Ô 9;.[. ö ü Õh- .[.·ÚÑ[Ú3Dþ?-FTÓ?3AÑ[09T.ÚtFE.12?3AÑ[FT:õ qFý$-³þ=9eßT¥
1%
{
2
w^
*
Å
0
Å
¥
*
4%
2
j
{
*
^
¸Å
â
5
B§
(0
Å
3§
h%
He
2
{
¶%
R%
%
{
2
2
{
2=<
{
{
P%
7
2
â
%
`%
wT
2=<
zâ
2=<
²
L
8
½
7
!¾
½ d"
¾
+*
"
»
o
½ ½ ³ ½ ½ <
6
½
zâ
b
¾ D!¾ ³!¾ < !¾
!¾
%
2=<
è 4 ã Dæ $¸ê § |æ çL?ë éBæ æâ$|äëÁè=ëçfä|êè ä ç(AlæBéhnmçfä|¹èqì;å1ê æ+éD=ä;äTè é B;æ$ëÁèâ ìÒê|å |ç æ êàëÁè éBê|è eö æ
80
Helmut Alt and Ferran Hurtado
g D
°
A dC D>
Â
{·`F
?
JI
ü =çYê|ëÁãå ìæ ê|è=8â ç ?æ#ëÁç ä;å ìäàê ëÁçOç ê;qçOã ä;å
C !ú#F
?
¹W
A
æhâhé ë Bæ ä Dê eæ º »cÎ ¼½¼ k˾ þ?-cÜÞFT.[.[F|ýcÑ1:?ÔH3B9;Ø?.[-+ÚA2?009T@AÑ[Ö -ÚVFT2=@@A-Út2=.w3BÚ õT58ÚÕ/9;:Ø -8Út-/- :9;.[.?Ó=9EÕBðqÑ1:?ÔÓ=@AFEØ?.1-/0Ú ýcþ?- @D-F|ßE- @D.[9TÓ?Ó?Ñ[:?ÔÃÑ·Ú9;.[.1F|ý$-/<ÝÕ/9;:Ýؼ-'ÚtFE.1ßE-/<ñÑ[:à3AÑ[0- Õh.[FEÚA-3AF .1Ñ[:?-/9T@/õ þ?-'ÚD9;0þ?FT.·
·2#C E>
> æ
bæ C
>
¶æ
¹C
%
2=<
æ W
BA
D>
Á
m
}
7
" a ~5
2
" a
2
" a
2
/ üi ~5
2
/ üi
2
/ üi
2=<
x
!x
ox
/
"UÅ ý
V"
É"oÅ
V"
0
2
Å
2
2
Yx
,
\
Y
è
b
X
z
z
Ê
BA
!"$# % '&("*),+- .0/2143658714/29:/<;>=@?BACD14;0C(E .81@/GF 9H9:36IKJ<9H9L=?:MNJO9A-J®'eoµmd¡eu¡DjÐl¥µ:fsf$ϸr´<w@¼v¡q®'¹ ·¸ÊfyµG± hsbdË@bdfaq¾ tgaDµ:f°²fseu¡¸r4jBtutgf$µ:hitgf$fsfhilBeu¯qfmd¡Dpqµ®'f,t>mdeupqÁGj»mdcof$ϸ®md·t$¼v¹Bɵ2½r4Ño±aÀ2pqr¾ h$eujalBfÅtgl<eurgÀÀ·Vh$euÁÂmdaDfsr,lÐah$°-¡DlÒtumb ¡jbdaDtgaÅÀf$Á:egegf(f¿ÀBpqtgmdfif$¶Ó®tega¡mdlB·¶µ2r4°¬aar,pqf¥eujeujBfÅf(l
!
#"!$
%
&
'
'
( )
*,+
*-*.*
/
0
1
2
1
J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 81-90, 2001. Springer-Verlag Berlin Heidelberg 2001
82
Boris Aronov et al.
9B^:I,WRCD1¥/OîÃ;2C14Xs36ZC5KJO9:TCTHêGC5Î/<î(X4[:CÓ54ZC9HCÒ365 '?'X4[HC14CZ@J<9 WRCÒJOX,I/254X ,þ 5414^:Cê2Z$36[/G9:C58;GCD3699KXsXs5@[:?yC-JO9:/GT1sX4[:X4[:/2CêG5s1iC,JOQ:Z[:143636XsZ3éZqIÎJZCC,ZXs363é9B;2X4C¥/ IÎ,/Bþ T:CPgò 54¿:Z/2CDJ<1(9:XsZ$C J<[:ýBZ36369:/G5gígê9:QR5sP6J<36/<541$ì8X4J<36CP69:P61yCêÓP'W>//GQ:/G1[:^:369:9:Z,TH/GI5X³JO/B/14T:ZDC8ZCì0P6Pg^:?>/254X41436[H/G5sC,Xg9Híg5»Z@WRJ2JO5s14^:CC9:X4T 36ZDêG/G[B149:CDXL5sIK3éîuTH/GJ
94
,4
5
64
87(
8:;
<
=
?>
@
BA
C
)87
?D
E
F
/HG
&
/-/-/
6
I
J4
)
?K
L4 5M ( NA .O
7 'A
94
?K
-O
%P ?K
Q4
RA
O
'A
)
-O
(
TC
P
)
(
S
*U+
*-*-*
4
A
V4
X
O
W 'A )
-O
S
& Y
Y ?K
[4
\
,\
Z4 ) W E
W
W]/-/-/ 1 5
W
.
^
A
) M ]A
`_
87
?K
a_
A
8:
On the Number of Views of Polyhedral Scenes
83
X4369:ZXQ>C1s54Q>CZX436;2C,;36Cì5/Oî ÒJOý365kíÿQRJO1iJOPéP6CPL/2WGü$CZXs5@ò 9Âîv/G1sX4^:9RJOX4CP6ëB?BX4[:365Z@JO9:9:/2XW>C 36WR9B/2îv^:C1s9:14T CT/<î WB»ëÒþ JÎT:813614sCCZIKXJOJ<36Q:9:Q:5P636/GZ@Q>JOCX49y36/Gò 9¿/Oîø/2^:1-X4CZ$[:9H3 B^:CD5@?'J<9:TX4[:C¿þZ/G9qü$CZXs^:14CT (P6/<ì8C1 WRX436/2/G^:9,y9:IÎ36T:9R5/BJOT:P6/GPéCëB9*Pg?q? ì0Xs»[:C-C þ Z@9JO^H9û I,IÎ'3WR6/C9TH1³3dXsîu/<[:ë(îNC/GTH/2^:3é14185sXsX4[:Z369:/G/2Zê29:X,1i54J<Xs5s14QH36^:Pé[:[HZ36Xs/GZ36^:/GIC9 Xs/BX454T:C P6C36êGPg;B[B?G36JOCX4P6ì9:ëT 5 X4/(,,QHþ þ 14L/<@ûû;GC-S ³3o3Xs[:6é9,9 CX4îvX4[:/2[:P6C¸C Pé/
5^
a_
A
5
)8:
@
&A
)
A 9A 5 7
M
;^
c
RK
&@
,S
'Ý4Ö ÜLÙÖ 2×:Ø:ÛÜ>×:ÝsÙÖ X4[RJOCXQ:[R1sCJO5450CDJ<9XX(P6JC@JOZ54/2X 9:,54Xsþ 14^:S ZDû X436'T/GH9¿3é5s/OX4î0369:JZXo54Z;C369HCCì5o¿3é9,ì36XsXs[:[ CûÎP6369:Q>C@/GJ
e'fhgjilk
hm
n
A
W
q Wrts2qbuvp
o ]p
3wBxyr
QHz{q
(_
6p
<
|~}H T
A W
]
( )
W$," )
b
] n
t & W"
a " ) Y
tt
(
O= (
?K
`
51T(tp ?D
T
)rW1T;Lp
Z
=]#
TC
n
p
W{T H¡5¢
å áiá áß 4Xì0[:C,^:C 1ZD/GæZ9:/Gô:9H5sò 3é54THX4[:C1s^:1,C8ZT:36XsX(1s3é/2^:Z9ÒI!/GIÎZD36/G5Q:9:P6JC5s3éX45s5sCDCX4PéZ5¸ë Xs3é/2²î9¥JOX4X(/O[:îR1s369CJC9:Z@T:C@J<JO36P654Z14X4^:P636ë2P¬9:JOí ZDLX4X36J3 CC¿Z/GX8X49B[HX4X$[:3éJ
3"
£
`
Rz
N£
¦\
5
)£ )8
-\ '¤
" 8
z (¥
1C
§\
`
84
Boris Aronov et al.
{fª j}j=1..n
{p« l }¨
z
z
y
y
l =− n/2 .. n/2
y
x
{e© i}i=1..n
x x (b)
(a)
(c)
mdat¥r4eu>aDjBlù« a@2¯Deu«r4j¡D fŵGjjGÁ:fmdh,a@tgegh$pqegfsaqmdlf$·®fw® °éeur4jjaqfsf,· l °¬¡Dl m}l >eu¼¬¡jB¾f¼¬h ¡-·¸¾ ¯@mdeufs¶GjlB¶OfÃf4bdf@rgµmdw8h-¡D¡r4aD¡lBr4Á:¶ùeuaDjbdaqeuajB¯md¶f,r4¡DµGl¡j2f$lBf$md¶ h(¶
¬-`® ¯
³
´
lµ6±·¶¸´
°8¹
=º
J/-/./
!
3w
9»,¼Z 6½ q 8
¾ ¿
3
o¾§¿
8
]¾ , q t À t» ¼ ,¤ T
=¾ ¿
J
tp 5 w w
bq
p
R¾ ,
q
q
6» z
B
¼
6p
¥
Á²Â
ÄHÅ Ä
Ã
ØÙHÚ
×
é
î
;È ±#µ 8ê`ë6¯
!µ=± ± ;È,É3ÊFË Ì Í º± Ë ° ~ È Ë Ç ÆÇ ÓÕ ÎWÏ &µh± ± (È,ÉÊÔË Ì Í ºh±2° È ÒÓ Ï Ü Ü Ì Ü Ê ÛÝÜ Ì Ý Û Ü?Þ Í ÛWÜ ±àß Ì°5á Î Î â ÎWã ì
bб Hֱ
Ë
ä±
Ï
±
Ëtå Î
æ
Ì1Ñ1Ñ1ÑÌ Ì(Ñ1Ñ1ÑWÌ
Ì(Ñ1Ñ1ÑWÌTç Î
è
Îí
¢HïWð)ñ²;ò
ïJ<9:C-T 9:/<ìÄ= ñ'QHêG1436/B;GCDZ5CC14T365sC¥X4/ÎXs/KQ:14J<9Ó;2ò C ^:9:C/B[:ZCJOZ/GP6P6541s^:/¿CT:I CD5s[:T G/<ò ì X4*C-[>J<54CX([:;G/Z$[¿/G9:XsTH143é369HQ:êP6C-'Z/14î36X4C36T:Z@JOê2P0C5 P6369:$C? 5³$/<ûL:î ?? 5436êG[BX8369:ZP6^:T:C-SP6 369:C5/G1sX4S [: /2êG/29RJ
~
øWùúø ùÔû #ÿ
ýýý8
óp ¸/-/./
hü
p&ýýý Ýþ
tô(õ ö1÷ p&ýýý5
²
h»]õ ÷
b
ô õ
3ö ÷
hC
~»
õ ÷
ap
On the Number of Views of Polyhedral Scenes
G/ 1qò Rò >ò ñ ò [:C-C B^RJOX436/G9 /Oî ?B3é5/OîXs[:C-îv/214I
þ ì[:C1sC þ Bþ ð û ð û ógJÎ9:îÿT:JOCICDTy36P6?:ëXs[:/<36î-5P6C 3é9HB^RC5(J<Xs/G3é/21sX49[:/2365êG/2/<9Rî'J<X4[:P8CÃX4/¿îv/GXs1s[:I C ÂígT:3614 Cþ ZXs36/G9 y 5sCþX43éXsIÎ3é9HQ:ê P6ëB3é9HêNXs[RJ
-Z/G9BXiJO369:5 $?:J<9HT5436IÎ3éP¬JO14P6ë-îv/21 G? NZD/G9BXiJO3é9H5 :ò ! 36;GC9J³QR/2369X " þ 09 : 2 / 0 X 2 / 9 s X : [ C é P 6 3 : 9 D C 5 J369^:XsC9H143 5sBC^:ZC8Xs3éP6/2369¥9:C/OQRî:JOX4[:5454C8369:Q:ê-P¬J<Xs9:[:CD145/2Jq^:\êG[þ "$"# JO9:'JT(<X49:[HTCJqPé\369:þ CD"$5y# 54^HQ:þQR¬/25s14CXsC 543é9H^:yêQH36ê2QR^:/2y1414J
Bþ6þîu/G1Cý:JOIQ:P6CG$?<WBJ<ë9HZT /G9BXs3é 9B ^:36îvXg/2ë(&1 /OBî þ 'Xs[RJ<X þ $B?BX4[:C(9 ' \ " ) * BB þ þ "" ¸¸3]3]+ \ " + þvð B þ " ¸3]+ \ " C@369J
8p(S S
D T
(_
Q»
õ ÷
õ ÷
»
õ ÷ )²
j
õ ÷
þ
w
q W O
t
(_
~
»]õ ÷
tp
hô(õ .3]
rW
ü
þ
t
p W»]õ ÷
õ ÷
T(1 õ ÷
ö ÷
ý
tp
@
p
h»]õ ÷ , p
3ô;õ oö1÷Wz & T
Lô;õ
ô õ
ü
O
'
a_
§ö1÷
ö1÷
T;(tp 8
h»
8 õ ÷
t2
T
r
b_
Wõ ÷ ]xlr
¿ õ ÷
0»
õ ÷ ]
õ ÷ )² .s[r
&õ ÷
Tx
r
&õ ÷
Ts
r
&õ ÷
T
r
û õ ÷ ¿ LR» õ ÷ LR»]õ ÷!ý LR»
& ø ù ø ùÔû
!
ø ùúø ùÔû
8ô(õ
3» õ ÷
J»]õ ÷
0ö1÷
,ô;õ ²ö1÷
øWùú)øWùÔû
¸/-/./
! !I
]»]õ ÷
8øWù
ù V»
K&
øWùú (ù
!
û
¿ õ ÷
9»
K!
õ ÷ ý
]»]õ ÷
=ÿ
;ùúø ùÔû
{C
ýýý5 9
, q ) O ù ù I
;ù
,øWùÔû
ø ù Tø ùÔû
õ ÷
õ?÷
,» ô õ 8ö õ » õ?÷ û » õ ÷
w
9q
) O ;z t
J
85
Y õ ÷ ]q
;_
õ ÷
Hø ù
r
õ ÷ &u
) ù %q ù
1 ù W
q ù
q ù õ ÷ O
õ ÷ Fø ù
=»
õ ÷ uZw
'q ù ù O
õ ÷ 'q
õ ÷ -s[rW
õ ÷
õ ÷
O~
õ ÷
86
Boris Aronov et al.
j
q
ei
mdtaD>Á?« eg>H¡D« ml f$jB¶f4r4¡qfotmdeut'j¡f8À2mlGlGegm fsqr4ÀtgfVf$h$beumlmdafVl µa¡q°ytgtueumjBlf8¯-µGeubdjG¡Dr4laDf$Àt¯D¡j¥B²µ:¼C@aDmlGeA¾ @¡D¡Dll¶¶¡egBy¡D¼Cl@ ¯qf4lGe'¾ É ega ¡lB¶ w<¡Dl¶³mde 54369:ZDC 9 9 (JO9:T E9 6 9 6 8 ò [B^:5 ò
?Âîv/G1 0 þS = ?JO9:T þ " S GSIF H S S = S J ? : 2 / 01 " g?'ì0C [RJq;2C þ " þ " = X4[:CD14C$îv/214C þ " ð H S = S J þ = S ð þ = 6 6 8 þ = S ð þ = 6 6 8 S ð þ = 6 6 8 = òy.8CZ@JO^:54C þ " ¿J<9:%T 9 6 9 6 8 B?yì8C,[RJq;GCîu/G1-/G^:1 54369:ZC = Z$[:/G36ZC-/<î = = B þ " S ùð /<î [:C1s[:C$Cîv/G/G1s1sCGCI?:ì8GCò [>Jq;GKC " ò [H3é58Z/2IQ:P6CXsC50Xs[:C-Q:14/B/Oî/<î0þ D?:J<9:TÎWë,CDýXsC9:5s3é/29y? L M4OÙ N yQ Ø P(ÙoÛÖÚ JZ 1436Q:C Xs363éRZZqXsJ<9H/GPL3é145sZ3¬[ ^:JOP1sW;GëÎCCýB5-36Q:9:J
¬-`®
{Ì
ù s
@
p
;ù
õ ÷
õ ÷ &u
Jr]u
V
q
(ù
ùÔû
q
q
S
Hw
7
úWùÔû
úWùÔû
q
ù
õ ÷Rq
q
ù
O
ÿ
ù
O
O
ú ùÔû
¿ õ ÷
úWùÔû
õ ÷ Rq
ÒÓ
Ò Ó
ýýý5
;ùò
ù
O
ùÔû
õ ÷'q
O
ù
õ ÷
õ ÷
õ ÷
;ù]xlr
õ ÷ Hu
õ ÷
u½w
í
ù V»
;ù x
q
S
qwtxZrWý
û õ ÷ !
)K!
p
e'fhg
)WùÔû
ù
O
Wõ ÷
H
S
[ ù
3 ùÔû
q
0 ù
q
;ù
ù
O
ú ùÔû
S
;ù
ø ù V»
õ ÷
Æ Ç
TÌ
ÆÇ
Rg
m
@
~S
-@
R
S T
U S (V
|~}HR{T¡ò{ïWð- H 5ÝBïW¢ Z H ï{W
G;W CJ
1
51T ; I
s¦r
?D
s[r
5;
;_
J
r
,
Ý
5{(tp
On the Number of Views of Polyhedral Scenes
87
[:CT:361sCZX436/29:5/<î'X4[:C-P6369:C58QRJ<5s54369:êX4[:1s/G^:ê2[ ? ?BJ<9HTÒï = ñLîv/G1sIJ-Z^:1s;GC 369Xs[Rþ J<XZQ:P¬Y JO9:CGò JOY Zi[ Q>/G/G369B9 X0/Oï îXs[:365Zñ^:14þ;254CC(C Z/2143614êGCD^:54Q>1sCÒ/G9:ð T:D?5¸8X4ì/,3éXsXs[[:C-X4[HQRCÒ/23é9BC9HXT:/OQRî/2Z36/299XsX$5 J
õ ÷ ù
X " ù þ Y X õ ÷ ù
pB
(1
L
K
ø ù )ø ùÔû
W/
ø ù O
t p
ø ùÔû ø ù ø ùÔû 3ø ù 9ø ùÔû 8 ?rWp ]@ tK &
0@
!
`
K&
~
ZK ?K!
L ?rW
?rW
N
q
#
p-ýýý)
p-ýýý
!
)H W
O
h
&
p
Nx[rW
õ ÷ ù
¼
õ ÷ ù
K! ²@
)r!Ns[rW
õ ÷ ù
üúþ!ÿ
TC &
õ ÷ ù
¼
í
(
(
í
õ ÷ ù
]C
H W
r p!ýýý
W
TC
3r
õ ÷ ù
H W
&q H W h )H W 9q H W 8 Z@ 6K
&C
{C
§
,q
I
!C
H W
)H W
`C h@ )H
tK
H W q
)H
)H W
²z
O~
@
tK
!ì
?B
VK
Ê Í
88
Boris Aronov et al.
tY
tB
b
a
Z
A
A
(a)
X
(b)
(c)
m°¬l¡r>eu¡j?« ®'f¸H¡« ac-r4¼¬¡eumjBl¾ a@eu¯DjBr4¡f8hsrgµ2µ:mdjGeuf4mdmdh$r4h(tu¡µ:b·-f$hsa
R
dS - tVKT8)$oB¢Z¡}HJ5T¡}
5TïW H}
|~}H9¢
hU
)t# ð
:/21X4[HC/G1sX4[:/2êG1$J
@
¸@
`C
,S &
K
A
p
]A
"
)
W
) M
dS - tVKT8)$oB¢Z¡}HJ .!; -WT¡ T,#hU ð
R
R
|~}H9¢
45:^ /21-ZDX43é[:CDCÎ9XsQRP6ë(C1sP¬54J14Cê2ZC0Xs3é5s;236T:C CGI?BJ/CC X4ì[H1436X4C[C X4J<»[RT@þüDJOJ<XZX4ûC[H9BCLZXZ;2141sC3636X414X436Xs36Z@Z@3éZDJOJ
E@
6@
tp
tS
`C
A
)87 T
R
?K
(
]A )
W%P
dS - tVL;ð)}H\SH ¡(¡T8$,
|~}H9¢
5Ã/GJO9:WRT:/<369:;2ê³C¥X45s/[:/<ì8 ? 5(:Xs[R?GJ<J<X-9HTK369:ï T:CCDT X4=[:ñ²/2J<54C1sC,5436þP6L[:/Gû ^Âí 54J<36P6P6/G[:9H/Gê,^HCX4X4[:XsC C¥Cí4;2J
t
~ô õ
5ü
b¾ ¿ ô õ &ö1÷
h/-/-/
p&ýýý
øWùú)øWùÔû
6A
,
6
O=
!
9A
0A
M
A
)
7
C
On the Number of Views of Polyhedral Scenes
89
b y
x
a
z
x y z z
z y
y
z
x
x
(a)
x
(b)
mlK>¼¬¡
« ¾>«eujB faa®¿r4euegjBa8a@¡¯Drgr4r4¡¡Dµ2ljG¯qmdfh(eu·-jBfa<¶2tgh$f4f4b¬w>lB¼6f$Á ty¾ ega8eujafÁBegµ:¡fsmr4l(tuµ:j2f$md¯hijeumdpqhifaq·¸·-µGa
QP(ÙoÛ×ùÚhgObgyÖgyØWk'ÜLÝg²m
X4[:[:CCTH1sC»14^:JOI14C,JOX414[HC14ZC/2C Q:BP¬J<369:9RT:JO5¸1@?2/<X4î[:T:C¸C9:êGCCDC9:THCPé1iCDJO5ZJ<36C145¥CJO5sC14êG3654IÎ369:Cê 9BX4369¿5JX4/G14^HP6ëBZ[:X436C/GT:9 1$LJ:?BX4[:J9/GP6CëBT:[:ê2CC,T:1s/J<J
,C
t
Lô õ
tp
ü
=
{C Hö ÷
z
Qö ÷
ö ÷ útp O
þ
O
]ö ÷ útp Wö ÷ útp O
TC
þ
þ
5
TC
TC
tø ù
r p&(
r p&
(
1C
²
C
]_ _
!z
3r!
H W
{
)H
y
!
H W
90
Boris Aronov et al.
g ¡gyØWgÖÜ8gm ~<}@ÉÉr4 ¢-¸ f$É@tuÉÀGÍ x'bdegfsÉ
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem Imre B´ ar´ any1,2 and Gyula K´ arolyi3 1
1
Maths, University College London 2 R´enyi Institute, Budapest [email protected] 3 E¨ otv¨ os University, Budapest [email protected]
Introduction
Eszter Klein’s theorem claims that among any 5 points in the plane, no three collinear, there is the vertex set of a convex quadrilateral. An application of Ramsey’s theorem then yields the classical Erd˝os–Szekeres theorem [19]: For every integer n ≥ 3 there is an N0 such that, among any set of N ≥ N0 points in general position in the plane, there is the vertex set of a convex n-gon. Let f (n) denote the smallest such number. Theorem 1 ([20,44]). 2n−2 + 1 ≤ f (n) ≤
2n − 5 +2 . n−2
A very old conjecture of Erd˝os and Szekeres is that the lower bound is tight: Open Problem 1. For every n ≥ 3, f (n) = 2n−2 + 1. Similarly, let fd (n) denote the smallest number such that, in any set of at least fd (n) points in general position in Euclidean d-space, there is the vertex set of a convex polytope with n vertices, that is, n points in convex position. A simple uredi [22] projective argument [47] shows that fd (n) ≤ f (n). It is conjectured by F¨ that fd (n) is essentially smaller if d > 2, namely that log fd (n) = O(n1/(d−1) ). A lower bound that matches this conjectured upper bound was given recently in [33]. On the other hand, Morris and Soltan [34] contemplate about an exponential lower bound on fd (n). In this paper we survey recent results and state some open questions that are related to Theorem 1. In particular, we consider “homogeneous”, “partitional”, and “modular” versions of the Erd˝ os–Szekeres theorem. We will discuss the question whether empty convex polygons (and then how many of them) can be found among N points in the plane. We will also describe how the convex
The authors gratefully acknowledge that they have been partially supported by Hungarian Research Grants OTKA T032452 and F030822, respectively.
J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 91–105, 2001. c Springer-Verlag Berlin Heidelberg 2001
92
Imre B´ ar´ any and Gyula K´ arolyi
position condition can be strengthened or relaxed in order to arrive at well-posed questions, and present the results obtained so far. For further aspects of the Erd˝ os–Szekeres theorem we refer to the very recent and comprehensive survey article [34].
2
Homogeneous Versions
From now on we assume that X ⊂ IR2 is a finite set of points in general position. We assume further that X has N elements. By the Erd˝ os–Szekeres theorem, any subset of X of size f (n) contains the vertices of a convex n-gon. As a fixed n-set N subsets of size f (n), a positive fraction of all the n-tuples is contained in f (n)−n from X are in convex position. This is a well-known principle in combinatorics. Maybe one can say more in the given geometric situation, for instance, the many convex position n-tuples come with some structure. The following theorem, due to B´ar´ any and Valtr [7], shows that these n-tuples can be chosen homogeneously: Theorem 2 ([7]). Given n ≥ 4, there is a constant C(n) such that for every X ⊂ IR2 of N points in general position the following holds. There are subsets Y1 , . . . , Yn of X, each of size at least C(n)N such that for every transversal y1 ∈ Y1 , . . . , yn ∈ Yn , the points y1 , . . . , yn are in convex position. We call this result the “homogeneous” Erd˝ os–Szekeres theorem. The proof in [7] is based on another homogeneous statement, the so called same type lemma. We state it in dimension d, but first a definition: Two n-tuples x1 , . . . , xn and y1 , . . . , yn are said to be of the same type if the orientations of the simplices xi1 , . . . , xid+1 and yi1 , . . . , yid+1 are the same for every 1 ≤ i1 < i2 < . . . < id+1 ≤ n. Theorem 3 ([7]). Given d ≥ 2 and k ≥ d + 1, there is a constant C(k, d) such that for all finite sets X1 , . . . , Xk ⊂ IRd of points such that ∪k1 Xi is in general position the following holds. For every i = 1, . . . k, the set Xi contains a subset Yi of size at least C(k, d)|Xi | such that all transversals y1 ∈ Y1 , . . . , yk ∈ Yk are of the same type. The proof is based on the center-point theorem of Rado [7], or on Borsuk’s theorem [37]. It uses a reformulation of the definition of same type: all transversals of Y1 , . . . , Yk are of the same type if no hyperplane meets the convex hulls of any d+1 of these sets. The same type lemma implies the homogeneous version of the Erd˝ os–Szekeres theorem in the following way. Choose k = f (n) and partition X ⊂ IR2 by vertical lines, say, into sets X1 , . . . , Xk of almost equal size. Apply the same type lemma to them. All transversals of the resulting subsets Y1 , . . . , Yk are os–Szekeres of the same type. Fix a transversal y1 , . . . , yk . As k = f (n), the Erd˝ theorem implies that some n points of this transversal, yj1 , . . . , yjn , say, are in convex position. Then by the same type lemma, all transversals of Yj1 , . . . , Yjn are in convex position.
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
93
This proof gives a doubly exponential lower bound for C(n). An alternative proof, with a better bound for C(n) was found by Solymosi [39]. A sketch of Solymosi’s neat argument goes as follows. As we have seen above, a positive fraction of the 2n element subsets of X are in convex position. Write such a 2n element subset as x1 , y1 , x2 , y2 , . . . , xn , yn with the points coming in this order on the boundary of their convex hull. Choose a1 = x1 , a2 = x2 , . . . , an = xn so that the number of possible convex extensions a1 , y1 , a2 , y2 , . . . , an , yn ismaximal. Averaging shows that the number of such extensions is at least const N n where |X| = N . A simple geometric argument explains that the possible yi s all lie in the triangle Ti formed by the lines through the pairs of points (ai−1 , ai ), (ai , ai+1 ) and (ai+1 , ai+2 ). It is not hard to check then that Yi = X ∩ Ti (i = 1, . . . , n) satisfies the requirements. 2 This proof gives C(n) ≈ 2−16n , while the lower bound for f (n) shows that C(n) is at least 2n−2 . Better bounds are available for n = 4, 5 [7]: C(4) ≥ 1/22 and C(5) ≥ 1/352. The reader is invited to prove or improve these bounds. Pach [37] uses the same type lemma to prove a homogeneous version of Caratheodory’s theorem that was conjectured in [6]: Given Xi ⊂ IRd (i = 1, . . . , d + 1), there is a point z ∈ IRd and there are subsets Zi , each of size cd |Xi | at least (i = 1, . . . , d + 1), such that the convex hull of each transversal z1 ∈ Z1 , . . . , zd+1 ∈ Zd+1 contains the point z. (Here cd is a constant depending only on d.) Pach’s nice argument uses, besides the same type lemma, a quantitative version of Szemer´edi’s regularity theorem. We expect that the same type lemma will have many more applications. Also, several theorems from combinatorial convexity extend to positive fraction or homogeneous versions. For instance, a positive fraction Tverberg theorem is proved in [7]. One question of this type concerns Kirchberger’s theorem [14]. The latter says that finite sets A, B ⊂ IRd can be separated by a hyperplane if and only if for every S ⊂ A ∪ B of size d + 2 there is a hyperplane separating A ∩ S and B ∩ S. This suggests the following question: Open Problem 2. Let A, B ⊂ IRd be finite sets, each of size 2N N , with A ∪ B (d + 2)-tuples in general position. Assume that for (1 − ε) fraction of the d+2 S ⊂ A ∪ B there is a hyperplane separating A ∩ S from B ∩ S. Does it follow then that there are subsets A ⊂ A and B ⊂ B that are separated by a hyperplane and |A |, |B | ≥ (1 − g(ε))N with g(ε) tending to zero as ε → 0? Partial results in this direction are due to Attila P´ or [40]. One word of caution is in place here: the condition g(ε) → 0 is important since by the ham-sandwich theorem (or Borsuk’s theorem, if you like) any two finite sets A, B in IRd can be simultaneously halved by a hyperplane H. Then half of A is on one side of H while half of B is on the other side.
3
Partitional Variants
Let P be any set of points in general position in the plane. Let C1 , C2 be subsets of P , each in convex position. We say that the convex polygons C1 and C2 are
94
Imre B´ ar´ any and Gyula K´ arolyi
vertex disjoint if C1 ∩ C2 = ∅. If, moreover, their convex hulls are also disjoint, we simply say that the two polygons are disjoint. A polygon is called empty if its convex hull does not contain any point of P in its interior. Eszter Klein’s theorem implies that P can be partitioned into vertex disjoint convex quadrilaterals plus a remainder set of size at most 4. The following result answers a question posed by Mitchell. Theorem 4 ([30]). Let P be any set of 4N points in general position in the plane, N sufficiently large. Then there is a partition of P into N vertex disjoint convex quadrilaterals if and only if there is no subset A of P such that the size of A is odd but the the size of A ∩ C is even for every convex quadrilateral C. There is also an N log N -time algorithm [30] which decides if such a partition exists. The following problem seems to be more difficult. Open Problem 3. Is there a fast algorithm which decides if a given set of 4N points in general position in the plane admits a partition into disjoint convex quadrilaterals? For k ≥ 3 the Ramsey-remainder rr(k) was defined by Erd˝ os et al. [21] as the smallest integer such that any sufficiently large set of points in general position in the plane can be partitioned into vertex disjoint polygons, each of size ≥ k, and a remaining set of size ≤ rr(k). Thus, rr(k) < f (k) for every k. In particular, rr(3) = 0 and rr(4) = 1. Partial results on rr(k) in general were proved in [21]. It is known, for example, that rr(k) ≥ 2k−2 − k + 1. The solution of the following problem could make an essential step to settle Problem 1, see [21]. Open Problem 4. Is it true that rr(k) = 2k−2 − k + 1? There is no Ramsey-remainder in higher dimensions. The following result is due to K´arolyi [30]. Theorem 5. Let k > d ≥ 3. If N is sufficiently large, then every set of N points in general position in IRd can be partitioned into subsets of size at least k each of which is in convex position. The main observation here is that, for large enough N , every point of P belongs to some k-element subset which is in convex position. A problem in close relation to Problem 3 is the following. Given natural numbers k and n, let Fk (n) denote the maximum number of pairwise disjoint empty convex k-gons that can be found in every n-element point set in general position in the plane. The study of this function was initiated in [27]. Horton’s result mentioned in Section 5 implies F7 (n) = 0 for every n. Thus, the interesting functions are F4 , F5 and F6 . Nothing is known about F6 , in fact Problem 6 is equivalent to asking whether F6 (n) > 0 for some n. Since every 5-point set determines an empty convex quadrilateral, obviously F4 (n) ≥ n/5 . Similarly, it follows from a result of Harborth [23] that F5 (n) ≥ n/10 for every n.
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
95
The non-trivial lower bound F4 (n) ≥ 5n/22 is presented in [27], based on the following observation. Suppose P is any set of 2m + 4 points in general position in the plane. Then there is a partition of the plane into 3 convex regions such that one region contains 4 points of P in convex position, and the other regions contain m points of P each. There is no counterpart of this lemma for pentagons, and in fact no lower bound is known about F5 beyond what is said above. As for F4 , an even stronger lower bound F4 (n) ≥ (3n − 1)/13 has been proved for an infinite sequence of integers n. Concerning upper bounds, a construction in [27] shows that F5 (n) ≤ 1 if n ≤ 15. It is not too difficult to prove that F5 (n) < n/6, but no nontrivial upper bound is known for F4 (n) in general. For any positive integer n let F (n) denote the smallest integer such that every set of n points in general position in the plane can be partitioned into F (n) empty convex polygons, with the convention that point sets consisting of at most two points are always considered as empty convex polygons. Urabe [45] proved (n − 1)/4 ≤ F (n) ≤ 2n/7. The upper bound follows from the fact that every 7-point set can be partitioned into an empty triangle and an empty convex quadrilateral. An improved upper bound F (n) ≤ 5n/18 is presented in [27] along with an infinite sequence of integers n for which also F (n) ≤ (3n + 1)/11. An other function H(n) was also introduced in [45] as the smallest number of vertex disjoint convex polygons into which any n-element point set can be partitioned in the plane. An application of Theorem 1 gives that the order of magnitude of this function is n/ log n. Finally we mention that the functions F and H can be naturally defined in any dimension; denote the corresponding functions in d-space by Fd and Hd . Urabe [46] proves that Ω(n/ log n) ≤ F3 (n) ≤ 2n/9 and that H3 (n) = o(n). The proof technics of [45] coupled with the bounds given in Section 1 on fd in fact yield Ω(n/(logd−1 n) ≤ Fd (n) ≤ O(n/ log n).
4
Matrix Partitions
Assume X1 , . . . , Xn in IRd , are pairwise disjoint sets, each of size N , with ∪Xi in general position. A matrix partition, or µ-partition for short, of the Xi s with m columns is the partition Xi = ∪m k=1 Mik for i = 1, . . . , n if |Mik | = |Mjk | for every i, j = 1, . . . , n and every k = 1, . . . , m. In other words, a µ-partition of X1 , . . . , Xn with m columns is an n × m matrix M whose (i, k) entry is a subset Mik of Xi such that row i forms a partition of Xi and the sets in column k are of the same size. Gil Kalai asked [28] whether the homogeneous Erd˝ os–Szekeres theorem admits a partitioned extension: Open Problem 5. Show that for every n ≥ 4 there is an integer m = g(n) such that for every finite set X ⊂ IR2 of N points in general position there is a os–Szekeres function from subset X0 ⊂ X, of size less than f (n), (this is the Erd˝
96
Imre B´ ar´ any and Gyula K´ arolyi
Section 1), and there exists a partition of X \ X0 into sets X1 , . . . , Xn of equal size such that the following holds. The sets X1 , . . . , Xn admit a µ-partition M with m columns so that every transversal x1 ∈ M1k , x2 ∈ M2k , . . . , xn ∈ Mnk is in convex position, for all k = 1, . . . , m. By the homogeneous version one can choose the sets for the first column of a µ-partition, each of size C(n)N/n, then for the second, third, etc columns from the remaining part of X, but this would result in a suitable µ-partition with too many, namely log N , columns. The remainder set X0 is needed for two simple reasons: when N is smaller than f (n) there may not be a convex n-gon at all, and when N is not divisible by n. Partial solution to Problem 2 is due to Attila P´ or [41]. He first proved a partitioned extension of the same type lemma. To state this result we define the sets Y1 , . . . , Yn ⊂ IRd with n ≥ d + 1 separated if every hyperplane intersects at most d sets of the convex hulls of Y1 , . . . , Yn . As we mentioned in Section 2, the sets Y1 , . . . , Yn are separated if and only if every transversal y1 ∈ Y1 , . . . , yn ∈ Yn is of the same type. Theorem 6 ([41]). For all natural numbers n, d with n ≥ d + 1 there is a natural number m = m(n, d) such that if finite sets X1 , . . . , Xn ⊂ IRd have the same size and ∪n1 Xi is in general position, then there exists a µ-partition with m columns such that the sets M1k , . . . , Mnk in every column are separated. This is exactly the partitioned version of the same type lemma. The proof is based on a clever induction argument and a third characterization for sets or [41] to solve the first Y1 , . . . , Yn being separated. The result is used by A. P´ interesting case, n = 4 of Problem 2. Theorem 7 ([41]). Assume X ⊂ IR2 is a finite set of N points in general position. Then there is an X0 ⊂ X of size at most 4, and a partition of X\X0 into sets X1 , X2 , X3 , X4 of equal size such that they admit a µ-partition M with 30 columns so that every transversal x1 ∈ M1k , . . . , x4 ∈ M4k is in convex position. The proof starts by cutting up X into four sets of almost equal size by vertical lines, say. Then the same type lemma (matrix partition version) is applied to these four sets giving a matrix partition with few columns. The columns are of two types: either every transversal is a convex quadrangle and there is nothing to do, or every transversal is a triangle with the fourth point inside it. In the latter case one has to partition the column further. This can be done with a topological argument: the interested reader should consult the paper [41]. The method does not seem to work for n ≥ 5, apparently new ideas are needed.
5
Empty Convex Polygons
For a long time it had been conjectured that every sufficiently large point set, in general position in the plane contains the vertex set of an empty convex ngon, that is, n points which form the vertex set of a convex polygon with no
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
97
other point of the set in its interior. Harborth [23] showed that every 10-element point set determines an empty convex pentagon, and that here 10 cannot be replaced by any smaller number. Finally, in 1983 a simple recursive construction of arbitrarily large finite point sets determining no empty convex heptagons was found by Horton [24]. The corresponding problem for hexagons is still open: Open Problem 6. Is it true that every sufficiently large set of points in general position in the plane contains the vertex set of an empty convex hexagon? We strongly believe that the answer is yes, but there is no proof in sight. Several algorithms had been designed [4,15,36] to determine if a given set of points contains an empty 6-gon, and to construct large point sets without any empty hexagon. The current world record, a set of 26 points that does not contain an empty convex 6-gon was discovered by Overmars et al. [36] in 1989. A surprising number of questions can be related to this seemingly particular problem. The first one, due to Solymosi [43], relates it to a Ramsey type problem for geometric graphs. A geometric graph is a graph drawn in the plane such that the vertices are represented by points in general position while the edges are straight line segments that connect the corresponding vertices. Open Problem 7. Let G be a complete geometric graph on n vertices whose edges are colored with two different colors. Assume that n is sufficiently large. Does it follow then that G contains an empty monochromatic triangle? Were the answer to this question negative, it would imply that there are arbitrarily large point sets without an empty convex 6-gon. For assume, on the contrary, that every sufficiently large point set contains such an empty polygon. Color the edges of the corresponding complete geometric graph with two colors, it induces a coloring of the edges that connect the vertices of the empty 6-gon. It follows from Ramsey’s theorem that this two-colored graph on 6 vertices contains a monochromatic triangle (which is also empty), a contradiction. An other related problem has been studied recently by Hosono et al. [26]. Let P denote a simple closed polygon together with its interior. A convex subdivision of P is a 2-dimensional cell complex in the plane whose vertex set coincides with the vertex set of P , whose body is P , and whose faces are all convex polygons. Denote by F (n) the smallest integer for which any set of n points in general position in the plane can be connected with a closed simple polygon that admits a convex subdivision with at most F (n) faces. Since each face in a convex subdivision is an empty convex polygon, it follows from Horton’s construction that F (n) ≥ n/4 for an infinite sequence of n. It is proved for every n in [26] where an upper bound F (n) ≤ 3n/5 is also presented. Open Problem 8. Is it true that F (n) ≥ (n − 2)/3? A negative answer would give an affirmative solution to the empty hexagon problem.
98
Imre B´ ar´ any and Gyula K´ arolyi
Essential combinatorial properties of Horton’s construction were studied and extended into higher dimensions by Valtr [47], resulting in constructions that yield the following general result. Denote by h(d) the largest integer h with the following property: every sufficiently large point set in general position in IRd contains an h-hole, that is, h points which are vertices of an empty convex d-polytope. Thus, 5 ≤ h(2) ≤ 6. Theorem 8 ([47]). The integer h(d) exist for any d ≥ 2 and satisfies 2d + 1 ≤ h(d) ≤ 2d−1 (Pd−1 + 1) , where Pi denotes the product of the first i positive prime numbers. It is also known that h(3) ≤ 22. We close this section by turning back to the plane: there are certain nontrivial classes of point sets where large empty convex polygons can be found. For example, if every triple in the point set determines a triangle with at most one point in its interior, then it is said to be almost convex. Theorem 9 ([32]). For any n ≥ 3, there exists an integer K(n) such that every almost convex set of at least K(n) points in general position in the plane determines an empty convex n-gon. Moreover, we have K(n) = Ω(2n/2 ). This result has been extended recently by Valtr [50] to point sets where every triple determines a triangle with at most a fixed number of points in its interior. It also must be noted that Bisztriczky and Fejes T´ oth [10] proved the following related result. Theorem 10. Let l, n denote natural numbers such that n ≥ 3. Any set of at least (n − 3)(l + 1) + 3 points in general position in the plane, with the property that every triple determines a triangle with at most l of the points in its interior, contains n points in convex position. Namely, its convex hull has at least n vertices, and in this respect this bound cannot be improved upon.
6
The Number of Empty Polygons
Let X ⊂ IR2 be a set of N points in general position, and write gn (X) for the number of empty convex n-gons with vertices from X. Of course, n ≥ 3. Define gn (N ) as the minimum of gn (X) over all planar sets X with N points in general position. Horton’s example shows that gn (N ) = 0 when n ≥ 7. Problem 6 is, in fact, to decide whether g6 (N ) = 0 or not. The first result on gn (N ) is due to Katchalski and Meir [29] who showed g3 (N ) ≤ 200N 2. In B´ ar´ any and F¨ uredi [5] lower and upper bounds for gn (N ) are given. The lower bounds are:
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
99
Theorem 11 ([5]). g3 (N ) ≥ N 2 − O(N log N ) , 1 g4 (N ) ≥ N 2 − O(N log N ) , 2 N g5 (N ) ≥ . 10 The last estimate can be easily improved to g5 (N ) ≥ N6−4 . Of these inequalities, the most interesting is the one about g3 . Its proof gives actually more than just g3 (N ) ≥ N 2 (1 + o(1)). Namely, take any line * and project the points of X onto *. Let z1 , . . . , zN be the projected points on * in this order, and assume zi is the projection of xi ∈ X. We say that pair zi , zj supports the empty triangle xi , xk , xj if this triangle is empty and i < k < j. Now the proof of the lower bound on g3 (N ) follows from the observation that all but at most O(N log N ) pairs zi , zj support at least two empty triangles. (This fact implies, further, the lower bound on g4 as well.) It is very likely that a small but positive fraction of the pairs supports three or more empty triangles but there is no proof in sight. If true, this would solve the next open problem in the affirmative: Open Problem 9. Assume X is a finite set of N points in general position in IR2 . Show that g3 (N ) ≥ (1 + ε)N 2 for some positive constant ε. The upper bounds from [5] have been improved upon several times, [48], [16], and [8]. The constructions use Horton sets with small random shifts. We only give the best upper bounds known to date [8]. Theorem 12. g3 (N ) ≤ (1 + o(1))1.6195...N 2 , g4 (N ) ≤ (1 + o(1))1.9396...N 2 , g5 (N ) ≤ (1 + o(1))1.0205...N 2 , g6 (N ) ≤ (1 + o(1))0.2005...N 2 . It is worth mentioning here that the function gn (X) satisfies two linear equations. This is a recent discovery of Ahrens et al. [1] and Edelman-Reiner [17]. Since the example giving the upper bounds in the last theorem is the same point set X and g7 (X) = 0, only two of the numbers gn (X) (n = 3, 4, 5, 6) have to be determined. There is a further open problem due to the first author, that appeared in a paper by Erd˝ os [18]. Call the degree of a pair e = {x, y} (both x and y coming from X) the number of triples x, y, z with z ∈ X that are the vertices of an empty triangle, and denote it by deg(e). Open Problem 10. Show that the maximal degree of the pairs from X goes to infinity as the size of X, N → ∞.
100
Imre B´ ar´ any and Gyula K´ arolyi
The lower bound on g3 implies that the average degree is at least 6 + o(1) in the following way. Write T for the set of triples from X that are the vertices of an empty triangle. We count the number, M , of pairs (e, t) where t ∈ T, e ⊂ T and e consists of two elements of X in two ways. First M = deg(e) the sum taken over all two-element subsets of X. Secondly, as every triangle has three sides, M = 3|T | = 3g3 (X) ≥ (3 + o(1))N 2 from the lower bound on g3 (N ), showing indeed that the average degree is at least 6 + o(1). We show next that the maximal degree is at least 10 when N is large enough, a small improvement that is still very far from the target. Choose first a vertical line *1 having half of the points of X on its left, the other half on its right. (Throw away the leftmost or rightmost point if N is odd.) Then choose a line *2 , by the ham-sandwich theorem, halving the points on the left and right of *1 simultaneously (throwing away, again, one or two points if necessary). We have now four sectors, S1 , S2 , S3 , S4 each containing m points from X with m = N/4 . (S1 , S4 are on the left of *1 and S1 , S2 are below *2 , say.) Let e = {x, y} with x, y ∈ X and define deg(e; Si ) as the number of points z ∈ X ∩ Si such that {x, y, z} ∈ T . The observation following the lower bounds for gn gives that, when e = {x, y} with x ∈ X ∩ S1 and y ∈ X ∩ S2 , then for all but at most O(m log m) of the possible pairs deg(e; S1 ∪ S2 ) ≥ 2, so deg({x, y}; S1 ∪ S2 ) ≥ (2 + o(1))m2 . x∈S1 y∈S2
On the other hand, deg({x, y}; S1 ∪ S2 ) = deg({x, z}; S2 ) + deg({y, z}; S1). x∈S1 y∈S2
x,z∈S1
y,z∈S2
The analogous identities and inequalities for pairs in S2 ×S3 , S3 ×S4 , and S4 ×S1 together yield that 4
deg({x, y}; Si−1 ∪ Si+1 ) ≥ (8 + o(1))m2 ,
i=1 x,y∈Si
where i + 1 and i − 1 are to be taken modulo 4. This means that, in at least one of the sectors, the average degree of a pair is at least 4 + o(1) in the neighboring two sectors. As we have seen, the average degree of a pair is at least 6 + o(1) within each sector. This proves the claim.
7
The Modular Version
Bialostocki, Dierker, and Voxman [9] proposed the following elegant “modular” version of the original problem. Open Problem 11. For any n ≥ 3 and p ≥ 2, there exists an integer B(n, p) such that every set of B(n, p) points in general position in the plane determines a convex n-gon such that the number of points in its interior is 0 mod p.
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
101
Bialostocki et al. proved this conjecture for every n ≥ p + 2. Their proof goes as follows. Assume, for technical simplicity, that n = p + 2. Choose an integer m that is very large compared to n. Consider a set P of f (m) points in general position in the plane, by Theorem 1 it contains an m-element set S in convex position. Associate with every triple {a, b, c} ⊆ S one of the p colors 0, 1, 2, . . . , p − 1; namely color i if triangle abc contains i points of P in its interior modulo p. As a consequence of Ramsey’s theorem we can select an n-element subset S of S all of whose triples are of the same color, given that m is sufficiently large. Consider any triangulation of the convex hull of S , it consists of p triangles. Consequently, the number of points inside this convex n-gon is divisible by p. This proof implies a triple exponential upper bound on B(n, p), a bound which was later improved essentially by Caro [12], but his proof also relied heavily on the assumption n ≥ p+2. Recently the conjecture was proved in [32] for every n ≥ 5p/6 + O(1). A key factor in this improvement is Theorem 9. The situation changes remarkably in higher dimensions. For example, a 3polytope with 5 vertices admits two essentially different triangulations: one into two simplices and an other into three simplices. Based on this observation Valtr [49] proved the following result. Theorem 13. For any n ≥ 4 and p ≥ 2, there exists an integer C(n, p) such that every set of C(n, p) points in general position in 3-space determines a convex polytope with n vertices such that the number of points in its interior is 0 mod p. Indeed, let P be any sufficiently large set of points in general position in 3-space. As in the planar case, we can use the Erd˝os–Szekeres theorem and then Ramsey’s theorem to find at least n and not less than 5 points in convex position such that every tetrahedron determined by these points contains the same number of points, say i, in its interior modulo p. Consider any 5 of these points and triangulate their convex hull in two different ways: first into two tetrahedra, then into three tetrahedra. It follows that 2i ≡ 3i, and thus i ≡ 0 (mod p). The same argument can be used to extend Theorem 9, and also its generalization by Valtr, to 3-space: Theorem 14. Given any natural numbers k and n ≥ 3, there exists an integer K3 (k, n) such that the following holds. Every set of at least K3 (k, n) points in general position in 3-space, with the property that any tetrahedron determined by these points contains at most k points in its interior, contains an n-hole. Similar results are proved also in every odd dimension. First we recall the following strengthening of the Erd˝ os–Szekeres theorem, which seems to be folklore. See [13] or [11, Proposition 9.4.7] for a proof. Theorem 15. Let d ≥ 2. For every n ≥ d + 1 there is an integer Nd (n) such that, among any set of N ≥ Nd (n) points in general position in IRd there is the vertex set of a cyclic d-polytope with n vertices.
102
Imre B´ ar´ any and Gyula K´ arolyi
Note that in the above theorem we cannot replace the cyclic polytopes with any class of polytopes of different combinatorial kind: one may select any number of points on the moment curve yet every n-element subset will determine a cyclic polytope. Next, suppose that d is odd. In general, any cyclic polytope with d + 2 vertices admits a triangulation into (d + 1)/2 simplices, and also a different one into (d + 3)/2 simplices. Thus, Theorems 13 and 14 have counterparts in every odd dimension [50]. These arguments however cannot be extended to even dimensions: it is known [42] that every triangulation of a cyclic d-polytope, d even, consists of the same number of simplices.
8
Further Problems
Let h(n, k) denote the smallest number such that among at least h(n, k) points in general position in the plane there is always the vertex set of a convex n-gon such that the number of points in its interior is at most k. Horton’s result says that h(n, 0) does not exist for n ≥ 7. In general, Nyklov´ a [35], based on Horton’s construction, established that h(n, k) does not exist for k ≤ c · 2n/4 . She also determined that h(6, 5) = 19, yet another step towards the solution of Problem 6. The following problem was motivated in [30]. For integers n ≥ k ≥ 3, let g(k, n) be the smallest number with the property that among any g(k, n) points in general position in the plane, there exist n points whose convex hull has at least k vertices. Clearly g(k, n) exists and satisfies f (k) ≤ g(k, n) ≤ f (n). Based on the results of Section 2 one can easily conclude that g(k, n) < c1 n + c2 , where the constants c1 , c2 (dependent only on k) are exponentially large in k. The true order of magnitude of g(k, n) was found by K´ arolyi and T´oth [31]. It is not difficult to see that g(4, n) = 3n/2 − 1. In general the following bounds are known. Theorem 16 ([31]). For arbitrary integers n ≥ k ≥ 3, (k − 1)(n − 1) + 2k/2−4 ≤ g(k, n) ≤ 2kn + 28k . 2 To obtain the upper bound, peel off convex layers from a set P of at least 2kn + 28k points as follows. Let P1 = P and Q1 the vertex set of its convex hull. Having Pi , Qi already defined, set Pi+1 = Pi \ Qi and let Qi+1 be the set of vertices of the convex hull of Pi+1 . If there is an integer i ≤ 2n such that |Qi | ≥ k, then we are ready. Otherwise we have 2n convex layers Q1 , Q2 , . . . , Q2n , and at least 44k further points inside Q2n . Thus, by Theorem 1, P2n+1 contains the vertex set of a convex 4k-gon C, and the desired configuration of n points whose convex hull has at least k vertices can be selected from the nested arrangement of the convex sets Q1 , Q2 , . . . , Q2n , C.
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
103
Open Problem 12. Is it true that g(5, n) = 2n − 1? Open Problem 13. Is it true for any fixed value of k that lim
n→∞
k−1 g(k, n) = ? n 2
An interior point of a finite point set is any point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let g(k) be the smallest number such that every set of points P in general position in the plane, which contains at least g(k) interior points has a subset whose convex hull contains exactly k points of P in its interior. Avis, Hosono, and Urabe [2] determined that g(1) = 1, g(2) = 4 and g(3) ≥ 8. It is not known if g(k) exists for k ≥ 3. It was pointed out by Pach (see [2]) that if P contains at least k interior points, then it has a subset such that the number of interior points of P inside its convex hull is between k and 3k/2 . A similar problem was studied also in [3]. Open Problem 14. Prove or disprove that every point set in general position in the plane with sufficiently many interior points contains a subset in convex position with exactly 3 interior points. A first step towards the solution may be the following result of Hosono, K´ arolyi, and Urabe [25]. Let g∆ (k) be the smallest number such that every set of points P in general position in the plane whose convex hull is a triangle which contains at least g(k) interior points also has a subset whose convex hull contains exactly k points of P in its interior. Theorem 17. If g∆ (k) is finite then so is g(k). The proof is based on a result of Valtr [50] which extends Theorem 9.
Note Added in Proof. The answer to Open Problem 2 is yes and the proof is quite simple. Open Problem 5 was solved very recently by P´ or and Valtr: the answer is again yes, but the proof is not that simple.
References 1. C. Ahrens, G. Gordon, and E.W. McMahon, Convexity and the beta invariant, Discr. Comp. Geom. 22 (1999), 411–424. 2. D. Avis, K. Hosono, and M. Urabe, On the existence of a point subset with a specified number of interior points, to appear in Discr. Math. 3. D. Avis, K. Hosono, and M. Urabe, On the existence of a point subset with 4 or 5 interior points, in: Discrete and Computational Geometry (J. Akiyama, M. Kano, and M. Urabe, eds.), Lecture Notes in Comp. Sci. 1763, Springer (2000), pp. 56–64.
104
Imre B´ ar´ any and Gyula K´ arolyi
4. D. Avis and D. Rappaport, Computing the largest empty convex subset of a set of points, Proc. 1st ACM Symp. Comp. Geom., Baltimore (1985), pp. 161–167. 5. I. B´ ar´ any and Z. F¨ uredi, Empty simplices in Euclidean spaces, Canad. Math. Bull. 30 (1987), 436–445. 6. I. B´ ar´ any, Z. F¨ uredi, and L. Lov´ asz, On the number of halving planes, Combinatorica 10 (1990), 175–183. 7. I. B´ ar´ any and P. Valtr, A positive fraction Erd˝ os–Szekeres theorem, Discr. Comp. Geom. 19 (1998), 335–342. 8. I. B´ ar´ any and P. Valtr, Planar point sets with a small number of empty convex polygons, manuscript (1999). 9. A. Bialostocki, P. Dierker, and B. Voxman, Some notes on the Erd˝ os–Szekeres theorem, Discr. Math. 91 (1991), 231–238. 10. T. Bisztriczky and G. Fejes T´ oth, On general Erd˝ os–Szekeres numbers, manuscript (1994). 11. A. Bj¨ orner, M. Las Vergnas, B. Sturmfels, N. White, and G.M. Ziegler, Oriented Matroids, Encyclopedia Math. Appl. 46, Cambridge University Press (1993). 12. Y. Caro, On the generalized Erd˝ os–Szekeres conjecture – A new upper bound, Discr. Math. 160 (1996), 229–233. 13. R. Cordovil and P. Duchet, Cyclic polytpes and oriented matroids, European J. Comb. 21 (2000) 49–64. 14. L. Danzer, B. Gr¨ unbaum, and V. Klee, Helly’s theorem and its relatives, Proc. Symp. Pure Math. Vol 7, AMS Providence RI (1963), pp. 101–138. 15. D.P. Dobkin, H. Edelsbrunner, and M. Overmars, Searching for empty convex polygons, Algorithmica 5 (1990), 561–571. 16. D. Dumitrescu, Planar point sets with few empty polygons, Studia Sci. Math. Hungar. 36 (2000), 93–107. 17. P. Edelman and V. Reiner, Counting the interior points of a point configuration, Discr. Comp. Geom. 23 (2000), 1–14. 18. P. Erd˝ os, On some unsolved problems in elementary geometry (in Hungarian), Mat. Lapok 2 (1992), 1–10. 19. P. Erd˝ os and G. Szekeres, A combinatorial problem in geometry, Comp. Math. 2 (1935), 463–470. 20. P. Erd˝ os and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. E¨ otv¨ os, Sect. Math. 3/4 (1960–61), 53–62. 21. P. Erd˝ os, Zs. Tuza, and P. Valtr, Ramsey-remainder, European J. Comb. 17 (1996) 519–532. 22. Z. F¨ uredi, Private communication (1989). 23. H. Harborth, Konvexe F¨ unfecke in ebenen Punktmengen, Elem. Math. 33 (1978), 116–118. 24. J.D. Horton, Sets with no empty 7-gons, Canad. Math. Bull. 26 (1983), 482–484. 25. K. Hosono, Gy. K´ arolyi, and M. Urabe, On the existence of a convex polygon with a specified number of interior points, submitted for publication in Comput. Geom. Theory Appl. 26. K. Hosono, D. Rappaport, and M. Urabe, On convex decomposition of points, submitted to the Japanese Conf. Discr. Comput. Geom. (2000). 27. K. Hosono and M. Urabe, On the number of disjoint convex quadrilaterals for a planar point set, submitted for publication in Comp. Geom. Theory Appl. 28. G. Kalai, Private communication (1997). 29. M. Katchalski and A. Meir, On empty triangles determined by points in the plane, Acta Math. Hung. 51 (1988), 323–328.
Problems and Results around the Erd˝ os–Szekeres Convex Polygon Theorem
105
30. Gy. K´ arolyi, Ramsey-remainder for convex sets and the Erd˝ os–Szekeres theorem, to appear in Discr. Appl. Math. 31. Gy. K´ arolyi and G. T´ oth, An Erd˝ os–Szekeres type problem in the plane, Period. Math. Hung. 39 (1999), 153–159. 32. Gy. K´ arolyi, J. Pach, and G. T´ oth, A modular version of the Erd˝ os–Szekeres theorem, to appear in Studia Sci. Math. Hungar. 33. Gy. K´ arolyi and P. Valtr, Point configurations in d-space without large subsets in convex position, submitted for publication in Discr. Comp. Geom. 34. W. Morris and V. Soltan, The Erd˝ os–Szekeres problem on points in convex position – a survey, Bull. Amer. Math. Soc. 37 (2000), 437–458. 35. H. Nyklov´ a, Almost empty polygons, preprint, KAM-DIMATIA Series 2000–498. 36. M. Overmars, B. Scholten, and I. Vincent, Sets without empty convex 6-gons, Bull. European Assoc. Theor. Comp. Sci. 37 (1989), 160–168. 37. J. Pach, A Tverberg type result on multicolored simplices, Comp. Geom. Theory Appl. 10 (1998), 71–76. 38. J. Pach, The Happy End problem – The beginnings of combinatorial geometry (in Hungarian), manuscript (2000). 39. J. Pach and J. Solymosi, Canonical theorems for convex sets, Discr. Comp. Geom., 19 (1998), 427–436. 40. A. P´ or, Combinatorial properties of finite point sets (in Hungarian) Diploma Thesis, Budapest (1996). 41. A. P´ or, A partitioned version of the Erd˝ os–Szekeres theorem, submitted for publication in Discr. Comp. Geom. 42. J. Rambau, Triangulations of cyclic polytopes and higher Bruhat orders, Mathematika 44 (1997), 162–194. 43. J. Solymosi, Combinatorial problems in finite Ramsey theory (in Hungarian), Diploma Thesis, Budapest (1988). 44. G. T´ oth and P. Valtr, Note on the Erd˝ os–Szekeres theorem, Discr. Comp. Geom. 19 (1998), 457–459. 45. M. Urabe, On a partition into convex polygons, Discr. Appl. Math. 64 (1996), 179–191. 46. M. Urabe, Partitioning point sets in space into disjoint convex polytopes, Comp. Geom. Theory Appl. 13 (1999), 173–178. 47. P. Valtr, Sets in IRd with no large empty convex subsets, Discr. Math. 108 (1992), 115–124. 48. P. Valtr, On the minimum number of empty polygons in planar point sets, Studia Sci. Math. Hungar. 30 (1995), 155–163. 49. P. Valtr, Private communication (2000). 50. P. Valtr, A sufficient condition for the existence of large empty convex polygons, manuscript (2000).
"!$#%!&''()*+, #&- .*()/. /0 132415768549;:<: =;>@?A?7BDegCFEHfGIhd?4ZF>@JYJKLKEMLO>iNQfJKPRJK?k?4>@jdSHETUXCVl8UXm@WOn4CFo;JYL@n EMj`L@pqZ;L@P*?)?4[>@\^SHEHCr]*UX[`s8_?4a;>@Z;_L@?4f>DCtNtbdU cAEH?ACFc4?`U utvdwtxIxydz3{t|}~|`udvdtz3{^}~t HEa;
CFS%fCFAf?`AUd3JYX[N;>_`EHC_ L@?<WOCLK>@>@ETL@?Ac;?4ETmOJKJ+;ZFEHaFF_fJK?+[EH[`\+WRCX_JYfL@SXZXfJKaXEHN_fL@cAZ;;?`_?)UfcAcCX[f3_>i;JKaF[`EHSHCX_?4f?+STEMEMLLO>@NN?AST[ff\"L@_?L@F[?)CFa;a>@[>@[`FFSHa?ASH?A_[`_EHCtJ*LSH[EHhI\gETC&?XCFL@L@FF?? m STJYfN>@_?A_JYL?4LK>@>@?AEHac? JKf3ZFL@F? JK?<[L+>a; t>@m~[`\¡;[`SHST?A_£>@?4EHaC? fL@;L@? ?)kaFJKSTZFfCF;?8JK?4WRL@JAJK¢F=F[ [¤¥>gL@fFc4?R[`_CFC;f?Ac4EH_L@EH[`ZFC_qL@m~[c f3L@>i;;?8EHCX_fSHfEHLOdN m L@EH_;ETZ;J_¦CZ;Cd_ZF_?4>?4EH>%J[;\?4CFEHJK[[`L@JK?Ac4 ?ASHt?ANJ&LK¬>@®ETrf¯7C;`L@SHF?AEHJ§Jqf`_EHGI[`?4JC;¨fC°©faSH[[EH>@CdEML@L@J%F_±EHCª[L@\);cA?[_aFSTaFfSHC;?4?`«)EMLEMN \ ²´³ ®rµ^¶ ¬®r¯K¯tST[*V·´¸ ² ®"µ<¹ º~»K¼@½V¾"SH[*r¯<¢ ¿ ÀÂÁ^ÃXÄÅ@ÆÇà ÈRÉ¡ÊVËÉ¡ÊÇÌ2<ÍÇ1q:<ÎFÏÏ13245<É¡1:DÐdÑ^9:i128ÐÑÒ Ó"ÐÉ¡Ê;2A:ÔFÐ58ÏÐ541Ì;1ÊÇ1549ÕÇ2<1`:@24ÉÊVÌ2@Ö8Ð:<1324:DÑ×Ð;5 ÐÊVÌ54ÙÇ1Ê 1%9dÊVËÚVÊrËÉÊVÌ°9dÕ¡Õ ÐÊÇÌ;5<ÙÇ1Ê 1ÏÛ9dÓVÓÇÉÊVÌ;:Ü"132@Ö811ʨ2<ÍÇ1Ï Ô^ÉÝ:9dÊÞÐ;ա˨9ÊVË ÖDØ 1ÕÕßY:i2<ÙrËÉØ 1`ËQÓÇ5<Ð;ÜÇÕ¡1Ïáà âÇÔAãÔ@ärÔAØ å`æXçÇÔ è;è3éYÔdØ Ö7ÍÇÉ Ø ÍÛÉ¡::iÐ;Õê;1ËQ:<9d2<ÉÝ:@Ñ~9 Ø 2<Ð;5<É¡Õ¡ÎÉ¡ÊËÇÉÏ1Êr:iÉ¡ÐÊV: 2@ÖDÐQ9dÊVË24ÍÇ5411ëìë×ÒqÕ¡ÐÌÒ^í<í9ÊVËÛ541ÏÛ9dÉ¡ÊV:89dÊ%É¡ÊF2<15<1`:@24ÉÊÇÌÓÇ54ÐÜÇÕ¡1ÏÉÊ&ÍÇÉ¡ÌÍÇ158ËÉ¡Ï1Êß :iÉ¡ÐÊV:îÇï)ÍÇ15<19d5419t27Õ¡19:i2)2@ÖDÐÖ)9IÎ:24ÐÛÏÛ9dð124ÍÇ1ÓÇ54ÐÜÇÕ¡1ÏñÏÐ;5<1q5419dÕ¡ÉÝ:@24É 9ÕÕ¡ÐtÖ7É¡ÊÇÌ Ñ×Ð581545<Ð;54:ÉÊ´2<ÍÇ1ÓrÐ;ÉÊF2A:ëOó9ÙV:<ËÇÐ5<ôrßK9dÓÇÓV5<ÐIõÉ¡Ï9d2<1k:<ÎXÏQÏ12<54ÎíD9dÊrËÛÑ×Ð58154Ø54òÐ5A:+É¡Ê%2<ÍV1 :i124:Ûë×ÕÝ9d54Ì1:<ÎFÏÏ13245<É :iÙVÜV:i124:Aí î^ï)ÍV1ó9dÙV:4ËÐ;5iô"ßY9ÓÇÓÇ54ÐIõÉÏÛ9t241:<ÎXÏQÏ12<54Î 5<1 Ð;ÌÊÇÉß 2<É¡ÐÊÔdÍVÐtÖD1ê15`ÔIÉ¡:ö0ß ØØ Ð;ÏÓÇÕ12<1àè`ãIéYÔdÖ7ÍÇ15<1`9:R2<ÍV1kÉ¡ËÇ1ÊF2<ÉÚ Ø 9d2<É¡ÐÊÐdÑgÕÝ9d54Ì1):iÎXÏÏØ 132<54É Ø ÓV9d5<24:ÛÉ¡Ê÷24ÍÇ1°1õ9 Ø 2%ÏÐË1ÕÕ¡19ËV:2<ÐøÉ¡ÊF2<15<1`:@24ÉÊÇÌ¥ÓÇ5<Ð;ÜÇÕ¡1ÏÛ:ÔÖ7ÍÇÉ Ø Í95<1°5<1Õ¡9d2<1Ëù24Ð ÐÏÜÇÉ¡ÊV9t24Ð54É¡9ÕÌ1ÐÏ13245<ΧÉÊ9ÛÖ89IÎ 9dÕ¡5419ËÇÎ&9dÓVÓV9d541ÊF2É¡Ê°:<1ê1549ÕÐd24ÍÇ1513õÇ9 Ø 2Ó"ÐÉ¡ÊF2 ÓVØ 9t2<2<154ʧÏ9d2 Ø ÍÇÉ¡ÊÇÌÛÓÇ54ÐÜVÕ1Ï:qàèÔ4útéYî ÐØ ÊF2Aï)9dÍÇÉ¡ÊÇ11541ËÉ9dÊQ541§9Ó":<1Ðê;É¡1ÊF5A29d:<Õ)132`Ö8ît9Iï)ÎÍÇ:Q1D24ÏÐÐFÑ×Ð;:@25<ÏÛÐÜX9êXÕÉ¡É¡ûÐ1§ÙV:R2<ÍVÉ¡:R124ÐÊÇÐdË241É2<Ð;1Êù5<ÏÐÑÉ¡ÊÇü1Õ¡9245<ÍÇÌ;1)1§Õ¡9:<5<ÎXÌ;Ï1:iÏQ2iß 1Ø 2<95454É Ø ËÉ¡ÓrÊV9d95<ÕÉ242@:Î ý :iÙÇÜr:i128Ö7É2<ͧ9ÊÇÐ;Ê;245<É¡êXÉ¡9Õ":<ÎXÏÏQ12<54Îë~È*ÉÌ;ÙÇ541è:iÍÇÐtÖk:89:<132`ÔF2<ÍÇ1Õ¡95<Ì;1:i2iß Ø 954ËÉ¡ÊV9ÕÉ2@Î :iÎXÏÏ132<54É :iÙÇÜr:i12Ô^9ÊV˨9dÊÇÐ2<ÍÇ15:iÎXÏÏ13245<É Ø :iÙVÜV:i12Aí3î^ÈÇÐ;52<ÍÇÉÝ:ÓÇ54ÐÜVÕ1Ïÿþ9;Ë1:Ûà té Ì;9Iê1q9dÊìØ ë×Ò RÕÐ;Ì+Ò^íYßK9dÕ¡ÌÐ;5<É2<ÍVϧî 13 2 rë~Ò^íË1ÊVÐd2<1+2<ÍÇ1DÏ9dõÉÏÙÇÏ ÊXÙÇÏÜr15^ÐdÑÉÝ:iÐF: Ø 1Õ¡1:"245<ÉÝ9dÊÇÌ;Õ1`:g2<Ír9t2 Ø 9dÊÐ ØØ ÙÇ5^9dÏÐ;ÊÇÌ ÒÓ"ÐÉ¡ÊF24:)É¡Ê&24ÍÇ1ÓÇÕÝ9dÊÇ1;îÇï)ÍÇ1Ê ÍÇÐ;Õ¡ËV: Ò C >,/.$8"9,/. !#"#$&%(')+*-,/.01,/$!23"#245467$!#,8'9"#:<;="7=$?>(@9A"77$?>B@ D Ò JMLN"ë×Ò^í<íXÕ¡ÐÌ+Ò · $&,/4OQP $/< C E.F')-.A;)5*G=$H=#4F,/.0)*I,/. ì ³ ë~K R Ø ÕÝ9:4:iÉ Ø 9Õ89ÊVË¥ê;154Îø:iÉ¡ÏÓÇÕ¡1ÜrÐ;ÙÇÊVËùÉ¡6 : "ë×Ò^9í S ìë~KÒ J+TVU í ÔÐÜ2A9dÉ¡ÊÇ1ËùÜXÎ Ð;ÙÇÊF2<É¡ÊÇÌ ÉÊ Ø É¡ËÇ1Ê Ø 1:QÐdÑÓrÐ;ÉÊF24:9ÊVËøÏÉÝËXßÓ"154Ó"1ÊVËÉ Ø ÙVÕ¡954: àQè XIéYÔ/Ö7ÉT24W ͪ9Õ¡ÐtÖD15Ü"ÐÙÇÊVYË Ø "ë×Ò^Zí S J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 106-112, 2001. Springer-Verlag Berlin Heidelberg 2001
On Finding Maximum-Cardinality Symmetric Subsets
107
[ ë~K Ò JÕ¡ÐÌ+Ò^í*Ì;Éê;1ÊQÜFÎ2<ÍÇ17É¡ÊF2<1Ì15Õ¡9d2i2<É 1;îï)ÍÇ17ÙÇÓVÓr15+ÜrÐ;ÙÇÊVËÖ)9:/541 1ÊF2<Õ¡ÎÉ¡ÏQÓV5<Ðtê;1Ë 2<ÐZ"ë×Ò^í\S ìë×ÒKJ7] ^B_a`+TKbíDÑ×Ð571ê154ÎÛÓ"Ð;:<ÉT24Ø Éê;1dc àTè`útéYîÇï)ÍÇÉÝ:)ÉÏÓÇÕ¡É1`: Ø e f!f8gh jiklE&G="#$!%(')a*,/.0-m,/$&2"#245467$!#,8'I"#:<;#"77$V>(@l"7=$n>B@ ÒYC >-,/.<$!"Z,/. $/< C E.F')-.A;)5*G=$H=#4F,/.0)*I,/. ìë~Ò J=] ^(_+`aTb í $!,/46=o<@=>57pj7#2 C >j"#,/$!,/p c P
È*É¡ÌÙÇ541è ÇÙ 59dÕ¡ÌÐ;5<É2<ÍVÏ Õ¡É¡:i24:9:k9ÊÉÊF2<15<Ï1`ËÉ¡9d2<1541:<ÙÇÕ29dÕ¡Õ^541Ì;ÙÇÕ¡957ÓrÐ;ÕÎXÌ;ÐÊV: Ø ÐÊF249ÉÊV1Ë ÉÊ&2<ÍV9d2:i12îhrY27ÉÝ:)5<1Ï95<ðt9ÜÇÕ12<Ír9t2)2<ÍÇÉÝ: Ø 9dÊ´É¡ÊVË11˧Ü"1qËÇÐÊÇ1qÉ¡Ê&24ÍV9t2)24ÉÏ1Ôr:iÉ¡Ê Ø 1Ñ×Ð;5 19 Ø Í&R ÚÇõ1Ëts´2<ÍÇ15<195<1:<1324:)ÐÑ*ÒÓrÐ;ÉÊF2A: Ø Ð;Ê;2A9dÉ¡ÊÇÉ¡ÊÇÌ6u7v`ÒKJq5<1ÌÙÇÕÝ9d5wsFßYÌÐ;ÊV:qàTèQxÇÔ3èädéYî ËÉô"15<1ÊF2Ñ×Ð54ÏÛ9dÕ¡Éû`9t24ÉÐ;ÊQÉÝ:2<Ð9;:iðÑ×Ð52<ÍÇ1Õ¡95<Ì;1:i2D:iÙVÜV:i12zyÐÑ2<ÍÇ1ÌÉ¡ê1Ê%:i12M{ 2<ÍV9d2É¡:5<1Ór1`9t241Ë ò 24ÍÇ1541ÉÝ:k9ÛÊÇÐ;ÊF2<54ÉêXÉÝ9dÕÏÐd24ÉÐ;Ê|¥Ö7É2<Íy~}Y{ 9ÊVË|)ë8yíw}D{NÇÐ;5 2<ÍV9d2É¡:wßÑ×ÐÕÝË541Ó"19d2<1Ë ò y}D{øÔ<|)ë!yí}D{¥ÔE7TÔ |
=K^të!yí}{øîRë~È*ÉÌ;ÙÇ541ã:iÍVÐtÖk:79 ÓV:i19d25<ÔÇ24F9:tßÐÑÑ×Ð:<ÕÝÐË%Ï541 1Ó"ÜÇ1É9tÌ;24Ì11Ë&5:i:<ÙÇÎXÜrÏ:i1ÏQ21ÔÇ2<9d54ÊrÉ Ø Ë´:i9Q2<54ÐÙ Ê Ø Ø 241ÙÇ545411ÔÓ"119dî ÌV2<1`î+Ë´:<Ð:<ÏÙÇÜV1§:<13ÚV2ÊÇîMí8É2<ï)1ÍÇÓrÉÝ9d:)5<ÊÇ2ÐdÐ24ÉÑÐ;9Ê ÊùØ 9É¡ÊÓÚV2<ÙVÊÇ5<É2<1`1 : Ñ×5<É¡1û1Ì;5<Ð;ÙÇÓ°:<ÎFÏÏ13245<Î;îï)ÍÇ1Û:iÓ"1 Ø É¡9Õ Ø 9:<1ÐÑD1 FÙÇÉÝËÉÝ:@2A9dÊF2 Ø ÐÕ¡Õ¡ÉÊÇ1`9d55<ÐtÖk:ÐdÑDÓrÐ;ÉÊF24: 8ë |¥924549ÊV:iÕÝ9t24ÉÐ;ÊÔ yÐÊÇÕ¡Î%Ð;ÊÇ1ÓrÐ;ÉÊF2 í8Ö89;:89Õ¡:<ÐÛ:@24ÙVËÉ¡1˧ÓÇ541êXÉ¡ÐÙV:<ÕÎ à XÔèâVÔ3èIåIéî ÒC C ?E!=")$ %m@=>E*Z+ C )$H)*F"#:<;#"77$M>B@nF"77$M>B@ Ò _+T U Õ¡ÐÌ+Ò^í @=> Sè -.0* ìë×KÒ JaT WU Õ¡ÐÌ+Ò^>-,/í .<@=$!>" ,/.F$ª ã P E-.0 'a-.3;)F*7$7#45,/.)*6,/. ìë~K q
È*É¡ÌÙÇ541ã þ:4:i1Ê;24É¡9ÕÕ¡Îk24ÍÇ1:49dÏ19ÕÌ;Ð54ÉT24ÍÇÏ Ö8Ð54ð:"Ñ×Ð5^Ü"Ðd24ÍÓÇ54ÐÜÇÕ¡1ÏÛ:^9Õ¡:<Ð7É¡Êq2<ÍÇ5411ßYËÉ¡Ï1ÊV:<É¡ÐÊV9Õ :iÓV9 Ø 1Ûë×ÜVÙ2kÊÇÐd2kÉ¡Ê ÍÇÉ¡ÌÍÇ15kËÉÏ1ÊV:iÉ¡ÐÊr:4íDÖ7ÍÇ15<1qÖ81Ì132k92<É¡Ï1ÜrÐ;ÙÇÊVËìë×ÒK_^ÕÐ;Ì+Ò^í î 3k Á à (BÅ \\KÆ rKʧ9ÕÕg24ÍÇ19dÜ"Ðtê1 Ø 9:<1:8:<ÎFÏÏ13245<É¡1:)ÜXÎÛ54=1 ¡V1 Ø 24ÉÐ;ÊV:)9d541:<ÉÏÓÇÕ¡1ÔÇ9ÊVË Ø 9dʧÜ"11ÊXÙÇÏ15<ß 9t2<1`Ë%245<É¡êXÉ¡9ÕÕ¡ÎÛÉ¡Ê ìë~KÒ JÕ¡ÐÌ+Ò^í2<É¡Ï1ÔV:<É¡Ê 1ÖD1qÍV9Iê;124ÐÕ¡ÐXÐð%Ð;ÊÇÕ¡Î%9t2)2<ÍÇ1 ¢&£ Ó"Ð;:4:iÉ¡ÜÇÕ¡1 ÓV9dÉ¡54:ÐÑDÓ"ÐÉ¡Ê;2A:2<ÍV9d2 Ø 9dÊ Ür11õ Ø Ír9dÊÇÌ;1Ø Ë ÜXÎ 9§54=1 ¡V1 Ø 2<É¡ÐÊ^Ôg9ÊVË°:<11Ö7ÍÇÉ Ø Í J¤ 5<71 ¡V1 Ø 2<É¡ÐÊ ÕÉ¡ÊÇ1´Ð ØØ ÙÇ5A:ÏR Ð;:i2Ñ×541 FÙÇ1Ê;24ÕÎ;î ¥Ð ÉÊø2<ÍÇ1´Ñ×ÐÕ¡ÕÐtÖ7É¡ÊÇÌ Ö81%Ö7É¡ÕÕ8ÐÊÇÕ¡Î ÕÐXÐðÑ×Ð55<Ð249d2<É¡ÐÊ :iÎXÏÏ132<54É¡1:î Õ¡:<ÐVÔ;2<ÍÇ19dÕ¡ÌÐ;5<É2<ÍÇÏÛ:+Ñ×Ð5D2<ÍÇ1ËÉTôg1541ÊF2)ÓÇ54ÐÜÇÕ¡1ÏÛ:95<19dÕ¡ÏQÐF:@2D2<ÍÇ1q:49dÏ1 ë×Ö7É2<Í%9dÊÉ¡ÏÓrÐ;5i2A9dÊF2ËÉô"15<1Ê 17Ð;ÊÇÕÎÉÊ24ÍÇ1 9;:i1)ÐdÑgÚVÊrËÉÊVÌÐÊÇ1)24ÉÏ17541Ó"19t241Ë:<1324:Aí Ô :iÐÖ81Ö7É¡Õ¡ÕÌÉ¡ê1qÐÊVÕÎÛ24ÍÇ1qÚV5A:@Ø2`ÔÇ9dÊVË :i249d2<12<ÍÇØ 1ÊV1 Ø 1`:<:49d54ÎÛÏÐËÉTÚ Ø 9t24ÉÐ;ÊV:)ÕÝ9t2<15î
108
Peter Brass
¦ Éê;1Ê 9%:<13 2 { ÐÑÒÞÓrÐ;ÉÊF24:ÉÊ 2<ÍÇ1ÓÇÕ¡9ÊÇ1ÔV2<ÍÇ1Q9dÕ¡ÌÐ;5<É2<ÍÇÏáÏÛ9dÉ¡Ê;2A9dÉ¡ÊV:72@Ö8д:<195 Í 2<5411ÛËÇ9t2A9 :@245<Ù Ø 2<ÙÇ541:ÔÐÊV1 ë!§íÑ×Ð5ÉÝ:<Ð;: Ø 1Õ¡1:245<ÉÝ9dÊÇÌ;Õ1`:Éʨ{ ë×Ó"ÐÉ¡Ê;2245<É¡ÓÇÕ¡1:Ûë!©ª)«jª+Ø uí Ö7ÉT24IÍ ¬r!ë ©0ªa«3í S®¬rë&«jª+uíiíD9dÊVËQ24ÍÇ1Ð2<ÍÇ15ë/¯)íÑ×Ð;5DÓ"Ð;:4:iÉ¡ÜÇÕ¡1:<ÎFÏÏ13245<ÎQÐÓ"15A9t24ÉÐ;ÊV:ë~ÓV9dÉ¡5A: më °±ª)sÇíÐdÑ9 Ø 1ÊF2<15<Ó"ÐÉ¡ÊF29ÊVË 9%54Ðd2A9t24ÉÐ;ÊÐ5AË15`ÔVÖ7É2<Í°2<ÍÇ1 Ø ÙÇ54541ÊF2ÊXÙÇÏÜr15ÐÑ+ÓrÐ;ÉÊF24: ² ë1°±ª)sÇíÉÊ 24ÍV9t2:<ÎFÏÏ13245<É Ø :<ÙÇÜV:<1329dÊVË°2<ÍV1É¡5ÕÉÝ:i29dÓÇÓ"1ÊVËÇ1Ëîï)ÍÇ1%9ÕÌ;Ð54ÉT24ÍÇÏ ËÐX1: 2<ÍÇ1qÑ×Ð;ÕÕ¡ÐtÖ7ÉÊVÌ ò 5 ´ ª(´ { 24ÍÇ1§ËÇÉ¡:i249Ê 91 ¬r8ë ´ ª(´ í Ô9dÊrË Ð;ÕÕ¡1 22<ÍV1 V³ 12<15<ÏÉ¡ÊÇ1%Ñ×Ð;51`9 Ø ÍÞÓV9É5 ÓrÐ;ÉÊF2+ÓV9É5A:/ÍV9IêXÉ¡ÊÇÌ24ÍÇ1k:49dÏ^ 1kËÉÝJA:@2Aµ 9dÊ Ø ¶1 ¬2<ÐqÌ129ÓrØ 9d5<2<É2<É¡Ð^ ÊQÐdJ Ñ ¢!· J<¤ É¡ÊF2<Ø ÐËÉÝ:@Ø 2A9dÊ Ø 1 Ì5A9dÓÇÍr:z¸¹´ë8¬%9ËÉÝ:i249dÊ Ø 1Ð ØØ ÙÇ5<É¡ÊÇÌQÉÊt{í3î 1 ¬9dÊVËQ1`9 ÍÓrÐ;ÉÊF2 ´ {øÔ249ð1719 ÍÓV9dÉ¡5+ÐdÑgÊÇ1ÉÌ;ÍFÜ"ÐÙV54»: º ^ ª(º J ÈÇÐ;5+19 Ø ÍËÇÉ¡:i249Ê Ø ÐR dÑ ´ÉÊ ¸ ¹ ÔÇ9dÊrË&É¡ÊV:<15<2)2<ÍÇ1qØ 245<É¡ÓÇÕ¡1%ë º ^ ª(µ ´±ª+º J í8É¡Ê9:i1`Ø 9d5 Ø Í%2<5411 §%î : § ÉÝ:7ÊÇÐ271ÏÓ2@ÎÔV5<1Ór1`9t2 ¼ :)Õ¡ÐÊÇÌÛ9; Ï §ÛÔVË1Õ12<1qÉT2Ñ×5<Ð;~Ï §Ûî ¼ !½ ÍÇÐXÐ;:<19ÊFÎ%2<54ÉÓÇÕ¡1%8ë ©0ª)«jª+uíÑ×54о Ê ¿Â2<ÍV9d2kÏÛ9dÓV: ©OÀÁ«I<Ô «ÀÁÃutî ¼ /k³ 12<154ÏÉÊV1q2<ÍÇ154Ðd2A9t2<É¡Ðl ï)ÍÇÉÝ:54Ðd249d2<É¡ÐÊ Ë1324154ÏQÉ¡ÊÇ1`:9§ÓrÐ;ÕÎXÌÐ;ÊV9dÕ95 Ø °<Ä+° ^ ° J 7Ö7É2
ÇÁ "Æ kÁRÃFà ï^ÐË12<154ÏÉÊV1)2<ÍÇ17ÏÛ9tõÉ¡ÏÙÇÏ Ø 954ËÉ¡ÊV9ÕÉ2@ÎÐdÑ9q:iÙÇÜr:i122<ÍV9d2+ÍV9:9qÊÇÐ;ÊF2<54ÉêXÉÝ9dÕX5<Ð249d2<É¡ÐÊ :iÎXÏÏ132<54ÎÔRÖD1ÛÙr:i1Û24ÍV9t2Q19 ͨ:<132Ö7ÉT24Í¥9sFßÑ×ÐÕÝ˨5<Ð249t24ÉÐ;ÊÞ:iÎXÏÏ132<54Î É¡:2<ÍÇ1%ÙVÊÇÉÐ;Ê ÐdÑ Ø ÐÊ Ø 1ÊF2<54É Ø 541Ì;ÙÇÕ¡9¶5 sXßÌ;ÐÊVØ :ÔF2<ÍÇ1qÐ54ÜÇÉ24:)ÐÑ^2<ÍV1Ó"ÐÉ¡ÊF24:)ÙÇÊrË15)24ÍÇ1:iÎXÏÏ13245<Î;îXï)ÍXÙV: ÖD1ÍV9Iê;1 ÐÊÇÕ¡Îø24ШÚVÊVË÷9dÕ¡Õk541Ì;ÙÇÕ¡95ÛÓrÐ;ÕÎXÌ;ÐÊV:Ô Ð;ÕÕ¡1 2Û2<ÍÇÐF:i1Ó"ÐÕ¡ÎXÌÐÊr:Ö7ÍÇÉ ÍÂÍV9Iê;1 2<ÍÇ1Û:49dÏ1 Ø 1ÊF2<159dÊVË°2<ÍÇ1Û:49dÏ1QÐ5AË15`Ô9dÊVËË13Ø 24154ÏQØ É¡ÊÇ1Q2<ÍV1QÓ"ÐÉ¡ÊF2Ö7ÍÇÉ Ø Í Ð ØØ Ø ÙÇ54:q9;: Ø ÐÏï^ÏÐ ÐÚVÊ ÊrØ ËÞ1ÊF9d2<Õ¡1Õ+575<1ÐÌÑRÙÇ24ÕÝÍÇ9d15ÕÝÓ"9dÐ54ÌÕ¡ÎX1Ì:i2)Ð;ÊVÌV:54Ð ÙÇÓ7î 7(Qv Ð;ÊF249dÉ¡ÊÇ1`Ëɡʨ2<ÍV1´:i12ÔÖ81%ÙV:<12<Ír9t29ÊFÎ 2<ÍÇ5411&ê15<2<É Ø 1`?: È ª+ È T±Õ ª+ È TKJaÕ ë×1;î Ìrî^^ 24ÍÇ5<11 Ø ÐØ ÊV:<1 Ø Ù2<É¡ê1&ê15<2<É Ø 1`: È ª+ È T ^ ª+ È TKJ íÑ×Ð;5<Ï 9dÊ É¡:<Ð;: Ø 1Õ1`:245<ÉÝ9dÊVÌÕ¡1Ô9dÊVË°Ñ×Ð5q1`9 Ø Í É¡:<Ð;: Ø 1Õ1`:k245<ÉÝ9dÊÇÌ;Õ1É¡ÊÐ;ÙÇ5:i12q2<ÍÇ15<1ÉÝ:9t2ÏÐ;:i2 Ò
ÓA ± Ô
On Finding Maximum-Cardinality Symmetric Subsets
109
ÐÊÇ1ÏQÉ¡ÊÇÉ¡ÏÛ9dÕ"5<1ÌÙÇÕÝ9d5+Ó"ÐÕ¡ÎXÌÐ;Ê Ø Ð;Ê;2A9dÉ¡ÊÇÉ¡ÊÇÌ2<ÍV1Ï ÉÊ´2<ÍÇÉÝ:DÖ89IÎ;î R ÊrËÛ2<ÍVÉ¡:DÓrÐ;ÕÎXÌ;ÐÊ Ø 9Ê Ür1Ñ×ÐÙVÊVË´ÜXVÎ Ö@ÙV:i2)Ñ×ÐÕ¡ÕÐtÖ7É¡ÊÇÌ2<ÍÇ1qÓ"ÐÕ¡ÎXÌÐÊr9dÕg9d5 Ø Ë1ÚVÊÇ1Ë&ÜXÎÛ2<ÍV154Ðd2A9t24ÉÐ;Ê´9d54ÐÙÇÊrËÛ2<ÍV1 ÉÊF2<154:<1 Ø 2<É¡ÐÊÓ"ÐÉ¡ÊF2ÐdÑ/24ÍÇ1ÏÉÝËÓr15<Ó"1ÊrËÉ Ø ÙÇÕÝ9d5A:kÐdÑ24ÍV9t22<54É¡9ÊÇÌÕ¡1q2<Ír9t2ÏÛ9ÓV:724ÍÇ1ÚV5A:i2 Õ1ÌÐdÑg2<ÍÇ1É¡:<Ð;: 1Õ1`:*2<54É¡9ÊÇÌÕ¡17ÐÊQ2<ÍV1:i1 Ð;ÊVËî-rKÊÛ1`9 ÍÓV9t24ÍßÑ×ÐÕ¡ÕÐtÖ7É¡ÊÇÌ:@241ÓÖ81k5<1ÏÐtê1 2<ÍÇ1É¡:<Ð;: Ø 1Õ1`:/2<Ø54É¡9ÊÇÌÕ¡1kÖ8\1 Ö@ÙV:i2DÙr:i1`ËÑ×5<Ð;Ø Ï 24ÍÇ1:<1328ÐdØ Ñ9dÕ¡Õ"É¡:<Ð;: Ø 1Õ1`:/2<54É¡9ÊÇÌÕ¡1:Ô;:<ÐÉ¡ÊÛ2<ÍV1 1ÊVËQÖ8171É2<ÍÇ15ÚVÊVËÛ9541ÌÙVÕ¡95ÓrÐ;ÕÎXÌÐ;ÊÔtÐ5Ö817ÍV9Iê;18541ÏÐtê;1ËQ:iÐ;ÏQ1)ÓV95i24É¡9ÕÓrÐ;ÕÎXÌ;ÐÊV9Õ 9d5 Ø Ö7ÍVÉ Ø ÍËÐX1:/ÊÇÐ2+13õX2<1ÊVË2<Ð9dÊXÎ541Ì;ÙÇÕÝ9d5/ÓrÐ;ÕÎXÌ;ÐÊQÉÊQÐÙÇ5+:<132`Ô9dÊrËÖ7ÍÇÉ Ø ÍQ2<ÍÇ15<1Ñ×Ð541 Ø 9dʧrYÜ"215<15<ÏÛ1ÏQ9dÉ¡ÐtÊVê;:71Ë24дî 9IêÐ;É¡Ë&2<Ír9t2Ö81ÚVÊrË 2<ÍÇ1Q:<9Ï1ÓrÐ;ÕÎXÌ;ÐÊ:i1ê1549Õ2<É¡Ï1:Ô":<ÉÊ 11`9 Í É¡:<Ð;: Ø 1Õ1`:)2<54É¡9ÊÇÌÕ¡1 Ø Ð;ÏÓÇÕ12<1`:72<Ð&9t2ÏÐF:@2Ð;ÊÇ1ÏÉ¡ÊÇÉÏÛ9Õ^541ÌÙVÕ¡95kÓrÐ;ÕÎXÌ;ÐÊ Ø Ð;Ê;Ø 2A9dÉ¡ÊÇÉ¡ÊÇØ Ì 2<ÍV9d2k2<54É¡9ÊÇÌÕ¡1ÔVÜÇÙ2k24ÍÇ1:49dÏ1ÓrÐ;ÕÎXÌ;ÐÊ Ö7ÉÕ¡Õ^Ü"1Ð;Ü249ÉÊÇ1`˧Ö7ÉT24Í ËÉTôg1541ÊF2ÊXÙÇÏÜr15<É¡ÊÇÌF: ÐdÑkê15i24É Ø 1:Ñ×5<Ð;Ï ËÉTôg1541ÊF2QÉ¡:<Ð;: Ø 1Õ1`:2<54ÉÝ9dÊÇÌ;Õ1`:î*þkî ÌVî£9 541ÌÙVÕ¡95Ó"1ÊF249ÌÐÊ ° ^ 78°0× Ö7ÉÕ¡Õ)Ür1&Ñ×ÐÙÇÊrËøÜXΨÑ×ÐÕ¡ÕÐtÖ7É¡ÊÇZÌ ° ° ° 9dÊrË Ð;ÏÓÇÕ12<É¡ÊÇÌ 24ÍV9t2Û9d5 Ô*ÜÇÙ2Ö7É¡ÕÕ79dÌF9dÉ¡ÊøÜ"1 Ñ×ÐÙÇÊVËùÜXΨÑ×ÐÕ¡ÕÐtÖ7É¡ÊÇÌl° ^ ° _ °0ק9ÊV^ Ë J Ø Ð_ ÏÓÇÕ¡1324ØÉÊÇÌ 24ÍV9t2Û9d5 Ø ë1° ^ ° _ °0Ø ×B° J ° í î¥XШ9tÑ®2415Ö81 Ñ×ÐÙÇÊVË24ÍÇ1)5<1ÌÙÇÕÝ9d5/Ó"ÐÕ¡ÎFÌ;ÐdÊ ° ^ 7°
Ö81)ÍV9Iê1D2<Ðq541ÏÐtê1)9dÕ¡ÕÐd24ÍÇ15/ÉÝ:iÐF: Ø 1Õ¡1:R2<54ÉÝ9dÊÇÌ;Õ1`: ° È ° È T Õ ° È TKJ)Õ Ö7ÍÇÉ Ø ÍÛÌ;1ÊÇ1549d2<1)24ÍÇ1:49dÏ17Ó"ÐÕ¡ÎFÌ;ÐÊÔ;Ö7ÍÇÉ Ø ÍÛÉ¡:DËÐÊÇ1ÉÊ´:i2<1Ó%âÇî âÇîMãîMãîï)ÍV1 :<9ÏQ1ÓrÐ;ÕÎXÌÐ;ÊqÉ¡:Ñ×ÐÙÇÊVËq1õÇ9 Ø 24ÕÎÑ×Ð52<ÍÇÐF:i1©Ö7ÍÇÉ Ø Í9d541 Ø Ð;ÓÇ5<É¡Ï12<Ðk2<ÍÇ1+ê;15<2<1õÊXÙÇÏÜ"15 s§ÐdÑ/2<ÍÇ15<1ÌÙÇÕÝ9d5kÓ"ÐÕ¡ÎXÌÐ;K Ê ÇÉ\Ñ s§Ír9:9ÊVÐÊF2<54ÉêXÉÝ9dÕ^ËÇÉêXÉÝ:iÐ;d5 ØÔV2<ÍÇ1Ê2<ÍV15<1ÌÙÇÕÝ9d5 sXßÌ;ÐÊ 9Ø dÊÂ9dÕÝ:<Ð Ü"1É¡Ê;24154ÓÇ54132<1`Ëù9;:ÙÇÊÇÉ¡ÐÊÂÐdÑ Ùv 541Ì;ÙÇÕ¡9Z5 ØßYÌÐ;ÊV:Ô+9ÊVËùÖ7ÉÕ¡ÕkÜ"1 Ñ×ÐÙÇÊVËÂ9ÊVË :@24Ð541Ë&ÉlÊ ¯9:7:<1327Ö7ÉT24Í ØßÑ×ÐÕÝË´54Ðd2A9t24ÉÐ;ÊV9dÕ:<ÎFÏÏ13245<Î&9dÌ;9ÉÊ^îXï)ÍXÙV:)ɡʧ2<ÍÇ1:i2<54Ù Ø 2<ÙÇ541 ¯ 2<ÍV1&:49dÏ1&:<132QÉ¡:Q:@24Ð541Ë Ñ×Ð;51`9 Ø Íø:<ÎFÏÏ13245<Î Ð5AË1513õÇ9 Ø 2<աΨÐÊ Ø 1Ô*9dÊVËø9:iÉ¡ÏÓÇÕ¡1 2<5A9Iê15A:49dÕ"ÐdÑ ¯ÂÌ;Éê;1:D2<ÍV1Õ¡95<Ì;1:i2):<ÙÇÜV:<132kÖ7É2<Í9QÊÇÐÊF245<É¡êXÉ¡9Õ5<Ð249t24ÉÐ;ÊV9dÕ:<ÎXÏQÏ12<54Îî Ú ÛDÔ/BÅ Ükà <à ï)ÍÇ1 Ø Ð;ÊV:@245<Ù Ø 2<É¡ÐÊ ÐdÑQ2<ÍÇ1øËÇÉ¡:i249Ê Ø 1¨Ì5A9dÓVÍV: ÉÊ£:i2<1Ó è;î Ø 9dÊ£Ü"1¨2<54ÉêXÉÝ9dÕ¡ÕÎËÇÐÊÇ1ÞÉ¡Ê ìë×KÒ JÕ¡ÐÌÒ^í24ÉÏ1hî rYÑR2<ÍÇ1ËÉÝ:i249dÊ 1Ì5A9dÓÇÍV:D9d541Ì;Éê;1ÊÔ;2<ÍV1 ÐÊV:i2<54Ù 2<É¡ÐÊ%ÐÑR9dÕ¡ÕgÉ¡:<Ð;: 1ß Õ1`:2<54É¡9ÊÇÌÕ¡1:ë~:i2<1Ó¨ã;í Ø 9dÊ Ü"1%ËØ ÐÊÇ1QÉ¡Ê24ÉÏ1%ìë×KÒ JLD+Õ¡ÐØÌ+Ò^íÖ7ÍÇØ 15<61 Ë1ÊÇÐd241:2<Ø ÍV1 ÊFÙVÏÜ"15ÐÑ+É¡:<Ð;: 1Õ1`:)2<54ÉÝ9dÊÇÌ;Õ1`:72<Ír9t295<1 ÐÊV:i2<54Ù 2<1ËÞë×2<54ÉêXÉÝ9dÕ¡ÕÎ 9ÝKÒ _`í 0î rKÊ 19 Ø ÍÐdÑ 2<ÍÇ1QÑ×ÐÕ¡Õ¡ÐtÖ7ÉÊÇÌ :iØ2<1Ór:âÇmî Þ%Ð;ÊÇ1QÐdÑ24ÍÇ1ÛÉÝ:iÐF: ØØ 1Õ¡1:2<54É¡Ø 9ÊÇÌÕ¡1:ÉÝ:q5<1ÏQÐtê;1Ë Ñ×5<Ð;ß Ï §ÛÔÖ7ÍÇÉ Í 249dð;1:ìë×Õ¡ÐÌDÒ^í Ô9dÊVËù:iÐ;Ï1%Ñ×ÙÇ5<2<ÍÇ15ÐÓ"15A9t2<É¡ÐÊ¥ÐdÑ Ø Ð;ÏÓÇÕ1õÉT2@Îø9d2ÏÐ;:i2Ûìë~ÕÐ;ÌÒ^íØ É¡: ËÐÊÇ1;îï)ÍXÙV:24ÍÇ1¨2<Ð249Õ Ð;ÏÓÇÕ1õÉT2@Î ÐdÑÛ:@241Ó âÂÉÝ:°ì8ë DÕÐ;Ì+Ò^í Vî ¥F2<1ÓäÂÚVÊV9ÕÕ¡Î 9Õ¡:<Ð 249dð;1:&9t2 ÏQÐF:@2ì8ë DÕÐ;Ì+Ò^Ø í24ÉÏ1;Ô):<É¡Ê Ø 1ÖD1°2<ÐÙ Ø Í19 Ø Í5<1ÌÙÇÕÝ9d5&ÓrÐ;ÕÎXÌ;ÐÊ9t2§ÏÐ;:i2 ÐÊ Ø 1ÔX9dÊVË24ÍÇ154195<19t28ÏQÐF:@27ì8ë XíD5<1ÌÙÇÕÝ9d5+Ó"ÐÕ¡ÎXÌÐ;ÊV:îFï)ÍXÙV:D2<ÍÇ12<Ðd2A9dÕ Ø Ð;ÏQÓVÕ1õXÉ2@ÎÉ¡: ìëië×KÒ J¶LNXíXÕ¡ÐÌ+Ò^zí à÷ì ³ ë×KÒ JzLN"ë×Ò^í<íXÕÐ;Ì+Ò · ÔV9;: Ø ÕÝ9dÉ¡ÏQ1`Ë´É¡Êï)ÍÇ1Ð;5<1Ï èî R Ñ×ÙÇ5<2<ÍÇ15:iÓ"11`ËÙÇÓ ë~Ór15<ÍV9ÓV:24Ðìë×K Ò JaTb`í<í/Ö8ÐÙÇÕÝËQÜr1kÓ"Ð;:4:<ÉÜÇÕ¡1kÉÑÐÊÇ1 ÐÙÇÕÝËÛ9IêÐ;É¡Ë ÉÊV:<15<2<É¡ÊÇnÌ áââ;ÉÝ:<Ð;: Ø 1Õ¡1:^2<54ÉÝ9dÊÇÌ;Õ1`:^É¡ÊF2
110
Peter Brass
ï)ÍÇ1Q:49dÏ1Q9dÕ¡ÌÐ54É2<ÍÇϱÖ8Ð54ðX:9dÕÝ:iÐ&ÉÊ°2<ÍÇ5411ßYËÇÉÏ1Êr:iÉ¡ÐÊV9Õ*:<ÓV9 1Ô:<ÉÊ 124ÍÇ1ÓrÐF:<:<Éß ÜÇÕ1Q:iÎXÏÏ13245<É¡1:2<ÍÇ1J 5<1Q9d5419dÕÝ:<Ð%5<17¡V1 Ø 2<É¡ÐÊV:ë~Ë12<15<ÏÉ¡ÊÇ1Ë°ÜFΧÐÊV1Ø Ó"ÐÉ¡Ê;2Ø ÓV9dÉ¡5`Ô":<Ð Ø 9Ê Ür1 Ø ÍÇ1 Ø ð;1ËÉÊùìë~Ò Õ¡ÐÌ+Ò^íq2<É¡ÏQ1Ií9ÊV˨5<Ð249d2<É¡ÐÊV:95<Ð;ÙÇÊV˨9Õ¡ÉÊÇ1GR:<Ð2<ÍV1%ÊÇÐÊF245<É¡êXÉ¡9Õ Ð54ÜÇÉT2A:q9d541541ÌÙVÕ¡95Ó"ÐÕ¡ÎFÌ;ÐÊV:É¡Ê :<ÓV9 Ø 1î ékÊÑ×Ð;5i24ÙÇÊV9d2<1Õ¡ÎÔg24ÍÇ1QÜrÐ;ÙÇÊVË°Ñ×Ð52<ÍÇ1QÊXÙÇÏÜ"15 ÐdÑ7É¡:<Ð;: Ø 1Õ1`:q2<54ÉÝ9dÊÇÌ;Õ1`:ÉÊø2<ÍÇ5411ßYËÉ¡Ï1ÊV:<É¡ÐÊV9Õ:iÓr9 Ø 1ÛÉÝ:Ð;ÊÇաΨìë~ÒK_`í3Ô*9ÊVË 2<ÍV9d2Ð5AË15 9dÊùÜr1§5419 ÍV1Ëë×249dð;1´ÍV9ÕTÑÐdÑk24ÍÇ1 ÓrÐ;ÉÊF24:QÐ;Ê¥9 É5 Õ¡1&9ÊVËÞ24ÍÇ1§Ðd2<ÍV15ÍV9dÕÑÐ;Êø2<ÍV1 ÏQØ ÉÝËXßYÓr15<Ó"1ÊrØ ËÉ Ø ÙÇÕÝ9d5ÐÑ824ÍV9t2 Ø É¡5 Ø Õ1;Ô2<ÍV9ÊÞ9dÊXÎ 245<ÉÝ9dØ ÊÇÌ;Ø Õ1ÛÐÑD2@Ö8ÐÓ"ÐÉ¡Ê;2A:Ðʨ24ÍÇ1 Ø É5 Ø Õ¡1 9dÊVË&ÐÊÇ1Ó"ÐÉ¡ÊF27Ðʧ2<ÍÇ1ÏÉÝËXßYÓr15<Ó"1ÊVËÇÉ Ø ÙÇÕ¡957É¡:kÉ¡:<Ð;: Ø 1Õ1`:4í3î ê ë<(»ÔÆÇí à ì)\YÇKÁ î±Á RƱÁ ï ÃFÁÆÇà rYÑ*Ö819d541Õ¡ÐXÐðXÉ¡ÊÇÌQÑ×Ð57541Ó"19t241˧:i124:7É2ËÐX1:)ÏÛ9ð19QÜÇÉÌ%ËÇÉTôg1541Ê Ø 1qÖ7ÍÇ1324ÍÇ15kÖ819d541 9dÕÝ:iÐÛÉ¡ÊF2<1541:i2<1`Ë ÉÊ:i124: yñÖ7ÍÇÉ Í 95<1ÐÊ 15<1Ór1`9t241˨8ë yÐ}®{ 9dÊrË |8!ë yí }®{¦Ñ×Ð59 ÊÇÐÊF2<54É¡êFÉÝ9dÕrÏÐd2<É¡ÐlÊ |/í3ÔXÐ5)9 ØØ 1ØÓ28ÐÊÇÕ¡Î2<ÍÇØ ÐF:i1 y2<Ír9t2)Ð ØØ ÙÇ589t2)Õ1`9:i2 Ñ×ÙÇ5<2<ÍV15D2<É¡ÏQ1`:Ô lã0î rYz Ñ y¾}ð{øÔ |8!ë yí }ð{øÔ |JF8ë yQí }k{ª77|
;8ë yQí }k{øÔr2<ÍV1Ê Ñ×Ð;5q19 Í º y 2<ÍÇ1&2<54É¡9ÊÇÌÕ¡Z1 ºª+|)8ë º=í ª+| J ë ºÇíÉÝ:QÉ¡:<Ð;: Ø 1Õ1`:Ô*9dÊVËÞÖ81 Ø 9dÊ¥9Ì;9ÉtÊ Ö@ÙV:i2QÑ×ÐÕ¡ÕÐtÖ2<Ø ÍV1&ÓV9dµ 2<ÍV: Ë1324154ÏQÉ¡ÊÇ1`Ë´ÜXÎÛ24ÍÇ1qÏQÐ2<É¡ÐtÊ |8ÔÇÖ7ÍÇ1541ÖD1Ë12<154ÏÉÊV124ÍÇ1qÏÐd2<É¡ÐÊ&Ñ×54ÐÏ 24ÍÇ1qÉ¡:<Ð;: Ø 1Õ1`: 2<54É¡9ÊÇÌÕ¡1îÇï)ÍÇ15<195<1;ÔFÍVÐtÖD1ê15`ÔF2@ÖDÐÉ¡ÏÓrÐ;5i2A9dÊF2kËÉTôg1541Ê Ø 1: ò ñÐòzó»ô?õIô ö!÷/ôø<ù áú=ûzü ô-ù+ù+÷ý â/û rYÑÖ819d541´Õ¡ÐFÐ;ðXÉÊÇÌÑ×Ð5 Ø ÐÏÓÇÕ¡132<1§Ð54ÜÇÉ24:QÐdÑÉ¡:<ÐÏ12<54É1`:Ô*2<ÍV1Êù2<ÍÇ1 ÐÊVÕÎÞÓ"Ð;:4:iÉ¡Ü"1 É¡:<ÐÏ12<54É1`:79d54154Ðd2A9t24ÉÐ;ÊV:ë~9ÊV˧5<17¡V1 Ø 2<É¡ÐÊV:ÔÇÖ7ÍÇÉ Ø Í ÍV9Iê1qÐÊVÕÎÛ2@Ö8ÐdßYÓ"ÐÉ¡Ê;27Ð;5<ÜÇÉ24:Aí î rYÑ+ÖD195<19Õ¡:<ÐÛÉ¡Ê;241541:i2<1`Ë ÉÊÓÇÉ¡1 Ø 1:7ÐÑÉÊÚrÊÇÉT241Ð;5<ÜÇÉ24:Ô24ÍÇ1Ê°9;ËÇËÉ2<É¡ÐÊV9ÕÕ¡Î%24549ÊV:iß Õ¡9d2<É¡ÐÊV:)9ÊVË´Ì;ÕÉÝË1ß54=1 ¡V1 Ø 24ÉÐ;ÊV:Ü"1 Ø ÐÏ1ÓrÐF:<:<ÉÜVÕ1;îÇ6DÎ24ÍÇÉÝ:82<ÍÇ1 Ø Ð;ÊF2<É¡ÊFÙr9t2<É¡ÐÊ&ÐdÑR9Ê É¡:<Ð;: Ø 1Õ1`:q2<54ÉÝ9dÊÇÌ;Õ1´9;:9ÊÞÐ54ÜÇÉT2É¡:ÊÇÐd29dÊXÎXÏQÐ;5<1ÛÙVÊÇÉ FÙÇ1;ÔRÜVÙ2 Ø 9dÊÞÜ"1&9541Ì;ÙÇÕ¡95 ÓrÐ;ÕÎXÌ;Ðʨë×ÜXδ954Ðd249d2<É¡ÐÊríÐ5k9QûÉÌßû`9dÌQÓV9t24ͨë~ÜXδ9QÌÕ¡É¡Ë1ß54=1 ¡r1 Ø 24ÉÐ;Êrí î ï^ÐqÐtê;15 ÐÏ12<ÍÇÉÝ:ÔÖD1)ÍV9Iê;124ÐÉ¡ÊV:<15<2/2@ÖDÐ Ð;ÓÇÉ¡1:/ÐdÑ"19 ÍÉÝ:iÐF: 1Õ¡1:R2<54ÉÝ9dÊÇÌ;Õ18ÉÊ6§ÛÔ ÏÛ9d54ð1Ë Ø 9;:ü 5<Ð249t24ÉÐ;ÊýV9ÊVËÞý ÌÕ¡É¡Ë1ß54=1 ¡r1 Ø 24ÉÐ;Ø Êý¡ÔV9dÊVË 541ÏØ Ðtê;1q2<ÍÇØ 15<É¡ÌÍF2 Ø Ð;ÓXÎ&Ö7ÍÇ1Ê 13õX2<1ÊVËÉ¡ÊÇÌ%9QÓV9t24Íî ñÐòþ û¶üKá ö8þ<ùÿ ô5øô ö â ôù û R :ÕÐ;ÊÇÌ9:Ö81kÖ81541)ÕÐXÐðXÉ¡ÊÇÌÐÊVÕÎÑ×Ð5 ÐÏÓÇÕ¡13241k5<1ÌÙÇÕÝ9d5/Ó"ÐÕ¡ÎXÌÐÊr:ÔdÖ817Ñ×Ð;ÙÇÊVËQ2<ÍV1 Ö7ÍÇÐÕ¡1ÓrÐ;ÕÎXÌÐ;ÊÛÜXÎVÖ@ÙV:@2)ÌÐ;ÉÊVÌ9d54ÐÙVÊVËØ îrYÑ^ÖD19dÕÝ:iÐ249ð1Ó"ÐÕ¡ÎXÌÐ;ÊV9dÕ"9d5 Ø :Ô;Ö81ÍV9Iê;1 2<ÐÏÛ9ð1:<ÙÇ54172<ÍV9d2DÖ81k541ÏÐtê1 õ á ÷õ á-âVÓ"ÐÕ¡ÎXÌÐÊr9dÕV95 Ø :Ñ×54ÐÅÏ §Û î ¥ÐÖD1ÍV9Iê1)24Ð Ñ×ÐÕ¡ÕÐtÖª24ÍÇ1Ór9t2<Í´Ì1ÊV15A9t2<1`ËQÜF6Î |Ñ×54ÐÏ2<ÍÇ1:@2A9d5<2<É¡ÊÇÌ245<ÉÝ9dÊÇÌ;Õ1ÉÊ%Ü"Ðd24Í&ËÉ¡541 Ø 24ÉÐ;ÊV:Ô Ñ×Ð54Ö8954Ë8ë |í79;:)ÖD1ÕÕ9;:)ÜV9 Ø ðXÖ)9d5AË 8ë |M^í î rKÊÛ2<ÍÇÉÝ:DÖ89IÎQÖD1ÐÜ2A9dÉ¡Ê%9dÕ¡Õ":<ÙÇÜV:<132A:Ö7ÍVÉ Ø Í´95<1ÓV9d5<2<ÉÝ9dÕrÐ54ÜÇÉT2A:+ÐÑ^9t2DÕ¡19;:@22<ÍÇ5411ÓrÐ;ÉÊF24: ÐdÑ:<ÐÏ1´ÉÝ:<ÐÏ13245<Î;î*þD9 Ø Íø541Ì;ÙÇÕ¡95Ó"ÐÕ¡ÎXÌÐÊøÑ×ÐÙÇÊVËø2<ÍÇÉÝ:QÖ89IΨ:<ÍÇÐÙÇÕÝËøÜ"1§ÉÊV:<15<2<1`ËøÉ¡Ê ¯ ÙÇÊVË1524ÍÇ1´9dÓVÓÇ5<Ð;ÓÇ54É¡9d2<1ÛÉÝ:iÐ;ÏQ12<54ÎÔ^9ÊV˨Ö7É2<ÍøÉ24:Ñ×ÙÇÕÕ8ÊXÙÇÏÜ"15ÐdÑ7Ó"ÐÉ¡Ê;2A:Ô*9dÊVËÞ9ÕÕ ÐÓVÉ1`:ÐÑ2<ÍV9d275<1ÌÙÇÕÝ9d5DÓrÐ;ÕÎXÌÐ;Ê´:<ÍÇÐÙÇÕÝË%Ü"1qË1Õ¡13241˧9:DÉʧ:@241Ó âÇî âÇîMãîMãî rYÑ^2<ÍÇ1qÓV95i24É¡9Õ ÐØ 54ÜÇÉT2+ÉÝ:Ð;ÊÇÕÎQ9ÓV9t24ÍÛÐdÑgÕ1ÊÇÌd246Í sÔ9dÊVËQÖ81k9d5417ÕÐXÐ;ðFÉ¡ÊÇÌÑ×Ð5+9OÊ ßÑ×ÐÕÝË541Ó"19t241Ë:<ÙÇÜV:<132Ô 2<ÍÇ1ʪÉ2&:<ÍÇÐÙVա˪Ü"1 ËÉ¡: Ø 954ËÇ1ËùÉTÑ sàÇXÔÐ2<ÍÇ15<Ö7ÉÝ:i1§24ÍÇ1 ÚV5A:@l2 stãD Ó"ÐÉ¡Ê;2A:ÛÐdÑ2<ÍV1 ÓV9t24Í:<ÍÇÐÙÇÕÝËÜr1QÉÊr:i15i241Ë É¡AÊ ¯©ÙÇÊrË152<ÍV19ÓÇÓÇ54ÐÓÇ54ÉÝ9t2<1É¡:<ÐÏ13245<Î;îï)ÍÇ1ÊÉÊ2<ÍÇ11ÊVË 9dÌ;9ÉÊ%9:iÉ¡ÏÓÇÕ12<5A9Iê154:49dÕÐ0Ñ ¯ùÉ¡:8:iÙ Ø É1ÊF22<ÐÚVÊVËÛ24ÍÇ1ÏÛ9dõXÉ¡ÏÙVÏß Ø 954ËÇÉÊV9ÕÉ2@Î `ßÑ×ÐÕÝË 5<1Ór1`9t2<1`Ë&:<ÙÇÜV:<132`î
On Finding Maximum-Cardinality Symmetric Subsets
111
YÑÖD1 9d541´Õ¡ÐXÐðXÉ¡ÊÇÌ Ñ×Ð;5:<132A5: y }Ð{Ö7ÍÇÉ Íª95<1&ÐÊÇաΨÐÊ 1&541Ó"19d2<1Ë ë8y }~{¥Ô 8ë í í Ô^2<ÍÇ1ʨ2<ÍÇ1´ÓV9d5<2<ÉÝ9dÕÐ;5<ÜÇÉ2ÐÑ)9 Ó"ÐØ É¡ÊF2 Ø Ð;ÊV:iÉÝ:i24:Ð;ÊÇØ ÕÎÐdÑ)2@Ö8ÐÓrÐ;ÉÊF24:Ô^9ÊVË ËÐX1:ÊVÐd2Q9ÊXÎFÏÐ;5<1%Ë12<15<ÏÉ¡ÊÇ1%24ÍÇ1´ÏÐd24ÉÐ;Êî±rKÊr:@2419ËøÖD1%Ír9Iê12<ÐÕÐXÐ;ð 9d22<ÍV1´Ó"Ð;:iß :iÉ¡ÜÇÕ¡1%ÉÏÛ9Ì1:qÐÑ7ÓV9dÉ¡54:ÐdÑ)ÓrÐ;ÉÊF24:ÔR9ÊVË Ð;ÙÇÊF2ÍÇÐtÖÐdÑ®2<1ÊÞÖ7ÍÇÉ Í ÏÐ2<É¡ÐÊN| É¡:Ë132415<ß ÏQÉ¡ÊÇ1`ËÜXÎ24ÍÇ1Ï ÔtÐÜÇ249dÉ¡ÊÇÉ¡ÊÇÌq1:4:i1ÊF2<ÉÝ9dÕ¡ÕÎØ2<ÍV1k:<9ÏQ1)9dÕ¡ÌÐ;5<É2<ÍVÏ 9Ø: R ðXÙ2A:iÙÔdï*9dÏÛ9ðFÉ9ÊVË ï^Ð;ðFÙVÎ;9dÏÛ9§àTèéÑ×Ð5)24ÍÇ1ü ÏÛ9dõXÉ¡ÏÙVÏ Ø Ð;ÊÇÌ54ÙÇ1Ê;27:<ÙÇÜV:<1324:ýÇÓÇ54ÐÜVÕ1ϧî ÈÇÐ5)9ÓV9dÉ¡5¶º ª+º { 2<ÍÇ1Ó"Ð;:4:iÉ¡ÜÇÕ¡1É¡ÏÛ9dÌ1ÓV9É5A: S|)ëº í#ª S|)ëº í95<12<ÍV1 ÓV9dÉ¡54:^2<Ír9t2ÍV9Iê1^2<ÍÇ17J :49dµ Ï1)ËÉ¡:i249Ê Ø 1;Ôt:iÐÖD1 Ø Ð;ÊV:i2<54Ù Ø 2*2<ÍÇ^ 1)ËÉÝ:@2A9d^Ê Ø 1)JÌ5A9dÓÇÍV:RÐdJ Ñ {øÔ`249dð;1 19 Ø ÍQÓV9É5+ÐÑ"1`ËÌ1`:7ë º ^ ª(º J #í ª` ë ^ ª J í/ÐdÑ"2<ÍV1k:<9ÏQ17Õ¡1ÊVÌd2<Í^ÔË1324154ÏÉÊÇ1)24ÍÇ1kÏÐd24ÉÐ;ÊQ2<ÍV9d2 Ï5<71 9¡VÓV1 :82<2<1ÍVË 1qÚVÐ;54ÙÇ:iÊF272<ÓV15<9dÓVÉ¡5)95iÐ28Ê&ÉÊ 2<ÍÇ91:i:<1`1 9dØ 5 ÐÊVÍ´Ë:iÔÇ2<9d54ÊVÙ Ë&24ÙÇÉÊ 5<Ø d1 541¯Â9:<Ñ×Ð15)2<ÍÇÉÝ:i1 Ð;ÏQØ Ð1ÙÇ2<ÊF54É271`:ÐdîÑRï)2<ÍÇÍÇÉÝ1:7Ê´Ï24ÐdÍÇ241qÉÐ;ÊÇʧÐÊF924ÊV5<Ë´É¡êXÉÉ¡249: Õ É¡:<ÐÏØ 13245<ÎØ Ö7É2<Í 24ÍÇ1ÛÕ¡95<Ì;1:i2 Ø ÐÙÇÊFØ 2ÌÉ¡ê1`:Ø 2<ÍÇ1ÏÛ9tõÉ¡ÏÙÇÏQß Ø 9d5AËÉ¡ÊV9dÕ¡É2@Î :iÙÇÜr:i12nyß} { 2<ÍV9d2kÉ¡:)Ð;Ê Ø 1541Ó"19d2<1Ëî ï)ÍÇ19ÊV9dÕ¡Î:iÉÝ:kÐÑ2<ÍV9d29dÕ¡ÌÐ;5<É2<ÍVÏáÉÝ:k24ÍÇ1:<9ÏQ19:ÉÊ¥àè3éYÔ"ÌÉ¡êFÉ¡ÊÇÌ´9Êìë×KÒ _7] JÕ¡ÐÌÒ^í ÐØ ÏÓÇÕ¡13õÉ2@Îî Àª±Á ì4±Á DZÁ ÔgÁRà n ¢ fhaZ[L@ETJKCtZrLUVJKe8?4L¢HU"fegCFf _ffSHh`E®[U >@EM L@F¢TUr_e"J7[\Ýhd[Z;>qNdfcA[__faFUVZ;e8L@¢EH"C;l8ETL@JYFLK>@?EH;STf3Z;>@L@`EH[`?AC&JYL[cA\[`_EHJY_Lif[CFC§c4?AaJk[ETfCtCFL´JK?4LKL>@¢"ETfl)C;`EHJKSHc4?A>@Jk?4L@EHC ? ¢ LK]*>@[SHEHL?A_UJ aF[Z;\¢HU L ¢FQ?As8[`?4_?AF[SH?<F_LK[>@¢>@ETc7Cr"U ["!qY'¢Hn?A$U j`c4#L@j JAIf¢F¯ l)?AEHCFJK?
112
Peter Brass
n4o;¢G_-rf3fL@c)ETc4%4J"hI[3[G\8EH=cirfZ;UWS$&&¢H>iU;[`P JAZ8¢:%AZ^J@fd[`U"S®¢ WiWK¢ WiY¢t¢Q"/ke/¢ -F?¢sDCd>iZFf_Ff_?4>7U4[?4L\/fFS×[`U+_&^;[L@JAF¢ ¯r?4bL@EHa;cq>@EHJKC;Z;`F?4JK> ?4U:L@JA¢rSH`W[CM>@rEML@e/;F_?J_]*f[`L@_;r?4m ¢ nn)*pdG¢¢Gn4oÛ==ffYc
! "#$% !'&)(*+$, /- .103254674*89;:03<=8 >?A@CBDFEHG?AIJE,KLNMOKG@QPREH?SDUTWVSXY?AIQVS?[ZW\IWX^][?SDH_FX`EbacKLedB EH?SDHfYKJK d+BEH?SDHfYKJKWZ=gIJEhBDHX^Kjilkmonqpsr[ZtMuBIQB[vQBZtw[x[xJw'yCzJ{'|wq}~qzJw[[qeF
[z Q/t=ls*=H/ = Rt03<=:R<7=
114
Erik D. Demaine
1:R98,303<=2J:R8ÅÆ´l0^£S9;:J£A¢A=0<7lR.A:=7® ¢ R9c70<7:£1W.10:J89c8=t03<=Q ® :R<77:R.²8<=£S7'È ´l=038¡=.S818 .S Q03<=£1=8¡7:R.j38 <7£1°:<7%<=£¢ .1Q110<7):
Folding and Unfolding Linkages, Paper, and Polyhedra
115
]+^&_ RPR ÿ OK]XY?? ¹_¸K LuV1K[I]q??.RX`L3aRXYI Ba`¯vRK[PWfY?'vEFDH?A?, b ÿ Q?EHK[@5_FICB @Q_cQK EH_lB DH?sBfYf¼_HVAB fY?'v EW?_HB G?[Z¼B ICvEQ?dtK EFEHK[G _FIQB@W_cQKEH_jB DH?c_HVABfY?'v vWX0e=?SDH?SIEHf`a)EHKXYG@RDHK ][?c]XY_FXQXYfYX`EbaNT?A? f q, gihTj,jxzJC{ kl²Æ~qRz Jw[q[eF
[zCjnmw[xJxJw'yQz{|ojqJ{ |8pWz8qwjLK D/GKDH?lB IQXYGB EHXYK[IW_
°W¦CRW<7:¼:R.S¢:R<7o¢¦t¢38£S7:J£9¡03RQ£l°8r1t¢A2R8[\ÅÆ=<7h£1.A:03RQ£18<7:78:<7)=<7¢ R
116
Erik D. Demaine
·¸=8*=7.S1=0£UN£1=8:.A¢'ËF:<7t˯¢ ¦C¢ 8l7.1W=89;¹03
]+^&_ R\RS
fYKVUq?Av@tK[f`ao [KICBfB DhV¸XYI¡n >¹X`E
CBDH_=4 MA@,B,DQZ ;O>¸>
< B8B9y
¶03<7:R3¦R®t:<°:3RRW7/£1£1=8<=W<=8±t0H£S8 <7¢ 8sR¶2C<=R£S0<t039¡8 <710W<7=03R=8.U£S7:<÷=® °W¦CRW<7:C:.A¢ O¢ :R
Folding and Unfolding Linkages, Paper, and Polyhedra
117
â ä² ü,:8 .sRt0<7#ÅÆR.S0Q:9¡0ÊÈl7:Rj38:W+£118 R8.S:R¶03
A
118
Erik D. Demaine
M¶DH?AB_F?O@QB EFEH?SDHIW_7L3KD°LK[f^vRX^I BODH?AV1EhBI [fY?OK LW@QB@t?S(D 1tBEe_FK,E CBEKIQ?NVSKG@QfY?SEH?²_¯EFDhBX ,JE 1V PWE*GB q?S_sB'WPWEFEH?SDc1Wa}Êf^?1L3E?¸KDB¡_TuBIZDHX ,JE?OB f^fY?SaoV1DH?'B _F?A_BDH?vDhB¹I¹X`EvWKEFEH?Av fYXYIQ?S_AZtBIQvGKPQIJEhBXYI¡VhDH?'B_F?A_UB DH?vDhB¹I¡vQB _c ÛvWK EFEH?'v( ]+^&_ R8(R 8U
<=8¢£18=<=03R<°W¦CWR<7¶0<¡÷JËF17:R¢ 8jÅÛ:1°W¦C=8[t.1W<(QÈ'®J¢ :<h°¢A:j7:R¢A2J:RR8U:R´¸:q¦t °8£103RQ£13¦%´l.A:7°8[%C¦ï:1 t5¢038
]+^&_ RR>S 1tBE¸LKfvRXY I K L,Bc_ PQB DH?sKLu@QB@t?SD'\Z Wf^B[V U;K[IK[IQ?s_FX^vW?B ICv*+QX`EH?jKIEW?jKEW?SD _FX^vR?[ZCvR?A_FX [IW?'vWJa@[K,WI
K[IJEFDHK[fYf4 KIBrqZQ@W@B8HCr7[n9y
¾l8£S=.1<70<=£S¡£1=8=.SR789 O.18[¢RW<=&0 03<=s ):J£hËbR=:R=8¢ .18[:R18s7:£h£S8 .S<7 ®°:
Folding and Unfolding Linkages, Paper, and Polyhedra
119
R= »,0j£1=87:R°8.¡¢:<Ç°8W3=8ÃR<=8o3:q¦W8 .;:J£;:%£1039¡8R®,£S=8 <ÃR=:7030^£H¦Ã¢ :<Ç8 t8¢ 03t8[ï0<Â03<=8:R.£1039¡8RòO0^:RU3:q¦W8 .A9c7h£8;Rt8[Ô:J£cW<7¢8 ÅÛ:+9¡R.S8;.18[H£S.10¢'£S0 W8 9tt8ÊÈ'®R£S=8 <5R=:=0330^£H¦¡¢ :R<;°8*=8¢0t8[;0<;<78:.1˯03<=8:R.u£1039¡8R®Q8R6 763® v¡yÅ x3R: x¶ÈA6Q½t=.hË =.1010<=W¦W®W7J´U8 R8 .[®9;:Rt03<=c0/W<;£178sR.At8 .N¢ R9¡=t£A:J£S0W<7:0
#¢£ ¤
120
Erik D. Demaine
m7?SL3?E 7TRXYG@QfYX^VSX^BfJ@tKfYoa W?'vRDHKI=¹X`EIQK¹?'vo [?¶PQIWL3K[f^vWXYI n¥5/X 8JE? S lI PWIWL3K[f^vWXYI ++Q?SI V1PWEH_/B DH?B f^fYKu?Av;B[V1DHK_F_/LB[VS?A_ ]+^&_ R8¦(R
7 :R:<Ã8tW8Ëb£1˯8=R8;R3=03<=%£17:£¡¢:<µ8W3=8µ03¢hsåCH/ ·¸=8j:R.18[:NRt0<7:<°5=
©
Folding and Unfolding Linkages, Paper, and Polyhedra
121
]+^&_ R8ª(R(« f^B EFEH?AIWX^I B*EH?1EFDhB8Q?AvRDHK[I7ZL3DHK[G fY?SLE,EHKjDHX ,JEQiUKEH?EQB E,EW?ULÊBVS?A_UB DH?lIWKE 1tBE¹XYI EW?¸GX^vQvRf^?@QX^V1EHPWDH?8
:9¡=38R®R9¡QH£/:Wh8¢£S¹R¼=
=ál®¢Hä¶ã#¯ äNU=å
Á*£S7:<=2%9c¦#¢ËF:=£1=W.Sj´l0£1Ô´l=W9 Áj7:q R8¡8 <ºHJ¦R8#¢W:R.A:J£S0<7o03<#£1=85:R.18[:o Rt0<7¡:R<7o=
° i±
,M O>
QI7Z OK_F?[Z JM Sa AK ¹XV [ZRi BIPQ_F_F?Z ¸DhBIQB XY_AZBIQv KDHXYI Yf XY@Q@QXYI jaJK[PRD/f^X^v HZer Æk nRZ°k D XYI°Z O?AIQvW?SD'Z u> ,>¸?AGB X^IW?[Z um ,>?AGBXYIQ?Z /T X`EhV W?AfYfÊZqT T?SE QX^BRZ B ICvT T T X^?SICB d W?AI*VABIlaJKP¸LK[f^v*B,GB@ ¹MOKG@QPWEHXYI /?A_F?'B DhV /?A@tK_FXYEHK DFacVS_ M,p Rr[r qk RZ=iK] Wk q q[N¯z { ²¯ z J
MO> g XV WK[f A?SD'ZM MOKDFE ?A_AZ '> '>?AGBXYIQ?Z A>¸P bGK ]X VZ ¼DHXV _FK[I7Z ?SX ¯?1D'Z ²g]q?1DHGB DH_AZ ¼B fYK[@°Z²T B GB_ ,B GXÊZ¼BIQv+p ÿ ÿ K[PW_F_HBXYIJE fYXY@ EHPWDHIWXYI *@tK[f`a [K[IW_ bI ^ZWm°?'V1EHPRDH? iK EH?A_XYIMOK[G@WPWE °TWV1X YZ ÿ K JaJKRZ [B@CB I°ZiK] ek ÿ K;B @Q@t?'BDsXYI > r g X^V QK[f A?1D'Z O> u>?AGBXYIQ?Z ¼DHX^V _FKI°Z PWDFEhBvWKRZ /g]q?1DHGB DH_AZ JTK[_F_AZJB ICvp ÿ ÿ KPQ_F_HBXYIJE /?'VSKI PWDHXYI V1K[I]q? *@tK[f`a [KIQ_ ^ZQk Rr ÿ KB @Q@t?'BD p DHKIQK]tZ qpKJKvWGB I°ZBIQv eK[fYf^B[V tMOKIR][? RX CVAB EHXYKIjKLQ@Qf^BIQB D²@tKfYa [KIQ_/XYI ¡BIPQ_HVhDHX^@RE'Z=g¸V1E 7r q [qNyCz Æ| ~Nbw[x[~ zJ
~ Rq[qzJ
q
[ | Jw R{ R{'| z R[ | ¼ g qk DHK[IWK])B ICv ¼g /K[PRD q? iKIQK]q?SDHf^B @oKLOE Q?_¯EhB D*PWIWLKf^vWXYI ^Z n kJr k RZ²r qk
4 S ;
@ ;: \ nU o Z 5 W5 È8787 7 Æ 8787,7n f ,gEhTjCj CÉ Ê ,qnj Ëk8j Ck ÍÌ,Îj,ÏCÏÐ,ÐÏÑ,Ò < 7,79 S ¶ 4S : oÓ · % 8Ô Ó @· U Ô i ;:>µ \5 T « o >Õ 'ÖÁcºÂ×Øn¿Ùo¿8¾aÚiº8¾Û×(Ü:½!ÃÂ?Á¹?À´¹dÚiº»2ÙÝoÀ´×¸#¹cº8»J× y ,U @ 7,787o }Ü2½!ÃÂ?Á¹?À´¹ ¿8¾Þ
Úiº8»:ÙÝoÀy¿,À!½yº8¾¿,߸#¹cº8»J¹?À!Áà 4 S ·<>7 ?9 S ¶ +·+ %
@+· U + « S 5 / ?. o Úiº8»:ÙÝoÀ´× ¸#¹cº8»J×#á(â¹cº8ÁàwãAÙ,Ùß× 8787 , 4 S 6µiB,B9 ;: S @8·+ 5=µ U ?. / n äåo B8B,Bn f 8gihTjCj nj8æ Cloj f l g pj Ê 8ç æCl q g 8lCq ÐÏèÑ,éèoêê ´gko 4 S 6B 9 ;: S @ ë 5 U , o*Ü2½!ÃÂ?Á¹?À´¹ Úiº8»:ÙÝoÀ´× ¸#¹cº8»J× D Ä B ,7 B8B n
122
Erik D. Demaine
O>>=<>B,D9 ÿ o;OXY?'vRfZ· >¸?AGB X^IW?[Zo>¸?SGBXYIQ?[Z S m7PQX0lZWg]q?1DHGB DH_AZ@oWgë 5/K[PRDUq?[Z T :5/K,WXYIQ_AZBICvÇT\/dZQX`EH?A_FX^vR?A_î\IWL3K[f^vWXYI ï_FK[G?VSf^B _F_F?A_oK LKDFEWK, [KICB f \ @tK[f`oa Q?AvRDhBoìÕbIÖÁcºÂ×díCî8ÀâFÚi¿8¾¿CÞ½y¿8¾ïÚiº8¾Û×'Úiº»2ÙÝoÀ´×W¸#¹cº8»d×YZ=K[IJEFDn?'Ó B fÊZ MuBIQB[vWBRZ S P r B8B,Dn f q, gihTj,jJ
qyu¯C
kyt
qR{[qe¯
[Cz jJ
q
[
qnêCðjgqRJ
wqwqxR{'| qokCj
q
q
qêCðèËR{w[xC è~q| æq xR{| q²y gkñ qò 4 ;O>= > <>B,B9 ÿ ;OXY?'vWfÊZ ·+N>¸?SGBXYIQ?[Z N>¸?SGBXYIQ?[Z¶T NmB ¶'B Dhv=Z S ¶m°P WX0liZ @Og ë 5/K[PRD Uq?[Z /g]q?1DHGB DH_AZu\ T 5U8K QXYIW_AAZ Õ,TEFDH?AXYIP°Zup ÿ K[PQ_F_HB XYIE'Z,BICvï\T Oó d QX`EH?A_FX^vW?A_ m°KV Uq?'vB ICvjPWIQfYKV Uq?'vj@tKfYoa K[ICB fCV CB X^IW_¶XYIn %> ÿ ?AV WIQX^VABf 5U?S@tKDFE 7,Æ87RZRTGXYE MOK[fYfY? ?[ZUr B,B8Bo S @WDH?Sf^XYGXYICBDFa]q?1DH_FX^KI#B @Q@t?'BDH?'v+XYIE W*? ÖÁcºÂ×:íCî8ÀârãÚ>ô*õ ö÷ ã2ô ö à8»:Ùoº8Ã?×oÜ2½!ÃÂ?Ác¹?À´¹ã:ß øCºÁ½¥Àâ»%ÃHZ ;uBf`EHXYGKDH?Z ¡B DFaRf^BIQv7Z @qB I qr B,B,BZ@CB [?A_ D,Æ8ÆD,ÆCÅ 4 ;O>= > <>7R?r 9 ÿ ;OXY?'vWfÊZ ·+N>¸?SGBXYIQ?[Z N>¸?SGBXYIQ?[Z¶T NmB ¶'B Dhv=Z S ¶m°P WX0liZ @Og ë 5/K[PRD Uq?[Z T E5/,K QXYIQ_AEZ Õ¶TEFDH?AXYIP°Z²p ÿ K[PQ_F_HB XYIE'Z¶B ICv \T ¼Z \ d WX`EH?A_FX^vW?A_ S IQK EH?K[IDH?? VSKI / PWDHXYI EFDH?A?*fYX^I U[B [?A_ Ä ÿ DH?A?A_lVAB I)fYKV U%Ü2½&Ã?Â?Ác¹?À´¹ãAÙCÙß×Eô
¿,Àâ×^Z°8k 787R,r ÿ K B@W@t?'B D 4 ;O6 > · < 7Rr 9ù;O?1DHI°Z · '%> S>¸?AGBXYIW?[ZA%> ·N@W@Q_¯EH?AXYI7Z · ³lPQKRZ S ¡BIJEHfY?SD'Z BIQ v @ TIQKJ?SaRXYI U \IPWIWLKf^vQ8B WfY?@tK[f`oa Q?AvRDh6B ¹X`E VSKI]q?? .LB[VS?A_ 2Úiº8»2ÙÝoÀ´×i¸+¹º»d×Aá(â¹cº8ÁàãÙCÙß×^Z 8k 787R8r ÿ KB@Q@t?AB D 4 ;O6 > ·i2B,D9F;O?SDHI7Z · >¸?AGBXYIW?[ZA%> ·N@W@Q_¯EH?AXYI°Z'BIC v ;#¸BAaJ?A_ S vWXYc_ U Æ@CB[V UXYI /Bf [K DHX`E QG LK D¸B I¡KDHX [BGX7G8B [X^VEFDHX^V U\EÕÛ
I ÖÁcºÂ× ÷ ¾À´¹Á¾¿,À´× Úiº8¾Û×\ú\Ýn¾ûE½¥Àâsã:ß øCº8Á½¥Àân»ÃhZ Õb_FKf^B( v ë ·Nf QBRZ ÕÆEhBf`aJZ @[PQIW?r B8B,Do 4 ;O>¸m < B,B9 ÿ ²: M G;OXY?'vWfÊGZ ·+°%> °>¸?AGBXYIW?[Z\T m8B ¶AB Dhv7Z¼\T G5/,K QXYIQ_AZBIQr v S eTRK[_F_ MOK[I]q? .WX`LaWXYI GK[IWKEHK[IW?;@tK[f`oa [KIQ_ ®Õb I ÖÁcºÂ× ÷ ¾À´¹Á¾¿,À´× ö à8»:Ù(×#ã:ß øCº8Á½¥Àân»%à ¿8¾ÞÚiº8»2ÙÝÀy¿8À!½yº8¾QZ²][K[fYPQG?¡r ÅHWrK6 L ü¹cÂÀ!ÝnÁ¹Wý2º,À´¹Ãd½!¾þÚiº8»2ÙÝoÀ´× ö Â?½´×^Z@CB [?A_ HWr CHJk HRZ° M Q?AIWICB XZ ÕbIQvWX^BRÿ ZW>¸?'V °r B,B,Bn 4 ;2B,Æ9 n;O?1DHIB ICJ v ;:C¸BAaJ?A_ W?V1K[G@QfY?? .RX`EbasK\L 1CB E¶KDHX qB GyX (ÕÛI ÖAÁTºÂ×>ÿÀâwãÚ>ô*õ ö÷ ã2ô ö à»2Ùoº8Ã?×GÜ2½!ÃÂ?Ác¹?À´¹ ã:ß øCº8Á½¥Àân»%ÃHZQ@C8B ?A_lr Å8Cr D[nZ S EHf^B IEhB Z @[BI 7r B8B,Æn 4 MO6 > 5:7,79 5=¼MOKIQIQ?Sf^f`aJZ ·+°%> °>¸?AGB X^IW?[Z°BIQvp 5UK EH,? TEFDhB X 8JEH?AIQXYI @tK[f`oa [K[IQBfOB DhVS_ BIQvVSK[I]q?? .RX`L3aRXYI @tK[f`oa [KICB f¹V1aWVSfY?A_ rÕbI ÖÁcºÂ× íÃÀ ÷ Fö à8»:Ùoº8Ã?× úº8Ýn¾Þ× Úiº8»:Ù(× ö Â?½´×^ZW@CB [?A+ _ H[nqk CH,Hqk\Z 5/?'vWKICvW%K ;O?'BV 7Z=MuBfYX`LK DHIQX^BRZCiK] tk 7,7,7n 4A M @CB8D9 @OMuBIJEhBDH?AfYfBoBICr v i@[,K WIQ_¯EHK[(I iKIEFDHXY]X^Bf¹?AG t?'vQvRX^I [_sKLU@tK[f`oa [K[IQBf¹XYI EH?SDH]BfY_/BIQvPQI URIWKEH_uXYI;n Æ_F@CB[V1,? #Øo× 2¾º,À á(⹺Áà ¿8»%½ ¿,À!½yº8¾ÃH\Z ÅoyDCÄYr 7q8k Å r 7,n BZer B8B,Do 4 M ³ < 7Rr 9r@ S MuB fY]qKWZ %> ³¸DHX ¶'B ICV8Z µG8KDHXYI°,Z TK[_F_AZBIQvjp ÿ KPQ_F_HB X^IJE QMOK[I]q? .WX`LaWXYI @tK[f`oa [KIQ+_ ¹X`E ¡_FXYG@QfY?¸@WDHK Ô¯?AV1EHXYK[IQ_ ÷ ¾Û?º8Á×(ÖÁcºÂ¹ÃÃ?×Gü¹?À¥À´×^Zt8k 787R,r ÿ KB @Q@t?'BD 4 M,6 g B8B9 5=tMOKVAB IBICWv @=g ë 5/K[PWD U[,? µeK[f`oa [K[IQBf¼V CB XYIQ_/VABIWIQK EfYKV UXY*I H[> ÕÛ
I ÖÁcºÂ× íCí8ÀâÚi¿8¾¿CÞ8½y¿¾ Úiº8¾Û×sÚiº8»:ÙÝoÀ´×s¸#¹cº8»d×Y: Z ¶BIQVSK[PW]q?SD'ZUMuB ICB[vWBRZ S P lr B8B,Bn f q8 gihTjCj [qNFC
k°ÆC~ ËW
¯
[Cz jJ
[| æJw[w|R
nw kCj,ÌCÌ,ÌÎj[wJ[wR
gJRJ,
jq
Ðé¼´ gke´ qCò 4 >¸6 > 7R?r 9 · %> ¹>?AGBXYIQ?BIC® v im />¸?AGB X^IW,? 5U?'V1?AIJE¡DH?A_FPQf`EH_;XYIúV1K[G@QPREhB EHXYK[IQBf KDHX [BG¥X rÕb I ÖÁcºÂ× ,ÁcÞ ÷ ¾À´¹Á¾¿,À´×#ô¹¹?À!½!¾ørºTÛ Á½øC¿»%½ ö Â?½´¹¾Â¹ 6ô*¿,Àâ ¿¾Þ Þ8Ý¿8À!½yº8¾Q\ Z K[IJEH?SDH?SaJZQMuBfYX`LK DHIQX^BRZ ¡BDhV ;8k 7,7,r ÿ KB @Q@t?'BD 4 >¸>¸ m B,D9 · J%> J>¸?SGBXYIQ?[Z im [>¸?AGB X^IW?[ZJB ICv S Jm°P QX0 « K[f^vRX^I BIQvVSPWEFEHXYI @QB@t?SD ÕbW I @ S UXYaJBGBRZ ³BIWKWZQBIC'v Q\/Dh8B t?[ZW?'vWX`EHK DH_AZ A¹ ½!Ã?¹Þ%Ö ¿Ù¹ÁÃÛÁTº8»ïÀâ¹ Øn¿Ùo¿8¾Úiº¾Û× Ü2½!ÃÂ?Á¹?À´¹QÚiº8»:ÙÝoÀ´×¸#¹cº8»d×YZ²]qK[fYPQG?5r ÅÆ[noK L ü¹cÂÀ!ÝnÁ¹'ý2º,À´¹Ã½&¾ Úiº8»:ÙÝoÀ´× ö Â?½´×^ZR@CB [?A_r 7HCrr ÅJZ ÿ ,K UJaJKR Z @[B@CB I°ZQ>¸?'8V 7r B8B,Do 4 >¸>¸ m 7,79 · u%> O>¸?AGBXYIW?[ Z uim ¶>¸?AGB X^IW?[Z,B ICv S um7P WX « f^B EFEH?AIWXYI @tK[f`oa Q?'vDhoB ¡BIPW_HV1DHXY@WE'Z=k 7,787o 4 >¸>¸me6 g 7,7B 9w·+=>¸?SGBXYIQ?[\Z =>¸?AGBXYIW?[Z S 7m7P WXlZtBIC
v @g ë 5/K[PWD U[,? 6·>.WBG@Wf^?S_AZ=VSK[PWI EH?SDH?? .WB G@QfY?A_AZQBICv?AIPQG?SDhBEHX^KIcDH?S_FPQf`EH_/L3KD/LKfvRXYI [_UBIQvPWIWLKf^vWXYI :_ t?SñE u?A?SI @tK[f`oa [KIQ_,B ICv@tK[f`aEHK[@t?S_ ÿ ?AV WIQX^VABf 5/?A@tK DF E 7,Æ8BRZWTGXYE cMOKfYf^?? [?[ZWiK DFE CBGo@ EHK[I7Z S Z @PQf`a;k 7,787o 4;
Folding and Unfolding Linkages, Paper, and Polyhedra
123
>¸>¸meg67,79w·+>%>¸?AGBXYIW?[Zqmi>¸?AGB X^IW?[Z S [m°PWX0lZJBIQvw@qgë 5UKPWDUq?,·NIPWG?SDhB EHXYI LKf^vWXYI _BICv5PQIRLKfvRXYI [2_ t?SÍE O?A?AI@tK[f`ao [K[IW_lBIQv;@tK[f`aEHK[@t?A_=ÕÛIQÖÁcºÂ×Øn¿Ùo¿8¾ Úiº8¾Û×:Ü2½!ÃÂ?Ác¹?À´¹}Úiº8»2ÙÝÀ´×%¸#¹cº8»J×^ZOm°?'V1EHPRDH?;iK EH?A_X^IÔMOK[G@QPREOTWVSX¥YZ ÿ K8UJaJKWZ @qB @CBI7ZCiUK ] Q8k 787,7n 4 >¸ > '7,79 · ²%> ¼>¸?AGB XYIQ?[iZ NEm ¼>¸?AGB XYIQ?[Z²B ICa v @¶T E;:X`EhV W?AfY¥f « K[f^vRX^I *1tB Ej_FXYf QKPQ?SEFEH?S_uBIQ% v ,DhB@W@QXYI @tK[f`oa Q?AvRDhBfQ@CB[V U8B [?S_ ÄJi?? DH?A_FPWfYEH_¶XYIV1K[G@QPREhB EHXYK[IQBf KDHX [BG¥X Úiº»2ÙÝoÀ´×¸#¹cº8»d×+á(â¹cº8ÁàwãAÙCÙß×^Z=r Ưr Ä n RkJr[Z°k 7,7,7n 4 > PWD Å,Å9 S ¶> PRDH?SD ïá(â¹Ö ¿8½!¾À´¹Á Ãô
¿8¾Ý¿,ß +ã ô
¿8¾Ý¿8ß:ºÍÛWô¹c¿8ÃÝoÁc¹»d¹¾ÀJºTÛsü>½&¾\¹Ã 4
ã#Á¹c¿8Ã+¿¾Þ ö º,ß ½yÞ8ü?àdô¹c¿8¾ÃºTÛdÚiº»2Ùo¿8Ãÿ8¾ÞAÝoß¹Á6ã6ÃÃ?¹»J¼ß¹cÞ'¼?àwã:ß¼?Á¹cÂâoÀ Ü Ýn Ác¹Á Ûº8ÁÀâ¹ (Ã?¹wºTÛ ã:ß!ß\üº 8¹ÁÃwºTÛ6ã#Á?ÀAûE½¥ÀâWãAÙCÙÁcºÙÁ½y¿,À´¹ ÷ ß!ß ÝnÃÀ!Ác¿,À!½¥º8¾Ã6ã#Áõ Ác¿¾nø¹cÞÀyºd¼¹6ÖÁ½&¾À´¹cÞd½&¾*Àâ¹!¹c¿8Á ô'Ü#""%$( S +; 8U Õ 8 ?Z3 U B,Å,Å· c &(¾À´¹Áû¹à8ÃÝn¾nødÞ¹Á#ô¹ÃÃÝo¾ø»%½¥ÀGÞ¹( » '(½!*Á )C¹?ßÝn¾ A½yÂânÀ!Ã?Ââ¹à,ÀA½!¾WüG½!¾½y¹¾ ¼?¾¹¾ÝCân¾Þ
¸+¿¾À +¹¾ÚiºÁñÙoº8Ác¹¾ 8n 4 · 52<>B,D9 · \ 8¶ 5 , , Z ?. c c o Õ ÖAÁTºÂ×WíCî8ÀâÇÚi¿8¾¿CÞ½y¿8¾ Úiº¾Û×'Úiº8»wõ ÙÝoÀ´×¸#¹cº8»J× oÓ Cj S B8B,Dn f ,gihTj,j q Ck q qêCðjg qok8j qCêCðè CÊ nè Ê Cç æCl q ´gk ñqCò 4 · ,9 µG· .- µ 8 CÅÆ o ã#»d¹Á×ô
¿,Àâ×Gô
º8¾Àâoß à H nÄ Æ 8Å B C 4 « 6*<E7 ?9 « ¶ S S E o 6 ?1 (0 /#¹½¥À!1 Á ¿ ø¹ã:ß ø¹¼?Ác¿¸#¹cº8»J× 8787 , 4 D 9 ZÕ 32Jâ¹¹?ß Ã 2ü>½ Û¹'¿¾Þ Àâ¹Á2ô
¿,Àâ¹»w¿,À!½y¿,ßã#»%ÝnÃ?¹»d¹¾À!à #Å 8 +Æ,7oÅ o n « B8D n 4 BC9 ;: 4 n ' ?. o A¸+¹º»J¼?½!¾¿,Àyº8Á½yÂ?à nÄ H ,7 o@ B8BC 4 B8H9 y 1 >Úiº¾nø8Á×ý:Ýn»d¹Á× 7,7nÄ H B8B8Ho 4 @ B8H9 @o@ ¥Õ d³wo ÖÁcºÂ × 5C¾Þ ÷ ¾À´¹Á¾¿8À´×#ô¹¹?À!½!¾nøQºÍ6 Û AÁ½øC¿8»½ ö Â?½´¹¾Â¹*¿8¾Þ ö Â?½´¹¾À!½  Á½øC¿»%½ B @ T % B8B8Ho 4 ³ #D,B9 C³ 8U ¥ J Í o 1 ¥ Õ ZA ¶ :ÖÁcºÂ×íÃÀ ÷ ¾À´¹Á¾¿,À´× ô¹¹?À!½!¾nøºTÛ AÁ½øC¿8»½ ö Â?½y¹¾Â¹ ¿8¾Þ'á¹Â⾺,ߺø8à 8B ,Å « nÕ 8 B8D,Bn ö ¿Ã¹¼ºWÚiº,ß&ß¹´ø¹6ºÍÛ%á¹cÂân¾º,ߺø8à J@ S A¹ñÙoº8Á?À ,ÅnÄ 8Å B8B,7o 4 ³'B,9 ³ ó@+ ( o · ,+Øo×Ü2½ 7:¹Á¹¾À!½y¿,ßi¸#¹cº8»d× H n Ä Æ8H B,B,n 4 B8Æ9 5=@ S (+Õ ÖÁcºÂ×8í 5Àâ ö à»2ÙoºÃ×AÚiº8»:ÙÝoÀ´× ¸#¹cº8»J× 8 :B,D 7, \µE µ S B,B8Æo 4 6B,Æ9 Z@ ë 5 U , Z o S 0 5 #78H,D (@ B,B,Æn 4 Å ?9 « (' oóá(â¹*Úiº8»2ÙÝÀ´¹ÁsØnº8ÝnÁ¾¿,ß H Ä Å,nD87 « ( BCÅ , 4 ZBC9 8@ Z o5 / o *· %9C ,+Ü2½!ÃÂ?Ác¹?À´¹sÚiº8»2ÙÝÀ´×¸#¹cº8»J× oÄ H,7 B8BCn 4 *'µiDCÅ9 @ \>;#> %GE :Gµ , ' ö÷ ã2ôùØo×Úiº8»2ÙÝoÀ´× Æo¥HnÄ Æ8HCÅnÆ8Æ,D S o B,D,Ån 4 B 9 @ ¥AãEÛÁ½y¿8¾'ã#¾½&»J¿,ß Ã:½!: ¾ AÁ½øC¿8»%½& #µ B,B , 4 8 8B9 ;: 8 , ,Å8Æ oã#»d¹Á×Aô
¿,Àâ×Aô
º8¾Àâoß à GHCÆoÄ Å8Æ Å8Å B ,Bo
CB DHXY_ OKJK _AZ ÛICV YZRi? ¶KD tZ ²I fYX^_ EFDhB IQ_Ff^B EHXYK[IK L QZer [k Nm N]q?1DH?SEFE'Z7T tmB AB Dhv7Z°T /K QXYIQ_AZ 7TWV WD K[vW?SD'ZtBICv5T Cd WXYEH?S_FXvR?A_ MOKI ]q? RX`L3aRXYI Â_¯EhB D Æ_ QB@t?'vê@tK[f`a [KIQ_ ÛI ^Z K[IJEFD ?'B fZuMuBIQB[vWBRZ P ,r q J
yu¯
yt
R{[qe¯
[z
q
q
qJ
wqwxR{| J
q
q
Ww qw[Jwqq Q
q | Jw { R{ | ¼ ¼DhvQn ¼Dhv K_ ²DHK QfY?AG n [n
Z qk qk Zer [n r ÿ ?A]q?SIQ_AZ ?SDHIQBICvR? [Z ?A_HBRZ ¶TK[_F_AZ¶BIQv%p ÿ KPQ_F_HB X^IJE %TX^G@WfY? @tK[f`a [KIQ_E QB E¸VABIWIQKE t?jvR? tBEH?'v ^Z°k Rr ÿ KB @ @t?'BD p¸BD [n up¸B DhvWIW?SD ÿ W?;VSK[G QXYICBEHKDHX^VS_KL¸@CB@t?1DLK[f^vRX^I ÛI HZWV CB@REH?SD JZ@CB ?A_ n d DH?A?AGBI BIQv;MOK[G@QBIJaJZtr [n Up D P JpUD PQI CB PQG K %EHK¸VSK[I]q? RX`L3ajB¸@tK[f`a [KI HZ k n Z [PQf`a rÿ UPQf PWfYf gI¸E Q?NGB E Q?SGB EHX^VS_K L CB EKDHX qB GX^_ ^Zqr kJr Rk[k WZ r [PW_ [PW_¯EHXYI ÿ K ,B DhvR_,BlGB E W?AGB EHX^VAB fQE Q?AK DFaK LK DHX [BGX bI XYPWDhBZ?'vWX`EHKD'Z Z @Cÿ B [?A_r Rk RZ7gUEH_FP7Z [B@CB I°ZQiK]q?AG t?SD J>¸?AVS?AG t?1Dr B B uB_HB X °gIsE W?uDH?Af^B EHXYK[I t?1E u?S?AIGK[PWIJEhBXYI ÛV1DH?'B _F?A_NBIQvj][B fYf^?1a ÛV1DH?AB_F?A_ KLjB tBE¡K DHX [BGX bI P AX`EhBRZ,?AvWX`EHKD'Z
Z@CB [?A_¹kk Rkn Z ?SDFDhBDhBRZ ÆEhBf`aJZq>¸?AV Cr IPWICB WDHX^v ?'v qB@QBIW?A_F?]q?1DH_FX^KIB@W@t?'B DH?'vXYI Z=k Yr n Qr Z²r B @tK ]X^V ÔBIQv XYfYfY_FK[I gI#E Q?;GKvRPQfYX/_F@CB[V1?K L*@tK[f`a [K[IW_XYI#E W? ²PCVSfYX^vW?'B I;@Qf^BIW? ^Z Jk ¯r Yr'nn Qr RZ²r °m BI =m°BI VSKG@QPREhB EHXYK[IQBfeB f [KDHX`E WG LK D¸K DHX [BGXvW?A_FX [I bI ^ZW@CB ?A_ Qr Z QXYf^B[vR?AfY@ QX^BZ Z ¡BAa)r m g ,m°P WX B ICv Ug /K[PWD [? úd W?AIµVABIÂB+@tK[f`a [KIÔLK[f^vïEHK B@tK[f`aEHK[@t? ÿ ?'V QIWX^VABf U?A@tK DFE RZ=TGX`E ¡MOKf^fY? ?[Z [PWIQ?jr 7m PQI Jr d em7PQIQIWK[I PWf`EHX ÛvRX^G?SIQ_FXYK[IQBfOGB @ LKf^vWXYI Z r ¯r RZ ? 7r Jr m d d m°?SI CBDFENBIQvjT d QX`EH?A_FX^vR?A_ U?'V1K[I [PRDHX^I V1f^K_F?'vj@tKfYa K[ICB fQV CB XYIQ_ XYI ²PCVSfYX^vW?'B I Æ_F@CBVS? ^Z7r'n Yr'kn Qr RZ²r ¼T X`EhV Q?AfYfÊZ¼> KPQIJE'Z¼B ICvM ¼B@CBvWXYGX`EFDHXYK[P ÿ Q?vRXY_HV1DH?SEH? [?SKvW?A_FX^V@WDHK WfY?AG ^Z°r Z P 7r KI Rr K[IJEFDHK[fYf ²>¸K]q?SD ²P QfYX^VABEHX^KIQ_AZ°r r i B qn ¼iB a 5TRKfYPWEHXYK[IoEHK;@RDHK Wf^?SG n n Z Yr Qr Z ¡B D °r n r
124
g
4 ë 5:B,D9
TRBfÅn9 4 TRV D,B9 4 nT Q? Å89 4 TJEFD 7,79 4
4
ÿ KPB8B[B9 4
ÿ KPB8B89 ÿ KP7r?9 4 dZWX Bqk 9 4
Erik D. Demaine
Jg /K[PRD q? KfvRXYI lB ICvjPWIWLKf^vWXYI ¸XYIV1K[G@QPREhB EHXYK[IQBf [?SK[G?SEFDFa bI YZO]qKfYPQG?or [nK L ^ZR@CB [?A_Uk k RZ ÿ K aqKWZ qB@QBI°ZW>¸?'V °r p ÿ TWB f^fY?A? WTEFDH?SEhV QXYI /V QK DhvW_eK LQ_F@QB[VS?OVSPWDH]q?S_ Z[k nr[r JnRr Z r n M ¶TWV Q?S]qK[I W> E W?A_FXY_AZ [K WIQ_ K@ XYIQ_,\UIQXY]q?SDH_FX`EbaJZ=r p M °T W?A@ QB Dhv MOK[I]q? ;@tKf`aREHK@t?A_ ¹X`E oV1K[I]q? IQ?SEH_ YZ n [nZNr ²TEFDH?AXYIP VSKG WX^IQB EHK DHXB f¹B@W@WDHKqBV EHK5@WfB ICBDIQKI ÛVSKf^fYX^vWXYI 5DHK tKEB DHG GKEHXYKI)@WfB IQIWX^I ÛI YZt@CB [?A_ [n nZ U?AvWK[IQvWK O?'B[V °ZtMuBfYX`LK DHIQX^BRZtiUK] Ck p ÿ KPQ_F_HBXYIJE MOK[G@WPWEhB EHXYKICBf@tK[f`a [K[IQBfl?AIJEhB I [fY?AG?SIEcE Q?SKDFa bI ZeMuB_¯EH?AfYfYK[I7Z TR@QBXYI°Z [PWfYar p ÿ K[PW_F_HBXYIJE ÿ Q? ¼Dhv K_ ÛiB a*E W?AKDH?SGúBIQv*X`EH_eDhB GX CVAB EHXYKIQ_ bI ^Z OB ICVSKPQ]q?1D'Z°MuBICBvQBZ P Nr [
[qNF
°Æ~ W
¯
[z J
[| Jw[Jw |W
w [wJwR
J
¼ p ÿ K[PW_F_HBXYIJE IQ? VSf^B _F_K L_¯EHPCV +PQI IWKEH_XYI ^Ztk r ÿ KB@W@t?'B D T d WX`EH?A_FX^vW?A_ f [K DHXYE WGX^VUXY_F_FPQ?A_¹XYIE Q? ?AK[G?1EFDFaKL@Qf^BIQB D¹fYXYI B [?GK ][? G?AIJE ZCk Æk Jk Z ¡BAa5r qk @ ë 5 U , « n Õ ; ¹½!Ã?¹cÞ Ö ¿Ù¹ÁÃÛÁcº8» Àâ¹Øn¿Ùo¿8¾Úiº¾Û×:Ü:½!ÃÂ?Á¹?À´¹aÚiº»2ÙÝoÀ´×%¸#¹cº8»d× Å8Æ ü¹cÂÀ!ÝnÁ¹ý2º,À´¹Ã ½!¾rÚiº8»:ÙÝoÀ´× ö Â?½´× 88D 8Æ8Æ 8U @ B,B,Dn 8 G¸#¹cº8»d×Ü ¹cÞ8½y¿,Ày¿ nÄ B,Å n : (aã:ß øCº8Á½¥Àân»Ã:Ûº8Á
¸#¹cºÞ¹Ã½yÂ?Ã*º¾aÖ º,ß à8ÀyºÙ¹Ã}µi i@ , U B,D,Bn : o ( ?. 6 ?. Jô
¿8Àâ×EÖAÁTºÂ×:Úi¿8»wõ ¼?Á½yÞø¹ Öiân½¥ßº8Ã?× ö ºÂ× ÅDoÄ ,D8BH,7 BCÅ8n Õ S % 8 Õ ÖAÁTºÂ× íÃÀ ÷ ö à8»:Ùoº8Ã?×>úº8Ýn¾Þ×:Úiº8»2Ù\× ö Â?½´× H,H CH \5 %; \ 8787,7n o Õ ®ÖÁcº8õ ÷ ¾Â?ݹ¾À!ÁTº8ÃdÞ¹'¸#¹cº8»J¹?À!Á½y¿QÚiº8»:ÙÝoÀy¿CÂ?½yº8¾¿,ß Â¹¹Þ½!¾nø8ÃdºÍÛwÀâ¹ $ ÷c÷c< @ B8B,Bn · .- T 8 / oÕ wÖAÁTºÂ×\íCí8Àâ Úi¿8¾¿CÞ8½y¿8¾ Úiº8¾Û×:Úiº8»:ÙÝoÀ´×6¸+¹º»d× S B8B,Bo f ,gih jCj Ck CË Cj æ nkCj,Ì,ÌCÌCÎnj 4g 8j8æ,g\Ðê ygk ñqCò S ? U U Ù\º,>ß =8? /#¹½¥À!1 Á ¿ ø¹Wã:ß ø¹¼?Ác¿ ¸#¹cº8»J× 7,7 , \ Z S 2 U 8 ? ã#ÝnÃÀ!Ác¿,ß ½¥¿8¾Úiº»2ÙÝoÀ´¹ÁØnº8ÝnÁ¾¿,ß H ,Ä H n87 G B8B
"!#$% &('*),+.-/'103240"5"687:9 ;*<>=?+.@A0"-CBEDEF*DEG16.H><*24@A-/)JI,-/-KL6.M,0NPOE'1-/F>Q.
! N"+.@Aõ1D1),0"GTô/6~Izø~04-/'1Mz)J6.'EN"0"M+~ù),O1#0 "%$'&)( *+-,.0/213&)+4* 1356&).879!+-:;"%9<7=*<^),O1>0 +-,.*3&)$?9)$'@)* $A,B.;/ 7=9)+4:;"C9A7*A6.'1G )JOEE 0 DF="G7=9)+4:;"C9A7*A0"þRõ1ô/+.-/)J-/'1øÐ),O10-óI#Mzö*@A@A0)JI,ö ø.I,+.D1õEMI÷ Hb' 6ÎM,-/@A-/ôó6.I û.0"-/'<1-ó'6.G1GE-ó),-/+.'{),+r-/),MM,öR@A@A0"),I,öÊø~I,+.DEõ< Jª03DEM,0"G-/),MN"+.@ò1-/'16.)J+.I,-/6.ôM,),I,D1N"),DEI,03),+ +~I,òE-ó') Jg-óMz0{0'RD1@A0"I,6.),0{),O10û.0"I,),-/N"0"Mr+.ù46.'1+.),O10"I¹N"+.@ò1-/'16.)J+.I,-/6.ôõ+.ô/ö*),+.õ8L0 KM"%N)*O5P* "%Q $A,D79!+-:;"%9<7=*÷ R0") ü1I,M,)I,0"N6~ô/ôªò16.M,-/N#G10"üE'1-/)J-/+.'1M 6.'1GÎõ1I,0"Mz0"'R)M,+.@A0¹6~õEõ1ô/-óN6.)J-/+.'1M ),+ Jª0"ô/ô/ý\FR'1S+ Jg'TN"+.@ò1-/'16.)J+.I,-/6.ôW+~õE),-ó@A-/5"6.),-ó+.'TõEI,+.ò1ô/0"@AM÷ J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 125-136, 2001. Springer-Verlag Berlin Heidelberg 2001
½ª[o_bfiam[^e§eP~lªeP_lJp\º T O10 U ý\GE-ó@A0'1M,-/+.'16.ôEND1)õ8+.ôóöR),+~õ80V -óMªD1M,DE6.ôóô/ö -ó'R),I,+*GED1N"0"G¹6.M),O10N"+.'Rû.0þ ORD1ô/ô +~ùW),O10-/'1N"H-/G10'1N"0û.0N"),+~IzMâ+.ùC6.ô/ô),O10N"D1),Mª+.U ùIW U ÷~SU+.I,0õ1I,0"N-óM,0ôóö>
wyx yw 'x ~ | _ wyx yw ? 'x ~ ` 8J o5P* "%$A,DD39).*# U T U J z U T U g gB l}l g \)^S_ _```A_kab \ | _;^0b | \ _;^0b ;J K ^ ^
g ^0l gB l
÷ O10"'<ò8+.D1'1GE-ó'Eø g -/'1G1DEN"0Ê),O1 0 ù´6~N0"),M gO1-/NPO G10"üE'10Ê),O10 J) OE^!0?l ô/6.)J),0"IgòRöOgB l °Q 0?+~òE),6~-/'T),O103@A0"),I,-/N4õ8+.ô/ö*),+.õ80 ÷ O10 Q ´I,0"Mzõ÷ UQ l ù¶6.N"0)JM G10"üE'10"GAòRö g ^0l g¶I,0M,õ÷òRö N"6.' ò80gM,00"' 6.M),I,-/6.'1ø.ôó0 ´I,0"Mzõ÷õ0I,-ó@A0)J0I l -/'10RD16.ô/-/)J-/0"M ù¶+.IG1-/M,),6~'EN"0 wyx +.' ÷"ÿ OE-óô/0ª),O10ªN"DE)N+~'E0ª-óM),O10ªN"+.'E-óNªORD1ô/ôR+~ù16.ôóôb<"DEõ ),+6 N"+.'1M,),6.'R)W@ DEôó),-/õ1ô/0*< ý\ûo6.ô/D10"G40þ*),I,0"@A0©I,6öRMW+.ùR),O10â@A0)JI,-/N©N+~'E0*<:),O10âN"DE)Wõ8+~ô/öR)J+.õ80 V -óM©),O10gN"+.'Rû.0"þORD1ô/ôE+~ù}6~ô/ô ý\ûo6.ô/D10"Gû.0I,)J-/N"0M+.ù8),O10@A0)JI,-/Ngõ8+.ôóöR),+~õ80*÷ T O10gôó-/'1F JgU -ó),O¹ü1'1-/),0@A0"),I,-óNM,õ16.N"0Mâ-óMª),O10ù¶+.ô/ôó+ g-ó'Eø o),O10"I,0(-óMª6'16.),D1I,6.ô N"+.I,I,0"M,õ8+.'1GE0"'1N"0 ò0k) J°0"0"'%)JOE0 0"ô/0"@A0'*),M3+.ùª)JOE0 @A0"),I,-/NAN"+.'10 6.'1G%6.ô/ôL),O10rM,0"@A-/ý\@A0)JI,-/N"M3+.' a õ8+.-ó'R),M< 6~'EG),O100"ô/0"@A0'*),M+.ùL),O10N"DE)N"+.'10N"+.I,I,0"Mzõ+.'EGõ1I,0"N-óMz0"ô/öÊ),+A),O10 Mz0"@A-/ý\@A0"),I,-/N"M+.' a õ+.-/'R),M),O16.)6.I,0-/M,+.@A0"),I,-/N"6.ôóô/öÊ0"@ò0G1G16.òEôó0-ó'R),+¹M,+.@Af0 i7 ÷ Hb)-/M0"6.M,öT),+rN:OE0"N:FT)JOE6.) M,D1N:OT@A-/'1-/@A6.ô -óMgMz@A6.ôóô/0"I+.Ig0RD16.ôW),+ UH ÷ '10+.ù8),O10@A+~),-/û6~),-/+.'1Mâù¶+.I©),O10M,),DEG1ö +.ù8),O10"Mz0õ8+~ô/öRO10"GEI,6?N+~@r0"Mâù¶I,+.@æ),O10"-/Iâ6.õ1ý õ1ô/-óN6~),-/+.'1M°-/'¹N"+.@ò1-/'16.)J+.I,-/6.ô+.õ1),-/@A-ó56~),-/+.'<.),O10@A+.M,)ª-/@Aõ8+~I,),6.'R)ªò80"-/'1ø ),O10@A6.þRý\N"DE) 6~'EG@ DEôó),-/N"+.@A@A+*G1-/)bö 1;+ JÐõ1I,+.òEôó0"@rM=÷ °-óû^0"' 6(ø.I,6~õEO [ g Z U_Pl 6.'1G'E+~'E'10"ø.6.),-óû^0 Jª0"-/ø.OR),M Y~< M
[ _bs^e jkiePpmeP_bfi[ fih}_bs^eq?eP_tx`acn wRfipc~_bfi>e +û.0"I¸),O104@A0)JI,-/N?N"+.'10R<*Mz0"0fyÀ3b÷RBE+.I¸0"þR6.@Aõ1ô/0*<*)JOE0?),I,-/6~'Eø.ôó0?ù¶6.N0")¸-/'1G1DEN"0"GTòRög ^!l N"6.' ò0M,0"0"'U6.M(6.'0ôó0@A0"'R),6~I,ö{M,+.ô/û6.ò1ô/0 1S+ Jõ1I,+.ò1ô/0"Á @ Jg-ó),O Vgih mgih mg 6~'EGoVg' l[ mgk l[ |r+.),O10I}Jg-óMz0*<>M,O+ g ^0l N"+.I,I,0"Mzõ+.'1GEM),O+ g'VIrjml¦ l[ § ÿ ml¦|r[ ù´+.I j=-/'l[Â),O10^ @A0"),I,-óNN"+.'10R÷ T O10"I,0"ù´+.I,0*<1),O10 @A0"),I,-/NN"+.'10 -/M(),O10 GED16.ôN+~'E0 )J+#),O10 N+~'E0 +~ùù¶06~Mz-óòEôó0 @ DEôó),-/N"+.@A@A+*G1-/)bö1+;JÐõ1I,+.òEôó0"@rM÷"B+.IL6GE0"),6.-óô/0"GM,),D1GEö?+.ùE),O1+.M,0°õ8+.ôóöR),+~õ80"ML6.'1G),O10"-/I 6~õEõ1ô/-óN6.)J-/+.'1M-/'N"+.@ òE-ó'E6~),+.I,-/6.ôC+.õE)J-/@A-/5"6.),-ó+.' J°03I,0"ù´0"I)J+ Ä8Å!®EÆcÇ È! 6~'EGÉM)ÊAnËEnÍÌdÇÅ!Í Î!b÷ Ï ÐÑë1ê*ð` ï ÑnÒÎÔì Ó#Lê ÕYÑ×ÖØÑê*ë1ð` ï ÙTÔì Ú'Û¸êRÔì ÜÑ
127
ÝmÞß
à8ámârã¾äåæçáèSäæé¦æå¾êìëîíLámâoíLçèSäïðè;ámñÔíeèSçäíeò
O10Aõ+.ô/ö*),+.õ80 -/M6 H GE-ó@A0'1M,-/+.'16.Ôô |Ô ^ õ8+~ô/öRO10"GEI,+~'oJg-ó),O² U 7 û.0I,)J-/N"0M?6.'1G -/M(6#õ+.ô/ö*),+.õ80+.ù),O10 M,6.@A0 GE-ó@A0'1M,-/+.'Jg-/),OîÈ UQ ù´6~N0"),M(-/'1MzN"I,-/ò0G-/' ),O10ND1ò80 ÷oÿ%0gO16oû.0 g-ó),Or0RD16.ôó-/)`ö +.'1ô/ö ù¶+.I È8÷SHb)©-/M©0"6.M,ö ),+3M,0"0),O16.)©),O10 7H H 7 H 7 -/ML),O10ªN"0'R)J0I+.ùEø.I,6ûR-ó)`ö?+.ù1aò8+.~ ),#O V U 6.'1Gd U 6~'EG-óML6.ôóMz+(),O10 õ+.-/'R) N"0"'R),0"I+.ù),O10M,õEO10"I,0+.ùI,6.G1-/D1M [ H 7 a g a ^!l JgOE0"I,036.ô/ô)JOE03ND1),Môó-/0*÷1&('*ö#ù´6.N"0") +~ùC),O10@A0"),I,-óNgõ8+.ô/ö*),+.õ80N+~'R),6.-/'1M©6ù¶6.N"0+~ùC),O10N"D1)õ8+.ôóöR),+.õ06.'1G¹),O10û.0"I,),-óN0"M©+.ù}),O10 N"D1)4õ8+~ô/öR)J+.õ806.I,0 û.0I,)J-/N"0M(+.ù),O10@A0)JI,-/Nõ+.ô/ö*),+.õ80*÷ Hb'Uù¶6.N")<)JOE0 N"D1),M46.I,0õ1I,0"N-óM,0ôóö )JOE0?-/'R),0"ø.I,6~ôWû.0"I,),-óN0"M+.ù)JOE0?@A0)JI,-/N?õ8+~ô/öR)J+.õ80*÷ T OE0?@A0)JI,-/N?õ8+.ôóöR),+~õ8?0 U JgI,6.õ1M),O10 N"D1)3õ8+.ôóöR),+.õ0 V U û.0"I,öU),-/ø~OR),ô/ö*÷ Hb'1G100"G<}-/'®6.G1G1-/),-ó+.'%),+)JOE0Aû.0I,)J-/N"0M<86.ôóô©0"G1ø.0M36.'1G ~ýù¶6.N"0"M(+. ù V 6.I,06.ôóMz+¹ù¶6.N"0"M+.ù <>ù´+~YI .ý\ù¶6.N0"M-/)-/Mù¶6.ô/M,0 ù¶+.I È8÷>&('RöÊk) J°+AND1),M 6~I,046.SG ¨,6~N0"'RU)ªò8+.)JOT+.r' V U 6.'1GÊ+.>' U U v -/'#+.),O10"I J°+.I,G1M U -/dM õaF=&)¿ 13,Qk,."%*%/=$'&)+ v )JOE6.)ª-/M< )JOE0 M,F.0"ô/0"),+.' +.ù),O10 N"+.'Rû.0þÊORD1ô/ô+.ù©-ó),M(-/'R),0"ø.I,6~ôû.0I,)J-/N"0M<>-b÷ 0*÷1),O10 MzF.0"ô/0"),+.' +~Gù V U <E-óM 6~'¹-/'1G1DEN"0"G¹M,DEò1ø.I,6.õ1O#+.ù}),O10M,F.0ôó0)J+.'¹+.ù}),O10@A0)JI,-/N(õ+.ô/ö*),+.õ80-ó),M,0ôóù,÷~ÿå0(I,0"N"6.ô/ô8)JOE6.) )JOE03MzF.0"ô/0"),+.'{+.ù6¹õ8+~ô/öR)J+.õ80 -óM(),O10ø~I,6.õEOù¶+.I,@A0GòRö#-/),Mû.0"I,),-/N"0"M6.'1G 0"G1ø.0M÷>ÿ OE-óô/0 )JOE0gGE-ó6.@A0)J0I,M+.ù8),O10N"DE)©õ8+~ô/öR)J+.õ806~'EGA),O10G1D16.ôE@A0"),I,-/Ngõ+.ô/ö*),+.õ80gMz6.)J-/M,ù´#ö q!g'V U lÔ[^ 6~'E²G q!giUö lI[
< J°0¸O16û^? 0 ù ÷ ³0gy ù 7 ÷ °-/û.0'64N"D1) q!g'X <)JOE0°}M Jg-/),N:O1-/'1ø I,0 10N"),-ó+.Ã' ¡4¢)a £ -ó¿¬M øG10ü1'10GÎòRö û [ U l ¡-¢![£ g l U JgO1a0"ú I,f0 û wix [ü^ wyx l -óù gih _'jml ×q!g'X l 6~'ErG û wyx [ wyx +.),O10"}I Jg-/M,0R÷8&M3),O10"Mz0 Mzö*@A@A0)JI,-/0"M3õ1I,0"Mz0"I,û.0 ),O10A6~;G ¨J6.N"0'1N"ö I,0"ô/6.),-ó+.'1M 6~'EG{),O10ôó-/'106.I-/'1GE0"õ80"'1GE0"'1N"ö*<16.ôóôù´6~N0"M+~ù U 6.I,0õ16.I,),-/)J-/+.'10"G-/'R)J+r+.I,ò1-/)JM+.ùLù´6.N"0"M 0 *DE-óû6.ô/0"'R)¸DE'1G10Iõ0I,@ DE)J6.),-/+~'EMg6.'1GT¸M Jg-ó),N:O1-/'1ø.M÷
U îV U T U | _S^ g tu l ?V U ó U J nô U2[ g _ _`` ` _ l
ÝmÞÝ
ý?íeèSçäï)íeòPáþGçÿí íeçèSäïðMáéçáñÔí
ÿå0(I,0"N"6.ô/ôEM,+.@A0I,0"MzD1ô/),Mâ+.'¹),O10û.0"I,),-/N"0"Mâ+.ù}),O10@A0)JI,-/Nõ8+.ô/ö*),+.õ80(6~'EGr),O10?ÆcÇ ÉG¾)ÊAË @)9)5P,.&)."YD+-,õ F=*2D39). *3D "%F=$'*÷ T OE0rN"D1),M6.I,0r)JOE0r+.'EôóöU-ó'R),0"ø.I,6.ô©û^0"I,),-óN0"M+~ù U ÷i&(ô/ôR+.),O10"I©û.0"I,),-óN0"¾M Jg-/),O 6.I,0°'1+.)Lù¶DEôóô/ö ù¶I,6.N"),-/+.'16.ôR6.I,0°Mz+.ý\N"6.ôóô/0"r G "%$A,( ,B&)+=*'"%* .1¸,B9).1
ª½ [o_bfiam[^e§eP~lªeP_lJp\º +~ùL6 û^0"I,),0"þ¹+~ù U 7 ÷ ñ +.'EM,-óGE0"Ig)JOE0?ù´+~ô/ô/+SJg-/'1øA)'Jª+A@A6.õ1õ1-/'1ø.M 128
H s 'g t u l üH s 'g tu l
=g l
H s 'g t u l üH s kg ut l
g l g l%wyx?[ wyx g l w U [^ w g l U [{^S`
7
ù¶+.I 9 7:9 7 9 7:9 ù¶+.I 7P9 7P9 O10gû.0"I,),-/N"0"M 6.'1G 7 6.I,0gN"6.ôóô/0"GA)JI,-/ûR-ó6.ô10"þR),0"'1Mz-ó+.'1M+.ù ÷ +.),0¸)JOE6.) 7 ÷ b'r+~),OE0"I °+~I,GEM<),O10'E0 Ìû^0"I,),-óN0"M©6~I,0)JOE0¸ù´D1ô/ôóöù´I,6~N)J-/+.'16.ôE+~'E0"M÷ OE0 7Q QH ýûi6.ô/D10G ù´D1ô/ô/ö®ù¶I,6.N"),-/+.'16.ô¸û.0"I,),-/N"0"M6.I,0 ª0ôóô°M,),D1GE-ó0G 6.'1GÌ-ó'EN"ô/D1G10T)JOE0Ê6.'R)J-/N"DE) H +~I,òE-ó)¹ù´+.I,@A0"G òRöÌ)JOE0 7 ý 7 ÷ bù -óMr6%N"+.'1'E0"N"),0"GÌø.I,6.õ1O< ª0TG10"'E+.)J0TòRö -/)JMrõ1Q 6.),O @A0"),I,-óNRQ < gO10"I,0 -/Mr),O10 ôó0'1ø.)JO +.ù36ÌM,O1+.I,),0"M,)TõE6~),Où´I,+.@ r),+ -ó' ù¶+.I ÷ O10"' -/MN6~ô/ô/0"G ),O10 6.'1G H ÷^&('RöAû^0"I,),0"þ¹+~ù +.ù)JOE04ù¶+.I,@ Îù¶+.I¸M,+.@A0(ø.I,6.õ1OÊ-/M°N6~ô/ô/0"G ª04M,0") 6 ¸û^0"I,),0"þC<1M,0"0 BL-/ø÷ ù¶+.I)JOE03ø.I,6.õ1OEM+.ù #ø~I,6.õEO1-/N Q 7 QH ý\û6.ôóDE0"G{û.0I,)J-/N"0M+~ù R÷ (+.)J03),O16.)ù´+.Ig6.'Rö#N+~'E'10"N)J0G{ø.I,6.õ1O < °03O16oû.0 6~'EG®),O16.)6.'Rö Q 7 QH ý\û6~ô/D10GÐû.0I,)J0þU+~ù -/M ´D1õÐ)J+M g-/),N:O1-/'1ø ø.I,6.õ1OE-óN*÷ 0)),O10 GE0"'1+.),0"M#)JOE0{'RD1@ò80"I¹+.ù4ù¶6.N"0)JMrN+~'R),6.-/'1-/'1ø®),O10 û.0"I,),0þ 6~'EG ),O10 GE0"'1+.),0"Mr),O10 'RD1@ò80"Ir+~ù?û.0"I,),-óN0"M¹6.G J6.N"0'R)A),+ ´-t÷ 0*÷Lù¶+.I,@A-/'1ø®6.' 0"G1ø.0 g-/),O ÷ OE03ù¶+.ô/ôó+ g-ó'EøA-óMgMz)JI,6.-/ø.),ù¶+.I ª6.I,G{)J+Aõ1I,+oû.0*÷ bN"G &(G bN"G bN"G &(G &G V1-/'1N"0 Q Q 6.'1G X X <W),O10#û.0"I,),-/N"0"M+.ù Q 6.'1G X 6.I,0¹@A6.GE0r+.ù 6.'1G N"D1),M ù´+.I,@A-ó'Eø +.I,ò1-/)÷ O10 åû^0"I,),-óN0"M +.ù ; 6.I,0 N"DE)JMA6.'1G 6~'R),-/N"D1),M<-b÷ 0*÷ó< ù¶+.I,@ +~I,òE-ó),M÷ O10å@A0"),I,-óNåõ8+~ô/öR)J+.õ80 UO16.M û.0"I,),-/N"0"Mo<©M,00 b<©õ16.I,),-ó),-/+~'E0"G -ó'R),+ +.I,ò1-/),M WN"DE),M<W6.'R),-/N"D1),M 6.'1G +.I,ò1-/)+.ù¸),I,-/û*-/6.ô°0þ*),0"'EM,-/+~'EM 6.'EG #O16.M rû.0I,)J-/N"0M
7
jf~Ãa ^ l%wyxz[ wyx ^?~ h¦ h l w U [ | w ~ ~oa ^ l U [ eg g g lÔ[ T
¡ U £ geg l}l ;H l IJ l J T 2J g _ l î U O)& ."%,D Fe"C1q! gkX l2[ g ^;_```<_ ^!l q!g'X l IH P [ g Z U_Pl J ! J "!Ggih _'jml h f $ h # %¾g'(! [üj Z "%$AU ,&)5PT * "%* & *) g(!Ygih _kjml !Ggih _ml !Gg j0_<l K;h _'j0j _ o l $9 »P l[ U J ! ! [ + -¡ ,(.0£ (! >/e$µ&<7N),BD ¾ #g l %¾g! ^ / 0 Ã [ g Z U_6l LJ _ 1 lI~ R g a ^!l U 2g }J Eg _ l l ,.D ,B@!* .D33 * 2SD35@ 4
&)6@ S&)D3* .D 7 : 2SD38@ 4 S¨
g ?J ;J }J
l T ðèSámñcámòäçäáåEßm* Þ 9 N)*(* $A"%,BD3* 1G9 »d"%N)*d5P* "%$A,D¦79!+-:;"%9<7=*c &)$'*¦7=&)$A"%,"%,B9).*3@f,."%9>9)$AQ ¼,B"%1>9 »,B"%1>13:;565P* "%$A:f/=$'9)F 7:<;* " ¼3*î&²( * $A"%*µÍ9 » U = U H >4¬,B"%1>,.D ,B@)*.mD3* = S¨ 4 ,"%18&)?@ &)D3* .D : =A@ 4Ã"%N)*29)$A¼ ,"Ô/e* .* $'&)"%*3@r¼ :î"%N)*&)D "%,B9).9 »?÷ ³0gy U l 9). = &)." @ B "%N)* D3&).9!.,BD3&)+$'*µ7$'* 1¸* ."%&)"%,B( *9 » @ 4C: 9 N)*.8H D4 [ H <4 E = S¨ 4 [ ;¨ 4 E &).@ @ 4 F [ @ 4CE : 8 [ V à [ V à ¦È HG 2 0 T ^ T J^ I L K EJ^ I G! ø È!È r SK M 6À ø v ²L ^ G0È!| # 0 S K e ^ ;#g _ l T ø ^ J ^ OÀ 2J ;¨
[ _bs^e jkiePpmeP_bfi[ fih}_bs^eq?eP_tx`acn wRfipc~_bfi>e W Ç*ÃXZY\[RÉ ©s^e áiÚâfixbÑ^am_b]©fih}«iePxb_bamnPeP]©fih}Ó Ü xbÑ*ac_A]3_ ^ S ] _^ ] _^ u ] _o^ n ]3_o^ q ]3_ ^ U ]3_o^ r ]3_o^ s ]3_o^ t ]3_o^ u ] _ ^ wv ] _ ^ 6 ] _^ u ] _^ n
}fi_"lJp
©| lJ[^fi[^amn~lJpxbeP^xbeP]`eP[o_"lJ_bam«ie¸«iePxb_bePËaQ` b c?dfe _ ^ S g eVh _ ^ S j àá(kÁkPàCá(kÁk,àC(á kÁkPàCá(kÁk´àCàCkÁk\àCàCkÁk,àCá(kÁkPàCá(kÁk,àCá(kÁkPàCá(kÁk,àCá(kÁkPàCá(kÁkzàCá(kÁkzàCá(kÁkzàCá(kÁkzàCá(k\kzàCá(k´kzàCá(k\kzàCá(k´kzàCá(k\kÁà0à0l l áJÙ0à1m Ø ØiØ?Ù0miÝi× Ýi× ¦ j (á kP(á k,(á kP(á k´Cà kP(á k,(á kP(á k,(á kP(á k´Cà kP(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kzpá l Ù>Ø ØpmJÙ ¦ j (á kP(á k,(á kP(á k,(á k\Cà k,(á kP(á k,(á kP(á k,(á kP(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kzpá l Ùià Þi×iÚ ¦ j (á kP(á k,(á kP(á k,(á kP(á k,(á kP(á k,(á kP(á k,(á kP(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kz(á kzpá l ÚiØ ßpmi× ¦Y j (á kP(Ý k,(Ú kP(á k,(Ý kP(á k,(á kP(Ý k,(Ý kP(á k,(Ý kP(á kz(á kz(Ý kz(Ú kz(Ý kz(Ú kz(Ý kz(á kz(Ý kzpá l ÚJà mi× · j (Ý kP(á k,(á kP(á k,(á kP(Ý k,(Ý kP(á k,(á kP(á k,(á kP(Ý kz(á kz(á kz(á kz(Ý kz(á kz(á kz(Ý kz(á kzpÝ l Ýiß ØiÞ »Y j (á kP(á k,(á kP(á k,(á kP(á k,(Ý kP(Ý k,(á kP(á k,(á kP(Ý kz(á kz(á kz(á kz(á kz(á kz(á kz(Ý kz(Ý kzpÝ l Ýi× Þi× ¦Ü j (á kP(Ý k,(Ú kP(Ý k,(á kP(Ý k,(á kP(Ý k,(á kP(Ý k,(á kP(á kz(Ý kz(á kz(á kz(á kz(Ý kz(Ý kz(á kz(á kzpá l ÝiØ ÚJà Y» jj (Ú kP(Ý k,(Ú kP(Ú k,(á kP(á k,(á kP(Ý k,(Ý kP(Ý k,(Ý kP(Ú kz(Ú kz(Ú kz(Ú kÁCÙ kÁCÙ kz(Ý kz(Ý kÁCÙ kzpÝ l ÝiØ ÝiÞ ¦YY j (á(á kPkP(á(Ý k,k´CÙ (á kPkP(á(Ý k,k,(á(Ý kPkP(á(Ý k,k,(Ý(á kPkP(Ý(Ú k,k,(á(Ú kPkP(á(Ú k,k,(á(Ú kPkP(Ý(Ý kzkz(á(Ý kzkz(á(Ý kzkÁCÙ (á kzkz(Ý(Ý kzkz(á(Ý kzkz(á(Ý kzkÁCÙ (Ý kÁkzCÙ (Ý kÁkz0Ù pÝ ll ÝiÝiÚÚ pÚÝJÙ m xY j (Ý kP(Ý k,(á kP(á k,(á kP(Ý k,(Ý kP(á k,(á kP(á k,(á kP(Ý kz(á kz(á kz(á kz(Ý kz(á kz(á kz(Ý kz(á kzpÝ l ÝiÝ Ù>× ¦j
129
i ]3_ ^ S i
J× Ù Ý?ÝJÙià ×?ÞiÝJà á?ÚJÙiÙ ×JÙ ÝJà¹ái×Jà ÝiÚªàiÙià Ù?Ù>ßJà Ùià¹ÚiÝJà ái×?áiÝiß Ùià¹ÚiÝJà ßJà¹×JÙià Ùià¹ÚiÝJà ÝiÞiØ?ßJÙià
y 9). *3D "%F=$'*zOQ:d G!&('Rörû^0"I,),0"þ#+.ù)JOE0?@A0)JI,-/N3õ8+.ôóöR),+~õ80-óMg6.G;¨J6.N"0"'R)g),+A6AN"DE)i÷
ñ +~;' ¨J0"N)JDEI,0 D1'1GE0"I,ô/-ó'E0"M),O10â0"þR)JI,0@A0ªN"+.'1'10N"),-óûR-/)bö4+~ù1),O10ªN"DE),M÷<s0"N"6.ô/ô^),O16.)),O10âND1),M ù¶+.I,@ 6TN"ô/-y*DE^ 0-/'Uò8+.),OU),O10N"DE)(6.'EGU@A0)JI,-/Nõ+.ô/ö*),+.õ80"M÷ T OE0"I,0"ù´+~I,0R<-óù ñ +~';¨J0"N)JDEI,0 ^ O1+.ôóGEM
'5V ),O10g6.ôóø.+.I,-/)JOE@æN"+.@Aõ1D1),0"M),O10N"6.'E+~'E-óN6.ô>I,0"õEI,0"M,0'*),6.),-óû^P0 B '5V <0"'RDE@A0"I,6.)J0M-/),M '10"-/ø.ORò+.I,OE+*+*G ¤ 45E oZ'?z<^-/G10"'R),-/ü10"Mª'E0 J +.I,ò1-/)JM¸N"+.'R)J6.-/'10"G#-/' ¤ 45E oZ'?z<^D1õ8G16.),0"M°)JOE0(ôó-/M,) +.ùN6~'E+.'1-/N"6.ôCI,0"õEI,0"M,0'R)J6.),-/û.0"M¸6.'EG{),O10"'{õ1-/N:F*MgDEõT),O103'10"þR)gN"6.'E+~'E-óN6.ôCI,0"õEI,0"M,0'*),6.ý )J-/û.0r-/' JgO1+.M,0¹'10"-/ø.ORò8+~I,OE+*+*GÐ-/M 'E+~)ö.0") N"+.@Aõ1DE)J0G÷ T O10¹6.ô/ø.+.I,-ó),O1@ ),0"I,@A-/'16.),0"M JgO10"'),O10I,0-/M'1+r@A+.I,0M,DEN:ON"6.'1+.'1-/N"6.ôI,0"õEI,0"M,0'*),6.),-óû^03-/' 6~'EG+.D1),õ1DE),M ÷1VE-ó'EN"0 )JOE0?M,F^0"ô/0"),+~'{+.ù6Aõ+.ô/ö*),+.õ803-/MN"+.'E'10"N)J0G<*),O1-/M6~ô/ø.+.I,-ó),O1@ üE'1G1M6.ôóô+.I,ò1-/),M÷
130
½ª[o_bfiam[^e§eP~lªeP_lJp\º
$A¼ ,"%«Ô,13*z.Fe5P*$µ&!"C,9).Pd+ /=9)$A,"%N)5 ãÔíäBå
f8V v
ü1'1G{6.'T-ó'E-ó),-/6.ôWû.0"I,),0"þ N"+.@Aõ1D1),0?),O10?N6~'E+.'1-/N"6.ôWI,0õ1I,0"Mz0"'R),6~),-/û.0 B f8V +.ù),O103+.I,ò1-/) @ 4 E Zf6 v @A6~I,F B f8 Jg-ó),îO | v > '10-óø.ORò8+.I,O1+*+*G{'E+~)ö.0")¸N+~@rõ1D1),0"G J -ó'E-ó),-/6.ôó-/5"0"GT),O103ôó-/M,)g+.ùN6~'E+.'1-/N"6.ôCI,0"õEI,0"M,0'R)J6.),-/û.0"M K [\ B f8V b v þ B w ê¾á ÿ¾äéí N"+.'R)J6.-/'1M86 |~ý@A6~I,F^0"G{û.0"I,),0"H ãcímäå N+~@rõ1D1),0?)JOE0?'E0"-óø.ORò8+.I,O1+*+RG ¤ 45E S+.ù B w v + B þ áè 0"6.N:OÊû^0"I,),0"þ 6.SG ¨,6~N0"'R)¸),* N"+.@AõED1),03)JOE0?N"6.'E+~'E-óN6.ôCI,0"õEI, 0"w M,0'*),6.),-óû^0 B +.ù),O10?+.I,òE-ó) @ 4 E v F B Jg-ó),2O |A6.'1G K [ \ B b v íLå¾ê¾äBþ v äþ B # )JOE0"'@A6~I, íeå¾êþ áè v @A6.I,F B Jg-/),O ^ v > 'E0"-/ø.O*ò8+.I,O1+R+*G{N"+.@Aõ1D1),0"G Jv íLå¾ê ÿ¾äéBí v w M,+.I,) òRö#G10"NI,0"6.M,-/'1øAû6.ôóDE0"M+~ ù 2 D3@45E S,<*G10N"I,0"6.M,-/'1Pø @? 4 E S 6.'1GT-/'1N"I,06~Mz-ó'Eøù @ 45E Sµù v +~DE),õ1D1) v íLå¾êÞ ¡ íLâÃâoæ²ßÞ ;I* "Ô÷ ¼3*î"%N)*.Fe5P¼3* $>9 »9)$A¼ ,B"%1 = HbN"G 4 E Sf&).@Ê&(SG ¨ 48E S "%N)*,B.D ,@)* .D3*î&).@
"%N)*&)@? &)D3* .D :Í9 »"%N)*¬9)$A¼,B" @ 4 E Sz» 9)$Ph [ ^;_```<_ ÷¢: 9 N)*o.* , /=N)¼39)$AN)9 9 @ì* .F=56* $'&)Q "%,9).o1¸F=¼ $'9)Fe"%,B.*#,1D3&)++-*3@*µ=&)D "%+4:?÷]"%,B56* 1&).@*3&)D Nî.* , /eN)¼39)$AN)9 9 @,B1G/=* .*$µ&)"%*3@¼ : H <45E SÔ»S&)D3* "%1 : 9 N)*D3&).9).,D3&)+c$'*µ7$'* 13* ."%&)"%,( *2D39)5G7F="%&)"%,9).®13Fe¼ $'9)F="%,.*,1fD3&)++4*3@Ã*µ=Q &)D"%+-: 45E S ;¨ 45E S "%,B56* 1 :
bN"G £
&G
* 5P&)$J¤zOQ: kJ ^ T
÷ 1O 0¸+.I,ò1-/) g-/M,0°0'RD1@A0"I,6.),-/+~' 6.ôóø.+.I,-/)JOE@õ80"I,ù´+.I,@AM÷ N"ô/6~MzM,-/Nªû.0I,)J0þ30'RD1@A0"I,6.),-/+~'EM ù¶+.IMz@A6.ôóô/0"I M,DEò1ý\õ8+.ôóöR),+.õ0Mg´+.'10rù´+~I0"6.N:OÐ+~I,òE-ó)+.ùg'10"-/ø.ORò+.I,OE+*+*G1M l -/'1M,),0"6.GÎ+~ù õ80"I,ù¶+.I,@A-/'1ør+.'10?ô/6.I,ø.0?N"ô/6.M,M,-/N3û.0"I,),0"þ#0"'RDE@A0"I,6.),-ó+.'og¶),O10JgO1+.ôó0õ8+~ô/öR)J+.õ80 ÷ ÷ T O10{N"+.@Aõ1DE)J6.),-/+~'Ì-/Mr-/'1G10õ0'1G10'R)A+.ù(),O10TN:O1+.-/N"0T+.ù),O10-ó'E-ó),-/6.ô¸û^0"I,),0"þ l f8 ÷ &(@A+~'Eøå),O10ÊFR'1;+ Jg' û.0"I,),-óN0"M +.¦ù U v 6.'Ì0"6.M,öÐN:O1+.-/N"0Êù´+~I f8 -/MA)JOE0Ê6.'R)J-/N"DE) H g ^S_```<_ ^!l ÷ q! gf¥ ÷ Hb' N"lÔ6.[ M,0 Q +.ù? û^0"I,öÌOE-óø.O GE0"ø.0"'10I,6~Nö>
[ _bs^e jkiePpmeP_bfi[ fih}_bs^eq?eP_tx`acn wRfipc~_bfi>e ù R ù 7k÷ T O10"'<ù´I,+.@ )JOE0A@A6.),I,-óþ?@?i<J°0AN"6.'åD1M,DE6.ôóô/öUø~0)?),O10rM,-/5"0 +.ù°),O10 +~@ ),OE 0"¡-¢!I°£ +~I,[ òE-ó),MgUD1 M,-/'1ø)JOE0(ù¶+.ô/ôó+;Jg-ó'Eø0"6.M,örI,0"ô/6.)J-/+.' K?@? 4 E S 9 4 E © ¨2ù @ 48E S}ù [ ?@? 4 E © 9 4 E S ¨2ù @ 4JE © ù/÷ V10"0R<}ù¶+.I30"þR6.@Aõ1ô/0*< T 6~òEôó0fîJgO10"I,0r)JOE0r+.I,òE-ó') Jg-óMz0 6.SG ¨,6~N0"'1Nöå),6~òEôó0A-/Mø.-óû^0"'%ù´+.I),O10 @A0"),I,-óNrõ8+.ô/ö*),+.õ80¹+.'©À '1+*GE0"M÷ T O10rüEI,M,) I,S+ Jú+.ù T 6.òEôó>0 ôó-/M,),M+.I,ò1-/k) Jg-/M,0 ¤ 4 E v )JOE6.) -óMo
131
]3_ ^ 3] _ ^ u 3] 6_ ^ n ]3_o^ q 3] _ ^ U ]3o_ ^ r 3] o_ ^ s 3] o_ ^ t ]3_o^ u 3] _ ^ wv ]3_ ^ 6 3] _ ^ u P] _ ^ n ] _ ^ ×iÚ im ßJà Ú4ØiÞ,à Jm Ù>Ø Øi× Þ?Øi×Jà تÙiàià á?áiÝJà ×1miÚJà Ý?ÞiÞiÝ ×1miÚJà áJà?à>ßJà ß?ßiÝJà ] _ ^ u Ýiß ÝJÙ áiÚiÝ Ù>Ø Ú áiß à áiÝ à Úi× ÞiÝ áJà>ß áiß ] _6^ n ÚJÙ ÙiÙ áiÝi× Ù>Ý Ù ×Jà Ù>ß ß Ù>ß áiÝ Ù>ß Ù>ß ÞiÝ ] _6^ q Ù>Ø ÞiØ ÝiáJà ÝJà Ú ×Jà à ÝJà à ×Jà ×Jà áißJà ÚJà ] _ ^ U Øi× áJà>Ø Ù>ÝJà ×iÚ à à à à à ÝiØiÝ à à à ] _6^ r ÝJÙ Ý ÝJà Ù à ß ß Ý Ù à ß ß ß ] _6^ s áiØ à áJÙ à à Þ Þ à Þ à à à Þ ] _6^ t ái× × áiÝ × à m à à à à m áiß à ]3^ áiá à ß à à Ý Ù à à à á à Ù ]3_ ^ _6 wu v áiá Ø Ø Ø á à à à à à à à à ]3_ ^ 6 áiá Ù ß Ý à Ù à á á à à Ù Ù ]3_ ^ u ß Ú Ù Ú à Ý à á à à Ý à á ]3_ ^ n áJÙ á áiÝ á à Ù Ù à Ù à Ù Ý à
g ^S
ØiØ?eVÝih _ Ýi× 0Ù mi× pØ mJÙ Þi×iÚ pß mi× mi× ØiÞ ÞiÚJà × ÝiÞ ÚpÝJÙ m Ù>×
O104+.D1),õ1D1)<*)JOE6.)ª-/M<*),O104ôó-/M,) +~ùN"6.'E+~'E-óN6.ô}I,0"õ1I,0M,0"'R),6.),-óû.0MzB ù¶+.Ih W<W-óM0"þR)JI,0@A0"ô/öåN"+.@Aõ16.N")÷C&(õ16.I,) ù¶I,+.@ û.0"I,),0þå0"'RD1@A0"I,6.),-/+.'
* 5P&)$J¤zQ: T ^S_```<_ ÷ ®??@
ª½ [o_bfiam[^e§eP~lªeP_lJp\º M,0"0E ^ 3ù¶+.IT6 GE0"),6~-/ô/0"G õ1I,0"Mz0"'R),6~),-/+.' +.ù3),O10®@A6.-ó' û.0"I,),0"þ 0"'RD1@A0I,6.)J-/+.' @A0"),O1+RG1M÷ 0 -/M RD1-/),04GE0"ø.0"'10I,6~),0fg´)JOE0(N"D1)¸-/'1N"-/G10'1N"012 D3@ ¡4¢)£ U -óM T O10(@A0)JI,-/N4õ8+~ô/öR)J+.õ8M @ DENPO ôó6.I,ø.0"I),O16.'),O10¸G1-/@AU 0"'1Mz-ó+.' [ UH l ÷ T ORD1MIJª0¸N:O1+R+~Mz0°6~'A-ó'EM,0"I,),-/+~' 6.[ ôóø.+.I,-/Q )JOE@ ù¶+.I¸),O104'E0"-óø.ORò8+.I,O1+*+RGT0'RD1@A0"I,6.),-/+~'TM,D1òEI,+.D1),-ó'EL0 K^),O180 V8L hJ±ª-ó@AõEô/0"@A0"'R),6.)J-/+.'Ê+.ù),O10 G1+.D1ò1ô/0GE0"M,N"I,-/õ1),-/+.' @A0)JOE+*G ø b÷IHb' )JOE0{I,0"@r6~-/'1GE0"IÔ< Jª0{6.ô J°6öRM¹6.MzM,D1@A0),O16.)¹),O10 '10"-/ø.ORò+.I,OE+*+*GÐ0"'RDE@A0"I,6.)J-/+.'®M,D1òEI,+~DE),-ó'E0r-/Mõ80"I,ù¶+.I,@A0"GÐòRöå6~'Ð-ó'EM,0"I,),-/+.'%6.ô/ø~+.I,-/),O1@ ÷ Hb)J0@ +.ù s0"@A6.I,F ^ -/'1GE-óN6.)J0Mg)JOE6.)g0"û.0"'Ê),O103'10"-/ø.ORò8+~I,OE+*+*GEM¸+.ùOE-óø.O1ô/ö¹GE0"ø.0"'10I,6.)J0 õ+.ô/ö*),+.õ80"Mâ@A-/ø.O*)©ôó-/0ò80"ö.+.'1Gr),O10¸I,6.'Eø~0+.ù8õ1I,+.ò1ô/0"@AMâN"DEI,I,0"'R),ô/öMz+.ôóûo6.ò1ô/0gòRö -/'1Mz0"I,),-ó+.' 6~ô/ø.+.I,-ó),O1@rML÷ Hb'{VE0"N")e÷ È8÷ 8e< J°0?õ1I,0"Mz0"'R)¸OE0"D1I,-/M,),-/N"Mg6.GEG1I,0"MzM,-ó'EøA),O1-/Mg-/M,M,DE0*÷ 132
²mÞß ³
à8ámå´<íLï)綵è;íîámåEçÿ¾í·¢¸míeéBíeçámå]ámþçÿí íeçèSäïîðYámé çámñÔí H PÆcÇ 'ÉMLÊAË S¨ SJ ^ J K U Y U >ù- U ù [ @? ¡4¢)£ fJ ;J 2.9PD Fe"%Qk13*"D39).S*3DQ T "%Fe$'*GJ 8ÆcÇ µÉM)ÊAË S¨
bù),I,DE0*<>),O10 ñ +.' ,0"N"),D1I,0 ª+.D1ô/G{ø.-/û.0)JOE03ù´+.ôóô/+ g-/'1ø¹N"+.@Aõ1DE)J6.ý )J-/+.'16.ôR-/@Aõ1ô/-/N"6.),-ó+.' )JOE0°0"'RDE@A0"I,6.)J-/+.' +.ù),O10°0þ*),I,0"@A0°I,6oö*ML+.ù ø~-/û.0M6.ôóô1),O10°+.I,òE-ó),M +~ùL)JOE0 ÷RV1-/'1N0?),O103'RD1@ò80"I¸+.ù0þ*),I,0"@A03I,6öRMg+.ù),O10?@A0)JI,-/N?N"+.'10 @A-óø.OR)(ò0 6#ô/6.I,ø.0 ù´I,6.N"),-ó+.'U+.ù©),O10'RD1@ò80"I(+.ùû^0"I,),-óN0"M4+.ù©)JOE0@A0"),I,-/N õ8+.ôóöR),+~õ80*<8),O10 N"+.@Aõ1D1),6.),-ó+.'E6~ôø~6.-/' ª+.DEôóGAò80ô/-/@A-ó),0"G÷ OE0"I,0"ù´+~I,0R< °0gõ1I,+.õ8+.M,06 gO1-/N:O N"6.' ò0 M,0"0'6.M4N"+.@AõEôó0@A0"'R),6~I,öT),+#)JOE0 ÎN"+.' J0N"),D1I,0 ò+.),O{ø.I,6~õEO1-/N"6.ô/ôóö#6.'1GTN+~@rõ1D1),6.),-ó+.'16.ô/ô/öR÷ y 9). *3D "%F=$'*zQ:¸BE+.I ¿ <8),O10I,0"Mz)JI,-/N"),-/+.'U+.ùâ),O10 M,F^0"ô/0"),+~'å+~ùâ),O10@A0)JI,-/N õ8+~ô/öR)J+.õ80 U ),+ ),O103'1+.'1ý\ND1)a û.0"I,),-óI N0"Mg-óMN+~'E'10"N)J0G÷ BE+.I36.'Rö õ16.-óI+.ùªû.0"I,),-óN0"M< JgOE-óô/0 ñ +.;' ¨J0"N)JDEI,0 ^ -ó@AõEôó-/0"M3),O16.)3),O10"I,0A-/M36{õ16.),Oå@A6.G10 +~ùND1),M ¨,+.-ó'E-ó'Eø ),O10@ < ñ +.S' ¨,0"N"),D1I,z0 A@A06~'EMg),O16.)¸),O10"I,0?-/Mg6õE6.)JO{@A6.G104+.ù'1+.'Eý\N"D1),M û.0"I,),-óN0"¾M ¨J+.-/'1-/'1ø),O10@ L÷ Hb'T+.)JOE0"¦I J°+~I,GEM<^),O103N"D1)¸û.0"I,),-/N"0"M J°+~DEôóGÊù´+~I,@ r6 @)9)56,B.&)"%,.;/ 1¸* "~ò1D1)'1+.)8 6 D Fe"CQ 13* "o-/' ),O10ªMzF.0"ô/0"),+.' +.Lù ÷ ' ),O10ª+.),O10"IO16.'EG< JgO1-/ôó0 ñ +~;' ¨J0"N)JDEI,0 @A0"6.'1M),O16.)),O10â0"'RDE@A0"I,6.),-ó+.'3+.ùR),O10â@A0)JI,-/U NâN+~'E0 U -óM0"'1+.D1ø.O),++.ò1),6.-ó'),O10â@A0"),I,-/N^ õ+.ô/ö*),+.õ8z0 U v ñ +.;' ¨J0"N)JDEI,0 A@A0"6.'1M),O16.G) J°04N6~'+.ò1),6.-ó2' U Jg-/)JOE+.D1)0"'RDE@A0"I,6.)J-/'1ø ¤ ¡ ¹3£ <°M,0"0åV10N")÷ È8÷ 8º÷ (+.),0å),O16.){ù¶+.IT6.I,ò1-/),I,6~I,ö ø.I,6.õ1OEM{),O10"M,0%6.I,0åNôó06~I,ô/ö -ó'EG1U 0"õ8[ 0"'EG10"'R)e÷ p¸+.),OT6~I,03Mz)JI,+.'Eø~ô/ö#ò0ôó-/0"û.0GT)J+rò803)JI,DE0?6~'EG{O1+.ô/GTù¶+.I a~ À.÷ ²mÞÝ »îíµ¾èSäòçäïQ¼A·½¸ äñ¾ñäå½*»îäÿF¾2ímíeå¾íLèSæïQ
bù ñ +.'S¨,0"N"),D1I,0? O1+.ô/G1M<*6.ôóôW+.I,ò1-/)JMgN"6.'Êò804ù´+.D1'1GTòRö¹),O104ù´+~ô/ô/+SJg-/'1ø @A0)JI,-/N4N"+.'10?MzF*-/õ1ý õ1-/'1ø#O10D1I,-/M,),-óNeKEG1-/M,I,0"ø.6.I,G¿ B -/ùÀ B [ q!g'X l ÷Hb' +.),O10"IzJ°+.I,G1M<EG1-/M,I,0ø~6.I,GU)JOE0 '10"-/ø.ORò+.I,ý O1+*+*G+.ù>)JOE0ND1),M<:),O16.)-óMo<:0M,M,0'*),-/6.ôóô/ö(),O10©@A0"),I,-/N©N"+.'10G U ÷ T O1-/M'10"-/ø.ORò8+~I,OE+*+*G-/Mò80"ý ôó-/0"û.0G),+(ò80ªòRö?6ô/6.I,ø.0ª@A6~I,ø.-/'),O10°ôó6.I,ø.0"M,)
'5V 6.'1G%@A+RG1-/ù¶öR-ó'Eø )[email protected]/'®ôó+R+~õÐ+.ù°),O10r+.I,ò1-/k) Jg-/M,0r0"'RD1@A0I,6.)J-/+.'%6.ô/ø.+.I,-ó),O1@ -/' )JOE0?ù´+~ô/ô/S+ Jg-/'18ø J°6ö K H
[ _bs^e jkiePpmeP_bfi[ fih}_bs^eq?eP_tx`acn wRfipc~_bfi>e Å
* "%$A,D
y 9).*zƤ, 7)7,.;/\ÇP*F=$A,B1¸"%,BD äþ B # )JOE0"' K [ \ B b v äþ 2 D3@84 U ),O10"'{@A6~I,FB 0"ô/M,03@A6~[ I,F B Q Jg-ó),O| v íeåê¾äþ v
g-ó),O J
133
^
íeåê¾äþ v
BE+.I?),O10A@A0"),I,-óN +.'ÈGÊ'E+*G10M<mJgOE-óô/0P?@? ¡4¢)£ ¿ ^!^ ÎY I Î ø GÉGÊý¸-b÷ 0R÷¾À ` ÀÉÊ+.ù©),O10A),+~),6.ô 'RD1@ò0I¹+.ùû.0"I,),-/N"0"M#+.?ù / ý ),O10U0"'RDE@A0"I,6.)J-/+.' +.ù?),O10U+.),O10"I ø 0 '10"-/ø.ORò+.I,OE+*+*G1M ø~0'10"I,6.),0"2M gBJ¸-/),O®@D1ô/),-óõEôó-/N"-/)bö l 45E S6Ä Ã ¡4¢)£ ?@? 48E S [ À G!|>À ^!^ û.0"I,),-óN0"Mý-b÷ 0R÷Cô/0"M,M ),O16.' | ` | ø Ê+.ùª),O10A)J+.),6.ôL'RD1@ò80"I?+.ùªû.0I,)J-/N"0M÷ 'E0 N"6.'%0"6.M,-/ô/ö ø~0)4),O10 'E0"-/ø.O*ò8+.I,O1+R+*G®+~ù )JOE04N"DE)gù¶I,+.@ )JOE04+.I,ò1-/k) Jg-/M,0?6~;G ¨J6.N"0'1N"ö¹),6.ò1ô/10 @?÷ T 6.F*-/'1øA)JOE04N"+.ô/D1@A'T6.'1GT),O10?I,+SJ N"+.I,I,0"M,õ8+.'1GE-ó'Eø?),+?)JOE0¸N"DE),ML6.ÔM Jª0¸O16oû.L0 K(?@? ¡-¢!£ 9 48E S ¨ U 7 [ ?@? 45E S 9 ¡4¢)£ ¨dù @ 48E Sµù0JgO10"I,0 ?@? 48E S 9 ¡4¢)£ -óMg),O103'RD1@ò0I¸+.ùN"DE),Mg6.;G ¨J6.N"0"'R)g)," + B w ÷ * ¬«I9)F=+4@¬¼3*O&¬D3*$A"C, ËD3&)"%*O"%N)&)""%N)Í * Ì Å * "%$A,BD ðèSámñcámòäçäáåEÝmÞ 2»²"%$
'10N"6.'åù´D1I,),O10I(G10"NI,0"6.M,0),O10N"+.@AõED1),6.)J-/+.'å),-ó@A0òRö{M,FR-óõEõ1-/'1øT'1+.)(+~'Eôóö)JOE0+.I,ò1-/) g-ó),O ),O10°OE-óø.OE0"M,)-/'1N-óGE0"'1N0?g´)JOE0ªN"D1),M l ò1DE)6.ôóô>+.I,ò1-/)JMJg-ó),O6.I,ò1-/),I,6.I,-óô/ö3M,0")-/'6.GEû6.'1N"0 D1õ1õ80"I°ò+.DE'1GT2SD3@ 8Ð +.'#),O10(-/'1N"-/GE0"'1N"0R÷~VEF*-/õ1õ1-/'EøOE-óø.O#G10"ø.0'10"I,6.N"örN"+.'1Mz-óMz)JMªMz-ó@AõEôóö -ó' )JOE0åù¶+.ô/ôó+;Jg-ó'EøÌ@A+*G1-/ü1N"6.),-/+.' +.ù),O10%@A6~-/' ôó+R+~õ +.ù),O10%+~I,òE-ó)'Jg-óMz0å0"'RDE@A0"I,6.)J-/+.' 6~ô/ø.+.I,-ó),O1r@ K J
Ƥ, 7)7,.;/\ÇP, /=N®Ñ8*%/=* .* $'&)D :ÇP* Fe$A,B13"%,D äþ B # )JOE0"' K [ \ B b v ),O10"'{@A6.I,FB äþ 2 D3@84 2 D3@ 0"ô/M,03@A6~° I,F B Jg -ó8),Ð O| v íeåê¾äþ v íeåê¾äþ v
g-/)JO J
^
b'#),O1-/M¸N"6.Mz0*<^6N"0I,),-óüEN"6.)J0(ù´+.I¸6N"+.@AõEôó0)J04G10M,N"I,-/õ1),-/+~'Ê-óM¸),O16.)¸),O10(I,0"Mz)JI,-/N"),-/+.'Ê+.ù),O10 M,F.0"ô/0"),+.'+~ù¾ U ),+ @ 4 E Zf6ª6~'EG),O10ô/+SJ -/'1N"-/GE0"'1N"0+.I,òE-ó),M @ 45E SÒ 2SD3@ÔÓ SVÕ 2SD3@(Ö V× -óM(N"+.'1ý '10"N)J0G÷ T OE-óM O10"DEI,-óMz),-óNÊ-óM õ16.I,),-/N"D1ô/6.I,ôóöÐM,D1-/),6~òEôó0Êù¶+.I õ16.I,),-/6~ô°0"'RDE@A0"I,6.)J-/+.' õED1I,õ8+~Mz0 6~'EGr),O10N:O1+.-/N"0+.ù}),O10-ó'E-ó),-/6.ôû.0I,)J0þ '5V N+~DEô/Grò80"N"+.@A06N"I,-/),-óN6~ô8ù¶6.N"),+.I
½ª[o_bfiam[^e§eP~lªeP_lJp\º ù¶6.N"0"),MýÉG!ÎOE6û.0©0"û.0'ô/0"M,M),O16.'d!Èù¶6.N0"),Mý)JOE0ª'10"-/ø.ORò8+~I,OE+*+*G0'RD1@A0"I,6.),-/+~'MzD1ò1I,+.DEý )J-/'10-/Mâõ80"I,ù¶+.I,@A-/'1ø0"þR),I,0"@A0"ô/6ö J°0"ô/ôt÷~V1-/@A-óô/6.I,ôóö),+),O10õ1I,0"ûR-/+.D1?M 5P*"C$A,DD39).*z1 ¤ , 7!7,B.;/ N)*F=$A,13"%,BDN"6.Mz0*<@A-/M,M,-/'1ø?0"'R),I,-/0"M+.ù),O10g),6~òEôó 0 ?@?Gg´-t÷ 0*÷),O10gI,S+ JgMN"+.I,I,0"Mzõ+.'EG1-/'1ø?)J+3),O10 +~I,òE-ó),M Jg-/),OÊO1-/ø.OÊ-ó'EN"-/G10"'EN"0 2SD3@ 4 E S ° 2 D3@ 8Ð l N6~'Tò04N"+.@Aõ1DE)J0G#D1Mz-ó'Eø),O10(I,0ôó6.),-/+~'ESM K ?@? 48E S 9 4 E © ¨¬ù @ 4 E S}ù [ ?@? 4JE © 9 48E S ¨Íù @ 4 E ©ù/÷ Hb'Ìõ16.I,),-óN"DEôó6.I¾< Jª0ÊN"6.'Ìü1I,M,) N"+.@Aõ1D1),0 ¤ R ¡-¢!£ v )JOE6.)-/M<16~ô/ô'1+.'E5"0"I,+rû6.ôóDE0"M(+.ù ?@?É R ¡4¢)£ 9 4 E © 6.'1G<>DEM,-/'1ø¹),O10 ù´6~N)),O16.)ù @ R ¡4¢)£ ù [ U 7"< ø~0)g6.ô/ôN"+.I,I,0"M,õ8+.'1GE-ó'Erø ù @ 4 E ©Sù>6.'1G{),O10'{DEM,0),O10@ -ó),0"Iz6~),-/û.0"ô/ö#),+A+.ò1),6.-/'{M,+.@A0+.ùL),O10 I,0"@A6.-ó'E-ó'EøADE'1F*'ES+ JgÃ' ù @ 45E Sµù±÷ Ü ÐÑë1ê*ð` ï ÑnÒÎÔì Ó#Lê ÕYÑ×ÖØÑê*ë1ð` ï ÙTÔì Ú'Û¸êRÔì ÜÑ ì©Þ é Ýàß ì¸Yí ÑÒ á Mz-ó'Eø{),O10¹@A0)JI,-/NrN"+.'10¹M,FR-/õ1õ1-/'1øOE0"D1I,-/M,),-/Nrõ1I,0"Mz0"'R),0"G®-/'ÐV10N")÷ È÷ 8 < J°0r0"'RD1@A0I,6.)J0 ø !(+~I,òE-ó),M+.eù / ÷ T O10ªô/-/M,)+~ùEN"6.'E+~'E-óN6.ô*I,0"õ1I,0M,0"'R),6.)J-/û.0 Jg-/)JO ),O10-óI6~;G ¨J6.N"0'1N"ö36.'1G -ó'Eý N"-/G10"'EN"0g6.'1G
ðèSámñcámòäçäáå&ômÞ
OQ: 9
N)*>5P* "%$A,D?79!+-:;"%9<7=*M/rN)&)1d&)"G+4*3&)13"OLõQõQö÷QQõLøQöQöî( * $A"%,D3* 1&).@"%N)*#56* "%$A,BD D39).*r / N)&)1î&)"f+4*3&)13"\OQOÉù&QøQù&õQ÷Q÷®*µ="%$'* 56*o$'&):01ú«I*oD39). *3D "%F=$'*²"%N)&)"f¼39)"%N @)* 1¸D $A, 7"%,9).1?&)$'*6D39)5M7+4* "%*p: Q:û9)$h [Â^S_```<_ ø 0*3&)D N9)$A¼ ,"$'*µ7$'* 13* ."%&)"%,( §* B w ,B1&)?@ S&)D3*."¦"%9î&)"¦+-*3&)1¸Â" îD Fe"C1 ,5M7+4:0,.;/E"%N)&)"d"%N)*#ÆcÇ 'ÉMLÊAË @)9)56,B.&)."D +4,Bõ Fe*rD39).S*3D"%F=$'*rN)9)+4@)1¦»S9)$ "%N)* 1¸\ * õQüQü#9)$A¼ ,B"%1?9 »L /:
ðèSámñcámòäçäáå&²mÞ*9 N)*POLõQõQöL÷QQõøQöQöî( * $A"%,BD3*19 »>"%N)*>56* "%$A,BDz7=9)+4:0"%9<7=*f9).§G.9 @)* 1 &)$'*G7=&)$A"%,"C,9).*3@#,B."%9 ø !²9)$A¼ ,B"%1 ý
bN"G
&(G
gih OD Fe"9)$A¼ ,B" ¡4¢)£ «I,B"%N¦H ¡4¢)£ G S¨ ¡4¢)£ ¿ Î Î ø GÉG8&).@dù ¡4¢)£ ù ^ ÉG gihCh ll Q÷%" $A,( ,B&)+*µ@ ="%* .13,9).1Ã9)$A¼ ,B"%1 @ [{45E ^JSÃI «Ô= ,"%NÃH <45E S [ ^!^ GÉG _ I ÀAÎ _ À3È _ ```}_ È0@ = S¨ [© 4E S [ ^ mÀÀ ø G =```_ ^ À#&).@fù @ 4 E Sµù [{^ !Î0|!È!| _ ```A_ ø G!È gihCh h l õQö8þ»SFe++-:» $'&)D "%,B9).&)+ 9)$A¼ ,"%1 @ 4 E Sý ^ &)."%,BDF="9)$A¼,B" @ R ¡-¢!£ «I,B"%NH < R ¡-¢!£ [ ø I= S¨Q R ¡-¢!£ [ ø G I À&).@fù @ R ¡4¢)£ ù [^ ÉG Àg _ l Qk( &)+4F=*3@29)$A¼ ,"%1 @ 45E S?«I,B"%NH <45E S [ È!È _ È!| _```A_ ÉG = S¨ 4 E S [ÿI ÉG ø _ ø !ÈÀ _ ÉG²&).@>ù 4 E Sµù ø |Î | ø G0È!| È ``I`I _ .9).rg _ @ l Qk( &)[ +4F=*3@J^ I» F=++-:I »S$'_ &)`D `"%`<,B_ 9!.&)+9)$A¼ ,B"%1 @ 4 E S«I,"%N6H 4 E S [ ÈÉG _ È ø _```A_ !Î = S¨ 48E S [ !G!|0| _ ÈÎ!| I_S```A_ !β&).@>ù @ 4 E S}ù [ ø J^ I |Î I | _S```A_ È!|¦!!|>: ðèSámñcámòäçäá å mÞ
Q 7 QH
&(G
bNG
Q 7 QH
bNG
bNG
&(G
&(G
(& G bN"G
OQ:Ô&)D"%+-:#"%«I929 »f"%N)*3õQüQü9)$A¼,B"%1?9 »GL/@)* 13D $A,¼3*3@,B. N $'9<7=9)1¸,B"%,B9).3þ&)$'*89)$A¼,B"%19 » 13,5M7+-*>( * $A"%,BD3*1 ú "%N)&)"¦,B1 = 1¸&)"%,B14» :0,.;/fHbN"G<48E S [ &(GS¨ 45E S [ UH :9)"%N$'*µ7$'* 13* ."%&)"%,( * ( *$A"C,D3* 1Î B ;zQ,H &).@ B ;zQ,Q &)$µ*G/e$µ&<7N),BD6g 7 _ H l Qk( &)+4F=*3@(* $A"%,BD3* 1 = 1¸*3*¦ûG, /0: OQ: Q Q
[ _bs^e jkiePpmeP_bfi[ fih}_bs^eq?eP_tx`acn wRfipc~_bfi>e 1
2
8
1
3
7
4 6
2
8
3
7
4 6
5
135
5 V 533
V 532
É([RÉ ©f?]bamu?^pce¬ix"lJ^s^amn¸«ePxb_bacnPeP]©fih}Ó ã
o&(G
N)* 4fE U u $'9)«r9 »"%N)*¦&)?@ &)D3* .D :M"%&)¼ +-*N)&)1I9).+4:¦ü?.9). 0* $'9Y* ."%$A,B* 1ý S¨ 4 E U u ¡-¢!£ È^ = @ S¨ 4Vn E U n u 4 E q [ ÀÍ&).@ S¨ 4fE U n u 4 E q [ ÀÍ«I,"%NîH 4 E q [ È!>:Â2S",B5G7+-,n * 1"%N)&)" [ = &)569).;/2"%N)*®õQüQ>.9).QkD Fe"Ô9)$A¼ ,B"%1 = "%N)* (* $A"%,BD3* 1M9 » @ 4 E q &).@ @ 4 E q &)$'*"%N)*d9).+4:8,.,BQ "%,&)+¦(* $A"%,BD3* 1>13FeD NÃ"%N)&)""%N)*$'* 13"%$A,D "%,B9).®9 »"%N)*1 ¤* +-*"C9!.ì9 » U "%9 @ 4 E oZ'?&).@ @ 45E SÒ H ºÔ Ó BSfÕ &).D3@ 9)F=+4@#¼3*8D39)B ..*3: D "%*3Q@ : .*PD3&).r*3&)13,B+4:fD N)*3¶D ¤P"%N)&)",B"N)9!+-@)1»S9)$¼39)"%N
'5V
'5V üQ: .*fD3&)[ .²*3&)1¸,B+4:DN)*3Dp¤f"%[ N)&)""%N)*f1¸* " ¤ 4VE U n u 9 »>"%N)*f.* , /=N)¼39)$A19 » B &).@"%N)*f13* " » B ¼ :"%N)*#DF="q!g \)^0b)l &)$'* ¤ ?¡ 4VE U non £ 9 »>"%N)*#.* , /=N)¼39!$A19 »>"%N)*1¸«Ô,"%D N),.;/²9 T @),-1 S9!,B.o" :É2S",B5G7+4,B* 1Ô"%N)&)""%N)*G@),B&)56* "%* $Iq!gi / l 9 »M"%N)*G$µ*13"%$A,BD "%,9).f9 »G"%N)*Y 1 ¤* +-*"C9!. 9 »L/6"%9?"%N)*õQüQü9)$A¼ ,B"%1c@)* 13D $A,¼3*3@,. N $'9<7=9)13,B"%,9).þ#1¸&)"%,B1-Ë*1Iq!gy / l ¿ :>Æ,.D3* "%N)*8ÆcÇ µÉM)ÊAË D39). *3D "%F=$'*N)9)+4@)1c» 9)$f"%N)* 13T * õQüQü²9)$A¼ ,"%1 = 13*3Î * 2 "%* 5 O9 » . ü = «I*6N)&)( *q!gi / lI[ : N $µ9<7=9)1¸,B"%,9) £ * 5P&)J$ ¤züQ: ®?@ 4 E ??@ ¡4¢)£ § B [ # q!g'X l ;¨ ¬ ! ^ a®~ À J G ! ø È J a 1G I a ø [ ¨7@? 45E S ÿ@? ¡4¢)£ h [ ``` ø 0 ù @ 4 E ù ~ ù ÷³0gi U l ù [ U aú a 0J aÃ~ À oJ 2g / H S¨ l # 0 U a ÃÀ LH ø a¬[HI ^ a[ G
Q: 9
&(G
9
{&(G
bN"G oX 7 X
X7
bN"G
9
;zQzQ
{;zQzQ
;zQ,Q
9
z; QzH ;,QzQ
÷°BE+.I .< °0O16oû.0 ù¶+.I 6.'1G-/)-/M(N+~' J0N"),D1I,0"G -ó' ),+%ò80T),I,DE0Tù´+.IA6~'Rö ÷BE+.I 8<-/) OE+.ôóGEMrù¶+.IA),O10 ®+.I,ò1-/)JMrG10"MzN"I,-/ò0G -/' KâI,+~õ8+.M,-/),-ó+.' A6.M °0?O16oû.0 ù´+.I 8÷ ÷°BE+.Iª6.'Rö < °0OE6û.0 7 ÷.ÿ OE-óô/0ù¶+.I ~<^)JOE-óMª-/'10 *DE6~ô/ý -ó)`öå-/M M,),I,-/N") ù¶+.I6~ô/ôª+.I,ò1-/),M
ª½ [o_bfiam[^e§eP~lªeP_lJp\º ù¶0"6.),D1I,0M+.ù©),O10 M,F.0ôó0)J+.' +.ù¾ U <Jª0N+~';¨J0N"),D1I,0),O16.)),O10 N"DE)û.0I,)J-/N"0M(G1+#'E+.)ù´+~I,@ 6#N"DE)JýM,0")(-/' ),O10M,F.0ôó0)J+.' +.ù U ÷ T O10 N+~@ò1-/'16.),+.I,-/6~ôL6.'1GUN"+.@Aõ1D1),6.),-ó+.'E6~ô6.õ1õ1ô/-/N"6.ý )J-/+.'1M©+.ùC)JOE-óM©N"+.S' ¨,0"N"),DEI,0g6.I,0M,),D1GE-ó0G÷SHb'rõ16.I,),-óND1ô/6.I<63OE0"D1I,-/M,),-/NgM,FR-óõEõ1-/'1ø3),O10@A0"),I,-/N N"+.'10 -óM4õ1I,0M,0"'R),0"G÷ T OE06.ôóø.+.I,-/)JOE@ N"6.' ò80 õ16.I,6.ôóô/0"ô/-/5"0"GUû.0"I,öT0"6.M,-/ô/öT6.'1G<>N"+.@ò1-/'10G Jg-ó),O ),O10ªOE0"D1I,-/M,),-/N*<O1-/ø.O10"I,ýG1-/@A0"'1Mz-ó+.'16.ôR-ó'EM,),6.'1N"0ML+.ù>),O10ª@A0)JI,-/N°õ8+~ô/öR)J+.õ80°6.'1G+.),O10"I N"+.@ òE-ó'E6~),+.I,-/6.ôCõ8+.ô/ö*OE0"G1I,6rû.0"I,),0þ¹0'RD1@A0"I,6.),-/+~'{õ1I,+.òEôó0"@rMgN"+.DEôóGTò803M,+.ô/û6.òEôó0R÷*ÿ OE-óô/0 )JOE0ôó6.I,ø.0"Mz)4õEI,0"û*-/+.D1MzôóöN+~@rõ1D1),0"Gå@A0"),I,-óN õ8+.ôóöR),+~õ80 M O16.M4+.'1ô/ö ^ Ê+.I,ò1-/)JM?+~ùâû.0I,ý )J-/N"0M< / OE6~M36~)?ôó06~Mz) ø !Ê+.I,òE-ó),M46.'1G%),O10I,0"ù´+~I,0 N"+.D1ô/Gåò80 ô/6.I,ø.0 0"'1+.D1ø.OU),+{I,0"û.0"6.ô M,+.@A0¸ø.0"'E0"I,6.ô>ù´0"6.),D1I,0"M©+.ù8),O10¸@A0)JI,-/N¸õ8+.ôóöR),+~õ80+.' a 'E+*G10MS÷ Hb' õE6.I,)J-/N"DEôó6.I<)JOE0¸M,F^0"ô/0"ý )J+.'Ê+.ù /4M,D1ø.ø.0"Mz)JM¸),O10?+.I,ò1-/k) Jg-/M,046.;G ¨J6.N"0"'EN"örI,0"ô/6~),-/+.'1M¸ò80"k) J°0"0"'T),O104N"DE),M<^6~'R),-/N"D1),M< )JOE0 )JI,-/ûR-ó6.ô0þ*),0"'EM,-/+~'EM(6.'1GU)JOE0 ù¶D1ô/ô/öTù¶I,6.N"),-/+.'16.ô+~I,òE-ó),SM K T O10 I,;+ J ?@? ¡4¢)£ 9 x 6.'1GU),O10 N"+.ôóDE@A'§?@? w 9 ¡-¢!£ M,O1+.D1ô/G#O16oû.0+~'Eôóör'1+.'15"0I,+0"'R),I,-/0"M?gCÆcÇ µÉM)ÊAË GE+.@A-ó'E6~),ý -ó'EøÊM,0)4N"+.S' ¨J0N"),D1I,0 l ÷ T OE06.'R),-óN"DE),M46.I,0@A6.-/'1ô/ö+.I,ò1-/k) Jg-/M,06.;G ¨J6.N"0"'R)?)Jo+ g¶ù´0 J l ),I,-/û*-/6.ô 0"þ*),0"'EM,-/+.'1M46.'1Gå),O10ù´D1ô/ô/öù¶I,6.N)J-/+.'16.ôL+.I,ò1-/),M46.I,0òE6~GEôóö{+.I,òE-ó') Jg-óMz0N"+.'1'E0"N"),0"Gå6.@A+.'1ø )JOE0"@AM,0ôóû.0M÷ T O10),I,-/û*-/6.ô0"þR),0"'1Mz-ó+.'1Mâ6.I,G0 J°0"ô/ôEN"+.'E'10"N)J0Gr6.@A+.'1ø),O10"@AM,0ôóû^0"Mâ6.'EGr'1+.) M,d+ J°0"ô/ôE),+ ),O10ù´D1ô/ôóö ù´I,6.N"),-ó+.'E6~ô8+.I,ò1-/),Mªò1D1)ªM,),-óô/ô),O10I,0M,),I,-óN)J-/+.'¹),+),O10'1+.'Eý\N"D1)ª+.I,òE-ó),M -óMN+~'E'10"N)J0oG g´'1+AND1),ý\M,0)¸N"+.S' ¨,0"N"),D1I,0 l ÷ ?Dp¤ .9!«¦+-*3@=56* ."%1z÷~ÿåY0 Jª+.D1ô/Grô/-/F.0),+),O16.'1#F Ä ¸ù´+.Iâ@A6.'Rö O10"ô/õ1ù´D1ô8M,DEø.ø~0M,ý )J-/+.'1M÷ ÑÓ3Ñë ÑWé( ï ÑÒ áiº©½ª_bacfi«~[Cac] lJ!p §°Leºmv Pfiu?xbePePu?_txb[^ePÒox3©§¸s^ºcePvfijkxbÊePacy*lJeP[*pây©½ªºmÒ*^ª*pcf"amn~ lJ_b¬iacfif~[*fo#] y%" lJxbe?pá mpnPmifi(Þ [ol«ePÝiËA×i%Ø so$1d*ÚJpcà>pªá lJpc¬ifixbam_bs^u?] |8fiu?^d^_"lJÏ Ýiº(|8lJ_bs*ac[*xbac¬?]`_t_bfis^h8eg(ÀCºclJv>nPCePeP_bam]©[^fiePh8pm_&(à º'iáJcÏ,Ò1w*§fePpcnP~fi_bfiu?RRePfi]]`ºEac_bw1amxbfieP[T^xblJam[^[~yT_"vowWªjlJePx"amlJy^pcePpmePpcÑ>pcameP~xblJ¬?_bamfi¨ª[[^am}«iePePn,xbs^]bam[^_\am ¿od^ePpá ]mpmih/fipß xLl [~d^u?ePxbÏ Úiº(s^§ePePy^~x"lªli½?º*)8vEeP§nPeP_bd^~xbl4eqr¯ªºmfiv~_bÀ*ePd*]ªoacd^[UyC|8l©fiÀâu?ºcÒE^d*_t[ ePx?]bijkePnPpmacePeP_b[*finz[^e~]"v*vo+y^fialJpu?ºáiePái_tePÝJà>x`]º8lJjk[^*y xbac[^«i¬fiezpmd^x`Ïu?+ePeP]©xbj pfilJh8¬>v,u?ePeP_bxbxbpmacamn¸[ARªfipmeP~amÏÏ Ù>º(y^+§ePfiePpmp~ÑRº1l¸ePáixbqrØ3¬?ºmjk¯ª v ^)LePxb. lJam[^d^¬i-x`ePezfi[~xbxbÏ/_â+q¹ePj xbpá ºcp*ÒmplJLemi¬>p× v0Pl©fiu4áiePáixbePpm%Ý _bac$>[xbái°Ýifiß ezh*amnPy^d^eP_bpmÑR]âePlJx`[*¬4y(¯ªu?eP.eP_bxb-acnPfi]xbº: ½°pc¬iápfimpxbmiamÞp_bls^u?]âlJ[^yr|}fiuÑ^am[}lJ_bfixbamnP] Øiº©ÀRpá d^mpompd*mpy}l l 1ºmÒznPy^y^pmamÑxbePh/ePxbeP[^nPeu¹lJ[~d}lJpv,«iePxb]`acfi[(à>ºmßi×ivzZÀLgâj vz?Evo}d* xbacn,s}v~j"am_bPePxbp\lJ[^y ×iº2jxd^bamxb]bfis~Rd^e~~lJs^[ am[,fi+?d^xbº©[}wEl,ºcpEÒªfi|}h©fi|8u?fi^u(d^Ñ^_bamam[}[^lJ¬{_bfiePxbËoac_bnPxb] ePu?erx"pá lbmp~mi]pÝ l©fih¸áiØi_bs^%Ú $>e¹áiu?×iØ eP_bxbacnrnPfi[^e¹h/fix ]beP«ieP[%Rfiam[~_b]"º Þiº©Z\4^xbf"a8qr]ºEºmÒozfid^[ xblJ[}[4lJpEePËofi_bh}eP_b[^s^]`e acfi[>fiePh^x"u¹lJ_blJamfiË~[}amulJpLd^u?jkfo/Ï nP4^[amfkeP3 _\ j u?fih©ac[*acu(lJ}d^lJu?[ ϶nPd^_}_báps^miePÞJfiàixbÏ,ePápu miÞi_bápf°luáid*Ý(mJpc_bÏJamáinPÚfiØ u4u?f~y^am_\ ßi5º )LePlJy^d*]"xbwº ePlb[oÒo_Z\[~q¹_bePv1¬iePw*x(fipmw1äblJxb#fi¬ij^x"ºmlJÒiu?u?s*e°ac[^u?¬¹ePlJ_b[^xbyacn¸|8Rfifiu(pm~Ñ^_bfiac[CRlJe~_bºfiZxb[}a\lJ0Ò pLlJp^lJ[_b]L3amu?¸j acºc~v1lJ|8_bamfifixb[ [~d^eP(á ä±mpacpmmi6] pÝ ºlÝJc7v Ù11%Þ $>lJÝi[*ßi[}× lJ[T⺠miº(jw*fipmäblJUj^ºmvR}d^~l EºmÒqrl,Ëoamud^u |8d*_t] lJ[*y8)lJxb¬ie9am}lJxb_bac_be¹jkd*Ñ^¬ix"j lJ^s^]º*Z[}Ò|8f~fir ºmv )f"«*lJ]b& )LºmvEjkeP~u4fid*x4w1º1§°º j ePy^]-º lbÒE§ZPq4½(|©j ¬: j pá mpmipØ l©áißi%á $>ÝJÙiÙ 136
! "#$%'&(! ) * +-,".0/$1323+-,546,+87:9<;6=->@?BA \ST@H^][T[D _CN[D
J. Akiyama, M. Kano, and M. Urabe (Eds.): JCDCG 2000, LNCS 2098, pp. 137-148, 2001. Springer-Verlag Berlin Heidelberg 2001
138
Greg N. Frederickson
U YZNU5D<]¿][YZbJbJD<X-ILYaP"N0P"Q)FIJHLY°FNU"aD»ILPMFÁbL¹hTUFHLD
!#" $ &%
9=^,5Ý69nÞ<Þ-= 7:>@Þ8,?lå3=ÛOàÂÞW>69Û@Ý3åB+-,Á=Á,ÛhåBã3ï:,+<>@+8=^?B,ÞÀ.$Ýl>[=^=^?¼Þ-,5+<= 46ÛhÙ7m7:=-.@=-åU,"ÖþÚGÞ 9ÏÞ-ï:7:7°>@?B6?3,ÖþÚU=Á=^ÏU,">hÑn.@à Ù â ê@ë 7:,ï:ï°46?UÝ37°Þ<â =^=Þ-1 +<,"ÛO?3Þ8=^,",7:>@47:?l? 7°Ûh?0@ï,52=LÞ8äB7°.[7°ïm.UÝBÛhÛO?3+8Þ-,ÁÛ@, + é[ÞL»êOóó»ã3>$.@åBó ÝB7:9<+8Ûoå ,"÷6==ÀÛhÛhï:Þ-ï:?l>$>Oóô4½å37°9+-?B>[>@.[?3Þ8,Ûh=^Þ-7m46467:>@7m,"= ? + 7°?¡Þ-åB,Mä3ï:Û@?B,@1 Î àÂÝB?343Ûhâ ,?UÞ8Û@ï ÝB,"=^Þ-7:>@?¡7°? +-,".[Û@+84 Þ8>0467:=8=-,"9nÞ87°>[?3= Ûh?34¡â > @,"â¿,"?UÞ7m= =LÞ8+8Û@7°.[åUÞ ï:7:?B,M=^,".@â ,?USÞ823=">@ê6+$7m=ÛhÛ ?G÷ª=^ó»ÞL7:ó?B>¡. ã3åB.@7:?BÝB.@+8,5,"Û =²æ >@ï:,²àW,467:=8Ýl=-Ûh,"ïk9nÞ8Û@7°>[+-,5?¡Û¡äÛ@>[?3=84=-7 æ æ ï:>@, Ý3?346,"4 æ ÷ '
(
+
)
*
'
-,
.0/21*354768&9:;1=>
@
+-,5=^Û@äï°ïm,"Û@99Þ,Þ8>0ç ë h?Bíe>@ê +8â0>[Ûhï°ï÷UÛhÂÝ37»?Bç ëOåBíe7:ê)?BÛ@.@?3,54 4ß»*46,7m=-+8=-ó»,"97°,"Þ-?t7:>@?3ç°é ="h1 í äB+-> [,"4½Þ-åB, Û@?3Ûhï:>@.[>@Ý3=ÁäB+8>@ä,+-ÞL÷ªó»7aÞ8å ?Þ-B7:7 >@?3ÝB=S,5àÂ=²,>@Þ-+äl>¼>Uó»=^äBåB,Á+-7m9<>6Þ-å$å346,ÝlÞ-å397:?U,,Þ-=-,"=-ÝBó»+-ä,57°=L?B,Þ8+8. 7°äl?Bå3>U. 7°=^?BÛh7°Þ-.[?l7:,">@4èÛ?$æ9<>@å3ï°,0à6Û@Þ-ï°46,5ï:,7m=-?B=8=-=^,.[,5ï:7°ï:9n?3ÛhÞ-.Þ-7:>@7:>@äB?l?3+8=> =1 æ Ûhï:?3,,â4$Þ-7:?U>@åBÞ-à, +87m>G946+84B,>[Ý3?U=8Þ89=-7a, älàÂ÷G>UÛ@7:=^?B?37°Þ-.4ß7:>@.[äB?²,+8?B>h> ,"à@+8,0Û@ï39=^>[Þ8Þ-,"?3+89<7°46älå 7 = äBäl+->[>6ï°÷G46.@Ýl>[9?3,$=SåBÛ@7:?3?B4.[,"=^Û Þ8æÛ@ï°+8,$=SàÂ46>@7m+=8=^Þ-,5å39n,"Þ-=-7:>@,W?l46=7m1=-=-,"9,Þ-7:=->@åB?3>O="ó 1 åB, >Oó Û@46Þ->[> ä6Þ, 6Þ-äBåBï°,>[?37aÞÛOÞ8Þ-ÝBåB+<,Ûh=^ïUÞ-.@+8>[Ý3Û@9ï@Þ-ÝB>@+8à3,$â >h7°?Bà7:+8â ,.[7°ö"ÝB7°ï:?3Û@. + Þ-åB,M?GÝBâ æ ,"+»>hàÀäB7°,59,5=êB=-Ý æ øL,59nÞ»Þ->¿Þ8åB,$467m=-=-,"9Þ-7:>@? æ ,"7°?3.¿å37°?B.[,"Û æ ï°,[1 GäB7°Öþ,5ÚU9ÏU,5Ñ =åBå3,Þ-Û@>@=^=Ýl,59<ÛM9å¿>[ä?3,5>@464Ü7:?U.@ó,ÞWÛo>hÞ8÷¼>à)+8Þ-,">h>ª46Þ<.[ÛOåB,@Þ87:7°1 ?B>[.@?0,¡åB>@7m46= ?07:Ûh=8Þ8ï:=-åBï°,">O,9nóÞ87:?U7°=>[Þ->[?3,?B=$+8, 7:>@=-äB,+k,"7°>@,5â à9, =MÞ-åBÞ8Þ-,Á> > ï°æ 7:æ ?B, , ,²3+8=^7:,äB,"ïm.@äÛOâ ,"Þ-4 7 ,@?U,"> ï°ÞW@÷¼,"Û@+À+-ï°>[,5+-?B9,",ï:.$Ûh?UÞ-ó»Þ57 1@åB,WÎ 7m9<Þ-å0>²Ô ÞLÞ-óå3ÖmÙ<>, Ô >h=^Ý3Þ-å39<å0,+546ê7mÝl=8=^=^,57:?B9nÞ-. 7:>@+-?l>@=Þ8ÛO7:Þ8= 7°>[æ ?÷ æ ÷¯7:ï°éï:7:[Û@ì â ûWÞ-å3=-+-=->[,+5ÝBê .@å¼Þ-ê@åBó»,¿åBÞ->Må3ó 7°+<4¼Û@=k46Ûo7:óâ Û@,+8?346=-,57:>@4?)Û 1 Á1 ?Bù³,¿1Uä3>hÛhàWÞ-Þ-,åB?U, Þ ,57:?ªÛh+8é ï°7:,"=^Þ àÂ9>@7:+8+9ó»ï°,$å3+8Ûh,Þ ä3ó+-,5Û[=^=À,"?[,"=8Þ<=^=,"Û ?[Þ8ÞL7:ó»Û@ï°7mï:=^÷MÞÞ8åBåB7:,?B.[46,@7m=-ê3=-ó»,"9å3Þ-7:7:9<>@å½?¿7m>h=àÞLÛh÷U? ä37:,9"ï:Ûhï°7:ï:ä3ï°÷=->@ä7m4$>[=-Þ87a>$Þ87°Û>[?BåB,","4ªÛ@+^ÛhÞÞç OÞ-íiå31 ,Î â =^7mâ046älÛ@ï°>[ïB7°?U>[älÞ,">h? à 7:Û¿46=»7:9=8â09>@> â Û@[+-â ,;[+8,">@,"4 ?4¡ó»,"Û¿467aÞ8=-.[åª7:â¿,@1BÛh7:?ûWïmÛhÛ@+9<46åè¿7m=-ä37°=-?7°,",599Þ-Þ-,å37:>@,$Þ-?å3,Ûhï:Ûhï°Þ+87:ä3>@,=-ÝB?3,@?l43ê340= Û@ÝB?3Þ-å3ä4,$æó»=-,"7°Û@Þ-7°â¿?Bå½. ,Û 3Þ87:7°äBâ ä¿,@,"1 7°4ª? Û@Þ-?¡å3,$>6åB4B,"4¡Û@?G+^Þ5ÝB13â û æ +8,?3+»=^Þ >@àú Þ8ÝB7°+8â ;@,","=+ BA
'
DC
E
F
'
'
G
'
'
+
#
,
IH
'
A KJ
#
ML
ON
KAK
A
PH
RQ)SBT
UQWVXT
Geometric Dissections that Swing and Twist
139
Z Y
33 YZbiIJUYZNU"DnF"µ[ZDÁ]@YZbJbJD<X8ILYZP5N0PQSF"N¿D8aZYZEUbJD»ILPMFÁUDnFHJI Þ-â¿å37:Ûh.@ÞWùGåUÝ3Þ8ÞåB9<,5åß,Ûh+8+8,â ï°7:Û@,> +-+ @,,å3â ÛÛ [,"+8,?[,ïmÞ$9<ÛOå3Þ87m=$7Û@[+8+8,Û[,ï:9n÷â0Þ8,ïmÛ@Ûh+8+-+87°;Oö".@Û,",Á4èæ ?Gï°÷½Û[ÝB= â ï:7:7°â¿æâ ,7°äB+ Þ-+8,5>h> 4àSæ 1 ÞLÛ ó»æ Þ¿ï:7:,Á=^9Þ >@óâ åB,M7:,5?B?B=$.@>O,5Û@ó Û =$æ äl=-ï:,Á>@>Uâ =^46,M7m,"=8Û@ó»=^= ,5å39nÛOÞ-Þ$7:>@>@?là»=1 Ûª=-ÝBå3+8ÛOäBÞ +8ó7:=-,, =LÞ8+8Û@7°.[åUÞ ï:7:?B,M=^,".@â ,?UÞ8³="2Bê6>[7m+Á=ÛÛh?GÞL÷¡ó»ÞL7:=^óWÞ > åBãl7:?B.@.@ÝB,5+8Û ,"æ =ï:,M>hà46, 7:=8=-Ý3,"Û@9nïÞ87°Ûh>[+8?¡,"Û0ä>[Û@=8?3=-4 7 æ æï:, >@ÝB?34B,"4 æ ÷ ?B9>@7 ? ÝB[,5,=²+-, ÞkÞ-äl=^>ªó»>U=^ä37:,è?B+->6. Þ-46åBåBÝ3,7:9?B,¿7:.@?U,5Þ-ÞLÛó»,æ+87:,"=^ï:,=^Þ Þ-467:åB?B7m7:=-.Ü?B=-.@,"Ûh,59?3ÛÞ-7:4ôæ >@ï:?3, 9<= ål46ÛhÞ-7m>ï:=-ï°=-,"æ ,"?B,9.@Þ-7:ÞL7:?B>@ó».¼?37:=^="ä3Þ 1 +-åB> 7:æ ?B,0ï°.@,"7:,5â?UÛ Þ-æ +8>h>6ï:,@àÁ46êUÝ39Û²+-9,5, Þ-ÛO,5Þ-ÞL9<7:óåB?B?B> .á7 Þ-.@,5Ý3,9<,?3åB,Þ-?B>+<7 Ûh9<ï Ý3å3Þ8,"Ûh,"=²?B9<.[Þ8å >, Þ-46åBÝ3,¿9,5ï°= ,"?BÞL.hóÞ8>å 7:?UrÛhÞ-?3+87°4½.[ÝBÞ-7°åG?3Ý3. =ÁÞ-7°åB?B,¿ã3?BåB7°,"Þ-,7°.[ å[àÞ Ûhâ >@7°àWï:7:,"Û =»äl>@Ûhà+<46Ûhï:7mï°=-,"=-ï°,">[9.@Þ-+<7:>@Ûh?3â="ê31 Ûh?l4¼Û0Þ8,"9<åB?37 ÝB,Þ-å3ÛhÞä3+-> Þ-, >òB94Bï:Ý3>@=-7:>[7?B[+-.®;6,ï:=S÷ =-Þ->ôå3>@Ûh? 7°?lÞåB9å3ï:7:ÛÝ3?B[46.@, ,ñ,5Û,æ7°çaÞ-é[ï:å3ê,MB,46+Àê 7:67:=84Bê=-é[,,"?Ué@9nÞ8Þ-ê7°7°é >[ã36?3,"ê4¿="é51 ýB46ê7m=-é åB=-B7:,"= ê-9ë älÞ-G7:Ûh>@ê ä?33,=é+íiÛ@1 7m== »=-, ó»,5B97°9,?B,"?U. +-Þ8äBï°å3÷[Þ-7°ê,"?B4è.[ç°é@,"àÂê+8Û é5>@æ ìOâï°í,kå3>@ç°é"+ÀÛ ìh@9íe,ª>@1 â àÂ>6, 99Ý3ï:=^>[,5=-4 , ÆÍLÇBÍLÉkÆ æ @, ,", +^ÛÞ897:>[+-9?3,",".@=^= 7mÝBn46êGïm,"Ûhó»+Á+$åB46ä,"7m+->@=-,ï:=-÷G,",".@9Û[Þ->[9<7:?Ü>@åè?3ó»ä=>@7°Þ->h7:å ?[à Þ»+8ò,7m=».[=^ÝB7m946ï:>[Û@,"?B+="?B1 ä,"ú >@9Þ-,ï:÷U,5Þ .[40>@Þ-?3>¿=ÁÞ8ÛhåB?3, æ4½,è+-Þ8,"Û¼å¡.@ÝB=LäÞ<ïmÛh>@Ûh+$+7:?U=LäÞ8Þ<= >@Ûhï:9+÷Gï:>6.@ä9<>@>@;U?¯ï:ó»÷Gó».@7m=->[7°,Þ-?3å =Û@1 ?3®ú4¡,äl9Þ >[>@7°ÝB?U? Þ8= Þ-,+<9ï:>6,ß9<;GÛ@ó»=87:=^=-Ý3,â¿àÂ+8,¼>@âÞ-å3Ûh7aÞ5Þ1 Ûôã3.@Ý3+-,Ü=^Ý39<å Û@= Û®ä>@ï:÷G.@>[? >@+Ûò=^Þ8Û@+¡7m=¡Û@? >[äl,"? =-,Þ"ê»=-> Þ-=^å3, ÛhÝ3Þ,7°?3Þ8= 9,kæ >h>[àBÝBï:?37:?B4B,Û@+-=-÷ ,.[7mâ =k?3,>h?UÞ Þ8="ä3êÛhó+-,kÞk, >hàS,5Þ-9nåBÞ-,Á7 @ã3,".@ï°÷²Ý3+-+8,,â 7°Þ8> =-,@ï°,WàL1 Ûhï:ï[äåB>@,7:?¡?UÞ8óW=,>@?M9Ý6Þ8ÞåBÞ->[å3=-,k,ï:ã37°?3.[,ÝB+8=-,,.[Ûhâ¿ï:>@,"?B?U.Þ8="Û ê Þ-+-9åB,5>@=^,"â ÝBââ ï°Þ-7:>@Þ8?B>@? .0.@æ,7:?ªÞ->@åBÝBäB,"?3+7:,"439æ Ûh,5÷á+8=»÷@Û@1Þ843å346ÛOÞÁ7°?3Û@.¡+-,MÞ8åB>[,äl7:+,"?½9>@=^â ,Þ8â ="1 >@? åBæ ,">[?½ÝB?3óW4B,$Û@Û[+-÷[=-=-ê,â â 7°æ ?Gï:Ý3,²=²ÞLÞ8óWåB>0, äB,"7:?3,"469,"ä=">@ê37:?[óÞ<, =M^>h.[àï°ÝBÞ-å3, , 9Ûhï:+8>G,²9<;GÛ@ï°ó»åBï:>O+-7m,"ó=^,, ,"40>@+<>@Þ846+ >0,+²â¿Û æ >@>[Ý6à +-Þ, Þ-0åBÝ3, ääB7:äB,"Û@7:9.[,","Û@9=7°,"?3=Ûh=^+8Þ â0,á,"ÛoÛ@Û@÷ª9<ï:å=-?B>®>h>hÞMÞ8Û@åBï°9<ï:,å3>O+5óWÛ@1 ?B,5.@4ñ,[1Þ->tÎ ï:=^=-ål>3Ûhê+8ÞL,áó>Û®4B=-ó»7 ³7:,?B+8.ò,?Uå3ÞM7°?B=^ó».[,@7:?Bê . æ Ý6åBÞ7°?3Þ-.@å3,",= òÍ^Æ ÁÍ^Æ ÊÍ ÌÇ6Í^ÉkÆ 9*>@7 ä3[7°,,5?¼=ÁÛè>@àkäBÞ8ï:åBÛ@?B,¿,ã3ã3.@ÝB.@ÝB+8,¿+8,@ó»ê7aÛ Þ8åBÔJ>@ÑÝ6Ù8ÙÞ$Ñ .UÛhOä3ÔeÖ=ÒOÚ®Ûh?lÒ 4¼ó»Ô B7°ÑÞ-åB>[Ý6hÞMÚÑ > @7:=²,"+-Û¡ïmÛh9ä®> @ç°é,"ÿ@+-7:íe?B1 .0>@åBà,¿Þ-ã3åB.[,¿ÝBäB+8,ïmÛhÞ8?Bå3,ÛOó»ÞM7aóÞ8å , !#" [
'
.0/21*3\4768&9:;1*<]>>
@
'
*
^
'
_
'
)
aG
b
cRdDe
=
(`
aG
gf
ih jlk
'
mj
s
nhojqpBr=k
)
mj
Or
'
'
t
#
mQ
'
^
ut
v
wyx
z|{}
~z2dD|gd
f*fKd
f
s, -
T
140
Greg N. Frederickson
3Ý =^åB,Á,¼Þ->Þ8,"Þ-9<7:åBï:,Á?37Þ8åBÝB,,áäB>hï:Û@à ?BÙ,7:B= ÑÛ Õ 3ÔiÒoÑÙnÙ<ÖþÙÚUÑ ÏñhÔJÔrÑÖÙ8ÒhÙÚÜÑ Ñ O°ÑÔeÖÓ0ÒOÚ3ÑÚ3Ù Ô 7:Ûh=¡?3Þ84¡åB,½9>[àÂ?3>[=^ï°7mï:=^>OÞ8ó»=7°>h?3àS. >[?Bç°é@,é@ê8>@ëh+ìOâ¿í >[+-,ÁÛh;[äB,½7:,"ÞL9ó,5=> 1 Þ-9,">@=8â =-,æ ï:7:ï:?BÛhÞ-,"7:4 >@?3ã3=.@ÝBó»+87°,Þ-åÜä3+-Þ-,5åB=^,0,"+ =8[Ûh,"â =À, Þ8åBä37:= ÛOÞ-9Þ->@,"â +-?Üâ >h>@à?è+-äl,"älÛOÞ^,Þ8Þ-,7°Þ-+87:? >@?ß>hàÛh+-?3,"4áäl,> Þ-@7°Þ-,"7:+->@ïm?)Ûo÷è1 Þ8åBåB,,âï°7:?B=^,²>¡=^Þ-,"ål.@ÛOâ ÞM,Þ-?Uå3Þ<,= 7°?>@Á?3,Á?B,MÞ8,"â =8=^>@,"+8ï°ïm,MÛOÞ8+-7°,5>[=L?¡Þ8+-7m7:?39nÞ8467°>[Ýl?¡9,$â09ÛhÝB;[Þ8=»,"= 7:?èÞ8åBÞ8,$åB,²467mã3=-.[=-,"ÝB9+-Þ-,²7:>@>@?3à=Þ8åBåB,M7°?3>h.@Þ8,"åBÛ ,æ +5ï:,@êB1Ûh?3Î 4 Þ8G,"=87:9=^,,"ï°ïm@ÛO,"Þ8+87°=8>[ÛB?1 å3Û@= Õ8Ò 9ÔÔrÕh>@Ôr7:?3ÖÒh7a9àÚ 7:Þ-46åB7:)?B,$Ù .²OÛ@Ó¿7:?B?¿.@Ó0,ï:,²@Ñ,"Ôe>hÕ +-à÷+-7°>@4BàÞ8,+8ÛOÞ8>hÞ8Û@Þ<7°7°>[ÛOï6?¡Þ8ó»7°?B7°7mÞ-=. å ë 7°ÞÞ8åBæ ,»÷¡>@1 =^+8>[7:.@â¿Ûh7:ï:?3,Mï)ÛhÛ¿Û@ïe1?Bäl.@>[Þ ï:7°,äl?U>UÞ=-â0=-Û =-æ,"Ûh=8ï:>@ï°=^Ý6,",5+ Þ= Þ-ó»å3å3Û@7:Ò?9<°å¡Øë ¼Þ-Õ-åBÒO+<Ô,"Û@O+-46Ôe,²Ö7mÒOÛh7m=»Ú ?l+8=W>hBï:Þ8Ù,"ÛhOÛ Þ-Ó¿[7:,">@Ó =?3Û@Ñ 7°Þ ï â¿äl=^÷G>[,"â 7°?U?Uâ Þ8Þ8==Á,ó»Þ->h+8àW7a÷¼Þ87°åè?UÛ Þ-Þ8,"åBÙ +8O,²=-Ó,"=-9Û@Ó0Þ-â¿7:>@Ñ,ÁÔr? Õ ä3æ ÛO,3Þ-ÞLÞ-ÒOó,"ÖþÚ3+-,?¡,"Ô 1 ?¼>hú àSï:,7°+8?BÞ ,,¿ä,=^¿,"Þ87a.@ÛhÞ8â ?l7°>[4 ,?)?U1 Þ<ú =Á,æÛ@Þ +-, ,ÞLÛhóWÞÛh> ?3=-4 ÷GÞ8,"â¿=8=^â ,"æï°,ïmÞ-,MÛO+8Þ8÷=^7°>[Ý3ä?3äl=²>@,"7:+->h?UäàÞ8>[="åB=-1 ,"7°?34 à .@=-,">4á$Þ-Û@,å3?3ï:Ûh, 4 Þ Þ-åB0,"7°=^+å3Û@=-ÝB+-,¿ä,?B+8>äl>Uï:7°=^?B7°Þ-, 7:>@=-? ,.[â Õ8Ò ,3?UÑÞ8ÕM=Öþ>hÚlàÔiÑälÕ<>UÙ=^Ñ87°×Þ-Ôe7 @ÖþÚU, Ï ï:1 ,?B.@Þ-åß7:?¼Þ8åB, =^Ý3äl,"+-ä>[=-7aÞ87°>[?)ê³Þ-å3,?ÜóW,09Û@ï°ï Ù 3ÑÕ BÒOÙ<ÖþÔeÖÒOÚ0Ô hÑÔ³Ô ÖmÙ Õ-hÒ ÚBØ ÑÕÖþÚ3ÔJÑÑÕ<ÔÙkÑ<×Ò ÔeÖþÔiÚUÑÏ Ù<ÙÑ BhÑÔrÚ0ÖÒhÔ ÚBBÙ¿ÑWÒ ÖþÚØ G3ÖþÚG×8Ñ<Ï[زÑ<Ø ØOÖmÑÙ<°ÙÑÑ<Ó0×ÔeÑÖÚlÒOÚ0ÔÙ$ÖmÙÔ GhÖþÔ ÚUÏUÑ OÑ °Ñ
O
L
)
B
M &
iF
B
W
q
X
~F
X
yF
X
#
1*8&61=<& )
o
s,
¢
;+
)
g,
=£l¤q,
s,
a
s,
E,F
¡ P
B
E,
)
£
-Õ Ò5ÛhÒ ?l4 Ø[Ñ 1 ú ,Þ ú ,Þ Û@?34 æ ,$Û æ =-÷G,â¿äB7:â ,"9,,"Þ-=k+8÷07°? äl>[7°?U7°Þ»?39>h7:à 4B,?UàÂÞk>[ï:>@4¡? +8>hÞ8ê[Ûh=-Þ-Ý37:>@9<å ?3Û@Þ-ïål=^ÛO÷GÞ â â 3,7:= Þ-+8Þ-÷0åB,Á7:? 7°â0æ >hÛhÞ8.[å , >h$à ê)(=-Ý3Ûh9<àþå¼Þ-,Þ8+Áå3Û ÛOÞ +->@Þ8ÛOÞ87°>[?¡>@àkë ê)ÛhÞMèâ¿+<Û@>U46=LÞ7mÛhëè?3="äB1 7:ú ,"9,,5Þ =²7°? Ûh?34 7:?397mæ 46,M,?UäBÞM7:,">@9? ,"=»7:? å3Û @,¿7:?3?B9>[7m46?B,",?[â Þä6>[ÞL?÷ 7°?UåBÞ-,",+8? =-,"Þ89åBÞ-,7:>@äB?ª7:,"ó»9,"7°Þ-= å ê³Ûh?l34 Ûh?l4 )7m=»Þ8åB,+-7:â0,5=^ÛhÝB.@ï°Þ-,7:?B>h.Mà àÂ+8>@ÛOâ àþÞ8Þ-,åB+Á,ÁÛ =^ÝB+->@äÞ8,ÛO+8Þ8ä7°>[>[?=-7aÞ8>h7°àW>[?0ë >hà ¡»+8Û[Ûh46?l7:4 Û@?3="1 7°9=^? ,"Ûh,?¿?¡ åBÞ-7:7°>0?B?3.@9ï:,,"7:4BÛ@Þ8,4è>@?U.@ÞWÞ-,>0>[Þ-åB?ä3,"7°,5+"91 ,"Þ-=ålåBÛOÞ8,»å3Þkâ ÛOå3ÞÛ >[[9"+-,»Ûh,? .@?B,">@æ ?B?3,M,,+<å3â Ûh7°?Bï6ä69.[ÞL÷¿Û[,"=^47°,[?U1 êOÞ-7°,"?¿+8=-ó»,"9åBÞ-7m7:9<>@å?0Þ8ó»åB,7°Þ-+8å,»Ûh0+8, ê[9â¿Û@?>[+-æ ,W,ÁÞ-ål=^7:Ûhâ ?07°ëïmÛhä3+8ï°7°÷ ,59æ ,",= 0¦s§
¥
o
¨£
«
~©
Eª
(¬
«¬O
E¬
MBª
©
g®
i®±°¯¬³´¶ ² µ ·®
n©
(¬O
m®O
¯
U
¯®O
2¬O°®
n
U©
2®
Mª
«¬U¸®
¢F
PX
¹F
n©
®
lº
3 ¶n 5 SZD
!#" aÀ %
½ ¾7¿
G
0h
Kp *k
¼
½ ¾
G
mh
=p Xk
O
Geometric Dissections that Swing and Twist
141
B YZNU5D8b Q:P"HWFX8HLP"bJbWPQ)F ¶ " ÁILPMF[D8¢[F""P5N
!#" Á &%
¼
½ ¾
3 V@T[E6D8HLE6P5bJYcILYZP5N PQILD
¼
=
½ ¾
A
J
#
o,
I
'
-
2M
2A
g
-
X
¹
O
1*8&61=<Äâ
+M,
),
(Å
g +
0Å
,F
Ç
+ ƤD
+M,
0,
¹
È
)Ç
s,
),
s,
;+
a
la
£E§sOÅ
È
g,
0Å
-+M,
+
Ç
o
£
142
Greg N. Frederickson
:ï7°?BÛhÕ-Þ-. Ò57:>@Ò =^? Ý3älâ ","Ø@,+-ÑÞ-äå3>[>G=-4)7aÞ817°>[Û@?)9"åB1 Ûh,ÝB9ïmåB+-Ûo,>U÷¡=-9=-ç ë+-äl7°h>UÞ-íl7m=^9>7°Û@Þ-æ 7:ï>@=^ä,"?+>@7°[7:?l?U,"464Þ8Ý3=ÁÞ-9â¿å3,5Ûh=À,"Þk?UÞLóÞ8Þ-åB7:>²>@,?BÞ-=^,5,"Þ-4¼=8+8=-7:,Ûä ï:æ ï:Þ-Ûh> ,"Þ-@9<7:,²>@å3?3?BÞ8=åB7 ,Û@ÝB? ?3,Á4æ 7:=Þ-,5åB9ÛM,">[7°ÞLâ¿+k÷G,¿ä9>@,=^+8÷G>@+-â ,5à=^Þ-â ä,">@=8,=-?lÞ8,+-4 ï÷ äl÷@>@>[ݽ7°?UÞ8=-="åB1 7°àþ ÞÁ>@Þ8ÝåB, 9Û@=L?èÞ8+-7:ï:ä37°?3=,+8Ý3,ïmä¡ÛOÞ8â7 [ÝB,MïaÞ8Þ-7°>¡ä3ï°,",$Û[99<>@åªäB>h7:,"Þ-=å3,>h+àÞ-æ åB÷ª,MÛ@=8?¼Ûhâ ÛhäB,²ä3=L+-Þ8>[+-7:äBäè+-7mÞ8ÛO>¿Þ8,Mã3>ï°ï>[=^Ý6,Þ"Þ ê³Þ-ÛhåB?3,²4¼äBïm46Ûh> ?3,@Þ8åB1 7:= à àÂÞ->@,"+=8=-æ,ï:>hï:ÛhÞ8åôÞ-7:>@>h?3à = Þ8äBåB+8,¡>646=^Þ-Ý3+897°äl,Á=MÞ8åBÞ-ål,$ÛO46Þ,5=^÷[7:>@+-ݯ,54¡Ûh4B+8,è7:=8=^9,5+-9n>UÞ8=-7°=->[äl?)>U1 =^7:?B.lê³Þ-åB,"?¯Þ-åB,¡+-,5=^Ý3ïaÞ87°?B.á=^ÝBä,+8ä>[=-,"4 ¥
¦§
)
)¨£FÉ
B
*Ê
Bt
º
B \³D
!#" Ë
3 RHLP5bJbJE6P"bJYcILYaP"N 6E6D8NhI^F5P"NUbkF"NU]¿bL¹OTGFHLD8b
2!" Ì
&Í
B YZNU"Dn] ][YZbJbJD<X-ILYaP"N P"QSFÁE6D
·Ï F
)
_Ð
A
ÑÐ
+
Geometric Dissections that Swing and Twist
143
@.9>@+<Û@? ÛO[àk,+-ç°Þé O>@í?B7°,?UÞ-+-+8,5>69n46Þ8Ý3Û@?B9,".@4èï:,MÛÞ8>¡Þ-,5Ûh9<åB?3?B>hÞ-7 å3ÝB,,@+51ê69ÞÛ@ï°Þ8ï:+8,"Û@4è?3Þ-=^å3àÂ>@, +8â ÔeÕ =Á3Û0Ñ "Þ8Òh+8ÖÛ@Ø älÙ,"ZöÖ>@Ø[7mÑ 4 >@Þ-+ > Ûhi?BÙ >@ZÖÞ-Ø@åBÑ ,"7:+?áó»ç°é@7°Þ-éå¼íeêUÛ@Þ8?> Þ-,46åB7:=8,Ý39ÛhÝlïW=-i=-ÛhÙ 7°?B>[.[?¡ÖþÚUï°,[>@Ï 1SàS1 ùG»Þ8åB7°?l,",Û[97:+46,0,äBÞ8+<åB+8=W>@7:=Û@ä+-,46,+-7:Þ-=8+87:=-,,","àÂ=",9n1 +8Þ8+87°>[,"?ß4 Þ87:=$>=-ç°ó»é"ìh7:íl?BàÂ. >[+»åB7:Û?B.@46,5,5Û =-æ9+-ï:,@7:ä6êÞ8ó7°>[,0?è+->h,"à?3Þ-ÛhåBâ ,5,¿=^,²Þ-=-å3ó»,07°?BÞ-,5.U9<= åBÛh?B?37 4¡Ý3Û, Þ-46å3,"Ûh9Þ¡>@»â ,9.[Û@älÝB? >Uï:=^Û@,5æ +=,¼äl7:>[?U, 6ï°Þ-÷G>¡äB.[ï°Þ->@>[åB?37aÞ8+8=,",ål4t,¿Û ý@7:@? ì ,Ûho?M+8Û@åB+-7:>[7:?U>@â Þ-Ýl,æ= +8?3Ý346Û@=-7m,"ï@=-="=L=-êlÞ8,"+-9Û@ÝlÞ-?37:9n4½>@Þ-?3Ý3Ûè=½+-,åBç°>@é@, àGBé[+8ê-ÛhåBëh.[ìh>[+8íeÛ@â 1Wâ æ 2BÝ3>@7:=-?U+è,"Þ-=>¡, BÛ@=-?3Ûh7 â ³4²1 äBå3ï:Û@,@ïaàêkåG+-Ý3Ûßå3=>@å3Þ-â , åBB,"æ Ûh+-Ý3.[,=^>@,57:? == Û¿=-7:â¿ä3ï°,MåB7:?B.[,"4 467:=8=-,"9nÞ87°>[? 27°.[ÝB+8,¿é5ì 1
o )Ò
*
¤l
¤l +
`
`
G
R
aG
aG
J
Ó
G
aG
K
Ô Ô × Õ
Õ Ö
×
× Õ Ö
Ö
l YaN[5Dn]¿][YZbJbJD<X8ILYZP5N0PQ)F[D8¢[F""H^FK ILPI P²UD-¢UF5P"NUb
2!" $BØ %
òÍ [Ç ÁÍ^Æ ÊÁÍ SÌÇBÍLÉkÆ 46G7:ÖþåB=8ÚU=-,ÏU,"+8Ñ 9n, iÞ8Ù<7°Û@Ú>[+-?3@,èÏ=kÞL7aÞ-óWà3> Þ->ÜåBæ ,",.@÷,"ÞL?Bó»Ûh,+87m+<,=LÛhÞ Û[ïWåB4oÞ-ø^7:,5?BÛ@9<.[9åB,,"?B?UÛ 7 Þæ ï°Û@ÝB,[ï°,"1>[=?B.²àÂ>@ó46+ >¿7 ³9äB>[,7°+8? ,5,@9?U,,5ÞÀ+-= Þ-ï°Þ87:7:?B?Bå3,».áÛOÞ=-â ,Ûh.@+8Û@â ,Á?G÷¯,"9?[>@>hÞh?BàB. ÛÞ8åBåBåB,7:7:?B?Bã3.@.@.@,5,²Ý3Û Ûhæ+-,5+8ï:,,= àÂ>@+8â¿,54êBÛh?l4¡,5Û@9<å=^Ýl9<å¡ï:7°?3,$=^,".@â ,?UÞ»å3Û@= >[?B,²,?34Bäl>[7°?UÞÛOÞ Þ8åB,MåB7:?B.@,[1 ×8ÜÒhÚ3ÚÚ³Ñ Ñ8×ÔJÑ8ÖØ Ñ<×<Ñ hÚØáGÑÖþÔ ÚGÔ kÏ[Ñ¿ÒÜÖmÑ Ô Ù $GÖmÙnÖþÙ ÔÚUÏUGÖþÑÚGÖþiÚUÏ Ù<ÏUÚ 6Ñ@ÖþÙ ÚUÏ ²ÏUÙÑ ÒáÑ0Ô °Ñ$× OØOhÔMÖmÚÜÙ<Ô ÙBÔ Ñhà6Þ-Ø@åBÞ8Ñ åB,,kÞLóWï:7°W?3> ,W>@4B?l=-7 ,=^³7m.@46,â +8,,+Á,"?U?[Þ-ÞÞ<å3=ã3,¿1 .[ï:ÝB467:?B+8,,",0?U= Þ8=^7aàÂ,"àÂ>[÷M.@+-â â Ûh?M,,"?U7m4)=-Þ81>[==8Ûh9Û@ï:,>@;@ï:,"?3, =).èÞ-ó»+8Þ-7:>Û@åB?B7mæ 9<.@åá,ï:,>@Û¡7:?B?$ä3,M,"Ûhå3Û[7:+²9<Û@åMïa>hààk>h>@à6ä3àÞ-7°Þ8å3,5åB9, ,",$ÞL=óâ 7m>=²7:?BäBåB7°7:â7:,"?B9ÝB.@,5â, =ê ó»ï°7:?B7aÞ8,å¡=-Ûh,.[äâ¿, 0,"?UÛOÞ8ÞW=Þ-åBÛ@ï°,Á>[?BåB. 7:?Bó».@,ÁåBäl7:9<>[å7°?UÞ8ÞåB,$Û@?3äB4 7:,"ÞL9ó,"=>$Û@, +-,MÝ3Û@å3ï7°?B=-.[7m46, ,"=^=k?G>hÝBà).lï:1,?BW.@Ý6Þ-Þå Þ8MåB,$9>@7m7:=^?3>U9=-7m946,,ï:,"?U=ÞÞ-ó»+87m7aÛhÞ8å ?B.[Þ-ï°å3,5,= >@Ý6Þ>@åBàS,»Þ-å39,M>@? äB[7°,5,9+<=^,57:=»>@?MÛh?3àÂ4>[+Àâ Þ-åB,,+8.@4B,7:=8Þ-=^å3,5,9nâ Þ87°>[Þ8?¿>@.[>@,àÞ-ÛÁå3,Þ-+8+7mÛhÞ->0?B.[.[ï°7,[Þ-,Á>MÞ8Û²åB,M= ?BÝl,"Ûhó +8, äBr7:,"297°,@.[1ÝB+-,²é S7m= =-åB>Oó»? 7°?¿27:.@Ý3+-,Áé@é@ê"ó»åB,+8,W43Û@=-åB,"4,"46.[,"=)7:?3467m9ÛhÞ-,WÞ-åB, æ Û[=^,5=S>@àB7:=->[=89,"ï°,5=Þ-+87mÛh?B.[ï°,5=Û[4oø^Û@9,?UÞ Ù
Ú·x
f ={}
z dD|gd
f*f=d
gf
*
,
&
1*8&61=<]ÛD
Ü
_
«,
,
+R
¯
ut
O
)+
B;,
O,
;+
+
,
)
& K£Ý
),
oÇ
)
,F
s,
q
s,
s,
)
o,
X
o
o,OF
+
|
n,
UÜ
P+
,
+
)
£
¦s§
¥
)
¨B£
ut
Þ
aG
¹Þ
*
&
Dº
7
144
Greg N. Frederickson
à
ß ß
à
à
ß
G xW]U]YabJP"bJX
!#" $[
«
È
K
*
Q
H
at
aH
T
,
a
âá
F -
¡
|,
1*8&61=<äãl ,
U
o
)
a£(¦s§
¥
¹Üå,
B¡
#
s,
;+
7
s,
q
+
+
,
i,
¯,
+
P,
)Ç o,
«,
âá
+
s,·
;+
,F
¡ £P¤q,
E,
s,
æ+
£
)
¨
aH
º
é
ç
ç
è
ç
ç
è
ì ê
ë
3 xW]U]YabJP"bJX
!#" $»
*
!#" $À %
DL
G
Geometric Dissections that Swing and Twist
145
í
î í
î
3l YZbiIJr[YZNU5D
;+
¥
Oï
¤q,
1*8&61=<Äð¢
a
y
¶òø
7¦s§
¥
i
¥
gö
Ç
o
¨£
+
)
F¡
&7
a aù
F
B
'
Pï
;+
O
«
÷+ ò
BÇMò-úæû
s,
úÈó
s,
o
ñ+
s,
ò*ó
¸
iòR
q
P
¹óôõò
B 0
¹
öq£
*
aG
¢º
þ ý ü
ÿ
ý
ÿ
ü ü
ý
þ
3l YabiIJ[YaN[5DnFµUZD][YZbJbJD<X8ILYZP"N0P"Q)F[D8¢[F""P5N¿ILPMFIJHLY°FNU"aD äB7°,59/, , ÞLGó»Þ7m=L7mÞ=å3Û 7°?Bó.[>@,"?lÛ 46æ ,ï°+-,àÂÝB4Bï)7:=8à=^Û@,5â 9nÞ87°7°ï:>[÷¡?¿>@>@à à³46Û 7:=8O=-ë ,"9nÞ87°>[Þ8?3>$="Û 132B>[[+1 Ûh?GåB÷ ,4B7:=8=^ë,59nÞ-Þ8å37°>[,?¿+8,$, 67:=ÁåBÛ7 æ 7arÞ<ë = àÂ>@é mï 4 !#" $BÂ
aG
Pj
Ph jlk
Ph jlk
¯ aj
G
¢j
ú
146
Greg N. Frederickson
-Þ+->>@Þ8ÛÛOÞ8Þ-7°+8>[7:?3Û@Ûh?Bï³.@=-ï:,÷Uâ 7:=»â 7:?ª,Þ82+-÷[7°.[1 ÝBÎ +-?, ,é5BýBÛh1 â äBï:,7:=Þ8åB,ÞLó»7:=^Þ åB7:?B.@,5Û æ ï:,4B7:=8=^,59nÞ87°>[?è>hàÀÛå3, BÛh.[>@? 92B>@>@7:+?3,"9Û[7:åB469<,k, å 46Ûh@7m?l=-,"=-4+^,"Þ89,,5Þ-Û@7:9<>@Î å?²>@=-Þ87m,"à6469<Þ-, åBåB?B>h, à37 Þ8ÝBåB[, , êo7m46= >WÞ8åB.@@>G,W,"+-,5àÂïm=S>@Ûoï:Þ8÷»ï°åB>OÞ-+8ó»å3>@7:, ÝB?B.[o. ëå$5îÞ-kå3+<Û@,Ûo?3óôâ 4Û7mÞ-46åBï:ä7:,?B>@,7:?[=-Þ ,k.[>@=-â à>»Û,Þ8?Uå3=^7mÞSÛO46ÞÞ8, >Þ->håBÞ-à3,"å3Þ-7°,W+åB?B9, ,,5O?UÛhë Þ8+8,,"+<=^UÞ= 1 Þ-@=^åB7m,46,Á+-,@Þ-,,1)?3îÁ46+<äÛo>@ó >@7:?Uà ÛèÞ8Þ-=kå3ï:>h7:, ?Bà),0OÛ$ë =^=-,"7:U.@461â ,ÁÛh,46?U?3,"Þ?U4¿Þ-àÂÞ87°+-àÂåB>[÷,Áâ Þ-=-åB7:4B, ,@Þ->h>,"à³+^Þ8Þ8Þ-,åBå3, , ?B,"Û@>h+-àk.@,5Þ->G=LåBÞM,", = =^7mÞ-o46åBë , +8>@>hÝBàW.[=-Þ-Ý3å¿åB9<,Þ-åªåBÞ8,Áå3â¿[ÛOÞê7m46ó»ä7°>@Þ-ÛhåÜ7:?U?3ÞW4Þ-åB>h, à³Þ8ï:Ûh7°åB?3+87:,,= =^2B,"+8.@>@â â(,î?UÞ$46ä3+8Û@Ûo+8ótÛ@ï°Û²ï:,ï°ï7:?BÞ8,>ª=-Þ-,å3.[,èâ¿ï:,"7°?B?U,¡ÞÞ8=^>²,".@Þ-â åB,»,?U?3ÞM, GàÂÞk+8>@?Bâ ,5Ûh+8Î ,"=^Þ-Þ > [,+-Þ-,Ûh?l4ß6â¿>h,"à,Þ-Þ8åB7°?B, .½Oë Þ-åB,>@=^Þ-7m46åB,è,"+ÛhÞ-Þå3Û@î? 1 Þ-ÁåB1 ,$Û@?ÜäB9äB>@+8?O>@øLäBÝ3+8?37:Ûh9nÞ-Þ8,²7°>[9?ÜÝ6Þ<ó»= 7°Þ-Þ-åÜ> â0Þ8åBÛh, ;[,@=^7m1 46,5=²>hà Oë Û@?34 Uê³Þ-åB,5=^, ï:7°?B, =-,.[â ,?UÞ8=7m46,?UÞ-7°àÂ÷ r7aÞ ùG,"×<,¡ÒOWÓ ,5ç°é@9é@Û@:ê8ÑÝ3ëhÔe=^ÖþìO,ÚUí Ï¡»Þ8åBÛ@Ô B,¼?3Ñ 4ªâ l÷@,Ù,Þ-Ñ ÞÁåB3>6óØ[4Ò ,$JÔJå37mÑn= Û Ù<[Ù+8Ñ,M,ïmÛOÞ-O,5Þ8Ôe,"=-Ö=-4tÒO,Ú ï:Þ-ï:1 Ûh>ôÞ-7:Þ->@åB?3,Ü=9>@>@?Bâ ï:÷äBó»ï:,åBÞ87°,?3? .¯Þ-åB,¼èÞ-,5Ûh=-?3=-,4 ï:ï:ÛhÞ-7:>@?ñÿlê3â ó,,Þ8åB9>6Û@4ï°ï GÖþÚUÏUÑ °Ñ ØOÖm Ù< ÙÑ<×ÔeÒOÖÒOÓ Ú¯°Ò ÑÔrÖþÚGÏtoë Ô 3Ñ ÔJÒ ÙÑ 3Ø[Ò JÔJÑnÒ Ù<ÙÑÑ OÔeÖÒOOÚõÕ-Ñ ÏhÖ OÑÙ eë é ³ÖÑ<×8Ñ¼Ô ÖmÙ<Ô Þ-ã3åB.@Õ-, ÝBÒ5Ò+8ï:,",=»?3.hÛ@Ø@Þ-ï°åß>[Ñ ?B>@.¿àWó»Þ8åB7aÞ8,è,Áå=-ä3Û7:+-46>àÂ,0>[[+-,»>@âà Þ-ÝBå3Þ-ï:ÛhåBÛÞ , àÂÞ->[OåB+ ë ,Þ-ï°åBU,"ê,$?BÝ3.h9Þ8=->h7°åèÞ8?BÛ@.>@?Bà).@àÂÞ->[,"åB+-?U,²âÞ ï:ÝB>@7°?3ïmàÛ@,Û ==-46àÂ,>@>[.[+$Ýâ¿æÞ-,"åBï:?U,$,èÞkÛh=-àÂ?B7m+846.[>@,0ï°â ,[ï°1 ,"î ?B.hÞ-Þ8> å3Î=M>@à, æ Ýl>hÛhÞ8ïmå = aG
aG
Lg
~h ajDk
~h jDk
-h jlk
aG
7h jDk
gh jlk
G¯C
¹h jDk
F
P
aG
h ajDk
OC
ø
Oh jlk
³
hojDk
·C
aG
|
h jlk
GCI
7h jlk
ÑhojDk
C
s
1*8&61=< ,
)
¥
P¦s§
s,
a
, 0
i
)
¨B£
D
nj
a
¹
h ajDk
a#
hojDk
¡
Ï F
BM
´
«j
j
ú
´
#
+
'
)
K£
_h jDk
·º
Bl YZbiIJUYZNU"DnF"µ[aD]@YabJbJD8X8ILYZP5N0P"QFE6D
`
q
ô
j
r
ô
ih jqpBr=k
aG
ùj
ú
B
¯ aj
ih jDk
aG
ú
Mj
Geometric Dissections that Swing and Twist
147
Þ-7:>@Þ-?3> ="êlåBæ 7°,,$à Û@Û¿óäB,M+-äB, +8Þ-3>[+8, ,"Û[¡Ûh9<Þå Û@Þ-?B7:å3=.@,ï:Þ8,@åB+81 ,M, 3=-, Û@â Û@,?BÛ[.@=Wï:,"ó»=»ål>@ÛOàÞ»Þ-åBóW, ,Ý3=-,"4èàÂ>@Û@+= Þ-@å3,",M+^Þ8äB7:9+-,", =»G7°Þ8>[>GÝ3>è= ÛhàÛ@?3â 4ª7°àÂï:>@÷ +<>h9,àÀ46[7m,=-+-=-Þ-,", 9 GÖþÚUÏUÑ °Ñ ØOÖm Ù< ÙÑ<×ÔeÒOÖÒOÓ Ú¯°Ò ÑÔrÖþÚGÏtÔ 3Ñ ÔJÙÒ Ñ 3Ø[Ò JÔJÑnÙ<Ò ÙÑ Ñ OÔeÖÒOÚõOÕ8ÏhÑ Ö OÑÙ BÑÚeÑ ë oÑÕ é ³ÖÑ<ò×8Ѽé Ô ÖmÙ<Ô Þ-ã3åB.@Õ-,0ÝBÒ5Ò+8ï:,",="?Bê).@Þ8Þ-[åBåÜÑ,èÔi>h× ïmàWÛoÞ-ó åB, >hà,»=-7:äB=-4B7°+8,¿?3> ,"@>@=",Wàkê)Þ-Þ8Þ-ålåBå3,ÛO,èÞÀïmÞ-ÛoåBó ,»ï:>@,à?3Ýl.h9=^>UÞ-7:?Bå¿=^7:. ?B>h,"ààÂ>@="Þ-êS+8å3âÛ@,?3ÝBï:7:4ßïm?BÛ@,=ÁÞ-å3=^àÂ,",>[.@+²àÂâ >@Þ-+8åB,â?U,0ÞÀÝ3=-àÂï:7:+8Û46>@, âàÂ>[ï:+$,îñ?BÞ8.@åBÞ8Þ->,¡å3=²Î 9>[6>@=-à, 7°?Bæ Ýl,è>hÛhÞ8>hïmå =à Ûè46$>[ó»Ý æ 7:ï:ï:ï,¿.[Û@>0?BÞ-.@åBï:,@+8>@1 Ý3.@, å ÛhÞ-åBïm=-,>¡â 46,7:46Þ-,ä+8>@â 7:?U7°?3Þ8=Á,>hÞ8àÀåBÞ-, å3O,Û@=-ï°ÝB7:46,5,5==>h>@à à Û@?34 [¼ê3Û@àÂäB>@äB+²ï:ó»÷U7:åB?B7m.09<åªÞ8åBÞ-,$åB,0àÂ>[=-ï°7:ï:4B>Oó»,"=Á7:?B>h. à ï°,"â¿â0Û31 ÔiÒ té 3ѪÒOÕ ×8BÒhÒOÚÙ<ØhÖþÖþÔeÔrÖ ÖOÒhÑÚ ÖþÚlÿkÔi9Ñi>[ÏU= ÑÕ<Ù 69é >U=hÚØ éñë é 9>U= ÖmÙèÑ 6Ö °ÑÚ3Ô 9ï°,">[â¿Õ-= Ò5â0Ò Ûá"àÂ>@Ø@ï:Ñ ªï:>Oóé M=1 ÛhàM?làÂ4ô>ß>@+ÿkäBÛh+89>?G>[@÷ñ= ,è+-Þ-,5åBÛh,5ï =^,[êèóWë, 6é[+89ê,>[ó»ÿW= +897a>[Þ8=,èªÞ8é åB,ªÛh?B.[áï°,5èé =6ë 9>[>U?ô= Þ8åB9,>Uá= ï°,é àþÞè=^7m46,"è=¿áë >@néàêÞ-Þ-å3å3 ,, 7°>h?Bà, Û0Ý3=-ÝBÛhï:â 7aÞ87°,5>@=ÁàÞLÛ[ó=> Þ8åBÛh, ?B.[=^ï°ÝB,5â =êBÛ@>@?3à 4¡=-7:¡â¿Ûhä3?3ï°7°4½àÂ÷èó»Ý3å3=-ÛO7:?BÞ².¿+-,"Þ-â0åB,MÛh7:ïm?3Ûo=ó ê³Ûh>@ä3àäB=-7°ï°?B÷ ,5Þ8=»åBÛh,?3+84èÝBï:Þ-,å3,²àÂ>[àÂ+>@+8Þ8âåB, ÝBïm9Û@>[==-7:àÂ?B>[,+ =^7:?B,"=»Û@?349>U=^7:?B,"=>@àÀ46>[Ý æ ï:,MÛh?34¡Þ-+87:äBï°,$Û@?B.@ï:,"="1
aH G
C
¹h j¢pr=k
aG
H aG
1*8&61=< ,
¢
)
O¦
¥
, 0
i
),¨£ '
h j =r=k
a
¹
h jDk
a#
¡
Ï F
BM
ú
j
o
n+M,
¡
#
j
+
£
ærg¸
_h j¢pr=k
'
2r
h jDk
nj
yhojqpBr=k
Dº
1*<Ñ< j
¤q,
Ó
^¦§
¥
ârM)jq
ÇF
^rg¸
)
)¨£
sM âr|¸
¡
7r
âr¸
r
WMj
j
ârMX;r(¸
a;rMXâKr|¸
a âr|¸
WMX;r|¸
Ï ¡
sMj
ú
r
£
âry¸
K
WM âr2¸
sM âKr|¸
2M
qº
SÈ SÆÌ ¶5£%$"'x Ya&hN®YZdOx'F"K$&@YcdhF@Ff*K$+¿FªY,&hYZF"P.NU-]F"(N[P[YabLf"F)F"&hNUTò]/q+ F*F&"bLF"FKILbJT@TUH^"F@T²£ _WC H^FTUµ6][D5D
! #d "od
d
qdMf
F
%
=
~¿
I¿
%
_¿
%
7¿
%
¿
%
K¿
%
P¿
=
148
Greg N. Frederickson
¶nh£}+ 0 ¦F^"HJ«3IL4^YZ¬^N¦F<"( §UF¬L£H^][V@N[YZKMD8HnP5£ôN¿±lF"©UNU«] 5V@§X^h8èTU¤9biIL28D8¦«-Hn§Uf@´þqW¦ aD 2;|' =MPHE«3&B4-fB¦A2E¶<6"vC§X@¶"W£ <M
Í
%
%
¿
*Í
%
¿
Í
)Í
BÍ
%
Í
%
%
~¿
%
Í B
%
%
BÍ
¿
~¿
¿
¿
!"$#%& ')(+*-,/.102(43,-.1,/52,268729):&;<(>=@?A:CB2BD:8BE,-FHGJI872:C52=LKL:8.:8GH.1M2N/MPOFJ:CQDR86 STVUHWYXZ1[]\^UH_-[V`badcX&[feYU\)X&[fgihJj k `lmXbg4no_-giTp&U1UHZ1W<jfXbgi[fZ1q[]\)rsuUHtb_-v[s1w&`xzayoZ]`&gi\{/`-W-x2~Y|&[fe/g_
150
Kiyoshi Hosono, David Rappaport, and Masatsugu Urabe
,-Q2G:8(+52Rb=(+5P.HM2Î0:BD:CF1G1(+GH(>,/5 ,CÍoØVÔ+*4RbG-,úá4ûV=2R52,-GHR G102R)Ó@:8Ï<(+ÓM2Ó ;-:8Ò+M2R),8Í (¥úØû ,8;-RbF :8Ò+Ò4.HRbG1.)Ø¸× (+GH0 5@BD,/(+5YGH.mÔ 2,/FRbÏ2:CÓ B2Ò+R-7d. : ¬BD,/(>5
<e U h`b_<j][fZ]~Yh[fgi`b_@¦gi[fe;AW2`g_-[]jx<WYXZ1[fgi[fgi`b_,/5@×R)B2FH,8;-R)G102RÙÍ,-Ò+Ò+,8× (+52N)G102Rb,/F1RbÓÚÔ
,úfá4û ÷-Ná 4 ý <-=2>'?A@>'BDCAEGF á 4H IKJ JML O P QSRTRU¥W Æ VÄA1 È XHÇ YU¥/Æ Z¢ÇÉAÄTÈ [ ÛAN-(+. ;<(+× 52N :8.¢G10Ñ.1R^02,8Ò+× ,8×V5íRbF (+5$QE,-ö M2ø52G1=L0ÑRbáF1^_RDRbÔ'Ï<`í(>.HRAG1.,/Q2.1RbGJGH:C.©(+5 \á 02!ýRbFHR ]@G10Ñ× R (+Ò+G1,80í×Rb52FV,@QERb,-ÓM2B252G]=*LÍ,/Îb,/FA5<:8;-5
h`mj°ta2»bc± bt a2b» c 6879EedÑ
_U§8Xm\W-¡iU[]`g¡ ¡~Yj][fZ1X&[]U [feYUV¡i`b¦UHZ2`~-_Y{
f8>'BGBGgGC+E,úá4û3h F 5á 4/ Ii jlk `íR)ÖDFH.1G Îb,/52.1GHF1M2ÎG©:.1RG^,CÍ£áG²ýo BD,/(+5YGH.m7E.1MÑÎJ0íGH0D:8G)×VR0E:&;-Ro BD,/(+5YGH. RbÎbÐ<,-.&MDä&ú:8änýmÒ+pÒ+i * ^o.HBDû3:8ÎbqsRrm,-7¥5 × :)02ÎRb(>FHFHtR ÎbÒ+RAr,C(>.ÍdFJ:L:8=Ñ.H(>ÓPMÑT.:8Ò+ -Ò7
) ,/:85 5Ñy=zí,úfú Ø<ûûbÔdô
w t
151
µ
r À
bX68_<7h]9Ee<`bÑZ1DU{k eYX&UV[ W2wm`b® g_-[]jog_P¤¬XbZ1UVZ1X_-l8U{Xmhh`bZ1{Cg_Y[fe
152
Kiyoshi Hosono, David Rappaport, and Masatsugu Urabe
w t
µ
r À
6379EE2k
e
.1M2QÑ.1ô
w t 6379E²±Ñ³
r
À
° ®
¯
µ
UV·/_Y{XWYXgZ `ba4W2`g_-[]j X_Y{ ¯ [fe<Xm[oXbZ1UVg_!´lµ°¤#¶¤·¸#¹ +º ¯» ±H®
On Convex Decompositions of Points
153
¤ :8.1R Û)û¥Õ 02R Ò+(>5ÑRG102FH,-M2N/0« :852={¬=2,