COORDINATED MULTIUSER COMMUNICATIONS
Coordinated Multiuser Communications by
CHRISTIAN SCHLEGEL University of Albert...
41 downloads
744 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
COORDINATED MULTIUSER COMMUNICATIONS
Coordinated Multiuser Communications by
CHRISTIAN SCHLEGEL University of Alberta, Edmonton, Canada and
ALEX GRANT University of South Australia, Adelaide, Australia
A C.I.P. Catalogue record for this book is available from the Library of Congress.
ISBN-10 ISBN-13 ISBN-10 ISBN-13
1-4020-4074-1 (HB) 978-1-4020-4074-0 (HB) 1-4020-4075-X ( e-book) 978-1-4020-4075-7 (e-book)
Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com
Printed on acid-free paper
All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands.
to Rhonda and Robyn
Contents
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Dawn of Digital Communications . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Multiple Terminal Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Multiple-Access Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Degrees of Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Transmitter and Receiver Cooperation . . . . . . . . . . . . . . . 7 1.4.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Fixed Allocation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Network vs. Signal Processing Complexity . . . . . . . . . . . . . . . . . . 10 1.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Linear Multiple-Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Continuous Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Discrete Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Matrix-Algebraic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Symbol Synchronous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Principles of Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Sufficient Statistics and Matched Filters . . . . . . . . . . . . . . 2.5.2 The Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Single-User Matched Filter Detector . . . . . . . . . . . . . . . . . 2.5.4 Optimal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.5 Individually Optimal Detection . . . . . . . . . . . . . . . . . . . . . 2.6 Access Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Time and Frequency Division Multiple-Access . . . . . . . . . 2.6.2 Direct-Sequence Code Division Multiple Access . . . . . . . 2.6.3 Narrow Band Multiple-Access . . . . . . . . . . . . . . . . . . . . . . . 2.6.4 Multiple Antenna Channels . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.5 Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.6 Satellite Spot-Beams Channels . . . . . . . . . . . . . . . . . . . . . . 2.7 Sequence Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Orthogonal and Unitary Sequences . . . . . . . . . . . . . . . . . .
13 14 17 18 21 22 24 25 27 29 30 31 31 32 36 37 39 41 42 42
VIII
Contents
2.7.2 Hadamard Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3
Multiuser Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 The Multiple-Access Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Probabilistic Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 The Capacity Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Binary-Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Binary Adder Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Binary Multiplier Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Gaussian Multiple-Access Channels . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Scalar Gaussian Multiple-Access Channel . . . . . . . . . . . . . 3.4.2 Code-Division Multiple-Access . . . . . . . . . . . . . . . . . . . . . . 3.5 Multiple-Access Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 Convolutional and Trellis Codes . . . . . . . . . . . . . . . . . . . . . 3.6 Superposition and Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Asynchronous Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 45 46 46 48 54 54 59 59 59 63 73 75 81 81 84 90
4
Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Optimal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.1 Jointly Optimal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 Individually Optimal Detection: APP Detection . . . . . . . 107 4.2.3 Performance Bounds – The Minimum Distance . . . . . . . . 109 4.3 Sub-Exponential Complexity Signature Sequences . . . . . . . . . . . 112 4.4 Signal Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.1 Correlation Detection – Matched Filtering . . . . . . . . . . . . 118 4.4.2 Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4.3 Error Probabilities and Geometry . . . . . . . . . . . . . . . . . . . 120 4.4.4 The Decorrelator with Random Spreading Codes . . . . . . 122 4.4.5 Minimum-Mean Square Error (MMSE) Filter . . . . . . . . . 124 4.4.6 Error Performance of the MMSE . . . . . . . . . . . . . . . . . . . . 126 4.4.7 The MMSE Receiver with Random Spreading Codes . . . 127 4.4.8 Whitening Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.9 Whitening Filter for the Asynchronous Channel . . . . . . . 132 4.5 Different Received Power Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 4.5.1 The Matched Filter Detector . . . . . . . . . . . . . . . . . . . . . . . 134 4.5.2 The MMSE Filter Detector . . . . . . . . . . . . . . . . . . . . . . . . . 135
Contents
IX
5
Implementation of Multiuser Detectors . . . . . . . . . . . . . . . . . . . . 139 5.1 Iterative Filter Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.1 Multistage Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.1.2 Iterative Matrix Solution Methods . . . . . . . . . . . . . . . . . . . 142 5.1.3 Jacobi Iteration and Parallel Cancellation Methods . . . . 143 5.1.4 Stationary Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . 147 5.1.5 Successive Relaxation and Serial Cancellation Methods . 148 5.1.6 Performance of Iterative Multistage Filters . . . . . . . . . . . 151 5.2 Approximate Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . 158 5.2.1 Monotonic Metrics via the QR-Decomposition . . . . . . . . 159 5.2.2 Tree-Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2.3 Lattice Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.3 Approximate APP Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.4 List Sphere Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.4.1 Modified Geometry List Sphere Detector . . . . . . . . . . . . . 172 5.4.2 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6
Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2 Single-User Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.2.1 The Projection Receiver (PR) . . . . . . . . . . . . . . . . . . . . . . . 179 6.2.2 PR Receiver Geometry and Metric Generation . . . . . . . . 182 6.2.3 Performance of the Projection Receiver . . . . . . . . . . . . . . 185 6.3 Iterative Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.3.1 Signal Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 6.3.2 Convergence – Variance Transfer Analysis . . . . . . . . . . . . 195 6.3.3 Simple FEC Codes – Good Codeword Estimators . . . . . . 202 6.4 Filters in the Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.4.1 Per-User MMSE Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.4.2 Low-Complexity Iterative Loop Filters . . . . . . . . . . . . . . . 214 6.4.3 Examples and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.5 Asymmetric Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 219 6.5.1 Unequal Received Power Levels . . . . . . . . . . . . . . . . . . . . . 220 6.5.2 Optimal Power Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 6.5.3 Unequal Rate Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.5.4 Finite Numbers of Power Groups . . . . . . . . . . . . . . . . . . . . 232 6.6 Proof of Lemma 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
A
Estimation and Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 A.1 Bayesian Estimation and Detection . . . . . . . . . . . . . . . . . . . . . . . . 237 A.2 Sufficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 A.3 Linear Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 A.4 Quadratic Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 A.4.1 Minimum Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . 242 A.4.2 Cram´er-Rao Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
X
Contents
A.4.3 Jointly Gaussian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 A.4.4 Linear MMSE Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A.5 Hamming Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A.5.1 Minimum probability of Error . . . . . . . . . . . . . . . . . . . . . . . 246 A.5.2 Relation to the MMSE Estimator . . . . . . . . . . . . . . . . . . . 246 A.5.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . 246 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
List of Figures
1.1 1.2 1.3 1.4 1.5
Basic setup for Shannon’s channel coding theorem. . . . . . . . . . . . Multi-terminal networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A historical overview of multiuser communications. . . . . . . . . . . . Multiple-access channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Degrees of cooperation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 3 5 6 8
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
Simplified two-user linear multiple-access channel. . . . . . . . . . . . . Continuous time linear multiple-access channel. . . . . . . . . . . . . . . Sampling of the modulation waveform. . . . . . . . . . . . . . . . . . . . . . . The modulation vectors sk [i]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synchronous model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbol synchronous matched filtered model. . . . . . . . . . . . . . . . . . Structure of the cross-correlation matrix. . . . . . . . . . . . . . . . . . . . . Symbol synchronous single-user correlation detection for antipodal modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimal joint detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulating waveform built from chip waveforms. . . . . . . . . . . . . . Chip match-filtered model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple transmit and receive antennas. . . . . . . . . . . . . . . . . . . . . . Simplified cellular system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Satellite spot beam up-link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 15 19 20 23 25 26
Two-user multiple-access channel. . . . . . . . . . . . . . . . . . . . . . . . . . . Example of a discrete memoryless multiple-access channel. . . . . . Coded multiple-access system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-user achievable rate region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-user achievable rate region. . . . . . . . . . . . . . . . . . . . . . . . . . . Two-user binary adder channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convex hull of two achievable rate regions for the two-user binary adder channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacity region of the two-user binary adder channel. . . . . . . . . .
47 49 50 52 52 54
2.9 2.10 2.11 2.12 2.13 2.14 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
28 30 33 34 37 40 41
56 57
XII
List of Figures
3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 4.1 4.2 4.3 4.4 4.5 4.6
4.7 4.8 4.9
Channel as seen by user two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacity region of the two-user binary multiplier channel. . . . . . Example of Gaussian multiple-access channel capacity region. . . Rates achievable with orthogonal multiple-access. . . . . . . . . . . . . . Convergence of spectral density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spectral efficiency of DS-CDMA with optimal, orthogonal and random spreading. Eb /N0 = 10 dB. . . . . . . . . . . . . . . . . . . . . . . . . . Spectral efficiency of DS-CDMA with random spreading. . . . . . . Random sequence capacity with Rayleigh fading. . . . . . . . . . . . . . Finding the asymptotic spectral efficiency via a geometric construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rates achieved by some existing codes for the BAC . . . . . . . . . . . Combined 2 user trellis for the BAC . . . . . . . . . . . . . . . . . . . . . . . . Two user nonlinear trellis code for the BAC . . . . . . . . . . . . . . . . . Successive cancellation approach to achieve vertex of capacity region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-user MAC with perfect feedback. . . . . . . . . . . . . . . . . . . . . . . Capacity region for the two-user binary adder channel with feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple feedback scheme for the binary adder channel. . . . . . . . . . Channel seen by V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacity region for the two-user GMAC channel with feedback. Capacity region for symbol-asynchronous two-user Gaussian multiple-access channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacity region for two-user collision channel without feedback.
58 60 61 63 66 68 68 73 74 75 82 82 83 85 88 89 89 90 94 95
Classification of multiuser detection and decoding methods. . . . . 98 A joint detector considers all available information. . . . . . . . . . . . 100 Matched filter bank serving as a front-end for an optimal multiuser CDMA detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Illustration of the correlation matrix R for three asynchronous users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Illustration of the recursive computation of the quadratic form in (4.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Illustration of a section of the CDMA trellis used by the optimal decoder, shown for three interfering users, i.e. K = 3, causing 8 states. Illustrated is the merger at state s, where each of the path arrives with the metric (4.12). . . . . . . . . . . . . . . 105 Illustration of the forward and backward recursion of the APP algorithm for individually optimal detection. . . . . . . . . . . . . . . . . . 108 Bounded tree search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Histograms of the distribution of the minimum distances of a CDMA system with length-31 random spreading sequences, for K = 31 (dashed lines), and K = 20 users (solid lines), and maximum width of the search tree. . . . . . . . . . . . . . . . . . . . . . . . . . 113
List of Figures
XIII
4.10 Linear preprocessing used to condition the channel for a given user (shaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.11 Information theoretic capacities of various preprocessing filters. 117 4.12 Geometry of the decorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4.13 Shannon Bounds for the AWGN channel and the random CDMA decorrelator-layered channel. Compare with Figure 4.11. 124 4.14 Shannon bounds for the AWGN channel and the MMSE layered single-user channel for random CDMA. Compare with Figures 4.11 and 4.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.15 The partial decorrelating feedback detector uses a whitened matrix filter as a linear processor, followed by successive cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.16 Shannon Bounds for an MMSE joint detector for the unequal received power scenarios of one strong user, and equal power for the remaining users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.17 Shannon Bounds for an MMSE joint detector the case of two power classes with equal numbers of users in each group. . . . . . . 138 5.1 5.2 5.3 5.4 5.5
5.6 5.7
5.8 5.9 5.10 5.11 5.12 5.13
Illustration of the asynchronous blocks in the correlation matrix R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 The multistage receiver for synchronous and asynchronous CDMA systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Example performance of a parallel cancellation implementation of the decorrelator as a function of the number of iteration steps.144 BER Performance of Jacobi Receivers versus system load for an equal power system, i.e. A = I. . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Visualization of the Gauss-Seidel update method as iterative minimization procedure, minimizing one variable at a time. The algorithm starts at point A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Iterative MMSE filter implementations for random CDMA systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Shannon bounds for the AWGN channel and multistage filter approximations of the MMSE filter for a random CDMA system with load β = 0.5. The iteration constant τ was chosen according to (5.39). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Similar Shannon bounds for multistage filter approximations of the decorrelator with load β = 0.5. . . . . . . . . . . . . . . . . . . . . . . . 157 Three-user binary tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Performance of the IDDFD for a system with 20 active users and random spreading sequences of length 31. . . . . . . . . . . . . . . . . 164 Performance of the IDDFD under an unequal received power situation with one strong user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Performance of different multiuser decoding algorithms as a function of the number of active users at Eb /σ 2 = 7 dB. . . . . . . . 166 Sphere detector performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
XIV
List of Figures
5.14 Sphere detector average complexity. . . . . . . . . . . . . . . . . . . . . . . . . 170 6.1
6.2 6.3 6.4 6.5 6.6
6.7 6.8 6.9 6.10
6.11 6.12
6.13
6.14 6.15 6.16 6.17 6.18
6.19
Comparison of the per-dimension capacity of optimal and linearly processed random CDMA channels. The solid lines are for β = 0.5 for both linear and optimal processing, the dashed lines are for a full load β = 1. . . . . . . . . . . . . . . . . . . . . . . . 177 Diagram of a “coded CDMA” system, i.e. a CDMA system using FEC coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Projection Receiver block diagram using an embedded decorrelator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Projection Receiver diagram using an embedded decorrelator. . . 183 Lower bound on the performance loss of the PR. . . . . . . . . . . . . . 186 Performance examples of the PR for random CDMA. The dashed lines are from applying the bound from Theorem 6.1. The values of Eb /N0 is in dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Iterative multiuser decoder with soft information exchange. . . . . 193 Soft cancellation variance transfer curve. . . . . . . . . . . . . . . . . . . . . 196 Code VT curves for a selection of low-complexity FEC codes. . . 197 VT chart and iteration example for a highly loaded CDMA system. FEC code VT is dashed, the cancellation VT curve is the solid curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Illustration of the turbo effect of iterative joint CDMA detection.199 Illustration of variance transfer curves of various powerful error control codes, such as practical-sized LDPC codes of length N = 5000 and code rate R = 0.5, as well as two serially concatenated turbo codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 VT transfer chart and iteration example for a highly loaded CDMA system using a strong serially concatenated turbo code (SCC 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Determination of the limiting performance of FEC coded CDMA systems via VT curve matching for Eb /N0 → ∞. . . . . . . 203 Bit error performance of SCC2 from Table 6.1 as a function of the number of iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 Interference cancellation with a weak rate R = 1/3 repetition code, acting as non-linear layering filter. . . . . . . . . . . . . . . . . . . . . . 205 Achievable spectral efficiencies using linear and nonlinear layering processing in equal power CDMA systems. . . . . . . . . . . . 210 Variance transfer curves for matched filter (simple) cancellation and per-user MMSE filter cancellation (dashed lines) for β = 2 and Es /N0 = 0dB and Es /N0 → ∞. . . . . . . . . . . 213 Variance transfer curves for various multi-stage loop filters for a β = 2 and two values of the signal-to-noise ratio: P/σ 2 = 3dB and P/σ 2 = 23dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
List of Figures
XV
6.20 Variance transfer chart for an iterative decoder using convolutional error control codes and a two-stage loop filter, showing an open channel at Eb /N0 = 4.5dB. . . . . . . . . . . . . . . . . . 217 6.21 Bit error rate performance of an iterative canceler with a two-stage loop filter for 1,10,20, and 30 iterations, compared to the performance of an MMSE loop filter. . . . . . . . . . . . . . . . . . . 218 6.22 Optimal and linear preprocessing capacities for various system loads for random CDMA signaling. . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.23 Performance of low-rate repetition codes in high-load CDMA systems, compared to single-user layered capacities for matched and MMSE filter systems. . . . . . . . . . . . . . . . . . . . . . . . . . 220 6.24 CDMA spectral efficiencies achievable with iterative decoding with different power groups assuming ideal FEC coding with rates R = 1/3 for simple cancellation as well as MMSE cancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.25 Capacity polytope illustrated for a three-dimensional multiple-access channels. User 2 is decoded first, than user 1, and finally user 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.26 CDMA spectral efficiencies achievable with iterative decoding with equal power groups assuming ideal FEC coding with optimized rates according to (6.124). . . . . . . . . . . . . . . . . . . . . . . . . 231 6.27 Illustration of different power levels and average VT characteristics shown for both a serial turbo code (on the left) and a convolutional code (on the right). The system parameters are K1 = 22, K2 = 18, K3 = 16 for the SCC system at an Eb /N0 = 13.45dB, and K1 = K2 = K3 = 20 at and Eb /N0 = 8.88dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
List of Tables
3.1 3.2 3.3 3.4
6.1
Coding schemes shown in Figure 3.18. . . . . . . . . . . . . . . . . . . . . . . Uniquely decodeable rate 1.29 code for the two-user BAC. . . . . . Non uniquely decodeable code for the two-user BAC. . . . . . . . . . Rate R = (0.571, 0.558) uniquely decodeable code for the two-user binary adder channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76 76 77 78
Serially Concatenated Codes of total rate 1/3 whose VT curves are shown in Figure 6.12. For details on serial concatenated turbo codes, see [120, Chapter 11]. . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Preface
Mathematical communications theory as we know it today is a fairly young, but rapidly maturing science just over 50 years old. Multiple-user theories extend back to the same recent birthplace, but are only recently showing the first early signs of maturation. The goal of this book is to present both classical and new approaches to the problems of designing co-ordinated communications systems for large numbers of users. The problems of reliable information transfer are in most cases intertwined with the problems of allocating the sparse resources available for use. The multiuser philosophy attempts to optimize whole systems, by combining the multiple-access and information transmission aspects. It is the purpose of this book to introduce the reader to the concepts involved in designing multiple-user communications systems. To achieve this goal, conventional multiple-access strategies are contrasted with newer techniques, such as joint detection and interference cancellation. Emphasizing the theory and practice of unifying accessing and transmission aspects of communications, we hope that this book will be a valuable reference for students and engineers, presenting many years of research in book format. Chapter 2 sets out the main area of interest of the book, namely the linear multiple-access channel. The emphasis is on obtaining a general model with wide application. Chapter 3 gives an overview of results from multiuser information theory, concentrating on the multiple-access channel. The remainder of the book, Chapters 4–6 are devoted to the design and analysis of multiuser detectors and decoders. Chapter 4 describes joint detection strategies for uncoded systems, and implementation details for such detectors are considered in Chapter 5. Joint decoders for systems with error control coding is the subject of Chapter 6, which concentrates on the iterative decoding paradigm. The multiple-user communications philosophy does not solve the world’s communications needs. With every problem addressed, others are peering out of dark places under the guise of complexity. It is the goal of this book to put the tools, techniques and most importantly the philosophy of multiple-user communications systems into the hands and minds of the reader.
XX
Preface
As we write these final words, it seems that the information and communications theory community is embarking on a renewed multiple-user revolution, far beyond the scope of this book. We look forward with great anticipation to what the future holds for communications networks.
Park City, Utah and Adelaide, South Australia May 2005
Christian Schlegel Alex Grant
1 Introduction
1.1 The Dawn of Digital Communications Early in the last century, a fundamental result by Nyquist, the sampling theorem, ushered in the era of digital communications. Nyquist [91] showed that a band-limited signal, that is, a signal whose spectral representation was sharply contained in a given frequency band, could be represented by a finite number of samples. These samples can be used to exactly reconstruct the original signal. In other words, the sampling theorem showed that it is sufficient to know a signal at discrete time intervals, and there is no need to store an entire signal waveform. This discretization of time for purposes of information transmission was a very important starting point for the sweeping success of digital information representation and communications later in the 20th century. In 1948, Shannon [123] showed that the time-discrete samples used to represent a communications signal could also be discretized in amplitude, and that the number of levels of amplitude discretization depended on the noise present in the communications channel. This is in essence Shannon’s celebrated channel coding theorem, which assigns to any given communications channel a capacity, which represents the largest number of (digital) information bits that can be reliably transported through this channel. Combined with Nyquist’s sampling theorem, Shannon’s channel coding theorem states that information can be transported in discrete amounts at discrete time intervals without compromising optimality. That is, packaging information into time-discrete units with discrete (possibly fractional) numbers of bits in each unit is the optimal way of transmitting information. This realization has had a profound impact on communications and information processing. Virtually all information nowadays is represented, processed, and transported in discrete digital form. The Shannon channel coding theorem clearly played a pivotal role in this drive towards digital signaling. It quantifies the fundamental limit of the information carrying capacity of a communications channel between a single transmitter and a single user. This set-up is illustrated in Figure 1.1, where
2
1 Introduction
a transmitter sends time-discrete symbols from a (typically) finite signaling alphabet through a transmission channel. The channel is the sum total of all that happens to the signal from transmitter to receiver. It includes distortion, noise, interference, and other effects the environment has on the signal. The receiver extracts the transmitted information from the channel output signal. It can do so only if the transmission rate R, in bits per symbol, is smaller than the channel capacity C, also measured in bits per symbol.
Channel
Information Source
Message
Signal Transmitter
+
Received Signal
Message Receiver
Destination
Noise Source
Fig. 1.1. Basic setup for Shannon’s channel coding theorem.
Shannon’s channel coding theorem says more, however. The above statement is generally known as the converse to the channel coding theorem, stating what is not possible, i.e. where the limits are in terms of admissible rates. The direct part of the theorem states that there exist encoding and decoding procedures that allow the transmitted rate R approach the channel capacity arbitrarily closely with an error rate that can be made arbitrarily small. The cost to achieve this lies in the length of the code, that is, the block of data that is processed as a unit has to grow in size. Additionally, the complexity of the decoding algorithm increases as well, leading to ever more complex error control decoding circuits which can push rates closer to the capacity of the channel. Typically, the computation of the channel capacity is a fairly straightforward exercise, while the design, study, and analysis of capacity achieving encoding and decoding methods can be exceedingly difficult. For example, if the transmitter is restricted to transmit with average power P and the channel is affected only by additive white Gaussian noise with power N , and has a bandwidth of W Hz, its capacity is given by P C = W log2 1 + , [bits/s/Hz]. (1.1) N Equation (1.1) is arguably the most famous of Shannon’s formulas, and its simplicity belies the depth of the channel coding theorem associated with it.
1.2 Multiple Terminal Networks
3
We will encounter channels such as that one in Figure 1.1 repeatedly throughout this book. It behooves us to recall that the tremendous progress towards realizing the potential of a communications channel via complex encoding and decoding algorithms was mainly fueled by the enormous strides that the technology of very large-scale integrated (VLSI) circuits and systems has made over the last 5 decades since the invention of the transistor, also in 1948.
1.2 Multiple Terminal Networks In real-world situations, the clean arrangement of a single transmitter and a single receiver is more and more becoming a special case, as most transmissions are occurring in a multi-terminal network environment, which consists of a potentially large number of transmitters and receivers. Communication takes place over a common physical channel. The messages from each transmitter are only intended for some subset of the receivers, but may be received by all receivers. This is illustrated in Figure 1.2 in which network nodes are shown as circles and transmissions are the links..
8 2 9
1
5 4 3 7
6
Fig. 1.2. Multi-terminal networks.
Transmitters cause interference for the non-intended receivers. Traditionally, this interference has been lumped into the channel noise, and a set of single-channel models has been applied to multiple terminal communications. This is still the case with modern spread-spectrum based multiple-access systems such as the cdma2000 standard [134].
4
1 Introduction
Multiple terminal networks can be decomposed into more basic components depending on the functionality of the system or the service. •
•
•
• •
In a multiple-access channel (MAC) a number of terminals attempt to reach a common receiver via a shared joint physical channel (e.g. nodes 1, 3, 4 and 2 in Figure 1.2). This scenario is the closest to a single-user channel and is best understood theoretically. In broadcast channels the reverse is the case. A common transmitter attempts to reach a multitude of receivers (e.g. nodes 5, 8, and 9). The goal is to reach each receiver with possibly different messages at different data rates, at a minimum of resources. The simple description of the broadcast channel belies its theoretical challenge, and very little is known for general broadcast channels. In a relay channel information is relayed over many communications links from a transmitter to a receiver (e.g. nodes 4, 5, and 8). The relays may have no information of their own to transmit, and exist to assist the transmission of other users. In the simplest case, these links are single-user channels. The Internet uses such channels, where information traverses many communications links from source to destination. In an interference channel each transmitter has one intended receiver and one or more unintended receiver (e.g. nodes 4, 5, 6 and 7). In two-way channels both terminals act as transmitters and receivers and share a common physical channel which allows transmission to occur in both directions.
A data network comprises an arbitrary combination of all of these channels, and a general theory of network communication is still in its infancy. An early overview of multi-terminal channels can be found in [87]. A more recent treatment can be found in [24]. In this book we will deal almost exclusively with the multiple-access channel. This has several reasons. First, the multiple-access channel is the most natural extension of the single-user channel, and Shannon’s fundamental results are fairly easily extendible to this case. The multiple-access channel is also the most basic physical level channel, since, even in a more general data network, it describes the behavior of a single receiver node which is within reach of several transmitters, and the fundamental limits of the multiple-access channel apply to this situation. Lastly, the information transmission problem for the multiple-access channel, in contrast to the other multiple terminal network arrangements, can be addressed by transmitter and receiver designs conceptually analogously to single-channel designs largely by designing appropriate physical layer systems. The multiple-access model includes some very important modern-day examples, such as the code-division multiple-access (CDMA) channel and the multiple-antenna channel, a recently popularized example of a multiple-input multiple-output (MIMO) channel (see Chapter 3).
1.2 Multiple Terminal Networks
5
Figure 1.3 shows a coarse time-line of some major developments in multiple-access information theory, signaling, and receiver design for the multiple-access channel. Multiple-terminal information theory began with Shannon, who considered the two way channel. He also claimed to have found the capacity region of the multiple access channel, but this was never published, and it was not until the early 1970s that research into multiple-terminal information theory became widespread. Successively more detailed and more general channel models have been considered since then, and this progress is subject of Chapter 3, which also describes some of the early attempts at code design for the multiple-access channel. In the mid 1970s it was realized that the performance of multiple-access receivers for uncoded transmissions could be improved using joint detection, at a cost of increased implementation complexity. This motivated much research into practical signal processing methods for joint detection, particularly linear filtering methods. This is the subject of Chapter 4 and 5, the latter dealing specifically with implementation details. After about 1996, much of the receiver design and analysis has focused on iterative turbo-type receivers for coded transmissions. These methods are discussed in detail in Chapter 6 of this book.
4WO 7AY #HANNEL 3HANNON
-ULTIPLE !CCESS !HLSWEDE ,IAO
"ROADCAST #OVER
'AUSSIAN -!# 7YNER #OVER
#ORRELATED 3OURCES 3LEPIAN 7OLF
)NTERFERENCE #HANNEL #ARLEIAL "ERGMANS 3ATO
-!# WITH &EEDBACK 'AARDER 7OLF #OVER ,EUNG
&RAME