CONVEX CONES
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATICS STUDIES
56
Notas de Matematica (82) Editor: Leopoldo Nachbin Universidade Federal do Rio de Janeiro and University of Rochester
Convex Cones BENNO FUCHSSTEINER and WOLFGANG LUSKY University of Paderborn Germany
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM
NEW YORK
OXFORD
North-Holland Publishing Company, I981
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 444 86290 0
Publishers: NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM NEW YORK OXFORD Sole distributors for the U.S.A. and Canada: ELSEVIER NORTH-HOLLAND, INC. 5 2 VANDERBILT AVENUE, NEW YORK, N.Y. 10017
Library of Congress Cataloging in Publication Data
F u c h s s t e i n e r , Benno. Convex cones. (North-Holland mathematics s t u d i e s ; 56) Bibliography: p . 1. Functions of r e a l v a r i a b l e s . 2 . Convex bodies. 3 . Cone. I. Lusky, Wolfgang, 194811. T i t l e . 111. S e r i e s .
PRINTED IN THE NETHERLANDS
PREFACE
The aim of t h i s book i s t o o u t l i n e an elementary theory o f l i n e a r funct i o n a l s on convex cones, b u t convex cones a r e here taken i n a s l i g h t l y more general way than usual, they need not be imbedded i n a vector space. In consequence, we do not have a general c a n c e l l a t i o n law f o r t h e a d d i t i o n . Typical examples f o r t h e cones we have in mind a r e 6 = R u I - -1 o r the upper semicontinuous 6- valued functions on some topological space. Accordingly, l i n e a r functionals on such cones a r e allowed t o a t t a i n values i n 6 instead of R . This g e n e r a l i t y has advantages w i t h respect t o extensions of l i n e a r f u n c t i o n a l s .
We believe t h a t , t o a l a r g e e x t e n t , t h e work of an a n a l y s t c o n s i s t s of a s k i l l f u l handling of i n e q u a l i t i e s . I n order t o t r e a t i n e q u a l i t i e s in their proper context, we combine t h e theory of l i n e a r f u n c t i o n a l s w i t h order t h e o r e t i c aspects i n s o f a r as we mostly deal with f u n c t i o n a l s being monotone w i t h respect t o s u i t a b l e order r e l a t i o n s . For those a p p l i c a t i o n s we have i n mind, monotonicity usually implies c o n t i n u i t y . Therefore the material of t h i s book i s presented i n an order t h e o r e t i c r a t h e r than topological s e t t i n g . Very few topological arguments a r e used in this book, b u t this i s n e i t h e r done t o c a r r y our viewpoint t o t h e extreme nor t o show disregard f o r t h e many beautiful arguments and techniques topology has contributed to analysis. We have adapted, and sometimes extended, many basic techniques which were developed in the study of compact convex s e t s . Accordingly, measure theory takes an important place throughout this book. For those readers who a r e not well acquainted w i t h t h a t f i e l d , we have gathered some elementary r e s u l t s and techniques i n t h e A p p e n d i x . V
vi
Preface
We want t o emphasize t h a t these notes a r e w r i t t e n f r o m a h i g h l y personal p o i n t o f view. The c h o i c e o f what t o i n c l u d e has been q u i t e s u b j e c t i v e , we c o n c e n t r a t e h e a v i l y on work done b y t h e f i r s t a u t h o r d u r i n g t h e l a s t years. While t h e i n t e r e s t o f b o t h authors l i e s more on t h e c o n c r e t e s i d e of a n a l y s i s , nevertheless we a r e aware o f t h e d e p l o r a b l e f a c t t h a t t h i s w i l l n o t always b e t r a n s p a r e n t t o t h e r e a d e r . To h e l p compensate f o r t h i s disadvantage, we have added many examples and a p p l i c a t i o n s from d i f f e r e n t areas. But, due t h e l a c k o f space and time,we have had t o o m i t many i m p o r t a n t examples, e s p e c i a l l y from e q u i l i b r i u m t h e o r y i n Mathematical Economics and from S t a t i s t i c a l Mechanics. The book i s m a i n l y addressed t o graduate s t u d e n t s . S i n c e no s p e c i f i c p r e r e q u i s i t e s a r e necessary, however, and no deeper knowledge o f any s p e c i f i c p a r t o f mathematics i s r e q u i r e d , these notes can as w e l l be read by every s t u d e n t . We have t r i e d t o p r e s e n t a l l arguments i n d e t a i l , although sometimes t h i s i s done r a t h e r b r i e f l y and t h i s i s e s p e c i a l l y t r u e i n the a p p l i c a t i o n sections. The book i s divided i n t o two chapters, which a r e t h e n s u b d i v i d e d i n t o two and s i x s e c t i o n s , r e s p e c t i v e l y . I n t h e f i r s t chapter, we p r e s e n t t h e b a s i c m a t e r i a l about l i n e a r f u n c t i o n a l s . We g i v e o u r f a v o u r i t e v e r s i o n o f t h e Hahn-Banach Theorem, and we o b t a i n i m p o r t a n t i n f o r m a t i o n about extens i o n and decomposition o f l i n e a r f u n c t i o n a l s . The second p a r t i s m a i n l y devoted t o t h e r e p r e s e n t a t i o n o f 1 i n e a r f u n c t i o n a l s by i n t e g r a l s . When r e f e r r i n g back t o items w i t h i n a chapter, t h e c h a p t e r number i s omi t t e d . We owe a g r e a t deal t o Mrs. Waltraud Bohmer f o r h e r e x c e l l e n t t y p i n g o f t h e manuscript. F i n a l l y , we thank t h e e d i t o r , Leopoldo Nachbin, and t h e p u b l i s h e r , E. F r e d r i k s s o n , f o r i n c l u d i n g t h i s volume i n t h e i r s e r i e s .
TABLE OF CONTENTS
PREFACE CHAPTER I
V
LINEAR FUNCTIONALS
Chapter I . 1.
1.1
1
The Sandwich Theorem
Semi groups
2
1.2
Cones
6
1.3
Some Consequences o f t h e Sandwich Theorem
11
1.4
Sum Theorem and F i n i t e Decomposition Theorem
14
1.5
Some elementary Appl ic a t i o n s
20
1.5.1
The Phragrnen-Lindelof
1.5.2
Bishop's General V e r s i o n o f t h e "Three
1.5.3
Seevers' P r o o f f o r t h e E x i s t e n c e o f
Principle
21
C i r c l es Theorem"
22
Jensen Measures 1.5.4
When i s a F u n c t i o n Dominated by an A r i t h m e t i c Mean o f o t h e r F u n c t i o n s ?
1.5.5
20
24
Decomposition w i t h r e s p e c t t o P o s i t i v e l y Independent F u n c t i o n a l s
26
1.5.6
The Jordan Decomposition
28
1.5.7
The Lemma o f Farkas
29
1.5.8
The S e p a r a t i o n Theorem
33
1.5.9
A f f i n e I n t e r p o s i t i o n and t h e M a z u r - O r l i c z Theorem
34
The Riesz-Konig Theorem
37
1.7
A S t r a s s e n - t y p e D i s i n t e g r a t i o n Theorem
42
1.8
Some Appl i c a t i o n s
49
1.6
1.9
1.8.1
An a b s t r a c t Flow Theorem
49
1.8.2
Flows i n networks
54
1.8.3
Supply-Demand Problems
58
A d d i t i o n a l Remarks and Comments vii
72
Table of Contents
viii
Chapter 1.2
Order Units and L a t t i c e Cones
Order U n i t Cones 2.2 The Kakutani-Krein-Stone-Yosida Theorem Order Complete Vector L a t t i c e s with Order Unit 2.3 L a t t i c e Cones 2.4 2.5 Riesz Property and F i n i t e Sum Property The Positive Dual Cone 2.6 Dual Orders and t h e Cartier-Fell -Meyer Theorem 2.7 Free L a t t i c e Cones 2.8 2.9 Simplicia1 Cones 2.10 Characters 2.11 Some Examples
2.1
87 89 93 96 101 106 113 118 122 130 139 149
2.11.1 Absorbing Functionals and Banach L a t t i c e s
149
2.11.2 AM- and AL- Cones
154
2.11.3 Characters o f AM-Cones
158
Kakutani's Characterization o f S u b l a t t i c e s o f C ( K ) - Spaces 2.11.5 Korovkin's Theorem
162
2.11.4
2.12
Remarks and Comments
CHAPTER I1
1.2 1.3 1.4 1.5
Countable Decomposition
177
Preliminaries The Main Decomposition Theorems Dini Cones Weak Dini Cones Remarks and Comments
178
Chapter 11.2 2.1 2.2 2.3 2.4 2.5 2.6
170
REPRESENTING MEASURES
Chapter I I . 1 1.1
167
Representing Measures
Decomposition Properties and Measure Theory Dini Cones and Representing Measures Weak Dini Cones and Signed Representing Measures Representing Measures on Weighted Cones Dirichlet States Elementary Examples and Applications
182 189 196 198 201 202 210 213 218 220 227
Table of Contents
2.6.1
The Riesz R e p r e s e n t a t i o n Theorem f o r non-Hausd o r f f Sets
2.6.2 2.6.3 2.6.4 2.6.5 2.7
Regul a r i t y and Support R e p r e s e n t a t i o n by Unbounded Measures Adapted Cones R e p r e s e n t a t i o n o f F u n c t i o n a l s w i t h Zero Mass
Remarks and Comments
Chapter II . 3
Boundaries
3.1
F i x p o i n t Boundaries, B a u e r ' s Maximum P r i n c i p l e and
3.2 3.3 3.4 3.5 3.6 3.7
More Boundaries
t h e K r e i n-Mi 1man Theorem Choquet's Theorem Maximal Measures The Choquet-Meyer Theorem D i n i Boundaries Remarks and Comments
Chapter 11.4
ix
I n t e g r a l R e p r e s e n t a t i o n o f Operators t a k i n g
227 2 28 232 237 241 245 251 252 258 26 7 274 281 287 303 305
Values i n an Order Complete Vector L a t t i c e Chapter 11.5
Generalized Hewitt-Nachbin Spaces
5.1
B a s i c D e f i n i t i o n s and t h e i r Meaning i n t h e
5.2 5.3 5.4 5.5 5.6
The F- C o m p a c t i f i c a t i o n
Classical S i t u a t i o n The F- R e a l c o m p a c t i f i c a t i o n F- Pseudocompactness Some Consequences Remarks and Comments
Chapter 11.6
6.1 6.2
Examples and A p p l i c a t i o n s
Completely Monotonic Functions
314 318 324 328 331 337 340 341
Kendal 1 ' s Theorem on I n f i n i t e l y D i v i s i b l e Completely Monotonic F u n c t i o n
6.3 6.4 6.5
313
M u l t i p l i c a t i v e Cones Banach Algebras and S p e c t r a l Theory The Bochner-Weil Theorem
345 349 352 362
Table of Contents
X
The L’evy-Khi n t c h i ne
6.7
Remarks and Comments
378
Measures and t h e Riesz R e p r e s e n t a t i o n Theorem
380
APPENDIX:
A 1
A A A A
(I-
Formul a
37 1
6.6
Algebras
380
2
Measures
383
3
The Riesz Representation Theorem
386
4
The Radon-Nikodym Theorem
393
5
Signed and L a t t i c e - v a l u e d Measures
396
REFERENCES
403
AUTHOR INDEX
423
SUBJECT INDEX
425
C H A P T E R
I
LINEAR FUNCTIONALS SECTION 1.1 THE SANDWICH THEOREM
E x t e n s i o n theorems f o r 1 i n e a r f u n c t i o n a l s b e l o n g t o t h e most fundamental t o o l s f o r l a r g e p a r t s o f modern a n a l y s i s , e s p e c i a l l y o f
functional
a n a l y s i s . The same i s t r u e f o r convex cones, where l i n e a r f u n c t i o n a l s p l a y an i m p o r t a n t r o l e . A s k i l l f u l 1 h a n d l i n g o f l i n e a r f u n c t i o n a l s t u r n s o u t t o be i n d i s p e n s a b l e i n t h i s area o f a n a l y s i s . Consequently we s t a r t t h i s book w i t h a s u i t a b l e v e r s i o n o f t h e Hahn-Banach theorem f o r semigroups and convex cones. We show t h a t between a s u b a d d i t i v e and a s u p e r a d d i t i v e f u n c t i o n a l t h e r e i s always an a d d i t i v e f u n c t i o n a l h a v i n g t h e same m o n o t o n i c i t y p r o p e r t i e s as t h e s u b a d d i t i v e f u n c t i o n a l (Sandwich Theorem). Since no a d d i t i o n a l work i s r e q u i r e d we immediately prove t h i s r e s u l t f o r maps t a k i n g values i n an o r d e r complete v e c t o r l a t t i c e . S i n c e we a r e d e a l i n g w i t h semigroups and cones i n s t e a d o f groups and v e c t o r spaces we have t o a d j o i n a smallest element t o t h e space where t h e f u n c t i o n a l s t a k e t h e i r values. We proceed g i v i n g two i m p o r t a n t consequences o f t h e Sandwich Theorem, namely t h e F i n i t e Decomposition Theorem and t h e Sum Theorem. The power o f these r e s u l t s i s i l l u s t r a t e d
a t a few s i m p l e a p p l i c a t i o n s ( s e c t i o n 1.5)
and l a t e r on we extend these theorems t o a more s o p h i s t i c a t e d s i t u a t i o n , where measures and i n t e g r a l s t a k e t h e p l a c e o f f i n i t e sums. The Sum Theorem leads t o a Strassen-type d i s i n t e g r a t i o n theorem and, f o r measures on compact spaces, t h e F i n i t e Decomposition Theorem
leads t o t h e Riesz-Konig Theorem
( a general and e f f e c t i v e v e r s i o n o f t h e Riesz R e p r e s e n t a t i o n theorem). Since t h e Riesz-Konig Theorem i s g e n e r a l i z e d l a t e r on t o a non-compact s i t u a t i o n we have postponed a p p l i c a t i o n s f o r t h i s r e s u l t u n t i l c h a p t e r 11. A l l t h e examples i n s e c t i o n 1.9 deal w i t h a p p l i c a t i o n s o f t h e D i s i n t e g r a t i o n Theorem t o networks and p r o b l ems i n Mathemati c a l Economi cs
. Finall y , i n
s e c t i o n 1.9 we mention a few f u r t h e r r e s u l t s and some r e l a t e d problems. Furthermore, we g i v e ( f r o m a h i g h l y personal v i e w p o i n t ) a s h o r t survey on 1
2
Linear Functionals
t h e h i s t o r y o f t h e Hahn-Banach theorem.
1.1 SEMIGROUPS
L e t S = ( S , t , < )be a preordered a b e l i a n semigroup always w i t h n e u t r a l element 0. By p r e o r d e r we mean a r e f l e x i v e and t r a n s i t i v e ( n o t n e c e s s a r i S . Furthermore we r e q u i r e c o m p a t i b i l i t y ~ ~ , s ~ ,t2 t E~ S, such t h a t
l y a n t i s y m m e t r i c ) r e l a t i o n < on
w i t h t h e semigroup s t r u c t u r e , i . e . whenever s1 < s2 and
t2 t h e n
tl<
We c o n s i d e r l i = IR
u I- -1
r e l a t i o n o f IR t o lii 0
*
s1
tl <
t
s2
t
t2 .
and extend t h e a l g e b r a i c o p e r a t i o n s and o r d e r
i n t h e usual way, i . e . l e t (-m)
-
m
= O = i n f IR
A > O
~ . ( - m ) = - m
if
- m + r
for all
= - m
r E
IE
.
The p r o o f s o f t h e f o l l o w i n g a s s e r t i o n s a r e m o s t l y based upon elementary computations w i t h i n f i m a and suprema. Therefore, t h e r e a d e r s h o u l d r e c a l l i d e n t i t i e s such as
I
a E A3 =
-
i)
supIa
ii)
supCxa l a E A 1 = X supIa
iii) sup{a
t
b
1
inf{- a
a E A 1 = supfa
I
I
a E A3
a E Al,
1
X 2 0
a E A3 + b
3
b E IR
where A i s a bounded subset o f IR .These i d e n t i t i e s remain t r u e i f we r e p l a c e IR by an a r b i t r a r y v e c t o r l a t t i c e R. R e c a l l , a v e c t o r l a t t i c e i s o r d e r complete i f f o r any subset A c R which i s o r d e r bounded from
R
r E R w i t h r 2 a f o r a1 1 a E A) t h e supremum A e x i s t s i n R. I n view o f i)t h e n t h e infimum ( i n f B) e x i s t s f o r any subset B c R which i s o r d e r bounded from below. S i m i l a r l y
above (i.e. t h e r e i s (sup A) o f
3
The Sandwich Theorem
as lk we define R
=
R u I - -1
with
0 . (--)=O
-
= inf R
m
for a l l for a l l
~ . ( - m ) = - m
- w + r = - m
x > 0 r E R
In the sequel we want t o deal with functions whose values are elements of I t turns o u t t h a t in a l l our definitions and proofs of the assertions in the f i r s t sections we need not change a single word i f we consider a t once the more general situation where a l l functions involved are allowed t o take values in R with order complete vector l a t t i c e R.
R .
So, from now on, l e t R be an order complete vector l a t t i c e . If the reader feels uncomfortable with the notion of general vector l a t t i c e s , he i s invited t o take R = IR
.
1.1.1.
Def i ni t i on :
i)
p : S fi i s subadditive, i f p ( 0 ) = 0 and p ( s + t ) I p(s) t p ( t ) for a l l s , t E S
ii)
q : S
iii)
p
: S
+
6 i s additive, i f
iv)
f :S
+
R i s monotone i f f ( s ) s f ( t ) whenever s
-.
+ fi i s superadditive i f q ( s + t ) 2 q ( s ) + q ( t ) for a l l
p
q(0) = 0 and s,t E S i s sub- and superadditive < t, s , t E S
Note, that the function which i s -- on S can neither be sub- nor superadditive since we required p(0) = 0 and q(0) = 0 in the preceding definition. On the other hand, define q : S + R by q ( s ) = if s E S 'I01 and q(0) = 0. Then q i s superadditive and even additive there i s no t E S with s + t = 0. Usually, we i f for every s E S'COI denote subadditive maps by p and superadditive maps by q . I t i s convenient t o use the symbol s for the pointwise order relation between functions on S , i . e . f 5 g i f f f ( s ) s g ( s ) for a l l s E S , where f,g: s + R .
-
Linear Functionak
4
1.1.2.
Sandwich Theorem:
Let p : -
S
be monotone and s u b a d d i t i v e -and l e t q : S + 6 -be superq s p. ---Then t h e r e i s a monotone a d d i t i v e p : S + R with
+
additive with
Remark
. q
, only
s u p e r a d d i t i v e and
q Ip
Note, t h a t we do n o t need monotony f o r
for
p.
Proof: In Q =
{p
pointwise
: S
R
+
I
o r d e r on
p
5
-
Q
S . C e r t a i n l y , q E Q, hence
pl
we c o n s i d e r t h e
* +. By Z o r n ' s
lemma
t h e r e i s a maximal c h a i n Q, i . e . a l i n e a r l y ordered subset o f Q, which .. D e f i n e ~ ( s )= s u p I p ( s ) l p E Q
i s maximal w i t h r e s p e c t t o i n c l u s i o n .
(1)
i s superadditive
p
We show t h a t
p
E Q with
p
p,
5
.
i s a maximal element o f p,
. Hence
would be a c h a i n c o n t a i n i n g
of
tj .
so E S
F i x an a r b i t r a r y a
= inf{
for
We c l a i m (1) - ( 5 ) and postpone t h e p r o o f s t o t h e n e x t page.
a l l s E S.
p 5 p
6
Q. Indeed, o t h e r w i s e t h e r e i s
for all
p
E
6
and thus
Q
U
{pol
properly. This contradicts the maximality
and d e f i n e
1 (p(n s o t t ) - p ( t ) ) l n €IN, t E S with u ( t ) + - - I
and
L(s) = sup{p(t)
t
0
s E S , where No
for all
(2)
u s u s p .
(3)
p
Thus,
= N U
with
t t m so < sl
IOl. We o b t a i n
i s monotone and s u p e r a d d i t i v e . p = p
be monotone.
since
m as ( m E No, t E S
p
,
i n view o f t h e m a x i m a l i t y of
We have
i s superadditive.
p
. I n particular,
p
must
5
The Sandwich Theorem
, we
Furthermore, u s i n g t h e d e f i n i t i o n o f Hence,
. Since
p ( s o ) = as
1
0
so E S
-
~ ( 5 )= as = i n f I T i ( p ( n s + t )
(5)
s
The map
+
conclude
s ;(so).
a
was a r b i t r a r y , we have
I
p(t))
s E S
for all
n E W, t E S l
.
i s subadditive.
as
Hence t h e theorem i s proved.
0
For r e a d e r s who a r e n o t t o o f a m i l i a r w i t h sub- and s u p e r a d d i t i v i t y we f i l l i n t h e d e t a i l s o f (1)
-
(5):
(1):
p ( 0 ) = 0 f o l l o w s from t h e d e f i n i t i o n . L e t
pl,p2
E Q
. Since
Because p
i s a chain, t h e r e i s
Q
s1,s2 E S . Consider with
E Q
p
pi
Ip ,
i = 1,2.
i s s u p e r a d d i t i v e , we have
P1(S1) + PZ(S2) 5 P(S1) + P ( S 2 ) I P(S1+S2) I !J(Sl+S2)
Hence, t a k i n g t h e suprema, we o b t a i n
+
p(sl)
.
p ( s 2 ) 5 p(sl+s2)
T h i s proves (1).
(2):
m = 0
Taking
We have m as 5 p(m so
+ t)
0
p(t)
I supIp(m
Ip ( s )
Take
+ so
m as
p(t)
for all
I m E INo, t E S
0
+
t)
for all
t sup{p(tl+t2)
hS1) +
u
+
I
(ml+m
with
m E INo, t E S w i t h
s E S
The monotony o f s1,s2 E S. Then
because
-
yields
m E INo
.
u 1.
and
t E S
with
. Hence,
P --m
i ( s ) = supIp(t)
(3):
;
i n the definition o f
(Recall, p
t
+
m so<
s)
t + m so< s l
i s monotone)
. .
i s an easy consequence o f t h e d e f i n i t i o n of ;(s1+s2) = s u p I u ( t ) + m as 1 m E H o , t E S , t + m S o ~ S 1 + S 2 } 0
)a
so
Imi
EN^,
ti E S
such t h a t
ti +mi so<si,i=1,21
ds2) i s superadditive.
( 4 ) : Using t h e s u p e r a d d i t i v i t y o f
u
s u c c e s s i v e l y we o b t a i n
Linear Functionals
6
n E
for a l l
n
p(so) t
(5):
IN
. Hence,
p(t) I
We have
p(n
so
t ) I p ( n so t t), n E N , t E S
t
p(m s) I m p ( s )
for all
s E S
s u b a d d i t i v e . Hence w i t h (*) we o b t a i n f o r f i x e d p(s
0
) = infI
n.m ( p ( n m
so t m t ) -
NOW, from t h e s u b a d d i t i v i t y o f
s1.s2
infer with
p
p(mt))
and t h e
and
. This
y i e l d s (4).
m E No s i n c e
p
is
m E IN
I n E H,t E S w i t h
p(t)+ -a)
superadditivity o f
u we
-
E S
d S 1 ) + u'(S2) =
inf{T1 (p(nmsltmtl)
-
p(mtl)+p(nm
s2+nt2)-p(nt2))lny m E N
tl,t2 E S
with
u(ti)
* - m y i=1,2}
The assumption on monotony o f p i n t h e a s s e r t i o n o f t h e Sandwich Theorem i s b y no means a r e s t r i c t i o n . I f an a r b i t r a r y s u b a d d i t i v e map p on S i s g i v e n w i t h q I p , t h e n we c o n s i d e r " e q u a l i t y " i n S, i . e . t h e pre-
.
o r d e r on S d e f i n e d b y s < t' i f f s = t, s, t E S Trivially, p monotone w i t h r e s p e c t t o < and t h u s t h e Sandwich Theorem y i e l d s an additive
1.2.
p
: S
+
with
q 5
p I
is
p.
CONES
F o r many a p p l i c a t i o n s o f t h e Sandwich Theorem 1.1.1. we need t h e n o t i o n o f cones. These a r e semigroups endowed w i t h mu1 t i p 1 i c a t i o n w i t h nonnegative s c a l a r s , i . e . elements i n RI, = {x E IR 1 x 2 01 . 1.2.1
Definition:
i) L e t (F,t) be an a b e l i a n semigroup. or ( f o r s h o r t ) a cone i f
F
--
i s d e f i n e d t o be a convex cone
7
The Sandwich Theorem
there is a map IR+ x F + F ((x,f) + x f , x E IR+,f E F) usual laws of multiplication with scalars, i.e. (Al
(Cl)
+
h2)
satisfying the
f = h l f + x2 f
(C2)
h(fl + f2) = xfl + xf2
(C 3 )
q$f) = (59) f
(C 4)
If = f
(C 5)
0.f = 0
for all x,hl,h2
E IR+
and f, fly f2
E
F.
cone F is called a preordered cone with preorder < , if (F, +, < ) is a preordered semigroup and < additionally satisfies h f < x g whenever f < g, f, g E F, x E IR+ . A
ii)
Note, that (C 5) is independent from (C 1) - (C4) . For example, take the semigroup I0,lI with 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 1 and define a multiplication by xf = f for all x 1 0 , f = 0,l. Then obviously ( C l ) - (C4) hold but (C5) is false since 0 * 1 = 1. On the other hand, (C5) is needed to prove the following trivial but indispensable Remark : Let F be a cone. Then A 0 = 0 for all x EIR, .
-
Indeed, (C5) implies 0
1.2.2 i) X
R+
.0=
0. Then with (C3)
x
n
= ( x O ) O = O . 0 = 0.
Examples Let X be a nonempty set. Then RX (E- valued functions on X ) and
(R+- valued functions on X )
are cones under the pointwise operations.
Here, R+ = { r E R I r 2 03 . If these cones are equipped with the pointwise order (i.e. f > g iff f(x) 2 g(x) for all x E X ) or with the pointwise order on some subset Y c X (i.e. f > g iff f(Y) 2 g(Y) for all y E Y ) then they are preordered cones.
8
Linear Functionals
ii) L e t T be a t o p o l o g i c a l space. Then t h e s e t s o f a l l I i - valued upper semicontinuous as w e l l as t h e l o w e r semicontinuous f u n c t i o n s a r e cones. iii) Vectorspaces iv)
( o v e r IR) w i t h t h e usual o p e r a t i o n s a r e cones.
< ) be an a b e l i a n semigroup and denote by (S, < ) * t h e monotone R- valued a d d i t i v e maps and t h e s u b a d d i t i v e
L e t S = (S,
t,
and (S, < )# maps r e s p e c t i v e l y . Then these s e t s a r e cones w i t h r e s p e c t t o t h e p o i n t w i s e
Rs
o p e r a t i o n s . I n f a c t t h e y a r e subcones o f
F a subset
G
c
F
i s s a i d t o be a subcone
. Here,
if
o f course, f o r a cone i s c l o s e d under a d d i -
G
t i o n and m u l t i p l i c a t i o n w i t h nonnegative r e a l numbers, i . e . t X2g2 E G
Xlgl
set T
x
Let al
t
tl,
g1,g2
S
o f a semigroup
whenever v)
whenever
. (Similarly,
if
tl t t2 E
whenever
al,a2
c
E A
F
x for
and
0 Ix 5 1
.
F. We endow
EatblaEA,bEBI
A = I x a l a E A3
A, B E Conv(F),
Conv(F)
=
T
i s s a i d t o be convex i f
L e t Conv(F) be t h e f a m i l y o f a l l nonempty convex subsets o f t h i s f a m i l y w i t h the f o l l o w i n g operations
A t B
a sub-
0 E T).
F be a cone. Then a subset A (l-x)a2 E A
t 0
i s c a l l e d a subsemigroup
and
t2 E T
x1 , x2
and
E G
x
L 0.
Then ( C l ) t o ( C 5 ) a r e e a s i l y v e r i f i e d , and
i s a cone under these o p e r a t i o n s . The n e u t r a l element o f t h i s
cone i s g i v e n by t h e s p e c i a l convex subset preordered cone i f we d e f i n e
A< B
iff
I01
c
F. Conv(F)
becomes a
A cB
Remark: The c o n v e x i t y o f t h e subsets i s necessary, o t h e r w i s e ( C 2 ) would n o t h o l d . ( v i ) A n i n t e r e s t i n g subcone o f Conv(F)
S(F) = I G G F 1 G
F I . For t h i s cone t h e c a n c e l l a t i o n l a w
i s a subcone o f
G t G 1 = G t G 2
*
i s g i v e n by
G1=G2
i s o b v i o u s l y n o t v a l i d . F o r example t a k e F = IRL and c o n s i d e r t h e f o l l o w i n g elements o f S(F) g i v e n by G1 = C(0,x) x E I R I ,
I
G2 = I(x,O)
Ix
E IRI
and
G = C(x,x)
1
x E I R I . Then
9
The Sandwich Theorem
G + G
3ut
+
G1
-IR 2 = G + G 2
1 -
G2. T h i s shows t h a t t h e r e a r e cones which a r e n o t sub-
cones o f vectorspaces s i n c e e v e r y subcone o f a v e c t o r space c e r t a i n l y satisfies (CL) (vi)
.
A r a t h e r odd example of
a cone i s t h e f o l l o w i n g . Consider
( t h e nonnegative f u n c t i o n s on some nonempty s e t X) multiplication and a d d i t i o n + by:
IR+ X
and d e f i n e s c a l a r -
0
for a l l fitg
A * f
=
fX
fu-g
=
f - g
and
h t 0
I: f,g E R
instead o f
hf
and
f
(Here we have chosen t h e symbols
x
+ g i n order t o prevent confusion w i t h the
usual m u l t i p l i c a t i o n and a d d i t i o n o f f u n c t i o n s ) . Then, i f we d e f i n e R:
f,
o
0' = 1,
becomes a cone under these o p e r a t i o n s . T h i s i s another example f o r a
cone which does n o t s a t i s f y t h e c a n c e l l a t i o n law.
1.2.3. Let
Definition: F
be a cone. A map
p : F
i s called functional.
+
A functional A E IR+, f E F.
p i s s a i d t o be homogeneous i f p ( x f ) = x p ( f ) f o r a l l A f u n c t i o n a l i s c a l l e d s u b l i n e a r ( s u p e r l i n e a r ) i f i t i s homogeneous and s u b a d d i t i v e ( s u p e r a d d i t i v e ) . A f u n c t i o n a l i s l i n e a r i f i t i s sub- and super1 inear.
1.2.4. Let -
Proposition: p be
(*) for a l l --
l i m sup
EJ.0
p ( ~ f )= 0
f E F. -Then e v e r y a d d i t i v e
(Recall t h a t
F and assume ~ that
s u b a d d i t i v e f u n c t i o n a l --on t h e cone
l i m sup
E J . 0
p I
p
i s linear. --
p ( ~ f )= i n f sup I p ( 6 f ) &
>O
I
E
t 61)
-
Linear Functionals
10
Proof: We have
mp
(1 m f)
=
n m
p(
since i s additive. Hence Consider some X 0 , x E IR,
*
rn
2 0
p ( f~)
such t h a t rn --t = p((x
- r n )f
1
f)
=
n p ( f ) for a l l
n,m E
IN
,f E
F
,
r ( f ) for a l l r E 4' r 2 0 . , and take an increasing sequence rn E Q ,
p(rf)
=
x ( r n + x in short). We have for f
) + u(rn f ) 5 P ( ( X - r n ) f
1
+
E F
rn ( f ) .
Taking the lim sup on b o t h sides we obtain by ( * ) t h a t
v ( X f ) s X p(f).
To prove the converse inequality we take a sequence rn E Q , rn
4 A.
Then
Certainly, every homogeneous functional p s a t i s f i e s (*). This enables us t o s t a t e the Sandwich Theorem now in terms of cones and functionals as a direct consequence of 1.1.2. and 1.2.4. This version of the Sandwich Theorem plays a central role in our theory. 1.2.5.
Let
Theorem:
g preordered cone and l e t p : F -, be monotone and sub1 inear, q : F + k superlinear with q s p. Then there i s 5 monotone linear p : F + R with q s p s p . F
Again, we emphasize t h a t the monotony of p does n o t mean a restriction. If no explicit preorder on F i s given, consider "equality". Then p becomes a monotone functional and 1.2.5. i s applicable. The notion of linearity we have adopted here indeed generalizes the usual definition of a linear map p : F + R , where F i s a vector space. To see this, l e t F be a vector space and take a functional p : F + R which i s linear according t o Definition 1.2.3. Since f E F, we obtain p((-x) f ) t p ( x f ) = ~ ( 0 = ) 0, x E IR, In particular p ( f ) > - m Thus our p ( ( - A ) f ) = - p ( f~ ) = ( - A ) p ( f ) . notion o f linearity coincides with the usual terminology in the vector space case. Let S be a group, i.e. an abelian semigroup with neutral element 0 such
.
11
The Sandwich Theorem
t h a t for every s E S there i s a n element -s E S vrith s t ( - s ) = 0. If U,V : S + R are additive maps with p I v on S then we can conclude p = v . Indeed, we have ~ ( s I ) ~ ( s ) and p ( - s ) s v ( - s ) , for a l l s E S. As before, we have p ( s ) t p ( - s ) = p ( s t ( - s ) ) = p ( 0 ) = 0, i . e . L I ( S ) = - u ( - s ) , and, similarly, v ( s ) = - v ( - s ) . Hence - ~ ( s )I - V ( S ) for a l l s E S. This yields p ( s ) = v ( s ) for a l l s E S . Thus, in the case of groups and additive maps, "domination means equality". Of course, here, the case of vector spaces and linear maps i s included.
SOME CONSEQUENCES OF THE SANDWICH THEOREM
1.3
Here we present some fundamental applications of the Sandwich Theorem. The theorems in t h i s and the next section are formulated in the context of semigroups. The corresponding assertions f o r cones are presented as corollaries (via Proposition 1 . 2 . 4 . ) However, we emphasize that the proofs for the semigroup case can be adapted immediately t o the case of cones. The reader merely has t o replace the words "sub- and superadditivity" by "sub- and super1 inearity", respectively. 1.3.1 Dominatina Extension Theorem: Let T -
be-a subsemigroup of the preordered abelian semigroup (S, < ) . Consider an additve map p : T + R and - a monotone subadditive p : S +
with l?t)
S
P(t)
for all t --
Then there i s a monotone additive ---L I S P 0" s. (by
'I
I LI
on T
I'
p
: S
+
+
R
with F(
we mean o f course ; ( t ) I
Proof: The map q : S
.
E T
R defined by
q(s) =
-
I LI
for a l l
p(t)
T
and -
t E T).
s E T
i(s)
if
-
otherwise
i s superadditive. The Sandwich Theorem 1.1.2. yields then a monotone additive p on S with q I LI I p , which means ;IU on T . o
12
Linear Functionals
The same argument as i n t h e preceding p r o o f , now w i t h an a p p l i c a t i o n o f Theorem 1.2.5 i n s t e a d o f t h e Sandwich Theorem 1.1.2.,
y i e l d s t h e cone v e r -
s i o n o f t h e Dominating Extension Theorem. On t h e o t h e r hand we can i n f e r t h i s v e r s i o n d i r e c t l y from t h e Dominating Extension Theorem by u s i n g P r o p o s i t i o n 1.2.4. Corollary: Let G -
(F, < ) . Consider -a linear G -and a monotone s u b l i n e a r p on F with
a subcone o f t h e p r e o r d e r e d cone
functional
i 2
Then t h e r e i s a monotone l i n e a r ----
p
p s p 0" F.
on F with -
I
on -
p
G and
The q u e s t i o n seems n a t u r a l whether i t i s always p o s s i b l e t o f i n d a monotone a d d i t i v e that is,
i n t h e p r e c e d i n g theorem which extends
p
G(t) = p ( t )
for all
i s a group. I n f a c t , i f T and hence ;(t) equivalent t o T
5
p(t)
and
;(t) = p ( t )
t E T.
t) I
for a l l
,
properly
T h i s i s c e r t a i n l y t h e case, i f
i s a group, t h e n
;(-
;
-t E T
for a l l
p(-t)
t E T.
f o r every t E T
t E T
which i s
I n p a r t i c u l a r , i n case t h a t
i s a vectorspace, t h e Dominating E x t e n s i o n Theorem i n c l u d e s t h e usual
v e r s i o n s o f t h e Hahn-Banach e x t e n s i o n theorem. The n e x t theorem p r o v i d e s us w i t h a necessary and s u f f i c i e n t c o n d i t i o n for
i
1.3.2.
t o admit a proper e x t e n s i o n . E x t e n s i o n Theorem:
canbe extended t o-a Then T, S, G , p be g i v e n as i n 1.3.1. on S ( i . e . 11 = u on T) with p 5 p on monotone a d d i t i v e p -
Let -
i f and o n l y i f ----
whenever
tl,t2 E T, s E S
and
tl < tp + s
.
S
'r
13
The Sandwich Theorem
Proof: (only i f part). then t ,t
1
;(tl) 2
= u(tl)
E T
and
(if part): Let for a l l
If
r E S.
p
5 p
u = u
i s a d d i t i v e and monotone and
I u ( t 2 + s ) = u ( t 2 ) + U(S) 5 ;(t2) + p ( s )
T
on
s E S,
for
tl< t2 + s .
+
$r) = i n f { i ( t )
p
p(s)
I
t E T, s E S
with
i s monotone, s u b a d d i t i v e and we have
From o u r assumption we o b t a i n
c 5 i;
on
r< t
p .
Hence
and t h e Sandwich Theorem y i e l d s a monotone a d d i t i v e u I U 5 u I = i on T. Now, n e c e s s a r i l y , u = ; on T
s)
i; I p on S .
T. On t h e o t h e r hand,
which f o l l o w s d i r e c t l y f r o m t h e d e f i n i t i o n o f
+ I on
=
i;
;, T
with
Again, these arguments c a r r y o v e r t o t h e case o f cones. A1 t e r n a t i v e l y , we can prove t h e cone v e r s i o n u s i n g P r o p o s i t i o n l . 2 . 4 . Corol 1a r y : Let -
G, F,
G,
Theorem 1.3.1. (i.e.
=
whenever
p
be g i v e n --as i n t h e c o r o l l a r y o f t h e Dominating p -can be extended t o-a monotone l i n e a r p
Then
u 0" G)
g1,g2 E G
with
,f
p
E F
I p ')" F ---i f and o n l y i f
and
_ .
91 < 92
Extension on F -
+ f -
As a consequence o f t h e E x t e n s i o n Theorem we o b t a i n a g e n e r a l i z a t i o n o f t h e w e l l known f a c t , t h a t t h e norm o f an element i s equal t o t h e maximum o f
1.3.3
x
x
o f a normed space
on t h e dual u n i t b a l l .
Norm Theorem:
Let S be-a preordered a b e l i a n semigroup. Consider a monotone s u b a d d i t i v e y p : S + R w i t h p ( n s ) = n p ( s j -f o r a l l s E 5 and n = 0,1,2, ... . Then p i s t h e p o i n t w i s e supremum o f all monotone a d d i t v e p 5 p and i s a t t a i n e d -a t some u , i . e . -for all f-o r e v e r y s E S t h i s supremum s E S -we have p ( s ) = maxIp(s) I p : S + R i s monotone, a d d i t i v e w i t h - p 5 p 0" S ) _ .
14
Linear Functionals
Proof: Let
s E S
and d e f i n e t h e subsemigroup
ii : T
L e t t h e a d d i t v e map n = 0,1,2,...
.
+
R
T = {ns
be d e f i n e d by
I
n= 0,1,2,
...I .
;(n s ) = p ( n s )
for all
Then t h e Dominating E x t e n s i o n Theorem p r o v i d e s us w i t h an
a d d i t i v e , monotone
!.I
:S
-,
R
such t h a t
!.I I p
T. Here t h e l a t t e r f a c t i m p l i e s e q u a l i t y on T
on
S
and
I !.I I
p
on
by d e f i n i t i o n o f
Corol 1a r y : Let -
p Then -p
the
&
p r e o r d e r e d c ~ n e F. monotone sub1 i n e a r f u n c t i o n a l fi i-s the pointwise ~ supremum o f a ll monotone li n e a r !.I I p
for every f E F
_.-
p ( f ) = max{U(f)
this supremum 3 a t t a i n e d
I 11
monotone, l i n e a r and
!.I
a t some
!.I
Ip
FI
,
and
i.e.
.
1 . 4 . SUM THEOREM AND FINITE DECOMPOSITION THEOREM As before, we f o r m u l a t e t h e theorems f o r b o t h cases, a b e l i a n semigroups and cones.
1.4.1.
Sum Theorem:
Let
be an a d d i t i v e 9 -on t h e
_.
!.I
-and l e t
pl,.
. .,p,
: S
+
!.I I p1 t
p r e o r d e r e d a b e l i a n semigroup
whenever
p2 t
*.. t
Pn
*
R with
uk
If, i n addition, -
!.I
...,un : S !.I,,
.
-,
I
that
r, t, sl,...,sk
< )
be monotone and s u b a d d i t i v e -such t h a t -
Then t h e r e a r e monotone, a d d i t i v e ul, --k = l,...,n, and !.I I !.I t !.I~t... t tone and i f we have ------
(S,
E S
such t h a t --
r < t t sk
, k = l , ...,n,
pk
,
i s mono--
The Sandwich Theorem
15
then we can assume
(**I
lJ =
+ u2 +...+ lJn
Proof: We consider
@
= S { l y * * * y n=l { ( s l ,
... , s n ) I
sk E S , k = l ,
..., n }
and denote
the diagonal by A @ ={(S,S,
...,S) I
s E
s}
@ i s a preordered abelian semigroup i f the preorder relation and the operations are defined pointwise, i .e.
+ tl’ ..., S n + t n ) n (s1,...,sn) < ( tl , . . . , t n ) i f f sk < t k for a l l k=l, ...,n ( s y . ., s n ) + (tl’“ . ’ t ) = (sl
.
i s a subsemigroup of 0 . We define an additive map : A @ -, R by (s,s,...,s) = ~ ( s ) , s E S . On @ we consider the monotone subadditive map p given by Obviously,
P(S”’..”Sn)
A @
=
Pl(S1) +
Pz(S2)
+...+
Pn(Sn),
S1’S2’“ ” S n
E
s.
We have I p On A @ in view of our assumptions. Hence we can apply the Dominating Extension Theorem 1.3.1. t o obtain a monotone additive map v : @ -, f? with 5 v on A @ and v 5 p on @ .I f , in addition, (*) holds, then the assumptions of the Extension Theorem 1.3.2. are s a t i s fied and we may even assume v = on A Q . Define p k ( s ) = V ( A s~ ) for a l l s E S , k = 1, ..., n , where s i s the k - t h component of A
i.e. a l l other components of A
A ~ S =(O,...,O,s,O,...,O), ~
Sand
~
S
are zero. The p k are monotone, additive and satisfy the required condi+ A,,S for a l l s E S. 0 tions since (s,s,...,s) = A ~ S ...+ Similarly as in the preceding section the cone case can be proven with the analogous arguments. On the other hand, using 1.4.1 and Proposition 1.2.4., we can derive the following corollary directly from the Sum Theorem.
16
Linear Functionals
Corol 1a r y : Let -
P
.,p,
ply..
&a
l i n e a r f u n c t i o n a l -on t h e p r e o r d e r e d cone (F, monotone sub1 i n e a r on F -such t h a t
and
P I
p1 t p2 t... t Pn
--Then t h e r e a r e monotone and
k = l,...,n,
linear
P I p
<) and let
*
pl,...,un
t p2 t.. .t pn
.
on F w i t h p k 5 pk,
If i n addition,
p
2 monotone
and i f we have ----
whenever
h,g,
E F
fl,...,fn
-such t h a t
h < g t f k ’ k = l,...,n,
then we -can assume --
(**I
P =
PI
-I.
v2
t... t pn
Note, t h a t i n t h e p r e c e d i n g a s s e r t i o n s , (*) i s a l s o necessary f o r ( * * ) . C o n d i t i o n ( * ) i s o f t e n s a t i s f i e d , f o r example, i f S has t h e s e m i i n t e r p o l a t i o n property:
A preordered a b e l i a n semigroup (S, < ) has t h e s e m i i n t e r p o l a t i o n p r o p e r t y . (SIP i n s h o r t ) i f f t h e r e i s s E S w i t h r < t + s and s < s k y k=1,2 whenever
1.4.2.
r,t,sk
E S
and
r < t t sk, k=1,2.
Lemma
semigroup (S, < ) -have t h e S I P . Then c o n d i t i o n ( * ) i---n t h e Sum Theorem 1.4.1 holds a u t o m a t i c a l l y f o r monotone a d d i t i v e Let the abelian ---p :
s+R.
Proof: Let
r, t, sk E S
S I P y i e l d s some
and
r< t
s E S
with
t sky
k = 1,2,...,n.
s < s k y k = 1,2,...,n,
Then, b y i n d u c t i o n , t h e and
r < t t s.
17
The Sandwich Theorem
Here t h e l a s t i n e q u a l i t y f o l l o w s from t h e monotony o f
Examples o f preordered semigroups w i t h t h e SIP i)
Let
Let
s
s k y r, t, s
t
k=1,2
r < t
and
E S, k= 1,2. Then w i t h
k t
e v e r y v e c t o r space has t h e
s . Hence e v e r y group
s1,s2
t < s k y k=1,2,
+
( - t ) we have
< ) such t h a t e v e r y two s, i . e . whenever t E S
(S,
have a g r e a t e s t l o w e r bound
E S
then
s = r
.
and, i n p a r t i c u l a r ,
.
SIP
ii) Consider a preordered a b e l i a n semigroup elements
.
be a group endowed w i t h an a r b i t r a r y p r e o r d e r r e l a t i o n
S
r < t
< s k y
.
11
t < s . I n t h i s case, o b v i o u s l y ,
S
has t h e
SIP.
We observe t h a t a g r e a t e s t l o w e r bound need n o t be unique, i f < i s n o t antisymnetric. Note, t h a t i n t h e r e m a i n i n g theorems o f t h i s s e c t i o n we have t o r e s t r i c t o u r s e l v e s t o t h e case
R = IR
.
1.4.3. F i n i t e Decomposition Theorem ( f i r s t p a r t ) : Assume t h a t -l e t 9, ...,pn -
S
: S
f o r a l l s E S. -xl t +...+ x n
Define
CI =
+6 be s u b a d d i t i v e -such t h a t
Then t h e r e a r e
X k 2 0,
k=l,
be a d d i t i v e and
...,n , with
= 1 -such t h a t
p I
Proof:
a b e l ia n semigroup. L e t 1-1 : S + l i ~
i s an -
IP1’.
Alp1
..
Y
t
Pnl
x2p2
+...+ x n D. n
= {q
I CP : { pl,...,pn}
+lil
.
@
t h e p o i n t w i s e o p e r a t i o n s . We c o n s i d e r t h e p o i n t w i s e o r d e r :
i s a cone under
18
Linear Functionals
iff
( p k ) 2 cp2 ( pk ) for a l l k = l , . . . , n . i s then a preordered cone. p : ID + I i defined by
'pl "cp2
(ID,i)
cp
1
p(cp) = max((p(pl), . . . , t p ( p n ) ) , q : ID
+ k , with
, i s a monotone sublinear functional.
cp E ID
q(Q) = S U p { p ( S )
IS
E
s with pk(s)<(p(pk), k = l ,... ,nl
for a l l cp E I D ,i s superadditive. (Recall sup(0) = - a ) . In view of our assumptions we have q Ip . Hence, by the Sandwich Theorem 1.1.2 there i s a monotone additive v on Q with q I v I p. From Proposition 1 . 2 . 4 and the homogeneity o f p we infer t h a t v i s indeed a linear functional on ID.Let s E S and define S E ID t o be the function with c ( p k ) = p k ( s ) , k = ~ , . . . , n . Let t i E ID be the element with Put
Xk =
&k 2 0
v(tk)y
and
v
&i(Pk)= 0 i f
k
#
k=l
k=l
n
- k=l Now ,
Ik
=
since
k
1 since
k=l
n
r
=
+Gk)
k=l
Indeed, t h i s i s clear, i f
-
l,...,n.
n
v ( - 1 ) Ip(-1) =
pk(s) > -
such t h a t
& k for a l l
00
pk(s) =
n
E N
-
1
n
(s)
Assume there i s k
=
o for a l l
=
1 w ( t k ) = ~ ( 1I ) p ( 1 ) = 1 and
u ( s ) Iq ( c ) I v
I
lk2
n i s monotone. We conclude t X k n
t .1( p 1. ) = 1, i,k
and
Then we have
k = l,...,n.
1 Xk =
Pk(s) &k
i
-
n
.
for a l l
s E S
for a l l
k = l,,..,n
m.
. Hence,
.
Then we have by the monotony of
v
,
Thus the preceding estimate holds in t h i s case, t o o , and the theorem i s proved
19
The Sandwich Theorem
Note t h a t the Finite Decomposition Theorem 1.4.3 includes already the case t h a t S i s a cone and a l l functionals involved are homoqeneous. So, in contrast t o the preceding theorems i t i s n o t necessary t o s t a t e the cone version of 1.4.3 separately. As an immediate corollary of 1.4.1., 1.4.2., 1.4.3 we obtain the second p a r t o f the Finite Decomposition Theorem. 1.4.4
Finite Decomposition Theorem ( p a r t two):
Let IJ:S -, 6 be additive -on the preordered abelian semiqroup : S +IR with and consider subadditive, monotone p l , . . . , p n ~ ( s )I max(pl(s), . . . , p n ( s ) ) 2 0,...,An
A1
n
1
k=l
Ak =
2 0
-for _ _a l l
s E S.
a n d monotone additive -
(S,<
)
Then there are ---
pk 5
pk, k
=
1,
...,n , -such t h a t
1 and
n
I n case t h a t ---
( S , <) -has the S I P we can assume t h a t
Corollarv (cone version o f 1.4.4.1
:
Let -
IJ : F -, t i be l ine a r on the preordered cone ( F , 4 ) and consider sublin ea r , monotone p l , . . . , p n : F +I6 with v ( f ) 5 max(pl(f), . . . , p n ( f ) )
-for a l l k
=
f E F.
l,...,n,
In case t h a t ---
--Then there are
n such t h a t z --
k=l
(F, < )
A1 2 0
and monotone linear
hk = 1 and
has the SIP we can assume~ that --
n
-
IJ k
5 P k Y
20
Linear Functionals
1.5 SOME ELEMENTARY APPLICATIONS
In this book we do not intend to go into details of semigroups. But since we stated the Sandwich Theorem in the context of abelian semigroups we like to start with some applications in this field. 1.5.1 The Phragmen
-
Lindelof Principle
An important tool in many areas of classical analysis - for example interpolation theory [331 - is the Phragmen - Lindelof principle. We demonstrate that this principle is a corollary of the Finite Decomposition Theorem. Theorem: L e t F(z) &a bounded analytic function on the strip 0 c Re(z) c 1 and assume that F ( z ) fi continuous on the closed strip 0 I Re(z) I 1. Then for 0 I o I 1 we have for all t E 1R
Proof: Let H be the multiplicative semigroup of all bounded analytic functions on 0 < Re(z) c 1, which are continuous on the closed strip 0 I Re(z) I 1 and fix some zo = xo t i yo in this closed strip. By "multiplicative" we mean that H is considered as a subsemigrobp of the cone given in example 1.2.2 (vi), i.e. that the semigroup operation in H is given by f fig = f g. Then by
an additive function is given on the mu1 iplicative semigroup H. The maximum principle for analytic functions imp1 ies
where po,pl,p are the following subadd tive functions:
21
The Sandwich Theorem
p ( h ) = l o g ( 1 i m sup yaR, 1-
sup o<x
I h(x
:rom t h e F i n i t e Decomposition Theorem we g e t
, + x1 + x
xo
= 1
I)
,
xo,xl,X 2 0 w i t h
= 1 such t h a t
It remains t o c a l c u l a t e t h e numbers
functions
+ i y)
i n the inequality (*).
h E H
.
- xo
Thus
-
by introducing special
xo,Xl,h
We c l a i m
by t a k i n g e x p o n e n t i a l s i n ( * )
1 = 0,
x1 = xo and
- t h e theorem i s proved
2 P r o o f o f t h e c l a i m : Consider t h e s p e c i a l f u n c t i o n h,(z) = ez , t h e n 2 2 p(ho) = l o g ( o ) = and u ( h o ) = xo - yo > - a3 . Hence A = 0.
-
Now, we i n s e r t
hl,2(z) i
Hence
hl = x
0
.
= e
i n (*)
xo = v ( h l , ? )
We c o n s i d e r a nonempty s e t
,t h e
X
0
=
i
xl l o g ( e )
1 we o b t a i n
= i
x0
x1 = 1
- x0 .
and a m u l t i p l i c a t i v e subsemigroup
bounded complex-valued f u n c t i o n s on
semigroup we mean, o f course, t h a t If
I xo.O
xo+xl+x
Because o f
and o b t a i n :
0
B i s h o p ' s (;enera1 V e r s i o n o f t h e "Three C i r c l e s Theorem"
1.5.2
BC(X)
iz
#
YcX
then
I( I I y
hl
denotes t h e
-
X
h2 E H(X)
H(X)
. By a m u l t i p l i c a t i v e whenever
Y-sup-norm g i v e n by
hl,h2
of
E H(X).
22
Linear Functionals
Theorem: - Let m : H ( X ) m(hl
*
h2) = m(hl)m(h2)
+
C be multiplicative, i . e .
for a l l
hl,h2 E H ( X ) .
m ( h ) I 11 h l l y
(*)
for a l l
h E H(X)
,
...,Y n
subsets such t h a t _ _ _ -of Y -- are nonempty _ n Y = Y1u Y2 u... u Y n then there are h i 2 0 & y n i = l i =1 such that -'n
and i f --
Y1,
Proof:
We may assume that H ( X )
contains the neutral element
lX
(constant function equal t o 1 on X ) , because otherwise we extend m without any difficulty to a multiplicative function on H ( X ) u Ilx1 by putting m ( l x )
=
1
.
Now, we consider the additive li- valued function given by p ( h ) = log(m(h)l and the subadditive functions defined by p i ( h ) = log11 h ( l , i = 1,..., n Then from ( * ) weget v 5 max(pl 'i n Hence by the Finite Decomposition Theorem p I z Xipi , where i =1 n A . 2 0 with 1 hi = 1 1 i =1
.
,...,D n ) .
.
Going back, by taking exponentials, immediately gives the theorem. Usually this theorem i s proved by means of Jensen measures for the rather special case of mu1 tip1 icative 1 inear functionals on function algebras bg]. For applications see [821.
1.5.3 Seevers' Proof for the Existence o f Jensen Measures The following proof i s modelled a f t e r a beautiful argument appearing in an unpublished paper of Galen L . Seever. Actually t h i s paper has drawn the
23
The Sandwich Theorem
a t t e n t i o n o f t h e f i r s t a u t h o r t o semigroup v e r s i o n s o f t h e Hahn-Banach theorem,
I n o r d e r t o a v o i d c o n f u s i n g o u r arguments w i t h measure t h e o r e t i c c o n s i -
d e r a t i o n s we p r e s e n t t h e theorem about t h e e x i s t e n c e o f Jensen measures i n a somewhat m o d i f i e d X
Again, l e t
be a nonempty s e t and l e t
semigroup o f
BC(X). By
f u n c t i o n s on
X. Note t h a t
u :
v : B,i(X)
a linear --
H(X)
# 0 and +
(*)
+
H(X)
form.
be a m u l t i p l i c a t i v e sub-
we denote t h e upper bounded li- valued
Bli(X)
Blk(X) = I l o g l f l I f E BIR(X)1, where
the real-valued functions i n Theorem: - Let assume that a --
-
- and by t h e same t i m e g e n e r a l i z e d
BIR(X)
are
Bg(X).
C be-a m u l t i p l i c a t i v e f u n c t i o n on H(X) and
I u ( h ) l I I( h l I X
li with
-f o r a l l h E H(X).
Then t h e r e i s
such t h a t : p ( f ) 5 sup f ( x ) -f o r a l l f E B,i(X) -XEX
lu(h)I 5 ev(loglh1)
-f o r a l l h E H(X).
I n ( * ) we assume i f and o n l y i f : _ -can __ _ e q u a l i t y ----
(**I such t h a t -Proof:
Consider on t h e mu1 t i p 1 i c a t ve semi group
BIR( X )
t h e f o l 1owing
s u p e r a d d i t i v e f u n c t on I h E H ( X ) w i t h I h l = I'fll, f E BIR(X)
= sup{loglu(h)
q(f
i s d e f i n e d t o be
where, o f course, t..e supremum o f Then
q 5 p
where
p
.
-
i s t h e s u b a d d i t i v e f u n c t i o n g i v e n by
P ( f ) = log11
fllx
I
f
E BIR(X).
From t h e Sandwich Theorem we o b t a i n an a d d i t i v e
i
with
q 5
iI p.
Linear Functionals
24
Hence,
(***) Consider
E3,jj(X).
logla(h)( 2 ;(\hi) O f course,
BG(X)
a d d i t i o n o f t h e f u n c t i o n s i n Bli(X) elements i n IR,
Thus
i
qE(X)
h E H(X)
.
i s a cone i f we t a k e now t h e F o i n t w i s e and p o i n t w i s e m u l t i p l i c a t i o n w i t h t h e
as t h e cone o p e r a t i o n s . Then
a d d i t i v e f u n c t i o n on
(since
for a l l
p ( f ) = ;(ef)
d e f i n e s an
with
was a d d i t i v e on t h e m u l t i p l i c a t i v e subgroup).
u must be l i n e a r b y P r o p o s i t i o n 1.2.4 and (*) f o l l o w s w i t h (***)
from: l o g ( a ( h ) l 5 ;(lhl)
= i(e’oglhl)
= p(loglh1)
I n case t h a t (**) holds we c o n s t r u c t o u r
.
w i t h t h e Extension Theorem
i n s t e a d of t h e Sandwich Theorem. We do t h i s i n such a way t h a t we have e q u a l i t y i n (***) which c l e a r l y i m p l i e s t h e a s s e r t i o n . I n t h i s case we cons i d e r t h e m u l t i p l i c a t i v e semigroup ( H I = { ( h ( \ h € H ( X ) I and d e f i n e an a d d i t i v e u on H by
T h i s d e f i n i t i o n i s n o t ambiguous because o f ( * * ) . Then by t h e E x t e n s i o n Theorem we can extend T h i s i s p o s s i b l e because (**)
u
t o an a d d i t i v e
5 p.
i s j u s t t h e e x p o n e n t i a l form o f t h e necessary
c o n d i t i o n i n 1.3.2.
T h i s shows t h a t (**) i s necessary and s u f f i c i e n t f o r
e q u a l i t y i n (*).
o
1.5.4
When i s a F u n c t i o n Dominated by an A r i t h m e t i c Mean o f o t h e r Functions?
I n t h i s subsection we prove a r e s u l t o f a somewhat c o m b i n a t o r i c a l nature, showing t h a t t h e F i n i t e Decomposition Theorem can be extended t o t h e most general s i t u a t i o n .
25
The Sandwich Theorem
Given a nonempty s e t X and
then our question i s : When i s of the functions f l , ...,f n ? Theorem: (i)
The following __ are
There are
n
cp(x) I
(ii)
cp
i =1
cp
.
,
and f l y . . , f n on X
pointwise dominated by an arithmetic mean
equivalent:
. ,An 2
hl,..
valued functions
li-
0
with z -
hi =
1 -such that
h i f i ( x ) -for a l l x E X
.
-
For every f i n i t e nonempty subset X c X w e have --
x
x
E Proof: ( i ) * ( i i ) : By adding u p the inequality in ( i ) for the we see that t- ~ ( ii s) dominated by an arithmetic mean of the corres-
;EX
ponding sums for the f l metic mean of numbers.
n
to fn
. Now,
( i i ) i s t r i v i a l , since an arith-
numbers i s less t h a n or equal t o the maximum of these
( i i ) ( i ) : From elementary algebra [ 65 , p.211 (construction below) we know that there exists a free abelian semigroup X* 3 X with neutral element which has the property t h a t any map T from X into an abelian semigroup S with neutral element can be uniquely extended t o an additive function from X* into S . Furthermore we know that X i s a s e t of generators of X* NOW, take lE f o r S and extend cp,fl, ,f n uniquely
.
...
t o additive 6- valued maps on X*. Then ( i i ) implies t h a t (p i s dominated by the maximum of the f l , ...,f n (since X generates X * ) . Application of the Finite Decomposition Theorem immediately yields the assertion of ( i ) . A
h
0
Problem: As an exercise the reader may prove a corresponding statement for the geometric mean o f positive functions. Construction o f the free abelian semigroup: a subset of
We may consider X
t o be
26
X*
Linear Functionals
= If
E :N
I
+
f(x)
f o r a t most f i n i t e l y many
0
x E X with t h e function zero.
X*
: X
-,S
: X*
+
‘I
which maps
6,
be a map i n t o an a b e l i a n semigroup S
1 and a l l
x+x
to
S, then o b v i o u s l y
g i v e n by 1 f ( x ) T(x),
=
f E
X€X
i s t h e unique e x t e n s i o n o f
Let
to
by i d e n t i f y i n g
i s an a b e l i a n semigroup under p o i n t w i s e a d d i t i o n . Now, l e t
;(f)
1.5.5
x
x E XI
T
x*
t o an a d d i t i v e f u n c t i o n from
X*
into S
.
Decomposition w i t h r e s p e c t t o P o s i t i v e l y Independent F u n c t i o n a l s F
be an a r b i t r a r y cone. A s e t
p1
,. .. ,p,
:F
-,li
o f sub1 i n e a r
f u n c t i o n a l s i s s a i d t o be p o s i t i v e l y independent i f , whenever n z xi pi 2 o f o r xi 2 0, i = l,...,n, then we must have i=1
x1
=
x2
... = xn
=
i f t h e r e i s some
= 0. T h i s cond t i o n i s q u i t e o f t e n f u l f i l l e d ,
f E F with
Theorem: L e t pl,...,pn ~f u n c t i o n a l s -and l e t pl(f)
5 0,
p2(f) I 0
p :
Proof:
F
= If
I
F +IF
,... , p n ( f ) n
u
pk f ) < 0, k = l,...,n.
be a s e t o f p o s i t i v e l y independent s u b l i n e a r
such t h a t -(*)
especially
k=l
XkPk
be l i n e a r such t h a t 5 0.
Then t h e r e a r e
p ( f ) I 0 whenever
xk
2 0, k = l,...,n
*
I t s u f f i c e s t o p r o v e t h e d e s i r e d i n e q u a l i t y f o r t h e subcone
E F I u(f)
choice o f
xl,...,hn.
+
-
=I
F \ F (*) i s t r i v i a l l y t r u e f o r every So we r e s t r i c t o u r c o n s i d e r a t i o n s t o f . The because on
assumption i n t h e theorem i m p l i e s
27
The Sandwich Theorem
Hence from t h e F i n i t e Decomposition Theorem we n e t
Xk 2 0, k =
1, ...,n,
with
n
and
n
X = I:
k=l
We know t h a t
n
X k 5 1. T h i s can be r e w r i t t e n as
1-
x
f
s i n c e we assumed t h e
0
pl,.
. . ,pn
t o be p o s i t i v e l y
independent. Hence
p s t - 'k
and t h e decomposition ( * )
'
'k
k=l 1-X
i s proved.
0
Now, l e t us a p p l y t h i s theorem t o l i n e a r f u n c t i o n a l s F(X) (i.e.
-
i s a subcone o f sup(f(x)) < XEX
the constant function subset
Y c X
Corollary:
Let -
+
and assume ~ that p(f) A
1> - 0,
Proof:
-
-
lX (beinq supy
sup f ( y ) YEY
for -
5 0
...,A n 2 0 -such t h a t p
I
+ f i , where
f o r a l l f E F ( X ) ) and where we assume t h a t F(X) c o n t a i n s
1 a t every x E X).
.
all
n t X k supx k=l k
We can assume t h a t t h e
F o r a nonempty
the f o l l o w i n q sublinear f u n c t i o n a l :
...,Xn _be_ a_ _f i _n i t e
X1,
: F(X)
lix c o n s i s t i n g of upper bounded f u n c t i o n s
we denote by f
p
covering o f
L
f E F(X) with f
X
(i.e.
I 0.
n U Xk = X ) k=l
Then t h e r e a r e ---
.
X1,.,.,X
n
a r e nonempty ( o t h e r w i s e we drop
28
Linear Functionals
those s e t s which a r e empty). NOW, we observe t h a t t h e f u n c t i o n a l s
, k = l,...,n, a r e p o s i t i v e l y independent s i n c e - lX E F(X). Hence k t h e theorem can be a p p l i e d imnediately t o t h e s i t u a t i o n under c o n s i d e r a t i o n .
supx
1.5.6
The Jordan Decomposition
For t h e n e x t a p p l i c a t i o n (due t o H. Konig [1991),let
be a q a i n a nonempty s e t and denote by B(X) t h e vectorspace o f a l l bounded, r e a l v a l u e d functions. A l i n e a r f u n c t i o n a l p : B(X) - r R i s s a i d t o be bounded i f
where
11 fll
(1 f (1
denotes t h e usual -sup-norm
X
.
= sup ( f ( x ) l XEX
We consider t h e p o i n t w i s e o r d e r r e l a t i o n ( f < g iff f ( x ) I g ( x ) f o r a l l x E X ) on B(X). Note, t h a t a l i n e a r f u n c t i o n a l v i s monotone w i t h respect t o
i f and o n l y i f
5
u ( f ) 2 0 whenever
f 2 0.
Jordan Decomposition Theorem For every -bounded l i n e a r f u n c t i o n a l -
on B(X) 1-1 = 1-1, Up
0" B(X) w i t h
functionals
there are --
-
and 11 1-111
monotone l i n e a r =
I( l-Itl(
t
11 p - l ( .
Proof: Define
p,(f)
for a l l
=
11 1-11)
f E B(X).
s u p I f ( x ) \ x E X I , f E B(X),
p,,
p-
u ( f ) I max(p+(f), p - ( f ) ) = Then 1.4.4 y i e l d s l i n e a r p =
A;,+
(1-k)ii
-
We o b t a i n
-
p,(-f)
f 2 O .
I
-
p,(-f)
I
-
(1
1-111
( 1 f 11
f o r a l l f E B(X). B(X) and 0 I A I 1 w i t h
iJ+(-f) = c,(f)
i - ( f ) I p,(f).
p_(f) = p t ( - f )
a r e s u b l i n e a r and we have
it,;-on G+ I p+, is p-
and
and p u t
Hence
;,(f)
.
I p,(f)
2 0
and and
similarly
( - i - ) ( f )2 0
whenever
29
The Sandwich Theorem
lG+(f)l, conclude 11
Since we
Note, t h a t t h e same p r o o f works f o r bounded l i n e a r f u n c t i o n a l s on subspaces of
E
B(X). On t h e o t h e r hand g i v e n a subspace
11
functional
on
c B(X)
and a l i n e a r
t h e n we may as w e l l a p p l y a t f i r s t 1.3.1 i n o r d e r t o
E
obtain a l i n e a r extension
: B(X) + R
p
of
with
11; I( = 11
.
pll
Then we can use d i r e c t l y t h e theorem above. I t i n c l u d e s t h e Jordan decomposition f o r measures. Consider a bounded s i g n e d measure T on X w i t h r e s p e c t t o some U- a l g e b r a ,I. Define E t o be t h e l i n e a r span of t h e c h a r a c t e r s t i c f u n c t i o n s of a l l a linear functional
p
E by p ( e )
on
=
X
A p p l i c a t i o n o f o u r theorem y i e l d s monotone Let
A E 1 with
IT(A)I
< m
and d e f i n e
edT
X
for all with
p + , 11-
r+(A) =
( l A denotes t h e c h a r a c t e r i s t i c f u n c t i o n o f p o s i t i v e bounded measures on
X
Z- measurable subsets of
T-(A)
p+(lA),
, I
E.
-
p = p+
A ) . Then t h e
w i t h respect t o
e E
and d e f i n e
T+,T-
=
11-
.
p-(lA)
are
and we have
T = T + - T - .
1.5.7
The Lemma o f Farkas
Next we proceed t o Farkas' Lemma which has become a useful t o o l i n mathem a t i c a l economy [104].0ur proof i s b a s i c a l l y t h e same as t h e one g i v e n b y Heinz Koniq i n h i s b e a u t i f u l l e c t u r e notes on Mathematische W i r t s c h a f t s t h e o r i e [ 201, p.321. Farkas' L e m w: space
E
tionals.
consider
a realvalued
l i n e a r functional
of r e a l v a l u e d
and a f i n i t e s e t
A = I~~,...,p~l
v
a vector
l i n e a r func-
If (*)
--then there are (**)
v(f) 5 0 hl
2 0,.
v =
n , I
i=1
whenever
. .,xn xi
pi
2 0
pi(f)
5 0
such t h a t
forall
i = lY...¶n
30
Linear Functionals
Remark: Of course, ( * ) i s also necessary for ( w ) .
.
Proof: We proceed via induction over the number of elements in A Recall t h a t v1 5 v 2 on a vectorspace E implies v1 = v 2 for a l l linear functionals v l y v 2
.
If A has only one element then this i s either equal t o zero or A i s a s e t of positively independent sublinear functionals. In the f i r s t case ( * ) implies v = 0 and ( * * ) t r i v i a l l y holds. I n the second case the assertion (**) i s a consequence of Theorem 1.5.5. NOW, we assume that the theorem i s true for arbitrary E and for a l l havinq 5 m elements.
A
We consider A = ~ U ~ , . . . , U ~If , ~A ~i s+ a~ s~e t. of positively independent functionals then ( * * ) i s again an immediate consequence of Theorem 1.5.5. So we are l e f t with the case t h a t A i s n o t positively independent. Then i t contains some element, say pm+l, such t h a t
-
=
m
1 akpk
k=l
for suitable a k 2 0, k = l y . . . , m
.
NOW, we r e s t r i c t a l l our linear functionals t o the subspace =
Ie E E\y,,+l(e) = 01. pl(e)
Then, for e E
I 0, ...,LI( e ) 5 0
m
By our induction hypothesis we get
u For
= 0
= (v
(i.e.
E =
m
1
k=l
Xkpk)
i) the
x1
E,
by ( * )
ensures
t 0,
...,x,
,
.
o
v(e)
I
1 0
such t h a t
i s equal t o zero on
-
E
.
proof i s finished. Otherwise the rest i s
linear algebra. Because then we can find f E E \ E
and p u t
31
The Sandwich Theorem
n i ng e)f E
i
for a l l
e E E.
v =
For
611 ( f ) 2 0
formula
um+l
t h e a s s e r t i o n i s proved. Otherwise we r e p l a c e i n t h e l a s t
m
- I
by
v =
As i n [201, p.331
ak
k=l
m 1
i=1
and g e t t h e d e s i r e d r e s u l t :
pk
-
(xi
611 ( f ) a i )
ui
I
0
one can use F a r k a s ' Lemma t o p r o v e t h e i m p o r t a n t f a c t
t h a t finite-dimensional
p o l y h e d r i c cones i n H a u s d o r f f l o c a l l y convex
v e c t o r spaces a r e c l o s e d . For t h e sake o f completeness we i n c l u d e t h i s r e s u l t here. C o r o l l a r y 1:
L e t xl,. -
. . ,x,
be elements _ o f -a
Hausdorff l o c a l l yconvex
t o p o l o g i c a l ~v e c t o r space. -Then t h e p o l y h e d r i c cone
K =
n {
1
i=1
XixiIX.20l 1
i s closed. -~ Proof:
Let
E'
, the
E
E t o be E = Cx E E f y ( x ) 5 01. Y Y i s o b v i o u s l y closed. Now, c o n s i d e r t h e elements of E as l i n e a r
and d e f i n e , f o r
E Y f u n c t i o n a l s on
Then
Xl,*..,X
be t h e vectorspace o f c o n t i n u o u s l i n e a r f u n c t i o n a l s on
n'
y E E'
E'
set
and a p p l y F a r k a s ' Lemma t o t h e f u n c t i o n a l s q i v e n by
Linear Functionals
32
This yields K =
n { E Iy
Hence K must be closed
Y
.
with y ( x i )
E E'
5 0,
i
=
l,...,n}.
0
Another useful corollary gives information a b o u t the support of certain linear functionals: Corol 1ary 2: F(X) be a cone of functions f : X + R . Let p : F ( X ) -,6 be 1 inear and consider x1 ,.. . ,xm E X -such t h a t p ( f ) = p ( g ) whenever --
Let -
f,g E F(X)
_ .
and -
Then there are real numbers
f ( x k ) = g ( X k ) ' k = I , . . .,m.
al, . . .,a m - with
p(f) I
Equality --holds for a l l
m
t a k f ( x k ) -for all f E F(X). k=l
f E F(X) with p ( f ) > -
co
.
Proof:
.
We only need t o consider the subcone p(X) = Cf E F ( X ) ( u ( f ) > - -1 Consider the vectorspace E = F ( X ) - ? ( X ) . We may extend p t o a linear functional on E by defininq ;(f-q) = p ( f ) v(q) for a l l f,g E F ( X ) . This definition makes sense since i f f-g = f-i, f , g , f , i E f ( X ) , we obtain p ( f ) t ~ ( 4 )= ~ ( 7 t) p ( q ) . P u t 6,(f) = f ( x ) , x E X , f E E. Then the assumptions o f Farkas' Lemma are s l t i s f i e d for i 6 ,..., * bX and i Indeed, l e t x1 m i 6 (f-g) I 0,i = 1,...,my for some f,q E E. Then f ( x i ) = q ( x i ) , i y...,m. xi Hence p ( f ) = p(g), t h a t i s ;(f-q) 5 0. By Farkas' Lemma n p = 1 (ai , for some a.,B. 2 0, i = l,...,m. This proves i =1 bXi - Bi b x1. ) 1 1
-
.
-
the assertion of Corollary 2.
0
33
Linear Functionals
The S e p a r a t i o n Theorem
1.5.8
Of course, t h e Sandwich Theorem i n c l u d e s t h e usual v e r s i o n s o f t h e Hahn
Banach Theorem. F o r completeness we demonstrate t h i s a t t h e example o f t h e S epara t ion Theorem.
Hahn Banach S e p a r a t i o n Theorem v e c t o r space. L e t E be a r e a l l o c a l l y convex Hausdorff t o p o l o g i c a l ___Consider _ convex_subsets and B of E with A n B = 0 such _ A ~0 -
that A
i s open. Then t h e r e i s a continuous l i n e a r f u n c t i o n a l --
w i t h u(A) n u(B) -
.
0
=
p
on E -
Proof: a.
F i x some A,,
Then of
E A
and d e f i n e
Bo
p ( e ) = i n f I x > Ole E for a l l
= l a - a o l a E A l , Bo = l b - a o l b E B I .
A,
Bo a r e d i s j o i n t convex s e t s and We assume
0.
A.
e E E.
Because Ao,Bo
0 , otherwise
P
x
0
p(e) <
for all
m
a r e convex we o b t a i n t h a t
s u p e r l i n e a r . Furthermore, s i n c e tains
0 ,we have By 1.2.5
e @ p A,
A.
whenever
u(a) < 1 f o r a l l
Hence
n p(B)
0
=
.
a E A.
e E E
since
A.
i s s u b l i n e a r and
=
0
and A.
e E
x
LI : E
and
Bo
+IR
0
=
- m)
i s absorbinq.
p
n Bo
we o b t a i n a l i n e a r
T h i s means p(A)
the assertion i s t r i v i a l . Define
A o I , q ( e ) = s u p l x 2 01 e E AB l ( w i t h sup
We have
q I p.
i s an open neighbourhood
q
is
i s convex and con-
. Thus
0 I I.I I x
and with
q I p Ip .
p(b) 2 1 f o r a l l
b E Bo.
0
Since we have spent so much e f f o r t on D r e s e n t i n g d i f f e r e n t v e r s i o n s o f t h e Hahn Banach Theorem t h i s book would c e r t a i n l y be i n c o m p l e t e i f t h e usual complex v e r s i o n cannot be found. So we do n o t r e s i s t t h e t e m p t a t i o n t o i n c l u d e t h i s theorem. O f course t h e p r o o f goes a l o n g t h e same l i n e s as t h e proof i n
-
a t least
Let
E
map
p : E +IR+
-
t e n thousand o t h e r books.
8 . A seminorm p p(xe) = I x [ p ( e ) f o r a l l
be a vectorspace o v e r with
on
E
i s a subadditive
e E
E, x
E
8
.
34
A map v(a el
Linear Functionals
-,C i s called complex linear i f e2) = a .(el) + B v ( e 2 ) for a l l el,e2 E E and a , B E C
v : E
t
~~
The complex version of the Hahn Banach Theorem: E a complex vectorspace consider a seminorm p Furthermore, -assume t h a t G i s-a subspace of E -and t h a t i s complex linear with [; I 5 p o n G ( i . e . 1; ( g ) l 5 p ( g ) ---Then there i s a complex linear I, : E + 6 with v = G 0" -.-_---
on E. -
Let -
: G
L
-
IvI 2 p
0" E.
+
C
for a l l g E G). -G and
Proof: Let course then a clude Define
and regard E and G a s vectorspaces over IR , then of the elements e 0 and i e are linearly independent. 1.3.1 yields linear u : E + I R with u I p on E and 5 I u on G. We conu = ; on G since G i s a vector space. v(e) = p(e) - i p ( i e ) for a l l e E E Then v i s complex linear
= Re
.
.
and extends Then since
1.5.9
For v ( e )
0
, hence p(i a e ) = 0 , Iv(e)l = p ( a e ) I p ( a e ) = p ( e ) .
= v ( a e ) = u ( a e ) - i p(i a e ) =
v(ae)
i s real
Thus
Affine Interposition and the Mazur-Orlicz Theorem
Let X c F be a convex subset o f some cone F i s called convex, i f
.
A function
f : X
4
fi
35
The Sandwich Theorem
f ( x x t (1-X)y) I A f ( x )
t
( 1 - x ) f ( y ) f o r a l l x,y E X, 0 5 A 5 1.
f
I f always t h e converse i n e q u a l i t y h o l d s t h e n
i s s a i d t o be concave.
A f u n c t i o n which i s convex as w e l l as concave i s s a i d t o be a f f i n e .
Problem: Given two f u n c t i o n s f,g h with f s h s g ?
: X
-,
fi , can we f i n d an a f f i n e f u n c t i o n
T h i s problem i s e a s i l y solved: The0 rem:
-There _ _i-s
an a f f i n e f u n c t i o n
h : X
n
whenever
n,m E N; n t i=o
such t h a t --
-,
6 with
f I h 5 g
i f and o n l y i f
m
ho,. =
. .,in, xo,. .. , X k
m t k=o
xk
= 1
and
-> 0
n I: xixi i=o
=
xo,
. . . ,xnYXoy.. . ,$, E
n t xkXn k=o
.
Proof: The n e c e s s i t y o f t h e c o n d i t i o n ( * ) i s obvious. Observe t h a t
x
inff
-,
m
t i k g(ik) k=o
1m
E N, i k > o w i t h t with
d e f i n e s t h e g r e a t e s t convex f u n c t i o n Furthermore x
+
sup{
n t i=o
x.1
f ( x . ) I n E N,Xi 1
: X
t Xkxk= -,
: X
1, ik E
-,
x
XI V
2 0 with
7
=
r? w i t h g
with d e f i n e s t h e s m a l l e s t concave f u n c t i o n
Xk
I g.
t xi = 1, xi E X 1 xixi
=
XI
fi w i t h f 5 'i
provided
X
36
Linear Functionals
that
f(x) < +
, since
(*)
(*)
x E X. B u t t h i s i s guaranteed i n o u r case by
for all
w
‘i I
means
4
on
X
. Hence t h e problem i s
reduced t o
f i n d i n g an a f f i n e f u n c t i o n between a concave and a convex f u n c t i o n . Consider t h e cone
Ix
X 8 R+ = {(x,h)
E X,
h > 01
u I01 where t h e cone
operations a r e defined by
X
a(x,x) = ( ~ ~ h . 6f o) r
6 > 0,
o+o
*
= 0, O ( X , A) = 0,o
0 = 0
Y
0
+
(X,X)
+0
= (X,X)
=
(X,X).
X B R+ i f x i s i d e n t i f i e d w i t h p : X Q R, -, 6 and a s u p e r l i n e a r
may be considered as a subset o f
( x , l ) . NOW, d e f i n e a s u b l i n e a r q : X8R++6
= A 4(XL
P(X,X)
Then
-f
I
by
4
yields
f u n c t i o n a l i n between
p(0) = 0 and q(x,h)
= h ?(x
Y
q(0) = 0
.
q I p and t h e Sandwich Theorem g ves us a l i n e a r
.
Restriction o f that linear functional
to
X
gives the desired
h
.
o
Corollary: Let f and g be f u n c t i o n s X + 6 -such t h a t f i s concave ~ and g convex. Then t h e r e i s an a f f i n e f u n c t i o n h w i t h f I h I g i f and - -----
if -
only
-
f I g.
Remark :
If t h e f u n c t i o n f i s n o t d e f i n e d on a l l o f X t h e n we extend i t t o X b y p u t t i n g f ( x ) = - w whenever X i s o u t s i d e t h e domain o f f The theorem t h e n goes o v e r unchanged. As a consequence we o b t a i n : Every convex f u n c t i o n i s t h e p o i n t w i s e supremum o f t h e a f f i n e f u n c t i o n s i t dominates
.
O f course, one recovers t h e Sandwich Theorem from t h e preceding i n t e r -
p o s i t i o n theorem by r e q u i r i n g ready a cone. I f X
f ( 0 ) = g(0) = 0
i n case t h a t
X
i s al-
i s i n a d d i t i o n a v e c t o r space then, i n t h i s s i t u a t i o n ,
t h e i n t e r p o s i t i o n theorem i s due t o Mazur-Orlicz Q210 (see a l s o 208 1). Even i n s p e c i a l cases t h i s r e s u l t has proved t o be v e r y useful .
37
The Sandwich Theorem
One m i g h t ask under w h a t k i n d o f c o n d i t i o n a bounded a f f i n e f u n c t i o n between f
and
g
can be found. We l e a v e as an e x e r c i s e t h a t t h i s can be done i f
and o n l y i f t h e r e a r e constants
whenever
n,m E N
and
such t h a t t h e r e a r e
I n t h i s case we have
1.6
THE TIESZ
- K'ONIG
-
m
< C1 5 C2 < +
m
such t h a t
h o y . . . y ~ n y?lo'..., A, 2 0, xlY...,xny
xoy
ko E
X
C1 I h 5 C2
-
X ~ ~ . . . m~ E X
X
with
.
THEOREM
The aim of t h i s c h a p t e r i s t h e g e n e r a l i z a t i o n o f t h e F i n i t e Decomposition Theorem t o a measure t h e o r e t i c s i t u a t i o n . The r e s u l t which we o b t a i n h e r e i s a r a t h e r powerful g e n e r a l i z a t i o n o f t h e c l a s s i c a l Riesz R e p r e s e n t a t i o n Theorem. We would l i k e t o c a l l t h i s g e n e r a l i z a t i o n t h e Riesz-Konig Theorem s i n c e t h e u n d e r l y i n g i d e a appeared i n a paper o f Heinz Konig [139]. For those readers who a r e n o t f a m i l i a r w i t h t h e n o t i o n s and techniques o f elementary measure t h e o r y we have gathered t h e necessary m a t e r i a l i n t h e
Linear Functionals
38
appendix. F i r s t , some n o t a t i o n . L e t
X
be a s e t and l e t
lydenotes t h e c h a r a c t e r i s t i c f u n c t i o n o f As b e f o r e we denote by
supy
Y
Y
, i.e.
be a subset o f X. Then 1 if xEY ly(X) 0 otherwise
={
t h e f u n c t i o n a l which assigns t h e v a l u e
.
I f Y .t: 0 t h e n supy i s a subs u p y ( f ) = sup f ( y ) t o e v e r y f : X -, li YEY l i n e a r f u n c t i o n a l on t h e cone o f upperbounded f u n c t i o n s on X. By USC(n)
we denote t h e cone o f upper semicontinuous f u n c t i o n s on a t o p o l o g i c a l
.
space
n
1.6.1
Riesz-Konig Theorem:
Consider a cone f f
F and and assume t h a t by - a compact H a u s d o r f f space R ----,T a f u n c t i o n F + USC(n) --___i s g i v e n such t h a t , -for all w E R , -, ? ( w ) i s sublinear on F , Moreover l e t LI : F -,6 _--be l i n e a r such t h a t -
Then t h e r e i s a r e g u l a r B o r e l p r o b a b i l i t y measure
u(f) I
Proof:
R
d.r
for a l l f E F --
T
on n with -
.
The p r o o f i s a s u i t a b l e a d a p t a t i o n o f t h e p r o o f f o r t h e F i n i t e
Decomposition Theorem t o t h e p r e s e n t s i t u a t i o n . So, d e f i n e a s u b l i n e a r f u n c t i o n a l
on
USC(n)
for all for all
p
and a s u p e r l i n e a r f u n c t i o n a l
6
as f o l l o w s :
h E USC( a ) . Here w
E R
. Of
-f
Ih
i s meant p o i n t w i s e , i . e .
course, t h e cone
t h i s pointwise order r e l a t i o n
s
.
a l i n e a r monotone ( w i t h r e s p e c t t o 6 I v I p. Then
USC(n)
f ( w ) 5 h(w)
i s an o r d e r e d cone under
From t h e Sandwich Theorem we o b t a i n I) f u n c t i o n a l v on USC(n) such t h a t
t h e Riesz Representation Theorem y i e l d s a r e g u l a r B o r e l
39
The Sandwich Theorem
measure
T
on
R
with
v(h) = v
Since
and
'I
E C(n) c USC(n).
I inf{v(h)
Ih
continuous w i t h
g I hl =
n
g dr
g E USC(n). A p p l i c a t i o n t o t h e c h a r a c t e r i s t i c f u n c t i o n s
-1,
Hence
n
i s monotone we have V(g)
for a l l
j h dT f o r a l l h
1,
yields:
T
(a)
v
= 1. Furthermore t h e monotony o f
i s p o s i t i v e . Therefore
T
obviously implies that
i s a p r o b a b i l i t y measure. The f o l l o w i n g
inequal it y completes o u r p r o o f : u(f) I E ( f ) I
"(7)
I
R
7
dr
,
f E F. 0
I t s h o u l d be observed t h a t t h e assumptions o f t h i s theorem a r e f u l f i l l e d
i n t h e s p e c i a l case when
n i s a s e t o f s u b l i n e a r f u n c t i o n a l s on
F
which i s compact under some t o p o l o g y such t h a t a l l t h e T , f E F , a r e upper semicontinuous. Here, o f course, by ^f we mean t h e e v a l u a t i o n : f(p) = p(f) set
R
for all
o f sub1 i n e a r
p€n
. Specialization
o f this situation t o a f i n i t e
f u n c t i o n a l s (equipped w i t h t h e d i s c r e t e t o p o l o g y )
recovers t h e F i n i t e Decomposition Theorem 1.4.3.: L e t pl, -
...,Pn
Proof:
Take
xi
be s u b l i n e a r -and l e t -
R ={pl,...,pnl
= ~ ( { p ~ } )i=l,...,n. ,
p
be l i n e a r on
and a p p l y 1.6.1. 0
F -such t h a t
Then p u t
Linear Functionals
40
1.6.2
Corollary:
Let -
X be topological Hausdorff space _.and l e t F be a subcone of USC(X). Assume n ___--t o be a compact subset of X -such t h a t :
supn(f)
=
supX(f) f o r a l l
f E F.
Then f o r every l i n e a r u on F with ---p(f)
supX(f) for a l l
I
t h e r e i s a Bore1 p r o b a b i l i t y measure ---p(f) 5
Proof:
Take
=
f
J f n
la
dT
T
f E F ,
on n with -
for all f --
E F.
and apply 1.6.1.
0
Later on, we shall use Corollary 1.6.2 i n connection w i t h boundaries ( t h e n i n t h e c o r o l l a r y will then be c a l l e d a sup-boundary o r even maxboundary s i n c e s u p n ( f ) = max f ( x ) f o r a l l f E USC(n)). XER
A very popular example f o r such a boundary i s given i n t h e following situation: Consider t h e Laplace equation
where f i s a continuous real-valued function on t h e closure G of some open, connected and bounded subset G of I R ~ , such t h a t t h e second p a r t i a l d e r i v a t i v e s o f f e x i s t and a r e continuous i n G. Such functions a r e c a l l e d harmonic. Let a G = E\G denote the topological boundary of G and l e t H ( E ) be the s e t of a l l harmonic functions on E Then
.
H(G) is not only a cone b u t a vector space. An important information about t h e harmonic functions i s contained in t h e following elementary result (of which we include a proof f o r the reason of completeness):
1.6.3
Maximum Princiole:
sup- ( f ) = max f ( t ) G
tEa G
for all
f E H(G).
The Sandwich Theorem
Proof:
If
f
i s c o n s t a n t , t h e n t h e a s s e r t i o n i s t r i v i a l . So, i t remains
t o deal w i t h t h e case when
to = (xl
0
0
, x2,.
.., x l
f
i s n o t c o n s t a n t . Assume t h a t t h e r e i s some
) E G such t h a t
f ( t o )> max f ( t )
t€aG
Then t a k e some (xl-xl)
0 2
I
p
41
> 0
p
.
such t h a t we have
for all
t = (x~,x~,...,x~) E
E .
And choose
E
> 0
so,
that
g(t) 5 f ( t )
we have
for all
t E
E.
But
proves t h a t t h e r e must be some
where
tl E G
g
a t t a i n s i t s maximum.
Elementary d i f f e r e n t i a l c a l c u l u s shows t h a t a necessary c o n d i t i o n f o r a maximum i s t h e f o l l o w i n g :
$2 Since
f
1
t=tl
5
0
for
i s harmonic we have a p p a r e n t l y
contradiction.
i = l,...,n
.
A g = 2~
> 0
NOW, i n t h i s c o n t e x t t h e meaning o f C o r o l l a r y 1.6.2 functions
f €
More p r e c i s e l y :
in
G
, hence
0
H(G)
i s t h a t t h e harmonic
a r e c o m p l e t e l y determined b y t h e i r values on
aG.
a
Linear Functionals
42
1.6.4
Proposition:
For every --
t
there - - i s a probability measure
G
E
f(t)
=
I
aG
f d~~
for all
0” a G -such t h a t
T~
f E H(G)
.
Proof: Use Coro for a l l f E H(G In case t h a t
G i s the open unit disc in
G = { ( r coscp, r sincp) 1 0
the measure
T~
(t d
=
sr
R2
< 1, 0 scp< 2 8 ) (polar coordinates)
( r , o ) ) i s the well-known ~Poisson measure, =
T t (cp)
P(r,o -cp)dm(cp)
where dm i s the Lebesgue measure on the unit c i r c l e and Poisson kernel ~-
P ( r , o ) i s the
n
P(r,o)
1 . 7 A STRASSEN
-
=
1 - rL 1 - 2 r c o s o t rz
TYPE DISINTEGRATION THEOREM
As in the case of the Finite Decomposition Theorem we can generalize the Sum Theorem to a measure theoretic situation. The resulting generalization i s very similar t o the Strassen disintegration theorem[304] which has proved t o be very useful in a couple o f applications. Although we can generalize some of the subsequent arguments t o the case o f 1 inear functionals attaining values in an order-complete vector l a t t i c e we shall r e s t r i c t our considerations t o li- valued 1 inear functionals. We do this in order t o make the results more transparent.
The Sandwich Theorem
We c o n s i d e r a measure space t o be
measurable f u n c t i o n s on
we denote
t h e convex cone o f
t
X
f dm <
may be equal t o in
, where -a
.
ments i n
$(m)
everywhere. I n
ft = sup(f,O). Hence, f o r
k and t h e f u n c t i o n
i s supposed
E- v a l u e d
such t h a t t h e i r p o s i t i v e p a r t ( b u t n o t necces-
X
s a r i l y the negative p a r t ) i s i n t e g r a b l e w i t h respect t o 1.e.
m
where t h e measure
(X,.I,m),
1 (m)
f i n i t e . By
U-
43
-m
m.
On t h e o t h e r hand,
1
f E LE(m)
i s an element o f
the integral
$(m).
J(f-ft)dm X
J f dm e x i s t s X
O f course, two e l e -
a r e considered t o be equal i f t h e y c o i n c i d e
$(m)
m- a l m o s t
we c o n s i d e r t h e p o i n t w i s e o r d e r .
We a r e i n t e r e s t e d i n o p e r a t o r s
P :
F -,k 1 ( m ) , where F i s some convex
cone. As u s u a l l y , such an o p e r a t o r i s s a i d t o be s u b l i n e a r i f i t i s p o s i t i v e l y homogeneous ( i . e .
P(Af) = x P ( f )
for
x
t 0
and
f E F) and
subadditive. I f i t i s superadditive instead o f subadditive then i t i s c a l l e d s u p e r l i n e a r . A l i n e a r o p e r a t o r i s one which i s b o t h s u b l i n e a r and superlinear.
NOW, i n s t e a d o f i n t r o d u c i n g i n
F a s i n g l e o r d e r r e l a t i o n we c o n s i d e r a
l a r g e c o l l e c t i o n o f order structures elements o f
X.
1:
~ I E xX I
b e i n g indexed by t h e
O f course, as b e f o r e , we assume t h a t a l l t h e < x are 1 P : F -,LE(m) i s c a l l e d
c o m p a t i b l e w i t h t h e cone o p e r a t i o n s . An o p e r a t o r
monotone w i t h r e s p e c t t o t h i s l o c a l i z e d o r d e r s t r u c t u r e ( o r fl,f2 E F ,we have
f o r short) if, f o r a l l
P(fl)
X- monotone
5
P(f2)
m- a l m o s t everywhere on { x E X l f l
< x f21.
44
Linear Functionals
Abstract Disintearation Theorem:
1.7.1
F -,6 ---be linear and l e t 1inear operator with
Let -
11 :
(*)
Then there --__ (i.e.
T(f)
u(f)
I
X
P : F
1 -, k(m) -be an
--
P ( f ) dm for a l l
f E F.
i s an X- monotone linear operator T : F 5
P ( f ) for a l l
X- monotone sub-
+
1 LE(m) with T -
IP
f E F) -such that
We should remark that the special case of t h i s theorem where F i s a vector space and where no order relation i s considered i s due to M. Valadier [3141 (see also M. Neumann [2431,M. Wolff[336land H . Konig [ 1991). The proofs of these authors do n o t carry over unchanged t o our situation since by considering cones instead of vector spaces one looses in general the required measure theoretic convergence property i f a 1 inear functional i s decomposed with respect t o an integral over sublinear functionals. To make even for that we have t o combine the usual proof with a maximality argument. The advantage of the somewhat a r t i f i c i a l order structure we introduced will become clear l a t e r on. Before going through a l l the details of the proof we would l i k e t o point out the connection between t h i s result and the Finite Sum Theorem.
1.7.2 Let -
Corollary: F -be_ _a _cone - - and l e t
N
be-a sequence -of order relations on -
n , (F, < n) i s-a preordered cone. Furthermore we sequence pn o f
F -such t h a t , -for each
consider
a
on F ---such t h a t , for a l l f -
E F,
we have --
45
The Sandwich Theorem
W
Z
n=l
Then, __
max(pn(f),O) <
for every linear 1.1 : F ---
tone linear functionals --
+
pn
pn I
p(f) I
Z
n€N
0
r? with
. x pn there are
I
1.1
nEN
-$,-mono-
such t h a t
p n ( f ) for all
f E F
Proof: equal t o N , l e t m be the counting measure on N and l e t the < n define the localized order structure. Let the operator P : F + be given by P ( f ) ( n ) = p n ( f ) . Apply the Disintegration Theorem and obtain Put
X
the
1.1~
G(m)
via
un(f) = T(f)(n).
0
NOW,l e t us return to the proof of our theorem: Proof of 1 . 7 . 1 : Let o be the convex cone consisting of a l l simple x-measurable functions cp : X + F. Here, a function cp i s called simple i f c p ( X ) i s a finite s e t and i f , for every f E F, the s e t {x E Xlcp(x) = f l belongs t o 1 I n o we consider the preorder given by:
.
Then
defines a monotone sublinear functional on
o
,
Linear Functionals
46
And
I
6(v) =
v(f)
if u, i s c o n s t a n t ( w i t h v a l u e f ) on
-
otherwise
00
gives us a s u p e r l i n e a r f u n c t i o n a l on
a,
, with
Sandwich Theorem t h e r e i s a monotone l i n e a r
6 I p.
with
u
u s i n g Z o r n ' s lemma we can f u r t h e r assume t h a t linear functionals v I
,
Ip
if G : o
i.e.
s p then necessarily
V
According t o t h e
. And
6 Iu I p
by
i s maximal among t h e
v
-6
X
i s monotone l i n e a r w i t h
( t h i s i s e x a c t l y t h e argument we used
= v
i n t h e f i r s t p a r t o f t h e p r o o f o f Theorem 1.1.2). Now, f o r
where
A E 1 and f E F
, we
define
lA i s the characteristic function o f
1Af(x) = I f
A
,
i.e.
i f x E A, 0 o t h e r w i s e } . We c l a i m t h a t f o r
f,g E F and
A E t the following are true: (2)
d(A,.)
i s l i n e a r on
(3)
d(.
(4)
v ( f ) -< d(X,f)
(5)
d(A,f) I
(6)
when
(7)
i f An
,f )
i s an a d d i t i v e s e t f u n c t i o n on
A
f <x
x
P(f)dm g
f o r m-almost a l l
x E A
then
d(A,f)
i s a sequence o f p a i r w i s e d i s j o i n t s e t s i n z
u
nEN The a s s e r t i o n s ( 2 )
F
-
A,,f)
= lim inf
M+w
M
1 d(An,f)
n=l
5 d(A,g)
then
.
( 7 ) prove t h e theorem i n t h e f o l l o w i n g way:
( 3 ) and ( 7 ) show c e a r l y t h a t
-
d( ,f)
i s a signed measure on
X . A s s e r t on
47
The Sandwich Theorem
m.
( 6 ) i m p l i e s t h a t t h i s measure i s a b s o l u t e l y c o n t i n u o u s w i t h r e s p e c t t o f <x
T h i s i s so, because from m(A) = 0 we o b v i o u s l y g e t 0
i x f for
x E A
almost a l l
, and
hence
d(A,f)
= d(A,O)
0
and
= 0.
NOW, we a p p l y t h e Radon-Nikodym theorem t o f i n d a measurable f u n c t i o n
T(x)
such t h a t (8)
d(A,f) =
T(f)dm.
A
Then, because o f ( 5 ) , t h e p o s i t i v e p a r t o f
m. ( J u s t c o n s i d e r i n ( 5 ) A = I x € X I T ( f ) ( x ) 2 0 1 . ) 1 LE(m). A s s e r t i o n ( 2 ) g i v e s t h a t f + T ( f ) i s
w i t h respect t o
So
T(f)
T(f) (i.e. T(f)+) i s integrable
must belong t o
l i n e a r , and f r o m ( 4 ) and ( 5 ) we o b t a i n ( * * )
and
T ( f ) I P ( f ) . To prove
A = { x E X I T ( f ) ( x ) > P ( f ) ( x ) ) . Then ( 5 ) shows t h a t m(A) = 0. F i n a l l y , we show t h a t f + T ( f ) i s i n f a c t X- monotone. Consider f , g € F , p u t B = I x € X I f <x g 1 and assume
the l a t t e r i n e q u a l i t y consider
T(f)(x) > T(g)(x)
x € A c B with
for
g e n e r a l i t y , we may f u r t h e r assume t h a t replace
A
m(A) > 0.
1 T(f)dm
Then, w i t h o u t l o s s o f >
A
( o t h e r w i s e we
--m
by a s u i t a b l e s u b s e t ) . And we have i n c o n t r a d i c t i o n t o ( 6 ) = d(A,g)
.
( 2 ) and ( 3 ) a r e easy consequences o f t h e l i n e a r i t y o f
v
d(A,f)
=
A
T(f)dm >
1 T(g)dm
A
So we a r e l e f t w i t h :
Proof o f ( 2 )
-
(7):
f o l l o w immediately from Then
.
-
6 I v I p.
Let
lA f < lA g and b y monotony o f
So we have a l s o proved ( 6 ) .
f <x
v
g
, and ( 4 )
and ( 5 )
f o r m- a l m o s t a l l
we g e t :
x€A.
4a
Linear Functionals
The proof o f ( 7 ) i s a l i t t l e b i t more complicated and depends e s s e n t i a l l y on the maximality o f a r b i t r a r y cp E
(9)
where
@
v
. So,
P(Q) = v ( l y
Y = X
U An
c~
l e t the
:
n€N
M
cp) t l i m i n f
M
. Then
be as i n ( 7 ) and d e f i n e f o r
An
Z
n=l
+ m
v(1
An
. cp),
i s s u p e r l i n e a r (because o f the i n f i n the
p
p . The u- a d d i t i v i t y o f m i m p l i e s use the f o l l o w i n g obvious i n e q u a l i t y :
l i m i n f ) and
where
I
ZM = X \ ( Y
u
M m U An) = U An n=l n=Mt1
.
Since t h e
p 2
u. To see t h i s we
ZM are decreasing t o
0 we get: l i m sup w(l
M +-
zw
-
cp) I
I
l i m sup p(1 M +zw
l i m sup M+m
This i n s e r t e d i n (10) leads i n f a c t t o
- cp)
I
P(cp(x))(x)dm(x) s ZM
p 2 v
. Now,
o
.
we apply t h e Sandwich
Theorem t o o b t a i n a monotone l i n e a r w i t h p 1 7 I p. Then, because o f p 1 u and t h e f a c t t h a t v was already maximal, t h i s y i e l d s v = Hence p = w I n s e r t i n g t h i s i n ( 9 ) and p u t t i n g cp = 1 u An * we get n a the desired r e s u l t . D
.
.
49
The Sandwich Theorem
1.8 SOME APPLICATIONS 1.8.1 An abstract Flow Theorem In t h i s section we give an abstract F.JW Theorem which l a t e r on wil turn o u t t o be very useful in applications to network theory and to supplydemand models .
All measures in t h i s section are assumed to be k? or R- valued. We consider a measurable space (n,I) (n a s e t and Z a U- algebra in n) and some positive measure T on X = n x n (of course with respect t o the product U- algebra 1 8 Z ) . Since we do n o t want to overload t h i s section with technical d i f f i c u l t i e s we assume, for simplicity, t h a t T is f i n i t e . Furthermore we consider a signed measure !J on (n,x). We recall + t h a t u can be s p l i t u p in the following way !.I = !.I - !.I with positive t imeasures !.I ,!.I, where u i s f i n i t e (Appendix Theorem 1.5.2). We need t o introduce the notion of bimeasure (see[168] or r1941). A bimeasure on X = n x n i s a function v : Ixx -,R being a signed measure separately in each variable, i . e . for fixed A E t the functions B -, v(A,B) and B -, v(B,A) are signed measures on ( ~ , x ) . Sometimes such a bimeasure can be extended t o a n honest measure on the product u- algebra, b u t t h i s i s n o t always possible. For t i g h t measures such an extension does n o t cause any problem ( [ 168, thebrPme 41 or [ 194 , lemma 31). Before we Proceed t o the main r e s u l t of t h i s section we have t o work o u t some technical d e t a i l s . By F we denote the convex cone of measurable, positive and simple functions on n , i . e . every f E F i s of N the form f = I a 1 , where a 2 0 , An E 1 f o r a l l n . An n n= 1
To every f E F we assign a nonnegative function f on the product space X = n x n by defining L
f(wl , w 2 )
=
max(O,f(wl)
-
f(w2))
for all
w1,w2
E R
50
Linear Functional$
I t i s not d i f f i c u l t t o verify:
Observation: (i) The map
(ii)
f --.
Let f , g E -
7 i s sublinear
F
and assume that ---
whenever g(w) >
0
f ( w ) = sup f(E) EER
. Then
n
(ftg)='ft;j.
I n f a c t , only the second assertion i s n o t completely t r i v i a l . (For i t s proof one has t o consider the four different cases which can occur for wIyw2
namely (1) g ( w l ) = 0, g ( w 2 )
(3) g ( q )
*
0
9
4(9) = 0
Y
*
0, ( 2 )
g(w1)
=
g(w2) = 0
* 0 * gbp)).
(4) ! A w l )
We shall need the following technical result: Lemma: -The
following are equivalent:
(i)
u ( A ) I - ~ ( A XCA)
for all
A E 1
(ii)
J f
for a l l
f E F.
(Here
CA
n
dp I
J 7 X
d-r
denotes the complement of
A
in n)
.
Proof: ( i i ) * ( i ) : For an arbitrary A E and from ( i i ) we get: p(A) =
J f
n
dp I
x we take f
-
J f d-r X
= lA
. Then
-
f=
lAx CA
= - r ( A x CA)
( i ) * (ii): An easy computation sho1,'s t h a t every f E F can be written in the following form:
The Sandwich Theorem
51
N f = . x A l n=l An with
Xl
,... ' A N z
and A1
0
,... ,An
E Z such t h a t
NOW, u s i n g s u c c e s s i v e l y p a r t (ii) o f o u r o b s e r v a t i o n we o b t a i n :
-f =
N Z X l n = l n AnXCAn
-
A p p l i c a t i o n o f i n e q u a l i t y ( i ) then y i e l d s :
1f R
du
N =
Z
n=l
u (A,)
An
I
N X An T(A,,x n=l
CA,)
=
I ^f d t .
0
X
Flow Theorem [128]: The f o l l o w i n g are equivalent: (i)
p(A) I .(AX CA)
(ii)There i s
2
for all
A E Z
-_.
bimeasure w
on -
X = nx R
having t h e f o l l o w i n g
properties: (a)
p(A) I w(Aya)
(b)
w(A,B) I T ( A x ( B
(c)
w(A,B) t 0 whenever
P r o o f : (ii) =b ( i ) :
for all A E --
n
CA)) _ f o_r -a l l
*
(ii):
defining, f o r
From ( i i a ) and ( i i b ) we o b t a i n :
We i n t r o d u c e i n
x = f sxg
AyB E 1
AYE E 1 are disjoint.
p(A) 5 w(Ayn) 5 T ( A X (Q (i)
Z
(w1,w2)
f(wl)
E
F
a
R X
R
s g(wl)
n
CA)) = T ( A X CA).
l o c a l i z e d o r d e r s t r u c t u r e on
and
f(w2) 2 g(w2)
.
X =
R X
R
52
Linear Functionals
Now, assume f sX g holds. Then for f(w2) 5 f(wl) we get q b 2 ) 5 g(w1) a n d
If
f(w2) 2 f(wl) then f ( w , , w 2 )
t o !j(w,,u2).
0 and this must be less than or equal
=
So we have i n b o t h cases
-
f(w1,w2) I
?j(w,,w,).
Hence the map f + P ( f ) = f i s X- monotone. Now, consider the linear function : F -, R given by i(f)
=
n
f dp
.
Then, according t o the Lemma, ( i ) i s equivalent t o ;(f) I
IX P ( f ) d T
for a l l f
E
F.
From the abstract Disintegration Theorem 1 . 7 . 1 we then obtain a 1 tone linear map T : F -, LR (T) such t h a t
for all
f
X- mono-
E F.
We define v(A,B)
=
I
T ( l A ) dr
n xB
for A,B
E
z ,
and we claim t h a t this v has the required properties. As an immediate consequence of this definition v i s additive in the f i r s t variable and u- additive in the second.
Consider A,B E 1 with A x E n x B c nx CA.
n
B = 0 . Then 0 sX lA for all
So, from the
X- monotony of
T we obtain
The Sandwich Theomm
53
and ( c ) i s proved. The a s s e r t i o n ( b ) comes d i r e c t l y f r o m ( 2 ) :
=
J l A d.r x=C T ( A xA (B nCA)).
QXB
And ( a ) i s a consequence o f (1): p(A) =
1 du 5
R A
T ( l A ) d T = v(A,n).
RxR
A l l what remains t o prove i s t h e
additivity o f
a-
B E Z and
v a r i a b l e . F o r t h i s we f i x a r b i t r a r y (i.e.
n An
nEN
(3)
=
v
i n the f i r s t
An E X w i t h
An
+
0
0 and A1 2 A2 2 ...? An 2 . . . ) . A l l we have t o show i s :
l i m v(An,B) n-m
=
0.
F o r t h i s we s t a r t by s t a t i n g two h e l p f u l convergence p r o p e r t i e s . F i r s t we consider
B,
E II
such t h a t
0 5 v(An,Bn)
Ann B,
5 T ( A x~ (Bn
Hence
(4) l i m v(An,Bn)
=
= 0
n-co
0
. Then
n CA,))
u s i n g ( b ) and ( c ) we g e t : 5
T ( A ~x Q ) .
.
Furthermore, from u(An) 5 ~(A,,R) we g e t
(5)
l i m v(An,Q) = 0 . n-m
I T(A,x
CA,)
Ir ( A n x
R)
54
Linear Forictionals
Now, we use t h e a d d i t i v i t y of v ( ~ n , ~= ) ,,(A,,B =
v(.)
i n both i t s variables:
n CA,) t ~ ( A , , , B n A,,)
v(An,B n CA,) + u ( A n nCB,B n A n )
= v(An,B
n CA,) + v ( A n K B , B n An)
t
\](An
t
v ( A n n B,U)
Il B,B
n An)
- u(Ann B, C(B n A , ) ) .
The f i r s t , second and fourth term converges t o zero by v i r t u e of ( 4 ) , a n d 0 the t h i r d does t h e same because o f ( 5 ) .
1.8.2 Flows i n networks One of the basic r e s u l t s i n t h e theorey of networks i s t h e Ford-FulkersonTheorem (max - flow - min - cut Theorem) ( s e e 11101 o r 11351 ) . There a r e very many v a r i a n t s and equivalent forms of t h i s theorem which a r e of g r e a t value in several f i e l d s of a p p l i c a t i o n s . One of t h e s e theorems i s the celebrated Gale-Ryser theorem. I t deals w i t h a somewhat more sophisticated s i t u a t i o n than t h e c l a s s i c a l Ford - Fulkerson r e s u l t , h u t i t can be - a t l e a s t f o r f i n i t e networks - obtained from the l a t t e r one. I t was found independently in the context o f networks by D. Gale ( [ 1 3 6 ] a n d in connection with zero-one matrices by H. Ryser ( [ 2 7 9 1 see a l s o t h e survey [ 2801).
I t should he mentioned t h a t usually most of the theorems f o r networks a r e proved by combinatorial arguments, nevertheless most of the underlying problems make sense f o r n o n f i n i t e networks, even f o r nondiscrete networks, where combinatorial arguments c e r t a i n l y f a i l .
I n t h i s section we show t h a t in f a c t the Gale-Ryser Theorem ( f o r a r b i t r a r y networks) i s a special case of our Disintegration Theorem o r r a t h e r t h e a b s t r a c t Flow Theorem. F i r s t we explain the s i t u a t i o n considered in Gale's Flow theorem. There i s given a f i n i t e s e t $2 o f - l e t us say - o i l consumers a n d the consumption of i E $2 i s measured by p i . Negative consumption p i < 0 means production of Illi I .Furthermore, t h e r e a r e pipelines between the consumers.
The Sandwich Theorem
55
measures t h e c a p a c i t y o f t h e p i p e l i n e r u n n i n g f r o m
T~~
Note, t h a t i n general
‘ik t
k
i.
to
(e.g. t h e p i p e l i n e i s g o i n g down a h i l l ) .
T~~
So i t i s b e s t , t o imagine t h a t t h e p i p e l i n e s between
i and
k
p a r a l l e l one-way s t r e e t s . O f course, i f t h e r e i s no p i p e l i n e from then we assume
a r e two k
i
to
t o be zero.
T~~
Now, t h e problem i s , t o g i v e c o n d i t i o n s f o r a p o s i t i v e and p o s s i b l e f l o w which s a t i s f i e s t h e consumption. To be more p r e c i s e , we assume t h a t a f l o w i s r e p r e s e n t e d by numbers
vik
positive i f
i
vik
5
every
T~~
vik
t 0
for a l l
iE n
f l o w i n g from
,
for
i , k E n.
i).The f l o w i s c a l l e d k , and i t i s s a i d t o be p o s s i b l e i f ( f l o w from
k
to
The f l o w s a t i s f i e s
t h e t o t a l amount f l o w i n g t o
t h e consumption i f , f o r
i minus t h e t o t a l amount
i dominates t h e consumption (minus p r o d u c t i o n r e s p . ) a t
Note, t h a t i n t h i s (and a l l t h e f o l l o w i n g ) c o n d i t i o n s t h e numbers do
vii
n o t p l a y any r o l e . U s u a l l y , these numbers a r e d e f i n e d t o be zero.
Now, we i n t e r p r e t a l l q u a n t i t i v e s as measures on
n o r n x n i n order
t o be a b l e t o w r i t e down o u r c o n d i t i o n s i n a more e l e g a n t form. We a b b r e v i a t e f o r
A,B c R :
and kEB
kEB
i:
56
Linear Functionals
Then the condition on t h e flow t o s a t i s f y consumption i s t r i v i a l l y equivalent to: p ( A ) 5 v(A,n)
-
v(n,A)
for all
A c R
.
For A c R we define the import capacity t o be T ( A X C A ) , t h a t i s t h e capacity of a l l pipelines coming from outside A i n t o A . Obviously, a necessary condition for t h e existence of such a flow i s t h a t t h e import capacity i s s u f f i c i e n t in t h e following sense: ,,(A)
I T(A x C A )
for all
A
=R
Note, t h a t t h i s condition a l s o requires t h a t overall production dominates overall consumption, this because of
We a r e now going t o generalize t h i s problem f o r i n f i n i t e consumer s e t s . On the f i r s t view t h i s does not seem t o be a relevant problem. B u t t h i s generalization i s necessary i f one i s - f o r example - i n t e r e s t e d in t h e dynamical behaviour of such a system. Let us f o r example consider t h e above problem f o r i n f i n i t e l y many d i f f e r e n t points T on t h e time s c a l e , w i t h the provision t h a t every consumer i has t h e p o s s i b i l i t y t o s t o r e o i l from tl
t o t2 u p
consumer s e t i s c e r t a i n l y capacity from
(i,tl) to
t o the amount a it n x
T and a it
1, 2
1’ 2
. Then
t h e mathematical
represents the p i p e l i n e
( i , t 2 ) . Certainly a n i n f i n i t e network system!
For t h e i n f i n i t e system i t seems appropriate t o replace t h e q u a n t i t i e s V,T and v by s u i t a b l e measures. So, l e t (nJ) be a measurable space, where R i s c a l l e d the consumer set and where t is a a- algebra on R . We consider a signed consumption measure p on (n,x) measuring t h e consumption and t h e production, respectively. Furthermore, we consider a p o s i t i v e and f i n i t e measure T on X = n x n (with respect t o z 8 x) , and we assume t h a t T ( A X B ) measures the capacity of the pipelines going from B t o A . Therefore T is c a l l e d
57
The Sandwich Theorem
t h e c a p a c i t y measure. A bimeasure
v
X = n
on
x
n
i s called a positive
flow i f -
(1) v(A,B)
for all disjoint
2 0
A,B E 1
.
It i s said t o satisfy
t h e consumption i f (2) The f l o w
v
(3)
-
p ( A ) Iv ( A , C A )
CA,A)
V(
for all
A E
x .
i s c a l l e d possible ( w i t h respect t o the capacity
v(A,B)
IT ( A x
B)
A,B E
for all
O f course, one s h o u l d imagine v(A,B)
T)
if
x .
as t h e f l o w g o i n g from
B
to
A.
F i n a l l y , we say t h a t we have s u f f i c i e n t i m p o r t c a p a c i t y if
(4) As an
p ( A ) IT ( A
x
CA)
for all
A E E
.
immediate a p p l i c a t i o n o f o u r a b s t r a c t Flow Theorem we t h e n g e t t h e
following
g e n e r a l i z a t i o n o f t h e Gale-Ryser Theorem:
The0 rem: t h e consumption There i s a p o s i t i v e and p o s s i b l e f l o w which s a t i s f i e s i f and only if we have s u f f i c i e n t i m p o r t c a p a c i t y . -Proof: -
The n e c e s s i t y of t h e s u f f i c i e n t i m p o r t c o n d i t i o n i s q u i t e t r i v i a l , because from ( 1 ) - ( 3 ) we g e t :
p ( A ) I v(A,
CA)
-
V(
CA,A)
5 v(A,
C A ) IT ( A X C A ) .
For t h e o t h e r i m p l i c a t i o n , we observe t h a t t h e s u f f i c i e n t i m p o r t c o n d i t i o n i s n o t h i n g e l s e t h a n c o n d i t i o n ( i ) i n t h e Flow Theorem. So, l e t us t a k e t h e bimeasure g i v e n b y t h i s theorem. Then from ( c ) we know t h a t i t i s a p o s i t i v e f l o w , and ( b ) t e l l s us t h a t t h i s f l o w i s p o s s i b l e . A f u r t h e r consequence o f (b) i s t h a t
u(n,B)
I 0
for a l l
B E
x . Hence
we g e t f r o m ( a ) :
and because o f t h e a d d i t i v i t y o f v t h e l a s t t e r m i s equal t o v(A, C A ) - V( CA,A) s i n c e t h e v(A,A) cancel. 0
58
Linear Functionals
1.8.3
Supply
-
Demand Problems
I n t h i s s e c t i o n we would l i k e t o t r e a t a supply-demand model ( e v e n t u a l l y w i t h i n f i n i t e commodity s e t s ) where t h e producer as w e l l as t h e consumer has a l t e r n a t i v e s concerning t h e p r o d u c t i o n and consumption. Furthermore we deal w i t h t h e case where these a l t e r n a t i v e s can be used w i t h i n c e r t a i n bounds g i v e n by raw-material and s a t u r a t i o n c o n s t r a i n t s . B e f o r e we a r e going t o make p r e c i s e what we mean we have a l o o k a t a s i m p l e example.
A t a small u n i v e r s i t y f o u r t u t o r s a r e a v a i l a b l e f o r t u t o r i a l s i n A n a l y s i s (A), P r o b a b i l i t y (P), and Numerical A n a l y s i s (N). Each o f them has t o g i v e a1 t o g e t h e r s i x t u t o r i a l
hours i n t h e s e s u b j e c t s . Furthermore t h e r e a r e
f o u r students, and each o f them has t o t a k e s i x t u t o r i a l
hours. I t i s a
fancy u n i v e r s i t y , which means t h a t i n each hour t h e teacher has t o deal w i t h o n l y one s t u d e n t . The dean asks t h e teachers students
( S 1,...,S4)
(T1,...,T4)
and t h e
f o r t h e i r preferences. Here a r e t h e r e p l i e s o f t h e
teachers : TI wants t o teach 4 hours A n a l y s i s and f o r t h e remaining two hours he does n o t c a r e i f he teaches e i t h e r P o r N. T2 wants t o teach 2 hours i n e i t h e r
A
e q u a l l y b o r i n g and t r i v i a l ) * and he
or
P
(which he considers
i n s i s t s i n t e a c h i n g 4 hours
N.
T3 wants t o d i s t r i b u t e h i s a t t e n t i o n e q u a l l y t o t h e e x c i t i n g s u b j e c t s A, P and N Hence he o f f e r s t o teach 2 hours i n each s u b j e c t .
.
T4
i s a charming person. He l o v e s
A
and
P
, hence he o f f e r s t o teach
4 hours i n t h e s e s u b j e c t s ( b u t he does n o t care i f i t i s
A
or
P).
And o u t o f a f e e l i n g o f r e s p o n s i b i l i t y towards t h e mathematical community he i s w i l l i n g t o teach i n t h e remaining two hours whatever i s needed, even Numerical A n a l y s i s . As i t happens q u i t e o f t e n , t h e dean f o r g e t s a l l t h e good reasons which were t o l d t o him and he makes a l i s t :
*
I n t h i s r e s p e c t he r e a l l y shows bad t a s t e .
59
The Sandwich Theorem
(supply o f t u t o r i a l hours) F o r reasons which may be e q u a l l y w e l l founded t h e s t u d e n t s
(S1,
...,S4)
have t h e f o l 1owing preferences :
S i n c e t h e department i s a b i t s h o r t i n computing t i m e t h e dean decides t h a t a t most one o f t h e hours o f t h e hours A v P v N
P v N
( o f f e r e d by
TI)
and a t most one
s h o u l d be g i v e n i n Numerical A n a l y s i s .
And s i n c e t h e department w i l l need l a t e r on s t u d e n t s w i t h some b a s i c knowledge i n p r o b a b i l i t y he decrees t h a t whenever a s t u d e n t o f f e r s t o take
P
a l t e r n a t i v e l y t o something e l s e , he s h o u l d t a k e a t l e a s t h a l f of
these h G u r s i n
P
.
60
Linear Functionals
Then he turns over the two l i s t s t o t h e vice dean and t e l l s h i m " i t can be done". Now, the vice dean could proceed i n two ways. He cculd e i t h e r go t o h i s colleague working i n networks or he could read through t h i s chapter *. B u t s i n c e t h e vice dean i s very clever ( i n h i s p a r t i c u l a r way) he does n e i t h e r of t h i s . He decides t h a t a student has t o take Numerical Analysis whenever he allows t h i s a l t e r n a t i v e and whenever t h i s i s not i n c o n t r a s t t o t h e decrees of the dean. Then immediately he writes down t h e hours t o be taken by the students and t o be given by t h e teachers:
NOW, l e t us s t a r t t o formalize problems of this type. Certain q u a n t i t i e s play a basic r o l e i n our model. These q u a n t i t i e s a r e e s s e n t i a l l y of measure t h e o r e t i c nature, b u t we believe t h a t t h e i r meaning can be b e s t understood in t h e s e t t i n g o f f i n i t e commodity s e t s . Therefore we s t a r t with a f i n i t e commodity s e t X = { 1 , 2 , . . . , n I (the s e t X = IP,N,AI in our example). And we consider one producer and one consumer. The production capacity ( o r r a t h e r the aggregated production capacity) and the consumption d e s i r e a r e measured by functions a and respectively. We look f o r conditions which guarantee t h a t production can s a t i s f y consumption. I t seems natural t o require t h a t has t o exceed , b u t in a r e functions r a t h e r on Po IY c X Y P instead real l i f e a and of functions on X , s i n c e the consumer allows a l t e r n a t i v e s and t h e producer has a t his disposal c a p a c i t i e s (manpower and machines) which he uses according t o the market s i t u a t i o n . In our example the function 6 i s
<
<
+
<
*) Actually, then he would only know t h a t the dean was r i q h t . In order t o
know how t o do i t he should read through Chapter 1.1.9 and use t h e few remarks he can f i n d t h e r e t o make a reasonable program f o r t h e problem.
The Sandwich Theorem
G{A3
g i v e n by t h e sum i n o u r f i r s t l i s t , i . e .
a{A,P,N}
61
=
6, a I A , P I = 6,
= 2 e t c . The demand f u n c t i o n corresponds t o t h e sum i n t h e second
list. Things become even more c o m p l i c a t e d i f one takes i n t o account t h a t u s u a l l y t h e producer i s h i n d e r e d i n u s i n g h i s p r o d u c t i o n c a p a c i t y by some bound which i s determined by t h e amount o f raw-material needed f o r t h e p r o d u c t i o n .
A s i m i l a r bound i s g i v e n on t h e consumer
s i d e . Even i f he a l l o w s a l t e r -
n a t i v e s a c c o r d i n g t o h i s t a s t e , t h e n he may n e v e r t h e l e s s become f e d up b y g e t t i n g t o o many goods o f t h e same k i n d i n s t e a d o f a w e l l mixed v a r i e t y .
0 , given
We w i l l c a l l t h e bound
b y t h i s e f f e c t , t h e s a t u r a t i o n bound.
I n o u r example t h e raw m a t e r i a l bound i s g i v e n b y t h e d e c i s i o n o f t h e dean, which was based on t h e a v a i l a b l e computing t i m e . And t h e s a t u r a t i o n bound corresponds t o h i s decree concerning t h e n e c e s s i t y o f knowlegde i n Probabi 1 it y . The concept can be made more p r e c i s e i f we assume t h a t t h e p r o d u c e r c o n s i s t s U(Y), Y E Po
o f subunits
, where
U(Y)
i s the collection o f a l l factories
iE Y
where, a c c o r d i n g t o manpower and machines, t h e commodities
can
be produced e q u i v a l e n t l y b u t where p r o d u c t i o n cannot s w i t c h t o commodities outside
Y
. Then
by numbers
a
the production capacity function
:
Po
+ R,
a ( Y ) , measuring t h e maximal o u t p u t o f t h e s u b u n i t
i s given
U(Y)
if
no raw-material bound i s given. Then we assume t h a t f o r t h e p r o d u c t i o n o f each
iE Y
a s p e c i f i c r a w - m a t e r i a l i s needed which t o
U(Y)
a v a i l a b l e up t o a c e r t a i n amount, thus p r e v e n t i n g t h e s u b u n i t produce more t h a n
, say,
p(Y,i)
o f t h a t commodity
i
.
i s only U(Y)
to
A s i m i l a r s i t u a t i o n i s g i v e n on t h e consumersside. H i s demand i s g i v e n b y a function demand which
-
: Po
+
, where
R,
;(Y)
measures t h a t f r a c t i o n o f h i s t o t a l
i f no s a t u r a t i o n bound i s g i v e n
-
can be s a t i s f i e d b y t h e
a l l o c a t i o n o f any a r b i t r a r y combination ( o f t o t a l amount commodities o u t o f
Y
s a t i s f y t h e demand
;(Y)
every
.
I f a s a t u r a t i o n bound z ( Y , i )
;(Y))
o n l y those a l l o c a t i o n s a r e p e r m i t t e d which, f o r
i E Y , do n o t g i v e more t h a n
G ( Y ,i) o f t h e commodity
I n o u r example t h e raw-material bound i s g i v e n by ;( IP,Nl,N)=;( and
;(Y,i)
i s g i v e n by
=
OD
f o r a l l o t h e r cases when
o(IP,Nl,N)
of
i s given, t h e n t o
=
3
(and a g a i n
+m
i E Y.
i.
{A,P,Nl,N)=1
The s a t u r a t i o n bound
f o r t h e o t h e r cases when
iEY).
Our problems i s , r o u g h l y speaking, t h e e s t a b l i s h m e n t o f a p r o d u c t i o n p l a n
Linear Functionals
62
b
and a d i s t r i b u t i o n p l a n
such t h a t :
i; observes t h e l i m i t s g i v e n by t h e p r o d u c t i o n c a p a c i t y 6. and t h e r a w - m a t e r i a l bound ,
(1)
i s possible, i.e.
i
(2)
i s satisfactory, i.e.
i
s a t i s f i e s t h e demand
observes t h e l i m i t s g i v e n by t h e s a t u r a t i o n bound
b
(3)
i
and
a r e compatible
, i.e.
and
0 ,
we do n o t d i s t r i b u t e more
t h a n we produce. Again, we have t o make t h i s more p r e c i s e . To do s o , we assume t h a t t h e production plan
p
as w e l l as t h e d i s t r i b u t i o n p l a n
i
a r e maps from
Po x X t o R, . The q u a n t i t y p(Y,i) measures t h e amount o f i b e i n g produced by t h e s u b u n i t U(Y) and i ( Y , i ) measures how much o f i i s a l l o c a t e d t o t h e demand ;(Y).Then (1) - ( 3 ) l e a d t o t h e f o l l o w i n g : Definition: a l l Y E Po
( i ) The p r o d u c t i o n p l a n and i E Y , we have:
z p(Y,k)
(4)*
kEY
(6)*
(iii)
iE Y
and
;(Y)
I
The p l a n s
commodity (8)*
i s s a i d t o be p o s s i b l e i f , f o r
Ii ( Y )
(ii)The d i s t r i b u t i o n p l a n Y E Po
6
, we
i s d e f i n e d t o be s a t i s f a c t o r y i f , f o r a l l
have:
1 i(Y,k)
kEY
and
a r e s a i d t o be c o m p a t i b l e i f , f o r every
i E X , p r o d u c t i o n exceeds d i s t r i b u t i o n , i . e . 1 V(Y,i) Y w i t h iEY
I
E P(U,i) Y w i t h iEY
.
NOW, o u r problem i s : Are t h e r e --
plans which suitable production and d i s t r i b u t i o n plans, i.e. -
The Sandwich Theorem
are possible,
satisfactory
63
compatible?
B e f o r e we proceed t o discuss t h i s problem we l i k e t o s i m p l i f y t h e n o t a t i o n . F o r m a l l y we p u t
And whenever we have a map d e f i n e a measure
A
on
T
: A
-,R,
( w i t h respect t o the
T(B) f
t ?(b), B c A bEB i s the density o f T
Now, we denote by
- - - - - -
a,v,p,o,p,v Po
X
x
U-
we c a n o n i c a l l y
algebra
P(A))
by:
.
.
7
i.e.
A
on a f i n i t e s e t
on
and
a,u
Po
then f o r
and
Po
R c Po
p,~,p,v
t h e c a n o n i c a l measures g i v e n by
X , r e s p e c t i v e l y . And i f
x
B
and
c X
we denote by
i s a measure on
T
~ ( xn
0
and
)
T(.
xB)
t h e measures:
on
X
and
D
+
~ ( f ix
D),
D c X
D
+
T(D
B),
D c Po
Po
x
respectively.
Using t h i s n o t a t i o n e q u a l i t y ( 9 ) * and i n e q u a l i t i e s ( 4 ) * t o ( 8 ) " have t h e f o l l o w i n g s i m p l e form:
(9)
p
( x~
D)
= o(n
x
D)
= p(n x
when
A n D
D) =
= v(R x
0
D)
for all
= 0
A E fi
.
Now we i n t r o d u c e two b a s i c q u a n t i t i e s which immediately l e a d t o a necessary
64
Linear Functionals
condition f o r the existence of s u i t a b l e plans. We consider an a r b i t r a r y nonempty subset Y c X and we c a l c u l a t e the maximal t o t a l amount a*,,,,,(Y) of commodities i E Y which can be produced by observing a l l given bounds. That i s t h e amount produced f o r t h e submarket Y i f the producer concent r a t e s a l l his e f f o r t s on t h e productionof goods o u t of Y , i . e . whenever he has the choice producing something f o r Y instead o f something o u t s i d e Y , he does so. For our example t h i s function i s
a*
12
max 14
8
18
Let us see how this function i s constructed i n general. The production capacity allows t h e production of a ( ? ) i f Y n + 0 , and t h e raw-material bound l i m i t s this- production i n any case t o p(IY1 x Y ) . So, remembering t h a t p({YI x Y ) = 0 f o r Y n Y = 0 , we obtain t h a t the maximal production of U ( v ) f o r Y i s equal t o
v
Summation over the subunits leads t o a -~ t o t a l maximal production f o r Y equal to:
I f we define
(ml
A
m2)
t o be the g r e a t e s t lower bound ( i n the s e t of
p o s i t i v e measures) of the p o s i t i v e measures rewrite:
ml
and m2
then we can
.
Now, l e t us determine the --minimal t o t a l demand f o r goods in Y If Y c Y then, c e r t a i n l y , t h e demand given by can only be s a t i s f i e d by a l l o cation of commodities in Y . B u t due t o the s a t u r a t i o n bound t h e r e may a l s o e x i s t demands ; ( i ) f o r ? & Y which have t o be p a r t i a l l y s a t i s f i e d by a l l o c a t i o n of goods out of Y . The amount of this p a r t i s obviously
;(v)
The Sandwich Theorem
65
equal t o
CY
where
-
X ). For
case i n
"(7)
denotes t h e complement i n t h e s e t under c o n s i d e r a t i o n ( i n t h i s
Y c Y
t h i s q u a n t i t y becomes a u t o m a t i c a l l y equal t o
(consequence o f ( 9 ) ) . So we o b t a i n t h a t t h e minimal t o t a l demand f o r
goods i n Y
has t o be:
And i f we d e f i n e
t o be p o s i t i v e p a r t o f a s i g n e d measure
(m)'
m this
can be r e w r i t t e n as ";Cnin(Y)
(11)
Y
Note t h a t n e i t h e r
a*max(.)
I n general
= (v
+
-
u(.
x
CY
nor
a*,,,(Y)
Y
+
V*~~,,(Y)
i s a s u b a d d i t i v e and
v*min(
a r e measures o n
.)
X.
a superadditive set
function. I n o u r example t h e f u n c t i o n
v*
min
v
i ~s g i v~e n ~by:
*
{A1
{PI
IN1
IA,PI
IA,NI
{P,NI
IA,P,N)
10
7
4
17
14
14
24
Common sense t e l l s us t h a t a necessary c o n d i t i o n f o r t h e e x i s t e n c e o f s u i t a b l e p l a n s i s t h a t f o r e v e r y submarket a*
max
(Y)
Y
, the
maximal t o t a l p r o d u c t i o n
i s more than o r equal t o t h e minimal t o t a l demand
v * , , , ~ ~ ( Y ).
S i n c e we have f o r m a l i z e d o u r problem so f a r i t i s q u i t e obvious how t o f o r m u l a t e i t f o r a general measure t h e o r e t i c s e t u p i n t h e case o f a r b i t r a r y commodity s e t s . We deal w i t h a nonempty s e t and X
on
X
and
p o s i t i v e measures:
X
( c a l l e d commodity s e t ) , CJ- a l g e b r a s zX
Po f { Y c X
IY
i?~} r e s p e c t i v e l y , and w i t h f i n i t e
Linear Functionals
66
-+
a : =Po
(production capacity) R+
(demand measure)
(I
-
Q
Zx-+R+
(raw
: tpQ
tx-,R+
( s a t u r a t i o n bound)
p : . I
m a t e r i a l bound)
0
.
F o r t h e bounds we assume t h a t
(12)
P(R x
D)
= ( I ( Q x D) = 0
when
A
n D
=
b
for a l l
A E n
.
From these measures we d e r i v e t h e q u a n t i t i e s : a*max(Y) = ( a
A P(*
xy))(po)
v* m i n (Y) = ( v
-
XCY))+(P0)
(I(.
,
which a r e c a l l e d t h e ~ maximal t o t_ a l E od uc t_ i o n f o r t h e submarket the ~ minimal t o t a l demand f o r Y , r e s p e c t i v - ely.
Y
and
We a r e l o o k i n g f o r s u i t a b l e p r o d u c t i o n and d i s t r i b u t i o n p l a n s . A plan i s s i m p l y a p o s i t i v e measure B
and
Po
x
X
(with respect t o the
(I-
algebra
z x ) . A p r o d u c t i o n p l a n p i s s a i d t o be p o s s i b l e i f
(14)
p(.
X X )
v
A distribution plan
and
on
Ia
i s s a i d t o be s a t i s f a c t o r y i f
(15)
V
(16)
v I V('XX).
l
.
O
The two plans a r e s a i d t o be compatible i f
(17)
v(Po
x
* ) I p(Po
x
*)
.
Note t h a t p o s s i b l e and s a t i s f a c t o r y plans f u l f i l l ( 9 ) anyway (because o f
( 1 2 ) , (13) and ( 1 5 ) ) .
67
The Sandwich Theorem
Theo rem : There a r e --
p r o d u c t i o n and d i s t r i b u t i o n p l a n s
p,v,
which are possible, -t h e minimal s a t i s f a c t o r y and compatible, -if for _ e v e_ r y Y E Ix '- and _ _o-n l y i f , _ t_ o t_ a l_demand W * ~ ~ ~ ( Y ) i s l e s s t h a n o r equal t o t h e maximal t o t a __ ---~ - - _ _ _ - l ~
p r o d u c t i o n a*(,Y).
F o r t h e p r o o f we need a lemma. We r e c a l l t h a t g i v e n two measurable spaces
(r j J j )
j = 1,2;
a fu ction
t o be a bimeasure on q(A1 x
.
and
cp(.
x
r2
rlx
A2)
cp :
{A1
x
A2
if , f o r every
I A J.
E X.,j J
A1 E
x1
=
1,Zl
and
-,R
A2 E
i s said
x2 ,
both
a r e measures.
Lemma: Let -
cp
rlx
r2
-be_ a
for a l l --
rl
x
r2
p o s i t i v e bimeasure on rlx
(w i_ th _ r e s_ pect A1 E
zl,A 2
w i t h +(A1
E z2 x
z1 Q
to
. Then
A2) = q(A1
r 2 - and -
x 2 ) -such t h a t
let cp(A1
m x
be a measure on A2) I m(A1
t h e r e i s a p o s i t i v e measure x
A2)
for all
A1 E
xl,
x
A2)
G on
A2 E I2 .
Proof: One c o n s i d e r s t h e a l g e b r a o f a l l f i n i t e d i s j o i n t unions o f measurable r e c t a n g l e s [ 151p.1491.
Then one d e f i n e s f o r these f i n i t e d i s j o i n t unions
@( U ( A j x B.)) = x cp(Aj x B . ) . S i n c e cp i s s e p a r a t e l y a d d i t i v e , J J j j t h i s l e a d s t o an unambiguously d e f i n e d f i n i t e l y a d d i t i v e p o s i t i v e measure.
5, by
S i n c e t h i s i s dominated by an honest ( i . e .
a- a d d i t i v e ) measure i t must
i t s e l f be
a d d i t i v e l y extended t o t h e
a- a d d i t i v e . Hence i t can be
U-
a- a l g e b r a generated b y t h e measurable r e c t a n g l e s (compare [151 p.30 and
541).
0
ion has t o-exceed al Proof o f the necessity t h a t t o t a l maximal - p r o d u c t~ - t o t~
minimal demand art): ~ _ (easy p _ Assume t h a t t h e r e a r e p l a n s which a r e p o s s i b l e , s a t i s f a c t o r y and compatible. From ( 1 3 ) and (14) we know: P('XY) I P('XY)
Linear Functionals
68
and p(.
Y E Ex
for
I p(* xX) I a
X Y )
. This c l e a r l y p(.
implies
xY) I a A
P(- x Y ) .
Hence,
(18) Since
v
P(P0
Y) 5 a*,,(Y).
i s s a t i s f a c t o r y ( 1 5 ) and ( 1 6 ) l e a d t o :
From t h i s we o b t a i n :
Since
v
i s p o s i t i v e we can r e p l a c e t h e l e f t s i d e by i t s p o s i t i v e p a r t
without v i o l a t i n g the inequality: (v
-
u(.
x
CY))+IV ( '
Evaluation o f t h i s inequality f o r
(19)
v*min(Y)
Po
X Y ) .
gives:
5 v(Po x Y ) .
I n e q u a l i t i e s (18) and (19), t o g e t h e r w i t h t h e c o m p a t i b i l i t y o f yield:
*
v min(~)
f o r every
Y E Ex
Y ) Ip(p0
I v(p0 x
x
p
and
v
,
Y ) 5 a(*~,)
.
Proof t h a t t h e condition i s s u f f i c i e n t f o r the existence o f s u i t a b l e plans: We t a k e a copy subset o f
P*
P* by
of R*
Po
, and
for
. Then we d e f i n e
r =pOuxuP*. In
r
we c o n s i d e r a
R c
u- a l g e b r a
r
Po we denote t h e corresponding t o be t h e d i s j o i n t union:
69
The Sandwich Theorem
I n1,a2
I = {n1 U B u R; And w i t h r e s p e c t t o t h i s
v(nl u
B
U-
except
on X
x
Po
and
(20 a )
"I(A
x
(20 b )
T(R*
x
u n);
= v(n2)
B E Ixl .
7
,rk
P*
X
-
!.I
i s g i v e n by:
a(nl).
on t h e p r o d u c t
"I
rk(ri x
PO
a l g e b r a a s i g n e d measure
Furthermore a p o s i t i v e measure p r o v i s i o n t h a t on ri
E I
= Po,X7P*)
T
r
x
r
i s given by the
s h a l l vanish everywhere
and t h a t on these s e t s i t s h a l l be equal
to:
when
A E Zx
n) x
,nE I
We now c l a i m t h a t
T
= p(n x A)
A ) = u(n
x
A)
. and
p
do f u l f i l l c o n d i t i o n ( i ) o f t h e Flow Theorem
1.8.1 i f t o t a l maximal p r o d u c t i o n exceeds t o t a l minimal demand. To p r o v e t h a t c l a i m we c o n s i d e r some a r b i t r a r y
u(D) 2 v*
min
= v(n2)
- a(nl)
D E t and we a b b r e v i a t e :
.
we t h e n g e t :
Using ( 2 1 ) one sees t h a t t h i s i m p l i e s
T(D
x
CD)
2 u(D)
.
70
Linear Functionals
Now, l e t us t a k e t h e bimeasure g i v e n by ( i i ) o f t h e Flow Theorem. We denote cp
. Then
p(n
x
A) = cp(A
v(n
x
A) = cp(n*
R E
zp , A
t h i s bimeasure by
we d e f i n e bimeasures
p
and
v
on
Po
x
X
by :
for arbitrary
n)
x
.
E Ex
0
but that
p
v
and
A)
x
Note t h a t
cp
i s n o t a p o s i t i v e bimeasure,
a r e p o s i t i v e . From ( i i b ) o f t h e Flow Theorem we ob-
t a i n w i t h t h e h e l p o f (20):
for
A ) I T(A
( 2 2 a)
p(n
(22 b )
~ ( xn A ) I T ( R *
Q E
z ,A
x
E Ex
. So,
(n n C A ) )
x x
(A
n Cn*)) =
w i t h t h e lemma
n)
= T(A x T(R*
x
= p ( ~ A)
A) = a(n
x
A)
,
, we know t h a t p and v a r e
honest measures and we prove t h a t they a r e t h e r e q u i r e d p l a n s . (22) i m p l i e s t h a t they a r e f u l f i l l i n g (13) and ( 1 5 ) . For t h e p r o o f t h a t f a c t o r y i t remains t o show ( 1 6 ) . To do t h i s we t a k e w i t h (ii a ) and ( i
v
is
satis-
R E 1
b ) (always o f t h e Flow Theorem)
v(Q
( t h e l a s t e q u a l i t y f o l l o w s from (2Q)and t h e d e f i n i t i o n o f
T
)
.
Before we proceed t o prove ( 1 4 ) we observe t h a t ( i i b ) i m p l i e s cp(r
x
D)
5 0
for all
.
D E z
So ( i i a ) immediately leads t o :
A p p l i c a t i o n t o t h e s p e c i a l case
Here, we have used t h a t
cp(n
t h e same reason we g e t t h a t t h i s q u a n t i t y must a l s o be
D = n E z
Cn) I cp(C(nu x
2 0
.
gives:
0
(because o f ( i i b ) and ( 2 0 ) ) . For
X)
x
n)
5 0
. But,
because o f ( i i c )
71
The Sandwich Theorem
Hence cp(
C(n u
X ) x n) = 0
.
Using t h i s we can r e w r i t e (24)
a(n) 2
cp(
Cn
n)
x
X ) + cp(C(n u X )
= p(n x
So ( 1 4 ) i s proved and a l l what remains t o show i s t h a t
x
n) = p ( n p
and
x
v
x). are
compatible. From (23) we o b t a i n f o r
Y E zx
Now, we use ( i i c ) and (iib ) and o b t a i n f o r
Y E zx
the following
inequal it i e s : “Po
x
Y ) = Q(P* = cp(Y
x
Y ) 5 cp(
x
Po)
I p(Po x
+
Y) +
= p(Po x Y )
+
CY
Y ) 5 cp(Y X C Y )
C(Y u
cp(Y
T(Y
x
x
Po))
C(Y lJPo))
0 (because of ( 2 0 ) ) .
T h i s shows t h a t t h e p l a n s a r e compatible. Hence t h e p r o o f i s f i n a l l y 0 finished.
72
1.9
Linear Functionals
ADDITIONAL REMARKS AND COMMENTS
1.9.1
The Hahn-Banach Theorem
I n Chapter 1.1 we discussed t h e Hahn-Banach Theorem, o r r a t h e r a v a r i a n t t h e r e o f , and some o f i t s consequences. The Hahn-Banach Theorem i s c e r t a i n l y one o f t h e most fundamental r e s u l t s i n modern a n a l y s i s , i t i s one o f t h e b e s t i n v e s t i g a t e d i n d i v i d u a l theorems and t h e l i t e r a t u r e about i t covers thousands and thousends o f pages ( f o r example,already t h e r e f e r e n c e l i s t of
[2691, which i s f a r from b e i n g complete, c o n t a i n s 125 t i t l e s ) . It has been proved
and r e f o r m u l a t e d c o u n t l e s s times, and y e t t h e r e i s s t i l l demand
f o r new v e r s i o n s which a l l o w more e f f e c t i v e a p p l i c a t i o n s t h a n b e f o r e . And s u r p r i s i n g l y , new and b e t t e r v e r s i o n s a r e s t i l l found. Some o f t h e s e v e r s i o n s and some v a r i a n t s w i l l be mentioned i n t h e sequel ( o f course, we a r e aware o f t h e f a c t t h a t i t i s i m p o s s i b l e t o do j u s t i c e t o a l l t h e major contributions
-
even i f we knew a l l o f them).
F i r s t some remarks on t h e h i s t o r y o f t h e s u b j e c t (see a l s o [ 551 and E1321). B e f o r e t h e t h e o r y o f Banach spaces ( o r Banach-Wiener spaces as t h e y were o r i g i n a l l y c a l l e d ) was w e l l e s t a b l i s h e d b y Banach's c e l e b r a t e d book [15
3
mathematicians were m a i n l y i n t e r e s t e d i n s p e c i a l normed spaces. The work o f D. H i l b e r t and E. Schmidt l e d t o t h e general moment problem which was s o l v e d i n 1907 by F. Riesz ([2611,[2631) and E. F i s c h e r [lo51 and t h i s s o l u t i o n was about t h e f i r s t c h a r a c t e r i z a t i o n o f t h e dual o f a n o n t r i v i a l Banach space. I n 1912 E. H e l l e y [I591 s i m p l i f i e d t h e s o l u t i o n and t r e a t e d t h e problem i n such a general and t r a n s p a r e n t way t h a t one can almost speak o f t h e f i r s t appearance o f t h e Hahn-Banach Theorem. ( S i n c e H e l l e y was o n l y i n t e r e s t e d i n normed sequence spaces i n s t e a d of general Banach spaces h i s i m p o r t a n t c o n t r i b u t i o n s were almost f o r g o t t e n a f t e r t h e e s t a b l i s h m e n t o f t h e general theory; i t s h o u l d be n o t e d t h a t he was n o t o n l y v e r y c l o s e t o t h e Hahn-Banach Theorem b u t a l s o t o t h e Banach-Steinhaus Theorem, see [I641 and [ 611).
Phrased i n modern t e r m i n o l o g y , H e l l e y d i d i n 1912 a l r e a d y use
t h e b i n a r y i n t e r s e c t i o n p r o p e r t y o f t h e r e a l s t o extend a l i n e a r f u n c t i o n a l ( w i t h o u t i n c r e a s i n g i t s norm) from a space w i t h codimension one. L e t us r e c a l l t h a t a Banach space i s s a i d t o have t h e b i n a r y i n t e r s e c t i o n p r o p e r t y
if every c o l l e c t i o n o f b a l l s has a nonempty i n t e r s e c t i o n whenever any two of them have nonempty i n t e r s e c t i o n .
73
The Sandwich Theorem
The Hahn-Banach Theorem f o r real valued linear functionals, in i t s present day form,was firmly established in 1927 by H . Hahn [14gI and independently in 1929 by S. Banach [141. The proof was the same as the standard proof today: Extension of the dimension,of the space on which the linear functional under consideration i s defined,in each step by one, and then obtaining the full result by t r a n s f i n i t e induction. Of course, the same proof works for (locally) convex topological vector spaces, one only has to replace the norm by the gauge functional given by a suitable absolutely convex neighbourhood of the origin. Since non-convex vector spaces in general do n o t have sufficiently many continuous sublinear functionals one cannot expect t h a t they have separating d u a l spaces (even i f they are Hausdorff-spaces). Of course, many of them do have separating duals: I n fact,whenever the weak and the Mackey topologies are different then there i s a non-convex topology between them 11461 (then,trivial ly,having the same dual space).
B u t l e t us go back t o the history of the Hahn-Banach Theorem.Extensions of positive linear maps defined on a subspace of a vector l a t t i c e and attaining values in an order complete vector l a t t i c e were already studied in 1937 by L.V. Kantorovitch 11821 (see also 12221 and 12231). Then in 1950 L . Nachbin [2381 discovered t h a t the binary intersection property i s a crucical tool for generalizations of the Extension Theorem (see also Goodner 11431). His celebrated result was that one can replace the reals ( i . e . the image space of the linear functionals) by a normed space E i f and only i f E has the binary intersection property. One direction of t h a t result i s again proved by extending the dimension of the space where the linear functional i s defined step by step by one. The other direction i s a rather ingenious argument. Let us give a brief sketch (see also [1321). Take a collection of closed balls B ( x i , r i ) ( i n the normed space E ) with radii ri around xi E E , where i E I . Any two of them have nonempty intersection i f and only i f (*)
II xi
Then one defines in
-
x.II
Iri t
J
E x
R
r
j
for a l l
a seminorm by
i,j
.
Linear Functionals
74
Because o f t h e i n e q u a l i t y ( * ) we have always
NOW, t a k e t h e o p e r a t o r T : (x,O)
F
7
= {(x,O)
Ix
E El
.
-,
x
II (x,O)ll = I I x II d e f i n e d on t h e subspace
.
I f t h i s o p e r a t o r can be extended t o an o p e r a t o r
: E x R -,E w i t h o u t i n c r e a s i n g i t s norm t h e n ? ( O , - l ) must be i n t h e i n t e r s e c t i o n o f a l l t h e B(xi,ri). Hence, if t h e Hahn-Banach Theorem i s v a l i d f o r l i n e a r maps w i t h values i n
E
then
E
must have t h e b i n a r y
i n t e r s e c t i o n p r o p e r t y . O f course t h e r e a r e spaces w i t h o u t b i n a r y i n t e r s e c t i o n p r o p e r t y having a Hahn-Banach p r o p e r t y w i t h c a r d i n a l i t y r e s t r i c t i o n s . I n p r e c i s e terms: F o r a g i v e n c a r d i n a l i t y Banach space
E
B l i n e a r operator
normed space t o a l l of property o f
B
, without binary , h a v i n g a dense T :A
-,E
rl
there i s a
i n t e r s e c t i o n p r o p e r t y , such t h a t f o r e v e r y subset o f c a r d i n a l i t y 5
on a subspace
q
a continuous
A c B can always be extended
w i t h o u t i n c r e a s i n g i t s norm (see [2481). O f course, t h i s E
corresponds t o a r e s t r i c t e d i n t e r s e c t i o n p r o p e r t y .
Another c h a r a c t e r i z a t i o n o f spaces w i t h t h e Hahn-Banach p r o p e r t y (which, by Nachbin's theorem, i s e q u i v a l e n t t o t h e b i n a r y i n t e r s e c t i o n p r o p e r t y ) i s t h a t they a r e t h e i n j e c t i v e elements i n t h e c a t e g o r y o f Banach spaces ( w i t h o p e r a t o r s o f norm I 1 as morphisms) (compare [76 I).Here, a g a i n one can o b t a i n v a r i a n t s and m o d i f i e d r e s u l t s by changing t h e c a t e g o r y under c o n s i d e r a t i o n (e.g. v e c t o r l a t t i c e s w i t h l i n e a r l a t t i c e homomorphisms [220] [156],[216] ,[63];
PA
-
spaces [157],
spaces o f continuous f u n c t i o n s [3] ,[4] [271],
[272],
, [174] ,
[334];
separable Banach spaces [ 3 4 3 ] ) .
Actual l y , t h e r o l e of t h e b i n a r y i n t e r s e c t i o n p r o p e r t y becomes even more t r a n s p a r e n t i f one considers s e t - v a l u e d mappings. So, l e t
E
and
F be
K and c o n s i d e r a nonempty t r a n s l a t i o n (i.e. A E A, u E F A t u E A ) o f F.
v e c t o r spaces over t h e same f i e l d i n v a r i a n t c l a s s A o f subsets
Furthermore, l e t a s u b l i n e a r s e t - v a l u e d map
=$
Y : E -,
A
be g i v e n ( s u b l i n e a r
Y ( k x ) = k ~ ( x ) ,' Y ( x t y ) c ~ ( x t) ~ ( y ) f o r a l l x,y E E, k E K ) . has t h e h i n a r y i n t e r s e c t i o n p r o p e r t y then t h e f o l l o w i n q r e s u l t o f B. Rodriguez-Salinas and L . Bou h o l d s :
means If A
,
75
The Sandwich Theorem
Theorem 12701: that -
i ( x ) E v(x)
7to a ll of
of -
Let
?
_be_a
c E
for all
x E
-_.
E
subspace of E
and l e t 7 --
. -Then- t h-e r e_ i s ~a
:
E
+
F
such
l i n e a r extension
f
f ( x ) E ~ ( x ) -f o r a l l x E E.
such t h a t
__I_
T h i s seems t o be an a p p r o p r i a t e s t a r t i n g p o i n t f o r an i n v e s t i g a t i o n o f Hahn-Banach-property versus b i n a r y i n t e r s e c t i o n p r o p e r t y . The s t r u c t u r e o f spaces w i t h b i n a r y i n t e r s e c t i o n p r o p e r t y was comp l e t e l y c l a r i f i e d when K e l l e y [1921
showed t h a t a Banach space w i t h b i n a r y
i n t e r s e c t i o n p r o p e r t y i s i s o m e t r i c a l l y isomorphic t o
C(S)
,
S
extremally
disconnected and compact ( f o r a s i m p l e p r o o f o f t h a t f a c t see [1321, f o r t h e e x t e n s i o n o f f u n c t i o n a l s a t t a i n i n g values i n a complex l i n e a r space one s h o u l d c o n s u l t t h e work o f Hasumi [1551 and Hustad [1721). Taking i n t o account t h a t such a space
i s an o r d e r complete v e c t o r l a t t i c e we see
C(S)
t h a t i n a l l g e n e r a l i t y t h e Hahn-Banach theorem o n l y h o l d s i f t h e l i n e a r maps a t t a i n values i n an o r d e r complete v e c t o r l a t t i c e . The f i r s t Hahn-Banach theorem f o r a d d i t i v e maps on a commutative semigroup is
-
as f a r as we know
-
due t o I. H a l p e r i n [152], who s t u d i e d t h e problem
i n 1952. A f t e r t h a t Hahn-Bach theorems f o r semigroups were s t u d i e d by:
, R.
,
M. C o t l a r [80]
G. Aumann [12]
H. Dinges [87]
P. Kranz [203],[204],
t h i s book [116
and many o t h e r s . The d i s c o v e r y t h a t dominated e x t e n s i o n s a r e
Kaufmann [186],[187],
G. Seevers [288]
F. Topsoe [313], t h e f i r s t a u t h o r o f
more s u i t a b l e t h a n p r o p e r e x t e n s i o n s f o r t h e case o f f u n c t i o n a l s d e f i n e d on semigroups appears i n [ 1 8 7 l f o r t h e f i r s t t i m e . Monotone a d d i t i v e f u n c t i o n a l s on o r d e r e d semigroups a r e considered s i n c e t h e paper o f Aumann [121. R e c a l l t h a t an a d d i t i v e f u n c t i o n a l subaddi t i v e f u n c t i o n a l
p
on a group
p
G
, which i s dominated by a
, has a u t o m a t i c a l l y t h e same m o n o t o n i c i t y proper-
t i e s as p. T h i s i s no l o n g e r t r u e i n t h e case o f semigroups. So i t i s n a t u r a l t h a t t h e q u e s t i o n whether as
p
has t h e same m o n o t o n i c i t y p r o p e r t i e s
t u r n s up i n t h e c o n t e x t o f semigroups. T h i s q u e s t i o n i s s a t i s f a c t o r i -
p l y answered by t h e Sandwich Theorem we have discussed i n t h i s c h a p t e r . The p r o o f o f t h i s theorem i s taken from [ 1341. I n 1968 Heinz Kdnig became i n t e r e s t e d i n a p p l i c a t i o n s o f t h e Hahn-Banach
Theorem. I n a few papers [197]
-
[199] he developed a c o n v i n c i n g and e l e g a n t
t h e o r y o f s u b l i n e a r f u n c t i o n a l s on v e c t o r spaces. The a p p l i c a t i o n s he gave showed t h a t t h e b a s i c elements o f a t h e o r y o f s u b l i n e a r f u n c t i o n a l s can be
76
Linear Functionals
considered a s a e f f e c t i v e tool i n modern a n a l y s i s . For vector spaces, a l l t h e main theorems of our chapter 1.1, l i k e the Sum-Theorem, t h e F i n i t e Decomposition Theorem and t h e Riesz-Konig Theorem, a r e already contained in Konig's paper [199].From t h a t point on, the extension of these basic f a c t s t o the case of preordered semigroups was j u s t a matter of routine, this routine work was done in [116]by t h e f i r s t author of this book. B u t t h e s t o r y of t h e Hahn-Banach Theorem would be incomplete without mentioning the many important contributions t o the theory of sub1 i n e a r functionals which can be found i n some p a r t s of a b s t r a c t potential theory, e s p e c i a l l y i n t h e work of H . Bauer and G. Choquet. Although t h e i r r e s u l t s will play a major r o l e i n t h e second p a r t of t h i s book, we l i k e t o give a few examples: For vector spaces t h e Sum Theorem, and i t s r e l a t i o n t o the Strassen Disintegration Theorem, can already be found as a remark [ 72, p.2731 i n Choquet's 1968 Princeton l e c t u r e s . Here one a l s o finds the Sandwich Theorem f o r vector spaces as a consequence of t h e Hahn-Banach Theorem. And, generally speaking, t h e observation t h a t many r e s u l t s r e l a t e d t o the Hahn-Banach Theorem carry over t o cones instead of vector spaces o r i g i n a t e s i n potential theory. Of course, f o r cones one has t o replace e q u a l i t i e s i n a s u i t a b l e way by i n e q u a l i t i e s . In potential theory i t is well known t h a t many r e s u l t s concerning harmonic functions can be t r a n s f e r r e d (under s u i t a b l e modifications consisting mainly i n replacing e q u a l i t i e s by i n e q u a l i t i e s ) t o the convex cone of subharmonic functions. In f a c t , on a more elementary l e v e l , the same holds t r u e i f t h e continuous functions a r e replaced by t h e semicontinuous functions. This observation successfully penetrated t h e i n v e s t i g a t i o n s which were made i n the context of compact convex s e t s ( s e e f o r example the work of H. Bauer and D.A. Edwards). In section 11.5 the same idea leads us t o a new level of a b s t r a c t i o n . There we show t h a t e s s e n t i a l portions of the topological aspects of t h e theory o f continuous functions can be verbatim generalized f o r convex cones of a r b i t r a r y functions.
77
The Sandwich Theorem
1.9.2
Other E x t e n s i o n Theorems
I n t h i s s u b s e c t i o n we p r e s e n t a v a r i e t y o f e x t e n s i o n theorems r e l a t e d t o t h e Hahn-Banach Theorem. Since we have seen [ 2 4 8 ] t h a t under r e s t r i c t i o n s on t h e c a r d i n a l i t y o f t h e f a m i l i e s w i t h t h e i n t e r s e c t i o n p r o p e r t y one o b t a i n s theorems somewhat weaker t h a n t h e Hahn-Banach Theorem, i t seems n a t u r a l t o s t u d y spaces where t h e b i n a r y i n t e r s e c t i o n p r o p e r t y i s r e s t r i c t e d t o f i n i t e f a m i l i e s . T h i s s i t u a t i o n was c o m p l e t e l y i n v e s t i g a t e d and c h a r a c t e r i z e d b y J. Lindens t r a u s s 12123 : Theorem ( L i n d e n s t r a u s s ) : Let -
X
be a Banach space, -then t h e following are equivalent:
Every of f o u r mutually i) _ _ c o l l e c t i o n -non-empty i n t e r s e c t i o n --
i n t e r s e c t i n g -balls i n
.
ii)
Let Z T : Y
X
-has _
a
be any Banach space, t h e n f o r e v e r y ___ compact o p e r a t o r X
from a subspace -
Y c Z
into -
t h e r e i s a compact l i n e a r e x t e n s i o n
II Tll 5 (1 + c ) I I T I I iii)--The dual space L- space. X"
iv)
The bidual --
v)
The _ b i du a_ l has _ -
X'
7
X
: Z
and f o r e v e r y --+
X
E
> 0
with
. i s isometrically -
isomorphic to an a b s t r a c t
has the binary i n t e r s e c t i o n property.
--
t h e p r o p e r t y s t a t e d i n i).
L e t us g i v e a b r i e f s k e t c h o f t h e main ideas i n v o l v e d i n t h e p r o o f o f t h i s theorem. F i r s t o f a l l one observes by i n d u c t i o n t h a t i)i m p l i e s t h a t e v e r y f i n i t e family o f mutually intersecting b a l l s i n
X
has a nonempty i n t e r -
s e c t i o n . Then u s i n g i n an a p p r o x i m a t i v e way t h e arguments which appear when t h e Hahn-Banach Theorem i s proved v i a t h e b i n a r y i n t e r s e c t i o n p r o p e r t y one o b t a i n s ii).The a spac.e
E
comes i n t o t h e game s i n c e i n e x t e n d i n g t h e o p e r a t o r t o
Y , where t h e dimension i s i n c r e a s e d by one, one has t o deal w i t h
n o n - f i n i t e f a m i l i e s of b a l l s such t h a t e v e r y f i n i t e s u b f a m i l y has nonempty i n t e r s e c t i o n , and f o r f i n d i n g a conimon p o i n t
i n the intersection o f a l l
t h e s e b a l l s one has t o i n c r e a s e t h e i r r a d i i s l i g h t l y . Now, f r o m t h e b i n a r y
70
Linear Functionals
intersection property i n X f o r f i n i t e families one e a s i l y obtains ( v i a weak compactness) the binary i n t e r s e c t i o n property f o r X " . We already know t h a t i f X" has t h e binary i n t e r s e c t i o n property then i t must be isometrically isomorphic t o an order complete C ( K ) - space. B u t then X"' must be an a b s t r a c t L- space and using t h e canonical projection P : XI1'-, X ' ( r e s t r i c t i o n of the functionals x"' E XI" t o X ) one obtains t h a t X ' i s an a b s t r a c t L- space. Using t h e f a c t t h a t the dual of an L- space i s an M- space one obtains v ) . And a f i n a l application of t h e p r i n c i p l e o f local r e f l e x i v i t y 1207 p. 2301 leads t o i ) .
As another consequence of intersection properties in Banach spaces we can consider K Donner's [891 , [901 theorem about extensions of p o s i t i v e
.
operators in LP- spaces: Theorem: -
-
15 q 5 p < Lp(p) . Then --and consider spaces L q ( p ) -- for a p o s i t i v e continuous l i n e a r operator T : H -, L q ( p ) on-a subspace H of L p ( p ) t h e r e i s a p o s i t i v e l i n e a r extension : Lp(p) + Lq(,,) with -
Let -
II 711
=
and
II TI1 i f and only i f
for every family ( h i ) i E I in H , where V -denotes t h e supremum operation and h t t h e positive p a r t .
In f a c t t h i s r e s u l t can be proved by a ( s k i l l f u l l ) application of the theorem of Rodriguez-Salinas and L . Bou (which we mentioned e a r l i e r ) , a1 though Donner's o r i g i n a l proof proceeds d i f f e r e n t l y . He uses the HahnBanach theorem f o r hypolinear functionals due t o 6. Anger and J . Lembcke. They c a l l a sublinear functional p (defined on a convex subcone P of a l o c a l l y convex topological vector space E ) hypolinear i f i t a t t a i n s values i n R U I + -1. In t h i s s i t u a t i o n a theorem l i k e our Sandwich Theorem does n o t hold s i n c e Simons showed t h a t t h e r e i s a hypolinear functional which dominates no l i n e a r f u n c t i o n a l . Anger and Lembcke proved t h a t a hypolinear functional p : P + R U I + -1 dominates a continuous l i n e a r functional f : E -,R on P i f and only i f p i s lower semi-
The Sandwich Theorem
79
( c f . 17 1 , [ 8 1)
continuous a t t h e o r i g i n
A r a t h e r powerful v e r s i o n o f t h e c l a s s i c a l Hahn-Banach Theorem f o r v e c t o r spaces i s due t o Heinz Konig (L200Iand [133]):
Let
Theorem:
a function numbers
p : E
a,B > 0
Inf W€T
be s u b l i n e a r on t h e v e c t o r space
R
-,
: T +R
T
on- a_nonvoid _ _ - subset
with -
-
p(w-au- Bv)
T(W)
linear p : E Then t h e r e i s 2 ---
-,
+
a T(u)+
R
with
Ip
w € T.
for all
0
~ T ( v )I
v
and c o n s i d e r
E
such t h a t t h e r e a r e ----
T c E
U,V
E T
.
and ~ ( w )2 ~ ( w ) f o r a l l -
Here t h e emphasis l i e s on t h e f a c t t h a t i t s u f f i c e s t o have a r b i t r a r y a,B > 0
.
F o r t h e case a + B = 1 t h e theorem e a s i l y can be o b t a i n e d from
t h e Sandwich Theorem, b u t t h i s does n o t work f o r t h e general case. T h i s r e s u l t has been l i f t e d t o a new l e v e l o f a b s t r a c t i o n by G. Rode [ 2671. He proved a theorem - which seems t o be something l i k e t h e u l t i m a t e v e r s i o n of t h e Sandwich Theorem
-
n
mapping f i n i t e powers o f
: Xn
n(xl,.
-,X,
.. ,xn)
: Xm
p
-+
X
f o r commuting r e l a t i o n s . Consider maps
we l i k e t o w r i t e
if
whenever
r
xik
E X,
i=l,...,n
n
i
and
X
into
n
and we say t h a t
(xi)
k = I , ...,m.
X
.
Instead o f
and
p
commute
Now, c o n s i d e r a f a m i l y
o f m u t u a l l y commuting maps o f t h i s k i n d . O f course, t h e degree o f t h e
power o f
X
on which
y E
r
a c t s may b e d i f f e r e n t f o r each y
.
Theorem (Rode): Let -
cp : X
G,F : X -+
be two maps w i t h G ---6 w i t h G I cp I F -such t h a t -+
I F.
Then t h e r e ---
is
function
n
whenever
sly.. . ,an 2 0 ,n E T
and (xl,.
. . ,xn)
E Xn
-such t h a t
80
Linear Functionals
Extensions o f l i n e a r f u n c t i o n a l s which a r e maximal on g i v e n subcones have t u r n e d o u t t o be r a t h e r u s e f u l (see Andenaes [ 5 1 ) . One may even c o n s i d e r extensions w i t h s t r o n g e r p r o p e r t i e s , f o r example b e i n g extreme p o i n t s i n t h e s e t o f a l l extensions. Since these extensions a r e u s u a l l y connceted w i t h ( t r a n s f i n i t e ) a l g o r i t h m s f o r t h e c o n s t r u c t i o n o f e x t e n s i o n s we p r e s e n t one r e s u l t o f t h i s k i n d . Let
Gyp : F -,fi
F be a f i x e d cone. F o r
we w r i t e
4
--I
fi
i f the
following three conditions are s a t i s f i e d :
i)
irij
ii)
2;
i s s u p e r l i n e a r and
iii) ij(tl) We w r i t e
6
-.I p
t
4(t2) I
i f either
4
-1
i s sublinear
F(tl
tt2) f o r a l l
or
6 = i.
tlyt2E F.
And b y Lin(q,p) we denote t h e s e t o f l i n e a r f u n c t i o n a l s p : F + 6 with q I p I p Nowy p E Lin(q,p) i s s a i d t o be an exposed e l e m e n t , i f whenever
4
q 5
.
6
Ip
, then
t h e r e i s some
to E F w i t h :
Theorem [ 1221: i s superlinear and p i s s u b l i n e a r . -Then t h e r e is an exposed p E Lin(q,p). 9a d d i t i o n : if p i s monotone w i t h r e s p e c t which i s compatible w i t h t h e cone then p t-o some p r e o r d e r 4 ---- s t r u c t u r e i s a l s o monotone. -Let q -
I
p
such t h a t
q
C l e a r l y t h i s theorem general izes t h e Sandwich Theorem. B u t i t general izes 11. 3.1) as w e l l s i n c e t h e exposed [1221 t o be extreme p o i n t s o f L(q,p). I n
t h e Krein-Milman Theorem (see s e c t i o n elements o f
L(p,q)
turn out
f a c t t h e y even have a s t r o n g e r p r o p e r t y t h a n b e i n g extreme. The s e t o f
81
The Sandwich Theorem
exposed p o i n t s i s what we w i l l c a l l l a t e r on (see s e c t i o n 11. 3.1) t h e minimal f i x p o i n t boundary o f by t h e evaluationsof F.
Lin(q,p)
w i t h respect t o the functions given
L e t us e x p l a i n how these exposed elements
u
" a l g o r i t h m " f o r t h e Sandwich Theorem. L e t
4
functional
we denote b y
p
[p,q](t)
infIfi(tts)
NOW, f i x some
=
def
= [p,61,
2
with
p
5 p
.
p.
This
i t i s given by
-
to E F. Then t h e f u n c t i o n a l
q(s)
Is
Tt
(6)
0
i s a g a i n s u p e r l i n e a r and f u l f i l l s
;i 5
be s u p e r l i n e a r w i t h
p
Then t h e r e i s a unique maximal s u b l i n e a r
a r e r e l a t e d t o an
E Lin(q,p)
5 Tt
0
(4)
5 p
E FI
.
given by
.
I n f a c t , i t s v a l u e on
i s equal t o t h e maximum o f { p ( t o ) I y E L i n ( 4 , p ) I . Having d e f i n e d t h e s e to q u a n t i t i e s t h e a l g o r i t h m f o r o b t a i n i n g t h e exposed elements i n Lin(q,p) @ c F
i s e a s i l y e x p l a i n e d . Take a subset
which generates
i s equal t o a l l f i n i t e sums o f elements i n
@
c o e f f i c i e n t s ) . Then c o n s i d e r any w e l l o r d e r i n g q
where
i,(t)
=
def
supIqy(t)
if
IY
4
of
@
E @
with
Y
< cp}
(i.e.
F
and d e f i n e
i s t h e minimal element o f
cp
F
w i t h nonnegative
for all
@
t E F.
Then i t t u r n s o u t t h a t U(t) = supIqw(t)
I cp E
@}
defines an exposed element o f
Lin(q,p).
exposed elements o f
come o u t o f such a c o n s t r u c t i o n . C l e a r l y ,
if
@
Lin(q,p)
Furthermore one can p r o v e t h a t a l l
i s countable, t h e n t h i s c o n s t r u c t i o n p r o v i d e s an a l g o r i t h m f o r t h e
Hahn-Banach Theorem.
82
Linear Functionels
A t t h e end o f t h i s survey about o t h e r v e r s i o n s o f t h e Hahn-Banach Theorem we l i k e t o mention t h a t t h e r e a r e a l s o Hahn-Banach Theorems f o r s t r u c t u r e s which a r e n o t l i n e a r (see
, for
example, C i g n o l i [ 7 5 1 ) . Furthermore
t h e r e has been c o n s i d e r a b l e progress concerning o p e r a t o r - V a l ued HahnBanach Theorems (Wi t t s t o c k l 3 3 2 1 , [3331).
1.9.3
A l g o r i t h m s f o r Networks
There a r e theorems whose f o r m u l a t i o n s g i v e an immediate i d e a how t h e p r o o f s have t o proceed. The Sandwich Theorem i s an example f o r such a theorem and, f o r f i n i t e s e t s , t h e Flow Theorem i s a n o t h e r example. L e t us e x p l a i n t h a t i n d e t a i l . Take t h e statement o f t h e Sandwich Theorem, s a y i n g t h a t whenever
q 5 p
then t h e r e i s a l i n e a r map i n between. I f t h a t statement i s
t r u e i n general t h e n i t must a l s o be t r u e f o r a minimal s u b l i n e a r b t q instead o f p B u t then t h e theorem g i v e s a l i n e a r t 1-1 t q which i s a
.
s p e c i a l case o f a s u b l i n e a r f u n c t i o n a l . Since
6
= p
.
was minimal we t h e n have
T h i s argument shows t h a t f o r t h e p r o o f o f t h e s t a t e d theorem one
has t o show t h a t every minimal sub1 n e a r
2 q
i s i n f a c t l i n e a r . This
p r o o f then i s a m a t t e r o f r o u t i n e .
A s i m i l a r argument i n f a c t provides a p r o o f f o r t h e theorem on f l o w s i n networks which we gave i n s e c t i o n 1 8.2. Under t h e h y p o t h e s i s t h a t t h e existence o f a s u i t a b l e flow i s equivalent t o s u f f i c i e n t import capacity l e t us c o n s i d e r a minimal system among t h e p i p e l i n e systems such t h a t s t i l l t h e s u f f i c i e n t i m p o r t c o n d i t i o n h o l d s . Then t h e r e i s a p o s s i b l e and p o s i t i v e f l o w i n t h a t minimal system. B u t t h e n a l l t h e p i p e l i n e s have t o work on f u l l c a p a c i t y , o t h e r w i s e we would have a c o n t r a d i c t i o n t o t h e m i n i m a l i t y o f t h e p i p e l i n e system. Hence, t h e e s s e n t i a l argument i n t h e p r o o f o f t h e theorem c o n s i s t s i n showing t h a t t h e c a p a c i t i e s o f a minimal p i p e l i n e system define a p o s s i b l e p o s i t i v e f l o w . A c t u a l l y t h i s procedure has some advantages over t h e p r o o f we have given, s i n c e i n a d d i t i o n i t p r o v i d e s an a l g o r i t h m f o r f i n d i n g t h e d e s i r e d f l o w . T h i s a l g o r i t h m c e r t a i n l y c o n s i s t s of making c o n s e c u t i v e l y each p i p e l i n e as smal.1 as p o s s i b l e w i t h o u t v i o l a t i n g t h e i m p o r t c a p a c i t y c o n d i t i o n . T h i s a l g o r i t h m has t h e f u r t h e r advantage t h a t t h e flow one o b t a i n s by t h i s procedure i s an extreme p o i n t i n the s e t o f a l l possible p o s i t i v e flows.
The Sandwich Theorem
In t h e case of n o n f i n i t e as i n the f i n i t e case, s t h s case a ( t r a n s f i n i t e o f the algorithm f o r the ceding s e c t i o n .
1.9.4
83
network systems t h e s i t u a t i o n i s not as simple nce measurability conditions a r e involved. B u t i n algorithm can e a s i l y be obtained by a p p l i c a t i o n Sandwich Theorem which we described i n t h e pre-
Remarks about Networks and t h e Disintegration Theorem
Around 1960 ( s e e 11881 t o 11911) a systematic i n t e r e s t s t a r t e d i n t h e existence of product measures with prescribed marginal measures .when additional conditions a r e imposed upon t h e product measure. These additional conditions require t h a t e i t h e r t h e product measure has t o admit a d i s i n t e g r a t i o n w i t h r e s p e c t t o given t r a n s i t i o n p r o b a b i l i t i e s o r i t has t o be dominated by a given measure on the product space. In f a c t these two conditions a r e intimately connected. In t h e p u r s u i t of t h i s problem V . Strassen wrote h i s celebrated paper 13043 where he gave the following the0 rem: The Strassen Disintearation Theorem:
(X,x,m) -be a measure ~space with p o s i t i v e -~ f i n i t e measure m . ---Assume t h a t f o r every x E X a sublinear Let -
E be-a separable ---Banach space and l e t
functional
0" E ---__ i s given such t h a t
px
s u p I l p , ( s ) l / s E E, IIsIII l l < m -f o_r_a l l
i)
II pxll
ii)
functions X 3 x -, II pxII and x -,p x ( s ) f_ or _ a l l s E E , functions in 1 L (dm).
Then f o r every u ---
E E'
=
with -
~ ( sI ) J p,(s) dm(x) X
there are --
pX
for all -
s
E E
such t h a t --
E E'
i)
lJx 5 P,
ii)
x
-,
for all
u,(s)
x
E X
is,for all
s
E E
,in
1 L (dm)
are,
x
E X
Linear Functionals
84
iii)
~ ( s =)
I X
u x ( s ) dm(x) -for a l l s E E.
This theorem has a wide range o f applications ([173],[229]). The d i f f e r e n c e between t h i s theorem and appropriate s p e c i a l i z a t i o n s of t h e Disintegration Theorem ( a pre- Strassen Theorem i n t h e sense of [2431 i s t h a t here the sublinear L 1- valued operator r e a l l y dominates t h e l i n e a r one whereas i n our case we only considered domination almost everywhere. Of course, combining our r e s u l t with a monotone l i f t i n g (when such a l i f t i n g e x i s t s ) one obtains t h e preceding theorem. This approach t o the StrassenTheorem i s due t o Heinz Ktinig [1991 and has been considered subsequently by other authors ([2431,[2451 ,[3361). Actually the pre - Strassen Theorem i s completely s u f f i c i e n t f o r t h e treatment of s u i t a b l e product measures with prescribed marginals, s i n c e i n t h i s case one i s only i n t e r e s t e d i n almosteverywhere e q u a l i t y . We have l e f t out applications concerning marginal measures, s i n c e these applications a r e standard by now. In t h e case of f i n i t e measure spaces t h e r e is a very intimate connection between combinatorics and network theory on one h a n d and product measures with prescribed marginals on the o t h e r hand. We have shown t h a t Gale's fundamental existence theorem f o r flows i n networks can be obtained from a s u i t a b l e Disintegration Theorem. The o t h e r d i r e c t i o n , namely t h a t r e s u l t s about measures w i t h prescribed marginals can be obtained from network theory and combinatorics, has been observed before. For example i n [911 the Marriage Theorem i s used as an e s s e n t i a l tool and i n 11531 t h e FordFul kerson Theorem plays t h e same r o l e . That, f o r example, the Marriage Theorem and the Ford-Ful kerson Theorem a r e closely r e l a t e d i s we1 1 known [ 1751. In f a c t , the Ford-Ful kerson Max-FlowMin-Cut-Theorem can be used as the s t a r t i n g point f o r network theory and p a r t s of combinatorics. This theorem deals w i t h a f i n i t e network X where only one point s E X i s allowed t o have nonzero production and only one t E X i s allowed t o have nonzero consumption. All t h e other points a r e only s t a r t i n g and endpoints f o r pi pel i nes Then, under prescribed pi pel i ne capacity, t h e question i s t o determine t h e maximal flow from s t o t along the pipe1 ine system. The Ford-Ful kerson Theorem [1101 s t a t e s t h a t t h i s max-flow i s equal t o the min-cut of t h e system, where t h e min-cut i s the minimal import capacity of s e t s A c X with t E A and s d A.
.
85
The Sandwich Theorem
I n f a c t , even G a l e ' s theorem (which c e r t a i n l y l o o k s much more s o p h i s t i c a t e d and has t h e Ford-Fulkerson Theorem as immediate consequence) can be obt a i n e d w i t h t h e h e l p o f max-flows and min-cuts. We d i d n o t show t h a t f o r f i n i t e networks ( w h i c h were n o t i n t h e focus o f o u r i n t e r e s t anyway) one can always have i n t e g e r - v a l u e d f l o w s , p r o v i d e d t h a t t h e consumption measure and t h e c a p a c i t y measure a r e i n t e g e r - v a l u e d .
I n f a c t , t h i s r e s u l t does n o t f o l l o w w i t h o u t a f u r t h e r argument. To o b t a i n t h e i n t e g e r - v a l u e d f l o w one has t o c o n s i d e r an extreme p o i n t o f a l l possible flows. I n f a c t , the r e s u l t i n i t s e l f i s n o t surprising a t a l l i f one l o o k s a t i t f r o m t h e v i e w p o i n t of a l g o r i t h m s , s i n c e t h e a l g o r i t h m we have b r i e f l y d e s c r i b e d i n t h e p r e c e d i n g s u b s e c t i o n c e r t a i n l y l e a d s t o integer-valued flows.
I n t e g e r - v a l u e d f l o w s a r e i m p o r t a n t f o r a r e f o r m u l a t i o n o f a s p e c i a l case o f t h e Flow-Theorem i n terns of(0,l)-
m a t r i c e s ( m a t r i c e s w i t h o n l y zeros
and ones as e n t r i e s ) . T h i s v e r s i o n o f t h e theorem was found i n 1957 b y
A.J. Ryser [2791: Consider m a t r i c e s o f s i z e m S = ( s l , ... ,sn)
and
be t h e s e t o f a l l vector
S
. An
by
n. For given vectors
R = ( r l , . . . , rm)
w i t h nonnegative i n t e g e r s as components l e t
( 0 , l ) - m a t r i c e s w i t h row sum v e c t o r
element o f
A(R,S)
R
A(R,S)
and column sum
can be c o n s i d e r e d as a network, where
t h e e n t r i e s correspond t o t h e p i p e l i n e c a p a c i t i e s and where
R
and
S
p l a y t h e r o l e o f t h e p r e s c r i b e d m a r g i n a l measures. Then t h e e x i s t e n c e o f a s u i t a b l e f l o w corresponds t o
A(R,S)
0
.
I n order t o translate the
i m p o r t c a p a c i t y c o n d i t i o n t o t h e s i t u a t i o n under c o n s i d e r a t i o n we i n t r o d u c e , f o r a g i v e n row sum v e c t o r
R = (rl,.. .,rm) t h e maximal m a t r i x
MR
, that
i s t h e m a t r i x where i n each row w i t h i n d e x j t h e f i r s t r e n t r i e s a r e one j be t h e column sum v e c t o r and t h e o t h e r s a r e zero. L e t SR = (S1,...,~,,) of
MR
. We
say t h a t
of
S
and
SR
-
s1 2
-s 2
2
...2
-
S < SR
(SR
dominates
a r e rearranged such t h a t
sn
, we
have
S)
i f , p r o v i d e d t h e elements
s1 2 s 2 2...1 sn
and
86
Linear Functionals
i)
and
k
z si
i=1
n ii) z si i=1
k I 1 si i=1
for a l l
k = l,...,n-1
n
=
x Si
i=1
Theorem: ( [2791 o r [2801) : A(R,S)
i s non --
empty i f , and o n l y i f ,
S < SR
SECTION 1.2 ORDER UNITS AND LATTICE CONES
The theory of vector l a t t i c e s , and s u i t a b l e subcones of vector l a t t i c e s , permeates many f i e l d s of a n a l y s i s . Therefore t h e main emphasis of t h i s chapter l i e s on t h e study of l a t t i c e cones. These a r e ordered cones such t h a t t h e suprema of f i n i t e l y many elements e x i s t and such t h a t the d i s t r i butive law holds f o r these suprema. This notion turns out t o be t h e natural generalization of vector l a t t i c e . Natural examples f o r l a t t i c e cones a r e : The upper ( o r lower) semicontinuous functions, t h e convex f u n c t i o n s , o r the cones given by t h e sub- or the s u p e r l i n e a r f u n c t i o n a l s . Special a t t e n t i o n will be given t o the l a s t two examples.
B u t before we begin a systematic t r e a t i s e of l a t t i c e cones we s t a r t w i t h a fundamental notion, namely with order u n i t cones. These a r e cones where a l l elements can be measured from above by means of a c e r t a i n i n v e r t i b l e element. This element plays t h e same r o l e as t h e constant function lX i n t h e case o f a concrete cone c o n s i s t i n g of bounded functions on some s e t X . Order u n i t s give r i s e t o t h e introduction of s t a t e s and s t a t e spaces. S t a t e spaces will play an e s s e n t i a l r o l e throughout t h i s book, they a r e more o r l e s s the s t r u c t u r e spaces of order u n i t cones. (Those readers i n t e r e s t e d i n how our s t a t e s a r e r e l a t e d t o s t a t e s o f , say, C*- algebras a r e r e f e r r e d t o chapter 11. 6 . 4 ) .
-
Then we turn our a t t e n t i o n t o special examples of order u n i t cones, where the cones a r e a c t u a l l y vector spaces w i t h an additional l a t t i c e s t r u c t u r e . F i r s t we prove the basic r e s u l t (Kakutani - Krein - Stone - Yosida Theorem) t h a t a l l order u n i t vector l a t t i c e s a r e isomorphic t o dense subspaces o f C ( X ) , where X is t h e compact s e t o f l a t t i c e s t a t e s . Then, i f ' i n addition the order u n i t vector l a t t i c e is order complete, then the well known r e s u l t i s shown t h a t t h e s t r u c t u r e space X i s extranallydisconnected o r , i n o t h e r words, a Stone space. This, of course, c l a r i f i e s the nature of 87
88
Linear Functionals
the order complete vector l a t t i c e s which we introduced a t the beginning of t h i s book as image spaces for the functionals under consideration. A t the end of section 2.3 we deal w i t h the basic construction (due to Loomis and Sikorski) of a U- montone l a t t i c e homomorphism from the space of a l l bounded Baire functions on X ( X compact and extremally disconnected onto C ( X ) . This construction will be important when vector valued representing measures are treated (Chapter 11.4). We continue by discussing under which conditions the cone of a l l monotone linear functionals on a given cone F i s a l a t t i c e cone (with respect to the pointwise order on F ) . This leads t o study the Riesz property and the f i n i t e sum property (FSP) f o r cones. As a byproduct of these considerations we obtain a powerful version of the Cartier-Fell-Meyer The orem. In Chapter 2.6 we consider duality theory for convex cones. Generally speaking, convex cones do not admit a duality theory which i s a s nice as in the case of vector spaces. The reason f o r t h a t deplorable f a c t i s t h a t we can introduce too many different order relations f o r convex cones whereas in the case of vector spaces the structure of order relations i s unique insofar as every order relation i s given by a suitable subcone (which then automatically bears the order which we call natural order). In 2.8 free l a t t i c e cones are treated. The free l a t t i c e cones are the universal elements which come u p when arbitrary order unit cones are embedded into l a t t i c e cones. These free l a t t i c e cones give r i s e t o the introduction of simplicial cones. A cone (F, < ) i s said t o be simplicial i f for i t s positive dual there i s a linear embedding I, : FT + (LF); (positive dual of the free l a t t i c e cone generated by F) such t h a t composition with the restriction map t o F i s the identity. A standard example for a simplicia1 cone i s a cone having a Choquet simplex as base. Another important notion coming o u t o f the consideration of free l a t t i c e cones i s the notion of character. These are s t a t e s on a given cone characterized by a unique extension property t o the assigned free l a t t i c e cone. An important observation i s t h a t they coincide with the extreme point s e t of the s t a t e space. Therefore i t i s n o t a t a l l surprising t h a t in concrete situations they coincide in one way or another with characters
89
Order Units and Lattice Cones
d e f i n e d i n t h e usual way.
F i n a l l y , i n 1.2.11 we r e v i e w t h e t o p i c s discussed i n t h e p r e c e d i n g s e c t i o n s and we t r y t o e x p l a i n a t some examples t h e i n t e r r e l a t i o n o f o u r n o t i o n s and r e s u l t s w i t h t h e c l a s s i c a l t h e o r y . F o r example we prove K a k u t a n i ' s c o n c r e t e r e p r e s e n t a t i o n o f AM- spaces and we p r e s e n t t h e K o r o v k i n theorem for
C(K).
2.1
ORDER UNIT CONES
I n a cone
F we do n o t always have n e g a t i v e elements. But, o f course, i t
f f F
may happen t h a t a s p e c i a l with
f
+ g
= 0. Since
t h a t we denote i t by
g -f
i s invertible, i.e. there i s a
r) €
F
i s t h e n u n i q u e l y determined i t i s q u i t e n a t u r a l
, and
one e a s i l y sees t h a t t h e usual r u l e s o f
c a l c u l a t i o n f o r n e g a t i v e elements h o l d . I n p a r t i c u l a r we t h e n have t h a t t h e v e c t o r space
I R f = t a f l a € IRI
i s a subset o f
F.
I n the following
an i m p o r t a n t r o l e i s p l a y e d by t h e i n v e r t i b l e elements which a r e s t r i c t l y p o s i t i v e . Here, an element s t r i c t l y positive i f
0< f
f
o f a p r e o r d e r e d cone holds, and i f
Now, o u r b a s i c d e f i n i t i o n reads as f o l l o w s :
f < 0
(F,<
)
i s s a i d t o be
does n o t hold.
Linear Functionals
90
2.1.1
Definition:
(F, < ) be a preordered cone. An i n v e r t i b l e , s t r i c t l y p o s i t v e I E F i s c a l l e d -o r d e r u n i t i f f o r every g E F t h e r e i s some A t 0 such t h a t g < A I. ( F , i , I) i s t h e n c a l l e d --o r d e r u n i t cone ( i i ) The s u b l i n e a r f u n c t i o n a l given, f o r g E F, b y (i)
Let
element
SI(g)
= infIa E R
on t h e o r d e r u n i t cone
(F, < I )
i s c a l l e d t h e -order u n i t functional.
And t h e s e t
R =
tp
: F
+k I
p
I g < a I1
l i n e a r , monotone,
1.1 5
SIl
i s c a l l e d t h e -s t a t e space o f o u r o r d e r u n i t cone, i t s elements a r e c a l l e d
states.
Since t h e o r d e r u n i t f u n c t i o n a l i s l i n e a r on t h e subspace I R I i t must be equal ,on t h i s subspace,to e v e r y l i n e a r f u n c t i o n a l i t dominates (see c h a p t e r 1.2). Hence, f o r every s t a t e v E n and e v e r y a E R we have p ( a I ) = a.
F can always be represented b y a f u n c t i o n cone on a s u i t a b l e s e t . The answer i s yes i n t h e sense t h a t t h e r e i s a n a t u r a l o r d e r u n i t cone o f f u n c t i o n s on t h e s t a t e space n o f F such t h a t t h e s t a t e s i n R i d e n t i f y t h e elements of F w i t h c o n c r e t e f u n c t i o n s on 62 T h i s i s e a s i l y e x p l a i n e d : For f E F we d e f i n e 7 : n -,I6 t o be t h e e v a l u a t i o n ? ( p ) = v ( f ) f o r a l l u E n. The f u n c t i o n 7 i s s a i d t o be t h e Gelfandtransform o f f . I n p a r t i c u l a r we have 7 = 1 , and e v e r y f, f E F i s upperbounded on R . Note, t h a t t h e G e l f a n d t r a n s f o r m i s l i n e a r , i.e.
One may ask i f an o r d e r u n i t cone
.
A t A2f2) =
(Alfl
Because the set
h p1
R
t
f(Aplt(l-A)p2)
n
A2T2
( 1 - x ) ~E ~n whenever
must be convex and t h e
f u n c t i o n s on ul,p2
t
Alil
T,
. (f
: n
= ~
f p , () + ( l - A ) f ( p 2 )
+nT
f
i s affine i f f whenever
0 5 A I 1 and
E n). Now we use t h e G e l f a n d t r a n s f o r m t o endow n w i t h a t o p o l o g y , ^F = { ? I f E F} c o n s i s t s o f
namely t h e c o a r s e s t t o p o l o g y such t h a t
91
Order Units and Lattice Cones
k- valued continuous f u n c t i o n s (here, t h e t o p o l o g y o f lk i s , o f course, It--,a)la
understood t o be t h e t o p o l o g y which has
F
t h e open s e t s ) . Since by d e f i n i t i o n
E
R) as a subbase f o r n this
separates t h e p o i n t s o f
t o p o l o g y must be H a u s d o r f f . And i t i s easy t o deduct from T y c h o n o f f ' s theorem ( o r by d i r e c t l y showing t h a t e v e r y u l t r a f i l t e r on .R
converges)
n i s compact under t h i s t o p o l o g y .
that
^F
Note, t h a t i f we endow then
w i t h the pointwise order r e l a t i o n I
(F, I, 1, ) i s a g a i n an o r d e r u n i t cone and
sup,
on
R
i s the associated
order u n i t functional. 2.1.2
Lemma:
The G e l f a n d t r a n s f o r m ---i s an o r d e r u n i t homomorphism f r o m (F, (F, I, I , ) , i . e . (i)
it i s linear
(ii)
^f
(iii)
I= 1 ,
(iv)
SI(f)
whenever
5
f
A
= max,f
= sup,f
-
for -
4
onto ,I ) -
f,g E F
-for all
f E F.
Proof: We a l r e a d y know ( i ) and ( i i i ) . A s s e r t i o n ( i i ) i s an immediate consequence o f t h e f a c t t h a t s t a t e s are assumed t o be monotone, and ( i v ) i s a d i r e c t consequence o f t h e Norm Theorem (1.3.3. ) Let
(F, <
o
, IF) and
(G, < , I G ) be two o r d e r u n i t cones and c o n s i d e r
G.
i s c a l l e d an --o r d e r u n i t cone homomorphism i f i t
+
Q
t h e cone o p e r a t i o n s and o r d e r r e l a t i o n s , t h a t i s , i f f2) =
x1
Q (fl)
+
h2 Q ( f 2 )
for all
and whenever Q
and
fl < f 2
,
fl,f2 E F
i s c a l l e d an --o r d e r u n i t cone isomorphism 0-l
if
fl,f2 E F, X1,x2
E IR+ ;
. Q
i s b i j e c t i v e and
Q
a r e o r d e r u n i t cone homomorphisms.
So, i n case t h a t t h e G e l f a n d t r a n s f o r m i s i n j e c t i v e t h e o r d e r u n i t cones
92
Linear Functionals
(F,<,
I)
and
(r,
5
, In) are
isomorphic. I n case t h a t
^F
space, we can check vhether F and
F
i s a vector
a r e isomorphic by l o o k i n g a t t h e
f o l 1owing semi norm
A t r i v i a l consequence o f 2.1.2 ( i v ) i s t h a t ISIl(f)
2.1.3
= supnlfl
f E F.
for all
Lemma:
L e t F --be a v e c t o r space. I f lSIl -
i s a norm t h e n
(F,<,
I) and
(F, I, In) a r e isomorphic, -and i n p a r t i c u l a r t h e p r e o r d e r < --must be a n t i symme t r ic
.
Proof:
lSIl
Let
SI(f-g)
b e a n o r m and assume = SI(g-f)
= 0. Hence
T
=
G.
Then f r o m 2.1.2
ISIl(f-g)
= 0
( i v ) we conclude
and we must have
f = 9.
The antisymmetry o f t h e p r e o r d e r < f o l l o w s immediately from t h e f a c t t h a t 5
i s antisymmetric on
For v e c t o r spaces
F.
F one
can g i v e another u s e f u l e q u i v a l e n t d e f i n i t i o n
f o r t h e s t a t e space. 2.1.4
Proposition:
L e t F be a v e c t o r space. Then t h e s t a t e space o f (F,< , I ) i s equal t o ------_.---
111 : F - r R
I !.I
linear,
!J
s lSIl, ~
( 1 )= 11
.
Proof: We know a l r e a d y t h a t f o r s t a t e s we have
p ( 1 ) = 1 and
So, what remains t o prove i s t h a t a l i n e a r f u n c t i o n a l p e r t i e s s t a t e d above i s i n f a c t monotone and f u l f i l l s
!J
s
SI I ISI!
.
u h a v i n g t h e pro!.I
s
SI
. Indeed,
Order Units and Lattice Cones
let
g< f
Then
0<
x
p(f)
Now, s i n c e and
a E W
xI
I -(f-g)
x
Thus
x
and c o n s i d e r
and we g e t :
i
=
S I ( h I ) t SI(XI
2
u(x I + g - f )
2 p(g)
and
xI .
(f-g) <
such t h a t
t 0
93
p
g - f ) = ISIl(XI + g - f )
+ p(g) - u(f).
= A
must be monotone.
i s monotone we have w i t h f < a 1 . Hence p
u(a I
-f
) 2 0
for
arbitrary
U ( f ) I i n f I a E IR I f < a 1 1 = S I ( f ) .
2.2
THE
f E
F
0
KAKUTANI-KREIN-STONE-YOSIDA THEOREM
We assume i n t h i s s e c t i o n t h a t
(F,<)
i s a v e c t o r l a t t i c e . L e t us r e c a l l
F whose p r e o r d e r < i s a n t i symmetric and w i t h every f,g € F t h e v e c t o r space F c o n t a i n s t h e supremum and infimum o f f and 9 . L a t e r on, i n s e c t i o n 2.4., we s h a l l t h a t a v e c t o r l a t t i c e i s a v e c t o r space
g e n e r a l i z e t h e n o t i o n o f v e c t o r l a t t i c e s t o l a t t i c e cones. L e t us mention again some b a s i c i d e n t i t i e s whose p r o o f s a r e s t r a i g h t f o r w a r d and a r e l e f t t o t h e reader:
(11
suolf,gl
=
-
(2)
sup(xf, xg)
=
x sup(f,g),
(3)
sup(f+h ,g+h) = sup(f,g)
-
(4)
f = f+
where
f+ = sup(f,O)
2.2.1.
Lemma:
f-
for all
,
Assume t h a t ( F , < , I ) ~-
f E F.
infl-f,-gl
f-
=
+ h,
.
f, g E F
X t 0, f,g E F f,g,h
E
F
f E F
(-f)
t
i s a vector l a t t i c e w i t h order u n i t ---____---
u with u(f-)
= 0
and -
I -and l e t
94
Linear Functionals
If SI(-f) -
= 1 ----then t h e r e i s a s t a t e
with
v
and
v(f+) = 0
v ( f - ) = v ( f ) = +1. Proof: By Lemma 2.1.2
xI2
then
1=
We o b t a i n
( i v ) there i s a state
f . Hence p(f)
xI= + s u(f )
S i m i l a r l y , t h e assumption v
with
with
P
5 SI(f
SI(-f)
v ( f + ) = 0, v ( f - ) = t 1
+) =
5 1 and t h u s
.
for a l l
f, g E F. Note t h a t sup(f,g)
i s c a l l e d l a t t i c e homomorphism i f = (f-g)'
Hence i n o r d e r t o prove t h a t a g i v e n s t a t e = sup(p(h),O)
n be t h e s t a t e space o f
F
we have d e f i n e d a t o p o l o g y on
R
Let
.
1 > 1
If i.e.
+ p(f )
=
P
p(sup(f,g))
= 1
SI(ft)
.
1, u ( f - ) = 0.
= sup(P(f),u(g))
+ g f o r a l l f, g E F. i s a l a t t i c e homomorphism
for all
h E F.
. Recall
t h a t i n t h e preceding s e c t i o n under which t h e s t a t e space i s compact.
The s e t o f a l l l a t t i c e homomorphisms on
2.2.2
+
0
p
U(ht)
= f
1 ensures t h e e x i s t e n c e o f a s t a t e
A state
i t s u f f i c e s t o show
P(f) = 1
sup(x I ,O) t sup(f,O)
F
i s a subset o f
n
.
Lemma:
{U : F -, k I 1.1
Proof: -
l a t t i c e homomorphism}
-i s
a compact _ subset~ o f
I
~
.
F i x f, g E F Then c l e a r l y 111 E R I P (sup(f,g)) = s u p ( u ( f ) , I - ( g ) ) l i s closed, hence compact. So t h e a s s e r t i o n f o l l o w s from 111 :
F
-, fi
I
l a t t i c e homomorphism} =
)J
Now, l e t S denote a compact H a u s d o r f f space. Then we denote C ( S ) = i f : S -+ IR f c o n t i n u o u s } . I f C ( S ) i s equipped w i t h t h e p o i n t w i s e order
I then
(C(S),
I
w e l l known sup-norm on We show t h a t (F,*)
S
, Is)
i s an o r d e r u n i t cone and
lSIl
(which we denote i n t h e f o l l o w i n g by
i s the
I I . II ) .
( C ( S ) , 5 ) i n c l u d e s a l r e a d y a l l examples o f v e c t o r l a t t i c e s
with order u n i t
w i t h respect t o
lSIl
I such t h a t
. Indeed,
lSIl
we have:
i s a norm and
F
i s complete
-
95
Order Units and Lattice Cones
2.2.3
[2 1 ) :
Theorem f'Kakutani-Krein-Stone-Yosida
Let (F,< , I ) -be a _vector- l a t t~i c e w i t h an order u n i t . Then t h e r e i s a compact Hausdorff space S ---and an order u n i t homomorphism @ from (F, i ,I ) i n t o ( c ( S ) , I , Is) -such t h a t @ ( F ) i s sup-norm dense in
_ .
we have C(S). Moreover, --
I] @ ( f ) l l= I S , l ( f ) 5 --a norm,then 0
-for all f
In p a r t i c u l a r , i f ISI\ from F onto a dense subspace o f C(S).
E
F.
i s an order u n i t isomorphism
Proof: Let n be t h e s t a t e space of ( F , < , I ) . F i x some f E F with 1 S I l ( f ) = 1 and assume without l o s s of g e n e r a l i t y t h a t S I ( f ) = 1. We show t h a t t h e r e i s a l a t t i c e homomorphism K(f-) = 0 :
g E F Then
Consider a s t a t e u w i t h
the compact s e t
u E no
cp =
= Cu E
g We claim t h a t
.
To prove t h i s we take
where
62
+ inf{g.1 I
A c
i E A}.
n
with
li
U(f)
1 v(ft)
=
K(f+) = 1 and
u ( f + ) = 1 and define f o r
+
1, u(g )
c
u(g-) = 01.
n n...n n * 0 f o r a l l g1 ,... ,gn E F . 91 n { l ,...,n } t o be a maximal subset with p(cp) > 0 , We can assume A + 0 s i n c e otherwise
n n...n n . For 0 < h we define n 91 t l ( h ) = sup{p(k) 0 < k < h and t h e r e i s x > 0 with k < x c p ) Then v i s l i n e a r on the cone of a l l p o s i t i v e elements of F and can t h u s be extended t o a l i n e a r function on F which will be c a l l e d v again. The proof of t h e l i n e a r i t y of v follows from an elementary computation: Indeed, v i s s u p e r l i n e a r by d e f i n i t i o n . So i t remains t o show t h e suba d d i t i v i t y of u Therefore, l e t h l , h 2 z 0 and assume O < k< h l + h 2 . p E
.
.
Then d e f i n e k l and
k = kl
+
k2
=
inf(k,hl)
.
and
k2 = k
-
kl
. We have
From t h i s observation we derive
v(hl
0
+ h 2 ) I v(hl) +v(h2),
which i s t h e s u b a d d i t i v i t y of u . We have u(w) = v(cp) > 0 and, f o r a l l O < h , 0 Iv(h) Iu(h) by d e f i n i t i o n of v and monotony o f u
From f + < ( l + c ) I , f o r every
E
> 0 , we get
Hence u ( f + ) = ~ ( 1 2) ( S I ( c p ) ) - l v ( w ) > 0 F i n a l l y , we claim t h a t
p =
(u(I))-'u
0
I v(1-f
+)
+
I u(1-f ) = 0
in view of t h e monotony of i s in
n , i = 1,..., n . gi
. .
v
.
96
Linear Functionals
We g e t
p ( f t ) = 1 from
quence o f
u(1) = v(f+)
v ( g 71) = 0, i = 1, ..., n.
and p ( g i )
-
p(g;)
i s a conse-
= 0
The l a t t e r f a c t f o l l o w s f r o m t h e ob-
h = g- , t h e u ( k ) must be equal t o zero f o r those j considered i n t h e d e f i n i t i o n o f v (because k = 0 i f j E A and
servation that, i f k
t
because p(inf{cp,gjl)
= 0
otherwise).
n i s compact. We have K(g+) K ( q ) =
since
~ ( g ' ) = s ~ p ( ~ ( g ) , O ) .T h i s shows t h a t Furthermore, we have
f o r a11
E
n
SEF
R
g
g E F which means
o
. Let
s
c
n be t h e s e t
i s a compact H a u s d o r f f space.
: F -,C(S) by @ ( f ) ( w ) = v ( f ) f o r a l l v E S and a l l f € F . i s c l e a r l y an o r d e r u n i t homomorphism. The p r e c e d i n g argument shows
Define
@
f E F with
that for K(f-) =
o
IS,l(f)
=
or
i s dense i n
IS,l(f)
K ( f - ) = 1 and
11 @ ( f ) I I
for all
u n i t isomorphism from
2.3
K(f-) = S
o
K
i s a l a t t i c e homomorphism.
K
K ( f t ) = 1 and
o f a l l l a t t i c e homomorphisms, i . e .
0
Hence t h e r e i s some
C(S)
= 1 there i s
K(ft) =
f E F.
F onto
o ,
K
i.e.
E S
IK(f)l
T h i s proves t h a t
@(F) i f
with
o
=
K ( f t ) = 1 and
1
. Hence
i s even an o r d e r
ISI/ i s a norm. F i n a l l y ,
o(F)
which i s a consequence o f t h e Stone Weierstrass theorem.
ORDER COMPLETE VECTOR LATTICES WITH ORDER U N I T
Recall t h a t a vector l a t t i c e
(F, <)
i s c a l l e d o r d e r complete i f f o r any
A c F which i s o r d e r bounded from above ( i . e . t h e r e i s f E F w i t h a < f f o r a l l a E A ) t h e supremum o f A , sup(A), e x i s t s . Then, c e r t a i n l y , f o r e v e r y subset B c F which i s o r d e r bounded from below t h e infimum o f B, i n f ( B ) , e x i s t s s i n c e i n f ( B ) = - sup(-B). L e t S be a compact H a u s d o r f f space. Then C ( S ) equipped w i t h t h e p o i n t subset
97
Order Units and Lattice Cones
wise order if
I i s a ( n o t n e c e s s a r i l y o r d e r complete) v e c t o r l a t t i c e . Here,
f,g E C(S),
t h e supremum o f
supremum, i . e .
A c C(S)
.
in
(C(S),s)
i s j u s t the pointwise
for all
s E S. However, i f
i s an i n f i n i t e bounded subset whose supremum sup(A)
(C(S),<),
in A
f,g
= max(f(s),g(s))
sup(f,g)(s)
then
sup(A)
For instance, l e t
and c o n s i d e r
S = [0,11
A = { g E C(S) 1 0 Ig 5 1, g ( 0 ) = 0). Here, sup(A) = lS hand t h e p o i n t w i s e supremum f i s d e f i n e d b y
i
f(s) =
1
s 9 0
0
s = o
exists i n
need n o t be t h e p o i n t w i s e supremum o f t h e f u n c t i o n s b u t on t h e o t h e r
I n o r d e r t o be a b l e t o d i s t i n g u i s h between these suprema we denote t h a t
A
p o i n t w i s e supremum of
by
Sup(a)
and, s i m i l a r l y , t h e p o i n t w i s e infimum
by I n f ( A ) .
A compact Hausdorff space
U
i s open whenever
c S
i s c a l l e d e x t r e m a l l y disconnected i f
S
i s open
( 0
denotes t h e c l o s u r e o f
0
U i n S ).
Simple examples o f extremally disconnected spaces a r e a l l f i n i t e s e t s endowed w i t h t h e d i s c r e t e t o p o l o g y . The n e x t p r o p o s i t i o n p r o v i d e s us w i t h many o t h e r i m p o r t a n t examples :
2.3.1
p o s i t io n -.(Stotie .-P r o-
[ 302] :
is order complete ifand only if --
C(S)
S
i s e x t r e m a l l y disconnected.
Proof: A t first, l e t
C(S)
that
We show,
6* S . , an
x B
6
16 o f
function
h
Certainly, 0 Ik I1
u c U
for a l l
fi .
x
= 0 on
. We
Therefore,
Now, assume t h a t
i
, gx(x)
= 0
and
. C(S)
i n view o f o u r assumption.
S \ i . F o r any u E i t h e r e i s k E C(S) w i t h S\U and k ( u ) = 1 . Hence k I h s i n c e k Ig X
conclude t h a t
h
must be open. Thus, S
0 Igx I1
such t h a t
which e x i s t s i n
h = 0 on
,k
i s open b y p r o v i n g t h a t t h e c h a r a c t e r i s t i c
gx E C(S)
inf g xaii
=
U c S, which i s open, such
i s continuous. By Urysohn'slemma t h e r e i s , f o r e v e r y
element
gx(u) = 1 f o r a l l Put
be o r d e r complete. Consider
i s the characteristic function o f S
i s extremallydisconnected.
i s extremallydisconnected. L e t
A c C(S) be bounded
98
Linear Functionals
f
from below and l e t
be t h e p o i n t w i s e infimum o f
A
which i s upper
semicontinuous, n o t necessarily continuous. We have , f ( S ) c [ - N, N ] some
. Consider
N > 0
define
U. J ,m
x
-1 = f (]-m,x
j ,m
. Furthermore,
m
=
j ,m
- N
,j
2N j
t
= 0,1,
U
[ ) . Then we o b t a i n
o,m
...,m y c
U
m E
for
N, and
c... c U
l,m
m ,m
U a r e open. L e t fjYm be t h e j ,m c h a r a c t e r i s t i c f u n c t i o n s o f t h e open and c l o s e d s e t s Uj,m'Uj-l,m
for all
j
=
-
. (We p u t
O,l,...,m
d i s j o i n t . Define
f,
=
all
U-l,m
=
k3 ) . These s e t s are,of course,
m
.
E x
j , m fj,m a r e continuous. We c l a i m t h a t (f,) t h i s i t s u f f i c e s t o prove t h a t , f o r
Hence we c o n s i d e r
j =O
x E S
fm i s continuous s i n c e a l l
By d e f i n i t i o n t h e s e t
whereas
Xj+l,m
and we assume x E
0 5
for a l l
If
x E
-
f(X)
for a l l
-
t h e n (**) i m p l i e s
.
f o r snme
1 I 2N;Fiy 0 I
fn(X)
[ X ~ , ~ , X ~ + ~ , ~ ~ .
.
fm Hence
-
1 f(X) 5 2 N 5 S
,
, hence
hEC(S) i s such t h a t
US
It i s w e l l known, t h a t
BX
2 a
for a l l
w i t h more examples o f e x t r e m a l l y d i s c o n n e c t e d B(X)
B(X)
i s t h e Stone
be t h e Banach space o f a l l
* .
bounded, r e a l v a l u e d f u n c t i o n s on a s e t
, where
S.
U
compact H a u s d o r f f spaces. Indeed, l e t
C(B X )
h2 a
g
on
h I g on a dense subset o f S and t h e r e f o r e i s t h e g r e a t e s t l o w e r bound o f A , and hence
P r o p o s i t i o n 2.3.1 p r o v i d e s
sup-norm.
'u j , k ) )
('j,k
x E Uktl ,n\Uk,n
So, ( * ) i s proved on a dense subset o f
on S T h i s shows, g C(S) i s o r d e r complete.
to
j=l
Now, t h e value o f f m ( x ) i s equal t o
fn i n s t e a d o f
a€A, s i n c e f = I n f ( A ) . I f
j ,m
n
denotes t h e l i m i t o f t h e fm then, by c o n t i n u i t y and ( * * )
g
a E A
3.
f,(X)
U k=m,n
= S'
has t o be some v a l u e i n t h e i n t e r v a l
The same argument holds f o r
(**)
s
and
s i s dense i n s .
f(x)
f
i s a norm Cauchy sequence. To show n 2 m and a l l x E S
i n o r d e r t o be sure t h a t x E Ujtl,m~~j,m j and k
.
mutually
-
X 0 I n B(X) we c o n s i d e r t h e i s i s o m e t r i c and o r d e r isomorphic Czech c o m p a c t i f i c a t i o n o f
X
99
Order Units and Lattice Cones
endowed with the discrete topology. On the other hand , B ( X ) i s clearly order complete. So, 13 X must be extremally disconnected by Proposition 2.3.1. I n particular, we mention the case X = N . Next, we prove another useful property of extremally disconnected sets which i s implicitly contained already in the proof of 2.3.1. Recall t h a t a subset V of a topological Hausdorff space S i s called meagre i f there are subsets W n c S, n E N , with V = U Wn and interior(p ) = 0 for a l l n . Meagre n
n a
sets are stable under countable unions, t h a t i s , the union of countably many meagre sets i s meagre. 2.3.2
Proposition ([338]) :
Let S be an extremally disconnected compact Hausdorff space and assume
that
i s bounded from below. Then
A c C(S)
{s E S
I (Inf
A)(s) > ( i n f ( A ) ) ( s ) } i s meagre.
Proof: Let
wn
Then a l l
=
n {s E S I a(s)
1
2F +
aEA Wn are closed and
(inf(A))(s)l,n E N
Is E S I ( 1 n f A)(s) > ( i n f ( A ) ) ( s ) }= U Wn with
-
UcW,
interior(in) * b
. Since
S
.
nm
. Assume there
Then there exists an open s e t
i s extremallydisconnected,
the characteristic function 10 of inf(A)
1 1- t inf(A) n U
5 -
.
I
U
i s some n E N
@ * U c S with
i s open and closed. Thus,
i s continuous. We obtain a for a l l
a E A ,
a contradiction. Let K be any compact Hausdorff space and denote by Baire ( K ) the vectorspace of a l l realvalued bounded Baire measurable functions on K (see Appendix A 1 ) . Recall t h a t Baire ( K ) i s the smallest vector space F of realvalued bounded functions on K which contains C ( K ) such t h a t InfIf, I n E N ) E F whenever f n E F and f n 2 g for a l l n E N and some g E F.
100
Linear functionals
Recall t h e d e f i n i t i o n o f a 2.3.3
-
Theorem (Loomis
C(S)-valued measure i n A 5 .
S i k o r s k i l‘3391):
be an e x t r e m a l l y disconnected compact H a u s d o r f f space. -Then f o r Let S -
e v e r y f E B a i r e ( S ) --t h e r e i s a unique L ( f ) E C ( S ) -such t h a t is E S 1 f ( s ) L(f)(s)l i s meagre. -The map L : B a i r e ( S ) -, C(S) -___ i s linear and d e f i n e s a C ( S ) - valued measure --u- a l g e b r a o f t h e B a i r e s e t s on S Proof: L e t M = I f E Baire(S)
I there
.
m
0”
w i t h respect t o the
S
i s L ( f ) E C(S)
.
S3
d i f f e r o n l y on a meagre subset o f
such t h a t
L(f)
and
f
M i s , by d e f i n i t i o n , a v e c t o r space s i n c e t h e u n i o n o f two meagre s e t s i s meagre. For f E M , l e t L(f), i ( f ) E C(S) be f u n c t i o n s which d i f f e r
. Then
Cs E S l L ( f ) ( s ) + % ( f ) ( s ) l i s meagre. From B a i r e ’ s c a t e g o r y theorem i t f o l l o w s t h a t I s E S I l ( f ) ( s ) = i ( f ) ( s ) l i s dense i n S. Hence L ( f ) = i ( f ) s i n c e
from
f
o n l y on a meagre subset o f
S
b o t h f u n c t i o n s a r e continuous. T h e r e f o r e L ( f ) Hence l :
M
-,
I t remains t o show t h a t
O f course, all
C(S) c
M
.
M = Baire(S): L e t f n E M and
n E N. Then L ( f n ) 1 L ( g )
i n f ( L ( f n ) ) E C(S), n inf(L(fn)) n
i s unique.
i s linear.
C(S)
Inf(L(fn)) n
and I n f ( l ( f n ) ) n
for a 1 and
g E
M such t h a t f n 2 g f o r
n E N
Inf(fn). n
. We c o n s i d e r By P r o p o s i t i o n 2.3.2,
d i f f e r on y on a meagre s e t . Furthermore,
I n f ( l ( f n ) ) and I n f ( f n ) d i f f e r o n l y on a meagre s e t s i n c e t h e c o u n t a b l e n n u n i o n o f meagre s e t s i s meagre. We o b t a i n f = I n f ( f n ) E M and n L ( f ) = i n f ( l ( f n ) ) . The corresponding a s s e r t i o n i s t r u e w i t h n Inf
M
i f the
= Baire(S)
Bc S
fn a r e bounded by some
g E M
linear. Let
Bn
For any B a i r e s e t
be t h e c h a r a c t e r i s t i c f u n c t i o n . C l e a r l y
D e f i n e m(B) = L ( l B ) . I n p a r t i c u l a r , we have
,n E
N
, be
instead o f
from above. We conclude,
from t h e remark p r e c e d i n g Theorem 2.3.3.
, l e t lB
Sup
m(0)
= 0
lB E Baire(S).
, since
L was
a sequence o f m u t u a l l y d i s j o i n t B a i r e s e t s
101
Order Units and Lattice Cones
in
. Then
S
1
"
n aBn
clearly
sES.
for a l l
( s ) = sup i n f { l (s) I n 2 m l m a Bk Bk k=l k=l
(s) = l i m inf n +-
n=l
1
I n view o f t h e p r o p e r t i e s o f
m
m( U Bn)
1n
=
"
L( 1
n a
) = Bn
m a
n
Hence
2.4
is a
m
n t L(lB ) k=l k
sup i n f I
= l i m in? + W
t
n
E m(Bk)
k=l
C ( S ) - valued measure.
we o b t a i n
I
n tm 1
.
0
LATTICE CONES
We cannot a v o i d t o b e g i n w i t h some elementary d e f i n i t i o n s . 2 . 4 . 1 D e f i n i t i on:
(F, < ) be some o r d e r e d cone ( w i t h an a n t i s y m m e t r i c o r d e r r e l a t i o n ) . have l a t t i c e cone i f any two elements f,g E F ( i ) ( F , i ) i s c a l l e d a ~-
Let
a supremum
sup(f,g) h
+
in
F such t h a t t h e d i s t r i b u t i v e l a w h o l d s , i . e .
sup(f,g)
= sup(h+f,
for a l l
h+g)
f,g,h
E
F.
( i i ) A l a t t i c e cone i s s a i d t o be complete i f e v e r y nonempty upper-bounded set
A c
F has a supremum sup(A)
such t h a t t h e u n r e s t r i c t e d d i s t r i b u -
t i v el a w holds, i . e . f
+ sup(A)
= supff + a
Ia
E A}
f o r every
O f course, upper-bounded means t h a t t h e r e i s some for a l l
f E
g E F with
F
. a -c g
a E A.
The r e a d e r s h o u l d r e a l i z e t h a t , i f
F
i s a v e c t o r space, t h e requirements
o f t h e d i s t r i b u t i v e laws a r e redundant. Furthermore, i t i s q u i t e obvious, t h a t i n t h i s s p e c i a l case we g e t immediately t h e a p p r o p r i a t e i n f i m a by going over t o
-f, - g
or
-A
r e s p e c t i v e l y . That i s n o t t r u e i n t h e
general case. Even i n f i m a of f i n i t e s e t s must n o t e x i s t i n general l a t t i c e
102
Linear Functionals
cones. O f course, i n a complete l a t t i c e cone e v e r y lower-bounded subset has an infimum (equal t o t h e supremum of i t s l o w e r bounds), b u t t h e p o i n t s i s , t h a t even f i n i t e subsets do n o t always have l o w e r bounds. F o r instance, t a k e t h e cone
Conv(F) o f 1.2.2. (v) c o n s i s t i n g o f a l l nonF endowed w i t h t h e p r e o r d e r c g i v e n b y i n c l u s i o n . because f o r e v e r y s e t ( C o n v ( F ) , c ) i s a complete l a t t i c e cone, {Ai I i E 11 o f nonempty convex subsets Ai o f F , I any i n d e x s e t , t h e
empty convex subsets o f
supremum i s g i v e n by
I E Xiai iEJ
I
J
c
ai E Ai,
I finite,
x. 20, z x i =
'
i€J
11
.
Here, t h e u n r e s t r i c t e d d i s t r i b u t i v e l a w h o l d s t r i v i a l l y . B u t f o r any two d i s j o i n t elements
A
and
B of
Conv(F)
t h e r e i s no l o w e r bound.
So, t h e n o t i o n " s e m i l a t t i c e - c o n e " o r even "meet-semi1 a t t i c e - c o n e " i n s t e a d
o f " l a t t i c e cone" would have been more precise. B u t f o r t h e sake o f b r e v i t y (and by abuse o f language) we have chosen t h e n o t i o n s as above.
-I n analogy
t o 1.2.2 we denote b y
(F, < )# , ( F , < ) #
and
R- valued monotone s u b l i n e a r , s u p e r l i n e a r and l i n e a r maps on
t i v e l y . I n case t h a t < i s equal t o = we j u s t w r i t e 2.4.2
#
F
)*
(F,<
, F#
F and
the
, respecF*.
Remarks
i)(F, <)# i s a complete l a t t i c e cone under t h e p o i n t w i s e o r d e r on F : I f A c (F,< )# i s upper-bounded ( i . e . sup{a(f)la E A1 < + for all f E F) then t h e supremum i s g i v e n by t h e p o i n t w i s e supremum: s u p ( A ) ( f ) = s u p I a ( f ) l a E A),
f E F.
ii) (F,< )# i s i n general n o t even d l a t t i c e cone w i t h r e s p e c t t o t h e p o i n t w i s e o r d e r on F. B u t i t i s a complete l a t t i c e cone w i t h r e s p e c t t o t h e i n v e r s e o f t h i s o r d e r i n g . With r e s p e c t t o t h i s i n v e r s e o r d e r i n g e v e r y nonempty subset A i s upper-bounded and t h e supremum i s g i v e n by t h e p o i n t w i s e infimum F 3 f -, i n f l a ( f ) I a E A)
.
We r e c a l l t h a t i f i n a s e t preorder
<'
F a p r e o r d e r < i s given, t h e n t h e i n v e r s e
i s d e f i n e d by:
Order Units and Lattice Cones
iff
g
f
I t i s obvious t h a t i f
(F,<)
g< f
103
. (F,< ' )
i s a p r e o r d e r e d cone t h e n
i s also
a p r e o r d e r e d cone. I n t h e above examples t h e suprema were g i v e n by p o i n t w i s e o p e r a t i o n s . T h i s i s n o t t h e case
f o r t h e i n f i m a . F o r example t h e p o i n t w i s e infimum
o f two s u b l i n e a r maps i s i n general n o t a t a l l s u b l i n e a r . B u t t h e s e i n f i m a ( i f t h e y do e x i s t s ) a r e e a s i l y c o n s t r u c t e d w i t h t h e h e l p o f envelopes. Def in i t $ o n :
2.4.3
(F, < )
Let on
F.
be a p r e o r d e r e d cone and l e t cp
Then c o n s i d e r t h e f o l l o w i n g maps on
-R-
valued
map
F:
n cpv(f) = i n f { t cp ( f k ) l n E N , fl,...,fn k=l d ( f) =
be some
E F
such t h a t
n f < X fk} k=l
n n t c p ( f k ) l n E N , f l,...,fn E F such t h a t t f k < f3 k=l k=l
SUP{
R i s f o r m a l l y d e f i n e d t o be a r e c a l l e d t h e l o w e r and upper (F,* ) - en-
where t h e supremum o f an unbounded subset o f +
m
. The maps
and cp"
(p"
velopes.
2.4.4
Proposition:
are monotone
(i)
cp"
(ii)
V A cp
cp"
(iii) _Lf ~ " ( 0 )
*-
m
then
cp"
&
sublinear
(iv)
rf.
(v)
I f p I cp
(vi )
_Lf q 2
(vii)
cp
E (F, < )# i f 2nd o n l y
(viii)
cp
E (F, < )# i f and o n l y i f cp
cp"
does no t a t t a~ i n t h e v al u e +m then -
cp
,
2 monotone and 3 monotone
i t i s superlinear
then p 5 cp" super1 i n e a r then q 2 cp" i f cp = cp" and cp * sublinear
= cpA
Linear Functionals
104
Proof: ( i ) and ( i i ) a r e immediate consequences o f D e f i n i t i o n 2.4.3.
(iii) The d e f i n i t i o n o f cpv immediately i m p l i e s ( p V ( f t g ) 5 cpv(f) tcpv(g) f,g E F , and moreover we have cpv(0) I 0. I f ~'(0) 2 0 t h e n
for V
Q
(0) =
V
cp
gives
( O t o ) I ( ~ " ( 0 ) t cpV(o)
, and
we must have ~ ' ( 0 ) = 0
cpV(o) =
--m
, SO i f
, ~ ~ ( $0 0)
T h i s proves t h a t cpA
-m
must be s u b l i n e a r .
cpv
( i v ) From t h e d e f i n i t i o n we c l e a r l y g e t d ( 0 ) 2 0 and CPA ( f t g ) 2 (p"(f) t cp"(g) i f c p " ( f t g ) < +-m . SO, i f cp" values i n
cpV(o)+
only attains
i s i m p o s s i b l e because cp"(0) = cpA(n.0)2n ~ ~ ( 0 ) .
i s then superlinear.
( v ) and ( v i ) a r e immediate consequences o f D e f i n i t i o n 2.4.3.
and t h e i n e -
q u a l i t i e s which h o l d f o r s u b l i n e a r and s u p e r l i n e a r f u n c t i o n a l s . ( v i i ) I f cp E (F,< )# t h e n Using ( i i i ) we see t h a t cpv
b y ( v ) and (ii)g i v e s cp = cp". and cp(0) + - a i m p l y t h a t cpv i s sub-
Q I cpv
= cp
l i n e a r (and monotone by (i)). T h i s shows cp E (F,<
)
#
.
( v i i i ) i s e s s e n t i a l l y proved i n t h e same way as ( v i i ) .
0
Rephrasi ng y i e l ds : 2.4.5
Theorem:
Consider i n (F,<)#
(i)If ~ ' ( 0 )
+
cpA
(ii)
fimum o f --
2.4.6
I
P
I
order
.
of )#-supremum -
(F,<
cpl.
I q E (F, < )#
I
cp I
ql
k then
.
cpA
i s the --
(F, < )#
-in-
Corollary:
( i ) pl,...,pn for -
the p o i n t w i s e
a t t a i n s values o n l y i n
Consider -again i n
pl(fl)
)#
t h e n cpv -i s the
--m
#
IP E (F, <
and (F, <
t...t
(F,<
)# and (F, < ) #
E (F, < )# has an infimum i n pn(fn) 2 0
f E F, g i v en by
whenever
0 < fl
the p o i n t w i s e
order.
(F, < ) # ---i f and o n l y i f
t...t
fn. ---T h i s infimum i s then,
105
Order Units and Lattice Cones
n
o(f) = inf{ (ii)
k=l
E (F,<
ql,...,qn
f o r every --
pk(fk)
1
n
I fl,...,fn
E F, f < 1
k=l
has a supremum i n (F,<)#
)#
fk3. i f and o n l y i f ,
,
f
.
T h i s supremum i s t h e n g i v e n b y t h e f u n c t i o n a l q Proof: (i)
Take
t o be t h e p o i n t w i s e infimum o f
cp
o and
finition of
@"
V
we have cp I o I 9.
pl,
...,pn
.
Then, by de-
o i s c l e a r l y subadditive o(0) 2 0
i s equivalent t o and monotone. The c o n d i t i o n , g i v e n i n (i), Hence
0
o
fore
i s s u b l i n e a r . P r o p o s i t i o n 2.4.4
. Now,
= @"
Ep E (F, < )
supremum o f of
p1,
(i), @"
by Theorem 2.4.5. #
". 'Pn .
Ip
o
(v) yields
( i i ) i s proved w i t h P r o p o s i t i o n 2.4.4 e s s e n t i a l l y t h e same way as ( i ) .
and t h e r e -
I (p"
i s equal t o t h e p o i n t w i s e
which must be t h e
I cp)
.
(F,< ) #
( v i ) and Theorem 2.4.5
- infimum
(ii)i n
0
We conclude t h i s c h a p t e r w i t h a t e c h n i c a l r e s u l t which w i l l have some i m portance l a t e r on. The arguments f o r t h i s theorem a r e c l o s e l y r e l a t e d t o t h e p r o o f o f t h e Sum Theorem. 2.4.7
Theorem:
L e t (F, < ) be a l a t t i c e cone and c o n s i d e r f i x e d Then there a r e pl,p2 E (F, < )* y itJ 91'92 E F. u(suP(glYg2))
=
!q(q)+
p
E (F , < )
p1 t p2
= p
*
and such t h a t
"(92).
Proof: Consider
F
x
F
F
x
F
= { ( f ,f )
1
2
I f 1 ,f 2
E F}, t h e f u n c t i o n s f r o m
into
i s an o r d e r e d cone under p o i n t w i s e o p e r a t i o n s and p o i n t w i s e o r d e r
(see p r o o f o f t h e Sum Theorem 1.4.1). n a l on
I1,2)
F
x
F
by
D e f i n e a monotone s u b l i n e a r f u n c t i o -
F.
Linear Functionals
106
G
Now c o n s i d e r t h e subcone
= I(ftxgl,
f txg2)
If
E F,
x
2
01
of
F
x
F.
Then because o f t h e d i s t r i b u t i v e l a w ( D e f i n i t i o n 2.4.1 ( i ) ) p i s l i n e a r on G. So, t h e r e i s a monotone l i n e a r v 5 p w i t h (Dominating p I G 5 vIG
.
Extension Theorem 1.3.1).Put
pl(f)
= v(f,O),
u 2 ( f ) = v(O,f),
f u n c t i o n a l s have t h e r e q u i r e d p r o p e r t i e s . 2.4.8
t h e n these
0
Remark:
By u s i n g t h e Norm Theorem i n s t e a d o f t h e Dominating Extension Theorem one
can a v o i d t o use t h e d i s t r i b u t i v e law f o r t h e f o l 1owing weaker r e s u l t: Let
be an ordered cone such t h a t e v e r y two elements have a
(F,< )
supremum, Then f o r f i x e d u1,p2
2.5
)*
E (F,<
)=1+ !
+
(F, < ) . I n t h i s case one g e t s
with
p E
v1
t
(F, < ) *
u2
5
and
g1,g2 E F t h e r e a r e
u such t h a t u(sup(g1,g2))
=
492)
RIESZ PROPERTY AND FINITE SUM PROPERTY
I n a cone F we c o n s i d e r some s p e c i a l o r d e r r e l a t i o n s which a r e canonic a l l y a s s o c i a t e d w i t h subcones G o f F. 2.5.1 Let
Definition: G
be a subcone o f
F.
( i ) The o r d e r r e l a t i o n given, f o r a r b i t r a r y fl
i s called
fl,f2 E F
< f2 i f f there i s a g E G w i t h
t h e G- o r d e r (sometimes denoted by <
, by f 2 t g = fl
,
).
A f u n c t i o n a l which i s monotone w i t h r e s p e c t t o t h i s o r d e r i s s a i d t o be G- monotone. A f u n c t i o n a l which i s monotone w i t h r e s p e c t t o t h e i n v e r s e o r d e r i s c a l l e d G- a n t i t o n e . (ii) The o r d e r i n F g i v e n by t h e i n v e r s e o f t h e F- o r d e r i s c a l l e d t h e n a t u r a l p r e o r d e r , i . e . h e r e we have f 1 4 f2 i f f t h e r e i s g E F w i t h fl + g = f2
.
I a7
Order Units and Lattice Cones
( i i i ) We say t h a t G generates F i f for every f E F there i s some g E G such t h a t f + g E G ( i v ) A preordered cone ( F , < ) i s said t o be negatively generated i f i t i s generated by F- = If E F I f < 01 .
.
We hope that the following remarks will c l a r i f y the role of the notions we have defined so f a r . All the remarks are immediate consequences of Definition 2.5.1 2.5.2
Remarks :
( i ) Let ( E , < ) be some preordered vector space. Then E i s endowed with the E- - order, where E- i s the negative cone E- = If E Elf < 01. The positive cone E+ = {f E Elf > 01 of E i s always equipped with i t s natural order. E- (or equivalently E + ) generates E i f and only i f E = E+ + E- , or, in other words ,if E i s negatively qenerated. ( i i ) In the general case, a linear functional i f and only i f p ( g ) I 0 for a l l g E G.
u
on
F
is
G- monotone
( i i i ) Every order unit cone i s negatively generated. ( i v ) Of course, f o r any subcone cone.
G of
F
,
(F,
i s a preordered
The following notions are important for the investigation of l a t t i c e structures in dual cones. 2.5.3
Definition:
( i ) A cone F i s said t o have the f i n i t e sum property (FSP in short) i f for a l l f l , f 2 , g 1 , g 2 E F with f l + f 2 = g1 + g2 there are ~~
h i k E F , i,k
=
1,2;
such t h a t
fi = h i l
+ h i 2 , g.1
=
h l i + h 2 i y i = 1,2.
( i i ) A preordered cone ( F , < ) i s said t o have the Riesz property i f f o r f , g , h E F with f < g + h there are always g,lh E F with < g , i< h such that f = + h
.
The next theorem shows t h a t these properties are closely related. Recall, a cone F s a t i s f i e s the cancellation law i f f f l + g = f 2 + g implies f l = f 2 for a l l fl,f2,g E F .
Linear Functionals
108
2.5.4 __ Let
Theorem:
<_ be _ t h_ e n_ a t_ u r a_ l preorder
&I
F
(i)
Lf
(ii)
L e t t h e c a n c e l l a t i o n --law hold i n --
t h e n ( F y < ) has t h e Riesz p r o p e r t y . F. Then (F, < ) --has t h e Riesz
F -has t h e FSP
_.--
p r o p e r t y i f and o n l y i f -_.--
F _ has _ -t h e
FSP
.
Proof: (i) f
?
g2 means t h a t t h e r e i s an
t
( D e f i n i t i o n 2.5.1). h21 t h22 = g2
The FSP g i v e s us
and
i n particular that
hll hll<
t
h21 = f
?.
f t
E F such t h a t
. But t h e f i r s t
h21 < g2
and
g1
hik
E F with
= g1 t g2
hll
t
h12 = g l Y
two e q u a l i t i e s i m p l y
( i n the natural preorder !).
( i i ) We have t o prove t h a t under t h e c a n c e l l a t i o n l a w t h e Riesz p r o p e r t y f o r the natural order implies the This gives with
hll
FSP
fl t f2 = g1
+
f l < g1 t g2 and from t h e Riesz p r o p e r t y we o b t a i n t h12 = fl
such t h a t
hll
< g1
t i o n of t h e n a t u r a l p r e o r d e r t h e r e a r e and
. Consider
h12 t g22 = g2
. I t remains
and
hyli
t o show t h a t
we i n t r o d u c e t h e e q u a l i t i e s from above i n t o fl t f2 = hll
t
h12
4
h22 w i t h
. By t h e
g2
hll
92'
yhll
h12 defini-
t h21 = g1
f 2 = h21 t h22
. To
fl t f 2 = g1 t g2
do t h i s
and g e t
h21 t h12 t h22 = fl t h21 t h22
A p p l i c a t i o n of t h e c a n c e l l a t i o n l a w y i e l d s t h e a s s e r t i o n .
0
Although t h e
FSP was o n l y d e f i n e d f o r sums w i t h two terms i t e a s i l y c a r r i e s over t o a r b i t r a r y f i n i t e sums: 2.5.5
Lemma:
Suppose t h a t --
F -has t h e FSP
k = ly...yn,
with
m
z fi
- i=l
and c o n s i d e r
_ .
n
=
E
k=l
gk
fi,gk
. Then t h e r e
E F, i=l,...,my are
hik
E F with
109
Order Units and Lattice Cones
and
Proof: We use i n d u c t i o n over Hence, s i n c e
ntm
F has t h e
.
FSP
The a s s e r t i o n i s t r i v i a l i f
,
the assertion holds i f
Then assume, t h e lemma i s proved f o r a l l n a t u r a l number Now, l e t
no 2 4
ntm = notl
o u t l o s s of g e n e r a l i t y f l y
-..fm,2y( f m - l + f m ) ,
k = l,..., n ; wl,...,wn (1)
f. =
(3)
gk =
'
. . Hence
m
or
n
n,m
. This
91, ...,gn
yields
,
'
hi,k "k
,k
Since we assumed
; i = Iy...,m-2;
hi,k
m > 2
we have
2
t
i = l,...,m-2
.
= l,...,n
n < mtn = n
0
t
1
. Therefore
a p p l y t h e h y p o t h e s i s a g a i n t o ( 2 ) . T h i s p r o v i d e s us w i t h such t h a t hiYk; i = m - 1 , m ; k = l,...,n;
Inserting (5) i n (3) yields
izl
m
(6)
gk =
f o r some
with hi,k
i=1
0
m > 2 . Apply t h e i n d u c t i o n h y p o t h e s i s t o
n
m-2
m=l
n t m 5 4.
nt m s n
with
or
i s g r e a t e r t h a n 2. Assume w i t h -
r
k=l
n = l
hi,k
, k
= l,...,n
.
we may
.
Linear Functionals
110
Now, ( l ) , ( 4 ) and ( 6 ) show t h a t t h e a s s e r t i o n i s t r u e i f T h i s proves Lemma 2.5.5.
ntm = notl. 0
The r e a l importance o f t h e o f t h e upper
-
FSP
l i e s i n i t s consequences f o r t h e s t r u c t u r e
and l o w e r envelopes.
2.5.6 Theorem: L e t F -have t h e FSP. -
rf
(i)
(F, < )
has t h e Riesz ---
property -then f o r
q E (F, < )
t h e lower
# --
i s l i n e a r i f and o n l y i f q v ( 0 ) + - m . -----( i i ) I f f o r the inverse preorder < ' o f < -t h e cone (F, < ' ) -has t h e Riesz p r o p e r t y -t h e n f o r p E (F, < )# t h e upper envelope ph -~ i s linear i---f and o n l y i f ph ----does n o t a t t a i n t h e v a l u e + m . envelope
qv
_.-
Proof: (i)
P r o p o s i t i o n 2.4.4
qv(0)
*
-m
t e l l s us t h a t
. We c l a i m t h a t qV(fltf2)
2
i s s u b l i n e a r i f and o n l y i f FSP and Riesz p r o p e r t y t o g e t h e r i m p l y t h a t
qv(fl)
t
T h i s t h e n c l e a r l y proves t h a t qv To see t h i s we c o n s i d e r a r b i t r a r y fl
t
f 2 < hl
hl < h l,...,hn
t...t
qv
qv(f2)
for a l l
E F
flyf2
.
i s not only sublinear but linear. hl,...,hn
E F
such t h a t
hn. Then from t h e Riesz p r o p e r t y ( i n d u c t i o n ) we 9 e t
such t h a t
fl
t
f 2 = hl
t...t
.
And t h e
k=l,
...,n )
FSP
(in
t h e s t r o n g e r form o f Lemma 2.5.5)
yields
Now, t a k i n g i n t o account t h a t t h e d e f i n i t i o n o f qv :
i s monotone and s u p e r l i n e a r we g e t w i t h
q
h . (i=1,2; 1, k n
hn
with
111
Order Units and Lattice Cones
Taking t h e infimum o v e r a l l p o s s i b l e qV(f1+f2) 2 qV(fl) (ii)
+
we o b t a i n i n f a c t
hly...,hn
qV(f2).
Again P r o p o s i t i o n 2.4.4 t e l l s us t h a t
i s s u p e r l i n e a r i f and
ph
o n l y i f ph does n o t a t t a i n t h e v a l u e t m . The p r o o f t h a t i n t h i s case t h e f u n c t i o n a l i s a l s o s u b l i n e a r i s i n complete analogy t o ( i ) . L e t flyf2 be a r b i t r a r y and c o n s i d e r fl
t
f2 r
g i v e s us
hl +...+
E F
such t h a t
Then t h e Riesz p r o p e r t y f o r t h e i n v e r s e o r d e r i n g
hny
hl > hly...,h
hly...,hn
n
> hn
such t h a t
fl
f2 = hl +...+
t
hn
.
Then
w i t h t h e same p r o p e r t i e s as above. And b y ,k monotony and s u b l i n e a r i t y we f i n d :
with the
FSP we g e t
n
h
n
n
n
NOW, t a k i n g t h e supremum o v e r a l l p o s s i b l e hl,...,h inequality
p"(fl
+f2)
I ph(fl)
i.
n
we g e t t h e d e s i r e d
ph(f2). 0
T h i s r e s u l t immediately y i e l d s an i n t e r p o s i t i o n theorem which appears i n v a r i o u s forms i n t h e l i t e r a t u r e (Ando [ 6 I, A s i m o v - E l l i s [111, Edwards [971, see a l s o 11161 and [431)
2.5.7
.
I n t e r p o s i t i o n Theorem:
L e t F -have t h e FSP and assume ~ t h a t F --has t h e Riesz p r o e r t y e i t h e r w i t h -r e s p e c t t o i --o r i t s i n v e r s e i ' . -Then f o r p E ( * a 7 _ .
q E (F, < ) # $ t J p I q ---t h e r e i s always a
u
E (F,<
)*
-such t h a t
Linear Functionals
112
Proof: L e t us assume t h a t
(F, < )
{b
E (F, < )# I I q } i s qv (Theorem 2.4.5 ( i ) ) . Hence LI = qv does t h e j o b . p e r t y one can work w i t h ph same arguments go through. set
p
has t h e Riesz p r o p e r t y . Because i s n o t empty and i t s
(i)
(F, < ' )
I n case t h a t
and Theorems 2.4.5
q
the
)#- supremum
(F,<
B u t a c c o r d i n g t o 2.5.6
5
i s linear.
qv
has t h e Riesz pro-
( i i ) , 2.5.6
( i i ) . Then t h e
(F, < ) * has almost
The r e a l c o n t e n t o f t h e I n t e r p o s i t i o n Theorem i s t h a t
t h e s t r u c t u r e o f a complete s e m i l a t t i c e . More p r e c i s e l y : 2.5.8 Theorem: Let (i)
F -have t h e FSP. (F,< ) --has t h e Riesz p r o p e r t y -----t h e n every l o w e r bounded subset o f
If
#or---
T h i s infimum remains t h e same i f we (F, < )* has an infimum~ i n (F,<-)*. -t a k e i t i n e i t h e r o f t h e f o l l o w i n g cones: F*, (F, < ) -
-_____--
(ii) I f F has t h e Riesz p r o p e r t y ----w i t h respect t o the inverse preorder < ' (F, 4 ) * has 5 supremum & then every upper bounded subset o f --(F, < )*. T h i s supremum remains the same i f we take it in either of the ~
f o l l o w i n g cones:
F*,
(F, < ) # o r F#
.
I
Proof:
)*. We d e f i n e a monotone s u p e r l i n e a r cp by cp(f) = i n f I p ( f ) I u E A 1 f o r a l l f E F. L e t cpv be t h e l o w e r envelope o f cp w i t h r e s p e c t t o (F, ). Since A was (i)
Let
A
be a l o w e r bounded s e t i n
(F,<
*
l o w e r bounded cpv property f o r
4
equal :
i s s u b l i n e a r ( P r o p o s i t i o n 2.4.4). implies that f o r arbitrary
infI
n I: 'P(fk) k=l
jnf{
n E cp(fk) I fl,...,fn k=l
1 fl,...,fn
f
NOW, t h e Riesz
the following infima are
<
E F with
f
E F
f =
with
n
Z
k=l n k=l
fkl =
fkl
-
So, qV i s t h e g r e a t e s t element I cp i n (F, < ) # as w e l l as i n ( P r o p o s i t i o n 2.4.4). O r , i n o t h e r words, cpV i s t h e infimum o f A
F# in
F ~ .
Order Units and Lattice Cones
Since
(p"
i s monotone and l i n e a r (2.5.6
of
in
(F, < )*. T h i s i s an obvious consequence o f
A
(i))
113
i t must a l s o be t h e infimum
(F, < ) * and
t h e same h o l d s f o r a l l cones between
(F, < ) * c F#. And
F#.
( i i ) T h i s i s a g a i n t h e same p r o o f . The o n l y d i f f e r e n c e i s t h a t one has t o
c o n s i d e r u ( f ) = s u p t p ( f ) I p E A 1 and uA i n s t e a d . Then as above, a p p l i c a t i o n of 2.5.6 (ii) yields the assertion. 0
2.6
THE POSITIVE DUAL CONE
F i r s t , we d i s c u s s t h e r e s u l t s o f t h e l a s t s e c t i o n i n a more c o n c r e t e
F the natural preorder <
s i t u a t i o n . We c o n s i d e r i n a g i v e n cone
(F,
denote
i) *
F;
by
=
.
F;
{pip : F
-,R+
T h i s cone we endow w i t h t h e
A c F;
every s u b s e t subset
tpl,...,pnl
FE
Then c l e a r l y linear}
and
i s equal t o
. F
p o i n t w i s e o r d e r on
i s l o w e r bounded, namely by i s upper bounded b y
p1
+...+
. And we 0
, and
pn
remark t h a t every f i n i t e
.
2.6.1 Lemma: L e t F have t h e FSP , then F i e v e r y nonempty
A c FZ
5 complete l a t t i c e cone. And f o r A
t h e infima o f
i n F:
and F# -a r e equal
Proof: F
has t h e Riesz p r o p e r t y w i t h r e s p e c t t o t h e n a t u r a l p r e o r d e r (Theorem
2.5.4
f o l l o w f r o m Theorem 2.5.8 ( i ) F: and t h e u n r e s t r i c t e d d i s t r i b u t i v e l a w i s a m a t t e r o f d i r e c t v e r f i c a t i o n . ( i ) ) . So t h e l a t t i c e p r o p e r t i e s of
NOW, l e t E,
E
= {x E E
*
be a v e c t o r l a t t i c e and c o n s i d e r i t s p o s i t i v e cone i s equipped w i t h t h e n a t u r a l o r d e r , t 01. Then E,
Ix
(E+)n = (E,,s)*,
and t h i s cone can be t r i v i a l l y i d e n t i f i e d w i t h
We denote t h i s cone by O f course,
Eo
E:
and c a l l
ET
- Er
=
Eo
SO
(E,I)*.
t h e o r d e r dual o f
i s endowed w i t h t h e p o i n t w i s e o r d e r on
E+
.
E.
Linear Functionals
114
2.6.2
Lemma:
A c E*t -the infima
E*t i s-a complete ~l a t t i c e cone, -and f o r nonempty
(i)
* i n E, (ii)
(E+)#
are equal.
i s an o r d e r ---
Eo
complete -___ vector l a t t i c e .
Proof: ( i ) Consider a r b i t r a r y 0 I hl I h and
Then E,
f,g,h 0 I f
E E,
- hl
with 9 g.
f I gth.
And because
Take
hl = sup(f-g,0).
f = (f
-
hl) t h l
f u r t h e r t e l l s us t h a t
must have t h e Riesz p r o p e r t y . Theorem 2.5.4
E,
has t h e
FSP. NOW, e v e r y t h i n g f o l l o w s from 2.6.1.
( i i ) Let
A c Eo be a l o w e r bounded s e t w i t h l o w e r bound b. Hence Take t h e i n f i b2 where bl,b2 E ET Therefore, b2 t A c E:
b = bl mum o f of
A
2.6.3
.
.
-
b2 in
+A EO.
in
, inf(b2
E:
t
-
A). i n f ( b 2 t A)
b2
i s t h e n t h e infimum
0
Remark:
T h i s lemma shows t h a t a c t u a l l y many o f t h e p o p u l a r spaces a r e o r d e r comp l e t e v e c t o r l a t t i c e s . F o r example the appropriate
Lq(p) (p-' t q-'
signed Bore1 measures on a compact bidual o f
qR(K)
Lp(v) = 1)
, or
(1 < p I m ) as o r d e r d u a l s o f Y R ( K ) , t h e space o f f i n i t e
K (as o r d e r dual of
(as t h e o r d e r dual o f
YR(K)).
k(K)),o r
the
One consequence o f these
c o n s i d e r a t i o n s i s , t h a t f o r s p e c i a l l a t t i c e cones (namely t h e p o s i t i v e cones o f v e c t o r l a t t i c e s ) t h e dual cone always has t h e
FSP and t h e Riesz
p r o p e r t y . One may ask if t h i s remains t r u e f o r general l a t t i c e cones. To f i n d t h e answer t o t h i s problem we have t o make a d e t o u r i n t o elementary a1 gebra. L e t us f i r s t r e c a l l how t o make a v e c t o r space T h i s i s done by an elementary procedure. Take (al,bl), f o r some
(a2,b2) E F
x
F
x
F.
F and d e f i n e two p o i n t s
al t b 2 + c = a t bl t c 2 t h e corresponding e q u i v a l e n c e c l a s s .
t o be e q u i v a l e n t i f
c E F. Denote by [al,bll
( F - F) o u t o f a cone F
Order Units and Lattice Cones
115
Consider i n
(F
- F)
=
def
I
I[a,bl
(a,b) E F
x
FI
the f o l l o w i n g class operations: x[a,bl
-
(F
Then
F)
seen t o be
. If
[b,al
(F
-
F)+
x,y E ( F
for
x
E R+
becomes a vectorspace. The n e g a t i v e o f
=
de f
-
<)
(F,
canonically a preorder i n
i.e.
xbl ,
= [xa, def
i s easily
i s a p r e o r d e r e d cone t h e n we d e f i n e
( F - F) I[a,bl
[a,bl
v i a t h e f o l l o w i n g p o s i t i v e cone
I a,b
E
F, b < a 1 ,
F ) we have x < y
i f and o n l y i f
y
- x
E (F
-
F)+.
F t h e c a n c e l l a t i o n l a w h o l d s F can be c o n s i d e r e d as a subcone o f ( F - F ) . More p r e c i s e l y : a -, [a,Ol i s then an i n j e c t i v e l i n e a r map f r o m F i n t o ( F - F ) . I n t h e general case t h e map I n case t h a t f o r
p
: F
+
(F
-
F)
g i v e n by
P -,
a
[a,O]
i s s t i l l l i n e a r (and monotone),
b u t i t f a i l s t o be i n j e c t i v e s i n c e p ( a ) = p ( a ) whenever t h e r e i s some . B u t t h e i n j e c t i v i t y i s n o t so i m p o r t a n t s i n c e b E F with b + a = b +
a
we have t h e f o l 1owi ng e l ementary
2.6.4
.
Universal Prooertv:
n:F
E be a-l i n e~ a r map - from - F i n t o a v e c t o r space A : ( F - F ) 3 E -such t h a t A p = t h e r e i s a unique l i n e a r (i)
-
L
-
~
_
-$
_
.
_
i s a preordered ~ v e c t o r- space - and_i f
L -
i s monotone t h e n -
L_
A
E ,Then
.If
i s monotone.
Proof: Let
(a1,bl),
f o r some
(a2,b2) E F c E F X(al)
x
F
be a r b i t r a r y w i t h
. Then by l i n e a r i t y o f ;i we - n(bl) = n ( a 2 ) - n ( b 2 ) .
get
al
+
b 2 + c = a 2 + bl+C
E
116
Linear Functionals
Hence,
-
h(a)
( a , b ) E [ a l , b l l . Let us denote
i s constant f o r a l l
i(b)
t h i s constant by A[a,b]. By d e f i n i t i o n A i s l i n e a r s i n c e A i s l i n e a r . The map A i s monotone whenever i s monotone. And we have A * p = A . I t remains t o show t h a t A i s unique. So, l e t A2 : ( F - F ) -+ E be l i n e a r with
Hence,
2.6.5
-
-
A2
p = A
.
Then by l i n e a r i t y
.
A2 = A
n
Lemma:
Let ( F , < ) be 5 preordered
cone.
given by ( F - F) t -i n (i)rf < & antisymmetric then the preorder -(F - F ) i s again antisymmetric. (ii) If F i s a -l a t t~ i c e cone ( F - F) i s a vector e. - then -l a t t i c~ (iii) If F i s negatively generated then ( F - F ) i s negatively generated. Proof: ( i ) One e a s i l y sees t h a t the preorder i n ( F only i f t h e p o s i t i v e cone ( F - F ) + i s sharp, zero whenever x and -x a r e elements of ( F x, -x E ( F - F)+. Then by d e f i n i t i o n t h e r e a r e with
and a 2 < b2
bl < a l
Then because of
x = [al,bll
f o r some c E F. Let
such t h a t x =
=
F ) i s antisymmetric i f and i . e . x must be equal t o - F ) + . So assume al,bl,a2,b2 E Ft
[ a l , b l l , -x
=
[b2,a21
.
we have a t b t c = a2 t b l + c 1 2 We claim a 1 t 6 = b 1 t 6 . The i n e q u a l i t y
[a2’b21
6=altb2tc
.
al t E >bl + E follows immediately from al > b l , and t h e missing p a r t is seen via Now, x =
a 1 t 6 = ( a l t b 2 t c ) t a l = ( a 2 t b l t c ) t a l < b 2 t b l t c t a - b t 6. 1- 1 [a 1’b 1I = [a 1 + 6 , b l t 6 1 = 0 since a 1 + 6 and b l + d a r e equal.
( i i ) Consider a r b i t r a r y
z
x
=
[al,bll, y
= [ s u p ( a l + b 2 , a 2 t b l ) , bl t b 2 1
Abbreviate
c
=
=
[a2,b21. We claim t h a t
i s t h e l e a s t upper bound of
sup(al t b 2 , a2 t b l )
and consider
x,y
i n (F-F).
Order Units and Lattice Cones
z
-
x = [c,bl+b
1 - [a 1, b 11
2
=
This i s clearly an element o f
117
[c + b l y b l + b 2 + a l l = ~[c,b2 + a,]. (F
.
- F)+ since b2 + a l < c
I n the same
way one shows t h a t z - y i s in the positive cone. So, z i s an upper bound of x and y. Let i = [a,D] be another upper bound. Then because z - x E(F - F)+ , we get a + bl > p + a l , and similarly a + b2 z 13 + a2.
.
This gives a + bl + b e > 13 + a l + b 2 and a + bl + b 2 > + a 2 + bl Hence, a + bl + b 2 > sup(B + a l + b 2 , 13 + a 2 + b l ) = 13 + c. And t h i s yields
i-
[c,bl + b21
Hence 2
-
=
[a + bl + b2, 13 + b, + b21 + [ p + bl + b2,c + 131
=
[a + bl + b2,c + 81 E ( F
z E (F
-
F)+
and
z
-
F)+
.
must be the l e a s t upper bound.
( i i i ) Let x = [ a , b l E ( F - F ) . Since F i s negatively generated there Hence, are a-,b- E F- such t h a t a t a- and b + b- are in F-
.
x = [ a + b - + a-
,b +
b- + a-I
=
[a + b - + a - , O l - [ b + b - + a - , O ]
shows that x i s the difference of two elements in ( F valently in ( F - F)+) i . e . ( F - F)- generates F - F.
- F)-
(or equi0
The reader should note t h a t for the proof of part ( i i ) of the l a s t lemma i t was absolutely essential t h a t we required the validity o f the d i s t r i butive law for l a t t i c e cones. One might wonder i f ( F - F) i s always a complete vector l a t t i c e i f (F, < ) i s a complete l a t t i c e cone. Here, the answer i s negative. 2.6.6
Definition
I p(f)
for a l l f E F I denotes the cone consisting o f the R- valued elements in (F, < ) * . FIT i s called the positive dual cone of (F, < ) and, f n o t mentioned otherwise,it i s endowed with i t s natural order. FT
= { p E (F,<
)*
> -
OD
-
Let us compare F: with the positive dual cone ( F - F): of ( F F). I f p : F -,( F - F) i s the canonical ( n o t necessarily injective) embedding
Linear Functionals
118
of
F i n t o (F
element of
-
F:
F) then f o r
.
(F
p E
-
*
F)+
the map vp
= p o p
And t h e Un versa1 Property 2.6.4 implies t h a t
i s an p
-B
and Ff . Furthermore, we remark i s a b i j e c t i v e map between F - F): t h a t by d e f i n i t i o n every l i n e a r b i j e c t i o n between cones i s monotone with respect t o t h e natural preorders. So, we have 2.6.7
Lemma:
are
FT and ( F - F): i d e n t i c a l i n the sense t h a t t h e r e i s a monotone bij-____.-e c t i v e l i n e a r map between them. 2.6.8
Theorem:
Let ( F , < ) be a l a t t i c e cone. Then i t s p o s i t i v e dual cone FT has t h e l a t t i c e cone. FSP --and t h e Riesz property and i t i s a complete ~Proof: In view of t h e above lemma i f s u f f i c e s t o prove t h e theorem f o r ( F - F): instead of Ff In 2.6.5 we s t a t e d t h a t ( F - F) i s a vector l a t t i c e . 0 So, everything follows from 2.6.2 ( i ) .
.
2.7
2.7.1
DUAL ORDERS AND THE CARTIER
-
FELL - MEYER THEOREM
Definition:
Let F be a cone and l e t @ be a subset of F*. ( i ) For f , g E F we w r i t e f s @ g i f p ( f ) I u ( g ) This preorder i s c a l l e d t h e ( i i ) For f , g E F we w r i t e
f =
n z fi (fi
i =1 for all p E i s called the (F,
)
E F,
n
E N)
@-
p E @
.
pointwise order. g i f f o r every decomposition
f <
@
t h e r e a r e gi
, we have p ( f i ) 0-
for all
I
p(gi),
with i
=
g
=
l,...,n.
n
E gi i =1
such t h a t ,
The preorder
<
decomposition preorder.
i s always a preordered cone. In c o n t r a s t t o t h i s the r e l a t i o n
in general i s not compatible w i t h the cone operations.
Order Units and Lattice Cones
2.7.2
119
Lemma:
L e t F -have t h e FSP , t h e n (F, < @ ) -i _ s a preordered cone, i . e . the Q- decomposition -o r d e r i s c o m p a t i b l e --w i t h t h e cone o p e r a t i o n s . Proof: Only t h e c o m p a t i b i l i t y of assume
< @g1
fl
n
Because
Y
k,
.
i=l1
hi,kE
p(hi
-
f.
Z
fl+ f2
and
f2 <
The
@
FSP
such t h a t
fk
we get
hi,k
with
p E @
. NOW,
gk
Y
k,
gi(i=l,...,n)
for all
fi =
n hYil
91
Recall t h a t i f
92'
+
F
+ hiY2
n 1 hiYk=
i=1 put
g1
and
gk
ii= hiyl
i s t h e d e s i r e d decomposition f o r
<@
i s n o n t r i v i a l . So,
(Lemma 2.5.5) y i e l d s
k=1,2)
<@
F
g2 and c o n s i d e r a decomposition
i=l,...,n;
Ip(hi
fl+ f2
with addition i n
+
, i.e.
o
vQ
+
hi?.
g2.
Let
Then
Hence,
has t h e
FSP
then i n
F*= (F,=)*
t h e supremum o f
(F,=)*).
t h e Riesz p r o p e r t y
S o y i n t h i s case, f o r
@ c
F*
,let
t h e s e t o f a l l suprema o f upper bounded f i n i t e subsets
= {sup(ul
,... ),,I.?,
1nE
upper bounded E @ I .
N, p l y . ..,un
Propos it i on :
2.7.3 _ .
V Q
F -have t h e FSP and c o n s i d e r
f s V Qg
,
i.e.
p ( f ) Iu ( g )
f,g E F with f <
for all --
g
1-1 E V Q .
.Then
Proof: From Theorem 2.5.8 sup(p1,...,pn)(h)
hi,k.
CI
is trivially fulfilled for us denote b y
i=1
such t h a t
upper bounded subsets does always e x i s t (Theorem 2.5.8,
of
fk =
( i i ) and C o r o l l a r y 2.4.6 = supt
f o r any upper bounded s e t
n E pi(hi) i=1
{ul,..
(ii) we o b t a i n
I hly...,hn
. ,pn}
c @
E F with
.
n h = z hi] i=1
120
Linear Functionah
Looking i n t e n s i v e l y a t t h i s e x p r e s s i o n one immediately d i s c o v e r s sup(p l,...,pn)(f) 2.7.4
5 sup(p1,...,un)(g)
whenever
9.
f
0
Proposition:
with L e t F have t h e FSP and assume t h a t i t has t h e Riesz p r o p e r t y r e s p e c t t o t h e i n v e r s e o f s @ . Consider f , g E F w i t h f s a g. Then -
%
f
g.
Proof: I f f s @ g and
f =
n
t h e n g (<@)If; t h e Riesz p r o p e r t y t o g e t h e r
1 fi
i=1
w i t h i n d u c t i o n t e l l us t h a t t h e r e a r e gi Hence,
g.
f
('@)Ifi
such t h a t
g =
n 1 qii'
i=1
0
2.7.5 Theorem: Let -
FSP ---___-and assume t h a t i t has t h e Riesz p r o p e r t y with
F -have t h e
r e s p e c t ---t o the inverse o f
svo . Then t h e p r e o r d e r s <
@
.nd
sVQ
are
t h e same. -Proof:
P r o p o s i t i o n 2.7.3 y i e l d s t h a t (applied t o V @ instead o f But
f
g
f Q)
clearly implies
s
v@g when
gives f
f <
~
g. And P r o p o s i t i o n 2.7.4
f < v@ g when
f
s v@ g.
0
On t h e f i r s t view t h e assumptions i n Theorem 2.7.5 seem t o be r a t h e r o u t l a n d i s h , b u t we w i l l see t h a t t h e y a r e n a t u r a l l y f u l f i l l e d f o r t h e p o s i t i v e dual cone o f a l a t t i c e cone. We want t o extend t h e n o t i o n o f l a t t i c e homomorphism we i n t r o d u c e d i n 2.2. Consider a l i n e a r
@
: F
+
G
, where
(F, < )
i s a l a t t i c e cone and
) i s some o r d e r e d cone. @ i s c a l l e d a l a t t i c e cone homomorphism ( o r s i m p l y l a t t i c e homomorphism) i f @ ( F ) = { @ ( f ) I f E F I
(G,
4
Order Units and Lattice Cones
121
i s a l a t t i c e cone such t h a t o(sup(fl,f2))
= sup(@(fl),
cp(f2))
for a l l
E F.
fl,f2
@-'
o i s c a l l e d a l a t t i c e cone isomorphism o r l a t t i c e isomorphism i f b i j e c t i v e and cp and a r e l a t t i c e cone homomorphisms.
o
is
Note, t h a t e v e r y l a t t i c e homomorphism i s n e c e s s a r i l y monotone. Let
(F, < )
be a l a t t i c e cone and c o n s i d e r
t h e p o s i t i v e dual cone (Theorem 2.6.8). subsets o f
(Ff)*
(FT)*, t h e l i n e a r f u n c t i o n a l s o n
(F, < ) . R e c a l l t h a t
FT o f
Hence ( b y Theorem 2.5.8.)
^f
FSP
t h e supremum of upper bounded -+
3
from
F into
FT
.
(Ff)*,
i s d e f i n e d by P(p)
2.7.6
has t h e
does e x i s t w i t h r e s p e c t t o p o i n t w i s e o r d e r on
Now, we c o n s i d e r t h e c a n o n i c a l l y g i v e n map f where
Ff
for all
= p(f)
E F:
.
Theorem:
The map f --
+
3 --i s a lattice
homomorphism.
Proof:
f
It i s q u i t e c l e a r t h a t
t o be an upper bound o f yields for arbitrary
7
i s monotone and l i n e a r . So, s u m has {?,GI. Hence, s u m 2 sup(i?,'j). Theorem 2.4.7 +
II E Ff :
The l a s t i n e q u a l i t y f o l l o w s f r o m C o r o l l a r y 2.4.6 and Theorem 2.5.8 Hence, s m = sup(?,G) f o r a r b i t r a r y f , g E F. 0 Combining t h i s w i t h Theorem 2.7.5
2.7.7 Let -
General C a r t i e r
_-----
-
Fell
-
(ii).
we g e t : Meyer Theorem:
F be a l a t t i c e cone and l e t
@ c
F be such t h a t
V@ = F. Then, for
122
Linear Functianals
, the following a r e equivalent:
v , v E F:
(i)
v
(ii)
p ( f ) s v ( f ) -f o r a l l f E F.
v
Proof:
W e know t h a t Ff has t h e FSP with respect t o t h e inverse of sider
,, (sF)I
v1
+
v2,
. We
claim t h a t FT has t h e Riesz property To prove t h i s claim we conI v~ = s
.
i.e.
( - p ) ( f ) s ( - vl) ( f )
-t
( - v2) ( f ) f o r a l l
Now consider t h e inverse order
i n F , then
f E F.
- p , -v1,-u2
E (F,
Since (F,< ) i s a l a t t i c e cone t h e cone (F,< I ) must have t h e SIP ( c f . chapter 1 . 4 ) . Hence (1.4.2 and 1 . 4 . 1 ) we f i n d .( '-monotone l i n e a r functionals 3l s - v l , S2 s -v2 such t h a t - p = S1 -t v2 -
.
Put p1
pl =
-Gl,
p2 =
-G2
then
( s F ) # ul, ,,2 ( s F ) l v2. Since
that
FT
p1,v2
E (F,<
u,vl,v2
)* w i t h
p
= pl
+
p2
and
were a r b i t r a r y chosen t h i s shows
has the Riesz property with respect t o t h e inverse of
s
F '
Now, application of Theorem 2.7.5 t o t h e ( n o t necessarily i n j e c t i v e ) embedding o f Q and F i n t o F: gives t h e a s s e r t i o n of t h e theorem.
2.8
FREE LATTICE CONES
Throughout t h e l a s t chapters we have seen t h a t l a t t i c e cones do have a very r i c h mathematical s t r u c t u r e . So, the question a r i s e s whether every cone can be canonically embedded i n t o a s u i t a b l e l a t t i c e cone. 2.8.1
Definition
Let (F,< ) be a preordered cone. A l a t t i c e cone (G, < ) i s c a l l e d a f r e e l a t t i c e cone over (F, < ) i f t h e r e i s a monotone l i n e a r map j : F -, G such t h a t f o r every monotone l i n e a r map 6 : F -, L i n t o a l a t t i c e cone L t h e r e e x i s t s uniquely a l a t t i c e cone homomorphism 6*:G+
Order Units and Lattice Cones
with
123
6 = 6*0 j . In other words the diagram
can a1ways be completed t o j F-----I>G
L where
! means t h a t
i s uniquely determined.
6*
Here we have used the following notation: monotone 1 i near
_____L)
D
l a t t i c e cone homomorphism.
Of course, these diagrams are always assumed t o be commutative.
For convenience we sometimes write in the following f v g instead of sup(f,g), and we recall t h a t a l a t t i c e cone homomorphism 6* : G -+ L s a linear map with 6*(gl v g2) = 6*(g1) v 6 * ( g 2 ) for a l l g1,g2 E G
.
Before going any further into the details we 1 i ke t o adopt the follow notation :
-*
_____+
,
-
w
b
monotone sub1 inear monotone surjective sublinear or 1 i near, resp. i njecti ve l a t t i c e cone subhomomorphism,
124
Linear Functionals
where a l a t t i c e cone subhomomorphism rp between two l a t t i c e cones and ( L , < ) i s a map which s a t i s f i e s : cp(lg)=
m ( d Y (P(s1
f
92) < (P(91)
(P(SUP(91Y92)) = SUP((P(91)YV(92))
We use the symbol
>
a
f
and
(P(@
for a l l
(G$)
9Y91’92 E G ; A E R,
*
9 for a l a t t i c e cone isomorphism.
Before going into the construction of the free l a t t i c e cone, l e t us play the usual game. 2.8.2
Proposition:
( i ) ---Free l a t t i c e cones over (F, < ) are uniquely determined up t o l-a t t i c e cone isomorphisms. ( i i )& j ( G , j ) ( j the embedding F + G ) --__--be a free l a t t i c e cone over (F, < ) . Then a l l elements of G ---are of the form j ( f l ) v v j(fn),
...
with
n
E N,
fl,
...,f n E
F.
Proof: ( i ) Let (G,j) be a free l a t t i c e cone over I : G + G then completes the diagram
(F, < ) . The identity map
Because o f the uniqueness of this completion we conclude that I i s the only l a t t i c e cone homomorphism G + G with j = 1 0 j . Now, consider two free l a t t i c e cones ( G l , j l ) and ( G 2 , j 2 ) over ( F , < ) . Then look a t the diagrams jl j2
125
Order Units and Lattice Cones
and observe that
J1
3, = I
morphi sms
.
I G2
( i i ) Let
=
j,
...v
{j(fl)v
, sup(gl,g,)
E
i).
E Pi,
are l a t t i c e cone
j;
and
jf
j(fn)I n
(i.e.
G
= j;
j, = J,
and
, which implies t h a t
sub-lattice cone of g1,g2 E 7;
0
J,
and
j,
j , = J1
homomorphisms with and
*
= jy
0
j;
j,
.
Hence,
J
- I
1-
I+
are l a t t i c e cone iso-
fl,...,fn
E
FI , then
-
G
is a
G i s a subcone of G and for every Look a t the following diagram
Then according t o Definition 2.8.1 j * and 6* are uniquely determined. Replacing 6* by I makes the same diagram commutative, hence 6* = I . This proves t h a t I o j * = I , or G = G. 0 I
NOW, l e t us construct the free l a t t i c e cone f o r a given cone (F, < ). Recall that a s e t A c F i s called convex i f x f + (1-X)g E A whenever f,g E A and 0 I A I 1. For a given s e t B , the smallest convex s e t containing B i s denoted by < B > and i s called the convex hull of B . For a f i n i t e s e t I f l , ...,f n I c F the convex hull i s given by
--
n {
i =1
hi f i
I x1
2 0
,...,A n
2 0,
I n example 1.2.2(v) we have seen t h a t C o n v ( F ) = I A l A convex,
@
* A c FI
i s a cone i f one defines A+B=Ia+blaEA,bEBI A A = {xal a E A I
n
r xi i =1
=
11
.
126
Linear Functionals
I t i s r e l a t i v e l y t r i v i a l t o see t h a t
Convo(F) = { A i s a subcone o f We w r i t e a
ib.
A < B
IA
Conv(F). NOW, we endow t h i s cone w i t h a p r e o r d e r r e l a t i o n .
B
i
t h e r e i s some
b E B
such t h a t
i s t h e n a preordered cone under t h i s p r e o r d e r r e l a t i o n .
We c o n s i d e r two elements
<
a E A
i f f o r every
Convo(F)
A < B and
i s t h e convex h u l l o f a f i n i t e s e t }
A
E Conv(F),
A
.
A, B E Convo(F)
t o be e q u i v a l e n t
(A
- B)
[ A 1 we denote t h e equivalence c l a s s o f A .
By
-
if
Since
was c o m p a t i b l e w i t h t h e cone o p e r a t i o n s i t t u r n s o u t t h a t a d d i t i o n
and R,-
m u l t i p l i c a t i o n a r e class operations, i . e . i f
A2
then
N
B2
for all
A1,
A1
x2
2 0
B1
and
I
< i s a c l a s s o r d e r i n g , i . e . A < B i f and o n l y i f r\ 4 B f o r a l l r\ E [ A ] and B E [ B l . P u t t i n g a l l t h i s i n f o r m a t i o n t o g e t h e r we o b t a i n t h a t t h e q u o t i e n t o f (Convo(F), < ) w i t h r e s p e c t t o i s an ordered cone. To be more p r e c i s e , Moreover
-
L F = {[A]
1A
E Convo(F)l
i s a cone i f we d e f i n e
and
5
g i v e n by
[A1 5 [ B l
if
A< B
i s an o r d e r r e l a t i o n which i s c o m p a t i b l e w i t h t h e cone s t r u c t u r e . If n o t o t h e r w i s e mentioned
L F w i l l always be endowed w i t h t h i s p a r t i c a l u a r
order r e l a t i o n . It i s c l e a r t h a t
[A1 v [ B l
= [<
A
u
LF
B >] ,
i s a l a t t i c e cone, s i n c e
Order Units and Lattice Cones
The map
F 3 f
[Cfll
-,
We denote t h i s map by 2.8.3 Let
F
i s a monotone l i n e a r map from
L and i n s t e a d o f
[ I f } ] we w r i t e
into
LF
.
*f.
Lemma: be a l a t t i c e cone and l e t
G
_ .
127
TI
: F
-,
G
_be_a
monotone s u b l i n e a r map.
Then t h e r e i s a u n i q u e l y determined -l a t t i c e cone subhomomorphism ---L F -+ G w i t h TI* o L = T I . -For every [A1 E L F _ we -have rr*[Al
=
Ia
sup{n(a)
from -
TI*
E A}.
Proof:
A E [ A 1 and d e f i n e
Pick
n*[Al = s u p ( n ( A ) ) . Then
sup(n(A))
T I * [ A I i s unambiguously d e f i n e d . To see t h i s we t a k e a b E B
that for
t h e r e i s an
a E A
with
b
, and
i s t h e convex h u l l o f a f i n i t e number o f elements by monotony o f TI t h a t TI(b ) Hence s u p ( n ( A ) ) = s u p ( n ( B ) ) .
I sup(n(al),.
IT* i s a l a t t i c e cone subhomomorphism w i t h
L
. Then
T o
t
> E [A]. This implies
= TI
[A]
T[AI
Hence, SO,
T
=
TI*,
=
for
=
[A] E L F a E a1
sup{*a
suplT(*a)
and
TI*
Ia
>
we g e t
= sup n(A).
= TI
NOW, c o n s i d e r a second l a t t i c e cone subhomomorphism < a
A =
since
a = l a l,...,anl
. . ,n(an)) n*o
e x i s t s and
B E [ A ] and r e c a l l
. : LF
T
we f i n d a f i n i t e s e t
-,
a c F
G with
with
.
E a} = s u p l n ( a )
1a
i s unique.
E a1
=
n*[Al
.
0
S p e c i a l i z i n g t h i s t o monotone l i n e a r maps we o b t a i n :
2.8.4 (LF,L)
Consequence: i s a f r e e l a t t i c e cone o v e r
(F, < ).
To a v o i d an abundance o f n o t a t i o n we w r i t e t a c i t l y assume t h a t by t h e map L
.
L F instead o f
( L F , L ) and we
F i s ( n o t n e c e s s a r i l y i n j e c t i v e l y ) embedded i n L F
Another consequence of 2.8.3 F
i s t h a t f o r a l a t t i c e cone
L
---I)LF
b
G
t h e diagram
Linear Functionals
128
can be uniquely completed t o
F
D -
e LF
G
Let us add: 2.8.5 Remark:
( i ) I f I i s an order u n i t of ( F , < ) then *I i s an order u n i t of L F . ( i i ) I f ( F , < ) i s negatively generated then L F i s negatively generated. Proof: ( i ) I t i s obvious t h a t *I i s s t r i c t l y p o s i t i v e . Let [ A ] E L F and pick Then t h e r e a r e a f i n i t e set I f l , ...,f n ) = a c F such t h a t < a > E [ A ]
.
x1 ,... , A n
(by d e f i n i t i o n )
Put 6
=
n
then
t hi,
i =1
2 0
such t h a t
fi < hi I , i=l,...,n.
f i < 6 1 , i = I , ...,n . Hence,
( i i ) Again f o r an a r b i t r a r y
[A] E L F
take a f i n i t e s e t a
=
{fl,...,fn)
i n F such t h a t [ < a > ] = [ A ] . Since F i s negatively generated t h e r e a r e g l , . . .,gn < 0 such t h a t gi t f i < 0, i = l , . . . , n .
Put g
n
gi i =1 This shows t h a t = E,
Y
then g LF
t fi < 0
f o r i = l ,...,n.
i s negatively generated.
Hence *g t [ A 1 5
0
0
A t the end of t h i s s e c t i o n l e t us return t o Lemma 2.8.3. I t s content i s t h a t f o r a l a t t i c e cone G t h e r e i s a uniquely determined map *
.
129
Order Units and Lattice Cones
(mapping
n on n*) f r o m t h e cone o f s u b l i n e a r monotone maps
LF
i n t o t h e cone o f l a t t i c e cone subhomomorphisms
n
n*
=
2.8.6
o
+
F
+
G
such t h a t always
G
1 holds.
Proposition:
The map * i s sublinear. -Proof: For an a r b i t r a r y
[A1
that
[A] E L F
= [].
s u b l i n e a r monotone
a = {fl,
pick a f i n i t e set
...,f n l c F ...,n l
Then we have n*[A1 = s u p I n ( f i )
I
n : F
i s homogeneous.
+
G
. This
*
shows t h a t
i=l,
such
f o r any
Moreover t h i s f o r m u l a y i e l d s :
(n, + n2)* [ A 1
= sup{n,(fi)
t n2(fi)
< sup{n1( f i )
I
= n;
[ A ] + n;
I
...,
i=l, n l
..., .
i=l, n}
[A]
I i=l, ...,nl
+ sup{n2(fi)
Rather u s e f u l i s t h e f o l l o w i n g c r i t e r i o n 2.8.7
Theorem:
be monotone -l i n e a r maps F L e t u1 ,u2 value
(iii)
not -i s _
- m
there i s a ---
+
R
,
i.e.
here
a t t a i n e d . Then t h e f o l l o w i n g
A t 0
such t h a t
u1
=
R
= R
and t h e
I_-
equivalent:
x ( u l + p2)
.
Proof: (iii) + (i)
i s a consequence of t h e f a c t t h a t
(1-A) u l = x u z (i)
=+
(ii):R e c a l l , t h a t f o r
p*(*f
*
i s homogeneous, because
i n view o f ( i i i ) .
v *g) = max(u*(*f),
f,g E F we have i n general u*(*g)) = max(u(f),u(g)).
130
Linear Functionals
Application
t o our special case y i e l d s :
max(ul(f),vl(g))
+
max(v2(f), v 2 ( g ) ) = m a x ( ( q
which has ( i i ) as an immediate consequence. ( i i ) * ( i i i ) : P u t v = u1 t p 2 and assume t h a t v ( f ) and v ( g ) a r e both either
I 0
o r 2 0. Then v ( ) v ( f ) l g ) = v ( \ v ( q ) l f ) , and ( i i ) implies
! q ( l v ( f ) l g ) = q ( I v ( 9 ) l f ) . Hence,
whenever v ( f ) and v ( g ) have t h e same s i g n . I f v ( g ) and v ( f ) have opposite s i g n s , then say v ( f ) . And ( * ) applied t o this case gives
v ( f t g ) has the sign o f ,
Using t h e f a c t t h a t v i s a d d i t i v e , we see t h a t ( * ) is valid f o r a l l f , g E F. I f v = 0 then ( i i ) shows y1 = 0 and ( i i i ) i s t r i v i a l . So assume v(g) 0 f o r some g E F . I f v ( g ) < 0 then by ( i i ) we get pl(g) I 0 , and v ( g ) > 0 implies pl(g) 2 0. In any case
q(9) ~
v(9)
-
x
2 0
. Inserting
t h i s i n ( * ) gives the desired
result. 2.9
SIMPLICIAL CONES
Let (F,< ) and ( G , < ) be s t t i c e cones and denote by A ( G ) and t h e cones of 1 a t t i c e cone homomorphi sms , o r subhomo'morphisms S A (F,G) respectively, from F t o G ; i . e . A ( F , G ) = {u
SA(F,G) =
1 u ~p I
: F
p : F-GI
GI
.
Recall t h a t L denoted t h e canonical embedding o f F i n t o L F . Then we have t h e following remarkable property
Order Units and Lattice Cones
2.9.1
131
Theorem:
There i s a l i n e a r map u : S A ( F , G )
---__.-
S A ( L F ,G)
--f
-with the
following
properties: (i)
~ ( p o) L = p
(ii)
u
for all --
A(F,G)
into
p E SA(F,G) A(LF,G)
Proof: Consider
I* g i v e n by L F
-b
LF
( I
and d e f i n e
~ ( p =) p
o
I*. Then u
I i s t h e i d e n t i t y map from F onto F )
has t h e r e q u i r e d p r o p e r t i e s .
n
This property gives r i s e t o the f o l l o w i n g d e f i n i t i o n : 2.9.2
Def in i t i on:
A preordered cone (F,< ) i s c a l l e d s i m p l i c i a l i f t h e r e i s a l i n e a r map z : FT -+ ( L F ) : from t h e p o s i t i v e dual cone o f F i n t o t h e p o s i t i v e dual cone o f L F such t h a t z ( p ) o L = 11 f o r a l l LI E F: . R e c a l l , t h a t t h e p o s i t i v e dual cone monotone l i n e a r maps from
F
into
F: R
of (not
(F, < )
R),
was t h e cone o f a l l
and t h a t we assumed t h i s
cone t o be endowed w i t h i t s n a t u r a l o r d e r . So, a c t u a l l y , t h e n o t i o n " s i m p l i c i a l " depends on what k i n d o f image space Therefore, i f we have s e v e r a l
R
, we
R we have considered.
speak o f R- s i m p l i c i a l i n s t e a d o f
s i m p l i c i a l . F o r s i m p l i c i a l cones t h e map
z
i s u n i q u e l y determined
( t h e r e f o r e we may c a l l i t t h e s i m p l i c i a l map). T h i s f o l l o w s from t h e
f o l l o w i n g more general r e s u l t : 2.9.3 Theorem: L e t L -be t h e danonical embedding o f (F, < ) i n t o L F and l e t IT : FT (LF): z ( ~ o ) L = i.1 f o r a l l be a l i n e a r map w i t h p E F: -----+
.
132
Linear Functionals
-Then f o r a r b i t r a r y , with
v o
1
=
~3
*
u E F,
for all
cp
we have
E LF
t(p)(cp) =
s u p I ~ ( c p ) I v E (LF)*,
.
Proof: Consider an a r b i t r a r y element and l e t
<
CV E (L F
be t h e supremum o f
Theorem 2.4.7
there are
v~,.,.,v
that ;(*fl
(*)
Put
pi
Put
3,
(*I:
= v
0
i = t(pi).
L
, then
v
... v
)T I
n E (LF);
v
R
0
with
ui(*fi) Vi(*fi)
F
= p l . Accordinq t o v1
+...+ un = V
such
.
= ui(fi)
v1 +...+ un
and
= p . ( f . ) = ;.(*f.) 1
..., fn E
fl,
with
n *f ) = II Vi(*fi) n i=l
we have
Then because
*fn E L F
*flv...v
1
1
1
=
v.
we may r e w r i t e
n
;(*f,
v...v
*f ) = t Gi(*fi) i=l
Here, t h e i n e q u a l i t y was a consequence of t h e monotony
.
t h e l a s t e q u a l i t y came from t h e l i n e a r i t y of II Hence, B u t 3 2 r ( p ) f o l l o w s immediately from t h e d e f i n i t i o n o f Note t h a t , by d e f i n i t i o n , every l i n e a r map from
F:
to
o f the
V
V
iii , and
I t(1.1).
.
(LF):
0
i s mono-
tone w i t h r e s p e c t t o t h e n a t u r a l orders. We want t o show n e x t t h a t f o r a l a r g e c l a s s o f cones ( t h e n e g a t i v e l y generated ones) s i m p l i c i a l i t y i s c o m p l e t e l y c h a r a c t e r i z e d by t h e t h e p o s i t i v e dual cone. A t f i r s t , Theorem 2.9.1 immediately y i e l d s :
2.9.4
Remark:
Every l a t t i c e cone i s s i m p l i c i a l .
FSP o f
133
Order Units and Lattice Cones
2.9.5 Let
_ .
Theorem:
F be n e g a t i v e l y generated --and assume t h a t
has t h e FSP. Then --
Ff
i s simplicial.
F
B e f o r e we proceed t o t h e p r o o f o f t h i s theorem we l i k e t o r e c a l l some f a c t s which a r e h i d d e n i n c h a p t e r 2.6. Consider
@+
= {v
Iv
: Ff
R+ l i n e a r }
+
Ff
those l i n e a r f u n c t i o n a l s on
and
@ = @+-
@+,
t h e cone o f
which a r e d i f f e r e n c e s of p o s i t i v e
functional s. 2.9.6
Remark:
Ff
( i ) If
FSP
has t h e
then
i s an o r d e r complete v e c t o r l a t t i c e
0
( w i t h r e s p e c t t o t h e p o i n t w i s e o r d e r on F f ) . ( i i ) I f F i s n e g a t i v e l y generated t h e n t h e r e i s a monotone l i n e a r map E
:(Fa<)
+ (0,
Ff)
p o i n t w i s e o r d e r on
E(f)(u) = p(f)
for a l l
with
II E Ff,
f E F
.
Proof: ( i ) Lemma 2.6.1 y i e l d s t h a t
i s a complete l a t t i c e cone. NOW, i t i s a
@+
standard procedure (see p r o o f 2.6.2 vector l a t t i c e out o f l o w e r bounded subset
@
. This
A c
where
b
-
b) + b
A.
i s a l o w e r bound o f
( i i ) We know t h a t
Ff = ( F
i s done b y d e f i n i n g t h e infimum f o r a
t o be
@
inf(A) = inf(A
( i i ) ) t o make an o r d e r complete
- F):
(Lemma 2.6.7).
Denote by
cl
the
- F) and d e f i n e c ( f ) t o be FT 3 u + p ( t l ( f ) ) = v ( f ) . Since ( F - F) i s n e g a t i v e l y generated (Lemma 2.6.5 ( i i i ) ) .cl(f) can be w r i t t e n as 'p, - 'p2 where 'p,,'p2 E ( F - F)+.
canonical monotone embedding
F
+
(F
Hence, c ( f ) i s t h e d i f f e r e n c e o f two p o s i t i v e l i n e a r f u n c t i o n a l s , i . e . E maps F i n t o o . 0
Linear Functionals
134
P r o o f o f 2.9.5: Consider
o as i n remark 2.9.6.
t h i s remark and d e f i n e
13 : FT
Let
: F + Q
E
by
+
be t h e map o f p a r t (ii) of
p(p)(cp) = ~ ( p ) ,p E FZ, cp E
a.
Then
(*) NOW, l e t L , +
La
, and
B ( ~ o)
E = p
for a l l
p E
be t h e c a n o n i c a l embedding o f
FT
.
( a , FZ- p o i n t w i s e o r d e r )
c o n s i d e r t h e l a t t i c e cone homomorphism
p :
LF
+
L
given
by t h e fol1 owing diagram
F
D
e LF
a i s a l a t t i c e cone (2.9.6 ( i ) ) t h e r e i s a l i n e a r map : a: + ( L Q): w i t h i ( v ) o La = v f o r a l l v E a: (Theorem 2.9.1).
Since
2
D e f i n e a l i n e a r map 1 : F:
+
(LF);
by
Then
Hence, 2.9.7
F i s simplicial.
0
Theorem:
L e t (F, < )
simplicial.
Then
FT
has t h e
FSP
and
FT
2a
lattice
cone (with respect t o- _ i t s_n a_ t u-r a l o r d e r , -o f course). Proof: We know t h a t
(LF)?
has t h e
FSP and i s a l a t t i c e cone (Theorem 2.6.8).
135
Order Units and Lattice Cones
Let
x
: Ff
( L F):
-,
d e f i n e s a l i n e a r map into
v
be t h e s i m p l i c i a l map. We remark t h a t (LF)f
-,
FT
e
, where
-, v o
i s t h e embedding o f
L
F
LF.
E Ff
NOW, c o n s i d e r a r b i t r a r y
x(il)
Z(vl) + x(p2) =
Then (i,k
= 1,2)
x(u)
o
Since
with
I =
LI
U.
0
ik
l(pi)
( i , k = 1,2) w i t h
+ Z(G2)
and t h e
FSP
gives
= v il + v i 2 3
x(;k)
= vlk
+ V2k
+
pl
vik
p2 =
G1 + i2.
E ( L F ) ~
Because
*
we g e t :
L E Ff , t h i s cone must have t h e FSP.
I t remains t o prove t h a t Ff i s a l a t t i c e cone. Consider a r b i t r a r y pl,p2 E Ff . We c l a i m t h a t a = (x(pl) v x ( p 2 ) ) o L i s t h e l e a s t upper
bound o f
u1
and
t h i s shows t h a t since L
in
p2
Ff
FT
. Since
t h e d i s t r i b u t i v e l a w i s easy t o check
i s a l a t t i c e cone.
a
i s an upper bound o f
i s monotone. Now l e t 1-1 be a second upper bound.
{pl,p2}
Recall t h a t
i s monotone w i t h r e s p e c t t o t h e n a t u r a l o r d e r s s i n c e i t i s l i n e a r . must be an upper bound o f Hence,
~ ( p 2 ) Z(p,)
x ( p l ) , Z(u2).
v x(p2).
Application o f
Hence f o r a n e g a t i v e l y generated cone valent t o the
FSP o f
F:
.
F
L yields
simpliciality
p 2
of
a
F
.
E X(v)
So
0
i s equi-
A t t h e end we would l i k e t o mention t h a t s i m p l i c i a l i t y f o r a g i v e n cone
can be proved by l e t t i n g an a r b i t r a r y l a t t i c e cone p l a y t h e r o l e o f
F
LF.
This, o f course, i s no s u r p r i s e s i n c e i t i s an immediate consequence o f t h e u n i v e r s a l n a t u r e o f t h e f r e e l a t t i c e cone. 2.9.8
Theorem:
L e t T : (F, i) -, ( G , < ) -be l i n e a r map from i n-t o a _ a monotone ~ -F l a t t i c e cone G . ~ Assume t h a_ t t h_ e r e_i s _ a l_ i n e_ a r map ~__ _ -u : F: + GI: between t h e p o s i t i v e ---dual cones such t h a t ~ ( p )0 T = p -f o r a l l p E FT . Then F i s simplicial.
Linear Functionals
136
Proof: Consider
g i v e n by
T*
R
-D
F
LF
n
b
and d e f i n e x(p) = u(p)
Then z
0
T*
.
i s t h e s i m p l i c i a 1 map.
0
Under a d d i t i o n a l assumptions one can a l s o prove t h e e x i s t e n c e o f such a l i n e a r map 2.9.9 Let -
-, G:
: FT
(J
. L e t us
consider the f o l l o w i n g
Situation: T : F
(F,<,I)
+
monotone l i n e a r map from a s i m p l i c i a 1 o r d e r u n i t cone
G
i n t o a l a t t i c e cone
G.
Assume f u r t h e r m o r e
that R
= R
and t h a t
(i) G -~ i s l a t t i c e generated by T(F), i . e . G ---i t s e l f i s t h e Only l~~a t t i c e subcone of G which c o n t a i n s T(F)
.
(ii)
For
p E
-we have u ( f l )
F:
w i t h T(fl)
1. T ( f 2 )
Iv ( f 2 )
whenever
.
2.9.10 Lemma:
-I n the
s i t u a t i o n 2.9.9 we have f o r a r b i t r a r y
u(u)(g)
=
def
fl,f2 E F
sup{w(g)
Iv
E GT w i t h
* and
u
E F,
v
0
T = PI
g E
G
137
Order Units and Lattice Cones
Proof: Some obvious remarks f i r s t . Because o f 2.9.9 o r d e r u n i t , namely
IG = T(1). L e t
a unique monotone l i n e a r
: T(F)
+
such t h a t
R
p = ~(1)s
consider the sublinear
G
on
IG
( i ) t h e cone
, then
E FI
p
. Then
t h e E x t e n s i o n Theorem t h e r e i s a monotone l i n e a r v o T = p
.
But then t h i s functional
i t does n o t a t t a i n
g = T(fl)
--
v . . . v T(fn).
...,fn E
F
The element
v = v1
E FT and
g EG
VOT= v
with
+...+
pi
.
P IT(F)
v : G +
6
g
of
G
u(p)
Now, and by
such t h a t GT
because
a r e o f the form ( i ) ) . Hence
i s nonempty.
g E G.
vn
= vi
g = T(fl)
i s o f the form
. Theorem
2.4.7
v . . . v T ( f n ) . NOW, t a k e any
g i v e s us
v1
,...,v n
E GT w i t h
such t h a t n
where
5
p
ZG(v) 2 u ( v ) :
Proof t h a t
u E GT
p
T =
(consequence o f 2.9.9
t h e s e t appearing i n t h e d e f i n i t i o n o f Consider a r b i t r a r y
( i i ) there i s
must be an element o f
v
s i n c e a l l elements fly
o
has an
G
by 2.9.9
o
T
n
and
v
= pl
+...t
pn.
Put
L F 3 cp = &(fl)v
and we g e t f r o m t h e l i n e a r i t y of t h e s i m p l i c i a 1 map I: t h a t :
...v & ( f n )
Linear Functionals
138
Proof t h a t Take any
Gl,...,G
where v
i
~pE
d(f,)v
cp =
o
u( p ) 2 ZG(11):
n
pi
T =
...v
LF
with
d(fn)
E LFf
= pi
Gi o and
T*(V) = g. Then
(Proposition
with
x(p) =
G1
+...+ V-,
must be o f t h e form Again t a k e
such t h a t
. I n p a r t i c u l a r p = x p i . Now, n p u t v = x vi . Then v o T = p d
i=1
5
(
take
vi E
with
GT
and we o b t a i n :
n
n
2.9.11
~p
2.8.2).
n
x
i=1
vi)
(T(fl)
v...v
T(fn)) = v(g)
.
Theorem:
I n t h e s i t u a t i o n 2.9.9 ----t h e r e i s a unique l i n e a r u : FT -u ( p ) o T = p f o r a l l p E F: . Furthermore -we have ( 9 ) = sup{v(g) f o r a l l p E FT --
and g -
E
1v
E
Gr w i t h
v o T =
+
GT wit.h
PI
G.
Proof: Let
u : FT
Consider
-,GT
v E
be l i n e a r w i t h
~ ( p 0 )
T =
GI: and g E G , say, g = T(fl)v
p
for all
...v
1-1 E
T ( f n ) , fl
FT
.
,...,fn E F .
Order Units and Lattice Cones
2.4.7 we g e t
Again, from Theorem such t h a t
Put of
T
u.1
and
implies: v(g) =
Now, c o n s i d e r t h e
CI
= V. o T
i=1
u
u
then
1
n 1 ui(fi) 5
Hence ( * ) must h o l d and
with
tl =
vl+
...t
vn
. And
= u1 t...t un
~ ( u ) ( T ( f 1 ) v ...v T ( f n ) )
the l i n e a r i t y
= u(v)(q).
must be unique i f i t e x i s t s .
g i v e n i n Lemma 2.9.10.
u ( u ) i s by d e f i n i t i o n
Then
I I G ( u ) (same lemma) i s by d e f i n i t i o n super-
s u b l i n e a r . But t h e f u n c t i o n a l l i n e a r and f u r t h e r m o r e t h e map t y o f t h e s i m p l i c i a 1 map. Since
2.10
*
E G+
vl,...,vn
n
p = v o
u
139
1-1
xG(u)
+
i s l i n e a r because o f t h e l i n e a r i -
EG(u) = u ( u )
e v e r y t h i n g i s proved.
o
CHARACTERS
L o f a p r e o r d e r e d cone
Again we s t u d y t h e canonical embedding i n t o t h e f r e e l a t t i c e cone
LF
LF
g i v e n by
we c a l l t h e map on
F
generated by
F i s equal t o
2.10.1
II : F
i s always s p e c i f i e d t o be
a monotone l i n e a r f u n c t i o n a l p
.
p*
-,6
: LF
.
F o r a g i v e n map rp on
L the restriction o f
rp o
NOW, c o n s i d e r a monotone l i n e a r f u n c t i o n a l o u r g e n e r a l cone
F
6
(F, < )
-,
li
F
to
rp
( i n t h i s section
! ) . We know t h a t t h e r e i s
such t h a t i t s r e s t r i c t i o n t o
Definition:
A monotone l i n e a r f u n c t i o n a l
: F
-,
Ii
i s s a i d t o be a general c h a r a c t e r
: L F + l i such t h a t if t h e r e i s o n l y o n e monotone l i n e a r f u n c t i o n a l i; o L 2 p . I n case o f an o r d e r u n i t cone c h a r a c t e r denotes a qeneral
c h a r a c t e r which i s a s t a t e . Before we c o n t i n u e we l i k e t o r e c a l l t h a t f o r a monotone l i n e a r (L
l a t t i c e cone) t h e c o r r e s p o n d i n g
2.10.2
If -
p*
p
: F
i s m i n i m a l . More p r e c i s e l y :
-
Proposition:
T : LF
+
L
i s monotone -
linear with ___-
T
o
L
2 p
then -
T(rp) > p*(rp)
-,
L
.
Linear Functionals
140
-for all
cp
E L F.
Proof:
.
Consider a r b i t r a r y f l y . . , f n E F. Then T ( * f l v .
- *f n ) .V
> T ( * f i ) > P ( f i ),
i = 1, ...,n . Hence T(*fl v . . . v * f n ) > max(p(fl) ,...,p ( f n ) )
=
p*(*fl v . . . v * f n ) .
This proves the desired i n e q u a l i t y s i n c e a l l elements of k i nd.
L F are of this
0
Characters a r e closely r e l a t e d t o maximal monotone 1 i n e a r f u n c t i o n a l s . Where a monotone l i n e a r functional p : F + fi i s s a i d t o be maximal i f we have v = LI whenever v : F -,fi i s monotone l i n e a r with 1-1 5 v
.
Observe t h a t a general character p i s maximal s i n c e II < p* 2 v* We study the following s i t u a t i o n :
*v
.
implies
Let G be a l a t t i c e cone such t h a t t h e r e i s a s u r j e c t i v e l a t t i c e cone G . Furthermore we assume t h a t f o r every homomorphism y : L F monotone l i n e a r v : L F -, 6 t h e r e i s a monotone l i n e a r G : G + 6 w i t h w I o y. By 6 we denote the map y o 1 : F -,G .
<
2.10.3 Lemma:
a r e equi Val e n t : The fol 1 owing -
5a
general c h a r a c t e r of F
(i)
p
(ii)
P = i; o 6
G-6.
.
, where G -----i s maximal and a l a t t i c e cone homomorphism
Proof:
Let ii be any monotone l i n e a r map G + f i w i t h p* 5 G o y (by assumption there i s a t l e a s t one such G ) . p i s a general c h a r a c t e r , hence we have f o r a l l these G t h a t p* = i; y Since y i s s u r j e c t i v e , so t h e r e i s only one such i An t h i s equation uniquely determines immediate consequence of t h e uniqueness i s t h a t 11 i s maximal. Now, consider a r b i t r a r y g l , . . . , g n E G. Then t h e r e a r e cp,,...,cp,, E LF ( i ) 3, ( i i ) :
.
with y(cpi) obtain
=
g i . Since
y
and
p*
.
a r e l a t t i c e cone homomorphisms we
Order Units and Lattice Cones
i s a l a t t i c e cone homomorphism.
So, (ii)
141
v
( i ) : Let
be any monotone l i n e a r map
LF
.
-,6 w i t h
w o
L
t v,
ii be as i n ( i i ) . Since 11 o y i s a l a t t i c e cone homomorphism L F -, E w i t h G o y o 1 = p we have V o Y = LI? and from P r o p o s i t i o n 2.10.2 we g e t ii o y = LI*I w . Now, by We have t o prove t h a t
assumption on Hence,
11
0
w = LI* L e t
t h e r e i s a monotone l i n e a r
G
y = LI*I u I 5
j e c t i v e ) , and t h e r e f o r e
2.10.4
o
y
i; =
, which
3 : G
-,
iI
U
implies
v I3
with
(because y
V since 11 was maximal. Thus
.
U*=Y
o
y.
i s sur-
Corol l a r v :
2
(F, < ) ---be a l a t t i c e cone. Then LI : F -, r? a general character if and o n l y i f p i s maximal and a l a t t i c e cone homomorphism. --Let -
_ ~ - _ - -
Proof: We have t o show, t h a t here t h e r e q u i r e d assumptions o f Lemma 2.10.3 on hold f o r
G = F. L e t
I
be t h e i d e n t i t y map
F
-,F
G
I*
and consider
given by:
Put Y = I*. I n o r d e r t o apply Lemma 2.10.3 we must show t h a t f o r every monotone 1 i n e a r
v : LF
+
6
t h e r e i s a monotone l i n e a r
: F
-,
6
with
U O I * 2 " .
A t f i r s t we have
L
o
I*(q) 2
(P
for a l l
cp E L F
i n e q u a l i t y f o l l o w s ifwe apply P r o p o s i t i o n 2.10.2 since, c l e a r l y ,
L*
must be t h e i d e n t i t y map o f
by 2.10.2. to
LF.
L =
Indeed, t h i s
LF, T
=
L
o
I*
142
Linear Functionals
So i f
<
v : LF
<
+ E i s monotone, l i n e a r , then
S o I* 2 v . Since we have here 0 the a s s e r t i o n follows from 2.10.3.
= v o L ,has t h e property t h a t
y o L = I*
o
L = I
Application of 2.10.3 and 2.10.4 t o the case G 2.10.5
: F + f i ,given by
=
LF
y i e l d s immediately:
ProDos i t i on:
The general
characters of L F t o F. -
2
F -are the restrictions o f t h e general -characters~
B u t s t i l l another i n t e r e s t i n g c h a r a c t e r i z a t i o n of c h a r a c t e r s i s a v a i l a b l e . F i r s t a d e f i n i t i o n . Let f be an element of a preordered cone ( F , < ). We say t h a t f l i e s i n an extreme ray i f t h e r e i s a 1 2 X > 0 with e i t h e r g1 = x f or g2 = x f whenever f < g1 + g2, g1,g2 E F. Of course, i f -_.
6 > 0 {
6f
I
then 6 > 01
d f l i e s i n an extreme ray whenever f does, and i s then c a l l e d the extreme ray generated by f.
Now, l e t A be a convex subset of F. Then a E A i s c a l l e d an extreme point of A i f a = f l = f 2 whenever f l , f 2 a r e elements of A and 0 <
x
< 1 with
a < x f l + (l-x)f2
.
2.10.6 Theorem: Let be a preordered --cone and endow - (F, <) order on F . Let !.I E (F, < ) * -i)
( F , < ) * -with t h e pointwise
Consider t h e following conditions: (1) p & a general character, l i e s- i n-an~ extreme ( 2 ) !.I _ -ray-and- we-have e i t h e r o r R c !.I(F) = I u ( f ) I f E FI.
1-1 =
0
Then i n general In case t h a t 1-1 ---does not a t t a i n the - (1) implies ~ ( 2 ) . --we have i n addition t h a t ( 2 ) implies (1). value - = --ii)
I f ( F , < ) ------i s an order u n i t cone then the following are equivalent: (1) (2)
(3)
!.I !.I
1-I
i s an extreme point ---of the s t a t e space character i s a s t a t e and belongs ---t o a n extreme ray.
jsa
~
143
Order Units and Lattice Cones
The p r o o f i s , more o r l e s s , a s t r a i g h t f o r w a r d a p p l i c a t i o n o f 2.8.7. Nevertheless, f o r m a l l y , it becomes a b i t c o m p l i c a t e d because i n general l i n e a r
-m
- m . And
f u n c t i o n a l s can a t t a i n t h e v a l u e
i?
plays a very u g l y r o l e i n
s i n c e t h i s element d e s t r o y s t h e c a n c e l l a t i o n law. Proof:
i)(1) =+ (2): F i r s t we show t h a t R c character. I f p =
0
since
does n o t c o n t a i n a
p(F)
m
< 6< 0
t h e m a x i m a l i t y . So t h e r e i s some
s
u2,
pl t
pl,p2
canonical e x t e n s i o n s t o p
*
+
p* = p i
p;
I p;
,in
I p(f)
F
FP = I f E p
u2)*
I( p l t
3,
hence
=
p =
x2 0
Thus
p
E (F, < ) *
. Since
particular
> -
m}
p = pl t p2.
< p(f2) < 0
and
p*,pT,
the
p;
Now c o n s i d e r t h e cone
11 , p.l .,p2
the restrictions o f
G1= x1
o f 2.8.7 y i e l d s
x 1 , A2
x1
> 0. I f
-
F = F,
=
x2
. So,
=
0 then
F
11
,
p
,
p I 0
xl>o.
we can assume
which y i e l d s , by d e f i n i t i o n o f
I
-1
x1 u1
.
must b e l o n g t o an extreme r a y . L e t us p o i n t o u t what d i f f e r e n c e t h e r e s t r i c t i o n o f p
i s i n an extreme r a y and
p I
n E
i=1
ui
i n d u c t i o n and t h e d e f i n i t i o n o f extreme r a y , t h e r e a r e pi
=
xi
p
i=l, ...,n.
Take an a r b i t r a r y monotone l i n e a r Then
u ( f l ) > 0.
contradiction t o
i s a general c h a r a c t e r t h i s i m p l i e s
p
i s maximal) and
p
= h i 1 i;,
r e a l values makes: I f
such t h a t
m
and denote by
and denote b y
for suitable
i)(2) ;+ (1):
then, by
-
,a
LF. Then, b y P r o p o s i t i o n 2.8.6, we have 1-1;
t
(since
b
This gives
4
which i m p l i e s
p 5 0
fl E F w i t h
< 2p
f2 E F w i t h
,pl,p2 t o t h a t cone.Application
and
p
i s a general
X 2 f 2 ) IXl,h2 2 0).
R = { p ( X l fl+ p
then
*0
p
then
6 > 0
i s maximal. Hence t h e r e i s some
p
NOW, i f p ( F ) c o n t a i n s no -
Assume
whenever
p(F)
p* 5 v
LF
-,i?
with
v o
L 2
, pi
v . . . v * f n ) I p* ( * fl
fly...,fn E F. Theorem 2.4.7
v...v
to
E(F,<~
xi
p.
( P r o p o s i t i o n 2.10.2) and i t remains t o prove v(*fl
for arbitrary
v :
p
*fn)
g i v e s us l i n e a r monotone
t 0
Linear Functionals
144
...,v n on
v1, Put
pi
1
1
=
LF w i t h v = v l t . . . t v n
v
i p?(*f.),i=l,...,n.
o
such t h a t
pi
=
t h i s implies
x
xi
the
L . Then i n p a r t i c u l a r z Since
p
x 1. ~ , i=l,...,n.
n I: xi i=1
5
and
pi 1 p
Put
= 1, and i n case
Xi then
A = I:
p i ( f . )1 =vi(*fi)
x
we can have
LI = 0
E vi(*fi).
ray there are
belongs t o an extreme
=,
p
* ( *f l V ...V * f n )
I
x
U*(*
=
Xi
2 0
t p . I f R c p(F)
p
x
= 1 by changing
...V*f,)
flV
=
lJ*(*
( 3 ) : T h i s i s an immediate consequence o f i) ( 1 )
( 1 ) : Take s t a t e s pl,p2 w i t h i i ) (3) p belongs t o an extreme r a y t h e r e i s a Evalution a t 1 2 p2 =
i
p2 t
I yields 1
=
. Another
p2
i>
extreme r a y g i v e s a =
u(*fl v . . . v * f n ) =
s u i t a b l y . Now, we have
,
ii)( 2 )
such t h a t
x
and
x
(2).
i,
ult(l-x)p2,
0 .c
p2 =
x
X > 0 such t h a t , say,
p.
< 1. Since X
=X
pl
p.
T h i s gives
p1 = p .
a p p l i c a t i o n o f the f a c t t h a t
with
0
p I
...V*f,).
flV
i s an
p
Again, e v a l u a t i o n a t
i
I gives
1 and p 2 = p .
i i ) ( 1 ) * ( 2 ) . Take a monotone l i n e a r v : LF + 6 w i t h v o L 1 p . Then u must be a s t a t e s i n c e I i s an o r d e r u n i t f o r LF. Since p* 5 v ( P r o p o s i t i o n 2.10.2) we have t o show t h a t where
fl,...,fn
... ,Gn
U(W)
I p*(lp)
a r e a r b i t r a r y . Theorem 2.4.7
LF such t h a t
f o r cp=*flv
...v * f n
g i v e s monotone l i n e a r
Gi
and v ( q ) = I: Gi(*fi). When -1I f Ci(I) I 0 then, and v i = xi vi. Gi(I) > 0 t h e n we d e f i n e xi = ;i(I) 3i S O . I n t h i s case we p u t s i n c e we a r e d e a l i n g w i t h an o r d e r u n i t cone,
v1,
on
E F
v = I:
So, we have found s t a t e s vi and X 1. t 0 w i t h i E v a l u a t i o n a t i *I g i v e s again v 5 I: x . v and v ( q ) s 1 xi vi(*fi). i i I: a . = 1. NOW, proceed as b e f o r e . D e f i n e s t a t e s on F by pi = uio t A. = 0 1
and
u = p*.
1
Then I:
xipi
t p
.
we o b t a i n
Since
p
i s an extreme p o i n t we have
n
n 1 x.p.(f.) i=1 1 1 1
v(w) I I: AiUi(*fi)
=
n I: i=1
v...v
i=l
I
xip
* ( *fl
*f n )
=
pi
n I: hiU(fi) i=l
I !.I*(@)
=lip
.
and
Order Units and Lattice Cones
This proves Hence
p
v 5 11
* .
must be a general character.
Sometimes a given cone (F,< ) subcone of a given l a t t i c e cone given functional i s a character, L F by L . I n f a c t , under mild First, some prerequisites. 2.10.7
145
can be considered in a natural way as a
( L , < ) . Then, for deciding whether a i t seems desirable t o replace the role of additional assumptions t h i s can be done.
Definition:
.
Then L i s said Let (F, < ) be a subcone of the l a t t i c e cone ( L , < ) t o be l a t t i c e - generated by F i f the map I*: L F + L given by
F
I\,
e
A LF
$I* L
i s surjective. Of course, t h i s definition i s a fancy way of saying t h a t a l l elements are of the form cp = f l v . . . v f n , with n E N and f l , . . . , f n E F
cp E L
If F i s negatively generated, and i f L i s l a t t i c e - generated by F then i t i s quite obvious t h a t L i s generated by LMoreover, any order unit of F i s then also an order unit of L
.
.
2.10.8
Lemma:
Let L -be l a t t i c e - generated by i t s subcone F . (i) If F i s negatively generated, --then for every some u E L z such that p o I* 2 v . -
v E (L
(ii) If F is an order unit cone, then for every v i s some p E ( L , < ) * -such t h a t p o I* t v --
.
E
F):
-there
( L F , < )*
is
there
.
Linear Functionals
146
Proof: ( i ) We claim t h a t
-,
L 3 g
q(g)
=
sup{~(cp)\v E LF
with
I*(cp) < g l
i s a monotone IR- valued superlinear functional. The only d i f f i c u l t point i s t o show t h a t q ( g ) < m for a l l g E L . For t h i s i t suffices t o show q ( g ) 5 0 for
(*)
This i s so, because q(gl + g2) 2 q(gl) cp 5 0
L +
, and therefore
fl,...,fn E F 0 > *fi
. Hence
for a l l
q, q ( 9 ) 5 0
.
g E L-
i s negatively generated and we always have q ( g 2 ) , g1,g2 E L B u t for I*(cp) < 0 we have
.
~ ( c p ) 5 0.
Indeed
0 > I*(@) > f i
i , hence
cp 5 0
cp =
*fl v...v
for a l l
. Thus,
if
* f n for some
i = l,...,n
g E L-
. Therefore
, by definition of
'
Now, consider the sublinear p ( g ) = - q(g). This i s monotone w i t h respect t o the inverse preorder < ' . We know, t h a t there must be a monotone linear I p . Obviously C ( g ) 5 0 i f g < 0 . Hence, 1; does not a t t a i n the value - a0 ( L i s negatively generated!). So N = - i i s a monotone linear !R- valued functional with LI 2 q . Thus IJ o I* 2 v by definition < I -
of
q
.
( i i ) This case i s much easier. Because now q ( 9 ) i s dominated by the monotone sublinear functional, which i s given by ?, times the order unit functional , where A i s the image of the order unit ( i n L F ) under v Hence, by the Sandwich Theorem we find a monotone linear IJ 2 q . 0
.
For completeness i t should be remarked t h a t i f one i s interested in the transfer o f functionals from F t o G (instead of L F t o G ) then one gets a very similar result (even i f G i s n o t a l a t t i c e cone).
Order Units and Lattice Cones
147
Lemma:
2.10.9
Let (F, < ) be a subcone of
(G, < ).
If
(i)
v
G i s generated by F- , --then for every v E F: E Glf -such t h a t p ( f ) 2 v ( f ) -for a l l f E F.
there -_-
i s some
(ii) If J E F i s an order unit of G , --then for every v E (F, < )* there i s some u E ( G , < ) * such t h a t p ( f ) 2 v ( f ) -for a l l f E F. -__.
Proof:
on G by
( i ) Define p p (9)
=
infI- v ( f ) l g t f s 0 , f E F-)
for a l l
g E G
p i s monotone and sublinear. Moreover we have p ( f ) 2 v ( f ) for a l l f E F, since v i s less t h a n or equal t o zero on FHence (Corollary t o 1.3.1) there i s a monotone linear 1-1 I p with p L v
Then
.
on F. ( i i ) Take the same functional p . Then even i f - v ( f ) i s not always < + the inf s t i l l i s , because there i s always a negative multiple - nJ of the order unit such that g - n J < 0 . NOW, use the same argument as above. 0 B u t l e t us return t o characterize characters by means o f a l a t t i c e cone G:
2.10.10
Let -
Theorem:
G -be lattice-generated by- _ i t s_subcone _
(i)If F is an order unit cone, (character) of F i f a n d only i f general character (character) of
F.
i s- a- general character i t i s the restriction t o F o f some
then -
p
-__-___-
--
G.
(ii) Let F be negatively generated, --and assume t h a t p does n o t a t t ain the value Then v --i s a general character of F -----i f and only i f i t i s -the restriction t o F --of some general character of G -
.
.
~
148
Linear Functionals
Proof: ( i ) Lemma 2.10.8 shows t h a t the assumptions of Lemma 2.10.3 are f u l f i l l e d . Hence, everything i s a consequence of 2.10.3 and 2.10.4. ( i i ) The proof of Lemma 2.10.3 can be carried over completely t o the situation where the assumption on G i s only f u l f i l l e d for those v E L F which do not a t t a i n the value , i f one r e s t r i c t s the assertion of Lemma 2.10.3 t o those LI which do n o t a t t a i n the value - m Hence, one can 0 use the same arguments as above.
-
.
149
Order Units and Lattics Cones
2.11
SOME EXAMPLES
I n t h e preceding s e c t i o n s we considered many d i f f e r e n t n o t i o n s and we gave theorems showing how these n o t i o n s a r e i n t e r r e l a t e d . But we d i d n o t g i v e rtiany examples t o m o t i v a t e t h e t o p i c s we considered. I n t h e case o f v e c t o r spaces t h e r e s u l t s we discussed t h e r e a r e e i t h e r w e l l known
or t h e y a r e c l o s e l y
r e l a t e d t o w e l l known theorems ( s e e t h e standard t e x t [283] ) . O c c a s i o n a l l y t h e c o n n e c t i o n w i t h t h e c o r r e s p o n d i n g " c l a s s i c a l I' r e s u l t s may be hidden s i n c e we use e x t e n s i v e l y t h e n o t i o n o f l a t t i c e cones i n s t e a d o f v e c t o r 1a t t i ces. We l i k e t o emphasize t h a t t h e main r e s u l t s we have proved, i n p a r t i c u l a r Theorem 2.10.6,
t u r n o u t t o be v e r y u s e f u l l a t e r on, e.g.
i n s e c t i o n s 11. 3
and 11. 5. Therefore, t h e main a p p l i c a t i o n s of c h a p t e r I . 2 w i l l be found i n these s e c t i o n s .
A t present, c o n c l u d i n g c h a p t e r I.2, we want t o d i s c u s s some s i m p l e and w e l l known consequences i n o r d e r t o i l l u s t r a t e t h e i n t e r r e l a t i o n between these t o p i c s and t h e t h e o r y o f v e c t o r l a t t i c e s . Although we have i n mind m a i n l y a p p l i c a t i o n s t o Banach l a t t i c e s we cannot h e l p s t a r t i n g a g a i n w i t h cones. Then we i l l u s t r a t e o u r technioues a t Banach l a t t i c e s (among o t h e r examples ) .
2.11.1
Absorbin9 F u n c t i o n a l s and Banach L a t t i c e s .
, c o n s i d e r a preordered cone (F,< ) and l e t S : F +IF+ be an
As usual
arbitrary function. S (fn.Pn) with
E F x IP,
N
1
n=l
pn
,
such t h a t
fn< g
-
i s s a i d t o be a b s o r b i n g i f f o r ever-v seouence forall
1
nQN
Q,
S (f,)
converges, t h e r e i s some
a E F
N E P4.
Examples: i)
L e t (F,< ) be a preordered cone,
i s some
fo E F
with
p : F +IF+ s u b l i n e a r such t h a t t h e r e
f < fo whenever
p ( f ) 5 1.
150
Linear Functionals
Then p i s absorbin!. m
x
1
:=
Indeed, l e t
p(fn) <
hn
m.
such t h a t
( ~ ~ , Ef IP~, )x F
Then we have
n=l
N
1
Hence
ii)
n=l
X n fn I ( X t l ) f 0
for all
N
L e t (F, < , I ) be an o r d e r u n i t cone.Recal1 t h a t t h e o r d e r u n i t
f u n c t i o n a l i s d e f i n e d by N
c o n s i d e r a subcone
Fc F
= inf
SI(f)
such t h a t
I X E IR I f < X I I , f E F. NOW, SI i s IR,-valued on F. Then N
S r l i~s absorbing. T h i s i s a d i r e c t consequence o f t h e f i r s t example. iii) L e t (F, < , I ) be a g a i n an o r d e r u n i t cone such t h a t F i s a v e c t o r w i t h I S I l ( f ) = max (Sr(f),SI(-f)) for all space. Then t h e f u n c t i o n a l lSIl f E F is absorbing. T h i s f o l l o w s a g a i n from t h e f i r s t example. iv)
Let
E
be a Banach l a t t i c e . Then t h e norm
11.11
on E i s absorbing.
--
R e c a l l , a Banach space E i s c a l l e d a Banach l a t t i c e i f l a t t i c e and if I l x l l I~l y l l whenever 1x1 = sup(x,-x).
Then, c l e a r l y , t h e s e r i e s
1
n4N v)
N pn
lxnl 1
1
n=l
p
n
x,y IE w i t h I x l s l y l , where
(xn,pn) E E x IR,
Let
x
n
1
pn
nQN for a l l
(E, 5 ) i s a v e c t o r
1
such t h a t
lxnl
pn
nQN converges i n E
I l x n l l converges. and we have
N E IN.
The same argument as b e f o r e shows t h a t 1 1 . ll
i s absorbing on t h e cone
o f a l l p o s i t i v e elements o f a g i v e n Banach l a t t i c e . The n o t i o n o f absorbing f u n c t i o n a l s i s c l o s e l y connected w i t h d o m i n a t i o n o f monotone l i n e a r f u n c t i o n a l s . Indeed, we have Lemma 1. F -* li? _be_a monotone l i n e a r f u n c t i o n a l . absorbing, t h e n t h e r e i s some 0 < c <- such t h a t Let
p :
__.-
p ( f ) Ic S ( f )
-f o_r _a l l
f E F.
S : F
-*
IP,
&
Order Units and Lattice Cones
151
Proof: Assume, CS does n o t dominate fn E F
f o r any c o n s t a n t c. Then t h e r e a r e
p
such t h a t U ( f n ) > 22n S ( f n ) 2 0.
I t f o l l o w s t h a t U ( f n ) > 0. We c l a i m
7, =
Indeed, o t h e r w i s e w i t h
t h e r e would be an element We would o b t a i n U ( g ) 2 N a contradiction. Put
pn =
S ( f n ) > 0.
fn f o r a l l
g E F with
u (f,)
1 s
k,
k€iN N 1 f k=l
g
N E
for a l l
-
(fk) = 0 = N
9
fn
IN, which means
.
Hence for a l l
N E IN.
U ( f n ) I 0,
Thus S ( f n ) > 0.
( Zn S ( f n ) ) - ’ .
Then
1
pn
naN
S(fn)
converges and t h e r e must
be some g w i t h g > Hence
p(g) 2
N
1
pn
n=l N
1
n=l
fn f o r a l l N
pn
u(fn) >
1
n=l
N E IN.
Zn
for a l l
N E IN, a c o n t r a d i c t i o n .
This implies
f o r some c o n s t a n t
c > 0.
D
An immediate a p p l i c a t i o n o f Lemma 1 t o Banach l a t t i c e s i s C o r o l l a r y 2.
Every monotone l i n e a r f u n c t i o n a l
p on a Banach l a t t i ce E i s continuous ~ C o r o l l a r y 2 can be g e n e r a l i z e d . Indeed, we have:
C o r o l l a r y 3 ( [ 72, p.2941):
a
L e t ( E , < ) be p r e o r d e r e d t o p o l o g i c a l v e c t o r space such t h a t E is i) __ E = E+ - Et, where Et = I x E E I O < XI. If n e g a t i v e l y generated, i . e . E, has an i n t e r i o r --p o i n t t h e n every monotone l i n e a r f u n c t i o n a l p on E
i s continuous .
~
-
L
_
-
152
ii)
Linear Functionals
Let
that -
.
(E, II II )
-
E = E,
Et
i s absorbing. -
< E such norm-closed. Then 11.11
be a Banach space. Consider a preorder
and t h e p o s i t i v e cone --
Hence
&
E,
-e _ v e_ r y_montone _ _ _ _l i n e a r f u n c t i o n a l
p : E
-,IR
con t inuouil Proof: i) L e t
x o be an i n t e r i o r p o i n t o f 1 (xo-E,), i.e. functional o f p(x) = i n f C h t 0 I x E C l e a r l y if p ( x ) 5 1 t h e n
x E xo
and d e f i n e
E,
-x2 ( x o -E + ) I
-
E,
p
t o be t h e gauge
and t h e r e f o r e
xo
t h a t p has t h e p r o p e r t i e s r e q u i r e d i n Example i ) .Thus by Lemma 1, we have
u I Since
xo
-
E,
6 p
f o r some
x
I x <x 1. 2 0
= i n f IxtO
*
x. We o b t a i n i s absorbing and,
p
6 > 0.
i s a neighbourhood o f zero, p i s continuous. Hence
p
must
be continuous.
ii) For Ilxlll
x E E
consider
:= i n f Imax ( IIxlII
t inf I
71
5
71
llxll
Since IIxII I 2 llxlll w i t h some
x
( IIxlII + IIx211 ) I x = x1-x2’
for all
x E E
x
IIxII
Et 1
xlYx2€
t h e open mapping theorem p r o v i d e s us
1
n=l
for a l l
absorbing. Indeed,
m
In IIxnII1
<
m
.
1
n=l
An IIynII
<
m.
x E E. consider
(xn,xn) E
Then t h e r e a r e yn E E,
m
such t h a t
1
E E+
> 0 such t h a t
i s , by d e f i n i t i o n ,
such t h a t
x1,x2
.
IIxII I 2 Ilxlll d
II Ill
IIx211 ) I x = x1-x2’
Hence
m
1
n=l
An y n E E+
wfth
since
E,
IR, x
E
yn > xn
i s closed
Order Units and Lattice Canes
153
We have
c xnxn n=l N
II Ill
Thus
m
1
n=l
xn
for all
yn
1 I II
and, t h e r e f o r e ,
Lemma 1 shows t h a t
N E IN.
a r e absorbing. Another a p p l i c a t i o n o
i s continuous.
1-1
For a g i v e n Banach l a t t i c e E l e t
E,
0
C x E E I x 2 0 1
=
and denote by E l
t h e Banach space o f a l l continuous ( i . e . norm bounded) l i n e a r f u n c t i o n a
S
E + IR. R e c a l l , t h a t t h e o r d e r d u a l
,E:
Eo was d e f i n e d t o be equal t o
ET
-
where ET = { p : E
-, IR
I
I
l i n e a r and monotone
p
(compare t h e remarks f o l l o w i n g Lemma 2 . 6 . 1 ) . C o r o l l a r y 4:
I f E -i s _ a Banach ~ - l a- t t i c e
E' = E
then
o
= E,
*
-
* E+
*
Proof:
If P E E '
i s g i v e n we have
I
LI
sub1 i n e a r monotone f u n c t i o n a l on t h e r e i s a monotone l i n e a r 1-1 I v
v
I
x
11.11
x
II It
-, IP,
v : E,
1 0 . I [ . I1
with
.
E,
on
x
is a I E, T h e r e f o r e , by t h e Sandwich Theorem,
.E,
f o r some
E = E+
has a n a t u r a l monotone l i n e a r e x t e n s i o n t o a l l o f
called Hence
u P
.
Put
pl=v,
.
E Eo
Conversely, i f
p
p2 =
E Eo, then
v -
p =
p
.
Then
u1 - u 2
ply
, ul,
continuous by t h e preceding c o r o l l a r y . Hence We always c o n s i d e r t h e o r d e r
u L Lemma 2 . 6 . 2
iff
u
t e l l s us t h a t
I in
E' i s
C l e a r l y , E ' i s a Banach space
E'
p(x) 2
p2
E EY
E E: E E'.
generated by U(X)
and
p2
p
for all
-
,E,
again
u
and
v1,
= u1
p2
-
p2.
are 0
E,
*
, that i s x E E,
.
an o r d e r complete v e c t o r l a t t i c e .
and i t i s easy t o show, t h a t E ' i s a Banach
154
Linear Functionals
l a t t i c e under t h e g i v e n norm. Hence we o b t a i n w i t h Theorem 2.7.6.: Theorem 5: If E i s a-Banach attim i s an o r d e r complete Banach l a t t i c e - l~ -t h e n a s u b l a t t i c e . I .e. , with e,f E t; and E , regarded as 2 subspace __ o f E", sup(e,f) E E , where sup(.,.) is t h e supremum -t a k e n i n E". E l
O f course,
E i s i d e n t i f i e d w i t h a subspace o f E" by t h e e v a l u a t i o n map, i . e .
x E E
every
A
i s i n t e r p r e t e d as a l i n e a r f u n c t i o n a l
x(x') = x'(x) for a l l 2.11.2 Let
- - _ _ .
A
x
on
E'
by
x' E El.
AM- and AL-Cones (F, < ) be a preordered cone such t h a t
0
f
.(
for a l l
f E F.
Furthermore, c o n s i d e r an absorbing
monotone s u b l i n e a r f u n c t i o n a l S : F
(F, < ,S) i s s a i d t o be an AM-cone,
i f (F,<
s (F,<
(sup(f,g))
, S)
= max ( S ( f ) ,
S(g))
) i s a l a t t i c e cone and
for a l l
i s d e f i n e d t o be an AL-cone
i'f
fyg E F
F bas
t
S(g)
for a l l
Define the sublinear functional
.
t h e FSP and t h e Riesz
< and i f S i s a d d i t i v e , i . e .
property w i t h respect t o the inverse order o f S(ftg) = S(f)
-,R+
f,g E F.
11. lls
on
FT
The l a s t e q u a l i t y f o l l o w s from t h e f a c t t h a t
by
S
i s homogeneous. S i n c e
S
i s assumed bo be absorbing we have, i n view o f Lemma 1 o f t h e l a s t s e c t i o n ,
I I ~ I
*
Here
Ff. =
Ft {
Ff.
E F:
.
i s t h e p o s i t i v e dual cone o f E
(F,<
* )
i s equal t o (F,< ) of
p
=
*
I u(f) >
-
for a l l
s i n c e a l l elements
(F,< ) * a r e Rt- valued.
F, i . e . f E F 1
( D e f i n i t i o n 2.6.6).
This
f E F a r e > 0, i . e . a l l elements
O f course h e r e we t a k e
R
= R
.
Order Units and Lattice Cones
>O
f
E F:
T
with
f E F,
for a l l
pointwise order, i . e .
p
+
T
= u
.
F+, i . e . p I v, p , u E F+ , I n o u r s i t u a t i o n , s i n c e we assumed
the natural order i n for
Iu
p
p,
*
*
We consider, as before, t h e n a t u r a l o r d e r i n iff there i s
155
u E FT
*
F+
coincides w i t h the
iff
for all
p(f)lv(f)
f E F. Remark: Note t h a t t h e c o n d i t i o n t h a t F has t o have t h e Riesz p r o p e r t y w i t h r e s p e c t t o t h e i n v e r s e o r d e r , i n t h e d e f i n i t i o n o f AL-cone,
F
whenever
i s t r i v i a l l y satisfied
i s t h e cone o f a l l pos t i v e elements o f an ordered v e c t o r
space.
II I1
We observe f u r t h e r m o r e t h a t f u n c t i o n a l on
F:
.
i s an a b s o r b i n g monotone s u b l i n e a r
Indeed, monoton c i t y and s u b l i n e a r i t y f o l l o w f r o m
s(g) I 1 I .
I I ~ I =I ~sup I p ( g ) I g E F,
1
Let
pn
, on
E F:
1
p n IIpnlls converges. T h i s i m p l i e s t h a t v ( g ) := nQN ntlN converges f o r a l l g E F. C l e a r l y u E FT and u 2 1 p n nIN
E RI,
such t h a t
pn
pn(g)
p
f o r a l l N E IN.
n
One e a s i l y v e r i f i e s t h a t t h e cone o f a l l p o s i t i v e elements o f any s u b l a t t i c e o f a C(K)-space i s an AM-cone w i t h r e s p e c t t o t h e sup norm.
S i m i l a r l y , if F
1
i s t h e cone o f a l l p o s i t i v e elements o f an L (m)-space
w i t h r e s p e c t t o a measure space
(F, 5,s) i s an AL-cone. and
S
i s g i v e n by
Here
S(f)
=
(X,
1,m)
( c f . Appendix A 4 ) , t h e n
I i s t h e almost-everywhere p o i n t w i s e o r d e r
1f X
dm.
The n e x t theorem shows t h a t AM- and AL-cones a r e dual n o t i o n s : Theorem 1: (F,< ,S)
i)
I f (F,< ,S) ii) Furthermore, ment o f --
t h e n (FT, -i s_an AM-cone -is an AL-cone -then (F:, 4 .
F*+
ll.lls)
is an AL-cone -,
rl.llS)
i s an AM-%.
-___
i s an o r d e r complete ____-l a t t i c e cone, and S i s an e l e -
and i t i s an o r d e r u n i t -------
for
FT - FT
Proof:
*
i) F+ hence
1 s t h e p o s i t i v e cone o f t h e v e c t o r l a t t i c e F,
*
F+
-
*
F,
(Theorem 2.6.8.),
has t h e FSP. By t h e p r e c e d i n g remark, t h e i n v e r s e o f t h e n a t u r a l
156
Linear Functionals
*
has t h e Rl‘esz p r o p e r t y . We claim, t h a t II.lls i s a d d i t i v e on F. F, The s u b l i n e a r i t y i s a d i r e c t consequence o f t h e d e f i n i t i o n o f II.lls . On t h e order i n
I g E F, S ( g ) I 1 I . The c o n d i t i o n on S,in t h e d e f i n i t i o n o f AM-cone,implies t h a t {p(g) I g E F, S(g I l l Ilplls = sup I
o t h e r hand, we have
p(g)
i s upwards d i r e c t e d ( r e c a l l p i s monotone). From t h i s we o b t a i n t h a t II.lls i s i n a d d i t i o n s u p e r l i n e a r . T h i s proves t h a t II.lls i s a d d i t ve on F. Hence,
.
(F, II lls) i s an AL-cone.
*
ii) By Theorem 2.5.8. ii), F, i s an o r d e r complete l a t t i c e cone, s i n c e here t h e n a t u r a l o r d e r i n FT c o i n c i d e s w i t h t h e p o i n t w i s e o r d e r . * then by C o r o l l a r y 2.4.6. and Theorem 2.5.8. Furthermore, i f p , w E F, we have
Hence IISUP(M,V)ll
Imax(
=
sup I s u p ( l l , v ) ( g )
I S(g) I 1 I
=
IIIJII~,I I W I I ~ ) .
We obtai’n Ilsup(p,v)ll I
max(
Ilsup(p,v)ll 2 max(
* Hence , F, , II.l$) c 1ear 1y , F, F:
*
-
SE
F.: 0
IIplls, Ilvlls) and t h e o t h e r t n e q u a l f t y ,
Ilvlls, llvlIs), i s t r i v i a l s i n c e II
i s an AM-cone. S i n c e
S
(Is i s monotone.
i s monotone and a d d i t i v e ,
I n view o f 2.11.1 Lemma 1 S must be an o r d e r u n i t o f
Order Units and Lattice Cones
*
L e t us Stay w i t h t h e s i t u a t i o n where
*
o r d e r u n i t of
*
i s on
F,
-
F,
F,
IIp II
11~111 = i n f { Note, t h a t
*
F,
-
, then
II.lls
equal t o
t o S, i . e .
*
.
x
Let
> 0 I IuI 5
*
F,
x S
1
I1 1 ~ lls1 = I1 1 ~ 1II
=
II
Theorem 2.2.3
* - F+* , and
F,
Using t h e
II.
i s an AL-cone, then
IIpII = i n f
{ h
II 11) i s
C(K)-space, K a compact H a u s d o r f f space. hence
C o r o l l a r y 2: <,S)
.
we see t h a t (F,-F,
NOW, an a p p l i c a t i o n o f P r o p o s i t i o n 2.3.1 shows t h a t
If (F,
*
F+
-
C(K)
*
F,
,is
K
i s extremely
order-complete. We o b t a i n
endowed w i t h t h e norm g i v e n by
> 0 I 1p1 I A S 1
i s i s o m e t r i c a l l y -and o r d e r isomorphic -t o some C(K)-space, where extrema11 y d i sconnected compact Hausdorf f - s pace. The element -~
i s an
II II be t h e o r d e r u n i t norm w i t h r e s p e c t S I LI I x S1. Then we have
i s o m e t r i c a l l y isomorphic t o some disconnected s i n c e
S
- x
i s complete under
Kakutani-Krein-Stone-Yosida
i s a l a t t i ' c e cone. I f
F,
the order u n i t functional
infIh 2 0 I
=
157
S E F:
corresponds --t o the one-function on K
K
i s an --
.
As a consequence we o b t a i n t h e c e l e b r a t e d c h a r a c t e r i z a t r o n of AM-spaces, due t o Kakutani ( [ 1813):
A Banach l a t t i c e E i s c a l l e d AM-space, i f ( E + , I E, c o n s i s t s o f a l l p o s i t i v e elements o f E.
, 11.11)
i s an AM-cone, where
i s an AL-cone and, f u r t h e r m o r e , w i t h o * E" = ( E )+ - (EO): i s a C(K)-space. I n v i e w o f 2.11.1 Theorem 5, E i s a s u b l a t t i c e o f E". Hence we o b t a i n According t o Theorem 1 (E,:
<,I1 II)
Theorem 1 and C o r o l l a r y 2,
Theorem 3 ([181I ) :
6Banach lattice E is an AM-space i f and o n l y ----compact C(K)-space, - K -a _ _ _ H a u s d o r f f space.
if
__
E i s a sublattice _ o f_a
Theorem 3 may be regarded as another v e r s i o n o f t h e Kakutani-Krein-StoneYosida Theorem 2.2.3.
Here we do n o t r e q u i r e t h e e x i s t e n c e o f an o r d e r
Linear Functionals
158
u n i t b u t we need i n s t e a d t h e e x i s t e n c e o f a norm such t h a t
( E , II II ) i s
a Banach l a t t i c e . 2.11.3
Characters o f AM-Cones
Throughout t h i s s u b s e c t i o n l e t as i n 2.11.2.At 2.10.1):
, S)
(F,<
be an AM-cone.Let
II lls be d e f i n e d
f i r s t , we s l i g h t l y extend t h e n o t i o n o f c h a r a c t e r ( D e f i n i t i o n
An element
p
*
w i t h Ilplls = 1 i s c a l l e d a c h a r a c t e r o f F i f
E F,
-1-1
t h e r e i s o n l y one monotone l i n e a r f u n c t i o n a l
*
5 S
on t h e f r e e l a t t i c e
cone LF o f F such t h a t
Here L : F
+
Lemma 2.8.3)
LF denotes t h e canonical embedding ( c f . remarks p r e c e d i n g
and
S* : LF
+
R I,
i s t h e unique l a t t i c e cone subhomomorphism
d e f i n e d by
R
F -bLF
I n t h i s s i t u a t i o n the notion o f character i s only a s l i g h t extension o f D e f i n i t i o n 2.10.1.
Here we do n o t r e q u i r e t h e e x i s t e n c e o f an o r d e r u n i t
and, t h e r e f o r e , cannot speak o f s t a t e s . I u n i t and
F
F
i s endowed w i t h an o r d e r
i s t h e o r d e r u n i t f u n c t i o n a l then c l e a r l y every c h a r a c t e r o f i s a c h a r a c t e r i n t h e sense o f D e f i n i t on 2.10.1. S
Now, l e t us s t u d y t h e b i d u a l
By 2.11.2 C o r o l l a r y 2 we know t h a t
E
can be i d e n t i f i e d w i t h a C(K)-space
w i t h extremal ly disconnected compact K. L e t j : F + E be t h e c a n o n i c a l embedding a l a t t i c e homomorphism. Recall, t h a t unit for
( F ~ , s l l Ils)
E. The norm 11.11
i s an AL-cone, on
(F,),
**
. Then,
by Theorem 2.7.6,
**
hence II lls E (F+)+
j is
i s an o r d e r
i s equal t o t h e o r d e r u n i t f u n c t i o n a l .
159
Order Units and Lattice Cones
I1 lls t h i s means i n p a r t i c u l a r
I n view of t h e d e f i n i t i o n o f I, Ilj(f)ll = i n f I A E R = inf { A >
I j ( f ) I II.lls 1 =
o
x
I p(f)
= S(f
I
for all
I I ~ I I f ~o r a l l
f E
p E
I
F:
F.
Remark: The compact Hausdorff space K was i d e n t i f i e d w i t h t h e s e t o f a l l r e a l v a l u e d l a t t i c e homomorphism on E (Theorem 2.2.3).
S i n c e e w y linear functional
on a v e c t o r space i s maximal, C o r o l l a r y 2.10.4 and Theorem 2.10.6 t e l l us t h a t , f o r t h e v e c t o r l a t t i c e E w i t h o r d e r u n i t II lls, t h e c h a r a c t e r s c o i n c i d e w i t h t h e extreme p o i n t s e t o f t h e s t a t e space and w i t h t h e s e t o f a l l l a t t i c e homomorphisms. C(K)-space E , t h e n t h e s e t o f a l l l a t t i c e
Conversely, i f we c o n s i d e r a
u on
homomorphisms
E
with
D i r a c f u n c t i o n a l a t k ).Indeed,
(tik
homomorphisms on E. Then A
and A
let
Q
A
K =
I
6k
I k E K 1
be t h e s e t o f a l l l a t t i c e
i s compact (when endowed w i t h t h e w*-topology)
i s a compact subset o f
K
we would f i n d an element k E K
A
1 coincides w i t h
p(1) =
A
.
f E E, f
If
^K
9 A
0, b u t
which i s c l e a r l y i m p o s s i b l e . Hence
k
t h e n by Urysohn's lemma 0 = gk(f) = f(k) for a l l = A
.
P r o D o s i t i o n 1: L e t ( F , < ,S) be an AM-cone, then t h e f o l l o w i n g are equivalent: i) u & 2 c h a r a c t e r f F
ii)
&a
p
maximal l i n e a r f u n c t i o n a l
iii)There i s a c h a r a c t e r
A
1-1
and a_ l a t_ t i c e homomorphism -_ A o f t h e b i d u a l E such t h a t = 1.1 0 j
-
IS
-
-~
.
Proof: i) Let
ii): The m a x i m a l i t y f o l l o w s d i r e c t l y from t h e d e f i n i t i o n o f c h a r a c t e r . : LF
+
IR be t h e unique monotone l i n e a r dominated e x t e n s i o n o f
which appears i n t h e d e f i n i t i o n o f c h a r a c t e r . I n view o f t h e f o l l o w i n g diagrams
u
160
Linear Functionals
e
e
F -----E>LF
F --bLF
*
we obtain 7 = u . Indeed, every element in LF is of the form ~p= sup(lfl ,... Pfn) with f . E F, i=l,...,n. Hence 1
v*(efi)) = max im * * ( S (Lfi)) = S (cp).
u*(w) = max ( i5n =
max iIn
*
(u(fi))
5
max (S(fi)) iIn
*
(Recall p and S are lattice homomorphisms and reppectively). Hence, by uniqueness o f T , LI = *
Moreover, we have
subhomomorphisms, N
p.
e
where I* is a surjective lattice homomorphism. (Recall, F was assumed to be a lattice). By the uniqueness of T , we obtain
*
Hence, if fl,f2 E F, then there are cpl, cp2 E LF with I (cpi) = fi , i = 1,2 . Therefore
This proves that 1-1 i s a lattice homomorphism.(Note, the preceding proof i s essentially the same as the proof o f Lemma 2.10.3 i)4 ii).)
161
Order Units and Lattice Cones
ii)
=+
i ) :The m a x i m a l i t y o f
implies
p
a monotone l i n e a r f u n c t i o n a l on Again, m a x i m a l i t y i m p l i e s
. We
rp = s u p ( L f l,...,Lfn)
p =
I\
=
LF such t h a t i;
o
.
L
Let
1
.
Let
p I S*
p ( f ) 5 G(Lf)
flY...,fn E F
be
f o r a l l fEF. and c o n s i d e r
obtain
...,f n ) )
= u(sup(fl,
111-1
= max(p(f1),...,p(fn))
i
for all
.
This implies max(G(Lfi)) i
. ,efn)) ,
= ;(sup(efly..
i.e.
;
Hence
ii i s unique. T h i s proves t h a t
LF and t h e r e f o r e
i s a l a t t i c e homomorphism on
11 =
U*
.
i s a character.
p
i) iii) i s an easy e x e r c i s e w i t h t h e Dominated E x t e n s i o n Theorem. iii)* ii): By t h e remark p r e c e d i n g P r o p o s i t i o n 1 C can be i n t e r p r e t e d as a D i r a c f u n c t i o n a l . S i n c e j i s a l a t t i c e cone homomorphism, t h i s proves t h a t
i s a l a t t i c e cone homomorphism on
p
such t h a t
p I v IS
Furthermore,
v
-
p
. Then
*
(F+,II
This implies
lls)
v
1's = 1 , s i n c e
.
Let
II p l l s
v
E FT be
= 1.
E FZ and
1 = II V l l s = II since
II
F
i s an
II v - p I I s = 0
p
l l s + II v - p l l s = 1 -k II V -!JIIs
Y.
AL- cone.
, hence
u
v =
and
p
must be maximal. 0
Corollary 2: F o r every --
f E F
t he r-e i s a c h a r a c t e r -
p
such t h a t
p(f)
= S(f)
.
Linear Functionais
162
Proof: Indeed, K
j(f)
F
of
can be regarded as a continuous f u n c t i o n on t h e c h a r a c t e r s
, i . e . as an element of
functional
C(K) = E. Hence t h e r e i s a D i r a c
dk w i t h 6 k ( j ( f ) ) = 11 j ( f ) l l
d k i s a c h a r a c t e r on
2.11.4
E
, hence
= S(f)
dk
y =
o
j
Kakutani’s Characterization o f Sublattices o f
C(K)-
There i s another famous c h a r a c t e r i z a t i o n o f s u b l a t t i c e s of Kakutani. L e t us i l l u s t r a t e t h e s i t u a t i o n :
Consider
C( [0,11)
F
i s a c h a r a c t e r on
0
Spaces C(K)
due t o
and d e f i n e
E = { f E C([0,11) It i s easily v e r i f i e d , t h a t
I f(0) E
=
1
1
7 f ( l ) , f(T)
i s a s u b l a t t i c e of
=
1
3
3 f($}
C(t0,ll)
. hence an
AM- space. The f o l l o w i n g theorem s t a t e s t h a t , conversely, an
AM- space
i s always a
space o f f u n c t i o n s on some compact H a u s d o r f f space which s a t s f y re1a t i o n s
.
similar
Theorem 1( [ l S l l ) :
-A Banach space E & i s o m e t r i c a l l y isomorphic g s u b l a t t i c e of g C(K)a compact Ha u s d o r f f space, -i f and only ----i f t h e r e i s a subset space, K A c K
x
K
[0,11
x
E
such t h a t --
I f E C(K)
I
f(kl)
(Note, i n t h e preceding example
=
,
x
f(k2)
for a l l
(klYk2,x)
E A1
.
1 A = {(O,l,~),
B e f o r e we prove Theorem 1 we have t o c o l l e c t some b a s i c f a c t s about subl a t t i c e s o f C(K) f o r compact K .
163
Order Units and Lattice Cones
Lemma 2: Let E be a s u b l a t t i c e _o f_a C(K)- -space which separates t h e p o i n t s o f K e r e_ i_ s _ exa c t l y one p r o b a b i l i t y Then f o r every p E E: w i t h II u l l = 1 -t h_ --I
measure
with
T
u(f) =
f
dT
II Ek
I
for all
f E E.
K
Moreover, _ we -have
if
Conversely,
I
E K
T({k
116
T
T
It
klE
({k E K
-i s_ =
1
E
II
=
11)
= 1
a p r o b a b i l i t y ~measure on
1))
=
then
1
l l l ~I I =
.
K
1, where p ( f ) =
K
f d.r
E E
for all f Proof: Let
be a p r o b a b i l i t y measure on
T
jf
p(f) =
D
I
= Ik E K
I I 4(
II
IE
s 1-tl.
T(D)
< 1
, and
f o r the functionals T
Hence
~
c > 0
T(D)
Assume,
B
c K
II
II= 1
,
T
. We ~
have
= 0
T~
=
p1
+
0.
and
Then d e f i n e
T~
.
T(D)
T~
y ~ 2 on
T(D)
2
=
1- T ( D )
t
t
(T-
r(D)-rl)
= 1. I n any case we have
(1 - T ( D ) ) T ~
E
d e f i n e d by t h e i n t e g r a l s w i t h r e s p e c t
II vz11 5 1 and, by d e f i n i t i o n o f
II p l l s T ( D ) ( 1 - t )
IIlJII = 1
if
where
and p u t
T(D)
T
to
. Fix
f E E
for all
f o r a l l Bore1 s e t s
q(B) =
if
dT
K
such t h a t
K
(l-r(D))
T
~
II,
plll 5
1-
t.
1 which c o n t r a d i c t s t h e assumption
164
Linear Functionals
Hence
T({k
E
K
I
II 6
T({k
E
K
I
I1 6
Assume now, t h a t J f K
T~
dTl
IE IE
, T ~
=
II > 1 -
&I)
= 1 for a l l
II = 11)
= 1
.
> 0
, i.e.
are two probability measures with
f dT2 = u ( f )
K
E
for all
f E E.
arbitrarily. Then by regularity there i s a compact D c { k E K I II d k J II = 11 such t h a t E
Fix
; . 1( B )
E
> 0
= ri(B
n 0 ) for a l l Bore1 sets B
as linear functionals on
C(K)
.
c K
(Here we regard
T~
,;i
, therefore we can consider I1 T~ - T i I1 ) .
Note, the restrictions of the functions in E
to
D , E
.
ID
are a sub-
l a t t i c e of C ( D ) Moreover, for any k E D there i s , by definition of D , for any 6 > 0 an element f E E with 1 = Ilf I I Z f ( k ) t 1
-
6 .
Using the f a c t t h a t E i s a sublattice of C ( K ) we see t h a t , for any f i n i t e subset { k l , . . . , k n l c D and any 6 > 0 , there i s f E E with 1 = IIfll 2 f ( k i ) t 1 - 6
for all
i = l,...,n
This means, by Dini's Lemma, the sup-norm closure E-
ID
of
. EID
is a
vector l a t t i c e with an order unit norm. We obtain, by the Kakutani-KreinStone-Yosida Theorem 2.2.3 and the f a c t t h a t E separates the points of K , E I D = '(Dl = C ( K ) I D ( c . f . the remark preceding Proposition 1 of 2.11.3) This implies
II ;l(f)
-
T2(f)ll I 2c 11 fll
for a l l
. f E E , and we get
165
Order Units and Lattice Cones
II Y1 -y211 5
;,,;,
(Recall
a r e supported by
II T~ -r211 5 4
Thus
To prove t h e converse, assume
, for
Then, by r e g u l a r i t y
I
D c Ik E K
II
4
II
I E
D ).
which i m p l i e s
E
=
any
T
E
.
2 E
r1
=
T
~
since
E
was a r b i t r a r y .
i s a p r o b a b i l i t y measure on
> 0
K
with
t h e r e i s a compact
11 w i t h
r(D) t 1 - E
.
As b e f o r e , u s i n gD i n i ' s Lemma and t h e f a c t t h a t E i s a s u b l a t t i c e o f C(K)
, we
II u D l l t 1 - E
Therefore
II
We have since
E
EID = C(D).
have
p
- p D II
5
E
was a r b i t r a r y
, where
, where
pD E
ET i s d e f i n e d by
v(f) =
J
K
f dT
for all
f E E.
Hence,
,
P r o o f o f Theorem 1: The s u f f i c i e n c y o f t h e c o n d i t i o n on
E t o be a s u b l a t t i c e o f C(K) i s
easily verified. We prove t h e n e c e s s i t y . Let
E
be a s u b l a t t i c e o f some
the points o f Let
A c K
x
K
K
.
x
[0,1]
C(K)- space and assume t h a t
(Otherwise t a k e a s u i t a b l e q u o t i e n t o f
f(kl)
be t h e s e t o f a l l t r i p l e s (kl,k2,x) =
x
f(k2)
for all
f E E
.
K
E separates instead). such t h a t
166
Put
Linear Functionals
i.
= Cf E C(K)
We have
E
c
I f(kl)
i c C(K).
=
x
for all
f(k2)
I t remains t o show t h a t
whenever
p
llE
=
be r e g u l a r Bore1 measures on f E
Let
1
that
ji
4(
i; =
- F
If
+
E, = E
K with
E K
R lK c C(K). Every c h a r a c t e r
of E,1
by p u t t i n g
El
since
El
i;(lK)
p
1
=
II
4(
IE
=
and l e t
"1E
I II 4( of
. By
_I1 IE
x-'
morphism, hence a c h a r a c t e r o f k E K w i th
\
IE
. Therefore,
for a l l
-1 6 = A
k gI E
"I E E
.
E
have t h e same norm as
K
. This
pi
dTi
, i=1,2,
By t h e p r e c e d i n g Lemma we o b t a i n
F of
,S)
-i s_an
C(K)
with
k ' E K.
i s maximal and a l a t t i c e homo-
means
f(k')
2 , we
for all
II
=
T~ = T~
--
AM- cone and j : F
canonical embedding, ----then t h e r e a r e a s e t
II f ( k )
IE
II
have
E wi
for all
II = II $ , - I 1 E
E ET w i t h
f E E, i=1,2,
and, o f course,
C o r o l l a r y 3: If (F,< -
~
Theorem 2.10.10 we o b t a i n
By t h e preceding Lemma t h i s means t h a t t h e f u n c t i o n a l s
1f
T
From t h e preceding o b s e r v a t i o n we g e t
by construction o f
=
,
can be extended t o a
k E K.
vi(f)
T~
11, i=1,2.
=
generates a l a t t i c e subcone
II t: 0 t h e n
i.1 , we have
E
= ~ i ( f ) for a l l
f
K
= ri(Ik
'IE
By t h e S e p a r a t i o n
p1 , p 2
C(K) (Stone-WeierstraB theorem). Now t a k e any
h =
f E E
v
So assume
E, i=1,2, and T ~ ( K )= II pill
character
F
.
"1E
i.
E =
Theorem 1.5.8 i t i s enough t o show t h a t , f o r a l l p l = p2
E A).
(kl,k2,x)
, i.e.
** -,(F+)+ A c K
v1 = pllE=
u1 = u2
- IF:): x
K
pZlE=
.
0
= C(K) x
[0,11
u2
i s the
such th_ at _ __
.
167
Order Units and Lattice Cones
(j(F)
-
j(F)
2.11.5
denotes the closure of
j(F)
-
j(F)
with respect to II I( )
Korovkin's Theorem
So far we have seen t h a t l a t t i c e cone homomorphisms give much insight in
the structure of special cones. I n this section we shall give a further result which emphasizes the usefulness of l a t t i c e homomorphisms. We prove a classical theorem due t o Korovkin ([202 I ) , which s t a t e s t h a t i f Tn i s a sequence of positive linear operators from C([O,ll)into C ( [ O , l I ) such lim T n f i. n-,
that
x
for all
E
=
f i , i=1,2,3, where f l ( x ) = 1, f 2 ( x )
[0,11 , then
lim Tn f = f n+
for all
= x,
f3(x)
f E C([O,ll)
=
xL
.
We s t a t e and prove t h i s result in the slightly more general form which can be found in the l i t e r a t u r e . Let K be a compact Hausdorff space. Then a subset M c C ( K ) i s called a Korovkin family i f for every sequence of uniformly bounded positive linear operators Tn : C ( K ) + C ( K ) and every l a t t i c e cone homomorphism S : C(K)
+
lim T n f n-,
C(K)
= S f
we have t h a t lim T n f = S f n+ for a l l f E C ( K ) .
for a l l
f E M
implies
Note, in the preceding formulation of the classical Korovkin Theorem we have M = I f l , f 2 , f 3 ) . If
M c C(K)
, then we denote M2 = I f 2 1 f E MI
M
.
i s said to separate the points of
there i s
f E M with
f(kl)
9
f(k2)
, i f for every
K
k l y k 2 E K , kl*
k2,
and assume that M contains
the
.
Now we have 2.11.8 Let -
Theorem ([283 I ) :
M c C(K)
separate the points of
K
168
Linear Functionals
function
lK . Then M U
fi a K o r o v k i n
M2
family o f
C(K).
Proof: Tn : C(K)
Let
+
l i m Tn f = S f n-, m
C(K)
be a sequence o f p o s i t i v e l i n e a r o p e r a t o r s such t h a t
, where
f E M u M2
for all
S : C(K)
+
C(K)
i s a lattice
cone homomorphism. Note, t h a t t h i s assumption a l r e a d y i m p l i e s t h a t t h e
Tn
a r e u n i f o r m l y bounded s i n c e we have c l e a r l y , i n view o f t h e p o s i t i v i t y o f i s an o r d e r u n i t f o r C(K), t h e Tn and t h e f a c t t h a t lK
II Tn l K l l = II TnII Fix
k E K
on
C(K)
for all
.
. Then we c l a i m t h a t t h e r e i s e x a c t l y one monotone l i n e a r such t h a t
k ). T h i s means, o f course, t h a t
Dirac functional a t
(dk
n
p =
6k
y
.
Proof o f the claim: Consider a monotone l i n e a r hf = ( f ( k ) l K by
M u M2
-
f)2
, which
!J
with (*)
.
Fix
f E M and
i s c o n t a i n e d i n t h e subspace o f
define C(K)
generated
.
From ( * ) we o b t a i n p(h ) = 0 f
Furthermore we have
for all II pi1 supK
!J 5
f E M
.
By t h e Riesz-Konig Theorem 1.6.1 t h e r e i s a r e g u l a r p o s i t i v e Bore1 measure T
on
K
such t h a t p(g) =
J
K
g dr
for all
Hence we o b t a i n supp
T
c
n
f EM
hi1 (0)
g E C(K)
.
.
Order Units and Lattice Cones
The l a t t e r s e t must be equal t o We conclude
tkl
since
M
169
separates t h e p o i n t s o f
K
4(
lJ=
which proves t h e c l a i m . We know (Remark preceding P r o p o s i t i o n 1 o f 2.11.3), homomorphisms C ( K )
%,
functionals
c o i n c i d e w i t h nonnegative m u l t i p l e s o f D i r a c
-, R
K .
k E
Hence, if k E K
t h a t the l a t t i c e
i s fixed, then
,
= A ,Q
\ O S
f o r some
k' E K
, and
A t 0.
NOW, f i x to
f E C(K)
. Then
Sf
(**) where
N
and assume
there are
-
I ( T n f ) (k,)
E
(Tnf)
i s n o t converging ( i n sup-norm)
> 0, and a sequence
I>
( S f ) (k,)
for
E
i s a s u i t a b l e i n f i n i t e subset o f
On t h e o t h e r hand, we have by assumption
f o r every
g E M
u
M
2
4(
n
o
Tn
such t h a t
n E N
.
,
.
T h i s i m p l i e s , by t h e compactness o f of
N
kn E K
extends a
w*-
cluster point o f
p o i n t s c l e a r l y a r e o f t h e form
El(
must be a c l u s t e r p o i n t o f t h e kn p r e v i o u s remark, i s equal t o We d e r i v e from t h e c l a i m
, t h a t any w*- c l u s t e r p o i n t
K
o
S
IM u M~
. The
x $ , for
61(
o
n
I M u ~2
f o r some
functional some
S
k'E K
4(
k E K 0
. But
and t h i s
S , by t h e
and
x
such
t0
.
k
170
if
Linear Functionals
i s s u i t a b l y chosen. T h i s c o n t r a d i c t s (**)
n E N
II Tn f - S f II
-,0 , as
n
-,a
f o r a l l f E C(K)
.
. Therefore 0
2.12 REMARKS AND COMMENTS S e c t i o n 2.1:
The n o t i o n o f s t a t e p l a y s an i m p o r t a n t r o l e i n t h e s t r u c t u r e
theory o f
algebras and i n a p p l i c a t i o n s o f t h i s f i e l d , l i k e a b s t r a c t
C*-
s t a t i s t i c a l mechanics (see [581,[2761,[2771). For a C*- a l g e b r a a s t a t e i s a p o s i t i v e l i n e a r f u n c t i o n a l o f norm 1. I n s e c t i o n I 1 6.4 we w i l l show, t h a t t h i s i s a s p e c i a l case o f t h e n o t i o n we have d e f i n e d here. S t a t e s o f o r d e r u n i t v e c t o r spaces have been s t u d i e d e x t e n s i v e l y (compare [ 2 I), t h e i r importance f o r a s t r u c t u r e t h e o r y o f these v e c t o r spaces was d i s covered i n t h e 50's and 60's (see [ 521,[ 961,[ 97
I [loll).
r e q u i r e s i n t h e d e f i n i t i o n o f an o r d e r u n i t v e c t o r space space i s Archimedean, i . e . f o r for all
x
a E A
we have
I n general one
(E,I) t h a t t h e
a 5 0 whenever
a 5
x
I
> 0. B u t t h i s p r o p e r t y i s o n l y i m p o r t a n t i n t h e c o n t e x t o f
d u a l i t y theory, because, when
E
i s embedded i n t h e second dual t h e non-
archimedean elements f a c t o r o u t . Since o u r concept i s so general t h a t t h e embedding i n t h e second dual i s anyway n o t i n j e c t i v e we d i d n o t r e q u i r e t h e o r d e r u n i t cones t o be Archimedean.
S e c t i o n 2.2:
Theorem 2.2.3 was independently proved i n [181 3,[2o51,[3oo1
[342]. I n s t e a d o f Kakutani-Krein-Stone-Yoshida
Theorem t h e r e s u l t i s
sometimes c a l l e d Kadison-Kakutani-Stone Theorem because o f Kadison's i m p o r t a n t paper [179 1. U s u a l l y t h e theorem i s s t a t e d as a r e p r e s e n t a t i o n b y f u n c t i o n s on t h e extreme p o i n t s o f t h e s t a t e space ( i n s t e a d o f f u n c t i o n s on t h e s e t o f l a t t i c e s t a t e s ) . That t h e l a t t i c e s t a t e s and t h e extreme p o i n t s a r e t h e same w i l l become obvious l a t e r on ( s e c t i o n 2.10).
171
Order Unizs and Lattice Cones
Extremely disconnected compact spaces a r e a l s o c a l l e d
S e c t i o n 2.3:
___S t o n i a n spaces. They have a v e r y r i c h t o p o l o g i c a l s t r u c t u r e s i n c e t h e c l o -
s u r e o f each open subset f i c a t i o n of
G
. This
G
i s homeomorphic t o t h e Stone-Czech- compacti-
f a c t has t h e i m p o r t a n t consequence t h a t e v e r y bounded
continuous f u n c t i o n on an open dense s u b s e t has a continuous e x t e n s i o n (c.f.
[2831). L a t e r on we see t h a t Choquet's Theorem can b e extended t o
measures t a k i n g values i n
C(S), S
S t o n i a n (Chapter 11.4). The Loomis-
S i k o r s k i Theorem 2.3.3 has been proved i n d e p e n d e n t l y i n [2181 and [2941 (see a l s o 12951). The Loomis-Sikorski-Theorem p r o v i d e s a d i r e c t approach t o M a i t l a n d W r i g h t ' s e x t e n s i o n o f t h e Riesz R e p r e s e n t a t i o n Theorem t o C ( S ) valued measures, S S t o n i a n ( c . f . [3381 t o [3411). The L o o m i s - S i k o r s k i Theorem can be e a s i l y o b t a i n e d b y combining P r o p o s i t i o n 2.3.2 w i t h t h e B i r k h o f f - U l a m theorem. T h i s r e s u l t s t a t e s [1501 t h a t f o r e v e r y B o r e l - s u b s e t B o f a compact space symmetric d i f f e r e n c e
X
t h e r e i s a r e g u l a r open s e t
B A f(B) = (BLf(B)) U ( f ( B ) 4 )
f(B)
such t h a t t h e
i s meagre. ( R e c a l l
t h a t a r e g u l a r open s e t i s a s e t which i s t h e i n t e r i o r o f i t s c l o s u r e ) . The s e t
f(B)
i s t h e n n e c e s s a r i l y unique and
f
defines a
u- homo-
morphism h a v i n g t h e meagre s e t s as k e r n e l . For t h e sake o f completeness we i n c l u d e h e r e t h e B a i r e c a t e g o r y theorem which p l a y e d a c r u c i a l r o l e i n t h e
B a i r e space A t o p o l o g i c a l space X i s s a i d t o be a -if t h e complement o f e v e r y meagre s u b s e t i s dense ( i . e . 0 i s t h e o n l y
p r o o f o f Theorem 2.3.3.
meagre open s e t ) . Then t h e B a i r e c a t e g o r y theorem says t h a t e v e r y l o c a l l y compact space and every c o m p l e t e l y m e t r i z a b l e space i s a B a i r e space [2841. S e c t i o n 2.4:
The o b s e r v a t i o n t h a t t h e d i s t r i b u t i v e l a w i s i m p o r t a n t f o r
l a t t i c e semigroups can be found i n most s t a n d a r d t e x t s i n l a t t i c e t h e o r y ( f o r example [ 3 9 1 ) . The c o n s t r u c t i o n o f t h e upper and l o w e r envelopes and cpv [
2
'YU
i s adapted from t h e c o n s t r u c t i o n o f convex and concave envelopes
, p.41.
These q u a n t i t i e s i m p l i c i t e l y always t u r n up when Edward's
s e p a r a t i o n theorem [ 971, o r a g e n e r a l i z a t i o n [1161, i s proved. Theorem 2.4.7 w i l l be i m p o r t a n t i n c o n t e x t w i t h f r e e l a t t i c e cones and c h a r a c t e r s , i t i s a g e n e r a l i z a t i o n o f a f o l k l o r e r e s u l t about v e c t o r l a t t i c e s [283
p.721.
S e c t i o n 2.5:
A cone F i s n e g a t i v e l y generated i f
i t i s downwards
directed w i t h respect t o the following modified order r e l a t i o n :
,
Linear Functionals
172
f 5 g
i f f there i s
h
4
0 with
g t h = f.
O f course, f o r v e c t o r spaces t h a t i s t h e same as b e i n g upwards d i r e c t e d
w i t h r e s p e c t t o t h e g i v e n o r d e r . L a t e r on
-
- i n connection w i t h representing
downwards d i r e c t e d s e t s w i l l be i m p o r t a n t . F o r t h i s reason we i n t r o d u c e d t h e n o t i o n " n e g a t i v e l y generated" i n s t e a d o f " p o s i t i v e l y
measures
generated". The Riesz p r o p e r t y i s an a d a p t i o n o f t h e w e l l known Riesz Decomposition p r o p e r t y [ 2 1 f o r v e c t o r spaces. A v e c t o r space has t h e Riesz Decompos i t i o n p r o p e r t y i f i t s p o s i t i v e cone has t h e Riesz p r o p e r t y i n o u r sense. The importance o f t h i s p r o p e r t y was d i s c o v e r e d by F. Riesz i n 1940 (see [2661). F o r v e c t o r spaces t h i s p r o p e r y i s e q u i v a l e n t t o t h e Riesz i n t e r p o l a t i o n p r o p e r t y , where E i s s a i d t o have t h i s p r o p e r t y i f f o r x1,x2,y1,y2 that
E E
with
x. I z 5 yk 1
xi I yk, i , k = 1,2,
, i,k
t h e r e i s always some
z
such
= 1.2.
I f f o r a cone F t h e c a n c e l l a t i o n law h o l d s and i f F i s endowed w i t h t h e F- - o r d e r t h e n t h i s p r o p e r t y i s e q u i v a l e n t t o t h e FSP. Hence, a1 1 these p r o p e r t i e s a r e e q u i v a l e n t f o r v e c t o r spaces.
A l o c a l l y convex ordered v e c t o r space w i t h Riesz p r o p e r t y such t h a t i s l o c a l l y compact i s a u t o m a t i c a l l y a v e c t o r l a t t i c e
2
,
p. 851.
E,
has a compact base t h e n i t i s , by a r e s u l t o f K l e e [1951, E, a u t o m a t i c a l l y l o c a l l y compact.
And i f
S e c t i o n 2.6:
T h i s s e c t i o n does n o t c o n t a i n any new i n f o r m a t i o n
s i n c e t h e p o s i t i v e dual cone can be considered as t h e p o s i t i v e dual cone o f a s u i t a b l e ordered v e c t o r space (Lemma 2.6.7).
A l l the r e s u l t s o f t h i s
s e c t i o n a r e c o n t a i n e d i n standard textbooks about o r d e r e d v e c t o r spaces. S e c t i o n 2.7:
The r e s t r i c t i o n o f theorem 2.7.7 t o compact convex s e t s
(geometric s i t u a t i o n ) was p u b l i s h e d b y C a r t i e r , F e l l and Meyer [ 6 2 1 i n 1964. Since t h e F i n i t e Sum Theorem p l a y s an e s s e n t i a l r o l e i n t h e p r o o f o f 2.7.7
one can g e n e r a l i z e t h e d e f i n i t i o n o f t h e
0- decomposition o r d e r
Order Units and Lattice Cones
173
by t a k i n g i n t e g r a l s i n s t e a d o f f i n i t e sums. T h i s approach leads i n a n a t u r a l way t o t h e n o t i o n of " d i l a t i o n " . Working w i t h t h e A b s t r a c t D i s i n t e g r a t i o n Theorem one t h e n o b t a i n s a s t r o n g e r r e s u l t t h a n 2.7.7.
This
approach was c a r r i e d o u t i n S t r a s s e n ' s paper 13041 (compare a l s o [ 2 , p.271 and [ 8 7 1 ) . S p e c i a l v e r s i o n s o f theorems o f t h i s k i n d d a t e back t o Hardy-Li t t l e w o o d - P o l y a ' s i m p o r t a n t book on i n e q u a l i t i e s [154 1. The r e s u l t s were t h e n improved by B l a c k w e l l [ 4 2 1 and Shermann 12911. Theorem 2.7.7 was p u b l i s h e d i n t h i s form i n [1161.
S e c t i o n 2.8:
The n o t i o n o f f r e e l a t t i c e cone seems t o be new.
Free v e c t o r l a t t i c e s have been considered b e f o r e b y E.C. K. Baker [ 131, S. Bernau [ 341, P.F. Conrad
781, R.D.
Weinberg [3231, B l e i e r [ 4 5 1 and
o t h e r s . Many o f t h e r e s u l t s about r e p r e s e n t a t i o n o f f r e e v e c t o r l a t t i c e s can be o b t a i n e d v i a t h e m a t e r i a l presented i n s e c t i o n 2.8. B u t we d i d n o t want t o g e t t o mucli i n v o l v e d i n t h a t m a t t e r s i n c e we need f r e e l a t t i c e cones o n l y as a t o o l t o i n t r o d u c e s i m p l i c i a l cones. The dual cones o f o u r f r e e l a t t i c e cones a r e c l o s e l y r e l a t e d t o f r e e
compact convex s e t s i n t r o -
duced by Z. Semadeni [289 1. S e c t i o n 2.9:
G. Choquet
[67]
i n t r o d u c e d i n 1956 i n f i n i t e dimensional
s i m p l i c e s . O f course, t h e t y p i c a l example o f a s i m p l i c i a l cone i s a cone h a v i n g a Choquet simplex as base. T h i s f o l l o w s e a s i l y w i t h Theorem 2.9.5 and t h e f a c t t h a t i f
K
i s a Choquet simplex t h e n
Decomposition p r o p e r t y [2, p.911.
A ( K ) has t h e Riesz T h i s example o f a s i m p l i c i a l cone w i l l
be t r e a t e d e x t e n s i v e l y i n s e c t i o n 11. 3.5. Since o u t n o t i o n o f s i m p l i c i a l cone covers cones w i t h o u t bases as w e l l , our concept g e n e r a l i z e s c o n s i d e r a b l y t h e concept o f Choquet simplex. Theorems 2.9.3 and 2.9.11 a r e corresponding t o t h e a s s e r t i o n t h a t i n case o f a Choquet simplex maximal measures a r e u n i ue. Theorems 2.9.5 and 2.9.7
are a generalization o f the
c h a r a c t e r i z a t i o n o f a Choquet simplex by means o f t h e Riesz Decomposition P r o p e r t y . That,
n t h e d e f i n i t i o n o f s i m p l i c i a l cone, t h e r o l e of t h e f r e e
l a t t i c e cone can be r e p l a c e d by o t h e r s u i t a b l e l a t t i c e cones i n a consequence o f 2 9.8.
174
Linear Functionals
Section 2.10: I t is well known t h a t f o r a compact convex s e t K t h e extreme points a r e characterized by the property t h a t a l l extensions t o C ( K ) of t h e evaluation maps a r e vector l a t t i c e homomorphisms C ( K ) + R . For example, t h i s follows e a s i l y from t h e f a c t t h a t an extreme point k € K has % as unique representing measure.Section 2.10. generalizes t h i s concept t o a r b i t r a r y cones. Since a r b i t r a r y cones a r e not always subcones of l a t t i c e cones we had t o find l a t t i c e cones in which they can always be embedded. This r o l e i s played by the f r e e l a t t i c e cones. The theorems of t h i s s e c t i o n show t h a t , sometimes under additional assumptions, extreme points (and extreme rays) can be characterized by l a t t i c e properties and by unique-extension properties as well.
One of t h e most important theorems of t h i s s e c t i o n , Section 2.11: Theorem 2.2.3, and i t s modification, Theorem 3 of 2.11.2, goes back t o a famous paper of Kakutani ([181]). The second c r u c i a l c h a r a c t e r i z a t i o n of s u b l a t t i c e s of C ( K ) , Theorem 1 of 2.11.4, can a l s o be found i n Kakutani's paper. The l a t t e r theorem gives r i s e t o he following natural g e n e r a l i z a t i o n : i s c a l l e d a G- space f there i s a compact Hausdorff 2 xa) E K x K x [-1,1], a € A , space K and a s e t of t r i p l e s ( k a1, ka,
A Banach space A
E
some index s e t , such t h a t E = I f E C(K)
I f ( k 1a )
= ha
f(kt) for all
I t i s c l e a r t h a t E i s no longer a s u b l a t t i c e of
.
a E A}
C ( K ) when
x a attains
negative values. On t h e o t h e r hand, of course, every AM- space i s a G- space. G- spaces ( a n d therefore AM- spaces) have many i n t e r e s t i n g f e a t u r e s . The d e f i n i t i o n of G- spaces appeared i n [1471. There i t was shown t h a t the duals of a l l G- spaces a r e isometrically isomorphic to L1- spaces. In thesame paper the question was raised whether t h e Banach spaces whose duals a r e L1 a r e always G- spaces. I t was shown i n 12123 t h a t , i n f a c t , the answer i s negative. AM- spaces and
G- spaces a r e closely connected, e . g . a l l
complemented i n s u b l a t t i c e s of
G. spaces a r e
C ( K ) - spaces (12173). There i s a
Order Units and Lattice Cones
175
c h a r a c t e r i z a t i o n o f G- spaces which corresponds t o Theorem 1 o f 2.11.4:
A Banach space E i s a G- space i f f t h e r e i s a compact H a u s d o r f f space K such t h a t E c C(K) and min(fl,f2,f3) + max(fl,f2,f3) E E whenever f l y f 2 s f j E E.
([2171)
.
G- spaces (and t h e r e f o r e AM- spaces) have drawn i n t e r e s t i n r e c e n t y e a r s
because they a r e sometimes isomorphic t o
A
s e p a r a b l e G- space i s isomorphic t o a
dorff-
C(K)-
spaces:
C(K)- space,
K
a compact Haus-
( 130 1).
space
However, t h e same a u t h o r has shown: There i s a (non-separable) AM- space which i s n o t i s o m o r p h i c t o any space ( [ 31 1 ) .
C(K)-
There e x i s t corresponding, s u r p r i s i n g l y simple, a b s t r a c t c h a r a c t e r i z a t i o n s o f concrete Banach spaces. F o r example, a Banach l a t t i c e E c a l l y isomorphic t o an
L1- space i f f t h e norm i s a d d i t i v e on t h e cone o f
a l l p o s i t i v e elements o f [1801)
.
E ( i . e . i f f t h i s cone i s an AL- cone) ([481, [491,
S i m i l a r l y , a Banach l a t t i c e
1I p <-
iff
i n f ( x , y ) = 0.
i s isometri-
IIx+yll
E
i s i s o m e t r i c a l l y isomorphic t o an L - space,
= Ilxllp
+
IlyIIp
for all
x,y E E
P with
( [ 481).
F o r a d e t a i l e d and comprehensive t r e a t m e n t o f Banach l a t t i c e s t h e r e a d e r
i s advised t o c o n s u l t [215] and [283]. One o f t h e theorems which have i n i t i a t e d a l o t o f r e s e a r c h a c t i v i t i e s i n r e c e n t y e a r s i s K o r o v k i n ' s theorem ( i . e . Theorem 2.11.8).
I n fact, i n
numerous p u b l i c a t i o n s many a u t h o r s g e n e r a l i z e t h i s theorem t o Banach l a t t i c e s o r l o c a l l y convex l a t t i c e s and d i s c u s s n o t i o n s c l o s e l y r e l a t e d t o t h i s theorem. The whole s u b j e c t deserves t o be t r e a t e d i n d e p e n d e n t l y For references t h e r e a d e r s h o u l d c o n s u l t [ 26 ] o r [ 1081, [337]. The most i n t e r e s t i n g case, o f course, i s t h e s i t u a t i o n when t h e u n d e r l y i n g space possesses a f i n i t e K o r o v k i n f a m i l y . T h i s i s e.g. t r u e i n t h e
C(K)-
176
Linear Functionals
2
"classical" case C ( 0 , l ) , here { l , x , x 1 constitutes a Korovkin family. An interesting result in this respect i s due t o Wolff ([3351), which can be stated even for general Banach l a t t i c e s : A Banach l a t t i c e E possesses a f i n i t e Korovkin family i f f E i s finitely generated, i . e . i f there i s a f i n i t e s e t M c E such t h a t the smallest sublattice of E containing M i s E i t s e l f .
C H A P T E R
I1
REPRESENTING MEASURES SECTION 11.1 COUNTABLE DECOMPOSITION
The aim o f t h e second p a r t o f t h i s book i s t o s t u d y those l i n e a r f u n c t i o n a l s on c o n c r e t e cones ( i . e .
cones o f
6-
X ) which can b e r e p r e s e n t e d as i n t e g r a l s . T h i s problem has two p a r t s . We have t o v a l u e d f u n c t i o n s on some s e t
l o c a l i z e the l i n e a r functionals w i t h respect t o
and, i n d o i n g t h i s , we
X
have t o proceed i n such a way t h a t t h e e x t e n s i o n s t o t h e measurable functions have t h e Monotone Convergence P r o p e r t y (see Appendix). I f one i s i n t e r e s t e d o n l y i n f i n i t e l y a d d i t i v e measures t h e n one c o u l d e i t h e r proceed w i t h t h e Sandwich Theorem o r w i t h t h e F i n i t e Decomposition Theorem. B u t u n f o r t u n a t e l y honest measures have t o be u- a d d i t i v e , and t h i s f o r good reasons. NOW, one has t o keep i n mind t h a t f o r a l i n e a r f u n c t i o n a l
1-1
, given by the i n t e g r a l m on
w i t h r e s p e c t t o some
(u- a d d i t i v e ) p r o b a b i l i t y measure
a g i v e n sequence
n E N , o f nonempty measurable s e t s w i t h
Yn,
one can e a s i l y decompose
u
into
u
=
1 un
, where
pn I
T h i s means t h a t , w i t h r e s p e c t t o t h e s u b l i n e a r f u n c t i o n a l s
supy
X, and f o r
u Yn n
,n E
= X N.
supy, Y c X,
i n t e g r a l s have a s t r o n g e r decomposition p r o p e r t y t h a n t h e p r o p e r t y g i v e n b y t h e F i n i t e Decomposition Theorem. Roughly speaking, f o r t h i s case we have t o c a r r y o v e r t h e F i n i t e Decomposition Theorem t o c o u n t a b l e s e t s of subl i n e a r f u n c t i o n a l s . L a t e r on i t t h e n t u r n s o u t t h a t t h i s i s a l s o s u f f i c i e n t f o r a l i n e a r f u n c t i o n a l t o be an i n t e g r a l , i . e .
i f we can f i n d f o r a l i n e a r
f u n c t i o n a l a s u i t a b l e decomposition f o r c o u n t a b l e s e t s o f s u b l i n e a r f u n c t i o n a l s t h e n t h i s f u n c t i o n a l can be r e p r e s e n t e d b y an i n t e g r a l . And, t h e l o c a l i z a t i o n can a l s o be done by decomposition t e c h n i q u e s . F o r t h i s reason
we s t a r t t h i s c h a p t e r by an i n v e s t i g a t i o n o f t h o s e cones
where a Countable Decomposition Theorem h o l d s ; these cones w i 11 be c a l l ed D i n i cones. I n s e c t i o n 1.3 we study permanence p r o p e r t i e s o f D i n i cones and i n s e c t i o n 1.4 we c a r r y o v e r o u r arguments t o a p r o p e r t y which l a t e r on
w i l l be neccessary f o r r e p r e s e n t a t i o n b y s i g n e d measures.
178
Representing Measures
1.1 PRELIMINARIES The main o b j e c t i v e o f c h a p t e r 11.1 i s t h e g e n e r a l i z a t i o n o f t h e F i n i t e Decomposition Theorem t o sequences o f s u b l i n e a r f u n c t i o n a l s . To be more p r e c i s e , we s t a r t w i t h a sequence
o f s u b l i n e a r f u n c t i o n a l s and we (p,) search f o r c o n d i t i o n s which ensure t h a t f o r e v e r y l i n e a r p I sup pn nm there are l i n e a r
pn Ipn
such t h a t
p Ix .
n '
nEN
P a r t i c u l a r a t t e n t i o n w i l l be g i v e n t o t h e case when
, the
F
cone under
c o n s i d e r a t i o n , c o n s i s t s o f bounded r e a l v a l u e d f u n c t i o n s on some s e t
X
and
c o n t a i n s t h e c o n s t a n t f u n c t i o n s , and when t h e sequence of s u b l i n e a r f u n c t i o n a l s i s a s s o c i a t e d t o subsets a r e g i v e n by t h e
Yn-
Even i n t h i s case t h e s t a t e s
pn
p
n
= sup
'n
weak sense as supported b y
Yn
Yn c X
i n t h e sense t h a t t h e
suprema. I supy
.
n
can be imagined o n l y i n a v e r y
1.1 Remark: Let Y c X
and assume t h a t
state with
1-1 5
sense t h a t
p(f) I
I supy
u(g)
i s t h e p r e o r d e r g i v e n by
p Isupy
then
;1
whenever f sYg
= p
, i.e.
i s maximal
. Then
p
f,g E F such t h a t iff
whenever
i s supported b y
f ( y ) Ig ( y )
f
i
is a
Y
i n the
sYg , where sY
for all
y E Y.
The a s s e r t i o n i s an immediate consequence o f t h e Sandwich Theorem s i n c e t h i s r e s u l t gives a
sy- monotone s t a t e ii w i t h
leaves o u t t h e assumption t h a t
p
i s e a s i l y found. F o r example t a k e f o r f : R+ + R +
, take
Y = [0,11 and
p
F t h e cone o f decreasing f u n c t i o n s g i v e n by
p(f) = f(3).
So, i n a c e r t a i n sense, t h e d e s i r e d decomposition up t h e
1-1
ii I sup
I f one Y ' has t o be maximal t h e n a counterexample p 5
i n t o terms which a r e l o c a l i z e d on t h e
p I
Yn.
1
pn
nEN
for
p
splits
The s t u d y o f these
179
Countable Decomposition
decompositions t h e n l a t e r on y i e l d s an immediate access t o r a t h e r general r e s u l t s c o n c e r n i n g t h e e x i s t e n c e o f r e p r e s e n t i n g measures. Throughout c h a p t e r 11.1 we assume t h a t a l l l i n e a r and s u b l i n e a r f u n c t i o n a l s do a t t a i n values i n
r? ( i n s t e a d o f a general o r d e r complete v e c t o r l a t t i c e ) .
T h i s r e s t r i c t i o n i s necessary, s i n c e most o f t h e r e s u l t s do n o t h o l d f o r t h e general case o f v e c t o r l a t t i c e v a l u e d f u n c t i o n a l s . L e t us s t a r t by r e c a l l i n g some conventions and d e f i n i t i o n s . always be a preordered cone. Let
(rn)
Let
pn
co
I: p n ( f ) E n=l G c F
Let
+
i? be some f u n c t i o n a l s . We say,
r?
for all
f2, fl,f2 E F
iff
G- monotone i f f
t o be
m
x
exists, i f
pn
n=l
f E F.
be a subcone and l e t
the d e f i n i t i o n o f the fl>
m I: rn = l i m i n f x r n=l m +co n = l n' co
be a sequence o f r e a l numbers. We d e f i n e
: F
will
(F,<)
G- o r d e r
there i s u ( g ) I0
be a l i n e a r f u n c t i o n a l on
IJ i
( D e f i n i t i o n I . 2.5.1):
g E G for all
with
fl + g = f2
F , Recall
.
u was s a i d
g E G.
We c o n s i d e r now t h e f o l l o w i n g s i t u a t i o n :
E, n
pn : F
Let
be l i n e a r . D e f i n e F-
-
E N
, be s u b l i n e a r f u n c t i o n a l s on F and l e t
F- = { f E F I p n ( f ) I 0
monotone i f f u ( f ) 5 0
F- = { f E F I f
whenever
hence iF 01, -
for all
n E NI.
pn(f) 5 0 f o r a l l
the notion o f
11
Hence
n E N
.
: F + fi
u
is
We have
F- h e r e concides w i t h t h a t o f
Ch. 1.2.5.
1.1.2 Let (i)
Definition: (p,)
be a sequence o f s u b l i n e a r f u n c t i o n a l s o n
A linear
are l i n e a r 115 1 nEN
p
pn I pn
tnIJn,
F.
i s c a l l e d decomposable ( w i t h r e s p e c t t o and r e a l numbers
tn 2 0
with
where t h e sum i s assumed t o e x i s t
I: tn
.
n€N
(p,)) 0
i f there such t h a t
180
Representing Measures m
I f we have in addition
p =
z
n=l
tnpn
then we call
p
s t r i c t l y decomposable.
( i i ) If there are a real t > 0, n E N and some F--monotone linear v with 11 5 t p, + v then we call u partially decomposable. Note that we require t
+
0 in i i ) and z tn + 0
in i ) .
Examol e: Let F = C(0,l) be the vectorspace of a l l continuous realvalued functions 1 $,(f) = f(n) for on [0,11. Let 6, be the Dirac measure a t 1 , i . e . a l l f E F. Assume t h a t u : F -* R i s linear and monotone. By the RieszKonig Theorem 1.1 can be regarded as a positive measure on [0,11, hence v i s ( s t r i c t 1 y ) decomposable (with respect t o ( a n ) ) i f and only i f s u p p 11 c { 1 n E N 3 . I f p = T t 6n , where T i s the Lebesgue measure on [0,11 a then 11 i s partially decomposable b u t n o t decomposable. Now, consider an arbitrary compact Hausdorff space X and l e t F = C ( X ) (the continuous realvalued functions on X ) . Let p be any positive measure on X ( t h a t i s , a monotone linear functional on C ( X ) and take a disjoint measurable covering (Y,) of X. Then clearly, p i s decomposable with respect t o pn = supy , j u s t take pn t o be the restriction of the n measure 1-1 on Y n . I t will turn o u t l a t e r on t h a t here we can get rid of the measurability assumptions on Y n .
I
1.1.3 Proposition: Assume t h a t --
pn(f)
for a l l
5 0
-._
f
E
F and n
E N.
Then the following --
are equivalent: decomposable.
i)
p
ii)
p ( f ) 5 0 for a l l
with
m
z
k=l
p(fk)
f E F ; --and for every sequence ( f , ) , f n E F , rn > we have sup(inf pn( fk))> - m n m k=l
.
181
Countable Decomposition
Proof: i)
*
ii)
ii):
This i s a d i r e c t consequence o f D e f i n i t i o n 1.1.2.
i):
We c l a i m t h a t t h e r e i s some
1
f ) I - max(pl(f) ,...,p
P
no E N
such t h a t
for all
(f))
f E
F.
Then, using the F i n i t e Decomposition Theorem I 1.4.4 we o b t a i n
I+,
and l i n e a r
I
pn
such t h a t
,
x =A
E
n=l
An 2 0
no
n and
This proves i)i f we take
P S
pn =
0
1
n=l
xnpn.
0, An = 0 f o r a l l
n
7
no
.
NOW, we prove t h e claim: Let
n n ( f ) = max(pl(f),
f o r every
n
there i s
Fn
We m u l t i p l y
p2(f),..,,pn(f))
Tn
E
for all
..
f E
F and assume t h a t
1 0 2 P ( f n ) > Fi nn(fn).
F such t h a t
w i t h an a p p r o p r i a t e p o s i t i v e number and o b t a i n
fn E F
with
o
t p(fn) 2
- -21 n
m
Hence we have X, p(fn) t n=l
1 1 > n n n ( f n ) t -n n k ( f n ) 1 - m ,X -2
n=l n
>
m
m
m
m
-
m
for
k 5 n
.
and
s u p ( i n f pn( t f k ) ) I s u p ( i n f nn( ,X f k ) ) n m k=l n m k=l 5 sup(inf
n
I
m
(
sup(inf ( n mtn
E
n n ( f k ) ) ) I sup(inf( t n n ( f k ) ) ) k=l n m>n k=n
-
m 1 " 1 E ) ) = sup(- t K) = k=n n k=n
-
m
. This
contradicts i i ) . 0
182
1.2
Representing Measures
THE MAIN DECOMPOSITION THEOREMS
Here again l e t pn : F
be sublinear functionals for a l l
+IF
n E N,
where (F,s) i s a preordered cone. Let G c F be a subcone. Recall that G generates F i f for every f E F there i s some g E G such t h a t f t g E G. (Definition I . 2.5.1) 1.2.1 Example: Let F be some cone and assume t h a t p : F + 6 i s sublinear such t h a t there i s go E F with p ( g o ) < 0 Let G = { g E F I p ( g ) 5 01. G i s a
.
subcone of F. If f E F then for suitable x > 0 we obtain p(f t x go) I p ( f ) t x p ( g o ) 5 0 . Hence f t x go E G and thus G
.
generates F The following lemma i s a variant of the statement of the Uni versa1 Property I . 2.6.4. 1.2.2. Lemma: Assume that --
G
unique linear --
generates F. : F - + R with
5
!.I
G IG =
(Note t h a t we require v ( g ) > -
: G !.I
.
for a l l
OD
+ IR
be linear. ---Then there i s a -~
g E G)
Proof: Let f E F and g E G with f t g E G. Then define ; ( f ) = v(ftg) - u ( g ) . This definition i s independent of the choice of g . Indeed, i f g1 E G with
f t g1 E G
!.I(f+g)
-
v(g) =
then f P(f t
t
g t g1 E G and we have
9 + 91)
-
!.I(g1)
-
v(9) = u ( f
Since ;1 i s certainly linear, we obtain t h a t unique linear extension of v 0
.
G
t
91)
-
"91).
i s the well defined
1.2.3 Lemma: Assume t h a t G generates F . Let v : F + R be linear, -and l e t -TI : F + 6 be sublinear. -Then the following are equivalent: i)
v(g)
5
n(g)
for a l l g E G --
.
183
Countable Decomposition
i i ) There i s a linear functional : F - * R -such t h a t and i ( g ) I 0 fo r a l l g E G . --
p I
+ n
Proof: Only i ) * i i ) requires a proof. Let p = n - LI. Then p i s sublinear and p ( g ) t 0 for a l l g E G. By the Dominating Extension Theorem I 1.3.1 there i s a linear functional v Ip with v ( g ) 2 0 f o r a l l g E G. Let f E F and g E G be such that f + g E G Then v ( f ) 2 - v ( g ) > Hence we may define i = v
-.
.
As before, l e t
F- = {f E F I p n ( f ) I 0
for a l l
- .
n
E NI
.
Partial Decomposition Theorem:
1.2.4
Let u : F Assume that F- generates F . ~1 owing are equi Val ent : Then the fol --
+ R
be F-- monotone -~ and l i n e a r . -
i s partially decomposable
i)
p
ii)
For every sequence ( f k ) in F- with --
sup(inf p n ( z f k ) ) > n m k=l
m
Proof: We only have t o combine Proposition 1.1.3 and Lemma 1.2.3.
0
Note t h a t in 1.2.3 and 1 . 2 . 4 as well as in the following theorem we For a function p : F + 6 we denote r e s t r i c t ourselves t o realvalued p by p i0 the fact t h a t !.I i s n o t dominated by 0 , i . e . there i s some f E F with p ( f ) > 0.
.
184
Representing Measures
1.2.5
DecomDosition Theorem:
Assume t h a t G c F- 2 a subcone g e n e r a t i n g F and t h a t f o r each n E N -such t h a t pn(g) < 0 . -Then t h e f o l l o w i n g are equivalent: t h e r e i s g E G --Every
i)
G-monotone l i n e a r
1.1
with -
1.1 i0
is -
-,R with
1.1 i0
is -
: F -tlR
p a r t i a l l y decomposable
ii)
Every
G- monotone l i n e a r
1.1 :
F
decomposable For e v e r y --
iii)
G- monotone l i n e a r
1.1
: F +IR OD
f o r every --
sequence
1 v(gk) >
gn E G w i t h
LI i0
with -
- k=l
-
and -
we have
Q)
-
Proof:
ii) i)i s , b y d e f i n i t i o n , e v i d e n t . i)3, iii)i s an immediate consequence o f t h e P a r t i a l Decomposition Theorem 1.2.4.
iii)-+ ii)F i x
1.1
as i n iii).P r o p o s i t i o n 1.1.3 g i v e s t h a t
decomposable w i t h r e s p e c t t o t h e
p
.
C a l l a sequence
"IG o f nonnegative r e a l numbers a r e p r e s e n t a t i o n i f
1.1
(tn)
IG
is
,n E
N
,
m
'
n = l tn P n j G
*
Observe t h a t i f
(tl,...yt~,t~+l,...)i s a r e p r e s e n t a t i o n t h e n
(tl,...,t~,O,O,O
e t c . ) i s a g a i n a r e p r e s e n t a t i o n . The reason f o r t h i s i s
that a l l the with
1 tn
Denote by
*0
p
"G
0. Observe f u r t h e r t h a t t h e r e i s a r e p r e s e n t a t i o n
5
since
1.1
IG
i s decomposable.
n t h e s e t o f a l l r e p r e s e n t a t i o n s . Consider i n n t h e p o i n t w i s e
order, i . e . f o r two r e p r e s e n t a t i o n s (t,)
5 (sn)
iff
( t n ) , (sn)
t, 5 s,
we w r i t e
for a l l
m E
N
.
Countable Decomposition
185
We claim: (1) There i s a representation which i s maximal with respect t o the pointwise order of n .
( 2 ) For every (t,) E n there are linear u, : G+R-= I r E R ~ r I O l with vn I pn,. for a l l n E N and with G m
Furthermore the un are maximal, i . e . i s linear with vn I p 5 p n I G
.
whenever
vn = p
p
F i r s t we show how these assertions imply t h a t IJ i s decomposable. Let (t,) E n be maximal and consider the vn as in ( 2 ) . Then the Dominating . Since the vn Extension Theorem gives us linear Gn 5 p, w i t h u I < "IG
-
are maximal, t h i s implies vn = u n l G and the 3, must be the unique extensions of
vn (given by Lemma 1 . 2 . 2 ) .
Furthermore
<=
aD
Z
n=l
tn Gn
must
be the unique extension of v , this f o r the same reason as before. I f we can show t h a t 1.1 I G then the proof i s finished. Lemma 1.2.3 gives us a : F + R such t h a t p I 3 t i; . If 5 0 then linear G- monotone obviously P I V. Therefore we may assume i; i0. Then by i i i ) and Proposition 1.1.3 ; i s decomposable, i.e. there are s,, 1 0 with IG z s n + 0 such that m
Hence v I G I mality of
m
I
n=l
( t nt s , ) p
"G
.
Clearly a contradiction t o the maxi-
(tn).
Proof of (1): Let tl = sup{s L Ol(s,O,O,O, ...,0 ) E 01. This supremum exists since there i s some g E G with p l ( g ) < 0 . Obviously (tl,O,O,O ...) E a . NOW, we continue in the obvious way. We define inductively for a l l n E N tntl = supis t 0 I ( t l , t 2 , . ..,t,,s,O,O,. ..) E n l . Then the sequence (t,) i s a maximal element of n Proof o f ( 2 ) : This assertion i s a consequence of the Sum Theorem I 1.4.1 combined with a maximality argument. Fix N E N and define a sublinear
.
186
Representing Measures
EN =
m
z t n p n I G . Observe t h a t
n=N
G1,...,V
*
N '
such t h a t
'n
I
-,6 with C1 N- 1
1 t
plG I
n=l
m
u p the SN
-
G
I
with
", I G
z t p N
'IG
I
n Vn +
instead of
z
n=l
The Sum Theorem gives l i n e a r
-
p l I ,...,VN-l I p N - l I G and SG I p N I G G GN . Repetition of t h e procedure, by s p l i t t i n g
m
pIGI
pN I 0.
plG I
tnOn.
m
pIGI
z t n p n I G etc., yields linear
n=l
Actually, we f i r s t obtain t h i s i n e q u a l i t y
m
lim sup z t p on t h e r i g h t s i d e , b u t this term N - + m n=N 'IG can be dropped since i t i s 5 0. NOW, replace the Vn by maximal
w i t h an additional
Vn
I vn 5
p
"G
, then s t i l l we have
m
p
I'
<
z tnvn
- n=l
.
Finally, we observe t h a t a l l the vn a r e R- - valued, t h i s i s so because a t t a i n s only values i n R and because of p I 0 for all n € N "G ( i f tn = 0 p u t vn = 0 ) . Let u s add a somewhat more technical r e s u l t which wil be needed i n Corollary 1 . 2 . 7 below and i n various o t h e r s i t u a t i o n s l a t e r on. We c a l l a subset 0 c F downwards d i r e c t e d i f f o r f g E ways some h E @ with h 5 f and h 5 g . 1.2.6 Lemma: be-a s u b l i n e a r Let - p : F -,fi downwards d i r e c t e d . ----Then t h e r e and inf p ( f ) = f€O Proof: Let a
=
inf p ( f ) . If fE@
a > -
m
monotone functional -and l e t @ c F be i s a l i n e a r monotone p : F + 6 with p inf p ( f ) f€@
then define a s u p e r l i n e a r 6
with x f superlinear since 0 was downwards d i r e c t e d . I f 6(g) = supiA alX 1 0 , t h e r e i s
there i s al-
@
f E
Ig )
.
a
-
=
5
p
by
6 is indeed m
then define
I
p
Countable Decomposition
'(9)
1
=
yields
if
- m
g + O
if g = 0
0
a l i n e a r monotone
.
I n any case, t h e Sandwich Theorem I 1.2.5
,: F - 6
with
a = i n f 6(f) = i n f u(f) = i n f p(f).
f€Q
fE@
I p
6 5
. Then
0
fE@
I n t h e f o l l o w i n g c o r o l l a r y t o t h e Decomposition Theorem we show t h a t i n t h e case o f an o r d e r u n i t cone one can d r o p t h e r e s t r i c t i v e assumption t h a t a l l the
under c o n s i d e r a t i o n have t o a t t a i n values i n R
p
(instead o f
6 ) . 1.2.7 Let -
Corol 1a r v :
( F , <,I) be an o r d e r u n i t cone and assume t h a t -_--____-__
sublinear w i t h pn I S I va 1ent :
for all n E --
Every l i n e a r u : F -,6 with -~ ii) -Every l i n e a r M : F + 6 w i t h iii)-For e v e r y d e c r e a s i n g sequence
i)
u
N
. -Then t h e
I S
p I
S
-.
6
are
f o l l o w i n g -a r e equi-
I -i s p a r t i a l l y decomposable i s decomposable I -
( f n ) , fn E F
sup ( i n f p n ( f m ) ) = i n f SI(fm) n m m
pn : F
, -we have
.
P-roof : i s an immediate consequence o f D e f i n i t i o n 1.1.2.
(ii) * (i)
(i) ( i i ) L e t us f i r s t e s t a b l i s h t h e s i t u a t i o n we considered i n t h e Decomposition Theorem 1.2.5. F i x some
u
F, = { f E F since
S 0
G = I f E F,
I
SI and c o n s i d e r i t s r e s t r i c t i o n
I U(f)
>
- -1.
u
=
Clearly, t h i s r e s t r i c t i o n
; ( I ) = 1. D e f i n e a s u i t a b l e subcone f < 01. The cone
G
generates
F
U
G =
IF, of
t o t h e subcone i s r e a l v a l u e d , and F,
by
G t {a I] a E R I
since
-IE G. And, o b v i o u s l y , f o r each pn t h e r e is some g E G w i t h p , ( g ) < 0 , j u s t t a k e g = - I . Observe t h a t t r i v i a l l y e v e r y l i n e a r u I S
I
is
G- monotone. Now, e v e r y l i n e a r
I SI
on
FP can be
188
Representing Measures
extendedto a l i n e a r V(f) =
-w
linear
v
SI on a l l o f F by p u t t i n g
v I
f E F x Fp
for with
. Therefore
i s decomposable. Hence, 1.2.5 i m p l i e s t h a t
v $ 0
i s decomposable. So, c e r t a i n l y
(iii) * ( i) : As b e f o r e f i x holds f o r Then
. Let
F
i)i m p l i e s t h a t e v e r y G- monotone
,p
p I
LI
1 FLI
i s decomposable.
SI and c o n s i d e r G W
1 p(gk) >
g, E G such t h a t
k=l
. Assume
-w
. Put
that =
f,
iii)
m
1 gk.
k=l
i s decreasing and from iii)we o b t a i n
(f,)
m
m
W
Using t h e P a r t i a l Decomposition Theorem 1.2.4 we conclude t h a t
p
is
p a r t i a l l y decomposable. (ii) inf
m
* (iii):L e t fn E
and
= inf S ( f ) I m
p(fm)
F be decreasing. L e t
m
p 5
p :
S (Lemma 1.2.6).
I
F
+6
be l i n e a r w i t h
Then t h e r e a r e
tn 2 0
W
such t h a t
Since
p I
-p(I)
1 t p n = l n n'
= p(-I) I
Note t h a t
p n ( * I ) 5 SI(*I)
t tn p ( - I ) I - t tn n=l n=l
= i 1.
we o b t a i n
I tn I 1. n=l
Hence m
i n f SI(fm) m
= i n f u(fm) I
m
I
T h i s proves iii).
0
1 tn i n f pn(fm) I s u p ( i n f pn(fm)) I
n=l
i n f SI(fm) m
m
n
.
m
189
Countable Decomposition
DIN1 CONES
1.3
We want t o give some applications of the preceding section t o cones F(X) of upperbounded functions f : X -,li? containing a l l constant functions. ( X * 0 i s an arbitrary s e t ) . Hence t h r o u g h o u t t h i s section we assume t h a t F(X) i s an order unit cone whose order unit i s the function l X ,i . e . for all
f E F(X)
there i s
such that
X > 0
f
5
we consider the pointwise order with respect t o
X l X . Of course in
F(X)
x .
Definition:
1.3.1
i s called -Dini cone i f for every pointwise decreasing sequence
F(X) with
f n E F(X) ( ( f , ) t
(f,)
i n short) we have
supX(inf f n ) n a
=
inf supX(fn)
nEN
(By inf f n we mean the pointwise infimum).
n a
We call this condition the Dini
-
condition.
If F(X) = C ( K ) , the vector space of a l l continuous realvalued functions on a compact Hausdorff space K ,then, clearly, the Dini condition i s equivalent t o : Whenever f n E C ( K ) , (f,) t and (f,) converges pointwise t o a continuous function
f
on K then
(f,)
converges uniformly t o
f.
Dini's Lemma: of a l l upper semicontinuous functions on-a compact Hausdorff space i s- a- -Dini cone.
The cone U S C ( K ) --
1.3.2 Remark:
A max-stable order unit cone F(X) ( i , e . max(f,g) E F(X) whenever f , g E F ( X ) ) i s a Dini cone i f and only i f every decreasing sequence in
F(X)
converging pointwise t o zero converges uniformly to zero.
Proof: i ) Assume t h a t F(X)
i s a Dini cone and take f n E F ( X ) , (f,) t , which
Representing Measurss
190
converges p o i n t w i s e t o zero. The D i n i c o n d i t i o n i m p l i e s which c l e a r l y means t h a t
(f,)
i n f supX(fn) = 0 nEN
converges u n i f o r m l y t o zero.
ii) Assume t h a t every decreasing sequence i n F(X)
which converges p o i n t -
wise t o zero a l s o converges u n i f o r m l y t o zero
fn EF(X), (f,) c
Since
supX(inf fn) nEN
t h a t t h e assumption
i n f supX(fn) nEN
I
s u p X ( i n f fn) < i n f supX(fn) nEN nE N r E R
s u p X ( i n f fn) < r < i n f s u p X ( f n ) nEN nE N
- r,O)
for all
n E
i n f (supXfn) n a
F(X),
N , Then
- r
i n f (supxgn) = 0 nEN
= i n f (supX(fn
nEN
-
leads t o a contrasuch t h a t
.
i s max-stable and c o n t a i n s t h e c o n s t a n t s . We have by assumption on
.
i s always t r u e i t s u f f i c e s t o show
d i c t i o n . Therefore assume t h a t t h e r e i s
D e f i n e gn = max(fn
. Let
gn E F(X)
since
F(X)
gn J. 0 and t h e r e f o r e ,
. Since
r ) ) 5 i n f ( s u p X gn) nEN
weobtain t h e c o n t r a d i c t i o n i n f (supx fn) 5 r < i n f (supx f n ) nEN nEN
1.3.3.
Lemma:
a t t a i n s i t s maximum on L e t F(X) ---be a D i n i cone. -Then every f E F(X) -__-Proof: D e f i n e gn =
n(f
-
supX(f))
a t t a i n i t s maximum, t h e n
. Then
i n f gn(x) = nEN
gn E F(X), gn 2
-
0
for all
CJ,~
x E X.
.
If
.
f
X.
does n o t
Countable Decomposition
Hence
s u p X ( i n f gn) = n
-
03
, but
inf n
191
,a
supx(gn) = 0
contradiction. 0
The c o n d i t i o n o f Lemma 1.3.3 does n o t c h a r a c t e r i z e D i n i cones. The r e a d e r
w i l l f i n d a counterexample a f t e r Lemma 1.3.5. Let
VF(X)
be t h e max-stable cone generated by
I
V F ( X ) = {max(f l,...,fn)
fl
,..., fn E
F(X), i . e .
F(X), n E N I
.
Then we have 1.3.4
Lemma:
The r e. e q u i v a l e n t : -f o l l o w i n g a_ (i)
VF(X)
_i s _a -D i-n i cone
is_ a Dini _ --
(ii) F(X)
cone
(iii)For e v e r y sequence
fn I 0 i n F(X)
we _ -have
n m i n f supx ( IT f k ) = supx( I f k ) n k=l k=l
.
Proof: ( i i i ) a r e t r i v i a l . So i t remains t o show: ( i ) =b ( i i ) ( i i i ) + ( i ) : L e t F(X) be a D i n i cone and l e t (gn) t Define
13 = supx ( i n f 9,)
n
Hence i t remains t o prove we may assume
a I 13
supx(gn) Ia +
subsequence). Every
1 fn,...,f:n
and
E F(X)
gn
.
1
if
for all
Take a n u l t r a f i l t e r
decreasing sequence o f non empty s e t s :
n
such t h a t
a > -
i s o f the form
consequence o f t h e m a x i m a l i t y o f
. We
a = i n f supx(gn) n
n
always have
. Without
m
.
VF(X)
in
a 2 8.
loss o f q e n e r a l i t y
( o t h e r w i s e we go o v e r t o a
gn = max(f
o of
X
Xn = I x E X
1 ,,,..., fr;”
) where
containing the following
I gn(x)
o we f i n d a number
z a -
pn I kn
1
. As
f o r every
a
Representing Measures
192
pn 1 Yn = IX E X Ifn (x) 2 a -
E Q
.
T h i s f o l l o w s from t h e f a c t t h a t
and t h a t
h = ym E
m
x
n {Yi
u
xI
fi(x) 2 a -
=
Q
i s an u l t r a f i l t e r . Put
fn
n=l
kn
X,
j=l
. Then
Ii5
ml
cx E
I
1 fn = n ( f i n
-
a
- -)n1
pn 1 fn I gn Ia + n
because
f, 5 0
1
and
. Choose x,EX
(which i s nonempty). Then ( i i i ) p r o v i d e s us w i t h
such t h a t 1 pn (x,) IT Ti (fn n=l
-
OD
a
- -)1 '
-
1
t -ii ( p + n=l
E
-
a) >
--
n
pn i n f fn (x,) n
Combining t h i s i n e q u a l i t y w i t h m
2 i n f sup
r
for all
E
>0
X
u :C
- 1z
n
.
inf(hm(ym)) m
(XI
= tf :
x
+
tx E X R
1f
I f(x)
1
E )
-
1 2
we o b t a i n
n( xo ) I p 0 3 .
Since
1
t -= n=l n
we have
(i) o ( i i ) a f t e r Theorem 1.3.6.
be a t o p o l o g i c a l space. A non n e g a t i v e f u n c t i o n
t o -vanish a t i n f i n i t y i f Put
(h ) m
Ii n f g
We s h a l l g i v e a second p r o o f o f Lemma 1.3.4 Let
X
f : X
+
i s compact f o r a l l
i s said
R E
non negative, upper semicontinuous, vanishing a t i n f i n i t y }
.
> 0
.
Countable Decomposition
1.3.5
193
Lemma:
be a D i n i cone c o n s i s t i n g o f upper semicontinuous f u n c t i o n s on L e t F(X) ---t h e t o p o l o g i c a l space X . Then F(X) + U : C ( X ) __-i s a Dini cone. Proof: We can assume, t h a t hn = fn t cpn
(*)
B
, fn E =
F(X) F
i s max s t a b l e ( 1 . 3 . 4 ) . L e t
, cpn
€ U: C
(X)
Assume t h a t we have found i n t e g e r s functions be m kl
1
gn = max(fk ,a) + n > k,
such t h a t
h
t-
fkm+l
f
kmtl
(y) I a
hn h
kmtl
n
such t h a t t h e 5
m
f o r a l l elements y
kmt 1
I
...< km
are decreasing f o r a l l
considering the r e s t r i c t i o n s o f q u a l i t y together w i t h
,
1 = k 1 < k2 <
Otherwise D i n i ' s Lemma would proviide
with
and assume
> a > supx(inf(hn)) n
i n f supX(h,) n
(hn)+
. There must of
us w i t h a c o n t r a d i c t i o n t o ( * ) by t o t h e compact s e t hk
I
1 5 max(fk , a ) mtl m
Y
. This
ine-
implies
in
t
1 m
.
1 Hence b y i n d u c t i o n we o b t a i n a decreasing sequence qn = max(fk ,a) t si n i n F . I t remains t o show supx(gn) 2 B f o r a l l n E N T h i s means t h a t
.
(gn)s
contradicts t h e Dini c o n d i t i o n o f
i n f supx(gn) t B > a = s u p X ( i n f gn) n n
Assume t h e r e f o r e
since
F(X)
.
) = 6 < B f o r some no
sup ( g "0
Representing Measures
194
*) implies t h a t a l l
Then t h e l e f t s i d e o f
hm(m 2 kn )
I x E X I wk ( x ) 2 p
maxima on t h e compact s e t D i n i ' s Lemma. U
attain their
0
- 61 and ( * ) c o n t r a d i c t s
i s a Dini cone. I n c o n t r a s t t o 1.3.5 I n p a r t i c u l a r we have t h a t U C:(X) we observe t h a t i n general t h e sum o f two D i n i cones i s n o t a D i n i cone. Exampl e : Let
F = I ( r n ) ( r nE R ,
e v e n t u a l l y c o n s t a n t and
l i m rn = r13 n-m
.
Both cones may be considered as cones of f u n c t i o n s on N I t i s easy t o see, t h a t F and G a r e D i n i cones. B u t F d G c o n t a i n s fn
and F+G
1.3.6
(O,O,
...0,
1,1, ...) +n c
supN ( i n f fn)= 0 n
for all
n.
We have
(fn)r
, inf
sup,
= 1
(f,)
n
. Hence
F+G
i s n o t a Dini-cone. On t h e o t h e r hand,
s a t i s f i e s t h e maximum c o n d i t i o n o f Lemma 1.3.3.
Theorem:
The f o l l o w i n g _ a r e. e q u i v a l e n t : i) F(X)
i s a D i n i cone
ii) For e v e r y sequence functional
u
I supx
m
with
-
I: A = 1 n=l n
for all n --
0
E N.
.
m
P
Yn c X with U Yn = X --and e v e r y l i n e a r n=l
there are l i n e a r
, -such t h a t u
vn : F(X)
-,k
and x n
t0
m
5
I: in pn n=l
and -
pn
I sup
yrl
195
Countable Decomposition
Proof:
i) i i )
. Put
fn E F(X)
Let
p,
,
= supy
(fn)+
. Then
n
. Then we
pn
i s s u b l i n e a r and
m)
m
Then ii)f o l l o w s
f r o m C o r o l l a r y 1.2.7.
ii)
E F(X), (f,)+
E)
i ) . Let
f,
= s u p X ( i n f fm) =
m
. Then t r i v i a l l y
Assume, t h e r e i s y with
m
a
with
.
i n f p ( f m ) = i n f supx (f,) m m
.
.
= p
a = sup ( i n f fm) I i n f supx (f,)
' m
By Lemma 1.2.6.
Define
Yn
=
Ix E X
there i s
I fn(x)
LI
I Y)
5 supx
.
W
Then
U Yn = X. n=l
We i n f e r f r o m o u r assumption t h a t t h e r e a r e
m
z
n=l
A n = 1 such t h a t
a contradiction.
p
c
m
z xn sup
n=l
1.3.7 Let
(i)
H
3
i)p r o v i d e s us w i t h a d i f f e r e n t
(ii) ( i ) cs ( i i ) :
be a D i n i cone. Then we k n o w , i i ) o f Theorem 1.3.6 h o l d s .
( I n t h e p r o o f o f t h i s f a c t we d i d n o t use Lemma 1.3.4) LetVFB
,
0
Another p r o o f o f Lemma 1.3.4 F(X)
An 2 0
. Hence
'n
An e x t e n s i o n o f t h e argument used i n i i ) p r o o f o f Lemma 1.3.4
.
have
Ii n f supx ( f
s u p ( i n f pn (f,)) n m
pn ISI = supx
be t h e bounded f u n c t i o n s i n V F ( X )
and
put
E = V FB
- V FB
196
E
Repmenring Measures
i s a v e c t o r l a t t i c e w i t h o r d e r u n i t . We deduce from Theorem I 2.2.3
t h a t t h e r e i s a compact Hausdorff space
C(S)
S
such t h a t
( w i t h r e s p e c t t o t h e supremum norm). Now, l e t
D e f i n e g,
= max(f,,-m).
g, E E
Then
.
m and (g,)+
for all
Lemma we o b t a i n a l a t t i c e homomorphism v : E
E i s dense i n fmE V F(X), (f,)+.
+
R
w i t h u ( l x ) = 1 and
i n f v(gm) = i n f sups(gm) = i n f supx(gm) = i n f supX(fm) = B
m
Define p
m
p
: V F(X)
m
+ i by
m
m
There a r e
xn 1 0 w i t h
max(p(hl),
p(h2))
OD
p
I
z xn supy
n=l
n
which shows t h a t 1.4
for a l l
1.4.1
I
Yn = I x E X
fn(x) s y l .
t xn = 1 such t h a t n=l
V F(X)
hl,h2
(i.e.
E V F(X))
p(max(hl,h2))
.
=
, hence
the contradiction P = i n f p(fm) I Y
i s a D i n i cone
m
.
0
i s a cone of bounded
r e a l v a l u e d f u n c t i o n s on
X,
must n o t c o n t a i n t h e constants. Definition:
---
F(X) i s c a l l e d a weak D i n i cone if f o r every sequence (fn,an) E F(X) x R , n E N , such t h a t (an + f n ) + and have
a
WEAK D I N 1 CONES
I n t h i s s e c t i o n F(X) F(X)
i s linear,
p
i n t h e preceding p r o o f assume
. Again we deduce V F(X)
Then
.
0
i s a l a t t i c e homomorphism on
p
m
. As
and d e f i n e
( a = supx ( i n f f,))
m
p ( f ) = i n f v(max(f, -m)).
I supx and i n f p(fm) = B
Using D i n i ' s
(an
-
fn)+
, we
197
Countable Decomposition
supx(inf(an t l f n l ) ) = inf supX(an t I f n ' ) n n The l a t t e r condition i s called weak - Dini - condition . Consider F = F(X) x R and introduce the following order relation : ( f , r ) I (g,s) i f supx( If - g l ) I s - r . Clearly, ( F , I ) i s a preordered cone. Then ( f n , r n ) E F i s decreasing (with respect t o I) i f and only i f (rn- f n ( x ) )
( r n t f n ( x ) ) and
are decreasing in IR for a l l
x
E
X.
Furthermore, l e t I = ( 0 , l ) E F(X) x R . Then ( F , I , s ) i s an order unit cone and S I ( f , r ) = s u p X ( l f l ) t r . Define ^x = X x I01 U X x C11 and X with
identify ^
^
F(X)
=
X x IO) c
I f : ^x
-+
1 flXx
R
^x . P u t Iol
E
F(X)
, f(x,o)
=
- f ( x , l ) for a l l xEX1
Then ( F Y I y < )can be identified with the following cone
(F(x) t R , 1-xy <- )
of concrete functions on a s e t
ii
.
Hence we have: 1.4.2 F(X)
1.4.3
Lemma: i s a weak Dini cone __---___--
i f and only i f
F _ i s_ a -Dini -
cone.
Theorem:
are equivalent: The f o l 1 owing i s a weak Dini cone.
i)
F(X)
ii)
For every linear for a l l f -with
-
with
-
m
U
n=l m
1
n=l
p
E F(X)
Yn = X
xn
=
:~ F(X) + R with p ( f ) 5 supx( l f l ) ,
* Yn
c X
and linear
p,,
, --and for every sequence 0 there are --
An 2 0
1 and p n ( f ) I supy ( I f l ) for a l l
n
:F(X) + R
f E F(X)
198
Representing Measures
-such t h a t
proof:
Let
Hence supy on
F
n
with
m
t 1, n=l
P 5
. We
Yn c X
F(x)+
on
Pn
define IR
yn
= Yn
x
{o} u
yn
x
{l}c
^x
.
corresponds t o t h e s u b l i n e a r f u n c t i o n a l
p n ( f , r ) = supy ( I f ! ) t r n
pn
.
The theorem f o l l o w s now f r o m Theorem 1.3.6 and t h e p r e c e d i n g lemma.
1.5
o
REMARKS AND COMMENTS
The decomposition theorems of t h i s s e c t i o n a r e due t o t h e f i r s t a u t h o r (see [1201,[1231 and [ l l g l ) . A c t u a l l y , t h e y a r e s t a t e d here i n a s l i g h t l y generalized version, b u t t h i s generalization i s n o t essential f o r the a p p l i c a t i o n s we have i n mind. The D i n i cones we i n t r o d u c e d here s h o u l d n o t be mixed up w i t h t h e D i n i l a t t i c e s considered by C. P o r t e n i e r 12531. A p a r t f r o m b e i n g v e c t o r l a t t i c e s t h e y have much s t r o n g e r convergence p r o p e r t i e s : A l o c a l l y convex v e c t o r i s s a i d t o be a -~ D i n i l a t t i c e i f every downwards d i r e c t e d n e t
lattice E
( f i ) i E I o f p o s i t i v e elements converges t o z e r o i f f whenever
P
: E
+
i n f u(fi) iE1
= 0
i s a continuous l a t t i c e homomorphism. These cones were
R
a l s o considered by G o u l l e t de Rugy [1451 (see a l s o [1071). L e t us mention an i m p o r t a n t n o n t r i v i a l example where t h e P a r t i a l Decompos i t i o n Theorem a p p l i e s . Consider an RNP- s e t and bounded subset
X
o f a Banach space
c a l l e d Radon-Nikodym-Property. p r o b a b i l i t y space
(fi,E,m)
X
, that
i s a convex, c l o s e d
B such t h a t X has t h e so-
This property requires t h a t f o r every
and e v e r y
B- valued measure
T
: t
+
B
t h a t i s o f bounded v a r i a t i o n and a b s o l u t e l y continuous w i t h r e s p e c t t o and has average range
m,
Countable Decomposition
IE
tm-’(E)?(E) contained i n cp :
function
.I,
E
m(E) > 01
, there i s a density
X
n
+
E
B
199
cp
, i.e.
a Bochner i n t e g r a b l e
such t h a t
cp dm =
T(E)
for all
E E z
I n s e v e r a l r e s p e c t s t h i s p r o p e r t y i s i m p o r t a n t . F i r s t o f a l l y t h e RNP i s e q u i v a l e n t t o a s u i t a b l e m a r t i n g a l e convergence p r o p e r t y ( C h a t t e r j i 1 64 1). And secondly, Banach spaces w i t h RNP have v e r y i n t e r e s t i n g geometric p r o p e r t i e s ( f o r i n f o r m a t i o n see t 861,t 851 and 11701).
So l e t
be such an RNP- s e t . Consider i t s extreme p o i n t s
X
F = Con(X), t h e upper semicontinuous,
X
+
k.
xo E X
F i x some
g i v e n by
po(f) =
servation that
and c o n s i d e r t h e l i n e a r f u n c t i o n a l
f ( x o ) , f E F.
u0
and
po
: F
+:
Then i t seems t o be an i n t e r e s t i n g ob-
i s p a r t i a l l y decomposable w i t h r e s p e c t t o any sequence
o f sublinear functionals,
Yn
ex(X)
upper bounded, convex f u n c t i o n s
pn, n E N, g i v e n by with
a r e non empty subsets o f
U
nEN
pn = supy
n Yn = ex(X).
, where
T h i s a s s e r t i o n i m p l i e s t h a t t h e Krein-Milman Theorem h o l d s f o r
X
the
.
It i s
unknown t o us whether o r n o t t h i s p r o p e r t y ( f o r a l l closed, bounded B ) i s e q u i v a l e n t t o t h e RNP o f
convex subsets o f
B
.Of
course, f o r
dual spaces t h e answer i s a f f i r m a t i v e , s i n c e f o r dual spaces t h e RNP i s e q u i v a l e n t t o t h e Krein-Milman P r o p e r t y [ 169. Using t h e d e n t i n g p r o p e r t y t251
I
o f RNP- s e t s one can g i v e a d i r e c t proof
o f c o n d i t i o n ii)i n t h e P a r t i a l Decomposition Theorem v i a a s l i g h t modif i c a t i o n o f t h e decomposition techniques d e s c r i b e d i n [ 1171.
A s h o r t p r o o f can be g i v e n by u s i n g t h e f o l l o w i n g s t r o n g r e s u l t o f Ch. S t e g a l l :
X
be an
upper bounded f u n c t i o n
f : X
Theorem [2991 : L e t
b* E B*
(dual o f
exposes
X
.
B)
with
RNP- s e t . F o r e v e r y upper semicontinuous, + R
and f o r every
I1 b * l l 5 6 such t h a t
6 > 0
there i s a
g = f t b*
strongly
200
Representing Measures
"Strongly exposesl'means t h a t there i s some xo E X such t h a t g attains i t s supremum on X a t xo , and i f { x n ) i s any sequence in X with g(xn)
-,
g(xo)
then
II x,
-
xoll
+
0.
SECTION 11.2 REPRESENTING MEASURES
I n t h i s s e c t i o n we a p p l y t h e decomposition techniques, we have developed so f a r ,to t h e problem o f i n t e g r a l r e p r e s e n t a t i o n o f l i n e a r f u n c t i o n a l s . I n t h e f i r s t paragraph we show t h a t a s t a t e
on a v e c t o r l a t t i c e
LI
an i n t e g r a l r e p r e s e n t a t i o n i f and o n l y i f
LI
E(X)
admits
has t h e decomposition p r o -
p e r t y . T h i s f a c t immediately y i e l d s a proof of t h e D a n i e l l - S t o n e Theorem by means o f t h e Riesz R e p r e s e n t a t i o n Theorem. I n t h e second paragraph we p r e s e n t t h e c r u c i a l r e s u l t o f t h i s s e c t i o n ( R e p r e s e n t a t i o n Theorem 2.2.1). We show t h a t e v e r y s t a t e o f F(X) has an i n t e g r a l r e p r e s e n t a t i o n i f and o n l y i f F(X) i s a D i n i cone. L a t e r on we see t h a t t h i s r e s u l t g e n e r a l i z e s t h e c e l e b r a t e d Choquet Theorem. I n paragraph 2.3 we a p p l y t h e R e p r e s e n t a t i o n Theorem t o r e p r e s e n t a r b i t r a r y l i n e a r f u n c t i o n a l s b y s i g n e d measures. And i n 2.4 we s t u d y i n t e g r a l r e p r e s e n t a t i o n s o f l i n e a r f u n c t i o n a l s by means o f w e i g h t f u n c t i o n s . F i n a l l y , i n 2 . 5 we p r e s e n t a l o c a l v e r s i o n o f t h e R e p r e s e n t a t i o n Theorem. I n t h e a p p l i c a t i o n s s e c t i o n 2.6 we s t a r t b y g i v i n g a s l i g h t g e n e r a l i z a t i o n o f t h e Riesz-Konig Theorem. Then, b y means o f w e i g h t f u n c t i o n s , we e x t e n d some r e s u l t s t o t h e case o f r e p r e s e n t a t i o n b y unbounded measures. We e x t e n d t h e n o t i o n o f adaptedness i n such a way t h a t H e w i t t ' s Theorem about i n t e g r a l r e p r e s e n t a t i o n o f l i n e a r f u n c t i o n a l s on
C(X)
,
X
t o p o l o g i c a l space, i s
i n c l u d e d . And we conclude t h e paragraph by an i n v e s t i g a t i o n o f r e p r e s e n t a t i o n o f l i n e a r f u n c t i o n a l s (which a r e p o s i t i v e on t h e monotone f u n c t i o n s ) on c o n t i n u o u s l y o r d e r e d compact spaces. 201
202
Representing Measures
2.1
DECOMPOSITION PROPERTIES AND MEASURE THEORY
L e t us r e c a l l some elementary measure t h e o r e t i c a l f a c t s .
For a more
d e t a i l e d account o f measure t h e o r y t h e reader s h o u l d c o n s u l t t h e Appendix Y
cp :
-,Z
. Consider
Y be a s e t and 1 (pl(.X) = Icp- ( S ) 1 S E 11 i s t h e s m a l l e s t
a measure space
be a map. C l e a r l y
u- a l g e b r a i n
Y
such t h a t
This
T
on
cp
J
Z
by
f d-r =
Y
f
o
cpdr
cp-'(SZ).
=
n cp(Y) =
= 0 t h e n we may T(S) f o r a l l S E z
r(S1)
=
r ( S 2 ) whenever
S
f :
z +iT
.
Assume i n a d d i t i o n t h a t
Z
i s a compact H a u s d o r f f space, t h a t
o f t h e B a i r e subsets o f
Z
and t h a t
Then i n view o f t h e r e g u l a r i t y o f
2.1.1
.
Moreover we t h e n have
f o r a l l measurable
cp
i s z- mea-
~,(cp-l(S))
S E 1 and
cp-'(Z)
d e f i n i t i o n makes sense s i n c e we have
S 1 ,S 2 E z and cp-l(S,)
f
f o cp i s measurable whenever
s u r a b l e . I f T ( S ) = 0 whenever d e f i n e a measure
(Z,zy~), l e t
z consists
i s a p r o b a b i l i t y measure on
T
Z
.
(see A 3.5 Appendix), we have
T
Remark:
The f o l l o w i n g a r e e q u i v a l e n t : i)
T(S) = 0
for all
ii)
T(G) = 0
f o r a l l compact
iii) T(F) = 1 (Note t h a t
f o r a l l open
G c Z
is
G6
iff
cp(Y) n S = 4
with
S E Z
G
G6- s e t s
Fa- s e t s F F
c
cZ
= Z\G
Z with
Fa)
is
cp(Y) r l G = 4
with
F
3
q(Y)
.
.
o f upper bounded valued c o n s i d e r again a cone F(X) c o n s i s t i n g - 6-functions and suppose f u r t h e r m o r e t h a t F(X) c o n t a i n s t h e c o n s t a n t s
-L e_t us
.
L
2.1.2
Definition:
i)
A countable family
IYn
In
E
N)
c a l l e d countable c o v e r i n g o f
X
o f nonempty subsets o f if
X
=
U Yn
nEN
.
X is
203
RepresentingMeasures
Let EF be the smallest u- algebra on
ii)
X
in F ( X ) are measurable (see Appendix). Let linear with p 5 supX '
such t h a t a l l functions p
: F(X)
-+
Ir? be
has the decomposition property i f 1-1 i s decomposable with respect to (supy ) for a l l countable coverings C Y n I n E N1 of n
p
iii)
A positive IF- measure
on X
for u
T
on X
X.
i s called a representing measure
if
p ( f ) 5 J f d.r f o r a l l X
f E F(X)
.
I n particular i f we have equality for all bounded functions then T i s called s t r i c t l y representing.
f EF('X)
Note that for a representing measure T we always have T ( X ) = 1 since lX,-lXE F ( X ) . Indeed, then p ( f l X )= supX(* l X )= i 1 and therefore 1
J l Xd r = r ( X ) .
= p(lX) =
2.1.3
X
Examples:
Under the assumptions of the Riesz-Konig Theorem ( I 1.6.1) we obtain t h a t forsuch a cone F(X) every 1-1 has a representing measure (see also I 1 . 6 . 2 . ) . I n the Riesz-Konig Theorem the compactness of X was essential 1 as one sees from t h e following example: Let X = ,C I n E N 1 and consider the cone F(X) lim
n+
03
consisting of a l l bounded functions f : X
f(i)exists. Define
linear and
p
+
R
such t h a t
lim f(A) for a l l f E F(X) . Then p i s n-+ 03 5 supx b u t there i s no representing measure T tbr p on X . p(f)
=
I n the following section we want t o characterize those cones F(X) on which every linear functional p , with p I supx , has a representing measure. I t turns o u t t h a t these cones are j u s t the Dini cones. A t f i r s t we prove this result under additional restrictions thus obtaining a representation theorem which contains the Daniel1 - Stone Theorem as a special case. All proofs are based on the decomposition theorems of the previous chapter
204
Representing Measures
and the Riesz Representation Theorem (see I . 1.6 and Appendix).
Recall, a s t a t e p : F(X) + k i s a linear functional, monotone with respect t o the pointwise order in F ( X ) , such t h a t p 1. supx ( I 2 . 1 ) .
For the next proposition l e t us consider the following Situation: Let v : F X ) + g be a s t a t e . Consider a countable covering { Y n a)
max f , r )
b)
If
In
E N1
of
.
X
Furthermore assume:
F(X) whenever f E F ( X ) , r E R .
E
tn t 0 , n
E N
OD
, with It1
=
X tn I 1 n=l
and
00
JJ
1 tn supy t (1 - Itl) supx then there are states
I
n
n=l
,n
vn 1. supy
n
u
E N
, and
v
m
=
z tn v n
n=l
t
with (1 - Itl) v
.
Then we can formulate Proposition:
2.1.4
The following
are equivalent:
fi decomposable with
i) u
respect to
(supy ) n
i i ) For every positive decreasing sequence sup (inf sup ( f ) ) = 0 -we have
n
m
'n
.
(f,)
inf p(f,)
with
F(X) =
0
.
Proof: i)
4
i i ) : By assumption there are linear m
v
I
1 tn v n
n= 1
. Since
F(X)
pn
I sup
and
'n contains the constants, all
tn 2 0 such t h a t pn
must be states
205
Represenring Measures m
Now, t a k e
m
z
1 = ~ ( 1 )=
and
tn ~ ~ ( 1= ) z tn n=l n=l
(f,)
as i n i i ) . L e t
m
such t h a t for a l l
x
n=N+l n=l,
tn u,,(fl)
...,N.
E
take
m so l a r g e t h a t supy (f,) n
N
m
T h i s proves
Ie
Hence
0 Ii n f u ( f k ) I z tn un(fm) I t, supy (f,) k n= 1 n= 1 n I2 E
N E N
> 0 be a r b i t r a r y and t a k e
. Then
It
.
(Recall, i n f V(f,) m
N z
fmIfl, = 0
n=1
since
t,, I1)
+
OJ
tn vn(fl)
n=Nt1
I
.
> 0 was a r b i t r a r y .
E
* i):
ii)
Note t h e f o l l o w i n g two f a c t s :
(1) L e t for
p
u,,
and
v
be t h e s t a t e s d e s c r i b e d i n b ) . Assume t h a t ii)h o l d s
and assume t h a t I t l = z tn < 1. Then, s i n c e ii)deals o n l y w i t h
p o s i t i v e f u n c t i o n s , i i ) must a l s o h o l d f o r
(2)
Consider t h e subcone
i n s t e a d of
v
v
.
F-
F- = I f E F(X)
I supy
n
( f ) I0
for all
n 1
which p l a y s an e s s e n t i a l r o l e i n t h e P a r t i a l Decomposition Theorem. Then F- = I f E F(X) and
F-
generates
To prove i)l e t
1f
5 01
F(X).
(t,)
be as i n b ) . Assume t h a t t h e sequence
(t,)
is
maximal w i t h r e s p e c t t o componentwise o r d e r (compare t h e p r o o f o f 1.2.5). Such a maximal sequence i n e a s i l y found by i n d u c t i o n : t
1=
SUPIS
2 0
I
!J
I s supy
tn+l=Sup{s20jLlI
n
1
+
(1 - s)supxl
z t p p
k=l
'k
+ssupy
n
n+l
+ ( l - s - xtk)supXl. k=l
206
Representing Measures
According t o b ) we can f i n d s t a t e s
and
vn
v
m
If I t = 1 then, by d e f i n i t i o n , n n=1 m
I tn < 1 n=l i n f v(f,) m
. Hence,
i s a sequence as i n ii), we have
(f,)
if
LI i s decomposable. Therefore, assume
= 0 (consequence of ( 1 ) ) .
We claim,
v
i s p a r t i a l l y decomposable.
P r o o f o f t h i s c l a i m : We can a p p l y t h e P a r t i a l Decomposition Theorem 1.2.4 m
to Fix
F-
with
supy
n
instead o f
N > 0 a r b i t r a r i l y and p u t
Then
f,
2 0
(fm) +
and
m s u p ( i n f pn( 1 g k ) ) = k=l n m
s u p ( i n f pn(fm)) = 0 n m
m I gk) 5 k=l
-
m i n f v ( 1 gk) = m k=l
-
inf m
pn:
V(
f,
Let
= max(0,
.
-m
Hence t h e r e i s
with
m
1 gk
k=l
+
1 v(gk) >
k=l
and thus
i n f v(f,) m
.
= 0
n=l n*no
.
T h i s means
N . I n o t h e r words we have o b t a i n e d t h e c o n t r a d i c t i o n
since
N was a r b i t r a r y . So we can conclude,with v
the
i s p a r t i a l l y decomposable
(supy ) . n s > 0
m
1
01
,that
f,
and
no E N
such t h a t
v 5 s
supy
+ (l-s)supx
We then have lJ I
-
N ).
implies,by d e f i n i t i o n o f t h e
P a r t i a l Decomposition Theorem 1.2.4,that w i t h respect t o
gk E F-
tn supy
n
+ (s +
tn )supy 0
which c o n t r a d i c t s t h e m a x i m a l i t y o f
(tn
+ (1 -
m
z tn - s)supx
n= 1
0
.
207
Representing Measures
2.1.5
Corollary:
Assume t h a t F(X) i s max-stable --
-has t h e
SIP. Let
covering
i)
of
(Y,)
X
. Then
V F ( X ) = F(X))
(i.e.
be a s t a t e o f
LI
ii) I f (f,)
c
l i m LI (f,) wm
i n F(X) = 0
and t h a t --
F(X)
a countable
the following are equivalent: (supy ) n
decomposable w i t h r e s p e c t t o
LI
and c o n s i d e r
F(X)
and fmt 0
whenever
-f o_r_a l l
m
i n f supy (f,) m n
,then = 0
for all n E --
N
Proof: T h i s i s a d i r e c t consequence o f P r o p o s i t i o n 2.1.4 s i n c e 2.1.4.a) h o l d s and a repeated use o f I . 1.4.1. for
F(X) i n view o f t h e
2.1.6
SIP.
trivially
y i e l d s b ) s i n c e I . 1.4.1 ( * ) i s t r u e 0
Proposition:
be a ve c t o rl a t t i~ c e and c o n s i d e r a s t a t e p : E -* R . Then t h e r e i s a r e p r e s e n t i n g xF- measure T for v 0” X i f and o n l y
L e t E = F(X) i f LI -
has t h e decomposition p r o p e r t y
Remark : Note t h a t
i n t h i s case
T
E
i s s t r i c t l y representing since
i s in
p a r t i c u l a r a v e c t o r space (see t h e remarks a f t e r I. 1.2.5).
Proof: A t f i r s t we prove t h e n e c c e s s i t y :
If all
T
i s such a measure t h e n l e t
m E N
. Assume
(f,)
s u p ( i n f supy (f,)) n m n
+ =
in 0
F(X)
and
f,
for
2 0
f o r some s u i t a b l e
Yn
m
U Y = X . T h i s i m p l i e s f, n n= 1 f, dT = 0 l i m p(fm) = l i m W m wm X
1
+
0
p o i n t w i s e . Hence
b y t h e Monotone Convergence P r o p w t y
with
Representing Measures
208
( s e e Appendix
A 2).
Next, we prove the s u f f i c i e n c y : Let S = { p : F(X) -t R I p l a t t i c e homomorphism3 In I 2 . 2 . 2 we showed t h a t S i s a compact Hausdorff space i f we take the c o a r s e s t topology on S such t h a t the Gelfand transform 7 : S R ( i .e. Lf(p) = p ( f ) f o r a l l f E F(X). p E S ) i s continuous f o r a l l Since = {?If E E = F(X)3 i s dense i n C(S) with respect t o thesupnorm ( I 2.2.3) the Riesz Representation Theorem (Appendix) y i e l d s a unique probability measure ? on S which represents p i . e . p ( f ) = d.r S for all f E F(X).
.
-f
From this we want t o obtain a Let
x
E
cp :
X
xF- measure
T
on X which represents
p
S be the natural i n j e c t i o n , i . e . cp(x)(f) = f ( x ) f o r a l l f E F ( X ) . Nowy consider B o ( S ) , t h e u- algebra of a l l Baire
-t
X and
.
.
s e t s in S W e r e c a l l t h a t t h i s i s t h e u- algebra generated by C(S) Hence B o ( S ) is a l s o generated by E because of t h e density of E in
C(S). So we must have
xF s i n c e
c~’(B,(s)) =
Let Kn
(^focp)(x) =
f(x) for all
x E X, f E E
be a sequence o f compact subsets such t h a t
c S
We claim t h a t
m
;(
U
n=l
Kn)
=
m
U Kn n=l
3
. cp(X)
.
1.
Then we can define, according t o the introductory remarks of t h i s s e c t i o n and Remark 2.1.1, a measure T on XF by T(w-’(A)) = ; ( A ) f o r a l l A E Bo(S).
Proof of the claim: be such a sequence of compact subsets and define (K,) -1 Y n = cp (K,) c X . The decomposition property of p y i e l d s s t a t e s Let
vn
I
IJ
=
supy n
and
m
Z
n=l
A n pn
An L 0
. Another
for all
n E N with
W
1
n=l
An = 1
and
application of the Riesz Representation Theorem
:
209
Representing Measures
yields probability measures for a l l
f E F(X)
f E F(X)
.
This means :( p(f) =
and n
on Kn
T,,
E N ,
with
Hence p ( f ) =
pn(f)
S
^f
Thus , in view of the uniqueness of U
n= 1
-.
J f drn Kn
=
OD
z
d(
n=l
,;
A,
for a l l
)
T,,
OD
=
Z
n=l
Xn
T,,
.
K n ) = 1 and proves the claim. Therefore we have
J f d r for a l l X
f E F(X).
0
Theorem (Daniel1 - Stone)
2.1.7
F(X) a vector l a t t i c e and assume, Then the following equivalent:
Let E -
=
are
1-1
: F(X)
i)
There i s a unique representing IF-measure for
ii)
Whenever f, E F(X) , (f,)
J.
and
_.
A!
+
a state.
R
0” X
.
inf fm = 0 then lim v(f,) m n +a
=
0
.
Proof: 2.1.7 i s a combination of 2.1.5 and 2.1.6.
The uniqueness of the representing IF measure - for u can be seen as fol 1ows : Assume T~ and 72 are such measures. Then consider If E B d
zF(X) I
If X
d.rl =
I f dr2 1 X
. .
Obviously, this s e t i s a U- complete l a t t i c e and contains E Hence i t must be equal to B d zF X ) , since B d zF(X) i s the smallest u- complete l a t t i c e containing E
see Appendix A 1 ).
0
210
Representing Measures
Let
F(X)
66
be a g a i n a general cone o f upper bounded
and assume t h a t
F(X)
i s max-stable. L e t
l i n e a r f u n c t i o n a l . We c a l l
1.1
1.1
: F(X)
valued f u n c t i o n s be a monotone
+
! l i r J continuous i f i t s a t i s f i e s ii)o f
Theorem 2.1. 7, i . e . :
l i m v(fm)
0 whenever
Ill+=
f,
E F(X),
(f,)
4
and
i n f f, m
= 0
.
D I N 1 CONES AND REPRESENTING MEASURES
2.2
X
As b e f o r e we assume t h a t
6- valued 2.2.1
Representation Theorem:
The f o l l o w i n g i )
F(X) i s a cone of upper bounded
i s a s e t and
functions containing the constants.
F(X)
are e q u i v a l e n t :
i s a D i n i cone
ii) -Every s t a t e u : F(X)
. -+
iii)-Every l i n e a r f u n c t i o n a l
fi -has _ a representing 1.1 :
r e p r e s e n t i n g IF measure - on
F(X)
X
+
6
.
with
-
-
IF measure on 1.1 5
sup
X
.
has a X--
Proof:
iii)* ii) i s obvious. i i ) + i):L e t
F( X)
(f,)
J.
in
F(X)
. By
Lemma 1.2.6 t h e r e i s a s t a t e
1.1
of
with
I
i n f supX(fm) = i n f p ( f m ) 5 i n f fm d-c 5 s u p X ( i n f f m ) m m m X m where
T
i s a r e p r e s e n t i n g measure f o r
1.1
on
X ,which e x i s t s according
t o ii).The l a s t i n e q u a l i t y f o l l o w s f r o m t h e Monotone Convergence P r o p e r t y . On t h e o t h e r hand, Hence
s u p X ( i n f fm)5 i n f supX(fm) i s t r i v i a l . m m
s u p X ( i n f fm)= i n f s u p X ( f m ) which means t h a t m m
F(X)
i s a D i n i cone.
21 1
Represen ring Measures
i)
=$
o
Put
u : F(X)
iii): L e t =
I f
I
E VF(X)
with
r? be l i n e a r w i t h
bounded)
f
o
a v e c t o r l a t t i c e and be l i n e a r
+
i s a D i n i cone (Lemma 1.3.4).
ii Isupx
p IGIF(X)and
11
maximal, i . e . i f
v I sup x, v
I
. Assume
.
- o
E = o
and d e f i n e
.
supx
p 5
Then
E
ii is
furthermore, t h a t
l i n e a r , then
.
= u
is
: VF(X) -.fi
Let
G exists
Such
i n view o f Z o r n ' s Lemma t o g e t h e r w i t h t h e Dominating E x t e n s i o n Theorem 1.1.3.1 which a l s o shows t h a t
C must be monotone. v
can be extended u n i q u e l y t o a l i n e a r
@I'
ensures t h a t
>
;(f)
-
f E o
for all
a0
-
m
i
if
a E R
with
*
1 = u ( * lX) c G ( lX) 5 supX(* l X )=
l X )5 G(f).
< a = ;(a
1.3.6).
v
We c l a i m ,
G
*
n
and
then
alX I f
f
.
1 we have
has t h e decomposition p r o p e r t y .
X
. Then
with
hn t 0
there are states
m
m
un 5 supy
f E o
has t h e decomposition p r o p e r t y (Theorem
(Yn) be a c o u n t a b l e c o v e r i n g o f
Indeed, l e t
s i n c e t h e monotony o f
. Indeed,
i s bounded and t h e r e f o r e t h e r e i s a c o n s t a n t Since
E
on
1 A n = 1 and n= 1
I
n = l 'n 'n
*
use t h e Sandwich Theorem). Then t h e Dominating E x t e n s i o n Theorem 1.1.3.1 y i e l d s l i n e a r vn : E + R w i t h (To o b t a i n monotone
pn
'n l o lv n I o
vn
and
5
supy
for all
n
n. m
Then t h e m a x i m a l i t y o f all
n E N
.
=
Z
n= 1
and
An pn
Now t h e uniqueness o f t h e e x t e n s i o n s from
m
v =
implies
1 hn vn n=l
.
I n p a r t i c u l a r t h i s means t h a t
v
o
v
= unl
nl@
to
for
E yields
has t h e decomposition
property. E
i s a v e c t o r l a t t i c e and
applied t o EE- measure
E T
v
i s a s t a t e on
E
. Now,
P r o p o s i t i o n 2.1.6
and
u
shows iii).Indeed, P r o p o s i t i o n 2.1.6
on
X
with
v(f)
=
J f d-r f o r a l l f X
E E
yields a
, in
particular
212
Representing Measurns
f E 0. Note, t h a t , i f
for all
T h i s means
i n f fn = f .
n
u(f)
5
for all
2.2.2
;(f)
fn = max(f,-n)
zF = zD= zE . Therefore,
I i n f v(fn)
= inf
n
f E F(X)
f E F(X), t h e n
, which
1 fndr
n X
=
X
E @
and
we o b t a i n
f d.r
concludes t h e p r o o f .
Corollary:
be a -D i n i cone c o n s i s t i n g o f upper semicontinuous f u n c t i o n s on a t o p o l o g i c a l space X. Then every l i n e a r f u n c t i o n a l v : F(X) .* R w i t h p s supx has a r e p r e s e n t i n g zF-measure w h i c h can be u -on X --Let -
F(X)
extended t o t h e s m a l l e s t
u- a l g e b r a 1
c l o s e d compact subsets o f
Proof: Put
G(X) = F(X) t
U
X
c o n t a i n i n g IF -and a l l
X.
CL ( X ) .
Apply Theorem 2.2.1 t o
on
G(X)
Then (p
G(X)
i s a D i n i cone (Lemma 1.3.5).
can be extended t o a l i n e a r f u n c t i o n a l
on G(X) b y t h e Dominating Extension Theorem I 1.3.1). IIG measures -
T
.
This y i e l d s
xG c o n t a i n s a l l compact subsets o f X.
0
213
Representing Measures
2.3
WEAK D I N 1 CONES AND SIGNED REPRESENTING MEASURES
Throughout t h i s s e c t i o n f : X +R
F(X)
denotes a cone o f bounded f u n c t i o n s
n o t n e c e s s a r i l y c o n t a i n i n g t h e c o n s t a n t s . The aim o f t h i s
c h a p t e r i s t h e i n v e s t i g a t i o n o f s i g n e d measures on p r e s e n t i n g measures f o r
r(?)
t h e cone
and s i g n e d r e -
X
F ( X ) . The main t o o l s f o r t h i s i n v e s t i g a t i o n a r e
i n t r o d u c t e d i n 1.4 and a s i m p l e t r i c k c o n s i s t i n g i n t h e
t r a n s f e r between p o s i t i v e f i n i t e measures on ? = (X x (03) u ( X x { I ) ) and signed f i n i t e measures on X . We r e c a l l (Appendix Theorem A 5.2 o r Jordan Decomposition, s e c t i o n I 1.5.6.)
a s i g n e d measure
on
T
X
can
be w r i t t e n as
w i t h p o s i t i v e measures measures,
T+
variation
(TI
and
and
T-
T+
and
2.3.1
. S i n c e we
deal w i t h r e a l - v a l u e d
can be chosen t o be m u t u a l l y s i n g u l a r . The t o t a l
i s then
i s s a i d t o be f i n i t e i f
T
T-
Isl(X)
.
Definition:
L e t IF be a g a i n t h e s m a l l e s t
U-
: F(X)
IJ
normed, i f
f E F(X).
p(f) I supX(lfl)
f o r every
A s i g n e d measure T on xF w i t h t o t a l v a r i a t i o n a s i g n e d r e p r e s e n t i n g measure f o r p i f p(f) I
I
f d-r
J
f dr
X
f E P(X)
a l g e b r a such t h a t a l l
measurable. Consider a l i n e a r f u n c t i o n a l
+
R,
ITI(X)
5
1
i s called
F(X).
for all
f E
for all
f E F(X)
If i n particular
u(f) = then
T
X
,
i s s a i d t o be s t r i c t l y r e p r e s e n t i n g
p
.
are
i s called
IJ
,
214
Representing Measures
Recall t h a t in 1 . 4 we i d e n t i f i e d X with t h e subset X x {Ol of By a n t i X = ( X x { O l ) u ( X x 1 1 1 ) consisting of two d i s j o i n t copies of X symmetrization of functions f € F ( X ) we obtained t h e cone ^F(^x). Let us r e c a l l t h i s procedure: I f f E F ( X ) then we define i : 2 -* R by
.
If(x,O) and
F(X)
=
f(x)
and
If(x,l)
-
=
f(x)
i s t h e cone
-
g(x,O) = &
Clearly the r e s t r i c t i o n map f v(f) =
;(?I
for all
XI
.
i s l i n e a r and b i j e c t i v e . Hence
f
+
g(x,l) for all
f E F(X)
defines a l i n e a r b i j e c t i o n between the l i n e a r functionals v on F ( X ) S on ^F(^x). And the following lemma i s completely obvious: 2.3.2 If -
p
Lemma: : F(X)
I f ^v : -
+
fi & a normed l i n e a r f u n c t i o n a l ,
^F(x) - t r ?
i s l i n e a r with normed 1 inear functional. --
S
2 sup,
X
F
a r e measurable.
then
But a difficulty arises:
{O})
X x I03
I
B E t~ }
IF on X
7 E F(i)
X x I01 c
^x by
.
need not be t- - measurable in F
To overcome t h i s d i f f i c u l t y we prove:
i .
Lemma:
For every signed tF-measure -z- - p r o b a b i l i t y measure ? F
i; I supX u : F(X) -,i is a
such t h a t a l l
t- i s c e r t a i n l y r e l a t e d t o F
tF= I B n ( X x
.
then
NOW, l e t t- be t h e smallest a- algebra on
2.3.3
and
T
0" X
with
w i t h IT I
( X ) I1 there i s g
RepresentingMeasures
I
(*)
d?
If
=
X
if
Conversely,
for all
q-
7 is g
s i g n e d IIF - measure
d.r
X
0"
T
21 5
f E F(X)
2 , ---then there
probability _ measure _ _ _ -on
w i t h I T ~ ( X ) I 1 such t h a t ( * ) -
X
is a
holds.
Proof:
'i -,^x
L e t an i n v o l u t i o n j : j ( x , l ) = (x,o)
for all
-
1
=
1
7
at
b(x,o)
(x,o),
+
x E X
.
If
T
= 0
j(x,o)
= (x,l)
t h e n f i x some
where
6(x,1)
- measure w i t h 0
- T~ , ] T I
T = T
x- F
=
< I T ~ ( X )5 1
. The
NOW, assume, Bn
c
I-
?
,
T~
t
?
is a Bn
.
T~
Let
T ~ , T ~w i t h
and d e f i n e
B E 1F
c
Xx
7
and o f
E
n ;(n)
m
=
u Bn
n= 1
. Then
I01
= sup{?(B)
n
IBc
? ( i )immediately
- p r o b a b i l i t y measure on
IIF
such t h a t
1 ?(Bn) 2 (1 - -) SUP{?(B) I B c X n Put
and p u t
Jordan Decomposition o f
measure and we have
The d e f i n i t i o n s o f
Let
x E X
6
(see s e c t i o n I 1.5.6) y i e l d s p o s i t i v e IF measures -
T
and
a r e t h e D i r a c measures (XYO)' 6 ( x y 1 ) r e s p e c t i v e l y . C l e a r l y , we have ( * ) . Now, assume, 'I i s
9
(x,l),
a s i g n e d xF
be d e f i n e d b y
c
X
x
X
x
x
{O},
B E Z-1 F
101 and
103, B
E II-
F
1
.
.
-X
imply (*).
.
216
Representing Measures
Define 'I*(B)
= ?(B
whenever B y
n n)
E 1-
F
-
and
?(j(B)\n), B n(X
B E
lo})=
x
6
r- . We claim F n(X
x
'I*(B)
=
'1*(8)
IOI).
A t f i r s t , we have ? ( B n n) = ? ( B n n) . Let B A be the symmetric difference, i . e . B A = ( B U E), ( B n g ) . Then B A 8 c X \ ( X x {Ol) and hence j ( B ) A j ( g ) = j ( B A 8 ) c X x {Ol. Thus ;(j(B),n) = ? ( j ( B ) L n) which proves our claim. W e obtain that T , with T ( B n ( x x {Ol))= 'I*(B) for a l l B E E- , i s a signed zF- measure F
on X with
I'II(X) 5 1.
For f
E F(X)
we obtain
Now, the existence of signed representing measures i s settled as a simple application of Theorem 2.2.1: 2.3.4
Theorem:
The following are equivalent:
& a weak Dini cone
i)
F(X)
ii)
Every normed linear +- measure T
.
p
: F(X)
-+
6 -has - -a signed representing
Proof:
? ( i t) R
i s a Dini cone. So by 2.2.1 F(X) i s a weak Dini cone i f and only i f every linear functional i; : F(2) + R + 6 with C 5 suphas a representing z-- measure ? By 1.4.2 i ) holds i f and only i f
on
^x
. Since every
X
linear functional
-F ( X-)
i; :
?(a)
F
+
IR with
1; 5 supX
can
be extended uniquely t o t R such t h a t the extension i s s t i l l dominated by sup- , we infer from 2.3.2 and 2.3.3 t h a t F ( X ) i s a weak Dini X cone i f and only i f every normed linear p : F(X) -* fi has a signed representing rF-measure 'I . 0
217
Represenring Measures
Finally, we want t o mention t h a t there are indeed weak Dini cones with linear functionals which do n o t have representing measures. In f a c t , consider the cone of continuous real valued functions C(-1,l) on [-1,11 and let v(x)
Put
=
v C(-1,1)
Let
p
x > o
{ -11 =
x < o Ivfl
T
b1
and
represents 6-1
Of course,
lemma since [-1,11.
f €C(-l,l),
1
LI I
p
x E [-1,11
2 f(1)
be the linear functional with
f E C(-1,l). Hence If
for a l l
t
1
'2 f ( - 1 )
. I f(0))
1
~ ( v f )= '2 f ( 1 ) +
. f ( - 1 ) for a l l
sup
1-1311 * then we have necessarily
are the Dirac measures a t
1 and
T =
-1
b1
- '21 6-1
where
, respectively.
v C ( - 1 , l ) s a t i s f i e s the weak Dini condition in view of Dini's I v f I f o r a l l f E C(-1,l) i s a continuous function on
218
Representing Measures
2.4
REPRESENTING MEASURES ON WEIGHTED CONES
We can e a s i l y r e f o r m u l a t e t h e main r e s u l t s o f o u r p r e v i o u s s e c t i o n s f o r weighted cones. The main argument f o r p r o v i n g these r e f o r m u l a t i o n s c o n s i s t s o f t h e f a c t t h a t t h e Sandwich Theorem a l l o w s t o t r a n s f e r l i n e a r f u n c t i o n a l s v i a w e i g h t f u n c t i o n s . By a w e i g h t f u n c t i o n s we understand a f u n c t i o n w : X
R
--t
and, f o r a cone
F = F(X)
we mean by
WF
t h e cone g i v e n b y
W F = { w f I f E F3
2.4.1
Theorem: be a non-negative w e i g h t f u n c t i o n on X
Let w
k- valued f u n c t i o n s on X -such t h a t supx(w f ) the following are equivalent: i)
. Consider -a -cone <
QJ
for all f --
F
E F.
of Then
p : F + 6 with p ( f ) I supx(w f ) has a xWF- p r o b a b i l i t y measure T -such t h a t
Every l i n e a r functional
for all
f E F
-_.
p(f) I
X
ii) w F t R
_._
Wfd-r
for all
f E F.
i s a D i n i cone.
Proof: : w Ft R
Let p
: F
--i
6
--t
fi
p ( f ) = ;(wf)
defined by
p ( f ) I supx(w f ) Conversely, i f
p
. Then X i s a linear functional w i t h
be a l i n e a r f u n c t i o n a l w i t h
for a l l
f E F.
: F
i s linear with
+
I sup
p ( f ) I supX(w f )
,
f E F
then
Put 6 ( w f ) = sup{p(g) 6
1
i s s u p e r l i n e a r and
ii : W F
+
6
with
p ( f ) I;(wf)
6 I
g E
F with w f = w g l , f
6 I sup
ii I
X'
supx
5 supX(wf)
E F.
Hence t h e Sandwich Theorem y i e l d s a l i n e a r
, that for all
is f E F
.
219
RepresentingMeasures
li i s extended t o w F + R by p u t t i n g ;(1)
= 1. Now t h e theorem f o l l o w s
from t h e Representation Theorem 2.2.1.
2.4.2
0
Theorem: a cone o f r e a l v a l u e d ( n o t n e c e s s a r i l y bounded) f u n c t i o n s on X
Let F
and c o n s i d e r a (n o t necessarily p o s i t i v e ) weight f u n c t i o n such t h a t w f -equivalent:
i)
i s_ bounded r every _ _f o_
For every l i n e a r --___
F
1-1 :
-,
6
f E F , there i s a signed
,,(f)
ii)
WF
I
Iw
X
f dr
.
f E F
with
for all
+ R
Then t h e f o l l o w i n g are --
p ( f ) I supx( I w f I )
xwF- measure
w :X
T
,for
all
on X ~such t h a t -
f E F
i s a weak D i n i cone.
Proof:
;1 : W F
Every l i n e a r functional for a l l
: F
p
f E F
Conversely
let
.
p
k
by
: F
-,
-,
b ( w f ) 5 supx( I w f I )
with
-,
p ( f ) = <(w f )
6
.
We have
defines a l i n e a r p ( f ) 2 supx( I w f I )
u ( f ) 5 supx( Iw f I )
be l i n e a r w i t h
for all
f E F.
As i n t h e p r e c e d i n g p r o o f p u t
I
6(w f ) = s u p { p ( g ) 6
i s s u p e r l i n e a r on
yields a linear Theorem 2.3.4
b
g E F with
W F and
: WF
--f
6
6 I supx
with
6 5
w f = wgl
. Hence I supx
t o obtain the desired r e s u l t .
.
t h e Sandwich Theorem
.
NOW, we can a p p l y
Representing Measures
220
2.5
DIRICHLET STATES
I n the preceding sections we investigated the situation where a l l states on a cone F(X) admitted representing measures. A complete characterization was given in terms of order properties, namely by the notion of Dini cone. In case a cone under consideration f a i l s t o be a Dini cone then some states may have representing measures, whereas others certainly do n o t admit to representing measures (Theorem 2 . 2 . 1 ) . So, the probl em arises characterize those s t a t e s with representing measures in case t h a t the underlying cone does n o t have the Dini property. Such characterizations without any further assumptions Seem technically complicated. On the other hand, in special cases, i t i s easy t o give a description of those states having representing measures, for example when the cone i s a vector l a t t i c e (Daniell-Stone Theorem). We shall give in this section a slight generalization of this result.
Throughout this section l e t F(X) be a concrete order unit cone of bounded real-valued functions on some nonempty s e t X . Again, VF(X) denotes the max-stable cone generated by F(X). We deal in t h i s section with states of F(X) having unique extensions t o states of V F ( X ) . First we characterize these s t a t e s by a monotony-property and an algebraic property of the faces generated by them. Then we show that for these states a n individual Dini condition i s necessary and sufficient for the existence of representing measures. Let us f i r s t gather the necessary notions: 2.5.1
i)
Definition: A s t a t e p of F ( X ) i s said t o be a Dirichlet s t a t e i f i t has a unique extension t o a s t a t e of VF(X). Y c X , then a linear functional p on F(X) i s said t o Y- monotone i f p ( f ) I p ( g ) whenever f , g E F(X) such t h a t
ii)
be f(y)
Ig ( y )
for a l l y E Y
i i i ) A convex subset i f vl, v 2 E Q A v1
+ (l-x)v2
Q
.
of the s t a t e space of F(X) i s called a face whenever v1 and v2 are states such t h a t
E a
for some 0
c A c
1
.
221
Representing Measures
2.5.2
Remark:
Let us denote by Face(p) t h e f a c e generated by t h e s t a t e ?.I s e c t i o n of a l l faces containing u ) . I t i s very easy t o show Face(p) i s exactly the s e t of a l l those s t a t e s v such t h a t s t a t e vo and some 0 .c A I 1 w i t h u = x v + (1-l)vo. This
(i.e. interthat there i s a s e t i s auto-
matically convex. Furthermore, we have some k i n d of t r a n s i t i v i t y property f o r Face(u) , namely v E Face(p) implies Face(v) c Face(p) (compare with t h e part-order [2,p.l22I). Since Face(p) i s convex i t can be considered as t h e base of a convex cone, i . e . Cone ( u )
=
I x v I v E Face(p) ,
x
E R+1
i s a convex cone. A t t h i s point i t i s helpful t o r e c a l l a r e s u l t which was i m p l i c i t l y already proved i n s e c t i o n I . 1.5.5.
2.5.3
Lemma:
Assume t h a t -where X i
?.I
i s a s t a t e of
F(X)
and l e t X --
=
X1
U
X2
U...U
Xn
X for a l l i = 1, ..., n . Then n z x. u , of u into Xi- monotone s t a t e s i=l i i n
a r-e -non empty __ _ - subsets of
t h e r e i s a decomposition u u i , i = l , . . . , n , where
=
3 2 0
z x1. = 1 .
i=l
Proof: Let E = I f - g / f , g E F X ) } . Then E i s a vector space containing the constants. Recall , a1 1 f E F(X) a r e bounded. Since 1-1 i s a s t a t e , we have ~ ( f >) - m f o r a l l f F ( X ) . Hence can be extended t o a s t a t e LI on E by putting b ( f - g ) = u ( f ) - d g ) i f f , g E F(X) We have i; 5 max(supX ,. , .,supx ) , hence by t h e F i n i t e Decomposition 1 n n Theorem t h e r e a r e x i 2 0 , w i t h x A 1. = 1 and l i n e a r f u n c t i o n a l s i=l n p i : E + R with iiI supx , i = l , . . . , n , a n d I z X i Gi . Since E i s i =1 l n a vector space we have i; = Z x.i i and G 1. a r e X i - monotone s t a t e s i=l of E . P u t p i = ;. for all i = l,...,n.
.
'IF(X)
222
Represenring Measures
Recall t h a t we have a l s o shown i n t h e preceding p r o o f t h a t e v e r y s t a t e of
F(X)
can be extended t o a s t a t e o f
-
F(X)
Dominating Extension Theorem and t h e f a c t t h a t F(X)
space, we o b t a i n t h a t e v e r y s t a t e o f VF(X) - VF( X )
.
2.5.4
1.1
F ( X ) . Hence, a p p l y i n g t h e F(X)
-
i s a vector
F(X)
can be extended t o a s t a t e o f
Theorem:
L e t p : F(X)
i)
1.1
ii)
1.1
-,R
are e q u i v a l e n t .
be a s t a t e . -Then t h e f o l l o w i n g
-i s-a D i r i c h l e t s t a t e
can be extended -VF(X) - VF(X)
uniquely t o a state o f the vector l a t t i c e
iii)Cone(p) s a t i s f i e s t h e FSP. Furthermore, whenever is -
Y- monotone, -then a l l
a r e Y- monotone.
E Face(u)
p
u E Face(1.I)
Proof: (i) of
(ii): VF(X)
g i v e n by
By d e f i n i t i o n
and t h e n t h e unique e x t e n s i o n t o
b(f -9)
= G(f)
-
;(g),
o f bounded f u n c t i o n s , hence (ii) a
*
1.1 =
to
(iii):
Consider
A v t 6 uo
b(f)
f o r some 6
- VF(X) A u E Cone(u)
T =
VF(X)
.
f,g E VF(X) >-m
2 0
.
Since
the extension o f
u
T
-,?
i s l i n e a r . From t h e d e f i n i t i o n o f
that
T
-+
i s a b i j e c t i o n between
Cone(p)
(Theorem I 2.6.8).
to Cone(1.I)
and
sions t o
p
E Face(u) c Face(p).
E(X). Because
u 5 supy
sion t o
E(X)
b e i n g 5 supy.
equal t o
S
3
. Hence
E(X)
FSP,
is
Let
.
Hence,
Further-
we t h e n d e r i v e
Cone(;). E(X)
I t i s easy t o see t h a t t h e n Cone(;)
We r e c a l l has t h e
FSP
a l s o has t h e FSP.
so Cone(1.I) must have t h e
F o r t h e second p a r t we c o n s i d e r an a r b i t r a r y an element
such t h a t
must be unique,too.
t h a t t h e p o s i t i v e dual cone o f t h e v e c t o r l a t t i c e
NOW, l i n e a r b i j e c t i o n s preserve t h e
consists
has a unique e x t e n s i o n
has a unique e x t e n s i o n
more
i s obviously
VF(X)
f E VF(X)).
u,uo
1.1
- VF(X)
(Recall,
for all
a,X > 0 and s t a t e s
E(X) = VF(X)
every
can be extended u n i q u e l y t o a s t a t e
1.1
Y- monotone
FSP.
u E Face(p) and
S and i; be t h e unique exten-
t h e Sandwich Theorem g i v e s us an exten-
Because o f t h e uniqueness t h i s e x t e n s i o n i s
Y - monotone. I t s u f f i c e s t o prove t h a t
223
Representing Meaures
i; E Face(;)
i s again
f(y) 5 g(y)
for all
and some s t a t e
Y- monotone. Take a r b i t r a r y y E Y
such t h a t
f,g E E ( X )
0 < x < 1
and r e c a l l t h a t t h e r e i s some 3=
x P+(l-x)p.
with
S i n c e s t a t e s a r e monotone
we g e t
( * I P(max(g,f)) But
<(max(g,f))
2 ii(g)
= V(g)
and
p(max(g,f))
V
since
= v ( g ) = v(max(f,g))
is
=
2 C(g).
Y- monotone. T h i s y i e l d s
(A 6 +
(max(g,f)).
(1-1);)
T h i s i m p l i e s t h a t we have e q u a l i t y i n ( * ) , hence
b ( g ) 2 ;(f).
(iii)
IJ
=,
( i ) We can f i n d p r o p e r e x t e n s i o n s
hence t o Let
fly
C1
VF(X). Assume
...,fmE
ji2 a r e s t a t e s o f
F(X). We show
C,(max(f
= {x
I fi(x)
,... ,fm)},i=l, ...,m.
2 max(fl
Therefore, by Lemma 2.5.3,we 1
'I,
where
?'l,i'
i( l x )
may decompose 1 %,i ( 'x)
VF(X). T h i s means i n p a r t i c u l a r Let
=
p.
JYi
j=1,2,
"' IF( X ) m
'
and
m p1,i
i=l
there are p2yi
'i,j
=
=
v.
i=1
1 ,j
m
p2,i
E Cone(p)
.
F(X)
Xi-
and
X
j
- monotone. Hence
F(X) p.
ti2(maX(f1,...,fm)).
which a r e non-empty
m E Cl,i
ii, =
i=l
are
Then t h e
Xi-
p
Cone(v) -
in
z
pl,i - j=l
.X,
X = X1 U...U
We have
, C2
m
X ii2,i i=l
=
monotone s t a t e s o f
,..., f,,,)), j,i
are
i=1,2. monotone,
Xi-
satisfies the v
j,i
FSP,
'
E V . . The second assumption o f iii)i m p l i e s t h a t j=1 ~ Y J
are
-
which extend
= jik,i(max(fl
. Since with
VF(X)
-'2,i
iik,i(fi)
, ill,...,m,j=1,2.
Ci. .
, to
,,..., f,))=
Consider those s e t s o f t h e f o l l o w i n g form Xi
of
!J
v.
J,i
and
224
Representins Measures
and j
. We have
;l(max(fly...,fm)) m
rn
=
2.5.5
=
m
m
m I j=l
m
= ii2(max(fl,...,fm)).
Remark
A c t u a l l y we have proved more t h a n s t a t e d i n Theorem 2.5.4. if
i s a D i r i c h l e t s t a t e on
p
u n i q u e l y extended t o a s t a t e p +
G
F(X)
G
on
t h e n every
-
VF(X)
p E
VF(X)
.
p I supy
Face(p)
can be
and t h a t t h i s map
d e f i n e s a l i n e a r monotone b i j e c t i o n between
Furthermore, t h i s b i j e c t i o n has t h e p r o p e r t y t h a t
Namely t h a t
Face(p) and Face($) 6 I supy whenever
I t seems o f some i n t e r e s t t h a t a c t u a l l y we can
.
strengthen
t h e r e s u l t o f t h e Decomposition Theorem.
2.5.6 Let -
Lemma: p
(i)
be a maximal s t a t e o f
F(X).
Then t h e f o l l o w i n g a r e e q u i v a l e n t : -Every v E Face(u) has t h e p a r ti a l decomposition i,e. ~p r o p e r t y , f-o r e v e r y c o u n t a b l e covering, Yn,n E N, of X i s partially decomposable w i t h r e s p e c t t o t h e
(ii) Every
v
Proof: Only ( i )
E Face(p)
*
(ii)
I
supy
n
.
has -_t h e decomposition p r o p e r t y .
needs a p r o o f and t h i s p r o o f c o n s i s t s o f completely
t h e same arguments we used i n t h e p r o o f o f t h e Decomposition Theorem. L e t Ynyn E N , be any c o u n t a b l e covering. F o r sequence
It1
=
t tn
n€N
order. I f v
0
tn t 0
with
. Assume
v 5
z tn supy
nEN
t
E Face(p)
( 1 - l t l ) supx
consider a
, where
t h e sequence t o be maximal w i t h r e s p e c t t o p o i n t w i s e
I t 1 c 1 t h e n we decompose v
E Face(p).
n
v
=
t tnvn t ( l - l t l ) v 0
nEN
I t should be observed t h a t m a x i m a l i t y o f
p
, hence
(hence o f
v)
Representing Measures
225
i s assumed t o ensure e q u a l i t y i n t h i s decomposition. Now, representing i n t h e same way and adding the corresponding c o e f f i c i e n t s t o those of v 0 we g e t a contradiction t o the maximality of t h e t n and v i s decomposable. 0 v
. Hence
It1
=
1
This lemma then y i e l d s a representation theorem f o r maximal D i r i c h l e t states: 2.5.7 Theorem: s t a t e . -Then t h e following are Let - p : F ( X ) -,R be a maximal D i r i c h l e t equi Val e n t :
_has _ _a representing IF-measure
(i)
p
(ii)
Every v E Face(p)
& s t r i c t l y represented by a-
(iii) For a l l v E Face(u) --we have t h a t 0 2 f n E F(X)
(iv)
such t h a t
I nEN
fn(x)
IF-measure
I v(fn ) = -
n€N =
-
co
whenever
-for all x E X
.
Every v E Face(p) has t h e decomposition property.
Proof: ( i ) * ( i i ) : Since the extension 6 of p t o t h e vector l a t t i c e must have a representing measure. Hence E ( X ) = VF(X) - VF(X) i s unique the convergence property required i n t h e Daniel1 Stone Theorem is v a l i d f o r ii . I t i s q u i t e easy t o s e e t h a t i f ii has t h i s convergence property then a l l 3 E Face(;) have t h e same convergence property. Hence a l l t h e have IF-representing measures. B u t t h e r e s t r i c t i o n map from Face(;) onto Face(p) i s s u r j e c t i v e . So ( i i ) i s proved.
<
( i i ) * ( i i i ) i s an immediate consequence of t h e Monotone Convergence property. ( i i i ) * ( i v ) : By t h e P a r t i a l Decomposition Theorem every v E Face(p) has the p a r t i a l decomposition property. Remark 2.5.5 y i e l d s t h a t v E Face(p) has the p a r t i a l decomposition property i f and only i f t h e corresponding V E Face(;) has t h i s property. From Lemma 2.5.6 we obtain t h a t a l l 3 then have the decomposition property and ( i v ) holds obviously f o r the
RepresentingMeasures
226
restrictions
.
( i v ) * ( i ) : Again from Remark 2 . 5 . 5 we i n f e r t h a t v E Face(p) has t h e decomposition property i f and only i f the corresponding < has t h i s property. The existence of t h e representing measure f o r ; then follows from Proposition 2 . 1 . 6 0
2 . 5 . 8 Remark:
There i s a natural generalization of t h e notion of face: Let ( F ( X ) , s ) * be endowed with a preorder < compatible with t h e cone operations. Then a subset Q, of the s t a t e space i s c a l l e d f a c e with respect t o < i f v l Y u 2 E Q, whenever vl,v2 a r e s t a t e s such t h a t A v1 t ( l - x ) v 2 > v
for some 0 < 1 < 1 and
v E Q,.In 2 . 5 . 1 i i i ) we
considered faces of t h i s k i n d with respect t o the preorder given by equal i ty Clearly, we have: v i s an extreme point of the s t a t e space with respect t o 4 i f and only i f CVI i s a face ( s e e p. 1 4 2 ) .
.
Similarly, the face generated by a s t a t e such t h a t t h e r e i s a s t a t e v0 and 0 < kl
< A V
t
(l-X)uo
p
x
i s t h e s e t of a l l s t a t e s s 1 with
v
.
This generalization of f a c e i s of p a r t i c u l a r i n t e r e s t , when wise order i n ( F ( X ) , s ) *
.
Then we obtain: I f p i s a maximal s t a t e , then Face(p) with respect t o = w i t h respect t o < coincide. In p a r t i c u l a r Lemma 2.5.6 and Theorem 2.5.7 remain t r u e i f replaced by Face(p) w i t h respect t o 4 , This observation will be u s e d . i n Chapter 11.5.
i s the point-
and Face(p) Face(p) i s
227
Representins Measures
2.6
ELEMENTARY EXAMPLES AND APPLICATIONS
2.6.1
The Riesz Representation Theorem for non-Hausdorff Sets
For good reason the Riesz Representation Theorem i s usually stated only for compact Hausdorff s e t s . A1 though compact non-Hausdorff sets behave very similarly t o Hausdorff sets with respect t o functions attaining their maxima there i s quite some difference with respect t o Borel measures living on them. Especially arguments which depend on the support of a measure, or on regularity, do not go over unchanged. B u t i f one drops the regularity assertion in the Riesz Representation Theorem t h i s result in fact can be extended t o the non-Hausdorff situation. Here, we immediately present the more general version of the Riesz-Konig Theorem.
2.6.1 Riesz-Konia Theorem: Consider an abelian semigroup S with neutral element and 5 (not necessarily Hausdorff) compact topological space n --Assume t h a t by s + ; a for a l l w E R , -the map function S + U S C ( n ) i s given such t h a t , -s + ;(w) i s subadditive 0" S Moreover, let p : S + be additive t h a t such --
.
.
p(s) I
sup,(;)
for a l l
s E
Borel probability measure -Then _ _there _ is 5 p(s) I
j S d-r for a l l s E
R
s .
0"
T
S
R with
.
Proof: We proceed almost exactly as in the proof of I 1.6.1. We define a sublinear functional p and a superadditive functional on U S C ( n ) as follows:
6
228
Representing Measures
for all
h E USC(n). U n f o r t u n a t e l y
6
i s not superlinear since i t i s not
homogeneous. B u t u s i n g t h e Sandwich Theorem i n i t s o r i g i n a l semigroup v e r s i o n we f i n d a monotone a d d i t i v e
v
with
d l v C p . P r o p o s i t i o n I 1.2.4 t e l l s us t h a t
*
i s l i n e a r . Hence i t i s a s t a t e because
1. B u t USC(n) i s a Dini cone ( D i n i ' s Lemma o r F(X) = R ) . Hence b y t h e Representation Theorem 2.2.1 t h e r e i s a r e p r e s e n t i n g measure T f o r v . T h i s measure 0 tri v i a1 l y f u l f i11 s t h e d e s i r e d inequal ity. of
v ( * 1) I p ( i 1) =
v
1.3.5 a p p l i e d t o t h e t r i v i a l case
Corollary: Let -
n be-a compact t o p o l o g i c a l -space and F(n) --_-__ a s e t of upper semicontinuous f u n c t i o n s on n w i t h F(n) t F(n) c F(n). --Then f o r e v e r y w i t h u 5 sup, t h e r e i s a Bore1 probabia d d i t i v e f u n c t i o n u : F(n) -,6 -----
l i t y measure T on -~
u(f) 5
2.6.2
with -
R
f dr
n
for all f --
E
F(n)
.
R e g u l a r i t y and Support
We a l r e a d y know t h a t B a i r e measures on a compact space have a c e r t a i n r e g u l a r i t y p r o p e r t y . I n t h i s c o n t e x t one may ask i f t h e r e i s s t i l l some k i n d o f r e g u l a r i t y p r o p e r t y f o r those measures which appear i n t h e Representation Theorem 2.2.1.
I n fact, there i s a corresponding property
-
we s h a l l s k e t c h a p r o o f as a p p l i c a t i o n o f t h e decomposition p r o p e r t y . Lemma 1 [
27 , p.1981
Let -
a B a i r e p r o b a b i l i t y --_ measure on a t o p o l o g i c a l space
every
m
B E Bo(X) -we have m(B) = i n f I m ( A )
IA
an -open _
Fo - -set with
X
3
A
2
BI
X. -Then f o r
.
229
Representing Measures
Proof: Consider X
cp +
CB(X) (bounded r e a l continuous f u n c t i o n s on
BX
the set
X ) and map
i n t o i t s Stone Czech c o m p a c t i f i c a t i o n . By t h e Riesz
X
Representation Theorem t h e r e i s a unique B a i r e p r o b a b i l i t y measure
X
on
such t h a t p(f)
where
T
^f
* x
f dm
^f
=
BX
dr
A
i s t h e obvious e x t e n s i o n o f
f o r a l l open
Fo- subsets
f
to
U Kn, Kn nEN
A =
,
f E CB(X)
for all
p(7)
We c l a i m
3! X .
T(A) = 1
B X c o n t a i n i n g Q(X).
compact, o f
I n f a c t t h e decomposition p r o p e r t y ( 2 . 1 . 6 ) o f v ( . ) i m p l i e s t h a t t h e r e a r e A,
2 0
Hence
with p I 1
E xn = 1 such t h a t
xn supK
and
n
2 . 1 . 1 ( i i i ) we g e t t h a t S E B0((3X))
f E C B(X)
T
p I
(defined by
i s a B a i r e measure on
. Hence
m =
T
. Now,
cp
a s s e r t i o n o f t h e lemma.
n
, where
must be supported by
'I
cp
supx
E
X
If
dm =
using t h e r e g u l a r i t y of
.
From remark
= T(S)
~,(cp-'(S))
with
.
A
Xn = X r l K,
If T
for all
dTQ f o r a l l one g e t s t h e
0
C o r o l l a r y 2: E(X) __--____be a v e c t o r l a t t i c e o f bounded r e a l f u n c t i o n s -on some X . Assume t h a t E ( X ) c o n t a i n s t h e c o n s t a n t s and l e t m be a pro-- - - 1E(X) - ___, -we have b a b i l i t y ___ measure. __ Then, _.for all B E E E(X) Let -
m(B) = inf{m(A)
where a s e t
IA
A -i s called
is
E(X)-open
3
131
,
E(X)-open if i t s c h a r a c t e r i s t i c f u n c t i o n -i s the --._
supremum _o f_ a p o i n t w i s e i n c r e a s i n g sequence
fn t 0
i n E(X)
.
Representing Measures
230
Proof: Endow X
w i t h t h e c o a r s e s t topology such t h a t a l l elements o f
continuous and t r y t o convince y o u r s e l f t h a t t h e
E(X)
-
E(X) are
open s e t s a r e t h e
open Fu- s e t s o f t h i s t o p o l o g y . Then an a p p l i c a t i o n o f Lemma 1 g i v e s t h e 0 result. An obvious consequence o f Lemma 1 i s t h a t t h e f i n i t e B a i r e measures a r e r e g u l a r . A measure on a t o p o l o g i c a l space ( w i t h r e s p e c t t o an a r b i t r a r y u- a l g e b r a ) i s s a i d t o be r e g u l a r i f f o r any measurable
m(B)
= supIm(A)
1A
c
B we have:
B , A c l o s e d measurable}.
T h i s p r o p e r t y i s i m p o r t a n t f o r t h e d e f i n i t i o n o f a support. We s h a l l do t h i s immediately f o r L i n d e l o f spaces. Recall t h a t a t o p o l o g i c a l space i s s a i d t o be L i n d e l o f i f t h e c l o s e d s e t s have t h e c o u n t a b l e i n t e r s e c t i o n
F i s a f a m i l y o f c l o s e d s e t s such t h a t e v e r y countable s u b f a m i l i y has a nonempty i n t e r s e c t i o n t h e n F has nonempty p r o p e r t y , i . e . whenever
i n t e r s e c t i o n . The L i n d e l o f theorem s t a t e s t h a t e v e r y t o p o l o g i c a l space w i t h a c o u n t a b l e base i s such a space. Now, f o r a p r o b a b i l i t y measure support o f
m on a t o p o l o g i c a l space we d e f i n e t h e
m t o be
supp(m) = n { A c X I A
c l o s e d measurable w i t h
m(A) = m ( X ) = 11.
Of course i n general t h i s s e t can be empty, b u t n o t i n t h e case t h a t
X
i s Lindelof: Lemma 2 : Let X be-a L i n d e l o f space. ---Then f o r e v e r y c l o s e d measurable set B with B n supp(m) = 0 we have m(B) = 0 . I n p a r t i c u l a r , supp(m) i s n o t empty. L--
Proof: If
B n supp(m)
=
0 then, by t h e c o u n t a b l e i n t e r s e c t i o n p r o p e r t y , t h e r e i s
a c o u n t a b l e sequence
An
o f measurable c l o s e d s e t s w i t h
m(An) = 1 and
Representing Measures
( n An) n B = nEN
0
.
Hence, we g e t the a s s e r t i o n from the cr- a d d i t i v i t y of
the measure m.
Corollary 3
231
0
1317 ,p.1751
Let X _ be -a Lindelof -space and m _be_ a_ _regular p r o b a b i l i t y measure _ ( w i t h respect t o a s u i t a b l e U - algebra Z ) . Then m(B)
=
0 -for all B
E
z _-w i t h
.
B n supp(m) = 0
An immediate consequence of this c o r o l l a r y i s t h a t every regular measure ( e s p e c i a l l y every Baire measure) m on a Lindelof space can be extended and t h a t i n this t o the U- algebra generated by II and supp(m) u- algebra supp(m) i s t h e smallestclosed s e t with mass 1, i . e . i n this case i t r e a l l y deserves t h e name support. In this context we should mention another notion. A Borel measure m on a topological space X i s c a l l e d t i g h t i f we have m ( K ) < f o r every closed compact K and i f f o r every measurable B c X 00
m(B)
=
sup{m(K)
IK
c
B , K closed compact}.
In some cases Borel measures a r e automatically t i g h t . For example, every f i n i t e Borel measure on a polish space i s t i g h t [ 27 ,p.201] ( X i s c a l l e d polish i f i t i s completely metrizable and has a countable base). The proof of t h a t f a c t i s q u i t e obvious. Because of t h e countable base we can find a dense sequence xn, n E N , of points i n X. Take f o r a r b i t r a r y P
> 0 t h e closed b a l l s
Then
X = U B(pyxn)
index Nn
nEN
B(p,xn)
. So,
f o r every
with p(X\Bn)
5
&
-
2n
w i t h radius E
p
> 0 and
around xn n E N
.
t h e r e i s some
Representing Measures
232
where Bn
=
U ' . B (-1
n
Ilk1
, xm ). Hence
p(X\K)
5
E
if
K =
n Bn
n€N
B u t K i s closed and obviously precompact, hence compact,since assumed t o be complete.
2.6.3
. X was
Representation by Unbounded Measures
Up t o now we have only considered f i n i t e representing measures. B u t i t i s well known the the Riesz Representation Theorem as well as the Daniel1 Stone Theorem carry over (under certain restrictions) t o situations where the representing measures are non-finite.
We show how t o recover these (slightly more general) versions from the f i n i t e case. The trick one has t o work with i s quite obvious: one has t o use suitable weight functions. We consider the following situations: Let E ( X ) be a vector l a t t i c e of real valued functions ( n o t necessarily bounded) on some s e t X For f € E with f L 0 we use the following notation:
.
Xf
=
{x
E
x I f(x) >
Ef = {g E E ( X )
xf
0)
I there
is
x
= u- algebra generated in
xE =
CI-
2 0
Xf
with by
algebra generated in X by
l g l S Af3
f-'Ef E(X)
=
{f-lhlh E E f l
.
.
For short we call a monotone linear functional p : E ( X ) -, R on a vector l a t t i c e E ( X ) Dini continuous i f p ( f n ) -, 0 whenever f n i s a n -,OD sequence in E ( X ) with f n J. 0 ( i . e . f n decreases pointwise t o zero).
Lemma 1: Let p : E ( X ) + R be a Dini continuous monotone linear functional. Then for every 0 5 f E E ( X ) there i s a Ifprobability measure mf such that --- I -
p(h) =
p(f) J
xf
( h f-')
dmf
for a l l
h
E
Ef
233
Representing Measures
Moreover, mf
is
unique i f
p(f)
0
Proof: I f p ( f ) = 0 then the assertion i s t r i v i a l . So assume p ( f ) > 0 and consider the vector l a t t i c e E; of a l l real valued linear functions on Xf given by the restrictions of f - 1 Ef . E; i s a n order unit vector
space (with 1 as order u n i t ) . And on xf
we define a s t a t e
E;
pf
by
where, of course, f a g stands f o r the extension t o X given by zero outside Xf pf i s Dini-continuous, since p was Dini continuous.
.
Hence by the Daniell-Stone Theorem there i s a unique probability measure representing the s t a t e pf NOW, by going back from E; t o Ef one gets
.
the desired result.
0
Let us turn our attention t o the u- completion (denoted by E u ( X ) ) o f E ( X ) . By that we mean the smallest u- complete vector l a t t i c e (with respect t o pointwise operations) which contains E ( X ) We recall t h a t u- complete means t h a t for every countable bounded s e t {fnln E N I the function dx) = sup f n ( x ) i s again an element of the vector l a t t i c e . n A s e t F i s called bounded i f there i s a n element g E E u ( X ) such t h a t If1 5 g for a l l f E F. E u ( X ) i s the intersection of a l l u- complete vector l a t t i c e s 3 E ( X ) I t i s a sublattice of the u- complete vector 1a t t i ce
.
.
E,(X)
where
IRX ‘E( X )
=
If E
X
R 1
i s the
E(X)
U-
I
there i s
g
E
EJX)
which means t h a t for every
such that If1 5 l g l l ,
complete vector l a t t i c e of a l l real
measurable functions. I n general we have E u ( X ) exercise t o show t h a t
E(X)
2 E,(X).
E,(X)
i f and only i f
f E Eu(X)
the function
=
EE(X)-
I t i s an easy Eu(X)
i s truncated,
Representing Measures
234
(f i s again in
A
l ) ( x ) = minCf(x),l)
Of course, i f
E,(X).
E(X)
i s truncated then
Eu(X)
is
truncated. Theorem 2:
Let
l~ :
Then -
p
: Eu(X)
E(X) R be a Dini continuous monotone linear functional. has t o-a- Dini continuous monotone linear - a unique extension -+
-+
IR
.
Proof: We f i r s t remark t h a t whenever u : E ( X ) -+R ( E ( X ) an arbitrary vector l a t t i c e ) i s monotone linear and Dini continuous then i t s Dini continuous extension t o E u ( X ) must be unique. I n f a c t , take two extensions v1 , v2 , then {f E
i,(x) I v l ( f )
hence equal to
=
v 2 ( f ) 1 i s a u- complete vector l a t t i c e
:
(Efl0
i(x),
Eu(X).
Now, we apply Lemma 1. If lJf
3
0 5 f E E ( X ) then we define the functional
+R
Then t h i s functional i s Dini continuous (Monotone Convergence Property) Therefore, i f 0 5 f l , f2 E E ( X ) , then and an extension of p IEf are Dini continuous extensions of p Hence Ufl, lJf2 IErnin(f1 ,f2) and LI coincide on { g E E,(X)I lgl 5 min(fl,f2)l llfl f2 Therefore, i f we take for g E E J X ) a n arbitrary f E E ( X ) with
.
.
.
l g l 5 f , we may define
235
Representing Measures
This functional does not depend on the choice of desired p r o p e r t i e s . 0
f
and i t has a l l t h e
Corollary 3 : Let -
E,(X) the
IJ
: E(X)
truncated. Then t h e r e i s a positive measure m ( w i t h r e s p e c t t o algebra generated by E ( X ) on X ) -such t h a t
is U-
-,R be monotone ~ l i n e a r and Dini continuous and assume ~ that -
v(f)
=
I X
f dm
for all
.
f E E(X)
Proof: of IJ t o E a ( X ) and consider Take the Dini continuous extension 2 = AEZ I t h e r e i s f E E & X ) such t h a t lA 5 f} E(X) Since E a ( X ) i s truncated we have i = t A E Z I1 E E u ( X ) } . E(X) A NOW, define f o r B E II E(X)
.
m(B)
=
sup{i;(lA) 1 A
E
with
Then m has a l l t h e desired p r o p e r t i e s .
A
= B3
.
0
This c o r o l l a r y e a s i l y leads t o t h e well known representation theorems f o r topological s i t u a t i o n s . Let us show this. On a Hausdorff topological space X we study t h e space C o ( X ) c o n s i s t i n g of a l l continuous functions f : X -,IR such t h a t If1 vanishes a t i n f i n i t y , i . e . the s e t s t x E X I I f ( x ) l L & I a r e compact f o r a l l E > 0 . Clearly, C o ( X ) i s a truncated vector l a t t i c e whose p o s i t i v e p a r t i s a subcone o f U C,+(X) .
-
Representing Measures
236
Theorem 4:
For every monotone linear v : C o ( X ) --
+
there i s a measure m (with -
R
respect t o the by C o ( X ) ) ~ - 0- algebra - generated p(f)
J f
=
dm -for a l l f E C o ( X )
-such t h a t
.
Proof: We only need t o prove t h a t suitable weight functions.
p
i s Dini continuous. This i s done by using
Consider a sequence f n in C o ( X )
with
f n +O.
Define W E C o ( X )
cp = f l
and a sequence
t
wn
E
W,(X)
=
1
n min(fl, -3 ) n=l n 1
with
Co(X)
cpn
+0
by:
otherwise Note,
cpn
w,,(xt)
+
Since
p
B u t the
i s indeed continuous since, by definition o f 0 for every net
xt
cp,
converginq t o a point x with
we have cp(x)
=
i s monotone we have
cpn
are uniformly decreasing t o zero since U C L ( X )
Dini cone (Lemma 1.3.5).
0
t R
is a
0
.
237
Representing Measures
Adapted Cones
2.6.4
Mokobozki - Sibony [2321 arld others (see also [721 and [255])introduced the concept of adapted cones. These cones came u p in potential theory. They have the property t h a t positive linear functionals always admit representing measures. Adapted cones are cones of nonnegative continuous functions on a locally compact topological space f u l f i l l i n g a suitable weight condition a t i n f i n i t y . We are going t o generalize the concept in such a way t h a t also nontopological situations and t h e i r representing measures are covered as we1 1 . be a truncated vector l a t t i c e of real-valued functions on some Let E ( X nonempty s e t X . E ( X ) i s said t o be adapted i f for every sequence f n E E ( X with f n J 0 there i s a 0 I Y E E ( X ) such t h a t f o r every there i s a 0 I cp E E ( X ) having the property t h a t cp-le,(x) converges uniformly t o zero, where E
> 0
cn(x)
As usual we p u t
f n ( x ) when f n ( x )
{
=
2
E
~(x)
otherwise and
= 0
0- (+-)
-1 (x) = +-
when ~ ( x =) 0.
cp
Lemma : Every monotone linear u : E ( X ) has - a representing measure.
+ R
on an adapted vector l a t t i c e E ( X ) -----
Proof: Consider arbitrary inf
nEN
E
> 0
u ( f n ) I E r (where r
fn E E(X)
and
with
fn
i s independent of
E R,
.
If we can prove
J
0
E
), then the Daniell-
Stone Theorem (section 2.6.3) yields the existence of a unique representing measure. I n order t o prove t h i s inequality we take the c p , ~ from the definition above, we define T = max(fl,cp,w) and we consider the subspace
i The functions
= {g E
c p , ~
E(X)
I
191 I A T
and a l l the
for some
x
E R,
I
.
f n are in t h i s subspace. Let
u
be the
Representing Measures
238
restriction o f
u
to
,?
and c o n s i d e r t h e s u b l i n e a r f u n c t i o n a l s on
g i v e n by:
Ix Ix
pn(g) = sup{T(x)-'g(x) qn(g) = s u p I T ( x ) - l g ( x )
i; i s monotone we have i;
Since
E X with
fn ( x ) I
E X with
fn ( x )
5 p max(pn,qn),
5 i n t o l i n e a r vn,nn w i t h
functional
I n particular then
6,
+
0.
(x)}
2 E Y (x)}
where
By t h e F i n i t e Decomposition Theorem we can decompose
E Y
p =
;(T)
fi = vn t
qn
the
From p n ( f n
-
E Y ) I
0
and nn I
and q,(f,-dn
(p)
we o b t a i n :
I 0
(adaptedness) we o b t a i n t h e d e s i r e d i n e q u a l i t y
Now, l e t
be a cone o f
F(X)
= p(T).
p 9., -1 vn and nn a r e monotone. P u t 6, = sup{(p (x)E,(x) I x E X I ,
vn I p pn
Since dn J. 0
adapted
.
real
f u n c t i o n s on
X
.
We c a l l
F(X)
i f t h e following c o n d i t i o n s a r e s a t i s f i e d :
i)
f o r every
f E F(X)
t h e r e i s some
ii) t h e t r u n c a t e d v e c t o r l a t t i c e
E
adapted, where generated means vector l a t t i c e o f functions
g E F(X)
generated by E
w i t h If1 I g F(X) i s
i s the smallest truncated,
X which c o n t a i n s F(X).
Theorem [ 1261 : Every monotone l i n e a r r e p r e s e n t i n g measure.
p
: F(X)
-,R ---on an adapted
cone
F(X)
-
has - a stri
RepresentingMeasures
239
Proof:
u can be extended t o a monotone l i n e a r
A l l we have t o show i s t h a t functional
on t h e t r u n c a t e d v e c t o r l a t t i c e
E(X)
generated by
F(X).
B u t t h i s i s easy. Because o f i ) i n t h e d e f i n i t i o n above
Ig
p(g) = i n f I u ( f ) defines a s u b l i n e a r f u n c t i o n a l on can be extended t o a l i n e a r g Io
since
If E F ( X ) I
E(X). Furthermore 2 p
on
E(X)
ii(g) 5 p(g) I~ ( 0 ) = 0
implies
.
. 6
u
p
Hence IF(X)' must be monotone =
0
Example 1 ( H e w i t t [1631 see a l s o [3171): ~
Let X
C(X) be t h e space o f continuous -r e a l valued f u n c t i o n s on X , where i s a normal t o p o l o g i c a l ___ space. _ Then e v e r y monotone l i n e a r functional _-
u :
-,R -can_ be
C(X)
r e p r e s e n t e d by
g
B a i r e measure. -____
Proof:
I t s u f f i c e s t o show t h a t C(X) fn J. 0, fn E C(X)
let
Yn = I x I f n ( X ) I T
n E C(X)
with
m
Z
n=l
every
, Zn
n
-2
x E X
~
E
> 0
and c o n s i d e r t h e d i s j o i n t c l o s e d s e t s
I x Ifn(x) 2
=
0 5 r n I 1 and
.
~~
g =
s
and
i s an adapted v e c t o r l a t t i c e . To show t h a t ,
T
1
E
. Take
Urysohn f u n c t i o n s = 0
nlYn
. The
function
-1
~+ f n( ) 1 i s o b v i o u s l y continuous and nowhere z e r o s i n c e i s i n some
Yn.
Put
cp = g
-1
and
Y
= 1. These f u n c t i o n s
have t h e d e s i r e d p r o p e r t i e s because o f
-1 cp
Example 2 (Mokobozky Let
X
-
E n = E n ' g I
f 5 c q
X
. We
such t h a t f o r e v e r y outside
0
-7
K
.
f ( x ) > 0. We c l a i m t h a t
P(X)
assume t h a t f o r e v e r y E
Furthermore we assume t h a t f o r every with
1
be a l o c a l l y compact H a u s d o r f f space and
q E P(X)
with
1
Sibony [2321 see a l s o [ 7 2 , p. 2831):
nonnegative f u n c t i o n s on a
"
m=n m
P(X)
> 0
a cone o f continuous f E P(X) t h e r e i s
t h e r e i s a compact s e t
x E X
there i s a function
i s an adapted cone i n t h e
K c X fEP(X)
Representing Measures
240
sense defined above. Clearly the property given above f o r P ( X ) a l s o holds f o r the p o s i t i v e cone of the truncated vector l a t t i c e generated by P ( X ) . For the proof of adaptedness we may t h e r e f o r e assume t h a t P ( X ) - P ( X ) = E ( X ) i s a truncated vector l a t t i c e . Now, take a sequence f n E P ( X ) with f n J. 0 . Then there i s some q E P ( X ) with
fl 5
E
q
o u t s i d e a s u i t a b l e compact
set (depending on E ) . P u t cp = f l t q and Y = q , then because of D i n i ' s Lemma on compact s e t s the functions cp and Y have t h e desired properties. Example 3:
Let us discuss a special case of example 2. Again X i s a l o c a l l y compact topological Hausdorff space and we denote by C a o ( X ) and C o ( X ) the complex-Val ued and real -Val ued continuous functions on X which vanish a t i n f i n i t y . We endow t h e s e cones w i t h t h e sup-norm. The cone of p o s i t i v e elements in C o ( X ) is c e r t a i n l y adapted. Hence, monotone f u n c t i o n a l s do have representing measures (Theorem 4 of section 2.6.3): W i t h Theorem 2.3.4 we obtain a s i m i l a r r e s u l t f o r bounded functions i n case t h a t p i s not monotone.
u For every l i n e a r functional -bounded ~ -
: C Co(X)
+
bounded complex-valued t i g h t measure such t h a t ~ - - v-p(f) =
I X
f dv f o r a l l
f E C Ro(X)
a t h-e r-e-i s a unique
.
Proof:
Because C
ao(X)
=
Co(X) + i Co(X)
functional on C eo(X)
from i t s r e s t r i c t i o n t o
r e s t r i c t our arguments t o C o ( X ) . functionals p r , p i by p(f) =
we e a s i l y recover every l i n e a r
pr(f)
+i
Co(X)
. Hence,
we can
Define bounded real-valued l i n e a r
pi(f)
for all
f E Co(X)
.
Since C o ( X ) i s a weak Dini cone these functionals have signed Baire representing measures mr and mi , respectively.
241
Representing Measures
Since, f o r example, r e p l a c i n g
mr
mr(A) = supImr(K)
by t h e measure
I K c A,
compact}
K
does n o t change t h e i n t e g r a l s f o r t h e f u n c t i o n s v a n i s h i n g a t i n f i n i t y we mr
can assume
mi
and
t o be t i g h t . Uniqueness i s easy t o see: E i t h e r
v i a t h e uniqueness a s s e r t i o n i n t h e D a n i e l 1
-
Stone Theorem o r f r o m t h e
f a c t t h a t d i f f e r e n t t i g h t measures l e a d t o d i f f e r e n t i n t e g r a l s .
2.6.5
0
R e p r e s e n t a t i o n o f F u n c t i o n a l s w i t h Zero Mass
We have seen t h a t o u r fundamental R e p r e s e n t a t i o n Theorem y i e l d s r e p r e s e n t i n g measures even i n f o r m a l l y more general s i t u a t i o n s (e.g.
signed
measures, measures on w e i g h t e d cones, unbounded measures). L e t us g i v e a n o t h e r exampl e o f t h i s k i n d .
L e t us s t a r t w i t h a s i m p l e o b s e r v a t i o n . We c o n s i d e r two cones
X
o f upper bounded f u n c t i o n s on cp : F(X)
{cp(f)
--t
If
G(Y).
E F(X)}
Denote by
.
and
cp(F)
F(X), G ( Y ) Y , r e s p e c t i v e l y , a n d a l i n e a r map
t h e subcone o f
G(Y)
given by
Lemma :
The f o l l o w i n g
are equivalent:
F? _ such _ -t h a t p ( f )
i )--For every l i n e a r
p
f E F(X)
p r o b a b i l i t y measure
U-
there i s
_ I -
2
: F(X)
a l g e b r a generated by cp(F)) ,(f)
ii) cp(F)
+
R
I
I Y
-+
T
4 supy(cp(f))
on Y
for all
( w i t h respect t o the
such t h a t
cp(f) d-r
for a l l
f E F(X)
i s a D i n i cone.
Proof:
i )=t. ii): Take an a r b i t r a r y s t a t e
w
of
cp(F)
t h e r e i s a s u i t a b l e r e p r e s e n t i n g measure
T
on
Hence,
v
and
T
i s a r e p r e s e n t i n g measure f o r
+ Y
R
.
Then, a c c o r d i n g t o i),
for
cp(F)
p =
+
R
v
o cp
.
must be a D i n i
242
Representing Measures
cone ( R e p r e s e n t a t i o n Theorem 2.2.1). ii)
3
i ) :L e t
6 : q(F)
+
assumption on state
on
v
q(F)
+
p r e s e n t i n g measure respect t o
6 5 supy
on
E F, cp(f) = g)
.
Because o f t h e
and t h e Sandwich Theorem g i v e s us a
v 2 6. Because o f ii)t h i s s t a t e has a r e -
with
R T
.
1-1
1f
6(g) = sup{p(f)
we have
1-1
be as i n i)and c o n s i d e r t h e s u p e r l i n e a r
F(X) - + R
1-1 :
g i v e n by
R
.
Y
And
T
has t h e r e q u i r e d p r o p e r t i e s w i t h
0
We g i v e two examples f o r s i t u a t i o n s where t h e lemma a p p l i e s .
Example 1: L e t now
F(X)
X which c o n t a i n s t h e
be a cone o f bounded f u n c t i o n s on
X
c o n s t a n t r e a l - v a l u e d f u n c t i o n s on
A linear
~ ( 1 =~ 0.) We r e c a l l t h a t
have mass zero i f -u ( f ) 5 supXlfl
.
for all
1-1
p : F(X) + R
i s said to
i s s a i d t o be normed i f
f E F(X).
Theorem: The f o l 1owing a r e equi Val e n t : i )
p : F(X) + R w_ i t h_mass - - - z e r o has a r e p r e s e n t i n g w i t h t o t a l v a r i a t i o n I T ~ I 1. -__
Every normed l i n e a r measure
on
T
X
For every normed l i n e a r
ii)
p o s i t i v e measure
v
0”
b r a generated by F(X))
p
: F(X)
X
x
X
with
-+
(rn,fn)
decreases -f o r a l l x,y inf nEN
-w_i t_h _mass _ _ _zero __
there i s a u-
(w i t h r e s p e c t -t o- _ t h_ e _p _ roduct such t h a t --
alge-
m( l X x ) 5
( f ( x ) -f(y))dm(x,y)
i i i ) -F o r e v e r y sequence
R
E R
x
for all --
f E F(X).
F(X) -such t h a t r n + f n ( X )
-
fn(Y)
E X we have --
sup (rn +fn(x) -fn(y)) x,y E X
= sup
inf (rn +fn(x) x,yEX nEN
-
fn(y)).
Proof: We c o n s i d e r
on Y
by
Y = X ^f(x,y)
x
X
= f(x)
and we c o n s t r u c t , f o r
-
f(y).
Let
G(Y) =
, a f u n c t i o n ?. F} , t h e n t h e map
f E F(X)
{? 1 f
E
243
RepresentingMeasures
f
-+
^f
i s l i n e a r from
F(X)
G(Y)
to
o n t o t h e same f u n c t i o n on
and two elements o f
F(X)
a r e mapped
i f and o n l y i f t h e y d i f f e r by a c o n s t a n t
Y
f u n c t i on. Hence, every
w i t h mass z e r o a n h i h i l a t e s t h e k e r n e l o f t h e map
IJ
and t h e r e must be a unique l i n e a r map
~ ( f= )u ( f ) c =
for all
(supX(f)
-
f E F(X).
If
G(Y)
v :
.+
such t h a t
R
+ i n f x ( f ) ) we g e t 1
Thus t h e Sandwich Theorem g i v e s us a s t a t e
. And
1
'IG(Y)
the equivalence ( i i )
lemma s i n c e ( i i i ) s t a t e s t h a t
(i)
=$
G(Y)
( i i ) : Take a norrned s t a t e
measure
a c c o r d i n g t o i)
T
and n e g a t i v e p a r t . hence,
-,^f
i s i n a d d i t i o n normed,then f o r
p
~ ( f =) u ( f ) = p ( f - c ) 5 ? I s u p X ( f ) - i n f X ( f ) } =
"'
f
. Then
'+(lX) = r - ( l X ) = A I
1
R
m = - ( ~ +
B
T
/2
G(Y)
+
supy(f) with
R
( i i i ) i s a consequence o f t h e
Q
has t o be a D i n i cone.
w i t h mass z e r o and a r e p r e s e n t i n g
decompose
must have mass z e r o
T
A
p
+
of
p
1
.
T
=
T+
-
T-
i n i t s positive
(F(X) contains t h e constants),
Then
( p r o d u c t measure)
-)
has t h e r e q u i r e d p r o p e r t y . (ii) + (i):
Take t h e marginalmeasures o f
p a r t s o f a measure on T ( A ) = m(A
x
X)
-
m(X
X x
m
as p o s i t i v e and n e g a t i v e
t o o b t a i n t h e r e p r e s e n t i n g measure A). 0
T
,
i.e.
Example 2: Take a t o p o l o g i c a l space on
X
.
We r e c a l l [ 2 4 l ] t h a t an o r d e r r e l a t i o n I
i s s a i d t o be continuous i f , whenever
neighbourhoods for all
X
U ( x ) , U(y)
of
x
and y
x 9y
, then there are
, respectively,such t h a t u 9 v
u E U ( x ) , v E U ( y ) . Such continuous o r d e r r e l a t i o n s a r i s e q u i t e
o f t e n . F o r example t a k e a p o i n t s e p a r a t i n g f a m i l y f u n c t i o n s on
X
and d e f i n e
F(X)
o f continuous
I t o be t h e s m a l l e s t o r d e r r e l a t i o n such
244
Representing Measures
t h a t the elements of f o r a l l f E F(X).
F(X) a r e monotone, i . e . x 5 y
f(x)
0
4
f(y)
In h i s pioneering work 12411 Nachbin has shown t h a t f o r completely regular spaces every continuous order is i n f a c t of t h i s kind.
.
NOW, l e t
X be compact with continuous order 5 Then by t h e fundamental Katetov - Nachbin Theorem ( a Tong - Katetov Theorem f o r normally ordered spaces, s e e [2411 o r [ 661) one can f i n d a monotone continuous function g with cp 2 g L Y whenever cp and Y a r e monotone and real valued w i t h cp lower semicontinuous and Y upper semicontinuous. This f a c t has the following consequence:
2 continuous real valued function 0" X , then t h e r e i s a mono-
Let f -
tone continuous function (*)
g
such t h a t --
1 I f + g I 5 7 supIf(x)
-
f ( y ) I x,y E
Proof: Define a monotone upper semicontinuous function semicontinuous function - ? by :
Put
A =
1
f ( x ) = sup{- f ( y ) I y
I XI
Ix
IZ I
Y(x)
= V
supX(f -
infi- f ( z )
7)
. Then -
V
f
t A L
-
^f - x
-
x
-f
Y
y
and a monotone lower
and by t h e Katetov
-
Nachbin Theorem there i s a monotone continuous function V Because - f 2 - f t -f we g e t f o r ( f t g ) : - x 5 ^ f t g s f t g
IY
IXI.
-
g i n between.
+ g s x .
1 Hence If t g l Ih supCf(x) - f ( y ) I x,y E X,y follows from t h e construction of ^f and y ) .
IX I
(the l a s t equality 0
As a consequence of t h i s i n e q u a l i t y and t h e lemma we obtain t h e following
i n t e r e s t i n g i n t e g r a l representation theorem ( a l s o due t o Nachbin [ 2 4 i l ) .
245
Representing Measures
Theorem : Let -
X
be a compact space w i t h continuous --o r d e r and l e t
l i n e a r functional on C(X)
such t h a t p ( g ) 2 0 --
LI
be-a_bounded __
f o r e v e r y monotone --
continuous f u n c t i o n . -Then t h e r e i s a p o s i t i v e -~ B o r e l measure v on
H = t ( x , y ) I y I XI with v(H) =
T IIp
II
and such t h a t ---
Proof: Observe t h a t
H
i s compact, map C ( X )
From t h e p o s i t i v i t y of
( * ) we o b t a i n
p(f) I
-,
C(H)
by
cp(f)(x,y)
=f(x) -f(y).
u on t h e monotone f u n c t i o n s and from t h e i n e q u a l i t y l l p II supH cp(f) f o r a l l f E C(X). S i n c e C(H)
1 7
i s o b v i o u s l y a D i n i cone (compactness o f
H ) t h e lemma g i v e s us a B a i r e
measure w i t h t h e d e s i r e d p r o p e r t i e s .
T h i s B a i r e measure can b e extended D t o a B o r e l measure by t h e usual procedure.
F o r a g e n e r a l i z a t i o n o f t h e p r e c e d i n g theorem t h e r e a d e r s h o u l d c o n s u l t [ 1661.
2.7
REMARKS AND COMMENTS
S e c t i o n 2.1:
The i n t e r r e l a t i o n between decomposition p r o p e r t i e s and
ineasure theory, d e s c r i b e d i n t h i s s e c t i o n , a r e t a k e n f r o m [1201 (see a l s o [1191,[1231,[1241).
An e s s e n t i a l t o o l i s P r o p o s i t i o n 2.1.4;
we l i k e t o
observe t h a t t h e u n d e r l y i n g s i t u a t i o n o f t e n occurs. F o r example, when F(X)
s a t i s f i e s a m i l d l a t t i c e c o n d i t i o n and
LI
i s maximal ( t h u s y i e l d i n g
b ) as a consequence o f t h e F i n i t e Sum Theorem). The p r o o f o f P r o p o s i t i o n 2.1.6
l o o k s r a t h e r complicated. I n f a c t , one can
g i v e a s i m p l e p r o o f b y use o f t h e D a n i e l l - S t o n e Theorem (as i t was done i n [1203). B u t we wanted t o g i v e a p r o o f o f t h e D a n i e l l - S t o n e Theorem as w e l l , so, we had t o proceed d i f f e r e n t l y . O f course, 2.1.7
i s somewhat weaker
t h a n t h e usual v e r s i o n o f t h e D a n i e l l - S t o n e Theorem s i n c e we assumed t h e functions i n
E(X)
t o be bounded. T h i s r e s t r i c t i o n w i l l be a b o l i s h e d i n
246
Represenring Measures
s e c t i o n 2.6.3 where the r e s u l t i s extended t o the case of unbounded functions. In f a c t , t h e theorem we a r e presenting t h e r e i s s l i g h t l y stronger than the usual Daniell-Stone Theorem, i n s o f a r as we obtain umonotone extensions without S t o n e ' s condition. The Daniell-Stone Theorem, in i t s o r i g i n s , goes back t o D a n i e l l ' s 1917 paper [ 831 ( s e e a l s o [3031).
I t seems t o be an i n t e r e s t i n g question, whether we can base a proof o f t h e Daniell-Stone Theorem e n t i r e l y on decomposition techniques, thus avoiding the use o f t h e Riesz Representation Theorem completely. In f a c t , t h i s i s possible; we sketch the procedure: Let E ( X ) be, with respect t o pointwise operations, a vector l a t t i c e and assume t h a t l X i s an order u n i t . Consider a decomposable s t a t e LI Define f o r A
c
.
X:
Call a sequence A n , n E N , o f pairwise d i s j o i n t s e t s a d i s j o i n t covering of A i f u An = A Define
.
nEN
m(A)
=
inf{
50
iii(An)
E
n=l
Then pick o u t subsets o f =
{A
c
X
I m(A)
Now, one can prove t h a t
1
X
by:
t
m(X\A)
5
is a
(A,)
=
d i s j o i n t covering of A 3
11
.
.
a- algebra
2
Z
E(X)
and t h a t m
is a
a d d i t i v e measure on which represents ii . ( I f t h e reader t r i e s t o prove these a s s e r t i o n s he should make extensive use of t h e FSP f o r (E(X),s)*).
a-
Represenring Measures
247
Section 2.2: Again, the material i s taken from [1201. A different proof of the Representation Theorem 2.2.1 was given by M. Neumann. His essential tools were Choquet's Theorem and Simons' Convergence Lemma. In [1201 one finds a condition for the existence of s t r i c t representing measures. This condition i s f a l s e and does n o t ensure the existence of s t r i c t represent i ng measures. Section 2.3: This material appeared in [1211. I n section 11.4 we are transferring the Representation Theorem t o a vector-Val ued s i tation, and i t seems interesting t o remark t h a t this procedure f a i l s for Theorem 2.3.4 ( a t least in the non-weakly-u-distributive case). Another open problem i s the uniqueness of signed representing measures. Whereas, in the case of positive representing measures, one can easily obtain results 1 i ke the Choquet-Meyer uniqueness theorem, no similar results for the signed case are knwon to the authors. Probably, one has t o work with a decomposition property being similar t o the one f u l f i l l e d by the preduals of abstracts L- spaces ( [2101,[2111). The Weighted Representation Theorem appeared, as a corollary, Section 2.4: in [120]. Frequently weight functions are considered in modern analysis. For example, see the extensive work a b o u t the weighted spaces C V o ( X ) and CV(X), where V i s a so-called Nachbin family ( [ 371,[ 771,[1441 [1961,[2421 [257 1 and 13061). Observe t h a t Lemma 2.5.3 i s a special case o f the abstract Section 2.5 Di sintegrat o n Theorem I 1.7.1. We included a separate and simple proof in order t o save the reader from going t h r o u g h the details of section I 1.7. The material i s taken from [1241. Theorem 2.5.7 can be considered as an integral representation theorem for those s t a t e s behaving locally simplicial. Of course, i n this case the representing measure i s unique. This section was mainly written t o demonstrate the wide Section 2.6: range of applications for the Representation Theorem. For this reason some of the proofs are rather brief. For example, the reader should observe that, although the proof of the uniqueness in Theorem 2 (section 2.6.3) i s correct, one needs some additional work t o verify the crucial assertion t h a t If E c , ( X ) I v l ( f ) = v2(f)l i s a vector l a t t i c e .
248
Representing Measures
The u- completeness i s no problem, b u t t o prove t h a t t h i s space i s a l a t t i c e one certainly needs transfinite induction (which, of course, proceeds in the obvious fashion). The intrinsic reason for that space t o be a l a t t i c e i s t h a t i ( X ) already i s a l a t t i c e . I n Lemma 1 (section 2.6.2) we work with the Stone-Czech compactification although we do n o t assume t h a t the space under consideration i s completely regular. Since some textbooks, unfortunately, define the Stone-Czech compactification only f o r completely regular spaces an additional explanation seems appropriate. Of course, by i3 X we mean the linear functionals on C B ( X ) which are given by the u l t r a f i l t e r s on X . Then everything which i s known for the Stone-Czech compactification goes through, except, t h a t X + B X need n o t be injective. (Another way o f defining B X i s via the structure space of C B ( X ) given by the KakutaniKrein-Stone-Yosida Theorem).
Section 2.6 deals w i t h several versions, and generalizations, of the fundamental Riesz Representation Theorem (which was originally proved by F. Riesz 1262 3 in 1909 f o r the case X = [0,11, see also [2651). This theorem has caught the attention of many outstanding mathematicians; they have genralized the result and reformulated the proof countless times. The case of compact subsets of Rn was settled by J. Radon [ 2591, for general metrizable compact sets the theorem i s due t o S . Saks I2821 and S. Banach (1937). For the general case of structure spaces of M- spaces Kakutani [1811 gave the proof. For non-Hausdorff compact s e t s , see A. Markov [2261 and A.D. Alexandrov t 1 1 (compare our Theorem 2.6.1). The C o ( X ) - case (see our Theorem 4 in section 2.6.3) i s due to several authors, independently. This case i s related t o the integral representation of the dual spaces with respect t o the s t r i c t topology (introduced by R.C. Buck [ 6 0 1, see also, for example, [1651 and t2901). For pseudocompact X the integral representation of monotone 1 inear functionals C ( X ) + R was f i r s t given by I . Glicksberg 11411. Hewitt's result [1631,[3171 ( o u r example 1 in section 2.6.4) i s usually stated in a more general form: Every bounded linear functional : C ( X ) -+ R can be represented by an integral, where bounded means t h a t for every 0 5 f E C ( X ) the s e t { p ( g ) I - f I g I f , g E C ( X ) I has t o be bounded. Of course, monotone functionals are bounded and a bounded functional can
248
Represenring Measures
be decomposed i n t o t h e d i f f e r e n c e o f two monotone ones. I f t h e r e a d e r i s i n t e r e s t e d i n e l e g a n t and s h o r t p r o o f s o f t h e Riesz R e p r e s e n t a t i o n Theorem he s h o u l d c o n s u l t [3161 o r [1381. G e n e r a l i z a t i o n s t o s e t - v a l u e d measures a r e t r e a t e d i n [2781. F o r more i n f o r m a t i o n about t h e s i t u a t i o n cansidered i n Example 2 ( s e c t i o n 2.6.5)
t h e r e a d e r s h o u l d have a l o o k i n t o Nachbin's b e a u t i f u l
book on t o p o l o g y and o r d e r [2411. Choquet's Theorem, which i n a c e r t a i n way i s a l s o a g e n e r a l i z a t i o n o f t h e Riesz R e p r e s e n t a t i o n Theorem,will
be t r e a t e d e x t e n s i v e l y i n t h e f o l l o w i n g
sections. There a r e many analoga o f t h e Riesz R e p r e s e n t a t i o n Theorem f o r t h e v e c t o r valued case. A p a r t f r o m t h e r e s u l t we g i v e i n s e c t i o n 11.4 t h i s a s p e c t
w i l l n o t be t r e a t e d i n t h i s book. For t h e s e m a t t e r s t h e i n t e r e s t e d r e a d e r s h o u l d c o n s u l t t h e e x c e l l e n t monograph o f D i e s t e l and Uhl [ 861.
Other R e p r e s e n t a t i o n Theorems:
L e t us b r i e f l y mention some o t h e r i n t e -
g r a l r e p r e s e n t a t i o n theorems f o r non-compact s e t s . A most i m p o r t a n t development i n t h i s f i e l d was i n i t i a t e d b y E d g a r ' s theorem. I n [ 9 3 1 he proved t h a t e v e r y p o i n t x i n a s e p a r a b l e RNP- s e t X ( s e e d e f i n i t i o n on page 198) i s t h e b a r y c e n t e r o f a p r o b a b i l i t y measure mx o n t h e u n i v e r s a l l y measurable s e t s i n X such t h a t t h e extreme p o i n t s o f X have
mx- measure 1. The p r o o f . amazingly s i m p l y , works v i a C h a t t e r j i ' s m a r t i n g a l e convergence theorem and von Neumann's s e l e c t i o n theorem. The use o f von Neumann's s e l e c t i o n theorem i s t h e reason t h a t t h e p r o o f cannot be t r a n s f e r r e d t o non-separable RNP- s e t s (where t h e theorem f a i l s ) . A f o r e r u n n e r o f t h i s theorem was g i v e n by Choquet [ 7 0 1. A non-separable analogue i s a l s o g i v e n b y Edgar . I n [ 9 4 ] he shows t h a t e v e r y element x
i n an
RNP- s e t
X
can be r e p r e s e n t e d by a t i g h t p r o b a b i l i t y measure
mx, which i s maximal w i t h r e s p e c t t o t h e d i l a t i o n o r d e r ( e q u i v a l e n t [951
t o b e i n g maximal, among t h e t i g h t measures, w i t h r e s p e c t t o t h e Choquet o r d e r ) . I n t h e s e p a r a b l e case these maximal t i g h t measures a r e supported be t h e extreme p o i n t s - which does n o t h o l d i n t h e non-separable case
-
i n f a c t t h e n t h e y o n l y vanish on t h e s e t s which a r e movable b y d i l a t i o n s .
250
Representing Measures
An equivalent non-separable version of Edgar's theorem i s g i v e n by P. Mankiewicz [225]. The c h a r a c t e r i z a t i o n of RNP- s e t s which a r e simplexes by means o f uniqueness of maximal measures is the work of R.D. Bourgin and G.A. Edgar [571. These r e s u l t s have been extendedfurther by the impressive work of E . G . F . Thomas ([307]to [311] on conuclear cones. Let us mention a special case of h i s r e s u l t s : Let S be a complete bounded closed convex Souslin subset of a l o c a l l y convex Hausdorff space. (Recall t h a t a s e t i s Souslin i f i t i s t h e continuous image of a separable completely metrizable space). Then, i f S has the Radon-Nikodym property, every point in S i s t h e barycenter of a Radon probability measure concetrated on t h e extreme points ( i . e . S has t h e i n t e g r a l representation property). This author shows furthermore t h a t the i n t e g r a l representation property characterizes t h e Radon-Nikodymproperty i n the following way: S has t h e RNP i f and only i f a l l closed convex subsets of SN do have the integral representation property. Actually a1 1 these r e s u l t s carry o v e r [ g i i l t o the case when t h e cone generated by S i s replaced by a socalled conuclear cone r with RNP which has t h e property t h a t closed convex h u l l s of compact subsets of r a r e again compact: (Another, b u t very r e l a t e d , 1 ine of non-compact Choquet theorems f o r bounded, weakely-closed, convex subsets of t i g h t measures was given by von Weizsacker[3251, [326] and von Weizsacker-Wink1 e r [327] ( s e e a l s o [331] ) . They show t h a t , roughly speaking, these s e t s do have t h e i n t e g r a l repres e n t a t i o n property.
SECTION 11.3 BOUNDARIES
This section i s dedicated t o the investigation of the so-called geometric situation. We show t h a t , in case of a compact convex s e t , the restrictions o f the affine continuous functions, as well as the restrictions of the upper semicontinuous convex functions, t o the extreme points are constituting a Dini cone. (Actually, we present this fact slightly more general since we replace the compact convex s e t by an arbitrary s t a t e space of an order unit cone, b u t t h i s generalization i s not essential). For this case the Representation Theorem then yields Choquet's celebrated theorem in the generalization of Bishop - de Leeuw. We s t a r t by an investigation of boundaries. We show t h a t there i s a minimal f i x p o i n t boundary for the so-called exposed maps. This immediately leads t o Bauer's Maximum Principle (and, of course, t o the Krein-Milman Theorem). I n section 3.2 we characterize the minimal fixpoint boundary in terms of separation properties; i t turns o u t t h a t t h i s boundary can actually be smaller than the Choquet boundary. This leads us t o the definition of five different boundary notions, and we investigate the relations between these boundaries. Since we did n o t need the notion of maximal measure for the proof of Choquet's Theorem (section 3.2) we append some information a b o u t the Choquet order in section 3.4. I n section 3.5 we t r e a t the Choquet-Meyer uniqueness theorem as well as the characterization of Bauer simplices ( t h i s i s done as an application of the material gathered in chapter 1 . 2 ) . Finally, in 3.6 we investigate in what kind of situation a Maximum Principle forces a cone t o be a Dini cone. Relevant results are obtained via Simons' Convergence Lemma. As a byproduct we get information a b o u t situations when the Choquet boundary i s the minimal max-boundary. This aspect of minimal boundaries will be further treated in chapter 11.5. 251
252
3.1
RepresentingMeasures
FIXPOINT BOUNDARIES, BAUER'S MAXIMUM PRINCIPLE AND THE KREINMILMAN THEOREM
I n t h e f o l l o w i n g we c o n s i d e r a f a m i l y o f upperbounded f u n c t i o n s on some nonempty s e t
X
and we s t u d y subsets
of
Y
X
i n which a l l f u n c t i o n s
X- suprema. I n p a r t i c u l a r we a r e
under c o n s i d e r a t i o n a l r e a d y a t t a i n t h e i r
i n t e r e s t e d i n " s m a l l " Y. The reason f o r t h i s i s , t h a t i n most cases t h e r e 1evant p r o p e r t i e s o f t h e f u n c t i o n s under c o n s i d e r a t i o n a r e c o m p l e t e l y
determined by t h e i r r e s t r i c t i o n s on Y , hence t h e r e i s some economical advantage i n making Y as small as p o s s i b l e . T h i s i d e a i s used w i t h g r e a t success i n d e a l i n g w i t h d i f f e r e n t i a l equations a d m i t t i n g a maximum p r i n c i p l e (as we have seen i n c h a p t e r 1.1.6). We s t a r t w i t h t h e d e f i n i t i o n o f t h e c r u c i a l n o t i o n Def in i t i o n :
3.1.1 Let
X
be a nonempty s e t and l e t F(X)
functions
f :X
f o r every
f E F
I n general even
+
6 .
A subset
, there X
Y
c
X
be a f a m i l y o f upperbounded i s c a l l e d a boundary f o r
i s a corresponding
i s n o t a boundary f o r
f e a t u r e s o f Dini cones i s t h a t i n t h i s case As we have seen i n 1.1.6.3 u n i t c i r c l e i n R2
with
y E Y
F(X) if,
f(y) = supX(f)
.
F(X). One o f t h e i m p o r t a n t happens t o be a boundary.
X
the, l e t us say, t o p o l o g i c a l boundary o f t h e
i s a boundary f o r t h e c o r r e s p o n d i n g harmonic f u n c t i o n s .
Another example f o r a boundary i s
K
i n case o f
C(K)
.
K ,
f o r compact
a r e s u l t which a l s o h o l d s t r u e f o r pseudocompact K T h i s l i s t c o u l d be c o n t i n u e d a l m o s t i n d e f i n i t e l y . We s h a l l deal w i t h some o t h e r i m p o r t a n t examples i n t h e n e x t s e c t i o n s . I n t h i s s e c t i o n we a r e g o i n g t o i n v e s t i a a t e a p a r t i c u l a r boundary b y means o f exposed selfmaps
3.1.2
i) L e t called
y : X
-t
X
.
Definition:
r r-
be a f a m i l y o f f u n c t i o n s i n v a r i a n t i f y(Y) c Y
y : X
for all
+
X
.A
Y c X.
i s a s i n g l e t o n we speak o f y- i n v a r i a n t i n s t e a d o f
subset
Y c X
I n case t h a t
is
r = Iyl
{yl- i n v a r i a n t .
253
Boundaries
ii) L e t
f : X
nuous f u n c t i o n s y : X -, X
= Ix
-,
r? .Then we c a l l a f a m i l y
F(X)- exposed
v a r i a n t subset
af K
F ( X ) c o n s i s t o f upper s e m i c o n t i -
be a compact space and l e t
X
E K
K c X
I f(x)
t h e s e t where
f
r
o f functions
i f f o r e v e r y nonempty c l o s e d compact
and e v e r y
= supK(f)3
f E F(X)
,is
r-
again
r-in-
the set i n v a r i a n t . Note t h a t
af K ,
K- supremum, i s nonempty s i n c e e v e r y upper
attains i t s
semicontinuous f u n c t i o n a t t a i n s i t s maximum on a compact s e t . L e t us g i v e an i m p o r t a n t example f o r t h i s s i t u a t i o n . 3.1.3
Example (Geometric S i t u a t i o n ) :
K o f a l o c a l l y convex Haus-
Consider a nonempty compact convex s u b s e t d o r f f v e c t o r space
x x+
(1-x)y E K
-,6
E
.
R e c a l l t h a t ,K
whenever
i s s a i d t o be convex i f
x
x,y E K, 0 5
5 1
,
and t h a t a f u n c t i o n
f ( x x + ( 1 - x ) y ) 5 x f ( x ) + (1-x)f(y) Conv(K) we denote t h e cone o f upper semicontinuous convex f u n c t i o n s f : K -+ r? . NOW, f o r z E E , d e f i n e f : K
whenever
i s c a l l e d convex i f
x,y E K, 0 5
5 1
We c l a i m t h a t
r
x+z, x - z E K
x+z
if
x
otherwise
= IyzIz
E E3
r- i n v a r i a n t compact k
We have t o show y z ( x ) E yz(x) = x
. By
by
yz : K j K
a
x
is
c K
afk
Conv(K)
-
and a r b i t r a r y
. If
x +z
or
exposed. To see t h i s we t a k e f E Conv(K), z E E, x E afK. x-z
and t h i s i s by assumption an element o f
i s not i n
af
k
K
then
. I n case
that I
x+z since that
as w e l l as x - z
a r e elements of
K
we know t h a t
yz(x) = x + z E K
and k i s r- i n v a r i a n t . Now t h e c o n v e x i t y o f f 1 1 f ( x ) I f(x+z) + f ( x - z ) , hence x + z E a f K because x E
k
f ( x ) = supl((f).
I n any case y z ( x ) E a f K
.
implies
Representing Measures
254
P r o p o s i t i o n [129]:
3.1.4
Consider a f a m i l y
F(K)
on a c l o s e d compact __--Then t h e s e t --of -
r
o f p o i n t s e p a r a t i n g upper semicontinuous f u n c t i o n s
set
, -and l e t r be an x ~for all y E r)
K
{x E K I y ( x )
F(K)
-
exposedfamily.
I=
.
i s-a boundary f o r F(X) -
Proof: Fix
fo E F(K)
. Since
r
is
F(K)- exposed
a
f0
K
must be
r-
invariant.
Furthermore t h i s s e t i s closed, hence compact. Thus
K =
{i c
a K 10
i s c l o s e d and compact and r - i n v a r i a n t )
f0
must be nonempty. By Z o r n ' s lemma t h e r e i s a minimal element Again, s i n c e
KO i s
r-
Hence, by m i n i m a l i h y o f I n o t h e r words,all KO = I x o l
Obviously, a
r-
maximum (because
K
.
.
af K O = KO f o r a l l f E F ( K ) .
KO we g e t
a r e c o n s t a n t on
i s a singleton since
a common f i x p o i n t
f E F(K), af K O € K
invariant,we have, f o r
f E F(K)
KO i n
F(K)
.
KO
This y i e l d s t h a t
was assumed t o be p o i n t s e p a r a t i n g .
i n v a r i a n t s i n g l e t o n must be a f i x p o i n t . So we have found xo
, where
Ixol c a
f0
t h e a r b i t r a r i l y chosen
K).
fo a t t a i n s i t s
0
Using t h i s r e s u l t i t i s now obvious how t o make boundaries s m a l l e r , j u s t by making
r
larger.
To t h i s end we n o t e t h a t t h e u n i o n o f an a r b i t r a r y
c o l l e c t i o n o f F(K) - exposed f a m i l i e s i s a g a i n F(K)- exposed. Hence t h e r e i s a unique maximal F(K)- exposed f a m i l y , namely rmax = UIr Replacing
r
Ir
is
i n P r o p o s i t i o n 3.1.4
F(K)- exposed) by
.
rmaxwe g e t a minimal f i x p o i n t
boundary. The f o l l o w i n g theorem g i v e s a complete c h a r a c t e r i z a t i o n of t h i s minimal f i x p o i n t boundary i n terms o f p r o p e r t i e s w i t h r e s p e c t t o
F(K).
255
Boundaries
3.1.5
Theorem [1291:
L e t F(K) be a f a m i l y o f p o i n t - s e p a r a t i n g upper semicontinuous f u n c t i o n s on a _ compact c l o s_ e d s_ et K . 5 max(K) -be t h e c o l l e c t i o n -o f those _ ~ _ such t h a t f o r each compact,closed w i t h {XI 5 R c K x E K ----______ t h e r e i s some
f E F(K)
with -
f ( x ) = sup-(f) > i n f - ( f ) . K K
(*)
Then max(K) -----i s t h e s e t o f a l l common f i x p o i n t s o f rmax. I n particular f o r F(K). max(K) i s-a boundary Proof: x E max(K) and p u t
Let
KO = Assume since is
n {k
c K
compact closed, rmax - invariant, x E
{ x ) t: KO. Then t h e r e i s x E max(K).
rmax-i n v a r i a n t s i n c e
2
mality o f rmax
KO
.
Hence
f E F(K)
with
rmaxi s
{XI = KO and x
KO
k~ .
( f ) > infK (f) 0
t h e o t h e r hand,
F ( X ) - exposed and
we have
KO
f ( x ) = sup
. On
x E af KO 8 KO
We i n f e r
v a r i a n t . S i n c e . B KO ~
Y
Ik
KO
is
af KO rmaxin-
a c o n t r a d i c t i o n t o t h e minimust be a f i x p o i n t f o r a l l
*
Now c o n s i d e r x
E K
with y(x) = x
for all
Then t h e r e i s a compact, c l o s e d subset such t h a t f o r each be c o n s t a n t on
KO
f E F(K)
.
KO c K
we have e i t h e r
F o r each
y E KO
y
define
E rmax.Assume x B max(K). containing
x
f ( x ) < supK ( f ) 0
yy
: K
--t
K
.
.
with
{XI t: KO,
or f must
by y y ( x ) = y
Then r i s L e t r = {yyl y E KO} and y ( z ) = z i f z E K \ { x I Y F(K)- exposed. Indeed, l e t k c K be compact, c l o s e d and r- i n v a r i a n t . f E F(K).
Let Hence all
KO
c
y E KO
k
Assume, x E af
k.
This implies,
.
Hence
-
af K
f
is
. Then
y = y ( x ) E k f o r a l l y E KO. Y i s c o n s t a n t on KO , i . e . y E af k f o r
c ?i
r-
invariant. If
-,
x B af K then, t r i v i a l l y
256
Representing Measures
( a I?) = af I? f o r a l l y E KO . We have r c rmax s i n c e rmax i s t h e Y f maximal F(K)- exposed f a m i l y . Because y ( x ) = y x f o r y E KO\ {XI , Y x cannot be f i x p o i n t f o r a l l y E rmax, a c o n t r a d i c t i o n .
y
*
We conclude
x E max(K).
0
Two o t h e r consequences o f 3.1.4 a r e t h e c e l e b r a t e d Krein-Milman Theorem and Bauer's Maximum P r i n c i p l e . L e t us come back t o t h e Geometric S i t u a t i o n o f Example 3.1.3.
Again
H a u s d o r f f v e c t o r space x = y = z
whenever
K
E
.
i s a compact convex s e t i n a l o c a l l y convex Recall t h a t
x = x y t (1-x)z
x E K
with
we denote t h e s e t o f a l l extreme p o i n t s o f rates the
PO
nts o f
K
since f o r
a continuous l i n e a r f u n c t i o n a l obviously
i s c a l l e d extreme p o i n t i f
y,z E K, 0 < K
.
Note t h a t
x,y E K w i t h
x
+
u on E w i t h p ( x )
x
< 1
.
ex(K)
By
Conv(K)
sepa-
t h e r e i s always
y
~ ( y ), and
E Conv(K) (compare Remark 2.5.8).
p
H. Bauer's Maximum P r i n c i p l e :
3.1.6
f o r Conv(K) , i . e . -e v e r y upper semicontinuous ex(K) -i s_ a boundary a t_ t a_i n_s _i t s K- supremum on ex(K) convex f u n c t i o n on K _
.
Proof: Take t h e s e t
r
is
r
= Iy,lz
E
El. which we considered i n 3.1.3. We know t h a t
Conv(K)- exposed, hence i t s common f i x p o i n t s a r e a boundary (3.1.4).
But, o b v i o u s l y ,
ex(K)
.
r
i s e x a c t l y t h e s e t o f a l l common f i x p o i n t s o f 0
Let
n
z
i=1 n
X
be a subset o f a v e c t o r space
Xi xi
with
n E N
, xl,
... ,xn
E X
E
, then and
a v e c t o r o f t h e form
x1
,..., xn
2 0
such t h a t
xi = 1 i s c a l l e d , as u s u a l l y , a convex combination o f X . i=1 By co(X) we denote t h e s e t o f convex combinations and , i n case t h a t
E
257
Boundaries
-
i s a topological vector space , co(X) stands for the closure o f co(X). O f course, co(X) and are the convex hull o f X and the closed convex hull respectively.
z(X)
3.1.7
Krein-Milman Theorem:
convex -be a -compact ~ convex ~ subset _ of_a locally _ - Hausdorff ~ -vector K = =(ex K ) , i . e . K i s the closed convex hull o f its space. Then -------extreme points. ~Let K
Proof:
.-.
.
K = =(ex K ) 3 ex(K) i s certainly a compact convex subset o f K The s e t k must be nonempty since every f E Conv(K) attains i t s K- supremum on i?, according to Bauer's Maximum Principle. Assume there i s some xo E K \ K . Since K x k i s open in K and E i s locally convex, there
i s an open convex A c K x k containing xo
. Then Hahn-Banach
Separation
Theorem (1.5.8) applied t o A and B = k yields a continuous linear functional u such t h a t u ( A ) n p ( B ) = 0 . Without loss o f generality assume p ( a ) > u ( b ) for a l l a E A, b E B (otherwise take - p ) Hence supK(u) 2 supA(p) > supB(p) since p a t t a i n s i t s supremum on
.
the compact s e t B v l K E Conv(K)
.
. This
IB
contradicts 3.1.6 since ex 0
K c k and
Represenring Measures
258
3.2
MORE BOUNDARIES
In the l a s t section we have mainly considered the minimal fixpoint boundary and we have characterized t h i s boundary in terms of a separation property with respect t o compact subsets. This separation property ( i n the definition of max(K)) can be modified in several ways thus leading t o different subsets of a compact s e t . In the important cases these modified sets are again boundaries and, under additional assumptions, there are many relations between these boundaries. Another way of picking out special subsets as boundaries can be given in terms of characterizations o f the support o f representing measures. This concept i s mainly due to Heinz Bauer and has become a very useful tool in several parts of analysis
.
We s t a r t by giving a l i s t of the different subsets under consideration. Let K denote a compact Hausdorff space and l e t F(K) consist of upper semicontinuous 6- valued functions on K We assume (for convenience) that the elements of F ( K ) do separate the points of K , b u t i t i s n o t assumed, a t least n o t for the moment, t h a t F(K) i s a cone of functions. The u- algebra under consideration will be the family of Borel sets and by a representing measure for xo E X we mean a -,regular Borel probability measure T such t h a t
.
f(xo) 5 By
S U ~ ~ ( Tw )e
I
f
X
dT
for a l l
f E F(X)
.
denote the support of the measure
T
.
For completeness we also include the definition o f max(K)
3.2.1
i)
.
Definition max(K) i s the s e t of those x E K such that for each closed k c K with {XIc k there i s an f E F(K) with
*
f ( x ) = sup-(f) > i n f - ( f ) K K
.
strong maximum max(K) i s called the s e t of ~ _ _ _ _points. -
259
Boundaries
ii)
Max(K) (called the s e t of ~maximum points) i s the s e t of those x E K such that for each nonempty compact I? c K with x 13 k there i s some f E F(K) with
w
f ( x ) > sup-(f). K
i i i ) Max(K) i s the s e t of those x E K such that for every compact, nonempty k c K with x B k there i s some f E F(K) with f ( x ) 2 sup-(f) and K iv)
Let
0 > B > a
. Then
Max
a,B
f(x) > inf-(f) K (K)
.
i s the s e t of those x E K
such t h a t for every compact, nonempty k c K with there i s some f E F(K) with f I 0 and
x B k ,
f ( x ) 2 B > a 2 sup-(f) K
v)
C h ( K ) (called the Choquet boundary) i s the s e t of those x E K such t h a t the Dirac measure 5, a t x i s the only representing measure for x.
vi )
N
C h ( K ) (called the -weak Choquet boundary) i s the s e t of those x E K such that for every representing measure T of x we have x E S U ~ ~ ( T )
.
3.2.2
(i)
ProPosi tion:
MaxaYB(K) c Max(K)
c
N
N
Max(K) and C h ( K ) c C h ( K )
( i i ) max(K) c C h ( K ) n $x(K) ( i i i ) Ch(K)
U %(K)
N
t
Ch(K)
( i v ) Max(K) contained in every closed boundary in the closure of max(K). ----
of
K
, inparticular
Represen ring Measures
260
Proof: ( i ) i s an immediate consequence o f t h e d e f i n i t i o n s . ( i i ) Consider x E max(K). Let
k
be as i n D e f i n i t i o n 3.2.1 iii)and p u t
t h e i n e q u a l i t y o f D e f i n i t i o n 3.2.1 i ) AJ
to
k
^K
=
ku
{XI Then a p p l y
t o obtain the inequality
o f 3.2.1 iii).Hence, x E Max(K). Now, l e t
be a r e p r e s e n t i n g measure f o r
T
We have t o prove
s u p p ( ~ )= Cxl
x.
which c l e a r l y i m p l i e s
T =
6
X
. Assume
{XI and c o n s i d e r k = S U ~ ~ ( Tu ) Cx3 (which cannot be a s i n g l e f s a t i s f y i n g t h e i n e q u a l i t y o f 3.2.1 i). Put ^K I y E s u p p ( ~ )I f ( y ) = f ( x ) l , t h e n t h i s i n e q u a l i t y i m p l i e s t h e contradiction: SUPP('I)
t o n ) . Then t a k e an
Hence s u p p ( ~ ) = {XI and (iii)
I 4
Ch(K) c Ch(K)
Now, l e t
N
x E Max(K)
x E Ch(K).
i s a g a i n an immediate consequence o f D e f i n i t i o n 3.2.1. and l e t
'I
be a r e p r e s e n t i n g measure f o r
We have t o prove x E s u p p ( ~ ) . So, assume
-
K = supp(~)
.
By 3.2.1 iii)t h e r e i s some
f(x
t sup-(f) K
and
( i v ) Take
x E Max(K)
t h e n 3.2.1 i i ) contradiction to
and l e t
g i v e s some
k
f E F(K)
f(x) >
with
.
J f dr (a c o n t r a d c t i o n ) . R
be a c l o s e d boundary o f
f E F(K)
K.
If x C K
f ( x ) z sup-(f). This i s i n K b e i n g a boundary. The second p a r t o f t h e a s s e r t i o n
f o l l o w s t h e n from Theorem 3.1.5.
with
.
x C s u p p ( ~ ) and p u t
f(x) > inf-(f) K
These two i n e q u a l t i e s c l e a r l y i m p l y
x
0
26 1
Boundaries
3.2.3
Theorem t1311:
L e t F(K) + F(K)
Then
c F(K),
i.e.
f
+ g E F(K) whenever f,g E F(K).
CWK) c Max(K).
Proof:
x d Max(K). Then b y d e f i n i t i o n t h e r e is a compact c X which does x such t h a t f ( x ) I s u p - ( f ) f o r a l l f E F(K). By t h e K Riesz-Konig Theorem I 1 . 6 . 1 t h e r e i s a p r o b a b i l i t y measure T on such Let
not contain that
f(x) I
K
f dr
for all
f E F ( K ) . We can assume t h a t
because o t h e r w i s e we can r e p l a c e
T
x
3.2.4
and
N
x d Ch(K)
because
x
i s regular,
b y a r e g u l a r measure h a v i n g t h e same
i n t e g r a l s f o r continuous f u n c t i o n s . Hence, for
T
B k
3
T
i s a r e p r e s e n t i n g measure
supp(~).
0
Corollary:
L e t F(K)
t F(K) c F ( K ) .
i) There i s
fi s m a l l e s t
c l o s e d boundary of K
boundarv.
ii) --A l l the sets
d
, --called the Shilov N
max(K), Max(K), Max(K), Ch(K), Ch(K)
t h e i r closures a r-e-a_ l l_equal to_ t h e S h i l o v boundary ___ IL
a r e boundaries,
.
r\r
i i i ) max(K) c Ch(K) c Max(K) = Max(K) = Ch(K).
Proof: ( i i i ) f o l l o w s from t h e i n c l u s i o n s g i v e n i n 3.2.2 and 3.2.3. Since max(K) i s a boundary (Theorem 3.1.5) a l l t h e o t h e r s e t s must t h e n be boundaries, and from 3.2.2 ( i v ) we g e t t h a t t h e c l o s u r e o f Max(K) i s t h e s m a l l e s t c l o s e d boundary. E v e r y t h i n g e l s e f o l l o w s t h e n f r o m t h e f a c t t h a t t h e s e t s under c o n s i d e r a t i o n a r e boundaries and subsets o f
Max(K).
262
Representing Measures
Before we a r e going t o c h a r a c t e r i z e t h e Choquet boundary in terms of separation properties we remark t h a t conditions on t h e representing measures in t h e d e f i n i t i o n of the Choquet boundary can be formally weakened. Remark:
3.2.5
Let M,
denote the s e t of p r o b a b i l i t y measures on
Then
Ch(K) = i x E K
I TIXI
for all
> 0
K representing T
x.
E Mx3
Proof: I t i s t r i v i a l t h a t the Choquet boundary is contained i n t h e s e t on t h e r i g h t s i d e . NOW, assume t h a t f o r every T E Mx we have TIXI > 0 . We claim t h a t then
-
-( T - T
T =
l-T{XI
~ 1 x 1= 1 f o r a l l {XI
E M,
M,
i s an element of
)
Hence a c o n t r a d i c t on.
3.2.6
T
.
Indeed, i f
with
~ 1 x 1< 1 then
;{XI = 0.
0
Theorem:
be-a-cone containing a l l constant functions -and l e t a < p Let F(K) Then C h ( K ) = Max ( K ) .
< 0
.
a,!3
Proof: Let x E Max
(K)
x d
k
.
If
T
E
M,
T(K)
with
of
K with
f s 0 and f ( x ) 2 p > a t s u p - ( f ) .
K
then B
Hence
k
and consider a nonempty compact subset
a,D Let f E F(K)
5
< f(x)
aB
< 1
5
K
f dr
r(k) a
f o r every compact
. k
c K
with
x B
.
By regula-
Boundaries
r i t y of
we get then
T
Now, assume x Assume
E
Ch(K)
263
~ 1 x 12 1 - B/a > 0
.
for a l l
f E F ( K ) . The Sum Theorem yields linear K
and f(X)
p2 I supK
aB
5
pl,v2
: F(K)
B a) v2(f)
u l ( f ) + (1 -
respectively such that
K
Then B/a
T~
t
then
>
(1 - B/a)
sup-(g) K
T~
-,
with
pi(f)
I
f
i=1,2,
dTi,
i s a n element in Mx
T~
, T ~
on i;,
for a l l
f E F(K).
which i s n o t equal t o g
E
F(K)
with
x
E
Max
(K)
B ' ( l - a) s u P K ( g ) * Put
f E F(K) , f
and therefore
x B R.
.
for a l l f E F(K)
the Dirac measure 6, , a contradiction. Hence there i s g(')
Ch(K).
such t h a t
By the Riesz-Konig Theorem there are probability measures and
E
;supi;,(f)+ (1 - B/,)supK(f).
f(x)
p1 I sup-
x
and l e t k c K be non empty compact with
(*)
I
yields
And 3.2.5
Max
I0
a,B
, f(x)
2
B > a 1 supl((f)
( K ) 3 Ch(K)
.
. Hence
a,P
We conclude t h i s section with a discussion of three examples. If F(K) i s N N a cone we have proved (3.2.4) max(K) c C h ( K ) c C h ( K ) = Max(K) = Max(K) c closure of (max(K)). We show that i n general a l l preceding inclusions are proper.
264
Representing Measures
Exampl es :
I 1I n
i ) Let K
Let F(K)
If : K + R
=
.
Clearly, 1 = lim f(Ti) n +-
E N) U {O}
I f(0)
=
i s a vectorspace of continuous functions. We have 0 B Ch(K) s i n c e , "X 1- 6 , 6, Dirac measure a t Ti 1 , we obtain 'I = n = l 2"
F(K) with
f ( 0 ) = "X 1-n f(,)1 = f dr n=l 2 K
.
measure on K with
f dp
for all
Xi 2 0
with
I
f(0) =
K
On t h e other hand, l e t
m
P =
.X X i di , f o r s u i t a b l e
1 =o
Dirac measure a t 0 )
. Fix
m ,N E
by
1
fm,N (E)
and f
m,N
Ch(K)
6,
*
1
2m-N)
x xi
i =o
=
1
be a p r o b a b i l i t y
W e have
.
, and define f
c N
, n
=
is t h e
( 6,
m,N
E
F(K)
m
0
for m * n s N
1
for n > N
n+ m
Hence, i f = A.
=
(zm -
I
,m
N
.
f E F(K) m
p
( 0 ) = lim f m , N);( 1 = 1. W e obtain
1=
P
K i s compact. "1 1-n f ( 1 x)} . n=l 2
N
I fm y N dp + m ,
=
x0
t
m
(2m-2m-N)~mt 1 i=Nt1
for all
Am = 2 - m ( l - ~ 0 )
.
(1 - Xo)r and 0 E supp(p) ry rv C h ( K ) = Max(K) = Max(K) t
m E N
Thus 0
xi
.
.
We conclude, rJ
E Ch(K)
and
.
i i ) Let K be as i n i ) . Define now F(K) = I f : K
T r i v i a l l y , we have t h a t
+
R
1 f(o)
I 1I n
=
lim f ( n1) = 1 ( f ( 1 ) w-
E N)
t
1 f(-2))3
,
is the smallest boundary of
K with
265
Boundaries
respect t o But
F(K). Hence
f4
0 d Ch(X)
since
Let
0 C supp(
I an E R
iii) L e t co = {(a,) co
must be t h e c l o s u r e o f
K
1 + '2 b2)
b1
,n
.
, with l i m
E N
1 1 . II w i t h
be t h e sequence whose
an = 01
n+
i s a Banach space i f we c o n s i d e r en E co
max(K).
n'th
.
II ( a n ) l l = sup l a n l nEN
1
component i s equal t o
II enII
and a l l o t h e r components a r e zero. C l e a r l y ,
1 for all n
n
= -
.
. Note
m
t h a t we may w r i t e a l l elements o f
co
as
(a,)
=
z n an en where t h e
n=l
s e r i e s converges i n t h e norm t o p o l o g y . D e f i n e t h e f u n c t i o n m
Pm : co
+
P (
by
R
z n an e n )
= am
n=l
. Clearly,
i s continuous w i t h
Pm
r e s p e c t t o t h e rIOrTntoplOgy . L e t us c o n s i d e r t h e f u n c t i o n defined by
f(n) = n
[rl
=
- [ 2I-
sup{n E N U I03 [ n 5 r3
For every with
mo, N E
f ( m ) = mo
N
Let
1
n E N3
F(K)
functions on
, there
r 2 0
. n > 1
for all
m E N ,m
is
,n
E N
, and:
2 N
, and
- n-" ( x ~ ( +~ en) )
IPN(xn)I I 1 f o r a l l
.
for
f(n) < n
x1 = el
xn = n-'(nn+t)el
K = ixn
N
.
L e t us d e f i n e by i n d u c t i o n
We have c l e a r l y
+
, where
By elementary a n a l y s i s we have
(*I
f :N
We have
xn
+
x1
for all
N > 1 and n E
and consequently,
n = 2,3, N
.
K
...
Consider i s compact.
c o n s i s t o f the r e s t r i c t i o n s o f a l l realvalued l i n e a r continuous co. C l e a r l y
f
a p r o b a b i l i t y measure on
K
P
nl K f u n c t i o n s separate t h e p o i n t s o f
E F(K)
with
K
. We f(xl)
n E N , and t h e s e
for all claim, =
K
x1 E Ch(K) : L e t
f dT
for all
T
f E F(K).
be
266
Representing Measures m
Hence
T =
1
i=1 measures a t xi
di,
Xi
1
. Assume
be an index such t h a t
0 = f(Xl)
,
A. 2 0
m
Z
i=1
AN = sup Xi
Ai
N-(Ntl)~N
-
i=N
a c o n t r a d i c t i o n . Thus
there i s
g E F(K) N
such t h a t
m
t e o E U
2 N
such t h a t
f(Xi)
where
f = -P
=
1 -N N AN t
di
NIK
are the Dirac
xi
* 0 . Let
N > 1
E F(K). Hence
W
k=Nt1
m
1 lk k-k 2 N-(Ntl)~N k=Nt1
x1 E Ch(K).
with
i s a neighbourhood of mO
,
.Define
i>1
f dT = Z
2
x
1
=
X
mo E
1
i > 1 such t h a t
there i s
m
is
A. =
g(xl)
x
for all
mO
.
) en
sup Xi > 0 irN+1
Hence
-t
I n o t h e r words, t h e r e
U = {y E colg(xl)
> g(y))
0 we have
m t N , N s u f f i c i e n t l y large. (*) yields
f ( m ) = mo
and t h e r e f o r e we a r r i v e a t a c o n t r a d i c t i o n :
(Here we used t h e same n o t a t i o n f o r
,
x1 B max(K). Indeed, o t h e r w i s e
But
. Since
mO
- (Ntl)-N.N-l
= supK(g) > i n f K ( g ) .
> g(x
g(xl)
A k k-k PN(Xf(k))
g E F(K)
and i t s e x t e n s i o n t o
*
So, we have indeed max(K) c Ch(K).
The same argument as b e f o r e shows t h a t i n f a c t
Ch(K) = K
.
co).
267
Boundaries
3.3 CHOQUET'S THEOREM I n t h i s section we deal with representation of points of compact convex sets by means of integrals over the extreme points. We do t h a t a t several levels of abstraction, although a l l these results are - more or less consequences of Choquet ' s fundamental representation theorem in case of the geometric situation (described in 3.1).
I n f a c t a l l theorems of this section can be obtained as corollaries of Theorem 3.3.6. B u t in order t o i l l u s t r a t e different viewpoint we give for a1 1 theorems different approaches.
We recall the geometric situation: K i s a nonempty compact convex subset of a locally convex Hausdorff vector space E . Again Conv(K) denotes the i- valued upper semicontinuous convex functions on K and A ( K ) stands for the subcone of affine continuous functions. A function cp i s said t o be affine i f
x,y E K , 0 5 X 5 1
for all of K
.
.
And by
ex(K) we denote the extreme points
The importance of Bauer's Maximum Principle (or the Krein Milman Theorem) comes from the f a c t that i t allows t o identify A ( K ) and A ( K ) lex(K) (restrictions t o ex(K)): 3.3.1
Lemma:
For every --
h E A ( K ) lex(K) there i s a unique
The map h
+
-_.
6 ----i s linear and we have supK 6
6 E A ( K ) with =
~up,,(~)h
.
lex(K)
= h.
Proof: Assume there are h l , h 2 E A ( K )
such t h a t their restrictions t o ex(K)
are equal. By Bauer's Maximum Principle we get supK(hl - h 2 ) = ~ ~ p ~ ~- h(2 ) ~= )0 .( The h ~same holds for supK(h2- h l ) . Hence h l
= h2
. So,
the extension t o
K
i s unique and the map h
+
6
268
Representing Measures
must be l i n e a r s i n c e i t s i n v e r s e ( r e s t r i c t i o n map) i s l i n e a r . The r e s t o f t h e a s s e r t i o n f o l l o w s a g a i n f r o m t h e Maximum P r i n c i p l e .
0
The n e x t o b s e r v a t i o n i s i m p o r t a n t f o r t h e subsequent theorems: 3.3.2
Lemma:
Conv(K)lex(K)
a D i n i cone.
Proof: P r o v i n g t h e D i n i c o n d i t i o n d i r e c t l y i s n o t t h a t easy. B u t i n Lemma 1.3.4 we have a f o r m a l l y weaker c o n d i t i o n . L e t Conv( K )
l W K ) . Then
take
(pn E Conv(K)
From Bauer's Maximum P r i n c i p l e we g e t of
%
be a sequence i n
having the
(pn
K we g e t ( f r o m D i n i ' s Lemma) some m ...
5 0
as r e s t r i c t i o n s .
'pn
. Because o f
6 0
t h e compactness
x E K with W
.
Y(x) = i n f supK( I: gn) where Y = I: The f u n c t i o n Y i s a g a i n m n=l n=l an element o f Conv(K) hence ( B a u e r ' s Maximum P r i n c i p l e ) x can be assumed t o be an element o f Lemma 1.3.4
3.3.3
ex(K). T h i s shows t h a t c o n d i t i o n ( i i i ) o f
i s fulfilled.
Choquet's Theorem:
F o r e v e r y x E K t h e r e i s a p r o b a b i l i t y measure mx --
on ex(K) -
(with
a l g e b_ r a making a l l elements o f A(K) r e s p e c t t o t h e s m a l l e s t u- ~ --_ _ lex(K) measurablel such t h a t h(x) =
I
ex(K)
h dmx -f o r a l l h E A(K)
.
Proof: l e t 6 be t h e e x t e n s i o n t o K (Lemma 3.3.1). I N K ) The map h + 6 ( x ) i s o b v i o u s l y a s t a t e o f A(K) B u t t h i s must be lex(K) a D i n i cone s i n c e i t i s a subcone o f a D i n i cone (Lemma 3.3.2). By t h e For
h E A(K)
.
R e p r e s e n t a t i o n Theorem (2.2.1)
t h e r e i s t h e n a measure mx
with
269
Boundaries
for all
( o r for all
h E A(K)lex(K)
Since A ( K ) i s a vector space this measure s t r i c t l y represents x Inserting for h the function 1 one gets t h a t mx(ex(K)) = 1 .
1
h E A(K)).
. 0
.
Choquet's original theorem was stated for metrizable K I n t h i s case the Baire and the Borel sets coincide and - since ex(K) i s then a Borel subset of K 12501- the measure mx can then be considered as a Borel measure supported by the extreme points. The non-metrizable case was f i r s t proved by Bishop and de Leeuw ([441 . Using the Sandwich Theorem we immediately can transfer the result t o Conv(K) instead of A( K ) : 3.3.4
Theorem:
x
For every --
E K
there i s a probability measure mx
on
ex(K) (with -
respect to the u- ~~algebra making a l l elements o f Conv(K) ~ -smallest measurable) -such that
4x1
I
I
cp dmx
ex(K)
for a l l
cp E
Conv(K)
.
Proof: Define a superlinear 6 : C o n v ( K ) J e x ( K ) 6(cp) =
supI;p(x) I % E Conv(K) with
(p
lex(K)
From Bauer's Maximum Principle we get 6
Theorem gives us a s t a t e
2 6
on
6
+
= cp)
sup ex( K ) Conv(K) lex(K)
. and the Sandwich
I
Conv(K)lex(K) i s a Dini cone (3.3.2),hence the Representation Theorem (2.2.1) yields a representing measure mx for v By definition of 6 this measure
.
f u l f i l l s the desired inequality.
0
*
270
Representing Measures
Now, i t i s quite natural t o ask i f these theorems can be transferred t o s t a t e spaces of order unit cones. F i r s t we have t o find a suitable boundary which can replace the extreme points of a compact convex s e t . Fortunately, the extreme points of the s t a t e space can take this role. This i s not completely t r i v i a l since we cannot always consider the s t a t e space as a compact convex subset of a locally convex Hausdorff vector space. This i s so, because s t a t e s are allowed t o attain the value .
-
3.3.5
Theorem:
Let ( F , < , I ) ----be an order unit cone. Consider a sequence f n @ F such that u ( f n ) i s decreasing --for every s t a t e p . --_Then. there i s a character v with inf v ( f n ) = inf S I ( f n ) nEN
nEN
where SI i s the -order unit functional. Proof: Consider on the compact s t a t e space n the cone of continuous functions F. For W,P E n we define functions n + R by
^F given by the Gelfand transforms of yP
Yw
The s e t r
P
i f there i s a
u
otherwise
I
= { y p y wp,w E
0
n l i s obviously
x
I 1 with p s x p + ( 1 - x ) ~
?- exposed.
The s e t K of states ( n o t necessarily characters) v f u l f i l l i n g the equality of 3 . 3 . 5 i s nonempty (Lemma 1.2.6) and compact since i t i s the s e t where the upper semicontinuous function inf ^fn attains i t s maximum. K
i s r- invariant since
Tn
nEN
i s decreasing. Therefore
.
r l K is FIK -
exposed. Hence, there i s a r- fixpoint in K By definition of the t h i s must be an extreme point and the assertion i s proved since ex-
yP ,w
treme points are characters ( I .2.10.6).
0
27 1
Boundaries
3.3.6
Theorem:
Let ( F , < , I ) be an order u n i t cone, ~denote by char(F) the characters of F . ---Then for every s t a t e P of F there i s a probability measure -
m
P
on char(F)
-
(with respect t o the
U-
algebra generated -by the
restrictions t o char(F) of the Gelfand transforms of F ) -such t h a t for all --
f E F.
Proof: Theorem 3 . 3 . 5 states t h a t char(F) i s a boundary of the s t a t e space for Exactly as in the proof Of 3 . 3 . 4 we then show the Gelfand transforms t h a t for a s t a t e p of F there i s a s t a t e i; o f ? [char(F ) such t h a t F(p) I for a l l T E ^F . Another immediate consequence of Theorem 3 . 3 . 5 i s t h a t F l c h a r ( F ) i s a
.
-
Dini cone. Hence by the Representation Theorem we find a representing measure m for This measure does the j o b . 0
.
3.3.7
Theorem:
Let K _ be -a_ compact space and F(K) a_ family _ _of- point separating _ _ Hausdorff -upper semicontinuous functions on K Then for every x E K there i s-a~ _ __ probability measure T on the Choquet boundary C h ( K ) (with to ~ _ respect _ _ _ the u- algebra generated by the restrictions -of the elements of F ( K ) to -~ C h ( K ) ) -such that
.
_ .
-_.
f(x) 5
I
Ch(K)
f d-r -for all f E F(K).
Reprssenting Measurns
272
Proof: Obviously we can replace
F(K)
by the cone generated by
F(K) and the
constant functions, t h a t changes n e i t h e r the Choquet boundary nor the inequality f o r
T
We embed the s e t p(x)(f) = f(x) p(Ch(K)) from 3.3.6.
. So,
K
l e t us assume t h a t
F(K)
i s an order u n i t cone.
n o f F(K) by
i n t h e s t a t e space
: K
p
-,n
with
f E F(K) (canonical embedding). We c l a i m t h a t
for all
i s equal t o t h e s e t o f characters. Then the a s s e r t i o n f o l l o w s
Proof o f the claim: L e t 1.1
be a character. By the Riesz-Konig Theorem there i s a r e g u l a r
representing measure
for
T
and s p l i t up the support
1.1
on
s u p p ( ~ )o f
1.1 5
T ( S 1 ) U l t T(s2)1.I2
u 2 ( f ) < u ( f ) . Hence p
+
1.1~
and
T
. We p
f E F(K)
:
v1,u2
If T(s2) > 0 then we have s t a t e s
such t h a t
. Take an a r b i t r a r y
K
given by
have, by d e f i n i t i o n o f
p2
,
cannot be an extreme p o i n t o f t h e
s t a t e space, which i s a c o n t r a d i c t i o n t o t h e assumption t h a t character. Therefore T ( S ~ =) 0 and T i s supported by S1
p
is a
. Since
f
was a r b i t r a r y we have
and t h i s i n t e r s e c t i o n must be nonempty and f o r every P(X) 2 x E k
1.1
.
.
x E
k
we have
Since a character i s maximal we then g e t p ( x ) = p f o r a l l can only c o n s i s t o f one p o i n t because t h e F(K) were assumed
273
Boundaries
t o be p o i n t s e p a r a t i n g . And f o r t h i s p o i n t we have proved t h a t i t i s t h e s u p p o r t o f any r e p r e s e n t i n g measure, hence
F o r t h e second p a r t t a k e an p1 3p2
and
0 <
x
< 1 such t h a t
r e p r e s e n t i n g measures Then T =
6,
x T~
t (l-X)T2
. This
gives
x E Ch(K)
T~
=
T
and
T~
x E Ch(K).
and assume t h e r e a r e s t a t e s
p(x)
I
for
p1
Apl
and
t (l-x)p2
p2
. Take
respectively.
x
i s a r e p r e s e n t i n g measure f o r
T~ = T~ =
bX
or
p1 = p2 =
~ ( x ) . So,
an extreme p o i n t o f t h e s t a t e space, hence (1.2.10.6)
regular
, hence P(X)
must be
a character.
We s t a t e t h e e s s e n t i a l p a r t o f t h e p r o o f s e p a r a t e l y :
3.3.8
Lemma:
be a compact H a u s d o r f f -space and F(K) ---a f a m i l y o f p o i n t separaLet K _ L e t p : K -,---s t a t e space o f t h e t i n g upper semicontinuous _ f u n_ c t_ i o n_ s -on K . -cone 2 R, generated by F(K), be t h e c a n o n i c a l embedding. Then p(Ch(K)) are the characters --
3.3.9
o f t h e s t a t e space.
Corollary:
L e t (FYI,<)
be an order unit cone. Then the characters -
a r e t h e Choquet
-_.
boundary o f t h e s t a t e space ( w i t h r e s p e c t t o t h e Gelfand t r a n s f o r m s o f F).
274
Represenring Measures
MAXIMAL MEASURES
3.4
I n t h i s s e c t i o n we g i v e another c h a r a c t e r i z a t i o n o f t h e p r o b a b i l i t y (F,< , I )
measures on t h e s t a t e space o f an o r d e r u n i t cone
which a r e
supported by t h e c h a r a c t e r s ( i n t h e sense o f Theorem 3.3.6). (F,< , I ) i s an o r d e r u n i t cone, n i t s s t a t e space which i s compact w i t h r e s p e c t t o t h e c o a r s e s t t o p o l o g y
L e t us s t a r t by f i x i n g t h e n o t a t i o n : such t h a t a l l Gelfand t r a n s f o r m s
?
forms a r e t h e f u n c t i o n s ?(w) = w ( f ) f u n c t i o n s on
By
VflB
for all
n
. By Vp
we mean t h e l o w e r bounded f u n c t i o n s i n V F
VF
We f i r s t observe t h a t
or
VflB
.
VflB)
separates t h e p o i n t s i n
i s a canonical correspondence between
VFB
.
3.4.1
of
F
,
i.e.
Prob(n)
.
Prob(n)
denotes t h e
u- a l g e b r a generated b y
R with respect t o the
( o r e q u i v a l e n t l y by
f
we denote t h e max-stable cone o f
, i.e.
generated by
p r o b a b i l i t y measures on
F
on n g i v e n by t h e elements
n
w E
a r e continuous. The Gelfand t r a n s -
cp E
Prob(n)
and t h a t t h e r e
and t h e s t a t e space o f
Observation:
(i)VflB
- Vfl,
i s , b y t h e Stone-Weierstrass theorem, sup-norm dense i n
C(n). I n p a r t i c u l a r we have f o r
J
cpd~=
R (ii)F o r e v e r y s t a t e
cpdp
T,P
for all
R
LI
of
E Prob(n)
VFB
that
T = p
whenever
-
c p E VFB
I
t h e r e i s a unique
T
E Prob(n)
such t h a t
275
Boundaries
The map u -,T i s a n affine bijective map between the s t a t e space of V F B and Prob(n). We really don't need a proof. Assertion ( i ) i s a t r i v i a l application of the Stone-Weierstrass theorem. The uniqueness in ( i i ) follows from ( i ) and the existence in ( i i ) i s easily seen as follows: F i r s t extend p t o the space V f B - VFB then apply the Riesz-Konig Theorem. The ordering
< in
-
given by the pointwise order on VFB i s
Prob(n)
called the Choquet-order , i . e . for
R
c p d ~I
n
cpdp
~ , pE
for a l l
Prob(n) we write
cpE
T
<
p
if
-
VFB
Because of 3.4.1 i ) this i s a n order relation ( n o t only a preorder). Of course, instead of V^FB one can take V F t o define the same order relation. A measure Choquet order.
Prob(n)
€
T
i s called maximal i f i t i s maximal in the
are bounded from below the Cartier-FellMeyer Theorem (1.2.7.7) immediately yields a complete characterization of the Choquet ordering: I n case that the elements of
3.4.2
Theorem:
Let the functions -equivalent:
in -
F
Then the following are be bounded from below. --
-forall
(i)
j c p d ~I J q d p
(ii)
Whenever there are positive measures
n
n
=
T
T~
R
T~,...,T,,
yitJ
+...+ T n __-then there are positive measures
with p = p l
J
cpEVF
'i d T i
I
pl,...,pn
+...+ p n -such t h a t J ^f n
dpi
for a l l i --
=
1 , ..., n -and a l l f E F
.
Representing Measures
276
Proof: Note t h a t
VFB =
Vf
since the elements o f
f
a r e bounded from below,
Therefore (Vf): corresponds t o t h e p o s i t i v e measures on the s t a t e space n (Observation 3.4.1). Now, the Cartier-Fell-Meyer Theorem (1.2.7.7) s t a t e s t h a t t h e Vf- pointwise order (Choquet o r d e r ) i s equal t o the ^Fdecomposition order, which i s e x a c t l y t h e a s s e r t i o n o f t h e theorem.
0
Now, we t u r n our a t t e n t i o n t o maximal measures. 3.4.3
Remark:
For every -
T
dominates
T
E Prob(n)
t h e r e i s a maximal measure
E Prob(n) which
i n the Choquet order.
Proof: Zorn's l e m a gives us a maximal l i n e a r
p :
VFB
-t
R
with
-
By t h e R i e s z - K h i g Theorem there i s a E Prob(n) which represents Obviously, T has the r e q u i r e d p r o p e r t i e s . 0
p
.
This r e s u l t y i e l d s another d e s c r i p t i o n o f characters. 3.4.4
Lemma:
-A point x E i s maximal. --
n -i s-a character -i f and only ---i f t h e Dirac measure 6,
Proof: -
.
at
x E n Then x i s an element o f the Choquet boundary o f the s t a t e space w i t h respect t o ^F ( C o r o l l a r y 3.3.9). By d e f i n i t i o n o f t h e Choquet boundary then 6, i s t h e o n l y representing measure w i t h
Take a character
respect t o
F , hence
a l s o w i t h respect t o
that
i s maximal and take a
Vf
. So,
6,
i s clearly
maximal. Now,assume
6,
T
E Prob(n)
with
x
277
Boundaries
x ( f ) = T(x) I
I ^f d
T
for a l l
f E F
(T
n
-F .
represents
x with
?I.
respect t o
T h i s i n e q u a l i t y e a s i l y goes over t o p o i n t w i s e suprema o f f i n i t e subsets o f Hence w(x)
cp d r
5
for all
cpE
62
and
n
6
T =
. Thus
X
since
VF ,
dx was maximal. So
x
i s i n t h e Choquet-boundary o f
i t i s a character ( C o r o l l a r y 3.3.9).
O
Maximal measures can e a s i l y be c h a r a c t e r i z e d by envelopes and by t h e f a c t t h a t they a r e supported i n a c e r t a i n sense by t h e extreme p o i n t s o f t h e s t a t e space. L e t us f i r s t e x p l a i n what k i n d o f envelopes we have i n mind. i s an upperbounded f u n c t i o n on t h e s t a t e space n then we d e f i n e o be t h e pointwise infimum of those c(cp) = i n f { -
i! I f
E F
cp
~(cp)
+
3.4.5
Let
cp
~ ( c p ) = cp
Lemma: 'I
E Prob(n), then the f o l l o w i n g
T
(ii)
I &(h)dT = 1 h dT
are equivalent:
i s maximal i n the Choquet order. ------
n
R
for all
h E C(n)
.
Proof:
*
(ii):
Define a s u b l i n e a r
F, w i t h
. One e a s i l y observes
i s sublinear. Furthermore we have
(i)
(i)
f E
7t
~p5
o :
7 I- cpl
with
s c a l l e d t h e F- envelope o f
- 7,
p : C(n) + R
by
if
-
t h a t t h e map cp E
vFB.
270
RepresentingMeasures
Now, c o n s i d e r an a r b i t r a r y cpo E C(n) and c o n s i d e r t h e l i n e a r v : R cpo + R g i v e n b y v(rcpo) = - r &(-cpo)d~ f o r a l l r E R
.
From
0= J we conclude
v 6 p
on R qo
i s a s t a t e since
v ( - h ) 5 p(-h) =
J
&(V)dT +
. Hence we
.
p 5 sup,
For an a r b i t r a r y element
since
J
C(n) dominated b y p
f u n c t i o n a l on v
w)dT 6
E ( W -
h E V^FB
&(-cp)d~ can extend
to a linear
v
(which w i l l be c a l l e d
v
again).
we have
J &(-h)dT
= J(-h)dT
& ( - h ) = -h. T h i s i m p l i e s v(h) 2
hdr
for all
h E
VFB .
By t h e Riesz Representation Theorem t h e r e i s a p r o b a b i l i t y measure v(w) = This implies
T
v(w) = since
J
cp
=
T
d;
for all
q E C(n)
for all
c p E C(n)
with
.
or
1 cp d.r
was assumed t o be maximal. Now, r e c a l l t h a t we s t a r t e d w i t h
T
v(-cpo) =
E
(-(Po)&
f o r t h e a r b i t r a r i l y chosen cpo E
C(Q).
Thus ( i i ) i s
proved.
(ii) * (i):
Take a maximal
t h e form - E (cp) i s t h e VFB , t h e r e f o r e we have
J
(*)
-&(cp)
dT 6
J
i
E Prob(n)
with
. Every
T <
function o f
p o i n t w i s e supremum o f an upwards d i r e c t e d n e t i n
-&(V)d;
for all
W E
C(0)
.
From ( i i ) and t h e p a r t (i) es (ii) which we a l r e a d y proved we o b t a i n f o r a l l
w E VFB
:
278
Boundaries
Combining t h i s with ( * ) we have
for a l l
And
cp E
VFB , hence
for a l l
must be maximal since
T
cp E
C ( R ) (Observation 3.4.1 ( i ) ) .
T =
0
Combination of the l a s t r e s u l t with Lemma 3.4.4 gives 3.4.6
Corollarv:
Let x -
E
n
.Then
x i s-a character if and only if
d x ) for all
E((P(x)) =
cpE C ( n ) .
Another consequence i s : 3.4.7
Theorem:
Let -
T E
(i)
T
(ii) (iii)
I
Prob(n).
Then the following are equivalent: --
i s maximal in the Choquet order E
R
If
(h)dT = d T
=
Ig
I
h dT
dT
for all
_._.
h E C(n)
-f o r a l l f , g E C ( n ) --such t h a t the r e s t r i c t i o n s
t o the characters a r e equal. -( i v ) For every Baire s e t B c n which contains the characters of the s t a t e space n we have r(B) = 1 . Proof: ( i ) +=+ ( i i ) we already know (3.4.5). ( i i i ) * ( i i ) i s an immediate consequence of Corollary 3.4.6. (iv) * ( i i i ) is trivial.
280
Representing Measures
( i ) * ( i v ) : We f i r s t remark t h a t t h e Choquet boundaries o f n w i t h respect t o and V? a r e equal (hence equal t o t h e s e t o f c h a r a c t e r s , Corollary 3.3.9) since t h e Choquet boundary does not change i f a cone of functions is replaced by t h e max-stable cone i t generates. Prob(n). From Theorem 3.3.7 we obtain a prob a b i l i t y measure m on t h e characters (equal t o Choquet boundary) w i t h
Now consider a maximal
J
sl
cpd~5
T
E
qdm
Char(n)
for all
cpE
VF
.
For Baire s e t s B we p u t ;(B) = m ( B n char(s2)). This defines a Baire s i n c e T was maximal. probability measure with ? > T . Hence T = And T has obviously the required p r o p e r t i e s . 0
281
Boundaries
3.5
THE CHOQUET
-
MEYER THEOREM
The central result of t h i s section will be the Choquet (see [ 2 1 or [2501) in the following form:
-
Meyer Theorem
An order unit vector space ( E , < , I ) i s simplicia1 i f and only i f every s t a t e has a unique representing measure on the extreme points of the s t a t e space ( i n the sense of Theorem 3 . 3 . 6 ) . Essentially t h i s result i s a simple combination of the characterization of probability measures on the extreme points as maximal measures (Theorem 3 . 4 . 7 ) and the characterization of simplicia1 cones by the FSP of the positive dual cone (Theorems 1.2.9.5 and 1.2.9.7). In the proof of the central result we make a l i t t l e detour in order t o present some results of the same flavourfor order u n i t cones instead of vector spaces. I t should be remarked t h a t the result as i t i s stated above does carry over to cones only for maximal s t a t e s (which certainly comprises the result for vector spaces because every s t a t e i s maximal on a vector space). Let (F,< ,I) again be an order unit cone. A s t a t e p i s said to be maximal i f for everylinear monotone v with v 2 p we must have v = !J This i s the same as saying t h a t for every linear monotone v with S I -> v 1 !J we have v = p On a vector space every s t a t e ( i n f a c t every linear functional) i s t r i v i a l l y maximal.
.
.
We know (Theorem 3 . 3 . 6 ) t h a t for every s t a t e p there i s a representing measure m f o r !J which i s carried by the characters of the s t a t e space. P
Representing measure means t h a t m p(f) I
I 'i dmll
for a l l
P
i s a probability measure with
f E F
,
And "carried by the characters" means t h a t i t i s a measure on the characters
endowed with the smallest U- algebra such t h a t a l l the f E are Gelfand transforms of F) ; t h i s i s equivalent t o saying measurable (? t h a t there i s a Baire probability measure T~ on the s t a t e space n which gives, with respect to ? , the same integrals as m and which has the !J property that i t vanishes on any Baire s e t having empty intersection with
282
Representing Measures
t h e s e t o f c h a r a c t e r s (Remark 2.1.1). Furthermore we know (Theorem 3.4.7) on t h e s t a t e space
t h a t a B a i r e p r o b a b i l i t y measure
'I
i s maximal w i t h r e s p e c t t o t h e Choquet o r d e r i n g
R
(meaning maximal as a l i n e a r f u n c t i o n a l w i t h r e s p e c t t o t h e
VFB
-
point-
w i s e o r d e r ) i f and o n l y i f t h e r e i s a measure c a r r i e d b y t h e c h a r a c t e r s which has t h e same i n t e g r a l s w i t h r e s p e c t t o t h e f u n c t i o n s i n
VFB
(or
because o f Observation 3.4.1,
or
C(R) V? s i n c e t h i s c o n t a i n s VFB)
.
Now, l e t us combine a l l t h i s knowlegde w i t h Theorem I . 2.9.11. 3.5.1
Theorem:
Let F be-a s i m p l i c i a 1 ---o r d e r u n i t cone and c o n s i d e r an -
R- valued maximal
o f F. Then t h e r e i s a unique p r o b a b i l i t y measure -
state
P
by t h e --
c h a r a c t e r s --o f the state
J
P(f) =
7
dmu
m
P -
carried
space -such t h a t -for all
f E F
.
Proof:
.
F: Now, c o n s i d e r as G t h e F i n G v i a t h e Gelfand t r a n s form. Then a l l t h e requirements o f S i t u a t i o n I . 2.9.9 a r e o b v i o u s l y f u l -
Since
i s R- valued i t i s an element o f
1.1
and map b y T : F
V':
cone
-,G
t h e cone
f i l l e d . Theorem I . 2.9.11 g i v e s a unique l i n e a r map u(;)
o
(*) for a l l
T =
i
* -,GT
with
and
u(;)(g)
G
u : F,
E Ff
= sup(v(g)
. Hence
I
u(U)
v E G,* is
with
voT =
V? = G- p o i n t w i s e maximal i f
is
maximal. T h e r e f o r e i t s s t r i c t r e p r e s e n t i n g measure on t h e s t a t e space must be maximal i n t h e Choquet o r d e r i n g and t h e e x i s t e n c e o f t h e s t r i c t r e p r e s e n t i n g measure in
'c1
(*)
f o l l o w s from t h e p r e c e d i n g remarks.
a l s o y i e l d s t h e uniqueness o f
would be dominated b y m
P
m
because o f
u
The p r o p e r t y
s i n c e any o t h e r such measure
(*); hence i t must be equal t o
because i t corresponds t o a maximal measure
.
fi
P
m
u
Boundaries
283
u
A c t u a l l y we have proved a l i t t l e b i t more s i n c e t h e map
we used i n t h e
proof i s additive: 3.5.2
Remark:
Consider t h e same s i t u a t i o n as i n 3.5.1 and assume t h a t t h e s e t o f maximal R- valued s t a t e s i s a convex s e t . Then t h e map
When
F
u
+
m
U
i s affine, i.e.
R- v a l u e d and
i s a v e c t o r space t h e n e v e r y s t a t e i s a u t o m a t i c a l l y
maximal; thus t h i s s i t u a t i o n i s much more t r a n s p a r e n t : 3.5.3
Theorem: are equibe an order unit vector space. Then t h e f o l l o w i n g --
L e t (E, < , I )
valent:
i)
E i s simplicia1
ii) Ef
-has t h e FSP o r , equivalently,
( E T - E*,)
i s 2 vector l a t t i c e ~~
w i t h~ r e s p ect t o t he o rder g i v en b y t h e p o s i t i v e cone ET -
iii) --F o r e v e r y two p r o b a b i l i t y measures there i s ---
iv)
v)
an
ml,m2
.
the characters c a r r i e d by -
f E E such that
Every s t a t e u of --
E has a unique r e p r e~ s e n t i n g measure m v ca_ r r i e_ dby- t h e c h a r a c t e r s . _ There i s an a f f i n e
.___---
u
+
m v from t h e s t a t e space i n t o t h e
p r o b a b i l i t y measures _ c a r_ r i e_ db y- t h e c h a r a c t e r s such t h a t ~ ( f )= J f dmU
for all
f E F -and s t a t e s
P
.
Representing Measures
284
Proof: i s t h e c o n t e n t o f Theorems 1.2.9.5 and 1.2.9.7. (i) Y (ii)
--
(i) * (iv)
f o l l o w s f r o m o u r l a s t theorem.
(iv)
i s a consequence o f Remark 3.5.2.
(v)
(i): Consider t h e embedding T : E + G = C(R) g i v e n by t h e Gelfand (v) transform. Then ( v ) says t h a t t h e r e i s an a d d i t i v e map u : ET -,GT w i t h u(1-1)o T = p f o r a l l Theorem 1.2.9.8.
1-1 E
. Hence,
Er
E
i s simplicia1 by v i r t u e o f
Since e v e r y s t a t e has a r e p r e s e n t i n g measure ( s t r i c t s i n c e (iii) Y (iv): we a r e i n a v e c t o r space s i t u a t i o n ) uniqueness o f t h a t r e p r e s e n t i n g measure must o b v i o u s l y be e q u i v a l e n t t o t h e p r o p e r t y t h a t f separates these measures. n A d d i t i o n a l i n f o r m a t i o n i s o b t a i n e d when t h e s i m p l i c i a 1 map i s c l o s e d . We s t a r t b y making a few remarks on elementary topology. We have endowed t h e s t a t e space
nF
o f an o r d e r u n i t cone w i t h t h e c o a r s e s t t o p o l o g y such
t h a t , f o r e v e r y f E F , t h e Gelfand t r a n s f o r m i s continuous. T h i s means t h a t a f u n c t i o n @ : nF1 + nF2 i s continuous i f and o n l y i f 7 o is continuous f o r e v e r y f E F2. can c o n s i d e r t h e cone R
nF
O f course, i n s t e a d o f t h e s t a t e space one = i r w l r 1 0 , w E nF3 generated by t h e s t a t e
space. F o r a v e c t o r space t h i s cone i s equal t o a l s o h o l d s i f t h e elements o f
f E F t h e r e i s some a E R
(F,< )
* . This
F a r e bounded f r o m below, i . e . such t h a t
aI
< f. We endow
same topology. I t should be observed t h a t a f f i n e maps T :
R
equality f o r every
nF w i t h t h e
nF
1
+
n
F2
between s t a t e spaces correspond u n i q u e l y t o l i n e a r maps + R nF between t h e generated cones ( t h i s e x t e n s i o n , o r 1 2 r e s t r i c t i o n , we denote b y t h e same symbol). A l i n e a r map T :
T : R
nF
i s continuous i f and o n l y i f i t s r e s t r i c t i o n T
RRF1
lnFl
t o t h e base R
-+ F1
i s continuous. F i n a l l y we remark t h a t we endow t h e bounded measures ( o r t h e base g i v e n b y t h e p r o b a b i l i t y measures) on
nF 1
w i t h t h e weak-star
F2
285
Boundaries
-
C(nF ) 1 all
VFB
i s sup-norm dense i n
t h i s t o p o l o g y i s t h e same as t h e c o a r s e s t t o p o l o g y such t h a t , f o r
f E F
3.5.4
-
-
C(nF ) . S i n c e VFB 1
topology w i t h respect t o
, the
functions
m
+
1f
dm
a r e continuous.
Theorem:
Consider -a g a i n a s i m p l i c i a l ---o r d e r u n i t v e c t o r space E are equivalent:
. -Then t h e
following
i s c l~ o s e d in the s t at e space. (i) -The _ _s -e t o f c h a r a c t e r s (ii) The sup-norm c l o s u r e o f
a t t i ce w i t h respect to -i s a -v e c-t o r l~
t h e p o i n t w i s e o r d e r on t h e c h a r a c t e r s . (iii)
The 9 -
u
a s s i g n i n g --t o each s t a t e
p
i t s unique maximal measure
_ .
(------maximal i n t h e Choquet o r d e r ) i s continuous.
(iv)
The s i m p l i c i a l
map
1 : E:
+
g
(L E )
continuous.
Proof:
a n be t h e c h a r a c t e r s o f E . T h i s i s a compact s u b s e t o f t h e s t a t e space. The map p : 2 + c(a a ) g i v e n by t h e r e s t r i c t i o n s t o a R i s monotone. And because o f (i) * (ii):
Let
t h i s map i s i n j e c t i v e and we o n l y have t o p r o v e t h a t p ( E ) i s a sup-norm dense subspace o f c ( a s2 ) . We know t h a t p ( E ) separates t h e p r o b a b i l i t y measures on
as1
(Theorem 3.5.3 ( i i i ) ) .
c(a
norm continuous l i n e a r f u n c t i o n a l s on i n C(a n )
(ii) ( i v ) :
Hence
by t h e Hahn-Banach Theorem
0 ) . Thus
(I
^E.
E*, t h e r e i s a unique such t h a t p(p)(?) = p(f)
p E
p(i)
must be dense
e : E + Clos(E) o f
E
into
An easy e x e r c i s e shows t h a t f o r each s t a t e in for all
~(1.1)
LE
(2);
Clos f E E
i s continuous and l i n e a r . Now, if Clos o f t h e f r e e l a t t i c e cone
separates t h e sup-
1.5.8).
Consider t h e canonical embedding
t h e sup-norm c l o s u r e o f
p(2)
(E)
and t h a t t h i s map
p
i s a l a t t i c e then by d e f i n i t i o n
t h e r e i s a unique l a t t i c e cone homomorphism
286
E*
Representing Measures
: LE
+
Clos(E)
such t h a t
commutes. Then c o n s i d e r t h e map z : E: T h i s map i s l i n e a r w i t h
X(p)
0
L =
for all
p
g i v e n by
(LE)
+
. Hence
p
p
+
p(p)o c*.
IT must be t h e
s i m p l i c i a l map. F o r i t s c o n t i n u i t y we have t o show t h a t f o r a r b i t r a r y
W E LE p
t h e map
-,p ( p ) ( t * ( q ) )
(iv)
*
(iii):
E*
: LE
E*
o
L
-,V
= E
p + z ( p ) ( ~ )
Consider t h e embedding
: E
+
V
2
and l e t
i s a f f i n e (Remark 3.5.2 and Theorem 3.4.7) we have p; ) and u must be continuous s i n c e I: i s continuous. a
(iii) * (i):R e c a l l t h a t i f c h a r a c t e r (Lemma 3.4.4). c l o s e d because a Theorems 3.5.3
E
i s continuous.
p
be t h e unique l a t t i c e cone homomorphism such t h a t
. Since
u ( p ) o e* = ~ (
i s continuous. B u t t h i s i s equal t o
and i s c l e a r l y continuous s i n c e
~ ( p )=
dV t h e n
Hence a-1{6ylv E
i s continuous.
QI
p =
u
and
p
must be a
i s t h e s e t o f c h a r a c t e r s and
0
and 3.5.4 are, o f course, minor m o d i f i c a t i o n s o f r e s u l t s
well-known f o r t h e geometric s i t u a t i o n when A(K) a r e t h e a f f i n e c o n t i n uous R- valued f u n c t i o n s on a compact convex subset K o f a l o c a l l y convex H a u s d o r f f v e c t o r space. The f u n c t i m
t h e n serves as o r d e r u n i t lK and an easy e x e r c i s e (Hahn-Banach Theorem) t h e n shows t h a t t h e s t a t e s of A(K) are exactly given by t h e p o i n t evaluations i n K K then i s c a l l e d
.
a siniplex ( o r r a t h e r a Choquet-simplex) i f A(K) i s s i m p l i c i a l . Because of t h e f a c t t h a t t h e n t h e cone generated by K i s a l a t t i c e cone t h i s
n o t i o n r e a l l y i s an a p p r o p r i a t e g e n e r a l i z a t i o n o f t h e w e l l known d e f i n i t i o n of a simplex i n R"
.
I n t h i s s i u t a t i o n the characters are obviously given
by t h e extreme p o i n t s of
K
. When t h e
extreme p o i n t s a r e c l o s e d t h e n
K
i s c a l l e d a Bauer-simplex (because o f t h e p i o n e e r i n g work o f Heinz Bauer i n combining p o t e n t i a l t h e o r y and t h e t h e o r y o f compact convex s e t s ) .
287
Boundaries
3.6
DIN1 BOUNDARIES
I n t h i s section we investigate two problems. The f i r s t one i s motivated by the observation (Lemma 1.3.3) t h a t X i s a boundary whenever F(X) i s a Dini cone. We look for conditions such t h a t F(X) becomes automatically a Dini cone whenever i t has X as a boundary. An essential tool for finding meaningful conditions i s Simons Convergence Lemma (see 12971 and [2441 ,[2681). This lemma i s very powerful in several areas of functional analysis, i t i s particularly useful in context with the proof of James 'Theorem (see [298 I and [1771 12583 ,[lo61 ). The second problem looks very different from the f i r s t one, b u t they are related with respect t o the techniques which are involved. We have already seen (section 3.2) t h a t a compact convex subset may have a boundary for the affine functions smaller t h a n the s e t of extreme points (Choquet boundary). We ask under w h a t kind of conditions such a behaviour i s prohibited, in other words: When are the characters the smallest boundary of the s t a t e space (with respect t o the Gelfand transforms) of an order unit cone? W e s t a r t with Simons Convergence Lemma ( i n the version of M. Neumann [2441). 1
Consider C, , the s e t of sequences y all
n
= (y,,y2,...)
m
E
and I ~ I =1 <+m,Let (f,), n n=l n
N
E
m
m
where c
I: Y n f n = c lyl + inf
n= 1
. By
< y , f > we
t y n f n . This s e r i e s always converges in
n=l
we can write: (1)
m
m 1
n=l
yn(fn - c ) ,
i s a common upper bound f o r the
fn.
for
N , be a sequence of uni-
formly upper bounded functions on some nonempty s e t X denote the function
with yn 2 0
since
288
3.6.1
Representing Measures
Simons Convergence Lemma:
Assume t h a t -supx< y,f
>
= lim
m
(supx
E ynfn) n=l
W m
for a l l --
1
y E Lt
. Then,if
Y c X
_i s _a
> I
boundary f o r I < y,f
y E
L,),1
we have -s u p y ( l i m sup fn) 2
n
(**I 2
-)a
m
infIsupX( z
n= 1
Xnfn)
I
m
J t i y
E N , An t 0
m
An =
II
n=l
1)
Remark: C o n d i t i o n ( * ) i s q u i t e o f t e n a u t o m a t i c a l l y f u l f i l l e d . F o r example when t h e
.
This follows a r e upper semicontinuous f u n c t i o n s on a compact s e t X fn immediately w i t h (1) f r o m D i n i ' s Lemma. Also,when t h e fn a r e u n i f o r m l y bounded ,then ( * ) h o l d s . P r o o f o f 3.6.1.: L e t a be t h e i n f on t h e r i g h t s i d e o f ( * * ) . 6 > 0 there are y E Y
can show t h a t f o r each ntm
g, E Km = I such t h a t
Z
i=m g,(y)
and thus, s i n c e
I
Xifi
ntm
z
i=m
t a - 2 6. 6
Xi
= 1, Xi
t 0, i=m,mtl,
n
.
g,
E
(a- 6(lth)
...,ntm,
-
+ m
E N,
n
E NI
-
2 6
. We can c l e a r l y
. Let
p be an upper bound f o r t h e 6 > 0 a r b i t r a r i l y and l e t
px)(l-A)-'
Km by i n d u c t i o n , such t h a t
m
l i m sup f n ( y ) 2 a n+m
s u p y ( l i m sup fn) 2 a
r e s t r i c t o u r s e l v e s t o t h e case a > - m fn. We t h e n have - m < a I p < m F i x
Define
and , f o r a l l
Because,then we have
was a r b i t r a r y ,
1 > h > 0 be so t h a t
The theorem f o l l o w s i f we
t a - 2 6
.
289
Boundaries
.
+ 6 2-m A m We c l a i m t h a t t h e r e i s y E Y
such t h a t
g,(y)
ta
-2
6 for a l l
(1t
x ) -1(g,tx
m 2 1.
Proof o f t h e claim: Define h, =
m
E xi-' i=l
gi
and p u t
ho = 0
. Since
m E N , we have
for a l l
I f we m u l t i p l y
the l a t t e r i n e q u a l i t y by
I
x
(Note, t h a t always supX(hm) > We d e r i v e
+ supX(hmtl)
supX(hm-l)
x-m(supX(h,l)
-
-
since
supX(hm)) 2
Because o f ( * ) we have s u p X ( l i m hm) = l i m supX(hm) m+m
.
(ltx)
we o b t a i n
+ 6 2-"(1+ h ) A". a >
- -).
gmtl)E
I(,,
Representing Measures
290
The boundary property of We conclude
Y yields
y E Y
such t h a t h(y) = s u p X ( h ) .
hence
t (l-x)-'(a-6(1tA)
m E
for a l l
N
.
-
AD) 2 a
-
2 6
0
For our considerations we only need a special version of the Convergence Lemma,dealing with the situation when the f n are decreasing. I n t h i s case the inequality has a simple form: 3.6.2
Corollary:
Let the --
f n be as in 3.6.1
pointwise decreasing.
Then
and assume furthermore that the f n are
supy inf f n t inf supx f n n n This inequality shows t h a t the Convergence Lemma must have nice applications for Dini cones. Let us f i r s t briefly recall the notation we adopted in the context of Dini cones. We assume that F = F(X) i s a cone o f upper bounded functions on a nonempty s e t X containing a l l constant functions. F i s endowed with the pointwise order on X and the function lX serves as order unit. VF i s
Boundaries
the max-stable cone generated by and
functions in VF(X), sup- norm.
5
29 1
VFB consists of the bounded
F(X).
denotes i t s closure with respect t o the
Let us introduce two additional closures. By F ( X ) we denote the cone consisting o f a l l
< where
y
m
Y,cp>
and
E L:
=
t Ynfn
n= 1
cp = (f,)
i s a uniformly upper bounded sequence in
F ( X ) . And by F(X) we denote the cone of a l l uniformly converging sums 1 gn n€N
, where the
g n are elements of
F v R
F(X)
Imax(f,r) I f E F, r E R3
=
def
.
was called a Dini cone if inf supX(fn)= supx inf (f,)
n a
nEN
for a l l
(f,)
+
in F(X) , where
+
(f,)
means t h a t the sequence i s
pointwise decreasing. We are going t o call a subset Y
c
X
a Dini boundary for F(X)
if
inf supX(fn)= supy inf (f,) nEN
for a l l sequences say that
p
nEN
(f,)
+
in F ( X ) .
If
has a representing measure u(f) I
I
Y
f d-r
for a l l
p T
: F(X) -ti i s linear,then we
0”
Y
f E F(X) ,
if
292
where
Representing Meagtres
must be a p o s i t i v e measure w i t h respect t o the
T
generated by the r e s t r i c t i o n s t o
Y
o f the elements o f
u- algebra F(X).
An example o f a D i n i boundary i s the s e t o f characters f o r the Gelfand transform o f an order u n i t cone (Theorem 3.3.5).
One o f our problems w i l l
be t o f i n d o u t i f a l l D i n i boundaries are o f t h a t kind. This example shows, furthermore ,that D i n i boundaries and subsets c a r r y i n g representing measures f o r a l l s t a t e s are i n t i m a t e l y connected.
3.6.3
Improved Representation Theorem t1291:
Consider
Y cX
F(X)
Y
, then
&a
-i s-a
t h e f o l l o w i n g a r e equivalent:
D i n i cone and
boundary f o r
_ .
F(X)
6
i s a D i n i boundary f o r F(X)
For every s t a t e ----
of
For every s t a t e ---
1.1
l i m sup n +m whenever Let -
F(X)
t he r-e i s a representing -measure on Y -
o f F(X) we have --
p ( f n ) I sup
fiY
( l i m sup f n ( y ) ) n+m
is an upper -
(f,)
bounded sequence i n F(X).
fn E F(X) w i t h fn I 0 m
supy(
z fn) >
n=l
-
E p(fn) > n=l
If i n f supx(
mEN
IJ
-- . m I fn) > -
n=l
.Then
03
whenever ---there i s a s t a t e
(viii)
-i s-a
boundary f o r F(X)
Y i s-a boundary for Y
Y
m
o f F(X) w i t h -
293
Boundaries
then supy( Z. f n ) > n= 1 whenever
(f,)
&2
m
sequence
fi
with
F(X)
fn
5 0
-for a l l
n E N .
Proof: ( i ) * ( i v ) : Since F(X) i s a Dini cone,formula (1) (preceding 3.6.1) shows t h a t ( * ) of 3.6.1 i s a tomatically f u l f i l l e d . Now, take a decreasing sequence (f,) + in F(X) , then from 3.6.2 we obtain supy inf f n 5 nf supx f n . n n Since the inequality in the other direction i s t r i v i a l the cone must have Y as a Dini boundary. ( i v ) 4 ( v ) : When Y i s a Dini boundary i t must be a boundary f or F(X) (exactly the same argument as in Lemma 1.3.3). B u t then we can use a routine argument: Take a s t a t e IJ of F ( X ) . Define a superlinear 6 on F ( X ) l y ( r e s t r i c t i o n s t o Y ) by:
Since Y
i s a boundary we have 6
get a s t a t e
G on F ( X ) l y with G p(f) 5
Now, since Y
I
; ( f l y ) for a l l
i s a Dini boundary of
supy t 6.
. By
the Sandwich Theorem we then
B u t t h i s means
f E F(X). F(X)
the cone F ( X ) J y must be a
i ) ) . From the Representation Theorem 2.2.1 Dini cone (Lemma 1.3.4 i i i ) we then get a representing measure on Y for n This clearly i s a representing measure for LI
.
.
( v ) * ( v i ) : i s an immediate consequence o f the Monotone Convergence
Property ( i n the version of Fatou's Lemma) applied t o the representing measures on Y .
294
Representing Measures
-
(vi)* ( v i i ) + ( v i i i ) i s t r i v i a l .
( v i i i ) ( v ) : Apply ( v i i i ) t o the constant sequence t o s e e t h a t , f o r a l l f , we have
fn
=
(f
-
supX(f))
Then take an a r b i t r a r y s t a t e u of F(X) and consider on F ( X ) l y ( r e s t r i c t i o n s t o Y ) the superlinear functional
From ( 2 ) we g e t 6
of
I supy.
Hence the Sandwich Theorem gives us a s t a t e ;I
F(X)\y j(f
Iy
) > p(f) -
for all
f E F(X).
We claim t h a t ( v i i i ) implies t h a t F(X)
i s a Dini cone. Hence
1Y
has a
representing measure (Representation Theorem) which i s then a l s o a representing measure on Y f o r u Thus ( v ) i s proved s i n c e p was a r b i t r a r y .
.
Proof o f the claim: We use an argument we already used in t h e proof of Lemma 1.3.4. Take an a r b i t r a r y sequence cpn I 0 i n F(X) and p u t m m a = i n f supy ( z cp,) and 0 = supy ( t cpn) m n= 1 n= 1
.
We need t o prove a IB s i n c e a t 0 i s t r i v i a l . I n order t o do t h a t , we take numbers N n such t h a t Nn 1h e r e g = t a I s u p Y( g n) $ a + - , w cpn. n k=l 1 1 Then we consider 0 t f n = n ( g n - a - -). Since cpn 5 0 , we o b t a i n , by n d e f i n i t i o n of a , for every m E N and every E > 0 some y, E Y with 1 f n ( y m ) 2 - -2 - E f o r a l l n 5 m. Hence n m i n f s u p y ( t f n ) t - "t 1-2 > - m m n=l n=l n
"
.
295
Boundaries
Now, ( v i i i ) g i v e s us some y
z fn(y ) >
n=1
-
E Y
.
m
i n f gn(y ) 5 p , n
This inequality,together w i t h
forall
n1 ( p + t - a ) > - w
Z
with
implies
E > O .
n=l Hence (v) for
B 2 a
.
* (i):Actually,we prove t h e statement t h a t Y F ( X ) . T h i s statement i s , f o r m a l l y , s t r o n g e r t h a n
state o f
F(X)
and l e t
a r e p r e s e n t i n g measure 1-1
( i ) . Let
be i t s r e s t r i c t i o n t o t h e subcone
F(X). Then
ji i s c l e a r l y a r e p r e s e n t i n g measure f o r
for
T
u be a
(Monotone Convergence P r o p e r t y and f o r m u l a (1) b e f o r e 3.6.1).
state o f
F(X) has a r e p r e s e n t i n g measure on
R e p r e s e n t a t i o n Theorem ( h e r e ( i i ) +. ( i ) )
Y
vergence P r o p e r t y t h a t (iii)
=S
(ii)
(ii )
*
(iv);
Y
.
So e v e r y
And e x a c t l y as i n t h e
one shows w i t h t h e Monotone Con-
F(X).
must be a D i n i boundary f o r
is trivial Let
be a r b i t r a r y i n
(f,) J.
a = i n f supx fn n
We have t o prove
p 2 a
= max(fn,a-I).
Then
'pn
i s a D i n i boundary
p
and
,for a < y,(p > E
=
F(X). P u t
supy i n f f n ' n -
w
F(X)
.
I n o r d e r t o do t h a t ,define whenever
y
E Li
since
the
'pn
a r e c o n s t i t u t i n g a sequence which i s u n i f o r m l y bounded. NOW, t h e i n e q u a l i t y coming o u t o f Simons' Convergence Lemma has t h e f o l l o w i n g f o r m supy i n f n since the
'pn
r i g h t hand s i d e
'pn
2
i n f supx n
'pn
a r e decreasing. The l e f t hand s i d e i s L a
, hence
p
L a
.
5 max(p,a-I)
and t h e
296
Represenring Measures
( v ) * ( i i i ) : Assume t h a t every s t a t e of F(X) has a representing measure on Y . We then know t h a t every s t a t e of V F has a representing measure
on Y (2.2.1 and 1.3.4). We claim that every s t a t e of has a representing measure. Then ( i i i ) i s an immediate consequence of 2.2.1 and 1.3.3 (applied t o Proof of the claim: Take an arbitrary s t a t e i; of VFB,
q).
take a maximal s t a t e l.~ 2 i; , r e s t r i c t i t t o VFB and extend i t t o a maximal s t a t e i,i on VF Then the corresponding representing measure for G on Y i s clearly a representing measure for l.~ Since both p and
.
I vFB .
the integral are sup-norm continuous we immediately have a representing measure on Y for IJ 0
.
3.6.4
Remark:
I t i s quite obvious that whenever one of the conditions of Theorem 3.6.3 i s replaced by the corresponding condition for VF, VFB or VFB (instead
-
of
F(X))
then we obtain an equivalent condition. The reasons for that are
i)
the Dini property remains valid i f we replace F(X) by VF,
ii)
any element of i n VFB ,
iii)
states of
VF
i s the infimum of a decreasing sequence
VFB are sup-norm continuous and therefore they
(as we1 1 as integrals with respect t o probabil i t y measures) have unique extensions t o the sup-norm closure.
Now some examples. 3.6.5
Examples:
( i ) Let X be a pseudo-compact topological space, i.e. X i s completely regular such that every bounded continous real valued function attains i t s maximum on X (see 1921 or [140]). Then every s t a t e on the (bounded) continuous real-valued functions has a Baire representing measure on X. (One should observethat every continuous R- valued function on a pseudocompact space i s automatically bounded 1320, p.341). This example i s due t o G1 icksberg [ 1411 see a1 so [3171 ,[1181.
297
Boundaries
(ii)
X
Let
be a convex closed and bounded ( n o t necassarily compact)
subset o f a l o c a l l y convex t o p o l o g i c a l Hausdorff vector space and consider t h e continuous, r e a l valued bounded and convex functions ConvB(X) on X. Then, i f Y c X i s a boundary f o r ConvB(X),there i s , f o r every, x E X a representing measure on (iii)
Let
Y.
be a convex bounded p o l i s h subset o f a l o c a l l y convex t o -
X
pological Hausdorff vector space
and consider the weakly
E
r e a l valued,bounded and convex f u n c t i o n s
*
t p Conv ~
o(E¶E )
(X)
* (E) Conv u(E,E )
a t t a i n s i t s maximum on X
X
then
on
continuous,
X
.
I f every
i s weakly
compact. Proof: ( i ) and ( i i ) are,obviously,immediate
consequences o f Theorem 3.6.4.
Only t h e p r o o f o f ( i i i ) needs a d d i t i o n a l remarks. Let
F(X)
be t h e r e s t r i c t i o n s o f
. All
n o f F(X)
space
(E*+R)
to
we have t o prove i s
and consider the s t a t e
X
n
since
= X
x E X with
i n i t s canonical topology. Clearly, here we i d e n t i f y a l l 6, E n
, where
extend
p
t o a state o f
representing measure
Convo(E,E*) on
T
generated by Convu(E,E*) to
Now, l e t p E n ¶ t h e n we can
= f ( x ) , f E F(X).
6,(f)
(X)
and from Theorem 3.6.4 we g e t a
( w i t h respect t o
X
n i s compact
(X) ,or,equivalently,by
1
, the
u- algebra
the r e s t r i c t i o n s o f
X ) . By t h e Hahn-Banach Theoremyand t h e f a c t t h a t
E*
has a countable
X
base ( s i n c e i t i s polish),we obtain,that every closed convex subset o f belongs t o
.
1
Hence every open convex subset belongs t o t and 1
must t h e r e f o r e be t h e ure
( s e c t i o n 2.6.2). T =
where
xn
2 0
convex h u l l s
<
1 An
n E N.
>c X
T
T
i s a t i g h t meas-
as
Tn
1 An = 1 and where
Kn, Kn
u- algebra o f Bore1 sets. Thus
This means,that we can w r i t e
n=l
with
compact supports
X
Since
o f the
X
Kn
T,
are p r o b a b i l i t y measures w i t h
i s complete and contains t h e closed
, these
closed convex h u l l s must be
298
Representing Measures
E**
a g a i n compact. A p p l i c a t i o n o f t h e Hahn-Banach Theorem i n r e s p e c t t o t h e weak*topology) y i e l d s t h a t t h e s t a t e by t h e i n t e g r a l w i t h r e s p e c t t o
i s an element
T,
(with
on
11,
xn
F(X)
-
<
of
Kn
given
> .
[2501
( T h i s i s e x a c t l y t h e argument which was used i n t h e p r o o f o f P r o p o s i t i o n 1 . 2 ) . Hence m
lJ =
where t h e since
p
n=l
xn E X.
AnXn
3
The s e t
was a r b i t r a r y .
X
i s complete, thus
11
E X
and
X = R
0
L e t us now i n v e s t i g a t e under what k i n d o f c o n d i t i o n s t h e Choquet boundary i s a minimal boundary. L e t F ( X ) , F(X) t h a t a subset
Y c X
3.6.6
be as b e f o r e . R e c a l l
o f a t o p o l o g i c a l space i s c a l l e d L i n d e l o f i f e v e r y
Y
open c o v e r i n g o f
and
c o n t a i n s a c o u n t a b l e sub-covering.
Theorem:
L e t X be a compact nonempty H a u s d o r f f --space and l e t F(X) be a cone o f uppersemicontinuous 6- valued f u n c t i o n s which ~contains a l l constant t h e f o l l o w i n g asserfunctions and separates t h e p o i n t s o f X . Consider t i o_ ns f or a -
subset
Y c X
.
For t h e Choquet boundary CH(X) ( --w i t h respect t o (i) --Ch(X) c Y (ii)
Y
f o r F(X) -i s-a boundary -
(iii)Every s t a t e of (iv)
F(X)
F ( X ) ) we have --
(o r equivalently f o r F(X)
has measure on - a r e p r e s e n t i n g ~-
or -
Y
s u p X ( i n f fn) = supy ( i n f fn) f o r every decreasing sequence n a nEN
i n F(X) Z
(v)
Ch(X)
(vi)
Ch(X) c Z
-We have:
c
(i)
4
f o r every --
Fo- subset
-
Z
c
-
X
with -
Y cZ
f o r e v e r y L i n d e l o f set Z c X with Y --
(ii) o (iii)
(iv)
4
(v)
(vi).
c
q)
Z.
(f,)
299
Boundaries
Proof: ( i ) + (ii):I t i s c l e a r from t h e d e f i n i t i o n s o f l i k e w i s e t h e Choquet boundary o f
X
Ch(X)
that
F(X),
w i t h respect t o
Ch(X)
F(X) o r
is
5
Hence (ii)f o l l o w s i n view o f C o r o l l a r y 3.2.4. ( i v ) i n c o n n e c t i o n w i t h D i n i ' s Lemma and Lemma 1.3.4, t e l l s us t h a t o ( i v ) f o l l o w from Theorem 3.6.3. i s a D i n i cone. Thus ( i i ) * (iii)
-
(iv)
(v):
Assume t h e r e i s
x B Z.
,
and a l l
U Kn, Kn 5 Kn+l n= 1
Z =
We have
x B Kn
Hence
x E Ch(X) such t h a t
m
for all
for all
n E N
IY
a r e compact.
Kn
n.
By Theorem 3.2.6 t h e r e a r e
'pn
E F(X)
such t h a t
3 2 supK (wn) n Put
F(X)
'pn
and
I0
for all
.
n E N
n
1 '4( ,then we have i n c o n t r a d i c t i o n t o ( i v ) : k=l
fn =
m
supx i n f fn 2 n
-1
Z
n=l
n
> - 3 2 supy i n f fn n
.
Hence ( v ) must be t r u e . (v)
-
(vi):
x ECh(X) with
x
Let Z c X
B U(z)
such t h a t
x
be a L i n d e l o f s e t such t h a t
B
f o r each
Z
Y
z E Z.
zn E Z
Fo- s e t c o n t a i n i n g
course , c o n t r a d i c t s ( v ) . ( v i ) + v) i s t r i v i a l since sets.
0
.
Z
I f t h e r e were
U(z)
By t h e L i n d e l o f p r o p e r t y we c o u l d s e l e c t m
a c o u n t a b l e number o f elements s e t wou d be an
c
we would o b t a i n open neighbourhoods
Y
with
Z
c
U n=l
n(Z,) . The
but not containing
Fo- subsets o f t h e compact
x X
latter
. This,
of
are Lindelof
300
Representing Measures
(ii) ( i ) i n the preceding theorem does n o t h o l d i n general. The f o l l o wing example, due t o Simons [ 297,p. 7061 ,may i l l u s t r a t e t h i s . This example shows furthermore t h a t t h e r e are i n f a c t boundaries which are d i s j o i n t from the Choquet boundary.
3.6.7
Example:
.e""(n) = { f l f : R
L e t n be an uncountable s e t and consider Endow
k?(a)
-,R , f
bounded).
w i t h the weak-star topology w i t h respect t o
k?(n) = I d r p : n -,R such t h a t
E I v ( w ) l < -1.
That i s the coarsest
WE61
topology such t h a t a l l t h e functions
r(n) 3 f
+
<
lP,f
>
1 cp(W)f(W), l p E e'(n)
=
WEQ
a r e continuous.
i s then compact. Consider F = Convc(X) , the continuous convex f u n c t i o n s on X I t i s easy t o see t h a t the extreme p o i n t s o f X are
.
ex(X) = { g E X I g ( W ) =
*
1 for all
w E
nl
.
And t h i s i s o f course the Choquet boundary Ch(X) ( w i t h respect t o F = Convc(X)). F i x x E X , then we f i n d , f o r every h E Convc(X) ( i n f a c t f o r every continuous f u n c t i o n ) , countably many
%
E
1
l (n) such t h a t f o r every y
E X
( J u s t consider the compact subsets For each
n we f i n d f i n i t e l y many
< Ij yx > '4( i n
=
<
( * ) ) a
Y.,Z
J
we have
Iz
Kn =
1'
*
.
*
E X
"mn
> , f o r a l l j, i m p l i e s z d Kn
I Ih(z) - h ( x ) l E
ll(n)
. This
2
Ti1 l
.
such t h a t produces the desired
30 1
Boundaries
Since f o r every 'pn
'pn
t h e r e i s a c o u n t a b l e s u b s e t nn c n such t h a t
n we can f i n d a c o u n t a b l e s e t
outside
= 0
the
'pn
vanish outside
6
outside
x E Ch(X) ( a boundary f o r
1 g(w)
= i 1 or
i s a g a i n a boundary f o r
0
n such t h a t a l l
means t h a t changing t h e values o f
does n o t change t h e v a l u e o f
servation t o the
Y = {g E X
. This
6
c
,g
x
h ( x ) . A p p l i c a t i o n o f t h i s obConvc(X))
yields that
vanishes o u t s i d e a c o u n t a b l e s e t )
Y n ex(X) = $
Convc(X). B u t c l e a r l y
.
L e t us now t u r n o u r a t t e n t i o n t o cases where t h e " p a t h o l o g i c a l b e h a v i o u r " as d e s c r i b e d i n t h e l a s t example cannot o c c u r
3.6.8
.
Corollary:
If, i n Theorem 3.6.6., Y -( i ) - (vi) are equivalent.
i s- a L i n d e l o f -subset o f -
X
T h i s i s c l e a r s i n c e i n t h i s case t h e i m p l i c a t i o n ( v i ) 3.6.9
, -then a l l e
assertions
(i) holds t r i v i a l l y .
Corollary:
Suppose, each
f E F(X)
i s B a i r e measurable. Then f o r a r b i t r a r y Y --
t h e a s s e r t i o n s (ii) - (vi)
are e q u i v a l e n t .
c X
Proof: I t remains t o p r o v e ( v ) e ( i i ) . L e t
f E F(X)
continuous and B a i r e measurable. The s e t a compact B a i r e s e t and t h e r e f o r e a Z = {x E X
I
f ( x ) < supX(f)}
i s an
i t s maximum a t some p o i n t i n Y Ch(X) c Z. B u t Ch(X) Z. T h i s proves ( i i ) .
. Here
I f(x)
{x E X
f
i s upper semiis
t supX(f))
Gu- s e t . We conclude t h a t
Fu- s e t . Assume,
. Then we have
Y
c
Z
f
does n o t a t t a i n and hence,by ( v ) ,
i s a boundary which c o n t r a d i c t s t h e d e f i n i t i o n o f 0
Representing Measures
302
3.6.10 Corol 1a r v : Suppose t h a t each Bore1 s u b s e t o f
X
,& a
X
i s metrizable.
B a i r e s e t . Then f o r a r b i t r a r y
are e q u i v a l e n t .
Y c X a l l assertions ( i ) - ( v i ) Note, t h i s h o l d s i n p a r t i c u l a r i f Proof:
*
Only ( v )
( i ) r e q u i r e s a p r o o f . Assume t h a t t h e r e i s some
x E Ch(X)
{XI . Since {XI i s compact , hence a compact B a i r e set, i t follows t h a t Z = X {XI i s an Fo- s e t . From ( v ) we conclude
such t h a t
Y c X
x E Z = X \
3.6.11
\
{XI which i s impossible.
o
Corollary:
Suppose t h a t assertions ( i )
X
i s f i r s t countable. -Then f o r a r b i t r a r y
-
(vi)
s m a l l e s t boundary (-o r max(x,F(x)) 1. By maX(X,F(X))
for
all -
Y cX
a r e equivalent. I n p a r t i c u l a r , Ch(X) -i s the F(X) ( o r F(X)) and c o i n c i d e s w i t h max(X,lF(X))
we meanyof course,the boundary which we discussed i n
s e c t i o n 3 . l ( w i t h r e s p e c t t o t h e cone F ( X ) ) . R e c a l l , t h a t t r i v i a l l y t h e Choquet boundaries o f
X
w i t h respect t o
F(X)
and IF(X)
and
F(X)
coincide. Proof: Again, we prove ( v ) + (i). F o r any is a
Go- s e t and
p r o o f we conclude
X
\
X
particular
x E Ch(X), {XI
whenever
Y
i s a boundary f o r
Y = max(X,F(X)). On t h e o t h e r hand, b y P r o p o s i t i o n
max(X,F(X)) c Ch(X)
The assumption t h a t
, in
{XIi s an Fo- s e t . E x a c t l y as i n t h e p r e c e d i n g
x E Y. Hence Ch(X) c Y
F(X), i n p a r t i c u l a r i f 3.2.2.,
x E X
,
i.e.
max(X,F(X)) = Ch(X).
0
i s f i r s t c o u n t a b l e i n C o r o l l a r y 3.6.11 i s e s s e n t i a l
i n view o f t h e Example 3.6.7.
Boundaries
3.7
303
REMARKS AND COMMENTS
Section 3.1: The f i x p o i n t boundary was introduced i n [1291. Much e a r l i e r [1131 i t was discovered t h a t t h e s e t w i t h t h e separation property s t a t e d i n Theorem 3.1.5 i s a max-boundary which i s contained i n the Choquet boundary ( s e e a l s o [1311). The Krein-Milman Theorem f i r s t appeared [2061 in 1940 f o r compact convex subsets of dual spaces. The importance of the Maximum P r i n c i p l e was discovered i n 1960 by Heinz Bauer [19 3 . Section 3.2: For function algebras t h e Shilov boundary was i n t h e e a r l y f o u r t i e s introduced by Shilov (published [I391 i n 1946). For more general s i t u a t i o n s i t s existence was l a t e r shown by several authors ( [ 9 1,11671 [ 411,[29 I ) . The most general assumptions seem t o be those s t a t e d i n Corollary 3.2.4, t h i s r e s u l t , again, is due t o H . Bauer [20 1 ( s e e a l s o the e x c e l l e n t survey [ 221). The boundary Max(K) was introduced i n [1131, ry the boundaries Max(K), Maxa,p(K) and t h e weak Choquet boundary were considered i n [1311. Of course,
MaxccdK) generalizes a well known concept
59, p.901 from the theory of function algebras, namely E . Bishop's [40 I c h a r a c t e r i z a t i o n of t h e weak peak p o i n t s . Pioneering work about t h e Choquet boundary, f o r t h e general case of cones of USC- functions was done by H. Bauer, he a l s o c l a r i f i e d the r e l a t i o n between Choquet and Shilov boundary [ 171 ( s e e a l s o [ 411). C r i t e r i o n s f o r the e q u a l i t y Max(K) = C h ( K ) a r e hidden i n [1221 , most of t h e examples t o show t h a t , i n g e n e r a l , t h e inclusions between the boundaries a r e proper a r e taken from [1131 and [1291. The weak Choquet boundary has some i n t e r e s t f o r function algebras s i n c e i t always supports s u i t a b l e Jensen measures [1151, this is not t r u e f o r t h e Choquet boundary. (For general information about Jensen measures s e e [1371). [
Section 3.3: The b e s t sources f o r general information about Choquet's Theorem a r e [2501 and [ 2 I . For t h e case of a metrizable compact convex s e t t h e theorem was f i r s t proved i n 1956 by G . Choquet [67 1 . Later on, s h o r t e r proofs were given, independently, by M. Hervi! [ 1611 and F.F. Bons a l l [ 531. They use t h e f a c t t h a t a compact convex s e t i s metrizable i f f t h e r e i s a continuous s t r i c t l y convex functions f . Hence , f = 'i only ) c l e a r l y be on the extreme points, and a measure with p ( f ) = ~ ( 7 must
304
Representins Measures
c a r r i e d by t h e extreme p o i n t s . F o r n o n - m e t r i z a b l e compact convex s e t s t h e theorem was proved by E. Bishop and K. de Leeuw [ 411. F o r a d i f f e r e n t proof see [114]. I f one extends t h e B a i r e measures c a r r i e d by t h e extreme points o f
t o Borel measures on
K
K
one has t o be v e r y c a r e f u l . T h i s i s
i l l u s t r a t e d by an example [ 731 due t o G. Mokobodzki. He shows t h a t t h e r e i s a simplex
K
such t h a t t h e extreme p o i n t s a r e a B o r e l subset o f
such t h a t t h e r e i s a B o r e l p r o b a b i l i t y measure m on f o r every B a i r e subset
B
3
ex(K)
, and
m(ex(K)) = 0
K with
K and
m(B) = 1
,
(see a l s o [25Oyp.721).
The g e n e r a l i z a t i o n o f Choquet t h e o r y t o t h e case o f cones o f continuous f u n c t i o n s i s t h e work o f many authors. The most i m p o r t a n t c o n t r i b u t i o n s a r e due t o H. Bauer, D.A. Edwards ( f o r example [ 9 8 1 ) , E.B. and
-
N. Boboc
A(K)lex(K)
Davies 184
1
A. Cornea 1471. F i n a l l y , l e t us observe t h a t t h e f a c t t h a t
i s a D i n i cone i s c l o s e l y r e l a t e d t o R a i n w a t e r ' s theorem [2601.
S e c t i o n 3.4:
Most r e s u l t s o f t h i s s e c t i o n a r e s l i g h t m o d i f i c a t i o n s o f
r e s u l t s which a r e w e l l known i n case o f t h e geometric s i t u a t i o n (as general
2 1 ) . Compare, f o r example C o r o l l a r y 3.4.6 w i t h M. Hervh [1611, and Lemma 3.4.5 w i t h G. Mokobozki 12311. The Choquet o r d e r was i n t r o d u c e d i n 1960 by G. Choquet 169 1.
r e f e r e n c e see
S e c t i o n 3.5: The uniqueness theorem i s t h e work o f G. Choquet and P.A. Meyer ([2301,[71 1 , [ 6 9 I and [ 7 3 I ) . Simp1 i c e s w i t h c l o s e d extreme p o i n t s e t s were c o m p l e t e l y c h a r a c t e r i z e d by
H. Bauer [20 I . Many more d i f f e r e n t c h a r a c t e r i z a t i o n s o f Bauer-simplices can be found i n t h e l i t e r a t u r e 2 1 , most o f these r e s u l t s can e a s i l y be o b t a i n e d by a s k i l l f u l a p p l i c a t i o n o f t h e m a t e r i a l i n s e c t i o n I 2.
S e c t i o n 3.6:
A l l t h e m a t e r i a l i s t a k e n from [1291. O f course, by s i m i l a r
arguments as i n C o r o l l a r y 3.6.11, we o b t a i n f o r t h e s i t u a t i o n considered i n
3.6.6 t h a t t h e Choquet boundary Ch(X) i s t h e mimimal boundary i f every x E Ch(X) i s a G6- s e t . I n case t h a t F(X) i s a f u n c t i o n a l g e b r a t h i s was a l r e a d y observed by E. Bishop and K. de Leeuw [41 I . A s i m i l a r r e s u l t was o b t a i n e d by J . S i c i a k [2931. A p a r t from these o b s e r v a t i o n s we do n o t know o f many r e s u l t s about minimal ( n o t n e c e s s a r i l y closed) boundaries.
SECTION 11.4 INTEGRAL REPRESENTATION OF OPERATORS TAKING VALUES I N AN ORDER COMPLETE VECTOR LATTICE
The problem we c o n s i d e r i n t h i s s e c t i o n i s e a s i l y formulated. L e t F(X) a D i n i cone and c o n s i d e r an a r b i t r a r y o r d e r complete v e c t o r l a t t i c e R
.
be
Then we ask i f e v e r y monotone l i n e a r o p e r a t o r
R- v a l u e d measure T on u- a l g e b r a generated by F(X)), w i t h
has a r e p r e s e n t i n g measure, t h a t i s an respect t o
Z
F(X) p(f)
the
5
J f dT X
for all
f E F(X)
X
(with
.
A somewhat more s p e c i a l i z e d q u e s t i o n would be whether o r n o t Choquet's fundamental theorem c a r r i e s o v e r t o t h e case when t h e r e a l s a r e r e p l a c e d by t h e o r d e r complete v e c t o r l a t t i c e R . F i r s t one m i g h t g e t t h e i d e a t h a t i t i s p o s s i b l e t o adapt a l l t h e d e t a i l s of t h e p r o o f o f t h e R e p r e s e n t a t i o n Theorem t o t h e p r e s e n t s i t u a t i o n . T h i s i d e a i s e s p e c i a l l y i n t r i g u i n g s i n c e one o f o u r main t o o l s ( t h e Sandwich Theorem) c a r r i e s o v e r c o m p l e t e l y t o t h e p r e s e n t s i t u a t i o n . B u t soon one d i s c o v e r s t h a t an e s s e n t i a l step, namely t h e P a r t i a l Decompos i t i o n Theorem 1.2.4,
cannot be t r a n s f e r r e d t o t h e s i t u a t i o n where
R
takes t h e p l a c e o f t h e r e a l s , a t l e a s t n o t w i t h o u t assuming a d d i t i o n a l p r o p e r t i e s for
R
,l i k e
weak
u- d i s t r i b u t i v i t y (see Appendix A 5 ) .
Another r e s u l t which cannot be e s t a b l i s h e d f o r t h e general case i s t h e Daniel1
-
Stone Theorem (see[3391,[338Iand[3411), a l s o more o r l e s s a
consequence o f t h e P a r t i a l Decomposition Theorem. 305
306
Representing Measures
B u t f o r t u n a t e l y t h e s i t u a t i o n i s n o t as hopeless as i t seems a t t h e f i r s t glance. I t t u r n s o u t t h a t a s i m p l e t r i c k a l l o w s t o deduct from t h e Rep r e s e n t a t i o n Theorem i t s analogy f o r t h e v e c t o r - l a t t i c e s i t u a t i o n under
R
c o n s i d e r a t i o n . For t h e case when
C(S)
=
,S
compact and e x t r e m a l l y
disconnected, t h e t r i c k c o n s i s t s i n a p p l y i n g t h e Representation Theorem
uy s E S
u
for
6,
the
i n f i m a o f bounded subsets o f
0
instead o f
and t h e n u s i n g t h e f a c t t h a t
C(S) a r e n o t t o o d i f f e r e n t f r o m t h e
S- p o i n t w i s e i n f i m a . Although t h i s l a s t argument w i l l be d i s g u i s e d i n a
lemma about maximal s t a t e s i t i s n o t t o o d i f f e r e n t from t h e argument we used i n t h e c o n s t r u c t i o n of t h e Loomis-Sikorski homomorphism (Theorem I.2.3.3).
We a r e going t o f o l l o w v e r y c l o s e l y t h e arguments o f [1341.
R
L e t us b e g i n w i t h t h e d e t a i l s . We s t a r t w i t h t h e s i t u a t i o n when Again
F(X)
empty
X
F(X)
=
C(S).
i s a cone o f upperbounded R- valued f u n c t i o n s on some non-
. We
endow
F(X)
w i t h t h e p o i n t w i s e o r d e r on
c o n t a i n s a l l c o n s t a n t R-. valued f u n c t i o n s .
-
always compact and e x t r e m a l l y disconnected.
-
function being
i d e n t i c a l l y on
S
-
X
-
-
I n the following i s
The element
and
and assume t h a t
-
S
means t h e
i s d e f i n e d t o be t h e
C(S) which i s n o t bounded from below. The
infimum o f e v e r y subset o f
a l g e b r a i c o p e r a t i o n s a r e d e f i n e d as i n 1.1.
A l i n e a r monotone u : F(X)
-,C ( S )
u ( f ) 5 Is s u p X ( f )
u
As b e f o r e we say t h a t with
I.!
i s a maximal
we must have u = u
5 v
l i s h e s f o r every
S- s t a t e
V
w i l l be c a l l e d an S
for a l l
lS i s t h e i n d i c a t o r f u n c t i o n on
where
u
u I- -1
.
-
state i f
f E F(X),
i.e.
S
lS(s) = 1 f o r a l l s
S- s t a t e i f f o r every
E S.
S- s t a t e
Again by Z o r n ' s Lemma one estab-
t h e e x i s t e n c e o f a maximal
S- s t a t e
u 2
G.
Now t h e c r u c i a l argument: 4.1
Lemma:
L e t u : F(X) -
the value --
-
+
Q)
C(S)
.
U
I- -1
F o r each --
be some maximal s E S
define
us
S- s t a t e which never a t t a i n s ---I___
t o be t h e r e a l valued s t a t e
307
Integral Representation of Operators
p c J let
ps(f) = p(f)(s)
g i v e n by --
s t a t e s w i t h us --
S
Y ~ , SE
, be maximal r e a l v a l u e d
f E F(X), the set
I pS. Then, for each
i s meagre. Proof: Denote b y
: F(X) + R s
Y
s E S, f E F ( X ) .
t h e map g i v e n b y
And l e t
A(f) c C(S)
A ( f ) = { W E C(S)
14s)
Y(f)(s) = YS(f)
for all
be t h e s e t for all
t Ys(f)
s E Sl
.
As i n P r o p o s i t i o n I 2.3.2 we denote w i t h i n f and I n f t h e i n f i m a i n and Rs
r e s p e c t i v e l y . One e a s i l y notes
contains
supX(f)lS)
? : F(X)
a functional checks t h a t
that
and bounded f r o m below +
C(S)
by
A ( f ) i s nonempty ( i t p ( f ) E C(S)). We d e f i n e
(by
i ( f ) = i n f A ( f ) , f E F(X).
i s s u b l i n e a r , f u r t h e r m o r e i t i s monotone s i n c e
monotone. From t h e obvious i n e q u a l i t y p o s i t i o n I 2.3.2
C(S)
Y(f) 5 I n f A(f)
One e a s i l y Y
was
we g e t w i t h Pro-
that
Is E s I G ( f ) ( S ) < Y S ( f ) l f E F(X). We c l a i m t h a t
i s meagre,for a l l
p =
\r
which t h e n , c l e a r l y ,
proves t h e 1emma. Proof o f the claim: F i r s t we d e f i n e a " H i l f s f u n k t i o n a l " ( a u x i l i a r y f u n c t i o n a l ) bY Y (f) = infIi(f+g)
Then
p Iy I Y
t h e r e i s some funktional
.
Now, we prove
fo E F(X)
6 : F(X)
+
with
C(S)
by
-
p(g)
p = y
Ig
E F(X)I
. I n order
y :
F(X) - r C ( S )
. t o do t h a t l e t us assume
p ( f o ) < y ( f o ) . D e f i n e a second H i l f s -
308
Representing Measures
Then
i s s u p e r l i n e a r and
6
t h e n an S- s t a t e maximality o f
u
.
;I .
!.I I 6 I
w i t h 6 Ip I @ Hence !.I = y . p
By t h e Sandwich Theorem t h e r e i s
, clearly
i n contradiction t o the
Now t h e p r o o f i s completed by l o o k i n g a t t h e f o l l o w i n g i n e q u a l i t i e s :
The V e c t o r Valued Representation Theorem[l341:
4.2
Let
'
F(X)
be 5 -cone o f
upper bounded
6-
valued f u n c t i o n s
contains a l l c o n s t a n t -r e a l - v a l u e d f u n c t i o n s -and l e t R
--
a r e. e q u i v a l e n t : t e v e c t o r l a t t i c e . Then t h e f o l l o w i n g _ ---
(i) F(X) (ii)
0" X
which
be an o r d e r ----
comple-
i s a Dini cone ----
Every monotone l i n e a r !.I
has an
_.-
i-
: F(X)
-+
valued
k
= R U 1- -1
r e p r e s e n t i n g measure.
Proof:
(i) * (ii):L e t e = ~ ( 1 ,~t h e) n e t 0. By R(e) R g i v e n by
we denote t h e o r d e r
complete s u b - v e c t o r - l a t t i c e o f R(e) = { a E R
I there
is a
x
E R+
with
-x e
I a It
xe I .
Since R(e) i s an o r d e r complete o r d e r - u n i t v e c t o r l a t t i c e we know from I 2.2.3 and I 2.3.1 (Kakutani-Krein-Stone-Yosida) t h a t R(e) i s
309
Integral Representation of Operators
order-unit and vector-lattice isomorphic t o some C(S) , S compact Hausdorff and extremally disconnected. For convenience we j u s t write R(e) = C ( S ) . Now, l e t
VF and VFB again denote the max-stable cone generated by F(X) and i t s subcone of bounded functions, respectively. We know t h a t both are Dini cones (Lemma 1 . 3 . 4 ) . By p we denote the sublinear functional on VF
given by
Then
p Ip
IF(X) linear G : VF -t
and the Dominating Extension Theorem gives us a monotone
u 5 iiI F ( x ) and i; I p.
with
t o VFB , then
restriction of
G
G
we denote the
i s an S- s t a t e of
Zorn's Lemma we get a maximal S- s t a t e t h a t there i s an R(e)- valued measure v ( g ) = J g d.r X
By
for a l l
v T
VFB
on VFB with with
g E VFB
C
. From
Iv
. We
claim
.
This ,clearly ,proves the assertion since we have p(f)
I inf v ( f
nEN
v ( -n e ) )
5 inf nEN
X
(f
v ( - n e ) ) d.r
=
X
f dr
.
Proof of t h i s claim: Choose for every s E S a maximal real-valued s t a t e v ( g ) ( s ) 5 YS(g)
for a l l
g E VFB
yS
on VFB such that
.
From Lemma 4 . 1
we obtain t h a t , for every g E VFB , the s e t
(*I
I v(g)(s)
{s E S
\ys(g)}
i s meagre.
The Representation Theorem 2 . 2 . 1 gives us real-valued probability measures p s on X such t h a t
Represn tins Measures
310
for all (equality since
i s maximal). W i t h these measures we can d e f i n e a
yS
-,Rs
by
I h d ps
,
l i n e a r monotone Y : M y(h)(s) =
vFB
X
h E M y s E S,
where M stands f o r t h e v e c t o r l a t t i c e o f a l l bounded, r e a l valued and
k)- measurable f u n c t i o n s L
= {h E M
I
on
X
. NOW,
t h e r e i s some and y ( h )
From ( * ) we know t h a t
VFB c M
l e t us c o n s i d e r t h e v e c t o r space
n ( h ) E C(S)
. As
i n t h e p r o o f o f Theorem I 2.3.3 h E L
.
Sl
,
t h e continuous f u n c t i o n
i s unique.
L
One e a s i l y v e r f i e s t h a t L
n(h)
d i f f e r o n l y on a meagre subset o f
B a i r e ' s c a t e g o r y theorem t e l l s us t h a t f o r n(h)
such t h a t
-,C(S).
t h e cone
i s a v e c t o r l a t t i c e and t h a t
n
n and
v
Furthermore ( * ) t e l l s us t h a t t h e maps VFB
.
i s l i n e a r from c o i n c i d e on
L
Since c o u n t a b l e unions o f meagre s e t s a r e a g a i n meagre one o b t a i n s t h a t is
U-
complete.
bounded sequence i n L functions
(f,)
To be more p r e c i s e , l e t
I n f n(fn) n
, with and
f = i n f f,.
n
be a decreasing l o w e r
Then b y P r o p o s i t i o n 1.2.3.2
the
d i f f e r o n l y on a meagre subset, t h e r e -
i n f q(fn) n
f o r e ( s i n c e t h e meagre s e t s a r e s t a b l e a g a i n s t c o u n t a b l e unions and because o f t h e Monotone Convergence P r o p e r t y o f t h e measures and Y ( f )
agree except on a meagre s u b s e t o f ~ ( f =) i n f q ( f n ) n
Hence
L i s u- complete and
since
M
i s the smallest
which c o n t a i n s
n
(i.e. q
S
inf n
(f,)
f E L
and
ps)
. Thus
i s u- monotone).
i s u - monotone. Because o f
L
3
VFB and
u- complete v e c t o r l a t t i c e o f bounded f u n c t i o n s
VFB we have
L
= M.
Since
q
is
U-
monotone we know
31 1
Integral Representation of Operators
from the Appendix (section A 5 ) t h a t respect t o a C(S)- valued measure 'I i s proved. (ii)
4
( i ) i s rather t r i v i a l . Let
F(X) and choose some e s t a t e p with
5
-
o in R
q
.
(f,)
i s given by an integral with Because of rl = u the claim I vFB be a decreasing sequence in
J.
. Lemma
I 1.2.6gives us a 6- valued
inf u ( f n ) = inf supx f n . n n Then
if p(f) > -
m
else
- m
defines an R- valued monotone linear functional which has by ( i i ) a representing measure T . And application of the Monotone Convergence Property ( i . e . the f a c t t h a t the integral d.r i s u- monotone) X yields easily
-
supx inf f n n
2
inf n
p(fn)
.
Hence F(X) must be a Dini cone since the decreasing sequence was chosen arbitrarily 0
.
This vector valued representation theorem has some well known results as consequences. First of a l l an analogue of the Riesz Representation Theorem due t o J.D. Maitland Wright: 4.3 Corollary [340]: Consider C ( K ) , the continuous real valued functions on some compact space K -and l e t R be an order complete vector l a t t i c e . Then every monotone : C ( K ) -,R has a n R- valued representing measure (with respect linear
-Proof: C(K)
i s a Dini cone and
'C( K )
=
Bo(K)
(Baire s e t s ) .
0
312
Note t h a t
Representing Measures
K
i s n o t required t o be Hausdorff.
One should observe that from t his theorem one easily recovers the existence of the Loomis-Sikorski homomorphism (Theorem I 2.3.3) by p u t t i n g C ( K ) = C(S) = R, S extremally disconnected. Another consequence i s a vector valued Choquet Theorem:
4.4 Corollary [1341: K be-a compact --______convex subset of a locally convex Hausdorff vector space, A ( K ) the realvalued continuous affine functions on K and let R be an order complete vector l a t t i c e . Then for every monotone linear ---~ ---
Let -
I.I
: A(K)
-+
R
there e x i s t s an R- -~ valued measure T (with - respect -t o the --ex(K) n Bo(K)) ---on the extreme points ex(K) -such t h a t
u- algebra
Proof:
A ( K ) I ex( K ) i s isometrically order isomorphic t o A ( K ) ( c . f . Lemma 3.3.1) 0 and furthermore i t i s a Dini cone (Lemma 3.3.2). For weakly u- dist ri buti ve R t h i s re sult was already obtained by G.F. Vincent-Smith [3191.
SECTION 11.5 GENERALIZED HEWITT - NACHBIN SPACES
In t h i s chapter we t r e a t y a s a n application of the preceding methods, some topological aspects of the theory of continuous functions in a generalized way.Using the notions of characters and Dini cones,which we have discussed in preceding sections,it i s possible t o transfer classical notions such as Stone - Czech - compactification, realcompactifi cation and pseudocompactness from the situation of a completely regular topological space X t o a general s e t where a given order unit cone F ,consisting of bounded functions, takes overthe place of the continuous, or bounded continuous,functions on X in the classical situation. I n the f i r s t section we introduce the notion of F- compactification and F- realcompactification. We show t h a t , indeed, these definitions include the classical definitions of Stone - Czech - and realcompactification. Our
generalizations allow us t o describe these compactifications easily e.g. by means of decomposition properties of s t a t e s or integral representations of s t a t e s and characters. So, many theorems in the following a r e j u s t recollections of what we have proved so f a r , which, in t h i s context, i s seen from a different angle and obtains a new meaning. There i s one new aspect: Here we also discuss f i l t e r convergence properties. Finally, we consider some applications. Forexample, a generalization of G1 icksberg's integral representation theorem ( o r Alexandrov - G1 icksberg theorem [317]) ,for pseudocompact spaces which i s , ultimately, contained already in Theorem I1 2 . 2 . 1 and Theorem I1 3.3.6 and, therefore, sheds a new l i g h t on these theorems. 313
314
5.1
Representing Measures
BASIC DEFINITIONS AND THEIR MEANING IN THE CLASSICAL SITUATION
Throughout t h i s chapter l e t X a nonempty --s e t and l e t F be an order unit cone consisting of bounded realvalued functions on X , which separate -always denotes the s t a t e space of F . the points of X . R -----2 . 6 . 3 ) t o general
We want t o extend the notion of Dini continuity (see s t a t e s u on F . 5.1.1 Let
Definition: p
be a s t a t e on F.
p
i s called Dini continuous
whenever f n E F i s pointwise decreasing such t h a t
if
inf f n n
inf u ( f n ) I 0 n I 0
.
This definition indeed includes the former definition of Dini continuity since we have 5.1.2 i)
Lemma: p
i s Dini continuous ---i f and only i f -inf p ( f n ) n
5
supX(inf f n ) n
for a l l pointwise decreasing sequences f n
_.-
ii)
If
F i s max-stable,then p p ( f n ) -,0 for a l l sequences
E F.
i s Dini continuous -i f and
fn E
on’ly if F pointwise decreasing -t o zero.
Proof: i ) The sufficiency i s obvious. To prove the necessity assume inf p ( f n ) > a > supX(inf f n ) for some a E R and some decreasing n n sequence f n E F. Then, with g n = f n - a , we have, g n i s decreasing, inf g n I n
0
but
inf n
p(g,)
> 0
, a contradiction.
i i ) We only need t o prove the sufficiency of t h i s condition. Indeed, l e t f n E F be a r b i t r a r i l y decreasing such t h a t inf f n I 0 . n
315
Generalized Hewitt-NachbinSpaces
Then p(max(f,,O))
+
0 by assumption.
A Dini continuous character of F
5.1.3
i)
is called Dini character.
Definition:
Put p XF v XF p XF
= {p
E n
= Ip E
n
I I
p
character) and
p
Dini character3
.
is called the F- compactification of X ,
v
XF is called the
F- realcompactification (or F- Hewitt-Nachbin-completion). Moreover, X is defined to be F- compact, if p XF c X . Similarly, X is defined to be F- realcompact (and sometimes called F- Hewitt-Nachbinspace) if v XF c X . ii)
X is called F- pseudocompact if every element of the sup-norm closure VF of VF attains its maximum on X . (Recall VF = {max(fl ,..., fn) I fl,...,fn E F, n E N1).
-
Rema rk :
If we take F to be the continuous, bounded realvalued functions'on a completely regular topological space X , denoted by CB(X) , then p XF is just the classical Stone-Czech-compactification. Indeed, recall that the Stone-Czech-compactification p X of a completely regular space X is the set of all multiplicative nonzero linear functionals on CB(X) endowed with the weak-star topology. This means that p X coincides with the set of all lattice homomorphisms S on CB(X) (see 1 . 2 . 2 ) . Indeed, by the Kakutani-Krein-Stone-Yosida Theorem the sup-norm closed vector lattice CB(X) is isometrically isomorphic to C(S). So any multiplicative nonzero linear functional p on CB(X) corresponds to a multiplicative linear functional on C(S) which must be the Dirac functional at some element in S . Therefore p E S . Conversely, by the same theorem, every p E S is multiplicative on CB(X). Clearly, S is the extreme point set by Theorem of the state space of CB(X). Therefore, B X = B X CB(X) I 2.10.6 ).
316
Represenring Measures
S i m i l a r l y , the realcompactification o f a completely regular Hausdorff space
X,
v X
a l s on CB(X) on
i s t h e s e t o f a l l m u l t i p l i c a t i v e nonzero l i n e a r f u n c t i o n which can be extended t o m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l s
C(X), t h e space o f a l l continuous r e a l v a l u e d f u n c t i o n s on
general we have,
*
vX c
BX
X.
In
(examples see below). Note, t h a t if
E p X w i t h p ( f ) E f ( X ) f o r a l l f E CB(X) t h e n p can be represented by a zero-one measure m on X , i . e . m(A) E 1 0 , l ) f o r a l l Bore1 s e t s A . T h i s i s a consequence o f z e r o - s e t f i l t e r t h e o r y ([1401).Thereforey i n t h i s case, p can be extended t o a m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l on C(X), thus p E v X . Conversely, i t i s w e l l known t h a t i f p i s a m u l t i p
p l i c a t i v e l i n e a r f u n c t i o n a l on
C(X)
then
p ( f ) E f(X)
f E CB(X)
for all
(see Theorem 5.3.1 below). As general r e f e r e n c e s f o r t h e c l a s s i c a l s i t u a t i o n we r e f e r t o [ 1 4 0 ] ,[3201and [3241. 5.1.4 Let X true: -
Proposition:
-be_ a
completely r e g u l a r H a u s d o r f f space. Then t h e f o l l o w i n g
are
ii)
Proof:
i) f o l l o w s d i r e c t l y f r o m t h e preceding remarks. ii)Consider
p
E v X cB(x)
c pXcB(x) = p X
and a l a t t i c e cone homomorphism on
. Hence
p
i s multiplicative
CB(X). We c l a i m t h a t
p(f) E f(X)
a l l f E CB(X) from which, b y t h e p r e c e d i n g remarks, we o b t a i n and t h e n v X CB(X) *
p
for
E vX
f E CB(X) a r b i t r a r i l y and assume p ( f ) B f ( X ) . Consider t h e
So t a k e sequence
fn = max(1 - n ( f - p ( f ) ) 2 ,0)
which i s t h e n p o i n t w i s e decreasing t o
zero. Hence we o b t a i n t h e c o n t r a d i c t i o n
since
p
was D i n i continuous. Here we used t h e f a c t t h a t
p
i s a multi-
317
Generalized Hewitt-Machbin Spaces
plicative l a t t i c e cone homomorphism on C B ( X ) . Therefore p ( f ) E f(X). Conversely, l e t
p E
uX
. Consider
a sequence
decreasing t o zero,and assume inf u ( f n ) n Kn = I T E B X
I
T ( f n ) 5 pa 1.
=
f n E C B ( X ) , pointwise
a > 0
i s compact and
Kn
consists of the Dirac functionals
bX
at x
E X.
. ?
Consider c
U Kn nEN
Furthermore
, where p
B
U Kn. nEN
Therefore, by Urysohn'slema, we find a function g E C ( B X ) with g(p) > g ( T ) for a l l T E U Kn Indeed, consider g n E C ( p X ) with nEN
.
m
.
1 9,. ' 'nIKn = o for a l l n , a n d p u t 9 = n x= l 2n Consequently, with g ( x ) = b x ( g ) for a l l x E X , we have
0
5
gn
~ ( 6 =)
1
, gn(ll)
g(p)
B g(2)
5
fact t h a t
p
= 1
g(X).
By the preceding remarks t h i s contradicts the i s extendable t o a multiplicative linear functional on C ( X ) . =
The notion of F- pseudocompactness clearly coincides with the classical one i f F= C B ( X ) . Recall t h a t there are indeed non-compact completely regular Hausdorff spaces X which are nevertheless C B ( X ) - pseudocompact. An easy example ([1401) i s X = {a I a ordinal number with a < w13 endowed with the order topology; here
w1
i s the f i r s t uncountable ordinal. The pseudo-
compactness here follows easily from the fact t h a t every sequence in X has a cluster point. B u t for general F we have already more examples of F- pseudocompact s e t s a t hand. I t follows e.g. from 1.3.3 t h a t X i s F- pseudocompact whenever F i s a sup-norm closed max-stable Dini cone. We have already seen that F being a Dini cone i s equivalent t o X being F- pseudocompact (Improved Representation Theorem 3.6.3 with Y = X ) . Let K be a compact convex subset of a locally convex Hausdorff space and denote by ex(K) i t s extreme p o i n t s e t . Another interpretation of Bauer's Maximum Principle (11. 3.1.6) i s t h a t ex K i s A(K),exK-and ConvB(K)lex Kpseudocompact. Here A ( K ) = {f:K + R I f affine, continuous), ConvB(K) = tf:K + R [ f convex, uppersemicontinuous, boundedl.This i s a n easy consequence o f Theorem 5 . 4 . 1 below.
fact
318
Representing Measures
5.2 THE F- COMPACTIFICATION We want t o s t u d y f i l t e r p r o p e r t i e s o f t h e s e t s s u p p o r t i n g c e r t a i n l i n e a r f u n c t i o n a l s . L e t us f i r s t i n t r o d u c e d i f f e r e n t f a m i l i e s o f subsets o f
X
which we s h a l l discuss i n t h i s c o n t e x t . Let
be a s t a t e o f
p
subsets
Z(p)
i s defined t o be t h e f a m i l y o f a l l
such t h a t f o r e v e r y a < p < 0
Z c X
, and
f I0
F. Then
p(f)
2 p > a 2 sup
there i s
(X L Z ) ( 0
i s c a l l e d t h e s e t o f s t r o n g domination f o r
Z(p)
f E F with
p
.
Furthermore, we c o n s i d e r
x I
D(p) =
CY c
N(u)
{Y c X
I
supy]
P 5
p $ SUP
(XLY)}
U(P) i s t h e s e t of domination, for
u
.
*
i s c a l l e d t h e complementary s e t
N(p)
Recall, by Face(p) we mean t h e c o l l e c t i o n o f a l l t h o s e s t a t e s such t h a t t h e r e a r e 0 < l,l I x v + ( l - A ) v o . We c l e a r l y have
i f and only i f
I 1 and a s t a t e
Face(v) c Face(p)
Furthermore, o b v i o u s l y , F
x
p
whenever
of
v0
v E Face(p)
Let i)
n be a r b i t r a r y . --Then we have:
Z(u) c N ( I J ) n D ( v )
ii) Z ( P ) c Z ( V ) iii)
F
R
of
Face(p) = { p l (see Remarks 2.5.2 and 2.5.8).
Lemma: p E
of
(see 11. 2.5.2).
i s an extreme p o i n t o f t h e s t a t e space
A t f i r s t we prove some t e c h n i c a l f a c t s concerning
5.2.1
u
F with
for all
Z1 n Z2 E N(v)
v E Face(u)
for all
Z1,Z2 E
Z(p)
P ( u ) , N(u) and Z(v).
319
Generalized Hewitt-NachbinSpaces
Proof: i)
follows from the definition. We claim that
Z ( p ) c N(p)
whenever Z E
This proves
Z(p).
Indeed, l e t Z E there are s t a t e s
Z(p) c D ( p ) .
By the Finite Decomposition Theorem I , p 2 and 0 I x I 1 with and
(1-x)p2
p I A p1 t
According to the definition of Z(p),with a obtain f E F , f I 0 such t h a t
Hence, in view of
Therefore
0 I
p I
i i ) Let v
A
Hence iii)
I
A p <
sup
x
1 n which means
v(f)
Z1,Z2 E p I
x
I
E
1
t
Z(p)
- x
I
x
- 1> - n
2
= - 1
we
sup ( X \ Z ) ( f )
=
. Consider f E F, f
x
z,))
=
I
(l-X)vo
0 , with
p > a t sup ( X \ Z ) ( f )
Z
E
Z(V).
we would have
N(p)
"'Pyl
w t
some real numbers a < B
( f ) which implies
, b u t Z1 n Z2 6
sup ( x \ ( z l n
since n was arbit.rary.
0
Then we have N 5 X
(l-h)vo(f) 2 p(f) t (X\Z)
n.
D(u).
Z(p).
and there i s
v ( f ) 2 p > a t sup If
(f)
(X\Z)
and 0 <
0
- n , n > 1, p
,
Face(u) and Z E
E
v(f) t
x
A
=
(l-A)supZ(f) 2 p ( f ) t
supz and hence Z
f o r some v0 E n
Then a
f I 0
1 s p(f) 5
This implies
+
(f)
A sup(x\z)
-
1.4.4
Z(p). pl
supz
p I
u
y2
-
0.
Representing Measures
320
with
Y i = XxZi,
we would o b t a i n
0 Ix I1 w i t h
p I
Then c o n s i d e r
By t h e F i n i t e Decomposition Theorem 1.1.4.4
i=1,2.
x
a,P
supy with
1
+ (l-x)supy
2
.
a c 2 p < p < 0 and
flyf2 E F, fl I 0, f 2 I 0,
such t h a t p ( f i ) 1 p > a 2 sup
'i
(fi)
,i=
1,2
.
We a r r i v e a t t h e c o n t r a d i c t i o n 2B I
p(fl
+ f 2 ) I x supy (fl) 1
+ (l-x)supy (f2) 2
5 a
.
Z1 n Z2 E N ( p )
Hence
NOW, we f o r m u l a t e t h e main c h a r a c t e r i z a t i o n o f t h e F- c o m p a c t i f i c a t i o n which i s , p a r t i a l l y , a r e c o l l e c t i o n o f former theorems.
5.2.2
Theorem:
The f o l l o w i n g are equivalent:
_.
i)
P
ii)
p
E P XF
i s a character of F
iii) p has t o VF ---and f o r every f i n i t e - -a unique dominated e x t e n s i o n c o v e r i n g Y1,...,Yn o f X t h e r e i s some k I n such t h a t ----
iv)
p
can be extended t o-a c h a r a c t e r o f VF
v)
p
can be extended ---t o a l a t t i c e cone homomorphism VF --
maximal s t a t e -vi)
p
vii)
P
viii) p
+R
being a
E ex n can be extended t o- an nt_ o f- t h e s t a t e space aVF of VF -- _extreme _ _ _ p_o i_ i s maximal and Z(P) = N ( p )
321
GeneralizedHewitr-Nachbin Spaces
If
ix)
X
Z(p)
&
identified, b-y evaluation, with a subset of n , then i s a f i l t e r base of a _ f i l_ t e_ r -in n converging 2 p .
Proof: i)
o
ii)
i s j u s t the definition of i s Theorem I
i i ) o iv) ii)
o
-
v)
.
2.10.10 i )
i s Corollary I 2.10.4 together with Theorem I
2.10.10.
i s Theorem I 2.10.6
i i ) o vi) ii)
D XF
v i i ) i s Theorem I
2.10.6 together with Theorem I
2.10.10.
i i ) =$ i i i ) : The uniqueness of the dominated extension follows d i r e c t l y from the definition of a character (Definition I 2.10.1). Let Y 1 , . . . , Y n be a f i n i t e covering of X . From the Finite Decomposition Theorem I
n z
i=l
A. = 1
1.4.4 we obtain s t a t e s n 1 such t h a t p I x. i=l
Since, by v i ) , p 5 supy . k
p
E ex n
pi xipi
, there i s
k
and real numbers and In
p . I supy 1
i
such t h a t
xi
L
0
for all
p =
with i
.
u k , hence
i i i ) =$ v ) : Let fi be the unique dominated extension t o VF . Then fi clearly i s maximal. Another consequence of i i i ) , the uniqueness, the covering property and the Dominating Extension Theorem I 1.3.1 i s t h a t ;5 supy f o r some k I n , whenever Y1, ...,Y n i s a f i n i t e covering of k X . Finally, because p can be extended t o the vector space plF = F - F which i s a subspace of VF-VF , which means there i s an extension
<
of p and then, by uniqueness, = fi . (Recall, t h a t a l l f E F are bounded, hence p i s realvalued.) TO complete t h i s p a r t of the proof we show t h a t ; i s a l a t t i c e cone homomorphism. Take f l , . . . , f n E VF and consider the covering
U : VF
Y Let
+
W
=
{x
k In
E X
I f .1( x ) L max(fl(x),..., f n ( x ) ) l , i = l , ..., n .
be such t h a t
p
I supy
k
.
322
Representing Measures
By t h e Sandwich Theorem t h e r e i s a l i n e a r , with
i; I v 5 supy
f(x)
Ig ( x )
i.e.
for a l l
v ( f ) Iv(g)
whenever
f,g E VF
and
x E Y k . From t h e uniqueness o f t h e e x t e n s i o n we
. I n particular
i n f e r i; = v i;(fk)
..., f,))
2 C(max(fl,
. .,:(fn))
Hence max(?(f,),. Thus
,
k
Yk- o r d e r - p r e s e r v i n g s t a t e v
2 C(fi),
i=1,.. .,n
.
. . ,fn)).
= i;(max(fl,.
i; i s a l a t t i c e cone homomorphism.
.
i s maximal s i n c e i t i s an extreme p o i n t o f n F u r t h e r more, we know by Lemma 5.2.1 t h a t Z ( p ) c N ( p ) . Consider Z € N ( p ) . Then we vi)
4
viii):
claim,
p
x
0 > p > a
and p u t
t (1-x)supx (X\Z) would o b t a i n s t a t e s u1,p2 w i t h p I x p l t ( l - x ) p 2
have
u1 5
p I
sup
SUP(^,^),
p 2 I supx
x
p a-l s i n c e by t h e Sum Theorem I
Indeed, f i x
Z E Z(p).
. T h i s would
imply
pl
= p
=
,
f o r some
Then
f
N(p).
1.4.1 we
because
p
p I sup
was (X\Z)
Thus we have
g E F. Put
i s w e l l defined,
u(f) > Therefore, viii) base.
Z E
cannot
where
assumed t o be an extreme p o i n t . Hence we would a r r i v e a t which c o n t r a d i c t s
. We
> a
Z E Z(p)
*
ix): v i i i ) L e t G 1 Z(u)
From Z(p) =
N(p)
=
f E F, f I 0, and
sup ( X \ Z ) ( f )
and hence
N(p)
*
= Z(u).
and Lemma 5.2.1 i i i ) show t h a t Z(p) i s a f i l t e r be an u l t r a f i l t e r converging t o some i; E n
we d e r i v e
.
GeneralizedHewitt-Nachbin Spaces
p I
supy f o r a l l
323
Y E G
s i n c e otherwise t h e r e i s Y E G with p Ir s u p y and hence X Y E N ( p ) = Z ( p ) c G which c o n t r a d i c t s t h e f i l t e r p r o p e r t y o f G . Therefore p 5 , and , by maximal i t y of p , p = 11 . Hence Z(p) has only one accumulation p o i n t , namely p . That i s , Z ( p ) converges t o p s i n c e n i s compact. i x ) * vi):
Let u Z(U)
Hence
v I SUPy
E
Face(p). Then we have, by Lemma 5.2.1,
= Z(V)
for all
v I p
c Wv).
Y E
Z(p)
for all
and thus
v 5 lim Z ( p ) = p
. We obtain
v E Face(p)
and t h e r e f o r e , by d e f i n i t i o n of Face(p), v = p which means Hence p E ex n . This completes t h e proof of Theorem 5.2.2.
Face(u)
=
{PI.
324
5.3
RepresentingMeasures
THE F- REALCOMPACTI FICATION
I n t h i s section we turn t o various characterizations of the F- realcompactification u XF Recall t h a t ZF i s the smallest u- algebra on X such
.
that a l l elements in F are measurable. Let measure m i s said t o represent p i f p ( f )
p
5
E n. Recall, a IF f d m for a l l f E F. X
If equality holds for a l l f E F , then m i s called s t r i c t l y representing. Let E be the sup-norm closure of VF - VF. Note, that every s t a t e of VF has a unique extension t o a s t a t e of VF - VF a n d , furthermore, t o a s t a t e of E . (Recall, VF consists of bounded functions on X ) . By definition, a l l states are continuous with respect t o the sup-norm. Let p be a character of F . Then by Theorem 5.2.2 and the preceding remark, p has a unique extension t o a character of E Occasionally we denote this extension again by p , because no confusion can a r i s e . Since E i s a vector l a t t i c e , p on E necessarily i s a l a t t i c e homomorphism (see I 2 . 2 . )
.
Let Y c X and assume 1-1 I supy on dominated extension of the character we obtain p 5 supy on E .
F. I n view of the uniqueness of the p
t o E and the Sandwich Theorem
5.3.1 Theorem 11273: Let be-a character o f F. -Then the following --a r e equivalent: - p -
i)
p
i s Oini continuous
ii)
For every sequence f n E F with - fn there i s x E X with r f n ( x ) > -nEN
iii)
p
iv)
p
has -
a ( s t r i c t l y ) representing
I 0
and
1 p(fn) > nEN
-
OJ
- O D
ZF-
measure
has fi ( s t r i c t l y ) representing zF- measure m which i s a 10,l)- measure, i . e . m ( A ) = 1 or m ( A ) = 0 -for a l l A E IF
325
Generalized Hewitt-Nachbin Spaces
with -
Far
vi)
p I supy
Z
any sequence no nemp ty
the i n t e r s e c t i o n
E Z(p)
n
fl
Czn I
f E E
vii)
u(f) E f(X)
viii)
F o r e v e r y f E E -t h e r e i s x E X with u ( f ) If ( x ) -u , as d c h a r a c t e r o f E , -i s D i n i continuous.
ix)
n E NI
whenever
Proof:
i)=9 ii)i s an easy consequence o f t h e D i n i c o n t i n u i t y o f u 2.5.7 iii) ii)t o g e t h e r w i t h 2.5.8. ii)a iii) i s Theorem (Recall,
iii)* i v ) : If
p
as a c h a r a c t e r i s an extreme p o i n t o f Let
m
and
R
. i s maximal).
p
be t h e r e p r e s e n t i n g measure o f iii)and l e t
A E IF.
0 < m ( A ) < 1 t h e n we have
m = m ( A ) ml where
ml
+
(1-m(A))
i s t h e measure w i t h
m2
ml(B)
and
=
m2
i s d e f i n e d by
m(A) m2(B) = p
iv)
m((x'A)n B, m(X A)
i s an extreme p o i n t o f 4
v):
B E IF . This contradicts the f a t t that
for all
By Theorem
t h e s t a t e space o f 2.5.7.
E = VF
we know t h a t
- VF
.
has t h e decomposition
p
m
property, i . e . there are such t h a t
A
with
n 2 0
= 1
t A, n=l
and s t a t e s
m
p I
Since
p
t xn n=l
and
pn
i s an extreme p o i n t of R p
=
un
I supy
n
pn
5 supy
we have f o r some
n
.
n
for all
n.
pn
of
F
326
v)
Representing Measures
c;)
f o l l o w s , by c o n s i d e r i n g complements, d i r e c t l y from t h e d e f i n i t i o n
vi)
of
N(p)
v)
* vii):
and t h e f a c t t h a t Put
Yn = { x E X
I f(x)
Zn = I x E X
N(p) =
I p(f)>. I f
t
supy
n
2
1
p(f)
(Theorem 5.2.2). p(f)3
and
B f(X)
then
t
X =
U (YnU Zn). nEN
n such t h a t
Hence, by v), t h e r e i s some p 5
I f(x)
Z(U)
or
p I supz
n
.
The second i n e q u a l i t y l e a d s t o t h e c o n t r a d i c t i o n supz ( f ) 4- n 5 p ( f ) I supz ( f ) n n 1
Hence we have
LI I sup
maximality o f
p
p(f)
1
vii) viii)
1
there i s
Hence Thus
is
Y-,
monotone, 1.e.
ix):
Let
a
with
m I: n=l
fn E E
f 2
f
+
on
p(f)
u(f) E f(X).
+
be p o i n t w i s e decreasing t o zero and assume,
< a = i n f v(fn) n
1 min(fn,a)
E E
2"
fn(x) 2 a f o r a l l p(fn)
, since
is trivial.
o We have
and consequently, by t h e Sandwich Theorem and
'n
u ( f ) , a c o n t r a d i c t i o n . Thus
.t
viii)
*
,p
*
0
n
,a
.
i x ) * i) i s t r i v i a l .
D
. and by v i i i ) t h e r e i s
contradiction since
x E X
with
i n f f, = 0. n
Y,
Generalized Hewin-NachbinSpaces
327
Example: Theorem 5.3.1 and Proposition 5.1.4 provide us with examples for realcompact Hausdorff spaces X which are n o t compact. E . g . take X = N . Then the multiplicative li ne a r functionals on C ( X ) differ ent from zero ( i . e . the Dini characters on C B ( X ) ) a re , according t o Theorem 5.3.1, j u s t the characters of C B ( X ) which a re s t r i c t l y represented by a { O , l l - measure on N . These measures, of course, a re the Dirac measures of the elements in N . Hence , we obtain the well-known f a c t N = v N . Let us return t o Theorem 5.3.1. As remarked previously every character of F can be extended uniquely t o a character of E = sup-norm closure of VF - VF. Furthermore, by Theorem 5.3.1 , i f p i s a character of F then p i s a Dini character i f and only i f i t s unique extension t o E i s a Dini character of E . On the other hand, there may e xi st a Dini continuous character T of E such t h a t T i s n o t maximal while T i s always maximal on the vector space
E.
I e. we have
v XE
3
v
XF
in general
(here we have identi-
fied the Din characters of F with t h e i r unique extensions t o For the same reason we obtain B XE 2 B XF in general. We can identify the elements of
E).
X , by evaluation, with elements of
Hence, as a subset of the compact Hausdorff space p XE
the s e t X
P XE. is
completely regular. Nevertheless, the classical realcompactification v X of X i s d i f f ere nt from w X E . Indeed, by Theorem I 2.2.3 there i s a n order unit isomorphism E C(B XE).
+
C ( p X E ) , hence we may identify E
with
C ( p X E ) , in general, i s only isometrically l a t t i c e isomorphic t o
a subspace of
C B ( X ) . Hence v x = w xC B ( X )
2
v
XE
in general.
Representing Measures
328
5.4
F- PSEUDOCOMPACTNESS
I n this section we give characterizations of F- pseudocompact sets in terms of Dini-cones and representing measures. Then we study the connection between F- pseudo, F- real- and F- compactness. As special cases we obtain several cl assi cal resul ts concerning pseudocompactness and the real -and Stone-Czech- compactification of completely regular Hausdorff spaces.
5.4.1
Theorem [1271:
The following are equivalent:
g
F- pseudocompact
i)
X
ii)
p XF = v XF
iii) F
& 5 -Dini cone
xF- ~measure on
Every s t a t e o f F has - a representing
iv)
X
.
Recall, F i s a Dini cone i f and only i f supX(inf f n ) n
=
for every decreasing sequence
inf supX(fn) n (f,)
in F
.
Proof: i i i ) co iv) i s Theorem 2.2.1. iv) + i i ) follows a t once from Theorem 5.3.1 i i i ) i ) . i i ) i ) : According t o o u r remark in the introduction o f section 5.3, everystate o f VF has a unique extension t o a s t a t e of Therefore we can identify P,
.
Since we know by Theorem 5.3.1 t h a t every character continuous i f and only if i t s unique extension t o E we obtain with the obvious identifications v XF = v XVF -- u x w
.
p
of F i s Dini i s Dini continuous
329
Generalized Hewitt-Nachbin Spaces
Now, by assumption, 3.3.5
there i s
v
X z
=
x~ .
@
= VXE
LI E BXvT
Consider
by Theorem
with
= vXF
By Theorem 5.3.1 v i i ) there i s x E X Hence X i s F- pseudocompact.
. Then
f E
with
f(x) = u(f) = supX(f).
i ) + i i i ) : I n view of Lemma 1.3.4 i t suffices t o prove t h a t VF cone. Let h n be a decreasing sequence in VF. We always have
i s a Dini
inf s u p X ( h n ) 2 supX(inf h n ) .
n
n
Hence we have t o prove the converse inequality. To t h i s end we may clearly assume a = inf s u p ( h ) > - 03 .
X n
n
Let 6 < a be arbitrary and p u t
g n = max(hn,6). Then g n
i s decreasing
-
and uniformly bounded. X i s a boundary f o r VF by assumption Therefore we may apply Simons' Convergence Lemma 3.6.1 to prove
m
( * ) inf{supX( I.
n= 1
I
A,,
gn)
supX(lim sup 9,)
n
I xi
.
m
z xn
t 0 , i = l, . . . , m ,
n=l
i).
= 11 I
'
+-
Here we consider the pointwise lim sup, i . e lim sup g n ( x ) = inf sup{g,(x)
n
for
x E X
since the
n
-,-
. Hence
m t n3
the right-hand side of ( * ) i s equal t o
g n are decreasing. The left-hand
inf supx(gn) = a since 6 < a
n
We obtain
I
supX(inf g n ) 2 a
n
side
0-f
supX(inf 9,)
n
( * ) i s equal t o
.
. This
implies, since 6 < a
was a r b i t r a r y ,
Representing Measures
330
that s u p X ( i n f hn) 2 a = i n f supX(hn). n n Hence V F
i s a D i n i cone.
o
Theorem 5.4.1 c o n t a i n s t h e well-known Alexandrov ([317l),which
G l i c k s b e r g Theorem X
,
has an i n t e g r a l r e p r e s e n t a t i o n by a measure on
X
s t a t e s t h a t , f o r a c o m p l e t e l y r e g u l a r H a u s d o r f f space
e v e r y s t a t e on
C(BX)
i f and o n l y i f
X
Moreover,if
-
i s pseudocompact.
K
i s a compact convex subsetof a l o c a l l y convex H a u s d o r f f space, t h e n t h e s e t o f a l l extreme p o i n t s o f K, ex K , i s Convg(K) , e x Kand A(K)
I
(Recall
Convg( K
ex
-
pseudocompact.
I
ex K =
K
1
f : K
+
, f upper semicontinuous, convex, bounded3
A(K) l e x K = { f
ex K
If : K
+
R
,
,
a f f i n e continuous))
T h i s i s a consequence o f Theorem 5.4.1
iii)* i), Lemma 3.3.2
and t h e
f a c t t h a t a subcone of a D i n i - c o n e i s a Dini-cone. We conclude t h i s s e c t i o n w i t h a c o r o l l a r y which c l a r i f i e s t h e c o n n e c t i o n between
F- r e a l -
and
F- pseudocompactness and
F- compactness. I n t h e
c l a s s i c a l s i t u a t i o n i t i s a well-known t o p o l o g i c a l r e s u l t ([1401): 5.4.2
Corollary:
The f o l l o w i n g are equivalent:
_.
i) X & F- pseudocompact ii) X i s F- compact
and
F- realcompact
Proof: i)
4
ii):
compact ii)
=,
.
i):
p XF c X
By Theorem 5.4.1 we have
By d e f i n i t i o n ,
, every
X
c h a r a c t e r of
a
XF = v XF c X. Hence
X
is
F-
i s F- realcompact. Furthermore, here, s i n c e F
is the Dirac functional o f a p o i n t o f
hence i t i s D i n i continuous. Therefore,
13 XF
= v XF
.
0
X,
GeneralizedHewitt-NachbinSpaces
33 1
SOME CONSEQUENCES
5.5
n ,
I n t h i s s e c t i o n we t u r n o u r a t t e n t i o n t o subsets o f t h e s t a t e space
elements o f
X
X
. Here,
u pXF
X
i n p a r t i c u l a r t o subsets o f
as u s u a l l y , we i d e n t i f y t h e
w i t h t h e i r corresponding D i r a c f u n c t i o n a l s , t h a t i s t o say,
n
i s regarded as a s u b s e t o f
. As
such, c l e a r l y
X
i s a topological
space c a r r y i n g t h e t o p o l o g y i n h e r i t e d f r o m t h e t o p o l o g y o f t h e s t a t e space.
A t f i r s t we want t o s t u d y subsets F l y - realcompact whenever ly
. Where,
in
c l e a r l y ,F
.
to Y
F
X
X
is
of
X
which a r e
F- compact o r
-
Fly Or F- realcompact, r e s p e c t i v e -
i s t h e cone o f t h e r e s t r i c t i o n s o f a l l elements
IY
Note, t h a t , b y Theorem 5.2.2 that i f
Y
X
ix),
i s dense i n
X U p XF
. We
point out
F- compact i t i s n o t n e c e s s a r i l y compact o r even c l o s e d as
is
a t o p o l o g i c a l subspace o f
R
.
Example: Take
X = N
and d e f i n e
F = If : X + R I f
-
lim n-t
bounded w i t h
f(n) =
n , since
bn, n E N
, i.e.
p XF = X
t
.
f(2)l
n c l e a r l y are a l l Dirac
Here t h e extreme p o i n t s o f t h e s t a t e space functionals
$ f(1)
. However,
p XF
i s n o t closed i n
1i m n+ 0
T h i s example a l s o shows t h a t
A subset
Y c X
X U p XF i s , i n g e n e r a l , n o t c l o s e d i n
i s c a l l e d sup-boundary i f we have
supy(f) = supX(f)
for all
f E F
Note t h a t sup-boundary n o t n e c e s s a r i l y means t h a t
Y
i s a boundary.
Remark: Let
Y c X
Define
cp :
be a sup-boundary and
aY be t h e s t a t e space o f
nY + R by
rp(p)(f) = p ( f
IY
)
for all
p
E
fiY
and
f E F.
F
IY
*
n
.
Representing Measures
332 tp
i s continuous and i n j e c t i v e . We c l a i m :
(1)
I f v E n then there i s
(2)
q ( P yF
IY
P xF
)
p E
sly
with
~ ( p 2 ) v
.
f E F,y
.
*
P r o o f o f (1): D e f i n e 6 5 supy
by
6 ( f ) = supIv(g) (To o b t a i n
6 5 supy
Ig
E
F, gIy
5 fl
for all
we need t h e assumption t h a t
Y
be a sup-boundary).
6 i s s u p e r l i n e r r and hence t h e Sandwich Theorem p r o v i d e s us w i t h t h e d e s i r e d s t a t e p E n w i t h S 5 p l s u p y whence rp(!.~) 2 v . T h i s proves (1). Y ( 2 ) , ( 3 ) a r e easy consequences of Theorems 5.2.2 iii)and 5.3.1 v)
5.5.1
Proposition:
be a sup-boundary of
Let Y -
i)
If
i s closed i n X
Y
Fly
-
ii) If Y
is
X
and
. --Then we have X
F- compact t h e n Y
compact. is an Fa- -subset o f X and X i s F- realcompact, -
Fly
( R e c a l l , an
-
Fa- subset i s a c o u n t a b l e union o f c l o s e d subsets o f X )
i):We have Y = q-l(i(Y)) i : Y
then
Y
realcompact.
Proof: -
where
is
+
X
,
i s t h e embedding, and, b y ( 2 ) ,
.
333
Generalized Hewitt-NachbinSpaces
Cp(YUPYF Since, b y Theorem 5.2.2 Y u p YF
) c x u g x F = x .
ix),
i s dense i n
Y
we o b t a i n
Y U 13 Y
IY
. Hence
= Y
IY
IY
Y
ii):Take t h e f u n c t i o n
is
F
compact.
I y-
as b e f o r e . S i n c e
cp
cp :
Y u w YF
subsets o f there i s
u
Y
w YF
.
IY
no E N w i t h
definitions o f
Z(p)
p 5
and
u
Let
5.5.2
w YF
.
that the restriction o f
IY
(Here we closed
be a r b i t r a r y . By Theorem 5.3.1 v ) IY T h i s means by Theorem 5.2.2 and t h e
f i l t e r b a s e o f a f i l t e r converging t o
. Hence we have
.
is
E w YF
supy
N(p)
X
-*
IY continuous we o b t a i n t h a t Y i s a Fa- subset o f Y U w YF OD IY used t h a t X i s F- realcompact). So assume Y = U Yn , Yn n=l
c Y
p
.
. Since
Z(V) t o Y
is a
i s c l o s e d we o b t a i n
Y
D
ProDos it ion :
The f o l l o w i n g
equivalent:
i) p E p X F ' w X F
ii)There i s an
Fa- s u b s e t
Y
o f X u p XF with
Y
3
X
,but
p
B Y.
Proof: ii) i ) : The same argument as i n t h e l a s t p a r t o f t h e p r o o f o f P r o p o s i t i o n 5.5.1 i i ) ( i . e . u l t i m a t e l y Theorem 5.3.1 v))shows t h a t Y 3 X U w XF . T h i s y i e l d s i). i)+ ii): By Theorem 5.3.1 v ) t h e r e i s a c o u n t a b l e c o v e r i n g such t h a t
p $
supy
OD
Hence
p
B
U n=l
n
for all
n E N
Ync X
of
X
.
in where in denotes
the closure o f
Yn
in
X U p XF. 0
334
Representing Measures
Reformulation of Proposition 5.5.1 and 5.5.2 well known r e s u l t s : 5.5.3
Theorem:
The following i)
y i e l d s generalizations of
X
&
are equivalent:
F- realcompact.
i i ) F o r every with X --
iii) X
p
c Y
i s the --
--t h e r e is
E 13 X F \ X
and -
p
B Y
an Fo- subset Y
. Fo- ~subsets of
intersection o f a l l
X
u
of 3! XF
X
u
p XF
containing X.
We c l o s e t h i s section by proving t h a t some topological spaces a r e automatically F- realcompact. Recall, a topological space X i s c a l l e d a Lindelof space i f f o r any open covering of X t h e r e i s always a countable subcovering. 5.5.4
Theorem:
Let X be endowed with a topology such t h a t X & 5 Lindelof space and i s F- realcompact. a l l f E F a r e upper semicontinuous. Then X I
Proof: Let
v
p
E v XF
and assume
1-1
B X
. Consider
F = I
7 IY
E Z(p)l
, where
is the closure of Y under t h e given topology. In view of t h e d e f i n i tions of Z(1-1) and N(u) and Theorem 5.2.2, F i s a f i l t e r base of Z(p). (Here we use t h a t a l l f E F are uppersemicontinuous). 1-1 B X implies n F = 0 t h e r e f o r e { X \ ! 1 Y E Z ( p ) > is an open covering of X which contains a countable subcovering { X \ Y n I n E N) i n view of t h e Lindelof property. We a r i i v e a t Theorem 5.3.1 v i ) .
n yn
n€N
= 4
vn E
Z
, which c o n t r a d i c t s 0
335
GeneralizedHewitt-NachbinSpaces
We conclude t h i s s e c t i o n w i t h a s l i g h t g e n e r a l i z a t i o n o f a w e l l known r e s u l t due t o Choquet [ 72 1, p. 146: Again, l e t
K
be a compact convex
s u b s e t o f a l o c a l l y convex H a u s d o r f f space. Then, under t h e g i v e n t o p o l o g y , i s a B a i r e space. F o r g e n e r a l i z a t i o n s t o cones, see D.A.
ex K
R e c a l l , a B a i r e space
X
i s a t o p o l o g i c a l space w i t h t h e p r o p e r t y t h a t
t h e i n t e r s e c t i o n o f every sequence dense i n
X
Edwards [991.
(P,)
.
X
o f dense open subsets o f
is
The B a i r e space p r o p e r t y indeed remains t r u e f o r a l l F- compact s e t s . To t h i s end l e t
X
be a g a i n an a r b i t r a r y s e t and c o n s i d e r a cone
F
as
above, c o n s i s t i n g o f bounded r e a l v a l u e d f u n c t i o n s on X h a v i n g lX as o r d e r unit. R e c a l l , by Theorem 5.2.2. , D X F = e x 0 , where R i s t h e s t a t e space o f F. 5.5.5
Theorem:
If a x ,
i s endowed the ~w i t h s t a t e space o f F , t h e n BXF ---
r es t r i c t i o n -o f t h e topology on n is a -_--
,the
B a i r e space.
Proof: The p r o o f i s e s s e n t i a l l y t h a t o f [ 8 8
, p.3951.
We can, by e v a l u a t i o n , r e g a r d t h e elements o f
F
T h e r e f o r e i t i s no l o s s o f g e n e r a l i t y t o assume t h a t p E
9XF c R = X
t h e elements
Indeed, by d e f i n i t i o n o f f I 0 such t h a t
Put
Uf
= -JC(
I x E X I f(x)
Y E
Z(p)
>c(
.
I . Then we o b t a i n
i s a neighbourhood o f
p
which converges t o
(Theorem 5.2.2
p
a neighbourhood base o f
compact subset o f
R
and
1~.
Since
.
~1
there i s
p
E Uf,
.
X = n. F o r any
a r e neighbourhoods o f
0 2 B >
z ( 1 - 1 ) ~f o r
n
as f u n c t i o n s on 1-1
.
f E F with
C1c Y
. Hence
Y
i s a filterbasis o f a f i l t e r
Z(p)
ix))
t h e elements o f
(closure o f
Z(p)
form
Representing Measures
336
Since 2 ( p ) i s a neighbourhood base o f 0 t fl,f2 E F, E R , such t h a t
V E U ~
lYa?
g
there are
E IR, f 3 E F
oxF
To show t h a t Pn
subsets
nu
I . !
f242
with
i s a B a i r e space c o n s i d e r a sequence o f dense open
o f 9XF.
Note t h a t d e n s i t y of
Pn
means t h a t
Pn
c o n s t r u c t a decreasing sequence
n
n + l * an+l
pxF c
u
F fn,%’
n pXF
fn,S,
0 , whenever
n U
nonempty and r e l a t i v e l y open. F i x such a s e t
0 * F
we deduce
E BXF,
. We
U
Ff
n y*n
We c l a i m t h a t
i s compact we o b t a i n
W
n 3XF
8
P1 n... n Pnn U
c
(
n
i=1
W
convex and
n
n pXF n\W
is
3.3.5
n...n
O X F c P1
.
n U
Pn
for a l l
n
, i.e
03
n
i=1
P
i s dense i n 8XF
0 n o t e t h a t , by c o n s t r u c t i o n o f W , W i s compact i s convex. L e t
L e t nW be t h e s t a t e space o f
W
* 0 .
a
n’ n
n.
U was a r b i t r a r y . Thus ?XF i s a B a i r e space.
To show
Since
n=l
n U i s non-empty. T h i s i m p l i e s t h a t
Pi)
since
n Ff
W:=
for all
0
Once we know this,we have W 03
use i n d u c t i o n t o
such that
m
Since
U cpXF i s
nw D
, by
p
is
F
Iw
p
FIw
.
F
-
W I
ex fiw
.
F
i s a c l o s e d sup-boundary o f
compact, i . e .
( a p p l i e d t o a c o n s t a n t sequence) pE
+
.
-compact and W
P r o p o s i t i o n 5.5.1,
an extreme p o i n t
be t h e r e s t r i c t i o n map. IW Then we have W c o w o P c n
: F
,
ex ow
.
ex fiw c W
* 0 . Hence
W
F
IW’
By Theorem
possesses
337
Generalized Hewitt-NachbinSpaces
W
has, by c o n s t r u c t i o n , t h e p r o p e r t y t h a t , w i t h
n , we have
p2 E
p2 E
maximal s t a t e o f F
p
=
x
+ (l-x)v2 ,
v1
Assume
p !f
ex R
and one e n d p o i n t Let
=
fixF
, vl,
. Then
v1 1.1 =
A v2
+
n ,
dn n
I
there i s
x
0 5
x
v1
5 1
E W
> 0
i s not i n W
or
v2
such t h a t
1.1 E
i n t ( L n n)
.
G2 E W w i t h
p =
a 3
2
.
t (l-a)vl}
and, b y compactness, t h e r e i s
E W
v2
.
( l - ~ ) v ~
be an extreme p o i n t o f p E
*
E W whenever
A two-dimensional computation shows t h a t , b y m i n i m a l i t y o f that
FIw
.
t h e r e i s a 1i n e d
of
d W we o b t a i n
is a
1.1
i s maximal regarded as a s t a t e of
1.1
v2 E
vl,
p2 L p l y
i m p l i e s t h a t t h e extreme p o i n t
i s convex, we have
A = i n f { a E [O,l]
Since with
, since
n\W
Note t h a t , s i n c e
. This
W
and
E W
p1
n
ex nw and t h a t
. Essential W
x , v2
must
arguments f o r t h i s computation a r e
n\W
as w e l l as
a r e convex. 0
5.6
REMARKS AND COMMENTS
A l l t h e m a t e r i a l , e x c e p t 5.5.5,
of t h i s s e c t i o n i s t a k e n f r o m 11271. We
l i k e t o emphasize t h a t t h e analogy between t h e t h e o r y o f c o n t i n u o u s f u n c t i o n s and, more o r l e s s , Choquet t h e o r y , which we have presented h e r e goes f a r beyond t h e few examples we gave. Most o f t h e m a t e r i a l concerning t h e s i t u a t i o n which we c a l l e d t h e c l a s s i c a l s i t u a t i o n goes back t o H e w i t t ' s fundamental paper 11621 o f 1948. By t h e same t i m e s i m i l a r r e s u l t s were found b y
L. Nachbin, a l t h o u g h h i s i n t e r e s t
i n t h e m a t t e r was a c o m p l e t e l y d i f f e r e n t one. He was m a i n l y i n t e r e s t e d i n spaces which admit complete u n i f o r m s t r u c t u r e s . Nachbin's r e s u l t s 12391 were n o t p u b l i s h e d b e f o r e 1954. Because o f these o u t s t a n d i n g c o n t r i b u t i o n s realcompact spaces a r e sometimes c a l l e d H e w i t t
- Nachbin spaces. The i n t e r -
r e l a t i o n between complete u n i f o r m s t r u c t u r e s and realcompact spaces a r e expressed by t h e f o l l o w i n g a s s e r t i o n ( compare S h i r o t a l2921) :
338
Representing Measures
A completely regular space such t h a t every closed d i s c r e t e subspace has
nonmeasurable c a r d i n a l i t y admits a complete uniform s t r u c t u r e i f and only i f i t is realcompact. The original d e f i n i t i o n o f realcompact spaces is d i f f e r e n t from t h e one we gave f o r t h e generalized s i t u a t i o n . S t a r t w i t h a completely regular TI- space X and a continuous map f : X + R and denote by f * : 13 X + R U I-) the canonical extension of f t o a map from t h e StoneCzech compactification to t h e A l e x a n d r o v - c o m p a c t i f i c a c t i o n of R . Denote by v f X the s e t p XxI y I f * ( y ) = -I. Then v X was o r i g i n a l l y defined as
UX =
n
{vf X If E
c(x)}.
Since we d i d not admit unbounded functions i t i s not completely obvious how t h i s d e f i n i t i o n c a r r i e s o v e r t o t h e generalized s i t u a t i o n . B u t i t can I f does not a t t a i n i t s be done. Consider f o r example- v"F = i f E maximum on X I and define f o r f E v"F v f X = {x E p XF I f ( x ) < supx f 1. Then, in f a c t , v XF =
n Ivf X If E VFI N
This i s l e f t as an exercise f o r the reader. Hewitt proved t h a t X i s realcompact i f and only i f every real zero-set u l t r a f i l t e r i s f i x e d . Recall, t h a t a zero-set f i l t e r i s a f i l t e r having a f i l t e r base consisting of zero s e t s of continuous functions, and such a f i l t e r i s s a i d t o be real i f every countable i n t e r s e c t i o n i s nonempty. This c h a r a c t e r i z a t i o n corresponds t o t h e f a c t t h a t X 3 v X F i f and only i f every u l t r a f i l t e r being contained i n some
Z(p),
p E
B X F , and which
has t h e countable i n t e r s e c t i o n property, has t o be fixed. A condition which can be easilyobtained from Theorem 5.3.1. As a general observation one finds t h a t t h e properties of zero-set f i l t e r s a r e r e f l e c t e d in t h e corresponding properties of t h e f i l t e r s Z ( p ) , p E p X F
.
Other characterizations o f realcompact spaces a r e t h e following 13241 due t o Katetov [1831, Mrowka [2341, Frolik [1121, Wenjen [3281 and, of course, imp1 i ci t e l y t o Hewi tt [ 1621 :
339
Generalized Hewitr-Nachbin Spaces
Let
X
be a c o m p l e t e l y r e g u l a r
T1- space. Then t h e f o l l o w i n g a r e e q u i -
Val e n t :
1)
x
2)
For every
i s realcompact
and 3)
E BX\X
f(x) > 0
For every
t h e r e i s some
for all
For every
x E 8X\X
t h e r e i s some
5)
X =
6)
X
2 E 3X\X
E A
that
n{BlpX i s the
2
B
X
3
X
f(2) = 0
,B
intersection o f
f E C(X)
which has no
u {XI.
t h e r e i s some
X n A =
and
with
x E X.
continuous e x t e n s i o n t o
4)
f E CB(X)
0
.
i s an
G6- s u b s e t A o f pX
such
Fu- s e t } .
u- compact subspaces o f gX
.
The r e a d e r i s c e r t a i n l y a b l e t o p r o v e these equivalences and t o t r a n s f e r them t o t h e general s i t u a t i o n . Then he can o b t a i n p r o o f s f o r t h e g e n e r a l i z e d statement
v i a an a p p l i c a t i o n o f t h e r e s u l t s i n s e c t i o n 5.
Condition 4) i s p a r t i c u l a r l y i n t e r e s t i n g since i t i l l u s t r a t e s t h e i n t e r r e l a t i o n between realcompact spaces and L i n d e l o f spaces. A space
X
is
L i n d e l o f i f and o n l y statement 4 ) h o l d s f o r e v e r y c o m p a c t i f i c a c t i o n ( i n s t e a d o f gX )
. This
r e s u l t i s due t o Mrowka
[2351.
Another d e f i n i t i o n o f realcompact spaces i s t h e f o l l o w i n g : . X compact i f and o n l y i f
m
X
i s real-
i s homeomorphic t o a c l o s e d s u b s e t o f
Rm
some c a r d i n a l number.
F o r more m a t e r i a l about u n i v e r s a l p r o p e r t i e s and p r o d u c t s o f g e n e r a l i z e d r e a l compact
spaces t h e r e a d e r i s r e f e r r e d t o [ 127 I .
F o r i n f o r m a t i o n about pseudocompact spaces ( c l a s s i c a l s i t u a t i o n ) t h e r e a d e r i s r e f e r r e d t o H e w i t t ' s o r i g i n a l paper [162] and subsequent work
([1401~[1411,[3171~[324I).
SECTION 11.6 EXAMPLES AND APPLICATIONS
Most " r e a l " a p p l i c a t i o n s o f i n t e g r a l r e p r e s e n t a t i o n theorems deal w i t h s i t u a t i o n s where t h e extreme p o i n t s o f t h e s t a t e space a r e e i t h e r compact o r n o t f a r from b e i n g compact. I n f a c t , one o f t h e few e x c e p t i o n s i s t h e Poulsen simplex, which p l a y s a r o l e i n s t a t i s t i c a l mechanics ([376] ,[377]
,
[ 581). T h i s simplex (which i s unique i n t h e m e t r i z a b l e case [2131,[2211)
has a dense extreme p o i n t s e t . S i n c e we c o u l d n o t go deeper i n t o s t a t i s t i c a l mechanics, which i n i t s e l f i s convex-cone-techniques,
an i m p o r t a n t area f o r a p p l i c a t i o n s o f
we o m i t t h i s example. I n s t e a d o f t h a t , we a r e pre-
s e n t i n g s e v e r a l examples which i n p r i n c i p l e c o u l d be t r e a t e d w i t h t h e RieszKonig Theorem, t o g e t h e r w i t h some a d d i t i o n a l techniques. Nevertheless, we hope t h a t by these examples we can evoke t h e i m p r e s s i o n t h a t i n t e g r a l r e p r e s e n t a t i o n s a r e an i m p o r t a n t t o o l i n several areas o f mathematics. The examples are: B e r n s t e i n ' s i n t e g r a l r e p r e s e n t a t i o n o f c o m p l e t e l y monot o n i c f u n c t i o n s , K e n d a l l ' s theorem on i n f i n i t e l y d i v i s i b l e c o m p l e t e l y monotonic f u n c t i o n s , t h e m u l t i p l i c a t i v i t y o f extreme s t a t e s i n case of mu1 t i p l i c a t i v e cones and t h e a p p l i c a t i o n s t o t h e Gelfand Representation and t h e GelfanrkNaimark Theorem, t h e Bochner-Weil Theorem i n harmonic a n a l y s i s and, f i n a l l y , t h e Levy-Khintchine formula. 340
341
Examples and Applications
6.1
COMPLETELY MONOTONIC FUNCTIONS
Let E be t h e vector space of a l l i n f i n i t e l y o f t e n d i f f e r e n t i a b l e functions f : I 0,+ m [ + R on t h e open h a l f - l i n e . We endow E with t h e topology of uniform convergence o f a1 1 d e r i v a t i v e s ( including t h e zero order d e r i v a t i v e ) on compact subsets of t h e open half l i n e . With t h i s topology E becomes a l o c a l l y convex Hausdorff space. Clearly the given topology i s generated by t h e following family of seminorms Ip,,, I m E N , n E No} , where
A function f E E i s c a l l e d completely monotonic i f ( - l ) nf ( n ) 2 0 f o r a l l n = O,l, ... . Examples a r e the functions e x p ( - a x ) , xqa , where a 2 0 . Note t h a t w i t h t h e usual pointwise operations, the completely monotonic functions form a cone. The function x - ~ shows t h a t completely monotonic functions a r e not n e c e s s a r i l y bounded. B u t i f such a function i s bounded then c l e a r l y i t s l i m i t lim f ( x ) e x i s t s . We want t o prove an
i n t e g r a l representation f o r Indeed, roughly speaking, f exp(-ax) for different a X = { f E E I f completely X i s convex. W e must show,
x+o+
a r b i t r a r y completely monotonic functions f . i s t h e "sum" of functions of t h e type . A t f i r s t , we t r e a t t h e bounded case. P u t monotonic, f ( x ) I1 for a l l x >'O} . C l e a r l y , t h a t X i s compact under the given topology.
Lemma : X
subset of _i s_a compact --
E.
Proof: Let R be the Alexandrov compactification o f R be mutually d i s j o i n t copies of I O,m [ . Introduce a topology i n
and l e t
Rn, n=O,l,
u Rn by defining a subset t o be open
nEN
only i f a l l i t s i n t e r s e c t i o n s w i t h t h e Rn
a r e open. The union
is then a l o c a l l y compact space. We may i d e n t i f y t h e functions
...
,
i f and U
nENo
Rn
f E X with
342
Representing Measures
:
u
Rn
i=
{
?. I
^f
+
R
'.
d e f i n e d by
f(n)
=
I Rn
.. .
n = 0,1,2,
I f we endow
w i t h t h e topology o f u n i f o r m convergence on a l l compact
f E XI
u Rn , t h i s i d e n t i f i c a t i o n becomes a homeomorphism. We show,
subsets o f
i
i s equicontinuous. Then, by A s c o l i ' s Theorem,
must be c o n d i t i o n a l l y
compact w i t h r e s p e c t t o t h e topology o f compact convergence. C l e a r l y , i s c l o s e d i n t h e space o f a l l f u n c t i o n s from t h e topology o f compact convergence. Hence To show t h e e q u i c o n t i n u i t y o f
r > 0
For each that
and
i
= 1for all
r > 0
n and a l l
f o r some
;? r < ro < r w i t h
Since
(-1)
x 2 r
for all
to
and
X
?
R w i t h respect t o must be compact.
there i s a constant
for all
T h i s f o l l o w s e a s i l y by i n d u c t i 0 n . n = 0 U(r,O)
Rn
,it s u f f i c e s t o p r o v e t h e f o l l o w i n g :
n = 0,1,2,...,
(-l)n f ( ' ) ( x ) I U(r,n)
2
u
-X
. Assume
x 2 r
and
U(r,n)
such
f E X.
i s c l e a r s i n c e we may t a k e
t h a t we have a l r e a d y found
U(r,n)
r > 0. Then by t h e mean v a l u e theorem we o b t a i n
(ro) = 2 (f(n) (r)
f(n+l)
f(n+l)
-
An)({))
I
i s non-increasing we have
and
. And
f E X
we can d e f i n e
2
U ( r , n t l ) = F(U(r,n)tU($,n))
Pro pos it i on : F o r each --
t h e r e i s & p o s i t i v e Bore1 measure
f E X
T
on
with
R,
T(R+) I 1 such t h a t
j
f(x) =
exp(-ax) dr(a)
for a l l x > o
.
R+
Proof: Put X
n
Denote by
Conv(X)
= { exp(-ax) l a E
, hence
t h e continuous convex f u n c t i o n s
R+I U
compact. We show,
and d e f i n e yr : X
+
X
{
01.
r > 0
+
R.
n i s a c l o s e d subset o f
Clearly,
n i s a boundary f o r
as f o l l o w s : I f
X
and
Conv(X). L e t f E X\{Ol
r E b{Ol put
343
Examples and Applications
yr(f)(x)
= f(r)-'f(r+x)
r < 0
x > 0. Define
for all
x > 0.
If
f E X.
Note, t h a t even i n t h e l a t t e r case
define yr(f)(x) = f(x)
-
yr(0)(x) = 0
f(x-r)
+
for all
f(x)f(-r)
for all
i s again completely
yr(f)
monotonic. L e t us c o n s i d e r t h e f i x p o i n t boundary i n t r o d u c e d i n c h a p t e r
I 1 3.1. K c X
be a compact
. Let
5
say
r
The s e t
r
T h i s shows t h a t
r-
Conv(X)
-
exposed. Indeed, l e t
i n v a r i a n t s e t and f i x some element i n
E a K 5
ylrl(f), y - l r l ( f )
r
of
f
Conv(X),
f E aE K . Then we have
r
and t h e r e f o r e
necessarily s a t i s f y
u
exp(-a x ), a E R U I - -1
functions
exp(-ax)
boundary f o r with
is
is
Conv(X)-
f(x+y) = f ( x ) f ( y )
x,y > 0. I t i s w e l l known t h a t , among t h e c o n t i n u o u s f u n c t i o n s ,
for all only
01
be a r b i t r a r y and c o n s i d e r
0
exposed. The f i x p o i n t s
with
+k
functional w i t h
x > 0.
p f I supx
{m}
bX E
Conv(X)
f E X. Then, o f course,
7 on n w i t h on
is a
-bX E Conv(X). And
E Conv(X)
5
uf(f bX) I
i s a linear
I * b x ( w ) d ;(u)
for
wER
n n a t u r a l l y defines a p r o b a b i l i t y
whose r e s t r i c t i o n t o
i n t e g r a l i n e q u a l i t i e s now i m p l y
X. Hence R
be t h e f u n c t i o n s
f E X. By C o r o l l a r y I 1.612 we o b t a i n .
for all
The measure R+ U
let
p f ( s ) = ~ ( f )f o r a l l
with
t h i s e q u a l i t y . Only t h o s e
a E [O,m] a r e elements o f
for all
a p r o b a b i l i t y measure
measure on
, satisfy
{a)
x > 0
Conv(X). F o r
bx(f) = f(x)
uf : Conv(X)
all
Ir E R,r
= {yr
f(x) =
j
R+
we c a l l
. The
T
preceding
exp(-ax)dT(a) f o r a l l
x
0.
7
R+ 0
Theorem (Berns t e i n [ 36
I,
A
+
function
-i s_
f :
3 O,=[
see a1 so [ 2501 ) : c o m p l e t e l y monotonic i f and o n l y i f t h e r e
R
a p o s i t i v e Bore1 measure
f(x) =
J R+
exp(-ax)dT(a)
T
0"
for _ all _
R+
such t h a t
x >
o . The measure
T
i s unique.
Representing Measures
344
Proof: The s u f f i c i e n c y i s s t r a i g h t f o r w a r d , i t remains t o show t h e n e c e s s i t y . I f i s completely monotonic and for a l l R,
. Then
x > 0
1>
fc E X
E
then put
> 0
. There
f
fE(x) = f ( e ) - l f ( x + c )
i s a p o s i t i v e B o r e l measure
T~
on
with
(*)
J
f(x+e) = f ( e )
exp(- a ( x t e ) ) e x p ( a e ) d-rE(a)
R+
for all
x > 0, i n view o f t h e p r e c e d i n g P r o p o s i t i o n . L e t
measure on
dT
=
Rt
i.e. T
I g(a)f(e)
exp(a&)d-re(a)
for all
g E Co(Rt)
Rt
f o r a l l continuous i s independent o f
I
be t h e B o r e l
d e f i n e d by
R,
Ig
T
E
g : R+
+R
. Indeed,
with
t a k e any
l i m g ( r ) = 0 . Because o f ( * ) r1 > el > 0 Then we have
e x p ( - a n ) f ( & )e x p ( a & ) d T E ( a ) =
.
f(n) =
R+
I
R+
exp(-an)
f(E1)
exp(a&, )dTe ( a ) 1
The subspace generated b y t h e f u n c t i o n s
for all
exp(-an),
n E N
.
n E N , i s dense i n
w i t h r e s p e c t t o t h e sup-norm which i s a consequence o f W e i e r s t r a s s ' theorem. T h i s shows, T i s independent o f e , f ( x ) = e x p ( - a x ) d r ( a )
Co(Rt)
I
R
for all
x > 0
and
'I
i s t h e unique measure w i t h t h i s p r o p e r t y .
0
345
Examples and Applications
6.2
KENDALL’S THEOREM ON INFINITELY DIVISIBLE COMPLETELY MONOTONIC FUNCTION
L e t cp : 1 0,-
be a bounded c o m p l e t e l y monotonic f u n c t i o n .
R
+
c a l l e d i n f i n i t e l y d i v i s i b l e if f o r e v e r y
Y with
monotonic f u n c t i o n
y n = cp
n E N
. Later
cp
is
there i s a completely
on we s h a l l see, i n t h e c o n t e x t
o f t h e L6vy-Khintchine formula, t h e reason f o r t h e importance o f t h i s n o t i o n . A t t h e moment we a r e g o i n g t o g i v e a c h a r a c t e r i z a t i o n o f t h e i n f i n i t e l y d i v i s i b l e c o m p l e t e l y monotonic f u n c t i o n s . T h i s c h a r a c t e r i z a t i o n Kendall [1931 ( s e e a l s o [ 2 5 0 1 ) .
i s due t o D.G. Theorem: Let -
cp
be a bounded e l y d i v i s i b l e c o m p l e t e l y monotonic f u n c t i o n . - i n f i n i t~
Then t h e r e i s a p o s i t i v e -Bore1 measure ----
on [O,ml such t h a t -
T
1 - exp(-a x 1 d r ( a ) [o,-] 1 - exp(-a)
}
for all --
x E lo,-[
.
B e f o r e we p r o v e t h e theorem we d i s c u s s some b a s i c p r o p e r t i e s o f i n f i n i t e l y d i v i s i b l e c o m p l e t e l y monotonic f u n c t i o n s . L e t monotonic f u n c t i o n s that
X
P,,~,
m E N
with
cp
cp(x) 5 1
.
X
be t h e s e t o f c o m p l e t e l y
I n t h e l a s t s e c t i o n we proved
i s compact w i t h r e s p e c t t o t h e t o p o l o g y generated b y t h e seminorms
elements o f
,n
.
E No
By
K
we denote t h e s e t of i n f i n i t e l y d i v i s i b l e
.
X
Lemma :
i)
K
iii)
I f cp E K -
iv)
If
_i s _a
cp
E
compact s u_ bset o f
x and
element o f ~v)
I f cp E K to -
cp
.
and -
K
.
a > 0 p
2 0
X
then
. cpa E K.
then t h e f u n c t i o n --
then t h e function --
1/ n exp(n(cp ( x )
exp(p(cp(x)
- 1)) is an
- 1)) converges p o i n t w i s e
346
Representing Measures
Proof:
i)- i v ) a r e s t r a i g h t f o r w a r d v e r i f i c a t i o n s .
F o r ( v ) we use t h e f a c t t h a t
exp(n(a
l/n
- 1)) -, a as n
for all
a > O . o r cp(x) = 1, f o r some
I t remains t o prove v i ) . I f cp(x) = 0
,
x > 0
then by complete m o n o t o n i c i t y , t o g e t h e r w i t h a s i m p l e c a l c u l a t i o n o r w i t h B e r n s t e i n ' s Theorem, we have cp cases j u s t t a k e
= cp(x) cp(xta)
al(x)
= n(l
-
= y e = cp
o r cp
. Assume
cp(a)
l/n
)
/ cp(a)
for all
x
, respectively.
For these
l/n
-
x > 0
.
K by
. I n order
1 - cp(a)
Then cpn E
1
y1 E
x > 0 cp(x)
and cpn(x) =
=
now, 0 < cp(x) < 1 f o r a l l
e = 1. Then we can d e f i n e
A t f i r s t , take
'n
5,
= 0
cp(xta) 1/n
to find
put
51
l/n
and
exp(n(cp(x)
l/n
- l))exp(-pn)
= exp(n(cp(x+a)
for all The f i r s t t h r e e e x p o n e n t i a l s converge t o
11n
n E N
-
l))exp(pn(cpn(x) and
x > 0
-
1))
.
cp(x), @ ( a ) and cp(xta). Hence
t h e f o r t h e x p o n e n t i a l a l s o converges p o i n t w i s e t o a f u n c t i o n
E~
which i s
e a s i l y seen t o be c o m p l e t e l y monotonic. (We may go o v e r t o a s u i t a b l e subsequence which converges i n t h e g i v e n t o p o l o g y on compactness o f with
e
5, = 5,
=
1 cp'-'
K).
. Now
51
assume
and
K
i n view o f t h e
i s c l e a r l y i n f i n i t e l y d i v i s i b l e and s a t i s f i e s v i ) 0 <
Y & = Y:
E
< 1 -&
. Consider 0
c1
and
y1
and t a k e
347
Examples and Applications
P r o o f o f t h e Theorem:
Iw E K,
C = {- log(w)
Define t h e compact s e t
s i d e r t h e t o p o l o g y generated b y t h e
w ( 1 ) = e-’} m E N , n € No)
p m,n,
.
, con-
(again
C
i s even
of t h e lemma. I n view o f i v ) i n t h e lemma convex i n view o f i i ) and i-i)
( I -exp(-a))-l
= ( 1- e x p ( - a x ) )
Q,(X)
a € [O,c0].(0f
course
R = { Q aI a E [ O p ] }
functions,
c
a r e elements o f
for all
= 1). We prove t h a t
Q o ( x ) = x, Q,(x)
i s a boundary f o r t h e continuous convex
c C
Conv(C), on
Once t h i s i s e s t a b l i s h e d we can proceed
C.
s i m i l a r l y as i n t h e P r o p o s i t i o n o f t h e l a s t s e c t i o n : L e t dx,x > 0, be t h e function w i t h
Q E C
Fix
Since
= Q(x)
for a l l
for all
LI
f E Conv(C). We have
-
for all
on
x > 0.
with
R
p
uQ 5 supc
( * bX) 5
Q
The measure
p r o b a b i l i t y measure Q(x) = uQ(dX) =
on
T
dX d?
n
n
r
= {T
a,@
I
Qa(x)dT(a)
[ O ,-I
I a E lO,-[,p Q(x)
Ta,,(Q)(x)
1
I
‘I
=
+ +
E R}
T
common f i x p o i n t s o f By d e f i n i t i o n of t h e
s o l v e t h e equations:
r
is
r
( * 6,)d;
p(Q(l+a)
-
Q(a))
-
Q(a))
x > 0.
n i s a boundary. D e f i n e T
a,a
: C
if lB(Q(l+a)
-,
-
C
by Q(a))l < 1
otherwise.
a,@( Q ) E C
e a s i l y checks t h a t
Q E C.
for all
t o obtain a
for all
o f functions
p(Q(x+a)
Q(X)
I n f a c t , we have
by
n defines n a t u r a l l y a
T h i s proves t h e Theorem. I t remains t o show t h a t a family
6
-,
such t h a t we have
[Op] =
on
hX E Conv(C).
Conv(C)
Q ’
n i s compact we can a p p l y C o r o l l a r y I 1.6.2
p r o b a b i l i t y measure
*
We have
Q E C.
and d e f i n e t h e l i n e a r f u n c t i o n a l
LI ( f ) = f ( Q )
Q
6,(Q)
i n view o f iii)and v i ) o f t h e lemma. One
Con(C)
-
exposed. T h e r e f o r e t h e s e t o f a l l
must be a boundary ( P r o p o s i t i o n 3.1.4). T
a,@
the fixpoints are the functions
Q
in
C
which
348
Representing Measures
(1)
Q(x)(Q(lta)
Define
- Q ( a ) f o r a l l a,x
-
1 for all
Q ( x ) R(a) = Q ( x t a )
-
Q(a)
-
x > 0
.
Q ( x ) R ( l ) = R(x)
Then (1) i m p l i e s
Q(x) f o r a l l
.
a,x > 0
for all
.
x > 0
Define
H(x) =
.
> 0
a = 1
From ( 2 ) we i n f e r w i t h
(3)
= Q(xta)
- Q(x)
R(x) = Q ( 1 t x )
(2)
- Q(a))
-Q(x) =
Q(Xt1)
l t R ( X )
.
= 1 t R(l)Q(X)
We o b t a i n H ( x t a ) = 1t R ( 1 ) Q ( x t a ) = 1t R ( 1 ) Q ( x ) t R ( 1 ) Q ( a ) t R ( l ) * Q ( x ) Q ( a ) = H ( x ) H ( a ) for a l l
a,x > 0. Here t h e second e q u a l i t y f o l l o w s from ( 2 ) and ( 3 ) .
Hence H(x) = exp(8 x )
,B
E
[-my-[
, and
therefore
~ ( x )= ( e x p ( B x ) - 1) ~ ( 1 1 - l f o r a l l With
Q ( l ) = 1 we o b t a i n
t h a t both, R(l) > 0
R(l)
and
B
R(l)
, are
t
x > 0.
1 = exp(B). The monotony o f
Q
p o s i t i v e o r negative. I f B > 0
implies and
t h e n cp w i t h
cp(x) = exp(- Q ( x ) ) = exp{
-
exp(g x ) - 1 exp(8) 1
for all
-
x > 0
i s n o t completely monotonic. Hence we o b t a i n t h e f u n c t i o n s =
-1 -1
exp(-ax ) exp(- a)
for all
Q,
with
x > 0, a E [ o p ] ,
Since these f u n c t i o n s i n f a c t s o l v e (1) t h e y a r e t h e o n l y s o l u t i o n s ( i n c )
o f ( 1 ) . T h i s means
n i s a boundary.
0
349
Examples and Applications
6.3
MULTIPLICATIVE CONES
Throughout t h i s s e c t i o n we assume t h a t ( F , + I ) i s an order u n i t cone such t h a t F = F, + R I , i . e . f o r every f E F t h e r e i s some h 2 0 such f + A I . The cone i s s a i d t o be m u l t i p l i c a t i v e i f we have defined that 0 on F, such t h a t an a s s o c i a t i v e d i s t r i b u t i v e mu t i p l i c a t i o n
-
f = xf
f .(AI) = (XI)
for all
f E F,
.
This ensures t h a t t h e r e l a t i o n s one usually expects from an algebra do hold ( w i t h R, instead of R ) .
The m u l t i p l i c a t i o n i s s a i d t o be monotone i f , f o r a l l f
4
h, g
iI ,
we have f g < h g
and
f , g , h E F,
with
f + h g < h + f g .
And t h e m u l t i p l i c a t i o n i s s a i d t o be weakly monotone i f , f o r a l l
f , g , h E F,
with
f
,g
4
I
and a l l c h a r a c t e r s u
Of course, monotone implies weakly monotone. A typical example f o r a cone with a monotone m u l t i p l i c a t i o n is t h e cone of bounded upper-semicontinuous functions on some X endowed with t h e point-
wise s t r u c t u r e . Other examples f o r m u l t i p l i c a t i v e cones a r e furnished by the s e l f a d j o i n t p a r t s of commutative Banach algebras w i t h involution. (We discuss these examples i n s e c t i o n 6.4) Remark: i ) I f a m u l t i p l i c a t i v e cone ( F , < , I , * ) i s a vector space then t h e m u l t i p l i c u t i o n on F, can uniquely by extended t o an algebra on a l l of F. This e a s i l y seen: For f , g E F, and h , 6 2 0 one obviously has t o define: (f
-
h
I)
-
(g - d I )
=
def
f . g -Ag - 6f
+ A6I.
RepresentingMeasures
350
ii) T
i n t o some a l g e b r a A. i s s a i d t o be m u l t i p l i c a t i v e if i t i s m u l t i p l i c a t i v e on F, , i . e .
T(f
Consider a l i n e a r map T : F + A
.
. T(g)
g) = T ( f )
for all
mapping
f,g E F,
F
. Then,if
F
i s a v e c t o r space,
such a map i s n e c e s s a r i l y an a l g e b r a homomorphism ( w i t h r e s p e c t t o t h e algebra g i v e n by i ) ) . Lemma : be- a m u l t i p l i c a t i v e o r d e r u n i t cone such t h a t t h e m u l t i p l i c a t i o n i s weakly monotone. -Then e v e r y c h a r a c t e r ( i . e . extreme p o i n t o f
L e t (F,<,I,-) -
_ the state
space)
g
multiplicative.
Proof: Let
be a c h a r a c t e r . F i x a r b i t r a r y
p
l i n e a r monotone
v(g) = p ( f - g ) We c l a i m Since p
.
f
with
g E F,
.
f
I and d e f i n e a
for all
'
, i . e . p ( f g) = u ( f ) u ( g ) f o r a l l g E F, . Ft I was a r b i t r a r i l y chosen t h i s proves t h e m u l t i p l i c a t i v i t y o f
v = ~ ( 1 )p 4
f E F,
by
v : F + R,
(The c o n d i t i o n
f < I can be dropped s i n c e
u i s l i n e a r ! ) . I n order
t o prove t h e c l a i m we observe t h a t 0 5 v ( g ) s p ( g ) f o r a l l g E F, s i n c e p i s monotone and s i n c e we assumed t h e m u l t i p l i c a t i o n t o be weakly monotone. I n p a r t i c u l a r ,
x
= ~ ( 1 ) must be i n
x
> 0
[0,13.
I n addition this
- v i s a monotone l i n e a r f u n c t i o n a l on F, . Hence IF, we can f i n d monotone l i n e a r f u n c t i o n a l s C,G on F, w i t h 1 = 3(I)=(p(I)
yields that
cp = 11
such t h a t
Just take
-1 (p = (1-1) cp
- v,cp
=
x -1 v if x <
if 1
and $
extend u n i q u e l y t o s t a t e s
and = p
1 F,
S,G
<
= p
I Ft
for
otherwise of
F.
A = 0
. Since
And we have
, and F = F, t R I 1-1 =
x S t (1-x)G
Taking i n t o account t h a t p i s an extreme p o i n t o f t h e s t a t e space (Theorem1 2.10.6) we have i n any case p = S o r p = G, i . e . p = IF, 0 = (1-x)-'(plFt - v ) . T h i s immediately i m p l i e s t h e c l a i m . u IF,
or
35 1
Examples and Applications
Theo rem : Assume t h a t --
& 2 m u l t i p l i c a t i v e ----o r d e r u n i t cone such t h a t
(F,<,I;)
the set o f % ---
m u l t i p l i c a t i o n _i s weakly monotone. -Denote by states. F o r every s t a t e --such t h a t --
i)
!.I
of F
t h e r e i s a p r o b a b i l i t y measure
Here, -o f course, we c o n s i d e r t h e s m a l l e s t U- -a l g e b r a on ___ t h e f u n c t i o n s v -,v ( f ) , f E F , a r e measurable. i i ) ---For the order u n i t functional This __
means --
iii If F
fi a
SI
we have
SI(f)
SI(f*g)
5 SI(f)
v e c t o r space such t h a t
d e f_ i n e_ s a -norm,then _ -
_i s_a
(F,.)
fo_ r all
SI(g)
ISIl(f)
T
%
on
% -such t h a t
= sup{v(f)lv E
i n p a r t i c u l a r ---that the order u n i t functional
plicative, i.e.
multiplicative
%I.
& submulti-
f,g E F .,
= max(SI(f),
SI(-f))
commutative a l g e b r a .
Proof: i)
immediate consequence o f t h e lemma and Theorem 3.3.6.
Consequence o f t h e lemma and t h e f a c t t h a t t h e c h a r a c t e r s a r e a ii) boundary of t h e statespace. iii)
B(%),
Consider
t h e bounded r e a l valued f u n c t i o n s on
D e f i n e t h e Gelfand t r a n s f o r m a t i o n i.e.
?(v) = v ( f )
for all
v
E
F 3 f
% . Then
-, f E B(%)
%.
i n t h e obvious way,
t h i s G e l f a n d t r a n s f o r m i s an
a l g e b r a homomorphism i n t o a commutative a l g e b r a . And i i ) y i e l d s t h a t ISIlV) =
171
for all
f E F.
Since
norm t h e Gelfand t r a n s f o r m must be i n j e c t i v e .
ISII
i s assumed t o be a 0
352
Representing Measures
6.4
BANACH ALGEBRAS AND SPECTRAL THEORY
The main o b s e r v a t i o n o f t h i s s e c t i o n i s t h a t i n case o f commutative Banach algebras t h e spectral r a d i u s norm can be understood as t h e o r d e r u n i t norm
o f an o r d e r u n i t cone such t h a t t h e Let N
m u l t i p l i c a t i o n i s weakly monotone.
be a normed algebra, i . e . a normed space which i s an a l g e b r a such
that
(1)
I1 x e y l l 5 II xi1 . l I y I I
for a l l
x,y E N.
The s c a l a r s a r e denoted by K ,they a r e e i t h e r equal t o a l g e b r a ) o r equal t o
R ( r e a l normed
(complex normed a l g e b r a ) . O f course, a complex
(t
normed a l g e b r a can always be considered as a r e a l normed a l g e b r a ( b u t t h e n x
and
ix
a r e l i n e a r i l y independent).
We assume t h a t
N
has a u n i t
I , i.e. x I
=
Ix = x
for all
x E N.
T h i s i s n o t very r e s t r i c t i v e s i n c e we can always a t t a c h a u n i t : I f N has no u n i t t h e n we embed fl a l g e b r a i c a l l y i n t o N = I ( x , r ) I x E N, r E K} endowed w i t h m u l t i p l i c a t i o n and norm g i v e n by:
II ( x , r ) I I = I r l + II x I I
-
(xl,rl)
( x 2 ,r2 ) = (x1x2 t rlx2
C l e a r l y , t h i s a l g e b r a has a u n i t , namely
The s p e c t r a l r a d i u s
p(x)
of
x E N
t r2 x1 ’ r1 r2 )
(0,l).
i s defined t o be
The l a s t e q u a l i t y i s an immediate consequence o f (1). T h i s d e f i n e s a seminorm w i t h
(2)
p(xk ) =
p ( ~ ) f o~ r
all
k E N, x E N
.
The importance o f t h e s p e c t r a l r a d i u s norm, i n case o f a Banach a l g e b r a
B
,
353
Examples and Applications a
comes from the elementary f a c t t h a t
a n xn
converges in
B
1 l a n l ( p ( x ) t c ) ~converges f o r some e > 0. Hence, f o r n=O following elements e x i s t in B :
x
1
n=O
m
(3)
JiT-7
(4)
ln(1
-
X
K{ z
=
n=O
def
-
) =
1
m
112
(
n
)(+
if > p(x),the
}
x n
n (7)
1
n=l
Of course, these functions f u l f i l l the usual relations, l i k e =
x I- x
and
exp(ln(1
X - x)) =
I -
X
,
where exp(z) i s defined t o be: exp(z) =
(5)
zn z n!
a
n=O
*
Now, we consider the fol owing Situation 1: that
Let N be a real normed algebra and P
i)
I E P , -I !k P
ii)
II xII I t x E P
iii)
P
*
for all
x
c N
be a cone such
E N
P = { x y Ix,y E P ) c P
Remarks : We introduce in
-
N
the order given by
x s y
y-XEP.
Then i ) and i i ) guarantee t h a t I unit functional by SI and I S I ]
P
, i.e.
i s an order unit
. We
denote the order
denotes the order unit norm
354
Representing Measures
I S I I = maxISI(x),
(6)
SI(-x)l
=infIx>O
IXI -x
and XI t x E P I .
E P
Because o f ii) we have
(7)
ISII(x)
I IIxII
Now, c o n s i d e r a r b i t r a r y
- X Z = (y-x)z
Then y.2
E P
x,y,z E P
x E N.
for all
and
with
x Iy
and
z II .
x t y z - ( y t x z ) = (x-y)(I-z)
E P.
Hence i i i ) i s e q u i v a l e n t t o t h e a s s e r t i o n t h a t t h e m u l t i p l i c a t i o n i s monotone. Define
%(N)
t o be t h e nonzero m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l s
v : N - r R .
Theorem I n case o f S i t u a t i o n 1 we have
i) SI(x)
Iv
= supIv(x)
ii) 6-'p(x)
I SI(x)
I . The sup i s a t t a i n e d a t some
E %(N
Ip ( x )
x E P, where
for a l l
v E %(N
6=supIp(y)lyEP,I-y
PI.
Proof: The lemma i n t h e p r e c e d i n g s e c t i o n shows t h a t e v e r y c h a r a c t e r i s m u l t i p l i c a t i v e on
P
, hence
contained i n +(N)
N
on
and
(&mark i n 6 . 3 ) . So t h e c h a r a c t e r s a r e
i ) i s an immediate consequence o f Theorem 3 . 3 . 5
( a p p l i e d t o c o n s t a n t sequences). A s s e r t i o n i )y i e l d s = (sI(x))2
S+X)
f o r x E P. F o r x E N we o b t a i n by ii)o f S i t u a t i o n 1 t h a t SI(X.X) 2 SI(X) 2 S i n c e we have I S I ] 6 II II we immediately o b t a i n
.
ISII I
p
( f r o m t h e c o n s t r u c t i o n o f t h e s p e c t r a l r a d i u s norm), I f
6 =
m
t h e theorem i s proved. So, l e t us assume Then f o r e v e r y p ( x ) I6 x
.
x
Since
6
< O D
> SI(x)
x
. Note,
that
we have
> SI(x)
P(X) 2 6 S I ( X ) .
0 I
6 t 1 since X
2
. Hence
I
p(1) = X
p(,)
1. Take I 6
was a r b i t r a r i l y chosen t h i s y i e l d s 0
or
x 2 0.
355
Examples and Applications
, we d i s t i n g u i s h between r e a l 1 in e a r i t y and complex 1 i n e a r i t y . R e c a l l a map u between
Since from now on we a l s o deal w i t h v e c t o r spaces o v e r
N1
two v e c t o r spaces
and
N2
t
,if
i s called real-linear
u(a x + B y ) = a u ( x ) + B ~ ( y )f o r a l l and r e a l numbers
.
p
a,B
.
a,p
and complex numbers
E N1
X,Y
if
i s c a l l e d complex-linear,
*
A l l o u r examples deal w i t h i n v o l u t i o n s . An i n v o l u t i o n
:
N
+
N
is a
r e a l -1 i n e a r map such t h a t
for a l l
A(N)
By
N
x,y E
(X*)*
= x
(xyy
= y* x*
(A xf
=
N
and
x x* A
,
x denotes
E K . (i.e.
t h e c o n j u g a t e complex number
K = R
or
K
t )
=
we denote t h e s e t o f nonzero m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l s
A ( N ) a r e supposed t o be r e a l - l i n e a r , i f K = R and c o m p l e x - l i n e a r i f K = 0 . I n case o f a normed a l g e b r a N w i t h i n v o l u t i o n an element I, E A(N) s a i d t o be symmetric i f +
K.The elements o f
-
v ( x * ) = I,(x)
for all
x E N.
By A ~ ( N ) we denote t h e symmetric elements o f Example 1 ( Consider
A
*-
A(N).
algebras)
t o be a
*
- algebra w i t h u n i t
I. A
*-
complex Banach a1 gebra w i t h continuous i n v o l u t i o n . By ,A, r e a l normed a1 gebra o f s e l f a d j o i n t elements
Asa = IX E A Obviously, we have
A = As,
I X*
=
@ i ,A,
algebra i s a we denote t h e
XI .
. Let
P denote t h e c l o s e d cone
of
x
356
Representing Measures
-
P = Ix
generated by
i s closed. Hence
Ix
with
E As,}.
S i n c e t h e i n v o l u t i o n i s continuous
As,
P c Asa. Let x 4
Observation 1: y E As,
2
.
x = y
II I - x I I < 1. Then t h e r e i s
be s e l f a d j o i n t w i t h
Proof: Recall t h a t f o r
I 1 a l l < 1 we d e f i n e
with
a E As,
by the
f o l l o w i n g a b s o l u t e l y converging s e r i e s
Clearly,
For
d
z = I
m i s s e l f a d j o i n t . From t h e t r i a n g l e i n e q u a l i t y we o b t a i n :
- dr-a’,
we have
must be s e l f a d j o i n t and assertion. Observation 2:
z
f o r some
E As,
Let
.
a E As,
and
E
Put a = I
. Then
> 0
Proof: Apply Observation 1 t o
x = I t ( ( Ia l l +
Now, d e f i n e an o r d e r r e l a t i o n i n As,
a Ib That means
a
E)-’
Ix
101
-
( I l a II +
.
i s an o r d e r u n i t of
c -
As,
x E P with
.
and we have SI I II II
Proof: O b s e r v a t i o n 2 shows t h a t , f o r a l l
E )
I +a = z 4
0
Lemma 1:
I
Hence, y =
t o obtain the
x
by
i f and o n l y i f t h e r e i s some
P = Ix E As,
.
I I z II < 1 and z E AS,
m= y2 .
a E Asa
, we
have
.
a t x = b.
357
Examples and Applications
-
a 5 ( I l a II + &)I .
T h i s c l e a r l y proves t h e c l a i m .
0
II II of
L e t us c a l l t h e norm
monotone if II II
A
i s monotone on
P.
Lemma 2:
The f o l l o w i n g are equivalent: II II
i)
ii) SI(x)
% monotone = 11 x l l
for all
x 2
o
Proof:
SI
Since
i s monotone w i t h r e s p e c t t o t h e g i v e n o r d e r ii)i m p l i e s i ) .
II II
Now, l e t
II II I p
be monotone, t h e n
(restriction t o the positive
cone) i s a monotone s u b l i n e a r f u n c t i o n a l . Hence, f o r e v e r y f i x e d 0
9
u : P
x E P, t h e r e i s a monotone l i n e a r f u n c t i o n a l
II
p 5 I1
~ ( x =) I I x I l (Theorem I 1.3.3).
and
, we
II I l l s 1
and
.
ASa = P- R, I
state o f
SI(X) The i n e q u a l i t y
2
R
Because o f
~ ( 1 )= I I I I I = 1. So,
obtain
+
p
with x 5 IIx I I I
can be extended t o a
From Lemma 2.1.2 we d e r i v e
U(X)
= IIXII
.
i s a consequence o f Lemma 1.
IIxII 2 SI(x)
c
Another u s e f u l o b s e r v a t i o n i s : Lemma 3:
fi
The m u l t i p l i c a t i o n -
& monotone ---i f and o n l y
,A,
if
A i s commutative.
Proof:
P
-
P
c
P
i s equivalent t o the assertion t h a t the multiplication i s i s commutative, t h e n x x* y a y * = ( x y ) . ( x y ) * .
-
monotone. I f A
T h i s c l e a r l y imples Since
,A,
ASa = P
,A,
c ,A,
-
I
Ix
if
P
{A
P
P
c
( I
E R,}
.
P
P . Hence, P
c
P
*
P c P.
i s an o r d e r u n i t ) we have
. Therefore
we g e t , f o r a r b i t r a r y
Representing Measures
358
, that
x,y E Asa
x-y
i s s e l f a d j o i n t . This implies
,
( x . y ) = (X.Y)* = y*x* = y * x and
x
must commute w i t h
Therefore
A
Example 2 Let
A
. Hence,
y
As,
i s a commutative algebra.
must be commutative. (C*- a l g e b r a s )
be a
algebra w i t h u n i t .
C*-
A
C*-
*
algebra i s a
- algebra
such t h a t
II X ~ * I I
=
II~II
for a l l
II x I I
I n particular t h i s implies
2
=
x E A.
2 I I x II and
I I x I1 = IIx* II
for all
x E A. Remark : Let A
be a commutative
C*-algebra then, f o r
a,b E As,
the following
are true: 2 2 2 I I a t b I l t I I a II
i)
I1 I- a 2 II I 1
ii) If II a2q1 5 1 then I I a 2 t b 2I I < : l
iii) I f
1>
Let
iv)
> 0
E
1 1 1 - a 2 - b2I I s l
then
, then
t h e r e i s y E As,
such t h a t
c
I t
a 2 t b 2 = y2.
Proof:
i) I I a2 t b 2 I I = II ( a + i b ) ( a - i b ) l I = I l a t i b l l I I a - i b l l = l l a t i b l l 2
.
From t h e t r i a n g l e i n e q u a l i t y we d e r i v e 2 IIatiblI= IIatibll+ IIa-ibllt 2 Ilall. Hence 2 2 2 2 I I a t b I12 I I a l I = I l a II
ii) L e t (ltc) I
t > 0
-
a
2
, t h e n from Observation 2 we g e t some c
= c2
( I t &= )
And
E+
0
.
. Hence, (1tc)llIii
E As,
such t h a t
we o b t a i n from i ) : =
I I2 t~c 2 112 I I C 2 11 = I I ( l + t ) I - a 2 I I .
proves t h e a s s e r t i o n
359
Examples and Applications
iii) L e t
E
> 0 , then f r o m O b s e r v a t i o n 2 we g e t some ( 1 + ~I)- a 2 - b 2 = c2
(1tE) t I I ( l + c ) I Again,
E
-+
-
.
such t h a t
From i)and ii)we o b t a i n :
a 2 I I = I I b2 t c 2 l l t I I c 2 I I = l I ( l + ~ ) I - 2a - b 2 I I .
proves t h e a s s e r t i o n .
0
iv)
S i n c e t h e norm i s homogeneous we can assume
Put
x =
E
c E Asa
I1 a 2 + b2 11s 1 - E
I + ( a 2 + b 2 ) , t h e n a c c o r d i n g t o iii)we have
And t h e a s s e r t i o n f o l l o w s from O b s e r v a t i o n 1
.
II I - x I I
.
I (1-E).
o
Lemma 4:
If A
C*- a l g e b r a . t h e n t h e norm i s monotone.
-i s_ a commutative
Proof: E As,
Consider al,...,am
Put
a =
x
,@
a' i
yields that for and
p
I + D = x2
and
= 1b
6,p
2 0
. Then
2
bn E As,
bly...,
. Assertion
6,p
-+
0
gives the desired r e s u l t .
Now, c o n s i d e r on
such t h a t
A
2
. 0
A ~ ( A ) t h e s t a t e space t o p o l o g y . Then
And f o r commutative
61+ a = y
i) o f t h e Remark y i e l d s
II ( 6 + p ) I + a + @ l l t II 6 I + a I I And
have t o show
( v ) o f t h e Remark and i n d u c t i o n
y,x E As,
there are assertion
. We
aS(A)
i s compact.
we o b t a i n t h e f o l l o w i n g i m p o r t a n t r e p r e s e n t a t i o n .
Gel fand-Naimark Theorem: Let -
A
-be_
a commutative
C*- ___-algebra w i t h u n i t . Let A
=
symmetric nonzero m u l t i p l i c a t i v e l i n e a r f u n c t i o n a l s on A
x E A
+
i
E C a(A)
, -given
i s o m e t r i c a l g e b r a isomorphism
by
from
i ( ~= )~ A
onto
AS(A)
.Then
( x ) -for all u E A
C,(A).
be the
is an
Representing Measures
360
Remark: Because o f
A
=
,
x E A
A ~ ( A ) we have, f o r a l l
/\
z
x* = x
(where t h e b a r
I = 1A *
denotes complex c o n j u g a t i o n ) . Furthermore P r o o f o f t h e theorem: Consider
Asa
. We
have t o prove t h a t
isomorphism f r o m ,A,
onto
x
+
x
i s an i s o m e t r i c a l g e b r a
Consider i n ,A,
C R(A).
the order
i n t r o d u c e d i n Example 1. Then
i s an o r d e r u n i t cone (Lemma 1) (Asa,s,I) w i t h monotone m u l t i p l i c a t i o n (Lemma 3 ) . A s t r a i g h t f o r w a r d computation shows ( A s a ) = AS(A)
*
From Lemma 2 and Observation 3 we o b t a i n The theorem o f t h i s s e c t i o n y i e l d s t h e n
for all
. This
x 2 0
I I X II for a l l
x E As,
= II x II f o r a l l
SI(x)
x 2 0.
implies Sup{
=
1 i(u) I v
E A)
( t o see t h a t c o n s i d e r
x2 2 0).
X i s an isometry. Obviously t h i s i s o m e t r y must be an a l g e b r a isomorphism s i n c e t h e elements o f A a r e m u l t i p l i c a t i v e and l i n e a r .
So
x
+
That t h e i s o m e t r y i s o n t o i s an immediate consequence o f t h e StoneWeierstrass Theorem.
Example 3
0
(Gelfand r e p r e s e n t a t i o n o f commutative a l g e b r a s ) .
We s t a r t w i t h a commutative complex normed a l g e b r a
I . L e t us f i r s t embed A T h a t i s a commutative morphism J : A morphism
3
+
: a(A)
construction o f
B
t(A)
in
the free
C*-
A
w i t h u n i t element
a l g e b r a generated by
C*- a l g e b r a such t h a t f o r e v e r y nonzero i n t o a C*- a l g e b r a B t h e r e i s a unique
-,B
II 211
with
=
1.
**-
homohomo-
L e t us f i r s t d e s c r i b e t h e
a(A). Consider f o r a moment A
as a v e c t o r space w i t h
( i n s t e a d o f t ) and denote by A Q A t h e a l g e b r a i c t e n s o r p r o d u c t ( a g a i n w i t h r e s p e c t t o t h e r e a l numbers). r e s p e c t t o t h e r e a l numbers
R
A.
361
Examples and Applications
D e f i n e m u l t i p l i c a t i o n , norm and i n v o l u t i o n i n
x
(
i
A @ A
Then
ai 8 bi)*
=
f bi 8 ai 1
A 8 A
by:
.
i s a normed r e a l a l g e b r a w i t h i n v o l u t i o n and u n i t
I 8 I.
Take t h e q u o t i e n t a l g e b r a w i t h r e s p e c t t o t h e i d e a l generated by
.
{ (ai) 8 b t a 8 ( i b ) la,b E A1
Since t h i s i d e a l i s i n v a r i a n t under t h e i n v o l u t i o n we have a c a n o n i c a l l y d e f i n e d i n v o l u t i o n i n t h e q u o t i e n t . O f course, t h e d i f f e r e n c e between
A Q A
and t h e q u o t i e n t i s t h a t we can now i d e n t i f y
.
(ia) Q b = - a Q ( i b )
T h i s means t h a t we can c o n s i d e r t h e q u o t i e n t a l g e b r a as a complex a l g e b r a such t h a t t h e i n v o l u t i o n
*
satisfies
( x ( a 8 b ) ) * = x(b Q a ) .
NOW, t a k e as
t(A)
the completion o f t h i s algebra w i t h respect t o t h e
s p e c t r a l r a d i u s norm. By abuse o f n o t a t i o n we can now i d e n t i f y As(a(A)) = A(A)* Observe, t h a t t h e u n i v e r s a l p r o p e r t y o f w i t h t h e s p e c t r a l r a d i u s norm of
implies that
A
endowed
can be c o n s i d e r e d as a complex subalgebra t(A) yields:
And a p p l i c a t i o n o f t h e Gelfand-Naimark Theorem f o r
t(A).
-Gelfand
p
t(A)
Representation ( c f . [ 275
F o_ r e_ very
2 i f II a II =
a E A llalI2
-we have for all
m e t r i c a l g e b r a isomorphism -~
1)
p(a) = s u p { l v ( a ) l a E A between
, Jhe~ p A
IU E =
A(A)). & p a r t i c u l a r ,
II II and t h e r e i s an i s o -
and a subalgebra
of
C(A(A)).
362
6.5
Representing Measures
THE BOCHNER
-
WEIL THEOREM
We rephrase some o f t h e r e s u l t s o f s e c t i o n s 6.3 and 6.4 f o r t h e case o f without unit). commutative i n v o l u t i v e normed algebras ( perhaps Let
N
be such an algebra, i . e . a commutative complex normed a l g e b r a w i t h
involution x By
Nsa
+
x*
.
We assume t h e i n v o l u t i o n t o be continuous.
we denote t h e r e a l a l g e b r a o f s e l f a d j o i n t elements i n
Nsa = C X E N I X = x * }
u : N
A functional x E N
all
+
.
a i s s a i d t o be symmetric i f u ( x * )
. The symmetric
c o m p l e x - l i n e a r f u n c t i o n a l s on
u n i q u e l y t o t h e r e a l - l i n e a r f u n c t i o n a l s on symmetric m u l t i p l i c a t i v e
If
i s continuous w i t h
p
C(V)
Ns,
=
N
u(x)
correspond
N , i.e. t h e
.
u i s called positive i f
= 1 t h e n we c a l l i t a s t a t e .
f o r a p o s i t i v e f u n c t i o n a l we have
for
AS(N) a r e t h e non-zero
Nsa.
c o m p l e x - l i n e a r f u n c t i o n a l s on
m u l t i p l i c a t i v e r e a l - l i n e a r f u n c t i o n a l s on
A symmetric c o m p l e x - l i n e a r f u n c t i o n a l
N:
p(xx*) 2 0
for all
Note t h a t
x E N.
Theorem 1:
i)
If
measure
&
u T
continuous and p o s i t i v e t h e n t h e r e i s a p o s i t i v e f i n i t e
on A,(N) -
such t h a t --
ii) _ If
N -----i s a Banach a l g e b r a t h e n e v e r y p o s i t i v e f u n c t i o n a l _ i s -autom a t i c a l l y continuous. iii)
Every extreme p o i n t -~
of t h e s e t o f s t a t e s i s m u l t i p l i c a t i v e . -
-
_
-
I
_
_
_
363
Examples and Applications
Proof:
As described i n 6.3 we adjoin a u n i t I t o N and obtain t h e algebra NI. By B we denote the Banach algebra given by the completion of N I . The convolution i s extended t o N I by putting I* = I , and t o B by c o n t i n u i t y . From s e c t i o n 6.4 we know t h a t Bsa ( s e l f a d j o i n t elements of B ) c o n s t i t u t e s an order u n i t cone, with I as order u n i t . Since B i s commutative the m u l t i p l i c a t i o n i n BSa i s monotone. Now, extend
p t o N I by putting p(1) = C ( p ) . ( I f NI i s not a Banach algebra then extend i t f u r t h e r t o B by continuity).We claim t h a t p i s p o s i t i v e on B , i . e . ~ ( y y*) 2 0 f o r a l l y E B . Since p i s l i n e a r and continuous i t s u f f i c e s t o prove t h a t f o r y = I - x , x E N. In f a c t
-
Therefore p is monotone, hence continuous with respect t o t h e order u n i t norm. Since t h e order u n i t norm i s equal t o the s p e c t r a l radius norm ,IJ i s continuous with respect t o t h e norm. This proves i i ) because we needed c o n t i n u i t y only f o r t h e case when N was not a Banach algebra. a r r i v e d a t t h e s i t u a t i o n considered i n s e c t i o n 6.3 a s s e r t i o n Since we i ) follows from t h e theorem i n t h a t s e c t i o n and i i i ) i s an immediate 0 consequence of t h e preceding lemma. We i l l u s t r a t e this r e s u l t f o r a concrete s i t u a t i o n . Let ( G , - ) be a l o c a l l y compact abelian group. Locally compact a b e l i a n groups have a very rich s t r u c t u r e concerning d u a l i t y (Pontryagin d u a l i t y theorem) and i n v a r i a n t measures (Haar measure, s e e 12401). For a general introduction i n t o t h e theory of these groups t h e reader i s r e f e r r e d t o any textbook on harmonic a n a l y s i s ( 1 i ke [219 I , [148 1 , [184 1 o r [273 I ) . Let us r e c a l l some of t h e basic notions. A m u l t i p l i c a t i v e map 6 denotes the s e t 3 : G -+ t z E t I I z I = 1) i s c a l l e d a character on G o f a l l characters and i s endowed with t h e topology of uniform convergence i s then l o c a l l y compact and i t i s an abelian on compact subsets of G . group with respect t o pointwise m u l t i p l i c a t i o n . Take an element s E G , then s E --t i ( s ) defines a c h a r a c t e r on . Hence, t h e r e i s a
.
364
RepresentingMeasures
canonical homomorphism G
-
which i s continuous a c c o r d i n g t o A s c o l i ' s
+
1emma. One o f t h e most i m p o r t a n t p r o p e r t i e s o f
m
sure
, that
i s a p o s i t i v e nonzero, r e g u l a r Borel' measure m which i s
, i.e.
translation invariant
A c G. Consider
i s t h a t i t admits a -Haar mea-
G
C ao(G)
, the
m(A.s) = m(A)
s E G
for all
and B o r e l s e t s
space o f complex-valued continuous f u n c t i o n s on
G
which vanish a t i n f i n i t y . Endow C ao(G) w i t h t h e sup-norm t o p o l o g y and denote by MB(G) t h e space of continuous l i n e a r f u n c t i o n a l s on C a,(G). Example 3 i n s e c t i o n 2.6.4 sho\:s t h a t f o r every unique bounded complex-valued t i g h t measure iC
IG
x(f) = Thus we can i d e n t i f y
MB(G)
.
G
measures on
f di
S p e c i a l elements o f
MB(G)
For
L 1 (G)
x,y E MB(G)
I G
L 1(dm)
. The
define
we d e f i n e c o n v o l u t i o n
*
y) =
.
E C U,(G)
a r e o b t a i n e d when t h e Haar measure
. Similarly,we
f d(x
J
s ,tEG
f(S*t)
L 2 (G)
.
x*y
and i n v o l u t i o n x* by
L2( G )
even an i d e a l o f
. L1(G)
i s a H i l b e r t space.
dx(s)dy(t)
(MB(G),*,*)
i n v o l u t i v e complex Banach a l g e b r a w i t h u n i t element G)
m is
subspace o b t a i n e d ' i n t h i s way i s
where t h e b a r denotes complex c o n j u g a t i o n . t h e u n i t of
such t h a t
G
w i t h t h e space o f bounded complex-valued t i g h t
m u l t i p l i e d by a d e n s i t y cp E denoted by
,f
x E MB(G) t h e r e i s a on
i s a commutative be
( D i r a c measure a t
i s a complex Banach subalgebra ( w i t h o u t u n i t ) ,
(MB(G),*,*)
.
365
Examples and Applications
For
x E MB(G)
we d e f i n e bounded, continuous, complex-valued f u n c t i o n s
and
Fx
by:
6
on
(F,)(s)
=
sEG
,
S(S) dx(s)
E
G
These f u n c t i o n s a r e c a l l e d t h e F o u r i e r - t r a n s f o r m o f x , r e s p e c t i v e l y . When
cotransform o f
complex-valued f u n c t i o n s on
i) a r e
FX
x
and t h e F o u r i e r
-
C aB(E) ( t h e bounded continuous
endowed w i t h t h e sup-norm and t h e i n -
v o l u t i o n g i v e n b y complex c o n j u g a t i o n , t h e n
C LB(g)
c o n s t i t u t e s a complex
i n v o l u t i v e Banach a l g e b r a w i t h r e s p e c t t o p o i n t w i s e m u l t i p l i c a t i o n . The importance o f t h e F o u r i e r - t r a n s f o r m stems from t h e f a c t t h a t Banach a l g e b r a homomorphism f r o m
MB(G)
into
F
is a
C OB(6). T h i s homomorphism
i s symmetric w i t h r e s p e c t t o t h e i n v o l u t i o n s , i . e . F
u
-
*
= F
u
for all
p E
MB(G)
.
Observation 1: Every
3 E 6 ~-~ d e f i n e s an element (*)
And f o r e v e r y ---
v,(x)
v,
= (Fx)(S')
1
v E A ( L (G))
S
1 E A ~ ( L( G ) )
for a l l
t h e r e i s some
Hence
C
1
= A ( L (GI)
= A,(L
by
1 x E L (G) S E
.
G -such t h a t
v = v-
S
.
1( G ) ) .
Sketch o f t h e P r o o f : R e c a l l t h a t t h e F o u r i e r t r a n s f o r m i s a symmetric Banach a l g e b r a homomorphism. T h i s immediately i m p l i e s t h e f i r s t p a r t .
366
Representing Measures
Now t a k e
1
v E A ( L (G))
Im1-l v ( x
SO(S) =
So E
Then
(1)
s,
. I f one
x
*
y =
1 x E L (G)
and
*
~ ( x + ) 0
.
s E G
Define f o r
bS)
keeps i n mind t h a t
tEG
*
x
bt d y ( t )
v, = v
t h e n one e a s i l y sees
with
R e c a l l t h a t a Banach a l g e b r a separates t h e p o i n t s o f
A
.
.
for all 0
A
i s s a i d t o be semisimple [275 I
if A(A)
Lemma 1:
1 L (G)
i s semisimple
Proof: I n view o f Theorem 1 i ) i t s u f f i c e s t o show t h a t f o r a g i v e n p o s i t i v e 1 x * x * E L (G) t h e r e i s a p o s i t i v e l i n e a r f u n c t i o n a l p such
element that
~ ( *x x*) > 0
F o r y E L 1( G )
.
Such a f u n c t i o n a l i s e a s i l y found:
consider the l i n e a r operator
.
T : L 2 (G) + L 2 (G) g i v e n by Y then t h i s o p e r a t o r i s i n -
2 T cp = y Y cp f o r a l l cp E L (G) If y P 0 Y j e c t i v e . Take now cp + 0 and c o n s i d e r t h e l i n e a r f u n c t i o n a l
P
1
: L (G)
g i v e n by ~ ( y )=
< q,Tycp>
(
< ,>
scalar product i n
L'(G)).
T h i s f u n c t i o n a l i s indeed p o s i t i v e s i n c e
Observation 2:
i) E
separates t h e p o i n t s o f
G
, i . e . t h e canonical map G
+
is
+
t
Examples and Applications
367
in
G)
inj e c t i ve . ii)
6
The l i n e a r h u l l o f
C a ( G ) ( c o n t i n u o u s complex f u n c t i o n s on
i s , w i t h r e s p e c t t o u n i f o r m convergence on compact subsets, dense i n
c
D(G)
.
Proof: i ) i s a consequence o f Lemma 1 and t h e f a c t i i ) Stone-Weierstrass Theorem. 0
6
1
= A(L ( G ) )
(Observation 1 ) .
Another a p p l i c a t i o n o f Theorem 1 i s t h e c h a r a c t e r i z a t i o n o f F o u r i e r - t r a n s forms o f p o s i t i v e f i n i t e measures. L e t us b e g i n w i t h a d e f i n i t i o n :
A function
i s s a i d t o be o f p o s i t i v e t.ype on
f E C ag(G)
f i n i t e s e t o f numbers we have
E a
cl,...,cn n
G
i f f o r every
s ~ ~ . . .E ~G s ~
and elements
ci Ck f ( s i S i l ) 2 0
1
i,k = l O b s e r v a t i o n 3:
f E
i ) Every
6 _ is _ of
p o s i t i v e -t y p e on
G
ii)
. -finite tight
The F o u r i e r t r a n s f o r m of e very p o s i t i v e -~ G _ is _ o f positive t y pe on 6 . iii)If f _ is _ o f p o s i t i v e -t y p e on G then f ( e ) iv)
f E C aB(G)
is _ of _
(*) f o r every --
I
p o s i t i v e ----t y p e i f and o n l y i f f d(x
*
x*) 2 0
x E MB(G).
Sketch o f Proof: i)
direct verification.
ii)Take
cl,.
..,cn
E t
2 (f(s)l
and
fl,. ..,gn
- . Then
E G
measure
T
-for a l l s
on E G
.
Representing Measures
368
n
X
ck
Ci
i, k = l
FT(Ti
5;')
=
SEG
(
X i,k
ck si
Ci
5;')
J I t ci Ci\ 2 ( s ) d.r(s)
=
dT(S)
(S)
2 0
.
s€G
iii) Take
c1 = 1
, c 2 --
a and
. Then
s1 = e, s2 = s
the definition o f
p o s i ti ve t y p e y i e l ds (a
Taking i(f(s) type) Q =
6
t
1) f ( e ) t a f ( s )
a = 1 yields that
-
f(s-'))
- Ifol , i f
(Note, t h a t
f(s-'). f(s)
f(s)
af(s-l) z
+
o
.
i s r e a l , a = i shows t h a t
f(s) t f(s-l)
i s real.
. Hence fo =
t
f(e) 2 0
, since
f
i s o f positive
NOW, e x p l o i t i n g t h e same i n e q u a l i t y w i t h 0, proves t h a t f ( e ) 2 I f ( s ) I
.
i v ) Note t h a t f o r sums o f D i r a c measures ( * ) i s e q u i v a l e n t t o t h e c o n d i t i o n r e q u i r e d i n t h e d e f i n i t i o n o f p o s i t i v e type. Then a p p r o x i m a t i o n o f f i n i t e measures by sums o f D i r a c measures y i e l d s t h e equivalence o f p o s i t i v e t y p e and ( * )
.
0
The f o l l o w i n g theorem i s due t o Bochner 150 1 f o r t h e case t o H e r g l o t z [1601 f o r
G = Z
, and
G = R " , due
t o A. Weil [3221 f o r t h e general case.
Theorem 2:
. -Then t h e
Let f E
C aB(G)
i)
is o f p o s i t i v e type on -
f
following are equivalent: G
ii) There ---- i s a unique p o s i t i v e measure f(s) =
I, S ( s )
ZEG
d.r ( S )
T
E MB(G)
for a l l
-such t h a t
s E G.
369
Examples and Applications
Proof:
ii)* i )L e t x
be a sum o f D i r a c measures on
G
.
Elementary computation
yields:
I
*
f ( s ) d(x
I
x*)(s) =
G
S ( s ) S ( t ) d x ( s ) dx*(t)dT(S)
&G2
and t h i s q u a n t i t y i s Hence
f
since
1 0
i s assumed t o be p o s i t i v e .
T
i s o f p o s i t i v e type.
i)* ii) S i n c e f
6
functional
Denote by
p
on
i s bounded ( O b s e r v a t i o n 3 iii)we can d e f i n e a l i n e a r MB(G)
by
the r e s t r i c t i o n t o
1
L (G)
. We
claim t h a t
p
i s positive i n
t h e sense o f Theorem 1. I n f a c t w i t h O b s e r v a t i o n 3 i v ) we o b t a i n : U(X +
-
X*
x
*
x*) = 5
- i((6, ;(he)
-
X)
=
*
(de
f(e)
Hence, Theorem 1 p r o v i d e s a p o s i t i v e measure U(X)
=
I
V(X)
dr(v)
-
X)*)
6
1
= A(L ( G ) )
;(be
*
he)
. T
1 on A(L ( G ) ) such t h a t for all
VW1(G)) With
+
( O b s e r v a t i o n 1) we can r e w r i t e :
1 x E L (G)
.
37 0
Representing Measures
i s a B a i r e measure on
6
(since a l l
measurable). T h e r e f o r e we can extend
T
t o a r e g u l a r Bore1 measure, i . e .
Note, t h a t
T
S have t o be p we
a t i g h t measure. Combining t h e formula above w i t h t h e d e f i n i t i o n o f have:
Hence
1,
f(s) =
Uniqueness o f
T
?EG
S ( s ) dT(2)
for all
s E G.
i s an immediate consequence o f Observation 2 i i ) .
Note, t h a t Theorem 2 s t a t e s t h a t t h e f u n c t i o n s o f p o s i t i v e t y p e on the restrictions t o
G
( c o n s i d e r e d as a subgroup o f
.
6
)
G
are
o f the Fourier
Since t h e elements o f MB(6) a r e transforms o f p o s i t i v e measures on ^G d i f f e r e n c e s o f p o s i t i v e measures t h i s means t h a t t h e r e s t r i c t i o n map t o G o f t h e F o u r i e r transforms o f
i s b i j e c t i v e . NOW, c o n s i d e r
MB(g)
G
6 .
as subgroup o f
subgroup. Assume t h a t t h e r e i s an element x o E E\G symmetric neighbourhood xo U2 = I x o s t
I s,t
U
of
E U3 c Z \ G
e E
. Then
o f the characteristic functions o f CP E L2('G)
n L 1(t)
f: U
and
xo E E L G
. T h-i s
P o n t r y a g i n D u a l i t y Theorem: G = ~~
lX u2
p
E L2(g)
E.
proves
. Then
cp =
cp
+
lU * lxou2
0,
I t i s e a s i l y shown t h a t
G.
d i c t s t h e f a c t t h a t t h e r e s t r i c t i o n map t o can be no element
a compact
take the convolution
vanishes on
must be t h e F o u r i e r transform o f some
. Take
such t h a t
0
and cp
This i s then a closed
G
n
L1(c)
. But
cp
t h i s contra-
i s b i j e c t i v e . Hence, t h e r e
37 1
Examples and Applications
6.6
- KHINTCHINE FORMULA
THE LEVY
Again
MB(G)
denotes t h e bounded complex-valued
l o c a l l y compact a b e l i a n group measures i n MB(G).
. By
G
MB,(G)
i g h t measures on t h e
we denote t h e p o s i t i v e
Q u i t e o f t e n ,in p r o b a b i l i t y t h e o r y ,one has t o deal
w i t h i n f i n i t e l y d i v i s i b l e elements of t h a t f o r every given
t h e r e i s some
n E N
*
LI = v
*. . .
v
MB+(G)
*v
v
i.e.
E MB,(G)
p
such
with
E MB,(G)
(n-times).
F o r example, c o n s i d e r t h e p r o b a b i l i t y d i s t r i b u t i o n o f a random v a r i a b l e which, f o r a r b i t r a r y
, can
n
be w r i t t e n as t h e sum o f
n
independent
random v a r i a b l e s . T h i s i s t h e s i t u a t i o n which leads t o t h e c e n t r a l l i m i t theorem. Other examples a r e g i ven by t r a n s 1 a t i on
- in v a r i a n t Markov-semi -
) . S i n c e t h e s e examples p l a y an i m p o r t a n t r o l e i n
groups ( s e e [1421,[27]
appl ied p r o b a b i 1 it y t h e o r y
t h e c h a r a c t e r i z a t i o n o f in f i n i t e l y d i v i s i b l e
measures i s o f general i n t e r e s t . I n o r d e r t o a v o i d t e c h n i c a l i t i e s we r e s t r i c t o u r c o n s i d e r a t i o n s t o t h e s p e c i a l case
G =(R,+).
B u t a l l t h e arguments can b e t r a n s f e r r e d t o a more
general s i t u a t i o n . Those readers who a r e i n t e r e s t e d i n t h e general t h e o r y of convol u t i o n semi groups a r e r e f e r r e d t o [158 1,1171 1
81 1 , see a1 so
[1781 and [1421. Recall where
if
G = R
x E R
transform
.
t h e n a1 1 c h a r a c t e r s a r e o f t h e form
Hence we can i d e n t i f y o f a measure
F
lJ
F,(x)
=
R
p €
MB(R)
fi w i t h
, we
ei t x d p ( x )
,
t
+
e
-i tx
and,for t h e F o u r i e r -
R
o b t a i n t h e w e l l known f o r m u l a x E R
=
6 .
Consider t h e f o l l o w i n g s i t u a t i o n : Fix
N E N~
and l e t
f,goygly...ygN~l
f u n c t i o n s such t h a t :
(1)
lim It1
f(t) = 1 + -
: IR + R
be bounded
continuous
372
Representing Measures
(2)
f(t) > 0
(3)
f
t
for all
+
0
N-times continuously d i f f e r e n t i a b l e a t 0 with
is
and f ( " ) ( O )
f")(O)
> 0
(4)
g0(O)
g1(0) =
(5)
t h e functions g k a r e (N-k)gi") ( 0 )
=
=
* * .
k
< m
for 0 5 m < N
0
gN-,(0)
1 -< m 5 N
0 for
lim S U P It g k ( t ) l It1 + -
(6)
=
=
1
times d i f f e r e n t i a b l e a t 0 with
-
k
for k = OY1s2,...,N-1.
Theorem: Let i)
: R +
Whenever p1
ii)
be continuous. -Then t h e following a r e equivalent:
R
f tF
p E MB(R)
P
2-pf
has compact ~support and pl,p2
-,
E K,
-such t h a t
then
There a r e a polynomial P ( t ) of degree < N a p o s i t i v e regular Bore1 measure T W\{Ol and a t 0 w i t h a + ~ ( b I 0 ) I ) 1 -representation --holds f o r a l l t E R: such t h a t t h e following integral ---
u(t)
=
A d +
P(t)
t
f(N)(O)
(For N = 0 t h e sum term of t h e integrand vanishes). Note t h a t the integrand i n t h e i n t e g r a l representation of u i s a bounded continuous function on R ( a consequence of T a y l o r ' s formula together with the assumptions on f and go,...,gN-l) .
Examples and Applications
373
B e f o r e we p r o v e t h e theorem we mention a n o t h e r o b s e r v a t i o n which can be proved by elementary c a l c u l a t i o n : Remark: Let
MB(R)
p E
have compact s u p p o r t . Then t h e F o u r i e r t r a n s f o r m
J
F (x) =
u
R
eixt
dp(t)
i s i n f i n i t e l y o f t e n d i f f e r e n t i a b l e and t h e moments o f
are given by
LI
P r o o f o f t h e Theorem:
(ii) + (i):L e t
x
> 0
. Since
must h o l d f o r
have compact s u p p o r t such t h a t
p
the f i r s t
(N-1) d e r i v a t i v e s o f
. Therefore
Fp
the f i r s t
(N-1)
IF I 5
u
xf
f o r some
v a n i s h a t zero, t h e same
f
moments o f
vanish
p
(remark above). A p p l i c a t i o n o f F u b i n i ‘ s theorem t o t h e i n t e g r a l representation yields:
where
= T
T~
+ a 6
0
and where
FU(c’) f ( E ) - l
i s extended c o n t i n u o u s l y
i n t o t h e o r i g i n ( 1 ’ H o p i t a l ’ s lemma). Th s f o r m u l a immed a t e l y y i e l d s t h e required inequalities.
(i) (ii): measures p
Consider t h e v e c t o r space such t h a t
(7)
p
(8)
F ( 0 ) = F (1)( 0 ) =
E c MB(R)
cons s t i n g o f those
has compact s u p p o r t and t h e F o u r i e r t r a n s f o r m
u
P
moments a r e z e r o
*.*
= F(N-l)(0)
u
= 0
F
v
i s r e a l valued
, i.e. the f i r s t
(N-1)
374
Representing Measures
(9)
.
FP vanishes a t i n f i n i t y
Recall, t h a t t h e F o u r i e r t r a n s f o r m q u i t e o f t e n vanishes a t i n f i n i t y , f o r example i f !J has a continuous densi t y ( R i emann-lebesgue Lemma). Observe t h a t i f f o r a continuous f u n c t i o n v we have t h a t
Iv
!R
then
v
0
dp =
for all
1-1 E
must be a polynomial o f degree
, the
Now consider
R*
each element
r o f IR*
E
< N
.
one p o i n t c o m p a c t i f i c a t i o n o f a linear functional
on
cpr
R
,
and a s s i g n t o
E :
r+O,m
r = m
1F !J( N ) ( 0 )
One e a s i l y checks t h a t
r
+
if
cpr(p)
r = O
i s continuous on R*
f o r every
!J
E
The c o n d i t i o n imposed i n ( i ) guarantees
I u d!J I
R
sup CP,(!J)
for a l l
rER*
!J
E E
.
The Riesz-Konig Theorem g i v e s us a r e g u l a r Bore1 p r o b a b i l i t y measure on IR*
such t h a t
I u d!J = I R*
IR Define p
a = 0(0)
and
E vanish and s i n c e
T = u
cpr(u) d u ( r )
IR\
cp,(!~)
I01
.
p E
E
.
Since t h e f i r s t (N-1) moments o f
i s equal t o
moment we o b t a i n v i a F u b i n i ' s theorem
for a l l
f(N)(0)-l
times t h e N-th
a
E
.
Examples and Applications
J u
R
du =
J v
R
dp
for all
p E
375
E ,
where
B u t v is a continuous function ( T a y l o r ' s formula). F i n a l l y , s i n c e J ( u - v ) d u = 0 f o r a l l p E E the functions
u and v
R
must be equal u p t o a polynomial of degree < N . The condition a + ~ ( R \ { 0 1 ) I 1 i s f u l f i l l e d because T was a p r o b a b i l i t y measure. Let us i l l u s t r a t e this r e s u l t f o r concrete cases. F i r s t observe t h a t we have proved again Bochner's Theorem i n t h e following fomulation: Bochner's Theorem: A continuous function u -
: R +R i s t h e Fourier of-a p o s i t i v e - transform ~ T on R w i t h T ( R ) 5 1 i f and only i f f o r every regular Borel measure ~-~ -----complex Borel measure p 0" R with compact support -and w i t h p1 2 F 2 - p 2 (p, , p 2 E R+) -we have: u
Proof: Take N
=
0 , f = 1, go = l .
0
I t i s not a t a l l d i f f i c u l t t o transform t h i s condition i n t o the positivetype-condi t i o n .
376
Representins Measures
Another s p e c i a l case i s : The Levy
-
Let u : R
Khintchine
hu
g continuous f u n c t i o n . Then,for every
A 2 0, e i s t h e F o u ri e r t r a n s f o~ rm _ o f -some p o s i t i v e f i n i t e r e g u l a r B o r e l measure on R -i f and only i f t h e r e a r e a 2 0 , E R and a p o s i t i v e -f i n i t e Borel measure T JIJ R \ I O ) such t h a t -+
R
Formula:
_
_
_
_
_
I
_
_
_
~
-
_.-
for all --
t E IR
Proof:
A s t r a i g h t f o r w a r d c a l c u l a t i o n shows t h a t f o r any u ( t ) , which has an i n t e g r a l r e p r e s e n t a t i o n as above, t h e f u n c t i o n s e x u(t), x 1 0 , a r e indeed F o u r i e r t r a n s f o r m s o f p o s i t i v e f i n i t e B o r e l measures o n R . N = 2
put
,
f ( t ) = ( l + t 2 ) -t2 I , g o ( t ) = 1 and
x
Assume t h a t f o r every
t 0
the function
exu
gl(t)
=
( 1 + t 2 -1
.
i s the Fourier transform
of some p o s i t i v e f i n i t e B o r e l measure on R. We c l a i m t h a t t h e r e i s some
0 <
p
< +
whenever
such t h a t
pl,p2
t 0
and
p E
MB(R)
has compact s u p p o r t w i t h
Then t h e theorem y i e l d s t h e i n t e g r a l r e p r e s e n t a t i o n f o r
(i~ measure.
since
p-lu
i). Note t h a t t h e c o e f f i c i e n t s o f t h e a r b i t r a r y p o l y ii) must be r e a l s i n c e eB1 and 2 ~ a r e) t h e ez e r o '~t h and~ f i r s t moment, r e s p e c t i v e l y , o f a p o s i t i v e
satisfies assertion nomial
u
P ( t ) = B~ + i B t appearing i n
Examples and Applications
377
Proof o f t h e claim: F i r s t , we show t h a t i f
(*I
Judv
R
and i f
M > 0
M f t Fv 2 0
such t h a t
v
E MB(R)
has compact s u p p o r t
then
t o .
Indeed Bochner's Theorem shows t h a t
J eAudv
Hence
1
I (eAU-l)dv
A
The l i m i t
A
X 2 0
.
- -A1 J d v
t
=
-
-1 F (0) A V
= 0.
of t h e l e f t s i d e y i e l d s ( * ) .
0
-*
for all
2 0
R
Now, c o n s i d e r t h e f o l l o w i n g measure 1 T = b0 - 2 m , where
m
i s t h e r e s t r i c t i o n o f Lebesgue measure t o
t r a n s f o r m i s equal t o M1,F2 > 0
such t h a t
.
M2 FT s f s M I F Now, c o n s i d e r plf
t F
1-1
3 = (pl MI
M 2 0
where
t - p2 f T
-
. Hence,
p
,p2
p1
1-1)
t 0
. Since
that
The F o u r i e r -
sin t 7 ).
( F T ) ( t ) = (1 We can f i n d
[-1,+1].
u
and p1
M1 FT 2 F
.
Fy t 0
E MB(R)
u
w i t h compact s u p p o r t such t h a t we o b t a i n f o r t h e measure
I n a d d i t i o n we have
F- 5 M f
f o r some
we o b t a i n f r o m ( * )
i s independent o f
= ( p 2 M 1 ~t u )
-
u
. For
t h e o t h e r i n e q u a l i t y we p u t
and o b t a i n w i t h ( * )
J u d u
So, t h e c l a i m i s proved.
J
U
~
< Tp 2 p
< m .
Representing Measures
378
6.7 REMARKS AND COMMENTS The s e t X , c o n s i s t i n g of those c o m p l e t e l y monotonic S e c t i o n 6.1: f u n c t i o n f w i t h f 5 1 , c l e a r l y i s a simplex, hence a Bauer simplex, s i n c e t h e extreme p o i n t s e t i s closed. T h i s i s a consequence of t h e uniqueness o f t h e i n t e g r a l r e p r e s e n t a t i o n . I f we c o n s i d e r a1 1 c o m p l e t e l y monotonic f u n c t i o n s t h e n we have an example f o r a s i m p l i c i a l cone w i t h o u t base. F o r i n f o r m a t i o n about c o m p l e t e l y monotonic f u n c t i o n s t h e r e a d e r i s r e f e r r e d t o [3291,[3301,[ 351 and [36
.
1
S e c t i o n 6.2: The l o g a r i t h m s o f t h e i n f i n i t e l y d i v i s i b l e completely monotonic f u n c t i o n s are, again, an example f o r s i m p l i c i a l cone. S e c t i o n 6.3:
In case t h e cone under c o n s i d e r a t i o n i s a v e c t o r space t h e
n o t i o n s o f "monotone mu1 t i p l i c a t i o n " and "weakly monotone mu1 t i p l i c a t i o n " c o i n c i d e . T h i s i s a consequence o f iii)i n t h e Theorem. S e c t i o n 6.4:
I n t h i s s e c t i o n we wanted t o a v o i d t h e symbolic c a l c u l u s
and Cauchy's formula. F o r t h a t reason we considered, f o r example, t h e function
o n l y i n case t h a t
x
has s p e c t r a l r a d i u s norm s t r i c t l y
l e s s t h a n 1. Another f a c t , which we d i d n o t use,is t h a t , i n case o f a C*-
d1
algebra, a s e l f a d j o i n t
m.
x
i s p o s i t i v e i f and o n l y i f
O f course, a l l t h i s can be o b t a i n e d f r o m t h e II x It - x' 5 Gelfand Representation o r t h e Gelfand-Naimark Theorem, r e s p e c t i v e l y . Most
textbooks (see I2751 which we h i g h recommend) use t h e symbolic c a l c u l u s i n o r d e r t o develop t h e elementary t h e o r y , which t h e n l e a d s t o t h e Gel fand Representation. S e c t i o n 6.5:
I n t h i s s e c t i o n some o f t h e arguments, and many o f t h e proofs,
a r e very b r i e f . We squeezed l a r g e p a r t s o f t h e general t h e o r y i n t o a few pages i n o r d e r t o be a b l e t o p r e s e n t t h e Bochner-Weil Theorem i n t h e prop e r c o n t e x t . We thought t h i s necessary i n o r d e r t o emphasize i t s importance as a b a s i c t o o l i n harmonic a n a l y s i s . S e c t i o n 6.6:
One e a s i l y remarks t h a t t h e theorem o f t h i s s e c t i o n c o n t a i n s
a whole h i e r a r c h y o f Levy-Khintchine t y p e formulas. Nevertheless we admit t h a t we do n o t know o f any p r o b a b i l i s t i c i n t e r p r e t a t i o n o f t h e i n t e g r a l r e p r e s e n t a t i o n formulas o f h i g h e r o r d e r .
Examples and Applications
379
The reader should be aware of the f a c t that the decomposition of e l u , given by the Levy-Khintchineformula, i s a decomposition o f this semigroup into a translation-semigroup, a Gaussian semigroup and a Poisson semigroup. Of course, one can use the general integral representations o f the theorem
t o obtain other well known results. For example, N = 2, f ( t ) = t2, g o ( t ) = g l ( t ) = 1 yields Kolmogoroffs formula characterizing those measures of f i n i t e variance [1421 .
APPEND IX MEASURES AND THE R I E S Z REPRESENTATION THEOREM
The fundamental Riesz Representation Theorem concerning t h e r e p r e s e n t a t i o n o f c e r t a i n l i n e a r f u n c t i o n a l s is(among t h e b a s i c theorems)one o f t h e most u s e f u l r e s u l t s i n modern a n a l y s i s . I t l i n k s a n a l y s i s and measure t h e o r y and a l l o w s t h e a p p l i c a t i o n o f measure t h e o r e t i c methods (and language) i n connection w i t h a n a l y t i c problems. F o r t h e convenience o f those readers, who a r e n o t t o o f a m i l i a r w i t h measure theory, we r e c a l l t h e b a s i c d e f i n i t i o n s and we g i v e a s h o r t o u t l i n e how t h i s b a s i c r e s u l t can be proved. For f u r t h e r r e f e r e n c e t h e reader should c o n s u l t
A 1
[ 2471.
ALGEBRAS
U-
We s t a r t w i t h a nonempty s e t
1.1
C 271, L 1511or
.
X
Definition:
A c o l l e c t i o n I: o f subsets o f the following hold : (i)
X E z
(ii)
if A E z
then
X
X\A E
is a
U-
X
if
x W
(iii) i f An E z, n E N, t h e n If z
i s s a i d t o be a u- a l g e b r a i n
U An E n=l
algebra then the p a i r
x
(XJ)
i s c a l l e d a measurable space.
From t h i s d e f i n i t i o n i t i s q u i t e obvious t h a t any i n t e r s e c t i o n (as subsets of
P(X))
of
u- algebras i n
X
i f we t a k e t h e i n t e r s e c t i o n o f a l l
f o r some f i x e d containing M
M c P(X)
. We
U-
u- a l g e b r a i n
algebras i n
X
.
U-
a l g e b r a by
380
X.
Hence,
which c o n t a i n M ,
t h e n t h i s must be t h e s m a l l e s t
denote t h i s
u- a l g e b r a generated by M
i s a again a
algebra i n EM and c a l l i t t h e U-
X
Measures and the Riesz Repremntation Theorem
381
Usually very special u- algebras, like the Borel sets or the Baire sets are studied. Let X be a normal topological space. Then the members of Borel s e t s . If in the u- algebra generated by the closed sets are called -this definition the closed sets are replaced by the open Fu- s e t s (countable unions of closed s e t s ) then we obtain the
U-
algebra of the
-Baire s e t s . We denote these u- algebras by B(X) (Borel sets in X ) and B o ( X ) (Baire sets in X). If X i s metrizable then every open s e t i s an Fu
-
s e t , hence for metrizable X we have:
Bo(X)
B(X) =
.
O f course, we always have
since 1.1 ( i i i ) implies that every Fa- s e t belongs t o the u- algebra generated by the closed s e t s . In general ( i f n o t mentioned otherwise) the u- algebra considered in R ,
6 or 6 U I + - ) , resp., i s the u- algebra of a l l Borel s e t s . 1.e. B(R), B(6) and B(6 u {+-=I) are generated by the following collection C
(--,a1 I a E R I
of intervals.
Now, consider a measurable space from a s e t ?, into X. Then
.
i s a u- algebra in X f : ?, + X i s said t o be if
f-’(z)
c
2 . Of
I f in
(X,z) and a function
X a a- algebra
*
f : X
+
X
-
i s given then ( i ,1)- measurable ( o r measurable in short)
course, i f z
i s generated by
Z
Mc
P(X) then for the
Appendix
382
f
measurability o f
Instead o f
U-
algebras generated by a g i v e n c o l l e c t i o n o f s e t s one can
u- a1 gebras generated by f u n c t i o n s .
consider
F be a c o l l e c t i o n of f u n c t i o n s
So, l e t
stand t h e s m a l l e s t
U-
algebra i n
i s exactly the
Bo(X)
continuous f u n c t i o n s on (upper
x
X)
U-
f € F
such t h a t a l l
a l g e b r a generated by
and t h a t
semicontinuous f u n c t i o n s on
X
Let
t h e n by IF we under-
+ li;
a r e measurable.
i s a normal t o p o l o g i c a l space, t h e n a s i m p l e c o n s i d e r a t i o n y i e l d s
that
Y :
X
f : X
u- a l g e b r a generated by
This i s the
If X
i t s u f f i c e s t o show t h a t
B(X)
C(X)
(realvalued
i s generated by
USC(X)
X).
be an a r b i t r a r y t o p o l o g i c a l space. We r e c a l l t h a t a f u n c t i o n +
6
i s upper semicontinuous i f
e v e r y a E IR
and t h a t
{x E X
a E
IR
( x ) < a3
i s open f o r
cp : X + IR U { + a }i s l o w e r semicontinuous
tx E X
i s upper semicontinuous, o r e q u i v a l e n t l y , i f for all
IY
.
I ~ ( x >) a1
if
-
cp
i s open
A r a t h e r good-natured o b j e c t i s Bd x ( X ) = (X,x)
{flf
: X +IR
i s bounded and
an a r b i t r a r y measurable space.
(I, Bor(lR))- measurable},
T h i s i s n o t o n l y a v e c t o r space, b u t
i n a d d i t i o n a v e c t o r l a t t i c e (under p o i n t w i s e suprema and i n f i m a ) which is
u- complete. Here
whenever
u- complete means t h a t
fn E B d I ( X ) , n E N, such t h a t
pleteness o f Instead o f respectively
BdI(X) BdB(X)
.
sup fn belongs t o nm
sup fn i s bounded. The nm
r e f l e c t s t h e p r o p e r t y r e q u i r e d i n 1.1 and
BdB, (X), we w r i t e
Bor(X)
BdI(X) u-com-
(iii).
and B a i r e ( X ) ,
Measures and the Riesz Representation Theorem
A 2
MEASURES
2.1
Definition:
Let (X,E) be a measurable space. A map m : X measure i f m(D) = 0 and i f (i) m(A U 8 ) t m ( A
(ii)
If
fi
B)
=
for all
m ( A ) t m(B)
An E X, n E N , such t h a t
+
An+1
2
An
383
i s called
uI+-)
IRt
A,B E
for a l l
x n E N
then we have always sup m ( A n )
n a
=
m(
U An) nEN
.
Sometimes the measures defined A measure i s c a l l e d f i n i t e i f m ( X ) < above a r e c a l l e d p o s i t i v e measures t o s e t them a p a r t from signed measures. 03.
Signed measures a r e differences of positive measures. The tripe1 (X,r,m) i s usually s a i d t o be a ~measure space. P o s i t i v e f i n i t e measures w i t h m ( X ) = 1 a r e c a l l e d p r o b a b i l i t y measures, and (X,Z,m) i s then s a i d t o be a p r o b a b i l i t y space. An obvious consequence of i .e.
2 . 1 ( i ) i s t h a t p o s i t i v e measures a r e monotone,
m ( A ) I m(B)
whenever
A,B E II w i t h
A
c
B.
And .:om 2 . ( i i ) t h e important property follows t h a t measures a r e 0- a d d i t i v e , t h a t means : m(U{An
which
In
E Nl)
I 1
n a
m(An),
when An E E, n E N
,.
implies e q u a l i t y i n c a s e t h a t t h e An a r e pairwise d i s j o i n t .
A s e t N E x with m ( N ) = 0 i s c a l l e d an m-nullset and two functions f, g on X having d i f f e r e n t values only on an m-nullset a r e s a i d t o be equal m- almost everywhere ( f = g m- a . e . ) .
Appendix
384
(X,x,m)
Let
Then a measurable f u n c t i o n measure m
?\
For
Then of
m
from
X
to
X
~p :
x
--t
. This
X
a measurable space.
can be used t o t r a n s f e r t h e
can be done i n t h e f o l l o w i n g way.
define
E
m
(i,i) be
be a measure space and l e t
. This
i s a measure on
under 10
.
measure i s c a l l e d t h e -~ image measure
The most i m p o r t a n t f e a t u r e of measures i s t h a t t h e y enable us t o d e f i n e i n t e g r a l s i n a v e r y n a t u r a l way. Roughly speaking, i n t e g r a l s a r e p o s i t i v e l i n e a r f u n c t i o n a l s w i t h s t r o n g convergence p r o p e r t i e s .
(X,r,m) be a measure space. For s i m p l i c i t y we assume t h a t m i s a f i n i t e measure. To d e f i n e t h e i n t e g r a l we s t a r t w i t h measurable step-
Let
f u n c t i o n s . These a r e f u n c t i o n s o f t h e f o l l o w i n g t y p e :
n s = E a k=l where
1 Ak
1 Ak
,
akEW,
AkEE,nEH,
denotes t h e c h a r a c t e r i s t i c f u n c t i o n o f
Ak, For a such a step-
f u n c t i o n an i n t e g r a l i s g i v e n by
X
s dm
n E ak m(Ak) k=l
=
One can e a s i l y show t h a t t h i s d e f i n i t i o n makes sense,i.e. s,
another r e p r e s e n t a t i o n o f
s
=
m
Now, f o r a r b i t r a r y
J
X
f dm =
m E B . 1 , B . E IR, 6 . E j=1 J Bj J J
x ,
then
n
f E Bd 1 (X)
sup[
i f there i s
we d e f i n e
J s dm I f X
2 s,s
measurable s t e p - f u n c t i o n } .
385
Measures and the R i e v Representation Theorem
The i n t e g r a l o f
f
B E II of
on a subset
J f d m = B
J f . l B d m X
X
i s d e f i n e d as
.
An easy c a l c u l a t i o n y i e l d s t h a t by
-,
f
j f d m X
a l i n e a r f u n c t i o n a l on
Bd Z ( X )
i s g i v e n . Furthermore t h i s f u n c t i o n a l i s
monotone, i.e.
1f X
dm 5
X
f
dm
for
f,? E B d I ( X ) w i t h
f I
f .
B u t i n c o n t r a s t t o o r d i n a r y l i n e a r f u n c t i o n a l s t h e i n t e g r a l has t h e f o l l o w i n g s t r o n g convergence p r o p e r t y : Monotone convergence p r o p e r t y : (i.e.
f n+l < for a l l n) - fn -
L e t fn, n E N, be-a d e c r e a s i n g sequence n a
bounded, t h e n ~inf n€N
j X
fn dm
is
i n B d z ( X ) -such t h a t i n f (f,) -
=
I
X
i n f (f,) n€N
T h i s convergence p r o p e r t y r e f l e c t s t h e
0-
dm.
a d d i t i v i t y o f t h e measure m.
Only f o r convenience we have s t a t e d t h i s p r o p e r t y f o r bounded f u n c t i o n s .
A s i m p l e e x e r c i s e shows t h a t i t goes o v e r unchanged t o unbounded f u n c t i o n s . V a r i a t i o n s o f t h e above r e s u l t can be found i n c o u n t l e s s forms i n t h e 1 i t e r a t u r e (Lebesgue Dominated Convergence Theorem, F a t o u ' s Lemma, Lemma o f Beppo -Levi
, etc. ) .
NOW, l e t us c o n s i d e r a monotone, r e a l v a l u e d l i n e a r f u n c t i o n a l B d Z (X)
h a v i n g t h e monotone convergence p r o p e r t y , i . e . i n f n€N
u on u(fn) =
386
Appendix
p ( i n f fn) whenever n€N
5 fn
f,+l
for a l l
n E N and
i n f fn i s bounded. nm
One c o u l d have t h e i d e a t o c a l l such a l i n e a r f u n c t i o n a l an a b s t r a c t i n t e g r a l . B u t t h i s does n o t l e a d t o a n y t h i n g new, s i n c e from an a b s t r a c t integral
for
p :
A E 1
Bdx(X) + R we can e a s i l y o b t a i n a measure by d e f i n i n g
. And -
If X
Finally, a t r i v i a l
- we
no wonder dm =
p(f)
- but useful
should be mentioned. L e t
have then for a l l
-
be a measure space and l e t
measurable space. Then g i v e n a measurable f u n c t i o n
J f dm
=
where
A 3
J
X
dm
focp
i s t h e image measure o f
--
f o r m u l a f o r i n t e g r a l s o f image measures
(X,f,m)
X
.
f E Bz(x)
forall
m under
cp
cp : X + X
(XJ)
be a
we have
f EBd;(i),
.
THE RIESZ REPRESENTATION THEOREM
w i l l be a nonempty compact Hausdorff space and p : C(X) + I R i s a monotone l i n e a r f u n c t i o n a l on t h e r e a l v a l u e d continuous f u n c t i o n s on X Here "monotone" i s always used w i t h r e s p e c t t o t h e p o i n t w i s e o r d e r o f C(X). For t h e e x t e n s i o n o f p t o an i n t e g r a l we need t h e knowledge o f t h e f o l l o w i n g s i m p l e f a c t ( p r o o f l e f t t o t h e r e a d e r ) :
Throughout t h i s s u b s e c t i o n X
.
3.1
Remark:
Let Y
semicontinuous. I f Y < i s a continuous
beupper semicontinuous on (o
g with
(i.e.
X
~ ( x < ) q ( x ) for a l l
Y 5 g < cp
.
and l e t cp be l o w e r x E X)
then there
C e r t a i n l y , t h e reader has observed immediately t h a t , because of t h e compact-
387
Measures and the Riesz Representation Theorem
ness of X , t h i s i s a s p e c i a l case o f t h e famous Tong - K a t e t o v Theorem. We s t a t e d i t i n t h i s s p e c i a l form o n l y t o enable everybody t o f i n d t h e simple proof f o r himself. Now, we extend
G
By d e f i n i t i o n
;:
t o a functional
p
USC(X)
6
-*
on t h e cone o f upper
X. T h i s i s done b y
semicontinuous f u n c t i o n s on
i s s u b l i n e a r and monotone ( w i t h r e s p e c t t o p o i n t w i s e
o r d e r ) . Furthermore,
c o i n c i d e s on
LI
d i f f i c u l t t o see i s t h e f a c t t h a t
C(X)
with
.
p
Somewhat more
G i s indeed l i n e a r .
3.2
Lemma:
(i)
G
i s linear
( i i)
i
has t h e monotone converqence p r o p e r t y USC(X) , i.e. when n E N , jsi p o i n t w i s e d e c r e a s i n g sequence in USC(X) then
,Y,
~
i i ( y n ) = G ( i n f yn) n a
inf na
Proof:
. i s s u b l i n e a r , so i t remains t o
(i) We a l r e a d y observed t h a t
i s s u p e r a d d i t i v e . F o r t h i s purpose we t a k e a r b i t r a r y
prove t h a t I Y ~ , YE ~ USC(X).
the function
Then f o r
cp =
g
Using Remark 3 . 1
-
yll
g E C(X)
+
E
with
g 2
yll
+
y2
and
i s l o w e r semicontinuous w i t h
we f i n d a continuous
h with
h2
cp>
t
> Y2
cp y12
> 0
. We
. put
h 1 -- g - h t t r ~ a ~n d g e t
Using t h e f a c t t h a t
LI
i s a d d i t i v e on
C(X),
t h i s yields:
NOW, t a k i n g on t h e r i g h t hand s i d e t h e infimum o v e r
g
and
t
we have
Appendix
388
Hence,
must be s u p e r a d d i t i v e .
(ii) The i n e q u a l i t y
i s t r i v i a l , since w i t h g 1 Y = i n f Y, n€N some
no E N
i s monotone. Now, we t a k e an a r b i t r a r y g E C(X) by compactness of X , we find, f o r E > 0
. Then
such t h a t
Taking t h e i n f over
gt
g and
E
> Y
E
.
,
Hence
on t h e r i g h t s i d e we g e t t h e d e s i r e d
inequal ity
I n t h e c o n s t r u c t i o n o f C we have approached t h e upper semicontinuous f u n c t i o n s f r o m above by continuous f u n c t i o n s w i t h o u t l o o s i n g a- a d d i t i v i t y . Now, we c o n t i n u e t h i s process by approaching t h e bounded f u n c t i o n s f r o m below by upper semicontinuous f u n c t i o n s . By d o i n g t h i s we l o o s e u- a d d i t i v i t y as w e l l as l i n e a r i t y . Hence we have t o r e s t r i c t t h e con-
s t r u c t e d f u n c t i o n a l t o a s u i t a b l e subspace where a1 1 d e s i r e d p r o p e r t i e s remain v a l i d . F o r t u n a t e l y , i t t u r n s o u t t h a t
Bor(X)
i s such a s u i t a b l e
subspace. L e t us d e s c r i b e t h i s procedure i n g r e a t e r d e t a i l . We denote t h e space o f bounded f u n c t i o n s on functionals f o r
b E Bd(X) ;(b)
X
by
by:
= SUP{;(Y)
I \y
E USC(X),
5 b)
Bd(X). We d e f i n e
389
Measures and rhe Riesz Representation Theorem
and
-
G(b) =
;(-
b ) = i n f { - ;(P)
Both f u n c t i o n a l s a r e monotone and d e f i n i t i o n s u p e r l i n e a r whereas G super1 in e a r i t y o f
;
IY
E USC(X),
-
\y
2 b}
.
( c a l l e d t h e l o w e r i n t e g r a l ) i s by
(upper i n t e g r a l ) i s s u b l i n e a r . The
imp1 i e s :
Hence we have -
(3.1)
v
ll2ll.
Obviously,
equals
; on
from t h e d e f i n i t i o n o f
.
USC(X). And, s i n c e
C ( X ) c USC(X), we o b t a i n
;(Y) s ;(Y) f o r a l l
that
Y E USC(X).
Hence, we have
;(Y) as a consequence o f
=
G(Y)
for all
Y E USC(X)
(3.2)
(3.1).
L e t us t u r n o u r a t t e n t i o n t o
U-
a d d i t i v i t y . The b e s t we can do i s gathered
i n t h e f o l l o w i n g obvious 3.3
Let
Remark: bn E Bd(X), n E N
supremum
, be
-
b
=
sup bn n a
(ii) ;(b)
s
sup L ( b n ) n a
a p o i n t w i s e i n c r e a s i n g sequence w i t h bounded
Then
.
I f we have i n a d d i t i o n
G(bn) = <(bn)
for all
n
390
Appendix
t h e n t h i s i m m e d i a t e l y i m p l i e s ( w i t h t h e h e l p of
(3.1))
T h i s g i v e s us some i m p o r t a n t i n f o r m a t i o n concerning t h e s e t E
F i r s t we c l a i m t h a t Sketch --_ (3.1)
I G(f)
I f E Bor(X)
=
E equals
Bor(X)
= {(f)}
. i; t o g e t h e r w i t h
o f a p r o o f --f o r t h i s c l a i m : S u p e r l i n e a r i t y of and t h e s u b l i n e a r i t y o f ;(b)
i t i s a v e c t o r space s i n c e
whenever
i; i m p l y t h a t E i s a cone. I n a d d i t i o n
-
=
G(-b)
,b
E Bd(X), shows t h a t
-
b E E
b E E.
The supremum o f two upper semic,ontinuous f u n c t i o n s i s a g a i n upper semicontinuous, t h i s e a s i l y leads t o t h e o b s e r v a t i o n t h a t E i s a v e c t o r l a t t i c e w i t h r e s p e c t t o p o i n t w i s e suprema. Remark 3.3 t h i s vector l a t t i c e i s
U-
complete. And, because of
c o n t a i n USC(X). Now, s i n c e
Bor(X)
i s the smallest E
l a t t i c e c o n t a i n i n g USC(X), we o b t a i n
i
The s u b l i n e a r
i;
must be l i n e a r on
. And
3
Bor(X).
E = Bor(X)
(iii) shows t h a t (3.2),
E must
u- complete v e c t o r 0
s i n c e i t i s equal t o t h e
(iii) shows t h a t i t i s i n a d d i t i o n Bor(X) i s an a b s t r a c t i n t e g r a l and so, t h e r e must be a Borel measure m (meaning a measure on t h e B o r e l s e t s ) with superlinear
U-
Remark 3.3
a d d i t i v e . Hence
X
Hence m
restricted to
b dm = i ( b )
for a l l
i s a r e p r e s e n t i n g measure f o r
we mean t h a t t h e i n t e g r a l w i t h r e s p e c t t o t h e given functional
X
p
b E Bor(X)
p
. Here, m
by r e p r e s e n t i n g measure
restricted to
, i.e.
f dm = v ( f )
for all
(3.3)
f E C(X)
.
C(X)
equals
39 1
Measures and the Riesz Representation Theorem
Our c o n s t r u c t i o n o f
m y i e l d s some more i n f o r m a t i o n . Namely,
m
is
r e g u l a r i n t h e f o l l o w i n g sense: m(B) = sup{m(K) for all
I
K c B y K compact}
(3.4)
B E B(X)
T h i s i s e a s i l y seen. Our c o n s t r u c t i o n o f
m
gives
where t h e i n e q u a l i t y i s d e r i v e d from t h e f a c t t h a t t h e f u n c t i o n s
lK, K c X pact s e t
compact, belong t o K,(Y)
USC(X).
NOW, f o r
Y E USC(X)
d e f i n e a com-
by
Then because of m o n o t o n i c i t y and SUP{~;(Y)
Y E
a d d i t i v i t y we o b t a i n :
USC(X),
5 sup{c(lK ( Y ) )
n
0-
1
Y IlB)
n E N,
Y E
U S C ( X ) , Y 5 lg) .
T h i s t o g e t h e r w i t h (3.5) g i v e s t h e d e s i r e d r e g u l a r i t y r e s u l t . I n f a c t , i f we i n s i s t on r e p r e s e n t i n g o u r f u n c t i o n a l by a r e g u l a r measure t h e n a l l t h e e x t e n s i o n s we have done i n t h e c o n s t r u c t i o n o f G a t h e r i n g these r e s u l t s we o b t a i n t h e c e l e b r a t e d :
rn a r e unique.
392
Appendix
Riesz ReDresentation Theorem:
Let
X
be a compact H a u s d o r f f space and l e t
C(X)
p:
-*
R
-be-a
monotone
linear functional. Then t h e r e i s a unique r e g u l a r B o r e l measure m such . _ _ _ _ - ~ - -
that -
X
f dm =
p(f)
for a l l --
f E C(X)
.
I n o u r above reasoning we considered B o r e l -measurabl e f u n c t i o n s . So t h e measure, which appeared i n t h e statement o f t h e Riesz Representation Theorem, was a B o r e l measure. We c o u l d have r e p l a c e d a l l t h e f u n c t i o n s b y Baire-measureable f u n c t i o n s i n t h e p r e c e d i n g c o n s t r u c t i o n , e s p e c i a l l y USC( X )
by Baire-measurable upper semicontinuous f u n c t i o n s . T h i s would
have enabled us t o s t a t e t h e Riesz Representation Theorem w i t h B a i r e measures i n s t e a d o f B o r e l measures. However, s i n c e B o r e l measures r e s t r i c t e d t o t h e B a i r e s e t s a r e B a i r e measures, t h e case o f B a i r e measures
i s a l r e a d y c o n t a i n e d i n t h e preceding f o r m u l a t i o n o f t h e Riesz Representat i o n Theorem. Nevertheless u s i n g B a i r e measurable f u n c t i o n s i n s t e a d o f B o r e l measurable f u n c t i o n s i n t h e p r e c e d i n g c o n s t r u c t i o n y i e l d s a n o t i o n
o f r e g u l a r i t y adapted t o t h e B a i r e s e t s ; i . e . t h e r o l e o f compact s e t s i s taken by t h e compact G6- s e t s . ( R e c a l l , a G6- s e t i s , by d e f i n i t i o n , a c o u n t a b l e i n t e r s e c t i o n o f open s e t s ) . On t h e o t h e r hand we g e t uniqueness
o f t h e r e p r e s e n t i n g B a i r e measure w i t h o u t any f u r t h e r r e s t r i c t i o n ( 1 ike r e g u l a r i t y ) since Baire(X)
i s the smallest
U-
complete v e c t o r l a t t i c e
c o n t a i n i n g C(X). Hence e v e r y B a i r e measure must have t h e adapted r e g u l a r i t y property :
3.5
Remark:
L e t m be a B a i r e measure on m(B) = s u p h ( K )
f o r a l l Baire sets
B
.
I K c B,
X K
. Then i s a compact
G6- s e t } ,
393
Measures and the Riesz Representation Theorem
A 4
THE RANDON
-
NIKODYM THEOREM
L e t u s r e c a l l some n o t i o n s . We s t a r t w i t h p o s i t i v e measures a measurable space
nuous w i t h r e s p e c t t o m-nullset when
T
. This
A E and
m
(denoted
by
i s s a i d t o be a b s o l u t e l y c o n t i -
T
if
<< m)
T
T(A) = 0
f o r every
s i t u a t i o n c o n t r a s t s w i t h t h e case
m a r e m u t u a l l y s i n g u l a r , where m u t u a l l y s i n g u l a r means t h a t
one can s p l i t up such t h a t
The measure
(X,X).
m on
and
‘I
X = A U B
T(A) = 0
and
A
i n t o d i s j o i n t measurable s e t s
.
m(B) = 0
I n o t h e r words,
c o n c e n t r a t e d on d i s j o i n t s e t s . T h i s i s denoted by
T
and
T
.
Im
B
and
m are
F o r t h e p r o o f o f t h e Radon-Nikodym Theorem we need t o r e c a l l t h e d e f i n i t i o n of t h e c l a s s i c a l
Lp- spaces. But, up t o now, we o n l y d e f i n e d i n t e g r a l s
f o r bounded f u n c t i o n c s , so we have t o s t a r t by e x t e n d i n g t h e i n t e g r a l t o unbounded measurable f u n c t i o n s
-,6
f : X
U
I + -1, where
measure space and where measurable means -I.
B o r e l - measurable. Using t h e
monotony o f t h e measure t h i s e x t e n s i o n i s , f o r
J f
dm = sup{
X
For
-f
J
X
g dm
If
i s some
(X,X,m)
f 2 0
, easily
2 g, g E Bd
z(X)>
obtained by
.
f I 0 we d e f i n e t h e i n t e g r a l t o b e t h e n e g a t i v e o f t h e i n t e g r a l o f and f o r a r b i t r a r y
f
the i n t e g r a l i s obtained by s p l i t t i n g
f
up
i n t o i t s p o s i t i v e and n e g a t i v e p a r t ( p r o v i d e d t h a t t h e i n t e g r a l s o v e r these
-
parts are not both i n f i n i t e ) . For
15 p <
t h e c l a s s i c a l space
measurable f u n c t i o n s and
Lm(m)
f : X
+
LP(m)
6 u I +-I
-
i s t h e n t h e space of a l l such t h a t
I
l f l P dm <
,
i s t h e space o f a l l measurable f u n c t i o n s which d i f f e r f r o m a
bounded f u n c t i o n o n l y on an m - n u l l s e t . As u s u a l l y , two f u n c t i o n s i n these spaces which d i f f e r o n l y on an m - n u l l s e t a r e i d e n t i f i e d .
Now, l e t us g i v e two i m p o r t a n t r e s u l t s o f measure t h e o r y . I n case o f f i n i t e measures
m
and
T
a b e a u t i f u l u n i f i e d approach
274 , p. 1231 ) . He considered t h e f i n i t e measure v = T t m and t h e i s due t o von Neumann (see [
394
Appendix
2 L ( v ) . I t i s q u i t e obvious t h a t t h e map f
H i l b e r t space
+
I X
bounded l i n e a r f u n c t i o n a l on
2 L ( v ) . Hence t h e r e must be some
such t h a t , f o r a l l
, one
f E L’(v)
T
is a
2 g E L (v)
has
.
1fd.r = I f g d v X X R e w r i t i n g t h i s one o b t a ns ( w i t h
f d
v =
T t
m)
dT = l f g dm. X Elementary c a l c u l a t i o n shows t h a t one can assume t h a t i n [0,11. So, we c o n s i d e r t h e d i s j o i n t s e t s
Ix E X
D = NOW,
1 g(x)
< 1) and
we d e f i n e measures
Then
T~
Because
<< T
m and =
T
a
t T
T~
s
1
g
E = X \ D = { x l g ( x ) = 1)
takes o n l y values
.
by
T ~ , T ~
m
.
we have decomposed
T
i n t o a b s o l u t e l y continuous and
s i n g u l a r p a r t s w i t h r e s p e c t t o m. Furthermore one e a s i l y shows t h a t such a decomposition i s unique. B u t von Neumann’s argument shows a l i t t l e b i t more. I n o r d e r t o see t h i s we i n s e r t , f o r a r b i t r a r y
A E t , the function
n fn = lA(l t z gk) k=l i n (*)
and we g e t fn ( 1 - g ) d T
A
= I (1-gntl)d-r A
= I g ( 1t
A
Z ‘
k=l
9k ) d m
.
395
Measures and the Riesz Representation Theorem
NOW, writing
h = g ( l + "Z gk ) k=l
and using the f a c t t h a t
D monotonically converges t o
1 and i s equal t o with the monotone convergence property T,(A)
I 1d r = Ih
=
DnA
This implies in particular h
(i)
E
L 1( m ) .
-
0 outside
gntl)
in
D we obtain
dm.
Summing a l l t h i s u p we get:
Theorem ( [ 274 , p.1241):
4.1 Let -
A
( 1
T
and m -be f i n i t e positive measures on There i s a unique decomposition of T~ 4: m and T~ 1 m __
.
---__.
with -
T
(X,E).
into
T = T~
+
rs
such t h a t , -for a l l ( i i ) There i s a function h E L1(m) (called density) -A E E , -we have ~~
ra(A) =
I
A
h dm.
The f i r s t part of 4 . 1 i s called the Lebesgue decomposition theoremandthe second part the Radon-Nikodym theorem. A particular consequence of ( i i ) i s that i f T i s already absolutely continuous with respect t o m then i t can be represented by a density. Both parts of Theorem 4.1 do n o t remain valid in case one drops the condition that the measures be f i n i t e . B u t the second p a r t i s true in a more general situation. All w h a t one has t o assume i s t h a t m i s U- f i n i t e . We recall t h a t m i s said t o be a- f i n i t e i f there i s a sequence An E I: such t h a t m ( A n ) < = and U A,, = X . nEN
Then, by exhausting s e t s with the sequence An , one can prove: Radon-Ni kodym Theorem:
m & positive measures on (X,I:) such t h a t m a- f i n i t e and assume that T i s absolutely continuous --with respect t o m . Then there -i s_ a measurable function (or : X +iR+ u { + = I (called the density of T ) such _ _t h a t T ( A ) = I (or dm -for a l l A E E . Let -
T
_.___-
---I
A
2 uniquely
determined up t o equality m-almost everywhere. If a- -----f i n i t e then we can assume t h a t (or takes only - values ~ in -IR,
(oT
.
T
is
396
A 5
Appendix
SIGNED AND LATTICE
-
VALUED MEASURES
Let us s t a r t with some remarks a b o u t measures having valued in some order complete vector l a t t i c e R I n order t o be able t o deal with i n f i n i t e measureswe adjoin t o Rt = { r E R I r t 01 the abstract element + and we define t h i s element t o be the supremum of every unbounded subset of R . Furthermore we extend the cone operations of R in the obvious way t o R U {+-I So in particular we require t h a t 0 . ( + O D ) = 0 . We remark t h a t multiplication with -1 i s a linear map from R UI+-I into a ( i f one puts - ( + m ) = -).
.
.
-
The theory of R- valued measures can be developed very much in the same way as the theory of real-valued measures, although a word of warning seems appropriate. Arguments depending on techniques related to densities or t o notions like regularity or localization can be transferred t o t h i s nice general situation only under strong additional hypothesis. Let ( X , 1 ) be a measurable space. Then a map an R- valued measure i f T($) = 0 and i f (i1
T
i s positive, i . e .
(ii)
T
i s additive, t h a t means T ( A U B)
(iii)
T
t
T ( A ) E R, U I + - } T ( A ) + T(B)
T(A n B)
i s u- monotone, i . e .
T
: I:
+
R
for a l l for a l l
u {+-I 4E
i s called
Z
A, B E 1
for every increasing sequence An
in
1 we have
lim inf T(A,) n 3-
= T(U An) nEN
O f course, such a measure i s said t o be a fi n i t e measure -if
T(X) < +
Now, l e t us be more precise a b o u t what we understand by a siqned
m.
R-
valued measure (signed measure in short). T h a t i s an additive, u- monotone map T : 1 + R with T($) = 0 such t h a t (iv)
T
i s bounded, i . e .
SUP{T(A)
IA
E I:} < +
m
.
We should remark t h a t in many cases the l a s t condition i s redundant, for
397
Measures and the Riesz Representation Theorem
example i f
5.1 If -
R =R ! :
Lemma: T
: t
+
k i s additive and
P r o o f : ( p r i v a t e communication by For
if
m -n -tone t h -
U-
bounded.
Anton Schep) :
.+(A) = S U ~ I T ( B I) B c A, B E tl . We c l a i m t h a t then, f o r e v e r y n , t h e r e i s B E z w i t h B c A,
A E t we d e f i n e .+(A)
= +
T(B) 2 n
and
T
+ (B)
. This
= +
proves t h e lemma: Because i f
t h e n t h e a s s e r t i o n o f t h e c l a i m p r o v i d e s a d e c r e a s i n g sequence with
T(X,)
t n. Since
T(x1)
T(X,)
=
+
=
in I
-
T
u- monotony and t h e f a c t t h a t
NOW, u s i n g t h e
Xn
i s a d d i t i v e we have
T
=
+ (X)
T
+
l i m i n f - r ( X1\ Xn) n +a
i s i n c r e a s i n g we g e t
Xl\Xn T(
n Xn)
n€N
This implies 0 =
-
l i m i n f T(X,) n +-
hence a c o n t r a d i c t i o n t o
T(X,)
-
P r o o f o f t h e c l a i m : Because T(C,)
that
2
+ T (C,)
n. I f
+ T (A1)
+
=
procedure. Take put
A2 = A1\
C2
-
C2
= +
T
L n
+(A)
put
=
n
Xn)
for all
n.
+
+
B = C1.
T(
n€N
we f i n d
,
C1 c A
I f not,we have f o r
(consequence o f t h e a d d i t i v i t y o f c
A1
with
T(C,)
2
such t h a t
n. Assume a g a i n
T).
A1 = A \ C 1
Now, r e p e a t t h i s
T+(C,)
<
and so f o r t h . I f t h i s procedure stops a t some
p u t B = Cm, i f i t does n o t s t o p we have found a d i s j o i n t sequence
m
and
Cm t h e n C,c
A
398
Appendix
T ( C ) t n. Then p u t
with
m
+
-
= l i m i n f T(
N
-, o3
u C and g e t t h e c o n t r a d i c t i o n
C =
EN
N
u C ) = T(C)
m=l
m
E
16
.
0
Signed measures and p o s i t i v e measures a r e c l o s e l y r e l a t e d :
Theorem:
5.2 Let
_ .
T
measure
be _ an R_ T
t
valued s i g n e d measure. Then t h e r e a r e a p o s i t i v e f i n i t e ___
and a p o s i t i v e measure
T-
such t h a t --
T
=
T
t
-
T-
.
Proof: D e f i n e .+(A) T
t
= s u p { ~ ( B )I B c A, B E E l
i s p o s i t i v e and a d d i t i v e on z
.
Then i t i s q u i t e obvious t h a t
. Actually,
a- monotony i s q u i t e obvious
too. B u t c e r t a i n l y many readers a r e aware o f t h e f a c t t h a t i n qeneral o r d e r complete l a t t i c e s one has t o be e x t r e m e l y c a r e f u l i n u s i n q t h e d i s t r i b u t i v e law f o r sup and i n f i n an u n r e s t r i c t e d manner, so t h e y m i g h t w o r r y about u- monotony. Therefore we p r e s e n t t h i s d e t a i l .
T
t
i s monotone ( i . e .
A c B i m p l i e s T'(A) 9 T'(B)), so i t remains t o prove t h a t f o r an a r b i t r a r y i.ncreasing sequence An i n I and f o r B c u An we have nEN T(B) 5 l i m i n f n +m We d e f i n e
Bn = B f l An
for all
T
t
(A,)
n. The
Bn
a r e i n c r e a s i n g and
B =
u B.,
n€N
Therefore we o b t a i n t
T ( B ) = l i m i n f r ( B n ) 5 l i m i n f T (B,) 5 n + ~ n -,= 5 l i m i n f T t (A,) , s i n c e Bn c An f o r a l l n +W "
F i n a l l y , t h e n e g a t i v e p a r t o f t h e measure i s o b t a i n e d b y d e f i n i n g
-
T-(A)
= T(A)
-
.+(A),
A E I
0
n.
Measures and the Riesz Representation Theorem
399
I t should be remarked that the assumption on boundedness for signed measures plays an essential role in this proof, since for T+ ( A ) = + the above definition of T - would make no sense a t a l l . By the usual standard procedure (as described in A2 ) one can define an integral f d r with respect t o a positive measure X
T
w
.
Of course, i f the measure i s not f i n i t e one has t o r e s t r i c t the construction t o the positive cone
If
Bd z+(X) = {f E Bd Z(X)
of the bounded z- measurable functions Bd we then define
If X
where
I X
d~
t T ,T-
d T
If
=
X
d r
t
-
are the measures given by
2 01
For a signed measure
E(X).
If
d.r-
, f
Theorem
5.2.
X
R- valued linear functional on
defines an
E Bd Z+(X),
The integral
Bd I t ( X
with the
fol 1owing additional properties : (i)
j
(ii)
I
X
X
-
d T
d
T
i s bounded , i . e . sup1 is
U-
If X
d r 10 I f 5 l X } < +
monotone, t h a t means, i f
T
fn
-
i s a bounded
increasing sequence in Bd z+(X) then
I (sup f n ) d r X
nEN
=
I
lim inf fn d.r n-rX
.
Changing the point of view, one sees that every u- monotone bounded R- valued functional p on Bd z+(X) defines a signed measure T by T(A) =
p(lA)
,
A
E
E
.
And, no wonder, the integral given by T turns o u t t o be the functional So, we have, canonically given, a one-to-one correspondence between the
p
.
400
Appendix
bounded
R-
u- monotone
R-
Bd I + ( X )
valued f u n c t i o n a l s on
valued s i g n e d measures on
. This
X
and t h e cone o f
correspondence i s l i n e a r and monoBd E+(X)
tone ( w i t h r e s p e c t t o t h e a p p r o p r i a t e p o i n t w i s e o r d e r s on
and I).
Now, one m i g h t ask i f t h e fundamental Riesz R e p r e s e n t a t i o n Theorem c a r r i e s o v e r t o R- valued measures. I n f a c t t h e answer i s a f f i r m a t i v e [340] i n t h e sense t h a t i f
X
i s compact t h e n f o r each monotone l i n e a r
t h e r e i s an R- valued B a i r e measure on
X
p : C(X)
which r e p r e s e n t s
theorem can be o b t a i n e d as an a p p l i c a t i o n o f t h e Loomis
-
.
p
-,R
This
S i k o r s k i Theorem
i n s e c t i o n 1.2.3, b u t s i n c e we a r e g i v i n g i n c h a p t e r I 1 4 a f a r reaching g e n e r a l i z a t i o n o f t h i s r e s u l t we do n o t p r e s e n t t h e d e t a i l s here. B u t a l ready i n t h e c o n t e x t o f t h e Riesz Representation Theorem a word o f warning seems a p p r o p r i a t e because i n general t h e r e p r e s e n t i n g measures do n o t have t h e r e g u l a r i t y p r o p e r t y o f Remark A 3 . 5 . I n fact, regularity f o r a l l these measures i s e q u i v a l e n t ([3391) t o R b e i n g weakly U- d i s t r i b u t i v e .
R
i s s a i d t o be weakly
{bn,k
1n
~ Ek N I w i t h sup i n f nEN k m
u- d i s t r i b u t i v e i f f o r e v e r y bounded subset
bn,k+l b
nyk
- b n,k < =
inf &NN
where NN i s t h e f a m i l y o f f u n c t i o n s
we have sup b nEN n,cp(n)
cp : N
-,N
.
I n t h e r e a l - v a l u e d case a p a r t i c u l a r consequence of t h e Riesz
-
Represen-
t a t i o n Theorem i s t h a t e v e r y f i n i t e B a i r e measure on a compact space can be extended t o a r e g u l a r Bore1 measure. T h i s r e s u l t even f a i l s f o r weakly u- d i s t r i b u t i v e Dedekind complete v e c t o r l a t t i c e s [3401. Another fundamental
r e s u l t which does n o t c a r r y over t o t h e general s i t u a t i o n i s t h e HopfKolmogorof Extension Theorem ( o r e q u i v a l e n t l y t h e Daniel1
-
Stone Theorem).
Matthes proved t h a t under t h e a d d i t i o n a l assumption o f weak U- d i s t r i b u t i v i t y t h e Hopf-Kolmogorof Theorem remains t r u e and M a i t l a n d W r i g h t [339] showed t h a t t h e e x t e n s i o n p r o p e r t y s t a t e d i n t h i s theorem i s i n f a c t e q u i valent t o
R
b e i n g weakly
U-
distributive.
Measures and the Riesz Represntation Theorem
401
A t the end of this section we would like t o mention that in the general lattice-valued case the boundedness condition in the definition of sinned measures was n o t superfluous. Example (private communication of A. Schep):
-.
Let R be equal t o the space co consisting of a l l sequences converging t o 0 for n
-,
(a,)nEN
co i s an order complete vector l a t t i c e
with respect t o the obvious order. Let m be the Lebesgue measure on [0,11 and take a n orthonormal sequence ( r n ) in L 2 ( m ) such t h a t , f o r a l l n , lrnl
= 1
m- almost everywhere. The Rademacher functions for example
have t h i s property. NOW, take for z the Bore1 subsets of [0,1] T : E + c 0 by
This i s always an element of
and define
co , because i t i s the sequence given by the
Fouriercoefficients (with respect t o
( r n ) ) of
lA
.
B u t s u p { ~ ( AI) A E 11 , i f i t existed, would be given by the constant sequence (
1
1 lrnl
dm)n
E N = ( l , l ,...)
,
0
which i s certainly n o t a n element of
co
,
On the other hand a standard calculation shows t h a t tone.
T
i s in f a c t u- mono-
This Page Intentionally Left Blank
REFERENCES
1.
A.D. Aleksandrov: Additive s e t functions i n a b s t r a c t spaces, Mat.Sb. 13 (1943), 169-238
2.
E.M. Alfsen: Comoact Convex s e t s and Boundarv I n t e s r a l s , Erqebnisse der Mathematik Vol. 57, Springer-Verlag, Beriin -Heidelberg-- New York 1971
3.
D. Amir: Continuous function spaces with the bounded extension property, Bull. Res. Counci 1 I s r e a l 1OF (1962), 133-138
4.
--
Projections onto continuous function spaces, Proc. AMS 15
(1964), 396-402
5.
P.R. Andenaes: Hahn-Banach Extensions which a r e maxima on a given Cone, Math. Ann. 188 (1970), 90-96
6.
T. Ando: On fundamental p r o p e r t i e s of a Banach space w t h a cone, P a c i f i c J . Math. 12 (1962), 1163 - 1169
7.
B. Anger, J . Lembcke: Hahn-Banach type theorems f o r hypolinear functionals on preordered topological vector spaces, P a c i f i c J . Math. 54 (1974) 13-33
8.
-- , -- Hahn-Banach type theorems f o r hypolinear f u n c t i o n a l s , Math. Ann. 209 (1974), 127-151
9.
R . A . Arens, I.M. ,Singer: Function values as boundary i n t e g r a l s , Proc. AMS 5 (1954), 735-745
10.
W. Arveson: An I n v i t a t i o n t o C*- algebras, Springer-Verlag, Berlin Heidelberg New York 1976
11.
L . Asimov.. A.J. E l l i s : Facial decomPosition of l i n e a r i l v compact simplexes and separation of functions on cones, P a c i f i c j. Math. 34
-
(1970), 301-309
12.
G. Aumann: Ober d i e Erweiterung von additiven monotonen Funktionen
13.
K. Baker: Free vector l a t t i c e s , Canad. J . Math. 20 (1968), 58-66
14.
S . Banach: Sur l e s f o n c t onelles l i n 6 a i r e s , Studia Math. 1 (1929 211-216 and 223-239
auf regular geordneten Halbgruppen, Arch.Math. 8 (1957), 422-427
403
3
-
References
404
15.
S. Banach: Th’eorie des o p k r a t i o n s l i n e a res, Monografje Matematyczne,
16.
J. B a t t : D i e Verallqemeinerunqen des Da s t e l l u n g s s a t z e s von F. Riesz und i h r e Anwendungen, Jahresber. DMV 74 (1973) , 147-181
17.
H. Bauer: Un probleme de D i r i c h l e t pour l a f r o n t i e r e de S i l o v d ’ u n espace compact, C.R. Acad.Sci. P a r i s 247 (1958), 843-846
18.
--
19.
--
11
20.
--
F o u r i e r 11
21.
Kennzeichnung kompakter Simplexe m i t abgeschlossener Extremalpunktmenge, Arch. Math. 14 (1963), 415-421
22.
-- Aspects o f l i n e a r i t y i n t h e t h e o r y o f f u n c t i o n algebras, S c o t t F o r e m a n and Co. (Symposium on F u n c t i o n Algebras, Tulane 1965, p. 122-137) 1966
23.
Vol
. 1, Warszaw
1932
M i n i m a l s t e l l e n von Funktionen und Extremalpunkte, Arch.Math. (1958) , 389-393
9
M i n i m a l s t e l l e n von Funktionen und Extremalpunkte I1 , Arch.Math. (1960) , 200-205 Schilowscher Rand und D i r i c h l e t s c h e s Problem, Ann.1ns.t. (19611, 89-136
--
--
Harmonische Raume und i h r e P o t e n t i a l t h e o r i e , L e c t u r e Notes Math. 22, S p r i n g e r Verlag, B e r l i n - H e i d e l b e r g New York 1966
-
--
24.
Choquetscher Rand und I n t e g r a l d a r s t e l l u n g e n , Jahresber. Deutsch. Math.Ver. 69 (1967) 89-104
25.
Seminar uber P o t e n t i a l t h e o r i e , L e c t u r e Notes Math. 69, S p r i n g e r Verlag, B e r l i n H e i d e l b e r g - New York 1968
--
-
26.
-- Approximation and a b s t r a c t Boundaries,
27.
-- Wahrschei n l ic h k e i t s t h e o r i e und Grundzuge d e r MaBtheori e , De G r u y t e r , B e r l i n - New York 1978
28.
-- Harmonische Raume, i n : Jahrbuch O b e r b l i c k e Mathematik 1981, B i b 1i o g r a p h i s c h e s I n s t i t u t , Mannheim 1981
29.
H.S. Bear: The S i l o v boundary for a l i n e a r space o f continuous f u n c t i o n s , Amer. Math. Monthly 68 (1961) , 484-485
30.
Y . Benyamini: Separable G - spaces a r e isomorphic t o C(K) spaces, I s r a e l J . Math. 14 (1973), 287-293
(1978), 632-647
Amer. Math. Monthly 85
31.
--
32.
Y. Benyamini, J . Lindenstrauss: A predual o f l 1
An M- space which i s n o t isomorphic t o a C ( K ) - space, I s r a e l J. Math. 28 (1977), 98-102 isomorphic t o a
C(K)-
which i s n o t soace, I s r a e l J. Math. 13 (1972), 246-259
405
References
33.
J . Berg , J . L o f s trom: I n t e r p o l a t i o n spaces, Spri n g e r - V e r l ag , B e r l i n H e i d e l b e r g - New York 1976
34.
S. Bernau: Free a b e l i a n l a t t i c e groups, Math.Ann.
35.
S. B e r n s t e i n : Sur l a d ' e f i n i t i o n e t l e s p r o p r i g t g s d e s f o n c t i o n s a n a l y t i q u e s d ' u n e v a r i a b l e r @ e l l e , Math.Ann. 75 (1914), 449-468
36.
--
1-66
-
180 (1969) 48-59
Sur l e s f o n c t i o n s absoluments monotones, Acta. Math. 5 1 (1928),
37.
K.D. B i e r s t e d t : Verallgemeinerungen des Satzes von Stone-WeierstraB, i n : Jahrbuch O b e r b l i c k e Matnematik 1975, 109-135, BI-Verlag, Mannheim 1975
38.
K.D. B i e r s t e d t , R.Meise, W.H. Summers: A p r o j e c t i v e d e s c r i p t i o n o f weighted in d u c t i ve 1 i m i t s , p r e p r i n t 1981
39.
G. B i r k h o f f : L a t t i c e Theory, AMS Colloquium P u b l i c a t i o n s , V o l . 25, 1948
40.
E. Bishop: A minimal boundary f o r f u n c t i o n algebras, P a c i f i c
41.
E . Bishoo. K.de Leeuw: The r e o r e s e n t a t i o n o f l i n e a r f u n c t i o n a l s bv measures'& s e t s o f extreme p b i n t s , Ann.Inst. F o u r i e r (Grenoble) 3 (1959), 305-331
42.
D. B l a c k w e l l : Comparison o f experiments, i n : Proc. Znd B e r k e l e y Symposium on M a t h . S t a t i s t . and P r o b a b i l i t y , 93 - 102, 1950
43.
J . B1 a t t e r , G.L .Seevers : I n c l us i o n s , i n t e r p o s i t i on and a p p r o x i m a t i o n , i n : Approximation Theory (Proc. Sympos. A u s t i n ) Academic Press, New York 1973
44.
--
45.
R.D. B l e i e r : Free Vector L a t t i c e s , T r a n s a c t i o n s AMS 176 (1973), 73-87
46.
J. B l i e d t n e r : A n o t e on adapted cones, L e c t u r e Notes i n Math. 541, (A. Bellow, D. Kolzow, eds). 253-254, S p r i n g e r V e r l a g 1976
47.
N. Boboc, A. Cornea: Convex cones o f l o w e r semicontinuous f u n c t i o n s on compact spaces, Rev. Romaine, Math. Pures Appl. 1 2 (1967), 471-525
48.
F. Bohnenblust: An a x i o m a t i c c h a r a c t e r i z a t i o n o f Lp- spaces, Duke Math.J. 6 (1940), 627-640
49.
F. Bohnenblust, S. Kakutani: Concrete r e p r e s e n t a t i o n o f M- spaces, Ann. o f Math. 42 (1941), 1025-1028
50.
S. Bochner: Vorlesungen uber F o u r i e r s c h e I n t e g r a l e , Akademie Verlag,
Math. 9 (1959), 629-642
J.
-- I n t e r p o s i t i o n and l a t t i c e cones o f f u n c t i o n s , T r a n s a c t . AMS'222 (1976), 65-96
L e i p z i g 1932
408
References
51.
F.F. B o n s a l l : S u b l i n e a r f u n c t i o n a l s and i d e a l s i n p a r t l y o r d e r e d v e c t o r spaces, Proc. London Math. SOC. 4 (1954), 402-418
52.
Regular i d e a l s o f p a r t i a l l y ordered v e c t o r spaces, Proc. London Math.Soc. 6 (1956) , 626-640
53.
On t h e r e p r e s e n t a t i o n o f p o i n t s o f a convex s e t , J . London Math. SOC. 38 (1963), 332-334
54.
F.F. B o n s a l l , J . Duncan: Complete normed algebras, Ergebnisse d e r Math. Bd . 80, Springer-Verlag, Berlin-Heidelberg-New York 1973
55.
N. Bourbaki: El’ements d ’ h i s t o r e des mathkmatiques, Hermann,Paris 1960
56.
--
--
--
1969
El@ments de mathematique ( I n t e g r a t i o n , Chap. I X ) Hermann, P a r i s
57.
R.D. Bourgin, G.A. Edgar: Non-compact Simplexes i n Banach Spaces w i t h t h e Radon-Nikodym P r o p e r t y , J.Functiona1 A n a l y s i s 23 (1976) , 162-176
58.
0. B r a t t e l i , D.W. Robinson: Operator Algebras and Quantum S t a t i s t i c a l Mechanics I , S p r i n g e r Verlag, B e r l i n - H e i d e l b e r g - New York 1979
59.
A, Browder: I n t r o d u c t i o n t o F u n c t i o n Algebras, W.A. Benjamin, New Amsterdam 1969 York
60.
R.C. Buck: Bounded continuous f u n c t i o n s on a l o c a l l y Michigan Math.J. 5 (1958), 95-104
61.
P.L. Butzer, S. G i e s e l e r , F. Kaufmann, J.R. Nessel, E.L. S t a r k : Eduard He1 l y (1884-1943) Eine n a c h t r a g l i c h e Wurdigung, Jahresber. DMV 82 (1980), 128-151
62.
P. C a r t i e r , J.M. F e l l , P.A. Meyer: Comparison des mesures porte‘es p a r un ensemble convexe compact, B u l l .Soc.Math. France 92 (1964), 435-445
63.
D . I . C a r t w r i g h t : Extensions o f p o s i t i v e o p e r a t o r s between Banach l a t t i c e s , Memoir AMS 164, 1975
64.
S . D. C h a t t e r j i : M a r t i n g a l e convergence and t h e Radon-Ni kodym theorem i n Banach spaces, Math. Scand. 22 (1968), 21-41
65.
C. Chevally: Fundamental concepts o f algebra, Academic Press, New York 1956
66.
T.H. Choe: P a r t i a l l y ordered t o p o l o g i c a l spaces, An.Acad.brasi1. CiOnc. 51 (1979) , 53-63
67.
G. Choquet: E x i s t e n c e u n i c i t ’ e des r e p r i i s e n t a t i o n s i n t i i g r a l e s en moyen des p o i n t s extriimeaux dans 1es c6nes convexes , S’emi n a i r e Bourbaki 139 (1956), 15 pp.
68.
-
--
compact space,
E x i s t e n c e de r e p r i s e n t a t i o n s i n t g g r a l e s en moyen des p o i n t s extrhmaux dans l e s canes convexes, C.R. Acad.Sci. P a r i s 243 (1956), 699-702
References
69.
407
G. Choquet: Le thgordme de r e p r k e n t a t i o n s i n t h g r a l e s dans l e s ensemble convexes compacts, Ann. I n s t . Fourier (Grenob1e)lO (1960), 333-344
70.
--
71.
--
72.
--
73.
G. Choquet, P . A . Meyer: Existence e t unicit; des repr6sentations i n t g g r a l e s dans l e s convexes compacts quelconque, Ann.Inst. Fourier (Grenobl e ) 13 (1963), 139-154
74.
G. Choquet, H . Corson, V. Klee: Exposed points of convex s e t s , P a c i f i c J. Math. 1 7 (1966), 33-43
75.
R. Cignoli: A Hahn-Banach Theorem f o r d i s t r i b u t i v e l a t t i c e s , Rev.Un. Mat. Argentina 25 (1971), 335-342
76.
H . B . Cohen, H.E. Lacey: On i n j e c t i v e envelopes of Banach spaces, J . Functional Analysis 4 (1969), 11-30
77.
H.S. Collins: S t r i c t , weigthed, and mixed topologies, and a p p l i c a t i o n s , Advances i n Math. 19 (1976), 207-237
78.
P.F. Conrad: Free abelian 1-groups and vector l a t t i c e s , Math.Ann. 190 (1971) , 306-312
79.
C. Constantinescu, A. Cornea: Potential Theory on Harmonic Spaces, Grundlehren Bd. 158, Springer Verlag, Berlin - Heidelberg - New York 1972
80.
M. Cotlar: Sobre l a Teoria algebraica de l a Medida y el Teorema de Hahn-Banach, Rev. Un. Mat. Argentina 17 (1955), 9-24
81.
Repr6sentations i n t e g r a l e s dans l e s canes convexes sans base compacte, C.R.Acad.Sci.Paris 253 (1961), 1901-1903
Remarque d propos de l a dhnonstration de l ' u n i c i t i t de P.A. Meyer, S'eminaire Brelot-Choquet - Deny 6e .annee N O . ~ , 1961/62 Lectures on Analysis 11, Benjamin, New York 1969
P h . Counrrege: Gknkrateur i n f i n i t e s i m a l d'un semigroupe d$ convolution
sur
R , e t formule de L6vy-Khinchine, Bull.sci.math. 2 ser. 88 (1964), 3-30
82.
T.M. Creese: Norm i n t e r p o l a t i o n in:function algebras and t h e piecemeal recovery of maximal ideal spaces , in: Function A1 gebras , S c o t t Foresman, p . 70-83, Chicago 1966
83.
P.J. Daniell: A general form of t h e i n t e g r a l , Ann. Math. 19 (19171918) , 279-294
84.
E . B . Davies: A generalized theory of convexity, Proc. London Math. SOC. 17 (1967), 644-652
85.
J . Diestel: Geometry of Banach spaces - s e l e c t e d t o p i c s , Lect. Notes Math. 485, Springer Verlag, Berlin - Heidelberg - New York 1975
References
408
86.
J. D i e s t e l , J.J. Uhl: Vector Measures, Mathematical Surveys 15, AMS, Providence 1977
87.
H. Dinges: Decomposition i n o r d e r e d semigroups, J . F u n c t i o n a l A n a l y s i s 5 (1970) ,436-483
88.
J . Dixmier: Les C*- algebras e t l e u r s r e p r g s e n t a t i o n s , G a u t h i e r V i 11a r s , P a r i s , 1964
89.
K . Donner: E x t e n s i o n o f p o s i t i v e l i n e a r o p e r a t o r s i n Lp- spaces, Comptes Rendus Math. Roy.Soc. Canada, Vol . I 1 (1980), 17-20
90.
--
F o r t s e t z u n g p o s i t i v e r Operatoren und Korovkin-Satze, Erlangen, 1980
preprint,
91.
R.M. Dudley: Distances o f p r o b a b i l i t y measures and random v a r i a b l e s , Ann.Math. S t a t i s t . (1968) , 1563-1572
92.
3. Dugundji: Topology, A l l y n and Bacon, Boston 1972
93.
G.A. Edgar: A noncompact Choquet theorem, Proc. AMS. 49 (1975), 354-358
94.
--
95.
--
96.
Extremal I n t e g r a l Representations, J. F u n c t i o n a l Analys. 23 (1976), 145-161
On t h e Radon-Nikodym property and M a r t i n g a l e Convergence, i n : Vector space measures and a p p l i c a t i o n s I1 (R.M. Aron, S. Dineen, eds.) L e c t u r e Notes i n Math. 645, S p r i n g e r Verlag, B e r l i n - H e i d e l b e r g New York 1978
D.A. Edwards: The homeomorphic a f f i n e embedding o f a l o c a l l y compact cone i n t o a Banach dual space endowed w i t h t h e vague topology, Proc. London Math .Soc. 14 (1964), 399-414
97.
-- S’eparation des f o n c t i o n s r ’ e e l l e s d e f i n i e s s u r un simplexe de Choquet C.R. Acad.Sci. P a r i s 261 (1965), 2798-2800
98.
--
Choquet boundary t h e o r y f o r c e r t a i n spaces o f l o w e r semicontinuous f u n c t i o n s , S c o t t F o r e m a n and Co. (Symposium on F u n c t i o n A1 gebras , Tul ane 1965) 1966
99.
A c l a s s o f Choquet boundaries t h a t a r e B a i r e spaces, Q u a r t . J . Math. Oxford 17 (1966), 282-284
100.
E.G. E f f r o s : On a c l a s s o f r e a l Banach spaces, I s r a e l J. Math. 9 (1971), 430-458
101.
A.J. E l l i s : The d u a l i t y o f p a r t i a l l y ordered normed l i n e a r spaces, J. London Math. SOC. 39 (1964), 730-744
102,
H. Fakhoury: Pr@duaux de L- espace: N o t i o n de Centre, J . F u n c t i o n a l Analys. 9 (1972), 189-207
--
103. K. Fan: Minimax theorems, Proc. Nat. Acad.Sci. 39 (1953), 42-47
409
Refemnces
104.
J. Farkas: Uber d i e T h e o r i e d e r e i n f a c h e n Ungleichungen, J . Reine Angew. Math. 124 (1902), 1-27
105
E. F i s c h e r : Sur l a convergence en moyenne, C.R. 144 (1907) 1022-1024
106.
K. F l o r e t : Weakly compact sets, L e c t u r e Notes Math. 801, S p r i n g e r Verlag, B e r l i n - H e i d e l berg-New York 1978
107.
H.O. F l o s s e r : Dini-Verbande m i t f a s t g u t f r i s i e r t e m Dualkegel, Math.Z. 150 (1976), 111-116
108.
-- Korovkinsche Approximation s t e t i g e r Funktionen, Jahrbuch Uberb l i c k e Mathematik 1980, B i b l i o g r a p h i s c h e s I n s t i t u t , Mannheim, 93-119
109.
H.O. F l o s s e r , R. I r m i s c h , W. Roth: I n f i m u m - s t a b l e convex cones and approximation, Proc. London Math. SOC. 42 (1981), 104-120
110.
L.R. Ford, D.R. Fulkerson: Flows i n Networks, P r i n c e t o n U n i v . Press, P r i n c e t o n 1962
111.
D.H. Fremlin, D.J.H. Gar.ling, R.G. Haydon: Bounded measures on topol o g i c a l spaces, Proc. London Math. SOC. 25 (1972), 115-136
112.
Z. F r o l i k : A g e n e r a l i z a t i o n o f realcompact spaces, Czech.Math.J. (1963), 127-132
113.
B. F u c h s s t e i n e r : Bemerkungen zu den Minimumsatzen von H Arch. Math. 22 (1971), 287-290
114.
--
115.
--
116.
--
117.
--
118.
---
Acad. S c i . P a r i s
Sur l e s faces expos5es, C.R. Acad. S c i . P a r i s 274
13
Bauer, 1972), 38-40
Sur l e s mesures de Jensen support'ees p a r une f r o n t i e r e p l u s f i n e que l a f r o n t i i i r e de C h i l o v , C.R. Acad. Sc. P a r i s 274 (1972), 1-4 16
Sandwich theorems and l a t t i c e semigroups, J. F u n c t i o n a l Analys. 1974),1-14
L a t t i c e s and Choquet's Theorem, J. F u n c t i o n a l Analys. 377-387 MaDe a u f
17 (1974) ,
u- kompakten Raumen, Math. Z. 142 (1975), 185-190
119.
I n t e g r a l d a r s t e l l ungen i n e a r e r F u n k t i o n a l e , i n : Measure Theory, L e c t u r e Notes i n Math. 541 A. Bellow, D. Kolzow, eds.) 1976
120.
--
121.
--
122.
--
When does t h e Riesz r e p r e s e n t a t i o n theorem h o l d ? Arch.Math. 28 (1977), 173-181 Signed r e p r e s e n t i n g measures, Arch. Math. 28 (1977), 503-509
On exposed semigroup homomorphisms, Semigroup Forum 13 (1977), 189-204
410
References
123.
B. Fuchssteiner: Decomposition Theorems , Manuscripta Math. 22 (1977) , 151-164
124.
--
125.
--
126.
D i r i c h l e t s t a t e s , J. Math. SOC. Japan, 32 (1980), 593-603
A supply-demand model w i t h raw-material and s a t u r a t i o n c o n s t r a i n t s , p r e p r i n t (1981)
---
A n o t e on adapted cones, p r e p r i n t ( l 9 8 1 )
127.
Generalized Hewitt-Nachbin spaces a r i s i n g i n state-space completions, i n : F u n c t i o n a l A n a l y s i s , Holomorphy and Approximation Theory, L e c t u r e Notes i n Math.843 ( S . Machado ed.) 1981
128.
--
129.
B. Fuchssteiner, M. Neumann: Small boundaries , Arch. Math. 30 (1978) 613-621
130.
B. Fuciissteiner, A. Schroder: P r o d u c t i o n and d i s t r i b u t i o n , i n : Game Theory and r e l a t e d t o p i c s , N o r t h H o l l a n d Publ. 1979 (0. Moeschlin, D. Pallaschke, eds.)
131.
B. Fuchssteiner , W . Hackenbroch: Maximumpunkte, Arch. Math. 23 (1972) 415-421
132.
B. Fuchssteiner, J . Horvath: S c h n i t t e i g e n s c h a f t e n beim Hahn-Banachschen Satz, Jahrb. O b e r b l i c k e Math. 1979, B I , Mannheim 1979
133.
B. Fuchssteiner, H. Koni : New v e r s i o n s o f t h e Hahn-Banach theorem,in: General I n e q u a l i t i e s 2, YSNM 47 (p. 255-266) B i r k h a u s e r ,Basel 1980
134.
B. Fuchssteiner, J.D. M a i t l a n d Wright: Representing I s o t o n e Operators on Cones, Q u a r t .J .Math. Oxford 28 (1977) 155-162
An a b s t r a c t d e s i n t e g r a t i o n theorem, P a c i f i c J. Math. (1981)
~
135.
W. Gaede, J. Heinhold: Grundzuye des O p e r a t i o n Research, Carl Hanser V e r l ag , Munchen-Wien 1976
136.
D. Gale: A theorem on Flows i n Networks, P a c i f i c J. Math. 7 (1957), 1073- 1082
137.
T.W. Gamelin: U n i f o r m algebras and Jensen measures, London Math. SOC L e c t u r e Notes S e r i e s 32, Cambrigde 1978
138.
D.J.H. G a r l i n g : A ' s h o r t ' p r o o f o f t h e Riesz r e p r e s e n t a t i o n theorem, Proc. Camb. P h i l . SOC. 73 (1973), 459-460
139.
I . M . Gelfand, D.A. Raikov, G.E. S h i l o v : Commutative normed r i n g s , Uspehi Mat. Nauk. 2 (1946), 48-146
140.
L. Gillman, M. J e r i s o n : Rings o f continuous f u n c t i o n s , Van Nostrand, London-New York 1960
141.
I . Glicksberg: The r e p r e s e n t a t i o n o f f u n c t i o n a l s by i n t e g r a l s , Duke Math. J . 19 (1951), 253-261
,
References
41 1
142.
B.W. Gnedenko, A . N . Kolmogoroff: Grenzverteilungen von Summen unabhangiger ZufallsgroRen, Akademie Verlag, Berlin 1960
143.
D.B. Goodner: Projections i n normed l i n e a r spaces, Trans. Amer. Math. SOC. 69 (1950), 89-108
144.
A. Goullet de Rugy: Espaces de fonctions ponderables, I s r a e l J . Math. 1 2 (1972), 147-160
145.
--
146.
D.A. Gregory, J.H. Shapiro: Nonconvex topologies w i t h t h e Hahn Banach extension property, Proc. Amer. Math. SOC. 25 (1970), 902-905
147.
A . Grothendieck: Une c a r a c t e r i s a t i o n v e c t o r i e l l e mktrique des ispaces L1 , Canadian J . Math. 7 (1955), 552-561
148.
A . Guichardet: Analyse harmonique commutative, Dunod, Paris 1968
149.
H . Hahn: Ober l i n e a r e Gleichungssysteme i n l i n e a r e n Raumen, J . de C r e l l e 157 (1927), 214-229
150.
P.R. Halmos: Boolean algebras, Van Nostrand, Princeton-Toronto-New York - London 1963
151.
--
152.
I . Halperin: The supremum of a family of a d d i t i v e functions, Can. J . Math. 4 (1952) 463-479
153.
G. Hansel , J.P. T r o a l l i c : Mksures marginales e t thkor&ne de FordFul kerson, Z . Wahrsch. theor. 43 (1978) ,245-251
154.
G.H. Hardy, J.E. Littlewood, G. Polya: I n e q u a l i t i e s , Cambrigde Univ e r s i t y Press, Cambrigde 1934
155
M. Hasumi: The extension problem of complex Banach spaces, Tohoku Math. J . (Sec. s e r i e s ) 10(1958), 135-142
156.
R . Haydon: I n j e c t i v e Banach l a t t i c e s , Math. Z . 156 (1977) 19-47
157.
-- On dual
158.
W . Hazod: S t e t i g e Fa1 tunyshal bgruppen von Wahrscheinl ichkei tsmaBen und erzeugende Distributionen, Lect. Notes Math. 595, Springer Verlag, Berl in-Heidel berg-New York 1977
159.
E. Helley: Uber 1 ineare Funktionaloperationen, Sitzungsber. Akad. Wiss. Wien 121 (1912),265-297
Comparaison des canes p r o f i l k s e t des c6nes presque bien coiff’es, I n : Sgminaire Choquet ( I n i t i a t i o n a l ’ a n a l y s e ) 13e ann’ee , no. 15 (1973/1974) Paris
Measure Theory, Springer Verl ag, Berl in-Heidel berg-New York 1974
L1- spaces and i n j e c t i v e bidual Banach spaces, I s r a e l J . Math. 7 (1978) , 142-152
412
References
160.
G. Herglotz: Ober Potenzreihen m i t positivem r e e l l e n T e i l i m E i n h e i t s k r e i s , L e i p z i g e r B e r i c h t e 63 (1911), 501-511
161.
M. Hervi?: Sur l e s reprksentations i n t k g r a l e s d l ’ a i d e des p o i n t s extremeaux dans un ensemble compact convex mGtrisable, C.R. Acad.Sci P a r i s 253 (1961), 366-368
162.
E. H e w i t t : Rings o f real-valued continuous functions I,Trans. AMS 64
163.
--
.
(1948) , 45-99
Linear f u n c t i o n a l s on spaces o f continuous functions, Fund. Math. 37 (1950), 161-189
164.
H. Hochstadt: Eduard H e l l y , Father o f the Hahn-Banach Theorem, Math. I n t e l 1igencer 2 (1980), 123-226
165.
J. Hoffmann - JBrgensen: A g e n e r a l i z a t i o n o f the s t r i c t topology, Math. Scand. 30 (1972), 313-323
166.
G. Hommel: Increasing Radon measures on l o c a l l y compact ordered spaces, Rendiconti Math. Ser. 6 (1976) 85-117
167.
L. Hiirmander: An I n t r o d u c t i o n t o complex analysis i n several variables, Van Nostrand, Princeton 1966
168.
J. Horowitz: Une remarque sur l e s bimesures, i n : S’eminaire de Probabil i t 5 11, Lecture Notes Math. 581 (1977) , 59-64
169.
R.E. Huff, P.D. Morris: Dual spaces w i t h the Krein-Milman property have t h e Radon-Nikodym property, Proc. AMS 49 (1975), 104-108
170.
R. H u f f : The Radon-Nikodym property f o r Banach-Spaces A survey o f geometric aspects, i n : Functional Analysis, Surveys and Recent Results , Proc. Paderborn Conference, Mathematics Studies 27, North Holland Publishers, Amsterdam - New York 1977
171.
G.A. Hunt: Semigroups o f measures on L i e groups, Trans. AMS 81 (1956), 269-293
172.
0. Hustad: A note on complex P1117- 119
173
A. and C. Jonescu Tulcea: Topics i n the theory of L i f t i n g , Springer Verlag, B e r l in-Heidel berg-New York 1969
174.
J.R. I s b e l l , Z. Semadini: P r o j e c t i o n constants and spaces o f c o n t i nuous functions, Transactions AMS 107 (1963), 38-48
175.
K . Jacobs: Der Heiratssatz, Selecta Mathematica I , 103-141 Springer Verl ag, B e r l in-Heidel berg-New York 1969
176. 177.
-
spaces, I s r a e l J. Math. 16 (1973),
,
--
Measure and I n t e g r a l , Academic Press, New York-San FranciscoLondon 1978 R.C. James: R e f e x i v i t y and the supremum o f l i n e a r f u n c t i o n a l s , I s r a e l J. Math. 13 (1972), 289-300
413
References
178,
S. Johansen: An application of extreme point methods t o the representation of i n f i n i t e l y divisible distributions , Z. Wahrsch . T h . verw. Geb. 1 (1966), 304-316
179.
R.V. Kadison: A representation theory f o r commutative topological algebra, Memoir AMS 7 (1951)
180.
S . Kakutani: Concrete representation of abstract L-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537
181.
--
182.
L.V.
183.
M. Katetov: On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91
184.
Y . Katznelson: An introduction t o harmonic analysis, Dover pub1 New York 1976
185.
R. Kaufmann: A type of extension of Banach spaces, Acta Sci. Math (Szeged) 27 ( 1964), 163-166
186.
--
187.
--
188.
H. Kel lerer: Funktionen auf Produktraumen mi t vorgegebenen Marginalfunktionen, Math. Ann. 144 (1961), 323-344
189.
--
Schni ttmabfunktionen in mehrfachen Produktraumen, Math. Ann.155
190.
--
Marginalprobleme f u r Funktionen, Math. Ann. 154 (1964), 147-156
191.
--
Mantheoretische Marginalprobleme, Math. Ann. 154 (1964) , 168-198
192.
J.L. Kelley: Banach spaces with the extension property, Canad.J.Math.
193.
D.G. Kendall: Extreme-point methods in stochastic analysis, Z. Wahrscheinlichkeitstheorie verw. Gebiete I (1963), 226-251
194.
J.F.C. Kingman: Completely random measures, Pac f i c J . Math. 21 (1967), 59-79
195.
V . Klee: Separation properties o f convex cones, Proc. AMS 6 (1955 , 313-318
196.
G . Kleinstuck: Duals of weighted spaces of cont nuous functions, Bonner Math. Schriften 8 1 (1975), 98-114
Concrete representation of abstract M- spaces, Ann. of Math. 42
(1941), 994-1024'
Kantorovitch: Concerning the problem of moments for a f i n i t e interval, Dokl A k . Nauk SSSR, 14 (1937), 531-536
.
.,
Extension of Functionals and inequalities on an Abel a n . (1966), 83-85 Semigroup, Proc.Amer. Math. S O ~ 17 Interpolation of additive functionals, Studia Math. 27 (1966),
269-272
(1964), 369-391
3 (1951), 272-275
References
414
197.
H. Konig: Ober das Neumannsche Minimax-Theorem, Arch. Math. 19 (1968 , 482-487
198.
-- On C e r t a i n A p p l i c a t i o n s o f t h e Hahn-Banach and Minimax Theorems Arch. Math. 2 1 (1970), 583-591
199.
--
200.
-- Neue Methoden und Verfahren aus F u n k t i o n a l a n a l y s i s und konvexer A n a l y s i s , Oper. Res. V e r f . 28 (1978), 6-16
Sub1 ineare F u n k t i o n a l e, Arch. Math, 23 (1972), 500-508
201.
H. Konig, M. Neumann: Mathematische W i r t s c h a f t s t h e o r i e (Vorlesungsausarbei tung) , Saarbrucken 1976
202.
P.P. Korovkin: On t h e convergence o f l i n e a r p o s i t i v e o p e r a t o r s i n t h e space o f continuous f u n c t i o n s , Dokl. Akad SSSR (N.S.) 90 (1953), 961-964
203.
P. Kranz: A d d i t i v e f u n c t i o n a l s o n a b e l i a n semigroups, Ann. SOC. Math. Pol. 16 (1972), 239 - 246
204.
--
E x t e n s i o n o f a d d i t i v e f u n c t i o n a l s and semicharacters on commut a t i v e semigroups, Semigroup Forum 18 (1979), 293-305
205.
M. K r e i n , S. K r e i n : On an i n n e r c h a r a c t e r i s t i c o f t h e s e t o f a l l continuous f u n c t i o n s d e f i n e d on a bicompact H a u s d o r f f space, C.R. Acad. Sci.URSS 27 (1940), 427-430
206.
M. K r e i n , D. Milman: On t h e extreme p o i n t s o f r e g u l a r l y convex s e t s , S t u d i a Mattl. 9 (1940), 133-138
207.
H.E. Lacey: The i s o m e t r i c t h e o r y o f c l a s s i c a l Banach spaces, S p r i n g e r Verlag, B e r l i n - H e i d e l berg-New York 1970
208.
M. Landsberg, W. S c h i r o t z e k : Mazur-Or1 i c z t y p e theorems w i t h some a p p l i c a t i o n s , TU Dresden, p r e p r i n t 1975
209.
E.R. Lewis: Network models i n p o p u l a t i o n B i o l o g y , S p r i n g e r L e c t u r e Notes i n Biomathematics, Vol. 7, Berlin-Heidelberg-New York 1977
210.
A. Lima: I n t e r s e c t i o n p r o p e r t i e s o f b a l l s and subspaces i n Banach spaces, Trans. Amer. Math. SOC. 227 (1977), 1-62
211.
-- I n t e r s e c t i o n p r o p e r t i e s o f b a l l s i n spaces o f compact o p e r a t o r s , Annales de 1 ' I n s t . F o u r i e r 28 (1978), 35-65
212.
J . Lindenstrauss: E x t e n s i o n o f compact o p e r a t o r s , Memoir AMS 48 (1964)
213.
J . Lindenstrauss,G.H.
214.
J . Lindenstrauss, L. T z a f r i r j : C l a s s i c a l Banach S aces I (Sequence
Olsen, Y . S t e r n f e l d : The Poulsen simplex, Ann. I n s t . F o u r i e r 28 (1978), 91-114
Spaces) , Springer, B e r l in-He1 d e l berg-New York 1977
References
415
215.
J . L i n d e n s t r a u s s , L . T z a f r i r i : C l a s s i c a l Banch S a c e s I 1 (Function Spaces) , S p r i n g e r , Berl in-Heidel berg-New York 1979
216.
--
217.
J . Lindenstrauss. D. Wulbert: On the c l a s s i f i c a t i o n o f Banach sDaces whose d u a l s a r e -L1- s p a c e s , J . Functional Analys. 4 (1969), 332349
218.
L . H . Loomis: On the r e p r e s e n t a t i o n of u- complete Boolean a l g e b r a s , B u l l . AMS 53 (1947) , 757-760
219.
-- An i n t r o d u c t i o n t o a b s t r a c t harmonic a n a l y s i s , Van Nostrand, Princeton 1953
220.
H.P. Lotz: Extensions and l i f t i n g s of p o s i t i v e l i n e a r mappings on Banach l a t t i c e s , Trans. Amer. Math. SOC. 211 (1975), 85-100
221.
W . Lusky: A note on the paper" The Poulsen simplex" o f L i n d e n s t r a u s s , Olsen and S t e r n f e l d , Ann. I n s t . F o u r i e r 28 (1978), 233-243
222.
W.A.J. Luxemburg: A remark on S i k o r s k i ' s e x t e n s i o n theorem f o r homomorphisms i n the theory of Boolean a l g e b r a s , Fund. Math. 55 (1964), 239-247
223.
W.A.J. Luxemburg, A . Schep: An e x t e n s i o n theorem f o r Riesz Homomorphisms, Proc. Kon. Nederl. Akad.v. Wetensch. S e r . A , 82 (1979), 145-154
224.
W.A.J. Luxemburg, A . C . Zaanen: Riesz Spaces I , North Holland Publ., Amsterdam-New York 1971
225.
P. Mankiewicz: A remark on Edgar's extremal i n t e g r a l r e p r e s e n t a t i o n theorem, S t u d i a Math. 63 (1978), 259-265
226.
A . Markov: On mean values and e x t e r i o r d e n s i t i e s , Mat.Sb. 4 (193B), 165-191
227.
K. Matthes: Ober d i e Ausdehnung von ti - Homomorphismen Boolescher Algebren 11, Z . Math. Logik u . Grundl. Math. 7 (1961), 16-19
226.
S. Mazur, W . O r l i c z : Sur les &spaces mktriques l i n e a i r e s ( 1 1 ) , S t u d i a Math. 1 3 (1953), 137-179
229.
P . Meyer: P r o b a b i l i t y and P o t e n t i a l s , Waltham
230.
-- Sur l e s d6monstations nouvel l e s du theore'me de Choquet, Skminaire Brelot-Choquet-Deny Nr. 2 (1961/62 )
231.
G. Mokobodzki: Balayage d e f i n i p a r un cane convexe d e f o n c t i o n s numeriques sur u n espace compact, C . R . Acad. S c i . P a r i s 254 (1962), 803-805
-- On the isomorphic c l a s s i f i c a t i o n of i n j e c t i v e Banach 1 a t t i ces (1980) ( t o appear) Y
, Toronto - London 1966
416
References
232.
G. Mokobozki, D. Sibony: C6nes adaptCes de f o n c t i o n s c o n t i n u s e t t h e o r i e du p o t e n t i a l , Sem. Choquet 6 (1966/67)
233.
R.W. Mosak: Banach algebras, Chicago L e c t . Notes Math., ChicagoLondon 1975
234.
S. Mrowka: Some p r o p e r t i e s o f Q- spaces, Bull.Acad. Polon. S c i . Ser.: Math. Astronom. Phys. 5 (1957), 947-950
235. 236.
--
F u n c t i o n a l s on u n i f o r m l y c l o s e d r i n g s o f continuous f u n c t i o n s , Fund. Math. 46 (1958), 81-87
L. Nachbin: Sur l e s espaces u n i f o r m i s a b l e s ordon@es, Comp.R.Acad.Sci P a r i s 226 (1948), 381-382
237.
--
238.
-- A theorem o f t h e Hahn-Banach t y p e f o r l i n e a r t r a n s f o r m a t i o n s , Trans.Amer.Math.Soc. 68 (1950), 28-46
239.
-- T o p o l o g i c a l v e c t o r spaces of continuous f u n c t i o n s , Proc. Nat. Acad.Sci. U.S.A. 40 (1954), 471-474
A c h a r a c t e r i z a t i o n o f t h e normed v e c t o r o r d e r e d spaces o f continuous f u n c t i o n s over a compact space, Amer.J.Math. 7 1 (1949) , 701-705
241.
---
242.
--
240.
243. 244. 245. 246.
The Haar i n t e g r a l , van Nostrand , P r i n c e t o n 1965
Topology and o r d e r , Van Nostrand, New York Math. S t u d i e s 4, P r i n c e t o n 1965 Elements o f Approximation t h e o r y , Van Nostrand, P r i n c e t o n 1967 ( R e p r i n t e d by K r i e g e r 1976)
M. Neumann: On t h e S t r a s s e n D i s i n t e g r a t i o n theorem, Arch. Math. 24 (1977), 413-420
--
V a r i a n t e n zum Konvergenzsatz von Simons und Anwendungen i n d e r Choquettheorie, Arch. Math. 28 (1977), 182-192
---
Expos6 zum D i s i n t e g r a t i o n s s a t z von Strassen, 1977 (unpublished)
Bemerkungen zum von Neumannschen M i nimaxtheorem, Arch .Math. 24 (1977) , 96-105
247.
J . Neveu: Mathematische Grundlagen d e r Wahrscheinlichkeitstheorie, R. Oldenbourg V e r l ag, Munchen-Wien 1969
248.
C.W. N e v i l l e : Banach spaces w i t h a r e s t r i c t e d Hahn-Banach e x t e n s i o n p r o p e r t y , P a c i f i c Journ. Math. 63 (1976), 201-212
249.
G.H. Olsen: On s i m p l i c e s and t h e Poulsen simplex, i n : F u n c t i o n a l A n a l y s i s : Surveys and Recent R e s u l t s 11, Mathematics S t u d i e s 38, N o r t h H o l l a n d Pub1 ,Amsterdam-New York 1980
.
.
417
References
250. 251.
R.R. Phelps: L e c t u r e s on Choquet's Theorem, van Nostrand, P r i n c e t o n London-Toronto 1966
-- Dentabi 1 it y and extreme p o i n t s i n Banach spaces , J. F u n c t i o n a l A n a l y s i s 16 (1974), 78-90
252.
D. P o l l a r d , F. Topsoe: A u n i f i e d approach t o Riesz t y p e r e p r e s e n t a t i o n theorems , S t u d i a Math. 54 (1975) , 173-190
253.
C. P o r t e n i e r : C a r a c t k r i s a t i o n de c e r t a i n s kspaces de Riesz, In: Skminaire Choquet ( I n i t i a t i o n a l ' a n a l y s e ) 10e anne no. 6 (1971), Paris
254.
E.T. Poulsen: A s i m p l e x w i t h dense extreme boundary, Ann. I n s t . F o u r i e r 11 (1961), 83-87
255.
A. de La P r a d e l l e : A Dropos du mkmoire de G.F. Vincent-Smith s u r 1 l a p r o x i m a t i o n des f o n c t i o n s harmoniques, Ann. I n s t . F o u r i e r 19 (196!), 355-370
256.
W. Prenowitz, J. J a n t o s c i a k : J o i n Geometries, Undergraduate Texts i n Mathematics, S p r i n g e r Verlag, Berlin-Heidelberg-New York, 1979
257.
J.B. P r o l l a : Approximation o f vector-valued f u n c t i o n s , Mathematics Amsterdam-New York 1977 S t u d i e s 25, N o r t h H o l l a n d Pub1
258.
J.D. Pryce: Weak compactness i n l o c a l l y convex spaces, Proc. AMS 17 (1966) , 148-155
259.
J. Radon: T h e o r i e und Anwendungen d e r a b s o l u t a d d i t i v e n Men enf u n k t i o n e n , S i t z . B e r . Acad. Wiss. Wien 128 (1919) , 1083-112
260.
J. Rainwater: Weak convergence o f bounded sequences, Proc. AMS 14 (1963), 999-1004
261.
F. Riesz: Sur l e s syst&nes orthogonaux de f o n c t i o n s , C.R. P a r i s 144 (1907), 615-619
262.
--
263.
--
264.
-- Sur c e r t a i n s systemes s i n g u l i e r s d ' k q u a t i o n s i n t k g r a l e s , Ann. 1 ' E c o l e Norm. Sup. 28 (1911), 33-62
265.
--
266.
--
267.
.,
4
S u r l e s o p e r a t i o n s f o n c t i o n e l l e s l i n k a i r e s , C.R. P a r i s 149 (1909), 974-977
Acad. S c i .
Acad. S c i .
Untersuchungen uber Systeme i n t e g r i e r b a r e r Funktionen, Math. Ann. 69 (1910), 449-497
Demonstration nouvel l e d ' u n theoreme concernant l e s o p e r a t i o n s f o n c t i o n e l l e s l i n e a i r e s , Ann. 1 ' E c o l e Norm. Sup. 3 1 (1914), 9-14
Sur quelques n o t i o n s fondamentales dans l a t h ' e o r i e g 6 n 6 r a l e des o p e r a t i o n s l i h a i r e s , Ann. o f Math. 4 1 (1940), 174-206 G. Rod'e: E i n e a b s t r a k t e V e r s i o n des Satzes von Hahn-Banach, Arch. Math. 3 1 (1978), 474-481
418
268.
References
G. Rod6: S u p e r k o n v e x i t a t und schwache Kompaktheit, Arch. Math. 36 (1981), 62-72
269.
B. Rodriguez - S a l i n a s Palero: Algunos problemas y teoremas de e x t e n s i o n de a p l i c a c i o n e s l i n e a l e s , Rev. Real Acad. C i . Exact. F i s . Nat. Madrid 65 (1971),677-704
270.
B. Rodriguez - S a l i n a s , L. Bou: A Hahn-Banach Theorem f o r a r b i t r a r y v e c t o r spaces, B o l l . U. Math. I . 10(1974), 390-393
271.
H.P. Rosenthal: On i n j e c t i v e Banach spaces and t h e spaces f o r f i n i t e measures p , Acta Math. 124 (1970), 205-248
L"(p)
272.
--
273.
W . Rudin: F o u r i e r a n a l y s i s on groups, I n t e r s c i e n c e Publ. New York 1961
274.
--
Real and Complex Analysis, McGraw-Hill
275.
--
F u n c t i o n a l Analysis,. McGraw-Hill Publ . , New York-London 1973
276.
D. Rue11 e: S t a t i s t i c a l Mechanics Math. Phys. Monograph s e r i e s , W.A. Benjamin Publ ., Reading (Mass.) 1969
277.
-- Thermodynamic Formalism, Encyclopedia o f Mathematics and i t s A p p l i c a t i o n s , Vol. 5, Addison-Wesley Publ. Co , Reading (Mass.) 1978
278.
W. Rupp: Riesz - P r e s e n t a t i o n s o f a d d i t i v e and u- a d d i t i v e s e t valued measures, Math. Ann. 239 (1979), 111-118
279.
H.J. Ryser: Combinatorial P r o p e r t i e s o f m a t r i c e s o f zeros and ones, Can. J .Math. 9 ( 1957), 371-377
280.
--
281.
S. Sakai: C*- Algebras and W*- Algebras, Ergebnisse d e r Mathematik Bd. 60, Springer-Verlag, B e r l i n - H e i d e l berg-New York 1971
282.
S. Saks: I n t e g r a t i o n i n a b s t r a c t m e t r i c spaces, Duke Math.J. 4 (1938), 408-411
283.
H.H. Schafer: Banach l a t t i c e s and p o s i t i v e o p e r a t o r s , S p r i n g e r V e r l a g (Grundlehren Bd. 215), Berlin-Heidelberg-New York 1974
284.
H. Schubert: Topolog e, Teubner Verlag, S t u t t g a r t 1969
285.
L. Schwartz: T h k o r i e des d i s t r i b u t i o n s , Hermann, P a r i s
286.
--
Radon Measures, Oxford U n i v e r s i t y Press, Oxford 1973
287.
--
Lectures on D i s n t e g r a t i o n o f Measures, Tata I n s t i t u t e , Bombay
On r e l a t i v e l y d i s j o i n t f a m i l i e s o f measures w i t h some a p p l i c a t i o n s t o Banach space theory, S t u d i a Math. 37 (1970), 13-36
1976
, New
York-London 1966
M a t r i c e s o f zeros and ones, B u l l . AMS 66 (1960), 442-464
1973
References
419
288.
G.L. Seevers: A Hahn-Banach theorem f o r commutative semi-groups (1967), unpublished
289.
Z . Semadeni : Free compact convex s e t s , Bull. Acad. Sci . Pol. 13 (1965) , 141-146
290.
F.D. S e n t i l l e s : Bounded continuous f u n c t i o n s on a completely r e g u l a r space, Trans. AMS 168 (1972), 311-336
291.
S. Shermann: On t h e theorem of Hardy, Littlewood, Polya and Blackwell,
292.
T. S h i r o t a : A c l a s s of topological spaces, Osaka Math. J . 4 (1952), 23-40
293.
J . S i c i a k : On f u n c t i o n f a m i l i e s with boundary, P a c i f i c J . Math. 12 (1962), 375-384
294.
R . S i k o r s k i : On an analogy between measures and homomorphisms, Ann. SOC. Pol. Math. 23 (1950), 1-20
295.
Proc. Nat. Acad. S c i . USA 37 (1951), 826-831
--
Boo1 ean a1 gebras , 2nd ed. , S p r i nger-Verl ag , Berl i n-Hei del berg-
New York 1962
296.
S. Simons: Extended and Sandwich versions of t h e Hahn-Banach theorem, J . Math. Anal. Appl. 21 (1968), 112-122
297.
--
298.
--
299.
Ch. S t e g a l l : Optimization o f Functions on c e r t a i n s u b s e t s of Banach spaces, Math. Ann. 236 (1978), 171-176
300.
M . H . Stone: A general theory of s p e c t r a 11, Proc. Nat. Acad. S c i . USA 27 (1941), 83-87
301.
--
302.
--
303.
--
304.
V . Strassen: The e x i s t e n c e of p r o b a b i l i t y measures with given marginals, Ann.Math.Statist. 36 (1965), 423-439
305.
W . H . Summers: A r e p r e s e n t a t i o n theorem f o r biequicontinuous completed t e n s o r products of weighted spaces, Trans. AMS 146 (1969), 121-131
306.
--
A convergence theorem with boundary, P a c i f i c J . Math. 40 (1972), 703-708 Maximinimax, Minimax and Antiminimax Theorems and a r e s u l t of R . C . James, P a c i f i c J.Math. 40 (1972), 709-718
Notes on I n t e g r a t i o n 1-111, Proc. Nat (1948), 336-342, 447-455, 483-490
. Acad.
S c i . USA 34
Boundedness p r o p e r t i e s i n f u n c t i o n l a t t i c e s , Can.J.Math. 1 (1949), 176-186
50-58
Notes on I n t e g r a t i o n IV, Proc.Nat .Acad.Sci. USA 35 (1949),
Dual spaces of weighted spaces, Trans. AMS 151 (1970), 323-333
420
References
307.
E. Thomas: I n t e g r a l r e p r e s e n t a t i o n s i n convex cones, Report 21.1-7703, R i j ksuni v e r s i t e i t Groni ngen , 1977
308.
--
309.
--
R e p r k e n t a t i o n i n t ' e g r a l e dans l e s canes convexes, C.R. P a r i s 286 (1978), A 515 - A 518
Acad. S c i .
Rkpresentations i n t ' e g r a l es dans 1es canes convexes c o n u c l k a i r e s e t a p p l i c a t i o n s , S'eminaire Choquet, I n i t i a t i o n a l ' a n a l y s e , Fasc. 1, 9 (1978), 12 p.p.
310.
-- I n t e g r a l r e p r e s e n t a t i o n s i n conuclear spaces; i n : Vector space measures and a p p l i c a t i o n s 11, L e c t u r e Notes Math. Vol. 645, Springer-Verl ag, B e r l i n - H e i d e l berg-New York 1978
311.
-- A converse t o Edgar's theorem; i n : Measure theory, L e c t u r e Notes Math. Vol 794, S p r i n g e r Verlag, B e r l i n - H e i d e l berg-New York 1980
312.
F. Topsoe: F u r t h e r r e s u l t s on i n t e g r a l r e p r e s e n t a t i o n s , S t u d i a Math. 55 (1976), 239-245
313.
.
--
The n a i v e approach t o t h e Hahn-Banach theorem, Comment .math .spec. Val. I , dedic. L. O r l i c z (1978), 315-330
314.
M. V a l a d i e r : Sur l e thior'eme de Strassen, C.R. (1974) , 1021-1024
315.
F.A. Valentine: Konvexe Mengen, B I - Verlag, Mannheim-Zurich
316.
V.S. Varadarajan: On a theorem o f F. Riesz concerning t h e form o f l i n e a r f u n c t i o n s , Fund. Math. 46 (1959), 209-220
317.
-- Measures on t o p o l o g i c a l spaces, AMS T r a n s l a t i o n s 48 (1965), 161-228
318.
G.F. Vincent-Smith: The Hahn-Banach theorem f o r modules, Proc. London Math.Soc. 17 (1967), 72-90
319.
Acad.Sc. P a r i s 278 1968
--
A Choquet boundary t h e o r y f o r measures t a k i n g values i n a Stone algebra, J . London Math.Soc. 44 (1969) , 553-558
320.
R.C. Walker: The Stone-Czech c o m p a c t i f i c a t i o n , Ergebnisse Math. und Grenzgebiete Vol 83, Springer-Verlag, B e r l in-Heidel berg-New York, 1974
321.
H. Watanabe: Simplexes on a l o c a l l y compact space, Nat.Sci.Rep. Ochanomi zu Univ. 23 (1972), 35-42
.
3 2 2 . ~ L - b l e i 1 : L ' i n t e g r a t i o n dans l e s groupes topologiques e t ses a p p l i cations, Hermann, P a r i s 1953 323.
E.C. Weinberg: Free l a t t i c e ordered a b e l i a n groups, Math.Ann. 159 (1965) , 217-222
324.
M.D. Weir: Hewitt-Nachbin Spaces, Mathematics S t u d i e s Vol. 17, North H o l l a n d Publishers, Amsterdam-Oxford-New York 1975
42 1
References
325.
H. v. Weizsacker: Der Satz von Choquet - Bishop - de Leeuw fur konvexe nicht-kompakte Mengen s t r a f f e r MaRe uber b e l i e b i g e n Grundraumen, Math.Z. 142 (1975), 161-165
326.
S t r o n g m e a s u r a b i l i t y , l i f t i n g s and t h e Choquet - Edgar theorem , i n : V e c t o r space measures and a p p l i c a t i o n s I 1 (R.M. Aron, S . Dineen, eds.) L e c t u r e Notes i n Math. 645, Springer-Verlag, B e r l i n - H e i d e l b e r g New York 1978
327.
H. v. Weizsacker, G. W i n k l e r : Non-compact extremal i n t e g r a l r e p r e s e n t a t i o n s : Some p r o b a b i l i s t i c aspects i n : F u n c t i o n a l A n a l y s i s , Surveys and Recent R e s u l t s 11, Mathematics S t u d i e s Vol. 38, N o r t h H o l l a n d Publ., Amsterdam-New York 1980
328.
C. Wenjen: Realcompact spaces, P o r t - M a t h . 25 (1966) , 135-139
329.
D.V. Widder: Necessary and s u f f i c i e n t c o n d i t i o n s f o r t h e represent a t i o n o f a f u n c t i o n as a Laplace i n t e g r a l , Trans. AMS 33 (1931), 851-892
330.
--
--
1941
The Laplace Transform, P r i n c e t o n U n i v e r s i t y Press, P r i n c e t o n
331.
G. Winkler: On t h e i n t e g r a l r e p r e s e n t a t i o n i n convex noncompact s e t s o f t i g h t measures, Math.Z. 158 (1978), 71-77
332.
G. W i t t s t o c k : E x t e n s i o n o f c o m p l e t e l y bounded C*p r e p r i n t 1980
333.
--
334.
J. Wolfe: I n j e c t i v e Banach spaces o f t y p e C(T), I s r a e l J. Math. 18
335.
M. W o l f f : Ober Korovkin-Satze i n l o k a l k o n v e x e n Vectorverbanden, Math. Ann. 200 (1973), 47-67
336.
--
337.
--
On t h e t h e o r y o f a p p r o x i m a t i o n by p o s i t i v e l i n e a r o p e r a t o r s i n v e c t o r l a t t i c e s , i n : F u n c t i o n a l A n a l y s i s : Surveys and r e c e n t r e s u l t s ( E d i t o r s : K.D. B i e r s t e d t , B . F u c h s s t e i n e r ) N o r t h - H o l l a n d Mathematics S t u d i e s 27 (1977), 73-87
338.
J.D. M a i t l a n d W r i g h t : Stone-Algebra v a l u e d measures and i n t e g r a l s , Proc. London Math. SOC. 19 (1969) 107-122
339.
-- The measure e x t e n s i o n problem f o r v e c t o r l a t t i c e s , Ann.Inst. F o u r i e r 21 (1971), 65-85
340.
--
module homomorphisms,
E i n o p e r a t o r w e r t i g e r Hahn-Banach Satz, J. F u n c t i o n a l A n a l y s i s 40 (1981), 127-150 (1974), 133-140
E i n e Bemerkung zum D e s i n t e g r a t i o n s s a t z von Strassen, Arch .Math. 28 (1976), 98-101
Vector L a t t i c e Measures on l o c a l l y compact Spaces, Math.Z. (1971), 193-203
120
422
References
341.
J.D. Maitland Wright: Measures w i t h values i n a p a r t i a l l y ordered v e c t o r space, Proc. London Math. SOC. 25 (1972), 675-688
342.
K. Yosida: On v e c t o r l a t t i c e s w i t h a u n i t , Proc.Imp.Acad. Tokyo 17
343.
M. Zippin: The s e p a r a b l e e x t e n s i o n problem, I s r a e l , J.Math. 26 (1977), 372-287
(1941), 121-124
AUTHOR INDEX
Alexandrov Andenaes
248 80
Ando
111
Anger
78
Edgar
250 111, 171, 304, 335
Edwards
111
Ellis Fell
172
Asimov
111
Fischer
72
Aumann
75
Frolik
338
Baker
173
Banach
Gale
72,73,248
Bauer
76, 258, 286, 303, 304
Bernau
173
54, 84
Glicksberg Goodner
G o u l l e t de Rugy
Berns t e i n 343
Hahn
Bishop
Halperin
21, 269, 303, 304
Blackwell Bleier
173
173
Boboc
304
173
Hasumi
75
Helley
72
368
Herglotz
303
Hervg
74,78
Buck
248
Cartier
239, 248, 337, 338, 339
H i 1b e r t
Hustad 172
Chatterji
199,249
368
303
Hewitt
250
75
Hardy
Bonsall Bou
72 75
Kadison
170
Kakutani
89, 157, 162, 174, 248
Choquet
76, 173, 249, 269, 303, 304, 335
Katetov
338
Cignoli
82
Kaufmann
75
Kantorovit c h
Conrad
173
Kelley
Cornea
304
Kendall
Cotlar
75
Klee
Daniel1
246
Davies
304
de Leeuw Diestel
269, 304 249
73
75 345
172
Kolmogoroff Konig Kranz
379
28, 29, 37, 44, 75, 76, 79, 84
Korovkin
167
75
Dinges
75
Lembcke
Donner
78
Lindenstrauss 423
198
73
Bochner
Bourgin
248, 313
73
78 77
424
Author Index
L i ttlewood Loomis
173
Shermann
88, 100
Manki ewi cz Markov
Shilov
250
Shirota
248
Matthes Meyer
Sibony Siciak
400 172, 304
Mokobozki Mrbwka
173
303 337 237, 239 304
Sikorski
237, 239, 304
338, 339
Simons
88, 100 78, 300
Stegall
199
Nachbin 73, 74, 244, 249, 337
Stone 97
v. Neumann 393, 394
Strassen 83, 173
Neumann 44, 247, 287
Thomas
250
Polya
Topsoe
75
173
Portenier
198
Uhl
249
Radon 248
Valadier
Riesz 172, 248 Rod5 79
Vincent
-
Rodriguez Ryser Saks
Salinas
85
Weil 74, 78
44
-
Smith
Weinberg
173
v. Weizsacker
248
Wenjen
Schep 397, 401 E. Schmidt
72
S.eevers
22,75
Semadeni
173
312
368 250
338
Winkler Wittstock
250 82
W o l f f 44, 176 Maitland Wright
171, 311, 400
SUBJECT INDEX A(K) 267 absorbing functional 149 a b s t r a c t integral 386 adapted cone 237 additive 3 a f f i n e 35, 90, 267, 283 a f f i n e interposition 34 AL-cone 154 Alexandrov compactification 338, 341 Alexandrov-G1 icksberg theorem 313, 330 algorithm 80, 82 AM- cone 154 AM- space 89, 157, 162 archimedean 170 arithmetic mean 24 Ascol i ' s theorem 342 B(X), Bo(X) 381 Bor(X) 382 Baire ( X ) 382 Bdt(X) 382 Bdt+(X) 399
boundary 40, 252, 255, 288 Cone(u) 221 Conv(K) 253, 267 &(K) 259 co(X) 256 ConvB(X) 297 Convc(X) 300 C*- algebra 170, 358 cancellation law 8, 107 Cartier-Fell-Meyer Theorem 88, 121 central l i m i t theorem 371 character 88, 139, 158, 270, 276, 285, 315, 350, 363 Choquet boundary ( C h ( K ) ) 259, 287, 298, 300 Choquet-Meyer Theorem 281 Choquet-order 275 Choquet-simplex 88, 173, 286 Choquet's Theorem 268, 312 commodity s e t 58, 60 common sense 65 compatible 62, 66 complementary set 318 Baire's category theorem 100, 171, completely monotonic function 341 310 complex 1 inear 34, 355 Bai re-measurabl e 99 , 301, 392 concave 35 Baire measure 228, 239, 282, 296 Baire space 171, 335 cone 6 consumer s e t 56 Banach l a t t i c e 150 consumption 54, 57, 60 Banach Stei nhaus theorem 72 consumption measure 56 Bauer-simplex 286, 378 continuous order r e l a t i o n 243 bimeasure 49 convex combination 256 binary intersection property 72, 77 convex cone 6 Birkhoff-Ulam theorem 171 convex function 34, 253 Bochner's Theorem 375 convex hull 125, 257, 297 Bochner-Weil Theorem 363, 378 425
426
Subject Index
convex s e t
8, 33, 90, 102, 125, 253,F-
311, 335 c o n v o l u t i o n 364 countable covering
202, 224
107, 179
Fi
113
FT
117
VF(X) 191 c o u n t a b l e decomposition 177 c o u n t a b l e i n t e r s e c t i o n p r o p e r t y 230 Face(p) 221 Daniel 1-Stone Theorem 203 , 209 , 220 ,face 220, 226 246, 400 F a r k a s ' Lemma 29 F- compact, F- c o m p a c t i f i c a t i o n 315
decomposable 179 decomposition p r o p e r t y 203 Decomposition Theorem 184
F- Hewitt-Nachbin-space 315 f i n i t e c o v e r i n g 27 F i n i t e Decomposition Theorem
demand measure 61, 66 D i n i boundary 287, 291 Dini c h a r a c t e r Dini-condition
F i n i t e Sum P r o p e r t y
315 189, 268
222 f i r s t countable
(FSP)
302
D i n i cone 189, 203, 210, 268, 287, 291, 308, 328
fixpoint 254 f i x p o i n t boundary
D i n i continuous
Flow Theorem 49, 51 Ford-Ful kerson Theorem
Dini lattice D i n i ' s Lemma
210, 232, 314
198 164, 189, 240
D i r i c h l e t s t a t e 220 D i s i n t e g r a t i o n Theorem 42, 44, 83 d i s t r i b u t i o n p l a n 62, 66 d i s t r i b u t i v e law 101 Dominating Extension Theorem downwards d i r e c t e d
11
186
ex(K) 256, 267 Edward's s e p a r a t i o n theorem
343 54, 84
F o u r i e r - c o t r a n s f o r m 365 F o u r i e r - t r a n s f o r m 365 F- pseudocompact
315
F- r e a l compact , F- r e a l compacti f i c a t i o n 315
f r e e a b e l i a n semigroup
25
f r e e l a t t i c e cone 88, 122, 125, 285 functional 9 171
envelope 103, 277 exposed element 80
F ( x ) - exposed 253 Gale-Ryser Theorem G- a n t i t o n e
exposed selfmap 252 E x t e n s i o n Theorem 12 e x t r e m a l l y disconnected
17
88, 107,
54
106
Gelfand-Naimark Theorem 359, 378 Gelfand Representation 360, 378 go, 274, 351 75, 97, 157 Gelfandtransform
extreme p o i n t 80, 142, 170, 256, 267, 340, 378
character 139 g e n e r a l i z e d Hewi tt-Nachbin space
extreme r a y
generated
(F,<)*
142
(F,3#
,
(F,
0,
102
107, 182
geometric s i t u a t i o n - i n v a r i a n t 252
r
253, 267
313
Subject Index
G- montone G- o r d e r
106, 179
l a t t i c e cone homomorphism,
106, 179
isomorphism
g r e a t e s t l o w e r bound
G- space
427
17
120
l a t t i c e cone subhomomorphism
174
l a t t i c e - g e n e r a t e d cone
Haar measure
363
l a t t i c e homomorphism
Hahn-Banach p r o p e r t y 74 Hahn-Banach S e p a r a t i o n Theorem
33
196 l a t t i c e state
74, 94, 120,
87
Hahn-Banach Theorem
2, 34, 72
Lebesgue decomposition theorem
Hewitt-Nachbin space
313, 337
Lebesgue Dominated Convergence
H e w i t t l s Theorem Hilfsfunktional
201
Theorem
307
123
136, 145
395
385
L6vy-Khintchine f o r m u l a
345, 376
homogeneous 9 L i n d e l o f space 230, 298, 334, 339 Hopf-Kolmogorov E x t e n s i o n Theorem 400 l i n e a r 9, 43, 241 hypo1 inear 78 l o c a l i z e d o r d e r s t r u c t u r e 43, 5 1 i m p o r t c a p a c i t y 56 l o c a l l y compact a b e l i a n group 363 Improved R e p r e s e n t a t i o n Theorem infinitely divisible i n j e c t i v e element
74
in t e g e r - v a l ued f l o w
85
inverse preorder
102
287 22, 23, 303
Jordan decomposition
(K)
259
262
170
Theorem
87, 95, 157, 164, 170 Katetov-Nachbin Theorem
244
167, 176 89, 167, 175
Krein-Milman Theorem 393 40
93, 101
83 84 199,
249
28, 215
Kakutani-Krein-Stone-Yosida
Krein-Milman P r o p e r t y
100, 400
m a r t i n g a l e convergence p r o p e r t y
Kadison-Kakutani-Stone Theorem
l a t t i c e cone
a,B
M a r r i a g e Theorem
Jensen measure
Laplace e q u a t i o n
259
marginal measures
James' Theorem
LP(m)
Max(K)
Mx
i n v o l u t i o n 355, 364
Korovkin f a m i l y
255, 258
Max
89
K o r o v k i n ' s theorem
Loomis-Si k o r s k i Theorem max(K)
M ~ x ( K ) 259
111
I n t e r p o s i t i o n Theorem invertible
292
345, 371
199 80, 257, 267
mass z e r o
242
max-boundary max f l o w
40
- m i n c u t theorem 54, 84
F(X)- exposed f a m i l y maximal measure 275 maximal
maximal l i n e a r f u n c t i o n a l
254
140, 211,
225, 281 maximum p o i n t
259
Maximum P r i n c i p l e max-stable
20, 40, 256, 267
189, 191, 274, 291
Mazur-Or1 i c z Theorem meagre
99, 307
34
428
Subject Index
measure 383 minimal f i x p o i n t boundary 81, 254 minimal t o t a l demand 64, 66 monotone, 3, 43, 349, 357 monotone convergence property 385 m u l t i p l i c a t i v e 22, 350, 355 m u l t i p l i c a t i v e cone 349 Nachbin family 247 natural preorder 106, 155 negative cone 107 negatively generated 107, 151 networks 49, 54, 82 neutral element 2, 8, 22 normed l i n e a r functional 213, 242 Norm Theorem 13 order, a- pointwise, a- decompos i t i o n 118 bounded 2, 96 complete 2, 96, 305, 396 dual 113, 153 u n i t 90, 290, 356 u n i t cone 90 u n i t cone homomorphism, isomorphism 91 order u n i t functional 90, 150 order u n i t homomorphism 91, 95 Prob(n) 274 P a r t i a l Decomposition Theorem 183 p a r t i a l l y decomposable 180 Phragrnen-Li ndel of Pri nci pl e 20 PA- space 74 pointwise infimum, supremum 97 polish 231, 297 polyhedric cone 31 Pontryagin d u a l i t y 363, 370 p o s i t i v e 362 p o s i t i v e cone 107 order order order order order order
p o s i t i v e dual cone 113, 154 p o s i t i v e flow 55, 57 p o s i t i v e l y homogeneous 43 p o s i t i v e l y independent 26, 30 p o s i t i v e type 367 possible flow 55, 57 possible plan 62, 66 Poulsen simplex 340 preorder 2 production capacity 54, 60, 61, 62, 66 pseudocompact 252, 296 Radon-Ni kodym-Property ( R N P ) 198, 249, 250 Radon-Ni kodym theorem 47 , 395 Rainwater's theorem 304 raw material bound 62, 66 real compactification 315 real -1 i near 355 regular measure 228, 391 regular open s e t 171 representation 184 Representation Theorem 210 representing measure 179, 203, 258, 281, 291, 305, 328, 390 Riemann-Lebesgue Lemma 374 Riesz Decomposition property 172 Riesz i n t e r p o l a t i o n property 172 Riesz-Konig Theorem 34, 227 Riesz property 88, 107 Riesz Representation theorem 37, 204, 208, 227, 392 R- valued measure 100, 305, 396 R- valued representing measure 308 u- completion 233, 382 supp(m) 230, 258 Sandwich Theorem 2 , 4 , 10
Subject Index
s a t u r a t i o n bound 58, 61, 66 s e l f a d j o i n t element 355 semicontinuous 8, 38, 192, 212, 244, 253, 258, 288, 298, 334, 349, 382, 386 semigroup 2 s e m i i n t e r p o l a t i o n property ( S I P ) 16, 19, 122, 207 semi 1a t t i c e - c o n e 102 seminorm 33 semisimple 366 Separation Theorem 33 set of domination 318 set of s t r o n g domination 318 Shilov boundary 261 signed representing measure 213 Simons' Convergence Lemma 287 simplex 286, 378 s i m p l i c i a l cone 88, 131, 281, 378 s i m p l i c i a l map 131 s p e c t r a l radius norm 352 S- s t a t e 306 s t a t e 90, 204, 362 s t a t e space 90 Stone-Czech compacti f i ca t i o n 98 , 171, 229, 248, 315, 338 Stone space 87, 171 Stone-Weierstrass Theorem 96, 274, 344, 360, 367 s t r i c t l y decomposable 180 s t r i c t l y representing measure 203, 213 s t r o n g l y exposed p o i n t 199 s t r o n g maximum point 258 subaddi t i ve 3,43 subcone 8 s u b - l a t t i c e cone 125
429
s u b l i n e a r 9 , 43, 74 s u b m u l t i p l i c a t i v e 351 subsemigroup 8 Sum Theorem 14 sup-boundary 331 s u p e r a d d i t i v e 3, 43 super1 i n e a r 9 , 43 s u p p o r t 228 symmetric 355, 362, 365 Three C i r c l e s Theorem 21 t i g h t measure 49, 231, 240, 249, 297 Tong-Katetov Theorem 244, 387 t o t a l maximal production 64, 66 truncated 233 USC(n) 38, 227 u c ~ ( x ) 192, 212, 235 Universal Property 115 u n r e s t r i c t e d d i s t r i b u t i v e law upper integral 389
101
vector l a t t i c e 2, 95, 96, 207, 209, 305, 396 Vector Valued Representation Theorem 308 weak Choquet boundary 259 weak-Dini-condition 197 weak Dini cone 196, 213 weakly monotone 349 weakly U- d i s t r i b u t i v e 247, 312, 400 weight f u n c t i o n 218 X- monotone 43, 52 Y- monotone 220 zero-one matrix 85 zero-one measure 316 z e r o - s e t f i l t e r 338 Zorn's lemma 4 , 46, 211, 254, 276, 306
This Page Intentionally Left Blank