DEVELOPMENTS IN SEDIMENTOLOGY 29
CONTINENTAL RED BEDS
FURTHER TITLES IN THIS SERIES VOLUMES 1. 2.3, 5, 8 and 9 are o...
73 downloads
1517 Views
26MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DEVELOPMENTS IN SEDIMENTOLOGY 29
CONTINENTAL RED BEDS
FURTHER TITLES IN THIS SERIES VOLUMES 1. 2.3, 5, 8 and 9 are out of print
4 F.G. T I C K E L L THE TECHNIQUES O F SEDIMENTARY MINERALOGY 6 L. V A N D E R P L A S THE IDENTIFICATION O F DETRITAL FELDSPARS 7 S. D Z U L Y N S K I and E.K. W A L T O N SEDIMENTARY FEATURES O F FLYSCH AND GREYWACKES 10 P,McL.D. DUFF, A. H A L L A M and E.K. W A L T O N CYCLIC SEDIMENTATION 11 C.C. R E E V E S Jr. INTRODUCTION T O PALEOLIMNOLOGY 12 R.G.C. B A T H U R S T CARBONATE SEDIMENTS AND THEIR DIAGENESIS 13 A.A. M A N T E N SILURIAN REEFS O F GOTLAND 14 K.W. G L E N N I E DESERT SEDIMENTARY ENVIRONMENTS 15 C.E. W E A V E R and L.D. P O L L A R D THE CHEMISTRY O F CLAY MINERALS 16 H.H. R I E K E III and G.V. C H I L I N G A R I A N COMPACTION O F ARGILLACEOUS SEDIMENTS 17 M.D. P I C A R D and L.R. HIGH Jr. SEDIMENTARY STRUCTURES O F EPHEMERAL STREAMS 18 G.V. C H I L I N G A R I A N and K.H. W O L F COMPACTION O F COARSE-GRAINED SEDIMENTS 19 W. S C H W A R Z A C H E R SEDIMENTATION MODELS AND QUANTITATIVE STRATIGRAPHY 20 M.R. W A L T E R , Editor STROMATOLITES 21 B. V E L D E CLAYS AND CLAY MINERALS IN NATURAL AND SYNTHETIC SYSTEMS 22 C.E. W E A V E R and K.C. BECK MIOCENE O F THE SOUTHEASTERN UNITED STATES 23 B.C. H E E Z E N , E d f t o r INFLUENCE O F ABYSSAL CIRCULATION ON SEDIMENTARY ACCUMULATIONS IN SPACE AND TIME 24 R.E. G R I M and N. G U V E N BENTONITES 25A 0. L A R S E N and G.V. C H I L I N G A R I A N , E d f t o m DIAGENESIS IN SEDIMENTS AND SEDIMENTARY ROCKS 26 T . SUDO and S. SHIMODA, Edftors CLAYS AND CLAY MINERALS O F JAPAN 27 M.M. M O R T L A N D and V.C. F A R M E R INTERNATIONAL CLAY CONFERENCE 1978 28 A. N I S S E N B A U M , Editor HYPERSALINE BRINES AND EVAPORITIC ENVIRONMENTS
DEVELOPMENTS IN SEDIMENTOLOGY 29
CONTINENTAL RED BEDS P. TURNER Department of Geological Sciences, The University of Aston in Birmingham, Gosta Green, Birmingham, England
ELSEVIER SCIENTIFIC PUBLISHING COMPANY 1980 Amsterdam - Oxford - New York
ELSEVIER SCIENTIFIC PUBLISHING COMPANY 336 Jan van Galenstraat P.O. Box 211, 1000 AE Amsterdam, The Netherlands Distributors for the United States and Canada: ELSEVIER/NORTH-HOLLAND INC. 52,Vanderbilt Avenue New York, N.Y. 10017
Library el Congress Cataloging 10 Pnbllcation Data
Turner, P 1948 Continental red beds. (Ikvebpuents i n sedimentology j 29) Bibliography: p. Includes index. 1. Red beds. I. T i t l e . 11. Series.
&E471*l'87
552l.5 ISBn 0-4W+-blg08-X
80-1903
ISBN 0-444-41908-x (Vol. 29) ISBN 0-444-41238-7 (Series)
Elsevier Scientific Publishing Company, 1980 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Scientific Publishing Company, P.O.Box 330, 1000 AH Amsterdam, The Netherlands 0
Printed in The Netherlands
V
PREFACE AND ACKNOWLEDGEMENTS C o n t i n e n t a l r e d beds a r e a d i s t i n c t i v e s e d i m e n t a r y f a c i e s which have e x c i t e d t h e i n t e r e s t o f g e o l o g i s t s f o r many y e a r s .
T h e i r f e a t u r e s i n c l u d e a v a r i e t y of
a l l u v i a l , d e l t a i c and d e s e r t d e p o s i t s , a h i g h l y d i s t i n c t i v e s u i t e o f d i a g e n e t i c f e a t u r e s and d i s t i n c t i v e m a g n e t i c p r o p e r t i e s .
Red beds a l s o h o s t a d i s t i n c t i v e
t y p e of m i n e r a l i z a t i o n c o n t a i n i n g c o p p e r , uranium a n d vanadium minera Is.
Perhaps
t h e most d i s t i n c t i v e , and c o n t r o v e r s i a l , f e a t u r e of r e d beds is t h e i r c o l o u r .
The
o r i g i n o f t h i s c o l o u r (and t h e o r i g i n o f r e d b e d s ) has been h o t l y d e b a t e d f o r o v e r 100 y e a r s .
E a r l y w o r k e r s , i m p r e s s e d by t h e r e d c o l o u r of some modern d e s e r t
s e d i m e n t s , t h o u g h t t h a t a n c i e n t r e d beds were d e p o s i t e d under d e s e r t , c o n d i t i o n s . L a t e r , t h e American s e d i m e n t o l o g i s t P.D. Krynine championed t h e i d e a t h a t r e d beds were formed by t h e e r o s i o n and r e d e p o s i t i o n of r e d l a t e r i t i c s o i l s i n m o i s t tropical climates.
The a s s o c i a t i o n o f t h e s e two h y p o t h e s e s r e s u l t e d i n t h e wide-
s p r e a d b e l i e f t h a t r e d beds a r e o f some p a l a e o c l i m a t i c s i g n i f i c a n c e .
Later studies
by T.R. Walker showed t h a t d i a g e n e t i c p r o c e s s e s a r e most i m p o r t a n t i n t h e f o r m a t i o n of r e d b e d s , t h a t r e d c o l o u r can form i n s i t u , and t h a t c o n t i n e n t a l r e d beds a r e n o t n e c e s s a r i l y of p a l a e o c l i m a t i c s i g n i f i c a n c e . Much of t h e e a r l y palaeomagnetic work on r e d b e d s was done p r i o r t o o u r c u r r e n t u n d e r s t a n d i n g o f r e d bed d i a g e n e s i s and i t was g e n e r a l l y assumed t h a t r e d beds were magnetized d u r i n g d e p o s i t i o n and e a r l y d i a g e n e s i s by t h e a l i g n m e n t o f d e t r i t a l magn e t i c o x i d e s ( a view c o n s i s t e n t w i t h K r y n i n e ' s h y p o t h e s i s which i s s t i l l w i d e l y h e l d to-day).
Many l a t e r palaeomagnetic s t u d i e s r e v e a l e d complex m a g n e t i z a t i o n s more
c o n s i s t e n t w i t h a d i a g e n e t i c o r i g i n f o r r e d beds.
There i s , however, much v a r i a t i o n
i n t h e d i a g e n e t i c and p a l a e o m a g n e t i c p r o p e r t i e s o f r e d beds.
This v a r i a t i o n , along
w i t h t h e b e l i e f that a review combining t h e d e p o s i t i o n a l , d i a g e n e t i c and palaeomagn e t i c h i s t o r y o f r e d beds would b e o f some v a l u e , i s t h e i n s p i r a t i o n f o r t h i s book. The book would never have been w r i t t e n w i t h o u t t h e h e l p o f numerous f r i e n d s and c o l l e a g u e s who have c o n t r i b u t e d t o d i s c u s s i o n s w i t h me o v e r t h e p a s t decade a l t h o u g h I must stress t h a t I am s o l e l y r e s p o n s i b l e f o r a l l t h e shortcomings which t h e book c o n t a i n s .
I would p a r t i c u l a r l y l i k e t o thank t h e f o l l o w i n g who
p r o v i d e d m e w i t h m a t e r i a l a s s i s t a n c e a t v a r i o u s s t a g e s of t h e work:
E.L.
Boardman, D.W.
C o l l i n s o n , R.A. I x e r , R.G.
J a c k s o n 11, R . J .
P.J.C. N a g e t g a a l , S h e l l U . K . E x p l o r a t i o n and P r o d u c t i o n , R . J . D.J.
R. A r c h e r ,
Moiola,
S t e e l , D.H.
Tarling,
Vaughan, T.R. Walker, B. Waugh and P.A. Z i e g l e r .
The p r o d u c t i o n of t h e m a n u s c r i p t would n e v e r have been p o s s i b l e w i t h o u t t h e a s s i s t a n c e of t h e s t a f f o f G e o l o g i c a l S c i e n c e s a t t h e U n i v e r s i t y o f Aston p a r t i c u l a r l y Cathy Kennedy who typed t h e m a n u s c r i p t and B e v e r l e y P a r k e r who d r a f t e d many o f t h e diagrams.
My w i f e Angela r e a d t h e m a n u s c r i p t and p r e p a r e d
VI the s u b j e c t index. Many a u t h o r s and p u b l i s h e r s have g r a n t e d me p e r m i s s i o n t o use i l l u s t r a t i o n s from t h e i r o r i g i n a l p u b l i c a t i o n s a s f o l l o w s : American A s s o c i a t i o n o f Petroleum G e o l o g i s t s ( F i g s . 2 . 1 1 ,
2.26, 3.13, 3.14, 3 . 2 9 ,
4.35, 4 . 3 7 ) American J o u r n a l of S c i e n c e ( F i g s . 1 . 2 5 , 6.12) American M i n e r a l o g i s t ( F i g . 5 . 1 7 ) Annals de Geophysique ( F i g s . 7 . 1 2 , 7.13) Annals de Physique ( F i g . 7 . 9 ) B.T.
B a t s f o r d Ltd. ( F i g s . 2 . 2 ,
2.5)
B u l l e t i n of t h e G e o l o g i c a l S o c i e t y o f America ( F i g s . 2 . 1 6 ,
2.22, 4 . 2 , 4.23, 4 . 2 9 ,
4 . 3 0 , 4 . 3 1 , 4.32, 4.38, 4.39, 4 . 4 0 , 5 . 1 4 , 5.18, 6 . 6 , 6 . 8 , 6 . 9 , 8.22, 8.23, 8 . 2 4 , 8 . 2 7 , 8.28, 8.29, 8 . 3 0 ) B u l l e t i n of t h e G e o l o g i c a l Survey of G r e a t B r i t a i n ( F i g s . 3 . 3 0 ,
3.25, 3.26, 6.28)
Canadian J o u r n a l o f E a r t h S c i e n c e s ( F i g s . 4 . 5 0 , 8 . 4 , 8 . 5 , 8 . 7 , 8 . 8 , 8.9) E a r t h and P l a n e t a r y S c i e n c e Letters ( F i g s . l . 9 ,
7.19)
Geochimica Cosmochimica Acta ( F i g . 6 . 1 1 ) Geografiska Annaler (Fig.4.11) Geologie en Mijnbouw ( F i g s . 2 . 2 4 , Geological Journal (Figs.1.22,
3.15)
4.19, 4.34, 4 . 4 4 , 4 . 5 8 , 4.59)
Geologisches Rundschau ( F i g s . l . 1 6 ,
1 . 1 7 , 1.31)
Geophysical J o u r n a l of t h e Royal A s t r o n o m i c a l S o c i e t y ( F i g s . 6 . 4 , 7.29, 7.30, 7 . 3 1 , 7.32, 7.33, 7 . 3 4 , 7.38, 7.39,
7.26,
7.27, 7.28,
7.40, 7.42, 7.43, 7.44, 8.10,
8.12, 8 . 1 3 , 8 . 1 4 , 8.15, 8.16) Geosciences Canada ( F i g . 3.19) Ground Water (Fig.6.10) John Wiley and Sons I n c . ( F i g . 2 . 1 7 ) J o u r n a l of t h e G e o l o g i c a l S o c i e t y o f London ( F i g s . l . 1 0 ,
1 . 2 1 , 2.30, 4.52, 4.53)
J o u r n a l of Geomagnetism and G e o e l e c t r i c i t y (Fig.7.5) J o u r n a l of G e o p h y s i c a l R e s e a r c h ( F i g s . 8 . 1 8 , J o u r n a l o f Sedimentary P e t r o l o g y ( F i g s . 1 . 3 6 ,
8 . 1 9 , 8 . 2 5 , 8.26, 8.31) 2 . 7 , 2.20, 2.21, 2.27, 3.11, 3.21,
3.22, 3.23, 4 . 5 , 4 . 6 , 4 . 2 3 , 4.49) Limnology and Oceanography ( F i g . 6 . 2 1 ) Marine Geology ( F i g . 3.6) Mountain G e o l o g i s t (Fig.2.23) Nature (Fig.8.6) Norsk Geologisk T i d d s k r i f t ( F i g . l . 2 0 ) P h i l o s o p h i c a l T r a n s a c t i o n s of t h e Royal S o c i e t y o f London ( F i g . 8 . 1 ) P h y s i c s of t h e E a r t h and P l a n e t a r y I n t e r i o r s ( F i g . 7 . 2 3 , P h y s i c a l Review ( F i g . 7 . 1 0 ,
7.11)
7.24,
7.25)
VII
Proceedings of the Royal Society of London (Fig.7.17) Proceedings of the Yorkshire Geological Society (Fig.4.45) Reports of Progress in Physics (Fig.6.2) Reviews of Modern Physics (Fig.7.7) Science (Figs.7.20, 1.28, 7.14, 7.15) Scottish Journal of Geology (Figs.4.41, 4.36) Sedimentary Geology (Figs.2.3, 4.9, 4.26, 4.47, 4.48, 4.56, 4.61, 4.62, 4.63) Sedimentology (Figs.2.4, 2.6, 2.9, 2.10, 2.12, 2.13, 3.10, 3.17, 4.7, 4.12, 4.13, 4.14, 4.21, 4.22, 4.46, 7.18) Society of Economic Paleontologists and Mineralogists (Figs.l.4, 1.7, 1.11, 1.12, 1.13, 1.14, 1.16, 1.18, 1.19, 1.32, 1.33, 1.34, 3.3) Springer-Verlag (Fig.4.25, 5.1) Tectonophysics (Figs.1.23, 1.24) Transactions of the Gulf Coast Association of Geological Societies (Figs.3.18, 3.1, 3.4, 3.6, 3.7) W.H. Freeman and Co. (Fig.4.28)
This Page Intentionally Left Blank
IX
CONTENTS
CHAPTER 1 THE GEOLOGICAL FRAMEWORK OF CONTINENTAL RED BEDS
i
INTRODUCTION
1
GEOSYNCLINES Pre-orogenic phase Pre-f l y s c h Flysch Mo l a s s e
2 4
4 6 6
PLATE TECTONICS AND SEDIMENTATION D i v e r g e n t p l a t e margins I n t r a c o n t i n e n t a l r i f t s and a u l a c o g e n s Intercontinenta 1 r i f t i n g Convergent p l a t e margins Forearc areas The magmatic a r c Back-arc a r e a s Transform f a u l t s Continental c o l l i s i o n
6 7 7 9 13
THE TECTONIC SETTING OF ANCIENT CONTINENTAL RED BEDS Introduction P r o t e r o z o i c r e d b e d s of w e s t e r n Canada The Caledonian orogen E a r l y Mesozoic r e d beds formed i n graben a s s o c i a t e d w i t h t h e opening of t h e A t l a n t i c Ocean Cenozoic molasse The A l p i n e molasse The molasse of t h e Canadian c o r d i l l e r a
26 26 26 29 35
13 14 15 16 21
39 40 44
THE CLIMATIC SETTING OF ANCIENT CONTINENTAL RED BEDS The s i g n i f i c a n c e of f i r s t - c y c l e a r k o s i c r e d beds The s i g n i f i c a n c e of s i z e - c o m p o s i t i o n t r e n d s
50
THE CLASSIFICATION OF ANCIENT CONTINENTAL RED BEDS I n t r o d u c t i o n and p r e v i o u s c l a s s i f i c a t i o n s Reddening and d e p o s i t i o n a l environment Palaeomagnetic c l a s s i f i c a t i o n of c o n t i n e n t a l r e d b e d s A p r a c t i c a l c l a s s i f i c a t i o n of c o n t i n e n t a l r e d beds
60 60 63 64 66
CHAPTER 2
69
DESERT RED BEDS
51 55
INTRODUCTION
69
MODERN DESERT SEDIMENTS
69
DESERT FLWIAL SEDIMENTS
71
AEOLIAN SAND DEPOSITS Ripples Dunes and d r a a s Barchans Seifs T r a n s v e r s e forms P a r a b o l i c dunes Rhourds The i n t e r n a l s t r u c t u r e of modern and a n c i e n t a e o l i a n d e p o s i t s
72 74 77 78 80 a2 a4 84 85
X The t e x t u r a l c h a r a c t e r i s t i c s of a e o l i a n sands Grain s i z e Roundness and f r o s t i n g
88 89 91
DESERT LAKES AND INLAND SABKHAS
95
THE REDDENING OF DESERT SEDIMENTS Introduction The d e t r i t a l model - Simpson D e s e r t , A u s t r a l i a The d i a g e n e t i c model Sonoran D e s e r t Early diagenetic reddening Late diagenetic reddening
96 96 100 102 104 104
ANCIENT AEOLIAN RED BEDS Introduction D i s t i n g u i s h i n g a e o l i a n from s h a l l o w m a r i n e s a n d s t o n e s The Lower Permian of NW Europe Marginal f a n g l o m e r a t e s and wadi d e p o s i t s Aeolian sands D e s e r t l a k e and sabkha d e p o s i t s D i a g e n e s i s and r e d d e n i n g of t h e R o t l i e g e n d e s Mechanical i n f i l t r a t i o n of c l a y A u t h i g e n i c q u a r t z , f e l d s p a r and c l a y m i n e r a l s Carbonate and s u l p h a t e cements
105 105 107 108 111 113 114 116 117 120 122
CONCLUSIONS AND FURTHER READING
125
CHAPTER 3
126
-
DELTA PLAIN RED BEDS
INTRODUCTION
126
DELTA MODELS
127
DELTAIC FACIES ASSOCIATIONS The d e l t a p l a i n River-dominated d e l t a p l a i n s F l u v i a l d i s t r i b u t a r y channels I n t e r d i s t r i b u t a r y environments Swamps L a c u s t r i n e and l a c u s t r i n e d e l t a - f i l l d e p o s i t s Tide-dominated d e l t a p l a i n s Tidal d i s t r i b u t a r y channels Interdistributary areas The d e l t a f r o n t
131 132 132 132 134 137 138 138 139 139 139 146
DELTA GROWTH AND ABANDONMENT ANCIENT DELTAIC SUCCESSIONS
147
RED BEDS I N ANCIENT DELTA PLAINS Introduction The D i f u n t a Group of n o r t h e a s t e r n Mexico The d e l t a p l a i n f a c i e s Colour v a r i a t i o n s and m i n e r a l o g y The o r i g i n of t h e d e l t a p l a i n r e d beds C a r b o n i f e r o u s r e d beds i n Europe and North America Introduction Secondary p o s t - d i a g e n e t i c r e d d e n i n g b e n e a t h t h e sub-Permian unconformity Red beds o f t h e Upper Coal Measures of t h e UK A. South Wales B . The Blackband and E t r u r i a Marl Groups of North S t a f f o r d s h i r e Upper c a r b o n i f e r o u s r e d beds a t J o g g i n s , Nova S c o t i a
150 150 15 3 155 156 15 8 15 9 15 9 160 163 164 168 175
CONCLUSIUWS AND FURTHER READING
178
XI CHAPTER 4
ALLUVIAL RED BEDS
179
INTRODUCTION
179
RIVER CHANNELS
180
ALLUVIAL FANS Alluvial fan deposits Debris f l o w d e p o s i t s Sheet flood deposits Stream c h a n n e l d e p o s i t s Sieve deposits
182 183 184 185 185 185
PEBBLY BRAIDED RIVERS Longi t u d i n a 1 b a r s Bars i n c u r v e d c h a n n e l r e a c h e s Sedimentary o r g a n i z a t i o n of p e b b l y a l l u v i u m on a l a r g e s c a l e
185 186 188 189
SANDY LOW-SINUOSITY RIVERS
190
EPHEMERAL STREAM CHANNELS
194
MEANDERING RIVERS Introduction Point bars
198 198 200
RIVER BANKS AND FLOODPLAINS Bank d e p o s i t s Floodplains Interfluvial areas
204 204 20 7 208
THE TRANSPORT OF IRON I N RECENT ALLUVIUM
213
ANCIENT ALLUVIAL RED BEDS The Old Red Sandstone reddened p e b b l y a l l u v i u m Internal facies The r e d d e n i n g of p e b b l y a l l u v i u m reddened sandy and muddy a l l u v i u m External facies A. Coarse members B. F i n e members The r e d d e n i n g o f sandy and muddy a l l u v i u m A . F i n e member r e d d e n i n g B. Coarse member r e d d e n i n g The Lower T r i a s s i c r e d beds o f NW Europe Upper C r e t a c e o u s r e d beds o f t h e s o u t h e r n Bohemian Basins
2 20 221 222 2 30 233 233 237 244 246 250 25 3 25 9
CONCLUSIONS AND FURTHER READING
264
CHAPTER 5
265
-
THE DIAGENESIS OF CONTINENTAL RED BEDS
INTRODUCTION
265
SANDSTONE DIAGENESIS The c o m p o s i t i o n o f n a t u r a l w a t e r s and e a r l y d i a g e n e t i c r e a c t i o n s Cementa t i o n M i n e r a l t r a n s f o r m a t i o n and replacement T e x t u r a l changes d u r i n g d i a g e n e s i s Red bed d i a g e n e s i s
265 267 269 272 273 2 74
THE MECHANICAL INFILTRATION OF DETRITAL CLAY Cenozoic a l l u v i u m o f s o u t h w e s t e r n USA and n o r t h w e s t e r n Mexico Mechanically i n f i l t r a t e d c l a y i n a n c i e n t r e d beds
275 275 2 80
DISSOLUTION OF FRAMEWORK SILICATES Feldspars Micas
2 80 282 284
XI1 Ferromagnesian m i n e r a l s
291
CLAY REPLACEMENT
293
AUTHIGENIC MLNERALS Potassium f e l d s p a r Zeolites Clay m i n e r a l s Illite-montmorillonite Illite Kaolinite-dicki te Chlorite Calcite Haematite and p r e c u r s o r o x i d e s Quartz
299 299 302 308 308 30 9 30 9 313 314 316 319
STAGES I N THE DIAGENESIS OF CONTINENTAL RED BEDS
319
CHAPTER 6
323
THE MINERALOGY AND GEOCHEMISTRY OF IRON OXIDES I N RED BEDS
IRON OXIDE MINERALS The t i t a n o m a g n e t i t e s - titanomaghemi t e s The h a e m a t i t e - i l m e n i t e s e r i e s F e r r i c oxyhydroxides
323 32 3 326 3 29
OPAQUE OXIDES I N RED BEDS Titanomagnetite Haematite-ilmenite
3 30 3 30 333
PRECIPITATION AND STABILITY OF FERRIC OXYHYDROXIDES The d e h y d r a t i o n o f f e r r i c oxyhydroxides
338 340
ENVIRONMENTAL CONTROLS ON THE PRECIPITATION AND DIAGENETIC HISTORY OF FERRIC OXYHYDROXIDES Marine c o n d i t i o n s An a n c i e n t example: The C a t s k i l l c l a s t i c wedge Lacustrine conditions A n a n c i e n t example: The . O r c a d i a n Basin
344 345 348 35 1 35 9 365
POST-DEPOSITIONAL INFLUENCE OF GROUNDWATER ON THE MINERALOGY AND GEOCHEMISTRY OF RED BEDS Reddening by groundwater Secondary r e d u c t i o n zones
365 36 7
I R O N CONTENT OF ANCIENT RED BEDS COKCLUSIONS AND FURTHER READING
376 379
CHAPTER 7
38 0
THE MAGNETIZATION OF CONTINENTAL RED BEDS
INTRODUCTION Palaeomagnetism and rock magnetism The p h y s i c a l b a s i s of magnetism Hysteresis A n i s o t r o p y , magnetic domains and t h e t i m e dependence of m a g n e t i z a t i o n
380 380 382 304 3 84
MINERAL MAGNETISM The t i t a n o m a g n e t i t e s and ti tanomaghemi t e s Haema t i t e Grain s i z e e f f e c t s The r e l a t i v e s t a b i l i t y of s p i n c a n t e d and d e f e c t moments
388 389 39 0 394 398
MAGNETIZATION PROCESSES I N SEDIMENTS D e t r i t a l remanent m a g n e t i z a t i o n The o c c u r r e n c e of DRM i n n a t u r e
40 3 40 3 408
XI11 Chemical remanent m a g n e t i z a t i o n CRM of t h e g o e t h i t e - h a e m a t i t e t r a n s i t i o n
411 413
THE MAGNETIC PROPERTIES OF CONTINENTAL RED BEDS Induced m a g n e t i z a t i o n ( J i - H ) a n d i s o t h e m a l remanence (IRM) c u r v e s Ji-T a n a l y s i s The NRM of r e d b e d s Chemical d e m a g n e t i z a t i o n Comparative t h e r m a l d e m a g n e t i z a t i o n o f p i g m e n t , s p e c u l a r i t e a n d r o c k
417 418 424 42 7 429 434
CHAPTER 8
THE PALAEOMAGNETISM OF CONTINENTAL RED BEDS
440
INTRODUCTION
440
PROTEROZOIC BASINS OF WESTERN CANADA The M a r t i n F o r m a t i o n The C h r i s t i e Bay Group
44 1 443 446
THE LATE PRECAMBRIAN OF NORTH WEST SCOTLAND
45 3
THE OLD RED SANDSTONE The Anglo-Welsh B a s i n The O r c a d i a n B a s i n
460 460 46 3
TRIASSIC RED BEDS OF THE WESTERN USA The Moenkopi F o r m a t i o n
46 8 469
LATE CENOZOIC RED BEDS OF BAJA CALIFORNIA
4 75
THE RELATIONSHIP BETWEEN DIAGENESIS AND PALAEOMAGNETISM I N CONTINENTAL RED BEDS Models of remanence a c q u i s i t i o n The p a l a e o m a g n e t i c e v o l u t i o n o f r e d b e d s Type A r e d b e d s Type B r e d b e d s Type C r e d beds
481 481 484 485 487 488
REFERENCES
493
SUBJECT INDEX
5 37
This Page Intentionally Left Blank
1
CHAPTER 1 THE GEOLOGICAL FRAMEWORK OF CONTINENTAL RED BEDS INTRODUCTION C o n t i n e n t a l r e d beds comprise a wide range o f s e d i m e n t a r y f a c i e s r e p r e s e n t i n g t h e whole spectrum of non-marine d e p o s i t i o n a l environments from a l l u v i a l f a n s , r i v e r f l o o d p l a i n s , d e s e r t s , l a k e s and d e l t a s .
They a r e n o t e x c l u s i v e l y r e d a n d o f t e n
c o n t a i n v a r i a b l e p r o p o r t i o n s of i n t e r d i g i t a t e d d r a b s t r a t a which shows a v a r i e t y of other colours.
Most commonly such c o l o u r v a r i a t i o n a r e t h e r e s u l t o f minor v a r i a t -
i o n s i n d e p o s i t i o n a l environments. Red beds a r e c o l o u r e d by f i n e l y d i s s e m i n a t e d f e r r i c o x i d e s , u s u a l l y i n t h e form of h a e m a t i t e (&-Fe 0 ) , and g e n e r a l l y have a c o l o u r between 5R and 10R a c c o r d i n g 2 3 t o t h e Rock Color C h a r t (Goddard, 1951). The o c c u r r e n c e of f e r r i c o x i d e s i n r e d beds i n d i c a t e s t h a t t h e y formed under o x i d i z i n g c o n d i t i o n s b u t i s o f no palaeoc l i m a t i c s i g n i f i c a n c e b e c a u s e r e d beds a r e known t o form i n b o t h a r i d and m o i s t tropical climates.
The a c t u a l mechanisms of r e d bed f o r m a t i o n a r e s t i l l o n l y p o o r l y
understood and i t i s now c l e a r t h a t s e v e r a l d i f f e r e n t p r o c e s s e s a r e i n v o l v e d i n t h e g e n e s i s of a p a r t i c u l a r r e d bed f o r m a t i o n .
G e n e r a l i z a t i o n s r e g a r d i n g t h e o r i g i n of
r e d beds a r e n o t t h e r e f o r e p o s s i b l e . One of t h e most i m p o r t a n t v a r i a b l e s c o n t r o l l i n g t h e f o r m a t i o n of r e d beds i s t h e n a t u r e of t h e b a s i n i n which t h e sediments a r e o r i g i n a l l y d e p o s i t e d .
The n a t u r e of
t h e sedimentary b a s i n i s l a r g e l y determined by t h e t e c t o n i c s e t t i n g which c o n t r o l s t h e r a t e of u p l i f t and e r o s i o n i n t h e s o u r c e a r e a , t h e r a t e of sediment s u p p l y t o t h e b a s i n , and a l s o t h e r a t e o f s u b s i d e n c e a n d d e p o s i t i o n w i t h i n t h e b a s i n i t s e l f . T r a d i t i o n a l l y , c o n t i n e n t a l r e d beds have been r e g a r d e d a s c l a s t i c wedges of sediment formed a l o n g t h e f l a n k s of a c t i v e l y r i s i n g mountain r e g i o n s .
The f o r m a t i o n o f t h e s e
c l a s t i c wedges c l e a r l y i m p l i e s a s t r o n g t e c t o n i c i n f l u e n c e i n t h e form of m a r g i n a l f a u l t i n g and u p l i f t of t h e s o u r c e r e g i o n s .
C o n t i n e n t a l s e d i m e n t s of t h i s t y p e a r e
a d i s t i n c t i v e f e a t u r e of t h e l a t e r s t a g e s o f mountain b u i l d i n g and r e p r e s e n t a d i s t i n c t i v e s e d i m e n t a r y f a c i e s known a s molasse.
They a l s o o c c u r i n a number of
o t h e r t e c t o n i c s e t t i n g s such a s i n t r a c o n t i n e n t a l r i f t systems and t r a n s f o r m ( s t r i k e s l i p ) s e d i m e n t a r y b a s i n s , b o t h o f which may c o n t a i n v a s t t h i c k n e s s e s o f c o n t i n e n t a l sediments w i t h a s s o c i a t e d r e d beds.
There a r e c l o s e p a r a l l e l s between t h e t e c t o n i c
s e t t i n g of Recent c o n t i n e n t a l sediments and a n c i e n t r e d beds. The f i r s t p a r t of t h i s c h a p t e r d e s c r i b e s t h e t e c t o n i c framework o f Recent s e d i m e n t a r y b a s i n s i n r e l a t i o n t o t h e g e o s y n c l i n a l and p l a t e t e c t o n i c c o n c e p t s . T h i s i s followed by a d e s c r i p t i o n of a number of a n c i e n t r e d bed b a s i n s which i l l u s t r a t e t h e c h a r a c t e r i s t i c s e t t i n g s i n which a n c i e n t c o n t i n e n t a l r e d beds a r e
found.
The l a s t two p a r t s a r e concerned w i t h t h e p a l a e o c l i m a t i c s i g n i f i c a n c e and
c l a s s i f i c a t i o n of a n c i e n t c o n t i n e n t a l r e d beds. GEOSYNCLINES Our p r e s e n t u n d e r s t a n d i n g of s e d i m e n t a r y b a s i n s owes much t o t h e development of the geosynclinal concept.
T h i s embodies t h e common a s s o c i a t i o n of t h i c k s e d i m e n t a r y
b a s i n , f o l d i n g , i n t r u s i v e and e x t r u s i v e igneous a c t i v i t y , and mountain b u i l d i n g . Most f e a t u r e s o f g e o s y n c l i n e s can b e i n t e r p r e t e d i n terms of p l a t e t e c t o n i c s , b u t a number c a n n o t , and f o r t h i s r e a s o n t h e r e t e n t i o n o f t h e c o n c e p t , w i t h i t s emphasis on t h e d e s c r i p t i o n of t e c t o n i c s e t t i n g s of s e d i m e n t a r y sequences a t c o n t i n e n t a l margins has proved most u s e f u l (HsU, 1972). The term g e o s y n c l i n e , s t r i c t l y s p e a k i n g , means a l a r g e down-warped s u r f a c e , b u t h a s always been c o n s t r u e d a s a t h e o r e t i c a l c o n c e p t o r i g i n of mountains.
-
a working h y p o t h e s i s f o r t h e
The o r i g i n a l i d e a of H a l l (1859) was t h a t s e d i m e n t a r y l o a d
l e d t o s u b s i d e n c e , which i n t u r n r e s u l t e d i n f o l d i n g , i g n e o u s a c t i v i t y a n d mountain building.
C r i t i c s p o i n t e d o u t t h a t g e o s y n c l i n e s d i d n o t s u b s i d e under s e d i m e n t a r y
l o a d b u t s y n c l i n a l o r g e o s y n c l i n a l d e p r e s s i o n s made t h e a c c u m u l a t i o n s of t h i c k s e d i m e n t a r y sequences p o s s i b l e (Dana, 1873).
Thus, i f s e d i m e n t a r y s u p p l y was slow
o r modest and c o u l d n o t keep pace w i t h s u b s i d e n c e , " g e o s y n c l i n a l " s e d i m e n t s would be b a t h y a l and p e l a g i c ( S u e s s , 1875; Haug, 1900). I t was r e a l i z e d a t a n e a r l y s t a g e t h a t orogeny c o u l d r e s u l t from l a t e r a l comp-
r e s s i o n caused by t h e movement o f ocean f l o o r towards a c o n t i n e n k a l mass and t h a t g e o s y n c l i n e s developed e i t h e r b e s i d e , o r o n , a c o n t i n e n t a l margin.
T h i s view was
s t r o n g l y i n f l u e n c e d by t h e p r e s e n t p o s i t i o n o f t h e Appalachians and t h e w e s t e r n C o r d i l l e r r a , w h e r e a s t h e e a r l y view o f Europeans was t h a t g e o s y n c l i n e s developed between and on t h e a d j a c e n t margins o f two c o n t i n e n t s .
I n t h i s context sedimentation
was c o n s i d e r e d t o t a k e p l a c e p r o g r e s s i v e l y c l o s e r t o one o f t h e c o n t i n e n t s , termed a ' f o r e l a n d ' , d u r i n g g e o s y n c l i n a l development. G e o s y n c l i n a l c l a s s i f i c a t i o n was begun by S c h u c h e r t (1923) and e x t e n d e d by S t i l l e (1936, 1940) who d i s t i n g u i s h e d o r t h o g e o s y n c l i n e s , c h a r a c t e r i z e d by a l p i n e - t y p e deformation and orogeny, and p a r a g e o s y n c l i n e s which a r e c h a r a c t e r i z e d by b l o c k f a u l t i n g and do n o t form mountain c h a i n s .
O r t h o g e o s y n c l i n e s were d i v i d e d i n t o e u g e o s y n c l i n e s
w i t h a v a r i e d igneous s u i t e i n c l u d i n g p r e - o r o g e n i c o p h i o l i t e s , s y n - o r o g e n i c a n d e s i t e s and p o s t - o r o g e n i c g r a n i t e s , and miogeosynclines which l a c k i g n e o u s r o c k s . More d e t a i l e d c l a s s i f i c a t i o n s were developed by Kay (1947, 1951) who sub-divided t h e o r t h o g e o s y n c l i n e and p a r a g e o s y n c l i n e o f S t i l l e (1936).
He retained t h e division
i n t o miogeosyncline and e n g e o s y n c l i n e and a p p l i e d i t t o t h e Appalachian mountains (Fig.l.1).
The p a r a g e o s y n c l i n e s were, however, d i v i d e d i n t o t h r e e t y p e s : exogeo-
s y n c l i n e s , s i t u a t e d on a c o n t i n e n t a l margin and s u p p l i e d by d e t r i t u s from t h e deformed o r t h o g e o s y n c l i n e ; a u t o g e o s y n c l i n e s , c o n s i s t i n g m o s t l y of i n t r a c o n t i n e n t a l
3 c a r b o n a t e b a s i n s i n d e p e n d e n t of t h e o r t h o g e o s y n c l i n e and z e u g o g e o s y n c l i n e s which Eastern New York
20 000
Vermont
New Hampshire
Maine
50
50
0 Distance (miles)
RESTORED SECTION - CAMBRIAN THROUGH MIDDLE ORDOVICIAN
100 fathom line Continental shelf
0
-
1
5000 10 000
/
15 000
20 000 Shelf __*
2 5 000
S1ope+Continental
rise
SEDIMENT THICKNESS OF ATLANTIC CONTINENTAL MARGIN
F i g . 1.1. The Appalachian g e o s y n c l i n e ( a f t e r Kay,1951) compared w i t h t h e p r e s e n t day A t l a n t i c margin ( a f t e r Drake e t a l . , 1959).
a r e i n t r a c r a t o n i c b a s i n s f i l l e d by d e t r i t u s from i n t r a c r a t o n i c mountain c h a i n s . Kay a l s o r e c o g n i z e d a number of s e d i m e n t a r y b a s i n s which h e c o n s i d e r e d t o b e c h a r a c t e r i s t i c of t h e l a t e r s t a g e s of g e o s y n c l i n a l development and termed them " l a t e cycle geosynclinesii.
These i n c l u d e d :
e p i e n g e o s y n c l i n e s d e r i v e d from
mountains which were formed from e u g e o s y n c l i n e s ; t a p h r o g e o s y n c l i n e s which a r e i n t r a c r a t o n i c b a s i n s c h a r a c t e r i s e d by fault-bounded m a r g i n s , and p a r a l i a g e o s y n c l i n e s s i t u a t e d a l o n g c o n t i n e n t a l margins and merging i n t o t h e c o a s t a l p l a i n .
This category
was c r e a t e d t o accommodate t h e Gulf of Mexico. The most w i d e l y r e c o g n i z e d o f t h e s e L a t e Cycle G e o s y n c l i n e s i s t h e Taphrogeos y n c l i n e which i s s i g n i f i c a n t b e c a u s e t h e s e r e p r e s e n t a m a j o r l o c u s o f c o n t i n e n t a l e l a s t i c d e p o s i t i o n and r e d bed f o r m a t i o n and have o f t e n been wrongly compared i n t e c t o n i c s e t t i n g w i t h p o s t - o r o g e n i c molasse.
Taphrogeosynclines a r e elongated
s e d i m e n t a r y b a s i n s which a r e i n t r a c r a t o n i c and c h a r a c t e r i z e d by t i l t e d (= t a p h r o ) f a u l t blocks.
The t y p e example i s t h e T r i a s s i c f a u l t t r o u g h o f t h e e a s t e r n U.S.A.
4
An i m p o r t a n t landmark i n t h e development of t h e g e o s y n c l i n a l c o n c e p t was t h e r e c o g n i t i o n o f t h e importance o f t u r b i d i t y c u r r e n t s (Kuenen, 1957a, 195713, 1958, 1967).
These p r o v i d e d a mechanism whereby l a r g e sand and conglomerate b o d i e s c o u l d
b e emplaced i n deep w a t e r and p r o v i d e d a n e x p l a n a t i o n of how a n i n i t i a l l y deep s e d i m e n t a r y b a s i n c o u l d be f i l l e d .
Drake e t a l . (1959) showed how t u r b i d i t y c u r r e n t s
r e l a t e d t o a n A t l a n t i c - t y p e c o n t i n e n t a l margin
-
a c o n t i n e n t a l s h e l f prism passing
oceanwards i n t o a c o n t i n e n t a l r i s e p r i s m w i t h a t h i c k s u c c e s s i o n of t u r b i d i t e s . D i e t z (1963) and D i e t z and Holden (1966) e x t e n d e d t h e A t l a n t i c margin a n a l o g y a n d s u g g e s t e d t h a t t h e l a t e Mesozoic and Cenozoic m i o g e o s y n c l i n a l s u c c e s s i o n of t h e e a s t e r n USA t h i c k e n e d seawards towards t h e c o n t i n e n t a l e d g e , forming a m i o g e o c l i n e . The A t l a n t i c m i o g e o c l i n e was t h e n compared w i t h t h e Lower P a l a e o z o i c Appalachian geosyncline (Fig.l.2). The g e o s y n c l i n a l c o n c e p t r e a c h e d a s o p h i s t i c a t e d l e v e l immediately p r l o r t o t h e r e v e l a t i o n s o f p l a t e t e c t o n i c s and many o f t h e views which p r e v a i l e d a t t h e time a r e summarized by Aubouin (1965).
He d e f i n e d a n e l e m e n t a r y g e o s y n c l i n e model w i t h
miogeosyncline and e u g e o s y n c l i n e which were f u r t h e r d i v i d e d i n t o a r i d g e and furrow. The Western A l p s , H e l l e n i d e s , Apennines and C a r p a t h i a n s e a c h formed examples and h e s t r e s s e d t h e importance o f d i s t i n c t s t a g e s o f development w i t h t h e m i g r a t i o n of s e d i m e n t a t i o n and d e f o r m a t i o n towards t h e f o r e l a n d d u r i n g orogeny. I t has been known f o r some t i m e now t h a t g e o s y n c l i n a l s e d i m e n t a t i o n i s b r o a d l y c y c l i c and f o u r d i s t i n c t i v e f a c i e s can b e r e c o g n i z e d : flysch
-
pre-orogenic
-
pre-flysch
-
molasse (HsU, 1973) a l t h o u g h t h e r e has been c o n s i d e r e b l e v a r i a t i o n i n t h e
usage o f t h e v a r i o u s terms i n v o l v e d . T h i s sequence of f a c i e s i s a p p l i c a b l e t o many o r o g e n i c b e l t s of d i f f e r e n t a g e s and i n d i f f e r e n t p a r t s o f t h e world. These exposed o r o g e n i c b e l t s o f t e n show t h e p a s s a g e from a basement ( p r e - o r o g e n i c ) p h a s e , t h r o u g h a s t a r v e d ( p r e - f l y s c h ) phase formed a s t h e b a s i n deepened, t o a deep-marine c l a s t i c ( f l y s c h ) p h a s e and f i n a l l y a c o n t i n e n t a l c l a s t i c ( m o l a s s e ) phase formed d u r i n g and a f t e r mountain u p l i f t .
Pre-orogenic phase The f a c i e s of t h e p r e - o r o g e n i c phase a r e v e r y v a r i a b l e and i n c l u d e i g n e o u s a n d / o r metamorphic c r y s t a l l i n e basement, s h a l l o w marine c l a s t i c s ( q u a r t z a r e n i t e s ) and c a r b o n a t e s and o t h e r f a c i e s c o n s i s t e n t w i t h a m i o g e o s y n c l i n a l s e t t i n g . I t i n d i c a t e s t h a t g e o s y n c l i n a l development u s u a l l y b e g i n s w i t h e s t a b l i s h m e n t of s h a l l o w marine s e d i m e n t a t i o n on c o n t i n e n t a l c r u s t . Pre-flvsch T h i s i s a v a r i a b l e f a c i e s which p r e c e d e s t h e f l y s c h s t r a t i g r a p h i c a l l y .
It
c o n s i s t s mainly of f i n e g r a i n e d sediments i n c l u d i n g b l a c k s h a l e s , s i l t s t o n e s , c h e r t s and d a r k l i m e s t o n e s sometimes r e f e r r e d t o a s t h e ' b a t h y a l l u l l ' ( G o l d r i n g , 1962).
5 Late Pracambrsan M Ordov8cian
L Y
I
.r
in 0 0 0 0
n
z
W
W
c
n
la W 7
m
.C
v)
.c W
L ln L m
Y
W
c Y 'c
W E
p:
m
.r
U
Fig.l.2.
D e p o s i t i o n and c o l l a p s e o f c o n t i n e n t a l r i s e ( a f t e r D i e t z and Holden, 1966).
I n f a c t two d i s t i n c t i v e s u b f a c i e s c a n be recognized i n t h e p r e - f l y s c h and t h e s e a r e termed t h e Becken ( b a s i n ) and Schwellen ( s w e l l ) s u b f a c i e s i n t h e Hercynian geosyncline. The b a s i n f a c i e s c o n s i s t s o f r e l a t i v e l y t h i c k sequences o f f i n e g r a i n e d sediments d e p o s i t e d as h e m i p e l a g i t e s o r l o w d e n s i t y t u r b i d i t e s whereas t h e swell f a c i e s c o n s i s t s o f condensed l i m e s t o n e s r i c h i n b i o c l a s t i c m a t e r i a l and d e p o s i t e d on a submarine rise. An i m p o r t a n t f e a t u r e i n some p r e - f l y s c h sequences i s t h e o c c u r r e n c e of o p h i o l i t e complexes.
These show t h e upward sequence:
ultramafics
p i l l o w l a v a s and a r e o f t e n a s s o c i a t e d w i t h r a d i o l a r i t e s .
gabbros
+ dykes +
The b a s i c rocks a r e
f r e q u e n t l y s e r p e n t i n i z e d and B a i l e y and McCallien (1960) gave t h e name "Steinmann T r i n i t y " t o t h e t h r e e f o l d a s s o c i a t i o n of r a d i o l a r i t e , s e r p e n t i n i t e , and g r e e n s t o n e s r e c o g n i z e d by Steinmann (1905, 1927).
6
Flysch F l y s c h i s a w i d e l y used term (HsU, 1970) which i s commonly c o n s i d e r e d t o b e a synonym f o r t u r b i d i t e .
Some a u t h o r s p r e f e r t o r e s t r i c t t h e term f l y s c h t o syn-
o r o g e n i c mass-flow d e p o s i t s found i n o r t h o g e o s y n c l i n e s ( e . g . d e R a a f , 1968; S t a n l e y , 1970) and u s e t h e term f l y s c h - l i k e o r f l y s c h o i d f o r s i m i l a r d e p o s i t s found i n l a t e g e o s y n c l i n a l s t a g e s when t e c t o n i c a c t i v i t y i s n o t known. F l y s c h c o n s i s t s m o s t l y of a l t e r n a t i n g s a n d s t o n e s and s h a l e s which a r e o f t e n r e p e a t e d through g r e a t s t r a t i g r a p h i c t h i c k n e s s e s .
A number of f a c i e s a s s o c i a t i o n s
a r e now r e c o g n i z e d ( M u t t i and Ricci L u c c h i , 1972) i n b o t h Recent and a n c i e n t t u r b i d i t e basins including:
b a s i n p l a i n , o u t e r f a n and i n n e r f a n f a c i e s
associations.
Molasse i s d e f i n e d by Van Houten (1969) a s , " C l a s t i c wedges l a i d down i n s h a l l o w marine and nonmarine environments a d j a c e n t t o r i s i n g mountain c h a i n s " .
A wide
v a r i e t y o f f a c i e s a r e r e p r e s e n t e d i n c l u d i n g a l l u v i a l f a n s , f l u v i a l , d e l t a i c , and s h a l l o w marine d e p o s i t s encompassing a wide range of l i t h o l o g i e s r a n g i n g from c o n g l o m e r a t e s , s a n d s t o n e s , mudstones, and t h i n l i g n i t e s and c o a l s . I n t h e g e o s y n c l i n a l c y c l e m o l a s s e g e n e r a l l y f o l l o w s , b u t may b e p a r t l y contemporaneous w i t h , f l y s c h s e d i m e n t a t i o n .
I t i s u s e f u l t o d i s t i n g u i s h between a l a t e -
o r o g e n i c f a c i e s now deformed and a p o s t - o r o g e n i c f a c i e s which i s undeformed. Molasse i s t h e r e f o r e one of t h e main d i a g n o s t i c f e a t u r e s of orogeny and may b e a s e n s i t i v e m o n i t o r o f d e f o r m a t i o n and u p l i f t i n mountain b e l t s . PLATE TECTONICS AND SEDIMENTATION
Most g e o l o g i s t s now a c c e p t t h e main t e n e t s of p l a t e t e c t o n i c s and i t s c o r o l l a r y c o n c e p t s o f c o n t i n e n t a l d r i f t , s e a f l o o r s p r e a d i n g , t r a n s f o r m f a u l t s and s u b d u c t i o n zones a l t h o u g h some (Beloussov, 1970; M e y e r h o f f , l 9 7 0 ) have c h a l l e n g e d t h e s e c o n c e p t s . The term p l a t e t e c t o n i c s (McKenzie, 1972; Dewey, 1972) a r o s e b e c a u s e t h e d i s c r e t e s p h e r i c a l c a p s of e s s e n t i a l l y r i g i d l i t h o s p h e r e which a r e i n r e l a t i v e motion w i t h r e s p e c t t o one a n o t h e r , and w i t h t h e less r i g i d a s t h e n o s p h e r e b e n e a t h , a r e u s u a l l y r e f e r r e d t o a s p l a t e s (McKenzie and P a r k e r , 1967). P l a t e t e c t o n i c t h e o r y l a y s emphasis on t h e h o r i z o n t a l movement of t h e l i t h o s p h e r e and t h e p l a t e t e c t o n i c s e t t i n g ( D i c k i n s o n , 1974a) of s e d i m e n t a r y b a s i n s can b e d e s c r i b e d i n terms of t h e p r o x i m i t y of t h e b a s i n t o a p l a t e margin.
Thus i n t r a p l a t e
s e t t i n g s o f c o n t i n e n t a l o r o c e a n i c c h a r a c t e r c o n t r a s t w i t h p l a t e margin s e t t i n g s . The l a t t e r i n c l u d e t h r e e d i s t i n c t t y p e s of p l a t e j u n c t i o n :
1) d i v e r g e n t where two
l i t h o s p h e r i c p l a t e s a r e moving a p a r t a s ocean f l o o r s p r e a d i n g t a k e s p l a c e ;
2)
c o n v e r g e n t where l i t h o s p h e r e i s consumed a s one p l a t e descends b e n e a t h a n o t h e r ; and
7 3) s t r i k e - s l i p o r t r a n s f o r m where p l a t e s move l a t e r a l l y p a s t one a n o t h e r . The a c c u m u l a t i o n of a t h i c k s e d i m e n t a r y b a s i n r e q u i r e s e i t h e r a n i n i t i a l depressi o n o r p r o g r e s s i v e s u b s i d e n c e , b o t h o f which imply l a r g e v e r t i c a l movements.
i s not i n c o n s i s t e n t with t h e p l a t e t e c t o n i c theory.
This
V e r t i c a l movements t a k e p l a c e
i n r e s p o n s e t o changes i n t h e t h i c k n e s s o f t h e c r u s t , i q t h e t h e r m a l c o n d i t i o n of t h e l i t h o s p h e r e , and i n t h e i s o s t a t i c b a l a n c e between l i t h o s p h e r e and a s t h e n o s p h e r e .
I t i s t h e s e v e r t i c a l movements which l a r g e l y c o n t r o l t h e e v o l u t i o n of s e d i m e n t a r y basins. D i v e r g e n t p l a t e margins D i v e r g e n t p l a t e j u n c t i o n s may o r may n o t b e a s s o c i a t e d w i t h t h e emplacement of o c e a n i c c r u s t and r e l a t e d s e a f l o o r s p r e a d i n g ,
U s u a l l y d i v e r g e n t p l a t e margins a r e
c h a r a c t e r i z e d by a domal u p l i f t w i t h a c e n t r a l r i d g e and median v a l l e y a l t h o u g h r a p i d l y s p r e a d i n g r i d g e s s u c h a s t h e E a s t P a c i f i c Rise l a c k t h e median r i f t v a l l e y . U p l i f t i s due t o thermal e x p a n s i o n , h i g h h e a t f l o w and magmatic a c t i v i t y and i s o f t e n a s s o c i a t e d w i t h t h e emplacement o f o c e a n i c c r u s t and s e a f l o o r s p r e a d i n g . Continuous s p r e a d i n g o v e r a l o n g t i m e r e s u l t s i n t h e w i d e s p r e a d s e p a r a t i o n of t h e c o n t i n e n t a l margins a s i n t h e p r e s e n t - d a y A t l a n t i c and I n d i a n Oceans.
I n other
c a s e s s p r e a d i n g may b e i n t e r r u p t e d and o n l y a c e r t a i n amount o f o c e a n i c c r u s t emplaced a s i n t h e Red Sea.
I f no o c e a n i c c r u s t i s emplaced a n i n t r a c o n t i n e n t a l
r i f t forms a n d t h i s may b e t h e s i t e of a major s e d i m e n t a r y a c c u m u l a t i o n . I n t r a c o n t i n e n t a l r i f t s and a u l a c o g e n s I n t r a c o n t i n e n t a l r i f t s a r e major g l o b a l s t r u c t u r e s w i t h a long h i s t o r y of d e f o r m a t i o n , m a g m a t i s m , and s e d i m e n t a t i o n ,
They a r e c h a r a c t e r i z e d by domal u p l i f t s ,
usually about lkm h i g h , lOOkm wide and 200-3OOkm l o n g , n e g a t i v e g r a v i t y anomalies and by a l k a l i n e v u l c a n i c i t y .
The t y p e example i s t h e E a s t A f r i c a n r i f t system which i s
o v e r 3,OOOkm long and h a s a h i s t o r y e x t e n d i n g back i n t o t h e Precambrian w i t h o u t any a p p a r e n t major l a t e r a l movement ( F i g . l . 3 ) .
The E a s t A f r i c a n r i f t i s c h a r a c t e r i z e d by
a g r a d u a l t o p o g r a p h i c r i s e towards t h e c e n t r a l r i f t which i s between 40 and 50km wide and i s a b o u t 2km below t h e s u r r o u n d i n g p l a t e a u .
W i t h i n t h e r i f t a r e a number o f
Mesozoic and Cenozoic a l k a l i n e v o l c a n i c c e n t r e s and non-volcanic s u c h a s Ruwenzori.
horst structures
T o p o g r a p h i c a l l y t h e r i f t i s complex and i s made more s o by t h e
e n e c h e l o n p a t t e r n o f t h e boundary f a u l t s .
A number of s e d i m e n t a r y b a s i n s t h e r e f o r e
e x i s t and t h e major ones a r e t h e s i t e s of l a r g e p r e s e n t - d a y l a k e s and c o n t a i n t h i c k sequences of l a c u s t r i n e s e d i m e n t s .
Because o f i t s domal s t r u c t u r e t h e maior r i v e r s
flow away from t h e E a s t A f r i c a n r i f t b u t t h e r e i s a l s o a n i n t e r n a l d r a i n a g e .
The
s e d i m e n t a r y b a s i n s a r e t h u s f i l l e d by a l l u v i a l f a n s , d e r i v e d from l o c a l t o p o g r a p h i c h i g h s , and l a c u s t r i n e s e d i m e n t s .
8
F i g . 1.3. The East A f r i c a n R i f t System ( a f t e r King,1970). I n s e t shows a r e a s of l a t e Mesozoic and Cenozoic domal u p l i f t and t r i p l e j u n c t i o n s ( a f t e r Burke and Whiteman, 1973). The B a i k a l r i f t i s a n o t h e r major r i f t system s t r i k i n g l y s i m i l a r t o t h e E a s t African r i f t .
I t s t r e t c h e s f o r a d i s t a n c e of 3,500km from n o r t h w e s t e r n Mongolia,
through t h e mountains o f s o u t h e a s t e r n S i b e r i a i n t o Yakutia and probably a s f a r a s
9
t h e s e a o f Okhotsk (King, 1976).
The r i f t s t r u c t u r e s c o n s i s t o f l i n e a r systems of
fault-bounded i n t e r m o n t a n e d e p r e s s i o n s a l o n g t h e c r e s t o f a r c h e d u p l i f t s .
There
a r e twelve l a r g e d e p r e s s i o n s , 100-7OOkm l o n g and 15-18km i n w i d t h , and numerous smaller depressions.
The b a s i n s a r e f i l l e d by up t o 5,500m o f O l i g o c e n e - P l e i s t o c e n e
c o n t i n e n t a l sediments w i t h i n t e r c a l a t e d v o l c a n i c s . nizable:
Two t e c t o n i c u n i t s a r e recog-
a lower group c o n s i s t i n g of l a c u s t r i n e , swamp and a l l u v i a l d e p o s i t s of
O l i g o c e n e , Miocene and p o s s i b l y lower P l i o c e n e a g e and a n upper group o f l a t e Pleistocene-Holocene age r e s t r i c t e d t o i n t e r m o n t a n e t r o u g h s and d e r i v e d from a h i g h e r mountain r e l i e f e v i d e n t l y under c o l d c l i m a t i c c o n d i t i o n s . O t h e r good examples o f r i f t systems i n c l u d e t h e Oslo g r a b e n w i t h i t s Permian a l k a l i c v o l c a n i c s and t h e t r o u g h s of t h e North Sea (Whiteman e t a l . , Rhine Graben i s one of t h e b e s t known.
1975).
The
I t i s o f T e r t i a r y a g e and i s l o c a t e d over
a dome forming t h e s o u t h e r n arm of a t r i p l e j u n c t i o n c e n t r e d i n F r a n k f u r t (Burke and Dewey, 1973).
I t h a s t h e u s u a l a l k a l i n e v o l c a n i c s and i s a s s o c i a t e d w i t h h i g h
h e a t flow, e a r t h q u a k e s and r e c e n t f a u l t a c t i v i t y ( M u e l l e r , 1970). A d i s t i n c t i v e type of r i f t system i s t h e abandoned r i f t o r a u l a c o g e n . were d i s c o v e r e d by S h a t s k i (1961) and developed i n t o a d o m e - t r i p l e a u l a c o g e n - r i f t c o n c e p t by Burke and Dewey (1973).
These
junction-
Aulacogens a r e deep l i n e a r
t r o u g h s which form t h e t h i r d arms of t r i p l e j u n c t i o n s and e x t e n d from a c o n t i n e n t a l margin o r g e o s y n c l i n e i n t o a f o r e l a n d p l a t f o r m o r c o n t i n e n t .
The developmental
sequence of a n a u l a c o g e n i n v o l v e s e a r l y doming and t h e f o r m a t i o n o f a plume-induced t r i p l e j u n c t i o n r i f t network. of t h e system.
S p r e a d i n g may t a k e p l a c e on any o f t h e t h r e e arms
I f i t t a k e s p l a c e on a l l t h r e e t h e n t h r e e p l a t e s a r e formed, b u t i f
o n l y on two, t h e n t h e f o r m a t i o n of two p l a t e s l e a v e s a n abandoned r i f t o r a u l a c o g e n . One of t h e b e s t known a u l a c o g e n s i s t h e Benue Trough.
T h i s formed from a
Cretaceous t r i p l e j u n c t i o n j o i n i n g S o u t h America and A f r i c a ( F i g . l . 4 ) .
Two arms
s e p a r a t e d t o form t h e S o u t h A t l a n t i c w h i l s t t h e t h i r d was abandoned and remains a s t h e Benue Trough (Burke e t a l . , 1971; Olade, 1975). s u c c e s s i o n ( o v e r 1Okm) of T e r t i a r y s e d i m e n t s .
I t has been f i l l e d by a t h i c k
These p a s s from submarine f a n d e p o s i t s
a t t h e b a s e up through d e l t a i c s e d i m e n t s i n t o c o n t i n e n t a l a l l u v i a l s a n d s t o n e s ( F i g . 1.5). Intercontinental r i f t i n g The emplacement of o c e a n i c c r u s t i n a x i a l r i f t zones i s a s s o c i a t e d w i t h s e a f l o o r s p r e a d i n g a n d s e p a r a t i o n of e a c h h a l f o f t h e r i f t .
These develop i n t o p a s s i v e
' A t l a n t i c ' t y p e c o n t i n e n t a l m a r g i n s , comprising a s h e l f , s l o p e and r i s e , and sometimes termed t r a i l i n g edges. I n t h e e a r l y s t a g e s of i n t e r c o n t i n e n t a l r i f t i n g s e d i m e n t a t i o n i s c l o s e l y a s s o c i a t e d w i t h t h e e r u p t i o n of v a s t amounts of b a s a l t i c l a v a s .
I n t h e Red S e a , which
has a complex s p r e a d i n g h i s t o r y (Richardson and H a r r i s o n , 1 9 7 6 ) , t h e r e i s a n a x i a l
10
o-(3q--+-+ of Guinea
0'
The o r i g i n o f t h e Benue Trough a s a n a u l a c o g e n abandoned d u r i n g c o n t i n e n t a l Fig.l.4. r i f t s e p a r a t i o n o f A f r i c a and S o u t h America d u r i n g t h e C r e t a c e o u s ( a f t e r Hoffman e t a l . , 1974). t r o u g h 4-3Okm wide and o v e r 1,000m deep,
I n the deeper p a r t s of t h e trough a r e h o t
b r i n e p o o l s which form where t r a n s f o m f a u l t s c u t t h e median v a l l e y ( B i g n e l l , 1975). These p o o l s d e p o s i t m e t a l l i f e r o u s s e d i m e n t s r i c h i n o x i d e s of z i n c , c o p p e r , l e a d i r o n and manganese which i n t h e A t l a n t i s I1 deep can b e d i v i d e d i n t o seven l a t e r a l l y
11
-z
I ro
I
I
\
Continental sandstones
Cretaceous rise deposits
--
I
2 '
I
km
~
~ _ _ _ _ _ _ _ ~ ~
~
~
Fig.l.5. Schematic s t r u c t u r a l c r o s s s e c t i o n showing t h e s e d i m e n t a r y f i l l of t h e Benue Trough ( a f t e r Burke, 1972). c o r r e l a t i v e f a c i e s ( B i s c h o f f , 1969). major mineralogy:
The f a c i e s nomenclature i n d i c a t e s t h e i r
d e t r i t a l , i r o n - m o n t m o r i l l o n i t e , goethite-amorphous,
m a n g a n o s i d e r i t e , a n h y d r i t e , and manganite.
sulphide,
An a d d i t i o n a l m a g n e t i t e f a c i e s was
s u b s e q u e n t l y a'dded ( H a c k e t t and B i s c h o f f , 1973).
The o r i g i n s of t h e b r i n e s and
m c t a l l i f e r o u s sediments i n t h e median v a l l e y o f t h e Red Sea has been d i s c u s s e d by
Schoell (1975).
P o s s i b i l i t i e s i n c l u d e i n t e n s e e v a p o r a t i o n of a n i s o l a t e d Red Sea
t o produce b r i n e c o n c e n t r a t i o n s , c o n n a t e b r i n e s e x p e l l e d by geothermal h e a t i n g , a s
well as e more d i r e c t v o l c a n i c o r i g i n . by s o l u t i o n of Miocene e v a p o r i t e s .
Another p o s s i b i l i t y i s t h a t t h e y o r i g i n a t e d
There i s a t h i c k (2-5km) e v a p o r i t e - c l a s t i c
sequence i n t h e Red Sea which was formed f o l l o w i n g a marine i n c u r s i o n a f t e r d e p r e s s i o n o f t h e Red Sea d u r i n g t h e l a t e Eocene and e a r l y O l i g o c e n e (Hutchinson and E n g e l s , 1970).
F u r t h e r s e a f l o o r s p r e a d i n g a n d d e p o s i t i o n of deep s e a oozes
took p l a c e d u r i n g t h e P l i o c e n e and Q u a t e r n a r y .
A s s e a f l o o r s p r e a d i n g p r o g r e s s e s two l a t e r a l l y e q u i v a l e n t s u c c e s s i o n s b u i l d up on t h e now w i d e l y s e p a r a t e d c o n t i n e n t a l m a r g i n s .
I d e a l l y t h e s e c o n t i n e n t a l margins
c o n s i s t of t h i c k sequences of c o n t i n e n t a l s h e l f s e d i m e n t s and a r e u n d e r l a i n by c o n t i n e n t a l s e d i m e n t s , i n c l u d i n g r e d b e d s , which formed i n f a u l t bounded t r o u g h s d u r i n g t h e e a r l y s t a g e s of r i f t i n g .
Oceanwards t h e r e i s a t r a n s i t i o n from c o n t i n e n t a l
r i s e , through a b y s s a l p l a i n t o t h e mid-oceanic r i d g e .
I n v e r t i c a l sequence o c e a n i c
c r u s t p a s s e s upwards through p e l a g i c s e d i m e n t s i n t o t u r b i d i t e s ( F i g . l . 6 ) .
12
CONTINENTAL SHELF
CONTINENTAL RISE
OCEANIC RIDGE
ABYSSAL PLAIN
Pillowed tholelite
C r o s s - s e c t i o n of t h e w e s t e r n A t l a n t i c showing r e l a t i o n s h i p s of c o n t i n e n t a l Fig. 1 . 6 . c r u s t , o c e a n i c c r u s t and s e d i m e n t s ( a f t e r Dewey and B i r d , 1970). Oceanic r i d g e s themselves a r e s t r u c t u r a l l y complex and may be b l o c k f a u l t e d ( e . g . M i d - A t l a n t i c r i d g e ) w i t h normal f a u l t i n g p a r a l l e l t o t h e r i d g e t r e n d and t r a n s f o r m f a u l t i n g perpendicular t o i t .
T h i s produces a complex s y s t e m of r i d g e s and b a s i n s
which a r e t r a n s v e r s e and p a r a l l e l t o t h e r i d g e t r e n d .
Some o f t h e s e a r e up t o
5,000111 deep (Van Andel and Komar, 1969; Van Andel e t a l . ,
1971) and c o n t a i n t h i c k
sequences (500-1,200m) of l a r g e l y u n d i s t u r b e d f i n e g r a i n e d t u r b i d i t e s w i t h p i l l o w l a v a s , i n t r u s i o n s and s e d i m e n t a r y b r e c c i a s a l o n g t h e boundary f a u l t
1975).
s c a r p s (Arcyana,
Away from t h e ocean r i d g e s t h e newly formed l i t h o s p h e r e c o o l s and s i n k s t o
deeper o c e a n i c d e p t h s and t h e e a r l i e r formed r i d g e s e d i m e n t s a r e o v e r l a i n by p e l a g i c sediments.
The p r e c i s e n a t u r e o f t h e s e depends upon a numberof f a c t o r s s u c h a s
o c e a n i c c i r c u l a t i o n , t h e c a r b o n a t e compensation d e p t h and t h e p r o x i m i t y of c l a s t i c sources such a s i s l a n d a r c s .
The p e l a g i c s e d i m e n t s of ocean r i d g e s and a b y s s a l
p l a i n s o f t e n c o n t a i n l a r g e amounts o f hydrogenous manganese n o d u l e s which c o n s i s t o f i r o n and manganese oxyhydroxides w i t h s i g n i f i c a n t c o n c e n t r a t i o n s o f Co, N i and Cu.
These form on t h e f l a n k s of ocean r i d g e s , seamounts and a b y s s a l p l a i n s , m o s t l y
a t d e p t h s g r e a t e r t h a n 4,000m.
13 convergent D l a t e margins Convergent p l a t e margins a r e c h a r a c t e r i z e d by t h e s u b d u c t i o n of o c e a n i c l i t h o s p h e r e b e n e a t h a v o l c a n i c a l l y a c t i v e o v e r r i d i n g p l a t e and t h e development o f a r c t r e n c h systems (Dickinson, 1974a).
Arc-trench systems c a n b e b r o a d l y equated w i t h
t h e e u g e o s y n c l i n e s o f e a r l i e r workers (Dickinson, 1974b) and have t h e f o l l o w i n g f i v e morphotectonic e l e m e n t s :
1) t h e t r e n c h , a b a t h y m e t r i c deep f l o o r e d by ocean c r u s t ;
2 ) t h e s u b d u c t i o n zone b e n e a t h t h e i n n e r w a l l of t h e t r e n c h and t h e t r e n c h s l o p e
break;
3 ) t h e a r c - t r e n c h gap, a b e l t w i t h i n which a f o r e a r c b a s i n may o c c u r between
t h e t r e n c h s l o p e b r e a k and t h e magmatic a r c ; i n t r a - a r c b a s i n s may o c c u r ;
4 ) t h e magmatic a r c , w i t h i n which
and 5 ) t h e back a r c a r e a , w i t h i n which may l i e e i t h e r
a n i n t e r a r c b a s i n f l o o r e d by o c e a n i c c r u s t and s e p a r a t e d from t h e r e a r o f t h e a r c by normal f a u l t s , on a r e t r o a r c b a s i n f l o o r e d by c o n t i n e n t a l basement and s e p a r a t e d from t h e r e a r of t h e a r c by a t h r u s t f a u l t system
(Fig.l.7).
Forearc a r e a s The f o r e a r c a r e a comprises t r e n c h , s u b d u c t i o n zone and a r c - t r e n c h gap.
The
ocean f l o o r seaward of t h e submarine t r e n c h i s made up o f p e l a g i c sediments and t u f f s o v e r l y i n g b a s a l t i c ocean c r u s t .
Within t h e submarine t r e n c h t h e r e i s o n l y a r e l a t i v e -
l y t h i n sedimentary sequence ( n o r m a l l y a b o u t 1,OOOm). Thickness v a r i a t i o n s r e s u l t
from f l u c t u a t i o n s i n t h e s u p p l y o f c l a s t i c d e t r i t u s .
When t h i s i s low t h i n sequences
(50Om) o f p e l a g i c and hemipelagic sediment a r e d e p o s i t e d and g r e a t e r s u p p l y r e s u l t s i n t h e d e p o s i t i o n of t h i c k t u r b i d i t e sequences ( 2 , 5 0 0 1 ~ ) . Seismic p r o f i l e s show t h a t t h e s e a r e l a r g e l y undeformed b u t t h i s i s t o be e x p e c t e d i f t h e r a t e o f sediment s u p p l y i s much h i g h e r t h a n t h e r e l a t i v e r a t e of p l a t e consumption and s u b d u c t i o n zones a r e masked by submarine f a n s ( S i l v e r , 1969).
I t seems u n l i k e l y t h e r e f o r e t h a t
submarine t r e n c h e s a r e t h e s i t e of t h i c k g e o s y n c l i n a l accumulations (Von Huene, 1974). The subduction zone i t s e l f i s d i r e c t l y u n d e r l a i n by deformed and u p l i f t e d oceanics t r a t a most probably c o n s i s t i n g of melanges, crumpled beds and o p h i o l i t e s , and s l i c e d by t h r u s t s .
The s u b d u c t i o n complex i s t h u s i n f e r r e d t o grow by t h e s u c c e s s i v e
increment o f o c e a n i c m a t e r i a l s which a r e jammed a g a i n s t t h e seaward f l a n k a t t h e t r e n c h a x i s o r s c r a p e d from t h e upper s u r f a c e o f t h e descending p l a t e .
The g r e a t
t h i c k n e s s e s of s u b d u c t i o n complexes would seem t h e r e f o r e t o be of t e c t o n i c r a t h e r than s t r a t i g r a p h i c o r i g i n , The a r c - t r e n c h gap ( a c c r e t i o n a r y p r i s m o f K a r i g and Sharman, 1 9 7 5 ) c o m p r i s e s a n o u t e r a r c r i d g e formed from s t a c k s o f t h r u s t s h e e t s which i n d i v i d u a l l y young towards t h e magmatic a r c b u t whose o v e r a l l a g e d e c r e a s e s towards t h e t r e n c h ( K a r i g and Sharman, 1975; Moore, 1975).
Within t h i s zone i s a f o r e a r c b a s i n which may b e
50-lOOkm wide and o v e r 5 , 0 0 0 km long.
These f o r e a r c b a s i n s c o n t a i n t h i c k sequences
of predominantly c l a s t i c sediments which may l a t e r a l l y i n t e r f i n g e r w i t h v o l c a n i c
14
TRENCH,
RA
ARC TSB FAB,+
+
TS B
C
IAB
* ARC
A IB
FTB /
I
C
500 Km I d e a l i z e d diagram i l l u s t r a t i n g t e c t o n i c s e t t i n g s o f sedimentary b a s i n s Fig.l.7. a s s o c i a t e d w i t h a r c - t r e n c h systems. V e r t i c a l e x a g g e r a t i o n i s X10; t r u e d i p a n g l e s o f p l a t e d e s c e n t a r e 600 i n A and 3 0 ' i n B ( a f t e r Dickinson, 1974a). rocks o f t h e magmatic a r c .
Sediments a r e d e r i v e d from t h e o u t e r a r c , t h e magmatic
a r c and by l o n g i t u d i n a l t r a n s p o r t from t h e a d j a c e n t c o n t i n e n t .
A v a r i e t y of f a c i e s
a r e r e p r e s e n t e d i n f o r e a r c b a s i n s and a l t h o u g h t u r b i d i t e s and s h e l f d e p o s i t s a r e abundant c o n t i n e n t a l sediments a r e a l s o r e p r e s e n t e d . f o r e a r c b a s i n s i s t h e 'interdeep'
One of t h e b e s t developed
of t h e Sunda a r c (Van B e m e l e n , 1949) ( F i g . l . 8 ) .
The b a s i n l i e s t o t h e west o f t h e Burma-Sumatra-Java
magmatic a r c and e a s t
Of
a b e l t of f l y s c h and u l t r a b a s i c r o c k s which form t h e o u t e r a r c of m e Arakan and t h e Andaman-Nicobar-Mentawai l i n e o f i s l a n d s .
I n t h e n o r t h t h e f o r e a r c b a s i n forms
t h e w e s t e r n t r o u g h o f Burma where o v e r 8,OOOm of l a t e Cretaceous t o P l i o c e n e m a r i n e , d e l t a i c and f l u v i a l sediments have accumulated.
The a r e a i s now occupied by t h e
r i v e r c o u r s e s of t h e Chindwin and lower Irrawaddy. The mamatic a r c Magmatic a r c s can be d i v i d e d i n t o i n t r a - o c e a n i c a r c s s i t u a t e d between a r e a s of o c e a n i c c r u s t and c o n t i n e n t a l margin a r c s s i t u a t e d on t h e margin o f a c o n t i n e n t
15 n e a r t h e c o n t i n e n t - o c e a n c r u s t a l boundary ( D i c k i n s o n , 1974b) ( F i g . l . 7 ) .
They
i n c l u d e i s l a n d a r c s backed by s h a l l o w e p i c o n t i n e n t a l s e a s a s w e l l a s t h o s e s t a n d i n g a l o n g t h e edges o f c o n t i n e n t a l landmasses.
20'
lrrawsddy Oslra
10'
10' INDIAN OCEAN
Fig.l.8.
The Sunda and Banda a r c s ( a f t e r Reading, 1978).
Magmatic a r c s form t o p o g r a p h i c r i d g e s i n t e r r u p t e d by fault-bounded b a s i n s .
These
i n t r a - a r c b a s i n s a r e m o s t l y e x t e n s i o n a l and may b e r e l a t e d t o v o l c a n o - t e c t o n i c s u b s i d e n c e , a r c h i n g t h a t accompanies u p l i f t o f p a r a c o n t i n e n t a l c r u s t , o r t o t h e development of a n i n c i p i e n t i n t e r a r c b a s i n .
The s e d i m e n t a r y f i l l i s t y p i c a l l y
v o l c a n i c l a s t i c and i n c l u d e s e p i c l a s t i c mass flow d e p o s i t s , c o a r s e p y r o c l a s t i c s , t u f f s and v o l c a n o g e n i c t u r b i d i t e s w i t h t h e c o a r s e r s e d i m e n t s b e i n g d e p o s i t e d around t h e volcanic centres.
C o n t i n e n t a l margin a r c s show a wide v a r i e t y of s e d i m e n t a r y f a c i e s
i n c l u d i n g c o n t i n e n t a l s e d i m e n t s and r e d beds ( D i c k i n s o n , 1974a). Back-arc a r e a s Back-arc a r e a e a r e t e c t o n i c a l l y complex a r e a s c o n s i s t i n g of r i d g e s and b a s i n s
16 b e h i n d t h e magmatic a r c .
Behind i n t r a - o c e a n i c a r c s t h e r e i s f r e q u e n t l y a remnant-
a r c which i s s e p a r a t e d from t h e magmatic a r c by a n i n t e r a r c b a s i n ( F i g . l . 7 ) . Behind t h e remnant a r c may b e a second i n t e r a r c b a s i n , u s u a l l y r e f e r r e d t o a s a m a r g i n a l b a s i n , which s e p a r a t e s t h e remnant a r c from t h e mainland.
I n continental
margin a r c s t h e r e i s no remnant a r c and t h e back-arc m a r g i n a l b a s i n e x t e n d s from t h e c o n t i n e n t a l margins t o t h e magmatic a r c .
These back-arc e n s i a l i c b a s i n s were
c a l l e d r e t r o a r c b a s i n s by D i c k i n s o n (1974a) ( F i g . l . 7 ) . Back-arc a r e a s a r e o f t e n c h a r a c t e r i z e d by h i g h h e a t flow and t h e narrow b e l t o f l i t h o s p h e r e b e h i n d t h e a r c - t r e n c h gap can b e c o n s i d e r e d a s a s e p a r a t e narrow p l a t e . P l a t e motion can t h u s r e s u l t i n s p l i t t i n g and t h e emplacement o f new o c e a n i c c r u s t c a u s i n g t h e f o r m a t i o n of a n i n t e r a r c b a s i n by back-arc s p r e a d i n g ( K a r i g , 1970, 1971). The sediments o f i n t e r a r c b a s i n s i n c l u d e d i s t i n c t i v e t u r b i d i t e a p r o n s
Of
v o l c a n i c l a s t i c d e t r i t u s d e r i v e d from t h e m i g r a t i n g f r o n t a l a r c and r e s t i n g d i r e c t l y on o c e a n i c c r u s t .
I n some i n t e r a r c b a s i n s t h e s i d e away from t h e a r c - t r e n c h system
may b e bounded by a submerged remnant a r c , no e f f e c t i v e c l a s t i c s o u r c e i s p r e s e n t , and p e l a g i c s e d i m e n t a t i o n dominates.
There i s t h u s no t e r r i g e n o u s i n p u t t o i n t e r a r c
b a s i n s and K a r i g and Moore (1975) r e c o g n i z e f o u r dominant t y p e s o f s e d i m e n t ( F i g . l . 9 ) including:
1) v o l c a n i c l a s t i c d e t r i t u s d e r i v e d from t h e magmatic a r c , v o l u m e t r i c a l l y
t h e most i m p o r t a n t and d e p o s i t e d p r i n c i p a l l y a s t u r b i d i t e s d e r i v e d from t h e v o l c a n i c c h a i n
2 ) montmorillonite clays
3 ) b i o g e n i c c a r b o n a t e ooze and
4 ) wind blown,
continentally derived dust. R e t r o a r c b a s i n s a r e d i s t i n c t from a c t i v e i n t e r a r c b a s i n s b e c a u s e t h e y leave a complex s e d i m e n t a r y r e c o r d w i t h a wide v a r i e t y o f f a c i e s .
Marine d e l t a i c and f l u v i a l
environments a r e r e p r e s e n t e d i n sequences up t o 5km t h i c k and d e p o s i t e d i n t e r r e s t r i a l lowlands and e p i c o n t i n e n t a l s e a s between c o n t i n e n t a l a r c s and landmasses.
These
s e d i m e n t s a r e m o s t l y d e r i v e d from t h e magmatic a r c a n d t r a n s p o r t e d i n a t r a n s v e r s e d i r e c t i o n towards t h e c r a t o n a l t h o u g h t h e r e a r e minor c o n t r i b u t i o n s from t h e c r a t o n itself. The C r e t a c e o u s r e t r o a r c b a s i n s o f t h e i n t e r i o r and Rocky Mountain r e g i o n of North America c o n t a i n a v a r i e t y o f marine and c o n t i n e n t a l s e d i m e n t s d e r i v e d from u p l i f t e d s t r a t a i n t h e f o l d - t h r u s t b e l t which was formed by p a r t i a l s u b d u c t i o n b e h i n d t h e a r c (Weimer, 1970).
The main h i g h l a n d s o u r c e s were f o l d e d and f a u l t e d p r e -
Mesozoic s t r a t a l y i n g j u s t west of t h e r e t r o a r c b a s i n b u t e a s t of t h e b a t h o l i t h b e l t which marks t h e main magmatic a r c (Hamilton, 1969).
The sub-Andean zone of t h e
Andes l i e s e a s t of t h e magmatic a r c and c o n s i s t s o f deep i n t e r m o n t a n e t r o u g h s .
Here
a v a r i e t y o f c o a r s e c o n t i n e n t a l c l a s t i c s e d i m e n t s a r e d e p o s i t e d i n a l l u v i a l f a n and f l u v i a l environments. Transform f a u l t s Transform o r s t r i k e - s l i p f a u l t s bound p l a t e s between which movement i s p r i m a r i l y
17 l a t e r a l and l i t h o s p h e r e i s conserved b e i n g n e i t h e r c r e a t e d o r d e s t r o y e d .
Primary
t r a n s f o r m f a u l t s ( G i l l i l a n d and Meyer, 1976) o c c u r a l o n g fundamental b r e a k s in t h e l i t h o s p h e r e and may have had a l o n g h i s t o r y o f t e c t o n i c a c t i v i t y l i k e t h e San Andreas f a u l t system which is o v e r 1,500km l o n g , 500km wide, and h a s been a c t i v e s i n c e t h e Oligocene.
Secondary t r a n s f o r m f a u l t s a r e much s m a l l e r s t r u c t u r e s which
r e s u l t d i r e c t l y from s e a f l o o r s p r e a d i n g . Volcaniclastic debris
Montmorillonite-rich brown clays
Volcaniclastic debris
- 4
I
41-
56-
1
Brown clay or siliceous
6 7. 8
Fig.l.9.
S e d i m e n t a t i o n model f o r back-arc b a s i n s ( a f t e r K a r i g and Moore, 1975).
The San Andreas F a u l t system today l i e s a t t h e s p l i n t e r e d boundary of t h e P a c i f i c and North American p l a t e s , a t e c t o n i c arrangement t h a t a r o s e i n t h e O l i g o c e n e (Fig.l.10).
Transform movement between t h e North American and P a c i f i c p l a t e s has
v a r i e d i n t h e p a s t b u t is c u r r e n t l y a b o u t 5.0cm/year (Atwater and Molnar, 1973). Southern C a l i f o r n i a and n o r t h w e s t Mexico i s t h u s b e i n g deformed a s p a r t of a broad
18
C
B
A
D
.YU
NA QU
0 QU
QU
80 F
E
:: .YU
I I
I
.YU
,
0 QU
*QU
Schematic diagrams of p l a t e arrangements a l o n g t h e w e s t e r n c o a s t of North Fig.l.10. America. P = P a c i f i c , K = K u l a , F = F a r a l l o n , N = North American p l a t e . SE = S e a t t l e , SA = Sacramento, YU = Yurna, G U = G u a d a l a j a r a . Dashed l i n e e n c l o s e s r e g i o n of p l a t e boundary t e c t o n i c complexity. Age i n Ma g i v e n a t lower r i g h t o f e a c h s k e t c h ( a f t e r C r o w e l l , 1979). t r a n s f o r m zone.
W i t h i n t h i s zone t h e o r i g i n of s e v e r a l modern s e d i m e n t a r y b a s i n s
i n c l u d i n g t h e S a l t o n Trough and t h e Gulf of C a l i f o r n i a c a n b e r e l a t e d t o t h e i r p o s i t i o n a t o r n e a r t h e p l a t e boundary ( F i g . 1 . 1 1 ) . Crowell (1974a) h a s shown how t h e s e modern, and o l d e r , s e d i m e n t a r y b a s i n s originate i n a strike-slip tectonic setting. a r e recognized:
Two main t y p e s of s e d i m e n t a r y b a s i n
p u l l - a p a r t b a s i n s and f a u l t - w e d g e . b a s i n s .
The former o c c u r where a l o n g and s t r a i g h t s t r i k e - s l i p f a u l t h a s a s h a r p d o u b l e bend (anastomosing f a u l t ) t h a t s i d e s t e p s t h e main f a u l t t r e n d .
Such double bends
can b e r e s t r a i n i n g , r e s u l t i n g i n o v e r l a p and e l e v a t i o n a t t h e bends ( F i g . 1 . 1 2 ) , r e l e a s i n g i n which a p u l l - a p a r t and s u b s i d e n c e r e s u l t s . a n i d e a l i z e d p u l l - a p a r t b a s i n a r e shown i n F i g . l . 1 3 .
01:
The c h a r a c t e r i s t i c s of
Examples i n c l u d e t h e p r e s e n t
day Gulf o f C a l i f o r n i a and S a l t o n Trough which a r e widening and l e n g t h e n i n g a s c o n t i n e n t a l t e r r a n e t o t h e west moves o b l i q u e l y away from t h e mainland p a r t o f North America.
The S a l t o n Trough c o n t a i n s o v e r 6,000m of
f l u v i a l , l a c u s t r i n e and
26
24
. i
22
30
18
. .:
:.
...:
: .
10
0
14
100 200
19 12
300
km.
40
38
\\
\
36
34
32
30 /
Major fault
6Edg, of basin floor 28
......
Continental margin
Fig.l.11. Major f a u l t s and p r e s e n t s e d i m e n t a t i o n s i t e s of C a l i f o r n i a and Baja C a l i f o r n i a ( a f t e r C r o w e l l , 1974b). marine s e d i m e n t s .
The b a s i n margins c o n t a i n c o a r s e f a n g l o m e r a t e s and a r e marked
by u n c o n f o r m i t i e s w i t h a b r u p t changes i n f a c i e s and t h i c k n e s s .
Much of t h e sediment
i n t h e S a l t o n Trough h a s been s u p p l i e d by t h e a n c e s t r a l and p r e s e n t day Colorado
20 river,
R ESTRA l NIN G BEND
RELEASING BEND
B
SHARP RESTRAINING BEND
SHARP PULL-APART
Fig.l.12. R i g h t s l i p on f a u l t w i t h marked double bends (A) r e s u l t s i n p u l l - a p a r t a t r e l e a s i n g bends (B) a n d d e f o r m a t i o n ( f o l d and t h r u s t f a u l t s ) a t r e s t r a i n i n g bends (C) ( a f t e r C r o w e l l , 1974a). Fault-wedge b a s i n s develop i n a system of anastamosing s u b - p a r a l l e l f a u l t s , a l l w i t h t h e same d i r e c t i o n o f o f f s e t .
With l a t e r a l movement t h e s e s p l i t and r e j o i n
l e a d i n g t o t h e i r convergence, compression and u p l i f t , o r t o d i v e r g e n c e , e x t e n s i o n and s u b s i d e n c e ( F i g . l . 1 4 ) . formed i n t h i s way.
The Ridge Basin ( F i g . l . 1 5 ) i s a m a j o r s e d i m e n t a r y b a s i n
I t o r i g i n a t e d a s a narrow d e p r e s s i o n bounded on t h e
southwest
by t h e s c a r p of t h e San G a b r i e l F a u l t zone and on t h e n o r t h e a s t by h i g h l a n d s r a i s e d by f o l d i n g and by movements on t h e C l e a r w a t e r , L i e b r e , and o t h e r f a u l t s ( F i g . l . 1 5 A ) . The sediments o f t h e Ridge Basin a r e o v e r 12,000m t h i c k and i n c l u d e a v a r i e d assemblage of a l l u v i a l f a n , l a c u s t r i n e and m a r g i n a l marine d e p o s i t s d e p o s i t e d d u r i n g t h e i n t e r v a l from l a t e Miocene t o e a r l y P l e i s t o c e n e .
The P l i o c e n e d e p o s i t s c o n s i s t
mainly of c o a r s e f l u v i a l conglomerates and s a n d s t o n e s d e p o s i t e d a l o n g t h e b a s i n margins and mudstone, s h a l e and s a n d s t o n e d e p o s i t e d under l a c u s t r i n e c o n d i t i o n s i n the c e n t r a l p a r t of the basin.
Rocks which f l o o r and s u r r o u n d t h e Ridge B a s i n
c o n s i s t of g r a n i t e s , g n e i s s e s , and o t h e r metamorphics a s w e l l as T e r t i a r y c l a s t i c s .
21
I
Stretched and attenuated
W
Complex unconformities and overlaps in subsurface Complex intersection Oldest intact basin f i l l Remnants of marginal -.. rocks within volcanics
1
Talus breccias 2nd rapld ’ facies changes basinward Small thrust plates -’ , , Slide blocks
Braided right -slip zone
Fig.l.13.
I
\
]Oblique
result of convergence between boundary righ! slip faults
S k e t c h map o f a n i d e a l i z e d p u l l - a p a r t b a s i n ( a f t e r Crowell, 1974a).
The V i o l i n B r e c c i a , a c o a r s e sedimentary b r e c c i a a l o n g t h e San G a b r i e l F a u l t , c o n t a i n s c l a s t a i n t h e lower p a r t which were d e r i v e d from a l i m i t e d s o u r c e a r e a . T h i s s o u r c e a r e a i s now o f f s e t by 28km a l o n g t h e San G a b r i e l F a u l t (Crowell, 1974b). Upper Miocene marine beds on t h e southwest s i d e of t h e
San G a b r i e l F a u l t have a l s o
been d i s p l a c e d from t h e i r s o u r c e a r e a by t h e same amount (Crowell, 1952).
These
f e a t u r e s a r e c o n s i s t e n t w i t h t h e o r i g i n o f t h e Ridge Basin a s a fault-wedge “hollow” r e s u l t i n g from s t r i k e - s l i p ( F i g . 1.15A). Continental c o l l i s i o n ~
~~
When c o n t i n e n t a l masses a r e b r o u g h t t o g e t h e r by s u b d u c t i o n o r s t r i k e - s l i p movement c o l l i s i o n o c c u r s r e s u l t i n g i n f o l d i n g , t h r u s t i n g and o r o g e n e s i s .
A
consequence o f c o n t i n e n t a l c o l l i s i o n s of t h i s t y p e i s t h e consumption o f n e a r l y a l l t h e o c e a n i c l i t h o s p h e r e and t h e s u t u r i n g o f t h e two a r e a s of c o n t i n e n t a l c r u s t . The c l o s u r e o f o c e a n i c a r e a s i n t h i s way i s r a r e l y c o m p l e t e l y r e g u l a r o r symmetrical and t h e r e may be r e l i c s o f ocean b a s i n p r e s e r v e d between c o l l i s i o n p o i n t s .
r e l i c t b a s i n s a r e r e f e r r e d t o a s remnant-ocean b a s i n s (Graham e t a l . , 1975).
These
As
c o l l i s i o n proceeds remnant-ocean b a s i n s a r e p a r t l y f i l l e d by sediment d e r i v e d from t h e newly formed mountains, and new b a s i n s a r e c r e a t e d .
These i n c l u d e p e r i p h e r a l
b a s i n s (Dickinson, 1974b) which form on t h e s u b d u c t i n g p l a t e o r upon t h e o v e r r i d i n g
22
p l a t e a s modified r e t r o a r c basins.
II Divergence
S k e t c h map t o show u p l i f t a t convergence and s u b s i d e n c e a t d i v e r g e n c e of Fig.l.14. s t r i k e - s l i p f a u l t s ( a f t e r Crowell, 1974a). I n a n c i e n t o r o g e n i c b e l t s i t i s common p r a c t i c e t o d i s t i n g u i s h between f o r e l a n d b a s i n s which a r e s i t u a t e d on t h e s u b d u c t i n g p l a t e from h i n t e r l a n d b a s i n s which a r e formed on t h e o v e r r i d i n g p l a t e .
F o r e l a n d and h i n t e r l a n d b a s i n s a r e a l s o c o m o n l y
d i s t i n g u i s h e d from s u c c e s s o r b a s i n s (King, 1 9 6 6 ) which a r e , i n f a c t , t h e epieugeos y n c l i n e s of Kay (1951).
S u c c e s s o r b a s i n s , b e c a u s e t h e y l i e on f o l d e d e u g e o s y n c l i n a l
r o c k s , p r o v i d e a n i m p o r t a n t r e c o r d of t h e l a t e r s t a g e s o f o r o g e n e s i s ( E i s b a c h e r , 1974). The s e d i m e n t a r y b a s i n s which r e s u l t from t h e e r o s i o n of u p l i f t e d mountain r a n g e s a r e often c o l l e c t i v e l y referred t o a s late-orogenic basins.
A t the present t i m e
t h e s o u t h e r n f l a n k o f t h e a c t i v e l y r i s i n g Himalayas c o n t a i n a number of b a s i n s which a r e up t o 500 km wide and e x t e n d f o r o v e r 1,000 km ( F i g . l . 1 6 ) . These b a s i n s a r e p r i m a r i l y p a r a l l e l t o t h e main t e c t o n i c t r e n d a s a r e t h e main d r a i n a g e c o u r s e s , a l t h o u g h t h e r e a r e a l s o t r a n s v e r s e elements ( F i g . 1.16);.
A l l u v i a l f a c i e s have been
a c c u m u l a t i n g i n t h e s e b a s i n s s i n c e Miocene times and t h e o l d e r d e p o s i t s a l o n g t h e n o r t h e r n margin of t h e a l l u v i a l a p r o n a r e f o l d e d and t h r u s t e d s o t h a t t h e d e p o s i t i o n a l a x i s of t h e b a s i n has m i g r a t e d p r o g r e s s i v e l y southwards w i t h t i m e .
The
23
Upth~d block
Extension & Subsidence
Fig.l.15.A.Block diagram i l l u s t r a t i n g o r i g i n o f t h e Ridge Basin a t a curve i n San Andreas F a u l t ( a f t e r C r o w e l l , 1974b). B. F a c i e s , r e l a t i o n s h i p s i n Ridge Basin showing v e r t i c a l t r a n s i t i o n of marine t o l a c u s t r i n e s e d i m e n t s and l a t e r a l p a s s a g e of a l l u v i a l f a n g l o m e r a t e s through m a r g i n a l l a c u s t r i n e f a c i e s i n t o o f f s h o r e l a c u s t r i n e f a c i e s ( a f t e r C r o w e l l , 1975; Link e t a l . , 1978). The d e t a i l e d r e l a t i o n s h i p s between t e c t o n i c s and a l l u v i a l s t r a t i g r a p h y i n one of these basins
( t h e Jhelum R e - e n t r a n t , P a k i s t a n ) h a s been i n v e s t i g a t e d by V i s s e r and
Johnson (1978).
T h i s formed p a r t o f a r a p i d l y s u b s i d i n g f o r e d e e p which developed
d u r i n g t h e Neogene and Q u a t e r n a r y a s a r e s u l t o f southward d i r e c t e d t e c t o n i s m and r a p i d morphogenetic u p l i f t .
I t p e r s i s t s today a s t h e Indo-Gangetic b a s i n and
c o n t a i n s a sequence of p r e - t e c t o n i c E a r l y Palaeogene c a r b o n a t e s o v e r l a i n by L a t e Palaeogene f l u v i a l - d e l t a i c molasse (Rawalpindi Group) and t h e younger f l u v i a l S i w a l i k Group,
The environment and r a t e of f l u v i a l d e p o s i t i o n i n t h e Upper p a r t
of t h e S i w a l i k Group i n t h e Jhelum R e - e n t r a n t was c o n t r o l l e d by l a r g e - s c a l e s y n t a x i a l t e c t o n i c s i n t h e n o r t h w e s t e r n Himalaya.
V i s s e r and Johnson (1978)
i d e n t i f i e d a n i s o c h r o n o u s i n t e r v a l of f l u v i a l d e p o s i t i o n between a c o r r e l a t i v e
PZ
25 p a i r of v o l c a n i c a s h h o r i z o n s and s p a n n i n g t h e Gauss/Matuyama p o l a r i t y t r a n s i t i o n
(2.4My) ( F k . 1 . 1 7 ) .
0REVERSED POLARITY NORMAL POLARITY
F R4
FR3
M P8
MP5
RT1
FR1
RT2
CH1
Fig. 1.17. L i t h o s t r a t i g r a p h i c v a r i a t i o n a t e i g h t l o c a l i t i e s i n t h e Jhelum R e - e n t r a n t , P a k i s t a n showing upper S i w a l i k r o c k s bounded by two v o l c a n i c a s h h o r i z o n s and t h e p o s i t i o n of t h e Gauss/Matuyama p o l a r i t y t r a n s i t i o n . L i t h o l o g i c symbols: L a t e r a l a c c r e t i o n s a n d s t o n e f a c i e s , s t i p p l e d showing dominant bedform; v e r t i c a l a c c r e t i o n mudstone f a c i e s w i t h d e p o s i t i o n a l f a b r i c p r e s e r v e d , no p a t t e r n ; mudstone-facies m o d i f i e d by p e d o g e n e s i s , h a t c h e d ( a f t e r V i s s e r and Johnson, 1 9 7 8 ) . These f l u v i a l d e p o s i t s c o n s i s t of markedly fining-upwards c y c l e s w i t h w e l l developed l a t e r a l a c c r e t i o n u n i t s ( p o i n t b a r s a n d s ) and v e r t i c a l a c c r e t i o n u n i t s ( f l o o d p l a i n mudstones).
The d e t a i l e d sequence o f t h e v e r t i c a l a c c r e t i o n d e p o s i t s
i n d i c a t e s t h a t t h e f l o o d p l a i n environment c o n s i s t e d o f a stream-proximal, sedimentation-dominant zone and a s t r e a m - d i s t a l , pedogenesis-dominant zone.
The depegdence o f t h e a l l u v i a l s t r a t i g r a p h y on t e c t o n i c s i s i l l u s t r a t e d b y two variables:
t h e p r o p o r t i o n of l a t e r a l a c c r e t i o n s a n d i n any s e c t i o n and a l s o t h e
t o t a l t h i c k n e s s of s e d i m e n t between t h e two d a t e d v o l c a n i c a s h h o r i z o n s .
The
p r o p o r t i o n of l a t e r a l a c c r e t i o n s a n d b o d i e s i s , of c o u r s e , dependent on a g r e a t v a r i e t y of e n v i r o n m e n t a l v a r i a b l e s b u t i n s p i t e o f t h i s t h e r e a p p e a r s t o b e a r e l a t i o n s h i p between t h e t o t a l t h i c k n e s s of l a t e r a l a c c r e t i o n d e p o s i t s and t h e p r o x i m i t y t o major f l u v i a l c o u r s e s .
The t h i c k n e s s of t h e i n t e r v a l e n c l o s e d by t h e
v o l c a n i c a s h e s embodies a d i r e c t measure of t h e s e d i m e n t a t i o n r a t e which can b e c a l c u l a t e d on t h e b a s i s of t h e palaeomagnetic d a t i n g .
The r a t e v a r i e s from a low
of 0.33m/1000 y e a r s i n t h e s o u t h e a s t (FR1 i n F i g . l . 1 7 ) t o a h i g h of 0.4m/lOOO y e a r s
i n t h e n o r t h w e s t (FR4 i n F i g . l . 1 7 ) .
This defines a regular trend of increasing
sediment r a t e towards t h e apex of t h e Jhelum R e - e n t r a n t i n d i c a t i n g t h a t t h e Ree n t r a n t s t r u c t u r e was a m a j o r f o c u s of molasse s e d i m e n t a t i o n .
The s i g n i f i c a n c e o f
R e - e n t r a n t s a p p e a r s t o b e t h a t t h e y form p r e f e r e n t i a l s i t e s f o r t h e p a s s a g e o f m a j o r l o n g i t u d i n a l i n t e r m o n t a n e r i v e r s i n t o t h e molasse b a s i n ,
The p r e c i s e t e c t o n i c
s i g n i f i c a n c e o f R e - e n t r a n t s i s , however, n o t y e t e s t a b l i s h e d .
The f l e x u r e o f t h e
n o r t h w e s t e r n Himalayan s y n t a x i s c o u l d be due t o a northward p r o j e c t i n g s p u r of t h e Indian lithospheric p l a t e c o l l i d i n g with the Eurasian p l a t e ,
Crawford ( 1 9 7 4 ) , however,
b e l i e v e s t h e s y n t a x i s t o b e a s e c o n d a r y f e a t u r e formed between converging E u r a s i a n c r u s t a l b l o c k s t o t h e e a s t and w e s t of t h e s y n t a x i s . THE TECTONIC SETTING OF ANCIENT CONTINENTAL RED BEDS
Introduction The p r e v i o u s s e c t i o n i l l u s t r a t e s t h e f a c t t h a t c o n t i n e n t a l s e d i m e n t s may accumulate i n a wide range of t e c t o n i c s e t t i n g s from p r e - o r o g e n i c r i f t s t o l a t e - o r o g e n i c b a s i n s . A t t h e p r e s e n t - d a y t h e s e c o n t i n e n t a l s e d i m e n t s do n o t c o n t a i n abundant r e d beds
a l t h o u g h i n some c a s e s t h e p r o g r e s s i v e reddening o f t h e o l d e r s e d i m e n t s can b e demonstrated. I n t h e s t r a t i g r a p h i c r e c o r d s t r u c t u r a l and s t r a t i g r a p h i c a n a l y s i s can b e used t o demonstrate t h a t a n c i e n t c o n t i n e n t a l s e d i m e n t s formed i n s i m i l a r t e c t o n i c s e t t i n g s t o t h e i r p r e s e n t - d a y c o u n t e r p a r t s a s f a r back a s t h e P r o t e r o z o i c .
Not a l l t h e s e a n c i e n t
c o n t i n e n t a l sediments a r e r e d b u t t h e r e i s a marked abundance of r e d beds compared t o t h e p r e s e n t - d a y , a f e a t u r e which i n d i c a t e s t h e importance of d i a g e n e t i c reddening. I n t h e s u c c e e d i n g s e c t i o n s t h e t e c t o n i c s e t t i n g o f a number o f d i f f e r e n t r e d bed basins i s described.
They a r e assembled i n s t r a t i g r a p h i c a l sequence and i l l u s t r a t e
t h e wide range o f t e c t o n i c s e t t i n g s i n which a n c i e n t c o n t i n e n t a l r e d beds a r e formed. P r o t e r o z o i c r e d beds of w e s t e r n Canada The e a r l i e s t major r e d bed sequences t o a p p e a r i n t h e s t r a t i g r a p h i c r e c o r d a r e
27
ATHAPUSCOW AULACOOEN
SLAVE PLATFORM
Sio"?"
-
0
SOUTH
D
-
D
-
x) liu
'
NORTH
F i g . l . 1 8 . Stratigraphic cross-section of the Athapuscow aulacogen and adjacent platform with structural cross-sections of the northeast half (above) and southwest half (below) ( a f t e r Hoffman e t a l . , 1974).
28
GRABEN STAGE
TRANSITIONAL STAGE
DOWNWARPING STAGE
POST-GEOSYNCLINAL STAGE
CHURCHILL PROVINCE-ATHAPUSCOW FANGLOMERATE
0
RED LlTHlC SANDSTONE GREYWACKE TURBIDITES
0
QUARTZITE
..... . PEBBLY SUBARKOSE
AULACOGEN
[lkm
10 km
-SLAVE PROVINCE OLISTOSTROME MUDSTONE CARBONATE
@
QUARTZ DlORlTE VOLCANICS
F i g . l . 1 9 . Schematic transverse c r o s s - s e c t i o n s showing the e v o l u t i o n o f the Athapuscow aulacogen ( a f t e r Hoffman e t a l . , 1974).
29
t h o s e a s s o c i a t e d w i t h t h e C o r o n a t i o n g e o s y n c l i n e and Athapuscow a u l a c o g e n (Hoffman, 1973; Hoffman e t a l . , 1974) o f w e s t e r n Canada. i n Fig.8.1.
A t e c t o n i c map of t h e a r e a i s shown
The sequence i n t h e Athapuscow a u l a c o g e n t h i c k e n s from 2200m i n t h e
S l a v e P l a t f o r m i n t h e n o r t h t o o v e r 7000m i n t h e main p a r t of t h e a u l a c o g e n .
Within
t h i s framework a v a r i e t y o f d e p o s i t i o n a l p h a s e s c a n b e r e c o g n i z e d i n c l u d i n g a major molasse sequence, t h e C h r i s t i e Bay Group ( F i g . l . 1 8 ) . i n t h e development o f t h e Athapuscow a u l a c o g e n :
Four s t a g e s c a n b e r e c o g n i z e d
Graben, t r a n s i t i o n a l , downwarping
and p o s t - g e o s y n c l i n a l which i s v e r y s i m i l a r t o t h e developmental sequence s e e n i n o t h e r a u l a c o g e n s (Ham, 1969).
The molasse p h a s e d e v e l o p s d u r i n g t h e downwarping
s t a g e and b e g i n s w i t h a g i g a n t i c o l i s t o s t r o m e i n which a n g u l a r b l o c k s o f stromatol i t i c d o l o m i t e and l i m e s t o n e a r e c h a o t i c a l l y d i s p e r s e d i n a r e d mudstone m a t r i x , I n d i v i d u a l o l i s t o l i t h s a r e up t o 45m t h i c k and a k i l o m e t r e i n l e n g t h and many a r e recumbently f o l d e d or emplaced u p s i d e down.
The o l i s t o s t r o m e i s o v e r l a i n by a 450m
t h i c k sequence o f r e d mudstone w i t h hopper-shaped h a l i t e c a s t s which p a s s e s up i n t o 850m o f r e d cross-bedded l i t h i c s a n d s t o n e s o f a l l u v i a l o r i g i n which were d e p o s i t e d by r i v e r s which flowed towards t h e n o r t h e a s t a l o n g t h e a x i s o f t h e aulacogen.
The
s a n d s t o n e s a r e o v e r l a i n by 230m of r e d mud-cracked s i l t s t o n e s w i t h h a l i t e and gypsum casts. The downwarp s t a g e was followed by a s t a g e o f m i l d c o m p r e s s i o n a l d e f o r m a t i o n ( F i g . l . 1 9 ) i n which t h e molasse and e a r l i e r s e d i m e n t s were f o l d e d .
A t h i c k sequence
o f f a n g l o m e r a t e s was d e p o s i t e d on t h e u p t u r n e d edges of t h e s e o l d e r r o c k s d u r i n g t h e post-geosynclinal stage.
T h i s sequence c o n s i s t s o f 4,OOOm of f l u v i a t l e r e d and b u f f
b o u l d e r conglomerates a n d p e b b l y s a n d s t o n e c l o s e l y a s s o c i a t e d w i t h a l k a l i c b a s a l t flows.
The conglomerate c l a s t s r e c o r d p r o g r e s s i v e e r o s i o n o f p l a t f o r m c o v e r from t h e
u p l i f t and u n r o o f i n g o f t h e basement.
They t e n d t o o c c u r i n homoclines d i p p i n g
p a r a l l e l t o t h e t r e n d of t h e f a u l t s from which t h e y were d e r i v e d .
T h i s f e a t u r e , and
t h e r e c o g n i t i o n of d e x t r a l t r a n s c u r r e n t movement on some of t h e boundary f a u l t s ( R e i n h a r d t , 19691, s u g g e s t s t h a t t h e f a n g l o m e r a t e s may have been d e p o s i t e d i n s t r i k e s l i p b a s i n s l i k e t h o s e d e s c r i b e d by Crowell (1974a). The Caledonian Orogen The Caledonian o r o g e n i c b e l t s t r e t c h i n g through G r e e n l a n d , NW Europe and North America c a n b e i n t e r p r e t e d i n terms o f t h e opening and c l o s u r e of a
proto-Atlantic
o r I a p e t u s ocean (Wilson, 1966; Dewey, 1969; M i t c h e l l and McKerrow, 1975; P h i l l i p s e t a l . , 1976; McKerrow e t a l . , 1977).
Sediments a s s o c i a t e d w i t h t h e e v o l u t i o n of
t h e Caledonian orogen range i n a g e from L a t e Precambrian t o Devonian.
Continental
r e d beds were formed i n t h e i n i t i a l phase of opening i n t h e L a t e Precambrian and a l s o d u r i n g and a f t e r t h e f i n a l c l o s u r e of the p r o t o - A t l a n t i c i n Devonian times. The Sparagmite s u c c e s s i o n o f s o u t h e r n Norway c o n s i s t s o f a complex sequence of greywackes, s h a l e s , c a r b o n a t e s , a r k o s e s , c o n g l o m e r a t e s , and t i l l i t e s up t o 3000m
30 thick.
Red b e d s , p a r t i c u l a r l y amongst t h e a r k o s i c s e d i m e n t s , a r e abundant.
The
sequence i s b e l i e v e d t o have been d e p o s i t e d i n a r i f t v a l l e y which formed d u r i n g t h e i n i t i a l opening of t h e p r o t o - A t l a n t i c (Bjbrlykke e t a l . ,
1976) ( F i g . l . 2 0 ) .
The v a l l e y i s e s t i m a t e d t o have been 60-70km a c r o s s and 2-4km deep.
I n the central
p a r t of t h e b a s i n s e d i m e n t a t i o n was dominated by s h a l e s and greywackes which p a s s upwards i n t o s h a l l o w marine sediments i n c l u d i n g t i l l i t e s .
The a r k o s e s and cong-
lomerates dominated t h e b a s i n margins and were d e p o s i t e d a s c o a r s e c l a s t i c wedges ( f a n d e l t a s ) which p e r i o d i c a l l y prograded i n t o t h e b a s i n .
The L a t e Pre-Cambrian
T o r r i d o n i a n Sandstone of NW S c o t l a n d a c o n t i n e n t a l r e d bed sequence formed i n a s i m i l a r t e c t o n i c s e t t i n g t o t h e s p a r a g m i t e s of Scandanavia.
I t formed t h e north-
w e s t e r l y margin of t h e p r o t o - A t l a n t i c ocean d u r i n g t h e i n i t i a l s t a g e s o f r i f t i n g and s e a - f l o o r s p r e a d i n g . The T o r r i d o n i a n sequence rests w i t h marked unconformity on t h e Lewisian basement
-
i n p l a c e s a p r e - T o r r i d o n i a n rugged topography w i t h a r e l i e f o f 300-4Oh i s e v i d e n t . The unconformity i s o v e r l a i n by a t l e a s t 2300m of t h e S t o e r Group c o n s i s t i n g of r e d s a n d s t o n e s and s h a l e s ,
T h i s i t s e l f i s unconformably o v e r l a i n by t h e T o r r i d o n Group Most
c o n s i s t i n g of a t l e a s t 7000m o f r e d pebbly s a n d s t o n e s , s i l t s t o n e s and s h a l e s .
o f t h e s e r e d beds a r e of a l l u v i a l o r i g i n and i n c l u d e b r a i d e d s t r e a m d e p o s i t s ( S e l l e y ,
1 9 7 0 ) , a l t h o u g h minor marine h o r i z o n s do o c c u r ( G r a c i e and S t e w a r t , 1967).
Williams
(1969a) h a s shown t h a t t h e p a l a e o s l o p e was g e n e r a l l y t o t h e e a s t and s o u t h e a s t w i t h t h e p a l a e o c u r r e n t s r a d i a t i n g from two p o i n t s o u r c e s west of t h e p r e s e n t o u t c r o p n e a r t h e l i n e of t h e Minch F a u l t ( F i g . l . 1 1 ) .
The p r e s e n c e o f a t l e a s t two a l l u v i a l f a n s
i s i m p l i e d and c o n t i n e n t a l d e p o s i t i o n i n t h i s L a t e Precambrian r i f t may have been
c o n c e n t r a t e d a l o n g a t e c t o n i c a l l y c o n t r o l l e d , n o r t h - w e s t e r l y r e t r e a t i n g Lewisian scarp slope.
T h i s i s c o n s i s t e n t w i t h c l a s t s t u d i e s o f t h e T o r r i d o n i a n Group which
confirm t h e i r d e r i v a t i o n from rocks which span t h e range o f Lewisian e v e n t s (3000-1000
My)but which a r e from a h i g h e r c r u s t a l l e v e l t h a n i s now exposed
( A l l e n e t a l . , 1974) ( F i g . l . 2 1 ) . The subsequent c l o s u r e of t h e p r o t o - A t l a n t i c ocean d u r i n g t h e O r d o v i c i a n and S i l u r i a n r e s u l t e d i n c o n t i n e n t a l c o l l i s i o n and t h e f o r m a t i o n of t h e Caledonian Mountains.
T h i s c a n be i n t e r p r e t e d t o have o c c u r r e d f i r s t i n t h e n o r t h e a s t and
l a t e r towards t h e south-west a s a t r i p l e p o i n t m i g r a t e d i n t h i s d i r e c t i o n ( P h i l l i p s e t a l . , 1976).
The e v o l u t i o n o f t h e S c o t t i s h Caledonides c a n a l s o be compared
c l o s e l y w i t h present-day n o r t h e a s t e r n Burma ( M i t c h e l l and McKerrow, 1975).
The
molasse f a c i e s o f t h e Caledonian orogen i s r e f e r r e d t o a s t h e Old Red Sandstone. I t i s a major c o n t i n e n t a l r e d b e d sequence r a n g i n g i n age from l a t e S i l u r i a n t o
Devonian which was d e p o s i t e d i n a number of d i f f e r e n t l a t e - o r o g e n i c s e d i m e n t a r y b a s i n s , some w i t h a marine c o n n e c t i o n ( e x t e r n a l b a s i n s ) and some w i t h no marine connections and i n t e r n a l d r a i n a g e p a t t e r n s ( i n t e r n a l b a s i n s ) .
31
Lower Cambrian
VanQsAs Formation O e I I a x and Coastal
Feldsoalhlc Sandstone
Moelv Tillite and Ekre Shale
< Oeoosilion 01 Glacial ' Sediments
Ring Formation
Biri Limestone and Shale
Shale
Brettuq Formation d... 1
\L
and PhOSDhate Deposits /15";"Carbonate on Shallow Shell
S i m p l i f i e d diagram i l l u s t r a t i n g t h e d e p o s i t i o n a l h i s t o r y and d i s t r i b u t i o n Fig.l.20. of f a c i e s i n t h e c e n t r a l s p a r a g m i t e b a s i n i n s o u t h e r n Norway ( a f t e r B j d r l y k k e e t a l . , 1976). The Midland V a l l e y of S c o t l a n d was a major Old Red Sandstone b a s i n which c o n t a i n s a b o u t 7000m of s e d i m e n t s and a n d e s i t i c v o l c a n i c s .
The b a s i n i s a fault-bounded
g r a b e n ( F r i e n d , 1967; Bluck, 1978) i n which t h e boundary f a u l t s a r e p a r a l l e l t o t h e main Caledonian t e c t o n i c elements. The Lower Old Red Sandstone i s a c o n g l o m e r a t e - l i t h i c a r e n i t e assemblage i n t e r bedded w i t h a c i d t o b a s i c v o l c a n i c s which was d e p o s i t e d i n a t l e s s t two b a s i n s : t h e S t r a t h m o r e b a s i n t o t h e n o r t h w e s t and t h e Lanark b a s i n t o t h e s o u t h e a s t .
Both
t h e s e b a s i n s were f i l l e d l o n g i t u d i n a l l y from t h e n o r t h e a s t (Bluck, 1978) ( F i g . 1.221, t h e S t r a t b o r e b a s i n b e g i n n i n g i n t h e n o r t h e a s t a n d e x t e n d i n g southwestwards so
32 t h a t t h e b a s i n - f i l l o v e r l a p s and t h i n s i n a s o u t h w e s t e r l y d i r e c t i o n .
-O
200 Km
i" f
4
TORRIDON GROUP alluvial fanpile TORRIDON GROUP
-
-
1.0 b.y. 1 . 8 b.y.
> 2 ' 5 b.y. Fig.l.21. R e c o n s t r u c t i o n of t h e p r i n c i p a l pre-Torridon Group u n i t s i n r e l a t i o n t o t h e a r e a of T o r r i d o n (Applecross Formation) d e p o s i t i o n i n NW S c o t l a n d ( a f t e r A l l e n e t a l . , 1974). The Upper Old Red Sandstone sediments were p a r t l y d e r i v e d from t h e Lower Old Red Sandstone over which t h e y unconfonnably l i e .
The b a s i n h a s a n E-W o r i e n t a t i o n and
was f i l l e d l o n g i t u d i n a l l y from t h e s o u t h w e s t , a major r e v e r s a l o f t h e d r a i n a g e p a t t e r n s e e n i n t h e Lower Old Red Sandstone.
The b a s i n began i n t h e Clyde r e g i o n
and was i n i t i a l l y extended by s u c c e s s i v e normal f a u l t s which formed i n r e s p o n s e t o s i n i s t r a l movement of t h e Highland Boundary F a u l t f 1 . 2 2 ) .
33
i
Upper Old Red Sandstone
Schematic diagram o f t h e d i p o f major l o n g i t u d i n a l b a s i n s i n t h e Midland Fig.1.22. V a l l e y o f S c o t l a n d i n Lower and Upper Old Red Sandstone times ( a f t e r Bluck, 1978). The Devonian b a s i n s o f w e s t e r n Norway a r e a l s o i n t e r n a l b a s i n s b u t show evidence o f h a v i n g formed i n a d i f f e r e n t t e c t o n i c regime t h a n t h e Midland V a l l e y of S c o t l a n d . 2 These b a s i n s a r e n o t a b l e f o r t h e i r s m a l l s i z e ((2,OOOkm ), v a s t s t r a t i g r a p h i c t h i c k n e s s e s (up t o 25km) a n d t h e c y c l i c n a t u r e of t h e i r c o a r s e - g r a i n e d a l l u v i a l i n f i l l i n g ( S t e e l , 1976; S t e e l and Aasheim, 1978) ( F i g . 1 . 2 3 ) .
The l o n g e s t of t h e s e
b a s i n s i s t h e Hornelen b a s i n which i s bounded by t h r u s t ( e a s t ) , h i g h - a n g l e f a u l t ( n o r t h and s o u t h ) and unconformable ( w e s t ) margins.
The s u r r o u n d i n g basement rock
h a s a n E-W Caledonian g r a i n and c o n s i s t s o f Precambrian g n e i s s e s , Cambro-Silurian m e t a b a s a l t s , s c h i s t s , q u a r t z i t e s , rnetagreywackes, g r a n o d i o r i t e s and gabbros. The b a s i n was f i l l e d l a r g e l y w i t h sandy a l l u v i u m d e p o s i t e d on a n a l l u v i a l p l a i n o r sandy f a n d e l t a growing t o t h e w e s t and n o r t h w e s t ( S t e e l and Aasheim, 1978). margins of t h e b a s i n a r e f l a n k e d by f a n g l o m e r a t e s ( S t e e l e t a l . ,
The
1977; Larsen and
S t e e l , 1978) which frequently show a coarsening-upwards theme, usually of the order of 100-20Om, and i r r e s p e c t i v e of the a l l u v i a l f a c i e s .
This i s interpreted by
S t e e l ( 1 9 7 6 ) a s an indication of rapid lowering of the basin f l o o r and the consequent
35 p r o g r a d a t i o n of a l l u v i a l s e d i m e n t a t i o n .
I n t h e Hornelen b a s i n a l l u v i a l t r a n s p o r t
was mainly a l o n g t h e a x i s o f t h e b a s i n ( F i g . 1 . 2 3 ) and t h e r e a r e i m p o r t a n t d i f f e r e n c e s i n f a c i e s , t h i c k n e s s e s , g r a d i e n t s and s i z e o f f r i n g i n g a l l u v i a l f a n s on o p p o s i t e s i d e s of t h e basin.
These f e a t u r e s and t h e dominance o f a s a n d s t o n e r a t h e r t h a n
conglomerate s u c c e s s i o n s u g g e s t s a d e p o c e n t r e s y s t e m a t i c a l l y m i g r a t i n g through time i n a s t r i k e - s l i p t e c t o n i c regime (Crowell, 1974a; S t e e l , 1976). The Solund b a s i n i s n o t so c l e a r l y o r g a n i z e d a s t h e Hornelen b a s i n b u t coarseningupwards sequences a r e p r e s e n t .
The s u c c e s s i o n i s dominated by conglomerates which
were d e p o s i t e d by c u r r e n t s flowing t r a n s v e r s e t o t h e b a s i n a x i s , f e a t u r e s which s u g g e s t t h a t t h e b a s i n was formed i n a d i p - s l i p t e c t o n i c regime. E a r l y Mesozoic r e d beds formed i n graben a s s o c i a t e d w i t h t h e opening of t h e A t l a n t i c
Ocean
The break-up of t h e s u p e r c o n t i n e n t Pangaea and t h e opening of t h e North A t l a n t i c Ocean d u r i n g t h e l a s t 200 My h a s been a s s o c i a t e d w i t h t h e f o r m a t i o n o f numerous graben (Fig.1.24).
I n a l l , over 100 s e p a r a t e graben c a n b e i d e n t i f i e d and t h e s e a r e
l i n k e d , forming a n e l a b o r a t e network of t r i p l e r i f t systems (Burke, 1976).
Some of
t h e s e r i f t s developed t o form new o c e a n i c c r u s t b u t many o f them f a i l e d and were f i l l e d w i t h t h i c k sequences o f c o n t i n e n t a l s e d i m e n t s , many o f which a r e now r e d beds. The formation of t h e s e t e n s i o n a l r i f t v a l l e y s i s commonly accompanied by b a s a l t i c volcanism and t h e r a p i d accumulation of s e v e r a l k i l o m e t r e s of sediment.
The
sedimentary f i l l i n g i s f r e q u e n t l y t r a n s v e r s e a l t h o u g h h o r s t s w i t h i n t h e graben s t r o n g l y i n f l u e n c e t h e e a r l y s t a g e s of sediment d i s p e r s a l .
Rifting generally
c o n t i n u e s u n t i l t h e o n s e t ' o f normal marine s e d i m e n t a t i o n b u t i n some c a s e s sediment d i s t r i b u t i o n may be i n f l u e n c e d by graben which a r e o v e r 100 My o l d . Graben o f T r i a s s i c age are a c h a r a c t e r i s t i c f e a t u r e o f t h e c e n t r a l A t l a n t i c a r e a which was t h e f i r s t p a r t o f t h e A t l a n t i c Ocean t o open.
These a r e b e s t known from
t h e North American s i d e o f t h e A t l a n t i c where t h e y form a l i n e a r system of f a u l t bounded b a s i n s a b o u t 2000km i n l e n g t h ( S a n d e r s , 1963).
These a r e g e n e r a l l y f i l l e d
w i t h s e v e r a l k i l o m e t r e s of r e d f l u v i a l and r e d / d r a b l a c u s t r i n e sediments of Carnian t o Lower J u r a s s i c age (Cornet and T r a v e r s e , 1975) i n t e r c a l a t e d w i t h t h o l e i t i c b a s a l t i c l a v a s , s i l l s , and dykes g i v i n g r a d i o m e t r i c a g e s between 210-170 My.
The
graben a r e normally a few t e n s o f k i l o m e t r e s wide and occur up t o 500km i n t o t h e c o n t i n e n t , t h e s t r i k e u s u a l l y b e i n g c o n t r o l l e d by t h e s t r u c t u r a l t r e n d of t h e underl y i n g Appplachian f o l d e d r o c k s , a l t h o u g h t h e Newark graben c r o s s e s t h e Appalachian strike.
Sedimentation w i t h i n t h e graben i s l a r g e l y c o n t r o l l e d by t h e marginal
boundary f a u l t s .
The t e c t o n i c h i s t o r y of any i n d i v i d u a l graben i s , however,
c o m p l i c a t e d and t h e r e i s evidence t h a t s t r i k e - s l i p components a r e i m p o r t a n t i n some c a s e s ( S a n d e r s , 1963).
36
NORTH SEA
ARGENT1
*.-
S k e t c h map i l l u s t r a t i n g t h e d i s t r i b u t i o n o f major g r a b e n a r o u n d t h e Fig.1.24. A t l a n t i c Ocean which formed i n a s s o c i a t i o n w i t h c o n t i n e n t a l r u p t u r e . The g r a b e n between t h e l i n e s V-W and X-Y developed between 210 and 170 My ago; t h o s e s o u t h of t h e l i n e X-Y formed between a b o u t 145 and 125 My ago; t h o s e n o r t h o f t h e l i n e T-Y formed a b o u t 80 My ago and t h o s e n o r t h o f R-S between 80-60 My ( a f t e r Burke, 1976). The H a r t f o r d b a s i n c o n t a i n s a 4km t h i c k s u c c e s s i o n which can b e c o r r e l a t e d f o r a d i s t a n c e o f o v e r 140km.
I t c o n t a i n s t h e E a s t B e r l i n Formation, a 145-45Om t h i c k
sequence of f l u v i a l and l a c u s t r i n e r o c k s o f Lower J u r a s s i c a g e (Hubert e t a l . , 1976). Along t h e e a s t e r n boundary o f t h e b a s i n was a s t e e p escarpment a l o n g which a l l u v i a l f a n s were developed.
These t r a n s p o r t e d d e t r i t u s e a s t w a r d s r a d i a l l y away from t h e
fault-bounded margin (Fig.1.25)
i n t o t h e c e n t r a l p a r t of t h e graben.
Dispersal
h e r e seems a l s o t o have been e s s e n t i a l l y e a s t w a r d s , j u d g i n g from t h e r a t h e r v a r i a b l e p a l a e o c u r r e n t s , which s u g g e s t t h a t t h e g r a b e n was f i l l e d t r a n s v e r s e l y .
The p a l a e o -
s l o p e of t h e g r a b e n f l o o r was g e n e r a l l y t o t h e s o u t h and t h e r e may have been s i g n i f i c a n t d i s p e r s a l o f sediment a l o n g t h e a x i s o f t h e g r a b e n ,
37
B
A
*OI
km
OJ ~ R O D E DEDGE; OF BASIN ,I
__*
Palasocurrents
a
Stream Channel Sendstone
0
Alluvial Fan conglomerats & tlldstom
A. P a l a e o c u r r e n t and p a l a e o s l o p e f o r s a n d s t o n e and conglomerates d e p o s i t e d Fig.1.25. i n s t r e a m c h a n n e l s and a l l u v i a l f a n s of t h e E a s t B e r l i n Formation B. P a l a e o c u r r e n t s f o r r e d s a n d s t o n e and s i l t s t o n e d e p o s i t e d i n s h a l l o w l a k e s on f l o o d p l a i n s . Palaeos l o p e s f o r f l o o d p l a i n r e d mudstone w i t h t h i n s a n d s t o n e l a y e r s showing t h e r e g i o n a l p a l a e o s l o p e o f t h e v a l l e y f l o o r ( a f t e r Hubert e t a l . , 1976).
38 The North Sea (Fig.1.26)
i s a n o t h e r example of a f a i l e d r i f t system a s s o c i a t e d
w i t h t h e opening of t h e North A t l a n t i c (Whiteman e t a l . , 1975; Burke, 1976) a l t h o u g h
C o n t i n e n t a l r e d beds accumulated i n t h e North Sea b a s i n
i n c l u d e t h e Permian
R o t l i e g e n d e s , a d e s e r t f l u v i a l / a e o l i a n s u c c e s s i o n d e r i v e d l a r g e l y from t h e V a r i s c a n mountains i n t h e s o u t h ( G l e n n i e , 1972) and t h e T r i a s s i c , a n e v a p o r i t e / r e d bed sequence w i t h marine i n t e r c a l a t i o n s (Brennand, 1975).
Around t h e s o u t h e r n margin
of t h e North Sea i s a t h i n a p r o n of c o a r s e c l a s t i c s w i t h conglomerates, d e r i v e d from t h e h i g h l a n d s t o t h e s o u t h .
The major p a r t o f t h e s u c c e s s i o n s c o n s i s t s o f
s h e e t s a n d s t o n e s and s h a l e s w i t h e v a p o r i t e s i n t h e upper p a r t and d i s p l a y s p a r t i c u l a r l y w e l l t h e i n f l u e n c e o f b l o c k f a u l t i n g on t h i c k n e s s v a r i a t i o n s (Fig.1.27).
I n the
m a r g i n a l a r e a s t h e T r i a s s i c i s t h i n and rests unconformably on o l d e r r o c k s whereas
39 i n t h e C e n t r a l Graben t h e s u c c e s s i o n i s much t h i c k e r .
SECTION 1 NORTHERN VIKING GRABEN CormorCnt
Dunlin
kult
L Cwnhn)
SECTION 2 CENTRAL NORTH SEA
T r i a s s i c s e c t i o n s i n t h e n o r t h e r n North Sea showing t h e i n f l u e n c e of Fig.1.27. b l o c k - f a u l t i n g on t h e r a t e of s u b s i d e n c e ( a f t e r Brennand, 1975). AS i n o t h e r f a i l e d r i f t s o f t h e North A t l a n t i c margins t h e r e i s evidence o f s t r i k e -
s l i p t e c t o n i c s i n t h e North Sea.
For example, t h e gas f i e l d s which o c c u r i n
R o t l i e g e n d e s s a n d s t o n e s of t h e s o u t h e r n North Sea a p p e a r t o have been a l i g n e d by Hercynian s t r i k e - s l i p movements ( B l a i r ; 1975). Cenozoic molasse C o n t i n e n t a l sediments formed a s c l a s t i c wedges a l o n g c r a t o n i c margins ( f o r e d e e p s
or e x o g e o s y n c l i n e s ) a r e known as molasse and a fundamental p a r t of t h e l a t e r s t a g e s
40
of orogeny.
Molasse i s w e l l - r e p r e s e n t e d i n t h e Cenozoic f o l d mountains b e l t s of t h e
world (Fig.1.28)
o f t e n forming sequences s e v e r a l k i l o m e t r e s t h i c k and c o n t a i n i n g
mtrrl
nalryas
. .
. .... . ...
. . .. L. .:’ parrlic
J
marina
I
I
m+m
Fig.1.28. A. S t r a t i g r a p h i c s e c t i o n s o f v a r i o u s molasse sequences ( s h a d e d ) and d u r a t i o n s i n My. Dots = t h i c k c o n g l o m e r a t i c u n i t s ; V = v o l c a n i c u n i t s . LM (Lower m a r i n e ) , LFW (Lower f r e s h w a t e r ) , UM (Upper m a r i n e ) , and UFW (Upper f r e s h w a t e r m o l a s s e ) . B. T h i c k n e s s of t h e same sequences ( s h a d e d ) and s u b s i d e n c e rates i n metres p e r m i l l i o n y e a r s ( a f t e r Van Houten, 1969). major r e d bed u n i t s . deposition:
There i s some e v i d e n c e t h a t t h e m a j o r p e r i o d s of molasse
Palaeocene/Eocene and Miocene/Pliocene c o r r e s p o n d t o t h e main p e r i o d s
of l i t h o s p h e r i c p l a t e motion i n t h e i r r e s p e c t i v e a r e a s (Van Houten, 1969). The A l p i n e molasse The p r i n c i p a l t e c t o n i c e l e m e n t s of a l p i n e Western Eruope a r e shown i n Fig.1.29. The Molasse n o r t h of t h e C e n t r a l and E a s t e r n Alps accumulated i n a c r a t o n i c b a s i n a b o u t 700km long and 50-14Okm wide which l a y between l a r g e Hercynian b l o c k s .
Other
i m p o r t a n t m o l a s s e b a s i n s a r e t h e A q u i t a i n e B a s i n l y i n g between t h e Massif C e n t r a l and t h e P y r e n e e s , and t h e Ebro B a s i n i m e d i a t e l y s o u t h of t h e P y r e n e e s ( F i g . 1 . 2 9 ) . The Molasse Basin succeeded e a r l y and m i d d l e O l i g o c e n e F l y s c h which p a s s e d t h r o u g h
41 a s l o p e f a c i e s ( t o n m e r g e l ) i n t o a p a r a l i c sequence (Lower Marine Molasse) a s t h e a x i s of t h e A l p i n e Foredeep was d i s p l a c e d towards t h e c r a t o n (Hagn, 1960). The s u c c e e d i n g Molasse i s c h a r a c t e r i s t i c a l l y c o a r s e g r a i n e d , mainly non-marine, and r a n g e s i n a g e from l a t e Oligocene up late-Miocene - e a r l y P l i o c e n e and i s up t o 6000111 t h i c k .
The d e p o s i t s a r e mainly wedge-shaped; i n e a s t e r n S w i t z e r l a n d , f o r
example, t h e proximal Molasse i s a b o u t 4500111 b u t 60km t o t h e n o r t h t h i n s t o o n l y 1800m (FUchtbauer, 1967a).
Along t h e n o r t h e r n margin t h e Molasse i n c l u d e s d e b r i s
from c r a t o n i c s o u r c e s and i n t e r f i n g e r s w i t h marine d e p o s i t s o f t h e Rhine Graben and the Jura d i s t r i c t .
These n e a r sea level d e p o s i t s r e f l e c t a c t i v e u p l i f t of t h e
orogen, h i g h a n g l e f a u l t i n g o f t h e basement b e n e a t h t h e f o r e d e e p and t h e northward movement o f nappes t h a t began s e v e r a l m i l l i o n s o f y e a r s a f t e r t h e main orogeny from e a r l y Eocene t o e a r l y Oligocene ( C l a r k and J P g e r , 1969; Milne, 1969; HsU and Schlanger,l971). The n o r t h e r n A l p i n e Molasse comprises two major and f i v e minor coarsening-upwards megacycles s e v e r a l t o many hundreds o f metres t h i c k (FUchtbauer, 1967a) which r e f l e c t phases o f A l p i n e deformation ( F i g . 1.30). The Lower F r e s h w a t e r and Upper F r e s h w a t e r Molasse ( F i g . l . 3 0 ) a r e s e p a r a t e d by t h e mid-Miocene p a r a l i c t o s h a l l o w marine Upper Marine Molasse which r e f l e c t s reduced d e t r i t a l i n p u t and e x t e n s i v e marine f l o o d i n g o f t h e foredeep.
The r e g i o n a l palaeo-
d r a i n a g e p a t t e r n o f t h e Molasse i s t y p i c a l o f t h a t s e e n i n Cenozoic o r o g e n i c b e l t s l y i n g p a r a l l e l t o t h e a x i s o f t h e f o r e d e e p and t h e mountains.
The Lower Freshwater
Molasse g r a d e s e a s t w a r d s i n t o p a r a l i c and marine f a c i e s whereas t h e Upper Marine Molasse and s u c c e e d i n g Upper F r e s h w a t e r Molasse were t r a n s p o r t e d westwards ( F i g . l . 3 1 ) . The Lower Marine Molasse, which comprises t h e middle Oligocene tonmergel and p a r a l i c s a n d s t o n e w i t h i t s minor i n f l u x of conglomerate ( T r b p y , 1960; FUchtbauer, 1964), f i l l e d t h e f o r e d e e p e a r l y i n mid-Oligocene t i m e ; s e v e r a l hundred metres were d e p o s i t e d a t t h e narrower w e s t e r n end and o v e r a lOOOm i n t h e wider e a s t e r n end where s u b s i d e n c e was more a c t i v e (FUchtbauer, 1964).
The s u c c e e d i n g p a r a l i c s a n d s t o n e s
show s i m i l a r t h i c k n e s s v a r i a t i o n s r a n g i n g from a few t e n s o f metres i n t h e west t o s e v e r a l hundred metres t h i c k i n t h e e a s t .
The s a n d s t o n e s a r e q u a r t z o s e and c a l c -
l i t h i c a r e n i t e s d e r i v e d from t h e F l y s c h , P r e a l p s , and Northern Calcareous Alps. A s s o c i a t e d minor conglomerates a l s o i n d i c a t e c a l c a r e o u s s o u r c e a r e a s and r e f l e c t i n c i p i e n t u p l i f t and nappe emplacement of t h e l a t e A l p i n e o r o g e n i c phase. During l a t e Oligocene and e a r l y Miocene time t h e C e n t r a l Alps were a c t i v e l y u p l i f t e d and r e s u l t e d i n t h e accumulation o f Molasse i n t h e c e n t r a l and w e s t e r n p a r t s of t h e f o r e d e e p .
This began w i t h i n t e r b e d d e d non-marine s a n d s t o n e and mudstone and
w a s followed by t h e development of a f r i n g e o f e i g h t o r n i n e l a r g e a l l u v i a l f a n s
over lOOOm t h i c k ( F i g . l . 3 1 ) s u c c e s s i v e fining-upwards
(Fiichtbauer, 1964; G a s s e r , 1966, 1968).
These comprise
c y c l e s 10-20m t h i c k which i n c l u d e c o a r s e f a n g l o m e r a t e s ,
u s u a l l y s e v e r a l metres t h i c k .
These f a n g l o m e r a t e s grade l a t e r a l l y and d i s t a l l y i n t o
v a r i e g a t e d f l u v i a l fining-upwards c y c l e s , u s u a l l y no more t h a n a few metres t h i c k ,
42
-
Hercynian blocks Cenozoic mountain belts
0
Fig.1.29.
100
200
300 km.
The main t e c t o n i c e l e m e n t s of p a r t of w e s t e r n Europe.
and i n c l u d i n g t h i n beds o f l i g n i t e and f r e s h w a t e r l i m e s t o n e s ( B e r s i e r , 1945).
The
a l l u v i a l f a n s s u p p l i e d sediment t o t h e a x i a l r e g i o n of t h e b a s i n which wss t h e n t r a n s p o r t e d e a s t w a r d s t o t h e marine a r e a which p e r s i s t e d i n s o u t h e a s t e r n Germany and a d j a c e n t A u s t r i a (Lensch, 1961; S t e p h a n , 1965). U p l i f t and d e t r i t a l i n f l u x had waned by Mid-Miocene t i m e and t h e n o r t h e r n A l p i n e f o r e d e e p was i n u n d a t e d by marine c o n d i t i o n s and o n l y a few minor f l a n k i n g a l l u v i a l f a n s remained.
The r e s u l t i n g Upper Marine Molasse i s less t h a n lOOOm t h i c k b u t
e q u i v a l e n t d e p o s i t s a t t h e e a s t e r n end of t h e f o r e d e e p where s u b s i d e n c e was s t i l l g r e a t e r ( s c h l i e r m e r g e l ) a r e more t h a n 2OOm t h i c k .
I n t h e west t h e Upper Marine
Molasse c o n s i s t s of s h a l l o w m a r i n e t i d a l s a n d b o d i e s ( B r i e l , 1962; Van d e r Linden, 1963). The C e n t r a l and E a s t e r n Alps were u p l i f t e d i n l a t e Miocene-Early P l i o c e n e times and t h e H e l v e t i c nappes were t r a n s p o r t e d northwards o v e r i d i n g t h e f o r e d e e p by a
43 EBRO
-Pontian hrmatian Tortonian Helvetian Burdigalian E Aquitanian
-
-ChattianScampian - Ruplian N
Lnnoirsian-Lartorfian Ludian
Priabonian
Et
Lutetian
Y pratian-Cuitian
Fig.l.30. S t r a t i g r a p h i c d i s t r i b u t i o n o f t h i c k Cenozoic conglomerates i n t h e A l p i n e , A q i i i t a i n e and Ebro Basins. The r a n g e s o f conglomerates and o r o g e n i c p h a s e s depend on t h e a b s o l u t e time span a s s i g n e d t o Cenozoic epochs and on t h e assumption t h a t t h e A q u i t a n i a n and P o n t i a n S t a g e s a r e Miocene i n a g e 1. Main and l a t e A l p i n e orogeny (Milne, 1969). Arrow p o i n t e d l i n e s a r e S t i l l e ' s A l p i n e p h a s e s o f deformation ( R i c h t e r , 1927; B r e y e r , 1960) 2. P o s t - F l y s c h , coarsening-upward megacycles (Ftlchtbauer, 1967a) 3 . N o r t h Pyrenean o r o g e n i c p h a s e s ( S c h o e f f l e r , 1971) 4. South Pyrenean o r o g e n i c p h a s e s ( R i b a , 1955; S o l e r and P u i d e f a b r e g a s , 1970; Henry e t a l . , 1971) 5. Conglomeaates from c r a t o n i c b l o c k s ( F e r r e r e t a l . , 1968; G r o s s , 1968) 6. European Cenozoic S t a g e s ( a f t e r Van Houten, 1974). few t e n s of k i l o m e t r e s .
O l d e r proximal molasse d e p o s i t s were f o l d e d and f a u l t e d
b e n e a t h t h e nappes a s t h e a x i s of t h e f o r e d e e p was s h i f t e d t e n s o f k i l o m e t r e s t o t h e north.
The exposed Molasse was e v e n t u a l l y reduced t o l e s s t h a n h a l f i t s o r i g i n a l
width.
The Upper F r e s h w a t e r Molasse was d e p o s i t e d a l o n g t h e l e n g t h of t h e d i s p l a c e d
f o r e d e e p a s l a r g e a l l u v i a l f a n s d u r i n g T o r t o n i a n and P o n t i a n times,
Some of t h e s e
f a n s , such a s t h o s e a t Napf and H b r n l i a r e o v e r 1500m t h i c k ( M a t t e r , 1964, 1970). With i n c r e a s e d u p l i f t of t h e E a s t e r n Alps c l a s t s d e r i v e d from t h e Northern Calcareous Alps dominate t h e e a s t e r n f a n g l o m e r a t e s ( J a n o s c h e k , 1963) and t h e e a s t w a r d d i s p e r s a l p a t t e r n s e e n i n t h e Lower Molasse was now c o m p l e t e l y r e v e r s e d so t h a t e a s t e r n d e t r i t u s was now s p r e a d a c r o s s t h e J u r a D i s t r i c t ( F i g . 1 . 2 9 ) .
The a c c u m u l a t i o n of t h e Upper
F r e s h w a t e r Molasse p r o b a b l y c o n t i n u e d i n t o P l i o c e n e time f i l l i n g t h e f o r e d e e p t o o v e r lOOOm above s e a l e v e l ,
D i s t a l molasse was f o l d e d i n t h e J u r a s and much of
t h e l a t e r r e c o r d was d e s t r o y e d by deep e r o s i o n .
44
Fig.l.31. D i s t r i b u t i o n o f a l l u v i a l f a n s and d i s p e r s a l p a t t e r n s i n t h e n o r t h e r n A l p i n e f o r e d e e p d u r i n g a c c u m u l a t i o n o f Lower Freshwatel; ( C h a t t i a n - A q u i t a n i a n ) and Upper F r e s h w a t e r ( T o r t o n i a n P o n t i a n ) Molasse ( a f t e r FUchtbauer, 1967a). The molasse of t h e Canadian c o r d i l l e r a Molasse d e p o s i t i o n i n t h e Canadian c o r d i l l e r a shows some p a r a l l e l s w i t h t h e A l p i n e molasse.
I t c o n s i s t s of two o r o g e n i c b e l t s :
The P a c i f i c Orogen on t h e West
and t h e Columbian Orogen on t h e E a s t (Wheeler and G a b r i e l s e , 1972).
These two
b e l t s a r e s e p a r a t e d by t h e I n t e r m o n t a n e B e l t which i s c h a r a c t e r i z e d by v o l c a n i c and g r a n i t i c t e r r a i n u n c o n f o m a b l y o v e r l a i n by non-volcanic s u c c e s s o r b a s i n s of Middle J u r a s s i c t o e a r l y T e r t i a r y age.
The v a s t m a j o r i t y of t h e C o r d i l l e r a n m o l a s s e i s
r e l a t e d t o t h e Columbian Orogen and was l a i d down i n f o r e l a n d b a s i n s , i n t r a m o n t a n e v a l l e y s and e u g e o s y n c l i n a l s u c c e s s o r b a s i n s ( E i s b a c h e r e t a l . ,
1974).
The palaeo-
d r a i n a g e p a t t e r n and d e p o s i t i o n o f t h e m o l a s s e was c l o s e l y c o n t r o l l e d by a c t i v e l i n e a r t e c t o n i c elements.
The d i s t r i b u t i o n of m o l a s s e f a c i e s i n t h e Columbian
Orogen i s shown i n F i g . 1 . 3 2 .
A c e n t r a l zone of u p l i f t is f l a n k e d on t h e west by
F o r e l a n d Basins and on t h e e a s t by S u c c e s s o r B a s i n s ; r e l a t i v e t e c t o n i c t r a n s p o r t w i t h i n t h e s e two a r e a s were t o t h e e a s t a l o n g t h e e a s t e r n edge and t o t h e w e s t a l o n g t h e w e s t e r n edge; t h e c e n t r a l zone o f u p l i f t i s a l s o t h e r e f o r e a zone of s t r u c t u r a l divergence.
E a s t of t h e a x i s of t h i s zone t h e r o c k s of t h e Columbian Orogen c o n s i s t
mainly of deformed m i o g e o c l i n a l c a r b o n a t e - q u a r t z i t e s u c c e s s i o n s , whereas west o f t h e a x i s , high-grade metamorphic complexes a r e dominant.
Other major f e a t u r e s of t h e
Columbian Orogen a r e l o n g i t u d i n a l f a u l t z o n e s , well-known s i n c e McConnells' (1896) d e s c r i p t i o n , and now r e g a r d e d a s l o n g - l i v e d , r e p e a t e d l y r e a c t i v a t e d d e e p - c r u s t a l f r a c t u r e s (Monger e t a l . , ( F i g . 1.32).
1972) and a l s o s t r u c t u r a l r e - e n t r a n t s and s a l i e n t s
45
,
j; ...:;.::. :..... , .: :.. , ’.:.: .... .(. ./
. .
::.:, . . ..,
i. ,
Pml Reentrant
... ’.’ .;.;.. :. ... . ....
Molassa Flcies High grade maamorphicn
rm!Y km.
F i g . 1 . 3 2 . Main t e c t o n i c elements i n the Canadian C o r d i l l e r a and d i s t r i b u t i o n o f molasse f a c i e s i n s u c c e s s o r b a s i n s , intramontane v a l l e y s and f o r e l a n d b a s i n of the Columbian Omgen ( a f t e r Eisbacher e t a l . , 1974).
46
The s o u t h e r n F o r e l a n d b a s i n of t h e Columbian Orogen c o n t a i n s two major molasse sequences e a c h r e p r e s e n t i n g a p r o g r a d a t i o n o f c o a r s e g r a i n e d , non marine c l a s t i c s o v e r marine s h a l e s and s a n d s t o n e s (Fig.1.33).
The lower sequence i n c l u d e s t h e m a r i n e
I f T
'W l y River- Psrkapoo' Assemblago
'Alborta' Assemblage
'Kootenay- Bkirmorr' Aswrnblam
1
Fig.1.33. The f o u r l i t h o l o g i c a l assemblages o f t h e s o u t h e r n F o r e l a n d B a s i n of t h e Columbian Orogen ( a f t e r E i s b a c h e r e t a l . , 1974). Upper F e r n i e Assemblage and t h e non-marine Kootenay-Blairmore Assemblage.
The upper
sequence c o n t a i n s t h e m a r i n e A l b e r t a Assemblage and t h e non-marine B e l l y RiverPaskapoo Assemblage.
Only one molasse sequence i s p r e s e n t i n t h e n o r t h e r n f o r e l a n d
b a s i n and c o n s i s t s o f a n Upper C r e t a c e o u s t o Lower T e r t i a r y c o n t i n e n t a l c l a s t i c wedge o v e r l y i n g Lower C r e t a c e o u s m a r i n e c l a s t i c s . The Lower Molasse (Kootenay-Blairmore Assemblage) i n t h e Canadian C o r d i l l e r a conformably s u c c e e d s s l o p e d e p o s i t s i n t h e Upper p a r t o f t h e F e r n i e Formation; t h e Lower d e p o s i t s (Kootenay Formation) r e p r e s e n t d e l t a i c coal-swamp c o n d i t i o n s ( J a n s a ,
1972) and a r e followed b y a l l u v i a l s e d i m e n t s o f t h e Blairmore Group which c o v e r e d e x t e n s i v e a r e a s of t h e s o u t h e r n f o r e l a n d b a s i n and l i e w i t h e r o s i o n a l d i s c o n f o r m i t y on t h e o v e r l y i n g s e d i m e n t s , a l t h o u g h t h e s e a r e n o t f o l d e d ( N o r r i s , 1964).
I n the
v i c i n i t y of t h e Crowsnest r e - e n t r a n t t h e Lower Molasse i s 150Om t h i c k and h e r e r e d beds a r e developed i n t h e a l l u v i a l p l a i n sediments
(Mellon, 1967; H o l t e r and Mellon,
1972); t h e molasse t h i n s e a s t w a r d s and northwards g r a d i n g i n t o marine s h a l e s i n t h e north (Fig.1.32).
47
L
KOOTENAY
- BLAIRMORE MOLASSE
I BELLY RIVER-PASKAWO MOLASSE
F i g . 1 . 3 4 . I n f e r r e d palaeodrainage p a t t e r n s during the d e p o s i t i o n of KootenayBlairmore molasse (A) and B e l l y River-Paskapoo molasse (B) ( a f t e r Eisbacher e t a l . , 1974).
48 D e p o s i t i o n o f t h e Lower Molasse a l o n g t h e mountain f r o n t was accompanied by t h e n o r t h w e s t e r l y p r o g r a d a t i o n of f l u v i o - d e l t a i c s a n d b o d i e s from t h e e a s t e r n margin o f t h e b a s i n and t h i s i n d i c a t e s g e n e r a l emergence of t h e f o r e l a n d b a s i n .
These e a s t e r n
c l a s t i c s a r e t h e Athabasca O i l Sands (McMurray Formation) and were d e r i v e d from t h e c r y s t a l l i n e Precambrian s h i e l d ( C a r r i g y , 1966, 1967). s t r u c t i o n (Fig.1.34)
P a l a e o g e o g r a p h i c a l recon-
based on H o l t e r and Mellon (1972) and S t o t t (1972) shows t h a t
sediment t r a n s p o r t was t o t h e n o r t h a l o n g t h e a x i s o f t h e F o r e l a n d b a s i n w i t h l a t e r a l i n p u t of d e t r i t u s from l a r g e a l l u v i a l f a n s which developed i n t h e v i c i n i t y of s t r u c t u r a l r e - e n t r a n t s s u c h a s t h e Peace and Crowsnest. The d e p o s i t i o n o f t h e Lower Molasse c u l m i n a t e d i n a w i d e s p r e a d m a r i n e t r a n s g r e s s i o n d u r i n g A l b i a n time.
T h i s p r o g r e s s e d southwards from t h e n o r t h and r e s u l t e d i n t h e
d e p o s i t i o n o f a b o u t lOOOm o f f i n e g r a i n e d s h a l l o w marine c l a s t i c s which i n c l u d e t h e c o a s t a l sands o f t h e well-known Cardium Formation ( M i c h a e l i s and Dixon, 1969; S i n h a , 1970). The t r a n s i t i o n from t h i s m a r i n e A l b e r t a Assemblage t o t h e Upper Molasse ( B e l l y River-Paskapoo Assemblage) took p l a c e g r a d u a l l y d u r i n g t h e Campanian; a t t h e same t i m e t h e r e was s p o r a d i c m o l a s s e d e p o s i t i o n w i t h i n some o f t h e i n t r a m o n t a n e valleys.
The Upper Molasse i s a b o u t 3000m t h i c k and i s t h i c k e s t n e a r t h e Rocky
Mountain F r o n t n e a r t h e Crowsnest r e - e n t r a n t ; e a s t w a r d s i t t h i n s and i n t e r f i n g e r s w i t h marine d e p o s i t s .
Conglomerates a r e r a r e i n t h e Upper Molasse and o c c u r m a i n l y
i n t h e Eocene and O l i g o c e n e where t h e y c a n b e r e l a t e d t o t h e f i n a l morphogenic u p l i f t of t h e Rocky Mountain Belt.
The s u c c e s s i o n i s dominated by f l u v i a l and d e l t a i c
s a n d s t o n e s and s h a l e s , and i n t h e w e s t e r n margin o f t h e f o r e l a n d b a s i n a r e i n t e r bedded Upper C r e t a c e o u s v o l c a n i c s .
D e t a i l e d p e t r o l o g i c a l i n f o r m a t i o n i s g i v e n by
Lerbekmo (19631, Campbell and Lerbekmo (19631, Nelson (1968) and C a r r i g y (1971). The p a l a e o d r a i n a g e p a t t e r n o f t h e Upper Molasse i n t h e s o u t h e r n F o r e l a n d B a s i n was predominantly a x i a l and from t h e n o r t h ( F i g . 1 . 3 4 ) .
I n the northern Foreland
B a s i n , n e a r t h e P e e l r e - e n t r a n t a r e Upper C r e t a c e o u s t o T e r t i a r y e l a s t i c wedges 200Om t h i c k and e q u i v a l e n t t o t h e B e l l y River-Paskapoo Assemblage (Mountjoy, 1967; Young, 1971, Green, 1972).
These were d e r i v e d from deformed P r o t e r o z o i c and Palaeo-
z o i c s u c c e s s i o n s t o t h e west and p r o b a b l y t r a n s p o r t e d i n a n e a s t e r l y f l o w i n g d r a i n a g e network (Young, 1971). The f i n a l phase of molasse d e p o s i t i o n i n t h e f o r e l a n d b a s i n s o f t h e Columbian Orogen o c c u r r e d d u r i n g Eocene-Oligocene t i m e when f a u l t - c o n t r o l l e d i n t r a m o n t a n e b a s i n s r e s u l t e d i n t h e development o f c o a r s e g r a i n e d a l l u v i a l f a n s ( P r i c e , 1965; J o n e s , 1969).
These c o n g l o m e r a t e s r e s t w i t h unconformity on t h e B e l l y River-Paskapoo
c l a s t i c s ( C a r r i g y , 1971) and r e p r e s e n t t h e t r a n s i t i o n from l o n g i t u d i n a l t o s u p e r imposed t r a n s v e r s e d r a i n a g e , r e f l e c t i n g t h e f i n a l morphogenic u p l i f t of t h e Columbian Orogen ( B a l l y e t a l . , 1966). The most remarkable f e a t u r e o f t h e Upper Molasse i s t h a t t h e s o u t h e r n F o r e l a n d Basin r e c e i v e d much of i t s s e d i m e n t from t h e n o r t h e r n p a r t o f t h e Columbian Orogen. T h i s was p r o b a b l y due t o f a u l t i n g and u p l i f t i n t h e n o r t h e r n Rockies which t e r m i n a t e d
49
d e p o s i t i o n and i n i t i a t e d e r o s i o n i n t h a t a r e a .
This d i r e c t reversal of the a x i a l
d r a i n a g e d i r e c t i o n is a n a l o g o u s t o t h a t s e e n i n t h e A l p s , c o i n c i d e s w i t h e x t e n s i v e i n t r a m o n t a n e f a u l t i n g and a p p e a r s t o b e a c h a r a c t e r i s t i c f e a t u r e o f Cenozoic molasse The s i m i l a r i t y o f m o l a s s e b a s i n development i n two q u i t e
deposition (Fig.1.35).
d i s s i m i l a r o r o g e n i c b e l t s i s remarkable and may r e f l e c t two m a j o r p h a s e s of c r u s t a l s h o r t e n i n g a l o n g o p p o s i t e o r o g e n i c f l a n k s , e a c h p r o d u c i n g a major molasse c y c l e . The same phenomenon i s a l s o s e e n i n o l d e r m o l a s s e b a s i n s s u c h a s t h e Old Red Sandstone o f t h e Midland V a l l e y o f S c o t l a n d (Bluck, 1978).
S I
h
COLUMBIAN OROGEN
The two molasse megacycles of t h e s o u t h e r n Columbian Orogen and t h e Fig.1.35. n o r t h e r n Alps. The o n s e t of i n t r a m o n t a n e d e p o s i t i o n i s i n d i c a t e d by 'XI. The arrows i n d i c a t e t h e d i r e c t i o n o f sediment t r a n s p o r t a l o n g t h e b a s i n a x e s ( b a s e d on Schmidt-Thome, 1963 and S t o t t , 1 9 7 2 ) .
50
THE CLIMATIC SETTING OF ANCIENT CONTINENTAL RED BEDS
The c l i m a t i c s i g n i f i c a n c e o f a n c i e n t c o n t i n e n t a l r e d beds i s a c o n t r o v e r s i a l subject.
The o l d e s t c o n t i n e n t a l r e d beds i n t h e s t r a t i g r a p h i c r e c o r d a r e p r o b a b l y
t h o s e i n t h e Dharwar g r e e n s t o n e b e l t s of I n d i a which a r e a b o u t 2500 My o l d ( S r i n i v a s a n and S r e e n i v a s , 1972).
Red beds do n o t , however, become abundant i n
t h e s t r a t i g r a p h i c r e c o r d u n t i l a b o u t 1800-2000 My ago which has been t a k e n a s a n i n d i c a t i o n t h a t f r e e O2 began t o accumulate i n t h e atmosphere a b o u t t h i s time (Cloud, 1968). Red beds a r e c e r t a i n l y a n i n d i c a t i o n o f a n oxygenated atmosphere b u t t h e q u e s t i o n remains whether t h e y a r e a more s p e c i f i c p a l a e o c l i m a t i c i n d i c a t o r .
Traditionally,
r e d beds have been a s s o c i a t e d w i t h h o t , d r y c l i m a t e s and a r i d o r s e m i - a r i d c o n d i t i o n s . E a r l y a u t h o r s were much i m p r e s s e d w i t h t h e o c c u r r e n c e of r e d d e s e r t s e d i m e n t s (Dawson, 1848; Crosby, 1885; G o o d c h i l d , 1896) and r e d beds were s u b s e q u e n t l y associated with a h o t , dry climate.
I t was o n l y u n t i l r e l a t i v e l y r e c e n t l y t h a t
t h e o c c u r r e n c e o f r e d beds i n b o t h d r y and m o i s t t r o p i c a l c l i m a t e s has been s t r e s s e d . D i r e c t e v i d e n c e of t h e n a t u r e o f t h e c l i m a t e w i t h i n t h e d e p o s i t i o n a l b a s i n may b e p r o v i d e d by f a u n a l o r f l o r a l e v i d e n c e .
There may a l s o b e l i t h o l o g i c a l e v i d e n c e of
c l i m a t e and Walker (1974) has d i s t i n g u i s h e d between: a ) a d e s e r t - e v a p o r i t e r e d bed a s s o c i a t i o n i n which r e d beds a r e a s s o c i a t e d w i t h a e o l i a n s a n d s , d e s e r t f l u v i a l s e d i m e n t s and e v a p o r i t e s formed i n p l a y a l a k e s and i n l a n d sabkhas a n d , b ) a m o i s t c l i m a t e - r e d bed a s s o c i a t i o n i n which r e d beds a r e i n t e r b e d d e d and i n t e r f i n g e r with coal-bearing s t r a t a Although t h e s e two a s s o c i a t i o n s a r e c l i m a t i c a l l y q u i t e d i s t i n c t t h e y b o t h i n d i c a t e d e p o s i t i o n w i t h i n 30'
of t h e e q u a t o r and t h e q u e s t i o n a r i s e s whether r e d beds a r e
g e n e r a l l y i n d i c a t i v e of low p a l a e o l a t i t u d e s .
T h i s i s i m p o r t a n t f o r many r e d bed
f o r m a t i o n s which show no d i r e c t e v i d e n c e of t h e n a t u r e of t h e p r e v a i l i n g c l i m a t e i n the depositional basin. Many a u t h o r s have a t t e m p t e d t o make p a l a e o c l i m a t e a s s e s s m e n t on t h e b a s i s o f m i n e r a l o g i c a l composition and t e x t u r e .
T h i s m i n e r a l o g i c a l method i s aimed a t t h e
i d e n t i f i c a t i o n of s o u r c e a r e a composition and t h e n a t u r e o f t h e s o u r c e a r e a weathering.
The r e s u l t s c a n n o t , t h e r e f o r e , b e compared d i r e c t l y w i t h o t h e r p a l a e o c l i m a t e
i n d i c a t o r s because t h e r e could be important differences i n t h e climates of t h e source a r e a and t h e d e p o s i t i o n a l b a s i n .
There i s a l s o t h e a d d i t i o n a l d i f f i c u l t y of p o s t -
d e p o s i t i o n a l changes i n mineralogy and t e x t u r e which c o u l d modify any d i a g n o s t i c f e a t u r e s i n h e r i t e d from t h e s o u r c e a r e a . N e v e r t h e l e s s , t h e r e i s e v e r y i n d i c a t i o n t h a t a n c i e n t c o n t i n e n t a l r e d beds have b o t h a d i s t i n c t i v e d e p o s i t i o n a l and d i a g e n e t i c mineralogical s i g n a t u r e , although the q u a n t i t a t i v e s i g n i f i c a n c e of each i s n o t y e t fully established.
51 The s i g n i f i c a n c e of f i r s t - c y c l e a r k o s i c r e d b e d s There a r e many a n c i e n t examples o f r e d beds which w e r e d e r i v e d d i r e c t l y from c r y s t a l l i n e r o c k s o f a p p r o x i m a t e l y g r a n i t i c c o m p o s i t i o n and which a r e c o n s e q u e n t l y rich i n feldspar.
These s a n d s t o n e s a r e g e n e r a l l y r e f e r r e d t o a s ' a r k o s i c ' o r
' a r k o s e s ' a l t h o u g h t h e r e i s some c o n f u s i o n a s t o t h e e x a c t meaning of t h e term ( O r i e l , 1949).
I n h i s o r i g i n a l d e f i n i t i o n B r o n g n i a r t (1826) u s e d t h e term a r k o s e
t o d e n o t e a c o a r s e c l a s t i c r o c k w i t h abundant f e l d s p a r b u t d i d n o t s p e c i f y t h e e x a c t amount.
Most workers f o l l o w t h e usage o f P e t t i j o h n (1949) and r e s t r i c t t h e
term a r k o s e t o s a n d s t o n e s w i t h more t h a n 25% f e l d s p a r i n t h e framework c o n s t i t u e n t s a l t h o u g h h e l a t e r r e d e f i n e d t h e term a s a s a n d s t o n e w i t h 25% o r more f e l d s p a r r o c k fragments i n which t h e f e l d s p a r formed a t l e a s t h a l f .
+
R e c e m t usage of t h e
term ' a r k o s i c ' s u g g e s t s t h a t i t i s b e s t r e s t r i c t e d t o c o n t i n e n t a l d e p o s i t s s o a s t o
a v o i d c o n f u s i o n w i t h f e l d s p a t h i c greywackes ( s e e P e t t i j o h n , 1975, p.214) which form i n q u i t e a d i f f e r e n t manner.
The term ' f e l d s p a t h i c ' o r s u b a r k o s i c i f o f t e n used
t o d e n o t e thobe s a n d s t o n e s i n which t h e f e l d s p a r c o n t e n t i s between 10-25%. Although a r k o s e s may form by a v a r i e t y o f c l o s e l y r e l a t e d p r o c e s s e s
(Pettijohn,
1975 p.217) t h e y a r e g e n e r a l l y r e g a r d e d , b e c a u s e o f e a s y h y d r o l y s i s , t o r e q u i r e high r e l i e f , r a p i d e r o s i o n , t r a n s p o r t a t i o n , and b u r i a l b e f o r e d e c o m p o s i t i o n c a n t a k e p l a c e i n lowland s o i l s .
They t y p i c a l l y develop a s a l l u v i a l f a n and f l u v i a l d e p o s i t s
a t t h e margins o f t e c t o n i c a l l y a c t i v e fault-bounded g r a b e n s ,
Examples i n c l u d e t h e
L a t e Precambrian T o r r i d o n i a n Sandstone of NW S c o t l a n d ( S e l l e y , 1 9 6 6 ) , t h e Old Red Sandstone i n p a r t s o f S c o t l a n d (Mackie, 1899) t h e Pennsylvanian Lyons and F o u n t a i n Formations o f Colorado ( H u b e r t , 1 9 6 0 ) , t h e T r i a s s i c Newark S e r i e s of C o n n e c t i c u t and o t h e r e a s t e r n s t a t e s (Krynine, 1950) and p a r t s of t h e T e r t i a r y molasse of s o u t h e r n Germany and S w i t z e r l a n d ( G a s s e r , 1968).
The amount o f f e l d s p a r i n a r k o s i c r e d beds
t h u s a p p e a r s t o b e c o n t r o l l e d by t h r e e m a j o r f a c t o r s : a ) t h e proportion of f e l d s p a t h i c c r y s t a l l i n e rock i n t h e source area b ) t h e c l i m a t e w i t h i n t h e s o u r c e a r e a and d e p o s i t i o n a l b a s i n c ) t h e amount o f p o s t - d e p o s i t i o n a l d e s t r u c t i o n o f f e l d s p a r s by i n t r a s t r a t a l s o l u t i o n V a r i a t i o n i n one o r more of t h e s e f a c t o r s a c c o u n t s f o r t h e observed v a r i a t i o n i n t h e f e l d s p a r c o n t e n t o f a r k o s e s which i s c o n s i d e r a b l e ( s e e P e t t i j o h n , 1975 p.215). T r a d i t i o n a l l y a r k o s e s a r e t h o u g h t t o form when e i t h e r c l i m a t i c c o n d i t i o n s were too d r y o r t o o c o l d t o a l l o w much w e a t h e r i n g w i t h t h e r e s u l t t h a t t h e f e l d s p a r remained l a r g e l y undecomposed; o r t h e s o u r c e a r e a was u p l i f t e d and e r o d e d so r a p i d l y t h a t t h e r e was n o t s u f f i c i e n t t i m e f o r f e l d s p a r w e a t h e r i n g .
These a r e r e f e r r e d by Folk
(1968a) a s t h e C l i m a t i c Arkose and t h e T e c t o n i c Arkose r e s p e c t i v e l y .
I n practice,
c l i m a t i c a r k o s e s form on s t a b l e s h i e l d a r e a s and a r e m o s t l y s h a l l o w m a r i n e , beach o r dune d e p o s i t s and a r e r a r e i n n a t u r e . T e c t o n i c a r k o s e s form p r i m a r i l y i n b l o c k - f a u l t e d mountainous a r e a s a s a l l u v i a l f a n s o r piedmonts.
S i n c e t h e s e t e c t o n i c a l l y a c t i v e a r e a s a r e c h a r a c t e r i z e d by r a p i d
e r o s i o n and d e p o s i t i o n , and i f c r y s t a l l i n e r o c k s a r e exposed i n t h e s o u r c e a r e a , f e l d s p a r w i l l b e a b u n d a n t l y p r e s e r v e d and may comprise up t o 50% o f t h e framework constituents.
R e l a t i v e u p l i f t i n t h e s o u r c e a r e a s may b e o f t h e o r d e r o f 5000-8OOOm
and r e s u l t i n t h e exposure o f basement g r a n i t e s and g n e i s s e s .
Rates of u p l i f t a r e
d i s c u s s e d by Crowell ( 1 9 7 4 a , b ) and S t e e l e t a l . (1976). The combination o f rugged r e l i e f and r a p i d e r o s i o n means t h a t p r e d o m i n a n t l y f r e s h d e t r i t u s , i n c l u d i n g f e l d s p a r s , i s formed.
I n humid c l i m a t e s t h e r e may b e a t h i c k
weathered m a n t l e and s o i l i n t h e i n t e r f l u v i a l a r e a s and Krynine (1949) has shown how t h i s can e x p l a i n t h e m i x t u r e o f weathered and unweathered f e l d s p a r s o f t h e same species.
I n a r i d c l i m a t e s r e d s o i l s a r e l a r g e l y a b s e n t i n t h e s o u r c e a r e a s (Walker,
1967b) because t h e r e i s i n s u f f i c i e n t r a i n f a l l f o r t h e development of l a t o s o l s .
In
such a r e a s t h e d e t r i t u s i s n o t r e d , b u t g r e y , y e l l o w o r t a n i n c o l o u r , and o n l y reddens through s u b s e q u e n t b u r i a l and d i a g e n e s i s . I n a n c i e n t a r k o s i c sequences t h e r e i s o f t e n l i t t l e o r no e v i d e n c e of t h e c l i m a t e i n t h e s o u r c e and d e p o s i t i o n a l a r e a .
Of c o u r s e , t h e b e s t e v i d e n c e l i e s i n t h e
p r e s e n c e of fauna o r f l o r a o r s e d i m e n t a r y p a l a e o c l i m a t i c i n d i c a t o r s such a s a s s o c i a t e d e v a p o r i t e s , b u t f o r a v a r i e t y o f r e a s o n s t h e s e may b e a b s e n t . Sedimentary p e t r o l o g i s t s have l o n g been i n t e r e s t e d i n u s i n g t h e mineralogy o f a r k o s e s t o i n t e r p r e t p a l a e o c l i m a t i c c o n d i t i o n s a t t h e t i m e of d e p o s i t i o n .
Important
c l u e s may b e p r o v i d e d by t h e d e g r e e and n a t u r e of f e l d s p a r a l t e r a t i o n (Krynine, 1947; F o l k , 1 9 6 8 a ) p r o v i d e d t h a t t h e e f f e c t s due t o c l i m a t e and d e p o s i t i o n a l p r o c e s s e s can be i s o l a t e d from p r e w e a t h e r i n g e f f e c t s ( e . g . due t o d e u t e r i c o r hydrothermal a l t e r a t i o n ) and d i a g e n e t i c e f f e c t s ( e . g .
t h e i n t r a s t r a t a l d i s s o l u t i o n and r e p l a c e m e n t o f
f e l d s p a r by c l a y j . Krynine showed t h a t i m p o r t a n t c l u e s may b e p r o v i d e d by g r a i n r o u n d n e s s , which g i v e s some i n d i c a t i o n o f t h e r a t e of e r o s i o n and s o u r c e a r e a r e l i e f , t h e a v e r a g e d e g r e e of f e l d s p a r a l t e r a t i o n and a l s o t h e homogeneity o f f e l d s p a r a l t e r a t i o n , t h e homogeneity b e i n g t h e d e g r e e of w e a t h e r i n g between i n d i v i d u a l f e l d s p a r s p e c i e s . F o l k (1968a) h a s shown how f e l d s p a r a l t e r a t i o n m i g h t be i n t e r p r e t e d i n terms o f s o u r c e a r e a topography and c l i m a t e . I n humid c l i m a t e s w i t h rugged topography abundant a n g u l a r f e l d s p a r i s produced and g e n e r a l l y c o n s i s t s o f a m i x t u r e of f r e s h and weathered g r a i n s b e c a u s e o f t h e e r o s i o n of weathered m a n t l e and f r e s h bedrock.
I n a r i d climates fresh feldspar i s
produced, and well-rounded f r e s h f e l d s p a r s may b e a n i n d i c a t i o n of a n a r i d c l i m a t e and low topography (peneplane) c o n d i t i o n s . There have been a number o f s p e c i f i c a p p l i c a t i o n s of f e l d s p a r w e a t h e r i n g and a r k o s e mineralogy o f p a l a e o c l i m a t e i n t e r p r e t a t i o n .
Todd (1968) h a s shown t h a t under
f a v o u r a b l e c i r c u m s t a n c e s m i n e r a l o g i c a l e v i d e n c e can b e used t o p r o v i d e e v i d e n c e o f ancient climates.
H e i n v e s t i g a t e d t h e k a o l i n i t i c w e a t h e r i n g o f t h e Domengine
s a n d s t o n e , one o f t h e Eocene a r k o s i c sequences i n C a l i f o r n i a .
The method i n v o l v e d
i d e n t i f i c a t i o n of f e l d s p a r g r a i n s i n t h i n s e c t i o n u s i n g t h e u n i v e r s a l s t a g e
53
G r a i n s were i d e n t i f i e d a s o r t h o c l a s e ,
measurement o f a x i a l a n g l e s and o p t i c p l a n e s .
o r t h o c l a , s e m i c r o p e r t h i t e , p l a g i o c l a s e , p e r t h i t e and m i c r o c l i n e and i n a l l a t o t a l of 1050 g r a i n s were examined, o f which 19% were d e t e r m i n e d u s i n g t h e U-stage.
Todd
measured t h e g r a i n s i z e , g r a i n r o u n d n e s s , and t h e t y p e and d e g r e e of w e a t h e r i n g f o r each grain.
The d e g r e e of w e a t h e r i n g was d e t e r m i n e d by measuring t h e p e r c e n t a g e
a r e a of t h e g r a i n which showed v i s i b l e a l t e r a t i o n .
A w e a t h e r i n g i n d e x y = logz A
where A i s t h e p e r c e n t a g e v i s i b l e a r e a showing a l t e r a t i o n was c a l c u l a t e d and used 0-1 f r e s h , 1-2 s l i g h t l y w e a t h e r e d , 2-3 m o d e r a t e l y
with the following verbal scale: w e a t h e r e d , 3-4 s t r o n g l y weathered.
The r e s u l t s a r e s m a r i z e d i n T a b l e 1.1.
TABLE 1.1. T e x t u r a l , c o m p o s i t i o n a l and w e a t h e r i n g c h a r a c t e r i s t i c s of f e l d s p a r g r a i n s of t h e Domengine Sandstone (Eocene) Sacramento V a l l e y , C a l i f o r n i a ( a f t e r Todd, 1 9 6 8 ) . No. Grains
Average Mean Size 0
Average Mean Roundness
Composition Mean
Composition S.D.
Mean
S.D.
Y Y
459
1.88
2.67(SA)
Ab+An 33%
2.24
0.66
Orthoclase M i c r o p e r t h i t e 410
1.75
2.94(SA)
Ab+An 39%
2.44
0.74
Plagioclase
2.11
3.13(SR)
Orthoclase
100
An
37%
An 7.7%
1.50
0.78 ~
The r e s u l t s c l e a r l y show t h a t t h e a v e r a g e roundness of t h e t h r e e f e l d s p a r s p e c i e s
i s s i m i l a r b u t t h e p o t a s h f e l d s p a r i s somewhat c o a r s e r t h a n t h e p l a g i o c l a s e .
Rather
s u r p r i s i n g i y t h e o r t h o c l a s e m i c r o p e r t h i t e i s , on a v e r a g e , t h e most weathered o f t h e t h r e e f e l d s p a r s p e c i e s , c l o s e l y f o l l o w e d by o r t h o c l a s e , w i t h p l a g i o c l a s e t h e f r e s h e s t of a l l .
The w e a t h e r i n g of t h e f e l d s p a r s i s p r e d o m i n a n t l y k a o l i n i t i c ; 10% of t h e
g r a i n s shown s e r i c i t i c a l t e r a t i o n , and some t h e "bubbly" a l t e r a t i o n o f Folk (1955). T h i s sequence o f o r t h o c l a s e more weathered t h a n p l a g i o c l a s e ( a n d e s i n e ) i s o f c o u r s e c o n t r a r y t o t h e g e n e r a l l y a c c e p t e d sequence of m i n e r a l s t a b i l i t y . A p l o t of a v e r a g e s i z e of e a c h s p e c i e s o f f e l d s p a r from a number of t h i n s e c t i o n s , when p l o t t e d a g a i n s t a v e r a g e w e a t h e r i n g , shows a number of i n t e r e s t i n g t r e n d s . Although o r t h o c l a s e m i c r o p e r t h i t e i s o v e r a l l , t h e most w e a t h e r e d s p e c i e s , g r a i n s s m a l l e r t h a n 2.0
0
a r e fresher than the equivalent sized orthoclase.
c o n s i s t e n t w i t h t h e i r more a n g u l a r a p p e a r a n c e ,
This i s
The p l a g i o c l a s e w e a t h e r i n g t r e n d
p a r a l l e l s t h o s e o f t h e two a l k a l i f e l d s p a r s b u t i s c l e a r l y f r e s h e r t h r o u g h o u t , except f o r the very coarsest orthoclase grains.
The e s t i m a t e d t r e n d f o r each s p e c i e s
shows a tendency t o show i n c r e a s e d w e a t h e r i n g w i t h i n c r e a s e i n g r a i n s i z e up t o a p o i n t a t which same d e g r e e o f w e a t h e r i n g i s m a i n t a i n e d .
Again t h i s i s c o n t r a r y t o
t h e g e n e r a l l y a c c e p t e d b e l i e f which h o l d s t h a t t h e f i n e r g r a i n s b e c a u s e of t h e i r g r e a t e r s u r f a c e area/volume r a t i o s h o u l d normally show a h i g h e r d e g r e e of weathering.
54
3.0 3-5 2.5
1
0 ORTHOCLASE 0 ORTHOCLASE MICROPERTHITE
A PLAGIOCLASE
-
-
M%o 1.5
-
1.0
-
0.5
-
. .....
I
-1.0
I
I
I
1
0.0
1.0
2.0
3.0
1
-uo
Md R e l a t i o n s h i p between a v e r a g e d e g r e e o f w e a t h e r i n g (My)and a v e r a g e g r a i n Fig.1.36, s i z e (Md) o f f e l d s p a r s p e c i e s i n t h e Domengine Formation (Eocene) Sacramento V a l l e y , C a l i f o r n i a ( a f t e r Todd, 1968). Todd (1968) showed t h a t t h e s e d a t a c o u l d b e r e a d i l y e x p l a i n e d p r o v i d e d t h a t due c o n s i d e r a t i o n was p a i d t o t h e c r y s t a l l o g r a p h i c s t r u c t u r e of t h e i n d i v i d u a l f e l d s p a r s p e c i e s and a l s o t h e a c t i v i t y of d i s s o l v e d i o n s i n t h e s o i l w a t e r , i n c l u d i n g d i s t i n c t i o n between w e a t h e r i n g a n d l e a c h i n g r a t e .
The e x p e r i m e n t a l d a t a and t h e o r e t i c a l
c a l c u l a t i o n s of Hess (1966) show t h a t d u r i n g t h e w e a t h e r i n g of K-feldspar a t l e a s t f o u r d i f f e r e n t sequences o f m i n e r a l p h a s e s c o u l d a c h i e v e s t a b i l i t y depending upon
+ + concentration.
the log K /H
With d e c r e a s i n g s i l i c a t h e s e a r e :
K-feldspar-
montmorillonite+kaolinitej
K-feldspar+
kaolinite
gibbsite
+gibbsite
+ K-mica + g i b b s i t e + + decreases with decreasing
K-feldspar
and i f l o g K /H K-feldspar+
silica
K-mica j k a o l i n i t e 3 g i b b s i t e
For example, a h i g h w e a t h e r i n g r a t e t o g e t h e r w i t h a h i g h l e a c h i n g r a t e may r e s u l t i n r a p i d loss o f K+ from o r t h o c l a s e w i t h l i t t l e o r no development of secondary mica because o f t h e h i g h H+ c o n c e n t r a t i o n . of K
+ would
I f t h e l e a c h i n g r a t e were r e t a r d e d b u i l d up
r e s u l t i n t h e development of secondary mica on t h e f e l d s p a r s u r f a c e ,
A l b i t e , on t h e o t h e r hand, would be more s t a b l e t h a n K - f e l d s p a r i n a n environment
+ +
i n which t h e l o g Na +/ H + c o n c e n t r a t i o n was r e l a t i v e l y h i g h and t h e l o g K /H c o n c e n t r a t i o n was r e l a t i v e l y low.
The more h i g h l y w e a t h e r e d s t a t e of o r t h o c l a s e
55
m i c r o p e r t h i t e r e l a t i v e t o o r t h o c l a s e c a n b e e x p l a i n e d i n terms o f c r y s t a l l o g r a p h i c structure,
P e r t h i t e l a m e l l a e b o u n d a r i e s c a n b e c o n s i d e r e d a s a r r a y s of d i s l o c a t i o n s
(Weertman and Weertman, 1964) which a r e more s u s c e p t i b l e t o w e a t h e r i n g t h a n a r e a s with perfect crystal lattice.
As e x p e c t e d such a r e a s show e v i d e n c e of more e x t e n s i v e
w e a t h e r i n g (Todd, 1968 p.840). These m i n e r a l o g i c a l d a t a can b e t a k e n t o i n d i c a t e t h a t t h e w e a t h e r i n g of t h e Domengine s o u r c e r o c k s i n v o l v e d s l u g g i s h l e a c h i n g o f a l k a l i - r i c h p a r e n t r o c k s under low-relief subtropical conditions.
Todd (1968) a r g u e d t h a t t h e h i g h sodium-low
p o t a s s i u m a c t i v i t y i n s o i l w a t e r c o u l d b e b r o u g h t a b o u t by abundant non-seasonal r a i n f a l l and s u f f i c i e n t v e g e t a t i o n t o u t i l i z e much o f t h e p o t a s s i u m f o r p l a n t growth. S i n c e P l a n t s do n o t u s e sodium b u t r e q u i r e p o t a s s i u m i n abundance, t h e p r e s e n c e of low run-off and l u s h v e g e t a t i o n c a n a d e q u a t e l y e x p l a i n t h e h i g h sodium r e l a t i v e t o p o t a s s i u m a c t i v i t y i n t h e s o i l and t h e observed w e a t h e r i n g c h a r a c t e r i s t i c s of t h e feldspar species.
T o d d ' s h y p o t h e s i s i s s u p p o r t e d by i n d e p e n d e n t p a l a e o b o t a n i c a l
e v i d e n c e ( A x e l r o d , 1966) which shows t h a t t h e s o u r c e a r e a ( S o u t h e r n S i e r r a Nevada) a t t h i s time w i t h 700m peaks was covered on i t s w e s t e r n s l o p e s by b r o a d - l e a f e d e v e r g r e e n s which p r e f e r r e d a warm-temperate c l i m a t e w i t h f r o s t l e s s w i n t e r s w i t h a n a n n u a l t e m p e r a t u r e r a n g e of 15-22OC.
The c l i m a t e p r o b a b l y d i d n o t show marked
s e a s o n a l i t y and s o i l m o i s t u r e l e v e l s were p r o b a b l y r e a s o n a b l y c o n s t a n t w i t h a n a n n u a l p r e c i p i t a t i o n between 60 and 70 i n c h e s p e r y e a r . Todd (1968) a l s o made a n e x a m i n a t i o n of t h e Upper Miocene Lower Modelo s a n d s t o n e i n C a l i f o r n i a which was d e r i v e d from a v a r i e t y o f p l u t o n i c r o c k groups ( S u l l w o l d , 1960).
The o r d e r of f e l d s p a r s t a b i l i t y i s o r t h o c l a s e - m o r e - s t a b l e - t h a n
plagioclase
(An (50%) w i t h a mean w e a t h e r i n g i n d e x ( M y ) of 1 . 3 4 f o r o r t h o c l a s e and 1.56 f o r plagioclase.
Observed w e a t h e r i n g p r o d u c t s i n c l u d e p o t a s s i u m mica ( i l l i t e ) and l e s s e r
amounts of k a o l i n i t e .
These f e a t u r e s c o u l d s u g g e s t a more t e m p e r a t e c l i m a t e , a c t i v e
l e a c h i n g (needed t o produce t h e k a o l i n i t e ) b u t w i t h r e s t r i c t e d removal of potassium i o n s ( t o produce t h e i l l i t e ) .
Comparison o f t h e h a b i t a t s of t h e modern e q u i v a l e n t s
o f t h e S i e r r a Madrean f l o r a which dominated b o t a n i c a l a s s o c i a t i o n i n s o u t h e r n C a l i f o r n i a a t t h i s time ( l a t e Miocene) ( A x e l r o d , 1957) s u g g e s t s p r e c i p i t a t i o n of 75-87cm p e r y e a r and a mean a n n u a l t e m p e r a t u r e of 2OoC.
Thus p r e c i p i t a t i o n and
t e m p e r a t u r e were b o t h somewhat less i n t h i s s o u r c e a r e a t h a n t h a t of t h e Domengine Sandstone.
A s a whole t h e e v i d e n c e i s c o n s i s t e n t w i t h t h e change i n c l i m a t e i p
C a l i f o r n i a from a composition macroclimate i n E a r l y Eocene t o a n i n c r e a s i n g l y c o n t i n e n t a l one t h r o u g h o u t t h e Miocene a s r e l i e f i n c r e a s e d and c l i m a t i c b a r r i e r s became more i m p o r t a n t , The s i g n i f i c a n c e o f s i z e - c o m p o s i t i o n t r e n d s Another method of u s i n g m i n e r a l o g i c a l d a t a t o i n t e r p r e t p a l a e o c l i m a t e c o n d i t i o n s has been d e s c r i b e d by Young e t a l . (1975) and depends upon comparison w i t h s i z e -
56 composition p l o t s of framework g r a i n s i n f i r s t - c y c l e s a n d s t o n e s .
The main
d i f f e r e n c e s between s e m i - a r i d and humid c l i m a t e s a r e shown i n Fig.1.37)
r 60
t I
\
Fragments
Monocrystolline Ouortz
Feldspar
Polycr ysta I line Ouartz
t
Distinction
Total Pyroxene Amphibole. Micos, Heavier, Ooaqws
r
-
0
M
F
kh
L C
C
M
F
C
H
F
C
M
F
--
Grain Size
High-rank metomorphic Low-rank metomorphic Plutonic
Arid
Humid
V a r i a t i o n i n composition o f f i r s t c y c l e Holocene f l u v i a l s a n d from semiFig.1.37. a r i d and humid climates. Weathering i n s e m i - a r i d c l i m a t e s y i e l d s g r e a t e r amounts of r o c k f r a g m e n t s , f e l d s p a r and a c c e s s o r y m i n e r a l s . Weathering i n humid c l i m a t e s produces more p o l y c r y s t a l l i n e and m o n o c r y s t a l l i n e q u a r t z . The r e l a t i o n s h i p s h o l d r e g a r d l e s s of c r y s t a l l i n e s o u r c e rock-type ( a f t e r Mack and S u t t n e r , 1977). between s e m i - a r i d and humid p a l a e o c l i m a t e s may b e p o s s i b l e u s i n g t h i s method.
Mack
and S u t t n e r (1977) a p p l i e d t h e t e c h n i q u e i n a s t u d y o f t h e P e n n s y l v a n i a n F o u n t a i n Formation i n t h e Colorado F r o n t Range.
The F o u n t a i n Formation was d e p o s i t e d a s
a l l u v i a l f a n s which f l a n k e d t h e e a s t e r n s i d e o f t h e A n c e s t r a l R o c k i e s , a n a r e a o f c r y s t a l l i n e Precambrian Rocks s i t u a t e d n e a r t h e l o c a t i o n o f t h e p r e s e n t Colorado F r o n t Range ( T i e j e , 1923; K n i g h t , 1929; H u b e r t , 1960; Howard, 1966) ( F i g . 1.38). A number o f a u t h o r s i n c l u d i n g Wahlstrom (1948) and Hubert (1960) b e l i e v e d t h a t
t h e F o u n t a i n Formation was d e p o s i t e d under humid c l i m a t e c o n d i t i o n s whereas Raup (1966) and Mallory (1972) a r g u e d t h a t i t was d e p o s i t e d under a r i d t o s e m i - a r i d conditions. Mack and S u t t n e r (1977) have a p p l i e d t h i s t e c h n i q u e i n o r d e r t o compare t h e provenance and palaeogeography of t h e F o u n t a i n s a n d s t o n e s w i t h Holocene s a n d s i n t h e same a r e a .
Having e s t a b l i s h e d t h a t t h e Holocene s a n d s were d e r i v e d from t h e same
EXPLANATION
I I
p?)Alluvial fan
I
I Fig.1.38. Middle Pennsylvanian palaeogeography i n t h e Colorado a r e a b a s e d on Krumbein and S l o s s (1963) and D o t t and B a t t e n (1971). s o u r c e r o c k s ( s e e a l s o H u b e r t , 1960, and Howard, 1966) Mack and S u t t n e r (1977) then compensated f o r d i a g e n e t i c m o d i f i c a t i o n such a s f e l d s p a r and hornblende breakdown (Walker, 1967a, 1973) by s u b t r a c t i n g t h e modal amounts and n o r m a l i z i n g t h e r e s t of t h e framework g r a i n s t o 100%. Thus t h e n o r m a l i z e d p o p u l a t i o n s of q u a r t z g r a i n s and rock fragments i n t h e F o u n t a i n Formation and Holocene s a n d s c o u l d r e f l e c t t h e d i f f e r e n c e s ( i f a n y ) i n t h e e f f e c t s of w e a t h e r i n g a n d c l i m a t e i n t h e s o u r c e a r e a . I n a l l t h e s i z e f r a c t i o n s r o c k fragments a r e more abundant i n t h e Holocene sands than i n the Fountain sandstone (Fig.1.39).
Following t h e i n t e r p r e t a t i o n
s u g g e s t e d by Young e t a l . (1975) t h i s r e l a t i o n s h i p was t a k e n by Mack and S u t t n e r (1977) a s a n i n d i c a t i o n t h a t t h e F o u n t a i n Formation c l i m a t e was more humid t h a n t h e Holocene.
Rigorous chemical w e a t h e r i n g i n humid c l i m a t e s more r a p i d l y d e s t r o y s
l a b i l e m i n e r a l s i n r o c k fragments t h e r e b y b r i n g i n g a b o u t t h e i r r a p i d d e s t r u c t i o n . Humid c l i m a t e s a r e c h a r a c t e r i z e d by lower amounts of rock fragments i n a l l sand size classes. P o l y c r y s t a l l i n e q u a r t z fragments show e x a c t l y t h e o p p o s i t e t r e n d t o t h e rock fragments.
I n a l l t h e s i z e f r a c t i o n s p o l y c r y s t a l l i n e q u a r t z i s more abundant i n
t h e F o u n t a i n Sandstone t h a n i t i s i n t h e Holocene sand.
I n p a r t i c u l a r the coarse
s a n d f r a c t i o n shows a much h i g h e r p r o p o r t i o n o f p o l y c r y s t a l l i n e q u a r t z t h a n t h e Holocene sand which produces a much h i g h e r s l o p e i n t h e s i z e - c o m p o s i t i o n t r e n d , These p o l y c r y s t a l l i n e q u a r t z r e s u l t s a u p p o r t t h e humid-climate h y p o t h e s i s and t h e
58 s l o p e d i f f e r e n c e of t h e s i z e - c o m p o s i t i o n p l o t can be e x p l a i n e d by t h e p r e f e r e n t i a l mechanical d e s t r u c t i o n d u r i n g t r a n s p o r t a t i o n of l a b i l e m i n e r a l s on t h e edges o f p o l y m i n e r a l i c rock fragments i n t h e c o a r s e s a n d f r a c t i o n .
T h i s p r o c e s s would produce
a h i g h e r r a t i o of frequency p e r c e n t p o l y c r y s t a l l i n e q u a r t z i n t h e c o a r s e f r a c t i o n t o frequency p e r c e n t i n t h e f i n e f r a c t i o n i n a humid c l i m a t e .
I
PLUTONIC SOURCE
60 *O
1
Rock Fragments
10
0 5
C
M
F
100
Monocrys1.
EXPLANATION Colorado Springs, Colo. Fountain Fm. A Holocene A Boulder, Colo. Fountain Fm. 0 Holocene
-L C
40
2o O
M
C
M
F
F
.
METAMORPHIC SOURCE 100
Golden, Colo. Fountain Fm. 0 Holocene Loveland, Colo. Fountain Fm. 0 Holocene
40
20
0
C
M
F
C
M
F
C
M
F
Grain Size Fig.1.39. V a r i a t i o n i n c o m p o s i t i o n of Holocene f l u v i a l s a n d and s a n d s t o n e s from t h e F o u n t a i n Formation. Each p o i n t i s based on s e p a r a t e 200 p o i n t modal a n a l y s e s of t h e i n d i v i d u a l s i z e f r a c t i o n s ( a f t e r Mack and S u t t n e r , 1977). There i s l i t t l e marked d i f f e r e n c e i n t h e mean frequency p e r c e n t of m o n o c r y s t a l l i n e q u a r t z between t h e F o u n t a i n and Holocene sands ( F i g . 1 . 3 9 ) .
However, a l l s i z e f r a c t i o n s
of t h e F o u n t a i n s a n d s t o n e c o n t a i n more m o n o c r y s t a l l i n e q u a r t z than t h e Holocene s a n d
from t h e same a r e a .
This f e a t u r e i s t a k e n by Mack and S u t t n e r (1977) a s f u r t h e r
s u p p o r t f o r t h e i r argument t h a t t h e F o u n t a i n c l i m a t e was more humid t h a n t h e Holocene because Young e t a l . (1975) have shown t h a t more i n t e n s e chemical w e a t h e r i n g i n humid
c l i m a t e s r e l e a s e s more m o n o c r y s t a l l i n e q u a r t z t h a n i n a r i d o r s e m i - a r i d r e g i o n s . Mack and S u t t n e r (1977) i n t e r p r e t e d t h i s d a t a t o i n d i c a t e t h a t t h e c l i m a t e on t h e e a s t f l a n k of t h e F r o n t Range d u r i n g d e p o s i t i o n o f t h e F o u n t a i n Formation was more humid t h a n i t i s a t p r e s e n t .
T h i s d i f f e r s from t h e c o n c l u s i o n s o f Raup (1966) who
s u g g e s t e d on t h e b a s i s of c l a y m i n e r a l o g y t h a t t h e c l i m a t e was a r i d t o s e m i - a r i d a t t h e time.
Raup's e v i d e n c e was m a i n l y t h e abundance of i l l i t e and mixed l a y e r
i l l i t e - m o n t m o r i l l o n i t e and t h e o n l y minor amounts of k a o l i n i t e i n t h e F o u n t a i n Formation which s u g g e s t e d t o him i n c o m p l e t e l e a c h i n g i n a n a r i d o r s e m i - a r i d c l i m a t e ( c f . Todd, 1968).
The u s e of c l a y m i n e r a l assemblages i s however s e r i o u s l y i m p a i r e d
by d i a g e n e t i c m o d i f i c a t i o n and Walker (1973) h a s a r g u e d t h a t much o f t h e c l a v i n t h e F o u n t a i n Formation, i n c l u d i n g t h e i l l i t e and mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e ,
i s of d i a g e n e t i c o r i g i n . A l s o Van Houten (1972) h a s shown t h a t c l a y m i n e r a l assemblages l i k e t h o s e d e s c r i b e d by Raup (1966) may a l s o b e found i n Recent a l l u v i u m d e r i v e d from c r y s t a l l i n e s o u r c e r o c k s and d e p o s i t e d i n a t r o p i c a l savanna c l i m a t e w i t h 30-40 i n c h e s of r a i d y e a r .
Raup a l s o n o t e d t h a t t h e c l a y m i n e r a l o g y of t h e
F o u n t a i n Formation was s i m i l a r t o t h a t o f t h e Minturn Formation, a F o u n t a i n e q u i v a l e n t on t h e w e s t f l a n k of t h e F r o n t Range which c o n t a i n s e v a p o r i t e s and s u g g e s t e d t h a t t h i s was f u r t h e r e v i d e n c e o f a n a r i d c l i m a t e d u r i n g t h e d e p o s i t i o n o f t h e F o u n t a i n Formation. T h i s paradox i s e a s i l y r e s o l v e d when t h e d e t a i l e d palaeogeography i s c o n s i d e r e d . C o n t i n e n t a l r e c o n s t r u c t i o n s f o r t h e L a t e C a r b o n i f e r o u s - E a r l y Permian ( D o t t and B a t t e n , 1971; Van d e r Voo and F r e n c h , 1974) show t h a t t h e A n c e s t r a l Rockies were within 1 0'
of l a t i t u d e of t h e contemporary e q u a t o r .
I n t h i s s i t u a t i o n , with the
A n c e s t r a l Rockies s i t u a t e d j u s t s o u t h o f t h e e q u a t o r , t h e p r e v a i l i n g e q u a t o r i a l e a s t e r l y winds on a s c e n d i n g t h e A n c e s t r a l Rockies would c a u s e l a r g e amounts of prec i p i t a t i o n on t h e e a s t e r n f l a n k , whereas p r e c i p i t a t i o n on t h e w e s t e r n f l a n k would b e low because of t h e r a i n shadow e f f e c t , t h e r e b y p r o d u c i n g c o n d i t i o n s c o n s i s t e n t w i t h e v a p o r i t e f o r m a t i o n i n t h e Minturn Formation.
I n d e p e n d e n t e v i d e n c e of t h e o r o g r a p h i c /
r a i n shadow i n t e r p r e t a t i o n i s d i s c u s s e d by Vaughn (1964, p.581-582).
I n north-
c e n t r a l Texas t h e f l o r a o f t h e Wolfcampian Lower W i c h i t a Group p r o v i d e s e v i d e n c e o f a humid c l i m a t e whereas Wolfcampian d e p o s i t s i n t h e Four Corners a r e a ( H a l g a i t o S h a l e ) r e f l e c t s d e p o s i t i o n under more a r i d c o n d i t i o n s (Baars', 1962). There a r e many e x c e l l e n t Recent examples of t h e o r o g r a p h i c / r a i n shadow e f f e c t i n t r o p i c a l l a t i t u d e s (Haunuitz and A u s t i n , 1944; Kendrew, 1 9 5 3 ) . Although t h e m i n e r a l o g i c a l d a t a i n t h e s t u d i e s of Todd (1968) and Mack and S u t t n e r (1977) e n a b l e p a l a e o c l i m a t i c i n t e r p r e t a t i o n s which a r e s u p p o r t e d by f a u n a l and f l o r a l e v i d e n c e l i m i t a t i o n s a r e imposed b e c a u s e of t h e d i a g e n e t i c d e s t r u c t i o n o f p o l y c r y s t a l l i n e q u a r t z and r o c k f r a g m e n t s (Walker, 1974; Walker e t a l . , 1978).
The s e l e c t i v e
d e s t r u c t i o n of l a b i l e m i n e r a l s d u r i n g d i a g e n e s i s and t h e r e p l a c e m e n t of i n t e r i o r g r a i n c o n t a c t s by a u t h i g e n i c c l a y may r e s u l t i n t h e d i s a g g r e g a t i o n o f rock fragments and p o l y c r y s t a l l i n e q u a r t z g r a i n s i n t o t h e i r d a u g h t e r m o n o c r y s t a l l i n e q u a r t z u n i t s .
60
Walker (1978) has p r e s e n t e d p e t r o g r a p h i c e v i d e n c e which i n d i c a t e s t h a t s u c h d i a g e n e t i c m o d i f i c a t i o n h a s been i m p o r t a n t i n t h e F o u n t a i n Formation b u t h e h a s n o t p r e s e n t e d any q u a n t i t a t i v e i n f o r m a t i o n t o s u p p o r t h i s c o n c l u s i o n t h a t t h e t e c h n i q u e d e s c r i b e d by Mack and S u t t n e r (1977) c a n n o t b e a p p l i e d t o t h e F o u n t a i n Formation. Such q u a n t i t a t i v e i n f o r m a t i o n on t h e d e g r e e of d e s t r u c t i o n d u r i n g d i a g e n e s i s may b e d i f f i c u l t o r even i m p o s s i b l e t o c o l l a t e b u t d e t a i l e d s t u d i e s a r e c l e a r l y needed i n t h i s f i e l d . There a r e s e v e r a l p o s s i b i l i t i e s . I n t h e f i r s t p l a c e some i n t e r n a l measure i s p o s s i b l e by comparing t h e p r o p o r t i o n s of framework g r a i n s . For example, i n t h e F o u n t a i n Formation t h e r e i s 1 b 2 h times more p o l y c r y s t a l l i n e q u a r t z t h a n i n Holocene Sands from t h e same s o u r c e a r e a
-
a f e a t u r e which s u g g e s t s t h a t d i a g e n e t i c
d i s a g g r e g a t i o n o f p o l y c r y s t a l l i n e g r a i n s c o u l d h a r d l y have been q u a n t i t a t i v e l y important.
Another method might b e t o compare t h e framework m i n e r a l o g y o f zones
which were r a p i d l y cemented and e s c a p e d e x t e n s i v e i n t r a s t r a t a l s o l u t i o n ( s e e Walker
e t a l . , 1978) w i t h uncemented zones which c o u l d have undergone more e x t e n s i v e i n t r a s t r a t a l solution.
The d i f f e r e n c e s would g i v e some i n d i c a t i o n o f t h e e x t e n t
t o which rock fragments and p o l y c r y s t a l l i n e q u a r t z g r a i n s had become d i s a g g r e g a t e d during diagenesis. THE CLASSIFICATION OF ANCIENT CONTINENTAL RED BEDS I n t r o d u c t i o n and p r e v i o u s c l a s s i f i c a t i o n s The p r e v i o u s d i s c u s s i o n s i n t h i s c h a p t e r i n d i c a t e t h a t c o n t i n e n t a l r e d beds o c c u r i n a wide r a n g e o f d i s t i n c t i v e t e c t o n i c s e t t i n g s .
These i n c l u d e f a i l e d c o n t i n e n t a l
r i f t s ( a u l a c o g e n s ) , s t r i k e - s l i p b a s i n s on t r a n s f o r m f a u l t s and a v a r i e t y of l a t e orogenic sedimentary basins.
W i t h i n t h e s e s e t t i n g s a wide r a n g e of c o n t i n e n t a l
sediments a r e deposited i n d e l t a i c , a l l u v i a l and a e o l i a n environments.
Red beds a r e
r e p r e s e n t e d i n a l l of t h e s e d e p o s i t i o n a l environments and t h e a v a i l a b l e e v i d e n c e s u g g e s t s t h a t t h e y may form i r r e s p e c t i v e o f t h e p r e v a i l i n g c l i m a t i c c o n d i t i o n s . D e s p i t e t h e s e c l e a r l y d e f i n e d d i f f e r e n c e s i n c o n t i n e n t a l r e d beds p r e v i o u s c l a s s i f i c a t i o n s have been based a l m o s t e x c l u s i v e l y on c o l o u r v a r i a t i o n s o r t h e g e n e t i c o r i g i n of pigmentary h a e m a t i t e .
T h i s i s u n s a t i s f a c t o r y b e c a u s e i t may
c o n f u s e r e d beds which a r e o f d i v e r s e t e c t o n i c o r s e d i m e n t a r y a s s o c i a t i o n s i m p l y because t h e y have s i m i l a r c o l o u r c h a r a c t e r i s t i c s .
A l s o , t h e u s e of t h e o r i g i n of
pigment a s a c l a s s i f i c a t i o n c r i t e r i o n i s u n s a t i s f a c t o r y b e c a u s e i t c a n h a r d l y l e a d t o mutually exclusive categories.
I t i s now g e n e r a l l y r e c o g n i z e d t h a t t h e v a s t
m a j o r i t y of pigmentary h a e m a t i t e i s o f d i a g e n e t i c o r i g i n ( t h e e x c e p t i o n s i n c l u d e some a e o l i a n s a n d s which c o u l d b e d e r i v e d from l a t e r i t i z e d a l l u v i a l s o u r c e r o c k s ) . T h i s view d o e s , of c o u r s e , c o n t r a s t markedly w i t h t h o s e of e a r l i e r workers. Krynine (1949) proposed a comprehensive c l a s s i f i c a t i o n of r e d beds which u t i l i z e d h i s own i d e a s on t h e o r i g i n o f i r o n o x i d e pigment i n r e d b e d s .
Krynine e n v i s a g e d
t h r e e p o s s i b l e means by which pigmentary o x i d e s c o u l d c o n t r i b u t e r e d c o l o u r a t i o n :
61 d e t r i t a l p a r t i c l e s , p r e c i p i t a t i o n from s o l u t i o n and t h e f o r m a t i o n of a u t h i g e n i c o x i d e s by i n s i t u o x i d a t i o n .
From t h e s e he developed a f o u r - f o l d c l a s s i f i c a t i o n
( F i g . 1.41) which he a d m i t t e d was "pragmatic" and " n o t e n t i r e l y l o g i c a l " (Krynine
RED SOILS
c. 0x1DATlON
I
Primary DETRITAL Continental
I-
.\ RED BEDS
\ Marine or bog / CHEMICAL PRECIPITATES
Fig.l.40. K r y n i n e ' s (1949) c l a s s i f i c a t i o n of r e d beds b a s e d on g e n e s i s and provenance o f f e r r i c o x i d e pigment. 1949, p . 6 0 ) .
These f o u r d i v i s i o n s may b e summarized a s f o l l o w s . I n t h i s c a t e g o r y r e d pigment was b e l i e v e d t o b e produced by
1) P r i m a r y r e d b e d s .
w e a t h e r i n g i n t h e s o u r c e a r e a and i n c o r p o r a t e d d i r e c t l y i n t o t h e d e p o s i t e d sediment e i t h e r w i t h i n t h e r e g o l i t h (Primary R e s i d u a l Red Beds) o r by l o c a l reworking, ( P r i m a r y Reworked Red Beds) o r a f t e r e r o s i o n and t r a n s p o r t (Primary D e t r i t a l Red Beds) 2) Post-depositional
a n d p o s t - d i a g e n e t i c r e d beds.
Produced by t h e o x i d a t i o n of
non-red d e t r i t u s e i t h e r immediately a f t e r d e p o s i t i o n ( P o s t - D e p o s t t i o n a l Red Beds) o r a f t e r b u r i a l , emergence and deep s u b - s u r f a c e o x i d a t i o n ( P o s t - D i a g e n e t i c Red Beds)
3) Secondary r e d beds.
Produced by t h e e r o s i o n a n d r e d e p o s i t i o n of p r e - e x i s t i n g r e d
beds. 4 ) Chemical r e d beds.
Produced by chemical p r e c i p i t a t i o n w i t h i n t h e d e p o s i t i o n a l
basin under 'marine' o r !freshwater' conditions, o r ' a u t h i g e n i c a l l y and i n t r a s t r a t a l l y
62
by i n f i l t r a t i o n w i t h i n t h e s e d i m e n t ' . U n f o r t u n a t e l y , a s i s t h e c a s e w i t h many c l a s s i f i c a t i o n schemes, K r y n i n e ' s c l a s s i f i c a t i o n of r e d beds h a s s u f f e r e d much a b u s e .
Many workers o n l y d i s t i n g u i s h
between ' p r i m a r y ' and ' s e c o n d a r y ' r e d beds and u s e t h e terms i n a d i f f e r e n t s e n s e from t h a t o r i g i n a l l y i n t e n d e d by Krynine.
Primary r e d beds i s t h e term o f t e n a p p l i e d
t o f a c i e s - c o n t r o l l e d r e d beds whether t h e y b e of d e t r i t a l o r d i a g e n e t i c o r i g i n ( i n t h e s t r i c t s e n s e t h e former c o u l d b e denoted p r i m a r y i f t h e y were d e r i v e d from weathered s o u r c e r o c k s w h i l s t t h e l a t t e r a r e p o s t - d e p o s i t i o n a l r e d beds i n K r y n i n e ' s S i m i l a r l y t h e term s e c o n d a r y r e d beds i s o f t e n used t o d e n o t e r e d
classification).
beds formed by i n s i t u w e a t h e r i n g of s e d i m e n t s a f t e r b u r i a l and emergence.
Such
r e d beds were termed p o s t - d i a g e n e t i c r e d beds by Krynine a n d t h e term s h o u l d b e r e s t r i c t e d t o i t s o r i g i n a l meaning t o d e n o t e t h o s e r e d beds formed by t h e e r o s i o n and r e d e p o s i t i o n of o t h e r r e d beds (e.g. Duchesne R i v e r Formation, Anderson and P i c a r d , 1974). The problem w i t h K r y n i n e ' s g e n e t i c c l a s s i f i c a t i o n i s t h a t i n t h e V a s t m a j o r i t y of To overcome t h i s C l a r k (1962) proposed a f i e l d
cases i t i s d i f f i c u l t t o apply.
c l a s s i f i c a t i o n i n which t h e c o l o u r was r e l a t e d t o s e d i m e n t a r y s t r u c t u r e s , t e x t u r e s and f o s s i l c o n t e n t .
He d i s t i n g u i s h e d t h e f o l l o w i n g t y p e s o f r e d b e d s :
1) Shale-pebble r e d .
B r i c k - r e d t o deep r e d i n c o l o u r t y p i c a l l y w i t h p e b b l e s of r e d
material i n a less-red matrix.
Red c o l o u r becomes d e e p e r towards t h e s o u r c e a r e a
and away from t h e s o u r c e a r e a t h e c o l o u r i s c o n c e n t r a t e d i n s h a l e beds. 2 ) Red c l a y conglomerates.
B r i c k r e d t o deep r e d i n c o l o u r and a s s o c i a t e d w i t h a
c r y s t a l l i n e igneous s o u r c e a r e a .
3) V a r i e g a t e d r e d . and s t r e a k s .
Shales generally purple t o red i n colour with greenish lenses
Sandstones w h i t e , l i g h t - g r e y o r g r e e n i s h when f r e s h , f r e q u e n t l y weath-
e r i n g t o d a r k brown.
C o n c r e t i o n a r y h o r i z o n s and v e r t e b r a t e f o s s i l s a r e o f t e n
abundant.
4 ) Cinnamon r e d .
S h a l e s deep r e d w i t h g r e e n i s h m o t t l i n g a n d abundant r i p p l e marks,
mud c r a c k s and v e r t e b r a t e t r a i l s .
S a n d s t o n e s dark-red t o l i g h t g r e y , u s u a l l y f i n e -
medium g r a i n e d and l a t e r a l l y p e r s i s t e n t .
5 ) Brick red. gypsum.
S i l t s t o n e s b r i c k r e d t o o r a n g e t o ochreous y e l l o w , sometimes w i t h
Sandstones l i g h t r e d t o l i g h t brown and o f t e n l e n s o i d .
6) P a s t e l red.
Laminated l a v e n d e r , y e l l o w , p u r e w h i t e ; l i t t l e r e d c o l o u r .
Mainly
f i n e grained, well-sorted quartzose sandstone. 7) Spattered red.
Red c o l o u r i n c o n c e n t r a t i o n s and i n complex r a m i f y i n g s t a i n s i n
a v a r i e t y of g r e e n i s h c o l o u r e d l i t h o l o g i e s . C l a r k (1962) i n t e r p r e t e d t h e s h a l e - p e b b l e , r e d c l a y conglomerate and v a r i e g a t e d r e d beds a s t y p e s of a l l u v i a l r e d beds formed under d i f f e r e n t climatic c o n d i t i o n s . Cinnamon r e d s and b r i c k r e d s were i n t e r p r e t e d a s e s t u a r i n e , d e l t a i c o r s h a l l o w marine r e d beds formed under d e s e r t c o n d i t i o n s and p a s t e l r e d s were c o n s i d e r e d t o b e o f lacustrine origin.
S p a t t e r e d r e d beds were b e l i e v e d by C l a r k t o b e t h e t y p i c a l
r e s u l t o f p o s t - d i a g e n e t i c w e a t h e r i n g and t h u s o f no e n v i r o n m e n t a l s i g n i f i c a n c e . Although t h i s c l a s s i f i c a t i o n scheme i s p r e f e r a b l e t o t h e p u r e l y g e n e t i c scheme o f Krynine i t h a s t h e major f a i l i n g of a t t a c h i n g t o o much s i g n i f i c a n c e t o t h e c o l o u r o f r e d beds.
We now know t h a t pigmentary o x i d e s may form i n r e d beds i n
a v a r i e t y o f ways and so r e d bed c l a s s i f i c a t i o n s b a s e d on c o l o u r o r t h e o r i g i n of colour a r e l i k e l y t o be misleading. Reddening and d e p o s i t i o n a l environment I n Recent s e d i m e n t s i r o n o x i d e i s most c o m o n l y p r e s e n t a s a tan-brown c o l o u r e d compound p r o b a b l y c o n s i s t i n g of amorphous Fe(0H)
and g o e t h i t e . F i n e g r a i n e d 3 h a e m a t i t e i s a p p a r e n t l y n o t p r e s e n t i n s u f f i c i e n t abundance t o i m p a r t a r e d c o l o u r t o t h e sediment (Walker, 1967b). The importance o f d e t r i t a l i r o n h y d r o x i d e s i n p r o d u c i n g r e d beds h a s been demonstrated i n a series o f p a p e r s by Van Houten (1961, 1964, 1 9 6 8 ) , p a r t i c u l a r l y i n t r o p i c a l savanna a l l u v i u m , which c o n t a i n s s u f f i c i e n t t a n o r brown c o l o u r e d i r o n hydroxide i n t h e s i l t and c l a y f r a c t i o n t o t u r n t h e s e d i m e n t r e d a f t e r i t s c o n v e r s i o n i n t o haematite. (1969a).
The f e a s i b i l i t y of s u c h a n ' a g e i n g ' p r o c e s s i s d e s c r i b e d by Berner
The e n r i c h m e n t o f i r o n h y d r o x i d e s i n t h e c l a y and s i l t f r a c t i o n of
f l u v i a t i l e r e d beds goes some way t o e x p l a i n i n g t h e f a c t t h a t r e d s i l t s t o h e s and mudstones g e n e r a l l y c o n t a i n much more i r o n t h a n a s s o c i a t e d s a n d s t o n e s .
The p o s t -
d e p o s i t i o n a l a g e i n g of i r o n h y d r o x i d e s i s l i k e l y t o b e i m p o r t a n t i n a n c i e n t f i n e g r a i n e d a l l u v i u m p a r t i c u l a r l y i n c o a s t a l a l l u v i a l p l a i n s w i t h well-developed f l o o d plain deposits.
I t i s a l s o o f c o n s i d e r a b l e i m p o r t a n c e i n t h o s e r e d beds which a r e
predominantly mudstones and o c c u r i n t e r d i g i t a t e d w i t h non-red c o a l and c o a l - b e a r i n g s t r a t a i n d e l t a i c a s s o c i a t e d sequences,
Ageing of d e t r i t a l hydroxides i s u n l i k e l y
t o b e a n i m p o r t a n t p r o c e s s i n a e o l i a n s a n d s t o n e s b e c a u s e of t h e winnowing of t h e finer fractions. The o t h e r major s o u r c e o f pigment i n r e d beds i s the i n t r a s t r a t a l breakdown of d e t r i t a l i r o n bearing minerals.
T h i s produces a number of a u t h i g e n i c m i n e r a l s ,
i n c l u d i n g pigmentary h a e m a t i t e , a n d has been most a b l y demonstrated by Walker (1967a, 1976) and Walker e t a l . (1978) i n a series of f i r s t c y c l e a r k o s e s d e p o s i t e d under d e s e r t c o n d i t i o n s d u r i n g t h e Cenozoic of t h e s o u t h w e s t e r n USA and n o r t h w e s t e r n Mexico.
F r e s h l y d e p o s i t e d a l l u v i u m c o n t a i n s no d e t r i t a l c l a y a l t h o u g h t h i s may be
mechanically i n f i l t r a t e d during e a r l y diagenesis.
I n t h e s e sediments reddening
p r o g r e s s e s w i t h time as d e t r i t a l f e r r o m a g n e s i a n s i l i c a t e s a r e a l t e r e d by i n t e r s t i t i a l groundwater.
Most o f t h e pigmentary h a e m a t i t e i s t h u s a u t h i g e n i c and many
a n c i e n t f i r s t - c y c l e a r k o s i c r e d beds were p r o b a b l y produced i n a s i m i l a r manner (e.g.
S c h l u g e r a n d Roberson, 1975; Walker and L a r s o n , 1976; Hubert and Reed, 1978).
64
The r e l a t i v e importance of a u t h i g e n i c h a e m a t i t e depends upon a number of f a c t o r s i n c l u d i n g t h e o v e r a l l t e c t o n i c s e t t i n g , c l i m a t e , s o u r c e a r e a , c o m p o s i t i o n and d e p o s i t i o n a l environment.
I t i s l i k e l y t h a t t h e r e a r e i m p o r t a n t amounts of a u t h -
i g e n i c h a e m a t i t e i n most r e d beds b u t i t i s most s p e c t a c u l a r l y developed i n f i r s t c y c l e d e s e r t a l l u v i u m d e r i v e d from c r y s t a l l i n e s o u r c e r o c k s .
Such a l l u v i u m may
o r i g i n a l l y be composed of t o t a l l y f r e s h , u n o x i d i z e d d e t r i t u s because o f r a p i d e o o s i o n and d e p o s i t i o n .
During s u b s e q u e n t b u r i a l h a e m a t i t e would b e produced by
i n t r a s t r a t a l a l t e r a t i o n and t h e pigment c o u l d be c o m p l e t e l y of a u t h i g e n i c o r i g i n . The d i a g e n e t i c model of r e d d e n i n g a l s o a p p e a r s , i n g e n e r a l , t o b e a p p l i c a b l e t o aeolian sands.
Most p r e s e n t - d a y a e o l i a n sands a r e n o t r e d i n c o l o u r b u t t h e
m a j o r i t y of a n c i e n t ones a r e , a f e a t u r e s u g g e s t i n g t h a t d i a g e n e t i c p r o c e s s e s p l a y a n i m p o r t a n t p a r t i n reddening.
There a r e , however, i m p o r t a n t e x c e p t i o n s i n t h a t
some p r e s e n t - d a y a e o l i a n s a n d s a r e d i s t i n c t l y r e d . F o l k (1976) h a s been a b l e t o d e m o n s t r a t e t h a t t h e r e d a e o l i a n s a n d s t o n e s i n t h e
Simpson Desert o f A u s t r a l i a a r e l a r g e l y d e r i v e d from T e r t i a r y f l u v i a l s e d i m e n t s which were p r e v i o u s l y reddened d u r i n g a p e r i o d of r e g i o n a l l a t e r i t i z a t i o n (Schmidt and Embleton, 1976).
Krynine (1949) had p r e v i o u s l y r e c o g n i z e d t h a t many o f t h e
Recent " r e d s a n d s o f t h e d e s e r t " were reworked r e d f l u v i a l s a n d s e.g. S a h a r a , where t h e y a r e d e r i v e d from r e d O l i g o c e n e f l u v i a l s a n d s .
i n the Northern
There i s e v i d e n c e
t h a t some a n c i e n t a l l u v i a l r e d beds may a l s o have been d e r i v e d from p r e v i o u s l y formed r e d beds ( e . g . Anderson and P i c a r d , 1974) b u t t h e s e u s u a l l y show e v i d e n c e of a d d i t i o n a l a u t h i g e n i c pigment. The pigment i n ' a n y p a r t i c u l a r r e d bed sequence may t h u s b e of d i v e r s e o r i g i n . Colour v a r i a t i o n s , o r t h e o r i g i n o f pigment, a r e t h e r e f o r e c o n s i d e r e d t o b e u n s a t i s f a c t o r y methods of c l a s s i f y i n g c o n t i n e n t a l r e d beds. Palaeomagnetic c l s s s i f i c a t i o n o f c o n t i n e n t a l r e d beds C o n t i n e n t a l r e d beds have been used i n p a l a e o m a g n e t i c s t u d i e s f o r many y e a r s and t h e i r magnetic p r o p e r t i e s have been i n v e s t i g a t e d i n d e t a i l ( C o l l i n s o n , 1965a, 1967, 1968b, 1974).
They g e n e r a l l y p o s s e s s a r e l a t i v e l y s t r o n g ( l o m 4 t o
n a t u r a l remanent m a g n e t i z a t i o n (W) which i s c a r r i e d by h a e m a t i t e .
G cm3 g-')
There h a s been
c o n s i d e r a b l e d e b a t e r e g a r d i n g t h e o r i g i n o f h a e m a t i t e i n r e d beds a s well a s t h e o r i g i n ot t h e m a g n e t i z a t i o n and i t s t i m i n g r e l a t i v e t o t h e d e p o s i t i o n a l a g e o f t h e sediments. Krynine (1949) b e l i e v e d t h a t r e d beds c o u l d form by d i r e c t d e r i v a t i o n o f h a e m a t i t e from r e d t r o p i c a l s o i l s ( l a t o s o l s ) .
I n t h i s c a s e ( i f i t were t r u e ) t h e m a g n e t i z a t i o n
o f t h e r e d beds would b e a d e t r i t a l remanent m a g n e t i z a t i o n (DRM) produced by t h e a l i g n m e n t of magnetic p a r t i c l e s d u r i n g s e d i m e n t a t i o n a n d i t would a c c u r a t e l y r e c o r d t h e ambient geomagnetic f i e l d a t t h e time o f d e p o s i t i o n .
Van Houten (1964) b e l i e v e d
t h a t t h e h a e m a t i t e c o u l d form d i a g e n e t i c a l l y by t h e i n s i t u d e h y d r a t i o n of y e l l o w
65 o r brown i r o n hydroxides d e r i v e d from d e e p l y weathered s o i l s b u t n o t n e c e s s a r i l y latosols.
T h i s c o n v e r s i o n i s thought t o t a k e p l a c e r a p i d l y i n t h e g e o l o g i c a l
s u b - s u r f a c e and i f i t d i d o c c u r would produce a chemical remanent m a g n e t i z a t i o n (CRM) by t h e growth o f h a e m a t i t e through i t s c r i t i c a l g r a i n s i z e .
I t would
thus r e c o r d a s h o r t - t e r m i n t e g r a t i o n of t h e ambient geomagnetic f i e l d , a l t h o u g h i t would have s u f f i c i e n t p r e c i s i o n t o be g e n e r a l l y a c c e p t a b l e f o r r o u t i n e palaeo-
magnetic purposes.
More r e c e n t l y , Walker (1976) has a r g u e d t h a t r e d beds i n both
t h e a r i d and warm m o i s t c l i m a t i c a s s o c i a t i o n s form due t o t h e a u t h i g e n e s i s of h e a m a t i t e which h a s formed d i a g e n e t i c a l l y owing t o t h e i n s i t u a l t e r a t i o n o f d e t r i t a l s i l i c a t e minerals.
S i n c e t h i s p r o c e s s c o n t i n u e s w i t h b u r i a l , any m a g n e t i z a t i o n of
t h e r e d bed would b e a CRM.
Moreover, i t would be a long-term i n t e g r a t i o n of t h e
ambient geomagnetic f i e l d , p o s s i b l y c o n t a i n i n g multicomponent m a g n e t i z a t i o n s , and a s s u c h would have l i t t l e o r no palaeomagnetic v a l u e .
Walker has p r e s e n t e d convincing
evidence i n s u p p o r t o f h i s h y p o t h e s i s b o t h f o r t h e T e r t i a r y a r k o s i c sediments of Baja C s l i f o r n i a and a l s o t h e a l l u v i a l d e p o s i t s o f Holocene and P l e i s t o c e n e age i n P u e r t o Rico and t h e Orinoco Basin, The g e o l o g i c a l evidence i n f a v o u r of t h e d i a g e n e t i c o r i g i n o f h a e m a t i t e i n r e d beds i s convincing; a v a r i e t y o f d i a g e n e t i c p r o c e s s e s i n c l u d i n g pigment p r o d u c t i o n , t h e pseudomorphing o f s i l i c a t e s and t h e o x i d a t i o n o f m a g n e t i t e t a k e p l a c e a t v a r i o u s
times throughout t h e d i a g e n e t i c h i s t o r y o f c o n t i n e n t a l r e d beds.
The paleeomagnetic
e v i d e n c e i n d i c a t i n g t h a t h a e m a t i t e c a r r i e s t h e NRM of c o n t i n e n t a l r e d beds i s e q u a l l y compelling and i t must be concluded t h a t t h e m a g n e t i z a t i o n of r e d beds i s a c q u i r e d during diagenesis.
However, t h e magnetic c h a r a c t e r i s t i c s o f r e d beds a r e extremely
complex and g e n e r a l i z a t i o n s r e g a r d i n g t h e t i m i n g o f m a g n e t i z a t i o n i n a i l r e a Deas s h o u l d n o t be made a s t h e y can o n l y be m i s l e a d i n g .
Three b r o a d t y p e s o f r e d bed
m a g n e t i z a t i o n have been r e c o g n i z e d by Turner (1979) which r e f l e c t p r o g r e s s i v e degrees of d i a g e n e t i c a l t e r a t i o n .
These i n c l u d e :
Type A m a g n e t i z a t i o n s which c o n t a i n
e s s e n t i a l l y a s i n g l e component of m a g n e t i z a t i o n and may show d i s c r e t e zones of normal and r e v e r s e d p o l a r i t y .
E a r l y Mesozoic sandy a l l u v i u m a f f o r d s p a r t i c u l a r l y good
examples o f t h i s t y p e o f m a g n e t i z a t i o n ( H e l s l e y and S t e i n e r , 1974; Turner and I x e r , 1977).
Type B m a g n e t i z a t i o n s a r e t y p i c a l l y composite o r multicomponent and were
a c q u i r e d o v e r a l o n g e r t i m e i n t e r v a l , spanning a t l e a s t one geomagnetic f i e l d reversal.
They t h e r e f o r e r e p r e s e n t a more advanced s t a g e of d i a g e n e s i s t h a n t h a t
r e p r e s e n t e d by Type A m a g n e t i z a t i o n s .
Examples a r e most commonly found i n t h e
Upper P a l a e o z o i c ( e . g . Roy and P a r k , 1974; Turner and A r c h e r , 1975).
Type C
m a g n e t i z a t i o n s a r e t h o s e which can be demonstrated t o be complete replacements o f t h e o r i g i n a l m a g n e t i z a t i o n and t h e r e f o r e b e a r no r e l a t i o n s h i p t o t h e d e p o s i t i o n a l a g e of t h e r o c k s .
They a r e most commonly found i n v e r y a n c i e n t r e d beds which have
suffered extensive diagenetic alterations. Precambrian ( e . g . Lomax and B r i d e n , 1977).
A number of examples a r e known from t h e
These t h r e e t y p e s o f m a g n e t i z a t i o n r e p r e s e n t s t a g e s i n t h e c o n t i n u o u s d i a g e n e t i c m o d i f i c a t i o n of c o n t i n e n t a l r e d b e d s .
The p a l a e o m a g n e t i c c h a r a c t e r i s t i c s o f r e d
beds p r o v i d e s a s e n s i t i v e means of d e t e c t i n g d i a g e n e t i c changes and t h u s e n a b l e s t h e d i s t i n c t i o n between r e d beds which have s u f f e r e d d i f f e r e n t d e g r e e s o f d i a g e n e s i s . Many f a c t o r s i n c l u d i n g a g e , m i n e r a l o g i c a l c o m p o s i t i o n and t e x t u r a l p r o p e r t i e s a f f e c t t h e r a t e and e x t e n t of d i a g e n e s i s .
These p r o p e r t i e s a r e , however, d i f f i c u l t t o
monitor and t h e p a l a e o m a g n e t i c t e c h n i q u e a l l o w s a r e l a t i v e l y s i m p l e means of c l a s s i f y i n g them i n t o meaningful g r o u p s , A p r a c t i c a l c l a s s i f i c a t i o n of c o n t i n e n t a l r e d beds
The more r e a l i s t i c approach t o t h e c l a s s i f i c a t i o n of r e d beds must t a k e i n t o a c c o u n t a l l s i g n i f i c a n t c h a r a c t e r i s t i c s i n c l u d i n g d e p o s i t i o n a l , t e x t u r a l and m i n e r a l o g i c a l p r o p e r t i e s , and d i a g e n e t i c f e a t u r e s .
The i n i t i a l d e p o s i t i o n a l
environment i s i m p o r t a n t i n c o n t r o l l i n g t h e s u b s e q u e n t d i a g e n e t i c h i s t o r y .
The
main d e p o s i t i o n a l environment i n which c o n t i n e n t a l r e d beds a c c u m u l a t e , t o g e t h e r w i t h t h e i r main m i n e r a l o g i c a l , t e x t u r a l and d i a g e n e t i c p r o p e r t i e s a r e s u f f i c i e n t l y d i s t i n c t t o e n a b l e them t o b e c l a s s i f i e d i n t h e manner shown i n 7 a b l e 1.2. major a s s o c i a t i o n s of c o n t i n e n t a l r e d beds a r e r e c o g n i z e d :
Three
a l l u v i a l , d e s e r t and
d e l t a p l a i n r e d beds which a r e r e a d i l y d i s t i n g u i s h e d on t h e b a s i s o f t h e i r characteristic facies. A l l u v i a l r e d beds comprise a wide range of d e p o s i t i o n a l f a c i e s r a n g i n g from marginal a l l u v i a l fans and coarse grained braided r i v e r s t o a l l u v i a l p l a i n s with l o w - s i n u o s i t y o r meandering r i v e r s .
A l l u v i a l f a n s and c o a r s e g r a i n e d b r a i d e d r i v e r s
t y p i c a l l y develop i n t e c t o n i c a l l y a c t i v e s e d i m e n t a r y b a s i n s and a r e a p a r t i c u l a r f e a t u r e of s t r i k e - s l i p b a s i n s developed on t r a n s f o r m f a u l t s .
They a l s o o c c u r a s a
m a r g i n a l f a c i e s w i t h i n f a i l e d c o n t i n e n t a l r i f t s and i n a v a r i e t y of l a t e - o r o g e n i c basins.
C l i m a t i c a l l y , a l l u v i a l r e d beds have no s p e c i a l s i g n i f i c a n c e a l t h o u g h
palaeomagnetic e v i d e n c e does s u g g e s t t h a t t h e y may have been d e p o s i t e d w i t h i n 20'-40'
of t h e p a l a e o - e q u a t o r , a f e a t u r e which s u g g e s t s t h a t t h e y do n o t
r e a d i l y form a t h i g h p a l a e o l a t i t u d e s i n c o l d c l i m a t e s .
There a r e no p r e s e n t -
day a l l u v i a l r e d beds and t h e a n c i e n t o c c u r r e n c e s a r e c o n s i d e r e d t o b e a l m o s t e x c l u s i v e l y of d i a g e n e t i c o r i g i n .
I n many examples t h e i n t r a s t r a t a l a l t e r a t i o n o f
d e t r i t a l i r o n - s i l i c a t e s h a s been c o n v i n c i n g l y demonstrated and t h e r e can be l i t t l e doubt of t h e a u t h i g e n i c n a t u r e of t h e pigmentary i r o n o x i d e s .
I n t r a s t r a t a l solution
i s , however, most i m p o r t a n t i n c o a r s e g r a i n e d a l l u v i u m i n which t h e r e i s l i t t l e
i n t e r s t i t i a l c l a y and s i l t y m a t r i x .
Such a l l u v i u m i s e f f e c t i v e l y a p o r o u s , open
system through which o x i d i z i n g groundwater can p a s s a s i t a l t e r s t h e framework mineralogy.
I n f i n e r g r a i n e d a l l u v i u m such a s t h e f l o o d p l a i n s o f meandering r i v e r s
t h e emphasis is s l i g h t l y d i f f e r e n t .
Here t h e s e d i m e n t s c o n t a i n abundant c l a y and
s i l t which c o n t a i n s d e t r i t a l f e r r i c h y d r o x i d e s .
Dehydration of such m a t e r i a l c o u l d
TABLE 1.2. The c l a s s i f i c a t i o n o f c o n t i n e n t a l r e d beds i n t o t h r e e major a s s o c i a t i o n s based on d e p o s i t i o n a l environment, colour c h a r a c t e r i s t i c s and d i a g e n e t i c f e a t u r e s . Depositional C h a r a c t e r i s t i c s
Redness C h a r a c t e r i s t i c s
Diagenetic C h a r a c t e r i s t i c s
A l l u v i a l Fan-Braided R i v e r s
Pebbly a l l w i u m Mostly m u l t i s t o r e y channel deposits interbedded debrisflow and stream Flood deposits
Uniformly red. F i n e r g r a i n e d horizons more i n t e n s e l y red
I n t r a s t r a t a l s o l u t i o n of s i l i c a t e grains. Increase i n mineralogical maturity. Decrease i n t e x t u r a l m a t u r i t y Authigenic q u a r t z , f e l d s p a r , c a l c i t e , clays
A l l u v i a l P l a i n s w i t h high o r low-sinuosity streams
Sandy and muddy alluvium i n FU c y c l e s . Sand u n i t s a r e channel and bank d e p o s i t s . Mudstones a r e f l o o d p l a i n deposits. Pedogenic modifi c a t i o n of f l o o d p l a i n d e p o s i t s common
Variegated. Sandy u n i t s r e d o r drab. Mudstone u n i t s r e d o r variegated
A s above. Also i n v e r s i o n of f e r r i c hydroxides - haematite i n muddy f l o o d p l a i n d e p o s i t s . C a l c r e t e a common f e a t u r e of floodplain deposits
DESERT RED BEDS
Cross s t r a t i f i e d w e l l - s o r t e d sands w i t h s t e e p f o r e s e t . i n c l i n a t i o n s . Interbedded w i t h i n l a n d sabkha and d e s e r t l a k e (gypsum and a n h y d r i t e ) and poorly-sorted wadi deposits .
Uniformly r e d
I n t r a s t r a t a l s o l u t i o n of f e l d s p a r s and ferromagnesian m i n e r a l s . Authigenic q u a r t z and f e l d s p a r . Gypsuma n h y d r i t e cements
CU and FU c y c l e s . S i l t s t o n e s frequently associated with s e a t e a r t h s and o t h e r pedogenic m o d i f i c a t i o n s . Mainly floodp l a i n , well-drained swamp and lacustrine delta deposits
Variegated. Red beds u s u a l l y confined t o A mottled mudstones. appearance i s common
Early diagenetic pyrite. Formation of k a o l i n i t e by humid a c i d leaching. S i d e r i t e . Pedogenic nodules
ALLUVIAL RED BEDS
Alluvial, aeolian sabkhas, d e s e r t l a k e s
DELTA PLAIN RED BEDS D e l t a p l a i n s of river-dominated deltas
produce s i g n i f i c a n t q u a n t i t i e s o f h a e m a t i t e and t h u s c o n t r i b u t e d i r e c t l y t o t h e r e d d e n i n g of t h e sediment. Desert r e d beds i n c l u d e a wide range of f a c i e s d e p o s i t e d i n a h o t , a r i d c l i m a t e .
They i n c l u d e t h e d e p o s i t s o f l a k e s , i n l a n d s a b k h a s , a e o l i a n dunes, and a v a r i e t y of d e s e r t a l l u v i a l sediments. on s t a b l e c r a t o n i c a r e a s . occur.
Desert b a s i n s may b e t e c t o n i c a l l y a c t i v e o r developed
I t i s t h e l a t t e r on which t h e l a r g e s a n d s e a s o f t h e world
Desert a l l u v i a l s e d i m e n t s a r e e s s e n t i a l l y t h e same a s t h e i r c o a r s e g r a i n e d
counterparts i n the general a l l u v i a l category.
They d i f f e r i n b e i n g l a r g e l y ephemeral,
c o n s i s t i n g o f p o o r l y s o r t e d d e t r i t u s which may b e i n t e r b e d d e d w i t h a e o l i a n s a n d s . The r e d d e n i n g o f c o a r s e g r a i n e d d e s e r t a l l u v i u m t a k e s p l a c e by t h e i n t r a s t r a t a l a l t e r a t i o n of i r o n s i l i c a t e s . A e o l i a n s a n d s a r e w i d e l y r e g a r d e d a s one of t h e most d i s t i n c t i v e f a c i e s of c o n t i n e n t a l r e d beds a l t h o u g h t h e y a r e s t i l l p o o r l y u n d e r s t o o d .
They may be more
d i f f i c u l t t o recognize i n t h e s t r a t i g r a p h i c record than i s generally appreciated and i t i s n o t p o s s i b l e t o make g e n e r a l i z a t i o n s a b o u t t h e o r i g i n of t h e i r r e d colouration.
P r e s e n t - d a y a e o l i a n s a n d s e x i s t i n v a r i o u s c o l o u r s t a t e s from r e d
t o d r a b and t h e r e i s e v i d e n c e t h a t b o t h d e t r i t a l a n d d i a g e n e t i c r e d d e n i n g may be important processes. The l a s t r e d bed f a c i e s a s s o c i a t i o n which i s r e c o g n i z e d a r e d e l t a p l a i n r e d beds. These a r e d e p o s i t e d i n d e l t a i c complexes a t c o n t i n e n t a l margins and i n a v a r i e t y o f tectonic settings.
A s t h e d e p o s i t s of f l u v i a l d i s t r i b u t a r y c h a n n e l s and f l o o d -
p l a i n s t h e y b e a r many c h a r a c t e r i s t i c s i n common w i t h some a l l u v i a l r e d beds.
They
a r e d i s t i n g u i s h e d by t h e i r a s s o c i a t i o n w i t h d e l t a i c s e d i m e n t s and a number of distinctive features.
The l a t t e r i n c l u d e a n abundance o f c o l o u r m o t t l e d mudstones,
r o o t l e t h o r i z o n s , s e a t e a r t h s and o c c a s i o n a l c o a l h o r i z o n s .
These f e a t u r e s
i n d i c a t e a m o i s t t r o p i c a l climate a n d many of t h e d e s c r i b e d a n c i e n t d e l t a p l a i n r e d beds were d e p o s i t e d under t h e s e c o n d i t i o n s .
I t i s , however, l i k e l y t h a t d e l t a
p l a i n r e d beds a l s o formed under o t h e r c l i m a t i c c o n d i t i o n s and have been d e s c r i b e d from a r i d c l i m a t e s and t r o p i c a l c l i m a t e s whth s e a s o n a l a r i d i t y .
They may b e
i n d i c a t i v e o f r e l a t i v e l y low p a l a e o l a t i t u d e s . The r e d d e n i n g p r o c e s s e s i n d e l t a p l a i n r e d beds c o n t r a s t w i t h t h o s e o f t h e a l l u v i a l and d e s e r t a s s o c i a t i o n s .
Pigmentary o x i d e s may form by i n t r a s t r a t a l s o l u t i o n
o f d e t r i t a l i r o n s i l i c a t e s b u t t h e predominance o f mudstone u n i t s means t h a t a number o f o t h e r p r o c e s s e s may b e more i m p o r t a n t .
These i n c l u d e t h e d e h y d r a t i o n o f g o e t h i t e ,
t h e r e l e a s e of o x i d e s d u r i n g c l a y m i n e r a l t r a n s f o r m a t i o n s and t h e o x i d a t i o n of f i n e l y disseminated p y r i t e .
Pedogenic p r o c e s s e s p l a y a n i m p o r t a n t r o l e i n t h e p o s t -
depositional reddening of d e l t a p l a i n sediments.
69
CHAPTER 2 DESERT RED BEDS INTRODUCTION
Desert r e d beds comprise a wide v a r i e t y of s e d i m e n t a r y f a c i e s d e p o s i t e d under a r i d and s e m i - a r i d c o n d i t i o n s i n a range of d e p o s i t i o n a l environments.
They i n c l u d e
a l l u v i a l f a n s , d e s e r t f l u v i a l (wadi) d e p o s i t s , a e o l i a n s a n d s and t h e d e p o s i t s of d e s e r t l a k e s and i n l a n d sabkhas w i t h t h e i r a s s o c i a t e d e v a p o r i t e s .
Red c o l o u r a t i o n
i s a u b i q u i t o u s f e a t u r e o f a n c i e n t d e s e r t s e d i m e n t s and many e a r l y workers b e l i e v e d t h a t a l l r e d beds were formed under d e s e r t c o n d i t i o n s .
T h i s b e l i e f was based l a r g e l y
on t h e m i s c o n c e p t i o n t h a t Recent d e s e r t s e d i m e n t s a r e r e d i n c o l o u r .
I n fact the
majority of d e s e r t sediments a r e not red a t t h e present t i m e (although there a r e a few n o t a b l e e x c e p t i o n s ) and r e c e n t work i n d i c a t e s t h a t many of t h e w o r l d ' s d e s e r t s a r e s l o w l y reddening w i t h time a s a r e s u l t of d i a g e n e t i c a l t e r a t i o n . Those a e o l i a n s a n d s which a r e a c t u a l l y r e d i n c o l o u r , a good example b e i n g t h e Simpson Desert of A u s t r a l i a , c a n n o t b e a c c o u n t e d f o r by d i a g e n e s i s a l o n e and a p p e a r t o have been d e r i v e d from f l u v i a l s e d i m e n t s which were p r e v i o u s l y reddened d u r i n g a Pleistocene pluvial climate.
Recent d e s e r t s e d i m e n t s t h e r e f o r e a p p e a r t o show two
d i s t i n c t r e d d e n i n g p r o c e s s e s and t h i s must b e a n i m p o r t a n t f a c t o r when c o n s i d e r i n g t h e o r i g i n o f a n c i e n t d e s e r t r e d beds. I n t h i s c h a p t e r t h e s e d i m e n t a r y environments and f a c i e s of modern d e s e r t sediments a r e reviewed w i t h s p e c i a l r e f e r e n c e t o a e o l i a n s a n d d e p o s i t s
The r e d d e n i n g of
d e s e r t s e d i m e n t s i s d e s c r i b e d u s i n g t h e d e s e r t a l l u v i u m of t h e s o u t h w e s t e r n USA and t h e a e o l i a n sands of t h e Simpson Desert a s examples.
A s e c t i o n i s devoted t o a n c i e n t
a e o l i a n r e d beds and i n c l u d e s d i s c u s s i o n s o f t h e problems of t h e r e c o g n i t i o n of a e o l i a n sands i n t h e s t r a t i g r a p h i c r e c o r d and t h e o r i g i n of t h e i r r e d c o l o u r a t i o n . An a n c i e n t example, t h e Lower Permian o f n o r t h w e s t Europe, i s d e s c r i b e d i n d e t a i l .
MODERN DESERT SEDIMENTS Modern a r i d d e s e r t s a r e b a r r e n t r a c t s of l a n d o v e r which r a i n f a l l i s t o o l i m i t e d t o support vegetation.
The upper l i m i t of r a i n f a l l i s a b o u t 25cm a y e a r and t h e r a t e
o f e v a p o r a t i o n f a r exceeds t h e r a t e of p r e c i p i t a t i o n .
D e s e r t s c o v e r a b o u t 20% of
t h e w o r l d ' s l a n d s u r f a c e a n d a r e c o n c e n t r a t e d between t h e l a t i t u d e s of about 10'
30'
and
n o r t h and s o u t h o f t h e e q u a t o r i n t h e r e g i o n s o f p r e v a i l i n g t r a d e winds ( F i g . 2 . 1 ) .
D e s e r t s o c c u r between t h e s e l a t i t u d e s b e c a u s e t h e r e l a t i v e humidity of t h e descending h i g h - p r e s s u r e a i r of t h e h o r s e l a t i t u d e s (30'
n o r t h and s o u t h o f t h e e q u a t o r )
d e c r e a s e s a s t h e a i r i s compressed a d i a b a t i c a l l y and g i v e s r i s e t o c l o u d l e s s s k i e s . P a r t o f t h e a i r flows towards t h e e q u a t o r and i s d e f l e c t e d westwards by t h e C o r i o l i s
OL I m p o r t a n t f e a t u r e s of d e s e r t s a r e t h e d i u r n a l extremes of t e m p e r a t u r e and humidity which promote w e a t h e r i n g p r o c e s s e s ( O l l i e r , 1 9 6 9 ) .
During t h e c o o l e r hours
before
dawn t h e r e l a t i v e humidity may be a s h i g h a s 100% and heavy dews f r e q u e n t l y c o v e r rock o u t c r o p s .
These dews promote chemical c o r r o s i o n .
M o i s t u r e i s a l s o drawn t o
t h e s u r f a c e by c a p i l l a r i t y and e v a p o r a t i o n r e s u l t s i n t h e growth o f gypsum and h a l i t e c r y s t a l s which c a u s e e x p a n s i o n and mechanical w e a t h e r i n g of t h e h o s t r o c k . Rapid d i u r n a l changes i n t e m p e r a t u r e c a u s e d i f f e r e n t i a l e x p a n s i o n and c o n t r a c t i o n s t r e s s e s between t h e s u r f a c e and t h e u n d e r l y i n g r o c k , r e s u l t i n g i n s p a l l i n g of t h e rock s u r f a c e and t h e s p l i t t i n g of b o u l d e r s .
Igneous rock s u r f a c e s a r e t y p i c a l l y
rounded by e x f o l i a t i o n . The s i l t and s a n d - s i z e d p r o d u c t s of w e a t h e r i n g a r e s e t i n t o motion by t h e wind i n deserts,
T r a n s p o r t t a k e s p l a c e b y s u s p e n s i o n . s a l t a t i o n and s u r f a c e c r e e p
71 (Bagnold, 1941).
The c o a r s e r , more r e s i s t a n t w e a t h e r i n g p r o d u c t s a r e l e f t on t h e
d e s e r t s u r f a c e a s a l a g d e p o s i t t h a t may b e a b r a d e d by s a n d - l a d e n winds i n t o v e n t i facts.
Lag g r a v e l s on t h e d e s e r t s u r f a c e may e f f e c t i v e l y p r e v e n t most of t h e
u n d e r l y i n g s e d i m e n t s from b e i n g removed by t h e wind. D e s e r t sediments may accumulate i n b o t h a c t i v e t e c t o n i c s e t t i n g s where f a u l t controlled basins a r e rapidly subsiding (e.g. cratonic areas (e.g. Sahara).
s o u t h w e s t e r n USA) o r on s t a b l e
Many of t h e d e s e r t b a s i n s have i n l a n d d r a i n a g e
p a t t e r n s which may b e l a r g e l y i n h e r i t e d from P l e i s t o c e n e p l u v i a l e p i s o d e s when t h e c l i m a t e was more humid and s u r f a c e run-off
l e s s ephemeral.
number of d e p o s i t i o n a l zones can be r e c o g n i z e d .
A t t h e present-day a
Around t h e margins of d e s e r t b a s i n s
f l u v i a l p r o c e s s e s f r e q u e n t l y dominate and i n t e c t o n i c a l l y a c t i v e a r e a s a l l u v i a l f a n s may be abundant.
I n t h e c e n t r a l r e g i o n s a e o l i a n p r o c e s s e s dominate and i n t h e s t a b l e
i n t r a c r a t o n i c r e g i o n s l a r g e s a n d s e a s o r ' e r g s ' (Wilson, 1973) may,form.
Desert
l a k e s and i n l a n d sabkhas may a l s o b e found i n t h e c e n t r a l r e g i o n s because t h e w a t e r t a b l e h e r e may b e n e a r t o t h e s u r f a c e . A e o l i a n s a n d s a l s o form i n c o a s t a l r e g i o n s forming e l o n g a t e d dune f i e l d s p a r a l l e l to the coast. and sabkhas.
Here t h e y a r e a s s o c i a t e d w i t h o t h e r c o a s t a l sediments s u c h a s beaches Although t h e s e c o a s t a l dunes g e n e r a l l y have a low p r e s e r v a t i o n p o t e n t i a l
because o f t h e e f f e c t s of m a r i n e t r a n s g r e s s i o n t h e y might be more abundant i n t h e s t r a t i g r a p h i c record than i s generally r e a l i z e d .
The problem of d i s t i n g u i s h i n g
a n c i e n t a e o l i a n sands which p a s s l a t e r a l l y i n t o s h a l l o w marine s a n d b o d i e s a r e considerable.
DESERT FLWIAL SEDIMENTS Heavy r a i n s t o r m s a r e i n f r e q u e n t i n t h e d e s e r t and b e c a u s e of t h e l a c k of v e g e t a t i o n t o b i n d t h e sediment t h e y have a d r a m a t i c e f f e c t when t h e y do occur. Large amounts o f sediment may b e t r a n s p o r t e d , v i a a l l u v i a l f a n s and w a d i s , from t h e h i g h l a n d t o t h e lowland a r e a s .
I f t h e r a i n s t o r m i s p a r t i c u l a r l y heavy t h e
flowing w a t e r may e x t e n d t h e l e n g t h of t h e wadi and e v e n t u a l l y r e a c h t h e s e a ; o f t e n t h e p a s s a g e of w a t e r i s b l o c k e d by a e o l i a n s a n d and temporary l a k e s form.
During
m i l d e r r a i n s t o r m s t h e w a t e r s o a k s i n t o t h e wadi s e d i m e n t s and t h e downward p e r c o l a t i o n may r e s u l t i n t h e d e p o s i t i o n of c l a y i n what were o r i g i n a l l y m a t r i x - f r e e s e d i m e n t s . Under t h e s e c o n d i t i o n s t h e wadi may l o c a l l y become o v e r l o a d e d w i t h sediment.
Over-
l o a d i n g may a l s o o c c u r a t t h e n i c k p o i n t s between h i l l and p l a i n ; h e r e t h e r a p i d r e d u c t i o n i n w a t e r v e l o c i t y a s t h e flow widens l a t e r a l l y f r e q u e n t l y c a u s e s c h a n n e l b r a i d i n g and t h e f o r m a t i o n of a l l u v i a l f a n s .
D e b r i s flows a r e a common o c c u r r e n c e
on a l l u v i a l f a n s when t h e s e d i m e n t / w a t e r r a t i o i s h i g h .
A s t h e w a t e r s u p p l y i n t h e wadi d i m i n i s h e s much of i t s o a k s i n t o t h e sediment f i l l i n g t h e channel.
T h i s w a t e r i s commonly s a t u r a t e d w i t h r e s p e c t t o calcium
c a r b o n a t e and e v a p o r a t i o n r e s u l t s i n r a p i d c e m e n t a t i o n w i t h i n t h e v a d o s e zone.
The
72 s u r f a c e sands and s i l t s d r y o u t v e r y r a p i d l y and a r e u s u a l l y n o t cemented.
The
l a s t a r e a s t o d r y up a r e s t a g n a n t p o o l s i n which mud accumulates from s u s p e n s i o n . These become d e s i c c a t e d and mud c r a c k s form; t h i n mud l a y e r s r e s u l t i n g i n t h e f o r m a t i o n of f r a g i l e c u r l e d mud f l a k e s , which a r e e a s i l y blown away by t h e wind, w h i l s t t h i c k e r and h e a v i e r mud f l a k e s may b e p r e s e r v e d i n s i t u by a c o v e r o f wind blown sand. Because o f t h e ephemeral n a t u r e of d e s e r t f l u v i a l p r o c e s s e s d r y wadi c h a n n e l s a r e f r e q u e n t l y reworked o r f i l l e d by a e o l i a n sand and i n v e r t i c a l p r o f i l e t h e r e may be r a p i d a l t e r n a t i o n of w a t e r - d e p o s i t e d and wind-deposited s e d i m e n t s .
Although
a e o l i a n sands a r e g e n e r a l l y much b e t t e r s o r t e d t h a n f l u v i a t i l e s a n d s t n e reworking o f a e o l i a n s a n d s d u r i n g f l o o d s and t h e d e r i v a t i o n o f a e o l i a n sand from d r y wadi c h a n n e l s can l e a d t o some i n h e r i t a n c e o f t e x t u r a l c h a r a c t e r i s t i c s .
This often
makes t h e i r d i s t i n c t i o n d i f f i c u l t and G l e n n i e (1970) h a s l i s t e d a number o f c r i t e r i a which e n a b l e t h e r e c o g n i t i o n of w a t e r - l a i d d e p o s i t s i n t h e d e s e r t environment:
1) The bedding may be t h a t o f normal stream-flow s e d i m e n t s 2 ) Unsorted mudflow conglomerates may o c c u r 3) Channels and a c c r e t i o n f o r e s e t s a r e common
4 ) Clay laminae o r c l a y d r a p e s a r e common 5 ) Many sands a r e n o t w e l l - s o r t e d , b e i n g sometimes a r g i l l a c e o u s o r p e b b l y 6 ) They a r e commonly cemented by c a l c i t e
7 ) Sand and s i l t l a y e r s a r e commonly m i s s i n g from g r a d e d conglomerates 8) M a j o r i t y of q u a r t z g r a i n s t h a t a r e n o t cemented by c a l c i t e e x h i b i t f r o s t e d ( p i t t e d ) s u r f a c e s under t h e microscope The f o l l o w i n g f e a t u r e s may a l s o e n a b l e t h e r e c o g n i t i o n of s u b a e r i a l e x p o s u r e of w a t e r - l a i d sediment i n d e s e r t environments 1 ) P r e s e n c e o f c u r l e d ( g e n e r a l l y concave-up) c l a y f l a k e s 2 ) Comon p r e s e n c e o f c l a y p e b b l e s
3 ) P r e s e n c e of mud c r a c k s w i t h a sandy i n f i l l 4 ) P r e s e n c e of s a n d s t o n e dykes 5 ) A e o l i a n sand i n t e r b e d d e d w i t h w a t e r - l a i d d e p o s i t s .
The c o n t a c t s may show
e v i d e n c e of f l u v i a l e r o s i o n o r d e f l a t i o n . For e x c e l l e n t i l l u s t r a t i o n of t h e s e and many o t h e r f e a t u r e s o f d e s e r t f l u v i a t i l e sediments t h e r e a d e r i s r e f e r r e d t o t n e books o f G l e n n i e (1970) and P i c a r d and High (1973). AEOLIAN SAND DEPOSITS
A e o l i a n s a n d d e p o s i t s a r e t h e most c h a r a c t e r i s t i c f e a t u r e of d e s e r t s . o c c u r s n o t i n i s o l a t e d dunes b u t i n l a r g e a r e a s known a s s a n d s e a s ( t h e
The s a n d of t h e
n o r t h w e s t e r n S a h a r a ) which c o v e r between o n e - q u a r t e r and o n e - t h i r d of t h e w o r l d ' s deserts.
Wilson (1970) e s t i m a t e d t h a t 99.8% of a l l ' a c t i v e ' a e o l i a n s a n d was found
73 i n e r g s whose a r e a was g r e a t e r t h a n 125km2 and f u r t h e r l a r g e amounts o f a e o l i a n sand a r e t o b e found i n ' f i x e d ' e r g s on many d e s e r t margins ( F i g . 2 . 2 ) .
The e r g s
LARGE DUNE AREAS
Fig.2.2. 1973).
World map of p r i n c i p a l f i x e d and a c t i v e e r g s ( a f t e r Cooke and Warren,
d e r i v e t h e i r sand by t h e winnowing o f p e r i p h e r a l and i n t e r n a l d e s e r t f l u v i a t i l e sediments and by t h e a t t r i t i o n o f s o u r c e r o c k s .
The low d e n s i t y and v i s c o s i t y o f
wind make i t a n e f f i c i e n t sediment s o r t e r ; o n l y s a n d - s i z e d p a r t i c l e s c a n b e moved a s bed-load.
C o a r s e r g r a i n s a r e g e n e r a l l y l e f t behind a s a d e f l a t i o n l a g and f i n e r
sediment goes i n t o s u s p e n s i o n and may b e t r a n s p o r t e d beyond t h e b a s i n of d e p o s i t i o n thus contributing t o t h e general d e f l a t i o n of d e s e r t basins, The n a t u r e of t h e bedforms i n e r g s a r e c o n t r o l l e d by b o t h g r a i n s i z e and t h e t h i c k n e s s o f t h e s a n d c o v e r (Wilson, 1972, 1973) ( F i g . 2 . 3 ) .
I n t h e t h i c k accum-
u l a t i o n s , a s i n t h e Sahara and A r a b i a , t h r e e s c a l e s o f bedform:
r i p p l e s , dunes,
and d r a a s a r e developed b u t i n d e s e r t s where t h e c o v e r i s t h i n , a s i n t h e A u s t r a l i a n d e s e r t , t h e l a r g e r d r a a s a r e n o t developed and dunes form t h e l a r g e s t o b s e r v e d features.
These d i f f e r e n t bedforms a r e o f t e n i n t i m a t e l y r e l a t e d and show h i g h l y
complex p a t t e r n s .
T h i s c o m p l e x i t y r e s u l t s from t h e e f f e c t s of t o p o g r a p h i c s l o p e ,
v a r i a b l e wind d i r e c t i o n s , and t h e f a c t t h a t l a r g e r dunes and d r a a s r e q u i r e a l o n g time t o b e remoulded i n t o a new s h a p e a f t e r changes i n wind d i r e c t i o n and wind speed.
Another problem a r i s e s b e c a u s e of t h e r e l a t i v e l y h i g h t h r e s h o l d v e l o c i t i e s
needed f o r s a n d e n t r a i n m e n t .
T h i s means t h a t g r a i n movement i s a n i n t e r m i t t e n t
74 p r o c e s s and t h e s t r o n g winds which move s a n d r a p i d l y may have a d i f f e r e n t d i r e c t i o n from t h e weaker winds which o p e r a t e through a g r e a t e r p r o p o r t i o n of t h e time (Sharp, 1966).
The mechanics of s a n d t r a n s p o r t by wind a r e s t i l l p o o r l y under-
s t o o d and we s t i l l r e l y h e a v i l y on B a g n o l d ' s (1941) c l a s s i c work.
I n the aeolian
t r a n s p o r t of s a n d g r a i n b a l l i s t i c s and i n t e r g r a n u l a r c o l l i s i a n s a r e t h e dominant p r o c e s s e s whereas i n aqueous t r a n s p o r t f l u i d t u r b u l e n c e i s more i m p o r t a n t . The h i e r a r c h y of bedforms i n a e o l i a n s a n d g e n e r a l l y m a n i f e s t s i t s e l f a s a series o f superimposed forms w i t h d i s t i n c t s i z e c l a s s e s and w i t h v e r y few forms of i n t e r mediate s i z e .
T h i s i s s i m i l a r t o t h e h i e r a r c h y observed i n aqueous bedforms
( A l l e n , 1968) and t h e e x i s t e n c e of a t h r e e - f o l d h i e r a r c n y of r i p p l e s , dunes and sand waves i n s h a l l o w marine environments (Houbolt, 1968) i s m o s t l y c l o s e l y comThe a e o l i a n bedform h i e r a r c h y i s d i s c u s s e d
p a r a b l e t o t h a t s e e n i n a e o l i a n bedforms. I
i n d e t a i l by Wilson (1972) whose c l a s s i f i c a t i o n i s a d o p t e d h e r e ( T a b l e 2 . 1 ) .
This
h i e r a r c h i c a l arrangement a p p l i e s t o t r a n s v e r s e , l o n g i t u d i n a l and o b l i q u e forms and a p a r t from t h e f o u r t h o r d e r i t a l s o a p p l i e s t o e r o s i o n a l a s w e l l a s d e p o s i t i o n a l bedforms (Cooke and Warren, 1973).
Although t h e h i e r a r c h i c a l groups proposed by
Wilson o v e r l a p i n t h e i r s i z e r a n g e s , when t h e wavelength i s p l o t t e d a g a i n s t g r a i n s i z e a s i n F i g . 2 . 4 t h e y can b e s e e n t o form t h r e e d i s t i n c t groups.
I n e a c h of t h e s e
c l a s s e s t h e g r a i n s i z e o f t h e s a n d i n c r e a s e s w i t h t h e wavelength o f t h e bedform. S i n c e a g r e a t e r windspeed i s needed t o move c o a r s e r s a n d i t f o l l o w s t h a t bedform wavelength w i l l i n c r e a s e w i t h windspeed ( s e e a l s o , S h a r p , 1963). Ripples Although a e o l i a n r i p p l e s o c c u r w i t h s i m i l a r v a r i e t y t o t h e i r subaqueous c o u n t e r p a r t s t h e y a r e most commonly a s i m p l e arrangement o f p a r a l l e l r i d g e s a n d t r o u g h s t r a n s v e r s e t o t h e wind d i r e c t i o n .
i s r a r e l y v e r y pronounced.
They may b e s t r a i g h t o r s i n u o u s b u t t h e s i n u o s i t y
Commonly, t h e y a r e asymmetric w i t h a s t e e p e r l e e s l o p e
o r v e r y s m a l l s l i p f a c e and t h e h e i g h t / w a v e l e n g t h r a t i o i s u s u a l l y between 0.02 and 0.08 which i s r a t h e r s m a l l e r t n a n t h a t o f o t n e r a e o l i a n bedforms (Ellwood e t a l . , 1975).
Ridge c r e s t s a r e a l m o s t i n v a r i a b l y c o a r s e r g r a i n e d t h a n t h e t r o u g h s .
E a r l y workers ( e . g . B o u r c a r t , 1928) b e l i e v e d t h a t r i p p l e s , l i k e o t h e r a e o l i a n bedforms, were t h e r e s u l t of aerodynamic i n s t a b i l i t y and t h e r e i s some e v i d e n c e (Bagnold, 1941; W i l s o n , 1972; Cooke and Warren, 1973) t o i n d i c a t e t h a t a s m a l l p r o p o r t i o n of r i p p l e s may b e of t h i s type. o r fluid-drag interface.
These a r e t h e s o - c a l l e d 'aerodynamic'
r i p p l e s which r e s u l t from aerodynamic i n s t a b i l i t y n e a r t h e s a n d / a i r
They t e n d t o have a s t r o n g l o n g i t u d i n a l component i n t h e s h a p e and a l s o
t o be s e v e r a l times l a r g e r t h a n t h e t r a n s v e r s e impact r i p p l e s .
Most a e o l l a n r i p p l e s
a r e r e c o g n i z e d t o have formed by t h e r e g u l a r l y s p a c e d impact of s a n d g r a i n s a s d e s c r i b e d by Bagnoid (1941, p.146-153).
I n wind t u n n e l e x p e r i m e n t s Bagnold found
t h a t t h e r e was e q u i v a l e n c e between t h e l e n g t h o f t h e c h a r a c t e r i s t i c f l i g h t p a t h o f
75
Oriental NORTH AFRICA
Fig.2.3. The Erg O r i e n t a l , A l g e r i a showing i t s p o s i t i o n i n r e l a t i o n t o r e g i o n a l p a t t e r n s of s a n d t r a n s p o r t and t h e r e l a t i o n s h i p between sand c o v e r and bedforms w i t h i n i t , A . Flow d i r e c t i o n s medium s a n d , B. Flow d i r e c t i o n s f i n e s a n d (arrows i n d i c a t e d i r e c t i o n s t a k e n from aedforms) , C . Prominent d r a a t r e n d s ( d i f f e r e n t t r e n d s a r e r e l a t e d t o g r a i n s i z e d i f f e r e n c e s ) , D . P r o p o r t i o n of sand c o v e r , E . Mean s p r e a d - o u t sand t h i c k n e s s (m), and G . Mean d r a a wavelength (km) ( a f t e r Wilson, 1 9 7 3 ) .
76 s a l t a t i n g s a n d g r a i n s and r i p p l e wavelengths.
I n the f i e l d t h e s u r f a c e of r i p p l e s
i s o f t e n covered by c o a r s e r g r a i n s t r a v e l l i n g a s s u r f a c e c r e e p .
When t h e s e g r a i n s
r e a c h r i p p l e c r e s t s t h e y c a n n o t move on b e c a u s e t h e y e x p e r i e n c e fewer bombardments by s a l t a t i n g g r a i n s .
Sharp (1963) has c l e a r l y demonstrated t h e c o n c e n t r a t i o n of
c o a r s e r g r a i n s i n a e o l i a n r i p p l e c r e s t s by s e c t i o n i n g impregnated r i p p l e s . e n v i s a g e d a sequence of r i p p l e f o r m a t i o n a s f o l l o w s :
He
a s t h e wind moves o v e r a f l a t
s a n d bed, s a l t a t i n g s a n d moves t h e s u r f a c e c r e e p ; t h i s e n c o u n t e r s chance i r r e g u l a r i t i e s and p i l e s up; t h e p i l e s of s a n d grow u n t i l a n e q u i l i b r i u m h e i g h t i s r e a c h e d ; t h i s c h a r a c t e r i s t i c h e i g h t and t h e a n g l e of i n c i d e n c e of t h e g r a i n s c o n t r o l t h e wavelength. TABLE 2.1. H i e r a r c h i c a l c l a s s i f i c a t i o n o f a e o l i a n bedform elements ( a f t e r W i l s o n , 1972). Order
Wavelength
Height
Orientation
Possible Origin
Name
1st
300-55OOm
20-45Om
long. o r transverse
aerodynamic instability
draas
2nd
3-600m
0.1- lOOm
long. o r transverse
aerodynamic instability
dunes
3rd
15-250cm
0.2-0.5cm
long. o r transverse
aerodynamic instability
aerodynamic ripples
4th
0.5-2,000cm 1.0- 3,000cm
0.05-100cm 0.05-100cm
transverse long.
impact secondary Taylor-G'ir t l e r vortices
impact r i p p l e s secondary ripple sinuosity
G r a n u l e - r i p p l e s ( S h a r p , 1963) have been d i s c u s s e d by a number o f a u t h o r s (Bagnold, 1941; G l e n n i e , 1970).
They have much g r e a t e r wavelengths t h a n o r d i n a r y
s a n d r i p p l e s ; Bagnold (1941) observed some i n t h e Libyan Desert w i t h a wavelength of up t o 20m and a n a m p l i t u d e of o v e r 60cms.
Granule-ripples usually contain
l a r g e p r o p o r t i o n s o f g r a i n s o v e r 2mm; which may make up t o 20% of t h e r i p p l e a s a whole and up t o 80% of t h e r i p p l e c r e s t .
They a r e f r e q u e n t l y symmetrical i n c r o s s -
s e c t i o n and t h e c o n c e n t r a t i o n s o f c o a r s e g r a i n s i n t h e r i p p l e c r e s t i s c h a r a c t e r istic.
Bagnold (1941) thought t h a t g r a n u l e - r i p p l e s formed when t h e r e had been
long-continued d e f l a t i o n s o t h a t much of t h e f i n e s a n d was removed from t h e s u r f a c e layers.
I t was t h o u g h t t h a t a s u p p l y of f i n e s a l t a t i n g g r a i n s from upwind
m a i n t a i n e d t h e s u r f a c e c r e e p and s i n c e t h e c o a r s e g r a i n s c o u l d n o t move beyond t h e r i p p l e c r e s t t h e upward growth o f t h e g r a n u l e - r i p p l e would s l o w l y c o n t i n u e ; a c c o r d i n g l y he t h o u g h t t h e y were v e r y o l d .
The p r o b a b l e c o n t r o l l i n g f a c t o r of t h e s i z e of
granule-ripples is t h e i r grain size.
The f l i g h t p a t t e r n s of s a l t a t i n g g r a i n s i n
c o a r s e m a t e r i a l a r e g r e a t e r because of t h e i r b e t t e r bounce o f f t h e c o a r s e g r a i n s .
77
S c a t t e r diagram o f g r a i n s i z e (P20 = c o a r s e twenty p e r c e n t i l e ) a g a i n s t Fig.2.4. ripples, B dunes, wavelength f o r a e o l i a n bedforms showing t h e h i e r a r c h y : A C d r a a s ( a f t e r Wilson, 1972).
-
-
-
Because of t h i s t h e wavelength i s g r e a t e r and c o a r s e g r a i n s accumulate a t granuler i p p l e c r e s t s i n t h e same way a s i n normal wind r i p p l e s (Ellwood e t a l . , 1975). Another k i n d of r i p p l e which c o m o n l y o c c u r s i n t h e d e s e r t environment i s t h e a d h e s i o n r i p p l e ( G l e n n i e , 1970) a l t h o u g h t h e s e were f i r s t d e s c r i b e d from c o a s t a l f l a t s i n n o r t h e r n Germany (Reineck, 1955).
Adhesion r i p p l e s form most commonly
on sabkhas and i n damp i n t e r - d u n e a r e a s where sand g r a i n s a d h e r e t o t h e s u r f a c e because of t h e m o i s t u r e c o n t e n t .
G r a i n s t h e n c o n t i n u e t o b e t r a p p e d on t h e upwind
s i d e s of t h e r i p p l e s a n d . c m o n l y grow up t o 5cm h i g h a l t h o u g h t h e y may be o c c a s i o n a l l y much l a r g e r ( G l e n n i e , 1970). ripples is r a t h e r irregular.
The i n t e r n a l s t r u c t u r e o f a d h e s i o n
I t t e n d s t o b e l e n t i c u l a r , which i n s a b k h a s , produces
a n i r r e g u l a r wavy l a m i n a t i o n . Dunes and d r a a s Dunes and d r a a s show v e r y s i m i l a r morphological t y p e s and t h e e s s e n t i a l d i f f e r e n c e between them i s one of s i z e (Fig.2.4). described together,
For t h i s r e a s o n t h e y c a n b e c o n v e n i e n t l y
Dunes have wavelengths measured i n 10's o r 100's of metres and
h e i g h t s i n metres, w h i l e d r a a s have l e n g t h s o f t h e o r d e r of k i l o m e t r e s and h e i g h t s i n 10's of m e t r e s .
The r a t e of movement of b o t h is r e l a t e d t o t h e i r s i z e w i t h t h e
s m a l l e r forms b e i n g a b l e t o move more q u i c k l y (Long and S h a r p , 1964).
Draas move 6 years).
q u i t e s l o w l y ( a b o u t lcm/year) and p r o b a b l y t a k e a long t i m e t o develop (104-10
They p r o b a b l y o r i g i n a t e by t h e n u c l e a t i o n of a number o f dunes and a r e u s u a l l y covered on b o t h windward and leeward f a c e s by dunes.
Those dunes on t h e l e e s i d e
t e n d t o have l a r g e s l i p f a c e s and c l e a r l y c o n t r i b u t e t o t h e m i g r a t i o n of t h e draa. Dunes o r i g i n a t e i n a e o l i a n sand because o f chance i r r e g u l a r i t i e s (Bagnold, 1941).
78 Such i r r e g u l a r i t i e s may b e a g e n t l e d i p i n t h e d e s e r t s u r f a c e o r some u p s t a n d i n g foreign object,
Once a p a t c h of sand i s n u c l e a t e d i n t h i s way i t b e g i n s t o modify
t h e s u r r o u n d i n g a i r flow p a t t e r n . o f 10-15'
I n t h i s way a b a c k s l o p e , u s u a l l y w i t h a n a n g l e
i s developed and w i t h c o n t i n u e d growth d e p o s i t i o n on t n e l e e s l o p e g e t s
p r o g r e s s i v e l y n e a r e r t h e s m i t u n t i l t h e a n g l e of r e p o s e f o r s a n d i s exceeded and s l i p p i n g r e s u l t s (McKee e t a l . ,
1971).
Depending upon a v a r i e t y of f a c t o r s i n c l u d i n g wind c o n d i t i o n s , s a n d t y p e , and s u p p l y of s a n d , dunes may a c q u i r e a v a r i e t y of s h a p e s and s i z e s .
Many a u t h o r s have
a t t e m p t e d t o c l a s s i f y sand dune t y p e s (Melton, 1940; Bagnold, 1941; Holm, 1960; McKee, 1966; Cooper, 1967).
A commonly used c l a s s i f i c a t i o n i s t h a t of McKee (1966)
b u t t h i s has t h e d i s a d v a n t a g e of n o t d i s t i n g u i s h i n g d r a a - s i z e d f e a t u r e s :
1. Barchan 2. T r a n s v e r s e 3. P a r a b o l i c 4. S e i f 5. S t a r 6. Dome-shaped 7. Reversing A more comprehensive c l a s s i f i c a t i o n which can be a p p l i e d t o dune and d r a a - s i z e d f e a t u r e s i s g i v e n by Cooke and Warren (1973) ( s e e F i g . 2 . 5 ) . Bar c hans Barchans a y e c r e s c e n t shaped s a n d mounds formed i n a n u n d i r e c t i o n a l wind by a v a l a n c h i n g of s a n d on t h e s l i p f a c e .
The e x t r e m i t i e s ( h o r n s ) of t h e dune e x t e n d
downwind b e c a u s e t h e y m i g r a t e more r a p i d l y t h a n t h e main body.
S e v e r a l measurements
have been made of t h e r a t e o f b a r c h a n m i g r a t i o n which i s r e l a t e d t o h e i g n t ( F i n k e l 1959; N o r r i s , 1966; H a s t e n r a t h , 1967) and a l s o t o t h e shape o f t h e dune; narrower dunes a r e l i k e l y t o advance more r a p i d l y t h a n b r o a d e r o n e s ,
(Long a n d S h a r p , 1964)
a l t h o u g h b a r c h a n s do p r e s e r v e t h e i r p l a n shape d u r i n g m i g r a t i o n (McKee, 1966). A c t u a l r a t e s o f advance which have been q u o t e d v a r y from 17-47m/annum ( H a s t e n r a t h , 1967) and 15m/annum ( B e a d n e l l , 1 9 1 0 ) . Barchan dunes u s u a l l y o c c u r i n f a i r l y complex p a t t e r n s .and may form b o t h dune and d r a a - s i z e d f e a t u r e s .
I s o l a t e d b a r c h a n s t e n d t o develop i n a r e a s where t h e s u p p l y
of sand i s d i m i n i s h e d such t h a t t h e u n d e r l y i n g pavement c a n n o t be c o m p l e t e l y covered. The s a n d s u p p l y c o n t r o l s t h e s p a c i n g of t h e d u n e s , t h e less t h e amount of s a n d t h e wider t h e dune s p a c i n g , b u t t h e a n g l e of d i p o f s l i p f a c e s i s c o n s i s t e n t l y n e a r 34' n e a r t h e c e n t r a l p a r t of t h e dune and somewhat l e s s i n t h e h o r n s .
These s l i p f a c e s
r e s u l t i n p l a n a r - t a b u l a r u n i t s of c r o s s - b e d d i n g ( F i g . 2 . 6 ) and d i p w i t h i n a n a r c of l e s s t h a n 150' and u s u a l l y a b o u t 90'.
The unimodal d i s t r i b u t i o n of f o r e s e t d i r e c -
t i o n s when p l o t t e d on a s t e r e o g r a p h i c p r o j e c t i o n e n a b l e s barchans t o be d i s t i n g u i s h e d
79
Fig.2.5. The main t y p e s o f a e o l i a n dune and d r a a . The terms u s e d i n B-H may be a p p l i e d t o dunes a s w e l l a s d r a a s . E f f e c t i v e wind d i r e c t i o n i s i n d i c a t e d where a p p r o p r i a t e . I n C and I no one d i r e c t i o n dominates ( a f t e r Cooke and Warren, 1 9 7 3 ) .
80 from o t h e r t y p e s of dunes i n a n c i e n t d e p o s i t s , p a r t i c u l a r l y s e i f dunes ( s e e Fig.2.8).
Main trench, Northwest wall
sw
NE
feet
20
----I
0
1
10
20
30 40
50
60
70
t Base of
I
I
80
90
dune I
I
100 110 120 130 l40feet
Sido tronch, Northeast wall
,
I
dun. I
150 160 170 180 l90 200 210 220 230 240 250 260 270 280 -Bounding
surface
-Selected cross
- stratum
foot
Fig.2.6. I n t e r n a l s t r u c t u r e of a barchan dune a s observed i n e x c a v a t i o n s i n t o t h e gypsum dunes of t h e White Sands N a t i o n a l Monument, New Mexico ( a f t e r McKee, 1966).
Seifs
S e i f s a r e l o n g i t u d i n a l forms e l o n g a t e d p a r a l l e l t o t h e p r e v a i l i n g wind d i r e c t i o n . They cover e x t r e m e l y l a r g e a r e a s of some d e s e r t s such a s t h e Rub a 1 K h a l i ( G l e n n i e , 1970), t h e w e s t e r n Sahara and Libyan d e s e r t s (Bagnold, 1933) and t h e A u s t r a l i a n
deserts (Folk, 1971a,b).
Many of t h e s e a r e d r a a - s i z e d f e a t u r e s which a r e a s s o c i a t e d
w i t h s i n u o u s , v e r y e l o n g a t e d c r e s t l i n e s which a r e known a s s e i f dunes from t h e Arab usage ( s e i f meaning sword).
The c r e s t l i n e s may b i f u r c a t e i n a n upwind d i r e c t i o n
and f r e q u e n t l y shows t h e development o f a l t e r n a t i n g s l i p f a c e s . The o r i g i n o f s e i f s has been a m a t t e r of some d i s c u s s i o n .
Bagnold (1941) b e l i e v e d
t h a t t h e y a r e produced when s t r o n g winds blow from a q u a r t e r o t h e r t h a n t h a t o f t h e g e n e r a l d r i f t of sand caused by t h e more p e r s i s t e n t g e n t l e winds.
McKee and T i b b i t t s
(1964) b e l i e v e d t h a t s e i f s were produced i n t h e v e c t o r o f two converging wind d i r e c t i o n s blowing from two q u a r t e r s a b o u t 90'
apart.
Other a u t h o r s have p r e s e n t e d
81 e v i d e n c e i n f a v o u r o f t h i s i d e a (Madigan, 1946; Wopfner a n d Twidale, 1967). However, a number o f a u t h o r s ( e . g . G l e n n i e , 19701, have p r e s e n t e d e v i d e n c e t h a t l o n g i t u d i n a l dunes a r e produced p a r a l l e l t o winds o f uniform d i r e c t i o n and most workers now f a v o u r t h i s e x p l a n a t i o n .
The s e i f form s u g g e s t s t h a t p a i r e d s p i r a l
v o r t i c e s w i t h a x e s p a r a l l e l t o t h e flow a r e i m p o r t a n t i n t h e i r f o r m a t i o n .
For
example, i n S a u d i Arabia d r a a - s i z e d l o n g i t u d i n a l dunes have smaller s e i f s a l i g n e d d i a g o n a l l y a c r o s s t h e s i d e s o f t h e m a j o r r i d g e s a t a n a n g l e which would b e e x p e c t e d i f three-dimensional vortex flow operated.
I n t n e Simpson Desert t h e minor long-
i t u d i n a l f e a t u r e s and a l s o t h e Y - j u n c t i o n s e x h i b i t a n g l e s o f 30-50'
which would
b e e x p e c t e d from secondary f l o w ( F o l k , 1971b; W i l s o n , 1972). The s t r u c t u r e of s e i f dunes has been d e a l t w i t h by McKee and T i b b i t t s (1964) (see Fig.2.7)
and by G l e n n i e (1970).
I d e a l l y t h e y c o n s i s t of cross-bedded u n i t s
d i p p i n g n e a r l y normal t o t h e e l o n g a t i o n o f t h e r i d g e t h u s p r o d u c i n g two modes a b o u t 120' a p a r t .
T h i s f e a t u r e e n a b l e s t h e d i s t i n c t i o n of b a r c h a n s a n d s e i f s i n v e r t i c a l
s e c t i o n s (Fig.2.8).
mStructunlarr sand
Near-vertical laminae between
inches
B
Encroachmont Dopotit
Accntion Doporit
Fig.2.7. A . I n t e r n a l s t r u c t u r e of a s e i f dune ( a f t e r McKee and T i b b i t t s , 1964). B. G e n e r a l i z e d s t r u c t u r e of a s e i f dune ( a f t e r Bagnold, 1941).
82
D mretjon mminae
l B-B'
Dips only reach 34O in
N
W
E
S
5
Fig.2.8. I d e a l i z e d p l a n view and s t e r e o g r a p h i c p l o t of s l i p f a c e o r i e n t a t i o n s i n barchans and s e i f s . The s i n g l e s l i p f a c e of t h e b a r c h a n produces a unimodal d i s t r i b u t i o n of f o r e s e t d i p d i r e c t i o n whereas t h e a l t e r n a t i n g s l i p f a c e s of t h e s e i f produces a bimodal d i s t r i b u t i o n o f f o r e s e t d i p d i r e c t i o n s ( a f t e r G l e n n i e , 1970). T r a n s v e r s e forms T r a n s v e r s e dunes a r e a l m o s t s t r a i g h t , e l o n g a t e d r i d g e s of sand o r i e n t e d a t r i g h t a n g l e s t o t h e p r e v a i l i n g wind d i r e c t i o n .
They a r e r e g u l a r l y spaced and have
broad i n t e r d u n e a r e a s which sometimes form i n l a n d sabkhas.
G l e n n i e (1970)
d i s c u s s e d t h e o r i g i n of t r a n s v e r s e dunes and s u g g e s t e d t h a t they o r i g i n a t e d i n i n l a n d sabkha a r e a s where t h e damp sabkha s u r f a c e i n h i b i t e d t h e development of barchan horns.
The i n t e r d u n e sabkhas e v e n t u a l l y d i s a p p e a r and a s a n d s e a w i t h
t r a n s v e r s e dunes i s produced ( s e e G l e n n i e , 1970, F i g . 7 7 ) .
Bagnold (1954) c o n s i d e r e d
t r a n s v e r s e dunes t o b e u n s t a b l e forms which broke up i n t o s e i f s o r b a r c h a n s . However, Cooper ( 1 9 5 8 ) , McKee ( 1 9 6 6 ) , and G l e n n i e (1970) a l l b e l i e v e them t o be s t a b l e forms.
For example, t h e y a r e w e l l - s e e n i n t h e e a s t e r n p a r t of t h e Rub a 1
83 K h a l i ( G l e n n i e , 1970, p . 9 5 ) where t h e dunes a r e s e p a r a t e d by i n l a n d s a b k h a s . I n a r e a s of complete sand c o v e r t r a n s v e r s e forms may develop more complex s h a p e s . These normally have a v a l a n c h e f a c e s on t h e i r l e e s i d e s b u t t h e d r a a - s i z e d forms may have g e n t l y s l o p i n g l e e s i d e s wnicn a r e covered w i t n superimposed dunes.
A common
v a r i a t i o n on t h e s i m p l e s t r a i g h t c r e s t e d form i s t h e a k l e p a t t e r n ( F i g . 2 . 5 ) made up o f a l t e r n a t i n g convex and concave downwind s e c t o r s . The i n t e r n a l s t r u c t u r e of t r a n s v e r s e dunes i s d i s c u s s e d by McKee (1966) who n o t e s t h a t cross-bedding i s of t h e planar t a b u l a r type (Fig.2.9) with s t e e p l y dipping
(30-34')
The f o r e s e t s a r e more
f o r e s e t laminae which a r e t y p i c a l l y l o n g and even.
o r l e s s p a r a l l e l t o t h e a c t i v e s l i p f a c e and a r e c u t by i n t e r n a l e r o s i o n s u r f a c e s which a r e comparable t o t h e r e a c t i v a t i o n s u r f a c e s o f f l u v i a l b a r s .
These d i p a t
low a n g l e s which range from n e a r - h o r i z o n t a l n e a r t h e dune c r e s t t o o v e r 20' lower p a r t o f t h e s e t .
i n the
These s u r f a c e s a r e p r o b a b l y t h e p r o d u c t s of r e v e r s e d o r
t r a n s v e r s e wind e p i s o d e s .
Dome-shaped dunes (McKee, 1966; Thompson, 1969) a p p e a r
t o form by g r a d u a l lowering of t h e s l i p f a c e o f t r a n s v e r s e dunes by s u c c e s s i v e erosional events. Detail of asymmetrical trough, Side trench
SE
feet
NW
:I 5
2 0 1
ft.
sw
I
I
I
I
I
0
5
10
15
20
Main trench, North wall
- Bounding surface
-Selected cross-stratum
Fig.2.9. I n t e r n a l s t r u c t u r e of a t r a n s v e r s e dune a s observed i n e x c a v a t i o n s i n t o t h e gypsum dunes of t h e White Sands N a t i o n a l Monument, New Mexico ( a f t e r McKee, 1966).
84 P a r a b o l i c dunes P a r a b o l i c dunes a r e U o r V shaped s a n d r i d g e s w i t h t h e concave s i d e towards t h e wind.
They a r e n o t so common a s some of t h e o t h e r dune t y p e s .
The m i d d l e p a r t o f
t h e dunes t h u s moves forward w i t h r e s p e c t t o t h e s i d e s and McKee (1966) b e l i e v e d t h a t t h i s was because t h e s i d e s were anchored by v e g e t a t i o n t h u s a l l o w i n g t h e c e n t r a l p a r t of t h e dune t o move forward more r a p i d l y .
Characteristically the s l i p
f a c e i s convex upwards. The i n t e r n a l s t r u c t u r e i s d e s c r i b e d by McKee (1966).
Large s c a l e c r o s s - b e d d i n g
i s a g a i n dominant w i t h e r o s i o n s u r f a c e s b e i n g s e p a r a t e d by b u n d l e s of f o r e s e t laminae.
F o r e s e t laminae i n p a r a b o l i c dunes a r e low-angled compared w i t h o t h e r
dunes and t y p i c a l l y , b e c a u s e of t h e o r i e n t a t i o n of t h e s l i p f a c e , t h e y a r e concave downwards ( F i g . 2 . 1 0 ) . Moin trench, Northwest wail
sw
0
NE
10
M
30
10
M
M)
70
80
.)
901cetio3
Main h m h . Wthwest WON NE
sw
I M
0
I0
20
Y)
LO
M
€0
?a
80
'
I
93IediW
'/
Side trench, Southwest wall SE
F i g . 2 . 1 0 . I n t e r n a l s t r u c t u r e o f a p a r a b o l i c dune a s s e e n i n e x c a v a t i o n s i n t o t h e gypsum dunes of t h e White Sands N a t i o n a l Monument, New Mexico ( a f t e r McKee, 1 9 6 6 ) . Rhourds Rhourds ( F i g . 2 . 5 )
and o t h e r complex i n t e r f e r e n c e p a t t e r n s o c c u r where t h e wind
p a t t e r n i s highly variable.
The i n t e r f e r e n c e p a t t e r n i s sometimes r e c o g n i z a b l e a s
t h e i n t e r s e c t i o n of two o r more l i n e a r t r e n d s b u t t h e s e commonly b r e a k down i n t o a
s e r i e s of i s o l a t e d peaks which when d r a a - s i z e d a r e c a l l e d rhourds.
These may b e
o v e r 200m h i g h and most commonly r e s u l t from two dominant wind d i r e c t i o n s which a r e
85
s e p a r a t e d by a n a c u t e a n g l e ,
They a r e b e s t - d e v e l o p e d i n a r e a s of complete sand
c o v e r and a d e s e r t f l o o r l a g o f c o a r s e s a n d u s u a l l y s e p a r a t e s i n d i v i d u a l rhourds. Rhourds may show a complex p a t t e r n o f s l i p f a c e s and i n many c a s e s c a r r y s u p e r imposed dunes.
O t h e r s may t a k e t n e form o f smooth dunes w i t h no well-developed
s l i p f a c e s (McKee, 1966). The i n t e r n a l s t r u c t u r e o f modern and a n c i e n t a e o l i a n d e p o s i t s I n k e e p i n g w i t h t h e mechanism of m i g r a t i o n o f s a n d dunes two t y p e s of sand beds c a n be r e c o g n i z e d .
These were r e f e r r e d t o by Bagnold (1941) a s :
1. A c c r e t i o n d e p o s i t s 2. Encroachment o r a v a l a n c h e d e p o s i t s A c c r e t i o n d e p o s i t s r e p r e s e n t t h e windward g e n t l e s l o p e of sand dunes and c o n s i s t o f r a t h e r t h i n s u b - h o r i z o n t a l laminae which d i p g e n t l y (3-10')
upwind.
They
g e n e r a l l y c o n s i s t of f i r m l y packed s a n d a r e a r e n o t commonly p r e s e r v e d i n a n c i e n t a e o l i a n sandstones. Encroachment d e p o s i t s a r e t n e f o r e s e t laminae produced by a v a l a n c h i n g of sand on t h e s l i p f a c e .
They form t h e f a m i l i a r c r o s s bedding of a e o l i a n s a n d d e p o s i t s .
Laminae t e n d t o b e r a t h e r t h i c k (2-5cm) and d i p 25 t o 34'
downwind.
They
c o n s t i t u t e t h e major p a r t o f a dune body and a r e most commonly p r e s e r v e d i n a n c i e n t aeolian sandstones.
Tne s t e e p l y d i p p i n g f o r e s e t laminae t e n d t o f l a t t e n o u t n e a r
t h e base of t h e s l i p face producing t h e c h a r a c t e r i s t i c asymptotic f o r e s e t s . The laminae o f dune s a n d s a l s o show d e f o r m a t i o n s t r u c t u r e s .
These a r e thought
t o be due t o t h e movement o f p a r t i a l l y c o h e s i v e s a n d masses on t h e s l i p f a c e a f t e r r a i n has f a l l e n (McKee e t a l . , 1971; B i g a r e l l a , 1972; McKee and B i g a r e l l a , 1972). D e t a i l e d d e s c r i p t i o n s o f t h e i n t e r n a l s t r u c t u r e o f i n d i v i d u a l dune t y p e s have been g i v e n i n t h e p r e v i o u s s e c t i o n s .
These a r e based l a r g e l y on t h e dunes o f gypsum
sand a t White Sands, New Mexico and i t i s n o t c l e a r how t y p i c a l t h e y a r e o f a e o l i a n dunes i n g e n e r a l .
A v a i l a b l e e v i d e n c e ( B i g a r e l l a e t a l . , 1969; G l e n n i e , 1970)
s u g g e s t s t h a t t h e y c l o s e l y compare w i t h q u a r t z i t i c dunes.
These d a t a can be used
t o i d e n t i f y d i f f e r e n t dune t y p e s i n a n c i e n t a e o l i a n sequences and u n d e r i d e a l c i r c u m s t a n c e s e n a b l e t h e d i s t i n c t i o n of t r a n s v e r s e from l o n g i t u d i n a l t y p e s ( S h o t t o n , 1956; G l e n n i e , 1970).
T r a n s v e r s e dunes s u c h a s b a r c h a n s produce a s i n g l e mode
o f d i r e c t i o n s when t h e f o r e s e t a t t i t u d e s a r e p l o t t e d on a s t e r e o g r a p h i c p r o j e c t i o n . L o n g i t u d i n a l d u n e s , however, produce a bimodal p a t t e r n b e c a u s e of t h e a l t e r n a t i n g s l i p f a c e s a l t h o u g h t h i s might be more c o m p l i c a t e d because o f t h e i n f l u e n c e of superimposed dunes.
S t u d y o f t h e Lower Permian dune bedding i n NW Europe by G l e n n i e
(1972) s u g g e s t s t h a t l o n g i t u d i n a l dunes may dominate upland a r e a s whereas t r a n s v e r s e t y p e s a r e more abundant i n t h e c e n t r a l p a r t o f t h e d e s e r t b a s i n ( F i g . 2 . 1 1 ) . Trough cross-bedded u n i t s a r e n o t commonly d e s c r i b e d from a e o l i a n s a n d d e p o s i t s b u t have been d e s c r i b e d i n some a n c i e n t examples ( B i g a r e l l a , 1972).
They a r e
86 c o n c e i v a b l y produced by t h e m i g r a t i o n of a n a k l e dune o r d r a a p a t t e r n i n a manner analogous t o t h e p r o d u c t i o n of aqueous t r o u g h c r o s s - b e d d i n g by t h e m i g r a t i o n of l i n g u o i d o r l u n a t e e l e m e n t s ( A l l e n , 1968; B r o o k f i e l d , 1977).
Fig.2.11. S t e r e o g r a p h i c p r o j e c t i o n s ( u p p e r hemisphere) of p o l e s t o Lower Permian dune bedding. A and B a r e from o u t c r o p s i n n o r t h e r n England. C and D a r e from w e l l s i n t h e s o u t h e r n North Sea. Deduced palaeowind d i r e c t i o n s a r e shown. Dashed l i n e s i n d i c a t e a r e a s o f t y p i c a l t r a n s v e r s e ( a ) and l o n g i t u d i n a l dune bedding a t t i t u d e s ( b ) ( a f t e r G l e n n i e , 1972). Bounding s u r f a c e s i n a e o l i a n s a n d d e p o s i t s have been d i s c u s s e d by a number o f authors.
A c l a s s i f i c a t i o n , b a s e d p r i m a r i l y on a n c i e n t examples h a s beefl proposed
by B r o o k f i e l d (1977) ( F i g . 2 . 1 2 ) .
H e d i s t i n g u i s h e s t h r e e o r d e r s o f a e o l i a n bounding
s u r f a c e s which a r e a r r a n g e d i n a h i e r a r c h y a n a l a g o u s t o t h e bedform h i e r a r c h y o f Wilson (1972). First-order
These a r e termed f i r s t , second, and t h i r d - o r d e r bounding s u r f a c e s . bounding s u r f a c e s a r e f l a t - l y i n g o r convex-up bedding p l a n e s c u t t i n g
a c r o s s c r o s s - b e d d i n g and o t h e r dune s t r u c t u r e s ,
The d i s t a n c e s between t h e s e p l a n e s
r a n g e s from 0.3-17m and t h e y t e n d t o b e r e g u l a r l y s p a c e d i n one p a r t i c u l a r formatior Opdyke and Runcorn (1960) c o n s i d e r e d them t o be due t o t h e i n t e r a c t i o n of a e o l i a n d e f l a t i o n and d e p o s i t i o n i n a d j a c e n t a r e a s .
S t o k e s (1968) thought t h a t t h e y were
= o
50
Fig.2.12. S k e t c h diagrams of q u a r r y f a c e s i n t h e Lower Permian dune s a n d s of t h e Dumfries b a s i n , S c o t l a n d showing a e o l i a n bounding s u r f a c e s : F i r s t - o r d e r surfaces t h i c k l i n e s , second-order surfaces - t h i n l i n e s , third-order surfaces dashed l i n e s ( i n s e t 9 ) . Cross laminae a r e shown by d o t t e d l i n e s ( a f t e r B r o o k f i e l d , 1977).
-
-
c o n t r o l l e d by groundwater l e v e l s i n t h e f o l l o w i n g manner:
a s t h e s u r f a c e of
s e d i m e n t a t i o n r i s e s s p a c e i s c r e a t e d f o r groundwater s a t u r a t i o n and w i t h n e a r s u r f a c e w a t e r t a b l e and s t r o n g e r t h a n u s u a l wind a c t i o n t h e d r y s a n d w i l l b e s t r i p p e d o f f and t h e zone of s a t u r a t i o n exposed.
A change i n wind s t r e n g t h would
c a u s e dunes t o m i g r a t e o v e r t h e s u r f a c e t h u s c r e a t i n g a bedding p l a n e . seems u n l i k e l y
-
This process
t h e major o b j e c t i o n b e i n g t h a t t h e w a t e r t a b l e i n s a n d s e a s i s n o t
h o r i z o n t a l b u t forms a subdued r e p l i c a o f t h e bedform geometry (McKee and Moiola, 1975).
B r o o k f i e l d ( 1 9 7 7 ) a t t r i b u t e s f i r s t - o r d e r bounding s u r f a c e s t o d r a a m i g r a t i o n .
A s dunes m i g r a t e and climb o v e r e a c h o t h e r a n d a c r o s s i n t e r d u n e a r e a s t h e b a s e s of
e a r l i e r bedforms a r e n o t c o m p l e t e l y removed and a p p e a r a s t r u n c a t e d f o r e s e t s i n t h e
88 a r e a s of d e f l a t i o n (McKee, 1966; McKee and Moiola, 1975).
Examples of f i r s t - o r d e r
bounding s u r f a c e s i n t h e Permian s a n d s t o n e s o f t h e D u m f r i e s h i r e b a s i n i n s o u t h e r n S c o t l a n d and t h e T r i a s s i c s a n d s t o n e s a t Frodsham, C h e s h i r e a r e g i v e n by B r o o k f i e l d (1977).
B r o o k f i e l d (1977) a l s o g i v e s d a t a on t h e r a t e of m i g r a t i o n of d r a a s and
d i s c u s s e s t h e e f f e c t s of c l i m b i n g bedforms and s u b s i d e n c e r a t e s on t h e b u i l d - u p of f i r s t - o r d e r bounding s u r f a c e s . Second-order bounding s u r f a c e s a r e c u t by f i r s t - o r d e r bounding s u r f a c e s a n d c o n t a i n w i t h i n them cross-bedded u n i t s ( F i g . 2 . 1 2 ) .
Although o n l y s p a r s e d a t a i s
a v a i l a b l e B r o o k f i e l d s u g g e s t s a c h a r a c t e r i s t i c s p a c i n g of between 1 and 1.5m w i t h i n c l i n a t i o n a n g l e s from 0-15'.
They a r e c o n s i d e r e d by B r o o k f i e l d (1977) t o mark
t h e p a s s a g e of dunes a c r o s s d r a a s , o r t o l o n g i t u d i n a l dunes m i g r a t i n g a c r o s s t h e lower l e e s l o p e s of d r a a s o r a l t e r n a t i v e l y t o t h e c l i m b i n g of dunes down a d r a a which does n o t have a well-developed s l i p f a c e .
This draa i n t e r p r e t a t i o n f o r
second-order bounding s u r f a c e s a c c o u n t s f o r t h e t y p i c a l sweeping f o r e s e t laminae c h a r a c t e r i s t i c of many a n c i e n t a e o l i a n s a n d s t o n e s w i t h o u t having t o i n v o k e prolonged reworking by cross-winds ( S h a r p , 1966). T h i r d - o r d e r bounding s u r f a c e s a r e c o n s i d e r e d by B r o o k f i e l d (1977) t o b e r e a c t i v ation surfaces.
These a r e d i s c o n t i n u i t i e s i n t h e l a t e r a l sequence of c r o s s - b e d s
which t a k e t h e form o f e i t h e r a p l a n a r o r convex-upwards e r o s i o n s u r f a c e .
The
c r o s s - b e d s u n d e r l y i n g t h e r e a c t i v a t i o n s u r f a c e a r e t r u n c a t e d , whereas t h o s e above a r e conformable ( A l l e n , 1 9 7 4 ~ ) . R e a c t i v a t i o n s u r f a c e s i n a e o l i a n sands may i n d i c a t e change i n wind d i r e c t i o n o r v e l o c i t y , o r a l t e r n a t i v e l y , t h e a c t i o n of v o r t i c e s g e n e r a t e d by bedforms upstream.
There i s l i t t l e e v i d e n c e t o s u p p o r t t h e f i r s t o f
t h e s e hypotheses and i t seems more l i k e l y t h a t t h e r e a c t i v a t i o n s u r f a c e s a r e t h e r e s u l t of l o c a l a i r flow changes caused by c o n f i g u r a t i o n a l changes i n dune p a t t e r n s . For example, a dune coming under t h e i n f l u e n c e of e d d i e s t o t h e l e e o f upwind dunes c o u l d have i t s c r e s t rounded o f f and t h e s l o p e o f t h e upper lee s i d e c o n s i d e r a b l y reduced, thus producing a r e a c t i v a t i o n surface. The t e x t u r a l c h a r a c t e r i s t i c s o f a e o l i a n sands The s i m i l a r i t y of a e o l i a n and aqueous c r o s s - b e d d i n g makes i t v e r y d i f f i c u l t on occasions t o recognize a n c i e n t a e o l i a n sands,
The d i f f i c u l t y may be p a r t l y overcome
by c a r e f u l s t u d y o f t h e t e x t u r a l p r o p e r t i e s o f a e o l i a n sand which may b e v e r y distinctive.
D i s c r i m i n a t i o n of a e o l i a n sand from o t h e r t y p e s of s a n d u s i n g s c a t t e r
diagrams of g r a i n s i z e p a r a m e t e r s ( e . g . Friedman, 1961) has now l a r g e l y been abandoned b e c a u s e of t h e o v e r l a p s between d i f f e r e n t e n v i r o n m e n t s , p a r t i c u l a r l y beaches (Moss, 1962, 1963).
A more r e a l i s t i c approach i s t o c o n s i d e r t h e whole
g r a i n s i z e spectrum i n c l u d i n g t h e p r o p o r t i o n s of d i f f e r e n t s u b p o p u l a t i o n s .
Folk
(1968b), f o r example, h a s shown t h a t d e s e r t f l o o r s a n d s a r e t y p i c a l l y bimodal and supermature and t h a t t h e s e c h a r a c t e r i s t i c s a r e connnon i n a n c i e n t a e o l i a n s a n d s t o n e s .
89 O t h e r t e x t u r a l p r o p e r t i e s which a r e commonly o b s e r v e d i n a e o l i a n s a n d s i n c l u d e t h e h i g h d e g r e e of roundness and t h e s u r f a c e p i t t i n g ( f r o s t i n g ) o f q u a r t z g r a i n s .
The
roundness o f a e o l i a n sand g r a i n s r e s u l t s from t h e h i g h l e v e l o f p h y s i c a l a t t r i t i o n which t h e y e x p e r i e n c e .
The f r o s t i n g c a n n o t b e a t t r i b u t e d t o sample impact marking
and i s more l i k e l y t h e r e s u l t o f s m a l l s c a l e s o l u t i o n and p r e c i p i t a t i o n of s i l i c a during t h e d i u r n a l temperature cycle.
Some of t h e s e problems a r e now c o n s i d e r e d
i n more d e t a i l . Grain s i z e Wind i s a p a r t i c u l a r l y good s o r t i n g medium and i t s e f f e c t s can b e b e s t i l l u s t r a t e d by c o n s i d e r i n g t h e t h r e e r e l a t e d s i z e - f a m i l i e s of s e d i m e n t a r y p a r t i c l e s a s s o c i a t e d with deserts.
These a r e :
1) c o a r s e s a n d and g r a v e l which a r e e a s i l y r o l l e d by t h e wind b u t a r e t o o l a r g e t o s a l t a t e ; t h e s e accumulate i n w e l l - s o r t e d groups (e.g.
ripple crests)
2 ) medium and f i n e sand which t r a v e l s l a r g e l y by s a l t a t i o n and which accumulates a s w e l l - s o r t e d s a n d dunes 3) v e r y f i n e s a n d and c o a r s e s i l t which, i f u n d i s t u r b e d and on a f l a t s u r f a c e , i s t o o s m a l l t o b e e a s i l y moved by t h e wind; b u t when d i s t u r b e d may t r a v e l g r e a t distances (e.g. dust storms). The s a l t a t i o n p o p u l a t i o n , 2) a b o v e , i s t h e p r i n c i p a l c o n s t i t u e n t o f a e o l i a n sand dunes.
Udden(1898) showed t h a t dune c r e s t s were p r e d o m i n a n t l y i n t h e 0.25-0.125mm
s i z e (2-30) r a n g e r e g a r d l e s s o f l o c a l i t y and was w e l l aware of t h e good s o r t i n g of a e o l i a n sands.
Many o t h e r a u t h o r s have commented on t h e f i n e g r a i n s i z e and
good s o r t i n g of a e o l i a n dunes b u t t h e r e a r e s u r p r i s i n g l y few s y s t e m a t i c a n a l y s e s f o r i n l a n d d e s e r t s and r a t h e r more f o r c o a s t a l dunes.
Alimen (1957a,b) and
C h a v a i l l i o n (1964: have s t u d i e d many samples from t h e S a h a r a , Moiola and Weiser (1968) s t u d i e d 30 samples from s e v e r a l d e s e r t s and i n v e s t i g a t e d t h e r e l a t i o n s h i p s between mean g r a i n s i z e , s o r t i n g , and t h e h i g h e r moment measures.
W a i t t (1969)
c o n s i d e r e d s t u d i e d g r a i n s i z e p a r a m e t e r s i n r e l a t i o n t o dune p o s i t i o n i n a West Texas dune f i e l d .
Folk (1968b, 1971b) has s t u d i e d t h e a e o l i a n s a n d s of t h e Simpson
Desert i n A u s t r a l i a i n some d e t a i l .
F u r t h e r d a t a i s p r o v i d e d by McKee and T i b b i t t s
( 1 9 6 4 ) , Sharp ( 1 9 6 6 ) , Warren (1971, 1972) and Skozek a n d S a a d a l l a h (1972).
The
g r a i n s i z e p a r a m e t e r s of a e o l i a n d u n e s , a s r e p o r t e d by t h e s e a u t h o r s , can b e c o n s i d e r e d a s a continuum between two d i s t i n c t i v e t y p e s .
The b e s t known o f t h e s e
i s t h e f i n e g r a i n e d v e r y w e l l - s o r t e d t y p e d e s c r i b e d by Udden ( 1 9 9 8 ) .
This i s
t y p i c a l l y p o s i t i v e l y skewed w i t h a s h a r p c u t - o f f towards t h e c o a r s e r g r a i n s and has a t a i l of f i n e m a t e r i a l (Fig.2.13E,F).
T h i s f i n e m a t e r i a l i n a e o l i a n dunes i s
p r o b a b l y due t o t h e s e t t l e m e n t o f d u s t a f t e r t h e c e s s a t i o n o f winds (Sokolow, 1894). Another v e r y common sand found i n dune a r e a s i s a bimodal sand w i t h a c o a r s e mode a t a b o u t 0 . 6 m (0.750) and a f i n e mode a t a b o u t 0.12mm ( 3 . 0 0 ) (Bagnold, 1941;
90
Fig.2.13. R e p r e s e n t a t i v e g r a i n s i z e d i s t r i b u t i o n s ( s o l i d l i n e s ) from a e o l i a n sands o f t h e Simpson Desert, A u s t r a l i a , The dashed l i n e s show how i n d i v i d u a l d i s t r i b u t i o n s can b e broken down i n t o c o a r s e (C), medium (M), and f i n e ( F ) G a u s s i a n s u b p o p u l a t i o n s ( a f t e r F o l k , 1971b).
91 F o l k , 1968b, 1971b; Warren, 1971, 1972).
Typically t h e g r a i n diameter r a t i o i n
t h e s e bimodal s a n d s i s between 4 : l and 8 : l and t h e y a r e b e s t developed i n f l a t i n t e r d u n e a r e a s , p a r t i c u l a r l y downwind o f s e i f s ( F o l k , 1971b; Warren, 1972) (Fig.2.13B,C).
Many z i b a r a r e a l s o bimodal (Cooke and Warren, 1973) b e c a u s e t h e
c o a r s e g r a i n s e f f e c t i v e l y s e a l o f f t h e s u r f a c e so t h a t o n l y s t r o n g winds can b u i l d dunes. The o r i g i n o f bimodal s a n d s on t h e d e s e r t f l o o r h a s been a m a t t e r o f some discussion.
F o l k (1968b) a r g u e d t h a t t h e b i m o d a l i t y r e s u l t e d from t h e s e l e c t i v e
removal of t h e s a l t a t i o n p o p u l a t i o n from i n i t i a l l y u n s o r t e d d e t r i t u s .
H e thus
c o n s i d e r e d t h e c o a r s e mode t o r e p r e s e n t t h e s u r f a c e c r e e p and t h e f i n e mode t o r e p r e s e n t c o h e s i v e m a t e r i a l w i t h a h i g h c r i t i c a l t h r e s h o l d f o r movement ( F i g . 2 . 1 4 ) . F i n e r s e d i m e n t s do i n d e e d have h i g h c r i t i c a l t h r e s h o l d f o r movement (Bagnold, 1941, p.88).
However t h i s i s p a r t l y due t o i n t e r p a r t i c l e c o h e s i o n (Smalley, 1964, 1970)
and o n l y a p p l i e s t o v e r y w e l l s o r t e d f i n e s a n d s ; when t h e f i n e sand e x i s t s i n a p o o r l y s o r t e d m i x t u r e i t w i l l b e c o n s t a n t l y bombarded by s a l t a t i n g c o a r s e r g r a i n s . An
The d i s t u r b a n c e c r e a t e d i s t h u s l i k e l y t o c a u s e e n t r a i n m e n t of t h e f i n e sands.
a l t e r n a t i v e , and more s a t i s f a c t o r y , e x p l a n a t i o n of b i n o d a l i s m has been p u t forward by Warren (1972).
T h i s h a s been c a l l e d t h e " p r o t e c t i o n i s t theory".
I n t h i s theory
t h e s a n d s i n s a l t a t i o n i n c l u d e some p a r t i c l e s t h a t a r e f i n e enough t o f i t i n t o t h e i n t e r p a r t i c l e v o i d s of t h e c r e e p l o a d , so t h a t when t h e y s t r i k e t h e bed t h e y p e n e t r a t e t h e v o i d s and a r e p r o t e c t e d from f u r t h e r bombardment.
The s l i g h t l y c o a r s e r f r a c t i o n
o f t h e s a l t a t i o n l o a d i s t o o l a r g e f o r t h e v o i d s so t h a t i t remains on o r n e a r t h e s u r f a c e of t h e bed where i t i s bombarded by o t h e r p a r t i c l e s and moved onward. s a n d i s t h u s f i l t e r e d o u t and a c c u m u l a t e s on dunes.
This
This p r o t e c t i o n i s t theory
e x p l a i n s t h e e x i s t e n c e o f bimodal s a n d s on dunes a s w e l l a s on a r e a s where t h e r e h a s been n e t d e f l a t i o n .
I t a l s o e x p l a i n s t h e o c c u r r e n c e o f c o r e s o f f i n e sand w i t h i n
r i p p l e s ( S h a r p , 1963) and bimodal s a n d s on t h e h o r n s of b a r c h a n s ( V e r l a q u e , 1958). These g r a i n s i z e c h a r a c t e r i s t i c s a r e w i d e l y o b s e r v e d i n a n c i e n t a e o l i a n s a n d s t o n e s . Some of them, from t h e Lower Permian d e s e r t of NW Europe a r e i l l u s t r a t e d i n Fig.2.15. Roundness and f r o s t i n g The most c h a r a c t e r i s t i c f e a t u r e s o f a e o l i a n s a n d g r a i n s a r e t h e h i g h d e g r e e of roundness and t h e i r f r o s t e d s u r f a c e a p p e a r a n c e .
These f e a t u r e s a l o n e have o f t e n been
used t o i d e n t i f y a e o l i a n e n v i r o n m e n t s , a p r a c t i c e which i s n o t t o b e recommended b e c a u s e a e o l i a n sand g r a i n s can be d e r i v e d and reworked i n t o s h a l l o w marine environments and a l s o b e c a u s e s i m i l a r f e a t u r e s may r e s u l t from subaqueous t r a n s p o r t (Margolis and K r i n s l e y , 1971).
However well-rounded g r a i n s w i t h well-developed
s u r f a c e f r o s t i n g do p r o v i d e a n i m p o r t a n t c l u e t o a n a e o l i a n o r i g i n ( G l e n n i e , 1972). There have been a number of s c a n n i n g e l e c t r o n microscope (SEM) s t u d i e s of t h e s u r f a c e f e a t u r e s of a e o l i a n s a n d g r a i n s ( M a r g o l i s and K r i n s l e y , 1971; K r i n s l e y and
92
UNSORTED FLUVIAL DETRITUS SOURCE MATERIAL
.
.
Md Sd.+ Fn. Sd MOVED EASIEST
DEFLATION PROCESS DUNE
BIMODAL PRODUCT Bimodal Cr. Sd.+VFn.Sd.
Unimodal Fn. -Md. Sd.
Fig.2.14. I d e a l i z e d diagram d e p i c t i n g t h e o r i g i n of bimodal a e o l i a n s a n d s by d e f l a t i o n . F i n e sand i s removed from u n s o r t e d f l u v i a l d e t r i t u s b e c a u s e t h i s i s most e a s i l y s a l t a t e d . F i n e r s e d i m e n t remains b e h i n d b e c a u s e i t i s t o o c o h e s i v e w h i l s t c o a r s e r g r a i n s c a n n o t b e moved by s a l t a t i o n ( a f t e r F o l k , 1968b). Doornkamp, 1973) and i t i s now r e c o g n i z e d t h a t b o t h g r a i n impacts and s o l u t i o n / r e p r e c i p i t a t i o n a r e important i n t h e i r formation.
K r i n s l e y e t a l . (1976) r e c o g n i z e d
f o u r t y p e s of t e x t u r a l f e a t u r e s t h a t seem t o b e c h a r a c t e r i s t i c of a e o l i a n q u a r t z g r a i n s from modern h o t d e s e r t s f F i g . 2 . 1 6 ) .
1. "Upturned p l a t e s " .
These a r e p a r a l l e l r i d g e s r a n g i n g i n l e n g t h from a b o u t 0.5Ym
t o a b o u t 1Ofm and c o v e r i n g t h e s u r f a c e s of most g r a i n s g r e a t e r t h a n 4 0 0 - 5 0 0 ~i n diameter.
These u p t u r n e d p l a t e s a r e i n t e r p r e t e d a s c l e a v a g e s c a r p s r e s u l t i n g from
" a b r a s i o n f a t i g u e " ( P a s c o e , 1961) due t o s a l t a t i o n i m p a c t s .
2 . Equidimensional o r e l o n g a t e d e p r e s s i o n s 20 t o 250 m i n l e n g t h .
These d e p r e s s i o n s
tend t o be on s m a l l e r g r a i n s and a r e i n t e r p r e t e d by K r i n s l e y e t a l . (1976) a s p o s s i b l y b e i n g due t o d i r e c t r a t h e r t h a n g l a n c i n g i m p a c t s between s a l t a t i n g o r creeping grains.
3. Smooth s u r f a c e s on s m a l l e r g r a i n s , 90-400ym i n s i z e .
These a r e due t o p r e -
c i p i t a t i o n and s o l u t i o n o f s i l i c a and a r e u n a f f e c t e d by a b r a s i o n t o any g r e a t e x t e n t because such g r a i n s a r e t r a n s p o r t e d mainly i n s u s p e n s i o n .
4 . A r c u a t e , c i r c u l a r o r p o l y g o n a l c r a c k s (Lucci and Casa, 1968) commonly found on
93
Fig.2.15. Thin s e c t i o n photomicrographs showing some c h a r a c t e r i s t i c t e x t u r e s o f a e o l i a n sands. All from t h e R o t l i e g e n d e s (Lower Permian) of t h e S o l e P i t a r e a , North Sea. A. F i n e g r a i n e d , w e l l - s o r t e d s a n d from a dune t o p . B . Medium g r a i n e d s a n d from t h e i n t e r m e d i a t e p a r t of a dune. C. Bimodal sand from a dune base. Note t h a t t h e f i n e r mode i s a n g u l a r and t h e c o a r s e r mode rounded.
94
Fig.2.16. A. A q u a r t z s a n d g r a i n from t h e Algodones dunes ( s o u t h e r n C a l i f o r n i a ) . The g r a i n i s smooth and rounded w i t h a s u g g e s t i o n o f u p t u r n e d p l a t e s on t h e lower r i g h t s i d e B. Closeup of A. Note u p t u r n e d p l a t e s (UP) s l i g h t l y rounded by s o l u t i o n C. Quartz sand g r a i n from T r i a s s i c o f Devonshire showing e l o n g a t e o r rounded d e p r e s s i o n s and upturned p l a t e s on t h e u p p e r l e f t - h a n d c o r n e r D. Closeup o f C. Note s i m i l a r i t y t o B e x c e p t t h a t t h e u p t u r n e d p l a t e s (W) a r e l a r g e r ( a f t e r K r i n s l e y e t a l . , 1976).
95 g r a i n s 90 t o 150um i n s i z e .
These f e a t u r e s might b e t h e r e s u l t of p h y s i c a l o r
chemical w e a t h e r i n g and a r e n o t p r e s e n t on l a r g e r g r a i n s b e c a u s e i t would p r o b a b l y b e removed by a b r a s i o n d u r i n g s a l t a t i o n o r c r e e p . These f e a t u r e s have been r e c o g n i z e d i n a v a r i e t y o f a e o l i a n s a n d s from t h e d e s e r t s of Libya, A r a b i a , A u s t r a l i a , New Mexico and N e w Mexico and were a l s o d e s c r i b e d from E a r l y T r i a s s i c r e d beds from South Devonshire:
c o n s i d e r e d by t h e a u t h o r s t o b e t h e
o l d e s t known example of a e o l i a n s u r f a c e t e x t u r e s unmodified by d i a g e n e s i s . DESERT LAKES AND INLAND SABKHAS The t o p o g r a p h i c a l l y l o w e s t a r e a s o f many d e s e r t s o f t e n c o n t a i n ephemeral s a l i n e lakes.
More permanent l a k e s r e s u l t b e c a u s e o f t h e i n l a n d d r a i n a g e p a t t e r n and t h e
f a c t t h a t t h e w a t e r t a b l e i s v e r y c l o s e t o t h e s u r f a c e i n t h e c e n t r a l p a r t of t h e
INFLUENT SEEPAGE
EFFLUENT SEECAOE
INFLUENT SEEPAGE
/
ALLUVIAL FANS PLAYA EVAPORITES
LACUSTRINE
A
A//
BEDROCK
Fig.2.17. Schematic diagram of a d e s e r t b a s i n showing t h e d i s t r i b u t i o n of s e d i m e n t a r y f a c i e s and t h e w a t e r c i r c u l a t i o n ( a f t e r Davis and De Wiest, 1 9 6 6 ) . d e s e r t basin (Fig.2.17).
The d i s t r i b u t i o n o f s e d i m e n t a r y f a c i e s and groundwater
c i r c u l a t i o n a r e closely interdependent.
I n t e c t o n i c a l l y a c t i v e basins a l l u v i a l fans
a r e developed around t h e margins and t h e s e have i n f l u e n t d r a i n a g e .
These a r e
f o l l o w e d , towards t h e c e n t r e of t h e b a s i n , by a b e l t o f a e o l i a n s a n d and i n t h e v e r y c e n t r e of t h e b a s i n where t h e d r a i n a g e becomes e f f l u e n t , d e s e r t l a k e s may develop. They a l s o m i g h t form where dune s a n d s b l o c k a wadi c h a n n e l f o r example ( s e e G l e n n i e , 1970, F i g . 4 9 ) .
These d e s e r t l a k e s a r e r e f e r r e d t o a s p l a y a s i n North America and
i n l a n d sabkhas i n t h e Middle E a s t . They range i n s i z e from j u s t a few s q u a r e metres 2 up t o thousands o f km , Lake E y r e , A u s t r a l i a , f o r example, had a maximum a r e a l e x t e n t
of a b o u t 8,000km2 (Twidale, 1972).
The more r e c e n t h i s t o r y o f p r e s e n t - d a y p l a y a s i s
96 h i g h l y complicated and many of them were p e r e n n i a l l a k e s i n t h e p a s t ( S t o e r t z and E r i k s o n . 1974) e s p e c i a l l y d u r i n g P l e i s t o c e n e times. When t h e d e s e r t l a k e d r i e s up, d u r i n g t h e h o t s e a s o n , t h e s i l t a n d c l a y d e p o s i t e d when t h e l a k e was f u l l becomes d i s r u p t e d .
T h i s may b e by t e r r e s t r i a l a n i m a l s o r o t h e r
a g e n c i e s which l e a v e abundant t r a c k s on t h e sediment s u r f a c e .
Wind blown s a n d g r a i n s
may s t i c k t o t h e damp sabkha s u r f a c e and a s m o i s t u r e c o n t i n u e s t o r i s e by c a p i l l a r i t y a d d i t i o n a l g r a i n s w i l l a d h e r e and a d h e s i o n r i p p l e s w i l l form.
These a r e one o f t h e
most c h a r a c t e r i s t i c sedimentary s t r u c t u r e s o f i n l a n d sabkhas.
D e s i c c a t i o n polygons
develop and may c u r l up a t t h e edges l e a v i n g c r a c k s which a r e f i l l e d from above by wind blown sand o r from below by t h e i n j e c t i o n of a s l u r r y o f wet sand (Oomkens, 1966; G l e n n i e , 1970).
E v a p o r a t i o n of t h e s a l i n e l a k e w a t e r l e a d s t o t h e c o n c e n t r a t i o n
of s a l t s and a c r u s t of h a l i t e may form on t h e former l a k e bottom; gypsum c r y s t a l s ma) grow w i t h i n t h e sediment c a u s i n g f u r t h e r d i s r u p t i o n o f bedding s t r u c t u r e s .
Other
m i n e r a l s p e c i e s may b e i m p o r t a n t i n d e s e r t l a k e s and t h e s e may show a z o n a l a r r a n g e ment w i t h t h e more s o l u b l e s a l t s b e i n g d e p o s i t e d towards t h e c e n t r e of t h e b a s i n (Hunt e t e l . , 1966; Amiel and Friedman, 1971). I n Death V a l l e y , C a l i f o r n i a t h r e e main m i n e r a l f a c i e s c a n be r e c o g n i z e d e a c h w i t h s u b - f a c i e s determined on t h e b a s i s o f s u r f a c e morphology o r t h e amount o f admixture (Hunt e t a l . , 1966).
clastic
C a r b o n a t e s , s u l p h a t e s , and c h l o r i d e s show a r o u g h l y
c o n c e n t r i c z o n a t i o n w i t h t h e c h l o r i d e f a c i e s occupying by f a r t h e l a r g e s t c e n t r a l a r e a (Fig.2.18).
H a l i t e i s v o l u m e t r i c a l l y t h e dominant m i n e r a l i n t h e b a s i n and t h e
c a r b o n a t e and s u l p h a t e f a c i e s a r e d e f i n e d on t h e b a s i s of r e l a t i v e l y minor amounts of c a l c i t e and gypsum.
The c a r b o n a t e f a c i e s e r c u r s a t t h e t r a n s i t i o n from d i s t a l
f a n t o s a l t p a n (Fig.2.19), fine i n t o the basin.
t h e c a l c i t e o c c u r r i n g w i t h i n t h e c l a s t i c s e d i m e n t s which
These c a l c i t e - b e a r i n g s i l t s a r e e n c r u s t e d on t h e s u r f a c e by
h a l i t e b e n e a t h which i s a l a y e r o f gypsum nodules.
I n t h e s u l p h a t e f a c i e s gypsum
i s p r e c i p i t a t e d a t t h e s u r f a c e a s e i t h e r a massive l a y e r o r a s a c r y s t a l mush w i t h
a n i r r e g u l a r m i c r o r e l i e f (Fig.2.18).
The c h l o r i d e s c o n t a i n a number o f s u b - f a c i e s ,
t h e most e x t e n s i v e o f which c o n s i s t s of a smooth s i l t l a y e r up t o 15cm t h i c k which
i s u n d e r l a i n by up t o 30cm o f h a l i t e and rests on c l a s t i c sediment.
The s i l t l a y e r
c o n t a i n s s m a l l nodules of s u l p h a t e s and b o r a t e s sometimes cemented by c a r b o h a t e and h a l i t e and forming a hardpan.
The h a l i t e probably formed a t t h e t o p o f t h e c a p i l l a r y
f r i n g e of t h e w a t e r t a b l e . THE REDDENING OF DESERT SEDIMENTS
Introduction The reddening o f d e s e r t dune sands i s c e n t r a l t o t h e problem o f r e d bed formation. E a r l y workers impressed by r e d dune sands i n d e s e r t s were o f t h e o p i n i o n t h a t a n c i e n t r e d beds were a l s o of d e s e r t o r i g i n (Dawson, 1848; Crosby, 1885, 1891; Goodchild, 1896; B a r r e l l , 1908).
I t was g e n e r a l l y b e l i e v e d t h a t t h e r e d n e s s o f d e s e r t s a n d s was
L6 Fig.2.18. M i n e r a l z o n a t i o n i n t h e Death V a l l e y p l a y a of C a l i f o r n i a . I n t h e s u l p h a t e zone massive gypsum has a t h i n s k i n o f a n h y d r i t e . T h i s i s u n d e r l a i n by c a l c i t i c sandy s i l t . I n t h e c a r b o n a t e zone (expanded s e c t i o n ) s u r f a c e h a l i t e o c c u r s a s a b l i s t e r - l i k e c r u s t above t h e gypsum o f t h e s u l p h a t e l a y e r . The c a l c i t e of t h e c a r b o n a t e l a y e r o c c u r s a s s m a l l e u h e d r a l c r y s t a l s i n a s i l t y and sandy m a t r i x ( a f t e r Hunt e t a l . , 1966). caused by t h e low w a t e r t a b l e and l a c k of o r g a n i c m a t t e r which r e s u l t e d i n a n o x y g e n a t i n g environment (Dawson, 1848).
I n t h i s environment t h e d e s e r t sun was
presumed t o c a u s e t h e d e h y d r a t i o n of yellow f e r r i c h y d r o x i d e s t o r e d f e r r i c o x i d e (Crosby, 1885, 1891; B a r r e l l , 1908). Although t h e r e are many r e c o r d s o f r e d s u r f a c e m a t e r i a l s i n d e s e r t s t h e y a r e by no means e x c l u s i v e l y so ( G l e n n i e , 1970).
I n t h e a r i d Sudan Buursink (1971) found
v e r y few r e d o r r e d d i s h s o i l s and i n A u s t r a l i a , L i t c h f i e l d (1962, 1963) found drab soils.
V a r i e d c o l o u r s a r e much more t y p i c a l ; Warren (1970) r e p o r t e d 5YR 516 and
even r e d d e r c o l o u r s i n t h e f i x e d a e o l i a n s a n d s of t h e s e m i - a r i d Sudan and White (1971) n o t e d c o l o u r s of 5YR 516-8 and 2.5yR 416-8 i n s i m i l a r f i x e d a e o l i a n s a n d s i n t h e Republic of Niger.
Worral (1969) summarized much o f t h e work on t h e sands of
t h e s o u t h e r n S a h a r a and p o i n t e d o u t t h e wide r a n g e i n c o l o u r f r o n r e d , r e d d i s h - y e l l o w a n d reddish-brown.
G l e n n i e (1970) r e p o r t s r e d a e o l i a n s a n d s from t h e T r u c i a l Coast.
The r e d a e o l i a n sands o f t h e A u s t r a l i a n d e s e r t s a r e well-known ( L i t c h f i e l d , 1962, 1963; F o l k , 1976, 1978).
86 M 3E)NW INlWVNVd
3
Fig.2.19. R e l a t i o n s h i p between f r i n g i n g a l l u v i a l f a n s , s a l t p a n s and t h e d i s t r i b u t i o n of p l a n t s i n Death V a l l e y ( a f t e r Hunt e t a l . , 1966). Enlargement shows a h y p o t h e t i c a l c r o s s - s e c t i o n of l a r g e s c a l e d e s i c c a t i o n f i s s u r e s found i n some p l a y a s ( a f t e r N e a l , 1965). and e l s e w h e r e i n Mexico c o l o u r s of 10R 614 a r e known (Walker, 1967a).
The b r i g h t e s t
c o l o u r s i n r e d d e s e r t s o i l s a r e o f t e n found i n t h e B h o r i z o n a f e a t u r e which can b e a t t r i b u t e d t o more advanced w e a t h e r i n g , i r o n i l l u v i a t i o n , and a l s o t o t h e f a c t t h a t t h e r e i s no c o l o u r masking by o r g a n i c m a t t e r i n t h i s h o r i z o n . Many a u t h o r s have n o t e d t h a t a e o l i a n sand dunes become r e d d e r w i t h t i m e .
A
number o f examples a r e g i v e n by N o r r i s and N o r r i s (1961) and t h e s u b j e c t is d i s c u s s e d by N o r r i s ( 1 9 6 9 ) , G a u t i e r (1935, p . 4 4 ) .
T r i c a r t and Brochu (1955) have observed
t h a t smaller, presumably more a c t i v e and younger, Saharan d u n e s , a r e y e l l o w , whereas t h e l a r g e r e v i d e n t l y f i x e d dunes t e n d t o b e r e d i n c o l o u r . confirmed G a n t i e r ' s o b s e r v a t i o n s on a q u a n t i t a t i v e b a s i s .
Alimen (1957a,b) Logan (19601, i n t h e
d e s e r t s of s o u t h w e s t A f r i c a , showed t h a t younger dunes on t h e c o a s t were p a l e y e l l o w w h i l s t t h e o l d e r , i n l a n d dunes were r e d i n c o l o u r .
Many o t h e r workers have made
s i m i l a r o b s e r v a t i o n s i n c l u d i n g T e r r y (1957) f o r w e s t e r n A u s t r a l i a , Stephens (19611, J a c k s o n (1962) and Wopfner and Twidale (1967) f o r c e n t r a l A u s t r a l i a ; P r i c e (1962) f o r s o u t h e r n Texas, Dolan (1970) i n n o r t h C a r o l i n a , and G l e n n i e (1970) f o r t h e T r u c i a l Coast.
I t i s n o t c l e a r i n a number of t h e s e c a s e s whether t h i s i s due t o
t h e l a c k o f t i m e needed f o r t h e development of pigment o r t o t h e removal o f pigment by a b r a s i o n from t h e more a c t i v e , younger dunes.
For a l o n g t i m e t h e r e d c o l o u r of d e s e r t dune s a n d s has been a t t r i b u t e d t o haematite grain coatings.
T h o u l e t (1881) made chemical a n a l y s e s of h a e m a t i t e - c o a t e d
Saharan sands and P h i l l i p s (1882) r e p o r t e d t h a t r e d s a n d s from t h e Arabian d e s e r t c o n t a i n e d 0.21% Fe203.
P h i l l i p s (1882) a l s o made t h e i m p o r t a n t o b s e r v a t i o n t h a t
t h e r e d pigment must have been a c q u i r e d a f t e r t h e rounding of t h e s a n d o r i t would have o t h e r w i s e been worn away.
However t h e r e have been few d e t a i l e d s t u d i e s of t h e
o x i d e m i n e r a l o g y of r e d d e s e r t s o i l s and dunes.
Walker (1967a) c o u l d n o t d e t e c t
c r y s t a l l i n e h a e m a t i t e i n many of t h e r e d s o i l s of t h e Sonoran d e s e r t and i t i s l i k e l y t h a t more p o o r l y c r y s t a l l i n e o x i d e s o r h y d r o x i d e s , p r o b a b l y i n i n t i m a t e a s s o c i a t i o n with clay minerals, a r e important colouring agents.
These may e x i s t a s g r a i n c o a t i n g s
o r a s i n t e r s t i t i a l i r o n stained c l a y matrix. There i s c o n s i d e r a b l e e v i d e n c e t h a t modern d e s e r t s e d i m e n t s become r e d d e r w i t h age.
F i n e g r a i n e d h a e m a t i t e g r a i n c o a t i n g s and h a e m a t i t e - s t a i n e d c l a y m a t r i x a r e
responsible for the colouration.
These f e a t u r e s a r e c o m p a t i b l e w i t h a r e d d e n i n g
p r o c e s s which i n v o l v e s t h e i n s i t u p r o g r e s s i v e h y d r o l y z a t i o n of ferromagnesian m i n e r a l s ( R e i f e n b e r g , 1947, 1950; R i m , 1951; S h o t t o n , 1956; P r i c e , 1962; Walker, 1967a; N o r r i s , 1969).
Three i m p o r t a n t f a c t o r s , h e a t and m o i s t u r e , time a r e
i m p o r t a n t i n t h e i n t r a s t r a t a l a l t e r a t i o n of f e r r o m a g n e s i a n m i n e r a l s and subsequent d e g r e e o f r e d d e n i n g which might r e s u l t .
Heat i s i m p o r t a n t i n s p e e d i n g up chemical
r e a c t i o n s ; i n d e s e r t s u r f a c e s e d i m e n t t e m p e r a t u r e s between 70-85OC a r e commonly r e c o r d e d ( W a l t h e r , 1900; Mohr and Van Baren, 1954; Cloudsley-Thompson, 1968) and some workers have commented t h a t r e d n e s s was most i n t e n s e n e a r t h e s u r f a c e because o f s o l a r h e a t i n g ( P a s s a r g e , 1904). Moisture i s c l e a r l y important i n t h e formation of hydrated weathering products and a c e r t a i n m i m i m u m amount i s needed i f i n t r a s t r a t a l s o l u t i o n i s t o proceed. There i s c o n s i d e r a b l e e v i d e n c e o f t h e a b i l i t y o f d e s e r t s a n d s t o r e t a i n m o i s t u r e f o r l o n g p e r i o d s under t h e s e c o n d i t i o n s ( C v i j a n o v i c h , 1953).
The c o n d e n s a t i o n of m o i s t u r e
t o form i n t e r n a l dew is a l s o well-known ( C o r n i s h , 1914; R i m , 1951; V e r l a q u e , 1958; Engel and S h a r p , 1958); t h e consequence i s t h a t even d u r i n g t h e d r y s e a s o n dunes may be damp j u s t a metre o r so below t h e s u r f a c e and u n s t a b l e s i l i c a t e m i n e r a l s may b e i n prolonged c o n t a c t w i t h m o i s t u r e e s p e c i a l l y i n f i x e d dunes.
A l t e r a t i o n of f e r r o -
magnesian m i n e r a l s and t h e f o r m a t i o n o f h a e m a t i t e c o u l d t a k e p l a c e under t h e s e conditions, The e v i d e n c e does s u g g e s t however t h a t t h i s a l t e r a t i o n p r o c e s s i s a r e l a t i v e l y slow one and o n l y s e e n t o good e f f e c t i n P l e i s t o c e n e and P l i o c e n e sediments which have been i n p r o l o n g e d c o n t a c t w i t h oxygenated ground w a t e r .
Walker (1967a) i n
h i s c l a s t i c s t u d y o f t h e Sonoran D e s e r t a l l u v i u m showed t h a t t h e f o r m a t i o n of c r y s t a l l i n e h a e m a t i t e and r e d c o l o u r a t i o n c o u l d t a k e up t o 106 y e a r s .
The impl i c a t i o n h e r e i s t h a t t h e r e l a t i v e s c a r c i t y o f modern r e d dune sands i s due t o t h e
f a c t t h a t s u f f i c i e n t t i m e has n o t been a v a i l a b l e f o r t h e i n t r a s t r a t a l a l t e r a t i o n t o develop. The l o n g p e r i o d o f time which i s needed f o r i n s i t u r e d d e n i n g makes i t
100 d i f f i c u l t t o a c c o u n t f o r t h o s e r e d a e o l i a n s a n d s which do o c c u r a t t h e p r e s e n t time; f o r example, some of t h e l a r g e r dunes i n t h e Saharan e r g s c a n be no more t h a n a few thousand y e a r s o l d (Wilson, 1970) and i n t h e Sudanese f i x e d dunes s t a b i l i t y i s c o n s i d e r e d t o have l a s t e d f o r o n l y some 9,000 y e a r s (Warren, 1970).
The p r e s e n t l y
a c t i v e r e d sand dunes of t h e A u s t r a l i a n d e s e r t s a r e a l s o d i f f i c u l t t o e x p l a i n by t h i s d i a g e n e t i c model. A p o s s i b l e c l u e t o t h i s problem l i e s i n t h e once w i d e l y h e l d b e l i e f t h a t r e d n e s s
i n deserts is associated with wetter ciimates i n the past.
This i s p a r t i c u l a r l y
a p p l i c a b l e t o A f r i c a (Grabham, 1926; B o u r c a r t , 1928; S a n d f o r d , 1935; Kubiena, 1955; Meckelein, 1957; Cooke, 1961) and A u s t r a l i a ( C r o c k e r , 1946; Madigan, 1946; Mabbutt, 1965).
T h i s d e t r i t a l model f o r t h e o r i g i n of r e d d e s e r t s a n d s h a s been r e c e n t l y
r e v i v e d by F o l k (1976). The d e t r i t a l model
- Simpson Desert, A u s t r a l i a
The Simpson Desert is a r e d e r g i n c e n t r a l A u s t r a l i a , a b o u t 300 miles i n d i a m e t e r , which c o n s i s t s o f NEJW t r e n d i n g s e i f dunes developed on P l e i s t o c e n e f l u v i a l s e d i m e n t s . The d e s e r t i s t h e r e s u l t of t h e d e s i c c a t i o n o f o l d e r a l l u v i a l p l a i n s which were formed a t t i m e s o f much h e a v i e r r a i n f a l l and l e s s e n e d e v a p o r a t i o n , e s p e c i a l l y d u r i n g t h e P l e i s t o c e n e (Madigan, 1946).
F o l k (1976) s t u d i e d t h e n o r t h w e s t e r n edge of t h e
e r g and sampled t h e c r e s t s and f l a n k s of a c t i v e dunes and a l s o t h e i n t e r v e n i n g deflationary f l a t s o r reg,
The dunes, composed o f w e l l - s o r t e d f i n e s a n d , a r e b r i g h t
r e d i n c o l o u r whereas t h e c o a r s e r r e g sediments a r e d u l l e r and d a r k e r .
This i s
confirmed by q u a n t i t a t i v e measurement of hue, v a l u e and s a t u r a t i o n u s i n g t h e Munsell S o i l Colour C h a r t on s i e v e d
40
grades.
The r e s u l t s a r e summarized i n Fig.2.20.
In
t h e dune s a n d s t h e f i n e and v e r y f i n e s a n d s (between 2.00 and 4.50) a r e a l m o s t a l l of hue 2.5YR ( r e d d i s h - o r a n g e ) , v a l u e 4/ ( d a r k ) and s a t u r a t i o n / 7 ( v e r y s t r o n g ) . The c o a r s e r s e d i m e n t s i n t h e dunes (up t o 1.00) a r e more o r a n g e w i t h hue 3.5YR, v a l u e
5 / (medium) and s a t u r a t i o n / 6 .
Similar r e s u l t s a r e seen i n t h e reg sediments but
t h e hue i s s l i g h t l y more o r a n g e , t h e v a l u e s l i g h t l y d a r k e r and t h e s a t u r a t i o n a l m o s t a f u l l shade weaker (Fig.2.20).
F o l k (1976) n o t e d on i n s p e c t i o n of s i n g l e s a n d g r a i n s
w i t h t h e b i n o c u l a r microscope t h a t t h e c o l o u r d i s t r i b u t i o n i s bimodal; c o a t s on t h e g r a i n s a r e e i t h e r s t r o n g " r e d d i s h orange" (10R t o 2.5YR) o r p a l e r " y e l l o w i s h orange" (7.5YR) w i t h o n l y a few g r a i n s of i n t e r m e d i a t e hue.
The d a r k e r , r e d d e r l i n e s o c c u r
i n p i t s i n t h e g r a i n s ( s e e F o l k , 1976, F i g . 1 ) and a r e c o v e r e d by a t h i n c o a t i n g of chemically-precipitated "turtle-skin"
silica.
The more y e l l o w hues a r e caused by
a s o f t " f l u f f " of l i m o n i t i c m a t e r i a l (Fig.2.21). Folk (1976) showed t h a t t h e r e d d i s h m a t e r i a l i n t h e p i t s i s a c u t a n o r c l a y i r o n - o x i d e s k i n (Brewer, 1964) and a r g u e d t h a t t h e r e d c u t a n and y e l l o w " f l u f f " a r e of d i f f e r e n t a g e s .
The r e d c u t a n s a r e c l e a r l y o l d e r and a r e t h o u g h t t o have o r i g -
i n a t e d d u r i n g a p e r i o d o f P l e i s t o c e n e ( o r e a r l i e r ) l a t e r i t i z a t i o n whereas t h e y e l l o w
101
I
I
DUNES
I
I
REG
1
5
1
6
I
7
I
0
SATURATION
Fig.2.20. Raw c o l o u r d a t a f o r samples from dune and r e g environments i n t h e Simpson Desert. G r a i n s i z e of t h e sample f r a c t i o n shown on t h e v e r t i c a l s c a l e . Each r e a d i n g of hue, v a l u e ( l i g h t n e s s ) and s a t u r a t i o n (chroma) shown by a d o t . Mean c o l o u r r e a d i n g s a s a f u n c t i o n o f g r a i n s i z e shown by curved l i n e s . Both dune and r e g show r e d d e s t , d a r k e s t , and most i n t e n s e c o l o u r s f o r t h e f r a c t i o n between a b o u t 28 and 40. Bottom diagram superimposes t h e mean t r e n d l i n e s f o r b o t h environments; g r e a t e s t d i f f e r e n c e between dune and r e g i s t h e weaker s a t u r a t i o n o f t h e r e g sediments ( a f t e r F o l k , 1976). " f l u f f " i s Holocene and s t i l l accumulating today.
The c o n t r a s t i n c o l o u r between
f i n e r and c o a r s e r sand f r a c t i o n s i s a t t r i b u t e d t o t h e f a c t t h a t t h e f i n e s a n d , because i t r e p r e s e n t s t h e s a l t a t i o n p o p u l a t i o n , i s c o n s i s t e n t l y mobile and does n o t a l l o w t h e accumulation of t h e l i m o n i t i c f l u f f .
There i s c o n s i d e r a b l e evidence
i n f a v o u r o f t h e widespread f o r m a t i o n o f l a t e r i t e d u r i n g p r e - P l e i s t o c e n e o r P l e i s t o c e n e time i n c e n t r a l A u s t r a l i a and l a t e r i t e s and i r o n p i s o l i t e s a r e r e p o r t e d by T e r r y (19341, C a r r o l l ( 1 9 3 9 ) , Whitehouse ( 1 9 4 0 ) , Crocker ( 1 9 4 6 ) , Madigan (1946), and Mabbutt (19h5). The s i g n i f i c a n c e of p r i o r l a t e r i t i z a t i o n and c l i m a t i c change i n t h e formation
of o t h e r r e d a e o l i a n s a n d s i s n o t c l e a r because s u f f i c i e n t s t u d i e s have n o t y e t been carried out.
Many d e s e r t b a s i n s a r e s i t e d on a n c i e n t a l l u v i a l p l a i n s , a f e a t u r e
102
10R- 25YR red orange
-
S k e t c h showing t h e sequence of g r a i n c o a t i n g s on reddened a e o l i a n sand Fig.2.21. from t h e Simpson Desert 1) H a e m a t i t i c c l a y c u t a n , formed i n P l e i s t o c e n e l a t e r i t i c s o i l and p r e s e r v e d o n l y i n p i t s ; 2 ) t h i n s i l i c a c o a t w i t h bumpy s u r f a c e , g i v i n g a g r e a s y l u s t r e o r i g i n a t i n g i n t h e p r e s e n t d e s e r t regime; 3 ) l i m o n i t i c s u r f a c e " f l u f f " of Holocene o r i g i n ( a f t e r F o l k , 1976). which s u g g e s t s t h a t t h e p r o c e s s c o u l d b e i m p o r t a n t e l s e w h e r e , p a r t i c u l a r l y i n p l a c e s l i k e t h e Sahara where dune s a n d s a r e known t o show downwind c o l o u r v a r i a t i o n s . The d e t r i t a l model has n o t y e t been f u l l y i n v e s t i g a t e d i n a n c i e n t a e o l i a n s a n d s t o n e s , a l t h o u g h many e a r l i e r workers c o n s i d e r e d i t i m p o r t a n t ( e . g . Dunham, 1953). The d i a g e n e t i c model
-
Sonoran D e s e r t
The Sonoran d e s e r t of n o r t h w e s t e r n Mexico and t h e s o u t h e a s t e r n USA c o n t a i n s a sequence of l a t e T e r t i a r y and Q u a t e r n a r y d e s e r t a l l u v i u m a s s o c i a t e d w i t h m a r g i n a l marine d e p o s i t s and a e o l i a n s a n d ( F i g . 2 . 2 2 ) .
The d e s e r t a l l u v i u m h a s been s t u d i e d
i n d e t a i l by Walker (1967a, 1976) and Walker e t e l . (1978).
I t c o n s i s t s of f i r s t -
c y c l e a r k o s i c d e t r i t u s d e r i v e d from f r e s h c r y s t a l l i n e basement which l a c k s any s i g n i f i c a n t s o i l development.
The a l l u v i u m i s non-red a t t h e t i m e of d e p o s i t i o n
and t h e e a r l i e s t d e t e c t a b l e r e d d e n i n g o c c u r s i n d e p o s i t s of l a t e P l e i s t o c e n e a g e . I n t h i s e a r l y s t a g e of r e d d e n i n g , which a l s o i n c l u d e s l a t e T e r t i a r y d e p o s i t s , t h e pigment c o n s i s t s o f amorphous f e r r i c o x i d e which c a n n o t b e i d e n t i f i e d by X-ray d i f f r a c t i o n a n a l y s i s (Walker, 1976, p.281). reddish-yellow
( e . g . 5yR 6 / 6 ) .
A t t h i s stage the deposits a r e typically
B r i g h t r e d c o l o u r a t i o n ( e . g . 8R 4 / 6 t o 9R 4 / 6 1 and
f i n e l y c r y s t a l l i n e h a e m a t i t e o n l y d e v e l o p i n o l d e r Miocene d e p o s , i t s .
103
A
GYNITIC ROCK$
LOW-TIDE TERRACE SAND
I
Fig.2.22. A. L o c a t i o n map B. Diagrammatic c r o s s s e c t i o n showing f a c i e s r e l a t i o n s h i p s o f R e c e n t , P l e i s t o c e n e , and P l i o c e n e s e d i m e n t s i n n o r t h e a s t e r n Baja C a l i f o r n i a , Mexico ( a f t e r Walker, 1967a). Walker (1967a, 1976) p r e s e n t e d c o n v i n c i n g e v i d e n c e t h a t t h e s e r e d beds formed i n s i t u by t h e p r o g r e s s i v e a l t e r a t i o n of d e t r i t a l ferromagnesian s i l i c a t e m i n e r a l s . S i n c e t h e r e has been no a p p r e c i a b l e c l i m a t i c change t h r o u g h o u t t h e d e p o s i t i o n a l h i s t o r y of t h e a r e a t h e s t u d y p r o v i d e s c o n v i n c i n g e v i d e n c e t h a t r e d beds can form i n a h o t , a r i d c l i m a t e and t h a t s e a s o n a l l y h i g h r a i n f a l l o r p r i o r l a t e r i t i z a t i o n a r e n o t p r e r e q u i s i t e s f o r t h e i r formation. The d i a g e n e t i c p r o c e s s e s l e a d i n g t o t h e f o r m a t i o n o f r e d beds i n t h i s a r e a a r e d e s c r i b e d by Walker e t a l . (1978).
They depend v e r y h e a v i l y on t h e t y p i c a l ground-
water c i r c u l a t i o n p a t t e r n seen i n d e s e r t b a s i n s (Fig.2.17).
Owing t o t h e h i g h
p e r m e a b i l i t y o f m a r g i n a l a l l u v i a l f a n s t h e w a t e r t a b l e g r a d i e n t s a t t h e b a s i n margin a r e low and t h e s u r f a c e d r a i n a g e p a t t e r n i s i n f l u e n t . o c c u r s w a t e r flows i n t o t h e a l l u v i u m ,
Whenever s u r f a c e r u n o f f
E f f l u e n t seepage only occurs near the c e n t r e
o f t h e b a s i n where t h e s a t u r a t e d zone l i e s n e a r e r t o t h e s u r f a c e and groundwater i s l o s t by e v a p o t r a n s p i r a t i o n . These c o n d i t i o n s e n s u r e t h a t groundwater m i g r a t e s towards the centre of t h e basin.
Two t y p e s of d i a g e n e t i c p r o c e s s e s o c c u r which l e a d t o t h e r e d d e n i n g o f t h e s e
104 d e s e r t sediments.
These a r e ' e a r l y ' d i a g e n e t i c and ' l a t e ' d i a g e n e t i c reddening.
E a r l y d i a g e n e t i c reddening The i n f l u e n t seepage i n m a r g i n a l a l l u v i u m r e s u l t s i n t h e mechanica of d e t r i t a l c l a y i n t o p r e v i o u s l y c l a y - f r e e sediment.
infiltration
This clay coats d e t r i t a l
g r a i n s and f r e q u e n t l y c o n t a i n s small amounts o f i r o n a s hydroxide c o a t i n g s and i n the c l a y mineral l a t t i c e .
A f t e r d e p o s i t i o n t h i s c l a y i s more o r less c o n t i n u o u s l y
bathed i n oxygenated groundwater and w i t h t i m e t h e c l a y b e g i n s t o redden due t o t h e formation of i r o n o x i d e .
The i r o n o x i d e may form by ' a g e i n g ' o f t h e d e t r i t a l i r o n
hydroxide o r by o x i d a t i o n of t h e c l a y m i n e r a l l a t t i c e .
I n e i t h e r case i t i s t h i s
type of e a r l y d i a g e n e t i c reddening which i s mainly r e s p o n s i b l e f o r t h e r e d d i s h yellow (5YR 6 / 6 ) pigment t h a t c h a r a c t e r i z e d much o f t h e younger ( P l i o - P l e i s t o c e n e ) d e s e r t a l l u v i u m o f t h e s o u t h e a s t e r n USA. Late d i a e e n e t i c reddeninn When u n s t a b l e framework s i l i c a t e s a r e i n prolonged c o n t a c t w i t h oxygenated groundwater t h e y a r e s u s c e p t i b l e t o a l t e r a t i o n by h y d r o l y s i s .
The a l t e r a t i o n
i n v o l v e s t h e f o r m a t i o n o f d i s s o l u t i o n v o i d s and t h e replacement of framework g r a i n s by mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e .
I r o n - b e a r i n g s i l i c a t e s such a s h o r n b l e n d e ,
pyroxene, and b i o t i t e c a n b e observed i n v a r i o u s s t a g e s of a l t e r a t i o n and e l e c t r o n microprobe a n a l y s e s show t h a t t h e replacement c l a y c o n t a i n s i r o n o x i d e which i s d i f f u s i n g outwards, away from t h e decomposing g r a i n .
This process causes the
r e l e a s e o f i o n s ( i n c l u d i n g sodium, potassium, c a l c i u m , magnesium, aluminium, s i l i c o n , and i r o n ) i n t o t h e c i r c u l a t i n g groundwater.
As t h e groundwater moves t h r o u g h t h e
sediment i t s composition i s modified and whenever t h e l o c a l c o n c e n t r a t i o n of d i s s o l v e d i o n s i s s u f f i c i e n t l y g r e a t a u t h i g e n i c m i n e r a l phases a r e p r e c i p i t a t e d i n t h e p o r e spaces.
The d e s e r t a l l u v i u m o f n o r t h w e s t e r n Mexico and t h e s o u t h w e s t e r n USA c o n t a i n s
a d i s t i n c t i v e s u i t e of e u h e d r a l a u t h i g e n i c m i n e r a l s i n c l u d i n g : mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e ,
potassium f e l d s p a r ,
q u a r t z , c a l c i t e and h a e m a t i t e .
It i s the
c r y s t a l l i n e , a u t h i g e n i c h a e m a t i t e formed by t h i s l a t e d i a g e n e t i c p r o c e s s which g i v e s t h e o l d e r (Miocene) d e p o s i t s o f t h e r e g i o n t h e i r b r i g h t r e d (9R 4 / 6 1 c o l o u r a t i o n . The c o n d i t i o n s needed f o r t h e f o r m a t i o n of r e d beds by i n t r a s t r a t a l a l t e r a t i o n of framework s i l i c a t e s have been summarized by Walker (1967a) a s f o l l o w s :
1) occurrence o f i r o n - b e a r i n g d e t r i t a l g r a i n s 2) post-depositional conditions favouring i n t r a s t r a t a l a l t e r a t i o n of the i r o n bearing
grains
3 ) i n t e r s t i t i a l Eh-pH c o n d i t i o n s t h a t a r e s u i t a b l e f o r t h e f o r m a t i o n o f i r o n o x i d e s
4 ) absence of subsequent r e d u c t i o n o f t h e f e r r i c i r o n 5 ) enough t i m e f o r i n t r a s t r a t a l a l t e r a t i o n s of t h e i r o n - b e a r i n g g r a i n s and t h e f e r r i c hydroxide formed by t h e a l t e r a t i o n t o be c o n v e r t e d i n t o h a e m a t i t e , and p o s s i b l y
105 6 ) r e l a t i v e l y warm (above 65-70°F)
temperature.
Red beds can form wherever t h e s e c o n d i t i o n s a r e m e t .
The i m p o r t a n t f a c t o r i s t h a t
c l i m a t e i s n o t a n i m p o r t a n t r e q u i s i t e f o r r e d bed f o r m a t i o n .
These r e s u l t s t h u s
c o n t r a d i c t t h e c l a i m t h a t r e d s o i l s i n d e s e r t s a r e t r a n s p o r t e d from, o r r e l i c t s o f , l a t e r i t i c s o i l s which formed i n p r e v i o u s h o t , m o i s t climates. The m a j o r i t y o f a n c i e n t r e d beds a r e now c o n s i d e r e d t o b e of d i a g e n e t i c o r i g i n and formed i n a manner s i m i l a r t o t h a t d e s c r i b e d by Walker (1967a, 1 9 7 6 ) .
The model
a p p l i e s e q u a l l y w e l l t o b o t h a n c i e n t a e o l i a n s a n d s ( e . g . Kessler, 1978) and a n c i e n t d e s e r t a l l u v i u m ( e . g . G l e n n i e e t a l . , 1978). ANCIENT AEOLIAN RED BEDS Introduction The m a j o r i t y o f t h e ' c l a s s i c ' examples o f a n c i e n t a e o l i a n s a n d s t o n e s come from t h e l a t e P a l a e o z o i c and E a r l y Mesozoic of t h e w e s t e r n USA ( T a b l e 2 . 2 ) .
O t h e r examples
i n c l u d e t h e T r i a s s i c Botucatu Sandstones of B r a z i l (Almeida, 1953; B i g a r e l l a , 1972). and t h e Lower Permian ( R o t l i e g e n d e s ) s a n d s t o n e s o f B r i t a i n and t h e North Sea b a s i n (Laming, 1966; G l e n n i e , 1970, 1972; Waugh, 1970b) which o c c u r i n a s s o c i a t i o n w i t h d e s e r t a l l u v i a l and i n l a n d sabkha d e p o s i t s . The r e c o g n i t i o n o f a n c i e n t a e o l i a n s a n d s t o n e s i s by no means a n e a s y m a t t e r and t h e c r i t e r i a d e v i s e d by G l e n n i e (1970) may b e u s e f u l l y a p p l i e d :
1. Bedding h o r i z o n t a l o r l a r g e and small s c a l e c r o s s - b e d d i n g , showing c o n s t a n t o r multiple orientation 2. I n d i v i d u a l laminae w e l l - s o r t e d , e s p e c i a l l y i n f i n e r g r a i n s i z e s ; s h a r p g r a i n s i z e d i f f e r e n c e s between laminae a r e common
3 . G r a i n s i z e commonly r a n g e s from s i l t (60 m) t o c o a r s e sand.
Maximum s i z e f o r
wind t r a n s p o r t i s c . l.Ocm
4. L a r g e r s a n d g r a i n s t e n d t o b e w e l l - s o r t e d 5 . Clay d r a p e s a r e v e r y r a r e 6. Sands a r e f r e e of c l a y 7. Uncemented q u a r t z g r a i n s a r e f r o s t e d
8. Mica i s g e n e r a l l y a b s e n t Perhaps t h e most c h a r a c t e r i s t i c ( b u t n o t n e c e s s a r i l y d i a g n o s t i c ) f e a t u r e of a n c i e n t a e o l i a n s a n d s t o n e s i s t h e l a r g e s c a l e of t h e cross-bedding.
These a r e most
commonly p l a n a r t a b u l a r u n i t s a l t h o u g h t r o u g h s ( e . g . K n i g h t , 1929) a r e a l s o described.
I n d i v i d u a l s e t s may b e up t o 35m t h i c k and m u l t i p l e s e t s may occupy
g r e a t s t r a t i g r a p h i c thicknesses (Table 2.2).
One o f t h e b e s t d e s c r i p t i o n s of a n c i e n t
a e o l i a n c r o s s - b e d d i n g has been made by Walker and Harms (1972) from t h e Permian Lyons Sandstone of Colorado ( F i g . 2 . 2 3 ) .
I n v e r t i c a l cross s e c t i o n t h e cross-bedding appears
t o be p l a n a r t a b u l a r b u t on t h e exhumed l e e f a c e t h e r e a r e v e r y low a m p l i t u d e sand
106 TABLE 2.2.
C h a r a c t e r i s t i c s of t h e c l a s s i c a e o l i a n s a n d s t o n e s o f t h e w e s t e r n USA. Formation
CASPER
Age
Penn-Perm
Approx.Max. Thickness
Thick
Dip
Type
Ref e r e nce
240m
min 15m,
15-25'
troughs
S t e i d tmann
,
1974 COCONINO
Perm
3 30m
CEDAR MESA
Perm
450m
DE CHELLY
Perm
WHITE R I M
huge"
25- 30'
randomly B a a r s , 1962 oriented wedge-shaped sets
up t o 30m
up t o 25
planar tabular
B a a r s , 1962
3 30m
up t o 35m
15-35'
planar tabular
B a a r s , 1962
Perm
200m
up t o 20m
19-27'
planar tabular
Baars and S e a g e r , 1970
LYONS
Perm
40m
up t o 13m
25-28'
planar tabular
Walker and Harms, 1972
WINGATE
U.Trias
130m
up t o 15m
up t o 30'
NAVAJO
L.Jurassic
700m
up t o 30m
20-30'
U.J u r a s s i c ENTRADA ( S l i c k Rock Member)
280m
up t o 8 m
Dane, 1935 planar S a n d e r s o n , 1974 tabular Freeman and i n lower V i s h e r , 1975 p a r t (3-10m) trough i n upper p a r t (up t o 6m ) "wedging set" "sweeping aeolian c r o s s beds"
r i p p l e s t h a t s u g g e s t t h a t s a n d was blown a c r o s s t h e dune f a c e .
C r a i g and Shawe, 1975
The p l a n view shows
t h a t t h e e n t i r e dune advanced down d i p n o t by a v a l a n c h i n g down t h e s l i p f a c e b u t by t h e a d d i t i o n t o t h e l e e f a c e of wedges of s a n d blown i n t o p l a c e a c r o s s t h e dune. According t o Walker and Harms (1972) t h i s a l s o e x p l a i n s t h e low d i p a n g l e (25') t h e c r o s s beds which would b e n e a r e r t h e a n g l e of r e p o s e f o r d r y s a n d (34')
of
i f dune
m i g r a t i o n had been by a v a l a n c h i n g . I n f a c t t h e a n g l e of 34'
i s r a r e l y a t t a i n e d by a n c i e n t a e o l i a n s a n d s t o n e s a l t h o u g h
t h i s c o u l d be due p a r t l y t o p o s t - d e p o s i t i o n a l r e d u c t i o n by compaction ( G l e n n i e , 1972). The most abundant t y p e of a n c i e n t a e o l i a n c r o s s - b e d d i n g i s t h e p l a n a r t a b u l a r t y p e a p p a r e n t l y produced by t r a n s v e r s e dune t y p e s i n c l u d i n g barchans ( e . g . S h o t t o n , 1956).
107
Fig.2.23. Geometry of a e o l i a n c r o s s - b e d d i n g a s s e e n i n t h e Lyons S a n d s t o n e , Lyons Quarry (Permian, Colorado) ( a f t e r Walker and Harms, 1972). L o n g i t u d i n a l dune t y p e s a r e s u r p r i s i n g l y r a r e i n t h e s t r a t i g r a p h i c r e c o r d a l t h o u g h t h e Permian Yellow Sands o f NE England p r o v i d e a p o s s i b l e example ( G l e n n i e , 1972; Magraw, 1975). D i s t i n g u i s h i n g a e o l i a n from s h a l l o w marine s a n d s t o n e s A number of a n c i e n t s a n d s t o n e u n i t s p r e v i o u s l y r e g a r d e d a s a e o l i a n i n o r i g i n
( i n c l u d i n g some i n T a b l e 2 . 2 ) have r e c e n t l y been r e i n t e r p r e t e d a s s h a l l o w marine deposits.
Baars (19621, f o r example, c r i t i c i z e d t h e a e o l i a n i n t e r p r e t a t i o n of
t h e Cedar Mesa s a n d s t o n e s a s d i d Baars and S e a g e r (1970) f o r t h e White R i m sandstones ( s e e Table 2.2). cross-bedding.
I n b o t h c a s e s t h e i r argument was b a s e d on t h e s t y l e of
The Cedar Mesa i s c h a r a c t e r i z e d by .."moderate t o low a n g l e c r o s s -
s t r a t i f i c a t i o n , v e r y low a n g l e t o h o r i z o n t a l t h i n s a n d b e d s , long sweeping c u r v e s from m o d e r a t e l y d i p p i n g c r o s s - s t r a t a i n t o h o r i z o n t a l f o r e s e t b e d s , t h i n s i m p l e s e t s of low a n g l e c r o s s - s t r a t a "
( B a a r s , 1962, p.178).
The d e p o s i t s were r e i n t e r p r e t e d
a s l i t t o r a l o r beach sands ( B a a r s , 1962) b u t t h i s i n t e r p r e t a t i o n c a n n o t a c c o u n t f o r t h e s e t s up t o 30m t h i c k which a r e unknown i n any p r e s e n t - d a y beach environment. The c r i t i c i s m of t h e a e o l i a n i n t e r p r e t a t i o n o f t h e White R i m Sandstone was based on t h e i r r e g u l a r b a r - l i k e topography on t h e t o p of t h e White R i m .
The b a r topography
i s mantled by a v e n e e r o f wave-rippled sand which was a l m o s t c e r t a i n l y d e p o s i t e d i n
a marine environment.
A p p a r e n t l y i g n o r i n g t h e 20m t h i c k c r o s s beds i n t h e White R i m
Sandstone Baars and S e a g e r (1970) r e i n t e r p r e t e d t h e whole f o r m a t i o n a s s h a l l o w marine on t h e b a s i s of t h e b a r - l i k e topography and v e n e e r o f wave r i p p l e d sand.
A more
s a t i s f a c t o r y i n t e r p r e t a t i o n would b e t h a t t h e White R i m Sandstone i s a n a e o l i a n sand
108 which has s u f f e r e d marine reworking i n i t s upper p a r t . The s h a l l o w marine d e p o s i t s which most c l o s e l y resemble a e o l i a n s a n d s and which t h u s c r e a t e t h e most c o n f u s i o n i n i n t e r p r e t a t i o n a r e submarine s a n d waves and t i d a l current ridges.
These a r e common on many s h e l f a r e a s (Houbolt, 1968; McCave, 1971;
S w i f t , 1975) and f r e q u e n t l y show c r o s s - b e d d i n g which i t i s c l a i m e d c l o s e l y r e s e m b l e s a e o l i a n dune bedding ( S t a n l e y e t a l . , 1971, p . 1 3 ) ( F i g . 2 . 2 4 ) .
Thus, w i t h i n c r e a s i n g
knowledge of cross-bedded submarine s a n d s a number of s a n d s t o n e s c l a s s i c a l l y r e g a r d e d a s a e o l i a n have been r e i n t e r p r e t e d a s s h a l l o w marine s a n d waves o r t i d a l c u r r e n t ridges.
The most n o t a b l e amongst t h e s e i s t h e J u r a s s i c Navajo S a n d s t o n e , b u t t h e
r e i n t e r p r e t a t i o n o f Freeman a n d V i s h e r (1975) h a s been s t r o n g l y c r i t i c i z e d by many a u t h o r s ( F o l k , 1977; P i c a r d , 1977; R u z y l a , 1977; Steidmann, 1977).
The r e i n t e r p -
r e t a t i o n of t h e Permian Yellow Sands a s a t i d a l c u r r e n t r i d g e by P r y o r (1971b) i s a l s o open t o c r i t i c i s m .
P r y o r (1971a) l i k e n e d t h e W e i s s l i e g e n d e s of Germany t o t h e
t i d a l c u r r e n t r i d g e s d e s c r i b e d by Houbolt (1968) c l a i m i n g t h a t Houbolt (1968) showed .."cross-stratification i n thickness..".
i n t h e submarine sand r i d g e s o f t h e North Sea t o exceed 40m
I n f a c t H o u b o l t ' s (1968) c r o s s s e c t i o n s show c o n s i d e r a b l e v e r t i c a l
e x a g g e r a t i o n and t h e t r u e d i p on t h e " s t e e p " f a c e s i s o n l y 5 o r 6'
In
(Fig.2.24).
g e n e r a l , t h e t r u e deep o f " s t e e p " f a c e s on submarine sand waves and r i d g e s i s r a t h e r s h a l l o w (up t o 1 0 ' )
and does n o t b e a r c l o s e comparison w i t h t h e v e r y t h i c k , s t e e p l y
d i p p i n g cross-beds which t y p i f y a n c i e n t a e o l i a n s a n d s t o n e s . many a e o l i a n u n i t s has c e r t a i n l y been o u t of p l a c e .
The r e i n t e r p r e t a t i o n of
I t may b e t h a t we r a t h e r under-
e s t i m a t e t h e amount of a e o l i a n s a n d i n t h e s t r a t i g r a p h i c r e c o r d . A l l t h e a e o l i a n s a n d s which have been s u b j e c t t o s e r i o u s r e i n t e r p r e t a t i o n l a t e r a l l y i n t e r f i n g e r w i t h s h a l l o w marine d e p o s i t s and do n o t c o n t a i n abundant d e s e r t s e d i m e n t s of o t h e r f a c i e s .
A e o l i a n s a n d s t o n e s can b e c o n f i d e n t l y i d e n t i f i e d when t h e y o c c u r i n
i n t e r n a l b a s i n s a s s o c i a t e d w i t h d e s e r t f l u v i a l and i n l a n d sabkha d e p o s i t s a n d , of c o u r s e , show t h e t y p i c a l t e x t u r a l p r o p e r t i e s and c r o s s - b e d d i n g ,
An e x c e l l e n t example
i s a f f o r d e d by t h e Lower Permian of NW Europe. The Lower Permian of NW Europe The Lower Permian o f Northwestern Europe i n c l u d i n g t h e North Sea a r e a i s one of t h e best-known a n c i e n t exantples of t h e d e s e r t - e v a p o r i t e r e d bed a s s o c i a t i o n ,
It i s
g e n e r a l l y known a s t h e " R o t l i e g e n d e s " ( t h e " r e d beds" which u n d e r l i e t h e Upper Permian Z e c h s t e i n s e q u e n c e ) and r e p r e s e n t s a c o n t i n e n t a l c l a s t i c sequence d e p o s i t e d under semi-desert conditions.
R o t l i e g e n d e s f a c i e s have been r e c o g n i z e d i n England,
S c o t l a n d ( S h e r l o c k , 1926, 1928, 1 9 4 7 ) , s o u t h e r n Norway ( H o l t e d a h l , 1934; Dons and G y W , 19671, t h e Rhine Graben i n F r a n c e and w e s t e r n Germany ( L a p p a r e n t , 1906; H a r r a s s o w i t z , 1 9 2 6 ) , T h u r i n g i a and Harz i n c e n t r a l and e a s t e r n Germany (Gagel, 1926; Born, 1926) and i n Poland and o t h e r p a r t s of F r a n c e , Germany, t h e P y r e n e e s , and R u s s i a ( S h e r l o c k , 1947).
North Sea e x p l o r a t i o n h a s shown t h a t t h e s e s c a t t e r e d
109
r25 I
B
215' sea level
35"
Well Bank
340°160~280"realevel
100"
Well Bank
4/ \ \ \
0
0
'2 km
1
235" sea level
55'
Smith Knoll
0
0
1
2km
Fig.2.24. A . P r o f i l e s o f s a n d waves i n t h e s o u t h e r n s i g h t o f t h e North Sea. V e r t i c a l s c a l e p o s i t i o n e d w i t h r e s p e c t t o s e a l e v e l = Om. Lengths o f s e c t i o n s a b o u t 3800m ( A ) , 2800m (B), 900m (C) and 1220m (D). C a l c u l a t e d d i p s o f " s t e e p f a c e s " a v e r a g e s 5 O ( a f t e r McCave, 1971). B. S p a r k e r p r o f i l e s o f t i d a l c u r r e n t r i d g e s i n t h e e a s t c o a s t o f England. Although t h e y look l i k e a s y m m e t r i c a l c r o s s bedded f e a t u r e s , compare t h e h o r i z o n t a l and v e r t i c a l s c a l e s t o s e e c o n s i d e r a b l e v e r t i c a l e x a g g e r a t i o n . C a l c u l a t e d s t e e p s l o p e a v e r a g e 5-60 ( a f t e r H o u b o l t , 1968).
110 o u t c r o p s form p a r t of a t l e a s t two f a u l t bounded s e d i m e n t a r y b a s i n s which l a y a l o n g t h e n o r t h e r n margin o f t h e V a r i s c a n mountain c h a i n . WNW-ESE a r e s e p a r a t e d by t h e Mid-North Sea
-
These b a s i n s
which t r e n d
RingkBbing-Fyn High.
The p a l e e o -
geography and f a c i e s d i s t r i b u t i o n o f t h e R o t l i e g e n d e s , b a s e d on Z i e g l e r (1975, 1978)
i s shown i n Fig.2.25.
Fig.2.25.
R o t l i e g e n d e s palaeogeography of NW Europe ( , a f t e r P . A . Z i e g l e r , 1978).
The Lower R o t l i e g e n d e s were d e p o s i t e d on a d e s e r t s u r f a c e c a r v e d o u t of a blockf a u l t e d s t r u c t u r a l c o n f i g u r a t i o n s i m i l a r t o t h a t d e s c r i b e d by Kent (1974, 1975) f o r e a s t e r n England and t h e North Sea.
A t t h i s t i m e (Late Carboniferous
-
E a r l y Permian)
t h e r e was widespread v o l c a n i c a c t i v i t y , p a r t i c u l a r l y i n t h e Oslo Graben and t h e a r e a t o t h e e a s t o f t h e N e t h e r l a n d s , and a l s o i n t h e s m a l l e r i s o l a t e d b a s i n s s u c h a s s o u t h west England (Laming, 1965, 1966) and t h o s e i n t h e s o u t h of S c o t l a n d (Mykura, 1965; Wagner, 1966; B r o o k f i e l d , 1 9 7 8 ) .
I n the e a s t e r n Netherlands t h i s Stephanian t o Early
Permian v o l c a n i c i t y r e s u l t e d i n t h e a c c u m u l a t i o n of o v e r 1,000m of q u a r t z p o r p h y r i e s , and s p i l i t i c l a v a s and t u f f s and t h e v o l c a n i c s a r e i n t e r b e d d e d w i t h conglomerates and c o n g l o m e r a t i c s a n d s t o n e s which r e s u l t e d from penecontemporaneous e r o s i o n .
In
some a r e a s c o n t i n e n t a l d e p o s i t i o n was c o n t i n u o u s through l a t e Westphalian-StephanianE a r l y Permian b u t o t h e r a r e a s were s u b j e c t e d t o e r o s i o n and deep w e a t h e r i n g f a r i n t o t h e Permian.
I n some of t h e s e a r e a s , such a s t h e Midlands of B r i t a i n and t h e Midland
V a l l e y of S c o t l a n d t h e deep d e s e r t w e a t h e r i n g was r e s p o n s i b l e f o r t h e secondary r e d d e n i n g of g r e y W e s t p h a l i a n Coal Measures ( B a i l e y , 1926; Mykura, 1960a). I t was
111 on t h i s d e s e r t s u r f a c e t h e n , c o n s i s t i n g m o s t l y o f W e s t p h a l i a n and S t e p h a n i a n s e d i m e n t s , i n p l a c e s w i t h contemporary v o l c a n i c s , t h a t t h e R o t l i e g e n d e s were d e p o s i t e d (Fig.2.26).
ES WLCANICS
Fluvial (Wadi) Conglomomtor, hndrtonor L Shalor
Fig.2.26. Conceptual c r o s s s e c t i o n s through t h e R o t l i e g e n d e s b a s i n i n s o u t h e r n North Sea and e a s t e r n N e t h e r l a n d s j u s t p r i o r t o t h e Z e c h s t e i n t r a n s g r e s s i o n . Cross s e c t i o n s a r e s o u t h of t h e Mid-North Sea High and Fyn G r i n s t e d High r e s p e c t i v e l y ( a f t e r G l e n n i e , 1972). The R o t l i e g e n d e s sediments a r e d i v e r s e and show many c h a r a c t e r i s t i c s analogous t o t h o s e of Recent d e s e r t s e d i m e n t s .
The f o l l o w i n g a c c o u n t of R o t l i e g e n d e s f a c i e s i s
based on S h o t t o n ( 1 9 5 6 ) , Laming ( 1 9 6 6 ) , G l e n n i e (1970, 19721, P i p e r ( 1 9 7 0 ) , Waugh ( 1 9 7 0 a , b ) , G l e n n i e e t a l . (1978), Marie ( 1 9 7 5 ) , and B r o o k f i e l d (1977, 1978). Marginal f a n g l o m e r a t e s and wadi d e p o s i t s Coarse g r a i n e d f l u v i a l c l a s t i c s i n c l u d i n g wadi-fan b r e c c i a s and f a n g l o m e r a t e s o c c u r t h r o u g h o u t , and a l o n g t h e s o u t h e r n margin of t h e V a r i s c a n mountains, and a l s o a s f l a n k d e p o s i t s around o t h e r h i g h l a n d a r e a s i n t h e Midlands o f England, t h e Lake D i s t r i c t , S o u t h Devon and t h e S c o t t i s h Basins ( F i g . 2 . 2 5 ) . d e s c r i b e d wadi d e p o s i t s from t h e s o u t h e r n North Sea.
G l e n n i e (1972) has
These c o n s i s t of a l t e r n a t i o n s
of subrounded-rounded q u a r t z i t e c o n g l o m e r a t e , brown-red s a n d s t o n e s , and dark r e d clay.
The r e d c l a y s have been c r a c k e d and c u r l e d by d e s i c c a t i o n and a l s o i n t r u d e d
112 by s a n d s t o n e dykes i n t h e same manner a s Recent wadi s e d i m e n t s . The d e s e r t f l u v i a t i l e s e d i m e n t s a r e s e e n t o b e s t e f f e c t i n some o f t h e o n s h o r e o u t c r o p s s u c h a s t h o s e i n SW England d e s c r i b e d by Laming ( 1 9 6 6 ) .
Here p o o r l y s o r t e d
w a t e r - l a i d b r e c c i a s were t r a n s p o r t e d t o t h e e a s t and n o r t h - e a s t a s i n d i c a t e d by c l a s t i m b r i c a t i o n and t h e i n c r e a s e i n roundness of l i m e s t o n e c l a s t s w h i l e i n t e r b e d d e d a e o l i a n sands show a palaeowind d i r e c t i o n t o t h e n o r t h - w e s t ( F i g . 2 . 2 7 ) .
The w a t e r -
l a i d d e p o s i t s show many o f t h e f e a t u r e s t y p i c a l of ephemeral d e s e r t a l l u v i u m They were p r o b a b l y d e p o s i t e d a s a l l u v i a l f a n s on which s h e e t f l o o d i n g
Fig.2.27. The Permian o u t c r o p of s o u t h Devon showing t h e t r a n s p o r t d i r e c t i o n s o f wadi d e p o s i t s and t h e palaeowind d i r e c t i o n ( a f t e r Laming, 1966):.
113 was of common o c c u r r e n c e .
The bedding s t y l e of t h e b r e c c i a s i s m a i n l y f l a t w i t h
trough c r o s s beds i n some down-fan a r e a s .
Other s i g n i f i c a n t sedimentary s t r u c t u r e s
i n c l u d e d e s i c c a t i o n c r a c k s , r a i n p r i n t s , and s a n d s t o n e dykes.
The w a t e r - l a i d
d e p o s i t s a r e f i r m l y cemented by c a l c i t e which was p r e c i p i t a t e d s h o r t l y a f t e r deposition a s i n other desert deposits.
In p l a c e s t h e w a t e r - l a i d a l l u v i u m i s i n t e r b e d d e d w i t h a e o l i a n s a n d ,
These a r e
g e n e r a l l y w e l l - s o r t e d , l a m i n a t e d s a n d s which a r e r e l a t i v e l y p o o r l y cemented. The s u c c e e d i n g wadi s e d i m e n t s have s h a r p e r o s i o n a l b a s e s i n d i c a t i n g t h e e r o s i o n of wind blown sands which p r e v i o u s l y b l o c k e d wadi c h a n n e l s . A e o l i a n sands Wadi s e d i m e n t s may b e o v e r l a i n o r i n t e r b e d d e d w i t h a e o l i a n dune sands ( G l e n n i e , 1970, 1972).
I n onshore a r e a s t h e r e a r e a number of Permian s a n d s t o n e s p a r t s of
which can b e s a f e l y r e g a r d e d a s d e s e r t dune d e p o s i t s .
These i n c l u d e t h e B r i d g n o r t h
Sandstone ( S h o t t o n , 1937, 1954) and i t s e q u i v a l e n t s i n t h e Vale of Clwyd, t h e C o l l y h u r s t Sandstone ( C o l t e r and B a r r , 1975) some o f t h e s a n d s t o n e s i n t h e s o u t h Devonshire b a s i n (Laming, 1 9 6 6 ) , and t h e s a n d s t o n e s on t h e Permian b a s i n s of t h e South of S c o t l a n d i n c l u d i n g t h e Mauchline, T h o r n h i l l , Lochmaben and Dumfries and t h e C o r r i e Sandstone of Arran ( P i p e r , 1970; B r o o k f i e l d , 1977, 1978).
The Yellow Sands
o f NE England, f o r a long t i m e r e g a r d e d a s a e o l i a n (Hodge, 1 9 3 2 ) , were r e i n t e r p r e t e d a s s h a l l o w m a r i n e dunes by P r y o r (1971b) b u t a r e a l s o l i k e l y t o b e of a e o l i a n o r i g i n . These s a n d s t o n e s f u l f i l l t h e c r i t e r i a e s t a b l i s h e d by G l e n n i e (1970) f o r t h e r e c o g n i t i o n of a e o l i a n d e p o s i t i o n . The a e o l i a n dune s a n d s comprise i n d i v i d u a l u n i t s o f r e d s a n d s t o n e s e p a r a t e d by bounding s u r f a c e s ,
Each u n i t u s u a l l y s t a r t s a t t h e b a s e w i t h s u b h o r i z o n t a l , f i n e l y
l a m i n a t e d s a n d s t o n e s and p a s s e s upwards i n t o more s t e e p l y d i p p i n g f o r e s e t laminae ( s l i p f a c e s ) which may a p p r o a c h 30'
i n d i p , b u t n e v e r 34'
T h i s d i f f e r e n c e can b e a c c o u n t e d f o r by compaction.
a s s e e n i n modern dunes;
These major bounding s u r f a c e s
a r e i n t e r p r e t e d a s erosion surfaces associated with the migration of draas.
I n the
North Sea a e o l i a n dunes i n t h e R o t l i e g e n d e s a r e r e a d i l y r e c o g n i z a b l e by t h e i r welll a m i n a t e d c r o s s - b e d d i n g and p e t r o l o g i c a l c h a r a c t e r i s t i c s .
A s i n t h e onshore o u t c r o p s
t h e g r a i n s i z e of t h e s a n d s i s m o s t l y fine-medium and o c c a s i o n a l l y c o a r s e g r a i n e d n e a r t h e b a s e of i n d i v i d u a l u n i t s .
The f i n e r g r a i n s a r e g e n e r a l l y s u b a n g u l a r and t h e
c o a r s e r ones subround o r round w i t h a f r o s t e d a p p e a r a n c e .
Clay m a t r i x , a p a r t from a u t h i g e n i c c l a y , i s a b s e n t and mica g e n e r a l l y
uncommon. scarce.
Bimodal sands a r e n o t
Some of t h e t e x t u r a l c h a r a c t e r i s t i c s o f R o t l i e g e n d e s a e o l i a n s a n d s a r e shown
i n Fig.2.15. Another f e a t u r e worthy of n o t e a r e t h e f u l g u r i t e s which o c c u r i n t h e C o r r i e Sandstone of t h e I s l e o f Arran.
These a r e r o d s o f f u s e d s a n d w i t h a s t a r - s h a p e d
c r o s s s e c t i o n which a r e i n t e t p r e t e d a s p a l a e o - l i g h t e n i n g
f l a s h e s (Harland and Hacker,
114 1966; P i p e r , 1970). They p r o v i d e good e v i d e n c e o f t h e former e x i s t e n c e o f d e s e r t s torms
.
Continuous d i p m e t e r measurements o v e r a wide a r e a of t h e North Sea shows t h a t dune s l i p f a c e s d i p c o n s i s t e n t l y westwards ( G l e n n i e , 1972).
It i s not possible to
t e l l from c o r e s a l o n e , however, what dune t y p e s p r e v a i l e d i n t h e s e dune f i e l d s . T h i s a l s o a p p l i e s t o many of t h e o n s h o r e a r e a s , w h e r e two-dimensional o u t c r o p p r e c l u d e s t h e r e c o g n i t i o n o f dune t y p e s .
However, S h o t t o n (19561, b e l i e v e d t h a t t h e
v a s t m a j o r i t y of Permian dunes were of t h e b a r c h a n t y p e on t h e b a s i s of unimodal d i s t r i b u t i o n s of s l i p f a c e laminae and Waugh (1970b) c o n s i d e r e d t h e P e n r i t h Sandstone t o have a l s o been d e p o s i t e d a s b a r c h a n dunes.
G l e n n i e (1972) on t h e o t h e r
hand was of t h e o p i n i o n t h a t s e i f d u n e s , on t h e b a s i s o f bedding a t t i t u d e s i n b o t h o u t c r o p s and w e l l c o r e s , were p r o b a b l y more numerous t h a n b a r c h a n s on t h e h i g h e r ground n e a r e r t h e V a r i s c a n Mountains, whereas b a r c h a n s o r t r a n s v e r s e dunes were more abundant i n t h e i n t e r i o r . Permian p a l a e o m a g n e t i c d a t a ( B r i d e n e t a l . , 1970; Van d e r Voo and French, 1974) e n a b l e a r e a l i s t i c c o n t i n e n t a l r e c o n s t r u c t i o n t o be made d e s p i t e t h e f a c t t h a t when a n a l y s e d i n d e t a i l t h e r e a r e some d i s c r e p a n c i e s i n t h e r e s u l t s (Briden e t a l . , 1970; Turner and Vaughan, 1977).
The r e l i a b l e d a t a ( s e e Van d e r Voo and F r e n c h , 1974,
p.109) p l a c e s B r i t a i n a b o u t 10°N of t h e Permian p a l a e o e q u a t o r ( F i g . 2 . 2 8 ) and t h u s provides important corroborative evidence f o r the postulated o r i g i n s of t h e Rotliegendes.
Moreover, i f t h e palaeowind d i r e c t i o n s a r e superimposed on t h e p a l a e o -
l a t i t u d e r e c o n s t r u c t i o n t h e n i t can be s e e n t h a t t h e palaeowinds were p r o b a b l y t h e
NE t r a d e winds and t h e R o t l i e g e n d e s d e s e r t can b e c o n s i d e r e d a s a N o r t h e r n hemisphere " t r a d e wind d e s e r t " ( G l e n n i e , 1972). D e s e r t l a k e and sabkha d e o o s i t s I n t h e SE p a r t o f t h e s o u t h e r n R o t l i e g e n d e s b a s i n t h e a e o l i a n s a n d s a r e succeeded by t h e Ten Boer Member a s u c c e s s i o n of r e d mudstones w i t h minor amounts o f s i l t s t o n e and s a n d s t o n e w i t h n o d u l a r a n h y d r i t e .
The s a n d s t o n e s commonly show a f f i n i t i e s w i t h
b o t h aqueous and a e o l i a n t r a n s p o r t ; mudcracks and c u r l e d mudflakes a r e common i n d i cating subaerial desiccation.
Adhesion r i p p l e s a r e commonly a s s o c i a t e d w i t h n o d u l a r
a n h y d r i t e and t h e i n t e r p r e t a t i o n i s t h a t t h e s e d e p o s i t s r e p r e s e n t t h o s e of a n i n l a n d sabkha which was s u b j e c t e d t o a l t e r n a t e f l o o d i n g and d e s i c c a t i o n . The i n l a n d sabkha sequence g r a d e s l a t e r a l l y i n t o a c l a y - r i c h sequence c h a r a c t e r i z e d by t h e p r e s e n c e of h a l i t e .
A d e t a i l e d p a l a e o g e o g r a p h i c a l map showing t h e l a t e r a l
f a c i e s arrangement i s g i v e n i n F i g . 2 . 2 9 .
T h i s sequence i s well-known a s t h e
H a s e l g e b i r g e f a c i e s of t h e R o t l i e g e n d e s ( R i c h t e r - B e r n b u r g , 1955; Kent and Walmsley, 1970) and is t h e dominant component i n t h e c e n t r a l p a r t of t h e s o u t h e r n b a s i n where t h e R o t l i e g e n d e s may b e up t o 1500m t h i c k a s opposed t o 250m a t t h e b a s i n margin.
115
.
Fig.2.28. Permian p a l a e o l a t i t u d e s f o r NW Europe ( b a s e d on Van d e r Voo and French, 1974) w i t h superimposed palaeowind d i r e c t i o n s . The r e c o n s t r u c t i o n p e r m i t s i n t e r p r e t a t i o n t h a t R o t l i e g e n d e s dune s a n d s were d e p o s i t e d i n a n o r t h e r n hemisphere " t r a d e wind d e s e r t " . H a l i t e comprises a b o u t 30% o f t h e H a s e l g e b i r g e f a c i e s and a n h y d r i t e i s s c a r c e , o n l y o c c u r r i n g a s cement o r a n h y d r i t i c c l a y ,
By a n a l o g y w i t h Recent h o t d e s e r t s t h e
H a s e l g e b i r g e f a c i e s i s i n t e r p r e t e d a s t h e d e p o s i t s of a s a l i n e d e s e r t l a k e a l t h o u g h l a k e s of t h i s magnitude a r e n o t known a t t h e p r e s e n t b u t o c c u r r e d a t o t h e r times i n t h e p a s t ( G l e n n i e , 1972).
In o r d e r t o accumulate t h e t h i c k sequences o f Ten Boer sabkha f a c i e s and H a s e l g e b i r g e l a k e f a c i e s r e l a t i v e s u b s i d e n c e must have o c c u r r e d and k e p t pace w i t h sedimentation.
Water was p r o b a b l y s u p p l i e d t o t h e c e n t r e of t h e R o t l i e g e n d e s b a s i n
from t h e V a r i s c a n mountains i n t h e s o u t h v i a t h e m a r g i n a l a l l u v i a l f a n s and wadis. T h i s R o t l i e g e n d e s d e s e r t b a s i n was t e r m i n a t e d by t h e Z e c h s t e i n marine t r a n s g r e s s i o n which i s r e p r e s e n t e d by t h e K u p f e r s c h i e f e r and t h e l a t e r a l l y e q u i v a l e n t Marl S l a t e of NE England.
T h i s t r a n s g r e s s i o n may have been t h e c a t a s t r o p h i c f l o o d i n g
of a sub-sea l e v e l b a s i n ( T u r n e r e t a l . , 1978; Smith, 1979) b u t t h e r e a r e i n d i c a t i m s t h a t i t took p l a c e i n a number of s t a g e s .
The f i r s t e v i d e n c e of marine c o n d i t i o n s
i s found i n t h e B l n d e r s c h i e f e r (Plumhoff, 1966) which c o n s i s t s o f a t h i n band w i t h a r i c h m a r i n e fauna a b o u t 2.5m below t h e l p w e s t Z e c h s t e i n l i m e s t o n e .
Also, Glennie
(1972) r e p o r t s s a n d s t o n e s which a r e c o n s i d e r e d t o have been slumped and homogenized
116 by flowing w a t e r .
I n a number o f p l a c e s , two s u c h h o r i z o n s o c c u r , s e p a r a t e d by a
temporary development of dune sand c l e a r l y i n d i c a t i n g t h e e p i s o d i c n a t u r e of t h e transgression.
=Mudstones
and Halite
=Wadi
Sediments
B A d h e s i o n Ripples
Fig.2.29. Schematic R o t l i e g e n d e s f a c i e s d i s t r i b u t i o n o f f t h e e a s t c o a s t o f England. South of t h e lake-margin sabkha dune s a n d s form t h e dominant sediment; t h e y a r e i n t e r bedded w i t h a v a r i a b l e p r o p o r t i o n o f wadi s e d i m e n t s a l o n g a n a x i s t r e n d i n g N from t h e p r e s e n t N o r f o l k c o a s t , and w i t h sabkha s e d i m e n t s , i n c l u d i n g a d h e s i o n r i p p l e s , a l o n g a n E-W a x i s through t h e n o r t h e r n S o l e P i t a r e a . Superimposed on t h i s map a r e c o n t o u r s of t h e e s t i m a t e d d i f f e r e n c e between t h e p r e s e n t and maximum d e p t h s of b u r i a l of t h e o v e r l y i n g B u n t e r S h a l e ( s o l i d l i n e s ) and t h e amount o f p o r o s i t y d e s t r u c t i o n a t t r i b u t e d t o compaction (dashed l i n e s ) . The Dowsing f a u l t zone was p r o b a b l y a c t i v e from R o t l i e g e n d e s t i m e ( a f t e r G l e n n i e e t a l . , 1978). D i a n e n e s i s and r e d d e n i n n of t h e R o t l i e n e n d e s F o r t h e most p a r t t h e R o t l i e g e n d e s a r e u n i f o r m l y r e d i n c o l o u r .
They p a s s upwards
117 i n t o marine s a n d s t o n e s ( W e i s s l i e g e n d e s ) which were never reddened (Nemec and Porebski, 1977a,b).
The r e d c o l o u r a t i o n o f t h e R o t l i e g e n d e s s a n d s t o n e s has been
debated f o r many y e a r s .
Dunham (1953) was w e l l aware t h a t t h e c o l o u r was due t o
g r a i n c o a t i n g s and m a i n t a i n e d t h a t i t developed p r i o r t o cementation.
He r e f e r r e d
t o t h e pigmentary m a t e r i a l a s t u r g i t e and b e l i e v e d t h a t i t o r i g i n a t e d i n d e s e r t m a r g i n a l a r e a s by l a t e r i t i c w e a t h e r i n g under a s u b t r o p i c a l , humid c l i m a t e .
Dunham
s u g g e s t e d t h a t t h e t u r g i t e was t r a n s p o r t e d t o s h a l l o w lagoons where i t c o a t e d sand g r a i n s d u r i n g s e d i m e n t a t i o n ; a mechanism of reddening i n e f f e c t i d e n t i c a l t o t h e Primary r e d bed model of Krynine (1949).
Shotton (1956), w h i l s t accepting t h a t
s u c h a mechanism might a c c o u n t f o r t h e r e d c o l o u r o f some o f t h e f l u v i a l r e d beds i n t h e New Red S a n d s t o n e , c l e a r l y thought i t a n u n s u i t a b l e e x p l a n a t i o n f o r t h e a e o l i a n s a n d s t o n e s s u c h a s t h e P e n r i t h Sandstone and t h e B r i d g n o r t h Sandstone because o f t h e absence o f w a t e r i n t h e a e o l i a n environment. S h o t t o n (1956, p.454) on t h e o t h e r hand q u i t e c l e a r l y s u g g e s t e d t h a t i n t r a s t r a t a l s o l u t i o n o f i r o n - b e a r i n g m i n e r a l s was r e s p o n s i b l e f o r t h e r e d c o l o u r a t i o n of t h e a e o l i a n sandstones..."The
o n l y method I c a n s u g g e s t i s t h e c a p i l l a r y movement of
dew w a t e r and o c c a s i o n a l r a i n f a l l i n t h e top l a y e r s o f s a n d , c r e e p i n g a s f i l m s over t h e s u r f a c e s and c o a t i n g them w i t h t u r g i t e from i r o n - b e a r i n g c o n s t i t u e n t s w i t h i n t h e sand i t s e l f . ,
,'I
Subsequent r e s e a r c h , n o t a b l y by Waugh ( 1 9 7 0 a , b ) , G l e n n i e e t a l . (1978), K e s s l e r (1978) and Hancock (1978) h a s s u p p o r t e d t h e c o n t e n t i o n s of S h o t t o n a l t h o u g h t h e i r c o n c l u s i o n s a r e based mainly on t h e o v e r a l l d i a g e n e t i c p i c t u r e and p a r t i c u l a r l y t h e p r e s e n c e o f a u t h i g e n i c phases.
Diagenetic f e a t u r e s i n Rotliegendes sandstones
include:
1) g r a i n d i s s o l u t i o n and t h e replacement o f framework s i l i c a t e s by c l a y 2 ) mechanical i n f i l t r a t i o n of c l a y
3 ) f o r m a t i o n o f a u t h i g e n i c q u a r t z , f e l d s p a r , and c l a y 4 ) f o r m a t i o n o f c a l c i t e and a n h y d r i t e cements Although t h e e f f e c t s o f b u r i a l d i a g e n e s i s a r e w e l l s e e n i n t h e R o t l i e g e n d e s t h e e a r l y d i a g e n e t i c f e a t u r e s a r e o f t e n extremely w e l l preserved.
There a r e many
e x c e l l e n t i l l u s t r a t i o n s o f t h e s e f e a t u r e s (e.g. Waugh, 1970a,b, 1978; G l e n n i e , e t a l . , 1978; Hancock, 1978; Kessler, 1978). Mechanical i n f i l t r a t i o n o f c l a v The r e d c o l o u r e d g r a i n c o a t i n g s i n some of t h e R o t l i e g e n d e s a e o l i a n s a n d s t o n e s can o f t e n be demonstrated t o have a g e o p e t a l f a b r i c ( F i g . 2 . 3 0 ) .
This f a b r i c u s u a l l y takes
t h e form o f a c o a t i n g on t h e p o s t - d e p o s i t i o n a l upper s u r f a c e of t h e d e t r i t a l g r a i n s and may t h i c k e n a t g r a i n c o n t a c t s o r even show meniscus b r i d g e s due t o s u r f a c e tension e f f e c t s .
When examined i n d e t a i l , u s i n g SEM, g r a i n c o a t i n g s o f t h i s type
a r e s e e n t o c o n s i s t o f l a y e r s o f c l a y f l a k e s o r i e n t a t e d p a r a l l e l t o t h e s u r f a c e of
118
Fig.2.30. Photomicrographs of r e d c l a y - i r o n o x i d e g r a i n c o a t i n g s i n R o t l i e g e n d e s a e o l i a n s a n d s t o n e s . A . Well-rounded s a n d g r a i n s showing c l a y - o x i d e g r a i n c o a t i n g s . Note t h e i r even t h i c k n e s s and a b s e n c e a t g r a i n c o n t a c t s ( C o r r i e S a n d s t o n e , A r r a n , S c o t l a n d ) . B. Clay-oxide c o a t i n g s of uneven t h i c k n e s s s u g g e s t i n g a geopedal o r i g i n ( S o l e P i t a r e a , North S e a ) . C . Clay-oxide i n f i l l i n g p i t s on a q u a r t z g r a i n s u g g e s t i n g o r i g i n a s a c l a y c u t a n ( P e n r i t h S a n d s t o n e , Cumbria). I). Deformed g r a i n of c l a y o x i d e , p r o b a b l y a c o m p l e t e l y pseudomorphed f e r r o m a g n e s i a n s i l i c a t e ( S o l e P i t a r e a , North S e a ) .
119
Fig.2.31. Photomicrographs of a u t h i g e n i c q u a r t z and f e l d s p a r i n R o t l i e g e n d e s a e o l i a n sandstones. A . Monocrystalline q u a r t z grains with o p t i c a l l y continuous overgrowths i n d i f f e r e n t e x t i n c t i o n p o s i t i o n s ( P e n r i t h S a n d s t o n e ) . B. Polyc r y s t a l l i n e q u a r t z g r a i n showing o p t i c a l c o n t i n u i t y between e a c h s u b c r y s t a l and i t s overgrowth ( P e n r i t h S a n d s t o n e ) . C. P l a g i o c l a s e w i t h o p t i c a l l y c o n t i n u o u s overgrowth ( S o l e P i t a r e a , N o r t h S e a ) .
120 t h e d e t r i t a l g r a i n ( s e e Kessler, 1978, P l a t e 2 ) . t h a t of a u t h i g e n i c c l a y .
T h i s f a b r i c i s q u i t e d i s t i n c t from
More commonly no g e o p e t a l f a b r i c i s r e c o g n i z a b l e , t h e r e d
c l a y o x i d e c o a t i n g i s o f uniform t h i c k n e s s a r o u n d t h e d e t r i t a l g r a i n s b u t a b s e n t a t g r a i n c o n t a c t s ( F i g . 2.30). Crone ( 1 9 7 5 ) , Walker (1976) and Walker e t a l . (1978) have d e m o n s t r a t e d t h a t g e o p e t a l c l a y f a b r i c s of t h i s t y p e form from t h e mechanical i n f i l t r a t i o n of c l a y by i n f l u e n t s e e p a g e of s u r f a c e r a i n o r f l o o d w a t e r s ,
I n t h e Cenozoic d e p o s i t s o f t h e
a r i d p a r t s o f N o r t h America t h i s i n f i l t r a t e d c l a y i s n o t r e d when d e p o s i t e d b u t reddens w i t h t i m e .
T h i s happens b e c a u s e o f t h e f o r m a t i o n of h a e m a t i t e by t h e
r e a c t i o n of oxygenated groundwater w i t h i r o n a d s o r b e d on c l a y s u r f a c e s and i n c l a y mineral l a t t i c e s .
There seems t o b e no r e a s o n why t h i s p r o c e s s i s n o t d i r e c t l y
a c c o u n t a b l e f o r t h e g e o p e t a l f a b r i c s observed i n t h e R o t l i e g e n d e s a e o l i a n r e d beds; i t is a l s o p r o b a b l e t h a t t h e non-geopetal
a s i m i l a r manner.
c l a y - o x i d e g r a i n c o a t i n g s were formed i n
There a r e no i n d i c a t i o n s t h a t t h e c l a y - o x i d e c o a t i n g s were formed
i n a more p l u v i a l c l i m a t e and l a t e r r e d e p o s i t e d i n a e o l i a n dunes ( c f . F o l k , 1976). Indeed many of t h e c o a r s e , well-rounded a e o l i a n g r a i n have s i n g l e c l a y o x i d e c o a t i n g s which c o u l d o n l y have formed p o s t - d e p o s i t i o n a l l y . A u t h i g e n i c q u a r t z , f e l d s p a r and c l a y m i n e r a l s A u t h i g e n i c o v e r g r o w t h s , p a r t i c u l a r l y of q u a r t z o r f e l d s p a r , a r e a common f e a t u r e of t h e Permian R o t l i e g e n d e s .
Q u a r t z overgrowths a r e v o l u m e t r i c a l l y more i m p o r t a n t
t h a n f e l d s p a r and have been d e s c r i b e d i n d e t a i l from t h e P e n r i t h Sandstone by Waugh (1970a,b).
The P e n r i t h Sandstone i s s i l i c i f i e d by q u a r t z overgrowths i n t h e
n o r t h e r n p a r t o f i t s o u t c r o p i n t h e Vale o f Eden b u t remains u n s i l i c i f i e d i n t h e s o u t h e r n p a r t where i t i s i n t e r b e d d e d w i t h c a l c i t e cemented f a n g l o m e r a t e s (brockram). (Waugh, 1970b, F i g . 4 ) . The overgrowths which t a k e t h e form of b i p y r a m i d a l q u a r t z c r y s t a l s o c c u r on a v a r i e t y o f q u a r t z t y p e s , i n c l u d i n g u n s t r a i n e d , s t r a i n e d , and polycrystalline grains.
The q u a r t z type i s i n s t r u m e n t a l i n c o n t r o l l i n g t h e t y p e of
overgrowth which i s produced.
Thus, s i n g l e c r y s t a l s t r a i n e d , and u n s t r a i n e d and
p o l y c r y s t a l l i n e overgrowths were r e c o g n i z e d by Waugh (1970a,b) and t h e s e a r e shown i n Fig.2.31. silcrete.
The s i l i c i f i e d P e n r i t h Sandstone can r e a d i l y b e i n t e r p r e t e d a s a d e s e r t
Other s i l i c i f i e d deposits e.g.
t h e Lower Permian p e t r i f i e d f o r e s t s o f
Germany have been i n t e r p r e t e d a s s i l c r e t e s (Schwarzbach, 1963, p . 6 5 ) .
Silcretes are
a common f e a t u r e o f modern d e s e r t s and have been d e s c r i b e d by Woolnough (19301, Sandford (1935) and A l l e y (1977).
The s i l i c e o u s cement i n s i l c r e t e s is u s u a l l y
r e p o r t e d a s o p a l o r chalcedony b u t Williamson (1957) h a s r e c o r d e d rounded a e o l i a n grains with o p t i c a l l y continuous quartz r i m s . Waugh (1970b) a t t r i b u t e d t h e s o u r c e o f t h e s e c o n d a r y s i l i c a i n t h e P e n r i t h Sandstone t o s i l i c e o u s d u s t produced by wind a b r a s i o n .
This i s consistent with the
g r e a t i m p o r t a n c e of a i r b o r n e d u s t i n t h e f o r m a t i o n of d e s e r t s o i l s (Yaalon, 1973).
121 Waugh went on t o s u g g e s t t h a t t h i s d u s t w i t h a h i g h l y s o l u b l e s u r f a c e l a y e r was d i s s o l v e d by a l k a l i n e groundwater and d e s e r t dews which i n t u r n were drawn t o t h e s u r f a c e of dunes by e v a p o r a t i o n .
On e v a p o r a t i o n o p t i c a l l y c o n t i n u o u s q u a r t z
overgrowths were p r e c i p i t a t e d a r o u n d i n d i v i d u a l g r a i n s .
The f o r m a t i o n o f q u a r t z
overgrowths i n t h i s way a c c o u n t s f o r t h e f a c t t h a t t h e c o r e s of P e n r i t h Sandstone barchans a r e f r e q u e n t l y l e s s s i l i c i f i e d and a l s o ( b e c a u s e o f d i f f e r e n c e s i n groundw a t e r c o m p o s i t i o n ) f o r t h e o c c u r r e n c e of u n s i l i c i f i e d P e n r i t h Sandstone a s s o c i a t e d with t h e marginal fanglomerates.
Here where c a r b o n a t e r o c k s were common i n t h e s o u r c e
a r e a t h e groundwaters were l i k e l y t o have been more a c i d . The d i s t r i b u t i o n o f a u t h i g e n i c q u a r t z i n t h e a e o l i a n s a n d s t o n e s of t h e s o u t h e r n N o r t h Sea i s a l s o i r r e g u l a r .
G l e n n i e e t a l . (1978) n o t e s t h a t a u t h i g e n i c q u a r t z i s
more abundant i n dune t o p s e t s than b o t t o m s e t s b u t a t t r i b u t e d i t t o b u r i a l d i a g e n e s i s . Although t h e amount of a u t h i g e n i c q u a r t z was t o o g r e a t t o be a c c o u n t e d f o r by p r e s s u r e s o l u t i o n a l o n e ( G l e n n i e e t a l . , 1978, p . 3 2 ) s u g g e s t e d t h a t ' f e l d s p a r l e a c h i n g and a l t e r a t i o n o f u n d e r l y i n g m o n t m o r i l l o n i t e and i l l i t e / m o n t m o r i l l o n i t e , r a t h e r t h a n a b r a s i o n d u s t , p r o v i d e d the s o u r c e o f e x t r a s i l i c a .
T h i s i s l i k e l y t o be the c a a e
f o r t h e l a t e d i a g e n e t i c q u a r t z which forms d u r i n g b u r i a l d i a g e n e s i s b u t i t c a n n o t a c c o u n t f o r t h e l a r g e volumes o f a u t h i g e n i c q u a r t z which undoubtedly form d u r i n g e a r l y d i a g e n e s i s , a s i n t h e c a s e of t h e P e n r i t h Sandstone. Authigenic f e l d s p a r (Fig.2.31) i s a minor, b u t c h a r a c t e r i s t i c c o n s t i t u e n t of Lower Permian s a n d s t o n e s .
Most commonly t h e a u t h i g e n i c f e l d s p a r o c c u r s a s over-
growths on d e t r i t a l g r a i n s b u t a l s o a s a p o r e - f i l l i n g cement.
K - f e l d s p a r overgrowths
a r e commonly s t o i c h i o m e t r i c K A l S i 0 w i t h -2V of 20-25' s u g g e s t i n g p o t a s s i u m i n t e r 3 8 m e d i a t e s a n i d i n e (Waugh, 1978). A u t h i g e n i c p l a g i o c l a s e s a l s o o c c u r b u t a r e much more scarce than the K-feldspar.
Hancock (1978) d e s c r i b e d a u t h i g e n i c overgrowths of
a l b i t e a n d a l b i t e cement c r y s t a l s from t h e R o t l i e g e n d e s o f West Germany.
The
r e q u i s i t e i o n s f o r t h e development o f a u t h i g e n i c f e l d s p a r a r e a l m o s t c e r t a i n l y p r o v i d e d by i n t r a s t r a t a l d i s s o l u t i o n of d e t r i t a l s i l i c a t e s ( i n c l u d i n g f e l d s p a r s ) and v o l c a n i c r o c k fragments.
The d i a g e n e t i c h i s t o r y o f f e l d s p a r i n t h e Lower
Permian s a n d s t o n e s i s p r o b a b l y , l i k e t h a t of q u a r t z , l o n g and complex, and a u t h i g e n i c f e l d s p a r was p r o b a b l y produced d u r i n g b u r i a l d i a g e n e s i s a s w e l l a s d u r i n g e a r l i e r diagenesis. The r e c o g n i t i o n o f d i s s o l u t i o n and a u t h i g e n e s i s i n f e l d s p a r g r a i n s i s o f c r u c i a l importance t o t h e r e d bed q u e s t i o n .
I t d e m o n s t r a t e s t h a t i n t r a s t r a t a l s o l u t i o n was
a n i m p o r t a n t p r o c e s s , and t h a t d e t r i t a l f e r r o m a g n e s i a n s i l i c a t e s must a l s o have suffered its effects. Permian s a n d s t o n e s .
There a r e v e r y few r e l i c t f e r r o m a g n e s i a n g r a i n s i n tk Lower Kessler (1978, P l a t e 2 , F i g . 6 ) i l l u s t r a t e s a p a r t i a l l y d i s s o l v e d
hornblende g r a i n b u t t h i s i s r a r e .
Following Walker (1967a) one m i g h t assume t h a t
t h e p a u c i t y of u n s t a b l e f e r r o m a g n e s i a n s i l i c a t e s i s due t o t h e i r s u b s e q u e n t d i s solution.
I n s u p p o r t of t h i s i s t h e f a i r l y common o c c u r r e n c e o f g r a i n s o f c l a y w i t h
a t h i c k e r o u t e r s h e l l of haematite (Fig.2.30)
which c o u l d b e c o m p l e t e l y r e p l a c e d by
122 ferromagnesian m i n e r a l s .
However, i n c o n t r a s t t o t h e f i r s t - c y c l e a r k o s e s d e s c r i b e d
by Walker they a r e u n l i k e l y t o have been v e r y abundant i n t h e Lower Permian which was d e r i v e d mainly from W e s t p h a l i a n / S t e p h a n i a n s e d i m e n t a r y r o c k s .
I n some a r e a s
e . g . Northern Germany v o l c a n i c d e t r i t u s i s i m p o r t a n t and t h e i n t r a s t r a t a l s o l u t i o n of such g r a i n s was p r o b a b l y a n i m p o r t a n t s o u r c e o f i r o n and o t h e r e l e m e n t s . The r e l a t i v e importance o f m e c h a n i c a l l y i n f i l t r a t e d c l a y and i n t r a s t r a t a l d i s s o l u t i o n of ferromagnesian g r a i n s o r v o l c a n i c c l a s t s i n t h e r e d d e n i n g of t h e Lower Permian s a n d s t o n e s i s n o t c l e a r .
Both p r o c e s s e s c e r t a i n l y o p e r a t e d and i t i s
l i k e l y t h a t i n combination t h e y c o u l d a c c o u n t f o r t h e o b s e r v e d c o l o u r a t i o n .
In
e i t h e r c a s e r e d n e s s was produced a t a n e a r l y s t a g e of d i a g e n e s i s . The most common a u t h i g e n i c c l a y m i n e r a l s i n t h e Lower Permian s a n d s t o n e s a r e i l l i t e and c h l o r i t e and i n some a r e a s t h e r e i s minor k a o l i n i t e .
The i l l i t e o c c u r s
i n a v a r i e t y o f forms which r e a d i l y e n a b l e i t s d i s t i n c t i o n from m e c h a n i c a l l y i n f i l trated illite.
Whereas t h e l a t t e r h a s a c l a s t i c t e x t u r e p a r a l l e l t o g r a i n s u r f a c e s
( s e e Kessler, 1978, P l a t e 2 , F i g . 3 ) t h e a u t h i g e n i c i l l i t e o c c u r s a s randomly o r r a d i a l l y o r i e n t a t e d f l a k e s which may s e p a r a t e outwards i n t o f i b r e s ( s e e G l e n n i e , e t a l . , 1978, P l a t e 2 , Fig.B).
Combined i l l i t e and c h l o r i t e i s u b i q u i t o u s i n a n c i e n t
r e d beds and i t i s r e a s o n a b l e t o assume ( c f . Walker, 1976; G l e n n i e e t a l . , 1978) t h a t much of i t was o r i g i n a l l y mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e produced by silicate alteration.
The t r a n s f o r m a t i o n o f i l l i t e - m o n t m o r i l l o n i t e t o i l l i t e and
t h e i n c r e a s e i n i l l i t e c r y s t a l l i n i t y w i t h i n c r e a s e i n t e m p e r a t u r e and d e p t h of b u r i a l g i v e s some i n d i c a t i o n o f t h e d e g r e e o f b u r i a l d i a g e n e s i s (Ktlbler, 1968).
The e f f e c t
o f a u t h i g e n i c c l a y m i n e r a l s on s a n d s t o n e p e r m e a b i l i t y i s d i s c u s s e d by S t a l d e r (1973)
-
A u t h i g e n i c i l l i t e i n Lower Permian s a n d s t o n e s i s f r e q u e n t l y i r o n - r i c h and a l t h o u g h t h e r e have been no d e t a i l e d s ' t u d i e s o f i t s t h i n s e c t i o n p e t r o g r a p h y i t i s l i k e l y t o have reddened d u r i n g d i a g e n e s i s by r e a c t i o n w i t h oxygenated g r o u n d w a t e r , C h l o r i t e , o c c u r r i n g a s t h i n hexagonal p l a t e s , formed a t t h e same t i m e a s i l l i t e . There i s no d i r e c t e v i d e n c e y e t r e p o r t e d which i n d i c a t e s t h a t t h e a l t e r a t i o n o f a u t h i g e n i c c h l o r i t e c o n t r i b u t e s d i r e c t l y t o r e d bed c o l o u r a t i o n .
Few o t h e r c l a y
m i n e r a l s sre r e p o r t e d from t h e R o t l i e g e n d e s , k a o l i n i t e b e i n g noteworthy.
This often
o c c u r s a s books o f pseudohexagonal c r y s t a l s which choke p o r e s p a c e s and i t i s normally i n t e r p r e t e d a s a n i n d i c a t i o n of a n a c i d phase of d i a g e n e s i s ( p e r h a p s r e s u l t i n g from m e t e o r i c w a t e r ) r e s u l t i n g from u p l i f t a f t e r deep b u r i a l ( M i l l o t , 1970; Hancock, 1978).
A u t h i g e n i c i l l i t e and k a o l i n i t e a r e i l l u s t r a t e d i n F i g . 2.32.
Carbonate and s u l p h a t e cements Two cementing a g e n t s a r e normally s e e n i n t h e R o t l i e g e n d e s s a n d s t o n e s : and a n h y d r i t e
(Fig.2.33).
calcite
C a l c i t e t y p i c a l l y o c c u r s a s a v e r y e a r l y cement i n wadi
s a n d s t o n e s and f a n g l o m e r a t e s .
This i s c o n s i s t e n t with the f e a t u r e s observed i n
modern d e p o s i t s formed under s i m i l a r c i r c u m s t a n c e s ( B l i s s e n b a c h , 1954; G l e n n i e , 1970;
123
Fig.2.32. SEM photographs of a u t h i g e n i c i l l i t e and k a o l i n i t e i n R o t l i e g e n d e s s a n d s t o n e s from t h e North Sea a r e a . A . I l l i t e , showing t y p i c a l boxwork t e x t u r e . B. A u t h i g e n i c q u a r t z c r y s t a l s forming p o r e s p a c e s plugged w i t h pseudohexagonal f l a k e s of k a o l i n i t e and some f i b r o u s i l l i t e .
124
Fig.2.33. C a l c i t e and a n h y d r i t e cement i n Rot'liegendes s a n d s t o n e s . A . C a l c i t e cement i n a wadi b r e c c i a . Growth zones a r e d e f i n e d by i r o n o x i d e i n c l u s i o n s (South Devon). B. A n h y d r i t e cement i n a dune s a n d s t o n e ( S o l e P i t a r e a , N o r t h S e a ) .
125 S t a l d e r , 1975). I n a e o l i a n s a n d s t o n e s c e m e n t a t i o n i s n e v e r p e r v a s i v e and many o f t h e dune sandstones a r e only loosely consolidated.
There a r e i m p o r t a n t d i f f e r e n c e s between t h e
Lower Permian s a n d s t o n e s o f B r i t a i n and t h e R o t l i e g e n d e s of t h e s o u t h e r n North Sea. The former show v e r y l i t t l e i n t h e way of c a r b o n a t e o r a n h y d r i t e cements and i t must b e presumed t h a t t h e cements were removed a t some s t a g e .
I n the Rotliegendes
gypsum i s s e e n a s a n e a r l y cement i n some dunes b u t i t i s u s u a l l y c o n v e r t e d t o a n h y d r i t e on b u r i a l ( G l e n n i e e t a l . ,
1978).
The a n h y d r i t e shows a p o i k i l i t i c o r
v o i d f i l l i n g h a b i t ( F i g . 2 . 3 3 ) and i s o f t e n a s s o c i a t e d w i t h d o l o m i t e which o f t e n shows similar textures.
Dolomite a l s o o c c u r s a s b l o c k y a n h e d r a l cement f i l l i n g p o r e s p a c e s
o r a s a g g r e g a t e s of f i n e e u h e d r a l c r y s t a l s .
As w i t h a n h y d r i t e t h e r e a r e i n d i c a t i o n s
t h a t d o l o m i t e may have been a n e a r l y p h a s e t o c r y s t a l l i z e i n t h e dune s a n d s t o n e s , b u t many a u t h o r s (e.g. G l e n n i e e t a l . , 1978) r e g a r d i t t o b e a p r o d u c t of b u r i a l diagen-
esis.
The f o r m a t i o n of d o l o m i t e by r e p l a c e m e n t i n t h i s manner i f of i n t e r e s t because
of t h e well-known a s s o c i a t i o n o f r e p l a c e m e n t d o l o m i t e s w i t h i r o n hydroxide o r h a e m a t i t e cements and zones ( K a t z , 1971; S t a l d e r , 1975).
Under c e r t a i n c i r c u m s t a n c e s
t h e l e a c h i n g o f i r o n from c a r b o n a t e s d u r i n g d o l o m i t i z a t i o n c o u l d p r o v i d e a n i m p o r t a n t s o u r c e of pigmentary h a e m a t i t e , CONCLUSIONS AND FURTHER READING
Desert r e d beds i n c l u d e two d i s t i n c t i v e t y p e s of r e d b e d s , d e s e r t a l l u v i u m and a e o l i a n sands.
The former p r o v i d e c l a s s i c examples o f r e d bed f o r m a t i o n by long-
c o n t i n u e d i n t r a s t r a t a l a l t e r a t i o n i n b o t h Cenozoic a l l u v i u m and a number o f a n c i e n t r e d beds.
The r e d d e n i n g h i s t o r y of a e o l i a n s a n d s is more c o m p l i c a t e d .
Red a e o l i a n
s a n d may b e d e r i v e d from l a t e r i t i z e d a l l u v i a l s e d i m e n t s and t h e n b e s u b j e c t e d t o i n t r a s t r a t a l a l t e r a t i o n and f u r t h e r . r e d d e n i n g ,
The g e o l o g i c a l s e t t i n g s of some
a n c i e n t r e d b e d s , s u c h a s t h e R o t l i e g e n d e s , a r e c o n s i s t e n t w i t h t h i s view and more work i s needed t o e l u c i d a t e t h e r e l a t i v e i m p o r t a n c e of p r e - d e p o s i t i o n a l a n d p o s t d e p o s i t i o n a l reddening. Comprehensive d e s c r i p t i o n s of modern d e s e r t s e d i m e n t s a r e g i v e n by t h e f o l l o w i n g . They a l s o i n c l u d e some d i s c u s s i o n of t h e problems o f r e d c o l o u r a t i o n i n d e s e r t s o i l s and s a n d s . Cooke, R.U.
and Warren, A . , 1973. Geomorphology i n Deserts. B.T.
Batsford Ltd.,
London, 374 pp. G l e n n i e , K.W.,
1970. Desert Sedimentary Environments. E l s e v i e r , Amsterdam, 222 pp.
126
CHAPTER 3 DELTA PLAIN RED BEDS
INTRODUCTION D e l t a s a r e b o d i e s of c l a s t i c s e d i m e n t formed i n s u b a e r i a l and s h a l l o w w a t e r environments by t h e i n f l o w of r i v e r s and i n which a g r a d a t i o n i n t o o f f s h o r e , g e n e r a l l y f i n e r g r a i n e d f a c i e s can be t r a c e d ,
I n many d e l t a s t h e d e p o s i t i o n a l
i n f l u e n c e of r i v e r s may b e masked by waves and t i d e s and t h e d e p o s i t s of t h e s e may b e v e r y d i f f i c u l t t o r e c o g n i z e i n t h e s t r a t i g r a p h i c r e c o r d .
Other d e l t a s a r e
dominated by t h e d e p o s i t i o n a l i n f l u e n c e of t h e s u p p l y i n g r i v e r s and a r e c h a r a c t e r i z e d by a s u b a e r i a l a l l u v i a l p l a i n known a s t h e d e l t a p l a i n .
Most o f t h e a n c i e n t
d e l t a i c s u c c e s s i o n s which have been d e s c r i b e d a r e o f t h i s r i v e r - d o m i n a t e d t y p e and c o n t a i n s e d i m e n t a r y sequences which can be a t t r i b u t e d t o d e p o s i t i o n i n t h e d e l t a p l a i n environment. The n a t u r e of t h e d e l t a p l a i n environment i s dependent upon s e v e r a l i n t e r - r e l a t e d v a r i a b l e s of which c l i m a t e , w a t e r d i s c h a r g e ( r a t e and v a r i a b i l i t y ) , and sediment l o a d ( q u a n t i t y and g r a i n s i z e ) a r e p a r t i c u l a r l y i m p o r t a n t .
I n A r c t i c and a r i d
c l i m a t e s where p r e c i p i t a t i o n i s e r r a t i c and v e g e t a t i o n i s s p a r s e , b r a i d e d c h a n n e l p a t t e r n s w i t h c o a r s e - g r a i n e d bed l o a d s t e n d t o develop on t h e d e l t a p l a i n and sandy o r pebbly sequences a r e d e p o s i t e d .
I n humid, t r o p i c a l c l i m a t e s p r e c i p i t a t i o n i s
h i g h and v e g e t a t i o n abundant f a v o u r i n g t h e f o r m a t i o n of meandering c h a n n e l s w i t h a h i g h suspended sediment l o a d and mud-dominated sequences predominate. Red beds may form i n any of t h e s e c l i m a t i c s e t t i n g s b u t a r e p a r t i c u l a r l y charact e r i s t i c and best-known from d e l t a p l a i n d e p o s i t s of m o i s t t r o p i c a l c l i m a t e s ( w i t h or without seasonal a r i d i t y ) .
T y p i c a l l y t h e s e r e d beds a r e developed i n m o t t l e d
o r polychrome mudstones d e p o s i t e d o v e r wide a r e a s of t h e d e l t a p l a i n . A s i n d e s e r t and a l l u v i a l r e d beds t h e r e a r e no good modern a n a l o g u e s of d e l t a p l a i n r e d b e d s , a f e a t u r e which s u g g e s t s t h a t t h e y a r e o f d i a g e n e t i c o r i g i n . The p r o c e s s e s l e a d i n g t o r e d d e n i n g o f muddy d e l t a p l a i n s e d i m e n t s a r e c l o s e l y dependent on ground w a t e r c o n d i t i o n s a n d , i n many c a s e s , a r e a s s o c i a t e d w i t h pedogenesis.
These p r o c e s s e s c o n t r a s t markedly w i t h r e d d e n i n g p r o c e s s e s i n f i r s t - c y c l e
arkosic alluvium.
They i n c l u d e t h e r e l e a s e o f i r o n o x i d e s d u r i n g c l a y m i n e r a l
t r a n s f o r m a t i o n s and t h e o x i d a t i o n o f f i n e l y d i s s e m i n a t e d p y r i t e a s w e l l a s t h e i n t r a s t r a t a l a 1 t e r a t i o n of i r o n - s i l i c a t e s . I n t h i s c h a p t e r t h e s e d i m e n t s o f modern d e l t a s and t h e i r a n c i e n t a n a l o g u e s a r e described i n d e t a i l .
T h i s i s f o l l o w e d by a d e s c r i p t i o n of t h e o c c u r r e n c e of r e d
127 beds i n a n c i e n t d e l t a p l a i n s e d i m e n t s and a d i s c u s s i o n o f t h e i r o r i g i n .
Special
r e f e r e n c e i s made t o t h o s e r e d beds which formed i n m o i s t t r o p i c a l c l i m a t e s and a r e i n t e r - d i g i t a t e d with coal-bearing s t r a t a i n t h e Carboniferous
System o f n o r t h e r n ,
Europe. DELTA MODELS Moore and A s q u i t h (1971) d e f i n e a d e l t a a s :
"The s u b a e r i a l and submerged c o n t i -
guous sediment mass d e p o s i t e d i n a body of w a t e r (ocean o r l a k e ) p r i m a r i l y by t h e a c t i o n of a r i v e r " .
D e l t a s formed a t ocean margins a r e c o n s i d e r a b l y more i m p o r t a n t
t h a n t h o s e formed i n l a k e s and a r e t h e s o l e s u b j e c t o f t h i s c h a p t e r .
Present-day
d e l t a s a r e r e l a t i v e l y young b e c a u s e t h e y have o n l y formed s i n c e t h e p o s t - P l e i s t o c e n e r i s e i n s e a l e v e l ; f o r t h e most p a r t , however, t h e y a r e v e r y l a r g e and t h e i r s u b a e r i a l e x t e n t may b e i n e x c e s s o f 100,000km
2
(Smith, 1966).
The d i s t r i b u t i o n , o r i e n t a t i o n and i n t e r n a l geometry of d e l t a i c d e p o s i t s i s c o n t r o l l e d by a v a r i e t y of f a c t o r s i n c l u d i n g c l i m a t e , w a t e r d i s c h a r g e , sediment l o a d , river-mouth p r o c e s s e s , waves, t i d e s , c u r r e n t s , w i n d s , s h e l f s l o p e and t h e t e c t o n i c s and geometry o f t h e r e c e i v i n g b a s i n (Wright e t a l . , 1973).
The r e s u l t i s t h a t d e l t a s
show c o n s i d e r a b l e v a r i a t i o n and a n u n d e r s t a n d i n g o f t h e c o n t r o l l i n g p r o c e s s e s i s n e c e s s a r y b e f o r e any m e a n i n g f u l c l a s s i f i c a t i o n can b e made. C l i m a t e , w a t e r d i s c h a r g e , and sediment l o a d a r e c l o s e l y i n t e r - r e l a t e d .
I n moist
t r o p i c a l r e g i o n s p r e c i p i t a t i o n i s g e n e r a l l y h i g h r e l a t i v e t o e v a p o t r a n s p i r a t i o n and r u n o f f t e n d s t o b e h i g h and s t e a d y .
The i m p o r t a n c e of chemical w e a t h e r i n g i n such
regions leads t o high dissolved-load sediment concentrations. r i v e l y s t a b l e meandering c h a n n e l p a t t e r n s predominate.
Consequently, r e l a -
I n Arctic o r a r i d conditions
where p r e c i p i t a t i o n i s spasmodic and v e g e t a t i o n s p a r s e , b r a i d e d c h a n n e l p a t t e r n s w i t h l a r g e bed l o a d s t e n d t o predominate (Coleman a n d W r i g h t , 1975; M i a l l , 1976). When a sediment-laden r i v e r e n t e r s a body o f s t a n d i n g w a t e r , depending on t h e d e n s i t y d i f f e r e n c e s between t h e r i v e r and t h e l a k e o r s e a i n t o which i t f l o w s , one of t h r e e t y p e s of flow d i s p e r s a l may o c c u r : A ) I n f l o w more dense and forms a p l a n a r j e t a l o n g t h e bottom.
commonly r e s u l t s .
A turbidity current
The d e p o s i t s which form from t h e s e bottom c u r r e n t s a r e u s u a l l y
c l a s s i f i e d a s submarine fans.
B) I n f l o w e q u a l l y dense o f t e n o c c u r s when rivers e n t e r l a k e s .
Under t h e s e c o n d i t i o n s
t h e sediment i s d i s p e r s e d r a d i a l l y and t h e competency i s r a p i d l y l o s t . a r c u a t e zone o f a c t i v e d e p o s i t i o n t h u s r e s u l t s
-
A narrow
the c l a s s i c a l Gilbertian delta.
C) I n f l o w less dense i s t h e c a s e which u s u a l l y p r e v a i l s i n marine d e l t a s because f r e s h w a t e r i s less dense t h a n s e a w a t e r ,
The t y p e of sediment d i s p e r s a l which t h e n
t a k e s p l a c e depends on t h e s t r e n g t h o f waves, t i d e s and l o n g s h o r e c u r r e n t s . The energy c o n d i t i o n s t h a t e x i s t i n t h e s e a a t t h e r i v e r mouth e x e r c i s e t h e main c o n t r o l on t h e d e p o s i t i o n a l environment and t h e morphology of t h e r e s u l t i n g d e l t a .
128 The most u s e f u l c l a s s i f i c a t i o n of d e l t a t y p e s i s one based on t h e r e l a t i v e s t r e n g t h s of f l u v i a l and marine p r o c e s s e s ( c f . F i s h e r e t a l . , Galloway, 1975).
1969;. Coleman and W r i g h t , 1975;
F i s h e r e t a l . (1969) d i s t i n g u i s h e d between h i g h - c o n s t r u c t i v e
d e l t a s dominated by f l u v i a l p r o c e s s e s , and h i g h - d e s t r u c t i v e d e l t a s dominated by b a s i n a l processes (Fig.3.1).
H i g h - c o n s t r u c t i v e d e l t a s i n c l u d e t h e l o b a t e and b i r d -
f o o t types w h i l s t t h e h i g h - d e s t r u c t i v e d e l t a s i n c l u d e t h e wave-dominated and t i d e dominated t y p e s .
Although t h i s c l a s s i f i c a t i o n i s u s e f u l b e c a u s e i t stresses t h e
importance o f v e r t i c a l f a c i e s sequence and t h e a r e a l d i s t r i b u t i o n o f f a c i e s i t has a number of d i s a d v a n t a g e s and h a s n o t been w i d e l y a d o p t e d .
I n the f i r s t place the
scheme p l a c e s t o o much emphasis on t h e two end-members o f what i s r e a l l y a c o n t i n uous spectrum o f d e l t a - t y p e s .
Secondly, t h e u s e of t h e term h i g h - d e s t r u c t i v e i s
m i s l e a d i n g because a l l d e l t a s , by d e f i n i t i o n a r e c o n s t r u c t i v e w h i l s t a c t i v e and t h e
term i s a l s o confused w i t h t h e s o - c a l l e d " d e s t r u c t i o n a l phase" of d e l t a s ( S c r u t o n , 1960) which t a k e s p l a c e a f t e r d e l t a abandonment. A more w i d e l y used c l a s s i f i c a t i o n i s t h a t proposed by Galloway (1975) which employs a t e r n a r y diagram t o d e p i c t t h e f i e l d s o f f l u v i a l - , wave-, and t i d e dominated d e l t a s (Fig.3.2). Fluvial-dominated
Fig.3.1. (1969).
High-constructive
d e l t a s occur when waves, t i d a l c u r r e n t s , and
and h i g h - d e s t r u c t i v e d e l t a s a s d e f i n e d by F i s h e r e t a l .
129 longshore c u r r e n t s a r e weak.
Rapid seaward p r o d u c t i o n t a k e s p l a c e and a v a r i e t y of
c h a r a c t e r i s t i c f l u v i a l l y - d o m i n a t e d d e p o s i t i o n a l environments d e v e l o p s .
A t t h e mouth
o f each d i s t r i b u t o r y c h a n n e l subaqueous l e v e e s may form a s t h e j e t of w a t e r e n t e r s the sea (Fig.3.3).
The main s e d i m e n t l o a d i s t h e n d e p o s i t e d i n a d i s t r i b u t o r y mouth
b a r which becomes f i n e r g r a i n e d seawards.
With c o n t i n u e d p r o g r a d a t i o n t h e r i v e r
g r a d i e n t becomes s h a l l o w e r and t h e flow becomes less competent.
During p e r i o d s of
h i g h d i s c h a r g e t h e s u b a e r i a l l e v e e s may b e b r e a c h e d upstream forming a c r e v a s s e through which t h e f l o w may b e d i v e r t e d towards t h e s e a .
This i s often a shorter
r o u t e t h a n that p r o v i d e d by t h e former d i s t r i b u t a r y c h a n n e l and i t may r e s u l t i n t h e f o r m a t i o n of c r e v a s s e - s p l a y d e p o s i t s i n i n t e r d i s t r i b u t a r y bays.
RIVER
bY
DOMINATED
DOMINATED
Rhono
WAVE ENERGY
TIDE ENERGY
Fig.3.2. A c l a s s i f i c a t i o n o f d e l t a t y p e s b a s e d on v a r i a t i o n s i n t r a n s p o r t a t i o n p a t t e r n s on t h e d e l t a ( a f t e r Calloway, 1975). River-dominated d e l t a s t e n d t o b e of two main s u b t y p e s ,
The f i r s t i s t h e b i r d -
f o o t d e l t a which h a s r e l a t i v e l y few d i s t r i b u t a r i e s , s h o e s t r i n g s a n d s , and d i s c r e t e mouth b a r d e p o s i t s .
T h i s t y p e of d e l t a t e n d s t o form when t h e r i v e r d i s c h a r g e i s
s t e a d y and has a h i g h s u s p e n s i o n l o a d ( s e e Fig.3.1D).
The second t y p e i s normally
l o b a t e i n o u t l i n e and t h e r e a r e a g r e a t e r number of d i s t r i b u t a r i e s e a c h of which t e n d s t o be more ephemeral.
I n t h i s t y p e t h e s e d i m e n t s tend t o b e c o a r s e r g r a i n e d
w i t h a g r e a t e r p r o p o r t i o n of bed l o a d and t h e mouth b a r d e p o s i t s merge l a t e r a l l y
130 i n t o s h e e t sands ( s e e Fig.3.1C)
Fig.3.3. Subenvironments a t a d i s t r i b u t a r y mouth i n a r i v e r - d o m i n a t e d d e l t a , South P a s s , M i s s i s s i p p i d e l t a ( a f t e r Coleman and G a g l i a n o , 1965).
I n wave-dominated d e l t a s mouth b a r d e p o s i t s a r e c o n t i n u a l l y reworked i n t o a s e r i e s of superimposed c o a s t a l b a r r i e r sands (Fig.3.4A).
These w i l l t e n d t o dominate t h e
v e r t i c a l s u c c e s s i o n of f a c i e s w i t h s a n d b o d i e s a l i g n e d g e n e r a l l y p a r a l l e l t o t h e c o a s t i n c o n t r a s t t o t h e sand b o d i e s o f r i v e r - d o m i n a t e d d e l t a s which w i l l be g e n e r a l l y perpendicular t o the coast.
In tide-dominated d e l t a s t h e t i d a l r a n g e i s so h i g h t h a t t i d a l c u r r e n t s i n d i s t r i b u t a r y c h a n n e l become t h e p r i n c i p a l s o u r c e of sediment d i s p e r s a l e n e r g y .
Around,
and seaward o f t h e d i s t r i b u t a r y mouth t h e sediment may b e reworked i n t o a series of p a r a l l e l , l i n e a r o r d i g i t a t e r i d g e s which a r e a l i g n e d p a r a l l e l t o t h e t i d a l c u r r e n t s .
131 DELTAIC FACIES ASSOCIATIONS C l a s s i c a l l y t h r e e s t r u c t u r a l elements can be recognized i n d e l t a s : - t o p s e t , fores e t and b o t t o m s e t .
The t o p s e t d e p o s i t s o f a d e l t a a r e t h e most i m p o r t a n t and
comprise a v a r i e t y o f s e d i m e n t s i n c l u d i n g marsh d e p o s i t s and d e l t a - f r o n t s i l t s and sands.
These a r e c u t by r i v e r and d i s t r i b u t a r y c h a n n e l s w i t h n a t u r a l l e v e e s and
crevasse splays.
Muddy s e d i m e n t s w i t h s h e l l l a y e r s a r e o f t e n d e p o s i t e d i n
i n t e r d i s t r i b u t a r y bays ( S c r u t o n , 1960).
T o p s e t d e p o s i t s can b e d i v i d e d i n t o
t h o s e d e p o s i t e d s u b a e r i a l l y ( d e l t a p l a i n f a c i e s ) and t h o s e d e p o s i t e d subaqueously (delta front faciesl. h
A
B
-
WAVE DOMINATED
c
b
TIM -DOMINATED
Fig.3.4. A . A wave-dominated d e l t a , t h e modern Rh8ne d e l t a d e l t a , t h e modern Gulf of Papua ( a f t e r F i s h e r , 1969).
B. A tide-dominated
The f o r e s e t d e p o s i t s a r e t h o s e o f t h e p r o d e l t a o r d e l t a f r o n t s l o p e .
These a r e
p r e d o m i n a n t l y s i l t y c l a y s , sometimes w i t h s a n d , which a r e formed o f f t h e main d e l t a distributaries.
F r e q u e n t l y i n c o r p o r a t e d i n t o t h e p r o d e l t a a r e g u l l i e s 2-8m deep
132 and up t o a s much a s lkm from e a c h o t h e r i n t h e M i s s i s s i p p i b u t r a t h e r s m a l l e r on t h e R h h e d e l t a (Van S t r a a t e n , 1959). Bottomset d e p o s i t s a r e o f f - s h o r e c l a y s which a r e under t h e i n f l u e n c e of a c t i v e deltas.
These b o t t o m s e t d e p o s i t s a r e up t o 1 0 m t h i c k i n t h e M i s s i s s i p p i d e l t a and
a r e u n d e r l a i n by m a r g i n a l d e p o s i t s of P l e i s t o c e n e a g e . I n f a c t t h i s t h r e e - f o l d d i v i s i o n i s somewhat a r b i t r a r y and o n l y r e a l l y a p p l i e s t o the classical "Gilbertian delta".
The two most a c t i v e d e p o s i t i o n a l zones of a d e l t a
a r e b o t h w i t h i n t h e t o p s e t a r e a and i t i s , t h e r e f o r e , more p r a c t i c a b l e t o make a two-fold d i v i s i o n i n t o t h e d e l t a f r o n t which i n c l u d e s t h e s h o r e l i n e and seawardd i p p i n g p r o f i l e e x t e n d i n g o f f s h o r e ; and t h e d e l t a p l a i n which i s t h e low-lying a r e a developed behind t h e d e l t a f r o n t . The d e l t a p l a i n D e l t a p l a i n s a r e low-lying a r e a s which a r e c u t by a c t i v e and abandoned d i s t r i b a t a r y channels.
These c h a n n e l s t r a n s f e r t h e t o t a l d i s c h a r g e o f t h e a l l u v i a l s y s t e m
s u p p l y i n g t h e d e l t a t o t h e d e l t a f r o n t environment.
The i n t e r - c h a n n e l a r e a s c o n t a i n
a v a r i e t y of b a y s , f l o o d p l a i n s , l a k e s , t i d a l f l a t s , m a r s h e s , swamps and s a l i n a s . I n m o i s t t r o p i c a l and s u b t r o p i c a l c l i m a t e s d e l t a p l a i n s a r e t h i c k l y v e g e t a t e d and mangrove swamps, f r e s h w a t e r l a k e s , swamps and marshes may b e common ( e . g . t h e N i g e r d e l t a ( A l l e n , 1 9 7 0 ~ )and t h e M i s s i s s i p p i d e l t a s (Coleman, 1966).
I n a r i d regions,
however, v e g e t a t i o n i s s p a r s e and d e l t a p l a i n s may b e c h a r a c t e r i z e d by c a l c r e t e s e . g . t h e Ebro d e l t a (Maldonado, 1975) o r s a l i n a s w i t h gypsum and h a l i t e e.g. N i l e d e l t a ( E i n s e l e and Werner, 1968).
the
Sometimes d e l t a s i n a r i d c l i m a t e s a r e
covered by e x t e n s i v e dune f i e l d s e s p e c i a l l y i n d e l t a s w i t h b a r r i e r - b e a c h s h o r e l i n e s where sand i s eroded from t h e beach r i d g e s e . g . SZo F r a n c i s c o d e l t a .
D e l t a s formed i n
tundra r e g i o n s a r e c h a r a c t e r i z e d by p i n g o s , p a t t e r n e d ground and o t h e r c r y o g e n i c features.
Tundra v e g e t a t i o n may accomulate i n thaw ponds e.g.
t h e Mackenzie and
C o l v i l l e d e l t a s (Mackay, 1963; Naidu and Mowatt, 1975). Most d e l t a p l a i n s a r e a f f e c t e d by e i t h e r f l u v i a l o r t i d a l p r o c e s s e s and i n some c a s e s t h e r e i s r a t h e r a d e l i c a t e b a l a n c e between t h e two.
Wave-influenced d e l t a
p l a i n s a r e r a r e b e c a u s e t h e s e d e v e l o p b a r r i e r - b e a c h s h o r e l i n e s which p r o t e c t t h e d e l t a p l a i n from wave a c t i v i t y .
D e l t a p l a i n s which a r e dominated by f l u v i a l
p r o c e s s e s may p a s s downstream i n t o a t i d e dominated d e l t a p l a i n ( e . g . delta).
t h e Niger
A l t e r n a t i v e l y t h e y may b e e n c l o s e d by beach r i d g e s a t t h e seaward end (e.g.
t h e Rhone d e l t a ) o r p a s s d i r e c t l y i n t o t h e d e l t a f r o n t ( e . g .
the Mississippi deltas).
River-dominated d e l t a p l a i n s Fluvial d i s t r i b u t a r y channels The dominant f e a t u r e s a r e t h e f l u v i a l d i s t r i b u t a r y c h a n n e l s which a r e c l o s e l y
133 s i m i l a r t o channels i n conventional a l l u v i a l s e t t i n g s . I n low l a t i t u d e s where suspended-load c h a n n e l s a r e common d i s t r i b u t a r y channel p a t t e r n s a r e c l o s e l y dependent on g r a d i e n t .
I n upstream r e a c h e s t h e channel p a t t e r n
tends t o be meandering b u t a s t h e g r a d i e n t d e c r e a s e s downstream t h e channel p a t t e r n o f t e n changes from meandering t o r e l a t i v e l y s t r a i g h t ( F i g . 3 . 5 ) .
I n high l a t i t u d e s
WIDTH /DEPTH
100
40
20
10
SINUOSITY
Fig.3.5. 60186
G e n e r a l i z e d diagram o f downstream changes i n channel c h a r a c t e r i s t i c s of suspended l o a d f l w i a l systems ( a f t e r Morton and Donaldson, 1978).
where ths p r o p o r t i o n o f bed l o a d i s g r e a t e r and t h e d i s c h a r g e more s p o r a d i c b r a i d e d channels t e n d t o develop.
One of t h e major d i f f e r e n c e s between f l u v i a l d i s t r i b u t a r y
c h a n n e l s and a l l u v i a l channels is i n t h e abundance o f channel s w i t c h i n g o r a v u l s i o n . F l w i a l d i s t r i b u t a r y channels are f r e q u e n t l y abandoned because s h o r t e r and s t e e p e r r o u t e s are produced a s t h e d e l t a p r o g r a d e s seawards.
The abandonment o f d i s t r i b u t a r y
c h a n n e l s e n a b l e s b a s i n a l p r o c e s s e s t o t a k e o v e r i n t h e 16wer r e a c h e s o f t h e former channels and i n t h e Rh6ne d e l t a beach sands a r e d e p o s i t e d i n abandoned channel mouths ( K r u i t , 1955; Van S t r a a t e n , 1960). The f a c i e s sequences o f d i s t r i b u t a r y c h a n n e l s a r e g e n e r a l l y s i m i l a r t o those of a l l u v i a l channels and t h e s e a r e d e s c r i b e d i n d e t a i l i n Chapter 4.
Fining-upwards
sequences b e g i n n i n g w i t h a channel l a g followed by t r o u g h c r o s s bedded sands and c r o s s l a m i n a t e d s i l t s and c u l m i n a t i n g w i t h s o i l h o r i z o n s a r e t y p i c a l (Oomkens, 1967, 1974).
The fining-upwards may r e s u l t from l a t e r a l m i g r a t i o n of t h e channel o r from
channel abandonment i n which c a s e i t might b e f i l l e d by suspended l o a d sediment from overbank f l o o d i n g o f a d j a c e n t c h a n n e l s ,
One of t h e major consequences of t h e r a p i d
134 s w i t c h i n g o f d i s t r i b u t a r y c h a n n e l s i s t h a t t h e y t e n d t o be s h o r t - l i v e d compared w i t h t h e i r upstream e q u i v a l e n t s . low w i d t h t o d e p t h r a t i o .
This tends t o . r e s u l t i n sand bodies with a r e l a t i v e l y I n t h e d e l t a s o f t h e Rhine and Rh6ne t h i s r a t i o d e c r e a s e s
from a b o u t 1000 f o r a l l u v i a l c h a n n e l s t o a b o u t 50 f o r d i s t r i b u t a r y c h a n n e l s n e a r t h e s h o r e l i n e (Oomkens, 1974). I n t e r d i s t r i b u t a r y environments The i n t e r d i s t r i b u t a r y a r e a s i n r i v e r - d o m i n a t e d d e l t a p l a i n s c o n t a i n a wide v a r i e t y of environments and s e d i m e n t a r y f a c i e s . and f r e s h w a t e r l a k e s . throughcrevasses.
These i n c l u d e i n t e r d i s t r i b u t a r y b a y s , swamps
Sediment i s s u p p l i e d t o t h e s e a r e a s by overbank f l o o d i n g o r
Overbank f l o o d s r e s u l t i n t h e s h e e t - f l o w of sediment-laden w a t e r s
o v e r l a r g e a r e a s w i t h t h e d e p o s i t i o n of f i n e g r a i n e d s u s p e n s i o n l o a d d e p o s i t s . These may o r i g i n a l l y b e f i n e l y - l a m i n a t e d b u t i n t e r n a l s t r u c t u r e s a r e soon d e s t r o y e d by r o o t p e n e t r a t i o n and burrowing.
Overbank f l o o d i n g a l s o r e s u l t s i n t h e build-up
of l e v e e s b e c a u s e t h e c o a r s e r sediment i s r a p i d l y d e p o s i t e d n e a r t h e c h a n n e l banks during flood.
Repeated f l o o d i n g r e s u l t s i n t h e a l t e r n a t i o n o f t h i n e r o s i v e l y - b a s e d
sands and muds.
The sands may b e p a r a l l e l o r c r o s s l a m i n a t e d and f i n e away from t h e
c h a n n e l margin.
The muds show e v i d e n c e o f emergence i n t h e form of r o o t l e t h o r i z o n s .
C r e v a s s i n g i s a n o t h e r i m p o r t a n t f l o o d - g e n e r a t e d p r o c e s s i n which f l o o d w a t e r s e s c a p e from t h e c h a n n e l t h r o u g h d i s t i n c t c r e v a s s e c h a n n e l s i n t h e l e v e e s .
T h i s may
r e s u l t i n t h e f o r m a t i o n of c r e v a s s e - s p l a y s which a r e a r e a l l y r e s t r i c t e d wedges of sediment which form a p r o n s a l o n g t h e lower f l a n k s o f t h e l e v e e s .
Crevasse-splay
sand b o d i e s c o m o n l y show s h a r p , e r o s i o n a l b a s e s and may b e l e n t i c u l a r i n shape. u s u a l l y show c r o s s - b e d d i n g which i n d i c a t e s u n i d i r e c t i o n a l flow c o n d i t i o n s .
They
The over-
l y i n g muddy s e d i m e n t s may show e v i d e n c e of emergence. I n t h e M i s s i s s i p p i d e l t a s h a l l o w c r e v a s s e c h a n n e l s w i t h a s s o c i a t e d minor mouth b a r s a r e a n i m p o r t a n t f e a t u r e of i n t e r d i s t r i b u t a r y bays (Coleman e t a l . , 1964; Coleman and G a g l i a n o , 1964) ( F i g . 3.6).
As t h e s e c r e v a s s e / c h a n n e l mouth b a r c o u p l e t s p r o g r a d e
i n t o t h e i n t e r d i s t r i b u t a r y bay a v e r t i c a l sequence i s produced i n which b i o t u r b a t e d bay muds p a s s upwards i n t o c r o s s - l a m i n a t e d s i l t s and s a n d s .
When t h e c r e v a s s e chan-
n e l s a r e c l o s e l y s p a c e d a l a t e r a l l y e x t e n s i v e f r o n t e x t e n d s i n t o t h e bay p r o d u c i n g t h e s u b d e l t a s d e s c r i b e d by G a g l i a n o e t a l . (1971) and G a g l i a n o and v a n Beek (1975) (Fig. 3.6). I n t h e open bays of t h e M i s s i s s i p p i d e l t a t h e upper p a r t s o f c r e v a s s e sands may b e reworked i n t o s a n d s p i t s ( F i s k e t a l . , 1954).
These produce coarsening-upwards u n i t s
of w e l l - s o r t e d s a n d s w i t h f l a t l a m i n a t i o n s and w a v e - r i p p l e s . Large i n t e r d i s t r i b u t a r y a r e a s o f f l u v i a l dominated d e l t a p l a i n s a r e made up of o r g a n i c c l a y s and p e a t d e p o s i t s ( F i s k , 1960).
These s e d i m e n t s g e n e r a l l y l a c k any
w e l l d e f i n e d bedding b e c a u s e t h e y a r e e x t e n s i v e l y burrowed by p l a n t r o o t s and by
s e d i m e n t d w e l l i n g organisms.
T y p i c a l d e p o s i t s a r e t h u s homogeneous m i x t u r e s o f c l a y
135
4B
'
A Dry Cypress Bayou complex B Grand Liard complex C West Bay complex
A. A minor mouth b a r - c r e v a s s e channel c o u p l e t i n a n i n t e r d i s t r i b u t a r y bay Fig.3.6. of the modern M i s s i s s i p p i d e l t a ( a f t e r Coleman e t a l . , 1964) B. S u b d e l t a s of t h e modern M i s s i s s i p p i d e l t a ( a f t e r Coleman and G a g l i a n o , 1964). and s i l t w i t h p l a n t remains.
I n a r i d climates t h e p l a n t remains may b e much reduced
and mud-cracks and a l g a l mats may be p r e s e n t .
Detailed s t u d i e s of d e l t a p l a i n
swamp d e p o s i t s has been made by Coleman e t a l . ( 1 9 6 4 ) , Coleman (1966), Kolb and Van Lopik (1966) and Ho and Coleman (1969).
The d e l t a i c p l a i n merges i n l a n d
w i t h t h e a l l u v i a l p l a i n o f t h e lower M i s s i s s i p p i , t h e main s t r e a m s h e r e a r e t h e M i s s i s s i p p i and t h e A t c h a f a l a y a which p a r t n o r t h o f Baton Rouge.
The Atchafalaya
flows i n t o A t c h a f a l a y a Bay n e a r t h e w e s t e r n margin of t h e d e l t a i c p l a i n . A d e t a i l e d s t u d y of t h e swamp d e p o s i t s i n t h e A t c h a f a l a y a Basin of t h e M i s s i s s i p p i D e l t a has been made by Coleman (1966) and Ho and Coleman (1969). recognized f o u r t y p e s of i n t e r d i s t r i b u t a r y swamp environments:
Coleman (1966) poorly drained
swamp, well d r a i n e d swamp, f r e s h w a t e r l a c u s t r i n e , l a c u s t r i n e d e l t a f i l l and channel fill.
136
I
I
,
I
Em l= ..#.I
I
I 1
I
F i g . 3 . 7 . Physical and b i o l o g i c a l p r o p e r t i e s of a sediment core (No.199) through swamp d e p o s i t s of the Atchafalaya Basin, Louisiana ( a f t e r Coleman, 1966).
137 Swamps The swamps a r e low, f l a t a r e a s which a r e p e r i o d i c a l l y c o v e r e d o r s a t u r a t e d w i t h w a t e r and s u p p o r t a c o v e r o f woody v e g e t a t i o n :
swamps c o v e r e x t e n s i v e a r e a s , over
90% of t h e t o t a l a r e a of t h e A t c h a f a l a y a Basin.
The a r e a s n e a r t o r i v e r channels
a r e g e n e r a l l y w e l l d r a i n e d b u t i n i s o l a t e d a r e a s away from t h e r i v e r c h a n n e l d r a i n a g e i s poor.
T h i s d i f f e r e n c e i n d r a i n a g e c h a r a c t e r i s t i c s means t h a t i n w e l l d r a i n e d
swamps sediments a r e d e p o s i t e d under a l t e r n a t i n g o x i d i z i n g and r e d u c i n g c o n d i t i o n s , whereas t h e s e d i m e n t s of p o o r l y d r a i n e d swamps a r e d e p o s i t e d w h o l l y under r e d u c i n g conditions.
The r e s u l t a n t m i n e r a l o g i c a l c h a r a c t e r i s t i c s e n a b l e t h e d i s t i n c t i o n of
t h e two environments i n sediment c o r e s (Coleman, 1966). P o o r l y d r a i n e d swamp d e p o s i t s a r e made up o f b l a c k , o r g a n i c - r i c h muds w i t h o c c a s i o n a l t h i n l y - l a m i n a t e d s i l t s i n t r o d u c e d by f l o o d w a t e r s .
The sediments a r e
e x t e n s i v e l y b i o t u r b a t e d and b e c a u s e of t h e r e d u c i n g c o n d i t i o n s which p r e v a i l p l a n t m a t e r i a l i s w e l l p r e s e r v e d w i t h t h i n woody p e a t beds randomly i n t e r c a l a t e d throughout t h e sequence.
There i s abundant p y r i t e ( 0 . 5 - 3 . 5 % ) which o c c u r s a s small c u b e s ,
i s o l a t e d g l o b u l a r masses and a s a replacement of s m a l l r o o t s .
V i v i a n i t e (Fe P 0 3 2 8
8.H 0) a l s o o c c u r s commonly (up t o 2%) a s s m a l l n o d u l e s i n c l o s e a s s o c i a t i o n w i t h 2
pyrite. Well d r a i n e d swamp d e p o s i t s a r e s i g n i f i c a n t l y d i f f e r e n t from t h o s e o f t h e p o o r l y d r a i n e d swamps:
t h e c o n t e n t of o r g a n i c m a t t e r i s lower and t h e d e p o s i t s c o n s i s t of
clays with isolated s i l t lenses.
The most s i g n i f i c a n t d i f f e r e n c e , however, l i e s i n
t h e abundance and t y p e of a u t h i g e n i c m i n e r a l s .
There i s much less p y r i t e and v i v i a -
n i t e i n t h e well d r a i n e d swamp d e p o s i t s and a g r e a t e r abundance of c a l c i t e and i r o n o x i d e nodules.
The c a l c i t e n o d u l e s a r e e x t r e m e l y abundant and o c c u r b o t h a s l a r g e
(2cm) p o o r l y cemented n o d u l e s , and s m a l l ( l e s s t h a n 5mm) w e l l cemented nodules. C o n c e n t r a t i o n s of c a l c i t e a l s o o c c u r a l o n g bedding p l a n e s and o t h e r laminae. , o x i d e nodules a r e a l s o abundant i n t h e w e l l d r a i n e d swamp d e p o s i t s . u s u a l l y 0.5-6m
Iron
These a r e
i n s i z e and p r o b a b l y c o n s i s t o f well cemented i r o n hydroxide.
They
a r e s c a t t e r e d t h r o u g h o u t t h e sequence w i t h t h e l a r g e r n o d u l e s c o n c e n t r a t e d a t p a r t i c u l a r horizons.
I r o n o x i d e s a l s o o c c u r a s r i m s around p l a n t r o o t l e t s .
The f o r m a t i o n o f nodules d u r i n g t h e b u r i a l o f swamp d e p o s i t s h a s been d i s c u s s e d by Ho and Coleman (1969).
I n a c o r e o f a p p r o x i m a t e l y 35m t h e y n o t e d t h a t nodules
o c c u r r e d throughout b u t t h o s e n e a r t h e bottom of t h e c o r e were l a r g e r and b e t t e r c o n s o l i d a t e d t h a n t h o s e n e a r t h e t o p . They a l s o n o t e d a g r e a t e r number of nodules when o r g a n i c m a t t e r o r s h e l l s were p r e s e n t . P y r i t e was s i m i l a r l y c o n c e n t r a t e d i n o r g a n i c - r i c h a r e a s , a l t h o u g h r o o t l e t s and wood p a r t i c l e s had s u f f e r e d less from p y r i t e r e p l a c e m e n t i n t h e upper p a r t of t h e c o r e t h a n i n t h e d e e p e r p a r t s o f t h e core. A l s o , w e l l - c r y s t a l l i z e d p y r i t e cubes o c c u r r e d i n t h e lower p a r t s o f t h e c o r e .
138 X-ray r a d i o g r a p h s d i s p l a y v e r y w e l l t h e d i f f e r e n c e between w e l l - c r y s t a l l i z e d n o d u l e s and i n c i p i e n t n o d u l e s .
The former have w e l l - d e f i n e d b o u n d a r i e s whereas t h e
l a t t e r have d i f f u s e b o u n d a r i e s which i n d i c a t e s t h e d i f f u s i o n of t h e a u t h i g e n i c m i n e r a l s i n t o t h e s u r r o u n d i n g sediment.
D i f f e r e n t i a l t h e r m a l and X-ray d i f f r a c t i o n
s t u d i e s by Ho and Coleman (1969) showed t h a t t h e n o d u l e s were composed of s i d e r i t e perhaps w i t h some i r o n o x i d e where t h e i n t e r s t i t i a l cementing m a t e r i a l s c o n s i s t mainly of c a l c i t e and i r o n o x i d e s o f unknown s p e c i f i c t y p e . Ho and Coleman (1969) a t t r i b u t e d t h e f o r m a t i o n of t h e n o d u l e s and t h e cementing m a t e r i a l s t o i n c r e a s e d s o l u b i l i z a t i o n o f m e t a l c a t i o n s under r e d u c i n g c o n d i t i o n s a n d / o r low pH.
The main s u p p l y of m e t a l s was from d e s o r p t i o n from d e t r i t a l c l a y s
a l t h o u g h some m e t a l s may a l s o have been i n c r e a s e d from o r g a n i c m a t e r i a l s .
The
p r e s e n c e of n i t r o g e n i n t h e nodules s u g g e s t e d t o Ho and Coleman (1969) t h a t n o d u l e growth was r e l a t e d t o a d i f f u s i o n mechanism which i n v o l v e d n i t r o g e n e o u s compounds. The u t i l i z a t i o n of o r g a n i c compounds by micro-organisms a s a n e n e r g y s o u r c e f o r o x i d a t i o n - r e d u c t i o n r e a c t i o n s i s v e r y w e l l known and nodule growth p r o b a b l y began when mi'crobiological p r o d u c t i o n of d i s s o l v e d c a r b o n a t e exceeded t h e d i f f u s i o n r a t e and l o c a l s u p e r s a t u r a t i o n r e s u l t e d . L a c u s t r i n e and l a c u s t r i n e d e l t a - f i l l d e p o s i t s F r e s h w a t e r l a c u s t r i n e d e p o s i t s form i n v e r y s h a l l o w (3-4m) b u t e x t e n s i v e l a k e s which have o n l y v e r y weak wave o r c u r r e n t a c t i v i t y . dark grey o r black clays with s i l t lenses.
The d e p o s i t s a r e p r i m a r i l y
Coleman (1966) showed by means o f X-ray
r a d i o g r a p h s t h a t t h e c l a y s were f i n e l y l a m i n a t e d and s u g g e s t e d t h a t t h i s was due t o t h e a l t e r n a t i o n of f l o c c u l a t e d and n o n - f l o c c u l a t e d c l a y l a y e r s which might have r e s u l t e d from r a p i d changes i n pH, c a t i o n , and sediment c o n c e n t r a t i o n .
The f l o c c -
u l a t e d l a y e r s show s y n e r e s i s c r a c k s ; b i o t u r b a t i o n i s a cornon f e a t u r e and l a m e l l i branchs i n growth p o s i t i o n a l s o o c c u r .
I n c o n t r a s t t o t h e w e l l - d r a i n e d swamp
environment p y r i t e and v i v i a n i t e a r e abundant and i r o n o x i d e n o d u l e s a r e a b s e n t . L a c u s t r i n e d e l t a f i l l sequences a r e produced when a s t r e a m e n t e r s t h e f r e s h w a t e r lake.
T h i s b r i n g s i n c o a r s e r s e d i m e n t s and a coarsening-upwards g r a d a t i o n a l sequence
of l a c u s t r i n e c l a y , s i l t y c l a y and s a n d s t o n e i s produced.
L e n t i c u l a r bedding and
r i p p l e - b e d d i n g a r e common i n t h e c o a r s e r b e d s , a l o n g w i t h l o a d s t r u c t u r e s and s o f t sediment deformation.
Fauna and b i o t u r b a t i o n i s n o t a s common a s i n some o f t h e
other facies. Tide-dominated d e l t a p l a i n s D e l t a p l a i n s became dominated by t i d a l c u r r e n t s i n a r e a s of moderate t o h i g h t i d a l range.
During t h e f l o o d s t a g e t i d a l w a t e r flows up t h e d i s t r i b u t a r y c h a n n e l s
and b r e a k s o v e r t h e c h a n n e l banks t o f l o o d t h e i n t e r d i s t r i b u t a r y a r e a .
The d e l t a
p l a i n may t h u s b e t e m p o r a r i l y i n u n d a t e d w i t h marine w a t e r s which a r e d r a i n e d o f f
139 during t h e ebbing t i d e , Tidal d i s t r i b u t a r y channels These d i f f e r from f l u v i a l d i s t r i b u t a r y c h a n n e l s i n having a funnel-shaped form w i t h a h i g h width-depth r a t i o .
I n t h e N i g e r d e l t a ( A l l e n , 1965b, 1 9 7 0 ~ )t h e r e a r e
more t h a n 20 t i d a l i n l e t s 9-15m i n d e p t h and c u t t i n g t h e b e a c h - b a r r i e r s h o r e l i n e . The c h a n n e l flows a r e dominated by dune bed forms b u t a t t h e c o n f l u e n c e o f d i s t r i b u t a r y c h a n n e l s a r e l a r g e a r e a s of m u d f l a t s and s a n d b a r s known a s " i n n e r d e l t a s " (Fig.3.8).
I n some o t h e r tide-dominated d e l t a s s u c h a s t h e Mekong and t h e Ganges-
Brahmaputra t h e dominant bedforms of t h e t i d a l c h a n n e l s a r e l i n e a r s a n d r i d g e s aligned p a r a l l e l with the channel trend (Fisher e t a l . , 1975) ( F i g . 3 . 9 ) .
1969; Coleman and W r i g h t ,
These r i d g e s may by up t o s e v e r a l k i l o m e t r e s l o n g , a few hundred
metres wide and between 10-20m h i g h , The i n t e r n a l s t r u c t u r e of t h e s e t i d a l c h a n n e l s u s u a l l y b e g i n s w i t h an i n t r a f o r m a t i o n a l l a g c o n t a i n i n g a f r a g m e n t a l marine fauna.
These p a s s upwards i n t o s m a l l
s c a l e t r o u g h c r o s s beds and t h e n i n t o f i n e r g r a i n e d c r o s s l a m i n a t e d beds sometimes w i t h f l a s e r o r l e n t i c u l a r bedding ( T e r w i n d t , 1971).
The g r a i n s i z e g r a d u a l l y
d e c r e a s e s upwards and t h e amount of b i o t u r b a t i o n a l s o i n c r e a s e s .
The channel f a c i e -
may p a s s upwards i n t o swamp d e p o s i t s o r c o a s t a l b a r r i e r sands (Oomkens, 1974) ( F i g . 3.10). Interdistributary areas The a r e a s between t i d a l d i s t r i b u t a r y c h a n n e l s i n c l u d e i n t e r t i d a l f l a t s and lagoons which a r e c r o s s e d by minor t i d a l c r e e k s .
form mangrove swamps a s i n t h e Niger d e l t a .
The i n t e r t i d a l f l a t s may be v e g e t a t e d and Here t h e swamps a r e d i s s e c t e d by numerous
small meandering c r e e k s s e r v e d by a d e n d r i t i c d r a i n a g e p a t t e r n ( A l l e n , 1965b).
In
more a r i d r e g i o n s such a s t h e Colorado R i v e r d e l t a (Thompson, 1968; Meckel, 1975) t h e i n t e r d i s t r i b u t a r y a r e a s t e n d t o b e d e s i c c a t e d m u d f l a t s and s a n d f l a t s on which l o c a l s a l t pans develop. The d e l t a f r o n t The d e l t a f r o n t i s t h a t a r e a i n which c h a n n e l i z e d f l u v i a l c u r r e n t s e n t e r t h e b a s i n w a t e r s and undergo flow e x p a n s i o n , d e c e l e r a t i o n and d i s p e r s i o n .
The sediment
c a r r i e d by t h e r i v e r w a t e r s come9 under t h e i n f l u e n c e o f a v a r i e t y of b a s i n a l proc e s s e s i n c l u d i n g waves, t i d e s , l o n g s h o r e d r i f t and o t h e r c u r r e n t s (Wright and Coleman, 1974).
The r e s u l t i s t h a t t h e d e l t a f r o n t i s t h e most a c t i v e d e p o s i t i o n a l
zone of t h e d e l t a (Coleman and G a g l i a n o , 1965).
The r e l a t i v e importance of f l u v i a l ,
wave and t i d a l p r o c e s s e s v a r i e s c o n s i d e r a b l y i n t h e d e l t a f r o n t w i t h t h e r e s u l t t h a t a number of d i f f e r e n t d e l t a t y p e s c a n b e r e c o g n i z e d ( F i g . 3 . 1 ) .
140
1
2
0 , 1 km 3
Fig.3.8. The Forcados t i d a l d i s t r i b u t a r y c h a n n e l o f t h e Niger d e l t a showing t h e p o s i t i o n i n g of i n n e r d e l t a s a t t h e c o n f l u e n c e of two c h a n n e l s ( a f t e r NEDECO, 1961).
Accretionary bar
Fig.3.9. The Mekong d e l t a showing l i n e a r s a n d r i d g e s i n t h e lower r e a c h e s o f t i d a l d i s t r i b u t a r y c h a n n e l s ( a f t e r F i s h e r e t a l . , 1969).
141 The M i s s i s s i p p i d e l t a f r o n t i s dominated by f l u v i a l o u t f l o w c h a r a c t e r i s t i c s . The d e p o s i t i o n of s e d i m e n t a t d i s t r i b u t a r y mouths forms a series of i s o l a t e d l u n a t e mouth b a r s which p r o t r u d e i n t o t h e Gulf o f Mexico (Fig.3.11).
These comprise a
bar-back a r e a which i n c l u d e s minor c h a n n e l s , subaqueous l e v e e s and 'mid-channel b a r s ' , a b a r - c r e s t l o c a t e d o f f s h o r e from t h e d i s t r i b u t a r y mouth, and a b a r - f r o n t (sometimes c a l l e d t h e ' d i s t a l b a r ' ) which s l o p e s o f f s h o r e t o t h e p r o d e l t a (Fig.3.11).
A Metres
Mangroveswamp
B
Tidalchannel
Metres
hannel base
marine
16
So11horizon
Fig.3.10. T i d a l c h a n n e l sequences from t h e N i g e r d e l t a A. A n i n s h o r e sequence t e r m i n a t i n g i n mangrove swamp d e p o s i t s B. A s h o r e l i n e sequence t e r m i n a t i n g i n c o a s t a l b a r r i e r s a n d s ( a f t e r Oomkens, 1974).
142 Mouth b a r s advance r a t h e r l i k e d u n e s , w i t h t h e bar-back and b a r - c r e s t b e i n g e r o d e d w h i l s t t h e bar-front progrades (Coleman e t a l . ,
1974).
During t h e extreme
river f l o o d of 1973 t h e b a r - c r e s t aggraded r a p i d l y w i t h up t o 3m of s e d i m e n t b e i n g
deposited.
As t h e f l o o d s u b s i d e d t h i s s e d i m e n t was reworked by r i v e r c u r r e n t s and
r e d e p o s i t e d on t h e b a r f r o n t .
Mouth b a r p r o g r a d a t i o n was t h e r e f o r e most r a p i d
immediately a f t e r peak f l o o d (Coleman e t a l . , 1974).
0
- 30 - 60 - 90
D i s t r i b u t a r y c h a n n e l s and d i s t r i b u t a r y mouth b a r s i n t h e modern Fig.3.11. M i s s i s s i p p i d e l t a ( a f t e r F i s k e t a l . , 1954). The sequences produced by mouth b a r p r o g r a d a t i o n a r e l a r g e s c a l e c o a r s e n i n g upwards u n i t s .
A t t h e b a s e p r o d e l t a muds p a s s upwards i n t o i n t e r b e d d e d muds, s i l t
and sand r e f l e c t i n g t h e i n t e r a c t i o n between sediment-laden w a t e r s from t h e d i s t r i b u t a r y o u t l e t s and wave p r o c e s s e s .
These p a s s upwards i n t o s a n d s w i t h c u r r e n t -
produced s t r u c t u r e s ( F i s k e t a l . , 1954; F i s k , 1961; Coleman and Wright, 1975) (Fig.3.12). I n t h e M i s s i s s i p p i d e l t a t h e p r o g r a d a t i o n o f i n d i v i d u a l d i s t r i b u t a r y mouth b a r s
is v i r t u a l l y u n c o n t e s t e d by b a s i n a l p r o c e s s e s .
This has r e s u l t e d i n t h e formation
of r a d i a t i n g ' b a r f i n g e r s a n d s ' which g i v e t h e M i s s i s s i p p i d e l t a i t s c h a r a c t e r i s t i c b i r d f o o t shape ( F i s k , 1961).
The b a r f i n g e r s a n d s a r e biconvex e l o n g a t e s a n d b o d i e s
up t o 30km l o n g , 5-8km wide, and w i t h a r e l a t i v e l y uniform t h i c k n e s s of 70m ( F i g . 3,13).
143
c - Thin soils and Peat beds
li c - .
-_,-
sequences represenling rhe repeated infilltng of tnrerdtsrriburarv
tlnrerbedded muds,
silts and sands
tSlump
sheet
tHomo
enous muds. laminayed or bioturbated
Composite i d e a l i z e d sequence produced by mouth b a r p r o g r a d a t i o n i n t h e Fig.3.12. M i s s i s s i p p i d e l t a ( a f t e r Coleman and W r i g h t , 1 9 7 5 ) . I n most o t h e r p r e s e n t - d a y d e l t a s f l u v i a l p r o c e s s e s a r e n o t so dominant a t t h e d e l t a f r o n t and i n t e r a c t i n g wave and t i d a l p r o c e s s e s i n p a r t i c u l a r a r e a dominant f e a t u r e of t h e Rhone d e l t a .
The d e l t a f r o n t c o n s i s t s of l a t e r a l l y e x t e n s i v e beach
r i d g e s i n f r o n t of which i s a r e l a t i v e l y s t e e p o f f s h o r e s l o p e o f up t o 2' 1955; van S t r a a t e n , 1960) (Fig.3.54).
(Kruit,
P r o g r a d a t i o n of t h e d e l t a f r o n t t a k e s p l a c e
by t h e a c c r e t i o n of beach r i d g e s and p r o g r a d a t i o n of t h e mouth b a r producing c o a r s e n i n g upwards sequences ( L a g a a i j and K o p s t e i n , 1964; Oomkens, 1967) ( F i g . 3.15). The sequences b e g i n w i t h b i o t u r b a t e d o f f s h o r e c l a y s and p a s s upwards i n t o f i n e l y l a m i n a t e d s i l t s and t h e n i n t o r i p p l e l a m i n a t e d s i l t s and sands and t h e n f i n a l l y i n t o w e l l - s o r t e d , h o r i z o n t a l l y bedded s a n d s of b e a c h - b a r r i e r a s p e c t .
The s c a r c i t y of
d i s t r i b u t a r y c h a n n e l sands and t h e wave-dominated n a t u r e o f t h e s h e e t sands e n a b l e t h e d i s t i n c t i o n from f l u v i a l dominated d e l t a f r o n t s . The N i g e r d e l t a i s a n example i n which b o t h wave and t i d a l p r o c e s s e s a r e i m p o r t a n t a t the delta front.
The e f f e c t s o f t i d a l p r o c e s s e s a r e c o n f i n e d t o d i s t r i b u t a r y
mouth b a r s w h i l s t waves o p e r a t e o v e r a l a r g e a r e a o f t h e d e l t a f r o n t .
The s h o r e l i n e
144
Cross section Natural Levee
Fig.3.13.
Sparse to abundant faun Marsh
I
I
Bar f i n g e r sands o f the M i s s i s s i p p i d e l t a ( a f t e r F i s k , 1961).
I
F i g . 3.14.
'..
Distributary channel
,
I
The morphology of the Rh8ne d e l t a ( a f t e r van Andel and Curray, 1960).
145 t h u s c o n s i s t s predominantly o f wave g e n e r a t e d beaches o r c h e n i e r s s e p a r a t e d by t i d e dominated d i s t r i b u t a r y c h a n n e l s .
D e l t a s o f t h i s t y p e do n o t form obvious p r o t r u s i o n s
i n t o t h e s e a and have f a c i e s b e l t s p a r a l l e l t o t h e c o a s t ( A l l e n , 1965b, 1970c; Oomkens, 1974) (Fig.3.16). A
6
41-
0 50100% Sand. mainly horizontally 0 .......... bedded. that shows an upward increase in grain size
0 Upward increase in clay content
..... . . . . . .*. . . .......
-
cross bedded 10
Base of
50100%
j -
= Q
$11
Distinct upward increase 20 in number and thickness of intercalated silt and sand beds between clays
I
+i .. .. .. .. ................
silt and sand
6 + 9
i
Clay with thin silt and sand beds
m
= Horizontally bedded
- Crossbadded
6 sumpsdbeds U Burrows 6 Shells, shell debris
0 Plants, plant debris
Fig.3.15. D e l t a f r o n t c o a r s e n i n g upward sequences from t h e Rhone d e l t a A . P a s s i n g g r a d u a l l y upwards i n t o a c o a s t a l b a r r i e r s a n d B. A t r u n c a t e d sequence a t 13m o v e r l a i n by a n e r o s i v e based d i s t r i b u t a r y c h a n n e l sequence ( a f t e r Oomkens, 1967). The d i s t r i b u t a r y c h a n n e l s of t h e Niger d e l t a a r e t i d a l c h a n n e l s and have a shallow, sandy mouth b a r a t t h e e n t r a n c e which p r o b a b l y forms a s a r e s u l t of t h e expansion of tidal currents. platform’.
The mouth b a r s and beach f a c e s l o p e g e n t l y seaward t o a ‘ d e l t a f r o n t
T h i s i s a t e r r a c e between 5-10m deep and up t o 20km wide.
Beyond i t t h e
d e l t a f r o n t s l o p e s down i n t o t h e p r o d e l t a which i s a low-energy environment o n l y m i l d l y a f f e c t e d by waves, t i d a l c u r r e n t s a n d t h e Guinea C u r r e n t . F a c i e s sequences from t h e N i g e r d e l t a f r o n t have been d e t e r m i n e d from numerous c o r e d b o r e h o l e s and have been d e s c r i b e d by Weber (1971) and Oomkens (1974).
146
Fig.3.16.
D e p o s i t i o n a l environments of t h e modern Niger d e l t a ( a f t e r A l l e n , 1 9 7 0 ~ ) .
The sequences ( F i g . 3 . 1 7 ) a r e between 10-30m t h i c k and b e g i n w i t h b i o t u r b a t e d muds which p a s s upwards i n t o i n t e r b e d d e d muds, s i l t s and s a n d s ,
These p a s s i n t o e i t h e r
w e l l - s o r t e d , p a r a l l e l - l a m i n a t e d beach f a c e s a n d s o r t i d a l c h a n n e l d e p o s i t s . DELTA GROWTH AND ABANDONMENT D e l t a s o f t e n have a complex h i s t o r y i n which two p h a s e s of development can b e recognized ( S c r u t o n , 1960).
The f i r s t o f t h e s e is t h e c o n s t r u c t i o n a l phase i n which
t h e d e l t a p r o g r a d e s and b u i l d s - u p a v e r t i c a l sequence of p r o d e l t a d e p o s i t s o v e r l a i n by d e l t a f r o n t s i l t s and s a n d s and f i n a l l y d e l t a marsh d e p o s i t s and p e a t beds.
The
second i s t h e d e s t r u c t i o n a l phase which t a k e s p l a c e a f t e r t h e abandonment of d e l t a growth because o f t h e a v u l s i o n of a l l u v i a l o r d i s t r i b u t a r y c h a n n e l s .
The topmost
beds of t h e d e l t a a r e t h e n a t t a c k e d by waves and c u r r e n t s and may b e c o m p l e t e l y reworked, Compaction may r e s u l t i n l o c a l marine t r a n s g r e s s i o n s .
147
Fig.3.17. D e l t a f r o n t sequences o f t h e N i g e r d e l t a . A. T e r m i n a t i n g i n a c o a s t a l b a r r i e r s a n d B. Terminated by a t i d a l c h a n n e l i n l e t ( a f t e r Oomkens, 1974). The c o n c e p t of two-phase development of d e l t a s i s somewhat i d e a l i z e d and o n l y r e a l l y applicable t o river-dominated d e l t a s l i k e the Mississippi.
Here seven
p a r t i a l l y o v e r l a p p i n g d e l t a l o b e s c a n b e r e c o g n i z e d (Kolb and van Lopik, 1 9 6 6 ) (Fig.3.18).
These l o b e s have been s u c c e s s i v e l y abandoned d u r i n g t h e l a s t 6,000
y e a r s o r so and have undergone v a r i o u s s t a g e s of d e s t r u c t i o n .
The e a r l y s t a g e s
i n c l u d e smoothing of t h e s h o r e l i n e w i t h t h e f o r m a t i o n of b a r r i e r i s l a n d s w h i l s t more abvanced s t a g e s a r e r e p r e s e n t e d by t h e d e p o s i t i o n o f f o s s i l i f e r o u s marine c l a y s on top of t h e former d e l t a p l a i n . ANCIENT DELTAIC SUCCESSIONS I n g e n e r a l a n c i e n t d e l t a i c s u c c e s s i o n s t e n d t o show t h e f o l l o w i n g c h a r a c t e r i s t i c s :
1) t h e y a r e f r e q u e n t l y t h i c k ( s e v e r a l hundreds t o thousands of m e t r e s ) 2 ) they c o n t a i n a c o n s i d e r a b l e volume of sand o r s i l t
3 ) c o a l beds a r e commonly p r e s e n t
4 ) t h e f a u n a l c o n t e n t of i n t e r b e d d e d u n i t s may i n d i c a t e m a r i n e , b r a c k i s h and f r e s h w a t e r d e p o s i t i o n a l environments.
148
Plaqueminer
S t . Bernard
Lafourche
Teche
Maringouin
Km
The Recent M i s s i s s i p p i d e l t a system showing t h e d i s t r i b u t i o n o f d e l t a Fig.3.18. complexes and l o b e s ( a f t e r F r a z i e r , 1967).
5 ) s e d i m e n t a r y s t r u c t u r e s i n d i c a t e s h a l l o w w a t e r d e p o s i t i o n by t r a c t i o n c u r r e n t s 6 ) they o f t e n g r a d e i n an o f f s h o r e d i r e c t i o n i n t o f i n e r g r a i n e d c l a s t i c d e p o s i t s . S p e c i f i c r e c o g n i t i o n of a n c i e n t r i v e r - , wave-, o r tide-dominated d e l t a s i s p o s s i b l e by a n a l o g y w i t h Recent d e l t a s and depends h e a v i l y on v e r t i c a l and l a t e r a l f a c i e s d i s t r i b u t i o n (Fig.3.19).
I n f a c t the v a s t majority of ancient d e l t a i c
sequences which have been d e s c r i b e d a r e o f t h e r i v e r - d o m i n a t e d t y p e ; t h i s may be p a r t l y due t o t h e f a c t t h a t a n c i e n t wave- and t i d e dominated d e l t a s a r e l i k e l y t o be d i f f i c u l t t o d i s t i n g u i s h from o t h e r s h a l l o w marine s e q u e n c e s . Ancient r i v e r - d o m i n a t e d d e l t a sequences a r e r e p r e s e n t e d by r e l a t i v e l y l a r g e - s c a l e coarsening-upwards c y c l e s which r e c o r d t h e p a s s a g e from o f f s h o r e muds i n t o s h o r e l i n e sands a s t h e d e l t a f r o n t p r o g r a d e s seawards.
When complete t h e sequences a r e
t r u n c a t e d by a f l u v i a l d i s t r i b u t a r y c h a n n e l sequence w i t h a s s o c i a t e d d e l t a p l a i n marsh d e p o s i t s ( p e a t o r c o a l ) . Ancient d e l t a i c s u c c e s s i o n s g e n e r a l l y commence w i t h a t h i c k , u n i f o r m i n t e r v a l of mudstones o r s i l t s t o n e s d e p o s i t e d a t t h e b a s e of t h e d e l t a f r o n t and f u r t h e r o f f s h o r e .
149
.
.
interdistributary shell bank distributary channel fill
marsh 1 delta distributarychannel dolta marsh stacked beach ridges
proximal distributary mouth bar
shoreface
d.pdrits distal distributary mouth bar deposits
-
pro delta shale
- WAVE DOMINATED DELTA
'
pro-deltashale
delta marsh tidal channel
d.por*
Ecoal with roots
tidal flat tidal channel
lowangle crossbedding herringbone crossbedding trough, festoon crossbedding
offrhore tidal sand ridges
TIDE DOMINATED DELTA
ripple marks shells, shell fragments bioturbation,trace fossils limestone cyclic units,showing direction of coarsening
F i g . 3 . 1 9 . Idealized v e r t i c a l sequences of r i v e r - , t i d e - , and wave-dominated ancient d e l t a s . The thickness and r e l a t i v e abundance of the f a c i e s may very considerably but t h e i r stratigraphic sequence i s more or l e s s constant ( a f t e r Miall, 1976).
150 V a r i a t i o n s i n t h e s u p p l y of suspended s e d i m e n t a r e r e f l e c t e d i n s l i g h t g r a i n s i z e v a r i a t i o n s which on o c c a s s i o n s g i v e t h e f a c i e s a s t r i p e d o r banded a p p e a r a n c e ( F i g . 3.20).
P l a n t d e b r i s i s f r e q u e n t l y abundant b u t t h e r e i s o n l y a s p a r s e m a r i n e
fauna presumably b e c a u s e of t h e h i g h s e d i m e n t a t i o n r a t e .
Thin e r o s i v e - b a s e d beds
o f f i n e g r a i n e d s a n d s t o n e sometimes o c c u r i n t h i s mudstone f a c i e s ( e . g . de Raaf
e t a l . , 1965) and p r o b a b l y r e p r e s e n t t u r b i d i t y c u r r e n t s g e n e r a t e d n e a r t h e d i s t r i b u t a r y mouth d u r i n g f l o o d p e r i o d s . Above t h e s e mudstones t h e amount o f c o a r s e s i l t s t o n e and f i n e s a n d s t o n e beds become more numerous.
These show c r o s s - l a m i n a t i o n and r i p p l e s i n d i c a t i n g depos-
i t i o n i n a g i t a t e d water above t h e wave b a s e .
I n some c a s e s t h e r e a r e c o a r s e
e r o s i v e - b a s e d s a n d s t o n e s i n which p l a n e l a m i n a t i o n s g i v e way t o c r o s s - l a m i n a t i o n . These may i n d i c a t e t h e d e p o s i t i o n of f l o o d - g e n e r a t e d s e d i m e n t s a t t h e b a s e of t h e d e l t a f r o n t under waning c u r r e n t c o n d i t i o n s .
F u r t h e r upwards t h e s a n d s t o n e beds
become t h i c k e r and more numerous and dominate t h e s u c c e s s i o n .
These s a n d s r e p r e s e n t
t h e d e l t a f r o n t and a r e t h e d e p o s i t s o f d i s t r i b u t a r y mouth b a r s .
The geometry o f
t h e s e sand b o d i e s i s most commonly t h a t of a s a n d - s h e e t b u t a n c i e n t b a r - f i n g e r s a n d s a r e d e s c r i b e d ( C o l l i n s o n and Banks, 1975). The d e l t a i c c y c l e i s completed by f a c i e s r e p r e s e n t i n g t h e d e l t a p l a i n .
These
i n c l u d e s m a l l - s c a l e (4-10m) coarsening-upwards sequences which r e p r e s e n t t h e i n f i l l i n g of i n t e r d i s t r i b u t a r y bays by c r e v a s s e - s p l a y s , c r e v a s s e channel c o u p l e t s ( E l l i o t , 1974).
l e v e e c o n s t r u c t i o n o r mouth b a r -
Such c y c l e s may b e t e r m i n a t e d by p a l a e o -
s o l s o r c o a l seams.
Large s c a l e c h a n n e l f i l l sequences w i t h b a s a l l a g d e p o s i t s and cross-bedded s a n d s t o n e s which show a n o v e r a l l f i n i n g upwards t r e n d o f t e n t e r m i n a t e r i v e r - d o m i n a t e d d e l t a i c cycles.
They r e p r e s e n t d i s t r i b u t a r y c h a n n e l sequences and a s s u c h show
u n i d i r e c t i o n a l flow c h a r a c t e r i s t i c s o f t e n w i t h abundant e v i d e n c e of s t a g e f l u c t u a t ions.
Both h i g h and l o w - s i n u o s i t y c h a n n e l s a r e p r o b a b l y r e p r e s e n t e d i n a n c i e n t
d e l t a i c sequences.
A s y e t t h e r e a r e no d e t a i l e d d e s c r i p t i o n s o f wave o r tide-dominated d e l t a s i n t h e s t r a t i g r a p h i c r e c o r d a l t h o u g h Van de Graaf (1972) and Hubert e t a l . (1972) have d e s c r i b e d bimodal ( t i d a l ) c u r r e n t p a t t e r n s from C r e t a c e o u s d e l t a p l a i n d e p o s i t s i n t h e Western I n t e r i o r , USA.
I n t h e same a r e a t h e Cody Shale-Parkman Sandstone d e l t a
shows d e l t a f r o n t f a c i e s which a r e b e s t i n t e r p r e t e d a s wave-produced b e a c h - b a r r i e r s a n d s t o n e (Hubert e t a l . , 1972; A s q u i t h , 1974). A number of examples of a n c i e n t d e l t a i c d e p o s i t s a r e g i v e n i n T a b l e 3.1.
RED BEDS I N ANCIENT DELTA PLAINS Introduction Red beds i n d e l t a p l a i n environments a r e t h e least-known and most p o o r l y unders t o o d o f t h e t h r e e major a s s o c i a t i o n s o f c o n t i n e n t a l r e d b e d s ,
I n general they
151
30
Flnr grained micaceous r~pplelaminaled sandsloner and sdtstones with impoverished ripples
Erosive.based unit of trough cross bedded sandstones with interbedded SlltStOneS
25
Wavy and cross-laminated siltstones. with frequent loading
20
Planar cross qlratified sandstones wilh unidireri ional Dalaeocurrenlr
B
5
E
15
Banded or striped silty mudstones with Planolites
/....... . . ...........,.. . . .. .....;.. ..... . . ........ .-... ......... ...... . .. . . . . . ... ,
ia
,
Massive sandstones locally cross sirallfed wlth lntemal erowon surfaces and OCCasicmal soft sediment deformation
E Fissile black mudstones with abundant Plandites and thin bands and nodules (
Basal lag deposit above an erosional Surlace mth a rehef 01
6 5 m Abundant ironstone pebbles and mudstone flakes
Underlying delta front progradatlon saquenc
Fig.3.20. R e p r e s e n t a t i v e s e c t i o n s of a n c i e n t r i v e r - d o m i n a t e d d e l t a s . A . A d e l t a f r o n t sequence from t h e Coal Measures o f S o u t h Wales B. A f l u v i a l - d i s t r i b u t a r y c h a n n e l sequence l y i n g on eroded d e l t a f r o n t d e p o s i t s from t h e Namurian o f South Wales ( b o t h a f t e r K e l l i n g and George, 1971).
form t h i n , l a t e r a l l y d i s c o n t i n u o u s u n i t s i n o t h e r w i s e d r a b s t r a t a .
Their association
w i t h d e l t a i c s e d i m e n t a t i o n may n o t b e obvious b u t can be deduced from t h e f a c t t h a t t h e y a r e i n t e r b e d d e d w i t h t y p i c a l d e l t a i c s e d i m e n t s and commonly cap c o a r s e n i n g upwards ( p r o g r a d a t i o n a l ) d e l t a i c p r o f i l e s .
S i n c e t h e d e l t a p l a i n i s dominated by
TABLE 3.1. Examples of a n c i e n t d e l t a i c complexes Forma t i o n
Age
Middle Vicksburg
Lower O l i g i o c e n e
Delta type
Reference
U.S.A.
Wave-dominated
Gregory (1966)
Upper Wilcox Gp.
Eocene
U.S.A.
Wave-domina t e d
F i s h e r (1969)
Lower Wilcox
Eocene
U.S.A.
River-domina t e d
F i s h e r and McGowen (1967)
Sentinel Butte
Palaeocene
U.S.A.
River-dominated
Cherven (1978)
D i f u n t a Gp.
Upper Cretaceous - Palaeocene
Mexico
River-domina t e d
McBride e t a l . (1975)
Cody S h a l e Parkman Sands tone
Upper Cretaceous
U.S.A.
Wave-domina t e d
Hubert e t a l . (1972)
C i s c o Group
Carboniferous
U.S.A.
River-domina t e d
Galloway and Brown (1973)
-
Canyon Group
Carboniferous
U.S.A.
River-domina t e d
Erxleben (1975)
Haslingden F l a g s
Carboniferous
U.K.
River-domina t e d
C o l l i n s o n and Banks (1975)
Grindslow S h a l e s - Kinderscont G r i t
Carboniferous
U.K.
River-dominated
Walker (1966) C o l l i n s o n (1969)
Yoredales
Carboniferous
U.K.
River-domina t e d
E l l i o t (1975)
f l u v i a l d e p o s i t i o n a l environments t h e r e s u l t a n t r e d beds may c l o s e l y resemble a l l u v i a l r e d beds.
They a r e s i m i l a r i n t h a t t h e y o c c u r i n fining-upwards u n i t s and
a r e b e s t - d e v e l o p e d i n t h e f i n e member ( f l o o d p l a i n ) p a r t of t h e u n i t .
Usually there
i s c o n s i d e r a b l e e v i d e n c e of emergence i n t h e form o f mudcracks, r o o t l e t h o r i z o n s
and pedogenic f e a t u r e s .
I n C a r b o n i f e r o u s r e d beds o f t h i s t y p e a c o n n e c t i o n w i t h
d e l t a i c s e d i m e n t a t i o n i s i m p l i e d by t h e o c c u r r e n c e o f abundant s e a t e a r t h s and occasional t h i n coals within t h e red beds,
D e l t a p l a i n r e d beds c o n t r a s t w i t h
a l l u v i a l r e d beds i n t h a t t h e y a r e f r e q u e n t l y c o n f i n e d t o mudstones which may show a wide range of c o l o u r m o t t l i n g .
E x t e n s i v e pedogenic m o d i f i c a t i o n s ( i n c l u d i n g
c a r b o n a t e n o d u l e s , r o o t l e t s a n d s e a t e a r t h s ) and t h e i n s i t u o x i d a t i o n of p l a n t d e b r i s and p r e v i o u s l y formed p y r i t e a r e a l s o commonly observed. Although d e l t a s may a c c u m u l a t e o v e r a wide range of c l i m a t i c s e t t i n g s , a n c i e n t d e l t a p l a i n r e d beds a p p e a r t o b e p a r t i c u l a r l y c h a r a c t e r i s t i c of m o i s t t r o p i c a l climates.
T h i s i s i n d i c a t e d by t h e o c c u r r e n c e of i n t e r d i g i t a t e d c o a l s and o t h e r
e v i d e n c e of abundant v e g e t a t i o n c o v e r .
T h i s c o n t r a s t s markedly w i t h many a n c i e n t
a l l u v i a l r e d beds which a p p a r e n t l y ' formed under more a r i d c o n d i t i o n s and show many s i m i l a r i t i e s t o t h e d e s e r t a l l u v i u m d e s c r i b e d by Walker e t a l . (1978).
Therefore,
a l t h o u g h i t has been a r g u e d t h a t t h e o r i g i n of r e d beds i n d e s e r t and m o i s t t r o p i c a l c l i m a t e s may be b r o a d l y s i m i l a r (Walker, 1 9 7 4 ) , i t seems l i k e l y t h a t t h e r e may be i n t r i n s i c d i f f e r e n c e s i n t h e r e d d e n i n g of m o i s t t r o p i c a l d e l t a p l a i n s and a r i d , d e s e r t alluvium.
These a r e c o n s i d e r e d h e r e w i t h s p e c i a l r e f e r e n c e t o t h e Coal
Measures o f hW Europe. The D i f u n t a Group of n o r t h e a s t e r n Mexico The D i f u n t a Group o f n o r t h e a s t e r n Mexico comprises a t h i c k (4km) sequence o f s e d i m e n t s d e r i v e d from v o l c a n i c r o c k s and d e p o s i t e d i n f l u v i a l , d e l t a i c , and s h e l f environments.
The f l u v i a l systems s u p p l i e d d e l t a s t h a t prograded e a s t w a r d i n t o t h e
a n c e s t r a l Gulf o f Mexico (Fig.3.21A).
I t p r o v i d e s a n e x c e l l e n t example of t h e
f o r m a t i o n of r e d beds i n d e l t a p l a i n sediments which were d e p o s s t e d i n a sub-humid t o s e m i - a r i d c l i m a t e having s t r o n g s e a s o n a l a r i d i t y . V a r i a t i o n s i n sediment i n p u t , s u b s i d e n c e r a t e s , and sediment compaction i n t h e D i f u n t a Group r e s u l t e d i n a complex i n t e r t o n g u i n g of d e l t a i c - p a r a l i c f a c i e s ( F i g . 3.21B).
The d e l t a i c f a c i e s of t h e D i f u n t a Group a r e d e s c r i b e d by McBride e t a l .
(1975) and t h e o r i g i n o f t h e r e d beds which a r e a c h a r a c t e r i s t i c f e a t u r e of t h e d e l t a p l a i n f a c i e s , i s d i s c u s s e d by McBride (1974). The C e r r o H u e r t a , Las Ima'genes, and E n c i n a s Formations a r e mainly r e d beds w i t h minor amounts of g r e e n , p u r p l e , brown, o l i v e and y e l l o w beds t h a t a r e i n t e r p r e t e d a s d e l t a p l a i n f a c i e s (Fig.3.21C). i n c o n t r a s t t o the grey formations,
These beds a r e of uniform l i t h o l o g i c a l c h a r a c t e r These i n c l u d e t h e Ca8on de T u l e , C e r r o Grande
and Rancho Neuvo Formations which v a r y w i d e l y i n l i t h o l o g i c a l c h a r a c t e r r e f l e c t i n g
154
.Sari Antonio
#Delta
and coastal plain
k&ENES C A h
DEL TULE
CERRO HUERTA CERRO DEL PUEBLO
PAMAS
I I
I
Fig.3.21. The D i f u n t a Group of n o r t h e a s t e r n Mexico A . L o c a t i o n of P a r r a s and La Popa d e p o s i t i o n a l b a s i n s B. L i t h o s t r a t i g r a p h y . The c r o s s - h a t c h e d u n i t s a r e p r e dominantly r e d f o r m a t i o n s which t h i n o u t t o t h e e a s t . Cretaceous-Palaeocene boundary i s a b o u t t h e middle of t h e Rancho Nuevo Formation C , Environmental i n t e r p r e t a t i o n . Note t h e c l o s e a s s o c i a t i o n between r e d beds and d e l t a p l a i n / c o a s t a l p l a i n f a c i e s ( a f t e r McBride, 1974).
155 d e p o s i t i o n i n d e l t a f r o n t , d e l t a p l a t f o r m , p r o d e l t a , and s h e l f d e p o s i t s (McBride, 1974; McBride e t a l . , 1975). The d e l t a p l a i n f a c i e s The d e l t a p l a i n d e p o s i t s of t h e D i f u n t a Group a r e c h a r a c t e r i z e d by a n abundance o f r e d beds (80%) i n c y c l i c sequences of c l a y s t o n e (lo%), mudstone ( 2 0 % ) , s i l t s t o n e (20%) and v e r y f i n e s a n d s t o n e s (30%) which a l t e r n a t e w i t h c h a n n e l - f i l l s a n d s t o n e bodies.
Between 50-60% o f t h e d e l t a - p l a i n d e p o s i t s a r e a r r a n g e d i n 2-5m t h i c k
coarsening-upwards c y c l e s which b e g i n w i t h c l a y s t o n e r e s t i n g on a n e r o s i o n s u r f a c e of s a n d s t o n e and g r a d e upwards through mudstone and s i l t s t o n e t o v e r y f i n e s a n d s t o n e (Fig.3.22).
These c y c l e s a r e i n t e r p r e t e d a s f r e s h w a t e r and b r a c k i s h w a t e r l a k e and
marsh d e p o s i t s .
The g r a d u a l f i l l i n g of l a k e s and marshes by l a c u s t r i n e d e l t a s and
p r o g r a d i n g s h o r e l i n e s i s known t o produce coarsening-upwards sequences of t h i s type (Coleman, 1966; W i l l i a m s , 1968).
SILTSTONE. 80 % BURROW MOTTLED 20% CUR~ENT-RIPPLE BEDDED SILT 70%1 CALCITE 20Ki CLAY 10% COMMON CALCITE NODULES
------MUDSTONEi BEDDING SIMILAR TO CLAYSTONE CLAY 50K1SILT 30x1 CALCITE 20% 1 SPARSE CALCITE NODULESi LOCALLY ABUNCYINT OOGONIA
Fig.3.22. Schematic diagram of a t y p i c a l coarsening-upwards d e l t a p l a i n c y c l e of t h e D i f u n t a Group ( a f t e r McBride, 1974).
156 The upper p a r t of t h e s e c y c l e s f r e q u e n t l y c o n t a i n c a l c i t e n o d u l e s (mean s i z e 2cm) which become p r o g r e s s i v e l y more abundant t o comprise a b o u t 20% a t t h e t o p of some s a n d s t o n e members.
They a r e i n t e r p r e t e d a s c a l c a r e o u s p a l a e o s o l s .
Also a t t h e t o p
of t h e c y c l e s t h e r e o c c u r s i n u o u s , v e r t i c a l t u b e s which a r e i n t e r p r e t e d a s r o o t scars.
P l a n t s may have grown submerged ( m a r s h e s ) , on d r i e d l a k e b e d s , o r on over-
bank a r e a s n e a r d i s t r i b u t a r y c h a n n e l s .
The s c a r c i t y o f p l a n t d e b r i s i n t h e d e p o s i t s
c o u l d thus b e a t t r i b u t e d t o r a p i d decomposition and o x i d a t i o n p r i o r t o b u r i a l . would be favoured by w e l l - d r a i n e d swamps o r s e a s o n a l d e s i c c a t i o n .
This
The a b s e n c e o f
d e s i c c a t i o n even i n a r e a s where s u b a e r i a l e x p o s u r e i s i n d i c a t e d s u g g e s t s t h a t good d r a i n a g e i s t h e more l i k e l y c a u s e ( t h e w e l l - d r a i n e d swamp d e p o s i t s of t h e M i s s i s s i p p i d e l t a c o n t a i n v i r t u a l l y no o r g a n i c m a t t e r ) . The coarsening-upwards c y c l e s a r e p e r i o d i c a l l y i n t e r u p t e d by reddish-brown o r brown c h a n n e l - f i l l s a n d s t o n e u n i t s up t o 1Om t h i c k .
These c o n t a i n c r o s s - b e d d i n g i n
t h e lower p a r t w i t h o c c a s i o n a l i n t r a f o r m a t i o n a l l a g s and g i v e way upwards t o horizontal lamination.
These a r e i n t e r p r e t e d a s t h e d e p o s i t s of low s i n u o s i t y
d i s t r i b u t a r i e s which d r a i n e d t h e lower p a r t s of t h e d e l t a p l a i n . Colour v a r i a t i o n s and m i n e r a l o g y I n k e e p i n g w i t h o t h e r reddened d e l t a p l a i n d e p o s i t s t h e D i f u n t a Group shows a wide range of c o l o u r v a r i a t i o n s i n c l u d i n g r e d , p u r p l e , g r e e n , g r e y , o l i v e , y e l l o w and brown.
Most o f t h e d e l t a p l a i n f a c i e s i s made up of r e d beds which r a n g e from
hues of r e d (5R, 7.5R, 10R) t o r e d d i s h brown (2.5YR). of c o l o u r on g r a i n s i z e .
There i s a s t r o n g dependence
C l a y s t o n e s have s t r o n g e r s a t u r a t i o n (chroma numbers of
3 t o 5 v e r s u s 2 t o 3 f o r c o a r s e r - g r a i n e d r o c k s ) and g r e a t e r l i g h t n e s s v a l u e s .
Most
o f t h e r e d s i l t s t o n e s and c l a y s t o n e s a r e u n i f o r m l y c o l o u r e d t h r o u g h o u t a l t h o u g h a few beds have brown m o t t l e s i n burrows and r o o t s c a r s .
A l l the f i n e grained rocks
a r e c a l c a r e o u s (between 11-19’77 CaCO ) and t h e o n l y c l a y m i n e r a l s p r e s e n t a r e i l l i t e
3
and c h l o r i t e .
The r e d c o l o u r i s due t o h a e m a t i t e which i s p r e s e n t a s g r a i n c o a t i n g s
and i n c l o s e a s s o c i a t i o n w i t h c l a y m i n e r a l s .
I r o n d i s t r i b u t i o n s a r e shown i n
Fig.3.23. Green ( 5 G Y ) beds are l i t h o l o g i c a l l y s i m i l a r t o t h e r e d beds c o n s i s t i n g predomi n a n t l y of c l a y s t o n e and mudstone.
The c o l o u r i s a t t r i b u t e d t o f e r r o u s i r o n i n
c h l o r i t e and i l l i t e ( K e l l e r , 1953) i n t h e absence of h a e m a t i t e and o r g a n i c m a t t e r . The m a j o r i t y of t h e s e g r e e n beds o c c u r b e n e a t h c h a n n e l s a n d s t o n e s whose c o l o u r r a n g e s from l i g h t brown t o g r e y and t h e c o n t a c t w i t h a d j a c e n t r e d beds i s s h a r p b u t c l e a r l y t r a n s e c t s bedding p l a n e s .
T h i s f e a t u r e i s c l e a r l y of p o s t - d e p o s i t i o n a l
o r i g i n and s u g g e s t s t h a t t h e g r e e n beds have formed by t h e r e d u c t i o n o f r e d beds o r p r o t o - r e d beds by r e d u c i n g groundwaters which seeped from t h e o v e r l y i n g c h a n n e l sands.
A s i m i l a r e x p l a n a t i o n h a s been s u g g e s t e d f o r g r e e n zones u n d e r l y i n g f l u v i a l
channel s a n d s t o n e s ( F r i e n d , 1 9 6 6 ) .
The t o t a l i r o n c o n t e n t of t h e g r e e n beds i s
157
4
RED PURPLE A GREEN 0 GREY m
a& A.
OLIVE 1 YELLOW 0 ME AN VALUES
+
m n
>,,mo A
-2 2
O.0
A
o +-o
1
a+- m-t 0
Cl
,
m 2
1
moo 3
I
4
I
96 TOTAL FE
Fig.3.23. P l o t s o f t o t a l Fe v s . Fe3+ and F e 2 + v s . Fe3+ i n D i f u n t a c l a y s t o n e samples of d i f f e r e n t c o l o u r ( a f t e r McBride, 1974). v i r t u a l l y i d e n t i c a l w i t h t h a t of t h e r e d beds b u t t h e Fe2+/Fe3+ r a t i o i s v e r y d i f f e r e n t ( 2 . 8 1 a s opposed t o 0.45 i n t h e r e d b e d s ) ( F i g . 3 . 2 3 ) .
This contrasts
markedly w i t h many o t h e r g r e e n beds formed by s e c o n d a r y r.eduction which u s u a l l y show comparable Fe2+ c o n t e n t s b u t much less Fe3+ t h a n a s s o c i a t e d r e d beds.
The
d e p l e t i o n of Fe3+ i n s e c o n d a r i l y reduced g r e e n beds i s a t t r i b u t e d t o r e d u c t i o n and removal of Fe2+ i n s o l u t i o n ( s e e C h a p t e r 6 ) and t h e r e l a t i v e i n c r e a s e i n Fe
2+
i n t h e D i f u n t a g r e e n beds might i n d i c a t e t h a t i r o n has been accomodated i n a u t h i g e n i c c l a y m i n e r a l s r a t h e r than b e i n g removed (McBride, 1974).
An a l t e r n a t i v e view i s
t h a t t h e g r e e n beds were n e v e r f u l l y o x i d i z e d and t h a t t h e pigmentary h a e m a t i t e of t h e r e d beds formed by t h e complete o x i d a t i o n o f f e r r o u s i r o n - b e a r i n g i l l i t e and chlorite, P u r p l e (5RP 5 / 2 -
5P 5 / 2 ) c l a y s t o n e and s i l t y c l a y s t o n e s show s i m i l a r t e x t u r e s
and composition t o r e d b e d s o f t h e same g r a i n s i z e . 0.5-1.5m
P u r p l e beds a r e t y p i c a l l y
t h i c k and may b e t r a n s i t i o n a l between r e d and g r e e n zones.
They a r e
u s u a l l y r o o t - m o t t l e d zones w i t h a s h a r p upper c o n t a c t and a n uneven lower c o n t a c t which always t r a n s e c t s bedding p l a n e s .
Purple colouration i s a c h a r a c t e r i s t i c
f e a t u r e of r e d beds which have c o n t a i n e d s i g n i f i c a n t q u a n t i t i e s of o r g a n i c m a t t e r , s u c h a s r o o t p e n e t r a t e d h o r i z o n s , b u t i t s p r e c i s e o r i g i n i s n o t w e l l understood. The s i m i l a r i t y of t h e r e d and p u r p l e beds i n c o m p o s i t i o n and l i t h o l o g y s u g g e s t s t h a t d i f f e r e n c e s i n i r o n o r manganese c o n t e n t ( S t r a k h o v , 1958) o r t h e mixing of g r e e n and r e d m i n e r a l s (Ortlam, 1967) a r e n o t a p p l i c a b l e .
The d i s p e r s i o n of
168 pigmentary h a e m a t i t e i n mudrocks i s a n i m p o r t a n t f a c t o r i n c o l o u r a t i o n and s o i s t h e p a r t i c u l a r g r a i n s i z e of h a e m a t i t e p r e s e n t .
The b r i g h t e s t r e d c o l o u r a t i o n
r e s u l t s from f i n e l y d i s p e r s e d h a e m a t i t e of e x t r e m e l y f i n e g r a i n s i z e ( 1 - 2 ~ ) whereas p u r p l e c o l o u r a t i o n a p p e a r s t o r e s u l t from c o a r s e r g r a i n e d (3-5rm) h a e m a t i t e which i s less e v e n l y d i s p e r s e d .
These c o n d i t i o n s c o u l d r e s u l t i n r o o t d i s t u r b e d
mudrocks where t h e decomposition and o x i d a t i o n o f o r g a n i c m a t t e r i n l o c a l i z e d zones c r e a t e s v a r i a b l e Eh-pH c o n d i t i o n s w i t h p r e f e r e n t i a l growth o f h a e m a t i t e i n t h e more oxygenated a r e a s . The importance of o r g a n i c m a t t e r i s a l s o s e e n i n o l i v e , y e l l o w , and g r e y beds where i t s p r e s e n c e a c t u a l l y c o n t r i b u t e s t o rock c o l o u r a t i o n .
O l i v e beds (5GY 5 / 1 )
a r e t h e r e s u l t o f t h e c o l o u r mixing o f g r e e n c l a y m i n e r a l s and b l a c k o r g a n i c m a t t e r . The f o r m a t i o n of h a e m a t i t e i n t h e s e b e d s , a n d i n yellow b e d s , may have been i n h i b i t e d i n t h e p r e s e n c e of o r g a n i c m a t t e r and much of t h e Fe3+ c o n t e n t ( F i g . 3 . 2 3 ) may b e i n t h e form of i r o n hydroxide ( g o e t h i t e ) .
Grey beds (N4-N6) a r e n o t abundant i n t h e
d e l t a p l a i n f a c i e s b e i n g more c h a r a c t e r i s t i c of t h e marine d e p o s i t s i n t h e D i f u n t a Group.
The c o l o u r o f t h e s e g r e y beds i s p a r t l y due t o o r g a n i c m a t t e r i n t h e form
of f i n e l y comminuted p l a n t d e b r i s and a l s o t o f i n e g r a i n e d p y r i t e .
The l a t t e r o c c u r s
a s i n f i l l i n g s of f o r a m i n i f e r a n chambers and a l s o a s s c a t t e r e d framboids.
It is
l i k e l y t h a t t h e g r e y beds r e p r e s e n t p o o r l y - d r a i n e d ground i n which r e d u c i n g c o n d i t i o n s p r e v a i l e d below t h e s e d i m e n t s u r f a c e ( c f . Coleman, 1966). Brown c o l o u r e d beds a r e r e s t r i c t e d t o s i l t s t o n e and v e r y f i n e s a n d s t o n e and a p p e a r t o have formed by t h e w e a t h e r i n g of p r e v i o u s l y g r e y beds.
The c h i e f c o l o u r i n g a g e n t
a p p e a r s t o b e g o e t h i t e which h a s formed by t h e o x i d a t i o n o f p y r i t e and t h e h y d r a t i o n of h a e m a t i t e .
Such a p r o c e s s may be a n i m p o r t a n t i n t e r m e d i a t e s t a g e i n t h e f o r m a t i o n
of r e d beds i n c o a s t a l d e p o s i t i o n a l environments ( C z y s c i n s k i e t a l . , 1978). The o r i g i n of t h e d e l t a p l a i n r e d beds I n view o f t h e f a c t t h a t no modern a l l u v i u m i s a s r e d a s a n c i e n t r e d beds (Van Houten, 1968; Walker, 1974) i t must b e presumed t h a t t h e sediment which accumu l a t e d on t h e d e l t a p l a i n was d r a b .
S i n c e t h i s sediment p r o b a b l y c o n t a i n e d
s i g n i f i c a n t amounts of i r o n h y d r o x i d e s and o t h e r i r o n - b e a r i n g m i n e r a l s i n a s s o c i a t i o n w i t h t h e abundant c l a y f r a c t i o n (Walker and Honea, 1969; Van Houten, 1972) r e d c o l o u r a t i o n most l i k e l y developed i n oxygenated c o n d i t i o n s above t h e w a t e r t a b l e . A number of f e a t u r e s s u g g e s t t h a t p e d o g e n e s i s and r e d d e n i n g were c l o s e l y r e l a t e d
w i t h i n t h i s zone.
These i n c l u d e r o o t s c a r s which a r e abundant i n p u r p l e a n d r e d
b e d s , t h e absence of b e d d i n g , and t h e abundance of c a l c i t e nodules of i n f e r r e d pedogenic o r i g i n .
The s c a r c i t y o f d i a g n o s t i c s o i l m i c r o f a b r i c s s u g g e s t s t h a t t h e
D i f u n t a s o i l s were n o t mature.
These f a c t o r s , a s w e l l a s t h e abundance of a s s o c i a t e d
r e d and g r e e n i n t r a c l a s t s i n r e d and brown c h a n n e l s a n d s t o n e s , s u g g e s t s t h a t t h e i n i t i a l reddening may have been r e l a t i v e l y r a p i d , p e r h a p s t a k i n g o n l y s e v e r a l
thousand y e a r s a s opposed t o t h e hundreds o f thousands o f y e a r s needed t o redden sandy d e s e r t a l l u v i u m (Walker, 1967a).
The r e a s o n s f o r t h i s r a p i d p o s t - d e p o s i t i o n a l
r e d d e n i n g l i e s i n t h e r e l a t i v e importance o f t h e i n s i t u a g e i n g o f f e r r i c hdyroxides and i r o n - b e a r i n g c l a y m i n e r a l s .
The c l a y - r i c h n a t u r e of t h e o r i g i n a l non-red
a l l u v i u m means t h a t i t l i k e l y c o n t a i n e d s i g n i f i c a n t amounts of f e r r i c hydroxides which c o u l d ' a g e ' i n t o h a e m a t i t e g i v e n s u i t a b l e c o n d i t i o n s ( B e r n e r , 1969a; Walker and Honea, 1969; Van Houten, 1972).
O t h e r d i a g e n e t i c p r o c e s s e s may a l s o have
c o n t r i b u t e d t o r e d c o l o u r a t i o n ; t h e s e i n c l u d e t h e i n t r a s t r a t a l a l t e r a t i o n of i r o n b e a r i n g s i l i c a t e s such a s b i o t i t e and t h e m a r t i t i z a t i o n of d e t r i t a l m a g n e t i t e g r a i n s (McBride, 1974, p.764).
Another p o s s i b l e r e d d e n i n g mechanism i n v o l v e s t h e formation
of h a e m a t i t e by t h e o x i d a t i o n of f i n e l y d i s s e m i n a t e d p y r i t e ( C h a l l i s , 1975; C z y s c i n s k i e t a l . , 1978).
P y r i t e o x i d a t i o n h a s been e x t e n s i v e l y s t u d i e d ( S i n g e r
and M o r r i s , 1969; Smith and Schumate, 1970) and i s p a r t i c u l a r l y s i g n i f i c a n t i n t h e development of a c i d s u l p h a t e s o i l s (Van Breeman, 1973).
Pyrite w i l l rapidly
o x i d i z e when i n c o n t a c t w i t h oxygenated groundwater, t h e r a t e o f o x i d a t i o n b e i n g l a r g e l y d e t e r m i n e d by t h e o x i d a t i o n of f e r r o u s i r o n .
The mechanism i s probably
a two-stage one i n which f e r r o u s i r o n i s r e l e a s e d by p a r t i a l o x i d a t i o n :
+ 02 + Fez+ + SO:- and t h e n 2 completely oxidized: Fez++ Fe3+ and s u b s e q u e n t l y p r e c i p i t a t e d a s f e r r i c oxyhy-
FeS
droxide.
During p r o g r e s s i v e b u r i a l t h i s f e r r i c oxyhdyroxide would ' a g e ' i n t o haem-
a t i t e p r o v i d i n g t h a t o x i d i z i n g c o n d i t i o n s c o n t i n u e d t o p r e v a i l ( B e r n e r , 1969a). C a r b o n i f e r o u s r e d beds i n Europe and North America Introduction During t h e Upper C a r b o n i f e r o u s i n Europe and North America l a r g e amounts of c l a s t i c sediment accumulated i n r i v e r - d o m i n a t e d d e l t a s .
These d e l t a s s t r a d d l e d
e q u a t o r i a l l a t i t u d e s and were o f t e n covered i n l u s h v e g e t a t i o n which accumulated t o f o m p e a t and s u b s e q u e n t l y c o a l seams (Coal Measures).
Within these coal-bearing
d e p o s i t s a r e abundant i n t e r d i g i t a t e d r e d beds which were formed under m o i s t t r o p i c a l climatic conditions.
T h i s a s s o c i a t i o n o f r e d beds w i t h c o a l - b e a r i n g s t r a t a i s q u i t e
d i s t i n c t i v e from t h e red b e d - e v a p o r i t e a s s o c i a t i o n which forms under a r i d c l i m a t i c c o n d i t i o n s (Walker, 1974). The Coal Measures i n t h e UK and USA p r o v i d e e x c e l l e n t examples of r e d beds which formed w i t h i n r i v e r - d o m i n a t e d d e l t a i c s u c c e s i o n s a l t h o u g h t h e y have n o t been intensively studied.
I n NW Europe t h e Coal Measures were d e p o s i t e d i n a major p a r a l i c
b a s i n which i s now r e p r e s e n t e d by a number o f i n d i v i d u a l c o a l f i e l d s which a r e r e l a t e d t o important depositional c e n t r e s (Fig.3.24).
I n t h e Midland V a l l e y o f S c o t l a n d
1060m of Coal Measures a r e p r e s e r v e d and i s o p a c h y t e s t u d i e s i n d i c a t e a d e p o s i t i o n a l t r o u g h w i t h l o c a l a t t e n u a t i o n a t t h e north-west and s o u t h - e a s t margins.
I n the
Pennine P r o v i n c e 3050m a r e p r e s e r v e d i n t h e c e n t r e of t h e b a s i n b u t a g a i n marked
160 a t t e n u a t i o n o c c u r s i n m a r g i n a l a r e a s and i n t h e s o u t h e r n m o s t p a r t t h e Coal Measures r e s t on Pre-Carboniferous r o c k s .
S i m i l a r l y i n South Wales 244Om accumulated i n t h e
c e n t r e of t h e b a s i n n e a r Swansea and t h e r e i s r a p i d t h i n n i n g towards t h e e a s t .
Fig.3.24. Palaeogeography of NW Europe d u r i n g t h e Upper C a r b o n i f e r o u s . The t h i c k n e s s v a l u e s a r e f a r t h e t o t a l Upper C a r b o n i f e r o u s ( a f t e r P.A. Z i e g l e r , 1978). The Coal Measures accumulated mainly i n river-dominated d e l t a s and d e l t a p l a i n s and comprise b o t h coarsening-upwards and fining-upwards s e q u e n c e s .
I n fact the
complexity of l o c a l s u c c e s s i o n i s s u c h t h a t many e a r l y s t u d i e s c o n c e n t r a t e d on s t a t i s t i c a l methods i n t h e s e a r c h f o r a a e n e r a l i z e d s e d i m e n t a t i o n u n i t (Duff a n d Walton, 1962; Duff e t a l . , 1967; Doveton, 1971).
However many l o c a l s u c c e s s i o n s
have now been d e s c r i b e d i n d e t a i l and comparisons w i t h modern d e l t a s a r e now p o s s i b l e (Reading, 1978). Secondary ( p o s t - d i a g e n e t i c ) r e d d e n i n g b e n e a t h t h e sub-Permian unconformity S t u d i e s of t h e o r i g i n of r e d beds i n t h e Coal Measures of t h e UK have been confused by t h e p r e s e n c e of s e c o n d a r i l y reddened ( w e a t h e r e d ) s t r a t a b e n e a t h t h e sub-Permian unconformity.
There i s good e v i d e n c e t h a t deep p e n e t r a t i o n o f o x i d i z i n g c o n d i t i o n s
b e n e a t h che a r i d Permian l a n d s u r f a c e was r e s p o n s i b l e f o r t h e r e d d e n i n g of what b o u l d o t h e r w i s e be ' n o r m a l ' g r e y Coal Measures i n a number of a r e a s ( B a i l e y , 1926; T r o t t e r , 1951; Mykura , 1960s). Goodchild (1896, p.71) o r i g i n a l l y s u g g e s t e d t h a t t h e r e d c o l o u r a t i o n of Coal
161 Measures i n S c o t l a n d was due t o d e p o s i t i o n of f e r r i c o x i d e from p e r c o l a t i n g s o l u t i o n s of f e r r o u s b i c a r b o n a t e which h e b e l i e v e d were d e r i v e d from Permo-Triassic l a k e s . The r e d d e n i n g o f t h e C a r b o n i f e r o u s beds of A r r a n was d e s c r i b e d by B a i l e y (1926) who c o n s i d e r e d t h a t t h e r e d c o l o u r i n t h e s e r o c k s had formed i n s i t u by t h e o x i d a t i o n of f e r r o u s i r o n - b e a r i n g m i n e r a l s .
The p r e s e n c e of p a r t i a l l y and c o m p l e t e l y o x i d i z e d
i r o n s t o n e n o d u l e s and reddened p l a n t d e b r i s s u p p o r t s t h i s view.
Simpson and Richey
(1936) d e s c r i b e d t h e r e d d e n i n g which a f f e c t s b o t h t h e Barren Red and P r o d u c t i v e Coal Measures i n t h e Sanquhar and T h o r n h i l l d i s t r i c t s o f S c o t l a n d .
They c o n s i d e r e d
t h e r e d c o l o u r of t h e B a r r e n Red Measures t o b e a n o r i g i n a l f e a t u r e .
Near Sanquhar,
however, Permian l a v a s r e s t d i r e c t l y on P r o d u c t i v e Coal Measures which a r e c o l o u r e d r e d d i s h - p u r p l e and l a c k a c o a l h o r i z o n ( C r e e p i e Coal) which i s p r e s e n t e l s e w h e r e a t t h e same h o r i z o n .
I n t h i s c a s e Simpson and Richey (1936, p.57-58) c o n s i d e r e d t h e
r e d d e n i n g t o be t h e r e s u l t o f d e e p l y p e n e t r a t i n g o x i d a t i o n of i r o n - b e a r i n g sediments d u r i n g t h e Permian t i m e s . The r e d d e n i n g of C a r b o n i f e r o u s s t r a t a i n NW England h a s been d e s c r i b e d by T r o t t e r (1939, 1953, 1954).
T r o t t e r demonstrated t h a t b o t h t h e C a r b o n i f e r o u s Limestone and
t h e Coal Measures a r e reddened where t h e y a r e unconformably o v e r l a i n by PermoT r i a s s i c r o c k s , t h e maximum d e p t h of r e d d e n i n g b e i n g a b o u t 600m.
The reddening
a p p a r e n t l y r e s u l t e d from t h e o x i d a t i o n of s i d e r i t e (Clayband i r o n s t o n e s and n o d u l e s , and p y r i t e ) t o h a e m a t i t e b e f o r e t h e Permo-Triassic r o c k s were d e p o s i t e d . T r o t t e r (1954) r e c o g n i z e d a zone o f complete o x i d a t i o n immediately below t h e prePermo-Triassic l a n d s u r f a c e , u n d e r l a i n e i t h e r by a zone of p a r t i a l o x i d a t i o n o r by a l t e r n a t i n g zones o f p a r t i a l o x i d a t i o n and non-oxidation.
Trotter attributed this
d e e p - s e a t e d o x i d a t i o n t o p e r i o d s of p r o l o n g e d d r o u g h t , d u r i n g t h i c h t h e s u b s t r a t u m i n t h e vadose zone became a e r a t e d , a l t e r n a t i n g w i t h s h o r t p e r i o d s o f r a i n f a l l i n a n a r e a of h i g h r e l i e f .
The maximum d e p t h o f r e d d e n i n g i s t h u s determined by t h e l e v e l
below which t h e pre-Permo-Triassic
w a t e r t a b l e n e v e r sank.
The a l t e r n a t i o n of
p a r t i a l l y o x i d i z e d and u n o x i d i z e d zones might be e x p l a i n e d i f t h e lower l e v e l of t h e w a t e r t a b l e were o v e r l a i n by s e v e r a l perched water t a b l e s . I n NE England t h e C a r b o n i f e r o u s s t r a t a a r e a l s o reddened b e n e a t h t h e Permian unconformity (Anderson and Dunham, 1953).
The d e p t h o f r e d d e n i n g h e r e , however,
does n o t exceed a b o u t 15m and T r o t t e r (1953) s u g g e s t e d t h a t t h i s was due t o t h e f a c t t h a t t h e pre-Permian s u r f a c e i n t h i s a r e a was a low c o a s t a l p l a i n b o r d e r i n g t h e t r a n s g r e s s i v e Z e c h s t e i n s e a and t h e upper l i m i t of permanent s a t u r a t i o n of t h e s t r a t a would b e s i m i l a r t o t h e l e v e l i n t h e a d j a c e n t s e a . The most d e t a i l e d d e s c r i p t i o n o f t h e f e a t u r e s a s s o c i a t e d w i t h s e c o n d a r y reddening
is t h a t o f Mykura (1960a) f o r t h e A y r s h i r e c o a l f i e l d . Here reddened s t r a t a o c c u r at a b r o a d l y uniform d e p t h b e n e a t h t h e Permian unconformity though t h e s t r a t i g r a p h i c a l h o r i z o n v a r i e s from t h e Upper Coal Measures down t o
t h e Upper Limestone Group.
The lower s u r f a c e o f r e d d e n i n g shows c o n s i d e r a b l e i r r e g u l a r i t y i n d i c a t i n g t h a t t h e p e r c o l a t i o n o f w a t e r and a i r was o f t e n g r e a t e r a l o n g f a u l t p l a n e s and p o r o u s , sandy
162 beds ( F i g . 3 . 2 5 ) .
The r e d d e n i n g t o o k p l a c e p r i m a r i l y by i n s i t u o x i d a t i o n b u t t h e r e
i s a l s o e v i d e n c e t h a t h a e m a t i t e p r e c i p i t a t e d from groundwater s o l u t i o n s .
This i s i n
t h e form of t h i n f i l m s of h a e m a t i t e which a r e common i n c o a l s r e p l a c e d by l i m e s t o n e and a l s o h a e m a t i t e cements which o c c u r i n b r e c c i a t e d p o r c e l l a n o u s mudstones.
COAL LIMESTONE SEATEARTH SANDSTONE REDDENED STRATA ARGILLACEOUS STRATA
Diagram i l l u s t r a t i n g t h e p o s s i b l e r e l a t i o n s h i p between f a u l t i n g and t h e Fig.3.25. lower l i m i t o f r e d d e n i n g i n t h e Coal Measures of A y r s h i r e ( a f t e r Mykura, 1960a). Reddening i n t h e A y r s h i r e Coal Measures i s u s u a l l y a s s o c i a t e d w i t h t h e r e p l a c e ment of c o a l by l i m e s t o n e .
The r e p l a c e m e n t p r o c e s s r e s u l t s i n a marked r e d u c t i o n
of t h e seam w i t h t h e o c c a s i o n a l development of 'cone i n c o n e ' s t r u c t u r e . u s u a l l y r e p l a c e d by c a l c i t e f i r s t which may i n t u r n b e d o l o m i t i z e d .
Coal i s
I n some o t h e r
a r e a s such a s t h e S o u t h D e r b y s h i r e c o a l f i e l d s ( P o t t e r y Clay Group) o x i d a t i o n of c o a l seams may r e s u l t i n c a v i t i e s c a u s i n g c o l l a p s e of t h e o v e r l y i n g s t r a t a ( M i t c h e l l , 1944).
L a t e r s t a g e s of t h e replacement i n v o l v e t h e f o r m a t i o n of h a e m a t i t e v e i n l e t s
and f i b r o u s gypsum and c a r b o n a t e s . Mykura (1960a) c o n s i d e r e d t h a t t h e g r e a t d e p t h of o x i d a t i o n below t h e Permian unconformity ( a b o u t 50Om) c a n b e p a r t l y e x p l a i n e d by t h e l o n g p e r i o d o f t i m e between t h e end of Coal Measure d e p o s i t i o n and t h e d e p o s i t i o n o f t h e e a r l i e s t Permian r o c k s w h i l s t t h e a r e a was a l a n d s u r f a c e .
The main r e d d e n i n g and t h e a l t e r a t i o n o f t h e
h i g h e r c o a l s a p p e a r s t o have t a k e n p l a c e b e f o r e d e p o s i t i o n of t h e Permian r o c k s and
163 w h i l s t t h e groundwater was r e l a t i v e l y f r e e o f c a l c i u m and magnesium.
After the
d e p o s i t i o n o f t h e Permian l a v a s w e a t h e r i n g and decomposition may have s u p p l i e d much c a l c i u m and magnesium t o t h e groundwater s o l u t i o n s which were r e s p o n s i b l e f o r t h e a l t e r a t i o n of c o a l s t o c a r b o n a t e s . Not a l l t h e r e d beds i n t h e A y r s h i r e c o a l f i e l d a r e of s e c o n d a r y o r i g i n and a number a p p e a r t o b e a s s o c i a t e d w i t h contemporary e r o s i o n s u r f a c e s .
Mykura (1960a,
p.91) d e s c r i b e s m o t t l e d r e d c l a y s t o n e s o v e r l a i n e r o s i v e l y by c o a r s e p e b b l y sands t o n e s c o n t a i n i n g fragments of reddened and non-reddened C a r b o n i f e r o u s s t r a t a . S i m i l a r l y t h e r e d beds i n t h e Barren Red Measures w i t h t h e i r a s s o c i a t e d ' S p i r o r b i s ' l i m e s t o n e s were p r o b a b l y reddened d u r i n g d i a g e n e s i s and a r e u n l i k e l y t o b e due t o sub-Permian w e a t h e r i n g .
The Coal Measures may t h e r e f o r e c o n t a i n r e d beds produced
d u r i n g two q u i t e d i s t i n c t p h a s e s of r e d d e n i n g a n d i t may b e e x t r e m e l y d i f f i c u l t t o d i s t i n g u i s h t h e two.
Secondary r e d beds produced by t h e w e a t h e r i n g of"norma1'
g r e y s e d i m e n t s a p p e a r t o b e c h a r a c t e r i z e d by t h e f o l l o w i n g f e a t u r e s :
1) a l t e r a t i o n of clayband i r o n s t o n e ( s i d e r i t e s h e e t s and n o d u l e s ) t o h a e m a t i t e and f e r r i c h y d r o x i d e s 2 ) o c c u r r e n c e o f reddened p l a n t d e b r i s and reddened non-marine l a m e l l i b r a n c h s 3 ) r e p l a c e m e n t of c o a l seams by c a r b o n a t e s , gypsum and h a e m a t i t e
4 ) a s p a t i a l r e l a t i o n s h i p o f t h e reddened s t r a t a w i t h a n unconformity o r major fault-planes. Red beds of t h e Umer Coal Measures of t h e UK
Red beds a r e a c h a r a c t e r i s t i c f e a t u r e o f t h e Upper Coal Measures i n t h e UK and a r e t y p i c a l l y i n t e r d i g i t a t e d w i t h non-red s t r a t a ,
They p o s s e s s a number o f d i s t -
i n c t i v e s e d i m e n t o l o g i c a l f e a t u r e s which i n d i c a t e t h a t they must have formed a t a r e l a t i v e l y e a r l y post-depositional
s t a g e ( d u r i n g d i a g e n e s i s ) and n o t by t h e sub-
s e q u e n t w e a t h e r i n g of p r e v i o u s l y l i t h i f i e d d r a b s e d i m e n t s .
Some g e n e r a l i z e d
sequences of Upper Coal Measures showing t h e s t r a t i g r a p h i c a l d i s t r i b u t i o n of r e d beds a r e i n d i c a t e d i n Fig.3.26. The widespread d i s t r i b u t i o n o f r e d beds i n t h e Upper Coal Measures and t h e i r a s s o c i a t i o n w i t h ' S p i r o r b i s ' l i m e s t o n e s i s o f t e n t a k e n t o i n d i c a t e a change t o more a r i d conditions.
T h i s may b e so, b u t s e d i m e n t o l o g i c a l s t u d i e s i n d i c a t e t h a t whereas
d e l t a f r o n t sequences a r e abundant i n t h e Lower and Middle Coal Measures t h e Upper Coal Measures a r e dominated by f l u v i a l sequences of t h e d e l t a p l a i n and i t s a l l u v i a l f r i n g e ( e . g . K e l l i n g , 1968, 1969).
The marine i n c u r s i o n marked by t h e topmost
marine band ( A n t h r a c o c e r a s c a m b r i e n s e ) is o f r e l a t i v e l y l i m i t e d a r e a l e x t e n t ( F i g . 3.27) and by t h i s t i m e r e d bed f a c i e s a s s o c i a t e d w i t h m a r g i n a l f l u v i a l sediments were a l r e a d y well-developed.
The changes which o c c u r r e d d u r i n g t h e Upper Coal
Measures f o l l o w e d a p e r i o d of f o l d i n g and f a u l t i n g i n t h e Coalbrookdale c o a l f i e l d . P r i o r t o t h i s t h e Pennine and South-west P r o v i n c e s had m a i n t a i n e d s e p a r a t e b a s i n s
164
Fig.3.26. Upper Coal Measures c o r r e l a t i o n from Somerset t o L a n c a s h i r e showing t h e s t r a t i g r a p h i c a l d i s t r i b u t i o n of r e d beds ( a f t e r P o o l e , 1977). of d e p o s i t i o n b u t t h e t e c t o n i c a c t i v i t y r e s u l t e d i n w i d e s p r e a d u p l i f t and e r o s i o n which was f o l l o w e d by d e p o s i t i o n o v e r t h e former Wales-Brabant Massif ( F i g s . 3.26, 3.27). A.
South Wales
Red beds o c c u r a t a number o f h o r i z o n s i n t h e Upper Coal Measures o f t h e S o u t h Wales c o a l f i e l d ( F i g . 3 . 2 7 ) and have been d e s c r i b e d from t h e L l y n f i and Rhondda Beds (Downing and S q u i r r e l , 1965; K e l l i n g , 1968, 1969) and a l s o t h e Swansea Beds ( A r c h e r , 1965). The Rhondda Beds were d e p o s i t e d i n a n E-W t r e n d i n g b a s i n which was e n c l o s e d on t h r e e s i d e s b u t open t o t h e w e s t .
The d e p o s i t s c o n s i s t o f sand-dominated a l l u v i u m
a r r a n g e d i n fining-upwards c y c l e s a n d , less commonly, coarsening-upwards c y c l e s
165
FACIES OF ANTHRACOCERAS CAMBRIENSE M.B. AT ACME OF INCURSION
Faunal f a c i e s a t t h e acme of t h e Top ( A n t h r a c o c e r a s cambriense) Marine Fig.3.27. Band i n B r i t a i n showing t h e p r o b a b l e l i m i t s o f t h e i n c u r s i o n and t h e s p r e a d of r e d bed f a c i e s o v e r t h e Wales-Brabant M a s s i f . The c o a l f i e l d s a r e shown i n Black (modified from C a l v e r , 1969). Fig.3.29).
The p r i n c i p a l s t r e a m s were a p p a r e n t l y meandering and r e s u l t e d i n t h e
dominance of l a t e r a l a c c r e t i o n u n i t s i n t h e c e n t r a l p a r t o f t h e b a s i n were subs i d e n c e was moderate t o r a p i d .
I n t h e same a r e a coarsening-upwards sequences which
166
SCALE FEET MERES 0 7 0 A
SOUTH WEST south walr ( W o n W o o d l o d , E m & S h p h 1957) OROVESEND SEAMS
1OOo- -Jod NSEA KJUR
North Staffordrhin(b0don EarpWl)
R e p r e s e n t a t i v e s e c t i o n s o f t h e upper p a r t o f W e s t p h a l i a n C and Fig.3.28. Westphalian D showing t h e c o r r e l a t i o n between t h e South Wales, Pennines and S c o t t i s h p r o v i n c e s ( a f t e r C a l v e r , 1969). b e g i n w i t h d a r k mudstones c o n t a i n i n g f r e s h w a t e r b i v a l v e s and o s t r a c o d e s , resemble v e r y c l o s e l y t h e l a c u s t r i n e d e l t a - f i l l sequences d e s c r i b e d by Coleman (1966). The r e d beds i n t h e Rhondda Beds a r e r e s t r i c t e d t o t h e e a s t e r n p a r t o f t h e b a s i n where t h e sequence i s a t t e n u a t e d b e c a u s e of i t s p r o x i m i t y t o t h e p o s i t i v e m a r g i n a l a r e a ( S q u i r r e l and Downing, 1964).
Here t h e s a n d s t o n e s a r e c o a r s e -
g r a i n e d o r t h o q u a r t z i t e s and j u d g i n g from t h e l o w - v a r i a b i l i t y of c u r r e n t v e c t o r s
167 and t h e n a t u r e of t h e fining-upwards sequences t h e y were d e p o s i t e d i n r e l a t i v e l y s m a l l , p r o b a b l y b r a i d e d c h a n n e l s o f s l i g h t s i n u o s i t y ( K e l l i n g , 1968).
Fig.3.29. Schematic model o f p o s t u l a t e d environments of d e p o s i t i o n i n t h e lower Rhondda Beds of South Wales. The n o r t h - s o u t h dimension i s somewhat f o r e s h o r t e r e d . Diagonal s h a d i n g aver t h e e a s t e r n p a r t o f t h e a r e a i n d i c a t e s t h e approximate d i s t r i b u t i o n o f r e d beds ( a f t e r K e l l i n g , 1968). The c o a r s e c l a s t i c s a r e mainly p a l e g r e y t o w h i t e i n c o l o u r whereas t h e i n t e r v e n i n g mudstones may b e g r e y , g r e e n o r r e d , a f e a t u r e i n common w i t h many o t h e r Coal Measure r e d b e d s .
The r e d mudstones may b e u n i f o r m l y r e d b u t more u s u a l l y
a r e m o t t l e d w i t h p a t c h e s , s t r e a k s and s p o t s of g r e e n .
The c o l o u r b o u n d a r i e s may
b e p a r a l l e l t o bedding p l a n e s b u t o c c a s i o n a l l y t r a n s e c t them.
A very c h a r a c t e r i s t i c
f e a t u r e o f t h e m o t t l e d r e d h o r i z o n s i s t h e i r a s s o c i a t i o n w i t h s e a t e a r t h s and t h e presence of s e a t e a r t h - l i k e textures.
These t e x t u r e s , u s u a l l y r e f e r r e d t o a s
" b a s t a r d s e a t e a r t h s " , c o n t a i n abundant r o o t s c a r s b u t r a r e l y show t h e p r e s e n c e of actual rootlets.
They may c o n t a i n s m a l l s i d e r i t e n o d u l e s which have a c r u d e
168 spherulitic or radial texture. The r e d beds a r e t h u s c l o s e l y a s s o c i a t e d w i t h p a l a e o s o l s , a c h a r a c t e r i s t i c f e a t u r e of r e d beds formed i n d e l t a p l a i n environments ,
The m i n e r a l o g y of t h e d i f f e r e n t
c o l o u r e d mudstones i s v e r y s i m i l a r , b e i n g composed mainly of i l l i t e and k a o l i n i t e w i t h minor amounts o f c h l o r i t e .
There a r e some i m p o r t a n t chemical d i f f e r e n c e s ,
however, w i t h t h e r e d mudstones b e i n g markedly e n r i c h e d i n f e r r i c i r o n (7% Fe 0 2 3 a s opposed t o 2.5% Fe203 i n t h e g r e e n mudstones). T h i s c l o s e a s s o c i a t i o n of r e d beds w i t h p a l a e o s o l s i s even more e v i d e n t h i g h e r up i n t h e sequence i n t h e Swansea Beds and Grovesend Beds ( A r c h e r , 1965) ( F i g . 3 . 2 8 ) . Here t h e r e d beds o c c u r a t t h r e e main s t r a t i g r a p h i c a l h o r i z o n s e a c h forming p a r t of a s i m i l a r c y c l i c u n i t (Fig.3.30).
The r e d beds a r e r e s t r i c t e d t o mudstone u n i t s and
a r e t y p i c a l l y v a r i e g a t e d w i t h reddish-brown and r e d d i s h - p u r p l e m o t t l i n g b e i n g prominent.
In p l a c e s b r i c k r e d s p o t s o c c u r and c a n b e s e e n t o s u r r o u n d ' p y r i t e
crystals.
The r e d beds show abundant r o o t s c a r s and a r e c l o s e l y a s s o c i a t e d w i t h
bastard seatearths.
These t y p i c a l l y have a soapy a p p e a r a n c e w i t h numerous l i s t r i c
s u r f a c e s and o n l y r a r e l y show p r e s e r v e d r o o t l e t s .
Spherulitic s i d e r i t e is again
common i n t h e s e s e a t e a r t h s and a s s o c i a t e d s i d e r i t e i r o n s t o n e s have a brown o r s t r a w c o l o u r e d a p p e a r a n c e whereas t h e y a r e normally g r e y i n t h e s u r r o u n d i n g g r e y s e d i m e n t s . Like o t h e r C o a l Measure examples t h e s e r e d beds c a n n o t have been d e p o s i t e d a s r e d d e t r i t u s b e c a u s e t h i s does n o t e x p l a i n t h e i r m o t t l e d a p p e a r a n c e , t h e r e d h a l o e s around p y r i t e c r y s t a l s , o r t h e o c c u r r e n c e of o c c a s i o n a l reddened p l a n t fragments. S i m i l a r l y , t h e i n t e r c a l a t i o n o f t h e r e d beds w i t h normal g r e y s t r a t a i n d i c a t e s t h a t sub-Permian w e a t h e r i n g i s a l s o a n u n l i k e l y e x p l a n a t i o n .
Archer (1965) p r e f e r r e d
a s i m i l a r mechanism t o t h a t s u g g e s t e d by McBride (1974) f o r t h e D i f u n t a Group and Downing and S q u i r r e l (1965) f o r t h e L l y n f i and Rhondda Beds.
T h i s mechanism i n v o l v e s
t h e lowering of t h e w a t e r t a b l e and t h e development of w e l l - d r a i n e d , conditions.
oxygenated
T h i s would e n a b l e t h e d e s t r u c t i o n of p l a n t m a t e r i a l t h u s p r e v e n t i n g
t h e p r e s e r v a t i o n o f c o a l seams.
Reddening c o u l d t a k e p l a c e by t h e o x i d a t i o n of
p y r i t e and a l s o by t h e p r e c i p i t a t i o n o f g o e t h i t e and h a e m a t i t e formed from i r o n r e l e a s e d from c l a y m i n e r a l s .
B.
The Blackband and E t r u r i a Marl Groups o f North S t a f f o r d s h i r e
In t h e North S t a f f o r d s h i r e c o a l f i e l d (Fig.3.27) t h e Upper Coal Measurea a r e a b o u t 1500m t h i c k and i n c l u d e two m a j o r r e d bed f o r m a t i o n s , t h e E t r u r i a Marl Group and t h e K e e l e Group,
These a r e s e p a r a t e d by o v e r 120m of g r e y mudstones and sand-
s t o n e s w i t h t h i n c o a l s (Newcastle Group) and i t i s c l e a r t h a t t h e r e d beds a r e a n i n t r i n s i c f a c i e s and n o t due t o s e c o n d a r y w e a t h e r i n g b e n e a t h t h e P e m o - T r i a s s i c unconformity. Red beds f i r s t a p p e a r i n t h e Upper Coal Measures o f N o r t h S t a f f o r d s h i r e in t h e Blackband Group.
T h i s i s a sequence o f p r e d o m i n a n t l y g r e y non-marine s t r a t a
169
Fig.3.30. Comparative s e c t i o n s of t h e L l y n f i and Rhondda Beds i n t h e n o r t h e a s t p a r t o f t h e South Wales c o a l f i e l d showing t h e d i s t r i b u t i o n o f r e d beds ( a f t e r Downing and S q u i r r e l , 1965). c o n s i s t i n g of mudstones, s i l t s t o n e s and t h i n s a n d s t o n e s sometimes a r r a n g e d i n coarsening-upwards u n i t s .
Near t h e middle p a r t o f t h e Group i s a sequence of t h i c k
c o a l s ( F i g . 3 . 3 1 ) and above t h i s a r e a number of t h i n n e r c o a l s which a r e a s s o c i a t e d with s i d e r i t i c ironstones.
These i r o n s t o n e s , known a s ' b l a c k b a n d i r o n s t o n e s '
g e n e r a l l y o c c u r immediately above t h e c o a l seams (Fig.3.31) p e l o i d a l s i d e r i t e and carbonaceous m a t t e r .
and c o n s i s t of laminated
S i d e r i t i z e d freshwater bivalves a r e
170 p r e s e n t a t some h o r i z o n s and t h e i r o n s t o n e may p a s s l a t e r a l l y i n t o l i m e s t o n e s w i t h mussels of t h e Anthraconauta p h i l l i p s i i g r o u p , o s t r a c o d e s and f i s h .
The blackband
i r o n s t o n e s c l e a r l y r e p r e s e n t widespread l a c u s t r i n e c o n d i t i o n s and t h e s u c c e e d i n g coarsening-upward u n i t s most l i k e l y i n d i c a t e p r o g r a d a t i o n a l f i l l i n g of t h e l a k e s , p o s s i b l y by l a c u s t r i n e d e l t a s .
N f W C b S I ' i GIOUP
UPPER COAL
I
L ~ '
1
/
MEASURES ILbCIWNO GROUP
MIDDLE
f
COAL MEASURES
*
7 I 1 BbNIURY M1)INl UND
LOWER
COAL MEASURES
Fig.3.31. G e n e r a l i z e d sequence o f t h e Coal Measures o f t h e North S t a f f o r d s h i r e c o a l f i e l d w i t h a d e t a i l e d s u c c e s s i o n o f t h e Blackband Group.
!
171 The v e r t i c a l and l a t e r a l d i s t r i b u t i o n of r e d beds i n t h e sequence between t h e Bassey Mine and Blackband c o a l s i s shown i n Fig.3.32.
The r e d beds a r e b e s t
developed i n t h e s o u t h e r n a n d s o u t h - w e s t e r n p a r t o f t h e c o a l b a s i n where t h e succ e s s i o n i s t h i n n e s t and become p r o g r e s s i v e l y t h i n n e r towards t h e c e n t r e of t h e b a s i n so t h a t i n d i v i d u a l r e d bed u n i t s a r e wedge-shaped w i t h a h o r i z o n t a l upper s u r f a c e and a n o b l i q u e lower s u r f a c e ( F i g . 3 . 3 2 ) . These f e a t u r e s s u g g e s t t h a t groundwater d r a i n a g e c o n d i t i o n s a t t h e t i m e o f d e p o s i t i o n e x e r c i s e d a n i m p o r t a n t c o n t r o l on t h e d i s t r i b u t i o n of r e d beds.
Marginal
a r e a s may have been of h i g h e r r e l i e f and t h u s b e t t e r d r a i n e d t h a n a r e a s i n t h e c e n t r e of t h e b a s i n .
Better d r a i n a g e i n t h e m a r g i n a l a r e a s would e n a b l e t h e o x i d a t i o n of
o r g a n i c m a t t e r and t h e development of o x i d i z i n g c o n d i t i o n s w i t h i n t h e d e p o s i t e d sediments so t h a t r e d beds c o u l d e v e n t u a l l y develop.
In t h e c e n t r e of t h e b a s i s ,
on t h e o t h e r hand, poor d r a i n a g e c o u l d r e s u l t i n t h e p r e s e r v a t i o n o f o r g a n i c m a t t e r and t h e development of r e d u c i n g c o n d i t i o n s s o t h a t r e d beds were u n a b l e t o develop. The geometry of t h e r e d beds can b e e x p l a i n e d by v e r t i c a l f l u c t u a t i o n s i n t h e l e v e l of t h e w a t e r t a b l e which may have been a s s o c i a t e d w i t h t e c t o n i c a c t i v i t y .
Relative
u p l i f t o f t h e m a r g i n a l a r e a s r e s u l t e d i n t h e w i d e s p r e a d development o f r e d bed c o n d i t i o n s ( F i g . 3 . 3 3 ) w h i l s t r e l a t i v e s u b s i d e n c e r e s u l t e d i n t h e r e c e s s i o n of r e d bed c o n d i t i o n s and w i d e s p r e a d development o f p e a t swamps and s u b s e q u e n t l y l a c u s t r i n e conditions. The Blackband Group p a s s e s upwards i n t o t h e E t r u r i a Marl Group a major r e d bed f o r m a t i o n a b o u t 30Om t h i c k .
The E t r u r i a Marl i s s t r o n g l y d i a c h r o n o u s , i t s b a s e i s
h a r d t o d e f i n e and t h e r e i s c o n s i d e r a b l e t h i c k n e s s v a r i a t i o n , p a r t l y due t o t h e 'Symon Unconformity' which o c c u r s between t h e E t r u r i a Marl and Halesowen Beds i n t h e South S t a f f o r d s h i r e C o a l f i e l d ( F i g . 3 . 2 6 ) . The E t r u r i a Marl shows many of t h e c h a r a c t e r i s t i c f e a t u r e s o f r e d beds formed I n errmciatfon with coal-bearing s t r a t a .
Much of t h e sequence i s dominated by r e d
mudatone and sandy mudetone which commonly show p a l a e o s o l f e a t u r e s .
These i n c l u d e
s e a t e a r t h s w i t h r o o t s c a r s i n r e d and p u r p l e mudstones, d i s t i n c t c o l o u r m o t t l i n g o f r e d , p u r p l e , y e l l o w , and g r e e n ( c f . McBride, 1974) and a n a b s e n c e o f bedding. t h e r e are occasional t h i n c o a l s with t h e u s u a l grey-coloured s e a t e a r t h s .
Also
Towards
t h e s o u t h , and i n t h e South S t a f f o r d s h i r e c o a l f i e l d , t h e E t r u r i a Marl c o n t a i n s s a n d s t o n e u n i t s ( e s p l e y s ) which are river c h a n n e l d e p o s i t s . based and u s u a l l y p o o r l y s o r t e d and t e x t u r a l l y immature.
These a r e e r o s i v e l y -
I n t h e North S t a f f o r d s h i r e
a r e a t h e s e channel s a n d s t o n e s c o n t a i n l a t e r a l a c c r e t i o n u n i t s and were e v i d e n t l y d e p o s i t e d by meandering s t r e a m s .
F u r t h e r s o u t h ( F i g . 3 . 2 7 ) t h e c h a n n e l sands a r e
t h i c k e r and more a b u n d a n t , and l o c a l l y d e b r i s - f l o w u n i t s o c c u r i n d i c a t i n g t h e p r e s e n c e of m a r g i n a l a l l u v i a l f a n s .
172
KEY L.B.M. 1st. Upper Bassey Mine Limestone L.B.M. Lst. Lower Borrey Mine Limestone Limestone L--L
-
J
b
5
L a
€3’
Coal Red Beds Blackband Ironstone Non-marine Lamellibranchs Ortracoda Spirorbis Ettheria Fish
W
-
0
1
2
3
4
Fig.3.32. Diagrammatic c r o s s - s e c t i o n i l l u s t r a t i n g t h e inter-wedging of r e d beds i n t o t h e North S t a f f o r d s h i r e Blackband Group s u c c e s s i o n .
173 The o r i g i n o f t h e r e d beds i n t h e E t r u r i a Marl i s c l o s e l y a s s o c i a t e d w i t h s o i l forming p r o c e s s e s and a p p e a r s t o have been s i m i l a r t o t h e D i f u n t a Group d e s c r i b e d by McBride (1974).
There i s no e v i d e n c e t o i n d i c a t e t h a t upland s o i l s on t h e Wales-
Brabant Massif were e r o d e d and s u p p l i e d r e d d e t r i t u s t o t h e E t r u r i a Marl a s s u g g e s t e d by Hoare (1960) and Earp ( 1 9 6 1 ) .
The p r i n c i p a l o b j e c t i o n t o t h i s h y p o t h e s i s i s t h a t
s o i l s a r e w e l l developed w i t h i n t h e E t r u r i a Marl and p e d o g e n e s i s and reddening might be expected t o be c l o s e l y r e l a t e d .
L14CWRlNE CONDITIONS RED BEDS RESTRICTED
I
I
SUBSIDENCE
J.
\
@
I I
LACUSTRINE REGRESSION ZONE OF RED BED FORMATION MIGRATES TOWARDS BASIN CENTRE ORMING CONDlTl
@
LACUSTRINE TRANSORESSION
CONTINUED FORMATION OF RED BEDS DURING DIAGENESIS Fig.3.33. Schematic r e p r e s e n t a t i o n of t h e c o n d i t i o n s which r e s u l t e a i n m e inLeLd i g i t a t i o n of r e d and g r e y beds i n t h e Blackband Group of t h e North S t a f f o r d s h i r e coa 1f i e l d .
174 The c h e m i s t r y and m i n e r a l o g y of t h e E t r u r i a Marl s u g g e s t s t h a t p a l a e o s o l s may b e of b o t h s e a t e a r t h and f e r r a l l i t i c (Dury, 1969) t y p e s ( F i g . 3 . 3 4 ) .
Red mudstones
of t h e E t r u r i a Marl a r e f r e q u e n t l y r i c h i n k a o l i n i t e which i s c l o s e l y a s s o c i a t e d with i r o n oxides.
K a o l i n i t e s a r e notable f o r o f t e n containing adsorbed i r o n
(Weaver and P o l l a r d , 1973) and i t i s q u i t e p o s s i b l e t h a t p i g m e n t a t i o n o f t h e E t r u r i a Marl was c l o s e l y a s s o c i a t e d w i t h t h e f o r m a t i o n of i r o n o x i d e s from d i s o r d e r e d k a o l i n i t e s which underwent c r y s t a l l i n i t y changes d u r i n g d i a g e n e s i s ( c f . S l a n s k a , 1976).
The mudstones o f t h e E t r u r i a Marl may t h u s have been reddened a t
a relatively early post-depositional stage.
T h i s i s s u p p o r t e d by p a l a e o m a g n e t i c
e v i d e n c e which i n d i c a t e s t h a t t h e mudstones were magnetized d u r i n g Upper Carboniferous times (Fig.3.35). colour.
The s a n d s t o n e s o f t h e E t r u r i a Marl may b e r e d o r d r a b i n
The d r a b s a n d s t o n e s c o n t a i n a u t h i g e n i c p y r i t e and a p p a r e n t l y were l i t h i f i e d
under r e d u c i n g c o n d i t i o n s i n o r g a n i c - r i c h groundwater.
The r e d s a n d s t o n e s , however,
show e v i d e n c e of prolonged d i a g e n e s i s under o x i d i z i n g c o n d i t i o n s .
They a r e t e x t u r a -
l l y immature a l t h o u g h much c l a y m a t r i x may have been produced by t h e i n s i t u breakdown o f v o l c a n i c rock fragments ( c f . Walker e t a l . ,
1978) and t h e r e i s abundant
a u t h i g e n i c q u a r t z , c a l c i t e , and h a e m a t i t e i n k e e p i n g w i t h many o t h e r a n c i e n t sandy r e d beds.
Palaeomagnetic r e s u l t s from s a n d s t o n e s o f t h e E t r u r i a Marl show s t e e p e r
i n c l i n a t i o n s c o n s i s t e n t w i t h l a t e r d i a g e n e s i s and more p r o l o n g e d reddening.
Si%
0
SANDSTONES MUDSTONES
Al 0 Fe203 Fig.3.34. $ernary diagram showing t h e r e l a t i v e p r o p o r t i o n s of SiOg, A1203, and Fe 0 i n s a n d s t o n e s and mudstones o f t h e E t r u r i a Marl. 2 3
175
0
SANDSTONE
A
MUDSTONE LOCAL FIELD DIRECTION
*
O
*
+
OO O
Fig.3.35. Palaeomagnetic d i r e c t i o n s ( a f t e r t h e r m a l c l e a n i n g ) from s a n d s t o n e s and mudstones of t h e E t r u r i a Marl. The mudstones i n d i c a t e e q u a t o r i a l p a l a e o l a t i t u d e s t y p i c a l of t h e Upper C a r b o n i f e r o u s o f t h e UK which s u g g e s t s r e l a t i v e l y e a r l y postd e p o s i t i o n a l reddening. The s t e e p e r i n c l i n a t i o n s of t h e s a n d s t o n e s s u g g e s t much l a t e r , p o s s i b l y Permian, r e d d e n i n g and a l o n g e r complex d i a g e n e s i s . The p r o j e c t i o n is s t e r e o g r a p h i c , open symbols = upward v e c t o r s , c l o s e d symbols = downward v e c t o r s , circumference = horizontal. Upper C a r b o n i f e r o u s r e d beds a t J o g g i n s , Nova S c o t i a The C a r b o n i f e r o u s sequence a t J o g g i n s , Nova S c o t i a has been d e s c r i b e d by Duff and Walton (1973).
T h i s i s a d e l t a p l a i n sequence which prograded n o r t h - e a s t w a r d s
and was d e r i v e d from igneous and metamorphic r o c k s l i k e t h o s e s e e n t o t h e s o u t h i n t h e Cobequid Arch (Way, 1969).
The s e d i m e n t s s t u d i e d by Duff and Walton (1973)
form t h e b a s e of t h e Middle f i n e f a c i e s of Hacquebard and Donaldson (1964) and a r e considered t o be Westphalian B t o Westphalian C i n age.
A wide v a r i e t y of f a c i e s
a r e r e p r e s e n t e d i n c l u d i n g g r e y mudstone and s h a l e , c h a n n e l and s h e e t sandstone, r e d
176 and red-green m o t t l e d mudstone, non-marine l i m e s t o n e , s e a t e a r t h and c o a l . Walton (1973) r e c o g n i z e d t h r e e d i v i s i o n s :
Duff and
Lower, Middle and Upper beds and n o t e d
d i f f e r e n t f a c i e s arrangements between them ( F i g . 3 . 3 6 ) .
1
4
...... ..:... 2 .,L.
-. I . .
,
Uct1
Fig.3.36. 1973).
Sedimentary sequences a t J o g g i n s , Nova S c o t i a ( a f t e r Duff and Walton,
The s a n d s t o n e s i n t h e J o g g i n s s e c t i o n t a k e t h e form o f l e n t i c u l a r c h a n n e l sands t o n e s (mean t h i c k n e s s 4m) and s h e e t s a n d s t o n e s (mean t h i c k n e s s 2m).
The l a t t e r
a r e most commonly m u l t i s t o r e y u n i t s i n which l e a v e s o f s a n d s t o n e some 0.50m t h i c k a r e s e p a r a t e d by t h i n mudstone p a r t i n g s a l t h o u g h t h e s e c a n b e s e e n t o t h i c k e n towards t h e c h a n n e l s a n d s t o n e s .
An i m p o r t a n t f e a t u r e of t h e s a n d s t o n e s i s t h a t
t h e y a r e p e n e t r a t e d by e r e c t t r e e stumps which c o n t a i n entombed amphibians and r e p t i l e s ( C a r r o l l , 1967). O t h e r p a l a e o n t o l o g i c a l e v i d e n c e r e g a r d i n g t h e c o n d i t i o n s of d e p o s i t i o n comes from t h e o c c u r r e n c e o f t h i n b i v a l v e and o s t r a c o d e l i m e s t o n e s which a r e o f t e n i n t e r bedded w i t h c o a l s .
The most abundant o s t r a c o d e s a r e C a r b o n i t a a l t i l i s ( J o n e s and
K i r b y ) and C. c f . s a l t e r i a n a (Jones and K i r b y ) and t h e b i v a l v e s i n c l u d e ( C u r v i r i m u l a s p . a n d c f . N a i a d i t e s e l o n g a t a (Dawson) and N . P o l l a r d and M.A.
longus (Dawson) a s r e p o r t e d by J.E.
C a l v e r i n Duff and Walton (1973).
There have been many d i s c u s s i o n s
r e g a r d i n g t h e p a l a e o e c o l o g i c a l s i g n i f i c a n c e of o s t r a c o d e s and b i v a l v e s i n c o a l b e a r i n g sequences p a r t i c u l a r l y w i t h r e s p e c t t o s a l i n i t y v a r i a t i o n s and no c l e a r
177 p i c t u r e seem t o have emerged ( C a l v e r , 1968; P o l l a r d , 1969; E a g e r , 1970).
Duff and
Walton (1973) concluded t h a t t h e o c c u r r e n c e o f Curvirimula and N a i a d i t e s i n a s s o c i a t i o n w i t h C a r b o n i t a was a n i n d i c a t i o n o f b r a c k i s h t o f r e s h w a t e r c o n d i t i o n s w i t h t h e p o s s i b i l i t y t h a t t h e b i v a l v e - r i c h l i m e s t o n e s were more near-marine and t h e o s t r a c o d e - r i c h l i m e s t o n e s were more n e a r - f r e s h w a t e r . Duff and Walton (1973) compared t h e Upper and Lower beds o f t h e J o g g i n s s e c t i o n using standard transion matrix techniques. diagrams a r e shown i n Fig.3.37. t h e Lower and Upper beds.
Representative facies relationship
These i l l u s t r a t e some i m p o r t a n t d i f f e r e n c e s between
The r e d beds which show t h e f a m i l i a r a s s o c i a t i o n w i t h
s e a t e a r t h s o c c u r o n l y i n t h e Lower b e d s ; t h e s e a r e r i c h e r i n l i m e s t o n e and f o s s i l i f e r o u s mudstones.
They a r e c o m p l e t e l y a b s e n t from t h e Upper beds where
l i m e s t o n e s a r e less abundant and t h e s a n d s t o n e s much more abundant ( s a n d s t o n e / s h a l e r a t i o ' = 0.63 a s opposed t o 0.23 i n t h e Lower b e d s .
Duff and Walton (1973) a s s e s s e d
t h e o v e r a l l environment o f d e p o s i t i o n a s t h a t o f a d e l t a p l a i n w i t h back-swamps and s h a l l o w l a k e s and major d i s t r i b u t a r y c h a n n e l s .
D e p o s i t i o n a l s i t e s were p r o b a b l y
v a r i e d and i n c l u d e d t h e c h a n n e l and i t s m a r g i n s , c r e v a s s e s p l a y s , l a c u s t r i n e d e l t a s and t h e s u r r o u n d i n g f l o o d b a s i n . The d i f f e r e n c e s between t h e Upper and Lower beds p r o v i d e a n i m p o r t a n t c l u e t o t h e o r i g i n of t h e r e d beds.
The upper beds c o n t a i n i n g t h e t h i c k e s t c o a l s , abundant
s a n d s t o n e s and r e l a t i v e l a c k of non-marine f a u n a s s u g g e s t s a s i t e low on t h e d e l t a p l a i n i n which c o n t i n u o u s swamp c o n d i t i o n s a l l o w e d t h e a c c u m u l a t i o n of t h i c k sequenc e s of p e a t ,
The Lower beds on t h e o t h e r hand were c o n s i d e r e d by Duff and Walton
(1973) t o have accumulated a t a h i g h e r p o s i t i o n on t h e d e l t a p l a i n which e n a b l e d non-marine f a u n a s t o f l o i r i s h and t h e c r e a t i o n of b e t t e r d r a i n a g e c o n d i t i o n s i n which o x i d i z i n g c o n d i t i o n s and r e d bed f o r m a t i o n may have p r e v a i l e d on t h e i n t e r v e n i n g mud f l a t s which would have been above t h e w a t e r t a b l e . T h i s e x p l a n a t i o n i s c o n s i s t e n t w i t h t h a t p u t forward f o r o t h e r d e l t a p l a i n r e d beds.
S p e c i f i c r e d d e n i n g mechanisms were p r o b a b l y complex b u t t h e d e h y d r a t i o n of
d e t r i t a l c l a y - o x i d e complexes and o x i d a t i o n o f e a r l i e r formed p y r i t e a r e c o n s i d e r e d t o have been i m p o r t a n t .
4t
Shalo
t\ -COAL
I ' /
Limoston.
Fig. 3.37. F a c i e s r e l a t i o n s h i p diagrams f o r t h e C a r b o n i f e r o u s sediments a t J o g g i n s , Nova S c o t i a ( a f t e r Duff and Walton, 1973).
178 CONCLUSIONS AND FURTHER M A D I N G Although t h e r e a r e no modern examples o f d e l t a p l a i n r e d beds i t seems l i k e l y t h a t they formed i n a v a r i e t y o f c l i m a t i c s e t t i n g s .
They a r e most c h a r a c t e r i s t i c
o f a n c i e n t river-dominated d e l t a s which formed i n m o i s t t r o p i c a l c l i m a t e s and t h u s c o n t r a s t markedly w i t h d e s e r t r e d beds.
The mechanism of r e d d e n i n g a l s o c o n t r a s t s
w i t h d e s e r t r e d beds and p e d o g e n e s i i r a t h e r t h a n i n t r a s t r a t a l a l t e r a t i o n may be t h e dominant p r o c e s s . The f o l l o w i n g a r e recommended f o r f u r t h e r r e a d i n g : B r o u s s a r d , M.L.
( E d i t o r ) , 1975. D e l t a s
-
Models f o r E x p l o r a t i o n , Houston Geol.
SOC., Houston, 555 pp. Mohr, E . C . J .
and Van Baren, F.A.,
New York, 490 pp.
1954. T r o p i c a l S o i l s . I n t e r s c i e n c e Publ.,
179
CHAPTER 4 ALLWIAL RED BEDS INTRODUCTION A l l u v i a l s e d i m e n t s c o n s i s t of a g r e a t v a r i e t y o f p e b b l y , sandy and muddy d e p o s i t s . They accumulate i n a v a r i e t y of f l u v i a l d e p o s i t i o n a l environments under a l l c l i m a t i c Present-day a l l u v i a l sediments a r e not red, nor i s a l l a n c i e n t alluvium.
conditions.
A n c i e n t a l l u v i a l s e d i m e n t s a r e , however, common i n t h e s t r a t i g r a p h i c r e c o r d and comprise t h e most i m p o r t a n t group of a n c i e n t c o n t i n e n t a l r e d beds.
They a r e t h e most
e x t e n s i v e l y s t u d i e d r e d beds b u t a r e s t i l l o n l y p o o r l y u n d e r s t o o d and we owe much of o u r p r e s e n t knowledge t o T.R. Walker and c o l l e a g u e s who have made a n i n t e n s i v e s t u d y of Cenozoic d e s e r t a l l u v i u m i n t h e s o u t h w e s t e r n USA and n o r t h w e s t e r n Mexico.
Walker
(1967a) showed t h a t t h i s d e s e r t a l l u v i u m was reddened p o s t - d e p o s i t i o n a l l y by t h e i n t r a s t r a t a l a l t e r a t i o n of d e t r i t a l i r o n s i l i c a t e m i n e r a l s .
I t s h o u l d be s t r e s s e d
t h a t t h i s a l l u v i u m i s of f i r s t - c y c l e o r i g i n and i s r i c h i n d e t r i t a l ferromagnesian silicates,
The same c o n d i t i o n s do n o t a p p l y t o a l l a n c i e n t a l l u v i a l r e d beds.
When a p p l i e d t o a n c i e n t a l l u v i a l r e d bed s e q u e n c e s t h e d i a g e n e t i c model of Walker c a n n o t , i n i t s e l f , a d e q u a t e l y a c c o u n t f o r some o f t h e observed v a r i a t i o n s .
For
example, d e p o s i t i o n a l environment i s c l e a r l y a n i m p o r t a n t c o n t r o l l i n g f a c t o r because d i f f e r e n t environments show d i f f e r e n t c o l o u r d i s t r i b u t i o n p a t t e r n s .
A l l u v i a l fans
and c o a r s e g r a i n e d a l l u v i a l sequences f r e q u e n t l y show u n i f o r m l y r e d c o l o u r a t i o n which
i s c o n s i s t e n t w i t h a d i a g e n e t i c o r i g i n l i k e t h a t d e s c r i b e d by Walker.
Fine grained
a l l u v i a l s e q u e n c e s , l i k e t h o s e d e p o s i t e d by meandering r i v e r s , a r e g e n e r a l l y q u i t e different.
Here t h e a l l u v i u m i s d i f f e r e n t i a t e d i n t o c o a r s e ( c h a n n e l ) and f i n e ( f l o o d -
p l a i n ) members and t h e r e a r e i m p o r t a n t c o l o u r d i f f e r e n c e s between t h e two, t h e former o f t e n b e i n g d r a b and t h e l a t t e r r e d .
The s u g g e s t i o n h e r e i s t h a t d e p o s i t i o n a l and
e a r l y p o s t - d e p o s i t i o n a l p r o c e s s e s have been e f f e c t i v e i n producing t h e red- non-red differentiation.
The i m p l i c a t i o n i s t h a t t h e a l l u v i u m o r i g i n a l l y c o n t a i n e d sub-
s t a n t i a l amounts of f i n e g r a i n e d i r o n o x i d e o r i r o n h y d r o x i d e i n a s s o c i a t i o n w i t h t h e c l a y f r a c t i o n of t h e a l l u v i u m .
T h i s was c o n c e n t r a t e d i n t h e f l o o d p l a i n e n v i r -
onment and became s t a b i l i z e d under d r y , oxygenated c o n d i t i o n s , e v e n t u a l l y producing a red colour.
I n t h e s a t u r a t e d channel e n v i r o n m e n t , t h e s e i r o n o x i d e s and hydroxides
become u n s t a b l e , e s p e c i a l l y under r e d u c i n g c o n d i t i o n s , and were e v e n t u a l l y removed i n solution,
Van Houten (1972) h a s shown t h e importance o f d e t r i t a l f e r r i c hyd-
r o x i d e s i n Recent t r o p i c a l a l l u v i u m .
The s o u r c e of t h e s e hydroxides i s n o t p r e c i s e l y
known and t h e i m p o r t a n t q u e s t i o n i s whether o r n o t they have been d e r i v e d from upland r e d s o i l s . I n t h i s c h a p t e r t h e d e p o s i t i o n of p r e s e n t - d a y a l l u v i u m i s reviewed and t h e t r a n s p o r t of i r o n o x i d e s and h y d r o x i d e s i n t h e s e sediments i s d e s c r i b e d .
The
180 various post-depositional processes including the 'ageing' of f e r r i c hydroxides and t h e i n t r a s t r a t a l s o l u t i o n of i r o n s i l i c a t e s a r e a l s o d e s c r i b e d and t h e i r importance i n a n c i e n t r e d bed sequences a s s e s s e d .
Gross g e n e r a l i z a t i o n s about
t h e o r i g i n of a l l u v i a l r e d b e d s ' a r e n o t p o s s i b l e .
I n d i v i d u a l environments i n a
p a r t i c u l a r r e d bed sequence may have been reddened by d i f f e r e n t p r o c e s s e s and d i f f e r e n c e s i n m i n e r a l o g i c a l c o m p o s i t i o n and p o s t - d e p o s i t i o n a l h i s t o r y may e x e r t a s t r o n g c o n t r o l l i n g i n f l u e n c e on d i f f e r e n t r e d bed s e q u e n c e s .
RIVER CHANNELS When s e e n i n p l a n view r i v e r c h a n n e l s may t a k e on a v a r i e t y of forms which depend upon t h e flow s t a g e o f t h e r i v e r ,
The r i v e r c h a n n e l p a t t e r n i s c o n t r o l l e d
by a number of v a r i a b l e s i n c l u d i n g t h e sediment l o a d and i t s c h a r a c t e r i s t i c s , and a l s o t h e amount and n a t u r e of t h e d i s c h a r g e .
A f t e r t h e work o f Leopold and Wolman
(1957) t h r e e b a s i c c h a n n e l p a t t e r n s can be r e c o g n i z e d :
s t r a i g h t , meandering and
b r a i d e d which a r e d i s t i n g u i s h e d on t h e b a s i s of s i n u o s i t y ( r a t i o of Thalweg l e n g t h t o V a l l e y l e n g t h ) and t h e p r e s e n c e of a l l u v i a l i s l a n d s ,
S t r a i g h t c h a n n e l s have a
s i n u o s i t y of a b o u t 1.0 and meandering c h a n n e l s a s i n u o s i t y o f g r e a t e r than 1 . 5 . A b r a i d e d channel i s one which flows i n two o r more anastomosing c h a n n e l s around a l l u v i a l islands (Fig.4.1).
N a t u r a l channel p a t t e r n s i n t e r g r a d e w i t h e a c h o t h e r
and b r a i d e d and meandering c h a n n e l s r e p r e s e n t t h e end p o i n t s o f a c o n t i n u o u s spectrum. Even t h e same channel may show changing p a t t e r n s a l o n g i t s l e n g t h ; t h e same channel a p p e a r i n g t o meander a t b a n k f u l s t a g e s and b r a i d e d a t low f l o w s t a g e s ( R u s s e l l , 1954).
Because of t h i s continuum of c h a n n e l p a r t e r n s S c h u m (1963) proposed a more
d e t a i l e d c l a s s i f i c a t i o n proposing f i v e c l a s s e s :
straight, transitional, regular,
i r r e g u l a r and t o r t u o u s c h a n n e l p a t t e r n s . The f a c t o r s c o n t r o l l i n g c h a n n e l p a t t e r n a r e complex a l t h o u g h s l o p e and d i s c h a r g e a r e two of t h e most i m p o r t a n t .
Leopold and Wolman (1957) showed t h a t i n t h e r i v e r s
they s t u d i e d b r a i d e d and meandering c h a n n e l s c o u l d be d i s t i n g u i s h e d by t h e r e l a t i o n ship: -0.44
S = 0.06Qb
(4.1)
where S = s l o p e and Qb= b a n k f u l d i s c h a r g e .
Thus f o r a g i v e n d i s c h a r g e meanders
would be e x p e c t e d t o form on t h e s m a l l e r s l o p e s , o r a l t e r n a t i v e l y a t t h e same s l o p e a b r a i d e d c h a n n e l c o u l d be e x p e c t e d t o have a h i g h e r d i s c h a r g e t h a n a meandering channel.
T h i s i s w e l l i l l u s t r a t e d on t h e R i v e r Rhine where S c h a f e r (1973) h a s shown
t h a t t h e upper r e a c h e s a r e b r a i d e d ( s l o p e = 0.97%) and t h e lower r e a c h e s meandering (slope = 0.025%).
The r e l a t i o n s h i p , however, does n o t h o l d f o r a l l r i v e r s and o t h e r
f a c t o r s have a n i m p o r t a n t r o l e . discharge.
Amongst t h e s e a r e bank s t a b i l i t y and s e d i m e n t
Some r i v e r s have a meandering c h a n n e l p a t t e r n i n a r e a s where t h e banks
a r e s t a b i l i z e d by v e g e t a t i o n o r f o r e s t a t i o n b u t t a k e on a b r a i d e d p a t t e r n i n a r e a s where t h e banks a r e more r e a d i l y eroded.
Increased sediment load r e s u l t s i n a
181
bank L i n e d
A
B
C
b
b'
75 0 7.5 50 75 100
Fig.4.1.
The c l a s s i f i c a t i o n o f r i v e r c h a n n e l s a c c o r d i n g t o Leopold and Wolman (1957)
tendency towards b r a i d i n g and some l a r g e r i v e r s w i t h s m a l l s l o p e s have changed from a meandering t o a b r a i d e d p a t t e r n because of an i n c r e a s e i n sediment l o a d . example of t h i s i s t h e Brahmaputra R i v e r (Coleman, 1969).
A good
I t follows t h a t the
p r o p o r t i o n of bed l o a d t o a v a i l a b l e d i s c h a r g e may b e a n i m p o r t a n t cause of b r a i d i n g i n r i v e r c h a n n e l s (Morisawa, 1 9 6 8 ) . The c r o s s - s e c t i o n a l form of a r i v e r c h a n n e l depends upon a number of f a c t o r s i n c l u d i n g d i s c h a r g e and t h e n a t u r e and amount of sediment l o a d . d i s t i n g u i s h e d between bed-load,
Schumm (1968)
mixed-load and suspended-load s t r e a m s .
Fig.4.2
i l l u s t r a t e s t h e c h a n n e l morphology of t h e s e d i f f e r e n t t y p e s o f s t r e a m and t h e n a t u r e of t h e i r d e p o s i t s .
Meandering c h a n n e l s t e n d t o develop i n suspended l o a d s t r e a m s
because t h e y produce h i g h l y c o h e s i v e banks which a r e r e s i s t a n t t o e r o s i o n .
Low-
s i n u o s i t y c h a n n e l s a r e more c h a r a c t e r i s t i c of bed l o a d s t r e a m s because t h e s e have bank m a t e r i a l s which a r e g e n e r a l l y l e s s r e s i s t a n t t o e r o s i o n .
Present-day a l l u v i a l
sediments c a n be c o n v e n i e n t l y d i v i d e d i n t o f o u r major groups on t h e b a s i s of channel p a t t e r n and t y p e o f a l l u v i u m :
a l l u v i a l f a n s , pebbly b r a i d e d r i v e r s , sandy b r a i d e d
182 r i v e r s , and meandering s t r e a m s .
Each of t h e s e has a n c i e n t a n a l o g u e s i n t h e
s t r a t i g r a p h i c a l r e c o r d and forms major r e d bed s e q u e n c e s .
F i g . 4 . 2 . Scheme i l l u s t r a t i n g t y p e s of s i n g l e - c h a n n e l and m u l t i p l e - c h a n n e l s y s t e m s , a s s o c i a t i o n s , and t h e i r c h a r a c t e r i s t i c s . A . Channel morphology B. A l l u v i a l d e p o s i t s ( m o d i f i e d a f t e r Schumm, 1968).
ALLUVIAL FANS A l l u v i a l f a n s a r e cone-shaped d e p o s i t s which g e n e r a l l y develop i n a r e a s o f h i g h r e l i e f which a r e undergoing r a p i d e r o s i o n .
They u s u a l l y o c c u r a l o n g t h e f a u l t -
bounded margins of s e d i m e n t a r y b a s i n s and may c o a l e s c e l a t e r a l l y t o form a piedmont slope o r bajada.
The p r o c e s s e s forming a l l u v i a l f a n s have been most e x t e n s i v e l y
s t u d i e d i n a r i d and s e m i - a r i d r e g i o n s where r a i n f a l l i s i n f r e q u e n t and v e g e t a t i o n sparse.
Humid-climate, o r v e g e t a t e d a l l u v i a l f a n s , have r e c e i v e d much l e s s a t t e n t i o n
and a r e more p o o r l y known.
R e l e v a n t d e s c r i p t i o n s i n c l u d e t h o s e of Hoppe and Ekman
(1964) and Winder ( 1 9 6 5 ) . A l l u v i a l f a n s p a s s l a t e r a l l y i n t o a v a r i e t y of s e d i m e n t a r y environments i n c l u d i n g l a k e s , a l l u v i a l p l a i n s and marine s h o r e l i n e s .
Because of t h e i r l o c a t i o n on a c t i v e
f a u l t s c a r p s a l l u v i a l f a n s b u i l d t h i c k sequences of s y n t e c t o n i c sediments i n t e r b e d d e d w i t h t h o s e of t h e a s s o c i a t e d s e d i m e n t a r y environments.
A number of f a c t o r s , i n c l u d i n g t h e s i z e of t h e catchment a r e a , s o u r c e a r e a l i t h o l o g y and c l i m a t e c o n t r o l t h e s i z e and shape of a l l u v i a l f a n s .
I n semi-arid
r e g i o n s t h e f a n a r e a (A ) and t h e a r e a of t h e d r a i n a g e b a s i n a r e r e l a t e d by: F AF = cA: (4.2)
183 where c and n a r e e m p i r i c a l l y d e r i v e d exponents ( B u l l , 1964; Hooke, 1965; Beaumont, 1972); n g e n e r a l l y b e i n g between 0 . 8 and 1.0 and c v a r y i n g between 0 . 1 5 and 2.10 depending on s o u r c e a r e a l i t h o l o g y , t e c t o n i c a c t i v i t y and c l i m a t e . Most f a n s have a concave-up p r o f i l e when s e e n i n r a d i a l s e c t i o n and t h i s i s n o t u s u a l l y a s i m p l e curve b u t a s e r i e s o f e v e n l y s l o p i n g segments which may be due t o i n t e r m i t t e n t s o u r c e a r e a u p l i f t ( e . g . B u l l , 1964)
LOWER FAN
Y ZONE OF COALESCENCE
X MIDFAN
X
CHANNEL PROFILE
F i g . 4 . 3 . P l a n view and r a d i a l p r o f i l e o f a n a l l u v i a l f a n ( b a s e d on B u l l , 1964 and Hooke, 1 9 6 7 ) . Alluvial fan deposits Channels r a d i a t e from t h e f a n apex and d i s s e c t t h e f a n s u r f a c e .
Usually there
i s no b r e a k i n shape between t h e canyon f l o o r and t h e main channel s u g g e s t i n g t h a t d e p o s i t i o n i s i n i t i a t e d by l a t e r a l e x p a n s i o n a t t h e f a n apex r a t h e r t h a n by a decrease i n slope.
The main c h a n n e l i s commonly i n c i s e d on t h e upper p a r t of t h e
f a n and emerges a t a lower l e v e l , c a l l e d t h e ' i n t e r s e c t i o n p o i n t ' by Hooke (1967) (Fig.4.3). The d e p o s i t s of a l l u v i a l f a n s have been c l a s s i f i e d by B u l l (1972) i n t o f o u r main t y p e s :
d e b r i s flow d e p o s i t s , s h e e t f l o o d d e p o s i t s , s t r e a m channel d e p o s i t s
and s i e v e d e p o s i t s .
184 D e b r i s flow d e p o s i t s D e b r i s flows a r e d e n s e , v i s c o u s masses of s e d i m e n t i n which t h e m a t r i x can s u p p o r t and t r a n s p o r t l a r g e c l a s t s up t o b o u l d e r s i z e .
The d e b r i s flows may s o l i d i f y n e a r
t h e margins t h u s forming d e b r i s flow l e v e e s , o r i n a c e n t r a l p l u g where s h e a r i s i n s u f f i c i e n t t o overcome t h e s t r e n g t h of t h e deforming mass (Johnson, 1970; C a r t e r , 1975; Middleton and Hampton, 1976).
When t h e c e n t r a l s o l i d p l u g expands t o t h e
f u l l t h i c k n e s s of t h e flow i t w i l l c e a s e t o move. D e b r i s flow d e p o s i t i o n r e q u i r e s s o u r c e a r e a l i t h o l o g i e s which produce s u b s t a n t i a l amounts of f i n e d e t r i t u s and s t e e p s l o p e s which promote r a p i d e r o s i o n and s u r f a c e run-off.
They most commonly o c c u r t h e r e f o r e , n e a r t h e p r o x i m a l p a r t o f t h e f a n and
may b e i n i t i a t e d d u r i n g i n c r e a s e d run-off
(e.g.
Sharpe and Nobles, 1953).
The
d e p o s i t s a r e g e n e r a l l y p a r a l l e l s i d e d , u n s t r a t i f i e d beds which a r e e l o n g a t e and p a r a l l e l t o the fan-surface (Fig.4.4).
100
N \
\
\
\ \
\
\ \ \
I
I
I \
I
I I 1
/ I
I
I Probable debris flow lobm
m w i sflow ~nrrr
aPossible s h e dqmsits
Present channel DOpotitiOMl lobes probably sheet ftooc
The upper p a r t of t h e T r o l l h e i m F a n , Death V a l l e y showing t h e d i s t r i b u t i o n Fig.4.4. of r e c e n t d e b r i s flow l o b e s and l e v e e s . The unshaded a r e a s a r e mainly fragments of o l d e r f a n s u r f a c e s , There i s a r e l i e f of a b o u t lOOm o v e r t h e a r e a shown ( a f t e r Hooke, 1967).
185 C h a r a c t e r i s t i c a l l y t h e y a r e . p o o r l y - s o r t e d , m a t r i x s u p p o r t e d and show a r e l a t i v e l y r a p i d d e c r e a s e i n maximum c l a s t s i z e down t h e f a n s u r f a c e . Sheet flood deposits S h e e t f l o o d s o c c u r most commonly below t h e i n t e r s e c t i o n p o i n t and a r e r e l a t i v e l y low v i s c o s i t y f l o o d s which expand a t t h e downstream ends o f c h a n n e l s .
Locally they
develop i n t o s h a l l o w s h e e t flows w i t h u p p e r flow regime c o n d i t i o n s and p a s s downf a n i n t o p a t t e r n s of b r a i d e d c h a n n e l s and b a r s which d i s s e c t t h e upper s u r f a c e of t h e sediment.
The d e p o s i t s a r e f a i r l y w e l l - s o r t e d sand and g r a v e l w i t h i n t e r n a l
l e n t i c u l a r i t y , s c o u r i n g , minor c r o s s - b e d d i n g and c r o s s - l a m i n a t i o n . Stream c h a n n e l d e p o s i t s Stream c h a n n e l d e p o s i t s o c c u r most a b u n d a n t l y i n t h e upper p a r t of t h e f a n above t h e i n t e r s e c t i o n p o i n t ( B u l l , 1972).
Below t h i s p o i n t f l o o d s may b e l a r g e l y uncon-
f i n e d and develop i n t o s h e e t f l o o d s .
The d e p o s i t s of s t r e a m c h a n n e l s a r e m o s t l y
l e n t i c u l a r , p o o r l y - s o r t e d s a n d s and g r a v e l s w i t h i m b r i c a t i o n developed i n t h e c o a r s e r g r a v e l s and c r o s s - b e d d i n g i n t h e sandy b e d s .
They a r e t h u s e a s i l y d i s t i n g u i s h e d
from d e b r i s flow d e p o s i t s . Sieve deposits S i e v e d e p o s i t s o c c u r j u s t below t h e i n t e r s e c t i o n p o i n t where h i g h l y permeable o l d e r d e p o s i t s c a u s e t h e flow t o d i m i n i s h r a p i d l y a s i n f l u e n t seepage o c c u r s . r e s u l t i s a clast-supported gravel lobe (Fig.4.4) poorly imbricated gravel.
The
c o n s i s t i n g of w e l l - s o r t e d and
S i e v e d e p o s i t s may have l o b e s w i t h c l e a r l y d e f i n e d down-
s t r e a m margins (Wasson, 1974).
During l a t e r b u r i a l t h e i r w e l l - s o r t e d
t e x t u r e may
be d e s t r o y e d by t h e m e c h a n i c a l i n f i l t r a t i o n o f f i n e r sediment (Walker, 1976). PEBBLY BRAIDED RIVERS Pebbly b r a i d e d r i v e r s a r e well-developed i n g l a c i a l outwash a r e a s , o r c l i m a t e a l l u v i a l f a n s , and a l s o i n t h e wadis of s e m i - a r i d r e g i o n s ,
humid-
The g r o s s
morphology of t h e s e c o a r s e g r a i n e d b r a i d e d r i v e r systems i s u s u a l l y a s h a l l o w f a n o r v a l l e y t r a i n i n which v a l l e y w a l l s c o n f i n e t h e flow.
Much o f o u r knowledge of
t h e s e r i v e r s comes from t h e g l a c i a l outwash p l a i n s o f I c e l a n d (HjulstrMm, 1952; K r i g s t r b m , 1962; B l u c k , 1974) and n o r t h w e s t e r n Canada and Alaska (Williams and R u s t , 1969; Boothroyd, 1972; R u s t , 1972; Smith, 1974). The b r a i d e d p a t t e r n i n r i v e r s o f t h i s t y p e a r e c a u s e d by t h e development of channel bars of various s i z e s .
The p r e c i s e c a u s e of b r a i d i n g i s n o t f u l l y known, b u t
f l u c t u a t i o n s i n d i s c h a r g e ( F a h n e s t o c k , 1963; Church, 1972) which a r e a f e a t u r e of p e r i g l a c i a l a r e a s would a p p e a r t o be a n i m p o r t a n t f a c t o r .
I t i s c o n v e n i e n t t o group
186 the channel bars of pebbly braided streams i n t o t h r e e types:
longitudinal bars,
b a r s i n curved c h a n n e l r e a c h e s and t r a n s v e r s e b a r s a l t h o u g h t h e l a t t e r a r e more common i n d i s t a l r e a c h e s and w i l l b e c o n s i d e r e d i n sandy low s i n u o s i t y r i v e r s . Lonai t u d i n a l b a r s L o n g i t u d i n a l b a r s a r e c h a r a c t e r i s t i c a l l y diamond o r lozenge-shaped i n p l a n view and a r e t h e dominant bedform o f p e b b l y b r a i d e d spreams ( F i g . 4 . 5 ) .
The upper s u r f a c e s
of t h e s e b a r s may b e c o v e r e d w i t h t r a n s v e r s e r i b s (McDonald and B a n e r j e e , 1971) of c o a r s e c l a s t s w i t h well-developed i m b r i c a t i o n and t h e l o n g a x e s o f c l a s t s o r i e n t a t e d t r a n s v e r s e t o t h e flow d i r e c t i o n .
These t r a n s v e r s e r i b s t e n d t o show a r e g u l a r
s p a c i n g which i s a f u n c t i o n of g r a i n s i z e and may r e s u l t from upper flow regime a ntidune transport. The i n t e r n a l s t r u c t u r e o f l o n g i t u d i n a l b a r s c o n s i s t s of g r a n u l e t o c o b b l e g r a d e g r a v e l s which a r e m o s t l y m a s s i v e o r w i t h a c r u d e h o r i z o n t a l s t r a t i f i c a t i o n .
The
g r a v e l s may be m a t r i x - f i l l e d o r openwork (Smith, 1974) and a r e f r e q u e n t l y a r r a n g e d i n fining-upwards u n i t s .
Large s c a l e cross-bedded g r a v e l s a r e n o t f r e q u e n t l y
r e p o r t e d b u t may develop a s a r e s u l t of a v a l a n c h i n g .
These a v a l a n c h e f o r e s e t s may
show r e a c t i v a t i o n s u r f a c e s ( C o l l i n s o n , 1970) which r e s u l t from f a l l i n g s t a g e m o d i f i c a t i o n of t h e b a r f r o n t .
The g r a i n s i z e of l o n g i t u d i n a l b a r s g e n e r a l l y
d e c r e a s e s downstream and t h e downstream d e p o s i t i o n a l margins may b e s l i p f a c e s o r r i f f l e s ; o t h e r margins c o n s i s t of l a t e r a l and downstream e r o s i o n t e r r a c e s . The p r o c e s s e s of l o n g i t u d i n a l b a r i n i t i a t i o n and m i g r a t i o n a r e n o t w e l l understood.
They p r o b a b l y form by t h e s e g r e g a t i o n of c o a r s e r c l a s t s a s t h i n rhombohedra1
g r a v e l s h e e t s and grow by t h e development o f l o n g i t u d i n a l s l i p f a c e s and v e r t i c a l a c c r e t i o n t o t h e b a r top.
R u s t (1972) observed t h a t b e d d i n g d i p p e d a t less than
L1mIII
a 1-
1M M
_,.,I 0 Y
“tlC” W I Y W
s-
-l.il
-
M
wI0-u
Fig.4.5. Composite model o f a p e b b l y b r a i d e d r i v e r d e p o s i t b a s e d on t h e Donjek R i v e r i n Alaska ( a f t e r Williams and R u s t , 1969).
187 3 O i n b o t h upstream and downstream d i r e c t i o n and s u g g e s t e d t h a t t h e b a r s u r f a c e i s
the preferred depositional site.
The consequence of t h i s i s t h a t l o n g i t u d i n a l b a r s
s h o u l d m i g r a t e upstream a l t h o u g h t h i s h a s n e v e r been c o n c l u s i v e l y demonstrated because o f t h e obvious p r a c t i c a l d i f f i c u l t i e s , S t u d i e s o f t h e Donjek R i v e r i n Alaska by Williams a n d R u s t (1969) and R u s t (1972) show t h a t s a n d s a r e d e p o s i t e d on t h e t o p and f l a n k s of g r a v e l b a r s and a l s o i n adjacent channels.
These show c r o s s - s t r a t i f i c a t i o n of v a r i o u s t y p e s which i s
produced a s s a n d i s s e g r e g a t e d from g r a v e l d u r i n g lower flow s t a g e s .
Falling
w a t e r l e v e l s r e s u l t i n flow s e p a r a t i o n around t h e g r a v e l b a r and t h e e x i s t i n g a c c r e t i o n topography w i t h t h e r e s u l t t h a t c r o s s s t r a t i f i c a t i o n t r a n s p o r t v e c t o r s a r e v e r y v a r i a b l e and show g r e a t e r d i s p e r s i o n t h a n t r a n s p o r t v e c t o r s s u c h a s i m b r i c a t i o n and l i n e a t i o n which a r e produced d u r i n g h i g h flow s t a g e s (Bluck, 1974). The o v e r a l l e f f e c t i s t h a t g r a v e l b a r d e p o s i t s g e n e r a l l y show fining-upwards sequences ( F i g . 4 . 6 ) which a r e i n d i c a t i v e of waning flow s t a g e .
r
P a r a l l e l laminated
c l a y s and s i l t y c l a y s may r e s u l t from s u s p e n s i o n d e p o s i t i o n i n i s o l a t e d p o o l s which o f t e n form i n abandoned c h a n n e l s .
VERY FINE SANDS, SILTS AND CLAYS WITH HORIZONTAL LAMINATIONS
1.511 FINE-MEDIUM SANDS WITH SMALL SCALE CROSS-BEDDING
MASSIVE AND CRUDELY STRATIFIED GRAVELS
Fining-upwards sequence o f a c h a n n e l - f i l l i n a p e b b l y b r a i d e d r i v e r Fig.4.6. ( b a s e d on W i l l i a m s and R u s t , 1969).
188 Bars i n curved channel r e a c h e s Bars which a r e a t t a c h e d t o e i t h e r bank of a c u r v e d r e a c h u s u a l l y develop a s e x t e n s i o n s of t h e f l a n k s o f l a r g e r l o n g i t u d i n a l b a r s .
They a r e c h a r a c t e r i z e d by
margins which a r e s t r o n g l y o b l i q u e t o t h e main c h a n n e l t r e n d ( F i g . 4 . 7 ) and a r e o f t e n referred t o a s diagonal bars.
The upstream end o f t h e b a r may b e a t t a c h e d t o t h e
bank and t h i s c a u s e s t h e flow t o b e c o n c e n t r a t e d i n a c h a n n e l on t h e o u t s i d e which
i s r e f e r r e d t o a s a r i f f l e reach.
The r i f f l e r e a c h ends a t a s t e e p e r r i f f l e f a c e
which e x t e n d s a c r o s s t h e c h a n n e l a t a n a c u t e a n g l e . The i n t e r n a l s t r u c t u r e o f d i a g o n a l b a r s i s v e r y s i m i l a r t o t h a t o f l o n g i t u d i n a l b a r s c o n s i s t i n g of p a r a l l e l s i d e d s h e e t s of g r a v e l which may be i m b r i c a t e d o r Newly emerging bar
Small deltas 2 1
I
Fig.4.7. Morphology and s t r u c t u r e of a t y p i c a l d i a g o n a l b a r ( l ) , ( 2 ) and ( 3 ) a r e i n d i v i d u a l u n i t s of t h e b a r where (1) i s t h e newly emerging b a r which w i l l e v e n t u a l l y a t t a c h i t s e l f t o ( 2 ) ( a f t e r B l u c k , 1974). structureless.
These g r a v e l s t e n d t o p a s s i n t o cross-bedded s a n d s downstream and
may p a s s upwards i n t o r i p p l e bedded s a n d s d e p o s i t e d under waning f l o o d c o n d i t i o n s . F i n e r sediments may a l s o accumulate i n s l o u g h c h a n n e l s which a r e abandoned a t low water stages.
P r o j e c t i o n s of t h e r i f f l e f a c e i n t o t h e s l o u g h c h a n n e l s i n t h e form
of s m a l l sand l o b e s and d e l t a s a l s o r e f l e c t waning flow due t o c h a n n e l m i g r a t i o n o r f a l l i n g discharge. Diagonal b a r s accumulate by t h e l a t e r a l m i g r a t i o n o f t h e r i f f l e r e a c h w i t h t h e a c c r e t i o n of t h e newly formed b a r o n t o a n o l d e r b a r ,
This r e s u l t s i n t h e formation
o f a g r a v e l p l a t f o r m w i t h a n obvious a c c r e t i o n topography ( F i g . 4 . 7 ) .
189 Sedimentary o r g a n i z a t i o n o f p e b b l y a l l u v i u m on a l a r g e s c a l e Pebbly b r a i d e d r i v e r s of g l a c i a l outwash a r e a s f o m l a r g e f a n s which show s y s t e m a t i c downstream c h a n g e s ,
The s l o p e of t h e f a n s u r f a c e and maximum c l a s t
s i z e both d e c r e a s e downstream a n d t h e r e a r e a s s o c i a t e d changes i n c h a n n e l and b a r morphology (Boothroyd, 1 9 7 2 ) ( F i g . 4 . 8 ) .
Diagonal b a r s may become more i m p o r t a n t
downstream and be a s s o c i a t e d w i t h a n i n c r e a s e d p r o p o r t i o n o f sand and hence c r o s s bedding. I n all, t h e d e p o s i t s o f p e b b l y b r a i d e d s t r e a m s w i l l t e n d t o show r a p i d l a t e r a l and v e r t i c a l f a c i e s changes. and g r a v e l s .
The main u n i t s w i l l c o n s i s t o f e r o s i v e l y based sands
The g r a v e l s w i l l b e m a s s i v e , o r w i t h c r u d e h o r i z o n t a l s t r a t i f i c a t i o n These w i l l p a s s
and may show well-developed i m b r i c a t i o n and fining-upwards.
l a t e r a l l y o r v e r t i c a l l y i n t o l e n t i c u l a r s a n d s which may show t a b u l a r c r o s s - b e d d i n g O c c a s i o n a l s i l t s and f i n e r g r a i n e d sediments w i l l
with reactivation surfaces.
i n d i c a t e t h e o c c u r r e n c e of s u s p e n s i o n d e p o s i t i o n i n p o o l s and abandoned c h a n n e l s .
\
Coarse gravel-> l5cm
a
0 Modium gravol-5-15cm
Fine gravel-< 5cm Mane-boddod sand Cross-boddod (largo-
P , iscale)sand
Rippled sand
Fin.-growl 5
South
4
3
II Medium-gradmidfan I
midlan 2
1
Distance
BP
1
km
2
3
4
5
6
Nor
Fig.4.8. Changes i n b a r t y p e s l o p e and s t r u c t u r e a l o n g a b r a i d e d outwash f a n ( a f t e r Boothroyd, 1 9 7 2 ) .
190 SANDY LOW-SINUOSITY RIVERS Sandy l o w - s i n u o s i t y r i v e r s a r e c h a r a c t e r i z e d by t r a n s v e r s e b a r s ( O r e , 1963; Smith, 1971b) and r e p r e s e n t t h e i n t e r m e d i a t e s t a g e between p e b b l y b r a i d e d r i v e r s and meandering r i v e r s .
They may show a b r a i d e d p a t t e r n b e c a u s e o f t h e development
of mid-channel b a r s o r show a non-braided c h a n n e l i n which t h e major thalweg g e n t l y meanders between a l t e r n a t i n g b a n k - a t t a c h e d b a r s .
The c h a n n e l p a t t e r n commonly
changes w i t h flow s t a g e becoming i n c r e a s i n g l y b r a i d e d a t low d i s c h a r g e a s t h e v a r i o u s bedforms became exposed and e r o d e d .
The c a u s e s o f b r a i d i n g i n t h e s e sandy low-
s i n u o s i t y r i v e r s a r e a g a i n n o t p r e c i s e l y known b u t may i n c l u d e a r e l a t i v e l y h i g h bed-load and r e l a t i v e l y low suspended-load.
Rapid l a t e r a l m i g r a t i o n i s t h e r e f o r e a
t y p i c a l f e a t u r e ( e . g . Gole and C h i t a l e , 1966). The bedforms of sandy l o w - s i n u o s i t y r i v e r s show c o n s i d e r a b l e v a r i a t i o n s and t h e r e i s no u n i v e r s a l l y a p p l i c a b l e c l a s s i f i c a t i o n scheme.
Detailed descriptions i n
i n d i v i d u a l r i v e r s i n c l u d e Coleman (1969) (Brahmaputra), Smith (1970) (South P l a t t e ) , C o l l i n s o n (1970) (Tana) and Cant and Walker (1978) (South Saskatchewan). The most d e t a i l e d d e s c r i p t i o n i s t h a t of Coleman (1969) f o r t h e Brahmaputra R i v e r . T h i s i s a b r a i d e d r i v e r w i t h a bed-load predominantly o f f i n e s a n d and w i t h a h i g h sediment d i s c h a r g e .
The p l a n view o f t h e c h a n n e l b a r s i s g e n e r a l l y diamond shaped
w i t h t h e long a x i s p a r a l l e l t o t h e a v e r a g e flow d i r e c t i o n i n t h e c h a n n e l of f o r m a t i o n (Fig.4.9).
They c o n s i s t o f a n amalgamation o f v a r i o u s bedforms and t e n d t o form
when t h e oncoming sediment l o a d i s g r e a t e r t h a n t h e c a r r y i n g c a p a c i t y of t h e r i v e r . Channel beds thus show r a p i d a g g r a d a t i o n w i t h t h e c h a n n e l becoming w i d e r and s h a l l o w e r c a u s i n g t h e main c u r r e n t t o change c o u r s e i n t h e s e a r c h f o r b e t t e r g r a d i e n t s and l e s s resistence. migration.
The r e s u l t i s a b r a i d e d c h a n n e l which i s c o n s t a n t l y undergoing l a t e r a l Sand b a r n u c l e a t i o n o c c u r s d u r i n g f l o o d s i n a r e a s of s l a c k w a t e r which
A s a n d b a r on t h e Brahmaputra R i v e r showing t h e change i n p o s i t i o n b e f o r e Fig.4.9. and a f t e r f l o o d of 1952. The s o l i d l i n e shows t h e l o c a t i o n of t h e s a n d b a r d u r i n g low s t a g e o f 1952 whereas t h e d o t t e d l i n e shows p o s i t i o n o f t h e same b a r a f t e r p a s s a g e of t h e f l o o d , 1952 ( a f t e r Coleman, 1969).
191 form, f o r example, i n t h e a r e a between two a c t i v e s c o u r c h a n n e l s .
M i g r a t i o n of
c h a n n e l b a r s o c c u r s d u r i n g f l o o d i n g a n d i s m a i n l y due t o t h e movement of bedforms which c o v e r t h e downstream s l o p e s o f t h e b a r s .
These bedforms i n c l u d e r i p p l e s
( h e i g h t up t o 0.3m), m e g a r i p p l e s (up t o 1.5m), dunes (up t o 7.6m) and sandwaves (up t o 15.2m). The s e d i m e n t a t i o n u n i t s produced i n t h i s way b e g i n w i t h l a r g e s c a l e cross-bedding ( F i g . 4 . 1 0 ) w i t h i n d i v i d u a l s e t s up t o l m t h i c k and t h e whole u n i t up t o 7m t h i c k . These u n i t s a r e produced by t h e m i g r a t i o n of g i a n t r i p p l e s d u r i n g f l o o d .
There may
b e s c o u r f i l l u n i t s w i t h i r r e g u l a r lower bounding s u r f a c e s a s s o c i a t e d w i t h t h i s u n i t a s w e l l a s s m a l l r i p p l e bedding and muddy s e d i m e n t d e p o s i t e d a l o n g f o r e s e t laminae and bedding p l a n e s . c r o s s bedded u n i t .
Abundant o r g a n i c m a t e r i a l may a l s o be t r a p p e d i n t h i s
8, d
Hi&ly disturbed soil zone Clay and silt with horizontal hmination and convolutr bedding
Ripplr bdding and horizontal lamination
A E’
3
Mainly l a r p scale cross-bedding
Fig.4.10. I d e a l v e r t i c a l sequence o f t h e s e d i m e n t a r y s t r u c t u r e s of a Brahmaputra R i v e r c h a n n e l b a r based on d a t a from Coleman (1969). O v e r l y i n g t h e l a r g e s c a l e c r o s s bedding i s a zone of s i l t y s e d i m e n t s mainly comp r i s i n g l e n t i c u l a r b o d i e s w i t h c l i m b i n g r i p p l e c r o s s - l a m i n a t i o n and s m a l l - s c a l e r i p p l e bedding. a l s o occur.
I n t e r c a l a t e d l e n t i c u l a r b o d i e s w i t h l a r g e - s c a l e cross-bedding may
These u n i t s a r e d e p o s i t e d a t lower f l o w s t a g e when t h e l a r g e r bedforms
have s t o p p e d moving.
Above t h i s u n i t i s a zone o f s i l t y c l a y s and s i l t showing
p a r a l l e l laminations with occasional t h i n u n i t s of climbing r i p p l e cross-lamination r e s u l t i n g mainly from s u s p e n s i o n d e p o s i t i o n .
Post-depositional deformation s t r u c t u r e s
i n c l u d i n g l o a d s t r u c t u r e s and c o n v o l u t e bedding a r e abundant i n t h i s u n i t and i n t e r p r e t e d by Coleman (1969) a s b e i n g due t o i n c r e a s e d s h e a r s t r e s s caused by a n
192 i n c r e a s e i n c u r r e n t v e l o c i t y and a sudden r i s e i n t u r b u l e n c e .
Above i s a h i g h l y
d i s t u r b e d s o i l zone w i t h burrows and r o o t s . The r e s p o n s e o f c h a n n e l b a r s t o changes i n flow s t a g e i n b r a i d e d s t r e a m s i s w e l l i l l u s t r a t e d by C o l l i n s o n ' s ( 1 9 7 0 ) work on t h e Tana R i v e r i n Northern Norway.
The
r i v e r shows a v a r i e t y o f bedforms r a n g i n g from v e g e t a t e d i s l a n d s , s i d e b a r s , l i n g u o i d b a r s , dunes, and r i p p l e s .
The l i n g u o i d b a r s a r e t h e c h a r a c t e r i s t i c c h a n n e l
b a r and may be up t o 300m l o n g and 1 5 h wide.
S l i p f a c e s on t h e b a r s a r e up t o 2m
h i g h and t h e s t o s s s i d e may b e c o v e r e d by s m a l l e r bedforms. now c o n s i d e r e d t o b e sandwaves (Harms e t a l . ,
These l i n g u o i d b a r s a r e
1 9 7 5 ) which form when t h e d e p t h and
v e l o c i t y of flow a r e above t h o s e a p p r o p r i a t e f o r r i p p l e s b u t below t h o s e f o r dunes. M i g r a t i o n of t h e l i n g u o i d b a r s t a k e s p l a c e d u r i n g f l o o d and produces t a b u l a r c r o s s bedded u n i t s .
However, d u r i n g f a l l i n g flow s t a g e c u r r e n t s become c o n f i n e d t o t h e
t o p o g r a p h i c a l l y lower a r e a s and t h e f r o n t o f t h e b a r may become m o d i f i e d by e r o s i o n of f o r e s e t l a m i n a t i o n s and t h e f o r m a t i o n of c r o s s - l a m i n a t i o n by r i p p l e s m i g r a t i n g across the bar face.
Subsequent r i s e i n flow s t a g e r e s u l t s i n t h e renewed m i g r a t i o n
of t h e b a r and r e a c t i v a t i o n of t h e c r o 5 . s - s t r a t i f i c a t i o n ( F i g . 4 . 1 1 ) .
Hlgh water stage
---__-
lntermedlate water stage
Low water stage
B
A FIo* perpendicular
Rising water stage
A
The development of r e a c t i v a t i o n s u r f a c e s by changing w a t e r s t a g e o v e r a Fig.4.11. l i n g u o i d b a r ( a f t e r C o l l i n s o n , 1970).
193 The S o u t h Saskatchewan R i v e r i n Canada i s a sandy b r a i d e d s t r e a m c h a r a c t e r i z e d by l a r g e s a n d f l a t s (5Om t o 2km i n l e n g t h and 3Om t o 450m w i d e ) , s l i p face-bounded b a r s and d u n e - f i l l e d c h a n n e l s (Cant and Walker, 1978).
A t any one l o c a l i t y t h e r e
a r e commonly one o r two m a j o r c h a n n e l s a n d s e v e r a l minor c h a n n e l s .
The beds o f t h e
major c h a n n e l s a r e f i l l e d w i t h s i n u o u s - c r e s t e d dunes up t o 1.5m h i g h and i n p l a c e s sandwaves ( H a m s e t a l . , 19751 up t o 10m l o n g and 0.3m h i g h a r e common. b a r s l i k e t h o s e d e s c r i b e d by C o l l i n s o n (1970) a r e r a r e ,
Linguoid
The major d e p o s i t s of t h e
channels a r e trough cross-beds. Slipface-bounded b a r s a r e common i n t h e S o u t h Saskatchewan R i v e r and u s u a l l y o c c u r i n a r e a s of f l o w e x p a n s i o n , f o r example a t c h a n n e l j u n c t i o n s , o r where c h a n n e l s widen.
The l a r g e r b a r s a r e up t o 2.5m h i g h and may e x t e n d s e v e r a l hundred m e t r e s d i a g o n a l l y a c r o s s t h e m a j o r c h a n n e l s . These ' c r o s s - c h a n n e l b a r s ' a s t h e y a r e c a l l e d by Cant a n d Walker (1978) produce p l a n a r - t a b u l a r s e t s of c r o s s - b e d d i n g s i m i l a r t o t h o s e d e s c r i b e d by C o l l i n s o n (1970) and Smith (1970, 1972). The s a n d f l a t s a r e a r e a s up t o 2000m long a n d 450m wide which a r e a complex of s m a l l e r f e a t u r e s s i m i l a r t o t h e exposed a r e a s of s a n d on t h e Brahmaputra (Coleman, 1969) and t h e Tana ( C o l l i n s o n , 1970).
The sand f l a t s a r e covered d u r i n g f l o o d and
r e c e n t l y emerged s a n d f l a t s r e v e a l a v a r i e t y of b a r s , sandwaves and r i p p l e s .
The
n u c l e a t i o n and s u b s e q u e n t growth of a s a n d f l a t i s a p p a r e n t l y i n i t i a t e d by t h e emergence o f a c r o s s - c h a n n e l b a r .
A s flow c o n t i n u e s s e d i m e n t i s swept around t h i s
n u c l e u s and expanding flow around t h e downstream end r e s u l t s i n i n w a r d l y d i r e c t e d sediment t r a n s p o r t (Fig.4.12). The r e s u l t i s t h e development o f horns w i t h i n w a r d l y - d i r e c t e d s l i p f a c e s . Asymmetrical s a n d f l a t s form i n t h e same way e x c e p t t h a t t h e y o r i g i n a t e on d i a g o n a l c r o s s - c h a n n e l b a r s and a r e a t t a c h e d t o a s t a b l e bank ( F i g . 4 . 1 2 ) .
Subsequent growth
of t h e s m a l l s a n d f l a t i n t o a l a r g e , complex s a n d f l a t i n v o l v e s a g g r a d a t i o n by d r i v i n g s e v e r a l l a t e r g e n e r a t i o n s o f b a r s o n t o t h e s a n d f l a t from upstream or from a d j a c e n t channels.
I t a l s o i n v o l v e s ellosion o f t h e f l a t s and t h e l i n k i n g of s e p a r a t e sand-
f l a t s by d e p o s i t i o n i n i n t e r v e n i n g c h a n n e l s . The s t r a t i f i c a t i o n sequence o f t h e South Saskatchewan R i v e r i s summarized i n F i g s . 4 . 1 3 and 4.14.
These diagrams can be used t o p l a c e i n t o c o n t e x t t h r e e
i m p o r t a n t t y p e s o f s t r a t i f i c a t i o n sequence which a r e o f g e n e r a l a p p l i c a b i l i t y t o sandy-low-sinuosity streams (Fig.4.14). maximum s a n d f l a t development,
The f i r s t sequence (Fig.4.14A)
shows
Trough c r o s s - b e d s ( c h a n n e l dunes) a r e o v e r l a i n
by a l m t h i c k p l a n a r t a b u l a r s e t ( c r o s s - c h a n n e l b a r ) .
T h i s i s o v e r l a i n by s m a l l
p l a n a r t a b u l a r s e t s w i t h minor c h a n n e l s and r e a c t i v a t i o n s u r f a c e s and a l s o r i p p l e cross-lamination (sand f l a t sequence). The second sequence (Fig.4.14B)
i s an intermediate type with deposition both
i n c h a n n e l s and on sand f l a t s and t h e t h i r d sequence (Fig.4.14C)
i s a channel
dominated sequence w i t h c r o s s - c h a n n e l b a r s which d i d n o t develop i n t o s a n d f l a t s .
194 SYMMETRICAL CROSSCHANNEL BAR
CROSS-CHANNEL BAR NlTH EMERGENT NUCLEUS
SMALL SAND FLAT
1
EXAMPLES OF COMPLEX SAND FLATS
Fig.4.12. Development of s a n d f l a t s on t h e South Saskatchewan R i v e r . S t a g e 1, submerged c r o s s - c h a n n e l b a r w i t h s l i p f a c e . S t a g e 2 emergent n u c l e u s f o l l o w i n g a lowering o f r i v e r s t a g e . I f t h e o r i g i n a l c r o s s - c h a n n e l b a r i s d i a g o n a l t h e n u c l e u s w i l l b e a s y m m e t r i c a l ( 2 A ) o r a d j a c e n t t o a s t a b l e bank (2B). S t a g e 3 , expanding flow downstream c a u s e s t h e development o f h o r n s . S t a g e 4 d e p i c t s t h e f o r m a t i o n of complex sand f l a t s ( a f t e r Cant and Walker, 1978). These sequences a c t u a l l y resemble t h e l a t e r a l a c c r e t i o n p o i n t b a r sequences i n a meandering r i v e r which may c o n s i s t of t r o u g h c r o s s - b e d d i n g a n d p l a n a r t a b u l a r s e t s d e p o s i t e d by s c r o l l - b a r s ( J a c k s o n , 1976).
T h i s emphasizes t h e
d i f f i c u l t y o f d i s t i n g u i s h i n g p r e s e n t - d a y l o w - s i n u o s i t y and meandering r i v e r s on t h e b a s i s of s t r a t i g r a p h i c sequence.
The p r e s e n c e o f a s a n d f l a t s e q u e n c e w i t h
a p l a n a r t a b u l a r c r o s s - c h a n n e l b a r d e p o s i t a t t h e b a s e p r o v i d e s an i m p o r t a n t c l u e t o t h e former p r e s e n c e o f b r a i d e d c h a n n e l s . EPHEMERAL STREAM CHANNELS
Ephemeral s t r e a m s a r e p a r t i c u l a r l y c h a r a c t e r i s t i c o f a r i d and s e m i a r i d r e g i o n s where t h e s u r f a c e run-off is spasmodic because o f t h e c l i m a t i c c o n d i t i o n s .
The
196
Block diagram summarizing t h e main m o r p h o l o g i c a l e l e m e n t s and t h e i r Fig.4.13. d e p o s i t s i n t h e South Saskatchewan R i v e r . The i n s e t shows a p l a n view. S t i p p l e d a r e a s a r e emergent. S i n g l e s h a f t e d arrows show d i r e c t i o n o f bedform movement and double s h a f t e d a r r o w s i n d i c a t e flow d i r e c t i o n . A ( s a n d f l a t ) , B (mixed sand f l a t c h a n n e l ) and C ( c h a n n e l ) r e f e r t o t h e sequences i n Fig.4.14 ( a f t e r Cant and Walker, 1978). d e p o s i t s of ephemeral s t r e a m s show many of t h e f a m i l i a r s e d i m e n t a r y s t r u c t u r e s of permanent s t r e a m flow ( P i c a r d and High, 1973) and may b e d i f f i c u l t t o d i s t i n g u i s h from t h e s e d e p o s i t s .
F r e q u e n t l y , however, t h e y show i n t e r b e d d e d a e o l i a n sands
where s t r e a m c h a n n e l s have been choked by wind-blown sand.
Also wind e r o s i o n may
l e a d t o t h e f o r m a t i o n of a pebble-strewn d e f l a t i o n l a g on t h e former s t r e a m bed ( G l e n n i e , 1970) and c u r l e d mudflakes formed d u r i n g p e r i o d s of d e s i c c a t i o n may be i n c o r p o r a t e d i n t o i n t r a f o r m a t i o n a l conglomerates ( G l e n n i e , 1970; Karcz, 1972). When d i s c h a r g e i s a b n o r m a l l y h i g h s h e e t f l o o d i n g may o c c u r and c o v e r t h e whole v a l l e y f l o o r a s a t B i j o u Creek, Colorado (McKee e t a l . , 1967).
In this particular
c a s e a s h e e t d e p o s i t between l m and Lm t h i c k was d e p o s i t e d , t h e dominant s t r u c t u r e (90-95%) b e i n g upper flow regime p a r a l l e l l a m i n a t i o n s .
I n many f l o o d p l a i n s e c t i o n s
196
SAND FLAT
MIXED INFLUENCE
CHANNEL V.A.
V. A.
FINAL CHAN. FILL, MUD IN SLOUGH-
--- - - - -
SAND FLAT ACCRETION a AGORADATI0N
CONTINUED CHANNEL AGGRADATION IN PLACES WITH C-C BAR
-
CROSS CHANNEL
BAR
-
IN CHANNEL DEPOSITION
IN CHANNEC DEPOSITION
Fig.4.14. Summary s t r a t i g r a p h i c sequences c h a r a c t e r i z i n g a r e a s dominated by sand f l a t development, a r e a s o f mixed sand f l a t and channel i n f l u e n c e , and a r e a s o f channel a n a r a d a t i o n . The arrows i n d i c a t e t h e expected p a l a e o f l o w v a r i a b i l i t y ( a f t e r Cant and Walker, 1978). p a r a l l e l l a m i n a t i o n s form a l l o f t h e s h e e t f l o o d d e p o s i t b u t i n o t h e r s cross-bedding occurs i n t h e upper p a r t of t h e p r o f i l e , i n d i c a t i n g waning flow c o n d i t i o n s .
The
l a s t s t a g e s of t h e f l o o d a t B i j o u Creek were c o n f i n e d t o t h e main channel which c u t i n t o t h e f l o o d p l a i n sands and d e p o s i t e d t r o u g h c r o s s - b e d s w i t h some p a r a l l e l l a m i n a t i o n and p l a n a r cross-bedding
(Fig.4.15).
An i m p o r t a n t f e a t u r e of ephemeral s t r e a m d e p o s i t s a r e t h e p o s t - d e p o s i t i o n a l m o d i f i c a t i o n s i n t e x t u r e which occur. well-washed sands.
The i n i t i a l d e p o s i t s a r e commonly c l e a n ,
A t d e p t h , however, t h e amount of i n t e r s t i t i a l c l a y i n c r e a s e s
due t o t h e e f f e c t s of mechanical i n f i l t r a t i o n by i n f l u e n t seepage (Walker, 1976). The o v e r a l l e f f e c t i s t o p o s t - d e p o s i t i o n a l l y d e c r e a s e t h e s o r t i n g and t e x t u r a l m a t u r i t y of t h e d e p o s i t s .
197
CONVOLUTE
BEWING
MUD tAYER CLIMBING RIPPLE LAMINATION
CONVOLUTE
BEDDING
HORIZONTAL BEDDING (LAMINATED SAND )
-
LARGE SCALE CROSS- BEDDIEIIG (DELTA FORESETS)
HORIZONTAL BEDDING MUD LAYER
CLIMBING RIPPLE LAMINATION
TE U
0
1
HORl20 NTA L BE DOING (LAMINATED SAND 1
OLDER SEDtMENTS
OLDER
SEDIMENTS
F i g . 4 . 2 5 . F l o o d p l a i n sequences formed during a s i n g l e f l o o d of Bijou Creek (Colorado) i n June 1965 (based on McKee e t a l . , 1 9 6 7 ) .
198 MEANDERING RIVERS Introduction Meandering t e n d s t o b e f a v o u r e d by r e l a t i v e l y low s l o p e s and a h i g h suspendedload/bed-load r a t i o .
Using t h e c r i t e r i o n o f Leopold and Wolman (1957) meandering
channels a r e t h o s e w i t h a s i n u o s i t y o f more t h a n 1 . 5 .
I n f a c t a number o f o t h e r
measures of s i n u o s i t y have been used; f o r example B r i c e (1964) used t h e r a t i o : c h a n n e l l e n g t h / l e n g t h of meander b e l t a x i s ( F i g . 4 . 1 6 ) and Schumm (1963) used t h e s t r e a m l e n g t h / v a l l e y l e n g t h and t h e r e i s no g e n e r a l agreement on a n o b j e c t i v e
ratio:
d e f i n i t i o n of meandering.
There a r e some fundamental r e l a t i o n s h i p s between t h e
g e o m e t r i c f e a t u r e s of s t r e a m meanders.
The meander wave l e n g t h a n d a r e a o f t h e
d r a i n a g e b a s i n a r e r e l a t e d by: aAb
A=
(4.3)
i s meander wave l e n g t h , A i s b a s i n a r e a and a and b a r e e m p i r i c a l c o n s t a n t s .
where
S i n c e t h e d i s c h a r g e o f a r i v e r i s r e l a t e d t o i t s d r a i n a g e a r e a , d i s c h a r g e and wavelength a r e also related.
x = cwm
Also (4.4)
A,
= dWn
(4.5)
X
= F R ~
(4.6)
where
3
i s wavelength, W i s c h a n n e l w i d t h , Am i s wave a m p l i t u d e , R is t h e r a d i u s of
c u r v a t u r e , and c , d , f , m , n , and t a r e c o n s t a n t s .
The exponents i n t h e s e e q u a t i o n s
approximate t o u n i t y and t h e r e l a t i o n s h i p s a r e a l m o s t l i n e a r .
-. MEI!iNDER BELT AXIS
Fig.4.16.
Geometric f e a t u r e s o f a s t r e a m meander a c c o r d i n g t o B r i c e (1964).
199 Many e x p l a n a t i o n s have been o f f e r e d a s t h e b a s i c c a u s e of meandering and a number o f f a c t o r s i n c l u d i n g t h e n a t u r e o f t h e b e d - l o a d , g r a d i e n t and d i s c h a r g e may b e i m p o r t a n t .
The dominating f a c t o r i s , however, t n e h e l i c a l flow p a t t e r n
s e e n i n meanders (Fig.4.17).
Maximim flow v e l o c i t i e s a r e found on t h e concave
bank n e a r t n e downstream end and c r o s s from one bank t o t h e o t h e r .
T h i s winding
p a t t e r n produces a c e n t r i f u g a l f o r c e p r o d u c i n g a s u p e r e l e v a t i o n o f t h e w a t e r l e v e l a t t h e o u t s i d e o f t h e bend.
The i n c r e a s e d p r e s s u r e c a u s e d by t h e e x c e s s w e i g h t of
w a t e r p i l e d up i n t h i s way i n t e n s i f i e s t h e h e l i c a l flow a t t h e bend g i v i n g a s t r o n g downward movement on t h e o u t s i d e which c a u s e s e r o s i o n .
The v e l c o i t y components
i n c l u d e a s t r o n g downward component and a much weaker l a t e r a l component.
This
l a t e r a l component o f v e l o c i t y shows a movement a l o n g t h e bottom towards t h e i n n e r p a r t of t h e bend where d e p o s i t i o n o c c u r s ,
Flow mechanisms i n meander b e l t s a r e
d i s c u s s e d by Bagnold ( 1 9 6 0 ) , Leopold e t a l . (1964) and J a c k s o n (1975).
5 Fig.4.17.
The h e l i c o i d a l flow p a t t e r n i n meander bends.
200 An i m p o r t a n t f e a t u r e of meander b e l t s i s t h e l a r g e number o f abandoned c h a n n e l s which a r e seen.
These c h a n n e l c u t - o f f s form i n two main ways ( F i s k , 1947) (Fig.4.18).
The f i r s t a r e c h u t e c u t - o f f s which form d u r i n g f l o o d s t a g e s a s t h e r i v e r s t r a i g h t e n s i t s c o u r s e by e r o d i n g c h u t e s o r s w a l e s .
As a c t i v i t y i n t h e former c h a n n e l i s reduced
i t becomes plugged by bed-load s e d i m e n t s and t h e n f i l l e d w i t h s u s p e n s i o n d e p o s i t s
(Fig.4.18A).
Fig.4.18.
The mechanisms of c h a n n e l s h i f t i n g i n a meander b e l t ( a f t e r F i s k , 1947).
Neck c u t - o f f s a r e formed when concave-bank e r o s i o n b r i n g s two bends c l o s e t o g e t h e r w i t h only a narrow neck s e p a r a t i n g them.
I f t h i s neck is b r e a c h e d t h e r i v e r w i l l
r a p i d l y abandon t h e meander and t a k e t h e s h o r t e s t r o u t e downslope.
The r e s u l t i s
an oxbow l a k e (Fig.4.18B) which becomes f i l l e d w i t h s u s p e n s i o n - l o a d sediment. Point bars P o i n t b a r s a r e t h o s e a r e a s on t h e i n s i d e o f a meander bend which r e s u l t from t h e l a t e r a l a c c r e t i o n o f sediment d u r i n g c h a n n e l m i g r a t i o n .
The s t r u c t u r e o f p o i n t b a r
d e p o s i t s has been d e s c r i b e d by many a u t h o r s i n c l u d i n g F i s k (1944, 19471, F o l k and Ward ( 1 9 5 7 ) , F r a z i e r and Osanik ( 1 9 6 1 ) , Bernard and Major (19631, Harms e t a l . (19631, A l l e n (1964a, 1 9 6 5 a , e , 1 9 7 0 a , b ) , McGowen and Garner ( 1 9 7 0 ) , Bluck (1971) and J a c k s o n (1975, 1976).
The c l a s s i c a l c o n c e p t of p o i n t bar d e p o s i t i o n assumes b a n k f u l
d i s c h a r g e and f u l l y developed h e l i c o i d a l flow around t h e bend.
Decrease i n v e l o c i t y
and d e p t h and t h e upflow component of flow o v e r t h e p o i n t b a r s u r f a c e c a u s e bed s h e a r stress t o f a l l and t h e s u r f a c e a c t s a s a n e l u t r i a t o r g i v i n g a n upslope
201 r e d u c t i o n i n g r a i n s i z e (Fig.4.19).
Floodplain Channel-fill
I
@Cross-bedding
HFIat-bedding
Fig.4.19. I d e a l i z e d diagram o f p o i n t b a r d e p o s i t i o n i n a meandering s t r e a m ( a f t e r A l l e n , 1970a). The shape and s i z e o f p o i n t b a r s i s dependent upon t h e s i z e o f t h e r i v e r channel. I n small streams they a r e simple depositional f e a t u r e s b u t i n l a r g e r i v e r s they a r e more complex and may c o n t a i n a number o f s e p a r a t e u n i t s .
The s u r f a c e o f p o i n t b a r s
may show well-developed a c c r e t i o n topography ( F i s k , 1947; Sundborg, 1956) c o n s i s t i n g of s c r o l l - s h a p e d r i d g e s ( s c r o l l b a r s ) a l t e r n a t i n g w i t h d e p r e s s i o n s ( s w a l e s ) . may be f i l l e d w i t h muddy s e d i m e n t and marshes may develop i n them. represents the depositional event of a s i n g l e flood.
Swales
Each s c r o l l b a r
The t h i c k n e s s of p o i n t b a r
d e p o s i t s may c o r r e s p o n d t o t h e maximum d e p t h o f t h e r i v e r c h a n n e l .
On t h e M i s s i s s i p p i
p b i n t b a r s up t o 25m t h i c k a r e known ( F i s k , 1944, 1947); on t h e Brazos R i v e r , 15-2Om (Bernard and Major, 1963) and 10-15m on t h e Niger R i v e r ( A l l e n , 196513).
For s m a l l e r
r i v e r s t h e t h i c k n e s s may b e o n l y 1-3m. The s t r u c t u r e and g r a i n s i z e o f p o i n t b a r d e p o s i t s f r e q u e n t l y shows a d i s t i n c t i v e v e r t i c a l arrangement.
The c o a r s e s t m a t e r i a l may b e c o n g l o m e r a t i c sediment which i s
found a t t h e b a s e o f t h e p o i n t b a r and r e p r e s e n t s a c h a n n e l l a g d e p o s i t (Fig.4.19). I f a s u f f i c i e n t l y wide range o f g r a i n s i z e m a t e r i a l i s a v a i l a b l e t h e p o i n t b a r w i l l show a g r a d u a l upward d e c r e a s e i n g r a i n s i z e .
This i n d i c a t i o n of e f f e c t i v e decrease
i n s t r e a m power i s a l s o r e f l e c t e d i n t h e sequence o f s e d i m e n t a r y s t r u c t u r e s ;
flat-
bedding p a s s e s upwards i n t o c r o s s - b e d d i n g which i n t u r n g i v e s way t o c r o s s - l a m i n a t i o n i n the f i n e r grained sands and silts.
T h i s sequence i n d i c a t e s p r o g r e s s i v e l y
202
d e c r e a s i n g flow regime and t h e t o p of t h e p o i n t b a r sequence may b e capped by a v e n e e r of muddy sediment d e p o s i t e d from s u s p e n s i o n a s a s w a l e - f i l l .
This o v e r a l l
fining-upwards i n t h e p o i n t b a r sequence i s a f u n c t i o n o f t h e l a t e r a l m i g r a t i o n o f
As l a t e r a l d e p o s i t i o n b u i l d s up on t h e i n n e r b a n k , b a l a n c i n g
t h e r i v e r channel.
e r o s i o n on t h e o u t e r bank, t h e r e i s f o r any p o i n t on t h e s u r f a c e o f t h e p o i n t b a r a d e c r e a s e i n bed s h e a r s t r e s s and s t r e a m power a s t h e thalweg m i g r a t e s l a t e r a l l y away and so f i n e r g r a i n e d d e p o s i t s r e s u l t i n t h e v e r t i c a l sequence ( A l l e n , 1970a). D e t a i l e d d e s c r i p t i o n s o f p o i n t b a r sequences s u g g e s t t h a t t h i s i d e a l d e p o s i t i o n a l model i s o n l y approximated i n n a t u r a l systems. Maryland was s t u d i e d by Leopold e t a l .
The Watts Branch p o i n t b a r i n
(1964) o v e r a p e r i o d of s i x y e a r s d u r i n g
which t h e r i v e r c h a n n e l m i g r a t e d a d i s t a n c e o f more t h a n a c h a n n e l w i d t h and t h e n e t volume o f e r o s i o n and d e p o s i t i o n were e q u a l (Fig.4.20).
The p o i n t b a r shows
a n o v e r a l l fining-upwards b u t g r a v e l l y h o r i z o n s a r e d i s t r i b u t e d a t v a r i o u s l e v e l s above t h e c h a n n e l b a s e and i n d i v i d u a l s e d i m e n t a t i o n u n i t s have a d i s c o n t i n u o u s , l e n t i c u l a r nature.
Y
f
-
33,5 -
w 31.1
1
,
,
0 0 5 1 2 DISTANCE IN METRE
5
L
SURFACE PROFILES OF MEANDER
SUCCESSIVE
Y
3
7
6
CHANNEL AND
8 POINT
9
I
10
11
BAR, 1953- 59
I
I 6,5
5,5 6 OlSrANCE IN METRE
LARGE SCALE CROSS-SECTION OF
SEDIMENTS IN
7
RELATION
GRAVEL BED OLIVE-GRAY
COARSE SAND BROWN STAINED WITH PEBBLES AND LENSES OF SILT BROWN SANOY SILT
TO PROFILES
-
1959 1958
----
1956
...-, .,-
19 5 5 19 53
FINE SAND WITH SOME SILT
Fig.4.20.
8,s
8
EXPLANAILON CLAYEY SILT WITH ORGANIC MATTER
ORANGE BROWN MATTLED SANDY SILT WITH SOME CLAY
0 0
7,s
The Watts Branch p o i n t b a r ( a f t e r Leopold e t a l , , 1964).
203 McGowen and G a r n e r (1970) i n v e s t i g a t e d c o a r s e g r a i n e d p o i n t b a r s o f t h e b i t e R i v e r , L o u i s i a n a and t h e Colorado R i v e r , Texas. (1.4 t o 1 . 7 ) bed-load
These r i v e r s a r e l o w - s i n u o s i t y
s t r e a m s w i t h a r a t h e r h i g h g r a d i e n t which t r a n s p o r t mainly
c o a r s e s a n d , and pebble-cobble s i z e d g r a v e l s .
The r i v e r s meander b e c a u s e of t h e
h i g h s t a b i l i t y o f t h e banks which a r e composed of v e g e t a t e d muddy sediment.
These
c o a r s e g r a i n e d p o i n t b a r s can b e d i v i d e d i n t o a lower a n d a n upper p o i n t b a r (Fig.4.21).
The upper p o i n t b a r i s c h a r a c t e r i z e d by c h u t e s and c h u t e b a r s e d i m e n t s .
CONVEX BANK
CONCAVE BANK
Parallel laminated to thin sand beds
-
rn
6
FLOOD STAGE
4
Parallel laminae
LOW WATER - - - - _ STAG
2 0 UPPER POINT BAR
(Chute and chute bar sediments)
0 10 I rn
Fig.4.21. 1970).
C r o s s - p r o f i l e o f a c o a r s e g r a i n e d p o i n t b a r ( a f t e r McGowen and G a r n e r ,
Chutes a r e c h a n n e l s w i t h r e l a t i v e l y s t e e p s i d e s , f l a t b o t t o m s , and s i n u o u s t r e n d s . They a r e d e e p e s t where t h e y meet t h e main c h a n n e l and d e c r e a s e i n d e p t h s t e a d i l y downcurrent where s c o u r s g i v e way t o d e p o s i t i o n i n t h e form of c h u t e b a r s . can b e 2-5m d e e p , 5-7m wide and e x t e n d f o r hundreds of m e t r e s .
These
The sequence of
sediments i n t h e lower p o i n t b a r i s s i m i l a r t o t h a t s e e n i n t h e c r o s s - o v e r ( t h e s t r a i g h t c h a n n e l r e a c h between two meander l o o p s ) ( F i g . 4 . 2 2 ) . The s t r u c t u r e of c o a r s e g r a i n e d p o i n t b a r s do n o t show t h e t y p i c a l fining-upwards
o f t h e i r f i n e r g r a i n e d e q u i v a l e n t s and t h e i r o r i g i n i s c l e a r l y r a t h e r more complicated than t h e s i m p l e l a t e r a l a c c r e t i o n model.
However, t h e t o p of t h e sequence may b e
t e r m i n a t e d by a n o r g a n i c r i c h c l a y (Fig.4.22) Unit 1
-
w i t h t h e f u l l sequence a s f o l l o w s :
trough cross-bedding (scour pool d e p o s i t ) , Unit 2
-
small s c a l e f o r e s e t
and t r o u g h f i l l c r o s s - b e d d i n g (lower p o i n t b a r / c r o s s - o v e r d e p o s i t ) , U n i t 3 s c a l e f o r e s e t cross-bedding (chute bar d e p o s i t s ) , a n d Unit 4
-
-
large
p a r a l l e l laminae,
s m a l l s c a l e f o r e s e t c r o s s - b e d d i n g and s c o u r and f i l l d e p o s i t s ( f l o o d p l a i n d e p o s i t s ) . V a r i a t i o n s from t h e i d e a l i z e d p o i n t b a r model i n n a t u r a l systems a r e p a r t l y e x p l a i n e d by J a c k s o n (1975, 1976) who has shown t h a t t h e h e l i c o i d a l flow p a t t e r n i n meander bends can b e d i v i d e d i n t o t h r e e zones: i n f l u e n c e o f t h e upstream bend p r e v a i l s bend dominates and
1) a t r a n s i t i o n zone i n which t h e
2 ) a f u l l y developed zone i n which t h e l o c a l
3 ) a n i n t e r m e d i a t e zone i n which one changes i n t o t h e o t h e r .
204
These downstream changes i n flow p a t t e r n a r e r e f l e c t e d i n t h e bedforms produced on t h e s u r f a c e of t h e p o i n t b a r and hence i n t h e s t r a t i g r a p h i c sequence of s t r a t i f i c a t i o n types (Fig.4.23).
Floodplain Deposit
t
Unit 3 Chub Bar Dsporit
Unit 2 Lower Point Bar Deposit
-
Unit 1 Scwr Pool Deposit
Fig.4.22. V e r t i c a l sequence i n a c o a r s e g r a i n e d p o i n t b a r d e p o s i t ( a f t e r McGowen and G a r n e r , 1970). The f u l l y developed zone i s c o n s i s t e n t w i t h t h e i d e a l model of p o i n t b a r d e p o s i t i o n b u t a l s o shows p l a n a r t a b u l a r s e t s produced by s c r o l l b a r s .
I n the
t r a n s i t i o n and i n t e r m e d i a t e zones t h e r e i s no g r a d u a l fining-upwards and g r a i n s i z e v a r i a t i o n s t e n d t o b e r a t h e r a b r u p t , i n p l a c e s even coarsening-upwards, RIVER BANKS AND FLOODPLAINS
Bank d e u o s i t s The most i m p o r t a n t r i v e r bank d e p o s i t s a r e n a t u r a l l e v e e s and c r e v a s s e s p l y
.
They may b e developed on e i t h e r b r a i d e d o r meandering s t r e a m s b u t a r e b e s t developed on l a r g e meandering s t r e a m s w i t h a well-developed
floodplain l i k e the Mississippi
R i v e r (Fig.4.24).
N a t u r a l l e v e e s a r e formed when t h e f l o o d w a t e r s o f a s t r e a m o v e r t o p s i t s bank. V e l o c i t y i s reduced and d e p o s i t i o n o f t h e suspended s e d i m e n t r e s u l t s .
The c o a r s e s t
m a t e r i a l i s d e p o s i t e d n e a r e s t t h e c h a n n e l and g r a i n s i z e d e c r e a s e s away from t h e channel.
The s t r u c t u r e of n a t u r a l l e v e e d e p o s i t s h a s been d e s c r i b e d by F i s k (1944,
1 9 6 1 ) , Lattman (19601, A l l e n ( 1 9 6 5 a ) , Coleman (19691, and S i n g h (1972).
I n many
ways levee s e d i m e n t s resemble t h o s e found i n t h e upper p a r t of p o i n t b a r s .
They may
b e f i n e r g r a i n e d t h a n t h e a s s o c i a t e d c h a n n e l s e d i m e n t s a n d c o n s i s t o f s m a l l scale
205 TRANSITIONAL DEPOSITIONAL FACIES .-.-.-‘niw
3
2
+
FLOW .+.+.+‘LOW FLOW XRRENT IISPERSION IOSS’ 50’ 100‘ TRAT. U
DEPOSITIONAL FACIES
-*
-.WIGH” FLOW + ++‘LOW’ FLOW DUNE HEIGHT (CMI 0 25 50 75 I
T
I
I
0
0TRANSITIONAL INTERMEDIATE
HELM-MAIER
FULLY DEVELOPED
INTERMEDIATE DEPOSITIONAL FACIES
g
I
-. -.
-. _.
-
CURRENT
_-_
‘HIGH’ FLOW FLOW
+ + +‘LOW’
CROSS- W N E HElGHT EM1 5s IW. ITRAT. 0 25 XI I5
ISPERSION
II I.I I n@ I I
MI
Y SIZE
wni)
MEAN VEL. (CM*SECI ‘HIGH‘ FLOW -‘LOW’ FLOW
-
FULLY DEVELOPED DEPOSITIONAL FACIES t_l
I:
.: .:..:I
y ,
,
,
- 3 0
3
E
MEAN S I Z E (F
F i g . 4 . 2 3 . The v a r i a t i o n of d e p o s i t i o n a l f a c i e s i n the Lower Wabash River, I l l i n o i s . The i n s e t shows the d i s t r i b u t i o n of f a c i e s w i t h i n c r e a s i n g channel curvature. V e r t i c a l f a c i e s sequences a r e shown from upstream t o downstream on a p o i n t bar Of s u i t a b l e curvature ( a f t e r Jackson, 1975, 1 9 7 6 ) .
206
r i p p l e bedded and c r o s s - l a m i n a t e d s a n d s w i t h i n t e r b e d d e d muddy l a y e r s w i t h p a r a l l e l laminations,
I d e a l l y t h e s e a r e a r r a n g e d i n r e p e t i t i o n s of t h i n fining-upwards
sequences which mark t h e r e p e a t e d submergence and emergence d u r i n g s u c c e s s i v e f l o o d s (Fig.4.25).
The sandy and muddy l a y e r s a r e of v a r i a b l e t h i c k n e s s .
The mud h o r i z o n s
o f t e n show e v i d e n c e of s u b a e r i a l e x p o s u r e i n t h e form of d e s i c c a t i o n c r a c k s , o r raindrop impressions.
Organic m a t t e r i s abundant i n t h e s e h o r i z o n s b e c a u s e l e v e e s
may s u p p o r t much p l a n t growth.
They may a l s o b e e x t e n s i v e l y m o t t l e d due t o t h e
development of s o i l h o r i z o n s . 9ML M 2 O N LAMINATE0 MUD LAYER
SMALL RIPPLE CROSS BEDMND
MUD LAVER IFINELY LAYNATED I SMALL RIPPLE CROSS M O M N O MUD
LAYER
SMALL RIPPLE
CROSS B E D D M
LAMINAILD Y N D BEDDlHo I
IWRIZDNTAL
SMALL R I P R E
CROSS B E D D I M
Fig.4.24. N a t u r a l l e v e e s a n d r e l a t e d f e a t u r e s o f a meander o f t h e M i s s i s s i p p i R i v e r ( a f t e r F i s k , 1947).
Fig.4.25. Repeated c y c l e s of fining-upward sequences i n t h e n a t u r a l l e v e e d e p o s i t s of t h e Gomti R i v e r , I n d i a ( a f t e r Reineck and S i n g h , 1973).
207
The n a t u r a l levees of t h e Brahmaputra a r e r a t h e r broad and form a n i r r e g u l a r extension i n t o t h e flood b a s i n (Fig.4.26).
Most o f t h e f l o o d w a t e r e s c a p e s from
t h e r i v e r through d i s t i n c t c h a n n e l s r a t h e r t h a n a s s h e e t - l i k e o v e r f l o w s .
The bed
l o a d sediment o f t h e f l o o d w a t e r i s t h e n d e p o s i t e d a s a tongue o r f a n of s a n d c a l l e d a crevasse-splay.
The o v e r l a p p i n g o f c r e v a s s e s p l a y s produces t h e l e v e e s which
c o n s i s t of a complex o f i ' n t e r f i n g e r i n g and o v e r l a p p i n g sandy d e p o s i t s capped by muddy s e d i m e n t ,
A. A s i n g l e c r e v a s s e s p l a y on t h e Brahmaputra B. N a t u r a l l e v e e s formed Fig.4.26. by o v e r l a p p i n g c r e v a s s e - s p l a y s on t h e Brahmaputra ( a f t e r Coleman, 1969).
The s a n d l a y e r s may show l a r g e s c a l e c r o s s - b e d d i n g , h o r i z o n t a l - b e d d i n g and c r o s s l a m i n a t i o n (Fig.4.27).
Away from t h e c h a n n e l t h e sandy l a y e r s which o u t and muddy
sediments become more i m p o r t a n t , g r a d i n g l a t e r a l l y i n t o t h e f l o o d p l a i n sediments. Penecontemporaneous d e f o r m a t i o n s t r u c t u r e s may b e common. Floodplains R i v e r f l o o d p l a i n s a r e r a r e l y i n u n d a t e d and t h e most f r e q u e n t f l o o d s a r e g e n e r a l l y one t o two y e a r s a p a r t (Wolman and Leopold, 1957).
The v e l o c i t i e s o f overbank flows
a r e u s u a l l y r a t h e r h i g h and t h e o v e r a l l s e d i m e n t a t i o n r a t e i s low.
The c o a r s e r sandy
sediment i s u s u a l l y d e p o s i t e d n e a r t o t h e c h a n n e l margins w h i l s t f i n e r m a t e r i a l i s c a r r i e d f u r t h e r on t o t h e f l o o d p l a i n a r e a .
These f i n e r s e d i m e n t s a r e d e p o s i t e d from
.suspension and even d u r i n g m a j o r f l o o d s o n l y accumulate t o a t h i c k n e s s of one o r two centimetres.
The i n t e r n a l s t r u c t u r e o f f l o o d p l a i n d e p o s i t s i n c l u d e s h o r i z o n t a l
l a m i n a t i o n and c l i m b i n g r i p p l e c r o s s - l a m i n a t i o n (McKee e t a l . ,
1967) and i n some
s m a l l r i v e r s i t may b e d i f f i c u l t t o d i f f e r e n t i a t e t h e f l o o d p l a i n and c h a n n e l d e p o s i t s . G e n e r a l l y , however, t h e f i n e g r a i n s i z e and preponderence of h o r i z o n t a l l a m i n a t i o n s make f l o o d p l a i n and c h a n n e l d e p o s i t s r e a d i l y d i s t i n g u i s h a b l e .
The d r y i n g o u t of
f l o o d p l a i n s e d i m e n t s produces d e s i c c a t i o n c r a c k s which i n d i c a t e s u b a e r i a l exposure.
208
I n some a r e a s a e o l i a n a c t i v i t y i s i m p o r t a n t and wind-blown s i l t may accumulate i n l a r g e q u a n t i t i e s on r i v e r f l o o d p l a i n s (Lambrick, 1967).
I
LAMINATED SILTY CLAYS WITH BURROWS
HORIZONTAL BEDDING 2m
LARGE SCALE CROSS BEDDING
SAND AND SILT NO INTERNAL STRUCTURE EXCEPT
Fig.4.27. Sequence of sedimentary s t r u c t u r e s i n t h e n a t u r a l l e v e e d e p o s i t s o f t h e Brahmaputra (based on Coleman, 1969). The l o w e s t - l y i n g p a r t o f a f l o o d p l a i n i s g e n e r a l l y r e f e r r e d t o a s t h e f l o o d b a s i n . This i s a f l a t , f e a t u r e l e s s a r e a which i n humid-climate a r e a s i s p o o r l y d r a i n e d and thickly vegetated.
Semi-permanent
l a k e s o r backswamps may develop.
The abundant
v e g e t a t i o n c a u s e s r o o t d i s t u r b a n c e of sediment and s o i l p r o f i l e s may develop.
Under
f a v o u r a b l e c i r c u m s t a n c e s p e a t may accumulate. Interfluvial areas S o i l f o r m a t i o n i n i n t e r f l w i a l a r e a s i s a n i m p o r t a n t p r o c e s s which can be recognized i n a n c i e n t a l l u v i a l sequences.
A t t h e p r e s e n t t i m e one of t h e moat
i m p o r t a n t c o n t r o l s o f s o i l f o r m a t i o n i s c l i m a t e and t h e s i g n i f i c a n c e of a n c i e n t s o i l s is t h e i r p o t e n t i a l value a s palaeoclimatic indicators. S o i l s may develop a s r e c e n t l y d e p o s i t e d sediments o r p o o r l y c o n s o l i d a t e d bedrock and can be regarded a s a n amalgam of t h e l i t h o s p h e r e , t h e h y d r o s p h e r e , t h e b i o s p h e r e and t h e atmosphere.
They g e n e r a l l y c o n s i s t of d i s t i n c t l a y e r s , u s u a l l y known as
h o r i z o n s which t o g e t h e r form a s o i l p r o f i l e .
The n a t u r e o f t h e v a r i o u s h o r i z o n s
and t h e i r p o s i t i o n i n t h e s o i l p r o f i l e depends upon t h e n a t u r e of t h e s u b s t r a t e and a l s o on c l i m a t i c f a c t o r s .
The changes o f s o i l - t y p e which accompany changes i n
J
209 c l i m a t e and v e g e t a t i o n a r e i l l u s t r a t e d i n F i g . 4 . 2 8 .
Some s o i l s may t a k e hundreds
of thousands o r even m i l l i o n s of y e a r s t o develop and may have w i t n e s s e d a p p r e c i a b l e c l i m a t i c change.
C o n s i d e r a b l e c a r e i s t h e r e f o r e needed i n a s s e s s i n g t h e importance
of c l i m a t e i n b o t h p r e s e n t - d a y and a n c i e n t s o i l s .
wet. cold
Dry, hot Desert soils Desert shrubs
Brown SOIIS
Chestnut soils
Charnorem soils
P d d mils
SOllS
Broadleaf forest
Conifer forest
Tundra
SOllS
Tall
Short grass
Grey brown podzolic sals
Prairie
Tundra
Limit of soil water I
I
I
I I
I
I I
I I
Alkaline soils, closed system 8
Carbonates removed
Neutral I I
soils
I I
Acid soils open system
Fig.4.28. Changes i n s o i l p r o f i l e s which accompany changes i n c l i m a t e and v e g e t a t i o n between t h e Canadian Tundra and t h e d e s e r t s of s o u t h w e s t e r n USA. A t t h e 1 0 0 t h m e r i d i a n t h e a n n u a l p r e c i p i t a t i o n a v e r a g e s a b o u t 50cm ( a f t e r Hunt, 1 9 7 2 ) . The m a j o r i t y o f p r e s e n t - d a y s o i l s have a n o r g a n i c r i c h upper l a y e r which g r a d e s downwards i n t o more m i n e r a l dominated l a y e r s .
The p r e s e r v a t i o n p o t e n t i a l of t h i s
o r g a n i c l a y e r i s g e n e r a l l y low e x c e p t i n swamps and p e a t bogs where t h e w a t e r t a b l e
i s g e n e r a l l y h i g h and t h e d r a i n a g e v e r y p o o r .
Organic m a t t e r d o e s , however, have a
s t r o n g i n f l u e n c e on t h e r e s t o f t h e s o i l p r o f i l e by changing t h e composition o f downward p e r c o l a t i n g r a i n w a t e r .
The a c i d i t y of r a i n w a t e r may b e i n c r e a s e d by thee
a d d i t i o n of v a r i o u s o r g a n i c a c i d s and a s i t moves down through t h e s o i l p r o f i l e i t removes a l k a l i and a l k a l i e a r t h i o n s i n s o l u t i o n and a i d s t h e h y d r o l y s i s of s i l i c a t e g r a i n s and t h e f o r m a t i o n of c l a y m i n e r a l s .
Downward p e r c o l a t i o n may b e improved by
t h e r o o t p e n e t r a t i o n and o t h e r a c t i v i t i e s o f growing p l a n t s .
A familiar ancient
example o f s o i l f o r m a t i o n i n t h i s way i s p r o v i d e d by t h e s e a t e a r t h s below c o a l seams s e e n i n t h e Upper P a l a e o z o i c Coal Measures. which a r e o f t e n e n r i c h e d i n k a o l i n i t e .
These a r e r o o t p e n e t r a t e d s o i l s
Comparison w i t h p r e s e n t - d a y p e a t swamps
s u g g e s t s t h a t t h e k a o l i n i t e formed i n s i t u due t o l e a c h i n g by humic a c i d s which p e r c o l a t e d downwards from t h e o v e r l y i n g p e a t ( S t a u b a n d Cohen, 1978).
210 A t t h e p r e s e n t - d a y i n c e r t a i n t r o p i c a l r e g i o n s t h e r e a r e s o i l s forming which have These a r e t h e d u r i c r u s t s (Langford-
been a major i n f l u e n c e i n t h e r e d bed problem.
Smith and Dury, 1965; Goudie, 1973) which i n c l u d e c a l c r e t e , f e r r i c r e t e , and silcrete.
These may form v e r y t h i c k p r o f i l e s , i n some c a s e s up t o lOOm t h i c k , and
a r e c h a r a c t e r i z e d by a t h i n n e r i n d u r a t e d top-zone o r hardpan.
A t the present t i m e
d u r i c r u s t s show a c l o s e r e l a t i o n s h i p w i t h c l i m a t e and form i n a r i d o r s e m i - a r i d l r e g i o n s of s t a b l e geomorphic l e v e l s a l t h o u g h many o t h e r f a c t o r s i n c l u d i n g bedrock lithology a r e a l s o important. I n many p a r t s o f t h e world t h e 50Omm a n n u a l i s o h y e t seems t o be a s i g n i f i c a n t d i v i d i n g l i n e between c a l c r e t e and o t h e r t y p e s of d u r i c r u s t .
The f o r m a t i o n of
c a l c r e t e i s g e n e r a l l y r e g a r d e d t o t a k e p l a c e by a p e r descensum mechanism.(Goudie,
1973, p.136) i n which c a r b o n a t e i s l e a c h e d from t h e upper s o i l h o r i z o n s by downward p e r c o l a t i n g r a i n w a t e r and i s p r e c i p i t a t e d a t d e p t h a s c a l c i t e o r high-magnesian c a l c i t e during dry periods.
I t i s obvious t h a t t h e a c c u m u l a t i o n s o f any s u b s t a n t i a l
t h i c k n e s s o f c a l c r e t e r e q u i r e s t h e a d d i t i o n of c a r b o n a t e t o t h e s o i l s u r f a c e .
Much
of t h i s c a r b o n a t e i s b e l i e v e d t o b e d e r i v e d from a e o l i a n d u s t s which a r e i m p o r t a n t i n s e m i a r i d r e g i o n s b o r d e r i n g d e s e r t a r e a s (Goudie, 1973, T a b l e 4.1; Yaalon, 1973). S i l c r e t e s a r e c h a r a c t e r i s t i c of a r i d r e g i o n s b u t have n o t been so e x t e n s i v e l y s t u d i e d a s c a l c r e t e s , n o r a r e t h e y so abundant i n t h e s t r a t i g r a p h i c a l r e c o r d .
The
t h i c k e r s i l c r e t e p r o f i l e s i n modern d e s e r t s a r e g e n e r a l l y r e g a r d e d a s p a l a e o s o l s ( e . g . Mabbutt, 1967).
S i l c r e t e s show b r o a d l y s i m i l a r f e a t u r e s t o c a l c r e t e s and may
a l s o o r i g i n a t e by a p e r descensum mechanism.
The s i l i c a i s i n t h e form o f q u a r t z ,
c h a l c e d o n y , o r o p a l and may o c c a s i o n a l l y show o p t i c a l c o n t i n u i t y w i t h h o s t q u a r t z grains.
The s o u r c e o f t h e s i l i c a and i t s p r e c i s e r o l e i n s i l c r e t e f o r m a t i o n i s ,
however, v e r y p o o r l y known.
Bedrock seems t o b e a n i m p o r t a n t f e a t o r because i n t h e
w e s t e r n USA v o l c a n i c r o c k s seem t o r a p i d l y develop s o i l s w i t h well-developed s i l i c a cemented h o r i z o n s , whereas a l l u v i a l s o i l s d e r i v e d from g r a n i t i c r o c k s form s i l i c a cemented h o r i z o n s , o n l y v e r y s l o w l y ( F l a c h e t a l . , 1969). of s i l i c a may b e p r o v i d e d by d e s e r t g r a s s e s .
Another i m p o r t a n t s o u r c e
These a r e known t o have e x c e p t i o n a l l y
h i g h s i l i c a c o n t e n t s and s i l i c a i s cormnonly t h e most i m p o r t a n t element i n c i r c u l a t i o n i n t h e d e s e r t ecosystem (Rodin and B a z i l e v i c h , 1965).
A r i d s o i l s i n New S o u t h Wales
c o n t a i n well-rounded s i l t - s i z e d p a r t i c l e s v e r y s i m i l a r t o t h o s e found i n t h e l e a v e s of l o c a l g r a s s e s ( H a l l s w o r t h and Waring, 1964).
Such p a r t i c l e s c o u l d c o n c e i v a b l y
be t r a n s p o r t e d by wind t o b e s u b s e q u e n t l y m o b i l i z e d , presumably under a l k a l i n e c o n d i t i o n s , and d e p o s i t e d d e e p e r i n t h e s o i l p r o f i l e . F e r r i c r e t e o r l a t e r i t e shows many m o r p h o l o g i c a l f e a t u r e s s i m i l a r t o t h o s e o f c a l c r e t e b u t a p r e c i s e d e f i n i t i o n of l a t e r i t e i s n o t e a s y t o make ( s e e McFarlane,
1976 f o r a r e v i e w ) .
A r a t h e r l o o s e usage l i k e t h a t of S i v a r a j a s i n g h a m e t a l . (1962,
p.5) i s p r e f e r r e d and t h u s i n c l u d e s : " h i g h l y weathered m a t e r i a l 2 ) poor i n humus
1) r i c h i n s e c o n d a r y forms of i r o n , aluminium o r b o t h
3) d e p l e t e d of b a s e s and combined s i l i c a
4) w i t h o r w i t h o u t
211 n o n - d i a g n o s t i c s u b s t a n c e s s u c h a s q u a r t z , l i m i t e d amounts o f w e a t h e r a b l e primary m i n e r a l s o r s i l i c a t e c l a y s ; and 5 ) e i t h e r h a r d o r s u b j e c t t o h a r d e n i n g upon exposure t o a l t e r n a t e w e t t i n g and d r y i n g " . L a t e r i t e s do show a number of developmental s t a g e s which have been d e s c r i b e d by P u l l a n (1967) and McFarlane (1976).
The weathered c r y s t a l l i n e r o c k may be s l i g h t l y
f e r r u g i n i z e d and s l i g h t l y hardened and a t t h i s s t a g e i s known a s v e r m i c u l a r i r o n s t o n e . Continued development l e a d s t o i n c r e a s e d f e r r u g i n i z a t i o n and v e s i c u l e s , 5mm i n d i a m e t e r and f i l l e d w i t h p i n k e a r t h y m a t e r i a l , become a b u n d a n t , l a t e r i t i c ironstone.
This i s a v e s i c u l a r
Continued f e r r u g i n i z a t i o n i n c r e a s e s t h e h a r d n e s s and i f t h e
m a t e r i a l i n t h e mermicules and v e s i c u l e s i s washed o u t a c e l l u l a r i r o n s t o n e i s produced.
N o d u l a r , o o l i t i c , and p i s o l i t i c s t r u c t u r e s a r e common i n l a t e r i t e s and,
a s i n c a l c r e t e s , a r e u s u a l l y cemented t o g e t h e r .
McFarlane (1969) d i s t i n g u i s h e s
between s p a c e d p i s o l i t i c l a t e r i t e and packed p i s o l i t i c l a t e r i t e .
The former
comprises d a r k r e d p i s o l i t e s and o o l i t h s s e p a r a t e d by a m a t r i x of k a o l i n i t e and quartz.
T h i s t y p e does n o t harden on exposure and i s r e a d i l y e r o d e d on exposure
t o produce a remanie of l o o s e p i s o l i t h s .
Packed p i s o l i t i c l a t e r i t e on t h e o t h e r
hand has p i s o l i t h s r e s t i n g one a g a i n s t t h e o t h e r , and t h e y a r e u s u a l l y cemented t o form a tough, hardened mass. L a t e r i t e p r o f i l e s a r e more complex t h a n t h o s e o f c a l c r e t e and i n i n s i t u l a t e r i t e s may c o n t a i n up t o s i x main e l e m e n t s . u n d e r l a i n by t h e i r o n s t o n e c r u s t ,
A t t h e s u r f a c e t h e r e i s a s o i l zone which i s
Below t h e c r u s t ( c u i r a s s e o r c a r a p a c e a c c o r d i n g
t o t h e d e g r e e o f i n d u r a t i o n ) i s a m o t t l e d zone, a p a l l i d zone, a s i l i c i f i e d zone, and t h e z e r s a t z zone.
T h i s p r o f i l e o f t e n shows marked c o l o u r v a r i a t i o n s w i t h t h e
i n d u r a t e d zone b e i n g d a r k i s h r e d o r brown (5yR 3 / 4 ) , t h e p a l l i d zone b e i n g r a t h e r p a l e (5Y 7 / 2 ) w i t h low i r o n c o n t e n t , and t h e m o t t l e d zone b e i n g somewhat mixed (10R 5 / 8 ) ( F a n i r a n , 1970).
The ' z e r s a t z ' zone c o n s i s t s of s o f t , h i g h l y a l t e r e d m a t e r i a l which
r e t a i n s t h e s t c u c t u r e of t h e r o c k from which i t formed. The r e d c o l o u r of l a t e r i t e s i s p r i n c i p a l l y due t o h a e m a t i t e ( a - F e 0 ) and 2 3 g o e t h i t e (o( -FeOOH) a l t h o u g h l e p i d o c r o c i t e ('y-FeOOH) ( d ' C o s t a e t a l . , 1966) and maghaematite ( 7 - F e 0 ) ( B o n i f a s , 1959) have a l s o been i d e n t i f i e d . O t h e r i m p o r t a n t 2 3 c o n s t i t u e n t s a r e k a o l i n i t e and h a l l o y s i t e and a l s o g i b b s i t e A1(0HI3 , boehmite y-AlO(OH),
and d i a s p o r e
%-AlO(OH)
.
Amorphous forms of aluminium o x i d e such
a s c l i a c h i t e (Maignien, 1966) a l s o o c c u r . The g e n e s i s o f l a t e r i t e i s s t i l l o n l y p o o r l y u n d e r s t o o d and t h e r e a r e s t i l l a v a r i e t y o f t h e o r i e s i n c i r c u l a t i o n ( s e e McFarlane, 1976, p .9 1 - 1 0 8 ) .
Intense
t r o p i c a l w e a t h e r i n g o r l o n g e x t e n d e d w e a t h e r i n g l e a d s t o t h e r e l a t i v e accumulation of r e s i d u a l o x i d e s o f aluminium, i r o n , manganese, and t i t a n i u m .
The k a o l i n i t e o r
h a l l o y s i t e which may b e produced by t h e w e a t h e r i n g of b a s i c r o c k s i s e v e n t u a l l y s u b j e c t e d t o s i l i c a loss and c o n v e r t e d t o g i b b s i t e .
The s i l i c a may b e l e a c h e d o u t
of t h e system i n r i v e r w a t e r , d e p o s i t e d a t d e p t h i n t h e p r o f i l e , o r t r a n s p o r t e d l a t e r a l l y f o r v a r y i n g d i s t a n c e s t o form s i l c r e t e ( S t e p h e n s , 1971).
212 Two main mechanisms have been p u t forward f o r t h e development of i n s i t u l a t e r i t e s . The f i r s t of t h e s e i s t h a t l a t e r i t e i s a residuum of t h e r e l a t i v e l y immobile endp r o d u c t s of w e a t h e r i n g . constituent oxides.
The mechanism i m p l i e s two p h a s e s of l i m i t e d m o b i l i t y of t h e
F i r s t , a s h o r t - l i v e d phase when t h e m a t e r i a l s t o b e c o n c e n t r a t e d
a r e r e l e a s e d from t h e i r p a r e n t m a t e r i a l by w e a t h e r i n g p r o c e s s e s and re-grouped i n t o r e l a t i v e l y immobile p r e c i p i t a t e s ; s u b s e q u e n t l y , a s e c o n d , m o b i l e p h a s e , d u r i n g t h e r e s o l u t i o n o r a l t e r a t i o n of t h e residuum, p r o b a b l y by groundwater. mechanism e n v i s a g e s l a t e r i t e a s a p r e c i p i t a t e .
The second main
I n t h e s i m p l e s t c a s e o x i d e s of i r o n
and aluminium a r e t h o u g h t t o be d e r i v e d from t h e p a l l i d zone and t r a n s p o r t e d upwards t o be p r e c i p i t a t e d i n a zone of e n r i c h m e n t .
C a p i l l a r i t y and s e a s o n a l f l u c t u a t i o n s
of t h e w a t e r t a b l e have b o t h been s u g g e s t e d a s t h e c a u s e of l a t e r i t e e n r i c h m e n t . There a r e a number o f problems w i t h b o t h t h e s e models of l a t e r i t e f o r m a t i o n (Goudie, 1973, p.141-144;
McFarlane, 1971, 1976, p.93-94) and most workers now
f a v o u r a compromise i n which l a t e r i t e i s c o n s i d e r e d a s a r e s i d u a l p r e c i p i t a t e ( T r e n d a l l , 1962; de Swardt, 1964; McFarlane, 1976).
Although t h e r e a r e v a r i a t i o n s
on t h e theme t h e model developed f o r Ugandan l a t e r i t e s by McFarlane (1971) s e r v e s t o i l l u s t r a t e t h e mechanism.
I n i t i a l l y i r o n is segregated i n t o p i s o l i t h s within
t h e narrow range o f w a t e r t a b l e o s c i l l a t i o n d u r i n g a l a t e s t a g e of l a n d s u r f a c e The zone of p r e c i p i t a t i o n lowers a s t h e l a n d s u r f a c e i s reduced and t h e
reduction.
p r e c i p i t a t e s accumulate a s a s h e e t a t t h e b a s e o f t h e s o i l .
Eventually the land
s u r f a c e r e d u c t i o n c e a s e s and t h e accumulated s h e e t of p i s o l i t h s becomes a l t e r e d and h y d r a t e d t o form a massive v a r i e t y o f l a t e r i t e .
On t h e i n i t i a t i o n of t h e s u c c e e d i n g
c y c l e of e r o s i o n t h e w a t e r t a b l e once a g a i n b e g i n s t o lower and p i s o l i t h f o r m a t i o n resumes.
With c o n t i n u e d l o w e r i n g t h e zone o f p i s o l i t h f o r m a t i o n lowers l e a v i n g above
i t a spread of p i s o l i t h s .
E v e n t u a l l y t h e w a t e r t a b l e i s u l t i m a t e l y lowered beyond
t h e d e p t h a t which p i s o l i t h s can form and l e a c h i n g t a k e s p l a c e t h r o u g h t h e c a r a p a c e d e p l e t i n g t h e s a p r o l i t e and forming a p a l l i d zone.
F i n a l l y deforestation leads t o
i n d u r a t i o n o f t h e l a t e r i t e and i t s loss of p e r m e a b i l i t y . L a t e r i t e a p p e a r s t o form t h e r e f o r e a s a r e s i d u a l p r e c i p i t a t e d u r i n g l a n d s u r f a c e reduction.
An i m p o r t a n t f e a t u r e of t h i s model does n o t l i m i t t h e f o r m a t i o n of
l a t e r i t e t o t h e s t a b l e p r o f i l e of a p l a n a t i o n s u r f a c e , a b e l i e f which i s s t i l l widely held. L a t e r i t e s a r e i m p o r t a n t i n r e d bed s t u d i e s b e c a u s e e a r l i e r workers b e l i e v e d t h a t they s u p p l i e d much d e t r i t a l h a e m a t i t e and g o e t h i t e t o f l u v i a l s e d i m e n t s .
This
o p i n i o n i s no l o n g e r w i d e l y h e l d mainly b e c a u s e Recent f l u v i a l s e d i m e n t s i n t h e t r o p i c s a r e n o t r e d and a l s o b e c a u s e t h e geomorphic environment of l a t e r i t e g e n e s i s does n o t f a v o u r l a r g e s c a l e f l u v i a l e r o s i o n .
There a r e , u n f o r t u n a t e l y , no d i r e c t
s t u d i e s of t h e f l u v i a l e r o s i o n o f l a t e r i t e on which t o b a s e t h i s a s s u m p t i o n .
The
p s e u d o k a r s t i c f e a t u r e s w i d e l y r e p o r t e d i n l a t e r i t e s ( s e e Goudie, 1973, p.46-48) i n d i c a t e i m p o r t a n t s u b t e r r a n e a n e r o s i o n b u t c o u l d s u p p l y o n l y r e l a t i v e l y small amounts of i r o n o x i d e t o a f l u v i a l system.
213 THE TRANSPORT OF IRON I N RECENT ALLUVIUM
Recent a l l u v i u m i s t y p i c a l l y non-red and c o n t a i n s a l a r g e p r o p o r t i o n o f c r y s t a l l i n e m a t e r i a l eroded from bedrock.
Even i n warm, s e a s o n a l l y humid c l i m a t e s
where reddish-brown s o i l s a r e common i n t h e s o u r c e a r e a , t h e a l l u v i u m i s g e n e r a l l y brown o r brownish-yellow i n c o l o u r .
Haematite m a n t l e s do n o t g e n e r a l l y develop
w i t h i n t h e zone o f i n f l u e n c e of r i v e r c h a n n e l s because s u f f i c i e n t time i s n o t available.
Consequently t h e y a r e unimportant as a s o u r c e of r e d d e t r i t u s in. Recent
a 11w i u m . T h i s c o n t r a s t s w i t h t h e view o f Krynine (1950) who r e p o r t e d examples o f Recent r e d sediments on t h e c o a s t a l piedmont of Tabasco i n s o u t h e r n Mexico and s u g g e s t e d t h a t t h e c o l o u r a t i o n was produced by " r e d mud d e r i v e d from t h e r e d s o i l s washed E a r l i e r , Krynine (1949) had argued
down t h e s l o p e s from t h e mountain i n t e r f l u v e s l ' .
t h a t t h i s was t h e p r i n c i p a l mechanism o f r e d bed f o r m a t i o n i n a n c i e n t f l u v i a l d e p o s i t s and c a l l e d such d e p o s i t s primary r e d b e d s ,
T h i s view was w i d e l y h e l d p r i o r t o t h e
p u b l i c a t i o n s o f Walker (1967a,b) who r e v i s i t e d t h e Tabasco a r e a and showed t h a t Krymine's view i s n o t s u p p o r t e d by t h e c o l o u r of t h e r i v e r a l l u v i u m o r of t h e Recent sediments. Samples were c o l l e c t e d by Walker (1967b) from a l o n g t h e e n t i r e l e n g t h o f t h e Mezcalapa R i v e r from t h e Mexico-Guatemala
b o r d e r t o t h e Gulf o f Mexico (Fig.4.29).
The c o l o u r o f t h e sediments ranges from v e r y d a r k g r e y i s h brown (10 R 3 / 2 ) t o g r e y i s h brown (10 R 5 / 2 ) , t h e c o m o n e s t c o l o u r b e i n g d a r k g r e y i s h , b r o w n (10 R 4 / 2 ) .
Walker
d i d n o t see any Recent r e d alluvium. The s c a r c i t y o f r e d a l l u v i u m i n t h i s t r o p i c a l a r e a i s due t o t h e f a c t t h a t r e d s o i l s are n o t abundant i n t h e s o u r c e a r e a .
Most of t h e soils a r e yellow o r brown
i n c o l o u r and r e d pigment o n l y o c c u r s i n h i g h l y a l t e r e d s o i l s which have formed on s u r f a c e s t h a t a r e o f P l e i s t o c e n e age o r o l d e r ( P s u t y , 1965).
Even i n t h e s e c a s e s
o n l y t h e topmost metre o r so o f t h e s o i l i s r e d and t h e m a j o r i t y o f t h e p r o f i l e i s y e l l o w o r brown i n c o l o u r .
Rapid e r o s i o n e n s u r e s t h a t t h e r e d d e t r i t u s i s q u i c k l y
d i l u t e d and masked by t h e more abundant non-red d e t r i t u s . The r e d d e s t modern a l l u v i u m o c c u r s i n some t r o p i c a l r i v e r s such a s t h o s e i n t h e Orinoco Basin (Walker, 1974).
G e n e r a l l y t h e a l l u v i u m i s y e l l o w i s h o r brownish i n
c o l o u r (2.5Y t o 1OYR) b u t d u r i n g p e r i o d s o f heavy run-off a f t e r s t r o n g storms a r e d d i s h c o l o u r e d ( 5 R 6/61 suspended l o a d i s o f t e n s e e n b u t t h i s d r i e s t o a l i g h t brown ( 7 . 5 R 6/41.
Red pigment s u p p l i e d by t h e e r o s i o n o f r e d s o i l s i s q u i c k l y
masked by non-red d e t r i t u s and some may b e l o s t by r e d u c t i o n of i r o n o x i d e d u r i n g t r a n s p o r t a t i o n (Hinze and Meischner, 1968). Examination o f Recent a l l u v i u m , t h e r e f o r e , s u g g e s t s t h a t i t i s n o t c o l o u r e d r e d by d e t r i t u s eroded from r e d s o i l s .
There i s no e v i d e n c e t h a t Recent t r o p i c a l
a l l u v i u m , or any o t h e r f o r t h a t matter, has a predominantly r e d suspended l o a d , S i m i l a r l y t h e r e i s no e v i d e n c e t h a t t h e muds and s i l t s on t h e a c t i v e f l o o d p l a i n s
214
Fig.4.29.
L o c a l i t y map of s o u t h e r n Mexico ( a f t e r Walker, 1967b).
of these r i v e r s a r e red i n colour.
I t must be c o n c l u d e d , t h e r e f o r e , t h a t t h e
mechanism of primary r e d bed f o r m a t i o n a s d e s c r i b e d by Krynine ( 1 9 4 9 ) , i s n o t s u b s t a n t i a t e d by t h e i n v e s t i g a t i o n of Recent a l l u v i u m . The f e r r u g i n o u s s o i l s of t r o p i c a l r e g i o n s do s u p p l y c l a y f r a c t i o n s pigmented w i t h yellow and brown amorphous i r o n hydroxides t o Recent a l l u v i u m (Van Houten, 1964, 1972). hydroxides.
Red pigment may be p r e s e n t and be masked by t h e more abundant brown I n t r o p i c a l a l l u v i u m eroded from igneous and metamorphic t e r r a i n s
t h e r e a r e a l s o abundant f r e s h s i l i c a t e g r a i n s i n c l u d i n g f e r r o m a g n e s i a n m i n e r a l s . I n t h i s r e s p e c t t h e a l l u v i u m o f a l l c l i m a t i c regimes i s s i m i l a r .
This i s i l l u s t r a t e d
by t h e work of Gibbs (1977) who made a d e t a i l e d s t u d y of t h e t r a n s p o r t a t i o n of i r o n and o t h e r t r a n s i t i o n e l e m e n t s ( C r , Mn, Co, N i , and Cu) i n two l a r g e r i v e r s , t h e Amazon and t h e Yukon.
These r i v e r s d r a i n b a s i n s which have a wide v a r i e t y o f rock
t y p e s and environments, and can b e c o n s i d e r e d r e p r e s e n t a t i v e of t h e i r r e s p e c t i v e
215 c l i m a t i c z o n e s , one t r o p i c a l , t h e o t h e r t u n d r a ,
Gibbs ( 1 9 7 7 ) d i s t i n g u i s h e d between:
d i s s o l v e d m a t e r i a l s , a d s o r b e d m a t e r i a l , m e t a l l i c c o a t i n g s (mainly f e r r i c h y d r o x i d e ) , o r g a n i c complexes and c r y s t a l l i n e m a t e r i a l s . I r o n i s t r a n s p o r t e d m o s t l y a s c r y s t a l l i n e p a r t i c l e s and a s f e r r i c hydroxide c o a t i n g s on t h e s e p a r t i c l e s .
A b s o l u t e v a l u e s of i r o n i n v a r i o u s t r a n s p o r t phases
a r e g i v e n i n T a b l e 4.1 and a r e l a t i v e comparison of t h e Amazon and Yukon R i v e r s i s shown i n Fig.4.30.
The Amazon c a r r i e s 47.2% of i t s t o t a l i r o n a s g r a i n c o a t i n g s and
45.5% i n t h e form o f c r y s t a l l i n e p a r t i c l e s .
I n t h e Yukon R i v e r 40.6% o f t h e t o t a l
i r o n i s c a r r i e d i n t h e form of g r a i n c o a t i n g s and 48.2% i n t h e form of c r y s t a l l i n e TABLE 4.1.
C o n c e n t r a t i o n of i r o n i n t r a n s p o r t p h a s e s i n r i v e r w a t e r and suspended sediment f o r t h e Amazon and Yukon R i v e r . R i v e r w a t e r v a l u e s i n micrograms p e r l i t r e ; s o l i d - p h a s e v a l u e s i n ppm ( a f t e r G i b b s , 1977). Fe
S o l u t i o n and o r g a n i c complexed
Amazon River Solid
34.0
Yukon River Solid
50.0
Sorbed Material
Metallic Coatings
Organic Solids
Crystalline Particles
TOTAL
-
1.3
2 ,390
1.4
26,000
333 3 ,720
2,310 25 ,800
5,065.3 55,521.4
10.0
3 ,600 25,720
976 6,970
4,270 30,500
8,906.0 63,197.5
7.5
Fe
AMAZON
YUKON
P r o p o r t i o n s of t o t a l and a v a i l a b l e i r o n t r a n s p o r t e d i n v a r i o u s p l a s e s Fig.4.30. f o r Amazon and Yukon R i v e r s ( a f t e r G i b b s , 1977).
216 particles.
Only t h e o r g a n i c s o l i d p h a s e t r a n s p o r t s a s i g n i f i c a n t minor amount o f
t h e t o t a l i r o n , 6.6% i n t h e Amazon, and 11%f o r t h e Yukon R i v e r .
The i r o n p h a s e s
t r a n s p o r t e d i n s o l u t i o n and s o r b e d on s o l i d s e a c h c o n t r i b u t e l e s s t h a n 1%of t h e t o t a l i r o n t r a n s p o r t e d by t h e two r i v e r s .
The v a s t m a j o r i t y o f t h e a v a i l a b l e i r o n
i n b o t h r i v e r s is t h u s i n t h e form of t h e g r a i n c o a t i n g s ( F i g . 4 . 3 0 ) . The p o s s i b l e s i z e d i s t r i b u t i o n of i r o n t r a n s p o r t p h a s e s f o r t h e Amazon and Yukon a r e shown i n Fig.4.31.
These p h a s e s v a r y w i t h p a r t i c l e s i z e b u t t h e r e i s a remark-
a b l e s i m i l a r i t y between t h e two r i v e r s .
Fe AMAZON
I
5
h
YUKON
4-
iw 3 -
5
/-2?+&
0 0.1 PARTICLE DIAMETER (pn)
1.0 10 100 7.50 PARTICLE DIAMETER ( r m )
Fig.4.31. Concentration of i r o n i n various transporting phases f o r various p a r t i c l e s i z e s i n Amazon and Yukon R i v e r s ( a f t e r G i b b s , 1977). S u r f a c e r e l a t e d phenomena
-
g r a i n c o a t i n g s , o r g a n i c m a t e r i a l and s o r b e d m a t e r i a l
show an 80-9977 d e c r e a s e i n i r o n from f i n e t o c o a r s e r g r a i n e d m a t e r i a l ,
Crystalline
p a r t i c l e s show a d e c r e a s e o f 57% and 45% i r o n w i t h p a r t i c l e s i z e f o r t h e Amazon and Yukon R i v e r s r e s p e c t i v e l y , p r o b a b l y b e c a u s e o f i n h e r e n t m i n e r a l o g i c a l v a r i a t i o n s (Gibbs , 1967b). The importance of m e t a l l i c g r a i n c o a t i n g s a s a t r a n s p o r t o f phase of i r o n and t h e o t h e r t r a n s i t i o n m e t a l s l e d Gibbs (1977) t o a more d e t a i l e d i n v e s t i g a t i o n o f i t s n a t u r e and o r i g i n .
The t h i c k n e s s o f t h e m e t a l l i c g r a i n c o a t i n g s was c a l c u l a t e d
from t h e i r o n c o n c e n t r a t i o n and p a r t i c l e d i a m e t e r i n e a c h s i z e f r a c t i o n w i t h d e n s i t y and shape assumed.
M i c r o s c o p i c e x a m i n a t i o n s s u g g e s t e d t h e b e s t assumptions o f shape
were p l a t e s f o r m a t e r i a l less t h a n 3-5ym and cubes f o r m a t e r i a l g r e a t e r t h a n 3.5ym. From t h i s t h e s u r f a c e a r e a p e r g r a i n o f m a t e r i a l i s c a l c u l a t e d a n d , assuming a d e n s i t y
217 of 2.8 f o r Fe(OH)3, t h e t h i c k n e s s of a uniform c o a t i n g on t h e p a r t i c l e s f o r each s i z e f r a c t i o n can b e deduced ( T a b l e 4.2 ). TABLE 4.2.
C h a r a c t e r i s t i c s of t r a n s p o r t e d s e d i m e n t s i n Amazon and Yukon R i v e r s ( a f t e r Gibbs,
1977). Particle Shape
Particle diameter
Surface area ( m2/g)
(ym)
Plate
Cube
Fe c o n c e n t r a t i o n i n coating
(70)
Fe(OH3) c o a t i n g thickness
P)
Amazon
Yukon
Amazon
Yukon
0.1
5.2885 x 10l3
4.15
5.3
0.00028
0.00036
0.35
1.1916 x
4.89
3.8
0.0015
0.0011
1.25
3.337
x 10l2
4.28
3.0
0.0046
0.0032
3.5
1.1916 x 1OI2
1.75
2.3
0.0052
0.0069
12.5
1.8459 x 10"
0.37
0.5
0.0071
0.0097
47
4.909
x 10"
0.29
0.2
0.021
0.014
100
2.300
x 10"
0.21
0.33
0.033
0.051
250
9.2306 x 10
0.16
0.56
0.061
0.217
The o r i g i n of t h e s e i r o n hydroxide g r a i n c o a t i n g s i s of p a r t i c u l a r i n t e r e s t because c l a y - i r o n o x i d e c o a t i n g s a r e s u c h a c h a r a c t e r i s t i c f e a t u r e o f a n c i e n t r e d beds.
Gibbs (1977, p.838) c o n s i d e r e d two hypotheses.
The f i r s t was t h a t t h e
c o a t i n g s were p r e c i p i t a t e d i n e q u i l i b r i u m w i t h t h e r i v e r w a t e r w h i l s t t h e p a r t i c l e s were f r e e l y suspended.
T h i s i d e a i s n o t s u p p o r t e d by t h e f a c t t h a t t h e g r a i n
c o a t i n g s a r e n o t of uniform t h i c k n e s s a s one might e x p e c t them t o be.
Also physical
a b r a s i o n o r chemical d i s s o l u t i o n i s n o t a l i k e l y mechanism t o e x p l a i n t h e observed r e l a t i o n s h i p o f t h i c k e r g r a i n c o a t i n g s on c o a r s e r p a r t i c l e s .
The second h y p o t h e s i s ,
and t h e ope c o n s i d e r e d t o b e t h e most l i k e l y e x p l a n a t i o n by Gibbs (1967a), i s t h a t t h e g r a i n c o a t i n g s were formed i n a w e a t h e r i n g ( s o i l ) environment.
He a r g u e d t h a t
c o a r s e r g r a i n s developed a t h i c k e r hydroxide c o a t i n g because t h e y had a h i g h e r p e r m e a b i l i t y which a l l o w e d a g r e a t e r s u p p l y o f p r e c i p i t a t i n g i o n s , whereas t h e f i n e r p a r t i c l e s i n t h e s o i l c r e a t e d a lower p e r m e a b i l i t y and reduced t h e s u p p l y of prec i p i t a t i n g ions. Van Houten (1972) s t u d i e d t h e i r o n and c l a y c o n t e n t o f t r o p i c a l Savanna a l l u v i u m a l o n g t h e f l a n k s o f t h e S i e r r a Nevada de S a n t a M a r t a , n o r t h e r n Colombia.
Here upland
s o i l s a r e r e d d i s h t o r e d d i s h brown i n c o l o u r b u t t h e suspended l o a d of t h e l a r g e r r i v e r s d r a i n i n g t h e a r e a i s y e l l o w i s h - g r e y t o p a l e brown (cf. Walker, 1974).
Also
t h e f r e s h a l l u v i u m and v e r y immature a l l u v i a l s o i l s a r e y e l l o w i s h - g r e y t o shades of brown (10 R t o 5 Y ) a l t h o u g h some o f t h e o l d e r a l l u v i u m may b e r e d t o r e d d i s h brown
(10R t o 5YR).
The a l l u v i u m c o n t a i n s r e l a t i v e l y abundant g r a i n s o f f r e s h i r o n - b e a r i n g
218 m i n e r a l s i n c l u d i n g m a g n e t i t e , amphibole, b i o t i t e , c h l o r i t e , h a e m a t i t e , i l m e n i t e and pyroxene.
T h i s i s c o n s i s t e n t w i t h t h e r e c o g n i t i o n of u n a l t e r e d m i n e r a l s u i t e s
i n o t h e r t r o p i c a l r i v e r s l i k e t h e Amazon ( G i b b s , 1967a) and t h e E u p h r a t e s ( P h i l i p , 1968) and i s a n i n d i c a t i o n t h a t a c t i v e l y e r o d e d t r o p i c a l uplands y i e l d f r e s h m i n e r a l g r a i n s d e r i v e d from b e d r o c k ( V a n Andel, 1959; Van Houten, 1968) a s w e l l a s g r a i n s d e r i v e d from s o i l h o r i z o n s (Gibbs, 1977).
Unaltered mineral s u i t e s a r e a l s o t y p i c a l
of r i v e r s i n t e m p e r a t e r e g i o n s (Packham e t a l . , 1961). show some s i g n s of m i n e r a l a l t e r a t i o n .
The Colombian a l l u v i u m does
I n t h e B horizon of red s o i l s black oxides
a r e less abundant and much m a g n e t i t e has a p p a r e n t l y been c o n v e r t e d t o pigment; amphibole and b i o t i t e a r e a l s o reduced i n abundance b u t t h e r e a r e few obvious s i g n s of p a r t i a l l y a l t e r e d amphiboles. Clay m i n e r a l s i n t h e Colombian a l l u v i u m i n c l u d e m o n t m o r i l l o n i t e (M), i l l i t e ( I ) , mixed l a y e r I M , k a o l i n i t e and c h l o r i t e .
The mixed l a y e r c l a y s and t h e k a o l i n i t e
were a l m o s t c e r t a i n l y d e r i v e d from t h e upland s o i l s and f u r t h e r e v i d e n c e o f t h i s i s p r o v i d e d by t h e p r e s e n c e of 10-26% amorphous t o v e r y d i s o r d e r e d a l u m i n o s i l i c a t e . Such m a t e r i a l i s a c h a r a c t e r i s t i c component o f humid c l i m a t e s o i l s and i s f r e q u e n t l y found i n a s s o c i a t i o n w i t h f e r r i c hydroxide ( M i t c h e l l e t a l . , 1964; F o l l e t t e t a l . , 1965). I r o n c o n t e n t i s c o n c e n t r a t e d i n t h e c l a y f r a c t i o n s o f t h e Colombian a l l u v i u m (Fig.4.32).
I n t h e s a n d - s i l t f r a c t i o n t h e amount of t o t a l i r o n c o r r e l a t e s c l o s e l y
w i t h t h e amount o f i r o n - b e a r i n g d e t r i t a l g r a i n s s u c h a s m a g n e t i t e and b i o t i t e .
The
o l d e r and r e d d e r t e r r a c e d e p o s i t s show a d e c r e a s e i n t o t a l i r o n and a l s o e v i d e n c e of t h e removal o f i r o n from amphibole and b i o t i t e g r a i n s ; most of t h e i r o n i n m a g n e t i t e i s r e t a i n e d i n s p e c u l a r h a e m a t i t e p a r t i c l e s produced by p o s t - d e p o s i t i o n a l alteration.
I n t h e c l a y f r a c t i o n s t h e amount of i r o n v a r i e s :
12.8-15.6% o c c u r s
i n r e d s o i l s , 5.5-8.0% i n a l l u v i u m on b a n k s , 4.8-9.0% i n f l o o d p l a i n s e d i m e n t s and 3.0-5.877
i n older terrace deposits.
An a v e r a g e of 75% of t h e t o t a l i r o n i s c o n t a i n e d
i n t h e c l a y f r a c t i o n s o f t h e a l l u v i u m b u t r a t h e r s u r p r i s i n g l y t h e o l d e r and r e d d e r t e r r a c e d e p o s i t s c o n t a i n l e s s i r o n i n b o t h t h e c l a y and t h e s a n d - s i l t f r a c t i o n s . T h i s i m p l i e s t h a t t h e i n c r e a s e i n r e d n e s s h a s n o t been accompanied by a n i n t r a s t r a t a l t r a n s f e r of i r o n from t h e s a n d - s i l t f r a c t i o n t o t h e c l a y f r a c t i o n .
The Colombian
a l l u v i u m c o n t a i n s a n a v e r a g e of 0.75% f r e e ( e x t r a c t a b l e ) i r o n which c o n s i s t s p r i n c i p a l l y of brown l i m o n i t i c m a t e r i a l d e r i v e d from upland s o i l s .
The main
c o n s t i t u e n t s of l i m o n i t e a r e p r o b a b l y amorphous o r p o o r l y c r y s t a l l i n e Fe(0H) g o e t h i t e (FeOOH).
3
and
The m i n e r a l s a r e known t o b e u n s t a b l e r e l a t i v e t o h a e m a t i t e i n
t h e g e o l o g i c a l environment ( B e r n e r , 1969a) and under f a v o u r a b l e c i r c u m s t a n c e s ( o x i d i z i n g c o n d i t i o n s ) w i l l i n v e r t t o r e d pigmentary h a e m a t i t e by d e h y d r a t i o n .
The
p o s t - d e p o s i t i o n a l a g e i n g of f e r r i c hydroxide i n t h i s manner has long been recognized a s a l i k e l y mechanism f o r t h e f o r m a t i o n of a n c i e n t r e d b e d s .
Post-depositional
r e d d e n i n g i s l i k e l y t o o c c u r p r o v i d i n g t h a t t h e r e i s s u f f i c i e n t f e r r i c hydroxide i n t h e sediment which i s f i n e g r a i n e d and d i s p e r s e d t h r o u g h o u t t h e m a t r i x .
Also,
219 s u i t a b l e geochemical c o n d i t i o n s a r e r e q u i r e d , i n c l u d i n g low o r g a n i c c o n t e n t and Eh-pH r a n g e s w i t h i n t h e s t a b i l i t y f i e l d o f h a e m a t i t e .
The f o r m a t i o n o f h a e m a t i t e
i s a l s o f a v o u r e d by i n c r e a s e d a d s o r b e d c a l c i u m and magnesium i n t h e c l a y f r a c t i o n ( T a y l o r and G r a l e y , 1967) and a d s o r p t i o n o f o x a l a t e i o n s by amorphous f e r r i c hydroxide (Schwertmann, 1970).
ON BANK FLOOD PLAIN LOW TERRACE
Fig.4.32. Weight % t o t a l i r o n i n a l l u v i u m from n o r t h e r n Colombia. 1. I n c l a y f r a c t i o n . 2 . I n s a n d - s i l t f r a c t i o n ( a f t e r Van Houten, 1972). P r e c i s e documentation o f f e r r i c hydroxide ' a g e i n g ' i n Recent a l l u v i u m has n o t been made.
D i f f i c u l t y a r i s e s b e c a u s e o f t h e time-dependent n a t u r e of t h e p r o c e s s .
Many o l d e r t e r r a c e d e p o s i t s a r e r e d d e r b u t i t is n o t c l e a r whether t h i s i s due t o h a e m a t i t e formed by i n t r a s t r a t a l a l t e r a t i o n of d e t r i t a l f e r r o m a g n e s i a n s i l i c a t e s o r by t h e d i r e c t a g e i n g of d e t r i t a l f e r r i c h y d r o x i d e s .
The former p r o c e s s has been
documented i n Recent t r o p i c a l a l l u v i u m by Walker (1974) and t h e amount of f e r r i c
hydroxide i n t r o p i c a l a l l u v i u m i s c e r t a i n l y s u f f i c i e n t t o produce r e d pigment p o s t - d e p o s i t i o n a l l y (Walker and Honea, 1969).
The r e l a t i v e importance o f t h e two
p r o c e s s e s i s l i k e l y t o depend on t h e g r a i n s i z e and m i n e r a l o g y o f t h e a l l u v i u m .
In
f i n e g r a i n e d a l l u v i a l f l o o d p l a i n s , w i t h abundant c l a y and s i l t , d e t r i t a l f e r r i c hydroxides and i r o n - r i c h c l a y s r e p r e s e n t a s i g n i f i c a n t p r o p o r t i o n o f t h e t o t a l i r o n b e a r i n g mineralogy.
Given f a v o u r a b l e c o n d i t i o n s much o f t h i s m a t e r i a l w i l l e v e n t u a l l y
form pigmentary h a e m a t i t e .
I n c o a r s e g r a i n e d d e s e r t a l l u v i u m of t h e t y p e d e s c r i b e d
by Walker e t a l . (1978) t h e r e i s l i t t l e i n t e r s t i t i a ' l m a t r i x a t t h e time of d e p o s i t i o n and t h e i r o n - b e a r i n g m i n e r a l o g y i s dominated by f r e s h g r a i n s o f f e r r o m a g n e s i a n minerals.
I n t h i s c a s e r e d d e n i n g p r o g r e s s e s w i t h sediment b u r i a l a s t h e i r o n - b e a r i n g
g r a i n s a r e i n t r a s t r a t a l l y a l t e r e d r e l e a s i n g i o n s i n t o t h e i n t e r s t i t i a l groundwaters which l a t e r p r e c i p i t a t e a s v a r i o u s a u t h i g e n i c p h a s e s , i n c l u d i n g h a e m a t i t e . ANCIENT ALLUVIAL RED BEDS Ancient a l l u v i a l s e d i m e n t s a r e b e s t r e c o g n i z e d by t h e i r s e d i m e n t a r y o r g a n i z a t i o n , absence of marine f o s s i l s , u n i d i r e c t i o n a l p a l a e o c u r r e n t p a t t e r n and f r e q u e n t evidence of emergence s u c h a s p a l a e o s o l s and mudcracks.
The m a j o r i t y o f a n c i e n t a l l u v i a l
sediments a r e p a r t l y r e d i n c o l o u r and t h e s e comprise t h e most i m p o r t a n t group of a n c i e n t r e d beds.
Not any one of t h e above c r i t e r i a , i s i n i t s e l f , d i a g n o s t i c of an
a l l u v i a l environment b u t i n combination t h e y can b e c o n f i d e n t l y used i n t h e i r identi f i c a tion. There a r e l i m i t a t i o n s i n s t u d y i n g a n c i e n t a l l u v i a l s e d i m e n t s by d i r e c t comparison w i t h Recent s e d i m e n t s .
S i n c e P r o t e r o z o i c times (when t h e e a r l i e s t a l l u v i a l sediments
a r e found) t h e r e have been c o n s i d e r a b l e e v o l u t i o n a r y changes i n t h e atmosphere, t h e c l i m a t i c c y c l e , and a l s o i n t h e abundance and t y p e o f p l a n t l i f e . may i n f l u e n c e a l l u v i a l p r o c e s s e s .
A l l these factors
I n pre-Devonian times, b a f o r e t h e a p p e a r a n c e of
p l a n t l i f e , e r o s i o n and s u r f a c e r u n - o f f were p r o b a b l y h i g h a n d Esoods l a r g e compared w i t h t h e p r e s e n t - d a y (Schumm, 1968).
S i m i l a r l y , t h e appearance of grasses i n t h e
L a t e Cenozoic may have p l a y e d a s i g n i f i c a n t p a r t i n s t a b i l i z i n g a l l u v i a l p r o c a g s e s . R u s s e l l (1956) r e c o g n i z e d f o u r p e r i o d s i n which e v o l u t i o n a r y changes i n t h e p l a n t kingdom c o u l d have i n f l u e n c e d a l l u v i a l p r o c e s s e s :
1. p r e v e g e t a t i o n time (pre-Devonian) 2. p r i m i t i v e v e g e t a t i o n (Devonian-Cretaceous)
3 . modern f l o w e r i n g p l a n t s (Cretaceous-Miocene)
4 . t h e appearance of g r a s s e s (Miocene-present). Despite these influences a n c i e n t a l l u v i a l sediments a r e r e a d i l y recognizable and show some remarkable s i m i l a r i t i e s t o Recent a l l u v i u m .
Many of t h e c h a r a c t e r -
i s t i c Recent a l l u v i a l environments c a n b e i d e n t i f i e d i n a n c i e n t r e d beds and t h e r e a r e a number of e x c e l l e n t summaries e.g. Reading (1978).
Here a s m a l l number of
examples a r e c o n s i d e r e d i n d e t a i l s o t h a t t h e f a c t o r s c o n t r o l l i n g a l l u v i a l
221 s e d i m e n t a t i o n and s u b s e q u e n t reddening can be c o n s i d e r e d i n d e t a i l . The Old Red Sandstone Old Red Sandstone i s t h e name g i v e n t o t h e c o n t i n e n t a l f a c i e s of t h e Devonian i n v a r i o u s p l a c e s around t h e p r e s e n t - d a y North A t l a n t i c margins. molasse f a c i e s of t h e Caledonian orogeny.
I t represents the
These p l a c e s which i n c l u d e England, Wales,
S c o t l a n d , Norway, S p i t z b e r g e n , Greenland and p a r t s o f Canada and t h e USA o r i g i n a l l y formed p a r t o f a l a r g e c o n t i n e n t a l l a n d mass which c a n be r e c o n s t r u c t e d on t h e b a s i s of palaeomagnetic e v i d e n c e ( B u l l a r d e t al., 1965; Smith e t a l . , 1973) (Fig.4.33).
30's
60'
Fig.4.33. C o n t i n e n t a l r e c o n s t r u c t i o n f o r t h e Lower Devonian showing t h e p r o b a b l e e x t e n t of t h e Old Red Fandstone c o n t i n e n t (based on Smith e t a l . , 1973 and Woodrow e t a l . , 1973). The Old Red Sandstone c o n t i n e n t l a y between p a l a e o l a t i t u d e s o f a b o u t 0-30's
and
t h e p a l a e o c l i m a t e , j u d g i n g from comparisons w i t h t h e p r e s e n t - d a y c l i m a t i c p a t t e r n s u s i n g l i t h o l o g y and f a u n a l and f l o r a l c h a r a c t e r i s t i c s (Woodrow e t a l . ,
1973),
ranged from h o t and s e m i a r i d i n t h e s o u t h e r n p a r t o f t h e c o n t i n e n t t o a more m o i s t t r o p i c a l c l i m a t e i n t h e n o r t h e r n p a r t o f t h e landmass.
Within t h e Old Red c o n t i n e n t
222
two t y p e s of s e d i m e n t a r y a s s o c i a t i o n can b e r e c o g n i z e d ( A l l e n e t a l . , 1967).
One
i s a n e x t e r n a l f a c i e s i n which c o a s t a l a l l u v i a l s e d i m e n t s p a s s l a t e r a l l y and i n t e r f i n g e r w i t h marine s t r a t a .
The o t h e r i s a n i n t e r n a l f a c i e s which i s c o n f i n e d t o
i n t e r m o n t a n e b a s i n s , has no a s s o c i a t e d marine s t r a t a and c o n s i s t s m o s t l y of a l l u v i a l f a n and l a c u s t r i n e d e p o s i t s .
The e x t e r n a l f a c i e s i s most i m p o r t a n t i n volume and
a r e a l e x t e n t s t r e t c h i n g from t h e n o r t h e r n p a r t o f c o n t i n e n t a l Europe through s o u t h e r n B r i t a i n t o Canada and t h e USA. These two f a c i e s o f t h e Old Red Sandstone p r o v i d e e x c e l l e n t examples o f two c o n t r a s t i n g t y p e s of a n c i e n t a l l u v i a l r e d beds.
The i n t e r n a l f a c i e s compares c l o s e l y
w i t h Recent p e b b l y a l l u v i u m d e p o s i t e d i n a l l u v i a l f a n s and b r a i d e d r i v e r s a r i d climates.
i n semi-
The d e p o s i t s a r e more o r less u n i f o r m l y r e d which c o n t r a s t s w i t h
t h o s e of t h e e x t e r n a l f a c i e s .
These more c l o s e l y resemble t h e d e p o s i t s o f meandering
r i v e r s d e p o s i t e d i n c o a s t a l a l l u v i a l p l a i n s and a r e t y p i c a l l y v a r i e g a t e d showing a l t e r n a t i o n s of r e d and d r a b sediment. Internal facies
-
reddened p e b b l y a l l u v i u m
The i n t e r n a l f a c i e s o f t h e Old Red Sandstone was d e p o s i t e d i n i n t e r m o n t a n e b a s i n s which a r e d e l i n e a t e d by major boundary f a u l t s .
These f a u l t s were a c t i v e a t t h e t i m e
of d e p o s i t i o n ( F r i e n d , 1967, 1969) and c o n t r o l l e d t h e a c c u m u l a t i o n of g r e a t t h i c k n e s s e s o f sediment ( B r y h n i , 1964a; Bluck, 1969; S t e e l e t a l . , 1977).
The r e s u l t
i s t h a t a l l u v i a l f a n d e p o s i t e ( f a n g l o m e r a t e s ) accumulated i n t h e m a r g i n a l a r e a s and
t h e s e i n t e r f i n g e r w i t h l a t e r a l l y e q u i v a l e n t a l l u v i a l p l a i n s e d i m e n t s which a r e u s u a l l y d i s p e r s e d a l o n g t h e a x i s of t h e b a s i n .
I n some i n t e r n a l b a s i n s t h i c k
l a c u s t r i n e sequences a r e d e v e l o p e d , t h e n o t a b l e example b e i n g t h e O r c a d i a n Basin of C a i t h n e s s (Donovan and F o s t e r , 1972; Donovan e t a l . , 1974) i n which o v e r 5km
of d r a b l a c u s t r i n e c l a s t i c s and c a r b o n a t e s were d e p o s i t e d d u r i n g t h e Middle Old Red Sandstone ( E i f e l i a n - G i v e t i a n ) .
The Midland V a l l e y of S c o t l a n d ( F i g . 4 . 3 4 ) r e p r e s e n t s
a l a r g e i n t e r n a l b a s i n bounded by two NE-SW t r e n d i n g f a u l t complexes, t h e Highland Boundary F a u l t s y s t e m t o t h e N o r t h and t h e S o u t h e r n Uplands F a u l t t o t h e South. The Old Red sequence rests on a b a s a l unconformity and began t o accumulate i n Gedinnian time w i t h up t o 6km of s e d i m e n t a c c u m u l a t i n g i n p l a c e s .
There i s a major
b r e a k i n t h e sequence and t h e Upper Old Red, which i s g e n e r a l l y f i n e r g r a i n e d and more e x t e n s i v e a r e a l l y , rests unconformably on t h e Lower Old Red Sandstone.
The
i m p l i c a t i o n i s t h a t t h e r e was a c o n s i d e r a b l e r e d u c t i o n i n s o u r c e a r e a r e l i e f d u r i n g t h e Middle Old Red Sandstone. Along t h e n o r t h e r n margin of t h e Midland V a l l e y b a s i n t h e Lower Old Red Sandstone c o n t a i n s massive conglomerate u n i t s which comprise up t o 70% of t h e s u c c e s s i o n and t h i n southwards ( A l l a n , 1940).
The conglomerates a s d e s c r i b e d by H i c k l i n g (1908,
19121, Campbell (1913) F r i e n d e t a l . ( 1 9 6 3 ) , Bluck (1967, 1969) show l a r g e v a r i a t i o n i n c l a s t s i z e ; i n t h e n o r t h e a s t e r n p a r t of t h e a r e a c l a s t s o v e r 2m i n s i z e o c c u r b u t
223 s o r t i n g i n t h e c o a r s e g r a i n e d p a r t s i s g e n e r a l l y good ( F r i e n d e t a l . , 1963). Roundness v a r i e s l a t e r a l l y and v e r t i c a l l y ( A l l a n , 1940) b u t u s u a l l y q u a r t z i t e c l a s t s a r e well-rounded even when a s s o c i a t e d D a l r a d i a n metamorphic fragments a r e angular.
A l l a n (1940) s u g g e s t e d t h a t t h i s might be due t o r e c y c l i n g o f p r e v i o u s l y
formed q u a r t z i t e b e a r i n g conglomerate.
The c l a s t s o f q u a r t z i t e and D a l r a d i a n
p h y l l i t e , s c h i s t and g n e i s s a r e c o n s i s t e n t w i t h a provenance i n t h e Highland a r e a s t o t h e North; however contemporaneous a n d e s i t e s and b a s a l t s w i t h i n t h e Midland V a l l e y b a s i n a r e a l s o found a s c l a s t s w i t h i n t h e c o n g l o m e r a t e s .
Upwards, D a l r a d i a n type
c l a s t s become more abundant s u g g e s t i n g p r o g r e s s i v e u n r o o f i n g o f t h e n o r t h e r n h i g h l a n d areas.
I n t h e n o r t h e a s t e r n p a r t o f t h e b a s i n Campbell (1929) found t h a t t h e lower
g r a d e metamorphic zones were p r o g r e s s i v e l y s t r i p p e d o f f u n t i l t h e high-grade zones p r e s e n t l y v i s i b l e were exposed.
Fig.4.34. Scotland
Palaeogeography o f t h e Lower O l d Red Sandstone i n t h e Midland V a l l e y o f A . S t r u c t u r a l d e t a i l s B. Suggested palaeogeography ( a f t e r Bluck, 1978).
224
On t h e s o u t h e r n f l a n k o f t h e b a s i n t h e conglomerates a r e n e i t h e r a s t h i c k n o r a s c o a r s e a s t h e i r n o r t h e r n c o u n t e r p a r t s b u t t h e y do o c c u r i n t e r b e d d e d w i t h v o l c a n i c rocks (Mykura, 1960b).
C l a s t s i n c l u d e O r d o v i c i a n and S i l u r i a n c l a s t i c s i d e n t i c a l
w i t h t h o s e of t h e S o u t h e r n Uplands a r e a t o t h e s o u t h ( M i t c h e l l and Mykura, 1962). The evidence i n d i c a t e s t h a t t h e conglomerates i n b o t h t h e n o r t h e r n and s o u t h e r n a r e a s a r e marginal a l l u v i a l f a n s d e r i v e d from t h e n o r t h and s o u t h r e s p e c t i v e l y (Fig.4.34).
The t h i c k n e s s o f t h e conglomerates i n d i c a t e t h a t downwarping went on
contemporaneously w h i l s t changes i n c l a s t composition s u g g e s t t h a t u p l i f t might have been i m p o r t a n t i n s o u r c e a r e a s . The Upper Old Red Sandstone was d e p o s i t e d i n a more e x t e n s i v e , b u t p r o b a b l y less deep Midland V a l l e y b a s i n .
Conglomerate u n i t s a r e fewer and s a n d s t o n e s and pedogenic
c a r b o n a t e s (Burgess, 1960; W a t e r s t o n , 1965) a r e more abundant.
Even so, b o u l d e r
s i z e d conglomerates o c c u r i n t h e v i c i n i t y o f t h e Highland Boundary F a u l t ( F r i e n d e t a l . , 1963).
D e t a i l e d s t u d y of t h e conglomerates by Bluck (1967, 1969) i n t h e
w e s t e r n p a r t of t h e b a s i n shows t h a t t h e y o c c u r i n sequences which b e g i n w i t h a l l u v i a l f a n d e p o s i t s and end w i t h s a n d s t o n e s and conglomerates o f f l o o d p l a i n type. Bluck (1969) recognized t h r e e such s e q u e n c e s , e a c h b e i n g a r e a l l y i s o l a t e d and i n i t i a t e d by t h e r i s i n g of a n a d j a c e n t fault-bounded b l o c k ; t h e s e e a c h have a d i s t i n c t i v e composition and a r e r e f e r r e d t o a s t h e P o r t e n c r o s s , S k e l m o r l i e , and I n v e r k i p d i s p e r s a l shadows ( F i g . 4 . 3 5 ) .
Within t h e s e a r e a s Bluck (1967) was a b l e
Fig.4.35. D i s p e r s a l shadows recognized on t h e e a s t e r n margin of t h e F i r t h o f Clyde ( a f t e r Bluck, 1969).
225 t o d i s t i n g u i s h f o u r t y p e s o f conglomerate on t h e b a s i s of s t r u c t u r e and t e x t u r e : a l l u v i a l f a n mudflows, a l l u v i a l f a n s t r e a m f l o w , b r a i d e d s t r e a m and f l o o d p l a i n ( r i v e r channel) deposits (Fig.4.36).
V e r t i c a l p r o f i l e s t h r o u g h t h e conglomerates
g e n e r a l l y show a n upward r e d u c t i o n i n g r a i n s i z e t o g e t h e r w i t h a change from f a n mudflow t o f a n s t r e a m t o b r a i d e d s t r e a m and f l o o d p l a i n d.eposition ( F i g . 4 . 3 7 ) .
-s I10 Y, -1s
5 10 15. 20 maximum particlo r m (em)
1
-
1
1
1Q 1 5 maximum particlo sir?(cm)
I
S t r u c t u r a l and t e x t u r a l p r o p e r t i e s of Upper Old Red Sandstone conglomFig.4.36. e r a t e s A . D e b r i s f l o w . B. Stream f l o w . C . B r a i d e d s t r e a m . D . F l o o d p l a i n (based on Bluck, 1967).
Alluvial fan
Braided stream
Alluwal fan
Braided stream
Maximum particle size
i
Stream channel
M.P.S. (cm)
5 10 15 20 25
D m Marl
C
Streamflood
W Mudflow
E m
A
C
M.P.S. (cm)
5 10 15 2 0 25
227 These Upper Old Red Sandstone conglomerates f o m e d a t t h e f o o t of fault-bounded mountains.
An i n i t i a l h i g h r a t e of e r o s i o n l e d t o t h e f o r m a t i o n of a l l u v i a l f a n s
a s s h e e t f l o o d d e p o s i t s accumulated. s o u r c e r e g i o n s were c u t back
A s m a r g i n a l f a u l t a c t i v i t y grew l e s s t h e
and a l l u v i a l f a n s e d i m e n t a t i o n was r e p l a c e d by b r a i d e d
s t r e a m and f l o o d p l a i n s e d i m e n t a t i o n forming fining-upwards sequences (Read and Johnson, 1967; Chisholm and Dean, 1974).
S i m i l a r fining-upwards sequences have been
d e s c r i b e d by N i l s e n ( 1 9 6 9 ) , Deegan (19731, S t e e l ( 1 9 7 4 ) , and S t e e l and Wilson (1975). The fundamental r e l a t i o n s h i p between t e c t o n i c s and s e d i m e n t a t i o n i n i n t e r n a l b a s i n s i s w e l l s e e n i n t h e Old Red b a s i n s o f w e s t e r n Norway ( B r y h n i , 1964a,b; S t e e l , 1976; S t e e l e t a l . , 1977).
The Hornelen Basin (Fig.4.38)
c o n t a i n s a t h i c k n e s s of 25km o f sediment.
is r e l a t i v e l y s m a l l b u t
Marginal f a n g l o m e r a t e s occupy t h e n o r t h e r n
and s o u t h e r n a r e a s a d j a c e n t t o t h e bounding f a u l t s b u t most of t h e b a s i n i s f i l l e d by s a n d s t o n e s which accumulated from westward f l o w i n g r i v e r s on a broad a l l u v i a l plain.
Marginal i n t e r f i n g e r i n g of a l l u v i a l p l a i n and f a n g l o m e r a t e sediments s u g g e s t
t h a t a t c e r t a i n times t h e e n t i r e b a s i n was f l o o d e d by t h e a l l u v i a l p l a i n system. Both t h e m a r g i n a l f a n g l o m e r a t e s and t h e a l l u v i a l p l a i n sediments show a v e r y marked c y c l i c i t y (Kolderup, 1927; S t e e l e t a l . , 1 9 7 7 ) . The a l l u v i a l f a n o r i g i n o f t h e m a r g i n a l d e p o s i t s i s i n d i c a t e d by t h e wedge-shaped geometry, down-wedge d e c r e a s e i n maximum c l a s t s i z e , t h e dominance of l o c a l l y d e r i v e d c l a s t s , and t h e f r e q u e n t e v i d e n c e of s u b a e r i a l exposure (mudcracks and r a i n p r i n t s ) . The remarkable f e a t u r e of t h e s e f a n d e p o s i t s i s t h e u b i q u i t y of sequences which can b e i d e n t i f i e d a t a v a r i e t y of l e v e l s .
coarsening-upwards
A t t h e most g e n e r a l l e v e l
a r e sequences c o n s i s t i n g of s t a c k e d a l l u v i a l f a n s predominantly of t h e same t y p e
i . e . predominantly d e b r i s f l o w , s t r e a m flow o r mixed t y p e ( s e e F i g . 4 . 3 9 ) .
Individual
f a n b o d i e s a l o n g t h e s o u t h e r n margin o f Hornelen Basin a r e 50-80m t h i c k (proximal r e a c h ) w i t h a r a d i u s of a b o u t 5km.
Along t h e n o r t h e r n margin t h e f a n s a r e t h i c k e r
(100-2OOm) b u t a r e of s m a l l e r r a d i u s ( a b o u t lkm). a r e i m p o r t a n t i n b o t h t h e s e t y p e s o f f a n body.
Coarsening-upwards sequences
Also i n d i v i d u a l f a n sequences
commonly c o n s i s t of a number of t a b u l a r s u b u n i t s 10-25m t h i c k , each of which shows a c o a r s e n i n g and t h i c k e n i n g upwards t r e n d .
The f o l l o w i n g f e a t u r e s a r e c h a r a c t e r i s t i c :
1) A g e n e r a l coarsening-upwards i n d i c a t e d by a d e c r e a s i n g s a n d s t o n e p e r c e n t a g e 2 ) Coarsening-upwards of conglomerates a s i n d i c a t e d by mean maximum c l a s t s i z e
3 ) A g e n e r a l thickening-upward of conglomerate beds a s i m p l i e d from a p o s t i i v e bed t h i c k n e s s
- maximum p a r t i c l e
s i z e relationship
4 ) A s h a r p , a p p a r e n t l y p l a n a r upper boundary t o t h e f a n body o v e r l a i n by t h e f i n e s t a l l u v i a l p l a i n sediments 5 ) Lower boundary i s g r a d a t i o n a l b e c a u s e t h e r e i s g r a d u a l coarsening-upward from a l l u v i a l p l a i n s t r u c t u r e t o the f i n e s t ( d i s t a l ) fanglomerates.
T h i s has r e s u l t e d
from a l a t e r a l i n t e r f i n g e r i n g o f f a n and a l l u v i a l p l a i n s e d i m e n t s a s t h e f a n radius got l a r g e r through t i m e .
228
._
Grain Sism
F i g . 4 . 3 8 . S i m p l i f i e d map of the Hornelen Basin ( a f t e r K i l d a l , 1970). The s u c c e s s i o n i s 25km t h i c k and both the a x i a l and marginal d e p o s i t s a r e dominated b y coarsening-upwards sequences ( a f t e r S t e e l e t a l . , 1977).
229
0.5 km
I 7
7
i
20 40cm
Fig.4.39. Internal d e t a i l s of a composite debris flow dominated a l l u v i a l fan wedge which is interfingering with floodbasin sediments along the northern margin of the Hornelen basin ( a f t e r S t e e l e t a l . , 1977).
230 These r e l a t i o n s h i p s a r e b e s t a c c o u n t e d f o r by r e l a t i v e s u b s i d e n c e of t h e b a s i n f l o o r c a u s i n g i n c r e a s e d r e l i e f and d r a i n a g e a r e a i n t h e new upland r e g i o n ( B u l l , 1964, 1968; Hooke, 1968).
S t e e l e t a l . (1977, p.1130) s u g g e s t t h a t t h e main
t e c t o n i c e v e n t s c o n t r o l l i n g t h i s s u b s i d e n c e a r e marked by t h e s h a r p p l a n a r t o p of any f a n body.
The coarsening-upwards sequences t h u s r e p r e s e n t t h e i n c r e a s e d
t r a n s p o r t of d e b r i s and t h e g r a d u a l o u t - b u i l d i n g of t h e n e x t f a n i n a n e f f o r t t o e s t a b l i s h a n e q u i l i b r i u m p r o f i l e a c r o s s t h e b a s i n margin.
These a u t h o r s c o r r e l a t e d
t h e 10-25m s u b c y c l e s w i t h d i s c r e t e e p i s o d e s o f f a u l t movement s u g g e s t i n g t h a t t h i s r e f l e c t e d t h e maximurn a m p l i t u d e o f i n d i v i d u a l p h a s e s o f s u b s i d e n c e .
The
lOOm u n i t s
o v e r l a p e a c h o t h e r i n a n e a s t w a r d d i r e c t i o n i n t h e Hornelen Basin ( B r y h n i , 1964a). S t e e l e t a l . (1977) c o n s i d e r e d t h a t t h e amount of o v e r l a p of s u c c e s s i v e cyclotherms i s c o m o n l y less t h a n 0.25km and t h e r e f o r e s u g g e s t e d t h a t t h i s c o u l d be a c c o u n t e d f o r by a p e r i o d i c , r a p i d e a s t w a r d s h i f t i n t h e main l o c u s o f s u b s i d e n c e ; t h i s would a l s o a c c o u n t f o r t h e p l a n a r t o p s and asymmetry o f t h e cyclothems.
T h i s model a l s o
c o n v e n i e n t l y e x p l a i n s how s u c h a v a s t s t r a t i g r a p h i c t h i c k n e s s (25km) c o u l d accumulate w i t h o u t t h e r e b e i n g a d i f f e r e n c e i n t h e d e g r e e of metamorphism between t h e b a s e and t h e t o p ( B r y h n i , 1964b).
The e a s t w a r d o v e r l a p of cyclothems s u g g e s t t h a t t h e base-
ment may n o t have been d e e p e r t h a n 6km below t h e s u r f a c e of t h e b a s i n .
Since t h i s
i s much less t h a n t h e l a t e r a l e x p a n s i o n o f t h e b a s i n i t seems l i k e l y t h a t sedimenta t i o n was c o n t r o l l e d by a wrench f a u l t s y s t e m ( C r o w e l l , 1974a).
S t e e l e t a l . (1977)
proposed a model i n which t h e b a s i n formed on t h e s o u t h e r n f l a n k of a r i g h t - s l i p f a u l t system (Fig.4.40). The r e d d e n i n g of p e b b l y a l l u v i u m The Old Red Sandstone p e b b l y a l l u v i u m i n t h e Midland V a l l e y of S c o t l a n d shows many
of t h e f e a t u r e s which t y p i c a l l y r e s u l t from t h e i n t r a s t r a t a l a l t e r a t i o n of f e r r o magnesian m i n e r a l s .
Many o f t h e s a n d s t o n e s and c o n g l o m e r a t i c s a n d s t o n e s c o n s i s t
o f framework g r a i n s and c l a y m a t r i x w i t h o u t t h e i n t e r m e d i a t e s i l t s i z e s .
The c l a y
m a t r i x may b e i n t e r s t i t i a l o r c o a t i n g t h e framework g r a i n s and c l o s e l y resembles t h e m e c h a n i c a l l y i n f i l t r a t e d c l a y d e s c r i b e d by Walker (1976).
The p o s t - d e p o s i t i o n a l
o x i d a t i o n of i n f i l t r a t e d c l a y c o u l d have been a s i g n i f i c a n t pigmenting p r o c e s s . The heavy m i n e r a l s u i t e s o f r e d s a n d s t o n e s i n t h e Midland V a l l e y b a s i n i n c l u d e h a e m a t i t e , i l m e n i t e , g a r n e t , a p a t i t e , e p i d o t e , r u t i l e , t o u r m a l i n e , z i r c o n and s c a r c e hornblende and pyroxene.
The s c a r c i t y of h o r n b l e n d e (maximum 3.3% of heavy
m i n e r a l s ) and pyroxene (maximum 2.6% b u t c o m p l e t e l y a b s e n t o v e r most o f t h e a r e a ) must b e a c c o u n t e d f o r b e c a u s e t h e r e i s a n abundant s o u r c e a r e a s u p p l y i n Dalradian metasediments and b a s i c v o l c a n i c s ( B r a i t h w a i t e and Jawad A l i , 1978).
Many of t h e
hornblende g r a i n s show cockscomb a l t e r a t i o n f e a t u r e s l i k e t h o s e s e e n i n Cenozoic d e s e r t a l l u v i u m which must b e due t o i n t r a s t r a t a l p r o c e s s e s .
It can be expected
t h a t l a r g e q u a n t i t i e s of a u t h i g e n i c pigmentary h a e m a t i t e and i n t e r s t i t i a l c l a y
231
...w'-.. Fig.4.40. A. S t r u c t u r a l e l e m e n t s i n Hornelen Basin. B. P a l a e o c u r r e n t s y s t e m ( s o l i d arrows a r e m a r g i n a l f a n g l o m e r a t i c d i s p e r s a l ) . C. A s p e c u l a t i v e model o f b a s i n development a l o n g t h e s o u t h e r n f l a n k o f a r i g h t - s l i p wrench f a u l t ( a f t e r S t e e l e t a l . , 1977). m a t r i x would b e produced by t h i s p r o c e s s .
The o t h e r heavy m i n e r a l groups a r e
c o n s i s t e n t w i t h t h e s e d i m e n t o l o g i c a l e v i d e n c e o f a provenance i n t h e metamorphosed D a l r a d i a n t o t h e n o r t h (Fig.4.41).
However, t h e a b s e n c e of k y a n i t e and s i l l i m a n i t e
s u g g e s t s t h a t t h e more d e e p l y r o o t e d metamorphic zones f u r t h e r n o r t h were n o t unroofed a t t h i s t i m e . A number of o t h e r f e a t u r e s f u r t h e r s u g g e s t s t h a t t h e s e r e d beds a r e of d i a g e n e t i c origin.
These i n c l u d e t h e a l t e r a t i o n and c l a y replacement o f f e l d s p a r s and t h e
p r e s e n c e of d i s s o l u t i o n p i t s and v o i d s i n some m e t a s t a b l e heavy m i n e r a l s such a s garnet.
Haematite i n t h e s e r e d beds o c c u r s a s s m a l l e u h e d r a l c r y s t a l s and w i t h i n
i n t e r s t i t i a l matrix.
I t c a n also b e s e e n r e p l a c i n g b i o t i t e and c h l o r i t e a l o n g
c l e a v a g e p l a n e s and complete pseudomorphs o f h a e m a t i t e a f t e r b i o t i t e o c c a s i o n a l l y occur.
The complete a b s e n c e o f m a g n e t i t e s u g g e s t s t h a t i t has s u f f e r e d complete
232 conversion to haematite by martitization and polished sections reveal abundant martitization textures consistent with this view.
I
Arbuthnott Group
I
T
1
Garvock Grouo A
AMPHIBOLE
P
APATITE
E G H
EPIDOTE GARNET HAEMATITE
I
R T
2
ILMENllE RUTILE TOURMALINE ZIRCON
Fig.4.41. Centres of distribution of heavy mineral groups in the Arbuthknott, Garvock, and Strathmore Groups of the Old Red Sandstone in the Midland Valley of Scotland (after Braithwaite and Jawad Ali, 1978).
233 Some o f t h e s e a l t e r a t i o n s a r e i l l u s t r a t e d i n Fig.4.42.
They r e p r e s e n t a more
advanced s t a g e o f e x a c t l y t h e same p r o c e s s e s a s t h o s e d e s c r i b e d i n Cenozoic d e s e r t a l l u v i u m by Walker (1967a; 1976) and Walker e t a l . (1978).
The same mechanism of
reddening a p p e a r s t o be a p p l i c a b l e t o a l l t h e pebbly a l l u v i u m and f a n d e p o s i t s of t h e Old Red Sandstone i n c l u d i n g che Orcadian b a s i n ( T a r l i n g e t a l . , and A r c h e r , 1977) and p r o b a b l y t h e Norwegian b a s i n s t o o .
1976; Turner
Variations i n the r a t e
of reddening and t h e e x t e n t of t h e d i a g e n e t i c p r o c e s s e s i n v o l v e d a r e t o b e expected These w i l l r e s u l t from v a r i a t i o n s i n t e c t o n i c a c t i v i t y , s o u r c e
i n different areas.
a r e a composition and t h e p a t t e r n and composition o f t h e groundwater flow.
Significant
d i f f e r e n c e s between t h e s e a n c i e n t r e d beds and Cenozoic a l l u v i u m i n c l u d e t h e more advanced o r complete a l t e r a t i o n s e e n i n t h e former, and a l s o i t s d a r k e r c o l o u r .
The
l a t t e r i s t y p i c a l of a n c i e n t r e d beds and a p p a r e n t l y r e s u l t s from long-continued growth o f h a e m a t i t e c r y s t a l s which a r e g e n e r a l l y c o a r s e r i n a n c i e n t r e d beds. External facies
-
reddened sandy and muddy a l l u v i u m
The e x t e r n a l f a c i e s o f t h e Old Red Sandstone was d e p o s i t e d on c o a s t a l a l l u v i a l p l a i n s and g e n e r a l l y l i e s conformably on marine c l a s t i c s o r c a r b o n a t e s .
I n the
B r i t i s h a r e a t h e most i m p o r t a n t e x t e r n a l b a s i n i s t h e Anglo-Welsh b a s i n which s t r e t c h e d a c r o s s s o u t h e r n B r i t a i n and a l s o extended i n t o s o u t h e r n I r e l a n d (Fig.4.43). The t r a n s i t i o n from marine t o a l l u v i a l s e d i m e n t a t i o n i n t h i s b a s i n has been d e s c r i b e d
by Allen (1974a).
A l l u v i a l s e d i m e n t a t i o n was i n i t i a t e d i n r e s p o n s e t o a widespread
r e g r e s e i o n which r e s u l t e d from t h e c l o s u r e of t h e p r o t o - A t l a n t i c ocean d u r i n g t h e
Late S i l u r i a n and Lower Devonian. The a l l u v i a l d e p o s i t s of t h e Anglo-Welsh b a s i n a r e b r o a d l y s i m i l a r t o t h o s e i n
a number of other Old Red Sandstone b a s i n s i n c l u d i n g t h e Appalachians ( A l l e n and F r i e n d , 19681, S p i t z b e r g e n ( F r i e n d , 1965; Moody-Stuart, of Norway (Turner, 1974a,b).
1966) and t h e Oslo Graben
These d e p o s i t s f r e q u e n t l y show two major f a c i e s
a s s o c i a t i o n s , a 'coarse member' c o n s i s t i n g o f s a n d s t o n e s and i n t r a f o r m a t i o n a l conglomerate and a ' f i n e number' o f s i l t s t o n e s and mudstones ( A l l e n , 1965e).
These
f a c i e s a r e a r r a n g e d i n fining-upwards c y c l e s i n which t h e c o a r s e members r e p r e s e n t channel d e p o s i t s and t h e f i n e members f l o o d p l a i n and r i v e r bank d e p o s i t s . A.
Coarse members
The c o a r s e members of Old Red Sandstone fining-upwards c y c l e s c o n t a i n a number of d i s t i n c t i v e f a c i e s which have been s t u d i e d i n d e t a i l by A l l e n (1964a, 1965c, 1965e, 1970a, 1970b, 1974b).
Examples a r e shown i n Fig.4.44.
The b a s e of t h e c o a r s e members r e s t s on a scoured e r o s i o n s u r f a c e and u s u a l l y c o n s i s t s o f a t h i n conglomerate.
I n t r a f o r m a t i o n a l c l a s t s a r e common (mudstones and
c a r b o n a t e s from t h e r i v e r banks and f l o o d p l a i n ) and t h e r e may a l s o be e x t r a f o r m a t i o n a l pebbles.
The conglomerate may show i m b r i c a t i o n and i s i n t e r p r e t e d a s a channel l a g
234
Fig.4.42. Thin s e c t i o n photomicrographs showing t h e d i a g e n e t i c a l t e r a t i o n of framework s i l i c a t e s i n t h e Old Red Sandstone of t h e Midland V a l l e y of S c o t l a n d . A . Volcanic r o c k fragment e x t e n s i v e l y a l t e r e d t o h a e m a t i t e . B. D e t r i t a l g a r n e t , d i s s o l v e d and p a r t l y r e p l a c e d by c a l c i t e . C . Q u a r t z i t e fragment showing i n t e r c r y s t a l reddening. D. B i o t i t e p a r t i a l l y r e p l a c e d by h a e m a t i t e .
235
7 Intermontane Basins Coastal Plain
RCADIAN BASIN
Shallow Seas Deep Seas Upland Areas Volcanic bntrs
LORNE BAS1 HEVIOT BASIN
Pahtmgeography of t h e Lower Old Red Sandstone o f t h e B r i t i s h a r e a Fig.4.43. showing t h e Anglo-Welsh b a s i n . deposit.
Some c o n g l o m e r a t e s , c o n s i s t i n g e x c l u s i v e l y of i n t r a f o r m a t i o n a l m a t e r i a l
(mud and c a l c r e t e c l a s t s ) and l a c k i n g a q u a r t z o s e s a n d m a t r i x may r e p r e s e n t t h e d e p o s i t s o f ephemeral d r a i n a g e systems which developed from time t o t i m e on s l i g h t l y e l e v a t e d i n t e r f l u v i a l a r e a s ( A l l e n and W i l l i a m s , 1 9 7 9 ) . Above t h e b a s a l conglomerate a r e m o s t l y cross-bedded s a n d s t o n e s i n t r o u g h o r p l a n a r t a b u l a r s e t s , most commonly up t o l m t h i c k .
The former a r e more abundant
and a t t r i b u t e d t o t h e m i g r a t i o n o f s i n u o u s - c r e s t e d dunes.
T a b u l a r s e t s a r e formed
from t h e m i g r a t i o n of t r a n s v e r s e b a r s , sandwaves a n d , l e s s commonly, s c r o l l b a r s and c h u t e b a r s .
R e a c t i v a t i o n s u r f a c e s and mud d r a p e s may b e p r e s e n t i n d i c a t i n g
water s t a g e f l u c t u a t i o n s . Coarse member s a n d s t o n e s may show a n unusual t y p e of low-angled c r o s s - b e d d i n g r e f e r r e d t o by A l l e n (1963) a s e p s i l o n c r o s s - b e d d i n g .
When p r e s e n t t h i s u s u a l l y
o c c u p i e s t h e whole t h i c k n e s s of t h e c o a r s e member and i s t y p i c a l l y h e t e r o g e n e o u s ,
236 t h e i n d i v i d u a l s e t s c o n t a i n i n g c r o s s - l a m i n a t e d u n i t s and mud d r a p e s s u g g e s t i n g a These e p s i l o n u n i t s a r e g e n e r a l l y l e s s
v a r i a b l e h y d r o l o g i c a l regime ( F i g . 4 . 4 5 ) .
t h a n 5m t h i c k ( A l l e n , 1965c; Moody-Stuart, 1966) and d i p between 5 and 15'.
The
d i r e c t i o n of d i p can o f t e n b e d e m o n s t r a t e d t o be a t r i g h t a n g l e s t o t h e l o c a l palaeos l o p e and t h e f a c i e s i s t h e r e f o r e i n t e r p r e t e d a s a l a t e r a l a c c r e t i o n d e p o s i t l i k e t h o s e s e e n i n t i d a l c r e e k s (Van S t r a a t e n , 1 9 5 1 ) , t h e l a t e r a l a c c r e t i o n s u r f a c e presumably r e p r e s e n t i n g t h e p o i n t b a r s u r f a c e .
The r e l a t i v e s c a r c i t y of e p s i l o n
c r o s s - b e d d i n g , however, i n d i c a t e s t h a t n o t a l l of t h e Old Red S a n d s t o n e p o i n t b a r s iced e p s i l o n cross-bedding. C
D
E
F
Small scale cross-stratification
Large scale cross-stratification
Sandstone
Conglomerate
Flat-bedding
s~~
R e p r e s e n t a t i v e and s t a n d a r d c o a r s e member s a n d s t o n e from t h e Old Red Fig.4.44. Sandstone. (A,B) Welsh B o r d e r s , (C) Tugford Clee H i l l s , (D) M i t c h e l d e a n , (E) F o r e s t of Dean, (F) Clee H i l l s , (G) S p i t s b e r g e n . Note t h e v a r i a t i o n i n s c a l e and sequence. Where a r a n g e o f t h i c k n e s s i s g i v e n , t h e sequences a r e somewhat i d e a l i z e d s t a n d a r d s ( a f t e r A l l e n , 1965e).
237
O t h e r f a c i e s which commonly occur w i t h i n c o a r s e members a r e p a r a l l e l laminated s a n d s t o n e s and c r o s s - l a m i n a t e d
sandstones.
The former f r e q u e n t l y show primary
c u r r e n t l i n e a t i o n ( A l l e n , 196413) i n d i c a t i n g upper flow regime c o n d i t i o n s i n channel a r e a s o f h i g h v e l o c i t y o r s h a l l o w depth.
The c r o s s - l a m i n a t e d s a n d s t o n e s a r e
u s u a l l y f i n e r and more micaceous and may show c l i m b i n g r i p p l e c r o s s - l a m i n a t i o n which a l l o w s e s t i m a t i o n of t h e i n s t a n t a n e o u s r a t e o f v e r t i c a l bed a c c r e t i o n ( A l l e n , 1971).
Cross-laminated s a n d s t o n e s a r e i n t e r p r e t e d a s t h e d e p o s i t s of m i g r a t i n g
small s c a l e r i u p l e s .
LITHOLOGIES
&--,A ntnformrtional WLondomerato B M a j o r Bedding W a r m
Major bedding planrr
E p s i l o n cross-bedding i n t h e Old Red Sandstone. Fig.4.45. v e r t i c a l exaggeration ( a f t e r Allen, 1 9 6 5 ~ ) . B.
There is a l a r g e
F i n e members
There i s commonly no c l e a r d i s t i n c t i o n between c o a r s e member and f i n e member i n r h e Old Red Sandstone fining-upwards
of f a c i e s .
c y c l e s and t h e f i n e members may show a complex
They a l s o show e v i d e n c e of p o s t - d e p o s i t i o n a l m o d i f i c a t i o n i n c l u d i n g
b i o t u r b a t i o n and pedogenesis. Old Red Sandstone f i n e members f r e q u e n t l y show s a n d s t o n e s i n t e r b e d d e d w i t h s i l t s t o n e s and mudstones.
These a r e g e n e r a l l y less t h a n l m t h i c k w i t h convex tops
and s h a r p b a s e s .
L a t e r a l l y t h e y a r e i m p e r s i s t e n t ( L e e d e r , 1974) and may show
cross-bedding p a s s i n g upwards i n t o c r o s s - l a m i n a t i o n .
Since these sandstones
i n d i c a t e e p i s o d i c waning flow c o n d i t i o n s and a r e e n c l o s e d by f l o o d p l a i n s i l t s and muds t h e y a r e r e a d i l y i n t e r p r e t e d a s c r e v a s s e - s p l a y d e p o s i t s ( A l l e n , 1964a; Leeder, 1974). Another c h a r a c t e r i s t i c f a c i e s o f f i n e members i s t h e r a p i d a l t e r n a t i o n o f c r o s s l a m i n a t e d f i n e s a n d s o r s i l t s w i t h homogeneous mudstone t h e ' a l t e r n a t i n g b e d s ' f a c i e s of A l l e n , 1 9 6 5 ~ ) . T y p i c a l l y t h e i n d i v i d u a l u n i t s a r e r a t h e r t h i n ( l e s s than 25cm) and t h e s i l t s t o n e s show e v i d e n c e o f p e r i o d i c s u b a e r i a l exposure.
The sand-
s t o n e s a r e s h a r p b a s e d , sometimes e r o s i o n a l and may c a r r y a n g u l a r s i l t s t o n e c l a s t s . These r a p i d a l t e r n a t i o n s i n d i c a t e p e r i o d s o f submergence and d r y i n g o u t c o n s i s t e n t w i t h d e p o s i t i o n a s l e v e e s o r from overbank f l o o d i n g . The most c h a r a c t e r i s t i c and abundant f a c i e s of t h e Old Red Sandstone f i n e members i s r e d , r a t h e r homogeneous mudstones and s i l t s t o n e s .
Homogenization may
r e s u l t from b i o t u r b a t i o n and t h e r e i s f r e q u e n t e v i d e n c e of s u b a e r i a l exposure i n t h e form of mudcracks.
The s i l t s t o n e s and mudstones c l e a r l y r e p r e s e n t t h e v e r t i c a l
a c c r e t i o n d e p o s i t s o f t h e r i v e r f l o o d p l a i n s which were s u b j e c t t o p e r i o d i c f l o o d i n g and d r y i n g o u t . These f l o o d p l a i n d e p o s i t s i n t h e Old Red Sandstone c o n t a i n f r e q u e n t l y e x t e n s i v e c o n c r e t i o n a r y c a r b o n a t e u n i t s which t e n d t o be c o n c e n t r a t e d towards t h e t o p o f t h e f i n e members.
The s i m i l a r i t y of t h e s e c o n c r e t i o n a r y c a r b o n a t e s (which were formerly
known a s c o r n s t o n e s ) t o P l i o c e n e o r Q u a t e r n a r y c a r b o n a t e s o f known pedogenic o r i g i n h a s been r e a l i z e d f o r some time.and more r e c e n t l y d e t a i l e d comparisons have been made by A l l e n (1973, 1974d) and Leeder (1975, 19761, D e t a i l e d d e s c r i p t i o n s o f t h e c a l c r e t e s i n t h e S h r o p s h i r e a r e a have been made by A l l e n (1974a) who a p p l i e d t h e terminology developed f o r s o i l s by Brewer (1964). The c a l c r e t e s g e n e r a l l y o c c u r i n beds up t o 2m t h i c k and c o n s i s t o f c a l c i t e g l a e b u l e s (Brewer, 1964, p . 2 5 9 ) , u s u a l l y less t h a n 5cm i n d i a m e t e r s c a t t e r e d i n a groundmass o r s - m a t r i x (Brewer, 1964, p.146).
The g l a e b u l e s v a r y c o n s i d e r a b l y i n
form and i n t e r n a l l y c o n t i i n numerous c a l c i t e v e i n s o r c r y s t a l l a r i a (Brewer, 1964, p.284) a l o n g w i t h d i f f u s e p a t c h e s and broken v e i n s of m a t r i x .
Many Old Red Sand-
s t o n e c a l c r e t e s a l s o show c r y s t a l t u b e s (Brewer, 1964, p.287) up t o s e v e r a l m i l l i m e t r e s i n d i a m e t e r , o f t e n b r a n c h i n g , and l i k e t h e e l o n g a t e d g l a e b u l e s l y i n g a t a h i g h a n g l e t o t h e bedding.
The c a l c r e t e s a r e most commonly developed w i t h i n
an s - m a t r i x o f mudstone o r s i l t s t o n e , b u t i n some a r e a s (e.g. Anglesey, A l l e n , 1 9 6 5 ~ )t h e y a r e f r e q u e n t l y developed i n a s a n d s t o n e groundmass.
Usually a
c h a r a c t e r i s t i c p r o f i l e i s developed i n which r a t h e r s m a l l , s c a t t e r e d g l a e b u l e s and c r y s t a l t u b e s p r o g r e s s i v e l y i n c r e a s e i n s i z e and d e n s i t y upwards, o f t e n assuming c y l i n d r i c a l t o p r i s m a t i c forms s t e e p l y i n c l i n e d t o bedding.
The t o p of t h e p r o f i l e
i s o f t e n a massive l i m e s t o n e which h a s a s h a r p , uneven t o p and may b e o v e r l a i n by
mudstone, s a n d s t o n e o r i n t r a f o r m a t i o n a l conglomerate.
Where t h e c a l c r e t e p r o f i l e
239
B
Thick r d . coarse 8 B s t m w h I.nticles and persoatmi bad8 of wry fin. r i w bedded smdston Invertebrate burron several horizons No suncracks Abundant cilcium carbonate concretions
7 coarse stnstm mm iwanebrate burrows. rippla-b.dd.d sendston kmcbr. and convdU1e lamitwtiom No evldare ROCI
6
5
4
8
f
4
3 scoured surface in l o w r part Scattered siltstona clasts
2
1
0
Details o f Old Red Sandstone f i n e members i n t h e Anglo-Welsh b a s i n Fig.4.46. A . From Lydney B. From Abergavenny ( a f t e r A l l e n , 1964a).
i s developed i n s a n d s t o n e a s l i g h t l y d i f f e r e n t a p p e a r a n c e r e s u l t s :
on t h e lower
p a r t of t h e p r o f i l e g l a e b u l e s may b e d i f f i c u l t t o d i f f e r e n t i a t e from t h e c a l c i t e cememted h o s t r o c k and h i g h e r i n t h e p r o f i l e t h e g l a e b u l e s may b e r e s t r i c t e d t o l a r g e n o d u l a r masses ( F i g . 4 . 4 7 ) . A number of v a r i a t i o n s from t h i s s t a n d a r d c a l c r e t e p r o f i l e do e x i s t and one of
t h e s e i s t h e development o f l a r g e - s c a l e p s e u d o - a n t i c l i n e s .
I n t h e s e , curved
c r y s t a l l a r i a w i t h s h a l l o w d i p d e f i n e t h e ' l i m b s ' of t h e a n t i c l i n e and t h e g l a e b u l e s which a r e n e a r l y v e r t i c a l may b e e i t h e r i n c l i n e d s l i g h t l y inwards towards t h e a x i s
240
3
z 2 v)
2
r' I
0
20
Percent acid-solubk
40
60
80
I1
Percent acid-soluble
LEGEND Mudstone
0
Sandstone
Introformotional conglornerote
Gloebules
Parallel laminations
Irregular bonding
a
0
Limestone
Crors- bedding
Fig.4.47. V e r t i c a l c a l c r e t e p r o f i l e s i n t h e Abdon Limestone Formation. A. Nordybank (581848) B. Abdon L i b e r t y (587668) showing g r o s s l i t h o l o g y and t h e v a r i a t i o n i n w t % of a c i d - s o l u b l e c o n s t i t u e n t s (predominantly c a l c i t e ) ( a f t e r A l l e n , 1974a). of t h e p s e u d o a n t i c l i n e o r t h e y f a n outwards and upwards away from t h e a n t i c l i n a l
a x i s (Fig.4.48)
( A l l e n , 1974a, p.113-115).
Pseudoanticlines a r e , l i k e the standard
c a l c r e t e p r o f i l e , e i t h e r s h a r p l y o v e r l a i n by p l a n e l a m i n a t e d mudstone o r e r o s i v e l y o v e r l a i n by i n t r a f o r m a t i o n a l conglomerate and s a n d s t o n e s of t h e s u c c e e d i n g c o a r s e member.
These p s e u d o a n t i c l i n e s p r o b a b l y r e s u l t from t h e d i s p l a c i v e c r y s t a l l i z a t i o n
of c a l c i t e .
The c a l c r e t e s of t h e Old Red Sandstone show many p e t r o g r a p h i c f e a t u r e s v e r y s i m i l a r t o t h o s e s e e n i n Recent c a l c r e t e s .
These i n c l u d e u n d i f f e r e n t i a t e d and
a g g l o m e r a t i c c r y s t i c p l a s m i c f a b r i c s s e e n i n Recent c a l c r e t e s by Blank and Tynes (1965), G i l e e t a l . (1965) and Williams and Polach (1971) and a l s o mural f a b r i c (Brewer, 1964).
There i s abundant e v i d e n c e o f d i s p l a c i v e c r y s t a l l i z a t i o n of c a l c i t e
(Reeves, 1976; W a t t s , 1977, 1978) and e x f o l i a t e d s k e l e t o n g r a i n s o c c u r i n b o t h Recent (e.g.
Swineford e t a l . , 1958) and Old Red Sandstone c a l c r e t e s .
Cross c u t t i n g
s h e e t - l i k e c r y s t a l l a r i a a r e common i n t h e upper p a r t s of modern c a l c r e t e s and a l s o i n some o f t h e Old Red Sandstone p r o f i l e s ( G i l e e t a l . , Reeves, 1970).
Pseudo-oolitic
1966; N a g t e g a a l , 1969;
and p s e u d o - p i s o l i t i c t e x t u r e s conunonly observed i n
Recent c a l c r e t e s (Swineford e t a l . , 1958; S i e s s e r , 1973; Hay and Reeder, 1978) are a l s o s e e n i n t h e Old Red Sandstone.
241
Mudstone
%Tubes
I
' ~ i a t y ' crystallaria
I
Mudstone
IB
Mudstone
Fig.4.48.
Schematic v e r t i c a l s e c t i o n s i l l u s t r a t i n g p s e u d o - a n t i c l i n a l s t r u c t u r e s i n pedogenic c a r b o n a t e u n i t s i n t h e Old Red Sandstone A. Lydney t y p e B. Freshwater E a s t type ( a f t e r A l l e n , 1974a).
The Old Red Sandstone c a r b o n a t e u n i t s compare v e r y c l o s e l y w i t h t h e c a l c a r e o u s d e p o s i t s o f P l i o c e n e and Q u a t e r n a r y age which a r e v a r i o u s l y r e f e r r e d t o a s c a l c r e t e o r c a l i c h e ( A r i s t a r a i n , 1971a).
The mudstones w i t h s c a t t e r e d g l a e b u l e s a r e v e r y l i k e
t h e g l a e b u l a r s o i l s d e s c r i b e d by Bernard and Le Blanc ( 1 9 6 5 ) , Blokhuis e t a l . (1969) and Singh and Singh (1972).
T h i s r e p r e s e n t s S t a g e I and S t a g e I1 i n t h e morpho-
g e n e t i c scheme o f calcrete development proposed by G i l e e t a l . (1966, p.352).
The
more massive, sometimes laminated c a l c r e t e s a r e s i m i l a r t o t h e pedogenic l i m e s t o n e s d e s c r i b e d by Swineford e t a l . ( 1 9 5 8 ) , G i l e (1961, 1 9 7 0 ) , G i l e and Hawley (1966), Reeves ( 1 9 7 0 ) , A r i s t a r a i n (1971a,b) and Williams (1973) and p r o b a b l y r e p r e s e n t S t a g e 111 and S t a g e I V development '(Gile e t a l . , 1966) ( T a b l e 4 . 3 ) . The c l o s e s i m i l a r i t y o f t h e Old Red Sandstone and r e c e n t c a l c r e t e e n a b l e s some p a r a l l e l s t o b e drawn i n t h e i r c o n d i t i o n s o f f o r m a t i o n s
A t t h e p r e s e n t time t h e s e
c o n d i t i o n s a r e a n a r i d t o s e m i - a r i d climate, markedly s e a s o n a l r a i n f a l l , and a r e l a t i v e l y high mean a n n u a l t e m p e r a t u r e (Goudie, 1973, p.96-111).
These P l i o c e n e
and Quaternary c a l c r e t e s a r e most commonly formed i n t h e s h a l l o w s u b - s u r f a c e o f s t a b l e geomorphic l e v e l s (Ruhe, 1969; G i l e , 1970).
They a r e o f pedogenic o r i g i n
i n which downward p e r c o l a t i n g r a i n w a t e r d i s s o l v e s calcium c a r b o n a t e which is
242
p r e c i p i t a t e d lower i n t h e s o i l p r o f i l e a s b o t h c a l c i t e and high-magnesian c a l c i t e ( ' p e r descensum'
model o f Goudie, 1973).
J u d g i n g from t h e p r o t r a c t e d n a t u r e of
r e c e n t c a l c r e t e p e d o g e n e s i s s u b s t a n t i a l l y t h i c k c a l c r e t e p r o f i l e s i n t h e Old Red Sandstone c o u l d have t a k e n o v e r 104 y e a r s t o form. TABLE 4.3.
S t a g e s of t h e morphogenetic sequences i n t h e development o f c a l c r e t e p r o f i l e s and t h e youngest l a n d s u r f a c e s on which t h e s t a g e s o c c u r ( a f t e r G i l e e t a l . , 1966). Stage
Gravelly s o i l s
D i a g n o s t i c Carbonate Morphology Non g r a v e l l y s o i l s
Youngest Geomorphic s u r f a c e on which s t a g e o f h o r i z o n occurs
Thin d i s c o n t i n u o u s pebble coatings
Few f i l a m e n t s o r f a i n t coatings
F i l l m o r e 26005000 y e a r s
I1
Continuous p e b b l e c o a t i n g s some i n t e r p e b b l e fillings
Few t o common n o d u l e s
Leasburg 5000 years l a t e s t Pleistocene
I11
Many i n t e r p e b b l e f i l l i n g s
Many n o d u l e s and internodular f i l l i n g s
Picacho Late Pleistocene
IV
Laminar h o r i z o n o v e r l y i n g plugged h o r i z o n
(increasing carbonate impregnation)
Picacho Late Pleistocene
I
( t h i c k e n e d l a m i n a r and plugged h o r i z o n s )
J o r n a d a Mid- t o Late Pleistocene Laminar h o r i z o n o v e r l y i n g plugged horizon
La Mesa Mid Pleistocene
The fining-upwards c y c l e s i n t h e Old Red Sandstone p r o b a b l y r e c o r d d e p o s i t i o n i n a v a r i e t y of a l l u v i a l c h a n n e l t y p e s and s e t t i n g s .
Where t h e c o a r s e members a r e
i s o l a t e d i n t h e f i n e member a l l u v i u m t h e y always r e s t on a b a s a l e r o s i o n s u r f a c e . This may be f l a t o r g e n t l y concave; sometimes s t e e p , n e a r v e r t i c a l c h a n n e l margins occur.
Concave-based l e n t i c u l a r c o a r s e members a r e g e n e r a l l y r e g a r d e d t o have
formed i n l o w - s i n u o s i t y c h a n n e l s by v e r t i c a l a g g r a d a t i o n .
F l a t - b a s e d c o a r s e members,
on t h e o t h e r hand, a r e more l i k e l y t o have formed i n meandering c h a n n e l s where l a t e r a l migration ensured erosion a t a constant l e v e l .
Good examples of t h e s e
c h a n n e l t y p e s a r e found i n t h e Old Red Sandstone of S p i t s b e r g e n (Moody-Stuart, 1966) (Fig.4.49). The meandering c h a n n e l i n t e r p r e t a t i o n has been used t o e x p l a i n many Old Red Sandstone sequences which have t h i c k f i n e members w i t h pedogenic c a r b o n a t e s .
Good
examples i n c l u d e t h e Old Red Sandstone o f Anglesey ( A l l e n , 1 9 6 5 c ) , t h e Red Marls o f Pembrokeshire ( A l l e n , 1974b) and t h e Wood Bay Formation o f S p i t s b e r g e n ( F r i e n d and Moody-Stuart, 1972).
These sequences a r e , i n a g e n e r a l way, comparable w i t h
243
DEPOSITS Fine channel fill
Lww Channel Floor
Flood Basin Epsilon cross-beddin! Channel directions I '
Fig.4.49. Models i l l u s t r a t i n g t h e r e l a t i o n s h i p between c h a n n e l - t y p e and c o a r s e member s t r u c t u r e i n t h e Old Red Sandstone of S p i t s b e r g e n ( a f t e r Moody-Stuart, 1966). t h e d e p o s i t s of modern meandering c h a n n e l s which wander through t h e i r own a l l u v i u m . R i v e r s o f t h i s t y p e c u t l a t e r a l l y e x t e n s i v e , f l a t e r o s i o n s u r f a c e s which may b e l i n e d w i t h i n t r a f o r m a t i o n a l conglomerate eroded from t h e f l o o d p l a i n ( F i s k , 1944). Sand d e p o s i t i o n o c c u r s p r i n c i p a l l y by l a t e r a l a c c r e t i o n on p o i n t b a r s (Sundborg, 1956, Harms e t a l . ,
1963) and t h e fining-upwards i n t h e c o a r s e member may b e d i r e c t l y
compared w i t h t h e d e c r e a s e i n g r a i n s i z e on t h e s u r f a c e of modern p o i n t b a r s which r e s u l t s from t h e r e d u c t i o n i n bed s h e a r s t r e s s away from t h e c h a n n e l .
The f i n e
members, w i t h t h e i r e v i d e n c e o f s u b a e r i a l e x p o s u r e , b e a r much s i m i l a r i t y t o t h e t h i c k f l o o d p l a i n d e p o s i t s o f a number of r i v e r s which show e v i d e n c e of c a r b o n a t e pedogen-
esis (Bernard and L e Blanc, 1965).
The t h i n s a n d s t o n e upits w i t h i n t h e f i n e member
s i l t s t o n e s i n d i c a t e i n u n d a t i o n s o f t h e f l o o d p l a i n by f l o o d w a t e r s and a r e p r o b a b l y levee o r crevasse-splay deposits. T h i s i n t e r p r e t a t i o n i s n o t , however, w i t h o u t i t s problems.
I n laterally accreted
p o i n t b a r s e p s i l o n c r o s s - b e d d i n g might b e e x p e c t e d t o b e more abundant t h a n i t apparently i s .
A l s o , modern meandering r i v e r s a r e l a t e r a l l y l i m i t e d by e r o s i o n
s u r f a c e s on t h e c h a n n e l banks o r t h e c l a y p l u g s of abandoned c h a n n e l l o o p s .
Steep
channel margins a r e , t h e r e f o r e , l i k e l y t o b e common i n meandering s t r e a m sediments b u t a r e v e r y r a r e i n t h e Old Red Sandstone (one i s d e s c r i b e d by A l l e n (1964a) from
Tugford) and i n a n c i e n t meandering s t r e a m s e d i m e n t s as a whole.
The r e a s o n s f o r
t h e s e d i s c r e p a n c i e s a r e n o t c l e a r b u t i t i s p o s s i b l e t h a t n o t a l l fining-upwards c y c l e s of t h i s type a r e meandering s t r e a m d e p o s i t s . t h i n c o a r s e members ((2m)
Some c y c l e s show r e l a t i v e l y
which a r e l a t e r a l l y e x t e n s i v e , f l a t - b a s e d and w i t h an
abundance of p a r a l l e l l a m i n a t e d s a n d s .
These c o u l d b e t h e d e p o s i t s o f a r e a l l y
e x t e n s i v e , s i n g l e e v e n t f l o o d s which might o c c u r , f o r example, i n t h e d i s t a l r e g i o n s of large ' a l l u v i a l f a n s ' . I n some o t h e r Old Red Sandstone sequences t h e c o a r s e members a r e dominant and t h e r e i s l i t t l e p r e s e r v a t i o n of t h e f i n e member i n t e r - c h a n n e l d e p o s i t s .
These
d e p o s i t s a r e g e n e r a l l y i n t e r p r e t e d a s t h o s e of l o w - s i n u o s i t y sandy r i v e r s which may have been b r a i d e d .
The p a u c i t y o f muddy f l o o d p l a i n d e p o s i t s may b e p a r t l y due
t o t h e f a c t t h a t t h e y were o r i g i n a l l y p o o r l y developed b e c a u s e o f a low suspended l o a d (Schurmn and Kahn, 1972) o r b e c a u s e of t h e tendency o f t h e s e r i v e r s t o comb t h e i r floodplain eroding the floodplain deposits.
The i n t e r p r e t a t i o n of a n c i e n t low-
s i n u o s i t y s t r e a m d e p o s i t s i s d i f f i c u l t b e c a u s e t h e r e a r e few d e t a i l e d s t u d i e s of modern d e p o s i t s .
Cant and Walker (1976) have made a f a c i e s model of t h e B a t t e r y
P o i n t Sandstone of Quebec u s i n g a combination o f f a c i e s sequence and p a l a e o c u r r e n t information (Fig.4.50).
T h i s b e g i n s w i t h a s c o u r e d b a s e and i n t r a f o r m a t i o n a l
conglomerate which p a s s e s upwards i n t o s a n d s t o n e s w i t h t r o u g h cross-bedding.
Within
t h e sequence a r e p l a n a r t a b u l a r cross-bedded u n i t s whose p a l a e o f l o w d i r e c t i o n s d i v e r g e from t h o s e of t h e t r o u g h c r o s s - b e d s by up t o 90'. c o n s i s t s o f s m a l l - s c a l e t a b u l a r s e t s and c r o s s - l a m i n a t i o n .
The t o p of t h e sequence By comparison w i t h t h e
d e p o s i t s of South Saskatchewan R i v e r (Cant and Walker, 1978) t h i s sequence i s i n t e r p r e t e d i n t h e f o l l o w i n g manner ( s e e Fig.4.14).
The t r o u g h c r o s s - b e d s a r e due
t o s i n u o u s - c r e s t e d h i g r a t i n g dunes i n t h e c h a n n e l and t h e s e d e f i n e t h e main palaeoflow d i r e c t i o n .
The p l a n a r t a b u l a r s e t s w i t h d i v e r g e n t flow d i r e c t i o n s a r e t h e
r e s u l t of c r o s s - c h a n n e l b a r s o b l i q u e t o t h e main c h a n n e l a x i s .
The upper p a r t of
t h e sequence may r e p r e s e n t t h e b a r t o p w i t h s a n d f l a t a c c r e t i o n and c h a n n e l aggradation.
A t t h e v e r y t o p o f t h e sequence may be a t h i n zone o f v e r t i c a l
accretion (floodplain) deposits.
The complexity o f c o a r s e member-dominated sequences
i n t h e Old Red Sandstone i s s u c h t h a t many more d e t a i l e d and d i r e c t comparisons w i t h p r e s e n t - d a y l o w - s i n u o s i t y sandy r i v e r s a r e needed i f t h e y a r e t o b e p r o p e r l y understood. The r e d d e n i n g of sandy and muddy a l l u v i u m One of t h e most c h a r a c t e r i s t i c f e a t u r e s o f r e d beds i n t h e Old Red S a n d s t o n e i s t h e d i f f e r e n c e i n c o l o u r between t h e c o a r s e and f i n e members o f fining-upwards c y c l e s (Fig.4.51).
The f i n e members a r e a l m o s t e x c l u s i v e l y r e d (5R, 10R) whereas t h e c o a r s e
members v a r y t h r o u g h s h a d e s of g r e y (N), g r e e n i s h - g r e y (5GY), o l i v e - g r e y (5Y) and brownish-grey (5yR)
( F r i e n d , 1966; Van Houten, 1973; T u r n e r , 1974a).
245
"\ e-
\
Verjical accretion
l
I Channel floor
Fig.4.50. F a c i e s model f o r t h e B a t t e r y P o i n t Sandstone (Old Red Sandstone, Quebec). The changes i n v e r t i c a l sequence and p a l a e o c u r r e n t s a r e i n t e r p r e t e d a s t h e product o f a low-sinuosity r i v e r ( a f t e r Cant and Walker, 1976). a t h i n d r a b zone may be p r e s e n t n e a r t h e top o r t h e b a s e of t h e f i n e member (Fig.4.51) a l t h o u g h t h i s i s g e n e r a l l y a t t r i b u t e d t o secondary b l e a c h i n g .
I n some sequences,
p a r t i c u l a r l y i n Late Devonian times when p l a n t s were more abundant, drab zones w i t h i n t h e f i n e member may be a s s o c i a t e d w i t h o r g a n i c d e b r i s and c a n r e a d i l y b e i n t e r p r e t e d a s marsh o r backswamp d e p o s i t s i n which r e d u c i n g c o n d i t i o n s were developed s h o r t l y a f t e r d e p o s i t i o n (e.g.
Johnson and Friedman, 1969).
The e s s e n t i a l d i f f e r e n c e between t h e r e d f i n e member d e p o s i t s , and d r a b , c o a r s e member d e p o s i t s , i s t h a t t h e former c o n t a i n a g r e a t e r p r o p o r t i o n o f pigmentary haematite.
Much o f t h i s i s c o n c e n t r a t e d w i t h i n t h e c l a y f r a c t i o n (Walker and
Honea, 1969; Van Houten, 1973) s u g g e s t i n g t h a t t h e d e p o s i t i o n a l mechanism must have had a c o n t r o l l i n g i n f l u e n c e on t h e observed red- non-red d i f f e r e n t i a t i o n .
A t the
same t i m e t h e wide v a r i a t i o n i n c o l o u r of c o a r s e members and t h e abundance of haemati t e i n f i n e members (remembering i t s p a u c i t y i n Recent a l l u v i u m ) does s u g g e s t t h a t
p o s t - d e p o s i t i o n a l p r o c e s s e s were i m p o r t a n t and that t h e r e were d i f f e r e n c e s i n t h e
246
p o s t - d e p o s i t i o n a l h i s t o r y o f c o a r s e and f i n e members.
ENVIRONMENT
tTURES MAIN FEA-. ---
COLOUR
CHANNEL BASE
I (BLEACHED) CALCR ETE
SOIL
MASSIVE SI LTSTONE
FLOODPLAIN
CROSS- LAM1NATED
BANK DEPOSITS
fl
SI LTSTONES
I
OSS-BEDDED SANDSTONES
I
OR }NTERMEDIAT
CHANNEL
\\\k
Fig.4.51. T y p i c a l c o l o u r v a r i a t i o n s s e e n i n a n Old Red Sandstone fining-upwards cyclothem. A.
F i n e member r e d d e n i n g
F r i e n d (1966) s t u d i e d t h e c o l o u r d i s t r i b u t i o n o f fining-upwards c y c l e s i n t h e Old Red Sandstone of t h e C a t s k i l l s and S p i t s b e r g e n by a n a l y s i n g changes i n c o l o u r , c l a y m i n e r a l o g y , g r a i n s i z e and i r o n c o n t e n t ,
The c l a y m i n e r a l o g y o f t h e s e r e d
beds i s v e r y s i m i l a r t o many o t h e r a n c i e n t r e d b e d s ; t h e s a n d s t o n e s a r e r e l a t i v e l y r i c h e r i n c h l o r i t e - p l u s - k a o l i n i t e w h i l s t t h e s i l t s t o n e s from t h e f i n e members a r e relatively richer i n i l l i t e .
Although t h e r e i s some v a r i a t i o n from c y c l e t o c y c l e
t h e r e i s l i t t l e doubt t h a t a mature c l a y m i n e r a l assemblage of t h i s t y p e i s t h e r e s u l t of a u t h i g e n e s i s and c l a y m i n e r a l t r a n s f o r m a t i o n and t h e r e i s t e x t u r a l e v i d e n c e i n f a v o u r o f t h i s ( F r i e n d , 1966, p.279). Although t h e C a t s k i l l and S p i t s b e r g e n r e d beds show a c o n c e n t r a t i o n of haematite i n t h e c o a r s e t o medium c l a y f r a c t i o n s (1-4ym) t h e r e a r e no c l e a r r e l a t i o n s h i p s between c o l o u r and c l a y m i n e r a l o g y (Fig.4.52).
T h i s is t h e c a s e w i t h many a n c i e n t
241
lllitr 1 J
0 0 SMdstOM R d NOW
1,11,111
RIfn to
Fig.4.52. Peak h e i g h t r a t i o s f o r i l l i t e , . c h l o r i t e and k a o l i n i t e f o r r e d and drab s a n d s t o n e s and s i l t s t o n e s i n t h e Old Red Sandstone o f t h e C a t s k i l l Mountains, USA ( a f t e r F r i e n d , 1966). r e d beds (Van Houten, 1973; T u r n e r , 1974a) which i s n o t s u r p r i s i n g because t h e h a e m a t i t e i s g e n e r a l l y e u h e d r a l and most l i k e l y a u t h i g e n i c i n o r i g i n .
A number of
a u t h o r s (Van Houten, 1964, 1973; F r i e n d , 1966; T u r n e r , 1974a) have a r g u e d t h a t t h e c o n c e n t r a t i o n o f pigmentary h a e m a t i t e i n f i n e members r e f l e c t s a d e p o s i t i o n a l c o n c e n t r a t i o n o f brown-coloured, environment.
f e r r i c hydroxide p r e c u r s o r i n t h e f l o o d p l a i n
F r i e n d (1966) e x p l a i n e d t h e d i f f e r e n c e i n c o l o u r between t h e c o a r s e
and f i n e members i n t h e f o l l o w i n g manner (Fig.4.53).
I n t h e f l o o d p l a i n environment
abundant i r o n hydroxides were d e p o s i t e d w i t h t h e c l a y - r i c h suspended l o a d .
Because
of p e r i o d i c d r y i n g , and l o w e r i n g o f t h e water t a b l e , o x i d i z i n g c o n d i t i o n s p r e v a i l e d and i r o n hydroxides e v e n t u a l l y aged i n t o h a e m a t i t e .
I n t h e c h a n n e l environment,
however, t h e sediment remained m o s t l y below t h e w a t e r t a b l e a f t e r d e p o s i t i o n .
In
a r e a s where s u b s t a n t i a l o r g a n i c m a t t e r was p r e s e n t b a c t e r i a l consumption of oxygen c r e a t e d a r e d u c i n g environment i n which f e r r i c hydroxides were u n s t a b l e and removed i n s o l u t i o n and t h e c h a n n e l sediments u l t i m a t e l y became d r a b . S e v e r a l f a c t o r s s u g g e s t t h a t t h i s s i m p l e mechanism s u g g e s t e d by F r i e n d i s , i n essence, correct.
These i n c l u d e t h e p a u c i t y of h a e m a t i t e i n Recent a l l u v i u m
(Walker, 19741, t h e f a c t t h a t c l a y - g r a d e f e r r i c h y d r o x i d e s a r e u n s t a b l e r e l a t i v e t o h e m a t i t e ( B e r n e r , 1 9 6 9 a ) , t h e l a r g e amounts of t o t a l i r o n found i n f i n e members, and a l s o t h e f a c t t h a t t h e geochemical c o n d i t i o n s d e s c r i b e d by F r i e n d a r e commonly m e t w i t h i n modern a l l u v i u l s e d i m e n t s .
A c o n t r i b u t i o n from t h e d i a g e n e t i c break-
down o f s i l i c a t e g r a i n s i s a l s o t o be e x p e c t e d b u t t h e r e l a t i v e importance of t h i s
248
p r o c e s s i s d i f f i c u l t t o a s s e s s b e c a u s e o f t h e l a c k of m i n e r a l o g i c a l e v i d e n c e .
ON DEPOSITION
AFTER DEPOSITION EARLY
TAN-BROWN COLOURED FERRIC OXYHYDROXIDES
1
LATE
OXIDIZING
-b
REDUCING
-b
FERROUS IRON I N DETRITAL SILICATES
HAEMATITE FERROUS CCMPOUNDS REMOVED IN SOLUTION AND PYRITE
INTRASTRATAL ALTERATION
,
OXIDIZING
WATER TABLB
REDUCING CONDITIONS DEVELOPED IN WATERLOGGED SANDS ESPECIALLY I F THEY CONTAIN ORGANIC MATERIAL
Fig.4.53. Suggested sequence and environment o f f o r m a t i o n of i r o n compounds i n Old Red Sandstone fining-upwards c y c l e s ( a f t e r F r i e n d , 1966). A q u a n t i t a t i v e e s t i m a t e o f t h e t i m e s c a l e of r e d d e n i n g i n Old Red Sandstone
f i n e members i s p o s s i b l e b e c a u s e o f t h e o c c u r r e n c e of pedogenic c a l c r e t e u n i t s . These o f t e n o c c u r , a l o n g w i t h r e d mudstones, a s i n t r a f o r m a t i o n a l conglomerates i n t h e Old Red Sandstone ( A l l e n , 1960, 1962a) ( F i g . 4 . 5 4 ) .
O f t e n r e d mudstone c l a s t s
o c c u r i n a d r a b , sandy m a t r i x , a l t h o u g h i t i s more u s u a l t o f i n d t h a t t h e m a t r i x shows some e v i d e n c e of reddening.
I n e i t h e r c a s e t h e f a c t t h a t t h e c l a s t s were
s u f f i c i e n t l y c o n s o l i d a t e d t o s u r v i v e f l u v i a l t r a n s p o r t i s a n i n d i c a t i o n t h a t they were a l m o s t c e r t a i n l y r e d a t t h e t i m e ,
The t i m e s c a l e o f c a l c r e t e development
t h u s g i v e s some e s t i m a t e o f t h e t i m e t a k e n f o r t h e development o f r e d c o l o u r . However, t h i s t i m e s c a l e i s d i f f i c u l t enough t o estimate f o r Recent c a l c r e t e s l e t a l o n e t h o s e i n t h e Old Red Sandstone.
Radiocarbon d a t i n g by Ruhe (1967) o f d u s t -
d e r i v e d c a l c r e t e s i n New Mexico s u g g e s t t h a t c a l c i f i c a t i o n i n c r e a s e s a t t h e r a t e of 1%p e r 1000 y e a r s .
Compatible r e s u l t s have been o b t a i n e d by G i l e and Grossman
(1968) and Williams and P o l a c h (1971).
These r e s u l t s , and t h e o r e t i c a l c o n s i d e r a t i o n s ,
s u g g e s t s t h a t t h i c k c a l c r e t e s have developed o v e r some hundreds o f thousands o f years.
249
A . T h i n s e c t i o n photomicrograph of a n Old Red Sandstone c a l c r e t e showing Fig.4.54. l a r g e c r y s t a l l a r i a c u t t i n g a reddened s i l t s t o n e m a t r i x (Red Marls, F r e s h w a t e r West, Wales). B. Conglomeratic c a l c r e t e showing rounded, p r e v i o u s l y r e d d e n e d , c a r b o n a t e c l a s t s i n c a l c i t e cement (Upper Old Red S a n d s t o n e , P e r t h s h i r e , S c o t l a n d ) .
2 50 Goudie (1973, p.88-89)
c a l c u l a t e d a r a t e of l m o f 80%CaC03 p e r 300,000 y e a r s .
Under t h e s e c i r c u m s t a n c e s (assuming t h a t s i m i l a r r a t e s a p p l i e d i n Old Red Sandstone t i m e s ) i t i s n o t s u r p r i s i n g t h a t t h e mudstones were r e d by t h e t i m e t h e s u c c e e d i n g cyclothem was i n i t i a t e d .
Not o n l y i s t h i s s u f f i c i e n t t i m e f o r t h e d e h y d r a t i o n and
i n v e r s i o n of d e t r i t a l f e r r i c hydroxides i n t o h a e m a t i t e i n t h e manner s u g g e s t e d by Van Houten (1972) b u t s u b s t a n t i a l i n s i t u s i l i c a t e a l t e r a t i o n c o u l d a l s o t a k e p l a c e e s p e c i a l l y under t h e c l i m a t i c c o n d i t i o n s which p r e v a i l e d (Walker, 1967a, 1974, 1976). The r e l a t i v e c o n t r i b u t i o n of e a c h of t h e s e p r o c e s s e s i n r e d bed f o r m a t i o n c a n n o t be deduced from t h e a v a i l a b l e e v i d e n c e a l t h o u g h i t seems l i k e l y t h a t b o t h were i n opera t i o n . B.
Coarse member r e d d e n i n n
The mechanism of red-drab d i f f e r e n t i a t i o n proposed by F r i e n d (1966) does n o t s a t i s f a c t o r i l y e x p l a i n t h e f a c t t h a t many c o a r s e members a r e r e d o r brownish-red i n colour.
T h i s i s e s p e c i a l l y s o i n c o a r s e member-dominated s u c c e s s i o n s i n which
f i n e members a r e t h i n o r a b s e n t .
The i m p l i c a t i o n h e r e i s t h a t r e d u c i n g c o n d i t i o n s
were never developed and t h a t t h e groundwaters d u r i n g d i a g e n e s i s were always oxygenated.
The p o s t - d e p o s i t i o n a l h i s t o r y o f c o a r s e member s a n d s t o n e s i s f u r t h e r
c o m p l i c a t e d by e v i d e n c e which s u g g e s t s t h a t t h e r e were r e d u c i n g groundwaters m i g r a t i n g through t h e s a n d s t o n e b o d i e s u n t i l t h e i r f i n a l compaction.
This takes
t h e form of g r e e n , s e c o n d a r i l y b l e a c h e d zones which o c c u r j u s t below a n d , i n some c a s e s , j u s t above t h e c o a r s e members ( F i g . 4 . 5 1 ) .
These s u g g e s t t h a t r e d u c i n g
groundwaters were e x p e l l e d from t h e porous s a n d s t o n e b o d i e s p r o b a b l y d u r i n g compac t i o n . Colour v a r i a t i o n s i n t h e c o a r s e members of sandy a l l u v i u m i n t h e Old Red Sandstone a r e l a r g e l y due t o t h e r e l a t i v e abundance and d i s t r i b u t i o n of pigmentary clay-oxides (Table 4.4).
In some c l a y - r i c h s a n d s t o n e s t h e framework c o n s t i t u e n t s
have t h i c k c l a y - o x i d e p e l l i c l e s (Fig.4.55) Brewer (1964).
which resemble t h e c l a y - c u t a n s o f
O t h e r c l a y - o x i d e c o a t i n g s show t e x t u r e s which c l o s e l y resemble t h e
m e c h a n i c a l l y i n f i l t r a t e d c l a y t e x t u r e s d e s c r i b e d by Walker (1976) from Cenozoic alluvium.
I n b o t h t h e s e c a s e s t h e s u r v i v a l of t h e h a e m a t i t e c l a y - o x i d e m a t r i x i s
a n i n d i c a t i o n t h a t o x i d i z i n g c o n d i t i o n s p r e v a i l e d d u r i n g d e p o s i t i o n and d i a g e n e s i s . S e v e r a l l i n e s of e v i d e n c e a l s o s u g g e s t t h a t pigmentary h a e m a t i t e h a s been produced by i n t r a s t r a t a l s o l u t i o n of i r o n b e a r i n g g r a i n s i n t h e r e d c o a r s e member s a n d s t o n e s . T h i s e v i d e n c e i n c l u d e s t h e composition o f heavy m i n e r a l s u i t e s , c l a y m i n e r a l o g y , and t h e n a t u r e of t h e a u t h i g e n i c m i n e r a l p h a s e s i n t h e s a n d s t o n e s . A n o t a b l e f e a t u r e of heavy m i n e r a l a n a l y s e s i n t h e Old Red Sandstone i s t h e a l m o s t t o t a l absence of u n s t a b l e f e r r o m a g n e s i a n s i l i c a t e s such a s h o r n b l e n d e and pyroxene.
A l l e n (1974a) p u b l i s h e d a d e t a i l e d s u r v e y of heavy m i n e r a l d i s t r i b u t i o n s
i n t h e O l d Red Sandstone of t h e Anglo-Welsh b a s i n and r e c o g n i z e d t h r e e heavy m i n e r a l
251
Fig.4.55. T e x t u r a l f e a t u r e s of pigmentary i r o n o x i d e s and c l a y - i r o n o x i d e s i n Old Red Sandstone sandy a l l u v i u m . A . P a r t i c u l a t e g r a i n c o a t i n g s of h a e m a t i t e formed by p o s t - d e p o s i t i o n a l p r e c i p i t a t i o n ( R i n g e r i k e Group, S i l u r i a n , Norway). B . Thick p e l l i c l e s o f c l a y - i r o n o x i d e (Lower Old Red S a n d s t o n e , Dyfed, Wales). C. I n t e r s t i t i a l m a t r i x o f c l a y - i r o n o x i d e c o n c e n t r a t e d i n laminae (Lower Old Red Sandstone, Gamrie O u t l i e r , S c o t l a n d ) .
252
associations:
metamorphic ( g a r n e t , s t a u r o l i t e and e p i d o t e ) , igneous ( a n a t a s e ,
a p a t i t e , b r o o k i t e , r u t i l e , sphene, s p i n e l and z i r c o n ) , and p e g m a t i t i c ( t o u r m a l i n e The s t r a t i g r a p h i c a l v a r i a t i o n i n t h e s e t h r e e assemblages i s shown i n Fig.4.56.
only),
TABLE 4.4
R e l a t i o n s h i p s between whole rock c o l o u r and t e x t u r a l d i s t r i b u t i o n of c l a y - o x i d e m i s t u r e s i n Devonian r e d s a n d s t o n e s . Colour
Texture
Moderate Pink 5R7f 4
-
Moderate Orange Pink 10R7f 4
Sparse clay-oxide g r a i n coatings L i t t l e o r no i n t e r s t i t i a l m a t r i x
P a l e Red 5R6f2 10R6f2
Clay-oxide g r a i n c o a t i n g s a b s e n t t o p o o r l y developed. Opaque t o t r a n s l u c e n t i n t e r s t i t i a l m a t r i x more abundant
Moderate Reddish Orange 10R6f 6
Prominent t r a n s l u c e n t c l a y - o x i d e g r a i n c o a t i n g s , I n d i v i d u a l c r y s t a l s t o o small t o be r e s o l v e d . S p a r s e i n t e r s t i t i a l m a t r i x . I f more abundant, homogeneously distributed
Moderate Red 5R5f4 5R4f6
P a r t i c u l a t e g r a i n c o a t i n g s mainly of h a e m a t i t e . Abundant opaque i n t e r s t i t i a l m a t r i x may b e inhomogeneously d i s t r i b u t e d
-
-
Individual crystals g r e a t e r than 2 m can b e r e s o l v e d
P a l e Reddish Brown 10R5f 4
-
Dark Reddish Brown 10R3f4
Abundant t h i c k g r a i n c o a t i n g s of c l a y and h a e m a t i t e and opaque i n t e r s t i t i a l matrix
P a l a e o c u r r e n t a n a l y s i s and t h e s t u d y o f e x o t i c p e b b l e s , when combined w i t h t h e heavy m i n e r a l r e s u l t s s u g g e s t a s o u r c e a r e a t o t h e n o r t h w e s t o f t h e a r e a which i n c l u d e d Moine and D a l r a d i a n igneous and metamorphic r o c k s a s w e l l a s Lower P a l a e o c o i c sediments.
The Downton Group i s n o t a b l e f o r t h e l a r g e amounts of g a r n e t which
s u g g e s t a h i g h grade metamorphic provenance l i k e t h e Moine o r D a l r a d i a n .
The
c o m p o s i t i o n a l change a t t h e end of Downton Group times, when t h e igneous assemblage becomes much more i m p o r t a n t (Fig.4.56)
a p p e a r s t o b e due t o u p l i f t and i s o l a t i o n
of t h e d i s t a n t metamorphic s o u r c e a r e a by r i v e r c a p t u r e o r d r a i n a g e r e v e r s a l . The absence of pyroxene and hornblende i n t h e Old Red Sandstone i s q u i t e marked ( s e e a l s o F l e e t , 1925, 1926; Walder, 1941) d e s p i t e t h e f a c t t h a t i t i s l i k e l y t o have been r e l a t i v e l y abundant i n a s o u r c e a r e a which i s known t o have i n c l u d e d igneous and metamorphic r o c k s .
The observed assemblage i s dominated by m i n e r a l s
w i t h a h i g h l e v e l of p e r s i s t e n c e i n a n c i e n t s a n d s t o n e s ( P e t t i j o h n , 1975, p.496). S i m i l a r r e s u l t s a r e found throughout t h e Old Red c o n t i n e n t and i n view o f t h e known s u s c e p t i b i l i t y of hornblende and pyroxene t o i n t r a s t r a t a l a l t e r a t i o n i n o x i d i z i n g groundwaters i t seems l i k e l y t h a t complete d i s s o l u t i o n h a s t a k e n p l a c e .
The i n i t i a l
a l t e r a t i o n p r o d u c t s a r e most l i k e l y t o have been mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e
2 53
and i r o n o x i d e , much of t h e i r o n o x i d e e v e n t u a l l y c o n t r i b u t i n g rowards t h e pigmentary haematite.
D i r e c t evidence o f i n s i t u s i l i c a t e a l t e r a t i o n i s p r o v i d e d by p a r t i a l l y
haematized c h l o r i t e and b i o t i t e f l a k e s ( t h e s e m i n e r a l s a r e o f comparable s t a b i l i t y t o g a r n e t i n t h e d i a g e n e t i c environment).
Advanced i n s i t u a l t e r a t i o n s a r e i n d i c a t e d
by t h e t o t a l pseudomorphing of b i o t i t e f l a k e s by h a e m a t i t e ( T u r n e r , 1974a; Turner and A r c h e r , 1977) ( F i g . 4 . 5 5 ) .
LEGEND Melomorphic Pegmatitic
DITTON AND A I D O N GPS.
Igneous
osseniblaqe assemblage
assernbtage
LEDBURY FM.
I
2
3
6
8 10
20
40
60
100
Percenl
Fig.4.56. S t r a t i g r a p h i c a l v a r i a t i o n i n t h e number p e r c e n t a g e of heavy m i n e r a l groups i n t h e Old Red Sandstone of t h e Anglo-Welsh b a s i n ( a f t e r A l l e n , 1974a). The c l a y m i n e r a l s u i t e s i n t h e Old Red Sandstone a l s o i n d i c a t e e x t e n s i v e diagenesis.
The main c l a y m i n e r a l s a r e i l l i t e , c h l o r i t e and k a o l i n i t e ; montmorill-
o n i t e b e i n g o n l y r a r e l y r e p o r t e d (e.g. A l l e n , 1974a).
I l l i t e t y p i c a l l y shows a
h i g h c r y s t a l l i n i t y index and may have f o r m e d , i n p a r t a t l e a s t , by t h e t r a n s f o r m a t i o n o f mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e which formed a s a n a u t h i g e n i c phase d u r i n g e a r l y diagenesis. The Lower T r i a s s i c r e d beds of NW Europe The lowermost T r i a s s i c ( S c y t h i a n ) of NW Europe saw t h e accumulation of a pebbly and sandy a l l u v i a l sequence on a n o r t h w e s t e r l y i n c l i n e d p a l a e o s l o p e (Audley-Charles, 1970a,b).
Northwards o f t h e London-Brabant h i g h i s a m a r g i n a l conglomeratic f a c i e s
r e f e r r e d t o a s t h e Bunter Pebble Beds (Fig.k.57)
(Brennand, 1975).
Northwestwards
t h e g r a i n s i z e d e c r e a s e s a s t h e pebbly a l l u v i u m p a s s e s downstream i n t o more sandy
254 alluvium.
There a r e a l s o marked v e r t i c a l changes i n g r a i n s i z e and i n t h e Midlands
o f England t h e Bunter P e b b l e Beds p a s s upwards i n t o a sandy a l l u v i a l sequence (Upper M o t t l e d S a n d s t o n e ) .
Above t h i s i s a renewed i n f l u x o f c o a r s e r , p e b b l y
a l l u v i u m (Lower Keuper S a n d s t o n e ) .
A t a b o u t t h e same t i m e t h e d e p o s i t i o n of c o a r s e
g r a i n e d a l l u v i a l f a n s may have been t a k i n g p l a c e i n NW S c o t l a n d b u t t h e s e d e p o s i t s a r e n o t y e t a c c u r a t e l y d a t e d ( S t e e l and W i l s o n , 1975).
n
Maximum distribution Triassic deposits
--
Distribution solid Muschelkalk carbonates Northern limit Muschelkalk carbonates
-I
Edge Rot salt
1 Areas with Keuper salts
5w
Total Triassic thickness
Fig.4.57. Palaeogeography of t h e lower most T r i a s s i c ( S c y t h i a n ) i n NW Europe ( a f t e r Z i e g l e r , 1978). The sedimentology of t h e Bunter P e b b l e Beds h a s been d e s c r i b e d and i n t e r p r e t e d by Thompson (1970).
These t y p i c a l l y form fining-upwards c y c l e s i n which beds of
s t r u c t u r e l e s s o r i m b r i c a t e d , sometimes uncemented, conglomerate p a s s up i n t o l a r g e s c a l e cross-bedded p e b b l y s a n d s t o n e s and t r o u g h cross-bedded s a n d s (Fig.4.58). mudstones may b e p r e s e n t a t t h e t o p of t h e c y c l e .
Thin
The sequence is i n t e r p r e t e d a s
t h e d e p o s i t s o f a l o w - s i n u o s i t y b r a i d e d s t r e a m s i m i l a r t o t h o s e d e p o s i t i n g pebbly a l l u v i u m a t t h e p r e s e n t day.
T h i s view i s s u p p o r t e d by t h e f a c t t h e d e p o s i t s l i e
above concave e r o s i o n s u r f a c e s and g e n e r a l l y f i n e upwards a l o n g w i t h a d e c r e a s e
INTRAFORMATIONAL u- CONGLOMERATE
EXOTIC PEBBLES GRANULES VENTIFACTS
CHANNEL
LARGE SCALE CROSS-BEDDING
mERmIoN
.SCOURED SURFACE
LAMINATED SHALE
SMALL SCALE CROSSBEDDING
MUDCRACKS
01
01
N
mBLocKy
CHANNEL FULL SEDIMENTS DEPOSITEDAS CHANNEL BAR AND LATERAL BARS. POSSIBLE DEVELOPMENT OF POINT BARS WITH LATERAL ACCRETION SURFACES
INTRAFORMATIONAL MUD CLASTS NEAR BASE. ROLLED DREIKANTER. LARGE SCALE CROSS-BEDDING WITH FORESETS POORLY DEFINED AT BASE. SET THICKNESS GENERALLY DECREASES W A R D S ,
RAPID EROSION OF FLOODPLAIN DEPOSITS
RELATIVELY SUDDEN CESSATION OF FLOOD AND BEDLOAD TRACTION
RED? SECONDARILY BUFF OR GREY COARSE TO MEDIUM GRAINED. POORLY SORTED SANDSTONE, PEBBLY SANDSTONE AND CONGLOMERATE.
EXTRAFORMATIONAL PEBBLES. DISC AND SPHEROID SHAPE CONSISTINGOF QUARTZ, QUARTZITE. PORPHYRY. FELSITE.TUFF. CHERT,SANDSTONE, AND MUDSTONE
VERTICAL ACCRETION DEPOSITS OF LOW SINUOSITY RIVER FLOOD PLAIN
INTERPRETATION
RED MICACEOUS,LAMINATED OR BLOCKY, SILTY MUDSTONES WITH MUD CRACKS. SHARP FLAT UPPER SURFACE.AT TIMES IRREGULAR
CHANNELING
MAIN FACTS
256
i n set thickness.
The s t r u c t u r e l e s s and i m b r i c a t e d conglomerates compare c l o s e l y
with the longitudinal gravel bars of present-day coarse grained braided r i v e r s w h i l s t t h e p r e s e n c e of l a r g e s c a l e l a t e r a l a c c r e t i o n u n i t s may r e s u l t from d i a g o n a l o r l a t e r a l b a r s (Bluck, 1974) o r t h e f o r m a t i o n of g r a v e l meander l o b e s l i k e t h o s e d e s c r i b e d by Gustavson (1978). A d i f f e r e n t t y p e of sequence i s s e e n i n t h e upper p a r t o f t h e Lower Keuper Sandstone ( F i g . 4 . 5 9 ) .
Here t h e bank and f l o o d p l a i n d e p o s i t s a r e t h i c k e r and
conglomerate i s l a r g e l y c o n f i n e d t o t h e b a s e o f t h e c y c l e .
The sequence shows t h e
f a m i l i a r fining-upwards and above t h e conglomerate ( c h a n n e l l a g ) a r e c r o s s - s t r a t a which c o u l d b e p o i n t b a r d e p o s i t s o r p o s s i b l y t r a n s v e r s e b a r s o r sandwaves (Harms e t a l . , 1975).
These p a s s upwards i n t o t r o u g h c r o s s - b e d s which i n d i c a t e channel-
f i l l by s i n u o u s c r e s t e d m e g a r i p p l e s .
Above, i n t e r b e d d e d r i p p l e d s a n d s and mudstones
w i t h d e s i c c a t i o n c r a c k s and r e p t i l e f o o t p r i n t s i n d i c a t e l e v e e and f l o o d p l a i n deposition.
T h i s t y p e of c y c l e s u g g e s t s a more meandering s t r e a m c h a n n e l , p a r t l y
e n t r e n c h e d i n i t s own a l l u v i u m and w i t h well-developed banks and r i v e r f l o o d p l a i n s . I n NW England t h e d i s t a l r e g i o n s of t h i s S c y t h i a n a l l u v i a l complex r e v e a l a d i f f e r e n t p a t t e r n of s e d i m e n t a t i o n .
Here a sandy a l l u v i a l sequence ( S t . Bees
Sandstone) l i e s d i r e c t l y on a n Upper Permian e v a p o r i t i c sequence ( S t . Bees S v a p o r i t e s and S h a l e s ) which i s i n t e r b e d d e d w i t h t h i n m a r g i n a l a l l u v i a l f a n d e p o s i t s from t h e a d j a c e n t Lake D i s t r i c t Massif (brockrams) ( A r t h u r t o n and Hemingway, 1972). The S t . Bees Sandstone c o n s i s t s p r e d o m i n a n t l y o f f i n e and medium g r a i n e d sands t o n e s w i t h minor s i l t s t o n e s and mudstones.
These a r e a r r a n g e d i n l a r g e t a b u l a r
u n i t s which wedge-out l a t e r a l l y between prominent e r o s i o n a l bounding s u r f a c e s (Fig.4.60).
Between t h e bounding s u r f a c e s t h e a l l u v i a l c y c l e s b e g i n w i t h i n t r a -
f o r m a t i o n a l l a g cdnglomerate and p a s s upwards i n t o p l a n a r t a b u l a r cross-bedded u n i t s , p l a n e beds o r pseudo-plane beds (Smith, 1971a).
I n t u r n , these u s u a l l y give
way t o t r o u g h c r o s s - b e d s o r c r o s s - l a m i n a t e d s i l t s t o n e s which may g r a d u a l l y f i n e upwards i n t o a t h i n d e s i c c a f e d mudstone o r s h a l e ,
T h i s sequence c l o s e l y resembles
t h a t which i s produced by l o w - s i n u o s i t y , sandy b r a i d e d r i v e r s .
The p l a n a r t a b u l a r
u n i t s of t h e S t . Bees Sandstone f r e q u e n t l y show r e a c t i v a t i o n s u r f a c e s l i k e t h o s e d e s c r i b e d from t h e l i n g u o i d b a r s o f t h e Tana R i v e r by C o l l i n s o n (1970) and t r a n s v e r s e b a r s o r sandwaves of a s i m i l a r t y p e a r e b e l i e v e d t o have been a n i m p o r t a n t f e a t u r e of t h e S t . Bees Sandstone.
The t r o u g h c r o s s - b e d s r e p r e s e n t m i g r a t i n g s i n u o u s -
c r e s t e d dunes which were t h e main c h a n n e l - f i l l i n g bedforms. The c o l o u r of t h e s e T r i a s s i c sandy and p e b b l y a l l u v i u m i s a l m o s t u n i f o r m l y r e d e x c e p t f o r a r e a s which have o b v i o u s l y been s e c o n d a r i l y b l e a c h e d .
Although t h e
o r i g i n of t h e r e d n e s s has been d e b a t e d f o r some t i m e r e c e n t s t u d i e s ( T u r n e r and I x e r , 1977; I x e r e t a l . , 1979) s u g g e s t t h a t t h e T r i a s s i c d e p o s i t s have had a s i m i l a r d i a g e n e t i c h i s t o r y t o t h e d e s e r t sandy a l l u v i u m d e s c r i b e d by Walker (1976) and Walker e t a l . (1978).
The r e d d e n i n g a p p e a r s t h e r e f o r e t o have been produced by
t h e i n t r a s t r a t a l a l t e r a t i o n of ferromagnesian minerals.
F e a t u r e s which s u p p o r t t h i s
Rrt
m m
O I I-. lmi o
c o
Hss s m m
,3
.m,
m r t a o
W FACTS
!WALL WALE CROQS-BEDDING
LARGE SCALE CROIIS-BEDDINCi
WlTW M W C l A n r .
MuwTolyE
LAMINATED W A L E
INTMFOIIMATIONAL CONGLOMERATE
MUDCRACKS
E R W O N CHANNEL
SrIAYS
A U O BANK D E W T I
B~WT#G.OCCAUONAL COARSE SANOSTONES
RIVER FLOOD PLAIN.
FWE SAIIMTONES FLAT BEfDMNG AND RIPPLE
.
M M A M I U A T E D SHALE, M U W O N E AND
MAINLY VERTICAL ACCRETnm D€W6llS OF THE
INTERCRETATION
INCLUMIYG LEVEES AND m B L Y CREVASSE
-ICY
CWCOLATE R€D,OCCMIOIIALLY GREEN,UUWINATED 01
SCOUREDSWRFACE
W
-a
N v1
258
m
0 W
m I
I‘
,
,‘
4. ,.
I I
i :
,
, i
,
L
I
F i g . 4 . 6 0 . The l a t e r a l v a r i a t i o n i n sedimentation sequences of the St. Bees Sandstone a t Fleswick Bay, Cumbria. The sequences were d e p o s i t e d by low-sinuosity braided streams with a sandy bed load.
2 59
view a r e :
1) t h e g e n e r a l d i s t r i b u t i o n o f h a e m a t i t e a s g r a i n c o a t i n g s and i n t e r s t i t i a l m a t r i x 2 ) t h e g e n e r a l a b s e n c e of f e r r o m a g n e s i a n m i n e r a l s and heavy m i n e r a l assemblages dominated by z i r c o n , t o u r m a l i n e and r u t i l e
3 ) t h e o c c u r r e n c e of h a e m a t i t e - c l a y pseudomorphs which c o u l d b e t o t a l l y r e p l a c e d ferromagnesian mineral g r a i n s 4) t h e w i d e s p r e a d o x i d a t i o n and r e p l a c e m e n t of p h y l l o s i l i c a t e s
5 ) t h e i n s i t u replacement and d i s s o l u t i o n of f e l d s p a r
6 ) t h e p r e s e n c e of a d i s t i n c t i v e a u t h i g e n i c s u i t e of m i n e r a l s i n c l u d i n g q u a r t z , f e l d s p a r , c l a y m i n e r a l s , h a e m a t i t e , a n a t a s e and r u t i l e , and c a l c i t e . I n a l l t h e s e f e a t u r e s s u p p o r t t h e view t h a t t h i s r e d T r i a s s i c a l l u v i u m r e p r e s e n t s a n advanced s t a g e of t h e d i a g e n e t i c p r o c e s s e s d e s c r i b e d by Walker e t a l . ( 1 9 7 8 ) . The a n a l o g y i s , however, n o t p e r f e c t b e c a u s e t h e T r i a s s i c sediments were d e r i v e d from a mixed s o u r c e a r e a c o n t a i n i n g i g n e o u s , s e d i m e n t a r y and metamorphic r o c k s and u n s t a b l e f e r r o m a g n e s i a n g r a i n s were n o t a s abundant a s i n t h e Cenozoic a l l u v i u m of t h e s o u t h - w e s t e r n USA.
A consequence of t h i s may have been t h a t d e t r i t a l f e r r i c
h y d r o x i d e s were more abundant and c o n t r i b u t e d d i r e c t l y t o r e d d e n i n g i n t h e f i n e r grained sediments.
The e v i d e n c e does s u g g e s t t h a t i n t h e sandy a l l u v i u m o t h e r
p r o c e s s e s were more i m p o r t a n t .
These i n c l u d e t h e m e c h a n i c a l i n f i l t r a t i o n of c l a y
and i t s s u b s e q u e n t r e d d e n i n g , t h e d i s s o l u t i o n and replacement of l a b i l e s i l i c a t e g r a i n s by c l a y l e a d i n g t o a c o n c e n t r a t i o n o f d i s s o l v e d i o n s i n t h e i n t e r s t i t i a l groundwater and t h e u l t i m a t e p r e c i p i t a t i o n of a u t h i g e n i c m i n e r a l s from t h e groundwater solutions. Upper Cretaceous r e d beds of t h e s o u t h e r n Bohemian Basins
The Upper C r e t a c e o u s i n Czechoslovakia i n c l u d e s a sequence of c o n t i n e n t a l r e d and g r e y beds (Klikov Formation) which were d e p o s i t e d i n two NW-SE b a s i n s developed on w e a t h e r e d c r y s t a l l i n e basement.
f a u l t bounded
The sequence comprises a s e r i e s
of fining-upwards cyclothems on a s m a l l and l a r g e - s c a l e and i s c h a r a c t e r i z e d by r a p i d l a t e r a l and v e r t i c a l changes (Fig.4.61)
which c l o s e l y resembles t h e s t y l e of s e d i -
m e n t a t i o n r e f e r r e d t o a s " f l y s c h i n molasse".
The sequence was d e p o s i t e d i n a l l u v i a l
and l a c u s t r i n e environments s t r o n g l y i n f l u e n c e d by t e c t o n i c u n r e s t i n t h e AlpineCarpathian geosyncline. Colour d i s t r i b u t i o n i n t h e K l i k o v Formation shows a marked dependence on g r a i n s i z e and l i t h o l o g y and t h r e e main v a r i a t i o n s can b e r e c o g n i z e d a s f o l l o w s : L i g h t g r e y , g r e e n i s h l i g h t - g r e y o r y e l l o w i s h - g r e y s a n d s t o n e s ( A ) . These a r e medium t o c o a r s e c o n g l o m e r a t i c s a n d s t o n e s which a r e p o o r l y s o r t e d and o f t e n graded. Red beds (B). These a r e reddish-brown, zones w i t h v e r y v a r i a b l e g r a i n s i z e .
sometimes p u r p l e o r g r e e n i s h - g r e y m o t t l e d They i n c l u d e p o o r l y s o r t e d c o n g l o m e r a t i c sandy
mudstones (B ) and sandy c l a y s t o n e s (B2). 1
260
Grey beds (C). These a r e g r e e n i s h - g r e y o r d a r k g r e y s e d i m e n t s w i t h c a r b o n i z e d p l a n t debris.
They i n c l u d e f i n e t o medium l a m i n a t e d s a n d s t o n e s ( C , )
and c l a y s t o n e s w i t h
s p h a e r o s i d e r i t e n o d u l e s (C 1. 2 The d i s t r i b u t i o n of t h e d i f f e r e n t f a c i e s w i t h r e s p e c t t o d e p o s i t i o n a l environment i s shown i n Fig.4.62.
Although i n d i v i d u a l c y c l e s show some s i m i l a r i t y t o t h e
s t a n d a r d fining-upwards model ( A l l e n , 1965e) t h e r e a r e some i m p o r t a n t d i f f e r e n c e s p a r t i c u l a r l y i n t h e abundance of g r a d e d bedding.
T h i s may r e p r e s e n t t h e f l o o d
d e p o s i t s of a l l u v i a l f a n s which were d e p o s i t e d a s t u r b i d i t y flows i n l a k e s ( e . g , R a t t i g a n , 1966; Duff e t a l . ,
1967).
G e n e r a l i z e d p r o f i l e of t h e Upper C r e t a c e o u s K l i k o v Formation i n s o u t h e r n Fig.4.61. Czechoslovakia showing t h e main t y p e s o f cyclothem ( a f t e r Slefnska’, 19761.
261 The r e d b e d s of t h e K l i k o v Formation a r e g r e a t l y e n r i c h e d i n i r o n r e l a t i v e t o 3+ The a d d i t i o n a l i r o n i s l a r g e l y i n t h e form of Fe ;
t h e a s s o c i a t e d d r a b beds.
whereas t h e r e d and d r a b beds have comparable Fe2+ c o n t e n t s , t h e r e d sediments have Fe3+/Fe2+ r a t i o s g e n e r a l l y g r e a t e r t h a n 5 whereas t h e d r a b beds a r e between 0.5 and 2.
Most of t h e Fe3+ i s i n t h e form of f i n e g r a i n e d pigmentary h a e m a t i t e which i n
t h e r e d beds i s c l o s e l y a s s o c i a t e d w i t h abundant w e l l - c r y s t a l l i z e d k a o l i n i t e . S d n s k a (1976) a r g u e d t h a t t h e i r o n - r i c h , k a o l i n i t i c n a t u r e o f t h e r e d beds must have been produced d u r i n g d e p o s i t i o n by s e d i m e n t a r y d i f f e r e n t i a t i o n and s u g g e s t e d t h a t t h e r e d beds formed i n o x i d i z i n g f l o o d p l a i n environments w h i l s t t h e drab beds formed i n r e d u c i n g c h a n n e l and l a c u s t r i n e environments ( F r i e n d , 1966).
Furthermore,
h e i m p l i e d t h a t h a e m a t i t e and g o e t h i t e may have formed from p o o r l y c r y s t a l l i n e i r o n r i c h k a o l i n i t e s ( C a r r o l l , 1958; Weaver and P o l l a r d , 1973) which underwent i n c r e a s e i n c r y s t a l l i n i t y during diagenesis. LITHOLOGICAL NPE
ENVIRONMENT FLUVIAL
TYPE OF
+LACUSTRINE CROSS-BEDDING LAMINATED GRADCD BEODlNG
SANDSTONES GREY BEDS
+ SILTITONES
% OF WHOLE THICKNE!
l6 %
HORIZONTAL DISCRETE BEDDING
CLAYSTONES
CONGLOMERATIC MUDDY SANDSTONIS OR @D CONOLOMERATIC IDS SANDY MUDSTONES OR SANDY CLAYSlDNES
GRADED BEDDING
38 % ! UNDlSTlNCTlVE BEDDING
SANDSTONES
MASSIVE CROSS-BEDDING GRADED BEDDING
MEDIUM to COARSE GRAINED CONGLOMERATIC
46 %
Fig.4.62. F a c i e s d i s t r i b u t i o n of t h e t h r e e main l i t h o l o g i c a l t y p e s i n t h e Klikov Formation ( a f t e r Sldnska', 1976). The i m p l i c a t i o n of t h i s , of c o u r s e , i s t h a t t h e pigmentary o x i d e s must have been d e r i v e d from soils and weathered p r o f i l e s developed i n t h e s o u r c e a r e a , a l t h o u g h t h e s e need n o t n e c e s s a r i l y b e l a t o s o l s .
Sllnska' (1976) examined s e v e r a l weathered
p r o f i l e s of basement r o c k s ( g r a n i t e s and g n e i s s e s ) , which a r e p r e s e n t e d b e n e a t h t h e Klikov Formation, i n o r d e r t o g a i n i n f o r m a t i o n a b o u t t h e c l i m a t i c environment and n a t u r e o f w e a t h e r i n g a t t h e t i m e of r e d bed f o r m a t i o n .
The weathered c r u s t s v a r y
i n t h i c k n e s s between 2 and 2Om and a r e b e s t developed where t h e o v e r l y i n g r e d beds
262 a r e thinnest.
T h i s r e l a t i o n s h i p i s t o be e x p e c t e d i n a t e c t o n i c a l l y c o n t r o l l e d
environment b e c a u s e w e a t h e r e d p r o f i l e s a r e b e s t developed i n t h o s e a r e a s which have undergone t h e l e a s t s u b s i d e n c e . The w e a t h e r e d c r u s t s d e s c r i b e d by Sla'nskg (1976) a r e r e d and m o t t l e d brownishred with greenish grey s t a i n s .
I n t h e g n e i s s e s t h r e e zones can b e d i s t i n g u i s h e d ,
from t h e t o p downwards: 1) Completely w e a t h e r e d g n e i s s a b o u t 4m t h i c k , l i g h t g r e y i n c o l o u r w i t h p a t c h e s o f b r i g h t r e d , brown and p u r p l e .
I t c o n t a i n s r e s i d u a l q u a r t z , k a o l i n i t e and i r o n
oxides. 2) Brown and r e d m o t t l e d g n e i s s a b o u t 15m t h i c k .
The p r i m a r y t e x t u r e i s s t i l l
v i s i b l e b u t t h e f e l d s p a r s a r e c o m p l e t e l y a l t e r e d and b i o t i t e i s o x i d i z e d .
3 ) Dark g r e e n i s h - g r e y b i o t i t e g n e i s s w i t h k a o l i n i z e d f e l d s p a r s and c h l o r i t i z e d biotite.
T h i s p a s s e s downwards i n t o u n a l t e r e d g n e i s s .
Chemical changes f o r two weathered p r o f i l e s a r e r e p r e s e n t e d i n F i g . 4 . 6 3 u s i n g Loughman's (1969) method.
This depicts r e l a t i v e gains o r losses during the different
s t a g e s of w e a t h e r i n g . There a r e some d i f f e r e n c e s between t h e two p r o f i l e s p a r t i c u l a r l y w i t h r e g a r d t o t h e alumina c o n t e n t of t h e w e a t h e r e d rock and t h a t of r e l a t i v e l y u n a l t e r e d rock. Assuming t h a t t h i s r a t i o i s a n i n d i c a t i o n o f t h e d e g r e e of w e a t h e r i n g t h e n t h e top zone o f p r o f i l e I1 r e p r e s e n t s a more advanced s t a g e t h a n t h e same zone i n p r o f i l e I. The s i l i c a c u r v e f o r b o t h p r o f i l e s shows r e l a t i v e enrichment i n t h e i n t e r m e d i a t e zones.
T h i s i s d i f f e r e n t t o t h e t r e n d observed by G o l d i c h (1938) f o r t h e Morton
g r a n i t e g n e i s s which shows a s t e a d y d e c r e a s e w i t h i n c r e a s e i n w e a t h e r i n g i n t e n s i t y . The Fe 0 c u r v e s show a g r a d u a l and t h e n s h a r p i n c r e a s e a s o x i d a t i o n and h y d r a t i o n 2 3 of t h e i r o n p r o c e e d s , The FeO c u r v e shows t h e o p p o s i t e t r e n d . The a l k a l i m e t a l s o r e l e a c h e d o u t d u r i n g t h e e a r l y s t a g e s of w e a t h e r i n g b u t a p p e a r t o b e more o r l e s s s t a b l e a s weathering progresses. These w e a t h e r e d p r o f i l e s t h u s a p p e a r t o b e v e r y s i m i l a r t o t h e r e d p o d z o l i c p r o f i l e s developed on c r y s t a l l i n e r o c k s , l i k e t h a t on t h e Morton g r a n i t e g n e i s s , d e s c r i b e d by G o l d i c h (1938).
The end-product o f t h i s t y p e of w e a t h e r i n g i s a
s o i l h o r i z o n e n r i c h e d i n k a o l i n i t e and i r o n hydroxide.
T h i s i n d i c a t e s a warm and
humid s o u r c e a r e a climate undergoing i n t e n s i v e w e a t h e r i n g ,
T e c t o n i c u n r e s t probably
p r e v e n t e d t h e f o r m a t i o n of t r u e l a t e r i t i c m a n t l e s b e c a u s e of t h e r a p i d e r o s i o n of the s o i l s ,
Sla'nska' (1976) concluded, t h e r e f o r e , t h a t t h e a l l u v i u m of t h e Klikov
Formation was o r i g i n a l l y brown i n c o l o u r w i t h much of t h e i r o n b e i n g i n t r o d u c e d i n t h e form o f k a o l i n i t e - i r o n o x i d e complexes.
The u l t i m a t e c o l o u r and c o l o u r d i f -
f e r e n t i a t i o n was t h e r e s u l t of s u b s e q u e n t e a r l y d i a g e n e t i c changes.
I n oxidizing
zones h a e m a t i t e c r y s t a l l i z e d from i r o n h y d r o x i d e s w h i l s t i n r e d u c i n g zones a u t h i g e n i c s i d e r i t e and b l e a c h e d p a t c h e s developed.
The s t u d y p r o v i d e s a n i m p o r t a n t example
of t h e i m p o r t a n c e of f e r r i a l i t i c s o i l s i n r e d bed f o r m a t i o n .
Such s o i l s p r o v i d e
f i n e g r a i n e d a l l u v i u m which i s r i c h i n i r o n h y d r o x i d e s and c l a y m i n e r a l s a l t h o u g h
263
t h e u l t i m a t e f o r m a t i o n o f r e d beds depends upon d i a g e n e t i c p r o c e s s e s s u c h a s t h e a g e i n g of i r o n h y d r o x i d e s i n t o h a e m a t i t e and t h e r e l e a s e of i r o n o x i d e s d u r i n g c l a y m i n e r a l t r a n s f o r m a t i o n s . O t h e r a n c i e n t t r o p i c a l w e a t h e r i n g p r o f i l e s have been d e s c r i b e d by Blank (1976) a n d S t u r t e t a l . (1979).
"'1
CONCENTRATION RATIO b (PROFILE2)
Fig.4.63. S u c c e s s i v e c h e m i c a l changes i n i t i a t e d d u r i n g a n c i e n t w e a t h e r i n g of g n e i s s p r i o r t o t h e d e p o s i t i o n of t h e Upper C r e t a c e o u s Klikov Formation. R e s u l t s a r e r e c a l c u l a t e d on a n anhydrous b a s i s . C o n c e n t r a t i o n r a t i o i s t h e r a t i o of t h e c o n t e n t o f an o x i d e a t s p e c i f i c l e v e l t o i t s c o n t e n t i n t h e p a r e n t rock a d j u s t e d t o t h e alumina c o n c e n t r a t i o n r a t i o a s a u n i t ( a f t e r Sla'nska', 1976).
264 CONCLUSIONS AND FURTHER READING
A l l u v i a l r e d beds comprise a v a r i e t y of r e d beds formed i n d i f f e r i n g d e p o s i t i o n a l environments and a wide s p e c t r u m of c l i m a t i c c o n d i t i o n s .
Palaeoclimatic
i n d i c a t o r s , i n c l u d i n g palaeomagnetism, s u g g e s t t h a t t h e m a j o r i t y of a n c i e n t a l l u v i a l r e d beds formed i n s e m i - a r i d c l i m a t e s .
Two i m p o r t a n t p r o c e s s e s a r e
i n v o l v e d i n t h e f o r m a t i o n of a l l u v i a l r e d b e d s :
t h e d e p o s i t i o n and a g e i n g of
d e t r i t a l f e r r i c h y d r o x i d e s , and t h e i n t r a s t r a t a l a l t e r a t i o n of f e r r o m a g n e s i a n minerals.
The former p r o c e s s i s more i m p o r t a n t i n muddy a l l u v i u m where t h e r e i s
much f e r r i c hydroxide i n a s s o c i a t i o n w i t h c l a y s and o t h e r f i n e g r a i n e d m a t e r i a l s . I n t r a s t r a t a l a l t e r a t i o n i s more i m p o r t a n t i n sandy a l l u v i u m , e s p e c i a l l y when i t
i s m i n e r a l o g i c a l l y immature.
The r e l a t i v e i m p o r t a n c e of t h e s e two p r o c e s s e s has
n o t been a s s e s s e d i n most a n c i e n t r e d beds and t h e r e a r e i n d i c a t i o n s t h a t s o u r c e a r e a composition may be a n i m p o r t a n t c o n t r o l l i n g f a c t o r . Comprehensive d e s c r i p t i o n s of a n c i e n t f l u v i a l s e d i m e n t s a r e found i n : Miall, A.D.
( E d i t o r ) , 1978. F l u v i a l Sedimentology. Can. SOC. P e t r o l . Geol.
Memoir 5. I n f o r m a t i o n on c o a r s e p a r t i c l e o x i d e s i n a t r o p i c a l r i v e r i s g i v e n by: R i e z e b o s , P.A., 1979. Compositional downstream v a r i a t i o n of opaque and t r a n s l u c e n t heavy r e s i d u e s i n some modern Rio Magdalena s a n d s (Colombia). Sediment. G e o l . , 24: 197-225.
265
CHAPTER 5 THE DIAGENESIS OF CONTINENTAL RED BEDS INTRODUCTION:
SANDSTONE DIAGENESIS
D i a g e n e s i s i s a c o l l e c t i v e term f o r t h o s e p r o c e s s e s which t a k e p l a c e a f t e r t h e d e p o s i t i o n o f a sediment.
They i n c l u d e p h y s i c a l and c h e m i c a l p r o c e s s e s
which a f f e c t t h e d e t r i t a l m i n e r a l g r a i n s and a l s o t h e changes which t a k e p l a c e i n t h e c h e m i s t r y of t h e i n t e r s t i t i a l c o n n a t e f l u i d s .
The i n t e r a c t i o n between
t h e d e t r i t a l m i n e r a l assemblage and t h e i n t e r s t i t i a l w a t e r i s c o n s t a n t l y changing; d u r i n g t h e e a r l y s t a g e s of d i a g e n e s i s when t h e overburden i s n o t g r e a t t h e i n t e r s t i t i a l w a t e r s w i l l t e n d t o d i s s o l v e t h e more l a b i l e d e t r i t a l g r a i n s t h e r e b y i n c r e a s i n g t h e p o r o s i t y of t h e sediment and a l s o t h e c o n c e n t r a t i o n of t h e d i s s o l v e d c o n s t i t u e n t s .
When t h e c o n c e n t r a t i o n of d i s s o l v e d i o n s i s
s u f f i c i e n t l y g r e a t t h e p r e c i p i t a t i o n of m i n e r a l cements w i l l t a k e p l a c e .
Various
cements, i n c l u d i n g c l a y m i n e r a l s , q u a r t z , c a r b o n a t e s , and f e l d s p a r s commonly occur i n sandstones.
These have t h e e f f e c t o f f i l l i n g p o r e s p a c e s and t h u s r e d u c i n g
t h e o v e r a l l p o r o s i t y of t h e sediment.
F u r t h e r p o r o s i t y r e d u c t i o n may r e s u l t
from mechanical changes s u c h a s compaction which i s a n i m p o r t a n t f e a t u r e of more deeply buried sandstone.
An e x c e l l e n t o u t l i n e of t h e m a j o r f e a t u r e s of s a n d s t o n e d i a g e n e s i s i s g i v e n by P e t t i j o h n e t a l . ( 1 9 7 2 ) ;
1)
d i a g e n e s i s based on: chemical evidence.
These a u t h o r s r e c o g n i z e s i x s t a g e s of s a n d s t o n e
textural
2)
mineralogical
3)
physical
and
4)
These s t a g e s a r e summarized i n Fig.5.1.
N e a r l y a l l t h e i m p o r t a n t r e a c t i o n s which t a k e p l a c e d u r i n g d i a g e n e s i s do so i n a n aqueous s e t t i n g , e i t h e r i n w a t e r s which a r e n e a r t o t h e d e p o s i t i o n a l i n t e r f a c e , o r i n groundwaters which c i r c u l a t e i n d e e p l y b u r i e d s e d i m e n t s l o n g a f t e r deposition.
I n t h i s r e s p e c t i t i s c o n v e n i e n t t o d i s t i n g u i s h between
t h o s e p r o c e s s e s which t a k e p l a c e i n r e c e n t l y d e p o s i t e d s e d i m e n t i n s u r f a c e w a t e r s , and t h o s e which o c c u r i n more d e e p l y b u r i e d sediment i n s u b s u r f a c e w a t e r s .
The
former a r e r e f e r r e d t o a s e a r l y d i a g e n e t i c p r o c e s s e s and t h e l a t t e r a s l a t e diagenetic processes.
Because e a r l y d i a g e n e t i c p r o c e s s e s t a k e p l a c e i n s u r f a c e
w a t e r s t h e d e p o s i t i o n a l environment e x e r t s a s t r o n g c o n t r o l on t h e n a t u r e o f t h e d i a g e n e t i c r e a c t i o n s i n c l u d i n g t h e r e s u l t a n t a u t h i g e n i c m i n e r a l assemblages. For t h i s r e a s o n , t h e d i a g e n e t i c f e a t u r e s of m a r i n e and c o n t i n e n t a l sediments a r e q u i t e d i s t i n c t i v e and a r e r e a d i l y d i s t i n g u i s h e d i n t h e s t r a t i g r a p h i c r e c o r d . C h a r a c t e r i s t i c a u t h i g e n i c p h a s e s of marine and c o n t i n e n t a l s e d i m e n t s a r e l i s t e d i n T a b l e 5.1.
266
Immediately after deposition. Exposed to air or water of depositional environment. Original detritus, high porosity
Buried a fmv metres to tens of metres. Exposed to interstitial waters. Some compaction,some early chemical precipitates possible.
Buried to moderate depths of about lOOOm Pore water may be a brine. Chemical cements may reduce porosity,clays may be altered.
Deep burial to thousands of metres, perhaps with folding. Porosity may be very low from chemical cement and pressure solution.
Incipient metamorphism. Growth of chlorine ond other metamorphic minerals with extensive pressun solution and quartzitic texture.
After uplift and erosion,within tens of metres of land surface. Invasion by metooric water, decementation and"weathering"of clays may increase porosity.
The s t a g e s of d i a g e n e s i s i n r e l a t i o n t o d e p t h o f b u r i a l and i n c r e a s e of p r e s s u r e and t e m p e r a t u r e ( a f t e r P e t t i j o h n e t a l . , 1 9 7 2 ) .
Fig.5.1.
TABLE 5 . 1 . The c h a r a c t e r i s t i c a u t h i g e n i c m i n e r a l s u i t e s of marine s a n d s t o n e s and c o n t i n e n t a l r e d beds. Marine Sandstones
C o n t i n e n t a l Red Beds
Quartz Glauconi t e Chamosite Pyrite Calcite
Quartz Potash Feldspar I l l i te-Montmori l l o n i t e Chlorite Ha ema t i t e Calcite
-
267 The composition of n a t u r a l w a t e r s and e a r l y d i a g e n e t i c r e a c t i o n s
I n s a n d s t o n e s d e p o s i t e d under m a r i n e c o n d i t i o n s t h e i n i t i a l p o r e w a t e r s a r e s e a w a t e r whereas t h o s e i n c o n t i n e n t a l environments can be approximated t o t h e mean composition o f v a r i o u s r i v e r w a t e r s ( T a b l e 5 . 2 ) . are striking.
The d i f f e r e n c e s between t h e two
I n marine w a t e r s t h e rnCa2+/mMg2+ r a t i o i s 0.2 b u t i n r i v e r w a t e r s i s
TABLE 5.2.
Comparison of t h e m o l a l i t y o f s e a w a t e r (Mason, 1966) and mean r i v e r w a t e r ( L i v i n g s t o n e , 1963). sea water
r i v e r water
Dissolved species
PPm
molality
PPm
molality
c 1-
18,980
0.535
7- a
0.00022
Na+
K+
H BO 32+3 Sr F-
10,556
0.459
6.3
0.00027
2649
0.028
11.2
0.00012
1272
0.052
4.1
0.00017
400
0.010
15.0
0.00037
380
0.01
2.3
0.00006
140
58.8
0.00096
65
2.3~10a. 1x10- 4
0.02
2.5~10-
26
4.2~10-~
0.1-0.01
5x10-'
8 1.3
9. 1x10-5 6.8~10-
0.09
1x10-6
1
0.09
5~10-~
13.1
0.00014
H4S104 NO
0.5
1.0~10-~ a. 1x10- 6
1.0
0.00002
Fe
0.01
2x10-7
0.67
0.00001
~l (OH)&
0.01
1~10-
0.24
6 2.5~10-
Totals
34,479
1.106
120.8
0.00235
-
d+Fe 3+
2.2.
The d i f f e r e n c e i s due t o t h e removal of CaCo3 from s e a w a t e r by c a l c a r e o u s -
s h e l l e d organisms.
There is a l s o a n i m p o r t a n t d i f f e r e n c e i n t h e s i l i c a c o n t e n t .
In n a t u r a l w a t e r s , v i r t u a l l y a l l t h e s i l i c a i s i n t h e form of u n d i s s o c i a t e d o r t h o s i l i c i c a c i d (H S i 0 ) b u t i s a b o u t t e n times more abundant i n r i v e r w a t e r
4
than i n sea water.
4
The d i f f e r e n c e i s a l m o s t e n t i r e l y due t o t h e removal o f
s i l i c a from t h e s e a by marine organisms s u c h a s diatoms and r a d i o l a r i a . That s t a g e of d i a g e n e s i s d u r i n g which chemical r a a c t i o n s t a k e p l a c e d u r i n g s h a l l o w b u r i a l was r e f e r r e d t o by Dapples (1962) a s t h e "redoxomorphic s t a g e " . The redoxomorphic s t a g e i s dominated i n marine s e d i m e n t s by r e a c t i o n s i n v o l v i n g o r g a n i c m a t t e r and i n marine mudstones a number o f d e p t h r e l a t e d zones can be r e c o g n i z e d ( C u r t i s , 1977, 1978) ( F i g . 5 . 2 ) .
Beneath a t h i n v e n e e r of oxygenated
s e d i m e n t , r e d u c i n g c o n d i t i o n s p r e v a i l because of oxygen consumption by b a c t e r i a l
268
MICROBIAL REDUCTION THERMAL PROCESSES OF F.3* DECOMPOSITION I----- -I------
OCEAN
I
OXIDATION
It
SIJLPHATE REDUCTION
102m.
10m. 111 FERMENTATtON
-25)
1.0 km .
~
-
IV
DECARBO XYLATION
.. ... ... .... .... .... ..... ..... ..... ...... ...... ...... ...... ....... ...... ....... ...... ....... ...... ...... .... ....
2.5 km
b \
40km.
LIQUID HYDROCARBONS GAS
VI GRAPHITE 7METAMORPHISM
..... ... ..... .... .... .
................ ........ ....... ..... ....... ...... .... .... .....
-
-20?
--/ :
:/
::::;;/ .. :.7
RATE OF INTRODUCTION OF ORGANIC MATTER DERIVED CARBON DIOXIDEI BICARBONATE
-
Fig.5.2. The p r o d u c t i o n o f c a r b o n d i o x i d e w i t h i n d i f f e r e n t d i a g e n e t i c zones. Zones I - I V a p p r o x i m a t e l y c o r r e s p o n d t o Dapples' redoxomorphic s t a g e ( a f t e r C u r t i s , 1978). activity. (e.g. F e 3 ' j
I n t h i s zone s u l p h a t e r e d u c t i o n t a k e s p l a c e and t r a n s i t i o n m e t a l s Fe2+ and Mn4++ i 2 + ) a r e a l s o reduced.
With i n c r e a s i n g d e p t h o r g a n i c
m a t t e r , d e r i v e d l a r g e l y from p h y t o p l a n k t o n , undergoes complex t r a c t i o n s i n c l u d i n g f e r m e n t a t i o n , d e c a r b o x y l a t i o n , and t h e f o r m a t i o n of hydrocarbons.
These zones a r e
d e p t h r e l a t e d and c l o s e l y l i n k e d t o t h e s e d i m e n t a t i o n r a t e (Goldhaber and Kaplan, 1975). The redoxomorphic s t a g e i s t h u s l a r g e l y r e s p o n s i b l e f o r t h e c o l o u r o f sediments (Goldhaber and Kaplan, 1975; C u r t i s , 1978) and a c c o u n t s f o r t h e d i f f e r e n c e s s e e n between marine and c o n t i n e n t a l s e d i m e n t s ,
The a b s e n c e o f a r i c h s o u r c e o f o r g a n i c
m a t t e r ( p h y t o p l a n k t o n ) i n non-marine s e d i m e n t s means t h a t d i a g e n e t i c r e a c t i o n s can t a k e p l a c e under oxygenated c o n d i t i o n s .
T h i s means t h a t t h e i r o n o x i d e s , g o e t h i t e
and h a e m a t i t e may form and import a r e d p i g m e n t a t i o n t o t h e sediment.
I n the
p r e s e n c e of s u b s t a n t i a l o r g a n i c m a t t e r b a c t e r i a l consumption o f oxygen r e s u l t s i n r e d u c i n g c o n d i t i o n s w i t h i n t h e s e d i m e n t and most o f t h e i r o n i s p r e c i p i t a t e d i n t h e
269
f e r r o u s s t a t e , mainly a s p y r i t e .
Thus, t h e c o l o u r o f t h e s e d i m e n t s e v e n t u a l l y
becomes d r a b because of t h e p r e s e r v a t i o n o f o r g a n i c m a t t e r and f i n e l y d i s s e m i n a t e d pyrite, S u b s u r f a c e w a t e r shows much more v a r i a t i o n i n comp,osition than r i v e r w a t e r o r sea w a t e r ,
T h i s i s l a r g e l y due t o i t s complex o r i g i n , b e i n g a m i x t u r e of j u v e n i l e
w a t e r s , m e t e o r i c w a t e r s , ocean w a t e r s , w a t e r s produced from d i a g e n e t i c r e a c t i o n s , and magmatic w a t e r s (White e t a l . , 1963; White, 1965). i n s h a l l o w ((300m)
Waters which a r e p r e s e n t
s a n d s t o n e beds a r e g e n e r a l l y o f m e t e o r i c o r i g i n and c o n t a i n l e s s
+
t h a n 100 ppm d i s s o l v e d s o l i d s c o n s i s t i n g mainly of Na , Ca2+, and Mg2+ c a t i o n s and 2HCO;, SO4 , and C 1 - I a n i o n s . With i n c r e a s e d b u r i a l t h e e l e c t r o l y t e c o n t e n t of s u b s u r f a c e w a t e r s i n c r e a s e s from e s s e n t i a l l y t h a t o f f r e s h w a t e r t o more t h a n t e n times h i g h e r t h a n t h e c o n c e n t r a t i o n of s e a w a t e r . I n deeper s u b s u r f a c e w a t e r s C12r e p l a c e s SO4 a s t h e dominant a n i o n and t h e p r o p o r t i o n of C1- g e n e r a l l y i n c r e a s e s
with s a l i n i t y .
The main p h a s e s p r e c i p i t a t e d from deep s u b s u r f a c e w a t e r s a r e q u a r t z
and some c l a y m i n e r a l s such a s c h l o r i t e . Cementa t i o n A v a r i e t y o f m i n e r a l s o c c u r a s cements i n s a n d s t o n e s .
They o c c u r p r i n c i p a l l y
as p o r e f i l l i n g s and p o r e l i n i n g s and i n c l u d e c l a y m i n e r a l s , q u a r t z , c a r b o n a t e s ,
f e l d s p a r , and h a e m a t i t e .
The p a r a g e n e s i s and morphology of cements v a r i e s between
i n d i v i d u a l s a n d s t o n e s ( s e e D a p p l e s , 1967) a l t h o u g h t h e sequence
2 . q u a r t z and f e l d s p a r
3. c a r b o n a t e s i s o f t e n o b s e r v e d .
1. c l a y m i n e r a l s
However, t h e r e may be
more t h a n one phase of c e m e n t a t i o n f o r any p a r t i c u l a r m i n e r a l ( e . g . q u a r t z ) , and l a t e r cements may r e p l a c e e a r l i e r formed cements.
The most abundant cements i n
s a n d s t o n e s a r e q u a r t z and c a l c i t e . Amorphous s i l i c a i n d i s t i l l e d o r s a l i n e w a t e r s has a n e q u i l i b r i u m s o l u b i l i t y of a b o u t 120 ppm a t room t e m p e r a t u r e .
The s o l u b i l i t y r a p i d l y i n c r e a s e s w i t h
t e m p e r a t u r e and d e p t h of b u r i a l and so o p a l i n e cements i n s a n d s t o n e s a r e a good i n d i c a t i o n of s h a l l o w b u r i a l .
I n d e e p l y b u r i e d s a n d s t o n e s s i l i c a always p r e c i p i t a t e s
a s q u a r t z because t h e s o l u b i l i t y o f q u a r t z i s o n l y a b o u t 5% t h a t of amorphous s i l i c a a t room t e m p e r a t u r e and i n c r e a s e s much less r a p i d l y w i t h t e m p e r a t u r e than does t h e s t a b i l i t y of amorphous s i l i c a .
The amount of t o t a l s i l i c a i n s o l u t i o n i s
markedly dependent on pH and r a p i d l y rises a s pH i n c r e a s e s above 9 . 0
-
9.5.
Most
o f t h e s i l i c a i n n a t u r a l w a t e r s i s i n t h e form of o r t h o s i l i c i c a c i d ( H SiO ) and 4 4 i s found i n g r e a t e s t q u a n t i t y i n s u b s u r f a c e w a t e r s where t h e c o n c e n t r a t i o n i s commonly above t h e s o l u b i l i t y o f q u a r t z ( a b o u t 6 ppm). The p r e c i p i t a t i o n of q u a r t z is a n i m p o r t a n t d i a g e n e t i c p r o c e s s i n s a n d s t o n e s d e p o s i t e d under marine and c o n t i n e n t a l c o n d i t i o n s . p r e c i p i t a t e d a s a n o p t i c a l l y c o n t i n u o u s overgrowth.
Most commonly q u a r t z i s The form of t h e overgrowth i s
f r e q u e n t l y e u h e d r a l b u t may be m o d i f i e d . o r even c o m p l e t e l y i n h i b i t e d , i n t h e
270 p r e s e n c e o f g r a i n c o a t i n g s ( P i t t m a n and Lumsden, 1968; Heald and L a r s s e , 1973). Q u a r t z overgrowths a r e so a b u n d a n t , e s p e c i a l l y i n o l d e r q u a r t z - r i c h s a n d s t o n e s , t h a t t h e s o u r c e of t h e a d d i t i o n a l s i l i c a i s n o t immediately o b v i o u s . t h e d i s s o l u t i o n of s i l i c e o u s organisms sponge s p i c u l e s ) may be i m p o r t a n t .
I n m a r i n e sandstones
( d i a t o m , r a d i o l a r i a n t e s t s and s i l i c e o u s
I n continental deposits, especially those
d e p o s i t e d under a e o l i a n c o n d i t i o n s , t h e p r o d u c t i o n o f s i l i c a d u s t by g r a i n a b r a s i o n may be an i m p o r t a n t s o u r c e o f s i l i c a f o r q u a r t z overgrowths (Waugh, 1970 a , b ) .
In
more d e e p l y b u r i e d s a n d s t o n e s t h e r e i s a g e n e r a l tendency f o r t h e abundance of q u a r t z overgrowths t o i n c r e a s e c a u s i n g s i g n i f i c a n t r e d u c t i o n s i n p o r o s i t y and p e r m e a b i l i t y (FUchtbauer, 1967b).
I n t h i s s i t u a t i o n t h e c o r r e l a t i o n between t h e
d e s t r u c t i o n of m e t a s t a b l e heavy m i n e r a l s and i n c r e a s e d q u a r t z c o n c e n t r a t i o n s u g g e s t s t h a t much of t h e e x t r a s i l i c a was s u p p l i e d by t h e i n t r a s t r a t a l s o l u t i o n of s i l i c a t e m i n e r a l s ( P h i l l i p e t a l . , 1963).
A l s o , p r e s s u r e s o l u t i o n i s l i k e l y t o be i m p o r t a n t
i n more d e e p l y b u r i e d s a n d s t o n e s (Thomson, 1959; Weyl, 1 9 5 9 ) , where i t i s a p p a r e n t l y f a c i l i t a t e d by t h e p r e s e n c e of i l l i t i c c l a y laminae. C a l c i t e i s p r o b a b l y t h e most common chemical cement i n a n c i e n t s a n d s t o n e s and may form w i t h o r w i t h o u t d e s t r u c t i o n of t h e g r a i n s u p p o r t e d framework ( D a p p l e s , 1971). N o n - d e s t r u c t i v e c a l c i t e cement c o n s i s t s m o s t l y of a n h e d r a l s u b e q u a n t c r y s t a l s 20 m o r more i n d i a m e t e r which g e n e r a l l y f i l l p o r e s p a c e s .
I n some i n s t a n c e s t h e volume
of c a l c i t e cement exceeds 30%, t h e o r i g i n a l p o r o s i t y of t h e s e d i m e n t , and t h e d e t r i t a l q u a r t z p a r t i c l e s a r e c o r r o d e d , f e a t u r e s which c l e a r l y i n d i c a t e t h e d e s t r u c t i v e n a t u r e of t h e c e m e n t a t i o n . I n o r d e r t o s a t u r a t e a n aqueous s o l u t i o n w i t h r e s p e c t t o c a l c i t e , i t i s n e c e s s a r y t h a t t h e i o n a c t i v i t y p r o d u c t LCa2+][ p r o d u c t f o r t h i s compound.
CO:-J
exceeds t h e thermodynamic s o l u b i l i t y
T h e r e f o r e i n c r e a s e i n t h e a c t i v i t y o f e i t h e r calcium
i o n on c a r b o n a t e i o n may r e s u l t i n t h e p r e c i p i t a t i o n of CaC03.
S i n c e t h e amount of
calcium i n marine and s u b s u r f a c e w a t e r s i s r e l a t i v e l y s t a b l e and o n l y a f f e c t e d by t h e i n t r a s t r a t a l a l t e r a t i o n of c a l c i u m - b e a r i n g s i l i c a t e s c a l c i u m c a r b o n a t e p r e c i p i t a t i o n u s u a l l y r e s u l t s from s u p e r s a t u r a t i o n c a u s e d by a n i n c r e a s e i n t h e a c t i v i t y of t h e c a r b o n a t e i o n . C a l c i t e and q u a r t z cements commonly c o e x i s t i n s a n d s t o n e s and may show evidence of replacement of one m i n e r a l by t h e o t h e r .
This r e l a t i o n s h i p i s r e a d i l y explained
by r e f e r e n c e t o t h e p H - s o l u b i l i t y c u r v e s of q u a r t z , amorphous s i l i c a , and c a l c i t e (Fig.5.3).
The s o l u b i l i t y of s i l i c a i s u n a f f e c t e d by pH v a l u e s below a b o u t 9
whereas c a l c i t e i s v e r y s o l u b l e i n a c i d i c s o l u t i o n s .
T h e r e f o r e , changes i n pH may
cause s o l u t i o n of one phase and p r e c i p i t a t i o n o f a n o t h e r , a r e a c t i o n which commonly o c c u r s because of t h e f a c t t h a t t h e p H - s o l u b i l i t y c u r v e s i n t e r s e c t a t a v a l u e commonly met w i t h i n g r o u n d w a t e r s ; .
271
ppm
m/l
-5 ~ 1 0 ~
- 2.104 -- lo4 5 .lo3 - 2.lo3 - 103
-5~10~ - 2.102 102 -5 ~ 1 0 ~
-210.1lo1
5001
\n
a 4 20 0 Silica dissolver Calcite dissolves
4
5
6
7 PH
8
9 1 0 1 1
Fig.5.3. A . T o t a l s i l i c a and r e l a t i v e amounts of s i l i c a s p e c i e s i n s o l u t i o n i n w a t e r a t 25OC a s a f u n c t i o n of pH. B. R e l a t i o n s h i p between pH and t h e s o l u b i l i t i e s o f c a l c i t e , q u a r t z , and amorphous s i l i c a ( a f t e r B l a t t e t al., 1980).
M i n e r a l t r a n s f o r m a t i o n and r e p l a c e m e n t s The changing i n t e r s t i t i a l environment which r e s u l t s d u r i n g s a n d s t o n e b u r i a l r e s u l t s i n a number of m i n e r a l o g i c a l t r a n s f o r m a t i o n s and r e p l a c e m e n t s .
Different
i n t e r s t i t i a l c o n d i t i o n s may r e s u l t i n t h e r e p l a c e m e n t of framework c o n s t i t u e n t s o r p r e v i o u s l y formed cement by a n o t h e r ( t h e Locomorphic S t a g e of D a p p l e s , 1962). Examples i n c l u d e t h e d o l o m i t i z a t i o n of f e l d s p a r o r c a l c i t e cement and t h e r e p l a c e ment of a u t h i g e n i c q u a r t z by c a l c i t e .
The b e s t known m i n e r a l t r a n s f o r m a t i o n d u r i n g
d i a g e n e s i s a r e t h e s y s t e m a t i c m o d i f i c a t i o n s which t a k e p l a c e i n c l a y m i n e r a l s during sandstone b u r i a l (Table 5 . 3 ) .
The best-known of t h e s e i s t h e mixed l a y e r
illite-montmorillonite-illite t r a n s f o r m a t i o n ( P e r r y and Hower, 1970, 1 9 7 2 ) .
This
i n v o l v e s d e h y d r a t i o n and r e s u l t s i n m o d i f i c a t i o n of t h e p o r e w a t e r composition. TABLE 5 . 3 . Some of t h e c l a y m i n e r a l r e a c t i o n s which o c c u r d u r i n g s a n d s t o n e , d i a g e n e s i s ( a f t e r P e t t i j o h n e t a l . , 1972). Clay m i n e r a l formed
Precursor
Kaolinite
feldspar
Kaolini te
pore space
Illite
kaolinite
Muscovite
kaolinite
Illite
montmorillonite
Chlorite
montmorillonit e
Montmorillonite
volcanic glass
Glauconite
illite
Components added(+) or subtracted(-)
S t a g e of diagenesis
+(Fez+ ,Mg '+) -(Si02,H20,Na+,Ca2+)
During deep b u r i a l c l a y m i n e r a l s a r e t r a n s f o r m e d i n t o micas ( t h e Phyllomorphic S t a g e of D a p p l e s , 1 9 6 2 ) .
The f o r m a t i o n of s e r i c i t e , m u s c o v i t e , b i o t i t e and c h l o r i t e
i n t h i s manner r e p r e s e n t s t h e end p o i n t o f d i a g e n e s i s a n d marks t h e o n s e t o f metamorphism.
The f o r m a t i o n of micas i s a s s o c i a t e d w i t h t e x t u r a l c h a n g e s , i n p a r t i c u l a r
t h e development of q u a r t z i t i c t e x t u r e , a n d o n l y o c c u r s i n d e e p l y b u r i e d s a n d s t o n e s ( S t a g e s 4 , 5 and 6 of P e t t i j o h n e t a l . , 1972) ( s e e F i g . 5 . 1 ) .
213
T e x t u r a l changes d u r i n g d i a g e n e s i s The o v e r a l l f a b r i c o f a s a n d o r s a n d s t o n e i s dependent upon v a r i o u s f a c t o r s including:
1) manner of d e p o s i t i o n
2) g r a i n s i z e
and 5 ) p h y s i c a l and chemical compaction.
3) s o r t i n g
4 ) c l a s t shape,
The f a b r i c o f a s a n d s t o n e can be
s u b s t a n t i q l l y changed by compaction r e s u l t i n g from overburden p r e s s u r e .
The
importance o f compaction i s n o t o n l y t h a t i t changes t h e f a b r i c o f t h e s a n d s t o n e , c a u s i n g r e d u c t i o n i n p o r o s i t y and p e r m e a b i l i t y , b u t a l s o p l a y s a n i m p o r t a n t r o l e i n c o n t r o l l i n g t h e s u b s e q u e n t d i s t r i b u t i o n o f m i n e r a l cements ( e . g . Modarresi and G r i f f i t h s , 1963).
V a r i o u s schemes have been used t o s p e c i f y s a n d s t o n e f a b r i c
(Emery a n d G r i f f i t h s , 1954; Kahn, 1956a,b; A l l e n , 1962b; Mellon, 1964; G r i f f i t h s , 19671, and most r e l y h e a v i l y on t h e n a t u r e o f g r a i n c o n t a c t s ( F i g . 5 . 4 ) .
During depo-
s i t i o n and s h a l l o w b u r i a l t h e f a b r i c i s d e t e r m i n e d l a r g e l y by t h e p h y s i c a l mechanism of d e p o s i t i o n , g r a i n s h a p e , and t h e packing h e t e r o g e n e i t y ( A l l e n , 1969; Morrow, 1971). I n s a n d s t o n e s which have undergone e a r l y c e m e n t a t i o n and s u f f e r e d l i t t l e o r no compaction t h e main t y p e s of g r a i n c o n t a c t s a r e : convex.
t a n g e n t i a l , l o n g , and concavo-
With i n c r e a s i n g d e g r e e o f compaction t h e number of long g r a i n c o n t a c t s
t e n d s t o i n c r e a s e and i n d e e p l y b u r i e d sands (>2000m) l o n g and s u t u r e d c o n t a c t s a r e abundant ( e . g . T a y l o r , 1950; P h i p p s , 1969).
S u t u r e d c o n t a c t s , caused by
Y
Fig.5.4. The d e f i n i t i o n o f g r a i n c o n t a c t s i n s a n d s t o n e s which a r e used f o r f a b r i c a n a l y s i s ( a d a p t e d from G r i f f i t h s , 1967 and P e t t i j o h n e t a l . , 1972).
274 s o l u t i o n and r e c r y s t a l l i z a t i o n , a r e a c h a r a c t e r i s t i c f e a t u r e of d e e p l y b u r i e d s a n d s t o n e s and a good i n d i c a t i o n of compaction and i n c r e a s e i n geothermal g r a d i e n t . E x t e n s i v e p r e s s u r e s o l u t i o n under t h e s e c o n d i t i o n s i s i n d i c a t e d by abundant s t y l o l i t i c boundaries.
Evidence of p r e s s u r e compaction i s demonstrated by s a n d s t o n e s i n which
t h e volume of t h e p o r e s p a c e p l u s t h e volume of chemical cement i s l e s s t h a n t h e o r i g i n a l p o r e volume o f t h e s a n d .
The o c c u r r e n c e o f h e a l e d f r a c t u r e s and b e n t
m i n e r a l g r a i n s a r e f u r t h e r good i n d i c a t i o n s o f t h e e f f e c t s o f compaction. One of t h e major p h y s i c a l e f f e c t s o f s a n d s t o n e compaction i s t h e r e d u c t i o n i n p o r o s i t y and p e r m e a b i l i t y .
The i n c r e a s e i n q u a r t z c e m e n t a t i o n and p r e s s u r e s o l u t i o n
i n d e e p l y b u r i e d s a n d s t o n e s i s c l o s e l y dependent on p h y s i c a l compaction and t h e s e p r o c e s s e s , a c t i n g i n c o n c e r t , can c o n s i d e r a b l y reduce p o r o s i t y and p e r m e a b i l i t y . C o n t r i b u t i n g f a c t o r s i n c l u d e t h e d e f o r m a t i o n o f d u c t i l e framework g r a i n s and a l s o enhanced c l a y m i n e r a l a u t h i g e n e s i s i n deep s u b s u r f a c e b r i n e s .
The e f f e c t of
compaction and p r e s s u r e s o l u t i o n on p o r o s i t y r e d u c t i o n h a s been d e a l t w i t h theor e t i c a l l y by R i t t e n h o u s e ( 1 9 7 1 a ) .
He found t h a t t h e r e l a t i v e amounts of p o r o s i t y
l o s s due t o s o l u t i o n and c e m e n t a t i o n v a r y g r e a t l y depending upon g r a i n s h a p e , a n g u l a r i t y , packing d i r e c t i o n from which t h e p r e s s u r e was a p p l i e d , and t h e amount of s o l u t i o n which had o c c u r r e d .
A good i l l u s t r a t i o n of t h e s e r e l a t i o n s h i p s i s
g i v e n by P h i l l i p e t a l . (1963). R i t t e n h o u s e (1971b) a l s o made a t h e o r e t i c a l s t u d y of p o r o s i t y r e d u c t i o n caused by t h e compactional d e f o r m a t i o n o f d u c t i l e f r a g m e n t s .
Sandstones with a higher
p r o p o r t i o n of s u c h d u c t i l e g r a i n s might b e e x p e c t e d t o l o s e t h e i r p o r o s i t y on b u r i a l more r a p i d l y t h a n q u a r t z o s e s a n d s t o n e s .
Atwater and Miller (1965) i n a
d e t a i l e d s t u d y of'Miocene and younger sands i n s o u t h e r n L o u i s i a n a showed t h a t i n c r e a s i n g d e f o r m a t i o n of less r e s i s t a n t fragments was t h e main r e a s o n f o r t h e l i n e a r decrease i n p o r o s i t y with depth.
Nagtegaal (1978) h a s a l s o shown t h a t
l i t h i c s a n d s t o n e s a r e a l s o more s u s c e p t i b l e t o a l l f o u r p o r o s i t y and p e r m e a b i l i t y reducing processes:
mechanical compaction, p l a s t i c d e f o r m a t i o n , p r e s s u r e s o l u t i o n ,
and m i n e r a l o g i c a l a l t e r a t i o n of t h e framework c o n s t i t u e n t s . Red bed d i a n e n e s i s C o n t i n e n t a l r e d beds show many of t h e d i a g e n e t i c f e a t u r e s e x h i b i t e d by s a n d s t o n e s and e v i d e n t l y have a c o m p l i c a t e d p o s t - d e p o s i t i o n a l h i s t o r y .
Much o f o u r knowledge
of r e d bed d i a g e n e s i s stems from t h e work o f Walker (1967a, 1976) and Walker e t a l . (1978) who have s t u d i e d t h e d i a g e n e s i s i n f i r s t - c y c l e a r k o s i c d e s e r t a l l u v i u m i n t h e s o u t h w e s t e r n USA and n o r t h w e s t e r n New Mexico.
I n t h i s a r e a a number of d i a g e n e t i c
p r o c e s s e s have been d e s c r i b e d , i n c l u d i n g t h e mechanical i n f i l t r a t i o n of d e t r i t a l c l a y , t h e d i s s o l u t i o n of framework s i l i c a t e s by groundwater and t h e i r replacement by c l a y , and t h e a u t h i g e n e s i s of a s u i t e of m i n e r a l s i n c l u d i n g h a e m a t i t e .
The
u n d e r l y i n g importance of W a l k e r ' s work l i e s i n t h e f a c t t h a t i t d e m o n s t r a t e s two
275 important concepts:
1. I n t r a s t r a t a l s o l u t i o n c o n t r o l s t h e c h e m i s t r y of t h e
i n t e r s t i t i a l groundwater and hence t h e n a t u r e of t h e p r e c i p i t a t e d a u t h i g e n i c phases. 2 . The p r o g r e s s i v e d e s t r u c t i o n of l a b i l e p h a s e s means t h a t g r o s s changes i n m i n e r a l composition and t e x t u r e may t a k e p l a c e d u r i n g t h e d i a g e n e s i s of r e d b e d s . However, i t s h o u l d be s t r e s s e d t h a t n o t a l l a n c i e n t r e d beds a r e f i r s t c y c l e a r k o s e s l i k e t h o s e s t u d i e d by Walker, and many can be shown t o have been d e r i v e d from s o u r c e a r e a s less r i c h i n f e l d s p a r s and fefromagnesian m i n e r a l s .
Consequently,
t h e d i a g e n e t i c changes i n t h e s e r e d beds can be e x p e c t e d t o b e t h a t much l e s s extensive than those seen i n f i r s t cycle arkoses.
Similarly, the processes
d e s c r i b e d by Walker, because o f t h e i r time-dependant n a t u r e , c a n n o t be seen i n o p e r a t i o n i n a n c i e n t r e d beds and t h e i r p r e v i o u s e x i s t e n c e can o n l y be i n f e r r e d . N e v e r t h e l e s s , t h e s t u d y o f many a n c i e n t r e d beds p r o v i d e s compelling e v i d e n c e t h a t d i a g e n e t i c p r o c e s s e s , l i k e t h o s d e s c r i b e d by Walker, have been o p e r a t i v e and caused e x t e n s i v e p o s t - d e p o s i t i o n a l m o d i f i c a t i o n s .
This evidence includes the
p r e s e n c e of d i s s o l u t i o n f e a t u r e s , a p a u c i t y of u n s t a b l e s i l i c a t e g r a i n s and a v a r i e d a u t h i g e n i c s u i t e of m i n e r a l s i n c l u d i n g q u a r t z , f e l d s p a r , c a l c i t e and h a e m a t i t e . THE MECHANICAL INFILTRATION OF DETRITAL CLAY
Cenozoic a l l u v i u m of s o u t h w e s t e r n USA and n o r t h w e s t e r n Mexico S t u d i e s of c o a r s e g r a i n e d d e s e r t a l l u v i u m by Walker (1976) and Walker e t a l .
(1978) show t h a t when o r i g i n a l l y d e p o s i t e d i t i s e s s e n t i a l l y f r e e of i n t e r s t i t i a l clay matrix.
T h i s i s because s t r e a m flow i s a h i g h l y e f f i c i e n t p r o c e s s f o r t h e
s e p a r a t i o n o f c l a y from c o a r s e r g r a i n e d d e t r i t u s ; because c l a y has a much lower s e t t l i n g v e l o c i t y i t s t a y s i n s u s p e n s i o n i n t h e s u r f a c e w a t e r and i s c a r r i e d away a s the heavier coarser p a r t i c l e s a r e l e f t behind.
Modern a l l u v i u m from a wide
v a r i e t y of d e s e r t e n v i r o n m e n t s , and even t h a t d e p o s i t e d by ephemeral s t r e a m s , has been shown by Walker e t a l . (1978, p. 19) t o be e s s e n t i a l l y f r e e of i n t e r s t i t i a l c l a y a t t h e time of d e p o s i t i o n .
However, e x a m i n a t i o n o f samples c o l l e c t e d from
p i t s dug i n t o Holocene a l l u v i u m r e v e a l s t h a t w i t h i n a few f e e t below t h e s u r f a c e abundant i n t e r s t i t i a l c l a y o c c u r s w i t h i n t h e c o a r s e g r a i n e d d e t r i t u s .
This clay
i s commonly c o n c e n t r a t e d on t h e upper s u r f a c e s of b u r i e d p e b b l e s and shows a geopedal type f a b r i c (Crone, 1975).
The c l a y r e p r e s e n t s t h e e a r l y s t a g e s of
mechanical i n f i l t r a t i o n which o c c u r s a f t e r a p e r i o d o f s u r f a c e r u n - o f f .
Clay of
a s i m i l a r o r i g i n i s more abundant i n a l l u v i u m of P l e i s t o c e n e and L a t e T e r t i a r y a g e and i n t h i s s i t u a t i o n t h e c l a y forms w e l l - d e v e l o p e d c o a t i n g s on framework grains (Fig.5.5,
5.6).
M e c h a n i c a l l y i n f i l t r a t e d c l a y i s r e a d i l y r e c o g n i z e d by i t s h e t e r o g e n e o u s p e t r o graphic c h a r a c t e r i s t i c s .
I t c o n s i s t s o f v a r i o u s s i z e s of c l a y p l a t e l e t s which a r e
arranged p a r a l l e l t o the g r a i n surfaces.
I n t h e e a r l y s t a g e s of development t h e
c l a y may form s i n u o u s r i d g e s and b r i d g e s which form a t t h e m e n i s c i of p e l l i c u l a r
a.
CONCENTRATION IN VADOSE ZONE ,
-
0
.
o 0
O
CONCENTRATION NEAR THE WATER TABLE ,GROUND
,GROUND SURFACE SURFACE ZONE OF REWORKING
O
D
.
0
.
SURFACE
0
. .
0
- - - 0- - - - 0- - o
b.
o
0
WATER TABLE
. 0
0
.
.
IMPERMEABLE BARRIER
IMPERMEABLE 0ARRIER
c
CONCENTRATION ABOVE IMPERMEABLE BARRIERS
CONCENTRATION IN PROXIMITY TO SOURCE OF INFLUENT SEEPAGE
d d-I
MARGINAL CONGLOMERATES
...
. 7 .. c
d-2
SHIFTING DRAINAGEWAYS ACTIVE
d-3 INCISED DRAINAGEWAYS
ABANDONED
BEDROCK IMPERMEABLE BARRIER
IMPERMEABLE BARRIER
/
w a t e r between a d j a c e n t g r a i n s .
The c o m p o s i t i o n o f t h e c l a y is a l s o v a r i a b l e and
o f t e n resembles the clays i n the sediment source a r e a . Mechanical i n f i l t r a t i o n of c l a y i n t o permeable s e d i m e n t s i s p r o b a b l y v e r y i m p o r t a n t i n a r i d r e g i o n s where t h e d r a i n a g e i s i n f l u e n t b e c a u s e o f t h e low w a t e r table.
Thus whenever i n f l u e n t seepage accompanies a l l u v i a t i o n t h e mechanical
i n f i l t r a t i o n of c l a y w i l l o c c u r .
T y p i c a l l y , c l a y of t h i s t y p e i s i r r e g u l a r l y
d i s t r i b u t e d w i t h i n t h e s e d i m e n t because o f t h e v a r i a b l e n a t u r e o f i n f l u e n t seepage; t h e c l a y a c c u m u l a t i n g i n t h o s e p l a c e s where s u s p e n s i o n s e t t l i n g i s p o s s i b l e .
The
amount of c l a y which a c c u m u l a t e s depends upon a number o f f a c t o r s , i n c l u d i n g t h e amount of c l a y suspended i n t h e w a t e r a n d t h e f r e q u e n c y of e p i s o d e s o f i n f l u e n t seepage.
I n t h e Cenozoic d e p o s i t s of t h e a r i d r e g i o n s i n North America Walker (1976)
r e c o g n i z e d f o u r mechanisms which c o u l d a c c o u n t f o r t h e o b s e r v e d d i s t r i b u t i o n of mechanically i n f i l t r a t e d clay (Fig.5.5).
1) C o n c e n t r a t i o n s i n t h e vadose zone C o n c e n t r a t i o n s i n t h e vadose zone o c c u r when p e l l i c u l a r f i l m s o f w a t e r a r e n o t f u l l y developed on t h e framework g r a i n s .
Under t h e s e c o n d i t i o n s t h e i n f l u e n t
s u r f a c e w a t e r r e p l e n i s h e s t h e s e f i l m s and does n o t r e a c h t h e w a t e r t a b l e .
The
suspended c l a y i s t h u s r e t a i n e d by t h e p e l l i c u l a r w a t e r and a c c u m u l a t e s on t h e c u r f a c e s of t h e framework g r a i n s a s c o a t i n g s composed of a g g r e g a t e s of c l a y p l a t e l e t s orientated p a r a l l e l t o the surface of the grain.
I n p l a c e s c l a y - b r i d g e s may develop
between a d j a c e n t g r a i n s b e c a u s e o f t h e m e n i s c i between a d j a c e n t f i l m s of p e l l i c u l a r
water ( F i g . 5 . 6 ) . I n t h i s mechanism t h e c l a y accumulates from t h e s u r f a c e downwards and t h e t h i c k n e s s o f t h e zone o f c l a y c o n c e n t r a t i o n depends on how deep t h e i n f l u e n t seepage can p e n e t r a t e .
The s e d i m e n t s n e a r t h e s u r f a c e may be f r e e of i n f i l t r a t e d c l a y
b e c a u s e o f reworking i n c h a n n e l s and p e r i o d i c s h e e t flow.
I f t h i s occurs the
a c c u m u l a t i o n of i n f i l t r a t e d c l a y b e g i n s immediately below t h e zone o f a c t i v e reworking. 2) Concentrations near t h e water t a b l e
I n some c a s e s i n f i l t r a t e d c l a y forms nearyy h o r i z o n t a l l a y e r s which c u t primary d e p o s i t i o n a l s t r u c t u r e s s u g g e s t i n g t h a t t h e y formed n e a r former p o s i t i o n s of t h e w a t e r t a b l e (Fig.5.5B).
Walker (1976) s u g g e s t e d t h a t t h e c o n c e n t r a t i o n s could be
e x p l a i n e d by t h e d i f f e r e n t v e l o c i t i e s of w a t e r m i g r a t i o n , above and below t h e water t a b l e .
Above t h e w a t e r t a b l e i n f l u e n t s e e p a g e w a t e r , having r e p l e n i s h e d
p e l l i c u l a r f i l m s , moves r a p i d l y downward under t h e i n f l u e n c e o f g r a v i t y and c a r r i e s w i t h i t i t s s u s p e n s i o n l o a d of c l a y .
W i t h i n t h e s a t u r a t e d zone below t h e w a t e r
t a b l e , t h e m i g r a t i o n v e l o c i t y i s much lower because h e r e t h e groundwater moves under t h e i n f l u e n c e o f a v e r y low w a t e r t a b l e g r a d i e n t .
When t h e downward
218 m i g r a t i n g w a t e r r e a c h e s t h i s zone i t s v e l o c i t y i s much reduced and t h e suspended c l a y b e g i n s t o s e t t l e o u t , t e n d i n g t o become c o n c e n t r a t e d i n t h e upper p a r t o f t h e s a t u r a t e d zone where t h e i n i t i a l d e c r e a s e i n v e l o c i t y f i r s t o c c u r s .
Fluctuations
i n t h e p o s i t i o n of t h e w a t e r t a b l e w i l l t h u s i n c r e a s e t h e v e r t i c a l t h i c k n e s s of t h e zone o f c o n c e n t r a t i o n .
3 ) C o n c e n t r a t i o n s above impermeable b a r r i e r s C o n c e n t r a t i o n s o f m e c h a n i c a l l y i n f i l t r a t e d c l a y may o c c u r whenever t h e downward m i g r a t i o n o f i n f l u e n t s e e p a g e i s a r r e s t e d by a n impermeable b a r r i e r .
These b a r r i e r s
may be beds of f i n e - g r a i n e d s e d i m e n t w i t h i n c o a r s e a l l u v i u m , b u r i e d s o i l s o r even bedrock.
During p e r i o d s of i n t e r m i t t e n t s u r f a c e r u n - o f f p e r c h e d w a t e r t a b l e s may
form above such b a r r i e r s c r e a t i n g c o n d i t i o n s which a l l o w c l a y t o s e t t l e from s u s p e n s i o n i n t h e manner d e s c r i b e d i n 2 ) .
During d r y p e r i o d s when t h e i n f l u e n t
seepage t e m p o r a r i l y c e a s e s t h e p e r c h e d w a t e r t a b l e s may d r a i n away and under t h e s e c i r c u m s t a n c e s t h e remaining c l a y may form c o a t i n g s and b r i d g e s i n t h e manner d e s c r i b e d i n 1 ) . A l t e r n a t i o n of d r o u g h t and i n f l u e n t s e e p a g e c a u s e s t h e accumulation of l a r g e amounts of i n f i l t r a t e d c l a y i n t h e i n t e r m i t t e n t l y s a t u r a t e d zone; i t may u l t i m a t e l y f i l l i n t e r s t i t i a l v o i d s i n t h e a l l u v i u m above impermeable b a r r i e r s .
4 ) C o n c e n t r a t i o n s i n p r o x i m i t y t o s o u r c e s of i n f l u e n t s e e p a g e The c l o s e a s s o c i a t i o n between i n f l u e n t s e e p a g e and i n f i l t r a t i o n of c l a y c l e a r l y s u g g e s t s t h a t t h e amount of i n f i l t r a t e d c l a y s h o u l d g e n e r a l l y i n c r e a s e i n p r o x i m i t y t o p r i n c i p a l recharge a r e a s .
Thus m a r g i n a l f a n g l o m e r a t e s a r e l i k e l y t o c o n t a i n
more i n f i l t r a t e d c l a y t h a n d i s t a l s a n d s which a r e a long way from t h e r e c h a r g e a r e a and o n l y p e r i o d i c a l l y r e a c h e d by major s t o r m s .
S i m i l a r l y more c l a y i s i n -
f i l t r a t e d i n t o t h e a l l u v i u m b e n e a t h ephemeral c h a n n e l s than i t i s i n t h e i n t e r fluvial divides.
A s c h a n n e l s s h i f t p o s i t i o n s o does t h e zone of c l a y c o n c e n t r a t i o n
b u t where c h a n n e l s a r e i n c i s e d t h e y r e c h a r g e t h e same a r e a f o r a much l o n g e r p e r i o d and l a r g e r amounts of i n f i l t r a t e d c l a y accumulate ( F i g . 5 . 5 ) . The i n t r o d u c t i o n of c l a y i n t o p o r o u s , permeable s e d i m e n t s o c c u r s wherever i n f l u e n t seepage accompanies a l l u v i a t i o n .
Large amounts of c l a y c a n be added t o
c o a r s e g r a i n e d a l l u v i u m i n t h i s way and Walker e t a l . (1978, p . 2 1 ) r e p o r t t h a t t h e o l d e r P l e i s t o c e n e and T e r t i a r y d e p o s i t s of t h e s o u t h w e s t e r n USA and n o r t h w e s t e r n Mexico commonly c o n t a i n 10-20% of m a t r i x c l a y which o r i g i n a t e d i n t h i s manner.
T h i s p r o c e s s t h e r e f o r e makes i m p o r t a n t changes i n t h e t e x t u r e , m i n e r a l o g y ,
and chemical composition by a d d i n g m a t r i x t o sediment which was e s s e n t i a l l y m a t r i x f r e e when d e p o s i t e d . This p o s t - d e p o s i t i o n a l
i n f i l t r a t i o n of c l a y t h u s c a u s e s a d i a g e n e t i c d e c r e a s e
i n t h e t e x t u r a l m a t u r i t y ( F o l k , 1951) o f t h e sediment and may l e a d t o t h e f a l s e c o n c l u s i o n t h a t d e p o s i t i o n was by a mudflow o r some o t h e r p r o c e s s c h a r a c t e r i z e d by
219
M e c h a n i c a l l y i n f i l t r a t e d c l a y i n Cenozoic a l l u v i u m and a n c i e n t r e d beds. Fig.5.6. A . SEM photomicrograph of d e t r i t a l g r a i n c o a t e d w i t h c l a y s k i n (CS) which has been m e c h a n i c a l l y i n f i l t r a t e d . Upper G i l a Group ( P l i o c e n e - P l e i s t o c e n e ) , New Mexico. B . Enlargement of a r e a o u t l i n e d i n A showing broken c l a y s k i n . C . Enlargement of a r e a o u t l i n e d i n B showing c l a y p l a t e l e t s o r i e n t e d p a r a l l e l t o t h e g r a i n s u r f a c e and one s m a l l c r y s t a l o f a u t h i g e n i c f e l d s p a r , D . Thin s e c t i o n photomicrograph of m e c h a n i c a l l y i n f i l t r a t e d c l a y - o x i d e i n Lower Permian ( R o t l i e g e n d e s ) s a n d s t o n e . S o l e P i t B a s i n , North Sea. A-C a r e produced by c o u r t e s y of T.R. Walker.
280 weak s o r t i n g a c t i o n .
S i m i l a r l y t h e b u l k chemical c o m p o s i t i o n of t h e s e d i m e n t w i l l
be changed by t h e a d d i t i o n of c l a y m i n e r a l s which a r e n o r m a l l y r i c h e r i n aluminium and lower i n a l k a l i s and a l k a l i n e e a r t h s t h a n t h o s e o f t h e o r i g i n a l sediment. M e c h a n i c a l l v i n f i l t r a t e d c l a v i n a n c i e n t r e d beds G r a i n c o a t i n g s o f c l a y and i r o n o x i d e a r e a c h a r a c t e r i s t i c f e a t u r e o f a n c i e n t
red beds,
The r e l a t i v e proportions of i r o n oxide (haematite) and clay varies
considerably.
I n some c a s e s t h e g r a i n c o a t i n g s c o n s i s t s o f o n l y p a r t i c u l a t e
c r y s t a l s of h a e m a t i t e which have a p p a r e n t l y been p r e c i p i t a t e d i n s i t u and i n o t h e r s t h e r e may be t h i c k c l a y - o x i d e p e l l i c l e s which resemble t h e c l a y c u t a n s of Brewer ( 1 9 6 4 ) .
Such g r a i n s c o u l d c o n c e i v a b l y have been d e r i v e d from upland
s o i l s , o r more l i k e l y , from s o i l s which formed i n a d j a c e n t f l o o d p l a i n a r e a s . More u s u a l l y t h e g r a i n c o a t i n g s c o n s i s t of a c l a y - o x i d e p e l l i c l e of v a r i a b l e t h i c k n e s s and geopedal t e x t u r e s i n c l u d i n g meniscus b r i d g e s a r e cornon., There can be l i t t l e doubt t h a t t h e s e f e a t u r e s were formed by t h e m e c h a n i c a l i n f i l t r a t i o n of c l a y i n t h e manner s u g g e s t e d by Walker ( 1 9 7 6 ) .
An i m p o r t a n t f e a t u r e of m e c h a n i c a l l y - i n f i l t r a t e d c l a y i s t h a t i t i s n o t r e d when d e p o s i t e d b u t o n l y reddens w i t h time a f t e r b e i n g i n c o n t a c t w i t h oxygenated groundwater.
I n Cenozoic a l l u v i u m t h e r e d d e n i n g of i n f i l t r a t e d c l a y i s s i g n i f i c a n t
because i t t h u s r e p r e s e n t s t h e f i r s t s t a g e of p i g m e n t a t i o n i n r e d bed f o r m a t i o n . I t seems l i k e l y t h a t i n a n c i e n t sandy a l l u v i u m t h e i n i t i a l s t a g e s of r e d d e n i n g occur
l a r g e l y a s a r e s u l t of t h e o x i d a t i o n o f m e c h a n i c a l l y - i n f i l t r a t e d and d e t r i t a l c l a y . DISSOLUTION OF FRAMEWORK SILICATES I n g e n e r a l t h e a l t e r a t i o n of s i l i c a t e s f o l l o w s G o l d i c h ' s m i n e r a l s t a b i l i t y s e r i e s which i s t h e r e v e r s e of Bowen's r e a c t i o n s e r i e s .
T h i s sequence o f a l t e r a t i o n
r e s u l t s because of t h e v a r i a t i o n i n bond s t r e n g t h s between oxygen and c a t i o n s i n the s i l i c a t e minerals (Keller, 1957).
M i n e r a l s which a r e low i n Bowen's r e a c t i o n
s e r i e s s u c h a s a u g i t e , h o r n b l e n d e , and p l a g i o c l a s e t e n d t o be a l t e r e d f i r s t w h i l s t q u a r t z , m u s c o v i t e and o r t h o c l a s e a r e t h e most s t a b l e .
The most s t a b l e bond i n
s i l i c a t e s i s t h e S i - 0 bond and d i f f e r e n c e s i n t h e s t r e n g t h o f t h i s bond between t h e d i f f e r e n t s i l i c a t e groups a r e v e r y s m a l l compared t o t h e d i f f e r e n c e s between oxygen and o t h e r c a t i o n s .
T h e r e f o r e , s i l i c a t e s w i t h h i g h S i / O r a t i o s a r e more
s t a b l e r e g a r d l e s s of which m e t a l l i c i o n s b a l a n c e t h e s t r u c t u r e e l e c t r i c a l l y . Within e a c h of t h e m a j o r s i l i c a t e groups t h e s p e c i e s of m e t a l l i c i o n p r e s e n t d e t e r m i n e s t h e p o s i t i o n of t h e m i n e r a l i n t h e w e a t h e r i n g s t a b i l i t y s e r i e s (Table 5.4).
The o r d e r of i n c r e a s i n g s t r e n g t h of t h e o x y g e n - m e t a l l i c c a t i o n bonds i s e x a c t l y t h e r e v e r s e o f t h e o r d e r of r e s i s t a n c e t o w e a t h e r i n g of t h e m i n e r a l s i n which t h e c a t i o n s a r e i m p o r t a n t .
F o r example, o r t h o c l a s e i s one of t h e more
281 r e s i s t a n t p h a s e s i n Bowen's r e a c t i o n s e r i e s y e t potassium-oxygen bonds a r e v e r y weak.
F o r s t e r i t e , on t h e o t h e r hand, w e a t h e r s r a p i d l y y e t t h e magnesium-oxygen
bond i s r e l a t i v e l y s t r o n g .
The r e a s o n f o r t h i s l i e s i n t h e s t r e n g t h of t h e s i l i c o n -
oxygen bond which p r e v e n t s t h e o r t h o c l a s e s t r u c t u r e from d i s i n t e g r a t i o n d e s p i t e t h e r a p i d removal of p o t a s s i u m i o n s .
F o r s t e r i t e h a s few s u c h bonds and w i t h o u t t h e
s t a b i l i z i n g magnesium atoms t h e s t r u c t u r e i s v e r y u n s t a b l e and r a p i d l y c o l l a p s e s . TABLE 5.4.
Bond s t r e n g t h s between oxygen and common c a t i o n s , c a l c u l a t e d from a r e f e r e n c e s t a t e o f gaseous i o n s (from t e l l e r . 1957). I on
Energy of f o r m a t i o n (Kcal/mole)
K+
299
+ Na
322
H+(in OH-)
5 15
Ca
2+
8 39 9 12
Mg2+ Fe
2+
9 19
A 1 3+
1793
*14+
1878
4+ Ti
2882
si4+
(in (in (in (in (in (in
tectosilicates) phyllosilicates) double-chain i n o s i l i c a t e s ) single-chain i n o s i l i c a t e s ) sorosilicates) nesosilicates)
3110 3123 3127 3131 3137 3147
The d i s s o l u t i o n of s i l i c a t e g r a i n s t a k e s p l a c e h y d r o l y s i s .
Sodium, c a l c i u m ,
and magnesium a r e s e p a r a t e d from t h e s i l i c a t e framework r a t h e r e a s i l y and a r e soon c a r r i e d away i n aqueous s o l u t i o n , whereas i r o n , aluminium, and t i t a n i u m t e n d t o remain behind.
T h i s i s c o n s i s t e n t w i t h t h e t h e o r e t i c a l p r e d i c t i o n ( T a b l e 5 . 4 ) and
i s u s u a l l y observed i n n a t u r e ( G o l d i c h , 1938; Wahlstrom, 1948).
The a c t u a l n a t u r e
of t h e h y d r o l y s i s r e a c t i o n i s r a t h e r c o m p l i c a t e d and depends upon t h e composition of t h e m i n e r a l i n v o l v e d . 5KA1Si308
F o r p o t a s h f e l d s p a r i t may be w r i t t e n :
+ 4H+ + 4HC03- +
16H20
+
(Feldspar)
KA15Si7020(OH)4
+ 8H4Si04 + 4K+ + 4HC03-
( I l l ite)
and under extreme c o n d i t i o n s k a o l i n i t e may form from i l l i t e : 2KA15Si7020(OH)4 + 2H+ 2HC0313H20 -p 5A12Si205(0H)4 + 4H4Si04
+
(Illite)
+
(Kaolinite)
(5.1)
+ 2K+ + 2HC03(5.2)
The h y d r o l y s i s of framework s i l i c a t e s i s f u n d a m e n t a l l y i m p o r t a n t i n r e d bed diagenesis.
Not o n l y does i t m a t e r i a l l y change t h e framework m i n e r a l o g y b u t
h y d r o l y s i s a l s o p r o v i d e s t h e major s o u r c e of i o n s from which a u t h i g e n i c m i n e r a l p h a s e s may form. Feldspars Both t h e major groups o f t h e f e l d s p a r m i n e r a l s , t h e a l k a l i f e l d s p a r s and t h e p l a g i o c l a s e s , commonly o c c u r a s d e t r i t a l g r a i n s i n r e d beds and may show e v i d e n c e of e x t e n s i v e i n s i t u d i s s o l u t i o n .
I n g e n e r a l t h e a l k a l i f e l d s p a r s t e n d t o be more
s t a b l e than t h e p l a g i o c l a s e s and t h e r e a r e a l s o v a r i a t i o n s w i t h i n e a c h group; m i c r o c l i n e i s more s t a b l e t h a n o t h e r a l k a l i f e l d s p a r s and s o d i c p l a g i o c l a s e i s more s t a b l e than c a l c i u m r i c h f e l d s p a r s .
Individual grains of feldspar frequently
r e v e a l marked h e t e r o g e n e i t i e s s u c h a s c o m p o s i t i o n a l z o n i n g , p e r t h i t e s of v a r i o u s k i n d s , p o i k i l i t i c t e x t u r e s , and replacement f i l m s and c o a t i n g s .
The i d e a l framework
s t r u c t u r e i s a l s o c o m p l i c a t e d by l o c a l and d i s t a n t o r d e r i n g i n t h e d i s t r i b u t i o n of s i l i c o n and aluminium i o n s .
The i n h e r e n t c o m p l e x i t y of t h e f e l d s p a r s must t h e r e f o r e
have a s i g n i f i c a n t e f f e c t on any d i s s o l u t i o n p r o c e s s e s . There has been a c o n s i d e r a b l e amount of e x p e r i m e n t a l work on t h e i n i t i a l h y d r o l y s i s of f e l d s p a r s (Correns and von E n g e l h a r d t , 1939; W o l l a s t , 1967; Helgeson,
1971).
Correns and von E n g e l h a r d t (1939) found t h a t p o t a s s i u m , s i l i c a , and
aluminium were r e l e a s e d i n t r u e s o l u t i o n d u r i n g t h e breakdown o f a d u l a r i a a l t h o u g h t h e r a t i o s i m p l i e d t h a t a r e s i d u a l c o a t i n g of
hydrous aluminium s i l ; c a t e ,
with a
Si/A1 g r e a t e r than t h a t of k a o l i n i t e , formed around t h e decomposing g r a i n s .
These
a u t h o r s i n f e r r e d t h a t t h e c o a t i n g m a i n t a i n e d a c o n s t a n t t h i c k n e s s and i n f l u e n c e d t h e r a t e of t h e a l t e r a t i o n r e a c t i o n , a view which i s c o n s i s t e n t w i t h l a t e r experiments on o r t h o c l a s e by W o l l a s t (1967).
Helgeson (1971) p o s t u l a t e d t h e
s e q u e n t i a l a p p e a r a n c e of i n t e r m e d i a t e r e a c t i o n p r o d u c t s such a s g i b b s i t e , k a o l i n i t e , and mica s s zoned s u r f a c e l a y e r s around t h e decomposing f e l d s p a r g r a i n s .
Such a
r e s i d u a l l a y e r h a s n o t been d i r e c t l y observed a s y e t and s c a n n i n g e l e c t r o n microscope (SEM) s t u d i e s r e v e a l t h a t t h e i n i t i a l s t a g e s o f h y d r o l y s i s a r e c h a r a c t e r i z e d by well-developed c o r r o s i o n f i g u r e s on c l e a v a g e s u r f a c e s , a f e a t u r e which i m p l i e s continuous d i s s o l u t i o n .
T h i s i s t h e c a s e i n e x p e r i m e n t a l ' c o n d i t i o n s (Tchoubar,
1965), i n s o i l s Wilson (1975), and d u r i n g t h e e a r l y s t a g e s of s a n d s t o n e d i a g e n e s i s (Walker e t a l . , 1978).
I t is a l s o apparent t h a t various feldspar species a r e
a f f e c t e d by c o n t i n u o u s d i s s o l u t i o n . I n t h e f i r s t c y c l e d e s e r t a l l u v i u m s t u d i e d by Walker e t a l . (1978) f e l d s p a r g r a i n s which have been e t c h e d o r hollowed o u t by d i s s o l u t i o n a r e a common f e a t u r e
(Fig.5.7).
Only p l a g i o c l a s e f e l d s p a r s a r e s e r i o u s l y a f f e c t e d by t h e d i s s o l u t i o n
w h i l s t potassium f e l d s p a r has n o t y e t been d i s c e r n i b l y a f f e c t e d .
The d i s s o l u t i o n
of p l a g i o c l a s e t e n d s t o b e i r r e g u l a r w i t h t h e g r a i n s showing i r r e g u l a r l y e t c h e d ,
283
Fig.5.7. P a r t i a l l y d i s s o l v e d f e l d s p a r s i n Cenozoic a l l u v i u m . A , B t h i n s e c t i o n s ; C-D SEM photomicrographs. A . P e r i p h e r a l l y d i s s o l v e d p l a g i o c l a s e g r a i n . D i s s o l u t i o n v o i d s (DV) s u r r o u n d t h e r e l i c t g r a i n a n d c l a y s k i n (CS) marks t h e o r i g i n a l g r a i n boundary. Thin s e c t i o n ? P l i o c e n e f a n g l o m e r a t e , CaZon R o j o , Baja C a l i f o r n i a . B. I n t e r n a l l y d i s s o l v e d p l a g i o c l a s e ( P I . Most of t h e o r i g i n a l g r a i n now occupied by d i s s o l u t i o n v o i d s . Same d e t a i l s a s A . C . P l a g i o c l a s e p a r t i a l l y r e p l a c e d by c l a y (RC) and s u b s e q u e n t l y d i s s o l v e d , forming d i s s o l u t i o n v o i d s (DV). Same d e t a i l s a s A and B. D . P a r t i a l l y d i s s o l v e d p l a g i o c l a s e g r a i n ( P ) showing well-developed d i s s o l u t i o n v o i d s (DV). Tesuque Formation (Miocene-Pliocene), n e a r Dixon, New Mexico. Produced by c o u r t e s y of T.R. Walker.
or fluted, surface textures.
The n a t u r e of t h e r e l i c t g r a i n s i n d i c a t e t h a t d i s -
s o l u t i o n may proceed inward from t h e p e r i p h e r y of t h e g r a i n , o r i t may s e l e c t i v e l y remove t h e i n t e r i o r o f t h e g r a i n s and produce a hollow " s h e l l " .
G r a i n s may be
completely removed by t h i s p r o c e s s l e a v i n g no c l u e of t h e i r o r i g i n a l p r e s e n c e o t h e r than t h e d i s s o l u t i o n v o i d .
Commonly, however, d i s s o l v e d g r a i n s show c o a t i n g s of
i n f i l t r a t e d o r a u t h i g e n i c c l a y which a r e more r e s i s t a n t t o d i s s o l u t i o n and t h e s e may be l e f t behind t o " g h o s t " t h e o r i g i n a l g r a i n a f t e r i t has c o m p l e t e l y d i s a p p e a r e d D i s s o l u t i o n v o i d s o f t h i s t y p e may become f i l l e d w i t h cement and t h u s p r e s e r v e d , b u t o f t e n t h e y c o l l a p s e and t h e c l a y c o a t i n g becomes mixed w i t h t h e i n t e r s t i t i a l matrix.
When t h i s happens t h e r e i s no r e c o r d of t h e p r e v i o u s e x i s t e n c e o f t h e
dissolution void. The d i s s o l u t i o n of f e l d s p a r i n a n c i e n t s a n d s t o n e s i s w i d e l y r e p o r t e d ( M i l l e r ,
1955; Heald and L a r e s e , 1973; F l e s c h and Wilson, 1974; Waugh, 1 9 7 8 ) .
Potassium
f e l d s p a r s show e v i d e n c e o f more e x t e n s i v e d i s s o l u t i o n t h a n t h e Cenozoic a l l u v i u m d e s c r i b e d by Walker e t a l . (1978) and even though p l a g i o c l a s e may s u f f e r p r e f e r e n t i a l d e s t r u c t i o n d u r i n g t r a n s p o r t ( e . g . P i t t m a n , 1 9 6 9 ) , j u d g i n g from t h e r e l a t i v e abundance of potassium f e l d s p a r and p l a g i o c l a s e i n a n c i e n t c o n t i n e n t a l r e d beds i t would a p p e a r t h a t t h e r e has been w h o l e s a l e d i s s o l u t i o n o f t h e more unstable plagioclase feldspars (Table 5 . 5 ) .
The a v e r a g e s e d i m e n t c o n t a i n s a b o u t
5% f e l d s p a r ( g l a t t e t a l . , 1980) b u t t h i s i s c o n s i d e r a b l y less t h a n r e d beds which f r e q u e n t l y c o n t a i n more than 8-10% f e l d s p a r , t h e m a j o r i t y o f which i s p o t a s h feldspar. The p r e f e r e n t i a l d j s s o l u t i o n o f p l a g i o c l a s e i s t h u s c o n s i d e r e d t o b e a n important diagenetic process.
A s w e l l a s changing t h e b u l k m i n e r a l o g i c a l and chemical com-
p o s i t i o n of t h e s e d i m e n t i t a l s o r e d u c e s t h e a p p a r e n t m i n e r a l o g i c a l m a t u r i t y and by i n c r e a s i n g t h e amount of i n t e r s t i t i a l c l a y m a t r i x c a u s e s a n a p p a r e n t d e c r e a s e i n textural maturity. Micas The micas do n o t show obvious d i s s o l u t i o n f e a t u r e s d u r i n g i n t r a s t r a t a l a l t e r a t i o n but i n keeping with t h e complexity of t h e i r behaviour i n s o i l s , probably y i e l d d i v e r s e a l t e r a t i o n p r o d u c t s , which depend upon t h e n a t u r e o f t h e p a r e n t m i n e r a l and a l s o t h e c o n d i t i o n s i n t h e i n t e r s t i t i a l environment.
The i n f l u e n c e of s t r u c t u r e
i s w e l l - i l l u s t r a t e d by t h e f a c t t h a t t r i o c t a h e d r a l micas ( e . g . b i o t i t e ) a r e more s u s c e p t i b l e to weathering than t h e i r dioctahedral counterparts ( e . g . muscovite) (Deer e t a l . , 1966, p . 193-200; Weaver and P o l l a r d , 1 9 7 3 ) .
The t r i o c t a h e d r a l micas
a r e r e a d i l y c o n v e r t e d t o v e r m i c u l a t e d u r i n g w e a t h e r i n g , a p r o c e s s which i s a p p a r e n t l y connected w i t h t h e o r i e n t a t i o n o f t h e hydroxyl d i p o l e i n t h e o c t a h e d r a l s h e e t ( B a s s e t t , 1960).
I n t r i o c t a h e d r a l micas t h e hydroxyl d i p o l e i s normal t o the
s i l i c a t e s h e e t s o t h a t t h e p r o t o n i c c h a r g e i s a d j a c e n t t o t h e p o t a s s i u m i o n , which
285
i s t h e r e f o r e , i n an unstable p o s i t i o n .
I n t h e d i o a c t a h e d r a l micas t h e hydroxyl
group i s i n c l i n e d and moves t h e p r o t o n f u r t h e r from t h e potassium i o n which i s then i n a more s t a b l e p o s i t i o n between t h e s i l i c a t e s h e e t s . TABLE 5 . 5 .
Comparison of t h e a v e r a g e f e l d s p a r c o n t e n t of v a r i o u s p l u t o n i c i g n e o u s r o c k s w i t h t h a t o f a n c i e n t r e d beds. The r e s u l t s i n d i c a t e t h e r e l a t i v e enrichment of p o t a s h f e l d s p a r i n a n c i e n t r e d b e d s , Data a r e from 1. S e l l e y (1966) 2. Simonen and Kuovo (1955) 3. T u r n e r and McD. Whitaker (1976) 4. Krynine (1950) 5. Huckenholtz (1963).
Granite Syeni t e Granodiorit e Quartz d i o r i t e Diorite Gabbro
P o t a s h F e l d s p a r (%)
P l a g i o c l a s e (7")
40 12
26 12 46 56 64 65
15 6 3 0
Precambrian 1 T o r r i d o n i a n Sands tone J o t n i a n Sandstone'
27
3 1
Palaeozoic R i n g e r i k e Sands t o n e 3
8.3
1
Mesozoic 4 Newark Group
24
6
Cenozoic 5 Oligocene Arkose
18.5
21
0.4
There a r e many f i e l d and e x p e r i m e n t a l s t u d i e s which show t h a t t h e breakdown of b i o t i t e i s a complex p r o c e s s .
There i s ample e v i d e n c e t o i n d i c a t e t h a t b i o t i t e
responds i n d i f f e r e n t ways t o v a r y i n g c o n d i t i o n s d u r i n g d i a g e n e s i s ( T u r n e r and A r c h e r , 1977).
T h e o r e t i c a l c o n s i d e r a t i o n s s u g g e s t t h a t b i o t i t e c o u l d weather t o
v e r m i c u l i t e under a c i d c o n d i t i o n s and t o v e r m i c u l i t e p l u s m o n t m o r i l l o n i t e under n e u t r a l and a l k a l i n e c o n d i t i o n s .
T h i s i s c o n s i s t e n t w i t h t h e f a c t t h a t t h e most
abundant mica c l a y i n c a l c a r e o u s o r a l k a l i n e s o i l s i s m o n t m o r i l l o n i t e (McNeal and S a n s o t e r r a , 1964).
The t r a n s f o r m a t i o n of b i o t i t e t o v e r m i c u l i t e a l t h o u g h
known t o o c c u r w i d e l y i n s o i l s i s o n l y r a r e l y r e p o r t e d t o have o c c u r r e d i n r e d beds ( e . g . S c h l u g e r and Roberson, 1 9 7 5 ) .
The b i o t i t e - j v e r m i c u l i t e
transformation
i s known t o be complex, a n d e a r l y work (Walker, 1949) s u g g e s t e d t h a t t h e l o s s of p o t a s s i u m was accompanied by o x i d a t i o n , s u b s t i t u t i o n of hydroxyl f o r oxygen, and t h e loss of o c t a h e d r a l i r o n and magnesium.
The l o s s of l a y e r c h a r g e a s s o c i a t e d
w i t h v e r m i c u l i t i z a t i o n can be g e n e r a l l y a c c o u n t e d f o r by t h e o x i d a t i o n of o c t a h e d r a l i r o n ( N o r r i s h , 1972).
The a p p a r e n t s c a r c i t y o f v e r m i c u l i t e i n r e d beds
may be due t o t h e f a c t t h a t b i o t i t e o x i d a t i o n may n o t have been accompanied by vermiculitization.
I t i s p o s s i b l e f o r v i r t u a l l y complete o x i d a t i o n of b i o t i t e w i t h
l i t t l e o r no v e r m i c u l i t i z a t i o n even though a s u b s t a n t i a l p r o p o r t i o n of t o t a l potassium
2 86
Fig.5.8. Thin s e c t i o n photomicrographs (PPL) showing t h e f o r m a t i o n o f h a e m a t i t e a f t e r b i o t i t e A. Randomly s c a t t e r e d pseudohexagonal f l a k e s of h a e m a t i t e B. Thin t r a n s l u c e n t s h e e t s of h a e m a t i t e C . Thin opaque s h e e t s of h a e m a t i t e D. T h i c k e r , d i s c o n t i n u o u s , s h e e t s of opaque h a e m a t i t e E . P r e f e r e n t i a l development of h a e m a t i t e i n zones k i n k e d due t o compaction F. Thick c o n t i n u o u s s h e e t s o f opaque h a e m a t i t e . T h i s i s t h e s t a g e of r e p l a c e m e n t p r i o r t o complete pseudomorphing of b i o t i t e f l a k e s .
may have been l o s t (Walker, 1949; Seddoh and P e d r o , 1974).
B i o t i t e o x i d a t i o n can
thus p r o c e e d w i t h o r w i t h o u t accompanying v e r m i c u l i t i z a t i o n . must be compensated by o t h e r changes i n t h e b i o t i t e .
The v a l e n c y changes
Three p o s s i b l e mechanisms
have been p o s t u l a t e d and a r e f o r m u l a t e d below f o r a n n i t e t h e f e r r o u s end-member of t h e p h l o g o p i t e - b i o t i t e series (Farmer e t a l . ,
1971):
loss of i n t e r l a y e r c a t i o n s : ( S i 3 A 1 0 1 0 ) F e ~ ( O H ) 2K
+
f0,
+ hH20
l o s s o f hydroxyl p r o t o n s : (Si3A1010)Fe32+ (OH)2 K + %02
+
(Si3A1010)Fe22+ Fe 3+ (OH)2
(Si3A1010)Fe 2+ Fe 3+0 2
K
+ KOH
+ H20
(5.3)
(5.4)
2
l o s s of o c t a h e d r a l i r o n : (Si3A1010)Fe32+ (OH)* K
+
+ %H20 +
%02
( S i 3 A 1 0 1 0 ) F e ~ ( O H ) 2K
+ FeO
OH
(5.5)
The l o s s of i n t e r l a y e r c a t i o n s c a n o n l y be of minor importance a s t h e amount of i r o n o x i d i z e d d u r i n g v e r m i c u l i t i z a t i o n i s v e r y much g r e a t e r t h a n t h e l a y e r c h a r g e . The second mechanism which i n v o l v e s t h e c o n v e r s i o n of hydroxyl t o o x i d e i o n s
i s w e l l e s t a b l i s h e d f o r t h e r m a l o x i d a t i o n of b i o t i t e s and i t may a l s o be i m p o r t a n t i n t h e o x i d a t i v e w e a t h e r i n g o f b i o t i t e (Farmer e t a l . , 1971) a l t h o u g h a g e n e r a l a p p r a i s a l i s d i f f i c u l t b e c a u s e of t h e problem of d i s t i n g u i s h i n g e x c e s s w a t e r from c o n s t i t u t i o n a l hydroxyl (Newman and Brown, 1966; R i m s a i t e , 1967, 1970). The l o s s of o c t a h e d r a l i r o n h a s been p o s t u l a t e d f o r some time i n o r d e r t o e x p l a i n t h e lower i r o n c o n t e n t of w e a t h e r e d o x i d i z e d b i o t i t e s i n s o i l s when compared w i t h f r e s h b i o t i t e from t h e p a r e n t r o c k (Walker, 1949; Wilson, 1 9 7 0 ) .
However, o x i d i z e d
b i o t i t e s do n o t n e c e s s a r i l y have lower i r o n c o n t e n t s ( R i m s a i t e , 1967) and t h e p r e s e n c e of i n t e r l a y e r i r o n o x i d e s h a s been a b l y demonstrated by Farmer e t a l . (1971). These a u t h o r s s u g g e s t e d t h a t e l e c t r o n t r a n s f e r from t h e o c t a h e d r a l f e r r o u s i o n s i s i n i t i a l l y mediated through a hydroxyl o r o x i d e i o n .
This i n i t i a l s t e p probably
i n v o l v e s t h e t r a n s f e r o f a hydrogen atom from a hydroxyl group t o t h e o x i d a n t . L a t e r when remaining f e r r o u s i o n s a r e c o o r d i n a t e d o n l y t o o x i d e i o n s e l e c t r o n s may t r a n s f e r d i r e c t l y from o x i d e i o n s t o t h e o x i d a n t , o r i n d i r e c t l y through b r i d g i n g water molecules. (FeFO;-)5+;
I n t h i s way t h e g r o u p i n g :
(Fe2+Fe3+O:-)4+
i s converted t o
t h e r e s u l t a n t l o c a l c o n c e n t r a t i o n of p o s i t i v e c h a r g e s i s u n s t a b l e
and a (Fe3+02-)+ g r o u p i n g i s e j e c t e d through hexagonal h o l e s i n t h e s i l i c a t e s h e e t t o an i n t e r l a y e r space.
The i n i t i a l i n t e r l a y e r o x i d e i s p r o b a b l y amorphous i r o n
hydroxide o r a c r y s t a l l i n e phase o f p - F e O O H . There i s l i t t l e doubt t h a t t h e o x i d a t i v e decomposition of b i o t i t e i s a charact e r i s t i c f e a t u r e of e a r l y d i a g e n e s i s i n c o n t i n e n t a l a l l u v i u m .
The f a t e of t h e
i n t e r l a y e r o x i d e s does however v a r y presumably a c c o r d i n g t o t h e i n t e r s t i t i a l conditions.
Walker (1967a, 1976) and Walker e t a l . (1978) have d e s c r i b e d i r o n -
r i c h h a l o s around decomposing b i o t i t e g r a i n s and have concluded t h a t t h e s e r e p r e s e n t t h e d i s t r i b u t i o n o f i r o n by oxygenated p o r e w a t e r u l t i m a t e l y forming pigmentary
288
Fig.5.9. SEM photomicrographs showing t h e p r o g r e s s i v e r e p l a c e m e n t of b i o t i t e by s h e e t s of h a e m a t i t e c r y s t a l l i t e s p a r a l l e l t o (001). A l l from t h e Old Red Sandstone of t h e Gamrie O u t l i e r , S c o t l a n d , A. Oxidized b i o t i t e showing i n c i p i e n t a l t e r a t i o n on c l e a v a g e s u r f a c e . B . D e t a i l of c l e a v a g e s u r f a c e w i t h i n c i p i e n t a l t e r a t i o n . Note a b s e n c e of c l e a r l y d e f i n e d c r y s t a l forms. C. Cleavage s u r f a c e showing abundant pseudohexagonal c r y s t a l l i t e s of h a e m a t i t e , D . Advanced s t a g e of a l t e r a t i o n showing haematite c r y s t a l l i t e s coalesced i n t o a s i n g l e sheet.
289
T.S.
S.E.M. I
t I
t
I
I
I
r
I
t
f
.
L
2
a
U
I
I
Fig.5.10. Schematic diagram showing t h e model f o r t h e f o r m a t i o n o f h a e m a t i t e pseudomorphs a f t e r b i o t i t e i n Devonian r e d beds a s s e e n i n t h i n s e c t i o n (TS) and s c a n n i n g e l e c t r o n microscopy (SEM). Four s t a g e s a r e r e c o g n i z e d : 1 * S c a t t e r e d pseudohexagonal f l a k e s o f t r a n s l u c e n t h a e m a t i t e i n i n t e r l a y e r p o s i t i o n s . 2 = Thin d i s c o n t i n u o u s s h e e t s p a r a l l e l t o t h e b i o t i t e c l e a v a g e . 3 = Continuous s h e e t s of opaque h a e m a t i t e . 4 = Complete pseudomorph formed by s h e e t s of h a e m a t i t e packed p a r a l l e l t o t h e b i o t i t e cleavage..
I
U
haematite. (1974).
S i m i l a r h a l o e s have been d e s c r i b e d i n C r e t a c e o u s r e d beds by McBride
B i o t i t e s i n b o t h Cenozoic a l l u v i u m and many a n c i e n t r e d beds show
i n t e r l a y e r s h e e t s of h a e m a t i t e .
These have been s t u d i e d i n d e t a i l i n t h e Old Red
Sandstone of S c o t l a n d by T u r n e r a n d Archer (1977) who d e s c r i b e d a complete sequence of b i o t i t e a l t e r a t i o n r a n g i n g from a p p a r e n t l y f r e s h g r a i n s t o t h o s e c o m p l e t e l y r e p l a c e d by h a e m a t i t e (Fig.5.8).
The i n i t i a l s t a g e s of o x i d a t i o n a r e marked by t h e
development of t h i n t r a n s l u c e n t f l a k e s of h a e m a t i t e a l o n g c l e a v a g e p l a n e s when s e e n i n thin section.
I n k e e p i n g w i t h t h e model o f Farmer e t a l . (1971) i t i s l i k e l y
t h a t t h e s e were i n i t i a l l y
FeOOH
and have s u b s e q u e n t l y undergone i n v e r s i o n .
With p r o g r e s s i v e o x i d a t i o n t h e s e f l a k e s b e g i n t o c o a l e s c e l a t e r a l l y and e v e n t u a l l y t h i n d i s c o n t i n u o u s s h e e t s of h a e m a t i t e become v e r y a b u n d a n t .
These a r e t h i c k e r i n
more e x t e n s i v e l y a l t e r e d b i o t i t e g r a i n s s u g g e s t i n g t h a t i n d i v i d u a l s h e e t s o f h a e m a t i t e a r e s t a c k e d one upon top of t h e o t h e r .
Scanning e l e c t r o n microscope
s t u d i e s confirm t h a t t h e s e i n d i v i d u a l s h e e t s of h a e m a t i t e a r e formed from c o a l e s c e d , s m a l l pseudohexagonal f l a k e s of h a e m a t i t e ( F i g . 5 . 9 ) .
P r e c i s e i n s i t u compositional
a n a l y s i s of t h e f l a k e s i s n o t p o s s i b l e u s i n g e n e r g y - d i s p e r s i v e X-ray a n a l y s i s b u t Turner and Archer (1977) were a b l e t o show t h a t i r o n was t h e major e l e m e n t i n t h e f l a k e s and judged t h a t i r o n o x i d e was t h e most l i k e l y composition.
I n a number of
a n c i e n t r e d beds t h i s o x i d a t i o n of b i o t i t e i s s e e n t o have gone f u l l c y c l e w i t h t h e f o r m a t i o n o f complete h a e m a t i t e pseudomorphs a f t e r b i o t i t e ( T u r n e r , 1974a; Turner and A r c h e r , 1 9 7 7 ) .
Evidence from SEM and t h i n s e c t i o n s t u d i e s i n d i c a t e s
t h a t t h e pseudomorphs a r e formed by t h e s t a c k i n g of i n t e r l a y e r s h e e t s of h a e m a t i t e (Fig.5.10).
Complete pseudomorphs of t h i s t y p e a r e common i n t h e R i n g e r i k e Group
of Norway ( T u r n e r , 1974a). The r e a s o n s why b i o t i t e o x i d a t i o n y i e l d s i n t e r l a y e r i r o n o x i d e s i n some c a s e s and n o t i n o t h e r s a r e f a r from c l e a r .
I r o n - d e p l e t e d b i o t i t e s i n s o i l s a r e analogous
t o t h e l e a c h e d b i o t i t e s w i t h i r o n o x i d e h a l o e s r e p o r t e d by Walker ( 1 9 6 7 a ) , Walker
e t a l . (1978) and McBride (1974).
These p r o b a b l y form under c o n d i t i o n s i n which
i r o n s a n be r e d i s t r i b u t e d outwards from t h e decomposing g r a i n s .
I s m a i l (1969) has
shown t h a t t h e p r o d u c t s of e x p e r i m e n t a l w e a t h e r i n g of b i o t i t e depend upon t h e pH conditions.
I n a n e u t r a l environment o x i d a t i o n r e s u l t s i n a d e c r e a s e i n s u r f a c e
c h a r g e y i e l d i n g a s m e c t i t e - l i k e p r o d u c t , whereas i n a c i d c o n d i t i o n s o x i d a t i o n i s balanced by t h e r e l e a s e of o c t a h e d r a l i r o n which m a i n t a i n s t h e s u r f a c e c h a r g e a t a h i g h l e v e l t o form v e r m i c u l i t e .
I t t h u s seems l i k e l y t h a t v a r i a t i o n i n pH i n
t h e i n t e r s t i t i a l environment i s a n i m p o r t a n t f a c t o r i n d e t e r m i n i n g whether i r o n
i s released i n t o the pore waters during diagenesis o r r e t a i n e d within the b i o t i t e s t r u c t u r e t o form i n t e r l a y e r s h e e t s of h a e m a t i t e o r pseudomorphs of h a e m a t i t e a f t e r biotite.
291 Ferromaenesian m i n e r a l s Ferromagnesian m i n e r a l s a r e g e n e r a l l y u n s t a b l e i n t h e aqueous o x i d i z i n g environment and show w i d e s p r e a d e v i d e n c e of i n s i t u d i s s o l u t i o n i n b o t h Recent w e a t h e r i n g p r o f i l e s (Wahlstrom, 1948) and Cenozoic a l l u v i u m (Walker e t a l . , 1978). O l i v i n e a p p e a r s t o be l e s s s t a b l e t h a n pyroxene which i s g e n e r a l l y c o n s i d e r e d t o be l e s s s t a b l e t h a n amphibole ( G o l d i c h , 1938; Wilson, 1975).
Because o l i v i n e i s
t h e most u n s t a b l e f e r r o m a g n e s i a n s i l i c a t e i t i s n o t a commonly o c c u r r i n g heavy mineral.
During d i a g e n e s i s i t can be e x p e c t e d t o be r a p i d l y a l t e r e d , a f e a t u r e
which p a r t l y a c c o u n t s f o r i t s s c a r c i t y , The most abundant f e r r o m a g n e s i a n s i l i c a t e s i n s e d i m e n t s a r e pyroxenes and amphiboles.
SEM and p e t r o g r a p h i c e x a m i n a t i o n s show t h a t pyroxenes c h a r a c t e r i s t i c a l l y
dgvelop "cockscomb" o r "hacksaw" t e r m i n a t i o n s which a r e c o n s i d e r e d t o r e f l e c t p r e f e r e n t i a l d i s s o l u t i o n a l o n g p l a n e s t r a n s v e r s e t o t h e c - a x i s by Walker e t a l . (1978) ( F i g . 5 . 1 1 ) .
The d i s s o l u t i o n o f pyroxene has a l s o been d e s c r i b e d by Edelman
and Douglas (1931) b u t t h e s e a u t h o r s c o n s i d e r e d t h e "hacksaw" t e r m i n a t i o n s t o r e s u l t from a combination of d i s s o l u t i o n a l o n g c l e a v a g e p a r a l l e l t o t h e c - a x i s and c r y s t a l l o g r a p h i c p l a n e s a t 45-60'
t o the a-axis (Fig.5.11).
This explanation i s
more c o m p a t i b l e w i t h t h e s t r u c t u r e of pyroxene t h a n i s t h e e x p l a n a t i o n of Walker e t a l . (1978). The d i s s o l u t i o n b e h a v i o u r o f hornblende i s q u i t e d i f f e r e n t from pyroxene. Hornblende g r a i n s develop d e l i c a t e n e e d l e - l i k e t e r m i n a t i o n s which a r e p a r a l l e l t o the c-axis.
This r e s u l t s
amphibole double c h a i n .
b e c a u s e of p r e f e r e n t i a l d i s s o l u t i o n p a r a l l e l t o t h e
The l i n k s between a d j a c e n t c h a i n s c o n s i s t of a " f r e e
oxygen-cation bonds" and t h e s e r e p r e s e n t t h e p l a n e o f weakness a l o n g which d i s s o l u t i o n can proceed most r a p i d l y . The d i s s o l u t i o n of hornblende and pyroxene p r o b a b l y c o n t i n u e s f o r a l e a s t t e n s of m i l l i o n s o f y e a r s a f t e r d e p o s i t i o n .
I n t h e Cenozoic a l l u v i u m s t u d i e d by Walker
(1976) and Walker e t a l . (1978) r e l i c t s of t h e s e m i n e r a l s a r e common i n r e d beds which, on t h e b a s i s o f a s s o c i a t e d d a t e d b a s a l t s , were d e p o s i t e d between 9 and 26 My ago and a l s o o c c u r i n d e p o s i t s of Miocene a g e .
I n a n c i e n t r e d beds however d e t r i t a l
hornblende and pyroxene g r a i n s ( a l o n g w i t h o t h e r u n s t a b l e m i n e r a l s ) a r e e x t r e m e l y scarce.
T h i s has l o n g been a t t r i b u t e d t o i n t r a s t r a t a l s o l u t i o n ( P e t t i j o h n , 1941)
a c o n c l u s i o n which i s s u p p o r t e d by s t u d i e s of t h e m i n e r a l assemblages w i t h i n c a l c a r e o u s c o n c r e t i o n s ( B r a m l e t t e , 1941) and i n s h a l e s and a s s o c i a t e d s a n d s t o n e s ( B Z a t t and S u t h e r l a n d , 1969). There a r e a number of i m p o r t a n t consequences o f t h e d i s s o l u t i o n of d e t r i t a l s i l i c a t e grains.
I n t h e f i r s t p l a c e i t s u p p l i e s a n abundant s o u r c e of i o n s
i n c l u d i n g K , Na, Ca, A l , S i , Mg, F e , Mn t o t h e i n t e r s t i t i a l groundwater. of t h e s e a r e p r e c i p i t a t e d l a t e r a s a u t h i g e n i c p h a s e s . o f t h e sediment p r o v i d i n g t h a t
Many
I t a l s o increases the porosity
1) d i s s o l u t i o n v o i d s a r e n o t s u b s e q u e n t l y d e s t r o y e d
292
Fig.5.11. P a r t i a l l y d i s s o l v e d f e r r o m a g n e s i a n s i l i c a t e s i n Cenozoic a l l u v i u m . A . P e r i p h e r a l l y d i s s o l v e d h o r n b l e n d e w i t h w e l l - d e v e l o p e d d i s s o l u t i o n v o i d s (DV) and a c l a y s k i n (CS) marking t h e o r i g i n a l g r a i n boundary. A l s o n o t e t h e needlel i k e t e r m i n a t i o n s on t h e r e l i c t g r a i n . Thin s e c t i o n P l i o c e n e ? f a n g l o m e r a t e , Cazon Rojo, Baja C a l i f o r n i a . B. P a r t i a l l y d i s s o l v e d h o r n b l e n d e showing w e l l developed d i s s o l u t i o n n e e d l e s (DN) and d i s s o l u t i o n v o i d s (DV). SEM photomicrograph. Other d e t a i l s a s i n A. C. D e t a i l of hornblende d i s s o l u t i o n needles. Other d e t a i l s a s i n B. D . P a r t i a l l y d i s s o l v e d a u g i t e g r a i n showing well-developed cockscomb t e r m i n a t i o n s on r e l i c t g r a i n . SEM photomicrograph, Hayner Ranch Formation (Miocene) , New Mexico. Produced by c o u r t e s y of T.R. Walker.
293 by compactive c o l l a p s e o r
2 ) t h a t t h e p r e c i p i t a t i o n of s t a b l e a u t h i g e n i c phases
has n o t c o m p l e t e l y compensated f o r t h e newly c r e a t e d p o r o s i t y .
The m i n e r a l o g i c a l
m a t u r i t y o f t h e s e d i m e n t i s i n c r e a s e d because of t h e d i s s o l u t i o n of f e l d s p a r which incresses the quartz/feldspar r a t i o ,
The t e x t u r e i s a l s o changed because of t h e
r e d u c t i o n i n g r a i n s i z e o f t h e a f f e c t e d m i n e r a l s a n d t h i s may l e a d t o a n i n c r e a s e i n s i l t s i z e d p a r t i c l e s thereby decreasing the t e x t u r a l maturity.
The b u l k chemical
composition of t h e s e d i m e n t may a l s o be changed i f t h e r e l e a s e d i o n s a r e n o t prep r e c i p i t a t e d a s a u t h i g e n i c p h a s e s b u t c a r r i e d away by m i g r a t i n g groundwater. CLAY REPLACEMENT
The d i a g e n e t i c d i s s o l u t i o n of s i l i c a t e g r a i n s i s c l o s e l y a s s o c i a t e d w i t h t h e i n s i t u r e p l a c e m e n t by c l a y . a l l u v i u m (Walker e t a l . ,
T h i s i s a f e a t u r e commonly s e e n i n b o t h Cenozoic
1978) and a l s o i n s o i l s (Wilson, 1975).
The form o f t h e
r e p l a c e m e n t v a r i e s a n d may t a k e p l a c e i r r e g u l a r l y , p e r i p h e r a l l y o r p r e f e r e n t i a l l y a l o n g c r y s t a l l o g r a p h i c p l a n e s , i n c i p i e n t f r a c t u r e s , g r a i n c o n t a c t s i n rock fragments and o t h e r zones of weakness.
Replacement c l a y s a r e t h e r e f o r e a u t h i g e n i c i n o r i g i n
(Wilson and P i t t m a n , 1977) and t h e i r m i n e r a l o g i c a l composition depends upon t h e n a t u r e of t h e h o s t m i n e r a l s . F e l d s p a r s i n s a p r o l i t e s and s o i l s y i e l d a v a r i e t y of d a u g h t e r c l a y m i n e r a l s depending upon t h e e x a c t composition of t h e h o s t phase and t h e i n t e r s t i t i a l c o n d i t i o n s .
In s o i l s i t i s g e n e r a l l y a s s e r t e d t h a t f e l d s p a r a l t e r s d i r e c t l y t o i l l i t e b u t t h i s i s o f t e n d i f f i c u l t t o prove because o f t h e p r e s e n c e of a s s o c i a t e d s e r i c i t i c mica. The f o r m a t i o n of mica from f e l d s p a r s a p p e a r s t o be favoured i n c o n f i n e d e n v i r o n ments l i k e t h o s e e x i s t i n g i n s a p r o l i t e s ( K a t o , 1965).
T h i s i s because of t h e
r e t e n t i o n o f potassium i o n s which a r e e s s e n t i a l f o r t h e mica s t r u c t u r e .
In more
open systems s o l u b l e p o t a s s i u m i o n s a r e removed and t h e f o r m a t i o n of o t h e r c l a y m i n e r a l s such a s v e r m i c u l i t e o r m o n t m o r i l l o n i t e may t a k e p l a c e .
These m i n e r a l s
may be formed d i r e c t l y from f e l d s p a r o r from a s s o c i a t e d mica (Meilhac and Tardy, 1970).
The k a o l i n i z a t i o n of f e l d s p a r i s a complex p r o c e s s which i n v o l v e s t h e
f o r m a t i o n of k a o l i n i t e from a s d l u t i o n phase i n t e r m e d i a t e between p a r e n t f e l d s p a r and d a u g h t e r k a o l i n i t e .
A t l e a s t two morphologies a r e i n v o l v e d :
a p l a t y , book-
l i k e k a o l i n i t e forms under " w e a t h e r i n g c r u s t " c o n d i t i o n s i n which t h e geochemical c o n d i t i o n s p e r s i s t e d e s s e n t i a l l y a t e q u i l i b r i u m o v e r a v e r y long t i m e .
Elongate
k a o l i n s , o f t e n r e f e r r e d t o a s h a l l o y s i t e a p p a r e n t l y form under r e l a t i v e l y h i g h e r l a n d c o n d i t i o n s , o r where s h o r t e r t i m e k i n e t i c p r o c e s s e s were i n v o l v e d ( K e l l e r , 1978).
The f a c t t h a t k a o l i n i z a t i o n i s p r e c e d e d by a s o l u t i o n i n r e a c t i o n w i t h t h e
s o l i d p h a s e s i s i n d i c a t e d by t h e random o r i e n t a t i o n of k a o l i n i t e w i t h r e s p e c t t o t h e p a r e n t f e l d s p a r and a l s o by t h e c o r r o s i o n f e a t u r e s r e p o r t e d by Parharn (19691,
Keller (1976) and Berner and Holdren (1977). The a l t e r a t i o n p r o d u c t s o f t h e f e r r o m a g n e s i a n m i n e r a l s a r e n o t a s e x t e n s i v e l y
294
Fig.5.12. Thin s e c t i o n photomicrographs o f s i l i c a t e m i n e r a l s r e p l a c e d by c l a y i n Cenozoic a l l u v i u m . A. P l a g i o c l a s e g r a i n (P) r e p l a c e d i r r e g u l a r l y by c l a y (RC). P l i o c e n e ? f a n g l o m e r a t e , Cat%on Rojo, Baja C a l i f o r n i a . B. Hornblende g r a i n ( H ) showing p e r i p h e r a l r e p l a c e m e n t by c l a y (RC) which h a s been squeezed between o t h e r framework C . P l a g i o c l a s e g r a i n ( P ) showing p r e f e r e n t i a l c l a y g r a i n s . O t h e r d e t a i l s a s i n A. replacement a l o n g c l e a v a g e p l a n e s . Note t h e development of s i l t - s i z e d r e l i c t s of p l a g i o c l a s e . G i l a Group ( P l i o c e n e - P l e i s t o c e n e ) , Tucson, A r i z o n a . D . G r a n i t i c rock fragment now composed m a i n l y of c l a y (RC) which h a s r e p l a c e d a l l o r i g i n a l m i n e r a l s e x c e p t q u a r t z (Q). O r i g i n a l o u t l i n e of t h e r o c k fragment i s marked by a n o r i e n t e d c l a y s k i n . Tesuque Formation ( M i o c e n e - P l i o c e n e ) , New Mexico. Photomicrographs produced by c o u r t e s y of T.R. Walker.
studied a s the feldspars.
I n g e n e r a l , t h e y a l t e r t o magnesium-rich t r i o c t a h e d r a l
expandable m i n e r a l s and c h l o r i t e , o f t e n i n a mixed l a y e r a r r a n g e m e n t .
Basham
(1974) h a s s t u d i e d t h e a l t e r a t i o n of c l i n o - and ortho-pyroxenes i n some g a b b r o i c s a p r o l i t e s i n NE S c o t l a n d and was a b l e t o d e m o n s t r a t e t h e g r a d u a l replacement of pyroxene by v e r m u c u l i t e pseudomorphs.
The v e r m i c u l i t e shows a h i g h d e g r e e of
preferred orientation indicating, as i n dissolution, the close structural control of the host mineral. Although amphiboles a r e g e n e r a l l y c o n s i d e r e d t o be more r e s i s t a n t t o w e a t h e r i n g t h a n p y r o x e n e s , they n e v e r t h e l e s s y i e l d s i m i l a r a l t e r a t i o n p r o d u c t s .
Hornblende
t y p i c a l l y a l t e r s t o c h l o r i t e and s u b s e q u e n t l y t o mixed l a y e r c h l o r i t e - v e r m i c u l i t e i n s o i l s developed on u l t r a b a s i c m a t e r i a l ( S t e p h e n , 1952; K a t o , 1965).
Wilson and
Farmer (1970) demonstrated t h e a l t e r a t i o n of i r o n - r i c h l a m e l l a e i n hornblende t o mixed l a y e r c h l o r i t e - s a p o n i t e .
The d a u g h t e r c l a y showed no o r i e n t a t i o n r e l a t i o n s h i p
w i t h t h e p a r e n t hornblende o t h e r t h a n a tendency towards p a r a l l e l i s m w i t h t h e cleavage planes. I n t h e Cenozoic a l l u v i u m s t u d i e d by Walker e t a l . (1978) m i g r a t i n g ground w a t e r s e n s u r e a more open type o f system t h a n t h a t found i n most s o i l s and s a p r o l i t e s . The r e s u l t i s a s i m p l e c l a y mineralogy c h a r a c t e r i s t i c a l l y c o n s i s t i n g of randomly i n t e r s t r a t i f i e d mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e (Reynolds and Hower, 1970).
The
c o n t a c t between t h e d a u g h t e r c l a y and r e l i c t p a r e n t m i n e r a l a r e normally s h a r p and t h e r e i s no t r a n s i t i o n a l zone of p a r t i a l r e p l a c e m e n t a t t h e margins of t h e r e l i c s . There a p p e a r s t o be no c l o s e s t r u c t u r a l r e l a t i o n s h i p between t h e o r i e n t a t i o n of t h e d a u g h t e r c l a y s and p a r e n t r e l i c and t h i s , t o g e t h e r w i t h t h e o t h e r f e a t u r e s , s u g g e s t s t h a t t h e replacement c l a y i s formed from a s o l u t i o n i n r e a c t i o n w i t h t h e p a r e n t a 1l u v i um ( F i g .5.12 )
.
The f o r m a t i o n o f replacement c l a y i n t h i s way has s e v e r a l i m p o r t a n t e f f e c t s . The amount of i n t e r s t i t i a l m a t r i x i s g r e a t l y i n c r e a s e d and t h i s d e c r e a s e s t h e t e x t u r a l m a t u r i t y of t h e s e d i m e n t s d i a g e n e t i c a l l y .
Even i n Cenozoic a l l u v i u m c l a y
of replacement o r i g i n may o f t e n comprise more t h a n 15% by volume of t h e rock and produce a g r e y wacke-type t e x t u r e i n which p o o r l y s o r t e d a n g u l a r a n d s u b a n g u l a r grains r e s t i n a clay matrix.
T h i s thus p r o v i d e s c o n v i n c i n g s u p p o r t f o r t h e
d i a g e n e t i c o r i g i n o f t h e greywacke t e x t u r e s (Cummins, 1962; Whetten and Hawkins, 1970).
Completely pseudomorphous r e p l a c e m e n t can o c c u r i n t h i s manner b u t t h e s e
a r e seldom p r e s e r v e d because t h e s o f t c l a y y i e l d s t o compactive p r e s s u r e and i s r e a d i l y squeezed between g r a i n t o become i n d i s t i n g u i s h a b l e from i n t e r s t i t i a l m a t r i x . T h i s t y p e of m a t r i x i s r e f e r r e d t o a s pseudomatrix by Dickinson
(1970a).
Any
evidence t h a t t h e d a u g h t e r c l a y formed by t h e replacement of framework s i l i c a t e s becomes o b s c u r e d w i t h time a s t h e d e g r e e of a l t e r a t i o n and d e p t h of b u r i a l i n c r e a s e s . The i d e n t i f i c a t i o n of replacement c l a y i n a n c i e n t r e d beds i s coneequently v e r y d i f f i c u l t t o prove.
296 Another i m p o r t a n t a f f e c t of t h e c l a y r e p l a c e m e n t p r o c e s s i s t h e r e d u c t i o n i n a v e r a g e g r a i n s i z e of t h e framework c o n s t i t u e n t s because o f t h e tendency f o r framework g r a i n s t o become broken down by incomplete r e p l a c e m e n t . p a r t i c u l a r s u f f e r s from t h i s p r o c e s s .
Plagioclase i n
G r a n i t i c r o c k fragments may be e x t e n s i v e l y
d i s a g g r e g a t e d because o f t h e s e l e c t i v e r e p l a c e m e n t of t h e u n s t a b l e m i n e r a l components ( F i g . 5 . 1 2 ) .
Even e x p e c t e d l y s t a b l e rock fragments s u c h a s q u a r t z i t e
fragments may b e d i s a g g r e g a t e d b e c a u s e of t h e r e p l a c e m e n t of c l a y a l o n g g r a i n boundaries.
The replacement p r o c e s s s i g n i f i c a n t l y changes t h e m i n e r a l composition
o f t h e sediments because o f t h e s e l e c t i v e removal u n s t a b l e s i l i c a t e s l i k e p l a g i o c l a s e and t h e ferromagnesian m i n e r a l s .
This r e s u l t s i n an increase i n the proportion of
t h e s t a b l e m i n e r a l s such a s q u a r t z and t h e r e b y i n c r e a s e s t h e m i n e r a l o g i c a l m a t u r i t y d i a g e n e t i c a l l y i n t h e same way a s d i s s o l u t i o n . One of t h e most i m p o r t a n t a s p e c t s of t h e c l a y r e p l a c e m e n t p r o c e s s i s t h e a s s o c i a t e d r e l e a s e of c e r t a i n elements i n t o t h e groundwater c i r c u l a t i o n v i a t h e d a u g h t e r c l a y . There have been numerous s t u d i e s o f t h e geochemical e f f e c t s o f w e a t h e r i n g ( e . g . G o l d i c h , 1938; Brock, 1943; K e l l e r , 1957; H a r r i s and Adams, 1966; Anderson and Wiklander, 1975).
I n s o i l s and s a p r o l i t e s i t i s commonly o b s e r v e d t h a t i n t h e
m o b i l i z a t i o n and r e d i s t r i b u t i o n of c a t i o n s d u r i n g w e a t h e r i n g t h e a l k a l i e s , p a r t i c u l a r l y sodium, and t h e a l k a l i n e e a r t h m e t a l s a r e more mobile t h a n many of t h e o t h e r c a t i o n s commonly found i n s i l i c a t e l a t t i c e s .
A s i m i l a r p a t t e r n emerges from t h e
geochemical s t u d y of t h e breakdown o f s i l i c a t e m i n e r a l s i n Cenozoic a l l u v i u m by Walker (1967a) and Walker e t a l . (1978).
These a u t h o r s have p a i d p a r t i c u l a r a t t e n t i o n
t o t h e geochemical a l t e r a t i o n of hornblende s i n c e t h i s i s a n i m p o r t a n t s o u r c e of i r o n f o r m i g r a t i n g groundwaters.
A combination of e l e c t r o n p r o b e m i c r d a n a l y s i s
SEM, X-ray d i f f r a c t i o n and c o n v e n t i o n a l p e t r o g r a p h y have been used t o d e m o n s t r a t e t h e s e l e c t i v e removal of c a l c i u m , magnesium and i r o n from t h e p a r e n t h o r n b l e n d e w i t h a c o r r e s p o n d i n g i n c r e a s e i n aluminium and s i l i c o n ( F i g . 5 . 1 3 ) . The d a u g h t e r c l a y (mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e ) i s i r o n - r i c h and quant i t a t i v e a n a l y s e s of hornblende g r a i n s i n P l i o c e n e r e d beds by Walker e t a l . (1967) i n d i c a t e t h a t t h e i r o n c o n t e n t of t h e c l a y r a n g e s from 2.5% t o 16.5% a d j a c e n t t o decomposing g r a i n s .
F i g . 5 . 1 4 shows a s c h e m a t i c diagram o f a p a r t i a l l y r e p l a c e d
hornblende g r a i n ( G r a i n 1) w i t h t h e p o s i t i o n s of microprobe p o i n t a n a l y s e s ( T r a v e r s e
1).
The d i s t r i b u t i o n of major o x i d e s w i t h i n c r e a s i n g d i s t a n c e from t h e p a r e n t
hornblende a r e a l s o shown i n t h i s diagram.
These r e v e a l t h a t t h e d a u g h t e r c l a y
c o n t a i n s 10.8% Fe 0 n e a r t h e p a r e n t hornblende b u t t h i s d e c r e a s e s s t e a d i l y away 2 3 from t h e p a r e n t hornblende t o 3.5% a t a d i s t a n c e of 2 2 0 m. Thin s e c t i o n s of t h e s e P l i o c e n e r e d beds r e v e a l a l l s t a g e s of s t a i n i n g o f t h e a u t h i g e n i c i l l i t e - m o n t m o r i l l o n i t e by i r o n o x i d e s .
I n i t i a l l y t h e s t a i n i s c o n c e n t r a t e d aoong f r a c t u r e s i n t h e
c l a y and on t h e p e r i p h e r y o f t h e a l t e r e d g r a i n s
i s d i f f u s e d throughout t h e c l a y .
,
i n more advanced s t a g e s t h e s t a i n
The outward d e p l e t i o n of i r o n h r s been c l e a r l y
demonstrated i n a number of c a s e s and i t seems r e a s o n a b l e t o cnnclude t h a t t h i s i o n
297
I CLAY I
HORNBLENDE
I CLAY
Fig.5.13. F i v e element microprobe a n a l y s i s a c r o s s a hornblende g r a i n p e r i p h e r a l l y r e p l a c e d by c l a y i n Cenozoic a l l u v i u m , G i l a Group, Tuscon Arizona ( a f t e r Walker e t a l . , 1978).
i s a p o t e n t i a l s o u r c e o f pigmentary h a e m a t i t e a t l h o u g h i t i s f a i r t o s a y t h a t t h e e x a c t manner i n which p a r t i c u l a t e h a e m a t i t e g r a i n c o a t i n g s and e u h e d r a l c r y s t a l s of h a e m a t i t e form from i r o n - s t a i n e d c l a y i s n o t y e t e s t a b l i s h e d .
Much of t h e
i r o n o x i d e may be t r a n s p o r t e d a s amorphous Fe(OH)3 i n f i n e l y p a r t i c u l a t e form (Langmuir and Whittemore, 1971) and s u b s e q u e n t l y be p r e c i p i t a t e d a s g o e t h i t e (d(-FeOOH) o r h a e m a t i t e (W-Fe 0 ) depending upon t h e p r e c i s e geochemical c o n d i t i o n s .
2 3
The d a u g h t e r c l a y i s much d e p l e t e d i n CaO and MgO when compared w i t h t h e p a r e n t hornblende ( F i g s . 5 . 1 3 , 5 . 1 4 ) b u t t h r o u g h o u t t h e d a u g h t e r c l a y t h e y remain c o n s t a n t ; i n t h e s e o x i d e s t h e l o s s i s more r a p i d and t a k e s p l a c e a t t h e i n t e r f a c e between t h e hornblende and t h e c l a y .
A s y e t , comparative q u a n t i t a t i v e d a t a a r e n o t a v a i l a b l e f o r t h e o t h e r m i n e r a l s i n Cenozoic a l l u v i u m such a s p l a g i o c l a s e and p o t a s h f e l d s p a r .
However, t h e r e l e a s e
of e l e m e n t s from t h e s e m i n e r a l s i s w e l l documented i n t h e s u r f i c i a l w e a t h e r i n g of igneous r o c k s ( H a r r i s and Adams, 1966) and e x p e r i m e n t a l l y (Andersson and Wiklander, 1975) and t h e r e can be l i t t l e doubt t h a t t h e s e d a t a a r e a p p l i c a b l e i n a g e n e r a l way t o t h e p h r e a t i c and v a d o s e e a r l y d i a g e n e s i s i n Cenozoic a l l u v i u m .
A s a whole, t h e
breakdown and r e p l a c e m e n t of t h e s e m i n e r a l s r e l e a s e s a v a r i e t y of e l e m e n t s i n c l u d i n g sodium, p o t a s s i u m , c a l c i u m , magnesium and i r o n i n t o t h e i n t e r s t i t i a l groundwater. Depending upon t h e chemical c o n d i t i o n s i n t h e groundwater, t h e r e l e a s e d i o n s m y e i t h e r be c a r r i e d away i n s o l u t i o n o r p r e c i p i t a t e d a s a u t h i g e n i c m i n e r a l s .
298
I
/
S
20
I
I
1
I
40
60
80
100
I
I
I
I
I
1
120 140 160 180 200 220
Distance from hornblende in p
m
F i g . 5 . 1 4 . D i s t r i b u t i o n of major o x i d e s i n a hornblende g r a i n p a r t i a l l y r e p l a c e d by a u t h i g e n i c c l a y . D e t e r m i n a t i o n s by e l e c t r o n probe m i c r o a n a l y s i s . The a s t e r i s k i n d i c a t e s w e i g h t p e r c e n t i n t h e p a r e n t h o r n b l e n d e . T r a v e r s e No.1 and G r a i n No.1 of Walker e t a l . ( 1 9 6 7 ) .
S i g n i f i c a n t removal o f i o n s i n groundwater w i l l o b v i o u s l y a l t e r t h e b u l k c h e m i s t r y of t h e s e d i m e n t from i t s o r i g i n a l composition. I n a n c i e n t r e d beds c l a y r e p l a c e m e n t can a l s o be demonstrated t o have been o f considerable importance.
P o t a s h f e l d s p a r s i n p a r t i c u l a r o f t e n show e v i d e n c e of
more e x t e n s i v e c l a y r e p l a c e m e n t t h a n t h a t s e e n i n Cenozoic a l l u v i u m and i t seems r e a s o n a b l e t o assume t h a t t h i s c o u l d be due t o more prolonged exposure t o i n t e r s t i t i a l fluids.
There i s some d i f f i c u l t y , however, i n making r e a l i s t i c e s t i m a t e s
of t h e q u a n t i t a t i v e importance o f c l a y r e p l a c e m e n t d u r i n g d i a g e n e s i s .
This a r i s e s
b e c a u s e o f t h e d i f f i c u l t y of d i s t i n g u i s h i n g c l a y replacement which h a s t a k e n p l a c e d u r i n g w e a t h e r i n g i n t h e s o u r c e a r e a and t h a t which h a s o c c u r r e d p o s t - d e p o s i t i o n a l l y . V a r i a t i o n s i n t h e normal sequence o f f e l d s p a r s t a b i l i t y may p r o v i d e a n i m p o r t a n t c l u e t o s o u r c e a r e a w e a t h e r i n g ( e . g . Todd, 1968) b u t u s u a l l y t h e replacement p r o c e s s f o l l o w s t h e same sequence d u r i n g s o u r c e a r e a w e a t h e r i n g and d i a g e n e s i s .
Despite t h i s
d i f f i c u l t y i t seems l i k e l y t h a t t h e abundance o f h e a v i l y a l t e r e d f e l d s p a r s i n a n c i e n t r e d beds i s a t l e a s t p a r t l y due t o i n t r a s t r a t a l c l a y replacement.
The
dominant c l a y m i n e r a l s i n a n c i e n t r e d beds a r e i l l i t e and c h l o r i t e , a f e a t u r e which s u g g e s t s t h a t t h e mixed l a y e r illite-montmorrilonite-illite t r a n s f o r m a t i o n i s a f e a t u r e o f l a t e r r e d bed d i a g e n e s i s . AUTHIGENIC MINERALS
The d i s s o l u t i o n and r e p l a c e m e n t of d e t r i t a l s i l i c a t e g r a i n s r e s u l t s i n t h e r e l e a s e of chemical c o n s t i t u e n t s i n t o t h e i n t e r s t i t i a l groundwater s o l u t i o n s .
The
f a t e o f t h e s e r e l e a s e d i o n s depends upon t h e i n t e r s t i t i a l physico-chemical c o n d i t i o n s . The i o n s may be s o l u b l e and be c a r r i e d away i n t h e m i g r a t i n g groundwater o r , under f a v o u r a b l e c i r c u m s t a n c e s , t h e y may be p r e c i p i t a t e d a s a n a u t h i g e n i c m i n e r a l phase. I n t h e Cenozoic r e d beds s t u d i e d by Walker e t a l . (1978) a v a r i e t y o f a u t h i g e n i c p h a s e s i n c l u d i n g q u a r t z , c l a y m i n e r a l s , z e o l i t e s , f e l d s p a r s , h a e m a t i t e , and c a l c i t e have been p r e c i p i t a t e d i n t h i s manner.
This authigenic s u i t e is a l s o a character-
i s t i c o f a n c i e n t r e d beds and i s b e l i e v e d t o have formed i n a s i m i l a r manner. Potassium f e l d s u a r A u t h i g e n i c p o t a s h f e l d s p a r i s one of t h e most commonly o c c u r r i n g d i a g e n e t i c phases i n c o n t i n e n t a l r e d beds.
I n t h e Cenozoic a l l u v i u m of SW United and NW Mexico
t h e a u t h i g e n i c p o t a s h f e l d s p a r o c c u r s i n p a r t a s overgrowths o r d e t r i t a l g r a i n s and a l s o a s s m a l l c r y s t a l s w i t h i n t h e i n t e r s t i t i a l m a t r i x i n a s s o c i a t i o n w i t h mechanically i n f i l t r a t e d c l a y and a u t h i g e n i c c l a y and q u a r t z .
I n p l a c e s , a g g r e g a t e s of f e l d s p a r
c r y s t a l s may f i l l p o r e s p a c e s o r d i s s o l u t i o n v o i d s . A u t h i g e n i c p o t a s h f e l d s p a r i s a l s o a common c o n s t i t u e n t i n t h e a l t e r e d t u f f s and t u f f a c e o u s s a n d s t o n e s of f l u v i a l and l a c u s t r i n e o r i g i n i n t h e w e s t e r n United S t a t e s (Hay, 1966; Sheppard and Gude, 1968, 1969, 1973; Moiola, 1970).
Here i t o c c u r s
300
Fig.5.15. SEM photomicrographs of a u t h i g e n i c f e l d s p a r i n Cenozoic a l l u v i u m A . A u t h i g e n i c p o t a s s i u m f e l d s p a r on d e t r i t a l (A-C) and T r i a s s i c r e d beds (D-F). g r a i n , P l i o c e n e f a n g l o m e r a t e , CaEon Rojo, Baja C a l i f o r n i a . B. Red i n t e r s t i t i a l m a t r i x w i t h a u t h i g e n i c f e l d s p a r , same l o c a l i t y . C . Enlargement of o u t l i n e d a r e a i n B. D . O r i e n t e d c r y s t a l s of a u t h i g e n i c f e l d s p a r on t h e s u r f a c e of a d e t r i t a l f e l d s p a r i n a n e a r l y s t a g e o f overgrowth f o r m a t i o n . E . A more advanced s t a g e c o m p l e t e l y c o v e r i n g t h e g r a i n s u r f a c e . F. A complete overgrowth of p u r e potassium f e l d s p a r w i t h l a r g e , smooth c r y s t a l f a c e s . A l l from Lower Keuper S a n d s t o n e ( T r i a s s i c ) , West Midlands, U.K. A-C produced by c o u r t e s y o f T.R. Walker and D-F by c o u r t e s y of A.D. A l i .
301 predominantly a s overgrowths on g r a i n s of o r t h o c l a s e and o c c a s i o n a l l y p l a g i o c l a s e b u t a l s o a s v e r y f i n e g r a i n e d , low b i r e f r i n g e n t a g g r e g a t e s (Hay and Moiola, 1963). The f e l d s p a r i s o f t e n i n a s s o c i a t i o n w i t h a u t h i g e n i c z e o l i t e s ( a n a l c i m e ) which i n p l a c e s form a s t r a t i g r a p h i c a l l y zoned sequence ( s e e F i g . 5 . 1 6 ) .
The f o r m a t i o n of
a u t h i g e n i c K - f e l d s p a r i n v o l c a n i c l a s t i c d e p o s i t s i s s t i m u l a t e d by r e l a t i v e l y high a l k a l i - i o n t o hydrogen-ion a c t i v i t y r a t i o s and by r e l a t i v e l y h i g h s i l i c a a c t i v i t i e s (Hemley, 1959, 1962; Hay and M o i o l a , 1963, 1964; Mioola and Hay, 1 9 6 4 ) . The z o n a t i o n s e e n i n t h e Esmeralda Formation
(Fig.5.16):
analcime
+
feldspar,
c l i n o p t i l o l i t e , and p h i l l i p s i t e i s a p p a r e n t l y n o t t h e r e s u l t o f i n c r e a s e d hydros t a t i c p r e s s u r e o r t e m p e r a t u r e w i t h d e p t h of b u r i a l b u t i s t h o u g h t by Moiola (1970) t o r e f l e c t d i f f e r e n c e s i n composition of t h e p r e c i p i t a t i n g groundwater. A l l the a v a i l a b l e evidence suggests t h a t the authigenic feldspar i s pure potash f e l d s p a r ( s e e f o r example, Hay and M o i o l a , 1963, F i g . 3 p . 324).
This i s consistent
w i t h t h e r e s u l t s o f a n a l y s e s of a u t h i g e n i c K - f e l d s p a r i n a n c i e n t r e d beds which a r e commonly p u r e p o t a s s i u m f e l d s p a r (Waugh, 1978). A u t h i g e n i c K - f e l d s p a r i s known from many a n c i e n t r e d bed sequences i n c l u d i n g t h e T o r r i d o n i a n Sandstone (Waugh, 1 9 7 8 ) , t h e Old Red Sandstone and p a r t i c u l a r l y t h e Permo-Triassic S a n d s t o n e s o f n o r t h e r n Europe (Reynolds, 1929; W i l l i a m s , 1973; G l e n n i e e t a l . , 1978; K e s s l e r , 1978; Hancock, 1 9 7 8 ) .
I t s h o u l d be n o t e d t h a t
a u t h i g e n i c f e l d s p a r a l s o o c c u r s i n a number o f marine f a c i e s , i n p a r t i c u l a r limes t o n e s ( K a s t n e r , 1971; Buyce and Friedman, 1975). Waugh (1978) h a s made a d e t a i l e d s t u d y o f a u t h i g e n i c K - f e l d s p a r i n B r i t i s h Permo-Triassic Sandstones.
I n t h i n s e c t i o n s t h e s e a r e developed a s overgrowths
around d e t r i t a l c o r e s o f o r t h o c l a s e o r m i c r o c l i n e , o r v e r y r a r e l y , p l a g i o c l a s e . Discrete authigenic c r y s t a l s with an a d u l a r i a n h a b i t a l s o occur within the diss o l u t i o n v o i d s of d e t r i t a l K - f e l d s p a r g r a i n s .
These a u t h i g e n i c c r y s t a l s a r e
randomly o r i e n t e d and i n d i c a t e t h a t d i s s o l u t i o n p r e d a t e s t h e i r p r e c i p i t a t i o n and als'o t h a t a d e t r i t a l s e e d c r y s t a l i s n o t n e c e s s a r y f o r t h e f o r m a t i o n of a u t h i g e n i c K - f e l d s p a r ( c f . K a s t n e r , 1971).
The overgrowths c o n s i s t of p r i s m f a c e s , u s u a l l y
developed p a r a l l e l t o l o n g a x e s of g r a i n s , t r u n c a t e d by t h e b a s a l p i n a c o i d .
The
overgrowths o f t e n d i s p l a y "hacksaw" p r o j e c t i o n s w i t h a d i s t i n c t rhombohedral o u t l i n e , p a r t i c u l a r l y a t t h e d i s t a l ends o f e l o n g a t e g r a i n s .
Those evergrowths
p o s s e s s i n g a h i g h d e g r e e o f c r y s t a l l i n e p e r f e c t i o n show a n o v e r a l l s h a p e which i s markedly rhombohedral.
SEM s t u d i e s w i t h e n e r g y - d i s p e r s i v e a n a l y s i s of X-rays
(EDAX) and e l e c t r o n microprobe a n a l y s i s by Waugh (1978) i n d i c a t e t h a t t h e overgrowths a r e v i r t u a l l y p u r e p o t a s s i u m f e l d s p a r t h e a v e r a g e o f 28 overgrowths b e i n g K 0 = 2 16.94%, A1203 = 18.45% and S i 0 2 = 64.41% and t h e composition of any i n d i v i d u a l overgrowth d i d n o t v a r y by more t h a n
_+
0.5% from t h e above a v e r a g e s .
The a n a l y s e s
i n d i c a t e t h a t t h e overgrowths a r e p u r e , s t o i c h i o m e t r i c K A l S i 0 w i t h a n o p t i c a x i a l 3 8 a n g l e (-2V) r a n g i n g from 20-25'. Using t h e nomenclature o f Smith (1974) t h e f e l d s p a r overgrowths can be c l a s s i f i e d a s p o t a s s i a n i n t e r m e d i a t e s a n i d i n e s . Shenhav (1971)
302 h a s a l s o d e s c r i b e d a u t h i g e n i c . o v e r g r o w t h s o f s a n i d i n e from Lower C r e t a c e o u s s a n d stones of I s r a e l . Waugh ( 1 9 7 8 ) r e c o g n i z e d a s e r i e s o f d i s t i n c t g r o w t h s t a g e s i s t h e d e v e l o p m e n t of t h e potash f e l d s p a r overgrowths.
The i n i t i a l g r o w t h s t a g e r e c o g n i z e d i n t h e
d e v e l o p m e n t o f s m a l l , f l a t t e n e d r h o m b o h e d r a l c r y s t a l s v a r y i n g from 3-30/rm i n l e n g t h (Fig.5.15).
The c r y s t a l s a r e c o m b i n a t i o n s o f t h e b a s a l p i n a c o i d ( 0 0 1 ) a n d p r i s m
(110), w i t h ( 0 1 0 ) b e i n g v e r y n a r r o w o r u s u a l l y a b s e n t . so-called
T h i s morphology i s t h e
' a d u l a r i a ' h a b i t ( B a s k i n , 1956) b u t t h e u s e of t h i s term i s u s u a l l y u s e d
a s a m o r p h o l o g i c a l term a n d n o t a s a d i s t i n c t v a r i e t y of K - f e l d s p a r .
A t this stage
o f d e v e l o p m e n t t h e s e p s e u d o - r h o m b o h e d r a 1 c r y s t a l s show a p r o n o u n c e d p r e f e r r e d o r i e n t a t i o n b e c a u s e o f t h e c r y s t a l l o g r a p h i c c o n t r o l e x e r t e d by t h e h o s t f e l d s p a r .
In t h e e a r l y s t a g e s t h e s e a d u l a r i a - l i k e rhombs a r e s p a r s e l y s c a t t e r e d o v e r t h e d e t r i t a l g r a i n s u r f a c e b u t a s growth proceeds t h e i r s u r f a c e d e n s i t y i n c r e a s e s .
The
Permian a e o l i a n sands such a s t h e Bridgnorth and Mauchline sandstones d i s p l a y t h i s g r o w t h s t a g e v e r y w e l l ; i n t h e f o r m e r c a s e t h e a u t h i g e n i c f e l d s p a r h a s grown d i r e c t l y on t h e d e t r i t a l clay-oxide p e l l i c l e and i n the l a t t e r c a s e t h e a u t h i g e n i c f e l d s p a r h a s grown o v e r a u t h i g e n i c i l l i t e c l e a r l y i n d i c a t i n g t h a t f e l d s p a r p r e c i p i t a t i o n postdates the formation of a u t h i g e n i c c l a y .
The s u b s e q u e n t g r o w t h
p h a s e s i n t h e development o f complete overgrowths i n v o l v e a n i n c r e a s e i n t h e n u m e r i c a l d e n s i t y o f t h e f e l d s p a r rhombs a n d t h e i r m e r g i n g t o g e t h e r t o p r o d u c e l a r g e r smooth c r y s t a l f a c e s .
A t t h i s s t a g e t h e r h o m b o h e d r a l m i c r o s t r u c t u r e may
s t i l l b e d i s c e r n i b l e a n d l a r g e a r e a s o f t h e d e t r i t a l g r a i n s u r f a c e may b e s t i l l f r e e from a u t h i g e n i c f e l d s p a r .
Growth o c c u r s o v e r l a r g e r a r e a s by t h e e x t e n s i o n
o f t h e i n d i v i d u a l c r y s t a l f a c e s w h i c h may r e t a i n a d e g r e e o f i r r e g u l a r i t y b e c a u s e o f t h e i n c o m p l e t e o v e r l a p a n d s t a c k i n g of t h e r h o m b o d e d r a l u n i t s .
A t this stage
t h e o v e r a l l rhombohedral morphology o f t h e complete overgrowt h i s s e e n ; t h e a u t h i g e n i c c r y s t a l s r a n g e i n s i z e from 0 . 2 5 t o 1 . O O m m i n l e n g t h .
The c r y s t a l s
f r e q u e n t l y show hacksaw t e r m i n a t i o n s ( F i g . 5 . 1 5 ) . Zeolites A u t h i g e n i c z e o l i t e s a r e well-known i n C e n o z o i c c o n t i n e n t a l d e p o s i t s w h e r e t h e y occur a s euhedral c r y s t a l s i n pore spaces of f l u v i a l d e p o s i t s and i n p a r t i c u l a r a s a replacement of v i t r i c fragments i n l a c u s t r i n e r h y o l i t i c t u f f s .
The z e o l i t e s a r e
h y d r a t e d a l u m i n o s i l i c a t e s of t h e a l k a l i and a l k a l i n e e a r t h m e t a l s w i t h a n i n f i n i t e l y e x t e n d e d t h r e e - d i m e n s i o n a l a n i o n network and t h u s have t h e a t o m i c r a t i o 0 : (Al+Si) =
2.
They i n c l u d e a w i d e v a r i e t y o f m i n e r a l s p e c i e s ( s e e D e e r , Howie a n d Zussman,
1 9 6 6 , p . 393) b u t t h e o n e s o c c u r r i n g more commonly i n c o n t i n e n t a l d e p o s i t s a r e l i s t e d i n Table 5 . 6 .
Hay ( 1 9 6 3 , 1 9 6 4 ) a n d Hemley ( 1 9 5 9 , 1 9 6 2 ) h a v e shown t h a t
z e o l i t e f o r m a t i o n i s f a v o u r e d by r e l a t i v e l y h i g h a l k a l i i o n / h y d r o g e n i o n a c t i v i t y r a t i o s a n d by r e l a t i v e l y h i g h s i l i c a a c t i v i t i e s .
303 TABLE 5 . 6
I
The i d e a l formulae o f z e o l i t e s which commonly o c c u r i n c o n t i n e n t a l d e p o s i t s . Name
Formula
Analcime
Na
A1Si206
Chabazite
Ca
A12Si4012
Clinoptilolite
(Ca ,K2Na2)
Erionite
(Na2,K2,Ca,Mg)4.5
Mordenite
(Na2,K2,Ca)
A12Si10024
Phillipsite
(&a ,Na ,K)3
A12Si5016
H2° 6H20
A12Si20024
5H20
AlgSi27072 7H20 6H20
I n t h e f l u v i a l d e p o s i t s s t u d i e d by Walker e t a l . (1978) a u t h i g e n i c z e o l i t e s i n t h e form of c l i n o p t i l o l i t e o c c u r wherever v o l c a n i c l a s t i c d e t r i t u s i s a b u n d a n t . I t may l o c a l l y be t h e main cementing a g e n t , b u t more commonly o c c u r s a s s m a l l ,
c l e a r e u h e d r a l c r y s t a l s w i t h low b i r e f r i n g e n c e and h i g h r e l i e f which l i n e i n t e r s t i t i a l voids (Fig.5.17).
The f o r m a t i o n o f z e o l i t e s d u r i n g d i a g e n e s i s i s p a r t i c u l a r l y
f a v o u r e d i n t h e p r e s e n c e of v i t r i c d e t r i t u s , a l t h o u g h t h i s i s n o t t h e o r e t i c a l l y an a b s o l u t e n e c e s s i t y (Hay, 1966, p . 8 3 ) . The c l o s e a s s o c i a t i o n of z e o l i t e a u t h i g e n e s i s and v i t r i c d e t r i t u s i s w e l l - s e e n i n numerous examples i n t h e Cenozoic f l u v i a t i l e and l a c u s t r i n e d e p o s i t s of t h e w e s t e r n U n i t e d S t a t e s (Hay, 1963, 1966, Moiola and Hay, 1964; Sheppard, 1971, Sheppafd and Gude, 1968, 1969, 1973; Moiola, 1970; Walton, 1975).
The z e o l i t e s a r e
most abundant i n a l t e r e d v i t r i c t u f f s and t u f f a c e o u s s a n d s t o n e s and a r e g e n e r a l l y a g r e e d t o have formed d u r i n g d i a g e n e s i s by t h e r e a c t i o n of v o l c a n i c g l a s s w i t h i n t e r s t i t i a l w a t e r , which o r i g i n a t e d a s m e t e o r i c w a t e r (Hay, 1963) o r t h e connate w a t e r of a s a l i n e l a k e ( B r a d l e y , 1929; Hay, 1 9 6 4 ) .
The z e o l i t e m i n e r a l s a r e u s u a l l y
a s s o c i a t e d w i t h o t h e r a u t h i g e n i c m i n e r a l s s u c h a s m o n t m o r i l l o n i t e and K - f e l d s p a r and may show a l a t e r a l l y , o r v e r t i c a l l y zoned s u c c e s s i o n .
The Esmeralda Formation,
f o r example, a L a t e Cenozoic (Miocene-Pliocene) sequence of f l u v i a l and l a c u s t r i n e r o c k s shows a v e r t i c a l z o n a t i o n from t h e bottom upwards of analcime c l i n o p t i l o l i t e and p h i l l i p s i t e ( F i g . 5 . 1 6 )
+ K-feldspar,
(Moiola, 1970).
A n a l c i n e o n l y o c c u r s n e a r t h e b a s e of t h e Esmeralda F o r m a t i o n , i n a s s o c i a t i o n with authigenic K-feldspar.
I t o c c u r s a s c l e a r , s u b h e d r a l - e u h e d r a l c r y s t a l s which
show no e v i d e n c e t h a t i t formed d i r e c t l y from v i t r i c m a t e r i a l o r from t h e r e placement of a n a l k a l i - r i c h z e o l i t e p r e c u r s o r s u c h a s c l i n o p t i l o l i t e ( c f . Hay, 1966; Goodwin and Surdam, 1967; Sheppard and Gude, 1 9 6 9 ) .
I t i s more p r o b a b l e
t h a t t h e analcime p r e c i p i t a t e d d i r e c t l y e i t h e r from t r u e s o l u t i o n o r a n i n t e r m e d i a t e a l u m i n o s i l i c a t e g e l (Marimer and Surdam, 1 9 7 0 ) .
304
m
Gray sandstones siltstones and conglomarmr with whim vkric tuffs with basalt flow and tuff-bnocia
PHILLIPSITE
8000
7m
Pale orange to lightgrey sandstones siltstoms 8nd shales with light gray vitric tuffs.
6OOC I-
w
W LL
z
5000
9z
Greyishoranga and greyish-yellow siltsWnes with white-grey sandstones and yellowish-gray shales intartonging with grayish-orange pebble conglomerates limestone brlccia and coarse sandstones
CLINOPTILOLITE
4000 I I-
3MM
Light grey to grayish-orenge volcanic pebble conglomerates undstones and siltstones and grey sandstones with thin tuffs.
2000
1000
0
Whitr to pda orange t u f f u c ~ ~and l s siliaous sandstones with greyish-orange shdr and yellowish-brown SandstOniL Pde ydlowish-orange to greyish-yellowfaldtprthic and lithk sandstones and siltstones Light brown to grwnish-gray pebble c o n g l ~ r a t wand brrcciu with thin interbods of sandstons siltstone and limrstoner
ANALCIME+ K-FELDSPAR
Fig.5.16. S t r a t i g r a p h y and z e o l i t e z o n a t i o n o f t h e Esmeralda Formation (MiocenePliocene) ( a f t e r Moiola, 1970). The main p a r t o f t h e Esmeralda Formation i s c h a r a c t e r i z e d by c l i n o p t i l o l i t e which o c c u r s c h i e f l y a s a pseudomorphic r e p l a c e m e n t o f g l a s s b u t a l s o a s a cement i n sandstones.
The pseudomorphic r e p l a c e m e n t s u g g e s t s t h a t d i s s o l u t i o n o f g l a s s
s h a r d s preceded t h e c r y s t a l l i z a t i o n o f c l i n o p t i l o l i t e .
The r e a s o n s b e i n g t h a t t h e
l a r g e r pseudomorphs a r e g e n e r a l l y hollow and c h a r a c t e r i s t i c a l l y c o n s i s t of a v e r y t h i n m a r g i n a l f i l m of m o n t m o r i l l o n i t e o r t h i n l a y e r of o p a l , succeeded i n w a r d l y by a thin layer of c l i n o p t i l o l i t e c r y s t a l s oriented perpendicular
td
the inner wall
of t h e s h a r d . P h i l l i p s i t e i s r e s t r i c t e d t o b a s a l t i c t u f f - b r e c c i a s n e a r t h e t o p o f t h e Esmeralda Formation where i t o c c u r s p r i m a r i l y a s a r e p l a c e e m n t of s m a l l pumice f r a g m e n t s . Moiola (1970) showed t h a t t h e v e r t i c a l z e o l i t e z o n a t i o n i n t h e Esmeralda Formation was t h e r e s u l t of t h e r e a c t i o n of m i g r a t i n g groundwater w i t h v o l c a n i c d e t r i t u s ,
305 t h e d i f f e r e n t zones r e p r e s e n t i n g d i f f e r e n c e s i n t h e c o m p o s i t i o n o f t h e groundwater i n c o n t a c t w i t h t h e s e d i m e n t s a t t h e time o f a l t e r a t i o n .
The e a r l i e s t formed m i n e r a l
was p r o b a b l y m o n t m o r i l l o n i t e which formed by m a r g i n a l h y d r o l y s i s o f g l a s s and which
i s f a v o u r e d by a r e l a t i v e l y low Na
+K
t o H a c t i v i t y r a t i o (Hemley, 1 9 6 2 ) .
The
f o r m a t i o n o f m o n t m o r i l l o n i t e i n t h i s way would i n c r e a s e t h e pH and t h e c o n c e n t r a t i o n of a l k a l i i o n s .
The groundwater s o l u t i o n became s a t u r a t e d w i t h r e s p e c t t o c l i n o p -
t i l o l i t e which t h e n p r e c i p i t a t e d .
Conditions favouring i t s formation a r e a
r e l a t i v e l y h i g h S i t o A 1 a c t i v i t y r a t i o and a r e l a t i v e l y h i g h Na
+K
to H ratio.
C o - p r e c i p i t a t i o n of o p a l i n c o n j u n c t i o n w i t h c l i n o p t i l o l i t e i n d i c a t e s t h a t t h e s o l u t i o n s were s u p e r s a t u r a t e d w i t h r e s p e c t t o q u a r t z , t r i d y m i t e and c r i s t o b a l i t e . Zonation of z e o l i t e s a r e a l s o s e e n i n t h e Barstow Formation i n t h e Mud H i l l s a r e a of C a l i f o r n i a (Sheppard and Gude, 1969) b u t h e r e t h e z e o l i t i c assemblages show a l a t e r a l zonation.
The z e o l i t e s o c c u r i n a l t e r e d v i t r i c t u f f s of Miocene a g e and
a r e predominantly a n a l c i m e and c l i n o p t i l o l i t e b u t a l s o i n c l u d e c h a b a z i t e , e r i o n i t e , m o r d e n i t e and p h i l l i p s i t e . c r y s t a l s 0.01
-
Analcime most commonly o c c u r s a s s u b h e d r a l t o e u h e d r a l
0.05mm i n s i z e and may be a s s o c i a t e d w i t h t h e o t h e r z e o l i t e s and
potash feldspars but i s never seen i n a s s o c i a t i o n with r e l i c t g l a s s . o c c u r s a s p r i s m a t i c o r p l a t y c r y s t a l s , most commonly 0.01
-
Clinoptilolite
0.02mm long and i s
a s s o c i a t e d w i t h a u t h i g e n i c c l a y s , p o t a s h f e l d s p a r , o p a l and q u a r t z .
Larger c r y s t a l s
o f c l i n o p t i l o l i t e c o n s i s t o f a uniform c o r e and a p r o g r e s s i v e l y zoned r i m , p r o b a b l y r e p r e s e n t i n g a l e s s s i l i c e o u s o u t e r zone.
C l i n o p t i l o l i t e i s often associated with
a c i c u l a r o r p r i s m a t i c c r y s t a l s o f c h a b a z i t e , e r i o n i t e and m o r d e n i t e ; p h i l l i p s i t e occurs a s small s p h e r u l i t e s 0.1
-
0.3mm i n s i z e .
Sheppard and Gude (1969) e n v i s a g e d t h e f o l l o w i n g sequence o f e v e n t s t o e x p l a i n t h e observed l a t e r a l z o n a t i o n of z e o l i t i c assemblages.
I n i t i a l l y , s o l u t i o n of
s i l i c i c g l a s s by m o d e r a t e l y a l k a l i n e and s a l i n e pore-water r e s u l t e d i n t h e d i r e c t f o r m a t i o n of z e o l i t e s ( e x c e p t a n a l c i m e ) from g l a s s by a s o l u t i o n p r e c i p i t a t i o n mechanism ( D e f f e y e s , 1959).
V a r i a t i o n s i n t h e observed z e o l i t e p a r a g e n e s i s a r e
a t t r i b u t e d t o v a r i a t i o n s i n t h e a c t i v i t y of S i 0 2 , t h e a c t i v i t y o f H 2 0 , and t h e proportions of cations i n the i n t e r s t i t i a l water during diagenesis i n a similar manner t o t h a t d e s c r i b e d by Moiola (1970) f o r t h e Esmeralda Formation.
In the
Barstow Formation t h e e v i d e n c e o f a u t h i g e n i c m i n e r a l . a s s e m b l a g e s s t r o n g l y s u g g e s t s t h e f o r m a t i o n o f analcime from a l k a l i c , s i l i c i c z e o l i t e p r e c u r s o r s , s u c h a s c l i n o p t i l o l i t e (Hay, 1966; Walton, 1975, 1977).
The f o r m a t i o n o f a n a l c i m e r a t h e r t h a n
a l k a l i c , s i l i c i c z e o l i t e s i s favoured by a h i g h Na+:H+ r a t i o (Hess, 1966) r e l a t i v e l y low a c t i v i t y of S i 0 2 (Coombs e t a l . , 1959; Senderov, 1963; Campbell and F y f e , 1965) and p e r h a p s , r e l a t i v e l y low a c t i v i t y of H 2 0 .
The c o m p o s i t i o n a l v a r i a t i o n o f
analcime h e r e a p p a r e n t l y r e f l e c t s i n p a r t t h e c o m p o s i t i o n o f t h e z e o l i t e precursor
-
r e l a t i v e l y s i l i c e o u s analcime forming from a z e o l i t e s u c h a s c l i n o p -
t i l o l i t e whereas r e l a t i v e l y aluminous a n a l c i m e may have formed from a more aluminous precursor such a s p h i l l i p s i t e .
S i m i l a r l y , a u t h i g e n i c p o t a s h f e l d s p a r i s nowhere s e e n
306
Fig.5.17. A u t h i g e n i c z e o l i t e . A. Thin s e c t i o n photomicrograph showing a u t h i g e n i c c l i n o p t i l o l i t e (Z) p a r t l y f i l l i n g i n t e r s t i t i a l v o i d s from t h e Tesuque Formation (Miocene-Pliocene), New Mexico. B. SEM photomicrograph o f t h e same sample showing a u t h i g e n i c c l i n o p t i l o l i t e ( 2 ) c r y s t a l s and a s s o c i a t e d c l a y . C . A u t h i g e n i c c l i n o p t i l o l i t e pseudomorphing g l a s s s h a r d from t h e Esmeralda Formation (MioceneP l i o c e n e ) , Nevada. D. E u h e d r a l a u t h i g e n i c a n a l c i m e from t h e Esmeralda Formation. A-B produced by c o u r t e s y of T.R. Walker and C-D by c o u r t e s y of R . J . Moiola.
i n c o n t a c t w i t h v i t r i c m a t e r i a l and a p p a r e n t l y d i d n o t form d i r e c t l y from v i t r i c m a t e r i a l b u t o n l y through a n i n t e r m e d i a t e phase such a s a n a l c i m e o r c l i n o p t i l o l i t e The f a c t o r s a f f e c t i n g t h e f o r m a t i o n of p o t a s h f e l d s p a r from z e o l i t e s a r e d i s c u s s e d by I i j i m a and Hay (1968) and e x p e r i m e n t a l s y n t h e s i s of p o t a s h f e l d s p a r from c l i n o p t i l o l i t e has been made by Nemecz and V a r j u (1962) and by Sheppard and Gude ( 1 9 6 9 ) . The l a t e r a l v a r i a t i o n i n some a u t h i g e n i c m i n e r a l o g y of t h e Barstow Formation t u f f s of:
nonanalcimic z e o l i t e s
-
analcime
-
K - f e l d s p a r i s p r o b a b l y due t h e r e f o r e t o a
v a r i a t i o n i n s a l i n i t y of t h e p o r e w a t e r s t r a p p e d w i t h i n t h e t u f f s d u r i n g d i a g e n e s i s . The o b s e r v e d z o n a t i o n of a u t h i g e n i c z e o l i t e s can i n many i n s t a n c e s be b e s t a c c o u n t e d f o r by a n open system l e a c h i n g model of d i a g e n e s i s (Hay, 1963; Walton, 1975).
According t o t h i s model, w a t e r f l o w i n g through v o l c a n i c s e d i m e n t d i s s o l v e s
g l a s s a n d becomes e n r i c h e d i n d i s s o l v e d s o l i d s t o t h e c o n c e n t r a t i o n a t which m o n t m o r i l l o n i t e and then z e o l i t e s form.
The c o m p o s i t i o n of t h e groundwater s o l u t i o n i
a t any p a r t i c u l a r p o i n t i n t h e d i a g e n e t i c system i s t h u s a f u n c t i o n of t h e l e n g t h of time t h e w a t e r has been i n c o n t a c t w i t h v o l c a n i c g l a s s , t h e i n i t i a l composition of t h e groundwater and a l s o t h e composition of t h e g l a s s .
As deposition continues
t h e d i s t a n c e which groundwater must m i g r a t e from t h e r e c h a r g e a r e a t o r e a c h t h e point gets greater.
The groundwater i s t h e r e f o r e i n c o n t a c t w i t h s e d i m e n t l o n g e r
b e f o r e i t r e a c h e s t h e f i x e d p o i n t and i s c o n s e q u e n t l y changed from i t s o r i g i n a l composition.
A s t h e composition o f t h e groundwater changed d u r i n g d i a g e n e s i s ,
s e v e r a l m i n e r a l s may form s u c c e s s i v e l y a t e a c h p o i n t , e i t h e r a s r e p l a c e m e n t s o r precipitated i n voids.
The c o m p o s i t i o n a l changes which o c c u r a s w a t e r p a s s e s through
t h e d i a g e n e t i c system a r e r e p r e s e n t e d i n F i g . 5 . 1 8 .
The f i r s t formed m i n e r a l s a r e
m o n t m o r i l l o n i t d and o p a l which form from d i s s o l v e d s i l i c a , aluminium and o t h e r cations a s the glass dissolves.
I n i t i a l h y d r o l y s i s of s i l i c a and alumina d i s s o l v e d
from t h e g l a s s r a i s e s t h e pH. I n t h e a r e a s of m o n t m o r i l l o n i t e f o r m a t i o n most of t h e s i l i c a and aluminium i s consumed, a l t h o u g h e x c e s s s i l i c a forms o p a l , and t h e s o l u t i o n becomes r e l a t i v e l y e n r i c h e d i n a l k a l i s (1-2, F i g . 5 . 1 8 ) .
When t h e changing composition of t h e groundwater
r e a c h e s p o i n t 2 t h e r a t i o of a l k a l i i o n t o hydrogen i o n i s such t h a t z e o l i t e formation i s p r e f e r r e d t o montmorillonite formation.
S i l i c a and aluminium a r e t h e n
consumed i n p r o p o r t i o n s comparable t o t h o s e i n t h e o r i g i n a l g l a s s and o p a l c e a s e s t o form.
The s u b s e q u e n t f o r m a t i o n o f a n a l c i m e p o s e s a problem i n t h a t l a r g e amounts
of aluminium need t o be added d u r i n g t h e c o n v e r s i o n .
V a r i o u s s u g g e s t i o n s have been
p u t forward i n c l u d i n g t h e f o r m a t i o n of a n a l c i m e by t h e r e a c t i o n of hydrous aluminium s i l i c a t e s w i t h a l k a l i n e p o r e w a t e r (Ross, 1928; K e l l e r , 1952) and t h e r e p l a c e m e n t of m o n t m o r i l l o n i t e by q u a r t z .
The l a t t e r e x p l a n a t i o n seems more l i k e l y ; t h i s would
lower t h e s i l i c a a c t i v i t y and r a i s e t h e a l u n i n i u m a c t i v i t y t h u s c a u s i n g c o n v e r s i o n of c l i n o p t i l o l i t e t o a n a l c i m e a t composition 4 ( F i g . 5 . 1 8 ) .
308
/'
1
P"
-
I
Fig.5.18. Changes i n w a t e r composition a s i t moves through t h e d i a g e n e t i c system. During f o r m a t i o n o f m o n t m o r i l l o n i t e g l a s s d i s s o l v e s and s o l u t i o n becomes more a l k a l i n e w i t h concomitant i n c r e a s e i n Al(0H); ( 1 - 2 ) . A t same t i m e , s i l i c a a c t i v i t y i s s e t by e q u i l i b r i u m w i t h amorphous s i l i c a phase t h a t c o n t a i n s some aluminium, b u t conc e n t r a t i o n of o t h e r d i s s o l v e d i o n s i n c r e a s e s . S o l u t i o n r e a c h e s s a t u r a t i o n w i t h c l i n o p t i l o l i t e a t 2. Rapid c o n v e r s i o n of g l a s s t o c l i n o p t i l o l i t e remains t h e same. A t 3 replacement of m o n t m o r i l l o n i t e by q u a r t z lowers s i l i c a a c t i v i t y and r a i s e s aluminium a c t i v i t y , c a u s i n g c o n v e r s i o n o f c l i n o p t i l o l i t e t o a n a l c i m e when composition 4 i s reached ( a f t e r Walton, 1975). The p r e c e d i n g d i s c u s s i o n c l e a r l y i n d i c a t e s t h a t t h e b o u n d a r i e s between a u t h i g e n i c z e o l i t e assemblages a r e d e t e r m i n e d more by groundwater hydrology and c h e m i s t r y t h a n by t e m p e r a t u r e , p r e s s u r e o r d e p t h of b u r i a l .
Even s o , t h e e v i d e n c e from d e s e r t
r e g i o n s o f t h e Western S t a t e s does i n d i c a t e t h a t a minimum t h i c k n e s s of s e d i m e n t , p o s s i b i l i t y 200m o r more, must accumulate b e f o r e groundwater i s i n c o n t a c t long enough f o r a u t h i g e n i c z e o l i t e s t o develop (Walton, 1975). Clay M i n e r a l s Illite-montmorillonite The i n t r a s t r a t a l d i s s o l u t i o n o f framework g r a i n s d u r i n g e a r l y d i a g e n e s i s produces a l u m i n a , s i l i c a , and sodium much o f which i s r e p r e c i p i t a t e d a s a u t h i g e n i c c l a y . Throughout t h e Cenozoic a l l u v i u m of SW U n i t e d S t a t e s a n d NW Mexico s t u d i e d by Walker e t a l . (1978) b o t h r e p r e c i p i t a t e d and r e p l a c e m e n t a u t h i g e n i c c l a y s a r e randomly i n t e r s t r a t i f i e d mixed-layer i l l i t e - m o n t m o r i l l o n i t e c o n t a i n i n g 80-95% expandable l a y e r s ( i . e . n e a r l y p u r e m o n t m o r i l l o n i t e ) .
X-ray d i f f r a c t i o n t r a c e s
t h u s e n a b l e t h e r e a d y d i s t i n c t i o n of t h i s a u g h i g e n i c c l a y from t h e more m i n e r a l -
309 o g i c a l l y heterogeneous mechanically i n f i l t r a t e d c l a y .
However, i n t h i n s e c t i o n
a u t h i g e n i c c l a y o f t h i s type may be d i f f i c u l t t o r e c o g n i z e ; i t o c c a s i o n a l l y shows r a d i a t i n g c r y s t a l s which l i n e i n t e r s t i t i a l v o i d s b u t more u s u a l l y t h e p r e c i p i t a t e d c l a y i s a n u n r e c o g n i z a b l e p a r t of t h e i n t e r s t i t i a l m a t r i x .
However, SEM r e v e a l s a
v e r y c h a r a c t e r i s t i c boxwork o r c e l l u l a r t e x t u r e which confirms i t s a u t h i g e n i c T h i s t e x t u r e i s f i g u r e d by B o r s t a n d K e l l e r (1969) and by
nature (Fig.5.19).
Wilson and P i t t m a n ( 1 9 7 7 ) .
I t v a r i e s somewhat depending upon t h e d e h y d r a t i o n s t a t e
of t h e a u t h i g e n i c s m e c t i t e , a h i g h l y c r e n u l a t e d a p p e a r a n c e r e s u l t i n g when t h e m i n e r a l
i s dehydrated.
Although t h i s t e x t u r e s u p e r f i c i a l l y resembles t h e honeycomb t e x t u r e
s e e n i n a u t h i g e n i c c h l o r i t e and i l l i t e i t s h o u l d n o t be confused w i t h t h e s e because i t d i f f e r s i n a n i m p o r t a n t r e s p e c t i . e . i n d i v i d u a l c r y s t a l s o f s m e c t i t e c a n n o t be
r e s o l v e d u s i n g t h e SEM, i n c o n t r a s t t o t h e c h l o r i t e o r i l l i t e honeycomb which i s formed of i n d i v i d u a l c l a y p l a t e l e t s i n t e r l o c k i n g and normal t o t h e d e t r i t a l g r a i n surface.
I n a s i m i l a r v e i n Wilson a n d P i t t m a n (1977) p o i n t o u t t h a t i t can be
m i s l e a d i n g t o u s e o n l y SEM e v i d e n c e t o d i s t i n g u i s h m o n t m o r i l l o n i t e and mixed l a y e r illite-montmorillonite.
I n g e n e r a l t h e SEM a p p e a r a n c e of mixed l a y e r i l l i t e -
m o n t m o r i l l o n i t e depends upon t h e r e l a t i v e p r o p o r t i o n s of t h e p a r t i c i p a t i n g c l a y minerals:
i f i l l i t e - r i c h t h e s t r u c t u r e may be d i f f i c u l t t o d i s t i n g u i s h from pure
i l l i t e and t a k e s t h e form of s h e e t s w i t h s h o r t l a t h - l i k e d i g i t a t e edges.
Illite
A u t h i g e n i c i l l i t e i s u b i q u i t o u s i n a n c i e n t r e d beds and i s l e s s common i n T e r t i a r y and Q u a t e r n a r y a l l u v i u m .
I n t h i n section i t is readily distinguished
from o t h e r c l a y s by i t s h i g h e r b i r e f r i n g e n c e ; i t commonly forms p o r e l i n i n g s (Fig.5.19).
I n SEM s t u d i e s i l l i t e g e n e r a l l y o c c u r s a s i r r e g u l a r f l a k e s w i t h l a t h -
like projections.
The a u t h i g e n i c growths, a t t a c h e d t o t h e s u r f a c e o f t h e sand
g r a i n s , develop a s s h e e t s t h a t c u r l away from t h e p o i n t of a t t a c h m e n t .
The edges
of t h e s e s h e e t s have p r o j e c t i o n s which may b e r e l a t i v e l y s h o r t o r t h e y may develop i n t o c u r l e d , f i b r o u s p r o j e c t i o n s up t o 10ym long and 0 . 5 ~ " i n w i d t h , t h e s o - c a l l e d fibrous o r hairy i l l i t e . Kaolinite-Dickite K a o l i n i t e and d i c k i t e a r e common a u t h i g e n i c c l a y s i n s a n d s t o n e s and t h e r e a r e a number of r e p o r t e d o c c u r r e n c e s i n r e d beds.
K a o l i n i t e o c c u r s i n t h e Permian
R o t l i e g e n d e s s a n d s t o n e s o f t h e North Sea a r e a ( G l e n n i e e t a l . , 1978; Hancock, 1978;
Kessler, 1978).and a l s o t h e Old Red Sandstone ( F r i e n d , 1966).
i n t h e O l d Red Sandstone o f S c o t l a n d .
Dickite a l s o occurs
K a o l i n i t e and d i c k i t e a r e t h e most
e a s i l y r e c o g n i z e d c l a y m i n e r a l s i n t h i n s e c t i o n ( F o t h e r g i l l , 1955, p. 305; Karpova, 1969, p . 7 ) b e c a u s e t h e y a r e f r e q u e n t l y c o a r s e r than o t h e r c l a y m i n e r a l s p e c i e s . K a o l i n i t e i s n o t d i s t i n g u i s h a b l e from d i c k i t e u s i n g o n l y SEM b u t they a r e r e a d i l y
310
A u t h i g e n i c i l l i t e and mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e i n Cenozoic Fig.5.19. a l l u v i u m and a n c i e n t r e d beds. A . Large c r y s t a l s of a u t h i g e n i c c l a y forming a r a d i a l p o r e l i n i n g . Thin s e c t i o n , Cuchara Formation ( E o c e n e ) , Colorado. B. D e t a i l o f a u t h i g e n i c c l a y forming i n t e r s t i t i a l m a t r i x , SEM photomicrograph, G i l a Group, Tucson, Arizona. C . A u t h i g e n i c mixed l a y e r c l a y (A-C) developed on m e c h a n i c a l l y i n f i l t r a t e d c l a y (MIC). SEM photomicrograph, Hayner Ranch Formation (Miocene), New Mexico. D . A u t h i g e n i c i l l i t e showing t y p i c a l boxwork t e x t u r e . SEM photom i c r o g r a p h , R o t l i e g e n d e s ( P e r m i a n ) , North Sea. A-C produced by c o u r t e s y o f T . R . Walker and D by c o u r t e s y of B. Waugh.
TABLE 5.7.
C h a r a c t e r i s t i c s of a u t h i g e n i c c l a y s ( a f t e r Wilson and P i t t m a n , 1977). Morphology
Form o f Aggregate
Relationship with D e t r i t a l Grains
Thickness of Coating o r Long Dimension o f Aggregate
(ym)
pseudohexagonal
stacked p l a t e s (book)
pore f i l l i n g
2-2500 (generally 2-20)
pseudohexagonal
vermicule
pore f i l l i n g
10-2500 (generally 20-200)
pseudohexagonal
sheet
pore f i l l i n g
0.1-1
pseudohexagonal
p l a t e s (2dimensional cardhouse
pore l i n i n g
2- 10
c u r l e d equidimensional w i t h rounded edges
honeycomb
pore l i n i n g
2- 10
equidimensional w i t h a n g u l a r o r l o b a t e edges
r o s e t t e o r fan
pore. l i n i n g and f i l l i n g
4- 150
fan-shaped f i b r o u s bundles
ca bba gehea d
pore-lining and f i l l i n g
8-40
Illite
i r r e g u l a r with elongate spines
sheet
pore l i n i n g
0.1-10
Montmorillonite
n o t recognizable
wrinkled s h e e t o r honeycomb
pore l i n i n g
2-12
Mixed l a y e r montiuorilloni t e /illi t e
subequant w i t h s t u b b y spines
imbricate sheet t o r a a a e d honevcomb
pore l i n i n g
2- 1 2
K a o l i n i t e and Dickite
Chlorite
(generally 4-20)
312
Fig.5.20. A u t h i g e n i c k a o l i n i t e and c h l o r i t e i n a n c i e n t r e d beds. A. Pseudohexagonal c r y s t a l s of k a o l i n i t e forming a p o r e f i l l i n g . Thin s e c t i o n , Lower Old Red S a n d s t o n e , Gamrie O u t l i e r , S c o t l a n d . B. S t a c k e d c r y s t a l s of k a o l i n i t e o f v a r i a b l e g r a i n s i z e forming a p o r e - f i l l i n g . Note t h a t many of t h e c r y s t a l s a r e twinned a s i n d i c a t e d by n o t c h e s . SEM photomicrograph, R o t l i e g e n d e s ( P e r m i a n ) , North Sea. C . A u t h i g e n i c c h l o r i t e forming a p o r e - l i n i n g , Thin s e c t i o n , R o t l i e g e n d e s ( P e r m i a n ) , North Sea. D . A u t h i g e n i c c h l o r i t e p o r e l i n i n g s . Thin s e c t i o n , T o r r i d o n i a n Sandstone ( L a t e P r e c a m b r i a n ) , NW S c o t l a n d . B i s produced by c o u r t e s y of B . Waugh.
313 s e p a r a t e d u s i n g X-ray d i f f r a c t i o n .
Authigenic k a o l i n i t e - d i c k i t e t y p i c a l l y occurs
i n s a n d s t o n e s a s pseudohexagonal p l a t e s , m o s t l y commonly p l u g g i n g p o r e s p a c e s completely, but a l s o a s pore l i n i n g s (Fig.5.20). The most common h a b i t o f a u t h i g e n i c k a o l i n i t e - d i c k i t e i n s a n d s t o n e s i s t h e c - a x i s s t a c k i n g of pseudohexagonal p l a t e s t o form "books".
I n d i v i d u a l p l a t e s may range from
3 - 2 0 ~i n d i a m e t e r ; i n d i v i d u a l p l a t e s and books of k a o l i n i t e may show grooves o r n o t c h e s which may r e p r e s e n t twinning ( M a n s f i e l d and B a i l e y , 1972).
Kaolinite also
d i s p l a y s a v e r m i c u l a r h a b i t which c o n s i s t s o f a sequence of s t a c k e d pseudohexagonal p l a t e s t h a t may e x t e n d t h e f u l l l e n g t h o f p o r e s p a c e s .
More r a r e l y k a o l i n i t e may
o c c u r a s o v e r l a p p i n g pseudohexagonal p l a t e s c o a t i n g s a n d s i z e d d e t r i t a l g r a i n s o r o t h e r a u t h i g e n i c overgrowths. 2-lO/m i n d i a m e t e r .
These p l a t e s a r e g e n e r a l l y l e s s t h a n
pm
t h i c k and
P o r e f i l l i n g and p o r e l i n i n g k a o l i n i t e i n r e d beds i s g e n e r a l l y
c o n s i d e r e d t o be a r e l a t i v e l y l a t e d i a g e n e t i c f e a t u r e .
C h l o r i t e , a l o n g w i t h i l l i t e i s t h e most commonly o c c u r r i n g c l a y m i n e r a l i n a n c i e n t red beds.
I t o c c u r s a s p o r e l i n i n g s which may a p p e a r p a l e g r e e n o r c o l o u r -
l e s s i n t h i n s e c t i o n and a l s o w i t h i n i n t e r s t i t i a l m a t r i x .
The p o r e l i n i n g s a r e
e x t r e m e l y v a r i a b l e i n s a n d s t o n e s g e n e r a l l y and may t a k e t h e form of p l a t e s a t t a c h e d t o d e t r i t a l sand g r a i n s ( P i t t m a n and Lumsden, 1968; Hayes, 1 9 7 0 ) , r o s e t t e s , honeycombs, o r cabbagehead-like growths (Wilson and P i t t m a n , 1977). of t h e s e growth h a b i t s v a r i e s a s f o l l o w s : cabbagehead.
p l a t e s and r o s e t t e s
The i r o n c o n t e n t honeycomb
C h l o r i t e most commonly develops a s i n d i v i d u a l idiomorphic p l a t e s
a t t a c h e d on edge t o t h e s u r f a c e of t h e s a n d g r a i n s u s u a l l y r a n g i n g from 2 - 1 0 ~i n s i z e . Fig.5.20. Honeycomb s t r u c t u r e d e v e l o p s when t h e p l a t e s a r e a r r a n g e d i n a c e l l u l a r p a t t e r n due t o t h e i n t e r s e c t i o n and c u r v i n g of i n d i v i d u a l c r y s t a l s g i v i n g a honeycomb l i k e a p p e a r a n c e .
A u t h i g e n i c c h l o r i t e a l s o forms r o s e t t e s and fan-shaped
c l u s t e r s a s p o r e l i n i n g s and p o r e f i l l i n g s , u s u a l l y 5 - 2 0 ~i n d i a m e t e r , b u t o c c a s i o n a l l y up t o 1 5 0 ~ . I n d i v i d u a l c r y s t a l s t y p i c a l l y range from 4-18p i n diameter.
The r a r e s t growth h a b i t of a u t h i g e n i c c h l o r i t e i s t h e cabbagehead.
At
low m a g n i f i c a t i o n s t h e s e a p p e a r a s s m a l l e q u i d i m e n s i o n a l g r a i n s a t t a c h e d t o sand sized grains.
A t higher magnifications they appear a s concentric ribbon o r
s h e e t - l i k e l a y e r s of c h l o r i t e w i t h complex o r i e n t a t i o n s . r a n g e from a p p r o x i m a t e l y 8 t o 4
I n d i v i d u a l cabbageheads
0 and ~ most commonly form p o r e l i n i n g s .
In a n c i e n t r e d beds c h l o r i t e i s a c h a r a c t e r i s t i c a u t h i g e n i c p h a s e .
It i s
u s u a l l y a n i r o n - r i c h v a r i e t y a s i n d i c a t e d by t h e r e l a t i v e l y s t r o n g (002) and ( 0 0 4 ) r e f l e c t i o n s ( B r i n d l e y , 1961) and o c c u r s a s d i s c r e t e p o r e l i n i n g s and w i t h i n i n t e r s t i t i a l matrix.
314 Calcite A u t h i g e n i c c a l c i t e i s a common cementing a g e n t i n a n c i e n t r e d s and a l s o i n t h e i r L a t e T e r t i a r y and Q u a t e r n a r y p r e c u r s o r s . The e a r l i e s t formed c a l c i t e cements i n r e d bed p r e c u r s o r s o c c u r a s a r e s u l t of b o t h p h r e a t i c and vadose c e m e n t a t i o n i n humid-semi-arid
a l l u v i a l f a n and ephemeral
wadi s t r e a m d e p o s i t s ( B l i s s e n b a c h , 1954; S t a l d e r , 1 9 7 5 ) .
Here zones of c o n s o l i d -
a t i o n a r e closely associated with successive depositional episodes c l e a r l y indicating t h a t cementation occurred very r a p i d l y a f t e r deposition.
More r a r e l y t h e d e g r e e
o f c a l c i t e c e m e n t a t i o n may c o r r e l a t e w i t h s e d i m e n t a r y s t r u c t u r e s
-
a clear indication
t h a t primary p e r m e a b i l i t y and c a p i l l a r y f o r c e s d e t e r m i n e d by g r a i n s i z e were c o n t r o l l i n g f a c t o r s i n l o c a l i z i n g t h e cement f a b r i c .
The f a c t o r s g o v e r n i n g t h e
p r e c i p i t a t i o n of c a l c i t e from f r e s h w a t e r a r e d i s c u s s e d by MUller e t a l . (19721, B l a t t e t a l . (1972) and Folk and Land (1975).
In a l l u v i a l f a n and wadi c h a n n e l d e p o s i t s c a l c i t e cement t e x t u r e s a t t r i b u t a b l e t o b o t h p h r e a t i c and vadose c e m e n t a t i o n o c c u r ; i n p l a c e s t h e r e may be rhythmic a l t e r n a t i o n s of t h e two.
The most t y p i c a l vadose t e x t u r e i s d r i p s t o n e o r s t a l a c t i t e s
composed of l a m i n a t e d m i c r i t i c s e d i m e n t .
Blocky c a l c i t e cements r e s u l t from p h r e a t i c
cementa t i o n . S t a l d e r (1975) has made a d e t a i l e d s t u d y of t h e c a l c i t e c e m e n t a t i o n o f P l i o c e n e Q u a t e r n a r y f l u v i a t i l e c l a s t i c s i n t h e Oman Mountains. several species:
The c a r b o n a t e s h e r e i n c l u d e
c a l c i t e , high-Mg c a l c i t e and d o l o m i t e which a r e c l o s e l y r e l a t e d
t o t h e a r e a of s u r f a c e r u n - o f f . For example, i n a r e a s w i t h c a r b o n a t e o r mixed
c a r b o n a t e - o p h i o l i t e s o u r c e r o c k s t h e cement i s c a l c i t e .
I n areas with peridolite
s o u r c e r o c k s c a l c i t e , h i g h Mg c a l c i t e and d o l o m i t e o c c u r a s cements.
The o r i g i n
o f Ca2+ was t h e r e f o r e p r i n c i p a l l y from c a r b o n a t e s and from p l a g i o c l a s e s and
pyroxenes p r e s e n t i n l a r g e q u a n t i t i e s i n b a s a l t i c and g a b b r o i c s o u r c e a r e a s .
The
h i g h Mg2+ needed f o r t h e f o r m a t i o n of h i g h Mg c a l c i t e (up t o 30% MgCO,) and dolomite was p r o b a b l y d e r i v e d mainly from o l i v i n e s and pyroxenes i n p e r i d o t i t i c source rocks.
F l u c t u a t i o n s i n t h e s u p p l y of Ca2+ and Mg2+ i o n s r e s u l t e d i n t h e
chemical z o n a t i o n o f cement f a b r i c s which e n a b l e d S t a l d e r (1975) t o conclude t h a t c e m e n t a t i o n r e s u l t e d from s u p e r s a t u r a t i o n by e v a p o r a t i o n . I n a n c i e n t r e d beds c a l c i t e i s g e n e r a l l y c o a r s e l y c r y s t a l l i n e , f i l l i n g b o t h i n t e r g r a n u l a r v o i d s and d i s s o l u t i o n v o i d s .
Completely d i s s o l v e d d e t r i t a l g r a i n s
r e v e a l e d o n l y by t h e i r c l a y o x i d e c o a t i n g s ( g h o s t s ) may be f i l l e d by c a l c i t e cement, a p r o c e s s which p r e v e n t s them from compaction and o b l i t e r a t i o n . common i n a n c i e n t r e d beds ( F i g . 5 . 2 1 ) .
Such g h o s t s a r e
C a l c i t e c e m e n t a t i o n may a l s o be i m p o r t a n t
i n s e a l i n g o f f permeable zones and t h u s p r e v e n t i n g p a r t i a l l y a l t e r e d framework g r a i n s from more e x t e n s i v e d i s s o l u t i o n . Changes i n groundwater c h e m i s t r y may d i s s o l v e e x i s t i n g a u t h i g e n i c c a l c i t e and t h e r e may be complex t e x t u r a l r e l a t i o n s h i p s w i t h c a l c i t e , t h e framework g r a i n s and
315
Fig.5.21. A u t h i g e n i c c a l c i t e i n Cenozoic a l l u v i u m and a n c i e n t r e d beds. A . P a r t i a l l y d i s s o l v e d hornblende g r a i n (H) w i t h o r i g i n a l o u t l i n e marked by p r e s e r v e d c l a y s k i n . D i s s o l u t i o n v o i d i s f i l l e d w i t h c a l c i t e . Thin s e c t i o n . P l i o c e n e ? f a n g l o m e r a t e , Cai'ion Rojo, Baja C a l i f o r n i a . B. A u t h i g e n i c c a l c i t e (Ca) w i t h i n c l u s i o n s o f a u t h i g e n i c p o t a s s i u m f e l d s p a r ( A F ) . SEM photomicrograph, o t h e r d e t a i l s a s i n A. C. Probable completely dissolved s i l i c a t e g r a i n with t h e o r i g i n a l o u t l i n e marked by a p r e s e r v e d c l a y s k i n . D i s s o l u t i o n v o i d i s f i l l e d w i t h c a l c i t e which i s i n o p t i c a l c o n t i n u i t y w i t h t h e i n t e r s t i t i a l c a l c i t e . Thin D. Authigenic c a l c i t e causing s e c t i o n , Upper M o t t l e d Sandstone ( T r i a s s i c ) , U.K. p h y s i c a l d i s p l a c e m e n t of f e l d s p a r fragments by d i s p l a c i v e c r y s t a l l i z a t i o n . Thin s e c t i o n , R i n g e r i k e Group ( S i l u r i a n ) , Norway. A-B a r e produced by c o u r t e s y o f T R Wa l k e r
..
.
316 o t h e r authigenic phases.
I n p a r t i c u l a r , c a l c i t e may c o r r o d e o r p h y s i c a l l y d i s p l a c e
framework g r a i n s such a s t h e more e a s i l y d i s s o l v e d c a l c i c p l a g i o c l a s e s and o f t e n shows c o r r o s i v e r e l a t i o n s h i p s w i t h o t h e r a u t h i g e n i c p h a s e s s u c h a s q u a r t z .
The
f r e q u e n t c o e x i s t e n c e of t h e s e two m i n e r a l s i n r e d bed s a n d s t o n e s i s n o t s u r p r i s i n g because t h e s o l u b i l i t y c u r v e s of q u a r t z and c a l c i t e meet a t a pH o f a b o u t 7.5 which i s commonly found i n n a t u r a l groundwaters. Haematite and p r e c u r s o r o x i d e s F i n e l y d i s p e r s e d a u t h i g e n i c h a e m a t i t e i s t h e p r i n c i p a l c o l o u r i n g a g e n t of cnntinental red beds.
I t s a u t h i g e n i c o r i g i n i s confirmed by t h e e u h e d r a l n a t u r e
of t h e h a e m a t i t e c r y s t a l s and t h e f a c t t h a t t h e y o c c u r a s p o r e l i n i n g s and w i t h i n d i s s o l u t i o n v o i d s , p a r t i c u l a r l y of f e r r o m a g n e s i a n m i n e r a l s . o c c u r a s t h i n , pseudohexagonal p l a t e s a b o u t 1~ i n l e n g t h . on g r a i n s u r f a c e s o r a s s m a l l c l u s t e r s of c r y s t a l s Fig.5.22.
The h a e m a t i t e c r y s t a l s They may o c c u r d i s c r e t e l y Much o f t h e i r o n which
forms a u t h i g e n i c h a e m a t i t e i s r e l e a s e d v i a t h e i n t r a s t r a t a l d i s s o l u t i o n o f ferromagn e s i a n m i n e r a l s s u c h a s h o r n b l e n d e and p r o b a b l y pyroxene.
The f a t e of t h e i r o n , once
r e l e a s e d from s i l i c a t e l a t t i c e s , depends upon t h e chemical c o n d i t i o n s i n t h e i n t e r s t i t i a l ground w a t e r .
I n Eh-pH c o n d i t i o n s which c o r r e s p o n d t o t h e s t a b i l i t y f i e l d
o f f e r r o u s i r o n then t h e i r o n may be t r a n s p o r t e d i n s o l u t i o n i n t h e i n t e r s t i t i a l groundwater.
P r e c i p i t a t i o n w i l l o c c u r when Eh and pH changes and e n t e r s t h e
s t a b i l i t y f i e l d of h a e m a t i t e .
The i n i t i a l p r e c i p i t a t e i s l i k e l y t o b e amorphous
i r o n hydroxide o r g o e t h i t e (Langmuir, 1 9 7 1 ) , which s u b s e q u n n t l y a g e s i n t o h a e m a t i t e ( B e r n e r , 1969a).
I n s u p p o r t of t h i s is t h e f a c t t h a t i n Cenozoic a l l u v i u m w i t h t h e
youngest d e t e c t a b l e r e d d e n i n g ( L a t e P l e i s t o c e n e ) h a e m a t i t e c a n n o t be d e t e c t e d by SEM o r X-ray d i f f r a c t i o n a n a l y s i s (Walker, 1 9 7 6 ) .
A u t h i g e n i c e u h e d r a l h a e m a t i t e i n abundant i n a n c i e n t r e d beds and has been i d e n t i f i e d by a number of a u t h o r s i n c l u d i n g , F r i e n d ( 1 9 6 6 ) , T u r n e r (1974a1, Wilson ( 1 9 7 1 ) , Walker (1976) and Walker and L a r s o n (1976)
( s e e F i g s . 5 . 2 2 and 5 . 2 3 ) .
I x e r e t a l . (1979) have c o n v i n c i n g l y d e m o n s t r a t e d t h e a u t h i g e n i c n a t u r e of h a e m a t i t e i n t h e T r i a s s i c S t . Bees Sandstone of n o r t h e r n England.
Here e u h e d r a l h a e m a t i t e
c r y s t a l s o c c u r n o t o n l y a s f i n e g r a i n e d pigment b u t a l s o a s overgrowths which o c c u r a s rhombohedral and p r i s m a t i c p r o j e c t i o n s o r a s s y n t a x i a l r i m cements ( F i g . 5 . 2 3 ) . Complete overgrowths of h a e m a t i t e develop i n a s i m i l a r manner t o t h a t d e s c r i b e d by Waugh (1970b, 1978) f o r s i l i c a t e g r a i n s .
I n t h e e a r l y s t a g e s t h e authigenic haematite
c o n s i s t s of f l a t rhombohedral c r y s t a l s r a n g i n g from 2-20 m i n l e n g t h , t h e c r y s t a l s being arranged perpendicular t o the d e t r i t a l g r a i n surface.
The o r i e n t a t i o n o f t h e
a u t h i g e n i c c r y s t a l s i s c o n t r o l l e d by t h e s t r u c t u r e of t h e h o s t g r a i n such t h a t i n monocrystalline d e t r i t a l g r a i n s , a l l the authigenic c r y s t a l s a r e arranged i n p a r a l l e l fashion.
In p o l y c r y s t a l l i n e d e t r i t a l g r a i n s t h e d i f f e r e n t o r i e n t a t i o n s
of t h e d i f f e r e n t s u b c r y s t a l s i s r e f l e c t e d i n t h e o r i e n t a t i o n of t h e a u t h i g e n i c
317
Fig.5.22. A u t h i g e n i c pigmentary h a e m a t i t e i n Cenozoic a l l u v i u m and a n c i e n t c o n t i n e n t a l r e d beds. A. SEM photomicrograph of h a e m a t i t e c r y s t a l s l i n i n g a d i s s o l u t i o n v o i d . Hayner Ranch Formation (Miocene), New Mexico. B. E n l a r g e d view of o u t l i n e d a r e a i n A. C . E n l a r g e d view o f o u t l i n e d a r e a i n B showing c l u s t e r s of e u h e d r a l h a e m a t i t e c r y s t a l s . D . SEM photomicrograph o f a u t h i g e n i c h a e m a t i t e i n t h e Moenkopi Formation ( T r i a s s i c ) , Arizona. E . C h a r a c t e r i s t i c t e x t u r a l a p p e a r a n c e of a u t h i g e n i c h a e m a t i t e pigment c o a t i n g d e t r i t a l q u a r t z g r a i n . Thin s e c t i o n photomicrograph, R i n g e r i k e Group ( S i l u r i a n ) , Norway. F. D e t a i l of e u h e d r a l a u t h i g e n i c h a e m a t i t e ( R i n g e r i k e Group). A-D a r e produced by c o u r t e s y of T.R. Walker.
318
Fig.5.23. A u t h i g e n i c i r o n a n d t i t a n i u m o x i d e s i n t h e S t . Bees Sandstone ( T r i a s s i c ) , Cumbria, U.K. A . D e t r i t a l g r a i n w i t h a u t h i g e n i c overgrowth c o n s i s t i n g of s y n t a x i a l rhombohedra1 c r y s t a l s o f h a e m a t i t e . R e f l e c t e d l i g h t . B. D e t r i t a l g r a i n w i t h s y n t a x i a l overgrowth c o n s i s t i n g o f a s i n g l e rhombohedra1 c r y s t a l . R e f l e c t e d l i g h t . C. D e t r i t a l g r a i n w i t h p a r a l l e l rhombohedra1 c r y s t a l s o f a u t h i g e n i c h a e m a t i t e and p e r f e c t l y e u h e d r a l a n a t a s e ( t o p r i g h t ) . SEM. D. P o l y c r y s t a l l i n e d e t r i t a l h a e m a t i t e w i t h a u t h i g e n i c rhombohedra1 c r y s t a l s o f h a e m a t i t e showing t h r e e d i f f e r e n t , c r y s t a l l o g r a p h i c a l l y c o n t r o l l e d , o r i e n t a t i o n s . E. D e t a i l of a u t h i g e n i c rhombohedra1 h a e m a t i t e . F. D e t a i l o f a u t h i g e n i c a n a t a s e c r y s t a l showing t h e b a s a l p i n a c o i d a n d pyramidal f a c e s .
319 h a e m a t i t e c r y s t a l s (Fig.5.23).
Complete overgrowths o f h a e m a t i t e p r o b a b l y form
by t h e growth and s t a c k i n g t o g e t h e r o f i n d i v i d u a l rhombohedral c r y s t a l s i n a s i m i l a r manner t o t h a t s e e n i n t h e f e l d s p a r s .
I x e r e t a l . (1979) showed t h e t t h e
h a e m a t i t e overgrowths show some i m p o r t a n t c o m p o s i t i o n a l v a r i a t i o n .
I n particular
t i t a n i f e r o u s overgrowths w i t h a b o u t 5% T i 0 2 a r e a common f e a t u r e o f some T r i a s s i c red beds. Titanium o x i d e s a r e a l s o a n i m p o r t a n t a u t h i g e n i c phase i n r e d beds.
These
commonly o c c u r i n a n c i e n t r e d beds a s s m a l l d i s c r e t e c r y s t a l s of a n a t a s e o r r u t i l e up t o 4
0 i n~ s i z e ( F i g . 5 . 2 3 ) and l i n i n g p o r e s p a c e s .
a n a t a s e and r u t i l e a l s o o c c u r ,
S y n t a x i a l overgrowths of
A u t h i g e n i c t i t a n i u m o x i d e p r o b a b l y forms i n t h e
same manner a s h a e m a t i t e a l t h o u g h a r e a d y s u p p l y of t i t a n i u m i o n s from framework s i l i c a t e s i s n o t immediately o b v i o u s .
I x e r e t a l . (1979) s u g g e s t e d t h a t t i t a n i u m
i o n s might be r e l e a s e d i n t o t h e i n t e r s t i t i a l groundwaters d u r i n g t h e m a r t i t i z a t i o n of d e t r it a l titanomagnetite. Quartz Q u a r t z i s a n abundant a u t h i g e n i c phase i n r e d beds a n d i s commonly a s o o c i a t e d with authigenic feldspar.
The p r e c i p i t a t i o n of a u t h i g e n i c q u a r t z a c c o u n t s f o r
most of t h e f r e e s i l i c a which i s r e l e a s e d by s i l i c a t e d i s s o l u t i o n , t h e remainder b e i n g used i n c l a y m i n e r a l s and f e l d s p a r . I n t h e Cenozoic a l l u v i u m s t u d i e d by Walker e t a l . (1978) a u t h i g e n i c overgrowths on d e t r i t a l q u a r t z g r a i n s a r e s c a r c e and most of t h e a u t h i g e n i c q u a r t z o c c u r s i n two d i s t i n c t c r y s t a l forms.
These a r e :
1) t a b u l a r c r y s t a l s t h a t a r e f l a t t e n e d
p a r a l l e l t o t h e b a s a l pinacoi'd and which have u n e q u a l l y developed p r i s m f a c e s t h a t g i v e s them a pseudo-orthorhombic form and 2 ) p r i s m a t i c c r y s t a l s which a r e t e r m i n a t e d w i t h rhombohedral f a c e s .
Walker e t a l . (1978) concluded t h a t t h e two c r y s t a l forms
r e f l e c t e d d i f f e r e n t concentrations of s i l i c a i n the groundwaters, o r o t h e r d i f f e r e n c e s i n t h e i n t e r s t i t i a l geochemical c o n d i t i o n s . D i s c r e t e a u t h i g e n i c c r y s t a l s a l s o o c c u r i n a n c i e n t r e d beds b u t s y n t a x i a l overgrowths a r e more abundant ( F i g . 5 . 2 4 ) .
I n some a e o l i a n s a n d s t o n e s t h e s e a r e s o
abundant a s t o resemble s i l c r e t e d u r i c r u s t s of modern d e s e r t s .
The f o r m a t i o n of
q u a r t z overgrowths of t h i s t y p e has been d e s c r i b e d by Waugh ( 1 9 7 0 a , b ) . STAGES I N THE DIAGENESIS OF CONTINENTAL RED BEDS The s t u d y o f d i a g e n e s i s i n f i r s t c y c l e d e s e r t a l l u v i u m made by Walker and h i s c o l l e g u e s p r o v i d e s a s t r i k i n g . e x a m p l e o f t h e way i n which m i n e r a l systems may respond t o changes i n t h e i r p h y s i c a l and chemical environment.
Many of t h e m i n e r a l s
a f f e c t e d by t h e s e d i a g e n e t i c p r o c e s s e s were formed under c o n d i t i o n s much d i f f e r e n t from t h o s e i n which they a r e now found,
Thus, many o f t h e m i n e r a l s a r e n o t i n
e q u i l i b r i u m w i t h t h e i r environment a n d a r e undergoing a l t e r a t i o n s .
These a l t e r a t i o n s
320
Fig.5.23. SEM photomicrographs o f a u t h i g e n i c q u a r t z i n Cenozoic a l l u v i u m and a n c i e n t r e d beds. A . T a b u l a r c r y s t a l s of a u t h i g e n i c q u a r t z which a r e f l a t t e n e d p a r a l l e l t o b a s a l p i n a c o i d and have u n e q u a l l y developed p r i s m f a c e s . P l i o c e n e f a n g l o m e r a t e , Ca8on R o j o , Baja C a l i f o r n i a . B. P r i s m a t i c c r y s t a l s of q u a r t z t e r m i n a t e d w i t h rhombohedra1 f a c e s . E l R i t o Formation ( E o c e n e ? ) , New Mexico. C . A u t h i g e n i c q u a r t z ( Q ) e n c r u s t i n g a u t h i g e n i c p o t a s s i u m f e l d s p a r (AF). Same d e t a i l s a s i n A. D . E u h e d r a l overgrowth of q u a r t z . S t . Bees Sandstone ( T r i a s s i c ) , U.K. A-C a r e produced by c o u r t e s y of T.R. Walker.
321
Fig.5.25. Schematic r e p r e s e n t a t i o n of t h e t h r e e s t a g e s o f d i a g e n e t i c a l t e r a t i o n i n f i r s t - c y c l e d e s e r t a l l u v i u m ( a f t e r Walker e t a l . , 1 9 7 8 ) . c a n be e x p e c t e d t o c o n t i n u e u n t i l t h e m i n e r a l assemblages i s i n e q u i l i b r i u m w i t h i t s physico-chemical environment.
The e x i s t e n c e o f p a r t i a l l y a l t e r e d m i n e r a l
g r a i n s i n d e p o s i t s which a r e tend of m i l l i o n s of y e a r s o l d i n d i c a t e s t h e e q u i l i b r i a t i o n p r o c e s s t a k e s p l a c e v e r y slowly; i n d e e d t h e r e may be r e p e a t e d e p i s o d e s o f e q u i l i b r i a t i o n a s t h e p r e c i p i t a t i o n o f a u t h i g e n i c p h a s e s changes t h e c o n d i t i o n s i n t h e i n t e r s t i t i a l w a t e r and i n i t i a t e s a new phase of a l t e r a t i o n .
I t seems l i k e l y
t h a t i n t r a s t r a t a l a l t e r a t i o n s a r e most r a p i d d u r i n g t h e e a r l y s t a g e s a f t e r d e p o s i t i o n because t h i s i s t h e p e r i o d when t h e most u n s t a b l e d e t r i t a l g r a i n s a r e most abundant. The i n t e r s t i t i a l environment may a l s o be a f f e c t e d by e x t e r n a l c a u s e s s u c h a s c l i m a t e and t e c t o n i s m .
C l i m a t e may a f f e c t t h e amount and t e m p e r a t u r e o f c i r c u l a t i n g
ground w a t e r and a l s o t h e amount of o r g a n i c m a t t e r i n t h e d e p o s i t e d s e d i m e n t , and t h e s e w i l l i n t u r n a f f e c t t h e r a t e of i n t r a s t r a t a l a l t e r a t i o n , the concentration of d i s s o l v e d i o n s and t h e Eh-pH c o n d i t i o n s .
Tectonism may a f f e c t t h e r a t e of
groundwater c i r c u l a t i o n and a l s o t h e i n t e r s t i t i a l t e m p e r a t u r e and p r e s s u r e ; u p l i f t o f t h e s o u r c e r e g i o n s t e n d s t o i n c r e a s e t h e c i r c u l a t i o n r a t e and d e c r e a s e t h e t e m p e r a t u r e and p r e s s u r e ; b u r i a l on t h e o t h e r hand t e n d s t o d e c r e a s e t h e c i r c u l a t i o n r a t e and i n c r e a s e t h e t e m p e r a t u r e and p r e s s u r e .
Hence c l i m a t i c o r t e c t o n i c changes
322 a r e l i k e l y t o produce a n immediate r e s p o n s e o f t h e m i n e r a l assemblage t o t h e changes i n t h e i n t e r s t i t i a l environment. Walker e t a l . (1978) have p r e s e n t e d a s c h e m a t i c r e p r e s e n t a t i o n of t h e d i a g e n e s i s changes which have been observed o r i n f e r r e d i n t h e i r s t u d i e s o f Cenozoic s a n d s t o n e s and conglomerates i n t h e s o u t h w e s t USA and n o r t h w e s t e r n Mexico (Fig.5.25). stages a r e recognized:
Stage 1
-
mechanical i n f i l t r a t i o n of c l a y , S t a g e I1
Three
-
s i g n i f i c a n t a l t e r a t i o n of p y r o x e n e s , amphiboles and c a l c i c p l a g i o c l a s e , S t a g e 111 complete l o s s of p y r o x e n e s , amphiboles and most c a l c i c p l a g i o c l a s e .
-
K - f e l d s p a r and
q u a r t z may show e v i d e n c e of a l t e r a t i o n , newly formed c l a y m i n e r a l s . Many a n c i e n t c o n t i n e n t a l r e d beds show e v i d e n c e of S t a g e I11 a l t e r a t i o n s and can be i n f e r r e d t o have r e s u l t e d from a c o n t i n u a t i o n o f t h o s e p r o c e s s e s c o n s i d e r e d t o be o p e r a t i v e i n f i r s t - c y c l e d e s e r t a l l u v i u m .
T h i s e v i d e n c e may be summarized a s
follows :
1) a b s e n c e of f e r r o m a g n e s i a n s i l i c a t e s such a s h o r n b l e n d e and pyroxene i n r e d beds d e r i v e d from s o u r c e r o c k s i n which t h e y were p l e n t i f u l
2 ) s a n d - s i z e d c o n c e n t r a t i o n s of c l a y squeezed between r e s i s t a n t framework g r a i n s . I f t h e c l a y i s h a e m a t i t e - r i c h i t may r e p r e s e n t a c l a y pseudomorph a f t e r a f e r r o -
magnesian s i l i c a t e
3) absence of s i l t grade d e t r i t u s . framework g r a i n s w i t h a c l a y m a t r i x .
Many a n c i e n t r e d beds c o n s i s t of s a n d - s i z e d Such t e x t u r e s a r e n o t produced d e p o s i t i . o n a l l y
and a r e b e s t e x p l a i n e d i f t h e c l a y i s t h e p r o d u c t of i n f i l t r a t i o n a n d / o r a u t h i g e n e s i s
4 ) d i s s o l u t i o n and c l a y r e p l a c e m e n t of f e l d s p a r s i n d i c a t e s t h a t i n t r a s t r a t a l s o l u t i o n must have p r o g r e s s e d t o t h e p o i n t when r e l a t i v e l y s t a b l e g r a i n s a r e b e i n g a t t a c k e d ; t h u s a n i n d i c a t i o n t h a t l e s s s t a b l e g r a i n s might have been c o m p l e t e l y d i s s o l v e d .
5 ) e u h e d r a l a u t h i g e n i c h a e m a t i t e i s common i n a n c i e n t r e d beds.
It i s frequently
c o a r s e enough t o be o b s e r v e d i n t h i n s e c t i o n and w i t h She SEM i s s e e n t o form p l a t y hexagonal c r y s t a l s and r o s e t t e s of hexagonal c r y s t a l s
6 ) a c h a r a c t e r i s t i c a u t h i g e n i c s u i t e o f q u a r t z , K - f e l d s p a r , c a l c i t e and c l a y m i n e r a l s i s p a r t i c u l a r l y common i n a n c i e n t r e d beds and t e s t i f i e s t h e former e x i s t e n c e o f i n t e r s t i t i a l w a t e r r i c h i n d i s s o l v e d i o n s which were r e l e a s e d by i n t r a s t r a t a l dissolution.
323
CHAPTER 6 THE MINERALOGY AND GEOCHEMISTRY OF IRON OXIDES I N RED BEDS I R O N OXIDE. MINERALS
Abundant i r o n - t i t a n i u m o x i d e m i n e r a l s a r e one o f t h e most c h a r a c t e r i s t i c f e a t u r e s of c o n t i n e n t a l r e d beds.
They a r e n o t o n l y r e s p o n s i b l e f o r t h e
c o l o u r a t i o n o f t h e s e r o c k s b u t a l s o r e p r e s e n t t h e end p r o d u c t s of t h e i r d i a g e n e s i s and a r e r e s p o n s i b l e f o r t h e rock magnetism and hence p a l a e o m a g n e t i c p r o p e r t i e s of red beds,
I r o n - t i t a n i u m o x i d e s which o c c u r i n r e d beds show a wide range of
t e x t u r a l and c o m p o s i t i o n a l v a r i a t i o n b u t can c o n v e n i e n t l y b e c o n s i d e r e d i n two g r o u p s : f i n e p a r t i c l e pigmentary o x i d e s , p r i n c i p a l l y c o n s i s t i n g o f h a e m a t i t e b u t a l s o c o n t a i n i n g o t h e r f e r r i c oxyhydroxides, and c o a r s e p a r t i c l e opaque o x i d e s which contain a v a r i e t y of iron- titanium oxide minerals.
The m i n e r a l o g - i c a l p r o p e r t i e s
o f t h o s e i r o n - t i t a n i u m o x i d e s which commonly o c c u r i n r e d beds a r e l i s t e d i n T a b l e 6.1. The i r o n - t i t a n i u m o x i d e s can b e r e p r e s e n t e d by t h e FeO-Ti02-Fe 0 t e r n a r y 2 3 The t h r e e end p o i n t s o f t h e diagram a r e r e p r e s e n t e d by diagram ( F i g . 6 . 1 ) . h a e m a t i t e and maghemite (Fe 0 ) , r u t i l e ( T i 0 2 ) and w U s t i t e (FeO), W i t h i n t h e 2 3 t e r n a r y diagram t h r e e i m p o r t a n t s o l i d s o l u t i o n s e r i e s a r e r e p r e s e n t e d : 1) t h e t i t a n o m a g n e t i t e s v a r y i n g between m a g n e t i t e (Fe 0 ) and ulvklspinel (Fe T i 0 ) which 3 4 2 4 2 ) t h e h a e m a t i t e - i l m e n i t e s e r i e s v a r y i n g between
have t h e s p i n e l s t r u c t u r e
h a e m a t i t e (Fe 0 ) and i l m e n i t e (FeTiO ) which have t h e rhombohedra1 s t r u c t u r e and 3 2 3 3) t h e p s e u d o b r o o k i t e s e r i e s (Fe T i 0 ) w i t h orthorhombic s t r u c t u r e . 2 5 The titanomannetites-titanomazhemites W i t h i n t h e FeO-Ti0 -Fe 0 t e r n a r y diagram t h e most i m p o r t a n t group o f m i n e r a l s 2 2 3 a r e t h o s e w i t h t h e s p i n e l s t r u c t u r e which l i e i n t h e Fe304-Fe2Ti0 Fe2Ti0 -Fe 0 45 2 3 quadrilateral. T h i s s y s t e m c o n t a i n s t h e t i t a n o m a g n e t i t e s and t h e i r o x i d i z e d e q u i v a l e n t s t h e titanomaghemites ( F i g . 6 . 2 ) .
The l e f t - h a n d s i d e of t h e q u a d r i l a t e r a l
r e p r e s e n t s t h e t i t a n o m a g n e t i t e s and t h e b a s e r e p r e s e n t s t h e s o l i d s o l u t i o n between m a g n e t i t e and maghemite (l/-Fe 0 ). The c o o r d i n a t e s ( x , z ) a r e used t o s p e c i f y 2 3 p o i n t s w i t h i n t h e q u a d r i l a t e r a l where p o i n t s on t h e l e f t - h a n d s i d e c o r r e s p o n d t o z = 0
( O < x < l ) and t h o s e on t h e b a s e t o x = 0 ( O L z < l ) .
The p a r a m e t e r z i s
t h e r e f o r e a n o x i d a t i o n p a r a m e t e r and when z = 1 a l l t h e i r o n i s p r e s e n t a s Fe
3+
T h i s i s t h e c a s e w i t h maghemite which may be r e p r e s e n t e d by t h e formula: Fe3+ a13 0-: ( x = 0 , z = I ) , where r e p r e s e n t s a v a c a n t l a t t i c e s i t e : Maghemite may
a
.
D113
t h e r e f o r e b e d e s c r i b e d a s a c a t i o n d e f i c i e n t s p i n e l and i s one of a whole s e r i e s of i r o n - t i t a n i u m c a t i o n d e f i c i e n t s p i n e l s which a r e r e f e r r e d t o a s t h e
324
Ruth
TAN- BROWN
*BLUE
Hagnotito
Haomatito Maghaomit.
Fig.6.1. The FeO-Ti02-Fe203 t e r n a r y system, showing t h e p r i n c i p a l s o l i d s o l u t i o n series. The dashed l i n e s are some l i n e s of c o n s t a n t Fe:Ti r a t i o a l o n g which o x i d a t i o n may proceed. I s o t r o p i c , a n i s o t r o p i c , and t h e c o l o u r v a r i a t i o n s are t h e o p t i c a l p r o p e r t i e s as viewed i n r e f l e c t e d l i g h t oil-immersion. titanomaghemites.
Those s p i n e l s w i t h a c a t i o n f a n i o n r a t i o o f 314, i.e. when
z = 0 a r e referred to a s the titanomagnetites.
I n n a t u r e s u c h compounds a r e
probably r a t h e r s c a r c e and i t i s common p r a c t i c e t o use t h e term t i t a n o m a g n e t i t e f o r b o t h t h e t r u e t i t a n o m a g n e t i t e s , and a l s o f o r t h e i r o x i d i z e d e q u i v a l e n t s , t h e titanmaghemites.
To overcome t h e c o n f u s i o n O ' R e i l l y (1976) s u g g e s t s r e s t r i c t i n g
t h e term t i t a n o m a g n e t i t e t o t h o s e s p i n e l s w i t h a n o x i d a t i o n parameter 240.1. I r o n - t i t a n i u m s p i n e l s w i t h z h 0 . 1 s h o u l d b e r e f e r r e d t o a s titanomaghemite.
A
g e n e r a l formula f o r a l l t h e i r o n - t i t a n i u m s p i n e l s may be w r i t t e n : 3+ 2+ 02Fe 2-2x + z ( I + x ) R Fe ( I + x ) ( l - z ) R 3(1-R) 4 where R = 8 1 8 + z ( l + x ) . The c r y s t a l s t r u c t u r e of t h e s e s p i n e l s c o n s i s t s of a c l o s e packed a n i o n l a t t i c e w i t h c a t i o n s having f o u r f o l d c o o r d i n a t i o n ( t e t r a h e d r a l s i t e s ) and s i x f o l d coordination (octahedral s i t e s ) .
Each a n i o n has t h r e e o c t a h e d r a l s i t e c a t i o n s
and one t e t r a h e d r a l s i t e c a t i o n a s n e a r e s t neighbours. The c a t i o n d i s t r i b u t i o n f o r m a g n e t i t e i s u s u a l l y w r i t t e n Fe 3+LFe3+, Fez+]
O4
where c a t i o n s o u t s i d e t h e b r a c k e t a r e i n t e t r a h e d r a l s i t e s and t h o s e i n s i d e a r e i n octahedral s i t e s .
I n a c t u a l f a c t t h e c a t i o n d i s t r i b u t i o n i s more c o r r e c t l y
325
113 Fo304 magn6titi
haomatito maghomito
The Fe 0 -Fe T i 0 -Fe T i 0 -Fe 0 q u a d r i l a t e r a l r e p r e s e n t i n g t h e Fig.6.2. c o m p o s i t i o n a l zone f o r s i n g l e phase compounds w i t h s p i n e l s t r u c t u r e below a b o u t 400OC. The h a t c h e d r e g i o n r e p r e s e n t s t h e same zone a t a b o u t 1 2 O O O C ( a f t e r O ' R e i l l y , 1976).
I
w r i t t e n Fe3+
04 b e c a u s e above t h e Verwey t r a n s i t i o n (420°K)
e l e c t r o n hopping between c a t i o n s on o c t a h e d r a l s i t e s r e s u l t s i n i n t e r m e d i a t e oxidation state.
Below t h e Verwey t r a n s i t i o n t h e s t r u c t u r e becomes orthorhombic
and t h e r e a r e f o u r o c t a h e d r a l s p e c i e s s i n c e two o c t a h e d r a l s i t e s now o c c u r .
The
c a t i o n d i s t r i b u t i o n i n i n t e r m e d i a t e members of t h e t i t a n o m a g n e t i t e s e r i e s i s o n l y p o o r l y known and v a r i o u s models have been proposed (Akimoto, 1954; Ngel, 1955; B a n e r j e e a n d O ' R e i l l y , 1966).
B a n e r j e e e t a l . (1967) concluded t h a t t e t r a h e d r a l
s i t e s c o n t a i n b o t h Fe2+ and Fe3+ i o n s t h r o u g h o u t most of t h e series.
A useful
r e v i e w of t h e s u b j e c t i s g i v e n by L i n d s l e y (1976). I n t h e m a g n e t i t e - u l v b s p i n e l series t h e r e i s complete s o l i d s o l u t i o n a t t e m p e r a t u r e s above 6OO0C ( F i g . 6 . 4 ) .
During c o o l i n g t h e s o l i d s o l u t i o n i s much
more r e s t r i c t e d and t h e r e i s a tendency f o r e x s o l u t i o n o f t h e two p h a s e s t o occur.
True e x s o l u t i o n t e x t u r e s a r e , however, r e l a t i v e l y s c a r c e i n m a g n e t i t e -
ulvijspinel s o l i d s o l u t i o n s .
The commonly o b s e r v e d i n t e r g r o w t h s of i l m e n i t e i n
t i t a n o m a g n e t i t e a r e now c o n s i d e r e d t o form d i r e c t l y as a r e s u l t of o x i d a t i o n a t low t o moderate p r e s s u r e s and t e m p e r a t u r e s above 60OoC.
These i l m e n i t e i n t e r g r o w t h s
i n t i t a n o m a g n e t i t e may b e d i v i d e d i n t o t h e f o l l o w i n g t e x t u r a l forms a c c o r d i n g t o t h e Buddington and L i n d s l e y (1964) c l a s s i f i c a t i o n :
326 a)
trellis types
b)
composite ( g r a n u l a r ) t y p e s
c)
sandwich t y p e s
The t r e l l i s t y p e s a r e t h e most common and a r e c l e a r l y o x i d a t i o n p r o d u c t s o f magnetite-ulv8spinel.
The composite and sandwich t y p e s a r e l e s s common and
p r o b a b l y c o n t a i n i l m e n i t e s which formed a s p r i m a r y p r e c i p i t a t e s .
A well-illustrated
d e s c r i p t i o n of t h e v a r i o u s t e x t u r e s i s g i v e n by Haggerty ( 1 9 7 6 a ) .
Fig.6.3. P a r t o f t h e s p i n e l u n i t c e l l . Large open c i r c l e s r e p r e s e n t a n i o n s , s m a l l open c i r c l e s , o c t a h e d r a l s i t e c a t i o n s , and s m a l l h a t c h e d c i r c l e s , t e t r a h e d r a l s i t e c a t i o n s . The broken l i n e shows t h e t r i g o n a l a x i s f o r t h e c e n t r a l o c t a h e d r a l site. A d i f f e r e n t o x i d a t i o n mechanism which o p e r a t e s d u r i n g d e u t e r i c c o o l i n g r e s u l t s i n
f o r m a t i o n of c a t i o n d e f i c i e n t s p i n e l s ( t i t a n o m a g h e m i t e s ) . a t t e m p e r a t u r e s i n t h e r a n g e 400-600°C
This takes p l a c e i n i t i a l l y
and i s a common f e a t u r e of submarine b a s a l t s .
This t y p e o f o x i d a t i o n ( m a g h e m i t i z a t i o n ) a l s o c o n t i n u e s d u r i n g submarine w e a t h e r i n g . This i s s u g g e s t e d by p i l l o w l a v a s which show r a d i a l v a r i a t i o n s i n t h e d e g r e e of m a g h e m i t i z a t i o n , t h e s u r f a c e s b e i n g most h i g h l y o x i d i z e d ( R y a l l and Ade-Hall,
1975).
The h a e m a t i t e - i l m e n i t e s e r i e s Haematite (er-Fe203) and i l m e n i t e (FeTiOg) a r e rhombohedra1 o x i d e s which form a s o l i d s o l u t i o n s e r i e s t h a t i s complete a t h i g h t e m p e r a t u r e s ( c e r t a i n l y above 96OoC and p r o b a b l y above 80OoC) b u t i n t e r r u p t e d by a m i s c i b i l i t y gap a t lower t e m p e r a t u r e s ( L i n d s l e y , 1973).
Haematite has t h e corundum s t r u c t u r e which c o n s i s t s o f a
321
t
-v 1200
Fig.6.4. 1974).
Phase diagram f o r t h e b i n a r y t i t a n o m a g n e t i t e system ( a f t e r Hauptman,
hexagonal-close
packed a n i o n l a t t i c e w i t h c a t i o n s f i t t e d i n t o t h e i n t e r s t i c e s ,
t h e rhombohedra1 u n i t c e l l c o n t a i n i n g f o u r c a t i o n s and s i x a n i o n s .
All c a t i o n
s i t e s a r e e q u i v a l e n t w i t h d i s t o r t e d o c t a h e d r a l symmetry which a r i s e s b e c a u s e of e l e c t r o s t a t i c r e p u l s i o n between n e a r e s t - n e i g h b o u r c a t i o n s i n a d j a c e n t b a s a l planes (Fig.6.5). The c r y s t a l s t r u c t u r e of i l m e n i t e i s v e r y s i m i l a r t o t h a t o f h a e m a t i t e b u t t h e morphology of n a t u r a l i l m e n i t e c r y s t a l s has shown t h a t t h e s p a c e group must have a lower symmetry and R? ( a subgroup of R ~ c )was chosen f o r i l m e n i t e o n - t h i s basis,
Compared t o t h e h a e m a t i t e s t r u c t u r e , one h a l f of t h e i r o n i o n s a r e
r e p l a c e d by t i t a n i u m i n s u c h a way t h a t e v e r y Fe-03-Fe u n i t , and t h e sequence of c a t i o n s a l o n g any @ O O g
u n i t becomes a Fe-03-Ti
axis is
.. ., . Fe-Ti-LI) -Ti-Fe-n-Fe
where t h e hyphens r e p r e s e n t i n t e r v e n i n g p l a n e s o f oxygen l a y e r s .
As i n h a e m a t i t e ,
e v e r y t h i r d p o t e n t i a l o c t a h e d r a l s i t e i s empty; t h e n e a r e s t c a t i o n s t o a n empty
s i t e along arranged i n
0001 0001
b e i n g two i r o n o r two t i t a n i u m .
The Fe-0 - T i u n i t s a r e so 3 t h a t oxygen l a y e r s a l t e r n a t e w i t h m e t a l l a y e r s , which themselves
a l t e r n a t e between l a y e r s of i r o n and l a y e r s of t i t a n i u m . Haematite and i l m e n i t e form a complete s o l i d s o l u t i o n s e r i e s a t h i g h t e m p e r a t u r e s . 2+ The c o m p o s i t i o n may be e x p r e s s e d Fe3+ Fe T i 03, where x i s t h e mole f r a c t i o n of 2-2x x i l m e n i t e . I n t e r m e d i a t e s o l i d s o l u t i o n s c o n t a i n Fe2+ and Fe3+ i n amounts which a r e a p p r o x i m a t e l y p r o p o r t i o n a l t o x and (2-2x) r e s p e c t i v e l y , so i t i s p r o b a b l e t h a t 4+ titanium i s present only a s T i Solvus r e l a t i o n s h i p s o f t h e h a e m a t i t e - i l m e n i t e
.
s e r i e s were e s t a b l i s h e d by Carmichael (1961) on n a t u r a l m a t e r i a l , and a r e v i s e d , e x p e r i m e n t a l s o l v u s was p r e s e n t e d by L i n d s l e y (1973).
The c o n s o l u t e t e m p e r a t u r e
328
Fig.6.5. The corundum s t r u c t u r e . The c a t i o n s ( s m a l l h a t c h e d c i r c l e s ) l i e i n t h e i n t e r s t i c e s between t h e close-packed a n i o n l a t t i c e . Broken l i n e s i n d i c a t e t h e t r i g o n a l a x i s . The d i s t o r t i o n o f oxygen t r i a n g l e s and d i s p l a c e m e n t o f c a t i o n s from t h e median p l a n e a r e a l s o i n d i c a t e d . ( c r i t i c a l p o i n t f o r t h e s o l v u s ) may b e lower t h a n 800°C and t h e m i s c i b i l i t y gap, a l t h o u g h n o t y e t d e t e r m i n e d p r e c i s e l y , o c c u p i e s a narrower f i e l d t h a n t h a t s u g g e s t e d by Carmichael (1961) ( F i g . 6 . 6 ) . E x s o l u t i o n of h a e m a t i t e from i l m e n i t e and v i c e v e r s a i s r e s t r i c t e d t o deeps e a t e d i n t r u s i o n s and i s p a r t i c u l a r l y c h a r a c t e r i s t i c of a n o r t h o s i t e s a n d o t h e r b a s i c s u i t e s , but a l s o occurs i n g r a n i t i c s u i t e s .
The p l a n e o f e x s o l u t i o n i s
p a r a l l e l t o t h e (0001) rhombohedra1 d i r e c t i o n , t h e e x s o l u t i o n t a k i n g p l a c e i n a c c o r d w i t h decomposition a s a consequence o f slow c o o l i n g and s o l v i - i n t e r s e c t i o n . S i n g l e - p h a s e compounds o f i n t e r m e d i a t e composition a r e r a t h e r r a r e i n n a t u r e b u t o c c u r i n some quench-cooled e x t r u s i v e i g n e o u s r o c k s (Haggerty, 1976b). The terminology of Buddington e t a l . (1963) i s c o n v e n i e n t t o u s e f o r i n t e r mediate members o f t h e h e a m a t i t e - i l m e n i t e series: F e r r i a n i l m e n i t e i s a one-phase g r a i n o f i l m e n i t e c o n t a i n i n g v a r y i n g amounts of Fe 0 i n s o l i d s o l u t i o n . 2 3 T i t a n h a e r n a t i t e i s a one-phase g r a i n of h a e m a t i t e c o n t a i n i n g v a r y i n g q u a n t i t i e s of FeTiOg i n s o l i d s o l u t i o n . Haemo-ilmenite i s a two-phase g r a i n c o n s i s t i n g o f t i t a n h a e m a t i t e l a m e l l a e e n c l o s e d i n a ferrianilmenite host. Ilmeno-haematite i s a two-phase g r a i n c o n s i s t i n g o f f e r r i a n i l m e n i t e l a m e l l a e enclosed i n a titanhaematite host. T i t a n h a e m a t i t e s a r e o f p a r t i c u l a r i n t e r e s t b e c a u s e o f t h e i r remarkable m a g n e t i c p r o p e r t i e s which i n c l u d e s e l f - r e v e r s a l (Wescott-Lewis and P a r r y , 1971 a , b ) .
329 Hoffman (1975) proposed a mechanism by which s e l f - r e v e r s a l m i g h t o c c u r .
I
I
8001
700
600 00
60
40
Fe Ti O3 Ilmenite
Mole Percent Fe Ti
O3
1
20
Fe203 Hciematite
Fig.6.6. The j o i n Fe203-FeTiO showing t h e h a e m a t i t e - i l m e n i t e m i s c i b i l i t y gap of Carmichael (1961) (hoop-shaped c u r v e ) and L i n d s l e y ’ s (1973) e s t i m a t e of t h e r e g i o n ( s t i p p l e d a r e a ) w i t h i n which t h e m i s c i b i l i t y gap must l i e . P means t h a t p s e u d o b r o o k i t e s o l i d s o l u t i o n s , R t h a t r u t i l e , was p r e s e n t i n t h e r i m p r o d u c t s ( a f t e r L i n d s l e y , 1973). F e r r i c Oxvhvdroxides The n a t u r a l l y o c c u r r i n g forms o f f e r r i c oxyhydroxide a r e l i s t e d i n T a b l e 6.1. T h e i r o c c u r r e n c e , e x c e p t f o r a k a g a n g i t e , have been d e s c r i b e d by P a l a c h e e t a l . (1944). AkaganLite i s a r a r e m i n e r a l , o c c u r r e n c e s h a v i n g been d e s c r i b e d by Van T a s s e l (1959) and Chandy (1962).
I t i s noteworthy b e c a u s e i t o c c u r s i n m e t e o r i t e s and l u n a r rocks
a s a n o x i d a t i o n p r o d u c t o f l a w r e n c i t e (FeC1 ) and n a t i v e n i c k e l - i r o n ( T a y l o r e t a l . , 2 1974). Amorphous f e r r i c oxyhydroxide i s u s u a l l y g i v e n t h e formula Fe(OH)3 f o r convenience.
P o o r l y c r y s t a l l i n e , c o l l o i d a l m a t e r i a l , w i t h a composition n e a r
2.5 FegO3 4.5 H 2 0 , and a p p a r e n t l y w i t h a d i s t o r t e d h a e m a t i t e - t y p e s t r u c t u r e , i s
g i v e n t h e name f e r r i h y d r i t e (Towe and B r a d l e y , 1967).
I t may b e a s s o c i a t e d w i t h
b a c t e r i a l o x i d a t i o n o f f e r r o u s i r o n s o l u t i o n s (Chukrov, 1973).
Amorphous f e r r i c
oxyhydroxide and g o e t h i t e a r e t h e main c o n s t i t u e n t s of l i m o n i t e which i s t h e name
330 TABLE 6.1. N a t u r a l l y o c c u r r i n g forms of f e r r i c oxyhydroxide F e r r i c oxyhydroxide
I d e a l Formula
Amorphous
i n d e f i n i t e Fe (OH)
Goethite
FeOOH
Akaganeite
FeOOH
Lepidocrocite
FeOOH
Haematite
Fe203 Fe 0 2 3
Maghemi t e
g i v e n t o t h e yellow t o brown c o l o u r e d f e r r i c oxyhydroxide complexes which form a s p r e c i p i t a t e s i n n a t u r a l w a t e r s and a s a n o x i d a t i o n p r o d u c t of i r o n - b e a r i n g minerals.
On d e h y d r a t i o n , o r a g e i n g , g o e t h i t e u s u a l l y i n v e r t s t o h a e m a t i t e .
Haematite i s t h e most s t a b l e f e r r i c o x i d e and i s t h e p r i n c i p a l c o l o u r i n g a g e n t o f r e d beds.
Maghemite o c c u r s mainly a s a n o x i d a t i o n p r o d u c t o f m a g n e t i t e , and
more r a r e l y by t h e d e h y d r a t i o n o f l e p i d o c r o c i t e .
T h i s l a t t e r f e r r i c oxyhydroxide
o c c u r s a s a p r e c i p i t a t e i n n a t u r a l w a t e r s , and i s found r a r e l y i n c o n t i n e n t a l r e d beds.
OPAQUE OXIDES IN RED BEDS
U n f o r t u n a t e l y t h e r e have been few d e t a i l e d s t u d i e s of t h e opaque o x i d e s i n e i t h e r Recent s e d i m e n t s o r a n c i e n t r e d beds and we owe much of o u r p r e s e n t knowledge t o t h e c o n t r i b u t i o n by Van Houten ( 1 9 6 8 ) .
O t h e r o b s e r v a t i o n s have
been made by Chamalaun ( 1 9 6 3 ) , P i c a r d ( 1 9 6 5 ) , and Turner and I x e r (1977). A c c u r a t e c h a r a c t e r i z a t i o n and u n d e r s t a n d i n g o f t h e opaque o x i d e s i n r e d beds i s e s s e n t i a l f o r a p r o p e r u n d e r s t a n d i n g of t h e i r d i a g e n e t i c and p a l a e o m a g n e t i c
history.
Opaque o x i d e s can p r o v i d e u s e f u l i n f o r m a t i o n a b o u t t h e provenance of
c o n t i n e n t a l a l l u v i u m and t h e y a r e a l s o r e s p o n s i b l e f o r t h e m a g n e t i c p r o p e r t i e s of most c o n t i n e n t a l r e d b e d s .
Consequently t h e o c c u r r e n c e o f t h e v a r i o u s o x i d e s
i n igneous r o c k s , and t h e i r d e r i v e d e q u i v a l e n t s i n c o n t i n e n t a l r e d b e d s , a r e described systematically.
In g e n e r a l , t h e c o m p o s i t i o n s a n d modal abundances o f
p r i m a r y opaque o x i d e s i n igneous r o c k s depend upon t h e i n i t i a l b u l k c h e m i s t r y o f t h e h o s t r o c k , on t h e d e p t h of emplacement, and on t h e oxygen f u g a c i t y o f t h e c r y s t a l l i z i n g magma.
S i n c e FeO, T i 0 2 and Cr203 d e c r e a s e w i t h S i 0 2 , b a s i c r o c k s
t e n d t o c o n t a i n l a r g e r c o n c e n t r a t i o n s of o x i d e s t h a n t h e i r i n t e r m e d i a t e s u i t e s
o r a c i d end members.
The m i n e r a l o g i c a l p r o p e r t i e s of t h e commonly o c c u r r i n g
i r o n - t i t a n i u m o x i d e s a r e l i s t e d i n T a b l e 6.2. Titanomagnetite T i t a n o m a g n e t i t e o c c u r s commonly i n i n t e r m e d i a t e and b a s i c i g n e o u s r o c k s where
331 TABLE 6.2. Mineralogical p r o p e r t i e s of iron-titanium oxides i n polished s e c t i o n . Name, chemical formula and symmetry
Optical properties
Reflectance i n % (wavelength = 589nm)
Microindentat i o n hardness
Magnetite -304 Cubic
Grey, c o m o n l y w i t h brownish t i n t . Much d a r k e r t h a n haematite. Isotropic
20.3 ( A i r ) 8.00 ( O i l )
592 ( l o a d of 100)
Ulvbspinel Fe2TiOq Cubic
Brown-reddish brown I s o t r o p i c . Usually found a s f i n e e x s o l ution bodies i n ti tanomagneti t e
16.35 ( A i r )
No d a t a
Maghaemi t e y-,Fe203 Cubic
B l u i s h - g r e y . Darker than haematite. Isotropic
22.8 ( A i r ) 9.00 ( O i l )
412 ( l o a d of 5 0 )
Ha ema t i te oc-Fe203 Hexagona 1
Grey-white w i t h a b l u i s h t i n t . Anisot r o p i c : greyish-b lue g r e y i s h yellow. Deep red internal reflections
29.15-25.1 ( A i r ) 14.4-11.0 ( O i l )
1038 (mean of 3 r a n g e s 100, 200, 300 )
Ilmenite FeTi03 Trigonal
Brown sometimes w i t h a pink o r v i o l e t t i n t . Anisotropic: l i g h t greenish grey, brownish g r e y
20.2-17.4 ( A i r ) 7.6-5.8 ( O i l
519-533 ( l o a d o f 100) 659-703
Goe t h i t e
Dull grey t o b r i g h t grey. Anisotropic: g r e y - b l u e , greyy e l l o w , brown, greenish- grey. Brownish-yellow internal reflections
16.1-15.0 5.05-4.0
(Air) (Oil)
Greyish-whi te. Anisotropic: shades o f g r e y . Reddish internal reflections
17.4-11.1 5.55-2.0
(Air) (Oil)
u - FeOOH
Orthorhombic
Lepidocrocite Y-FeOOH Orthorhombic
402 (mean of 3 r a n g e s 100, 200, 300)
i t o f t e n comprises up t o f i v e p e r c e n t by volume.
Increased s u b s t i t u t i o n of
t i t a n i u m i s c h a r a c t e r i s t i c of b a s i c igneous r o c k s and h e r e t i t a n o m a g n e t i t e s 3+ 2+ (Fe2-2x Fel+x T i 4 + 02-)w i t h x a p p r o x i m a t e l y i n t h e range 0.54xCO.8 a r e t y p i c a l . x 4 Titanium poor m a g n e t i t e s a r e u s u a l i n a c i d igneous r o c k s . O t h e r c a t i o n s a r e u s u a l l y p r e s e n t i n t i t a n o m a g n e t i t e s , i n c l u d i n g manganese, n i c k e l , z i n c , and chromium ( C r e e r and I b b e t s o n , 1970).
O r i e n t e d i n c l u s i o n s and o x i d a t i o n l a m e l l a e
p a r a l l e l t o (111) a r e common and i n c l u d e h a e m a t i t e , i l m e n i t e and r u t i l e .
The
o c c u r r e n c e o f t i t a n o m a g n e t i t e s i n igneous rocks i s d e s c r i b e d i n g r e a t d e t a i l by Haggerty (1976b).
Other u s e f u l references i n c l u d e
V i n c e n t and P h i l l i p s ( 1 9 5 4 ) ,
Katsura and Kushiro ( 1 9 6 1 ) , Buddington and L i n d s l e y ( 1 9 6 4 ) , and B u t l e r (1973). T i t a n o m a g n e t i t e i s r e a d i l y o x i d i z e d i n t h e s e d i m e n t a r y environment and u n a l t e r e d g r a i n s a r e s c a r c e i n Recent sediments and s o i l s . i n alluvium.
F r e s h g r a i n s most commonly o c c u r
Van Andel (1959, p. 155), Walker (1967a? p. 365) and Van Houten
(1968, Table 1 and 2 ) a r e amongst t h e few a u t h o r s who r e p o r t t h e o c c u r r e n c e o f r e l a t i v e l y u n a l t e r e d t i t a n o m a g n e t i t e g r a i n s ; some of t h e s e are e u h e d r a l and are less a l t e r e d t h a n t i t a n o m a g n e t i t e g r a i n s i n s o i l s and s a p r o p e l s , a f e a t u r e
i n d i c a t i n g d i r e c t c o n t r i b u t i o n from l i t t l e weathered bedrock.
Unfortunately,
d e s p i t e v a s t numbers o f heavy m i n e r a l a n a l y s e s o f Recent a l l u v i u m , t h e r e i s v i r t u a l l y no i n f o r m a t i o n on t h e d e t a i l e d mineralogy o f i r o n o x i d e s ; most a u t h o r s have been c o n t e n t t o group them a l l a s "opaques" d e s p i t e t h e f a c t t h a t t h e y o f t e n form t h e m a j o r i t y o f t h e heavy m i n e r a l f r a c t i o n .
Most of t h e i n f o r m a t i o n r e g a r d i n g
t i t a n o m a g n e t i t e comes from d e t r i t a l c o n c e n t r a t e s i n beach sands.
Wright (1964) h a s
d e s c r i b e d t h e o x i d a t i o n of t i t a n o m a g n e t i t e d e r i v e d from v o l c a n i c rocks i n New Zealand beach sands.
These show p a r t i a l t o complete a l t e r a t i o n t o homogeneous
t i t a n h a e m a t i t e o r t o t i t a n h a e m a t i t e and pseudobrookite.
Some o f t h e h a e m a t i t i z a t i o n
was c e r t a i n l y i n i t i a t e d i n t h e p a r e n t r o c k , b u t p o s t - d e p o s i t i o n a l a l t e r a t i o n a l s o takes p l a c e (Wright, 1964, p. 431).
Rapid o x i d a t i o n o f m a g n e t i t e and t i t a n o -
m a g n e t i t e t a k e s p l a c e i n t h e weathered zone o f igneous r o c k s and, i n r e s i d u a l p l a c e r s o f o x i d e m i n e r a l s o v e r 50 p e r c e n t h a e m a t i t i z a t i o n i s n o t uncomon (e.g. T s u s u e and I s h i h a r a ,
1975).
I n l a t e r i t i c s o i l s t i t a n o m a g n e t i t e s may b e weathered
t o s t r u c t u r e l e s s p e l l e t s o f brown and r e d o x i d e ( B r i g g s , 1960) and a l l t h e g r a i n s u s u a l l y show some e v i d e n c e o f h a e m a t i t i z a t i o n .
T h i s u s u a l l y t a k e s t h e form o f
r e d f i n e g r a i n e d rims o f h a e m a t i t e , o r t h i n h a e m a t i t e l a m e l l a e n e a r t h e g r a i n margin (Van Houten, 1968, p. 401). (Katsura e t a l . ,
S o i l s developed on b a s i c v o l c a n i c r o c k s
1962; C a r r o l l and Hathaway, 1963; Matsusaka e t a l . , 1965) c o n t a i n
much t i t a n o m a g n e t i t e which shows p a r t i a l t o complete o x i d a t i o n t o titanomaghernite.
In a n c i e n t r e d beds u n a l t e r e d g r a i n s o f m a g n e t i t e a r e v i r t u a l l y unknown.
Those
m a g n e t i t e s which do o c c u r form r e l i c t c o r e s w i t h i n h a e m a t i t e s and show e x t e n s i v e signs of oxidation.
There i s c o n s i d e r a b l e e v i d e n c e t h a t r a p i d h a e m a t i t i z a t i o n
( m a r t i t i z a t i o n ) o f m a g n e t i t e t a k e s p l a c e i n t h e d i a g e n e t i c environment.
This i s
333 s e e n i n t h e p r o g r e s s i v e i n c r e a s e o f m a r t i t e r e l a t i v e t o m a g n e t i t e i n more a n c i e n t r e d beds. Haema t i t e - I l m e n i t e The o c c u r r e n c e o f members o f t h e h a e m a t i t e - i l m e n i t e series i n i g n e o u s r o c k s i s d e s c r i b e d by Haggerty (1976b), and i n metamorphic r o c k s by Rumble (1976).
Members
o f t h e h a e m a t i t e - i l m e n i t e series form a minor c o n s t i t u e n t o f most i g n e o u s r o c k s ; a c i d s u i t e s , g r a n i t i c p e g m a t i t e s and c a r b o n a t i t e s t e n d t o b e r i c h e r i n p y r o p h a n i t e (MnTiO ) w h i l s t h a e m a t i t e - r i c h s o l i d s o l u t i o n s a r e r e s t r i c t e d t o a c i d i n t r u s i v e 3 s u i t e s and a n o r t h o s i t e s , where h a e m a t i t e s o l i d s o l u t i o n s a r e e x s o l v e d , and t h e s e coexist with ilmenite-rich solutions.
I n metamorphic r o c k s h a e m a t i t e - i l m e n i t e
s o l i d s o l u t i o n s a r e found i n a l l metamorphic zones i n a wide v a r i e t y of rock t y p e s . E x s o l u t i o n l a m e l l a e of i l m e n i t e i n h a e m a t i t e , o r h a e m a t i t e i n i l m e n i t e i s u s u a l l y observed.
A s m a l l amount o f p y r o p h a n i t e i s u s u a l l y p r e s e n t and i n magnesian-rich
r o c k s a n a p p r e c i a b l e c o n t e n t o f g e i k i e l i t e (MgTiO
i s n o t e d ( S p r i n g e r , 1974). 3 I n t h e s e d i m e n t a r y environment h a e m a t i t e is t h e most i m p o r t a n t i r o n oxide.
Coarse p a r t i c l e s o c c u r i n i n t i m a t e a d m i x t u r e w i t h o t h e r f i n e g r a i n e d o x i d e s i n many k i n d s o f soil, i n c l u d i n g l a t e r i t e s .
The v a s t m a j o r i t y of h a e m a t i t e i n
w e a t h e r e d p r o f i l e s a p p e a r s t o b e formed by t h e o x i d a t i o n of t i t a n o m a g n e t i t e . Under w e a t h e r i n g c o n d i t i o n s members o f t h e h a e m a t i t e - i l m e n i t e s e r i e s a r e more s t a b l e t h a n m a g n e t i t e (Mohr and Van Baren, 1954; Hartman, 1959; Katsura e t a l . , 1962).
A f t e r p r o l o n g e d o x i d a t i o n i l m e n i t e i t s e l f may b e o x i d i z e d ; i l m e n i t e
e x s o l u t i o n l a m e l l a e i n h a e m a t i t e may b e c o n v e r t e d t o h a e m a t i t e p l u s r u t i l e and i l m e n i t e i t s e l f may b e a l t e r e d t o form ' l e u c o x e n e ' .
This a p p e a r s milky w h i t e i n
r e f l e c t e d l i g h t and normally c o n s i s t s o f f i n e l y d i v i d e d r u t i l e , o r more r a r e l y brookite.
B a i l e y e t a l . (1956) r e c o g n i z e d t h r e e s t a g e s o f i l m e n i t e o x i d a t i o n i n
beach s a n d s : p a t c h y i l m e n i t e
amorphous i r o n - t i t a n i u m o x i d e
r u t i l e , a n a t a s e , and sphene ( l e u c o x e n e ) .
finely crystalline
I n a n c i e n t r e d beds i l m e n i t e i s s c a r c e
and u n o x i d i z e d g r a i n s a r e l a r g e l y c o n f i n e d t o t h e d r a b zones i n r e d bed sequences ( M i l l e r and Folk, 1955; Van Houten, 1968). I n r e c e n t and a n c i e n t sediments t h e r e i s l i t t l e e v i d e n c e t h a t p r i m a r y c o a r s e p a r t i c l e haematites a r e volumetrically important.
I n f a c t haematites of t h i s type
may b e d i f f i c u l t t o r e c o g n i z e u n l e s s t h e y show obvious rhombohedra1 e x s o l u t i o n textures.
The h a e m a t i t e s w i t h " o l e a n d e r - l e a f " shaped e x s o l u t i o n l a m e l l a e of
i l m e n i t e d e s c r i b e d by P h i l l i p s ( i n Van Houten, 1964, p.659) from t h e T o r r i d o n i a n Sandstone are p r o b a b l y primary g r a i n s d e r i v e d from i g n e o u s o r metamorphic r o c k s . , I n a n c i e n t r e d beds t h e opaque o x i d e g r a i n s are u s u a l l y r e f e r r e d t o a s specularite.
They show a wide range o f t e x t u r e s , b u t t h e v a s t m a j o r i t y show
e v i d e n c e o f having formed a f t e r t i t a n o m a g n e t i t e ( s e e F i g . 6 . 7 ) .
Such g r a i n s
a r e r e f e r r e d t o a s m a r t i t e s , and t h e f o r m a t i o n o f h a e m a t i t e from m a g n e t i t e i s
334
Fig.6.7. R e f l e c t e d l i g h t photomicrographs of t y p i c a l c o a r s e - p a r t i c l e i r o n o x i d e s i n c o n t i n e n t a l r e d beds. ' A . O c t a h e d r a l pseudomorph o f h a e m a t i t e a f t e r m a g n e t i t e . B . Haematite s h o i i n g m a r t i t i z a t i o n t e x t u r e ( b o t h from S t . Bees S a n d s t o n e , T r i a s s i c , U.K.). C . M a r t i t e ( R i n g e r i k e Group, S i l u r i a n , Norway). D . Haematite w i t h e x s o l u t i o n d i s c s o f i l m e n i t e and s y n t a x i a l a u t h i g e n i c h a e m a t i t e ( S t . Bees S a n d s t o n e ) E . Rhombohedra1 d e t r i t a l h a e m a t i t e . F . Haematite w i t h rhombohedra1 e x s o l u t i o n l a m e l l a e of i l m e n i t e ( b o t h from R i n g e r i k e Group). A l l g r a i n s a r e 1 0 0 - 2 0 0 ~i n diameter.
335 r e f e r r e d t o a s m a r t i t i z a t i o n (Ramdohr, 1969, p. 9 0 6 ) .
In p a r t i a l l y r e p l a c e d
m a g n e t i t e s , s u c h a s o c c u r i n Recent s e d i m e n t s and Cenozoic r e d b e d s , t h i n p l a t e s o f h a e m a t i t e a r e formed a l o n g t h e o c t a h e d r a l (111) p l a n e s of t h e m a g n e t i t e , resulting i n a triangular alteration pattern.
More r a r e l y t h e m a r t i t i z a t i o n may
develop p a r a l l e l t o growth zones w i t h i n t h e m a g n e t i t e c r y s t a l .
In more a n c i e n t
r e d beds i t i s more u s u a l t o f i n d t h a t o r i g i n a l m a g n e t i t e g r a i n s have been c o m p l e t e l y r e p l a c e d by h a e m a t i t e which s t i l l r e v e a l s t h e t r i a n g u l a r m a r t i t i z a t i o n texture i n polycrystalline grains.
F r e q u e n t l y such g r a i n s show e x s o l u t i o n zones Trellis
of i l m e n i t e which may b e a l t e r e d t o h a e m a t i t e w i t h r u t i l e o r a n a t a s e .
t e x t u r e i n p o l y c r y s t a l l i n e h a e m a t i t e g r a i n s a l s o i n d i c a t e s f o r m a t i o n of h a e m a t i t e a f t e r magnetite (Fig.6.7). Although m a r t i t i z a t i o n may o c c u r o v e r a wide t e m p e r a t u r e range i t i s c l e a r t h a t i t must b e mainly o f low-temperature o r i g i n i n a n c i e n t r e d beds.
However
t h e a c t u a l mechanism of m a r t i t i z a t i o n i n a n c i e n t r e d beds has n o t been s t u d i e d i n any d e t a i l and i t i s n o t c l e a r w h e t h e r h a e m a t i t e fX-Fe203)
forms d i r e c t l y
from m a g n e t i t e (Fe 0 ) o r whether a n i n t e r m e d i a t e p h a s e of maghemite (Y-Fe2O3) 3 4 o r a compound i n t e r m e d i a t e i n c o m p o s i t i o n between Fe304 and Fe 0 i s i n v o l v e d .
2 3
Colombo e t a l . (1964) m a i n t a i n e d t h a t below 6OO0C m a g n e t i t e n e v e r o x i d i z e d t o k - F e 2 0 3 u n l e s s c r - F e 2 0 3 n u c l e i were p r e s e n t b u t G a l l a g h e r e t a l . (1968) have c l e a r l y d e m o n s t r a t e d t h e d i r e c t o x i d a t i o n o f Fe3Opw-Fe2O3 in p a r t i c l e s l a r g e r t h a n 300011 and t e m p e r a t u r e s a s low a s 18OoC.
Under l a b o r a t o r y c o n d i t i o n s t h e
t r a n s i t i o n from Fe30C t o Y-Fe203 h a s been r e s t r i c t e d t o f i n e l y d i v i d e d , submicron s i z e d m a t e r i a l (Readman and O ' R e i l l y , 1975).
1972; Johnson and M e r r i l l , 1973; O'Donovan,
P a r t i c l e s below a b o u t 30002 i n d i a m e t e r always y i e l d )'-Fe203
whilst
p a r t i c l e s above t h i s s i z e a r e o x i d i z e d d i r e c t l y t o o+Fe203 v i a compounds i n t e r m e d i a t e i n composition between Fe304 and Fe203 ( G a l l a g h e r e t a l . , 1968). I m p u r i t i e s , e s p e c i a l l y aluminium and a l s o a d s o r b e d w a t e r , may be i m p o r t a n t i n s t a b i l i z i n g t h e s p i n e l s t r u c t u r e d u r i n g t h e Fe304 Y-Fe203 t r a n s i t i o n i n s m a l l p a r t i c l e s ( s e e B a t e , 1975, f o r a r e v i e w ) . The e x p e r i m e n t a l e v i d e n c e i s c o n s i s t e n t w i t h t h e view t h a t m a r t i t i z a t i o n most commonly p r o c e e d s w i t h o u t t h e f o r m a t i o n of a n i n t e r m e d i a t e Y-Fe 0 phase. 2 3 Van Houten (1968) has made t h e o n l y d e t a i l e d s u r v e y of opaque o x i d e s i n Recent a l l u v i u m and a n c i e n t r e d beds ( F i g . 6 . 8 ) .
The s e d i m e n t s s t u d i e d ranged from
P r e c a m b r i a n - P l e i s t o c e n e i n a g e and i n c l u d e d r e d beds and a s s o c i a t e d drab zones. F o r d e t a i l e d r e s u l t s of i n d i v i d u a l f o r m a t i o n s t h e r e a d e r i s r e f e r r e d t o Van Houten (1968, T a b l e s 4 , 5 and 6 ) .
When s t u d i e d a s a whole t h e r e s u l t s
r e v e a l two main t r e n d s ( F i g . 6 . 9 ) which have l a r g e l y been s u b s t a n t i a t e d by l a t e r workers and which may be summarized a s f o l l o w s :
1) Red beds c o n t a i n abundant h a e m a t i t i z e d b l a c k o x i d e g r a i n s and show a p r o g r e s s i v e i n c r e a s e i n h a e m a t i t e / m a g n e t i t e and h a e m a t i t e / i l m e n i t e r a t i o s i n s u c c e s s i v e l y o l d e r r e d beds.
T h i s d e p l e t i o n t r e n d c o u l d p a r t l y be due t o t h e f a c t t h a t many of t h e
336
Sequ*nr.r M
Sands
I
Fig.6.8. R e l a t i v e abundance o f h a e m a t i t e (H), m a g n e t i t e (M) and i l m e n i t e (I). A . Upland s o i l s B. Recent s e d i m e n t s , c o a s t a l Sonora, Mexico C . Cenozoic r e d beds D. Mesozoic r e d beds E . P a l a e o z o i c r e d beds F. Precambrian r e d beds G . Ancient d r a b sequences H. Black sands i n beach p l a c e r s ( a f t e r Van Houten, 1968).
337 more r e c e n t samples came from v o l c a n i c - r i c h f o r m a t i o n s (Van Houten, 1968, p. 403) b u t a number o f o t h e r f a c t o r s s u g g e s t t h a t t h e t r e n d is real.
These i n c l u d e t h e
f a c t t h a t m a g n e t i t e i s a l s o p r e s e n t i n Recent sediments and some Mesozoic r e d beds, w h i l s t i t i s v i r t u a l l y a b s e n t i n Precambrian and P a l a e o z o i c r e d beds.
The u b i q u i t y
o f m a r t i t e s i n a n c i e n t r e d beds a l s o s u g g e s t s t h a t m a g n e t i t e has been c o n v e r t e d t o h a e m a t i t e i n s i t u t h u s c o n t r i b u t i n g t o t h e observed d e p l e t i o n t r e n d . 2 ) Drab mudstone and s a n d s t o n e s i n r e d bed sequences g e n e r a l l y c o n t a i n v e r y few b l a c k o x i d e s and many o f t h e s e a r e i l m e n i t e o r leucoxene.
When compared w i t h t h e i r
a s s o c i a t e d r e d beds t h e s e d r a b zones n o t o n l y show fewer t o t a l g r a i n s b u t a g r e a t e r p r o p o r t i o n o f i l m e n i t e and T i 0 2 , f e a t u r e s which s u g g e s t t h a t p o s t - d e p o s i t i o n a l d i s s o l u t i o n o f b o t h pigmentary and c o a r s e - p a r t i c l e o x i d e s h a s t a k e n p l a c e ( M i l l e r and F o l k , 1955; Van Houten, 1968, p. 404), i n d i c a t i n g t h e g r e a t e r r e s i s t e n c e of i l m e n i t e and t i t a n i u m o x i d e s t o t h e r e d u c i n g s o l u t i o n s which remove i r o n o x i d e s from r e d beds.
MAGNETITE
HEMATITE
lLMENlTE
SILICATES
-*b
IN ALLUVIUM TRANSIT
YOUNQER
OLMR
Fig.6.9. O r i g i n and f a t e o f opaque o x i d e s and pigment i n r e d bed sequences. C o n f i g u r a t i o n s s u g g e s t changes i n abundance o f e a c h component r e l a t i v e to amount i n s o u r c e r o c k s ( a f t e r Van Houten, 1968).
338 These d a t a r e v e a l a n i m p o r t a n t p r o c e s s which i s i n s t r u m e n t a l i n p r o d u c i n g t h e c h a r a c t e r i s t i c o x i d e m i n e r a l o g y o f r e d beds.
This process i s t h e i n s i t u
c o n v e r s i o n of m a g n e t i t e t o h a e m a t i t e ; i t o p e r a t e d under o x i d i z i n g i n t r a s t r a t a l c o n d i t i o n s and c o n t i n u e d f o r a s long a s such c o n d i t i o n s c o u l d b e m a i n t a i n e d , perhaps even f o r m i l l i o n s of y e a r s . PRECIPITATION AND STABILITY OF FERRIC OXYHYDROXIDES The p r e c i p i t a t i o n o f f e r r i c oxyhydroxides i s t h e s i n g l e most i m p o r t a n t p r o c e s s responsible f o r t h e colouration of continental red beds.
T h i s may t a k e p l a c e a t
v a r i o u s s t a g e s i n t h e d e p o s i t i o n and d i a g e n e s i s o f r e d beds b u t two of t h e more i m p o r t a n t ones a r e t h e p r e c i p i t a t i o n o f f e r r i c oxyhydroxides from i n t e r s t i t i a l w a t e r s d u r i n g d i a g e n e s i s and l a t e r p r e c i p i t a t i o n from c i r c u l a t i n g ground w a t e r s . The f i r s t - f o r m e d p h a s e s a r e u s u a l l y m e t a s t a b l e compounds, such a s amorphous Fe(OH)3 o r g o e t h i t e (FeOOH); t h e s e do n o t n o r m a l l y p e r s i s t i n t h e g e o l o g i c a l environment b u t become d e h y d r a t e d t o form t h e s t a b l e i r o n o x i d e , h a e m a t i t e . The commonest oxyhydroxides found a s p r e c i p i t a t e s i n n a t u r a l w a t e r s a r e g o e t h i t e , amorphous Fe(0H)
and more r a r e l y , l e p i d o c r o c i t e . These oxyhydroxide p r e c i p i t a t e s 3 a r e u s u a l l y m i x t u r e s whose a p p a r e n t thermodynamic s t a b i l i t y o r s o l u b i l i t y depends l a r g e l y on t h e s o l u b i l i t y o f t h e l e a s t s t a b l e p h a s e p r e s e n t ( u s u a l l y t h e amorphous material).
N a t u r a l oxyhydroxide p r e c i p i t a t e s c o n t a i n s u b s t a n t i a l amounts o f
c o l l o i d a l m a t e r i a l and p a r t i c l e s i z e s r a n g i n g from m o l e c u l a r Fe(OHl3 t o microns i z e d c r y s t a l s o r c r y s t a l a g g r e g a t e s i s p o s s i b l e (Langmuir, 1969).
Particle size
i s p r o b a b l y t h e most i m p o r t a n t c o n t r o l on t h e thermodynamic s t a b i l i t y of t h e
oxyhydroxides; o t h e r s b e i n g m i n e r a l o g y , c r y s t a l l i n i t y and t h e p r e s e n c e of impurities. S o l u t i o n r e a c t i o n s f o r a l l t h e oxyhydroxides can b e r e p r e s e n t e d b y * Fe(OH)3 = Fe3+
+ 30H-
(6.1)
OtFeOOH + H20 = Fe3+ + 30H112 6X-Fe203)
(6 * 2)
+ 3/2H20 = Fe3+ + 30H-
(6 * 3 )
The n e g a t i v e l o g a r i t h m o f t h e a c t i v i t y p r o d u c t f o r e a c h of t h e s e r e a c t i o n s , assuming p u r e w a t e r and s o l i d s , mav b e w r i t t e n :
1'
PK = - 1 0 g [ ~ e 3 + 1 [ ~ ~ -
when t h e a c t i v i t y of w a t e r i s n e a r u n i t y .
(6.4) T h i s pK i s , i n e f f e c t , a s o l u b i l i t y
p r o d u c t and v a l u e s r a n g e from a b o u t 37.1 f o r f r e s h , r a p i d l y p r e c i p i t a t e d amorphous m a t e r i a l , t o p r o b a b l y 44 o r more f o r c r y s t a l l i n e g o e t h i t e and h a e m a t i t e (Langmuir, 1969, 1971).
Langmuir and Whittemore (1971) have shown t h a t c o - e x i s t i n g oxyhyd-
r o x i d e s can r e v e r s e t h e i r r e l a t i v e s t a b i l i t i e s b e c a u s e of p a r t i c l e s i z e e f f e c t s . For example, f o r e q u a l s i z e d c r y s t a l s of g o e t h i t e and h a e m a t i t e , t h e former i s more s t a b l e above 7601 b u t becomes less s t a b l e below t h i s p a r t i c l e s i z e . The b e h a v i o u r o f p r e c i p i t a t e d f e r r i c oxyhydroxides i n s o l u t i o n can most
339 c o n v e n i e n t l y b e d e s c r i b e d i n terms of Eh and pH (Hem and Cropper, 1959; G a r r e l s , 1960).
F i g . 6 . 1 0 shows a n Eh-pH diagram w i t h t h e s t a b i l i t y f i e l d s o f s o l i d s and
predominant i o n i c s p e c i e s i n t h e s y s t e m F e - H ~ o - 0 ~ -C02.
Ion-ion b o u n d a r i e s a r e drawn
a t e q u a l i o n a c t i v i t i e s and i o n - s o l i d b o u n d a r i e s a r e drawn f o r 10-3M
dissolved
i r o n s p e c i e s which i s a t y p i c a l c o n c e n t r a t i o n found i n i r o n - r i c h groundwaters (Langmuir and Whittemore, 1971; Whittemore and Langmuir, 1975).
The f e r r i c - f e r r o u s -
f e r r i c oxyhydroxide b o u n d a r i e s are drawn f o r pK v a l u e s of 37.1 and 44.2.
The
d i f f e r e n c e means t h a t f o r a g i v e n Eh and pH a w a t e r can c o n t a i n a b o u t seven o r d e r s of magnitude more d i s s o l v e d i r o n i n e q u i l i b r i u m w i t h f r e s h amorphous m a t e r i a l t h a n i t can i n e q u i l i b r i u m w i t h w e l l c r y s t a l l i z e d g o e t h i t e o r h a e m a t i t e .
I n general
t h e Eh and pH of i r o n - r i c h n a t u r a l w a t e r s p l a c e s them on t h e f e r r i c o r f e r r o u s species
-
f e r r i c oxyhydroxide boundary.
The groundwater i n n a t u r a l a q u i f e r s , most
commonly has a pH between 5 and 8 , and Eh between 0 . 3 and -0.1 v o l t s .
Under t h e s e
c o n d i t i o n s i r o n i s p r e s e n t a s Fe2+ i o n s and s o l i d f e r r i c oxyhydroxide p h a s e s . Acid w a t e r s s u c h a s t h o s e from mine d i s c h a r g e s u s u a l l y have a pH between 2 and 5 and Eh from w i t h i n t h e Fe3+ f i e l d down t o 0 v o l t s . Eh v a l u e s measured i n t h e f i e l d a r e o f t e n between t h o s e p r e d i c t e d from t h e s o l u b i l i t y of Fe(OH)3 and t h e s o l u b i l i t y of h a e m a t i t e (Back and Barnes, 1965; Barnes and Back, 1964).
These a u t h o r s i n t e r p r e t e d t h i s as a n i n d i c a t i o n t h a t
f e r r i c oxyhydroxides s p e c i e s e x i s t e d i n v a r y i n g d e g r e e s of d e h y d r a t i o n and t h a t low Eh c o n d i t i o n s l e a d t o s e l e c t i v e l e a c h i n g o f more s o l u b l e f e r r i c oxyhydroxide p h a s e s l e a v i n g h a e m a t i t e a s t h e l a s t f e r r i c phase t o d i s s o l v e (Hem and Cropper, 1959; G a r r e l s and C h r i s t , 1965; Back and B a r n e s , 1965). The d e h y d r a t i o n s t a t e o f f e r r i c oxyhydroxides has a r o u s e d c o n s i d e r a b l e i n t e r e s t i n t h e c o n t e x t of r e d bed f o r m a t i o n .
I n Recent temperate-humid c l i m a t e s o i l s
g o e t h i t e r a t h e r than h a e m a t i t e i s formed (Schwertmann, 1965).
Under c e r t a i n
c o n d i t i o n s yaghemite may a l s o form ( T a y l o r and Schwertmann, 1974; M u l l i n s , 1977); i t may b e t h a t t h e f o r m a t i o n of h a e m a t i t e is i n h i b i t e d by t h e p r e s e n c e of f i n e
g r a i n e d o r g a n i c matter a s s u g g e s t e d by Schwertmann (1965). I n Recent sediments t h e r e i s abundant yellow o r brown f e r r i c hydroxides. a n c i e n t r e d beds t h e s e are s c a r c e and are r e p l a c e d by abundant h a e m a t i t e .
In This
h a s l e d a number of a u t h o r s t o a r g u e t h a t d e t r i t a l f e r r i c hydroxides a g e t o h a e m a t i t e d u r i n g d i a g e n e s i s by some d e h y d r a t i o n r e a c t i o n (Van Houten, 1964; 1972; Schmalz, 1968; T u r n e r , 1974a).
The p r e c i s e m i n e r a l o g y of i r o n h y d r o x i d e s i n
Recent f i n e - g r a i n e d a l l u v i u m i s v e r y p o o r l y known.
Some a u t h o r s have assumed
t h a t much of i t i s amorphous ( B l a t t e t a l . , 1 9 7 2 ) ; o t h e r s assume t h a t i t c o n s i s t s p r i n c i p a l l y of g o e t h i t e ( B e r n e r , 1971).
Undoubtedly much of t h e f e r r i c hydroxide
i n Recent s e d i m e n t s i s c l o s e l y a s s o c i a t e d w i t h c l a y m i n e r a l s ( C a r r o l l , 1958; S o i l e u and McCracken, 1967; Deshpande e t a l . ,
1968; Walker and Honea, 1969) and
t h e e v i d e n c e does s u g g e s t t h a t p o o r l y c r y s t a l l i n e p h a s e s a r e more abundant than
340
Fig.6.10. Eh-pH r e l a t i o n s h i p s between s o l i d s and predominant i o n i c s p e c i e s i n t h e The p o s i t i o n of t h e F e z + - f e r r i c oxyhydroxide boundary i s system Fe-H20-02-C02. shown f o r pK's o f 37.1 and 4 4 . 2 . T o t a l d i s s o l v e d c a r b o n a t e s p e c i e s e q u a l 10-3M. S o l i d s p e c i e s i n p a r e n t h e s e s are dashed l i n e f i e l d s o n l y ( a f t e r Whittemore and Langmuir, 1975). t r u l y amorphous m a t e r i a l ( F o l l e t t , 1965).
Amorphous m a t e r i a l may be a d s o r b e d on
t h e s u r f a c e s o r edges of c l a y m i n e r a l s o r i n o r g a n i c complexes.
E l e c t r o n micro-
scope s t u d i e s (Greenland e t a l . , 1968) a l s o r e v e a l t h a t c l a y p l a t e l e t s m y be covered by minute p a r t i c l e s o f f r e e f e r r i c o x i d e s which may r e p r e s e n t t h e p o o r l y c r y s t a l l i n e phases many o f which a p p e a r t o b e h y d r a t e d f e r r i c o x i d e r e l a t e d t o h a e m a t i t e (Towe and B r a d l e y , 1967).
The most abundant c r y s t a l l i n e phase i n t h e
ferric hydroxide o f f i n e g r a i n e d a l l u v i u m i s p r o b a b l y g o e t h i t e .
The d e h y d r a t i o n o f f e r r i c oxyhydroxides Yellow o r brown i r o n h y d r o x i d e s i n t h e c l a y f r a c t i o n s of a l l u v i u m are b e l i e v e d
341 t o be a b l e t o c o n v e r t i n t o r e d pigmentary h a e m a t i t e by d e h y d r a t i o n d u r i n g d i a g e n e s i s and t h u s produce r e d beds ( F r i e n d , 1966; Van Houten, 1968).
Since t h i s i s a
d e h y d r a t i o n r e a c t i o n many a u t h o r s have m a i n t a i n e d t h a t a n a r i d o r a t l e a s t s e a s o n a l l y dry climate i s necessary f o r i t t o proceed, thus f o s t e r i n g t h e b e l i e f t h a t ancient r e d beds a r e a p a l a e o c l i m a t i c i n d i c a t o r .
F o r example, Schmalz (1968) a r g u e d t h a t
h a e m a t i t e might form from amorphous i r o n hydroxide o r g o e t h i t e by one of t h e following reactions: 2Fe(OH)3 --+Fe203 + 3H20
(6.5)
2Fe (OH) -+2HFe02 + 2H20 +Fez03 2HFe02-+Fe203
+ 3H20
(6.6)
+ H20
(6.7)
Using a v a i l a b l e d a t a Schmalz (1968) q u o t e d a Gibbs f r e e e n e r g y (aGo) of between 4 . 2 and +2.2 k c a l / m o l e f o r r e a c t i o n ( 6 . 7 ) and concluded t h a t h a e m a t i t e could n o t
form s t a b l y i n t h e p r e s e n c e o f w a t e r . E a r l y phase e q u i l i b r i u m s t u d i e s of t h e d e h y d r a t i o n o f g o e t h i t e ( P o s n j a k and Merwin, 1919; Smith and Kidd, 1949; Schmalz, 1959) s u g g e s t e d t h a t t h e d e h y d r a t i o n t e m p e r a t u r e was a b o u t 130OC.
The l o w e s t t e m p e r a t u r e a t which t h e r e a c t i o n has been
o b s e r v e d e x p e r i m e n t a l l y was r e c o r d e d by Tunnel1 and Posnjak (1931) who c o n v e r t e d n a t u r a l g o e t h i t e t o h a e m a t i t e i n a few weeks a t 100°C i n 0. I N H C l .
However, i n one
of t h e s e c a s e s was t h e e q u i l i b r i u m d e l i n e a t e d by r e v e r s i n g t h e r e a c t i o n : h a e m a t i t e could n o t be hydrated.
Moreover t h e method u s e d : t h e a g e i n g o f f r e s h l y p r e c i p i t a t e d
f e r r i c h y d r a t e g e l s a t v a r i o u s t e m p e r a t u r e s and w a t e r p r e s s u r e s does n o t t a k e due a c c o u n t of f a c t o r s s u c h as pH, which could i n f l u e n c e t h e k i n e t i c s o f t h e r e a c t i o n , n o r t h e a b i l i t y of f o r e i g n i o n s t o c a t a l y s e t h e c r y s t a l l i z a t i o n o f h a e m a t i t e o r g o e t h i t e ( T a y l o r and G r a l e y , 1967; Schwertmann, 1970).
I n f a c t Smith and Kidd
(1949) showed t h a t t h e d e h y d r a t i o n t e m p e r a t u r e was markedly dependent upon pH. Berner (1969) Kas shown t h a t t h i s e q u i l i b r i u m d e h y d r a t i o n t e m p e r a t u r e o f 13OoC i s much t o o h i g h and t h a t f i n e g r a i n e d g o e t h i t e i s u n s t a b l e r e l a t i v e t o h a e m a t i t e
under v i r t u a l l y a l l g e o l o g i c a l c o n d i t i o n s .
H i s method was t o d e t e r m i n e AGO by
measuring t h e r e l a t i v e s o l u b i l i t i e s of g o e t h i t e and h a e m a t i t e i n H C 1 s o l u t i o n s . The r e s u l t s c l e a r l y i n d i c a t e d t h a t f i n e g r a i n e d g o e t h i t e i s more s o l u b l e t h a n h a e m a t i t e a t 85OC ( F i g . 6 . 1 1 ) .
Calculations using d i f f e r e n t i a l s o l u b i l i t y enabled
B e r n e r (1969) t o show t h a t t h e AGO f o r r e a c t i o n ( 6 . 7 ) a t 25OC i s -0.66 k c a l / m o l e and a t O°C i s -0.40 k c a l / m o l e .
He f u r t h e r c a l c u l a t e d t h a t t h e maximum t e m p e r a t u r e
a t which f i n e g r a i n e d g o e t h i t e i s s t a b l e r e l a t i v e t o h a e m a t i t e p l u s p o r e w a t e r i s
a b o u t 4OoC.
Assuming t h a t t h e s e d a t a a r e c o r r e c t , i t i s c l e a r t h a t f i n e g r a i n e d
g o e t h i t e i s u n s t a b l e r e l a t i v e t o h a e m a t i t e under v i r t u a l l y a l l g e o l o g i c a l c o n d i t i o n s . The d e h y d r a t i o n o f f i n e g r a i n e d g o e t h i t e i s t h e r e f o r e l i k e l y t o t a k e p l a c e f a i r l y r a p i d l y , e s p e c i a l l y d u r i n g s e d i m e n t b u r i a l and c o u l d a l s o t a k e p l a c e i n t h e p r e s e n c e of water.
I t i s n o t p o s s i b l e t h e r e f o r e t o draw any c o n c l u s i o n s r e g a r d i n g climate
o r p a l a e o c l i m a t e from t h e d e h y d r a t i o n r e a c t i o n .
342
A Goethita 0 Haematite
8.0
3.0 2.0 1.0
0 0
2
4
6
8
10
12
14
16
18
20
Time Days
F i g . 6 . 1 1 . D i s s o l u t i o n and p r e c i p i t a t i o n c u r v e s f o r g o e t h i t e and h a e m a t i t e i n 0 . 1 2 M H C l a t 85 2 l 0 C . Data a r e p l o t t e d o n l y f o r r u n s where d i s s o l u t i o n was n o t e s s e n t i a l l y complete ( a f t e r B e r n e r , 1969a). The e f f e c t of p a r t i c l e s i z e e f f e c t on t h e d e h y d r a t i o n r e a c t i o n has been s t u d i e d by Langmuir (1971) and Langmuir and Whittemore (1971).
Langmuir's (1971) thermo-
chemical r e s u l t s a r e i n g e n e r a l agreement w i t h t h e s o l u b i l i t y r e s u l t s o f B e r n e r (1969).
F i g . 6 . 1 2 shows t h e p a r t i c l e s i z e e f f e c t on t h e Gibbs f r e e e n e r g y of t h e
goethite dehydration r e a c t i o n a t 25OC.
Langmuir (1971) showed t h a t c o a r s e - g r a i n e d
g o e t h i t e ( > p m ) i s s t a b l e r e l a t i v e t o c o a r s e g r a i n e d h a e m a t i t e i n w a t e r up t o 8OoC a t the E a r t h ' s surface, but t h a t f i n e grained goethite i s unstable r e l a t i v e t o coarse grained haematite.
Langmuir (1971) a l s o showed t h a t f o r k i n e t i c r e a s o n s ,
h a e m a t i t e , once formed, w i l l n o t r e h y d r a t e t o form g o e t h i t e .
This i s c o n s i s t e n t
w i t h t h e f a c t t h a t g o e t h i t e pseudomorphs a f t e r h a e m a t i t e a r e n o t known t o o c c u r (Palache e t a l . , 1944).
The measurement of p a r t i c l e s i z e s i n t h e r e g i o n 100-10008
i s e x t r e m e l y d i f f i c u l t and c a r e must b e t a k e n i n e x t r a p o l a t i n g t h e d a t a t o geological conditions.
Langmuir and Whittemore (1971) found i n t h e l a b o r a t o r y
t h a t f r e s h l y p r e c i p i t a t e d f e r r i c oxyhydroxides c o n s i s t e d of amorphous m a t e r i a l , l e p i d o c r o c i t e , and g o e t h i t e .
Based on X-ray d i f f r a c t i o n and e l e c t r o n microscopy
g o e t h i t e occurred a s rod o r needle-like c r y s t a l s elongated p a r a l l e l to the c-axis w i t h t y p i c a l dimensions b e i n g 50-1002 i n d i a m e t e r and 500-20002 i n l e n g t h ( s e e Lamgmuir and Whittemore, 1971, F i g . 5 ) .
Lepidocrocite occurred with i t s t y p i c a l
l a t h - s h a p e d h a b i t r a n g i n g from 60-2002 t h i c k a l o n g t h e b - a x i s , a v e r a g i n g 4002 p a r a l l e l t o t h e c - a x i s and 23001 long i n t h e c - d i r e c t i o n (Langmuir and Whittemore,
1 9 7 1 , Fig.5;
s e e a l s o t h e e x c e l l e n t e l e c t r o n micrographs of Schwertmann, 1 9 7 0 ) .
Langmuir and Whittemore (1971) a l s o made a s t u d y of n a t u r a l l y o c c u r r i n g f e r r i c
343
40001-T---7 3000
1000
-
- 1000 -
m
0.01
hematite > lp goethite < IN
0.1
1
Particle Size of Cubes (microns)
Fig.6.12. P a r t i c l e s i z e e f f e c t on t h e Gibbs f r e e e n e r g y of t h e g o e t h i t e d e h y d r a t i o n r e a c t i o n ( a f t e r Langmuir, 1971). oxyhydroxides and i r o n c o n t e n t i n 24 w e l l w a t e r s from t h e c o a s t a l p l a i n of New J e r s e y and Maryland,
The suspended oxyhydroxides h e r e a r e p r o b a b l y amorphous
m a t e r i a l and g o e t h i t e w i t h a n a v e r a g e g r a i n s i z e , based on f i l t r a t i o n s t u d i e s , of 10,000-20,000~. A number of i m p l i c a t i o n s emerge from t h e work of Berner (1969a) and Langmuir
(1971).
Although h a e m a t i t e may c r y s t a l l i z e d i r e c t l y from w a t e r d i s s o l v i n g g o e t h i t e
a t low t e m p e r a t u r e s ( c 1 0 O o C ) ,
kinetic considerations indicate that the reaction
must b e e x t r e m e l y s l o w , and t h i s p r o b a b l y e x p l a i n s why i t has n o t been observed i n the laboratory.
The t r a n s f o r m a t i o n of l e p i d o c r o c i t e t o g o e t h i t e , on t h e o t h e r hand,
h a s been shown by Schwertmann and T a y l o r (1972) t o t a k e p l a c e by t h e d i s s o l u t i o n of l e p i d o c r o c i t e , and t h e s u b s e q u e n t n u c l e a t i o n and growth o f g o e t h i t e c r y s t a l s .
The
f o r m a t i o n o f h a e m a t i t e by d e h y d r a t i o n of g o e t h i t e i s l i k e l y t o t a k e p l a c e r e a d i l y i n t h e s e d i m e n t a r y environment, e s p e c i a l l y d u r i n g d i a g e n e s i s , and w i l l be enhanced by i n c r e a s e d t e m p e r a t u r e o r lower w a t e r vapour p r e s s u r e , o r a combination of t h e s e . There have been no c o n v i n c i n g d e m o n s t r a t i o n s of t h e i n s i t u a g e i n g of g o e t h i t e t o haematite, nor indeed i s there convincing d i r e c t evidence t h a t the haematite i n a n c i e n t r e d beds has formed from g o e t h i t e d e h y d r a t i o n .
The r e l a t i v e importance of
g o e t h i t e and amorphous f e r r i c hydroxide a s h a e m a t i t e p r e c u r s o r s i s u n c l e a r . Amorphous f e r r i c hydroxide i s u s u a l l y l e s s s t a b l e than f i n e g r a i n e d g o e t h i t e and thermodynamic and k i n e t i c c o n s i d e r a t i o n s i n d i c a t e t h a t h a e m a t i t e f o r m a t i o n from s u c h m a t e r i a l i s more f a v o u r a b l e t h a n h a e m a t i t e f o r m a t i o n from g o e t h i t e .
I n t h o s e r e d beds which c o n t a i n e d s u b s t a n t i a l amounts o f d e t r i t a l c l a y - o x i d e , f o r example, t r o p i c a l savanna a l l u v i u m , t h e d e h y d r a t i o n o f g o e t h i t e i s l i k e l y t o have been an i m p o r t a n t mechanism of h a e m a t i t e - f o r m a t i o n .
D i r e c t formation of
h a e m a t i t e from amorphous f e r r i c hydroxide i s l i k e l y t o have been i m p o r t a n t i n r e d bed a q u i f e r s . ENVIRONMENTAL CONTROLS ON THE PRECIPITATION AND DIAGENETIC HISTORY OF FERRIC OXYHYDROXIDE S
I r o n i s t r a n s p o r t e d i n t h e s e d i m e n t a r y environment i n a v a r i e t y o f forms. amounts may o c c u r i n t r u e s o l u t i o n e s p e c i a l l y i n more a c i d w a t e r s .
Small
The m a j o r i t y ,
however, i s t r a n s p o r t e d a s c r y s t a l l i n e i r o n hydroxide g r a i n c o a t i n g s and w i t h i n s i l i c a t e mineral l a t t i c e s .
O t h e r i m p o r t a n t mechanisms i n c l u d e t h e t r a n s p o r t of
i r o n which i s adsorbed on t h e s u r f a c e and edges of c l a y m i n e r a l s , and a l s o t h a t The p r o p o r t i o n of i r o n t r a n s p o r t e d by
which i s a s s o c i a t e d w i t h o r g a n i c complexes.
t h e s e d i f f e r e n t mechanisms v a r i e s a c c o r d i n g t o t h e d e p o s i t i o n a l environment.
In
m i n e r a l o g i c a l l y immature s a n d s t o n e s d e r i v e d from c r y s t a l l i n e basement, much of t h e i r o n i s bound i n t h e l a t t i c e s of ferromagnesian s i l i c a t e s .
In f i n e g r a i n e d a l l u v i u m ,
a g r e a t e r p r o p o r t i o n o f t h e i r o n i s t r a n s p o r t e d a s hydroxide g r a i n c o a t i n g s and i n association with clay minerals. The u l t i m a t e f a t e o f t h e s e v a r i o u s forms of i r o n depends upon a number of f a c t o r s i n c l u d i n g t h e geochemical environment d u r i n g d e p o s i t i o n and e a r l y d i a g e n e s i s , and a l s o s u b s e q u e n t l y d u r i n g sediment b u r i a l .
The p o t e n t i a l f o r p r o d u c i n g r e d sediment
i s l a r g e l y d e t e r m i n e d d u r i n g e a r l y d i a g e n e s i s and s u b s e q u e n t b u r i a l .
Iron is
sedimented p r i m a r i l y a s i r o n h y d r o x i d e s and c r y s t a l l i n e p a r t i c l e s ; t h e f a t e of t h e s e i r o n h y d r o x i d e s , which c o n s t i t u t e t h e r e a d i l y a v a i l a b l e i r o n , i s d e t e r m i n e d by t h e Eh-pH c o n d i t i o n s below t h e sediment s u r f a c e .
I n continental alluvium oxidizing
c o n d i t i o n s commonly p r e v a i l , above and below t h e sediment s u r f a c e ,
Under t h e s e
c o n d i t i o n s m e t a s t a b l e i r o n h y d r o x i d e s may ' a g e ' i n t o h a e m a t i t e , s i l i c a t e o x i d a t i o n may c o n t i n u e d u r i n g s e d i m e n t b u r i a l , and pigmentary o x i d e s may b e p r e c i p i t a t e d i n p o r e s p a c e s and i n t e r s t i t i a l m a t r i x t h u s p r o d u c i n g r e d sediment.
I n many marine
and l a c u s t r i n e environments t h e s p e c i a l r o l e which i r o n p l a y s w i t h i n t h e s u l p h u r c y c l e means t h a t q u i t e a d i f f e r e n t d i a g e n e t i c h i s t o r y r e s u l t s .
Available i r o n ,
whether i t b e i n c o l l o i d a l form, a s amorphous Fe(OH)3, o r even a s c r y s t a l l i n e hydroxides o r o x i d e s , may s u f f e r r e d u c t i o n , d i s s o l u t i o n o r s u l p h i d a t i o n and e v e n t u a l l y form i r o n s u l p h i d e ( p y r i t e ) .
A m a j o r consequence o f t h i s i s t h a t t h e s e
sediments a r e g e n e r a l l y d r a b i n c o l o u r .
The i n f l u e n c e which d e p o s i t i o n a l e n v i r o n -
ment e x e r t s on t h e f o r m a t i o n o f f e r r i c oxyhydroxides, and u l t i m a t e l y on s e d i m e n t c o l o u r , i s w e l l - s e e n i n t h e c o l o u r d i f f e r e n t i a t j o n which e x i s t s between i n t e r b e d d e d marine and non-marine s e d i m e n t s and a l s o between i n t e r b e d d e d f l u v i a l and l a c u s t r i n e sediments.
346
Marine c o n d i t i o n s The f a t e o f a v a i l a b l e i r o n i n t h e marine environment i s i n t i m a t e l y bound up with the sulphur cycle.
Kaplan e t a l . (1963) showed t h a t b a c t e r i a l s u l p h a t e
r e d u c t i o n i s t h e most i m p o r t a n t p r o c e s s i n t h e s u l p h u r c y c l e w i t h t h e main genera i n v o l v e d b e i n g D e s u l p h o v i b r i o and Desulphotomaculum.
One o f t h e most i m p o r t a n t
s p e c i e s i s D e s u l p h o v i b r i o d e s u l p h u r i c a n s which can t o l e r a t e s a l i n i t y v a r i a t i o n s between 0 and 12% ( L i t t l e w o o d and P o s t g a t e , 1957) and i s p r i m a r i l y r e s p o n s i b l e f o r t h e r e d u c t i o n o f s u l p h a t e i n marine w a t e r s ( T r u d i n g e r , 1976). B a c t e r i a l s u l p h a t e r e d u c t i o n o c c u r s o n l y i n t h e absence o f oxygen.
These
c o n d i t i o n s a r e commonly met w i t h j u s t below t h e s u r f a c e o f marine sediments because o f t h e r a p i d consumption o f oxygen d u r i n g a e r o b i c r e s p i r a t i o n r e l a t i v e t o t h e r a t e of r e p l e n i s h m e n t . The i n i t i a l p r o d u c t s o f s u l p h a t e r e d u c t i o n , H2S and HS- may combine w i t h i r o n , which i s reduced t o Fe2+ and t h u s made more mobile under t h e s e c o n d i t i o n s , t o form a n " i n t e r m e d i a t e q qm e t a s t a b l e i r o n s u l p h i d e such as mackinawite ( t e t r a g o n a l FeS) a n d / o r g r e i g i t e ( c u b i c Fe3S4) ( F i g . 6 . 1 3 . ) . -
,
Subsequent t r a n s f o r m a t i o n of t h e s e i n t e r m e d i a t e s t o t h e more s t a b l e p y r i t e ( c u b i c FeS ) o c c u r s by t h e a d d i t i o n o f e l e m e n t a l s u l p h u r (Goldhaber and Kaplan, 2 1974, 1975). The r a t e o f s u l p h a t e r e d u c t i o n under l a b o r a t o r y c o n d i t i o n s i s c o n t r o l l e d by t h e abundance o f e l e c t r o n donor ( o r g a n i c m a t t e r ) a v a i l a b l e t o t h e b a c t e r i a (Goldhaber and Kaplan, 1975).
I n s e d i m e n t s , t h e p o s i t i v e c o r r e l a t i o n between % s u l p h u r and
% carbon i n a v a r i e t y o f s e d i m e n t a r y environments (Sweeney, 1972) a l s o s u g g e s t s a
c o n t r o l on p y r i t e p r o d u c t i o n by o r g a n i c carbon.
i s d e r i v e d mainly from marine p l a n k t o n .
Organic matter i n marine sediments
During i t s t r a n s p o r t and b u r i a l t h e
o r g a n i c m a t t e r undergoes t r a n s f o r m a t i o n s i n t o a series of f r a c t i o n s : degraded c e l l u l a r m a t e r i a l d w a t e r s o l u b l e complexes c o n t a i n i n g amino a c i d s , f a t t y a c i d s , and s u g a r s d u l v i c acids-whumic acidsAerogen-(Nissenbaum and Kaplan, 1972). T h i s pathway r e p r e s e n t s i n c r e a s i n g l y p o l y m e r i z a t i o n o f t h e o r g a n i c m a t e r i a l .
It
t h u s f o l l o w s t h a t t h i s more complex o r g a n i c m a t e r i a l i s less s u s c e p t i b l e t o b a c t e r i a l a t t a c k because o f t h e l a c k o f s u i t a b l e s o l u b i l i z i n g and enzyme systems (Alexander,, 1971).
The t o t a l sediment accumulation r a t e may t h e r e f o r e be c l o s e l y The main r e a s o n s f o r t h i s being:
r e l a t e d t o t h e rate of b a c t e r i a l metabolism.
1. t o t a l o r g a n i c carbon p r e s e r v e d i n sediments t e n d s t o be p o s i t i v e l y c o r r e l a t e d w i t h high s e d i m e n t a t i o n r a t e ( B e r n e r , 1972)
2. less complexing and rearrangement
3. f o r t h e most p a r t r a p i d l y
of organic m a t e r i a l occurs during r a p i d b u r i a l
accumulating marine sediments tend t o o c c u r a t s h a l l o w d e p t h s which l e a d s t o a lower p r e s s u r e , s h o r t e r t i m e of exposure t o oxygenated water d u r i n g t r a n s p o r t , and a g e n e r a l l y h i g h e r bottom w a t e r temperature.
This c o r r e l a t i o n between b a c t e r i a l
r a t e and s e d i m e n t a t i o n r a t e i s shown i n Fig.6.14.
346 A-
I
I
4
J.
Fe S2
/
(Fmmboidr)
The pathway o f s e d i m e n t a r y p y r i t e f o r m a t i o n ( a f t e r Goldhaber and Fig.6.13. Kaplan, 1974). The above d i s c u s s i o n i n d i c a t e s t h a t r e a c t i o n s o c c u r r i n g d u r i n g s u l p h u r d i a g e n e s i s c o n s i s t o f a number of t r a n s f o r m a t i o n s i n v o l v i n g s u l p h u r and i r o n i n b o t h t h e s o l i d and aqueous p h a s e s .
Both d i s s o l v e d s u l p h i d e and a c i d v o l a t i l e s u l p h i d e (FeS) a r e
i n v o l v e d i n t h e pathway o f p y r i t e f o r m a t i o n which may b e s i m p l i f i e d : 2-
SO4 +H2S
"Fe"
SO
FeS +FeS2
This sequence emphasises t h e f a c t t h a t d i s s o l v e d s u l p h i d e and a c i d v o l a t i l e s u l p h i d e a r e t r a n s i e n t i n t e r m e d i a t e s which a r e c o n t i n u o u s l y b e i n g formed and removed a t any given t i m e .
P o r e w a t e r d a t a show a s y s t e m a t i c d e p l e t i o n o f d i s s o l v e d s u l p h a t e w i t h
d e p t h ( t i m e ) and t h i s i s a s s o c i a t e d w i t h a n e x p e c t e d i n i t i a l i n c r e a s e i n d i s s o l v e d sulphide (Fig.6.15).
Below t h e d e p t h of z e r o s u l p h a t e , s u l p h i d e p r o d u c t i o n from
t h i s s o u r c e must c e a s e , and d i s s o l v e d s u l p h i d e d e c r e a s e s r e f l e c t i n g p r o g r e s s i v e consumption by r e a c t i o n w i t h s o l i d components, and a l s o d i f f u s i o n of d i s s o l v e d sulphide.
S u l p h i d e consumption i s a l s o o c c u r r i n g a t d e p t h s s h a l l o w e r t h a n t h a t a t
which s u l p h a t e d i s a p p e a r s , b u t i n t h e upper 150cm s u l p h i d e p r o d u c t i o n i s g r e a t e r t h a n t h e s u l p h i d e removal r a t e , hence t h e i n c r e a s e i n t h i s zone.
Since sulphide
p r o d u c t i o n ( s u l p h a t e r e d u c t i o n ) c o r r e l a t e s w i t h s e d i m e n t a t i o n r a t e , one m i g h t e x p e c t t h e maximum c o n c e n t r a t i o n of d i s s o l v e d s u l p h i d e t o show a s i m i l a r r e l a t i o n s h i p . A v a i l a b l e e v i d e n c e s u g g e s t s t h a t t h i s i s t h e c a s e , t h e h i g h e s t maximum d i s s o l v e d s u l p h i d e c o n c e n t r a t i o n s b e i n g found i n t h e most r a p i d l y d e p o s i t e d s h a l l o w marine sediments.
The v a r i a t i o n i n maximum s u l p h i d e c o n c e n t r a t i o n is n o t s o l e l y r e l a t e d
347
0
-51 0
I
I
I
I
200
400
600
800
1000
0
0
0-
1200 1400 1600 1800 2000 2200 2400
Sedimentation rate cm. per 1000 yrs.
Fig.6.14. R e l a t i o n s h i p between s u l p h a t e r e d u c t i o n r a t e v e r s u s s e d i m e n t a t i o n r a t e . S e d i m e n t a t i o n r a t e s : Somes Sound, Marine 0 and Long I s l a n d Sound @ ( B e r n e r , 1 9 7 2 ) , (Koide e t a l . , 1972; Emery, 19601, Carmen Basin A and S a n t a Barbara B a s i n P e s c a d e r o Basin (Van Andel, 1 9 6 4 ) , C a r i a c o Trench 0 ( a f t e r Goldhaber and Kaplan, 1975). t o v a r i a t i o n i n production r a t e but a l s o t o the nature of the dissolved sulphide removal mechanism.
T h i s mechanism m a i n l y i n v o l v e s r e a c t i o n w i t h i r o n o x i d e o r
i r o n h y d r o x i d e (see Goldhaber and Kaplan, 1974 f o r a r e v i e w ) .
R i c k a r d (1974) h a s
s t u d i e d t h e s u l p h i d a t i o n of g o e t h i t e under l a b o r a t o r y c o n d i t i o n s and found t h a t t h e r a t e o f t h i s r e a c t i o n i s dependent upon s u l p h i d e c o n c e n t r a t i o n , pH, and t h e surface area of goethite. The abundance of a c i d v o l a t i l e s u l p h i d e s i s s i m i l a r l y d e t e r m i n e d by t h e r e l a t i v e r a t e s of p r o d u c t i o n and consumption.
S i m i l a r arguments t o t h o s e which a p p l y t o
d i s s o l v e d s u l p h i d e a r e a l s o r e l e v a n t add s i m i l a r r e l a t i o n s h i p s e x i s t (Goldhaber and Kaplan, 1975) F i g . 6 . 1 6 ) .
The s i t u a t i o n i s a c t u a l l y a l i t t l e more c o m p l i c a t e d
b e c a u s e t h e c o n v e r s i o n t o p y r i t e i n v o l v e s a d d i t i o n of e l e m e n t a l s u l p h u r (Fig.6.13). T h e r e f o r e t h e low abundance o f a c i d v o l a t i l e s u l p h u r r e l a t i v e t o p y r i t e s u l p h u r a t low r a t e s o f d e p o s i t i o n may b e a f f e c t e d by a n abundant s u p p l y of z e r o v a l e n t s u l p h u r r e s u l t i n g from l o n g e r e x p o s u r e t o o x i d i z i n g c o n d i t i o n s n e a r t h e sediment-
348
Sulfate mM
Sulfide mM +O
300
t
300L
Fig.6.15. V a r i a t i o n i n d i s s o l v e d s u l p h a t e and s u l p h i d e i n p o r e w a t e r s of a c o r e from Carmen B a s i n , Gulf o f C a l i f o r n i a ( a f t e r Goldhaber and Kaplan, 1 9 7 5 ) . w a t e r i n t e r f a c e ( B e r n e r , 1964).
Under c e r t a i n c o n d i t i o n s t h e f o r m a t i o n o f p y r i t e
does n o t i n v o l v e an i n t e r m e d i a t e s u l p h i d e .
These c o n d i t i o n s a r i s e when t h e
s o l u b i l i t y p r o d u c t o f t h e l e a s t s o l u b l e a c i d v o l a t i l e s u l p h i d e i s n o t exceeded ( p y r i t e i n e q u i l i b r i u m w i t h e x c e s s e l e m e n t a l s u l p h u r i s many o r d e r s o f magnitude l e s s soluble than g r e i g i t e o r mackinawite).
Such u n d e r s a t u r a t i o n c o u l d c o r r e l a t e
w i t h a low s e d i m e n t a t i o n r a t e ; s i m i l a r l y low s e d i m e n t a t i o n r a t e s c o u l d r e f l e c t a reduced p r o p o r t i o n of p y r i t e s u l p h u r h a v i n g p a s s e d t h r o u g h t h e a c i d v o l a t i l e s t a g e . An a n c i e n t example:
The C a t s k i l l c l a s t i c wedge
The Upper Devonian C a t s k i l l Formation i n C e n t r a l P e n n s y l v a n i a p r o v i d e s a f i n e example of c o l o u r change i n r e s p o n s e t o a l t e r n a t i n g marine/non m a r i n e c o n d i t i o n s . I n t h i s a r e a t h e C a t s k i l l Formation c o n s i s t s o f two m o t i f s motif c o n t a i n i n g marine- non-marine i n t e r c a l a t i o n s and
2.
1. t h e I r i s h V a l l e y t h e a l l u v i a l motif
c o n s i s t i n g of fining-upwards cyclothems and d e s c r i b e d by A l l e n and F r i e n d (1968). The I r i s h V a l l e y m o t i f i s n o t a b l e b e c a u s e i t d i f f e r s from many modern c o a s t a l d e p o s i t s and shows no e v i d e n c e of the b a r r i e r i s l a n d - t i d a l
f l a t model proposed b y
A l l e n and F r i e n d (1968), n o r any e v i d e n c e of a v i g o r o u s l y p r o g r a d i n g sandy d e l t a ; t h e t i t l e " C a t s k i l l Delta" i s t h e r e f o r e something of a misnomer. The C a t s k i l l complex r e p r e s e n t s a r e g r e s s i v e sequence b u i l t i n t o t h e Upper Devonian
349
I
1
1
1
200 300 400 Sdirnontation rat. ern. per 1000 p a r s 100
.
1
500
Fig.6.16. R e l a t i o n s h i p between maximum p e r c e n t a g e o f t o t a l reduced s u l p h u r i n t h e Data o f Sweeney ( u n p u b l i s h e d ) from a c i d v o l a t i l e form a g a i n s t s e d i m e n t a t i o n r a t e Marine Del Ray Harbor, Los Angeles 0 Data o f Kaplan e t a l . (1963). Sedimentation Goldhaber a n d Kaplan (1975) ( a f t e r Goldhaber and Kaplan, r a t e from Emery (1960) 1975).
A
b a s i n a s a r e s u l t of t h e Acadian orogeny.
In t h e Susquehanna V a l l e y a r e a o f
c e n t r a l P e n n s y l v a n i a a n i n i t i a l marine t r a n s g r e s s i o n submerged o l d e r , s h a l l o w marine o r s h o r e l i n e d e p o s i t s ( T u l l y Limestone and i t s e l a s t i c c o r r e l a t i v e s , Johnson and Friedman, 1966).
The s u c c e e d i n g r e g r e s s i v e sequence can b e d i v i d e d
i n t o f o u r main t y p e s : 1. a t t h e b a s e , g r e y , m a r i n e s i l t y mudstones ( l o w e r p a r t of Trimmers Rock F o r m a t i o n , a b o u t 80m) Formation, a b o u t 45Om)
2 . t u r b i d i t e s ( b u l k o f Trimmers Rock
3 . a l t e r n a t i n g a g i t a t e d - w a t e r marine and non-marine beds
( I r i s h V a l l e y Member of t h e C a t s k i l l Formation, a b o u t 60Om); and 4. a t t h e top a l l u v i a l p l a i n s a n d s t o n e s and mudstones (Buddys Run Member o f t h e C a t s k i l l F o r m a t i o n , a b o u t 1300m).
The s t r a t i g r a p h i c t e r m i n o l o g y i s a f t e r Hoskins e t a l .
(1963) and Dyson (1963). A t y p i c a l u n i t i n t h e I r i s h V a l l e y m o t i f (Fig.6.17)
has an abrupt base overlain
by b i o t u r b a t e d s a n d s t o n e , m a r i n e o l i v e g r e e n s h a l e s and s i l t s t o n e s , r e d s i l t s t o n e s w i t h minor s a n d s t o n e s , and a cap o f r e d mudstones w i t h r o o t t r a c e s d e s i c c a t i o n cracks, and calcareous nodules.
Walker and Harms (1971, p. 387) e n v i s a g e t h e I r i s h
V a l l e y m o t i f forming i n f i v e s t a g e s . c o a s t a l p l a i n o f low r e l i e f . reworking o f winnowed sand.
The p r e s e n c e o f b r a c h i o p o d s a n d c r i n o i d a l d e b r i s
i m p l i e s a normal m a r i n e environment. i n a gradually shoaling sea.
F i r s t , r a p i d marine transgression over a
Second, a s t a g e o f v e r y slow d e p o s i t i o n and b i o l o g i c a l T h i r d , m a r i n e d e p o s i t i o n o f mud took p l a c e
I n i t i a l d e p o s i t s were o l i v e g r e e n f i s s i l e s h a l e s , b u t
a s t h e s e a s h o a l e d , t h i n w e l l - s o r t e d s a n d s t o n e s were d e p o s i t e d .
F o u r t h , t h e r e was
emergence o f mud f l a t s , w i t h many r o o t s p e n e t r a t i n g t h e s e d i m e n t , some s h a l l o w , ephemeral l a k e s and no m a r i n e f a u n a ,
Symmetrical r i p p l e s formed i n ephemeral l a k e s
350
FINING UPWARD ALLUVIAL MOTIF MAY BE PRESENT AT THIS POSITION I N SOME OF THE MAIN MOTIFS.
'RANSGRESSION
I
11-1
bASTAL PLAIN
I
4 "4
6. MASSIVE, BLOCKY RED MUDSTONE WITH ROOT TRACES, FILLED (?DESSICATIONICRACKS, AND TAN CALCAREOUS NODULES. SMDSTONE RARE UNLESS IN FINING-UPWARD MOTIF. 5. DRAB RED SILTSTONES WITH MANY ROOT TRACES AND SOME FILLED (?DESSICATION)CRACKS. BEDDING IS COMMONLY APPARENT! THERE ARE SANDSTONE BEDS 2-IOCM. THICK WITH SMALL SYMMETRICAL RIPPLES. MARINE fOSSILS ABSENT,VERTICAL AND HORIZONTAL BURROWS AND TRAILS O N MANY BEDS 4. GREEN SILTSTONES AND MUDSTONES WITH FINE-GRAINED SANDSTONE BEDS 10-10 CM.THICK, LOW ANGLE CROSSBEDDED,HORIZONTALLY LAMINATED OR RIPPLE CROSS- LAMINATED, SYMMETRICAL RIPPLES WAVELENGTH 10-15 CM. PRESENT, BRACHIOPODS RARE, BURROWS AND TRAILS COMMON. THIS UNIT IS THIN OR ABSENT IN MANY MOTIFS
-
3. OLIVE GREEN FISSILE SHALE, SCATTERED BRACHIOPODS
4
AND CRINOIDS. THIS UNIT MAY REST DIRECTLY ON BASAL SURFACE OF MOTIF. /OIOTURBATE SANDSTONE WITH SCATTERED OUARTZ GRANULES, 2, IACHIOPODS. CRINOIDS, PHOSPHATIC NOOULES. M3NE FRAOMENTS. \BASAL SURFACE.PLANAR, COMMONLYSHUP. IN PLACES BURROWED AND IRREWLAR.
@*
Wfl
METERS
Fig.6.17.
u bG
I d e a l i z e d I r i s h V a l l e y m o t i f ( a f t e r Walker and Harms, 1971).
and d e s i c c a t i o n c r a c k s i n d i c a t e a l t e r n a t e f l o o d i n g and d r y i n g of t h e c o a s t a l f r i n g e . The c o l o u r of t h e s e f i r s t non-marine d e p o s i t s i s r e d , c o n t r a s t i n g w i t h t h e o l i v e g r e e n and d r a b marine s h a l e s and s a n d s t o n e s b e n e a t h .
F i f t h , h i g h e r on t h e c o a s t a l
p l a i n , t h e r e a r e r e d s i l t s t o n e s and mudstones w i t h d e s i c c a t i o n c r a c k s , r o o t s , and t a n c a l c a r e o u s n o d u l e s , s u g g e s t i n g i n c i p i e n t s o i l development.
A few t h i n f i n i n g -
upwards c y c l e s o c c u r and t h e s e d i m e n t s a r e p r e d o m i n a n t l y r e d . The a b s e n c e of s a n d i n t h e s e s h o r e l i n e s e d i m e n t s s u g g e s t a s i m i l a r i t y w i t h t h e p r o g r a d a t i o n a l C h e n i e r P l a i n of Southwestern L o u i s i a n a (Byrne e t a l . ,
1959; Gould
and McFarlan, 1959) and a l s o t h e n o r t h e r n Colorado R i v e r D e l t a (Thompson, 1968). The p r o g r a d a t i o n o f t h i s C a t s k i l l muddy s h o r e l i n e p r o b a b l y took p l a c e by l o n g s h o r e s u p p l y of sediment from more a c t i v e d e l t a i c a r e a s t o t h e n o r s h ( G l a e s s e r , 1970). There a r e numerous ( a b o u t 25) r e p e t i t i o n s o f t h e I r i s h V a l l e y m o t i f i n t h e Susquehanna V a l l e y area a l t h o u g h i t i s n o t c l e a r whether t h e s e w e r e c o n t r o l l e d sedimentologically o r tectonically.
I n t h e former c a s e l o c a l t r a n s g r e s s i o n and
351 r e g r e s s i o n and hence r e p e t i t i o n of t h e m o t i f c o u l d b e e f f e c t e d by t h e r e l a t i v e p r o x i m i t y of major r i v e r c h a n n e l s .
When t h e s e were i n a r e l a t i v e l y d i s t a n t a r e a
o f t h e c o a s t a l p l a i n r e g i o n a l s u b s i d e n c e and compaction would r e s u l t i n l o c a l transgression.
R e g r e s s i o n would o c c u r where t h e r a t e o f sediment s u p p l y by longshore
d r i f t exceeded t h e r a t e of s u b s i d e n c e .
Such a mechanism i s well-documented i n t h e
L o u i s i a n a C h e n i e r P l a i n and M i s s i s s i p p i d e l t a (Gould and McFarlan, 1959). I n t e r m i t t e n t e p i s o d e s of s u b s i d e n c e , p e r h a p s r e l a t e d t o t e c t o n i c a c t i v i t y i n t h e Acadian Mountain Chain may a l s o have been i m p o r t a n t . I n any c a s e , t h e o v e r a l l r e s u l t was t o produce a s e r i e s of i n t e r f i n g e r i n g marine and non-marine s e d i m e n t s i n t h e I r i s h V a l l e y f a c i e s , which a r e r e f l e c t e d i n t h e red- non-red d i f f e r e n t i a t i o n ( F i g . 6 . 1 8 ) .
I t seems l i k e l y t h a t t h e i m p o r t a n t f a c t o r s
c o n t r o l l i n g s e d i m e n t c o l o u r a t i o n under t h e s e c o n d i t i o n s were t h o s e which were l i n k e d t o t h e d e p o s i t i o n a l environment, n o t a b l y redox p o t e n t i a l and s u l p h i d e a c t i v i t y .
In
t h e marine s e d i m e n t s g r e e n o r g r e y c o l o u r s p r e v a i l e d s i n c e pigmentary i r o n o x i d e s and h y d r o x i d e s c o u l d n o t form b e c a u s e of s u l p h i d a t i o n and r e d u c t i o n b e n e a t h t h e sediment s u r f a c e ,
The non-marine sediment e v e n t u a l l y became r e d b e c a u s e of t h e l a c k
of o r g a n i c matter and o x i d i z i n g c o n d i t i o n s which e n a b l e d i r o n o x i d e s and h y d r o x i d e s t o e v e n t u a l l y form s t a b l e pigmentary o x i d e s .
These r e s u l t s t e n d t o s u p p o r t t h e view
t h a t e n v i r o n m e n t a l l y c o n t r o l l e d c o l o u r d i f f e r e n t i a t i o n of t h i s t y p e i n d i c a t e s t h a t s u b s t a n t i a l amounts o f r e a d i l y a v a i l a b l e f i n e g r a i n e d i r o n o x i d e s and hydroxides must have been p r e s e n t a t t h e time o f d e p o s i t i o n .
The r o l e o f t h e s e d e t r i t a l i r o n
o x i d e s and h y d r o x i d e s i n p r o d u c i n g r e d s e d i m e n t i n r e d beds o f t h i s t y p e i s t h e r e f o r e c o n s i d e r e d t o have been more i m p o r t a n t t h a n t h e s u b s e q u e n t d i a g e n e t i c breakdown of i r o n s i l i c a t e s .
T h i s view i s s u p p o r t e d by t h e f a c t t h a t t h e heavy m i n e r a l s u i t e s
o f a number o f r e d beds a r e much t h e same a s t h e i r marine e q u i v a l e n t s . Lacustrine conditions S i n c e i r o n i s a n e s s e n t i a l m i c r o n u t r i e n t , i t s c y c l i n g i n t h e l a c u s t r i n e environment i s i n t i m a t e l y i n v o l v e d w i t h o r g a n i c a c t i v i t y .
Moreover s i n c e t h e o x i d a t i o n of
Fe2+ t o Fe3+ i s e x e r g o n i c and c a p a b l e o f s u p p l y i n g e n e r g y i t i s u s e d by some microorganisms a s a s o u r c e o f energy.
Only s m a l l amounts o f f e r r o u s i r o n a r e p r e s e n t
i n s o l u t i o n i n oxygenated l a k e w a t e r s b i t i n t h e r m a l l y s t r a t i f i e d l a k e s (Fig.6.19) r e d u c i n g c o n d i t i o n s i n t h e hypolimnion may c o r r e s p o n d t o h i g h e r c o n c e n t r a t i o n s o f ferrous iron i n solution.
Much o f t h e i r o n i n normal l a k e w a t e r i s p r e s e n t a s
f e r r i c h y d r o x i d e i n f l o c c u l a n t form and i s removable by f i l t r a t i o n w i t h membranes of a p o r o , s i t y o f 0.5um (Hutchinson, 1957; Hem and Cropper, 1959; Hem and Skougstad, 1960).
C o l l o i d a l Fe(0H)
3
w i t h a p a r t i c l e s i z e 0.001 t o 0.5ym a l s o o c c u r s .
These
p a r t i c l e s commonly have a p o s i t i v e c h a r g e a l t h o u g h a n e g a t i v e l y charged sol can o c c u r a t h i g h pH.
The p o s i t i v e l y charged i o n s i n s o l u t i o n and n e g a t i v e l y charged
c l a y p a r t i c l e s and o r g a n i c c o l l o i d s , c a n n e u t r a l i z e t h e c h a r g e s on t h e hydroxide
352
ACADIAN MOUNTAINS
A
GREEN MUDS-MARINf
I RED SILTS k MUDS-NON MARINf
Fig.6.18. A model of Upper Devonian s e d i m e n t a t i o n i n s o u t h - c e n t r a l P e n n s y l v a n i a . Red- non-red d i f f e r e n t i a t i o n o c c u r s i n t h e I r i s h V a l l e y f a c i e s and r e f l e c t s nonmarine c o n d i t i o n s as t h e C a t s k i l l s h o r e l i n e p r o g r a d e d northwestwards ( a f marine Walker and Harms, 1971).
-
colloid particles.
These uncharged a g g r e g a t e s may form a r a p i d l y s e t t l i n g
p r e c i p i t a t e , and m e t a l s s u c h a s copper i o n s may b e a d s o r b e d and c o p r e c i p i t a t e d with t h e f e r r i c hydroxide p r e c i p i t a t e . The s o l u b i l i t y and a v a i l a b i l i t y o f i r o n i n l a k e w a t e r s i s g r e a t l y enhanced by t h e f o r m a t i o n o f i r o n complexes w i t h c e r t a i n o r g a n i c m o l e c u l e s .
Many o r g a n i c
bases form s t r o n g s o l u b l e i r o n complexes w i t h f e r r o u s ( G j e s s i n g , 1964) and f e r r i c ions.
I r o n enrichment i s commonly found i n s u r f a c e w a t e r s w i t h a h i g h c o n t e n t
of dissolved organic matter.
Such h i g h c o n c e n t r a t i o n s o r complexed s o l u b l e i r o n
a r e a s s o c i a t e d w i t h h i g h l e v e l s of humic a c i d s ( S h a p i r o , 1 9 5 7 ) , t a n n i c a c i d s (Hem, 1960) and o t h e r l i g n i n d e r i v a t i v e s .
The i n t e n s e yellow-brown c o l o u r o f
bog-waters i s p a r t l y a s s o c i a t e d w i t h t h e s e complexes.
S h a p i r o (1964, 1966, 1969)
a53
EPlLlMNlON
25t I % k
Ib
1;
o;
215
3'0
Tempomtun ('C ) Fig.6.19.
A t y p i c a l thermally s t r a t i f i e d lake.
h a s s t u d i e d t h e complexing o f i r o n w i t h humic d e r i v a t i v e s , e s p e c i a l l y w i t h yellow o r g a n i c a c i d s of low m o l e c u l a r w e i g h t , and c o n c l u d e s t h a t t h e p r i m a r y mechanism i s p e p t i z a t i o n i n which i r o n i s d i s p e r s e d i n a s o l u b i l i z e d form o f Fe(0H)
as a 3 r e s u l t of a d s o r p t i o n o f t h e o r g a n i c a c i d s o n t o t h e s u r f a c e s o f t h e p a r t i c l e s .
Some i r o n i s c h e l a t e d w i t h o r g a n i c a c i d s by weak chemical bonding b u t t h i s i s ~ o t t h e p r i m a r y complexing mechanism. The b e h a v i o u r o f i r o n i n l a k e w a t e r s i s c l o s e l y a s s o c i a t e d w i t h t h a t o f manganese and i t i s p e r t i n e n t t o d i s c u s s t h e b e h a v i o u r o f manganese h e r e . T h e o r e t i c a l s t u d i e s by Hem (1963, 1964) and Stunrm and Morgan (1970) a r e c o n s i s t e n t w i t h t h e b e h a v i o u r o f manganese i n l a k e s .
Although manganese o c c u r s i n s e v e r a l
v a l e n c e s t a t e s Mn3+ i s thermodynamically u n s t a b l e i n aqueous s o l u t i o n s under normal c o n d i t i o n s and Mn4'
compounds a r e i n s o l u b l e a t most e n v i r o n m e n t a l pH v a l u e s .
Like i r o n , d i v a l e n t Mn2+ o c c u r s a t low redox p o t e n t i a l s and pH (Fig.6.20).
Some
form of o x i d i z e d manganese w i l l be i n e q u i l i b r i u m w i t h Mn2+ under o x i d i z i n g c o n d i t i o n s o f h i g h pH and Eh, and some form o f Mn2+ may b e i n e q u i l i b r i u m w i t h manganese c a r b o n a t e under r e d u c i n g c o n d i t i o n s o f low pH and Eh. a r e s l o w e r f o r manganese t h a n f o r i r o n .
R a t e s of o x i d a t i o n
Above a pH of 8.5 a n i n t e r m e d i a t e o x i d e
complex forms i n which Mn2+ i s a d s o r b e d o n t o manganese o x i d e s .
The Mn2+ of t h e s e
o x i d e complexes can r e a c t r e l a t i v e l y r a p i d l y w i t h o t h e r a n i o n s and p r e c i p i t a t e a s MnC03, MnS, and Mn(OH)2.
Manganese i s a d s o r b e d on i r o n o x i d e s and c o p r e c i p i t a t e s
w i t h f e r r i c hydroxides when t h e pH i s g r e a t e r than 6 t o 7 .
Manganese forms
s o l u b l e complexes w i t h b i c a r b o n a t e and s u l p h a t e and i n c r e a s e d b i c a r b o n a t e a c t i v i t y d e c r e a s e s manganese s o l u b i l i t y , b u t a t h i g h c o n c e n t r a t i o n s i t has been found t o
3 54
;j$/ 3 10 12 14 P
Fig.6.20. D i s t r i b u t i o n o f manganese s p e c i e s in r e l a t i o n t o pH and redox p o t e n t i a l (modified from Stumm and Morgan, 1970). reduce the oxidation r a t e .
Manganese i n t h e form of Mn2+ forms s t a b l e complexes
w i t h o r g a n i c m a t t e r , i n a s i m i l a r manner t o i r o n , b u t t h e o p e r a t i o n o f t h e s e in a q u a t i c systems a r e n o t a s w e l l u n d e r s t o o d a s t h o s e w i t h i r o n .
Manganese i s
r e l a t i v e l y abundant i n a l k a l i n e s o i l s a s h y d r a t e d o x i d e s and o r g a n i c complexing p l a y s an i m p o r t a n t r o l e i n r e t e n t i o n of manganese i n a d i s s o l v e d form s u i t a b l e for transport.
Drainage from f o r e s t l i t t e r o f t e n has a h i g h manganese c o n t e n t ,
a g a i n p o i n t i n g t o t h e i m p o r t a n c e of o r g a n i c complexes a s a t r a n s p o r t i n g medium of e a r l y o x i d i z e d m e t a l i o n s . The range of t o t a l i r o n found i n most n e u t r a l o r a l k a l i n e l a k e s v a r i e s from a b o u t 5 0 t o 200 g / l i t r e and c o n s i s t s l a r g e l y of Fe(OH)3, o r g a n i c a l l y complexed i r o n , and a d s o r b e d i r o n i n p a r t i c u l a t e form.
Under o x i d i z e d c o n d i t i o n s , a s i n
t h e e p i l i m n i a of l a k e s , v e r y l a r g e amounts o f i r o n a r e found o n l y i n v e r y a c i d i c w a t e r ( p H 4 3 ) s u c h a s i n l a k e s of v o l c a n i c o r i g i n .
The range of manganese
c o n c e n t r a t i o n s ( a b o u t 10-850 g / l ) i s a l s o v a r i a b l e b u t t h e a v e r a g e q u a n t i t y 35 g / l i s somewhat l e s s t h a n t h a t o f i r o n .
The Fe:Mn r a t i o o f l a k e w a t e r i s
g e n e r a l l y much l e s s t h a n t h e a v e r a g e c r u s t a l r a t i o ( 5 0 : l ) i n d i c a t i n g t h e r e l a t i v e enrichment of manganese w i t h r e s p e c t t o i r o n , and i n agreement w i t h t h e r e a c t i o n e q u i l i b r i a ( H u t c h i n s o n , 1957; L i v i n g s t o n e , 1963). The v e r t i c a l d i s t r i b u t i o n o f i r o n and manganese is r e f l e c t e d i n t h e d i s t r i b u t i o n of redox p o t e n t i a l s .
I o n i c i r o n o f oxygenated w a t e r s o f o l i g o t r o p h i c l a k e s ,
e p i l i m n i a of more p r o d u c t i v e l a k e s , and of c i r c u l a t i n g w a t e r s i s v e r y low.
Ferrous
ions d i f f u s e r e a d i l y from s e d i m e n t s when t h e y a r e reduced t o redox p o t e n t i a l s below
355
a b o u t 200m
and m i g r a t i o n o f manganese may o c c u r a t somewhat g r e a t e r redox
potentials,
T h i s i s w e l l s e e n i n e n t r o p h i c l a k e s (Mortimer, 1971) ( F i g . 6 . 2 1 )
where t h e r e l e a s e of manganese p r e c e d e s t h a t o f i r o n . STRATIFICATION
OVERTURN
8 4
2 1
05 2 1
6 4
2
a 4
8
-04
4
-0 2
0.4
.70
0 2
.8.6
-+
30
.80
20 10
.80
S e a s o n a l d i s t r i b u t i o n i n composition mg/l and w a t e r p r o p e r t i e s of w a t e r Fig.6.21. w i t h i n 3Ocm o f t h e s e d i m e n t s a t a d e p t h o f 14m i n E s t h w a i t e W a t e r , England ( a f t e r Mortimer, 1971). I n v e r y p r o d u c t i v e l a k e s , t h e redox p o t e n t i a l of t h e h y p o l i m n e t i c w a t e r s may f a l l , a s t h e decomposition o f t h e hypolimnion f a l l s t h r o u g h o u t t h e p e r i o d of stratification.
Under t h e s e c o n d i t i o n s s u l p h a t e i s reduced t o hydrogen s u l p h i d e
and H S may b e f u r t h e r produced by b a c t e r i a l decomposition of s u l p h u r c o n t a i n i n g 2 o r g a n i c compounds. S i n c e t h e r e i s s i g n i f i c a n t r e l e a s e of f e r r o u s i r o n a t redox p o t e n t i a l s g r e a t e r t h a n t h o s e needed f o r s u l p h a t e r e d u c t i o n t h e r e i s u s u a l l y much Fez+ i n t h e hypolimnion a t t h e time o f s u l p h i d e f o r m a t i o n .
The f o r m a t i o n o f i r o n
s u l p h i d e s and o t h e r m e t a l s u l p h i d e s can r e s u l t i n a s i g n i f i c a n t r e d u c t i o n o f i r o n towards t h e end of summer. The c y c l i n g and d i s t r i b u t i o n o f i r o n and manganese i s c o n t r o l l e d mainly by t h e
3 56 redox p o t e n t i a l .
B a c t e r i a l and p h o t o s y n t h e t i c metabolism g r e a t l y i n f l u e n c e t h e s e
c o n d i t i o n s and t h e r e b y i n d i r e c t l y r e g u l a t e t h e c y c l i n g o f t h e m e t a l s .
The d i r e c t
u t i l i z a t i o n of i r o n and manganese by b a c t e r i a i n e n e r g e t i c t r a n s f o r m a t i o n s i s o n l y of r e l a t i v e l y minor importance.
The c h e m o s y n t h e t i c u t i l i z a t i o n of e n e r g y from
i n o r g a n i c o x i d a t i o n s i n C02 f i x a t i o n i s r e l a t i v e l y i n e f f i c i e n t .
For example t h e
o x i d a t i o n of Fez+ t o Fe3+ by i r o n b a c t e r i a g i v e s a n e n e r g y f i e l d o f o n l y The c y c l i n g o f i r o n and manganese i s i n f l u e n c e d by two p r o c e s s e s
11 k c a l / m o l e .
(Kuznetsov, 1970).
F i r s t , r e d u c t i o n o f t h e o x i d i z e d combined m e t a l o c c u r s under
a p p r o p r i a t e redox c o n d i t i o n s a s f e r r o u s b i c a r b o n a t e or i s p r e i p i t a t e d a s a s u l p h i d e , example r e a c t i o n s b e i n g : Fe203 FeS
+
+
3H2S +2FeS
+
3H20
+S
(6.8)
+
H2S
(6.9)
2H2C03+Fe(HC03)2
Second, s h e a t h e d and s t a l k e d b a c t e r i a , a l g a e , p r o t o z o a n f l a g e l a t e s , and s p e c i f i c t r u e b a c t e r i a p r e c i p i t a t e f e r r i c and manganic o x i d e s on t h e i r c e l l s . i r o n b a c t e r i a o c c u r i n i r o n - r i c h w a t e r s o f n e u t r a l o r a l k a l i n e pH.
The t r u e Characteristic
r e a c t i o n s of chemoautotrophic b a c t e r i a which d e p o s i t h y d r o x i d e s and o x i d e s a r e : 4Fe(HC03)2 4MnC03
+
+ O2 +
02+
+ 4H2C03 + 4C02
6H20+4Fe(OH)3
2Mn203
+
(+ 58 k c a l )
4C02 (+ 76 k c a l )
(6.10) (6.11)
Some s p e c i e s of L e p t o t h r i x can o x i d i z e b o t h f e r r o u s and manganous s a l t s , whereas G a l l i o n e l l a (Spirophyllum) i s r e s t r i c t e d t o i r o n .
S i n c e a t n e u t r a l pH, and i n t h e
p r e s e n c e o f oxygen Fez+ i s s p o n t a n e o u s l y o x i d i z e d ; t h e i r o n o x i d i z i n g b a c t e r i a a r e r e s t r i c t e d t o a r e a s o f s t e e p redox g r a d i e n t , and a r e e f f e c t i v e l y competing w i t h oxygen f o r t h e reduced i r o n .
They a r e t h e r e f o r e , g e n e r a l l y r e s t r i c t e d t o t h e
i n t e r f a c e a r e a s o f i r o n - r i c h r o c k s e e p s , swamps, and bogs where t h e redox p o t e n t i a l
i s s u f f i c i e n t l y low f o r reduced i r o n t o o c c u r , and t o upper h y p o l i m n e t i c a r e a s . O t h e r groups o f b a c t e r i a i n v o l v e d i n t h e p r e c i p i t a t i o n o f i r o n and manganese a r e h e t e r o t r o p h i c forms s u c h a s C l a d o t h r i x and some L e p t o t h r i x which a r e f i l a m e n t o u s and d e p o s i t i r o n and manganese on t h e c e l l i n s h e a t h d u r i n g t h e metabolism o f o r g a n i c compounds.
The c o l o n i a l , c o c c o i d c e l l s o r s h o r t r o d s o f S i d e r o c a p s a a r e a
common form o c c u r r i n g a t t h e oxic-anoxic i n t e r f a c e zone of hypolimnion-metalimnion, e s p e c i a l l y i n i r o n m e r o m i c t i c l a k e s (Dubinina e t el., 1 9 7 3 ) .
Siderocapsa i s a l s o
w i d e l y d i s t r i b u t e d i n t h e oxygenated zones o f s t r e a m s and l a k e s (Hardman and T h i s genus i s n o t a b l e b e c a u s e i t i s c a p a b l e o f m i n e r a l i z i n g
Henrici, 1939).
humates and i n c r e a s e s i n numbers c o i n c i d e n t w i t h i n c r e a s e s i n i r o n humates d u r i n g p e r i o d s of h i g h r a i n f a l l .
Another w i d e l y d i s t r i b u t e d i r o n - o x i d i z i n g b a c t e r i u m i s
T h i o b a c i l l u s t h i o o x i d a n s which o x i d i z e s i r o n s u l p h i d e (FeS) t o f e r r i c s u l p h a t e
(ZoBell, 1973) : FeS2
+ 3%02 + H20+FeS04
2FeS04 +
10, +
H2S04
+ H2S04
Fe2(S04)3
+
(6.12) H20
(6.13)
357 A l s o , F e r r o b a c i l l u s f e r r o o x i d a n s , which i s found i n v e r y a c i d w a t e r s (pH<3), and which o x i d i z e s f e r r o u s c a r b o n a t e t o f e r r i c hydroxide: 4FeC03 + O2 + 6H20
4Fe(OH)3 + 4C02
(6.14)
A few h e t e r o t r o p h i c s p e c i e s of i r o n o x i d i z i n g b a c t e r i a of t h e g e n e r a S p h a e r o t i l i s , L e p t o t h r i x , C l o n o t h r i x , and S i d e r o b a c t e r a l s o d e p o s i t o x i d i z e d manganese i n t h e i r sheaths.
Some s p e c i e s o f t h e genus Metallogenium o b t a i n p a r t o f t h e i r e n e r g y
r e q u i r e m e n t s from t h e o x i d a t i o n of manganese compounds; o t h e r s a r e h e t e r o t r o p h i c and a l o n g w i t h o t h e r b a c t e r i a c o n t r i b u t e t o t h e f o r m a t i o n of manganese and i r o n o x i d e s i n l a k e s e d i m e n t s (Oborn, 1964; P e r f i l ' e v and Gabe, 1969; Kuznetsov, 1970). Metallogenium i s one of t h e dominant microorganisms i n v o l v e d i n t h e d e p o s i t i o n of manganese n o d u l e s i n l a k e s (Sokalova, 1961; S o r o k i n , 1970). A g e n e r a l summary of t h e i n o r g a n i c and b a c t e r i a l r e l a t i o n s h i p s i n o l i g o t r o p h i c ( o x i c hypolimnion) and meso- o r e u t r o p h i c l a k e s ( r e d u c e d o r a n o x i c hypolimnion) i s g i v e n i n Fig.6.22.
In o l i g o t r o p h i c l a k e s t h e bottom s e d i m e n t s a r e poor i n o r g a n i c
m a t t e r and t h e sediment s u r f a c e may b e c o v e r e d i n i r o n and manganese o x i d e s which a r e d e p o s i t e d a l o n g w i t h c l a y s , s i l t s and c a r b o n a t e s (Kuznetsov, 1975; MUller e t a l . , 1972).
The f o r m a t i o n of t h e i r o n manganese d e p o s i t s i s n o t s t r a i g h t f o r w a r d .
After
i n i t i a l p r e c i p i t a t i o n on t h e bottom t h e o x i d e s a r e reduced and t h e i r m o b i l i t y i n c r e a s e d through t h e a c t i o n o f Bacterium c i r c u l a n s , B . polymyxa,Desulfovibrio and other bacteria.
D i f f u s i o n t o t h e a e r o b i c upper sediment l a y e r s may t h e n t a k e p l a c e
where f a v o u r a b l e c o n d i t i o n s f o r b i o g e n i c o x i d a t i o n e x i s t .
The i o n s a r e d e p o s i t e d
i n t o iron-manganese c o n c r e t i o n o r l a m i n a t i o n s (Sokolova-Dubinina and D e r j u g i n a 1967, 1 9 6 8 ) . I n e u t r o p h i c l a k e s t h e decomposition of o r g a n i c matter produces s u l p h a t e and phos-
p h a t e from p r o t e i n s , b a c t e r i a of t h e genus P r o t e u s b e i n g i m p o r t a n t p r o t e i n decompo s i n g forms ( B u t l i n , 1953).
In t h e r e d u c i n g c o n d i t i o n s o f t h e bottom d e p o s i t s t h e
a c t i v i t y of s u l p h a t e r e d u c i n g b a c t e r i a such as D e s u l f o v i b r i o and Desulfotomaculum produces abundant hydrogen s u l p h i d e .
Iron sulphides a r e thus p r e c i p i t a t e d i n the
bottom s e d i m e n t s and a r e u l t i m a t e l y s t a b i l i z e d i n t h e form of FeSZ ( p y r i t e o r m a r c a s i t e ) , p r o b a b l y i n a s i m i l a r manner t o t h a t s e e n i n t h e m a r i n e environment. A t t h e same t i m e , p r e c i p i t a t i o n of FeP04 and i r o n and manganese c a r b o n a t e s may
a l s o take place. The d i f f e r e n t m i n e r a l o g i c a l t r a n s f o r m a t i o n s which o c c u r i n t h e bottom sediments of l a k e s and which r e s u l t from d i f f e r e n c e s i n o r g a n i c p r o d u c t i v i t y a r e most i m p o r t a n t i n c o n t r o l l i n g t h e c o l o u r of l a k e s e d i m e n t s .
In e u t r o p h i c l a k e s , most
o f t h e a v a i l a b l e i r o n i s u l t i m a t e l y f i x e d a s i r o n s u l p h i d e s , c a r b o n a t e s and phosphates and t h e c o l o u r o f t h e s e d i m e n t s i s d r a b .
Minor i n t r i n s i c c o l o u r
v a r i a t i o n s due t o l a c u s t r i n e v a r v e s and o t h e r m i n e r a l o g i c a l l a m i n a t i o n s , such as c a r b o n a t e o r o r g a n i c - r i c h l a m i n a e , may b e abundant.
In oligotrophic lakes with
low o r g a n i c p r o d u c t i v i t y i r o n o x i d e s can form d u r i n g e a r l y d i a g e n e s i s ; i f
3 58
Surface run off
Y-lc Outflow Fe, M n
~
i
ZONE
Precipitation and Sedimentation I
without transport to
OLIGOTROPHIC LAKES (Oxic hypolimnion)
MESO-OR EUTROPHIC LAKES (Hypolimnetic O2 reduced or Anoxic)
The i r o n and manganese c y c l e s i n l a k e s of low and h i g h p r o d u c t i v i t y emphasizing m i c r o b i a l i n t e r a c t i o n s ( m o d i f i e d from Kuznetsov, 1970).
Fig.6.22.
359 s u b s e q u e n t c o n d i t i o n s a r e s u i t a b l e t h e n f o r m a t i o n of s t a b l e p i g m e n t a r y o x i d e s w i l l occur during l a t e r diagenesis.
The i m p l i c a t i o n h e r e i s t h a t a n c i e n t l a c u s t r i n e
s e d i m e n t s may o r may n o t b e r e d and t h e c o l o u r v a r i a t i o n s may p r o v i d e a good i n d i c a t i o n o f t h e former l e v e l s o f l a k e p r o d u c t i v i t y ; r e d s e d i m e n t s may i n d i c a t e low l e v e l s of p r o d u c t i v i t y w h i l s t d r a b s e d i m e n t s s u g g e s t r e l a t i v e l y h i g h l e v e l s of l a k e p r o d u c t i v i t y . An a n c i e n t example:
The O r c a d i a n Basin ~
The O r c a d i a n B a s i n was a m a j o r i n t r a m o n t a n e b a s i n d u r i n g t h e d e p o s i t i o n o f t h e Old Red Sandstone and a t h i c k sequence of i n t e r b e d d e d f l u v i a l and l a c u s t r i n e sediments accumulated d u r i n g t h e Middle Old Red S a n d s t o n e s ( E i f e l i a n - G i v e t i a n ) . Remnants of t h e b a s i n are p r e s e r v e d i n n o r t h e a s t e r n S c o t l a n d , t h e Orkneys and the Shetland I s l a n d s (Fig.6.23). chief key ORS outcrop
[wick
@ Achanrrrrr Lit. end correlatives
0 oilfield middle ORS palmocurrants
/ / / wells
4 '
,
Fwlt
I
masibla irnit of )RS
F e l l s Boundary
.*
*
G n a t Glen
C
Bwhm field
0 ria
0
F i g . 6.23.
Palaeogeography of t h e O r c a d i a n Basin.
100 km
360 These m i d d l e Devonian s e d i m e n t s i n t h e O r c a d i a n B a s i n a r e r e f e r r e d t o a s t h e Caithness Flagstones.
The s t r a t i g r a p h y i n n o r t h e a s t e r n C a i t h n e s s (Donovan e t a l . ,
1974) i s s u m a r i z e d i n T a b l e 6.3.
TABLE 6.3. L i t h o s t r a t i g r a p h y of t h e C a i t h n e s s F l a g s t o n e s ( a f t e r Donovan e t a l . ,
John 0 ' G r o a t s Sands t o n e (627m)
1974).
Red and b u f f s a n d s t o n e s w i t h minor amounts of d r a b F l a g s t o n e and laminite - - - - ? - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - ? - - - - -
MeY 553m
Upper C a i t h n e s s Flagstone ( 150 7m+)
Grey and g r e e n F l a g s t o n e s and sands t o n e s . Red s h a l e s and s a n d s t o n e s i n h i g h e r beds
Ham-Scarfskerry 750m
Grey and g r e e n F l a g s t o n e s and laminites. Grey/black laminites with dolostones - - - - ? - - - - - - - - - - - - - - - - - - - - - - - - La t h e r o n 174mi-
Grey s a n d s t o n e s , g r e e n mudstones and grey/black laminites
Robbery Head Lamini tes and t h i n l y bedded Flagstones 15 7m+ - - - - ? - - - - - - - - - - - - - - - - - - - - - - - - -
Lower C a i t h n e s s Flagstone (2336m+)
Lybs t e r 8 70m+
Grey s a n d s t o n e s and F l a g s t o n e s w i t h g r e y / b l a c k l a m i n i t e s . Carbonate l a m i n i t e and d o l o s t o n e
H i l l h e a d Red Bed 159m Clyth 1150m+ Sarclet (434m+)
Red F l a g s t o n e s and s a n d s t o n e s Grey F l a g s t o n e s and s a n d s t o n e s G r e y / b l a c k F l a g s t o n e s and l a m i n i t e s Red f l u v i a t i l e muds t o n e s , s a n d s t o n e s and conglomerates
The lowermost d e p o s i t s a r e r e d f l u v i a t i l e mudstones, s a n d s t o n e s and conglomerates of t h e S a r c l e t Group.
These a r e o v e r l a i n by a p r e d o m i n a n t l y d r a b l a c u s t r i n e
sequence obout 4km t h i c k and e x h i b i t i n g complex f a c i e s v a r i a t i o n s .
The l a c u s t r i n e
sequence c u l m i n a t e s i n a n o t h e r group of p r e d o m i n a n t l y f l u v i a t i l e r e d b e d s , t h e John o 1 G r o a t s Sandstone Group.
The l a c u s t r i n e f l a g s t o n e s u c c e s s i o n i n g e n e r a l
e x h i b i t s p e r s i s t e n t rhythms, i n v o l v i n g l i g h t g r e y , red-brown and g r e y - g r e e n cross-bedded s a n d s t o n e , f l a g g y s a n d s t o n e , and g r e e n i s h - g r e y s i l t s t o n e w i t h greyb l a c k s i l t y l a m i n i t e and i n f r e q u e n t d a r k g r e y l i m e s t o n e (Crampton and C a r r u t h e r s , 1914, p. 90-97).
The fauna and f l o r a of t h e C a i t h n e s s F l a g s t o n e s a r e c h a r a c t e r i s t i c
of a n e n c l o s e d P a l a e o z o i c b a s i n b e i n g r e s t r i c t e d t o f i s h , a l g a e , v e s c u l a r p l a n t
361 f r a g m e n t s , s p o r e s , e u r y p t e r i d s ( P t e r y g o t u s ) and t h e small c o n c h o s t r a c h a n Asmussia murchisoniana.
The s e d i m e n t a r y s t r u c t u r e s which i n c l u d e l a c u s t r i n e - t y p e v a r v e s
(Rayner, 1963) and s y n e r e s i s c r a c k s , (Donovan and F o s t e r , 1 9 7 2 ) a r e f u r t h e r i n d i c a t i o n s o f a l a c u s t r i n e environment. The rhythmic p a t t e r n of s e d i m e n t a t i o n s e e n throughout t h e C a i t h n e s s F l a g s t o n e s o c c u r s a s a s e q u e n t i a l arrangement of a number o f p a r t i c u l a r l i t h o l o g i c a l a s s o c i a t i o n s which have been d e s c r i b e d by Donovan e t e l . ( 1 9 7 4 ) .
I n t h e Lower
C a i t h n e s s F l a g s t o n e Group t h e f o l l o w i n g a s s o c i a t i o n s o c c u r : A. L a m i n i t e s i n which c a l c i t e o r d o l o m i t e and c l a s t i c laminae e a c h 0.1
thick, alternate.
-
1.OOm
Organic d e t r i t u s may b e abundant i n t h e c l a s t i c laminae.
Colour N 4 - N 5 . B. C l a s t i c l a m i n i t e , c o n s i s t i n g o f a l t e r n a t i o n s o f medium-coarse s i l t s t o n e and
f i n e s i l t s t o n e o r mudstone 1.OOmm t h i c k . C. A l t e r n a t i o n s of c o a r s e s i l t s t o n e (N5-N7)
averaging 7 m thick.
Colour N 3 - N 4 . and f i n e s i l t s t o n e ( N 3 - N 4 )
i n pairs
Abundant subaqueous s h r i n k a g e c r a c k s .
D. A l t e r n a t i o n s of c o a r s e s i l t s t o n e ( N 5 - N 7 )
and f i n e s i l t s t o n e i n p a i r s 5 - 3 O m .
Subaqueous and s u b a e r i a l d e s i c c a t i o n c r a c k s common a l o n g w i t h orange-weathering d o l o s t o n e s 5-4Orrrm t h i c k . E . A l t e r n a t i o n s o f c o a r s e s i l t s t o n e s and f i n e s a n d s t o n e s , 5-5Omm t h i c k , w i t h f i n e
s i l t s t o n e s and mudstones o f s i m i l a r t h i c k n e s s . g r e y ) N5-N7
Colour v a r i a b l e , N 3 - N 4 ( d a r k
( l i g h t g r e y ) , g r e y - g r e e n ( s h a d e s o f 5GY) and o c c a s i o n a l l y r e d (GR).
S u b a e r i a l d e s i c c a t i o n c r a c k s a r e common a s a r e subaqueous s h r i n k a g e c r a c k s i n t h e dark grey sediments. F. Grey ( N 5 - N 7 )
f i n e t o medium-grained s a n d s t o n e , upwards o f 5Omm t h i c k , i n t e r -
bedded w i t h t h i n n e r s i l t s t o n e s and mudstones u s u a l l y g r e y , d a r k g r e y o r grey-green i n colour. lamination.
Sandstones l a t e r a l l y p e r s i s t e n t w i t h a b r u p t b a s e s and showing c r o s s F r e q u e n t s u b a e r i a l d e s i c c a t i o n c r a c k s i n mudstones.
G . Red beds ( s h a d e s o f 5 R ) r a n g i n g from f i n e l y l a m i n a t e d mudstones t o l e n s e d medium
grained sandstones.
R i p p l e marks and s u b a e r i a l d e s i c c a t i o n c r a c k s .
Most o f t h e l i t h o l o g i e s p r e s e n t i n t h e Lower C a i t h n e s s F l a g s t o n e Group, w i t h t h e e x c e p t i o n o f B , D and G , c h a r a c t e r i z e t h e Upper C a i t h n e s s F l a g s t o n e Group, t o g e t h e r w i t h some a d d i t i o n a l l i t h o l o g i e s which a r e : H. C a r b o n a t e / c l a s t i c l a m i n i t e s s i m i l a r t o A b u t w i t h amorphous ' c o l l o p h a n i t e ' i n
c l a s t i c laminae and conspicuous p h o s p h a t e - c h e r t n o d u l e s .
Colour N 4 - N 5 .
I . Laminated c a l c a r e o u s f i n e s i l t s t o n e s and mudstones o f d a r k medium g r e y c o l o u r
(N3-N5)
w i t h 50m t h i c k d o l o m i c r i t e s .
S c a t t e r e d f i s h s c a l e s and c o p r o l i t e s
common.
J. Fine-medium c a l c a r e o u s s i l t s t o n e s .
Colour N 3 - N 5 .
K. F i s s i l e f i n e s i l t s t o n e s and mudstones w i t h s u b a e r i a l d e s i c c a t i o n c r a c k s .
Colour N3-N5 o r g r e e n i s h - g r e y ( s h a d e s of 5 G Y ) .
362 L. Massive g r e y and b u f f fine-medium g r a i n e d s a n d s t o n e s 0.10-2.0m
thick,
a l t e r n a t i n g w i t h p a l e g r e e n and ( l e s s commonly) r e d mudstones.
Sandstones
have e r o s i v e b a s e s , c r o s s - b e d d i n g , p a r t i n g l i n e a t i o n and penecontemporaneous deformation s t r u c t u r e s .
Mudstones show s u b a e r i a l d e s i c c a t i o n c r a c k s and y i e l d
p o o r l y p r e s e r v e d p l a n t fragments. The l a c u s t r i n e o r i g i n of t h e C a i t h n e s s F l a g s t o n e has l o n g been r e a l i z e d ( G e i k i e , 1879; Crampton and C a r r u t h e r s , 1914) and i s s u p p o r t e d by more r e c e n t a n a l y s i s by Donovan (1975).
Carbonate cemented b r e c c i a s which o c c u r a t a number
o f l o c a l i t i e s a r e i n t e r p r e t e d a s m a r g i n a l lake-beach d e p o s i t s which o c c u r r e d d u r i n g p e r i o d s of l a k e l e v e l s t a b i l i t y d u r i n g a g e n e r a l l a c u s t r i n e c y c l e of t r a n s g r e s s i o n / regression.
The d a r k g r e y l a m i n i t e s a r e i n t r r p r e t e d a s " n o n - g l a c i a l v a r v e s "
r e s u l t i n g from a s e q u e n t i a l a n n u a l l a c u s t r i n e rhythm (Rayner, 1963; F a n n i n , 1969; Donovan, 1975).
T h i s p r o b a b l y i n v o l v e d s e a s o n a l a l g a l blooms which l e a d t o
i n c r e a s e d p h o t o s y n t h e s i s , a r i s e i n pH and c a r b o n a t e p r e c i p i t a t i o n .
Subsequent
a l g a l d e a t h r e s u l t e d i n a c c u m u l a t i o n of o r g a n i c m a t t e r on t h e l a k e f l o o r .
There
was a l s o c o n t i n u o u s o r p e r i o d i c accumulation o f c l a s t i c d e t r i t u s . During p e r i o d s o f l a m i n i t e d e p o s i t i o n t h e O r c a d i a n Lake was p r o b a b l y s t r a t i f i e d , w i t h a c o o l , dense a n a e r o b i c hypolimnion and a warm p h o t i c a l g a e - s u p p o r t i n g epilimnion.
Such a s t r a t i f i c a t i o n i s s u g g e s t e d by t h e p r e s e r v a t i o n o f u n d i s t u r b e d
f o s s i l f i s h and by t h e d e l i c a t e l a m i n a t i o n .
N o n g l a c i a l v a r v e s of t h e t y p e under
d i s c u s s i o n a r e a c h a r a c t e r i s t i c f e a t u r e o f t h e q u i e t hypolimnia of l a k e s whose w a t e r s a r e permanently s t r a t i f i e d , (Anderson and K i r k l a n d , 1960; B r a d l e y , 1973).
In t h i s s i t u a t i o n t h e t h e r m o c l i n e would have e f f e c t i v e l y a c t e d a s a n o r g a n i c m a t t e r f e n c e (Eh=O) below w h i c h . t h e p r o c e s s e s o b s e r v e d i n Recent l a k e s would have o p e r a t e d . These would i n c l u d e t h e b a c t e r i a l decomposition of p r o t e i n s which wuuld produce s u l p h a t e s and p h o s p h a t e s , b a c t e r i a l r e d u c t i o n o f s u l p h a t e , and t h e f o r m a t i o n of i r o n s u l p h i d e s w i t h i n t h e o r g a n i c r i c h sediment.
The abundance o f o r g a n i c c a r b o n
(somestmes more t h a n 2 o r 3%) and a u t h i g e n i c m a r c a s i t e and p y r i t e g r a i n s i n t h e carbonate laminites (Fig.6.24),
a l o n g w i t h t h e less common o c c u r r e n c e o f a u t h i g e n i c
p h o s p h a t e s , t e s t i f i e s t o e a r l y d i a g e n e s i s under r e d u c i n g c o n d i t i o n s and t h e o p e r a t i o n o f s i m i l a r p r o c e s s e s i n t h e C a i t h n e s s F l a g s t o n e s t o t h o s e s e e n i n the hypolimnion o f Recent l a k e s . The complex f a c i e s r e l a t i o n s h i p s s e e n i n t h e C a i t h n e s s F l a g s t o n e s can b e a s s e s s e d i n terms of f i v e l i t h o l o g i c a l a s s o c i a t i o n s :
1) a n uppermost f l u v i a l s a n d s t o n e sequence w i t h a n e r o s i v e o r e x t r e m e l y a b r u p t base
2 ) thinly-bedded l a t e r a l l y p e r s i s t e n t s i l t s t o n e s d e p o s i t e d by l a c u s t r i n e t u r b i d i t y flows
3 ) c a r b o n a t e l a m i n i t e s o f deeper w a t e r l a c u s t r i n e o r i g i n
363 4 ) f l a g s t o n e s and t h e i r m a r g i n a l e q u i v a l e n t s d e p o s i t e d i n s h a l l o w w a t e r of f l u c t u a t i n g depth
5 ) b r e c c i a s and s a n d s t o n e s o f f l u v i a l o r i g i n
A. Thin s e c t i o n photomicrograph of a t y p i c a l c a r b o n a t e l a m i n i t e , t h e Fig.6.24. Achannaras Limestone. B. R e f l e c t e d l i g h t mhotomicrograph showing abundant a u t h i g e n i c p y r i t e and m a r c a s i t e . The f a c i e s changes a r e r e a d i l y i n t e r p r e t e d i n terms o f a l a c u s t r i n e t r a n s g r e s s i o n / regression (Fig.6.25). Following a n i n i t i a l low l a k e l e v e l d u r i n g which f l u v i a l s e d i m e n t a t i o n was dominant and s u b a e r i a l s c r e e s formed a t t h e l a k e m a r g i n , t h e l a k e began t o f i l l and t r a n s g r e s s .
When a s u f f i c i e n t d e p t h was r e a c h e d thermal s t r a t i f i c a t i o n
d e v e l o p e d , o r g a n i c p r o d u c t i o n was h i g h , and most o f t h e a v a i l a b l e i r o n t r a n s p o r t e d a s c o l l o i d a l Fe(OH)3, a d s o r b e d on c l a y m i n e r a l s , and a s o r g a n i c complexes was reduced i n t h e hypolimnion and f i x e d a s i r o n s u l p h i d e s .
A t t h i s t i m e carbonate
p r e c i p i t a t i o n was h i g h and c l a s t i c i n p u t g r e a t l y r e t a r d e d ; g r a d e d laminae s u g g e s t i n g t h a t m i c r o d e n s i t y flows i n t r o d u c e d much of t h e sediment.
764
aerobic early diagenesis
Fig.6.25.
-
increasing influence of microdensity flows producing elastic laminae
S e d i m e n t a t i o n model f o r t h e C a i t h n e s s F l a g s t o n e s ( a f t e r Donovan, 1 9 7 5 ) .
During t h e s u b s e q u e n t l a c u s t r i n e r e g r e s s i o n r i v e r s t r a n s p o r t e d more s e d i m e n t i n t o t h e l a k e and c a r b o n a t e p r e c i p i t a t i o n c e a s e d .
T u r b i d i t y f l o w s were g r e a t e r
i n s i z e and g r a d e d s i l t s t o n e s and mudstones were d e p o s i t e d w h i l s t towards t h e b a s i n c e n t r e s o r t i n g of s e d i m e n t s by l a c u s t r i n e s h o r e p r o c e s s e s would have been e f f e c t i v e . A t t h i s time a r e l a t i v e l y b r o a d a l l u v i a l margin may have been p r e s e n t ; e a r l y
d i a g e n e s i s under o x i d i z i n g c o n d i t i o n s and t h e a b s e n c e o f abundant o r g a n i c m a t t e r would a i d t h e development o f pigmentary o x i d e s .
These c o u l d a l s o form d u r i n g more
p r o l o n g e d d i a g e n e s i s p r o v i d i n g t h a t s u i t a b l e i r o n - b e a r i n g d e t r i t u s was p r e s e n t and o x i d i z i n g c o n d i t i o n s were m a i n t a i n e d .
Red b e d s c o u l d r e a d i l y form under t h e s e
conditions. The i n t e r b e d d i n g o f r e d f l u v i a l and l a k e margin s e d i m e n t s w i t h d r a b l a c u s t r i n e
-
s e d i m e n t s can t h e r e f o r e b e r e a d i l y e x p l a i n e d i n terms o f f l u c t u a t i n g l a k e l e v e l . D e t a i l e d e n v i r o n m e n t a l a n a l y s i s shows t h a t c o l o u r v a r i a t i o n i n t h e C a i t h n e s s F l a g s t o n e s a r e c o n t r o l l e d p r i m a r i l y by t h e c o n d i t i o n s d u r i n g e a r l y d i a g e n e s i s . These c o n d i t i o n s have a v i t a l i n f l u e n c e on l a t e r d i a g e n e s i s by removing a v a i l a b l e
365 i o n s from c i r c u l a t i o n and changing t h e c h e m i s t r y of i n t e r s t i t i a l w a t e r s .
Since
e a r l y d i a g e n e t i c c o n d i t i o n s a r e themselves c o n t r o l l e d by t h e d e p o s i t i o n a l environment i t f o l l o w s t h a t t h e whole spectrum o f p o s t - d e p o s i t i o n a l changes was l i n k e d by a c o n t i n u o u s c h a i n t o t h e e n v i r o n m e n t a l c o n d i t i o n s which p r e v a i l e d during deposition.
I t i s not surprising t o f i n d therefore t h a t red/drab i n t e r -
c a l a t i o n s i n t h e C a i t h n e s s F l a g s t o n e s c o r r e s p o n d s o c l o s e l y t o changes i n d e p o s i t i o n a l environment.
S i m i l a r changes and e x p l a n a t i o n s have been used t o
a c c o u n t f o r o t h e r complex sequences i n v o l v i n g l a c u s t r i n e s e d i m e n t s .
These
i n c l u d e t h e T r i a s s i c Lockatong Formation of t h e Newark Group (Van Houten, 1964, 1965) and t h e Eocene Green R i v e r Formation o f Wyoming ( P i c a r d and High, 1972). POST-DEPOSITIONAL INFLUENCE OF GROUNDWATER ON THE MINERALOGY AND GEOCHEMISTRY OF RED BEDS Reddening by groundwater A number o f a u t h o r s have s u g g e s t e d t h a t t h e m i n e r a l o g y and c h e m i s t r y o f some
r e d bed sequences i s r e l a t e d t o t h e i r p r e s e n t o r p a l a e o groundwater c h e m i s t r y and f l o w s y s t e m ( B e r n e r , 1969a; Horowitz, 1971; S c h l u g e r and Roberson, 1975).
The
most e f f e c t i v e d e m o n s t r a t i o n o f t h e s e r e l a t i o n s h i p s has been made by S c h l u g e r and Roberson (1975) u s i n g much of t h e e a r l i e r i n f o r m a t i o n s u p p l i e d by Mack ( 1 9 6 2 ) , and Barnes and Back (1964) and Back and Barnes (1965).
T h e i r s t u d y c o n c e n t r a t e d on t h e
P a t a p s c o Formation ( C r e t a c e o u s ) of t h e Potomac Group which c o n s i s t s of u n c o n s o l i d a t e d g r a v e l , s a n d , s i l t and c l a y of f l u v i a t i l e and s h a l l o w marine o r i g i n and c r o p s o u t between Washington D . C . ,
B a l t i m o r e , and Annapolis i n e a s t e r n U.S.A.
The p r e s e n t
groundwater s y s t e m i n t h e P a t a p s c o Formation i s t h o u g h t t o b e s i m i l a r t o t h e one which e x i s t e d a t t h e t i m e o f d e p o s i t i o n .
Based on t h e c o l l e c t i o n of 87 o u t c r o p
s a m p l e s , S c h l u g e r and Roberson (1975) made d e t a i l e d a n a l y s i s o f v a r i a t i o n s i n c o l o u r , c l a y m i n e r a l o g y , i r o n o x i d e m i n e r a l o g y and i r o n a n a l y s e s and r e l a t e d t h o s e t o t h e groundwater f l o w s y s t e m ( F i g . 6 . 2 6 ) .
The c o l o u r of t h e P a t a p s c o s e d i m e n t s was
a s s e s s e d by p l o t t i n g isochromes b a s e d on c o l o u r and v a l u e .
Yellowish-red sediments
(YR isochrome) a r e d i s t r i b u t e d mainly a l o n g t h e margins o f t h e b a s i n w h i l s t t h e
l i g h t r e d s e d i m e n t s (LR isochrome) a r e n e a r e r t o t h e c e n t r e of t h e b a s i n .
The
d a r k e s t r e d s e d i m e n t s (DR isochrome) a r e l o c a t e d i n t h e v e r y c e n t r e o f t h e b a s i n . A s i m i l a r d i s t r i b u t i o n i s observed i n t h e c l a y m i n e r a l o g y . 7?./108
Variation i n the
peak h e i g h t r a t i o o f i l l i t e and k a o l i n i t e ( t h e two most abundant c l a y
m i n e r a l s ) , r e v e a l s a t r e n d o f r e l a t i v e i l l i t e c o n c e n t r a t i o n downdip ( i . e . t h e c e n t r e of t h e b a s i n ) f o r b o t h r e d and d r a b s e d i m e n t s ( F i g . 6 . 2 6 ) .
towards
Other
n o t a b l e f e a t u r e s of t h e c l a y m i n e r a l o g y i n c l u d e t h e d i s t r i b u t i o n of mixed l a y e r c l a y s which a r e found i n 11.6% o f t h e r e d s e d i m e n t s and a r e a b s e n t i n t h e d r a b sediments.
366
BALTIMOIII. MD.
ANNAPOLIS. MD.
ANNAPOLIS. MD.
WASHINGTON D.C.
ANNAPOLIS. MD.
Sml.
WASHINGTON D.C.
0
Skl.
Sml 0
5km.
Fig.6.26. Relationships between mineralogy, geochemistry and groundwater flow pattern in the Patapsco Formation. A . Isochrome map showing colour distribution. YR = yellow-red; LR = light red; DR = dark red. B. 72/102 peak height ratio. Solid lines reddish clays; dashed lines drab clays. C. Weight percent Fez03 in whole rock samples. D. Weight percent FeO in whole rock samples. E. Potentiometric surface in feet (after Schluger and Roberson, 1975).
367
A l l s t u d i e d samples c o n t a i n e d h a e m a t i t e a n d / o r g o e t h i t e .
I n a few s a m p l e s ,
l e p i d o c r o c i t e was i d e n t i f i e d , and based on t h e amounts o f e x t r a c t a b l e f r e e i r o n p r e s e n t S c h l u g e r and Roberson (1975) judged t h a t a s i g n i f i c a n t p r o p o r t i o n of amorphous o r p o o r l y o r d e r e d f e r r i c oxyhydroxides must b e p r e s e n t .
No s i m p l e
p a t t e r n i n i r o n o x i d e d i s t r i b u t i o n emerged b u t X-ray e v i d e n c e s u g g e s t s t h a t h a e m a t i t e i s r e l a t i v e l y e n r i c h e d i n t h e a r e a o f t h e DR isochrome.
Iron analyses
r e v e a l e d a c l o s e r e l a t i o n s h i p w i t h t h e o t h e r m i n e r a l o g i c a l v a r i a b l e s , b o t h Fe3+ ( e x p r e s s e d a s Fe 0 ) and Fez+ ( e x p r e s s e d a s FeO) d e c r e a s i n g towards t h e c e n t r e of 2 3 the basin (Fig.6.26). The P a t a p s c o Formation l i e s w i t h i n t h e humid t e m p e r a t e c l i m a t i c b e l t o f t h e United S t a t e s w i t h a mean a n n u a l p r e c i p i t a t i o n o f 111.7cm.
There i s n e g l i g i b l e
w a t e r e n t e r i n g t h e f o r m a t i o n by s t r e a m flow b e c a u s e t h e a q u i f e r i s f u l l and continuously discharging i n t o streams.
The p o t e n t i o m e t r i c s u r f a c e i s h i g h e s t i n
t h e w e s t e r n o u t c r o p a r e a and d e c r e a s e s towards t h e s o u t h e a s t (Fig.6.26) 1962).
(Mack,
Back and Barnes (1965) showed a g e n e r a l d e c r e a s e i n Eh from a h i g h of
700mV i n r e c h a r g e a r e a s t o 145mV i n a r e a s o f d i s c h a r g e t o t h e s o u t h - e a s t .
These
a u t h o r s a l s o showed a n e g a t i v e c o r r e l a t i o n between Eh and groundwater i r o n c o n t e n t ; Fe2+ r a n g i n g from 0 ppm t o 20 ppm, l o w e s t Eh and h i g h e s t i r o n c o n t e n t o c c u r r i n g i n water a s s o c i a t e d w i t h drab sediments i n the south-east of the area. The ground w a t e r f l o w p a t t e r n and g e o c h e m i s t r y t h u s show a remarkable p a r a l l e l i s m w i t h t h e c o l o u r , c l a y m i n e r a l o g y , and i r o n o x i d e c o n t e n t of t h e P a t a p s c o Formation.
S c h l u g e r and Roberson (1975) e n v i s a g e d t h e f o r m a t i o n of
v e r m i c u l i t e and mixed-layer c l a y m i n e r a l s by t h e d i a g e n e t i c a l t e r a t i o n of b i o t i t e and f e r r o m a g n e s i a n s i l i c a t e s i n t h e n o r t h - e a s t e r n p a r t o f t h e a r e a .
Associated
w i t h t h i s was t h e d i s s o l u t i o n o f i r o n which m i g r a t e d s o u t h e a s t w a r d s w i t h t h e ground w a t e r flow u n t i l d i s s o l v e d i r o n e n t e r e d t h e s t a b i l i t y f i e l d o f f e r r i c oxyhydroxides which were p r e c i p i t a t e d presumably as amorphous Fe(OH)3 i n i t i a l l y , and which l a t e r aged i n t o l e p i d o c r o c i t e , g o e t h i t e and h a e m a t i t e .
The s t u d y t h u s p r o v i d e s a
c o n v i n c i n g d e m o n s t r a t i o n of t h e i n t e r a c t i o n between r e d bed f o r m a t i o n s and groundw a t e r g e o c h e m i s t r y and f l o w p a t t e r n . Secondary r e d u c t i o n zones A c h a r a c t e r i s t i c f e a t u r e of many c o n t i n e n t a l r e d bed sequences i s t h e
o c c u r r e n c e of g r e y , g r e e n o r w h i t e m o t t l e d zones w i t h i n a predominantly r e d succession.
Such zones f r e q u e n t l y t r a n s e c t d e p o s i t i o n a l b o u n d a r i e s and t h e y a r e
t h e r e f o r e g e n e r a l l y c o n s i d e r e d t o b e p o s t - d e p o s i t i o n a l o r secondary r e d u c t i o n zones.
White a r e a s of s a n d s t o n e a r e known t o r e s u l t from t h e l e a c h i n g of i r o n
(Hartmann, 1963) w h i l s t g r e y o r g r e e n c o l o u r c a n b e a t t r i b u t e d t o s u l p h i d e s o r c l a y m i n e r a l s (mainly c h l o r i t e ) which form under r e d u c i n g c o n d i t i o n s . b a s i c t y p e s can be r e c o g n i z e d :
Three
368 1. I s o l a t e d s p h e r i c a l o r i r r e g u l a r l y shaped zones u s u a l l y r e f e r r e d t o a s r e d u c t i o n spots o r reduction mottling.
T r a d i t i o n a l l y t h e s e a r e t h o u g h t t o r e s u l t from
e a r l y p o s t - d e p o s i t i o n a l r e d u c t i o n of f e r r i c oxyhydroxide by r e s i d u a l o r g a n i c m a t e r i a l ( S h e r l o c k , 1947; T r o t t e r , 1953) 2. H o r i z o n t a l , more o r less c o n t i n u o u s w h i t e o r g r e e n h o r i z o n s , which show some r e l a t i o n s h i p t o l i t h o l o g i c a l b o u n d a r i e s and o c c u r r i n g i n s a n d s t o n e s of f i n e to coarse grain size.
These zones a r e r e l a t e d t o t h e m i g r a t i o n o f r e d u c i n g
ground w a t e r 3. Large z o n e s , c o m p r i s i n g whole s t r a t i g r a p h i c a l u n i t s and p o s s i b l y up t o a few hundred m e t r e s i n t h i c k n e s s .
The l o n g - c o n t i n u e d a c t i v i t y o f r e d u c i n g ground
w a t e r s i s t h e l i k e l y c a u s e o f s u c h l a r g e s c a l e r e d u c t i o n zones I n a d d i t i o n , v e r t i c a l p i p e s of s e c o n d a r i l y reduced s e d i m e n t a r e commonly found r e l a t e d t o p r e s e n t - d a y l a n d s u r f a c e s and t h e s e a r e formed by r e a c t i o n w i t h r e d u c i n g s o i l w a t e r moving around r o o t s o r down f i s s u r e s (Downing and S q u i r r e l , 1963). When t h e i r o n c o n t e n t o f r e d beds i s compared w i t h t h a t of a s s o c i a t e d , s e c o n d a r i l y reduced d r a b z o n e s , t h e l a t t e r a r e always c o n s i d e r a b l y d e p l e t e d i n i r o n . Reduction s p o t s a r e u s u a l l y i r r e g u l a r l y - s h a p e d t o s p h e r i c a l b o d i e s of w h i t e o r g r e e n i s h d r a b s e d i m e n t up t o a few c e n t i m e t r e s i n d i a m e t e r and o f t e n w i t h a d a r k speck o r " f i s h - e y e " of o r g a n i c m a t e r i a l i n t h e c e n t r e ( F i g . 6 . 2 7 ) .
They f r e q u e n t l y
c o n t a i n more calcium c a r b o n a t e and l e s s c l a y m a t r i x t h a n t h e i r h o s t r e d sediment. The t o t a l i r o n c o n t e n t of r e d u c t i o n s p o t s i s l e s s t h a n t h a t i n t h e s u r r o u n d i n g r e d sediment ( K e l l e r , 1929; P i c a r d , 1965).
F r e q u e n t l y t h e f e r r o u s i r o n l e v e l s are
s i m i l a r , o r s l i g h t l y g r e a t e r i n t h e r e d u c t i o n s p o t , and t h e main d i f f e r e n c e l i e s i n t h e g r e a t e r f e r r i c i r o n c o n t e n t o f t h e h o s t r e d sediment ( T a b l e 6 . 4 ) .
This i s
normally a t t r i b u t e d t o i n s i t u r e d u c t i o n o f Fe3+ t o Fe2+ w i t h a s s o c i a t e d d i s s o l u t i o n of pigmentary o x i d e s .
One of t h e most remarkable f e a t u r e s o f r e d u c t i o n s p o t s and
zones i s t h e o c c u r r e n c e o f uranium, vanadium, and copper c o n c e n t r a t i o n s w i t h i n t h e i r organic-rich nuclei.
These a r e well-known i n t h e Permo-Triasic r e d beds o f
b o t h t h e United S t a t e s ( F i s c h e r and S t e w a r t , 1 9 6 1 ) , p a r t i c u l a r l y i n Utah and t h e Colorado P l a t e a u , and a l s o i n G r e a t B r i t a i n ( H a r r i s o n , 1975) and Canada (Van de P o l l and S u t h e r l a n d , 1976).
Various mechanisms have been s u g g e s t e d f o r t h e
formation of these metal-enriched reduction s p o t s , including t h e a c t i v i t y of H S 2 and s u l p h a t e - r e d u c i n g b a c t e r i a , and a l s o t h e e n r i c h m e n t o f s u l p h a t e i o n s i n groundwaters.
The common a s s o c i a t i o n o f o r g a n i c m a t e r i a l s , m e t a l e n r i c h m e n t ,
and Fe3+ r e d u c t i o n , s u g g e s t s t h a t o r g a n i c m a t t e r p l a y s a n i m p o r t a n t r o l e i n t h e formation of reduction spots.
There i s no e v i d e n c e t h a t r a d i o a c t i v e e l e m e n t s
have a n y t h i n g t o do w i t h Fe3+ r e d u c t i o n ; on t h e c o n t r a r y H e i n r i c h (1958) found t h a t r a d i a t i o n o x i d i z e d f e r r o u s i r o n . One of t h e most f u l l y documented o c c u r r e n c e s o f r e d u c t i o n s p o t s i s i n t h e Permo-Triassic r e d bed sequence o f South Devon, U . K .
Here, t h e r e d u c t i o n s p o t s
369
Fig.6.27. Reduction zones i n r e d beds. A. Large r e d u c t i o n s p o t i n r e d s i l t s t o n e s from t h e Permo-Trias of South Devon w i t h a m i n e r a l i z e d c o r e ( ' f i s h e y e ' ) c o n t a i n i n g o r g a n i c matter, copper s u l p h i d e s and uranium and vanadium m i n e r a l s . The lens cap i s 5.3cm i n d i a m e t e r . B . Reduction zone a t t h e t o p of a fining-upwards cyclothem from t h e Old Red Sandstone of South Wales. Dark r e d mudstones ( f l o o d p l a i n ) a r e o v e r l a i n by grey-green s a n d s t o n e s ( c h a n n e l ) t h e j u n c t i o n b e i n g marked by a t h i n bleached zone a t t h e top of t h e mudstones. The s c a l e i s 0.5m. C . Thin (5-10cm) d i s c o n t i n u o u s r e d u c t i o n zones i n r e d sandy a l l u v i u m o f t h e S t . Bees Sandstone o f Cumbria.
370 a r e found i n a sequence of r e d mudstones and t h i n s a n d s t o n e s ( L i t t l e h a m Mudstones and Exmouth Sandstones and Mudstones) o f p r o b a b l e Upper Permian a g e .
Details a r e
p r o v i d e d by P e r u t z (19391, H a r r i s o n ( 1 9 7 5 ) , and Durrance e t a l . , 1978.
These
r e d u c t i o n s p o t s c o n t a i n c o p p e r , vanadium, and uranium i n c o n c r e t i o n a r y c o n c e n t r a t i o n s and may have formed i n a manner v e r y s i m i l a r t o most o t h e r r e d u c t i o n s p o t s .
TABLE 6.4.
The i r o n c o n t e n t o f s e c o n d a r y r e d u c t i o n zones and h o s t r e d s e d i m e n t s . 1. Chugwater Formation ( P i c a r d , 1965) 2. L i t t l e h a m Mudstone Formation (Durrance e t a l . , 1978) 3,4. S t . Bees Sandstone 5. J u n i a t a and Bald E a g l e Formations (Thompson, 1 9 7 0 ) . ~~
Reduction S p o t s
1 2
Drab Sediment
Fe203 F eO Fe203 FeO
Red Sediment
0.97
1.67
0.93
0.93
1.45
4.77
0.96
0.86
0.75
2.26
0.88
0.61
Reduction Zones
3 4
Fe203 F eO Fe203 FeO
0.73
2.05
0.92
0.42
0.50
1.71
1.44
1.43
Large s c a l e r e d u c t i o n zones
5
Fe203 F eO
The m e t a l e n r i c h e d c o n c r e t i o n s have b e e n c l a s s i f i e d by P e r u t z (1939, p.150-151) as: I. i r r e g u l a r
11. s p h e r o i d a l - a s t e r o i d a l , and 111. s p h e r o i d a l - c o n c e n t r i c .
The
s i z e dimensions of t h e c o n c r e t i o n s and t h e s u r r o u n d i n g r e d u c t i o n h a l o e s a r e summarized i n Fig.6.28.
There a p p e a r s t o b e no r e l a t i o n s h i p between s i z e o r
morphology of t h e c o n c r e t i o n s and t h e h o s t r o c k l i t h o l o g y b e c a u s e a l l t h e v a r i a n t s a r e s e e n b o t h i n impermeable m a r l s and porous s a n d s t o n e s .
The c o l o u r of t h e Host
m a r l s r a n g e s from 5YR 6 / 4 ( l i g h t - b r o w n ) t o 5 R 4 / 2 ( g r e y i s h - r e d ) and c o n t r a s t s w i t h the reduction haloes 5Y 6 / 1 ( l i g h t o l i v e grey) t o 5GY 6 / 1 ( g r e e n i s h g r e y ) .
The
r e l a t i o n s h i p s o f t h e b l e a c h e d zones t o bedding p l a n e s c l e a r l y i n d i c a t e t h e i r p o s t d e p o s i t i o n a l f o r m a t i o n s ; a l s o t h e tendency f o r c o n c r e t i o n s t o have l o n g a x e s l y i n g p a r a l l e l t o bedding p l a n e s s u g g e s t s t h a t they might have formed p r i o r t o f i n a l compaction. The t e x t u r e and c o m p o s i t i o n of t h e c o n c r e t i o n s i s h i g h l y complex a l t h o u g h t h e y g e n e r a l l y a r e b l a c k , d a r k g r e y , brown o r o l i v e when f r e s h l y f r a c t u r e d and show a n
371 annular structure.
M i n e r a l s i d e n t i f i e d by H a r r i s o n (1975) i n c l u d e : n a t i v e c o p p e r ,
m a u c h e r i t e (Ni A s ) , n a t i v e s i l v e r , n i c c o l i t e (NiAs), r a m m e l s b e r g i t e (Ni,Co,Fe)As 3 2 2’ c h a l c o p y r i t e (Cu,FeS ) , c h a l c o c i t e (Cu2S), c o v e l l i n e (CuS) , b o r n i t e (Cu5FeS4) ,
2
v a n a d i a n m i c a , c o f f i n i t e (USiO ) and v a r i o u s secondary m i n e r a l s .
4
Radioactive
m i n e r a l s i n t h e c o n c r e t i o n s have been known f o r some time ( C a r t e r , 1931).
Perutz
(1939) t h o u g h t uranium complexed w i t h vanadium perhaps a s c a l c i o c a r n o t i t e (CaO, U03, V203, nH20) o r r a u v i t e the radioactivity.
Ca(U02) V12 OZ3 20H 0 ) was mainly r e s p o n s i b l e f o r 2 H a r r i s o n (1975) showed by a l p h a - t r a c k measurements t h a t t h e
main e n e r g i e s a r e due t o decay p r o d u c t s o f t h e uranium-238 s e r i e s : 238U, 218Po, *I8Rn, 214Bi,
226Ra,
214P0, 210Po and i d e n t i f i e d t h e u r a n y l s i l i c a t e c o f f i n i t e .
T h i s p r o b a b l y a c c o u n t s f o r some of t h e r a d i o a c t i v i t y of t h e c o n c r e t i o n s , o t h e r p o s s i b l e c o n t r i b u t i o n s coming from o t h e r m i n e r a l s s u c h a s v a n a d i a n mica. compounds i n c l u d i n g CH
Organic
and p o s s i b l y s e c o n d a r y amide, k e t o n e , a c i d o r e s t e r
2 c a r b o n y l were i d e n t i f i e d i n t h e c o n c r e t i o n s u s i n g i n f r a - r e d s p e c t r o s c o p y , a l t h o u g h
o n l y i n v e r y s m a l l amounts.
71
I 1 2 3 4 5 R,(cm)
Fig.6.28. R a d i i of c o n c r e t i o n s (Rn) v e r s u s r a d i i of t h e i r r e s p e c t i v e h a l o e s (Rh) i n r e d u c t i o n s p o t s from t h e Permian of South Devon ( a f t e r H a r r i s o n , 1975).
372 A d e p o s i t i o n a l c o n t r o l i s e v i d e n t b e c a u s e of t h e c l o s e a s s o c i a t i o n o f t h e
r e d u c t i o n s p o t s w i t h porous s a n d s t o n e h o r i z o n s and s a n d s t o n e dykes.
Percolating
f l u i d s , p r o b a b l y i n a r e d u c i n g c o n d i t i o n were r e s t r i c t e d i n low p e r m e a b i l i t y s i l t s t o n e s where s h a r p r e d / d r a b c o n t a c t s a r e s e e n ; i n more porous u n i t s t h e i r r e d u c i n g e f f e c t s a r e more w i d e l y s e e n .
These r e d u c i n g groundwaters were p r o b a b l y
i n operation s h o r t l y a f t e r deposition.
S t r o n g l y r e d u c i n g f o c i were p r o b a b l y
produced i n a r e a s o f r e l a t i v e l y h i g h o r g a n i c m a t t e r c o n c e n t r a t i o n and h e r e Fe3+ was reduced t o t h e more s o l u b l e Fez+ and removed i n s o l u t i o n , p o s s i b l y i n p a r t i n o r g a n i c complexes.
A t t h e same t i m e o r g a n i c c a t a l y s t s may have f a c i l i t a t e d t h e p r e c i p i t a t i o n
of m e t a l s u l p h a t e s , a r s e n a t e s and c a r b o n a t e s a s s u l p h i d e s , a r s e n i d e s a n d n a t i v e metals i n concretions.
A l s o t h e r e d u c t i o n of V5+
t o t h e less s o l u b l e V4+ o r V3+
(Hartmann, 1963) would f a c i l i t a t e i t s p r e c i p i t a t i o n w i t h i n t h e c o n c r e t i o n a r y zone. C o n c e n t r i c z o n a t i o n i n c o n c r e t i o n s s u g g e s t s t h a t some d i f f u s i o n mechanism, outward from t h e n u c l e u s , was r e s p o n s i b l e f o r t h e r e d u c t i o n s p o t s and t h a t t h e r e was a n outward i n c r e a s e i n Eh and pH.
A t same p o i n t t h i s r e a c t i o n became n e u t r a l i z e d by
t h e h o s t sediment t h u s marking t h e r e d / d r a b r e d u c t i o n s p o t i n t e r f a c e . S t u d i e s o f t h e r e d u c t i o n s p o t s u s i n g Mbssbauer s p e c t r o s c o p y (Durrance e t a l . ,
1 9 7 8 ) and chemical a n a l y s e s shows t h a t t h e h o s t r e d mudstones c o n t a i n a n a v e r a g e t o t a l i r o n c o n t e n t o f 5.5%, w i t h a n Fe2+/Fe3+ r a t i o o f 0.16 w h i l s t t h e r e d u c t i o n s p o t s have a n a v e r a g e t o t a l i r o n c o n t e n t o f 2.7% w i t h a n Fe
2+
/Fe3+ r a t i o o f 1.2.
Haematite i s p r e s e n t a s g r a i n c o a t i n g s and a l s o w i t h i n s i l i c a t e ( c l a y ) l a t t i c e s i n t h e r e d mudstone b u t i s a b s e n t from t h e r e d u c t i o n s p o t s .
Here i r o n i s p r e s e n t o n l y
w i t h i n c l a y m i n e r a l l a t t i c e s ; t h e d i f f e r e n c e , however, i s n o t simply due t o t h e f a c t t h a t t h e r e d mudstone c o n t a i n s h a e m a t i t e b u t i s a l s o b e c a u s e a b o u t 50% o f t h e i r o n i n c l a y m i n e r a l l a t t i c e s i n t h e r e d u c t i o n s p o t s i s o x i d i z e d t o Fe3+ i n t h e r e d mudstone.
T h i s change i n o x i d a t i o n s t a t e does n o t c o r r e s p o n d w i t h t h e r e d / d r a b
boundary b u t b e g i n s w i t h i n t h e r e d u c t i o n s p o t .
Quite c l e a r l y , the implication i s
t h a t t h e r e d u c t i o n s p o t s a r e a r e a s i n which r e d d e n i n g has n e v e r t a k e n p l a c e .
i s c o n s i s t e n t w i t h t h e p r e s e n c e of o r g a n i c m a t t e r i n t h e r e d u c t i o n s p o t s .
This
This
would c r e a t e r e d u c i n g c o n d i t i o n s d u r i n g b u r i a l and f a c i l i t a t e t h e r e d u c t i o n and removal of r e a d i l y a v a i l a b l e i r o n i n s o l u t i o n . However t h e l a r g e d i f f e r e n c e i n t o t a l i r o n c o n t e n t between t h e r e d u c t i o n s p o t s and h o s t s e d i m e n t s s u g g e s t s t h a t s u b s t a n t i a l amounts o f i r o n have been removed from t h e reduced a r e a .
S i n c e i t seems l i k e l y t h a t t h e r e d u c t i o n s p o t s have n e v e r been
p o s t - d e p o s i t i o n a l l y reddened i t f o l l o w s t h a t a s u b s t a n t i a l p r o p o r t i o n o f t h e i r o n o x i d e i n t h e s e mudstones must have been of d e t r i t a l o r i g i n , p r o b a b l y i n t h e form of g o e t h i t e and amorphous Fe(0H)
3' Haematite f o r m a t i o n may have been i n h i b i t e d i n t h e p r e s e n c e of o r g a n i c m a t t e r ,
a s s u g g e s t e d by Schwertmann (1965) and t h e subsequent r e d u c t i o n o f Fe3+ would b e made t h a t much e a s i e r s i n c e g o e t h i t e i s t h e more s o l u b l e m i n e r a l .
The e v i d e n c e
i n d i c a t e s , t h e r e f o r e , t h a t t h e s e r e d u c t i o n s p o t s were formed a t a r e l a t i v e l y e a r l y s t a g e of d i a g e n e s i s and must a t l e a s t have been i n i t i a t e d p r i o r t o reddening.
A
s i m i l a r o r i g i n f o r o t h e r r e d u c t i o n s p o t s seems l i k e l y , e s p e c i a l l y where t h e y a r e d i r e c t l y associated with nuclei of organic matter. L a r g e r s c a l e r e d u c t i o n zones p r o b a b l y have a s i m i l a r o r i g i n .
They f r e q u e n t l y
show a c l o s e a s s o c i a t i o n w i t h permeable/impermeable b o u n d a r i e s e . g . b l e a c h e d zones a l o n g t h e upper o r lower margins o f permeable s a n d s t o n e s which a r e bounded by impermeable s i l t s t o n e s o r c l a y s t o n e s ( e . g . P i c a r d , 1965; F r i e n d , 1966).
Laterally
d i s c o n t i n u o u s r e d u c t i o n zones o f t h i s t y p e have been s t u d i e d i n t h e S t . Bees Sandstone, a Lower T r i a s s i c f l u v i a t i l e r e d bed sequence which c r o p s o u t i n Cumbria,
U.K.
Here t h e zones are up t o Im wide and u s u a l l y show s h a r p c o n t a c t s w i t h t h e
s u r r o u n d i n g r e d sediment.
Sometimes t h e c o n t a c t s are r a t h e r d i f f u s e due t o secondary
r e m o b i l i z a t i o n of pigmentary o x i d e s .
F i g . 6 . 2 4 shows t h e t y p i c a l o c c u r r e n c e of t h e
d r a b zones a t t h e b o u n d a r i e s of t a b u l a r u n i t s of cross-bedded s a n d s t o n e where t h i n impermeable r e d s i l t s t o n e s and s h a l e s o c c u r . a n a l y s e s o f red-drab p a i r s of s a n d s t o n e .
Table 6 . 4 shows t h e r e s u l t s of i r o n
The d r a b s a n d s t o n e s c o n s i s t e n t l y show
d e p l e t i o n of Fe3+ c o n t e n t and i n t h e m a j o r i t y o f c a s e s a n e n r i c h m e n t o f Fe
2+
.
Heavy m i n e r a l a n a l y s e s i n d i c a t e t h a t t h e d r a b zones a r e d e p l e t e d n o t o n l y i n pigmentary h a e m a t i t e , b u t a l s o i n b l a c k , c o a r s e p a r t i c l e s of h a e m a t i t e and i n s i t u r e d u c t i o n and d i s s o l u t i o n h a s c l e a r l y been a n i m p o r t a n t p r o c e s s .
There a r e no
i n d i c a t i o n s o f o r g a n i c m a t t e r c o n c e n t r a t i o n i n t h e d r a b zones n o r any e v i d e n c e of sulphide o r other mineralization.
The e n r i c h m e n t o f Fe2+ may have been brought
a b o u t b e c a u s e reduced i r o n was n o t removed i n s o l u t i o n b u t became t r a p p e d i n l o c a l p o r e w a t e r s t o become a d s o r b e d on e x i s t i n g c l a y m i n e r a l s o r i n c o r p o r a t e d i n t o authigenic c l a y minerals.
The morphology o f t h e r e d u c t i o n zones i s c o n s i s t e n t w i t h
t h e i d e a t h a t s t a g n a n t , r e d u c i n g ground w a t e r s were c o n c e n t r a t e d a t permeable/ impermeable b o u n d a r i e s . Some reduced zones i n t h e Permo-Trias o f England a r e s p a t i a l l y r e l a t e d t o s t r a t a b o u n d copper m i n e r a l i z a t i o n and i t i s c l e a r t h a t reduced ground w a t e r s w i t h m i n e r a l i z i n g c a p a b i l i t y were o p e r a t i v e i n whole s t r a t i g r a p h i c a l u n i t s and n o t j u s t a t concretionary concentrations.
Perhaps t h e best-known examples o f t h i s i n B r i t a i n
a r e t h e r e d u c t i o n and m i n e r a l i z a t i o n which o c c u r s w i t h i n t h e B u n t e r and b a s a l Keuper s a n d s t o n e s .
I n t h e b a s a l Keuper s a n d s t o n e s a t A l d e r l e y Edge (Dewey and
Eastwood, 1925; Warrington, 1965) f a u l t e d s a n d s t o n e s and c o n g l o m e r a t i c s a n d s t o n e s which are m i n e r a l i z e d a r e markedly g r e y , y e l l o w o r w h i t e i n c o l o u r when compared 'with t h e n o n - m i n e r a l i z e d normal reddish-brown s a n d s t o n e s .
There i s a d i s t i n c t
r e l a t i o n s h i p between t h e b l e a c h e d and m i n e r a l i z e d s a n d s t o n e s and t h e p o r o s i t y / permeability r e l a t i o n s h i p s of t h e sediments.
The m i n e r a l i z e d s a n d s t o n e s c o n t a i n
t h e g r e a t e s t c o n c e n t r a t i o n s o f m a l a c h i t e , a z u r i t e , b a r y t e , g a l e n a , pyromorphite and a n g l e s i t e a t permeable/impermeable i n t e r f a c e s .
The p r e s e n c e o f s u l p h i d e s
374 a l o n g j o i n t s and p a r a l l e l t o bedding p l a n e s i s a c l e a r i n d i c a t i o n of t h e a c t i v i t y of r e d u c i n g ground w a t e r i n permeable h o r i z o n s .
A mechanism o f m i n e r a l i z a t i o n
s i m i l a r t o t h a t a t Budleigh S a l t e r t o n i s e n v i s a g e d a l t h o u g h t h e o c c u r r e n c e of o r g a n i c m a t t e r has n o t been documented a t A l d e r l e y Edge. The a s s o c i a t i o n of m i n e r a l i z e d a n d s e c o n d a r i l y reduced r e d beds i s a w i d e s p r e a d phenomenon and c e r t a i n l y n o t c o i n c i d e n t a l .
In p a r t i c u l a r t h e o c c u r r e n c e o f copper
i s a c h a r a c t e r i s t i c f e a t u r e o f r e d beds ( E r n s t , 1970) and a summary o f t h e
d i s t r i b u t i o n of red-bed c o p p e r d e p o s i t s i s g i v e n by Lindgren (1933, p. 403-409) and B a s t i n (1933).
Examples o c c u r i n Oklahoma, New Mexico, Utah ( B a s t i n , 1933)
Pennsylvania ( B u t l e r , 1938; McCauley, 1961), Nova S c o t i a ( P a p e n f u s , 1931) i n B o l i v i a a t Corocoro (Ljunggren and Meyer, 1964) i n R u s s i a (Bakun e t a l . 1964; Narkelyan e t al.,
1969, 1971; F e o k t i s o v and Kochin, 1972).
Rose (1976) h a s d i s c u s s e d t h e
o r i g i n of r e d bed copper d e p o s i t s and concluded t h a t t h e y a r e r e l a t e d t o e v a p o r i t e s which p r o v i d e d a s o u r c e of b r i n e s .
Copper i s r e l a t i v e l y i n s o l u b l e i n normal f r e s h
-
w a t e r s b u t i t may form s o l u b l e cuprous c h l o r i d e complexes (CuC12- and CuC12-) i n c h l o r i d e b r i n e s of i n t e r m e d i a t e o x i d a t i o n s t a t e a t low t e m p e r a t u r e s .
3
Because of
t h e s o l u b i l i t y , c h l o r i d e r i c h b r i n e s c o u l d flow f r e e l y through permeable r e d beds and l e a c h i n g of t h e h o s t rock c o u l d p r o v i d e a n a d e q u a t e s o u r c e of copper; Rose and Suhr (1971) and Rose (1976) have shown t h a t t h e d e t r i t a l i r o n o x i d e component i n Recent s t r e a m s e d i m e n t s may c o n t a i n 100-1000 ppm copper.
P r e c i p i t a t i o n of copper
under t h e s e c o n d i t i o n s would o c c u r when t h e ground w a t e r e n c o u n t e r e d a r e d u c i n g zone e i t h e r by s u l p h a t e r e d u c t i o n o r r e p l a c e m e n t o f p y r i t e .
The a s s o c i a t i o n w i t h
e v a p o r i t e s and ground w a t e r of s u i t a b l e c o m p o s i t i o n t h u s make r e d b e d s i d e a l h o s t s f o r m i n e r a l i z a t i o n of t h i s (Moench and S c h l e e , 1967; Moghul, 1974; Morton, 1974).
In a number of i n s t a n c e s s e c o n d a r y r e d u c t i o n o f r e d s e d i m e n t s has o c c u r r e d o v e r a s u f f i c i e n t l y wide a r e a and w i t h i n s u c h w e l l - d e f i n e d l i t h o l o g i c a l b o u n d a r i e s t h a t t h e r e d u c t i o n zone has been a t t r i b u t e d some s t r a t i g r a p h i c a l s i g n i f i c a n c e . Thompson (1970) made a d e t a i l e d s t u d y o f s u c h a c o l o u r boundary between t h e Upper O r d o v i c i a n J u n i a t a a n d Bald E a g l e Formations i n c e n t r a l P e n n s y l v a n i a U . S . A . t h e J u n i a t a Formation i s p r i m a r i l y r e d i n c o l o u r (5R 3/2 t o 10R 6/2) and o v e r l i e s t h e d r a b , grey-green
(5Y 5/2 t o 10 Y/2) Bald E a g l e Formation.
The d i s t i n c t i o n
between t h e s e two f o r m a t i o n s i s b a s e d s o l e l y on c o l o u r d i f f e r e n c e d e s p i t e t h e f a c t t h a t t h e c o l o u r boundary t r a n s g r e s s e s m a j o r l i t h o f a c i e s b o u n d a r i e s and v a r i e s more than 700 f e e t i n i t s v e r t i c a l p o s i t i o n (Fig.6.29).
Thompson has p r e s e n t e d a
v a r i e t y o f e v i d e n c e which i n d i c a t e s t h a t t h e d r a b c o l o u r of t h e Bald E a g l e Formation
i s a secondary f e a t u r e produced by aqueous r e d u c t i o n and d i s s o l u t i o n o f p r e v i o u s l y a l l - r e d sediment by c i r c u l a t i n g ground w a t e r s .
P e r t i n e n t l i n e s of e v i d e n c e i n c l u d e :
1. T e x t u r a l r e l a t i o n s h i p s s u g g e s t t h a t t h e d r a b c o l o u r a t i o n i s l a t e r t h a n t h e r e d colouration.
The main r e d pigments a r e p a r t i c u l a t e B r a i n c o a t i n g s o f h a e m a t i t e
which o c c u r c o n s i s t e n t l y a t g r a i n - t o - g r a i n
contacts suggesting the occurrence of
375 a predepositional haematite precursor.
The d r a b pigment c o n s i s t s o f t h e c l a y
m i n e r a l s i l l i t e and c h l o r i t e which a l s o o c c u r a s g r a i n c o a t i n g s and m a t r i x . Some c h l o r i t e o c c u r s between f i r s t and second s t a g e cements c l e a r l y i n d i c a t i n g a diagenetic origin. The opaque o x i d e s of r e d and d r a b s a n d s t o n e s a r e s i m i l a r i n c o m p o s i t i o n c o n s i s t i n g m a i n l y of h a e m a t i t e and h a e m a t i t e - i l m e n i t e i n t e r g r o w t h s b u t t h e t o t a l c o n t e n t of opaque o x i d e s i s much less i n t h e d r a b beds.
The d r a b beds
a l s o c o n t a i n s m a l l amounts of d i a g e n e t i c p y r i t e . I r o n a n a l y s e s show t h a t t h e d r a b beds a r e d e p l e t e d i n t o t a l i r o n and f e r r i c iron.
Average c o m p o s i t i o n s a r e i n d i c a t e d i n T a b l e 6.4.
The composition o f c h l o r i t e i n r e d and d r a b beds i s d i f f e r e n t .
Using t h e
methods of Brown (1955) and Schoen (1962) Thompson compared t h e o c t a h e d r a l c a t i o n composition o f c h l o r i t e s i n r e d and d r a b s a n d s t o n e s i n t h e p r o x i m i t y o f t h e c o l o u r boundary.
I n d r a b - r e d p a i r s s p a n n i n g t h e c o l o u r boundary c h l o r i t e s
from t h e d r a b s a n d s t o n e s a r e cormnonly r i c h e r i n o c t a h e d r a l i r o n than t h e r e d sandstone c h l o r i t e s .
Also t h e d r a b s a n d s t o n e s have a lower i l l i t e / c h l o r i t e
r a t i o than a s s o c i a t e d r e d sands t o n e s .
SPRING RUN
Fig.6.29. L i t h o f a c i e s c o r r e l a t i o n of Upper O r d o v i c i a n u n i t s a c r o s s c e n t r a l P e n n s y l v a n i a u s i n g t h e boundary between t h e R e e d s v i l l e - B a l d E a g l e Formations (Lithof a c i e s B-C) c o n t a c t . The c o l o u r boundary between t h e J u n i a t a and Bald E a g l e Formations i s shown a s a dashed l i n e ( a f t e r Thompson, 1970).
376 Using t h i s e v i d e n c e Thompson was a b l e t o conclude t h a t t h e Bald E a g l e - J u n i a t a sequence was i n i t i a l l y a l l r e d , due t o t h e i n i t i a l d e p o s i t i o n o f h a e m a t i t e o r a h a e m a t i t e p r e c u r s o r and t h e s u b s e q u e n t f o r m a t i o n of d i a g e n e t i c h a e m a t i t e .
The
Bald Eagle Formation was s u b s e q u e n t l y c o n v e r t e d t o a d r a b c o l o u r by t h e a c t i o n of groundwaters w i t h low Eh and low pH.
Under t h e s e c o n d i t i o n s h a e m a t i t e pigment and
c o a r s e opaque o x i d e s were reduced and removed i n s o l u t i o n .
Some of t h e a v a i l a b l e
f e r r o u s i r o n was i n c o r p o r a t e d i n t h e d i a g e n e t i c c h l o r i t e and p y r i t e p h a s e s . The danger o f a s c r i b i n g s t r a t i g r a p h i c a . s i g n i f i c a n c e t o c o l o u r b o u n d a r i e s i s clearly evident i n these results.
The Bald E a g l e Formation h a s n e i t h e r chrono
o r li t h o s t r a t i g r a p h i c a l s i g n i f i c a n c e . IRON CONTENT OF ANCIENT RED BEDS
T o t a l i r o n a n a l y s e s have been used by numerous a u t h o r s t o a i d t h e i n t e r p r e t a t i o n of a n c i e n t r e d bed f o r m a t i o n s .
Useful summaries a r e p r o v i d e d by Van Houten (1961,
1 9 7 3 ) , James ( 1 9 6 6 ) , and Walker and Honea (1969).
The t o t a l i r o n c o n t e n t of r e d
s a n d s t o n e s and mudstones shows c o n s i d e r a b l e v a r i a t i o n and q u o t e d a v e r a g e s ( T a b l e 6.5) range from 1.E (Walker, 1967) t o 3.5% (Van Houten, 1961).
TABLE 6.5.
Weight p e r c e n t i r o n i n modern a l l u v i u m and a n c i e n t r e d beds ( a d o p t e d from Van Houten, 1973). 1 T a b l e 3 i n Walker (1967a)., 2 T a b l e s 4 , 5 i n Van Houten (1961). Hot D e s e r t
T r o p i c a l Savanna
A n c i e n t Red Beds
mean
range
mean
range
2.6
0.7-4.7
5.25
3.1-7.6
1.7 3.5 0.67
Bulk Sample Total Iron Free ( e x t r a c t a b l e )
0.38
0.1-2.3
0.75
0.3-1.5
Clay F r a c t i o n Total Iron Free (extractable)
4.5 0.8
2.5-7.5 0.1-4.1
6.6 1.5
3.0-9.0 0.7-3.2
mean
range 1 0.2-5.1 2 0.7-7.0 1 0.1-2.1
I n d i v i d u a l samples may show even more extreme v a r i a t i o n and r e p o r t e d v a l u e s o f 10% o r even 12% t o t a l i r o n are n o t u n u s u a l .
The a v e r a g e t o t a l i r o n c o n t e n t of a l l
s a n d s t o n e s i s a b o u t 2.65%, P e t t i j o h n (1963) g i v i n g a f i g u r e of 2.35% and Middleton (1960) a n a v e r a g e of 2.9%.
The e v i d e n c e i n d i c a t e s l i t t l e d i f f e r e n c e i n t h e t o t a l
i r o n c o n t e n t of r e d beds and s a n d s t o n e s a s a whole.
The c l e a r i m p l i c a t i o n h e r e i s
t h a t t h e r e i s no e v i d e n c e of any o v e r a l l p r o c e s s o f i r o n - e n r i c h m e n t o p e r a t i n g i n red sediments.
This might b e e x p e c t e d i f r e d b e d s were d e r i v e d from l a t e r i t i c
s o u r c e a r e a s , a s s u g g e s t e d by Krynine (1949). One of t h e most remarkable f e a t u r e s of i r o n a n a l y s e s i n r e d b e d s , i s t h e a l m o s t u n i v e r s a l dependence o f i r o n c o n t e n t on g r a i n s i z e w i t h i n c r e a s i n g Fe2+ and Fe3+ i,n t h e f i n e r g r a i n s i z e s , (Van Houten, 1961, 1973; P i c a r d , 1965; Walker and Honea, 1969;
377
A . ..
6 VERY FINE - 5 R A I N E O
S.STMIE
A WELL-SORTED SILTSTONE 0 SILTY CLAYSTONE 4.00
3.00
2.00
I
4.0
1.20 1.60 PER CENT F.0
8.0
2.00
2.40
1.00
I
I
I
I
2.00 3.00 4.00 1.00 PER CENT TOTAL I R O N (F.1
B X
Total Iron FeO
h
Fe2*
3-
8
2-
1 1
A
I I
I
318
T u r n e r , 1974aj.
This r e l a t i o n s h i p i s i n d i c a t e d i n Fig.6.30 which shows t h e
i r o n c o n t e n t s of v a r i o u s r e d beds as a f u n c t i o n of g r a i n s i z e . This r e l a t i o n s h i p h o l d s n o t o n l y f o r t h e t o t a l i r o n c o n t e n t b u t a l s o f o r t h e amount o f f r e e ( e x t r a c t a b l e ) i r o n i n r e d s e d i m e n t s .
Walker and Honea (1969) i n
t h e i r s t u d y of a n c i e n t r e d beds and s o i l s from t h e Sonoran D e s e r t removed t h e r e d pigment ( e x t r a c t a b l e i r o n ) w i t h r e d u c i n g a g e n t s .
The a g e n t s u s e d were sodium
d i t h i o n a t e and sodium c i t r a t e (Mehra and J a c k s o n , 1960) o r where t h i s d i d n o t remove a l l t h e pigment, c o n c e n t r a t e d o x a l i c a c i d was used a l t h o u g h t h i s d i d n o t cause any n o t i c e a b l e a l t e r a t i o n o f i r o n - b e a r i n g d e t r i t a l g r a i n s such a s m a g n e t i t e , ilmenite o r iron silicates.
Walker and Honea (1969) made some i m p o r t a n t
o b s e r v a t i o n s u s i n g t h i s method.
They showed t h a t t h e amount of i r o n p r e s e n t i n
pigmentary m a t e r i a l i n a n c i e n t r e d b e d s v a r i e d from 0.1 t o 2.1% w i t h an a v e r a g e of 0.7%.
I n p a r t i c u l a r t h e y p o i n t e d o u t t h a t some b r i g h t r e d samples (10R 4 / 6
and 7.5R 4 / 6 ) c o n t a i n e d o n l y 0.1% e x t r a c t a b l e i r o n t h u s c l e a r l y r e v e a l i n g t h e e x c e e d i n g l y s m a l l amount o f pigmentary m a t e r i a l needed t o i m p a r t b r i g h t c o l o u r t o a r e d bed.
Walker and Honea (1969) a l s o demonstrated t h a t Recent s e d i m e n t s i n t h e
Sonoran d e s e r t a l s o showed t h e c h a r a c t e r i s t i c enrichment of i r o n i n t h e f i n e r g r a i n e d sediments.
They concluded t h a t t h i s f e a t u r e c o u l d n o t b e t a k e n t o i n d i c a t e a
provenance i n d e e p l y w e a t h e r e d s o u r c e a r e a s b e c a u s e t h e s e were n o t p r e s e n t i n t h e s o u r c e a r e a of t h e Sonoran a l l u v i u m . F e r r i c / f e r r o u s i r o n r a t i o s have been used a s a n i n d e x of t h e d e g r e e o f o x i d a t i o n of r e d beds by a l a r g e number of a u t h o r s ( e . g . P i c a r d , 1965; F r i e n d , 1966; T u r n e r , 1974a; SlLnskL, 1976).
I n g e n e r a l r e d b e d s show e x c e s s f e r r i c i r o n and Fe203/Fe0
r a t i o s g r e a t e r t h a n two are common. e x c e s s f e r r o u s i r o n (e.g.
In a number of c a s e s , however, t h e y do show
T u r n e r , 1974a, Table IV) which may b e r e l a t e d t o t h e
p r o p o r t i o n o f u n o x i d i z e d f e r r o m a g n e s i a n s i l i c a t e s , and a l s o f e r r o u s i r o n i n t h e l a t t i c e s of c l a y m i n e r a l s s u c h a s i l l i t e and c h l o r i t e .
V a r i a t i o n s i n provenance
and d i a g e n e t i c environment must have a n i m p o r t a n t e f f e c t on t h e Fe 0 /FeO r a t i o s 2 3 of r e d beds. F e r r o u s i r o n i n r e d beds however does show t h e same g e n e r a l tendency a s f e r r i c i r o n t o be enriched i n t h e f i n e r g r a i n f r a c t i o n s (Fig.6.30).
The r e a s o n f o r t h i s
g r a i n s i z e dependence i n f e r r o u s and f e r r i c i o n i s c l e a r l y t h e i r c l o s e a s s o c i a t i o n w i t h t h e c l a y f r a c t i o n s of t h e s e d i m e n t s .
The e x t r a c t a b l e i r o n i s p r o b a b l y
c o n t a i n e d w i t h i n d i s c r e t e , e x t r e m e l y f i n e - p a r t i c l e pigmentary h a e m a t i t e ; some o f i t may a l s o b e f i n e l y c r y s t a l l i n e g o e t h i t e a l t h o u g h i n a n c i e n t r e d beds X-ray
d i f f r a c t i o n s u g g e s t s t h a t h a e m a t i t e i s p r o b a b l y f a r more abundant ( F o l k , 1960; Van Houten, 1964, p.652).
Some o f t h i s f r e e i r o n might a l s o b e adsorbed on c l a y m i n e r a l s
as amorphous m a t e r i a l which would n o t r e a d i l y b e d e t e c t e d by X-ray d i f f r a c t i o n . t h e c o n c e n t r a t i o n of i r o n i n f i n e g r a i n e d s e d i m e n t s c a n b e r e a d i l y e x p l a i n e d b y
Thus
normal p r o c e s s e s o f s o r t i n g and s e d i m e n t a t i o n i n a low-energy regime.
A similar
phenomenon i s o b s e r v e d i n , f o r example, d r a b marine s e d i m e n t s d e p o s i t e d under reducing conditions
-
here the i r o n i s f i n a l l y located a s authigenic pyrite.
Obviously no i m p l i c a t i o n s r e g a r d i n g t h e o r i g i n s o f r e d beds can be drawn from these results
-
t h e y g i v e no i n d i c a t i o n s of p r e - o r p o s t - d e p o s i t i o n a l r e d d e n i n g .
CONCLUSIONS AND FURTHER READING C o n t i n e n t a l r e d beds c o n t a i n i r o n o x i d e m i n e r a l s i n two i m p o r t a n t t e x t u r a l forms, f i n e p a r t i c l e pigment and c o a r s e - p a r t i c l e , opaque g r a i n s .
Pigment, a l t h o u g h
of d i v e r s e o r i g i n , i s a s u b t l e i n d i c a t o r o f geochemical c o n d i t i o n s d u r i n g d e p o s i t i o n and e a r l y d i a g e n e s i s and i t s p r e s e r v a t i o n o r removal i s i n t i m a t e l y r e l a t e d t o Eh-pH c o n d i t i o n s and t h e s u l p h u r c y c l e i n b o t h marine and non-marine environments. Opaque o x i d e s i n c o n t i n e n t a l s e d i m e n t s a r e dominated by detrita1,titanomagnetite b u t i n a n c i e n t r e d beds h a e m a t i t e i s t h e dominant o x i d e , a r e s u l t of e x t e n s i v e i n s i t u , low-temperature o x i d a t i o n .
This f e a t u r e i s c o n s i s t e n t with t h e diagenetic
e v i d e n c e and h a s i m p l i c a t i o n s f o r t h e i n t e r p r e t a t i o n of palaeomagnetic d a t a from c o n t i n e n t a l red beds. Comprehensive c o v e r of t h e c h e m i s t r y of f o r m a t i o n and mineralogy of i r o n o x i d e s a r e g i v e n by t h e f o l l o w i n g : Berner, R.A.,
1 9 7 1 . P r i n c i p l e s of Chemical Sedimentology. McGraw-Hill, New York,
240 pp.
Rumble, D. I11 ( E d i t o r ) , 1976. Oxide M i n e r a l s . Min. SOC. America, S h o r t Course Notes
.
380
CHAPTER 7 THE MAGNETIZATION OF CONTINENTAL RED BEDS
INTRODUCTION Palaeomaenetism and Rock Magnetism I n r e c e n t y e a r s palaeomagnetism h a s become i n c r e a s i n g l y u s e d i n t h e s t u d y of sedimentary rocks.
T h i s i s p o s s i b l e b e c a u s e v i r t u a l l y a l l s e d i m e n t s and s e d i m e n t a r y
r o c k s c a r r y s m a l l amounts of m a g n e t i c i r o n o x i d e s which g i v e t h e r o c k s a permanent o r f o s s i l magnetism.
Whilst the strength (usually referred t o a s i n t e n s i t y ) of
t h i s f o s s i l magnetism i s v e r y weak when compared, f o r example, w i t h i g n e o u s r o c k s , t h e development of i n c r e a s i n g l y s o p h i s t i c a t e d measuring d e v i c e s means t h a t t h e f o s s i l magnetism of v i r t u a l l y a l l s e d i m e n t s can be a c c u r a t e l y measured.
The s t u d y
of f o s s i l magnetism i s r e f e r r e d t o a s palaeomagnetism. Although most rock-forming m i n e r a l s a r e non-magnetic t h o s e c o n t a i n i n g i r o n ( o r i n some c a s e s , o t h e r t r a n s i t i o n m e t a l s ) e x h i b i t some m a g n e t i c p r o p e r t i e s when placed i n an applied magnetic f i e l d .
The s t u d y of t h e s e b u l k m a g n e t i c p r o p e r t i e s
together with s p e c i f i c i n v e s t i g a t i o n s of t h e t o t a l magnetic mineralogy a r e r e f e r r e d t o a s rock magnetism.
Rock m a g n e t i c i n v e s t i g a t i o n s a r e e s s e n t i a l t o any s u c c e s s f u l
palaeomagnetic study. The f o s s i l magnetism o f a r o c k i s termed t h e n a t u r a l remanent m a g n e t i z a t i o n (NRM).
Rocks may a c q u i r e NRM by a v a r i e t y o f r a t h e r complex p r o c e s s e s .
The
m a g n e t i z a t i o n a c q u i r e d by t h e c o o l i n g of a m a g n e t i c m i n e r a l through i t s C u r i e p o i n t i s r e f e r r e d t o thermoremanent m a g n e t i z a t i o n (TRM).
The f o r m a t i o n o f magnetic
o x i d e s by low-temperature chemical r e a c t i o n s i s chemical remanent m a g n e t i z a t i o n (CRM).
The a l i g n m e n t o f m a g n e t i c p a r t i c l e s d u r i n g d e p o s i t i o n o r by r o t a t i o n i n
u n c o n s o l i d a t e d sediment produces a d e t r i t a l remanent m a g n e t i z a t i o n (DRM).
One of
t h e b a s i c assumptions o f palaeomagnetism i s t h a t r o c k s a r e magnetized by one o r o t h e r o f t h e s e p r o c e s s e s a t t h e time o f t h e i r f o r m a t i o n and t h u s i n c o r p o r a t e t h e d i r e c t i o n of t h e ambient geomagnetic f i e l d .
T h i s NRM d i r e c t i o n p o s s e s s e s t h r e e
fundamental p r o p e r t i e s : a d e c l i n a t i o n ( D ) measured e a s t w a r d s from t r u e N o r t h , a n i n c l i n a t i o n ( I ) reckoned p o s i t i v e downwards and n e g a t i v e upwards and a n i n t e n s i t y (Int.).
The d i r e c t i o n s a r e r e p r e s e n t e d by v e c t o r s a t t h e c e n t r e of a s p h e r e and
p l o t t e d g r a p h i c a l l y a s p o i n t s where t h e v e c t o r c u t s t h e s p h e r e ,
E i t h e r an equal
a r e a (Schmidt) p r o j e c t i o n o r e q u a l a n g l e (Wulf) p r o j e c t i o n can b e used.
It is
u s u a l t o d i s t i n g u i s h between upward ( n e g a t i v e l y ) d i p p i n g v e c t o r s and downward ( p o s i t i v e l y ) d i p p i n g v e c t o r s by u s i n g open and c l o s e d symbols r e s p e c t i v e l y (Fig.7.1).
A l t e r n a t i v e l y v e c t o r o r Z i j d e r v e l d diagrams c a n b e used t o p l o t t h e
381 r e s u l t s (HalLs, 1 9 7 9 ) .
Fig.7.1. P l o t t i n g o f p a l a e o m a g n e t i c d i r e c t i o n on a s t e r e o g r a p h i c p r o j e c t i o n , The c i r c u m f e r e n c e = h o r i z o n t a l ; open symbols = upward ( n e g a t i v e ) d i p s ; c l o s e d symbols = downward ( p o s i t i v e ) d i p s . The o t h e r fundamental assumption of palaeomagnetism i s t h a t t h e E a r t h ' s magnetic f i e l d , when a v e r a g e d o v e r p e r i o d s of s e v e r a l thousand y e a r s o r s o , conforms t o t h a t
of an a x i a l geocentric dipole i . e . a geocentric dipole d i r e c t e d along t h e r o t a t i o n a l a x i s of t h e E a r t h ( F i g . 7 . 2 . ) .
An i m p o r t a n t consequence of t h i s model i s t h a t :
tan I = 2 tan Lat
(7.1)
where I i s t h e i n c l i n a t i o n of t h e f i e l d and L a t . t h e g e o g r a p h i c l a t i t u d e a t t h a t p o i n t and t h i s means t h a t t h e p a l a e o l a t i t u d e o f a g i v e n s i t e can e a s i l y be c a l c u l a t e d from t h e mean i n c l i n a t i o n o f i t s NRM.
Fig.7.2.
The m a g n e t i c f i e l d of an a x i a l g e o c e n t r i c d i p o l e .
382 I n f a c t , the E a r t h ' s magnetic f i e l d i s n o t t h a t of a simple a x i a l geocentric d i p o l e ; a b o u t 80% of t h e f i e l d a t t h e E a r t h ' s s u r f a c e can b e r e p r e s e n t e d by a d i p o l e f i t t e d a t l l k O w i t h r e s p e c t t o t h e r o t a t i o n a x i s , and t h e remaining 20% i s then r e p r e s e n t e d by n o n d i p o l e terms i n a s p h e r i c a l harmonic expansion.
The
geomagnetic f i e l d a c t u a l l y undergoes s i g n i f i c a n t long-term v a r i a t i o n s ( g r e a t e r than a y e a r ) , g e n e r a l l y r e f e r r e d t o a s geomagnetic s e c u l a r v a r i a t i o n , and t h e time-averaged f i e l d can b e e x p e c t e d t o b e s i g n i f i c a n t l y d i f f e r e n t from t h e i n s t a n t aneous f i e l d .
Analyses o f Recent geomagnetic d a t a
(Cox, 1962, 1970) show
t h a t a l o n g l i n e s o f l a t i t u d e p r o g r e s s i v e l y n e a r e r t h e E q u a t o r , geomagnetic f i e l d d i r e c t i o n s become p r o g r e s s i v e l y more d i s p e r s e d .
Thus t h e magnitude of s e c u l a r
v a r i a t i o n should be g r e a t e r nearer t o t h e Equator.
S e c u l a r v a r i a t i o n h a s been
c o n v i n c i n g l y d e m o n s t r a t e d i n Cenozoic s e d i m e n t s , i n c l u d i n g l a k e s e d i m e n t s ( C r e e r e t a l . , 1972) and deep-sea s e d i m e n t s (Opdyke e t a l . , and Cox, 1965).
1 9 7 2 ) , and l a v a flows ( D o e l l
The p e r i o d i c i t y o f t h e s e v a r i a t i o n s v a r i e s somewhat; changes i n
d e c l i n a t i o n commonly v a r y between 2,000 and 3,000 y e a r s (Thompson, 1975; C r e e r e t a l . , 1976) and s i m i l a r changes a r e s e e n i n i n c l i n a t i o n b u t t h e s e may show a l a r g e r p e r i o d i c i t y (Opdyke e t a l . , 1972). Palaeomagnetic measurement o f a sample r e p r e s e n t i n g a s h o r t p e r i o d of t i m e ( w i t h i n one s e c u l a r v a r i a t i o n c y c l e ) i s used t o c a l c u l a t e a v i r t u a l geomagnetic pole (VGP),
t h e e q u i v a l e n t of t h e p r e s e n t geomagnetic p o l e s .
I n order to estimate
t h e geographic p o l e i t i s n e c e s s a r y t o use t h e average palaeomagnetic f i e l d 5 ( l o 4 10 y e a r s i s c o n s i d e r e d s u f f i c i e n t ) o r t h e a v e r a g e s of t h e c o r r e s p o n d i n g
-
VGP's. D e t a i l e d a n a l y s e s o f t h e time-averaged p a l a e o m a g n e t i c f i e l d show, i n f a c t , t h a t t h e geomagnetic f i e l d i s n o t t h a t o f a s i m p l e a x i a l g e o c e n t r i c d i p o l e .
McElhinny
and Merrill (1975) showed t h a t n e a r l y h a l f o f t h e p a l a e o m a g n e t i c p o l e s f o r t h e p e r i o d up t o 5 My ago were a s s i g n e d 95% c i r c l e s o f c o n f i d e n c e t h a t d i d n o t i n c l u d e the present geographic pole.
However, r e g i o n a l l y a v e r a g e d p a l a e o m a g n e t i c p o l e s
were always s t a t i s t i c a l l y i n d i s t i n g u i s h a b l e from t h e g e o g r a p h i c p o l e .
These
o b s e r v a t i o n s a r e c o n s i s t e n t w i t h t h e view t h a t t h e r e a r e l o n g p e r i o d s o f s e v e r a l m i l l i o n y e a r s a s s o c i a t e d w i t h t h e geomagnetic s e c u l a r v a r i a t i o n .
The a x i a l
g e o c e n t r i c d i p o l e h y p o t h e s i s i s o n l y s t r i c t l y v a l i d p r o v i d i n g t h e time t a k e n f o r averaging i s a s long a t these long periods, a d e q u a t e p e r i o d o f time.
I n most c a s e s 5 My i s p r o b a b l y a n
A d e t a i l e d review o f t h e time-averaged p a l a e o m a g n e t i c
f i e l d , and i t s o r i g i n s , i s g i v e n by M e r r i l l and McElhinny (1977). The u h v s i c a l b a s i s o f magnetism The magnetic d i p o l e moment of a n atom c o n s i s t s of a c o n t r i b u t i o n from t h e o r b i t a l magnetic moment due t o e l e c t r o n o r b i t around i t s n u c l e u s and a l s o t h e s p i n m a g n e t i c moment due t o e l e c t r o n s p i n a b o u t i t s own a x i s .
I n most m a t e r i a l s
383 t h e f o r m a t i o n of a molecule o c c u r s when atoms w i t h opposing e l e c t r o n s p i n s a r e b r o u g h t t o g e t h e r ; t h e s e a r e compensated and z e r o magnetic moment r e s u l t s .
Such
m a t e r i a l s a r e c h a r a c t e r i z e d by a s m a l l n e g a t i v e s u s c e p t i b i l i t y and t h e e f f e c t i s c a l l e d diamagnetism.
Many common rock-forming m i n e r a l s s u c h a s c a l c i t e and
quartz a r e diamagnetic. I n many o t h e r s u b s t a n c e s , p a r t i c u l a r l y t h e t r a n s i t i o n m e t a l s which have u n p a i r e d e l e c t r o n s , t h e atoms p o s s e s s r e s u l t a n t m a g n e t i c moments which become a l i g n e d i n t h e p r e s e n c e of a n a p p l i e d f i e l d .
An induced m a g n e t i z a t i o n r e s u l t s i n
t h e d i r e c t i o n of t h e a p p l i e d f i e l d g i v i n g a p o s i t i v e s u s c e p t i b i l i t y .
This e f f e c t
i s paramagnetism and many i r o n - b e a r i n g m i n e r a l s s u c h a s i r o n - s i l i c a t e s and i r o n carbonates a r e paramagnetic. Some s u b s t a n c e s , i n p a r t i c u l a r i r o n and c o b a l t , have a permanent magnetic d i p o l e e v e n i n t h e a b s e n c e o f a n a p p l i e d f i e l d and t h u s e x h i b i t spontaneous m a g n e t i z a t i o n . T h i s a r i s e s b e c a u s e t h e exchange f o r c e s between t h e u n p a i r e d e l e c t r o n s i n t h e s e s u b s t a n c e s a r e s u c h t h a t t h e i r s p i n s a r e a l i g n e d and r e i n f o r c e e a c h o t h e r even i n t h e a b s e n c e of a n a p p l i e d f i e l d .
T h i s e f f e c t i s r e f e r r e d t o a s ferromagnetism.
T r u l y f e r r o m a g n e t i c m a t e r i a l s a r e , however, q u i t e r a r e i n n a t u r e and t h e term i s o f t e n used i n palaeomagnetism t o d e n o t e any s u b s t a n c e w i t h a spontaneous magnetization.
The a l i g n m e n t p r o c e s s i n f e r r o m a g n e t i c m a t e r i a l s i s l o s t due t o
thermal a g i t a t i o n a t a c r i t i c a l temperature f o r each substance c a l l e d the Curie temperature o r Curie point. Some o t h e r s u b s t a n c e s a r e c h a r a c t e r i z e d by a s u b - d i v i s i o n i n t o two magnetic s u b l a t t i c e s which a r e a r r a n g e d i n a n a n t i p a r a l l e l manner and t h u s c a n c e l e a c h o t h e r o u t a n d no r e s u l t a n t moment o c c u r s .
This e f f e c t i s c a l l e d antiferromagnetism.
A n t i f e r r o m a g n e t i c m a t e r i a l s do n o t have a C u r i e p o i n t b u t t h e o r d e r i n g of t h e atomic moment is d e s t r o y e d a t t h e Ngel t e m p e r a t u r e o r Ndel p o i n t above which t h e y behave l i k e an ordinary paramagnetic. magnetic.
Many o f t h e f e r r i c oxyhydroxides a r e a n t i f e r r o -
I f t h e magnetic s u b l a t t i c e s a r e n o t b a l a n c e d t h e n a n e t spontaneous
m a g n e t i z a t i o n r e s u l t s known a s f e r r i m a g n e t i s m .
F e r r i m a g n e t i c m i n e r a l s such a s
m a g n e t i t e have a C u r i e p o i n t and a l l t h e same p r o p e r t i e s a s f e r r o m a g n e t i c m a t e r i a l s . The m a g n e t i z a t i o n o f a m a t e r i a l i s g e n e r a l l y made up o f two components, t h e remanent m a g n e t i z a t i o n (remanence) which i s t h a t remaining a f t e r t h e removal of a n a p p l i e d f i e l d , and t h e induced m a g n e t i z a t i o n which i s t h a t induced i n a n a p p l i e d f i e l d , b u t which d i s a p p e a r s a f t e r t h e removal o f t h e f i e l d .
The i n t e n s i t y of t h e s e
m a g n e t i z a t i o n s i s g i v e n by t h e m a g n e t i c moment p e r u n i t volume.
-5 o f remanence range from a b o u t 10 to Gauss cm3 f o r i g n e o u s r o c k s .
lo-*
Typical i n t e n s i t i e s
Gauss cm3 f o r s e d i m e n t s , and
to
of t h e v e c t o r sum o f t h e remanence J
and t h e m a g n e t i z a t i o n i n d u c e d i n t h e E a r t h ' s
m a g n e t i c f i e l d J . where: J = Ji
+ Jn
lom5
The t o t a l m a g n e t i z a t i o n o f a rock i s a c t u a l l y made up
(7.2)
384 The induced m a g n e t i z a t i o n J
i
i s proportional t o the applied f i e l d H, t h a t i s
Ji = I H
where
xis a
(7.3) constant of p r o p o r t i o n a l i t y c a l l e d t h e magnetic s u s c e p t i b i l i t y .
The
Koenigsberger r a t i o (Q) i s d e f i n e d a s t h e r a t i o o f t h e remanent t o i n d u c e d magnetization:
Q,
H
(7.4)
Qt = Jt/ H
(7.5)
= Jn/
or where Qn i s t h e r a t i o of t h e i n t e n s i t y of NRM ( J n ) t o t h a t i n d u c e d i n t h e E a r t h ' s f i e l d a t t h e sampling s i t e and Q t i s t h e r a t i o of thermoremanence (J ) a c q u i r e d i n t
t h e f i e l d H t o t h e m a g n e t i z a t i o n i n d u c e d by t h e same f i e l d a t room t e m p e r a t u r e . Hysteresis The m a g n e t i c p r o p e r t i e s of f e r r o m a g n e t i c m a t e r i a l s can b e c o n v e n i e n t l y d e s c r i b e d by r e f e r e n c e t o t h e i n i t i a l m a g n e t i z a t i o n c u r v e and h y s t e r e s i s loops ( F i g . 7 . 3 ) .
When
a specimen of f e r r o m a g n e t i c m a t e r i a l i n a demagnetized s t a t e , i s p l a c e d i n a n a p p l i e d f i e l d H , i t f i r s t shows a l i n e a r i n c r e a s e i n m a g n e t i z a t i o n J a s H i s i n c r e a s e d ( a ) . I f H i s reduced t o z e r o a t t h i s p o i n t J f a l l s t o z e r o and t h e i n i t i a l s u s c e p t i b i l i t y of t h e specimen i s g i v e n by t h e s l o p e a t a .
I f H i s i n c r e a s e d t o b and t h e n reduced
t o z e r o J does n o t f a l l t o z e r o b u t p o s s e s s e s a n i s o t h e r m a l remanent m a g n e t i z a t i o n (IRM) g i v e n by J .
Continued i n c r e a s e o f H beyond d would produce no f u r t h e r
i n c r e a s e i n J and a s a t u r a t i o n m a g n e t i z a t i o n i s produced.
I f h i s reduced t o z e r o
(which would b e a l o n g c ) a s a t u r a t i o n I N , J r s would r e s u l t .
I f H i s then applied
i n t h e o p p o s i t e d i r e c t i o n t h e IF3 i s l o s t and J i s reduced t o z e r o by a f i e l d H which i s c a l l e d t h e c o e r c i v e f o r c e o r c o e r c i v i t y of t h e m a t e r i a l .
This i s a
measure o f t h e m a g n e t i c h a r d n e s s o f t h e m a t e r i a l , h i g h e r c o e r c i v i t y b e i n g a measure of g r e a t e r magnetic hardness.
Repeated c y c l i n g of t h e f i e l d c a u s e s a h y s t e r e s i s
l o o p , t h e l a r g e s t one o c c u r r i n g i f s a t u r a t i o n i s r e a c h e d w i t h s m a l l e r ones ( a s shown i n F i g . 7 . 4 i f s a t u r a t i o n i s not r e a c h e d ) .
A n i s o t r o p y , magnetic domains and t h e time dependence o f m a g n e t i z a t i o n , G e n e r a l l y s p e a k i n g , t h e work done t o m a g n e t i z e a m a g n e t i c m a t e r i a l t o s a t u r a t i o n
i s dependent on t h e d i r e c t i o n i n which t h e f i e l d i s a p p l i e d , t h a t i s t h e m a t e r i a l
i s magnetically anisotropic.
A n i s o t r o p y a r i s e s from two main s o u r c e s which a r e due
t o shape (shape a n i s o t r o p y ) and c r y s t a l s t r u c t u r e ( m a g n e t o c r y s t a l l i n e a n i s o t r o p y ) . A n i s o t r o p y may a l s o b e i n d u c e d by m e c h a n i c a l s t r e s s , o r by t h e a p p l i c a t i o n of a n a p p l i e d f i e l d w h i l s t c o o l i n g through a c r i t i c a l t e m p e r a t u r e . The work done t o m a g n e t i z e a specimen may b e w r i t t e n :
E
.
anis
= Eo
+ Klfl
(0)
+ K2f2
(4)+
.....
(7.5)
386 where E
i s a c o n s t a n t , a d e f i n e s t h e d i r e c t i o n o f i n t e r e s t , and K1, K2, e t c a r e
i s a minimum i n t h e ' e a s y ' d i r e c t i o n o r p l a n e the anisotropy constants. Eanis and i s a maximum i n t h e ' h a r d ' d i r e c t i o n o r p l a n e ( O ' R e i l l y , 1976). In some c a s e s
K
2
and h i g h e r terms a r e s u f f i c i e n t l y s m a l l t o b e n e g l e c t e d and t h e magnitude of K
1
i n d i c a t e s t h e d e g r e e o f a n i s o t r o p y w i t h t h e s i g n o f K1 i d e n t i f y i n g t h e e a s y a x i s , I n m a g n e t i t e t h e e a s y d i r e c t i o n i s a l o n g t h e c1111 a x i s and t h e r e i s a l s o a p p r e c i a b l e shape a n i s o t r o p y i n t h a t n o n - s p h e r i c a l p a r t i c l e s a r e more e a s i l y magnetized a l o n g t h e i r long axes.
I n h a e m a t i t e t h e e a s y d i r e c t i o n i s normal t o t h e c - a x i s and t h e r e
i s no a p p a r e n t s h a p e a n i s o t r o p y .
Fig.7.3. I n i t i a l m a g n e t i z a t i o n c u r v e and h y s t e r e s i s l o o p s ( J - H l o o p s ) f o r a f e r r o m a g n e t i c m a t e r i a 1. Magnetic domains form i n m a g n e t i c m a t e r i a l s i n o r d e r t o a c h i e v e a lower energy state.
When a magnetic body g i v e s r i s e t o a n e x t e r n a l f i e l d i . e . c a r r i e s remanence
i t has a c e r t a i n m a g n e t o s t a t i c e n e r g y o r e n e r g y o f s e l f - d e m a g n e t i z a t i o n .
The
demagnetizing f i e l d i s p o r p o r t i o n a l t o a f a c t o r r e l a t e d t o t h e shape o f t h e body c a l l e d t h e demagnetizing f a c t o r .
F o r a u n i f o r m l y magnetized e l l i p s o i d of i n t e n s i t y
J t h e m a g n e t o s t a t i c e n e r g y p e r u n i t volume i s g i v e n by: Em = 112 NJ 2 where N i s t h e demagnetizing f a c t o r i n t h e d i r e c t i o n o f m a g n e t i z a t i o n .
(7.6)
N has v a l u e s
386 r a n g i n g from 0 t o 4 3 .
I f a f e r r o m a g n e t i c body i s s a t u r a t e d t h e i n t e r n a l f i e l d
c r e a t e s a l a r g e m a g n e t o s t a t i c e n e r g y , b u t i f t h e body was s u b d i v i d e d i n t o two r e g i o n s w i t h opposing m a g n e t i z a t i o n t h e i n t e r n a l f i e l d and m a g n e t o s t a t i c e n e r g y
w i l l be decreased (Fig.7.4).
These d i f f e r e n t r e g i o n s a r e termed m a g n e t i c domains
and t h e b o u n d a r i e s between them, domain w a l l s ; s u f f i c i e n t w i l l form t o a c h i e v e t h e minimum e n e r g y s t a t e of t h e system.
S i n c e t h e s e domain w a l l s have a f i n i t e t h i c k -
n e s s , u s u a l l y between 100-10008, i t f o l l o w s t h a t f o r v e r y s m a l l p a r t i c l e s no domain w a l l s can o c c u r . particles.
These p a r t i c l e s a r e r e f e r r e d t o a s single-domain o r monodomain
P a r t i c l e s w i t h o n l y a few domains may show some o f t h e p r o p e r t i e s o f
s i n g l e domain g r a i n s and a r e s a i d t o l i e i n t h e pseudo-single-domain ( S t a c e y and B a n e r j e e , 1974, p. 60-62). r e f e r r e d t o a s multidomain g r a i n s .
(PSD) range
L a r g e r p a r t i c l e s w i t h more domain w a l l s a r e
I n g e n e r a l t h e r e i s r e a s o n a b l y good agreement
between e s t i m a t e s of t h e c r i t i c a l g r a i n s s i z e o f s i n g l e domain b e h a v i o u r b a s e d on t h e o r y and e x p e r i m e n t a l o b s e r v a t i o n .
For magnetite t h i s g r a i n s i z e i s about
and f o r h a e m a t i t e i t i s much l a r g e r p r o b a b l y l y i n g i n t h e range 10-100~. M u l t i domain h a e m a t i t e p a r t i c l e s a r e t h u s l i k e l y t o b e r e l a t i v e l y s c a r c e i n r e d beds whose m a g n e t i z a t i o n i s dominated by single-domain p a r t i c l e s .
trjl+l-i B
A
t *l t vl t
t
C
1
- - + +
t l f l
- + - +
Fig.7.4. S u b d i v i s i o n o f a f e r r o m a g n e t i c g r a i n i n t o domains. Domain m a g n e t i z a t i o n s a r e i n d i c a t e d by t h e s t r a i g h t s o l i d a r r o w s . The dashed arrows i n d i c a t e t h e demagnetizing field. There a r e some i m p o r t a n t d i f f e r e n c e s i n t h e p r o p e r t i e s of multidomain and s i n g l e domain g r a i n s .
Multidomain g r a i n s have r e l a t i v e l y low c o e r c i v i t i e s b e c a u s e t h i s
i s governed by t h e r o t a t i o n of domain w a l l s .
F o r multidomain m a g n e t i t e t h e
c o e r c i v i t y c a n n o t exceed a b o u t 900 Oe (Evans and McElhinny, 1969) and some m u l t i domain s i n g l e c r y s t a l s of h a e m a t i t e may s a t u r a t e i n f i e l d s o f o n l y a few t e n s of o e r s t e d s ( E a t o n a n d M o r r i s h , 1969).
S i n g l e domain p a r t i c l e s have much h i g h e r
387 c o e r c i v i t i e s , f o r m a g n e t i t e c o e r c i v i t i e s i n e x c e s s of 1000 Oe a r e u s u a l l y a t t r i b u t e d t o t h e s h a p e a n i s o t r o p y of s i n g l e domains (Evans e t a l . , 1968); t h e c o e r c i v i t y of some f i n e p a r t i c l e h a e m a t i t e powders may b e a s h i g h a s 30 KOe (Roquet, 1954). Although b o t h s i n g l e domain and multidomain p a r t i c l e s a r e known t o o c c u r w i d e l y i n n a t u r e (Evans and McElhinny, 1969; Evans and Wayman, 1970; McElhinny and Opdyke, 1973; T u r n e r , 1975) i t i s t h e s i n g l e domain p a r t i c l e s , b e c a u s e of t h e i r h i g h e r c o e r c i v i t i e s , which a r e e s p e c i a l l y i m p o r t a n t i n palaeomagnetism.
S i n g l e domain
p a r t i c l e s o f m a g n e t i t e a r e r e s p o n s i b l e f o r t h e p r i m a r y , s t a b l e remanence o f many igneous r o c k s .
The m a g n e t i z a t i o n of c o n t i n e n t a l r e d beds i s formed a l m o s t
e x c l u s i v e l y from s i n g l e domain h a e m a t i t e . The i m p o r t a n c e of c o e r c i v i t y i n palaeomagnetism i s b e s t i l l u s t r a t e d by c o n s i d e r i n g t h e time dependence o f m a g n e t i z a t i o n .
An assemblage of magnetized p a r t i c l e s i n z e r o
f i e l d does n o t r e p r e s e n t a n e q u i l i b r i u m s t a t e and i n s u c h a s y s t e m t h e approach t o e q u i l i b r i u m i s a t i m e dependent m a g n e t i z a t i o n .
V a r i o u s e n e r g y b a r r i e r s r e s i s t such
changes i n c l u d i n g t h o s e which oppose r o t a t i o n i n s i n g l e domain p a r t i c l e s o r domain w a l l t r a n s l a t i o n s i n multidomain p a r t i c l e s and a l s o b a r r i e r s t o i o n i c d i f f u s i o n and changes i n m i c r o s t r u c t u r e .
When t h e r a t e o f growth o r decay o f m a g n e t i z a t i o n can b e
observed i n t h e l a b o r a t o r y i t i s r e f e r r e d t o a s m a g n e t i c v i s c o s i t y ( N e e l , 1949). I n s i n g l e domain g r a i n s t h e i n t e r n a l m a g n e t i z a t i o n e n e r g y depends upon t h e o r i e n t a t i o n of t h e moment w i t h r e s p e c t t o c e r t a i n a x e s .
For m a g n e t i c a l l y u n i a x i a l
g r a i n s , t h e e n e r g y E i s g i v e n by: 2 E = Kvsin 8 where v i s volume and
4 the
(7.7)
a n g l e between t h e m a g n e t i c moment and t h e a x i s .
maximum e n e r g y b a r r i e r i s r e p r e s e n t e d by
2
90'
There The
a r e two p o s s i b l e moment o r i e n t a t i o n s f o r minimum energy,-Q =Oo and$ =180°. and has a v a l u e E r g i v e n by:
E r = vK
(7.8)
The t h e r m a l f l u c t u a t i o n s i o n s of e n e r g y E t a r e g i v e n by: E t = kT
(7.9)
where k i s Boltzmann's c o n s t a n t and T i s t h e a b s o l u t e t e m p e r a t u r e . Thus Er, i n a n assemblage o f s i n g l e domain g r a i n s w i t h u n i a x i a l a n i s o t r o p y and s a t u r a t e d a t
The magnetic moment can b e r o t a t e d from one p o s i t i o n t o t h e o t h e r i f E t t i m e t = O t h e remanence w i l l decay a c c o r d i n g t o :
Mr = Mo exp (-t/?') where M
r e l a x a t i o n t i m e is r e l a t e d t o t h e o t h e r two e n e r g i e s E
-
Y
=
(7.9)
is t h e moment remaining a f t e r time t a n d r i s t h e r e l a x a t i o n time.
exp
'r -
The
and E t by: (7.10)
Et
(7.11)
Y
=
exp
vK
where C i s a f r e q u e n c y f a c t o r of a b o u t l o l o s e c - l .
The a n i s o t r o p y c o n s t a n t K i s r e l a t e d t o t h e c o e r c i v i t y H Hc =
by t h e s i m p l e r e l a t i o n s h i p : C
2K
(7.12)
JS
and s o Y m a y b e w r i t t e n :
(7.13) showing t h a t t h e r e l a x a t i o n time r i s d i r e c t l y r e l a t e d t o c o e r c i v i t y .
T h i s i s one
of t h e fundamental c o n c e p t s of palaeomagnetism and forms t h e b a s i s o f m a g n e t i c c l e a n i n g a s a t o o l t o i s o l a t e p r i m a r y remanence i n r o c k s .
Progressive demagnetization
randomizes t h o s e domains w i t h low c o e r c i v e f o r c e , which f o r any g i v e n g r a i n volume a r e a l s o those with the s h o r t e s t relaxation t i m e . P a r t i c l e s f o r which t h e combined v a l u e s o f K, v and T r e s u l t i n T < l O O s i . e . when r e l a x a t i o n t i m e i s very s h o r t a r e s a i d t o be superparamagnetic because a f t e r t h e removal of a n a p p l i e d f i e l d , t h e remanence decays v e r y q u i c k l y .
The r e l a x a t i o n t i m e
becomes v e r y s h o r t when T i s v e r y l a r g e o r v i s s m a l l and s u c h g r a i n s a r e u s u a l l y therefore very f i n e grained.
F o r any g r a i n of volume v , t h e r e i s t h e r e f o r e a
c r i t i c a l b l o c k i n g t e m p e r a t u r e Tb a t w h i c h r b e c o m e s s m a l l b u t which i s below t h e Curie temperature.
S i m i l a r l y a t any g i v e n t e m p e r a t u r e T t h e r e i s a c r i t i c a l b l o c k i n g
volume db a t w h i c h r a g a i n becomes s m a l l .
A p r a c t i c a l consequence o f t h i s t h e o r y i s s e e n i n t h e m a g n e t i z a t i o n changes which r e s u l t from t h e b u r i a l and u p l i f t o f r o c k s .
During p r o g r e s s i v e b u r i a l , remanent
m a g n e t i z a t i o n i s g r a d u a l l y l o s t a s t e m p e r a t u r e i n c r e a s e s and g r a i n s become unblocked. With s u b s e q u e n t u p l i f t a new remanence w i l l r e s u l t a s t h e t e m p e r a t u r e f a l l s below the blocking temperatures of these grains.
The t h e o r y and p r a c t i c a l consequences o f
m a g n e t i z a t i o n changes caused by b u r i a l and u p l i f t a r e d i s c u s s e d by P u l l a i a h e t a l . (1975). MINERAL MAGNETISM
I r o n i s t h e most abundant t r a n s i t i o n e l e m e n t i n t h e E a r t h ' s c r u s t and o c c u r s i n a wide v a r i e t y o f m i n e r a l s i n c l u d i n g s i l i c a t e s , c a r b o n a t e s and o x i d e s .
The i r o n
o x i d e s which a r e p r i n c i p a l l y f e r r i m a g n e t s o r n o n - c o l l i n e a r a n t i f e r r o m a g n e t s w i t h C u r i e p o i n t s above a b o u t 20°C a r e r e s p o n s i b l e f o r v i r t u a l l y a l l t h e magnetic remanence observed i n r o c k s .
M i n e r a l s w i t h C u r i e p o i n t s less t h a n a b o u t 2OoC do
n o t c o n t r i b u t e t o t h e remanence of r o c k s , n o r do t h e c a r b o n a t e s o r s i l i c a t e s , which f o r t h e most p a r t a r e p a r a m a g n e t i c o r d i a m a g n e t i c and t h u s n o t c a p a b l e of c a r r y i n g permanent m a g n e t i c moments.
Some of t h e s u l p h i d e m i n e r a l s , n o t a b l y m o n o c l i n i c
p y r r h o t i t e (Fe S ) and g r e i g i t e (Fe S ) a r e f e r r i m a g n e t i c and may c o n t r i b u t e 3 4 7 8 remanence on a minor s c a l e . The most i m p o r t a n t remanence c a r r y i n g m i n e r a l s a r e t h e t i t a n o m a g n e t i t e s , and t h e i r oxidized equivalents t h e titanomaghemites.
These f e r r i m a g n e t s a c c o u n t f o r
t h e remanence o f i g n e o u s r o c k s and a r e a l s o i m p o r t a n t m a g n e t i z a t i o n c a r r i e r s i n s e d i m e n t s , i n c l u d i n g some r e d b e d s .
Haematite, a non-collinear antiferrornagnet,
389 i s r e s p o n s i b l e f o r a t l e a s t p a r t o f t h e remanence i n some h i g h l y o x i d i z e d igneous r o c k s and c a r r i e s t h e b u l k o f t h e remanence i n many s e d i m e n t s , p a r t i c u l a r l y r e d beds.
I n t e r m e d i a t e members o f t h e h a e m a t i t e - i l m e n i t e s o l i d s o l u t i o n s e r i e s a r e
r a r e i n n a t u r e a l t h o u g h t h e y do o c c u r i n some r a p i d l y c o o l e d v o l c a n i c and i n t r u s i v e igneous r o c k s where t h e y a r e i m p o r t a n t remanence c a r r i e r s .
Another f e r r i c oxyhy-
d r o x i d e , g o e t h i t e , a l s o p o s s e s s e s a weak remanence and c o n t r i b u t e s t o t h e m a g n e t i z a t i o n of some r e d b e d s , The t i t a n o m a e n e t i t e s a n d t i t a n o m a e h e m i t e s The t i t a n o m a g n e t i t e s a r e f e r r i m a g n e t i c w i t h a s a t u r a t i o n m a g n e t i z a t i o n of 3 1 92 Gauss cm gThe f e r r i m a g n e t i s m r e s u l t s b e c a u s e t h e r e a r e two o c t a h e d r a l (B)
.
s i t e c a t i o n s f o r e a c h t e t r a h e d r a l (A) s i t e c a t i o n which g i v e s two unequal subl a t t i c e s and t h u s a n e t , permanent m a g n e t i z a t i o n .
The C u r i e t e m p e r a t u r e of p u r e
m a g n e t i t e i s 58OoC b u t t h i s d e c r e a s e s w i t h i n c r e a s i n g t i t a n i u m s u b s t i t u t i o n (Fig.7.5).
T i t a n o m a g n e t i t e s commonly o c c u r r i n g i n b a s a l t i c igneous r o c k s have
composition p a r a m e t e r i n t h e range 0 . 5 r x c 0 . 8 which c o r r e s p o n d s t o C u r i e p o i n t s between a b o u t 200°C and room t e m p e r a t u r e .
U l v b s p i n e l i s p a r a m a g n e t i c a t room
t e m p e r a t u r e and a n t i f e r r o m a g n e t i c a t low t e m p e r a t u r e s w i t h a N e h l p o i n t o f (-153OC).
Complete s o l i d s o l u t i o n i n t h e m a g n e t i t e - u l v b s p i n e l s e r i e s o n l y e x i s t s
above 60OoC.
A t lower t e m p e r a t u r e s t h e r e i s a tendency f o r t h e e x s o l u t i o n of
t i t a n i u m r i c h p h a s e s t o t a k e p l a c e l e a v i n g a more i r o n - r i c h h o s t phase. I n p r a c t i c e many of t h e n a t u r a l l y o c c u r r i n g t i t a n o m a g n e t i t e s show a c e r t a i n d e g r e e of o x i d a t i o n and a r e more c o r r e c t l y r e f e r r e d t o a s titanomaghemites.
These
titanomaghemites a r e i m p o r t a n t i n o c e a n i c b a s a l t s where o x i d a t i o n t a k e s p l a c e i n t h e t e m p e r a t u r e r e g i o n 600-10OO0C d u r i n g c o o l i n g and a l s o a s a r e s u l t of submarine w e a t h e r i n g ( M a r s h a l l and Cox, 1972; R y a l l a n d Ade-Hall, 1975). O x i d a t i o n o f t i t a n o m a g n e t i t e s t o titanomaghemite i s accompanied by a r i s e i n C u r i e t e m p e r a t u r e (Readman and O ' R e i l l y , 1972).
The most c h a r a c t e r i s t i c f e a t u r e
of t h e titanomaghemites i s t h a t thermomagnetic c u r v e s show i r r e v e r s i b l e behaviour due t o i n v e r s i o n , maghemite i n v e r t i n g t o h a e m a t i t e , and titanomaghemites t o a s t a b l e i n t e r g r o w t h o f h a e m a t i t e and i r o n - t i t a n i u m o x i d e s a t t e m p e r a t u r e s i n t h e r e g i o n o f 350-400°C.
This i r r e v e r s i b l e bahaviour has enabled t h e i d e n t i f i c a t i o n
o f titanomaghemites i n a number o f r e d bed f o r m a t i o n s
(e.g. Waage and S t o r e t v e d t ,
1973). The c r y s t a l a n i s o t r o p y o f m a g n e t i t e a n d t h e t i t a n o m a g n e t i t e s shows a s t r o n g dependence on t e m p e r a t u r e and composition.
The f i r s t c u b i c a n i s o t r o p y c o n s t a n t
5 (K1) has a v a l u e o f a b o u t 10 e r g cmm3 a t 80°K (-193OC) and axis. (-1.5
[log
i s the easy
I n p u r e m a g n e t i t e , K changes s i g n a t 130°K (-143OC) and becomes n e g a t i v e 1 5 x 10 e r g cmm3) and Clll] i s t h e e a s y a x i s . T h i s low t e m p e r a t u r e t r a n s i t i o n
p r o v i d e s a u s e f u l means o f i d e n t i f y i n g m a g n e t i t e i n r o c k s even when o n l y v e r y
390 minute q u a n t i t i e s a r e present
( M a u r i t s c h and T u r n e r , 1975).
Fig.7.5. Contours o f C u r i e t e m p e r a t u r e and c e l l edge p a r a m e t e r f o r titanomagn e t i t e s a n d t h e i r o x i d i z e d e q u i v a l e n t s , t h e titanomaghemites ( a f t e r Readman and O ' R e i l l y , 1972). Haema t i t e The m a g n e t i c p r o p e r t i e s o f h a e m a t i t e have been s t u d i e d by many d i f f e r e n t workers f o r o v e r 50 y e a r s b u t t h e r e i s s t i l l no comprehensive u n d e r s t a n d i n g of t h e m i n e r a l . I n p a r t i c u l a r , t h e r e i s a g r e a t deal of v a r i a t i o n i n t h e reported magnetic
p r o p e r t i e s of s y n t h e t i c and n a t u r a l m a t e r i a l s , which s u g g e s t s t h e r e may b e more s t r u c t u r a l a n d c o m p o s i t i o n a l v a r i a t i o n i n n a t u r a l h a e m a t i t e s t h a n h a s g e n e r a l l y been realized.
U s e f u l reviews a r e t o b e found i n F u l l e r (1970) and J a c o b s e t a l . (1971).
A t room t e m p e r a t u r e , h a e m a t i t e i s n o t p u r e l y a n t i f e r r o m a g n e t i c and a weak
ferromagnetism r e s u l t s from a n o n - c o l l i n e a r , o r c a n t e d , a n t i f e r r o m a g n e t i c s p i n system.
There i s a l s o a v a r i a b l e , e x t r i n s i c , c o n t r i b u t i o n t o t h e m a g n e t i z a t i o n ,
u s u a l l y a t t r i b u t e d t o s t r u c t u r a l d e f e c t s , and r e f e r r e d t o a s i s o t r o p i c o r 3 ferromagnetism. The s u s c e p t i b i l i t y of h a e m a t i t e i s a b o u t 20 x G cm 3 and t h e s a t u r a t i o n m a g n e t i z a t i o n a b o u t 0 . 4 G cm g-' ( c f . m a g n e t i t e which 3 92 G cm ) . The C u r i e t e m p e r a t u r e of h a e m a t i t e i s u s u a l l y q u o t e d a s 680°C
defect -1 - 1 Oe g is
but
r e p o r t e d v a l u e s may be somewhat h i g h e r , p e r h a p s up t o 71OoC ( C h e v a l l i e r , 1951).
391 Most a u t h o r s a r e of t h e o p i n i o n t h a t t h e C u r i e p o i n t and
Ndel p o i n t c o i n c i d e
somewhere between 675OC and 69OoC. I n t e r m e d i a t e members of t h e h a e m a t i t e - i l m e n i t e s e r i e s show complex magnetic b e h a v i o u r and f o r d e t a i l e d d i s c u s s i o n s t h e r e a d e r i s r e f e r r e d t o t h e work o f Ishikawa and Akimoto ( 1 9 5 8 ) , S h i r a n e e t a l . (19591, and Hoffman (1975).
As the proportion
of i l m e n i t e i n c r e a s e s , t h e c e l l dimensions i n c r e a s e and t h e C u r i e t e m p e r a t u r e decreases (Fig.7.6).
I l m e n i t e i s p a r a m a g n e t i c a t l i q u i d n i t r o g e n t e m p e r a t u r e and
a n t i f e r r o m a g n e t i c a t v e r y low t e m p e r a t u r e s w i t h a rhombohedra1 u n i t c e l l p a r a m e t e r of 5.523g.
I n t h e range 0 t o 5 0 p e r c e n t t h e s o l i d s o l u t i o n s a r e c a n t e d a n t i -
f e r r o m a g n e t i c s , w h i l s t between a b o u t 45 and 95 p e r c e n t i l m e n i t e t h e y become f e r r i m a g n e t i c , r e v e r t i n g t o a n t i f e r r o m a g n e t i c n e a r 100 p e r c e n t i l m e n i t e .
Synthetic
specimens w i t h compositions c o n t a i n i n g 45 t o 60 p e r c e n t i l m e n i t e a r e of p a r t i c u l a r i n t e r e s t b e c a u s e t h e y show s e l f - r e v e r s i n g p r o p e r t i e s (Wescott-Lewis and P a r r y , 1971a; Hoffman, 1975).
Members of t h e h a e m a t i t e - i l m e n i t e s e r i e s w i t h such compos-
i t i o n s a r e , however, u n l i k e l y t o b e found i n c o n t i n e n t a l r e d beds. The i n t r i n s i c ferromagnetism o f h a e m a t i t e shows a t r a n s i t i o n a t a b o u t 10°C (263'K)
which i s u s u a l l y r e f e r r e d t o a s t h e Morin t r a n s i t i o n (Morin, 1950) a l t h o u g h
i t was a c t u a l l y d i s c o v e r e d by e a r l i e r workers (Honda and Song, 1914; Charlesworth
and Long, 1939).
Above t h e Morin t r a n s i t i o n (T ) t h e s u s c e p t i b i l i t y measured i n
m
-6 G cm3 0e-I g-'.
t h e b a s a l p l a n e and a l o n g t h e c - a x i s i s a b o u t 20 x 10
Below Tm,
f a l l s t o v e r y low v a l u e s p a r a l l e l t o t h e c - a x i s , b u t remains a b o u t t h e same i n the b a s a l plane (Fig.7.7)
(Ne'el and P a u t h e n e t , 1952).
- 5.50
1
0 Fo20
0.2
,
1
1
1
1
1
0.4 0.6 0.0 'Moh fraction of FeTiOg
.
1.0 FeTiO3
Fig.7.6. V a r i a t i o n o f C u r i e t e m p e r a t u r e and u n i t c e l l p a r a m e t e r ( a r h ) w i t h composition of t h e h a e m a t i t e - i l m e n i t e series.
392
1
I
0
1
I
200
I
I
0
I
200
I
I
400 Tomporntun
I
I
I
400
600
Temperature
I
1
800
O K
I
I
I
600
I
I
800
I
OK
-
Fig.7.7. V a r i a t i o n o f s a t u r a t i o n m a g n e t i z a t i o n ( a ) and s u s c e p t i b i l i t v (-b ). o f a h a e m a t i t e s i n g l e c r y s t a l w i t h i n t h e b a s a l p l a n e (1) a n d a l o n g - t h e t r i g o n a l a x i s ( 2 ) ( a f t e r N C e l , 1953). T h i s i s c o n s i s t e n t w i t h o b s e r v a t i o n s from n e u t r o n d i f f r a c t i o n ( S h u l l e t a l . , and Mbssbauer s p e c t r o s c o p y d a t a ( B l u m e t a l . , 1965; Kllndig e t a l . ,
1951)
1966) which
i n d i c a t e t h a t s p i n s a r e p a r a l l e l t o t h e c a x i s below T b u t normal t o i t above Tm. m Dzyaloshinsky (1958) showed t h a t above Tm c a n t i n g o f t h e s p i n s u b l a t t i c e s w i t h i n t h e b a s a l p l a n e would a c c o u n t f o r t h e o b s e r v e d i n t r i n s i c ferromagnetism and t h a t t h e l o s s of m a g n e t i c moments through T
m
i s due t o t h e d i s a p p e a r a n c e of t h e s p i n
c a n t i n g , s o t h a t below t h i s t e m p e r a t u r e h a e m a t i t e i s p u r e l y a n t i f e r r o m a g n e t i c ( L i n , 1962) ( F i g . 7 . 8 ) . Remanence a s s o c i a t e d w i t h t h e weak ferromagnetism a l s o d e c r e a s e s r a p i d l y below Tm ( F i g . 7 . 7 )
b u t does n o t d i s a p p e a r c o m p l e t e l y ( F l a n d e r s and Remeika, 1965).
This
was i n t e r p r e t e d by N6el (1953) t o i n d i c a t e t h a t t h e magnetism o f h a e m a t i t e c o n t a i n e d
393 two components, one a n i s o t r o p i c and l i n k e d t o t h e a n t i f e r r o r n a g n e t i s m ( t h e i n t r i n s i c s p i n c a n t e d moment) and t h e o t h e r i s o t r o p i c and i n d e p e n d e n t o f t h e Morin Transition.' The t e m p e r a t u r e o f t h e Morin T r a n s i t i o n i s r a i s e d by i n c r e a s i n g p r e s s u r e b u t t h e r e i s some d i s c r e p a n c y i n t h e r e s u l t s o b t a i n e d
and Ono, 1966).
( c f . Whorlton e t a l . , 1967 and Kawai
The t r a n s i t i o n i s a l s o a f f e c t e d by s l i g h t c o m p o s i t i o n a l v a r i a t i o n s
.
r e s u l t i n g from s u b s t i t u t i o n by o t h e r c a t i o n s which u s u a l l y lower T Only 0.3 mole m % Ti4' s u p p r e s s e s t h e t r a n s i t i o n c o m p l e t e l y (Haigh, 1957; Kaye. 1960; T a s a k i and 3+ I i d a , 1961; Besser e t a l . , 1967). Rhodium (Rh ) a p p e a r s t o b e unique i n t h a t i t r a i s e s t h e t e m p e r a t u r e of t h e Morin T r a n s i t i o n (Kr& e t a l . , 1965).
The s e n s i t i v i t y
of t h e t r a n s i t i o n t o t i t a n i u m doping i s e x p l a i n e d by B e s s e r e t a l . (1967) i n terms o f l a t t i c e d i s t o r t i o n produced by t h e l a r g e s i z e of Ti4+ c a t i o n s .
0 Fe 0 0
Fig.7.8. The m a g n e t i c s t r u c t u r e of h a e m a t i t e (a-Fefl3) above ( A ) and below (B) t h e Morin t r a n s i t i o n . S l i g h t c a n t i n g of t h e s p i n s u b l a t t i c e s produces t h e i n t r i n s i c ferromagnetism of h a e m a t i t e . Below t h e Morin t r a n s i t i o n t h e s p i n s a r e a l i g n e d p a r a l l e l t o t h e t r i g o n a l a x i s and p u r e a n t i f e r r o r n a g n e t i s m r e s u l t s ,
394 The d e f e c t moment i s l e s s e a s y t o e x p l a i n t h a n t h e i n t r i n s i c s p i n c a n t e d moment. I t v a r i e s i n magnitude from sample t o sample and i n n a t u r a l m a t e r i a l s t e n d s t o b e l a r g e r i n n a t u r a l c r y s t a l s and s m a l l e r i n f i n e g r a i n s ( G a l l o n , 1968a; Dunlop, 1 9 7 1 ) . I n f a c t t h e u s e of t h e term i s o t r o p i c f o r t h e d e f e c t moment i s a misnomer because G a l l o n (1968a) h a s found t h a t t h e low-temperature moment o f s y n t h e t i c c r y s t a l s and of n a t u r a l c r y s t a l s a f t e r a n n e a l i n g l i e s i n t h e b a s a l p l a n e .
The u s e o f t h e term
s t r u c t u r e s e n s i t i v e o r d e f e c t moment (Smith and F u l l e r , 1967) i s t h u s p r e f e r r e d . The f a c t t h a t t h e d e f e c t moment i s a b s e n t i n p u r e s t o i c h i o m e t r i c s y n t h e t i c c r y s t a l s below Tm, and t h a t i t can b e reduced on a n n e a l i n g i n d i c a t e s t h a t s t r u c t u r a l d e f e c t s o r , p o s s i b l y , f e r r o u s i r o n i m p u r i t i e s p r o v i d e a good e x p l a n a t i o n of i t s o r i g i n . I n t h e o r y , t h e Morin T r a n s i t i o n n o t o n l y p r o v i d e s a r e a d y means o f i d e n t i f y i n g c o n t r i b u t i o n s of h a e m a t i t e t o r e d bed NRM b u t a l s o p r o v i d e s a method of a s s e s s i n g t h e r e l a t i v e importance of i n t r i n s i c and d e f e c t moments.
I n p r a c t i c e though, r e d
beds r a r e l y e x h i b i t t h e Morin T r a n s i t i o n a l t h o u g h i t has been o b s e r v e d i n l a c u s t r i n e s e d i m e n t s ( C r e e r e t a l . , 1972; Thompson, 1977). t h e d e f e c t moment i s more i m p o r t a n t i n r e d beds.
The u s u a l e x p l a n a t i o n i s t h a t I t may b e t h a t t h e t r a n s i t i o n i s
s u p p r e s s e d because of s m a l l c o n t e n t s o f T i 4 + o r o t h e r c a t i o n s i n n a t u r a l h a e m a t i t e s . Grain s i z e e f f e c t s The domain s t r u c t u r e of h a e m a t i t e s i n g l e c r y s t a l s has been i n v e s t i g a t e d by a number o f workers u s i n g a v a r i e t y of methods (Williams e t a l . , 1958; Blackman e t a l . , 1959; G u s t a r d , 1967; G a l l o n , 1968b, and Eaton and M o r r i s h , 1969).
I n synthetic
c r y s t a l s domain w a l l s a r e r e g u l a r and d e f i n e domain p a t t e r n s which t a k e t h e form o f p a r a l l e l s l a b s o r c y l i n d e r s u s u a l l y s e e n on f a c e s p e r p e n d i c u l a r t o t h e b a s a l p l a n e (Eaton and M o r r i s h , 1969).
I n n a t u r a l c r y s t a l s the walls tend t o be i l l - d e f i n e d
and more c o n v o l u t e d ( G u s t a r d , 1967).
Domain w a l l s p a c i n g s o f 100-500r, a r e found
and t h i s s u g g e s t s t h a t t h e c r i t i c a l single-domain s i z e , d o , must b e much l a r g e r t h a n f o r normal f e r r o m a g n e t i c s , p r o b a b l y l y i n g i n t h e 1 0 - 1 0 0 ~range (Dunlop, 1 9 7 1 ) . The Morin T r a n s i t i o n a p p e a r s t o have l i t t l e e f f e c t on room t e m p e r a t u r e domain w a l l p a t t e r n s which p e r s i s t below T
w i t h l i t t l e o r no o b s e r v e d w a l l movement. m S y n t h e t i c c r y s t a l s a r e , however, r e a d i l y s a t u r a t e d i n f i e l d s of o n l y 30 Oe o r s o .
N a t u r a l c r y s t a l s , a s e x p e c t e d , a r e somewhat h a r d e r and s a t u r a t e a t s l i g h t l y h i g h e r fields.
Q u i t e c l e a r l y , e x p e r i m e n t s on l a r g e s i n g l e c r y s t a l s a r e n o t r e l e v a n t when
c o n s i d e r i n g t h e o r i g i n of t h e h i g h c o e r c i v i t i e s found i n f i n e g r a i n e d assemblages of h a e m a t i t e which c o n s i s t e n t i r e l y o f single-domain p a r t i c l e s .
O b s e r v a t i o n s on t h e
c o e r c i v i t y o f r e d beds and t h e domain s t r u c t u r e o f h a e m a t i t e a r e q u i t e c o n s i s t e n t : most r e d beds used i n p a l a e o m a g n e t i c s t u d i e s p r o b a b l y c o n s i s t e n t i r e l y o f s i n g l e domain assemblages. T h i s s t i l l does n o t e x p l a i n t h e o r i g i n of t h e c o e r c i v i t i e s o f many KOe found i n f i n e p a r t i c l e h a e m a t i t e (Roquet, 1954; Haigh, 1957).
These may b e a s h i g h a s
395 20-30KOe and p r o v i d e a r e a d y means o f d i s t i n g u i s h i n g m a g n e t i t e from h a e m a t i t e .
Also i n t h e single-domain s i z e range t h e c o e r c i v i t y o f h a e m a t i t e i s g r a i n s i z e dependent ( C h e v a l l i e r and Mathieu, 1943).
These a u t h o r s showed t h a t t h e weak
Fig.7.9. The e f f e c t of g r a i n s i z e on t h e m a g n e t i z a t i o n o f h a e m a t i t e ( a f t e r C h e v a l l i e r and Mathieu, 1 9 4 3 ) . ferromagnetism of h a e m a t i t e d e c r e a s e d w i t h d e c r e a s i n g g r a i n s i z e ( F i g . 7 . 9 ) .
The
c o e r c i v e f o r c e was found t o be a b o u t 300 Oe f o r g r a i n s of 3 0 0 ~ ( p r e p a r e d by c r u s h i n g a n a t u r a l c r y s t a l ) and i n c r e a s e d t o 1500 Oe a t 1 t o 400 Oe f o r l p g r a i n s .
5 b u~t t h e n d e c r e a s e d
T h i s peak i n c o e r c i v e f o r c e i s c o n s i s t e n t w i t h e s t i m a t e s
o f c r i t i c a l single-domain s i z e of lO-lOO/vm made by Dunlop (1971) b u t p r o v i d e s no e x p l a n a t i o n of t h e h i g h c o e r c i v i t i e s o b s e r v e d i n s y n t h e t i c h a e m a t i t e powders. Shape a n i s o t r o p y can b e d i s c o u n t e d b e c a u s e t h e s a t u r a t i o n m a g n e t i z a t i o n i s s o s m a l l . A m a g n e t o e l a s t i c e x p l a n a t i o n has been s u g g e s t e d by s e v e r a l workers ( e . g . Merri11,1968)
and P o r a t h (1968b) h a s a r g u e d t h a t i n t e r n a l s t r e s s becomes more i m p o r t a n t i n f i n e g r a i n s and i s c a p a b l e of e x p l a i n i n g t h e o b s e r v e d c o e r c i v i t y .
However t o e x p l a i n
c o e r c i v i t i e s o f a b o u t 1OKOe a n i n t e r n a l s t r e s s of a b o u t 1 kb i s r e q u i r e d and t h i s In single
c o u l d o n l y b e e x p e c t e d in t h e i m e d i a t e v i c i n i t y o f d i s l o c a t i o n s .
c r y s t a l s t h e b a s a l p l a n e a n i s o t r o p y i s dominated by u n i a x i a l terms of m a g n e t o e l a s t i c
396 o r i g i n ( B a n e r j e e , 1963) w i t h superimposed, and g e n e r a l l y much s m a l l e r , t r i a x i a l terms u s u a l l y a t t r i b u t e d t o t r i g o n a l m a g n e t o e l a s t i c c o u p l i n g ( I i d a and T a s a k i , 1964;
B e s s e r e t a l . , 1967).
Dunlop (1971) c o n s i d e r s m a g n e t o c r y s t a l l i n e a n i s o t r o p y t o b e
a more n a t u r a l e x p l a n a t i o n of t h e t r i a x i a l t e r m s , d e s p i t e c o n s i d e r a b l e v a r i a t i o n i n r e p o r t e d v a l u e s o f K , t h e a n i s o t r o p y c o n s t a n t , and s u p p o r t e d h i s c o n t e n t i o n w i t h t h e r e s u l t s of a n n e a l i n g e x p e r i m e n t s on s y n t h e t i c h a e m a t i t e powders.
One o f t h e
problems h e r e i s t h a t t h e m a g n e t i c p r o p e r t i e s o f s y n t h e t i c h a e m a t i t e c r y s t a l l i t e s a r e s e n s i t i v e t o t h e method o f p r e p a r a t i o n (Takada e t a l . , 1965); t h e r e a r e a l s o d i f f e r e n c e s i n h a e m a t i t e produced by t h e d e h y d r a t i o n o f g o e t h i t e and t h a t formed by o t h e r methods (Dunlop, 1971). The weak ferromagnetism of h a e m a t i t e d e c r e a s e s f o r c r y s t a l l i t e s s m a l l e r t h a n 10002 and d i s a p p e a r s a t a b o u t 2008 ( K h d i g e t a l . ,
1971).
1966; Hedley, 1968; B a n e r j e e ,
I n f a c t t h e r e i s some v a r i a t i o n i n r e p o r t e d v a l u e s o f t h i s c r i t i c a l s i z e
f o r s u p e r p a r a m a g n e t i c b e h a v i o u r ( d ) , and t h e c o n v e n t i o n a l e s t i m a t e o f 0.lym (Strangway e t a l . , 1967) may b e t o o l a r g e .
The superparamagnetic/ferromagnetic
t r a n s i t i o n h a s been s t u d i e d by Ktlndig e t a l . (1966) u s i n g Mbssbauer s p e c t r o s c o p y f o r supported@-Fe 0 p a r t i c l e s ( F i g . 7 . 1 0 ) . Samples w i t h p a r t i c l e s l e s s t h a n 2 3 100.8 d i a m e t e r gave a s p e c t r u m w i t h o n l y a s i n g l e q u a d r u p o l e s p l i t d o u b l e t peak and I
-10
-5
0
I
I
+5
+10
V E L O C I T Y IN mmlSEC.
Fig.7.10. Mbssbauer s p e c t r a of o(-.Fe 0 a s a f u n c t i o n of p a r t i c l e s i z e 2 3 ( a f t e r KUndig e t a l . , 1966).
397 a r e completely superparamagnetic.
A s t h e p a r t i c l e s i z e i n c r e a s e s t h e s i x peak
(Zemann s p l i t ) s e t o f l i n e s a s s o c i a t e d w i t h magnetic o r d e r i n g becomes p r o g r e s s i v e l y P a r t i c l e s o f 1801 _f 102 gave a
more p r e p o n d e r a n t o v e r t h e q u a d r u p o l e d o u b l e t .
spectrum c o r r e s p o n d i n g t o t h a t e x p e c t e d from a n e a r l y p u r e ferromagnet.
Kllndig
e t a l . (1966) a l s o d e m o n s t r a t e d t h a t t h e Morin t r a n s i t i o n was i n h i b i t e d i n v e r y f i n e
p a r t i c l e s ( F i g . 7 . 1 1 ) and b e l i e v e d t h a t t h i s was because g r a i n s u r f a c e s a c t e d a s d e f e c t s and were c a p a b l e o f p i n n i n g t h e e l e c t r o n s p i n s .
S c h r o e e r and N i n i n g e r (1967)
Artman e t a l . (1965) and Besser e t a l . (1967)
h a v e , however, a r g u e d a g a i n s t t h i s .
have shown t h a t t h e Morin t r a n s i t i o n , and i t s dependence on i m p u r i t i e s i s a r e s u l t of t h e c-axis a n i s o t r o p y being t h e
d i f f e r e n c e o f two l a r g e q u a n t i t i e s , t h e d i p o l a r
and s i n g l e - i o n a n i s o t r o p i e s (Kmd and Ksi
respectively).
Above Tm t h e n e g a t i v e K md
i s dominant, whereas below T t h e p o s i t i v e K i s dominant. Hedley (1970) has m si c o n s i d e r e d t h e g r a i n s i z e dependence of K and Ksi and used i t t o e x p l a i n t h e md d e p r e s s i o n and d i s a p p e a r a n c e of t h e Morin t r a n s i t i o n a s g r a i n s i z e d e c r e a s e s .
I
-10
I
-5
I
0
I
+5
I
+10
Velocity in mm/sec
Fig.7.11. Mbssbauer s p e c t r a o f sample D a t v a r i o u s t e m p e r a t u r e s showing t h e a b s e n c e of t h e Morin t r a n s i t i o n ( a f t e r KUndig e t a l . , 1966). There a p p e a r s t o be some fundamental d i f f e r e n c e i n t h e s u p e r p a r a m a g n e t i c s i z e , and b e h a v i o u r , o f h a e m a t i t e s produced by g o e t h i t e d e h y d r a t i o n and t h o s e produced by o t h e r methods.
For example, t h e r e s u l t s of C h e v a l l i e r (1951) s u g g e s t d
near
0.1 m , w h i l s t Strangway e t a l . (1967) s u g g e s t e d a v a l u e of 0 . 5 ~ f o r h a e m a t i t e s of
Y
t h i s type.
However, p a r t of t h e problem i s c e r t a i n l y due t o i n a c c u r a t e g r a i n s i z e
determination.
The assumption t h a t d a u g h t e r h a e m a t i t e i s t h e same s i z e a s t h e
p a r e n t g o e t h i t e has been shown by Dubey and Dunlop (1971) t o be i n v a l i d . Cohen e t a l . (1962) and Strangway e t a l . (1968) have d e s c r i b e d a s t a b l e t h e m o remanence i n u l t r a - f i n e g r a i n e d K - F e 0 which t h e y have a t t r i b u t e d t o s u p e r a n t i 2 3
398 ferromagnetism o r s p i n imbalance (N&,
1962).
N e h l (1962) p o i n t e d o u t t h a t a
remanence c o u l d r e s u l t i n u l t r a f i n e p a r t i c l e s i f t h e number o f s p i n s i n t h e two s u b l a t t i c e s were n o t b a l a n c e d ,
Such a n imbalance moment would b e e x p e c t e d t o l i e
p a r a l l e l t o t h e s u b l a t t i c e m a g n e t i z a t i o n whereas t h e s p i n c a n t e d moment i s perpendicular.
P o r a t h (1968a) has used t h i s t o i n d i c a t e t h a t imbalance remanence
r a t h e r t h a n s p i n c a n t e d remanence d e v e l o p s ino(-Fe203 d u r i n g i n v e r s i o n from
Also, B a n e r j e e (1970) concluded t h a t t h e s t a b l e remanence of O<-FeOOH
3/-Fe203.
( g o e t h i t e ) d i s c o v e r e d by Strangway e t a l . (1968) was p a r a l l e l t o t h e s u b l a t t i c e s m a g n e t i z a t i o n a n d was t h u s a n imbalance remanence.
One might e x p e c t t h a t i f s t a b l e
imbalance ferromagnetism can e x i s t i n t h e p r e s e n c e o f a s u p e r p a r a m a g n e t i c s p i n c a n t e d moment, t h e n i t t o o m i g h t become s u p e r p a r a m a g n e t i c a t e x t r e m e l y f i n e g r a i n sizes.
The superparamagnetism r e p o r t e d by Creer ( 1 9 6 1 ) i n a specimen o f Keuper
Marl c o u l d be o f t h i s t y p e . The r e l a t i v e s t a b i l i t y of s p i n c a n t e d a n d d e f e c t moments The r e l a t i v e s t a b i l i t y of s p i n c a n t e d and d e f e c t moments i s o f c r u c i a l importance i n r e d bed p a l a e o m a g n e t i c s t u d i e s b u t u n f o r t u n a t e l y has n o t f r e q u e n t l y been i n v e s t i g a t e d ,
Haigh (1957) was t h e f i r s t t o make i n v e s t i g a t i o n s o f t h i s k i n d
and conducted two e x p e r i m e n t s on a h a e m a t i t e powder o f u n s p e c i f i e d g r a i n s i z e : 1. A r e v e r s e f i e l d was a p p l i e d t o a s a t u r a t e d sample and t h e r e s u l t a n t remanence was m a i n t a i n e d on c o o l i n g below Tm.
By v a r y i n g t h e r e v e r s e f i e l d and r e p e a t i n g
t h e c o o l i n g s e p a r a t e DC d e m a g n e t i z a t i o n c u r v e s c o u l d be deduced f o r t h e d e f e c t and s p i n c a n t e d moments 2 . The DC d e m a g n e t i z a t i o n ' c u r v e of t h e d e f e c t moment above was measured d i r e c t l y a t t e m p e r a t u r e s below T ,
m
Haigh (1957) found t h e remanent c o e r c i v e f o r c e H
o f t h e s p i n c a n t e d moment was cr 4800 Oe w h i l e t h e d e f e c t moment was c o n s i d e r a b l y s o f t e r w i t h Hcr of a b o u t 500 Oe. Dunlop (1971) has i n v e s t i g a t e d t h e r e l a t i v e s t a b i l i t y of s p i n c a n t e d and d e f e c t
moments i n a v a r i e t y o f s y n t h e t i c h a e m a t i t e powders u s i n g a n n e a l i n g e x p e r i m e n t s : "Ferrite" reds "Copperas" r e d s "Goethite" reds Powder A
-
produced from Fe 0 +c(-FeZ03 3 4 produced from FeS04. 7H20
- unknown
produced from N-FeOOH origin
The samples were a n n e a l e d i n a i r a t p r o g r e s s i v e l y h i g h e r t e m p e r a t u r e s between 650-950°C and i s o t h e r m a l remanent m a g n e t i z a t i o n (IRM) c u r v e s measured a f t e r e a c h annealing.
Although t h e r e a r e some d i f f e r e n c e s i n t h e m a g n e t i c p r o p e r t i e s o f t h e
d i f f e r e n t powders s t u d i e d by Dunlop t h e i r r e s p o n s e t o t h e a n n e a l i n g p r o c e d u r e i s b r o a d l y s i m i l a r e x c e p t f o r t h e g o e t h i t e r e d s whose p r o p e r t i e s have o f t e n been r e c o g n i z e d a s anomalous ( c f . C h e v a l l i e r , 1951). c u r v e s of Fig.7.12
The m a j o r f e a t u r e i n t h e IRM
i s t h e progressive i n c r e a s e i n magnetic hardness with annealing
399
POWDER A
0
5
10
15
H ( k0.)
COPPERAS RED Or (omuig 1
GOETHITE RED
//--
Fig. 7.12. Isothermal remanence curves of various synthetic fine particle haematites initially (curve 1) and after annealing at successively higher temperatures. In Powder A the temperatures are 2 (65OOC) 3 (75OOC) 4 and 5 (85OOC) 6 (92OOC) and 7 (95OOC). For all the others the temperatures are 2 (70OOC) 3 (80OOC) and 5 (950°C)(after Dunlop, 1971).
400 i.e.
a f t e r e a c h t e m p e r a t u r e i n c r e m e n t a h i g h e r f i e l d is r e q u i r e d t o produce a
g i v e n l e v e l o f remanence.
The i n c r e a s e d c o e r c i v i t y v a r i e s from sample t o sample,
f o r t h e f e r r i t e r e d s t h e i n c r e a s e i s o n l y moderate b u t t h e c o p p e r a s r e d beds show a v e r y marked i n c r e a s e i n c o e r c i v i t y w i t h a n n e a l i n g .
The g o e t h i t e r e d s show a n
o p p o s i t e t r e n d which can b e r e a d i l y i n t e r p r e t e d a s growth of s u p e r p a r a m a g n e t i c m a t e r i a l , by s i n t e r i n g , through a g r a i n s i z e d p r o p e r t i e s appear.
a t which s t a b l e f e r r o m a g n e t i c
S i n c e t h e g r a i n s i z e of t h e g o e t h i t e r e d s was known t o b e
s i m i l a r t o t h a t o f t h e o t h e r h a e m a t i t e s t h i s may r e p r e s e n t e v i d e n c e t h a t d h a e m a t i t e s produced by t h i s method i s r a t h e r l a r g e r t h a n t h e d
for
i n haematites
produced by o t h e r methods. Dunlop (1971, p. 18-19) d i s c u s s e d s e v e r a l p o s s i b i l i t i e s which would a c c o u n t f o r t h e observed i n c r e a s e i n H saturation magnetization
cr
and t h e r a t i o of s a t u r a t i o n remanence (Crs) t o
(PSI.
Fig.7.13. F e r r o m a g n e t i c h y s t e r e s i s c u r v e s b e f o r e a n n e a l i n g ( s o l i d ) and a f t e r a n n e a l i n g a t 95OoC (open c u r v e s ) ( a f t e r Dunlop, 1971). Dunlop a r g u e d t h a t i f t h e m a j o r e f f e c t of a n n e a l i n g i s t o r e l a x i n t e r n a l stress then t h e changes i n Hcr and Prs c a n b e i n t e r p r e t e d a s a r e s p o n s e t o a change i n t h e m a g n e t o e l a s t i c c o n t r i b u t i o n t o b a s a l p l a n e a n i s o t r o p y o r a change i n t h e d e f e c t ( s t r u c t u r e s e n s i t i v e moment).
S i n c e o n l y t h e d e f e c t moment would c a u s e
changes i n t h e s a t u r a t i o n m a g n e t i z a t i o n
CWs)
Dunlop measured h y s t e r e s i s c u r v e s
of powders b e f o r e and a f t e r a n n e a l i n g ( F i g . 7 . 1 3 ) . remanence, a n i n c r e a s e i n c o e r c i v e f o r c e H
These show l i t t l e change i n
<
and a d e c r e a s e i n i n i t i a l s u s c e p t i b i l i t y .
Most i m p o r t a n t l y though, t h e h y s t e r e s i s c&es
reveal a s i g n i f i c a n t decrease i n
401 on a n n e a l i n g d e m o n s t r a t i n g t h a t t h e d e f e c t moment must be changing. Dunlop's a n n e a l i n g e x p e r i m e n t s on f i n e p a r t i c l e h a e m a t i t e s c a n b e i n t e r p r e t e d i n terms o f a g r a d u a l a n n e a l i n g o u t o f a r e l a t i v e l y " s o f t " d e f e c t moment whose o v e r a l l c o e r c i v i t y i s lower t h a n t h a t of a " h a r d e r " i n t r i n s i c s p i n c a n t e d moment, The d i f f e r e n c e i n c o e r c i v i t y spectrum of t h e d e f e c t and s p i n c a n t e d moments i s n o t g r e a t (Fig.7.13) w i t h Haigh (1957).
and t h e terms hard and s o f t a r e o n l y r e l a t i v e i n agreement Dunlop's (1971) d a t a c l e a r l y show, however, t h a t t h e a n i s o t r o p i c
s p i n c a n t e d moment i s h a r d e r t h a n t h e d e f e c t moment i n f i n e p a r t i c l e h a e m a t i t e . I n s i n g l e c r y s t a l s however, t h e r e v e r s e a p p e a r s t o be t h e c a s e (Smith and F u l l e r , 1967).
The specimen s t u d i e d
(Specimen 2 3 o f Kobayashi and Smith, 1965) was a
s i n g l e c r y s t a l o f h a e m a t i t e w i t h a b o u t 8% t i t a n i u m .
Smith and F u l l e r f i r s t
s u b j e c t e d t h e specimen t o continuous thermal d e m a g n e t i z a t i o n o f a s a t u r a t i o n IRM. T h i s i s shown a s Curve 1 on Fig.7.14.
Here t h e s a t u r a t i o n IRM i s l o s t a t t h e
N6el p o i n t of 65OoC (about 4OoC h i g h e r t h a n t h e C u r i e t e m p e r a t u r e f o r t h i s specimen).
Temperature ('C 1
Fig.7.14. Continuous thermal d e m a g n e t i z a t i o n of s a t u r a t i o n IRM of a h a e m a t i t e s i n g l e c r y s t a l w i t h a b o u t 8% t i t a n i u m ( a f t e r Smith and F u l l e r , 1967). Curve 2 i s a r e p e t i t i o n of t h e f i r s t experiment; t h i s shows p r o g r e s s i v e loss of t h e h i g h - t e m p e r a t u r e moment and enhancement o f t h e s p i n - c a n t e d moment.
Smith
and F u l l e r (1967) t h e n went on t o show t h a t t h i s high-temperature moment has a h i g h e r remanent c o e r c i v i t y t h a n t h e s p i n c a n t e d moment. The specimen was p l a c e d 4 i n a f i e l d o f 1.1 x 10 Oe and t h e n i n a r e v e r s e f i e l d s u f f i c i e n t l y s t r o n g t o s w i t c h t h e d i r e c t i o n o f t h e b u l k m a g n e t i z a t i o n and t h e composite m a g n e t i z a t i o n t h u s produced was t h e r m a l l y demagnetized. s e e n below 612OC (Fig.7.15)
The s p i n - c a n t e d moment which can be
i s i n the sense of t he sm al l er negat i ve f i e l d but t he
4
h i g h t e m p e r a t u r e moment r e t a i n s t h e d i r e c t i o n o f t h e o r i g i n a l f i e l d o f 1.1 x 10 O e and would n o t have been s w i t c h e d by t h e n e g a t i v e f i e l d .
402 Temperature f'C II
I
-
+.01k
5
I
P i
Demonstration of h i g h t e m p e r a t u r e moment i n a s i n g l e c r y s t a l of Fig.7.15. h a e m a t i t e ( w i t h 8% t i t a n i u m ) between t h e C u r i e p o i n t (615OC) and t h e Nee1 p o i n t (65O0C) and i t s h i g h c o e r c i v i t y ( a f t e r Smith and F u l l e r , 1967). These e x p e r i m e n t s were a l s o performed on samples w i t h less t h a n 0.05% t i t a n i u m and a l l t h e r e s u l t s i n d i c a t e t h a t t h e h i g h - c o e r c i v i t y remanence a t room t e m p e r a t u r e
i s a s s o c i a t e d w i t h t h e h i g h - t e m p e r a t u r e moment and n o t w i t h t h e s p i n c a n t e d moment. Smith and F u l l e r (1967) f u r t h e r concluded t h a t t h e s t a b l e remanence i n h a e m a t i t e
i s due t o s m a l l f e r r i m a g n e t i c r e g i o n s caused by l a t t i c e i m p e r f e c t i o n s ; t h i s e x p l a n a t i o n i s a t t r a c t i v e b e c a u s e i t e x p l a i n s t h e memory e f f e c t which a r i s e s b e c a u s e of a t r a n s i t i o n zone of s p i n s t h a t c o u p l e t h e f e r r i m a g n e t i c r e g i o n s t o the antiferromagnet. An a l t e r n a t i v e view h a s been p u t forward by Bucur (1978) who s t u d i e d t h e d e f e c t moment i n two s y n t h e t i c h a e m a t i t e powders.
The p r o p e r t i e s o f t h e d e f e c t moment
were s t u d i e d i n weak and moderate f i e l d s w i t h r e s p e c t t o t h e s a t u r a t i o n f i e l d of h a e m a t i t e , and a l s o a s a f u n c t i o n of a n n e a l i n g .
Two d e f e c t components were
separated: a ) a component of low c o e r c i v i t y due t o l a t t i c e d e f e c t s and which d i s a p p e a r s a t t h e Morin t r a n s i t i o n b ) a component w i t h h i g h e r c o e r c i v i t y which p e r s i s t s below t h e Morin t r a n s i t i o n and which i s u n a f f e c t e d by a n n e a l i n g .
T h i s component i s c o n s i d e r e d t o b e due
t o non-magnetic i m p u r i t i e s . The s i g n i f i c a n c e o f t h e s e e x p e r i m e n t a l s t u d i e s l i e s i n t h e i n s i g h t which t h e y can g i v e i n t o t h e o r i g i n of t h e NRM of r e d beds.
I f t h e d e f e c t moment i s t h e more
s t a b l e i n r e d beds ( t h i s might b e e x p e c t e d i f c o a r s e p a r t i c l e h a e m a t i t e was more i m p o r t a n t than pigment i n a p a r t i c u l a r specimen) then i t s p a l a e o m a g n e t i c r e l i a b i l i t y must be viewed w i t h t h e f a c t t h a t s u c h a moment might b e s u s c e p t i b l e t o a l t e r a t i o n by g e o l o g i c a l stress o r h e a t i n g .
A l t e r n a t i v e l y , i f t h e s p i n c a n t e d moment i s t h e
more s t a b l e ( t h i s would b e e x p e c t e d i f t h e pigment was t h e dominant m a g n e t i c c a r r i e r ) , t h e n p a l a e o m a g n e t i c r e s u l t s u n a f f e c t e d by s t r e s s o r h e a t might be e x p e c t e d .
403 U n f o r t u n a t e l y t h e r e have been few s t u d i e s o f t h e r e l a t i v e i m p o r t a n c e of s p i n c a n t e d and d e f e c t moments i n r e d b e d s , so a g e n e r a l a s s e s s m e n t of t h e i r palaeomagnetic s i g n i f i c a n c e i s n o t p o s s i b l e a t t h i s s t a g e . MAGNETIZATION PROCESSES I N SEDIMENTS D e t r i t a l remanent m a g n e t i z a t i o n S t u d i e s on t h e remanent m a g n e t i z a t i o n of u n c o n s o l i d a t e d sediments have shown t h a t a v a r i e t y of p r o c e s s e s a r e c a p a b l e o f p r o d u c i n g a n a l i g n m e n t of magnetic p a r t i c l e s and t h u s i m p a r t i n g a d e t r i t a l remanent m a g n e t i z a t i o n o r DRM t o t h e sediment.
O r i g i n a l l y t h e terms d e t r i t a l remanent m a g n e t i z a t i o n and d e p o s i t i o n a l
remanent m a g n e t i z a t i o n were c o n s i d e r e d synonymous (Nagata, 1953) b u t I r v i n g (1957) r e c o g n i z e d t h a t d e t r i t a l m a g n e t i z a t i o n i n v o l v e d p r o c e s s e s which o p e r a t e d i n u n c o n s o l i d a t e d sediment a f t e r d e p o s i t i o n and i n t r o d u c e d t h e term p o s t - d e p o s i t i o n a l d e t r i t a l remanent m a g n e t i z a t i o n .
Now t h e d i s t i n c t i o n i s made between:
depositional
DRM which r e f e r s t o t h e m a g n e t i z a t i o n a c q u i r e d a s t h e m a g n e t i c . p a r t i c l e s s e t t l e
from s u s p e n s i o n , i n t e r a c t w i t h t h e s e d i m e n t s u r f a c e a t t h e s e d i m e n t / w a t e r i n t e r f a c e and t h e n come t o r e s t on t h e s u b s t r a t e and p o s t - d e p o s i t i o n a l DRM which r e f e r s t o t h e m a g n e t i z a t i o n which is a c q u i r e d by a s e d i m e n t a f t e r magnetic p a r t i c l e s come t o r e s t on t h e s u b s t r a t e i . e . below t h e s e d i m e n t / w a t e r i n t e r f a c e , DRM h a s been s t u d i e d e x p e r i m e n t a l l y and t h e o r e t i c a l l y i n much more d e t a i l than
chemical remanent m a g n e t i z a t i o n (CRM) b e c a u s e o f t h e r e l a t i v e s i m p l i c i t y of d e s i g n i n g laboratory experiments.
N e v e r t h e l e s s t h e r e s u l t s o f DRM e x p e r i m e n t s have n e v e r
proved e a s y t o i n t e r p r e t i n terms o f n a t u r a l s e d i m e n t a r y environments.
One of t h e
key q u e s t i o n s i n t h e s t u d y o f DRM i s t h e a c c u r a c y w i t h which sediments r e c o r d t h e d i r e c t i o n o f t h e ambient magnetic f i e l d .
Nagata e t a l . (1943) a t a n e a r l y s t a g e
showed t h a t c r u s h e d b a s a l t fragments f a i t h f u l l y r e c o r d e d t h e d e c l i n a t i o n of a n a p p l i e d f i e l d when d e p o s i t e d i n w a t e r .
Many e a r l y e x p e r i m e n t s r e d e p o s i t e d n a t u r a l
s e d i m e n t a r y m a t e r i a l s , and r e v e a l e d t h a t a l t h o u g h d e c l i n a t i o n c o u l d be f a i t h f u l l y reproduced t h e i n c l i n a t i o n was o f t e n much l e s s t h a n t h e a p p l i e d f i e l d .
Johnson
e t a l . (1948) d i s c o v e r e d t h i s f o r a r e d e p o s i t e d v a r v e d c l a y and Clegg e t a l . (1954) d i s c o v e r e d a n '8
i n c l i n a t i o n e r r o r i n a redeposited T r i a s s i c red sandstone.
This
e f f e c t was c a l l e d " i n c l i n a t i o n e r r o r " by King (1955) who observed t h a t t h e i n c l i n a t i o n i n t h e sediment Io, c o u l d b e r e l a t e d t o t h e i n c l i n a t i o n of t h e a p p l i e d field I
f
by t h e r e l a t i o n s h i p :
tan I = F tan I f where f i s a c o n s t a n t ( F i g . 7 . 1 6 ) .
(7.14) F o r t h e t y p e s of sediment he s t u d i e d King
d e t e r m i n e d f Z 0 . 4 and e x p l a i n e d t h e i n c l i n a t i o n e r r o r by assuming t h a t t h e sediment c o n s i s t s of a m i x t u r e of s p h e r i c a l and d i s c - s h a p e d p a r t i c l e s whose magnetic moment l a y i n t h e p l a n e of t h e d i s c ( t h i s would o n l y b e n e c e s s a r i l y so i n t h e c a s e of
404 m a g n e t i t e which p o s s e s s e s a p p r e c i a b l e shape a n i s o t r o p y ) .
The s p h e r i c a l p a r t i c l e s
a r e a l i g n e d w i t h t h e E a r t h ’ s magnetic f i e l d on t h e s u b s t r a t e s u r f a c e b u t t h e disc-shaped p a r t i c l e s r o t a t e s o t h a t t h e y l i e i n t h e h o r i z o n t a l p l a n e .
I f both
s e t s of p a r t i c l e s have e q u a l m a g n e t i c moments t h e n (7.14) r e s u l t s and f can b e i d e n t i f i e d a s the f r a c t i o n of spherical p a r t i c l e s .
1
0
U
E0
c
tan
If
R e l a t i o n s h i p between i n c l i n a t i o n o f r e d e p o s i t e d g l a c i a l v a r v e s I, and Fig.7.16. i n c l i n a t i o n of a p p l i e d f i e l d I f ( a f t e r King, 1955). An a l t e r n a t i v e e x p l a n a t i o n was g i v e n by
G r i f f i t h s e t a l . (1960) who showed
experimentally t h a t the i n c l i n a t i o n e r r o r i s independent of p a r t i c l e s i z e (Fig.7.17).
tf
t
I
0
10
+ I
20
3
Mean Particle Diameter (microns) Fig.7.17. Independence o f i n c l i n a t i o n and p a r t i c l e s i z e . Each s i z e f r a c t i o n o b t a i n e d from a s i n g l e v a r v e l a y e r (from G r i f f i t h s e t a l . , 1 9 6 0 ) .
405 G r i f f i t h s e t a l . (1960) s u g g e s t e d t h a t t h e i n c l i n a t i o n error a r i s e s when a n a l i g n e d p a r t i c l e t o u c h e s t h e bottom and t h e n r o l l s i n t o t h e n e a r e s t d e p r e s s i o n . To c a l c u l a t e t h i s e f f e c t r e q u i r e s t h e a v e r a g i n g o v e r p a r t i c l e s which r o l l i n a l l d i r e c t i o n s and i n f a c t t h e p a r t i c l e s whose a x e s o f r o t a t i o n a r e p a r a l l e l t o t h e h o r i z o n t a l component o f t h e a p p l i e d f i e l d have t h e g r e a t e s t i n f l u e n c e on t h e inclination error. tan I where
= ( 2 cos
The r e s u l t
0) / (1
+
cos
(Griffiths e t al.,
0)
1960) i s :
t a n If
(7.15)
0 i s t h e a v e r a g e a n g l e t h r o u g h which t h e p a r t i c l e r o l l s .
Although t h i s " r o l l i n g s p h e r e s 1 ' model a p p e a r s v e r y d i f f e r e n t from t h e "shape a n i s o t r o p y " model, King and Rees (1966) have s u g g e s t e d t h a t t h e y can b e c o n s i d e r e d a s v a r i a n t s o f t h e same p r o c e s s whereby g r a v i t y overcomes t h e magnetic o r i e n t a t i o n a t the i n s t a n t of deposition. The d i r e c t i o n of m a g n e t i z a t i o n o f l a b o r a t o r y d e p o s i t e d s e d i m e n t s i s i n f l u e n c e d by t h e a n g l e of s l o p e of t h e b e d d i n g p l a n e .
T h i s was f i r s t d i s c o v e r e d by King
(1955) who c a l l e d i t "bedding e r r o r " and d e f i n e d i t a s t h e d i f f e r e n c e between t h e i n c l i n a t i o n o b s e r v e d on a d i p p i n g bed and t h a t o b s e r v e d on a h o r i z o n t a l bed. Hamilton and King (1964) showed t h a t b e d d i n g e r r o r i s a p p r o x i m a t e l y e q u a l t o t h e s l o p e o f t h e bedding p l a n e ; p a r t i c l e s r o l l i n g downslope r o l l through a n a n g l e
(0
c< i s t h e s l o p e of t h e bedding p l a n e w h i l s t p a r t i c l e s r o l l i n g u p s l o p e r o l l through a n a n g l e o f o n l y (0 -4. The b i a s c r e a t e d by t h e d i f f e r e n c e i n t h e s e +6()
where
two a n g l e s l e a d s t o t h e bedding e r r o r (King, 1955; G r i f f i t h s e t a l . ,
1960).
I n a d d i t i o n t o i n c l i n a t i o n e r r o r and bedding e r r o r King (1955) a l s o r e p o r t e d t h a t d e p o s i t i o n i n f l o w i n g w a t e r a f f e c t e d t h e d i r e c t i o n of m a g n e t i z a t i o n of t h e sediment.
G r a n a r (1958) a t t r i b u t e d t h i s t o p a r t i c l e r o t a t i o n a b o u t a n h o r i z o n t a l
a x i s , p e r p e n d i c u l a r t o t h e f l o w d i r e c t i o n and c a u s e d by s h e a r s t r e s s i n t h e laminar flow layer.
I f t h e d i r e c t i o n o f flow i s i n t h e v e r t i c a l p l a n e o f t h e magnetic
f i e l d , o n l y a n e r r o r i n i n c l i n a t i o n w i l l be produced; however, i f t h e flow i s o b l i q u e t o t h e f i e l d , e r r o r s i n b o t h i n c l i n a t i o n and d e c l i n a t i o n w i l l r e s u l t .
Griffiths
e t a l . (1960) and Rees (1961) made q u a n t i t a t i v e measurements o f s u c h " c u r r e n t r o t a t i o n e f f e c t s " and i n one c a s e , Rees was a b l e t o c r e a t e a n e r r o r i n d e c l i n a t i o n
0' of 3
by a c u r r e n t which made a n a n g l e o f 145O w i t h t h e a p p l i e d f i e l d .
The t h r e e e f f e c t s d e s c r i b e d above a r e a l l a s p e c t s o f d e p o s i t i o n a l DRM.
The
p o s s i b i l i t y of p o s t - d e p o s i t i o n a l DRM was f i r s t r a i s e d by I r v i n g (1957) from a n i n v e s t i g a t i o n o f slumped beds of T o r r i d o n i a n Sandstone.
The f a c t t h a t t h e s e
d i s t u r b e d beds have a uniform d i r e c t i o n o f m a g n e t i z a t i o n l e d I r v i n g (1957) t o p r o p o s e t h a t f i n e d e t r i t a l magnetic p a r t i c l e s were f r e e t o r o t a t e i n w a t e r f i l l e d v o i d s a f t e r d i s t u r b a n c e and t h u s i m p a r t a p o s t - d e p o s i t i o n a l DRM.
A practical
l a b o r a t o r y d e m o n s t r a t i o n o f p o s t - d e p o s i t i o n a l DRM was made by I r v i n g and Major (1964) who produced a s t a b l e m a g n e t i z a t i o n i n a w e t s y n t h e t i c s e d i m e n t c o n s i s t i n g o f q u a r t z and m a g n e t i t e .
Q u a r t z g r a i n s from c o a r s e s i l t t o f i n e s a n d s i z e were mixed w i t h
406 m a g n e t i t e p a r t i c l e s w i t h t h e r a t i o o f maximum d i a m e t e r s r a n g i n g from 1.0 t o 0.5. The m i x t u r e s were f l o o d e d and t h e n d r a i n e d and d r i e d i n a n a p p l i e d f i e l d ; t h e r e s u l t s c l e a r l y i n d i c a t e t h e p r o d u c t i o n o f a p o s t - d e p o s i t i o n a l DRM ( F i g . 7 . 1 8 ) . S i m i l a r e x p e r i m e n t s have been d e s c r i b e d by Tucker (1979) who showed t h a t t h e f i n e r ( h i g h c o e r c i v i t y ) g r a i n s were p r e f e r e n t i a l l y r o t a t e d .
Fiold Inclination
Fig.7.18. P o s t - d e p o s i t i o n a l DRM of a s y n t h e t i c sediment o f q u a r t z and m a g n e t i t e d r i e d i n t h e presence of an applied f i e l d a c c u r a t e l y records t h e i n c l i n a t i o n of t h e f i e l d ( a f t e r I r v i n g and M a j o r , 1964). Although no s a t i s f a c t o r y model has been developed on a q u a n t i t a t i v e b a s i s t h e q u a l i t a t i v e t h e o r y of I w i n g (1957) s u g g e s t e d t h a t magnetic g r a i n s would be f r e e t o r o t a t e within water f i l l e d pore spaces. experiments1 observations.
This i s c o n s i s t e n t with s e v e r a l
L d v l i e ( 1 9 7 4 ) , f o r example, d e p o s i t e d a c l a y from
s u s p e n s i o n i n a known f i e l d and mid-way t h r o u g h t h e e x p e r i m e n t r e v e r s e d t h e d i r e c t i o n of t h e f i e l d and d e p o s i t e d a c a l c i u m c a r b o n a t e marker bed.
When t h e
d e p o s i t e d s e d i m e n t was measured t h e e x p e c t e d p a l a e o m a g n e t i c boundary was found t o b e d i s p l a c e d downwards w e l l below t h e marker bed ( F i g . 7 . 1 9 ) . a r e c o n s i s t e n t w i t h t h e p r o d u c t i o n of
These r e s u l t s
p o s t - d e p o s i t i o n a l DRM and s i m i l a r r e s u l t s
have been o b s e r v e d i n deep s e a s e d i m e n t coves.
Dymond ( i 9 6 9 ) demonstrated t h a t
t h e Brunhes-Matuyama palaeomagnetic boundary was d i s p l a c e d 160cm downward w i t h r e s p e c t t o t h e c o r r e s p o n d i n g r a d i o m e t r i c boundary.
T h i s was a t t r i b u t e d t o slow
d e w a t e r i n g of t h e sediment b u t Opdyke (1972) h a s q u e s t i o n e d Dymond's i n t e r p r e t a t i o n of t h e r a d i o m e t r i c d a t a .
The i m p o r t a n c e o f c r i t i c a l w a t e r c o n t e n t i n t h e f o r m a t i o n
of p o s t - d e p o s i t i o n a l DRM has been d e m o n s t r a t e d by Khramov (1968) who d e p o s i t e d r e d c l a y s from s u s p e n s i o n .
For some samples he i n c r e a s e d t h e i n t e n s i t y of t h e a p p l i e d
f i e l d a f t e r s e d i m e n t a t i o n was completed; t h i s i n c r e a s e d t h e i n t e n s i t y of magneti z a t i o n f o r sediment w i t h a 70% w a t e r c o n t e n t b u t t h e r e was no e f f e c t on t h o s e
401 samples w i t h o n l y a 30% w a t e r c o n t e n t .
These r e s u l t s a r e c o n s i s t e n t w i t h t h e
d i f f i c u l t y of o b t a i n i n g r e l i a b l e p a l a e o m a g n e t i c r e s u l t s from v e r y wet sediments (Kent, 1973). 65
-a
60
1
55
50 45 40 00
900 Dadination
1800
Fig.7.19. Displacement o f a p a l a e o m a g n e t i c boundary i n a l a b o r a t o r y d e p o s i t e d sediment. The a p p l i e d f i e l d (dashed l i n e ) was r e v e r s e d a f t e r 62 days. Subsequent measurement o f t h e remanent magnetism shows t h a t sediment a l r e a d y d e p o s i t e d responded t o t h e change i n f i e l d d i r e c t i o n i n d i c a t i n g t h e f o r m a t i o n of a p o s t d e p o s i t i o n a l DRM ( a f t e r L b v l i e , 1974). The i m p l i c a t i o n of t h e s e r e s u l t s a r e q u i t e c l e a r .
I f the i n i t i a l water
c o n t e n t of a sediment i s low and below t h e c r i t i c a l v a l u e needed f o r p o s t d e p o s i t i n n a l DRM t o o c c u r t h e n t h e o r i g i n a l DRM ( i f p r e s e n t ) i s l i k e l y t o be preserved.
On t h e o t h e r hand i f t h e w a t e r c o n t e n t i s above t h e c r i t i c a l v a l u e
then p o s t - d e p o s i t i o n a l r o t a t i o n s may o c c u r and a p o s t - d e p o s i t i o n a l DRM r e s u l t . The p r e s e n c e o r a b s e n c e of a n i n c l i n a t i o n e r r o r may be u s e f u l i n d i s c r i m i n a t i n g one type of m a g n e t i z a t i o n from t h e o t h e r .
i s important i n magnetization fixation.
I t f o l l o w s t h a t sediment d e w a t e r i n g
Although d e h y d r a t i o n has been a l m o s t
e x c l u s i v e l y used t o d e w a t e r s e d i m e n t s i n l a b o r a t o r y experiments compaction i s much more i m p o r t a n t i n n a t u r e .
There have been few e x p e r i m e n t a l s t u d i e s of
compaction a l t h o u g h Yaskawa (1974) h a s e s t i m a t e d t h e f i x a t i o n d e p t h of p o s t d e p o s i t i o n a l DRM u s i n g a v i s c o u s f l u i d model i n which v i s c o s i t y i s a f f e c t e d by g r a v i t a t i o n a l compaction.
Models o f t h i s k i n d a r e o n l y u s e f u l i f t h e y pay due
r e g a r d t o t h e i n h e r e n t m a g n e t o m i n e r a l o g i c a l p r o p e r t i e s o f s e d i m e n t s and t h e g r o s s n a t u r e of t h e s e d i m e n t a r y environment.
I n p a r t i c u l a r the r o l e of d i f f e r e n t
magnetic c a r r i e r s must b e c o n s i d e r e d a s must t h e m a g n e t i c g r a i n s i z e spectrum. The r o l e o f g r a i n s i z e v a r i a t i o n s i n DRM has been d e m o n s t r a t e d by a number of s t u d i e s of l a c u s t r i n e and g l a c i a l s e d i m e n t s .
Thompson and Kelts ( 1 9 7 4 ) , f o r
example, r e p o r t e d t h a t t h e b a s a l p a r t s o f t u r b i d i t e l a y e r s i n Lake Zug, S w i t z e r l a n d have lower m a g n e t i c i n t e n s i t i e s and lower i n c l i n a t i o n s t h a n t h e l a m i n a t e d upper portions.
The l i k e l y e x p l a n a t i o n o f t h i s i s t h a t t h e c o a r s e r p a r t i c l e s i n t h e s e
b a s a l l a y e r s were a l i g n e d w i t h t h e c u r r e n t d u r i n g d e p o s i t i o n and were u n a b l e t o r o t a t e i n t o t h e ambient f i e l d a f t e r d e p o s i t i o n b e c a u s e o f t h e i r c o a r s e g r a i n s i z e .
408 The o c c u r r e n c e o f DRM i n n a t u r e D e s p i t e t h e s i m p l i c i t y of t h e t h e o r y t h e a c t u a l o c c u r r e n c e of DRM o r p o s t This i s l a r g e l y because
d e p o s i t i o n a l DRM i s a c t u a l l y v e r y d i f f i c u l t t o prove.
o f t h e complex m a g n e t i c and t e x t u r a l v a r i a t i o n s shown by s e d i m e n t s .
Even i n
Recent s e d i m e n t s i t i s p o s s i b l e t h a t s i g n i f i c a n t p o r t i o n s o f t h e NRM may be of chemical o r i g i n and c a r r i e d by a u t h i g e n i c h a e m a t i t e .
However, i t i s now known
t h a t t h e a p p a r e n t Morin t r a n s i t i o n s o b s e r v e d i n Lake Windermere s e d i m e n t s ( C r e e r e t a l . , 1972) were n o t t r u e t r a n s i t i o n s b u t due t o t h e d i s t u r b a n c e o f m a g n e t i c f a b r i c d u r i n g t h e thawing of t h e s e d i m e n t ( C r e e r e t a l . , 1979). Under s p e c i a l c i r c u m s t a n c e s DRM may b e i n f e r r e d i f t h e r e i s e v i d e n c e t h a t t h e m a g n e t i z a t i o n was s t a b i l i z e d v e r y s h o r t l y a f t e r d e p o s i t i o n .
Verosub (1975), f o r
example, h a s compared t h e m a g n e t i z a t i o n of contemporaneous deformed and undeformed v a r v e s and was a b l e t o show t h a t t h e d e f o r m a t i o n had o c c u r r e d l e s s t h a n t h r e e y e a r s a f t e r d e p o s i t i o n of t h e v a r v e .
The m a g n e t i z a t i o n of t h e v a r v e s i s t h u s l i k e l y t o
b e a DRM o r v e r y e a r l y p o s t - d e p o s i t i o n a l DRM ( F i g . 7 . 2 0 ) .
Glacial varves represent
a r a t h e r s p e c i a l i z e d s e d i m e n t a r y environment i n which d e p o s i t i o n a l DRM and p o s t d e p o s i t i o n a l DRM a r e commonly p r e s e r v e d .
In l a c u s t r i n e s e d i m e n t s DRM and CRM a r e 1972; Thompson and K e l t s ,
both important magnetization processes (Creer et a l . ,
1974; Thompson, 1977) and i n t h e marine realm DRM i s a major p r o c e s s of m a g n e t i z a t i o n i n a v a r i e t y of environments (Kent, 1973; Graham, 1974; Blow and Hamilton,
1974).
A u s e f u l review o f DRM i n Recent s e d i m e n t s i s g i v e n by Verosub (1977). Une of t h e most u s e f u l methods i s t o compare t h e t h r e e - d i m e n s i o n a l m a g n e t i c f a b r i c w i t h t h e d i r e c t i o n of remanence.
T h i s can b e done by measurement of t h e
m a g n e t i c s u s c e p t i b i l i t y a n i s o t r o p y (Hamilton a n d Rees, 1970).
The m a g n e t i c
a n i s o t r o p y of many s e d i m e n t s can b e e s t i m a t e d by a second r a n k symmetric t e n s o r K ( G r a n a r , 1958) which r e l a t e s t h e m a g n e t i z a t i o n Ji i n d u c e d i n a specimen by a
f i e l d H:
(7.16)
J i = K i j Hj
The t e n s o r d e s c r i b e s a r e p r e s e n t a t i v e o r i e n t a t i o n f o r a l l t h e m a g n e t i c g r a i n s i n a sediment and g i v e s some i n d i c a t i o n o f t h e d e g r e e of a l i g n m e n t .
The s u s c e p t i b i l i t y
can b e c o m p l e t e l y s p e c i f i e d by t h e magnitude and o r i e n t a t i o n o f t h r e e o r t h o g o n a l p r i n c i p a l a x e s Kmax, Kint, two e l e m e n t s :
and Kmin.
The magnetic f a b r i c of many s e d i m e n t s c o n t a i n s
a h o r i z o n t a l f o l i a t i o n due t o t h e o r i e n t i n g e f f e c t o f t h e g r a v i t -
a t i o n a l f i e l d and a l i n e a t i o n due t o p r e f e r r e d g r a i n o r i e n t a t i o n s which r e s u l t from depositional currents.
S i n c e m a g n e t i t e i s most e a s i l y magnetized a l o n g i t s l o n g
a x i s b e c a u s e o f s h a p e a n i s o t r o p y any a x i s o f p r e f e r r e d g r a i n o r i e n t a t i o n w i l l c o i n c i d e w i t h t h e d i r e c t i o n o f t h e maximum s u s c e p t i b i l i t y a x i s . n a t u r a l s e d i m e n t s ( R e e s , 1965) and l a b o r a t o r y d e p o s i t e d m a t e r i a l
Measurements on (Rees and Woodall,
1975) i n d i c a t e t h a t s u s c e p t i b i l i t y a n i s o t r o p y i s a good measure of t h e s e d i m e n t a r y f a b r i c o f c o a r s e s i l t s and f i n e s a n d s .
A p r i m a r y d e p o s i t i o n a l f a b r i c may t h u s be
409
. .;
,
. N
W
Fig.7.20. Evidence f o r d e p o s i t i o n a l DRM i n g l a c i a l v a r v e s from New England. Above a v e r t i c a l c r o s s s e c t i o n shows f o l d e d v a r v e s and below t h e remanence d i r e c t i o n s a r e shown on a s t e r e o g r a p h i c p r o j e c t i o n . ' U n f o l d i n g ' t h e f o l d c a u s e s t h e d i r e c t i o n s t o c l u s t e r around t h e d i r e c t i o n s of n e a r l y undisturbed varves. D e t e r m i n a t i o n of t h e number o f v a r v e s i n v o l v e d i n t h e f o l d p u t s a l i m i t on t h e number o f y e a r s between d e p o s i t i o n and d i s t u r b a n c e ( a f t e r Verosub, 1975). e s t a b l i s h e d w i t h t h e p r i n c i p a l a x i s o f maximum s u s c e p t i b i l i t y l y i n g p a r a l l e l t o t h e b e d d i n g p l a n e and i n d i c a t i n g t h e p a l a e o c u r r e n t d i r e c t i o n .
A number o f palaeo-
c u r r e n t s t u d i e s have been made i n t h i s way (Hamilton, 1963; Hamilton and Rees, 1970).
T h i s does n o t n e c e s s a r i l y mean, of c o u r s e , t h a t t h e remanent magnetism
i s of d e p o s i t i o n a l o r i g i n and i t i s n e c e s s a r y t o compare t h e m a g n e t i c f a b r i c w i t h t h e NRM d i r e c t i o n . g r e a t e r than say
Coarse g r a i n e d s t r o n g l y a n i s o t r o p i c s e d i m e n t s ( t o t a l a n i s o t r o p y
lo%), which
show i n c l i n a t i o n e r r o r may be c o n s i d e r e d t o show
DRM i f t h e remanence and s u s c e p t i b i l i t y d e c l i n a t i o n s a r e c l o s e l y c o i n c i d e n t .
practice t h i s situation i s rarely realized.
In
I t i s more u s u a l t o f i n d t h a t t h e
t o t a l s u s c e p t i b i l i t y a n i s o t r o p y of s e d i m e n t s i s r a t h e r small (2-5%) and i s c a r r i e d by a d i f f e r e n t g r a i n s i z e f r a c t i o n t h a n t h e remanence.
Elongated magnetite g r a i n s ,
f o r example may b e a l i g n e d on d e p o s i t i o n and be t o o c o a r s e t o b e r o t a t e d i n t o t h e ambient f i e l d p r o v i d e d t h a t t h e g r a v i t a t i o n a l hydrodynamic f o r c e s exceed t h e m a g n e t i c c o u p l e due t o t h e geomagnetic f i e l d .
Very s m a l l m a g n e t i t e p a r t i c l e s may
be o r i e n t a t e d l a r g e l y by t h e magnetic f i e l d b e c a u s e t h e y may be s i n g l e domain
410 g r a i n s w i t h l a r g e r m a g n e t i c moments, and b e c a u s e t h e y a r e f r e e t o r o t a t e a f t e r d e p o s i t i o n t o produce p o s t - d e p o s i t i o n a l DRM.
The same r o c k may t h u s c a r r y
magnetic g r a i n s which c a r r y p a l a e o m a g n e t i c i n f o r m a t i o n and r e s i s t AF ' c l e a n i n g ' p r o c e d u r e s and l a r g e r magnetic g r a i n s which c a r r y p a l a e o c u r r e n t i n f o r m a t i o n and dominate t h e magnetic s u s c e p t i b i l i t y a n i s o t r o p y .
The c r i t i c a l g r a i n s i z e f o r
p o s t - d e p o s i t i o n a l a l i g n m e n t i s l i k e l y t o v a r y w i t h w a t e r c o n t e n t and m a t r i x composition b u t may commonly b e i n t h e r e g i o n o f 20-40 m
(Stupavsky e t a l . , 1974;
T u r n e r , 1975). Comparison o f t h e s u s c e p t i b i l i t y a n i s o t r o p y and remanence d i r e c t i o n s may b e used t o h e l p i n t h e r e c o g n i t i o n o f p o s t - d e p o s i t i o n a l DRM. shown, f o r example, t h a t i n some l i m e s t o n e s ( F i g . 7 . 2 1 )
Turner (1975) h a s
t h e p r i n c i p a l a x i s of
maximum s u s c e p t i b i l i t y l i e p a r t l y w i t h i n t h e bedding p l a n e i n d i c a t i n g a p r i m a r y d e p o s i t i o n a l f a b r i c and a r e a l s o s t r u n g o u t between t h e bedding p l a n e and t h e d i r e c t i o n o f remanence.
The n e a r c o i n c i d e n c e o f t h e p r i n c i p a l a x i s o f maximum
s u s c e p t i b i l i t y a n i s o t r o p y a n d t h e remanence d i r e c t i o n i s a good i n d i c a t i o n t h a t t h e m a g n e t i z a t i o n i s a DRM and t h e s p r e a d of d i r e c t i o n s i n d i f f e r e n t specimens a n e q u a l l y good i n d i c a t i o n o f t h e o c c u r r e n c e o f p o s t - d e p o s i t i o n a l g r a i n r o t a t i o n s .
k tl I
I I I l l 1
I I I I I I
I
I
1
Fig.7.21. Comparison o f t h e d i r e c t i o n s o f remanence and m a g n e t i c s u s c e p t i b i l i t y a n i s o t r o p y a x e s i n some C a r b o n i f e r o u s l i m e s t o n e s ( a f t e r T u r n e r , 1975). The o c c u r r e n c e o f DRM i n r e d beds has been s u g g e s t e d by a number of a u t h o r s ( I r v i n g , 1957; Opdyke, 1961; Roy and P a r k , 1972, 1974; Dunlop, 1972; C o l l i n s o n ,
1974) b u t t h e i r c o n c l u s i o n s have been l a r g e l y b a s e d on t h e f a c t t h a t s p e c u l a r i t e (opaque h a e m a t i t e p a r t i c l e s ) c a r r i e s a s i g n i f i c a n t p r o p o r t i o n o f t h e NRM.
This
assumption i s c l e a r l y i n c o r r e c t b e c a u s e much of t h e s p e c u l a r i t e i n r e d beds i s demonstrably o f d i a g e n e t i c o r i g i n a f t e r m a g n e t i t e (Van Houten, 1968).
I t does
seem l i k e l y , however, t h a t DRM may have been i m p o r t a n t i n many r e d b e d s , p r i o r t o d i a g e n e s i s b e c a u s e many of t h e o r i g i n a l d e t r i t a l o x i d e s were p r o b a b l y m a g n e t i t e .
411 R e l i c t g r a i n s o f m a g n e t i t e a r e known t o o c c u r i n a number of a n c i e n t r e d beds and b e c a u s e of t h e dominance o f s h a p e a n i s o t r o p y o v e r m a g n e t o c r y s t a l l i n e a n i s o t r o p y even i n r o c k s c o n t a i n i n g a l a r g e f r a c t i o n of h a e m a t i t e a p r i m a r y d e p o s i t i o n a l f a b r i c may b e p r e s e r v e d . Although a number of w o r k e r s , i n c l u d i n g t h e a u t h o r , have made measurements of t h e s u s c e p t i b i l i t y a n i s o t r o p y of r e d b e d s , t h e r e a r e few r e c o r d s of t h e p r e s e r v a t i o n of primary depositional f a b r i c s .
One of t h e few e x c e p t i o n s i s t h e Precambrian
M a r t i n Formation o f Saskatchewan, Canada which h a s been s t u d i e d by Evans and Bingham (1973) and Aziz-ur-Rahman e t a l . (1975).
Measurement of t h e magnetic
s u s c e p t i b i l i t y a n i s o t r o p y showed a w e l l - d e f i n e d primary s t y l e f a b r i c w i t h maxima (K1) o f magnetic s u s c e p t i b i l i t y p a r a l l e l t o t h e bedding p l a n e s , and minima (K3) grouped around t h e p a l a e o v e r t i c a l a f t e r c o r r e c t i o n f o r g e o l o g i c a l d i p e t a l . , 1975).
(Aziz-ur-Rahman
A s i s comonly the case i n sedimentary rocks, the s u s c e p t i b i l i t y
e l l i p s o i d s t e n d t o b e o b l a t e r a t h e r t h a n p r o l a t e ; i n o t h e r words t h e r e l a t i v e d i f f e r e n c e between K 3 and K
2
i s g r e a t e r t h a n t h a t between K1 and K2.
f o r a number of s i t e s a r e shown i n Fig.7.22
The K
1
axes
and when t h e s e a r e compared w i t h paleoo-
c u r r e n t e v i d e n c e deduced from c r o s s - b e d d i n g and t h e M a r t i n Formation b a s i n geometry t h e y can b e s e e n t o be a r e a s o n a b l e r e f l e c t i o n o f t h e p a l a e o c u r r e n t p a t t e r n .
All
t h e i n d i c a t i o n s h e r e a r e t h a t t h e s u s c e p t i b i l i t y a n i s o t r o p y i s a shape a n i s o t r o p y due t o a s m a l l p r o p o r t i o n o f m a g n e t i t e i n r o c k s whose o x i d e mineralogy i s dominated by haema t i t e . The s t a b l e NRM o f t h e M a r t i n Formation i s c a r r i e d by h a e m a t i t e (Evans and Bingham, 1973) which i s i n d i c a t e d by t h e r e s i s t a n c e o f t h e NRM t o AF c l e a n i n g . direction:
Dec = 322',
I n c = -29'
magnetic s u s c e p t i b i l i t y a n i s o t r o p y .
The mean
shows no r e l a t i o n s h i p t o t h e d i r e c t i o n s o f These r e s u l t s g i v e some i n s i g h t i n t o t h e
m a g n e t i z a t i o n of r e d beds; t h e o r i g i n a l sediment may have been r i c h i n m a g n e t i t e p o s s e s s i n g a d e p o s i t i o n a l magnetic f a b r i c and a DRM.
However, a s d i a g e n e s i s ,
i n c l u d i n g m a g n e t i t e o x i d a t i o n , p r o g r e s s e d t h e DRM was r e p l a c e d by a CRM c a r r i e d by h a e m a t i t e b u t t h e d e p o s i t i o n a l magnetic f a b r i c ( c a r r i e d p r i n c i p a l l y by t h e c o a r s e r m a g n e t i t e g r a i n s ) was. a t l e a s t p a r t i a l l y p r e s e r v e d . Chemical remanent m a g n e t i z a t i o n The i n s i t u m a g n e t i z a t i o n of s e d i m e n t s o r r o c k s by t h e chemical growth of m a g n e t i c m i n e r a l s i s r e f e r r e d t o a s chemical remanent m a g n e t i z a t i o n (CRM). Although t h e r e has been some d e b a t e a s t o t h e r e l a t i v e importance o f DRM and CRM i n r e d beds C o l l i n s o n (1965a) i n r e v i e w i n g t h e a v a i l a b l e e v i d e n c e concluded
t h a t CRM was t h e mechanism t h r o u g h which t h e m a j o r i t y of r e d bed f o r m a t i o n s were magnetized.
T h i s view i s s t i l l w i d e l y h e l d a t t h e p r e s e n t time.
The p r o c e s s of
CRM i s most c o n v e n i e n t l y c o n s i d e r e d t h e n u c l e a t i o n and s u b s e q u e n t g r a i n growth of haematite.
During t h e e a r l y s t a g e s t h e g r a i n s a r e so small t h a t t h e r e l a x a t i o n
41 2
Fig.7.22. Sampling s i t e s of t h e M a r t i n Formation i n Saskatchewan. The t h i c k arrows show t h e p r i n c i p a l a x e s of maximum s u s c e p t i b i l i t y a n i s o t r o p y and t h e t h i n arrows p a l a e o c u r r e n t d i r e c t i o n s b a s e d on c r o s s - s t r a t i f i c a t i o n ( a f t e r Aziz-ur-Rahman e t a l . , 1975). i s v e r y s h o r t and t h e g r a i n s a r e s u p e r p a r a m a g n e t i c .
A s t h e g r a i n grows i t p a s s e s
through t h e c r i t i c a l b l o c k i n g d i a m e t e r db and t h e r e l a x a t i o n t i m e i n c r e a s e s v e r y rapidly.
A t t h i s p o i n t t h e d i r e c t i o n of t h e ambient m a g n e t i c f i e l d i s f r o z e n i n
and s u b s e q u e n t changes i n f i e l d d i r e c t i o n w i l l have no e f f e c t upon i t s d i r e c t i o n of magnetization. From Eq.7.11 a s a s i n g l e domain grows a t t e m p e r a t u r e T , i t s m a g n e t i z a t i o n i s s t a b i l i z e d a t volume V
b
=
b
when
lnCy2:30
(7.17)
kT
where
Y
= 1000s and C = 10
10
S-
.
1
P u t t i n g K = 1250 e r g cm-3 (Strangway e t a l . ,
1 9 6 8 ) and assuming t h e g r a i n s a r e s p h e r e s , t h e c r i t i c a l b l o c k i n g d i a m e t e r a t 3OoC
-0,lym.
From Eq.7.17 g r a i n s w i t h a d i a m e t e r o f 0 . 1 4 ~have a r e l a x a t i o n t i m e of
lOI8 y e a r s c l e a r l y i n d i c a t i n g t h a t CRM can b e s t a b l e on a g e o l o g i c a l time s c a l e .
In p r a c t i c e t h e a c q u i s i t i o n i s p r o b a b l y much more c o m p l i c a t e d t h a n i s s u g g e s t e d
413 by t h i s s i m p l e model.
I n p a r t i c u l a r there a r e a v a r i e t y of diagenetic processes
which produce CRM i n r e d beds and n o t a l l of them i n v o l v e t h e s i m p l e n u c l e a t i o n and g r a i n growth of h a e m a t i t e .
The most i m p o r t a n t of t h e s e p r o c e s s e s a r e :
1.
The a g e i n g o f f e r r i c oxyhydroxide
2.
The p r e c i p i t a t i o n and growth from s o l u t i o n of f e r r i c oxyhydroxides
3.
The i n t r a s t r a t a l f o r m a t i o n of f e r r i c oxyhydroxides from s i l i c a t e a l t e r a t i o n
4.
The pseudomorphism o f s i l i c a t e s by
5.
The f o r m a t i o n o f a u t h i g e n i c
6.
I n s i t u o x i d a t i o n of m a g n e t i t e
Fe203 Fe 0 overgrowths 2 3
These p r o c e s s e s f a l l n a t u r a l l y i n t o two g r o u p s : p a r t i c l e h a e m a t i t e and
2.
1.
Those producing pigmentary f i n e
Those p r o d u c i n g b l a c k s p e c u l a r i t e g r a i n s .
Because of
t h e p r a c t i c a l d i f f i c u l t i e s o n l y t h e f i r s t group of p r o c e s s e s have been s t u d i e d under experimental conditions. Hedley (1968).
The CRM o f pigmentary FeOOH a n d FeZ03 has been s t u d i e d by
Hedley (1968) used s y n t h e t i c FeOOH mixed w i t h p l a s t e r of P a r i s
moulded i n t o 1 x 2.5cm d i s c s .
These were h e a t e d i n s t e p s from 220'
t o o v e r 6OO0C
i n t h e E a r t h ' s f i e l d and a l l o w e d t o c o o l i n f i e l d f r e e s p a c e i n o r d e r t o produce CRM.
A f t e r e a c h h e a t i n g and c o o l i n g c y c l e t h e remanence and s u s c e p t i b i l i t y o f t h e
d i s c s was measured.
Phase changes i n v o l v e d i n t h e d e h y d r a t i o n and a l t e r a t i o n o f
t h e i n i t i a l FeOOH were m o n i t o r e d u s i n g D i f f e r e n t i a l Thermal A n a l y s i s (DTA), D i f f e r e n t i a l Thermogravimetric A n a l y s i s (DTG) and Thermomagnetic measurements. X-ray d i f f r a c t i o n and E l e c t r o n Microscopy was used t o i d e n t i f y s p e c i f i c phases and t h e i r g r a i n s i z e . CRM of t h e g o e t h i t e
-
haematite t r a n s i t i o n
Hedley s t u d i e d s e v e r a l samples o f g o e t h i t e and i n common w i t h o t h e r a u t h o r s n o t e d some d i f f e r e n c e s i n t h e b e h a v i o u r o f d i f f e r e n t samples.
The r e s u l t s f o r a
w e l l - c r y s t a l l i z e d g o e t h i t e , G , a r e shown i n Fig.7.23. T h i s i s a 20% mix of 3 -1 g o e t h i t e and shows remanence o f cm g , i n i t i a l m a g n e t i c s u s c e p t i b i l i t y of
2Op
3 0 F cm3 0e-I g-'
and a decomposition t e m p e r a t u r e o f 290°C.
T h i s sample followed
t h e ambient f i e l d from d e h y d r a t i o n t o 45OoC and shows a well-marked double peak on t h e DTG r e c o r d c o r r e s p o n d i n g t o Van O o s t e r h o u t ' s (1965) Type A g o e t h i t e . 3 -1 and Most g o e t h i t e s , however, showed much weaker remanence of a b o u t 8 ~ c m 4 g a l s o more s c a t t e r e d d i r e c t i o n s , d e s p i t e having
s i m i l a r i n i t i a l magnetic s u s -
c e p t i b i l i t y , decomposition t e m p e r a t u r e a n d g r a i n s i z e . example (MYLL 100) a r e shown i n Fig.7.24.
R e s u l t s from a t y p i c a l
T h i s d i f f e r e n c e i n b e h a v i o u r could be
a c c o u n t e d f o r i f G 1 c o n t a i n e d a s m a l l amount of 7-FeOOH which would i n v e r t t o maghemite on d e h y d r a t i o n and t h u s c a r r y a s t r o n g e r , more s t a b l e CRM.
Since
y - F e 0 i s n o t s e e n on t h e thermomagnetic c u r v e o f G1 (Fig.7.23) a more l i k e l y 2 3 e x p l a n a t i o n l i e s i n t h e d e f e c t n a t u r e o f s y n t h e t i c g o e t h i t e s . T h i s d e f e c t was proposed t o e x p l a i n t h e v a r i a t i o n i n t h e r m a l and m a g n e t i c p r o p e r t i e s of g o e t h i t e
414
N
021 04'*
0
-
I
A
I
L
I
400
,
I"'"
I
,
800
800
n
Fig.7.23. CRM o f t h e W-FeOOH+ b(-FegOg t r a n s i t i o n , same15 GI. I. DTG c u r v e , dm/dt i n mg/min 11. DTA, d b l d t = 2.5OImin 1II.y P G cm 0 e - l g - l ) IV. 3 -1 CRM i n Y G a u s s cm g ( a . f t e r Hedley, 1968). (Van O o s t e r h o u t , 1965).
H e d l e y ' s r e s u l t s s u g g e s t t h a t i t may i n f l u e n c e t h e
magnetic p r o p e r t i e s o f t h e r e s u l t a n t h a e m a t i t e , a r e s u l t which i s of some s i g n i f i c a n c e i n t h e palaeomagnetism o f r e d beds i n view o f t h e l a r g e v a r i a t i o n i n m a g n e t i c p r o p e r t i e s which t h e y e x h i b i t . F i n e d-FeOOH was p r e p a r e d by a d d i n g sodium hydroxide t o molar f e r r i c c h l o r i d e solution.
The p r e c i p i t a t e c o n s i s t e d of p o o r l y d e f i n e d a c i c u l a r g r a i n s 2000 x 6508
mixed w i t h 2508 p a r t i c l e s .
The CRM r e s u l t s f o r t h i s , m a t e r i a l (50% mix) a r e q u i t e
u n l i k e t h o s e produced from t h e o t h e r g o e t h i t e samples ( F i g . 7 . 2 4 ) .
The remanence is
much h i g h e r by a n o r d e r o f magnitude and t h e r e i s a c o r r e s p o n d i n g i n c r e a s e i n t h e i n i t i a l magnetic s u s c e p t i b i l i t y .
The v a r i a t i o n o f remanence w i t h t e m p e r a t u r e shows
two d i s t i n c t maxima a t 27OoC and 45OoC w i t h CRM d i r e c t i o n s s c a t t e r e d a r o u n d t h e ambient f i e l d d i r e c t i o n a t 273'
and 335OC b u t show no g r o u p i n g a t o t h e r t e m p e r a t u r e s .
The maximum i n remanence a t 27OoC was shown by X-ray e v i d e n c e t o r e s u l t from
IM 0 p o s s i b l y a b o u t 1008 i n s i z e . Hedley (1968, p. 113) used R 2 3 measurements t o show t h a t s u c h f i n e m a t e r i a l c o u l d c a r r y remanence and a t t r i b u t e d ultra-fine#-Fe
415
N
-!:
6
4 2 200
00
4
600
800
1°C)
Fig.7.24.
CRM o f t h e q-FeOOH-, t<-Fe203 t r a n s i t i o n .
i t t o s p i n imbalance ( N g e l , 1962).
D e t a i l s same a s i n Fig.7.23.
The second maxima a t 45OoC is p r o b a b l y t h e
r e s u l t o f g r a i n growth o f t h e u l t r a - f i n e h a e m a t i t e from 1002 t o a b o u t 2002 a t which IRM i n c r e a s e s r a p i d l y .
I n summary H e d l e y ' s r e s u l t s show a number of f e a t u r e s
which a r e o f i n t e r e s t i n t h e m a g n e t i z a t i o n of r e d b e d s .
I n the f i r s t place the
g r e a t v a r i e t y i n thermal b e h a v i o u r o f t h e CRM produced by d e h y d r a t i o n o f t h e f o u r f e r r i c oxyhydroxide polymorphs i s c o n s i s t e n t w i t h t h e complex t h e r m a l d e m a g n e t i z a t i o n b e h a v i o u r o b s e r v e d i n r e d beds.
1. Aciculara(-FeOOH.
T h i s v a r i a t i o n may b e summarized:
O f t h r e e samples o n l y one a c q u i r e d a CRM on d e h y d r a t i o n which
was c l o s e t o t h a t o f t h e a p p l i e d f i e l d .
T h i s CRM showed a maximum i n m e d i a t e l y a f t e r
d e h y d r a t i o n when t h e h a e m a t i t e was a b o u t 4002 i n g r a i n s i z e 2. F i n e O(-FeOOH produced u l t r a f i n e N - F e 2 0 3 on d e h y d r a t i o n which showed a v e r y high remanent i n t e n s i t y n e a r t o t h e d i r e c t i o n o f t h e a p p l i e d f i e l d and p r o b a b l y due t o s p i n imbalance.
Above 35OoC t h e remanence d e c r e a s e s and t h e d i r e c t i o n s s c a t t e r ,
possibly a s a r e s u l t of s i n t e r i n g . S t u d i e s o f t h e o t h e r FeOOH polymorphs by Hedley (1968) a l s o r e v e a l e d p r o p e r t i e s which c o u l d b e of p r a c t i c a l s i g n i f i c a n c e i n t h e m a g n e t i z a t i o n of r e d b e d s ,
For
example, p-FeOOH produced a p p r e c i a b l e remanence o n l y a f t e r h e a t i n g t o 6OO0C
416
N ..
(b)
t*\
I
m
2oo
100
0 150
W
.
"
'
-
IX
5
Fig.7.25. CRM of f i n e d-FeOOH+c(-Fe203 a s Fig.7.23.
t r a n s i t i o n , sample 82.
D e t a i l s same
s u g g e s t i n g t h a t t h e R - F e 0 produced by t h i s d e h y d r a t i o n may b e c h e m i c a l l y and 2 3 m a g n e t i c a l l y d i f f e r e n t from t h a t produced by t h e d e h y d r a t i o n o f D(-FeOOH. The remanence produced a t 6OO0C was s t a b l e and i n t h e ambient f i e l d d i r e c t i o n . y-FeOOH showed m a g n e t i c b e h a v i o u r w i t h a s t r o n g dependence on c r y s t a l h a b i t . T a b u l a r c r y s t a l s produced s u p e r p a r a m a g n e t i c Y-Fe203 w h i l s t a c i c u l a r c r y s t a l s followed t h e ambient f i e l d t o 5OO0C a t which r e v e r s a l o c c u r r e d .
I f t h i s were
t r u e s e l f - r e v e r s a l , p o s s i b l y due t o some form o f m a g n e t o s t a t i c c o u p l i n g , t h e n i t c o u l d b e of some p a l a e o m a g n e t i c s i g n i f i c a n c e e s p e c i a l l y i f a p p r e c i a b l e q u a n t i t i e s of l e p i d o c r o c i t e were o r i g i n a l l y p r e s e n t i n a p a r t i c u l a r r e d bed f o r m a t i o n . These e x p e r i m e n t a l r e s u l t s show t h a t t h e d e h y d r a t i o n o f g o e t h i t e may b e a n i m p o r t a n t means of p r o d u c i n g CRM i n h a e m a t i t e .
However, i t s i m p o r t a n c e i n n a t u r e
i s v e r y d i f f i c u l t t o a s s e s s , e s p e c i a l l y i n view o f t h e wide v a r i e t y o f g o e t h i t e s which a r e found i n r e d b e d s .
D e t r i t a l f i n e g r a i n e d g o e t h i t e i n t h e form o f
' l i m o n i t e ' c o u l d a g e d i r e c t l y t o produce h a e m a t i t e w i t h a CRM.
Goethite a l s o
forms a s a m e t a s t a b l e i n t e r m e d i a t e d u r i n g t h e o x i d a t i o n of f e r r o m a g n e s i a n s i l i c a t e s . I t may be r e s p o n s i b l e f o r a s u b s t a n t i a l p a r t of t h e remanence i n s u c h c a s e s
e s p e c i a l l y i n r e l a t i v e l y young (Cenozoic) r e d beds ( e . g .
Larson a n d Walker, 1975).
417 I n g e n e r a l , t h e r e f o r e , i t seems l i k e l y t h a t CRM produced by t h e d e h y d r a t i o n o f g o e t h i t e i s i m p o r t a n t i n r e d beds.
The r e l a t i v e importance o f t h i s p r o c e s s and
t h e d i r e c t p r e c i p i t a t i o n of h a e m a t i t e from s o l u t i o n v a r i e s c o n s i d e r a b l y from one example t o a n o t h e r .
The d i r e c t p r e c i p i t a t i o n of h a e m a t i t e from groundwater
s o l u t i o n s may r e s u l t i n t h e f o r m a t i o n o f CRM i n a manner v e r y s i m i l a r t o t h a t o u t l i n e d i n t h e t h e o r y above.
This process i s important i n coarse grained red
beds which were porous and allowed t h e p a s s a g e o f groundwater s o l u t i o n s .
Both
pigmentary and opaque h a e m a t i t e c o u l d be p r e c i p i t a t e d i n t h i s way. THE MAGNETIC PROPERTIES OF CONTINENTAL RED BEDS
The magnetic p r o p e r t i e s o f r e d beds a r e d e s c r i b e d by C r e e r (1962a) and i n a series o f p a p e r s by C o l l i n s o n (1965a, b; 1966a, b; 1967; 1968a, b ) .
These s t u d i e s were
made b e f o r e r e c e n t advances i n o u r knowledge o f c o n t i n e n t a l r e d bed d i a g e n e s i s and t h e r e have been r e l a t i v e l y few r e c e n t s t u d i e s which have c o n s i d e r e d t h e magnetic p r o p e r t i e s of r e d beds i n r e l a t i o n t o t h e i r d i a g e n e t i c f e a t u r e s . The b u l k magnetic c h a r a c t e r i s t i c s o f r e d beds have been s t u d i e d u s i n g a v a r i e t y of methods which e n a b l e t h e i d e n t i f i c a t i o n o f t h o s e i r o n o x i d e s which c o n t r i b u t e towards t h e NRM and a l s o , i n some c i r c u m s t a n c e s , t h e i r t e x t u r a l c h a r a c t e r i s t i c s . Most f r e q u e n t l y thermomagnetic a n a l y s i s , e i t h e r by thermal demagnetization of t h e NRM ( I r v i n g and Opdyke, 1964 f o r example), o r more commonly by measurement of t h e
t e m p e r a t u r e dependence of t h e b u l k s a t u r a t i o n m a g n e t i z a t i o n (Schwarz, 1969 f o r example) h a s been used.
Thermomagnetic methods a r e o f l i t t l e v a l u e i n s e p a r a t i n g
d i f f e r e n t forms of h a e m a t i t e and a r e a l s o l i m i t e d by t h e f a c t t h a t h e a t i n g whole r o c k s c a u s e s magnetic m i n e r a l changes which make i n t e r p r e t a t i o n d i f f i c u l t .
Low
t e m p e r a t u r e t r a n s i t i o n s a r e u s e f u l i n a v o i d i n g phase changes (Nagata e t a l . , 1964; M a u r i t s c h and T u r n e r , 1975) b u t a r e l i m i t e d by t h e f a c t t h a t t h e t r a n s i t i o n s may be s u p p r e s s e d i n v e r y f i n e p a r t i c l e s .
The fundamental d i f f e r e n c e i n c o e r c i v i t y
s p e c t r a between h a e m a t i t e and m a g n e t i t e means t h a t t h e i r s e p a r a t e c o n t r i b u t i o n s may be i s o l a t e d by t h e measurement o f m a g n e t i z a t i o n (Ji-H) curves :
c u r v e s o r IRM (Jir-H)
m a g n e t i t e p a r t i c l e s , even when single-domain r a r e l y have c o e r c i v i t i e s
which exceed 1 KOe whereas t h e c o e r c i v i t y o f h a e m a t i t e may be a s high as 20 o r 30 kOe (Roquet, 1954).
I n a d d i t i o n t h e c o e r c i v i t y of h a e m a t i t e i n t h e s i n g l e -
domain range i s s u f f i c i e n t l y g r a i n s i z e dependent ( C h e v a l l i e r and Mathieu, 1943) t h a t t h e s e methods s h o u l d t h e o r e t i c a l l y e n a b l e t h e s e p a r a t i o n o f c o a r s e g r a i n e d s p e c u l a r i t e and f i n e p a r t i c l e pigment i n r e d beds. Another method o f a n a l y s i n g t h e c o e r c i v i t y spectrum i s by t h e d e t e r m i n a t i o n of r o t a t i o n a l h y s t e r e s i s , Wr ( t h e work done i n one c y c l e of a r o t a t i n g f i e l d H) a s a f u n c t i o n of H. O ' R e i l l y (1970) have used Wr-H
Brooks and
c u r v e s t o d i s t i n g u i s h between m a g n e t i t e , s p e c u l a r i t e ,
and pigment i n r e d beds and by comparing t h e i r r e s u l t s w i t h type c u r v e s f o r s y n t h e t i c h a e m a t i t e s , have e s t i m a t e d p i g m e n t / s p e c u l a r i t e r a t i o s .
418 The a p p l i c a t i o n of t h e s e t e c h n i q u e s has shown t h a t d e s p i t e c o n s i d e r a b l e complexity r e d beds have a number of c h a r a c t e r i s t i c m a g n e t i c p r o p e r t i e s .
These
p r o p e r t i e s e n a b l e i d e n t i f i c a t i o n of t h o s e m i n e r a l p h a s e s which c a r r y t h e NRM o f r e d b e d s , and when c o n s i d e r e d w i t h s e d i m e n t o l o g i c a l and d i a g e n e t i c e v i d e n c e a l l o w some i n t e r p r e t a t i o n o f t h e o r i g i n of t h e m a g n e t i z a t i o n i n c o n t i n e n t a l r e d beds
.
Induced m a g n e t i z a t i o n (J1-H) and i s o t h e r m a l remanence (IRM) c u r v e s C o l l i n s o n (1968a, b ) has shown t h a t J i - H
c u r v e s of r e d beds i n t h e r a n g e
0-8 KOe have a s h a l l o w c u r v a t u r e compared w i t h t h a t of n a t u r a l and s y n t h e t i c h a e m a t i t e s , and a s t r a i g h t l i n e p o r t i o n between a b o u t 3 KOe and 8 KOe ( F i g . 7 . 2 6 ) . These f e a t u r e s s u g g e s t t h e p r e s e n c e o f s u b s t a n t i a l p a r a m a g n e t i c m a t e r i a l , p o s s i b l y i n c l u d i n g i r o n - r i c h c l a y s , p h y l l o s i l i c a t e s , and i l m e n i t e .
The s u s c e p t i b i l i t i e s
of some common p a r a m a g n e t i c c o n s t i t u e n t s a r e g i v e n i n T a b l e 7 . 1 .
*r
-
cy
P x
c I
m
3
6
9
Field (K.Oe)
Fig.7.26. T y p i c a l p a r t i a l h y s t e r e s i s c u r v e s o b t a i n e d from r e d beds. M a g n e t i z a t i o n i s corrected f o r diamagnetic contribution o i n c r e a s i n g f i e l d odecreasing f i e l d ( a f t e r C o l l i n s o n , 1968b).
419 TABLE 7 . 1 The m a g n e t i c s u s c e p t i b i l i t i e s of some p a r a m a g n e t i c c o n s t i t u e n t s which commonly o c c u r i n s e d i m e n t a r y rocks.
Mineral
S u s c e p t i b i l i t y YG 0 e - l g - l
Fe203(%)
FeO(%)
Illite
1.4
4.7
12
Montmorillonite
2.8
3.0
11
Chamosite
14.0
40.0
70
Biotite
19.2
7.9
63
Orthopyroxene
24.0
1.0
40
I lmeni t e
46.4
-
85
The h i g h - f i e l d s u s c e p t i b i l i t y o f h a e m a t i t e i s one o f i t s most c h a r a c t e r i s t i c -1 -1 p r o p e r t i e s and has a v a l u e o f a b o u t cm3 Oe g C o l l i n s o n ( 1 9 6 8 a ) has
2YG
.
used t h i s p r o p e r t y t o c a l c u l a t e t h e h a e m a t i t e c o n t e n t o f a number of r e d bed f o r m a t i o n s ( T a b l e 7 . 2 ) and has made d e t a i l e d i n v e s t i g a t i o n s of t h e r e l a t i o n s h i p s TABLE 7 . 2 The h a e m a t i t e c o n t e n t of v a r i o u s r e d beds based on magnetic a n a l y s i s . Formation
T o t a l Fe203(%)
Ha ema ti t e (% )
Taiguati (Carboniferous, Brazil)
2.01
1.46
Pimenteira (Devonian, B r a z i l )
8.70
6.67
Cutler (Permian, USA)
1.82
1.12
Chinle ( T r i a s s i c , USA)
2.22
1.06
Miller Peak ( P r e c a m b r i a n , USA)
3.54
1.31
420
between f e r r o u s / f e r r i c i r o n r a t i o s and i n d u c e d m a g n e t i z a t i o n i n a number of r e d bed f o r m a t i o n s ( C o l l i n s o n , 1968b).
F i g . 7 . 2 7 shows t h e dependence o f t h e a v e r a g e
s p e c i f i c induced m a g n e t i z a t i o n , Jsi w i t h i n a f o r m a t i o n .
The p l o t t e d v a l u e s a r e
based on from 4 - 1 3 samples f o r e a c h f o r m a t i o n and t h e b a r s i n d i c a t e t h e r a n g e o f variation.
The r e s u l t s show a c l e a r p o s i t i v e c o r r e l a t i o n when t h e a v e r a g e s p e c i f i c
R IM (IRM p e r gram o f Fe20j) a c q u i r e d by samples from e a c h f o r m a t i o n i s compared with the corresponding average f e r r o u s / f e r r i c i r o n r a t i o a negative c o r r e l a t i o n i s apparent (Fig.7.28).
This indicates t h a t the mineral controbuting t o the increased
induced m a g n e t i z a t i o n i s p r o b a b l y p a r a m a g n e t i c o r h a s o n l y a v e r y weak IRM, s i n c e i t i s e a s i l y shown t h a t m a g n e t i t e o r maghemite would a l s o i n c r e a s e t h e s p e c i f i c
IRM i f i t was t h e c a u s e of t h e i n c r e a s e d Jsi.
t
T
t
TB .
T..
1
lW
1
0
10
20
3
4
5
6
Fe O/Fe203(%)
Fig.7.27. Formation means of s p e c i f i c induced m a g n e t i z a t i o n , J s i p l o t t e d a g a i n s t mean f e r r o u s / f e r r i c o x i d e r a t i o ( a f t e r C o l l i n s o n , 1968b). IRM c u r v e s a r e u s e f u l i n d e t e r m i n i n g t h e m a g n e t i c m i n e r a l o g y of r e d beds
(Dunlop, 1972).
T h i s i s b e c a u s e m a g n e t i t e and maghemite a r e r e l a t i v e l y ' s o f t '
and even f o r e l o n g a t e d s i n g l e domain p a r t i c l e s have a maximum remanent c o e r c i v i t y
(Her)
about cr 2 KOe f o r 40 m g r a i n s and f i n e p a r t i c l e pigmentary h a e m a t i t e i s by f a r t h e h a r d e s t of a b o u t 1500 Oe.
Coarse h a e m a t i t e ( s p e c u l a r i t e ) i s ' h a r d e r ' w i t h H
material with H
i n e x c e s s of 19 KOe and p r o b a b l y much h i g h e r . Using t h i s cr i n f o r m a t i o n Dunlop (1972) h a s a n a l y s e d t h e c o e r c i v i t y s p e c t r a o f r e d beds and
a r b i t r a r i l y d i v i d e d them i n t o t h e i r ' s o f t ' ( 0 < H c r
< IKOe),
'intermediate'
421
0'
I
I
I
I
10
20
30
40
I
50
60
FeO/Fe2O3(%)
Fig.7.28. Formation means o f s p e c i f i c IRM p l o t t e d a g a i n s t mean f e r r o u s / f e r r i c o x i d e r a t i o ( a f t e r C o l l i n s o n , 1968b). (1
Fig.7.29
shows t h e IRM c u r v e s o f a number o f Upper
B u n t s a n d s t e i n (Lower T r i a s s i c ) r e d beds from t h e Vosges Massif o f e a s t e r n France
L
I
I
5
10
15
H ( KOe) Fig.7.29. T y p i c a l IRM c u r v e s o f unheated r e d beds from t h e Upper B u n t s a n d s t e i n ( a f t e r Dunlop, 1972).
422 D e t e r m i n a t i o n of t h e remanent i n t e n s i t y (18 KOe) J r and mean c o e r c i v i t y ( f i e l d r e q u i r e d t o produce 1 / 2 J ) sandstones.
Hcr
from t h e s e c u r v e s g i v e v a l u e s t y p i c a l of r e d 3 G cm and 3cr from 2.57 t o 5.20 KOe.
J r r a n g e s frzm 9.9 t o 34.7 x
These r e s u l t s s u g g e s t t h a t t h e s a n d s t o n e s c o n t a i n i m p o r t a n t amounts o f s p e c u l a r i t e and pigment and o n l y minor amounts of m a g n e t i t e and maghemite.
terms t h e m a g n e t i t e c o n t e n t need o n l y be 0 . 5
-
In quantitative
1%of t h e h a e m a t i t e c o n t e n t i n o r d e r
t o make a n e q u a l c o n t r i b u t i o n t o s a t u r a t i o n remanence, s o i n t h e s e r o c k s t h e maximum amount must b e a f r a c t i o n of one p e r c e n t of t h e t o t a l o x i d e c o n t e n t .
In
o r d e r t o a n a l y s e t h e c o e r c i v i t y s p e c t r a , a s deduced from IRM c u r v e s , i n more d e t a i l Dunlop (1972 p. 39) c a l c u l a t e d t h e i n c r e m e n t a l i s o t h e r m a l remanent moments mr 3 (G c m ) i n 1 KOe A H i n t e r v a l s and p l o t t e d t h e r e s u l t s a s a h i s t o g r a m . These i n c r e m e n t a l c o e r c i v i t y s p e c t r a ( F i g . 7 . 3 0 ) r e v e a l o n l y minor amounts o f m a g n e t i t e as expected, but a l s o considerable v a r i a t i o n s i n coercivity spectra i n the
10-18 K O e r a n g e .
T h i s i s u n l i k e l y t o b e due t o t h e i n f l u e n c e o f s p e c u l a r i t e and
must be due t o i n t r i n s i c v a r i a t i o n s i n t h e c o e r c i v i t y spectrum o f t h e pigment which a r e p r o b a b l y due t o g r a i n s i z e v a r i a t i o n s , s t r u c t u r a l d i f f e r e n c e s and impurity content.
These v a r i a t i o n s a r e q u i t e c o n s i s t e n t w i t h t h e e x p e r i m e n t a l
e v i d e n c e from s y n t h e t i c h a e m a t i t e s .
0
5
10
15
Fig.7.30. T y p i c a l c o e r c i v i t y s p e c t r a o f two s a n d s t o n e s from t h e Upper B u n t s a n d s t e i n , d e t e r m i n e d from t h e c u l v e s o f Fig.7.29 ( a f t e r Dunlop, 1972).
423 T h i s method of i n c r e m e n t a l c o e r c i v i t y spectrum a n a l y s i s i s o f c o n s i d e r a b l e v a l u e i n m o n i t o r i n g chemical and s t r u c t u r a l changes whicn t a k e p l a c e d u r i n g t h e h e a t i n g of r e d beds.
I n t h e B u n t s a n d s t e i n s t u d i e d by Dunlop (1972) a f t e r e a c h
s t a g e of h e a t t r e a t m e n t t h e m a g n e t i c mineralogy was determined from t h e c o e r c i v i t y spectrum.
T y p i c a l s p e c t r a f o r one s a n d s t o n e a r e shown i n Fig.7.31.
The most
obvious changes o c c u r i n t h e m a g n e t i t e (0-1 KOe) and pigment ( 3 - 1 8 KOe) t r a c t i o n s . Heating i n a i r t o 52OoC d e s t r o y s a b o u t t w o - t h i r d s o f t h e o r i g i n a l m a g n e t i t e c o n t e n t , presumable by o x i d a t i o n t o h a e m a t i t e , b u t h e a t i n g t o 62OoC and above r e s u l t s i n magnetite production.
The p r o d u c t i o n o f m a g n e t i t e on h e a t i n g r e d beds
h a s been f r e q u e n t l y r e p o r t e d i n t h e l i t e r a t u r e ( S t e p h e n s o n , 1967; Schwarz, 1969, 1970) and i s p r o b a b l y due t o t h e breakdown of i r o n - s i l i c a t e s (Dunlop, 1972, p. 4 6 ) . Such a p r o c e s s i s l i k e l y t o c a u s e s e r i o u s problems d u r i n g t h e r m a l d e m a g n e t i z a t i o n b e c a u s e of t h e p r o d u c t i o n o f l a b o r a t o r y m a g n e t i z a t i o n s .
Unannealed
c
0 2-
620°C
I I I r I 1 I7-m
0
I
, ,
.
i
-g
I
(Y
0, X
i
a
+ *
0
5
10
15
H (kOe) E v o l u t i o n of t h e c o e r c i v i t y spectrum of a t y p i c a l s a n d s t o n e (BD3) when Fig.7.31. h e a t e d i n a i r t o t h e g i v e n t e m p e r a t u r e and a n n e a l e d 2-3hr ( a f t e r Dunlop, 1972).
424
The c o e r c i v i t y spectrum of t h e pigment changes o n l y ,a l i t t l e between 520 and 85OoC b u t then i n c r e a s e s s h a r p l y i n t h e 94OoC a n n e a l .
This increase i n coercivity
spectrum of t h e pigment i s c o n s i s t e n t w i t h D u n l o p ' s (1971) r e s u l t s from s y n t h e t i c f i n e p a r t i c l e haematites.
I t i s i n t e r p r e t e d a s e i t h e r t h e a n n e a l i n g o u t of d e f e c t
ferromagnetism o r p o s s i b l y t h e i n c o r p o r a t i o n o f i m p u r i t i e s such a s Ti4+ i n t o t h e haematite l a t t i c e . J.-T analysis Thermal decay c u r v e s of induced m a g n e t i z a t i o n i n r e d beds can g e n e r a l l y be i n t e r p r e t e d a s a combination o f p a r a m a g n e t i c components, d e c a y i n g a c c o r d i n g t o t h e C u r i e Law, i . e .
i n v e r s e l y a s t h e a b s o l u t e t e m p e r a t u r e , and a f e r r o m a g n e t i c
c o n t r i b u t i o n from h a e m a t i t e which decays s l o w l y a t lower t e m p e r a t u r e s and t h e n drops rapidly i n t h e v i c i n i t y of the N e h l point.
F i g . 7 . 3 2 shows Ji-T
show t y p i c a l paramagnetic and f e r r o m a g n e t i c b e h a v i o u r .
c u r v e s which
The m a g n e t i z a t i o n s t i l l
p r e s e n t a t 75OoC can b e e x p l a i n e d by t h e p a r a m a g n e t i c component which w i l l f a l l t o a b o u t 30% of i t s room t e m p e r a t u r e v a l u e by 750°C and t h e f a c t t h a t h a e m a t i t e
i s paramagnetic above t h e Nkel p o i n t .
0
400
800
Temperature ('C)
Fig.7.32. T y p i c a l examples of t h e t h e r m a l decay of i n d u c e d m a g n e t i z a t i o n i n . samples showing h i g h , i n t e r m e d i a t e and low h a e m a t i t e c o n t e n t ( P 4 0 5 83%, T14 52%, D12 17% of t o t a l f e r r i c o x i d e r e s p e c t i v e l y . D 1 2 shows n e a r p u r e l y p a r a m a g n e t i c b e h a v i o u r ( a f t e r C o l l i n s o n , 1968a).
425
Some a u t h o r s ( e . g . Dunlop, 1971) c o n s i d e r t h a t t h e Ne'el p o i n t and C u r i e p o i n t O t h e r workers c o n s i d e r t h e NLel p o i n t t o
of h a e m a t i t e a r e c o i n c i d e n t a t 68OoC.
b e a l i t t l e h i g h e r , n e a r t o 69OoC ( C o l l i n s o n , 1968a) and t h e C u r i e p o i n t i s o f t e n quoted a s 675OC a l t h o u g h h i g h e r v a l u e s a r e commonly r e p o r t e d .
The work of a number
of a u t h o r s i s c o n s i s t e n t w i t h a c o i n c i d e n t NLel p o i n t and C u r i e p o i n t a t 725'C (Uyeda, 1958; Hedley, 1968; Al-Khafaji a n d Vincenz, 1971).
I n t h e i r s t u d y of t h e
Cambrian Lamotte Formation, Al-Khafa j i and Vincenz (1971) r e p o r t e d t h e predominant C u r i e t e m p e r a t u r e a t 725OC, a l t h o u g h v a l u e s o f 675OC and some i n t h e range 550-600°C were a l s o found,
Al-Khafa j i and Vincenz (1971) r e i n t e r p r e t e d t h e d a t a
of Nagata and Akimoto (1956) showing t h e r e l a t i o n s h i p between C u r i e t e m p e r a t u r e and i l m e n i t e c o n t e n t i n t h e h a e m a t i t e - i l m e n i t e s e r i e s (Fig.7.34).
The C u r i e
t e m p e r a t u r e a t 675OC would t h u s c o r r e s p o n d t o a n i l m e n i t e c o n t e n t of a b o u t 6%; and t h a t a t 55OoC t o a n i l m e n i t e c o n t e n t o f 17-20%.
Curie p o i n t s i n t h e
55O0C-60O0C range a r e commonly found i n r e d beds and i t seems t h a t t h e s e a r e most l i k e l y due t o t i t a n i u m s u b s t i t u t i o n i n h a e m a t i t e .
This i s consistent with
t h e m i n e r a l o g i c a l and geochemical e v i d e n c e which s u g g e s t s t h a t t i t a n h a e m a t i t e s may be more abundant i n t h e s e d i m e n t a r y environment 3 t h a n has g e n e r a l l y been r e a l i z e d . C u r i e p o i n t s i n t h e r a n g e 0-500°C a r e n o t
w i t h up t o a b o u t 5-10% FeTiO
commonly r e p o r t e d from r e d bed s t u d i e s .
These would b e e x p e c t e d i n t h e p r e s e n c e
of t i t a n i u m - r i c h h a e m a t i t e s o r t i t a n o m a g n e t i t e s and i t must b e deduced t h a t s u c h phases a r e correspondingly r a r e i n red beds.
l~t-0-L
--
iZ'9-
-e+
warm grained drt. aminad rdrt.
--A-+-- fino
.\
I 0
200
400
600
800
Tnnporature ('C )
Fig.7.33. C u r i e t e m p e r a t u r e a n a l y s i s of t h e Cambrian Lamotte Formation (USA). H e a t i n g i n nominal vacuum o f 10-3m, A p p l i e d f i e l d 1 KOe. The r e s u l t s a r e f u l l y d e s c r i b e d i n t h e t e x t ( a f t e r Al-Khafaji and Vincenz, 1971).
426
0
Fe203
20
40 60 TiFe03mol %
00
100 TiFe03
Fig.7.34. R e l a t i o n z h i p between C u r i e t e m p e r a t u r e and chemical composition i n t h e h a e m a t i t e - i l m e n i t e s e r i e s . S o l i d l i n e and t h e d a t a i n d i c a t e d by open and c l o s e d c i r c l e s a f t e r Nagata and Akimoto (1956). Dashed l i n e i s a l e a s t s q u a r e s f i t f o r s y n t h e t i c samples which a r e shown by t h e f u l l c i r c l e s . N a t u r a l m i n e r a l s a r e shown by open c i r c l e s ( a f t e r Al-Khafaji and Vincenz, 1971).
427 A f e a t u r e n o t e d i n a number of thermomagnetic a n a l y s e s o f r e d beds i s t h e i r r e v e r s i b i l i t y o f t h e .Ti-T c u r v e s .
100
200
A t y p i c a l example i s shown i n Fig.7.35.
300 400
500 800
700
T'c
Fig.7.35. I r r e v e r s i b l e thermomagnetic b e h a v i o u r i n a Devonian r e d s a n d s t o n e from t h e O r c a d i a n b a s i n , S c o t l a n d ( a f t e r Waage and S t o r e t v e d t , 1973). These c u r v e s u s u a l l y show a t r a n s i t i o n i n t h e r e g i o n o f 200-4OO0C repeated during cooling.
which i s n o t
A l s o , t h e r e i s u s u a l l y a s i g n i f i c a n t loss of magnet-
i z a t i o n a f t e r t h e h e a t i n g and c o o l i n g c y c l e .
These f e a t u r e s a r e r e a d i l y i n t e r p r e t e d
a s a n i n d i c a t i o n o f t h e p r e s e n c e o f maghemite o r titanomaghemite which undergoes i n v e r s i o n t o h a e m a t i t e and o t h e r i n v e r s i o n p r o d u c t s a t t h e t r a n s i t i o n t e m p e r a t u r e , which i s u s u a l l y between 300 and 40OoC.
The loss of m a g n e t i z a t i o n i s due t o t h e
l a r g e d i f f e r e n c e i n s p e c i f i c m a g n e t i z a t i o n between titanomaghaemite and h a e m a t i t e . T h i s d i f f e r e n c e does mean, of c o u r s e , t h a t t h e amounts of titanomaghemmite p r e s e n t i n r e d beds a r e n o t n e c e s s a r i l y l a r g e , p o s s i b l y i n t h e r e g i o n 0.5-1% when p r e s e n t . The NRM o f r e d beds The NRM o f r e d beds v a r i e s i n i n t e n s i t y between a b o u t 0.10 and 100 G .
The
upper l i m i t i s t h e t h e o r e t i c a l maximum which a rock specimen c o n t a i n i n g one p e r c e n t h a e m a t i t e by volume ( c h e m i c a l l y produced) c o u l d o b t a i n a t a t m o s p h e r i c p r e s s u r e s i n t h e E a r t h ' s f i e l d ( s a y 0 . 5 0 e ) ( S t a c e y , 1963).
The most c h a r a c t e r i s t i c
f e a t u r e of t h e NRM of r e d beds i s i t s e x t r e m e l y h i g h c o e r c i v i t y ; t h i s i s c o n s i s t e n t w i t h t h e view t h a t t h e m a g n e t i z a t i o n i s c a r r i e d by s i n g l e domain h a e m a t i t e .
An
i m p o r t a n t consequence of t h i s i s t h a t r o u t i n e l a b o r a t o r y methods of AF demagneti z a t i o n ( r a n g e 0-1KOe) c a n n o t b e used i n t h e p a r t i a l d e m a g n e t i z a t i o n (magnetic c l e a n i n g ) o f r e d beds and o t h e r methods s u c h a s t h e r m a l and chemical d e m a g n e t i z a t i o n must b e used.
R e s u l t s o f t h e AF t r e a t m e n t o f some t y p i c a l r e d b e d s , d e m o n s t r a t i n g
t h i s h i g h c o e r c i v i t y , a r e shown i n F i g . 7 . 3 6 .
428
Direction difference from NRM
Fig.7.36. The r e s u l t s of i n c r e a s i n g AF t r e a t m e n t on t h e NRM i n t e n s i t y o f some t y p i c a l c o n t i n e n t a l r e d beds (The T o r r i d o n i a n S a n d s t o n e ) ( a f t e r S t e w a r t and I r v i n g , 1974). Thermal d e m a g n e t i z a t i o n has been most w i d e l y u s e d i n t h e p a l a e o m a g n e t i c s t u d y of r e d beds.
U s u a l l y specimens a r e h e a t e d i n s t e p w i s e i n c r e m e n t s o f 50 o r 100°C
and m a i n t a i n e d a t t h e d e s i r e d t e m p e r a t u r e f o r a b o u t 5 minutes.
By h e a t i n g t o
p r o g r e s s i v e l y h i g h e r t e m p e r a t u r e s t h e lower c o e r c i v i t y components a r e removed u n t i l , n e a r t h e C u r i e p o i n t o f h a e m a t i t e , o n l y t h e h i g h e s t c o e r c i v i t y components o f t h e NRM remain.
(Eq.7.13)
S i n c e t h e c o e r c i v i t y i s d i r e c t l y r e l a t e d t o r e l a x a t i o n time
i t i s g e n e r a l l y b e l i e v e d t h a t s t a b l e NRM components i s o l a t e d i n t h i s
way approximate t o t h e p r i m a r y remanence.
The t h e r m a l decay c u r v e s o f t h e NRM i n
r e d beds v a r y w i d e l y depending upon t h e number o f d i s c r e t e components which may be p r e s e n t and a l s o on t h e i r b l o c k i n g t e m p e r a t u r e s p e c t r a ,
Blocking t e m p e r a t u r e s
may b e t h e r m a l l y d i s t r i b u t e d o r t h e r m a l l y d i s c r e t e ( I r v i n g and Opdyke, 1964).
In
t h e former c a s e a wide d i s t r i b u t i o n of b l o c k i n g t e m p e r a t u r e s r e s u l t s i n a s t e a d y drop i n NRM i n t e n s i t y d u r i n g t h e r m a l d e m a g n e t i z a t i o n , whereas i n t h e l a t t e r c a s e t h e r e i s l i t t l e loss o f NRM i n t e n s i t y u n t i l t e m p e r a t u r e s i n e x c e s s o f 6OO0C when a l a r g e drop o c c u r s ( F i g . 7 . 3 7 ) .
The common o c c u r r e n c e of b l o c k i n g t e m p e r a t u r e s
o v e r 6OO0C i n r e d beds i n d i c a t e s t h a t h a e m a t i t e must b e t h e p r i n c i p a l m a g n e t i z a t i o n carrier. Although t h e r m a l d e m a g n e t i z a t i o n may b e u s e f u l i n removing s e c o n d a r y m a g n e t i z a t i o n s from r e d beds d e t a i l e d s t u d i e s show t h a t i t i s n o t always p o s s i b l e t o i s o l a t e t h e s t a b l e p r i m a r y NRM.
T h i s i s h a r d l y s u r p r i s i n g i n v i e w o f t h e complex phase
changes and growths of h a e m a t t t e which t a k e p l a c e d u r i n g d i a g e n e s i s .
These o f t e n
r e s u l t i n a v e r y complex NRM which i s i m p o s s i b l e t o r e s o l v e i n t o d i s c r e t e m a g n e t i c components and which d e f i e s s t a n d a r d p a l a e o m a g n e t i c i n t e r p r e t a t i o n s .
429
1.0
-
M ~ 0.5 o -
1
I
I
100
200
1
I
300 400 Tempemture
1
I
I
500
600
700
(‘t)
Fig.7.37. The t h e r m a l decay o f t h e NRM of two specimens o f t h e St.Bees Sandstone ( T r i a s s i c , UK). SB 19 shows t h e r m a l l y d i s t r i b u t e d components. SB 10 shows t h e m a l l y d i s c r e t e components. The complexity of r e d bed m a g n e t i z a t i o n s has meant t h a t t h e r e have been v e r y few s t u d i e s of t h e d e t a i l e d s t r u c t u r e o f t h e NRM i n i n d i v i d u a l r e d bed f o r m a t i o n s , and i n p a r t i c u l a r o f i t s r e l a t i o n s h i p t o d i f f e r e n t t e x t u r a l p h a s e s of h a e m a t i t e . The few s t u d i e s u n d e r t a k e n have c o n c e n t r a t e d on t h e r e l a t i v e importance of s p e c u l a r i t e and pigment a s NRM c a r r i e r s .
Two t e c h n i q u e s have been u s e d :
a)
chemical d e m a g n e t i z a t i o n and b ) t h e c o m p a r a t i v e thermal d e m a g n e t i z a t i o n of s e p a r a t e d c o n c e n t r a t e s o f s p e c u l a r i t e , pigment and t h e p a r e n t rock. Chemical d e m a g n e t i z a t i o n The t e c h n i q u e o f chemical d e m a g n e t i z a t i o n was o r i g i n a l l y d e v i s e d by C o l l i n s o n (1965b) and minor m o d i f i c a t i o n s were made by Park (1970).
It involves the treatment
o f specimen c y l i n d e r s o r d i s c s w i t h H C 1 and assumes t h a t t h e two forms of h a e m a t i t e a r e dissolved a t different rates.
The specimens a r e removed from s o l u t i o n a t
p e r i o d i c i n t e r v a l s t o b e remeasured and t h e amount o f i r o n d i s s o l v e d c a n b e d e t e r m i n e d by a n a l y s i s of t h e a c i d s o l u t i o n .
W h i l s t some u s e f u l r e s u l t s have
been o b t a i n e d u s i n g chemical d e m a g n e t i z a t i o n i t s g e n e r a l s u i t a b i l i t y i s open t o q u e s t i o n f o r a number o f r e a s o n s .
I n t h e f i r s t p l a c e i t i s l i m i t e d because o n l y
specimens w i t h s u i t a b l e p o r o s i t y and p e r m e a b i l i t y c a n be used.
A l s o , because
of t h e s l o w p e n e t r a t i o n o f t h e a c i d , a s i t u a t i o n o f t e n a r i s e s whereby t h e pigment and s p e c u l a r i t e a r e c o m p l e t e l y d i s s o l v e d n e a r t h e margins of t h e specimen b u t remain v i r t u a l l y untouched n e a r t h e c e n t r e o f t h e specimen.
I n inhomogeneously
magnetized r e d beds s u c h a s i t u a t i o n c o u l d e a s i l y l e a d t o v e r y m i s l e a d i n g r e s u l t s However some u s e f u l r e s u l t s have been o b t a i n e d which s u g g e s t t h a t b o t h pigment and s p e c u l a r i t e a r e i m p o r t a n t NRM c a r r i e r s i n d i f f e r e n t r e d bed f o r m a t i o n s . C o l l i n s o n (1965b) i n a s t u d y o f t h e T r i a s s i c Chugwater Formation showed t h a t
430
70-80% o f t h e NRM s t i l l remained a f t e r l e a c h i n g o f t h e pigmentary h a e m a t i t e (Fig.7.38)
and t h u s concluded t h a t t h e s p e c u l a r i t e c a r r i e d t h e b u l k of t h e NRM.
I n t h e T a i g u a t i Formation ( C a r b o n i f e r o u s , B o l i v i a ) C o l l i n s o n (1966a) s u b j e c t e d a number of samples t o chemical l e a c h i n g a n d showed a b a s i c s i m i l a r i t y i n t h e shape o f c u r v e s r e p r e s e n t i n g NRM decay and loss o f i r o n c o n t e n t ( F i g . 7 . 3 9 ) .
1 .oo
1.00
NRM 0.75
0.75
0.50
MIM,
t
0
0.25
A 10
15
20
25
0 10
Time (hr)
15
20
Time (hr)
Fig.7.38. Comparison of t h e NRM decay and d e c r e a s e i n i r o n c o n t e n t d u r i n g chemical l e a c h i n g o f two samples o f t h e T r i a s s i c Chugwater Formation ( a f t e r C o l l i n s o n , 1965b).
Also 30-45% o f t h e t o t a l i r o n o x i d e c o n t e n t o f t h e r o c k s remained a f t e r t h e NRM had decayed t o z e r o and C o l l i n s o n concluded t h a t t h e pigment was r e s p o n s i b l e f o r t h e NRM.
Later experiments a l s o suggest t h a t pigment.carries a l a r g e proportion
of t h e NRM ( C o l l i n s o n , 1974, F i g . 4 ) . The chemical d e m a g n e t i z a t i o n t e c h n i q u e i s most u s e f u l when compared w i t h d i r e c t i o n a l i n f o r m a t i o n r e g a r d i n g t h e NRM.
T h i s o f t e n r e v e a l s t h a t t h e pigment
and s p e c u l a r i t e c a r r y d i f f e r e n t d i r e c t i o n s o f m a g n e t i z a t i o n .
Since these could
o n l y o c c u r a f t e r changes i n t h e geomagnetic f i e l d d i r e c t i o n , i t s u g g e s t s t h a t a t l e a s t one of t h e m a g n e t i z a t i o n s i s of d i a g e n e t i c o r i g i n . (Permian, U.S.A.)
I n t h e S u p a i Formation
t h e r o c k s c a r r y a m a g n e t i z a t i o n o f Q u a t e r n a r y a g e and t h e
o r i g i n a l Permian d i r e c t i o n c a n n o t be r e v e a l e d by t h e r m a l d e m a g n e t i z a t i o n , even up t o t h e C u r i e p o i n t o f h a e m a t i t e .
However, d u r i n g chemical l e a c h i n g o f t h e
431 -0-
NRM
IRON CONTENT
-%-
Stag.
Fig.7.39. Comparison o f NRM decay and d e c r e a s e o f i r o n c o n t e n t d u r i n g chemical l e a c h i n g o f samples from t h e C a r b o n i f e r o u s T a i g u a t i Formation o f B o l i v i a ( a f t e r C o l l i n s o n , 1966a). i r o n o x i d e , t h e d i r e c t i o n s of m a g n e t i z a t i o n moved towards t h e Permian f i e l d d i r e c t i o n o f North America ( F i g . 7 . 4 0 ) .
These r e s u l t s a r e r e a d i l y I n t e r p r e t e d
i f one assumes t h a t t h e b u l k o f t h e Q u a t e r n a r y m a g n e t i z a t i o n i s c a r r i e d by t h e pigment, which i s removed d u r i n g t h e l e a c h i n g , w h i l s t t h e o r i g i n a l Permian m a g n e t i z a t i o n i s c a r r i e d p r i n c i p a l l y by t h e s p e c u l a r i t e . Roy and P a r k (1972, 1974) have made d e t a i l e d chemical l e a c h i n g experiments on Hopewell Group ( M i s s i s s i p p i a n - P e n n s y l v a n i a n ) o f N e w Brunswick, Canada.
These r e d
beds o f t e n c o n t a i n two s t a b l e m a g n e t i z a t i o n s w i t h i n t h e same specimen c l e a r l y i n d i c a t i n g t h e a c q b i s i t i o n of a t l e a s t p a r t o f t h e remanence d u r i n g d i a g e n e s i s . F i g . 7 . 4 1 shows t h e chemical l e a c h i n g of a s i n g l e specimen.
The NRM d i r e c t i o n ,
i n i t i a l l y of s h a l l o w upward i n c l i n a t i o n and d i r e c t i o n towards t h e s o u t h , moves northwards d u r i n g t h e l e a c h i n g t o r e v e a l a n o r t h e r l y d i r e c t e d component, and then back t o t h e s o u t h e r l y p o s i t i o n r e v e a l i n g a t h i r d component, t h i s t i m e w i t h s h a l l o w downward i n c l i n a t i o n .
Although Roy and Park (1972) r e f e r r e d t o t h e s e t h r e e
m a g n e t i z a t i o n s a s CRMA, CRM
B
m a g n e t i z a t i o n i s a DRM.
and DRM t h e r e i s no e v i d e n c e t h a t t h e l a s t r e v e a l e d
I n view o f t h e e v i d e n c e c o n c e r n i n g changes which might
a f f e c t t h e s p e c u l a r i t e f r a c t i o n i t does n o t n e c e s s a r i l y f o l l o w t h a t t h e most chemically r e s i s t a n t i r o n oxides i n t h e rock, o r t h e c o a r s e s t g r a i n s , c a r r y a d e t r i t a l m a g n e t i z a t i o n o r even t h a t t h i s i s t h e p r i m a r y m a g n e t i z a t i o n .
Two of
t h e t h r e e m a g n e t i z a t i o n components ( h e r e d e s i g n a t e d A and B , F i g . 7 . 4 1 ) a r e removed a t a p o i n t which c o i n c i d e s w i t h t h e removal o f t h e r e d pigment t h r o u g h o u t t h e specimen and Roy and Park (1972) t h u s concluded t h a t t h e s e two m a g n e t i z a t i o n s were c a r r i e d by t h e pigment and must be of chemical o r i g i n .
I t c a n n o t b e assumed a s many a u t h o r s do (e.g. E l s t o n and P a r u c k e r , 1979) t h a t chemical d e m a g n e t i z a t i o n p r e f e r e n t i a l l y removes pigment and l e a v e s specu l a r i t e i n t a c t i n a l l r e d beds.
I n f a c t t h e r e i s some e v i d e n c e t h a t t h e t o t a l
432 1 .oo
0
N
0.75
0.50
0,25
0 100
200
5
300
Time (min.)
Fig.7.40. Chemical l e a c h i n g of t h e Permian S u p a i Formation, A . L O S S of NRM ( c i r c l e s ) and i r o n c o n t e n t ( c r o s s e s ) , B. D i r e c t i o n a l changes showing t h e p r o g r e s s i v e movement of t h e specimens towards t h e USA Permian f i e l d d i r e c t i o n ( a f t e r Collinson, 1965b). TN
Change Scale & Acid Strength BNtj+lON
Hour8 in Acid
Fig.7.41. Chemical l e a c h i n g of a sample from t h e Hopewell Group. The d i r e c t i o n a l B) changes r e v e a l t h r e e superimposed m a g n e t i z a t i o n s A , B and C , two o f which (A a r e a s s o c i a t e d w i t h t h e r e d pigment ( m o d i f i e d from Roy and P a r k , 1972).
+
433 amount of m a g n e t i z a t i o n l o s t may have a s i g n i f i c a n t c o n t r i b u t i o n from t h e s p e c u l a r i t e fraction.
I n t h e S t . Bees S a n d s t o n e pigment-dominated and s p e c u l a r i t e - d o m i n a n t
m a g n e t i z a t i o n s behave r a t h e r d i f f e r e n t l y d u r i n g chemical d e m a g n e t i z a t i o n .
Sandstones
w i t h no pigment show a more r a p i d i n i t i a l loss of NRM c l e a r l y i n d i c a t i n g t h e d e s t r u c t i o n of t h e s p e c u l a r i t e (Fig.7.42).
I n r e d b e d s w i t h a pigment-dominated
NRM
t h e r e i s a l e s s r a p i d i n i t i a l loss b u t a c r i t i c a l p o i n t i s soon r e a c h e d when t h e r e i s a s h a r p drop i n NRM i n t e n s i t y ( F i g . 7 . 4 2 ) .
D e t a i l e d p e t r o l o g i c a l examination o f
c o m p l e t e l y l e a c h e d specimens shows t h a t r e s i d u a l NRM may b e c a r r i e d by pigment s i t e d between d e t r i t a l g r a i n s and a u t h i g e n i c overgrowths which c a n n o t b e a t t a c k e d by a c i d . These r e s u l t s from chemical l e a c h i n g e x p e r i m e n t s thus p r o v i d e a n i m p o r t a n t c l u e t o t h e d i f f e r e n t r o l e s o f pigment and s p e c u l a r i t e a s NRM c a r r i e r s i n r e d beds.
They
i n d i c a t e t h a t b o t h are i m p o r t a n t b u t t h e r e l a t i v e p r o p o r t i o n s of NRM c a r r i e d v a r y
N
N
+
I
i
\
Fig.7.42. Chemical d e m a g n e t i z a t i o n o f a d r a b ( s p e c u l a r i t e - d o m i n a n t MM) s a n d s t o n e (SB18) and a r e d (pigment-dominant NRM) s a n d s t o n e (SB1) from t h e S t . Bees Sandstone (Triassic). The thermal d e m a g n e t i z a t i o n c u r v e s a r e shown f o r comparison.
434 c o n s i d e r a b l y n o t o n l y between f o r m a t i o n s , b u t a l s o from sample t o sample w i t h i n any i n d i v i d u a l f o r m a t i o n .
Inherent mineralogical variation including the t o t a l
p i g m e n t / s p e c u l a r i t e r a t i o and v a r i a t i o n s i n g r a i n s i z e and c o m p o s i t i o n of pigment and s p e c u l a r i t e a r e l i k e l y t o d e t e r m i n e t h e i r r e l a t i v e i m p o r t a n c e a s NRM c a r r i e r s . The l e a c h i n g e x p e r i m e n t s a r e a l s o i m p o r t a n t b e c a u s e t h e y i n d i c a t e t h a t t h e pigment
i s of post-depositional o r i g i n
-
a feature q u i t e consistent with t h e diagenetic
evidence. Comparative thermal d e m a g n e t i z a t i o n of pigment, s p e c u l a r i t e and rock T h i s t e c h n i q u e was d e v i s e d by C o l l i n s o n (1974) s p e c i f i c a l l y t o d e t e r m i n e t h e r o l e of pigment and s p e c u l a r i t e a s NRM c a r r i e r s .
I t i n v o l v e s c r u s h i n g a sample
o f t h e rock and s e p a r a t i n g t h e s p e c u l a r i t e u s i n g a h e a v y - l i q u i d a n d slow-speed The remanent magnetism i s t h e n r e c o n s t i t u t e d by a l l o w i n g t h e
centrifuge, specularite
+
heavy m i n e r a l s ( h e r e a f t e r r e f e r r e d t o a s s p e c u l a r i t e ) and pigment
+
l i g h t f r a c t i o n ( h e r e a f t e r r e f e r r e d t o a s pigment) t o s e t t l e through a l i q u i d column i n a known m a g n e t i c f i e l d ; t h e r e s u l t i n g s e d i m e n t s t h e n p o s s e s s a DRM which can be s t u d i e d and compared w i t h t h e NRM p r o p e r t i e s of t h e whole r o c k . D e t a i l s a r e g i v e n by C o l l i n s o n (1974, p. 254). A v a r i e t y o f r e d bed f o r m a t i o n s were i n v e s t i g a t e d by C o l l i n s o n (1974) w i t h v a r i o u s r e s u l t s , which may have p a r t l y depended on t h e e f f i c i e n c y o f t h e s p e c u l a r i t e separation.
The most remarkable r e s u l t s o b t a i n e d by C o l l i n s o n were t h a t t h e
s p e c u l a r i t e was more s t a b l e t h a n t h e pigment i n b o t h AF and t h e r m a l d e m a g n e t i z a t i o n . F i g . 7 . 4 3 shows t h e t h e r m a l d e m a g n e t i z a t i o n of a s e r i e s of f i n e g r a i n e d s a n d s t o n e s and s i l t s t o n e s .
C l e a r l y t h e s p e c u l a r i t e i s m a g n e t i c a l l y h a r d e r i n a l l t h e s e samples
and t h e c l o s e s i m i l a r i t y i n t h e r m a l decay of t h e s p e c u l a r i t e and t h e whole r o c k s u g g e s t s t h a t t h e s p e c u l a r i t e i s c a r r y i n g t h e NRM i n t h e s e r o c k s .
This conclusion
does make t h e assumption t h e r e i s no m a g n e t i c a l l y h a r d component of t h e pigment, Such a component m i g h t c a r r y remanence i n t h e rock b u t c o u l d be o b s c u r e d i n t h e
DRM sample b e c a u s e o f a g r e a t e r q u a n t i t y o f ' s o f t ' m a t e r i a l which i s n o t a l i g n e d i n t h e rock b u t becomes a l i g n e d i n t h e DRM p r o c e s s .
Also, the 'hard' magnetic
p a r t i c l e s which dominate t h e DRM o f t h e s p e c u l a r i t e c o u l d b e c a n c e l l e d out: i n t h e whole rock and so n o t c o n t r i b u t e t o t h e o v e r a l l NRM.
I n o r d e r t o show t h a t t h e
DRM s e p a r a t i o n s were r e p r e s e n t a t i v e C o l l i n s o n r e p e a t e d t h e d e p o s i t i o n u s i n g low f i e l d s i n t h e range 0.1-2.0
O e ( a s opposed t o t h e r o u t i n e 10 Oe) and showed t h a t
t h e r e was no s i g n i f i c a n t d i f f e r e n c e i n t h e t h e r m a l d e m a g n e t i z a t i o n o f t h e DRM produced.
Another method which c a n b e used t o d e t e c t d i f f e r e n t m a g n e t i c p r o p e r t i e s ,
e s p e c i a l l y t h e p r e s e n c e of s i g n i f i c a n t amounts o f m a t e r i a l w i t h low o r h i g h b l o c k i n g t e m p e r a t u r e s , i s t o examine t h e p a r t i a l thermoremanence (PTRM) spectrum of t h e pigment and s p e c u l a r i t e .
The PTRM i n t e n s i t y a c q u i r e d i n any t e m p e r a t u r e i n t e r v a l
can then be compared w i t h t h e DRM i n t e n s i t y l o s s i n t h e same i n t e r v a l d u r i n g
435
0 ROCK
X SPECULARITE
0 PIGMENT
0,4L 0
100
200
300
400
500
0
600
100
200
300
400
500
600
Tmmpwaturm ('C)
Fig.7.43. Thermal d e m a g n e t i z a t i o n o f t h e whole rock NRM and t h e DRM of e x t r a c t e d s p e c u l a r i t e and pigment f o r a group of r e d beds i n which s p e c u l a r i t e c a r r i e s a s i g n i f i c a n t p r o p o r t i o n of t h e NRM. Red beds r e p r e s e n t e d a r e : Chugwater Formation (R5, HC6, G 3 ) Moenkopi Formation ( 0 7 ) Supai Formation ( S 3 1 ) Bonito Canyon Q u a r t z i t e (B17) ( a f t e r C o l l i n s o n , 1974). d e m a g n e t i z a t i o n ; i f t h e r a t i o s of PTRM g a i n e d t o DRM l o s t a r e s i m i l a r i n t h e same t e m p e r a t u r e i n t e r v a l t h e n t h e r e i s e v i d e n c e t h a t t h e p r o p e r t i e s of t h e DRM a r e r e p r e s e n t a t i v e of t h e b u l k magnetic p r o p e r t i e s o f t h e two s e p a r a t e s . f o r two samples a r e shown i n F i g . 7 . 4 4 .
The r e s u l t s
These samples were h e a t e d i n t h e u s u a l
100°C i n t e r v a l s and a l l o w e d t o c o o l i n a 1 Oe f i e l d , t h e PTRM a c q u i r e d i n e a c h
i n t e r v a l b e i n g d e t e r m i n e d by s u b t r a c t i o n .
The r e s u l t s c l e a r l y show t h e absence
of any components w i t h h i g h b l o c k i n g t e m p e r a t u r e s and t h u s confirms t h a t t h e s t a b l e
NRM i n t h e s e specimens i s c a r r i e d by t h e s p e c u l a r i t e .
Using t h e same t e c h n i q u e
T u r n e r and Archer (1975) have shown t h e i m p o r t a n c e o f s p e c u l a r i t e a s an NRM c a r r i e r i n t h e Old Red Sandstone and s i m i l a r r e s u l t s a r e p r e s e n t e d by T u r n e r and I x e r (1977) f o r p a r t of t h e T r i a s s i c S t . Bees Sandstone. C o l l i n s o n (1974) d e s c r i b e d a n o t h e r group of r e d beds which showed a d i f f e r e n c e i n t h e r m a l decay between t h e NRM and DRM.
In t h e s e r o c k s i t was n o t p o s s i b l e t o
make s u c h a c l e a r s e p a r a t i o n of pigment from s p e c u l a r i t e and i t seems l i k e l y t h a t
436
DRM 0 Pigment x Specularite
PTRM
+ Pigment A Specularite
0.2'
1
100
200
300
400
500
600
Tempomtwo ('C )
Comparison of t h e r m a l d e m a g n e t i z a t i o n o f DRM and PTRM spectrum o f Fig.7.44. pigment and s p e c u l a r i t e f r a c t i o n s i n two r e d beds from t h e S u p a i Formation (S31) and Chugwater Formation ( R 5 ) ( a f t e r C o l l i n s o n , 1974). b o t h pigment and s p e c u l a r i t e c o n t r i b u t e towards t h e NRM. i n Fig.7.45
The r e s u l t s a r e shown
ZY60 and ZY64 can be e x p l a i n e d by t h e NRM o f t h e pigment b e i n g r e v e r s e d
r e l a t i v e t o t h e NRM of t h e s p e c u l a r i t e .
I n ZY60 t h e g r e a t e r s p e c u l a r i t e magnet-
i z a t i o n c o u p l e d w i t h t h e more r a p i d l o s s of t h e pigment m a g n e t i z a t i o n r e s u l t s i n t h e whole r o c k NRM i n c r e a s i n g a s t h e c a n c e l l a t i o n e f f e c t o f t h e two a n t i p o d a l l y opposed v e c t o r s i s reduced. t e m p e r a t u r e i s approached.
A s h a r p drop i n t h e NRM and DRM i s s e e n a s t h e C u r i e I n ZY64 t h e t h e r m a l d e m a g n e t i z a t i o n b e h a v i o u r i s b e s t
e x p l a i n e d by assuming t h a t t h e pigment NRM dominates i n t h e rock.
The r a p i d loss
of whole rock NRM a t h i g h e r t e m p e r a t u r e s c a n be e x p l a i n e d i f t h e NRM o f t h e r o c k
is t h e d i f f e r e n c e between t h a t o f t h e pigment and s p e c u l a r i t e i n which c a s e i t s p r o p o r t i o n a l d e c r e a s e can b e g r e a t e r t h a n t h a t o f e i t h e r of i t s components. e x p l a n a t i o n i s a l s o a p p l i c a b l e t o P397.
This
S i n c e t h e s e r e s u l t s c o n t a i n b o t h normal
and r e v e r s e d components of m a g n e t i z a t i o n one of them a t l e a s t must be a CRM .and have been a c q u i r e d a f t e r t h e time t a k e n f o r a f i e l d r e v e r s a l t o o c c u r .
The r e s u l t s t h u s
q u i t e c l e a r l y i n d i c a t e t h e d i a g e n e t i c o r i g i n o f t h e h a e m a t i t e pigment i n ZP60 and ZY64. C o l l i n s o n ' s t e c h n i q u e i s p o t e n t i a l l y v e r y v a l u a b l e i n r e l a t i n g t h e NRM of r e d beds t o t h e i r d e p o s i t i o n a l and d i a g e n e t i c h i s t o r y .
T h i s i s e s p e c i a l l y so when t h e
thermal d e m a g n e t i z a t i o n and d i r e c t i o n a l c h a r a c t e r i s t i c s o f t h e whole rock NRM a r e
437 0 PIGMENT
0 ROCK
0
100 200
300 400 500 600 700
Temperature ( C '
# SPECULARITE
L
0
1
100 200 300 400 500 600
Temperature
["c )
Fig.7.45. Thermal d e m a g n e t i z a t i o n o f t h e whole rock NRM and t h e DRM of e x t r a c t e d s p e c u l a r i t e and pigment f o r a group o f r e d beds i n which b o t h pigment and s p e c u l a r i t e a p p e a r t o c a r r y a s i g n i f i c a n t p r o p o r t i o n o f t h e NRM. Red beds r e p r e s e n t e d a r e t h e T a i g u a t i Formation (ZY60, ZY164) Brunswick Beds, T r i a s s i c , USA (T2) and P i c o s Beds, Devonian, B r a z i l (P397) ( a f t e r C o l l i n s o n , 1974). compared w i t h t h e t h e r m a l d e m a g n e t i z a t i o n t r e n d s of e x t r a c t e d pigment and s p e c u l a r i t e fractions.
I t i s t h e n p o s s i b l e t o g a i n some i n d i c a t i o n o f t h e time of a c q u i s i t i o n
of t h e NRM c a r r i e d by i n d i v i d u a l s e p a r a t e s and deduce something of t h e m a g n e t i z a t i o n h i s t o r y o f t h e whole rock.
Turner and A r c h e r (1975) a p p l i e d t h i s method i n a s t u d y
of t h e Old Red Sandstone Gamrie O u t l i e r i n S c o t l a n d .
A l l t h e r e d beds i n t h i s a r e a
have complex m a g n e t i z a t i o n s ; some c o n t a i n components which can b e i n f e r r e d t o have been a c q u i r e d i n Devonian t i m e s ; o t h e r s have been c o m p l e t e l y remagnetized p r o b a b l y d u r i n g t h e L a t e Carboniferous-Permian p e r i o d . (P9) i s shown i n F i g . 7 . 4 6 .
An example o f one of t h e s e s a n d s t o n e s
The NRM of t h i s s a n d s t o n e i s s t a b l e and has SSE
declination with steep negative inclination.
T h i s i s q u i t e d i f f e r e n t from known
N
+
0 Whole Rock
A D
Specularite > 53 y m Specularite < 53 y m
X Pigment
0.5
\. I
I
I
I
I
I
1
100 200 300 400 500 600 700 TEMPERATURE (
C)
F i g . 7 . 4 6 . Thermal d e m a g n e t i z a t i o n o f t h e NRM of a remagnetized Devonian Sandstone and t h e DRM of i t s e x t r a c t e d pigment, c l a y - o x i d e , and s p e c u l a r i t e f r a c t i o n s . S p e c u l a r i t e c a r r i e s t h e NRM and must have been remagnetized a s i n d i c a t e d by t h e d i r e c t i o n a l a n a l y s i s o f t h e whole rock NRM i n post-Devonian times, p r o b a b l y by t h e i n s i t u o x i d a t i o n of m a g n e t i t e . Devonian d i r e c t i o n s and t h e s a n d s t o n e must have s u f f e r e d post-Devonian remagn e t i z a t i o n , p r o b a b l y i n Permian t i m e s , j u d g i n g from t h e d i r e c t i o n s of a number
o f s i m i l a r specimens ( T u r n e r and A r c h e r , 1975, p. 248). of s e p a r a t e d pigment, c l a y
+
Thermal d e m a g n e t i z a t i o n
i r o n o x i d e and s p e c u l a r i t e f r a c t i o n s shows t h a t t h e
NRM must r e s i d e i n t h e s p e c u l a r i t e f r a c t i o n .
Hence t h e s p e c u l a r i t e f r a c t i o n must
have been remagnetized i n Permian times and m i n e r a l o g i c a l e v i d e n c e s u g g e s t s t h a t t h e o x i d a t i o n of m a g n e t i t e was r e s p o n s i b l e . CONCLUSIONS AND FURTHER READING The m a g n e t i c p r o p e r t i e s of c o n t i n e n t a l r e d beds i n d i c a t e t h a t h a e m a t i t e i s t h e p r i n c i p a l magnetization c a r r i e r .
Although b o t h t e x t u r a l p h a s e s of h a e m a t i t e ,
439 pigment and s p e c u l a r i t e , a c t a s remanence c a r r i e r s i n p a r t i c u l a r c a s e s , t h e s p e c u l a r i t e i s g e n e r a l l y more i m p o r t a n t .
There i s no e v i d e n c e t h a t t h i s s p e c u l a r i t e
c a r r i e s any m a g n e t i z a t i o n (DRM o r PDRM) which r e l a t e s t o d e p o s i t i o n a l o r e a r l y post-depositional
events.
I n d e e d t h e e v i d e n c e of e x t e n s i v e s p e c u l a r i t e d i a g e n e s i s
( m a r t i t i z a t i o n and a u t h i g e n i c overgrowth) s u g g e s t s t h a t t h e m a g n e t i z a t i o n i s i n t i m a t e l y r e l a t e d t o red-bed d i a g e n e s i s .
T h i s i s c o n s i s t e n t w i t h t h e abundance
of multicomponent m a g n e t i z a t i o n s i n r e d beds which s u g g e s t a long-continued p r o c e s s o f d i a g e n e s i s and a s s o c i a t e d m a g n e t i z a t i o n . The t h e o r y of r o c k magnetism and palaeomagnetism i n c l u d i n g m a g n e t i z a t i o n p r o c e s s e s i n s e d i m e n t s a r e d e s c r i b e d by: McElhinny, M.W.,
1973. Palaeomagnetism and P l a t e T e c t o n i c s . Cambridge U n i v e r s i t y
P r e s s , 358 pp. S t a c e y , F.D.
a n d B a n e r j e e , S.K., 1974. The P h y s i c a l P r i n c i p l e s of Rock Magnetism
E l s e v i e r , Amsterdam, 195 pp. Verosub, K . L . ,
1977. D e p o s i t i o n a l and p o s t - d e p o s i t i o n a l p r o c e s s e s i n t h e
m a g n e t i z a t i o n of s e d i m e n t s . Rev. Geophys. Space. P h y s . , 15.: 129-143.
440
CHAPTER 8
THE PALAEOMAGNETISM OF CONTINENTAL RED BEDS INTRODUCTION
C o n t i n e n t a l r e d beds a r e of s p e c i a l s i g n i f i c a n c e i n palaeomagnetism. were t h e f i r s t s e d i m e n t a r y r o c k s t o be s t u d i e d i n any d e t a i l ( e . g .
They
Clegg e t a l . ,
1954; Runcorn, 1955) and many p o l a r wander p a t h s and c o n t i n e n t a l r e c o n s t r u c t i o n s r e l y h e a v i l y on p a l a e o m a g n e t i c d e t e r m i n a t i o n s from r e d beds.
Many of t h e s e r e s u l t s
were made p r i o r t o t h e r e c e n t advances i n o u r knowledge of r e d bed d i a g e n e s i s b u t t h e y have s u b s e q u e n t l y c o n t i n u e d and g e n e r a l l y w i t h l i t t l e r e g a r d t o t h e d i a g e n e t i c p r o c e s s e s which a r e r e s p o n s i b l e f o r t h e m a g n e t i z a t i o n of r e d beds.
The rock magnetic
e v i d e n c e q u i t e c l e a r l y i n d i c a t e s t h a t h a e m a t i t e i s t h e p r i n c i p a l remanence-carrying phase i n r e d beds.
S i m i l a r l y the diagenetic evidence i n d i c a t e s t h a t haematite i s
mainly an a u t h i g e n i c phase and i t must b e concluded t h a t t h e magnetism of c o n t i n e n t a l r e d beds i s a c q u i r e d d u r i n g d i a g e n e s i s . Palaeomagnetic s t u d i e s have been made on r e d beds of a l l g e o l o g i c a l a g e s , throughout t h e P r o t e r o z o i c and t h e P h a n e r o z o i c , i n c l u d i n g t h e Cenozoic d e s e r t a l l u v i u m o f t h e s o u t h w e s t e r n USA (Larson and Walker, 1 9 7 5 ) .
I n many i n d i v i d u a l
r e d bed f o r m a t i o n s which have undergone e x t e n s i v e d i a g e n e t i c c h a n g e s , t h e p a l a e o magnetic p r o p e r t i e s may p r o v i d e t h e most d e t a i l e d r e c o r d of t h e s e changes.
This
may be i n t h e form of d i f f e r e n t components of m a g n e t i z a t i o n c a r r i e d by d i f f e r e n t t e x t u r a l p h a s e s of h a e m a t i t e which were produced a t d i f f e r e n t s t a g e s o f d i a g e n e s i s . Other magnetic p r o p e r t i e s , such a s blocking temperature s p e c t r a , o r s u s c e p t i b i l i t y changes d u r i n g h e a t i n g , may g i v e i m p o r t a n t c l u e s t o t h e d e p t h o f t e m p e r a t u r e s t o which t h e r o c k s have been h e a t e d .
buria1,or the
The p a l a e o m a g n e t i c s i g n i f i c a n c e
of continental red beds, t h e r e f o r e , i s n o t t h a t they represent an accurate record of t h e ambient geomagnetic f i e l d a t t h e time of d e p o s i t i o n b u t t h a t t h e y a r e e x t r e m e l y s e n s i t i v e i n d i c a t o r s of t h e n a t u r e and e x t e n t of r e d bed d i a g e n e s i s The palaeomagnetic p r o p e r t i e s o f r e d beds a r e e x t r e m e l y v a r i a b l e b u t a number of d i s t i n c t i v e t y p e s o f m a g n e t i z a t i o n ( b a s e d on t h e number of d i s c r e t e components p r e s e n t and t h e t i m e of t h e i r a c q u i s i t i o n ) can b e i d e n t i f i e d .
These d i f f e r e n t
t y p e s of r e d bed m a g n e t i z a t i o n show no s y s t e m a t i c v a r i a t i o n through g e o l o g i c a l time.
I n f a c t , t h e p a l a e o m a g n e t i c s t u d y o f r e d beds of v a r i o u s a g e s p r o v i d e s a n
i m p o r t a n t c o n t r i b u t i o n t o t h e o r i g i n o f r e d beds.
I t shows t h a t d i a g e n e s i s must
be a r a t e p r o c e s s i n which t h e r a t e , i n c l u d i n g t h e r a t e of a c q u i s i t i o n o f magn e t i z a t i o n , i s determined by:
1. t h e o r i g i n a l m i n e r a l o g y o f t h e s e d i m e n t ; m i n e r a l o g i c a l l y immature s e d i m e n t s b e i n g s u s c e p t i b l e t o more e x t e n s i v e a l t e r a t i o n and p r o l o n g e d m a g n e t i z a t i o n
441
2 . t h e d e p o s i t i o n a l c o n d i t i o n s ; f i n e r g r a i n e d s e d i m e n t s b e i n g less s u s c e p t i b l e t o e x t e n s i v e a l t e r a t i o n and p r o l o n g e d m a g n e t i z a t i o n
3. t h e p r e v a i l i n g c l i m a t e ; warm a r i d c l i m a t e s b e i n g f a v o u r a b l e f o r t h e longc o n t i n u e d a l t e r a t i o n and m a g n e t i z a t i o n o f r e d beds. These f e a t u r e s c a n b e d e m o n s t r a t e d by r e f e r e n c e t o r e d beds of v a r i o u s g e o l o g i c a l a g e s and d e p o s i t e d i n a v a r i e t y o f d e p o s i t i o n a l environments under d i f f e r e n t climatic conditions. PROTEROZOIC BASINS OF WESTERN CANADA The n o r t h w e s t e r n p a r t o f t h e Canadian s h i e l d i s s u b d i v i d e d i n t o t h e S l a v e , C h u r c h i l l , and Bear P r o v i n c e s on t h e t e c t o n i c map o f Canada ( S t o c k w e l l , 1968). E a r l y P r o t e r o z o i c s u p r a c r u s t a l r o c k s a r e now p r e s e r v e d m a i n l y i n t h r e e s t r u c t u r a l t h e Epworth b a s i n s o u t h w e s t o f C o r o n a t i o n G u l f , t h e Goulburn b a s i n around
basins:
B a t h u r s t I n l e t , and t h e G r e a t S l a v e b a s i n around t h e e a s t arm of G r e a t S l a v e Lake (Fig.8.l).
These s u p r a c r u s t a l r o c k s formed w i t h i n t h e C o r o n a t i o n g e o s y n c l i n e a l o n g
t h e w e s t e r n margin o f t h e S l a v e P r o v i n c e and a r e now b e s t exposed i n t h e Epworth basin.
Thick s u p r a c r u s t a l r o c k s c o r r e l a t i v e w i t h t h o s e i n t h e g e o s y n c l i n e a l s o
accumulated f a r t o t h e e a s t o f t h e Bear P r o v i n c e i n two a u l a c o g e n s , now exposed
in t h e Goulburn and G r e a t S l a v e b a s i n s . These P r o t e r o z o i c r o c k s , d e s c r i b e d by Hoffman (1973), a r e remarkable i n t h e i r resemblance t o P h a n e r o z o i c g e o s y n c l i n a l sequences.
They imply t h e p r e s e n c e o f a
c o n t i n e n t a l margin and g l o b a l p l a t e i n t e r a c t i o n s d u r i n g t h e E a r l y P r o t e r o z o i c . G e o s y n c l i n a l d e p o s i t i o n began w i t h t h e d e p o s i t i o n o f o r t h o q u a r t z i t e s on a westwardf a c i n g c o n t i n e n t a l s h e l f w i t h o v e r l y i n g s t r o m a t o l i t i c dolomite.
West of t h e s h e l f
e d g e , t h e d o l o m i t e p a s s e s a b r u p t l y i n t o a much t h i n n e r mudstone sequence w i t h d o l o m i t e d e b r i s - f l o w s , and t h e o r t h o q u a r t z i t e i n t o a t h i c k l a m i n a t e d s i l t and muds t o n e sequence w i t h q u a r t z i t e t u r b i d i t e s .
Foundering o f t h e c o n t i n e n t a l s h e l f
r e s u l t e d i n t h e d r a p i n g o f a t h i n l a m i n a t e d p y r i t i c b l a c k mudstone sequence overl a i n by a westward-thickening
c l a s t i c wedge which r e s u l t e d from t h e i n t r u s i o n and
e r o s i o n of b a t h o l i t h s t o t h e w e s t .
The c l a s t i c wedge b e g i n s w i t h a t h i c k sequence
o f t u r b i d i t e s t h a t p a s s e s e a s t w a r d s i n t o c o n c r e t i o n a r y mudstone on t h e p l a t f o r m . The mudstone g r a d e s upward i n t o l a m i n a t e d s h a l y l i m e s t o n e , minor t u r b i d i t e s , o v e r l a i n by cross-bedded r e d l i t h i c s a n d s t o n e s . The p l a t f o r m i s marked by two a u l a c o g e n s
-
deeply subsiding f a u l t troughs t h a t
e x t e n d a t h i g h a n g l e s from t h e g e o s y n c l i n e f a r i n t o t h e i n t e r i o r o f t h e p l a t f o r m . These a u l a c o g e n s r e c e i v e d much t h i c k e r s e d i m e n t a r y sequences and were n e v e r s u b j e c t e d t o b a t h o l i t i c i n t r u s i o n s , r e g i o n a l metamorphism, o r low-angle overt h r u s t i n g c h a r a c t e r i s t i c of t h e g e o s y n c l i n e .
The Athapuscow a u l a c o g e n i n t h e
G r e a t S l a v e Lake a r e a i s i n t e r p r e t e d a s h a v i n g been a n i n c i p i e n t r i f t l o c a t e d over a c r u s t a l a r c h during the c o n t i n e n t a l s h e l f s t a g e of t h e geosyncline, b u t
442
...... ,.... ..,... ...... ..... ,..... .. . . , Middle Proterozoic and younger cover rocks. ...*.....*. ..... Comagmatk granitic and vdcenic rocks of the epizoni Great B u r
itholith
Motamorphorrd eerly Proterozoic wpracrustalrocks of the continental rise and clastic mdy of the Corontion 0.ocyncline intruded by the mowzonal Hapburn batholith Thick u r l y Proterozoic wpracrustel rocks of the continental shelf end ciastic wedge of the Coronation coryncline
Thkk eerly Proterozoic suprrruitd rocks deposited in anlacogens
a 3
Thin only Protarozok wprrmstd rocks of tha continentel platform
Mainly exhumed Archaem k r m n t subjected to eerly Proterozoic cetrlestic and retrogressive metamorphism
3
ExhumadAmhwn basement
Fig.8.1. T e c t o n i c s u b d i v i s i o n and s e d i m e n t a r y b a s i n s of e a r l y P r o t e r o z o i c r o c k s i n t h e n o r t h w e s t e r n Canadian S h i e l d ( a f t e r Hoffman, 1 9 7 3 ) .
443 sagged t o become a c r u s t a l downwarp d u r i n g t h e c l a s t i c wedge s t a g e . F i n a l l y , t h e aulacogen became p a r t o f a r e g i o n a l t r a n s c u r r e n t f a u l t s y s t e m , a l o n g which t h i c k f a n g l o m e r a t e s accumulated i n l o c a l t r o u g h s . The molasse o f t h e C o r o n a t i o n g e o s y n c l i n e c o n s i s t s of a l l u v i a l r e d beds d e r i v e d from t h e b a t h o l i t h i c b e l t t o t h e west.
A t t h e b a s e a r e 125m o f r e d mudstone w i t h
t h i n c r o s s - l a m i n a t e d and mud-cracked b u f f s i l t s t o n e s .
These a r e o v e r l a i n by o v e r
500111 o f r e d mudstone w i t h fining-upwards u n i t s of f r i a b l e r e d l i t h i c s a n d s t o n e s many metres t h i c k .
The s a n d s t o n e s , which commonly show t a b u l a r s e t s o f c r o s s -
bedding up t o 2m t h i c k , a r e g e n e r a l l y w e l l - s o r t e d , c a l c i t e - c e m e n t e d and c o n t a i n abundant a n g u l a r t o sub-rounded c l a s t s of s e d i m e n t a r y r o c k s , i n t e r m e d i a t e t o s i l i c i c v o l c a n i c r o c k s , and minor p l u t o n i c and metamorphic r o c k s . I n t h e Authapuscow a u l a c o g e n t h e molasse phase b e g i n s w i t h 650m of r e d mudstone w i t h h a l i t e c a s t s and e x t e n s i v e o l i s t o s t r o m e s w i t h a n g u l a r b l o c k s o f s t r o m a t o l i t i c d o l o m i t e and l i m e s t o n e .
Above a r e 850m of r e d l a m i n a t e d l i t h i c s a n d s t o n e i n
t a b u l a r cross-bedded u n i t s up t o 5m t h i c k w i t h abundant mud-cracks and r i p p l e marks. The s a n d s t o n e i s o v e r l a i n by 230m of r e d mud-cracked mudstone w i t h b u f f s i l t s t o n e beds and abundant h a l i t e and gypsum c a s t s .
The m o l a s s e phase c u l m i n a t e s w i t h up
t o 4000m of r e d and b u f f f a n g l o m e r a t e s and s a n d s t o n e s which a r e n e a r l y f l a t - l y i n g except c l o s e t o major f a u l t s .
L i t h o l o g i c a l l y t h e sandstones a r e indistinguishable
from t h o s e of t h e g e o s y n c l i n e . These P r o t e r o z o i c r e d b e d s , b e c a u s e o f t h e i r unmetamorphosed n a t u r e , o f f e r a u n i q u e o p p o r t u n i t y o f s t u d y i n g t h e palaeomagnetism of o l d e r Precambrian r e d beds. The o c c u r r e n c e of contemporaneous l a v a flows a l s o p r o v i d e s some independent c o n t r o l on t h e s i g n i f i c a n c e o f t h e p a l a e o m a g n e t i c d a t a . The M a r t i n f o r m a t i o n The M a r t i n Formation c o n s i s t s o f a t l e a s t 3960m of f l u v i a l c o n g l o m e r a t e s , a r k o s i c s a n d s t o n e s , s i l t s t o n e s , a n d e s i t i c - b a s a l t i c l a v a f l o w s , and g a b b r o i c s i l l s preserved i n a small fault-bounded b a s i n t o the south-east of the Great Slave b a s i n ( F r a s e r e t a l . , 1970).
The c l a s t i c s e d i m e n t s a r e unmetamorphosed b u t t h e
v o l c a n i c r o c k s a r e h i g h l y a l t e r e d , p r o b a b l y due t o d e u t e r i c a l t e r a t i o n (Tremblay, 1968).
The M a r t i n Formation r e s t s w i t h a n g u l a r unconformity on t h e metamorphosed
T a z i n Group and a n upper a g e l i m i t i s p r o v i d e d by a Rb/Sr whole rock i s o c h r o n from p e g m a t i t e s c u t t i n g t h e T a z i n Group which y i e l d e d a n a g e o f 1975 (Sassano e t a l . , 1972).
F
20 My
A g a b b r o i c dyke c u t t i n g t h e lower p a r t of t h e M a r t i n
Formation h a s been d a t e d (K/Ar whole r o c k ) a t 1490 flows has y i e l d e d a K / A r whole r o c k a g e of 1635
2
t
100 My and one o f t h e b a s a l t
180 My.
F r a s e r e t a l . (1970)
r e g a r d e d t h e M a r t i n Formation a s having formed between 1830 and 1650 My ago. These r o c k s a r e p r o b a b l y t h e o l d e s t unmetamorphosed c o n t i n e n t a l r e d beds anywhere i n t h e world.
444 The palaeomagnetism of t h e M a r t i n Formation i s descrbbed by Evans and Bingham (1973) and t h e magnetic s u s c e p t i b i l i t y a n i s o t r o p y by Aziz-ur-Rahman e t a l . (1975). Although t h e r e d beds were d e p o s i t e d i n f l u v i a l environments and p r o b a b l y formed by t h e d i a g e n e t i c breakdown o f i r o n - b e a r i n g m i n e r a l s , t h e r e a r e , u n f o r t u n a t e l y , no detailed diagenetic studies reported i n the literature. Evans and Bingham (1973) p r e s e n t e d p a l a e o m a g n e t i c r e s u l t s from r e d b e d s , v o l c a n i c s and dykes from a number o f l o c a l i t i e s i n t h e M a r t i n Formation (Fig.8.2).
Fig.8.2.
Sampling l o c a l i t i e s i n t h e M a r t i n Formation ( a f t e r Evans and Bingham, 1973).
S i t e mean d i r e c t i o n s f o r t w e l v e o f t h e t h i r t e e n s e d i m e n t a r y s i t e s sampled a r e shown
i n F i g . 8 . 3 a f t e r thermal c l e a n i n g a t 500-660°C.
The specimen d i r e c t i o n s o f t h e
t h i r t e e n t h s i t e were random u s i n g W a t s o n ' s (1956) c r i t e r i a . r i b u t i o n s i n Fig.8.3.
The s i t e mean d i s t -
show a tendency t o form two groups w i t h NW d e c l i n a t i o n / u p w a r d
d i p and SE declination/downward d i p .
The r e s u l t s a r e , however, r a t h e r ' s t r e a k e d ' o u t
and t h e p o s i t i o n of s i t e M P and MH s u g g e s t a g r e a t c i r c l e s c a t t e r o f d i r e c t i o n s . Evans and Bingham (1973, p. 1488) thought t h a t s i t e s MP and MQ ( t h e one w i t h random d i r e c t i o n s ) had been magnetized d u r i n g a r e v e r s a l w h i l s t t h e geomagnetic f i e l d was i n an intermediate p o l a r i t y stage.
I n s u p p o r t o f t h i s argument they p r e s e n t e d t h e
r e s u l t s o f i n d i v i d u a l p i l o t specimens which show good thermal ' e n d p o i n t s ' s p r e a d a l o n g a g r e a t c i r c l e p a s s i n g c l o s e t o t h e o v e r a l l mean d i r e c t i o n ( F i g . 8 . 3 ) and v e r y
44 5 N
MARTIN FORMATION N
Fig.8.3. Palaeomagnetic r e s u l t s of t h e M a r t i n Formation (Precambrian) of Saskatchowan p l o t t e d on e q u a l - a r e a s t e r e o g r a p h i c p r o j e c t i o n s . Above t h e behaviour of p i l o t specimens f o r s i t e s MQ and MP i s shown d u r i n g s u c c e s s i v e t e m p e r a t u r e i n c r e m e n t s . Below t h e mean d i r e c t i o n s o f sedimentaxy and igneous s i t e s i s shown a f t e r thermal c l e a n i n g . The open symbols i n d i c a t e upward d i p p i n g v e c t o r s and t h e c l o s e d symbols downward d i p p i n g v e c t o r s ( a f t e r Evans and Bingham, 1 9 7 3 ) .
446 s i m i l a r t o t h e g r e a t c i r c l e s s u g g e s t e d by t h e d i s t r i b u t i o n o f s i t e means.
This
however i s o n l y p a r t l y t r u e b e c a u s e some o f t h e p i l o t specimens from t h e MP s i t e do n o t show s t a b l e end p o i n t s , a f e a t u r e which s u g g e s t s t h e p r e s e n c e o f more than
one component of m a g n e t i z a t i o n . The i n t e r p r e t a t i o n t h a t t h e s e i n t e r m e d i a t e d i r e c t i o n s r e p r e s e n t m a g n e t i z a t i o n s a c q u i r e d d u r i n g a f i e l d r e v e r s a l i s o n l y one p o s s i b i l i t y and one t h a t seems e x t r e m e l y u n l i k e l y i n view of t h e g e o l o g i c a l e v i d e n c e .
This hypothesis requires
t h a t t h e r o c k s were magnetized w i t h i n a few thousand y e a r s of d e p o s i t i o n (assuming t h a t Precambrian and Phanerozoic f i e l d r e v e r s a l s proceeded a t t h e same r a t e ) .
The
a v a i l a b l e p e t r o l o g i c a l e v i d e n c e s u g g e s t s t h a t t h e s e r e d beds have s u f f e r e d d i a g e n e t i c m o d i f i c a t i o n c o n s i s t e n t w i t h t h a t s e e n i n many o t h e r f i r s t - c y c l e a r k o s i c r e d beds. A more p l a u s i b l e a l t e r n a t i v e i s t h a t t h e s i t e mean d i r e c t i o n s c o n t a i n superimposed
normal and r e v e r s e d components which y i e l d i n t e r m e d i a t e r e s u l t a n t v e c t o r s a t some s i t e s (MH, M P , MQ).
I n t h e s e c a s e s i t may be t h a t normal and r e v e r s e d components
a r e of comparable magnitude, whereas t h o s e s i t e s which a r e a n t i p o d a l l y opposed might be dominated by e i t h e r t h e normal o r r e v e r s e d component. c o n s i s t e n t with the geological evidence.
This hypothesis i s
I f t h e m a g n e t i z a t i o n was a c q u i r e d d u r i n g
d i a g e n e s i s t h e n i t i s more t h a n l i k e l y t h a t normal and r e v e r s e d f i e l d components would be i n t e g r a t e d ( i f a r e v e r s a l o c c u r r e d ) i n t h e r e d bed sequence b e c a u s e of t h e t i m e s c a l e of d i a g e n e s i s (Walker, 1967a, 1976).
If o n l y a n t i p a r a l l e l components a r e
i n v o l v e d i n t h i s way t h e n t h e g r e a t c i r c l e d e f i n e d by t h e s i t e mean d i r e c t i o n s may be a r e l i a b l e e s t i m a t e of t h e d i p o l a r a x i s of m a g n e t i z a t i o n which e x i s t e d d u r i n g M a r t i n Formation d i a g e n e s i s ( s i n c e a l l t h e r e s u l t a n t v e c t o r s would l i e i n t h e same plane).
R e s u l t s from contemporaneous igneous r o c k s i n t h e M a r t i n Formation s u g g e s t
t h a t t h i s c o u l d be t h e c a s e b e c a u s e , a l t h o u g h somewhat s c a t t e r e d , t h e y show t h e same a x i s of m a g n e t i z a t i o n a s t h e s e d i m e n t a r y s i t e s .
The s i g n i f i c a n c e of p o l e
p o s i t i o n s from t h e M a r t i n Formation i s d i s c u s s e d by Evans and Bingham (1973, p.
1490-1492).
The C h r i s t i e Bav Group The G r e a t S l a v e Supergroup comprises o v e r 12,000m of unmetamorphosed s e d i m e n t a r y r o c k s and v o l c a n i c s p r e s e r v e d i n t h e E a s t A r m F o l d B e l t of t h e G r e a t S l a v e Lake (Fig.8.l).
In many p l a c e s t h e s t r a t a a r e t i g h t l y f o l d e d and u n c o n f o m a b l y o v e r l a i n
by t h e Et-Ehen Group.
The C h r i s t i e Bay Group i s t h e uppermost of t h e four groups
( S o s a n , K a h o c h e l l a , P e t h e i , C h r i s t i e Bay) r e c o g n i z e d by Hoffman (1969) t o make up t h e G r e a t S l a v e Supergroup.
I t c o n s i s t s o f f o u r conformable f o r m a t i o n s , which a r e
i n d e c r e a s i n g a g e , t h e S t a r k , Tochatwi, P o r t a g e I n l e t , and P e a r s o n Formations. T o g e t h e r t h e s e make up t h e m o l a s s e f a c i e s o f t h e Athapuscow a u l a c o g e n (Hoffman, 1973). Palaeomagnetic r e s u l t s have been r e p o r t e d f o r t h e two o l d e s t f o r m a t i o n s of t h e
441
C h r i s t i e Bay Group, t h e S t a r k and t h e Tochatwi Formations by Bingham and Evans (1976) and Evans and Bingham (1976) r e s p e c t i v e l y . i n Fig.8.4.
Sampling l o c a l i t i e s a r e shown
The S t a r k Formation c o n s i s t s of a t l e a s t 60Cm o f f i n e l y bedded r e d
mudstones w i t h a b u n d a n t , d i s c o n t i n u o u s , p a l e g r e e n r e d u c t i o n s l a y e r s and s p o t s . R i p p l e marks, c r o s s - b e d d i n g , and h a l i t e c a s t s a r e common.
Hoffman (1969) c o n s i d e r e d
t h e S t a r k Formation t o have been d e p o s i t e d i n a s h a l l o w s u b l i t t o r a l marine e n v i r onment o f h i g h a r i d i t y .
K / A r d a t e s from a s s o c i a t e d i g n e o u s r o c k s s u g g e s t t h a t t h e
S t a r k Formation i s between 1600 and 1800 My o l d (Hoffman, 1968).
Sampling l o c a l i t i e s used i n t h e palaeomagnetic s t u d y of S t a r k Formation Fig.8.4. and t h e Tochatwi Formation. Compiled from Bingham and Evans (1976) and Evans and Bingham (1976). D e t a i l e d p a l a e o m a g n e t i c r e s u l t s from t h e S t a r k Formation a r e p r e s e n t e d by Bingham and Evans (1976).
A t o t a l of 160 hand samples from 55 s t r a t i g r a p h i c a l l y
d i s t i n c t s i t e s were used i n t h e s t u d y (Fig.8.4).
The p r e l i m i n a r y r e s u l t s showed
t h e p r e s e n c e of two zones o f d i f f e r e n c e magnetic p o l a r i t y w i t h a t r a n s i t i o n a b o u t 280m above t h e b a s e of t h e S t a r k Formation.
P i l o t specimens from b o t h zones
were s u b j e c t e d t o b o t h AF and t h e r m a l d e m a g n e t i z a t i o n . I n b o t h c a s e s t h e r e was l i t t l e d i r e c t i o n a l change d u r i n g t h e d e m a g n e t i z a t i o n t r e a t m e n t b u t t h e i n t e n s i t y p a t t e r n s , a r e d i f f e r e n t f o r r e v e r s e d specimens and f o r normal specimens.
The p i l o t
448 specimens from t h e r e v e r s e d s i t e s g e n e r a l l y show a d e c r e a s e i n i n t e n s i t y whereas t h e normal s i t e s show a s l i g h t i n c r e a s e i n i n t e n s i t y a t 400 Oe (Fig.8.5).
The
t h e r m a l d e m a g n e t i z a t i o n a g a i n r e s u l t e d i n l i t t l e d i r e c t i o n a l change u n t i l temp e r a t u r e s were above 66OoC and t h e same c o n t r a s t i n b e h a v i o u r between normal and r e v e r s e d s i t e s was o b s e r v e d
.
Large d e c r e a s e s i n i n t e n s i t y o n l y o c c u r a t t e m -
p e r a t u r e s o v e r 6OO0C ( F i g . 8 . 5 ) i n d i c a t i n g t h a t h a e m a t i t e must c a r r y t h e m a j o r p a r t o f t h e remanence.
1.0
1.0
J/
Jo
Om5i
\
REVERSES SITES
J/ JO
0.1
REVERSED SITES
\ NORMAL SITES
I 0.01 L. I I I I ' I
0
goo
1200
1800
20
I
Peak firld(00)
200
400
600
Temperature (c)
Fig.8.5. Normalized i n t e n s i t y changes d u r i n g AF and t h e r m a l d e m a g n e t i z a t i o n o f p i l o t specimens from t h e S t a r k Formation ( a f t e r Bingham a n d Evans, 1976). The i n t e n s i t y changes which o c c u r d u r i n g d e m a g n e t i z a t i o n s u g g e s t t h e p r e s e n c e of a s e c o n d a r y component o f m a g n e t i z a t i o n , a p p r o x i m a t e l y p a r a l l e l t o t h e mag-
n e t i z a t i o n of t h e r e v e r s e d s i t e s b u t opposing t h e normal s i t e s .
Bingham and Evans
(1976, p. 572) a p p l i e d v e c t o r s u b t r a c t i o n of t h e components removed from a number of s i t e s between 0 and 400 Oe. form a c l o s e group (347, f 6 7 ,
With t h e s t r a t a i n t h e i r p r e s e n t p o s i t i o n t h e s e R g 5 = 6 ) n e a r t o t h e p r e s e n t f i e l d (030, +63) a t t h e
c o l l e c t i n g l o c a l i t y , a f e a t u r e s t r o n g l y suggesting t h e a c q u i s i t i o n of a secondary component i n r e l a t i v e l y r e c e n t times.
A s i m i l a r a n a l y s i s of t h e v e c t o r s removed
by h e a t i n g t o 5OO0C a l s o y i e l d e d a group (239, +80,
o(
95
= 4')which
showed l i t t l e
1
449
s c a t t e r b e f o r e any c o r r e c t i o n was made f o r g e o l o g i c a l t i l t .
The s c a t t e r o f t h i s
group i s much g r e a t e r when c o r r e c t e d f o r bedding t i l t and a g a i n a p o s t - f o l d i n g secondary component o f m a g n e t i z a t i o n a p p e a r s t o b e p r e s e n t . The r e s u l t s o f s i t e mean d i r e c t i o n s a f t e r thermal c l e a n i n g a t 5OO0C a r e shown i n Fig.8.6.
The most obvious f e a t u r e of t h e s e r e s u l t s i s t h e p o l a r i t y r e v e r s a l
which o c c u r s a b o u t mid-way through t h e s e c t i o n .
S i t e means i n t h e v i c i n i t y o f t h e
r e v e r s a l show i n t e r m e d i a t e d i r e c t i o n s and t h e r e i s one anomalous s i t e mean d i r e c t i o n i n t h e lower, normal i n t e r v a l of t h e s e c t i o n .
The f e a t u r e s a r e s i m i l a r t o f i e l d
r e v e r s a l s documented i n much younger sediments a n d , i n p a r t i c u l a r , show v i r t u a l geomagnetic p o l e s (VGP's) which f o l l o w a g r e a t c i r c l e p a t h d u r i n g t h e p o l a r i t y t r a n s i t i o n ; t h e pre- and p o s t - t r a n s i t i o n a l VGP's a r e e s s e n t i a l l y a n t i p o d a l and t h e remanent i n t e n s i t y i s reduced by a f a c t o r o f 3 w i t h i n t h e t r a n s i t i o n zone. hiination
Inclination ooD-4so oo +UP +so06
Intensity (lO%mU om3,
10
60
[.-.
Fig. 8.6. S t r a t i g r a p h i c p r o f i l e o f t h e r m a l l y c l e a n e d , s i t e mean d i r e c t i o n s f o r t h e S t a r k Formation a f t e r c o r r e c t i o n f o r g e o l o g i c a l d i p . The i n t e n s i t y i s r e p r e s e n t e d by a f i v e p o i n t moving a v e r a g e ( a f t e r Bingham and Evans, 1 9 7 5 ) .
450 These r e s u l t s have been i n t e r p r e t e d a s a f a i t h f u l r e c o r d o f a n e a r l y P r o t e r o z o i c geomagnetic f i e l d r e v e r s a l and t h e anomalous s i t e mean d i r e c t i o n h a s been i n t e r p r e t e d a s a geomagnetic e x c u r s i o n (Bingham and Evans, 1975; 1976).
I f t h i s were
t r u e then m a g n e t i z a t i o n must have been completed d u r i n g d e p o s i t i o n and e a r l y diagenesis.
The o n l y i n d e p e n d e n t e v i d e n c e f o r t h e a g e o f t h e m a g n e t i z a t i o n o f t h e
S t a r k Formation comes from t h e n e a r b y Mackenzie i n t r u s i o n s . Mackenzie p o l e i s 70'
The f a c t t h a t t h e
from t h e S t a r k Formation p o l e s u g g e s t s t h a t r e g i o n a l r e h e a t i n g
d i d n o t c a u s e r e m a g n e t i z a t i o n of t h e S t a r k Formation.
The a g e of t h e Mackenzie
i n t r u s i o n s (1200 My) p u t s a n upper l i m i t on t h e a g e o f t h e m a g n e t i z a t i o n .
There
i s no d i r e c t e v i d e n c e of t h e p r e c i s e a g e of t h e remanence of t h e S t a r k Formation.
Although t h e palaeomagnetic e v i d e n c e i s c o m p a t i b l e w i t h t h e a c q u i s i t i o n o f remanence s h o r t l y a f t e r d e p o s i t i o n , i t does n o t p r e c l u d e t h e p o s s i b i l i t y of m a g n e t i z a t i o n a t a l a t e r s t a g e of d i a g e n e s i s . Formation i.e.
Some o f t h e p a l a e o m a g n e t i c p r o p e r t i e s o f t h e S t a r k
intermediate d i r e c t i o n s during t h e p o l a r i t y t r a n s i t i o n , t h e presence
of u n s t a b l e m a g n e t i z a t i o n s n e a r t h e p o l a r i t y t r a n s i t i o n and t h e d i s s i m i l a r b e h a v i o u r of normal and r e v e r s e l y magnetized specimens i s e q u a l l y c o n s i s t e n t w i t h a much l a t e r
m a g n e t i z a t i o n i n which a r e v e r s e d zone was superimposed on a 'normal zone'. The Tochatwi Formation (Hoffman, 1968) c o n s i s t s o f up t o 80Om o f f i n e g r a i n e d r e d - b u f f s a n d s t o n e s w i t h s u b o r d i n a t e s h a l e s and conglomerate r e s t i n g conformably The a g e o f t h e Tochatwi Formation i s n o t
on t h e u n d e r l y i n g S t a r k Formation.
p r e c i s e l y known b u t may b e a b o u t 1700 My.
Most o f t h e d e p o s i t s a r e c o n s i d e r e d t o
be o f f l u v i a l o r i g i n by Hoffman (1969) e x c e p t f o r t h o s e n e a r t h e b a s e which may r e p r e s e n t a s h a l l o w marine t i d a l o r i n t e r t i d a l environment. Sampling l o c a l i t i e s used i n t h e p a l a e o m a g n e t i c s t u d y by Evans and Bingham (1976) a r e shown i n Fig.8.4. study.
I n a l l , 29 s t r a t i g r a p h i c a l l y d i s t i n c t s i t e s were u s e d i n t h e
During t h e r m a l d e m a g n e t i z a t i o n t h e m a j o r i t y o f specimens i n t h e Tochatwi
Formation ( r e p r e s e n t e d by t h e N. changes.
s e c t i o n i n Fig.8.4)
show s y s t e m a t i c d i r e c t i o n a l
The d i r e c t i o n s move a l o n g g r e a t c i r c l e s by 20-50'
e n d - p o i n t s between 5OO0C and 60OoC.
before reaching s t a b l e
They a l s o r e v e a l t h e r m a l l y d i s t r i b u t e d b l o c k i n g
t e m p e r a t u r e s p e c t r a w i t h o n l y 1-9% of t h e NRM remaining a t 6OO0C (Fig.8.7). On t h e b a s i s o f t h e r e s u l t s from t h e t h e r m a l d e m a g n e t i z a t i o n 46 spceimens (one from e a c h sample) were h e a t e d t o 5OO0C and 60OoC.
The r e s u l t s showed h i g h e r
w i t h i n - s i t e p r e c i s i o n (Watson, 1956) a t 5OO0C and t h e d i r e c t i o n s f o r t h e e l e v e n non-random s i t e s o f t h e N-section
( e x c l u d i n g s i t e NA) a r e shown i n Fig.8.8
and a f t e r , c o r r e c t i o n f o r g e o l o g i c a l t i l t .
before,
Q u i t e c l e a r l y , t h e r e s u l t s a r e much
b e t t e r grouped b e f o r e c o r r e c t i o n f o r g e o l o g i c a l d i p (Mean d i r e c t i o n 165, +78 w i t h
k = 16) than a f t e r c o r r e c t i o n (k decreased t o 4).
The d e c r e a s e i n k i s s i g n i f i c a n t
a t t h e 99% l e v e l (McElhinny, 1964) i n d i c a t i n g a n e g a t i v e f o l d t e s t (Graham, 1949). The r e s u l t s i n d i c a t e t h a t t h i s N-section i n t h e Tochatwi Formation h a s been remagnetized a f t e r f o l d i n g .
A s i m i l a r p o s t - f o l d i n g r e m a g n e t i z a t i o n h a s been
r e c o g n i z e d i n t h e Kahochella Group, some 70km t o t h e e a s t o f t h i s s e c t i o n
451 (McMurray e t a l . , 1973). The d i r e c t i o n o f m a g n e t i z a t i o n i n t h e Kahochella Group
i s v e r y c l o s e t o t h a t s e e n i n t h e N - s e c t i o n of t h e Tochatwi Formation, i n d i c a t i n g t h a t t h e r e m a g n e t i z a t i o n was o f some r e g i o n a l s i g n i f i c a n c e .
The most l i k e l y
p o s s i b i l i t y i s t h a t r e g i o n a l r e h e a t i n g , d u r i n g a m a j o r i g n e o u s e v e n t , was t h e c a u s e of t h e r e m a g n e t i z a t i o n .
L
I
I
I
200
I
I
Temperature
I
600
400
f
( O C)
Fig.8.7. Thermal d e m a g n e t i z a t i o n c u r v e s f o r t h e Tochatwi Formation (N-section) F o u r t e e n specimens a r e r e p r e s e n t e d by t h e shaded a r e a ( a f t e r Evans and Bingham, 1976). Not a l l of t h e Tochatwi Formation h a s s u f f e r e d complete r e m a g n e t i z a t i o n .
This
i s i n d i c a t e d by a number of s i t e s N A , FA-FE, AC and AD which y i e l d d i r e c t i o n s s i m i l a r t o t h o s e of t h e S t a r k Formation,
S i t e s AC and AD have s u f f e r e d some d e g r e e
o f t h e r m a l metamorphism by i n t r u s i v e b o d i e s of a s i m i l a r a g e t o t h e Mackenzie Diabase ( I r v i n g e t a l . ,
1972).
The p r o g r e s s i v e thermal d e m a g n e t i z a t i o n o f some of
t h e s e specimens i s shown i n F i g . 8 . 9 .
I n i t i a l l y t h e y have a s h a l l o w i n c l i n a t i o n
towards t h e WSW ( t h e Mackenzie d i r e c t i o n f o r t h e a r e a ) b u t move p r o g r e s s i v e l y towards t h e o p p o s i t e q u a d r a n t on h e a t i n g t o h i g h e r t e m p e r a t u r e s .
S t a b l e end-points
w i t h a d i r e c t i o n v e r y s i m i l a r t o t h a t s e e n i n t h e S t a r k Formation s u g g e s t s t h a t t h i s i s t h e o r i g i n a l remanence of t h e Tochatwi Formation,
The mean d i r e c t i o n s of
t h e s e s i t e s a r e s c a t t e r e d b e f o r e c o r r e c t i o n f o r d i p , b u t form a c o h e r e n t group a f t e r c o r r e c t i o n , w i t h a mean d i r e c t i o n 030, -11 ( k = 14,Wg5 = 15').
The remanence
o f t h e s e s i t e s t h e r e f o r e p r o b a b l y p r e c e d e s t h e f o l d i n g , and a l s o t h e d e p o s i t i o n of t h e o v e r l y i n g E t - t h e n Group s e d i m e n t s . The a g e of t h e m a g n e t i z a t i o n of t h e S t a r k Formation and Tochatwi Formation cannot be more p r e c i s e l y d a t e d .
The a g e of t h e E t - t h e n s e d i m e n t s i s n o t p r e c i s e l y known.
They a r e younger t h a n t h e d i o r i t e s and s y e n i t e s which i n t r u d e t h e G r e a t S l a v e Supergroup, which a r e d a t e d a t 1630-1845 My, and o l d e r t h a n t h e Mackenzie d i a b a s e s
452
0 0
.
O. 0.
i-0 0
Fig.8.8. Palaeomagnetic r e s u l t s f o r t h e Tochatwi Formation ( N - s e c t i o n ) a f t e r thermal c l e a n i n g . The v e c t o r s a r e p l o t t e d b e f o r e ( a b o v e ) and a f t e r (below) c o r r e c t i o n f o r g e o l o g i c a l t i l t . The c l o s e g r o u p i n g of t h e v e c t o r s p r i o r t o c o r r e c t i o n f o r g e o l o g i c a l t i l t s u g g e s t s t h a t t h e r o c k s were remagnetized a f t e r f o l d i n g ( a f t e r Evans and Bingham, 1 9 7 6 ) .
453
which c u t them and a r e d a t e d a t 1250 My ( F a h r i g and J o n e s , 1969).
Accepting a n
age of 1700-1750 My f o r t h e S t a r k and Tochatwi Formations means t h a t t h e a g e o f t h e m a g n e t i z a t i o n c a n n o t , f o r c e r t a i n , b e d a t e d t o c l o s e r t h a n w i t h i n a b o u t 500 My of d e p o s i t i o n .
The c l o s e s i m i l a r i t y o f t h e r e s u l t s , p a r t i c u l a r l y t h o s e from t h e
S t a r k Formation, w i t h r e s u l t s from P h a n e r o z o i c r e d beds does s u g g e s t t h a t t h e m a g n e t i z a t i o n o c c u r r e d w i t h i n a few m i l l i o n y e a r s o f d e p o s i t i o n .
The r e s u l t s a r e
q u i t e c o m p a t i b l e w i t h t h e a c q u i s i t i o n of remanence d u r i n g r e d bed d i a g e n e s i s .
N
D1 NRM 200
300 400 450 500 550 575 600
0 3 +C3 NRM
NRM
500 500 575 600 630 660
400 450 500 550 575
C4 NRM
600
200 300 400 450 500 575
630 660
600 630
630 660
D i r e c t i o n a l changes d u r i n g t h e r m a l d e m a g n e t i z a t i o n )oE s i t e s AC and AD Fig.8.9. i n t h e Tochatwi Formation. These r e v e a l s t a b l e d i r e c t i o n s s i m i l a r t o t h o s e i n t h e S t a r k Formation ( a f t e r Evans and Bingham, 1976).
THE LATE PRECAMBRIAN OF NORTH WEST SCOTLAND The palaeomagnetism o f t h e Precambrian s e d i m e n t a r y r o c k s of NW S c o t l a n d has been i n v e s t i g a t e d by I r v i n g ( 1 9 5 7 ) , I r v i n g and Runcorn (1957) and S t e w a r t and I r v i n g (1974); t h e s e r o c k s were amongst t h e f i r s t t o b e s t u d i e d i n d e t a i l , t h e r e s e a r c h b e i n g i n i t i a t e d by S . K . Runcorn i n J u n e 1951.
The r o c k s i n v e s t i g a t e d i n c l u d e t h e
S t o e r Group c o n s i s t i n g o f a t l e a s t 2300m o f r e d s a n d s t o n e s and r e s t i n g unconformably on Lewisian basement.
T h i s i s unconformably o v e r l a i n by t h e T o r r i d o n Group which
c o n s i s t s of a t l e a s t 700Om o f r e d s a n d s t o n e s and s h a l e s .
It i s divided i n t o three
4 54 f o r m a t i o n s ( D i a b a i g , A p p l e c r o s s and A u l t b e a ) and i s o v e r l a i n by t h e Lower Cambrian (Peach e t a l . ,
1907) ( F i g . 8 . 1 0 ) .
G e o c h r o n o l o g i c a l s t u d i e s show t h a t t h e Lewisian basement l a s t s u f f e r e d r e g i o n a l metamorphism a t 1500-1800 My.
Mica and whole r o c k K / A r a g e s o f 1120
2
40 My have
been r e p o r t e d from p a r t s of t h e basement and a l s o from d e t r i t u s i n t h e S t o e r and T o r r i d o n Groups s o t h e s e d i m e n t s must b e younger t h a n t h i s .
Rb/Sr whole r o c k
measurements on s h a l e s and s i l t s t o n e s from t h e S t o e r and T o r r i d o n Groups y i e l d e x c e l l e n t i s o c h r o n s and a g e s of 9 9 1 2 24 My and 796
2
24 My r e s p e c t i v e l y (Moorbath
e t a l . , 1967; Moorbath, 1969).
Fig.8.10. G e n e r a l i z e d s e c t i o n through t h e Caledonian f o r e l a n d showing r e l a t i o n s h i p s of t h e S t o e r and T o r r i d o n Groups t o t h e basement ( a f t e r S t e w a r t and I r v i n g , 1 9 7 4 ) . S e d i m e n t o l o g i c a l s t u d i e s o f t h e r e d f a c i e s o f t h e S t o e r and T o r r i d o n Groups show t h a t t h e y were d e p o s i t e d on a pediment s u r f a c e which formed a t t h e f o o t o f a r e t r e a t i n g Lewisian s c a r p ( W i l l i a m s , 1969 a , b ) (Fig.8.11).
I t i s probable t h a t
s h a l l o w marine environments a r e r e p r e s e n t e d i n p l a c e s ( G r a c i e and S t e w a r t , 1967). The s e d i m e n t s c o n t a i n a v a r i e t y of f i n e - c o a r s e g r a i n e d a r k o s i c s a n d s t o n e s .
The
c o a r s e s a n d s t o n e s o c c u r i n l a t e r a l l y p e r s i s t e n t s h e e t s w i t h e r o s i v e b a s e s and showing f l a t b e d d i n g , t a b u l a r and t r o u g h cross-bedding.
A t t h e b a s e of t h e u n i t s
t h e r e may b e c o n c e n t r a t i o n s of i n t r a - and e x t r a - f o r m a t i o n a l conglomerate.
Finer
sandstones tend t o be l e n t i c u l a r i n n a t u r e occurring with interbedded red s h a l e s and c r o s s l a m i n a t e d s i l t s t o n e .
The s a n d s t o n e s o f t e n show penecontemporaneous
d e f o r m a t i o n s t r u c t u r e s ( S e l l e y , 1969). oned c h a n n e l s .
The r e d s h a l e s a r e o f t e n s e e n t o f i l l aband-
The s a n d s a r e i n t e r p r e t e d a s b r a i d e d c h a n n e l d e p o s i t s o r r e l a t i v e l y
455 h i g h s t r e a m Dower ( S e l l e v . 1965. 1970).
Suggested palaeogeography of n o r t h w e s t S c o t l a n d i n T o r r i d o n i a n ( l a t e Fig.8.11. Precambrian) times ( a f t e r W i l l i a m s , 1969a). The S t o e r and T o r r i d o n i a n r e d beds a r e t h u s f l u v i a l r e d beds ( s e e Chapter 4 ) . P e t r o l o g i c a l l y they a r e f i r s t - c y c l e arkosic sandstones being derived p r i n c i p a l l y from t h e Lewisian basement ( S e l l e y , 1966). S t e w a r t and I r v i n g (1974) p r e s e n t e d p a l a e o m a g n e t i c r e s u l t s f o r f o u r l o c a l i t i e s (Fig.8.12)
which c o v e r e d t h e S t o e r Group i n d e t a i l and t h e lower p a r t of t h e
T o r r i d o n Group.
The NRM o f t h e r e d s a n d s t o n e s i n t h e S t o e r and T o r r i d o n Groups
i s g e n e r a l l y v e r y s t a b l e w i t h b l o c k i n g t e m p e r a t u r e s commonly h i g h e r t h a n 6OO0C a l t h o u g h i n some c a s e s t h e t h e r m a l decay o f t h e NRM i s more r a p i d w i t h b l o c k i n g t e m p e r a t u r e s a s low a s 3OO0C. i n Fig.8.13. haematite.
T y p i c a l t h e r m a l d e m a g n e t i z a t i o n r e s u l t s a r e shown
The r e s u l t s q u i t e c l e a r l y i n d i c a t e t h a t t h e NRM i s c a r r i e d by Only i n t h e S t a c Fada Member, a v o l c a n i c mudflow b r e c c i a , is t h e r e
456
5 km
Fig.8.12. Sampling s i t e s and geology of l a t e Precambrian s e d i m e n t s i n Nw S c o t l a n d . ( a f t e r S t e w a r t and I r v i n g , 1974). any e v i d e n c e t o t h e c o n t r a r y ; h e r e lower b l o c k i n g t e m p e r a t u r e s (50O0-6OO0C) and much lower c o e r c i v e f o r c e s (median d e s t r u c t i v e f i e l d 400-500 Oe) s u g g e s t t h a t m a g n e t i t e o r haemoilmenite c o u l d b e a remanence c a r r i e r .
Although m a g n e t i t e has
been r e p o r t e d from r e d s a n d s t o n e s i n t h e T o r r i d o n Group on t h e b a s i s o f thermomagnetic a n a l y s i s ( P a r r y , 1957; Schwarz, 1 9 6 9 ) , more w i d e s p r e a d i n v e s t i g a t i o n s ( I r v i n g , 1957; S t e w a r t and I r v i n g , 1974) show t h a t i t i s l i k e l y t o b e v e r y s c a r c e . S t e w a r t and I r v i n g (1974, p. 56-57) showed t h a t h a e m a t i t e was t h e o n l y c o a r s e g r a i n e d i r o n o x i d e phase and by p l o t t i n g t h e r m a l s t a b i l i t y (M5oo/%)
a g a i n s t volume
p e r c e n t a g e of s p e c u l a r h a e m a t i t e showed t h a t t h e most s t a b l e specimens were t h o s e w i t h most s p e c u l a r h a e m a t i t e (Fig.8.14).
The s p e c u l a r i t e a l m o s t always shows
m a r t i t i z a t i o n t e x t u r e s when viewed i n p o l i s h e d s e c t i o n s i n d i c a t i n g t h e l i k e l i h o o d t h a t t h e h a e m a t i t e formed by t h e o x i d a t i o n of m a g n e t i t e . The d i r e c t i o n s o f m a g n e t i z a t i o n f o r e a c h sampling s i t e which a r e g i v e n i n Fig.8.14
( s e e S t e w a r t and I r v i n g , 1974, T a b l e s 1 and 2 f o r d e t a i l s ) c o n f i r m t h e
e a r l i e r r e s u l t s of I r v i n g and Runcorn (1957).
The S t o e r Group d i r e c t i o n s a r e a l l
457
DIRECTION DI F F ERE NC E FROM NRM
1.0
A<1Oo 0 < 2 0 ° @ ) 2 0 '
I/lO 0.5
Stoer Gp. Stac Fada Mbr. 0
LO,-+
200
Stoer Gp.
J
400
TEMPERATURE
I
I
I
200
400
600
600 ( O C
800
)
Fig.8.13. Thermal d e m a g n e t i z a t i o n c u r v e s o f l a t e Precambrian sediments. o f t h e NRM ( G) i s g i v e n i n b r a c k e t s ( a f t e r S t e w a r t and I r v i n g , 1974).
Intensity
o f normal p o l a r i t y - a n d d i f f e r e n t from t h e T o r r i d o n Group which a r e o f normal and r e v e r s e d p o l a r i t y ( I r v i n g and Runcorn, 1957).
A conglomerate t e s t (Graham, 1949)
on b o u l d e r s o f r e d s a n d s t o n e shows t h a t t h e m a g n e t i z a t i o n o f t h e S t o e r Group p r e d a t e s t h e T o r r i d o n Group ( I r v i n g and Runcorn, 1957; S t e w a r t and I r v i n g , 1974, p. 58).
S t e w a r t and I r v i n g (1974) were f i r m l y of t h e o p i n i o n t h a t t h e m a g n e t i z a t i o n
of t h e s e Precambrian s e d i m e n t a r y r o c k s o r i g i n a t e d a t t h e t i m e t h e y were l a i d down b u t s e v e r a l l i n e s o f e v i d e n c e s u g g e s t t h a t t h i s is n o t t h e c a s e and t h a t t h e magnetization originated during diagenesis.
I n the f i r s t place, f i r s t cycle
a r k o s i c r e d beds of f l u v i a l o r i g i n l i k e t h e s e , must have been o r i g i n a l l y r i c h i n d e t r i t a l magnetite.
The abundance o f m a r t i t i z a t i o n t e x t u r e s i n t h e T o r r i d o n i a n
s a n d s t o n e s i n d i c a t e s t h a t i n s i t u o x i d a t i o n of m a g n e t i t e must have t a k e n p l a c e on a wide s c a l e , and p r o b a b l y o v e r a c o n s i d e r a b l e l e n g t h o f t i m e (Van Houten, 1968). When t h e d i r e c t i o n s o f m a g n e t i z a t i o n f o r e a c h sampling l o c a l i t y a r e a n a l y s e d i n d i v i d u a l l y (Fig.8.15)
t h e y c a n b e s e e n t o b e ' s t r e a k e d ' i n a way which s u g g e s t s
t h a t t h e m a g n e t i z a t i o n i s composite and t h e i n d i v i d u a l components have n o t been resolved.
For example, t h e r e s u l t s f o r t h e S t o e r Group show a d i s t i n c t ' s t r e a k i n g '
towards t h e n o r t h a t S t o e r Bay, and a t A c h i l t i b u i e t h e y a r e s t r e a k e d towards t h e NW.
The T o r r i d o n Group r e s u l t s a r e s t r e a k e d towards t h e ENE.
I t t h u s seems
p r o b a b l e t h a t t h e m a g n e t i z a t i o n i s c a r r i e d by s p e c u l a r i t e g r a i n s of d i a g e n e t i c o r i g i n , and w i t h a l l components having a narrow r a n g e of b l o c k i n g t e m p e r a t u r e s c l o s e t o t h e C u r i e p o i n t o f h a e m a t i t e i t i s u n l i k e l y t h a t i n d i v i d u a l components could be e a s i l y resolved.
The f a c t t h a t t h e S t o e r Group was magnetized p r i o r t o
458
0
I
t
lmO o STAC FADA MEMBER
rTORRlDON GROUP
- 0 0
0.5
1.0
1.5
!Specular Homtite Volume
96
Thermal s t a b i l i t y (M500/%) v e r s u s volume p e r c e n t a g e o f s p e c u l a r i t e i n Fig.8.14. l a t e Precambrian s e d i m e n t s ( a f t e r S t e w a r t and I r v i n g , 1974). t h e d e p o s i t i o n of t h e T o r r i d o n Group i s h a r d l y s u r p r i s i n g b e c a u s e t h e geochrono l o g i c a l e v i d e n c e i n d i c a t e s t h a t t h e unconformity between them r e p r e s e n t s a time i n t e r v a l of some 200 My.
T h i s i s c e r t a i n l y s u f f i c i e n t time t o complete t h e
d i a g e n e t i c m a g n e t i z a t i o n of t h e S t o e r Group. On t h i s b a s i s i t i s d i f f i c u l t t o a s s e s s t h e p a l a e o m a g n e t i c r e l i a b i l i t y of t h e s e Precambrian s e d i m e n t a r y r o c k s .
The o n l y d a t a which t h e y can b e u s e f u l l y compared
w i t h a r e t h o s e from t h e Precambrian r o c k s of t h e L a u r e n t i a n s h i e l d o f which t h e Lewisian p l a t f o r m was once a p a r t (DuToit, 1937; Wynne-Edwards and Hassan, 1970). These d a t a a r e p r i n c i p a l l y from i g n e o u s r o c k s (DuBois, 1962; B l a c k , 1963; Robertson and F a h r i g , 1971; I r v i n g and P a r k , 1972) a n d , f o r t h e p e r i o d 500-800 My a g o , y i e l d widely d i f f e r e n t pole p o s i t i o n s .
A l s o t h e h i g h d e g r e e o f a g e u n c e r t a i n t y means
a n e q u a l l y h i g h d e g r e e of p o l a r u n c e r t a i n t y e x i s t s even f o r d a t a w i t h h i g h p a l a e o magnetic p r e c i s i o n ( S p a l l , 1971; Brock, 1973). Assuming a r a t e of a p p a r e n t p o l a r wander of 0.3'
p e r m i l l i o n y e a r s (Donaldson e t a l . ,
+ 50 My i s e q u i v a l e n t t o a p o l a r u n c e r t a i n t y of 15'. Fig.8.16.
1973) a n a g e u n c e r t a i n t y of Some of t h e s e a r e shown i n
They a r e g r a d e d i n terms o f r e l i a b i l i t y a c c o r d i n g t o c r i t e r i a d e s c r i b e d
by S t e w a r t and I r v i n g (1974, p. 65).
None o f t h e s e c r i t e r i a a r e a b l e t o e s t a b l i s h
beyond any doubt t h a t t h e m a g n e t i z a t i o n was a c q u i r e d a t t h e time t h e r o c k was formed.
The conglomerate t e s t and baked c o n t a c t t e s t which a r e i n c l u d e d i n t h e
c r i t e r i a of S t e w a r t and I r v i n g (1974) (Graham, 1949) o n l y y i e l d a minimum a g e which c o u l d be s u b s t a n t i a l l y d i f f e r e n t from t h e t r u e a g e of m a g n e t i z a t i o n .
Further
problems a r i s e from p o s t - m a g n e t i z a t i o n i n t r a - c r a t o n i c r o t a t i o n of i n d i v i d u a l f a u l t blocks,
The e l a b o r a t e p o l a r wander p a t h s c o n s t r u c t e d from t h e s e Precambrian d a t a
( e . g . S t e w a r t and I r v i n g , 1974, Fig.10) must be viewed w i t h t h e s e l i m i t a t i o n s i n mind.
Even i f t h e s e p o l a r wander c u r v e s a r e a c c e p t e d , t h e S t o e r and T o r r i d o n Group
p o l e s do n o t c l o s e l y a g r e e w i t h them ( F i g . 8 . 1 6 ) .
I t must b e concluded t h a t t h e
v a l i d i t y of t h e T o r r i d o n i a n p a l a e o m a g n e t i c r e s u l t s c a n n o t b e s u b s t a n t i a t e d by
459
'i. I
\
Fig.8.15. Palaeomagnetic r e s u l t s from t h e T o r r i d o n i a n Sandstone ( L a t e Precambrian) of NW S c o t l a n d . Mean d i r e c t i o n s of non-random s i t e s a r e shown a f t e r thermal c l e a n i n g a t 500OC f o r t h e l o c a l i t i e s a t S t o e r Bay (A) and A c h i l t i b u i e (B) i n t h e S t o e r Group and v a r i o u s l o c a l i t i e s (C) i n t h e b a s a l T o r r i d o n Group. Closed symbols i n d i c a t e downward d i p p i n g v e c t o r s and open symbols upward d i p p i n g v e c t o r s . The c i r c u m f e r e n c e i s t h e bedding p l a n e and t h e g r e a t c i r c l e s a r e f i t t e d by i n s p e c t i o n ( d a t a p l o t t e d from S t e w a r t and I r v i n g , 1 9 7 4 ) .
Precambrian palaeomagnetic p o l e s f o r L a u r e n t i a from Cambrian t o t h e Fig.8.16. end of t h e Hudsonian e v e n t ( a b o u t 1830 My). The p o l e s a r e graded on a n i n e p o i n t s c a l e ; normal p o l e s s o l i d , r e v e r s e d p o l e s open symbols and mixed p o l e s i n d i c a t e d by 'bull's e y e s ' ( a f t e r S t e w a r t a n d I r v i n g , 1975)
460 comparison w i t h r e s u l t s from r o c k s of a s i m i l a r a g e e l s e w h e r e .
The l i k e l i h o o d i s
t h a t t h e m a g n e t i z a t i o n s o f t h e s e Precambrian s e d i m e n t s were a c q u i r e d o v e r a c o n s i d e r a b l e l e n g t h of t i m e (by d i a g e n e t i c p r o c e s s e s ) . THE OLD RED SANDSTONE The Anglo-Welsh B a s i n The sedimentology and d i a g e n e s i s of t h e Old Red Sandstone i n t h e Anglo-Welsh Basin h a s been d i s c u s s e d i n C h a p t e r 4.
Palaeomagnetic r e s u l t s were o r i g i n a l l y
p r e s e n t e d by C r e e r (1957) who d i s c o v e r e d t h a t t h e limbs o f s t e e p l y f o l d e d Devonian r e d beds i n Pembrokeshire, S o u t h Wales, had d i f f e r e n t d i r e c t i o n s of m a g n e t i z a t i o n and t h a t t h e s e were d i f f e r e n t from t h e d i r e c t i o n s o b s e r v e d i n n e a r b y , g e n t l y dipping s t r a t a .
Creer (1957, 1962b) e x p l a i n e d t h e s e d i f f e r e n c e s by s u g g e s t i n g t h a t
t h e m a g n e t i z a t i o n c o n s i s t e d of two components:
one a p r i m a r y component a c q u i r e d
p r i o r t o f o l d i n g , and t h e o t h e r a s e c o n d a r y component supposed t o have been s u p e r imposed a f t e r f o l d i n g i n a n e a r l y h o r i z o n t a l f i e l d
I
I
( F i g s . 8 . 1 7 and 8 . 1 8 ) .
V
Outcrop of Old,Red Smdrtons
BRECON BEACONS
NORBIER BAY
BRISTOL CHANNEL
\
Fig.8.17. L o c a l i t y map a n d p a l a e o m a g n e t i c d i r e c t i o n s o f t h e Old Red Sandstone i n t h e Anglo-Welsh B a s i n ( d a t a from Chamalaun and Creer, 1964).
461
BEDDING PLANE
BAY)
Schematic r e p r e s e n t a t i o n of t h e C r e e r two-component.hypothesis used t o Fig.8.18. e x p l a i n d i f f e r e n t d i r e c t i o n s of f o l d e d Old Red Sandstone i n Pembrokeshire ( a f t e r Chamalaun and C r e e r , 1 9 6 4 ) . From a s t a t i s t i c a l a n a l y s i s of t h e d i r e c t i o n s Creer (1962b) concluded t h a t t h i s r e m a g n e t i z a t i o n most p r o b a b l y o c c u r r e d d u r i n g t h e Permo-Triassic and thought t h a t t h e s e c o n d a r y m a g n e t i z a t i o n might be a p a r t i a l thermoremanent m a g n e t i z a t i o n i n d u c e d by b u r i a l t e m p e r a t u r e s of up t o 20OoC.
Thermal d e m a g n e t i z a t i o n s t u d i e s
by Chamalaun and C r e e r (1964) showed t h a t t h i s h y p o t h e s i s of C r e e r ' s was i n c o r r e c t b e c a u s e t h e y were u n a b l e t o i s o l a t e t h e r e s p e c t i v e components.
I n Fig.8.19
r e s u l t s f o r Manorbier and F r e s h w a t e r West a r e shown f o r comparison.
their
I n both cases
d i r e c t i o n s move a l o n g g r e a t c i r c l e s towards t h e NE and above 55OoC have upward inclinations.
These d i r e c t i o n s a r e c l o s e l y grouped a f t e r c o r r e c t i o n f o r bedding
t i l t and a l s o compare c l o s e l y w i t h d i r e c t i o n s from t h e Lower Devonian l a v a s of
t h e Midland V a l l e y of S c o t l a n d ( S t u b b s , 1958); Chamalaun and Creer (1964, p. 16141615) t h e r e f o r e a r g u e d t h a t t h e h i g h - t e m p e r a t u r e d i r e c t i o n r e p r e s e n t e d t h e Devonian f i e l d d i r e c t i o n .
S i m i l a r r e s u l t s were o b t a i n e d from t h e Brecon Beacons,
Cwmbran, and P o r t i s h e a d ( F i g . 8 . 1 9 ) which t o g e t h e r y i e l d e d a mean h i g h t e m p e r a t u r e d i r e c t i o n of 0 6 6 , -37'.
I n some r e s p e c t s t h i s r e s u l t , a l t h o u g h i n c l o s e agreement
w i t h t h a t from t h e l a v a s , i s open t o c r i t i c i s m ; i n p a r t i c u l a r i n a number of specimens t h e h i g h t e m p e r a t u r e d i r e c t i o n i s n o t b a s e d on a s t a b l e end p o i n t .
I n t h e s e r o c k s t h e main component i s c o n s i d e r e d t o be a secondary m a g n e t i z a t i o n acquired during Permo-Triassic remagnetization.
Widespread r e m a g n e t i z a t i o n o f t h e
Old Red Sandstone took p l a c e a t t h i s t i m e ( C r e e r , 1968; Waage and S t o r e v e d t , 1973; T u r n e r and A r c h e r , 1975; T a r l i n g e t a l . ,
1976).
Indeed Creer's r e m a g n e t i z a t i o n
h y p o t h e s i s ( C r e e r , 1968) i s l a r g e l y b a s e d on t h e r e s u l t s j u s t d i s c u s s e d , and t h e i r
462
BRECON BEACONS
Fig.8.19. D i r e c t i o n a l changes d u r i n g thermal d e m a g n e t i z a t i o n f o r specimens from t h e Old Red Sandstone a t t h r e e l o c a l i t i e s . Some of t h e low t e m p e r a t u r e d i r e c t i o n s from M5 a r e o m i t t e d f o r c l a r i t y . Closed symbols i n d i c a t e downward d i p p i n g v e c t o r s and open symbols upward d i p p i n g v e c t o r s . C o r r e c t e d f o r g e o l o g i c a l d i p ( a f t e r Chamalaun and Creer, 1964).
s i m i l a r i t y w i t h r e s u l t s from r o c k s of t h e same a g e i n t h e USSR and USA.
However
some of t h e s e r e s u l t s s u g g e s t t h a t t h e r e m a g n e t i z a t i o n may n o t have been a s p e r v a s i v e a s f i r s t t h o u g h t and a l s o t h a t t h e e x t e n t o f r e m a g n e t i z a t i o n may have depended i n some way on t h e i n i t i a l r e d bed d i a g e n e s i s .
C o n s i d e r i n g t h e Manorbier
Bay and F r e s h w a t e r West s i t e s ( F i g . 8 . 1 9 ) i n c a n b e s e e n t h a t t h e i n i t i a l d i r e c t i o n s of m a g n e t i z a t i o n ( t h e main component) a r e q u i t e d i f f e r e n t .
Whereas t h e d i r e c t i o n
a t F r e s h w a t e r West c o r r e s p o n d s t o t h e P e r m o - T r i a s s i c f i e l d d i r e c t i o n (so do t h o s e i n t h e Brecon Beacons) t h e Manorbier Bay d i r e c t i o n s do n o t , n o r can t h e y b e c o n s i d e r e d t o be a r e s u l t a n t o f a Devonian and a Permo-Triassic d i r e c t i o n .
Note
a l s o t h a t the high temperature d i r e c t i o n s i s o l a t e d a t t h i s l o c a l i t y a r e nearly antiparallel t o the i n i t i a l direction.
T h i s n o t t h e c a s e a t F r e s h w a t e r West. A
p o s s i b l e e x p l a n a t i o n f o r t h i s d i s c r e p a n c y i s t h a t t h e samples from Manorbier Bay might n o t have s u f f e r e d Permo-Triassic r e m a g n e t i z a t i o n a t a l l .
The i n i t i a l
d i r e c t i o n s w i t h SW d e c l i n a t i o n and downward d i p s a r e c o m p a t i b l e w i t h a r e v e r s e d Devonian d i r e c t i o n and t h e h i g h t e m p e r a t u r e d i r e c t i o n s i n t h e NE q u a d r a n t w i t h a normal Devonian d i r e c t i o n .
R e v e r s a l s a r e known t o have been f r e q u e n t i n t h e Lower
Devonian (Sallomy and P i p e r , 1973) and s i n c e t h e p e t r o g r a p h i c e v i d e n c e i n d i c a t e s t h a t d i a g e n e s i s p r o b a b l y c o n t i n u e d f o r a l o n g time a f t e r d e p o s i t i o n , t h e a c q u i s i t i o n of two components i n t h i s way seems a l i k e l y p o s s i b i l i t y .
The p r e s e r v a t i o n of a
composite m a g n e t i z a t i o n of t h i s t y p e may have depended upon t h e f o r m a t i o n of a s t a b l e m a g n e t i z a t i o n i n t h e pigment ( s e e a l s o T u r n e r and A r c h e r , 1975).
T h i s would
make t h e e x i s t i n g m a g n e t i z a t i o n more r e s i s t a n t t o r e m a g n e t i z a t i o n p r o c e s s e s whether t h e s e were a s s o c i a t e d w i t h t e m p e r a t u r e o r chemical changes. The O r c a d i a n Basin The sedimentology and d i a g e n e s i s of t h e Old Red Sandstone i n t h e Orcadian Basin a r e d i s c u s s e d i n C h a p t e r 6.
Palaeomagnetic r e s u l t s f o r t h e Old Red Sandstone o f
t h e O r c a d i a n B a s i n , NE S c o t l a n d have been r e p o r t e d by Stubbs (19581, S t o r e t v e d t and P e t e r s e n ( 1 9 7 2 ) , Waage and S t o r e t v e d t ( 1 9 7 3 ) , T u r n e r and Archer ( 1 9 7 5 ) , T a r l i n g e t a l . ( 1 9 7 6 ) , T u r n e r (1977) and S t o r e t v e d t and Carmichael (1979). One of t h e most d e t a i l e d s t u d i e s was t h a t of T u r n e r and Archer (1975) who i n v e s t i g a t e d t h e Lower Old Red Sandstone i n t h e Gamrie O u t l i e r on t h e s o u t h s i d e of t h e Moray F i r t h ( F i g . 8 . 2 0 ) .
I n a l l 2 3 s i t e s were s t u d i e d , a l l from t h e Crovie
Group, a v a r i a b l e sequence of predominantly r e d a l l u v i a l f a n and f i n e r g r a i n e d f l u v i a t i l e deposits.
The o r i g i n of t h e r e d beds has been d i s c u s s e d by Turner and
Archer (1975, p.242;
1977).
They s u g g e s t e d t h a t pigmentary o x i d e s were produced
by i n t r a s t r a t a l s o l u t i o n o f d e t r i t a l s i l i c a t e g r a i n s ; h o r n b l e n d e s and pyroxene a r e e x t r e m e l y s c a r c e o r a b s e n t s u g g e s t i n g complete removal and p h y l l o s i l i c a t e s show abundant e v i d e n c e of r e p l a c e m e n t by h a e m a t i t e .
Similarly the specularite
g r a i n s a r e n e a r l y a l l m a r t i t e s and i t i s l i k e l y t h a t t h e r e h a s been e x t e n s i v e
464 i n s i t u o x i d a t i o n of m a g n e t i t e . The s t r u c t u r e of t h e NRM i n t h e G r o v i e Group s e d i m e n t s i s e x t r e m e l y complex. I n i t i a l d i r e c t i o n s a p p e a r e d random b u t Turner and A r c h e r (1975) were a b l e t o r e s o l v e t h r e e t y p e s of p a r t i a l t h e r m a l d e m a g n e t i z a t i o n b e h a v i o u r
( F i g . 8.20)
c h a r a c t e r i z e d by t h e f o l l o w i n g d i r e c t i o n s , a f t e r c o r r e c t i o n f o r g e o l o g i c a l d i p :
1) m o d e r a t e l y s t e e p downward i n c l i n a t i o n s 2 ) s o u t h e r l y d e c l i n a t i o n s and s h a l l o w i n c l i n a t i o n s
3) s o u t h w e s t e r l y d e c l i n a t i o n s w i t h m o d e r a t e l y s t e e p upward i n c l i n a t i o n s . Each of t h e s e i s now c o n s i d e r e d i n t u r n 1) Specimens w i t h t h i s t y p e o f NRM a r e found t h r o u g h o u t t h e C r o v i e Group b u t a r e
p a r t i c u l a r l y c h a r a c t e r i s t i c o f t h e Pennan Sandstone.
Progressive treatment of
p i l o t specimens y i e l d s d i r e c t i o n s which a r e c l o s e l y grouped up t o 6OO0C d e s p i t e t h e f a c t t h a t t h e NRM i n t e n s i t y may f a l l s h a r p l y o n l y t o b e f o l l o w e d by an e q u a l l y l a r g e i n c r e a s e (Fig.8.20).
Above 6OO0C t h e d i r e c t i o n moves and i n some
c a s e s assumes a n a p p r o x i m a t e l y a n t i p a r a l l e l o r i e n t a t i o n .
The i n t e r p r e t a t i o n of
t h e s e r e s u l t s o f f e r e d by T u r n e r and A r c h e r (1975) was t h a t t h e m a g n e t i z a t i o n c o n s i s t e d of two o r more a n t i p a r a l l e l components w i t h s i m i l a r b l o c k i n g t e m p e r a t u r e spectra.
T h i s e x p l a n a t i o n a c c o u n t s f o r t h e r a p i d i n t e n s i t y changes by assuming
t h a t t h e r e s u l t a n t v e c t o r i s reduced o r i n c r e a s e d i n magnitude a s one o r t h e o t h e r
o f t h e a n t i p a r a l l e l components becomes unblocked.
Application of the Collinson
t e c h n i q u e ( C o l l i n s o n , 1974) s u g g e s t e d t h a t b o t h pigment and s p e c u l a r i t e c o n t r i b u t e d t o t h e s t a b l e NRM and T u r n e r and Archer (1975) s u g g e s t e d t h a t a t l e a s t one o f t h e a n t i p a r a l l e l components might r e s i d e i n pigment which was produced d i a g e n e t i c a l l y d u r i n g a contemporary geomagnetic f i e l d r e v e r s a l .
These a u t h o r s were of t h e o p i n i o n
t h a t t h i s m a g n e t i z a t i o n was of Devonian a g e ; however t h i s c a n n o t b e v e r i f i e d by any independent e v i d e n c e ; moreover s i n g l e components w i t h s t a b l e end p o i n t s have n o t been i s o l a t e d . 2 ) . T h e second group have a NRM c h a r a c t e r i z e d by s o u t h e r l y d e c l i n a t i o n s w i t h s h a l l o w inclination.
The d i r e c t i o n s a r e s t a b l e up t o 500 o r 6OO0C b u t above t h i s t e m p e r a t u r e
t h e d i r e c t i o n s become s c a t t e r e d s u g g e s t i n g t h a t s i n g l e , s t a b l e components have n o t been i s o l a t e d .
The m a g n e t i c p r o p e r t i e s of t h i s group a r e i n t e r m e d i a t e between t h o s e
o f Group 1 and 3.
3 ) The NRM of Group 3 i s c h a r a c t e r i z e d by s t a b l e d i r e c t i o n s of m a g n e t i z a t i o n w i t h a SW d e c l i n a t i o n and moderate upward i n c l i n a t i o n .
I n some c a s e s t h e d i r e c t i o n s a r e
s t a b l e up t o 65OoC s u g g e s t i n g a s i n g l e component of m a g n e t i z a t i o n ; i n o t h e r s t h e r e i s a s l i g h t i n c r e a s e i n s c a t t e r a t 65OoC s u g g e s t i n g t h a t o t h e r minor components may be p r e s e n t .
T h i s i s a l s o s u g g e s t e d by t h e t h e r m a l decay c u r v e s which show s l i g h t
i n c r e a s e s and d e c r e a s e s i n i n t e n s i t y d e s p i t e c l o s e l y d e f i n e d b l o c k i n g t e m p e r a t u r e spectra.
465
Fig.8.20. Palaeomagnetic r e s u l t s from t h e Lower Old Red Sandstone of t h e Gamrie O u t l i e r , S c o t l a n d . A. The s t a b l e d i r e c t i o n s of 2 1 p i l o t specimen i s o l a t e d d u r i n g thermal d e m a g n e t i z a t i o n and t h e i r d i v i s i o n i n t o t h r e e g r o u p s : 1 ( s t e e p l y d i p p i n g p o s i t i v e v e c t o r s ) , 2 ( s o u t h e r l y d i r e c t e d v e c t o r s w i t h s h a l l o w d i p ) and 3 (moderately s t e e p upward d i p p i n g v e c t o r s . B , C and D show t h e d i r e c t i o n a l and normalized i n t e n s i t y changes o f groups 1, 2 and 3 r e s p e c t i v e l y . The a s t e r i s k shows t h e l o c a l d i r e c t i o n o f t h e p r e s e n t E a r t h ' s f i e l d ( a f t e r T u r n e r and A r c h e r , 1 9 7 5 ) .
466 The p r e c i s e p a l a e o m a g n e t i c s i g n i f i c a n c e of t h e s e t h r e e d i f f e r e n t t y p e s o f NRM i s i n doubt b e c a u s e of t h e d i f f i c u l t y o f i s o l a t i n g d i s c r e t e , s t a b l e components
of m a g n e t i z a t i o n .
Only t h e Group 3 d i r e c t i o n s can b e c o n s i d e r e d t o have been
s a t i s f a c t o r i l y r e s o l v e d l y i n g c l o s e t o t h e Permo-Triassic d i r e c t i o n f o r t h e a r e a . I n o r d e r t o e x p l a i n t h e r e s u l t s T u r n e r and A r c h e r (1975) a r g u e d t h a t t h e s a n d s t o n e s
had a long and complex d i a g e n e t i c h i s t o r y o f which t h e f o l l o w i n g were t h e main features:
1) P o s t - d e p o s i t i o n a l o x i d a t i o n o f s i l i c a t e s and d e t r i t a l i r o n o x i d e s p r o d u c i n g Devonian m a g n e t i z a t i o n s .
Continued d i a g e n e s i s r e s u l t e d i n t h e a c q u i s i t i o n o f b o t h
normal and r e v e r s e d components a s a r e s u l t of contemporary geomagnetic f i e l d fluctuations.
I n t h i s way a composite NRM t y p i f i e d by s c a t t e r e d d i r e c t i o n s was
produced; i t i s now r e p r e s e n t e d by t h e Group 1 d i r e c t i o n s .
2 ) Continued o x i d a t i o n d u r i n g b u r i a l r e s u l t e d i n f u r t h e r m o d i f i c a t i o n o f t h e o r i g i n a l NRM and some s a n d s t o n e s s u f f e r e d p a r t i a l r e m a g n e t i z a t i o n .
These a r e now
r e p r e s e n t e d by t h e Group 2 d i r e c t i o n . 3 ) Some s a n d s t o n e s were c o m p l e t e l y remagnetized i n P e r m o - T r i a s s i c times (Group 3 directions).
C o n t r i b u t o r y f a c t o r s were t h e e x t e n s i v e i n s i t u o x i d a t i o n o f m a g n e t i t e
t o h a e m a t i t e and o t h e r long-term d i a g e n e t i c changes i n v o l v i n g t h e p r o d u c t i o n and g r a i n growth of h a e m a t i t e .
These may have been a i d e d by a w i d e s p r e a d t h e r m a l e v e n t
i n S c o t l a n d d u r i n g Permian t i m e s which was a s s o c i a t e d w i t h t h e R o t l i e g e n d e s v o l c a n i c s and c e r t a i n i n t r u s i v e e v e n t s (Brown, 1975). Waage and S t o r e t v e d t (1973) and T a r l i n g e t a l . (1976) have made comprehensive palaeomagnetic s u r v e y s o f a number of l o c a l i t i e s w i t h i n t h e main p a r t of t h e Orcadian B a s i n ,
T h e i r r e s u l t s a r e i n g e n e r a l agreement and show t h e predominance
of a r e v e r s e d d i r e c t i o n n e a r 1 9 0 , -35' U p p e r Old Red Sandstone.
i n t h e a l l u v i a l f a c i e s of t h e Middle and
By comparison w i t h t h e p o l a r wander p a t h f o r B r i t a i n
T a r l i n g e t a l . (1976, p . 131) c o n s i d e r e d t h i s m a g n e t i z a t i o n t o be of Permian a g e and t o have been g e n e r a t e d by p e n e t r a t i v e o x i d a t i o n b e n e a t h t h e Permian d e s e r t l a n d s u r f a c e ( c f . Chamalaun and C r e e r , 1964; Cornwell, 1966; B r i d e n e t a l . , 1973). A f t e r p a r t i a l thermal d e m a g n e t i z a t i o n a t 6OO0C T a r l i n g e t a l . (1976) found no s y s t e m a t i c p a t t e r n i n specimen d i r e c t i o n s .
Waage and S t o r e t v e d t (1973) b e l i e v e d
t h a t t h e r e m a g n e t i z a t i o n i n t h e O r c a d i a n Basin was Upper Devonian i n a g e and c a u s e d by moderate t e m p e r a t u r e i n c r e a s e s due t o b u r i a l i n t h e manner d e s c r i b e d by Chamalaun (1964). Waage and S t o r e t v e d t (1973) a p p l i e d h i g h t e m p e r a t u r e t h e r m a l d e m a g n e t i z a t i o n and i n a s m a l l number of c a s e s t h e y were a b l e t o remove t h e s e c o n d a r y component and i s o l a t e a h i g h t e m p e r a t u r e component ( F i g . 8 . 2 1 ) .
The d i r e c t i o n of t h i s component
i s s i m i l a r t o c e r t a i n p a l a e o m a g n e t i c r e s u l t s from t h e Old Red Sandstone o f Norway
and t h e Orkney i s l a n d s ( S t o r e t v e d t and H a l v o r s e n , 1966; S t o r e t v e d t e t a l . , 1968; L i e e t a l . , 1969; S t o r e t v e d t and P e t e r s e n , 1972) and S t o r e t v e d t ( 1 9 7 0 a , b ) has
467
N
N
-
CA47- BI
C A 4 4 82
600
400
630
600
.
640 650
E
' 0
0 '
\ ::: \
640 650 660
620
4 E
-2
CA67-A
s
N
-
200 650'C
C A 5 6 -A1 I
;.E
I
S
S F i g . 8.21. D i r e c t i o n a l changes d u r i n g t h e t h e r m a l d e m a g n e t i z a t i o n o f Old Red Sandstone specimens from t h e O r c a d i a n b a s i n o f C a i t h n e s s , S c o t l a n d . C o r r e c t e d f o r g e o l o g i c a l d i p ( a f t e r Waage and S t o r e t v e d t , 1 9 7 3 ) .
468 a r g u e d t h a t i t r e p r e s e n t s t h e t r u e Devonian f i e l d d i r e c t i o n s r a t h e r t h a n t h a t deduced from Lower Devonian v o l c a n i c r o c k s . Palaeomagnetic d i r e c t i o n s o f S c o t t i s h and Norwegian Old Red S a n d s t o n e r e d beds and v o l c a n i c r o c k s a r e shown f o r comparison i n F i g . 8 . 2 1 .
The s t r i k i n g f e a t u r e o f
t h e s e r e s u l t s i s t h e s h a r p d i f f e r e n c e between t h e v o l c a n i c s and t h e r e d beds which
i s q u i t e c o n s i s t e n t w i t h w i d e s p r e a d Permian r e m a g n e t i z a t i o n o f t h e s e d i m e n t s .
The
i m p o r t a n t q u e s t i o n i s whether t h e t r u e Devonian d i r e c t i o n i s t h a t r e p r e s e n t e d by t h e v o l c a n i c s o f t h e Midland V a l l e y o f S c o t l a n d and t h e Lorne P l a t e a u ( b y some i n t r u s i v e r o c k s ) o r t h a t based on t h e Norwegian and C a i t h n e s s s t u d i e s o f S t o r e t v e d t and co-workers.
By comparing t h e p o l e p o s i t i o n s based on t h e s e d i r e c t i o n s from Norway
w i t h t h o s e i n C a i t h n e s s S t o r e t v e d t (1974) p o s t u l a t e d a l a r g e post-Devonian s i n i s t r a l d i s p l a c e m e n t a l o n g t h e G r e a t Glen F a u l t o f some 200-300 Km b u t t h i s h a s been o b j e c t e d t o on a number of grounds (Mykura, 1975; Donovan e t a l . ,
1976; T u r n e r e t a l . , 1976).
The r e s u l t s from t h e Devonian l a v a s of t h e Midland V a l l e y a r e c o n s i d e r e d t o b e t h e b e s t r e p r e s e n t a t i o n o f t h e Devonian f i e l d b e c a u s e o f t h e f o l l o w i n g r e a s o n s :
1) There a r e a l a r g e number o f r e s u l t s i n c l o s e agreement and which show e x a c t l y a n t i p a r a l l e l , normal and r e v e r s e d d i r e c t i o n s 2 ) The r e s u l t s a r e s u p p o r t e d by f i e l d tests a n d l a b o r a t o r y t e s t s of s t a b i l i t y
3 ) The p a l a e o l a t i t u d e deduced from t h e s e r e s u l t s p l a c e s B r i t a i n a b o u t 20-25'
south
o f t h e p a l a e o e q u a t o r and t h i s i s q u i t e c o n s i s t e n t w i t h t h e s e d i m e n t o l o g i c a l e v i d e n c e (Chapter 4 ) . The r e m a g n e t i z a t i o n o f t h e Old Red Sandstone d u r i n g t h e L a t e P a l a e o z o i c o r e a r l y Mesozoic a p p e a r s t o have been a w i d e s p r e a d e v e n t i n t h e O r c a d i a n B a s i n and a p p a r e n t l y a f f e c t e d t h e Upper Old Red Sandstone and t h e a l l u v i a l f a c i e s w i t h i n t h e predominantly l a c u s t r i n e Middle Old Red Sandstone sequence ( T a r l i n g e t a l . ,
1976).
Only p a r t s of
t h e Lower Old Red S a n d s t o n e s u c h a s t h e S a r c l e t l o c a l i t y s t u d i e d by Waage and S t o r e t v e d t (1973, p. 940) and T u r n e r (1977) and t h e Gamrie O u t l i e r a p p e a r t o have r e s i s t e d extensive remagnetization.
The l a c u s t r i n e s e d i m e n t s have been s t u d i e d by
T u r n e r (1977) and T u r n e r a t a l . (1978) who showed t h a t t h e s e t o o had been p a r t i a l l y remagnetized b u t p r o b a b l y d u r i n g Mesozoic times. a t l e a s t two d i s t i n c t e p i s o d e s o f r e m a g n e t i z a t i o n .
We t h u s have t h e p r o b a b i l i t y o f With t h e s e superimposed on
i n i t i a l l y complex d i a g e n e t i c m a g n e t i z a t i o n s i t i s n o t s u r p r i s i n g t h a t t h e r e i s no g e n e r a l a c c e p t a n c e o f a Devonian p o l e p o s i t i o n f o r B r i t a i n . TRIASSIC R E D BEDS OF THE WESTERN USA The T r i a s s i c r e d beds of t h e Colorado P l a t e a u a r e a i n t h e w e s t e r n USA have been e x t e n s i v e l y s t u d i e d and p r o v i d e t h e most d e t a i l e d p a l a e o m a g n e t i c r e c o r d of any r e d beds anywhere i n t h e world.
The r e d bed s e q u e n c e , r a n g i n g i n a g e from Upper
C a r b o n i f e r o u s t o Upper T r i a s s i c , i s a l m o s t f u l l y documented (McMahon and Strangway, 1968a,b; F a r r e l l and May, 1969; H e l s l e y , 1969; Baag and H e l s l e y , 1974a, H e l s l e y
469 and S t e i n e r , 1974; S t e i n e r and H e l s l e y , 1974a,b; Van d e r Voo and Grubbs, 1977) and t h e T r i a s s i c r e s u 1 , t s a r e n o t a b l e f o r t h e i r c o n s i s t e n c y w i t h r e s u l t s from T r i a s s i c sequences i n o t h e r p a r t s of t h e world i n c l u d i n g Europe (Burek, 1968; T u r n e r and I x e r , 1 9 7 7 ) , Greenland (Reeve e t a l . , 1974) and I n d i a ( B h a l l a and Verma, 1969). These r e s u l t s a r e c h a r a c t e r i z e d by a b u n d a n t , a p p a r e n t l y d i s c r e t e , zones o f normal and r e v e r s e d p o l a r i t y , a f e a t u r e which c o n t r a s t s markedly w i t h t h e o t h e r m a j o r Phanerozoic r e d beds l i k e t h e Old Red Sandstone. The Moenkopi Formation The r e g i o n a l s t r a t i g r a p h y o f t h e Moenkopi Formation, which c r o p s o u t i n t h e Colorado P l a t e a u a r e a , i s d e s c r i b e d by McKee (1954) and Blakey (1973).
I n the
w e s t e r n p a r t o f i t s o u t c r o p , t h e Moenkopi Formation i s c h a r a c t e r i z e d by a marine sequence i n c l u d i n g g r e y s h a l e s , c a r b o n a t e s , and e v a p o r i t e s w i t h i n t e r c a l a t e d r e d and maroon s h a l e s .
Eastwards t h e f o r m a t i o n becomes more c l a s t i c and i n e a s t e r n
Utah and w e s t e r n Colorado i t c o n s i s t s of brown and red-brown s a n d s t o n e , s i l t s t o n e and s h a l e , w i t h minor c o n g l o m e r a t e s .
The c l a s t i c f a c i e s of t h e Moenkopi has been
d i v i d e d i n t o f o u r members by Shoemaker and Newman (1969). bottom t o t o p ) :
These a r e (from
t h e T e n d e r f o o t Member, a sequence of m a s s i v e l y bedded bimodal
s a n d s t o n e , r e g i o n a l l y e q u i v a l e n t t o t h e H o s k i n n i n i Member ( S t e w a r t , 1959); t h e A l i Baba Member, a sequence of i n t e r b e d d e d s a n d s t o n e , s i l t s t o n e , and conglomerate;
t h e Sewemup Member, a sequence o f f i n e g r a i n e d s a n d s t o n e , s i l t s t o n e and s h a l e ; and t h e P a r i o t t Member, a sequence o f m u l t i c o l o u r e d s i l t s t o n e , s a n d s t o n e , and conglomerate The Moenkopi Formation i s Lower T r i a s s i c i n a g e , t h e P e r m i a n - T r i a s s i c boundary l y i n g somewhere w i t h i n t h e T e n d e r f o o t Member (Dane, 1935; Shoemaker and Newman, 1959). The palaeomagnetism o f t h e Moenkopi Formation has been s t u d i e d b u t t h e r e a r e s t i l l c o n f l i c t i n g i n t e r p r e t a t i o n s of t h e r e s u l t s (Larson e t a l . , 1976; E l s t o n and P a r u c k e r , 1979).
A f t e r t h e e a r l y work of Runcorn ( 1 9 5 6 ) , K i n t z i n g e r (1957) and C o l l i n s o n and
Runcorn (1960) H e l s l e y (1969) and H e l s l e y and S t e i n e r (1974) made a d e t a i l e d s u r v e y o f t h e s e c t i o n s s o u t h of Gateway, Colorado.
They e s t a b l i s h e d a complete magnetic
r e v e r s a l s t r a t i g r a p h y c o n s i s t i n g o f f i v e normal (N--N5)
and f i v e r e v e r s e d zones
(Rl-R5) ( F i g . 8 . 2 2 ) . The lower p a r t of t h e Moenkopi Formation c o n s i s t s of a t h i c k r e v e r s e d zone (Rl) f o l l o w e d by a series of t h i n n e r p o l a r i t y zones.
S i m i l a r l y t h e upper p a r t of t h e
Moenkopi Formation i s c h a r a c t e r i z e d by a t h i c k r e v e r s e d zone (R4) followed by t h r e e t h i n p o l a r i t y zones ( F i g . 8 . 2 2 ) .
The d i r e c t i o n s of m a g n e t i z a t i o n of t h e R3-N5
i n t e r v a l , b e f o r e and a f t e r t h e r m a l d e m a g n e t i z a t i o n , a r e shown in Fig.8.23. The i n i t i a l d i r e c t i o n s a r e r a t h e r s c a t t e r e d and t h e mean d i r e c t i o n s of t h e normal i n t e r v a l s (Dec. = 348'; I n c . = )'2
I n c . = +24')
a r e o n l y a b o u t 160'
s e c o n d a r y component.
and t h e r e v e r s e d i n t e r v a l s (Dec. = 159';
a p a r t suggesting the presence of a substantial
The most h i g h l y s c a t t e r e d NRM d i r e c t i o n s c o i n c i d e w i t h
470 s t r a t i g r a p h i c i n t e r v a l s w i t h abundant c o a r s e s a n d s t o n e u n i t s , a f e a t u r e which s u g g e s t s t h a t t h e p r e s e n c e o f o x i d i z i n g groundwater s o l u t i o n s d u r i n g d i a g e n e s i s was p a r t l y responsible f o r secondary magnetization.
N5 R5 N4
R4
N3 R3 R3 N2
I I
N1
9GNETIC ZONE Fig.8.22. L o c a t i o n map and sampling s i t e s o f t h e Moenkopi Formation i n c e n t r a l Western Colorado and t h e g e n e r a l r e v e r s a l s t r a t i g r a p h y ( a f t e r H e l s l e y and S t e i n e r ,
1974). A f t e r t h e r m a l d e m a g n e t i z a t i o n a t 55OoC c o n s i d e r a b l y reduced t h e i n i t i a l s c a t t e r t h e mean d i r e c t i o n s o f t h e normal i n t e r v a l s (Dec = 342', t h e r e v e r s e d i n t e r v a l s a r e 176' m a g n e t i z a t i o n h a s been removed.
I n c . = +17O) and
a p a r t suggesting t h a t s u b s t a n t i a l secondary The b e h a v i o u r of p i l o t specimens d u r i n g i n c r e m e n t a l
t h e r m a l d e m a g n e t i z a t i o n i s d e s c r i b e d by H e l s l e y (1969).
A characteristic feature
of t h e r e s u l t s i s t h a t t h e normal d i r e c t i o n s changed v e r y l i t t l e d u r i n g t h e dem-
471 a g n e t i z a t i o n p r o c e d u r e whereas t h e r e v e r s e d d i r e c t i o n s showed l a r g e changes i n d i r e c t i o n and i n t e n s i t y ( F i g . 8 . 2 4 ) . N
N
N
N
N
N
N
N
Fig.8.23. D i r e c t i o n s and means of p o l a r i t y zones R3-NS i n t h e Moenkopi Formation b e f o r e and a f t e r t h e r m a l d e m a g n e t i z a t i o n a t 55OoC ( a f t e r H e l s l e y and S t e i n e r , 1974).
472
+
I
1
LOWER
+ UPPER
5
\
2x166
I
3 h sbo 700 TEMPERATURE-'C
Olbo
W PRESENT
Fig.8.24. The b e h a v i o u r of s e l e c t e d specimens t o i n c r e m e n t a l thermal d e m a g n e t i z a t i o n : A . Changes i n d i r e c t i o n , B. Changes i n i n t e n s i t y . Note t h e d i f f e r e n c e i n b e h a v i o u r between t h e n o r m a l l y and r e v e r s e l y magnetized specimens ( a f t e r H e l s l e y , 1969).
In a number of t h e specimens w i t h r e v e r s e d p o l a r i t y s t a b l e end p o i n t s a r e n o t reached d u r i n g t h e t h e r m a l d e m a g n e t i z a t i o n .
These specimens a r e a l s o c h a r a c t e r i z e d
by weaker NRM i n t e n s i t i e s t h a n t h e normal i n t e r v a l s , a combination of f e a t u r e s which s u g g e s t s t h a t t h e r e v e r s e d d i r e c t i o n s c o n t a i n a superimposed normal component of magnetization.
T h i s e x p l a n a t i o n a l s o a c c o u n t s f o r zone ( A ) , which o c c u r s i n
t h e middle of R3, and c o n s i s t s of n e a r v e r t i c a l d i r e c t i o n s w i t h a p o s i t i v e (downward) d i p .
T h i s v i e w , however, i s n o t h e l d by H e l s l e y and S t e i n e r (1974) n o r by
Baag and H e l s l e y ( 1 9 7 4 a ) , who p r e s e n t e d d a t a which s u p p o s e d l y i n d i c a t e d t h a t t h e Moenkopi Formation was magnetized penecontemporaneously. D e t a i l e d s t u d y of f o u r unbroken cove segments and a series of measurements from seven c o r e s , c r o s s i n g s i x p o l a r i t y t r a n s a c i o n s i n t h e Moenkopi F o r m a t i o n , a r e r e p o r t e d by Baag and H e l s l e y ( 1 9 7 4 a ) . i n Fig.8.25.
The r e s u l t s o f t h e c o r e segments a r e shown
The v a r i a t i o n o b s e r v a b l e i n t h e s e c o r e s c o r r e s p o n d t o V i r t u a l
Geomagnetic P o l e a n g u l a r s t a n d a r d d e v i a t i o n s of 5.6',
6.6',
5.1'
and 4.3'.
At
t h e p r e s e n t time t h e a v e r a g e a n g u l a r s t a n d a r d a t a comparable l a t i t u d e ( a b o u t 10' f o r t h e Moenkopi F o r m a t i o n , I r v i n g , 1964, p. 201) i s a b o u t 8' 1974a, p. 3309).
(Baag and H e l s l e y ,
The VGP d i s t r i b u t i o n s of t h e f o u r c o r e segments have a n e l o n g a t e d
o v a l shape ( a b o u t a 2 : l e l l i p s e ) ; a time-averaged m a g n e t i z a t i o n would b e e x p e c t e d a c i r c u l a r ( o r F i s h e r i a n ) VGP d i s t r i b u t i o n .
Baag and H e l s l e y (19748)
a r g u e d t h a t t h e s e r e s u l t s i n d i c a t e d t h a t e a c h specimen was magnetized i n less t h a n one time p e r i o d o f n o n d i p o l e s e c u l a r v a r i a t i o n ( a b o u t 1800 y e a r s ) ; t h e y f u r t h e r s u g g e s t e d t h a t t h e o v a l d i s t r i b u t i o n of VGP's i n d i c a t e d t h a t d i p o l e v a r i a t i o n s 6 (Brock, 1971) w i t h a p e r i o d o f lo4 - 10 Years had l i t t l e o r no a v e r a g i n g e f f e c t o f t h e observed d a t a (Baag and H e l s l e y , 1974b).
413 602-551'C
514-574'C
0.5
0 180
90 OEC
-m o
+30
INC
IN1
135 90
511-602'C
DEC
I80 -60 -)o INC
0
3 ~ 1 1mW3 0 ~ 3.10-3 INT
457
75
50
25
_.
0
90
I80
90 OEC
INC
IN1
110 -45
DEC
133
0
INC
m-*
10-3 1n1
211
Fig.8.25. Stratigraphic plots of declination (DEC) inclination (INC) and intensity (INT) variations of four long core segments after thermal demagnetization. Intensity is in emu per specimen of about l2cm3 (after Baag and Helsley, 1974a). Serial correlation tests (Epp et al., 1971) of the magnetic variations in the four core segments indicates that cores 135 and 457 are serially correlated at the 5% level whereas 133 and 211 are not significant (Fig.8.25).
Baag and Helsley
(1974a) considered this to be further evidence that the NRM acquisition had been very rapid.
Using Fourier analyses of the four core segments and assuming that
each specimen was magnetized in 250 years they recognized periodicities of 950
-
1840 Years in declination and 1420
-
3680 Years in inclination. The periods
in declination are very similar to those calculated from the present-day westward
474
d r i f t of t h e non-dipole f i e l d a l t h o u g h i t must b e s t a t e d t h a t t h i s depends o n l y on t h e NRM a c q u i s i t i o n r a t e and t h i s has o n l y been a r b i t r a r i l y d e f i n e d a t 250 Years/
2.2cm specimen. Baag and H e l s l e y (1974a) s t u d i e d a number of t r a n s i t i o n p a t t e r n s (changes from normal t o r e v e r s e d d i r e c t i o n s o f m a g n e t i z a t i o n o r v i c e v e r s a . up t o 2.2m) r e c o r d a s i n g l e t r a n s i t i o n (Fig.8.26)
S i x l o n g c o r e s (up
and one l o n g c o r e (4.9m) c o n t a i n e d
These t r a n s i t i o n s show a number of i n t e r e s t i n g f e a t u r e s
two t r a n s i t i o n s .
which a r e open t o v a r i o u s i n t e r p r e t a t i o n s .
For example t h e t r a n s i t i o n from t h e
R , t o N1 magnetozones which were r e c o r d e d i n two c o r e s WK7 and WK8 d r i l l e d a b o u t
o n l y 5m a p a r t ( F i g . 8 . 2 6 )
cannot be a c c u r a t e l y c o r r e l a t e d i n d e t a i l .
The d e c l i n a t i o n
p l o t s , i n p a r t i c u l a r , a r e v e r y d i f f e r e n t and t h e r e a r e minor v a r i a t i o n s i n i n t e n s i t y and i n c l i n a t i o n .
Most o f t h e t r a n s i t i o n s show some e v i d e n c e of t h e p r e s e n c e of
i n t e r m e d i a t e d i r e c t i o n s of m a g n e t i z a t i o n and lower i n t e n s i t y v a l u e s d u r i n g t h e t r a n s i t i o n i n t e r v a l (good examples a r e shown i n F i g . 8 . 2 6 ) .
WK8
537'C
th -90 DEC
0 4 0 INC
10-4 lo-3 10-2 IN1
3
' ,
0
90 180 270 -90 0 +W DEC
INC
10-410-3 10-2 IN1
NlIRl
N1 I R 1
Fig.8.26. D e c l i n a t i o n (DEC), i n c l i n a t i o n (INC) and i n t e n s i t y (INT) changes a f t e r R 1 t r a n s i t i o n a s observed i n two long thermal d e m a g n e t i z a t i o n a d j a c e n t t o t h e N 1 c o r e s , WK7 and WK8 ( a f t e r Baag and H e l s l e y , 1974a).
-
415 There a r e two a l t e r n a t i v e e x p l a n a t i o n s o f t h e s e r e s u l t s .
F i r s t l y , these
v a r i a t i o n s could r e p r e s e n t g e n u i n e i n t e r m e d i a t e f i e l d d i r e c t i o n s which o c c u r r e d during t h e geomagnetic t r a n s i t i o n .
S e c o n d l y , t h e v a r i a t i o n s c o u l d be due t o a
composite zone o f m a g n e t i z a t i o n which r e s u l t e d from t h e i m p o s i t i o n of a r e v e r s e d m a g n e t i z a t i o n on a p r e - e x i s t i n g normal m a g n e t i z a t i o n .
I n t h e f i r s t c a s e t h e NRM
a c q u i s i t i o n would have t o be v e r y r a p i d and b a s i c a l l y be o f d e p o s i t i o n a l o r v e r y early post-depositional
o r i g i n . The second c a s e would be c o n s i s t e n t w i t h a d i a g e n e t i c o r i g i n of t h e NRM b u t no s p e c i f i c c o n c l u s i o n s r e g a r d i n g t h e a g e of t h e NRM c o u l d
be drawn.
Although Baag and H e l s l e y (1974a) p r e f e r r e d t h e f i r s t h y p o t h e s i s , t h e i r This lies i n the f a c t t h a t the
r e s u l t s do i n f a c t c o n t a i n x i d e n c e f o r t h e second.
l o w - i n t e n s i t y specimens from t h e t r a n s i t i o n i n t e r v a l s a r e l e s s s t a b l e t h a n t h o s e from t h e normal o r r e v e r s e d zones.
I n s t a b i l i t y d u r i n g t h e r m a l d e m a g n e t i z a t i o n of
red beds i s most f r e q u e n t l y due t o t h e m i g r a t i o n o f a r e s u l t a n t o f two o r more v e c t o r s a s one of them i s p r e f e r e n t i a l l y removed.
There i s f u r t h e r e v i d e n c e t h a t
the m a g n e t i z a t i o n of t h e Moenkopi Formation was n o t a c q u i r e d penecontemporaneously. Larson e t a l . (1976) s t u d i e d a N-R
t r a n s i t i o n i n t h e lower p a r t o f t h e Moenkopi
Formation n e a r Gray Mountains A r i z o n a .
T h i s boundary, when t r a c e d l a t e r a l l y ,
migrated a c r o s s bedding p l a n e s ( l o c a l time l i n e s ) and m u l t i p l e specimens from n e a r the t r a n s i t i o n showed v a r i o u s d i r e c t i o n s , some N , some R and some i n t e r m e d i a t e b u t a l l f a l l i n g on t h e g r e a t c i r c l e between t h e T r i a s s i c N and R d i r e c t i o n s .
Larson
e t a l . (1976) a l s o showed t h a t s t e p w i s e t h e r m a l d e m a g n e t i z a t i o n of t h e Wupatki Sandstone commonly produced p r o g r e s s i v e m i g r a t i o n from N t o R T r i a s s i c d i r e c t i o n s along a g r e a t c i r c l e p l a n e .
These a u t h o r s concluded t h a t t h e Moenkopi Formation
samples c o n t a i n two o r more a n t i p a r a l l e l components of T r i a s s i c remanence
. 'Where
one o f t h e s e components i s dominant a r e g u l a r T r i a s s i c N o r R p o l a r i t y r e s u l t s ;
where t h e two components a r e e q u a l o r n e a r l y e q u a l a n i n t e r m e d i a t e d i r e c t i o n r e s u l t s , LATE CENOZOIC RED BEDS OF BAJA CALIFORNIA The palaeomagnetism of t h e L a t e Cenozoic r e d beds i n Baja C a l i f o r n i a has been d e s c r i b e d by Larson and Walker (1975).
Their study provides an important p a r a l l e l
with t h e d i a g e n e t i c s t u d i e s of Walker (1967a, 1976).
The d e p o s i t s s t u d i e d a r e of
probable l a t e P l i o c e n e a g e and c o n s i s t of i n t e r b e d s o f s i l t y mud, s i l t and sand which i n t e r f i n g e r w i t h f a n g l o m e r a t e s and l o c a l l y w i t h g y p s i f e r o u s s a n d s t o n e .
The
sediments have many c h a r a c t e r i s t i c s i n common w i t h t h e modern i n t e r t i d a l d e p o s i t s n o r t h of San F e l i p e d e s c r i b e d by Thompson (1968) ( F i g . 8 . 2 7 ) .
Two o u t c r o p s were
s t u d i e d by Larson and Walerr; 56 o r i e n t e d hand samples were c o l l e c t e d from 183m
of s e c t i o n ( d e s i g n a t e d a s s e c t i o n SF +. 35a) and s i x samples were c o l l e c t e d from a s e c t i o n (SF
+
35b) 1.6km t o t h e West which was b e l i e v e d t o be a b o u t lOOm
s t r a t i g r a p h i c a l l y below t h e b a s e of SF
+
35a.
The s e d i m e n t s i n b o t h t h e s e o u t c r o p s
a r e l o c a l l y s t a i n e d by y e l l o w and r e d f e r r i c oxyhydroxides, p r i n c i p a l l y g o e t h i t e
9LP
and h a e m a t i t e which t e n d t o be c o n c e n t r a t e d i n s a n d and s i l t laminae w i t h i n t h e muds and i n a u r e o l e s a d j a c e n t t o t h e s e laminae.
Locally, concretions of goethite
and a h y d r a t e d manganese-barium o x i d e ( h y d r o p s i l o l e m l a n e ) o c c u r .
Walker (1967a)
has c o n v i n c i n g l y d e m o n s t r a t e d t h e d i a g e n e t i c o r i g i n o f t h e pigment i n t h e s e sediments and Larson and Walker (1975) were a b l e t o show t h a t t h e r e d and yellow pigments and t h e c o n c r e t i o n s i n c l u d i n g t h e g o e t h i t e and hydropsilomelane were a l l i m p o r t a n t c a r r i e r s o f chemical remanent m a g n e t i z a t i o n .
A variable d e t r i t a l
c o n t r i b u t i o n t o t h e remanence i s made by m a g n e t i t e , a p p r o x i m a t e l y 50% o f which shows o x i d a t i o n t o maghaemite. The NRM d i r e c t i o n s a r e shown i n F i g . 8 . 2 8 a f t e r thermal d e m a g n e t i z a t i o n a t 3OO0C and 60OoC.
i n i t i a l measurement and p a r t i a l
The i n i t i a l NRM d i r e c t i o n s a r e q u i t e
s c a t t e r e d b u t show a d i s t i n c t g r o u p i n g i n t h e NE q u a d r a n t w i t h a downward d i p . Some specimens i n t h e s o u t h e r n hemisphere have upward d i p ; many of t h e s e a r e from t h e g o e t h i t e - r i c h lower p a r t o f t h e SF of r e v e r s e d d i r e c t i o n s .
+
35a s e c t i o n b u t t h e r e i s no c l e a r grouping
Thermal d e m a g n e t i z a t i o n a t 3OO0C r e d u c e s t h e s c a t t e r
c o n s i d e r a b l y m a i n l y b e c a u s e o f t h e removal of t h e r e v e r s e d component c a r r i e d by t h e g o e t h i t e - r i c h specimens i n t h e lower p a r t o f t h e s e c t i o n .
A f t e r thermal demag-
n e t i z a t i o n a t 6OO0C t h e r e i s some i n c r e a s e i n s c a t t e r and t h e c l u s t e r i n t h e NE q u a d r a n t s b r e a k s up.
These r e s u l t s can b e e x p l a i n e d i n t h e f o l l o w i n g way.
First
t h e C u r i e t e m p e r a t u r e o f m a g n e t i t e and t h e i n v e r s i o n t e m p e r a t u r e of maghaematite
were b o t h exceeded a t t h i s t e m p e r a t u r e .
Secondly t h e thermomagnetic a n a l y s e s of
Larson and Walker show t h a t t h e s a t u r a t i o n moment of h a e m a t i t e would a l s o have been much reduced by h e a t i n g t o 6OO0C and t h i r d l y t h e b l o c k i n g t e m p e r a t u r e of most of t h e f i n e g r a i n e d a u t h i g e n i c h a e m a t i t e would a l s o have been exceeded.
I n t h i s way
t h e r e l a t i v e c o n t r i b u t i o n of random o r r e v e r s e l y magnetized components was enhanced and i n t e r m e d i a t e d i r e c t i o n s r e s u l t e d ( F i g . 8 . 2 8 ) . Larson and Walker (1975) were a b l e t o p r e s e n t c o n v i n c i n g e v i d e n c e of m u l t i p l e components o f m a g n e t i z a t i o n l i k e t h o s e observed i n many o l d e r r e d bed sequences (Fig.8.29).
I n one example, t h e c e n t r a l two l a y e r s of a sample a r e r e v e r s e d i n
d i r e c t i o n , whereas t h e bottom and t o p p a r t s a r e normal and i n t e r m e d i a t e i n d i r e c t i o n (Fig.8.29a).
I n a n o t h e r example, a reddened burrow i s r e v e r s e l y magnet-
i z e d , b u t most of t h e sample has a normal p o l a r i t y ( F i g . 8 . 2 9 b ) .
Analyses of two
p a r t s of a n o t h e r sample when measured s e p a r a t e l y show t h a t t h e two component p a r t s have m a g n e t i z a t i o n s which a r e a n t i p a r a l l e l t o e a c h o t h e r ( F i g . 8 . 2 9 ~ ) . Most spect a c u l a r though a r e t h e r e s u l t s from a sample composed of l a m i n a t i o n s of r e d f i n e g r a i n e d s a n d s t o n e and l e s s r e d s i l t s t o n e ( F i g . 8 . 3 0 ) . sample i s s t e e p l y downward towards t h e E S E , i . e .
The m a g n e t i z a t i o n o f t h e whole
intermediate i n direction.
sample was s e p a r a t e d i n t o f i v e l a y e r s and e a c h l a y e r measured s e p a r a t e l y ,
The Layers a
and c a r e r e v e r s e d w h i l s t l a y e r s b , d , and e a r e normally magnetized; a l s o one of t h e r e d zones ( c ) i s r e v e r s e d i n p o l a r i t y , whereas t h e o t h e r two r e d zones (b and e )
Fig.8.28. Palaeomagnetic r e s u l t s o f Cenozoic a l l u v i u m from Baja C a l i f o r n i a . On t h e l e f t s e c t i o n SF + 35a and on t h e r i g h t SF 35b. The r e s u l t s a r e shown i n i t i a l l y and a f t e r p a r t i a l t h e r m a l d e m a g n e t i z a t i o n a t 3OO0C and 6OO0C ( a f t e r Larson and Walker, 1 9 7 5 ) .
+
479
A wnoim 0
b
concreflon
B
Infmnsify. emu/g
wnoim b (contoins red
burra)
c
3.1 a 10-a
0
4.4
b
6 . 5 I lo-’
c
1.3 I 10-O
I
lo-#
C
wholm 0
b
Fig.8.29. Palaeomagnetic results obtained by measuring samples of Cenozoic 3 alluvium wholly and in parts. A. Sample 1 (section SF + 35a). The cube is lcm B. Sample 60 (section SF + 35b). C. Sample 23. D. Sample 7. E. Sample 11 (all from section SF + 35a) (after Larson and Walker, 1975).
.
480 a r e normally magnetized.
T h i s f e a t u r e s u g g e s t s t h a t e a c h zone a c q u i r e d i t s
remanence a t t h e time i t became reddened and t h a t t h e r e d d e n i n g of e a c h l a y e r was independent of t h e o t h e r s .
I t c l e a r l y shows t h a t t h e NFW of t h e sample i s m u l t i -
component, even a f t e r thermal d e m a g n e t i z a t i o n a t 60OOC.
N
f iI whole
WORM BURROW
+
a
worm burrow
Fig.8.30. D i r e c t i o n s of remanence i n two samples of Cenozoic a l l u v i u m a f t e r thermal d e m a g n e t i z a t i o n a t 60OoC. Equal-area p r o j e c t i o n : c l o s e d c i r c l e s downward v e c t o r s ; open c i r c l e s upward v e c t o r s ( a f t e r Larson and Walker, 1975).
Larson and Walker (1975) concluded from t h e i r s t u d i e s t h a t t h e s e s e d i m e n t s were i n t h e p r o c e s s o f a c q u i r i n g a CRM which o b s c u r e s any m a g n e t i z a t i o n t h a t t h e sediments had when t h e y were d e p o s i t e d .
Three m i n e r a l s :
g o e t h i t e , h a e m a t i t e , and hydro-
p s i l o m e l a n e c a r r y t h e CRM and whenever one of t h e s e components i s h i g h l y developed t h e remanence o f t h e bed i s s t r o n g and s t a b l e b u t i t may b e e i t h e r normal o r reversed.
When two of t h e s e a u t h i g e n i c components a r e p r e s e n t i n a s i n g l e sample
t h e r e s u l t i n g remanence may be weak and i n t e r m e d i a t e i n d i r e c t i o n a s t h e two components c a n c e l e a c h o t h e r o u t .
Small s c a l e v a r i a t i o n s i n d e c l i n a t i o n , i n c l i n a t i o n
and i n t e n s i t y can t h e r e f o r e be a t t r i b u t e d t o v a r i a t i o n s in t h e r a t e , o r d e g r e e of CRM a c q u i s i t i o n and a r e n o t due t o s e c u l a r v a r i a t i o n s o f t h e E a r t h ' s magnetic f i e l d .
The remanence c a r r y i n g a u t h i g e n i c m i n e r a l s i n t h e s e d e p o s i t s a r e t h e p r o d u c t s of i n t r a s t r a t a l a l t e r a t i o n of d e t r i t a l i r o n - b e a r i n g g r a i n s s u c h a s hornblende and
481 biotite.
I t t h u s seems l i k e l y t h a t t h e r a t e o f CRM a c q u i s i t i o n depended upon t h e
r a t e o f i n t r a s t r a t a l a l t e r a t i o n t h a t c a u s e d t h e r e l e a s e of i r o n and manganese from these minerals.
T h i s r a t e i s u n l i k e l y t o have been uniform b e c a u s e t h e a l t e r a t i o n
p r o c e s s e s depend upon a v a r i e t y o f h i g h l y v a r i a b l e f a c t o r s s u c h a s t h e f l o w - r a t e and chemical c o m p o s i t i o n of t h e groundwater, p e r m e a b i l i t y and p o r o s i t y o f t h e sediments and t h e n a t u r e of t h e d e t r i t a l m i n e r a l s . T h i s model o f CRM development u s e d by L a r s o n and Walker ( 1 9 7 5 ) goes some way t o e x p l a i n i n g t h e v a r i a b i l i t y o f p a l a e o m a g n e t i c r e s u l t s from r e d beds. c l e a r l y t h e c r u c i a l f a c t o r i s t h e amount and r a t e of a c q u i s i t i o n of CRM.
Quite In
d i f f e r e n t r e d bed sequences where t h e r e a r e fundamental d i f f e r e n c e s i n t h e d e t r i t a l mineralogy and t h e s u b s e q u e n t p a t t e r n of d i a g e n e s i s CRM w i l l b e a c q u i r e d a t a d i f f e r e n t r a t e , and i n a d i f f e r e n t manner, and t h i s w i l l b e r e f l e c t e d i n t h e o v e r a l l pa l a e o m a g n e t i c r e s u l t .
THE RELATIONSHIP BETWEEN DIAGENESIS AND PALAEOMAGNETISM I N CONTINENTAL RED BEDS The g e o l o g i c a l e v i d e n c e i n f a v o u r of t h e d i a g e n e t i c o r i g i n of h a e m a t i t e i n r e d beds i s convincing; a v a r i e t y of d i a g e n e t i c p r o c e s s e s i n c l u d i n g f e r r i c hydroxide d e h y d r a t i o n , s i l i c a t e a l t e r a t i o n , and t h e o x i d a t i o n o f m a g n e t i t e can t a k e p l a c e a t v a r i o u s times d u r i n g t h e d i a g e n e s i s o f c o n t i n e n t a l r e d beds.
The p a l a e o m a g n e t i c
e v i d e n c e i n d i c a t i n g t h a t h a e m a t i t e c a r r i e s t h e NRM o f c o n t i n e n t a l r e d beds i s e q u a l l y c o m p e l l i n g and i t must b e concluded t h a t t h e m a g n e t i z a t i o n o f r e d beds
i s acquired during diagenesis.
The a g e of t h e m a g n e t i z a t i o n i n r e d beds (which i s
t h e s i n g l e most i m p o r t a n t f a c t o r from a p a l a e o m a g n e t i c p o i n t of view) i s t h e r e f o r e a d i r e c t r e s u l t of t h e r a t e o f a c q u i s i t i o n of remanence.
The complexity o f r e d
bed m a g n e t i z a t i o n s l a r g e l y r e s u l t s from t h e f a c t t h a t t h i s r a t e i s v a r i a b l e because i t r e p r e s e n t s t h e sum of s e v e r a l d i s c r e t e d i a g e n e t i c p r o c e s s e s which a r e a l l a c q u i r i n g remanence o t a d i f f e r e n t r a t e . Models o f remanence a c a u i s i t i o n I n t h e s i m p l e s t c a s e , i f t h e r e i s a uniform r a t e of s e d i m e n t a t i o n and t h e a c q u i s i t i o n o f remanence i s r a p i d , t h e n a n a c c u r a t e r e c o r d of any geomagnetic f i e l d v a r i a t i o n w i l l b e produced (Fig.8.31a)
and t h e r e c o r d e d a m p l i t u d e s would b e somewhat
s m a l l e r t h a n t h e a c t u a l v a r i a t i o n depending upon t h e p r e c i s e s p e e d o f m a g n e t i z a t i o n . T h i s s i t u a t i o n i s o n l y l i k e l y t o o c c u r i f t h e remanence i s a DRM and t h e r e i s no c o n v i n c i n g e v i d e n c e o f t h e o c c u r r e n c e o f DRM i n r e d beds.
I f t h e remanence was
a c q u i r e d v e r y s l o w l y t h e n minor geomagnetic f l u c t u a t i o n s would b e i n t e g r a t e d and t h e r e c o r d would show l i t t l e d i r e c t i o n a l d i s p e r s i o n .
Any major v a r i a t i o n s , such a s
geomagnetic r e v e r s a l s , would be r e c o r d e d a s i f t h e r e v e r s a l o c c u r r e d lower i n t h e s e c t i o n and e a r l i e r i n t i m e ( F i g . 8 . 3 1 b ) .
I f a r e d bed c o n t a i n e d b o t h r a p i d l y and
s l o w l y a c q u i r e d remanence componenes t h e n t h e p a l a e o m a g n e t i c r e c o r d would b e
482 considerably complicated.
Assuming t h a t t h e components were a c q u i r e d d u r i n g a
f i e l d r e v e r s a l , and c o n t r i b u t e d e q u a l l y t o t h e t o t a l remanence ( F i g . 8 . 3 1 c ) ,
then
t h e r e c o r d would show a c o m p l i c a t e d and l a r g e d i s p e r s i o n zone b e f o r e t h e geomagnetic reversal.
The d i s p e r s i o n would i n c r e a s e a s t h e a c t u a l r e v e r s a l approached owing
t o the gradually increasing
c o n t r i b u t i o n of t h e s l o w l y a c q u i r e d component added
t o t h e r a p i d l y a c q u i r e d component t h a t c a r r i e d t h e minor geomagnetic
field
fluctuations.
FIELD VARIATION DEC
RAPID ACQUISITION DEC
Q
SLOW ACQUISITION IN1
DEC
b
C
RAPID & SLOW ACQUISITION DEC
INT
d
Fig.8.31. Schematic r e p r e s e n t a t i o n o f a geomagnetic p o l a r i t y t r a n s i t i o n and i t s r e c o r d i n u n i f o r m l y d e p o s i t e d sediment. I f t h e s e d i m e n t a c q u i r e s remanence r a p i d l y t h e n t h i s w i l l be a n a c c u r a t e r e c o r d of t h e t r a n s i t i o n , More s l o w l y a c q u i r e d remanence w i l l be d e p r e s s e d s t r a t i g r a p h i c a l l y and show less d i s p e r s i o n . Remanence c h a r a c t e r i z e d by a combination o f r a p i d and slow components i s a l s o shown ( a f t e r Baag and H e l s l e y , 1 9 7 4 a ) . T h i s same r e a s o n i n g can be a p p l i e d t o t h e v a r i o u s d i a g e n e t i c p r o c e s s e s which o p e r a t e i n c o n t i n e n t a l r e d beds.
Assuming t h a t DRM i s a b s e n t , o r d e s t r o y e d p o s t -
d e p o s i t i o n a l l y , t h e most r a p i d l y a c q u i r e d remanence i n r e d beds p r o b a b l y r e s u l t s from t h e d e h y d r a t i o n of d e t r i t a l f e r r i c hydroxide i n a l l u v i u m o r m e c h a n i c a l l y i n f i l t r a t e d c l a y (Van Houten, 1972; Walker, 1976).
The breakdown of i r o n - s i l i c a t e s
a l s o produces f i n e g r a i n e d pigmentary h a e m a t i t e b u t t h e remanence produced by t h i s p r o c e s s i s p r o b a b l y a c q u i r e d a t a s l o w e r r a t e t h a n t h e d i r e c t a g e i n g of f e r r i c hydroxides.
Another i m p o r t a n t d i a g e n e t i c p r o c e s s , t h e i n s i t u o x i d a t i o n of
483 m a g n e t i t e i s d i f f i c u l t t o a s s e s s i n terms o f t h e r a t e of remanence a c q u i s i t i o n . T h i s r a t e depends upon t h e r a t e o f o x i d a t i o n which i n t u r n w i l l v a r y a c c o r d i n g t o g r a i n s i z e and t h e i n t e r s t i t i a l geochemical environment.
I f we assume t h a t
remanence i s a c q u i r e d more s l o w l y by m a g n e t i t e o x i d a t i o n t h a n t h e o t h e r d i a g e n e t i c p r o c e s s e s t h e n w e can model t h e a c q u i s i t i o n o f remanence i n r e d beds i n terms o f these three diagenetic processes.
I n F i g . 8 . 3 2 geomagnetic f i e l d f l u c t u a t i o n s
i n c l u d i n g two t r a n s i t i o n s a r e r e p r e s e n t e d on a v e r t i c a l a r b i t r a r y t i m e s c a l e .
The
r e l a t i v e r a t e o f a c q u i s i t i o n of remanence f o r t h e t h r e e d i a g e n e t i c p r o c e s s e s i s a l s o i n d i c a t e d on t h e v e r t i c a l s c a l e .
I t i s assumed t h a t remanence a c q u i s i t i o n
b e g i n s a t t h e b a s e and i s uniform f o r e a c h o f t h e t h r e e p r o c e s s e s .
The o v e r a l l
e f f e c t i s t h a t t h e more s l o w l y a c q u i r e d remanences a r e d i s p l a c e d s t r a t i g r a p h i c a l l y downwards a s i n F i g . 8 . 3 1 .
Now t h e a c t u a l p a l a e o m a g n e t i c r e c o r d p r e s e r a e d i n t h e
r e d beds w i l l depend upon t h e r e l a t i v e c o n t r i b u t i o n of e a c h o f t h e s e components.
STRATIGRAPHICAL DISTRIBUTION OF OBSERVED PALAEOMAGNETIC RECORD
INTERMEDIATE
REVERSED
NORMAL
F i g . 8.32. Schematic r e p r e s e n t a t i o n of t h e r e l a t i v e r a t e o f remanence a c q u i s i t i o n by t h r e e d i f f e r e n t d i a g e n e t i c p r o c e s s e s d u r i n g two geomagnetic p o l a r i t y t r a n s i t i o n s . Note t h a t t h e more s l o w l y a c q u i r e d remanence i s a p p a r e n t l y d i s p l a c e d s t r a t i g r a p h i c a l l y downwards. Also t h e p a l a e o m a g n e t i c r e c o r d i n t h e whole rock b e a r s l i t t l e resemblance t o t h e f i e l d v a r i a t i o n a t t h e time o f d e p o s i t i o n .
I f t h e y a l l c o n t r i b u t e e q u a l l y t o t h e t o t a l remanence t h e n t h e r e s u l t a n t d i r e c t i o n s w i l l be a n i n t e g r a t i o n of t h e s e components and would b e d i s p l a c e d s t r a t i g r a p h i c a l l y downwards.
I f t h e r e a r e any v e r t i c a l ( s t r a t i g r a p h i c ) v a r i a t i o n s i n t h e r e l a t i v e
484 c o n t r i b u t i o n s o f t h e t h r e e i t c a n b e shown t h a t t h e s e may b e combined i n s u c h a way t h a t a palaeomagnetic r e c o r d , c o m p l e t e l y u n l i k e t h e o r i g i n a l geomagnetic f l u c t u a t i o n s , c a n be produucd.
F o r example, i n t h e c a s e shown i n F i g . 8 . 3 2 , assume
t h a t t h e r e l a t i v e c o n t r i b u t i o n s of p r o c e s s e s B and C v a r y i n s u c h a way t h a t C dominates t h e lower h a l f of t h e s e c t i o n and B t h e upper h a l f o f t h e s e c t i o n .
The
r e s u l t a n t p a l a e o m a g n e t i c r e c o r d ( F i g . 8 . 3 2 d ) b e a r s l i t t l e resemblance t o t h e t r u e
It
geomagnetic f i e l d f l u c t u a t i o n s and c o n t a i n s a ' s p u r i o u s ' r e v e r s a l of p o l a r i t y . i s c l e a r t h a t s t r a t i g r a p h i c v a r i a t i o n s i n t h e r a t e of remanence a c q u i s i t i o n by
d i f f e r e n t d i a g e n e t i c p r o c e s s e s can produce c o m p l e t e l y anomalous p a l a e o m a g n e t i c results.
These v a r i a t i o n s may r e s u l t from p r i m a r y l i t h o l o g i c a l d i f f e r e n c e s , f o r
example i n d e t r i t a l m a g n e t i t e c o n c e n t r a t i o n s , o r from v a r i a t i o n s i n t h e r a t e o f o x i d a t i o n o r h y d r o l y s i s which might be more r a p i d i n porous h o r i z o n s . The palaeomagnetic e v o l u t i o n o f r e d beds The p r e c e d i n g d i s c u s s i o n i n d i c a t e s t h a t i n o r d e r t o make any c o n c l u s i o n s a b o u t t h e age of t h e m a g n e t i z a t i o n i n r e d beds some e x t e r n a l c o n t r o l i s n e c e s s a r y .
The
p r e s e n c e of a p p a r e n t geomagnetic f i e l d f l u c t u a t i o n s a l o n e i s n o t s u f f i c i e n t e v i d e n c e t o deduce t h a t m a g n e t i z a t i o n f o l l o w e d r a p i d l y a f t e r d e p o s i t i o n .
External
c o n t r o l s which c o u l d be a p p l i e d i n c l u d e t h e comparison o f t h e r e s u l t s w i t h t h o s e from igneous r o c k s o f t h e same a g e , o r w i t h a known p o l a r i t y sequence d e r i v e d from marine magnetic a n o m a l i e s .
The l a t t e r i s a & t e n t i a l l y v a l u a b l e t o o l f o r s t u d y i n g
t h e p o l a r i t y sequences o b s e r v e d i n Cenozoic r e d beds ( e . g . Barndt e t a l . , 1978). Many r e d beds show c l a s s i c a l p a l a e o m a g n e t i c r e s u l t s .
They have two groups of
d i r e c t i o n s , a n t i p o d a l l y opposed, w i t h p o s i t i v e and n e g a t i v e p o l a r i t i e s a p p a r e n t l y a c q u i r e d d u r i n g normal and r e v e r s e d geomagnetic f i e l d s .
The normal and r e v e r s e d
zones may b e l a t e r a l l y p e r s i s t e n t and i t may b e p o s s i b l e t o c o r r e l a t e them i n a way which does n o t c o n f l i c t w i t h t h e l i t h o s t r a t i g r a p h y .
The d i r e c t i o n s i n r e d beds
of t h i s t y p e a r e c o n s i s t e n t w i t h t h o s e from a s s o c i a t e d i g n e o u s r o c k s and f i e l d t e s t s of s t a b i l i t y u s u a l l y i n d i c a t e t h a t t h e m a g n e t i z a t i o n formed p r i o r t o f o l d i n g ( a l t h o u g h t h i s o f f e r s p r e c i s i o n of no b e t t e r t h a n a few m i l l i o n y e a r s ) .
Red beds
of t h i s type w i l l b e r e f e r r e d t o a s Type A r e d beds f o l l o w i n g ( T u r n e r , 1979).
They
o c c u r t h r o u g h o u t t h e s t r a t i g r a p h i c r e c o r d and a r e g e n e r a l l y b e l i e v e d t o have been magnetized d u r i n g o r s h o r t l y a f t e r d e p o s i t i o n . A l a r g e number of r e d beds show more c o m p l i c a t e d p a l a e o m a g n e t i c r e s u l t s .
They
c a n n o t g e n e r a l l y b e r e s o l v e d i n t o two groups of o p p o s i t e p o l a r i t y and u s u a l l y r e v e a l many i n t e r m e d i a t e d i r e c t i o n s which d e s c r i b e a g r e a t c i r c l e p l a n e ; more complex d i s t r i b u t i o n s of d i r e c t i o n s may be s e e n .
I n d i v i d u a l specimens can b e
shown t o have composite m a g n e t i z a t i o n s , e i t h e r by specimen s p l i t t i n g o r by chemical o r thermal demagnetization.
O f t e n , i n d i v i d u a l components may b e a n t i p a r a l l e l i n
which c a s e t h e r e s u l t a n t l i e s a l o n g t h e a x i s o f m a g n e t i z a t i o n .
Intermediate
485 d i r e c t i o n s r e s u l t from two o r more components which a r e n o t a n t i p o d a l l y opposed. Red beds w i t h m a g n e t i z a t i o n s o f t h i s type a r e r e f e r r e d t o a s Type B r e d beds. I t may be p o s s i b l e t o i s o l a t e i n d i v i d u a l components by t h e r m a l o r chemical demagn e t i z a t i o n and i n some c a s e s t h e s e may b e p a l a e o m a g n e t i c a l l y s i g n i f i c a n t .
Type B
r e d b e d s , l i k e Type A r e d beds t e n d t o be d i s t r i b u t e d throughout t h e s t r a t i g r a p h i c record. A number of r e d beds a r e c h a r a c t e r i z e d by a m a g n e t i z a t i o n which c o n s i s t s o f a s i n g l e , w e l l grouped d i r e c t i o n and which i s s t a b l e t o t h e r m a l and chemical demagnetization.
F i e l d t e s t s o f t e n i n d i c a t e t h a t t h e m a g n e t i z a t i o n formed a f t e r f o l d i n g
and t h e d i r e c t i o n i s o f t e n w i d e l y d i v e r g e n t from t h a t o f a s s o c i a t e d o r comtemporaneous i g n e o u s r o c k s .
These r e d beds a r e r e f e r r e d t o a s Type C; t h e d i r e c t i o n i s
o f t e n c l o s e t o t h e p r e s e n t E a r t h ' s f i e l d , a f e a t u r e t a k e n t o i n d i c a t e t h a t t h e NRM was a c q u i r e d i n r e l a t i v e l y Recent times. Some g e n e r a l comments r e g a r d i n g t h e r e l a t i o n s h i p s between d i a g e n e s i s and palaeomagnetic p r o p e r t i e s o f r e d beds might be p o s s i b l e i f t h e s t r u c t u r e o f t h e NRM and t h e d i a g e n e t i c f e a t u r e s i n t h e s e t h r e e d i f f e r e n t t y p e s of r e d beds c a n b e r e l a t e d . I n p a r t i c u l a r i t i s i m p o r t a n t t o i d e n t i f y t h a t t e x t u r a l phase of h a e m a t i t e which i s r e s p o n s i b l e f o r c a r r y i n g t h e major p o r t i o n o f t h e NRM and then t o deduce a t what s t a g e of d i a g e n e s i s i t was formed.
P o s s i b l e c o n t r i b u t i o n s from o t h e r p h a s e s and t h e
p o s s i b l e e f f e c t s of r e m a g n e t i z a t i o n must a l s o be c o n s i d e r e d . Tvoe A r e d beds
Moenkopi Formation o f t h e USA and S t . Bees Sandstone of t h e UK, and a l s o i n c l u d e t h e P r o t e r o z o i c r e d beds of Canada.
A l l t h e s e f o r m a t i o n s a r e c h a r a c t e r i z e d by d i s c r e t e
zones of normal and r e v e r s e d m a g n e t i z a t i o n and i n some c a s e s t h e a n a l y s i s of s m a l l s c a l e d i r e c t i o n a l changes and p o l a r i t y t r a n s i t i o n s has been used a s e v i d e n c e of penecontemporaneous m a g n e t i z a t i o n ( e . g . Baag and H e l s l e y , 1974a; H e l s l e y and S t e i n e r , 1974).
However, d e t a i l e d a n a l y s i s of t h e s e f e a t u r e s s u g g e s t s t h a t they may t r a n s -
g r e s s l o c a l t i m e b o u n d a r i e s ( e . g . Larson e t a l . ,
1976) and i t must b e concluded
t h a t t h e NRM was a c q u i r e d d u r i n g d i a g e n e s i s a l t h o u g h t h e palaeomagnetic f e a t u r e s o f r e d beds of t h i s t y p e s u g g e s t t h a t t h e NRM a c q u i s i t i o n must have been r e l a t i v e l y 6 r a p i d , s a y w i t h i n 10 -lo7 Years. The s t r u c t u r e of t h e NRM i n r e d beds of t h i s type h a s been i n v e s t i g a t e d by C o l l i n s o n (1974) and Turner and I x e r (1977).
I n both
t h e s e s t u d i e s , c o a r s e p a r t i c l e s p e c u l a r i t e and m a r t i t e g r a i n s were shown t o be t h e most i m p o r t a n t NEW c a r r i e r s .
T h i s is t h e c a s e f o r a number o f f o r m a t i o n s i n c l u d i n g
t h e Moenkopi, t h e Chugwater and t h e S t . Bees Sandstone. Although a u t h i g e n i c pigmentary h a e m a t i t e o c c u r s i n a l l t h e s e f o r m a t i o n s and has been s t u d i e d i n d e t a i l i n two of them (Walker and L a r s o n , 1976; I x e r e t a l . , 1980) i t a p p e a r s , i n g e n e r a l , t o be o n l y a minor NRM c a r r i e r p o s s i b l y a c c o u n t i n g f o r o c c a s i o n a l u n s t a b l e and anomalous
486
d i r e c t i o n s of m a g n e t i z a t i o n . I t remains t o be s e e n t h e n how t h e s p e c u l a r i t e and m a r t i t e g r a i n s c a n a c q u i r e
t h i s s t a b l e magnetization.
I t i s extremely u n l i k e l y t h a t the s p e c u l a r i t e f r a c t i o n
can c a r r y any s i g n i f i c a n t DRM.
I n t h e f i r s t p l a c e , t h e mechanical t o r q u e s d u r i n g
d e p o s i t i o n would i n t r o d u c e a s i g n i f i c a n t i n c l i n a t i o n e r r o r , and s e c o n d l y , PDRM c o u l d n o t develop b e c a u s e of t h e c o a r s e g r a i n s i z e s i n v o l v e d .
Furthermore, t h e
e v i d e n c e o f m i n e r a l phase changes ( o x i d a t i o n of m a g n e t i t e t o h a e m a t i t e ) s u g g e s t s t h a t i f any DRM o r i g i n a l l y d i d e x i s t t h e n i t would b e l a r g e l y d e s t r o y e d by l a t e r d i a g e n e t i c changes.
On b a l a n c e , t h e r e f o r e , t h e e v i d e n c e does s u g g e s t t h a t t h e NRM
was produced by t h e r a p i d i n s i t u o x i d a t i o n o t m a g n e t i t e and o t h e r d e t r i t a l i r o n bearing grains.
The r a t e of CRM a c q u i s i t i o n i n t h i s way must have been s u f f i c i e n t l y
r a p i d t o e n a b l e t h e development of d i s c r e t e zones o f normal and r e v e r s e magnetiza t i o n (although there a r e overlaps i n c e r t a i n areas).
An e s t i m a t e of t h e r e v e r s a l
f r e q u e n c y i n any p a r t i c u l a r c a s e w i l l t h u s e n a b l e some l i m i t s t o b e p l a c e d on t h e r a t e of CRM a c q u i s i t i o n .
The geomagnetic f i e l d h a s undergone f r e q u e n t r e v e r s a l s
i n t h e p a s t and t h e r e i s no obvious p o l a r i t y b i a s .
During t h e p a s t 10 My t h e a v e r a g e
r e v e r s a l f r e q u e n c y was a b o u t one e v e r y 0 . 2 3 My (Cox, 1969) a l t h o u g h t h i s has v a r i e d c o n s i d e r a b l y t h r o u g h o u t P h a n e r o z o i c time. one e v e r y 0 . 9 4 My.
From 145 t o -10.5 My t h e f r e q u e n c y was
The c a l c u l a t i o n of t h e s e f r e q u e n c i e s i s p o s s i b l e b e c a u s e o f t h e
o c c u r r e n c e of m a g n e t i c anomaly " s t r i p e s " on t h e f l o o r of t h e ocean b a s i n s .
Estimates
of t h e r e v e r s a l f r e q u e n c y d u r i n g t h e Mesozoic a r e much more d i f f i c u l t t o make because t h e s e must b e based l a r g e l y on t h e p a l a e o m a g n e t i c s t u d y o f c o n t i n e n t a l sequences. E s t i m a t e s of t h e r e v e r s a l f r e q u e n c y d u r i n g t h e Lower T r a i s s i c a r e p o s s i b l e because of t h e l a r g e amount o f p a l a e o m a g n e t i c d a t a which e x i s t s f o r t h i s p e r i o d (Burek, 1970; Johnson e t a l . , 1972; Pechersky and Khramov, 1973; C r e e r , 1975).
In a d e t a i l e d s t u d y of t h e B u n t s a n d s t e i n of SW Germany, Burek (1968) i d e n t i f i e d 9 r e v e r s e l y magnetized zones and c o m p i l a t i o n s o f t h e e x t e n s i v e d a t a from t h e Colorado P l a t e a u (Burek, 1970; McElhinny and Burek, 1971) and t h e USSR (Pechersky and Khramov, 1973) s u g g e s t t h a t t h e r e c o u l d be a t l e a s t 1 7 d i s c r e t e zones of normal o r r e v e r s e d p o l a r i t y i n t h e Lower T r i a s s i c ( i e . . 215-225 My a g o ) .
This corresponds
t o a r e v e r s a l f r e q u e n c y of one f o r e v e r y 1.18 My which, even assuming a r e l a t i v e l y slow remanence a c q u i s i t i o n r a t e , c o u l d be s u f f i c i e n t time f o r t h e development of a s t a b l e , s i n g l e component NRM.
The work of C o l l i n s o n (1974) would seem t o imply
t h a t a s t a b l e NRM was dependent upon t h e r a p i d o x i d a t i o n of d e t r i t a l m a g n e t i t e because s p e c u l a r i t e c a r r i e s t h e b u l k of t h e NRM i n r e d beds of t h i s t y p e .
Although
t h e r e a r e no d e t a i l e d d a t a on t h e r a t e of o x i d a t i o n of m a g n e t i t e i n modern a l l u v i u m , 1.18 My might be a s u f f i c i e n t time f o r t h e development of t h e s t a b l e m a g n e t i z a t i o n of t h e s p e c u l a r i t e .
The development of such a s t a b l e m a g n e t i z a t i o n may depend upon
i t comprising components which r e s u l t e d from a s i n g l e d i a g e n e t i c p r o c e s s .
Because
of t h e d i f f e r e n t r a t e s of t h e v a r i o u s d i a g e n e t i c p r o c e s s e s multicomponent magn e t i z a t i o n s a r e most l i k e l y t o form i n m i n e r a l o g i c a l l y immature,
first-cycle,
sediments w i t h abundant d e t r i t a l m a g n e t i t e and f e r r o m a g n e s i a n s i l i c a t e s ,
I t may
b e , t h e r e f o r e , t h a t Type A r e d beds a r e t h o s e which o r i g i n a l l y e x h i b i t e d some degree of m i n e r a l o g i c a l m a t u r i t y and i n which h a e m a t i t e a u t h i g e n e s i s was o f r e l a t i v e l y minor importance. TvDe B r e d beds The boundary between Type A and Type B r e d beds i s somewhat a r b i t r a r y because some Type A r e d beds may show l o c a l e v i d e n c e o f multicomponent m a g n e t i z a t i o n .
The
e s s e n t i a l d i f f e r e n c e between t h e two i s t h a t Type B r e d beds do n o t show two c l u s t e r s of a n t i p a r a l l e l d i r e c t i o n s , nor a w e l l - d e f i n e d a x i s of m a g n e t i z a t i o n . The NRM d i r e c t i o n s a r e o f t e n i n t e r m e d i a t e i n d i r e c t i o n , s c a t t e r e d , and of v a r i a b l e intensity.
A l s o t h e r e i s u n e q u i v o c a l p r o o f from l a b o r a t o r y t r e a t m e n t , of t h e
widespread development o f multicomponent m a g n e t i z a t i o n s .
There a r e numerous
examples of t h e p r e s e n c e of a n t i p a r a l l e l , normal and r e v e r s e d components i n r e d beds of t h i s t y p e (Chamalaun and C r e e r , 1964; Roy and P a r k , 1972, 1974; Larson and Walker, 1975; T u r n e r and A r c h e r , 1975) and t h e r e can be no doubt t h a t t h e NRM was acquired during diagenesis.
The e s s e n t i a l d i f f e r e n c e s between Type A and Type B
r e d beds c o u l d b e e x p l a i n e d i n a number of ways.
I f we assume s i m i l a r r a t e s of
CRM a c q u i s i t i o n then Type B r e d beds may r e p r e s e n t sequences which were formed
d u r i n g p e r i o d s c h a r a c t e r i z e d by a v e r y h i g h r e v e r s a l f r e q u e n c y
-
s o high t h a t i t
o u t p a c e d t h e r a t e of CRM a c q u i s i t i o n and normal and r e v e r s e d components became superimposed on e a c h o t h e r .
T h i s view i s n o t favoured b e c a u s e Type B r e d beds a r e
known t o o c c u r i n time i n t e r v a l s when t h e r e v e r s a l frequency was n o t e x c e s s i v e l y g r e a t ( e . g . Lower Devonian, s e e McMurray, 1970; Sallomy and P i p e r , 1973).
Also t h e
Cenozoic r e d beds s t u d i e d by Larson and Walker (1975) a r e Type B r e d beds which developed o v e r a p e r i o d of p r e d o m i n a n t l y normal p o l a r i t y . A more l i k e l y e x p l a n a t i o n i s t h a t Type B r e d beds r e p r e s e n t sequences i n which t h e o r i g i n a l s e d i m e n t s were f u n d a m e n t a l l y d i f f e r e n t i n terms of m i n e r a l o g i c a l and textural maturity.
For example, t h e f i r s t c y c l e a r k o s i c r e d beds s t u d i e d by Walker,
( 1 9 6 7 a ) ; Walker e t a l . (1978) and Larson and Walker (1975) c o n t a i n e d abundant d e t r i t a l i r o n s i l i c a t e s i n c l u d i n g h o r n b l e n d e s , pyroxenes and p h y l l o s i l i c a t e s .
Intrastratal
s o l u t i o n would t h u s produce l a r g e amounts of a u t h i g e n i c h a e m a t i t e and t h e c o n t i n u e d s u p p l y of i r o n i n t h e p o r e f l u i d s would e n s u r e t h e growth of t h i s a u t h i g e n i c h a e m a t i t e to coarser grain sizes.
I n t h i s way t h e pigmentary h a e m a t i t e would c a r r y a more
s t a b l e NRM whose d i r e c t i o n r e p r e s e n t e d a long-term i n t e g r a t i o n of contemporary geomagnetic f i e l d f l u c t u a t i o n s including r e v e r s a l s .
This i n t e r p r e t a t i o n i s supported
by s t u d i e s of t h e NRM s t r u c t u r e i n Type B r e d beds; b o t h T u r n e r and Archer (1975) and Larson and Walker (1975) showing t h a t pigment was r e s p o n s i b l e f o r components
488 a c q u i r e d d u r i n g d i a g e n e s i s a n d a f t e r s i g n i f i c a n t geomagnetic v a r i a t i o n s . The time t a k e n f o r t h e development of Type B r e d beds depends upon a number o f f a c t o r s , n o t l e a s t o f which i s t h e o r i g i n a l d e g r e e o f m i n e r a l o g i c a l m a t u r i t y .
In
immature s e d i m e n t s multicomponent m a g n e t i z a t i o n s p r o b a b l y develop r a p i d l y , s a y i n
7 y e a r s , and t h i s i s c l e a r l y t h e c a s e i n t h e Cenozoic r e d beds i n Baja
l e s s t h a n 10
C a l i f o r n i a which have t h i s t y p e o f m a g n e t i z a t i o n and a r e l e s s t h a n 5 My o l d .
In
sediments w i t h g r e a t e r m i n e r a l o g i c a l m a t u r i t y t h e r e i s less p o t e n t i a l f o r t h e development of t h i s t y p e o f m a g n e t i z a t i o n s i n c e complete s i l i c a t e a l t e r a t i o n c o u l d t a k e p l a c e i n a s h o r t e r p e r i o d o f time and a t some s t a g e p r o d u c t i o n of new i r o n o x i d e s w i l l c e a s e and t h e d i a g e n e s i s and m a g n e t i z a t i o n w i l l become a r r e s t e d .
This
concept of " a r r e s t e d " o r completed d i a g e n e s i s i s s u p p o r t e d by t h e o c c u r r e n c e of Type A and B r e d beds t h r o u g h o u t Precambrian and P h a n e r o z o i c s t r a t a . Tvue C r e d beds Many r e d beds show well-grouped d i r e c t i o n s o f m a g n e t i z a t i o n which c o n s i s t e s s e n t i a l l y of a s i n g l e component of m a g n e t i z a t i o n .
I t can r e a d i l y be proven t h a t
t h e a g e of t h e m a g n e t i z a t i o n i s c o n s i d e r a b l y l a t e r t h a n t h e d e p o s i t i o n a l a g e of t h e r o c k s ; t h e r o c k s have t h e r e f o r e been s u b j e c t e d t o complete r e m a g n e t i z a t i o n .
These
r e m a g n e t i z a t i o n p r o c e s s e s a r e n o t w e l l - u n d e r s t o o d b u t i n a number o f examples s u c h a s t h e L a t e Precambrian ( o r Cambrian) r e d beds o f t h e Longmyndian (Lomax and B r i d e n ,
1977) and t h e J u r a s s i c Navajo Sandstone o f t h e USA ( J o h n s o n , 1976) t h e r o c k s have been s t a b l y remagnetized i n t h e d i r e c t i o n of t h e p r e s e n t E a r t h ' s f i e l d .
I n t h e c a s e of
t h e Navajo Sandstone t h e r e m a g n e t i z a t i o n a p p e a r s t o b e a s s o c i a t e d w i t h t h e r e d i s t r i b u t i o n of pigmentary o x i d e s a f e a t u r e c o n s i s t e n t w i t h t h e views o f T u r n e r (1977) who s u g g e s t e d t h a t porous s a n d s t o n e s were more s u s c e p t i b l e t o r e m a g n e t i z a t i o n because of t h e i n c r e a s e d p e n e t r a t i o n by o x i d i z i n g a g e n t s . O t h e r c a s e s of r e m a g n e t i z a t i o n would a p p e a r t o b e l e s s s i m p l e .
Devonian r e d
beds i n t h e L a u r a s i a n c o n t i n e n t s s u f f e r e d w i d e s p r e a d r e m a g n e t i z a t i o n d u r i n g PermoC a r b o n i f e r o u s times (Chamalaun and C r e e r , 1964) whereas t h o s e i n t h e Gondwanan c o n t i n e n t s d i d n o t ( C r e e r , 1964).
In o r d e r t o a c c o u n t f o r t h i s d i f f e r e n c e C r e e r
(1968) f o r m u l a t e d t h e " r e m a g n e t i z a t i o n h y p o t h e s i s " i n which h e s u g g e s t e d t h a t t h e n o r t h e r n c o n t i n e n t s which l a y i n low l a t i t u d e d u r i n g t h e C a r b o n i f e r o u s and e a r l y Permian, s u f f e r e d widespread l a t e r i t i z a t i o n which e f f e c t e d t h e r e m a g n e t i z a t i o n . Many l a t e P a l a e o z o i c l i t h o l o g i e s , p a r t i c u l a r l y l i m e s t o n e s , escaped t h e i n f l u e n c e o f t h i s r e m a g n e t i z a t i o n e p i s o d e (McElhinny and Opdyke, 1973; T u r n e r , 1975; T u r n e r
e t a l . , 1979) end t h e c l o s e a s s o c i a t i o n o f t h e r e m a g n e t i z a t i o n phenomenon w i t h r e d f l u v i a t i l e s a n d s t o n e s does s u g g e s t t h a t d i a g e n e t i c p r o c e s s e s and t h e r e m a g n e t i z a t i o n a r e closely linked.
The importance o f r e g i o n a l l a t e r i t i z a t i o n i n c a u s i n g widespread
r e m a g n e t i z a t i o n has been a b l y demonstrated by Schmidt and Embleton (1976) who showed t h e L a t e P a l a e o z o i c and Mesozoic f o r m a t i o n s o f t h e P e r t h Basin i n Western A u s t r a l i a
489
have been c o m p l e t e l y remagnetized by t h e Cenozoic l a t e r i t i z a t i o n i n t h e a r e a .
This
would seem t o l e n d some s u p p o r t t o Creer's h y p o t h e s i s . The s t r u c t u r e o f t h e NRM i n remagnetized Devonian r e d beds has been i n v e s t i g a t e d by Turner and A r c h e r (1975).
They were a b l e t o show t h a t s p e c u l a r i t e and m a r t i t e
g r a i n s were i m p o r t a n t c a r r i e r s of t h e r e m a g n e t i z a t i o n v e c t o r s and a r g u e d t h a t any r e m a g n e t i z a t i o n p r o c e s s must t h e r e f o r e a c c o u n t f o r changes i n t h e e x i s t i n g o x i d e mineralogy r a t h e r t h a n t h e s i m p l e p r o d u c t i o n o f new o x i d e p h a s e s .
T h i s i s con-
s i s t e n t w i t h t h e v i e w t h a t r e g i o n a l h e a t i n g o r b u r i a l were i m p o r t a n t i n t h e remagne t i z a t i o n . S i n c e a v a r i e t y o f p r o c e s s e s can c a u s e complete r e m a g n e t i z a t i o n t h e development of Type C r e d beds may t a k e p l a c e a t v a r i a b l e r a t e s . i f e r o u s r e m a g n e t i z a t i o n took o v e r greater.
lo8
The w i d e s p r e a d Permo-Carbon-
Years and i n o t h e r c a s e s t h i s time gap was even
I n t h e Precambrian i t i s o f t e n n o t p o s s i b l e t o d a t e t h e r e l a t i v e age of
t h e m a g n e t i z a t i o n and d e p o s i t i o n more p r e c i s e l y t h a n t h i s and i n v e r y a n c i e n t r e d beds i t may b e t h a t t h e r e a r e many u n d e t e c t e d Type C r e d b e d s . Examples of t h e NRM s t r u c t u r e f o r e a c h of t h e t h r e e t y p e s of r e d bed m a g n e t i z a t i o n a r e i l l u s t r a t e d i n Fig.8.33.
The t y p e A example i s from t h e S t . Bees Sandstone
( T r i a s s i c ) of n o r t h e r n England.
I t c o n s i s t s o f a s i n g l e component of m a g n e t i z a t i o n
and t h e t h e r m a l decay of t h e whole r o c k and t h e s e p a r a t e d pigment and s p e c u l a r i t e f r a c t i o n s i n d i c a t e t h a t t h e l a t t e r c a r r i e s t h e s t a b l e NRM. A t i m e i n t e r v a l o f lo6 107 Years i s s u g g e s t e d a s t h e t i m e r e q u i r e d f o r t h e s t a b l e development o f
-
m a g n e t i z a t i o n s of t h i s t y p e ,
The Type B example, from t h e Old Red S a n d s t o n e , shows
a c l e a r multicomponent m a g n e t i z a t i o n c a r r i e d p r i n c i p a l l y by s p e c u l a r i t e .
In this
c a s e t h e thermal decay o f pigment and s p e c u l a r i t e i s q u i t e d i f f e r e n t and a g r e a t e r p r o p o r t i o n of t h e pigment m a g n e t i z a t i o n i s r e t a i n e d o v e r 500°C, s u g g e s t i n g t h a t t h e T h i s is c o n s i s t e n t w i t h
h i g h t e m p e r a t u r e component c o u l d be c a r r i e d by t h e pigment.
t h e view t h a t r e d beds o f t h i s t y p e were m i n e r a l o g i c a l l y l e s s mature than Type A and c o n t a i n a g r e a t e r p r o p o r t i o n o f a u t h i g e n i c h a e m a t i t e .
The development of Type B
m a g n e t i z a t i o n s i n which d i f f e r e n t t e x t u r a l p h a s e s a l l c a r r y a s i g n i f i c a n t p r o p o r t i o n 8 of t h e NRM p r o b a b l y r e q u i r e s more t i m e t h a n Type A and a t i m e span of lo7 10 Years
-
i s suggested. Red Sandstone.
The Type C m a g n e t i z a t i o n shown i n F i g . 8 . 3 3 i s t a k e n from t h e Old
I t c o n s i s t s e s s e n t i a l l y of a s i n g l e component o f m a g n e t i z a t i o n w i t h
a d i r e c t i o n which i s c l o s e t o t h e Permo-Triassic been c o m p l e t e l y remagnetized.
f i e l d d i r e c t i o n and has e v i d e n t l y
The s t r u c t u r e of t h e NRM i s d i f f e r e n t from t h e Type A
and Type B r e d beds shown i n t h a t t h e pigment f r a c t i o n shows much h i g h e r thermal s t a b i l i t y and p r o b a b l y c a r r i e s a g r e a t e r p r o p o r t i o n o f t h e NRM.
This is consistent
w i t h t h e view t h a t long-continued a u t h i g e n e s i s and growth of h a e m a t i t e i s a n i m p o r t a n t f a c t o r i n t h e f o r m a t i o n o f Type C r e d beds.
I t seems l i k e l y t h a t a s
d i a g e n e s i s p r o g r e s s e s t h e m a g n e t i z a t i o n of a p a r t i c u l a r r e d bed f o r m a t i o n becomes more complex e v e n t u a l l y p a s s i n g through t h e sequence Type A (Fig. 8.34).
-
Type B
-
Type C
490
A
B N
I
I
I
I
I
I
I
I C I I I I I I I I -
0
Fig.8.33. T y p i c a l s t e r e o g r a p h i c p r o j e c t i o n s of Type A , B a n d C r e d bed magnetiza t i o n s . A . From t h e Chugwater Formation ( T r i a s s i c , USA) w i t h specimen d i r e c t i o n s shown a f t e r t h e r m a l c l e a n i n g (Van d e r Voo and Grubbs, 1977). B. From t h e Cenozoic r e d beds of Baja C a l i f o r n i a (Larson and Walker, 1975) and C . From t h e Longmyndian ( P r e c a m b r i a n , U.K.) (Lomax and B r i d e n , 1977). A and B a r e c o r r e c t e d f o r g e o l o g i c a l t i l t . C d i r e c t i o n s a r e shown i n s i t u . Circumference i s h o r i z o n t a l ; c l o s e d symbols p o s i t i v e d i p s ; open symbols n e g a t i v e d i p s .
491 These t h r e e t y p e s o f r e d bed m a g n e t i z a t i o n r e p r e s e n t s t a g e s i n t h e d i a g e n e t i c evolution of c o n t i n e n t a l red beds.
The t r a n s i t i o n sequence Type A
-
Type B
- Type C
i s thought t o t a k e p l a c e a s h a e m a t i t e g e n e s i s and growth p r o g r e s s e s t o a more advanced s t a t e of d i a g e n e s i s .
The p r o c e s s i s n o t n e c e s s a r i l y time-dependent b u t
proceeds a t d i f f e r e n t r a t e s i n d i f f e r e n t s e d i m e n t a r y b a s i n s because of v a r i a t i o n s i n local conditions.
These c o n d i t i o n s i n c l u d e :
d e p o s i t i o n a l environment, t h e
o r i g i n a l m i n e r a l o g y o f t h e s e d i m e n t , p o r o s i t y r e d u c t i o n by c l a y m i n e r a l d i a g e n e s i s and c e m e n t a t i o n , and s u b s e q u e n t e f f e c t s s u c h a s d e p t h o f b u r i a l and r e g i o n a l h e a t i n g . For example, Type A m a g n e t i z a t i o n s a r e found i n r e d beds a s o l d a s t h e S t a r k Formation (1750 My, Bingham and Evans, 1976) a s w e l l a s t h r o u g h o u t t h e Mesozoic. Similarly B
-
Type m a g n e t i z a t i o n s a r e found i n t h e Cenozoic r e d beds o f Baja
C a l i f o r n i a (Larson and Walker, 1975).
The advanced s t a t e of d i a g e n e s i s i n t h e
l a t t e r i s due t o t h e f a c t t h a t t h e s e s e d i m e n t s a r e f i r s t - c y c l e a r k o s e s w i t h a h i g h proportion of unstable s i l i c a t e minerals.
I n sediments which a r e t e x t u r a l l y and
MINERALOGICAL MATURITY
-b
AT THE TIME OF DEPBSITION
DEPOSITIONAL MAGNETIZATION c
Fig.8.34. red beds.
c-
Schematic r e p r e s e n t a t i o n of t h e p a l a e o m a g n e t i c e v o l u t i o n of c o n t i n e n t a l
m i n e r a l o g i c a l l y more mature t h e r a t e o f d i a g e n e s i s , and hence m o d i f i c a t i o n o f t h e m a g n e t i z a t i o n c a n b e e x p e c t e d t o t a k e p l a c e a t a much s l o w e r r a t e .
Also, the
t h r e e t y p e s of m a g n e t i z a t i o n a r e n o t n e c e s s a r i l y m u t u a l l y e x c l u s i v e ; two Types may be p r e s e n t i n t h e same F o r m a t i o n , and i n d e e d a t t h e same sampling s i t e , i n d i c a t i n g t h a t t h e s e p a r t i c u l a r r e d beds a r e i n a t r a n s i t i o n a l s t a t e ( e . g . T u r n e r and A r c h e r , 1975). A c r u c i a l q u e s t i o n i s t h e p r o p o r t i o n of Type
p a u c i t y of comparable d a t a .
-
C r e d beds which a r e u n d e t e c t e d
This i s d i f f i t u l t t o a s s e s s , l a r g e l y because of the
i n t h e palaeomagnetic record.
E x t e n s i v e l y s t u d i e d Precambrian r e d beds s u c h a s t h e
T o r r i d o n i a n Sandstone have s t r o n g , s t a b l e NRM's which a r e well-grouped b u t do n o t o f t e n c o r r e s p o n d w i t h e s t a b l i s h e d p o l a r wander p a t h s ( e . g . S t e w a r t and I r v i n g , 1974). I t i s q u i t e p o s s i b l e t h a t t h e m a g n e t i z a t i o n of t h e T o r r i d o n i a n Sandstone and some o t h e r a n c i e n t r e d beds i n t h e p a l a e o m a g n e t i c r e c o r d i s of Type
-
C and hence
completely unrelated t o the depositional age of these rocks. From t h i s work i t i s p o s s i b l e t o make some comments r e g a r d i n g t h e r e l i a b i l i t y of palaeomagnetic r e s u l t s from c o n t i n e n t a l r e d b e d s .
Type
-
A magnetizations a r e
c l e a r l y s u i t a b l e f o r p a l a e o m a g n e t i c work and c a n be e x p e c t e d t o y i e l d f a i r l y r e l i a b l e results.
Although t h e r e may b e some d i s c r e p a n c y between d e p o s i t i o n a l and magnetic
age t h e y s h o u l d g i v e p o l e p o s i t i o n s o f s u f f i c i e n t p r e c i s i o n t o b e of p a l a e o m a g n e t i c value.
However, s u c h m a g n e t i z a t i o n s a r e u n s u i t a b l e f o r s t u d i e s o f contemporaneous
p o l a r i t y t r a n s i t i o n s and s e c u l a r v a r i a t i o n s ( c f . Baag and HelsLey, 1974a). o t h e r hand Type
-
B and Type
-
On t h e
C m a g n e t i z a t i o n s must b e r e g a r d e d a s b e i n g g e n e r a l l y
unsuitable f o r palaeomagnetic conclusions. d i r e c t i o n s from r e d beds of Type
-
I t may b e p o s s i b l e t o i s o l a t e meaningful
B by d e t a i l e d t h e r m a l d e m a g n e t i z a t i o n b u t no
palaeomagnetic s i g n i f i c a n c e s h o u l d b e a t t a c h e d t o them w i t h o u t c o r r o b o r a t i v e evidence.
Type
-
C m a g n e t i z a t i o n s a r e o f no p a l a e o m a g n e t i c s i g n i f i c a n c e when
c o n s i d e r e d i n t h e c o n t e x t of t h e d e p o s i t i o n a l a g e of t h e r o c k s :
some p u b l i s h e d
palaeomagnetic d a t a may b e m i s l e a d i n g b e c a u s e of t h e p r e s e n c e o f u n d e t e c t e d Type magnetizations i n a n c i e n t c o n t i n e n t a l red beds.
-
C
493
REFERENCES Akimoto, S . , 1954. Thermo-magnetic s t u d y of f e r r o m a g n e t i c m i n e r a l s c o n t a i n e d i n igneous r o c k s . J . Geomag. G e o e l e c t . , 6 : 1-14. Alexander, M . , 1971. M i c r o b i o l Ecology. J o h n Wiley 6, Sons I n c . , London/New York, 414 pp. Alimen, H . , 1957a. S a b l e s Q u a t e r n a i r e s du Sahara w o r d - o c c i d e n t a l (Saoura-Qugarta). P u b l . S e r v . C a r t e G e b l A l g e ' r i e , B u l l . , 15:207 pp. Alimen, H . , 1957b. The P r e h i s t o r y of A f r i c a . H u t c h i n s o n , London, 438 pp. A l - K h a f a j i , S.A. and Vincenz, S . A . , 1971. M a g n e t i z a t i o n of t h e Cambrian Lamotte Formation in M i s s o u r i . Geophys. J . R . a s t r o . S o c . , 24: 175-205. A l l a n , D . A . , 1940. The geology of t h e Highland Border from Glen Almond t o Glen Artney. T r a n s . Roy. S O C . E d i n . , 60:171-193. A l l e n , J . R . L . , 1960. Cornstone. Geol. Mag., 97:43-48. A l l e n , J . R . L . , 1962a. I n t r a f o r m a t i o n a l conglomerates and s c o u r e d s u r f a c e s i n t h e Lower Old Red Sandstone o f t h e Anglo-Welsh C u v e t t e . L i v e r p o o l and Manchester Geol. J., 3 : l - 2 0 . A l l e n , J . R . L . , 1962b. P e t r o l o g y , o r i g i n and d e p o s i t i o n of t h e h i g h e s t Lower Old Red Sandstone of S h r o p s h i r e , England. J . Sediment. P e t r o l . , 32:657-697. A l l e n , J . R . L . , 1963. The c l a s s i f i c a t i o n of c r o s s - s t r a t i f i e d u n i t s w i t h n o t e s on t h e i r o r i g i n , Sedimentology, 2:93-114. A l l e n , J . R . L . , 1964a. S t u d i e s i n f l u v i a t i l e s e d i m e n t a t i o n : s i x cyclothems from t h e Lower Old Red S a n d s t o n e , Anglo-Welsh B a s i n . Sedimentology, 3:163-198. A l l e n , J . R . L . , 196413. Primary c u r r e n t l i n e a t i o n i n t h e Lower Old Red Sandstone (Devonian), Anglo-Welsh B a s i n . Sedimentology, 3:89-108. A l l e n , J . R . L . , 1965a. A review of t h e o r i g i n and c h a r a c t e r i s t i c s of r e c e n t a l l u v i a l s e d i m e n t s . Sedimentology, 5:89-191. A l l e n , J . R . L . , 1965b. L a t e Q u a t e r n a r y Niger d e l t a and a d j a c e n t a r e a s : Sedimentary environments and l i t h o f a c i e s . B u l l . Am. Assoc. P e t r o l . G e o l . , 49:547-600. A l l e n , J . R . L . , 1965c. The s e d i m e n t a t i o n and palaeogeography of t h e Old Red Sandstone of Anglesey, North Wales. Proc. Yorks. g e o l . S O C . , 35:139-185. A l l e n , J . R . L . , 1965d. Upper Old Red Sandstone ( F a r l o v i a n ) palaeogeography i n South Wales and t h e Welsh Borderland. J . Sediment. P e t r o l . , 35:167-195. A l l e n , J . R . L . , 1965e. Fining-upwards c y c l e s i n a l l u v i a l s u c c e s s i o n s . Geol. J., 4:229-246. A l l e n , J . R . L . , 1968. C u r r e n t R i p p l e s . North-Holland, Amsterdam, 433 pp. A l l e n , J . R . L . , 1969. Notes towards a t h e o r y of c o n c e n t r a t i o n of s o l i d s i n n a t u r a l s a n d s . Geol. Mag., 106: 309-321. A l l e n , J . R . L . , 1970a. A q u a n t i t a t i v e model o f g r a i n s i z e and s e d i m e n t a r y s t r u c t u r e s i n l a t e r a l d e p o s i t s . Geol. J., 7:129-146. A l l e n , J . R . L . , 1970b. S t u d i e s i n f l u v i a t i l e s e d i m e n t a t i o n : A comparison of f i n i n g upwards cyclothems w i t h s p e c i a l r e f e r e n c e t o coarse-member composition and i n t e r p r e t a t i o n . J . Sediment. P e t r o l . , 40:298-323. A l l e n , J . R . L . , 197Oc. Sediments o f t h e modern Niger d e l t a : A summary and review. I n : Morgan, J.P. ( E d i t o r ) , D e l t a i c S e d i m e n t a t i o n , Modern and A n c i e n t . S.E.P.M. Spec. P u b l . , 15: 138-151. A l l e n , J . R . L . , 1971. I n s t a n t a n e o u s s e d i m e n t d e p o s i t i o n r a t e s deduced from climbingr i p p l e c r o s s - l a m i n a t i o n . J . g e o l . S O C . London, 127:553-561. A l l e n , J . R . L . , 1973. Compressional s t r u c t u r e s ( p a t t e r n e d ground) i n Devonian pedogenic l i m e s t o n e s . N a t u r e Phys. S c i . , 243:84-86. A l l e n , J . R . L . , 1974a. Sedimentology of t h e Old Red Sandstone (Siluro-Devonian) i n t h e Clee H i l l s A r e a , S h r o p s h i r e , England. Sediment. G e o l . , 12:73-167. A l l e n , J . R . L . , 1974b. S t u d i e s i n f l u v i a t i l e s e d i m e n t a t i o n : l a t e r a l v a r i a t i o n i n some fining-upwards cyclothems from t h e Red M a r l s , Pembrokeshire. Geol. J., 9 : l - 1 6 . A l l e n , J . R . L . , 1974c. R e a c t i o n , r e l a x a t i o n and l a g i n n a t u r a l s e d i m e n t a r y systems: g e n e r a l p r i n c i p l e s , examples and l e s s o n s . E a r t h - S c i . Rev., 10:263-342.
494
A l l e n , J . R . L . , 1974d. S t u d i e s i n f l u v i a t i l e s e d i m e n t a t i o n : i m p l i c a t i o n s of pedogenic c a r b o n a t e u n i t s , Lower Old Red S a n d s t o n e , Anglo-Welsh o u t c r o p . Geol. J. 9:181-208. A l l e n , J . R . L . and F r i e n d , P . F . , 1968. D e p o s i t i o n of t h e C a t s k i l l F a c i e s , Appalachian Region: With n o t e s on some o t h e r Old Red Sandstone B a s i n s . Geol. SOC. America, Spec. P a p e r , 106:22-74. A l l e n , J . R . L . and W i l l i a m s , B . P . J . , 1979. I n t e r f l u v i a l d r a i n a g e on Siluro-Devonian a l l u v i a l p l a i n s i n Wales and Welsh Borders. J. g e o l . SOC. London, 136:361-366. A l l e n , P . , S u t t o n , J . and Watson, J . V . , 1974. T o r r i d o n i a n t o u r m a l i n e - q u a r t z p e b b l e s and t h e Precambrian c r u s t n o r t h w e s t of B r i t a i n . J . g e o l . S O C . London, 130:85-91. A l l e y , N.F., 1977. Age and o r i g i n of l a t e r i t e and s i l c r e t e d u r i c r u s t s and t h e i r r e l a t i o n s h i p t o e p i s o d i c t e c t o n i s m i n t h e mid-north of South A u s t r a l i a . J. g e o l . S O C . A u s t r a l i a , 24:107-116. Almeida, F.F.M., 1953. B o t u c a t u , a T r i a s s i c d e s e r t of S o u t h America. X1X I n t . Geol. Congr., S e s s i o n 1ge:9-24. A m i e l , A . J . and Friedman, G . M . , 1971. C o n t i n e n t a l sabkha i n Arava V a l l e y between Dead Sea and Red Sea. B u l l . Am. Assoc. P e t r o l . G e o l . , 55:581-592. Anderson, W . and Dunham, K . C . , 1953. Reddened beds i n t h e Coal Measures b e n e a t h t h e Permian of Durham and South Northumberland. Proc. Yorks. g e o l . S O C . , 29:21-32. Anderson, D . W . and P i c a r d , M.D., 1974. E v o l u t i o n of s y n o r o g e n i c c l a s t i c d e p o s i t s i n t h e I n t e r m o n t a n e Uinta B a s i n of Utah. I n : W.R. Dickinson ( E d i t o r ) , T e c t o n i c s and S e d i m e n t a t i o n . S . E . P . M . Spec. P u b l . , 22:167-189. Anderson, R . V . and K i r k l a n d , D . W . , 1960. O r i g i n , v a r v e s and c y c l e s of J u r a s s i c T o d i l t o f o r m a t i o n , New Mexico. B u l l . Am. Assoc. P e t r o l . G e o l . , 44:37-52. Andersson, A. and Wiklander, L . , 1975. R e l e a s e of c r y s t a l c o n s t i t u e n t s by chemical w e a t h e r i n g o f some s o i l m i n e r a l s . S o i l . S c i . , 120:13-19. A r c h e r , A . A . , 1965. Red beds i n t h e Upper Coal Measures o f t h e w e s t e r n p a r t of t h e South Wales c o a l f i e l d . B u l l . Geol. Surv. G t . B r i t . , 23:57-64. Arcyana, 1975. Transform f a u l t and r i f t v a l l e y from b a t h y s c a p e and d i v i n g s a u c e r . S c i e n c e , 190:108-116. A r i s t a r a i n , L . F . , 1971a. On t h e d e f i n i t i o n of c a l i c h e d e p o s i t s . 2. Geomorphol., 15:274-289. A r i s t a r a i n , L . F . , 1971b. Clay m i n e r a l s i n c a l i c h e d e p o s i t s of e a s t e r n New Mexico. J. G e o l . , 79:75-90. A r t h u r t o n , R . S . and Hemingway, J . E . , 1972. The S t . Bees E v a p o r i t e s - a c a r b o n a t e e v a p o r i t e f o r m a t i o n o f upper Permian a g e i n w e s t Cumberland, England. Proc. Yorks. g e o l . S O C . , 38:565-592. Artman, J . O . , Murphy, J . C . and F o n e r , S . , 1965. Magnetic a n i s o t r o p y i n a n t i f e r r o magnetic corundum-type s e s q u i o x i d e s . Phys. Rev., A138:912-917. A s q u i t h , D . O . , 1974. Sedimentary models, c y c l e s and d e l t a s , Upper C r e t a c e o u s , Wyoming. B u l l . Am. A s s . P e t r o l . G e o l . , 58:2274-2283. A t w a t e r . G . I . and M i l l e r , E . E . , 1965. The e f f e c t of d e c r e a s e i n D o r o s i t v w i t h d e u t h on f u t u r e development o f o i l and g a s r e s e r v e s i n South L o u i s i a n a . Am. Assoc. P e t . Geol. Prog. Ann. Mtg., N e w O r l e a n s , p.48. A t w a t e r , T. amd Molnar, P . , 1973. R e l a t i v e motion of t h e P a c i f i c and North American t e a t e s deduced from s e a - f l o o r s p r e a d i n g i n t h e A t l a n t i c , I n d i a n and South P a c i f i c oceans. S t a n f o r d Univ. P u b l s . g e o l . S c i . , 13:136-148. Aubouin, J . , 1965. G e o s y n c l i n e s . Developments i n G e o t e c t o n i c s , E l s e v i e r , Amsterdam 335 pp. Audley-Charles, M . G . , 1970a. S t r a t i g r a p h i c a l c o r r e l a t i o n of t h e T r i a s s i c r o c k s of t h e B r i t i s h I s l e s . Quart. J. g e o l . SOC. London, 126:19-47. Audley-Charles, M . G . , 1970b. T r i a s s i c palaeogeography o f t h e B r i t i s h I s l e s . Q u a r t . J . g e o l . SOC. London, 126:49-89. A x e l r o d , D . I . , 1957. Mio-Pliocene f l o r a s from w e s t - c e n t r a l Nevada. Univ. C a l i f . Publ. Geol. S c i . , 33:l-322. A x e l r o d , D . I . , 1966. The Eocene Copper B a s i n f l o r a of n o r t h e a s t e r n Nevada. Univ. C a l i f . Publ. Geol. S c i . , 5 9 , 8 3 pp. Aziz-ur-Rahman, Gough, P . I . and Evans, M.E., 1975. A n i s o t r o p y o f m a g n e t i c s u s c e p t i b i l i t y of t h e M a r t i n Formation, Saskatchewan, and i t s s e d i m e n t o l o g i c a l i m p l i c a t i o n s . Can. J . E a r t h S c i . , 12:1465-1473.
495 Baag, Czang-Go and H e l s l e y , C . E . , 1974a. Evidence f o r penecontemporaneous magneti z a t i o n o f t h e Moenkopi Formation. J . Geophys. R e s . , 79:3308-3320. Baag, Czang-Go a n d H e l s l e y , C . E . , 1974b. Geomagnetic s e c u l a r v a r i a t i o n model E. J . Geophys. Res., 79:4918-4923. B a a r s , D . L . , 1962. Permian System o f Colorado P l a t e a u . B u l l . Am. Assoc. P e t r o l . G e o l . , 46: 149-218. B a a r s , D.L. and S e a g e r , W . R . , 1970. S t r a t i g r a p h i c c o n t r o l of p e t r o l e u m i n White R i m S a n d s t o n e (Permian) i n a n d n e a r Canyonlands N a t i o n a l P a r k , Utah. B u l l . Am. Assoc. P e t r o l . G e o l . , 54:709-718. Back, W. and B a r n e s , I . , 1965. R e l a t i o n o f e l e c t r o c h e m i c a l p o t e n t i a l s and i r o n c o n t e n t t o ground w a t e r f l o w p a t t e r n s . U.S.G.S. P r o f . P a p e r 498C, 16 pp. Bagnold, R . A . , 1933. A f u r t h e r j o u r n e y i n t h e Libyan D e s e r t . Geog. J . , 82:103-129; 403-404. Bagnold, R . A . , 1941. The P h y s i c s o f Blown Sand and D e s e r t Dunes. Methuen, London, 265 pp. Bagnold, R . A . , 1954. The p h y s i c a l a s p e c t s o f d r y d e s e r t s . I n . J . C . Cloudsley-Thompson ( E d i t o r ) , Biology of D e s e r t s . I n s t i t u t e of B i o l o g y , London, pp.7-12. Bagnold, R . A . , 1960. Some a s p e c t s o f r i v e r meanders. U.S.G.S. P r o f . P a p e r 283-E, pp.135-144. B a i l e y , E . B . , 1926. S u b t e r r a n e a n p e n e t r a t i o n by a d e s e r t c l i m a t e . Geol. Mag., 63: 276-280. B a i l e y , E . B . and M c C a l l i e n . W . J . , 1960. Some a s p e c t s o f t h e Steinmann T r i n i t y : m a i n l y c h e m i c a l . Q u a r t . J . g e o l . SOC. London, 116:365-395. B a i l e y , E . S . , Cameron, E . N . , Speddon, H . R . a n d Wedge, R . J . , 1956. The a l t e r a t i o n o f i l m e n i t e i n beach s a n d s . Econ. G e o l . , 51:263-279. Bakun, N . N . , V o l o d i n , R . N . and K r e n d e l e v , F.B., 1964. G e n e s i s o f Udokan c u p r i f e r o u s s a n d s t o n e s ( C h i t a R e g i o n ) . L i t o l o g i y a i P o l e z n . I s k o p . , 3:89-103. B a l l y , A . W . , Gordy, P.L. and S t e w a r t , G . A . , 1966. S t r u c t u r e , s e i s m i c d a t a , and o r o g e n i c e v o l u t i o n of s o u t h e r n Canadian Rocky Mountains. B u l l . Can. P e t r o l . G e o l . , 1 4 : 337-381. B a n e r j e e , S.K., 1963. An a t t e m p t t o o b s e r v e t h e b a s a l p l a n e a n i s o t r o p y o f h a e m a t i t e . P h i l . Mag., 8:2119-2120. B a n e r j e e , S . K . , 1970. O r i g i n o f thermoremanence i n g o e t h i t e . E a r t h . P l a n e t . S c i . L e t t s . , 8 : 197-201. B a n e r j e e , S . K . , 1971. New g r a i n s i z e l i m i t s f o r p a l a e o m a g n e t i c s t a b i l i t y i n h a e m a t i t e . N a t u r e Phys. S c i . , 232:15-16. b a n e r j e e , S . K . and O ' R e i l l y , W . , 1966. C o e r c i v i t y o f Fe* i n o c t a h e d r a l s i t e s o f Fe T i s p i n e l s . IEEE, T r a n s . Magnetics Mag. - 2 , pp.463-467. B a n e r j e e , S . K . , O ' R e i l l y , W . , G i b b , T . C . and Greenwood, N . N . , 1967. The b e h a v i o u r o f f e r r o u s i o n s i n i r o n - t i t a n i u m s p i n e l s . J . Phys. Chem. S o l i d s , 28:1323-1335. B a r n d t , J., Johnson, N . M . , Johnson, G . D . , Opdyke, N . D . , L i n d s a y , E . H . , Pilbeam, D. and T a h i r k h e l i , R . A . H . , 1978. The m a g n e t i c p o l a r i t y s t r a t i g r a p h y and a g e of t h e S i w a l i k Group n e a r Dhok P a t h a n V i l l a g e , Potwar P l a t e a u , P a k i s t a n . E a r t h P l a n e t . S c i . L e t t s . , 41: 355-364. B a r n e s , I . a n d Back, W . , 1964. Geochemistry o f i r o n - r i c h ground w a t e r o f s o u t h e r n Maryland. 3. G e o l . , 72:435-447. B a r r e l l , J., 1908. R e l a t i o n s between c l i m a t e and t e r r e s t r i a l d e p o s i t s . J . G e o l . , 1 6 : 159-190; 255-295; 363-384. Basham, I . R . , 1974. M i n e r a l o g i c a l changes a s s o c i a t e d w i t h deep w e a t h e r i n g of gabbro i n A b e r d e e n s h i r e . Clay. M i n e r a l , 10:189-202. B a s s e t t , W . A . , 1960. R o l e of h y d r o x y l o r i e n t a t i o n i n mica a l t e r a t i o n , Geol. S O C . Am. B u l l . , 71:449-450. B a s t i n , E . S . , 1933. The c h a l c o c i t e and n a t i v e c o p p e r t y p e s . Econ. G e o l . , 28:407-446. B a t e , G . , 1975. C h a p t e r 12. I n . D . J . C r a i k ( E d i t o r ) Magnetic O x i d e s , Vo1.2. WileyI n t e r s c i e n c e , London. B a t h , A . H . , 1974. New i s o t o p i c a g e d a t a on r o c k s from t h e Long Mynd, S h r o p s h i r e . J . g e o l . SOC. London, 130:567-574. B e a d n e l l , H . J . L . , 1910. The s a n d dunes o f t h e Libyan D e s e r t . Geog. J., 84:337-340. Beaumont, P . , 1972. A l l u v i a l f a n s a l o n g t h e f o o t h i l l s o f t h e E l b u r g Mountains, I r a n . Palaegeog. P a l a e o c l i m a t . P a l a e o e c o l . , 1 2 : 251-274.
496
Beloussov, V . V . , 1970. A g a i n s t t h e h y p o t h e s i s of s e a - f l o o r s p r e a d i n g . T e c t o n o p h y s i c s , 9 : 489-5 11. Bernard, H . A . and Le B l a n c , R . J . , 1965. Rgsume' of Q u a t e r n a r y geology of t h e Northw e s t e r n Gulf of Mexico. I n : H . E . Wright and D . G . F r e y ( E d i t o r s ) , The Q u a t e r n a r y of t h e United S t a t e s . P r i n c e t o n Univ. P r e s s . P r i n c e t o n , N . J . , pp.137-185. Bernard, H.A. and Major, C . F . , 1963. Recent meander b e l t d e p o s i t s of t h e Brazos R i v e r : An a l l u v i a l sand model, B u l l . Am. Assoc. P e t r o l . G e o l . , 47.350. B e r n e r , R . A . , 1964. D i s t r i b u t i o n and d i a g e n e s i s o f s u l f u r i n some s e d i m e n t s from t h e Gulf of C a l i f o r n i a . Marine G e o l . , 1.117-140. B e r n e r , R . A . , 1969a. G o e t h i t e s t a b i l i t y and t h e o r i g i n of r e d beds. Geochim. Cosmochin A c t a , 33: 267-273. B e r n e r , R . A . , 196913. M i g r a t i o n of i r o n and s u l f u r w i t h i n a n a e r o b i c s e d i m e n t s d u r i n g e a r l y d i a g e n e s i s . Am. J . S c i . , 267:19-42. B e r n e r , R . A . , 1971. P r i n c i p l e s of Chemical Sedimentology. McGraw-Hill, New York., 240 pp. B e r n e r , R . A . , 1972. S u l f a t e r e d u c t i o n , p y r i t e f o r m a t i o n and t h e ocea.nic s u l f u r b u d g e t . I n : D . Dyrssen and D . J a g n e r ( E d i t o r s ) , Nobel Symposium 20, The Changing Chemistry of t h e Oceans. Almquist and W i k s e l l , Stockholm, pp.347-361. B e r n e r , R . A . and Holdren, G . R . J r . , 1977. Mechanism of f e l d s p a r w e a t h e r i n g : Some o b s e r v a t i o n a l e v i d e n c e . Geology, 5.369-372. B e r s i e r , A . , 1945. S e d i m e n t a t i o n molasseque; v a r i a t i o n s l a t e r a l e s e t h o r i z o n s c o n t i n u s a l ' o l i g o c e n e . Eclogae Geol. H e l v e t i a e , 38:443-458. B e s s e r , P . J . , M o r r i s h , A . H . and S e a r l e , C . W . , 1967. M a g n e t o c r y s t a l l i n e a n i s o t r o p y of p u r e and doped h a e m a t i t e . Phys. R e v . , 153:632-640. B h a l l a , M . S . and Verma, R . K . , 1969. Palaeomagnetism o f T r i a s s i c P a r s o r a S a n d s t o n e s from I n d i a . Phys. E a r t h , P l a n e t . I n t s . , 2:138-146. B i g a r e l l a , J.J., 1972. E o l i a n environments: t h e i r c h a r a c t e r i s t i c s , r e c o g n i t i o n and importance. I n : J . K . Rigby and W.K. Hamblin ( E d i t o r s ) , R e c o g n i t i o n o f A n c i e n t Sedimentary Environments. S.E.P.M. Spec. P u b l . 1 6 , pp.12-62. B i g a r e l l a , J.J., Backer, R . D . and D u a r t e , G . M . , 1969. C o a s t a l dune s t r u c t u r e s from Parana ( B r a z i l ) . Mar. G e o l . , 7:5-55. B i g n e l l , R . D . , 1975. Timing, d i s t r i b u t i o n and o r i g i n of submarine m i n e r a l i s a t i o n i n t h e Red Sea. T r a n s . I n s t . Min. M e t a l l . , 84:Bl-B6. Bingham, D . K . and Evans, M.E., 1975. Precambrian geomagnetic f i e l d r e v e r s a l . N a t u r e , 253: 332-333. Bingham, D . K . and Evans, M . E . , 1976. Paleomagnetism of t h e G r e a t S l a v e Supergroup, Northwest T e r r i t o r i e s , Canada: The S t a r k Formation. Can. J . E a r t h S c i . , 13:563-578. B i s c h o f f , J . L . , 1969. Red Sea geothermal b r i n e d e p o s i t s ; t h e i r m i n e r a l o g y , c h e m i s t r y and g e n e s i s . I n . E . T . Degens and D.A. Ross ( E d i t o r s ) , Hot B r i n e s a n d Heavy Metal D e p o s i t s i n t h e Red Sea. S p r i n g e r , New York, pp.368-401. B j b r l y k k e , K . , E l v s b o r g , A. and Hdg, T . , 1976. L a t e Precambrian s e d i m e n t a t i o n i n t h e c e n t r a l s p a r a g m i t e b a s i n of South Norway. Norsk g e o l . T i d d s . , 56:233-290. B l a c k , R . F . , 1963. Palaeomagnetism of p a r t of t h e P u r c e l l s y s t e m i n s o u t h w e s t e r n A l b e r t a and s o u t h e a s t e r n B r i t i s h Columbia. B u l l . g e o l . Surv. Can., 83:l-31. Blackman, M . , Haigh, G.and L i s g a r t e n , N . D . , 1959. I n v e s t i g a t i o n s on t h e domain s t r u c t u r e i n h a e m a t i t e by means of t h e e l e c t r o n beam. Proc. Roy. S O C . London, A251 117- 126. B l a i r , D . G . , 1975. S t r u c t u r a l s t y l e s i n North Sea o i l and gas f i e l d s . I n : A.W. Woodland ( E d i t o r ) , P e t r o l e u m and t h e C o n t i n e n t a l S h e l f of North West Europe, Volume 1 Geology. Applied S c i e n c e P u b l i s h e r s , B a r k i n g , pp.327-338. Blakey, R . C . , 1973. S t r a t i g r a p h y and o r i g i n of t h e Moenkopi Formation ( T r i a s s i c ) of s o u t h - e a s t e r n Utah. Mountain G e o l o g i s t , 10: 1-17. Blank, H . R . , 1978. F o s s i l l a t e r i t e on bedrock i n Brooklyn, New York. Geology, 6 : 21-24. B l a n k , H . R . and Tynes, E.W., 1965. Formation of c a l i c h e ,in s i t u . Geol. S O C . Am. B u l l . , 76: 1387-1392. B l a t t , H. and S u t h e r l a n d , B . , 1969. I n t r a s t r a t a l s o l u t i o n and nonopaque heavy m i n e r a l s i n s h a l e s , J. Sediment. P e t r o l . , 39:591-600.
497 B l a t t , H . , M i d d l e t o n , G . and Murray, R . , 1980. O r i g i n of Sedimentary Rocks, 2nd E d i t i o n P r e n t i c e H a l l , New J e r s e y . B l i s s e n b a c h , E . , 1954. Geology o f a l l u v i a l f a n s i n s e m i a r i d r e g i o n s . Geol. S O C . Am. B u l l . , 65: 175-190. B l o k h u i s , W . A . , Pape, T. a n d S l a g e r , S . , 1969. Morphology and d i s t r i b u t i o n o f pedogenic c a r b o n a t e i n some v e r t i s o l s o f t h e Sudan. Geoderma, 2:173-200. Blow, R.A. and N . Hamilton, 1974. Geomagnetic s e c u l a r v a r i a t i o n i n r e c e n t s e d i m e n t s from t h e T y r r h e n i a n Sea. E a r t h P l a n e t . S c i . L e t t s . , 22:417-422. Bluck, B . J . , 1967. D e p o s i t i o n o f some Upper Old Red Sandstone conglomerates i n t h e Clyde a r e a ; a s t u d y i n t h e s i g n i f i c a n c e of bedding. S c o t , J . G e o l . , 3:139-167. Bluck, B . J . , 1969. Old Red Sandstone and o t h e r P a l e o z o i c conglomerates o f S c o t l a n d . I n : M a r s h a l l Kay ( E d i t o r ) , North A t l a n t i c - Geology and C o n t i n e n t a l D r i f t . Am. Assoc. P e t r o l . G e o l . Memoir 1 2 , pp.711-723. Bluck, B . J . , 1971. S e d i m e n t a t i o n i n t h e meandering R i v e r E n d r i c k . S c o t . J . G e o l . , 7:93-138. Bluck, B . J . , 1974. S t r u c t u r e and d i r e c t i o n a l p r o p e r t i e s of some v a l l e y sandur d e p o s i t s i n s o u t h e r n I c e l a n d . Sedimentology, 21:533-554. Bluck, B . J . , 1978. S e d i m e n t a t i o n i n a l a t e o r o g e n i c b a s i n : t h e Old Red Sandstone o f t h e Midland V a l l e y of S c o t l a n d . I n : D . R . Bowes and B . E . Leake ( E d i t o r s ) , C r u s t a l E v o l u t i o n i n Northwestern B r i t a i n and A d j a c e n t Areas. Geol. J . Spec. I s s u e No.10, pp. 249-278. Blum, N . , Freeman, A . J . , S h a n e r , J . W . and G r o d z i n s , L . , 1965. Mbssbauer s t u d i e s of s p i n f l o p i n a n t i f e r r o m a g n e t i c h e m a t i t e . J . Appl. P h y s . , 36:1169-1170. B o n i f a s , M . , 1959. Mem s e r v . c a r t e ge'ol. A l s a c e e t L o r r a i n e No.17. Boothroyd, J . C . , 1972. C o a r s e - g r a i n e d s e d i m e n t a t i o n on a b r a i d e d outwash f a n , N o r t h e a s t Gulf o f A l a s k a . Tech. Rept. No.6 C o a s t a l Research D i v i s i o n , Univ. South C a r o l i n a , Columbia, 127 pp. Born, A . , 1926. Uber j u n g p a l a e o z o i s c h e K o n t i n e n t a l e G e o s y n k l i n a l e n M i t t e l europas. Senckenbergiana Lethaea , 37:507-553. B o r s t , R . L . and K e l l e r , W.D., 1969. Scanning e l e c t r o n micrographs of API r e f e r e n c e c l a y m i n e r a l s and o t h e r s e l e c t e d samples. I n t e r . Clay. Conf., Tokyo, P r o c . , 1:871-901. B o u r c a r t , J . , 1928. L ' a c t i o n du v e n t a l a s u r f a c e d e l a terre. Rev. de Geog. Physique e t de Geol. Dynamique, 1:26-54. B r a d l e y , W . H . , 1929. The o c c u r r e n c e a n d o r i g i n o f a n a l c i t e and meerschaum beds i n t h e Green R i v e r Formation of Utah, Colorado, and Wyoming. U.S.G.S. P r o f . Paper 158-A, pp. 1-7. B r a d l e y , W . H . , 1973. O i l s h a l e formed i n d e s e r t environment: Green R i v e r Formation, Wyoming. Geol. S O C . Am. B u l l . , 84:1121-1124. B r a i t h w a i t e , C.J.R. and Jawad A l i , A . , 1978. Heavy m i n e r a l d i s t r i b u t i o n i n t h e Old Red Sandstone o f t h e N o r t h - e a s t e r n Midland V a l l e y of S c o t l a n d . S c o t . J . Geol. 14: 273-288. B r a m l e t t e , M . N . , 1941. The s t a b i l i t y o f m i n e r a l s i n s a n d s t o n e . J . Sediment. P e t r o l . , 11: 32-36. Brennand, T . P . , 1975. The T r i a s s i c of t h e N o r t h Sea. I n ? A.W. Woodland ( E d i t o r ) , Petroleum and t h e C o n t i n e n t a l S h e l f of North West Europe, Volume 1 Geology. A p p l i e d S c i e n c e P u b l i s h e r s , B a r k i n g , pp.295-310. Brewer, R . , 1964. F a b r i c and M i n e r a l A n a l y s i s of S o i l s . John Wiley 6 Sons I n c . , LondonfNew York, 470 pp. B r e y e r , F . , 1960. D i e orogenen Phasen d e r g e f a l t e t e n Molasse, d e s Helvetikums und d e s F l y c h e s i n w e s t l i c h e n Bayern und i n V o r a r l b e r g . Deutsch. Akad. Wiss. B e r l i n Abh. K1.3, No.1, pp.95-98. B r i c e , J . C . , 1964. Channel p a t t e r n s and t e r r a c e s o f t h e Loup R i v e r s i n Nebraska. U.S.G.S. P r o f . Paper 422D, 41 pp. B r i d e n , J . C . , S m i t h , A . G . and Sallomy, J . T . , 1970. The geomagnetic f i e l d i n PermoT r i a P s i c t i m e . Geophys. J . Roy. A s t r o . S O C . , 23:lOl-117. B r i d e n , J . C . , M o r r i s , W.A. and P i p e r , J . D . A . , 1973. Palaeomagnetic s t u d i e s i n t h e B r i t i s h Caledonides V1. Regional and g l o b a l i m p l i c a t i o n s . Geophys. J.R. a s t r o . SOC.. 34: 107-134. B r i e l , A . , 1962. G e o l o g i e de l a r e g i o n d e Lucens (Broge). Eclogae Geol. H e l v e t i a e , 5 5 : 189-274. ~
498
B r i g g s , R.P., 1960. L a t e r i z a t i o n i n e a s t c e n t r a l P u e r t o Rico. T r a n s . C a r i b . Geol. Conf. Znd, Mayaquez P.T. 1959: 103-119. Brock, A . , 1971. An e x p e r i m e n t a l s t u d y o f p a l a e o s e c u l a r v a r i a t i o n . Geophys. J . R . a s t r o . S O C . , 24:303-317. Brock, A . , 1973. Precambrian p o l a r wander and c o n t i n e n t a l d r i f t o f A f r i c a and North America: Some c o m e n t s . In: D.H. T a r l i n g and S.K. Runcorn ( E d i t o r s ) , I m p l i c a t i o n s o f C o n t i n e n t a l D r i f t t o t h e E a r t h S c i e n c e s Vol.1. Academic P r e s s , London/New York, p.33-36. Brock, R.W., 1943. Weathering of i g n e o u s r o c k s n e a r Hong Kong. Geol. SOC. Am. B u l l . , 5 4 : 717-738. B r o n g n i a r t , A . , 1826. D e l ' a r k o s e , c a r a c t ; ? r e s mine/ralogiques e t h i s t o i r e g e b n o s t i q u e de c e t t e roche. Ann. S c i . N a t . , 8:113-163. B r o o k f i e l d , M.E., 1977. The o r i g i n o f bounding s u r f a c e s i n a n c i e n t a e o l i a n s a n d s t o n e s . Sedimentology, 24: 303-332. B r o o k f i e l d , M.E., 1978. R e v i s i o n o f t h e s t r a t i g r a p h y of Permian and supposed Permian r o c k s of s o u t h e r n S c o t l a n d . Geol. Rundschau, 67:llO-149. Brooks, P . J . and O ' R e i l l y , W . , 1970. Magnetic r o t a t i o n a l h y s t e r e s i s c h a r a c t e r i s t i c s o f r e d s a n d s t o n e s . E a r t h P l a n e t . S c i . L e t t s . , 9:71-76. Brown, G . , 1955. E f f e c t of isomorphous s u b s t i t u t i o n a t t h e i n t e n s i t i e s of (001) r e f l e c t i o n s o f t h e mica and c h l o r i t e - t y p e s t r u c t u r e s . Min. Mag., 30:657-665. Brown, J . F . , 1975. Potassium-Argon e v i d e n c e o f a Permian a g e f o r t h e c a m p t o n i t e dykes: Orkney. S c o t . J . G e o l . , 11:259-262. Bryhni, I . , 1964a. M i g r a t i n g b a s i n s on t h e Old Red c o n t i n e n t . N a t u r e , 202:384-385. B r y h n i , I . , 1964b. Sediment s t r u c t u r e s i n t h e Hornelen S e r i e s . Norsk g e o l . T i d d s . , 44: 486-488. Bucur, I . , 1978. E x p e r i m e n t a l s t u d y o f t h e o r i g i n and p r o p e r t i e s of t h e d e f e c t moment i n s i n g l e domain h a e m a t i t e . Geophys. J . R . a s t r o . SOC., 55:589-604. Buddington, A.F. and L i n d s l e y , D . H . , 1964. I r o n - t i t a n i u m o x i d e m i n e r a l s and s y n t h e t i c e q u i v a l e n t s . J . P e t r o l o g y , 5:309-357. Buddington, A.F., Fahey, J . and V l i s i d i s , A . , 1963. Degree of o x i d a t i o n of Adirondack i r o n o x i d e and i r o n - t i t a n i u m o x i d e m i n e r a l s i n r e l a t i o n t o p e t r o g e n y . J . P e t r o l . , 4: 138-169. B u l l , W . B . , 1964. Geomorphology of segmented a l l u v i a l f a n s i n Western F r e s n o Country, C a l i f o r n i a . U.S.G.S. P r o f . Paper 352-E, pp.89-129. B u l l , W . B . , 1968. A l l u v i a l f a n s . J . g e o l . E d u c a t i o n , 16:lOl-106. B u l l , W . B . , 1972. R e c o g n i t i o n o f a l l u v i a l - f a n d e p o s i t s i n t h e s t r a t i g r a p h i c r e c o r d . In: K . J . Rigby and W.K. Hamblin ( E d i t o r s ) , R e c o g n i t i o n of A n c i e n t Sedimentary Environments. S.E.P.M. Spec. Publ. 1 6 , pp.68-83. B u l l a r d , E . C . , E v e r e t t , J . E . , Smith, A . G . , 1965. The f i t of c o n t i n e n t s around t h e A t l a n t i c . Proc. Roy. S O C . , A258:41-51. Burek, P . J . , 1968. K o r r e l a t i o n r e v e r s m a g n e t i s i e r t e r G e s t e i n g o l g e n a l s s t r a t i g r a p h i s c h e s H i l f s m i t t e l - a n f g e z e i g t am B e i s p i e l e i n e r palaeomagnetischen s t u d i e i m B u n t s a n d s t e i n SW-Deutschlands. XXIIl I n t . Geol. Congr., 5 : 23-36. Burek, P . J . , 1970. Magnetic r e v e r s a l s : T h e i r a p p l i c a t i o n t o s t r a t i g r a p h i c problems. B u l l . Am. Assoc. P e t r o l . G e o l . , 54:1120-1139. B u r g e s s , I . C . , 1960. F o s s i l s o i l s of t h e Upper Old Red Sandstone o f South A y r s h i r e . Trans. g e o l . SOC. Glasgow, 24: 138-153. Burke, K . , 1972. Longshore d r i f t , submarine canyons, and submarine f a n s i n development of Niger d e l t a . B u l l . Am. Assoc. P e t r o l . G e o l . , 56:1975-1983. Burke, K . , 1976. Development o f graben a s s o c i a t e d w i t h t h e i n i t i a l r u p t u r e of t h e A t l a n t i c Ocean. T e c t o n o p h y s i c s , 36: 93-112. Burke, K. and Dewey, J . F . , 1973. Plume-generated t r i p l e j u n c t i o n s key i n d i c a t o r s i n a p p l y i n g p l a t e t e c t o n i c s t o o l d r o c k s . J . G e o l . , 81:406-433. Burke, K . , D e s s a u v a g i e , T . E . J . and Whiteman, A . J . , 1971. O r i g i n of t h e Gulf of Guinea and g e o l o g i c a l h i s t o r y o f t h e Benue D e p r e s s i o n and N i g e r d e l t a . N a t u r e , 233:51-55. B u t l e r , R . D . , 1938. A " r e d beds" t y p e c o p p e r o c c u r r e n c e , Wyoming Co., P e n n s y l v a n i a . Econ. G e o l . , 33: 625-634. B u t l e r , R . F . , 1973. S t a b l e single-domain t o s u p e r p a r a m a g n e t i c t r a n s i t i o n d u r i n g lowt e m p e r a t u r e o x i d a t i o n of o c e a n i c b a s a l t s . J . Geophys. R e s . , 78:6868-6876. B u t l i n , K . R . , 1953. The b a c t e r i a l s u l p h u r c y c l e . R e s e a r c h , 6:184-191. B u u r s i n k , J . , 1971. S o i l s o f C e n t r a l Sudan. G r a f i s c h B e d r i j f Schotanus 6 Jens U t r e c h t 248 pp.
-
499 Buyce, M.R. a n d Friedman, G.M., 1975. S i g n i f i c a n c e o f a u t h i g e n i c K - f e l d s p a r i n Cambrian-Ordovician c a r b o n a t e r o c k s of t h e P r o t o - A t l a n t i c s h e l f i n North America. J. Sediment. P e t r o l . , 45:808-821. Byrne, J . V . , LeRoy, D . O . and R i l e y , C . M . , 1959. The Chenier P l a i n and i t s s t r a t i g r a p h y , s o u t h w e s t e r n Lousiana. Gulf Coast Geol. SOC. Trans. 9:237-259. C a l v e r , M.E., 1968. Coal Measures i n v e r t e b r a t e f a u n a s . I n : D . B . Murchison and T.S. W e s t o l l ( E d i t o r s ) , Coal and C o a l - b e a r i n g S t r a t a . O l i v e r and Boyd, Edinburgh, pp.
147-177.
C a l v e r , M.A.,
1969. W e s t p h a l i a n of B r i t a i n . Compt. Rend. 6 me. Congr. S t r a t . C a r b . ,
1: 233-254. Campbell, A.S. a n d F y f e , W.S.,
1965. A n a l c i m e - a l b i t e e q u i l i b r i a . Am. J. S c i . ,
263:807-816. Campbell, F.A. and Lerbekmo, J . F . , 1963. M i n e r a l o g i c and chemical v a r i a t i o n s between upper C r e t a c e o u s c o n t i n e n t a l B e l l y R i v e r S h a l e s and marine Wapiabin s h a l e s i n w e s t e r n A l b e r t a . Sedimentology, 2:215-226. Campbell, R . , 1913. The geology o f s o u t h - e a s t e r n K i n c a r d i n e s h i r e . Trans. Roy. SOC. E d i n . , 48:923-960. Campbell, R . , 1929. The composition of t h e conglomerates of t h e Downtonian and Lower Old Red Sandstone o f t h e Stonehaven D i s t r i c t . Adv. S c i . Rep. (Glasgow), pp.554-555. C a n t , D . J . a n d Walker, R . G . , 1976. Development o f a b r a i d e d f l u v i a l f a c i e s model f o r t h e Devonian B a t t e r y P o i n t S a n d s t o n e , Quebec. Can. J. E a r t h S c i . , 13:102-119. C a n t , D . J . and Walker, R . G . , 1978. F l u v i a l p r o c e s s e s and f a c i e s sequences i n t h e sandy b r a i d e d South Saskatchewan R i v e r , Canada. Sedimentology, 25:625-648. Carmichael, C . M . , 1961. The magnetic p r o p e r t i e s o f i l m e n i t e - h a e m a t i t e c r y s t a l s . Proc. Roy. SOC. London, A263:508-530. C a r r i g y , M . A . , 1966. L i t h o l o g y o f t h e Athabasca o i l s a n d s . Research Council A l b e r t a Geol. Div. B u l l . 1 8 , 48 pp. C a r r i g y , M . A . , 1967. Some s e d i m e n t a r y f e a t u r e s o f t h e Athabasca o i l s a n d s . Sediment. Geol., 1.327-352. C a r r i g y , M.A., 1971. L i t h o s t r a t i g r a p h y of t h e uppermost C r e t a c e o u s (Lance) and P a l e o c e n e s t r a t a o f t h e A l b e r t a P l a i n s . Res. Council A l b e r t a Geol. Div. B u l l . 27, 161 pp. C a r r o l l , D . , 1939. S a n d - p l a i n s o i l s from t h e Y i l g a r n G o l d f i e l d . Geol. Surv. W. A u s t r a l i a , B u l l . , 97:lOl-180. C a r r o l l , D . , 1958. Role of c l a y m i n e r a l s i n t h e t r a n s p o r t a t i o n of i r o n . Geochim. Cosmochim. A c t a , 14: 1-27. C a r r o l l , D. and Hathaway, J . C . , 1963. Mineralogy of s e l e c t e d s o i l s from Guam. U.S.G.S. P r o f . Paper 403-F, pp.1-53. C a r r o l l , R.L., 1967. L a b y r i n t h o d o n t s from t h e J o g g i n s Formation. J. P a l a e o n t . ,
41: 111-142. C a r t e r , R.M., 1975. Mass emplaced s a n d - f i n g e r s a t Mararod c o n s t r u c t i o n s i t e , s o u t h e r n New Zealand. Sedimentology, 22:275-288. C h a l l i s , G . A . , 1975. P y r i t e - h a e m a t i t e a l t e r a t i o n a s a s o u r c e o f c o l o u r i n r e d beds and r e g o l i t h . N a t u r e , 255:471-427. Chamalaun, F.H., 1963. Thermal Demagnetization o f Red Sediments. Ph.D. T h e s i s , U n i v e r s i t y of Durham. Chamalaun, F.H., 1964. O r i g i n o f secondary m a g n e t i z a t i o n of t h e Old Red Sandstone of t h e Anglo-Welsh c u v e t t e . J. Geophys. R e s . , 69:4327-4337. Chamalaun, F.H. and C r e e r , K . M . , 1964. Thermal d e m a g n e t i z a t i o n s t u d i e s on t h e Old Red Sandstone of t h e Anglo-Welsh C u v e t t e . J. Geophys. Res., 69:1607-1616. form of i r o n oxyhydroxide. Chandy, K . C . , 1962. A n a t u r a l o c c u r r e n c e o f t h e p I n d i a n J. P h y s . , 36:484-489. C h a v a i l l i o n , J., 1964. Les f o r m a t i o n s Q u a t e r n a i r e s du Sahara word-occidental (ColombBechara Reggare). C e n t r e N a t l . Rech. S c i . Publ. C e n t r e Rech. Zones A r i d e s , S e r . G i o l . , 5:393 pp. C h a r l e s w o r t h , G . and Long, F.A., 1939. Note on t h e m a g n e t i c p r o p e r t i e s of f e r r i c o x i d e a t low t e m p e r a t u r e . Proc. Leeds P h i l . SOC., 3:515-519. Cherven, V . B . , 1978. F l u v i a l and d e l t a i c f a c i e s i n t h e S e n t i n e l B u t t e Formation, C e n t r a l W i l l i s t o n B a s i n . J. Sediment. P e t r o l . , 48:159-170.
-
-
500
C h e v a l l i e r , R . , 1951. P r o p r i g t d s magn6tique.s de l ' o x y d e f e r r i q u e rhombogdrique ( F e 2 0 3 3 . J . Phys. Rad., 12:178-188. C h e v a l l i e r , R. a n d Mathieu, S . , 1943. Proprie'te's magndtiques d e s poudres d ' h g m a t i t e s ; i n f l u e n c e des dimensions d e s g r a i n s . Ann. Phys. P a r i s , 18:258-288. Chisholm, J.I. and Dean, J . M . , 1974. The upper Old Red Sandstone o f F i f e and K i n r o s s : a f l u v i a t i l e sequence w i t h e v i d e n c e of m a r i n e i n c u r s i o n s . S c o t t . J. G e o l . , 10:1-30. Chukrov, F . V . , 1973. On m i n e r a l o g i c a l and geochemical c r i t e r i a i n t h e g e n e s i s o f r e d beds. Chem. G e o l . , 1 2 ~ 6 7 - 7 5 . Church, M . , 1972. B a f f i n I s l a n d Sandurs: A s t u d y of A r c t i c f l u v i a l p r o c e s s e s . B u l l . g e o l . Surv. Canada, 216.208 pp. C l a r k , J., 1962. F i e l d i n t e r p r e t a t i o n of r e d b e d s . Geol. SOC. Am. B u l l . , 73:423;428. C l a r k , S.P. and J l l g e r , E . , 1969. Denudation r a t e i n t h e Alps from g e o c h r o n o l o g i c and h e a t flow d a t a . Am. J . S c i . , 267:1143-1160. Clegg, J . A . , Almond, M. and S t u b b s , P.H.S., 1954. The remanent m a g n e t i z a t i o n o f some s e d i m e n t a r y r o c k s i n B r i t a i n . P h i l . Mag., 45:583-598. Cloud, P . E . , 1968. Atmosphere and h y d r o s p h e r i c e v o l u t i o n of t h e p r i m i t i v e e a r t h . S c i e n c e , 160:729-736. Cloudsley-Thompson, J . L . , 1968. The K e r k h i y a t J e b e l s : A d e s e r t community. I n ; G.W. Brown ( E d i t o r ) , D e s e r t B i o l o g y , Academic P r e s s , New York, pp.1-20. Cohen, J., C r e e r , K . M . , P a u t h e n e t , R. and S r i v a s t a v a , K . , 1962. P r o p r i d t L s magngtiques des s u b s t a n c e s a n t i f e r r o m a g n g t i q u e s en g r a i n s f i n s . J . Phys. SOC. J a p a n , 17 (B11.685-689. Coleman, J . M . , 1966. E c o l o g i c a l changes i n a m a s s i v e f r e s h w a t e r c l a y sequence. Gulf C o a s t Assoc. Geol. Socs. T r a n s . , 16-159-174. Coleman, J . M . , 1969. Brahmaputra R i v e r : Channel p r o c e s s e s and s e d i m e n t a t i o n . Sediment. G e o l . , 3:129-239. Coleman, J . M . and G a g l i a n o , S.M., 1964. C y c l i c s e d i m e n t a t i o n i n t h e M i s s i s s i p p i R i v e r d e l t a p l a i n . T r a n s . Gulf Coast Assoc. g e o l . S o c s . , 14:67-80. Coleman, J . M . and G a g l i a n o , S.M., 1965. Sedimentary s t r u c t u r e s : M i s s i s s i p p i R i v e r d e l t a i c p l a i n . I n : G . V . Middleton ( E d i t o r ) , P r i m a r y Sedimentary S t r u c t u r e s and t h e i r Hydrodynmic I n t e r p r e t a t i o n . S.E.P.M. Spec. Publ. 1 2 , pp.133-148. Coleman, J . M . and W r i g h t , L . D . , 1975. Modern r i v e r d e l t a s : v a r i a b i l i t y of p r o c e s s e s and s a n d b o d i e s . I n : M.L. B r o u s s a r d ( E d i t o r ) , D e l t a s - M o d e l s f o r E x p l o r a t i o n . Houston G e o l o g i c a l S o c i e t y , Houston, pp.99-149. Coleman, J . M . , G a g l i a n o , S.M. and Webb, J . E . , 1964. Minor s e d i m e n t a r y s t r u c t u r e s i n a p r o g r a d i n g d i s t r i b u t a r y . Mar. G e o l . , 1:240-258. Coleman, J . M . , Suhayda, J . N . , Whelan, T., and W r i g h t , L . D . , 1974. Mass movement of M i s s i s s i p p i r i v e r d e l t a s e d i m e n t s . T r a n s . G u l f . Coast Assoc. Geol. S o c s . , 24:49-68. C o l l i n s o n , D . W . , 1965a. The remanent magnetism and m a g n e t i c p r o p e r t i e s of r e d s e d i m e n t s . Geophys. J . R . a s t r o . S O C . , 10:105-126. C o l l i n s o n , D . W . , 1965b. O r i g i n of remanent m a g n e t i z a t i o n and i n i t i a l s u s c e p t i b i l i t y o f c e r t a i n r e d s a n d s t o n e s . Geophys. J . R . a s t r o . S O C . , 9:203-217. C o l l i n s o n , D . W . , 1966a. Magnetic p r o p e r t i e s o f t h e T a i g u a t i F o r m a t i o n , B o l i v i a . Geophys. J . R . a s t r o . S O C . , 11:337-347. C o l l i n s o n , D . W . , 1966b. Magnetic g r a i n s i z e e f f e c t s and t h e remanent magnetism o f s e d i m e n t s . E a r t h P l a n e t . S c i . L e t t s . , 1:330-332. C o l l i n s o n , D . W . , 1967. The v a r i a t i o n o f m a g n e t i c p r o p e r t i e s among r e d s a n d s t o n e s . Geophys. J . R . a s t r o . S O C . , 12:197-207. C o l l i n s o n , D . W . , 1968a. An e s t i m a t e o f t h e h a e m a t i t e c o n t e n t of s e d i m e n t s by magnetic a n a l y s i s . E a r t h P l a n e t . S c i . L e t t s . , 4:417-421. C o l l i n s o n , D.W., 1968b. F e r r o u s and f e r r i c i r o n i n r e d s e d i m e n t s and t h e i r magnetic p r o p e r t i e s . Geophys. J . R . a s t r o . S O C . , 16:531-542. C o l l i n s o n , D . W . , 1974. The r o l e of pigment and s p e c u l a r i t e i n t h e remanent magnetism of r e d s a n d s t o n e s . Geophys. J . R . a s t r o . S O C . , 38:253-264. C o l l i n s o n , D.W. and Runcorn, S.K., 1960. P o l a r wandering and c o n t i n e n t a l d r i f t : Evidence from p a l a e o m a g n e t i c o b s e r v a t i o n s i n t h e U n i t e d S t a t e s . Geol. SOC. Am. B u l l . , 71:915-958. C o l l i n s o n , J . D . , 1969. The sedimentology o f t h e Grindslow S h a l e s and t h e K i n d e r s c o n t G r i t : a d e l t a i c complex i n t h e Namurian o f n o r t h e r n England. J . Sediment. P e t r o l . , 39: 194-221.
501 C o l l i n s o n , J . D . , 1970. Bedforms o f t h e Tana R i v e r , Norway. Geog. Ann. 5 2 A , 31-56. C o l l i n s o n , J . D . and Banks, N . L . , 1975. The Haslingden F l a g s (Namurian GI) of southe a s t L a n c a s h i r e : b a r f i n g e r s a n d s i n t h e Pennine b a s i n . Proc. Yorks. g e o l . S O C . , 40 : 431-45 8. Colombo, U., F a g h e r a z z i , G . , G a z z a r i n i , F . , LanzLvecchia, G. and S i r o n i , G . , 1964. Mechanisms i n t h e f i r s t s t a g e o x i d a t i o n o f m a g n e t i t e s . N a t u r e , 202:175-176. Cooke, H.B.S., 1961. The P l e i s t o c e n e environment i n s o u t h e r n A f r i c a . I n : D . H . S . David ( E d i t o r ) , Ecology i n S o u t h e r n A f r i c a . Monographae B i o l o g i c a e , 4 , J u n k , The Hague, pp. 1-34. Cooke, R . U . and Warren, A . , 1973. Geomorphology i n D e s e r t s , B . T . B a t s f o r d L t d . , London, 374 pp. Coombs, D.S., E l l i s , A . J . , F y f e , W.S. and T a y l o r , A . M . , 1959. The z e o l i t e f a c i e s , w i t h comments on t h e i n t e r p r e t a t i o n o f hydrothermal s y n t h e s e s . Geochim. Cosmochim. A c t a , 17:53-107. Cooper, W.S., 1967. C o a s t a l s a n d dunes o f C a l i f o r n i a . Geol. SOC. Am. Mem., 104, pp. 1-131. C o r n e t , B. and T r a v e r s e , A . , 1975. P a l y n o l o g i c a l c o n t r i b u t i o n s t o t h e chronology and s t r a t i g r a p h y of t h e H a r t f o r d Basin i n C o n n e c t i c u t and M a s s a c h u s e t t s . Geoscience and Man, 11: 1-33. C o r n i s h , V., 1914. Waves of Sand and Snow. Fisher-Unwin, London, 383 pp. Cornwell, J . D . , 1966. On t h e magnetic a g e of some Devonian l a v a s from Devonshire. Geol. Mag., 103.398-402. C o r r e n s , C.W. and von E n g e l h a r d t , W. Neue Untersuchungen u b e r d i e V e r w i t t e r u n g des K a l i f e l d s p a t e s . Chem. E r d e . , 12: 1-22. Cox, A . , 1962. A n a l y s i s of p r e s e n t geomagnetic f i e l d f o r comparison w i t h palaeomagneti c r e s u l t s . J . Geomag. G e o e l e c t . , 13:lOl-112. Cox, A . , 1969. Geomagnetic r e v e r s a l s . S c i e n c e , 163:237-344. Cox, A . , 1970. L a t i t u d e dependence of t h e a n g u l a r d i s p e r s i o n of t h e geomagnetic f i e l d . Geophys. J.R. a s t r o . S O C . , 20:253-269. C r a i g , L . C . and Shawe, D . R . , 1975. J u r a s s i c r o c k s of e a s t - c e n t r a l Utah. In: J . E . F a s s e t ( E d i t o r ) , Canyonlands Country. Four Corners Geol. SOC. 8 t h F i e l d Conf. pp. 15 7- 165. Crampton, C.B. and C a r r u t h e r s , R . G . , 1914. The geology o f C a i t h n e s s . Mem. g e o l . Surv. U . K . , 194 pp. Crawford, A . R . , 1974. The S a l t Range, t h e Kashmir s y n t a x i s and t h e Pamir Arc, E a r t h P l a n e t . S c i . L e t t s . , 22:371-397. Creer, K . M . , 1957. The n a t u r a l remanent m a g n e t i z a t i o n of c e r t a i n s t a b l e rocks from G r e a t B r i t a i n . P h i l . T r a n s . Roy. S O C . London, A250:111-129. Creer, K . M . , 1961. Superparamagnetism i n r e d s a n d s t o n e s . Geophys. J . R . a s t r o . S O C . , 5 : 16-28. C r e e r , K . M . , 1962a. On t h e o r i g i n of t h e m a g n e t i z a t i o n of r e d b e d s . J . Geomagn. G e o e l e c t . , 13:86-100. C r e e r , K . M . , 196213. A s t a t i s t i c a l e n q u i r y i n t o t h e p a r t i a l r e m a g n e t i z a t i o n o f f o l d e d Old Red Sandstone r o c k s . J. Geophys. R e s . , 67:1899-1906. C r e e r , K . M . , 1964. A r e c o n s t r u c t i o n of t h e c o n t i n e n t s f o r t h e upper P a l a e o z o i c u s i n g pa l a e o m a g n e t i c d a t a . N a t u r e , 203: 1115- 1120. C r e e r , K . M . , 1968. P a l a e o z o i c palaeomagnetism. N a t u r e , 219:246-250. C r e e r , K . M . , 1975. On a t e n t a t i v e c o r r e l a t i o n between changes i n t h e geomagnetic p o l a r i t y b i a s and r e v e r s a l f r e q u e n c y and t h e E a r t h ' s r o t a t i o n through Phanerozoic t i m e . In: G . D . Rosenberg and S.K. Runcorn ( E d i t o r s ) , Growth Rhythms and t h e H i s t o r y of t h e E a r t h ' s R o t a t i o n . John Wiley & Sons I n c . , London/New York, pp.293-317. C r e e r , K.M. and I b b e t s o n , J . D . , 1970. E l e c t r o n microprobe a n a l y s e s and magnetic p r o p e r t i e s of n o n - s t o i c h i o m e t r i c t i t a n o m a g n e t i t e s i n b a s a l t i c r o c k s . Geophys. J . R . a s t r o . Soc., 21:485-511. C r e e r , K . M . , Thompson, R . , Molyneux, L . , and Mackereth, F.J.H., 1972. Geomagnetic s e c u l a r v a r i a t i o n r e c o r d e d i n t h e s t a b l e magnetic remanence of r e c e n t sediments. E a r t h P l a n e t . S c i . L e t t s . , 14:115-127. Creer, K.M., G r o s s , D.L. and Lineback, J . A . , 1976. O r i g i n o f r e g i o n a l geomagnetic v a r i a t i o n s r e c o r d e d by Wisconsinan and Holocene s e d i m e n t s from Lake Michigan, U . S . A . , and Lake Windermere, England. Geol. SOC. Am. B u l l . , 87:531-540.
502
Creer, K . M . , Hogg, E . , Malkowski, Z . , M o j s k i , J . E . , N i e d z i o l k a - K r o l , E . , Readman, P.W. and Tucholka, P . , 1979. Palaeomagnetism of Holocene l a k e s e d i m e n t s from North Poland. Geophys. J . R . a s t r o . S O C . , 59:287-313. C r o c k e r , R . L . , 1946. The Simpson D e s e r t e x p e d i t i o n , 1939; S c i e n t i f i c R e p o r t s no.8: The s o i l s and v e g e t a t i o n of t h e Simpson D e s e r t and i t s b o r d e r s . T r a n s . Roy. SOC. S . A u s t . , 70:235-258. Crone, A . J . , 1975. L a b o r a t o r y and F i e l d S t u d i e s of M e c h a n i c a l l y - i n f i l t r a t e d M a t r i x Clay i n A r i d F l u v i a l Sediments. Ph.D. T h e s i s , Univ. o f Colorado. Crosby, W . O . , 1885. The c o l o r o f s o i l s . Boston COC. Nat. H i s t . P r o c . , 23:219-222. Crosby, W.O., 1891. On t h e c o n t r a s t i n c o l o r of t h e s o i l s o f h i g h and low l a t i t u d e s . Amer. G e o l . , 8: 72-82. Crowell, J . C . , 1952. P r o b a b l e l a r g e l a t e r a l d i s p l a c e m e n t on t h e San G a b r i e l f a u l t , s o u t h e r n C a l i f o r n i a . B u l l . Am. Assoc. P e t r o l . Geol., 36:2026-2035. C r o w e l l , J . C . , 1974a. O r i g i n of l a t e Cenozoic b a s i n s i n s o u t h e r n C a l i f o r n i a . I n . W.R. D i c k i n s o n ( E d i t o r ) , T e c t o n i c s and S e d i m e n t a t i o n . S.E.P.M. Spec. Publ. 22, pp.190-204. C r o w e l l , J . C . , 1974b. S e d i m e n t a t i o n a l o n g t h e San Andreas F a u l t , C a l i f o r n i a . I n : R . H . D o t t J r . and R.H. Shaver ( E d i t o r s ) , M o d e r n and A n c i e n t G e o s y n c l i n a l S e d i m e n t a t i o n . S .E .P .M. Spec. Publ. 1 9 , pp. 292-303. C r o w e l l , J . C . , 1975. The San G a b r i e l f a u l t and Ridge B a s i n , S o u t h e r n C a l i f o r n i a . I n : J . C . Crowell ( E d i t o r ) , S a n Andreas F a u l t i n S o u t h e r n C a l i f o r n i a . C a l i f . Div. Mines and Geol. Spec. Rep. 118, pp.208-233. C r o w e l l , J . C . , 1979. The San Andreas f a u l t s y s t e m through t i m e . J. g e o l . SOC. London, 136: 293-302. Cummins, W . A . , 1962. The greywacke problem. L i v e r p o o l and Manchester Geol. J . , 3 : 51-72. C u r t i s , C . D . , 1977. Sedimentary g e o c h e m i s t r y : environments and p r o c e s s e s dominated by involvement of a n aqueous phase. P h i l . T r a n s . R. S O C . , A286:353-371. C u r t i s , C . D . , 1978. P o s s i b l e l i n k s between s a n d s t o n e d i a g e n e s i s and d e p t h - r e l a t e d geochemical r e a c t i o n s o c c u r r i n g i n e n c l o s i n g mudstones. J . g e o l . SOC. London, 135: 107-117. 1953. S u r l e r&e des dunes en r e l a t i o n a v e e l e syst6me C v i j a n o v i c h , B-G., h y d r o l o g i q u e de l a nappe s o u t e r r a i n e du Grande Erg. I n s t . de Rech. S a h a r i e n n e s , Travaux 10, pp.131-136. C z y s c i n s k i , K . S . , Byrnes, J . B . and Pedlow, G.W. 111, 1978. I n s i t u r e d bed development by t h e o x i d a t i o n o f a u t h i g e n i c p y r i t e i n a c o a s t a l d e p o s i t i o n a l environment. Palaeogeog. P a l a e o c l i m . P a l a e o e c o l . , 24:239-246. Dana, J . D . , 1873. On some r e s u l t s of t h e E a r t h ' s c o n t r a c t i o n from c o o l i n g , i n c l u d i n g a d i s c u s s i o n o f t h e o r i g i n of mountains and t h e n a t u r e o f t h e E a r t h ' s i n t e r i o r . Am. J . S c i . , 35:423-443; 6 : 6 - 1 4 , 104-115, 161-171. Dane, C . H . , 1935. Geology o f t h e S a l t V a l l e y A n t i c l i n e and a d j a c e n t a r e a s , Grand County Utah. U.S.G.S. B u l l . 863, 184 pp. Dapples, E . C . , 1962. S t a g e s i n t h e development of s a n d s t o n e s . Geol. S O C . Am. B u l l . , 73:913-934. Dapples, E . C . , 1967. D i a g e n e s i s of s a n d s t o n e s . I n : G . Larsen and G . V . C h i l i n g a r ( E d i t o r s ) , D i a g e n e s i s i n Sediments. Developments i n Sedimentology 8 , E l s e v i e r , Amsterdam, pp.91-125. Dapples, E . C . , 1971. P h y s i c a l c l a s s i f i c a t i o n of c a r b o n a t e cement i n q u a r t z o s e s a n d s t o n e s . J . Sediment. P e t r o l . , 41: 196-204. D a v i s , S . N . and Dewiest, R . J . M . , 1966. Hydrogeology. John Wiley & Sons I n c . , LondonfNew York, 463 pp. Dawson, J . W . , 1848. On t h e c o l o r i n g m a t t e r of r e d s a n d s t o n e s and g r e y i s h and w h i t e beds a s s o c i a t e d w i t h them. Q u a r t , J . g e o l . SOC. London, 5:25-30. d ' C o s t a , V . , Ghor Obada, W . , Hinga, G . , and Makin, J., 1966. The s o i l s of t h e c o u n t r y around Mumias. Appendix t o Kenya b o u t . R e p o r t on s u g a r p o t e n t i a l , S o i l Survey U n i t , Kenya, Deegan, C . E . , 1973. T e c t o n i c c o n t r o l of s e d i m e n t a t i o n a t t h e margin o f a Carbonife r o u s d e p o s i t i o n a l b a s i n i n K i r o n d b r i g h t s h i r e . S c o t . J. G e o l . , 9 : l - 2 8 . Deer, W . A . , Howie, R.A. and Zussman, J . , 1966. An I n t r o d u c t i o n t o t h e Rock-Forming M i n e r a l s . Longmans, Green & Co. London, 5 2 8 pp.
503 D e f f e y e s , K . S . , 1959. Z e o l i t e s i n s e d i m e n t a r y r o c k s . J . Sediment. P e t r o l . , 29: 602-609. deRaaf, J.F.M., 1968. T u r b i d i t e s e t a s s o c i a t i o n s s e d i m e n t a i r e s a p p a r e n t e e s . Proc. Koninkl. Nederlandse Akad. Wetensch., 7 1 : l - 2 3 . deRaaf, J.F.M., Reading, H . G . and Walker, R . G . , 1965. C y c l i c s e d i m e n t a t i o n i n t h e Lower W e s t p h a l i a n of n o r t h Devon, England. Sedimentology, 4 : l - 5 2 . Deshpande, T . L . , G r e e n l a n d , D . J . and Q u i r k , J . P . , 1968. Changes i n s o i l p r o p e r t i e s a s s o c i a t e d w i t h t h e removal of i r o n and aluminium o x i d e . J . S o i l S c i . , 19:108-122. Dewey, H. and Eastwood, T . , 1925. Copper o r e s of t h e Midlands, Wales, The Lake D i s t r i c t and t h e I s l e of Man. Spec. Rep. Min. Res. G t . Brit. 30. Mem. g e o l . Surv. U.K. Dewey, J . F . , 1969. E v o l u t i o n o f t h e A p p a l a c h i a n / C a l e d o n i a n orogen. N a t u r e , 222 : 124- 129. Dewey, J . F . , 1972. P l a t e t e c t o n i c s . S c i e n t i f i c American, May, pp.56-68. Dewey, J . F . and B i r d , J . M . , 1970. P l a t e t e c t o n i c s and g e o s y n c l i n e s . T e c t o n o p h y s i c s , 10.625- 638. D i c k i n s o n , W.R., 1970. I n t e r p r e t i n g d e t r i t a l modes of greywacke and a r k o s e . J . Sediment. P e t r o l . , 50:695-707. D i c k i n s o n , W . R . , 1974a. P l a t e t e c t o n i c s and s e d i m e n t a t i o n . I n : W . R . Dickinson ( E d i t o r ) , T e c t o n i c s and S e d i m e n t a t i o n . S.E.P.M. Spec. Publ. 2 2 , pp.1-27. D i c k i n s o n , W.R., 1974b. S e d i m e n t a t i o n w i t h i n and b e s i d e a n c i e n t and modern magmatic a r c s . I n : R.H. D o t t J r . and R.H. Shaver ( E d i t o r s ) , Modern and A n c i e n t G e o s y n c l i n a l S e d i m e n t a t i o n . S.E.P.M. Spec. Publ. 1 9 , pp.230-239. D i e t z , R . S . , 1963. C o l l a p s i n g c o n t i n e n t a l r i s e s : a n a c t u a l i s t i c c o n c e p t of g e o s y n c l i n e s and mountain b u i l d i n g . J . Geol., 71:314-333. D i e t z , R.S. and Holden, J . C . , 1966. M i o g e o c l i n e s ( m i o g e o s y n c l i n e s i n s p a c e and t i m e ) . J . G e o l . , 74:566-583. D o e l l , R . R . and Cox, A., 1965. Measurement of t h e remanent m a g n e t i z a t i o n of igneous r o c k s . U.S. Geol. Surv. B u l l . 1203-A, pp.1-32. Dolan, R . , 1970. Dune r e d d e n i n g a l o n g t h e o u t e r banks o f North C a r o l i n a . 3. Sediment. P e t r o l . , 40:765. Donaldson, J . A . , McGlynn, J . C . , I r v i n g , E . and P a r k , J.K., 1973. D r i f t of t h e Canadian S h i e l d . I n : D.H. T a r l i n g and S . K . Runcorn ( E d i t o r s ) , I m p l i c a t i o n s o f C o n t i n e n t a l D r i f t t o t h e E a r t h S c i e n c e s Vol.1. Academic P r e s s , London/New York, p p . 3- 1 7 . Donovan, R . N . , 1975. Devonian l a c u s t r i n e l i m e s t o n e s a t t h e margin of t h e Orcadian B a s i n , S c o t l a n d . J . g e o l . S O C . London, 131:489-510. Donovan, R . N . and F o s t e r , R . J . , 1972. Subaqueous s h r i n k a g e c r a c k s from t h e C a i t h n e s s F l a g s t o n e S e r i e s (Middle Devonian) of n o r t h e a s t S c o t l a n d . 3. Sediment. P e t r o l . , 42 : 309-317. Donovan, R . N . , F o s t e r , R . J . and W e s t a l l , T . S . , 1974. A s t r a t i g r a p h i c a l r e v i s i o n of t h e Old Red Sandstone of N o r t h e a s t e r n C a i t h n e s s . T r a n s . Roy. SOC. E d i n . , 69: 167-201. Donovan, R.N., A r c h e r , R . , T u r n e r , P. and D.H. T a r l i n g , 1976. Devonian palaeogeography of t h e Orcadian Basin and t h e G r e a t Glen F a u l t . N a t u r e , 259.550-551. Dons, J . A . and Gybry, E . , 1967. Permian s e d i m e n t s , l a v a s and f a u l t s i n t h e Kolsfls a r e a west of Oslo. Norsk g e o l . T i d d s . , 47:58-77. D o t t , R . H . and B a t t e n , R.L., 1971. E v o l u t i o n of t h e E a r t h . McGraw-Hill I n c . , New York, 649 pp. Doveton, J . H . , 1971. An a p p l i c a t i o n of Markov Chain a n a l y s i s t o t h e A y r s h i r e Coal Measures s u c c e s s i o n . S c o t . J . G e o l . , 7 : l l - 2 7 . Downing, R.A. and S q u i r r e l , H . C . , 1965. On t h e r e d and g r e e n beds i n t h e Upper Coal Measures of t h e e a s t e r n p a r t of t h e South Wales c o a l f i e l d . B u l l . Geol. S u m . G t . B r i t . , 23:45-56. Drake, C . L . , Ewing, M. and S u t t o n , G . H . , 1959. C o n t i n e n t a l margin and g e o s y n c l i n e s : t h e e a s t c o a s t of North America, n o r t h of Cape H a t t e r a s . I n : L.H. Ahrens, F. P r e s s , S.K. Runcorn and H . C . Urey ( E d i t o r s ) , P h y s i c s and Chemistry of t h e E a r t h , 3. Pergamon P r e s s , Oxford, pp. 110-198. Dubey, A.C. and Dunlop, D . J . , 1971. Superparamagnetism i n h e m a t i t e s o f g o e t h i t e o r i g i n . T r a n s . Am. Geophys. Union ( E o s ) , 52:191.
504 D u b i n i n a , G . A . , G o r l e n k o , V . M . , and Suleimanov, J.I., 1973. A s t u d y o f microorganisms i n v o l v e d i n t h e c i r c u l a t i o n o f manganese, i r o n , and s u l f u r i n meromictic Lake Gek-Gel. M i k r o b i o l o g i y a , 42:918-924. duBois, P.M., 1962. Palaeomagnetism and c o r r e l a t i o n o f Keweenawan r o c k s . G e o l . Surv. Canad. B u l l . , 71:75 pp. D u f f , P. McL.D. and W a l t o n , E . K . , 1962. S t a t i s t i c a l b a s i s f o r c y c l o t h e m s : a q u a n t i t a t i v e s t u d y of t h e s e d i m e n t a r y s u c c e s s i o n i n t h e E a s t Pennine c o a l f i e l d . Sedimentology, 1:235-255. D u f f , P. McL. and Walton, E . K . , 1973. C a r b o n i f e r o u s s e d i m e n t s a t J o g g i n s , Nova S c o t i a . Septizme Congr. I n t . de S t r a t i g r a p h i e e t de G g o l o g i e du CarbonifGre. K r e f e l d , 2 , pp.365-378. D u f f , P. McL.D., Hallam, A. and Walton, E . K . , 1967. C y c l i c S e d i m e n t a t i o n . Developments i n Sedimentology. E l s e v i e r , Amsterdam, 280 pp. Dunham, K . C . , 1953. Red c o l o u r a t i o n i n d e s e r t f o r m a t i o n s o f Permian and T r i a s s i c a g e i n B r i t a i n . X1X I n t . G e o l . Congr. ( a l g e r ) . V11:25-32. Dunlop, D . J . , 1971. Magnetic p r o p e r t i e s o f f i n e - p a r t i c l e h e m a t i t e . Ann. Geophys., 27:269-293. Dunlop, D . J . , 1972. Magnetic m i n e r a l o g y o f u n h e a t e d a n d h e a t e d r e d s e d i m e n t s by c o e r c i v i t y s p e c t r u m a n a l y s i s . Geophys. J . R . a s t r o . S O C . , 27:37-55. D u r r a n c e , E . M . , Meads, R . E . , B a l l a r d , R.R.B. and Walsh, J . N . , 1978. O x i d a t i o n s t a t e of i r o n i n t h e L i t t l e h a m Mudstone Formation o f t h e New Red S a n d s t o n e S e r i e s ( P e r m i a n - T r i a s s i c ) o f s o u t h e a s t Devon. Geol. S O C . Am. B u l l . , 89:1231-1240. Dury, G . H . , 1969. R a t i o n a l d e s c r i p t i v e c l a s s i f i c a t i o n o f d u r i c r u s t s . E a r t h S c i e n c e J. ( W a i k a t o ) , 3 : 77-86. DuToit, A . L . , 1937. Our Wandering C o n t i n e n t s . O l i v e r and Boyd, E d i n b u r g h , 366 pp. Dymond, J . , 1969. Age d e t e r m i n a t i o n o f deep-sea s e d i m e n t s : A comparison o f t h r e e methods. E a r t h P l a n e t . S c i . L e t t s , , 6:9-14. D z a l o s h i n s k y , I . E . , 1958. A thermodynamic t h e o r y o f "weaktt f e r r o m a g n e t i s m o f a n t i f e r r o m a g n e t i c s . J . Phys. Chem. S o l i d s , 4:241-255. E a g e r , R . M . C . , 1970. P r e l i m i n a r y n o t e s on some new P e n n s y l v a n i a n m a r i n e and nonmarine f a u n a s i n e a s t e r n USA. C . R . 6 e Congr. S t r a t . Geol. Carb. S h e f f i e l d 1967, 2 , pp.679-691. E a r p , J . R . , 1961. E x p l o r a t o r y b o r e h o l e s i n t h e North S t a f f o r d s h i r e C o a l f i e l d . B u l l . Geol. Surv. G t . B r i t . , 17:153-191. E a t o n , J . A . and M o r r i s h , A . H . , 1969. Magnetic domains i n h e m a t i t e a t and above t h e Morin T r a n s i t i o n . J . Appl. Phys. 40:3180-3185. Edelman, C . H . and Doeglas, D . J . , 1931. R e l i k s t r u k t u r e n d e t r i t i s c h e r pyroxene und amphibole. Min. P e t . M i t t . , 42:482-490. E i n s e l e , G . and Werner, F . , 1968. Zusammensetzung, GefUge und mechanische E i g e n s c h a f t e n r e z e n t e r Sedimente vom N i l d e l t a , Roten Meer und F u l f von Aden. "Meteor" Forsch.-Ergebn C , 1:21-42. E i s b a c h e r , G . H . , 1974. E v o l u t i o n o f s u c c e s s o r b a s i n s i n t h e Canadian C o r d i l l e r a . In: R . H . D o t t J r . , and R . H . S h a v e r ( E d i t o r s ) , Modern and A n c i e n t G e o s y n c l i n a l S e d i m e n t a t i o n . S.E.P.M. Spec. Publ. 1 9 , pp.274-291. E i s b a c h e r , G . H . , C a r r i g y , M.A. a n d Campbell, R . B . , 1974. P a l e o d r a i n a g e p a t t e r n and l a t e - o r o g e n i c b a s i n s o f t h e Canadian C o r d i l l e r a . In: W.R. D i c k i n s o n ( E d i t o r ) , T e c t o n i c s and S e d i m e n t a t i o n . S.E.P.M. Spec. P u b l . 2 2 , pp.143-166. E l l i o t , T . , 1974. I n t e r d i s t r i b u t a r y bay s e q u e n c e s and t h e i r g e n e s i s . S e d i m e n t o l o g y , 2 1 : 611-622. E l l i o t , T . , 1975. The s e d i m e n t a r y h i s t o r y o f a d e l t a l o b e from a Yoredale ( C a r b o n i f e r o u s ) cyclothem. P r o c . Yorks. g e o l . S O C . , 40:505-536. Ellwood, J . M . , Evans, P.D. and W i l s o n , I . G . , 1975. Small s c a l e a e o l i a n bedforms. J. Sediment. P e t r o l . , 45:554-561. E l s t o n , D.P. and P a r u c k e r , M . E . , 1979. D e t r i t a l m a g n e t i z a t i o n i n r e d beds o f t h e Moenkopi Formation ( T r i a s s i c ) , Gray Mountain, A r i z o n a . J . Geophys. R e s . , 84: 1653-1665. Emery, K . O . , 1960. The Sea o f f S o u t h e r n C a l i f o r n i a . J o h n Wiley 6 S o n s I n c . , New York, 366 pp.
50 5
Emery, K.O. and G r i f f i t h s , J . C . , 1954. The c o n a i s s a n c e i n v e s t i g a t i o n i n t o r e l a t i o n s h i p s between b e h a v i o u r and p e t r o g r a p h i c p r o p e r t i e s o f some M i s s i s s i p p i a n s e d i m e n t s . Pa. S t a t e Univ. Min. I n d . Exp. S t n . B u l l . , 62:67-80. E n g e l , C . G . and S h a r p , R . P . , 1958. Chemical d a t a on d e s e r t v a r n i s h . Geol. SOC. Am. B u l l . , 69:487-518. Epp, R . J . , Tukey, J . W . and Watson, G . S . , 1971. T e s t i n g u n i t v e c t o r s f o r c r r r e l a t i o n . J . Geophys. Res., 76:8480-8483. E r n s t , W . , 1970. Geochemical F a c i e s A n a l y s i s . E l s e v i e r , Amsterdam, 152 pp. E r x l e b e n , A.W., 1975. D e p o s i t i o n a l systems i n Canyon Group (Pennsylvanian System) N o r t h - C e n t r a l Texas. Rep. I n v e s t . Bur. econ. G e o l . , A u s t i n , Texas, 8 2 , 75 pp. Evans, M.E. and McElhinny, M . W . , 1969. An i n v e s t i g a t i o n of t h e o r i g i n o f s t a b l e remanence i n m a g n e t i t e b e a r i n g i g n e o u s r o c k s . J . Geomag. G e o e l e c t . 21:757-773. Evans, M.E. and Wayman, M . L . , 1970. An i n v e s t i g a t i o n of small magnetic p a r t i c l e s by means o f e l e c t r o n microscopy. E a r t h P l a n e t . S c i . L e t t s . , 9:365-370. Evans, M.E. and Bingham, D . K . , 1973. Paleomagnetism of t h e Precambrian M a r t i n F o r m a t i o n , Saskatchewan. Can. J . E a r t h . S c i . , 10: 1485-1493. Evans, M.E. and Bingham, D . K . , 1976. Paleomagnetism o f t h e G r e a t S l a v e Supergroup, North-west T e r r i t o r i e s , Canada: The Tochatwi Formation. Can. 3. E a r t h S c i . , 13: 555-562. Evans, M . E . , McElhinny, M.W. and G i f f o r d , A . C . , 1968. S i n g l e domain m a g n e t i t e and h i g h c o e r c i v i t i e s i n a g a b b r o i c i n t r u s i o n . E a r t h P l a n e t . S c i . L e t t s . , 4:142-146. F a h n e s t o c k , R . K . , 1963. Morphology and hydrology of a g l a c i a l s t r e a m White R i v e r , Mount R a i n i e r , Washington. U . S . G . S . P r o f . P a p e r 422-A, 70 pp. F a h r i g , W.F. and J o n e s , D . L . , 1969. Paleomagnetic e v i d e n c e f o r t h e e x t e n t of Mackenzie i g n e o u s e v e n t s . Can. J . E a r t h S c i . , 6:679-688. F a n i r a n , A . , 1970. Maghemite i n t h e Sydney d u r i c r u s t s . Am. Min., 55:925-933. F a n n i n , N.G.T., 1969. S t r O m a t O l i t e s from t h e m i d d l e Old Red Sandstone of Western Orkney. Geol. Mag., 106: 77-88. Farmer, V . C . , R u s s e l l , J . D . , McHardy, W . T . , N e m a n , A . C . D . , A h l r i c h s , J . L . and Rimsaite, J.Y.H., 1971. Evidence f o r l o s s o f p r o t o n s and o c t a h e d r a l i r o n from o x i d i z e d b i o t i t e s and v e r m i c u l i t e s . Min. Mag. 38: 121-137. F a r r e l l , W.E. and May, B.T., 1969. Paleomagnetism of Permian Red Beds from t h e Colorado P l a t e a u . 3. Geophys. R e s . , 74:1495-1504. F e o k t i s o v , W.B. and Kochin, G . G . , 1972. C e r t a i n d i s t i n c t i o n s i n l o c a l i z a t i o n of s t r a t i f i e d d e p o s i t s o f c o p p e r . I n t . Geol. Rev., 14: 1138-1146. F e r r e r , J . , Rosell, J . and Reguant, S . , 1968. S i n t e s i s l i t h o s t r a t i g r a p h i c a d e l Paleogeno d e l h o r d e o r i e n t a l de l a d e p r e s s i o n d e l Ebro. Acta Geol. H i s p a n i c a , 3 , 2-4. F i n k e l , H . J . , 1959. The b a r c h a n s of s o u t h e r n Peru. 3. G e o l . , 67:614-647. F i s c h e r , R.P. and S t e w a r t , J . H . , 1961. Copper, vanadium and uranium d e p o s i t s i n sandstone t h e i r d i s t r i b u t i o n and geochemical c y c l e s . Econ. G e o l . , 56:509-520. F i s h e r , W . L . , 1969. F a c i e s c h a r a c t e r i z a t i o n of Gulf Coast d e l t a systems w i t h some Holocene a n a l o g u e s . Trans. Gulf Coast Ass. g e o l . S O C . , 19:239-261. F i s h e r , W.L. and McGowen, J . H . , 1967. D e p o s i t i o n a l systems i n t h e Wilcox Group of Texas and t h e i r r e l a t i o n s h i p t o o c c u r r e n c e of o i l and g a s . Trans. Gulf Coast Ass. g e o l . S o c s . , 17: 105-125. F i s h e r , W . L . , Brown, L . F . , S c o t t , A . J . and McGowen, J . H . , 1969. D e l t a systems i n t h e e x p l o r a t i o n f o r o i l and g a s . Bur. econ. Geol. Univ. T e x a s , Texas A u s t i n 78 pp. F i s k , H . N . , 1944. G e o l o g i c a l i n v e s t i g a t i o n of t h e a l l u v i a l v a l l e y of t h e Lower M i s s i s s i p p i R i v e r . M i s s i s s i p p i R i v e r Conmission, V i c k s b u r g , Miss. 78 pp. F i s k , H . N . , 1947. F i n e g r a i n e d a l l u v i a l d e p o s i t s and t h e i r e f f e c t s on M i s s i s s i p p i R i v e r a c t i v i t y . M i s s i s s i p p i R i v e r Commission, Vicksburg, Miss. 8 2 pp. F i s k , H . N . , 1960. Recent M i s s i s s i p p i R i v e r s e d i m e n t a t i o n and p e a t accumulation. Congr. Avan. Etudes S t r a t i g r . Geol. C a r b o n i f e r e , Compte Rendu, 4 Heerlen 1958, 1: 187-199. F i s k , H . N . , 1961. Bar F i n g e r s a n d s of t h e M i s s i s s i p p i d e l t a . I n : J . A . P e t e r s o n and J . C . Osmond ( E d i t o r s ) , Geometry of Sandstone Bodies a Symposium. Am. Ass. P e t r o l . G e o l . , T u l s a , pp.29-52. F i s k , H . Y . , McFarlan, E . J r . , Kolb, C . R . and W i l b e r t , L . J . J r . , 1954. Sedimentary framework of t h e modern M i s s i s s i p p i d e l t a . J . Sediment. P e t r o l , , 24:76-99.
-
-
-
506 F l a c h , K . W . , N e t t l e t o n , W . D . , G i l e , L.H. and Cady, J . G . , 1961. Pedocementation: i n d u r a t e d by s i l i c a , c a r b o n a t e s and s e s q u i o x i d e s i n t h e Q u a t e r n a r y . S o i l S c i e n c e , 107: 442-453. F l a n d e r s , P . J . and Remeika, J . P . , 1965. Magnetic p r o p e r t i e s of h a e m a t i t e s i n g l e c r y s t a l s . P h i l . Mag., 11:1271-1288. e e t , W.F., 1925. The c h i e f heavy d e t r i t a l m i n e r a l s i n t h e r o c k s o f t h e E n g l i s h Midlands. Geol. Mag., 62:98-128. e e t , W.F., 1926. P e t r o l o g i c a l n o t e s on t h e Old Red Sandstone of t h e West Midlands. Geol. Mag., 63:505-516. e s c h , G . A . and W i l s o n , M . D . , 1974. P e t r o l o g y o f Morrison Formation ( J u r a s s i c ) , s a n d s t o n e o f t h e O j i t o S p r i n g Q u a d r a n g l e , Sandoval County, New Mexico. I n : C . T . Seimers ( E d i t o r ) , C e n t r a l - n o r t h e r n New Mexico. New Mexico Geol. SOC. Guidebook 2 5 t h F i e l d Con., pp. 197-210. F o l k , R . L . , 1951. S t a g e s of t e x t u r a l m a t u r i t y i n s e d i m e n t a r y r o c k s . J . Sediment. P e t r o l . , 21: 127-130. F o l k , R . L . , 1955. Note on t h e s i g n i f i c a n c e of " t u r b i d " f e l d s p a r s . Am. Min., 40 : 344- 35 9. F o l k , R . L . , 1960. P e t r o g r a p h y and o r i g i n o f t h e T u s c o r o r a , Rose H i l l and K e e f e r f o r m a t i o n s , Lower and Middle S i l u r i a n of e a s t e r n West V i r g i n i a . J . Sediment. P e t r o l . , 30: 1-58. F o l k , R . L . , 1968a. P e t r o l o g y of Sedimentary Rocks. Hemphills, A u s t i n , Texas, 170 pp. F o l k , R . L . , 1968b. Bimodal supermature s a n d s t o n e s : p r o d u c t of t h e d e s e r t f l o o r . XXIII I n t . Geol. Cong., 8:9-32. F o l k , R . L . , 1971a. L o n g i t u d i n a l dunes of t h e n o r t h w e s t e r n edge of t h e Simpson Desert, N o r t h e r n T e r r i t o r y , A u s t r a l i a , 1, Geomorphology and g r a i n s i z e r e l a t i o n s h i p s . Sedimentology, 16:5-54. F o l k , R . L . , 1971b. G e n e s i s of l o n g i t u d i n a l and oghurd dunes e l u c i d a t e d by r o l l i n g upon g r e a s e . Geol. S O C . Am. B u l l . , 81:3461-3468. F o l k , R . L . , 1976. Reddening o f d e s e r t s a n d s : Simpson D e s e r t , N.T., A u s t r a l i a . J. Sediment, P e t r o l . , 46:604-615. F o l k , R . L . , 1977. S t r a t i g r a p h i c a n a l y s i s of t h e Navajo Sandstone: a d i s c u s s i o n . J. Sediment. P e t r o l . , 47:483-484. F o l k , R . L . , 1978. A n g u l a r i t y and s i l i c a c o a t i n g s o f Simpson D e s e r t Sand g r a i n s , N o r t h e r n T e r r i t o r y , A u s t r a l i a . J . Sediment. P e t r o l . , 48:611-624. F o l k , R . L . and Ward, W . C . , 1957. Brazos r i v e r b a r : a s t u d y i n t h e s i g n i f i c a n c e of g r a i n s i z e p a r a m e t e r s . 3 . Sediment P e t r o l . , 27.3-26. F o l k , R . L . and Land, L . S . , 1975. Mg/Ca r a t i o and s a l i n i t y : two c o n t r o l s o v e r c r y s t a l l i z a t i o n of d o l o m i t e . B u l l . Am. Assoc. P e t r o l . G e o l . , 59:60-68. F o l l e t t , E . A . C . , McHardy, W . J . , M i t c h e l l , B . D . , and S m i t h , B.F.L., 1965. Chemical d i s s o l u t i o n t e c h n i q u e s i n t h e s t u d y o f s o i l c l a y s P a r t IT. Clay M i n e r a l . , 6:35-43. F o t h e r g i l l , C . A . , 1955. The c e m e n t a t i o n of o i l r e s e r v o i r s a n d s and i t s o r i g i n . Proc. 4 t h World Petroleum Congr., 1: 301-314. F r a s e r , J . A . , Donaldson, J . A . , F a h r i g , W.F., and Tremblay, L . P . , 1970. H e l i k i a n b a s i n s and g e o s y n c l i n e s of t h e n o r t h w e s t e r n Canadian s h i e l f . Geol. Surv. Canada, Pap. 70-40, pp.213-238. F r a z i e r , D.E., 1967. Recent d e l t a i c d e p o s i t s o f t h e M i s s i s s i p p i d e l t a : t h e i r development and chronology. T r a n s . Gulf Coast Assoc. F e o l . S o c s . , 17:287-315. F r a z i e r , D . E . and O s a n i k , A . , 1961. P o i n t b a r d e p o s i t s , Old R i v e r l o c k s i t e , L o u i s i a n a . T r a n s . Gulf C o a s t . Assoc. Geol. S o c s . , 11: 121-137. Freeman, W.E. and V i s h e r , G . S . , 1975. S t r a t i g r a p h i c a n a l y s i s of t h e Navajo Sandstone. J. Sediment. P e t r o l , , 45:651-668. Friedman, G . M . , 1961. D i s t i n c t i o n between dune, beach and r i v e r s a n d s from t h e i r t e x t u r a l c h a r a c t e r i s t i c s . J . Sediment. P e t r o l . , 31:514-529. Fr e n d , P . F . , 1965. F l u v i a t i l e s e d i m e n t a r y s t r u c t u r e s i n t h e Wood Bay S e r i e s (Devonian) of S p i t s b e r g e n . Sedimentology, 5:39-68. FK e n d , P . F . , 1966. Clay f r a c t i o n s 2nd c o l o u r s of some Devonian r e d beds i n t h e C a t s k i l l Mountains, U.S.A. Q u a r t . J . g e o l . S O C . London, 122:273-292. FK end, P . F . , 1967. T e c t o n i c i m p l i c a t i o n s o f s e d i m e n t a t i o n i n S p i t s b e r g e n and midl a n d S c o t l a n d . I n : D.H. Oswald ( E d i t o r ) , I n t e r n a t i o n a l Symposium on t h e Devonian System, C a l g a r y , 2:1141-1147.
607 F r i e n d , P . F . , 1969. T e c t o n i c f e a t u r e s of Old Red s e d i m e n t a t i o n i n North A t l a n t i c B o r d e r s . I n : M a r s h a l l Kay ( E d i t o r ) , North A t l a n t i c Geology and C o n t i n e n t a l D r i f t . Am. Assoc. P e t r o l . Geol. Mem. 1 2 , pp.703-710. F r i e n d , P.F. and Moody-Stuart, M . , 1972. S e d i m e n t a t i o n of t h e Wood Bay Formation (Devonian) of S p i t s b e r g e n . R e g i o n a l a n a l y s i s of a l a t e o r o g e n i c b a s i n . Norsk P o l a r i n s t i t u t t S k r i f t e r Nr.157, 77 pp. F r i e n d , P . F . , H a r l a n d , W.B. and Hudson, J . D . , 1963. The Old Red Sandstone and t h e Highland Boundary i n Arran. Trans. Edin. Geol. S O C . , 19:363-425. F b c h t b a u e r , H . , 1964. S e d i m e n t p e t r o g r a p h i s c h e untersuchungen i n d e r a l t e r e n molasse n b r d l i c h d e r A l p i n . E c l o g a e Geol. H e l v e t i a e , 57: 157-298. FUchtbauer, H . , 1967a. D i e s a n d s t e i n e i n d e r molasse n o r d l i c h d e r Alpen. Geol. Rundschau, 56:266-300. Ftlchtbauer, H . , 1967b. I n f l u e n c e of d i f f e r e n t t y p e s of d i a g e n e s i s on s a n d s t o n e p o r o s i t y . Proc. 7 t h World P e t . Congr., 2:353-369. F u l l e r , M . D . , 1970. Geophysical a s p e c t s o f paleomagnetism. CRC C r i t . Rev. S o l i d S t . S c i . , 1: 137,-219. G a g e l , C . , 1926. Uber d i e s t r a t i g r a p h i s c h e S t e e l u n g und d i e B e s c h a f f e n h e i t d e r o t e n P e r P e c h i c h t e n Norddeutschlands. J a h r b . P r e u s s . Geol. L a n d e s a u n t . , 46:124-128. G a g l i a n o , S.M. and Van Beek, J . L . , 1975. An a p p r o a c h t o m u l t i u s e management i n t h e M i s s i s s i p p i d e l t a system. I n : M.L. B r o u s s a r d ( E d i t o r ) , D e l t a s , Models f o r E x p l o r a t i o n . Houston G e o l o g i c a l S o c i e t y , Houston, pp.223-238. G a g l i a n o , S.M., L i g h t , P. and B e e k e r , R.E., 1971. C o n t r o l l e d d i v e r s i o n s i n t h e M i s s i s s i p p i R i v e r d e l t a system: a n a p p r o a c h t o e n v i r o n m e n t a l management. I n : Hydrologic and Geologic S t u d i e s of C o a s t a l L o u s i a n a , Rept. No.8, C e n t r e f o r Wetland R e s o u r c e s , L o u i s i a n a S t a t e Univ., 134 pp. G a l l a g h e r , K . J . , F e i t r e c h t , W . and M a n n w e i l l e r , U . , 1968. Mechanism o f o x i d a t i o n of m a g n e t i t e t o cX-FegO3. N a t u r e , 217: 1118-1121. G a l l o n , T.E., 1968a. The remanent m a g n e t i z a t i o n of h a e m a t i t e s i n g l e c r y s t a l s . Proc. Roy. SOC. London, A303, 511-524. G a l l o n , T . E . , 1968b. The f e r r o m a g n e t i c domain s t r u c t u r e o f h a e m a t i t e . Proc. Roy. SOC. London, A303, 525-529. Galloway, W . E . , 1975. P r o c e s s framework f o r d e s c r i b i n g t h e morphologic and s t r a t i g r a p h i c e v o l u t i o n o f t h e d e l t a i c d e p o s i t i o n a l systems. I n : M.L. B r o u s s a r d ( E d i t o r ) , D e l t a s , Models f o r E x p l o r a t i o n . Houston Geol. SOC., Houston, pp.87-98. Galloway, W.E. and Brown, L.F. J r . L973 D e p o s i t i o n a l systems and s h e l f - s l o p e r e l a t i o n s on c r a t o n i c b a s i n m a r g i n , Uppermost Pennsylvanian of n o r t h - c e n t r a l Texas. B u l l . Am. Assoc. P e t r o l . G e o l . , 57:1185-1218. G a r r e l s , R.M., 1960. M i n e r a l E q u i l i b r i a . Harper and Row, New York, 254 pp. G a r r e l s , R.M. and C h r i s t , C . L . , 1965. S o l u t i o n s , M i n e r a l s and E q u i l i b r i a . Harper and Row, New York, 450 pp. G a s s , I . G . , 1972. The r o l e o f magmatic p r o c e s s e s i n c o n t i n e n t a l r i f t i n g and s e a - f l o o r s p r e a d i n g . 4 t h Tomkeieff Memorial L e c t u r e . Geol. Dept. U n i v e r s i t y of Newcastleupon-Tyne , pp. 1- 16. G a s s e r , U., 1966. S e d i m e n t o l o g i s c h e Untersuchungen i n d e r a t l s s e r e n Zone d e r s u b a l p i n e n Molasse d e s E n t l e b u c h s (Kt. Luzern). E c l o g a e Geol. H e l v e t i a e , 596723-772 G a s s e r , U . , 1968. D i e i n n e r e Zone d e r s u b a l p i n e n Molasse d e s E n t l e b u c h s (Kt. Luzern). G e o l o g i e und S e d i m e n t o l o g i e . E c l o g a e Geol. H e l v e t i a e , 61:229-319. G e i k i e , A . , 1879. On t h e Old Red Sandstone o f Western Europe. T r a n s . Roy. S O C . E d i n . , 28: 345-452. G i b b s , R . J . , 1967a. Amazon R i v e r : Environmental f a c t o r s t h a t c o n t r o l i t s d i s s o l v e d and suspended l o a d , S c i e n c e , 156: 1734-1736. G i b b s , R . J . , 1967b. The g e o c h e m i s t r y of t h e Amazon R i v e r System: P t . 1 The f a c t o r s t h a t c o n t r o l t h e s a l i n i t y and t h e c o m p o s i t i o n and c o n c e n t r a t i o n of t h e suspended s o l i d s . Geol. SOC. Am. B u l l . , 78:1203-1232. G i b b s , R . J . , 1977. T r a n s p o r t p h a s e s o f t r a n s i t i o n m e t a l s i n t h e Amazon and Yukon R i v e r s . Geol. SOC. Am. B u l l . , 88:829-843. G i l e , L . H . , 1961. A c l a s s i f i c a t i o n o f Ca h o r i z o n s i n s o i l s of a d e s e r t r e g i o n , Dona Ana County, New Mexico. Proc. S o i l S c i . SOC. Am., 25:52-61. G i l e , L . H . , 1970. S o i l s of t h e R i o Grande V a l l e y b o r d e r i n s o u t h e r n New Mexico. Proc. S o i l S c i . SOC. A m . , 34:465-472.
-
.
508 G i l e , L.H. and Hawley, J . W . , 1966. P e r i o d i c s e d i m e n t a t i o n and s o i l f o r m a t i o n on a n a l l u v i a l - f a n piedmont i n s o u t h e r n New Mexico. Proc. S o i l S c i . SOC. Am., 30: 261-268. G i l e , L.H. and Grossman, R . B . , 1968. Morphology o f t h e a r g i l l i c h o r i z o n i n d e s e r t s o i l s of s o u t h e r n New Mexico. S o i l S c i e n c e , 106:6-16. G i l e , L . H . , P e t e r s o n , F . F . and Grossman, R . B . , 1965. The K h o r i z o n : a m a s t e r s o i l h o r i z o n of c a r b o n a t e a c c u m u l a t i o n . S o i l S c i . 99:74-82. G i l e , L . H . , P e t e r s o n , F.F. and Grossman, R . B . , 1966. Morphological and g e n e t i c sequences o f c a r b o n a t e a c c u m u l a t i o n i n d e s e r t s o i l s . S o i l S c i . , 101:347-360. G i l l i l a n d , W . N . and Meyer, G . P . , 1976. Two c l a s s e s of t r a n s f o r m f a u l t s . Geol. S O C . Am. B u l l . , 87:1127-1130. G j e s s i n g , E.T., 1964. F e r r o u s i r o n i n w a t e r . Limnol. Oceanog., 8.272-274. G l a e s s e r , J . D . , 1970. C o r r e l a t i o n o f C a t s k i l l s e d i m e n t a r y environments and i t s economic s i g n i f i c a n c e . N o r t h e a s t Sec. Geol. SOC. America, P i t t s b u r g h , 1970, (abstract). G l e n n i e , K . W . , 1970. D e s e r t Sedimentary Environments. Developments i n Sedimentology 1 4 , E l s e v i e r , Amsterdam, 222 pp. G l e n n i e , K . W . , 1972. Permian R o t l i e g e n d e s of North-West Europe i n t e r p r e t e d i n l i g h t of modern d e s e r t s e d i m e n t a t i o n s t u d i e s . B u l l . Am. A s s . P e t r o l . G e o l . , 56:1048-1071. G l e n n i e , K.W., Mudd, G . C . and N a g t e g a a l , P . J . C . , 1978. D e p o s i t i o n a l environemnt and d i a g e n e s i s of Permian R o t l i e g e n d e s s a n d s t o n e s i n Leman Bank and S o l e P i t a r e a s o f t h e UK s o u t h e r n North Sea. J . g e o l . SOC. London, 135:25-34. Goddard, E . N . , 1951. Rock Color C h a r t . Geol. S O C . Am., New York. Goldhaber, M.B. and Kaplan, I . R . , 1974. The s u l f u r c y c l e . I n : E . D . Goldberg ( E d i t o r ) , The S e a , Vo1.5 Marine Chemistry. John Wiley & Sons I n c . , London/New York, pp , 5 69- 655. Goldhaber, M.B. and Kaplan, I . R . , 1975. C o n t r o l s and consequences of s u l f a t e r e d u c t i o n r a t e s i n Recent marine s e d i m e n t s . S o i l S c i e n c e , 119:4'2-55. G o l d r i c h , S . S . , 1938. A s t u d y i n r o c k w e a t h e r i n g . J . G e o l . , 46:17-58. G o l d r i n g , R . , 1962. The B a t h y a l L u l l : Upper Devonian and Lower C a r b o n i f e r o u s s e d i m e n t a t i o n i n t h e V a r i s c a n g e o s y n c l i n e . I n : K . Coe (Editor),Some a s p e c t s o f t h e V a r i s c a n F o l d B e l t . Manchester U n i v e r s i t y P r e s s , Manchester, p p . 7 5 -91. G o l e , C . V . and C h i t a l e , S . V . , 1966. I n l a n d d e l t a b u i l d i n g a c t i v i t y of Kosi R i v e r . J . Hydraul..Proc. Am. SOC. c i v . E n g r s . , 92:111-126. Goodchild, J . G . , 1896. Desert c o n d i t i o n s i n B r i t a i n . T r a n s . Edin. G e o l . S O C . , 7 :203-222. Goudie, A . , 1973. D u r i c r u s t s i n T r o p i c a l and S u b t r o p i c a l Landscapes. Clarendon P r e s s , Oxford, 174 pp. Gould, H . R . and McFarlan, E . J r . , 1959. G e o l i g i c h i s t o r y of t h e C h e n i e r P l a i n , s o u t h e a s t e r n L o u i s i a n a . T r a n s . G u l f . Coast. Ass. g e o l . Socs. 9:261-270. Grabham, G . W . , 1926. Note on r e d c o l o u r a t i o n under c l i m a t i c i n f l u e n c e i n t h e Sudan. Geol. Mag., 63:280-282. G r a c i e , A . J . and S t e w a r t , A . D . , 1967. T o r r i d o n i a n s e d i m e n t s a t Enard Bay, R o s s - s h i r e . S c o t . J . G e o l . , 3:181-194. Graham, J . W . , 1949. The s t a b i l i t y and s i g n i f i c a n c e of magnetism i n s e d i m e n t a r y r o c k s . J . Geophys. Res., 5 4 : 131-167. Graham, S . , 1974. Remanent m a g n e t i z a t i o n o f modern t i d a l f l a t s e d i m e n t s from San F r a n c i s c o Bay, C a l i f o r n i a . Geology, 2:223-226. Graham, S . A . , D i c k i n s o n , W.R. and I n g e r s o l l , B.V., 1975. Himalayan-Bengal model f o r f l y s c h d i s p e r s a l i n t h e Appalachian-Ouachita system. Geol. SOC. Am. B u l l . , 86.273-286. G r a n a r , L . , 1958. Magnetic measurements on Swedish v a r v e d s e d i m e n t s . Ark. G e o f y s . , 3: 1-40. Green, L . H . , 1972. Geology of Nash Creek, L a r s e n Creek, and Dawson map-area, Yukon T e r r i t o r y . Geol. Surv. Canada, Mem. 304, 137 pp. G r e e n l a n d , D . J . , Oades, J . M . and Sherwin, T.W., 1968. E l e c t r o n microscope o b s e r v a t i o n s of i r o n o x i d e s i n some r e d s o i l s . J . S o i l S c i . , 19:123-126. Gregory, J . L . , 1966. A Lower O l i g o c e n e d e l t a i n t h e s u b - s u r f a c e of s o u t h - e a s t e r n Texas. T r a n s . Gulf Coast Ass. g e o l . S o c s . , 16:227-241.
509
G r i f f i t h s , D . H . , King, R . F . , Rees, A . I . and W r i g h t , A . E . , 1960. Remanent magnetism of some r e c e n t v a r v e d s e d i m e n t s . P r o c . Roy. S O C . London, A256:359-383. G r i f f i t h s , J . C . , 1967. S c i e n t i f i c Method i n A n a l y s i s of Sediments. McGraw-Hill, Toronto-New York, 508 pp. G r o s s , G . , 1968. Das T e r t i s r i n S u d w e s t l i c h e n Ebro-Becken. Neues J a h r b u c h Geologie und P a l a o n t o l o g i e Abh., 131:23-32. G u s t a r d , B . , 1967. The f e r r o m a g n e t i c domain s t r u c t u r e i n h a e m a t i t e . Proc. Roy. S O C . London, A297 269-274. G u s t a v s o n , T . C . , 1978. Bed forms and s t r a t i f i c a t i o n t y p e s of modern g r a v e l meander l o b e s , Nueces R i v e r , Texas. Sedimentology, 25,401-426. H a c k e t t , J . R . J r . and B i s c h o f f , J . L . , 1973. New d a t a on t h e s t r a t i g r a p h y , e x t e n t and g e o l o g i c h i s t o r y of t h e Red Sea geothermal d e p o s i t s . Econ. G e o l . , 68:553-564. Hacquebard, P . A . and Donaldson, J . R . , 1964. S t r a t i g r a p h y and palynology of t h e Upper C a r b o n i f e r o u s Coal Measures i n t h e Cumberland Basin of Nova S c o t i a , Canada. C . R . 5 e Congr. S t r a t . Geol. C a r b o n i f . P a r i s , 3:1157-1169. H a g g e r t y , S . E . , 1976a. O x i d a t i o n o f opaque m i n e r a l o x i d e s i n b a s a l t s . I n : D . Rumble I11 ( E d i t o r ) , Oxide M i n e r a l s . Min. SOC. America, S h o r t Course N o t e s , pp.Hgl-Hg100. H a g g e r t y , S . E . , 1976b. Opaque m i n e r a l o x i d e s i n t e r r e s t r i a l i g n e o u s r o c k s . I n : D . Rumble 111 ( E d i t o r ) , O x i d e M i n e r a l s . Min. S O C . America, S h o r t Course N o t e s , pp.Hg101-Hg300. Hagn, H . , 1960. Die s t r a t i g r a p h i s c h e n , p a l y o g e o g r a p h i s c h e n und t e k t o n i s c h e n Beziechungun z wischen Molasse und Helvetikum i m B s t l i c h e n Oberbayern. Geologica B a v a r i c a , 44.3-208. Haigh, G . , 1957. O b s e r v a t i o n s on t h e m a g n e t i c t r a n s i t i o n i n h e m a t i t e a t -15OC. P h i l . Mag., 2:877-890. H a l l , J . , 1859. D e s c r i p t i o n and f i g u r e s of t h e o r g a n i c remains of t h e lower H e l d e r b e r g Group and t h e O r i s k a n y Sandstone. N a t u r a l H i s t o r y o f N e w York, P a l a e o n t o l o g y GeoL. S u r v . , Albany, N.Y.3., 544 pp. H a l l s , H . C . , 1979. On t h e u s e of Z i j d e r v e l d v e c t o r diagrams i n multicomponent p a l a e o m a g n e t i c s t u d i e s . Phys. E a r t h P l a n e t . I n t s . , 20:12-24. H a l l s w o r t h , E.G. and Waring, H . D . S t u d i e s o f p e d o g e n e s i s i n New South Walks, V I I I . An a l t e r n a t i v e h y p o t h e s i s f o r t h e f o r m a t i o n of s o l o d i z e d - s o l o n e t z s o i l s of t h e P i l l i g a d i s t r i c t . 3. S o i l S c i . , 15: 158-177. Ham, W . E . , 1969. R e g i o n a l geology o f t h e Arbuckle Mountains, Oklahoma. Oklahoma g e o l . Survey Guidebook 1 7 , 5 2 pp. Hamiton, N . , 1963. S u s c e p t i b i l i t y a n i s o t r o p y measurements on some S i l u r i a n s i l t s t o n e s . N a t u r e , 197.170- 1 7 1 . Hamilton, N. and King, R.F., 1964. Comparison o f t h e b e d d i n g e r r o r s of a r t i f i c i a l l y and n a t u r a l l y d e p o s i t e d s e d i m e n t s w i t h t h o s e p r e d i c t e d from a s i m p l e model. Geophys. J . R . a s t r o . S O C . , 8:370-374. Hamilton, N. and R e e s , A . I . , 1970. The u s e of magnetic f a b r i c i n p a l a e o c u r r e n t e s t i m a t i o n s . In: S . K . Runcorn ( E d i t o r ) , P a l a e o g e o p h y s i c s , Academic P r e s s , London/ New York, pp.445-464. Hamilton, W . , 1969. Mesozoic C a l i f o r n i a and t h e underflow of P a c i f i c m a n t l e . Geol. SOC. Am. B u l l . , 80.2409-2430. Hancock, N . J . , 1978. P o s s i b l e c a u s e s of R o t l i e g e n d s a n d s t o n e d i a g e n e s i s i n n o r t h e r n West Germany. J . g e o l . S O C . London, 135:35-40. Hardman, Y. and H e n r i c i , A.T., 1939. S t u d i e s o f f r e s h w a t e r b a c t e r i a V . The d i s t r i b u t i o n of S i d e r o c a p s a t r e n b i i i n some l a k e s and s t r e a m s . J . B a c t . , 37:97-104. H a r l a n d , W.B. and Hacker, J.F., 1966. F o s s i l l i g h t n i n g s t r i k e s 250 m i l l i o n y e a r s ago. Rep. B r . A s s . Adv. S c i . , 22:663-671. Harms, J . C . , Mackenzie, D . B . and McCubbin, D . G . , 1963. S t r a t i f i c a t i o n i n modern sands of t h e Red R i v e r , L o u i s i a n a . J . G e o l . , 71.566-580. Harms, J . C . , S o u t h a r d , J., S p e a r i n g , D . R . and Walker, R . G . , 1975. D e p o s i t i o n a l environments a s i n t e r p r e t e d from p r i m a r y s e d i m e n t a r y s t r u c t u r e s and s t r a t i f i c a t i o n s e q u e n c e s . L e c t u r e Notes SEPM S h o r t Course 2 , D a l l a s , T e x a s , 1 6 1 pp. H a r r a s s o w i t z , H . , 1926. Die Permformation. I n : W . Salomon. E n d g e s c h i c h t e . S t u t t g a r t , Grundzllge de G e o l o g i e 2.275-308. H a r r i s o n , R . K . , 1975. C o n c r e t i o n a r y c o n c e n t r a t i o n s of t h e r a r e r e l e m e n t s i n PermoT r i a s s i c r e d beds of south-west England. B u l l . Geol. Surv. G t . B r i t . 5 2 , 1-26.
610 H a r r i s s , R . C . and Adams, J . A . S . , 1966. Geochemical and m i n e r a l o g i c a l s t u d i e s on t h e w e a t h e r i n g of g r a n i t i c r o c k s . Am. J . S c i . , 264:146-173. Hartman, J . A . , 1959. The t i t a n i u m m i n e r a l o g y of c e r t a i n b a u x i t e s and t h e i r p a r e n t m a t e r i a l s . Econ. G e o l . , 54:1380-1405. Hartmann, M . , 1963. E i n i g e geochemische untersuchungen a n s a n d s t e i n e n a u s Perm und T r i a s . Geochim. Cosmochim. A c t a . , 27:459-499. H a s t e n r a t h , S . L . , 1967. The b a r c h a n s of t h e Arequipa r e g i o n , s o u t h e r n P e r u , Z e i t . f u r Geomorph., 1: 300-331. Haug, E . , 1900. Les g e o s y n c l i n a u x e t l e s a i r e s c o n t i n e n t a l e s . C o n t r i b u t i o n a l ' e t u d e des r e g r e s s i o n s e t des t r a n s g r e s s i o n s marines. B u l l . g e b l . SOC. F r a n c e , 28.617-711. Hauptman, Z . , 1974. High-temperature o x i d a t i o n , r a n g e of n o n - s t o i c h i o m e t r y and C u r i e p o i n t v a r i a t i o n of c a t i o n d e f i c i e n t t i t a n o m a g n e t i t e F e 2 . 4 T i 0 . 6 0 4 ~ ~ Geophys. J . R . a s t r o . S O C . , 38:29-47. H a u r w i t z , B. and A u s t i n , J . M . , 1964. Climatology. McGraw-Hill I n c . , New York, 410 pp. Hay, R . L . , 1963. S t r a t i g r a p h y and z e o l i t i c d i a g e n e s i s o f t h e John Day Formation of Oregon. Univ. C a l i f . Publ. Geol. S c i . , 42:199-262. Hay, R . L . , 1964. P h i l l i p s i t e of s a l i n e l a k e s and s o i l s . Am. Min., 49:1366-1387. Hay, R . L . , 1966. Z e o l i t e s and z e o l i t i c r e a c t i o n s i n s e d i m e n t a r y r o c k s . Geol. SOC. Am., Spec. Paper 8 5 , 130 pp. Hay, R . L . and Moiola, R . J . , 1963. A u t h i g e n i c s i l i c a t e m i n e r a l s i n S e a r l e s Lake, C a l i f o r n i a . Sedimentology, 2:312-332. Hay, R.L. and Moiola, R . J . , 1964. A u t h i g e n i c s i l i c a t e m i n e r a l s i n t h r e e d e s e r t l a k e s of e a s t e r n C a l i f o r n i a . Geol. S O C . America Spec. Paper 76:76 pp. Hay, R . L . and R e e d e r , R . J . , 1978. C a l c r e t e s o f O l d u v a i Gorge and t h e Ndolanya Beds of n o r t h e r n Tanzania. Sedimentology, 25:649-673. Hayes, J . B . , 1970. Polytypism of c h l o r i t e i n s e d i m e n t a r y r o c k s . C l a y s a n d Clay M i n e r a l s , 18: 285-306. Heald, M.T. and L a r e s e , R . E . , 1973. The s i g n i f i c a n c e of t h e s o l u t i o n o f f e l d s p a r i n p o r o s i t y development. J . Sediment. P e t r o l . , 43:458-460. Hedley, I . G . , 1968. Chemical remanent m a g n e t i z a t i o n of t h e FeOOH, Fez03 system. Phys. E a r t h P l a n e t . I n t s . , 1: 103-121. Hedley, I.G., 1970. The Magnetic P r o p e r t i e s of F i n e G r a i n e d F e r r i c Oxides and t h e i r H y d r a t e s . Ph.D. T h e s i s , U n i v e r s i t y of Newcastle. H e i n r i c h , E.W., 1957. Mineralogy and Geology of R a d i o a c t i v e Raw M a t e r i a l s . McGraw-Hill I n c . New York, 654 pp. Helgeson, H . C . , 1971. K i n e t i c s of mass t r a n s f e r among s i l i c a t e s and aqueous s o l u t i o n s . Geochim. Cosmochim. A c t a , 35:421-469. H e l s l e y , C . E . , 1969. Magnetic r e v e r s a l s t r a t i g r a p h y of t h e Lower T r i a s s i c Moenkopi Formation o f w e s t e r n Colorado. Geol. S O C . America B u l l . , 80:2431-2450. H e l s l e y , C . E . and S t e i n e r , M . , 1974. Paleomagnetism of t h e Lower T r i a s s i c Moenkopi Formation. Geol. SOC. Am. B u l l . , 85:457-464. Hem, J . D . , 1960. Complexes o f f e r r o u s i r o n w i t h t a n n i c a c i d . I n : Chemistry of I r o n i n N a t u r a l Water. U.S.G.S. Water-Supply P a p e r 1459-D, pp.75-94. Hem, J . D . , 1963. Chemical e q u i l i b r i a and r a t e s of manganese o x i d a t i o n . I n : Chemistry o f Manganese i n N a t u r a l Water. U.S.G.S. Water-Supply Paper 1667-A, 64 pp. Hem, J . D . , 1964. D e p o s i t i o n and s o l u t i o n of manganese o x i d e s . I n : Chemistry of Manganese i n N a t u r a l Water. U.S.G.S. Water-Supply Pap.1667-B, 42 pp. Hem, J . D . and C r o p p e r , W . H . , 1959. Survey o f f e r r o u s - f e r r i c chemical e q u i l i b r i a and redox p o t e n t i a l s . U.S.G.S. Water Supply P a p e r , 1459-A, 31 pp. Hem, J . D . and S k o u g s t a d , M . W . , 1960. C o p r e c i p i t a t i o n e f f e c t s i n s o l u t i o n s c o n t a i n i n g f e r r o u s , f e r r i c , and c u p r i c i o n s . I n : Chemistry o f I r o n i n N a t u r a l Water. U.S.G.S. Water-Supply P a p . , 1459-E, pp.95-110. Hemley, J., 1959. Some m i n e r a l o g i c a l e q u i l i b r i a i n t h e system K20-A1203-Si02-H20. Am. J. S c i . , 257; 241-270. Hemley, J., 1962. A l t e r a t i o n s t u d i e s i n t h e system Na20-A1203-Si02-H20 and K2O-AI203Si02-H20. Geol. SOC. Amer. Spec. P a p e r 6 8 , 196 pp. Henry, J., L a n u s s e , R. and W i l l a n o v a , M . , 1971. E v o l u t i o n du domaine marin Pyreneen du Senonien S u p e r i e u r a l ' E o c e n e I n f e r i e u r . I n s t . F r a n c a i s P e ' t r o l e Pub., Coll. C o l l o q u e s e t Semenaires 22, 1, Paper 4 . 7 , pp.1-7.
.
511 Hess, P.C., 1966. Phase e q u i l i b r i a o f some m i n e r a l s i n t h e K20-Na20-A1203-Si02-H20 s y s t e m a t 25OC and 1 atmosphere. Am. J . S c i . , 264:289-309. H i c k l i n g , G . , 1908. The Old Red S a n d s t o n e o f F o r f a r s h i r e . Geol. Mag., 5:396-408. H i c k l i n g , G . , 1912. On t h e g e o l o g y a n d p a l a e o n t o l o g y o f F o r f a r s h i r e . Proc. Geol. A S S . , 23:302-311. H i n z e , C. and M e i s c h n e r , D . , 1968. G i b t es R e z e n t e r o t - s e d i m e n t e i n d e r A d r i a . Marine Geology, 6:53-71. H j u l s t r t l m , F . , 1952. The geomorphology o f t h e a l l u v i a l outwash p l a i n s ( s a n d u r s ) o f I c e l a n d a n d t h e mechanism o f b r a i d e d r i v e r s . 8 t h Gen. Assembly and Proc. 1 7 t h I n t . Congr. I n t . Geog. Union, pp.337-342. Ho, C . and Coleman, J . M . , 1968. C o n s o l i d a t i o n and c e m e n t a t i o n o f Recent s e d i m e n t s i n t h e A t c h a f a l a y a B a s i n . Geol. SOC. Am. B u l l . , 80: 183-192. Hoare, R . H . , 1960. Red b e d s i n t h e Coal Measures o f t h e West Midlands. T r a n s . I n s t . Mining E n g r . , 119: 185-198. Hodge, M . B . , 1932. The Permian Yellow Sands o f North E a s t England. Proc. Univ. Durham P h i l . S O C . , 8:410-458. Hoffman, K . A . , 1975. C a t i o n d i f f u s i o n p r o c e s s e s and s e l f - r e v e r s a l o f thermoremanent m a g n e t i z a t i o n i n t h e i l m e n i t e - h a e m a t i t e s o l i d s o l u t i o n s e r i e s . Geophys. J . R . a s t r o . S O C . , 41:65-80. Hoffman, P . F . , 1968. S t r a t i g r a p h y o f t h e Lower P r o t e r o z o i c ( A p h e b i a n ) , G r e a t S l a v e S u p e r g r o u p , E a s t A r m o f G r e a t S l a v e Lake, D i s t r i c t o f Mackenzie. Geol. Surv. Canada P a p e r 68-42, 93 pp. Hoffman, P . F . , 1969. P r o t e r o z o i c p a l e o c u r r e n t s and d e p o s i t i o n a l h i s t o r y o f t h e E a s t A r m f o l d b e l t , G r e a t S l a v e Lake, Northwest T e r r i t o r i e s . Can. J . E a r t h S c i . , 6: 441-462. Hoffman, P . F . , 1973. E v o l u t i o n o f a n e a r l y P r o t e r o z o i c c o n t i n e n t a l m a r g i n : t h e C o r o n a t i o n g e o s y n c l i n e and a s s o c i a t e d a u l a c o g e n s o f t h e n o r t h w e s t e r n Canadian S h i e l d . P h i l . T r a n s . Roy. SOC. London, A273-547-581. Hoffman, P., Dewey, J . F . a n d Burke, K . , 1974. Aulacogens a n d t h e i r g e n e t i c r e l a t i o n t o g e o s y n c l i n e s , w i t h a P r o t e r o z o i c example from G r e a t S l a v e Lake, Canada. I n : R.H. D o t t J r . a n d R.H. S h a v e r ( E d i t o r s ) , Modern and A n c i e n t G e o s y n c l i n a l S e d i m e n t a t i o n S.E.P.M. Spec. P u b l . 1 9 , pp.38-55. Holm, D . A . , 1960. D e s e r t geomorphology i n t h e A r a b i a n p e n i n s u l a . S c i e n c e , 132: 1369-1379. H o l t e d a h l , O . , 1934. The upper P a l a e o z o i c s e d i m e n t a r y and i g n e o u s series. I n : The Geology o f P a r t s o f S o u t h e r n Norway. P r o c . Geol. A s s . , 45:340-353. H o l t e r , M.E. a n d M e l l o n , G . B . , 1972. Geology o f t h e L u s c a r ( B l a i r m o r e ) Coal b e d s , c e n t r a l A l b e r t a F o o t h i l l s . Proc. F i r s t Geol. Conf. on Western Can. C o a l s , R e s e a r c h C o u n c i l A l b e r t a I n f . S e r . No.60, pp.125-125. Honda, K. a n d Sone', T., 1914. Uber d i e m a g n e t i s c h e u n t e r s u c h u n g d e r S t r u c k t u r d n d e r ungen i n E l s e n und Chromverbindungen b e i htlheren Temperaturen. S c i . R e p t . , Tohuju I m p e r i a l U n i v e r s i t y , 3: 323-234. Hooke, R. Le B . , 1965. A l l u v i a l Fans. Ph.D. T h e s i s , C a l i f o r n i a I n s t i t u t e of Technology, P a s a d e n a , 192 pp. Hooke, R. Le B . , 1967. P r o c e s s e s on a r i d - r e g i o n a l l u v i a l f a n s . J. G e o l . , 75:438-460. Hooke, R. Le B . , 1968. S t e a d y - s t a t e r e l a t i o n s h i p s on a r i d r e g i o n a l l u v i a l f a n s i n c l o s e d b a s i n s . Am. J. S c i . , 266:609-629. Hoppe, G. and Ekman, S . , 1964. A n o t e on t h e a l l u v i a l f a n s o f L a d t j o v a g g e , Swedish Lapland. G e o g r a f i s k a Ann., 46: 338-342. Horowitz, D . H . , 1971. D i a g e n e t i c s i g n i f i c a n c e o f c o l o r boundary between J u n i a t a and Bald E a g l e F o r m a t i o n s , P e n n s y l v a n i a . J . Sediment. P e t r o l . , 41:1134-1136. 1968. Recent s e d i m e n t s i n t h e S o u t h e r n B i g h t o f t h e North Sea. Houbolt, J.J.H.C., Geol. M i j n b . , 47:246-273. Howard, J . D . , 1966. P a t t e r n s of s e d i m e n t d i s p e r s a l i n t h e F o u n t a i n Formation o f Colorado. Mountain G e o l o g i s t , 3: 147-153. H s U , K . J . , 1970. The meaning o f t h e word f l y s c h a short historical search, In: J . L a j o i e ( E d i t o r ) , F l y s c h Sedimentology i n North America. Geol. S O C . Canada Spec. Pap. No.7, pp.1-11. H s U , K . J . , 1972. The c o n c e p t o f t h e g e o s y n c l i n e , y e s t e r d a y a n d t o d a y . T r a n s . L e i c e s t e r L i t . P h i l o s o p h . S O C . , LXVI, pp.26-48.
-
-
512 H s U , K . J . , 1973. The Odyssey o f G e o s y n c l i n e . I n : R.N. G i n s b u r g ( E d i t o r ) , E v o l v i n g C o n c e p t s i n Sedimentology. J o h n Hopkins U n i v e r s i t y P r e s s , B a l t i m o r e , pp.66-92. H s U , K.J. a n d S c h l a n g e r , S . O . , 1971. U l t r a h e l v e t i c F l y s c h s e d i m e n t a t i o n a n d d e f o r m a t i o n r e l a t e d t o p l a t e t e c t o n i c s . Geol. SOC. Am. B u l l . , 82: 1207-1218. H u b e r t , J . F . , 1960. P e t r o l o g y o f t h e F o u n t a i n a n d Lyons F o r m a t i o n s , F r o n t Range, Colorado. C o l o r . School Mines Q u a r t . , 5 5 , 242 pp. H u b e r t , J.F. and Reed, A . A . , 1978. Red-bed d i a g e n e s i s i n t h e E a s t B e r l i n F o r m a t i o n , Newark Group, C o n n e c t i c u t V a l l e y . J . Sediment. P e t r o l . , 48: 175-184. H u b e r t , J . F . , B u t e r a , J . G . and R i c e , R . F . , 1972. Sedimentology o f Upper C r e t a c e o u s Cody-Parkman d e l t a , s o u t h w e s t e r n Powder R i v e r B a s i n , Wyoming. Geol. S O C . Am. B u l l . , 83: 1649-1670. H u b e r t , J . F . , Reed, A . A . , and C a r e y , P . J . , 1976. Paleogeography of t h e E a s t B e r l i n F o r m a t i o n , Newark Group, C o n n e c t i c u t V a l l e y . Am. J . S c i . , 276: 1183-1207. H u c k e n h o l t z , H . G . , 1963. M i n e r a l c o m p o s i t i o n a n d t e x t u r e i n graywackes from t h e Harz Mountains (Germany) and i n a r k o s e s from t h e Auvergne ( F r a n c e ) . J . Sediment. P e t r o l . 33:914-918. Hunt, C . B . , 1972. Geology o f S o i l s . Freeman, San F r a n c i s c o , 344 pp. Hunt, C . B . , Robinson, T.W., Bowles, W . A . , and Washburn, A . L . , 1966. H y d r o l o g i c a l B a s i n , Death V a l l e y , C a l i f o r n i a . U.S.G.S. P r o f . P a p e r 494B, 138 pp. H u t c h i n s o n , G . E . , 1957. A T r e a t i s e on Limnology. I . Geography, P h y s i c s , and Chemistry. J o h n Wiley FW Sons I n c . , New York, 1015 pp. H u t c h i n s o n , R.W. a n d E n g e l s , G . G . , 1970. T e c t o n i c s i g n i f i c a n c e o f r e g i o n a l geology and e v a p o r i t e l i t h o f a c i e s i n n o r t h e a s t e r n E t h i o p i a . P h i l . T r a n s . R . S O C . , A267: 313- 329. I i d a , S . and T a s a k i , A . , 1965. M a g n e t o e l a s t i c c o u p l i n g i n p a r a s i t i c f e r r o m a g n e t H-Fe2O3. P r o c . I n t . Cong. Magnetism, Nottingham, I n s t i t u t e o f P h y s i c s a n d t h e P h y s i c a l S o c i e t y , pp. 583-588. I i j i m a , A. and Hay, R . L . , 1968. Analcime c o m p o s i t i o n i n t h e Green R i v e r Formation of Wyoming. Am. Min., 5 3 : 184-200. I r v i n g , E . , 1957. P a l a e o m a g n e t i c i n v e s t i g a t i o n s i n G r e a t B r i t a i n , 3. The o r i g i n o f t h e palaeomagnetism o f t h e T o r r i d o n i a n s a n d s t o n e s o f n o r t h - w e s t S c o t l a n d . P h i l . T r a n s . Roy. S O C . London, A250:lOO-110. I r v i n g , E . , 1964. Paleomagnetism a n d i t s A p p l i c a t i o n t o G e o l o g i c a l a n d G e o p h y s i c a l Problems. John Wiley FW Sons I n c . , 201 pp. I r v i n g , E . and Runcorn, S . K . , 1957. A n a l y s i s o f t h e palaeomagnetism o f t h e T o r r i d o n i a n s a n d s t o n e series o f North-west S c o t l a n d . P h i l . T r a n s . Roy. S O C . London, A250, 83-99. I r v i n g , E . and M a j o r , A . , 1964. P o s t - d e p o s i t i o n a l d e t r i t a l remanent m a g n e t i z a t i o n i n a s y n t h e t i c s e d i m e n t . S e d i m e n t o l o g y , 3:135-143. I r v i n g , E . and Opdyke, N . D . , 1964. The palaeomagnetism o f t h e Bloomsburg r e d beds and i t s p o s s i b l e a p p l i c a t i o n t o t h e t e c t o n i c h i s t o r y o f t h e A p p a l a c h i a n s . Geophys. J . R . a s t r o . S O C . , 9: 153-157. I r v i n g , E. a n d P a r k , J.K., 1972. H a i r p i n s a n d s u p e r i n t e r v a l s . Can. J . E a r t h S c i . , 9 : 1318-1324. I r v i n g , E . , P a r k , J . K . and McGlynn, J . C . , 1972. Paleomagnetism o f t h e E t - t h e n Group and Mackenzie D i a b a s e i n t h e G r e a t S l a v e Lake a r e a . Can. J . E a r t h S c i . , 9:744-755. I s h i k a w a , Y. and Akimoto, S . , 1958. Magnetic p r o p e r t y a n d c r y s t a l c h e m i s t r y o f i l m e n i t e (FeTi03) a n d h e m a t i t e ( FegO3) s y s t e m , 2. Magnetic p r o p e r t y . J . Phys. SOC. J a p a n , 13: 1298-1310. I s m a i l , G.T., 1969. R o l e o f f e r r o u s i r o n o x i d a t i o n i n t h e a l t e r a t i o n o f b i o t i t e and i t s e f f e c t on t h e t y p e o f c l a y m i n e r a l s formed i n s o i l s o f a r i d and h u n i d r e g i o n s . Am. Min. 54:1460-1466. I x e r , R . A . , T u r n e r , P. and Waugh, B . , 1979. A u t h i g e n i c i r o n and t i t a n i u m o x i d e s i n T r i a s s i c r e d b e d s : S t . Bees S a n d s t o n e , Cumbria, N o r t h e r n England. Geol. J., 1 4 : 179-192. J a c k s o n , E . A . , 1962. S o i l s t u d i e s i n c e n t r a l A u s t r a l i a : A l i c e Spring-HermansburgRodinga a r e a s . A u s t r a l i a , CSIRO S o i l P u b l s . , 1 9 , 82 pp. J a c k s o n , R . G . 11, 1975. V e l o c i t y - b e d - f o r m - t e x t u r e p a t t e r n s o f meander bends i n t h e lower Wabash R i v e r o f I l l i n o i s and I n d i a n a . Geol. S O C . Am. B u l l . , 86: 1511-1522. J a c k s o n , R . G . 11, 1976. D e p o s i t i o n a l model o f p o i n t b a r s i n t h e Lower Wabash R i v e r . J . Sediment. P e t r o l . , 46:579-594.
613 J a c o b s , I . S . , B e y e r l e i n , R . A . , F o n e r , S . a n d Remeika, J . P . , 1971. F i e l d induced m a g n e t i c phase t r a n s i t i o n s i n a n t i f e r r o m a g n e t i c h e m a t i t e (LX-Fe203). I n t . J . Magn., 1:193-208. James, H . L . , 1966. Data of Geochemistry, 6 t h ed. C h a p t e r W. Chemistry of t h e I r o n r i c h Sedimentary r o c k s . U.S.G.S. P r o f . P a p e r 440-W, 61 pp. J a n o s c h e k , R . , 1963. Das T e r t i t l r i n d s t e r r e i c h . Geol. Gessll. Wien M i t t . , 5 6 : 319-360. J a n s a , L . , 1972. D e p o s i t i o n a l h i s t o r y of t h e c o a l - b e a r i n g Upper J u r a s s i c - L o w e r C r e t a c e o u s Kootenay f o r m a t i o n , s o u t h e r n Rocky Mountains, Canada. Geol. SOC. Am. B u l l . , 83: 3199-3222. Johnson, A . H . , 1976. Paleomagnetism o f t h e J u r a s s i c Navajo Sandstone from southw e s t e r n Utah. Geophys. J . R . a s t r o . S O C . , 44: 161-175. Johnson, A . H . , N a i r n , A.E.M. and P e t e r s o n , D . N . , 1972. Mesozoic r e v e r s a l s t r a t i g r a p h y . N a t u r e , Phys. S c i . , 237:9-10. Johnson, A.M., 1970. P h y s i c a l P r o c e s s e s i n Geology. Freeman, Cooper & Co., San F r a n c i s c o , 577 pp. Johnson, E . A . , Murphy, T. and T o r r e s o n , O . W . , 1948. P r e - h i s t o r y o f t h e e a r t h ' $ m a g n e t i c f i e l d . T e r r . Magn. Atmos. E l e c . , 53: 349-372. Johnson, G . D . , Johnson, N . M . , Opdyke, N.D. a n d T a h i r k h e l i , R . A . I . , 1979. Magnetic r e v e r s a l s t r a t i g r a p h y and s e d i m e n t a r y t e c t o n i c h i s t o r y of t h e Upper S i w a l i k Group E a s t e r n S a l t Range and s o u t h w e s t e r n Kashmir. In: Abul F a r a h and Kees A. De Jong ( E d i t o r s ) , Geodynamics of P a k i s t a n , G e o l o g i c a l Survey of P a k i s t a n , Q u e t t a . E l i t e P u b l i s h e r s Ltd. K a r a c h i , pp.149-165. Johnson, H.P. and Merrill, R . T . , 1973. Low-temperature o x i d a t i o n of a t i t a n o m a g n e t i t e and t h e i m p l i c a t i o n s f o r palaeomagnetism. J . Geophys.. Res., 78:4938-4949. Johnson, K . G . and Friedman, G . M . , 1969. The T u l l y c l a s t i c c o r r e l a t i v e s ( u p p e r Devonian) of N e w York S t a t e : A model f o r r e c o g n i t i o n of a l l u v i a l , dune ( ? ) , t i d a l n e a r s h o r e ( b a r a n d l a g o o n ) , and o f f s h o r e s e d i m e n t a r y environments i n a t e c t o n i c d e l t a complex. J . Sediment. P e t r o l . , 39:451-485. J o n e s , P . B . , 1969. The T e r t i a r y Kishenelm F o r m a t i o n , B r i t i s h Columbia. B u l l . Can. P e t r o l . G e o l . , 17:234-246. Kahn, J.S., 1956a. The a n a l y s i s and d i s t r i b u t i o n of t h e p r o p e r t i e s of packing i n s a n d s t o n e s 1. On t h e measurement o f packing i n s a n d s t o n e s . J . G e o l . , 64:385-395. Kahn, J.S., 1956b. A n a l y s i s and d i s t r i b u t i o n o f packing p r o p e r t i e s i n s a n d - s i z e d s e d i m e n t s . 2. The d i s t r i b u t i o n of t h e p a c k i n g measurements and a n example o f packing a n a l y s i s . J . G e o l . , 64:578-606. Kaplan, I . R . , Emery, K.O. and R i t t e n b u r g , S . C . , 1963. The d i s t r i b u t i o n and i s o t o p i c abundances of s u l p h u r i n Recent marine s e d i m e n t s o f f s o u t h e r n C a l i f o r n i a . Geochim. Cosmochim. A c t a , 27:297-332. K a r c z , I . , 1972. Sedimentary s t r u c t u r e s formed by f l a s h f l o o d s i n S o u t h e r n I s r a e l . Sediment, G e o l . , 7:161-182. K a r i g , D . E . , 1970. Ridges and b a s i n s o f t h e Tonga-Kermadec i s l a n d a r c system. J . Geophys. R e s . , 75:239-254. K a r i g , D.E., 1971. S t r u c t u r a l h i s t o r y o f t h e Mariana i s l a n d a r c system. J . Geophys. Res., 75:239-254. K a r i g , D . E . and Moore, G . F . , 1975. T e c t o n i c a l l y c o n t r o l l e d s e d i m e n t a t i o n i n m a r g i n a l b a s i n s . E a r t h P l a n e t . S c i . L e t t s . , 26:233-238. K a r i g , D . E . a n d Sharman, G.F. 111, 1975. S u b d u c t i o n and a c c r e t i o n i n t r e n c h e s . Geol. S O C . Am. B u l l . , 86:377-389. Karpova, G . V . , 1969. Clay m i n e r a l p o s t - s e d i m e n t a r y r a n k s i n t e r r i g e n o u s r o c k s . Sedimentology, 13.5-20. K a s t n e r , M., 1971. A u t h i g e n i c f e l d s p a r s i n c a r b o n a t e r o c k s . Am. Min. 56:1403-1442. Kato, Y . , 1965. M i n e r a l o g i c a l s t u d y of w e a t h e r i n g p r o d u c t s of g r a n o d i o r i t e a t S h i m s h i r o C i t y (111) Weathering of p r i m a r y m i n e r a l s . ( 2 ) M i n e r a l o g i c a l c h a r a c t e r i s t i c s of w e a t h e r e d m i n e r a l g r a i n s . S o i l S c i . P l a n t N u t r i t i o n , 11:30-40. K a t s u r a , T. and K u s h i r o , I . , 1961. Titanomaghemite i n igenous r o c k s . Am. Min., 46: 134-145. K a t s u r a , T . , K u s h i r o , L . , Akimoto, S . , Walker, J . L . and Sherman, G . D . , 1962. T i t a n o m a g n e t i t e and titanomaghemite i n a Hawaiian s o i l . J . Sediment. P e t r o l . , 32: 299-308. K a t z , A . , 1971. Zoned d o l o m i t e c r y s t a l s . J . G e o l . , 79:38-51.
514 Kay, M., 1947. G e o s y n c l i n a l nomenclature and t h e c r a t o n , B u l l . Am. Assoc. P e t r o l . G e o l . , 31: 1289-1293. Kay, M . , 1951. North American g e o s y n c l i n e s . Geol. SOC. Am. Mem. 48, 1 4 3 pp. Kawai, N. and Ono, F . , 1966. E f f e c t o f h y d r o s t a t i c p r e s s u r e on t h e Morin t r a n s i t i o n p o i n t of M - h e m a t i t e c r y s t a l . Phys. L e t t . , 21A:p,279. Kaye, G . , 1961. Temperature e f f e c t s i n domain p a t t e r n s from s i n g l e c r y s t a l s of h a e m a t i t e (N-Fe203). Proc. Phys. SOC. London, 78:869-877. K e l l e r , W . D . , 1929. E x p e r i m e n t a l work on r e d bed b l e a c h i n g . Am. J . S c i . , 18:65-70. Keller, W . D . , 1952. Analcime i n t h e Pop0 Agie Member of t h e Chugwater Formation. J . Sediment. P e t r o l . , 22: 70-82. K e l l e r , W . D . , 1953. I l l i t e and m o n t m o r i l l o n i t e i n g r e e n s e d i m e n t a r y r o c k s . J . Sediment. P e t r o l . , 23:3-9. K e l l e r , W . D . , 1957. The P r i n c i p l e s of Chemical Weathering. Lucas Bros., Columbia, Mo., 111 pp. K e l l e r , W . D . , 1976. Scan e l e c t r o n micrographs of k a o l i n s c o l l e c t e d from d i v e r s e environments of o r i g i n ; P t . 1. Clays and Clay M i n e r a l s , 24: 107-113. K e l l e r , W . D . , 1978. K a o l i n i z a t i o n of f e l d s p a r a s d i s p l a y e d i n s c a n n i n g e l e c t r o n micrographs. Geology, 6:184-188. K e l l i n g , G . , 1968. P a t t e r n s of s e d i m e n t a t i o n i n Rhondda Beds of South Wales. B u l l . Am. Assoc. P e t r o l . G e o l . , 52:2369-2386. K e l l i n g , G . , 1969. The e n v i r o n m e n t a l s i g n i f i c a n c e of c r o s s - s t r a t i f i c a t i o n p a r a m e t e r s i n a n Upper C a r b o n i f e r o u s f l u v i a l b a s i n . J . Sediment. P e t r o l . , 39:857-875. K e l l i n g , G . a n d George, G.T., 1971. Upper C a r b o n i f e r o u s s e d i m e n t a t i o n i n t h e Pembrokeshire c o a l f i e l d . I n : D . A . B a s s e t t and M.G. B a s s e t t ( E d i t o r s ) , G e o l o g i c a l E x c u r s i o n s i n S o u t h Wales and t h e F o r e s t of Dean. Geol. Ass. South Wales Group, C a r d i f f , pp.240-259. Kendrew, W . G . , 1953. The C l i m a t e s of t h e C o n t i n e n t s . Clarendon P r e s s , Oxford, 607 pp. Kent, D . V . , 1973. P o s t - d e p o s i t i o n a l remanent m a g n e t i z a t i o n i n a deep-sea sediment. N a t u r e , 246: 32-34. Kent, P . E . , 1974. S t r u c t u r a l h i s t o r y . I n : D . H . Rayner and J . E . Hemingway ( E d i t o r s ) , The Geology and M i n e r a l Resources o f Y o r k s h i r e . Yorks. g e o l . S O C . , pp.13-28. Kent, P.E., 1975. Review of N o r t h Sea Basin development. J . g e o l . SOC. London, 131: 435-468. Kent, P . E . and Walmsley, P . J . , 1970. North Sea p r o g r e s s . B u l l . Am. Assoc. P e t r o l . G e o l . , 54:168-181. K e s s l e r , L . G . 11, 1978. D i a g e n e t i c sequence i n a n c i e n t s a n d s t o n e s d e p o s i t e d under d e s e r t c l i m a t i c c o n d i t i o n s . J . g e o l . SOC. London, 135:41-49. Khramov, A . N . , 1968. O r i e n t a t i o n a l m a g n e t i z a t i o n o f f i n e l y d i s p e r s e d s e d i m e n t s . 1 z v . A c a d . S c i . USSR Phys. S o l i d E a r t h , 1:63-66. K i l d a l , E . S . , 1970. G e o l o g i s k k a r t o v e r Norsk, b e r g g r u n n s k a r t , Malby, 1:250000, n o r s k utavve. Nor. g e o l . Unders. King, B . C . , 1970. V u l c a n i c i t y and r i f t t e c t o n i c s i n E a s t A f r i c a . I n : T.N. C l i f f o r d and I . G . Gass ( E d i t o r s ) , A f r i c a n Magmatism and T e c t o n i c s . O l i v e r and Boyd, Edinburgh, pp.261-283. King, B . C . , 1976. The B a i k a l R i f t . J . g e o l . S O C . London, 132:348-349. King, R . F . , 1955. Remanent magnetism o f a r t i f i c i a l l y d e p o s i t e d s e d i m e n t s . Mon. N o t i c . Roy. A s t r . SOC. Geophys. Supp., 7:115-134. King, R.F. and Rees, A . I . , 1966. D e t r i t a l magnetism i n s e d i m e n t s : An e x a m i n a t i o n of some t h e o r e t i c a l models. J. Geophys. Res., 71:561-571. King, P.B., 1966. The North American C o r d i l l e r a . I n : T e c t o n i c H i s t o r y and M i n e r a l D e p o s i t s of t h e Western C o r d i l l e r a . Can. I n s t . Mining and M e t a l l u r g y S p e c i a l V 0 1 . 8 , pp.1-25. K i n t z i n g e r , P.R., 1957. Paleomagnetic s u r v e y o f T r i a s s i c r o c k s from Arizona. Geol. SOC. Am. B u l l . , 68:931-932. K n i g h t , S . H . , 1929. The F o u n t a i n and t h e Casper Formations of t h e Laramie B a s i n : a s t u d y of t h e g e n e s i s of s e d i m e n t s . Wyoming Univ. Pub. S c i . , 1:l-82. Kobayashi, K. and Smith, R.W., 1965. R e v e r s i b l e s u s c e p t i b i l i t y of h e m a t i t e c a r r y. i n gv a r i o u s t y p e s o f remanent m a g n e t i z a t i o n and memory. J . Geomag. G e o e l e c t . , 17: 325-335.
516 Koide, M. S o u t a r , A. and G o l d b e r g , E.D., 1972. Marine geochronology w i t h 210Pb. E a r t h P l a n e t . S c i . L e t t s . , 14:442-446. Kolb, C.R. and Van Lopik, J . R . , 1966. D e p o s i t i o n a l environments of t h e M i s s i s s i p p i southwestern Louisiana. I n : Deltas i n t h e i r Geological River d e l t a i c p l a i n Framework. Houston Geol. S O C . , pp. 17-61. Kolderup, C.F., 1927. Hornelens D e v e l f e l t . Bergens Mns. Arb. Raekke No.6. Krgn, E . , Szabd, P. and Konczos, G . , 1965. Neutron d i f f r a c t i o n s t u d i e s on t h e (1-x) Fe2O3- Rh2O3 system. Phys. L e t t . , 19A: 103-104. Krigstrbm, A . , 1962. Geomorphological s t u d i e s of s a n d u r p l a i n and t h e i r b r a i d e d r i v e r s i n I c e l a n d . Geog. Ann., 44: 328-346.. K r i n s l e y , D. and Doornkamp, J., 1973. A t l a s o f Quartz Sand S u r f a c e T e x t u r e s . Cambridge U n i v e r s i t y P r e s s , 9 1 pp. K r i n s l e y , D . H . , F r i e n d , P.F. and K l i m e n t i d i s , R . , 1976. E o l i a n t r a n s p o r t t e x t u r e s on t h e s u r f a c e s o f s a n d g r a i n s o f E a r l y T r i a s s i c a g e . Geol. SOC. Am. B u l l . , 8 7 : 130-332. K r u i t , C . , 1955. Sediments o f t h e Rh6ne d e l t a . G r a i n s i z e and microfauna. Verhandel. Koninkl. Ned. g e o l . mijnbouwk. Genoot g e o l . S e r . , 15: 357-514. Krumbein, W . C . and Sloss, L . L . , 1963. S t r a t i g r a p h y and S e d i m e n t a t i o n . W.H. Freeman and Co. San F r a n c i s c o , C a l i f o r n i a , 660 pp. K r y n i n e , P . D . , 1949. The o r i g i n o f r e d beds. Trans. N . Y . Acad. S c i . , 11:60-68. K r y n i n e , P . D . , 1950. P e t r o l o g y , s t r a t i g r a p h y and o r i g i n o f t h e T r i a s s i c s e d i m e n t a r y r o c k s o f C o n n e c t i c u t . B u l l . C o n n e c t i c u t S t a t e Geol. Nat. H i s t . S u r v . , 73; 247 pp. Kubiena, W.L., 1955. Uber d i e Braunlehm r e l i k t e d e r A t a k o r ( Z e n t r a l - S a h a r a ) . Erdkunde, 9: 115-132. Ktlbler, B . , 1968. E v a l u a t i o n q u a n t i t a t i v e du metamorphisme p a r l a C r i s t a l l i n i t g de l ' i l l i t e , E t a t des p r o g r e s s r e a l i s e s c e s d e r n i e r e s a n n e e s . B u l l . Cent. Rech. Pan-SNPA, 2:385-397. Kuenen, Ph.H., 1957a. Sole markings o f g r a d e d graywacke b e d s . J . G e o l . , 65:231-258. Kuenen, Ph.H., 1957b. L o n g i t u d i n a l f i l l i n g of oblong s e d i m e n t a r y b a s i n s . Verhandel. k o n i n k l . Ned. g e o l . mijnbouwk. Genoot. g e o l . S e r . , 18:189-195. Kuenen, Ph.H., 1958. Problems c o n c e r n i n g s o u r c e and t r a n s p o r t a t i o n of f l y s c h s e d i m e n t s . Geol. M i j n b . , 20:329-339. Kuenen, Ph.H., 1967. Emplacement of f l y s c h - t y p e sand beds. Sedimentology, 7:267-297. Ktlndig, W . , B b m e l , H . , C o n s t a n b a r i e s , G . and L i n d q u i s t , H . H . , 1966. Some p r o p e r t i e s o f s u p p o r t e d smallo(-FeZOg p a r t i c l e s d e t e r m i n e d w i t h MBssbauer e f f e c t . Phys. Rev., 142: 327-333. Kuznetsov, S.I., 1970. M i k r o f l o r a o z e r i c e geokhimicheskaya d e y a t e l ' n o s t ' ( M i c r o f l o r a of Lakes and t h e i r Geochemical A c t i v i t i e s ) . L e n i n g r a d , I z d a t e l ' s t v o Nauka 440 pp. ( I n R u s s i a n ) . Kuznetsov, S . I . , 1975. The r o l e of microorganisms i n t h e f o r m a t i o n of l a k e bottom d e p o s i t s and t h e i r d i a g e n e s i s . S o i l S c i e n c e , 119:81-88. L a g a a i j , R. and K o p s t e i n , F.P.H.W., 1964. T y p i c a l f e a t u r e s of a f l u v i o m a r i n e o f f l a p sequence. I n : L . M . J . U . v a n S t r a a t e n ( E d i t o r ) , D e l t a i c and Shallow Marine D e p o s i t s . E l s e v i e r , Amsterdam, pp.216-226. Lambrick, H.T., 1967. The I n d u s f l o o d - p l a i n and t h e ' I n d u s ' c i v i l i s a t i o n . Geog. J., 133:483-495. Laming, D . J . C . , 1965. Age of t h e N e w Red Sandstone i n . s o u t h Devonshire. N a t u r e , 207: 624-625. Laming, D . J . C . , 1966. I m b r i c a t i o n , p a l a e o c u r r e n t s and o t h e r s e d i m e n t a r y f e a t u r e s i n t h e Lower New Red Sandstone. J . Sediment. P e t r o l . , 36:940-959. Langford-Smith, T. and Dury, G . H . , 1965. D u r i c r u s t i n t h e n o r t h - w e s t of New South Wales. Am. J . S c i . , 263: 170-190. Langmuir, D . , 1969. The Gibbs f r e e e n e r g i e s of s u b s t a n c e s i n t h e system Fe-02-H20-C02 a t 25OC. U.S.G.S. P r o f . Paper 650-B, pp.180-184. Langmuir, D . , 1971. P a r t i c l e s i z e e f f e c t on t h e r e a c t i o n G o e t h i t e = Hematite + W a t e r . Am. J . S c i . , 271: 147-156. Langmuir, D. and Whittemore, D . O . , 1971. V a r i a t i o n s i n t h e s t a b i l i t y of p r e c i p i t a t e d f e r r i c oxyhydroxides. I n : J.D. Hem ( E d i t o r ) , Non-Equilibrium Systems and P r o c e s s e s i n N a t u r a l Water Chemistry, a Symposium. Advances i n Chemistry, American Chem. S O C . , pp.209-234.
-
616 L a r s e n , V . and S t e e l , R . J . , 1978. The s e d i m e n t a r y h i s t o r y o f a d e b r i s flow-dominated, a s t u d y o f t e x t u r a l i n v e r s i o n . Sedimentology, 25:37-59. Devonian a l l u v i a l f a n L a r s o n , E . E . and Walker, T.R., 1975. Development of chemical remanent m a g n e t i z a t i o n d u r i n g e a r l y s t a g e s o f red-bed f o r m a t i o n i n L a t e Cenozoic s e d i m e n t s , Baja C a l i f o r n i a . Geol. SOC. Am. B u l l . , 86:639-650. Larson, E.E., H o b l i t t , R.P. and Walker, T.R., 1976. Evidence of c h e m i c a l remagneti z a t i o n l o n g a f t e r d e p o s i t i o n i n r e d b e d s o f t h e Moenkopi Formation n e a r Gray Mountain, A r i z o n a . Geol. SOC. Am. Abs. w i t h Programs., p.971. Lattman, L.H., 1960. C r o s s - s e c t i o n o f a f l o o d p l a i n i n a m o i s t r e g i o n o f moderate r e l i e f . J . Sediment. P e t r o l , , 30:275-282. L e e d e r , M.R., 1974. Lower Border Group ( T o u r n a i s i a n ) f l u v i o - d e l t a i c s e d i m e n t a t i o n and palaeogeography of t h e Northumberland Basin. Proc. Yorks. g e o l . S O C . , 40: 129-180. L e e d e r , M.R., 1975. Pedogenic c a r b o n a t e s a n d f l o o d s e d i m e n t a c c r e t i o n r a t e s : a q u a n t i t a t i v e model f o r a l l u v i a l a r i d - z o n e l i t h o f a c i e s . Geol. Mag., 112:257-270. L e e d e r , M . R . , 1976. P a l a e o g e o g r a p h i c s i g n i f i c a n c e of p e d o g e n i c c a r b o n a t e s i n t h e topmost upper Old Red Sandstone o f t h e S c o t t i s h b o r d e r b a s i n . Geol. J., 11:21-28. Lensch, G . , 1961. S t r a t i g r a p h i e , F a z i e s und K l e i n t e k t o n i k d e r Kohle ftthrenden i n d e r b a y e r i s c h e n F a l t e n m o l a s s e . Geologica B a v a r i c a , 4 6 : l - 5 2 . Leopold, L.B. and Wolman, M . G . , 1957. River Channel P a t t e r n s : B r a i d e d , meandering and s t r a i g h t . U.S.G.S. P r o f . P a p e r 282-13, 73 pp. Leopold, L . B . , Wolman, M . G . and M i l l e r , J . P . , 1964. F l u v i a l P r o c e s s e s i n Geomorphology. Freeman, San Francisco/London, 522 pp. Lerbekmo, J . F . , 1963. P e t r o l o g y o f t h e B e l l y R i v e r Formation, s o u t h e r n A l b e r t a F o o t h i l l s . Sedimentology, 2:54-86. L i e , L . G . , S t o r e t v e d t , K.M. and G j e l l e s t a d , G . , 1969. The palaeomagnetism of t h e Kvamshesten Old Red s e q u e n c e , s o u t h w e s t Norway. Norsk. g e o l . T i d d s . , 49:241-249. L i n , S.T., 1962. Magnetic p r o p e r t i e s ofoC-Fe2Og s i n g l e c r y s t a l s . J . Phys. SOC. J a p a n , 1 7 , Supp. B1: 226-230. L i n d g r e n , W . , 1933. M i n e r a l D e p o s i t s . McGraw-Hill, New York, 930 pp. L i n d s l e y , D . H . , 1973. D e l i m i t a t i o n o f t h e h e m a t i t e - i l m e n i t e m i s c i b i l i t y gap. Geol. SOC. Am. B u l l . , 84:657-662. L i n d s l e y , D . H . , 1975. The c r y s t a l c h e m i s t r y a n d s t r u c t u r e of o x i d e m i n e r a l s a s e x e m p l i f i e d by t h e Fe-Ti o x i d e s . I n : D. Rumble 111 ( E d i t o r ) , Oxide M i n e r a l s . Min. SOC. America, S h o r t Course N o t e s , pp. Ll-L60. L i n k , M . H . , Osborne, R.H. and Awramik, S.M., 1978. L a c u s t r i n e s t r o m a t o l i t e s and a s s o c i a t e d s e d i m e n t s of t h e P l i o c e n e Ridge Route Formation, Ridge B a s i n , C a l i f o r n i a . J . Sediment, P e t r o l . , 48: 143-158. L i t c h f i e l d , W . H . , 1962. S o i l s o f t h e A l i c e S p r i n g s a r e a . I n : G e n e r a l R e p o r t on Lands of t h e A l i c e S p r i n g s Area, N o r t h e r n T e r r i t o r y , 1956-57. C.S.I.R.O., Melbourne, pp. 185-207. L i t c h f i e l d , W . H . , 1963. S o i l s o f t h e Wiluna-Meekatharra a r e a . I n : G e n e r a l R e p o r t o f l a n d s o f t h e Wilura-Meekatharra A r e a , Western A u s t r a l i a , 1958. C.S.I.R.O., Melbourne, pp.123-142. L i t t l e w o o d , D. and P o s t g a t e , J . R . , 1957. Sodium c h l o r i d e and t h e growth of D e s u l p h o v i b r i o d e s u l p h u r i c a n s . J . Gen. B i o l . , 17:378-383. L i v i n g s t o n e , D . A . , 1963. Data o f G e o c h e m i s t r y , C h a p t e r G . Chemical c o m p o s i t i o n o f ri;ers and l a k e s . U.S.G.S. P r o f . P a p e r 440-G, 64 pp. L j u n g g r e n , P. and Meyer, H . C . , 1964. The c o p p e r m i n e r a l i z a t i o n i n t h e Corocoro b a s i n , B o l i v i a . Econ. Geol., 58:llO-125. Logan, R.F., 1960. The c e n t r a l Namib d e s e r t , Southwest A f r i c a . N a t l . Res. Coun. Pub. 758, 162 pp. Lomax, K. and J . C . B r i d e n , 1977. Palaeomagnetic s t u d i e s of t h e Longmyndian and o t h e r B r i t i s h l a t e P r e c a m b r i a n / e a r l y P a l a e o z o i c r o c k s , and t h e i r r e g i o n a l t e c t o n i c i m p l i c a t i o n s . J . g e o l . SOC. London, 133:5-21. Long, J.T. and S h a r p , R.P., 1964. Barchan-dune movement i n t h e I m p e r i a l V a l l e y , C a l i f o r n i a . Geol. SOC. Am. B u l l . , 75:149-156. Loughman, F.C., 1969. Chemical w e a t h e r i n g of S i l i c a t e M i n e r a l s . American E l s e v i e r P u b l i s h i n g Co. I n c . , 154 pp. L b v l i e , R . , 1974. P o s t - d e p o s i t i o n a l remanent m a g n e t i z a t i o n i n a r e - d e p o s i t e d deep-sea sediment. E a r t h P l a n e t . S c i . L e t t s . , 21:315-320.
-
517 L u c c i , F. and Casa, G . , 1968. S u r f a c e t e x t u r e s of d e s e r t q u a r t z g r a i n s : A new a t t e m p t t o e x p l a i n t h e o r i g i n o f d e s e r t f r o s t i n g . G i o r . d i G e o l o g i a , ser. 2, 36:761-776. Mabbutt, J . A . , 1965. The w e a t h e r e d l a n d s u r f a c e i n c e n t r a l A u s t r a l i a , Z e i t . f u r Geomorph., 9:82-114. Mabbutt, J . A . , 1967. Denudation chronology i n C e n t r a l A u s t r a l i a , I n . J . N . J e n n i n g s and J . A . Mabbutt ( E d i t o r s ) , Landform s t u d i e s from A u s t r a l i a and New Guinea. Cambridge U n i v e r s i t y P r e s s , pp.144-181. Mack, F.K., 1962. Ground w a t e r s u p p l i e s f o r i n d u s t r i a l and urban development i n Anne Arundel County, w i t h a s e c t i o n on t h e chemical c h a r a c t e r of t h e w a t e r by C l a i r e A. R i c h a r d s o n . Maryland Dept. Geology, M i n e r a l and Water Resources B u l l . , 26, 90 pp. Mack, G . H . and S u t t n e r , L . J . , 1977. P a l e o c l i m a t i c i n t e r p r e t a t i o n from a p e t r o g r a p h i c comparison of Holocene s a n d s and t h e F o u n t a i n Formation (Pennsylvanian) i n t h e Colorado F r o n t Range. J . Sediment. P e t r o l . , 47:89-100. Mackay, J . R . , 1963. The Mackenzie d e l t a a r e a , N.W.T. Geol. Surv. Canada, Geogr. Branch Mem. 8 , 202 pp. Mackie, W . , 1899. The f e l d s p a r s p r e s e n t i n s e d i m e n t a r y r o c k s a s i n d i c a t i o n s of t h e c o n d i t i o n s of t h e contemporaneous c l i m a t e . T r a n s . Edin. g e o l . S O C . , 7:443-468. Madigan, C.T., 1946. The Simpson Desert e x p e d i t i o n , 1939; S c i e n t i f i c R e p o r t s , No.6: Geol. The Sand Formations. T r a n s . Roy. SOC. South A u s t r a l i a , 70 45-63. Magraw, D . , 1975. Permian beds of t h e o f f - s h o r e and a d j a c e n t c o a s t a l a r e a s of Durham and S.E. Northumberland. J . g e o l . SOC. London, 131:397-414. Maignien, R . , 1966. Review of R e s e a r c h on L a t e r i t e s . Unesco, N a t u r a l Resources Res, Sec. 1V P a r i s . Maldonado, A . , 1975. S e d i m e n t a t i o n , s t r a t i g r a p h y and development of t h e Ebro d e l t a , S p a i n . I n : M.L. B r o u s s a r d (Editor),312-338. D e l t a s Models f o r E x p l o r a t i o n . Houston Geol. S O C . , Houston, pp.312-338. M a l l o r y , W . W . , 1972. P e n n s y l v a n i a n a r k o s e and t h e A n c e s t r a l Rocky Mountains. I n : W.W. M a l l o r y ( E d i t o r ) , G e o l o g i c A t l a s of t h e Rocky Mountain Region of t h e United S t a t e s . Rocky Mountain Assoc. of G e o l o g i s t s , pp.131-132. M a n s f i e l d , C.F. and B a i l e y , S.W., 1972. Twin and pseudotwin i n t e r g r o w t h s i n k a o l i n i t e . Am. Min. 57:411-425. M a r g o l i s , S . and K r i n s l e y , D . , 1971. Submicroscopic f r o s t i n g on e o l i a n and subaqueous s a n d g r a i n s . Geol. SOC. Am. B u l l . , 82:3395-3405. Marie, J . P . P . , 1975. R o t l i e g e n d e s s t r a t i g r a p h y and d i a g e n e s i s . I n : A.W. Woodland ( E d i t o r ) , Petroleum and t h e C o n t i n e n t a l S h e l f of North West Europe. V01.l Geology. A p p l i e d S c i e n c e P u b l i s h e r s , B a r k i n g , pp.205-211. M a r i n e r , R . H . a n d Surdam, R . C . , 1970. A l k a l i n i t y and f o r m a t i o n of z e o l i t e s i n s a l i n e a l k a l i n e l a k e s . S c i e n c e , 170:977-980. M a r s h a l l , M. and Cox, A . , 1972. Magnetic changes i n p i l l o w b a s a l t due t o s e a f l o o r w e a t h e r i n g . J . Geophys. Res., 77:6459-6469. Mason, B., 1966. P r i n c i p l e s o f Geochemistry. John Wiley 6 Sons I n c . , London/New York, 329 pp. Matsusaka, Y . , Sherman, G.D. and S w i n d a l e , L . D . , 1965. N a t u r e o f magnetic m i n e r a l s i n Hawaiian s o i l s . S o i l S c i . , 100:192-199. Matter, A . , 1964. S e d i m e n t o l o g i s c h e Untersuchungen i m 8 s t l i c h e n N a p f g e b i e t . E c l o g a e Geol. H e l v e t i a e , 57:315-428. M a t t e r , A . , 1970. Molasse. I n : H o t t i n g e r , L. e t a l . , E x p l a n a t i o n of Geologic A t l a s d e r Schweiz: 1093 H B r n l i , pp.7-20. M a u r i t s c h , H . J . and T u r n e r , P., 1975. The i d e n t i f i c a t i o n of m a g n e t i t e i n l i m e s t o n e s u s i n g t h e low-temperature t r a n s i t i o n . E a r t h P l a n e t . S c i . L e t t s . , 24:414-418. Meckel, L . D . , 1975. Holocene s a n d b o d i e s i n t h e Colorado d e l t a a r e a , n o r t h e r n Gulf o f C a l i f o r n i a . I n : M.L. B r o u s s a r d ( E d i t o r ) , Deltas-Models f o r E x p l o r a t i o n . Houston Geol. S O C . , Houston, pp.239-265. Meckelein, W . , 1957. Une m i s s i o n s c i e n t i f i q u e a l l e m a n d e en Libye. I n s t . de Rech. S a h a r i e n n e s , Travaux, 1 6 , pp.213-216. Mehra, O.P. a n d J a c k s o n , M.L., 1960. I r o n o x i d e removal from s o i l s by a d i t h i o n a t e c i t r a t e s y s t e m b u f f e r e d w i t h sodium b i c a r b o n a t e . Proc. Seventh N a t l . Cong. Clays and Clay M i n e r a l s , 1958. London Pergamon P r e s s , pp. 317-327.
-
-
618 M e i l h a c , A. and Tardy, Y . , 1970. Gen$se e t & o l u t i o n d e s s e r i c i t e s , v e r m i c u l i t e s e t m o n t m o r i l l o n i t e s a u c o u r s d e 1' a l t g r a t i o n d e s p l a g i o c l a s e s un pays tempere. B u l l . S e r v . C a r t e . Geol. A l s a c e L o r r a i n e , 23:145-161. Mellon, G . B . , 1964. D i s c r i m i n a t o r y a n a l y s i s of c a l c i t e and s i l i c a t e - c e m e n t e d p h a s e s of t h e Mountain Park Sandstone. J . G e o l . , 72:786-809. Mellon, G . B . , 1967. S t r a t i g r a p h y and P e t r o l o g y of t h e Lower C r e t a c e o u s B l a i r m o r e and Mannville Groups A l b e r t a F o o t h i l l s and P l a i n s . Res. C o u n c i l A l b e r t a Geol. Div, B u l l 2 1 , 270 pp. Melton, F.A., 1940. A t e n t a t i v e c l a s s i f i c a t i o n o f s a n d dunes. I t s a p p l i c a t i o n t o dune h i s t o r y i n t h e s o u t h e r n h i g h p l a i n s . J . G e o l . , 48:113-174. M e r r i l l , R . T . , 1968. A p o s s i b l e s o u r c e f o r t h e c o e r c i v i t y of i l m e n i t e - h e m a t i t e s i n g l e c r y s t a l s . J. Geomag. G e o e l e c t . , 20:181-185. M e r r i l l , R.T. and McElhinny, M . W . , 1977. Anomalies i n t h e time-averaged paleomagnetic f i e l d and t h e i r i m p l i c a t i o n s f o r t h e Lower Mantle. Rev. Geophys. Space P h y s . , 15 : 309- 323. Meyerhoff, A . , 1970. C o n t i n e n t a l d r i f t : i m p l i c a t i o n s of p a l a e o m a g n e t i c s t u d i e s , m e t e o r o l o g y , p h y s i c a l oceanography and c l i m a t o l o g y . J . G e o l . , 78:l-51. M i a l l , A . D . , 1976. F a c i e s Models, 4. D e l t a s . Geosciences Canada, 3:215-227. M i c h a e l i s , E.R. and Dixon, G . , 1969. I n t e r p r e t a t i o n of d e p o s i t i o n a l p r o c e s s e s from s e d i m e n t a r y s t r u c t u r e s i n t h e Cardium sand. B u l l . Can. P e t r o l . G e o l . , 17:410-443. M i d d l e t o n , G . V . , 1960. Chemical c o m p o s i t i o n of s a n d s t o n e s . Geol. S O C . Am. B u l l . , 71: 1011-1026. M i d d l e t o n , G . V . and Hampton, M . A . , 1976. Subaqueous sediment t r a n s p o r t and d e p o s i t i o n by sediment g r a v i t y flows. I n : D . J . S t a n l e y and D . J . P . S w i f t ( E d i t o r s ) , Marine Sediment T r a n s p o r t and Environmental Management. John Wiley 6 Sons I n c . , London/ New York, pp.197-218. M i l l e r , D . N . , 1955. Hollow s a n i d i n e g r a i n s s t r a t i g r a p h i c marker f o r t h e P i e r c e Canyon Formation, west Texas and s o u t h e a s t e r n New Mexico. J . Sediment. P e t r o l . , 25, 235-237. M i l l e r , D . N . and F o l k , R . L . , 1955. Occurrence o f d e t r i t a l m a g n e t i t e and i l m e n i t e i n r e d s e d i m e n t s : New a p p r o a c h t o t h e s i g n i f i c a n c e of r e d b e d s . B u l l . Am. Assoc. P e t r o l . G e o l . , 39:338-345. M i l l o t , G . , 1970. Geology of Clays. S p r i n g e r - V e r l a g , B e r l i n , 429 pp. M i l n e , A . G . , 1969. On t h e o r o g e n i c h i s t o r y of t h e C e n t r a l Alps. J . G e o l . , 77:108-112. M i t c h e l l , A . H . G . and McKerrow, W . S . , 1975. Analogous e v o l u t i o n of t h e Burma orogen and t h e S c o t t i s h C a l e d o n i d e s . Geol. S O C . Am. B u l l , , 86:305-315. M i t c h e l l , B . D . , Farmer, C.V. and McHardy, W . J . , 1964. Amorphous i n o r g a n i c m a t e r i a l i n s o i l . Advances Agron., 16:327-383. M i t c h e l l , G . H . , 1944. The geology of t h e Midland C o a l f i e l d s . T r a n s . I n s t . Mining S u r v e y o r s , 2 4 , p. 13. M i t c h e l l , G . H . and Mykura, W . , 1962. The geology of t h e neighbourhood of Edinburgh. Geol. Surv. Mem. S c o t l a n d , 159 pp. M o d a r e s s i , H.F. and G r i f f i t h s , J . C . , 1963. R e l a t i o n s h i p between r e s e r v o i r p r o p e r t i e s and p e t r o g r a p h y of " F i r s t Venango Sand". 24th Tech. Conf. P e t . Prod. Pa. S t a t e Univ. U n i v e r s i t y P a r k , P a . , pp.251-266. Moench, R.H. and S c h l e e , J.S., 1967. Geology and uranium d e p o s i t s of t h e Laguna D i s t r i c t , New Mexico. U.S.G.S. P r o f . Paper 519, 113 pp. Moghal, M . Y . , 1974. Uranium i n S i w a l i k S a n d s t o n e s , S i l a i m a n Range, P a k i s t a n . I n : Formation of Uranium Ore D e p o s i t s . Proc. I n t . Atomic Energy Agency, Vienna, pp.383-403. Mohr, E . C . J . and Van Baren, F.A., 1954. T r o p i c a l S o i l s . I n t e r s c i e n c e s P u b l . , N e w York, 498 pp. Moiola, R.J., 1970. A u t h i g e n i c z e o l i t e s and K - f e l d s p a r i n t h e Esmeralda Formation, Nevada. Am. Min., 55:1681-1691. Moiola, R . J . and Hay, R.L., 1964. Z e o l i t e zones i n P l e i s t o c e n e and Recent s e d i m e n t s of China Lake, C a l i f o r n i a . Geol. SOC. America Spec. P a p e r 65:215 p. ( A b s t r . ) . Moiola, R . J . a n d Weiser, D . , 1968. T e x t u r a l p a r a m e t e r s : a n e v a l u a t i o n . J. Sediment. P e t r o l . , 38:45-53. Monger, J.W.H., S o u t h e r , J . G . and G a b r i e l s e , H . , 1972. E v o l u t i o n o f t h e Canadian C o r d i l l e r a : a p l a t e t e c t o n i c model. Am. J . S c i . , 277:577-602.
-
619 Moody-Stuart, M . , 1966. High a n d low s i n u o s i t y s t r e a m d e p o s i t s w i t h examples from Devonian of S p i t s b e r g e n . J . Sediment. P e t r o l . , 36:1102-1117. Moorbath, S., 1969. Evidence f o r t h e a g e o f d e p o s i t i o n of t h e T o r r i d o n i a n sediments of north-west S c o t l a n d . S c o t . J . G e o l . , 5 : 154-170. Moorbath, S . , S t e w a r t , A . D . , Lawson, D . E . and W i l l i a m s , G.E., 1967. G e o c h r o n o l o g i c a l s t u d i e s on t h e T o r r i d o n i a n s e d i m e n t s o f n o r t h - w e s t S c o t l a n d . S c o t . J . G e o l . , 3: 389-412. Moore, G.T. and A s q u i t h , D . O . , 1971. D e l t a : T e r m and concept. Geol. SOC. Am. B u l l . , 8 2 : 2563-2568. Moore, J . C . , 1975. S e l e c t i v e s u b d u c t i o n . Geology, 3:530-532. Morin, F . J . , 1950. Magnetic s u s c e p t i b i l i t y of cT-Fe203 a n d K - F e ~ O g w i t h added t i t a n i u m . Phys. Rev., 78:819-820. Morisawa, M . , 1968. Streams t h e i r dynamics and morphology. McGraw-Hill, New York, 175 pp. Morrow, N . R . , 1971. S m a l l - s c a l e p a c k i n g h e t e r o g e n e i t i e s i n porous s e d i m e n t a r y r o c k s . B u l l . Am. Assoc. P e t . G e o l . , 55:514-522. Mortimer, C . H . , 1971. Chemical exchanges between s e d i m e n t s and w a t e r i n t h e G r e a t Lakes s p e c u l a t i o n s on p r o b a b l e r e g u l a t o r y mechanisms. Limnol. Oceangr., 16: 387-404. Morton, R . D . , 1974. Sandstone-type uranium d e p o s i t s i n t h e P r o t e r o z o i c s t r a t a of n o r t h w e s t e r n Canada. I n : Formation of Uranium Ore D e p o s i t s . P r o c . I n t . Atomic Energy Agency, Vienna, pp.255-273. Morton, R.A. and Donaldson, A . C . , 1978. Hydrology, morphology and sedimentology of t h e Guadalupe f l u v i a l - d e l t a i c system. Geol. S O C . Am. Bull., 8 9 : 1030-1036. Moss, A . J . , 1962. The p h y s i c a l n a t u r e of common sandy and p e b b l y d e p o s i t s , P a r t 1. Am. J . S c i . , 260,337-373. M o s s , , A . J . , 1963. The p h y s i c a l n a t u r e of common sandy and pebbly d e p o s i t s , P a r t 11. Am. J . S c i . , 261:295-343. Mountjoy, E.W., 1967. Upper C r e t a c e o u s and T e r t i a r y s t r a t i g r a p h y , n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n d i s t r i c t of Mackenzie. Geol. Surv. Canada Paper 66-16, 70 PP. M u e l l e r , S . , 1970. G e o p h y s i c a l a s p e c t s of g r a b e n f o r m a t i o n i n c o n t i n e n t a l r i f t systems. I n . J . H . I l l i e s and S . M u e l l e r ( E d i t o r s ) , Graben Problems. Schweizerb a r t s c h e V e r l a g , S t u t t g a r t , pp.27-37. MUller, G . , I r i o n , G . and F t l r s t n e r , U . , 1972. Formation and d i a g e n e s i s o f i n o r g a n i c Ca-Mg c a r b o n a t e s i n t h e l a c u s t r i n e environment. N a t u r w i s s e n s c h a f t e n , 59: 158-164. M u l l i n s , C . E . , 1977. Magnetic s u s c e p t i b i l i t y of t h e s o i l and i t s s i g n i f i c a n c e t o s o i l s c i e n c e : A review. J . S o i l S c i . , 28:223-246. M u t t i , E . and R i c c i L u c c h i , F . , 1972. L e t o r b i d i t i d e l l ' A p p e n n i n o s e t t e n t r i o n a l e : i n t r o d u z i o n e a l l ' a n a l i s i d i f a c i e s . Mem. S O C . Geol. I t . , 11:161-199. Nykura, W . , 1960a. The replacement of c o a l by l i m e s t o n e and t h e reddening of Coal Measures i n t h e A y r s h i r e C o a l f i e l d . B u l l . g e o l . Surv. G t . B r i t . , 16:69-109. Mykura, W . , 1960b. The Lower Old Red Sandstone r o c k s o f t h e P e n t l a n d H i l l s . Geol.' Surv. G t . B r i t . , 16: 131-155. Mykura, W . , 1965. Age of t h e New Red Sandstone i n s o u t h w e s t S c o t l a n d . S c o t . J . G e o l . , 1:9-18. Mykura, W . , 1975. P o s s i b l e l a r g e - s c a l e s i n i s t r a l d i s p l a c e m e n t a l o n g t h e G r e a t Glen F a u l t i n S c o t l a n d . Geol. Mag. 1 1 2 , 91-94. McBride, E . F . , 1974. S i g n i f i c a n c e o f c o l o r i n r e d , g r e e n , p u r p l e , o l i v e , brown and g r a y beds o f D i f u n t a Group, N o r t h e a s t e r n Mexico. J . Sediment. P e t r o l . , 44:760-773. McBride, E . F . , Weidie, A.E. a n d Wolleben, J . A . , 1975. D e l t a i c and a s s o c i a t e d d e p o s i t s of D i f u n t a Group ( L a t e C r e t a c e o u s t o P a l a e o c e n e ) , P a r r a s and La Popa B a s i n s , n o r t h w e s t e r n Mexico. I n : M.L. B r o u s s a r d ( E d i t o r ) , D e l t a s Models f o r E x p l o r a t i o n . Houston Geol. S O C . , Houston, pp.485-522. McCauley, J . F . , 1961. Uranium i n P e n n s y l v a n i a . P e n n s y l v a n i a Geol. Surv. 4 t h s e r . , B u l l . M43, 71 pp. McCave, I . N . , 1971. Sand waves i n t h e North Sea o f f t h e c o a s t of Holland. Marine Geol. , 10: 199-225. McConnell, R . G . , 1996. Report on a n e x p l o r a t i o n of t h e F i n l a y and Omineca R i v e r s . Geol. Survey Canada, Ann. R e p t . , 7:6C-40C.
-
-
520 McDonald, B . C . and B a n e r j e e , I . , 1971. Sediments and bedforms on a b r a i d e d outwash p l a i n . Can. J . E a r t h S c i . , 8 : 1282-1301. McElhinny, M . W . , 1964. S t a t i s t i c a l s i g n i f i c a n c e o f t h e f o l d t e s t i n palaeomagnetism. Geophys. J . R . a s t r o . S O C . , 8:338-340. McElhinny, M.W. and Burek, P . J . , 1971. Mesozoic p a l a e o m a g n e t i c s t r a t i g r a p h y . N a t u r e , 232: 98-101. McElhinny, M.W. and Opdyke, N . D . , 1973. R e m a g n e t i s a t i o n h y p o t h e s i s d i s c o u n t e d : a paleomagnetic s t u d y of t h e T r e n t o n Limestone, New York S t a t e . Geol. S O C . Am. B u l l . , 84: 3697-3708. McElhinny, M.W. and Merrill, R.T., 1975. Geomagnetic s e c u l a r v a r i a t i o n o v e r t h e p a s t 5m-y. Rev. Geophys. Space Phys., 13:687-708. McFarlane, M . J . , 1969. L a t e r i t i s a t i o n and Landscape Development i n P a r t s of Uganda. Ph.D. T h e s i s , U n i v e r s i t y of London. 1971. L a t e r i t i z a t i o n and l a n d s c a p e development i n Kyagwe, Uganda. McFarlane, M . J . , Quart. J. g e o l . SOC. London, 126:501-539. McFarlane, M . J . , 1976. L a t e r i t e and Landscape. Academic P r e s s , London/New York, 151 pp. McGowen, J . H . and G a r n e r , L . E . , 1970. P h y s i o g r a p h i c f e a t u r e s and s t r a t i f i c a t i o n t y p e s of c o a r s e - g r a i n e d p o i n t b a r s ; Modern and a n c i e n t examples. Sedimentology 14:77-111. McKee, E . D . , 1954. S t r a t i g r a p h y and h i s t o r y o f t h e Moenkopi Formation o f T r i a s s i c a g e . Geol. S O C . Am., Mem. 61, 133 pp. McKee, E . D . , 1966. S t r u c t u r e s o f dunes a t White Sands N a t i o n a l Monument, New Mexico (and a comparison w i t h s t r u c t u r e s of dunes from o t h e r s e l e c t e d a r e a s ) . S e d i m e n t o l o g y : 7 , 1-69. McKee, E . D . and T i b b i t t s , G . C . J r . , 1964. Primary s t r u c t u r e s o f a s e i f dune and a s s o c i a t e d d e p o s i t s i n Libya. J . Sediment. P e t r o l . , 34:5-17. McKee, E . D . and B i g a r e l l a , J.J., 1972. D e f o r m a t i o n a l s t r u c t u r e s i n B r a z i l i o n c o a s t a l dunes. J . Sediment. P e t r o l . , 42;670-681. McKee, E . D . and Moiola, R . J . , 1975. Geometry and growth of t h e White Sands Dune F i e l d , New Mexico. J . Res. U.S. Geol. S u r v e y , 3:59-66. McKee, E . D . , Crosby, E.J. and B e r r y h i l l , H.L. J r . , 1967. Flood d e p o s i t s , B i j o u Creek, C o l o r a d o , J u n e , 1965. J . Sediment. P e t r o l . , 37:829-851. McKee, E . D . , D o u g l a s s , J . R . and R i t t e n h o u s e , S . , 1971. Deformation of l e e - s i d e laminae i n e o l i a n dunes. Geol. SOC. Am. B u l l . , 82:359-378. McKenzie, D.P., 1972. P l a t e t e c t o n i c s . I n : E . C . R o b e r t s o n ( E d i t o r ) , The N a t u r e of t h e S o l i d E a r t h . McGraw-Hill, New York, pp.323-360. McKenzie, D.P. and P a r k e r , R . L . , 1967. The North P a c i f i c , a n example of t e c t o n i c s on a s p h e r e . S c i e n c e , 216:1276-1280. McKerrow, W . S . , L e g g e t t , J . K . and E a l e s , M . H . , 1977. I m b r i c a t e t h r u s t model of t h e S o u t h e r n Uplands of S c o t l a n d . N a t u r e , 267:237-239. McMahon, B . E . and Strangway, D . W . , 1968a, S t r a t i g r a p h i c i m p l i c a t i o n s o f paleomagnetic d a t a from Upper P a l a e o z o i c - Lower T r i a s s i c r e d beds of Colorado. Geol. SOC. Am. B u l l . , 79:417-428. McMahon, B.E. and Strangway, D . W . , 1968b. I n v e s t i g a t i o n o f Kiaman m a g n e t i c d i v i s i o n i n Colorado r e d beds. Geophys. J . Roy a s t r o . S O C . , 15,265-285. McMurray, E.W.,1970. Palaeomagnetic r e s u l t s f r o m , t h e S c o t t i s h Lavas o f Lower Devonian a g e . I n : S . K . Runcorn ( E d i t o r ) , P a l a e o g e o p h y s i c s . Academic Press, London/ New York, pp.253-262. McMurray, E . W . , R e i d , A . B . and Evans, M . E . , 1973. A p a l e o m a g n e t i c s t u d y of t h e Kahochella Group, N.W.T., Canada. T r a n s . Am. Geophys. Un. ( E o s ) , 5 4 , p.248. McNeal, B.L. and S a n s o t e r r a , T . , 1964. M i n e r a l o g i c a l examination of a r i d l a n d s o i l s . S o i l S c i . , 97:367-377. Nagata, T . , 1953. Rock Magnetism. Maruzen, Tokyo, 225 pp. Nagata, T. and Akimoto, S . , 1956. Magnetic p r o p e r t i e s of f e r r o m a g n e t i c i l m e n i t e s . G e o f i s . Pura Appl. 34: 36-50. Nagata, T . , R i k i t a k e , T. and A k a s i , K . , 1943. The n a t u r a l remanent m a g n e t i z a t i o n of s e d i m e n t a r y r o c k s . B u l l . Earthquake Res. I n s t . Tokyo Univ., 31:276-296. N a g a t a , T . , Kobayashi, K. and F u l l e r , M . D . , 1964. I d e n t i f i c a t i o n of m a g n e t i t e and h a e m a t i t e i n r o c k s by m a g n e t i c o b s e r v a t i o n a t low t e m p e r a t u r e . J . Geophys. R e s . , 69: 2111-2120.
621 Nagtegaal, P.J.C., 1969. M i c r o t e x t u r e s i n r e c e n t and f o s s i l c a l i c h e . Leid. Geol. Meded., 42: 131-142. N a g t e g a a l , P . J . C . , 1978. Sandstone-framework i n s t a b i l i t y a s a f u n c t i o n of b u r i a l d i a g e n e s i s . J . g e o l . SOC. London, 135: 101-105. Naidu, A.S. and Mowatt, T.C., 1975. D e p o s i t i o n a l environments and s e d i m e n t c h a r a c t e r i s t i c s o f t h e C o l v i l l e and a d j a c e n t d e l t a s , n o r t h A r c t i c Alaska. I n : M.L. Broussard ( E d i t o r ) , Deltas-Models f o r E x p l o r a t i o n . Houston Geol. S O C . , Houston, pp.283-309. Narkelyun, L.F., F i l i n , A.M., Bezrodynykh, Yu.P., and Kulakov, M . A . , 1969. Copper p o t e n t i a l of s e d i m e n t a r y b o d i e s i n s o u t h of S i b e r i a n p l a t f o r m . I n t . Geol. Rev., 11:288-297. Narkelyun, L . F . , F i l i n , A . M . , Bezrodynykh, Yu.P., and Trubachev, A . I . , 1971. C u p r i f e r o u s s h a l e s i n Poland and t h e i r a n a l o g u e s i n e a s t e r n p a r t s o f t h e U.S.S.R. I n t . Geol. Rev., 13: 1600-1610. N e a l , J . T . , 1965. G i a n t d e s i c c a t i o n polygons of G r e a t B a s i n p l a y a s . A i r F o r c e Cambridge R e s e a r c h L a b o r a t o r i e s , Environmental Research P a p e r s , 123, 30 pp. NEDECO, 1961. The w a t e r s o f t h e N i g e r d e l t a . The Hague, 317 pp. N&el, L . , 1949. T h e o r i e du tramage magnetique d e s f e r r o m a g n e t i q u e s aux g r a i n s f i n s a v e c a p p l i c a t i o n s aux terres c u i t e s . Ann. Geophys., 5:99-136. N & e l , L . , 1953. Some new r e s u l t s on a n t i f e r r o m a g n e t i s m and ferromagnetism. Rev. Mod. P h y s . , 25:58-63. Ndel, L . , 1955. Some t h e o r e t i c a l a s p e c t s o f rock magnetism. Adv. P h y s . , 4: 191-243. Ndel, L . , 1962. P r o p r i e t e s magnetiques de g r a i n s f i n s a n t i f e r r o m a g n e t i q u e s : superparamagnetisme e t superantiferro,magnetisme. J . Phys. SOC. J a p a n , 1 7 (B1):676-684. Ne'el, L. and P a u t h e n e t , R . , 1952. E t u d e thermomagnetique d ' u n m o n o c r i s t a l d e Fe2030(. C . R . Acad. S c i . ( P a r i s ) , 234:2172-2174. Nelson, H.W., 1968. P e t r o g r a p h y of s a n d s t o n e i n t e r b e d s i n t h e Upper CretaceousP a l e o c e n e o f Gulf S p r i n g P o i n t . B u l l . Can. P e t r o l . G e o l . , 16:425-430. Nemec, W. and P o r e b s k i , S . J . , 1977a. W e i s s l i e g e n d e s Sandstones: A t r a n s i t i o n from f l u v i a l a e o l i a n t o s h a l l o w m a r i n e s e d i m e n t a t i o n . P t . 1 Sedimentary s t r u c t u r e s and t e x t u r a l d i f f e r e n t i a t i o n . Ann. de l a SOC. Geologique d e Pologne, 47:387-418. Nemec, W. and P o r e b s k i , S . J . , 1977b. W e i s s l i e g e n d e s s a n d s t o n e s : A t r a n s i t i o n from f l u v i a l a e o l i a n t o s h a l l o w m a r i n e s e d i m e n t a t i o n P t . 2 A s t u d y i n s i g n i f i c a n c e of r o c k c o l o u r a t i o n . Ann. de l a SOC. Geologique de Pologne, 47:513-544. Nemecz, E. a n d V a r j u , G . , 1962. Sodium b e n t o n i t i z a t i o n , c l i n o p t i l o l i t i z a t i o n , and a d u l a r i z a t i o n i n t h e r h y o l i t i c t u f f s of t h e S z e r e n c s piedmont a r e a . Acta G e o l o g i c a , 6 : 389-427. Newman, A . C . D . and Brown, G . , 1966. Chemical changes d u r i n g t h e a l t e r a t i o n of micas. Clay Miner., 6:297-310. N i l s e n , T.H., 1968. The r e l a t i o n s h i p o f s e d i m e n t a t i o n t o t e c t o n i c s i n t h e Solund a r e a o f s o u t h w e s t e r n Norway. Norsk g e o l . Unders., 259, 108 pp. N i l s e n , T.H., 1969. Old Red s e d i m e n t a t i o n i n t h e Buelandet-Vaerlandet Devonian d i s t r i c t , w e s t e r n Norway. Sediment. G e o l . , 3:35-57. Nissenbaum, A. and Kaplan, I . R . , 1972. Chemical and i s o t o p i c e v i d e n c e f o r t h e i n s i t u o r i g i n of marine humic a c i d s . Limnol. Oceangr., 17:570-582.. N o r r i s , D . K . , 1964. The Lower C r e t a c e o u s of t h e s o u t h e a s t e r n Canadian C o r d i l l e r a . B u l l . Can. P e t r o l . G e o l . , 12:512-535. N o r r i s , R . M . , 1966. Barchan dunes of I m p e r i a l V a l l e y , C a l i f o r n i a . J . G e o l . , 74: 292-306. N o r r i s , R . M . , 1969. Dune r e d d e n i n g and t i m e . J . Sediment. P e t r o l . , 39:7-11. N o r r i s , R.M. and N o r r i s , K.S., 1961. Algodones dunes o f s o u t h e a s t e r n C a l i f o r n i a . Geol. SOC. Am. B u l l . , 72:605-620. N o r r i s h , K . , 1972. F a c t o r s i n t h e w e a t h e r i n g o f mica t o v e r m i c u l i t e . I n t e r n . Clay Conf. Madrid, 2:83-101. Oborn, E.T., 1964. I n t r a c e l l u l a r and e x t r a c e l l u l a r c o n c e n t r a t i o n of manganese and o t h e r e l e m e n t s by a q u a t i c organisms. I n : Chemistry o f Manganese i n N a t u r a l Water. U.S.G.S. Water Supply Paper 1667-C, 18 pp. O'Donovan, J . B . , 1975. S t u d i e s o f S y n t h e t i c 4nalogues o f C a r r i e r s o f t h e Palaeomagnetic Record. Ph.D. T h e s i s , U n i v e r s i t y of Newcastle. O l a d e , M . A . , 1975. E v o l u t i o n of N i g e r i a ' s Benue Trough ( a u l a c o g e n ) : a t e c t o n i c model. Geol. Mag., 112:575-583.
522 O l l i e r , C . D . , 1969. Weathering. O l i v e r and Boyd, E d i n b u r g h , 304 pp., Oomkens, E . , 1966. Environmental s i g n i f i c a n c e of s a n d d i k e s . Sedimentology, 7:145-148. Oomkens, E . , 1967. D e p o s i t i o n a l sequences and s a n d d i s t r i b u t i o n i n a d e l t a i c complex. Geol. M i j n b . , 46:265-278. Oomkens, E . , 1974. L i t h o f a c i e s r e l a t i o n s i n t h e L a t e Q u a t e r n a r y Niger d e l t a complex. Sedimentology, 21:195-222. Opdyke, N . D . , 1961. The paleomagnetism o f t h e New J e r s e y T r i a s s i c : A f i e l d s t u d y o f t h e i n c l i n a t i o n e r r o r i n r e d s e d i m e n t s . J. Geophys. R e s . , 66:1941-1949. Opdyke, N . D . , 1972. Paleomagnetism of deep-sea c o r e s . Rev. Geophys. Space Phys., 10 :2 13- 249. Opdyke, N . D . and Runcorn, S.K., 1960. Wind d i r e c t i o n i n t h e w e s t e r n U n i t e d S t a t e s i n t h e L a t e P a l a e o z o i c . Geograph. S O C . Am. B u l l . , 71:959. Opdyke, N . D . , Ninkovich, D . , Lowrie, W. and Hays, J . D . , 1972. The paleomagnetism of two Aegean deep-sea c o r e s . E a r t h P l a n e t . S c i . L e t t . , 14:145-159. Ore, H . T . , 1963. Some c r i t e r i a f o r r e c o g n i t i o n of b r a i d e d s t r e a m d e p o s i t s . Univ. Wyoming Cont. G e o l . , 3 : l - 1 4 . O ' R e i l l y , W . , 1976. Magnetic m i n e r a l s i n t h e c r u s t o f t h e E a r t h . Rep. Prog. Phys., 39:857-908. O r i e l , S . S . , 1949. D e f i n i t i o n s of Arkose. Am. J . S c i . , 247:824-829. Ortlam ) D . , 1967. F o s s i l e Bbden a l s L e i t h o r i z o n t e f u r d i e G l i e d e r u n g d e s Hbhern B u n t s a n d s t e i n s i m n o r d l i c h e n Schwarzwald und S u d l i c h e n Schwarzwald. Geol. J a h r b . , 8 4 : 485-500. Packham, R . F . , Rosaman, D. and Midgley, H . T . , 1961. A m i n e r a l o g i c a l examination o f t h e suspended s o l i d s from n i n e E n g l i s h R i v e r s . Clay. Min. B u l l , , 26:239-242. P a l a c h e , C . , Berman, H. and F r o n d e l , C . , 1944. The System o f M i n e r a l o g y , Vol.1. J o h n Wiley & Sons, London/New York, 834 pp. P a p e n f u s , E . B . , 1931. "Red bed" copper d e p o s i t s i n Nova S c o t i a and N e w Brunswick. Econ. G e o l . , 26: 314-330. Parham, W . E . , 1969. Formation of h a l l o y s i t e from f e l d s p a r : Low t e m p e r a t u r e , a r t i f i c i a l w e a t h e r i n g v e r s u s n a t u r a l w e a t h e r i n g . Clays and Clay M i n e r a l s , 17: 13-22. P a r k , J . K . , 1970. Acid l e a c h i n g o f r e d beds and i t s a p p l i c a t i o n t o t h e r e l a t i v e s t a b i l i t y o f t h e r e d and b l a c k m a g n e t i c components. Can. J . E a r t h S c i . , 7: 1086-1092. P a r r y , J . H . , 1957. The problem of r e v e r s e d m a g n e t i z a t i o n s and i t s s t u d y by magnetic methods. Adv. P h y s . , 6:299-305. P a s c o e , K . J . , 1961. An I n t r o d u c t i o n t o t h e P r o p e r t i e s of E n g i n e e r i n g M a t e r i a l s . B l a c k i e and Son L t d . , London/Glasgow, 295 pp. P a s s a r g e , S . , 1904. Die K a l a h a r i . D i e t r i c h R e i n e r , B e r l i n . Peach, B . W . , Horne, J . , Gunn, W . , Clough, C . T . , Hinxman, L.W. and T e a l l , J . J . H . , 1907. The g e o l o g i c a l s t r u c t u r e of t h e n o r t h w e s t Highlands of S c o t l a n d . Mem. Geol. Surv. G t . B r i t . , 1. P e c h e r s k y , D.M. and Khramov, A . N . , 1973. Mesozoic p a l a e o m a g n e t i c t i m e s c a l e of t h e U.S.S.R. N a t u r e , 244.499-501. P e r f i l ' e v , B.V. and Gabe, D . R . , 1969. C a p i l l a r y methods of i n v e s t i g a t i n g microorganisms ( T r a n s l a t e d by J.M. Shewan). T o r o n t o , Univ. T o r o n t o P r e s s , 627 pp. P e r r y , E . and Hower, J . , 1970. B u r i a l d i a g e n e s i s i n Gulf Coast p e l i t i c s e d i m e n t s . Clays and C l a y M i n e r a l s , 18:165-177. P e r r y , E . A . and Hower, J . , 1972. L a t e - s t a g e d e h y d r a t i o n i n d e e p l y b u r i e d p e l i t i c s e d i m e n t s . B u l l . Am. Assoc. P e t r o l . G e o l . , 56:2013-2021. P e r u t z , M . , 1939. R a d i o a c t i v e nodules from D e v o n s h i r e , England. M i n e r a l . P e t r o g r . M i t t e i l . , 5 1 : 141-161. P e t t i j o h n , F . J . , 1941. P e r s i s t e n c e o f heavy m i n e r a l s and g e o l o g i c a g e , J. G e o l . , 49 : 610-625. P e t t i j o h n , F . J . , 1949. Sedimentary Rocks. Harper and Row, New York 1st Ed., 526 pp. P e t t i j o h n , F . J . , 1963. Data of Geochemistry, Chapter 5 . Chemical composition of sandstones e x c l u d i n g c a r b o n a t e and v o l c a n i c s a n d s . U.S.G.S. P r o f . Paper 440-5, 2 1 PP. P e t t i j o h n , F . J . , 1975. Sedimentary Rocks. Harper and Row, 3 r d E d . , New York, 628 pp. P e t t i j o h n , F . J . , P o t t e r , P.E. and S i e v e r , R . , 1972. Sand and Sandstone. S p r i n g e r , New York, 618 pp.
-
523 P h i l i p , G . , 1968. Mineralogy o f r e c e n t s e d i m e n t s o f T i g r i s and E u p h r a t e s R i v e r s and some o f t h e o l d e r d e t r i t a l d e p o s i t s . J . Sediment. P e t r o l . , 38:35-44. P h i l l i p s , J . A . , 1882. The r e d s a n d s o f t h e A r a b i a n D e s e r t . J . g e o l . SOC. London, 38: 110-113. P h i l l i p , W . , Drong, H . J . , FUchtbauer, H . , H a d d e n h o r s t , H.G. and Jankowsky, W . , 1963. The h i s t o r y o f m i g r a t i o n i n t h e G i f h o r n t r o u g h (NW-Germany). Proc. 6 t h World P e t . Congr. F r a n k f u r t / M a i n , S e c t . 1 , P a p . , 19:457-481. P h i l l i p s , W.E.A., S t i l l m a n , C . J . a n d Murphy, T . , 1976. A Caledonian p l a t e t e c t o n i c model. J . g e o l . SOC. London, 132:579-609. P h i p p s , C . B . , 1969. P o s t - b u r i a l s i d e r i t i z a t i o n o f c a l c i t e i n Eocene beds from t h e Maracaibo b a s i n , Venezuela. Geol. Mag., 106:485-495. P i c a r d , M . D . , 1965. I r o n o x i d e s a n d f i n e g r a i n e d r o c k s of Red Peak and Crow Mountain S a n d s t o n e members, Chugwater ( T r i a s s i c ) F o r m a t i o n , Wyoming. J . Sediment. P e t r o l . , 35 : 464-479. P i c a r d , M . D . , 1977. S t r a t i g r a p h i c a n a l y s i s o f t h e Navajo S a n d s t o n e : a d i s c u s s i o n . J . Sediment. P e t r o l . , 47:475-483. P i c a r d , M.D. a n d High, L.R., 1972. P a l a e o e n v i r o n m e n t a l r e c o n s t r u c t i o n s i n a n a r e a o f r a p i d f a c i e s c h a n g e , P a r a c h u t e Creek Member of Green R i v e r Formation (Eocene), U i n t a B a s i n , Utah. Geol. SOC. Am, B u l l . , 83:2689-2708. P i c a r d , M.D. and High, L . R . J r . , 1973. S e d i m e n t a r y S t r u c t u r e s o f Ephemeral Streams. Developments i n Sedimentology, No.17, E l s e v i e r , Amsterdam, 223 pp. 1970. E o l i a n s e d i m e n t s i n t h e b a s a l New Red S a n d s t o n e o f Arran. P i p e r , D.J.W., S c o t t . J . G e o l . , 3:295-308. P i t t m a n , E . D . , 1969. D e s t r u c t i o n o f p l a g i o c l a s e t w i n s by s t r e a m t r a n s p o r t . J . Sediment. P e t r o l . , 39:1432-1437. P i t t m a n , E . D . a n d Lumsden, D . M . , 1968. R e l a t i o n s h i p between c h l o r i t e c o a t i n g s on q u a r t z g r a i n s and p o r o s i t y , S p i r o Sand, Oklahoma. J . Sediment. P e t r o l , , 38:568-670. Plumhoff, F . , 1966. Marines Ober-Rotliegendes (Perm) i n zentrum d e s nordwestdeutschen Rotliegend-Beckens; neue Beweise und Folgerungen. ErdMl u Kohle, 19:713-720. P o l l a r d , J . E . , 1969. T h r e e o s t r a c o d - m u s s e l bands i n t h e Coal Measures ( W e s t p h a l i a n ) o f Durham and Northumberland. P r o c . Yorks. g e o l . S O C . , 37:239-276. P o o l e , E.G., 1977. S t r a t i g r a p h y o f t h e S t e e p l e Aston b o r e h o l e , O x f o r d s h i r e . B u l l . g e o l . Survey G t . B r i t . , 5 7 , 85 pp. P o r a t h , H . , 1968a. Magnetic s t u d i e s on specimens o f i n t e r g r o w n maghemite a n d h e m a t i t e . J . Geophys. Res., 73:5959-5965. P o r a t h , H . , 1968b. S t r e s s i n d u c e d m a g n e t i c a n i s o t r o p y i n n a t u r a l s i n g l e c r y s t a l s of h e m a t i t e . P h i l . Mag., 17:603-608. P o r a t h , H. and Chamalaun, F.H., 1968. Palaeomagnetism of A u s t r a l i a n h e m a t i t e o r e , bodies 11. Western A u s t r a l i a . Geophys. J . R . a s t r o . S O C . , 15:253-264. P o s n j a k , E. a n d Merwin, H.E., 1922. The system Fe203-S03-H20. J . Am. Chem. S o c . , 4 4 : 1965-1994. P r i c e , R . A . , 1965. F l a t h e a d map-area, B r i t i s h Columbia a n d A l b e r t a . Geol. Surv. Canada Mem. 336, 221 pp. P r i c e , W . A . , 1962. S t a g e s o f o x i d a t i o n c o l o r a t i o n i n dune and b a r r i e r s a n d s w i t h a g e . Geol. SOC. Am. B u l l . , 73:1281-1289. P r y o r , W.A., 1971a. P e t r o l o g y o f t h e W e i s s l i e g e n d e s S a n d s t o n e s i n t h e Hazard WerraF u l d a a r e a s , Germany. Geol. Rundsch., 60:524-552. P r y o r , W.A., 1971b. P e t r o l o g y of t h e Permian Yellow Sands of n o r t h e a s t e r n England a n d t h e i r N o r t h Sea B a s i n e q u i v a l e n t s . Sediment. G e o l . , 6:221-254. P s u t y , N . B . , 1965. Beach-ridge development i n Tabasco, Mexico. Assoc. Am. Geographers Ann., pp. 112-124. P u l l a i a h , G . , I r v i n g , E . , Buchan, K.L. and Dunlop, D . J . , 1975. M a g n e t i z a t i o n changes c a u s e d by b u r i a l and u p l i f t . E a r t h P l a n e t . S c i . L e t t s . 28:133-143. P u l l a n , R . A . , 1967. A m o r p h o l o g i c a l c l a s s i f i c a t i o n o f l a t e r i t i c i r o n s t o n e s and f e r r u g i n i s e d r o c k s i n n o r t h e r n N i g e r i a . N i g e r i a n J . S c i . , 1:161-174. Ramdohr, P.D., 1969. The Ore M i n e r a l s and t h e i r I n t e r g r o w t h s . Pergamon, O x f o r d , 1174 pp. R a t t i g a n , J . H . , 1966. C y c l i c s e d i m e n t a t i o n i n t h e C a r b o n i f e r o u s C o n t i n e n t a l Kuttung F a c i e s , New S o u t h Wales, A u s t r a l i a . J . P r o c . R . SOC. N.S.W., 100:119-128.
-
524
Raup, O . B . , 1966. Clay m i n e r a l o g y o f P e n n s y l v a n i a n r e d b e d s and a s s o c i a t e d r o c k s f l a n k i n g A n c e s t r a l F r o n t Range of c e n t r a l Colorado. B u l l . Am. Assoc. P e t r o l . G e o l . , 50:251-268. Rayner, D . H . , 1963. The Achanarras Limestone of t h e Middle Old Red S a n d s t o n e , C a i t h n e s s , S c o t l a n d . Proc. Yorks. g e o l . S O C . , 34:117-138. Read, W.H. and J o h n s o n , S.R.H., 1967. The s e d i m e n t o l o g y of s a n d s t o n e f o r m a t i o n s w i t h i n t h e Upper Old Red Sandstone and l o w e s t C a l c i f e r o u s S a n d s t o n e Measures west of S t i r l i n g , S c o t l a n d . S c o t t . J. Geol., 3:242-267. Reading, H.G. ( E d i t o r ) , 1978: Sedimentary Environments and F a c i e s . B l a c k w e l l s , Oxford, 557 pp. Readman, P.W. a n d O ' R e i l l y , W . , 1972. Magnetic p r o p e r t i e s of o x i d i z e d ( C a t i o n D e f i c i e n t ) t i t a n o m a g n e t i t e s ( F e , T i , O 1304. J. Geomag. G e o e l e c t . , 24169-70. Rees, A . I . , 1961. The e f f e c t o f w a t e r c u r r e n t s on t h e m a g n e t i c remanence and a n i s o t r o p y of s u s c e p t i b i l i t y o f some s e d i m e n t s . Geophys. J . R . a s t r o . SOC.,
5:235-251. Rees, A . I . , 1965. The u s e of a n i s o t r o p y of m a g n e t i c s u s c e p t i b i l i t y i n t h e e s t i m a t i o n o f s e d i m e n t a r y f a b r i c . Sedimentology, 4: 257-271. Rees, A . I . and Woodall, W . A . , 1975. The m a g n e t i c f a b r i c o f some l a b o r a t o r y d e p o s i t e d s e d i m e n t s . E a r t h P l a n e t . S c i . L e t t s . , 25:121-130. Reeve, S . C . , L e y t h a e u s e r , D . , H e l s l e y , C . E . and Bay, K . W . , 1974. Paleomagnetic r e s u l t s from t h e Upper T r i a s s i c o f E a s t Greenland. J . Geophys. R e s . , 79:3302-3307. Reeves, C . C . J n r . , 1970. O r i g i n , c l a s s i f i c a t i o n a n d g e o l o g i c h i s t o r y o f c a l i c h e on t h e s o u t h - e a s t e r n High P l a i n s , Texas and e a s t e r n New Mexico. J . G e o l . , 78:352-362. Reeves, C.C. J n r . , 1976. C a l i c h e : O r i g i n , C l a s s i f i c a t i o n , Morphology and Uses. E s t a c a d o Books, Texas, 233 pp. R e i f e n b e r g , A . , 1947. The S o i l s of P a l e s t i n e ( T r a n s l a t e d by C . L . W h i t t l e s ) . T. Murlby 179 pp. R e i f e n b e r g , A . , 1950. D i s c u s s i o n of T.N. Jewitts P a p e r , Goz s o i l s o f t h e AngloE g y p t i a n Sudan. T r a n s . 4 t h I n t . Cong. S o i l S c i . l V , p.129. R e i n e c k , H-E, 1955. H a f t r i p p e l n und Haftwarzen, Ablagerungsformen von Flugsand. Senckenbergiana L e t h a e a , 36: 347-357. Reineck, H-E and S i n g h , I . B . , 1973. D e p o s i t i o n a l Sedimentary Environments. S p r i n g e r - V e r l a g , B e r l i n , 439 pp. R e i n h a r d t , E.W.,.1969. Geology o f t h e Precambrian r o c k s of Thubun Lakes map-area i n r e l a t i o n s h i p t o t h e McDonald F a u l t system. Geol. Sum. Canada p a p e r 69-21. Reynolds, D . L . , 1929. Some new o c c u r r e n c e s of a u t h i g e n i c p o t a s h f e l d s p a r . Geol. Mag.,
66:390-399. Reynolds, R.C. and Hower, J . , 1970. The n a t u r e of i n t e r l a y e r i n g i n mixed l a y e r i l l i t e - m o n t m o r i l l o n i t e . C l a y s and C l a y M i n e r a l s , 18:25-36. R i b a , O . , 1955. S u r l e t y p e d e s e d i m e n t a t i o n du T e r t i a r e c o n t i n e n t a l de l a p a r t i e o u e s t du b a s s i n d e 1 ' E b r e . Geol. Rundschau, 43:363-371. R i c h a r d s o n , E.S. and H a r r i s o n , C . G . A . , 1976. Opening o f t h e Red Sea w i t h two p o l e s of r o t a t i o n . E a r t h P l a n e t . S c i . L e t t s . , 30:135-142. R i c h t e r , M . , 1927. Molasse und Alpen. Deutsch. Geol. G e s e l l . Z e i t . , 79:124-135. R i c h t e r - B e r n b u r g , G . , 1955. Der Z e c h s t e i n zwischen Harz und R h e i n i s c h e S c h i e f e r g e b i r g e . 2. d e u t s c h . g e o l . Gesell. 10514, 876-899. R i c k a r d , D.T., 1974. K i n e t i c s and mechanisms of t h e s u l f i d a t i o n o f g o e t h i t e . Am. J . S c i . , 274:941-952. R i m , M., 1951. The i n f l u e n c e o f g e o p h y s i c a l p r o c e s s e s on t h e s t r a t i f i c a t i o n o f sandy s o i l s . J . S o i l S c i . , 2:188-195. R i m s a i t e , J . , 1967. B i o t i t e s i n t e r m e d i a t e between d i o c t a h e d r a l and t r i o c t a h e d r a l micas. Clays and C l a y M i n e r a l s , 15:375-393. R i m s a i t e , J . , 1970. S t r u c t u r a l formulae of o x i d i z e d and h y d r o x y l - d e f i c i e n t micas and decomposition o f t h e hydroxyl group. Contr. Min. P e t r . , 25:225-240. R i t t e n h o u s e , G . , 1971a. Pore-space r e d u c t i o n by s o l u t i o n and c e n e n t a t i o n . B u l l . Am. Assoc. P e t r o l . Geol., 55:80-91. R i t t e n h o u s e , G . , 1971b. Mechanical compaction of s a n d s c o n t a i n i n g d i f f e r e n t p e r c e n t a g e s of d u c t i l e g r a i n s : a t h e o r e t i c a l approach. Bull. Am. Assoc. P e t r o l . G e o l . ,
55 : 92-98.
525
-
R o b e r t s o n , W.A. and F a h r i g , W.F., 1971. The G r e a t Logan p a l e o m a g n e t i c loop the p o l a r wandering p a t h from Canadian S h i e l d r o c k s d u r i n g t h e N e o h e l i k i a n Era. Can. J . E a r t h S c i . , 8:1355-1372. Rodin, L.E. and B a z i l e v i c h , N . I . , 1967. P r o d u c t i o n and M i n e r a l C y c l i n g i n T e r r e s t r i a l V e g e t a t i o n ( T r a n s l a t e d by G . E . Fogg). O l i v e r and Boyd, Edinburgh/London, 288 pp,. Roquet, J . , 1954. Sur les rdmanences d e s oxyges de f e r e t l e u r i n t d r s t e n gebmagnetisme. Ann. Geophys., 10:226-247, 282-325. Rose, A . W . , 1976. The e f f e c t of cuprous c h l o r i d e complexes i n t h e o r i g i n o f red-bed copper and r e l a t e d d e p o s i t s . Econ. G e o l . , 71:1036-1048. Rose, A.W. and S u h r , N . H . , 1971. Major e l e m e n t c o n t e n t a s a means of a l l o w i n g f o r background v a r i a t i o n i n s t r e a m s e d i m e n t geochemical e x p l o r a t i o n . I n : R.W. Boyle ( E d i t o r ) , Geochemical E x p l o r a t i o n . Can. I n s t . Min. M e t a l l . Spec. Vo1.11:587-593. Ross, C . S . , 1928. Sedimentary a n a l c i t e . Am. Min., 13:195-197. Roy, J . L . and P a r k , J . K . , 1972. Red b e d s - DRM o r CRM? E a r t h P l a n e t . S c i . L e t t s . , 1 7 ; 211-216. Roy, J . L . and P a r k , J.K., 1974. The m a g n e t i z a t i o n p r o c e s s of c e r t a i n r e d b e d s : V e c t o r a n a l y s i s of chemical and t h e r m a l r e s u l t s . Can. J . E a r t h S c i . , 11:437-471. Ruhe, R . V . , 1967. Geomorphic s u r f a c e s and s u r f i c i a l d e p o s i t s i n s o u t h e r n New Mexico. Mem. New Mexico S t a t e Bureau o f Mines and M i n e r a l R e s o u r c e s , 18, 66 pp. Ruhe, R . V . , 1969. P r i n c i p l e s f o r d a t i n g pedogenic e v e n t s i n t h e Q u a t e r n a r y . S o i l S c i . , 103: 398-401. Rumble, D . 111, 1976. Oxide m i n e r a l s i n metamorphic r o c k s . In: D. Rumble 111 ( E d i t o r ) , Oxide M i n e r a l s . Min. S O C . America, S h o r t Course N o t e s , pp.Rl-R24. Runcorn, S . K . , 1955. Palaeomagnetism of s e d i m e n t s from t h e Colorado p l a t e a u . N a t u r e , 176:505-506. Runcorn, S . K . , 1956. Paleomagnetic s u r v e y i n Arizona and Utah. P r e l i m i n a r y r e s u l t s . Geol. S O C . Am. B u l l . , 67:301-316. R u s s e l l , R . J . , 1954. A l l u v i a l morphology of A n a t o l i a n r i v e r s . Ann. Assoc. Am. Geogr. 44: 363-391. R u s s e l l , R . J . , 1956. Environmental changes t h r o u g h f o r c e s i n d e p e n d e n t of man. I n : W.J. Thomas ( E d i t o r ) , M a n ' s R o l e I n Changing t h e Face of t h e E a r t h . Chicago U n i v e r s i t y P r e s s , Chicago, pp.453-470. R u s t , B . R . , 1972. S t r u c t u r e and p r o c e s s i n a b r a i d e d r i v e r . Sedimentology, 18:221-245. R u z y l a , K . , 1977. S t r a t i g r a p h i c a n a l y s i s o f t h e Navajo Sandstone: a d i s c u s s i o n . J . Sediment. P e t r o l . , 47;489-491, R y a l l , P.J.L. and Ade-Hall, J . M . , 1975. L a b o r a t o r y ' i n d u c e d s e l f r e v e r s a l of thermoremanent m a g n e t i z a t i o n i n p i l l o w b a s a l t s . N a t u r e , 257:117-118. Sallomy, J . T . a n d P i p e r , J . D . A . , 1973. Palaeomagnetic s t u d i e s i n t h e B r i t i s h Caledonides - I V . Lower Devonian l a v a s of t h e S t r a t h m o r e r e g i o n , S c o t l a n d . Geophys. J . R . a s t r o . S O C . , 34:47-68. S a n d e r s , J . R . , 1963. L a t e T r i a s s i c h i s t o r y of n o r t h e a s t e r n United S t a t e s . Am. J . S c i . , 261: 501-5 14. S a n d e r s o n , I . D . , 1974. Sedimentary s t r u c t u r e s and t h e i r e n v i r o n m e n t a l s i g n i f i c a n c e i n t h e Navajo S a n d s t o n e , San R a f a e l S w e l l , Utah. Brigham Young Univ. Geol. S t u d s . , 21:215-246. S a n d f o r d , K . S . , 1935. G e o l o g i c a l o b s e r v a t i o n s on t h e n o r t h w e s t f r o n t i e r of t h e AngloE g y p t i a n Sudan and t h e a d j o i n i n g p a r t of t h e s o u t h e r n Libyan D e s e r t . Quart. J. g e o l . SOC. London, 91:323-381. S a s s a n o , G . P . , Baadsgaard, H. and Morton, R . D . , 1972. Rb-Sr s y s t e m a t i c s of t h e F o o t Bay G n e i s s , Donaldson Lake G n e i s s and p e g m a t i t e d i k e s from t h e Fay Mine Northwest Saskatchewan. Can. J . E a r t h S c i . , 9: 1368-1381. S c h l f e r , W . , 1973. Der O b e r r h e i n , s t e r b e n d e L a n d s c h a f t . Natur. Mns., 103:l-29. S c h l u g e r , P.R. a n d Roberson, H . E . , 1975. Mineralogy and c h e m i s t r y o f t h e P a t a p s c o Formation, Maryland, r e l a t e d t o t h e ground-water g e o c h e m i s t r y and flow system: A c o n t r i b u t i o n t o t h e o r i g i n o f r e d beds. Geol. SOC. Am. B u l l . , 86:153-158. Schmalz, R . F . , 1959. A n o t e on t h e s y s t e m Fe203-HzO. J . Geophys. Res., 64:575-579. Schmalz, R . F . , 1968. Formation o f r e d beds i n modern and a n c i e n t d e s e r t s . D i s c u s s i o n . Geol. S O C . Am. B u l l . , 79:277-280. Schmidt, P.W., Embleton, B . J . J . , 1976. Palaeomagnetic r e s u l t s from s e d i m e n t s of t h e P e r t h B a s i n , Western A u s t r a l i a , a n d t h e i r b e a r i n g on t h e timing of r e g i o n a l l a t e r i t i s a t i o n . Palaeogeog. P a l a e o c l i m . P a l a e o e c o l . , 19:257-273.
526
Schmidt-Thome, P . , 1963. Le b a s s i n d e l a Molasse de'Allemagne du Sud. I n - L i v r e a l a memoire du P r o f e s s o r P a u l F a l l o t . SOC. Geol. F r a n c e , 2:431-452. S c h o e f f l e r , J . , 1971. E t u d e s t r u c t u r a l e de t e r r a i n s m o l a s s i q u e s du piedmont-nord des Pyrenees de Peyrehorade a Carcassone. D.Sc. T h e s i s . Univ. Bordeaux, Bordeaux, F r a n c e , No. 346. S c h o e l l , M . , 1975. P r e v i o u s and c u r r e n t i d e a s on t h e o r i g i n of the Red Sea b r i n e s . Ocean I n t . Conf. P a p e r s , 75:115-117. Schoen, R . , 1962. S e m i q u a n t i t a t i v e a n a l y s i s of c h l o r i t e s by X-ray d i f f r a c t i o n . Am. Min., 47: 1384-1392. S c h r o e e r , D. and N i n i n g e r , R . C . , 1967. Morin t r a n s i t i o n i n q - F e 2 0 3 m i c r o c r y s t a l s . Phys. Rev. L e t t . , 19:632-634. S c h u c h e r t , C . , 1923. S i t e s and n a t u r e s o f t h e N o r t h American g e o s y n c l i n e s . Geol. SOC. Am. B u l l . , 34:151-260. Schumm, S . A . , 1963. S i n u o s i t y o f a l l u v i a l r i v e r s on t h e G r e a t P l a i n s . Geol. SOC. Am. B u l l . , 74: 1089-1100. Schumm, S.A., 1968. S p e c u l a t i o n s c o n c e r n i n g p a l e o h y d r o l o g i c c o n t r o l s of t e r r e s t r i a l s e d i m e n t a t i o n . Geol. SOC. Am. B u l l . , 79: 1573-1588. Schumm, S.A. and Kahn, H . R . , 1972. E x p e r i m e n t a l s t u d y of c h a n n e l p a t t e r n s . B u l l . Geol. SOC. A m . , 83: 1755-1770. Schwarz, E . J . , 1969. Thermomagnetic a n a l y s i s of some r e d b e d s . E a r t h P l a n e t . S c i . L e t t s . , 5 : 333-338. Schwarz, E . J . , 1970. Magnetochemical a s p e c t s of t h e h e a t i n g of r e d and g r e e n beds. Geol. S u m . Canada, P a p e r 70-63, pp.31-34. Schwarzbach, M . , 1963. C l i m a t e s of t h e P a s t . Nostrand Co. L t d . , 328 pp. Schwertmann, U . , 1965. Zur g o e t h i t - u n d H l m a t i t b i l d u n g a u s amorphen E i s e n (111)hydroxide. Z e i t . P h a n z e n e r r l h r u n g , Dungung, Bodenkunde, 108:37-45. Schwertmann, U., 1970. Der e i n f l u s s o r g a n i s c h e r a n i o n e n a u f d i e b i l d u n g von g o e t h i t und h l m a t i t a u s amorphem (Fell')-hydroxid. Geoderma, 3: 207-214. Schwertmann, U. and T a y l o r , R . M . , 1972, The t r a n s f o r m a t i o n o f l e p i d o c r o c i t e t o g o e t h i t e . Clays and Clay M i n e r a l s , 20: 151-158. Scozek, V. and S a a d a l l a h , A . A . . 1972. G r a i n s i z e d i s t r i b u t i o n , c a r b o n a t e c o n t e n t and heavy m i n e r a l s i n e o l i a n s a n d s , S o u t h e r n Desert, I r a q . Sediment. G e o l . , 8:29-46. S c r u t o n , P.C., 1960. D e l t a b u i l d i n g and t h e d e l t a i c sequence. I n : F.P. S h e p a r d , F.B. P h l e g e r and T.H. van Andel ( E d i t o r s ) , Recent S e d i m e n t s , Northwest Gulf o f Mexico. Am. Assoc. P e t r o l . G e o l . , T u l s a , pp.82-102. Seddoh, F. and P e d r o , G . , 1974. Characte'rization d e s d i f f g r e n t s s t a g e s d e t r a n s f o r m a t i o n d e s b i o t i t e s e t b i o t i t e s c h l o r i t i s e ' e s dans les a r h e s g r a n i t i q u e s du Morran. Consdquences mine'ralogiques e t g6ochemiques s u r 1' e v o l u t i o n d e s micas dans les c o n d i t i o n s du s u r f a c e du Globe. Bull. Grpe. F r . A r g i l e s , 26:107-125. S e l l e y , R . C . , 1965. D i a g n o s t i c c h a r a c t e r s of f l u v i a t i l e s e d i m e n t s of t h e T o r r i d o n i a n Formation (Precambrian) o f North-west S c o t l a n d . 3. Sediment. P e t r o l . , 35:366-380. S e l l e y , R . C . , 1966. P e t r o g r a p h y of t h e T o r r i d o n i a n r o c k s o f Raasay and S c a l p a y , I n v e r n e s s - s h i r e . Proc. Geol. Ass., 77:293-314. S e l l e y , R . C . , 1969. T o r r i d o n i a n a l l u v i u m and q u i c k s a n d s . S c o t t . J . G e o l . , 5:328-346. S e l l e y , R . C . , 1970. A n c i e n t Sedimentary Environments. Chapman and H a l l , London, 237pp. Senderov, E . E . , 1963. C r y s t a l l i z a t i o n o f m o r d e n i t e under hydrothermal c o n d i t i o n s . Geochemistry, 1:848-859. S h a p i r o , J . , 1957. Chemical and b i o l o g i c a l s t u d i e s on t h e y e l l o w o r g a n i c a c i d s o f l a k e w a t e r . Limnol. Oceangr., 2:161-179. S h a p i r o , J . , 1964. E f f e c t o f y e l l o w o r g a n i c a c i d s on i r o n and o t h e r m e t a l s i n w a t e r . J . Am. Water Wks. Ass. 56:1062-1082. S h a p i r o , J , , 1966. The r e l a t i o n of humic c o l o r t o i r o n i n n a t u r a l w a t e r s . Verh. I n t . Ver. Limnol., 16:477-484. i t s c h a r a c t e r i s t i c s and b i o l o g i c a l S h a p i r o , J . , 1969. I r o n i n n a t u r a l w a t e r s a v a i l a b i l i t y a s d e t e r m i n e d w i t h t h e f e r r i g r a i n . Verh. I n t . Ver. Limnol., 17: 456-466. S h a r p , R.P., 1963. Wind r i p p l e s . J . G e o l . , 71:617-636. S h a r p , R.P., 1966. K e l s o d u n e s , Mojave Desert, C a l i f o r n i a . Geol. SOC. Am. B u l l . , 77:1045-1074. S h a r p , R.P. and Nobles, L . H . , 1953. Mudflow o f 1941 a t Wrightswood, S o u t h e r n C a l i f o r n i a . Geol. SOC. Am. B u l l . , 64:547-560.
-
527
S h a t s k i , N.S., 1955. The o r i g i n of t h e Pachelma t r e n c h . Comparative t e c t o n i c s o f a n c i e n t p l a t f o r m s . B u l l . Moscow SOC. N a t u r a l i s t s . Geol. S e c t . Pap. No.5, 30:5-26. Shenhav, H . , 1971. Lower C r e t a c e o u s s a n d s t o n e r e s e r v o i r s , I s r a e l : p e t r o g r a p h y , p o r o s i t y , p e r m e a b i l i t y . B u l l . Am. Assoc. P e t r o l . G e o l . , 55:2194-2224. Sheppard, R . A . , 1971. Z e o l i t e s i n s e d i m e n t a r y d e p o s i t s of t h e United S t a t e s A review. I n . R.F. Gould ( E d i t o r ) , Molecular S i e v e Z e o l i t e s 1: Am. Chem. SOC. Advances i n Chemistry, Ser. 101, pp.279-310. Sheppard, R.A. and Gude, A . J . , 1968. D i s t r i b u t i o n and g e n e s i s o f a u t h i g e n i c s i l i c a t e m i n e r a l s i n t u f f s of P l e i s t o c e n e Lake Tecopa, I n y o County, C a l i f o r n i a . U.S.G.S. P r o f . P a p e r 5 9 7 , 38 pp. Sheppard, R.A. and Gude, A . J . , 1969. D i a g e n e s i s of t u f f s i n t h e Barstow Formation, Mud H i l l s , San B a r n a r d i n o County, C a l i f o r n i a . U.S.G.S. P r o f . Paper 634, 35 pp. Sheppard, R.A. and Gude, A . J . , 1973. Z e o l i t e s and a s s o c i a t e d a u t h i g e n i c s i l i c a t e m i n e r a l s i n t u f f a c e o u s r o c k s of t h e Big Sandy Formation, Mohare County, Arizona. U.S.G.S. P r o f . Paper 830, 36 pp. S h e r l o c k , R . L . , 1926. A c o r r e l a t i o n of t h e B r i t i s h Permo-Triassic r o c k s , p t . 1 : North England, S c o t l a n d and I r e l a n d . Proc. Geol. Ass., 37: 1-72. S h e r l o c k , R.L., 1928. A c o r r e l a t i o n of t h e B r i t i s h Permo-Triassic r o c k s , p t . 2 : England, s o u t h of t h e Pennines and Wales. Proc. Geol. Ass., 39:49-95. S h e r l o c k , R . L . , 1947. The Permo-Triassic Formations. A World Review. Hutchinson, London, 367 pp. S h i r a n e , G . , P i c k a r t , S . J . , Nathans, R. and I s h i k a w a , Y . , 1959. N e u t r o n - d i f f r a c t i o n s t u d y o f a n t i f e r r o m a g n e t i c FeTiOj and i t s s o l i d s o l u t i o n s w i t h N-Fe203. 3 . Phys. Chem. S o l i d s , 10: 35-43. Shoemaker, E.M. and Newman, W . L . , 1959. Moenkopi Formation ( T r i a s s i c ? and T r i a s s i c ) i n s a l t a n t i c l i n e r e g i o n , Colorado and Utah. B u l l . Am. Assoc. P e t r o l . G e o l . , 43: 1835-1851. S h o t t o n , F.W., 1937. The Lower Bunter Sandstones of n o r t h W o r c e s t e r s h i r e and e a s t S h r o p s h i r e . Geol. Mag., 74:534-553. S h o t t o n , F.W., 1956. Some a s p e c t s of t h e New Red D e s e r t i n B r i t a i n . Geol. J., 1:450-465. S h u l l , C . G . , S t a u s e r , W . A . , and Wollan, E . O . , 1951. Neutron d i f f r a c t i o n by paramagnetic and a n t i f e r r o m a g n e t i c s u b s t a n c e s . Phys. Rev., 83:333-345. S i e s s e r , W.G., 1973. D i a g e n e t i c a l l y formed o o i d s and i n t r a c l a s t s i n South A f r i c a n c a l c r e t e s . Sedimentology, 20:539-551. S i l v e r , E . A . , 1969. L a t e Cenozoic u n d e r t h r u s t i n g o f t h e c o n t i n e n t a l margin o f f n o r t h e r n m o s t C a l i f o r n i a . S c i e n c e , 166: 1265-1266. Simonen, A. and Kuovo, O . , 1955. Sandstones i n F i n l a n d . B u l l . Comm. Geol. F i n l a n d e , 168 : 5 7- 87. Simpson, J . B . and R i c h e y , J . E . , 1936. The geology of t h e Sanquhar C o a l f i e l d . Mem. g e o l . Survey, S c o t l a n d , 97 pp. S i n g e r , P.C. and M o r r i s , J . C . , 1969. Oxygenation of f e r r o u s i r o n . Water P o l l u t i o n . C e n t r a l R e s e a r c h S e r i e s No.14010-06/69 U.S. Govt. P r i n t i n g O f f i c e , Washington, D.C S i n g h , I . B . , 1972. On t h e bedding i n t h e n a t u r a l - l e v e e and t h e p o i n t b a r d e p o s i t s of t h e Gomti R i v e r , U t t a r P r a d e s h , I n d i a . Sediment. G e o l . , 7:309-317. S i n g h , L. and S i n g h , S . , 1972. Chemical and m o r p h o l o g i c a l composition of Kankar n o d u l e s i n s o i l s of t h e Vindhyan r e g i o n of M i r z a p u r , I n d i a . Geoderma, 7:269-276. S i n h a , R.N., 1970. Cardium Formation, Edson a r e a , A l b e r t a . Geol. Surv. Canada, Paper 68-30, 65 pp. S i v a r a j a s i n g h a m , S . , A l e x a n d e r , L.T., Cady, J . G . and C l i n e , M . G . , 1962. L a t e r i t e . Adv. Agron. New York, 14:l-60. Slhnska', J . , 1976. A red-bed f o r m a t i o n i n t h e South Bohemian B a s i n s , Czechoslovakia. Sediment. G e o l . , 15: 135-164. Smalley, I.J., 1964. Flow s t i c k t r a n s i t i o n s i n powders. N a t u r e , 201:173-174. S m a l l e y , I . J . , 1970. Cohesion of s o i l p a r t i c l e s and t h e i n t r i n s i c r e s i s t a n c e of s i m p l e s o i l s y s t e m s t o wind e r o s i o n . 3. S o i l . S c i . , 21.154-161. S m i t h , A.E. J r . , 1966. Modern d e l t a s : Comparison maps. I n : M.L. S h i r l e y ( E d i t o r ) , D e l t a s i n T h e i r Geologic Framework. Houston Geol. S o c . , Houston, p.233. Smith, A . G . , B r i d e n , J . C . and Drewry, G.E., 1973. Phanerozoic world maps. I n : N.F. Hughes ( E d i t o r ) , Organism and C o n t i n e n t s Trhough T i m e , Spec. P a p e r s i n P a l a e o n t . 1 2 , pp.1-39.
-
-
528 Smith, D . B . , 1979. Rapid m a r i n e t r a n s g r e s s i o n s and r e g r e s s i o n s o f t h e Upper Permian Z e c h s t e i n Sea. J . g e o l . SOC. London, 136:155-156. Smith, E . E . and Schumate, K . S . , 1970. S u l f i d e t o s u l f a t e r e a c t i o n mechanism. Water P o l l u t i o n C o n t r o l R e s e a r c h S e r i e s . No.14010 FPS 0 2 / 7 0 U.S. Govt. P r i n t i n g O f f i c e , Washington D . C . Smith, F.G. and Kidd, D . J . , 1949. H e m a t i t e - g o e t h i t e r e l a t i o n s i n n e u t r a l and a l k a l i n e s o l u t i o n s under p r e s s u r e . Am. Min., 34:403-312. Smith, J . V . , 1974. F e l d s p a r M i n e r a l s : V o l . 1 - C r y s t a l s t r u c t u r e and p h y s i c a l p r o p e r t i e s . S p r i n g e r - V e r l a g , B e r l i n , 627 pp. Smith, N . D . , 1970. The b r a i d e d s t r e a m d e p o s i t i o n a l environment: comparison o f t h e P l a t t e R i v e r w i t h some S i l u r i a n c l a s t i c r o c k s , N o r t h - C e n t r a l A p p a l a c h i a n s . Geol. SOC. Am. B u l l . , 81:2993-3014. Smith, N . D . , 1971a. Pseudo-planar c r o s s - s t r a t i f i c a t i o n produced by v e r y low a m p l i t u d e sand waves. J . Sediment. P e t r o l . , 41:69-73. Smith, N . D . , 1971b. T r a n s v e r s e b a r s and b r a i d i n g i n t h e Lower P l a t t e R i v e r , Nebraska. Geol. SOC. Am. B u l l . , 82:3407-3420. Smith, N . D . , 1972. Some s e d i m e n t o l o g i c a l a s p e c t s of p l a n a r c r o s s - s t r a t i f i c a t i o n i n a sandy b r a i d e d r i v e r . J . Sediment. P e t r o l . , 42:624-634. Smith, N . D . , 1974. Sedimentology and b a r f o r m a t i o n i n t h e Upper Kicking Horse R i v e r , a b r a i d e d outwash s t r e a m . J . G e o l . , 82:205-224. Smith, R.W. and F u l l e r , M . , 1967. Alpha-hematite: s t a b l e remanence and memory. S c i e n c e , 156: 1130-1133. S o i l e u , J . N . and McCracken, R . J . , 1967. F r e e i r o n and c o l o r a t i o n i n c e r t a i n w e l l d r a i n e d c o a s t a l p l a i n s o i l s i n r e l a t i o n t o t h e i r o t h e r p r o p e r t i e s and c l a s s i f i c a t i o n . S o i l . S c i . SOC. America, P r o c . , 31:248-255. Sokolova, G . A . , 1961. Roll z h a l e z o b a k t e r i i v dinamike Zheleza v Glubokom Ozere. Trudy Vses. G i d r o b i o l . Obschch., 1 1 . 5 - 1 1 , Sokolova-Dubinina, G . A . and D e r j u g i n a , Z . P . , 1967. A s t u d y of t h e p r o c e s s of i r o n manganese c o n c r e t i o n f o r m a t i o n i n Lake Punnus-Yarvi. M i k r o b i o l o g i y a , 36:1066-1076 (Russian). Sokolova-Dubinina, G . A . and D e r j u g i n a , Z . P . , 1968. M i c r o b i o l o g i c a l f o r m a t i o n of manganese o r e i n l a k e s under d i f f e r e n t c o n d i t i o n s . M i k r o b i o l o g i y a , 37:147-151. Sokolow, N . A . , 1894. Die Dunen, B i l d u n g , Entwicklung und i n n e r e r Bas. J u l i u s S p r i n g e r , B e r l i n , 298 pp. S o l e r , M. and Puig d e f a b r e g a s , C . , 1970. L i n e a s g e n e r a l e s de l a g e o l o g i a d e l a l t a Aragon o c c i d e n t a l . P i r e n e o s , 96:5-20. S o r o k i n , J u . I . , 1970. I n t e r r e l a t i o n s between s u l p h u r and carbon t u r n o v e r i n meromictic l a k e s . Arch. H y d r o b i o l . , 66:391-446. S p a l l , H . , 1971. Precambrian a p p a r e n t p o l a r wandering e v i d e n c e from North America. E a r t h P l a n e t . S c i . L e t t s . , 10:273-280. S p r i n g e r , R . K . , 1974. C o n t a c t mptamorphism o f u l t r a m a f i c r o c k s i n t h e Sierra Nevada f o o t h i l l s , C a l i f o r n i a . J . t c ~ r o l . ,15:160-195. S q u i r r e l , H . C . and Downing, R . A . , 1964. The a t t e n u a t i o n of t h e Coal Measures i n t h e s o u t h - e a s t p a r t of t h e S o u t h Wales C o a l f i e l d . B u l l . g e o l . Surv. G t . B r i t . , 21: 119-132. S r i n i v a s a n , R. and S r e e n i v a s , B . L . , 1972. Dharwar s t r a t i g r a p h y . J. g e o l . SOC. I n d i a , 13: 75-85. S t a c e y , F.D., 1963. The p h y s i c a l t h e o r y of rock magnetism. P h i l . Mag. Supp. Adv. Phys. 12:46-133. S t a c e y , F.D. and B a n e r j e e , S.K., 1974. The P h y s i c a l P r i n c i p l e s o f Rock Magnetism. Developments i n S o l i d E a r t h Geophysics 5 , E l s e v i e r , Amsterdam, 195 pp. S t a l d e r , P . J . , 1973. I n f l u e n c e of c r y s t a l l o g r a p h i c h a b i t and a g g r e g a t e s t r u c t u r e o f a u t h i g e n i c c l a y m i n e r a l s on s a n d s t o n e p e r m e a b i l i t y . Geol. en Mijnbouw, 52:217-219. S t a l d e r , P . J . , 1975. Cementation of P l i o c e n e - Q u a t e r n a r y f l u v i a t i l e c l a s t i c d e p o s i t s i n and a l o n g t h e Oman Mountains. Geol. en Mijnbouw, 54:148-156.. S t a n l e y , D . J . , 1970. F l y s c h o i d s e d i m e n t a t i o n on t h e o u t e r A t l a n t i c margin o f n o r t h e a s t North America. I n : J . L a j o i e ( E d i t o r ) , F l y s c h Sedimentology i n North America. Spec. Pap. g e o l . A s s . Canada, 7 , pp.179-210. S t a n l e y , K . O . , J o r d o n , W.M. and D o t t , R.H. J r . , 1971. E a r l y J u r a s s i c palaeogeography, w e s t e r n U n i t e d S t a t e s . B u l l . Am. Assoc. P e t r o l . G e o l . , 55:lO-19.
529
S t a u b , J.R. and Cohen, A.D., 1978. K a o l i n i t e - e n r i c h m e n t b e n e a t h c o a l s : a modern a n a l o g , Snuggedy Swamp, S o u t h C a r o l i n a . J . Sediment. P e t r o l . , 48:203-210. S t e e l , R . J . , 1974. New Red S a n d s t o n e f l o o d p l a i n and piedmont s e d i m e n t a t i o n i n t h e Hebridean p r o v i n c e , S c o t l a n d . J . Sediment. P e t r o l . , 44:336-357. S t e e l , R . J . , 1976. Devonian b a s i n s of w e s t e r n Norway Sedimentary r e s p o n s e t o t e c t o n i s m and t o v a r y i n g t e c t o n i c c o n t e x t . T e c t o n o p h y s i c s , 36:207-224. S t e e l , R . J . and W i l s o n , A . C . , 1975. S e d i m e n t a t i o n and t e c t o n i c s (1Permo-Triassic) on t h e margin o f t h e N o r t h Minch B a s i n , J. g e o l . SOC. London, 131:183-202. S t e e r , R. and Aasheim, S:M., 1978. A l l u v i a l s a n d d e p o s i t i o n i n a r a p i d l y s u b s i d i n g b a s i n (Devonian, Norway). I n : A.D. M i a l l ( E d i t o r ) , F l u v i a l Sedimentology. Can. SOC. P e t r o l . Geol. Memoir 55 pp.385-412. S t e e l , R . J . , Maehle, S . , N i l s e n , H . , Rde, S.L. and S p i n n a g e r , A . , 1977. Coarseningupwards c y c l e s i n t h e a l l u v i u m o f Hornelen B a s i n (Devonian) Norway: Sedimentary r e s p o n s e t o t e c t o n i c e v e n t s . Geol. SOC. Am. B u l l . , 88:1124-1134. S t e i d t m a n n , J . R . , 1974. Evidence f o r e o l i a n o r i g i n o f c r o s s - s t r a t i f i c a t i o n i n sands t o n e of t h e Casper F o r m a t i o n , Southernmost Laramie B a s i n , Wyoming. Geol. SOC. Am. B u l l . , 85:1835-1942. S t e i d t m a n n , J . R . , 1977. S t r a t i g r a p h i c a n a l y s i s of t h e Navajo Sandstone: a d i s c u s s i o n . 3. Sediment. P e t r o l . , 47:484-489. S t e i n e r , M. and H e l s l e y , C . E . , 1974a. Magnetic p o l a r i t y sequence of t h e Upper T r i a s s i c Kayenta Formation. Geology, 2: 191-194. S t e i n e r , M.B. and H e l s l e y , C.E., 1974b. R e p r o d u c i b l e anomalous Upper T r i a s s i c m a g n e t i z a t i o n . Geology, 2:195-198. Steinmann, G . , 1905. G e o l o g i s c h e Beobachtungen i n den Alpen. 11. Die S c h a r d t s c h e U b e r f a l t u n g s t h e o r i e und d i e g e o l o g i s c h e Bedentung d e r T i e f s e e a b s l t z e und d e r o p h i o l i t h i s c h e n M a s s e n g e s t e i n e . Ber. N a t u r f . Ges. F r e i b u r g , 16:435-468. Steinmann, G . , 1927. Die o p h i o l i t h i s c h e n Zonen i n den M e d i t t e r r a n e n K e t t e n g e b i r g e n . C.R. I n t e r n . n e o l . Congr. 1 4 , Madrid, pp.637-667. S t e p h a n , I . , 1952. A s t u d y o f r o c k w e a t h e r i n g w i t h r e f e r e n c e t o t h e s o i l s of t h e Malvern H i l l s . P a r t 2. Weathering o f a p p i n i t e and I v y S c a r Rocks. J . S o i l S c i . , 3:219-237. S t e p h a n , W . , 1965. Zur f a z i e l l e n und z y k l i s c h e n G l i e d u r u n g d e r c h a t t i s c h e n brackwasser -Molasse i n Oberbayern. Geologica B a v a r i c a , 55:239-267. S t e p h e n s , C . G . , 1961. The s o i l l a n d s c a p e s o f A u s t r a l i a . C.S.I.R.O. S o i l P u b l . , 18; 43 PP. S t e p h e n s , C . G . , 1971. L a t e r i t e and s i l c r e t e i n A u s t r a l i a : a s t u d y of t h e g e n e t i c r e l a t i o n s h i p s o f l a t e r i t e and s i l c r e t e and t h e i r c o m p o s i t i o n m a t e r i a l s , and t h e i r c o l l e c t i v e s i g n i f i c a n c e i n t h e weathered m a n t l e s o i l s , r e l i e f and d r a i n a g e o f t h e A u s t r a l i a n c o n t i n e n t . Geoderma, 5:5-52. S t e p h e n s o n , A . , 1967. The e f f e c t of h e a t t r e a t m e n t on t h e m a g n e t i c p r o p e r t i e s o f t h e Old Red Sandstone. Geophys. J . R . a s t r o . S O C . , 13:425-440. S t e w a r t , A.D. and E . I r v i n g , 1974. Palaeomagnetism of Precambrian s e d i m e n t a r y r o c k s from NW S c o t l a n d a n d t h e a p p a r e n t p o l a r wandering p a t h of L a u r e n t i a . Geophys. J.R. a s t r o . S O C . , 37:51-72. S t e w a r t , J . H . , 1959. S t r a t i g r a p h i c r e l a t i o n s of H o s k i n n i n i Member ( T r i a s s i c ? ) of Moenkopi Formation on Colorado P l a t e a u , B u l l . Am. Assoc. P e t r o l . G e o l . , 43: 1852- 1868. S t i l l e , H . , 1936. Wege und E r g e b n i s s e d e r g e o l o g i s c h - t e k t o n i s c h e n Forschung. 25 J a r h , K a i s e r Wilhelm Ges., 2:77-97. S t i l l e , H . , 1940. EinfUhrung i n den Ban Nordamerikas. B o r n t r a e g e r , B e r l i n , 717 pp. S t o c k w e l l , C . H . , 1968. T e c t o n i c map of Canada. Geol. Surv. Can. Map 1251 A. S t o e r t z , G. and E r i c k s e n , G . E . , 1974. Geology o f s a l a r s i n Northern C h i l e . U.S.G.S. P r o f . Paper 811, 65 pp. S t o k e s , W.L., 1968. M u l t i p l e p a r a l l e l - t r u n c a t i o n bedding p l a n e s a f e a t u r e of wind d e p o s i t e d s a n d s t o n e f o r m a t i o n s . J . Sediment. P e t r o l . , 38:510-515. S t o r e t v e d t , K.M., 1970a. On r e m a g n e t i z a t i o n problems i n palaeomagnetism; f u r t h e r c o n s i d e r a t i o n s . E a r t h P l a n e t . S c i . L e t t s . , 9:407-415. S t o r e t v e d t , K . M . , 1970b. The Devonian p a l a e o m a g n e t i c f i e l d f o r Europe. I n : S.K. Runcorn ( E d i t o r ) , P a l a e o g e o p h y s i c s . Academic P r e s s , LondonINew York, pp.247-252. S t o r e t v e d t , K . M . , 1971. Some p a l a e o m a g n e t i c problems of s t r o n g l y o x i d i z e d r o c k s . Z e i t s c h r l f t f u r Geophysik, 37, 487-492.
-
-
530 S t o r e t v e d t , K . M . , 1974. A p o s s i b l e l a r g e s c a l e s i n i s t r a l d i s p l a c e m e n t a l o n g t h e t h e G r e a t Glen F a u l t i n S c o t l a n d . Geol. Mag., 111:23-30. S t o r e t v e d t , M.M. and H a l v o r s e n , E . , 1968. On t h e p a l a e o m a g n e t i c r e l i a b i l i t y o f t h e S c o t t i s h Devonian l a v a s . T e c t o n o p h y s i c s , 5:447-457. S t o r e t v e d t , K.M. and P e t e r s o n , N . , 1972. Palaeomagnetic p r o p e r t i e s o f t h e MiddleUpper Devonian V o l c a n i c s of t h e Orkney I s l a n d . E a r t h P l a n e t . S c i . L e t t s . , 14: 269-278. S t o r e t v e d t , K.M. and Carmichael, C.M., 1979. R e s o l u t i o n o f superimposed m a g n e t i z a t i o n s i n t h e Devonian John o ' G r o a t s S a n d s t o n e , N o r t h S c o t l a n d . Geophys. J . R . a s t r o . S O C . , 58: 769-784. S t o r e t v e d t , K . M . , H a l v o r s e n , E. and G j e l l e s t a d , G . , 1968. Thermal a n a l y s i s of t h e n a t u r a l remanent m a g n e t i z a t i o n of some u p p e r S i l u r i a n r e d s a n d s t o n e s i n t h e O s l o r e g i o n . T e c t o n o p h y s i c s , 5 , 413-426. S t o t t , D.F., 1972. The C r e t a c e o u s G e t h i n g d e l t a . Proc. F i r s t Conf. on Western Canadian Coal Research Council A l b e r t a I n f . Ser. No.60, pp. 137-150. S t r a k h o f , N . M . , 1958. Methodes d ' e t u d e s des r o c h e s S e d i m e n t a i r e s . Ann. s e r v . I n t e r n . g e o l . B.R.G.M. Nr.35, P a r i s . Strangway, D . W . , McMahon, B . E . , Honea, R.M. and L a r s o n , E . E . , 1967. Superparamagnetism i n h e m a t i t e . E a r t h P l a n e t . S c i . L e t t s . , 2:367-371. Strangway, D . W . , McMahon, E . E . , Honea, R.M., and L a r s o n , E . E . , 1968. The magnetic p r o p e r t i e s of n a t u r a l l y o c c u r r i n g g o e t h i t e . Geophys. J . R . a s t r o . S O C . , 15: 345- 359. S t u b b s , P.M., 1958. C o n t i n e n t a l D r i f t a n d P o l a r Wandering, A Palaeomagnetic Study of t h e B r i t i s h and European T r i a s and t h e B r i t i s h Old Red Sandstone. Ph.D. T h e s i s , U n i v e r s i t y of London, 158 pp. Stumm, W . and Morgan, J . J . , 1970. A q u a t i c Chemistry. An I n t r o d u c t i o n Emphasizing Chemical E q u i l i b r i a i n N a t u r a l Waters. Wiley I n t e r s c i e n c e , New York, 583 pp. Stupavsky, M . , Symons, D.T.A. and Grovenor, C . P . , 1974. Palaeomagnetism of t h e P o r t S t a n l e y T i l l , O n t a r i o . Geol. SOC. Am. B u l l . , 85: 141-144. S t u r t , B . A . , D a l l a u d , A. and M i t c h e l l , J . G . , 1979. The a g e of t h e s u b m i d - J u r a s s i c t r o p i c a l w e a t h e r i n g p r o f i l e of Andoya, N o r t h e r n Norway and t h e i m p l i c a t i o n s f o r t h e L a t e P a l a e o z o i c palaeogeography i n t h e North A t l a n t i c r e g i o n . Geol. Rundschau, 68:523-542. S u e s s , E.,.1875. Die E n t s t e h u n g d e r Alpen. W. BraumUller, Vienna, 168 pp. Sundborg, A , , 1956. The R i v e r K l a r l l v e n : A s t u d y o f f l u v i a l p r o c e s s e s . Geog. Ann., 38: 127-316. Sweeney, R . E . , 1972. P y r i t i z a t i o n During D i a g e n e s i s o f Marine Sediments. Ph.D. T h e s i s , U n i v e r s i t y of C a l i f o r n i a , Los Angeles. S w i f t , D . J . P . , 1975. T i d a l s a n d r i d g e s and s h o a l - r e t r e a t m a s s i f s . Marine g e o l . , 18: 105-134. Swineford, A , , Leonard, A . B . and F r y e , J . C . , 1958. P e t r o l o g y of P l i o c e n e p i s o l i t i c l i m e s t o n e s i n t h e G r e a t P l a i n s . B u l l . Kansas. g e o l . S u m . , 130:97-116. Takada, T . , Yamamoto, N . , S h i n j o , T . , Kiyama, M . , and Bando, Y . , 1965. Magnetic p r o p e r t i e s of N-FezOj f i n e p a r t i c l e s . B u l l . I n s t . Chem. Res. Kyoto Univ., 43.406-415. T a r l i n g , D . H . , Donovan, R . N . , Abou-Deeb, J.M. and El-Batrouk, S . I . , 1976. Palaeomagnetic d a t i n g of h a e m a t i t e g e n e s i s i n O r c a d i a n B a s i n s e d i m e n t s . S c o t t . J . G e o l . , 12:125-134. T a s a k i , A . and I i d a , S . , 1961. Some e x p e r i m e n t a l s t u d i e s on t h e p a r a s i t i c f e r r o magnesiam o f d - F e 2 0 3 . J . Phys. S O C . , J a p a n , 16:1697-1702. T a y l o r , J . M . , 1950. Pore-space r e d u c t i o n i n s a n d s t o n e s . B u l l . Am. Assoc. P e t . G e o l . , 34: 701-716. T a y l o r , L . A . , Mao, H.K. and B e l l , P.M., 1974. I d e n t i f i c a t i o n of t h e h y d r a t e d i r o n o x i d e m i n e r a l AkaganLite i n A p o l l o 16 l u n a r r o c k s . Geology, 2:429-432. T a y l o r , R.M. and G r a l e y , A . M . , 1967. The i n f l u e n c e of i o n i c environment on t h e n a t u r e o f i r o n o x i d e s i n s o i l s . J . S o i l . S c i . , 18:341-348. T a y l o r , R.M. and Schwertmann, U . , 1974. Maghemite i n s o i l s and i t s o r i g i n s . I. P r o p e r t i e s and o b s e r v a t i o n s on s o i l maghemites and 11-Maghemite s y n t h e s i s a t ambient t e m p e r a t u r e and pH7. Clay M i n e r a l s , 10:289-310.
531 Tchoubar, C . , 1965. Formation de l a k a o l i n i t e a p a r t i r d ' a l b i t e a l t e r e e p a r l ' e a u a 2OOOC. Etude en microscope e t d i f f r a c t i o n e l e c t r o n i q u e s . B u l l . SOC. F r a n c . M i n e r a l . Crist., 88:483-518. T e r r y , M . , 1934. E x p l o r a t i o n s n e a r t h e b o r d e r o f w e s t e r n A u s t r a l i a . Geogr. Rev.
84:498-510. T e r r y , M . , 1957. The Canning B a s i n o f w e s t e r n A u s t r a l i a . Geogr. J . , 123:157-166. Terwindt, J . H . J . , 1971. L i t h o f a c i e s of i n s h o r e e s t u a r i n e and t i d a l i n l e t d e p o s i t s . Geol. M i j n b . , 50:515-526. Thompson, A . M . , 1970. Geochemistry o f c o l o r g e n e s i s i n r e d bed s e q u e n c e , J u n i a t a and Bald E a g l e F o r m a t i o n s , P e n n s y l v a n i a . J . Sediment. P e t r o l . , 40:599-615. Thompson, D . B . , 1969. Dome-shaped a e o l i a n dunes i n t h e Frodsham member of t h e soc a l l e d 'Keuper' s a n d s t o n e f o r m a t i o n ( S c y t h i a n - A n i s i a n : T r i a s s i c ) a t Frodsham, C h e s h i r e (England). Sediment. G e o l . , 3:263-289. Thompson, D . B . , 1970. S e d i m e n t a t i o n o f t h e T r i a s s i c ( S c y t h i a n ) r e d pebbly s a n d s t o n e s i n t h e C h e s h i r e B a s i n and i t s margins. Geol. J . , 7:183-216. Thompson, R . , 1975. Long p e r i o d European geomagnetic s e c u l a r v a r i a t i o n confirmed. Geophys. J . R . a s t r o . S o c . , 43:847-859. Thompson, R . , 1977. S t r a t i g r a p h i c consequences of p a l a e o m a g n e t i c s t u d i e s of P l e i s t o c e n e and Recent s e d i m e n t s . J. g e o l . Soc. London, 133:51-59. Thompson, R. a n d Kelts, K . , 1974. Holocene s e d i m e n t s and m a g n e t i c s t r a t i g r a p h y from Lakes Zug a n d Z u r i c h , S w i t z e r l a n d . Sedimentology, 21:577-596. Thompson, R.W., 1968. T i d a l f l a t s e d i m e n t a t i o n on t h e Colorado R i v e r d e l t a , n o r t h w e s t e r n Gulf o f C a l i f o r n i a . Geol. Soc. A m . , Mem. 107, 133 pp. Thomson, A . , 1959. P r e s s u r e s o l u t i o n and p o r o s i t y . I n : S i l i c a i n Sediments. S.E.P.M. Spec. Publ. 7, pp.92-111. T h o u l e t , J . , 1881. c t u d e m i n e r a l o g i q u e d6n s a b l e du Sahara. B u l l de l a Soc. Min. de F r a n c e , 4: 262-268. T i e j e , A . J . , 1923. The r e d beds of t h e F r o n t Range i n Colorado. a s t u d y i n s e d i m e n t a t i o n . J . G e o l . , 31:192-307. Todd, T.W., 1968. P a l e o c l i m a t o l o g y and t h e r e l a t i v e s t a b i l i t y of f e l d s p a r m i n e r a l s under a t m o s p h e r i c c o n d i t i o n s . J . Sediment. P e t r o l . , 38:832-844, Towe, K.M. and B r a d l e y , W.F., 1967. M i n e r a l o g i c a l c o n s t i t u t i o n of c o l l o i d a l 'hydrous f e r r i c o x i d e s ' . J . C o l l o i d . I n t e r f a c e S c i . , 24:384-392. Tremblay, L.P., 1968. Geology of t h e Beaverlodge mining a r e a , Saskatchewan. Geol. S u r v . Canada, Mem. 367. T r i c a r t , J . and Brochu, M . , 1955. Le grand e r g a n c i e n du T r a r z a e t du Cayor. Rev. Ge'om. Dyn., 4: 145-176. T r o t t e r , F.M., 1939. Reddened C a r b o n i f e r o u s beds i n t h e C a r l i s l e B a s i n and Edenside. Geol. Mag., 76:408-416. T r o t t e r , F.M., 1953. Reddened beds of C a r b o n i f e r o u s a g e i n North-West England and t h e i r o r i g i n . Proc. Yorks. g e o l . S o c . , 29:1220. T r o t t e r , F.M., 1954. Reddened beds i n t h e Coal Measures of South L a n c a s h i r e . B u l l . Geol. S u r v . G t . B r i t . , 5 , 61-80. T r u d i n g e r , P.A., 1976. E x p e r i m e n t a l geomicrobiology i n A u s t r a l i a . E a r t h S c i . Rev.,
12:259-278. TrUmpy, R . , 1960. P a l e o t e c t o n i c e v o l u t i o n of t h e C e n t r a l and Western Alps. Geol. S O C . Am. B u l l . , 71:843-908. Tsuesue, T. and I s h i h a r a , S . , 1975. " R e s i d u a l " m a g n e t i t e / i l m e n i t e on weathered g r a n i t i c l m a f i c p l u t o n s . Econ. G e o l . , 70:706-716. T u c k e r , P . , 1979. S e l e c t i v e p o s t - d e p o s i t i o n a l a l i g n m e n t i n a s y n t h e t i c s e d i m e n t , Phys. E a r t h P l a n e t I n t s . , 20:Pll-P14. T u n n e l l , G. and P o s n j a k , E . , 1931. The s t a b i l i t y r e l a t i o n s of g o e t h i t e and h e m a t i t e . Econ. G e o l . , 26: 337-343. T u r n e r , P . , 1974a. O r i g i n of r e d beds i n t h e R i n g e r i k e Group ( S i l u r i a n ) of Norway. Sediment. G e o l . , 12:215-235. T u r n e r , P . , 1974b. L i t h o s t r a t i g r a p h y and f a c i e s a n a l y s i s of t h e R i n g e r i k e Group of t h e Oslo Region. Norges g e o l o g i s k e U n d e r s d k e l s e , 314:lOl-132. T u r n e r , P . , 1975. D e p o s i t i o n a l m a g n e t i z a t i o n o f C a r b o n i f e r o u s Limestones from t h e Craven B a s i n o f n o r t h e r n England. Sedimentology, 22:563-581.
532 T u r n e r , P . , 1977. Remanent magnetism o f middle Old Red Sandstone l a c u s t r i n e and f l u v i a t i l e s e d i m e n t s from t h e O r c a d i a n b a s i n , S c o t l a n d . J . g e o l . SOC. London, 133: 37-50. T u r n e r , P . , 1979. The p a l a e o m a g n e t i c e v o l u t i o n o f c o n t i n e n t a l r e d b e d s . Geol. Mag., 116 : 289- 301. T u r n e r , P. and W h i t a k e r , J.H. McD., 1976. P e t r o l o g y and provenance of L a t e S i l u r i a n f l u v i a t i l e s a n d s t o n e s from t h e R i n g e r i k e Group o f Norway. Sediment. G e o l . , 16:45-68. T u r n e r , P. and A r c h e r , R . , 1975. M a g n e t i s a t i o n h i s t o r y o f Lower Old Red S a n d s t o n e s from t h e Gamrie O u t l i e r , S c o t l a n d . E a r t h P l a n e t . S c i . L e t t s . , 27:240-250. T u r n e r , P. and A r c h e r , R . , 1977. The r o l e of b i o t i t e i n t h e d i a g e n e s i s of r e d beds from t h e Devonian of n o r t h e r n S c o t l a n d . Sediment. G e o l . , 19:241-251. T u r n e r , P. and I x e r , R . A . , 1977. D i a g e n e t i c development o f u n s t a b l e and s t a b l e m a g n e t i z a t i o n i n t h e S t . Bees Sandstone ( T r i a s s i c ) o f n o r t h e r n England. E a r t h P l a n e t S c i . L e t t s . , 34:113-124. T u r n e r , P. and Vaughan, D . J . , 1977. Evidence o f r a p i d changes i n t h e geomagnetic f i e l d d u r i n g t h e Z e c h s t e i n m a r i n e t r a n s g r e s s i o n . N a t u r e , 270:593-594. T u r n e r , P., T a r l i n g , D . H . , A r c h e r , R. and Donovan, R . N . , 1976. A p a l a e o m a g n e t i c argument c o n c e r n i n g post-Devonian d i s p l a c e m e n t a l o n g t h e G r e a t Glen F a u l t . Geol. Mag., 113:365-370. T u r n e r , P . , Vaughan, D . J . and Whitehouse, K . I . , 1978. D o l o m i t i z a t i o n and t h e m i n e r a l i z a t i o n o f t h e Marl S l a t e (N.E. England). Min. D e p o s i t a , 13:245-258. T u r n e r , P . , Vaughan, D . J . and T a r l i n g , D . H . , 1978. Palaeomagnetic and m i n e r a l o g i c a l s t u d i e s of Devonian l a c u s t r i n e s e d i m e n t s from C a i t h n e s s , S c o t l a n d . Phys. E a r t h P l a n e t . I n t s . , 16:73-83. T u r n e r , P . , M e t c a l f e , I. and T a r l i n g , D . H . , 1979. Palaeomagnetic s t u d i e s of some D i n a n t i a n l i m e s t o n e s from t h e Craven Basin and a c o n t r i b u t i o n t o Asbian magnetos t r a t i g r a p h y . Proc. Yorks. g e o l . S O C . , 42: 371-396. T w i d a l e , C.R., 1972. E v o l u t i o n o f s a n d dunes i n t h e Simpson Desert, c e n t r a l A u s t r a l i a . T r a n s . I n s t . B r i t i s h Geographers. P u b l . No.363 77-109. T z u z u k i , Y . , Nagasawa, K . and I s o b e , K . , 1968. Weathered b i o t i t e from Matsusaka, C e n t r a l J a p a n . M i n e r a l . J . , (Tokyo), 5:365-382. Udden, J . A . , 1898: Mechanical composition of wind d e p o s i t s . Augustana L i b r a r y P u b l i c a t i o n s No.1, 69 pp. Uyeda, S., 1958. Thermoremanent magnetism a s a medium of paleomagnetism, w i t h s p e c i a l r e f e r e n c e t o r e v e r s e thermoremanent magnetism. J a p a n . J , Geophys., 2:l-123. Van Andel, T j . H . , 1959. R e f l e c t i o n s on t h e i n t e r p r e t a t i o n of heavy m i n e r a l a n a l y s e s . J . Sediment. P e t r o l . , 29: 153-163. Van Andel, T j . H . , 1964. Recent marine s e d i m e n t s of t h e Gulf o f C a l i f o r n i a . I n : Tj.H. Van Andel and G.G. Shor ( E d i t o r s ) , M a r i n e Geology of t h e Gulf o f C a l i f o r n i a . Am. A s s . P e t r o l . Geol. Mem. 3:216-310. Van Andel, Tj.H. and C u r r a y , J . R . , 1960. R e g i o n a l a s p e c t s of modern s e d i m e n t a t i o n i n n o r t h e r n Gulf of Mexico and s i m i l a r b a s i n s , and p a l a e o g e o g r a p h i c s i g n i f i c a n c e . I n : F.P. S h e p a r d , F.B. P h l e g e r and Tj.H, Van Andel ( E d i t o r s ) , R e c e n t S e d i m e n t s , Northwest Gulf of Mexico. Am. Assoc. P e t r o l . G e o l . , T u l s a , pp.345-364. Van Andel, T j . H . and Komar, P.D., 1969. Ponded s e d i m e n t s of t h e M i d - A t l a n t i c Ridge between 22O and 230 n o r t h l a t i t u d e . Geol. S O C . Am. B u l l . , 80:1163-1190. Van Andel, T j . H . , Von Herzen, R.P. a n d J . D . P h i l l i p s , 1971. The Vema F r a c t u r e zone and t h e t e c t o n i c s of t r a n s v e r s e s h e a r zones i n o c e a n i c c r u s t a l p l a t e s . Mar. geophys. R e s . , 1:261-283. Van Bemmelen, R . W . , 1949. The geology o f I n d o n e s i a . N i j h o f f , The Hague, 997 pp. Van Breeman, N . , 1973. S o i l forming p r o c e s s e s i n a c i d s u l p h a t e s o i l s . I n : H. Dost ( E d i t o r ) , Acid S u l p h a t e S o i l s . Proc. of t h e I n t . Symp. on Acid S u l p h a t e S o i l s , 1972. I n t . I n s t . of Land R e c l a i m a t i o n and Improvement, Wageningen, The N e t h e r l a n d s , pp .66- 130. Van de G r a a f , F . R . , 1972. F l u v i a l d e l t a i c f a c i e s of t h e C a s t l e g a t e Sandstone ( C r e t a c e o u s ) , E a s t c e n t r a l Utah. J . Sediment. P e t r o l . , 42:558-571. Van d e P o l l , H.W. and S u t h e r l a n d , J . K . , 1976. C u p r i f e r o u s r e d u c t i o n s p h e r e s i n Upper M i s s i s s i p p i a n r e d beds o f t h e Hopewell Group a t D o r c h e s t e r Cape, New Brunswick. Can. J . E a r t h S c i . , 13: 781-789.
533 Van d e r Linden, W . J . M . , 1963. Sedimentary s t r u c t u r e s and f a c i e s i n t e r p r e t a t i o n of some molasse d e p o s i t s , Sense Schwarzwasser a r e a , Canton Bern, S w i t z e r l a n d . Geol. U l t r a i e c t i n a , D. 1 2 , 42 pp. Van d e r Voo, R . und F r e n c h , R . B . , 1974. Apparent p o l a r wandering f o r t h e A t l a n t i c B o r d e r i n g C o n t i n e n t s ; L a t e C a r b o n i f e r o u s t o Eocene. E a r t h S c i . Rev., 10:99-119. Van d e r Voo, R. and Grubbs, K . L . , 1977. Paleomagnetism of t h e T r i a s s i c Chugwater r e d beds r e v i s i t e d (Wyoming, U.S.A.). T e c t o n o p h y s i c s , 41:T27-T33. Van Houten, F . B . , 1961. C l i m a t i c s i g n i f i c a n c e of r e d beds. I n : A.E.M. N a i r n ( E d i t o r ) , D e s c r i p t i v e P a l e o c l i m a t o l o g y . I n t e r s c i e n c e , New York, pp.89-139. Van Houten, F . B . , 1964. O r i g i n of r e d beds - some unsolved problems. I n : A.E.M. N a i r n ( E d i t o r ) , Problems i n P a l a e o c l i m a t o l o g y . I n t e r s c i e n c e , New York, pp.647-661. Van Houten, F . B . , 1968. I r o n o x i d e s i n r e d beds. Geol. S O C . Am. B u l l . , 79:399-416. Van Houten, F . B . , 1969. Molasse f a c i e s : r e c o r d s o f w o r l d wide c r u s t a l stresses. S c i e n c e , 166; 1506-1508. Van Houten, F.B., 1972. I r o n and c l a y i n t r o p i c a l savanna a l l u v i u m : A c o n t r i b u t i o n t o t h e o r i g i n o f r e d b e d s . Geol. SOC. Am. B u l l . , 83;2761-2772. Van Houten, F.B., 1973. O r i g i n o f Red Beds: A review - 1961-1972. Ann. Rev. E a r t h P l a n e t S c i . , 1: 39-61. Van O o s t e r h o u t , G . W . , 1965. The s t r u c t u r e of g o e t h i t e . I n : P r o c . I n t . Conf. on Magnetism, Nottingham 1964, The I n s t i t u t e of P h y s i c s and t h e P h y s i c a l S o c i e t y , London, pp.529-532. 1951. T e x t u r e and g e n e s i s of Dutch Wadden Sea sediments. Van S t r a a t e n , L . M . J . U . , P r o c . 3rd I n t . Congr. Sedimentology, N e t h e r l a n d s , pp.225-255. 1959. L i t t o r a l and submarine morphology of t h e Rh6ne D e l t a . Van S t r a a t e n , L . M . J . U . , Proc. 2nd C o a s t a l g e o g r a p h i c a l c o n f e r e n c e , Baton Range (Nat. Acad. S c i . Nat. Rec. C o u n c i l ) , pp.233-264. 1960. Some r e c e n t advances i n t h e s t u d y of d e l t a i c Van S t r a a t e n , L.M.J.U., s e d i m e n t a t i o n . L i v e r p o o l and Manchester Geol. J., 2:411-445. Van T a s s e l , R . , 1959. S t r e n g i t e , p h o s p h o s i d e r i t e , c a c o x e n i t e , and r a d i a t i o n g f i b r o u s a p a t i t e from R i c h e l l e . B u l l . SOC. Belge G e o l . , 68:360-368. Vaughn, P . P . , 1964. V e r t e b r a t e s from t h e Organ Rock S h a l e of t h e C u t l e r G r o u p , , Permian of Monument V a l l e y and V i c i n i t y , Utah and A r i z o n a . J . P a l a e o n t . , 38; 567-583. V e r l a q u e , C . , 1958. Les dunes d ' i n S a l a h . Trav. I n s t . Re'ch. S a h a r i e n n e s , 17:12-58. Verosub, K . L . , 1975. Paleomagnetic e x c u r s i o n s a s m a g n e t o - s t r a t i g r a p h i c h o r i z o n s : A c a u t i o n a r y n o t e . S c i e n c e 190:4815P. Verosub, K . L . , 1977. D e p o s i t i o n a l and p o s t - d e p o s i t i o n a l p r o c e s s e s i n t h e magneti z a t i o n of s e d i m e n t s . Rev. Geophys. Space Phys., 15:129-143. V i n c e n t , E . A . and P h i l l i p s , R . , 1954. I r o n - t i t a n i u m o x i d e m i n e r a l s i n l a y e r e d gabbros of t h e S k a e r g a a r d i n t r u s i o n , E a s t G r e e n l a n d , P a r t 1. Chemistry and o r e microscopy. Geochim. Cosmochim. A c t a , 6:l-26. V i s s e r , C.F. and J o h n s o n , G . D . , 1978. T e c t o n i c c o n t r o l of L a t e P l i o c e n e molasse s e d i m e n t a t i o n i n a p o r t i o n o f t h e Jhelum R e - E n t r a n t , P a k i s t a n . Geol. Rundschau, 67: 15-37. Von Huene, R . , 1974. Modern t r e n c h s e d i m e n t s . I n : C . A . Burk and C.L. Drake ( E d i t o r s ) , The Geology of C o n t i n e n t a l Margins. S p r i n g e r V e r l a g , Berlin/New York, pp.207-211. Waage, H.L. and S t o r e t v e d t , K . M . , 1973. The Devonian geomagnetic a x i s r e l a t i v e t o t h e O r c a d i a n B a s i n , N. S c o t l a n d . Z e i t s c h r i f t f u r Geophysik, 3 9 , 937-951. Wagner, R . H . , 1966. On t h e p r e s e n c e o f p r o b a b l e upper S t e p h a n i a n beds i n A y r s h i r e , S c o t l a n d . S c o t t . J. G e o l . , 2 : p.122. Wahlstrom, E . E . , 1948. P r e - F o u n t a i n and r e c e n t w e a t h e r i n g on F l a g s t a f f Mountain n e a r B o u l d e r , Colorado. Geol. SOC. Am. B u l l . , 59:1173-1190. W a i t t , M . B . C . , 1969. Desert Dunes of t h e Kermit S a n d h i l l s , Winkler County, Texas. T h e s i s , U n i v e r s i t y o f T e x a s , 90 pp. Walder, P . S . , 1941. The p e t r o g r a p h y , o r i g i n a n d c o n d i t i o n s o f d e p o s i t i o n of a s a n d s t o n e o f Downtonian a g e . Proc. Geol. Ass., 52:245-256. Walker, G.F., 1949. The decomposition o f b i o t i t e i n t h e s o i l . Min. Mag., 28:693-703. Walker, R.G., 1966. S h a l e G r i t and Grindslow S h a l e s : t r a n s i t i o n from t u r b i d i t e t o s h a l l o w w a t e r s e d i m e n t s i n t h e Ilpper C a r b o n i f e r o u s of n o r t h e r n England. J. Sediment P e t r o l . , 36:90-114.
534 Walker, R . G . and Harms, J . C . , 1971. The " C a t s k i l l D e l t a " : A p r o g r a d i n g muddy s h o r e l i n e i n c e n t r a l P e n n s y l v a n i a . 3 . G e o l . , 79: 381-399. Walker, T . R . , 1967a. Formation o f r e d beds i n modern and a n c i e n t d e s e r t s . Geol. SOC. Am. B u l l . , 78: 353-368. Walker, T . R . , 1967b. Color of Recent s e d i m e n t s i n t r o p i c a l Mexico: A c o n t r i b u t i o n t o t h e o r i g i n o f r e d beds. Geol. SOC. Am. B u l l . , 78:917-820. Walker, T.R., 1973. I n t e r s t r a t a l a l t e r a t i o n s i n t h e F o u n t a i n Formation (Pennsylvanian a g e ) , Denver a r e a , Colorado. Geol. SOC. Am. A b s t r a c t s w i t h Programs, Rocky Mountain S e c t i o n , 5:521-522. Walker, T.R., 1974. Formation o f r e d beds i n m o i s t t r o p i c a l c l i m a t e s : A h y p o t h e s i s . Geol. S O C . Am. B u l l . , 85:633-638. Walker, T . R . , 1976. D i a g e n e t i c o r i g i n o f c o n t i n e n t a l r e d b e d s . I n . H. F a l k e ( E d i t o r ) , The C o n t i n e n t a l Permian i n C e n t r a l , West, and S o u t h Europe. D . R e i d e l , DordrechtH o l l a n d , pp.240-282. Walker, T.R., 1978. P a l e o c l i m a t e i n t e r p r e t a t i o n from a p e t r o g r a p h i c comparison o f Holocene Sands and t h e F o u n t a i n Formation ( P e n n s y l v a n i a n ) i n t h e Colorado F r o n t Range: A d i s c u s s i o n . J . Sediment. P e t r o l . , 48:lOll-1013. Walker, T.R. and Harms, J . C . , 1972. E o l i a n o r i g i n of f l a g s t o n e b e d s , Lyons Sandstone ( P e r m i a n ) , t y p e a r e a , Boulder County, Colorado. Mountain G e o l o g i s t , 9:279-288. Walker, T.R. and Honea, R . M . , 1969. I r o n c o n t e n t of modern d e p o s i t s i n t h e Sonoran D e s e r t : A c o n t r i b u t i o n t o t h e o r i g i n of r e d b e d s . Geol. SOC. Am. B u l l , , 80. 535-544. Walker, T . R . and L a r s o n , E . E . , 1976. Hematite a u t h i g e n e s i s i n t h e Moenkopi Formation ( T r i a s s i c A g e ) , Colorado P l a t e a u : A c o n t r i b u t i o n t o t h e o r i g i n of magnetism i n r e d beds. Geol. S O C . Am. A b s t r a c t s w i t h Programs, p.1158. Walker, T . R . , Ribbe, P . H . and Honea, R.M., 1967. Geochemistry o f hornblende a l t e r a t i o n i n P l i o c e n e r e d b e d s , Baja C a l i f o r n i a , Mexico. Geol. SOC. Am. B u l l , , 78: 1055-1060. Walker, T . R . , Waugh, B. and Crone, A . J . , 1978. Diagenesus i n f i r s t - c y c l e d e s e r t a l l u v i u m o f Cenozoic a g e , s o u t h w e s t e r n United S t a t e s and n o r t h w e s t e r n Mexico. Geol. SOC. Am. B u l l . , 89:19-32. W a l t h e r , J . , 1900. Das G e s e t z d e r WUstenbildung. D i e t r i c h Reimer, B e r l i n , 175 pp. Walton, A.W., 1975. Z e o l i t i c d i a g e n e s i s i n O l i g o c e n e v o l c a n i c s e d i m e n t s , TransPecos Texas. Geol. S O C . Am. B u l l . , 86:615-624. Walton, A . W . , 1977. P e t r o l o g y of v o l c a n i c s e d i m e n t a r y r o c k s , V i e j a Group, s o u t h e r n R i m Rock C o u n t r y , Trans-Pecos Texas. J . Sediment. P e t r o l . , 47:137-157. Warren, A . , 1970. Dune t r e n d s and t h e i r i m p l i c a t i o n s i n t h e c e n t r a l Sudan. Zeit. f b r Geom., Supp., 10: 154-180. Warren, A . , 1971. Dunes i n t h e Tgne're'Desert. Geogr. J . , 137:458-461. Warren, A . , 1972. O b s e r v a t i o n s on dunes a n d bimodal sands i n t h e TLndre'Desert. Sedimentology, 19:37-44. W a r r i n g t o n , G . , 1965. The m e t a l l i f e r o u s mining d i s t r i c t of A l d e r l e y Edge, C h e s h i r e . Mercian G e o l o g i s t , 1: 111-129. W a t e r s t o n , C . D . , 1965. Old Red Sandstone. I n : G . Y . C r a i g ( E d i t o r ) , The Geology of S c o t l a n d . O l i v e r and Boyd, E d i n b u r g h , pp.270-310. Watson, G . S . , 1956. A t e s t f o r randomness of d i r e c t i o n s . Mon. Not. Roy. A s t r o n . S O C . Geophys. S u p p . , 7:160-161. W a t t s , N . L . , 1977. P s e u d o a n t i c l i n e s and o t h e r s t r u c t u r e s i n some c a l c r e t e s of Botswana and S o u t h A f r i c a . E a r t h S u r f a c e P r o c e s s e s , 2:63-74. W a t t s , N . L . , 1978. D i s p l a c i v e c a l c i t e : Evidence from r e c e n t and a n c i e n t c a l c r e t e s . Geology, 6 : 699-703. Waugh, B . , 1970a. Formation o f q u a r t z overgrowths i n t h e P e n r i t h Sandstone (Lower Permian) of n o r t h w e s t England a s r e v e a l e d by s c a n n i n g e l e c t r o n microscopy. Sedimentology, 14:309-320. Waugh, B . , 1970b. P e t r o l o g y , provenance and s i l i c a d i a g e n e s i s of t h e P e n r i t h Sandstone (Lower Permian) of n o r t h w e s t England. J . Sediment. P e t r o l . , 4 0 : 1226-1240. Waugh, B . , 1978. A u t h i g e n i c K - f e l d s p a r i n B r i t i s h P e r m o - T r i a s s i c s a n d s t o n e s . 3. g e o l . S O C . London, 135:51-56.
53 5
Way, J . H . , 1969. Bed t h i c k n e s s a n a l y s i s o f some C a r b o n i f e r o u s f l u v i a l s e d i m e n t a r y r o c k s n e a r J o g g i n s , Nova S c o t i a . J . Sediment. P e t r o l . , 38:424-433. Weaver, L.E. a n d P o l l a r d , L . D . , 1973. The Chemistry o f Clay M i n e r a l s . Developments i n Sedimentology 1 5 , E l s e v i e r , Amsterdam, 213 pp. Weber, K . J . , 1971. S e d i m e n t o l o g i c a l a s p e c t s o f o i l f i e l d s of t h e N i g e r d e l t a . Geol. M i j n b . , 40:569-576. Weertman, J . and Weertman, J . R . , 1964. Elementary D i s l o c a t i o n Theory. MacMillan Co., New York, 213 pp. Weimer, R . J . , 1970. R a t e s o f d e l t a i c s e d i m e n t a t i o n and i n t r a b a s i n d e f o r m a t i o n , Upper C r e t a c e o u s o f Rocky Mountain r e g i o n . I n : J . P . Morgan ( E d i t o r ) , S e d i m e n t a t i o n Modern and A n c i e n t . S.E.P.M. Spec. Publ. 1 5 , pp.270-292. Westcott-Lewis, M.F. and P a r r y , L . G . , 1971a. Magnetism i n rhombohedra1 i r o n - t i t a n i u m o x i d e s . A u s t r a l i a n J . P h y s . , 2 4 , 719-734. Westcott-Lewis, M.F. and P a r r y , L . G . , 1971b. Thermoremanence i n s y n t h e t i c rhomboh e d r a l i r o n - t i t a n i u m o x i d e s . A u s t r a l i a n J . Phys. 24, 735-742. Weyl, P.K., 1959. P r e s s u r e s o l u t i o n and t h e f o r c e o f c r y s t a l l i z a t i o n - A phenomeno l o g i c a l t h e o r y . J . Geophys. R e s . , 64:2001-2025. Wheeler, J . O . and G a b r i e l s e , H . , 1972. C o r d i l l e r a n s t r u c t u r a l p r o v i n c e . I n : R.A. P r i c e and R . J . Douglas ( E d i t o r s ) , V a r i a t i o n s i n T e c t o n i c S t y l e s i n Canada. Geol. Assoc. Canada S p e c i a l P a p e r 11, pp.1-81. Whetten, J . T . a n d Hawkins, J . W . J r . , 1970. D i a g e n e t i c o r i g i n o f greywacke m a t r i x m i n e r a l s . Sedimentology, 15; 347-361. White, D.E., 1965. S a l i n e w a t e r s of s e d i m e n t a r y r o c k s . I n : F l u i d s of S u b s u r f a c e Environments. Am. Ass. P e t r o l . Geol. Mem. 4 , T u l s a , Oklahoma, p.342-366. White, D . E . , Hem, J . D . and Waring, G . A . , 1963. Data of Geochemistry, Chapter F , Chemical c o m p o s i t i o n of s u b s u r f a c e w a t e r s . U.S.G.S. P r o f . Paper 440-F, 67 pp. Whiteman, A . T . , N a y l o r , D . , Pegrum, R . and R e e s , G . , 1975. North s e a t r o u g h s and p l a t e t e c t o n i c s . T e c t o n o p h y s i c s , 2 6 : 39-54. Whittemore, D.O. and Langmuir, D . , 1975. The s o l u b i l i t y of f e r r i c oxyhydroxides i n n a t u r a l w a t e r s . Ground Water, 13:No.4. Whorlton, T.G., Bennion, R . B . and Brugger, R . M . , 1967. P r e s s u r e dependence of t h e Morin T r a n s i t i o n inR-Fe2Og t o 26 Kbar. Phys. L e t t s . , 24A:653-655. W i l l i a m s , D . , 1973. The Sedimentology and P e t r o l o g y of t h e New Red Sandstone of t h e E l g i n B a s i n , N o r t h e a s t S c o t l a n d . Ph.D. T h e s i s , U n i v e r s i t y o f H u l l , 212 pp. W i l l i a m s , G . E . , 1969a. C h a r a c t e r i s t i c s and o r i g i n of a Precambrian pediment. J . G e o l , , 77:183-207. W i l l i a m s , G . E . , 196913. P e t r o g r a p h y and o r i g i n of p e b b l e s from T o r r i d o n i a n s t r a t a ( L a t e Precambrian) n o r t h w e s t S c o t l a n d . I n : M a r s h a l l Kay ( E d i t o r ) , North A t l a n t i c Geology and C o n t i n e n t a l D r i f t . Mem. A s . Ass. P e t r o l . G e o l . , 12:609-629. W i l l i a m s , G . E . , 1973. L a t e Q u a t e r n a r y piedmont s e d m e n t a t i o n , s o i l f o r m a t i o n and p a l a e o c l i m a t e s i n a r i d South A u s t r a l i a . 2. Geomorphol., 17:102-125. W i l l i a m s , G . E . and P o l a c h , H . A . , 1971. Radiocarbon d a t i n g of a r i d - z o n e c a l c a r e o u s p a l a e o s o l s . Geol. Soc. Am. B u l l . , 82:3069-3086. W i l l i a m s , H . J . , Sherwood, R.C. and Remeika, J . P . , 1958. Magnetic domains inWFe203. J . Appl. P h y s i c s , 29:1772-1773. W i l l i a m s , P . F . , 1968. The s e d i m e n t a t i o n of W e s t p h a l i a n (Ammanian) measures i n t h e L i t t l e Haven-Amroth C o a l f i e l d , Pembrokeshire. J . Sediment. P e t r o l . , 38:332-362. W i l l i a m s , P.F. and R u s t , B . R . , 1969. The sedimentology of a b r a i d e d r i v e r , J . Sediment. P e t r o l . , 39:649-679. W i l l i a m s o n , W . O . , 1957. S i l i c i f i e d s e d i m e n t a r y r o c k s i n A u s t r a l i a . Am. J . S c i . , 255:42.42. White, L.P., 1971. The a n c i e n t e r g of Hansaland i n s o u t h w e s t e r n N i g e r i a . Geol. J . , 137:69-73. Whitehouse, F.W., 1940. The l a t e r i t i c s o i l s of Western Queensland. Univ. Queensland P a p e r s , Dept. o f Geology, 2 (New s e r i e s ) No.1, pp.2-22. Wilson, I . G . , 1970. The E x t e r n a l Morphology of Wind-Laid Sand D e p o s i t s . Ph.D. T h e s i s , U n i v e r s i t y of Reading, 181 pp. W i l s o n , I . G . , 1972. A e o l i a n bedforms - t h e i r development and o r i g i n s . Sedimentology, 19: 173-210.
536 W i l s o n , I . G . , 1973. E r g s , Sediment. G e o l . , 10:77-106. W i l s o n , J . T . , 1966. Did t h e A t l a n t i c c l o s e and t h e n re-open? N a t u r e , 211:676-681. Wilson, M.D. and P i t t m a n , E . D . , 1977. A u t h i g e n i c c l a y s i n s a n d s t o n e s : R e c o g n i t i o n and i n f l u e n c e on r e s e r v o i r p r o p e r t i e s and p a l e o e n v i r o n m e n t a l a n a l y s i s . J . Sediment. P e t r o l . , 47:3-31. Wilson, M . J . , 1971. C l a y m i n e r a l o g y of t h e Old Red Sandstone (Devonian) of S c o t l a n d . J . Sediment. P e t r o l . , 41:995-1007. Wilson, M . J . , 1975. Chemical w e a t h e r i n g of some p r i m a r y rock-forming m i n e r a l s . S o i l S c i . , 119:349-355. Wilson, M . J . and Farmer, V . C . , 1970. A s t u d y of w e a t h e r i n g i n a s o i l d e r i v e d from b i o t i t e - h o r n b l e n d e r o c k . I1 Weathering o f hornblende. Clay M i n e r a l s , 8:435-444. Winder, C . G . , 1965. A l l u v i a l cone c o n s t r u c t i o n by a l p i n e mudflow i n a humid temperate c l i m a t e . Can. J . E a r t h S c i . , 2:270-277. W o l l a s t e R . , 1967. K i n e t i c s o f t h e a l t e r a t i o n of K - f e l d s p a r i n b u f f e r e d s o l u t i o n s a t low t e m p e r a t u r e . Geochim. Cosmochim. A c t a , 31:635-648. Wolman, M.G. and Leopold, L . B . , 1957. R i v e r f l o o d p l a i n s ; some o b s e r v a t i o n s on t h e i r f o r m a t i o n . U.S.G.S. P r o f . P a p e r 282-C, pp.87-107. Woodrow, D . L . , F l e t c h e r , F.W. and Ahmsbrak, W.F., 1973. Paleogeography and p a l e o c l i m a t e a t t h e d e p o s i t i o n s i t e s of t h e Devonian C a t s k i l l and Old Red F a c i e s . Geol. SOC. Am. B u l l . , 84: 3051-4064. Woolnough, W . G . , 1930. I n f l u e n c e o f c l i m a t e and topography i n t h e f o r m a t i o n and d i s t r i b u t i o n of p r o d u c t s of w e a t h e r i n g . Geol. Mag., 67:123-132. Wopfner, H. and T w i d a l e , C . R . , 1967. Geomorphological h i s t o r y of t h e Lake Eyre b a s i n . I n : J . N . J e n n i n g s and J . A . Mabbutt ( E d i t o r s ) , Landform S t u d i e s from A u s t r a l i a and New Guinea. Cambridge U n i v e r s i t y P r e s s , Cambridge, pp.119-143. W o r r a l l , G . A . , 1969. The r e d s a n d s o f t h e s o u t h e r n S a h a r a . B u l l . de L i a s o n , A s s o c i a t i o n S e n e g a l a i s e p o u r L ' E t u d e du Q u a t e r n a i r e de 1 ' Q u e s t A f r i c a i n , 21:36-39. W r i g h t , J . B . , 1964. I r o n - t i t a n i u m o x i d e s i n some New Zealand I r o n s a n d s . New Zealand J . Geol. Geophys., 7:424-444. W r i g h t , L.D. and Coleman, J . M . , 1974. M i s s i s s i p p i R i v e r mouth p r o c e s s e s : e f f l u e n t dynamics and morphologic development. J . G e o l . , 82:751-778. W r i g h t , L . D . , Coleman, J.M. and Thom, B . G . , 1973. P r o c e s s e s of c h a n n e l development i n a h i g h t i d e range environment: Cambridge Gulf - Ord R i v e r d e l t a , w e s t e r n A u s t r a l i a . J . G e o l . , 81: 15-41. Wynne-Edwards, H.R. and Hassan, 2 - U , 1970. I n t e r s e c t i n g o r o g e n i c b e l t s a c r o s s t h e n o r t h A t l a n t i c . Am. J . S c i . , 268:289-308. Yaalon, D . H . , 1973. The i n f l u e n c e o f d u s t on s o i l s d u r i n g t h e Q u a t e r n a r y . S o i l S c i . , 116: 146-155. Yaskawa, K . , 1974. When d i d m a g n e t i z a t i o n f i x i n l o o s e s e d i m e n t s ? I n : Conference on L a t e Cenozoic M a g n e t o s t r a t i g r a p h y . I n t . Union Geol. S c i e n c e s , Tokyo. Young, F . G . , 1971. Mesozoic s t r a t i g r a p h i c s t u d i e s , n o r t h e r n Yukon T e r r i t o r y and n o r t h w e s t e r n D i s t r i c t o f Mackenzie. Geol. Survey Canada P a p e r 7 1 - 1 A , pp.245-247. Young, S . W . , Basu, A . , S u t t n e r , L . J . , Mack, G.H. and D a r n e l l , N . A . , 1975. Use of s i z e composition t r e n d s i n Holocene s o i l and f l u v i a l s a n d f o r p a l e o c l i m a t e i n t e r p r e t a t i o n . Proc. I X I n t . Sed. Cong. N i c e , F r a n c e , Theme 1 , pp.201-209. Z i e g l e r , P.A., 1975. North Sea b a s i n h i s t o r y i n t h e t e c t o n i c framework of NorthWestern Europe. In: A.W. Woodland ( E d i t o r ) , P e t r o l e u m and t h e C o n t i n e n t a l S h e l f of North West Europe, Volume 1 Geology. Applied S c i e n c e P u b l i s h e r s , B a r k i n g , pp. 131-148. Z i e g l e r , P . A . , 1978. North-western Europe. T e c t o n i c s and b a s i n development. Geol. M i j n . , 57:589-626. Z i e g l e r , W.H., 1975. O u t l i n e o f t h e g e o l o g i c a l h i s t o r y of t h e North Sea. I n . A.W. Woodland ( E d i t o r ) , Petroleum and t h e C o n t i n e n t a l S h e l f of North West Europe, Volume 1 Geology. Applied S c i e n c e P u b l i s h e r s , Barking, pp.165-187. Z o B e l l , C.E., 1973. M i c r o b i a l g e o c h e m i s t r y o f oxygen. I n : A.A. I m s h e n e t s k i i ( E d i t o r ) , Geokhimicheskaia D e i a t e ' n o s t ' Migroorganizmov v Vodoemakh i M e s t o r o z h d e n i i a c h Poleznykh Iskopaemykh. Moscow. T i p o g r a f f i a I z d a t e l ' s t v a Sovetskoe R a d i o , pp.3-76.
537
SUBJECT INDEX Abandoned r i f t
-
see a u l a c o g e n
Accretionary prism, 13 Acid v o l a t i l e s u l p h i d e , 346, 347 Adhesion r i p p l e s , 7 7 , 9 6 , 114 A d u l a r i a , 301 A e o l i a n bedforms, 77-88 A e o l i a n bounding s u r f a c e s , 8 6 , 8 7 , 88 A e o l i a n s a n d s , 69, 72-94
-
bedform h i e r a r c h y , 74, 76
-
g r a i n s i z e , 89
-
i n t e r n a l s t r u c t u r e , 8 5 , 86 reddening, 98
-
r i p p l e s , 74
-
r o u n d n e s s , 89
-
Simpson d e s e r t
- - grain - surface -
s i z e d i s t r i b u t i o n , 90 p i t t i n g , 89
t e x t u r a l c h a r a c t e r i s t i c s , 88-95
AF d e m a g n e t i z a t i o n , 428 A k a g a n b i t e , 329, 330 Akle dune p a t t e r n , 86 Albite, 54, 121 A l d e r l e y Edge, 373, 374 A l l u v i a l f a n s , 182-185
-
A l p i n e m o l a s s e , 44
-
d e p o s i t s , 1 8 3 , 184
A l l u v i a l r e d b e d s , 6 6 , 6 7 , 6 8 , 179-264
538 Amazon R i v e r , 215, 216, 217 Amorphous Fe (OH)3, 297, 329, 330, 338, 344 Amorphous s i l i c a , 269 A n a l c i m e , 301, 303, 305, 306, 307, 308 A n a t a s e , 318 A n c i e n t a e o l i a n d e p o s i t s , 105-125
-
i n t e r n a l s t r u c t u r e , 86, 87, 88 r e d b e d s , 105-125
A n c i e n t a l l u v i a l r e d b e d s , 220-263 A n c i e n t d e l t a i c s u c c e s s i o n s , 147-150
-
c h a r a c t e r i s t i c s , 147
-
r i v e r - d o m i n a t e d , 15 1
A n d e s , 16 Anglo-Welsh b a s i n , 460-463 A n i s o t r o p y , 384, 385 A n n i t e , 287 A n t i f e r r o m a g n e t i s m , 383 Appalachian geosyncline, 3, 4 A q u i t a i n e b a s i n , 40, 43 Arc-trench
s y s t e m s , 14
A r k o s e , 5 1 , 52
-
climatic, 51
-
tectonic, 51
A t c h a f a l a y a B a s i n , 135, 136, 137 Athapuscow a u l a c o g e n , 29, 441, 443 A u g i t e , 280 A u l a c o g e n s , 7 , 9 , 10, 29, 441, 443 A u t h i g e n i c m i n e r a l s , 266, 299-319
-
c a l c i t e , 104, 314-316
-
c h l o r i t e , 3 1 2 , 313
539
-
h a e m a t i t e , 104, 316-319
-
i l l i t e , 309-311
-
-
i l l i t e - m o n t m o r i l l o n i t e , 1 0 4 , 308-311 kaolinite-dickite,
309-312
p o t a s h f e l d s p a r , 300-302 q u a r t z , 104, 319, 320 z e o l i t e s , 302-308
Autogeosynclines, 2 A x i a l g e o c e n t r i c d i p o l e , 381, 382 A y r s h i r e c o a l f i e l d , 161-163 Back-arc b a s i n , 1 3 , 1 5 , 1 6 , 1 7 Bacterial sulphate reduction
-
f r e s h w a t e r , 355-359 m a r i n e , 345-347
Baikal r i f t , 8 , 9 Baja C a l i f o r n i a , 476 Bald E a g l e Formation, 374, 375 B a n d e r s c h i e f e r , 115 Barchans, 78, 8 0 , 82 Bar f i n g e r s a n d s , 142, 144 Barren Red Measures, 163 Barstow Formation, 307 B a t t e r y P o i n t S a n d s t o n e , 245 Bedding e r r o r , 405 Belly River
-
Paskapoo m o l a s s e , 46, 4 7 , 48
Benue Trough, 9 , 10, 11 B i j o u Creek, 195, 196, 197 Bimodal s a n d s , 9 1 , 92 B i o t i t e , 285, 287 B i r d - f o o t d e l t a , 129
540 Blackband Group, 168-173 Blackband i r o n s t o n e , 1 6 9 , 170 Blairmore Group, 46 Blocking t e m p e r a t u r e , 428 Blocking volume, 412 Bond s t r e n g t h s , 281 Botucatu S a n d s t o n e s , 105 Brahmaputra R i v e r , 1 8 1 , 1 9 0 , 191 Braided c h a n n e l s , 1 8 0 , 181 B r i d g e n o r t h S a n d s t o n e , 113 Bunter P e b b l e Beds, 2 5 4 , 2 5 5 , 256 B u n t s a n d s t e i n , 4 2 1 , 4 2 2 , 423
C a i t h n e s s F l a g s t o n e s , 3 6 0 , 3 6 1 , 3 6 2 , 363, 364 C a l c i t e , 138, 2 7 0 , 2 7 1 , 314, 315 C a l c r e t e , 2 3 8 , 2 3 9 , 2 4 0 , 2 4 1 , 2 4 2 , 2 4 8 , 249 Caledonian o r o g e n , 29 Canadian C o r d i l l e r a , 44
-
f o r e l a n d b a s i n s , 4 4 , 45 m o l a s s e , 4 4 , 4 5 , 4 6 , 4 7 , 4 8 , 49 s u c c e s s o r b a s i n s , 4 4 , 45
Canon R o j o , 283, 2 9 2 , 294, 3 1 5 , 320 Canyon Group, 152 Carbon d i o x i d e , 268 C a r b o n i f e r o u s r e d b e d s , 159-173 Casper Sands t o n e s , 106 C a t s k i l l e l a s t i c wedge, 348 Cedar Mesa S a n d s t o n e s , 1 0 6 , 107 Cementation, 269 Cenozoic a l l u v i u m , 2 9 0 , 2 9 5 , 303
-
d i a g e n e s i s , 102-105
541
-
pa l a e oma gne t i s m , 4 75- 48 1
C h a b a z i t e , 3 0 3 , 305 Chemical d e m a g n e t i z a t i o n , 429-434
-
Hopewell Group, 4 3 1 , 432
-
S t . Bees S a n d s t o n e , 433
-
Supai F o r m a t i o n , 4 3 0 , 4 3 1 , 432
-
T a i g u a t i Formation, 4 3 0 , 431
Chugwater F o r m a t i o n , 430
Chemical remanent m a g n e t i z a t i o n , 6 5 , 380, 411-417 C h l o r i t e , 2 4 7 , 2 7 2 , 295 C h r i s t i e Bay Group, 446 Chromium, 332 Chugwater Formation, 378 C i s c o Group, 1 5 2 C l a s s i f i c a t i o n o f a n c i e n t r e d b e d s , 60-80 Clay r e p l a c e m e n t , 293-299 C l i m a t i c s e t t i n g o f a n c i e n t r e d b e d s , 50-60 C l i n o p t i l o l i t e , 301, 303, 304, 305, 306, 307, 308 Coal Measures, 152 Coarse member r e d d e n i n g , 250 Coarsening-upwards s e q u e n c e s , 227
-
D i f u n t a Group, 155
-
Hornelen b a s i n , 2 2 7 , 2 2 8 , 229
-
Rhone d e l t a , 145
Coastal dunes, 7 1 Coconino S a n d s t o n e s , 106 Cody S h a l e
-
Parkman S a n d s t o n e , 152
C o e r c i v e f o r c e , 384 C o e r c i v i t y , 399, 400 C o e r c i v i t y s p e c t r a , 4 2 2 , 4 2 3 , 424
542
C o l l y h u r s t s a n d s t o n e , 113 Columbian o r o g e n , 4 4 , 4 6 , 48 Compaction, 274 C o n s t r u c t i o n a l p h a s e , 146 C o n t i n e n t a l r e d beds
-
c l a s s i f i c a t i o n , 60-68
- -
o f C l a r k , 62
- -
of K r y n i n e , 6 1
- -
p a l a e o m a g n e t i c , 64-66
-
m a g n e t i c p r o p e r t i e s , 6 4 , 417-439
Convergent p l a t e m a r g i n s , 6 , 1 3 Copper, 1 0 , 368, 370, 371, 373 C o r r i e s a n d s t o n e , 113 Corundum s t r u c t u r e , 328 Crevasse-splays,
1 2 9 , 207
C r e v a s s i n g , 134 C r y s t a l l a r i a , 238 Cuchara F o r m a t i o n , 310 Curie temperature
-
-
,
383, 389
h a e m a t i t e - i l m e n i t e , 391 r e d b e d s , 4 2 4 , 425 t i tanomagneti t e - t i t a n o m a g h e m i t e ,
C u t a n , 100 Death V a l l e y , 9 6 , 97, 98
-
a l l u v i a l f a n s , 98 m i n e r a l z o n a t i o n , 97 p l a n t z o n a t i o n , 98
D e b r i s f l o w d e p o s i t s , 184 De C h e l l y s a n d s t o n e s , 106 D e f e c t moment, 390, 394, 401
390
543 D e h y d r a t i o n of g o e t h i t e , 416 D e l t a f r o n t , 139 Delta f r o n t progradation
-
M i s s i s s i p p i d e l t a , 143
D e l t a f r o n t s l o p e , 131 D e l t a growth and abandonment, 1 4 6 , 147 D e l t a l o b e s , 1 4 7 , 148 D e l t a m o d e l s , 127-130 D e l t a p l a i n r e d b e d s , 6 6 , 6 7 , 6 8 , 126-178 D e l t a s t r u c t u r e , 131, 132 Deltaic deposits
-
c o n t r o l l i n g f a c t o r s , 127 f a c i e s , 131-146
Deltas
-
high-constructive,
-
h i g h d e s t r u c t i v e , 128
-
d e f i n i t i o n , 127 f l u v i a l - d o m i n a t e d , 1 2 8 , 129 128
t i d e - d o m i n a t e d , 128 wave-dominated, 128
D e p o s i t i o n a l DRM, 403, 409
Desert b a s i n s
-
groundwater c i r c u l a t i o n , 95 Sonoran d e s e r t , 103 t e c t o n i c s e t t i n g , 71
Desert f l u v i a l s e d i m e n t s , 7 1 , 72 D e s e r t l a k e s and i n l a n d s a b k h a s , 9 5 , 96
Desert r e d b e d s , 5 0 , 6 6 , 6 7 , 6 8 , 69-125 D e s e r t s e d i m e n t s , 69-71
-
l a t i t u d e , 69
544
-
-
r a i n f a l l , 69 r e d d e n i n g , 96-105 t e m p e r a t u r e , 70
D e t r i t a l remanent m a g n e t i z a t i o n , 6 4 , 380, 403-411, 481 Dharwar g r e e n s t o n e b e l t s , 50 D i a g e n e s i s and m a g n e t i z a t i o n , 481 D i a g e n e s i s o f c o n t i n e n t a l r e d b e d s , 265
- Cenozoic d e s e r t a l l u v i u m , 102-105, 319, - Old Red S a n d s t o n e , 230-233, 244-253 - R o t l i e g e n d e s , 116-125 -
321, 322
T r i a s s i c , 256, 259
D i a g e n e t i c r e a c t i o n s , 267 Diagonal b a r s , 188 Diamagnetism, 383 D i f u n t a Group, 1 5 2 , 153-159
-
c o l o u r v a r i a t i o n s , 156, 157, 158
D i s s o l u t i o n of framework s i l i c a t e s , 280-293
-
f e l d s p a r s , 282-284 f e r r o m a g n e s i a n m i n e r a l s , 280, 281, 291-293 m i c a s , 284-290
' D i s s o l u t i o n v o i d s , 283 D i s t a l b a r , 141 D i s t r i b u t a r y c h a n n e l p a t t e r n s , 133 D i s t r i b u t a r y mouth, 130 D i s t r i b u t a r y mouth b a r s , 142, 150 Divergent p l a t e margins, 6, 7 Dolomite, 314 Domains, 385, 386 Domengine s a n d s t o n e , 5 3 , 5 4 Dome-shaped d u n e s , 8 3
545
Donjek R i v e r , 1 8 6 , 187, 188 D r a a s , 77, 79 Dunes, 7 7 , 78, 79 D u r i c r u s t s , 210 E a r l y d i a g e n e t i c r e d d e n i n g , 104 East African r i f t , 7, 8 E a s t B e r l i n Formation, 3 6 , 37 Ebro b a s i n , 40, 43 Eh-pH c o n d i t i o n s
- i r o n , 340 - l a k e s , 354-356 - manganese, 354 E l R i t o F o r m a t i o n , 320
E n t r a d a Sands t o n e s , 106 Ephemeral s t r e a m s , 194-197 E p i e u g e o s y n c l i n e s , 3 , 22 E p s i l o n c r o s s - b e d d i n g , 237, 243 Erg O r i e n t a l , 75 E r g s , 71, 73, 100 Esmeralda F o r m a t i o n , 301, 302, 303, 304, 305, 306 Es thwai t e , 355 E t r u r i a Marl, 1 7 1 , 173, 1 7 4 , 175 Eugeosynclines, 2 E u t r o p h i c l a k e s , 357 Exogeosynclines, 2 E x s o l u t i o n i n t i t a n o m a g n e t i t e s , 325 Fault-wedge b a s i n s , 1 8 , 20, 2 1 F e l d s p a r , 282-284 F e r r i a n i l m e n i t e , 328
546 F e r r i c h y d r o x i d e s , 1 5 9 , 2 1 5 , 2 1 7 , 2 1 8 , 2 4 7 , 2 4 8 , 2 5 0 , 3 5 1 , 3 5 2 , 357 F e r r i c oxyhydroxides, 3 2 9 , 3 3 0 , 3 3 8 , 3 8 3
-
dehydration, 340-344 e n v i r o n m e n t a l c o n t r o l s , 344-365 f o r m a t i o n i n groundwater, 3 6 5 - 3 6 7 p r e c i p i t a t i o n , 338-340
F e r r i c r e t e , 210
-,
see a l s o L a t e r i t e
F e r r i h y d r i t e , 329 Ferromagnesian s i l i c a t e s , 2 9 1 - 2 9 3 , F e r roma gne t i sm , 3 8 3 F e r r o u s / f e r r i c r a t i o , 3 7 8 , 420 Ferruginous s o i l s , 214 F i n e member r e d d e n i n g , 2 4 6 Fining-upwards c y c l e s , 2 3 3
-
A l p i n e m o l a s s e , 41
-
Old Red S a n d s t o n e , 2 3 6 , 2 4 2 , 2 4 3
--
colour v a r i a t i o n , 2 4 4 , 246
F i r s t - c y c l e a r k o s e , 2 7 4 , 287 F l o o d p l a i n s , 2 0 7 , 238 F l u v i a l d i s t r i b u t a r y channels, 132 Flysch, 6 Forearc basins, 13 Foreland b a s i n s , 22 Fors t e r i t e , 281 Fountain Formation, 5 6 , 60 F r o s t i n g of q u a r t z g r a i n s , 9 1 Fulgurites, 113 Gamrie O u t l i e r , 4 6 3 , 4 6 4 , 4 6 5 G e i k i e l i t e , 333
322
547 G e o s y n c l i n e s , 2-6 G i b b s i t e , 5 4 , 282 G i l a Group, 2 9 4 , 2 9 7 , 310 G i l b e r t i a n d e l t a , 1 2 7 , 132 Glaebular s o i l s , 241 G l a e b u l e s , 2 3 8 , 239 Glauconite, 272 G o e t h i t e , 2 1 8 , 2 6 8 , 2 9 7 , 3 1 6 , 3 3 0 , 3 3 1 , 3 3 8 , 3 4 0 , 3 4 1 , 3 4 2 , 3 4 2 , 3 8 9 , 4 1 4 , 4 1 5 , 416 Gomti R i v e r , 2 0 8 Grain c o n t a c t s , 273 Granule-ripples,
76
G r e i g i t e , 345, 388 Greywacke, 295 Groundwater , 104, 366 Grovesend Beds, 1 6 8 Gulf o f C a l i f o r n i a , 1 8 , 1 9 Gulf of Papua, 1 3 1 Gypsum d u n e s , 85 Gypsum n o d u l e s , 9 6 H a e m a t i t e , 2 8 0 , 2 9 7 , 3 2 2 , 3 2 3 , 3 2 7 , 3 3 0 , 3 3 6 , 3 3 8 , 3 4 0 , 3 4 1 , 3 4 2 , 3 4 3 , 3 7 2 , 411, 4 1 5 , 4 2 5 , 4 2 6 , 477
-
authigenic, 64 diagenetic origin, 231 J u n i a t a and Bald E a g l e F o r m a t i o n s , 375
- m a g n e t i c p r o p e r t i e s , 390-403 - - g r a i n s i z e e f f e c t s , 394-398 - magnetic s t r u c t u r e , 393 - pigmentary, 60, 6 3 , 2 2 0 , 2 4 5 , - s a t u r a t i o n m a g n e t i z a t i o n , 392 - s u s c e p t i b i l i t y , 392
2 4 7 , 3 1 7 , 4 2 1 , 482
64 8
Haematite after biotite, 2 8 6 , 2 8 7 , 2 8 8 , 289 Haematite-ilmenite series, 3 2 6 - 3 2 9 , 3 9 1 Haemo-ilmenite, 328 Hartford basin, 36 Haselgebirge facies, 114 Haslingden Flags, 152 Hayner Ranch Formation, 2 9 2 , 3 1 0 , 317 Helicoidal flow, 1 9 9 Highland Boundary Fault, 32 High temperature moment, 4 0 2 Himalayas, 2 2 , 2 4 Hinterland basin, 22 Hornblende, 1 2 1 , 2 8 0 , 2 9 1 , 2 9 2 , 2 9 5 , 2 9 6 , 2 9 7 , 2 9 8 Hornelen basin, 3 3 , 3 4 , 3 5 , 2 2 7 , 2 2 8 , 2 2 9 , 2 3 0 , 2 3 1
-
alluvial deposits, 33 origin, 35
Hydropsilomelane, 477 Hypolimnion, 3 5 1 . Hysteresis, 3 8 4 , 3 8 5 , 400 Illite, 5 5 , 2 4 7 , 2 7 2 , 2 8 1 , 2 9 3 Illite-montmorillonite, 1 2 1 , 2 7 2 , 2 9 6 , 3 0 8 Ilmenite, 3 2 3 , 3 2 4 , 3 2 5 , 3 2 7 , 3 3 4 , 3 3 6 , 337 Ilmeno-haematite, 3 2 8 Inclination error, 4 0 4 , 405 Indo-Gangetic basin, 2 3 Induced magnetization
-
Ji-H curves of red beds, 418-424
J.-T curves of red beds, 424-427
Initial susceptibility, 3 8 4 Inland sabkhas, 82
549 I n t e r a r c basin, 1 3 , 16 Intercontinental r i f t i n g , 9 I n t e r d i s t r i b u t a r y bays, 129 I n t e r f l u v i a l a r e a s , 208-212 I n t r a - a r c b a s i n , 1 3 , 15 Intracontinental r i f t s
-
see a u l a c o g e n s
Intraformational conglomerate, 1 9 5 , 248 I n t r a s t r a t a l a l t e r a t i o n , 104, 1 2 1 , 2 3 0 , 2 7 0 , 2 7 5 , 2 9 1 , 3 0 8 , 3 2 1 , 4 8 0 , 4 8 1
-
f e r r o m a g n e s i a n m i n e r a l s , 6 3 , 99
-
i n d e l t a p l a i n red beds, 126
-
T r i a s s i c , 256
I r i s h V a l l e y m o t i f , 3 4 8 , 3 4 9 , 3 5 0 , 3 5 1 , 352 I r o n , 1 0 , 2 8 5 , 2 8 7 , 3 5 4 , 3 5 5 , 3 5 6 , 3 7 2 , 373
-
o r g a n i c complexing, 3 5 2 , 353
-
t r a n s p o r t i n Recent a l l u v i u m , 2 1 3
-
transport phases, 215, 216
c o n t e n t of a n c i e n t r e d b e d s , 1 5 7 , 1 5 8 , 376-379 c y c l e i n l a k e s , 358 f e r r i c , 3 7 7 , 378 f e r r o u s , 3 5 1 , 3 7 7 , 378
I r o n hydroxide, 1 3 7 , 214 I r o n o x i d e s , 2 6 8 , 323-330 I r o n oxide nodules, 138 I r o n o x i d i z i n g b a c t e r i a , 356 I s o t h e r m a l r e m a n e n t - m a g n e t i z a t i o n , 3 8 4 , 3 9 8 , 399
-
red beds, 418, 420, 421
Jhelum r e - e n t r a n t , 2 3 , 2 4 , 2 5 , 26 Ji-T a n a l y s i s , 424-427 Joggins red beds, 175-177
550 J o h n 0 ' G r o a t s S a n d s t o n e , 360 J o t n i a n S a n d s t o n e , 285 J u n i a t a Formation, 3 7 4 , 375 K a o l i n i t e , 5 4 , 5 5 , 5 9 , 1 7 4 , 2 0 9 , 2 4 7 , 2 7 2 , 2 8 1 , 2 8 2 , 293 Klikov Formation, 2 5 9 , 2 6 0 , 2 6 1 , 2 6 2 , 2 6 3 Koenigsberger r a t i o , 384 Kootenay
-
Blairmore m o l a s s e , 4 6 , 4 7 , 4 8
K u p f e r s c h i e f e r , 115 Lake E y r e , 95 Lamotte Formation, 425 L a t e d i a g e n e t i c r e d d e n i n g , 104, 105 Late-orogenic b a s i n , 22 L a t e Precambrian of n o r t h w e s t S c o t l a n d , 453-460 L a t e r a l a c c r e t i o n d e p o s i t s , 2 6 , 2 0 1 , 2 0 2 , 2 3 5 , 2 3 6 , 237 L a t e r i t e , 100, 2 1 0 , 2 1 1 , 2 1 3 , 3 3 2 , 333 L a w r e n c i t e , 329 Lead, 10 Lepidocrocite,
-
330, 331, 338, 342, 343,
P a t a p s c o F o r m a t i o n , 367
Leucoxene, 3 3 3 , 337 Levees, 2 0 4 , 2 0 5 , 2 0 6 , 207 Libyan d e s e r t , 7 6 Linguoid b a r s , 1 9 2 L i t t l e h a m Mudstones, 3 7 0 , 3 7 1 , 372 Longitudinal b a r s , 1 8 6 , 187 Lower Keuper S a n d s t o n e , 2 5 6 , 2 5 7 , 373 Lower Modelo S a n d s t o n e , 55 Lower Old Red S a n d s t o n e , 2 2 2 , 235 Lower Permian
-
see R o t l i e g e n d e s
551 Lower T r i a s s i c , 2 5 4 Lower T r i a s s i c r e d b e d s , 253-259 Lower Wabash R i v e r , 205 Low-sinuosity r i v e r s , 1 9 0 - 1 9 4 Lyons s a n d s t o n e , 1 0 5 , 1 0 6 , 1 0 7 Mackinawi t e , 345 Maghemite, 3 3 0 , 3 3 1 , 335 Magmatic a r c , 1 3 , 14 Magnesium, 2 8 1 , 285 Magnetic v i s c o s i t y , 387 Magnetism, 382-384 Magnetite,
11, 2 1 8 , 3 3 1 , 3 3 6 , 4 0 8 , 4 0 9 , 411
Magnetite-ulvbspinel,
389
M a g n e t i z a t i o n of c o n t i n e n t a l r e d b e d s , 380-439
-
Type A r e d b e d s , 6 5 , 485-487 Type B r e d b e d s , 6 5 , 4 8 7 , 4 8 8 Type C r e d b e d s , 488-489
M a g n e t i z a t i o n p r o c e s s e s i n s e d i m e n t s , 403-417 Manganese, 10, 3 3 2 , 3 5 3 , 3 5 4 , 3 5 5 , 356
-
i n l a k e s , 358
-
n o d u l e s , 12
Manganosideri t e , 11 Marginal b a s i n s , 1 6 M a r t i n Formation, 411, 4 1 2 , 4 4 3 , 444, 4 4 5 , 446 M a r t i t e , 3 3 4 , 3 3 5 , 3 3 7 , 485 M a r t i t i z a t i o n , 1 5 9 , 2 3 2 , 3 1 9 , 3 3 2 , 3 3 3 , 3 3 5 , 457 Meandering c h a n n e l s , 1 8 0 , 1 8 1 Meandering R i v e r s , 1 9 8 - 2 0 4 M e c h a n i c a l l y - i n f i l t r a t e d c l a y , 104, 2 3 0 , 275-280
-
i n a n c i e n t red beds, 280
552 Mekong d e l t a , 140 M e t a l - e n r i c h e d c o n c r e t i o n s , 3 7 0 , 371, 372 Microperthi t e , 53 Middle Old Red S a n d s t o n e , 359 Middle V a l l e y o f S c o t l a n d , 1 5 9 , 2 2 2 , 223 Mineral magnetism, 388-403 M i n e r a l o g i c a l m a t u r i t y , 284 M i n e r a l t r a n s f o r m a t i o n s and r e p l a c e m e n t s , 272 Miogeosynclines, 2 M i s s i s s i p p i d e l t a , 132
-
c r e v a s s e c h a n n e l s , 1 3 4 , 135 d i s t r i b u t a r y c h a n n e l s , 142 d i s t r i b u t a r y mouth b a r s , 142 i n t e r d i s t r i b u t a r y b a y s , 134 s u b d e l t a s , 135
Modern d e s e r t s e d i m e n t s , 69-71 Moenkopi Formation, 3 1 7
-
palaeomagnetism, 469-475
Molasse, 6
-
A l p i n e , 4 0 , 41
- Lower F r e s h w a t e r ,
4 0 , 41
- -
Lower Marine, 4 0 , 4 1 , 4 3 , 44
--
Upper F r e s h w a t e r , 4 0 , 4 1 , 4 3 , 44
- -
Upper M a r i n e , 4 0 , 42
-
Canadian C o r d i l l e r a , 4 4 , 4 5 , 4 6 , 4 7 , 4 8 , 49 Caledonian o r o g e n , 221
-,
see a l s o Old Red Sandstone
Molasse B a s i n , 4 0 , 43 M o n o c r y s t a l l i n e q u a r t z , 58 M o n t m o r i l l o n i t e , 11, 5 4 , 2 7 2 , 304, 305, 308
553 M o r d e n i t e , 303, 305 Morin t r a n s i t i o n , 3 9 3 , 394, 397 Mtlssbauer s p e c t r a of h a e m a t i t e , 396, 397 Mudf lows, 225 Multicomponent NRM, 4 7 7 , 4 7 9 , 480 M u s c o v i t e , 2 7 2 , 280 N a t u r a l l e v e e s , 2 0 4 , 2 0 5 , 2 0 6 , 208 N a t u r a l remanent m a g n e t i z a t i o n , 380
-
r e d b e d s , 427-429
Navajo S a n d s t o n e , 1 0 6 , 1 0 8 , 488 Nee1 t e m p e r a t u r e , 383 Newark Group, 285 N i g e r d e l t a , 1 3 2 , 1 4 0 , 1 4 1 , 1 4 3 , 1 4 5 , 1 4 6 , 147 N o r t h e r n Columbian a l l u v i u m , 2 1 7 , 218 N o r t h S e a , 3 8 , 39
NRM
-
s e e N a t u r a l remanent m a g n e t i z a t i o n
Old Red S a n d s t o n e , 3 0 , 3 2 , 221-253, 4 6 0 , 4 6 1 , 4 6 2 , 4 6 3 , 4 6 4 , 4 6 5 , 4 6 6 , 4 6 7 , 468
-
c l a y - o x i d e p i g m e n t , 251 c o a r s e members, 2 3 3 , 235, 2 3 6 , 237 e x t e r n a l b a s i n s , 30 e x t e r n a l f a c i e s , 233
- -
-
r e d d e n i n g , 244
f i n e members, 2 3 7 , 239
-
Gamrie o u t l i e r , 2 8 8 , 312
-
heavy m i n e r a l s , 232
-
i n t e r n a l b a s i n s , 30
-
i n t e r n a l f a c i e s , 222
fining-upwards c y c l e s , 2 3 6 , 2 4 2 , 243
heavy m i n e r a l c o n t e n t , 2 5 0 , 2 5 2 , 253
554
- - r e d d e n i n g , 230 - intrastratal alteration, - Lanark b a s i n , 3 1 , 33 -
2 5 0 , 252
palaeomagnetism, 460-468 S t r a t h m o r e b a s i n , 3 1 , 33
O l i g o t r o p h i c l a k e s , 357 O p a l , 304 Opaque o x i d e s , 330-338 O r c a d i a n b a s i n , 2 2 2 , 359, 463 Organic c a r b o n , 345 Organic m a t t e r , 1 3 7 , 1 5 6 , 2 0 9 , 3 4 5 , 3 7 2 , 373 Orogenic b e l t , 22 O r t h o c l a s e , 5 3 , 280 Orthogeosynclines , 2
Oslo g r a b e n , 9 , 110 Overbank f l o o d i n g , 134 P a c i f i c o r o g e n , 44 Palaeomagnetic e v o l u t i o n o f r e d b e d s , 484-492 Palaeomagnetism and r o c k magnetism, 380-382
-
Cenozoic r e d b e d s , 475-481 M a r t i n F o r m a t i o n , 443-446
- Moenkopi Formation, -
469-475
Old Red S a n d s t o n e , 460-468 S t a r k Formation, 447-450 Tochatwi Forma t i o n , 450-45 3 T o r r i d o n i a n Sands t o n e , 453-460
Palaeomagnetism of c o n t i n e n t a l r e d b e d s , 440-492 Pangaea, 35 P a r a b o l i c d u n e s , 84 Parageosynclines
,
2
556
Paraliageosynclines, 3 P a t a p s c o Formation, 365, 366, 367 Pebbly b r a i d e d r i v e r s , 185-190 P e d o g e n e s i s , 1 5 3 , 158 Pelagic sediments, 12 P e n r i t h sandstone, 114, 117, 118, 119, 120, 121 P e r i p h e r a l b a s i n s , 21 Permian p a l a e o l a t i t u d e s , 1 1 4 , P e r t h i t e , 55 P h i l l i p s i t e , 301, 303, 3 0 4 , 305 Phyllomorphic s t a g e , 272 Pigmentary h a e m t i t e , 2 1 3 , 220, 2 4 5 , 2 4 7 , 317, 4 2 1 , 482 P l a g i o c l a s e , 5 3 , 2 8 0 , 2 8 4 , 2 8 5 , 297 P l a t e t e c t o n i c s and s e d i m e n t a t i o n , 6-26 P l a y a s , 95 Point-bars,
200-204
P o l a r i t y t r a n s i t i o n s , 482 P o l y c r y s t a l l i n e q u a r t z , 5 8 , 59 P o r o s i t y , 2 6 5 , 274 P o s t - d e p o s i t i o n a l DRM, 4 0 3 , 4 0 5 , 4 0 6 , 4 0 7 , 4 0 8 , 410 P o t a s h f e l d s p a r , 2 8 4 , 2 8 5 , 2 9 7 , 2 9 9 , 302 Pre-Flysch, 4 P r e s s u r e s o l u t i o n , 270 P r o d e l t a , 131 " P r o t e c t i o n i s t " theory, 91 P r o t e r o z o i c b a s i n s of w e s t e r n Canada, 441-453 P r o t e r o z o i c r e d b e d s , 2 6 , 441-453
-
Athapuscow a u l a c o g e n , 2 7 , 2 8 , 2 9 , 4 4 1 , 443 C h r i s t i e Bay Group, 29
5 56 P r o t o - A t l a n t i c o c e a n , 29 Pseudo-anticlines,
239, 240, 241
P s e u d o b r o o k i t e , 332, 324 Pseudo-single domains, 386 P u l l - a p a r t b a s i n s , 18, 2 0 , 2 1 P y r i t e , 137, 346 P y r i t e o x i d a t i o n , 159 Pyroxene d i s s o l u t i o n , 291 Pyrrho t i t e , 388 Q u a r t z , 9 2 , 9 4 , 269, 270, 319, 320 Rawalpindi Group, 23 R e a c t i v a t i o n s u r f a c e s , 8 8 , 1 8 6 , 1 9 2 , 235 Red beds
-
a e o l i a n , 105-108
-
a r k o s i c , 30
- c l i m a t i c s i g n i f i c a n c e , 50 - d i a g e n e s i s , 265, 274 - E a r l y Mesozoic, 35 - a n c i e n t d e l t a p l a i n s , 150-178 - m o i s t c l i m a t e s , 50 - m a g n e t i c p r o p e r t i e s , 417-439 -
-
magnetic s u s c e p t i b i l i t y , 419 mechanisms of f o r m a t i o n , 1 t e c t o n i c framework, 1
Reddening and d e p o s i t i o n a l environment, 63 Reddening and l a t e r i t i z a t i o n , 64 Red M a r l s , 242 Red S e a , 9 , 11 Red s o i l s , 5 2 , 9 7 , 218
557 Reducing c o n d i t i o n s , 138 R e d u c t i o n s p o t s , 368-372 Reduction z o n e s , 367-376 Redoxomorphic s t a g e , 267, 268 Re-entrants,
26
R e l a x a t i o n t i m e , 387 R e m a g n e t i z a t i o n , 461, 462, 463, 481, 482, 483, 488 Remanence a c q u i s i t i o n i n r e d b e d s , 481-484 Remnant a r c , 16 Remnant-ocean b a s i n s , 2 1 R e t r o a r c b a s i n , 1 6 , 22 Rhine d e l t a , 134 Rhine g r a b e n , 9 Rhondda Beds, 1 6 4 , 1 6 6 , 167 Rhourds, 84 Ridge b a s i n , 20, 23 R i f f l e r e a c h , 188 R i n g e r i k e Group, 285, 315, 317, 378 R i v e r banks and f l o o d p l a i n s , 204-212 R i v e r c h a n n e l s , 180-182 River-dominated d e l t a s , 1 3 0 , 1 3 2 , 1 4 8 , 149 R i v e r w a t e r , 267 R o t a t i o n a l h y s t e r e s i s , 417 R o t l i e g e n d e s , 108-125, 279, 309, 310, 312
-
a e o l i a n s a n d s , 1 1 3 , 114 a n h y d r i t e cement, 124, 125 a u t h i g e n i c c l a y , 120, 1 2 2 , 123
-
a u t h i g e n i c f e l d s p a r , 1 1 9 , 120, 1 2 1
-
a u t h i g e n i c q u a r t z , 119, 120, 121
-
c a r b o n a t e cement, 1 2 2 , 124
-
c l a y - o x i d e g r a i n c o a t i n g s , 118
558
-
d e s e r t l a k e s and s a b k h a s , 114-116
-
d i a g e n e s i s and r e d d e n i n g , 116, 117
- m a r g i n a l f a n g l o m e r a t e s and - mechanical i n f i l t r a t i o n of - palaeogeography, 110 - reddening, 116, 117
w a d i s , 111-113
-
S o l e P i t a r e a , 116
-
s o u t h w e s t England, 110, 112
c l a y , 117
Roundness, 91, 93, 94
Saharan d u n e s , 98 S a l t o n t r o u g h , 18, 19 S a l t p a n s , 96 San Andreas F a u l t , 23 Sandstone d i a g e n e s i s , 265-275 Sandwaves, 108, 109 Sandy, l o w - s i n u o s i t y r i v e r s , 190-194 San G a b r i e l F a u l t , 20 S a n i d i n e , 121, 301, 302 Sao F r a n c i s c o d e l t a , 132 S a r c l e t Group, 360 Sea f l o o r s p r e a d i n g , 11 S e a t e a r t h s , 167 Sea w a t e r , 267 Secondary r e d d e n i n g , 160-163 S e c u l a r v a r i a t i o n , 382 S e i f s , 80-82 S e l f - r e v e r s a l , 329 S e n t i n e l B u t t e F o r m a t i o n , 152 S h e e t f l o o d d e p o s i t s , 185 S i e v e d e p o s i t s , 185
559 S i l c r e t e , 210 S i l i c a , 2 6 7 , 2 7 0 , 2 7 1 , 307, 308 Simpson d e s e r t ,
-
c o l o u r , 100, 101, 102 r e d a e o l i a n s a n d s , 64 s e i f s , 81
S i n g l e domains, 386
-
h a e m a t i t e , 394, 427 m a g n e t i t e , 387
S i w a l i k Group, 2 3 , 26 S i z e - c o m p o s i t i o n t r e n d s , 55-58 S o i l s , 208-212, 262 Solund b a s i n , 34 Sonoran d e s e r t , 9 7 , 9 9 , 1 0 2 , 103 S o u t h e r n Mexico, 214 South Saskatchewan R i v e r , 1 9 3 , 194 Sparagmites, 2 9 , 30, 31 S p e c i f i c induced m a g n e t i z a t i o n , 4 2 0 , 421 S p e c u l a r i t e , 4 2 1 , 4 2 2 , 4 3 0 , 4 3 1 , 4 3 3 , 4 3 5 , 4 3 8 , 458 S p i n c a n t e d moment, 390, 391, 401 S p i n e l u n i t c e l l , 326 S t a b i l i t y of s p i n c a n t e d and d e f e c t moments, 398-401 S t a g e s o f d i a g e n e s i s , 266 S t a r k Forma t i o n , 447-450 S t . Bees S a n d s t o n e , 2 5 6 , 2 5 8 , 3 1 6 , 318, 320, 334, 373, 4 2 9 , 489 ”S teinmann T r i n i t y ” , 5
S t o e r Group, 4 5 4 , S t r a i g h t c h a n n e l s , 1 8 0 , 181 S t r i k e - s l i p f a u l t s , 22 Subaqueous l e v e e s , 129
560 Subduction zone, 1 3 Sub-Permian i n c o n f o r m i t y , 160 S u b s u r f a c e w a t e r , 269 S u c c e s s o r b a s i n s , 22 Sudan, 97 S u l p h a t e r e d u c i n g b a c t e r i a , 357 S u l p h a t e r e d u c t i o n , 268 Superparamagnetism, 388, 3 9 6 , 397 S u s c e p t i b i l i t y a n i s o t r o p y , 4 0 8 , 4 0 9 , 410 Swamp d e p o s i t s , 1 3 5 , 1 3 6 , 1 3 7 Swansea Beds, 168 S y n e r e s i s c r a c k s , 361
T a i g u a t i Formation, 419 Taphrogeosynclines, 3 T e c t o n i c s e t t i n g of a n c i e n t r e d b e d s , 26-49 Ten Boer Member, 114 Tesuque Formation, 2 8 3 , 294, 306 T e x t u r a l changes d u r i n g d i a g e n e s i s , 2 7 3 , 274 T e x t u r a l c h a r a c t e r i s t i c s o f a e o l i a n s a n d s , 88-95 T e x t u r a l m a t u r i t y , 2 8 4 , 295 Thermal d e m a g n e t i z a t i o n , 4 0 1 , 429
- Cenozoic r e d b e d s , 478 - M a r t i n F o r m a t i o n , 445 - Moenkopi Formation, 471
- pigment and s p e c u l a r i t e , 4 3 4 , -
4 3 5 , 4 3 6 , 4 3 7 , 438
Old Red S a n d s t o n e , 4 6 2 , 4 6 5 , 467 S t a r k F o r m a t i o n , 449 Tochatwi F o r m a t i o n , 451 T o r r i d o n i a n Sands t o n e , 457
Thermomagnetic a n a l y s i s
56 1
-
see Ji-T
analysis
Thermoremanent m a g n e t i z a t i o n , 380 T i d a l d i s t r i b u t a r y c h a n n e l s , 139, 141 Tide-dominated d e l t a s , 1 3 0 , 1 3 1 , 1 3 8 , 1 3 9 , 149, 150 T i t a n h a e m a t i t e , 328, 332 Titanomaghaemate, 323-326, 388, 389, 390 T i t a n o m a g n e t i t e , 323-327, 333, 388
-
m a g n e t i c p r o p e r t i e s , 389, 390 i n r e d b e d s , 332
Tochatwi F o r m a t i o n , 451, 452, 453 T o r r i d o n i a n S a n d s t o n e , 30, 32, 285, 333, 453-459 T r a i l i n g edges, 9 Transform f a u l t s , 7 , 1 2 , 1 7 T r a n s p o r t o f i r o n i n a l l u v i u m , 213-220 Transverse dunes, 82, 83 T r i a s s i c g r a b e n , 35, 36 T r u c i a l c o a s t , 97, 98 Turbidity currents, 4 Type A r e d b e d s , 485-487 Type B r e d b e d s , 487, 488 Type C r e d b e d s , 488, 489 U l v b s p i n e l , 331 Upper C a r b o n i f e r o u s palaeogeography, 160 Upper Coal Measures, 163-166 Upper C r e t a c e o u s r e d b e d s , 259-263 Upper G i l a Group, 279 Upper M o t t l e d S a n d s t o n e , 254, 315 Upper Old Red S a n d s t o n e , 224, 225, 226 "Upturned p l a t e s " , 92 Uranium, 368, 370, 371
562 Vanadium, 368, 370, 371, 372 V e r m i c u l i t e , 285, 293 Violin Breccia, 21 V i r t u a l geomagnetic p o l e , 382 V i v i a n i t e , 137 Wave-dominated d e l t a s , 131, 149, 150 Weathering i n d e x , 153 Western A t l a n t i c , 1 2 Western North America, 18 White R i m S a n d s t o n e , 1 0 6 , 107 Wilcox Group, 152 Wingate Sands t o n e s , 106 Wood Bay Formation, 242 Wupa t k i Forma t i o n , 475 Yellow S a n d s , 108 Y o r e d a l e s , 151, 152 Yukon R i v e r , 215, 216, 217
Z e c h s t e i n t r a n s g r e s s i o n , 115 Zeugogeosynclines , 3 Z i j d e r v e l d d i a g r a m s , 380 Z i n c , 10, 332