366.
L. Tzafriri, "Reflexibility in Banach lattices and their subspaces," J. Funct. Anal., I_~0, No. 2, 1-18 (1972 ). 3...

Author:
Akhmerov

This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!

366.

L. Tzafriri, "Reflexibility in Banach lattices and their subspaces," J. Funct. Anal., I_~0, No. 2, 1-18 (1972 ). 367. B. Walsh, "Positive approximate identities and lattice-ordered dual spaces," Manuscr. Math., 14, No. I, 57-63 (1974). 368. B. Walsh, "An approximation property characterizes ordered vector spaces with lattice-ordered duals; Bull. Am. Math. Soc., 80, No. 6, 1165-1168 (1974). 369. H. yon Weizs~[cker, "Sublineare Abbildungen und ein Konvergenzsatz yon Banach," Math. Ann., 21__2, No. 2, 165-171 (1974). 370. A. W. Wickstead, "A characterization of weakly sequentially complete Banach lattices," Ann. Inst. Fourier, 2_6_6,No. 2, 25-28 (1976). 371. A. W. Wiekstead, "The s t r u c t u r e s p a c e of a Banach lattice," J. Math. P u r e s Appl., 5__66, No. 1, 39-54 (1977). 372. A. W. Wiekstead, "Weak and unbounded c o n v e r g e n c e in Banach l a t t i c e s , " J. A u s t r a l . Math. Soc., 2A4 , No. 3, 312-319 (1977). 373. A. Wirth, " O r d e r and n o r m c o n v e r g e n c e in Banach l a t t i c e s , " Glasgow Math. J . , 1_5_5, No. 1, 13 (1974). 374. A. Wirth, "Carriers and Archimedean classes in Banach lattices," J. London Math. Soc., i0, No. I, 121-124 (1975). 375. A. Wirth, "Relatively uniform Banach lattices," Proc. Am. Math. Soc., 5_~2, No. I, 178-180 (1975). 376. G. Wittstock, "Ordered normed tensor products," Leet. Notes Phys., 2_99, 67-84 (1974). 377. G. Wittstock, "Eine Bemerkung (iber Tensorprodukte von Banaehverb~nden," Arch. Math., 25, No. 6, 627-634 (1974). 378. P. Wojtaszczyk, "On Banach spaces properties of uniform algebras with separable annihilator," Bull. Acad. Polon. Sci., Set. Sci. Math., Astr. Phys., 25, No. 1, 23-26 (1977). 379. Yan-Chaen Wong and Kung-fu Ng, Partially Ordered Topological Vector Spaces, Clarendon Pres, Oxford (1973). 380. W. A. Woyczy~ski, "Geometry and martingales in Banaeh spaces," Leet. Notes Math., 472, 229-275 (1975). 381. W. A. Woyczynski, "A central limit theorem for martingales in Banach spaces," Bull. Acad. Polon. Sci., Set. Sci. Math., Astron. Phys., 23, No. 8, 917-920 (1975). 382. A. C. Zaanen, Integration, North-Holland, Amsterdam (1967).

CONDENSING R. A.

OPERATORS R. S.

Akhmerov, Potapov,

M. and

B.

I. Kamenskii, N. Sadovskii

UDC

517~988.52

This paper is devoted to a s u r v e y of the c u r r e n t s t a t e of the theory of m e a s u r e s of n o n c o m p a c t h e s s and condensing o p e r a t o r s .

IN TR ODU

C TI ON

Although the first concrete measure of noncompactness (in current terminology the Kuratowski measure of noncompactness) was introduced by K. Kuratowski in 1930 already, basically the theory of measures of noncompactness and condensing operators was constructured in the last 15 years. The definition of a condensing operator appeared as a natural generalization of the definitions of compact and contracting operators, connected with measures of noncompactness. It turned out that condensing operators are in many ways similar to compact ones: for mappings of the form I-f with condensing f one can properly define the topological degree, many theorems about fixed points of completely continuous operators generalize to condensing operators, for linear equations with condensing operators there is a generalization of the famous theorem of FredholmRiesz-Schauder. The stimulus for the development of the theory was the fact that condensing operators arose in various problems connected with differential equations in infinite-dimensional spaces, functional-differential equations of nontrivial type, integral equations, certain types of partial differential equations. As the bibliography given at the end of the paper shows, the literature on these questions is very extensive; there are surveys (ef., e.g., [116,174, 309]). T r a n s l a t e d f r o m Itogi Nauki i Tekhniki, S e r i y a M a t e m a t i c h e s l d i Analiz, Vol. 18, pp. 185-250, 1980.

0090-4104/82/1804-0551507.50

9 1982 Plenum Publishing Corporation

551

The present paper is intended to s e r v e two ends: firstly, to give a possibly s i m p l e r and s h o r t e r d e s c r i p tion of the ideological side of the theory, not pretending at all to maximal generality or a complete elucidation of the facts, and secondly, to give an as complete as possible, but of necessity nouprofound s u r v e y of the l i t e r a t u r e , somewhat like a guide, appended to the list of literature. In a c c o r d with this, the whole text is divided into two chapters: nSurvey of the Theory" and "Survey of the L i t e r a t u r e . " In the f i r s t chapter we have tried to d e s c r i b e each concept and each fact in a maximally simple and concrete situation for which it does not lose meaning. All generalizations and also l i t e r a t u r e citations, we have tended to c a r r y out in the second chapter. In the second chapter the formulations a r e often c o a r s e n e d or given with incomplete list of conditions, so that as a r e f e r e n c e this part can only be used with cuation. The o r d e r of r e f e r e n c e s throughout the paper is alphabetical and in no way connected with priority. CHAPTER SURVEY I.I.

Measures

of

OF

THE

I THEORY

Noncompactness

1.1.1. Definition. Let (M, P) be a metric space. By the Kuratowski measure of noncompaetness ~(A) of the set A__~N/ is meant the greatest lower bound of those d > 0, for which A admits a finite subdivision into sets, whose diameters are less than d.* Obviously,

the set A is completely

bounded

if and only if ~ (A) = 0.

1.1.2. THEOREM. The intersection of a centered system of closed subsets of a complete metric space is nonempty, if in this system there are sets of arbitrarily small Kuratowski measure of noucompactness. Proof. We denote the given centered system by ~. We note that if in ~ there is a set A 0 with zero measure of noncompaetness, which by virtue of Hausdorff's test is compact, then the assertion follows trivially from the definition of compactness: it suffices to pass to consideration of the system ~'-- {A N A0: AE~} . In the general case we choose a sequence of sets AnE~, for which ~ (A n) ~ 0 as n ~ ~, and we show that the set

Ao=~

An

is compact

and the adjunction

of it to the system

~l leaves the system

centered.

Whence,

as above,

u=l

the assertion

of the theorem

will follow.

The compactness of A 0 follows from the fact that it is closed and the obvious equation ~ (A 0) = 0. Now we n ~A] NA0 is nonempty. We choose a sequence shall show that for any finite s u b s y s t e m ~ 0 ~ the set B~ .(AC_~ l

{xn} such that

n

n A)n (n A,).

sequence is relatively compact, since

for any N. Consequently, the s e t of its limit points is nonempty; but any of its limit points, as is easy to see, belongs to B. The t h e o r e m is proved. 1.1.3. Definition. The Hausdorff m e a s u r e of noucompactness ~((A) of the set A in the m e t r i c space (M, p) is the g r e a t e s t lower bound of those e > 0 for which the set A has in the space M a finite e-net. 1.1.4. R e m a r k s . a) It is easy to see that the Hausdorff m e a s u r e of noncompactness ~({A) depends on the choice of ambient space M, so m o r e c o r r e c t notation would be XM(A). Now the Kuratowski m e a s u r e of nonc o m p a c t n e s s is an intrinsic c h a r a c t e r i s t i c of the space (A, D). b) The Kuratowski and Hausdorff m e a s u r e s of noncompactness are connected by the obvious inequalities ~({A)..< a (A) 4 2~((A). Both of these inequalities a r e not improvable. It follows f r o m them, in p a r t i c u l a r , that the t h e o r e m proved above on the nonemptiness of the intersection of a centered s y s t e m is also valid for the Hausdorff m e a s u r e of noncompactness. c) In the definition of the Hausdorff m e a s u r e of noncompactness one can, in place of a finite e-net, speak of a completely bounded a-net. d) In the definition of the Kuratowski m e a s u r e of noneompaetness, instead of "whose d i a m e t e r s a r e less than d" one can say "whose d i a m e t e r s a r e not g r e a t e r than d"; in the s a m e way in the definition of the Hausdorff *infO = + ~ .

552

measure

of noncompaetness

it makes

no difference

how one defines ~-net, by open or closed bails of radius e.

1.1.5. Properties of the Kuratowski and Hausdorff Measures of Noneompactness rectly from the definitions, follow the following obvious properties of the measures X. By ,2 we denote ~ or X. a) Regularity:

:~(A) = 0 if and only if A is completely

b) Monotonically: c) Semiadditivity: d) Invariance e) Lipschitz

from

A~B

bounded.

follows that 9 (A) <_~ (B).

~(A [J B)=max{~(A),

with respect

in Metric Spaces. Diof noncompactness ~ and

,(B)}.

to closure:

~(A) = ~(A).

property:

[)~(A)--x(B)I..

w h e r e r is the H a u s d o r f f m e t r i c :

r (A, B) = inf {e > 0:

A ~ B , B~2A}

(A e and B e a r e ~ - n e i g h b o r h o o d s of the s e t s A and 13). 1.1.6. K u r a t o w s k i and H a u s d o r f f M e a s u r e s of N o n c o m p a c t n e s s in L i n e a r N o r m e d S p a c e s , B e s i d e s g e n eral properties of the functions ~ and )~ in metric spaces, we note several of their simplest properties for the case of linear normed spaces. f) Semihomogeneity: g) Algebraic

~(t.A) = I tl. ~(A) (t is a number).

semiadditivity:

~(A + B)~<~?(A) ~-~(B). h) I n v a r i a n c e w i t h r e s p e c t to t r a n s l a t i o n : ~(A + x 0) = ~J(A). In the n e x t two p a r a g r a p h s we e s t a b l i s h l e s s o b v i o u s p r o p e r t i e s of the f u n c t i o n s c~ and • in n o r m e d spaces. 1.1.7. T H E O R E M . L e t 13 be t h e u n i t b a l l w i t h c e n t e r a t z e r o in the l i n e a r n o r m e d s p a c e E. Then ~(13) = X(13) = 0, i f E is f i n i t e - d i m e n s i o n a l , and ~(13) = 2, ~(B) = 1 o t h e r w i s e . Proo~

The f i r s t a s s e r t i o n f o l l o w s f r o m the r e g u l a r i t y of the m e a s u r e s of n o n c o m p a c t n e s s c~ and X.

We s h a l l p r o v e the s e c o n d a s s e r t i o n f o r • X (13) = q < 1. T h e n

Bc__~J(xt@(q%-OB); 8>0

O b v i o u s l y , the s e t { 0} i s a 1 - n e t f o r 13, s o • (13) _< 1. L e t

i s c h o s e n s o t h a t q + ~ w i l l be l e s s t h a n 1~ Usirig p r o p e r t i e s of

the f u n c t i o n ~ w e g e t

q=)~ (B)~

L. Tzafriri, "Reflexibility in Banach lattices and their subspaces," J. Funct. Anal., I_~0, No. 2, 1-18 (1972 ). 367. B. Walsh, "Positive approximate identities and lattice-ordered dual spaces," Manuscr. Math., 14, No. I, 57-63 (1974). 368. B. Walsh, "An approximation property characterizes ordered vector spaces with lattice-ordered duals; Bull. Am. Math. Soc., 80, No. 6, 1165-1168 (1974). 369. H. yon Weizs~[cker, "Sublineare Abbildungen und ein Konvergenzsatz yon Banach," Math. Ann., 21__2, No. 2, 165-171 (1974). 370. A. W. Wickstead, "A characterization of weakly sequentially complete Banach lattices," Ann. Inst. Fourier, 2_6_6,No. 2, 25-28 (1976). 371. A. W. Wiekstead, "The s t r u c t u r e s p a c e of a Banach lattice," J. Math. P u r e s Appl., 5__66, No. 1, 39-54 (1977). 372. A. W. Wiekstead, "Weak and unbounded c o n v e r g e n c e in Banach l a t t i c e s , " J. A u s t r a l . Math. Soc., 2A4 , No. 3, 312-319 (1977). 373. A. Wirth, " O r d e r and n o r m c o n v e r g e n c e in Banach l a t t i c e s , " Glasgow Math. J . , 1_5_5, No. 1, 13 (1974). 374. A. Wirth, "Carriers and Archimedean classes in Banach lattices," J. London Math. Soc., i0, No. I, 121-124 (1975). 375. A. Wirth, "Relatively uniform Banach lattices," Proc. Am. Math. Soc., 5_~2, No. I, 178-180 (1975). 376. G. Wittstock, "Ordered normed tensor products," Leet. Notes Phys., 2_99, 67-84 (1974). 377. G. Wittstock, "Eine Bemerkung (iber Tensorprodukte von Banaehverb~nden," Arch. Math., 25, No. 6, 627-634 (1974). 378. P. Wojtaszczyk, "On Banach spaces properties of uniform algebras with separable annihilator," Bull. Acad. Polon. Sci., Set. Sci. Math., Astr. Phys., 25, No. 1, 23-26 (1977). 379. Yan-Chaen Wong and Kung-fu Ng, Partially Ordered Topological Vector Spaces, Clarendon Pres, Oxford (1973). 380. W. A. Woyczy~ski, "Geometry and martingales in Banaeh spaces," Leet. Notes Math., 472, 229-275 (1975). 381. W. A. Woyczynski, "A central limit theorem for martingales in Banach spaces," Bull. Acad. Polon. Sci., Set. Sci. Math., Astron. Phys., 23, No. 8, 917-920 (1975). 382. A. C. Zaanen, Integration, North-Holland, Amsterdam (1967).

CONDENSING R. A.

OPERATORS R. S.

Akhmerov, Potapov,

M. and

B.

I. Kamenskii, N. Sadovskii

UDC

517~988.52

This paper is devoted to a s u r v e y of the c u r r e n t s t a t e of the theory of m e a s u r e s of n o n c o m p a c t h e s s and condensing o p e r a t o r s .

IN TR ODU

C TI ON

Although the first concrete measure of noncompactness (in current terminology the Kuratowski measure of noncompactness) was introduced by K. Kuratowski in 1930 already, basically the theory of measures of noncompactness and condensing operators was constructured in the last 15 years. The definition of a condensing operator appeared as a natural generalization of the definitions of compact and contracting operators, connected with measures of noncompactness. It turned out that condensing operators are in many ways similar to compact ones: for mappings of the form I-f with condensing f one can properly define the topological degree, many theorems about fixed points of completely continuous operators generalize to condensing operators, for linear equations with condensing operators there is a generalization of the famous theorem of FredholmRiesz-Schauder. The stimulus for the development of the theory was the fact that condensing operators arose in various problems connected with differential equations in infinite-dimensional spaces, functional-differential equations of nontrivial type, integral equations, certain types of partial differential equations. As the bibliography given at the end of the paper shows, the literature on these questions is very extensive; there are surveys (ef., e.g., [116,174, 309]). T r a n s l a t e d f r o m Itogi Nauki i Tekhniki, S e r i y a M a t e m a t i c h e s l d i Analiz, Vol. 18, pp. 185-250, 1980.

0090-4104/82/1804-0551507.50

9 1982 Plenum Publishing Corporation

551

The present paper is intended to s e r v e two ends: firstly, to give a possibly s i m p l e r and s h o r t e r d e s c r i p tion of the ideological side of the theory, not pretending at all to maximal generality or a complete elucidation of the facts, and secondly, to give an as complete as possible, but of necessity nouprofound s u r v e y of the l i t e r a t u r e , somewhat like a guide, appended to the list of literature. In a c c o r d with this, the whole text is divided into two chapters: nSurvey of the Theory" and "Survey of the L i t e r a t u r e . " In the f i r s t chapter we have tried to d e s c r i b e each concept and each fact in a maximally simple and concrete situation for which it does not lose meaning. All generalizations and also l i t e r a t u r e citations, we have tended to c a r r y out in the second chapter. In the second chapter the formulations a r e often c o a r s e n e d or given with incomplete list of conditions, so that as a r e f e r e n c e this part can only be used with cuation. The o r d e r of r e f e r e n c e s throughout the paper is alphabetical and in no way connected with priority. CHAPTER SURVEY I.I.

Measures

of

OF

THE

I THEORY

Noncompactness

1.1.1. Definition. Let (M, P) be a metric space. By the Kuratowski measure of noncompaetness ~(A) of the set A__~N/ is meant the greatest lower bound of those d > 0, for which A admits a finite subdivision into sets, whose diameters are less than d.* Obviously,

the set A is completely

bounded

if and only if ~ (A) = 0.

1.1.2. THEOREM. The intersection of a centered system of closed subsets of a complete metric space is nonempty, if in this system there are sets of arbitrarily small Kuratowski measure of noucompactness. Proof. We denote the given centered system by ~. We note that if in ~ there is a set A 0 with zero measure of noncompaetness, which by virtue of Hausdorff's test is compact, then the assertion follows trivially from the definition of compactness: it suffices to pass to consideration of the system ~'-- {A N A0: AE~} . In the general case we choose a sequence of sets AnE~, for which ~ (A n) ~ 0 as n ~ ~, and we show that the set

Ao=~

An

is compact

and the adjunction

of it to the system

~l leaves the system

centered.

Whence,

as above,

u=l

the assertion

of the theorem

will follow.

The compactness of A 0 follows from the fact that it is closed and the obvious equation ~ (A 0) = 0. Now we n ~A] NA0 is nonempty. We choose a sequence shall show that for any finite s u b s y s t e m ~ 0 ~ the set B~ .(AC_~ l

{xn} such that

n

n A)n (n A,).

sequence is relatively compact, since

for any N. Consequently, the s e t of its limit points is nonempty; but any of its limit points, as is easy to see, belongs to B. The t h e o r e m is proved. 1.1.3. Definition. The Hausdorff m e a s u r e of noucompactness ~((A) of the set A in the m e t r i c space (M, p) is the g r e a t e s t lower bound of those e > 0 for which the set A has in the space M a finite e-net. 1.1.4. R e m a r k s . a) It is easy to see that the Hausdorff m e a s u r e of noncompactness ~({A) depends on the choice of ambient space M, so m o r e c o r r e c t notation would be XM(A). Now the Kuratowski m e a s u r e of nonc o m p a c t n e s s is an intrinsic c h a r a c t e r i s t i c of the space (A, D). b) The Kuratowski and Hausdorff m e a s u r e s of noncompactness are connected by the obvious inequalities ~({A)..< a (A) 4 2~((A). Both of these inequalities a r e not improvable. It follows f r o m them, in p a r t i c u l a r , that the t h e o r e m proved above on the nonemptiness of the intersection of a centered s y s t e m is also valid for the Hausdorff m e a s u r e of noncompactness. c) In the definition of the Hausdorff m e a s u r e of noncompactness one can, in place of a finite e-net, speak of a completely bounded a-net. d) In the definition of the Kuratowski m e a s u r e of noneompaetness, instead of "whose d i a m e t e r s a r e less than d" one can say "whose d i a m e t e r s a r e not g r e a t e r than d"; in the s a m e way in the definition of the Hausdorff *infO = + ~ .

552

measure

of noncompaetness

it makes

no difference

how one defines ~-net, by open or closed bails of radius e.

1.1.5. Properties of the Kuratowski and Hausdorff Measures of Noneompactness rectly from the definitions, follow the following obvious properties of the measures X. By ,2 we denote ~ or X. a) Regularity:

:~(A) = 0 if and only if A is completely

b) Monotonically: c) Semiadditivity: d) Invariance e) Lipschitz

from

A~B

bounded.

follows that 9 (A) <_~ (B).

~(A [J B)=max{~(A),

with respect

in Metric Spaces. Diof noncompactness ~ and

,(B)}.

to closure:

~(A) = ~(A).

property:

[)~(A)--x(B)I..

w h e r e r is the H a u s d o r f f m e t r i c :

r (A, B) = inf {e > 0:

A ~ B , B~2A}

(A e and B e a r e ~ - n e i g h b o r h o o d s of the s e t s A and 13). 1.1.6. K u r a t o w s k i and H a u s d o r f f M e a s u r e s of N o n c o m p a c t n e s s in L i n e a r N o r m e d S p a c e s , B e s i d e s g e n eral properties of the functions ~ and )~ in metric spaces, we note several of their simplest properties for the case of linear normed spaces. f) Semihomogeneity: g) Algebraic

~(t.A) = I tl. ~(A) (t is a number).

semiadditivity:

~(A + B)~<~?(A) ~-~(B). h) I n v a r i a n c e w i t h r e s p e c t to t r a n s l a t i o n : ~(A + x 0) = ~J(A). In the n e x t two p a r a g r a p h s we e s t a b l i s h l e s s o b v i o u s p r o p e r t i e s of the f u n c t i o n s c~ and • in n o r m e d spaces. 1.1.7. T H E O R E M . L e t 13 be t h e u n i t b a l l w i t h c e n t e r a t z e r o in the l i n e a r n o r m e d s p a c e E. Then ~(13) = X(13) = 0, i f E is f i n i t e - d i m e n s i o n a l , and ~(13) = 2, ~(B) = 1 o t h e r w i s e . Proo~

The f i r s t a s s e r t i o n f o l l o w s f r o m the r e g u l a r i t y of the m e a s u r e s of n o n c o m p a c t n e s s c~ and X.

We s h a l l p r o v e the s e c o n d a s s e r t i o n f o r • X (13) = q < 1. T h e n

Bc__~J(xt@(q%-OB); 8>0

O b v i o u s l y , the s e t { 0} i s a 1 - n e t f o r 13, s o • (13) _< 1. L e t

i s c h o s e n s o t h a t q + ~ w i l l be l e s s t h a n 1~ Usirig p r o p e r t i e s of

the f u n c t i o n ~ w e g e t

q=)~ (B)~

diamS. Thus, let E be infinite-dimensional. Then, obviously, n

~(13) _< 2. If one assumes

that ~(13) < 2, then B~[J

A~, where

diamA

i < 2 for all i, while Ai~ without loss of

I~I

generality, can be assumed to be closed. Constructing a section of ]3 by a finite-dimensional ficiently large dimension, we get a contradiction with the theorem on antipodes. The theorem 1.1.8. THEOREM. In a linear normed space, the Kuratowski are invariant with respect to taking the convex hull: , (co A ) = ,

and Hausdorff

measures

subspaee of sufis proved. of noncompactness

(A).

P r o o f . F o r the H a u s d o r f f m e a s u r e of n o n c o m p a c t n e s s t h i s a s s e r t i o n c a n be p r o v e d v e r y s i m p l y : ff S is a f i n i t e e - n e t of the s e t A , t h e n c o S i s a c o m p l e t e l y b o u n d e d e - n e t of the s e t c o A .

553

We s h a l l p r o v e i t f o r the K u r a t o w s M m e a s u r e of n o n c o m p a c t n e s s .

L e t A = ~ A~ and d i a m A k -< d f o r

a n y k. It is e a s y to s e e t h a t c o A is the union of a l l s u m s of the f o r m

2 k ~ co A~, k~l. m

w h e r e the v e c t o r X = (X~, X2, . . . ,

Xm) r u n s t h r o u g h the s t a n d a r d s i m p l e x ~, i . e . , ~ > ~ 0 , ~ k ~ = l .

L e t e > 0.

The union of aI1 s u c h s u m s c a n be a p p r o x i m a t e d w i t h a n y a c c u r a c y 5 (~) (in the s e n s e of the H a u s d o r f f m e t r i c ) [5 (e) a s e ~ 0] by f i n i t e u n i o n s of the s a m e t y p e , w h e r e X r u n s t h r o u g h a f i n i t e a - n e t ~ of the s i m p l e x ~. Then f r o m p r o p e r t i e s of the K u r a t o w s k i m e a s u r e of n o n e o m p a c t n e s s , w e get:

~(cod)=~ =maxc,

~kcoAk

)/

)

~ c o A ~ ~<~ U ~ c o A ~ +2~(~)= +8(~)4max

"~

(coAk)+6(e)

d+25(0,

s i n c e d i a m (coA k) = d i a m A k _< d. W h e n c e i t f o l l o w s , by v i r t u e of the a r b i t r a r i n e s s The o p p o s i t e i n e q u a l i t y is o b v i o u s . The t h e o r e m is p r o v e d .

of e, t h a t c~ (eoA) _< ~ (A).

The p r o p e r t i e s of the n o n c o m p a c t n e s s m e a s u r e s e x p r e s s e d by t h e l a s t t h e o r e m and t h e i r i n v a r i a n c e w i t h r e s p e c t to c l o s u r e p l a y an e s p e c i a l l y l a r g e r o l e in a p p l i c a t i o n s . 1.1.9. M o r e G e n e r a l D e f i n i t i o n of M e a s u r e of N o n c o m p a c t n e s s . By a m e a s u r e of n o n c o m p a c t n e s s in a l i n e a r n o r m e d s p a c e E is m e a n t a f u n c t i o n ,~, s a t i s f y i n g t h e c o n d i t i o n s : 1) the d o m a i n of d e f i n i t i o n D('~) c o n s i s t s of the s e t of a l l s u b s e t s of the s p a c e E , 2) r = ~(A) f o r any s e t A. The K u r a t o w s k i and H a u s d o r f f m e a s u r e s general definition.

of n o n c o m p a c t n e s s c o n s i d e r e d a b o v e , a s w a s p r o v e d , s a t i s f y the

O b v i o u s l y the f o l l o w i n g two f u n c t i o n s w i l l a l s o be m e a s u r e s of n o n c o m p a e t n e s s in the s e n s e of t h i s d e f i n i tion: ~1 ( A ) ~

101 if A is completely bounded, if A is not completely bounded, ~2 (A) = diam A.

We note t h a t the m e a s u r e of n o n e o m p a e t n e s s ,/J2 is not r e g u l a r .

1.2.

Condensing

Operators

1.2.1. Definition. Suppose in the Banach spaces E l and E 2 there are given measures of noncompactness and ~ with values in some partially ordered set (Q, _<). A continuous operator [:D(fi~EI-+E~ is called (~, r condensing, if from the inequality ~J[f(A)] .>_ ~(A) it follows that A is compact (A~D(f)). We one has

shall call f @, ~)-condensing

in the proper sense if for any set A_~D(f),

whose

closure is not compact,

I f (A)I < w (A). (In a p a r t i a l l y o r d e r e d s e t a < b m e a n s t h a t a _< b and a ~ b.) If the s e t Q is l i n e a r l y o r d e r e d , concepts obviously coincide. S u p p o s e in Q t h e r e is d e f i n e d m u l t i p l i c a t i o n by n o n n e g a t i v e s c a l a r s . c a l l e d (q, ~0, g~)-bounded, if f o r any s e t A~D(f),

then t h e s e two

The c o n t i n u o u s o p e r a t o r f w i l l be

, if (A)]-.< q~ (A). I r E 1 = E 2 and ~ = ~, then we s h a l l s a y s i m p l y " f - c o n d e n s i n g " and "(q, ~b)-bounded." I f q < 1, t h e n a (q, ~)b o u n d e d o p e r a t o r in t h i s c a s e is s o m e t i m e s c a l l e d ~ - e o n d e n s i n g w i t h c o n s t a n t q. The d e f i n i t i o n s of (q0, ~ ) - c o n d e n s i n g and {q, ~o, $ ) - b o u n d e d o p e r a t o r s e x t e n d n a t u r a l l y to f a m i l i e s of o p e r a t o r s f = { f x : X e A}; in t h i s c a s e , by f(A) is m e a n t U f x ( A ) :

554

Often, a f a m i l y of o p e r a t o r s f = { f}, : 2~ ~ A} is c o n s i d e r e d as an o p e r a t o r with two v a r i a b l e s f : A • E 1 ~ E z. And then, i n s t e a d of the w o r d s "{~a, $ ) - c o n d e n s i n g f a m i l y " o r "(q, ~, 0)-bounded f a m i l y " of o p e r a t o r s one u s e s the w o r d s " o p e r a t o r s w h i c h a r e "(9~, ~ ) - c o n d e n s i n g in the c o l l e c t i o n of v a r i a b l e s ~ o r ~ (q, 9), r in the c o l l e c t i o n of v a r i a b l e s . " 1.2.2. S i m p l e s t E x a m p l e s . A c o m p l e t e l y continuous o p e r a t o r , defined on a bounded s u b s e t of a B a n a c h s p a c e , is o b v i o u s l y tJl-condensing, w h e r e '1~1is a n o n c o m p a c t n e s s m e a s u r e f r o m 1.1.9; in e x a c t l y the s a m e way a c o n t r a c t i n g o p e r a t o r on a bounded s e t is r H o w e v e r , the m e a s u r e s of n o n c o m p a c t n e s s ~1 and ~z a r e not v e r y c o n v e n i e n t , s i n c e they do not have s u f f i c i e n t l y good p r o p e r t i e s . F o r e x a m p l e , as noted a b o v e , g~z is not r e g u l a r . It t u r n s out to be m o r e m e a n i n g f u l that the o p e r a t o r s of both indicated types a r e c o n d e n s i n g with r e s p e c t to the K u r a t o w s k i n o n e o m p a c t n e s s m e a s u r e . A c o m p l e t e l y continuous o p e r a t o r on a bounded s e t is a l s o X - c o n d e n s i n g . One should note, h o w e v e r , that a c o n t r a c t i o n of a bounded s e t m a y not be a X - c o n d e n s i n g o p e r a t o r (ef. [120]). We give an e x a m p l e of a c o n d e n s i n g f a m i l y of o p e r a t o r s . Let the o p e r a t o r s f0, ~:M~E~-->E2 be (q2, ~)c o n d e n s i n g in the p r o p e r s e n s e , w h e r e the d o m a i n of v a l u e s of the n o n c o m p a e t n e s s m e a s u r e s ~ and J~ a r e line a r l y o r d e r e d and @ is s e m i a d d i t i v e . Then the f a m i l y of o p e r a t o r s f = { f t : t E [0, 1]}, w h e r e ft(x) = (1 - t)f0(x) + ill(x), is (~, JJ)-condensing in the p r o p e r s e n s e . In fact, f o r any s e t A~_M, w h o s e c l o s u r e is not c o m p a c t , we have r

(A)I ~ ~ [ ~ (f0 (A) U f~ (A))I ~ r If0 (A) U f~ (A)] = max {~ If0 (A)I, ~ If~ (A)I} < ~ (A).

(We use the fact that if a n o n c o m p a c t n e s s m e a s u r e is s e m i a d d i t i v e then it is monotone.) The following t h e o r e m g i v e s , p r o b a b l y , the m o s t useful t e s t f o r a c o n d e n s i n g o p e r a t o r ; we f o r m u l a t e and p r o v e it f o r a f a m i l y of o p e r a t o r s . 1.2.3. T H E O R E M . Let the o p e r a t o r s of the f a m i l y f = {fk : ~ ~ A} be continuous and a d m i t a diagonal r e p r e s e n t a t i o n f~(x) : ,~(~, x, x) in t e r m s of an o p e r a t o r @ :A x M x E~ ~ E 2 ( E l , E 2 a r e B a n a c h s p a c e s , I?/GE~, A is an a r b i t r a r y set). F o r any y E E l , let the s e t r x M x {y}) be c o m p l e t e l y bounded and f o r any ~ ~ A, x ~ M the o p e r a t o r @()~, x, 9 ) s a t i s f y a L i p s c h i t z condition with c o n s t a n t q. Then the f a m i l y f(q, X) is bounded. P r o o f . One m u s t e s t a b l i s h that for any s e t AGN one has X [ f (A)I~

(i)

w h e r e the l e t t e r X on the left and the r i g h t d e n o t e s the H a u s d o r f f n o n e o m p a e t n e s s m e a s u r e in the s p a c e s E 1 and E 2 , r e s p e c t i v e l y . If the s e t A is not bounded, then (1) is obvious, s i n c e x(A) = + ~ . L e t A be bounded and S be a finite (x(A) + e ) - n e t of A in E~. We c o n s i d e r the s e t S 1 = ~(A x A x S). It is c o m p l e t e l y bounded, s i n c e it is the union of a finite c o l l e c t i o n of c o m p l e t e l y bounded s e t s r x A x {y}). We s h a l l show that SI is a q . (X (A) + e ) - n e t f o r f ( A ) . L e t z e f ( A ) , i.e., z = @ ( X , x , x ) , w h e r e X e A , x e A , a n d l e t y e S be s u c h t h a t I I x - y l l _ < x ( A ) + e. Then the e l e m e n t z~ = @(X, x, y) belongs to S 1 and

Hzl-zH--]lo(~, x, y)-r Thus, proved.

x, x)it-.

x[f(A)] <_ q(x(A) + ~), whence, by virtue of the arbitrariness

of e, (i) follows.

The theorem

is

1.2.4. Consequences. (a) If under the hypotheses of the theorem the set M is bounded and q < 1, then the family f is X-condensing. (b) The sum of a completely continuous and a contracting operator g, h : E l ~ E 2 on any bounded set M~E~ is a X-condensing operator. To conclude

this section we give a useful theorem

1.2.5. THEOREM. operator. Proof.

Let

The Fr~chet

f:D (f)GE~-+Ee,

derivative

on the derivative

of a (q, x)-bounded

at a point of a (q, x)-bounded

operator

operator.

is a (q, )/)-bounded

x be an interior point of D(f), A = f' (x). For sufficiently small h e El,

Ah~- f (x + h ) - - f (X)--o~(h), w h e r e w (h)/1[ hi[ ~ 0 as h ~ O. Hence for any bounded s e t A4~E~ and s u f f i c i e n t l y s m a l l e > O,

U s i n g p r o p e r t i e s of the n o n c o m p a c t n e s s m e a s u r e X and the (q, x ) - b o u n d e d n e s s of f, we get Z [A (N)I ~ qT, (M) ~- ~ [o) (eN)/e]. 555

Passing

to the limit as ~ --* 0, obviously gives

X [A (?d)] ~ qz (IV/). The t h e o r e m is p r o v e d . 1.3.

Index

of

Fixed

Points

of

a Condensing

Operator

1.3.1. Formulation of the Problem. In the theory of fixed points, important roles are played by the mutually close concepts of degree of a mapping, the rotation of a vector field, index of fixed points of an operator. Here we shall use the terminology connected with the last of these concepts, while in cases where this cannot cause misunderstanding, we shall simply nindex of an operator," instead of "index of fixed points of an operator."

Let E be a Banach space, R be a convex closed subset of E, V be a subset of R, open in the indueed topology of the space R. W e shall denote by V and ~z the closure and the boundary of this set in R. Let the o p e r a t o r f : V ~ R be X - c o n d e n s i n g and the s e t FIX (fl V) of fixed points of its r e s t r i c t i o n to V be c o m p a c t . A s u f f i c i e n t (but not n e c e s s a r y ) condition f o r this is the a b s e n c e of fixed points for the o p e r a t o r f on the b o u n d a r y V of the s e t V. In the r e s t of this s e c t i o n , i n s t e a d of " • we s h a l l w r i t e s i m p l y " c o n d e n s i n g . " F o r s u c h an o p e r a t o r we define an i n t e g e r ind R (f, V), c a l l e d the index of fixed points (for s h o r t , index) of the o p e r a t o r f on V with r e s p e c t to R. Since R in what follows will not c h a n g e , one can use the s i m p l e r notation ind (f, V). The index of a c o n d e n s i n g o p e r a t o r will have the following p r o p e r t i e s . 1 ~ The indices of h o m o t o p i c c o n d e n s i n g o p e r a t o r s coincide. Condensing o p e r a t o r s f0, fl : V ~ R a r e said to be h o m o t o p i c , if t h e r e exists a c o n d e n s i n g f a m i l y f = {fk : ;~ e [0, 1]}, w h e r e the map (X, x) ~ fk(x) is continuous and the s e t F i x ( f I v ) ~ U Fix(f~lv ~ is c o m p a c t . xEIo,l] 2 ~ Let Vi (i = 1, 2 , . . .

) be p a i r w i s e d i s j o i n t s u b s e t s of V w h i c h a r e open in R and the o p e r a t o r f have no

fixed points on V \ ~ V~ . Then the i n d i c e s ind if, Vi) a r e defined, only a finite s e t of t h e m a r e d i f f e r ent f r o m z e r o , and

ind(f, V)~

i n d ( f , V~). i~l

3 ~. If f(x) - x 0 E V, then ind (f, V) = 1. 4 ~ If f(x) ~ x 0 ~- V, then ind (f, V) = 0. 5 ~ If ind (f, V) ~ 0, then f has at l e a s t one fixed point. U n d e r the a s s u m p t i o n that the quantity d e s c r i b e d , ind R (f, V), e x i s t s , we can define an analogous c h a r a c t e r i s t i c u n d e r s o m e w h a t m o r e g e n e r a l conditions: it s u f f i c e s to a s s u m e that f is defined and X-condensing not on ~ , but only on V. In fact, one can, by definition, s e t ind R (f, V) = indR (f, W), w h e r e the r e l a t i v e l y open s e t W is s u c h that F i x ( / ) ~ W , ~ / c V . The i n d e p e n d e n c e f r o m W follows f r o m 2 ~ p r o p e r t i e s 1~ ~ a r e o b v i o u s l y p r e s e r v e d , w h e r e in 1 ~ it s u f f i c e s to a s s u m e that f0, fl, and f a r e defined on V. The definition of the index of a c o n d e n s i n g o p e r a t o r is b a s e d on the following c l a s s i c a l r e s u l t f r o m the t h e o r y of c o m p l e t e l y continuous o p e r a t o r s . 1.3.2. T H E O R E M . If in the p r e c e d i n g p a r a g r a p h we a s s u m e all the o p e r a t o r s a r e c o m p l e t e l y continuous and acting from an open subset U of a Banach space E into E, then a characteristic satisfying conditions 1~ ~ exists, is unique, and has properties 4 ~, 5 ~. This theorem, based on the Brouwer theory of various versions was proved by Leray and Schauder, proof can, for example, be obtained, using Theorems sel'skii and Zabreiko [74]: it suffices to set ind (f, U) tor field I-f on the boundary of a bounded domain W, An important role in the following constructions sel'skii, Zabreiko, and Strygin [50]. 1.3.3. Definition of Fundamental satisfies three requirements:

556

the degree of mappings in a finite-dimensional space, in M. A. Krasnosel'skii, Rothe, Nagumo, Browder. Its 20.1, 20.2, 20.3, and 20.4 of the monograph of Krasno= T(I - f, W), where T(I -- f, W) is the rotation of the vecsatisfying the conditions Fix (f)~W, WcU. is played by the following concept,

Set. The set S is called a fundamental

introduced by Krasno-

set of the operator f:M

--E,

if it

) Fig. 1 1) S is nonempty, convex, compact;

2) f (M NS)ZS; 3) if

XoEM\S, then xoEco [{f (Xo)}US].

The last requirement says that upon applying the operator f, points of the set M "are not repulsed;' from S: if X o ~ M \ S , then f(x 0) does not lie in the shaded cone (el. Fig. 1). We note at once that a fundamental set S contains all fixed points of the operator. The concept of fundamental set will also be used in the obvious sense in relation to families of operators. 1.3.4. THEOREM. Let f~{f~:kEA} be a condensing family of operators (:M~E-~E) and K be a compact subset of E. Let A be a compact topological space and the map (h, x) ~ fh(x) be continuous. Then flM has a fundamental set containing K. Proof. We denote by ~ the collection of closed sets containing K and satisfying all the requirements fro from the definition of a fundamental set of the family f]M, except possibly for compactness. ~ is nonempty, since, e.g., the set T0=co [K Uf(M)] satisfies the conditions cited (without loss of generality one can assume that K~ 0, so that TO;~ Calso). We note, further, that if TE~l, then the set T,-=co[t(Uf(MNT)] also belongs to ~. In the verification one needs only r e q u i r e m e n t s 2) and 3) f r o m the definition of a fundamental set. T,c_T, since t

f (M NT 3 Z f (M N r ) Z c o [K U f (M rl r)l = r~. We verify 3). If x 0 e T, then the a s s e r t i o n follows f r o m the c o r r e s p o n d i n g property of T and the inclusion Now if x 0 E T, then f(x 0) ~ T~ and the a s s e r t i o n is obvious. Now we define the set S = belongs to ~'l and coincides with S. ease when MNS f r o m the equation

T~c_T.

N T and we shall show that it is fundamental for flM. It is easy to see that S r~-~

is in ~ a minimal set. Hence, by virtue of what was said above, the set S ~ = c b [K U f ( M N S ) ] But then ~ (M N S)~< X(S) = ~ [ f (M ~1S)], which for a condensing family f is possible only in the is compact. Since A is also compact and the map (X, x) ~ fx(x) is continuous, f r o m this and S = ~ [K U f (M N S)I follows the c o m p a c t n e s s of S. The t h e o r e m is proved.

In determining the index of a condensing o p e r a t o r we aIso use the following theorem of Dugundji [28, 188] on extensions of a continuous o p e r a t o r . 1.3.5. THEOREM. A continuous o p e r a t o r , defined on a nonempty closed subset of a metric space, and a s s u m i n g values in a locally convex space, can be extended continuously to the whole space while p r e s e r v i n g the convex hull of the set of values. 1.3.6. Definition of the Index of a Condensing Operator. We consider the situation described in 1o3.1. Let S be a fundamental set of the operator f l y , which exists by T h e o r e m 1.3.4, U be an open set in E such that U N R = V . Using Dugundji's t h e o r e m , we extend the o p e r a t o r f f r o m the closed subset UNS of the space U to all of U, with values in S. If UNS is empty, then the existence of such an extension is obvious. The o p e r a t o r f obtained acts f r o m U to S, and consequently, is completely continuous, while Fix (f) = Fix ( f I v)_c4.S- We set tnd (f, V) = Ind (f, U); the right side is defined here by virtue of T h e o r e m 1.3.2; on the left we use the notation ind (f, V) instead of the m o r e complete ind R (f, V).

557

Our i m m e d i a t e p r o b l e m is to show that the index is independent of the c h o i c e s of U, S, and f. 1.3.7. W e l l - D e f i n e d n e s s of the Index. Let U1, $I, {1 and U2, $2, {2 s a t i s f y all the r e q u i r e m e n t s f o r m u l a t e d in the definition of the index. We shall show that ind (71, U , ) = i n d (f~, U2).

(1)

Without loss of g e n e r a l i t y one can a s s u m e that S~cS2, s i n c e one can c o n s t r u c t a fundamental set $3, c o n taining the c o m p a c t u m K=S1 uS2, and c o r r e s p o n d i n g U3, f3, and e s t a b l i s h that both s i d e s of (1) a r e equal to ind (fa, U3). F u r t h e r , we s e t U = U I NU2. Obviously, ind (fl, U1) = ind (fl, U) and ind (f2, U2) = ind (f2, U), as follows f r o m p r o p e r t y 2 ~ of the index. Hence to prove (1) it s u f f i c e s to e s t a b l i s h the equation ind (fl, U ) = i n d (f2, U).

(2)

We c o n s i d e r on U the l i n e a r h o m o t o p y ft(x) = (1 - t)fl(x) + tf2(x) , effecting a t r a n s i t i o n f r o m fl to f2. The values of the o p e r a t o r s ft lie in S2, so that the f a m i l y F = { f t : t E [0, 1]} is c o m p l e t e l y continuous. We shall show that Fix (F) = Fix (flv); w h e n c e will follow the c o m p a c t n e s s of this set. I f x 0 E Fix (F), i.e., x 0 = (1 to)f-1(x o) + tof2 (Xo), then x 0 E S 2. Then f2 (Xo) = f(x0) and x0~co [{f (x0)} U $11, w h e n c e it follows that x 0 E $1, so that fl(xo) = f(xo). F i n a l l y , we get t h a t x 0 = f(xo), i . e . , x 0 ~ Fix (flv). Thus, Fix (F) ZFix (f Iy); the opposite inclusion is obvious. That the index is w e l l - d e f i n e d is proved. 1.3.8. R e m a r k . As a l r e a d y noted, along with the t e r m i n o l o g y "index of fixed points of an o p e r a t o r " one often u s e s t e r m i n o l o g y c o n n e c t e d with the c o n c e p t of r o t a t i o n of a v e c t o r field. If f is a c o n d e n s i n g o p e r a t o r , then the v e c t o r field I - f is called a c o n d e n s i n g v e c t o r field (I is the identity o p e r a t o r ) . By the r o t a t i o n of the v e c t o r field I - f on the s e t V r e l a t i v e to R in the c a s e when the o p e r a t o r f has no fixed points on V, is m e a n t the quantity 7 R ( I - f , V), defined by the equation Y~ (I - - f , V) = ind~ (f, V). 1.3.9. T h e o r e m on P r o p e r t i e s of the Index. The index of a c o n d e n s i n g o p e r a t o r , defined above, has p r o p e r t i e s 1~ ~ of P a r a g r a p h 1.3.1. All t h e s e p r o p e r t i e s follow e a s i l y f r o m the c o r r e s p o n d i n g p r o p e r t i e s of the index of a c o m p l e t e l y c o n tinuous o p e r a t o r . As an e x a m p l e we s h a l l prove the f i r s t of them. L e t the o p e r a t o r s f0 and fl be h o m o t o p i c and the h o m o t o p y be effected by a c o n d e n s i n g f a m i l y f = {fk : E [0, 1]}. By T h e o r e m 1.3.4 the f a m i l y fl V has g e n e r a l f u n d a m e n t a l s e t S. In addition, by v i r t u e of the d e f i n i tion of h o m o t o p y , the s e t Fix (fl V) is c o m p a c t . L e t U be an open s u b s e t of E s u c h that U f l R = V . We extend the o p e r a t o r s f~ of the f a m i l y f f r o m the s e t UAS to all of U, p r e s e r v i n g the convex hull of the d o m a i n of v a l ues of the family and the c o n t i n u i ~ of the m a p p i n g (;~, x) ~ f~(x). Then we g e t a c o m p l e t e l y continuous h o m o t o p y = { f~ : ~ E [0, 1]}, for w h i c h Fix (f) = Fix (fl V) is c o m p a c t . Hence ind (re, V ) = ind (f0, U ) = ind (fl, U ) = i n d (f~, V). 1.3.10. Fixed Point T h e o r e m . The t h e o r y of the index of c o n d e n s i n g o p e r a t o r s allows one to prove v a r i ous t e s t s f o r the e x i s t e n c e of fixed points. As an e x a m p l e we shall prove h e r e the g e n e r a l i z e d S c h a u d e r p r i n ciple. THEOREM. L e t T be a n o n e m p t y convex c l o s e d s u b s e t of the B a n a c h s p a c e E. Let the c o n d e n s i n g o p e r a t o r f c a r r y T into itself. Then ind T (f, T) = 1, i.e., f has in T at l e a s t one fixed point. P r o o f . We set R -- V = T. We fix an a r b i t r a r y point x 0 6 T and we c o n s i d e r the c o n d e n s i n g h o m o t o p y

F~ (x) = (1 -- t) f (x) + txo, effeeting a t r a n s i t i o n f r o m the o p e r a t o r f to the o p e r a t o r Fl~x) -- x 0. We shall show that the s e t of fixed points P = Fix (F) of the f a m i l y F = { F t : t E [0, 1]} is c o m p a c t . F i r s t l y , it is obviously c l o s e d . Secondly, P c c o i f ( P ) U {x0}], so ~ (P) _< • w h e n c e , by v i r t u e of the definition of c o n d e n s i n g o p e r a t o r , we get that P = ~ is c o m pact. T h u s , the quantity ind (Ft, T) is defined and independent of t. In p a r t i c u l a r , ind (f, T) = ind (F0, T) ~ ind (F1, T) = 1. Now using p r o p e r t y 5 ~ of the index, we get that f has a fixed point in T. The t h e o r e m is p r o v e d . 1.3.11. T h e o r e m on L o c a l C o n s t a n c y of the Index. L e t f = {fk : ~ E [0, 1]} be a c o n d e n s i n g f a m i l y of o p e r a t o r s , a c t i n g f r o m the c l o s u r e at of the r e l a t i v e l y open s u b s e t 12 of the convex c l o s e d s e t R , lying in the B a n a e h s p a c e E , in E, and let the m a p (~, x) ~-* fh(x) be continuous. Let us a s s u m e that the o p e r a t o r f0 has no fixed

558

p o i n t s on ~ . Then one c a n find a n u m b e r >'0 E (0, 1], s u c h t h a t f o r a I l ~ , s a t i s f y i n g the c o n d i t i o n 0 -< k _< k0, the i n d i c e s of the o p e r a t o r s fk on ~a r e l a t i v e to R a r e d e f i n e d and a s s u m e the s a m e v a l u e . P r o o f . It s u f f i c e s to e s t a b l i s h that t h e r e e x i s t s a k 0 > 0 s u c h t h a t f o r k E [0, k0] the o p e r a t o r s fa h a v e no f i x e d p o i n t s on a~. W h e n c e w i l l f o l l o w the c o m p a c t n e s s of the s e t of f i x e d p o i n t s of the f a m i l y F----{f~I~:XE[0, ~0]} a n d , c o n s e q u e n t l y , the f a c t t h a t any o p e r a t o r f r o m F is h o m o t o p i c w i t h the o p e r a t o r f0i~. L e t us a s s u m e the c o n t r a r y . Xn ~ i2 s u c h that

Then one c a n find a s e q u e n c e of n u m b e r s )~-+0 and a s e q u e n c e of p o i n t s ~-~

x~=f~(x~).

(3)

S i n c e f i s a c o n d e n s i n g f a m i l y of o p e r a t o r s , the s e q u e n c e {x n} is r e l a t i v e l y c o m p a c t . W i t h o u t l o s s of g e n e r a l i t y one c a n a s s u m e t h a t x~-+xo[{2. P a s s i n g in (3) to the l i m i t a s n - - ~ , and u s i n g the c o n t i n u i t y of the m a p (~, x) fh(x), we g e t

xo=fo(Xo), which contradicts 1.4.

Linear

the hypothesis Condensing

of the theorem.

The theorem

is proved.

Operators

In this section we study questions connected with the concept of Fredholm operator. It turns out that in studying the question of whether a bounded linear operator is Fredholm, measures of noneompactness play approximately the same role as the norm in considering the question of invertibility of an operator. We recall that a bounded linear operator A, acting from a Banach space E I into a Banach space E2, is called Fredholm, if: i) its kernel Ker (A) is finite-dimensional; 2) its image Im (A) has in E 2 finite codimension: dim (E 2/Ira (A)) < ~o. The image of a Fredholm operator is closed [96]. We

shall prove a test for Fredholmness

and study the Fredholm

cr.(A)={~:~EC, s

spectrum

is not Fredholm },

in p a r t i c u l a r , w e g e t a f o r m u l a f o r the " F r e d h o l m r a d i u s " : r| (A) = sup {I ~ I:kEa| (k)}. In c o n s i d e r i n g s p e c t r a the s p a c e is a s s u m e d to be c o m p l e x . 1.4.1. The O p e r a t i o n "+". L e t E be a B a n a c h s p a c e , BE be the l i n e a r s p a c e of a l l bounded s e q u e n c e s in E , KE be the s u b s p a c e of B E , c o n s i s t i n g of r e l a t i v e l y c o m p a c t s e q u e n c e s . We s e t E + = BE / K E . F u r t h e r , if A E L(E~, E2) , t h e n , by d e f i n i t i o n , A + is the l i n e a r o p e r a t o r a c t i n g f r o m E ~ to E l a c c o r d h l g to the r u l e A+X = A x + KE2, w h e r e x E X , x = (xl, . . . . x n, . . . ), A x = (Ax~ . . . . , Ax n .... ). That t h i s is w e l l - d e f i n e d f o l l o w s f r o m the f a c t t h a t A a c t s f r o m BE 1 to BE 2 and f r o m KE 1 to KE 2. ator s

1.4.2. T h e o r e m ( T e s t f o r F r e d h o l m n e s s ) . The o p e r a t o r A E L(E~, E 2) is F r e d h o l m if and only if the o p e r b i j e e t i v e a s a m a p f r o m E~ to E l , i . e . , K e r (A +) = { 0} and I m (A+) = E~§

P r o o f . a) L e t A be F r e d h o l m . We c o n s i d e r an e l e m e n t X e K e r (A+). L e t x E X. Then x t BE~, and y = A x E KE 2. S i n c e K e r (A) is f i n i t e - d i m e n s i o n a l , i t has a d i r e c t c o m p l e m e n t : E 1 = K e r (A) + E i. Then x = x " + x ' , w h e r e x " E B K e r (A) = K K e r (A), and x ' ~ BE~. We d e n o t e by A ' the r e s t r i c t i o n of the o p e r a t o r A to E~. Then x ' = (A')-~y E KE~, s i n c e A ' is a o n e - t o - o n e m a p p i n g of the B a n a c h s p a c e E 1 onto the B a n a c h s p a c e I m (A), and c o n s e q u e n t l y , the o p e r a t o r (A') -1 is bounded. T h u s , x = x " + x ' E K E j , i . e . , X = 0. Thus we have p r o v e d t h a t Ker(A +) ={0}. We shall show that Im (A+) = E~. Let Y E E2, + Y E Y. Since eodimlm(A) is finite and Im (A) is closed, there exists a finite-dimensionalsubspace E2 such that E2 = E2 + I m (A). Then y = y' + y", where y~ E BE~ = KE2, and y"E BIm(A). We s e t x = (A')-ly'', X = x + KEI, ThenA+X = y " + KE2 = y + KE2 = y . Thus, Im(A +) =E~. b) Now let is be known that Ker (A+) = { 0} and Im (A+) = E~. It is required to prove that the operator A i s is Fredholm. If Ker (A) is infinite-dimensional,then in it there exists a bounded but not completely bounded sequence x. Then X = x + KE1 is a nonzero element of Ker (A+), which contradicts the hypothesis. Before proving that the codimension of the linear manifold Im (A) in E2 is finite, we shall show that it s is closed. Let Yn = Axn converge to Yo as n ~ ~ and x n { El. The sequence {Xn} is bounded. In fact, if this is

559

n o t s o , t h e n w e c o n s t r u c t the n o r m a l i z e d s e q u e n c e z n = x n / l l x n l l , f o r w h i c h A z , , ~ O, i . e . , A+Z = A z

+ KE 2 =

KE 2, s o Z = K E I , and c o n s e q u e n t l y , z = {z n} i s c o m p l e t e l y bounded. P a s s i n g to a c o n v e r g e n t s e q u e n c e , we g e t f o r the e l e m e n t zo=limz,k,, on t h e one h a n d , zofiKer(A)flE;, i . e . , z 0 = 0, and on t h e o t h e r , tlz011 = 1. The c o n t r a d i c t i o n o b t a i n e d p r o v e s that A E 1, Now l e t us a s s u m e t h a t the (Banach) s p a c e E 2 / A E 1 is i n f i n i t e - d i m e n s i o n a l , and l e t us c h o o s e in it a b o u n d e d , but not c o m p l e t e l y bounded s e q u e n c e {Yn + AE1}. The e l e m e n t s Yn c a n be a s s u m e d to be c h o s e n s o t h a t the s e q u e n c e y is a l s o bounded and n o t c o m p l e t e l y bounded. U s i n g the s u r j e c t i v i t y of the o p e r a t o r A +, we find x ~ BE~ s u c h t h a t y - A x = z 6 KE 2. Then Yn + AE~ = Zn + AE1, w h e n c e it f o l l o w s t h a t the s e q u e n c e Yn + AE1 is c o m p l e t e l y b o u n d e d . The t h e o r e m is p r o v e d . 1.4.3. C O R O L L A R Y . If E is a c o m p l e x B a n a c h s p a c e and A is a bounded l i n e a r o p e r a t o r in E , t h e n

~r, (A) = ~ (A+); p o i n t s of the s p e c t r u m of the o p e r a t o r A , l y i n g o u t s i d e a c l o s e d c i r c l e of r a d i u s rff(A), can be only i s o l a t e d c i g e n v a l u e s of f i n i t e m u l t i p l i c i t y . P r o o f . The f i r s t a s s e r t i o n f o l l o w s e a s i l y o b t a i n e d f r o m the f o l l o w i n g known i n d e x of t h e o p e r a t o r (not to be c o n f u s e d if a t a t l e a s t one point X E G the o p e r a t o r s e t [45].

f r o m the t h e o r e m p r o v e d in an o b v i o u s w a y . The s e c o n d a s s e r t i o n is f a c t s : in a n y c o n n e c t e d c o m p o n e n t G of the o p e n s e t C \ ~ r ( A ) , the w i t h t h e index of f i x e d p o i n t s of the o p e r a t o r ! ) X I - A is c o n s t a n t , and XI - A is i n v e r t i b l e , then the i n t e r s e c t i o n of G w i t h r is a d i s c r e t e

1.4.4. D e f i n i t i o n . By a n o r m a l m e a s u r e of n o n c o m p a c t n e s s in a B a n a c h s p a c e E is m e a n t a n y s e m i n o r m q~ in B E , s a t i s f y i n g the c o n d i t i o n : ,# (x) = 0 i f and only if x ~ KE. It is o b v i o u s t h a t any n o r m a l m e a s u r e of n o n c o m p a c t n e s s ~, g e n e r a t e s a n o r m q,+ in E + a c c o r d i n g to the formula

~F+(X) = ~ (x), wt~erex~ X. By the ~ - n o r m o f the l i n e a r o p e r a t o r A : E ~ E is m e a n t the q u a n t i t y ( A ) = s u p { ~ (Ax):x6BE, vF ( x ) = 1}. It is e a s y to s e e that (A) = iF+ (A+), w h e r e on the r i g h t is the n o r m of the l i n e a r A + in the s p a c e (E +, q~+). 1.4.5. E x a m p l e s .

a) In BE w e i n t r o d u c e the n a t u r a l n o r m :

[[x][-----sup[]x~[} and f o r any x ~ BE we s e t

9 , ( x ) = M It x + y []. y~KE It is e a s y to s e e t h a t the function s o d e f i n e d in a n o r m a l m e a s u r e of n o n c o m p a c t n e s s , w h i c h is c l o s e l y c o n n e c t e d w i t h the H a u s d o r f f n o n c o m p a c t n e s s m e a s u r e :

r ( x ) = z ({x~:ni, a natural .umber}). b) The K u r a t o w s k i n o n c o m p a e t n e s s m e a s u r e a l s o g e n e r a t e s a n o r m a l n o n c o m p a c t n e s s m e a s u r e : r

= a ({Xn:tZ is a natural lamber }).

C) The n o r m ~ [ , g e n e r a t e d in E + by the n o r m a l n o n c o m p a c t n e s s m e a s u r e # l , o b v i o u s l y c o i n c i d e s w i t h the q u o t i e n t s p a c e BE / K E , and the n o r m 'I'+ is e q u i v a l e n t w i t h it:

(el. P a r a g r a p h 1.1.4). d) The r

of the l i n e a r o p e r a t o r A a d m i t s , a s is e a s i l y v e r i f i e d , the r e p r e s e n t a t i o n 9 ~( A ) = sup { ~ (Ax):ll x I i < 1}.

1.4.6. R e m a r k s on the F r e d h o l m R a d i u s . L e t A be a bounded l i n e a r o p e r a t o r in E , ko be a n o r m a l n o n c o m p a c t n e s s m e a s u r e s u c h t h a t ~(A) < ~ and the s p a c e (E +, ~,+) is c o m p l e t e ; [r be the s e t of a l l n o r m a l

560

noncompactness Then

measures

equivalent with ~I, (i.e., the norms

generated

by them

in E + are equivalent with ,I~+).

r . (A) ~< ~I~(A), rr ( A ) = Iirn

~/-~-g--(An)

n---~oo

and r , (A) = in[ {0 (A):OE [~]}. This follows f r o m the known r e l a t i o n s b e t w e e n the s p e c t r a l r a d i u s and n o r m s of a l i n e a r o p e r a t o . r , s i n c e r~(A) = r(A +) and ~(A n) = ,]~+((A+)n). 1.4.7. S p e c t r a l R a d i u s T h e o r e m . S u p p o s e g i v e n i n the B a n a c h s p a c e E a n o r m a l n o n c o m p a c t n e s s m e a s u r e ~I,. Let the s e q u e n c e of o p e r a t o r s A n E L(E) c o n v e r g e s t r o n g l y to a n o p e r a t o r B and s a t i s f y the c o n d i t i o n ~' (g) ~< q ~ (x) for a n y x E BE and a n y s e q u e n c e y , e a c h e l e m e n t of w h i c h b e l o n g s to a n y of the s e q u e n c e s Anx. T h e n tt--mr (An) -.< max {q, r (B)}. P r o o f . Let us a s s u m e the c o n t r a r y : o > q, o > r ( B ) , w h e r e p = l i m r ( A ~ ) .

T h e s e i n e q u a l i t i e s s h o w , by

v i r t u e of P a r a g r a p h s 1.4.3 and 1.4.6, that for s o m e s u b s e q u e n e e of o p e r a t o r s A n k t h e r e a r e e i g e n v a l u e s Xnk, s a t i s f y i n g the c o n d i t i o n ] ~ k I >1 P - - 8 > max {q, r (B)}. By the B a n a e h - S t e i n h a u s p r i n c i p l e the s e q u e n c e of o p e r a t o r s is b o u n d e d , so the s e q u e n c e { Xnk } is b o u n d e d a l s o . Without l o s s of g e n e r a l i t y one c a n a s s u m e that X n k - - X0 as k ~ ~o I X01 > q. F o r the c o r r e s p o n d i n g n o r m a l i z e d e i g e n v e c t o r s x k one w i l l have

w h e r e Zk ~ 0 as k ~ ~ . Hence for the s e q u e n c e x of e i g e n v e c t o r s we get: I

(x) -.< igi q~; (x) + ~" (z) = ~ t

q~" (x),

i . e . , ~(x) = 0. C o n s e q u e n t l y , x i s a r e l a t i v e l y c o m p a c t s e q u e n c e , and we c a n a s s u m e that X k ~ X 0 as k ~ ~ . tt is c l e a r that x 0 is a n e i g e n v e c t o r of the o p e r a t o r /3 w i t h e i g e n v a l u e X0" W h e n c e , we get the c o n t r a d i c t o r y i n equality

r (B) > I~ol> , o - 6 > r (B).

The theorem 1.5.

is proved.

Applications

1.5.1. Formulation of the Problem. In this section we demonstrate the application of the technique developed to the study of differential equations with the example of two theorems on periodic solutions of equations with deflected argument of neutral type. We consider the equation

x' ( t ) = g (~, t, x (t - ~ ) , x' (t - @ .

(1)

R e l a t i v e to g we a s s u m e the following:

g : R 4-+ R;

(2)

g is continuous simultaneously in the first two arguments and T is periodic (T > 0) in the second argument;

(3)

g(8, t, xl, y3--g(e, t, x~, y~)14telxt-xzl-t-qlq~-g~.t (q < 1). Let us assume

(4)

that for e = 0, (1) has an exponentially stable T-periodic solution w.

(5)

561

We shall be interested in the question of the existence, uniqueness, and stability of a T-periodic solution of (I) for small positive e. 1.5.2. Translation Operator. In studying periodic solutions it is convenient to use the translation operator along trajectories of the differential equation, which can be defined by solving a Cauchy problem. It is easy to see, however, that the Cauchy problem for (1), corresponding to the initial condition

x(t)=rp(t)(--h~

(6)

= g(a, 0, ~o(-a), ~ ' ( - e ) ) . Hence, we shall

x ' (t) ~ g (e, t, x (t -- e), x ' (t -- e)) + Ix' (0) -- g (~, 0, x ( - - e), x ' ( - - e))l ~ (t),

(7)

w h e r e v is a p i e c e w i s e - l i n e a r function, equal to 1 f o r t = 0 and to 0 for t _> V > 0 (we shall always a s s u m e that the p a r a m e t e r s V and h s a t i s f y the inequalities V < h and V + h _< T). F o r s u c h an equation, the "gluing c o n d i tion n is s a t i s f i e d f o r any initial function 9~ ~ C~[-h, 0]. The t r a n s l a t i o n o p e r a t o r V~ : C~[-h, 0] ~ C l [ - h , 0[ along t r a j e c t o r i e s of (7) (e _< h) f o r time f r o m 0 to T is defined by the equation Ve (4)(s) = x ( T + s ) ( - h _< s < 0), w h e r e x is a solution of the p r o b l e m (7), (6). F r o m known t h e o r e m s on the Cauchy p r o b l e m for an equation of n e u t r a l type [63, 109] it follows that u n d e r the c o n d i tions (2)- (4). the operator V~ for any ~[0, /t] is defined on all of C'[ --//, 0], the mapping (e, q))~--~Ve (q~) is continuous, and the set

U

(8)

Ve(A) is bounded for any bounded set A ~ C 1[--[z, 01.

1.5.3. Auxiliary Inequality. The right side of (7) can be considered as an operator Ge, acting from C1[a h, b] to C[a, b] for any a and b, satisfying the condition 0 _< a < b [we note that for a _> h the second summand is actually absent, since u(t) - O]. We shall assume that the norm in C1[a - h, b] is defined by the formula llXllcl = Ix(a) l + llx' IIC, so as is easily verified, the Hausdorff noncompactness measure ){I(A) of any set A~C l [a--h, b] will coincide with the noncompactness measure ~ (A') of the set A' of derivatives of functions from A in C[a - h,

b]. It is asserted that the family of operators G = {Ge : e E [0, hi} is (q,)0-bounded on bounded sets, i.e., for any bounded A ~ C ~l[a--h, b[ one has

z lq (a)l ~< qz' (a) ( = qz (a'))

(9)

[we recall that by definition, G (A)= U G~(A)]. ~lO,hl F o r the p r o o f , we r e p r e s e n t the o p e r a t o r G e in the f o r m of a s u m f~ + fe, w h o s e s u m m a n d s a r e defined by the c o r r e s p o n d i n g s u m m a n d s on the r i g h t side of (7). The f a m i l y { f e } , obviously, is c o m p l e t e l y c o n t i n u o u s , so it s u f f i c e s to prove that the f a m i l y f = { f e : a E [0, h]} is (q, x)-bounded. But the o p e r a t o r s fe a d m i t a diagonal r e p r e s e n t a t i o n in t e r m s of the o p e r a t o r

9 (~, x, v) ( t ) = g (~, t, x (t - ~ ) , v (t - 0 ) , which, obviously, satisfies all the conditions b[). Thus, (9) is proved.

of Theorem

1.2.3 (as M one can take any bounded

set in C1[a - h,

1.5.4. Lemma on the Translation Operator. For sufficiently small h, the family of operators e ~ [0,-h]} is (ql, X') -b~ (with ql < I) on bounded sets. Proof. We need that h should satisfy the inequality nh _< T, where the natural number below.- For any bounded set A ~C I l--h, 01 we denote by A the set of solutions of the problem e E [0, h], ~0 E A, defined on [Th, TI:AcCI[--h, T]. Itis easy to see that for 0 <_ k _< n- i,

V = {V a :

n will be defined (7), (6) for all

A' ]tkh,n~O (A II(k--~k,rl). Using this inclusion for k = n - I, n - 2, . . ., 0, and (9), we get:

x ~[V (A)I ~< x' (a h(n-,)~,n) ~< qnx' (A). Further,

562

it is easy to verify that

(10)

i.e., Z1(A) ~ I ~

(11)

zl (A).

F r o m (10) and (11) follows the inequality xI[V(A)] <_ [qn/(1 - q)]xI(A), which also shows that for sufficiently large n (i.e., sufficiently small h), the family V is (ql, X1)-bounded with ql < 1. 1.5.5. Theorem on the Existence of T - P e r i o d i c Solutions. There exist positive h and a such that for ~ [0, h] the set ~l (~) of T-periodic solutions x of (1), satisfying the condition II • w llc1 _< a, is nonempty and lim sup iI x - - ~ I[c,=O.

(12)

P r o o f . We c h o o s e h > 0 s o that the f a m i l y V of t r a n s l a t i o n o p e r a t o r s Ve f o r e 6 [0, h] is (ql, Xl)-b~ with ql < 1. We note that the fixed points of the o p e r a t o r Va and only they, g e n e r a t e T - p e r i o d i c solutions of (1). The o p e r a t o r V0, by h y p o t h e s i s , has fixed point w 0 = wl[_h,0]. F r o m the exponential stability condition on w follows the e x i s t e n c e of an a 1 > 0 s u c h that in the open ball B with c e n t e r at w 0 and r a d i u s a~ in C ~ [ - h , 0] the o p e r a t o r V 0 has only one fixed point w 0 and for all s u f f i c i e n t l y l a r g e n a t u r a l n u m b e r s N one has

Vo:v ( B ) c B .

(13)

We note that V0, of c o u r s e , differs f r o m the t r a n s l a t i o n o p e r a t o r Vo along t r a j e c t o r i e s of (1) f o r a = 0, but (13) is n e v e r t h e l e s s valid, s i n c e ~ + h ~ T, and e o n s e q u e n t I y , V0N = ~ N - 1 v 0. F u r t h e r , by v i r t u e of the s a m e inequality ~ + h _< T, (7) for ~ = 0 and T - h _< t _< T is an o r d i n d a r y diff e r e n t i a l equation (it can be s o l v e d with r e s p e c t to the d e r i v a t i v e ) , f o r w h i c h , o b v i o u s l y , any bounded s e t of solutions is r e l a t i v e l y c o m p a c t in C t. Hence, the o p e r a t o r V 0 is c o m p l e t e l y continuous. To it we apply the t h e o r e m of Z a b r e i k o - K r a s n o s e l ' s k i i [74] (without loss of g e n e r a l i t y one can a s s u m e that N is a p r i m e } : 1 -----tnd (V0A', B) ~ ind (V0, B) (rood N).

Since this r e l a t i o n holds f o r all sufficiently l a r g e p r i m e n u m b e r s N, we get that ind (V0, B) = 1. F u r t h e r , s i n c e on 13 the o p e r a t o r V 0 o b v i o u s l y has no fixed points, one can u s e T h e o r e m 1.3.10 on the local c o n s t a n c y of the index, and we get the e x i s t e n c e of an h > 0 s u c h that f o r e ~ [% h] the o p e r a t o r Va has in B at l e a s t one fixed point, which g e n e r a t e s a T - p e r i o d i c solution of (1). The n u m b e r a, f i g u r i n g in the c o n c l u s i o n of the t h e o r e m , can be d e t e r m i n e d as s a = max {a~, a2}, w h e r e a2 = sup {ll x ~ w i/c':x (I-a,0] CFix (V) N

B}. It r e m a i n s to p r o v e (12). L e t us a s s u m e that it does not hold: t h e r e e x i s t s e q u e n c e s

e.-+0,

x,,C~I(e.) s u c h

that II x n - w[[c, >~6 > O.

(14)

We s e t q~n =Xnl[-h,0]. Since ~0n = V~n(~ n) and the f a m i l y V is X L c o n d e n s i n g on bounded s e t s , we get that the s e q u e n c e {cpn } is r e l a t i v e l y c o m p a c t , o r in o t h e r w o r d s ,

z' ({%,}) = ~ ({v~, (%,)}) < x' ({%}). Without loss of g e n e r a l i t y , one can a s s u m e t h a t % ~ 2 2 % ~ B . P a s s i n g , in the equation ~n = V~n@n), to the l i m i t as n - - ~ , we get % = V0@0), w h e r e , by v i r t u e of (14), % # w0, w h i c h c o n t r a d i c t s the c h o i c e of a 1. r e i n is p r o v e d .

The t h e o -

1.5.6. Equation with S m o o t h Right Side. L e t us a s s u m e now in addition that g is continuously differentiable in the collection of third and fourth arguments, (15) ! (0, t, w(t), w'(t)), s ~ = hi4 ) (0, t, w(t), w'(t)), w h e r e g(i) T is the d e r i v a and we i n t r o d u c e the notation: r~ = g(a) tive of g with r e s p e c t to the i - t h a r g u m e n t . We l i n e a r i z e (1) f o r s = 0 along the solution w; we get

u' = rO (t) y § sO (t) g', or

y ' - p (t) y, w h e r e p(t) = r ~ - s~ [ f r o m (4) it follows that t s~ we r e p l a c e by the s i m p l e r s u f f i c i e n t condition

(16)

i _< q < 1]. The condition of exponential s t a b i l i t y of w

563

T

(17)

p (t) dt < O. 0

1.5.7. E x p o n e n t i a l S t a b i l i t y T h e o r e m . If the m o r e s t r i n g e n t c o n d i t i o n s d e s c r i b e d in the p r e v i o u s p a r a g r a p h a r e s a t i s f i e d , then t h e r e e x i s t h > 0 and a > 0 s u c h that f o r e E [0, h] the s e t ~(e) c o n s i s t s of e x a c t l y one s o l u t i o n w e , w h i c h is e x p o n e n t i a l l y s t a b l e . P r o o f . We c h o o s e h a n d a a s in the p r e c e d i n g t h e o r e m , and w e fix in e a c h s e t ~(e) one s o l u t i o n we(w ~ = w). We c a r r y out the l i n e a r i z a t i o n of (7) a l o n g the s o l u t i o n we: v' ~t) = r~ (t) v (t - ~) + s' (t) v' (t - ~) + [v' (0) - r' (0) v ( - e) - s~ (0) v' (- ~)l v (t), I

(18)

!

w h e r e r e ( t ) = g(3)(e, t, w e ( t - e), w e ' ( t - e)), se(t) = g(4)(e, t, w e ( t - e), w e ' ( t - e)). It is known (ef. [109]) t h a t the t r a n s l a t i o n o p e r a t o r W a l o n g t r a j e c t o r i e s of (18) is the d e r i v a t i v e of V e a t the p o i n t w~ = Well_h,0], s o to p r o v e the e x p o n e n t i a l s t a b i l i t y of w e i t s u f f i c e s to e s t a b l i s h t h a t the s p e c t r a l r a d i u s r ( W e) of the o p e r a t o r W e f o r s u f f i c i e n t l y s m a l l e is l e s s t h a n one. T h i s f a c t w e e s t a b l i s h w i t h the h e l p of T h e o r e m 1.4.7 on the s p e c t r a l r a d i u s .

L e t us a s s u m e t h a t f o r s o m e

sequence {en} , en -- 0 and r(Wen) >_ I. Applying to the family W = {Wen: n = i, 2 . . . . ) the lemma on the translation operator 1.5.4, we get that this family is (q1, ~()-bounded (ql < 1) for sufficiently small h. Then, obviously, for the operators An = Wen one has the hypotheses of Theorem 1.4.7 holding with B = W0, and we have 1 ~ lira r (W~) ~ max (q,, r (W0)). n-.-~ o o

S i n c e ql < 1, i t f o l l o w s t h a t r(W0) ~ 1, b u t t h i s , a s is e a s y to v e r i f y , c o n t r a d i c t s (17). T h u s , h and simple calculation of the s o l u t i o n w a, of T h e o r e m 1 . 5 . 5 , g e t the u n i q u e n e s s

a c a n be c h o s e n s o t h a t f o r e E [0, h] a n y s o l u t i o n w~E~(e) w i l l be e x p o n e n t i a l l y s t a b l e . A of i n d i c e s now s h o w s t h a t w e in ~ (e) is unique. In f a c t , in v i e w of the e x p o n e n t i a l s t a b i l i t y the f i x e d p o i n t w e0 of the o p e r a t o r Ve is i s o l a t e d , w h i l e i t s i n d e x , a s e s t a b l i s h e d in the p r o o f is e q u a l to one. But ind (Ve, B) = 1 a l s o , w h e n c e by the a d d i t i v i t y p r o p e r t y of the index w e of w~ and w e. The t h e o r e m is c o m p l e t e l y p r o v e d . CHAPTER SURVEY

OF

THE

II LITERATURE

The following books and survey papers are partially or completely devoted to the theory of condensing operators and its applications: [6, 23, 24, 31, 32, 74, 111, 116, 121, 151, 152, 174, 199, 219, 227, 238, 243, 261, 282, 357, 386, 411, 426]. 2.1.

Measures

of

Noncompaetness

2.1.1. Various Measures of Noncompactness. Analogs of the Kuratowski and Hausdorff measures of noncompactness in a uniform space E can be found in [Iii, 116]; these measures assume values in the set of nonnegative functions, defined on some family of continuous pseudometrics on E • E. We note here too that Theorem 1.1.2 is proved in [280]. The following set function is a measure of noncompactness on the metric space (M, M: I(A) = inf{ e > 0: any subset of the set A, the distance between any two points of which is less than e, is finite} (A~_M). For details and also the investigation of some properties of the measure I, cf. [36, 174,175,260]. The set function defined by the following formula will also be a measure of noncompactness of the Banaeh space E: ~0(A) = inf{e > 0: there exists a weakly compact subset C of the space E, such that A~_C+eB} (Bisthe unit ball in E, A~E). This measure of noncompactness has the following interesting property (ef. [178,184]): on the unit ball of the space E it is equal to zero, if E is reflexive; otherwise it is equal to one. Moreover, a decreasing (with respect to inclusion) sequence of weakly closed subsets of the space E, whose measure of noncompactness w tend to zero, has a nonempty intersection (cf. [184]). A series of other concrete

noneompactness

measures

can be found in [103, iii, 116, 149,176,251,403].

2 . 1 . 2 . F o r m u l a s f o r C a l c u l a t i n g N o n c o m p a e t n e s s M e a s u r e s in V a r i o u s S p a c e s . In the s p a c e C[a, b] of r e a l f u n c t i o n s , c o n t i n u o u s on the i n t e r v a l [a, b] w i t h the u n i f o r m n o r m , the n o n c o m p a c t n e s s m e a s u r e X of the s e t A c a n be c a l c u l a t e d a c c o r d i n g to the f o r m u l a :

564

)~ ( A ) = 12 ~Lmosup max [] x - - x~ 1[, x~A O...<,'r~6

w h e r e x r is the t r a n s l a t e of the function x:

x~

{ ()

if b--~

(cf. in t h i s c o n n e c t i o n [40, 4 1 , 1 1 1 , 116] et a l . ) . In t h e s p a c e l 2 of s q u a r e - s u m m a b l e

sequences the formula

~ (A) = l i m sup li Rnx II, w h e r e Rn x = Rn{xl . . . . . x n, Xn+ ~. . . . m e a s u r e (cf. [40, 41, 111, 116]).

) = (0, . . . .

0, Xn+ 1. . . .

) d e t e r m i n e s the H a u s d o r f f n o n c o r n p a e t n e s s

F o r m u l a s a l l o w i n g one to c a l c u l a t e the H a u s d o r f f n o n c o m p a c t n e s s m e a s u r e of s p e c i a l s e t s in [p c a n be found in [100]. F o r m u l a s f o r c a l c u l a t i n g v a r i o u s n o n c o m p a c t n e s s m e a s u r e s (in p a r t i c u l a r , the K u r a t o w s k i n o n c o m p a c t n e s s m e a s u r e ) in the s p a c e of f u n c t i o n s c o n t i n u o u s on a s e g m e n t w i t h v a l u e s in a B a n a c h s p a c e a r e g i v e n in [116, 1 3 9 , 3 1 3 ] . E s t i m a t e s of t h e K u r a t o w s k i n o n c o m p a c t n e s s m e a s u r e of s u b s p a c e s of the s p a c e of f u n c t i o n s s u m m a b l e a l o n g w i t h t h e i r p - t h p o w e r s , w i t h v a l u e s in a B a n a c h s p a c e , a r e o b t a i n e d in [356]. 2 . 1 . 3 . P r o p e r t i e s of N o n c o m p a c t n e s s M e a s u r e s . V a r i a n t s a n d g e n e r a l i z a t i o n s of T h e o r e m s 1 . 1 . 5 , 1 . 1 . 6 , 1.1.7, and 1.1.8 c a n be found in [ 4 0 , 1 1 6 , 1 7 7 , 2 1 6 ] et al. In a m e t r i c s p a c e the H a u s d o r f f n o n c o r n p a c t n e s s m e a s u r e w i l l a l s o be i n v a r i a n t w i t h r e s p e c t to p a s s a g e to the c o n v e x h u l l , if the c o n v e x hull is u n d e r s t o o d in the s e n s e of a c e r t a i n c o n v e x s t r u c t u r e on the g i v e n s p a c e (for d e t a i l s , cf. [403]). The n o n c o m p a c t n e s s m e a s u r e s c~ and • in a B a n a c h s p a c e , a s a l r e a d y n o t e d , a r e c o n n e c t e d by- the f o l lowing inequalities: a (A) ~ X (A) ~ 2a (A). V a r i a n t s o f t h e s e i n e q u a l i t i e s , and a l s o o t h e r i n e q u a l i t i e s c o n n e c t i n g c~, X, and I, c a n b e found in [ 4 1 , 1 1 1 , 1 1 6 , 174, 1 7 5 , 2 8 2 ] and o t h e r p a p e r s . The q u e s t i o n of the e x i s t e n c e of a u n i v e r s a l m e a s u r e of n o n c o m p a c t n e s s , i . e . , a m e a s u r e o f n o n c o r n p a c t n e s s , in t e r m s of w h i c h one can e x p r e s s f u n c t i o n a l l y a l l o t h e r m e a s u r e s of n o n c o m p a c t n e s s on a g i v e n s p a c e , is s t u d i e d in [22]. One s p e c i a l m e t h o d of c a l c u l a t i n g the n o n c o m p a c t n e s s m e a s u r e a is d e s c r i b e d in [197]. 2 . 1 . 4 . M o d i f i c a t i o n s of the C o n c e p t of M e a s u r e of N o n c o m p a c t n e s s . A s e r i e s of a u t h o r s c o n s i d e r e d another list of axioms defining noncompactness measures. We shall describe in detail one construction (el. [27]). Let E be a Banach space, 2 E be the set of closed subsets of E. A subset U of the set 2 E is called a #-system, if, firstly, the intersection of any family of sets of ~I belongs to U , and secondly, for any A ~ 2 E one can find A'GU containing A. Let K be a cone in some real linear topological space. A function ~ : 2 E ~ K is c a l l e d a d i s t i n g u i s h i n g m a p if it s a t i s f i e s the f o l l o w i n g f o u r r e q u i r e m e n t s : 1) if A~B, then ~(A) <_ ~(B); 2) if~(R) =0, then~(AUR)~(A);3)~(A)=~( N A') f o r a n y A ~ 2 E ; 4 ) ~ ( { x } ) = 0 for anyx~E. If a s U one A'~U, A,~A

t a k e s the s y s t e m of a l l c l o s e d s u b s e t s of E , then r w i l l be a m o n o t o n e n o n s i n g u l a r m e a s u r e of n o n c o m p a c t n e s s , h a v i n g p r o p e r t y 2). This s a m e c o n s t r u c t i o n a l l o w s one (cf. the c i t e d p a p e r ) to i n t r o d u c e the s o - c a l l e d p r o j e c t i v e m e a s u r e of n o n c o m p a c t n e s s [a m e a s u r e of n o n c o r n p a c t n e s s ~o is c a l l e d p r o j e c t i v e , if r = ~ ( t . A) f o r a n y n o n z e r o s c a l a r t]; p r o j e c t i v e m e a s u r e s of n o n c o m p a c t n e s s w e r e a l s o c o n s i d e r e d in [56]. C o n s t r u c t i o n s c l o s e to the one d e s c r i b e d a b o v e , in the c a s e of a m e t r i c s p a c e and 11=2 E w e r e s t u d i e d in [ 1 3 5 , 1 7 6 ] ; a n o t h e r a n a l o g o u s c o n s t r u c t i o n is s t u d i e d in [ 1 8 1 , 2 7 3 ] . In [194] the c o n c e p t of m e a s u r e of n o n c o n v e x i t y is s t u d i e d , w h i c h i s c l o s e in s o m e s e n s e to the c o n c e p t of m e a s u r e of n o n e o m p a e t n e s s . 2.2.

Condensing

Operators

2.2.1. Modifications and Generalizations of the Concept of Condensing Operator. In this section we shall describe certain classes of operators, close in their properties to condensing operators. In part such properties will be indicated directly below; some other properties will be considered in the following paragraphs.

565

An operator f: E ~ E (E is a Banach space) is called compatible with the distinguishing map ~ (cf. Paragraph 2.1.4), if, firstly, from A@II and ~(A) = 0 it follows that ~[f(A)] = 0, and secondly, if ~(A) a 0, then ~[f(A)] _ ~(A) for all A @ 2 E. It turns out (cf. [26, 27]), for an operator compatible with a distinguishing map, there is, roughly speaking, an invariant set A such that q~(A) = 0. The presence of an invariant compact set for a condensing operator relative to a monotone measure of noncompactness (and also for a condensing operator relative to an arbitrary measure of noncompaetness, such that the operator carries a convex closed set into itself) is proved in [111,116]. This property (i.e., the existence of an invariant compaetum) plays a very important role in a series of situations. Let M be an arbitrary subset of a Banach (or locally convex) space E, and f : M -- E. We construct a transfinite sequence of sets { T~ } in the following way: (C-Of (M), if

a = O, if ~-- 1 exists, a - - 1 does not exist.

r . = ~ / (M N T~, ), | ~ Tfh

if

The sequence { Ta }, as is easy to see, always "stabilizes": starting with some ordinal number 5 one has T~ = T5 for all c~ >_ 5. The set f~~ = T5 is called the limit domain of values of the operator f on M. The operator f is called (el. [111], 116]) limit compact, if its restriction to F~ is a compact operator, i.e., if the set f ( M n f ? (24)) is relatively compact. As already remarked, a condensing operator relative to a monotone measure of noncompactness is limit compact. One of the tests for limit compactness of an operator, defined on a subset M of a quasicomplete locally convex space E, is this (cf. [102]): the operator f is limit compact if and only if from the inequality c--of (24,q A) = A (ACE) follows the compactness of A We consider another class, more accurately countable set of classes of operators, close to condensing. Let ~ be s o m e set of subsets of the space E. The o p e r a t o r f : M ~ E is called a ~ - o p e r a t o r if for any T@~ and any A ~ E , f r o m the inequality c--oiT n f (A ~ 24)]= A follows the c o m p a c t n e s s of the set A. In the case when ~ = { ~ } and E is quasicomplete, the class of ~ - o p e r a t o r s , by virtue of what was said above, coincides with the c l a s s of limit c o m p a c t o p e r a t o r s . We denote by Kn the set of all subsets of the space E, containing exactly n elements, by K~ the set of all finite, and by K the set of all c o m p a c t subsets of the space E. By : ~ (respectively, d ~ and ~), we denote the set of all K n - o p e r a t o r s (respectively, K~o- and K - o p e r a t o r s ) . It is obvious that

It is known (el. [105]), that all the inclusions, with the possible exception of the last, are strict. It turns out that any K - o p e r a t o r (respectively, K ~ - o p e r a t o r , K0-operator) is condensing relative to a semiadditive nonc o m p a c t n e s s m e a s u r e which is invartant with r e s p e c t to addition of a compact (respectively, a semiadditive invariant with r e s p e c t to the addition of a finite set, semiadditive) m e a s u r e of noncompactness (cf. [103, 105]). We d e s c r i b e a n o n c o m p a c t n e s s m e a s u r e with r e s p e c t to which an a r b i t r a r y K - o p e r a t o r f : M - (E is a locally convex space) is condensing. We define in 2 E an equivalence relation R in the following way: (A~, A2) 6 R if one can find compact sets T 1 and T 2 such that A2c_co(TIUA1) and A,_cc--o(T2U A2). We denote by [A] the equivalence class (with r e s p e c t to R) containing A ~ 2 E, and by ~t the set of all equiv! 1 alence c l a s s e s , partially o r d e r e d in the following way: [A1] _< [A2] if one can find A s ~ [A1] and A 2 E [A2] such that A j c A '2 . We define a noncompactness m e a s u r e r on 2E by $(A) = [A]. The noncompactness m e a s u r e ,J~ is semiadditive (and consequently also monotone) and invariant with r e s p e c t to adding a c o m p a c t set, and the o p e r a t o r f is ~-condensing. More detailed information on the c i r c l e of questions discussed can be found in [102, 103,105]. To conclude this p a r a g r a p h we d e s c r i b e another v e r y broad class of o p e r a t o r s , a s s o c i a t e d in t e r m s of their p r o p e r t i e s with condensing o p e r a t o r s , the class of c o m p a c t l y c a r r i e d o p e r a t o r s . A bounded nonempty closed convex set R ~ E (E is a Banach space) is called a c a r r i e r for the o p e r a t o r [:M-+E (M~_E) with r e s p e c t to the set M, if R contains at least one set which is fundamental for f with r e s p e c t to M (this fundamental set can be empty if f has no fixed points in M), if [(MNR)~_R and if f is completely continuous on MflR. The o p e r ator f is called (cf. [74]) compactly c a r r i e d if it has at least one c a r r i e r . The definition given in P a r a g r a p h 1.2.1 of condensing o p e r a t o r were considered in one or another degree of generality in [33, 40, 41, 110, 1 1 1 , 1 1 6 , 177,214] and in a whole s e r i e s of later papers. Various modifications and generalizations of the concept of condensing operator can be found in [23, 27, 56, 78, 106, iii, 116,

123, 161, 169, 170, 174,176, 181,231,252,260,264,284, 285,291, 306,309, 324, 332, 354, 359, 416,425]. Connections between various definitions of condensing operator are studied in [424]. Operators, decreasing the measure of nonconvexity (cf. Paragraph 2.1.4), were considered in [194]. 566

2.2.2. Tests for a Condensing Operator. The known tests for a condensing cally, about Theorem 1.2.3 (cf. [108, 116, 160, 174, 224,309,416]).

operator

are grouped,

basi-

To the tests for a condensing operator, apparently, one should also refer the following assertion (cf, [418] and a close result in [55]): let f:E --E (E is a Banach space) and AcE. Then ~[f(A)] _< k if and only if for any e > 0 there exists a finite-dimensional operator S e : A -- E such that !If(x) - Se ~x)]i -< k + e for all x ~ A. We give another test for a condensing operator [284,285]. Let ~-(f) = inf{q > 0: f is (q, a)-bounded}. The operator f is called topologically strictly a-condensing if in E one can find a norm II9 ]II, equivalent with the original norm in E, such that Tl(f) < 1 [here Tt(f) is the number T(f), calculated not in the space (E, I]. lJ), but in the space (E, I] 9 One has the following fact: in order that the operator f be topologically strictly a-con] densing, it is necessary, and in the case of a linear f also sufficient, that one have lim[v(f~)]~-< I. n--~oo

2.2.3. Theorem on the Derivative of a Condensing Operator. The reader can find various and generalizations of Theorem 1.2.4 in [80, 116, 172, 174, 179, 183,302,307,322].

modifications

2.2.4. Properties of Condensing Operators. Let El, E2, and E 3 be Banaeh spaces with noncompaetness measures $i, $2, and :]J3, respectively, MbeasubsetofEi, and f:M~E2, g:f(M)~E 3. Among

the simplest

a) the composition $3)-bounded operator;

properties

of condensing

operators

of a (ql, 'bl, ']~2)-bounded operator

we note the following:

f and a (q2, ~J2, $3 )-b~

operator

g is a (ql, q2, ~1,

b) if the noneompaetness measure 'JJ2is monotone and algebraically semiadditive, then the sum $I, J~2)-bounded and a (q2, $i, ~2) -bounded operator is a (ql + q2, ~1, ~'2)-b~ operator;

of a (ql,

c) if f is a ff~1, gJ2)-condensing operator, g is a ($2, $3)-e~ operator, carrying completely bounded sets into completely bounded ones, the common domain of values of the measures of noncompaetness $i, $2, and :]~3is linearly ordered, and the measures $I and ~2 are regular, then the composition of f and g is a (r '[~3)condensing operator. Less RocR

trivial are the following

two assertions,

concerning

d) let OVI, D) be a metric space, R be a closed bounded and /~,,+~=f(/~NR) (n = i, 2 .... ); then limx(R~)=0.

properties

subset of M,

of X-condensing

operators

f:R ~ M be a X-condensing

e) let E be a Banaeh space, M be a closed subset of E, f:M--Ebe a X-condensingoperator;~:hen (~0 is the first transfinite ordinal number) the set T~ of transfinite sequences defined in Paragraph compact.

(cf. [113]): map,

for o~-~ r 2.2.1 is

The connection between contracting and X-condensing maps is illuminated by the following assertion [71]. Let f:M ~ M[(M, p) is a complete metric space] be a X-condensing operator, satisfying the follow[ngthree requiremerits: a)there exists a compact set K2]V/ such that from the equation f(A)=A follows the inc!usionA~K; b) slap p (f~ (x), x) < 0o for any x EM; c) there exists a neighborhood

U of the set K such that sup diam f~ (U) ~ ~ . Then one

n

n

can find a complete

metric space T, a point p in it, and a continuous

map g:M ~T

such that: a) g(x) = p forx E K; b)g is a

homeomorphism between M\/( and T\{p}; c) the map gfg-i is a contraction on T. In this same paper there are given conditions under which a X-condensing operator, acting in a metric space, is contracting in an equivalent metric. For results connected with the given circle of questions, cf. also [366]. Finally, we describe two properties of s-condensing maps. The first of them relates to the so-called property of minimal displacement. Let f:M --M be a continuous (q, a)-bounded map of the convex bounded subset M of the normed space E into itself and q > I. Then

lnf {[I x Results

conneeted

with the given assertion

The second assertion relates bounded retraction of the unit ball tence of a homotopy H : S x [0, !] ~ t])] _< tqa (A) for any A~_S and any

j" (x)l[: x e M } < (1 -- q-')" z (M).

can be found in [142,209,211,217,301,348].

to the geometry of Banach spaces. It turns out that the existence of a (q, a)B onto the unit sphere S of the Banach space E is equivalent with the exisS, connecting the identity and a constant mapping, such that a [H(A • [0, t E [0, I] (el. [211,212]).

567

Various p r o p e r t i e s of condensing o p e r a t o r s w e r e also studied in [ 1 1 1 , 1 1 6 , 1 7 4 , 2 5 9 , 3 0 9 , 3 2 3 , 3 2 4 , 419] et al. In [141] i n t e r m s o f " s m o o t h n e s s " of the boundary of the domain ~ R " , conditions a r e f o r m u l a t e d under which the o p e r a t o r of inclusion of W~(~) in L2(~) turns out to be {q, x)-bounded. Various p r o p e r t i e s of condensing d i s s i p a t i v e o p e r a t o r s w e r e studied in [36, 3 7 , 2 3 8 , 2 4 2 , 2 7 0 ] . 2.2.5. Multivalued Condensing Mappings. A whole s e r i e s of p a p e r s is devoted to m u l t i v a l u e d condensing m a p s . We shall not dwell on the d e s c r i p t i o n of these papers due to the r e c e n t publication of the detailed s u r vey [24], devoted to the theory of multivalued o p e r a t o r s . We r e s t r i c t o u r s e l v e s m e r e l y to r e f e r e n c e s to p a p e r s connected with the theory of multivalued condensing o p e r a t o r s (below, in the c o r r e s p o n d i n g places we shall r e p e a t these r e f e r e n c e s , without s t r e s s i n g that the given p a p e r s r e l a t e to multivahied o p e r a t o r s ) : [35, 53, 909 5 , 1 0 1 , 1 2 6 - 1 2 8 , 1 6 4 , 179, 180, 182, 1 8 3 , 2 0 3 - 2 0 5 , 2 3 0 , 2 3 1 , 2 3 4 , 2 3 5 , 2 4 5 , 2 5 1 , 2 5 2 , 2 6 9 , 2 7 7 , 2 7 9 , 2 8 4 , 2 8 9 , 293,295-299,320,321,331,334,347,363,375,396,403,405,420,421]. 2.3.

Theory

of

Rotation

2.3.1. Properties of Rotation. In Paragraph fields were described. Below we shall give some

1.3.1 some properties of the rotation of condensing more important properties of the rotation.

vector

The first of the properties described relates to the question of the homotopy classification of condensing vector fields. Suppose there is given on a set U of the Banach space E a homotopy f: U • [0, I] ~ E, which is condensing in the collection of variables, all of whose fixed points are contained in some compact set K. Then (cf. [124]) there exists a condensing homotopy F : U • [0, I] • [0, I] ~ E such that: i) all fixed points of the map F(., t, s) for all t, s E [0, i] are contained in the same set K; 2) F(x, t, s) = f(x, t) for all (x, t, s) E U •

[0, 1] X {0} UKX [0, 1]X[0, 1]; 3) the map F ( . , . ,

1) is c o m p l e t e l y continuous.

F r o m this p r o p e r t y of homotopies follows the following a s s e r t i o n : if the condensing o p e r a t o r f : VR ~ R (VR is the r e l a t i v e c l o s u r e of V • R in R) has no fixed points on VR, then t h e r e exists a homotopy F : VR x [0, 1] ~ R , condensing in the collection of v a r i a b l e s , joining the map f with a c o m p l e t e l y continuous map, and such that F{x, t) r x for x ~ VR; i.e., in the c l a s s of fields, homotopic to a condensing v e c t o r field I - f , there e x i s t s a c o m p l e t e l y continuous v e c t o r field. Whence and f r o m Hopf's t h e o r e m for c o m p l e t e l y continuous v e c t o r fields, it is e a s y to deduce the following r e s u l t : Let fl and f2 be condensing m a p s , acting f r o m V into E, where V is the c l o s u r e of the J o r d a n domain V in E (being J o r d a n m e a n s that E \ l ? is connected); let fl and f2 not have fixed points on V and 7 ( I - f i , V) = 7 ( I - f 2, V), then the fields I - f i and I - f 2 a r e homotopic. With the help of the construction d e s c r i b e d above one can c a r r y over to condensing v e c t o r fields other homotopy invariants of c o m p l e t e l y continuous v e c t o r fields. F o r details, cf. [124], and also [63]. As an example of this p r o c e s s , we give the following a s s e r t i o n (cf., e.g., [74]): The rotation 7 R ( I - f , V) of the condensing v e c t o r field I - f on V r e l a t i v e to R depends only on the behavior of the o p e r a t o r f on VR. We r e c a l l (cf. P a r a g r a p h 1.2.2) that if fl and f2 a r e condensing o p e r a t o r s , then the homotopy F(x, t) = t)fl(x) + tf2 (x) is condensing in the collection of v a r i a b l e s . This p r o p e r t y allows one in the m a j o r i t y of c a s e s to c a r r y o v e r to the c a s e of condensing vector fields a s s e r t i o n s for c o m p l e t e l y continuous vector fields in whose proof one u s e s only linear homotopies. (1 -

We d e s c r i b e s o m e m o r e p r o p e r t i e s of condensing v e c t o r fields, analogous to p r o p e r t i e s of completely continuous v e c t o r fields. Let U1 and U2 be open bounded subsets of the Banach s p a c e E. Let f : Ui ~ E and g : ~2 ~ E be condensing maps such that g ( I - f ) + f is condensing and (I--f)U~ ~U2 Finally, let {V~:~A} be the s e t of connected components of the s e t U2\(I--f)(~O. We denote by 7 ( I - f , U1, k) the rotation on Ui of the v e c t o r field I - f - z , where z is an a r b i t r a r y point f r o m VX. Then

y((I--g)(I-- f), U~)= ~ ?(I--g, Vr)7(I-- f , U1, ~,). This a s s e r t i o n , and also others close to it, can be found in [300,407]. Now we c o n s i d e r a linear v e c t o r field I - A , where A is condensing with constant k < 1. Then the index of z e r o as a fixed point of the o p e r a t o r A is equal to (--1)/~, w h e r e fl is the s u m of the multiplicities of the r e a l eigenvalues of the o p e r a t o r A which a r e l a r g e r than one. T h e o r e m s on the rotation of a linear condensing v e c tor field of the type given above can be found in [ 1 7 4 , 3 9 1 , 3 9 5 ] . The following a s s e r t i o n connects the rotation of the fields I - f and I - f p, where p is a p r i m e . Let f be a condensing o p e r a t o r with constant k < 1, defined on the c l o s u r e of the domain U, and Fix (fP) be the set of fixed 568

points of the o p e r a t o r i p, lying in U. Let fP have no fixed points on I~ and f(Fix(ff))cU. Then (cf~ [50,388]) ( [ - - f , U) ~ ? ( I - - fP, U) (rood p). To conclude this p a r a g r a p h we give a t h e o r e m on the finite-dimensional approximation of a X-condensing v e c t o r field (cf. [116,310]). Let the 1-condensing o p e r a t o r f : ~R - - R have no fixed points on VR. Let us a s sume that in E t h e r e are sequences of finite-dimensional subspaces {En: n = 1, 2, . . .} and o p e r a t o r s Pn: E ~ En (n = i, 2, . . . ), satisfying the following conditions: a) Pn satisfy Lipschitz conditions with constant one; b) lira Pnx = Jr for any x E E ; c) Pnf(X) ~ R for any natural number n and any x e ~r Then for sufficiently n--eve

large n,

~ (I - - P J , V)=yR (l--f, V). We also note here that the formula given can s e r v e as the definition of the d e g r e e of the map f. This a p p r o a c h in the g e n e r a l situation was studied in detail in [30-34, 1 6 5 , 2 0 0 , 2 0 1 , 3 1 8 , 3 9 1 , 4 1 1 , 4 2 1 , 4 2 2 ] and other papers. The theory of the index of fixed points of condensing maps, acting on Banach manifolds, is c o n s t r u c t e d in [38, 39, 150]. The following p a r a g r a p h s of the p r e s e n t section a r e devoted to the d e s c r i p t i o n of the construction of the theory of rotation for various c l a s s e s of o p e r a t o r s , connected in one way or another with condensing ones. 2.3.2. Compactly C a r r i e d Mappings. Let f : U -- E be a map, compactly c a r r i e d on U (cf. P a r a g r a p h 2.2.1), and R be some c a r r i e r of f relative to U. We set ] ~ f I g N , ~. The o p e r a t o r f, by virtue of Dugundji's t h e o r e m , can be extended to a completely continuous o p e r a t o r f defined on ~ , where if f has no fixed points on U, then f also has no fixed points on U. The rotation of the compactly c a r r i e d v e c t o r field I - f is defined by the f o r m u l a

y ( l - - f , U)=y(I--], d). This turns out to be well-defined (i.e., independent of the choice of carrier R and extension f). :['he rotation constructed has properties 1~ ~ from Paragraph 1.3.1. We dwell now on the homotopy property. Those homotopies I-f?,(k E [0, I]), for which the operators f?~ have no fixed points on U and there exist 0 = k 0 < ki < 9 . 9 < Xk+ I = 1 such that the operators f~ for k E [ki, Xi+l] (i = 0, i, .... k) have common carrier, willbe admissible homotopies in the present theory. For details, cf. [74]. 2.3.3. Limit Compact Operators. As already noted above, a limit compact operator, described in Paragraph 2.2.1, can serve as an example of a compactly carried operator. In the class of admissible homotopies there are the homotopies of the form I-f~, where f)t(x) r x (x E I~) and the operator(h, x) ~ fk(x) is continuous in the collection of variables and limit compact in the collection of variables in the natural sense. A systematic account of the theory of rotation for limit compact 116, 174, 331, 420] and other papers.

vector fields can be found in [95, iiI,

A close approach in the case when the operator is defined on an absolute neighborhood a Banach space is described in [303,304,306, 309, 310].

retract lying in

2.3.4. K-Operators. The theories of rotation described in Paragraphs 2.3.2 and 2.3.3, unfortunately, has at least two deficiencies: firstly, the rotation, in contrast with the case of condensing vector fields, depends, generally speaking, on the behavior of the operators inside the domain, and secondly, linear homotopies frequently turn out to be not admissible. The theory of rotation for Kn-operators (n >_ 2), K~o-operators ~ and Koperators (cf. 2.2.1) lacks the first of these deficiencies. The construction of these theories is based on the concept of fundamental set (for details, cf. [101, 102,106]). Moreover, a construction of the theory of rotation for limit compact vector fields not having the indicated deficiency is in some sense in possible (cf. [102]). The construction in the analogous way (under minimal for K-operators (cf. [102]) lacks the second deficiency.

additional assumptions)

of the theory of ro~ation

2.3.5. Remark. There are other versions of the theory of the degree of a mapping and the description of their connections with the theories described above in [23, 25, 26, 50, 58, 66, 122,1231 142, 151,153, 174, 198, 202,204, 206,219,234,246, 247,307,316,319,333,357,407,421,425]. 2.4.

Applications

to

the

Theory

of

Operator

Equations

2.4.1. Fixed Points. We begin the description of applications of the theory of condensing operators with the most extensive domain, the theory of fixed points. We note immediately, that any test for the difference

569

of the rotation of the vector field I-f from zero (in a "good" theory of rotation) is automatically existence of fixed points of the operator f.

a test for the

2.4.2. Analogs of 8chauder's Principle. Besides Theorem 1.3.9, various theorems on fixed points of operators carrying a convex closed bounded set (or its boundary) into itself and which are in some sense of other condensing, can be found in [26, 27, 74, 78, 102, iii, 116,120,154, 165, 167,168, 177,181,184, 193, 203. 208,217,251,252,256,263,265,287,301,303,304,308,312,331,337,351-353,359,368,370,375,379,388, 396,405,416]. In the following paragraphs of this section, if nothing is said to the contrary, f denotes an ~- or X-condensing operator, defined on a closed ball B of the Banach space E with center at zero. 2.4.3. THEOREM. Let f satisfy the following requirement f(x) =kx, then~_< i. ThenT(I-f, B) =I.

(the Leray-Sehauder

For various versions and generalizations of this theorem, cf. [173,174, 256,276-278,288,290,297,320,324, 327,335,343,346,347,350,416]. 2.4.4.

191,203,204,220,222,231,

T H E O R E M . S u p p o s e f o r a l l x E ]~ one h a s l l x - f(x)it 2 _< I] f(x)]] 2 --tlxII

F o r v a r i a n t s and g e n e r a l i z a t i o n s , 2.4.5. T H E O R E M . f, B) = 1 is odd.

condition): if x E B and

2. Then 7 ( I - f , B) = 1.

cf. [ 2 6 3 , 2 8 8 , 3 6 7 ] .

L e t E be a H i l b e r t s p a c e and s u p p o s e f o r a l l x E ]3 one has if(x), x) _< Ilxll 2. Then 7 ( I -

F o r v a r i a n t s and g e n e r a l i z a t i o n s , cf. [27, 263, 288]. 2.4.6. T H E O R E M .

S u p p o s e f o r a l l xE B one h a s f ( - x ) = - f ( x ) . T h e n 7 ( I - f , B) i s odd.

F o r v a r i o u s g e n e r a l i z a t i o n s of this t h e o r e m , cf. [59, 74, 111, 1 1 6 , 2 3 1 , 3 1 0 , 3 2 6 , 3 3 6 , 3 6 7 , o m i t the g e n e r a l i z a t i o n of the B o r s u k - U l a m t h e o r e m [192].

420]. H e r e we

2.4.7. T H E O R E M ( S c h a e f e r ' s P r i n c i p l e ) . L e t f be an ~ - o r X - c o n d e n s i n g m a p in a B a n a c h s p a c e E and l e t t h e r e e x i s t X0 E [0, 1] s u c h t h a t the e q u a t i o n x = ;~0f(x) h a s no s o l u t i o n s . Then the s e t {(x, ~) ~ E • R : x = Xf(x), 0 < ~ < ;~0} is unbounded. F o r v a r i a n t s and g e n e r a l i z a t i o n s ,

cf. [79, 9 7 , 2 2 0 , 2 2 8 , 3 6 7 ] .

2.4.8. M a p p i n g s D i r e c t e d I n w a r d . L e t U be a n o n e m p t y c o n v e x c l o s e d s u b s e t of the B a n a c h s p a c e E and x E E . We d e n o t e the s e t {zoE:~ (g~U, a~O)[z--x+a(g--x)]} by J u ( x ) . In a s e r i e s of r e s u l t s the t r a d i t i o n a l c o n d i t i o n of i n v a r i a n e e (of the s e t U) w i t h r e s p e c t to the o p e r a t o r f : U ~ E is r e p l a c e d by the l e s s r e s t r i c t i v e c o n d i t i o n v (x~U) i f ( x ) o ] v ( x ) ] (such m a p p i n g s a r e s a i d to be d i r e c t e d i n w a r d ) . T H E O R E M . L e t f be an ~ - o r X - c o n d e n s i n g m a p p i n g d i r e c t e d i n w a r d and l e t f(U) be bounded. Then f h a s a f i x e d point in U'. Various theorems on fixed points of mappings which are condensing in one sense or another, directed inward (or in some sense or other weakly directed inward) can be found in [203,334,345,346,348]. 2.4.9. THEOREM. Let U be a nonempty closed convex subset of a Hilbert space H, and f:U - - H be a X-condensing operator. Let the following (Frum-Ketkov) condition hold: There exists a bounded subset A of the s e t U s u c h that p(f(x), A) _< p(x, A) f o r a l l x ~ U [ h e r e p(x, A) =inf IIx'yt} ]. Then f h a s in U a t l e a s t one f i x e d point. Y6A

M o d i f i c a t i o n s and g e n e r a l i z a t i o n s of this t h e o r e m , and a l s o r e s u l t s on f i x e d p o i n t s of c o n d e n s i n g o p e r a t o r s s a t i s f y i n g the F r u m - K e t k o v c o n d i t i o n o r its a n a l o g s , c a n be found in [46, 73, 1 5 4 , 3 1 2 , 3 3 5 ] . 2.4.10. T H E O R E M . L e t (M, p) be a c o m p l e t e m e t r i c s p a c e of f i n i t e d i a m e t e r , ~ : M • M - - R be a l o w e r s e m i c o n t i n u o u s f u n c t i o n , and f : M --* M be an ~ - c o n d e n s i n g m a p s a t i s f y i n g the c o n d i t i o n ~ if(x), f(y)) < ~ (x, y) f o r a l l x , y E M, x ~ y. Then f h a s a unique f i x e d point in M. F o r v a r i a n t s and g e n e r a l i z a t i o n s ,

cf. [170, 1 7 6 , 2 1 4 , 2 6 4 , 2 6 6 , 2 9 1 , 3 8 4 ] .

2 . 4 . 1 1 . R e m a r k . T h e r e is known a w h o l e s e r i e s of p a p e r s d e v o t e d to p r o v i n g f i x e d point t h e o r e m s f o r m a p p i n g s of the t y p e " c o n t r a c t i n g + c o m p a c t ~ : [75, 86, 89, 147,153, 155,164, 245, 248, 264, 2 6 7 , 2 7 9 , 3 2 7 , 350, 378, 379, 381]. 2 . 4 . 1 2 . T H E O R E M . L e t E be a B a n a c h s p a c e , R be a c o n v e x c l o s e d s e t in E , V be an open s e t in E, V and be the c l o s u r e and b o u n d a r y of t h e s e t V N R in the r e l a t i v e t o p o l o g y of the s p a c e R. L e t the o p e r a t o r f : V---R 570

be c o n t i n u o u s and l i m i t c o m p a c t (cf. P a r a g r a p h 2 . 2 . 1 ) , and the f a m i l y of o p e r a t o r s fn : V - - R be l o c a l l y e q u i c o n t i n u o u s . L e t the f o l l o w i n g c o n d i t i o n s hold: a)

f~ (x)-[2:f (x)

f o r any x ~ V;

b) if x* = f(x*) and x ~ V, t h e n fn(x) + x* - fn(X*) e R f o r n >_ N(x*); e) the o p e r a t o r ] : A X V - + 1~ (A ----{N (x*), N (x*) ~- 1. . . . .

f(a, ~'

""1 =

~ }), d e f i n e d by the f o r m u l a

[.f.(x)--]-x*--f~(x*), If (x),

if

if

a=n,

a = c~,

is l i m i t c o m p a c t in the c o l l e c t i o n of v a r i a b l e s f o r a n y f i x e d point x* of the o p e r a t o r f; d) x ~ f(x) f o r x E ~} and 7 R ( I - f ,

V) ~ 0;

e) any of the o p e r a t o r s f(n, 9 ) h a s no m o r e than one f i x e d point. Then the s e t of f i x e d p o i n t s of the o p e r a t o r f is n o t e m p t y , c o m p a c t , and c o n n e c t e d . V a r i a n t s and g e n e r a l i z a t i o n s , and a l s o o t h e r r e s u l t s on c o n n e c t i o n s of s e t s of f i x e d p o i n t s of o p e r a t o r s w h i c h a r e c o n d e n s i n g in s o m e s e n s e o r o t h e r c a n be found in [107, 1 0 8 , 1 1 6 , 2 0 1 , 3 2 3 , 3 2 5 , 361,362,364,371]. 2.4.13. O p e r a t o r s w i t h N o n c o n v e x D o m a i n of V a l u e s . L e t R be a c l o s e d s u b s e t of the B a n a c h s p a c e E , r e p r e s e n t a b l e in the f o r m of a l o c a l l y f i n i t e union of c o n v e x c l o s e d s e t s ; U~_R be an open s u b s e t of the s p a c e R w i t h m e t r i c , i n d u c e d f r o m E ; f : U - - U be a c o n t i n u o u s m a p . THEOREM.

Let: a) the s e t

U~= ~ fn(U)

be n o n e m p t y , c o m p a c t , a n d c o n t a i n e d in U; b) the m a p f be

l o c a l l y a - c o n d e n s i n g ( i . e . , f o r eac'h point x E U one c a n find a n e i g h b o r h o o d Vx s u c h t h a t the r e s t r i c t i o n flVx is an a - c o n d e n s i n g map); c) t h e r e e x i s t a c o m p a c t s e t K s u c h that U~KDU~, U~ is h o m o l o g i e a l l y t r i v i a l in K and U~o is a c o m p a c t s u b s e t of U. Then ind R (f, U) = 1. We note t h a t ind R (f, U) d i f f e r s f r o m the i n d e x d e f i n e d in P a r a g r a p h 1 3 . 6 , s i n c e in t h e p r e s e n t s i t u a t i o n the s e t R i s not c o n v e x . C l o s e r e s u l t s c a n be found in [ 2 4 7 , 2 4 9 ] .

2.4.14. Remark. A series of theorems on fixed points of condensing maps, and also theorems on the solvability of operator equations containing maps which are condensing in some sense or other, can be found in the following papers [43, 44, 58,148, 158,161, 170,172,176,189,202,214,215,217,221,224,225,227, 229,230,253,254,261,264-266,268,269,272,273,292,301,308,310,312,315,326,327,329, 332,335,339342,348,349,351-353,361,365,372,374,375,380,382-385,387,389,404,412,419]. 2.4.15. Equations with a Parameter. parameter of the solution of the equation

In this paragraph we consider the question of dependenee

on the

x = f ( x , x);

(1)

f o r s i m p l i c i t y we s h a l l a s s u m e that X e [0, 11. L e t f : l] x [0, 1] -~ E ( U i s an open s u b s e t of t h e B a n a e h s p a c e E) b e an o p e r a t o r w h i e h is c o n d e n s i n g in the c o l l e c t i o n of v a r i a b l e s . T H E O R E M . S u p p o s e f o r X = 0 (1) h a s a s o l u t i o n x 0 of n o n z e r o t o p o l o g i e a I index w i t h r e s p e c t to the v e c t o r f i e l d I - f ( - , 0). Then f o r s u f f i c i e n t l y s m a l l X, (1) h a s a s o l u t i o n x x , w h e r e I j x ~ - - x 0 [ ] ~ 0 . T h i s r e s u l t is a s i m p l e c o r o l l a r y of T h e o r e m 1.3.11. T h e o r e m s of t h i s t y p e , and a l s o o t h e r t h e o r e m s on t h e c o n t i n u o u s d e p e n d e n c e of s o l u t i o n s on a p a r a m e t e r c a n be found in [111, 116, 143, 144, 1 5 9 , 2 4 0 , 2 5 5 ] . 2.4.16. B i f u r c a t i o n . Now we d e s c r i b e a r e s u l t c o n n e c t e d w i t h the q u e s t i o n of the n u m b e r of s o l u t i o n s x x of (1), c l o s e to x 0. F o r the d e s c r i p t i o n w e c o n s i d e r a v e r y s p e c i a l e a s e of d e p e n d e n c e on the p a r a m e t e r : it w i l l be a s s u m e d t h a t f(x, X) = (1 + X)g(x), w h e r e g is a c o n d e n s i n g o p e r a t o r w i t h c o n s t a n t k < 1. M o r e o v e r , we s h a U a s s u m e that g(x) = A x + B(x), w h e r e A is a b o u n d e d l i n e a r o p e r a t o r , and B is a c o n t i n u o u s o p e r a t o r , s a t i s f y i n g the c o n d i t i o n II B x l [ / l l x l l ~ 0 a s Ilxll ~ 0. O b v i o u s l y , u n d e r t h e s e c o n d i t i o n s x 0 = 0 w i l l be a s o l u t i o n of (1) f o r any X.

THEOREM. Let 1 be an eigenvalue of the operator A of odd multiplicity. (i) has at least one nonzero solution x x such that I[x~ II_-~ 2.

Then for sufficiently small X

571

Modifications, generalizations, and also other theorems on bifurcation of solutions of equations containing operators which are condensing in some sense or other, can be found in [15, 26,199,213,330,393,394, 406,408,418]. 2.4.17. Theorems on Surjectiveness and Invariance of Domain. Of the many series of results on surjectiveness of mappings containing condensing ones, we give only one. THEOREM. Let f: E ~ E (E is a Banach space) be a condensing operator. Let there exist two numerical sequences {rn} and {mn} such that mn,,--'~_~ ~ and

II/(x)-~x

[I> m.

for any p > 1 and x E E, IIxII = rn. Then the map I - f is surjective. .Close to t h e o r e m s on s u r j e c t i v e n e s s in spirit are t h e o r e m s on invariance of domain. We give a typical result. THEOREM. Let the o p e r a t o r f : E ~ E be condensing, f(0) = 0 and the map I - f be injective. Then for any neighborhood of z e r o W, the set if-f)(W) is a neighborhood of z e r o . Various t h e o r e m s on s u r j e c t i v e n e s s and invariance of domain can be found in [173,174, 1 8 5 , 1 9 1 , 2 1 8 , 223,230,231,266,267,288,289,310,322,326,332,333,359,368,370,375,413,417,420]. 2.4.18. Operators in Spaces with a Cone. Now we give two t h e o r e m s f r o m the theory of positive condensing o p e r a t o r s . Let K be a cone in the Banach space E. We r e c a l l that the inequalities

Ax-.<x (!lxll=r, xEK)

(2)

and

Axe(1 +~)x (H.xt]=p, x@7(; e > o is a fixed number

(3)

define c o m p r e s s i o n (for r < 0) and dilation (for r > 0) o p e r a t o r s of the cone. THEOREM. Let the condensing o p e r a t o r f be a c o m p r e s s i o n or dilation of the cone. Then f has in K at least one fixed point. THEOREM. Let the condensing o p e r a t o r f satisfy (2). Then one can find ~ > 1 and x E K, x ~ 0, s u c h t h a t f(x) = ;~x. These and other r e s u l t s resulting to the theory of positive condensing o p e r a t o r s can be found in [26, 54, 80-82, 85, 87, 104, 129, 131, 136-138, 1 9 0 , 1 9 6 , 2 0 4 - 2 0 7 , 2 2 2 , 2 3 5 , 2 8 6 , 2 9 3 , 2 9 4 , 3 3 8 , 3 4 4 , 3 6 8 , 3 6 9 ] . 2.4.19. R e m a r k . We note finally that for condensing v e c t o r fields the general topological principle that fields having different rotations have opposite directions at at least one point of the boundary of the set r e m a i n s valid. Hence, the known a s s e r t i o n s about the existence of eigenvalues of nonlinear condensing o p e r a t o r s , following f r o m this principle, r e m a i n valid. Results of this type, and also a s s e r t i o n s about the existence of eigenvalues of nonlinear condensing o p e r a t o r s , proved on the basis of other c o n s i d e r a t i o n s , can be found in [ 2 0 5 , 2 0 6 , 2 3 0 , 2 3 5 , 2 8 6 , 2 8 8 , 2 9 4 , 3 4 4 , 3 5 4 , 369]. 2.4.20. Linear Theory. A s y s t e m a t i c account of the r e s u l t s described in Sec. 1.4 can be found in [116]. Besides the approach d e s c r i b e d in this section, based on passage to the space E +, an a p p r o a c h to the study of F r e d h o l m properties of linear o p e r a t o r s based on factorization of the space of bounded linear o p e r a t o r s by the subspace of completely continuous linear o p e r a t o r s has been developed (cf. [40, 4 1 , 2 8 2 , 305] et al.). Let E l and E 2 be Banach s p a c e s , S be the unit sphere in El, and A : E 1 ~ E 2 be a bounded linear operator. We set

I[Aii~ini{q>O:A is (q, x)-bounded}, [[A[l~-=inf{q>O:A is (q, ~)-bounded}, [IAI]t=lnf{l[B--A II:B:EI~E2 is a linear completely continuous o p e r a t o r } , IIA II~=inf{ll AlL ][:L. is a subspace of El of finite codimension}.

572

The f o l l o w i n g a s s e r t i o n s hold:

a) {I A [[~< [i A Ht; b) if E~ is a s p a c e w i t h a b a s i s , t h e n 11A lit ~< b I[ A I~, w h e r e b ~-~tim [1Q~ 11, and Qk :E2 ~ E2 a r e d e f i n e d by the f o r m u l a Q k x = Qk(Xl, . . . , x k, Xk+l, . . . ) = (0 . . . . 1

c) ~ II A I[x<[l A* [Iz<21[ A IIx, w h e r e the c o n s t a n t s 1 / 2 d) if E 1 -- E 2 = Lp, then

, 0 , Xk+ 1. . . .

);

and 2 in t h e s e i n e q u a l i t i e s a r e s h a r p ;

][All•

e) if E 1 and E 2 a r e r e f l e x i v e , then [1A lit ~-[[ A* I[t ; now i f a t l e a s t one of t h e s e s p a c e s i s n o n r e f l e x i v e , t h e n e q u a l i t y is i m p o s s i b l e ;

f) I[A*{[~

h) if E 1 = E~ is a

Hilbert s p a c e , then ]l A II~=11 A* Ilk=l] A*A ti~;

i) II A [ l z = Z (AS). These,

and also other facts close to those listed above,

can be found in [40, 41, Iii, 116,125,282,305,

390].

Modifications and generalizations of Theorem 1.4.6 can be found in [40,116,125, 140,205,371,373]. From Theorem 1.4.6, in particular, it follows that any linear condensing operator, acting in a (real or complex) Ba~aeh space, can be represented as a sum of a finite-dimensional and a compressing operator in an equivalent norm (cf. [116, 125]). The representation of a condensing linear operator as the sum of a completely continuous and a compressing operator (in the original norm) may be impossible (cf. [41]). In connection with this one should also note the following fact (cf. [418]): if A : E ~ H (E is a Banach and H is a Hilbert space) is a bounded linear operator, then k = inf{q > 0 :A is a (q, c~)-bounded operator} if and only if for any e > 0 there exists a representation of the operator A in the form Ke + Lr where Ke is a completely continuous linear operator, and the operator Le satisfies the condition k ~< IILall -< k + e. The description of the spectra of linear operators in terms of properties connected with the condensing properties of their iterates, can be found in [40, 77,116,125,163,257,258,284,285,305]. From Theorem 1.4.6 also follows the Fredholm alternative for equations of the form ?vx - Ax = f, where A is an operator which is condensing with constant q, and I kl > I/q (cf., e.g., [116], and also [282,332,419]). Now here we note that analogs of the Fredholm alternative for nonlinear condensing operators are given in [174, 295,296,328,329,332,371]. In a series of papers various questions connected with perturbations of Fredholm operators by condensing ones are studied. The basic result in this direction reduces, roughly speaking, to the following assertion: For any Fredholm operator A there exists a number 0 > 0 such that for any operator B, satisfying the inequali .t3r IDBll 4.

573

2 . 5 . A p p l i c a t i o n s to D i f f e r e n t i a l

Equations

We begin with the description of applications of the theory of noneompactness measures and condensing operators to the theory of differential equations with deflected argument of neutral type. Without going into the "classificational" details, we shall mean by an equation of neutral type the following equation

x' (t)= f (t, xt, x't);

(1)

h e r e f : R•215 ~ (Ch=C[--h, 0] i s the s p a e e of functions, eontinuous on the s e g m e n t i - h , 0] with values in R n with u n i f o r m norm); xt and x~ a r e the e l e m e n t s of the s p a c e Ch defined by the equations xt(s) = x(t + s), x~(s) = x ' ( t + s) (s E i - h , 01). Below we shall a s s u m e that the o p e r a t o r f is continuous in the collection of v a r i a b l e s and s a t i s f i e s a Lipsehitz condition with constant k < 1 in the third v a r i a b l e . F i r s t we d e s c r i b e c e r t a i n o p e r a t o r s g e n e r a t e d by v a r i o u s p r o b l e m s for (1). 2.5.1. Cauchy P r o b l e m . One s e e k s a function x e C l [ - h , T], satisfying (1) for t E [0, T] and satisfying the initial condition

x(t)=~(t)

( t e l - h , 01L

(2)

w h e r e ~ is a given function. The p r o b l e m (1)-(2) ean be redueed in many ways to the p r o b l e m of fixed points of various condensing o p e r a t o r s . We d e s c r i b e one such o p e r a t o r . With this goal, for any y E C [ - h , T] we set t

(Jr) (t) = g) (0) @ ~ ~t (s) ds, 0

(3)

;~' (t) + f (0, (Yg)o, go)-- r (0) for t6[-- h, 0], (Fg) (t)= i f (t, (dr)t, Vt) for tQ[0, T I. Then the o p e r a t o r F acts in C [ - h , T] continuously and is condensing on any bounded s u b s e t of the s p a c e C [ - h , T]. F o r details, el. [108,116]. We note that for the existence of a continuously differentiable solution of (1)-(2) it is n e c e s s a r y that one have the "gluing" condition: q0'_(0) = f (0, % q~').

(4)

If this condition holds, then the solvability of (1)-(2) on the s e g m e n t i - h , T] is equivalent with the existence of a fixed point of the o p e r a t o r F in the s e t {y E C [ - h , T] :y(t) = q)T(t) for t ~ i - h , 0]}. Equation (4) often turns out to be r e s t r i c t i v e , so it is frequently useful to pass f r o m (1) to

x ' ( t ) = f ( t , xt, x;),

(5)

where

if(t, xt, x't)= f (t, xt, x'~)+v~(t)ix'_ ( 0 ) - - f ( 0 , x0, fro)], and v~ (t) = 1 - u - i t

for t E [0, p) and vp (t) = 0 for t E (p, ~).

This equation now s a t i s f i e s the gluing condition for

any initial function ~r The o p e r a t o r F, constructed f r o m f with the help of (3), differs f r o m the o p e r a t o r F by the c o m p l e t e l y continuous o p e r a t o r

(~ fv(O)--f(O, JV)o, Vo) for t E l - - h , 0 I, crv) (t)= lv~ (t) [v (O)-- f (O, (Jr)o, g0)] for tfi [0, T I. Hence F is a l s o •

in C [ - h , T] on any bounded s u b s e t .

Various condensing operators arising in studying the Cauehy described in [I, 4, 21, 47, 48, 116, 119, 133, 134,241,311].

problem

for equations of neutral type are

2.5.2. Problem of Periodic Solutions: Translation Operator. If the operator f is such that (5) for any initial function (p ff Cl[-h, 0] has on the segment i-h, T] a unique solution x(-, q~), then for (5) one can define the translation operator U T along trajectories from the point 0 to the point T according to the following rule

( u r , e ) ( s ) = x ( r + s, co) (se[-tt, oIL The o p e r a t o r U T acts f r o m C l [ - h , 0] to C l [ - h , 0] and is condensing with r e s p e c t to the m e a s u r e of n o n c o m p a e t ness r defined by 574

, , (A) = ~ @A'), where c~ is the Kuratowski noncompactness m e a s u r e in the space Oh, ~ is a linear function on the s e g m e n t i - h , 0], satisfying the conditions ~<(-h) = 1, 1 < ~(0) < k, and by x A ' we denote the s e t { y E Ch:y(t) = x(t)x'(t), x E A}. The problem of existence of a T - p e r i o d i c solution of (1) (in the case of a function f which is T - p e r i o d i c in the f i r s t argument) is equivalent with the p r o b l e m of existence of fixed points of the o p e r a t o r UT. The t r a n s lation o p e r a t o r also turns out to be useful in a s e r i e s of other problems. The a s s e r t i o n d e s c r i b e d can be found in [65]. Other r e s u l t s connected with conditions under which the translation o p e r a t o r along t r a j e c t o r i e s of one equation or another of neutral type is condensing are contained in [38, 69, 115, 119, 236, 244].

2.5.3. Problem of Periodic Solutions: Integral Operators. Now let the operator f be T-periodic in the first variable. By PC T we denote the space of T-periodic functions with values in Rn with uniform norm, and T

by P C T the space of continuously differentiable T - p e r i o d i c functions. Let y E PC T. We set and

'fo

M(g)=-~- g (s)ds

t

(J y) (t) ~- ~ tJ (S) d$ - - t ~ (~]). o We define the o p e r a t o r

(p:R"xPCT-+RnxPCr

by the f o r m u l a

q~(a, v) = ( a - M (v), f (a, V)), where F (a, y) (t) = f (t,

a-+-(Jy)t, b't).

Fixed points (a, y) of the o p e r a t o r 9 and T - p e r i o d i c solutions x of (1) are connected by the following relations: x(0) = a, x ' = y. It turns out that the o p e r a t o r ~ is condensing on any bounded set U~PC/ with r e s p e c t to the uoncompactuess m e a s u r e g)2, defined by

{Y6PCr:S(aER ~) [(a, y) 6A]}.

~2 (A) = Z e c r Now let x E PC~. We set t

,

(o)+I

t

(v -

I

0

T

i i (s, .<;) ds. 0

Fixed points of the o p e r a t o r | and only they a r e T - p e r i o d i c solutions of (1). The o p e r a t o r | is condensing on any bounded subset of P C ~ with r e s p e c t to the uoncompactness m e a s u r e ~0~, defined by

*a.(A) = )tpcr {vEPCr :~ (x~A) [v = x']}. These and other condensing o p e r a t o r s connected with the p r o b l e m of periodic solutions of (1) can be found in [39, 115, 116, 1 1 9 , 2 4 6 , 3 1 4 , 3 1 5 , 3 1 7 ] . 2.5.4. Boundary P r o b l e m s . We consider only one boundary problem for the equation of neutral type of the f o r m

x" ( t ) = g (t, x (G0(t)), x' (~1 (0), x" (~2 (t))),

(6)

~vhere g : [0, 1) x 1t3 - - R and cTi: [O, 1] - - i t (i = 0, 1, 2) are continuous functions. Let a=min

min~(t),

fi=max

i=0,1,2 tCl0,1l

max~i(t)

i = 0 , 1 , 2 tC[OAI

and c~ < O, fl > 1. We c o n s i d e r (6) t o g e t h e r with the following boundary condition: x(,) ( t ) = o

(toil, o] U I1, ~I; i = o , 1, 2).

(7)

We define on the space W2[0, 1] an o p e r a t o r R by the formula 1

(Ru) (t) = S O (t, s) g (s, ~ (% (s)), ~' (~ (s)), ~" (~2 (s))) ds; 0

here

s) t,

if

s>t, 575

and by u, u ' , u ' are denoted, r e s p e c t i v e l y , extensions to the interval [c~, fi] of the functions u, u', u" by z e r o . It turns out (cf. [57]) that the o p e r a t o r R is condensing with r e s p e c t to the noncompactness m e a s u r e X. Now fixed points of the o p e r a t o r R a r e solutions of (6)-(7). Close results can be found in [29, 57,237]. Now applying to o p e r a t o r equations one or another fixed point t h e o r e m , one can get various existence t h e o r e m s for solutions of various problems for equations of neutral type. There are results of this s o r t in [1, 6, 7, 19-21, 29, 39, 47, 48, 57, 9 1 , 1 1 5 , 1 3 3 , 1 6 2 , 2 3 6 - 2 3 9 , 2 4 1 , 2 4 3 , 2 4 6 , 2 7 1 , 3 1 1 , 3 1 4 , 3 1 5 , 3 1 7 ] . We give here one existence t h e o r e m for each of the problems listed above. The proofs of these t h e o r e m s a r e based on applying T h e o r e m 1.3.10 to the c o r r e s p o n d i n g o p e r a t o r equations. 2.5.5. THEOREM. Let the o p e r a t o r f be continuous in the collection of v a r i a b l e s , satisfy a Lipschitz condition with constant k < 1 in the third variable, and the initial function 9) satisfy (4). Then for some T > 0 the p r o b l e m (1)-(2) has on the segment i - h , T] at least one solution. 2.5.6. THEOREM. Suppose irl addition to the hypotheses of the preceding t h e o r e m the o p e r a t o r f is bounded and T - p e r i o d i c in the f i r s t variable. Let A be a Hurwitz n • n matrix. Then the equation

x' ( t ) = A x ( t ) + f (t, xt, x't) has at least one T - p e r i o d i c solution. The following t h e o r e m r e l a t e s to the solvability of the boundary problem (6)-(7). 2.5.7. THEOREM. Let the functions g and ~i satisfy the conditions listed in P a r a g r a p h 2.5.4 and in addition let the function g be bounded. Then (6)-(7) has at least one solution. 2.5.8. Equations of Neutral Type with a P a r a m e t e r . F o r equations containing a p a r a m e t e r , applications based on T h e o r e m 2.4.15 or its analogs turn out to be very interesting. T h e o r e m 1.5.5 can s e r v e as an example of an a s s e r t i o n of this sort. Below we formulate a s e r i e s of typical r e s u l t s , which are obtained on this path. F o r simplicity we shall always a s s u m e that the p a r a m e t e r figuring in the equations is ~ e [0, 1]. 2.5.9. Cauchy P r o b l e m . We c o n s i d e r the equation

x' (t)= f (t, xt, x't, ~), where f: RXChXChX [0, I]--~R n is continuous and satisfies a Lipschitz condition with constant k < 1 in the third variable. Suppose for ~ = 0 that Eq. (8)* has on the segment i-h, T] a unique solution x ~ satisfying the initial condition (2). THEOREM. F o r sufficiently small ~ and all g, the equation

x' (t)• f (t, xt, x't, ~) + v~ (t) ix'__(O)-- f (O, Xo, x'o, ~)] with the initial condition (2), has on the s e g m e n t i - h , T], at least one solution x~, where ]i x~--x~

~0

We note that in the p r e s e n t situation the index of the solution x ~ with r e s p e c t , e.g., to the o p e r a t o r F (cf. p a r a g r a p h 2.5.1) is equal to 1. F o r details, cf. [63]; close r e s u l t s a r e in [17,238]. 2.5.10. Equation with Small Deflected Argument. We consider the autonomous equation of neutral type with small deflected a r g u m e n t x ' (t) = f (V (~) xt, V (~) x',, ~),

(9)

where f : C , , X C h X [0, II-+R n is continuous and satisfies a Lipschitz condition with constant k < 1 in the second variable, and the o p e r a t o r V(}) for each ~ ~ [0, 1] acts in Ch by the formula

iv (~) ul (s)--- u (~s) (sGI- h, 0l). Suppose for ~ = 0 the (ordinary differential) equation (9) has a T0-periodic solution x ~ and the o p e r a t o r f ( . , 9 0) is uniformly continuously differentiable in a neighborhood of the set {(V(0)x~ V(O)x~ Tol}. We denote by a(t) [respectively, b(t)] the derivative of the o p e r a t o r f ( . , 9 0) with r e s p e c t to the f i r s t (respectively, second) variable at the point (V(0)x~,V(0)x~'). Let the equation

v' (t) = a (t) v (t) + b (t) v' (t) not have solutions linearly independent f r o m x ~ with period T o and not have solutions of the f o r m y(t) = ( t / T 0) • x~ + v(t), where v is a T0-periodic function. 9No Eq. (8) is indicated in Russian original - P u b l i s h e r .

576

THEOREM.

For sufficiently small }, (9) has a T~-periodic solution x~, where

(o)i +max l* o'

T~ ~ ItT~ \ l

' kT;-. ) l + l r -To

Modifications and generalizations of this assertion, and also other results on periodic solutions of equations of neutral type with parameter can be found in [6, 17, 18, 60, 66,115-117,243,249]. 2.5.11. Averaging Principle. In this paragraph we give a theorem, usually called the averaging principle in the problem of periodic solutions. We consider the equation with parameter

x' (t)= ~f (t, xt, x',).

(lO) T

We

assume

that f satisfies the hypotheses

of Theorem

2.5.6. For any a ~ I~n we set f0(a)=,-~I f(s, a, O)ds 0

(here a is the constant function from Ch identically equal to a). We consider, along with (i0), the ordinary differential equation x ' (t) = fo (x (t)).

(11)

THEOREM. Let (11) have the s t a t i o n a r y solution x~ =- x 0 and the index of the z e r o x 0 of the f i n i t e - d i m e n sional v e c t o r field f0 be different f r o m z e r o . Then (10) for sufficiently s m a l l ~ has a T - p e r i o d i c solution x~, w h e r e It x~ - x0 ilc,-+ 0. ~0

Modifications, g e n e r a l i z a t i o n s , and close r e s u l t s can be found in [2, 3, 5, 9, 11, 70, 121]. 2.5.12. Stability Theory. Without dwelling on details, we only indicate papers in which applications of the theory of n o n c o m p a c t n e s s m e a s u r e s and condensing o p e r a t o r s to the study of the stability of solutions of equations of n e u t r a l type a r e d e s c r i b e d : [6, 8, 10, 12-14, 16, 17, 64, 67, 69, 120]. We d e s c r i b e two m o r e e x a m p l e s of applications of the theory of n o n c o m p a c t n e s s m e a s u r e s , now to the t h e o r y of differential equations in infinite-dimensional s p a c e s . 2.5.13. Cauchy Problem for Equations in Banach Spaces. Let E be an arbitrary Banaeh space. We consider a Cauchy problem of the form

x' (t)= f (t, x(t)), x (0) = x0,

(12) (13)

where the operator f acts from [0, T] • R to E and for any bounded set A it is uniformly continuous in the collection of variables (t, x) 6 [0, T] • M. Let us assume that for any bounded set AcE one has

x(f(t, A))..

z (0) = 0

has on the s e g m e n t [0, T] only the z e r o solution. THEOREM. F o r any x 0 6 E one can find r/(x 0) > 0 such that the p r o b l e m (12)-(13) has on the s e g m e n t [0, rT(x0)] at l e a s t one solution. Close r e s u l t s can be found in [49, 51, 61, 90, 112,114, 116, 126, 128, 1 3 9 , 1 4 5 , 1 5 6 , 1 6 6 , 180, 182,186, 193,195,197,336,358,397-402,415]. 2.5.14. Boundary P r o b l e m . We consider a boundary p r o b l e m of the form_

x"(t)= f (t, x(t), x' (t)) (tG[0, 1]), a~x ( i ) + ( - - ly +t bzx t (i)~d~ (i=O, I),

(14) (15)

w h e r e the o p e r a t o r f: [0, 1] • E • E - - E is continuous and bounded, ai, b i > 0, d i ~ E (i = 0, 1). Suppose for any bounded s e t s At, A2~E a ( f ([0, 1] X AI X A2))-_<~-max {a (A~), a (A2)}. Let, in addition, 2~. max ]G(t, s ) ] < I; h e r e , by G(t, s) we denote the G r e e n ' s function g e n e r a t e d by the o p e r a t o r t,s(~IO,ll

b2/~t 2 and the boundary conditions (15). 577

THE OREM. The problem (14)-(15) has at least one solution. Various results connected with the applicability of the theory of condensing operators to the theory of boundary problems for differential equations in a Banach space can be found in [146, 157, 187, 409]. 2.5.15. Other Applications. For results relating to the solvability of various problems for differential equations in infinite-dimensional spaces, obtained with the help of the apparatus of the theory of measures of noncompactness and condensing operators, cf. [36, 37, 42, 51, 52, 86, 90, 126-128,132, 138,147, 180, 182,187, 197,224,226,229,242,270,283,338,360,392,401]. The description of applications of measures of noncompactness and condensing operators to the theory of integral equations can be found in [55, 56, 84, 88,136, 1 7 1 , 2 7 4 , 2 7 5 , 3 0 2 , 4 1 7 ] , to the theory of boundary problems for ordinary differential equations in [ 5 2 , 2 0 2 , 2 0 5 , 2 0 6 , 2 8 6 , 3 9 3 , 3 9 4 ] , to the theory of partial differential equations in [ 1 3 6 , 2 0 2 , 2 0 5 , 2 9 6 , 2 9 9 , 330,417]. LITERATURE i. 2.

3. 4.

5. 6. 7.

8. 9.

I0. 11. 12.

13. 14.

15. 16.

17.

578

CITED

L.M. Averina and B. N. Sadovskii, "Local solvability of functional-differential equations of neutral type," Tr. Mat. Fak. Voronezh. Gos. Univ., No. 3, 1-12 (1971). R.R. Akhmerov, "Averaging principle for systems of functional-differential equations of neutral type," in: Materials of the Third All-Union Inter-University Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Chernovtsy (1972), pp. 14-15. R.R. Akhmerov, "Averaging principle for functional-differential equations of neutral type," Ukr. Mat. Zh., 25, No. 5, 579-588 (1973). R.R. Akhmerov, "Existence of solutions of the Cauehy problem for a class of functional-differential equations of outstripping type," in: Materials of the Ninth Scientific Conference of the Faculty of PhysicsMathematics and Natural Sciences, 1973 [in Russian], Moscow (1974), pp. 5-7. R.R. Akhmerov, "Averaging principle on the entire axis for equations of neutral type," Differents. Uravn., i__33,No. 8, 1506 (1977). R.R. Akhmerov, "Theory of equations of neutral type. Theory of operator equations, n Voronezh (1979), pp. 3-16. R.R. Akhmerov, V. A. Vyazovikin, and A. E. Rodkina, "Remark on the paper of V. F. Subbotin and V. F. Pulyaev 'Existence of solutions of systems of differential equations with deflected argument', ~ in: Collected Papers of Graduate Students. Mathematical Faculty of Voronezh University [in Russian], Voronezh (1972), pp. 4-8. R.R. Akhmerov, N. G. Kazakova, and A. V. Pokrovskii, "Principle of the absence of bounded solutions and absolute stability of equations of neutral type," Serdika. B"Ig. Mat. Spisanie, i, 61-69 (1978). R.R. Akhmerov and M. I. Kamenskii, "N. N. Bogolyubov's second theorem for functional-differential equations of neutral type," in: Materials of the Third All-Union Inter-University Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Chernovtsy (1972), pp. 15-17. R . R . Akhmerov and M. I. Kamenskii, "Averaging principle and stability of periodic solutions of equations of neutral type," Tr. NIl Mat. Voronezh. Gos. Univ., No. 15, 9-13 (1974). R . R . Akhmerov and M. I. Kamenskii, "N. N. Bogolyubov's second theorem in the averaging principle for functional-differential equations of neutral type," Differents. Uravn., IO, No. 3, 537-540 (1974). R . R . Akhmerov and M. I. Kamenskii, nan approach to the study of stability of periodic solutions in the averaging principle for functional-differential equations of neutral type," Comment. Math. Univ. Carol., 16, No. 2, 293-313 (1975). R . R . Akhmerov and M. I. Kamenskii, "Stabilityof an equilibrium state of functional-differential equations with small deflected argument," Usp. Mat. Nauk, 30, No. 2, 205-206 (1975). R . R . Akhmerov and M. I. Kamenskii, "Stability of solutions of equations of neutral type," in: Fourth All-Union Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Naukova Dumka, Kiev (1975), pp. 20-21. R . R . Akhmerov and M. I. Kamenskii, "Bifurcation in strongly continuous families of operators,~ in: Seventh All-Union Topological Conference [in Russian], Minsk (1977), p. 13. R . R . Akhmerov and M. I. Kamenskii, "Stability in the first approximation to an ensemble of dynamical systems," in: Proceedings of the Fifth All-Union Conference-Seminar on Control of Large Systems [in Russian], Alma-Ata (1978), pp. 114-115. R . R . Akhmerov and M. I. Kamenskii, "Equations with small deflected argument," in: All-Union Conference on Asymptotic Methods in the Theory of Singular Perturbations of Equations [in Russian], Part 2, Alma-Ata (1979), pp. 10-12.

18.

19.

20.

21. 22 23. 24. 25. 26 27. 28. 29. 30. 31. 32. 33.

R. R. Akhmerov, M. I. Kamenskii, V. S. Kozyakin, and A. V. Sobolev, "Periodic solution of systems of autonomic functional-differential equations of neutral type with small lag," Differents. Uravn., IO, No. Ii, 1923-1931 (1974). R. R. Akhmerov and A. E. Rodkina, "Differential inequalities and the structure of an integral whirlpool of systems of functional-differential equations of neutral type," in: Materials of the Third All-Union Inter-University Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Chernovtsy (1972), pp. 17-18. R. R. Akhmerov and A. E. Rodkina, "Differential inequalities and the structure of an integral whirlpool of systems of functional-differential equations of neutral type," Differents. Uravn., 9, No. 5, 797-806 (1973). A. L. Badoev and B. N. Sadovskii, "Examples of a condensing operator in the theory of differential equations with deflected argument of neutral type, ~ Dold. Akad. Nauk SSSR, 18__66, No. 6, 1239-1.242 (1969). V. A. Bondarenko, "Existence of a universal measure of no,compactness," in: Problems of Mathematical Analysis of ComplexSystems [in Russian], No. 2, Voronezhsk. Gos. Univ., Voronezh (1968), pp. 18-21. Yu. G. Borisovich, "Topological theory of nonlinear mappings in Banach spaces," in: Seventh Summer Mathematics School, 1969 [in Russian], Kiev (1970), pp. 274-282. Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, "Topological methods in the theory of fixed points of multivalued mappings," Usp. Mat. Nauk, 3__55, No. i, 59-126 (1980). Yu. G. Borisovich and L. M. Margulis, "Topological degree of nonlinear noneompact mappings," Tr. NII Mat. Voronezh. Gos. Univ., No. 5, 19-27 (1972). Yu. G. Borisovich and Yu. I. Sapronov, "Topological theory of condensing operators," Dokl. Akad. Nauk SSSR, !83, No. i, 18-20 (1968). Yu. G. Boris ovieh and Yu. I. Sapronov, "Topological theory of compactly carried mappings," Tr.Semin. Funkts. Anal. Voronezh. Gos. Univ., No. 12, 43-68 (1969). K. Borsuk, Theory of Retracts [Russian translation], Mir, Moscow (1971). V. G. Brodovskii, "A boundary problem for differential equations with deflected argument," KazSSR Gylym Akad. Khabarlary, Izv. Akad. Nauk KazSSR, Ser. Fiz. Mat., No. 5, 25-30 (1970). G. M. Vainikko, "Principle of compact approximation in the theory of approximation methods," Zh. Vychisl. Mat. Mat. Fiz., 9, No. 4, 739-761 (1969). G. M. Vainikko, Compact Approximation of Operators and Approximate Solution of Equations [in Russian], Tartus. Gos. Univ., Tartu (1970). G. M. Vainikko, Analysis of Methods of Diseretization [in Russian], Special Course, Tartus. Gos. Univ., Tartu (1976). G. M. Vainikko and B. N. Sadovskii, "Rotation of condensing vector fields," in: Problen~ of Mathematical Analysis of Complex Systems [in Russian], No. 2, Voronezhsk. Gos. Univ., Voronezh (1968), pp. 84-88.

34. 35. 36. 37. 38. 39. 40. 41.

42. 43. 44.

Yu. N. Vladimirskii, "Compact approximation in Banaeh spaces," Sib. Mat. Zh., i_55, No. i, 200-204 (1974). E. A. Gango, "Theorems on fixed points of multivalued mappings," Uch. Zap. Leningr. Gos. Pedagog. Inst. ira. A. I. Gertsena, 464, 137-146 (1970). V. M. Gershtein, "Dissipative differential equations in a Banach space," Funkts. Anal. Prilozhen., 4, No. 3, 99-100 (1970). V. M. Gershtein, "Dissipative flows," Tr. Mat. Fak. Voronezh. Gos. Univ., No. I, 26-34 (1970). Yu. E. Gliklikh, "Translation operator along trajectories of functional-differential equations on smooth manifolds," Tr. NII Mat. Voronezh. Gos. Univ., No. 17, 18-24 (1975). Yu. E. Gliklikh, "Pseudointegral curves of functional-differential equations on Riemannian manifolds," in: Methods of Solution of Operator Equations [in Russian], Voronezh (1978), pp. 28-33. L. S. Gol'denshtein, I. Ts. Gokhberg, and A. S. Markus, "Properties of bounded linear operators studied with the help of the q-norm," Ueh. Zap. Kishinevsk. Gos. Univ., No. 29, 29-36 (1957). L. S. Gol'denshtein and A. S. Markus, "Measure of no,compactness of bounded sets and linear operators," in: Studies in Algebra and Mathematical Analysis [in Russian], Kartya Moldovenyaske, Kishinev (1965), pp. 45-54. Ya. I. Gol'tser and A. M. Zverkin, "Existence and uniqueness of solutions of differential equations with delay in a Banach space," Differents. Uravn., I__22,No. 8, 1404-1409 (1976). G. M. Goneharov, "Generalization of a theorem of Leray-Schauder," Tr. Tsentr. Zonal'n. Ob~edin. Mat. Kafedr. Kalinin. Gos. Pedagog. Inst., No. I, 80-85 (1970). G. M. Goncharov, "Existence theorems for solutions for a class of nonlinear operator equations," Mat. Zametki, 7, No. 2, 229-237 (1970).

579

45. 46. 47. 48. 49. 50. 51.

52. 53. 54. 55. 56. 57. 58. 59. 60.

61. 62. 63.

64. 65.

66. 67.

68. 69. 70.

580

I. Ts. Gokhberg and M. G. Krein, "Basic situation of defect numbers, root numbers, and indices of linear operators," Usp. Mat. Nauk, 12, No. 2, 43-118 (1957). N . M . Gulevich and A. I. Povolotskii, "Fixed points of operators in Hilbert space," in: Theory of Functions and Functional Analysis [in Russian], Leningrad (1975), pp. 42-45. Yu. A. Dyadchenko, "Local solvability of operator equations," in: Qualitative and Approximate Methods of Investigation of Operator Equations [in Russian], No. 3, Yaroslavl' (1978), pp. 48-60. Yu. A. Dyadchenko, "Solvability of a nonlinear operator equation of Volterra type," in: Theory of Operator Equations [in Russian], Voronezh (1979), pp. 22-33. P . P . Zabreiko, "Cauchy problem for ordinary differential equations in Banach spaces," God. Vissh. Tekh. Uchebn. Zaved. Prilozhna Mat., 11, No. I, 53-60 [1975(1976-1977)]. P . P . Zabreiko, M. A. Krasnosel'skii, and V. V. Strygin, "Invariance of rotation principles," Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 51-57 (1972). P . P . Zabreiko and I. B. Ledovskaya, "Existence theorems for equations in a Banach space and the averaging principle," in: Problems of the Mathematical Analysis of Complex Systems [in Russian], No. 3, Voronezh. Gos. Univ. (1968), pp. 122-136. P . P . Zabreiko and Yu. I. Fetisov, "Application of the Bogolyubov-Krylov averaging method to hyperbolic equations," Vest,. Yaroslav. Gos. Univ., No. 7, 150-155 (1974). Ya. A. Izrailevieh and V. V. Obukhovskii, "Topological characteristics of equivariant multivalued mappings," Tr. Mat. F-ta, Voronezh. Gos. Univ., No. 10, 52-61 (1973). A.A. Kalmykov, "Fixed points of condensing operators, expanding a cone," Uch. Zap. Perm. Gos. Univ., No. 309, 29-32 (1974). A.A. Kalmykov, (k, • Conditions for Integral Operators in Spaces of Functions Continuous and Bounded on an Infinite Interval [in Russian], Perm. Gos. Univ., Perm' (1977). A.A. Kalmykov, Projective Measures of No,compactness and Projective Condensing Operators [in Russian], Perm. Gos. Univ., Perm' (1977). G.A. Kamenskii and A. D. Myshkis, "Boundary problems for a nonlinear differential equation with deflected argument of neutral type," Differents. Uravn., 8, No. 12, 2171-2179 (1972). M.I. Kamenskii, "Theory of the degree of a map," Tr. Mat. Fak. Voronezh. Gos. Univ., No. 4, 54-60 (1971). M.I. Kamenskii, "Calculation of the rotation of a condensing vector field," Sb. Voronezh. Gos. Univ., 2, 32-36 (1972). M.I. Kamenskii, "Twotheorems on the existence of a periodic solution of a functional-differential equation of neutral type," in: Materials of the Third All-Union Inter-University Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Chernovtsy (1972), pp. 100-102. M.I. Kamenskii, "Pea,o's theorem in infinite-dimensional spaces,' Mat. Zametki, 1-1, No. 5, 569-576 (1972). M . I . Kamenskii, "Theory of perturbations of bounded operators in a Banaeh space," in: Collection of Graduate Students' Papers [in Russian], No. 2, Voronezh. Gos. Univ. (1974), pp. 18-23. M.I. Kamenskii, "Calculation of the index of an isolated solution of the Cauchy problem for functionaldifferential equations of neutral type," in: Functional Analysis and Its Applications [in Russian], No. 1, Voronezh (1973), pp. 6-13. M.I. Kamenskii, "Andronov-Witt's theorem for functional-differential equations of neutral type," Tr. NII Mat. Voronezh. Gos. Univ., No. 12, 31-36 (1974). M.I. Kamenskii, "Translation operator along trajectories of equations of neutral type," in: Collection of Graduate Students' Papers on the Theory of Functions and Differential Equations [in Russian], Voronezh (1974), pp. 19-22. M.I. Kamenskii, "Theory of periodic solutions for functional-differential equations of neutral type," Tr. NIl Mat. Voronezhsk. Gos. Univ., No. 15, 32-36 (1974). M.I. Kamenskii, "Stability of linear systems of equations of neutral type," in: Fourth All-Union Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Naukova Dumka, Kiev (1975), pp. 110-111. M.I. Kamenskii, "No,compactness measures and the theory of perturbations of linear operators," Uch. Zap. Tartus. Gos. Univ.,No.430, 112-122 (1977). M.I. Kamenskii, "Translation operator along trajectories of equations of neutral type depending on a parameter,wUch. Zap. Tartas. Gos. Univ., No. 448/21, 107-117 (1978). M.I. Kamenskii and R. R. Akhmerov, "N. N. Bogolyubov'stheorems in the averaging principle," in: All-Union Conference on the Qualitative Theory of Differential Equations and Methods of Instruction in the Theory of Differential Equations in Pedagogical Institutes [in Russian], Ryazan' (1976), pp. 157-158.

71. 72. 73. 74. 75. 76. 77.

78. 79. 80. 81. 82. 83. 84.

85. 86. 87. 88. 89. 90. 91.

92. 93. 94. 95. 96. 97. 98.

V.S. Kozyakin, "Condensing and compressing operators," Tr. Mat. Fak. Voronezh. Gos. Univ., No. i, 60-70 (1970). M.A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956). M.A. Krasnosel'skii, ~Some new fixed point principles, ~ Dokl. Akad. Nauk SSSR, 208, No. 6, 12801281 (1973). M.A. Krasnosel'skii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975). M.A. Krasnosel'skii and S. G. Krein, "Theory of ordinary differential equations in a Banach space, ~ Tr. Semin. Funkts. Anal. Voronezhsk. Gos. Univ., No. 2, 3-23 (1956). K. Kuratowski, Topology, Vol. i, Academic Press (1966). V.G. Kurbatov, "Spectral radii and Fredholm radii of certain linear operators in the space of functions continuous and bounded on the axis," in: Collection of Graduate Students' Papers [in Russian], No. 2, Voronezh. Gos. Univ. (1972), pp. 47-51. E.A. Lifshits and B. N. Sadovskii, ~Fixed point theorem for generalized condensing maps," Dokl. Akad. Nauk SSSR, 18__~3,No. 2, 278-279 (1968). G.B. Lyal'kina, "Generalization of Schaefer's principle to condensing operators," Ueh. Zap. Perm. Gos. Univ., No. 309, 13-19 (1974). G.B. Lyal'kina, "Derivatives and derivatives with respect to a cone of a (k, ~)-bounded operator," Uch. Zap. Perm. Gos. Univ., No. 291, 14-16 (1975). G.B. Lyal'kina, "Repelling points of a condensing operator in a Banach space with cone," Uch. Zap. Perm. Gos. Univ., No. 291, 22-24 (1975). G.B. Lyal'kina, nFixed points of positive condensing operators strongly asymptotic to linear ones with respect to a cone," Ueh. Zap. Perm. Gos. Univ., No. 291, 25-30 (1975). G.B. Lyal'kina, ~Galerkin's method of convergence with perturbations for equations with condensing operators, n Uch. Zap. Perm. Gos. Univ., No. 291, 31-33 (1975). G.B. Lyal'kina, "Conditions for a Uryson operator to be X-condensing in spaces C and Lp, ~ in: Functional-Differential Equations and Boundary Problems of Mathematical Physics [in Russian], Perm' (1978), pp. 166-168. G.B. Lyal'|dna and A. A. Kalmykov, "An attracting point of a condensing operator in a semiordered Banach space," Uch. Zap. Perm. Gos. Univ., No. 291, 17-21 (1975). V.M. Millionshchikov, "Differential equations in locally convex spaces," Mat. Sb., 57, No. 4, 385-406 (1962). I.V. Misyurkeev, "Existence of fixed points of condensing operators strongly asymptotically linear with respect to a cone, ~ Uch. Zap. Perm. Gos. Univ., No. 309, 20-25 (1974). I.V. Misyurkeev and G. B. Lyal'kina, "Study of a class of nonlinear integral equations by topological methods," Uch. Zap. perm. Gos. Univ., No. 271, 20-25 (1973). I. Muntyan, NFixed point theorem in locally convex spaces," Rev. Roum. Math. Pures Appl., i.~9, No. 9, 1105-1109 (1974). A.M. Mukhsinov, "Differential inclusions in Banach spaces," Dokl. Akad. Nauk SSSR, 21__~7, No. 4, 759761 (1974). V.R. Nosov, "Massera-Halanyi theorem for linear systems of neutral type," in: Materia][s of the Ninth Scientific Conference of the Faculty of Physical-Mathematical and Natural Sciences of P. Lumumba University of Friendly Peoples [in Russian], Moscow (1974), pp. 42-43. V.V. Obukhovskii, "Fixed point principles for multivalued condensing operators, ~ Tr. Mat. Fak. Voronezh. Gos. Univ., No. 4, 70-79 (1971). V.V. Obukhovskii, "Rotation of condensing multivalued vector fields, ~ in: Abstracts of the Sixth AllUnion Topology Conference [in Russian], Metsniereba, Tbilisi (1972), pp. 93-94. V.V. Obukhovskii, nThe degree for a class of noncompact multivalued mappings, ~ in: School on the Theory of Operators in Function Spaces [in Russian], Minsk (1978), pp. 102-103. V.V. Obuld~ovskii and E. V. Gorokhov, "Definition of the rotation of a class of compactly carried multivalued vector fields, ~ Tr. Mat. Fak. Voronezh. Gos. Univ., No. 12, 45-54 (1974). IR. Palais, Seminar on the Atiyah-Singer Index Theorem [Russian translation], Mir, Moscow (1970). V.V. Petr[shin, "Extension of Sheffer's theorem to many-valued contraction operators," Dopov[d[ Akad. Nauk Ukr. IRSIR, A, No. i0, 889-891, 956 (1973). A.S. Potapov, "Calculation of the index of an isolated singular point of a condensing vector field @ = I - A with sufficiently smooth operator A, ~ in: Collection of Students' Scientific Papers [in Russian], Voronezh. Gos. Univ. (1972), pp. 89-92.

581

99. i00. i01. 102. 103. 104. 105. 106. 107. 108. 109. II0. iii.

112. 113. 114. 115. 116. 117.

118. 119.

120. 121. 122. 123. 124. 125. 126. 127.

582

A. S. Potapov, "Estimates of the Fredhoim radius of a linear operator," Tr. NIl Mat. Voronezh. Gos. Univ., No. 5, 108-113 (1972). A. S. Potapov, "Measure of noncompactness of certain sets," in: Functional Analysis and Its Applications [in Russian], No. i, Voronezh (1973), pp. 23-27. A. S. Potapov, "Rotation of multivalued vector fields," in: Collection of Graduate Students' Papers [in Russian], No. 2, Voronezh. Gos. Univ. (1974), pp. 41-44. A. S. Potapov, "Theory of rotation of limit compact vector fields," Comment. Math. Univ. Carol., 15, No. 4, 693-716 (1974). A. S. Potapov, "K-operators and measures of noneompactness," Tr. Mat. Fak. Voronezh. Gos. Univ., No. 16, 34-40 (1975). A. S. Potapov, T. Ya. Potapova, and V. A. Filin, "Fixed points and eigenvectors of positive condensing operators," Comment. Math. Univ. Carol., 18, No. 2, 219-230 (1977). A. S. Potapov and B. N. Sadovskii, "Difference of classes Kn," Tr. Mat. Fak. Voronezh. Gos. Univ., No. 16, 40-44 (1975). A. S. Potapov and B. N. Sadovskii, "Rotation of a class of noneompact vector fields," in: Seventh AllUnion Topology Conference [in Russian], Minsk (1977), p. 155. A. E. Rodkina, "A version of the topological connectivity principle," Usp. Mat. Nauk, 3__00,No. 2, 225226 (1975). A. E. Rodkina and B. N. Sadovskii, nKrasnosel'skii-Perova connectivity principle," Tr. Mat. Fak. Voronezhsk. Gos. Univ., No. 4, 89-103 (1971). A. E. Rodkina and B. N. Sadovskii, "Differentiation of the translation operator along trajectories of an equation of neutral type," Tr. Mat. Fak. Voronezh. Gos. Univ., No. 12, 31-37 (1974). B. N. Sadovskii, "A fixed point principle," Funkts. Anal. Prilozhen., I, No. 2, 74-76 (1967). B. N. Sadovskii, "Measures of noncompaetness and condensing operators," in: Problems of Mathematical Analysis of Complex Systems [in Russian], No. 2, Voronezhsk. Gos. Univ., Voronezh (1968), pp. 89-119. B. N. Sadovskii, "Local solvability of ordinary differential equations in a Banach space," in: Problems of Mathematical Analysis of Complex Systems [in Russian], No. 3, Voronezh (1968), pp. 232-243. B. N. Sadovskii, "Condensing operators and measures of noncompaetness," Tr. Mat. Fak. Voronezh. Gos. Univ., No. i, 112-124 (1970). B. N. Sadovskii, "Differential equations with uniformly continuous right side," Tr. NIT Mat. Voronezh. Gos. Univ., No. 1, 128-136 (1970). B. N. Sadovskii, "Application of topological methods to the theory of periodic solutions of nonlinear differential-operator equations of neutral type," Dokl. Akad. Nauk SSSR, 200, No. 5, 1037-1040 (1971). B. N. Sadovskii, "Limit compact and condensing operators," Usp. Mat. Nauk, 27, No. 1, 81-146 (1972). B. N. Sadovskii, "Periodic solution of functional-differential equations of neutral type," in: Materials of the Third All-Union Inter-University Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Chernovtsy (1972), pp. 176-177. B. N. Sadovskii, "Theory of rotation of limit compact vector fields and its applications," in: Sixth AllUnion Topology Conference [in Russian], Metsniereba, Tbilisi (1972), p. 105. B. N. Sadovskii, "Equations of neutral type and condensing operators," in: Fourth All-Union Conference on the Theory and Applications of Differential Equations with Deflected Argument [in Russian], Naukova Dumka, Kiev (1975), pp. 210-211. B. N. Sadovskii, "Three new results in the theory of measures of noncompactness and condensing operators," in: School on Theory of Operators in Function Spaces [in Russian], Minsk (1978), pp. 128-130. B. N. Sadovskii, "Condensing operators and differential equations," Preprint IM Sib. Otd. Akad. Nauk SSSR (School on Theory of Operators in Function Spaces), Novosibirsk (1979). Yu. I. Sapronov, "Algebraic theory of the index," Tr. Semin. Funkts. Anal. Voronezhsk. Gos. Univ., No. 12, 143-154 (1969). Yu. I. Sapronov, "Rotation of vector fields with condensing operators," in: Collection of Students' Papers [in Russian], Voronezh. Gos. Univ., No. 3, ]5-20 (1970). Yu. I. Sapronov, "Homotopyclassification of condensing maps," Tr. Mat. Fak. Voronezh. Gos. Univ. No. 6, 78-80 (1972). A. A. Sedaev, "Structure of certain linear operators," in: Mathematical Studies [in Russian], Vol. 5, No. 1, Kishinev (1970), pp. 166-175. A. A. Tolstonogov, "Classical solution of differential inclusions in Banach spaces with nonconvex right side," in: Nonlinear Oscillations and the Theory of Control [in Russian], No. 2, Izhevsk (1978), pp. 16-23. A. A. Tolstonogov, "Differential inclusions in Banach spaces and Continuous selectors," Dokl. Akad. Nauk SSSR, 244, No. 5, 1088-1092 (1979).

128. 129. 130. 131. 132.

133.

134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.

149. 150. 151. 152. 153. 154. 155. 156.

A. A. Tolstonogov, "Properties of inclusions in a Banach space," Dokl. Akad. Nauk SSSR, 24_88, No. I, 42-46 (1979). V. A. Filin, "Solvability of operator equations with condensing operators," Dokl. Akad. Fankhoi RSS Tochikiston. Dokl. Akad. Nauk TadzhSSR, 17, No. i0, 12-15 (1974). V. A. Filin, "Existence of an eigenvalue of a quasi-positive operator," in: Theory of Functions and Functional Analysis [in Russian], Dushanbe (1979), pp. 92-96. V. A. Filin, "Positive solutions of a nonlinear integral equation," in: Theory of Functions and Functional Analysis [in Russian], Dushanbe (1979), pp. 97-101. K h a t c h Of[a, " E x i s t e n c e of s o l u t i o n of s y s t e m of d i f f e r e n t i a l e q u a t i o n s ~n l o c a l l y c o n v e x s p a c e , ~ Mat.

Vesn. 12, No. I, 63-70 (1975). A. V. Kholodkov, "Solvability of a differential-operator equation of neutral type with a Volterra type operator," in: Questions of Computational and Applied Mathematics [in Russian], No. 25, Tashkent (1974), pp. 3-9. A. V. Kholodkov, "Averaging of differential-operator equations of neutral type," in: Questions of Computational and Applied Mathematics [in Russian], No. 28, Tashkent (1974), pp. 69-79. M. Ahc, "Measures of noncompactness and seminorms," Glas. Mat., _9, No. 2, 267-271 (1974). H. Amann, "On the number of solutions of nonlinear equations in ordered Banach spaces, ~ J. Funct. Anal., 1___1, No. 3, 346-384 (1972). H. Amann, "Fixed points of asymptotically linear maps in ordered Banach spaces," J. Funct. Anal., 1_44, No. 2, 162-171 (1973). H. Amann, "Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundaryvalue problems," Lect. Notes Math., 543, 1-55 (1976). A. Ambrosetti, "Un theorema di esistenza per le equazioni differenziali negli spazi di Banach," Rend. Semin. Mat. Univ. Padova, 3__99,349-361 [1967(1968)]. A. Ambrosetti, "Propriet~a spettrali di certi operatori lineari non compatti," Rend. Sere. Ivlat. Univ. Padova, 4__2, 188-200 (1969). C. J. Amick, "Some remarks on Rellich's theorem and the Poincar~. inequality," J. London Math. Soc., I_~8, No. I, 81-93 (1978). J. Appell, Approximierbare Operatoren in normierten und lokalkonvexen R~/umen, Inauguraldiss., Freien Univ. Berlin, Berlin (1978). Z. Artstein, "On continuous dependence of fixed points of condensing maps," Preprint (1974). Z. Artstein, "Continuous dependence of solutions of operator equations. I," Trans. Am. Math. Soc., 231, No. i, 143-166 (1977). T. D. Benavides, "An existence theorem for implicit differential equations in a Banach space," Ann. Mat. Pura Appl., 11__~8, 119-130 (1978). S. Bernfeld and V. Lakshmikantham, "Monotone methods for nonlinear boundary value problems in Banach spaces," Nonlinear Analysis: Theory, Methods, and Appl., 3, No. 3, 303-316 (1979). S. Bernfeld, V. Lakshmikantham, and Y. M. Reddy, "Fixed points of operators with PPE dependence in Banach spaces," Appl. Anal., 6, No. 4, 271-280 (1977). R. Bittner and T. Pruszko, "On the application of operational calculus to the problem of the existence and uniqueness of solutions of nonlinear differential equations," Demonstr. Math., iO0, Nos. 3-4, 705730 (1977). G. Bossan, "Some remarks on a measure of noncompactness in probabilistic metric spaces," Bull. Math. Soe. Sci. Math. RSR, 20, Nos. 1-2, 41-44 [1976(1977)]. Ju. G. Borisovi~ and Ju. E. Gliklih, "Fixed points of mappings of Banach manifolds and some applicaations," Nonlinear Anal.: Theory, Meth., Appl., 4, No. I, 165-192 (1980). F. E. Browder, "Recent results in nonlinear functional analysis and applications to partial differential equations," in: Actes Congr. Int. Matematiciens, 1970, Vol. 2, Paris (1971), pp. 821-829. F. E. Browder, Nonlinear Operators and Nonlinear Equations of Evolution, Am. Math. Soc., Providence (1976). F. E. Browder and R. D. Nussbaum, "The topological degree for noncompact, nonlinear mapping in Banach spaces," Bull. Am. Math. Soc., 7__4, No. 4, 671-676 (1968). H. Buley, "Fixed point theorems of Rothe-type for Frum--Ketkov and 1-set contractions," Comment. Math. Univ. Carol., 1__99,No. 2, 213-225 (1978). B. Calvert, "Fixed points for U + C where U is Lipschitz and C is compact," Yokohama Math. J., 2_55, No. I, 1-4 (1977). A. Cellina, "On the existence of solutions of ordinary differential equations in Banach spaces," ~nkc. Ekvacig., 14, No. 2, 129-136 (1971). 9 t

583

157.

158. 159. 160. 161. 162. 163. 164. 165.

J. Chandra, V. Lakshmikantham, and A. R. Mitchell, "Existence of solutions of boundary value problems for nonlinear second-order systems in a Banach space," Nonlinear Anal.: Theory, Meth. Appl., 2, No. 2, 157-168 (1978). H. Chatterjee, "Remark on some theorems of K. Iseki," Indian J. Pure Appl. Math., iO, No. 2, 158160 (1979). Martin F. Cheng, "On continuity of fixed points of collectively condensing maps," Proc. Am. Math. Soc., 63, No. I, 74-76 (1977). Martin F. Cheng, 'On certain condensing operators and the behavior of their fixed points with respect to parameters, ' J. Math. Anal. App[., 6_44, No. 3, 505-517 (1978). Shui-Nee Chow and J. K. Hale, "Strongly limit-compact maps," Funkc. Ekvacig, 1__7,No. i, 31-38 (1974). Shui-Nee Chow and J. K. Hale, "Periodic solutions of autonomous equations, ~ J. Math. Anal. Appl., 66, No. 3, 495-506 (1978). Gh. Constantin, "Some spectral properties for the locally o-contraction operators," Boll. Unione Mat. Ital., 6, No. 3, 323-330 (1972). G. Conti and P. Nistri, "A fixed point theorem for no,compact acyclic-valued maps, n Rend. Accad. Sci. Fis. Mat. Soc. Naz. Sci. Lett. Arti Napoli, 4__22,510-517 [1975(1976)]. M. Cousland, "An A-proper map with prescribed topological degree," Proc. Am. Math. Soc., 5__88,179184 (1976).

166 o E. C r a m e r , V. Lakshmikantham, and A. R. Mitchell, "On the existence of weak solutions of differential equations in nonreflexive Banach s p a c e s , " Nonlinear Anal.: Theory, Meth. Appl., 2, No. 2, 169-177 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177.

(1978). S. J. Daher, "On a fixed point principle of Sadovskii, n Nonlinear Anal.: Theory, Meth. Appl., 2, No. 5, 643-645 (1978). S. J. Daher, "Fixed point theorems for nonlinear operators with a sequential condition, ~ Nonlinear Anal.: Theory, Meth. Appl., 3, No. I, 59-63 (1979). J. Dane~, "Generalized concentrative mappings and fixed points," Summer School on Fixed Points, Krkono~e, Czechoslovakia, Aug. 31-Sept. 6, 1969 J. Danes, "Generalized concentrative mappings and their fixed points," Comment. Math. Univ. Carol. 1_! , No. i, 115-136 (1970). J. Danes, "Fixed point theorems, Nemyckii and Uryson operators and continuity of nonlinear mappings," Comment. Math. Univ. Carol, 1_!, No. 3, 481-500 (1970). J. DaneS, "Some fixed point theorems in metric and Banach spaces," Comment. Math. Univ. Carol, 122, No. i, 37-51 (1971). J. Dane~, "Surjectivity and fixed point theorems (Prelim. commun.)," Comment. Math. Univ. Carol, 13, No. I, 181-184 (1972). J. Dane~, non densifying and related mappings and their application in nonlinear functional analysis," Schriftenr. Zentralinst. Math. Mech., No. 20, 15-56 (1974). J. DaneS, "On Istr~tescu's measure of no,compactness," Bull. Math. Soc. Sci. Math. RSR, i__66,No. 4, 403-406 [1972 (1974)]. J. Dane~, "Two fixed point theorems in topological and metric spaces, ~ Bull. Austral. Math. Soc., 14, No. 2, 259-266 (1976). G. Darbo, "Punti uniti in transformazioni a codominio non compatto," Rend. Seminar. Mat. Univ. Padova, Parte i, 24, 84-92 (1955).

F. S. de B--'lasi, "The m e a s u r e of the weak noncompactness of the unit sphere in a Banach space is either z e r o or one, ~ Ist. Mat. Ulisse Dini, Univ. Studi F i r e n z e , P r e p r i n t No. 7, 1974-1975. 179. F. S. de Blasi, "A local approach to the differentiability of multifufletions," Ist. Mat. Ulisse Dini, Univ. Studi F i r e n z e , P r e p r i n t No. 13, 1974-1975. 180. F. S. de Blasi, "Existence and stability of solutions for autonomous multivalued differential equations in Banach space," Ist. Mat. Ulisse Dini, Univ. Studi F i r e n z e , P r e p r i n t No. 14, 1974-1975. 181. F. S. de Blasi, "Compactness gauges and fixed points," Atti Accad. Naz. Lincei, C1. Sci. F i s . , Mat. Natur. Rend., 5_Z, Nos. 3-4, 170-176 [1974(1975)]. 182. F. S. de Blasi, "Existence and stability of solutions for autonomous multivalued differential equations in Banach space," Atti Accad. Naz. Lincei. CI. Sci. F i s . , Mat. Natur. Rend., 6_9_0, No. 6, 767-774 (1976). 183. F. S. de Blasi, "On the differentiability of multifunctions, ~ Pacific J. Math., 66, No. 1, 67-81 (1976). 184. F. S. de Blasi, "On a property of the unit sphere in a Banach space," Bull. Math. Soc. Sci. Math. RSR, 21, Nos. 3-4, 259-262 (1977). 185. S--~Deb and S. P. Singh, "Fixed point theorems in topological vector spaces," Ann. Soc. Sei. Bruxelles, Ser. I, 88, No. 3, 273-280 (1974). 178.

584

186. 187.

188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215.

K. Deimllng, "On existence and uniqueness for Cauchy's problem in infinite dimensional 13anaeh spaces," Differ. Equat. 15. Colloq. Math. Soc. J~mos Bolyai, Keszthely, 1974, Amsterdam e.a. (1977), pp. 131-142. K. Deimling, "Periodic solutions of differential equations in Banach spaces," Manuscr. Math., 2__44, No. 1, 31-44 (1978). J. Dugundji, "An extension of Tietze's theorem," Pacific J. Math., _1, No. 2, 353-367 (1951). M. Edelstein and R. C. O'Brien, "Nonexpansivemappings, asymptotic regularity and successive approximations,n J. LondonMath. Soc., 17, No. 3, 547-554 (1978). D. E. Edmunds, A. J. ]3. Potter, and C. A. Stuart, "Noncompactpositive operators," Proe. R. Philos. Soc., Ser. A, 32__~8, 67-81 (1972). D. E. Edmunds and J. R. L. Webb, "Nonlinear operator equations in Hilbert spaces," J. l~lath. Anal. Appl., 3._44, No. 3, 471-478 (1971). D. E. Edmunds and J. R. L. Webb, "Some generalizations of the 13orsuk-Ulam theorem," Math. Proc. Cambridge Philos. Soc., 8_~2, No. 1, 119-125 (1977). J. Eisenfeld and V. Lakshmikantham, "Fixed point theorems through abstract cones," J. Math. Anal. Appl., 5_~2, No. I, 25-35 (1975). J. Eisenfeld and V. Lakshmikantham, "On a measure of nonconvexity and applications," Yokohama Math. J., 2__44,Nos. 1-2, 133-140 (1976)o J. Eisenfeld and V. Lakshmikantham, "On the existence of solutions of differential equations in a 13anach space," Rev. Roum. Math. Pures Appl., 2_22, No. 9, 1215-1221 (1977). J. Eisenfeld and V. Lakshmikantham, "Remarks on nonlinear contraction and comparison principle in abstract cones," J. Math. Anal. Appl., 6_!1, No. i, 116-121 (1977). J. Eisenfeld, V. Lakshmikantham, and S. R. 13ernfeld, "On the construction of a norm associated with the measure of noneompactness," Nonlinear Anal.: Theory, Meth. Appl., i, No. I, 49-54 (1976). C. Fenske, ~Analytische Theorie des Abbildungsgrades f~r Abbildungen in 13anaehr{/umen," Math. Nachr., 4_~8, Nos. 1-6, 279-290 (1971). C. Fenske, "Leray-Schauder Theorie f/ir eine Klasse differenzierbarer Abbildungen 13a~achr~umen," Ber. Ges. Math. Datenverarb., No. 48 (1971). P. M. Fitzpatrick, "A generalized degree for uniform limits of A-proper mappings," J. Math. Anal. Appl., 3._~5,No. 3, 536-552 (1971). P. M. Fitzpatrick, "On the structure of the set of equations involving A-proper mappings, ~ Trans. Am~ Math. Soc., 18___99,107-131 (1974). P. M. Fitzpatrick, "Existence results for equations involving noneompact perturbations of Fredholm mappings with applications to differential equations," J. Math. Anal. Appl., 6__66,No. i, 151-177 (1973). P. M. Fitzpatrick and W. V. Petryshyn, "Fixed point theorems for multivalued noncompaet acyclic mappings," Pacific J. Math., 5__44,No. 2, 17-23 (1974). P. M. Fitzpatrick and W. V. Petryshyn, "Fixed point theorems and the fixed point index for multivalued mappings in cones," J. London Math. Soe., 122, No. i, 75-85 (1975). P. M. Fitzpatrick and W. V. Petryshyn, ~Positive eigenvalues for nonlinear multivalued noneompaet operators with applications to differential operators," J. Different. Equat., 2_22, No. 2, 428-441 (1976). P. M. Fitzpatrick and W. V. Petryshyn, "On the nonlinear eigenvalue problem T(u) = XC (u), involving noncompact abstract and differential operators, . Boll. Unione Mat. Ital., BI5, No. i, 80-107 (1978). G. Fournier and H. -O. Peitgen, "Leray endomorphisms and cone maps, ~ Ann. Scu. Norm. Super. Pisa. CI. Sci., No. I, 149-179 (1978). B. Fuchssteiner, nlterations and fixed points," Pacific J. Math., 6_~8, No. I, 73-80 (1977). M. Furl and M. Martelli, "Lefsehetz type theorem for the minimal displacement of points under maps defined on a class of ANR's," Boll. Unione Mat. Ital., i__00, No. i, 174-181 (1974). M. Furl and M. Martelli, "A characterization of compact filterbasisin complete metric spaces," Rend. Ist. Mat. Univ. Trieste, 2, No. 2, 109-113 (1970). M. Furl and M. Martelli, "On the minimal displacement of points under ~-Lipsehitz maps in normed spaces, ~ Boll. Unione Mat. Ital., 9, No. 3, 791-799 (1974). M. Furl and M. Martelli, "On ~-Lipschitz retractions of the unit closed ball onto its boundary," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 5__~7,Nos. 1-2, 61-65 [1974(1975)]. M. Furl, M. Martelli, and A. Vignoli, "Contributions to the spectral theory for nonlinear operators on Banach spaces," Ist. Mat., Univ. dell'Aquila, Preprint No. 5 (1977). M. Furl and A. Vignoli, "A fixed point theorem in complete metric spaces, ~ ]Boll. Unione Mat. Ital., 2, Nos. 4-5, 505-509 (1969). M. Furl and A. Vignoli, "Fixed points for densifying mappings," Atti Acead. Naz. Lincei Cl. Sci. Fis., Mat. Natur. Rend., 4__77,No. 6, 465-467 [1969(1979)].

585

216. M. Furl and A. Vignoli, "On a property of the unit sphere in a linear normed space," Bull. Acad. Sci. Ser. Math., Astron. Phys., 18, No. 6, 333-334 (1970). 217. M. Furi and A. Vignoli, "On ~-nonexpansive mappings and fixed points," Atti. Accad. Naz. Lincei. CI. Sci. Fis. Mat. Natur. Rend., 4__88,No. 2, 195-198 (1970). 218. M. Furl and A. Vignoli, "On surjectivity for nonlinear maps in Banach spaces," Ann. Mat. Pura Appl., 112, 205-216 (1977). 219. R. E. Gaines and J. L. Mawhin, "Coincidence degree and nonlinear differential equations," Lect. Notes Math., 568 (1977). 220. J. A. Gatica, "Fixed point theorems for k-set-contractions and pseudocontractive mappings," J. Math. Anal. Appl., 4__66, No. 3, 555-564 (1974). 221. J. A. Gatica and W. A. Kirk, "Fixed point theorems for Lipschitzian pseudo-contractive mappings," Proc. Am. Math. Soc., 3_66, No. i, 111-115 (1972). 222. J. A. Gatica and W. A. Kirk, "A fixed point theorem for k-set-contractions defined in a Cone," Pacific J. Math., 5_33, No. 1, 131-136 (1974). 223. K. Georg, "On surjectivity of quasibounded nonlinear ~-Lipschitz maps," Boll. Unione Mat. Ital., 13A, No. 1, 117-122 (1976). 224. O. Had~i~, "Existence of the solution of the equation x = G(x, S(x)) in locally convex spaces," Math. Balkan, 3, 118-123 (1973). 225. O. Had~i6, "Existence theorems for the system x = H(x, y), y = K(x, y) in locally convex spaces," Pubis. Inst. Math., 1__66,65-73 (1973). 226. O. Had~i6, "Implicit differential equation in locally convex spaces," Pubis. Inst. Math., 1__99,67-72 (1975). 227. O. Had~i6, Osnovij Teoriji Nepokretne Ta~ke, Novi Sad (1978). 228. O. Had~i6, "A fixed point theorem for mappings with a ~-densifying iteration in locally convex spaces," Mat. Vestn., 2, No. 2, 105-109 (1978). 229. O. Had~i6 and D. Pauni6, "Theorems on the fixed point for some classes of mappings in locally convex spaces," Zb. Rad. Prir. Mat. Fak. Gos. Univ. N o v o m Sadu, 6, 25-31 (1976). 230. S. Hahn, "Gebietsinvarianzsatz und Eigenwertaussagen flir konzentrierende Abbildungen," Comment. Math. Univ. Carol., i_88,No. 4, 697-713 (1977). 231. S. Hahn, "A remark on a fixed point theorem for condensing set-valued mappings," Techn. Univ. Dresden, Preprint No. 07-5, 1977. S. Hahn, "Ein elementarer Zugang zur Leray-Schauder-Theorie," Techn. Univ. Dresden, Preprint No. 232. 07-10, 1977. 233. S. Hahn, "Eine Bemerkung zur Theorie verdichtender Abbildungen," Wiss. Z. Techn. Univ. Dresden, 2__77,No. 2, 337-340 (1978). 234. S. Hahn, "Ein elementarer Zugang zur Leray-Schauder-Theorie," Comment. Math. Univ. Carol., 19, No. 1, 71-87 (1978). S. Hahn, "Eigenwertaussagen f[ir kompakte kondensierende mengenwertige Abbildungen in topologischen 235. Vektorr~umen," Comment. Math. Univ. Carol., 20, No. i, 123-141 (1979). 236. J. K. Hale "A class of neutral equations with the fixed point property," Proc. Nat. Acad. Sci. U.S.A., 6_~_7,No. i, 136-137 (1970). 237. J. K. Hale, "Oscillations in neutral functional equations," in: Nonlinear Mech. C. I.M. I. June, 1972, Ediz. Cremonese, R o m e (1973), pp. 97-111. 238. J. K. Hale, "s-contractions and differential equations," in: Acres Conf. Inter,at. Equa-Diff73, Hermann, Paris (1973), pp. 15-41. 239. J. K. Hale, "Smoothing properties of neutral equations," An. Acad. Brasil Cienc., 4__55,No. i, 71-73 (1973). 240. J. K. Hale "Continuousdependence of fixed points of condensing maps," J. Math. Anal. Appl., 4__66,No. 2, 388-3941974). 241. J. K. Hale, "Functional differential equations with infinite delays," J. Math. Anal. Appl., 4__88,No. 1, 276-283 (1974). 242. J. K. Hale, "Discrete dissipative processes," Lect. Notes Math., 564, 207-224 (1976). 243. J. K. Hale, Theory of Functional Differential Equations, Appl. Math. Sci., Vol. 3 (1977). 244. J. K. Hale and J. Kato, ,'Phase space for retarded equations with infinite delay," Funkc. Ekvacioj, 2_1, No. 1, 11-41 (1978). 245. M. Heged/is, "An extension of Krasnoselskii's fixed-point theorem for multivalued mappings," Pep. Math. K. Marx Univ. Econ. Budapest (Publ.), No. 3 (1976). 246. G. Hetzer, "Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type," Comment. Math. Univ. Carol., 1_~6, No. 1, 121-138 (1975).

586

247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278.

G. Hetzer, "Some remarks on ~+-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations," Ann. See. Sci. Bruxelles, Set. I, 89, No. 4, 497-508 (1975). G. Hetzer, J. Reinermann, and V. Stallbohm, "FixpunktsNtze yon Browder und Krasnoselski ffir lokalkonvexe Hausdorff-it~ume," Math. Nachr., 57, Nos. 1-6, 227-235 (1973). G. Hetzer and V. Stallbohm, "Coincidence degree and Rabinowitz's bifurcation theorem," Pubis. Inst. Math., 20, 117-129 (1976). G. Hetzer and V. Stallbohm, "Eine Existenzaussage ffir asymptotische linear StSrungen eines Fredholmoperatoren Index 0," Manuscr. Math., 21, No. i, 81-100 (1977). C. J. Himmelberg, J. it. Porter, and F. S. van Vleck, "Fixed point theorems for condensing multifunctions," Prec. Am. Math. See., 2_~3, No. 3, 635-641 (1969). C. J. Himmelberg and F. S. van Vleck, "Fixed points of semicondensing multifunctions," Boll. Unione Mat. ItaI., 5, No. 2, 187-194 (1972). K. Iseki, "A generalization of Petryshyn-Riggio-Singh's theorem," Math. Sen]in. Notes. Kobe Univ., 2, No. 2, var. pag., 1-3 (1974). K. Iseki, "Fixed point theorems for densifying mappings," Nanta Math., 9, No. i, 50-53 (1976). A. Istr~tteseu and V. Istratescu, "A generalization of collectively compact sets of operators. I," Rev. Roam. Math. Pures Appl., 17, No. I, 33-37 (1972). A. Istratescu and V. Istr~tescu, "On the existence of a solution of f(x) = kx for a continuous not necessarily linear operator," Prec. Am. Math. See., 4_~8, No. i, 197-198 (1975). I. Istr~tescu, "On some classes of contractions," Atti. Accad. Naz. Lincei. C]. Sci. Fis., Mat. Natur. Rend., 5_00, No. 6, 679-681 (1971). I. Istr~ttescu, "Some spectral properties for the I-contraction operators," Math. Balkan., No. 4, 267269 (1974). V. Istr~tescu, "Capitole de anahza nehnmra," Gar. Mat. (RSIt), A7___~7,No. I0, 372-377 (1972). V. Istr~tescu, "On a measure of noncompactness," Bull. Math. See. Sci. Math. RSR, I_66~ No. 2, 195-197 [1972 (1973)]. V. I s t r ~ t e s c u , I n t r o d u c e r e in T e o r i a Punctelor Fixe, Acad. RSR, B u c u r e s t i (1974). V. I s t r a t e s c u , "On a c l a s s of o p e r a t o r s and ergodic theory. I," Rev. Roum. Math. P u r e AppL, 1-9, No. 4, 411-420 (1974). V. I s t r a t e s c u and A. Istr~ttescu, "On the theory of fixed points for some classes of mappings. III," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 49, Nos. 1-2, 43-46 (1970). V. I s t r ~ t e s c u and A. Istratesca, "On the theory of fixed points for some classes of mappings," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 51, Nos. 3-4, 162-167 (1971). V. Istr:ateseu and A. lstratescu, "On the theory of fixed points for some classes of mappings. If," Roy. Roum. Math. Pures Appl., 16, No. 7, 1073-1075 (1971). V. Istr~ttescu and A. Istrate~cu, "On the theory of fixed points for some classes of mappings. I," Bull. Math. Soc. Sei. Math. RSR, 14, No. 4, 420-426 [1970(1972)]. V. Istrateseu and A. Istr~ttescu, "On the theory of fixed points for some classes of mappings," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 52, No. 6, 871-874 (1972). V. Istratescu and A. Istrateseu, "On some results on locally power s-set contractions. III," Atti Accad. Naz. Lincei. Cl. Sci. Fis., Mat. Natur. Rend., 5_..6_6 , No. 2, 197-200 (1974). S. Itch and W. Takahashi, "Single-valued mappings, multivalued mappings and fixed-point theorems," J. Math. Anal. Appl., 59, No. 3, 514-521 (1977). A. F. Iz~ and J. G. do~-Reis, "Contributions to stability of neutral functional differential equations," J. Different. Equat., 29, No. i, 58-65 (1978). R. Janicka, "An existence theorem for an integrodifferential equation of neutral type," Ann. UMCS, A28, No. 3, 28-29 (1974). G. S. Jones, "Asymptotic fixed point theory, ~ Ann. Math. Stud., No. 69,177-184 (1972). G. S. Jones, "A functional approach to fixed point analysis of aoneompact operators," Math. Syst. Theory, 6_, No. 4, 375-382 (1973). R. K. Juberg, "Measure of noncompactness and interpolation of compactness for a class of integral transformations," Duke Math. J., 41, No. 3, 511-525 (1974). R. K. Juberg, "The measure of noncon]pactness in LP for a class of integral operators," Indiana Univ. Math. J., 2_~3, No. i0, 925-936 (1974). G. Kayser, "Ein Fixpunktsatz ffir konzentrierende Abbildungen in lokalkonvexen R'~umen," Wiss. Z. Techn. Univ. Dresden, 23, No. I, 145-151 (1974). G. Kayser, "A fixed point theorem for noncompact set-valued mappings," Abh. Akad. Wiss. DDR, No. 3, 407-411 (1977). W. A. Kirk, "A remark on condensing mappings," J. Math. Anal. Appl., 51, No. 3,629-632 (1975). 9

V

,

.

V

587

279. 280. 281. 282. 283. 284, 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310.

588

M. Kisieliwicz, "Fixed point theorem for multivalued no,compact mappings," Zesz. Nauk. WSI Zielonej Gorze, No. 31, 5-7 (1975). C. Kuratowski, "Sur les espaces complets," Fund. Math., 1_.55, 301-309 (1930). C. Kuratowski, Topology, Vol. 1, Academic Press, New York-Warszawa, PWN (1966). A. Lebowand M. Schechter, "Semigroups of operators and measures of no,compactness," J. Funet. Anal, 7, No. I, 1-26 (1971). S. Leela and V. Moaurdo, "Existence of solutions in a closed set for delay differential equations in Banach spaces," Nonlinear Anal.: Theory. Math. Appl., 2, No. i, 47-58 (1978). R. Leggett, "Remarks on set-contractions and condensing maps," Math. Z., 132, No. 4, 361-366 (1973). R. Leggett, "A note on 'locally' e~-contracting linear operators," Bull. Unione Mat. Ital., I__22, Nos. 1-2, 124-126 (1975). G. Mancini, "Rami di soluzioni positive per operatori non compatti," Boll. Unione Mat. Ital., B14, No. 1, 42-58 (1977). M. Martelli, "A lemma on maps of a compact topological space and an application to fixed point theory," Ist. Mat. Ulisse Dini, Univ. Studi Firenze, Preprint, 1970. M. Martelli and A. Vignoli, "Eigen-veetors and surjectivity for ~-Lipschitz mappings in Banaeh spaces" Ann. Mat. Pura Appl., 9_~4, 1-9 (1972). M. Martelli and A. Vignoli, "Some surjectivity results for no,compact multivalued maps," Rend. Aead. Sci. Fis. Mat. Soe. Naz. Sei. Lett. Arti Napoli, 4_!, 57-66 (1974). M. Martelli and A. Vignoli, "A generalized Leray-Schauder condition," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 57, No. 5, 374-379 [1974(1975)]. S. Massa and D. Roux, "Applicazioni densificanti e teoremi di punic unito," Boll. Unione Mat. Ital., 4, No. 6, 835-840 (1971). I. Massabo, "On the construction of fixed-points for a class of nonlinear mappings," Boll. Unione Mat. Ital., 10, No. 2, 512-528 (1974). I. Massabo and P. Nistri, "A topological degree for multivalued A - p r o p e r maps in Banaeh s p a c e s , " Boll. Unione Mat. Ital., B13, No. 3, 672-685 (1976). I. Massabo and C. Stuart, " P o s i t i v e eigenvectors of k - s e t contractions," Nonlinear Anal.: Theory, Meth. Appl., 3, No. 1, 35-44 (1979). P. S. MilojeviS, "Some generalizations of the f i r s t F r e d h o l m t h e o r e m to multivalued condensing and Ap r o p e r mappings," Boll. Unione Mat. Ital., B13, No. 3, 619-633 (1976). P. S. MilojeviS, "Some generalizations of the f i r s t F r e d h o l m t h e o r e m to multivalued A - p r o p e r mappings with applications to nonlinear elliptic equations," J. Math. Anal. Appl., 6...~5, No. 2, 468-502 (1978). P. S. MilojeviS, "Fixed point t h e o r e m for multivalued approximable mappings," Proc. Am. Math. Soc., 7__33, No. 1, 65-72 (1979). P. S. Milojevi5 and W. V. P e t r y s h y n , "Continuation t h e o r e m s and the approximation-solvability of equations involving multivalued A - p r o p e r mappings," J. Math. Anal. Appl., 60, No. 3, 658-692 (1977). P. S. Milojevi~ and W. V. P e t r y s h y n , "Continuation and surjectivity t h e o r e m s for uniform limits of Ap r o p e r mappings with applications," J. Math. Anal. Appl., 6...22, No. 2, 368-400 (1978). H. MSnch and G . - F . yon Harten, "The product formula for the topological d e g r e e of s t r i c t ~/-contractions," Manuscr. Math., 2.._33,No. 2, 113-123 (1978). M. Montagnana and A. Vignoli, "On quasiconvex mappings and fixed point t h e o r e m s , " Boll. Unione Mat. Ital., 4, No. 6, 870-878 (1971). R. H. Moore and M. Z. Nashed, "Local and asymptotic approximations of nonlinear o p e r a t o r s by ( k l , . . . , kn)-homogeneous o p e r a t o r s , " T r a n s . Am. Math. Soc., 118, Apr., 293-305 (1973). R. D. Nussbaum, "The fixed point index and fixed point theorems for k - s e t - c o n t r a c t i o n s , " Ph. D. Diss e r t a t i o n , Univ. of Chicago (1969). R. D. Nussbaum, "The fixed point index and asymptotic fixed point theorems for k - s e t - c o n t r a c t i o n s , " Bull. Am. Math. Soe., 7.._55,No. 3, 490-495 (1969). R. D. Nussbaum, "The radius of the essential s p e c t r u m , " Duke Math. J., 3_7.7, No. 3, 473-478 (1970). R. D. Nussbaum, "Asymptotic fixed point theorems for local condensing maps," Math. Ann., 191, No. 3, 181-195 (1971). R. D. Nussbaum, " E s t i m a t e s for the number of solutions of o p e r a t o r equations," Appl. Anal., 1, No. 2, 183-200 (1971). R. D. Nussbaum, "Some fixed point t h e o r e m s , " Bull. Am. Math. Soc., 7__7.7,No. 3, 360-365 (1971). R. D. Nussbaum, "The fixed point index for local condensing maps," Ann. Mat. Pura Appl., 8__99,217-258 (1971). R. D. Nussbaum, "Degree theory for local condensing maps," J. Math. Anal. Appl., 3_.7.7, No. 3, 741-766 (1972).

311. 312. 313. 314.

315. 316. 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332.

333. 334. 335. 336. 337. 338. 339.

R. D. Nussbaum, "Existence and uniqueness theorems for some functional differential equations of neutral type," J. Different. Equat., i_~I, No. 3, 607-623 (1972). R. D. Nussbaum, "Some asymptotic fixed point theorems," Trans. Am. Math. Soc., 171, Sept., 349375 (1972). R. D. Nussbaum, "A generalization of the Ascoli theorem and an application to functional differential equations," J. Math. Anal. Appl., 3__55,No. 3, 600-610 (1971). R. D. N u s s b a u m , " P e r i o d i c solutions of autonomous functional differential equations," Bull. Am. Math. Soc., 7_99, No. 4, 8 1 1 - 8 1 4 0 9 7 3 ) . R. D. Nussbaum, "Periodic solutions of some nonlinear autonomous functional differential equations. II," J. Different. Equat., I_44, No. 2, 360-394 (1973). R. D. Nussbaum, "On the uniqueness of the topological degree for k-set-contractions," Math. Z., 13__~7, No. I, 1-6 (1974). R. D. Nussbaum, "Periodic solutions of some nonlinear autonomous functional differential equations," Ann. Mat. Pura Appl., !01, 263-306 (1974). R. D. Nussbaum, "Generalizing the fixed point index," Math. Ann., 22__~8, No. 3, 259-278 (1977). T. O'Neil and J. W. Thomas, "On the equivalence of multiplicity and the generalized topological degree;" Trans. Am. Math. Soc., 167, May, 333-345 (1972). E. de Pascale and R. Guzzardi, "On boundary conditions and fixed points for ~-nonexpansive multivalued mappings," Atti Acead. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 5_~8, No. 3, 300-305 (1975). E. de Pascale and R. Guzzardi, "On the boundary values dependence for the topological degree of multivalued noneompact maps," Boll. Unione Mat. Ital., 13A, No. I, 110-116 (1976). J. Je]sachowicz and A. Vignoli, "On differentiability and surjeetivity of a-Lipschitz mappings," Ann. Mat. Pura Appl., I01, 49-63 (1974). W. V. Petryshyn, "Structure of fixed-points sets of k-set-contractions," Arch. Ration. Mech. Anal., 40, No. 4, 312-328 (1971). W. V. Petryshyn, "A new fixed point theorem and its application," Bull. Am. Math. Soc., 7_88, No. 2, 225-229 (1972). W. V. Petryshyn, "Note on the structure of fixed point sets of 1-set-contractions," Proc. Am. Math. Soc., 3_!1, No. i, 189-194 (1972). W. V. Petryshyn, "Remarks on condensing and k-set-contractive mappings," J. Math. Anal. Appl., 39, No. 3, 717-741 (1972). W. V. Petryshyn, "Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces," Trans. Am. Math. Soc., 18__22,Aug., 323-352 (1973). W. V. Petryshyn, "Fredholm alternative for nonlinear k-ball-contractive mappings with applications," J. Different. Equat., I_~7, No. I, 82-95 (1975). W. V. Petryshyn, "Note on the solvability of equations involving unbounded linear and quasibounded nonlinear operators," J. Math. Anal. Appl., 5_~6, No. 3, 495-501 (1976). W. V. Petryshyn, "Bifurcation and asymptotic bifurcation for equations involving A-proper mappings with applications to differential equations," j. Different. Equat., 2__88,No. I, 124-154 (1978). W. V. Petryshyn and P. M. Fitzpatrick, "Degree theory for noncompact multivalued vector fields," Bull. Am. Math. Soc., 7__99,No. 3, 609-613 (1973). W. V. Petryshyn and P. M. Fitzpatrick, "On 1-set and 1-ball contractions with application to perturbation problems for nonlinear bijective maps and linear Fredholm maps," Bull. Unione Mat. Ital., 7, No. I, 102-124 (1973). W. V. Petryshyn and P. M. Fitzpatrick, "A degree theory, fixed point theorems, and mappings theorems for multivalued noncompact mappings," Trans. Amer. Math. Soc., 19___44,1-25 (1974). W. V. Petryshyn and P. M. Fitzpatrick, "Fixed-point theorems for multivalued noncompact inward maps," J. Math. Anal. Appl., 4__66,No. 3, 756-767 (1974). W. V. Petryshyn and T. E. Williamson, Jr., "S~rongandweak convergence of the sequence of successive approximations for quasi-nonexpansive mappings," J. Math. Anal. App[., 4_~3, No. 2, 459-497 (1973). G. Pianigiani, "Existence of solutions for ordinary differential equations in Banach spaces," Bull. Acad. Pol. Sci., Set. Sci. Math., Astron., Phys., 2_33, No. 8, 853-857 (1975). A. J. B. Potter, "Non-linear A-proper mappings of the analytic type," Can. J. Math., 2_55, No. 3, 468474 (1973). A. J. B. Potter, "A fixed point theorem for positive k-set contractions," Proc. Edinburgh Math. Soc., I_99, No. I, 93-102 (1974). B. K. Ray, "On common fixed points. III," Indian J. Pure Appl. Math., 6, No. ii, 1256-1260 (1975).

589

340. 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352.

353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370. 371.

590

B. K. Ray and H. Chatterjee, "On some results on fixed points in metric and Banach spaces," Indian J. Pure Appl. Math., 8, No. 8, 955-960 (1977). B. K. Ray and H. Chatterjee, "Some results on fixed points in metric and Banach spaces," Bull. Acad. Pol. Sci. Set. Sci. Math., Astron. Phys., 25, No. 12, 1243-1247 (1977). B. K. Ray and S. P. Singh, "Fixed point theorems in Banach spaces," Indian J. Pure Appl. Math., 9_, No. 3, 216-221 (1978). S. Reich, "A fixed point theorem," Atti Acead. Naz. Lincei. Cl. Sci. Fis., Mat. Natur. Rend., 51, Nos. 1-2, 26-28 (1971). S. Reich, TtCharacteristie vectors of nonlinear operators," Atti Accad. Naz. Lincei. CI. Sei. Fis., Mat. Natur. Rend., 50, No. 6, 682-685 (1971). S. Reich, "Fixed points in locally convex spaces," Math. Z., 125, No. i, 17-31 (1972). S. Reich, "Fixed points of condensing functions," J. Math. Anal. Appl., 41, No. 2, 460-467 (1973). S. Reich, "A remark on set-valued mappings that satisfy the Leray-Schauder condition," Atti Acead. Naz. Lincei. Cl. Sei. Fis., Mat. Natur. Rend., 61, Nos. 3-4, 193-194 [1976(1977)]. S. Reich, "A minimal displacement problem," Comment. Math. Univ. St. Pauli, 2__6_6,No. 2, 131-135 (1978). S. Reich, "Constructing zeros of accretive operators," Appl. Anal., 8, No. 4, 349-352 (1979). J. Reinermann, "Fortsetzung stetiger Abbildungen in Banaeh-R~iumen und Anwendungen in der Fixpunkttheorie," Ber. Ges. Math. Datenverarb., No. 57, 135-145 (1972). J. Reinermann, "Neue Existenz- und Konvergenzs~tze in der Fixpunkttheorie nichtlinearer Operatoren," J. Approxim. Theory, 8, No. 4, 387-399 (1973). J. Reinermann and V. StaUbohm, "Fixed point theorems for compact and nonexpansive mappings on starshaped domains (Preliminary communication)," Comment. Math. Univ. Carol., 15, No. 4, 775-779 (1974). J. Reinermann and V. Stallbohm, "Fixed point theorems for compact and nonexpansive mappings on starshaped domains," Math. Balkan., No. 4, 511-516 (1974). T. Riedrich, "Nonlinear operator equations in topological vector spaces," Techn. Univ. Dresden, Preprint No. 07-04, 1975. T. Riedrich, Vorlesungen fiber nichtlineare Operatorengleichungen, Leipzig (1976). A. M. Rossi and P. Sambueetti, "Sulla compattezza negli spazi LP," Pubbl. Is,. Mat. Univ. Genova, No. 258 (1978). E. H. Rothe, "Expository introduction to some aspects of degree theory," in: Nonlinear Funct. Anal. Different. Equations, New York-Basel (1976), pp. 291-317. B. Rzepecki, "On the method of Euler polygons for the differential equation in a locally convex space," Bull. Acad. Pol. Sei. Ser. Sci. Math., As,ton. Phys., 23, No. 4, 411-414 (1975). B. Rzepecki, "Measure of noncompaetness and Krasnoselskii's fixed point theorem," Bull. Acad. Pol. Sei. Set. Sci. Math., Astron. Phys., 24, No. i0, 861-866 (1976). B. Rzepeeki, "A functional differential equation in Banaeh space. I," Funct. Approxim., 5, 13-23 (1977). R. SchSneberg, "On the structure of fixed point sets of pseudocontractive mappings," Comment. Math. Univ. Carol., 17, No. 4, 771-777 (1976). R. SchSneberg, "On the structure of fixed point seLs of pseudoeontractive mappings. II," Comment. Math. Univ. Carol., 18, No. 2, 299-310 (1977). R. SchSneberg, "Leray-Schauder principles for condensing multivalued mappings in topological linear spaces," Proc. Am. Math. Soc., 72, No. 2, 268-270 (1978). R. SchSneberg, "A note on connection properties of fixed point sets of nonexpansive mappings," Math. Nachr., 83, 247-253 (1978). V. M. Sehgal, "A fixed point theorem for a family of nonexpansive mappings," Bull. Austral. Math. Soe., 15, No. i, 111-116 (1976). G. R. Sell, 'A characterization of smooth ~-Lipschitz mappings on a Hilbert space," Atti Accad. Naz. Lincei. C[. Sci. Fis., Mat. Natur. Rend., 52, No. 5, 668-674 (1972). K. L. Singh, "Fixed point theorems for densifying maps. I," Math. Stud., 40, 283-288 [1972(1974)]. K. L. Singh, "Some applications of Darbo's theorem," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 58, No. 6, 880-886 (1975). K. L. Singh, "Eignevalues of densifying mappings," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 5_99, Nos. 1-2, 34-39 [1975(1976)]. K. L. Singh, "Some applications of Darbo's theorem," Bull. Math. Soc. Sci. Math. RSR, 1__9_9,Nos. 1-2, 181-187 [1975(1976)]. K. L. Singh, "Some applications of Kuratowski's measure of noncompaetness," Atti Acead. Naz. Lincei. Cl. Sci. Fis., Mat. Natur. Rend., 6__00,No. 4, 422-432 (1976).

372. 373. 374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 391. 392. 393. 394, 395. 396. 397. 398, 399. 400. 401.

K. L. Singh, "~kvo theorems characterizing increasing k-set contraction mappings," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 5_99, No. 6, 749-757 [1975(1976)]. K. L. Singh, "A note on the spectra of uniformly increasing densifying mappings," Bull. Acad. Po[. Sci. Ser. Sci. Math., Astron. Phys., 2_~4, No. ii, 969-972 [1976(1977)]. K. L. Singh, "Convergence of sequence of iterates of generalized contractions," Atti Aecad. Naz. Lincei. Cl. Sci. Fis., Nat. Natur. Rend., 62, No. 2, 154-159 (1977). K. L. Singh, "Solvability of linear and nonlinear operator equations involving densifying mappings," Bull. Math. Soc. Sci. Math. RSR, 20, Nos. 3-4, 403-414 [1976 (1977)]. K. L. Singh, "A fixed point theorem for multivalued densifying mappings," Mathematica (RSR), 20, No. I, 71-75 (1978). K. L. Singh, "Construction of fixed points for densifying mappings," Riv. Mat. Univ. Parma, 4, 55-62 (1978). S. P. Singh, ~Fixed point theorems for a sum of nonlinear operators," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 54, No. 4, 558-561 (1973). S. P. Singh, "On a theorem of Reinermann," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 5_~4, No. I, 46-48 (1973). S. P. Singh, "On the convergence of iterates," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 57, No. 6, 502-505 [1974(1975)]. S. P. Singh and B. J. Holden, "Some fixed point theorems," Bull. Soc. R. Sci. Liege, 41, Nos. 9-10, 458-461 (1972). S. P. Singh and M. I. Riggio, "On a theorem of J. B. Diaz and F. T. Metcaif," Atti Acead. Naz. Lincei. Cl. Sci. Fis., Mat. Natur. Rend., 5__33,Nos. 3-4, 246-249 [1972(1973)]. S. P. Singh and M. Veitch, "Fixed point theorems for mappings with a convexity condition," Math. Stud., 40, 279-282 [1972 (1974)]. S. P. Singh and R. K. Yadav, "On the convergence of the sequence of iterates," Ann. Soc. Sci~ Bruxelles., Set. I, 87, No. 3, 279-284 (1973). S. P. Singh and F. Zorzitto, "On fixed point theorems in metric spaces," Ann. Soc. Sci. Bruxelles., Ser. I, 8__55,No. 2, 117-123 (1971). D. R. Smart, Fixed Point Theorems, Cambridge University Press, London (1974). S. Srivastava and K. L. Singh, "Construction of fixed point for densifying maps," Riv. Mat. Univ. Parma, 2, No. 4, 147-153 (1976). H. Steinlein, "I~ber die verallgemeinerten Fixpunktindizes yon iterierten verdichtender Abbildungen," Manuser. Math., 8, No. 3, 251-266 (1973). H. Steinlein, "An approximation method in asymptotic fixed point theory," Math. Ann., 21__i.i,No. 3, 199218 (1974). C. A. Stuart, "Self-adjoint square roots of positive self-adjoint bounded linear operators," Prec. Edinburgh Math. See., 18, No. i, 77-99 (1972). C. A. Stuart, "The fixed point index of a differentiable (fl) k-set contraction," J. London Math. Soc., 5, No. 4, 691-696 (1972). C. A. Stuart, "The measure on non-compactness of some linear integral operators," Prec. R. Soc. Edinburgh, A71_, No. 2, 167-179 (1973). C. A. Stuart, "Some bifurcation theory for k-set contractions," Prec. London Math. See., 27, Part 3, 531-550 (1973). C. A. Stuart, "The principal component of solutions for nonlinear eigenvalue problems," Boll. Unione Mat. Ital., BI__33, No. 3, 726-742 (1976)o C. A. Stuart and J. F. Toland, "The fixed point index of a linear k-set contraction," J. Londo.~ Math. See., 6, No. 2, 317-320 (1973). C. H. Su and V. M. Sehgal, "Some fixed point theorems for condensing multifunctions in locally convex spaces," Prec. Am. Math. See., 5__00,150-154 (1975). S. Szufla, "Some remarks on ordinary differential equations in Bmaach spaces, ~ Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron. Phys., 1_66, No. i0, 795-800 (1968). S. Szufla, non the existence of solutions of an ordinary differential equation in the case of Banach space, v' Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron. Phys., I_~6, No. 4, 311-315 (1968). S. Szufla, "Measure of non-compactness and ordinary differential equations in Banach spaces," Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys., i_~9, No. 9, 831-835 (1971). S. Szufla, "Structure of the solution set of ordinary differential equations in Banaeh space, ~ Bull. Aead. Pol. Sei. Ser. Sci. Math., Astron. Phys., 21, No. 2, 141-144 (1973). S. Szufla, "On the structure of solutions sets of differential and integral equations in Banach spaces," Ann. Pol. Math., 3_44, No. 2, 165-177 (1977). 591

402. 403. 404. 405. 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419. 420. 421. 422. 423. 424. 425. 426.

592

S. Szufia, "On the existence of solutions of ordinary differential equations in Banach spaces," Boll. Unione Mat. Ital., AIS, No. 3, 535-544 (1978). L. A. Talman, "Fixed points for condensing multifunctions in metric spaces with convex structure, ~ Kodai Math. Semin. Repts., 2_~9, Nos. 1-2, 62-70 (1977). L. A. Talrnan, "A note on Kellogg's uniqueness theorem for fixed points," Proc. Am. Math. Soe., 6__99, No. 2, 248-250 (1978). E. Tarafdar and R. Vyborny, "Fixed point theorems for condensing multivalued mapping on a locally convex topological space," Bull. Austral. Math. Soc., I__22,No. 2, 161-170 (1975). J. W. Thomas, "A bifurcation theorem for k-set-contraetions," Pacific J. Math., 4_~4, No. 2, 749-756 (1973). J. W. Thomas, "The multiplicity of an operator is a special case of the topological degree for k-set contractions," Duke Math. J., 40, No. 2, 233-240 (1973). J. W. Thomas, "Upper and lower bounds for the number of solutions of functional equations and involving k-set contractions," Rocky Mountain J. Math., 4, No. I, 89-94 (1974). R. Thompson, "An invariance property of solutions to second-order differential inequalities in ordered Banaeh spaces," SIAM J. Math. Anal., 8, No. 3, 592-603 (1977). J. F. Toland, "Global bifurcation for k-set contractions without multiplicity assumptions," Q. J. Math., 2_77, No. 106, 199-216 (1976). G. M. Vainikko, Funktionanalyses der Diskretisierungsmethoden, Teubner Verlagsges., Leipzig (1976). A. Vignoli, "An intersection theorem in Banach spaces," Atti Accad. Naz. Lincei. CI. Sci. Fis., Mat. Natur. Rend., 4__99,Nos. 3-4, 180-183 (1970). A. Vignoli, "On u-contractions and surjeetivity," Boll. Unione Mat. Ital., 4, No. 3, 446-455 (1971). A. Vignoli, "On quasibounded and nonlinear functional equations," Atti Acead. Naz. Lineei. CI. Sci. Fis. Fis., Mat. Natur. Rend., 5_00, No. 2, 114-117 (1971). P. Volkmann, "Uber die Existenz yon LSsungen der Differentialgleiehung u' = f(u) in einer abgeschlossenen menge, wenn f eine k-Mengenkontraktion ist," Lect. Notes Math., 564, 496-503 (1976). J. R. L. Webb, "Fixed point theorems for non-linear semicontractive operators in Banach spaces," J. London Math. Soc., i, No. 4, 683-688 (1969). J. R. L. Webb, "A fixed point theorem and applications to functional equations in Banaeh spaces," Boll. Unione Mat. Ital., 4, No. 5, 775-788 (1971). J. R. L. Webb, "On a charaeterisation of k-set contractions," Atti Aecad. Naz. Lintel. CI. Sei. Fis., Mat. Natur. Rend., 5__00,No. 6, 686-689 (1971). J. R. L. Webb, "Remarks on k-set-contractions," Boll. Unione Mat. Ital., 4, No. 4, 614-629 (1971). J. R. L. Webb, "On degree theory for multivalued mappings and applications," Boll. Unione Mat. Ital., 9, No. i, 137-158 (1974). J. R. L. Webb, "On uniqueness of topological degree for set-valued mappings," Proc. R. Soc. Edinburgh, A74, 225-229 (1976). R. Wolf, "Diskret kondensierende Operatorfolgen," Math. Nachr., 80, 209-223 (1977). H. S. F. Wong, "The topological degree of A-proper maps," Can. J. Math., 2__33,No. 3, 403-412 (1971). C. Zanco, "Some remarks on densifying mappings," Rend. Ist. Lombardo Aeead. Sci. Left., All1, No. 2, 342-350 (1977). E. Zeidler, "Zur Eindeutigkeit yon Fixpunktindizes f(/r nichtkompakte Operatoren," Math. Naehr., 7_~2, 51-85 (1976). E. Zeidler, Vorlesungen/iber nichtlineare Funktionalanalysis. I. Fixpunkts/itze, Teubner Verlagsges., Leipzig (1976). J

9

Our partners will collect data and use cookies for ad personalization and measurement. Learn how we and our ad partner Google, collect and use data. Agree & close