This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Average heat flux
1
0
3
0
0
0
W m2
(2.34)
qs
Surface heat flux
1
0
3
0
0
0
W m2
(10.31)
qx
Heat flux in x-direction
1
0
3
0
0
0
W m2
(2.9)
q_ e
Rate of heat production per unit volume (electric)
1
1
3
0
0
0
W m3
Ex. 10.3.1
q_ met
Rate of heat production per unit volume (metabolic)
1
1
3
0
0
0
W m3
(10.3)
Q
Electrical charge
0
0
1
0
0
1
As
(2.11)
QB
Blood flow
0
3
1
0
0
0
m3 s1
(5.146)
QG
Glomerular filtration rate
0
3
1
0
0
0
m3 s1
(13.202)
QO2
Rate of consumption of oxygen per unit volume
0
3
1
1
0
0
mol s1 m3
(14.14)
QV
Volumetric flow rate
0
3
1
0
0
0
m3 s1
(2.30), (5.7), (6.84) (tube)
Qwall
Volumetric inward flow through system wall
0
3
1
0
0
0
m3 s1
(5.12)
QV
Flow per unit width
0
2
1
0
0
0
m2 s1
(7.56)
Q_ conv
Convective heat flow
1
2
3
0
0
0
W
(10.39)
Q_ gen
Rate heat is generated within system
1
2
3
0
0
0
W
(5.36)
Q_ max
Maximum possible heat exchange
1
2
3
0
0
0
W
(10.66)
Q_ S
Heat flow through surface S
1
2
3
0
0
0
W
(2.40)
Q_ x
Heat flow in x-direction
1
2
3
0
0
0
W
(2.9)
Q_ 1!2
Radiation heat exchange between surfaces 1 and 2
1
2
3
0
0
0
W
(8.94)
r
Radial position
0
1
0
0
0
0
m
(4.46)
1
3
1
0
0
0
kg s1 m3
(13.5)
0
rA
(continued)
Appendix A Nomenclature
1227 Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
Mass rate of production of species A per unit volume rA,tot
Mass rate of production of species A
1
0
1
0
0
0
kg s1
(13.5)
ri
Stoichiometric coefficient for reactant i
0
0
0
0
0
0
None
(12.192)
R
Universal gas constant
1
2
2
1
1
0
kg m2 s2 mol1 K1
(5.149), Appendix B.1
R
Tube radius
0
1
0
0
0
0
m
(4.16)
~ R
Force by fluid on system walls
1
1
2
0
0
0
N
(5.26)
RA
Net molar rate of production per unit volume of species A
0
3
1
1
0
0
mol s1 m2
(12.185)
RAd
Molar rate of decomposition of species A per unit volume
0
3
1
1
0
0
mol s1 m2
(12.183)
RAf
Molar rate of formation of species A per unit volume
0
3
1
1
0
0
mol s1 m2
(12.181)
RA,tot
Molar rate of production of species A
0
0
1
1
0
0
mol s1
(13.7)
Rc
Red cell radius
0
1
0
0
0
0
m
(4.48)
Rc
Capillary radius
0
1
0
0
0
0
m
Sect. 14.6.1
Ri
Inside radius
0
1
0
0
0
0
m
(6.56)
Rmax
Cell radius for no oxygen at center
0
1
0
0
0
0
m
(14.40), (14.56)
Ro
Outside radius
0
1
0
0
0
0
m
(6.56)
Rp
Pore radius
0
1
0
0
0
0
m
Sect. 6.3.5
Rs
Sphere radius
0
1
0
0
0
0
m
(5.108)
Rs
Solute radius
0
1
0
0
0
0
m
Sect. 6.3.5
RT
Krogh cylinder tissue radius
0
1
0
0
0
0
m
Sect. 14.6.1
Ry
Yield radius
0
1
0
0
0
0
m
(6.87)
RW
Outside radius of capillary wall
0
1
0
0
0
0
m
Sect. 14.6.1
RaL
Rayleigh number
0
0
0
0
0
0
None
Table 8.2
ReL
Reynolds number based on a characteristic length L
0
0
0
0
0
0
None
(3.7)
s
Laplace variable
0
0
1
0
0
0
s1
(6.118)
S
Surface area
0
2
0
0
0
0
m2
(2.39)
S
Casson fluid parameter
1/2
0
0
0
Pa0.5 s0.5
(4.31)
1/2
1/2
(continued)
1228
Appendix Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
SHbO2
Oxyhemoglobin saturation
0
0
0
0
0
0
None
(12.199)
Sp
Surface area of all particles in a packed bed
0
2
0
0
0
0
m2
(14.255)
Sw
Wetted surface area
0
2
0
0
0
0
m2
(2.39)
Sc
Schmidt number
0
0
0
0
0
0
None
Table 8.2, (12.107)
ShL
Sherwood number based on length L
0
0
0
0
0
0
None
Table 8.2, (12.107)
Shx,loc
Local Sherwood number based on position x
0
0
0
0
0
0
None
(12.116)
Ste
Stephan number
0
0
0
0
0
0
None
Ex. 10.4.1
t
Time
0
0
1
0
0
0
s
(2.3)
ta
Appearance time
0
0
1
0
0
0
s
(14.400)
tA
Mean transit time for tracer A
0
0
1
0
0
0
s
(13.116)
T
Fundamental dimension of time
0
0
1
0
0
0
s
Table 3.2
T
Temperature
0
0
0
0
1
0
K
(2.9)
T
Average temperature
0
0
0
0
1
0
K
(11.19)
Tb, Tm
Bulk or mixing cup fluid temperature
0
0
0
0
1
0
K
(2.41), (8.31)
Tf
Film temperature
0
0
0
0
1
0
K
Sect. 8.3.3.2
Ti
Initial temperature
0
0
0
0
1
0
K
Sect. 9.4.1
T0
Slab surface temperature (x ¼ 0)
0
0
0
0
1
0
K
(8.2)
TL
Slab surface temperature (x ¼ L)
0
0
0
0
1
0
K
(8.2)
TR
Reference temperature
0
0
0
0
1
0
K
Sect. 2.5.1.3, (2.23) (2.40)
TS
Surface temperature
0
0
0
0
1
0
K
TW
Wall temperature
0
0
0
0
1
0
K
(2.41)
T1
Fluid temperature far from a solid surface
0
0
0
0
1
0
K
(2.40)
T*
Dimensionless temperature
0
0
0
0
0
0
None
(3.4)
T2
One half the sum of squares of stress components
2
2
4
0
0
0
Pa2
(7.119)
U
Internal energy
1
2
2
0
0
0
J
Sect. 2.5.1.3
U
Overall heat transfer coefficient
1
0
3
0
1
0
W m2 K1
(10.42)
U^
Internal energy per unit mass
0
2
2
0
0
0
J kg1
(5.34)
U~ ¼ rU^
Internal energy per unit volume
1
1
2
0
0
0
J m3
Sect. 2.5.1.3
Ui
Overall heat transfer coefficient based on inside surface area
1
0
3
0
0
0
W m2 K1
(10.51)
(continued)
Appendix A Nomenclature
1229 Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
Uo
Overall heat transfer coefficient based on outside surface area
1
0
3
0
0
0
W m2 K1
(10.52)
~ v
Mass average velocity vector
0
1
1
0
0
0
m s1
(5.4), (12.51)
Average velocity
0
1
1
0
0
0
m s1
(2.32), (6.83) (tube)
Average of vk over the cross section of a conduit
0
k
k
0
0
0
mk sk
(5.23)
vA vA, ~
Local velocity of species A
0
1
1
0
0
0
m s1
(12.48), (12.49)
vmax
Maximum velocity
0
1
1
0
0
0
m s1
(6.82) (tube)
vs
Solid velocity sphere velocity
0
1
1
0
0
0
m s1
(2.37), (5.109)
vx, vy, vz
Velocity in the x-, y-, and z-directions
0
1
1
0
0
0
m s1
(2.13), (7.2)
vx
Laplace transform of vx
0
1
0
0
0
0
m
(6.118)
vz0
Velocity in core region
0
1
1
0
0
0
m s1
(6.97)
vz00
Velocity in peripheral region
0
1
1
0
0
0
m s1
(6.98)
v0
Superficial velocity
0
1
1
0
0
0
m s1
(5.94), (12.128)
v0
Terminal velocity
0
1
1
0
0
0
m s1
Ex. 5.10.1, (12.111)
v1
Fluid velocity far from a solid surface
0
1
1
0
0
0
m s1
(2.38)
~ v
Molar average velocity vector
0
1
1
0
0
0
m s1
(12.53)
v*
Dimensionless velocity
0
0
0
0
0
0
None
(3.3)
V
System volume
0
3
0
0
0
0
m3
(5.3)
Vmax
Maximum conversion rate per unit volume
0
3
1
1
0
0
mol s1 m3
(12.230)
Vw
Partial molar volume of water
0
3
0
1
0
0
m3 mol1
(5.149)
V*
Fluid volume in bead bed
0
3
0
0
0
0
m3
(5.90)
w
Mass flow
1
0
1
0
0
0
kg s1
(2.31)
wA
Mass flow of species A
1
0
1
0
0
0
kg s1
(12.44)
win
Total mass flow into system via conduits
1
0
1
0
0
0
kg s1
(5.2), (5.5)
wout
Total mass flow out of system via conduits
1
0
1
0
0
0
kg s1
(5.2), (5.6)
wwall
Total mass flow into system through system walls
1
0
1
0
0
0
kg s1
(5.2), (5.4)
W
Weight
1
1
2
0
0
0
N
Ex. 5.10.1
W
Shell width
0
1
0
0
0
0
m
(6.2)
(continued)
1230
Appendix Fundamental dimensions
Symbol
Meaning
WA, WAx
Molar flow of species A in x-direction
0
0
1
1
0
0
mol s1
(2.35)
WO2
Oxygen consumption per unit capillary length
0
1
1
1
0
0
mol s1 m1
(14.230)
W_
Rate work is done by the system on the surroundings
1
2
3
0
0
0
W
(5.36), (5.37)
W_ f
Rate work is done by friction forces applied to the surroundings
1
2
3
0
0
0
W
(5.39)
W_ s
Rate shaft work is done by the system on the surroundings
1
2
3
0
0
0
W
(5.38)
We
Weber number
0
0
0
0
0
0
None
Table 8.2
x,y,z
Rectangular coordinate directions
0
1
0
0
0
0
m
Sect. 2.3.1
xA
Mole fraction of species A
0
0
0
0
0
0
None
(5.157), (12.12)
x*,y*,z*
Dimensionless rectangular coordinate directions
0
0
0
0
0
0
None
Sect. 3.2.5
x0,y0,z0
Coordinates of a point in space
0
1
0
0
0
0
m
Sect. 2.3.1
X
Extensive property
–
–
–
–
–
–
–
(2.2)
X
Fourier number
0
0
0
0
0
0
None
Appendix D, (14.322)
X~
Extensive property per unit volume (an intensive property)
–
–
–
–
–
–
–
(2.16)
yA
Mole fraction of species A in a gas
0
0
0
0
0
0
None
(12.20)
Y
Dimensionless concentration or temperature
0
0
0
0
0
0
None
Appendix D, (14.320)
zA
Valence of species A
0
0
0
0
0
0
None
(12.172)
0
M
L
N
T
Y
SI units
First appearance (bold: definition)
I
Greek symbols a
Thermal diffusivity
0
2
1
0
0
0
m2 s1
(2.15)
a
Womersley number
0
0
0
0
0
0
None
(5.140)
a
Compliance factor
1
2
2
0
0
0
m Pa1
(7.91)
a
Coefficient of absorption
0
0
0
0
0
0
None
(8.79)
a
Rate constant
0
0
1
0
0
0
s1
(13.28)
a
Relative viscosity exponent
0
0
0
0
0
0
None
(4.44), (4.45)
a
Cone angle
0
0
0
0
0
0
None
Ex. 7.16.3
a
Dimensionless dialysis fluid flow rate
0
0
0
0
0
0
None
(14.152)
a, b
Inclination angles
0
0
0
0
0
0
None
Sect. 6.2, Sect. 6.3.3
(continued)
Appendix A Nomenclature
1231 Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
ai
Electrical charge factor
1
2
3
0
0
1
kg1 m2 A s3
(12.177)
aA,B
Solubility of species A in material B
1
2
2
1
0
0
mol m3 Pa1
(12.28)
az
Angular acceleration about the z-axis
0
0
2
0
0
0
s2
(7.14)
a*A,B
Bunsen solubility coefficient for species A in material B
1
1
2
0
0
0
Pa1
(12.32)
b
Coefficient of thermal expansion
0
0
0
0
1
0
K1
(8.16)
b
Concentration of solute inside pore relative to Michaelis constant
0
0
0
0
0
0
None
(14.98)
b
Blood flow relative to permeability-surface area
0
0
0
0
0
0
None
(14.140)
b
Absorption coefficient
0
1
0
0
0
0
m1
(11.63)
bs
Modified Peclet number for solute s in a pore
0
0
0
0
0
0
None
(13.262)
d
Boundary layer or film thickness
0
1
0
0
0
0
m
Ex. 6.2.6.1, (14.6.1)
dm
Membrane thickness
0
1
0
0
0
0
m
(12.146)
dV
Critical continuum volume
0
3
0
0
0
0
m3
Sect. 2.3.1
dNi
Number of molecules of species i in volume dV
0
0
0
0
0
0
None
(12.5)
DcA
Concentration difference of species A (inlet minus outlet)
0
3
0
1
0
0
0
(2.35)
DE
Electrical potential difference between two points (inlet minus outlet)
1
2
3
0
0
1
kg m2 A1 s3
2.28
DE
Activation energy for injury
1
2
2
1
0
0
J mol1
(11.54)
DL
Length of fluid element that enters control volume in time Dt
0
1
0
0
0
0
m
(2.20)
Dm
Change in mass
1
0
0
0
0
0
kg
Sect. 2.3.1
DP
Pressure difference (inlet minus outlet)
1
1
2
0
0
0
Pa
(2.30)
DP0
Pressure difference in core region
1
1
2
0
0
0
Pa
(6.97)
DP00
Pressure difference in peripheral region
1
1
2
0
0
0
Pa
(6.96)
Dr
Cylindrical shell thickness
0
1
0
0
0
0
m
(6.33)
Dt
Time increment
0
0
1
0
0
0
s
Sect. 2.4
DT
Temperature difference (inlet minus outlet)
0
0
0
0
1
0
K
(2.33)
(continued)
1232
Appendix Fundamental dimensions
Symbol DTlm
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
Log mean temperature difference
0
0
0
0
1
0
K
(10.63)
DU
Change in internal energy
1
2
2
0
0
0
J
(2.23)
DV
Volume difference
0
3
0
0
0
0
m3
Sect. 2.3.1
Dx, Dy, Dz
Rectangular shell dimensions
0
1
0
0
0
0
m
(6.2), (7.1)
Dz
Pore length
0
1
0
0
0
0
m
(13.249)
DPs
Partial osmotic pressure difference, solute s
1
1
2
0
0
0
Pa
(6.108)
e
Void fraction
0
0
0
0
0
0
None
(5.90), (12.127)
e
Emissivity
0
0
0
0
0
0
None
(8.78)
e
Effectiveness of heat exchanger
0
0
0
0
0
0
None
Sect. 10.4.3.2
efin
Effectiveness of heat exchange from a fin
0
0
0
0
0
0
None
(10.100)
ex
Strain in the x-direction
0
0
0
0
0
0
None
(7.25)
el
Emissivity at wavelength l
0
0
0
0
0
0
None
(8.77)
e_ x
Strain rate in the x-direction ¼ Dxx
0
0
1
0
0
0
s1
(7.26)
f
Angular coordinate, spherical coordinates
0
0
0
0
0
0
None
Sect. 7.3, Sect. 7.11
f
Dimensionless function
0
0
0
0
0
0
None
(3.14)
fA
Henry’s law constant
0
0
0
0
0
0
None
(12.26)
fp
Fraction of pellet volume occupied by pores
0
0
0
0
0
0
None
(14.89)
fT
Thiele modulus
0
0
0
0
0
0
None
(14.99)
F
Fluence rate
1
0
3
0
0
0
W m2
(11.69)
FA12
Equilibrium partition coefficient of species A in material 1 relative to material 2
0
0
0
0
0
0
None
(2.44)
Fs
Steric partition coefficient
0
0
0
0
0
0
None
(6.104)
^ F
Potential energy per unit mass
0
2
2
0
0
0
J kg1
(5.34)
g
Shear strain
0
0
0
0
0
0
None
(4.1)
g
Combined friction loss factor
0
0
0
0
0
0
None
(5.79)
g
Dimensionless parameter, first-order reaction
0
0
0
0
0
0
None
(14.288)
g
Dimensionless extravascular volume
0
0
0
0
0
0
None
(14.388)
g
Dimensionless wall resistance to O2 transfer
0
0
0
0
0
0
None
(15.179)
gX
Transport coefficient for flux of X
0
2
1
0
0
0
m2 s1
(2.16)
(continued)
Appendix A Nomenclature
1233 Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
g_ ; g_ nx
Shear rate on a plane of constant n in the xdirection
0
0
1
0
0
0
s1
(2.13), (4.4)
g_ 0
Constant ¼ 1 s1
0
0
1
0
0
0
s1
Ex. 4.8.3.1
_2
g
Twice the sum of squares of rate of deformation components (total shear rate squared)
0
0
2
0
0
0
s2
(7.118)
Apparent viscosity or effective viscosity
1
1
1
0
0
0
Pa s
(4.12)
Combination of variables
0
0
0
0
0
0
None
(7.100), (7.102)
Effectiveness factor
0
0
0
0
0
0
None
(14.114)
r
Relative viscosity
0
0
0
0
0
0
None
(4.40)
k
Ratio of outside to inside radius, annulus
0
0
0
0
0
0
None
(6.57)
l
Wavelength
0
1
0
0
0
0
m
(8.74)
lmax
Wavelength at which maximum emission occurs
0
1
0
0
0
0
m
(8.75)
lk
Eigenvalue
0
0
0
0
0
0
None
(10.121)
Kki
Integration factor, velocity profile
0
0
0
0
0
0
None
(5.22), (5.23)
L
Latent heat of fusion for water
0
2
2
0
0
0
J kg1
Ex. 10.4.1 (2.13)
m
Fluid viscosity
1
1
1
0
0
0
Pa s
ma
Absorption coefficient
0
1
0
0
0
0
m1
(11.69)
mp
Plasma viscosity
1
1
1
0
0
0
Pa s
(4.40)
ms
Viscosity evaluated at surface temperature
1
1
1
0
0
0
Pa s
(8.38)
ms
Mobility of solute s
1
0
1
0
0
0
s kg1
(12.94)
m0
Viscosity-like parameter in Bingham model
1
1
1
0
0
0
Pa s
(4.28)
mTm
Viscosity evaluated at mean fluid temperature
1
1
1
0
0
0
Pa s
(8.38)
n
Kinematic viscosity
0
2
1
0
0
0
m2 s1
(2.14)
p
Ratio of circle circumference to diameter ¼ 3.14159...
0
0
0
0
0
0
None
–
P
Osmotic pressure
1
1
2
0
0
0
Pa
(5.150)
PI
Interstitial osmotic pressure
1
1
2
0
0
0
Pa
(6.99)
Pp
Plasma osmotic pressure
1
1
2
0
0
0
Pa
(6.99)
Pv
Dimensionless group containing excluded variable v
0
0
0
0
0
0
None
(3.19)
(continued)
1234
Appendix Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
P0
Osmotic pressure inside channel
1
1
2
0
0
0
Pa
(5.151)
y
Angular coordinate, cylindrical coordinates
0
0
0
0
0
0
None
Sect. 6.3, Sect. 7.11
y
Angular coordinate, spherical coordinates
0
0
0
0
0
0
None
Sect 7.3, Sect. 7.11
y
Temperature difference, TT1
0
0
0
0
1
0
K
(9.22)
y
Sieving coefficient
0
0
0
0
0
0
None
(13.213), Fig. 13.26
yi
Temperature difference, TiT1
0
0
0
0
1
0
K
(9.22)
yin
Temperature difference, TsTm,in
0
0
0
0
1
0
K
(10.36)
ylm
Log mean temperature difference
0
0
0
0
1
0
K
(10.41)
yout
Temperature difference, TsTm,out
0
0
0
0
1
0
K
(10.36)
Y
Fundamental dimension of temperature
0
0
0
0
1
0
K
Table 3.2
r
Mass density or total mass concentration
1
3
0
0
0
0
kg m3
(2.1), (12.8)
r
Coefficient of reflection
0
0
0
0
0
0
None
(8.79)
rA
Mass concentration of species A
1
3
0
0
0
0
kg m3
(4.42), (12.6)
A r
Volume averaged mass concentration of species A
1
3
0
0
0
0
kg m3
12.3
s
Surface tension
1
0
2
0
0
0
kg s2
Table 8.2
s
Stefan–Boltzmann constant
1
0
3
0
4
0
W m2 K4
(8.73), Appendix B.1
sd
Overall osmotic reflection coefficient
0
0
0
0
0
0
None
(5.156)
sdi
Overall osmotic reflection coefficient for channel i
0
0
0
0
0
0
None
(5.152), (5.153)
sds
Osmotic reflection coefficient for solute s
0
0
0
0
0
0
None
(6.108)
ss
Solute reflection coefficient
0
0
0
0
0
0
None
(13.258)
S
Dimensionless quantity of heat or mass that crosses a solid–fluid boundary
0
0
0
0
0
0
None
Appendix D, (14.335)
t
Coefficient of transmission
0
0
0
0
0
0
None
(8.79)
t
Thermal injury exposure time
0
0
1
0
0
0
s
(11.55)
tT
Thermal time constant
0
0
1
0
0
0
s
(9.26)
(continued)
Appendix A Nomenclature
1235 Fundamental dimensions
Symbol
Meaning
M
L
N
T
Y
SI units
I
First appearance (bold: definition)
tw
Wall shear stress
1
1
2
0
0
0
Pa
(4.16)
ty
Yield stress
1
1
2
0
0
0
Pa
(4.28)
tyx
Flux of x-momentum in the y-direction, or shear stress in the x-direction on a plane of constant y
1
1
2
0
0
0
Pa
(2.13)
o
Angular frequency
0
0
1
0
0
0
s1
Ex. 5.3.1
oA
Mass fraction of species A
0
0
0
0
0
0
None
(12.13)
O
Cone angular velocity
0
0
1
0
0
0
s1
Ex. 7.16.3
O
Arrhenius thermal injury function
0
0
0
0
0
0
(None)
(11.54)
C
Intensive property
–
–
–
–
–
–
–
(2.6)
C
Stream function
0
2
1
0
0
0
m2 s1
Sect. 7.9
C
Dimensionless flux of heat or mass from solid to fluid
0
0
0
0
0
0
(None)
Appendix D, (14.333)
C*
Dimensionless concentration in pore
0
0
0
0
0
0
(None)
(14.102)
zA
Coefficient of compositional expansion
0
0
0
0
0
0
None
(12.112)
Nabla or del operator
0
1
0
0
0
0
m1
(2.8), (7.38)
r
Laplacian operator
0
2
0
0
0
0
m2
(7.46)
‘
Tube length
0
1
0
0
0
0
m
(5.137)
NA
Number of molecules of species A
0
0
0
0
0
0
None
(12.1)
Special symbols ~ r 2
℘
Modified pressure
1
1
2
0
0
0
Pa
(5.50)
<,
Fluid resistance
1
4
1
0
0
0
kg m4 s1
(2.30), (5.84) (tube)
<0
Resistance per unit length
1
5
1
0
0
0
kg m5 s1
(5.132)
Capillary resistance
1
4
1
0
0
0
kg m4 s1
(5.143)
Resistance to transport of species A in material B (subscript B sometimes dropped)
0
3
1
0
0
0
s m3
(2.35), Sect. 2.6
<e0
Electrical resistivity
1
3
3
0
0
2
kg m3 A2 s3
(2.11)
<e
Electrical resistance
1
2
3
0
0
2
kg m2 A2 s3
(2.28)
Thermal resistance
1
2
3
0
1
0
K W1
(2.33)
Thermal resistance via conduction
1
2
3
0
1
0
K W1
(8.8)
Thermal resistance via convection
1
2
3
0
1
0
K W1
(8.69)
ℑ
Torque
1
2
2
0
0
0
kg m2 s2
Ex. 7.12.1
1236
Appendix
Appendix B.1 Physical Constants Symbol c0 e F g h kB R
Description Speed of light Electron charge Faraday’s constant Gravitational acceleration Planck constant Boltzman constant Gas constant
NAV s
Avogadro’s number Stefan–Boltzmann constant
Value 2.998 108 m s1 1.602 1019 C 96,485.34 C mol1 9.807 m s1 6.636 1034 J s 1.381 1023 J K1 8.315 J mol1 K1 82.057 ml atm mol1 K1 62,364 ml mmHg mol1 K1 6.022 1023 molecules mol1 5.67 10-8 W m2 K4
Appendix B.2 Prefixes and Multipliers for SI Units Prefix Yocto Zepto Atto Femto Pico Nano Micro Milli Centi Deci Deca Hecto Kilo Mega Giga Tera Peta Exa Zetta Yotta
Multiplier 1024 1021 1018 1015 1012 109 106 103 102 101 100 101 102 103 106 109 1012 1015 1018 1021 1024
Scale Septillionth Sextillionth Quintillionth Quadrillionth Trillionth Billionth Millionth Thousandth Hundredth Tenth One Ten Hundred Thousand Million Billion Trillion Quadrillion Quintillion Sextillion Septillion
Symbol y z a f p n m m c d da h k M G T P E Z Y
Appendix B.3 Conversion Factors
1237
Appendix B.3 Conversion Factors Common units used in biotransport with conversion to SI base units. (Fundamental dimensions and SI units are in bold). Physical quantity Area
Concentration (molar)
Density or mass concentration
Diffusion coefficient, kinematic viscosity, thermal diffusivity Electrical capacitance Electrical charge Electrical charge density Electrical current Electrical current density Electrical inductance Electrical potential Electrical resistance Energy or heat (see also work)
Force
Common unit Square meter Square foot Square inch Square centimeter Moles per cubic meter Kilomoles per cubic meter Moles per milliliter Moles per liter Pound mole per cubic foot Kilograms per cubic meter Grams per milliliter Pound mass per cubic foot –
Symbol 1 m2 1 ft2 1 in2 1 cm2 1 mol m3 1 kmol m3
In terms of basic SI units 1 m2 0.0929 m2 6.45 104 m2 1 104 m2 1 mol m3 1 103 mol m3
1 mol ml1 or 1 mol cm3 1 mol L1 ¼ 1 M 1 lb-mol ft3
1 106 mol m3
1 kg m3
1 kg m3
1 103 mol m3 1.602 104 mol m3
1 g ml1 or 1 g cm3 1,000 kg m3 1 lbm ft3 16.02 kg m3 1 m2 s1 1 cm2 s1 1 ft2 s1
1 m2 s1 1 104 m2 s1 0.0929 m2 s1
Farad
1F
1 A2 s4 kg1 m2
Coulomb –
1C 1 C m3
1As 1 A s m3
Ampere –
1A 1 A m2
1A 1 A m2
Henry Volt Ohm Joule Erg Kilowatt hour British thermal units Calorie Kilocalorie Newton Dyne Pound force Poundal –
1H 1V 1O 1J 1 erg 1 kW h 1 Btu
kg m2 A2 s2 1 kg m2 A1 s3 1 kg m2 A2 s3 1 kg m2 s2 1 107 kg m2 s2 3.6 106 kg m2 s2 1,054 kg m2 s2
1 cal 1 kcal 1N 1 dyn 1 lbf 1 lbm ft s2
4.184 kg m2 s2 4,184 kg m2 s2 1 kg m s2 1 105 kg m s2 4.448 kg m s2 0.13826 kg m s2 1 m2 s2 K1 (continued)
1238
Appendix
Physical quantity Heat capacity per unit mass (Specific heat)
Common unit
Heat transfer coefficient
–
Length
Meter Angstrom Foot Inch Kilogram Pound mass Slug –
Mass
Mass transfer coefficient, permeability, velocity Molar quantity Momentum
Overall mass transfer coefficient, permeabilitysurface area (mass units) Overall mass transfer coefficient, permeabilitysurface area (molar units) Power
Pressure or stress or momentum flux
Symbol 1 J kg1 K1 or 1 W s kg-1 K1 1 kJ kg1 K1 1 Btu lbm1 F1 1 cal g1 K1 1 J s1 m2 K1 or 1 W m2 K1 1 cal cm2 s1 K1 1 lbm s3 F1 1 Btu ft2 h1 F1 1m 1A 1 ft 1 in 1 kg 1 lbm 1 slug ¼ 32.17 lbm 1 m s1 1 cm s1 1 cm h1 1 ft s1 1 ft h1 1 mol 1 kmol 1 lb-mol 1 kg m s1 1 g cm s1 1 lbm ft s1 1 kg s1 m2 1 g cm2 s1 1 lbm ft2 s1 1 lbm ft2 h1
4.184 104 kg s3 K1 0.816 kg s3 K1 5.68 kg s3 K1 1m 1 1010 m 0.3048 m 0.0254 m 1 kg 0.45359 kg 14.59 kg 1 m s1 0.01 m s1 2.778 106 m s1 0.3048 m s1 1,097 m s1 1 mol 1 103 mol 453.59 mol 1 kg m s1 1 105 kg m s1 0.13825 kg m s1 1 kg s1 m2 10 kg s1 m2 4.8824 kg s1 m2 1.3562 103 kg s1 m2
–
1 mol s1 m2 1 mol cm2 s1 1 lb-mol ft2 s1 1 lb-mol ft2 h1
1 mol s1 m2 1 104 mol s1 m2 4882.4 mol s1 m2 1.3562 mol s1 m2
Watt – – – – Horsepower Pascal Atmosphere Pounds per Square inch
1 W ¼ 1 Js1 1 cal s1 1 kcal s1 1 Btu s1 1 ft lbf s1 1 hp 1 Pa ¼ 1 Nm2 1 atm 1 psi
1 kg m2 s3 4.184 kg m2 s3 4,184 kg m2 s3 1,054 kg m2 s3 1.356 kg m2 s3 745.7 kg m2 s3 1 kg m1 s2 1.0133 105 kg m1 s2 6,895 kg m1 s2
1 cmH2O
98.06 kg m1 s2 (continued)
Mole Kilo mole Pound mole –
–
In terms of basic SI units 1,000 m2 s2 K1 4,184 m2 s2 K1 4,184 m2 s2 K1 1 kg s3 K1
Appendix B.3 Conversion Factors Physical quantity
Temperature (absolute) Temperature (relative) Thermal conductivity
Time Viscosity
Volume
Work
Common unit Centimeter of water Millimeter of mercury, Torr Dynes per square centimeter Kelvin Degee Rankine Degree Celsius Degree Fahrenheit –
Second Minute Hour Pascal second Centipoise Poise – Cubic meter Liter Milliliter or cubic centimeter Cubic inch Cubic foot Gallon Newton meter Foot pounds Dyne centimeter
1239 Symbol
In terms of basic SI units
1 mmHg or 1 Torr
133.32 kg m1 s2
1 dyn cm2
0.1 kg m1 s2
1K 1 R 1 C 1 F 1 W m1 K1 or 1 N C1 s1 1 kW m1 K1 1 cal s1 cm1 K1 1 kcal h1 m1 C1 1 erg s1 cm1 K1 1 Btu h1 ft1 K1 1s 1m 1h 1 Pa s 1 cP 1P 1 lbm ft1 s1 1 m3 1L 1 ml or 1 cm3
1K 1.8 K T(K) 273.15 1.8 T(K) 459.67 1 kg m s3 K1 1,000 kg m s3 K1 418.4 kg m s3 K1 1.163 kg m s3 K1 1 105 kg m s3 K1 1.731 kg m s3 K1 1s 60 s 3,600 s 1 kg m1 s1 1 103 kg m1 s1 0.1 kg m1 s1 1.49 kg m1 s1 1 m3 1 103 m3 1 106 m3
1 in3 1 ft3 1 gal 1 N m or 1 J 1 ft lbf 1 dyn cm or 1 erg
1.639 105 m3 0.0283 m3 3.785 103 m3 1 kg m2 s2 1.3558 kg m2 s2 1 107 kg m2 s2
1240
Appendix
Appendix C Transport Properties Properties listed in these appendices have been compiled from measurements from many different sources. We report representative values where more than one value is reported in the literature.
Fluid Properties Flow Properties of Selected Fluids Fluid Gases Air
CH4 CO CO2 H2 He N2 N2O O2 Liquids Water
Normal saline (0.155 M NaCl) Glycerine Ethanol Methanol
T( C)
r(kg/m3)
m 106 (Pa s)
n 106 (m2/s)
0 10 20 25 30 35 37 40 25 37 25 37 25 37 25 37 25 37 25 37 25 37 25 37
1.292 1.247 1.204 1.184 1.164 1.146 1.140 1.127 0.657 0.632 1.145 1.101 1.809 1.738 0.082 0.079 0.164 0.157 1.145 1.101 1.840 1.739 1.309 1.258
17.36 17.87 18.36 18.62 18.86 19.10 19.20 19.34 11.19 11.57 17.65 18.18 14.93 15.51 8.915 9.159 19.85 20.39 17.81 18.36 14.79 15.35 20.46 21.12
13.44 14.33 15.25 15.73 16.20 16.67 16.84 17.16 16.98 18.34 15.42 16.51 8.26 8.93 108.7 115.9 121.0 129.9 15.56 16.68 8.038 8.827 15.63 16.79
20 25 30 35 37 40 25 37 25 25 25
998.2 997.0 995.7 994.0 993.3 992.2 1,003.8 1,000.0 1,258 789 786
1,002 890 798 719 692 653 904 777 1.183 106 1,074 544
1.004 0.893 0.801 0.723 0.697 0.658 0.901 0.777 940.4 1.361 0.692 (continued)
Appendix C Transport Properties
1241 T( C)
Fluid
m 106 (Pa s)
r(kg/m3)
n 106 (m2/s)
Biological fluids Blood plasma 25 1,027 1,403 Blood plasma 37 1,027 1,390 22 1,060 4,270 Blood, H ¼ 45, g_ ¼ 125s1 Blood, H ¼ 44, g_ ¼ 100 s1 37 1,060 3,390 Cerebral spinal fluid 37 1,007 716 Example: Find the kinematic viscosity of air at 25 C n(m2/s) 106 ¼ 15.73, or n ¼ 15.73 106 m2/s ¼ 0.1573 cm2/s
1.366 1.353 4.028 3.198 0.711
Normal Blood Perfusion Rates in Human Tissue Organ Weight (g) Blood flow (ml/min) Blood perfusion ratea (ml min1 g1) Adrenal glands 14 25 1.79 Brain 1,500 750 0.50 Cardiac muscle 330 265 0.8 Fat 15,000 400 0.027 Intestines 1,000 900 0.90 Kidneys 300 1,200 4.0 Liver 1,500 1,500 1.0 Lungs (pulmonary) 1,000 5,000 5.0 Skeletal muscles 28,000 750 0.027 Skeletal system 11,200 250 0.022 Skin 4,100 200 0.049 Spleen 180 220 1.2 Stomach and esophagus 190 75 0.4 Thyroid gland 12 50 4.16 a Blood flow relative to total tissue mass, including blood mass
Thermal Properties Thermal Properties of Selected Materials Material Gases Air
T r (kg/m3) k 102 ( C) (W m1 K1)
cp 103 (J kg1 K1)
a 106 (m2/s)
0 10 20 25 30 35 37
1.005 1.005 1.005 1.005 1.005 1.005 1.005
18.56 19.85 21.21 21.88 22.59 23.28 23.53
1.292 1.247 1.204 1.184 1.164 1.146 1.140
2.410 2.488 2.566 2.604 2.643 2.681 2.696
Pr
0.724 0.722 0.719 0.719 0.717 0.716 0.716 (continued)
1242 Material
CH4 CO CO2 H2 He N2 N2O O2 Liquids Water
Normal saline Glycerine Ethanol Methanol Biological fluids Blood plasma Blood, H ¼ 45 Blood, H ¼ 44 Solids Non-Metals Acrylic plastic Carbon Cellulose acetate Cork Felt insulation Fiberglass Glass Ice Polyethylene terephthalate Polypropylene Polystyrene Polysulfone Polyvinyl chloride
Appendix T ( C) 40 25 37 25 37 25 37 25 37 25 37 25 37 25 37 25 37
r (kg/m3) k 102 (W m1 K1) 1.127 2.719 0.657 3.430 0.632 3.598 1.145 2.648 1.101 2.729 1.809 1.664 1.738 1.762 0.082 18.49 0.079 19.06 0.164 15.53 0.157 15.96 1.145 2.574 1.101 2.653 1.840 1.723 1.739 1.738 1.309 2.651 1.258 2.747
cp 103 (J kg1 K1) 1.005 2.232 2.260 1.042 1.042 0.851 0.862 14.31 14.35 5.193 5.193 1.041 1.041 0.883 0.894 0.920 0.921
a 106 (m2/s) 24.01 23.39 25.19 22.19 23.79 10.82 11.76 158 168 190 195 21.60 23.15 10.61 11.18 22.01 23.73
0.715 0.726 0.728 0.695 0.694 0.763 0.759 0.688 0.690 0.693 0.666 0.720 0.721 0.758 0.790 0.710 0.708
20 25 30 35 37 40 25 37 25 25 25
998.2 997.0 995.7 994.0 993.3 992.2 1,003.8 1,000.0 1,258 789 786
59.84 60.72 61.55 62.33 62.63 63.06 60.72 62.63 23 17 21
4.184 4.181 4.180 4.179 4.179 4.179 4.082 4.081 2.41 2.44 2.535
0.143 0.146 0.148 0.150 0.151 0.152 0.148 0.153 0.076 0.088 0.105
7.02 6.12 5.41 4.82 4.62 4.33 6.09 5.08 12,374 15.5 6.59
25 37 22 37
1,027 1,027 1,060 1,060
57.8 47.7 50.7 48.8
4.147 3.932 3.559 3.74
0.136 0.118 0.134 0.123
10.04 11.47 30.06 26.0
25 25 25 25 25 25 25 0 25
1,190 1,950 1,280 140 90 32 2,700 920 1,350
18.6 170 26 4.3 25 3.8 105 218 25
1.46 0.711 1.5 1.80 0.71 0.835 0.84 2.04 1.17
0.107 1.23 0.135 0.171 3.91 1.42 0.463 1.16 0.158
25 25 25 25
855 1,120 1,240 1,350
22 3.3 26 19
1.920 1.340 1.300 0.90
0.134 0.022 0.161 0.156
Pr
(continued)
Appendix C Transport Properties
1243
Rubber Wood (Oak)
T r (kg/m3) k 102 ( C) (W m1 K1) 25 1,100 16 25 545 17
cp 103 (J kg1 K1) 2.01 2.385
a 106 (m2/s) 0.072 0.131
Metals Aluminum Brass Copper Gold Lead Platinum Silver Stainless steel Tin Zinc
25 25 25 25 25 25 25 25 25 25
25,000 5,400 40,100 31,000 3,500 7,000 42,900 1,490 6,700 11,600
0.903 0.355 0.385 0.129 0.129 0.133 0.235 0.477 0.222 0.388
102.5 17.85 116.5 124.5 23.92 24.54 173.9 3.95 41.34 41.87
Firefighter protective clothing Aralite (thermal 20 70 liner) 55 Kevlar (outer shell) 20 324 55 Nomex (moisture 20 300 barrier) 55
3.4 4.4 5.7 7.6 4.6 6.0
0.7
0.694 0.898 0.107 0.143 0.59 0.769
Fabrics Cotton Nylon Polyester Wool
25 25 25 25
80 1,140 1,390 380
6 25.0 4.5 7.0
1.3 1.67 1.3 1.26
0.577 0.131 0.0789 0.146
Tissues Adrenal gland Aorta Bone, cortical Brain Fat tissue Kidney (cortex) Kidney (medulla) Liver Muscle (cardiac) Muscle (skeletal) Skin (dermis) Skin (epidermis) Spleen Thyroid gland Tooth (enamel) Tooth (dentine)
37 35 37 20 37 37 37 25 37 37 37 37 37 37 37 37
1,025 1,089 1,850 1,050 916 1,040 1,040 1,051 1,060 1,041 1,200 1,200 1,060 1,050 2,970 2,140
42.2 47.6 56 52.7 23 49.9 49.9 56.4 53.7 46 29.3 20.9 54.3 53 82 59
(3.7) 3.47 1.3 3.77 2.30 3.64 3.79 3.41 3.71 3.81 3.22 3.60 3.69 (3.7) 0.75 1.17
(0.111) 0.126 0.233 0.133 0.109 0.132 0.127 0.157 0.137 0.116 0.076 0.048 0.139 (0.136) 0.368 0.236
Material
2,700 8,520 8,940 19,300 11,342 21,450 10,500 7,900 7,300 7,140
1.637 0.26
Pr
1244
Appendix
Mass Transfer Properties Diffusion Coefficients in Gases at Atmospheric Pressure T( C) 9 25 0 9 0 9 0 10 20 25 30 35 40 25 0 25 37 0 10 20 25 30 35 40 9 25 0 0 10 20 25 30 35 40 27 0 25 15 43 25 20 43 20 60 20 60
Solute A Argon Benzene Carbon disulfide CH4 Chlorine CO CO2 CO2 CO2 CO2 CO2 CO2 CO2 Ethanol Ethyl acetate H2 H2 H2O vapor H2O vapor H2O vapor H2O vapor H2O vapor H2O vapor H2O vapor He Methanol NH3 O2 O2 O2 O2 O2 O2 O2 SF6 SO2 Toluene CO CO CO2 O2 O2 O2 O2 O2 O2
Medium B Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air N2 N2 N2 CH4 H2 CO2 CO2 H2O (vapor) H2O (vapor)
DAB 104 (m2 s1) 0.177 0.096 0.088 0.196 0.124 0.196 0.139 0.149 0.160 0.165 0.170 0.176 0.181 0.132 0.071 0.770 0.825 0.209 0.225 0.242 0.251 0.260 0.268 0.277 0.658 0.162 0.198 0.179 0.191 0.203 0.209 0.215 0.221 0.227 0.098 0.122 0.0844 0.192 0.240 0.165 0.215 0.891 0.153 0.193 0.240 0.339 (continued)
Appendix C Transport Properties
1245
T( C) Solute A Medium B DAB 104 (m2 s1) N2 0.181 0 O2 20 O2 N2 0.219 60 O2 N2 0.274 Example: At 35 C: DO2 ;air 104 ¼ 0:221 m2 =s or DO2 ;air ¼ 2:21 105 m2 /s
Diffusion Coefficients and Bunsen Solubility Coefficients for Dissolved Gases in Various Media at Atmospheric Pressure T( C) 37 37 37 37 37 37 25 25 37 20 20 37 25 37 38 22 37 38 38 22 25 37 37 25 37 22 20 25 30 35 37 37 37 37 20 25 30 37
Gas A Ar Ar Ar Ar Ar Ar CH4 Cl2 CO CO CO CO CO CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 H2 H2 H2 H2 H2 H2 H2
Medium B Blood (H ¼ 44%) Brain tissue Muscle Normal saline Olive oil Water Water Water Cell membranea Hb solution (18.8 g/dl) Hb solution (32.2 g/dl) Olive oil Water Aorta wall Blood (H ¼ 44%) Brain tissue Cell membranea Hb solution (16 g/dl) Hb solution (33 g/dl) Muscle Normal saline Normal saline Olive oil Plasma Plasma Skin Water Water Water Water Water Cell membranea Muscle Olive oil Water Water Water Water
DAB 109 (m2 s1) – – – – – 3.4 1.49 1.25 – 0.51 0.37 – 2.03 0.65 – 1.0 – 1.6 1.14 1.07 – – – – – 0.95 1.76 1.94 2.20 2.93 2.96 – 2.57 3.7 3.63 4.05 4.48 5.07
a*AB (mlAmlB1 atm1) 0.0305 0.0327 0.0229 0.0296 0.16 0.0298 0.03395 2.236 0.103 – – 0.0858 0.02334 – 0.488 0.97 0.99 – 0.44 0.78 0.742 0.550 1.25 0.681 0.515 0.73 0.878 0.759 0.665 0.592 0.567 0.026 0.0218 0.0484 0.01941 0.01913 0.01895 0.01887 (continued)
1246 T( C) 20 25 30 35 38 37 37 25 30 38 37 20 20 25 38 37 38 10 25 37 37 37 19.3 37 37 37 37 20 25 30 37 37 37 37 37 37 30 25 20 25 30 37 37 19 37 25 25 37 25 37 37
Appendix Gas A H2S H2S H2S H2S He He He He Kr N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O N2O Ne Ne Ne Ne Ne Ne NH3 NO NO NO O2 O2 O2 O2 O2 O2 O2 O2 O2 O2
Medium B Water water water water Blood (H ¼ 44%) Muscle Olive oil Water Water Blood (H ¼ 44%) Cell membrane* Hb solution (18.8 g/dl) Hb solution (32.2 g/dl) Normal saline Normal saline Olive oil Plasma Water Water Water Blood (H ¼ 44%) Brain tissue Hb solution (35 g/dl) Muscle Normal saline Olive oil Plasma Water Water Water Water Blood Brain Cell membranea Normal saline Olive oil Water Water Water Water Water Aortic wall Blood (H ¼ 44%) Cell membrane Cell membranea Hb solution (33 g/dl) Hb solution (8 g/dl) Muscle Normal saline Normal saline Olive oil
DAB 109 (m2 s1) 1.74 1.95 2.22 2.75 – 3.94 – 6.28 2.17 – – 0.52 0.36 – – – – 1.29 2.01 2.20 0.465 – 0.231 1.27 – – – 1.84 1.88 1.93 2.60 – – – – – 3.81 1.64 2.07 2.21 3.96 0.90 1.33 0.727 – 0.838 1.87 1.5 – – –
a*AB (mlAmlB1 atm1) 2.792 2.510 2.085 1.791 0.0088 0.012 0.0159 0.015 0.060 0.013 0.106 – – 0.0141 0.0122 0.067 0.0117 0.0186 0.0143 0.0123 0.412 0.497 – 0.512 0.452 1.40 0.454 0.6788 0.5937 0.5241 0.467 0.0093 0.0115 0.013 0.0111 0.027 0.0158 312.7 0.05046 0.04708 0.04430 – 0.0223 – 0.124 0.033 0.025 0.0235 0.0272 0.0227 0.130 (continued)
Appendix C Transport Properties
1247
T( C) Gas A Medium B DAB 109 (m2 s1) a*AB (mlAmlB1 atm1) Perflurocarbon (FC-40) 8.29 – 20 O2 25 O2 Plasma 1.21 0.0257 37 O2 Plasma 1.63 0.0214 Water 1.54 0.0383 10 O2 25 O2 Water 2.20 0.0283 37 O2 Water 2.89 0.0239 40 O2 Water 3.33 0.0231 Blood – 0.0075 37 SF6 37 SF6 Brain tissue – 0.0165 37 SF6 Cell membranea – 0.166 37 SF6 Muscle – 0.012 Olive oil – 0.275 37 SF6 37 SF6 Plasma – 0.0056 37 SF6 Water – 0.0044 30 Xe Water 1.02 0.090 a Cell membrane solubilities are based on data from red cell ghosts with an assumed membrane density of 1,100 kg/m3 Example: At 25 C: Dalbumin,water 109 ¼ 0.069 m2/s or Dalbumin,water ¼ 6.9 1011 m2/s
Diffusion Coefficients and Solubility Coefficients for Non-Gaseous Solutes in Various Media at Atmospheric Pressure T( C) 25 25 25 25 25 20 25 20 20 25 37 37 20 25 25 25 25 20 20 25 20 25 25
Solute A Acetic acid Acetone L-alanine Albumin Caffeine Caffeine Caffeine Catalase Carbonic anhydrase Ethyl alcohol Fibrinogen Fibrinogen g-globulin Glucose Glycerol Glycine Hb Hb Hb Histidine Insulin Lactose L-leucine
Medium B Water Water Water Water Dichloromethane Ethanol Water Water Water Water Water Plasma Water Water Water Water Water Hb solution (18.8 g/dl) Hb solution (32.2 g/dl) Water Water Water Water
DAB 109 (m2 s1) 1.19 1.28 0.91 0.069 – – 0.63 0.041 0.09 1.24 0.020 – 0.0384 0.69 0.93 1.06 0.069 0.0295 0.0177 0.73 0.0745 0.49 0.73
Solubility (mgA/mlB) Miscible Miscible 167.2 40 140 15.2 21.7 – – miscible – 23 – 910 miscible 249.9 – – – 41.9 – 189 24.26 (continued)
1248
Appendix
T( C) Solute A Medium B DAB 109 (m2 s1) Solubility (mgA/mlB) 15 Methyl alcohol Water 1.26 miscible 20 Myoglobin Water 0.113 – 20 Myosin Water 0.0087 – 20 Pepsin Water 0.090 – 25 L-phenylalanine Water 0.705 29.65 25 L-proline Water 0.88 1,623 25 DL-serine Water 0.88 50.3 25 Sucrose Water 0.524 2,114 L-tryptophan Water 0.660 11.36 25 25 L-tyrosine Water 0.0453 0.453 12 Urea Ethanol 0.54 200 25 Urea Water 1.38 1,000 20 Urease Water 0.0346 – 25 L-valine Water 0.77 88.5 25 Vitamin B12 Cellulose 0.008 – 25 Water (self) Water 2.54 – Example: At 25 C: Dalbumin,water 109 ¼ 0.069 m2/s, or Dalbumin,water ¼ 6.9 1011 m2/s
Partition Coefficients for Solute A in Material B Relative to Material C at 37 C (FABC ¼ (cAB)eq/(cAC)eq ¼ 1/FACB) Solute A Ar Chloroform
Cyclopropane
Ethyl ether
Ethylene
Halothane
H2 He Kr
Material B Oil Oil Liver tissue Brain tissue Oil Blood Muscle tissue Liver tissue Oil Blood Brain tissue Oil Blood Brain tissue Heart tissue Oil Blood Brain tissue Liver tissue Kidney Muscle Fat Oil Oil Blood Oil
Material C Water Water Blood Blood Water Water Blood Blood Water Water Blood Water Water Blood Blood Water Water Blood Blood Blood Blood Blood Water Water Water Water
FABC 5.3 110 0.9 1.1 35 2.24 0.92 1.34 3.2 0.961 1.14 14.4 1.57 1.2 1.0 315 3.24 2.6 2.6 1.6 3.5 60. 3.1 1.7 1.01 9.6 (continued)
References Solute A N2
N2O
Profofol
Xe
1249 Material B Blood Brain tissue Liver tissue Fat Oil Oil Brain tissue Heart tissue Lung tissue Blood Blood Brain tissue Heart tissue Olive oil Plasma Red blood cells Adipose tissue Skeletal muscle Heart tissue Normal saline
Material C Water Blood Blood Blood Water Water Blood Blood Blood Water Water Blood Blood Water Water Plasma Plasma Plasma Plasma Water
FABC 1.021 1.1 1.1 5.2 5.2 3.2 1.0 1.0 1.0 1.014 35 3.23 5.94 21.55 1.1 2.894 18.82 1.213 1.413 0.940
References Altman PL, Dittmer DS (eds) (1971) Biological handbooks: respiration and circulation. Federation of American Societies for Experimental Biology, Bethesda Battino R, Clever HL (1966) The solubility of gases in liquids. Chem Rev 66:395–463 Blake AST, Petley GW, Deakin CD (2000) Effects of changes in packed cell volume on the specific heat capacity of blood: implications for studies measuring heat exchange in extracorporeal circuits. Br J Anaesth 84:28–32 Brown AM, Stubbs DW (eds) (1983) Medical physiology. Wiley, New York Chen RY, Fan FC, Kim S, Jan KM, Usami S, Chien S (1980) Tissue-blood partition coefficient for xenon: temperature and hematocrit dependence. J Appl Physiol 49:178–183 Cinar Y, Senyol AM, Duman K (2001) Blood viscosity and blood pressure: role of temperature and hyperglycemia. Am J Hypertens 14:433–438 Cohen ML (1977) Measurement of the thermal properties of human skin. A review. J Invest Dermatol 69:333–338 Crane Company (1988) Flow of fluids through valves, fittings, and pipe. Technical Paper No. 410 (TP 410) Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, London Diller KR, Valvano JW, Pearce JA (2005) Bioheat transfer. In: Kreith F, Goswami Y (eds) The CRC handbook of mechanical engineering, 2nd edn. CRC Press, Boca Raton Duck FA (1990) Physical properties of tissue: a comprehensive reference book. Academic, London Eckmann DM, Bowers S, Stecker M, Cheung AT (2000) Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth Analg 91:539–545 Engineering Toolbox (2010) Tools and basic information for design, engineering and construction of technical applications. http://www.engineeringtoolbox.com/ ThermExcel (2003) Physical characteristics of water (at the atmospheric pressure). http://www. thermexcel.com/english/tables/eau_atm.htm
1250
Appendix
Engineers Edge Solutions by Design (2010) Fluid characteristics chart. http://www.engineersedge. com/fluid_flow/fluid_data.htm Ferrell RT, Himmelblau DM (1967) Diffusion coefficients of nitrogen and oxygen in water. J Chem Eng Data 12:111–115 Frydrych I, Dziworska G, Bilska J (2002) Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres. Fibres Text East Eur Oct/Dec:40–44 Gonza´lez-Alonso J, Bjørn Quistorff PK, Bangsbo J, Saltin B (2000) Heat production in human skeletal muscle at the onset of intense dynamic exercise. J Physiol 524:603–615 Guyton AC (1968) Textbook of medical physiology, 3rd edn. W.B Saunders, Philadelphia Haduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J 20:611–615 Henriques FC, Moritz AR (1947) Studies of thermal injury. I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am J Pathol 23:53I–549 Johnson AT (1999) Biological process engineering: an analog approach to fluid flow, heat transfer, and mass transfer applied to biological systems. Wiley, New York Lango T, Morland T, Brubakk AO (1996) Diffusion coefficients and solubility coefficients for gases in biological fluids and tissues: a review. Undersea Hyperb Med 23:247–272 Larson CP, Eger EI, Severinghous JW (1962) The solubility of halothane in blood and tissue homogenates. Anesthesiology 23:349–355 Lawrence JS (1950) The plasma viscosity. J Clin Pathol 3:332–334 Lemmon EW, McLinden MO, Friend DG (2010) Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, p 20899. http://webbook.nist.gov Liu M, Nicholson JK, Parkinson JA, Lindon JC (1997) Measurement of biomolecular diffusion coefficients in blood plasma using two dimensional 1H-1H diffusion-edited total-correlation NMR spectroscopy. Anal Chem 69:1504–1509 Longmuir IS, Roughton FJW (1952) The diffusion coefficients of carbon monoxide and nitrogen in haemoglobin solutions. J Physiol 118:264–275 Marrero TR, Mason EA (1972) Gaseous diffusion coefficients. J Phys Chem Ref Data 1:1–118 Naka S, Kamata Y (1977) Determining the thermal conductivity of fabrics by non-steady state method. Trans J Textile Mach Soc Jpn 30:T30–T44 Power GG, Stegall H (1970) Solubility of gases in human red cell ghosts. J Appl Physiol 29:145–149 Rosenson RS, McCormick A, Uretz EF (1996) Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin Chem 42:1189–1195 Shargel L, Yu ABC (1985) Applied biopharmaceutics and pharmacokinetics, 2nd edn. AppletonCentury-Croft, Norwalk Turner MJ, MacLeod IM, Rothberg AD (1989) Effects of temperature and composition on the viscosity of respiratory gases. J Appl Physiol 67:472–477 Vettori RL (2005) Estimates of thermal conductivity for unconditioned and conditioned materials used in fire fighters’ protective clothing. NISTIR 7279; p 33 Von Antroff A (1910) The solubility of xenon, krypton, argon, neon, and helium in water. Proc R Soc Lond A83:474–482 Weaver BMQ, Staddon GE, Mapleson WW (2001) Tissue/blood and tissue/water partition coefficients for propofol in sheep. Br J Anaesth 86:693–703 Weast RC (ed) (1970) Handbook of chemistry and physics, 51st edn. CRC, Cleveland West ES, Todd WR, Mason HS, Van Bruggen JT (1968) Textbook of biochemistry, 4th edn. Macmillan, New York Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262 Wise DL, Houghton G (1968) Diffusion coefficients of neon, krypton, carbon monoxide and nitric oxide in water at 10–60 C. Chem Eng Sci 23:1211–1216
Appendix D Charts for Unsteady Conduction and Diffusion
1251
Appendix D Charts for Unsteady Conduction and Diffusion D.1 Introduction Charts are presented in this appendix that can be used to estimate transport of heat or mass from a solid material to a fluid. The solid initially has a uniform temperature T0 or concentration CA0 and is immersed in a fluid with temperature Tf1 or CAf1. Transport at the interface is governed by a heat transfer coefficient h or a mass transfer coefficient kAf. The solid and fluid are assumed to be at equilibrium at the fluid-solid interface, so TS ¼ TfS and CAS ¼ FAsfCAfS, where FAsf is the partition coefficient for substance A between the solid and the fluid. The problems of unsteady-state conduction and diffusion in a slab, cylinder or sphere can be analyzed using the same procedure if we use dimensionless independent variables Y, C and S as defined in Table D.1, dimensionless dependent variables X and n, and a dimensionless parameter m as defined in Table D.2. All terms are defined in Table D.3.
Table D.1 Dimensionless dependent variables Description Symbol Heat Molar T Tf1 cA FAsf CAf1 Y Change in transport T0 Tf1 CA0 FAsf CAf1 variable qS JAS C Flux relative to hðT0 Tf1 Þ kAf maximum ðCA0 FAsf CAf1 Þ flux FAsf Q NA S Accumulated heat or mass rcP VðT0 Tf1 Þ V ½CA0 FAsf CAf1 relative to maximum
Table D.2 Dimensionless independent variables and parameters Description Symbol Object Dimensionless time (Fourier number)
X
Slab Cylinder or sphere
Dimensionless position
n
Mass rA FAsf rAf1 rA0 FAsf rAf1 jAS kAf ðr FAsf rAf1 Þ FAsf A0 mA h i V rA0 FAsf rAf 1
Heat at L2 at R2
Slab Cylinder or sphere
Relative resistance (inverse Biot number)
m
Slab Cylinder or sphere
k hL k hR
x L r R
Molar or mass DAs t L2 DAs t R2
DAs FAsf kAf L DAs FAsf kAf R
1252
Appendix
Table D.3 Variables and parameters for unsteady state transport t Time x Position in slab relative to center of slab r Radial position in cylinder or sphere L Slab half width Lc Cylinder length R Radius of cylinder or sphere V Volume of solid material: 2Lwh (slab), pR2L (cylinder), 4pR3/3 (sphere) Conduction Diffusion Molar concentration of A in solid T Temperature in solid material CA Mass concentration of A in solid rA T0 Initial temperature in solid CA0 Initial concentration of A in solid rA0 CAf1 Fluid concentration far from solid Tf1 Fluid temperature far from solid rAf1 Mass transfer coefficient h Heat transfer coefficient kAf NAS Molar flux at solid surface qS Heat flux at solid surface nAS Mass flux at solid surface Q Heat in solid relative to initial heat NA Moles or mass in solid relative to initial in solid mA value a Thermal diffusivity of solid DAs Diffusion coefficient, A in solid k Thermal conductivity of solid FAsf Solid/fluid partition coefficient r Density of solid cp Specific heat of solid
The charts in Sects. D.2, D.3 and D.4 can be used to find the following quantities: 1. The concentration or temperature at the center of the slab, cylinder or sphere as a function of time. 2. The surface temperature or concentration of the solid at any time. 3. The temperature or concentration at any radial position (within 5%) for dimensionless times greater than X ¼ 0.15. Additional charts are provided for finding radial profiles when dimensionless times less are than 0.15, for specific values of m. 4. The flux of heat or mass across the solid-fluid interface at any time. 5. The amount of heat or mass which has accumulated in the solid after a given time. The procedure for finding each of these quantities is given below.
D.1.1 Finding the Concentration or Temperature at the Center of the Material at a Given Time Use the appropriate expressions in Table D.2 to compute m and X. The variables composing these dimensionless numbers are different for heat transfer and mass transfer problems, and the length scale is different for a slab than for a cylinder or sphere. Once m and X are computed, read the value of Y(0,X;m) from the
Appendix D Charts for Unsteady Conduction and Diffusion
1253
appropriate chart. The appropriate chart for a slab is Fig. D.1, for a cylinder is Fig. D.6, and for a sphere is Fig. D.11. The centerline temperature can be computed from: Tð0; tÞ ¼ Tf1 þ ðT0 Tf1 ÞYð0; X; mÞ The centerline concentration can be computed from: cA ð0; tÞ ¼ FAsf CAf1 þ ðCA0 FAsf CAf1 ÞYð0; X; mÞ
D.1.2 Finding the Surface Concentration or Temperature of the Solid at a Particular Time Use the appropriate expressions in Table D.2 to compute m and X. Then go to the appropriate chart that provides the flux at the surface relative to the maximum flux, and read the value of C(X;m). The appropriate graph for a slab is Fig. D.4, for a cylinder is Fig. D.9, and for a sphere is Fig. D.14. Since C(X;m) ¼ Y(1,X;m), then the surface temperature can be found from: TS ðtÞ ¼ Tf1 þ ðT0 Tf1 ÞCðX; mÞ or the surface concentration can be computed from: cAS ðtÞ ¼ FAsf CAf1 þ ðCA0 FAsf CAf1 ÞCðX; mÞ
D.1.3. Finding the Temperature or Concentration at a Position in the Material Other than at the Center or the Surface If X 0.15, the first term in the infinite series provides an estimate of the solution for Y that is within 95% of the actual solution for all values of m. If, in addition, m is greater than three, the first term is accurate for all values of X. The ratio of the first term Y1(n,X;m) at any position within the material relative to the first term at the center of the material Y1(0,X;m) is independent of X. This ratio is plotted for a slab, a cylinder and a sphere in Fig. D.2, Fig. D.7 and Fig. D.12 respectively. To estimate the temperature at a dimensionless position n, Find Y(n,X;m)/Y(0,X;m) from the appropriate figure and follow the first procedure above to find the centerline value, Y(0,X;m). Compute the temperature T(r,t) or T(x,t) using the following expression: Yðn; mÞ Yð0; X; mÞ Tðr; tÞ ¼ Tf1 þ ðT0 Tf1 Þ Yð0; mÞ
1254
Appendix
The analogous expression for concentration at any position in the material is: Yðn; mÞ Yð0; X; mÞ cAS ðtÞ ¼ FAsf CAf1 þ ðCA0 FAsf CAf1 Þ Yð0; mÞ This method will not be accurate to within 5% if m < 3 and X < 0.15. In that case, the ratio will depend on dimensionless time. Comparisons between actual profiles, which include 30 terms of the series solution, and profiles predicted using the first term (red lines) are shown in Fig. D.3 (slab), Fig. D.8 (cylinder) and Fig. D.13 (sphere) for several small values of X and four values of m (0.01, 0.1, 1.0, 10.0). The actual profiles are flatter than the prediction based on the first term. These figures, along with Fig. D.2, Fig. D.7 and Fig. D.12 can be used to estimate temperature or concentration at various positions within the material for X < 0.15 and m < 3.
D.1.4 Finding the Flux of Heat or Mass Across the Solid-Fluid Interface at Any Time The flux at the surface relative to the maximum flux C(X;m) is plotted for a slab, cylinder and sphere in Fig. D.4, Fig. D.9 and Fig. D.14, respectively. The actual heat flux by conduction at a particular time can computed from qS ðtÞ ¼ hðT0 Tf1 ÞCðX; mÞ The analogous expression for molar flux by diffusion at time t is: NA ðtÞ ¼
kf ðCA0 FAsf CAf1 ÞCðX; mÞ FAsf
D.1.5 Finding the Amount of Heat or Mass Which Has Accumulated in the Solid After a Given Time The quantity of heat or mass that crosses the solid-fluid boundary relative to the amount which would cross after a long period of time S(X;n) is plotted for a slab, cylinder and sphere in Fig. D.5, Fig. D.10 and Fig. D.15 respectively. The actual amount of heat that has crossed the surface in time t can be found from: QðtÞ ¼ rcP VðT0 Tf1 ÞSðX; mÞ
D.2 Charts for a Slab
1255
and the analogous expressions for molar or mass transfer are: NA ¼ V ½CA0 FAsf CAf1 SðX; mÞ mA ¼ V ½rA0 FAsf rAf1 SðX; mÞ where V is the volume of the solid material: V ¼ 2whL ðslabÞ V ¼ pR2 L ðcylinderÞ 4 V ¼ pR3 ðsphereÞ 3
D.2 Charts for a Slab 100
m=0
Y(0,X)
100 80 60
40 30
.15
20 15
10 8 6
3
4
2 1.5 1.0 0.8 0.6 0.4 0.3 0.2
0.1
10-1
10-2 10-1
100
101
X Fig. D.1 Slab: centerline value
102
103
1256
Appendix
m = 1/Bi: 10 8 6 4 3 2 1.5
1 0.9 0.8 0.7
1 0.8 0.6
Y(n) Y(0)
0.6 0.5
0.4
0.4
0.3
0.3
0.2 0.15 0.1
X > 0.12
0.2 0.1 0
0
0.1
0.2
0.3
0.4
0.5
n=
0.6
0.7
0.8
0.9
1
0
x L
Fig. D.2 Slab: value relative to centerline value vs. position n (X > 0.12) 1
1
0.9
0.9
X = 0.02
0.8
0.8
m = 0.01
0.7 0.6
0.6 Y/Yc
Y/Yc
m = 0.1
0.7
0.5
Increasing X in
0.4
0.4
intervals of 0.02
0.3 0.2
0.5
0.3
X
¥
0.2
0.1
0.1
0 0
0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8 0.9
0
1
0
0.1 0.2
0.3 0.4
0.5 0.6 0.7 x/L
0.8 0.9
1
0.1 0.2 0.3 0.4
0.5 0.6 0.7 x/L
0.8 0.9
1
x/L 1
1
0.9
0.9 0.8
m = 1.0
0.7
0.7
0.6
0.6 Y/Yc
Y/Yc
0.8
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
0
0
0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8 0.9 x/L
1
m = 10
0
0
Fig. D.3 Slab: value relative to centerline value vs. position n (small X) for 4 values of m
D.2 Charts for a Slab
1257
100
6 8
0 10 80 60
3 4
40 30
2
20 15 10
0.3
5 1.
10-1
0. 0.1 2 5
0 1. 8 0. 6 0. 4 0.
0.0 0.1 8 0.0 6 0.0 4 0.0 3 0.0 0.0 2 15 m =0 .01
Ψ 10-2
10-3 10-2
10-1
100
101
102
103
X Fig. D.4 Slab: flux relative to maximum flux
100 m=0 m=0.1
m=100
m=0.01 m=10
10-1 m=1.0
Σ 10-2
m=0.0,.01,.015,.02,.03,.04,.06,.08,.1, .15,.2,.3,.4,.6,.8,1,1.5,2,3,4,6,8,10, 15,20,30,40,60,80,100
10-3 10-2
10-1
100
101
X Fig. D.5 Slab: accumulation relative to maximum accumulation
102
103
1258
Appendix
D.3 Charts for a Cylinder 100
Y(0,X)
10-1
m=10 m=100
m=0.01,.025,.05,.075, .1,.25,.5,.75,1,2.5,5,7.5, 10,25,50,75,100. 10-2
m=0.01 m=0.1 m=1.0 10-3 10-2
10-1
100
101
102
103
X Fig. D.6 Cylinder: centerline value
m = 1/Bi: 50
1 0.9
10 7.5 5 2.5
0.8 0.7
1
Y(n) Y(0)
0.6
0.75
0.5
0.5 0.4 0.3
0.25
X > 0.15
0.2 0.1 0
0
0.1
0.2
0.3
0.4
0.5
n=
0.6
0.7
0.8
0.9
r R
Fig. D.7 Cylinder: value relative to centerline value vs. position n (X > 0.15)
1
0
0.1 0.05 0.01
D.3 Charts for a Cylinder
1259 1
1
X = 0.02
0.9
0.9 0.8
0.8
m = 0.01
0.7
Y(n, X) Y(0, X)
Y(n, X) Y(0, X)
0.6 0.5
Increasing X in
0.4
0.2 0.1
0.1
0
0 0
0.1
0.2
0.3
0.4
0.5 r/R
0.6
0.7
0.8
0.9
0
1
1
1
0.9
0.9
0.8
0.8
m = 1.0
0.7
0.7
0.6
0.6
Y(n, X) Y(0, X)
Y(n, X) Y(0, X)
0.5
0.3
X→∞
0.2
0.6
0.4
intervals of 0.02
0.3
m = 0.1
0.7
0.5
0.4
0.3
0.3
0.2
0.2
0.1
0.1 0
0.1
0.2
0.3
0.4
0.5 r/R
0.6
0.7
0.8
0.9
0.2
0.3
0.4
0.5 r/R
0.6
0.7
0.8
0.9
1
0.3
0.4
0.5 r/R
0.6
0.7
0.8
0.9
1
m = 10
0.5
0.4
0
0.1
0
1
0
0.1
0.2
Fig. D.8 Cylinder: value relative to centerline value vs. position n (small X) for 4 values of m
100
m=0.01,.025,.05,.075, .1,.25,.5,.75,1,2.5,5,7.5 10,25,50,75,100.
10-1
m=10 m=100
Y 10-2 m=0.01 m=0.1 m=1.0
10-3 10-2
10-1
100
101
X Fig. D.9 Cylinder: flux relative to maximum flux
102
103
1260
Appendix 100
m=0.01 m=0.1 m=100 m=10
10-1
m=1.0
S 10-2
m=0.01,.025,.05,.075, .1,.25,.5,.75,1,2.5,5,7.5 10,25,50,75,100.
10-3 10-2
10-1
100
101
102
103
X Fig. D.10 Cylinder: accumulation relative to maximum accumulation
D.4 Charts for a Sphere 100
Y(0,X)
10-1
m = 1/Bi 1.0 2.5 5.0 7.5 10 25 50 75 100
m = 1/Bi 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75,
10-2
10-3 10-2
10-1
100
101
X Fig. D.11 Sphere: centerline value
102
103
D.4 Charts for a Sphere
1261
m = 1/Bi: Sphere Radial Profile, X
0.15
50
1 0.9
2.5
0.8 0.7
Y(n,X) Y(0,X)
25 10 7.5 5
0.6
1 0.75
0.5
0.5
0.4
0.25
0.3 0.2
0.1
0.1 0
0
0.1
0.2
0.3
0.4
0.5
n=
0.6
0.7
0.8
0.9
1
0
0.05 0.01
r R
Fig. D.12 Sphere: value relative to centerline value vs. position n (X > 0.15) 1
1
0.9
0.9
X = 0.02
0.8
0.8
m = 0.01
0.7
0.6
0.5
Y/Yc
Y/Yc
0.6
Increasing X in intervals of 0.02
0.4 0.3
0.3 0.2
0.1
0.1 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x/L
0
1
1
1
0.9
0.9
0.8
0.7
0.6
0.6
0.5
0.4
0.3
0.3
0.2
0.2
0.1
0.1 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x/L
1
0.1 0.2
0.3 0.4
0.5 0.6 0.7 x/L
0.8 0.9
1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x/L
1
m = 10
0.5
0.4
0
0
0.8
m = 1.0
0.7 Y/Yc
Y/Yc
0.5 0.4
X→∞
0.2
0
m = 0.1
0.7
0
0
Fig. D.13 Sphere: value relative to centerline value vs. position n (small X) for 4 values of m.
1262
Appendix 100
m = 1/Bi 1.0 2.5 5.0 7.5 10 25 50 75 100
10-1
Y 10-2
m = 1/Bi 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75,
10-3 10-2
10-1
100
101
102
103
X Fig. D.14 Sphere: flux relative to maximum flux
100 m=0.01 m=0.1
m=100 m=10 m=1.0
10-1
Σ 10-2
m=0.01,.025,.05,.075, .1,.25,.5,.75,1,2.5,5,7.5, 10,25,50,75,100.
10-3 10-2
10-1
100
101
X Fig. D.15 Sphere: accumulation relative to maximum accumulation
102
103
Index
A Absorptivity, 532 Active transport, 880–881 Adaptive expertise, HPL methodology definition, 4 knowledge and innovation, 4 learning, 5 Advection, 49 Albumin and globulin flow through pore, 978–976 Alveolar fluxes, 813–817 Alveolar gas composition, 793–795 Amniotic fluid, 141 Analogies: momentum, heat and mass transfer, 1183–1185 Aneurysm, 298 Annulus flow, 477 Apparent viscosity, 113 Arrhenius thermal injury model, 752 Automotive radiator, 648 Average overall heat transfer coefficient, 643 Average value, 50 B Backward finite difference method, 747 Behavior index, 459 Bends, diving, 800–801 Bernoulli equation, 194–195 Bingham fluid, 461–462 Bingham fluid model constitutive relation, 129 velocity profile, 129–130 Biofluid transport macroscopic approach (see Macroscopic approach, biofluid transport) microscopic approach (see Microscopic approach, biofluid transport)
shell balance approach (see Shell balance approach, one-dimensional biofluid transport) Bioheat equation, 679 Bioheat transport macroscopic approach (see Macroscopic approach, bioheat transport) microscopic approach (see Microscopic approach, bioheat transport) shell balance approach (see Shell balance approach, one-dimensional bioheat transport) Biomass transport macroscopic approach (see Macroscopic approach, biomass transport) microscopic approach (see Microscopic approach, biomass transport) shell balance approach (see Shell balance approach, one-dimensional biomass transport) Bioreactor 1D biomass transport first-order reaction, stationary phase, 1085–1086 imbedded enzyme bioreactor analysis, 1080–1081 Michaelis–Menten kinetics, stationary phase, 1087–1091 mobile phase analysis, 1081–1084 types, 1080 urea removal, 1088–1091 zeroth-order reaction, stationary phase, 1084–1085 first order kinetics, 1085–1086 Michaelis–Menten kinetics, 1087–1091 mobile phase, 1081–1084 zeroth order kinetics, 1084–1085
1263
1264 Biorheology and disease cancer, 156 cystic fibrosis, 157–158 polycythemia, 155 sickle cell anemia, 156–157 Biot number, 523–524, 591, 684, 736 Biot number for mass transfer, 850 Biot number for mass transfer, bioreactor, 1083 Biotransport biological systems, 56–58 challenges, 32–33 conservation principles, 39–40 convective transport mechanism fluid flow, control volume, 48 total fluxes, 49 interphase transport cell membrane/capillary wall, 55 external and internal flow, 53 momentum transport, 52 partition coefficient, 54 proportionality factor, 53 relationships with, 56 thermal boundary layer, 53 macroscopic transport coefficients charge flow, electrical wire, 49 flow of thermal energy/heat flow, 51 relationships, 52 volumetric flow rate, 50 molecular transport mechanism constitutive equations, 43–45 1D analogies, 46–48 1D flux, negative gradient, 42–43 diffusion, 41 energy and momentum, 42 flux and gradient, 41 flux, n-direction, 41–42 properties, 45–46 system and its environment boundary identification, 34 closed system, 34 definition, 34 extensive properties, 35 intensive properties, 34 open system, 34–35 system’s equilibrium, 40 transport, biological systems, 24–25 transport scales, time and space continuum concepts, 37–39 feedback control systems, 37 length scales, 36 macroscopic approach, 36 microscopic approach, 35 molecular interaction, 35
Index nonlinear properties, 37 Biotransport problems dimensional analysis cylindrical cell, 100–101 cylindrical tube, 100 elliptical blood vessel, 101 lung alveoli, 99 parallel plates, 99–100 empirical approach advantages and disadvantages, 68 Buckingham Pi theorem (see Buckingham Pi theorem) flow between reservoirs, 97 flow measurement, 101 forced convection, circular cylinder, 101–102 heat loss, environment, 103 hematocrit, reservoir, 63 natural convection, circular cylinder, 102 pressure drop, 98–99 tapered tube, 98 temperature, reservoir, 36 theoretical approach advantages and disadvantages, 68 geometry, 69–70 GIM, 68–69 governing equations, 70 graphical presentations, results, 72 mass flow and heat transfer, tapered bronchiole, 78–83 scaling, 72–75 solution procedures, 70–72 species conservation, bioreactor, 75–78 transport principles, 98 transport problem, 96–97 Black body emissive power, 526–529 Blake–Kozeny equation, 229 Blood CO2 transport and pH carbonic acid dissociation, 866 dissociation curve, 865 Henderson–Hasselbalch equation, 866 principal mechanisms, 864 Blood doping, 166 Blood flow hollow fiber device, 238–239 microvessels, 235 organs, 270–272 small hollow fiber, 235–237 Bolus injection, 957–960 Boundary conditions heat transfer, 547–549 mass transfer, 881–883 Boundary layer, 86–87
Index Boundary layer thickness, 376, 453–455 Brain freeze, 554–555 Buckingham Pi theorem application, 84–92 fundamental dimensions, 84 permeability, porous membrane, 92–94 Bulk concentration, 1155 Bunsen solubility coefficient, 797 Burke–Plummer equation, 230 C Cancer, 156 Capillary viscometer, 116 Casson fluid, 462–463 Casson fluid model constitutive relation, 130, 131 velocity profile, 131–132 Casson fluid parameters, 162–163 Cellular transport mechanisms acetylcholine, 873 active transport, 880–881 carrier mediated transport, 877–880 passive mechanism, 876 pinocytosis, 877 CEM43, cumulative equivalent minutes at 43 C, 761 Cerebrospinal fluid (CSF), 139 Chemical reactions, mass transfer blood CO2 transport and pH carbonic acid dissociation, 866 dissociation curve, 865 Henderson–Hasselbalch equation, 866 principal mechanisms, 864 enzyme kinetics biochemical catalysts, 866 inhibitor concentrations, 869–870 Lineweaver–Burk equation, 868 Michaelis constant, 867 rate of, substrate-product conversion, 869–871 equilibrium constant, 857 hemoglobin and blood oxygen transport actual binding capacity, 863 bound oxygen, 864 dissociation curve, 858 effect of pH, PCO2, DPG and temperature, 862–863 Hill equation, 861 Hill model vs.Adair models, 862 principle function, 858 saturation vs. partial pressure of oxygen, 860 heterogeneous, 855 homogeneous, 855
1265 ligand–receptor binding kinetics, 872–876 order of the reaction, 857 reverse reaction rate, 856 Chilton–Colburn analogy, 1184–1185 Chromatography, 1124–1127 Chromatography, distribution coefficient, 1127–1128 Cocurrent mass exchangers, 1050–1054 Coefficient of compositional expansion, 836 Collapsible tube flow, 252–256 Compartmental analysis, 598 Compliance and resistance, flexible conduits transmural pressure, 243 volume and diameter, 243–244 Concentration, bulk or mean, 838 Concentration, flow-averaged or mixing cup, 838 Concentration, mixing cup or bulk, 54 Concentration, volume, 803 Conduction heat transfer constant temperature gradient, finite sized system, 490–491 definition, 489 Fourier’s law, 490 steady state heat flow, hollow cylinder, 491–492 thermal conductivity, 490 thermal resistance, 492–493 Cone and plate viscometer, 116, 117, 471–474 Conservation of energy, 527, 559, 630–631, 734 Conservation of energy, biofluid transport accumulation, 189 definition, 187–189 friction, 192 inlet and outlet conduits, 191 measurement, 189 net energy production, 190 pressure, 192–193 steady-state energy balance, 191–192 work rate, 190–191 Conservation of energy, bioheat transport combined conduction and convection energy accumulation rate, 724 energy production rate, 725 initial and boundary conditions, 726 energy equation cooling, cylinder, 727–728 steady-state conduction, tissue, 727 steady-state flow, tube, 728–729 Conservation of mass, biofluid transport definition, 169 density, 171 mass flux, 170
1266 Conservation of mass, biofluid transport (cont.) mechanisms, 169 steady-state flow, 171–172 volumetric flow, 170–171 Conservation of momentum, biofluid transport external forces, 183–184 force estimation, 180 Kki, value of, 181–182 rate of change, 181 Constitutive property, 42 Constitutive relationship Newtonian fluid rate of deformation, 396 shear strain, 395 viscous stress, 396–398 non-Newtonian fluid apparent viscosity, 457 Bingham fluid, 461–462 Casson fluid, 462–463 deformation components, 457, 458 Herschel–Bulkley fluid, 463 power law fluid, 459–461 strain rate, 458, 459 stress-strain rate relationships, 458, 460 Constitutive relationship, definition, 41 Continuity equation, 216, 391 Convection and diffusion chemical reaction, 1D biomass transport bioreactors, 1079–1095 O2 and CO2, transcapillary exchange, 1062–1072 tissue solute exchange, Krogh cylinder, 1072–1079 Chilton–Colburn analogy, 1184–1185 constant solute flux-fluid flow, 1185–1189 mass transfer, flat surface, 1179–1183 momentum vs. convective heat and mass transport, 1183–1184 parallel plates, constant wall concentration, 1191–1195 shell balance approach, 1D biomass transport constant wall concentration, 1042–1044 continuous-flow mass exchangers, 1041 drug delivery, rectangular duct, 1044–1045 hollow fiber devices, 1045–1059 non-reacting solutes, capillary exchange, 1059–1062 single pathway exchange, 1041–1042 tube vs. plates, 1196–1198 unsteady-state shell balance applications chromatography, 1124–1127
Index column application, chromatography, 1127–1128 indicator dilution applications, 1116–1118 lung urea permeability surface area, 1121–1123 mass transfer analysis, 1116 urea constant flux, 1189–1190 Convection coefficient, range of values, 496 Convection heat transfer Biot number, 523–524 dimensionless parameters biotransport applications, 500–501 Grashof number, 502 Nusselt number, 500 Reynolds number, 502 forced analysis external flow geometries, 510–513 internal flow geometries, 503–510 free processes closed cavities, 516–522 cold exposure weather advisory, 518–521 external flow, 521–522 growth, vertical cooled plate, 514–515 horizontal cylinder, 515–516 horizontal plate, 515 sphere, 516 vertical plate, 514–515 Newton’s law of cooling, 495–497 principle characteristics, 494–495 temperature and velocity boundary layers, 497–500 thermal resistance, 522–523 Convection principles, 494–495 Convective and diffusive transport, 811–812 Convective heat flux, 49 Convective heat transfer coefficient, 53, 592–594 Convective mass flux, 48 Convective mass transfer coefficient, 54 Convective mass transfer, constant flux, 1185–1190 Convective mass transfer, constant wall concentration, 1191–1198 Convective mass transfer, flat plate, 1179–1183 Convective molar flux, 48 Convective momentum flux, 48 Convective transport, 48–49 Convective transport mechanism fluid flow, control volume, 48 total fluxes, 49
Index Core variables, 87 Couette flow cytoplasm, 468–471 Newtonian fluid, 420–423 Couette viscometer, 116–117 Counter-current mass exchangers, 1054–1056 Creeping flow, 423–429 Cylindrical vessel wall diffusion, 826–829 Cystic fibrosis, 157–158 Cytoplasm, 139 D Dalton’s law, 794 Decaffeination process, 805–806 Density, 37 Density, local, 38 Density, total mass concentration, 791 Diffusion and chemical reaction, 1170–1174 CO2 diffusion, tissue, 1168–1170 convection Chilton–Colburn analogy, 1184–1185 constant solute flux-fluid flow, 1185–1189 mass transfer, flat surface, 1179–1183 momentum vs. convective heat and mass transport, 1183–1184 parallel plates, constant wall concentration, 1191–1195 tube vs. plates, 1196–1198 urea constant flux, 1189–1190 equation, 1158 fluxes and velocities, 810–811 multidimensional, 1158–1162 oxygen consumption, cornea, 1171–1174 steady-state, multidimensional study coefficient, 1161 2D problem, 1162, 1163 eigenvalue and eigenfunction, 1160 rectangular shaped tissue sample, 1158–1159 separation of variables approach, 1159 superposition, 1162–1164 unsteady-state, multidimensional study boundary conditions, 1167 coefficients, 1168 dimensionless dependent and independent variables, 1165 inverse Biot numbers, 1166 mass transfer coefficient, 1164–1165 slab, finite dimensions, 1164 velocity, 810–811 Diffusivity or diffusion coefficient, 818
1267 Dilatant fluid, 124 Dimensional analysis, biotransport problems cylindrical cell, 100–101 cylindrical tube, 100 elliptical blood vessel, 101 lung alveoli, 99 parallel plates, 99–100 Dimensionless parameters, 499 Dissolved oxygen, 802 Drag and lift, external flow definition, 230 friction factor, 231–232 Stokes’ law, 232 types, 230–231 Drag force, sphere, 232 Drug delivery, tissue ampicillin exchange, pharmacokinetic model, 957 bolus injection, 957–960 constant infusion, 960–961 loading dose, 961–963 oral administration, 963–966 Dufour effect, 44 E Effective diffusivity, 977, 1033 Effectiveness factor, 1039–1041 Effectiveness, of fin, 674 Effectiveness, of heat exchanger, 657 Effective viscosity, 114 Electrically charged species transport, 851–855 Electrical resistance analogy, 563 Electrical resistance analogy, radiation, 539–547 Electrical resistance heating, 635 Emissivity, 529 Entrance length, 503–504 Enzyme inhibition competitive, 868–871 non-competitive, 868–871 Enzyme kinetics biochemical catalysts, 866 effects, dimensionless parameters, 944–945 inhibitor concentrations, 869–870 Lineweaver–Burk equation, 868 Michaelis constant, 867 numerical solution vs. quasi-steady solution, 946 quasi steady-state, 944 rate of, substrate-product conversion, 869–871 species conservation equations, 943 Equation of state, 792
1268 Equations of motion, 393, 793 Equilibrium, 40 Equilibrium constant, 857 Ergun equation, 230 Erythrocytes hemoglobin solution, 143, 144 viscosity vs. protein concentration, 143 Excluded variables, 87 Extended surfaces, 669–674 External flow, forced convection, 510 External forced convection, mass transfer coefficients cylinder, 836 dissolution rate, soluble microsphere, 834–836 flat plate, 837–838 free/natural mass transfer, sphere, 836 natural convection, cylinder, 837 sphere, 836 Extracorporeal blood cooler and warmer conservation of energy, 664 cooling process, 662 efficiency, 666 heat transfer coefficient, 663 number of passes, 669 operating characteristics, 667 overall exchanger thermal performance, 663 residence time, 668 Reynolds number, 665 shell and tube heat exchanger arrangement, 661 Extraction, 928 Extravascular body fluids, 139–142 F Fahraeus–Lindquist effect, 149–150 Falling ball viscometer, 115–116 Falling film, 477 Fanning friction factor (f), 199 Fick principle, cardiac output, 946–947 Fick’s law, 818 Fick’s law of diffusion, 43 Fick’s second law of diffusion, 1097 Filtration coefficient, 277 Finger, heat transfer, 670 Finite difference method advantage, 730 backward, 747 forward vs. backward, 747–751 Biot number, 734 conservation of energy, 732, 734
Index cooling, hot plate, 737–740 Fourier number, 733 grid geometries, 734, 735 skin temperature, burn, 740–746 second order difference, 732 temperature gradient, 732 two dimensional physical system, 730–731 Fins, 669 Fire fighter burnover shelter area, shelter, 609 characteristic radial length, 611 conservation of energy equation, 607–609 convective heat transfer, 606, 611 effective thermal conductivity, 611 emissive power, 609 first iteration, 605 four shield design, 612 inhalation burn, 607 personal shelter, 604 radiation shield, 605 Rayleigh number, 611 First order irreversible homogeneous reactions, 935 Flow consistency index, 125 Flow in a tapered vessel, 439–446 Flow in networks, 235–242 Flow rate mass, 170 volumetric, 170 Flow through a leaky vessel, 351–356 Flow through pores, capillary walls large solute transport, 973–978 small solute transport, 972–973 Fluid inertia, 261–262 Fluid mass balance, 322–323 Flux, definition, 41 Forced convection analysis circular cylinder, 101–102 external flow geometries boundary layer, 510 impingent flow, planar perpendicular surface, 513 laminar flow, flat plate, 511 perpendicular cylinder, 511–512 sphere, 512–513 turbulent flow, flat plate, 511 external mass transfer coefficients cylinder, 836 dissolution rate, soluble microsphere, 834–836 flat plate, 837–838 free/natural mass transfer, sphere, 836 natural convection, cylinder, 837
Index sphere, 831–834 internal flow geometries correlation equations, 507 mean temperature, 506 temperature boundary layer regions, 505 turbulent, 509–510 velocity boundary layer regions, 504 internal mass transfer coefficients conduits, 838 mean/bulk fluid concentration, 838 packed column, 839–840 Forward finite difference method vs. backward, 747–751 Biot number, 736 conservation of energy, 734, 736 cooling, hot plate, 737–740 Fourier number, 733 grid geometries, 735 skin temperature, burn, 740–746 Fourier law, 550 Fourier number, 490, 684, 700, 733, 749 Fourier’s law of conduction, 43 Free convection processes closed cavities cold exposure weather advisory, 518–521 concentric spheres, 517 enclosed straight sided spaces, 518 external flow heat transfer, 521–522 horizontal concentric cylinders, 516–518 growth, vertical cooled plate, 514 horizontal cylinder, 514 horizontal plate, 515 sphere, 516 vertical plate, 514–515 Free diffusion coefficient, 828 Free/natural convection, 831 Friction factor interphase transport, 52 packed bed, 229 sphere, 232 Friction loss, conduits Bernoulli equation, 200–201 Buckingham Pi theorem, 199 fanning friction factor (f), 199–200 hydraulic diameter (Dh), 201 hydrodynamic entry length, 202 kinetic force, 200 Moody diagram, 203, 204 Reynolds number, 203–204 straight conduits, 199
1269 Friction loss factors flow through fittings, 213–215 sudden expansion, 216–219 Frontal area, 53 G Gas diffusion, heterogeneous chemical reaction, 823 Gas–solid equilibrium, 803–806 General species continuity equation, 1155–1158 Generate ideas model (GIM) analysis, 10–11 definition, 9 initial considerations, 10 methodology steps, 0 osmotic lysis, cell, 17 solution development, 11–12 system analysis defining, 13–15 theoretical approach, 68–69 what to do next step, 11–12 Glomerular filtration rate (GFR), 953 Goldman equation, 854, 890 Goldman–Hodgkin–Katz equation, 854, 894 Gradient, definition, 42 Graetz number, 1192 Grashof number for free convection, 502 for mass transfer, 836 H Hagen–Poiseuille equation, 235, 350 Heat capacity rate, 659 Heat capacity ratio, 659 Heat exchangers automotive radiator, 649 co-current and counter-current, 650–656 design, 649 NTU analysis method co-current concentric tube heat exchanger, 659, 660 counter-current concentric tube heat exchanger, 659, 660 effectiveness, definition, 657 effectiveness function, 658 extracorporeal blood cooler and warmer, 660–669 heat capacity rate ratio, 659 log mean temperature difference analysis, 656 overall heat transfer, 649 Heat flow, 51 Heat transfer fundamentals
1270 Heat transfer fundamentals (cont.) boundary conditions, 546–547 conduction constant temperature gradient, finite sized system, 488–489 definition, 487 Fourier’s law, 488 steady state heat flow, hollow cylinder, 489–490 thermal conductivity, 488 thermal resistance, 490–491 convection Biot number, 521–522 dimensionless parameters, 498–501 forced analysis, 501–512 free processes, 512–520 Newton’s law of cooling, 493–495 principle characteristics, 492–493 temperature and velocity boundary layers, 495–498 thermal resistance, 520–521 thermal radiation electrical resistance model, 537–546 electromagnetic wave propagation, 522 geometric sizes, shapes, separation and orientation, role of, 530–536 surface properties, role of, 527–530 surface temperature, role of, 522–527 Heisler charts cylinder, 702, 704 internal spatial distribution, 702 long aluminum rod cooling, 703–708 short aluminum rod cooling, 708–709 slab, 702–703 sphere, 702, 705 temperature determination, 85–90 transient behavior, 702 Hematocrit value, 142, 146 Hemoglobin and blood oxygen transport binding capacity, 863 bound oxygen, 864 dissociation curve, 858 effect of pH, PCO2, DPG and temperature, 862–863 Hill equation, 861 Hill model vs.Adair models, 862 principle function, 858 saturation vs. partial pressure of oxygen, 862 Henderson-Hasselbalch equation, 866 Henry’s law, 796 Herschel–Bulkley fluid model, 132–133, 463 Heterogeneous chemical reactions, 951–952
Index Hill equation, 861 Hollow fiber devices axial diffusion effect, solute exchange rate, 1056–1059 blood flow, 238–239 cocurrent mass exchanger, 1050–1054 counter-current mass exchanger, 1054–1056 well-mixed external compartment, solute exchange, 1045–1050 Hollow fiber permeability, 845–849 Homogeneous chemical reaction diffusion, 1D biomass transport first-order reaction, oxygen delivery cylindrical cell, 1027–1030 rectangular cell, 1025–1027 spherical cell, 1030–1031 immobilized enzymes effective diffusivity, 1033 effectiveness factor (Z), 1039–1041 Michaelis–Menten kinetics, 1033–1034 process, 1032–1033 species concentration, 1036 steady-state transport, of species, 1033–1034 Thiele modulus, 1036 toxic material conversion analysis, 1033 Michaelis–Menten kinetics, 1031–1032 zeroth order reaction, oxygen consumption cylindrical shaped cell, 1020–1023 rectangular shaped cell, 1014–1020 spherical cell, 1020–1025 Homogeneous chemical reactions convection, 938–940 enzyme kinetics, 943–947 first order irreversible, 935 oxygen-hemoglobin cardiac output, fick principle, 946–947 pulmonary shunt fraction, 944–945 red cells oxygenation and deoxygenation, 940–944 second order reversible, 935–936 zeroth order, 934 Hot wire anemometer, 569 How people learn (HPL) methodology adaptive expertise definition, 4 knowledge and innovation, 4 learning, 5 challenge-based instruction lecture format, 6–8 structured learning environment, 7 effective learning, principles of, 5–6
Index innovation development generate ideas model (GIM), 9–25 usage, 26–27 routine expertise, 5 STAR.Legacy (SL) Cycle, 8–9 understanding concept biotransport, 28 curriculum and course design, 28 enduring, 27 Wiggins and McTighe’s approach, 27 Human skin structure, 752 Human thermoregulation blood flow distribution, 615 conservation of energy, 616–617 direct thermal conduction, 615 interactive garments, 617 operational mechanisms, 615 transient blood perfusion, 615 Hydraulic conductance/permeability, 275 Hydraulic diameter (Dh), 201 Hydrodynamic boundary layers, 449–455 Hydrodynamic entry length, 202 Hydrostatics, 404–405 Hypertonic solution, 279 Hypotonic solution, 279 I Immiscible fluids, 477 Impingement jet heat transfer. See Spray cooling Indicator dilution capillary permeability, 1120–1124 capillary volume, 1117–1120 tissue volume, 1124–1125 Indicator dilution methods permeability-surface area measurements, 927–929 Stewart–Hamilton relation blood flow through organ, 924 recirculation corrections, 925–926 tracer measurement, left ventricular volumes, 929–933 volume measurements, 926–927 Innovation development, HPL methodology generate ideas model (GIM) analysis, 10–11 definition, 9 initial considerations, 10 methodology steps, 10 osmotic lysis, cell, 17 solution development, 11–12 system analysis defining, 12–16
1271 what to do next step, 11–12 usage, 26–27 Insulation, radiation, 585–586 Internal flow convection constant heat flux boundary condition, 646–648 constant temperature boundary condition average overall heat transfer coefficient, 643 cooling solution, lab, 644–646 log mean temperature difference, 643 correlation equations fully developed laminar flow, 507–508 laminar flow entrance length, 508–509 laminar flow patterns, 507 turbulent, 509–510 process, 644–646 Internal flow, forced convection, 503 Internal forced convection, mass transfer coefficients conduits, 839 mean/bulk fluid concentration, 838 packed column, 839–840 Internal thermal gradients, transient diffusion processes accumulation rate, 681 graphical methods, 698–709 semi-infinite geometry, 692–698 symmetric geometries, 682–692 Interphase transport cell membrane/capillary wall, 55 external and internal flow, 53 momentum transport, 52 partition coefficient, 54 proportionality factor, 53 relationships with, 56 thermal boundary layer, 53 Interstitial fluid (ISF), 139 Isotonic solution, 279 J Jet impingement convection, 513 j-factor heat transfer, 1184 mass transfer, 1184 K Kinematic viscosity, 46, 122 Krogh cylinder definition, 1072–1073 oxygen exchange, 1073–1079
1272 L Laminar flow and flow resistance, noncircular conduits dimensionless coefficient, 224 friction factor, 223 nonhorizontal tubes, 224 Reynolds number, 225–226 Laser fluence rate, 767 Laser irradiation, tissue distributed energy absorption absorption coefficient, 765 conservation of energy terms, 765, 766 surface cooling diffusion, 772 freezing, 773 geometry, 769, 771 Reynolds number, 771 spray cooling, 771 Stefan number, 771 transient heat transfer process, 771–772 Weber number, 770 time constant analysis diffusion equation, 766 Fourier number, 767 Latent heat, 588, 771 Leukocytes, 144–145 Ligand–receptor binding kinetics, 872–874 Lineweaver–Burk equation, 868 Liquid–gas equilibrium Bunsen solubility coefficient, 797 diving and bends, 800–801 Henry’s law, 796 plasma-CO2 solubility and partition coefficient, 798–800 trout survival, warm waters, 801–803 vapor pressure, 796 Liquid–liquid equilibrium decaffeination process, 805–806 distribution coefficient, 803 plasma-artificial membrane, 804–805 Liquid–solid equilibrium, 803–805 Local equilibrium, 61 Log mean temperature difference, 643 Lumped analysis, 849–851 Lumped parameter analysis Biot number, 592 classic exponential decay process, 590 convective heat transfer coeffcient, 592–594 quenching, 589 time constant, 591 Lung capillary exchange carbon dioxide, 1069–1071
Index oxygen, 1063–1066 small inert solutes, 1059–1060 Lung volumes tidal volume, 63–64 expiratory reserve capacity, 63–64 functional residual capacity, 63–64 total lung capacity, 63–64 inspiratory capacity, 63–64 residual volume, 63–64 vital capacity, 63–64 M Macroscopic approach, biofluid transport Bernoulli equation, 194–195 blood flow hollow fiber device, 238–239 microvessels, 235 organs, 270–272 small hollow fiber, 235–237 catheter flushing, 172–178 cell membrane, 280–282 cell velocity, in centrifuge, 233–235 collapsible tube flow, 252–256 compliant artery, periodic flow, 266–270 conduit size estimation flow rate, 211–213 velocity, 209–211 conservation of energy accumulation, 189 definition, 188–189 friction, 192 inlet and outlet conduits, 191 measurement, 189 net energy production, 190 pressure, 192–193 steady-state energy balance, 191–192 work rate, 190 conservation of mass definition, 169 density, 171 mass flux, 170 mechanisms, 169 steady-state flow, 171–172 volumetric flow, 170–171 conservation of momentum external forces, 183–184 force estimation, 180 Kki, value of, 181–182 rate of change, 181 elliptical cross section, flow through vein, 226–227 external flow, drag and lift definition, 231
Index friction factor, 231–232 Stokes’ law, 232 types, 230–231 flexible conduits, compliance and resistance transmural pressure, 243–244 volume and diameter, 243–244 fluid inertia, 261–262 forced expiration, respiratory system, 256–258 friction, closed system, 195–196 friction loss, conduits Bernoulli equation, 200–201 Buckingham Pi theorem, 199 fanning friction factor (f), 199–200 hydraulic diameter (Dh), 201 hydrodynamic entry length, 202–203 kinetic force, 200 Moody diagram, 203, 204 Reynolds number, 203–204 straight conduits, 199 friction loss factor flow through fittings, 213–215 sudden expansion, 216–219 glomerular filtration, 284–285 height change, tank, 179–180 hollow fiber device, blood flow, 238–239 laminar flow and flow resistance, noncircular conduits dimensionless coefficient, 224 friction factor, 223 nonhorizontal tubes, 224 Reynolds number, 225 left ventricle work, 196–197 left ventricular force, 184–188 microtubules, resistance, 239–242 microvessels, blood flow, 235 mitral valve, pressure difference, 219–221 oncotic pressure, protein mixtures, 285–289 osmotic pressure and flow albumin, 279 aquaporin, 277 cell lysis, 279 definition, 276 Gibbs–Donnan effect, 279 oncotic pressure difference, 279 osmotic reflection coefficient, 276 Starling equation, 277 van’t Hoff’s law, 278 volumetric flow, 275 water chemical potential, 275–276 packed bed flow Blake–Kozeny equation, 229
1273 Burke–Plummer equation, 230 Ergun equation, 230 friction factor, 228, 229 superficial velocity, 229 void fraction, 228 void volume, 228 passive cell water loss, 282–284 pressure contribution, enthalpy, 193–194 pulmonary resistance, 273–274 pump power rating, 197–198 respiratory flow, exercise, 258–261 respiratory flow model, 244–249 respiratory system, pressure drop, 204–206 rigid artery, periodic flow, 263–266 rigid conduits, steady flow, 237–238 small hollow fiber, blood flow, 235–237 square duct, pressure drop, 206–207 startup flow, rigid tube, 262–263 steady-state mixing, 178–179 syringe-needle system, 221–223 terminal velocity, of cell, 233 velocity and flow, pressure drop, 207–209 Windkessel model, arterial pressure, 249–252 Macroscopic approach, bioheat transport blood warmer, 622–623 conservation of energy, 620 energy relation, 559–561 heart–lung machine perfusion, 625–626 heat exchange, man and environment, 621–622 heat exchanger, blood coagulation, 782 insulating properties, clothing, 621 multiple system interactions conduction and convection, 601–602 convection, 598–601 fire fighter burnover shelter (see Fire fighter burnover shelter) human thermoregulation (see Human thermoregulation) radiation, flame burn injury, 602–604 postmortem interval, 624–625 scalding water, bath tub, 620–621 steady conduction, multilayered skin, 623 steady state energy balance applications convective heat transport, 574 energy exchange, blood vessel, 574–575 heat flux, skin, 563–565 heat loss, heart lung machine, 565–568 heat transfer coefficients, 568–569 hot wire anemometer, 569–570 phase change, 587–588
1274 stream mixing, 575 thermal radiation (see Thermal radiation) thermal resistances, 561–563 WCF, 570–574 steady-state temperature distribution, 719 thermal mixing, blood, 623 transient processes, 618–619 unsteady-state heat transfer applications lumped parameter analysis (see Lumped parameter analysis) thermal compartmental analysis, 595–598 Macroscopic approach, biomass transport chemical reactions and bioreactors heterogeneous, 951–952 homogeneous, 934–951 flow through pores, capillary walls large solute transport, 973–980 small solute transport, 972–973 indicator dilution methods permeability-surface area measurements, 927–929 Stewart–Hamilton relation, 924–926 tracer measurement, left ventricular volumes, 929–933 volume measurements, 926–927 mass transfer coefficient applications, 968–971 multiple compartmental analysis atrial-septal defect, 922 macroscopic species continuity equations, 922 ODE45, 923 pharmacokinetics complex models, 967–968 drug delivery, tissue, 957–966 effective dosage regimens, 952, 953 renal excretion, 953–957 single compartmental analysis, 901–910 species conservation, 897–900 two compartmental analysis blood-tissue exchange, 917–921 parallel, 913–915 series, 910–913 two well mixed membrane exchange, 915–917 Macroscopic transport coefficients charge flow, electrical wire, 49 flow of thermal energy/heat flow, 51 relationships, 52 volumetric flow rate, 50 Marginal zone theory
Index blood and plasma layers, 332, 333 no-slip boundary condition, 334 velocity profile, 335 viscosity, 333 Mass average velocity, 809 Mass concentration, average, 789 Mass concentration, flow averaged, 899 Mass concentration, local, 791 Mass exchange, constant wall concentration, 1042–1045 Mass flow, 50 Mass flux convective, 811 diffusive, 811 relative to mass average velocity, 810 relative to molar average velocity, 811 species transport, single phase, 809 total, 812 Mass fraction, 791 Mass transfer coefficients, 829–830 Mass transfer coefficients, gas phase, 830 Mass transfer coefficients, liquid phase, 830 Mass transfer fundamentals average, local mass, molar concentrations alveolar gas composition, 793–795 equation of state, 792 local average molecular weight, 791 molecular species, closed volume, 789–790 boundary conditions concentration and flux, interface, 883 mass/molar concentration, 881–882 mass/molar flux, 882 no-flux, 883 surface heterogeneous reaction, 883 cellular transport mechanisms acetylcholine, 877 active transport, 880–881 carrier mediated transport, 877–880 passive mechanism, 876 pinocytosis, 877 chemical reactions blood CO2 transport and pH, 864–966 enzyme kinetics, 866–871 equilibrium constant, 857 hemoglobin and blood oxygen transport, 858–864 homogeneous, 855 ligand–receptor binding kinetics, 872–876 order of the reaction, 857 reverse reaction rate, 856 coefficients
Index external forced convection, 831–838 independent dimensionless groups, 831 internal forced convection, 838–840 electrically charged species transport, 851–855 individual-overall relation, 840–842 non-porous material permeability internal vs. external resistances, 849–851 membrane, 842–845 vessel/hollow fiber, 845–849 phase equilibrium liquid–gas equilibrium, 795–803 liquid–liquid, gas–solid, liquid–solid, solid–solid equilibrium, 803–806 species transport between phases, 806–808 single phase, 808–840 Mass transfer, Nusselt number, 832 Materials interface, 549 Maximum safe concentration (MSC), 952 Mean mass transfer coefficient, 1043 Mean transit time, 926 Membrane permeability, 842–845 Membrane steady-state diffusion, 1D biomass transport boundary conditions, 1008–1009 heterogeneous barrier diffusion, 1009–1014 molar flow, 1007–1008 shell species conservation equation, 1006–1007 waste product diffusion analysis, 1006 Metacognition, 11 Michaelis–Menten equation, 868 Michaelis–Menten kinetics, 867, 1031–1032 Michaelis–Menten kinetics, stationary phase, 1087–1088 Microscopic approach, biofluid transport Bingham fluid, Couette viscometer, 483 blood flow alveolar lung wall, 480 convergent channel, 479–480 lung microcirculation, 481 conservation of linear momentum applied forces, 392 bulk fluid motion, x-momentum, 391, 392 equations of motion, 393 momentum equations, 393 viscous molecular transport, xmomentum, 392 conservation of mass bulk fluid motion, 389, 390
1275 continuity equation, 391 three dimensional fluid shell, 389, 390 constitutive relationship Newtonian fluid (see Newtonian fluid) non-Newtonian fluid (see NonNewtonian fluid) equations of motion, Newtonian fluids, 400–401 modified pressure, 400 moment equations, 394–395 momentum equations, non-Newtonian fluids, 455–457 Navier–Stokes equations Couette flow, Newtonian fluid, 420–423 creeping flow, 423–429 cylindrical and spherical coordinate systems, 415–420 elliptical cross section, Newtonian fluid flow, 409–415 equations of motion, 406 flow, tapered blood vessel, 439–446 hydrodynamic boundary layer, 450–455 hydrostatics, 404 parallel plates, Newtonian fluid flow, 406–409 periodic flow, tube, 429–436 pressure transducer, 404–405 scaling, 436–438 Womersley number, 446–450 non-Newtonian problems Bingham fluid, 464–468 cone and plate viscometer, 471–474 Couette flow, cytoplasm, 468–471 procedure, 464 parallel plate bioreactor, 478–479 pressure drop, single red cell, 478 stream function and streamlines, 402–403 substantial derivative, 398–400 Microscopic approach, bioheat transport conservation of energy combined conduction and convection, 723–726 cooling, cylinder, 727–728 steady-state conduction, tissue, 727 steady-state flow, tube, 728–729 heat transfer, hollow fiber, 781 hyperthermia therapy, tumors, 781–782 laser irradiation, tissue distributed energy absorption, 764–766 latent storage, 764 sensible storage, 764 surface cooling, 769–776 time constant analysis, 766–769
1276 Microscopic approach, bioheat transport (cont.) metabolic heat generation, 780 neonatal thermoregulatory function, 783 numerical methods, transient conduction backward finite difference method, 747 finite element method, 730 forward finite difference method (see Forward finite difference method) second order difference, 732 temperature gradient, 732 two dimensional physical system, 730–731 temperature gradient, 780–781 thermal injury mechanisms and analysis burn injury, 751–760 therapeutic applications, hyperthermia, 761–764 vulcanization process, 779 Microscopic approach, biomass transport blood oxygenation, hollow fiber, 1198–1206 convection and diffusion, 1175–1198 diffusion chemical reaction, 1170–1171 CO2 diffusion, tissue, 1168–1170 convection, 1175–1178 oxygen consumption, cornea, 1171–1174 steady-state, multidimensional study, 1158–1162 superposition, 1162–1164 unsteady-state, multidimensional study, 1164–1168 unsteady-state species conservation accumulation rate, 1149 mass balance, shell, 1150 microscopic subsytem, 1149–1150 molar flux, 1151 shell balance vs. species continuity equations, 1155–1158 species continuity equation, 1153–1155 Minimum effective concentration (MEC), 952 Mixed fluid temperature, 640 Mobility, 828 Modified pressure, 195, 361 Molar average velocity, 810 Molar concentration, average, 789 Molar concentration, flow averaged, 900 Molar concentration, local, 790 Molar concentration, total, 790 Molar flow, 51 Molar flux
Index convective, 811 diffusive, 811 relative to mass average velocity, 811 relative to molar average velocity, 811 species transport, single phase, 809 total, 812 Molecular diffusion and Fick’s law of diffusion, 817–829 Molecular transport mechanism constitutive equations Dufour effect, 44 Newtonian fluids, 44 relationships, 44–45 Soret effect, 44 thermal diffusion, 43 1D analogies, 46–48 1D flux, negative gradient, 42–43 diffusion, 41 energy and momentum, 42 flux and gradient, 41 flux, n-direction, 41–42 properties inverse solution method, 45 specific heat, 46 thermal diffusivity, 46 viscosity, Newtonian fluids, 45 Molecular weight molar averaged, 791 number averaged, 791 Mole fraction, 791 Momentum equations, 393 Mucus, 140–141 Multidimensional diffusion steady-state coefficient, 1161 2D problem, 1162, 1163 eigenvalue and eigenfunction, 1160 rectangular shaped tissue sample, 1158–1159 separation of variables approach, 1159 unsteady-state boundary conditions, 1167 coefficients, 1168 dimensionless dependent and independent variables, 1165 inverse Biot numbers, 1166 mass transfer coefficient, 1164 slab, finite dimensions, 1164, 1165 Multiple compartmental analysis atrial-septal defect, 922 macroscopic species continuity equations, 922 ODE45, 923
Index Multiple system interactions conduction and convection, 601–602 convection, 598–601 fire fighter burnover shelter area, shelter, 610 characteristic radial length, 611 conservation of energy equation, 609–611 convective heat transfer, 606–607, 611 effective thermal conductivity, 611 emissive power, 609 first iteration, 605 four shield design, 612–613 inhalation burn, 607 personal shelter, 604 radiation shield, 605 Rayleigh number, 611 human thermoregulation blood flow distribution, 615 conservation of energy, 616–618 direct thermal conduction, 615 interactive garments, 617 operational mechanisms, 615 transient blood perfusion, 615 radiation, flame burn injury, 602–604 N Natural convection, circular cylinder, 102 Navier–Stokes equations Couette flow, Newtonian fluid, 420–423 creeping flow continuity equation, 424 net pressure force, 427 no-slip boundary conditions, 425 Stokes law, 428 stream function, 425 velocity components, 426 cylindrical and spherical coordinate systems Cartesian coordinates, 417 continuity equation, 416–417 del operator, substantial derivative and Laplacian operator, 415, 416 Newton’s law of viscosity, 418–419 stream functions, 419–420 elliptical cross section, 409–415 equations of motion, 406 flow, tapered blood vessel axial velocity profile, 443–444 dimensionless radial velocity, 440–441 flow rate, 442–443 self-similar profiles, 446 tapered tube predictions, 444, 445
1277 hydrodynamic boundary layer Blasius solution, 453, 454 boundary conditions, 452 continuity equation, 451 friction factor, 455 hydrostatics, 404 incompressible Newtonian fluid, 398 Newtonian fluid, elliptical cross section continuity equation, 410 Navier–Stokes equation, 410–411 no-slip boundary condition, 412 resistance, 414–415 velocity profile, 413 Newtonian fluid flow, parallel plates axial velocity profiles vs. x/h, 409 boundary conditions, 408 centerline pressure, 409 continuity equation, 407 parallel plates, 406–409 periodic flow, tube boundary conditions, 431 ODE, 433 PDE, 431–433 pressure gradient, 429, 430 pressure gradient vs. fraction of cardiac cycle, 435 shear stress, 436 velocity profiles, 434 pressure transducer, 404–405 scaling, 436–438 Womersley number velocity profiles, 449, 450 velocity, tube center, 446, 447 Nernst–Einstein equation, 828 Nernst equation, 853 Nernst potential, 852–855 Newtonian fluid flow annulus no-slip boundary condition, 357 relative velocity vs. k, 358 shear stress, 359 circular cylinder flow resistance, 350–351 fluid shell, 347 shear stress, 349 z-momentum equation, 347–348 inclined channel parabolic velocity profile, 339, 340 pressure distribution, 338 x-momentum equation, 337–338 parallel plates axial velocity profiles vs. x/h, 409 boundary conditions, 408
1278 centerline pressure, 409 continuity equation, 407 Newtonian fluid model kinematic viscosity vs. mass fraction, 120, 122 vs. temperature, 120, 122 Newton’s law of viscosity, 120 viscosity measurement, 121–124 viscosity vs. temperature, 120, 121 Newtonian fluids rate of deformation, 396 shear strain, 395 viscous stress, 396–398 Newton’s law of cooling, 53, 493, 495 Newton’s law of viscosity, 44, 47 Non-Newtonian fluid apparent viscosity, 457 Bingham fluid, 461–462 Casson fluid, 462–463 deformation components, 457, 458 Herschel–Bulkley fluid, 463 model Bingham fluid model, 129–130 Casson fluid model, 130–132 Herschel–Bulkley fluid model, 132–133 power law model, 125–128 power law fluid, 459–461 strain rate, 458, 459 stress-strain rate relationships, 458, 460 Non-porous material permeability internal vs. external resistances, 849–851 membrane, 842–845 vessel/hollow fiber, 845–849 Non-reacting solutes, capillary exchange lung capillaries, small solute and inert gas exchange, 1059–1060 solute removal, tissue capillaries, 1060–1062 NTU analysis method co-current concentric tube heat exchanger, 660, 661 counter-current concentric tube heat exchanger, 660, 662 effectiveness definition, 657 effectiveness function, 658 extracorporeal blood cooler and warmer conservation of energy, 664 cooling process, 662 efficiency, 666 heat transfer coefficient, 663 number of passes, 669 operating characteristics, 667
Index overall exchanger thermal performance, 663 residence time, 668 Reynolds number, 665 shell and tube heat exchanger arrangement, 661 heat capacity rate ratio, 659 log mean temperature difference analysis, 656 Number of transfer units (NTU), 659 Nusselt number, 500, 502, 592 O O2 and CO2, transcapillary exchange lung capillaries, 1063–1066, 1069–1071 tissue capillaries, 1066–1069, 1071–1072 Ohm’s law, 44 Ohm’s law, thermal analogy, 492 Oncotic pressure, protein mixtures, 285–289 One-dimensional biofluid transport, shell balance approach annulus, Newtonian fluid flow no-slip boundary condition, 357 relative velocity vs. k, 358 shear stress, 359 application, fluid constitutive relation, 328–329 appropriate shell selection, 321–322 blood flow, 320 boundary conditions, air-mucus interface, 381–382 Casson fluid flow, circular cylinder Casson flow/Newtonian flow, 365 shear stress distribution, 363 velocity profile, 364, 365 yield radius, 363 circular cylinder, Newtonian fluid flow flow resistance, 350–351 fluid shell, 347 shear stress, 349 z-momentum equation, 347–348 falling film analysis, 343–346 film thickness, blood, 330–332 flow, inclined tube geometry, 360 modified pressure, 361 fluid flow, cylindrical vessel dimensionless pressure, 353–354 leakage flow, 355–356 steady-state mass balance, 352 fluid mass balance, 322–323 fluid momentum balance
Index convection and viscous molecular motion, 326, 327 potential forces, 323, 324 shear stress distribution, 328 y-momentum equation, 324–325 inclined channel, Newtonian fluid flow parabolic velocity profile, 339, 340 pressure distribution, 338 x-momentum equation, 337–338 lung microcirculation, 383 marginal zone theory blood and plasma layers, 332, 333 no-slip boundary condition, 334 velocity profile, 335 viscosity, 333 mucus plug, 382 Newtonian film oxygenator, 384 non-Newtonian film oxygenator, 384 osmotic pressure and flow, cylindrical pore boundary conditions, 367 capillary pore, 366, 367 hydraulic conductivity, 368 multiple solutes, 370–371 steady flow, equivalent pore., 371–373 velocity profile, restrictive pore, 369–370 parallel flow, 319 power law fluid flow, inclined plane, 340–343 respiratory mucus transport, 381 shear stress and velocity, 329–330 Starling’s law, 387 thin film blood oxygenator, 382 unsteady-state 1-D shell balances boundary layer thickness vs. time, 377 kinematic viscosity, 374 Laplace transform, 375 penetration thickness and velocity profile, 374 velocity profile vs. time, 376 One-dimensional bioheat transport, shell balance approach definition, 629 1D heat conduction and convection extended surfaces, 669–678 heat exchange, tissue, 678–680 heat exchangers automotive radiator, 648 co-current and counter-current, 650–656 design, 649 NTU analysis method, 656–669 overall heat transfer, 649
1279 internal flow convection constant heat flux boundary condition, 646–648 constant temperature boundary condition, 642–646 process, 640–641 steady-state conduction-heat generation cylinder, 633–639 slab, 630–633 sphere, 639–640 transient diffusion processes, internal thermal gradients accumulation rate, 681 graphical methods, 698–709 semi-infinite geometry, 692–698 symmetric geometries, 682–692 One-dimensional biomass transport, shell balance approach chemical reaction, convection, and diffusion bioreactors, 1079–1095 O2 and CO2, transcapillary exchange, 1062–1072 tissue solute exchange, Krogh cylinder, 1072–1079 convection and diffusion constant wall concentration, 1042–1044 drug delivery, rectangular duct, 1044–1045 hollow fiber devices, 1045–1059 mass exchangers, 1041 non-reacting solutes, capillary exchange, 1059–1062 single pathway exchange, 1041–1042 homogeneous chemical reaction diffusion first-order reaction, 1025–1031 immobilized enzymes, 1032–1041 Michaelis–Menten kinetics, 1031–1032 zeroth order reaction, 1014–1025 membrane steady-state diffusion boundary conditions, 1008–1009 heterogeneous barrier diffusion, 1009–1014 molar flow, 1007–1008 shell species conservation equation, 1006–1007 waste product diffusion analysis, 1006 microscopic species conservation, 1005–1006 one-dimensional unsteady-state shell balance applications convection and diffusion, 1116–1128 tissue, diffusion to, 1095–1116
1280 One-dimensional heat conduction and convection extended surfaces effectiveness, 674 factors, 669 finned surface geometries, 670–671 geometric and thermal symmetry, 673 pin fin, short length, 670, 672 thermal behavior, finger, 674–678 heat exchange, tissue bioheat transfer process, 678 blood/tissue thermal interaction, 679 effects of metabolism, 679 physiological systems, 680 One-dimensional unsteady-state shell balance applications convection and diffusion chromatography, 1124–1127 column application, chromatography, 1128 indicator dilution applications, 1117–1122 lung urea permeability surface area, 1122–1124 mass transfer analysis, 1116 macroscopic approach, 1095–1096 tissue, diffusion to carbon dioxide transport, plasma, 1099–1100 finite external resistance to mass transfer, 1102–1104 long cylinder, unsteady-state diffusion, 1111–1114 semi-infinite slab, 1096–1098 sphere, unsteady-state diffusion, 1114–1116 thin slab, CO2 diffusion, 1108–1111 two semi-infinite slabs, 1100–1102 unsteady-state diffusion, 1104–1108 Osmotic lysis, cell conservation of momentum equation, 20 inverse problem, 24 mass fluxes, 20 mechanical properties, membrane, 25 permeability, 17 permeability and water concentration, 22 potential energy storage, 21 semipermeable barrier, 17 strain energy, 23 system and boundary, 18–19 Osmotic pressure and flow albumin, 281 aquaporin, 278
Index cell lysis, 280 cell volume vs. time, 276 definition, 277 Gibbs–Donnan effect, 280 oncotic pressure difference, 280–281 osmotic reflection coefficient, 277–278 Starling equation, 278–279 van’t Hoff’s law, 279–280 water chemical potential, 277 O2 transport, driving force, 807–808 Overall heat transfer coefficient, 650 Overall mass transfer coefficient, 807 Oxygen consumption, 1014–1032 Oxygen-hemoglobin reactions, 940–944 Oxygen transfer in blood, 1198–1206 Oxyhemoglobin saturation, 859 P Packed bead bed flow Blake–Kozeny equation, 229 Burke–Plummer equation, 230 Ergun equation, 230 friction factor, 228, 229 superficial velocity, 229 void fraction, 228 void volume, 228 Packed bed flow, 228–230 mass transfer, 839–840 Parallel plate bioreactor, 478 Partial pressure, 793 Partition coefficient, 54, 798 Partition coefficient, steric, 977 Peclet number, 75, 832 Peeling off exponentials, 600 Pennes equation, 679 Periodic flow compliant artery, 266–270 rigid artery, 263–266 rigid tube, 429–436 Permeability, 56, 803, 807, 842 hollow fiber, 846–849 porous membrane, 92–94 Pharmacokinetics complex models, 967–968 drug delivery, tissue ampicillin exchange, pharmacokinetic model, 957 bolus injection, 957–960 constant infusion, 960–961 loading dose, 961–963 oral administration, 963–966 effective dosage regimens, 952–953
Index renal excretion Ficoll molecules, 956 glomerular filtration rate (GFR), 953 kidney excretion coefficient, 955 peeling off exponentials, 957 sieving coefficient vs. Stokes–Einstein radius, 954 Phase change, 587–588 Phase equilibrium, 795 Pin fin, 670 Pinocytosis, 877 Planck distribution, 525 Plasma-artificial membrane equilibrium, 804–8050 Plasma-CO2 solubility and partition coefficient, 798–800 Pneumotachograph, 64 Polycythemia, 155 Power law fluid, 459–461 Power law model behavior index, 125 coordinate system, 127–128 velocity distribution, 125–127 Prandtl number, 74, 502 Pressure drop, red blood cell, 478 Pressure transducer, 309 Pressure transducer, calibration, 404–405 Properties, extensive or extrinsic, 34, 56, 192 Properties, intensive or intrinsic, 34, 278 Pseudoplastic fluid, 124 Pulmonary resistance, 273–274 Pulmonary shunt fraction, 944–945 Q Quasi steady-state, 948 R Radiation, thermal, 524 Radiosity, 540 Raoult’s law, 796 Red cells oxygenation and deoxygenation, 940–944 Reflectivity, 530 Relative viscosity, 146 Respiratory flow model, 244–249 Respiratory mucus transport, 381 Respiratory quotient, 1071 Restricted diffusion, 1033 Reynolds number, 74, 502 external flow, 512 internal flow, 504 Rheology, biological fluids apparent viscosities, 162
1281 biorheology and disease cancer, 156 cystic fibrosis, 157–158 polycythemia, 155 sickle cell anemia, 156–157 blood plasma, 142, 143 boundary conditions, 110–111 Casson fluid parameters, 162–163 constitutive model equations characterization, 134–136 rheological coeffcients, 136–138 cytoplasm viscosity, 161 erythrocytes hemoglobin solution, 143, 144 viscosity vs. protein concentration, 143 extravascular body fluids, 139–141 laminar flow, 110 leukocytes, 144–145 Newtonian fluid model kinematic viscosity vs. mass fraction, 120, 122 kinematic viscosity vs. temperature, 120, 122 Newton’s law of viscosity, 120 viscosity measurement, 121–124 viscosity vs. temperature, 120, 121 non-Newtonian fluid model Bingham fluid model, 129–130 Casson fluid model, 130–132 Herschel–Bulkley fluid model, 132–133 power law model, 125–128 solids and fluids deformation, 107, 108 deformation vs. time, 108, 109 instantaneous shear rate, 109 shear modulus, 108 viscoelastic materials, 108 turbulent flow, 110 viscometers Reynolds number, 119 types, 115–117 wall shear stress, 118 viscous momentum flux and shear stress constitutive relationship, 115 effective viscosity, 113–114 sign conventions, 114–115 viscous properties, fluids block movement, 112 velocity profiles, 112, 113 viscous force, 112 whole blood Casson plot, 147, 148
1282 discharge hematocrit vs. tube diameter, 153 Fahraeus–Lindquist effect, 149 fibrinogen concentration vs. yield stress, 149 hematocrit value, 146 microvascular hematocrit, 154 relative blood viscosity vs. tube diameter, 149–151 relative viscosity vs. shear rate, 147, 148 shear rate dependence, 146–147 in vivo vs. in vitro resistance, 154, 155 yield stress, 161 S Safe touch temperature, 695 Saliva, 140 Scatchard plot, 874 Schmidt number, 832 Schmidt plot conservation of energy, 699 discrete approximation method, 701 finite difference analysis, 702 homogeneous semi-infinite material, 699–700 Second order reversible homogeneous reactions, 935–937 Sensible heat, 588 Separation of variables, 1158–1162 Shape factor, 532, 535–539 Shape factor laws, 533 Shear modulus, 108 Shear rate, 109 Shear strain, 107 Shell balance approach, one-dimensional biofluid transport annulus, Newtonian fluid flow no-slip boundary condition, 357 relative velocity vs. k, 358 shear stress, 359 application, fluid constitutive relation, 328–329 appropriate shell selection, 321–322 blood flow, 320 boundary conditions, air-mucus interface, 381–382 Casson fluid flow, circular cylinder Casson flow/Newtonian flow, 365 shear stress distribution, 363 velocity profile, 364, 365 yield radius, 363 circular cylinder, Newtonian fluid flow flow resistance, 351
Index fluid shell, 347 shear stress, 349 z-momentum equation, 347–348 falling film analysis, 343–346 film thickness, blood, 330–332 flow, inclined tube geometry, 360 modified pressure, 361 fluid flow, cylindrical vessel dimensionless pressure, 354–355 leakage flow, 355–356 steady-state mass balance, 352 fluid mass balance, 322–323 fluid momentum balance convection and viscous molecular motion, 326, 327 potential forces, 323, 324 shear stress distribution, 328 y-momentum equation, 324–325 inclined channel, Newtonian fluid flow parabolic velocity profile, 339, 340 pressure distribution, 338 x-momentum equation, 337 lung microcirculation, 383 marginal zone theory blood and plasma layers, 332, 333 homogeneous blood layer, 335 no-slip boundary condition, 334 viscosity, 333 mucus plug, 382 Newtonian film oxygenator, 384 Non-Newtonian film oxygenator, 384 osmotic pressure and flow, cylindrical pore boundary conditions, 367 capillary pore, 366, 367 hydraulic conductivity, 368 multiple solutes, 370–371 steady flow, equivalent pore., 371–373 velocity profile, restrictive pore, 369–370 parallel flow, 319 power law fluid flow, inclined plane, 340–343 respiratory mucus transport, 381 shear stress and velocity, 329–330 Starling’s law, 387 thin film blood oxygenator, 382 unsteady-state 1-D shell balances boundary layer thickness vs. time, 376–377 kinematic viscosity, 374 Laplace transform, 375
Index penetration thickness and velocity profile, 374 velocity profile vs. time, 376 Shell balance approach, one-dimensional bioheat transport definition, 629 1D heat conduction and convection extended surfaces, 669–678 heat exchange, tissue, 678–680 heat exchangers automotive radiator, 648 co-current and counter-current, 650–656 design, 649 NTU analysis method, 656–669 overall heat transfer, 649 internal flow convection constant heat flux boundary condition, 646–648 constant temperature boundary condition, 642–646 process, 640–641 steady-state conduction-heat generation cylinder, 633–639 slab, 630–633 sphere, 639–640 transient diffusion processes, internal thermal gradients accumulation rate, 681 graphical methods, 698–709 semi-infinite geometry, 692–698 symmetric geometries, 682–692 Shell balance approach, one-dimensional biomass transport chemical reaction, convection, and diffusion bioreactors, 1079–1095 O2 and CO2, transcapillary exchange, 1062–1072 tissue solute exchange, Krogh cylinder, 1072–1079 convection and diffusion constant wall concentration, 1042–1044 drug delivery, rectangular duct, 1044–1045 hollow fiber devices, 1045–1059 mass exchangers, 1041 non-reacting solutes, capillary exchange, 1059–1060 single pathway exchange, 1040 homogeneous chemical reaction diffusion first-order reaction, 1025–1031 immobilized enzymes, 1032–1041
1283 Michaelis–Menten kinetics, 1031–1032 zeroth order reaction, 1014–1025 membrane steady-state diffusion boundary conditions, 1008 heterogeneous barrier diffusion, 1009–1014 molar flow, 1007 shell species conservation equation, 1006–1007 waste product diffusion analysis, 1006 microscopic species conservation, 1005–1006 one-dimensional unsteady-state shell balance applications convection and diffusion, 1116–1128 tissue, diffusion to, 1095–1116 Sherwood number, 832 Sickle cell anemia, 156–157 Single compartmental analysis constant inlet flow constant volume, two inlets and single outlet, 906–907 variable volume, single inlet and outlet, 902–906 constant volume, single inlet and outlet bolus injection, 902 constant flow and inlet concentration, permeable wall, 909–910 constant rate of infusion, 901–902 oscillating inlet flow, constant inlet concentration, 907–908 mass flow through a permeable wall, constant volume, 908–909 Sliding plate viscometer, 116, 117 Solid–solid equilibrium, 803–806 Solubility coefficient, 797 Solute diffusion through membrane, 825–826 Solute reflection coefficient, 975 Solving non-Newtonian problems, 464–474 Soret effect, 44 Space blankets, 585 Species conservation equation, 1149–1153 Species transport, single phase alveolar fluxes, 813–817 convective and diffusive transport, 811–812 cylindrical vessel wall diffusion, 826–829 diffusion fluxes and velocities, 810–811 gas diffusion, heterogeneous chemical reaction, 823–824 mass transfer coefficients, 829–830 molecular diffusion and Fick’s law of diffusion, 817–829
1284 Species transport, single phase (cont.) solute diffusion through membrane, 825–826 species fluxes and velocities, 809–810 total mass and molar fluxes, 812–813 water evaporation, 820–823 Specific absorption rate, 762 Spray cooling, 769 STAR.Legacy (SL) Cycle, 8–9 Starling resistor, 253 Steady-state conduction-heat generation cylinder conservation of energy, 634 1D cylindrical system, 633–634 electrical current treatment, 635–639 electrical resistivity, 637 finite difference technique, 639 thermal conductivity, 638 thermal injury, 636 slab 1D symmetric Cartesian system, 630–631 parabolic distribution, 633 second-order differential equation, 632 sphere, 639–640 Steady-state, multidimensional diffusion coefficient, 1161 2D problem, 1162, 1163 eigenvalue and eigenfunction, 1160 rectangular shaped tissue sample, 1158–1159 separation of variables approach, 1159 Stefan–Boltzmann law, 524 Stefan number, 646, 771 Stewart–Hamilton equation, 924–926 Stewart–Hamilton relation blood flow through organ, 924 pulsatile blood flow, 925 recirculation corrections, 925–926 Stokes–Einstein relation dilute solute diffusion, 827 free diffusion coefficient, 828 solute mobility, 828 solute radius estimation, 829 Stokes law, 232, 428 Stream function, 402 Streamlines, 402–403 Superficial velocity, 229 Superposition, 395–489, 1162–1164 Surface heterogeneous reaction, 883 Symmetry boundary condition, 111 Synovial fluid, 139–140 System
Index closed definition, 34 open definition, 34 System analysis, GIM centrifugal pump, 13 closed system, rotor, 16 entire pump, 14–15 Medtronic bio-pump, 14–15 open system, pump, 16 viscous interface, rotor vs. blood, 17 T Taylor dispersion, 1178 Temperature, film, 510 Temperature, fluid, 510 Temperature, mean, 506 Temperature, mixing cup or flow-averaged, 53 Theoretical approach, biotransport problems advantages and disadvantages, 68 geometry, 69–70 GIM, 68–69 governing equations, 70 graphical presentations, results, 72 mass flow and heat transfer, tapered bronchiole, 78–83 scaling, 72–75 solution procedures, 70–72 species conservation, bioreactor, 75–78 Thermal boundary layer, 53 Thermal compartmental analysis thermal dilution technique, 596–598 well-mixed compartment, 595–596 Thermal conductivity, 490 Thermal diffusivity, 46, 681 Thermal dose, cancer therapy, 761 Thermal inertia, 696 Thermal injury mechanisms and analysis burn injury activation energy vs. natural log of frequency factor, 754, 756 computation, 759–760 exposure time and constant surface temperature, 753, 754 human skin structure, 752 injury function, 754 injury rate vs. temperature, 756–759 kinetic coefficients, 754, 755 threshold levels, 752 therapeutic applications, hyperthermia burn injury function, 762 cell survival data, 762, 763 specific absorption rate (SAR), 762 thermal dose, 761 Thermal radiation
Index convection and radiation, 581–585 electrical resistance model, 539–547 electromagnetic wave propagation, 524 environmental radiation load, human body, 580–581 geometric sizes, shapes, separation and orientation, role of, 532–539 principles, 524 radiation barrier, 586–587 radiation insulation, 585–586 steady-state radiation exchange, 576–580 surface properties, role of absorption, reflection, and transmission phenomena, 530 emissivity, 529 isothermal enclosure, small bodies, 531 Kirchhoff’s identity, 532 surface temperature, role of characteristics, 526 emissive power, Sun, 526–529 spectral blackbody emissive power, 525–526 Stefan–Boltzmann law, 524 Thermal resistances composite systems, 561 conduction, 492–493 convection, 523 heat conduction, skin, 562 Thermoregulation, 614 Thiele modulus, 1036 Time constant, laser irradiation, 766 Tissue capillary exchange carbon dioxide, 1071–1072 oxygen, 1066–1067 small inert solutes, 1059–1060 Tissue capillary, solute exchange, 1072–1073 Tissue diffusion, unsteady-state shell balance applications carbon dioxide transport, plasma, 1098–1099 finite external resistance to mass transfer, 1101–1103 long cylinder, unsteady-state diffusion, 1111–1114 semi-infinite slab, 1096–1098 sphere, unsteady-state diffusion, 1114–1116 thin slab, CO2 diffusion, 1108–1111 two semi-infinite slabs, 1099–1101 unsteady-state diffusion, 1103–1108 Transient diffusion processes, internal thermal gradients accumulation rate, 681
1285 graphical methods Heisler charts, 702–709 Schmidt plot, 699–702 semi-infinite geometry 1D coordinate system, 692–693 definition, 692 direct contact, media, 695–696 Gaussian error function, 694 safe touch temperature analysis, 697–698 surface vs. internal temperature distributions, 695 thermal inertia., 696 symmetric geometries coefficients, single term approximation, 686–687 Fourier number, 684 thermal interactions, 682–683 tissue storage, vitrified state, 688–692 Transmisivity, 530 Transmural pressure, 243–244 Transport analogies, 46–48 of carbon dioxide, 864–866 of charged species, 851–855 mechanisms, 40–49 mechanisms, molecular, 41–48 of oxygen, 858–864 scales, time and space continuum concepts, 37–39 feedback control systems, 37 length scales, 36 macroscopic approach, 36 microscopic approach, 35 molecular interaction, 35 nonlinear properties, 37 Trout survival, 801–803 Turbulent flow, 110 Two compartmental analysis blood-tissue exchange, 917–921 parallel, 913–915 series, 910–913 two well mixed membrane exchange, 915–917 U Unsteady-state 1-D shell balances boundary layer thickness vs. time, 376–377 kinematic viscosity, 374 Laplace transform, 375 penetration thickness and velocity profile, 374 rate of accumulation, 373
1286
Index
Unsteady-state 1-D shell balances (cont.) velocity profile vs. time, 376 Unsteady-state mass transfer cylinder, 1111–1114 semi-infinite slab, 1096–1103 slab, 1103–1111 sphere, 1114–1116 Unsteady-state, multidimensional diffusion boundary conditions, 1167 coefficients, 1168 dimensionless dependent and independent variables, 1165 inverse Biot numbers, 1166 mass transfer coefficient, 1165 slab, finite dimensions, 1164 Unsteady-state species conservation accumulation rate, 1149 mass balance, shell, 1150 microscopic subsytem, 1149–1150 molar flux, 1151 shell balance vs. species continuity equations, 1155–1158 species continuity equation, 1153–1155 Urea transport, 973
Velocity, average, 171 Velocity gradient, 109, 174 Velocity profile, 112 Venous occlusion, 311 Virial coefficients, 278 Viscoelastic materials, 108 Viscometers, 115–119 Viscosity, 121 Viscosity, PEG, 122 Viscous force, 112
V Vapor pressure, 796
Z Zeroth order homogeneous reactions, 934
W Wall shear stress, 118 Water evaporation, stagnant gas film, 820–823 WCF. See Wind chill factor Weber number, 770 Wetted perimeter, 201 Wien’s law, 525 Wind chill factor (WCF), 570–574 Windkessel model, arterial pressure, 249–252 Womersley number, 265, 433, 446–450 Y Yield stress, 129