S. D. Bernafdi A s \ o c i r r et ' ro l n s \ o ro l \ 4 a l h e n i a l i c( sR e r i r e d l .J.r i.rfl
Lr,rcrsrl!
BIBLIOCRAPHYOF SCHLICHTFUNCTIONS
1965) FART r ( PART U (1966-1975) , PAR.Trrr (1976-1981)
trN BlInrrntttlt\ \ t'nrtnn
!)
't
CONTENTS
PAR]I(
'1965),,
PARI ll (1966 l9'15) l9ll I ) PART lll ( l9-76_
,1 l3l 21t
Pit III hl\ n'' hrd nL ,..frri.i Prr L II io rlitir rr.\.n r"' . t r h l n L r L . L . t s l r r t ( r . . n r L r ht r \ . \ r ' l ' . . r d i d ! . rf! r(h.,. .r rlrr umbslJ rin.ft" i\ \r 'n r'r , i . r o t r x b l tr . ! . ! t 0 r 5 ! r l r r t I r ' r f i r | ' B L h 'l ! ' r f l r r i ! t t r r 1 e r o d i . r u . l rL b ri r ; i h t . r l a i . , . i . $ i n ( h e h n r r * ' P a i r ) F ' r ' l r m f l r ' I'irr l li lll f n r r i \ . t r \ rl I t l ' . d or ] r d . . l r h . n r i l ' . r ' d r t l ( d r r $ ' l l)\ r r.sir \. \\ (i..Jniri iI hr\ l'rrlr!'mio-s trr\ u b.nrbLithiitr \lrrlf"P0bl:hreLo |,rJ/.,r/!a(r!,\. ' r h r r I J f L r " r r r h r i r ' B lur Ihr r,iirrrL nrth.d' fl r\iiq L l lll n . t r r n n t r n t r r i ! I r r r t t L $ ! n $ . Jn L l i . t . n r r : r r r \ ' i r ! " r n b r ' l rl l r r L r r i d 1 l d r h \ . \ r . n ! r t B r b l n r ! r i I h ! N n ! b eI D s ' l r n$ u ' ! ' r f r t r n o r i l t i r l l L r l d .t r i t i . n 6 n o d t ' a t l t l rlit.,! riJ o $gint.rt rn!L i.lorh{) in rnrLrnr! I h . * r l r d r . l l h i ! D l b l n r g r a n hJr! f n s ( l r . F 3 { I h t r r } } t n r ! ' o n n N n r r t n . r i L L r(:h . r ! ! . d . . l t r o u L . f ! i n ! t o . r a r h o . a r i . \ L i t \ $ : \ . ,'. '''l
!
CONTENTS
PARTt (
1965).
It (r966lr'r5) PARI'I l l ( 1 9 7 6 l 9 l j l )
lll 211
v1
BIBLIOGRAPHY OF
SCHLICHTzuNCTIONS -1e65) PARTI (
CONTENTS vii I
P:eface. BibliograPltY
Bibliography"" Supplementary
List of MathematicalJournals ' '
PaPers. ExpositorY T o p i cR e f e r e n c e. .3. . . . Co. recltons
" " '
l0r 113 116 117 I JL
PREFACE
tg'l-t o:::it;:,?li.:rl, T;; 1694references Thisbibliographvcontains
lTh*:l,f ::^:"""-"i"1*,:$L ;rm; H:t.*li. lil,**t"'"T'fr iilnu#f llrn,t*il";'ffi and ,ao.,r,r, Iecturenotes'
l*:'l*i'lill"iil'ili; ::i"#ru':'Ji:i::"+i,l*l;".xi::i::ifu ::iffi:*i*h*nui:I $i;;'i *"; t,TxJrff i{:i,::ilffi 'ror"uoo'"*imately the rematr 1400 papers' while ,nu,n' .
uo tiurioe'upt'v Tlfjii:l#;1::l;l':n::*:fi[:l:i]'i:' 'itiinttt or ll'lt"' titles the word univalent t'""i"t" oroximately736 of them
vlll
classof Horvever'*unl:"lttll]: irr the multivalent(or their equivalents) not specifically pJpt" *ttot"'fitle-s-,1ot and schlichtfunction' utt tontutntJ'in iunttiont'!o:*:1' tuntttons' are referto them,'utnu"vp"uifi-ttut theorems.in thesethreeclasses pu'f; rnuny ttut positive of funciions in the classof *tif ft"o*t' into theorems easilytransformed,a'sts
not ;rc lre '"1'::l'-:).:".n''h'."hle "n":::'lli::':,i trrebibriographv analvtic from tontuin
"tit:1;:t-lltt dealingpnmarilv*'itf' uniuatlntv' aremadeby nianywritersof sp"cific'references *nicn to iunctiontheory wereobtit'sunnorlingl references paperson schlichttunctron;'il;;; ii t:nltt-n]'.fl"ctionsand intainedfrom the UlUtrograpli"''tip"ptt' Bieberco"ifitlntt ' -fuUcr-p-olynomials' c'un'tyof treatments clude
i "JuirJ.i, l'",.: ::1,fi:T? ;*;l:li*r;,"$i;:#i.,'111, ;*' orsoruproperties rorms' ;ti'on,roepritz l?li'iilil'XilriiTiLlilffi ;;;;;' tion,nf theclifferential
"tti,+ritli"Ltf
rl.tttlrXli'jll orthogonaltraJectorres' ,i.ti""ii"., tott"ricalderivative' theory tt"ier who is f amiliarwith the quadraticdif ferentialib'rnt ift" ' toplcs of these therele''r-ancy recognize '""dily *'rr functions alent of unir. in the iitriogtuptty [52J]appeared Thc earliestpupt' ri'*tiln"rtt *"the l"r, 1965(withthesingie latest the o";.rr;;;.";.; and 1902, vear * veart96o) Koebe'spaper[688]' oi [i ii] *iiich exception "o;;;;'i; givingthefirstactualresultln in 1907'rsgtntt"lt:]"*utaetias published functtons' of univalent ihe theor,r' in beenreviewed tttitjjt 'rtt bibliography papers flve' fur Mathematik ivlostoi the ;rr ttt" z*tialblatt the Nlathernatictlntu'"o (FM)' and rotittrtti'tt derMathematik (Zbl) or in the Jahrbuch"il;;; theendof each "ii'il'"t 'iti'-1"ii* ondpownu'n.ii) iherotume ::!:'^:!3!,.* reviewnumbers' " rsOrefcrences^lacking referenceof tnt upp'o*tiluteiy technical aslecturenotes,dissertations, mostof themmay oecrassifieri recemtoo or papersnot vetpublished' colloquiums' ;;;;;;.,;it"otrts, in the Reviews' iv puLtitt.,tfor inclusion followsthe tu.9 A "suppremen'^"';i;;;;;;li" of "^Trences "j someof the more recently a iist intiuJJ' uno bibhograpnv rnain
erero"uii'r"'rtit::^i.li::":;l;:lT :'"TTffi'.';..andtwentv-one, APProximatelYone years during the
Reviews prblished ences were locatedin 'nt''U"ttt' were hun'jred and forty-two references 1940-1964,volumes f-ZS' f*o le31-1953' in tr'" z""rariiatto"uri'ita d1nl:.:f:'vears Iocated lcca-'edin were eighty-one-refueilces volumts l-102' One n'"atta and 3l-63'
il;;;;;-t published theJahrbuch
tqoo-tsrr'volumes
IX
mathematical A volume-by-volumesearchwas made of twenty-two A list of public' journut, *t i.t are readil; availableio the American is contain functionswhich they itr.r. jou.nut, and the paperson schlicht 'vhich are devoted foffo*ing thi: is a list of erpository papers of "1r.". ; puri,o u generalsurvcvcf th: developmentof ihc thcJrv ;;;i1;;; univalentand p-valentfunctions' hove been The vorious resultsin the theory of schlichtfuncticns those into sixty-eighl topics.Eoch tttptcis followed by a list of -rlrjrrlnrrt clossified thol pertoining to inthe bibtiogrophy that contain information the in the topic. M,reover, tt the end of each reference ..bihliograpb' topics the indicaling nimbers enclosedin brackets are topic re.j'erences whichorediscussedin|hereference.Thefoirowingtwoexai',rplesillustratethe principal use of the bibliog:aphy' conjecExa,npieI . Reference[363]tists"A proof of the Bieberbach Schiffer' M' and Garabedian ture for the fourth coefficient," by P' R paper may be The notation MR 17-24 indicatesthat a review of this page24.The numbersin iound in the MathematicalReviews,volume 17, paper containsinformation U.u.f.." 19, 17, . . , 541indicatethat the Functions)'topic regardingtopic T9 (Meiomorphic Urrivalent(p-va^lent) Bounds for the iiz tco!fn.i.nt Bounds), . . . ' topic T54 (Coefficients Class(S)). funcironrple 2. The reader rvho is interestedin close-to-conver ll29' 282'656' ' ' Al43l tions rvill iind thit topic, T5. The references be found, respectiveindicatethat informatiorrregardingthis topic may T G Erzohi' W' tV, in tft. pape:sby e. Sietecldand Z' Le*andowski' bv the letj. suffridg.. Numbersin brackets.preceded ii;pi";, .'. . , r. indicatereferenceto the SupplementaryBibliography' Theclassificationoftheva;iouspirpersintotopicswasbasedona (of the full-length reading of approxirnately five hundred reprints (b'icl) abstractsor the of pup..rj, and in mosl caseson a reading we emphasizethat the i."i.*i. Therefore, in fairnessto the authors' of the papers' classificationsdo not inciicatethe completescope paperpublished It is difficult in a work of this natureto coverevery it is felt that this on the subject of schlicirt functions' However' the publicationsin this iitriogrupiti does include a major portion of field. the aid givenme by.n.rygraduatestudents I gratefullyacknowledge me !'"ilh someof the GeralJBierman and Victor Stanioniswho assisted ambiguousreferences' numeroustasks of filing, tracking down certian a n d t h e t r a n s l a t i o n o f s o m e f o r e i g n p a p e r s . T h e r e p l i e s t o m y take requests gratifying and I for renrints from numerousauthors were indeed
I owe many this opportunity to extend to them my heartfelt thanks. library thanksilso to the most cooperativepersonnelof the mathematics To New York Univerat the Courant Instituteof MathematicalSciences. and Science sity I am indebted for the financial aid given me by the Arts FinalResearchFund that helpedpay the cost of typing the manuscript. ly,Iwishtoexpressmysincereappreciationtothechairmanofmy graciouslyin clepartment,ProfessorF. A. Ficken, who cooperatedmost and convearianging my teachingscheduleso as to give me sufficient nientlntervalsof time to enableme to completethis bibliography' S. D. Bernardi May 1966
r
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS (PART I) J' GakugeiTokushimaUniv' l. Abe, H- A noteon subordinotion' MR 19-401'Ul Nat. Sci.Math 7(1956),47-51' d-omoin'Sugaku a ring-shaped 2. Abe, H. on conformalmannilslf 20-664P' 10' 18' 481 ,2s';;' tiupu"tttl MR 8(1956/s?) J' GakugeiTokushimaUniv' '3. Abe, H. On p-vaienifunctions' 16' 17' 19] 14' a(iqizl, 33-40.MR 20-i05' [9' in on annulus' Kodai Math 4. Abe, H. on 'o^'-oiotytic iunction' 1 0 ' l 3 ' 1 5 '4 8 ' 6 6 1 4 5R' 2 0 - 5 4 4 ' f 2 ' 6 ' S e mR ' e p .1 0 ( 1 9 5 8 ) , 3 8 - M in an urtnulus'Math' Japon' 5. Abe, H. On uniiitent functions 13',15', 17' 25' 2'7' 48' 58] , zs-ig. N',rnzi-zs3' l9', 5(1958/59) d'unefonctionholomorphe N' i)' rc cercled'univalence 6. Abramesco, deuxzerosd'une eqrntion petite distance,entre plus la sur (x) et f [43] 834-836'Zbr4-10' Sti' Paris194(1932)' .f (x) = /. C.R' ;tlO' holomorphe d-'une fonctio^n N' Surle cercled'univalence 7. Abramesco, d'une equation zeros cleux petite distanceentre f (x) et sur la pius Zbl 9-76' 49-s4' --l. Rt;;:"6i"' r'aut'Palermo58(1934)' f (x) t43l
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
zur Theorieder konformen Abbildung g. Ahlfors,L. (Jntersuchungen Sci' Fenn' A' l(1930)' No' 9 und der gonrcnFunktioien' ActaSoc' FM 56-984. [s9] Picard. c'R. g. Ahlfors, L. Su) une generalisationdu theoremede ' Acad. Sci. Paris lg4(f%D,245-246' Zbl3-407 l59l lemma.Trans.Amer. Math. 10. Ahlfors,L. An exteision'ofschwarz's 371 S o c . 4 3 ( 1 9 3 8 )3,5 9 - 3 6 4Z' b l l 8 - 4 1 0 ' U 9 ' Duke tr{ath' J' l4(194'l)' 11. Ahlfor s, L. BoundedAnatytic Functions. 1-ll. MR 9-24-[37'60] and extremalproblemson com12. Ahlfor s,L. Opei nieminn surfaces 24(1950)' 100-134' pact subregions. Comment' Math' Helvet' MRi2-90. [59i Notes' Oklahoma A'and 13. Ahlfor s, L. Conformal mopping' Lecture , 9 5 1 .[ 5 9 ] M. College1 14.Ahlfors,L.Developmentofthetheoryofconfcrmdlmappingand R i e m a n n s u r f a c e s t | t r o u g h a c e n t u r y . C o n t r i b u t i o n s ! o t h e tMR heoryof No' 30 (1953)'3-13' Riemannsurfaces.a.nn' of Math' Stud'' 1 4 - 1 0 5 0[.5 e ] York' lg53' 247' MR 14-85?' 15. Ahlfors, L. Complex Analysrs'New
t5el 16.Ahlfors,L,ExtremalProblemeinderfunktionenTheorle.Ann. N / i R\ 9 - 8 4 5 ' 1 2 4 ) A c a d . s c i . F e n n .S e r .A . I . N o . 2 4 9 1 ( 1 9 5 8 ) , 9 ' l'7AlJfors,L.;Beurling,A'Invariantsconformesetproblemesextremoux.DixiemeCo-ngresdesMath.scandlnaves'(1946),341-351.
MR e-23.[5e] l S . A h l f o r s , L ' ; B e u r l i n g , A . C o n f o ; . m o l i n v a r i g n t s . a n12-17l' dfunction. t59l Acra Math. g:itqso), l0l-129. MR theoreticnut-sets. Invarianls. constructicn and lg. Ahlfors, L.; Beurling, A. confoimol of a Symposium ; Applications of conlormal Maps, Proceedings Appl' Math' Ser' No' 18' 243-245.Nat. Bureau of Standards' W a s h . ,1 9 5 2 .N I R 1 4 - 8 6 1 '[ 5 9 ] 20.Ahlfors,L.iGrunsky,H.UberdieBlockscheKonstante.Math.Z. 42(1937\,o7t-673' FM 63-300' U9l theorem' Kodai Math Sern' 21. Aikaw a, 3. On extensionof Sciwarz's R e p . 1 9 5 2 ( 1 9 5 2 ) , 1 0 4 - 1 0M6R' l 5 - 2 1 0 ' [ 3 7 ] univalenceof regular func22. Aksentev,L. A. Sufficient conditlonsfor tions.rzu.vvss.uceu,..Zaved.Matematrka(1958),No.3(4)'3-7. (Russian)MR 26-278' [4] 2 3 . A k s c r r t ' e v , L . A . E l e m e n t c r y c r i t e r i a f o r u n i v u l e n cMaiemhtika eintermsof Ucebn', Zaved' boundory charocteristics'lzv' Vyss'
Zbl 96-55'l!'6:r0' 621 No. Oitr),3-8'(Russian) (1959),
24.Aksent,ev,L.A.Integralrepresentationsofunivalentfunctions,
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
3
(1959)'Nc' 4(i 1)' 3 8' (RusIzv. Vyss.Ucebn'Saved'Matematika 231 sian) MR 24A-37 ' 14, 16' ^, partial ---l:^t sums o,,nc /r of powerserrcs' of 25. Aksent'ev,L. ;' d''the'uniialence Izv.V yss.U ce un' At' ed' lviatem atikuit' qOO) ' No' 5( 18) ' 12-15'( R us 43) stnl fvfn 74A-153' 14' 20' 23' dani' (Jnivalentuoiio'ion of the pro{iie of s A. L. Aksent'ev, 26. ptoUlemam Teorii Funkcii Issledovanija po Souremen-ny* Gosvdarstv' Izdat'Fiz-Mat' ttt*tnnogo' 335-340' Kompleksnoro MR23A-52'[4] Lit.. l{oscow,1950'(Rusiian) 2 ? . A k s e n i ' e v , L ' l - ' - O n t n ' u n i v a Vyss' l e n c eZaved' o f t h eIviatematika s o l u t i o n o j(196!)' theinverse Izv' hydromechonics' of problem MR 25-611'[59].' -- ; ^ No.4(23),3-7' (Russran) for star-likeness bounds for coi"'exitycnti 2g. Aleksandrov,i.'n. on SSSR Nauk Akad' and regula' fn a iincte'Dokl' functionsuniuotnni 20-161' [6' 10' 11' l2]' MR go:-90s'(Russian) (N.S.)116(195;t, 2 g .A l e ksa n d ro v,|,.,A.Conditionsfor convexity' the'tnit circlc' univalentinoft|teimageregnn by functio" -zaved. mapping under "g'io'and (1958),No. 6(7),3-6' (Rustrtatematita u.Jun. Izv. V,uss. sian;Mn ?3A-731'[10' 12' 35] 3 0 .A l e ksa n cro v,|.A.onthestar - shopedchor ocler lfthemVyss. appi ngs of o,i' ,ntuotentin thecircle.Izv. a comainbyfunctionsregular MR (tgsg)'No' 4(ll)' 9-15' (Russian) Ucebn.zu"'a' iutematika
on of soyefunctionats definition of Domains A. r. ,,. T;t-T;fL", Issledovaniya rrgulorin a -cir.cle. o7iunctionsunivalent'ond" the class Kompleksnogo Funkcii Teorii po Sou"'ntnnyrn ero!f9111n [6' l0' '12'291 Peremennor;"i'*;tti"n) MR 22A(r)-965' and fi' f'ncti'onsunivalent V/rriationatiroiiemo A' I' Fiz' 32. Aleksandrov, AftuJ' Nauk Armjan' SSRSeT' star-shapedin the circle' rt"' Z--f9'-inutsian'Armenlansummary) Mat. Nauk 14(1961)'No' 4' MR25-426.[6, 1?,29,36] values ^ the functionol "of 33. AleksanO,ou,L' A' Boundary univalent if nobmgryh'(functions J : J(f, f,.f' ,7) on tn"to"q6iel17-3i' (Russian) MR 26-744' in a circle-iiuirst<' Mat' z'
v' Extremalpropertiesof star-like v' '4('l96ii,' Oernikov' A'; I. fiJ-3]rdrov, ,-. ' (Russian)MR 241-267 Z" Mat' mappings.'Si^Ui"ft' zs-izto.[2,6, 10,24'29'39'491 Mat. SbornikN'S' 26(68) (Jnivalent ioiorontt y. on E. 35. Alenicyn, (1 9 s0 ),5 7 -7 4.MR 11- 589'ul p-volentin'lh''meon' Mat' Sbornik 36. Alenicyn,Y' E' On functfoni 14'27'331
tz-agl'[e' N.s.27(6eii'iojzss'-zgo't'{ir
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
of univ'qlent 37. Alenicyn,Y. E. on the estimationof the coefficients functions.Mat.SbornikN'S'28(70)(1951)'401-406'i\IR13-610' ll7 , 45, 521 3 8 . A l e n i c y n , Y . E . o n u n i v a l e n t f u n c t i o n s i n m u t t i p l y c o n niUR ecteddomains.Dokl. Akad. Nauk sssR (N'S.) 102(1955),861-863' t7-25.122,3ll 39.Aienicyn,Y.E'.onunivalentfunctionsinmultiptl|Connecteddo. rnains.Mat.Sb.N.S.39(81)(1956),315_336.(Russian)\1R18-292.
, 2,601 u 5 ,1 9 2
of univalent and 40. Alenicyn, Y. E. A contributittn to the theory sssR (N'S') functions. Dokl. Akad. Nauk Bieberbach-Eitenberg 247-24g.(Russian)lviR l8-293' tl5 ' 26' 34' 491 109(1956), 4l.Alenicyn,Y.E.onfunctionswithoutCommonvaluesondtheouter Dokl. Akad. Nauk boundary of the rioinain of valueso1 a functicn. ) ,0 5 5 - 1 0 5 7M' R 2 0 - 6 & ' [ 1 5 ' 2 6 ' 1 4 ] s s s R ( N . s . ) 1 1 5 ( 1 9 5 71 42.Alenicyn,Y'F,.Ottfunctions,pithoutcommonvaluesgndtheouter |l/^at' Sb' N'S' boundary of the dlmain of volues of a function' ) R 2 0 - 1 0 7 4 '1 2 6 l 4 6 ( 8 8 )( 1 9 5 8 ) 3, 7 3 - 3 8 8 (' R u s s i a nM 43.Alenicyn,Y.E.Anextensionoftheprincipleofsubordinationto multiptyconnectedregions.Dokl.Akad.NaukSssRl26(1959)' 231-234'(Russian)MR 22A(l)-126' U' 371 anil''apo zl4. Aienicyn,Y. E. FUnctionswithOutcotnmon values.155lsflsr S o u r e m e n n y m P r o b l e m a m T e o r i i F u n c k c i i K o m p l e k s t960' nogoPeremenMR -Mat' Lit'' Moscos' nogo, 34-38.Gosodarstv'Izdat' Fix' 2 2 A ( l ) - 1 8 9 9[.2 6 , 3 4 ] 45.Alenicyn,Y.p'.So^'extremalpropertiesoffunctionsrnultiralent inmultipll'connecteddomoins'Dckl'Akad'NarrkSSSRl46(1962)' 60] 267-269.(Russian)MR 26-743' [14' 17' 27' 33' 46.Alenicyn,Y.E'ontherangesofsystemsofcoefficientsoffunctions representableasasumofstiettjesintegrals.VestnikLeningrad Univ'|7(1962),No.7,25_1|.(Russian.Englishsur-nmar})MR 2 5 - 4 2 6 . 1 21 , 3,23,291 4 7 . A l e n i c y n , Y . E . ; H a r ' i n s o n , S . Y . T h e r o d i u s o f p - v a l e n c e f o r(N'S') bounded Mat' Sb' domains. connected multiply in analyticfunctions 60i 52(94)(1960), 653-657.(Russian)MR 2zA(l)-,1628' [4j' 4S.Alenitzyn,G.onthecoefficientsofp.valentfunctions.Rec.Nlath. English sum(Mat. Sbornik)N.S. 10(52),lg42)' 51-58' (Russian' m a r Y )M R 4 - l 3 8 [ 1 4 , l : , 1 7, 5 0 , 6 5 1 4g.Alenitzyn,G.Onlhecoefficientsof,,schlicht''fuitctions.Rec. Math.(Mat.Sbornik)N'S'15(57)'(1944)'131-138'(Russian' 45' 52' 67] Englishsummary)MR 7-54') [15' 17' 39'
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCIILICHT
5
5 0 . A l e r , i r z y n , G ' O n t h e l o c a l l yrurs-r n i vji."eussian. alentfunctio n s ' ] e 1summarv) ''Math'(Mat' English
(1946), N.S.18(60), Sbornik)
Rec'Math'(N{at'Sborp'.'',1t"!t^'unctioiis' rneon xtlJ;;t ,,. MR 9-23'[27'33] unit nik)N.s. zo
e53) be'Ark'Mat'2(1 nsiunt orKoe o c h e rc ;t]) !1,' l' f: ,, . f;5]1,; -on-: or propertie-s extreme of some extension ;:?), ii-iti Len,- ff,"t;,l,JA Vestnik
fitt,,ctions. to no.n-Schiicht Schlichtfunctions in a ring Englishsummarv) (Russiarr'
rngraduniv' i;69;bt' NJ' rl
"7r-82'
de sur testransformees t$'tl Quetques.th|orDmes X.LSiti;tl: C' ,r. reeles' R' a" iinctions tlplly':unt
Fourieret sur lescoeffici'nt' 1?'5l' 36] su-sqi 'l/in rg-sis'-[6'13' Acad.Sci'Paris 2M(1g57)' de Taylorde certainesc/asses coeffirirlnu, lei Sur K. i. 56. Artemiadis, p"tit ZA+tfeSll'ltl-l l5' MR 19-22' defonction''C' n' Atad' Sci'
de M' s' d'un theoreme Gtndrotisation K' N' ,r. ll;,.k,131',
Mandelbroj,.'b.n.Acad'sj..'pu'i'24+(|957),834-836.MR
,r. f;lirt;ilri''u
etteurapptications deFourier iransform'ees K. sur tes jijrt*ent d'ordrep' Ann' sci'
reeles ,y ouxsericset sur les fonciion, zbl 89-53'U3l 269-318' 74. EcoleNorm' Sup'III' Ser' ti6!z)'inolyticf,tnctionin itscircleof )'ni oln' 5g. Arwin, A. rh;;o'rron intrgrot 48-395'[59] i $ -t'q1 - "* conversenc'' enn' M ath' 23' -d;;l-iz) of valu'e's of analyticfuncV: dn-"iioln 60. Ainevic,I' Ya; Ulina' G' ti o n sre p re sentedbyastiettj"' tni' s' a' VestnikLeningr adU ni v '
10(1955),*""iiii-qz'eui'iuni^imer'Math'Soc'Transr'Q)22'
- ,291 6' 13' 23' 1 ?- 59g' 12' Bull' 8 1 -9 4 MR . J'unctions' dr';;;;;es of univalent p. on H. fraction"t Arkins, 61. MR 8-326'll5' 421 q46)1060-1064' Amer. fufutt''Jot' SZtf konvexenkon62. Aumann, Georg' Die uit.tetiini*"""'ung'bei 80-82'MR 2-S3' [s9] tvtath'Z' +O(rq+o) formen An"oiii'i^'in' bei konvexenkonai' st)rri)-nver'zerrung 63. Aumann, Georg. IJber Akad' Wiss' 1948 s' -e' NIu't'' Nut' Ki' Baver' ealAiii"s' formcn ft4n t1- 507'U0' 291 ,' ..- :.,^tnntes 3 0 3 -308' (1 9 4 9 ), untvate' dansle ce r c l e localement les Satr fonctions R' Ballieu, 64. 4r3-4rs' zbr r8-r43' [15'68] 20;t;38t' Paris sci' Acad' uniteC.R'
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
65. Ballieu, R. szr tesfamilles defonctions localementunivolentesdans le cercleunite. Ann. Soc. Sci. Bruxelles,ser. L 58(1938),103-114. z b l 1 9 - 6 9 .[ 1 5 , 6 8 ] 66. Banach, S. sur leslignes rectificableset les surfacesdout I'oire est FM 5l-199' [591 finie. Fund. Math. 7(1925),225-236. 67. Basilewitsch, J., (Basilevitch) Zum Koeffizientenproblem der schlichten Funktionen. Mat. Sb. (Rec. Math.) (N. s.) l(1936), 2 l l - 2 3 6 . F M 6 2 - 3 7 2 .l r 7 , 4 9 1 68" Basilewitsch,.I., (Basilevitch)Sur lesth1orbmesde Koebe-Bieberbacli Rec.Math.Moscott.N.S.l(1936),283'291'Zbll5-71'[15,68] 59. Basilewitsch, J., (Basilevitch) sur la th|orie des fonctions univolentes.Rec. Math. Moscou N. S. 3(1938),359-366.(Russian) zbl 19-27l. U7 , 241 70. BasilewitschSar un th\orbme de Littlewood et Paley. Rec. Math. (Mat. Sbornik)N. s. 6(48),337-3M (1939).(Russian,Frenchsumm a r y )M R l - 3 0 8 . [ 1 5 , 1 7 , 4 5 , 5 2 , 6 7 1 71. Basilewitsch,J ., (Basilevitch) D'une propri|td extremalede la fonction f(a): z/(t -z)'. Rec. Math. (Mat. Sbornik) N' S' 12(54) ) R 5 - 2 5 9 '1 1 5 , 2 4 ' 3 9 ' (R (1943),315-319 . u s s i a nF. r e n c hs u m m a r y M 681 for the coefficients of 72. Biz\tevi6, I. E. Improvement of e-stimotes univalentfunctions 1. Mat. Sbonrik N. s. 22(64)(1948)381-390. M R 9 - 1 8 6 . [ 1 5 , 1 7 ,4 2 , 5 4 ] 73. Bazllevid, I- E. On distortiort theorents and the coefficients of univalentfunctions. Doklady Akad. Nauk sssR (N. S.) 65(1949)' 253-255.MR 10-602.19,15, 19, 42, 581 74. BazileviE, I.E. On distortion theorems for univalent functions. UspehiMatem.Nauk(N.S.)4No.3(31)(1949),128_130.MR I l - 5 0 8 . [ 9 , 1 5, 1 9 ,4 2 , 5 8 1 75. Bazilevi[, I. E. On distortion theoremsand coefficientsof univalent MR 12-600. func.ticns.Mar. Sbornik N. s. 28(70)(1951),i47-164. [ 9 , 1 5 , 1 7 , 1 8 , 1 9 , 2 4 , 4 2 , 4 5 ,5 4 , 5 8, 6 7 , 6 E ] 76. Bazilevid, I. E. On distortion theorems in the theory of univalent (Russian) functions. Mat. Sbornik N. s. 28(70), (1951), 233-292. M R i 3 - 6 4 0 . [ 9 , 1 5 ,2 4 , 5 8 , 6 8 ] 77. Bazilevid, I. E. On o cQSeof integrabitity in quadratures of the Loewner-Kufarevequution.Mat. Sb. N. S. 37(79)(1955),4',il-416. (Russian)MR l7-355. 14,6,24, 421 78. Bazilevid, I. E. Regions of the initiat coefficients of bounded univalent functions v;ith p-fotd symmetry. Mat. Sb. N. s. 43(85) (1957), 4Og-428.(Russia;r)MR 20-664. 122,U, 29, 491 79. Bazilevid.L E. On an estimute of the mean modulus in a clossof
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
1
Sb' (N' S') 48(90)(1959)' boundedunivalent functions'-Yu'' MR 22A(1)-795'13'19'22i qi-rca. (R'ussian) 80.Bazilevid,I.E.on,o*,propertiesofunivatentconformalmappings. (1954)iw-ztt' lY{R14-632'[6' 7' l0] Nrat.Sbornik.N. i' lzA+f curves G V' Certainpropertiesof level 8i. Bazilevid,I' E; foricttii' Dokl' tkld; Nauk' SSSR under univalentconformalnruppings' Doklady No' 5, 2(1961), Soviet"Math. 219-'280.(iussian); 149(1961)
i r g o - r t t i ti.u n 2 4 L - 3 7 0 ' 1 69' 7' l'o lpropertiesof
level curveson G' V' Stotrt€ 82. Bazilevid,I. E'; fo'itftii' univatentcon_fcrmcrmuJtpings.lr4at.Sb-(N.s.)58(1cc)(1952)' 7' 9' l0] 249-280.(Russian)MR 26-500' [6' 8 3 . B e a t t i ' , S . A n o t t ' o n s c h l i c h t f u n c t i oztil' n s '3"262' T r a n s127 ' R c' y421 'Soc'Canada
' III Math. s.i. iii s' zs(rvlrl' 83-85 of Schworz'Bull' Amer' lemma E' F' ; reiativeof the 84. Beckenbach, ' Zbl 19-350[59] Math' Soc.+a(tq38),698-?0-l Riesz'J' London q i' e" On theoremof Feier and 85. Beckenbach, 19-67' 159) lvlath.Soc.l3(1938)'82-E6' Zbl on analyticfuncof E' F' A property mean"!l-*: :! 86. Beckenbach, MR 14-629' (2) 1(1952)'15'l-163' lion. Rend'Circ' Mat' Palermo in co'nplex ;' w' on subordination ,r. H;J'."bach, E' F'; c-''aham' 211:25: Nat' Bureauof vqriabletheory' Proc' of a sympo'i"m' U'S' Govt'Print' Orfice' Appl' Math' Ser'(195j)No' 18 Standards .] , 6 , i 0 , 3 7 ] M R 1 4 - 6 3 2[-p' of Shniad'iH' On themeanmodulus 88. Beckenbach, f '; Gustin'W'; anonalyticfunction.Bull.n'*'.Math.Soc.55(i949),184-190. .rthecomplexdoM R i 0 - 4 4 1 .[ 3 ' 7 ] tn dis:cnjugacy and P. R' Nonoscitlation 89. Beesack, M R l8- 483'U4' A mer 'Math'sot' si( r q 56) ' 2ll- 242' ma i n .T ra n s. 3ll
. -.:^-^ ^nA r equationsa1l Y'onvexmopptngs' 90. Beesack,P'R' Linear differential 3l] r',rn zze(D-1629. [6, 10, 14, Duke Math. J.2i(1960), 483-495. of second B O; ii' z"ot'o7 solutions 91. Beesack,P' R'; Schwarz' canadian J. of Math' 8(1956)' order linear differentiat equotlo,nr. 5 0 4 - 5 1 5M . R l 8 - 2 1 1 '[ 3 1 ] g 2 . B e n d e r , J . S o m e e x t r e m g l t h e o r e m s f o r m u l t w a l e ' n t l y s t a14' r - l i15' kefunc24A-3?0' [6' MR 2g(lg62l'-tOt-tOO' tions.DukeMath' J' l ' 7, 2 3 , 3 6 , 5 0 , 6 3 , 6 5 ] 9 3 . B e l g , P ' W ' O n u n i v a l e n t m a p-ftu*' p i n g s b l s o l u tMath' i o n s oSoc' f l i n e84(1957)' orelliptir' Amer' partial differential equations'
-iaq i591 iro-rts. MR'18-74f Funktionen derharmonischen g4. Bergmunn,^s. dii E-ntwrcklung
B I B L I O G R A P H YO F S C H L I C H T F U N C T I O N S
der Ebene und des Raumes nach orthogonalfunktionen. Math. Ann. 86(1922),237-271. FM 48-1236.[59] 95. Bergmann,S. The kernelfunction and conformal mapping' Amer. , o . 5 , N e w Y o r k , 1 9 5 0 ,1 6 l p p ' M R t2-402. M a t h . S o c .S u r v e y sN
tsel
96. bergmann, S.; Schiffer, M. M. Kernel functions and conformal mapping. Composito Math. 8(195l),205-249' MR 12-602' l59l R. 97. Bermant, A. Sir quetquesproperi\tds desfonctions r|guliDres.C. | 8 _ | 4 3. ( D o k l . )A c a d .S c i .U . R . S . S . ,N . S . l 8 ( 1 9 3 8 )|,3 7 _ | 4 o . Z b [ 6 , 1 8 ,1 9 ] A. Remarquesur le lemmede schwarz. c. R. Acad. Sci. Bermant, 98. 3l-33. Zbl 19-124.[6, 19, 37] (Paris)207(1938), 99. Bermant,A. Sur Ia variationde lo ditation d'unefonction reguliere. C.R.(Doklady)Acad.Sci.URSS(N.S.)45(|944)27|_273.MR 7 - 1 5 0 .[ 6 , l 9 ] 100. Bermant, A. Ditation d'une fonction modulaire et problemesde recouvrement.Rec. Math. (Mat. Sbornik) N. s. 15(57)(l9M)' 285-324.(Russian-Frenchsummary)MR 7-150' [l' 19] R. 101. Bermant, A. Cn a generalizationof Koebe's theorem. c. 8-202. h{R (Dokiaciy)Acad. Sci.URSS( N' S.) 52(1946),379-j8i.
tl el
principle 102. Bermant. A. On certqin generalizationsof E. Lindelof's and their applications.Rec. MatL^.(Mat. Sbornik) N. S. 20(62) ( 1 9 4 7 ) , 5 5 - 1 1M 2 .R 9 - 1 3 8 .I l ' 3 7 ] 103. Bernardi,S. D. T,.to theorentson schiichtfunctions. Duke Math. J . l 9 ( 1 9 5 2 ) , 5 - 2 1M. R i 3 - 7 3 3 .[ 1 7 ' 3 9 ] 104. Bernardi, S. D. A survey of the developmentof the theory of MR |4_35, Schtichtfunctions, Duke Math. J. 19(1952),263_287.
t44l
105. Bernardi, S. D. Note on Qn inequality of Prawitz. Duke Math. J.
2 3 (1 9 5 63),8 5 -3 9 1N. i R l 7- l 193.127,391 1Oti.Bernardi,S. D. Thecentroidof anolyticntappings'Arner. Math. MR 19-258'[49] Mon. 64(1957),259-26r.
107. Bernardi, S. D. A delerminontinequalityfor univalentfunctions' Amer.Math.Monthlv64(1957),495-497'MR19-539'U7'27'541 108. Bernardi,S. D. Rmcticns with positiverealpart and Schlichtfuncilons.DukeMath.J.26(1959),541-548'MR26-63'[2'4'6'l0l J' 109. Bernardi, S. D. Convex,starlike, and level curves' Duke Math 2 8 ( 1 9 6 1 )5, 7 - 7 2 .M R 2 3 A - 1 7 7. 1 6 ,1 0 , 1 3 , 3 5 1 110. Bernardi, s. D. circular regions covered b1' schlicht functions. MR 30-416' [19] Dukc Math. J. 32(19551,23"36. 111. Bernardi, S. D. Specia! classesof subordinatefunctions. Duke
FUNC] IONS (PART I) BIBLIOGRAPHY OF SCHLICHT
55, 67'[1' 6' l0' 13'20]' MR- 32- 992 l93Z' Ma th .J. 3 3 (1 966) A. s. Almost PeriodicFunctions.cambridge, 112.Besicovitch,
zbt 4-2s3.ls9l
J' Lon'lon Math' n. S' On two probleftlSo1rLowrer' ll3. Besicovitch, Soc. 27(1952),74t-l+4' MR 13-831'[59] Up'u'' un probleme de moioralion' Thesis' 114. Beurling, A. E;';'; sala, 1933.FM 59-1042'[59] wtd Praxis der konforrnenAbbildung' I 15. Bieberbach,L' Zur Theoiie Rc.CilcoloN{at'palermo3S(1914)'98-ll2'FM45-57 0'[59] y. 1ber einigetxlremtalproblcmeim cehieteder konBieberbacn, I16. 153-172.FM 46-549.19, ann. 77(t-916), rraurt-. formen aotitiuni. 19, 221 y' 0Oer aie Koeffizientem derieniger' Fotenzreihen' ll?. Bieberbach, w e l c h e e i n e s c h | i c h l e A b b i l d u n g d e s E i n h e i l s - k - r e46-552' isesvermitteln. [9' (tqtO)' 940-955'FM Sitzungsb' Wiss' Akad. Preuss.
17, 27, 29, 34,42, 541 L' Augstellungund Beweisdes Drehuitgssatzesfur 118. Bieberbach, Zeit. 4(1919),295-305. schlichrekorfonte Abbildungen'Math'
F M 4 7 - 3 2 7 .[ l c , 1 5 , 6 4 , 6 8 ] l1?.Bieberbach,L.NeuForschungenimGebieterlerkonformenAbbitdung.Glasnik.hrv'prirod'drustva'33(1921)'FM48-403'16'421 t,on nahen kreisformigen 120. Bieberbach,L'. 1be, die Kreisahbildung (1924)'181-188'FM Bereichen.Preuss'Akad' Wiss' Sitzungsber' 50-640.[19] l 2 l . B i e b e r b a c h , L . E i n e h i n r e i c h e n t t e B e d i n g u n g f u189-192' r s c h l i c hFM teAb' M' 157(1927)' F' J. ritskreises. nnt ai bildungen 53-372.[4, 15] Abbildungen. Bull' i. zW Theorie der schlichten Bieberbach, 122. FM 56-297' [19' 42' 43] Calcutta Math. Soc' 20(1928)'17-20' der konin_Gebiete 123. Bieberbach,y.\a.r riige Extremarprobleme Ann' 25(1935)'267-272'Il7 ' 491 formen Abbildung' Math' des Einheitskrei'ses 124. Bieberbach, 1". ffu'i tchlichte Abbildungeii durchmeromorpheFunktionen'||.S'-B.Preuss.Akad.Wiss. . b l 1 8 - 2 9 'U 9 l ( 1 9 3 7 ) 3, 5 9 - 3 6 5 Z l25.Bieberbach,L.LehrbuchderFunktionentheorie.V.2'2ndEdition.ChelseaPubl'Co',NewYork'1945'3'70'MR6-261't441 l26.Biebcrbach,L.ConformalMapping.CrreiseaCo.(TranslatedbyF. Stclnhardt),1953,234' Zbl 50-84' l44l Ergebnisse der r27. Bieberbach, t.' ,enatytischeiortsetzung. MathernatikundihrerGrenzgebiete.N.F.Heft3.Springer-Verlag, 1955'MR l6-913' [59] Berlin-Gottingen-Heidelberg' de fonctions 12g. Bielecki,e.; le*andowski, z. sur certainesfamitles
10
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
a-|toitdes.Ann. Univ. Mariae Curie-SklodowskaSect.A15(1961), 45-55. (Polish and Russiansummaries)MR 26-63.16l t 2 9 . Bielecki, A.; Lewandowski, Z. Sur un th|orime concernqntles fonctions univalentes lin^qirement accessiblesde M. Biernacki. M. R 2 6 - 9 8 0 .[ 5 ] A n n . P o l o n .M a t h . 1 2 ( 1 9 6 2 ) , 6 1 - 6 3 l 3 0 . Bielecki,A.; Lewandowski,Z. Sur une g,in,lralisationde quelques th\orbmes de M. Biernscki sur les fonctions analytiques. Ann. MR 26-743.Ul Polon. Math. 12(1962),65-70. l3l. Bielecki,A.; Krzyz, J.; Lewandowski,Z. On typicolly-realfunctions with a preassignedsecondcoefficient Bull. Acad. Poion. Sci. Ser. Sci. Math. Astronom. Phvs. l9(1962),205-208.MR 25-427' ll3, l5l 132. Biernacki,M. Sur quelquesmaiorontesde la th1oriedesfonctions univalentes.C. R. Acad. Sci. Paris 201(1935),256-258' Zbl 1 2 - 1 7 1 .u , 6 , l 0 l 133. Biernacki, M. Sur la reprdsentotionconforme des domaines lin\airement accessibles.Prace Mat. -Fix. 44(1936),793-314. Zbl t4-24. 129,49i 134. Biernacki,M. Sur lesfonctionsunivalentes.Mathematical2(1936)' 49-64.FM 62-375.[1, 6, 10] 135. Diernacri, M. Sur les fonctions multivalentesd'ordre p. C. R. Acad. Sci. Paris203(1936),449-451.Zbl 14-319'[3, 14, 17' 50] 136. Biernacki. M. Les Fonctions Multivalentes. Hermann et cie., Editors, 1938.Zbl 22-153. il4l conformedesdomuines?toilds. i37. Biernacki,M. Surla reprbsentotion Mathcmatica,Cluj. 16(1940),44-49-MR 2-84. [6, 18, l9] 138. Biernacki,M. Sur lesfonctions univalenteset k-symetriques.Bull. S c i .M a t h . ( 2 ) 6 9 ( 1 9 4 5 ) , 2 M - 2 1 4M. R 8 - 1 4 5 .[ 1 6 , 1 7 , 3 3 , 4 9 ] 139. Biernacki,id. Sur le moyenncsde module desfonctions holomorSect.A. 1, l-8(1946)' phes.Ann. Univ. MariaeCurie-sklodowska. 19,271 3, MR 9-576. (French.Folish surqmary). [], 140. Biernacki, M. Sur lesdomainescouvertspar desfonctions multi' 45-51.MR 8-326'[1, 14, 19] Bull. Sci.Math. (2)70(1946), valentes. l4l. Biernacki, M. Sur lesfonctions en m()yennemultivolenles.Bull. Sci.Math. (2)70(1946),5 I -76. MR 8-326. 19,14, 15, 19,2i, 33, 531 142. Biernacki, M. S)r une inelgatit| entre les rno!€nn€s des ddriv1es logarithmiques. Mathematica, Timisoara 23(1948), 54-59' I\4R 1 0 - 1 8 6[.6 , 1 0 , 1 5 ,6 3 , 6 4 , 6 8 ] 143. Biernacki, M. Surque[quesapplicotionsde kt formule de Parsevql. Sect.A. 4, (1950),23-40' Ann. Univ. Mariae Curie-Sklodowska. (French.Polishsummary)MR 13-123l47l
F FUNCTIONS (PART I) BIBLIOCF.APHY OF SCHLICHT
11
p-wertigeFunktionen.DodatekRoczschwach 1ber M' Bicrnackt, 144. ' Mat' 22' 39(19;l)' (Polish)zbl45-187 ll4i nika Polsk.ro*L"' "irrirrtqaues Parseval' de de laformule app.ti)ations 145. Biernacki,M. Sect. A. 7(1953)' iI. Anrr. urirl vu.ia. curie-sklodowska. 5 - 1 4 ( 1 9 5 4 ) . (-P o l i s h ' R u s s i a n s u m tnarie')MR16-808'13'7'33'47''l coefficients de Taylor des 'fottctions les S" fU' Biernacki, 146. Sect' 9' ii. e".. Univ. Mariae curie-Sklodowska. univalentes. MR 19-540'[8' summaries) (1955),127-riJtiqsi'(Polish'Russian
,r. i1;.i,liil*.
Ann.Univ' enairentuttivatenrcs. sur teslonctions
Mariaecurie-sttodowska.Sect.A.3(1954),71-79(1956).(Poiish' 17' 331 R u s s i a ns u m m a r y )M R 1 8 - 3 8 7 ' 1 3 ' lesextrem't Ccs modiiles des *oy'nn"'et les Sur M' Biernacki, 148. Sect'
klodowska' MariaeCurie-S f oncti ons oi'' r"'in"t' aii t 1'l"iv' (Polish' Russian summaries)MR 19(1956),127-136(1958)' A.
20-29".[3, 15] Tayloriens des fonctions 149. Biernacki, M' Sur les coefficienis C l . I V 4 ( 1 9 5 6 ) '5 - 8 ' M R Bull' Acad' P ; i ; t . S c i . univalentes. 1 7 - 9 5 7 .[ 8 ] coefficients cte Taylor des fonctions 150. tsiernacki, M. Sur les Sect' A Mariae Curie-skrodowska' univalentes'ri' enn' Univ' g(tqsz), r27-133.zbl 89-50' [8' l7] univalentes'Bull' Acad' des 151. Biernacki,M. s ur t,integrale foictions8(1960)'29-34' (Russian Phys' Poon. Sci Ser' Sci' Math' Astr' 16''24) summarY)MR 22A(1)-13?6'L4' l 5 2 . B i e r n a c k i , M ' K r z y z ' J ' O n t h e m o n o t o n i t yUniv' o f c e r tMariae a i n f u n Curiectionals Ann' anatytic of functions' theory the in (1957)' (Polish' Russian q(f qSS)' 134-147 Sklodowska'Sect' e' 16' 181 summaries)MR 19-736'13'7 ' l53.Bilimovitch,A.Surlamesurededeftexiond'unefonctionnon analytiquepgrrapporta'unefonction"analytique.C.R.Acad.Sci. 5 'R 1 5 - 5 2 1 '[ 5 9 ] P a r i s2 3 ? ( 1 g 5 3 \ , 6 9 4 - 6 9M desfonctions ncn analyti154. Bilimovitch, x.' sW lestransformations 1954-1956'MR 23A-50' ques. C. n' Acad' Sci' Paris 247(1958)'
zur TheorieschrichtenFunktionen. rss. Hirrruaurn,z. w. Beitr.dge FM 55-210'[9' 15' 27' 58] studiatvtathl't(tgz9),159"-190' Funktionen.Arch. Towarz'Nauk z.i . uai, schlichte 156.Brrnbantm, 'Zbl]-343' [6' l5' 68] p"vr' 5(1931)'233-237 Lwow.WvOz'-ftnui' 1 5 ? .B l a ke l ey,G.R.C/cssesofp- valen.tstar likefunction s .Pr oc .Am er . 14' 15' 63' 651 UA-253' 16' MR 152-157' 62)' 13(i9 Math. Soc'
t2
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1 5 8 . Bloch. A. Lesthflorbmesde M. Valiron sur lesfonctions entidreset la theorie de I'uniformisation. C. R. Acad. Sci. Paris 178(1924),
FM 50-217.U9l 20sr-20s2.
1 5 9 . Bloch, A. Lesfonctions holomorphes et mdromorphes dans le cercle-unite.Paris, Gauthier-Villars(1926),FM 52-324' l59l 1 6 0.Blumenthal. L. M. Some relationshipsinvolving subordination. ' R 2l-830' [59] , 0 2 - 5 1 0M P r o c .A m e r . M a t h . S o c . l 0 ( 1 9 5 9 ) 5 1 6 1 . Boas, R. P. Univalentderivativesof entirefunctions. Duke Math. J. 6(1940),719-721.MR 2-82. U6' 281 1 6 2 . Bochner. S. tiber orthogonole SystemeanalytischerFunktionen. Math. Z. l4(r922), 180-207.FM 48-376' l59l 1 6 3 , Bohr, U. jber streckentreueund konforme Abbildung. Math. Z' l(1918), 403-420.FM 46-55E.[59] t g . Bohr, U. iber einenStotz von Edmund ! andqu. Scr. Bibl. Univ. H i e r o s o l y ml ( 1 9 2 3 ) ,N o . 2 , F M 4 9 - 7 l l ' [ 5 9 ] 1 6 5 . Bonnesen,T.; Fenchel,W. Theorieder konvexenKorper' Berlin' 1934.FM 60-673.[59] r 6 6 .Breusch,R. on the distribution of the valueso"f lf (z)l in the unit circle.Bull. Amer. Math. soc. 54(1948),l109-1114.MR 10-363.
t5el
t 6 7 . Brown. R. K. On the partial sums of a iypically-7sqtfunction. Masterof ScienceThesis(1950),Rutgersuniv. Library. [13] power 1 6 8 . Brown, R. K. Sorre mappingproperties I'the meqnsums of p. Ph.D. orcer seriesun(i a problem in typicalty-reolfunctions of Thesis(1952),RutgersUniv. [13] Canad. J. Math. 1l(1959)' 169. Brown, R. K. Typicalty-realfunctio,ns. 122-130.MR 2l-662. [13] 170. Browtr, R. K. A classof t;'pically-real meromorphic functions. USASRDLTech.Report212l(1960)'[13,15,17'23'29'51'661 17l. Brown, R. K. Univaienceof Besselfunctions.Proc. Amer. Math. Soc. li(1960), 278-28?.tliR 22A(l\-455' [4, 28, 3ll l72.Brown'R.K.Llnivalent'.solulionsofw,,*D,'|=0'Carrad.J. 8 -R 2 3 A - i 5 9 ' 1 4 , 1 6 ,2 8 , 3 i l M a t h . 1 4 ( 1 9 6 ? ) , 6 9 - 7M Run' y. 173. Cacridis-Theoiorakopulos, tlber die urttere Grenze der deren f'(0) dungschranken $er beschrankten Funktionen f(z), vorgegeben,sl.N{ath'Ann.ll3(1936),656_664.FM62-370.u1' 12,22i der 174. Cacridis-Theodorakopulos, P' }ber die Krumm;tng NiveaukurvenderbeschranktenFunktionen.Math.Ann. 275-28'r.FM 63-287' U I, 12,221 I 14(1937), de 175. iakaiov itctrataicff;, l'. Sur I'univatencedc certainesclasses
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
I3
fo n cti o n s.A n n .Univ.SofiaFac.Phys..M ath.33( 1937) ,243 _252. "zbl 17-270.[4, 32,431 defonctionsanalytiques L' Surune classe 176. eakalon(TchakalofD' Paris 242(1955),437-439.MR univatentes.a.--n. ecae. Sci. 1 7 - 7 2 41. 4 , 9 , 4 3 1 of certain regionsof univolence . takalov(Tchakaioff)'L' Maxirnal Mat-.z. 1i(i959), 4A8-412' 177 of onalyticfunctions. UJrrainl closses nnglishsummary;MR 23A-416'1321 (Russian. de cerSi'r lesdoinairtesd'univolence t78. iakaiou (fctatafoi0, l-'lzv' Nauk Bulgar'lIuC' fiines ,tor,,';f p-ic''icns analytiques' 23A-r77' 129'62i Mat. Inst.4(l;60);No' 2, 43-5s'NIR a{ cenoinclusses Domainsof univalence 119. iakalcv (Tchakafoffl' L' -Dokladv l(1960)'No' 2' of analytictuiitiion'' SovietMatir' z"gt-rgr.MR 24A-50'[4, 32' 43) l 8 0 . b a k a l o v ( r c n a t d o r D , L . S u r ' l e . sBudapest d o m o i n e s r l ' uSect' n i v aMath' lencedes F'otvcs potynomes 11t^'.Univ' "';;;:;;iq""t 494'14'32' 431 ll lsz-ior ' MR 24A3-4(1960,/6r l S l . C a l l a h a n , J r ' , F ' P ' A n e x t r e : n a l p rMR o b l e22A(l)-959', mlo-r41-U nomials'Proc' 13',321 10(1959),754-i55' Soc. Math. Amer. pour et suffisantes ntcessaires rSz. a;l"ga.."no, C. Srr'tesconditions un cercle' d'une fonction holomorphe dans !,utiivo.le,tce 6(1932)'15-79'Zbt 5-18' 14'431 Mathematica l s 3 . C a l u g l r e a n o , G . S u r l e s f o n c t i o n s u n i15-26' v a l e nMR t e s17-472' . | | . A c a[4' d.R'P. Fil' Cluj' Stud'Cerc'Sti' 5(1954)' Romane. par' on univolentfunctions and 1g4.3"ilLi, p. some observations Inst' Univ' Nac' Litoral' Publ' ticularcto"l]'ii'm' Fac'Ci' Mat' 16',17-'18',42',45', 52' 54]' 8), lg5-2.2}MR I I-ttt' 13',7', Mat. 8(194 der Koeffizienten r85. carath6"d;i;:'c. 0;;; ;;^ vuriabititatsbereich vonPotenzreihen,diegegebenewertenichtannehrlen.Math.Ann. FM 38- 448'[s9] 6 4 (1 9 0 7 ),9 5- l15' der Fourier'schen lg6. carath6odory,C. (Jberden viriabilitatsbereich Funktionen'Rend' Cir' ho'm'onischen Konstanrcnvon positiuen jzirqr D, lg3-217' FM 42-429'lzi Mat. Paler*o l 8 T . C a r a t h 6 o d o r y , C ' U b e r d i e B e g r e n z'73(lgl2'), u n g e i n f323-370' a c h z u s aFM men"n. Geibiete. ilh. *rnnongrni, 4 -7 s'|.l s9 l l83.Carath6odory,C.ElementarerBeweisfurdenFundanrcntalsatzder Springer, Berlin' don\ormei-'Abbildung. scrr*arz-restschrift, (tqi+), r9-4r. FM 4.s-667'[591 Math' i. iiu* a-rr'-itudyrrheRundungsschranke' rg9. carattr6ooo*.v,'
I
14
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Ann. 79(1919),402. FM 47'327' ll01 Cambridge, 1932. rqO. Cu.uth6odory,'C. C'onformal Representqtion. z b l 5 - 1 6 8 .[ 5 9 ] lemma. Bull. l9l. Carath6odoiy, C. A generalizationof Schwarz's -241' Zbl 16-216'[l 5' 22' 37| Amer. Math. Soc' a3(19 37), 231 2nd Ed. cambridge tgz.'cararh6odory, C. Conformal Representation. TractsintUatfr.-Phys',No'28'Cambridge'attheUniversity Press,1952.ll5 PP' MR 13-734'[591 ChelseaPubl' Co" 193. a;-rarh6odory,C-.-Theoryof Functions. I, tI' N e w Y o r k , l g 5 4 -M R l 5 - 6 1 2' U 9 , 2 2 ' 3 1 ' 4 6 1 , dons Ie cercle bornte d'unefonction cocfficients les Sur F. Carlson, 194. ^' pp, (1940).MR 2-165. ,iii;. Ark. Mat. Astr. Fys. 2TA, No. 1, 8 ll7 ,22, 301 lg5.Cartwright,M.L.onanalyticfunctionsregularintheunitcircle'|. Quart.J.Math.,OxfordSer.4(1933),246_257.FM59_325.[59] lg6.Cartwriglrt,M.L.onanolyticfunctionsregularintheunitcircle. II.Quart.J.Math.,oxfordSer.6(1935),94-105,2b||1_358.[2'3] lgT.Cartwright,M.L.Someinequalitiesinthetheoryoffunctions. ' M 6l-351'[14'l5' 65] M a t h . A n n . ! 1 l ( 1 9 3 5 )9, 8 - 1 1 8 F Z.-Su" Iesfonciions extrentolesdans lesfamilles de 198. d;;;f"ut, Colloq' Math' l(1948)' 168-170'122'241 for:ctionsunivalentes. bornees.Rozprawy 199. Charzyfiski,Z. Sur lesfonctions univalentes l l l a t " 2 ( 1 9 5 3 )5, 8 P P .M R l 5 - 2 3 ' [ 2 4 ] ii, t^ fonctioni uiivalentes algebriquesborn6es' 200. g;;;ri;rUi,'2. 4l pp' MR 11-25' 1281 RozprawyMat. 10(1955), la theorie des fonc201. ah;;rvfirt i, Z. Methodes variationelles clans Phys' R' P' Routionsunivalentes.Bull' Math' Soc' Sci' Math' 281 ' maine. (N. S ) l(49) Og5'7),259'2&' MR 20-544 122' Polynomes inverses' ZOZ. Citrz.yiski, Z. Fonctions univalentes univalentes.Soc.Sci.LettresLodz.Bull.Cl.IIIg(1958)'No.7,21 . 124,121 pp. MR 22A(1)-807 'Ciu.zyirski, Z.; laniwski, W. Sur l'1quation g;nerale des.fonczOl. bornees' tionsixtrbmales dans lo famille desfonctions univclentes Ann.Unir,.MariaeCurie-SklodowskaSect.A4(1950)'41-56' (French.Polish summary)MR l3-122' l22l de variailon des coeffZO+. Efrarzyfiski, Z.; Janowrti. W. Do:naine cientsA2et43desfonctionsunivalentesetbornees.Bull.Soc.Sci.
No. 4, 29 pp'MR 23A-732'122'24'291 LettresL6t .-rq(r9sq),
conZ.; Schiffet, M' A new proof of the Bieberbach 205. C;;rf"ti, jecture for' thi fourth coeffic.ient.Arch. Rational Mecir. Anal. 2'l 42' 53' 511 i(tqoo), 187-19j. MR 22A(l)-965' l-4' 17' 24' ' Z.; Schiffer,M' A geometricl'roof of the Bieberbach 206. C;;;ttnJi,
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHI ICHT
15
conjecturefor:!;cfourthcoefficient.ScriptaMath.25(1960)' ' U 7 ' 2 4 ' ,5 4 1 1 7 3 - 1 8.1M R 2 2 A ( l ) - 1 6 2 9 Acad' of schlichtfinctions'-f-tot' Imp' 20?. Chen, K. On 'i')i'o'v ' Zbl8-168' Il7 ' 42' 45' 5'l Jap. 9(1933),465-46'7 Math J' schtlicht functions' Tohoku 208. Chen, K. On iie theor:'of 3 9 ' 4, 5 ' , ^ 5 2 ] ' M 6 1 - 1 1 5 3[' 1 4 ' 1 7' , 4 0 ( 1 9 3 5 )1,6 0 - I 7 4 F Tohoku to ihe rheiry of schticht-fu-nctictns' 209. Chen,K. Cr''ntribtutians qlil , 125-"47.Zbl 12-214'[9' 15' 58] N,Iath.l. +f tf 2 l 0 C h t r r c h i l l , R ' V ' l n t r o d u c t i o n i o C o m pMR l e xItJ-439' V a r i o b lt59l esortdApplica' 1948' tions.NewYork, t''ttC'"*-Hill' coefficiei;tsin the expanSin on the argumentsof the ztt. {i^i;;;;' MR Ac-"aI\iath. Sinica4(1954),81-86' sion of a univalerrtfunction. 1 7 - 1 4 2 .[ 4 ' 3 9 ] et cerles z'ros desfonction's mbromorphes S" ni' C\orhnescu' 212. gult' Math' Soc' Romaine Sci' nines classesde polyn6t"'' Ill 3?(1936),9-11. zbl Oxof integraifunctions' J' Math" "4-220' (Jnitalent regicns 213. Clunie, J' NlR 16-809't28l ford Ser(2)5(19s4),2sl-296' J' London merom.orphicin the-u'nitclrcle' 214. Clunie, J ' On functions NIR 18-884'[59] Math. Soc' lZ(tq 57)' 65-67' 215.Clunie,J'OnschLlichrfunctions'Ann'lr{aih'(2)69(1959)' 25ll 511-519.iliR 2l-1194' 19' l7 ' Math' sciticnt functions. J. London 216. cruni e, I, on meromorpnic
z'ls-216'MR 2l-1064'16'9' i7 ' 25i sg')i, Soc.34(19
2 1 7 . C l u n i e , J . ; K e o g h , F ' R ' O n s t a r l i k e a nMR d c o22A(l)-295'14', n v e x s c h t i c h6', tfunctions' 2Zg-233' 35(1960)i' Soc' Math' London J. 1 0 ,1 7 ,1 8 , 3 6 , 3 8 1 C' R' Acad' Lundou-Carath?odory' 218. Comb.r,l' J" l" th\oiemede 41-42'MR 9-363' U9l Sci.Paris 228(1949)' o7onolyticfunctions'DukeMath' 219. Conn.ff, e' N' On th' p'op"ti" M1R' 2 3 4 - 5 0 [' 5 9 ] J.28(1961),73-8 in, Theoryaf Functionsof o' 220. Copson,E. i..qn Introductitonio Zbl12-169'[59] Complexio'ioOt'' Oxford' lg35' 2 2 l . C o t l a r , M . - F " ' t i o n s w h i c h a r e u n i v a Mat' l e i l oUniv' n a s uNac' b s e tLitoral ofthebounInst' regularily'-Publ' of domain a of dary 621 ' 4(1912),oi-gg. (spanistrlMR 4-155 149' bei air 'qOAiUungsfunktionen 222. Couranr,R. 7ber eine nigrn-rc:'noi 45-668' FM (1914)'101-109' konformerAbbildung'Gott' Nutit' und in der variationsrechnung 223. 8:lr.ant, R. (JberdirekteMethoden 7ll-736' FM e"". 97(1921',), uber verwandteFragen. viurn. s3 -4 8 8[5 . 9]
16
B I B L I O G R A P H YO F S C H L I C H T F U N C T I O N S
224.Corttant,R.Plateau'sproblemandDirechlet'sprinciple'Ann' Math. 38(1937),679-724'Zbl l'7-268' l59i Conformal-^Mapping snd 225. Courant, R."Dirichlet's Principle' N'Y'' 1950' 330 pp' MR Minimal Surfaces'IntersciencePub'' l2-90. [59] havinga positive real part in 226. Cowling,V' F. On analyticfunctions MR l7_1070. 329_330. theunit circle,Amer.Math. Mon. 63(1956), 1 2 ,1 7, 2 l l c. some apprications of the 227. cowling, v. F.; Royster, w. Math. Soc. Japan l3(1961)' weierstrassmeon vati"etheorem. J. 104-108.MR 23A-732. l4l J' London Math' 228. Crum, M. M.; p'op"iy of schlichtfunctions' ' R l8-121' [34] S o c .3 l ( 1 9 5 6 ) ,4 9 3 - 4 9 4M analytic in o circle' A:ta 229. Cyu, F. Som'eproperties of functions Math.sinica-q(1q59),382-388.(Chinese.Russiansummary)MR 23A-33s. l41l 2 3 0 . D a i o v i t c h , V . S u r l , e x i s t e n c e d e v a l e u r s l i m i t e s dMath' e l a r ePhys' sultanrcdes Ha''6 ) l ' Bull' Soc' ls classe a appartenant fonctions 471 Serbie8(1956),23-28'MR 20-874' 13' univolentfunctions on Qnan231. Danilevskii,e. rur. on single-volued -Zap' Mat' Otd' Fiz' -itr'at' nulus.Har'kov Gos' Univ' lJc' Zap' 34 R u s s i a nM ) R F a k i H a r , k o vM a t . o b s c . ( 4 ) 2 2 ( | . g 5 u , 5 1 - 5 3 ( 1 9 5 1 ) . 1 7 - 1 0 6 9[ .1 , l 5 ' 1 8 , 4 8 ] 232.Darwin,C''()n'sometransformationsinvolvingellipticfunctions, 1 l - 3 4 1 '[ 5 9 ] P h i l . M a g a z i n (e7 ) 4 l ( 1 9 5 0 ) i' - i l ' M R 233'Davis,P.J.Packinginequalitiesforcircles.Mich.Math.J. 10(1963),25-3r. MR 26-981' [2] poriur., H. On tie'zgros of total setsof polynomiols' 234. Davis, p. r.; Trans.Amer.Math.Soc.T2(1952),82-|03.MR13-552.[9,15,19, 49, 53,681 2 3 5 . d e B r u i j : , N . G . S i n S a t z i l b e r s c h l i c h t e F u n k t i o n eI n .Nederl..Akad 9' 7' 25'16'38' [ 6 ' 4 ( 1 9 1 1 ) ' 4 ' l 4 9 ' M F . 2 2 7 4 ' P r o c ' Wetensch., 411 conforme' C' R' Acad' Sci' Paris 236. Denjoy, A. Sar ltr reprdsentation 2 l g ( r 9 4 4 ) , 1 1 - 1 4M . R ?-287'[lE' 62] confcrne des aires planes' 237. Denioy, e.- sar la repr\seniutirrn ]VlaLhematicaTin.20(|9M),73_89.MF-6_262.[18'62] 238.Detwif.r,g.;Royster,W'C'Avariationalfor.mulaforluncticns convexinthedirectionoftheimaginaryaxts.Abstract568_2, 242' 124' 4ll, NoticesAmer. Math' Soc' 7(1960)' Press,oxftrrd, l93l ' zbl 23g. Dienes, p . The Taylor Seriesciaiendon 3 - 1 5 5 '[ 4 4 ]
FUNCTIONS BIBLIOCRAPHY OF SCHLICHT
(PART I)
I"I
polynomes' C' lt' Sur le rayon d'univalence des 140. Dieudonn6' J' 7 9 - 8 1 'Z b i r - 1 8 ' 1 3 2 ' 4 3 1 A c a d .s . i . p u r i , r 9 2 ( 1 9 3 i ) ' 2 4 l . D i e u d o n n 6 , J . . S l l t l e s f c n c t i o n s u n6' i v i7 ale t e s45', . C52', . R .547 Acad.Sci.Paris 39', ' n lgz(1g31),I148-1150'zbl 1-344'[4' relatifs cux dur quelqucsprc-u;-le''nes 242. Dieudonn6,J' Recherches d'une variablecomplexe' Ann' polynomeset auxfonctions borneis 14'ls' 17'
[6' 11' Norm.iii'istigir),247-3s8'zbr3-rl9' Ecole
6.ll 22,32,39, 42,43,45' 52,54' et de convexitbde cerd'itoilement rayons 243. Dieudonn6,i' S''' les tainesfonctions.C.R.Acad.Sci.Parisl96(1933),3.7_39.2b|6_64' [6, 10, 11, 12, 28] j' Lo Theorie Analyiique CesPolynomesd'une 24+. D'euJcnn6, M' 1938' [59] Voriable.Gauthier-Villars'Paris''a of funcof proof formuto i1 t'n-e lneorv 245. Dinghur, A' 7 ' impte 101-102'MR l6-231' [59] tions.Math. Student' iz!gsq\' 246.Dinghas,A.VerzerrungsschrankenbeischlichtenAbbildhngeildes 413-416'MR 21-517' I'14' Einhcit:krei'es' nrct'' Math' 8(1957)' 1 5 , 4 2 , 6 5 ,6 8 ] Theorie der p,l'huu einige Monotoniesiitze in der 247. Dinghas, Norske vid. Akad. oslo I(1959)' schlicrttenFlunktionen.Avhdl. 10' i5' 35'42'64'68f No. l, rs pp. i:ri.as-zg:' [6' problem in the theory of analytic.func24g. Doob, J. L.'iiinr^um MR 3-76' [59] 413-.424' tions.Duke Math' J' 8(1941)' problert of Plateau' Trans' Amer' 249. Douglas, J . Solutionof the ' bl3-328' [59] M a t h ' S o c .3 3 ( 1 9 3 \ , 2 6 3 - 3 2 1 Z valeurs d'ttne sph,rique d^crite!::^l:t 250. Dufrernor, i''i'r'i'oi'i 214-219'MR Duli' Sci' Math' Q)' 65(1941)' fonction *6'oio'pfte'
2s1.f:f6*llri;itl
d'un th,orime sur unenouvered,monstration
[46] d'Ahlfors'C' n' Acad'Sci'Paris212(lg4l)'662-665'MR3-81' m6ro' des fonctions 252. Dufresnoy,J. Sur lescercles'ie-ie'mpt*iage mo rp h e s.i .n.l.uo.Sci.Par is2|4( |942) ,461_469.MR4- 138.[46] -(2) 2 5 3 .D u fre sn o y' J.Sur lesfonctionsm\r omzt-re or phesetunivgle . MR 7-56. [62]ntes dans l e 6g(r94i.1, Math. Sci. Bull. cercreunite. fonc' pour certaines 254. Dufrernor,';.";; pronD*, iei coefficients Ser. Fenn. Sci. Ann. Acad. tionsmiromorphesdansle,,,il, unit-6' A. L, No. 25079(1958),7 pp' MR 20-968'1221of onalyticfuncproperties -i'n L. E. Certainextremal 255. Dundudenko, a circutai ring. ukrain. MaL z' tionsgiven in a circte and ft4n fq-ZS'[6' 10' 14' 15' 17'22'30' 8(1956),l'll-Zgti (Russian) 9 5, 0 , 6 1 ,6 3 ' 6 4 ' 6 5 1 3 5 ,3 6 ,3 8 , 4 8 , 4-i.Funktionen,welcheim Kreis 256. Dundut.ntll r-l inrr'rinis, itoti.-
-7
lE
BIBLIOGRAPHY
OF SCHLICHT
FUNCTIONS
S') 3(1957)' inst' Politehn'l'utr'lN' 2a-'7'll' 14' sind'Bul schlicht MR \z\ < 1/'f2 nou*liliu" tt"t**tes) cerman' (nu"'un' 3?-38'
,,"i;';:i,'r-ii"?;,i,i.lfl :'il:';:{;:!:#^;xi1!![i'K::";i:':' s y m m e t r yt z' v ' 1 { " " ^i r i
41I
r s a I 1 5 .1 7, 2 3 ' ilr-:;l:il1 runctions ,,o,r,ke , rnu,,i"uni ;))t,,ir";il1\t), 84_e5. -Fiz' (3) E' Deformatton
uunu;:'ij il:lluil'"Ser' Mat' io'i+' 258 lau::ril,ln::x;'il-";l1ijlo+o
L' zse' ;"ndud'enko'
i!, zl, 53,651
f#:; -..^--rization of ctassef : ffi;'1'::
Dunut: ;,!ti* zsg :::; 35*41'i(Russtan' *h', ","*'' " )MR ** t' $i::;;* lnst' S(1q61)'
031.. ,'^ iip,-ty. [4, 15,17r Kas'janjuk'S" !: ''o'n'';{;uy'i u t{:::'6i; i Dunduttnio"i Mat' NaukI){ 200. )i'on"o'nulry ^Y:tohi' univalent [6' l5' 49'o!l,nrlr,,, funct'to'ts 23A^-475' *R 'o tiitrt'""1 "f' r65-170.
?' ::T.:::{;'l?'";1tf;;*'i'ii;i"t'n;5 . Dund"t'"x"' 26r to sPecialclosses' ^' belonging
(re56),"J:t;f*nli-loosl[1ti''io-r5'r7'22'30'35'35'38' +s'so'l"ii]'rlt . onuniuatent o:'?:."[r!]{',,'i:;:ir:;, func.tio: *.sDund'u':f'o*ioYo"n"j.'*urr. 262' '"" Jt'uin .'i.'r*'*t H;. iii,-is,zl
:l,'"l lJ'iJ t"?g,";, ii'"'$i'" i Dund"e*u"'
1;;;ii inIn" i"^r'
^qn::J' 1,i-?Li'Ti":J'ffi1;'f1#fi:"ilI Dopovid' MR 20-vou' (Jz)-'. .ili;"rrilil^'ru**aries) < sumrn \z\ Russian'English
263
(-lxrainian' 5g5-5g'7'
tj:'t.'l,' estintatest o'yli*''t!'{i{i'"ii e o c j ff L : ; 1i,12t. ,r^ ;ri;Tj ananor ,I;i iJ.li1ttiuI',l,u,l;,)t?;#"",]i,ffi)iit1 .Amer
;l y,,; ; s iu,,n,I z6 I ii i'1,i,ii, ;k,?IJ;, ;Ji'i,r: i;;f-;;ar. i: :2:, s(rsoz), irr.,, "T:::::;, .i;;. 266.Dure",";:,i.;-i.t T,f . in an annultts"
schlicht [48] .rL260-2'l'2.MR 25-39thpnrv of the secondt'ariafion,in^*
u,r,eMath o,, l, :;;.' i .' l! { 1i i,.y ; f,,,n z6.tDure":r .;r i.t irfo'!n!' l,/,,i f "T ' lz4' temum Problems 42't'L 63(1e33)' y* ?,1-uo va ,. Mat.Fvs. ,otrnJli"nr:;;?" lesfonctioiisunivalentes'
268' Dvor;i"'6:-sur
q tz,y, o?)r zvls_t e_r6. " r,o,,o i:J"!!J,"{)i.^iii,,,t;,,;_i Aryeh.t,'
26e.Dvorerzky,
l:;;;,'Zoi_Jol.nnq
221' lt> Acad' Sci' Paris
I) FUI']CTIONS(PART BIBLIOCRAPHY OF SCHLICHT
19
2 T 0 . D v o r e t z k y , A r y e h . L e s c o e f fs"i:";;ir i c i e n t s d , uizslgn), n e f o n c t i o447-44e' n u n i v a l eMR nteetle
;;#. r,oi."c'."R." domaine
21r.9:;;"[?],
funcunivatent -of Arych, Boundsfor the coefficients u7' r2-r2'7' MR
sL.' I ii;;0i;;2e-63s' r'1",t,. Bull'Soc'Sci'Lettres Lowner' Equation-s'n"!tlde r' ,rr.1;;rlrll'ru', 12'22'241 MR23A-732' derraLtdi. rLtrqo0llil;'+ a 09, vr.. dasKoeffizientproblern w ;r;;fi.rr, 273.Effertz,F.;1; ii''po'iti"* ieattetl'trsh' N{ath'i2(I961)' ;;;. ticns.proc.
ilonalenn'n'i'':i"
ttie n a" - 1:!2!etischen Mizbr e h art c s n J',Zt,, o 7 u );'f, r#li] 22r-230' , - i:;X? irinri. ffi1--t. 42(rs3'7), dergeome,i,rirri"^' ,r. f#"f;,!:'tlt"l)
de detasurface topotogiques y'ryy:.':'.oprietts zbl 12-228't34l
767-272' sphire.rt"a' r"rtit'' zs(tq:s)' thefuncli3n'W: Az + B' ';; Levine' S'; E' ";MR 21-1190' 216.Elvash, *j' [59] 303' o6(rqsg)' Amer.rt'ru,il''ruron' 2 l T . I 1 p s t e i , , , g . s o . e i n e q u a l i t i e s r e l a tfuutn' i n g t o cStc' o n f o53(1947)' r m o l m a813-819' ppmgupon euil' '\;l;' slir-domain''' canonical 601 . 19,l7 ' 18'25' 2'7-', schlicht MR 9-180 ' Oi o coniectureconcerning 278. Epstein,B'; Schoenberg'I'.]
functions'';;ii''A'ttti'M";:"s;;'"6s(1e5e)'2't3-2't5'MR
whose 'J;11].; Taylorseries G. Schltcht Piranian, ' l'f;J,i;J]| ,,.
convergenceontieunitcircle.is,uniformbutnotabsolute.Pacific
t62l MR 13-335' J. Math.itrisil, 7s-82' gewisserFunktionen280. Erwe, ' ' i)ii'' aii' s;'t'tr't'theitsschranken ' 3el te' 2'7 MR 14-269' so(rgszl''il-e+ i' of thederiva.tive famitien'i;' rilation irr*rrr'rne moclulus
2g1. Erysou,s.'p.-o-othe 63] andthemodulusofthefun-ctioifo,univalentconformalmgpplngs. U"f" 1954'(Russian)[15' Sarlt"" dissertation' of Summary iunctions' D'povidi i ,y;;;; Russtan' 282. irzohi, r. G. on sonte "i "a::t 'iseo-)soq"(ukrainian' ns* trila ukrain' Nauk Akad' [5' 6' 14' 15' 63'64'65] Il' Mat' English with^integer'1o;fficienls' "il**itt)' Pou'er^s-11iis A' M' Evgrafov, 283. MR l3- 335'[3 91 izr - 132'( Russian) S b o rn i k'N ' S' 29( 7- .) tr qsr ) ' 284.Evgrafov,M'A'Pow'e,rs"n'*i'nintegralcoefficients'l'Mat'Sb'
i!:: Ns,6i ii*'l:l:lli:lT;lyml,ni,l;{:,i,;}"}, r:, Munchen ekai'wiss
"' f,,,7;,f;X{f,i'rffi'-{il;;;;'"e""' 46-550' [9',18] (1916)'39-42'FM
-
2O
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
(1920)' 2 8 6 . F a b e r , G , I J b e r P o t e n t i a l t h e o ra'ftuO' i e u n d kWiss' o n f o rMunchen meAbbild ung.Sitnuyt'' -phys' Kl zgsber. tvtath'
Ab' konformen de.r aufderrheorie Munchen
,r, ?^;7,,y,ir;'htl|)y0,,,1,pt'vt''fi' Math' bildung'sitzgsber'
Bayer'Akad' Wiss'
[5e] gr-1oo' FM 48-1231' l of Trgaz>i M' R. O:nopp'o*imqp1'Ut functions
288. Farrell,O' J'; Bolster' Proc' Amer' M;;: lesservolencei''
S"t' 13(1962)'158-162'MR
Dokl' derivative'f a ctmptexfunction' the on s. ,rn.';;::"il-}. MR 10-288'[4] Akad. NuY.ksisn tN s'l e:trq+8)'"35?-3s8j 2 g 0 . Fe j 6 r,L .tJb e rd i e K o i tver genzder .Potenzr eiheander Konver gen. zgrenzei,,;"i;;iert
portiatsummen und ihreMi ueIwerte ie d e.r b i) s e h i c o,,, n ,nu.,!":!1,'1.2, b e i d e r F o u r i e r r e i h e u t t d r i t i n z r20' e;ne.Z.Angew.Math.Niech. ;0-88' FM 59-298'[4',-10', ?,9 : .2, I 3(1933), monoiibir'Pctenzreihenmit mehrfoch vol' 8 y. un urn rrn Jnirl, ej€r, F ?g1. ac Scientiarum' At;; ;il'utt"n rcner Koeffizien4snfolge' 39i (1936),aq-irs' zbl 16-108'[4' 6', monoton'egyutthotosoiozat' tobbszorosen 298. Fej6r,y' noi'oni'o'ok E'ttttito' 55(1936)'l-29' /a/. Matematikait' ft'*t"Jtii'aoln-yi mehrfaclt Reihenunripotenzreihenmi; 2g9. F;r6' ,L. Trigonometrische monorcnerKoeffizient'nfots'"'i'unt-e^tr'Math'Soc'39(1936)'
'?],
funktionentheoretische Riesz' L .tibe' einige ,*. itl??; -:lrq' [3' 7] FM 48-327' tds Math'z' riiiqzri' ungteichungen'
FUNCTIONS (PART D BIBLIOGRAPHY OF SCHLICqT
2I
3 " "0^1' . F e j 6 r , L . ; S z e g t i , G ' s p e c i a l c o n f o r m o l m a p p i n g s ' D u k e M a ' r i t ' J '
20.'41'491 i g i r q 5 l ) , 5 3 5 i 5 4 8[ 6' , l 0 ' 1 6 ' der Wirzein bei gewtssen Verteilung ait Ai"'M. Math' 302. Fekete, mit eoizzahttsenKoeffizienten' Gleichungen algebraischen -il FM 4e-47't59l nogzt),228.-24e' ebener den transfin'iten Durchmesser 303. Fekete, M' 0b" FM 56-112'[59] II' Math' Z' 320;3q'215-22L Punktmengen, schlichte ungerade O' Eine-Beme':k'ngiber 304. Fekete,M.; 3*", i"{atir.scc. s(tr:3), 85-89.Zbl6-353' Funktioxen;.;i;con
Dokl' p-uatent for some-e.stjyyles .functions' f15;dl;;1]';1'r 30s. MR l5-413'[3' 14' s') e2(1953i'zti-zqz' Akad Na'rkbJsROt
17' 49' 501 connectedwitit On certarn tzrtremal domains Meh' 306. Fel'dman, Y' S' t-eningtaa' Un-tY:Ser' Mat' univalent f)n':tion'' Vestnik 49' 681 2 ' - 6 7 - 8 5 't u f n Z S - f2 1 1 ' U 5 ' A s t r o n o m ' 1 8 ( 1 9 6 3 )N' o ' meromorphen i^ Einheitskreis ilb"ii' 307. F'enchel,w s c h l i c l i e n F ' m l : t i o n e n ' s i t z s b e r ' p ' * t t ' A k19] ad'Wiss'Phys'-Math' ";;;;;i"^g'n f, +: t-436'Zbr2-269'[9' Kl. H ZZtzttigt su de la repr^sentationconl-orme Etude (Lelong) J. 30g. Ferran.J. (3) 59(|942), s.i. 6.oi. Norm. Sup. voisinagede la frontie.re.Ann. 43-106. MR 6-207' 146'62) C' R' Acad' Sur un-th\orime de M' Golusin' 309. Ferrand,J' (Lelong)
MR 5-e4'uel Sci.Pariszii(tg+ii,2s4-2ss' holomorphesdans une
l,esfonctions 310. Ferrand, J' (Lelong)Sur MR 6-262'[19] (Z)'ellgqi)t +'Z'4I1' Math' Sci' couronne'Bull' son apptication i'nliu'ititaa;e1t13rs^et 31I . Ferra"d,J:G;t""tl'i';;' ouprobli^ii,ti,d6riv6ea),eutaire.Bull.Soc.Math.France '72(is4/i),r'78-192'MR ?-ss' [46] domcir"' aitoi*otry^o'n1l:!que d'urt 312. Ferrand,J. Gelong)Sur la c.R.A.";'';;i:'i*izzt
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
harmonic 317. Flett, T. M. Some remarks on schlicht functions ond J. Math. oxford func'tions of uniformly bounded variution. Quart. Ser. (2) 6(1955),59-72.MR l6-916' 123,621 J ' Math' 318. Flett, T. M. O,nthe rqdial order of a univalentfunction. Soc. Japan l1(1959),l-3. MR 20-662' 162l 319. Fcrd, L. R. Automorphic Functions. New York, McGraw-Hill, (1929).FM 55-810. [59] 320. Ford, L. R. On properties of regions which persist in subregions J. bounded by levet curves of the Green'sfunction Duke Math. 1(1935),103-104.Zbl rl-261. [], 37, 60i en321. FourBs,L. Sur lesdomoinesd'univalencede certainesfonctions MR 9-507.[28] ti)res.C. R. Acad. Sci.Paris226-1948),1157-1159. une fonction admettant 322. Four|s, L. Fonctions analytiques d'outomorphie donnee. c. R. Acad. Sci. Paris 232{1951),, MR l3-222. l49l 1894-1895. Power serieseXpanSions Jor inversefunctions. Amer' S. 323. Frame, J. Math Monthly 64(1957),236-240'MR 19-22' [59] verzer324. Frank, P.; Liiwner, K. Eine Anwendung desKoebeschen rungssatzesaufeinProblemderHydrodynamik.Math.Z.3(|9|9), 78-86.FM 47-326.[59] J' Lon325. Frazer,H. Further inequalitiesin the theory of functions. l 5 ' 6 5 ] d o n M a t h . S o c . 1 0 ( 1 9 3 5 )1,4 3 - 1 5 0F' M 6 1 - 3 5 1 '[ 1 4 ' London 326. Frazer, H. on funrctions regular in a convex region. J. Ir4ath.Soc. 20(1945),199-204.MR 8-19' [59] Acta 327. Freud, G. (Jber einen Reihentheoretischer'satz von Fpier. MathAcad.SciHungar3(|952),1^73_|76.(Russiansummary)MR 14-737.14,221 32S.Fridman,G.A.ontheproblemofthecoefficientsoffunctionsof the classF/a. Dokl. Akad. Nauk sssR (N. S.) 65(1949)'805-808. (Russian)MR 10-602. 13' 171 Duke 329. Fnedmati, Bernard Two thqorems on schiicht functions' M a t h . J . l 3 ( 1 9 4 6 ) ,1 7 l - 1 7 7 .M R 8 - 2 2' 1 1 7 , 3 9 ,5 + l von 330. Fritsch, w. uber konvexe und schlichte Abbildungen -122. -M5 .'Zbl 17 U4, en. DeutscheMath. 2(1937),121 K reisbereicft 2 2 , 3 2 ,4 3 1 331. Frostman,o. sur lesproduits de Blaschk;. Iiungl. Fysiografiska Soc. Sallskapetsi l-und l;orhandlingar (Proc. Roy. Phvsicg. Lundj) 12, No. 15,(1942), 169-182'MR 6-262' t59l and 332. Fuchs, B. A.; Levin, Y. l. Functions of a complex variable 1961, some of their applications.@nglishtrans.) PergamonPress, 286 pp. Zbl 98-276. l59i
t;rF
(PART I) SCHLICHT FUNCTIONS BIBLIOGRAPHY OF
23
t s,I:j ::.'l I':r:W #:1'$ilil# i:!::it: 333Fuch No' 1' Jan' Univ. August il'f,'J,i Amer. fnfuttt'Soc' 68' Bull' No. 6(1961)'pp'483-485;
of anaivtic for ;neartv1t-ttes theorem )|u')'r""'ss ' MR5-36' l.0 l?,ik:t-:tiT rto"n't*' iiios(rg+l)'35-47 i*J"t functions.p'ot' '
, cerivativeand convexfunctions' 13, e,10, buil'lt*; soz ro i+, rs i.,rn :::--:i1iiir,";;_;; 1":1, lsll
derivative and convex generqliz^ed'-schwarzion A ' F R' 336. Gabriel,
311
ftnctions'otttit'I;th't''ooi\ii""oll-oze'MRle-lMs'[4'6'
of 1 0 ,1 4 ,3 1 1 the integralsof moduli concerning results Some M' R' 337. Gabriel, regularTu,i,'t:on,alongcertai,n""cu.rv,is.J.LondonMath.Soc.
ofmoduti.cf ,J'13',lJ,ii:;:lXii;?!:rr')ernins theintegrats ,,, r e g u l u r f u n c t i o n s o l o n g c u r v e s o f c e54-331' i t a i n t y p[3' e s101 ':Proc'London
tn'1zi'FM Math.soc'(2)'28(1928)'in'''['ott *oayti of regular functions R' fr" ci)'n"ins "i vruttt' Soc' (2)' 39(1935)' 339.Gabriel, fff; along'onu''i curves'Prcl' 'A";;;'''io^ [3' 10'-16] tnzbl 11-358' 216-231' andsubharmonrc positive i^'tions n'?' 340.Gabritr, Math.Soc.2|(|946)' convex,";,;;;."i:i"ndon closed a on and side
i.?:::,: Xl"''lh ::Aff: ifi ,o'8"i.?; l::'^i:iT,\iln=,r',
aber nicht absolutkonvergtet . l'1,621 14-737 3 4 2 .Ga i e r,D .sch lichtePotenzr eihenonder Konver genzgr enz e'M ath. t62l 15-113'
iso-qss'MR z. 58(1e5i)-, zurkonformen Ko'matu lteration'u"iii'n'von ein 865-885. 343.Gaier,p]fiw' vt.ct'. 6(1957), !|,i"r".t'. Ringg,oi,,,n|' Abbildungvon MR 20-18' [59] ,,- Durchftihrung t'..,.nhfiihntns der a konformen Abzur 344.Gaier, v' inti"uchungen bildungmehrfoch"'o*^'i0"tr["il'c:ebiite'Arch'Rat'Mech' t5el Pacific Anal.,tibi6i'iog-trs'MR21-728' /j'i::yto'regions' io'iv ^f i''* conformal on "i ,D' 345.Gaier
r r'r"ttr"zi ror runetjgl,s iZd|y!::r;;Yiii)':,' ,::"n],,^s
346.Gaier ,o,o,.iy:"::r:;:'
e(1e62)' o;.nl^*urionuiMech.Anal.
'ft'fn ZS-+O'F' 16' 48' 621 415-42L
-7
24
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
A note on the mean value of the 347. Galbraith, A. S.; Green, J' W' MR poissonkerntel.bull. Amer. Math. Soc. 53(1947),314-320. 8-51I . [59] Walsh' J' L' On the growth of 348. Galbraith, A. S'; Seidel,W'; Amer' Math' oifin'tfons omitting two value* Tlan;' derivatives 19',43',62] Soc. 67(194D:320-326' MR lr-344' [14' of univalent functions' Kiev349. Gal'perin, f.' Vf. On o class 189-l9l' MR 17-957'U0' Avtomobil-Doroztnst' Trudy 2(t9!5)' 1 7 , 2 3 , 2 8 ,3 8 1 univalentfunctions with boundeci 350. Gal,perin, t. iM. The theory o.f rotat!on.I,u.Vyss.I.rcebn.Zaved.Matematika(1958),No.3(4)' 7 18' 201 50-61. (Russian)NiR 24A-38' [2' 4' ' of the Toylor yriel of two speciol 351. Gal,perin,I. M.. Finite sectiotts clossesofunivalentfunctiorts.UspehiMat.Naukl3(1958)'No. ) R 2 l - 2 5 ) ' [ 2 0 '4 3 ] 5 ( 8 3 ) ,l 7 l - l ? 8 ' ( R u s s i a nM 352.Gal'perin,l.M.Ontheargf'(z)ofap-leavedstur-likefunction' Ukrain.Mat.Z.ll(1959),207-2|0.(Russian)MR22A(l)_128.[6' 24,491 of p-valent spiral -functions' 353. Gal'perin, I. M. On the theory DopovidiAkad.NaukUkrain.RSR(1959),1051-1053.fUkrairtian.Russian.Englishsummanes)MR22A(2)-1628'[6'14'15'23' 63,651 univalentfulctig.ns with bounded 354. Gal'perin, [. M' On the theor'yof RSR (l?60), i465-1468' rotation. Dopovidi Akad. Naui Ukrain. (Ukrainian.Russian.Englishsumrnaries)MR23A-330.|4,20,43] of functions of special c.lasses 355. Gal,perin, I. M. On tie theory rototional-symmetry'ukrain' schlichtin the unit circle with k-iupte M F . 2 6 - 2 7 7 '[ 1 0 ' 1 5 ' l 7 ' a t . 2 . 1 3 ( 1 9 ; l ) , N o . 4 , 8 8 - 9 2 '( R u s s i a n ) 23,38,64j of p-valent fu-nctions' Dopovidi 356. Gal'perin, I. M' On the theory Akad-NaukUkrain'RSR(1962)'i:SS-tSO0'-(jkrainian'Russian' l4' l5' 63' 64' 65] Inglish ru*mu'it') MR 26-7M' [i' 6' and the szegokernelfunction' p. 357. GaraU.aiun, i.'srh*orr's lemma MR ll-340' t59l Trans.Amer. Math' Soc' 67(1949)'1-35' of tength in co-nformalmapping' 358. Garabedian,P' R' Distortion 9 'R 1 1 - 2 1 '[ 5 9 ] D u k e M a t h . J . 1 6 ( 1 9 4 9 ) , 4 3 9 - 4 5M p' L' A remark on cavitationalflow' 359. Garabcdian, n'; Royden' H' Proc.Nat'Acad'Sci'U'S'A'39(1952)'57-6i'MR14-102'[59] L' The one-quortertheoremfor 360. Garabedian,P' R'; Royden' H' (2) 59(1954)'316-3z4' mean univa;lent.functions' Ann' of Math' . 6 , 1 9 ,2 4 , 3 3 1 M R 1 5 - 6 1 3U
-_
FUNCTIONS (PART T) BIBLiOGRAPHY OF SCHLICHT
25
the theory of R'; Schiffer' M' Identities in P' Garabedian, 361. Math' Soc' 65(1949)'187-238' conformal mapping' Trans' Amer'
t59l MR 10-522.
p. M' Convexityof ctomainfunctit'nals' 362. Carabedian, ir't Schiffer' 281-368'MR l5-62t' [591 J. d'AnalvseMattr'2(1952-53)' coniecp. M' A proof of theBieberbach 36'J.Garabedian, n't Schiffer' f u r e f o r t h e f o u r t h c o e f f i c i e n t . J . R a t i o45 nalMech.Anal.4(1955)' 27', 42', ', 52',53', 541 25 24' 17 ', 4' , -465. 1?-2 MR l;, 427 inequalityfor P' R': Schiffei' W' A coe'fficient 364. Garabedian, (2) 61(1955)'116-l16' MR schlicht lunctions'Ann' of Matb' - [9, 16, l'7, 24, 25, 39' 54] 16-579 of functionsunivaiellin theunit cir' 365. Garciu, p . oi'ti'''i'ift'r'ns MR 3-78'[i7' 76-8)' lSpanish) c/e.ActasAcad'Ci' iima 4(194i)' 45,52,541 W'K' An inequatityin thetheoryof con366. Gehring,F.W'; Hayman' pures Appl. (9) 4t(t962\,353361'MR uattr. mapprig..l. formar 26--1209. [7, 15, 24] 36?.Gel'fer,S'tC*fft'lZurTheorietlermultivalentenFunktionen' R e c . M a t h i M " . i | o r n i x ) N . S . 8 ( 5 0 ) ( 1 9 4 065] ),239_250.(Russian. l4' 15- ' 4:' Ge rma n,u ttu ty ) MR 2- 185'[1' de l''toilementet de luconvex36g. Gcl,f.r, s. tcu"rrirl su, Iesboines i t6 d e sfo n cti-ffi"lun' onsp- valentes.Rec.Math.(7-55' M at.Sbor nik) N.S.l 6( 58) MR [9' 1l ' 12' 14] Frenchsummary) 81-8;' (1945), Redc' propertyof A9u1ae!^{unctions' 369. Gel'fer,S' (Guelfer)On a (1945129-r-294'(Russian' Math. Ourui.iuornix) N' s' rotis) I 5' 2?' 37' 6l) E n g l i sh,u **u i v; MR 7- 288'[l l' whichdo not of regularfunc-tions 3?0. Gel,fer,s. (Guelf er)ort the crass (Mat' Sb') N' S' - '" Xtt' Math' takeon anypair of valuesw and 33-46.MR 8-573'U7' 341 19(1946), Dokl' it multiv-ulent.functions' 371. Gel,fer,S. (Guelfer)Thevuriot:iin qg pp' (jqs+)' sgs;'888'Amer' Math' Akad"Nauk SSSR(N' S') (z)ze,1ilo:1' 1-4' MR L6-459'l24l Soc.Trans,. 3 7 2 .Ge l ,fe r,S .(Guelfer ) oncoefficientsof.typicallyr ealfunc MR ti ons . (r9i4),3i3-3i6.(Russian) 94, s.l sssR cN. Nauk Akad. Dokr. 1 5 - 7 8 6[ .9 , 1 3, 1 7, 2 3 , 2 5 ,5 1 1 3 7 3 .Ge l 'fe r,S .(Guelfer ) Onthec' oefficientnr gA\y{ or pvalentfunc Amer' 955-958' 106q:s^6J' tions.Dokl.Akad' NauksssR iN' S') ' Il4'24' 421 17-957 Math. Soc.Transit'(2)26(1963)"5-10'MR of typicallyrealfunctions' 374. Gel,fer,s. (Guelfer)on the ,oiltritntt MR 2rr-2r3. (Russian) Dokl. Akad Nauk sssR (N. S;i l5(1957), 2 0 - 1 6 1[.1 3 ,1 7 ,4 5 , 5 1 , 5 2 1
-t
26
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
3 7 5 . Ge l 'fe r,S .(Gu e l fe r)Ontypicallyr ealfunctionsof^or der p' Amer ' MR 234- 330'U3' 15' 17' l536' (2 ) 1 8 (1961) ' T ra n sl ' S o c' Ma th . 3 9 ,5 1 , 6 6 1 3 7 6 . G e l ' f e r , S . ( G u e l f e r ) T h e m e t h o d o f v a r(2) i a t i o n s i n t h37-43' etheoryof yunitions.Arner.Marh.Soi. Transl. l8(1961), p-varent . 4 ,1 5 ,1 7 ,24, 50' 65] MR 2 3 A -3 3 0[1 varisof the Goluzin-schiffer 377. Gel,fer,s. (Guelfer)An extension Nauk Akad' regions'Dokl' tional methodto nrultiply-connectei MR 24A-612'124'601 (Russian) SSSR142(lgi2),503-5i)6' pour lesfonctions coc-fficients 3Tg. Geronimus,l.'iur le problemedes ' ' Zbl 16-125 R. e.ud' sci' uRsS N' s' l4(1937)'97-98 bornees.c. 13,221 3 ? 9 . Ge ro n i mu s,Y .L 'so meestim atesfor thecoeffic' ientsofbounded SSSRSer' Mat' 24(1960)'203-212' Nauk Akad' Izv' functions' 22' 30) iRussian;MR 22A-646'U7' positivereal!:rt,in a half-plane' 3g0. GoldU..g,t. i. Functiois with ' Zbl l0l-297' MR 29-264'l2l 133-33'9 Duke Math. J ' 29(1962), 38l.Goluzin,G.Onsomeestimatesforfunctions*!:hmapthecircle confor;nallynndunivalently'-nec'Ma^'h'Moscow36(1929)' FM 55-789'[6, 9, 10' 1l ' 15' 39',42]. 152-172. Re' der Funk.tionentheorie' 382. Goluzin,G- Zum Mojoraticniprinzip 14-69'lll Math. Moscou+z(tgis), &'7-649' zbl 3 8 3 . G o l u z i n . G . Z t t r T h e o r i e d e r s c h l i c h t e n k o n fl0' orm enAbbildungen. 15'39'49' 169-i90'Zbl12-409'[9' Mat. Sb.fN' S'l 42(1935)' 64, 581 384.Goluzin,G.Surlarepresentationconforme.N|at.Sb.(N.S.) 273-28r.Zbl 16-216't19l 43(1936), dansla theoriedesfonc385. Goiuzin,G. Sur leslllssremesdi 'ototion tionsunivalentes,Mat.Sb.43(1936),293-296.2b115_71.[6,15'581 336.Goluzin,G.ondistortiontheoremsofsch l i c h t c oGerman nformalmap(Russian' pings.nec. tviattt'Moscou(U' l(1936)'127-?5' iummarY)Zbl \4-221' U5' 681 3 8 T.Go i u zi n ,G.On d i sto r tion' n' l"uni' ' ' alentconfor malm opoingsof mu l ti p l yco n n e cte d dom ains' Mat' Sb' ( N' S' ) 2(58' 1937) 601 ' 37- 63' ( Rus 12' 15'29' sian.Germansummary)Zbll7-l2I' Ig' 388.Goluzin,c.Somehoundsforthecoefficientsofunivalentfi,nctions. Germansummary)Zbl Ivlat.Sb. N. S' 3(it33), 32i-33C'(Russian' 1 9 - 1 ? 1[ .1 4 ,1 5 ,1 7 ,5 0 , 6 5 ] of schlichtfunctions' of the coefficients 3g9. Goluzin,G. some estimates ivttg-ttt- U4' 15' 17'50' 651 Mat. Sb.Xrliai, 321-330'(Russian) der die verzeilwtgssiitze 3g0. Goluzin,G. Ergiinzungzur A.rbeig'"iit'er
FUNCTIONS (PART BIBLIOGRAPF]YOF SCHLICHT
I)
21
Moscou (2) Ahbildu-ngen"' Rec-'Ivlath' konformen schlicltten 58',681 rvr ol-zq2'lg'rs',24', 2(rg37),68s-66;' in a circte' theorennfor functions^regular co','e'ing Some G' 391. Golrvin, Mat.Sb.0\.S.)z(|g37),6|1-6';;:inu''io.'.Cerrna^iSulrllllar!)
',
Rec'Math' Futiktionen' s.chtichten l*'!"'n)he-orie.der German ,nr. [xg,f (Russian' 383-388' (NIat.suorniliN' i' iC-420939)' MR 1-308'[1' 15' 16-'24f i-nmma'Y) (Mat' Sbornik) '"iiite^punitioien Rec'Math' ii'"i G' Gcluzin, 393. Germansummarv)MR Gussian' 277-J!a' (1940)' 8(50) N. S. , 7, i9' 33' 531 Rec' 2 -1 8 5 Ig . , 1 4't)Oi' .1 der schlichtenFunktionen' ioeffizienten C' German 394. Gciuzir', rz6+) (1943)'40-47' (Russian' Math. (Mat' iu"*ttl ti' s' -i"5-91' [15' 17' 54' 68] ,rr**uiv) MR Rec' Math' der '''iti'n*n Funktionen' rniori'e 'i' G' sumGoluzin, German 395. 48-55'(Russian' (1943)'
(Mat.sirornirl)-x izt1il 58]
maty)MR 5-93' [9' l5' functions' of derivatetol!::d'd (Russian' 396. Goluzin, G' Someestimatesd iitsel (1945),295-306. Rec.Math. (Mat. Sbornik)| 6ll 22' 50' *r_1-202' itt' i+' 15' t7' English,"ti'irl Rec' Math' theo;vii^"':'it'nt {yy'ti:n's' L'nglish 397. Goluzin, c. oi'ttte (Russian' s 141097Qio-sl' tet-ttg' (Mat. suornit<-)"N' 58' 68] su mma rYMR ) ?- 515'[9' 15' ond sintilar protbre^;;iirreth'eodory-Fei'r the G,.'-on zin, Golu 39g. N' s' 18(60)(1946)'213-226' sbJintki Mat' rt'r"tt'' problems.ntt' S-22' [59] (Russian'U"tliti summary)MR for schlichtconform aistortion"tirori^i the on c.(1946)' 3gg. Golu,in, SUtrnik)N' S' 18(60)' representsi"' ntf' Math' On"' 379-3g0.(Russian'Englisht""t*"tJnu*g-sl+'ll5'29'45'67'681 of univatent th;;;;;'t and ccefficients 400. Golurin, i]oi"aitirti", s4'' 36' fu n cti o n s'i l' M;th' M atst"ttir lN' s' 1i( ( 1946) ' 183202 l5' 17'M' 8' e' [6'61) nip i:iis'
;;;]i'h;;marv) (Russian' tol,lll, the theorvof conform G' Method of variationsin *r. N" S' 19(61)(1946)' ntt' Math' M;; iUo*it) representsnon' MR 8-325'[24] Englishsummarv; 203-236'in"ssi"t' meanof bounded fo' "';;;;;i;i'i (Russian' 402.Goluzin,G' Estimates "::'y':! 87pp' Trav.fnrt. tntuttfi .f.ioff 18(1946), themodulu.s. MR 8-573't59l ^t:, Englishsummary) 4o3.Goluzin,G.InteriorProblems}in,Theory.ofschlichtFunctions. Transl.byT.C.Doyle,e..clj.t'".ff.,,andD.C.Spencer.office
2E
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Wash. D.C., 1947. 138. MR of Naval Research,Navy Dept., 8-57s. [44] 4 0 4 . G o l u z i n , G ' M e t h o d o f v a r i o t i o n s i n t h e t h eN. o r l ' o f c o n f o(1947), rm Math. (Mat. Sbornik) S. 21(63) representatior"ll..Rec. 2 4 ' , 2 9 '5, 8 i 8 3 - 1 1 7 .M R 9 - 4 2 1 ' [ 9 , l 5 ' 1 9 ' 4 0 5 . G o l u z i n , G . M e t h o d - o f v a r i a t i o n s . i n c : oEnglish n f o r m a lsummary) m o p p i n g .MR tll.Mat. (Russian' Sb.. N. S. 21(194?)'l19-130'
9-42r.1241 z i 0 6 .Go l u zi n ,G.S o me co ,ler ingtheor em ' sinthetheor yofanalyticfunc [14' MR 10-21' (1948),353-3i2. 22(64) s. N. suornik tions.rnrut. Mat. Sbornik of univotent {!n:ti?:s. 17' 42' +oz. Slrrzin, G. on thecoefficients r r nirr o- tgo' i3' ,9' ,15' , , ,54' 581 ) 9 4 8 ),3 ? 3- 380' N . s.2 2 (6 4 (1 4 0 8 . G o l u z i n , G ' O n d i s t o r t i o n t h e o r e S' m s23(65) a n d t h(1948)' e c o e f353-360' ficientsof N' univalent functions'Mat' Sbornik 58' 681 , 1. 9 ,1 5 ,l '7,24' 25' 39' 54' , MR 1 0 -6 0 2'Some Izv' Akad' analyti:.*n:':ons' inequalities foi 409. Goluzin,G' 3(1949)'10i-105'(Russian' Naukfazatr'lSR 60' Ser'tvtat'tvtett' MR 13-639'[3' 17] KazakstrmmarY) 4l0.GcluzinG.on.meunvalues.Mat.SbornikN.S.25(67)(1949)' 3 0 7 -3 1 4MR - l 1 -3 3 9 '[3' t+] of the theoryo,funivalentfunctions' 411. Goluzin,G. somequestions MR 13-123 111pp' (Russian) Trudv tnlat.inst' Sieklov'2'7(1949)' Mat. sbornik for boundedfunctions. +rz. Hluzin, G. someestimates , l? ' ,20' 21' 22' ,30' MR ll- 426'[2' ,10'15' ) 9 5 0 ),7 - 18' N . s.2 6 (6 8(1 Mat' SbornikN' S' 27(69) +r:' 8}"zin' G' on tvpicallvreolfrtnctions' 15',17'-45'51' 52' 661 (1950),zot-itg'NAn rz-+qo'[3' 13', 4 l 4 . G o l u z i n , G . o n s u b o r d i n a t e u n i v aNauk lentfu n c t i oIr{oscou' ns.Trud yMat.Inst. MR SSSR'' atue' Steklov38i;;;i; ;8-7r' izdzt' 1 3 - 7 3 3I .l ] Mat. SbornikN' univarent functions. of theory the on i. Golurin, 4i5. M R l3- 63e'[15'24' 68] s. 2 8 (7 0i)i q l i l ' 3 5 1 - 35d' N' univarent iunctions.Mat' Sbornik 416. Goluzin,G. on thetheoryof , 53'58'661 , ,39' M R li 223' ig'13'15'24' (R u ssian) s.2 9 (7 1(1 ) 9 5 1 )' 4 l T . G o l u z i n , G . o n n a j o r a n t s o f s u b o r d i n a(Russian) t . e a n a lMR y t i c13-223' functions.|. 209-224' 29(1:)trqsil' S' N' Sbornik Mat.
rv, M11, mapping' in conformot method 418.hl3;ft,t31 variationat ?A',26',s81 15' tr-+s+'[9', +s\-+sa'uh' (1951)' N. s. 29(71) Sbornik
(PART I) BIBLIOCRAP!{Y OF SCHLICHT FUNCTIONS
of functions parametric representation -29QD 419. Goluzirr, G. On the (1951)'469-476'MR N' S' univalentin a ring' Mat' Sbornik 13-930.123,24i analyticfunctions' ll' of -s,ttbordinate 420. Goluzin. G. O" ^oio'otion (i951)' 593-602'MR ll-454' Ui Mat. Sbornil
tN' s'igrtl951)'72r-72:3' exal. NuutSSSR Dokladv 1 4 l, 7, 5 4 1
4 2 2 . G o l u z i i i , G . A v a r i q i i o n a i n t e r h o d i n t hSer' ethe o r y oNat'k f a n a' l y23(1952)' tic.functions, Mat' 144' Leningrad Gos' Univ ' Uc' Zap' 1 3' 1 5 ' 2 3 ' 2 4 ' 5 8 1 8 5 - 1 0 1 .f v f n f Z - f 0 7 0 '1 2 '6 ' 9 ' 61 Amer' Math' Soc' TranslationNo' 423. Gtlluzin, G' On nreanialues' ( 1 9 5 2 ) l, 0 P P ' M R 1 3 - 6 3 9 '[ 3 ] 4 2 4 . G o l u z i n , G ' G e o m e t r i c t h e o r y o f f u n c t i o n t o { - 1 ' : ^ p l e x v[4] ariable' pp' (Russian)YR'15-112' GITTL' Moscow,(1952)'S+O 438 pp' Funitiontheorie. Berlin, 1957, Geo'm-etrische G. Goluzin, 425. M P . 1 9 - 7 3 5 .[ 5 9 ] 4 2 6 . G o l u z i n , G . o n a v a r i a t i o n q l m e t h o d i n t h e t h e o r MR y o . f23A-332. onalyticfunc. (2) l8(19611',|^'4. tions,e'.,. ruru.t'.soc. Transl. g ' 1 3 , L 5, 2 3 ' 2 4 ' 5 8 1 'A t r a n s l a t i o no f 4 2 2 1 26 ,, 4 2 ? . G o l u z i n z , E . G ' o n t v p i c a l l y r e a l"17(1962)' f u n c t i o n No' s w i t7' h f 62-70' i x e d s e(Russian' condcoefUniv' Leningrad' ficient.Vestnik 15' 661 Englishsummary)MR 25-426' tl3' 4 2 8 . G o o d * u n , n . w . o n s o m e d e t e r m i n a n t s r175-192' e l a | e d t MR o p - v9-421' a l e n t f14' unc63(1948)' Soc' Math' Amer' tions.Trans' 14,16, 17,42,501 4 2 g . G o o d m a n , A . W . N o t e o n r e g i o n s o m i t t e d b y ul 0n-i 6 va l e' [n1t 8f u' 1n9c]t i o n s . 01 B u l l . A m e r ' M a t h ' S o c ' 5 5 ( 1 9 + ! D ' X l - l q g ' Y R p-valentes.c. R' desfonctions 430. Good-ar,, A. il . sur rescoefficie:ns -g}'16'10'14'17' Acad.Sci'Paris228(lg4g)'1917-1918'fufnf: 36,38.39,501 ,N. on the schwarz-christoffelrransformaiionand 431. Good*un, a. p - v a l e n t f u n c t i o n s ' T r a n s ' e * . ' . M a t h . S o c . 6 8 ( 1 96530' ),6,42't,645- 2] 2 3 . 3 6 ' ,3 8 ' ? ? ' , 4 2 '5 0 ' , M R l 1 - 5 0 8 .[ 6 , 1 0 , 1 4 , 1 5 ' t i ' n ' , 432"Goodman,A.W.Typicolly-reatlunctionswtth^lssisnedzeros.Proc. *i il-11,it''tu'17'5Il itrgsri'zig-tv.' ruru*.r.'soi' ,A,mer. boundary points- Proc. Amer. 433. Goodman, A. w. Inoccesstble
' [6' 10] NIR 14-367 Math.so". iiiqsz),742-7s0'
4 3 4 . G o o d m a n , A . W , T h e r o t u t i o n t h e o r e m f o r s t a rM l i kRe 1 u4 n -i v7a3l9e'n[ 6t f9' u' n c S o c 4 ( 1 9 5 3 ) , 2 i 8 ' 2 8 6 . M a t h . A m e r . tions.proc. 1 5 , 4 9 ,5 8 , 6 3 1
F
30
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Amer' Math' boundedfunctions' Trans435. Goodman,A' W ' Almost 1 7 ' 1 8 ; 2 7' 3 4 1 S o c .7 8 ( l g S S l8, Z - 9 7 'M R 1 6 - 6 8 . 5U' 5 ' in the typical'lyieul and mer,omorphic 436. Goodman,A. w. Functions 92-105'MR 17-724' Soc' 81(1956)' unit circle''l-'an''Amer' Math' 66] . [ 9 , 1 3 , 1 5 , 1 7 ,2 3 ' 5 1 , curves' Uniu'olent functions and nonanalytic 437. Goodrnun, ,i.--w.10] 598-601'MR' l'9-260'[4' 6' Proc. Amer' Math' Soc' 8(1957)' .for multivalentfunctions' 43g. Goodman, A.^il-. varia'ion formulas 129-148'MR 2O-5M' [14' 16' 'r'-coc rA-rner. Math. Soc. 89(.1958), I r d'rrJ' rrrrvr
2c1"aman, pointsfor an anarytic A. w. variaiionof the branch +:g. 8)'2i7-284'MR 20-969' Math' Soc'89(195 Amer' function.ftat'' fo'-y:i::t'n'fur;ctions' *0. 3:f"aman, A' W' on variationfctrmulas MR 2u-969'124'421 285-294' 89(195d)' Soc' Trans.Amer. Mth' functions' o-fo *-u!'lu,alent 441. Good*un, A' W ' On thecritical'paints 20-969' [14' 16' MR ZIS-109. Trans.Amer.Marh.Soc.89(19Sii1, mappingonto certaincurvilinelr 442'olnd*un, '\' W' Conformal 20-26'MR 13(196C)' Univ' Nac' TucumanRett'Ser'l' polygons' 26-743.16,241 4 4 3 . G o o d , n u n , A . , w . A n a l y t i c f u n c t i o n60-64' s t h o tMR26-63' t a k e v a l u U' e s il0l naconvex Sot' t+(tgO3)' region.p'ot'nrntr' tvtattr' univalent func' On regionsomitt-'-d 'b/ 444. Good.nun,e' W', ntittt' E ' l9l g3- 88.MR l5- 579.17,18, ti o n s.Ir.ca n a d .J. Ma th.ztr q:a] 4 4 5 . G o o d m a n , A ' W ' , ; R o b e t t ' o n ' Vq i ' S ' A c l a s s oMR f n t 12-6ql u l t i v o' l[6' entfuncAmer'Math' Sot' fO(f 5D' 127-136' tions.Trans' 1 0 ,1 3 ,1 4 ,1 6 ,1 7 , 3 9 , 4 25' 0 ' 5 l l 4 4 6 .Gco d **,n .,p .,o n th e Bloch- Landauconstantfor schlichtfuncU' 191 tions.Bull'Amer'Math' Soc'S(tq+|D'234-239'l'irR6-262' ^oint*iitque, 1924.FM 50-150'[591 4i7. Goursat,E. iou* d,anolyse 4 . l s.Gra d ,A .T h e re g i o n o fvaluesoftheder iuative^ofoschlichtfunclg8-202'MR 11-503' 36(1950)' fion.Proc.Nat'Acad'Sci'u's't' functionswhich D. s. on theanaryticcontinuat.ion^of 44g.8::""^srein, ma p th e u p p e rh a l fp l aneinto' itself.J.Math.Ana!..Appl.1( 1960) ' ni-tez. MR23A-6lu'[59] theirApplications' U'; Szegti'G' ToeplitzForys-and 450. Grenander, 20-223'159lr pp'MR Univ. of Calif' Press'Berkelei tgsg'zqs i'i4"s' Trans' Amer' Math' Soc' 451. Gronwall,T. On a theor'^ ii (1912),M5-468'FM 43-321'[59i
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS (PART D
31
represent'ation'Arrn' of on conformol rema:ks Some "45-672' T' 452. Gronwall, 18' 19'221
[9' ^iu' -ts), tz-t6' FM Marh.tzl rotigr4 conforme' representation to ieformationdansla 453.Gronwall,T' i'+g-zsz'iu+o-ls:' [10'15'64' c. R. Acad.stilp"'i'"l62(1916)' conforme dansla repr\sentation 454.8l"nwall, T. sur la d,formaticn 162(1916)' C' n' ecad' Sci'Paris reitrictives' sousdescondittions : r o - r r g .F M 4 6 - 5 5 6u' 0 ' 1 5 1 th.esecond in conform'clmapping^w|rcn 4)5 Gronwall,r. o, distcrtron volue' Nar" hasan assigned coefficient i'Jlil'i *opping funciion47-324' [e'15'58'681
Proc.siiitoj,iinJoz'.Frvr Acad.
y?!p:::in theunitcircte' r' A;;;;* t'\|tt yli' tositive .i55.Gronwall, [2] gzr-zl;:fi122. FM 4s-403. Ann.of r'rutn.z':jr Ann' mappings'
andconformal of series 45?.Gron*uil,rl irm mation ' zbl3-55'[59] of Math.llir-q3zl,101-1r7 Funktionen'It''Ih' anaiytischer singutorrtatrn ire ii;;; w. , 458.Gross ' FM 46-512'[49] Math.u- P;;'tik zqtrqrll' 3-47 in der Umgebung
Ftnktionen analytischer 459. Gross,W ' Zum V"ialten 2(1918)'242 294'l59l singularerSi't't'n' Math' Z' Abbilk.onformen a*trr*)ti'robleme_de-r cinige r la" H. 460. Grtitzr.rr, 800928)'iol-ye ' FM 54-378'[15]Abbildung. LeipztgBerichte ntt"kotprobleme der konformen 461. Grdtz,,n, i7 ii'r einige gotrgjg)' 4g7-502' FM 54-378'[15] dung.ll' LeipzigBerichte bei schlichtennicht konformen verzerrung ai, u ri.'JE Grotzr.n, 462. Erweiterung einedamit"zusommenhangende -5C7'FM Abbilduttg" 503 ileticrtte 80(1928), "i'n'r ces picardschensatzes. l-riprii berschtichterkonformerAbbityber die verzer.rung -rr. Lt;;:;J:t-l schlichter Bereiche. Leipzig dung mehrfach zusamm, nniiie;ni,, 55-793'[24] verichtesitigzgl, 38-50'FM Abbildung unendlich vielfach konforme 464. Grotzrrn,'ji.--0i* z u J o m m e n h a n g e n d e r s c n t i c n ,g.richte i e r B i r e31(1929), i c h e _ m5i1-86' t e n dFM lichvieleri Haufungsrandkomponenten.j.iorit
^ur.TJ::;tf?l
Abbitkonformer beischtic-hter hberdieverzerruns
dungmehrfachzusamm'nno-ni'iaerschlic'hter'Bereiche'II'Leipl24l FM 55-7e4' zignerictrti]ituiinl'2r7-2.2r' Aboild_er ,konformen 466. Grirtzsch,H. hber ein v"rioiio)liroblemeFM 56-298' [591 251-263' dung.LeipzigBerichte82.(1930)' AbbilkonJ'ormen der. parattrtui'iiiinrorem 46.7.Grotzsch,H. zum reiche' e B r g d e n e nhiin un' nati' n-ui' i o']"u' o* ^ e dung sch''l i'i' "1'
32
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
185-200'Zbl3-14' U6' 601 LeipzigBerichte.33(1931)' bei schlichterkonformer 468. Griitzr.tt, ff' Ua') ai'' Verschiebung Berichte' (1931)' pp Leipzig Abbildung rriti-rhru Bereiche' 254-279.zbl3-261' u9, 601 konformerAbbil' H' 0i" ai' Verzirrungbeischlichter 469. Grotzsch, Bereiche'III' Leipschlichter zusammenhangeider dungmerhJ.ach 283-297'[60] zig ierichte 83(1.931)' bei schlichterkonformer 470. Grotzsch,Ft. Vori'Extemarpiotjrme Abbildungscntr,nterBereiche.Leipz\gBerichte34(1932),3-1I4.2b| 5 -6 8 .[1 9 '6 0 ] der konfornter 471. Griiizsch, Hl 1ber das Parallelschlitztheorem Abbildune"hti'h"'Bereiche'LeipzigBerichte84(1932)'15-36' zbl5-68- u9, 57,601 kcnformer ii'Oer aie Verschiebungbei schlichter ^'rnirrnrc, 472. Grotzsch,tl' 84(1932)' Berichte Bereiche:.II. Leipzig Abbitdung Zbl6-17l' [29' 60] 269-2'.78. konforrnenAbbilderschlichten H. (iberdie Geometrie 4.13. Grotzsch, Wiss'' Phys'-Math'Kl' (1933)' dung. S,t'gsUet'Preuss'Akad' 6s4-67| . Zbl 1 -3r2. I24j derschlicntenkonformen Abbil' 474. Grotzr.t, ff ' tii" aiL Geometrie V''i;s''Fhys'-Math'Kl' (l 933)' Presuss-'-Akad' Sirzgsber' dung.Il. 893-q08.zblS-319.u5' 491 der konformen i*ii v"t'hiebungsltrobleme 4'75.Grotzrcn,i'" ii" Kl' Pt'ys'-Niath' Wiss'' Abbitdung' Sitzgsber'P"u"' eUO-' (1 9 3 3 ),8 7 -1 0F0M . 5 9- 349'[24] beischlichterkonH. Die werte desDoppelverhaltnisses (1933)'87-100' 4j6. Grotzsch, Ak;;' wiss' Sitzgsber' former eaiiti"s' Preuss' zbr1-?r4.lsgl Satzes' eines Bieberbaclischen . Grotzsch,H' Verallgemeinerung 477 FM 59-351't60l ^ Math. ver. a3(r9i3),r43-^145. Jber.Deursch. g' Jber' o)r t aii k ttrfo r men-A bbil Cun F lo,che,,r 47g. Gr
480.f;;l;tl]?i%
Abbit' konformen derschtichten erdicGeometie -math'Kl' (1934)'
Preuss'atua' Wiss''Pnys' dung.Ill' Sitzgsber' 434-444.Zbl rr-313' [49] 4 x l . G l i j t z s c h , H . Z u r T h e o r i e d e r V e rHelv' s c h i e8(1936)' b u n g b 382-390' e i s c h l i cZbl hterkon. Math' Co*-t"t' Abbitdung' former 1 4 -2 6 7[6 . ,9 , 1 5 ,5 8]
B I B L I O G R A P H YO I ' S C H L I C H T
F U N C T I O N S( P A R T I )
33
einzur konflrmenAbbildung Abschotzungen Neue H' Grtrnsky, 482. u n d me h rfa ch zusam m enhangender Ber eiche,Schr .Inst.Angew . q5-t+0.zbl 5-362. [9, l5 , 22, 60,6ll g.ri. r 1(1932), Math.univ. Lemma' Math' '^'nalogazttm Schwarzschen it' EiruP,e ;i83. -" " ' Grrrr,sk;r, zbl6- 262' l37i o n n . t6 g (tq r:),190- 196' zur konformenAbbildung'Jber' 484. Grunsky,H' ZweiBen;crkurigen D e u t s c h . M a t h ' V e r ' 4 3 ( 1 9 3 3 ) ' l ' A b t ' l 4 O - 3 ' Z b obbildende l8-119'tll'15'681 ftir ylti1ht Xieffizi)nt'nibedinsungen tt' siv, Grun 465. istt%g), 29-6r. zbl 22-l5l ' meromcrpnepu,,iironcn. Math.2. [4 ,9 , 5 3 ] Abbildungendie gewisseGebiets486. Grunsky, H . iJber konforme I. Math. Z. Funktionentransformieren. inii^rntaie funktionen "ol MR 19-538'[59] (tgsl), 129-132. als ier Uniformisierungstheorie Crurdaufsabe nii, 4g?. Grunsky,H. 139(1959/60)'204-216' MR Extremalproblem'Math' Ann' . \u,49\ 22A(l)-805 4 8 8 . G r u n w a l d , G . ; T u r 6 n , P . ( J b e r d e n236-240'-FM B l o c h s c h e63-300' n S a t z .U9l ActaLitt.Sci. Sect'Sci'Math' 8(1937)' 'E' Univ.,Szeged, J' LondonMath' meansoi po*" series' Cesdro 489. Gwilliam,A' 248-253'Zbl 13-68'[3] Soc.10(1935), meqnsof power series'-ll'Proc' Londo^] a9O.Gwilliam,e' E" Cesdro zbl 13-68'[3] ^i." 40(t935),345-352' Math. so.. its. Paris,1910,FM desVoriations. 491. Hadamard, frqin, ,ui l, Calcul 4t-432.Isgl mappings-proc. Amer. Nlath' 4g2. Ha\mo,D. T. A note on convex M R 18- 411'14'9' 10' 3ll S o c.7 (1 965),423- 428' 4g3.Hamdi,o.UberstarkschiichteAbbitdungdesEinheitkreises. U n i ve rsi te d ,Istanbul.FacultedesSciences.RecueiideM em oi r es Commemorant!aPosedelaPremierePierredesNouveauxlnstituts Istanbul'(1948)'3g-M' MR 10-524'14' de Ia FacultedesSciences 17,191 494.HardY,G.H'AtheoremconcerningTaylor'sseries'Quart"I' FM 44-476'[59] Math. 44(19i3),147-160' 4 9 5 . H a r d y , G . H - ' T h e m e a n v o l u e o f t h e m o d u l u s' -FM of.ananalyticfunc269-277 45-1331' ("2) t4(1915), soc. proc.London Math. tion. v'ith series concerning +qo. Hi".ay,G.H.; Littlewood'J'E' A theorem Meddl' Kobenhavn applications to the theory of functions'- 42' 501 '7 (1 g 2 5 ),No' +, 16pp' FM 5l- 272' ll4' 17' 18' concerningCesaro 497. Hardy, G.'ff'; f-iitfewood' J' E' Theorem meansofpowerseries'Proc.LondonMath.soc.(2)36(1934)'
T
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
. 516-531.FM 60-257.[59] tg meanvstues Theoremsconcerntn 498. Harciy,G. H.; Littlewood' J' E' J' Math" Oxford Ser' of analytic or ha:monicfunctions' Quart' tzlts+t\, 221-256.MR 4-8' 13, 471 Cambridge eilya' G' Inequuliries' 499. Hardy, G'H.; Littlewoocl'J'E' Univ- Press1934,314 pp' FM 60-169' [59] 5 0 0 . H a r u k i , H . T w o t h e o r m s o n t h e u n i v a l e n t f u nMR c t i o7-287 n . P r 'o c14' 6' 622-623' Phys.-Math. Soc' Japan (3) 25(1943)' 11,15,43,681 50l.Hausdorff,F'.Mengenlehre,3rdEd.WalterdeGruyter,Berlin,
rs35.Zbt 12-203.ls9l andconvexity starlikeness, S. i. fnL ,id;i o7univalence, 502.Havinson, lzv ' connecteddomuins' of a classof antatyticfunctions-in muttiply lvIR' 233-240.(Russian) vyss. Ucebn.Zaved.Mat. (r95g),No.3(4), 2 5 - 4 0 .[ 1 ] , 1 2 , 4 3 , 6 0 ] in the tlteoryof functions. Proc. 503. Hayman, w. r. so^i inequarities 159-178'MR l0-186' tll CambridgePhil' Soc' 44(19481' in the theory of functions' Proc' Lon504. Hayman, W' K' Inequalities
MR 1l-221591 45-473' conMarh.s;- tzl sr(1949), of
in the theory functions. Tech. 505' Hayman, W. K.,Symmetriz|:ation Task Order 5' Stanford Rep. No. ll, Navy ContractN6-ORI-106 15'l7' 19'22'24'33' U n i v . ,C a l i f .( 1 9 5 0 )3, 8 p p ' M R 1 2 - 4 0 1['1 4 ' 5 0 ,6 1 , 6 5 1 of the maximum modulus of 5C6. Hayman, W' K' A characterization l15-154' origin' J' AnalyseMath' 1(1951)' functionsregulorot the MR 13-545.[59] 5 0 T . H a y m a n , W . K . . S o m e a p p l i c a t i o n s o f t h e t r a n s f155-179' i n i t e d i a VIR meterto Math' 1(1951)' the theory cf functions' J' Analyse 1 3 - 5 4 5[.9 , 1 4 , 1 5 , 1 9 ,3 3 , 6 5 , 6 8 ] 508.Hayman,W.K.Themoximummodulusondvalencyojfunctions meromorphicintheunitcircle.I.Il.ActaMath.86(1951),89-191' MR 13-546' [9' l'4] 193-25',7' with valuesin a given domain' Proc' 509. Hayman, W' K' Functions MR 14-156' U7 ' 19' 2';1 Amer. Vtattr. ioc' 3(f 952)' 428-432' 5 l 0 . H a y m a n , W . K . o n i i e v o n l i n n a ' s s e c o n d t h e o rMR e m ul6'-122'1591 ndextensions. B-end.Circ. Mat' PalermoQ\2('1953)'346-392' 5 l l . H a y n a n , W . K . L o r e g i l l e r i t c t i e s f < s t t c t l o n s u n i y a l el?n',t 42', es.C .R. 54' MR l5-516' [3' Acad. Sci. Paris 237(1953),1624-rc;5'
621 behavior of p-valent functions' 512. HaYman,W. K. The asymptotic N{R'i7-142' U4' 25'7-284' Proc. London Math. Soc. (3) 5(1955), l o , 1 7 ,3 3 ]
FUNCTIONS BIBLIOGRAPHY OF SCIJLICHT
(PART I)
35
on Func'ions (Jniformlynormalfamilites;Lectures K' jl3. Haymun,Y' Ann Arber' igg-ztz' u"r"' Mich' Press' of a comp'J u;i;;u'
function-s" ondattied of schticht '"*''ie-n11 Fi) 11 l?^:;;Xl#. ,,* '\msterdam'vol' III' Co"g"""bf lvlath' 1954'
Proc. of Int' 102-108'R'utnp'-fioo'aftoffN'V'Cto"i"gtn'H'HollandPubi' l9-4M' l44l Co', Amstt'Ju*' 1956'MR in l"lath Tracr's Funiions'Cambridge w"f-'-'Mul'tivalent Press'Cambridge' 515. Haymun, 48' Ce'r'btl;;t University -Phvs'' No' Math' ani 21- t349'1441 problems i tg sg ),l :l P P 'M R solvedond un'otuedcoefficienl Some w''K' Hayinun, 516. fo rsch l i rh 'i u n"ion' ' Sem ' "t"ittitiunctionsl( 1958) ' 264- 277 ' of univatent thetargecoefficie^nts Bounds.for ,, .?:;^::]t*lt6; 250/13(1958)'l3 Sci'Fenn'Stt' e' I' No' AtuO' functions'Ann'
't)
5rs.li;,fl,it;ii.
Prt19, functions' of univatent ,0, c.oefficients U6' 471
5e;";;;-;;4' MR 22A(2)-e64' cambrideePhil' soc' 55(le London with positirerelt-part'J' On f' functions W' Haymu", 519. lvh.th.Scc'36(1961)'35-48-zvi'it:-Zi'rt'rn2'7-6s'12'3'6'7'rs' 1 6 ,\7 ' 2 1 ,2 2 ,23' 45' 52'9.71 . functioits' limits of moduliof-on,aiytic nil'r.'on'the Haymun, 520. 26-65' [59] 143-150'MR Ann. Polot' *ltn-' 12(1962).' 5 2 l .H a yrn a n ,w .K.onr ur r r r r ir r r or lr yir ir ntto.funivar entfuncti ons ' J.LondonMath.Soc.38(19eii,v6_243.tvlR26-|209.[8,17,33, the growthof multivatent w' K'; KennedY'P' B' on ,rr.X;;iltr, MF 20-969' Math' sot litrqsg)' :l:-lal i""0"" functions'J" Math' AbbitdungcchtichterGebiete' ,rr. Hl;,r!;'ild, J' zur konforme
U6'2el tJi-tls' MR.le-401' of a 7.. 67(,res'ti' iheorycf Functions Ci:tirricat
in tn', Topics ,M. Selected 524.Heins complexiiiit'gort'RinehartandWinston'NewYork'1962' funktionen rheorieder atgebraischen und ,rr. lf3"or3,,'i?l'-*osberg,G. Kurven ilgebraische 'qn*'"al"i in" und einerVarisblen ' L59l yeipzig'1902'FM"'t33-42'7 abelsche'n*t'"i':' reellenTeil im positi!?^' mit Pote.ni'ii'n nber G. 526.Herglotz, amO' Wiss' Leipzis(1911)' Ber' Verh' il;' Einheitskreis' tzl FM 42-438' 501-511. 5 2 T . H e r s c h , J . L o n g u e u r s e x t r d m a l e s e t tMR h | o r1?-835' i e d ' e s f[59] onctions.Com. 301-337' zqtrgsil' Helvet' Math' ment.
h--*-
36
B I B L I O G R A P H YO F S C H L I C H T F U N C T I O N S
Poisson-stieltjes-Integral' 52g. Herzig, A. Die Winkelderivierteund das 37 46) Math. Z. 46ng40),129-156'MR l-213' 12' ' of Taylor series' I' 529. Herzog, F.i Piranian, G' Se/s of convergence 9 ) , 5 7 9 - 5 3M 4 'R 1 1 - 9 1 '[ 5 9 ] D u k e M a t h . J . 1 6 ( 1 9 4'G' On the univalenceof functions whose 530. Herzog, F'; Piranian, Math' Soc'2(195i)' clerivativehosa positiverealparl. Proc. Amer. 625-633.MR 13-223.12'4l of Taylor series'Il' 531. Herzog, F.; Piranian, G' Selsof convergence D u k e i d a t h . J . 2 0 ( 1 9 5 3 ) , 4 1 - 5 4M' R 1 4 - 7 3 8 '[ 5 9 1 ate Teilsummen beschriinkter Potenzreihen' 532. Heuser, p. tOi 20' 22' 6l] l4ath. Z. r9(1g35),660-662'FM 61-346' [15' 533.Hibbert,L.(Jnivalenceetautomorphiepourlespolynomesetles lonctionsentieres,Bull.Soc.Maih.France56(1938),81-154.2b1 20-140.128,32,351 Abbildung- Nachr. Kgl' 534. Hilbert, D. Z;r Tieorie cler konformen -Phys. Kl. (1909), 3|4_323. FM ces, Wiss' Gotttngen,Math. 40-132. Ls9l points' AtIj-" Form' Mat'' 535. Hille, E. A note on regular singular A s t r . , o c h F y s i k , l 9 A ( 1 9 2 5 ) 'l - 2 1 ' F M 5 1 - 3 3 5 '[ 5 9 ] Neitari. Bull. Ame,'. lvlath. 536. Hille, E. neitorks on'o paper by zeev 3 'R 1 0 - 6 9 '7 [ 2 8 ' 3 r ] S o c .5 5 ( 1 9 4 g ) , 5 5 2 - 5 5M I' II' Ginn and Co" Boston' 537 Hille, p'. anitytic Function Theory' pp" N'{R2l-1196' l44l vol. I(19591,:ifg pp'; vol' II(1962)' 496 53S.Hoh,C.Theszegoprobleminthetheoryofschlichtfuttctions.Sc\.
221 ' 119', (N.s.)z(rqis),86-91'MR 20-877 Record
der vollstandigendifferen53g. Hopf, H.; Rinow,w. Llberden Begriff tialgeometrischenFlace.Comment.Math.Helvet.3(1931)' 209-22s.Zbl 2-350. [59] bei ganzenFunktionen.Akac. 540. Hornich, H. Der schtichtheitsradius 59-65' MR 9-420' [23' 28' 13] WIss Wien. S. -B' IIa' 154(1945)' 54l.Hornich,H.ZurFragederisoliertenschlic|ttpnFunktio|l€|t.Nalath. A n n . 1 3 5 ( 1 9 5 6 1) ,8 9 - 1 9 l 'M F 2 0 - 9 6 9 '[ 2 E ] 5 4 2 . H o r n i c h , H . Z u r S t r u k t u r d e r s c h l i c h t e n F u n k i t o n e n . I . I IMR .Abh. 38-49' 176-179' 22(1958)' Hamburg Univ' Sem. Math. 20-161,664.[4' 28] 543.Hsu,T.-F.on'the.thirdcoefficientofboundedschlichtfunctions. (Chinese)MR 20-968.[22] Advancementirt Ma-th.2(|956),2,79_289. 544.Hu,Ke.onthedistortionofschlichtfunctions.Math.Sinica 4(19:+), 259-262.MR 17-142'19'15.'581 545.Huber,A.onaninequalityofFej6randRiesz.Ann.Math.(2) 63(1956),s72-587.MR 18-296'[7]
FUNCTIONS (PART T) tsitsLIOGRAPHY OF SCHLICHT
31
einer komplexen Ein Mittelwertsotz ffir Funktionen MR 546. Iiuber, H' MJ;' Helv' 21(1948)' 58-66' veranderli,n'ln"-co^ment'
onjr*
in von F-ingsebieten ii,iaivtische ^Abbitdt:nsen 54? 9(rgiil' toi-tog' MR i3-337'[59] Math' l""tto"'' Ringgebiet' Flachenin R'iemannscher Abbitdu'ngcn otrotyti"ne Uii'' ' fl 548. Huber , [s9] Helv' 27(rgfi;' 1-72' MR l4-s62' sicfi.com",;;M;t' 5 4 9 .H u ck.*u n n ,^ 'U' ' iii' einigeExtr oblemebeikonfor 200-208'MR mer z' go(tgoz)' il"irt'imalpr Abbitdung 'tn" k"*ringis' 9;;ff;,ttl:
withco;tof af1n'ction theimase cove.r'!.21 )Ir], if;::tl. MR' j(rqszJ'ss+-sgo' (chinese) 550. "rment rnruirt' in veximoge'eau?ntt'nent
2r;fri'?, tl), Pacific functions. ofstartike ,zrtt!1llt lil 551. lsions tvti zo- zq2' 16' ,24' ,291 1381- 1389-
J. Ma th .7 (1 9 57) , Proc' m-ithodfor storlikefunctions' variationot i :.e. 552. Hum*et, l'7 82-8;'Mizo-zgz' [6' 10' '?A'29'?6' Amer.Math'Soc'9(1958)' 3lfl'"mel, of starrikefunctions. the crass J .A. Extremorprobremsin -t 553. 18ee'16'24i ol'"iit ng e6 Il(l Soc' Math' Amer' roc. P 5 5 4 ' H u m m e t , r . e . T h e C r u n s k y ' i o e Proc' f f i c"y:,7:@i eAmer' n t s o f sMath' c h l i c Soc' h t f u n15' ctions. n5g;"' Univ. of Maryland'NSF-G 28-258'[4' 17' 53] no. 1, F'.b.;A; lqz-tso' MR derelli tischen.Modulfunktionen 555. Hurwitr, t. o:arlrdieAn*rnaunsFunktiontheorie'Vjschr' Naturauf einenii, a;, attgemein'en" FM 35-401'[59] '242-253' fo:sch'Ges'Zurich49(1904) p'nt''io'ntheorie'Springer'1929't59l y' 556. Hurwitz, A'iCourant' 5 5 7 .Il i e ff(Il i e v),L.Zur Theor ied|er schlichtenFunktionen.A 115-135'MRnnuatr e l' 45(1949)' L'*re 6li' F"t' Sofia (Godisnik)'Llniu' ' 58] i z-a ro . [1 5 ,2 0, 43,45'67' von G'M' Golusinilber Satzes Anwendun'-f,''n" L' (Iliev), 558. Ilieff Sci' Math' Nat' Funktionen'i'n' at"a' Buigare die schtichten 20'43'681
i', it-aq'MR i 1-92'U5' z(rs$s),N;.
5 5 9 . I l i e f f ( I l i e v ) , L ' A p p l i c a t i o n ' o f aNauk ' t h e oSSSR r e m ^(N'S') of-G'M 'Golusinon 69(1949)' equivalentfunctions' Do\l ;il' rl-92' u5' 20' 43' 681 4gl-4g4'rriR' Dokl' Akad' 't.. on finite ty;;;i un'ivalenlfunctions' 560. Ilieff (Iliev), r ur n1i- 508'[15'20' 43J N a u kssS R(N' s' ) 70( 1950) ' ;- ir ' Funkai' 'liiinnitt' der sclilichten 561. Ilieff (Iliev), L' SiitzeuU" t i o n e n ' -ii A n n u a i r e ( G o d i s n i k i U45] niu'-SofiaFac'Sci'Livrel' 46(1e50); -rsr' MR 13-832'[20'
Ftr----.
38
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
schlichtenFunktionen' 562. Ilieff (Iliev), l-. iiber die 3-symmetrischen Sci' Livre 1' 46(1950)' Anuaire tcoairt'iftl Univ' Sofia Fac' 1 6 1 - 1 6 5M . R 1 3 - 8 3 2 .1 1 7 , 3 9 ,4 3 ' 4 9 1 der 3-symmetrischenschlichten 563. Ilieff (Iliev), t-^."tii* ai, ibsc'hnit,te Funktionen.C'R.Acad.BulgarcSci.3(1950),No.1,9-12(1951). 43] (German.Russiansummary)MR l3-336' [39' der schlichtenFunktionen, die 564. Ilief (Iliev), i.-iO* die Aischnitte Annuaire (Godisnik) Univ. den kreis rr.riii- konvex abbitdpn. S o f i a F a c . S c i . L i v r e l , 4 6 ( 1 9 5 0 ) ' 1 5 3 - 1 5 9 ' M R l 3 - 8 3 2 ' UActa 0'20'431 di'eAischnitte der schlichtenFunktionen' 565. Ilief (Iliev), r.iu* 109-112'MR 13-640'[20' 45] Math. Acad' Sci' Hungar 2(1951)' univalentfunctions' Dokl' 566. Ilieff (Iliev), L. On thrie fold symmetric
9-11'MR r3-r23'Ir7' 39' 43' Akad.Naukissn N.s'i 79(1951)'
functicns. on triprysymmetric ,u^nivarent soz.lilr (Iliev),L. Theorems Doki.Akad.NauksssR(N'S;-a+1tlsz;'g-12'MR13-832'll7' 20,43,541 5 6 8 . I l i e f ( I l i e v ) , L . o n t r i p l y s y m m e t r i c u n i v a l e n t f u1n5c-tt i|o4 n. s . B u l g a r . U7,20, 2 7 _ 3 4M . R A k a d . N a u k I z * , .M a t h . I n s . , .l ( 1 9 j 3 ) , 43, 541 5 6 9 . I l i e f ( l l i e v ) , L ' A n o l y t i c a l l y n o n c o n t i n u a b l e s el(1953)' r i e s o f F35-56' aber Mat' Inst' polynomials.nulgar Alad' Na'uk Izv' M R 1 5 - 3 0 1 .[ 5 3 ] die den Einheitskreiskonvex 570. Ilief (Iliev), L. ichlichte Funktionen, abbilden.C.R.Acad.tstrlgareSci'5(1952),No.2_3,1_4(1953). MR l5-948.U0, 15,20,43,49' 641 polynomials whose coefficienrs 571. Ilief (Iliev), l" S"i" of Faber Akad. Nauk SSSR(N'S') ossumea fi'nii number if values.-Dokl. 90(1953),4gg-502'(Russian)MR 15-23' [53] univalenceof finite sums cf triply 572. llief(Iliev), t_.-ri.rorr^ on the SSSR (N'S') uiiivalent 'functions'Dokl' Akad' Nauk .,<))mmctric 43' 491 100(1953),621-622'MR 16-809' [20' 573.Ilief(Iliev),L'Ontheciifferencequotientforboundedunivalent functions.boH.Akad.NaukSSSR(N.S.)100(i955)861-862.MR \ l 6 - 8 0 9 . 1 1 5 , 2 2 ,4 9 , 6 1-bounded Sci' Univ' functions' Mtl' COll' 574. Imura. H. A n'ote'on tO8' [5' 14'22] ** Kyoto S"r. L' l'{ath' 21(1952)'245'-24E' 1l. of power series-Japan J. lvlath' 575. Itahara, T. on tne mult:ivale'ntcy 10(1933,7l-78. FM 59-326' Il4'2ol 5 T 6 . I t a h a r a , T . N o t e o t t a c e r t a i n m u l t i v a l e n t f u n c17 tion,Proc.Inp. 10-308' [14' ' 27' 50] Acad. Japan 10(1934)'5M-545' Zbl
Fl!-*
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
wlt9se-imaginarypart on the unit circle 571.lto, J. One the function Tokyo Bunrika Diag' Sect' A changes itssign 2p times' Sci' Rep' 17 23' 491 4(lg#i'), \01-i14. MR 14-34' 12,15' ' 5'l8.lto.J.Onthefunctionwhoserea.lpartontheun!-l':ti'changesits signfinitetimes'Bull.NagoyaInst.Tech.3(1951)'293-305.2b|
87-286.l4ei 5 T g . I t o , J . T h e v a r i a t i o n o f t h e s i gAmer' n o f t hMath' e r e o lSoc' p o l t89/1958)' ?fameromorphic circle' Trans' functian on the unit 50-?3 I'.'IR20-405' t9,491 probrcnt regularf-unctions'Proc' Amer' 580. Ito, J. Ttie crtefficient -of
[13'l7' 49' 5l] Math.so.. riiiq6l), 5:-60'MP'22A(2)-2094' ReineAngewandte
L'emma'J' Y"'it"'a"' Schwqrache 581. Jacobsthal, 59, 63[37] Ma th . 1 6 5 (1 9 31) lineare die durch eine gegebene 5g2. Jacobsthal,i.-'00* dii Kreise, Norske werden. Kreisabgebitdet Funktionaui ei,renkonzentrisch'ert (1954)'MR pp' 22 3, vic. Selsk.st r., Trondheim(1953),No' l 6 - 5 8 1 [. 5 9 ] 583.Jakubowski'Z.J.surlenruximumdela J . o Bull' n c t i oSoe' n n e Sr-i' lle|As-aAtr| F14' (0 = a s I) dons to famille de fonctions ' 22',301 Nc' 1, 1l pp' MR 25-796'.i17 LettresL6dr'13(1962)' Bull' Lowrer' i. iae'n'odealgebriquiet equation,!: 584. Janikov.'ski, 9 pp-'MR 25-611'l24l Soc.Sci.LetiresL6ai .lz!g6l)' No' 16' univolentes des 585. Janowski,W' Le maximumd'orgument fonctions Sect'A. 4(1950)' Ann. Univ. Mariaecuiie-stclodowska bornees. 57-lz.(French.Polishsummary)MRl3-lZ2'.U5'22'6ll 5 8 6 . J a n o w s k i , W . L e m a x i r n u m d e s c o e f f i c i e2(1955)' n t s A z a145-160' ndAldesfoncbornles'Ann' Pojcn' Math' tionsuntvalentes M R 1 ? - 5 9 8[ .1 7 ,2 2 , 3 0 1 5 S T .Ja n o w ski ,W .L.emaximumdescoelficientsBzetBsdesfonc ti ons u n i va l e n te st< - sym m 6tr iquesbor n\is.Ann.Polon.M ath. 2( 1955) ' 491 r6 1 -1 6 9(1 9 5 6i.MR l7- 598'tl7,22' 30' , 58S.Janowski,W.lemaximumdelnpatrieimoginairedesfonctions univolentesborn,ees,Ann.Polon.Math.2(1955),182_200(1956). MR 17-599.122,491 5 8 g .Ja n o w ski ,W.Sur lesfonctionsunivalentesk- symm 4911tr iq ues .Ann. 201-208(1956)'MR 17-599'122', Polon.tvtattr.2(1955); 5g0.Janowski,W.Surle:svaleursextr\malesdumoduledeladerivee d e sfo n cti o nsunivalentesbor nees' Bull.Acad.Polon.Sc i .Ser .Sc i . N i a th .A stro nom ' Phys' 6( 1958) ' 255- 259' ( Russiansum m ar y ) M R . ll5, 22, 29, 6ll 25-427 modulede ls deriveede 5g1. Janowski,w. Sur lesvaleursextr,malesdu
Y
40
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
born6es' L6dzkie Towarzystwo Naukowe' fonctions univalentes Wydawnictwo Naukowe' Prace Wydziata III, No' 53 Panstwowe 22' 61lJ L6d2, tq5g. SOPP' MR 26-62' ll5' conformal mapping' Trans' Amer' 592. Jenkins,J.A. Sime problemsin 13-341'lz4l Marh. Soc. 67(19+sj,lzt-lsO' MR differentiatsin tr,iply-connected 5g3. Jenkins, J.A.'iorrtil* quadratic l-3' MR 12-400'[59] domains.Ann. or Math' 53(1951)' J. London Math. Soc' 594. Jenkins, l.e. on a theorem o.f'spencer. - R 1 3 - 3 3 8[' 5 9 ] 2 5 ( 1 9 5 13 ) ,1 3 - 3 1 6M of Gorusin .Amer. J. Math. 595. Jenkins, J.A. on an inequariiy 4 3 '4 , 5 ' ,5 8 ] . R 1 2 - 8 1 6 '[ 9 ' 1 5 ' 1 6 ' ,2 0 ' , 7 3 ( 1 9 5 1 )1, 8 1 - 1 8 5M i'So*' prohlems in conformal 596. Jenkins, J.A. Remut'ks on 147-151'MR 13-642' mapping." Proc' Amer' Math' Soc' 3(1952)'
i60l on "Some problems in conformol 597. Jenkins, J.A. Another remark ' R 15-414' 4 ( 1 9 5 3 )9' 7 8 - 9 8 1M m a p p i n g . "P r o c ' A m e r ' M a t h ' S o c '
t5el 5 g 8 . J e n k i n s , J . A . o n v a l u e s o m i t t e d b y u n i v o l e n t f241 unction's.Amer.J' 16' 19' ' N1ath.75(1953),406-408'MR 14-96'7 ll' 599.Jenkins,J.A.Symn'elrizationresultsforsom econforrnaiinMP' l5-ll5' Il)' l7' v a r i a n t sA . m e r ' J ' M a t h ' 7 5 ( 1 9 5 3 )5' 1 0 - 5 2 2 ' 24,54,681 6 0 0 . J e n k i n s , J . A . S o m e r e s u l t s r e l a t e d t o e x t r e m a t t e n g t No' h ' C o30' nirib'to of Math' Studies theory of Riemannsurfaces'87-94'Ann' (1953)'MR 15-115'[24] PrincetonUniv' Press,Princeton'N'J' 6 0 l . J e r r k i n s , J . A . V a r i o u s r e m a r k s o n u n i v a l e n t f u n1c7t i o n s . P r o'c . ' R 1 5 - 1 1 4[' 9 ' ' 2 4 ' 2 5 ' 2 7 A m e r .M a t h . S o c '( 1 9 5 3 )5' 9 5 - 5 9 9M
zel
of the traiectories of a 602. Jenkins. J.A. Ori the local structure Soc' 5(1954)'357-362' q uariratic different ial' Proc. Amer. Math. MR 15-941.[24] (2) of Gronv'sll' Ann' of Math' 603. Jenkins, J.A. On o problem 490-504.MR 15-785'[24] , , 59(1954), J. 2l(1954)' Math. Duke kolbina. of note 6M. Jenkins,J.A. A recent
rss-r62.MR 15-694'[26]
functions. Trans. Amer' 605. Je^rkins,J.A. on Bieierlbach-Eilenberg 16-24' [l' l5 ' l'7' 341 Math Soc.Z6(1954),389-396'MR theorem' Trans' Amer' Math' 606. Jenkins,J.A. A generalcoefficient -soc.??(1954),26?-280'MR 16-232' I24l Proc. Amer' 607. Jerkins, J.A. on circularly symmetric functions.
39'49] Matt,.soc.oitqsr,620-624'MR l7-249'[13'
F T I N C T I O N S( P A R T I ) B I B L I O G R A F H YO F S C H L I C H T
41
J. LondonMath' Soc' ienkins,I.A. on u lemmaof R.Huron. 609. ""MR l7- 251'[59] 3 O(t9 5 53),8 2 -384. ,itultt in thetheoryof symmetriza60g. Jenkins,J.A. some tmiqueness i15' viR' 16-460'[59] tion. Ann Math. (2) 5i(l955)' 105 functions'Trans' J.e'7 n )i"u^"entially meanp-valent 610. Jenkins, i\4R 17-143'[?' i7' 33] Amer. Math. Soc'79(1955)'42?-428' II Trans'Amer' 6ll. Jenkins,J.A. Oi SirirrL;cih.Eitenbergfunctions 341 5 1R5 1 ' 6 - 6 8 4U' ' M a t h .S o c . 7 8 ( 1 9 5 5 ) , 5 1 0 - M Math' Soc' London of Keogh' J' 612. Jenkins,J'A" O; a result M R 18- 12f i7 ' ,221 3 1 (1 9 5 63),9 1 -399. on boundarydistortion' Trans' 613. Jenkiri", J'A' Sarnethssrems ' I'7'2?'' 621 MR 17-956 Amer.Mattr'Soc'81(1956)'477-5W' of spencer.Ann. of Math.65(1957), 614. Jenkins,J.A. on a conjecture MR 19-25'u4, 16' 19'24'33) 405-410. canonical moppingsfor multiply' 615. Jenkins, i'A' Some new MR l8-568' ao'no'fn''Ann' Math' 65(1957)'179-195' connected t60l of certainq'!l:ot-:tremal meirics' 616. Jenkins,J.A' On the existence MR 19-845'[59] Ann. of Math' 66(1957)'440-453' 6t?.Jenkins,J.e'On-acanonicalconformalmappilgofJ'L'Walsh' T r a n s . a r n . r . M a t h ' S o c ' 3 8 ( l 9 s A i ' z o z - 2 i 3 ' M R Mappings' 19-538'124'60l and Conformal Functions Univalent J.A. Jenkins, 618. (1958)'MR 20-543'I44i Springer-Verlag-Berlin functions' o"r 619. Jenkins,J.A' On certain coefficients -uniualeil AnalytlcFunctions,l59-194'PiincetonUniv'Press'Princeton' ' [9' 17',24',25'54f N.J., 1960.MR 22A(2)-1377 in conformalmapping.ll620. Jeqkins,J.A, on wirgnted ditortron ' 124,29'461 linoisl. tvtattr.4(1960t,28-37.MR 22A(l)-807coefficients' Ann' with real 621. Jenkinr,r.n.-ot) univatentfunctions [15' 19' 24'391 of Math. (zi;r(rqoo), 1-15'MR 22A(2)-964' of the trajectoriesof a 522. Jenkinr, ri. on t'n, grobatstructure J' of Math' 4(i950)' positivequoa'oti' difierential' Illinois -4}s-4r2. MR 23A-330.[59] and itsopplications. 623. Jenkins,J.A. Thegeneralcoefficienttheorem colloq. Function (Internat.. contributions to function theory T h e o ry,B ombay,l960) ' pp' Llt- Zig"I' atalnstituteofFun dam engolnuuv,'ibao.MR 26-1002.19,17, 24,25) tal Researcrr, generatcoefficierutheorem' 624. Jenkins,J.A. An extensionof the Trans.Amer.Math.Soc.g5(1960),387-407.MR22A(2)_|37,7.19, 1 7, 2 4 , 2 5 1 univolentfunctions' II' 625. jenkins. J.A. on certaincoefficientsof
---
42
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
534-545'MR 23A-52' [9' l7' Tr:ans.Amer' Math' Soc' 96(1960)' 24,25, 45,49) Canad' problemsfcr typically-realfunctions' 626. Jenkins,i.e' Some 15',23',66)
ziitz)-2093'[13', 299-304'rvrn J. Math.13(1961), 6 2 7 . J e n k i n s , J . A . o , n ' t h e s c h l i c h t B t o c h c o22' n s 341 tont.J.Math'Mech. ' certsinapplicalzi'-n+' MR 23A-332'tl5' 19', l0(1961), and theorem coefficiint 62g.Jenkinr,J.a. ihr- ,rnrrol l-g' MR 24A-371' l24l
68(1962)' tions.Bull'Amer' Math' Soc' meromorof Goodman-con'cerning 629. ienkins, J'A' On o coniecture ' MR 25-27 Math' J' 9(1962)' univoint fun''tion'' tUitf igan phic '24!-3',70. 42] [9, 13, 16' !7 ,25' tb the generaicoefficient theorent' 630. Jenkins, J.A. An uddendum 26-980't241 Trans. orn.,. Math' Soc" 107(19$\'125-l/8'yR on Riemannsur' Topologicalmethods 631. Jenki.,,, f 'n'; Mot"' M' to the theory of ps.uiohar*oni. functions. contributions faces. Riemannsurfaces.Ann.ofMath.Stud.No.30(1953),111-139. MR l5-210.[59] the levelcurves Curvefamilies n\ to11t,t7 632. Jenkins,J 'A'; Morse' M' ofapseudoha'monicfunction'"At'uMath'91(1954)'l-42'MR
' Ann' or troiectories D'F'Hvperettiptic ,rr. i:;??,1;,t]?l',spencer'
4-35'MR 12-400'[59] Math. 53(1951), o7 o clossof fundamentaline634. Jcnser.J.a.#.y. Investigation Ann. Math' qualities ln the theory-o7- anitytic functio.ns. Danish from A tianslation 2l(lgl9-20)' l-2g' FM 47-2ll' I59i' Soc' and tinstn' Bull' Amer' Ma"h' Curvature d Richar Jerrard, 635. t59l l 3 -1 1 4 'MR 23A( r ) - 4- 11' 6 7 (1 9 6 1l), Funktionen.Proc. Imp. schlichte ili,, Bemerkung Einige K. Joh, 536. zbl8- 215' UOl A ca d .l u p ' g i rg :3 ),5 6 1- 564' der (JngeradenschlichtenPoten' 637. Jch, K. iAi, aii Abschnitte [20' zbl Imp' Acad J;' iitrq::i' 407-409' "5-71' zreil^ten.Proc' ,schricht'functiorts.^P^roc. Phvsico-Math' on the ,rr. i'";itl . Theorems tf- +Og'll7' 20' 39' 43' 451 S o c.Ja p a n1 9 (1 9 3 7 l)'- 12' 4bl Phvs'-Math' 639. Joh, X. fniirms'on'rrntirit' lr,ictiois.--Il..Proc' 42] 17 ' "zbl22- 151'[16' ' 22' 24' 59i;i0 ' S o c.Ja p 'III 2 0 (1 9 3 8) Proc" Lowneroil iinil,ulontJunciions. 640. Joh, x. o, o tieorem of 4.r-M'zbl rg-27r'116'17'241 tmp.acJ' il' 14(1938)' 'schlici''1u'n"iont:III" Proc'Phvsico-Math' 641. ioh, K- ;;'';;;^s oi tgt-zog'"iol2l-143'[15'20',22'?'4'43'45' Soc-Japan21(1939), 6ll
(PART BIBLIOGRAPHY OF SCHI,ICHT FUNCTIONS
I)
& 2 , j o h , K . T h e o r e m s o n , s c h l i c h t 'MR f u n c1-308' t i o n s[6' , I Vl0' . P ri6' o c191 .Phys.-Math. Soc.Japan(l) iz'Qgqo\,329-343' on ischlicht'functions' V: 9.1-tht coefficient 643. Joh, K. Theorem's (3) 23(lg4l)'409-c23'IUR problcm.Proc'Phys'-Math'Soc'Japan 3-201.116,24,421 of p-valentfuncy. the ,,Verzerntngssatz'' 644. Joh.K.; Hukusima, on tions.Proc.pttvr.-r"r"h.Soc.Japan(3)25(1943)',377-383'MR 7 -2 8 8 [1 . 4 ,1 5,65] ib;r B'weisfiir Szegtische -Vermutung 545. Joh, K.; Takaho,hi,S' Ein 10(1934)' proc. Inpenai Acad. Japan, schlichtepolenz.,.eiien. 1 3 7 -1 3 9Z.b l g- 75.[16,17,39] rrapoing on o :!'{o^" of a sphere' 646. Jorgcnsen,V' On ionformal M R 12- 401'l27l , 137' ( Danish) e' ( 1950)l3lMa t. T i d ssr... 64T.Jorgensen,V.e,emo,t,onBloch'sthecrem.Tidsskr.B.(1952)' 15- 21.u9' 461 l o o -1 0 3MR . 643.Julia,G.ExtenLsionn-ouvellsd'unlemmedeschwarz'ActaMath' ' FM 47-212'I46i 12(rg20'),349-355 a ld \quation o'x ii'nQt {olltionetles ti6e une 649. Julia, G. Sur (3rd 39 confo'rme.Ann.Scient.6coleNorm. SUp. respr\sentotion (1922),1-28'FM 48-404'l59l series; Paris. 1930.FM 650. Juiia, G. principesGeornetrnuis'd'Analyse. s6-294.146l 6 5 l . J u n g , H . P . B c i t r i i g e z u r T h e o r i e d e r s c h l i c h t e n F u n23' k t 24' ionen.Mitt. [t7' 29, pp'M R 16- 1010' No. 52( 1955) Ma th .se m.Giessen 32,42,541 I' Proc' Japan Acad' 652. Kakehashi,T. On schlichtfunctions' MR 2l-660' [4' 28i 134-136. 35(1959), an analyticfuncripresentation,of 653. Kakeya,S. On the stor-shaped 237-240'Zbl (i932)' A' tion. Sci.ntp' iofyo Bunrika Daig' 6-120.16,20,431 part on the unit imoginary 554. Kakeya,soicii. on the-functionwhose Imp' Acad' Tokyo circle ,noni" its sigi only twice' Proc' q i s- ag. M R 8- 22' U7,49' 541 l 8 (1 9 4 2 ), functions,logarithmic 655. Kaplatr,w. on Gross,startheirem,schlicht potentialsandFourierseries'Ann'Acad'Sci'Fennicae'Ser'A'I' ' 14'621 ' pp' MR 13- 337 No' 86,( 1951)23 Ma th .-P h ys 656.Kaplatr,W.Closetoconvex"hfi,,ntfunctions'Mich'Math'J' MR 14- 966'[4' 5] 1 ,(l -g 5 2 ),169- 185. 65T.Kaplatr,W.Extensionsofthecrossstartheorem.Mich.Math.J. MR 16-232'lsgl 105-108. 2(l-954), Lectureson Finctions of a complex variable. al. et w.; 65g. Kaplan,
---
F I I.
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
i i. I
!, MR 16-1097'[59] r TheUniv. of Mich' Press'1955' I 6 5 9 . K a sj a n j u k,S " t'On a g e ner alizationofthelocallyElikesndI{ Vyss' lzv'star Maksimov' J'S' of tocatlyn-ron""inorylf' functions 1. I (1958)'No' 1(2)'103-113'(Russian) Ucebn.Zuu.O.rurutfrematita M R 2 3 A - 7 3 21- 6 , 1 01' 5 ,2 3 1 the iegulsrin an annulusandconvexin S"i-"pun'ctio'ns Kasjanjuk, 660. lzv' Vyss' Ucebn' Zaved' direction of the imaginary oxis' MR 23A-'731' (Russian) Matematiku(tqsg),NJ' e(i)' 105-110' rl r rv rn 1 2 - 7-3- 8 ,4 0 .4 1 .4 9 1 '' 1 t -e, conof convex-andstar-shoped subclasses io^' S'e" Kasjanjuk, 661. annului' lzv' Vyss' Ucebn' Za"red' .formal mappings of an MR 25-796'[6' (Russian) Matematik"iiq60l, No' 6(19)' 126-139' 1 0 ,1 5 ,1 7 , 3 5 , 6 36, 4 1 oi boundeddomains.i. Lorr662. Kenqedy,p.B. conformalmapping MR 17-ll9l ' 11' 221 don Math' s"..lrtrq 56),332-336' convex' and star-shaped 663. Keogh, F'R' io'i' inequalitiesfor
domains.J.LondonMath.Soc.2g(i9s4),|2|-|23.MR16_302.[6' 7 , 1 0 ,3 5 ] schlichtfunctions'J' London 664. Keogh,F.R' A propertyof bounded l5-862' I7'221 Math so.. zq(iqs+),rzq-:g?"MR 665.Keogh,F.R.Sometheorems0nggt|orrilalmappingofbounrled star-shopedrlomains.Proc.LondonMath.Soc.(3)9(1959)' MR 22A(l)-295'16'7' 22',231 481-491. of G'M' A'st'ingtienedform of a theorem -2. 666. Keogh,F'R'; Peterson' ittigsg)' 31-35'MR 23A-371'[59] tviener.vr"itt. Berlin,1923.FM uo* Toporogie. 667. Kerekjario,B. von vorresungen 4e-3e6.[5e] 668.Kimu.a,K'ontheunivalencyandm ultivglencyofananolytic pi'V''-Math' S6c'Japan(3) l?(1937)'241-245'FM function'p'ot' 61-293.[4, 14] Zahienfolgen'Math' Z' 22(1925)' 569. Knopp,K' Mehrfachmonotome ' 9] 7 5 -8 5 l.''M 5 1 -1 ? 8[5 F' theoryof functions'Trans' by 670. Knopp, K'-nrc'"ni' o1 tn' rqSZ' io?y?:,?Ol48-308'[59] Bagemihl.New York: DoverCo' - DoverPubl' ' Representations 67I . Kober , H.^D-ictiinoryof conformal pp' M R 14- 156'[59] In c.,N e *'v" 'i '-,N 'Y '; Ig52' 208 Poren' ier Abschnittegewisser 572. Kchori, e. tie, aie Schlich.theitl4(1931)''251-262' Zbl5-250' n' zreihen.Mem- Coll' Sci' fyoio konvexeAbbitdung'Mem' coll' sci' 6?3 I1;;3; ,lt],. U" sternigeund 10', ', 12',16',20] ,267-278'iat s-loz' l6', KvotoA l5(1932) "\
--J
{
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
45
Bedinguitg die notwendigeund' hinle'iche-1le Stern' hb:r A' Kobori, 674. p"i""':tne denK"i"'i"ei'h auf denschlichten lmp' dafur, dass Kyoto onniA't' Mem' Coll' Sci' igenbzw' O"'"'""- ni;ereich i0' r6l
6' zti-iit' zbts-362'14' Univ.A 15(1?;;", rI Mem.coli' Abbitdung. ki,rurx, rna uiiirrur^ir 451 675.Kobori,A. iwi-tzo' t9',t9l,tr'20'39' r27-r3:.'' 16(1933) ' a Kvoto Sci. -1 6 7 6 . K o b o r i , A ' Z i i i a ' i ' ' i b er'ot" r d i e -n' ) biiir s c hgl4)' n i t t eI 7d1e r86' s c izbl t l i c9h-36r' t e n P16' oten' sa' ioill t*' n.r"l ihe e zr Jap'J' ivlath'13(1e36)' Ktusse yo::o.':nzreihen' ,'k''';!" 36'631 6??.i:;;: rs''17""20" zbt\;'-;;;'-ii' o' 10'11' 12' analy4e-60. t)es iutti'oten"'di'n' famitte fonctions[6'14' 678. Kobori, A' S" to zbt2o-r42' rszrsq' r+irljsi
i'np'ecaa'rap' fiques.p'ot'
Soc' 321 -"- I^' ranrtinnr mu, multivalenfes' Proc' Phys'-Math' les Sur fonctions A' 6f9. Kobori, 3 7e' [14'15'i7' 50'65]
MR 'Su' Japan(r2;(;;;;i'"qi-nt Proc' Imp' Acad' i' fonctions-*'ttiuotLnres' A' 680.Kobori, 15'6sl 'An'evolusti
- ^ n d i ^ , , o sur < , t r lun tn th\orbme de M(Jne'-remarque
J' Math' zgO'iiii'iz-34'MR Havman'Japan
U' 14'17' 23A-'71r'
v'A' zmorovic' ty:::K",( univaknt of ctass a on *.r' 686.f;.1,11 Dopovidi;i.;;.Nu.rtur.ruin.-nsd(rqsq),1060-1063'(UkrainQ\-tozl ' ll7 ' 23' 281 ian. Russian'English'u**u'it'i-rvrn'zze in thecircle' Uspehi of uni'roirnt-yunrtion, 6g7. Kocur, M .F. on a crass Mat.Naukr'7(1962)'N"'4(l;;;;lsl-rso'(Russian)MR26-62'[4'
688.5K.1;;i?.t};]f;i2aInVo'^isierungbetiebiger^onotvtischerxul-y tqt-2to'FM 38-455'[59] Nachr.Ges'wiss'Gottineeri;itnoil der a.lgebraischen Kurven 6gg.Koeb€,p. nber die unifi'misirr"rie durchautomorpheFunktio:;';;^iimaginarersubstitutions'
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
-Phys' Kl' gruppe. Nachr. Kgl. Ges. Wiss' Gottingen' Math' (r909), 68-7.6.FM 40-468. [59] Kurven.ll. 690. ioebe, p. 1ber die Uniformisierung der algebraischen M a t h . A n n . 6 9 ( 1 9 1 0 )l ,- 8 1 . F M 4 l - 4 8 0 ' t 5 9 l 69r.Koebe, P. Zur konformen Abbildung unendlich-vielfochzusamNachr' Kgl' menhiingenderschlichterBereicheauf schlitzbereicfte' 46-546' FM -Phys' Kl' (1918)'60-71' Ges.Wiss.Gottingen.Math.
t60l
Abbildung' 692. Koebe. P. Abhandlungenzur Theorie der konformen tsereiche IV. Abbildung mehrfach zusammenhangenderschlicter 46-545' FM 305-3M. Acta Math. 4l(1918), auf Schlitzbereiche.
160l Abbilduns. derkonformen zur Theorie 693.ko.ur, p. Abhandlungen auf v. Abbildung mehrfachr,rro**.nhangender schlicterBcreiche 198-236' FM Schlitzbereiche(Fortsetzung).Math' Z' 2(1918)'
46-546. [60] Lemma und einigedamit zu'om694. Koebe,i. 1At, dusSchwarzsche der Potentialtheorie und menhangendeungleichheitsbeziehungen -2i | . I37l Funktio nentheorie. Math. z. 6(1920), 52-84. Ft:l 47
69s.K n l b i n a , L . l . C o n f o r m a l m a p p i n g s o f t h e u n ' i t c i r c l e o n n o n -
No' 5' overlopping tJomains. Vest-nik Leningradskogo Univ' (1955),37-43.(Russian)IviR 17-26' [59] conformal mapping' 696. Kolbina, L. l. some extremal prcblems in DckladyAkad.NaukSSSR(N'S')84(1952),865-868'MR14-35'
124,261
DokladY 697. Kolbina, L. l. On the theorY of univalent functions. 14-35.[9, 15, Akad. Nauk SSSR(N.S.) 84(1952)'tt27-1130.MR 581 of p-valent classes 698. Kolbina, L. l. on distortion theoremsfor certain functions.VestnikLeningradUniv'II'No'7'(1956)'71-76'IviR l 7 - 1 0 7 0 .[ 1 4 , 1. 5 ,6 5 ] Proc. Imp' '\cad' 699. Komatu, Y. Ubeireiien Satzvon Herrrt Lowner. Tokyo 16(1940),512-514.MR 2-276' [59] j'be, eine Verschiirfungdes LtiwnerschenHilfssotzes' 700. Komatu, Y. MR 7-286' 17'22'24' Froc. Imp. Acad. Tokyo 18(1942),354-359'
621
Abbllcung vott 701. Komatu, Y. (lntersuchungeniiber konforme zweifachzusgmmenhangendencebieten.Proc.Phys..Math.Soc. l-42' MR' 7-514' [591 Japan(3) 125(1943), '(Jntersuchungen i)ber koiiforme Abbildung vot't 702. Komatu, Y. Phys' -Math Soc' zweifoch zusamtnenhangendenGebieten' Proc' Japan25 (3rd series),(19r3), l-42' MR 7-514' [59]
FUNCTIONS (PART BIBLIOGRAPHY OF SCHLICHT
?03.
I)
41
und ihre analytischerFunktionen Darstellungen Einlge Y' Komatu, Acad'Tokvo
Proc'Imp' Anwendune'n 'ioittgu), oif ronfolrylduiitiuis' 10'231 ito-s+i'MR 7-287'12'
fur conA'pproximati^onsverfahren otttetnierendes Ein Y' 704. Konratu, auf einenKrcisring'Proc' ein'* Rinis'ebiete eOOitiu'n[''o" forme r1-34I' t59l by JapanAcad'liitgis)' I46-.15s'-r'ln conformal'representation cn'thetneo'yii i;;' Y Komatu, 705. Imp' Acad:Jokyo 2l(1945)' functions'I'-II' Pt;' meromorph'ic ^in- [9' 17' i9] NaP'l1-170' 259-2'77,0e46;,"i-a-is+' ttnalytischen eineiii Kreis:inge der '/06. Komatu, Y ' Darstetluttgen Abbildung f?'.!?:me ""f MR Funktionen nebstden Anwend-ungen i. vrattr.tq(tg+5),203-215' potogonoiringgebiete.l"pu" uber
rlng'Math' a c'ircutar stit-mappins conformat !'f on nt .Tfl^ri:t+ 124'60) lt:giii'iq-??' M,R10-186' Japonicae fiir konipproximationsverfahren Proc' ?0g. Koma tu,.I .'Ein a'liernierendes auf einel'Kreisring' ni1fseatete 'on'in'* "1il+sl forme Abb'l;';';; gisi, rqe-155 [60] *:
A."d.';a Japan
l-:'41' representationby y' i;;' the tr'en') of con'formal 269709. Komatu, "; Japan Acad' 2l(1945)' I' II"'it;;' meromorphicfunctions' 15'17'19'25'53]
MRii-rzo'[e' 277(rsse),iii-ia+Og4e)' Abbitdung zweifach zusam-
710.Komatu, i '- 2"; konformen lv]-y'^:-t"t' JapanAcad' ri"'[i' I' Gebiete' menhangender 2r(1945),zis'-zgs'296-307'i:i-llq'3'72-3'7'7'401-406'(1949)'
,,,. Yi:l;l6i:
'fllnoo^'ntat in thetheorvof equatio:: differentiat
conformatmapping'Proc'J;;;;;ozs(rq+q)'No'1'1-10'MR 'J;R',]Jo'^'s Kodai theorem' anda distortio'n constant ?12.l(2;,f":;jti. l5' 58] lz-il'irgjol'Ml r2-2s0'[9' doMath.Sem'Rep'(1950)' )-ippiis 9f yulttotvconnected ,ii y. confor^ot oi ?13.Komatu, i" zo-lt' rrln rl-234'I'241 JapanAcad''?6(i'5til'Ni mains.Proc' ?l4.Komatu,y.Acoefficien,proiir^'forfunct!2ns,univalentinanang-i,.MR 18-292. u6, 17, Repl'*iid6, s.m. Marh. nurus.Kodai Laurentseries' coeffilil1l' the on Y' i1s. 18,]*"1u, .! ^'!p:^('l:::'' KodaiMath'Sem'Rep'gttg';'i+;-+s'Mnig-+0a'[9'13'16't't' 5riil*"tu, comainwithconvexor Y' on conformalmappineo{a 9(1957)'105-139'MR zro. ft'f"tttlStrn' ntp' stsr-like boundary'Kodai - :a:,.^ lg-94g. [6, 10, 15, 23' 63' &l TlT.Koma,u,y.onanalyticyunciionswithpositiverealportinacircle'
h---*,
Y
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS l I I
! MR 20-665' 12'7' 181 I Kodai Math Sem.Rep' 10(1958)'64-83' l Tlg.Komatu,Y.Onanalyticfunctionswithpositiverealpartinsnon' 1 2 ' 7 2 0 6 6 5 ' t M R ) '4 - 1 m ' n u l u s . K o d aM i a t h . S e m 'R e p ' 1 0 ( 1 9 5 8 8 lT 1 8 ,4 8 1 719.Komatu,Y'onconvolutionofpowerseries.KodaiMath.Sem' ' R 2 l - 3 8 8 ' 1 2 '4 ' 6 ' 1 0 ' 4 7 1 P - e p .l 9 ( 1 9 5 8 ) 1, 4 1 - 1 4 4M
T20.Komatu,Y.,ontherongeofanalyticfunctionsw'ithpositivereol port.KodarMath.Sem'Reportsl0'(1958)'145-160'Zbl87-77'12' 7, lgl 72l.Komatu,Y'onconvolutionofLaurentseries.Proc'JapanAcad. 34(1958).649-652.IUR21-1064'12,9, 471 722.Komatu,Y'Oncoefficientproblemsforsomeparticularclassesof II (1959)'124-130'MR analyticfunctions.i{odaiMath' Sem' Rep' I 2 2 A ( 1 ) - 1 8 [. 6 , 9 , 1 0 , 2 4 ] of a circle. Kodai mappings (tnd i convex starlike On Y. 723. Komatu, I 23, 1 5 . 1 0 , 2 4 A 2 5 3 . M R [ 6 , 123-126' I Math. Sem.ReP. l3(1961), 29,641 Sugaku I 724. Komatu,Y.; Nagura, S' Theory of univalentfunctions' (1949),286-302.MR 14-1075' U5 ' 24, 68) in schli:hi mappings. 723, Komatu, Y.; Nishimiya, H. on distortion 15'46] ti K o d a i M a t h . S e m .R e p ' ( 1 9 5 0 ) ,4 7 - 5 0 'M R 1 2 - 2 5 0 '[ 1 0 ' l con' [, of multiply 726. Komatu, Y.; ozawa, M' conformul mapping t MR 8l-95' 3(1951)' Rep' necteclclomains.Kodai Math' Sein' t l3-734.[5e] 127.Konig,K.Dieers|enKoeffizientenschltchterFunktionen.Mltt. g-12' Zbl l-214' U7' 541 Math. Ges' Hambg. ?(lg'rl), Funktionentheorie. 72g. Konig, K. Einigeioeffizientenproblemausder 39, 54] 27 Tohoku tvtattr.-r.rg(i-g1), 374-379.ZblT-351. [17, ,31, Funktlonen' 729. Konig, K. Eine Bemerkung iiber urgerade schlichte ' i45ll 9-25 Zbl ' Mitt. Math. Ges. Hamburg' 7 (1934), 238-239 Riesz.Studia Math ' 730. Koos is,P . Proof of a theoremof the b'others MR 2l- 131' [59] l7(1958),295-298,. of their orthogonal 731. Korickii, G. Y. On curvotureof tevellinesond 37(79)(1955)' N.s. sb. trolectoriesin conformal mappings.Matt. ) R l 7 - 2 6 ' [ 9 , 1 0 ,3 5 1 1 0 3 - 1 1 6(.R u s s i a nM of univalentcon732. Korickii, G. 'l . ort the curvat't:e cf level curves l5(1960)'No' 5(95)' t79-182' i'arnic! !'tisps.Uspehi l\'4at'Nauk (Russian)MR 23A-330. [9, 35, 49] spezielleKlossen 733. Koritzky, G. Der satz von Heffn szeg6 fur einige 9l_98. der schlichtenFunktionen. Rec. Math. Moscou 36(1929), FM 55-791. [5, 15, 2C, 43, 45, 671
I
I r
w" (PART I) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
,B4,Koritzky,G.|J.CurvatureoflevelcurvesinunivalentconJ.ormal (N'S') il5(1957)' 653-654' moppings. Dokl. Akad' Nauk SSSR' 9' 35' 45' 49] Sussian) MR. 19-845'[6, aie'Koeffizienten der schlichtenFunktionen' 735. [oseki, f. UAer gigsgteci), [73-197. ]viR 22^(2)-1168. Math. J. Orcaramauniv. 1.24,421 7 3 6 . K o s e k i , K . ( l b e r d i e K o e f f i z i e n t e n d e r s c h t i cMR h t e23A-330. nFunktio nen.|I. u6' 125-142. Math. J. OkayamaUniv. i0(1960/61), 24,421 p_wer.tigcnFunktionen. Math. J- okayarna i3?. Koseki, K. Llber cie 87-99.MR 23A-619' U4', 15' l; ' 34' 651 Univ. 10(1960161), der:chlichten Funktionen. Math' 733. Koseki,K. Bcitrigr rW Theorie MR 24A-495' [28] J. Okayama.Univ.l0(1960/61)'1-9' T3g.Koseki,K.UberdieKoeffizientenderschlichtenFunktionen.|I|. M a t h . l . O X a V a m a U n i v ' 1 1 ( 1 9 6 2 ) ' 2 7 - 4 2 ' M R 2 3 A - 4 2 7Math' '124'42\ ier schlichtenFunktionerr' 740. Kosekr, K. Llberdie Ableitungen 2 5 - 2 5 4 'U 7 ' 5 4 1 J . O k a y a m a . U n i v1' 1 ( 1 9 6 2 ) , 4 3 - 5 0M' R und meromorphen 'schlichten . Kosek\,K. (Jberdie Koeffiz'ientender 7,11 ll(1962)' 5l-58' MR F u n k t i o n e n .I . M a t h . J . O k a y a m au n i v ' 25-254. 19,l7 , 251 ?42.Kossler,M.EinBeitragzurTheoriederschtichtenPotenzreihen. 5 (1933)'l-7 ' Zbl'7-312' Mem. Soc. Rov' Sci' Boheme 1932No' [ 1 5 ,1 7 , 6 8 ] jber besondere Klcssenvon schlicht Abbildunsen 743. Kcissler,M. Boheme(193a)7 p' Zbl Potenzreihen.l' Mem' Soc' Roy' Sci' 1 0 - 3 6. 1U , 4'00i, ,221 pctenzreihen mit beschranktemImaginarteile' 744. tscissler,M. C.R.2-'CongresMathPaysslavesl5u-151'CasopisPraha64' -1ber ( 1 9 3 5 ) ,1 5 0 - 1 5 1F. M 6 l - 3 4 7 ' [ 5 9 ] reele charakteristiken von Patenzreihen' ?45. Kcissler, M-.(Russiansumrnary) CzechoslovakMath' J ' 4(7g)' (1954)' 274-282' M R 1 5 - 9 1 4 .[ 5 e ] condition for 746. Krasnovidova, i.S.; Rogozin, U'S' '4 sufficient problem. Uspehi univalencyoj'rn, so,Utfoi of an inverseboundary Matem.Narrt(N'S')8(1953)No'1(53)l5l-153'MR14-740't4l T4T.Kresnjakova,L.Y.ontheradiiofstarlikenessandconvexitl,for lzv' Akad' Nauk Armjan' SSR' functions i io',na'd modulus' Ser.Fiz.-Mat.Nauk14(1961)'No'4'49-55'(Russian'Armenian s u m m a r YM ) R 25-39'[3, 11, l2] bounded meon 748. Kresnjatova, L.V. Analytic functions \':h . (1961)'No' 1(20)' modulus.tzu. Vyss'Ucebn' Zaved'Matematika
F
!
I F
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
il' 28] ) 2 6 - 615' .[3' 98 -1 0 3(R . u ssi a nMR with some estim)tei'foi regtlar functions (1963)' ?49. Kresnjakova,i.v v;r;. ilceun.-zaved.Mat. bounded*roi'^odirur. Iru. ' 'J ' 1 1 ' 15' 16.'17] No . 1 (3 2 ),g 4 -g 7[3 errorfuncif univatence'o{ raclius The ' 'the F";f"Od' z\g, Kreys 750. 20-969'l28l oa(rqig)'3.63-364'r'{R /ion. Bull. e.o' iluth' Soc' errorfuncThe radi)sof inivalence^of"the 281 ' zis,E';;;;;;i Krevs 751. [10' ]3' MR 21#133' 78//89"' tion-Nume'' i"n"-1'(1g59)' the On the radiusof univalen-ce^of function J' foaa' E'! Kreyslig, 752. expz'\',expt-t';A'paciricJ'il;'q'No'l(1959)'123-l2i'Tbt'
Besset runctions' orunivatence ^or ,r,. ?:;:,:;tlltili'1.d,I ' rle'1d.iy1 ' llt-iqg' MR 22A(1)-297l28il tllinoisJ. il;;'-4(1960)' schlicht "f J. Anolyiical expressions for someextremal 754. Kronsbein, MR 4-215' Math' sot' rztig42)' 152-157' r-""J"t functions.l' coefmaximumpropertvof-thefourth MR ,rr. Pl;#lbloc*i, Nr'z' A local 128' Dtk; Math' r' t+(tq+z)'109functions' ot,'iii'nt ficient
Ann'univ' (!) l''^1tentes' movenn' ,,u. i.#','i'.'r"?']!""ncto.ns ?1 i 12(1958)' 38-M' (Polish'Rus-
Mariaecu'it-skrldowskastct' t33l MR 22A(2)-1900' siansummaries) functions'B]ull' ttnivulent ^oaut;t;f maximu^ the On J' ' Krzyz, 757 1521 (3) (i;;;t' zot-zoo'MR 17-143', Acad.polon. sci. cl. rrl functlons'Bull' oiLo'nded univalent a"iuotii' ti'' On J' 758.Krzyz, Acad.Polon.Scr.Ser.s.i.rrnutt'.Astr.Phys.6(i958),157-159. M R 2 1 - 2 ? [. 1 5 ,1 8 , 2 2 '6 l ] Ann' .759.Krzy,, J. o; lhe derivotiveof boundedp:Y!!:\!,functions' (Polish' e. iz(rg58),23-28' Univ. Marie curie-Sklooo*riu"sr.,. I s' 22' 24' 6r) ' [14' 23p'-r't'7 Russiant;;;;irnn boundetlp'valentfunctions' 760. Krzyz,J' Distortion theo"^' \oi Sect' A 12(1958)'29-38' ann. Univ. Mariae Curie-Stloit'*'tu 77' U4' rs ' 22' 24' 6r ' 551 zja-r (Polish.R;';;;;mmaries) r"rn B't'll' jo' Aoundedconvexfunctions' 761. Krzl'2,: ' irstortion theorem' Math' Astrcnorn'Phys' 8(i960)' Acad' Polcn' Sci' Ser' Sci' insert)MR 24A-153'[10' ' (Russiansummary'unUounA 625-627
tii,l?,,'r?' Nex f unctions' rr' co'r b r un o e h t I n i o t #r), , ur. : i : ?.!,! : : ", Ann.Univ.Mariaecu,ie-sxioaowskaSect.A14(1960),(Polish. 64] MR 2s-7s7' [10' l5' le' 22' Russian';;;;;itt) values'Ann' with twopresssigned 763. Krzyz,l.6lr"rr'iiiirnt Trnrtions
FUNCTIONS (PART I) BIBT-IOGRAPHYOF SCHLICHT
51
Univ.MariaeCurie-SklodowskaSect.A15(1961),57-77,(Polish. R u s s i a n s u m m a r i e s ) M R 2 5 - 4 2 7 ' U 5 ' 2 4 ' 2 9 ' 5 4 1Math' 12(1962)'
Ann' Polon' 7(,4. '- ' Krzvz,J. on "i)iirc^ "{l' y?'iel' li5, 24'681 s:-eo.MR 25-611' within the fomiQ of radiis of close-to-convexity
765.Krzyz'J. The Polon' Sci' Ser' Sci' Math' univalent functions'Bull' Acad' lv1R25-1210'[5' 12] 201-204' Astronom.pnyt' 1C(1962)' functions'Colloq' of close-to-convex 766. Krzyz,J. On'iie airnati've ' 15' 29' 641 Math. rorrqoj),r il-t+o' MR 25-1210't5 'Tefectonciccnfortnol K' Isoperimetrical 767. Krz-yz'J'; RJziszewski' Sect'A' 10(1956)' mopping.enn'Uniu' MariaeCurie-Sklodowska MR 20-289'[7' 10' (Polishand Russiansurnmaries) 49-56(1958)' schrichtfunctions.Scie.Record, ,ur. Ll,t:L H. A note on bounded Zbl40-36'll9'221 Acad.Sinica:(f qSO)'157-159' on boundedanalyticfunctions' Mem' ?69. Kubo, l. Some'h;o"*' Math' 27(1953)'235-213'MR Coll. Sci. Univ' Kyoto Ser' A' 1 5 - 2 0 81. 2 2 , 6 0 ) ., ..:^. snd canonicalslit-nnapp'ng' kernel function n"i^an f . Kubo , 770. A' Math' 28(1953)'33-40' Mem. cott' Jci' Univ' Kyoto Ser' MRl5_695.[491 T T l . K u b o , T . K i t v i n p r i n c i p l e a r t d . s o m eSer' i n e qA't tMath' a i i t i e28(1953)' sinthetheoryof Sci'Univ' Kyoto Coti' fuft*' r' functions. 29g-3r1.NlR 16-122'l59i J' univslent functionsin an unnulus' 772. Kubo,r. sj^irtrization and ' MR 15-948'Il9'221 Math. so.. iupunoitqs+)' 55-67 Sugaku of symmetrization773. Kubo, T. Theory and apprications MR 20-5M' l24l ,4'5-5i' (Japanese) 9(1957/58) diameterand sometheoremson 774. Kubo, f . U1:p"Aciict'antqtnite Math' Soc' Japan10(1958)' analyticfuntctirtnsin an o'nu'l"' J' 348-364.MR 21-6s9'U9l T T 5 . K u d r j a v c e v , A . L . o n o n a p p r o x i m a t eSer' m eFiz'-Mat' t h t l r i f o r c(1959)' btainingccnUZSSR Akad' mappings'Izv' formal lVaut No. 6, ts-{z' iRussianlMR 22A(2)-2s3't59l-.^^ equotions d.ifferential 7.76.y.\farev, p.p. on integrat,oi tir'timnl.es.t right-hondside' Uc' Zap' with variablepolttr singularityin the {591 Tomsk.Uniu"t(tq46)'35-48'(Russian) equation'Dokl' io*!"','s 77?.Kufarev,P.P. A remarkon,ni'g'ol'oi A k a d . N a u k S S S R 5 T ( | g 4 , 1 \ , e j i _ o s e . - t R u s sDokl' i a n ) MAkad' R9-421.[24] 778. Kufarev,P.P' On the theoryii 'niuot'n'-fyn:':.ons' t\t-ls+' MR 9-507' 124',491 Nauk sssR (N'S') 57(1947)'
b------
52
BIBLIOGRAPHY OF
SCHLICHT FUNCTIONS
of coynlllentarvregions' 'i{t'iis'i' p.P. conformqtTaloing on MR (Russian)' 779.Kufarev, 881-884'
N;il;si;n N's') Dokl'Akad' btemof t * ^ at regionsof-thepro3e1-3e3' r." -N"J^;'S;* o bln) o ?80. f, ffr":,!'l'.?u ir'ia'i " !,?{.,'"' 6's'l e7(1e54)' coefficients' -[,rJ3l] olil''
,r,.
Y]
tf#i;fri
romskii or coerriciens' the^probtem MR (Russian)
tuat'ruetl'iiiisssi 15-18' of extremum of investigalon ^1.'.ood certain n ,rr. li'ro"Tt'ltf:Jl'' Gos.univ i':;;
problemsintie-lneorvof"'*Iit7'ntctioni'D;tl'Akad'Nauk [e'2e] tz-to6e' olr-erj-uil sssRt*'''l'io'iiqi;l' for com' 'p'robtem 783.Kurar*, "' i;^'n """tat p l e m e n "1"]';;l*:; taryao*.oin,.Dokl.;il'Nuur.SSSR1N.S.)81(1951)' ion of Golusin's 995-998.MR 14-262.[59] extenst' p'p't St*"ttinu' N'V ' On an Dokl' Akad' ?84. Kufa"u' to doubly''oin'"t'a-rqions' m'ithod 2e'481 voriationul' *tn rr-r rs3'124'
NauksssR(N's')107(195'6)'1#ioi' of the ^u-::y:'oJ
curvatureo"l 7(1956)'i23-137' MR
P'K ' On.evltuat.ions ?85. Kulshrestha' b;;it" levelcurvesof schlicht funct'io'n;' and or 20-292.L35l of curvaluu.?!,::"'' curves in th' p.K. on measu,re ?g6. Kulshresthi, a clais"ofmeanp-volentfunctions thogona!"i;i';';;"" of 33' 35] t-: o' no* zt- itl' [3]' 9( 1958) u n i t ci rcl e 'Gu nita
T87.Kung,''io'Jt'l'1:rh^;I:'#;*^J11;;";'r";;::;;!:':{'"J' equation'Aua a'ffirential 11-r42.l24l
schlicfu fun' and coefficientsof theorems tion Di'to' r7 4 788. Kung, S' l-:"ic' MP-1?-142'lr5' '
ltrq53;'ii Math'S:nica tions'Ac.u
54,68]
o^d.. thonrpratson symmetric schlichtfuncticns'
is,54t T8e(ung tt't ilr:'J;\t-tiz ,{{{r':#i s,,'iXii
Ac
?g0.Kung,s..o,ciefficientso;',i,|*iuo},ntfunctions.ActaMath.Sini 541 8;-103'MR 17-142'u7', 4(1954), Acta Math' Sin functions-' sections,or.rritirn, 7g1. Kung, s. rn, [9' 16'20'43]
lc-(-lii' vrn li-r42' 4(i?54), ettu l''rutt''Sinica4(195 'ot-'-'t^finiii'Jt' meon 792.Kung,S- on
'{*t ,'nr,
runctions tl,;;;i'?':r?;'}'t'o' tl:!:i 3{^schticht I 19-738' zzg-z+e'MR
tti' s"#"iiigssi' theorems' Distoriion 1 7 , 4 2 , 4 9 '5 4 ' 6 8 1
BIBLIOGRAPHY
OF SCHLICHT FUNCTIONS
(PART I)
53
lll' Acta Math' schlicht functions' coefficientasthe lf ?94. Kung, S' Ott Sinica6(1956),4g0-49g.(Chinese.Englishsummary)MR20-544. II' Acta Math' l4?.1 schlicht functions' ttf coeificients the ?9:. Kung, S' Ort Sinica6(1956)'115-125'(Chinese'Englishsummarv)MRi8-121' conforme' U7, 49.l. -. o..- .,a. nnn
r-:7st7' 4et Tk;':i',i;;3;:;B-';rll^n osaka function' ana'tvtic ", I*J1T,:^:;; ,;; ii'io'u ?':t:i";;;'ied re7.Kuramo.hi zbt' 48-3re'122], it:-tno' u';i'il" ,' Marh.
'"'iii;,if:::,,";tf irrii,.'ix:i,:i:;::lry:,T:::",:f&
I ;f;;;ri;"i:::"l!:i'Xit:t+tW.trf K:|{i; Kuroda, 7e8.
' Derermino",o'lu7ri,'inr."p"f.f ' nftua' NaukSSSR 799.Kuz'mina'G'V qnalYtical-J, a cerain classof
t431 ,'i 20-161' ttrli.iitil ii-is+' r"rR of unintence-of 1N.s.)
i ;i"li"J\t'\ii',"tiz-zz ,* llU;+:,?l;,::,^;i' :!,i;::i\[i:'3[ functions' rr.ln'zza(z)-1629'^143, - ..^-,nn theorems for univalent MR
(Russian) zs-31 Kuz'mll;f 801. i,giit, X,^j;'i!ji'.9ii:5.;"t; Z,A-254' llgl
Abt' ' '-)^liifschen Prinzip' Mitt' Georg'
MR transr) German 802Kwess.$1,l rn""i"'. ,?;rffif,ii,";;7:;;'; univalentes' 3 - 7 8 'U l th\orie desfonctions o'^l: Contribution 803. Lad, S' 12-19' FYs'62(1936)' casoPist;:'il' i" ^t'n:ichter FunHionen' Beitriige K' 1 7 't e ' 2 5 ' 2 7 ' 804. Ladegast' ""'iJL"l' i l - " i ' ; - ; ; ' [ e ' 1 3 '1 5 '
1 's - ] 5 ? M a t hz' ' 5 8 ( 1 e 5r3, 1
58,67'.681 3 1 , 3 9 , 4 3 , 4 5 ,5 4 ,
'n fur die bienqhe
j;i,I";i;r';:':t^::f.*:#'itin'ii'zgz-zg *"i:,'i!,'iri*;, t34l ZZntZ)-2094' (Chinese'German'u**u'oi-ft'fn s 0 6 . L a i , w . o n a c o n j e c t u r r : i o ' ; ; ; ; ; ; i " r atun t m zo-217 i s t b o u' nl34l dedfutic-
t '1'nu';'''f3-iios' Sinica tions'sci'
191 8 0 7 . L a n d a u ' E ' Z u m K o e-lq'L'FM b ' 1 ' , i ' n V48-406' e r z ' e r[9' run gssatz'F.'C'CIrc'Mat' lO'' Jber' 46(1922)' Palermo' ua" sc'htkhtiAbbildung' 808. Landau'E' Einige!':ry::i''nsrcn
z 30(re2e), ffil,n o Mu"ii{rn,7tZ^71,L:oj^1,fti}ill"^::^t' t'!.':: Uber E'
809' Landau' 6 3 5 - 6 3 8F ' M s 5 - 1 8 7 '[ 4 2 ]
5'.--**
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
g10. Landau, E. i.iber die Blochsche Konstante und zwei verwandte Math, 2.30(|929), 608-634.FM 55-770.[19] Weltkonstanten. neuerErgebnisse 811. Landau, E. Darstellungund Begrundungeiniger ' 1929 I59l der funktionen Theorie- F,d. 2, Berlin, gl2. Landau, E. jbe, ungerode schlichte Funktionen. Math. Z' 37(1933),33-35. Zbl. 6'211. 116,17, 45, 521 Trav' 813. Landau, E. Ausgewiihlte Kapitel der Funktionentheorie' 23-68. Inst. Math. Tbifisi (Trudy Tbiliss. Mat. Insr.) 8(1940), (German.Russiansummary)MR 3-78' [19] iemma' i' 814. Landau, E.; Valiron, G. A deductionfrcm Schworz's London Math. Soc. 4(1929),162-163'FM 55-769' l37l connected 815. Landau, H. J. On canonicolconformol mopsof multiply 22A(2)MR domoins Trans' Amer. Math' Soc' 99(1961)' 1-20' 208e. [60] for multi816. Landau, H. J.; Osserman,R. Somedistortiontheorems MR vorcntmoppings-Proc' Amer' Math' Soc' 10(1959)'87-91' 2l-660. ll4, 491 of Riemann 817. Landau, H. J.; Osserman,R. On onalyticmappings surfaces.J.d'AnalyseMath.T(|g5g/1960),249-279.MR23A_52.
l5el
map818. Lavrentieff (Lavre^rtiev),M. A. On the theory of confcrrnal ping. Trav. Inst. Phys. -Math' Stekloff Sect' Math" Leningrad' No. 5(1934\, 129-245.l"M 60-1026' l59l glg. Lavrentieff (Lavrentiev),M. A. Sur quelquespropri6t6sdesfonctionsunivalentes.C.R.Acad.URSSl(1935),2-4'Zbl12-214'1591 propri6t6sdesfonc820. Lavrentieff (Lavrentiev),M. A. Srtr quelques tionsunivalintes.Rec.Math. MoscouN' S. 1(1936),815-8M'Zbl
t 6 - 2 r 7U . l
des fonction's 821. Lavrentieff (Lavrentiev),M. A. Sur la continuit| 215-217' Zbl 4(1936), univolentes.C. R. Acad. Sci. URSS N. S. 16-169.l22,60l Su'"Erelques --822. Lat'rentieff (L,avrenticv),M. A'; Chepeleff' V' M' propri6t6s dis fonctions univalentes.Mat' Sb. 44(1937),fl9-326'
zbt r7-r73.lr9l
einen Ostro823. Lavrcntieff (Lavrentiev),M' A'; Kwasslava'D' Uber 17l-174' wskischensalz.Georg.Abt. Akad. wiss., ussR l(1940)' MR 2-83. [5e] problems in con' 824. Lebedev,N . i. O, someestimatssand extremal StateUniv" l95l' [241 formal mapping. Dissertation,Leningrad mapping' 825. Lebedev, N. A,-.The method oJ'variationson confttrmal Dokl.Akad.NaukSSSR(N.S.)76(1q51),25_27.MR12-49|.|24)
rr (PART I) BIBLIOGRAPHY OF SCHT.ICHTFUNCTIONS
univalent estimates ior functionsregularand 826. Lebedev,N' A' Some Amer' l'3-21' No: I 10(1955)' in a circle.V.,tnit LeningradUniv' -5gg' l7 U5' 22' 24'29'61' 681 Math.Soc.Transl' (2)22'59-80'MR 8 2 7 .L e b e cl e v,N .A' Onpur cntetr icr e:lii' esent4t' n1:!f::' tions r egul ar 103(1955)' (N'S't in o 'ing'Doki'nraA' NaukSSSR ond univalent MP-l?-3s6.1241 767-768. , expresston region fo: ifaioriztng A. N. :h, g2g.I ebedev, Univ' Leningrad ,(z),^/f(zyl in the.iorr s. vestnik 1 : lnlz^f ' 43-57 (2)'22' Nnl g' t;-^' Amer' Math' Soc Transl' 10(1955), 2+ ,2- o,68) 'A.'on MR l ? -2 4 8 .[15, o circle the theoryof conformalmappingsof g2g. Lebede./,N. Akad' t{auk SSSR(N'S') onrc non-overlappingregions'bokl' MR 17-250'[26] :s:-jjs' fRussian) 1c3(1955), 8 3 0 .L e b e d e v,N .A.onthedomainsofvaluesofo.ger .tlinfunc ti onal i n iomains'Dokl' Akad' NaukSSSR tlrcproblemo1non-overlopping 'lr9'24'26'291 19-9sl
MR (Russian) rrstrgizj,iozo-roz:' (N.S.) the
problem of nonprinciple in 831. Lebedev, N' A' The area overlappingregions'sovietMath'-Dokl'1(1960)Nc'2'640-644' MR 22A(2)-1896.13,271 of the area principle to non832. Leberl.u, N' t' )n aiplication overlappingdomcins.TrudyMat.tnit.Steklov.60(1961),2||-23]^. (Russian)MR 24A-254' t3' 26' 2711 of certoinc/asses g33. Lebedev,N. A.; Milin, t. tvt. on the coefficients (Mat' Sb) N' S' 24(1949)' of analytic functions' Rcc' Iv1ath'
68] Vrri rr-o+0' [3, 15' l7 ' 34' 42',54', 249-262. of certainclasses coefficients g34. Lebecev,N. A.; Milin, I. M. on the ' sssR 6'7(1949\,221-223 of analyticfrnitionr. Dokl. Akad. Nauk 68] MR I l-339. [3, 15, 16,l'l , 34' 42' 54', o.fcertainclasses g35. Lebedev,N. A.; Milin, I. I\,1.on ine coef-ficients 28(?0)(1951)'359-400'MR of aitalyticfunctions'Mat'lb' G'r'S') 1 3 -6 4 0[3 . , 15, 16,17,34, 42' 68] G' A' A methodof obtoiningo cer836. Lebedev,N. A'; Sogomonova' t u i n k i n d o f e s t i m a t e f o r T u n L c t i c n " ' g u l a r i n t h e c15(1960)' ircle'Vestnik rj-rq' Addendum 13' No' 14(1i59)' uniu' Leningrad tll MR 22A(2)-1376' No. 13, f SZ.in"'ian' Englishsummary) bounded with tnapping 837. Lehto,C. On the distortionof conformd A l(1952),No. 124, Ser. boundaryrotation.Ann.Acai. Sci.Fenn. 14PP.MR 14-743'[59] Math' g3g.Lehto,G.A mojorantprinciplein the historyof funcrions' , 17' MR 15- 115'Ul S ca n dl.(1 953) 5oJ^rro*orphic functionsin the g39. Lehto. G. Thesphericalderivativle
t+
-__
Y
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Comment' Math' Helv' neighborhoodof an isolated^singularity'
[46] jl(iqsq), rs6-20s'MR 21-1063'
mero' L Bouniary behsviorond normal 840. Lehto, C.; Virtanen'K' 19-403' t59l gli(tgsl)' 47-65'MR morphictu"'iio"'Acta Math' funcI' On theiehoviourof meromorphic 841. Lehto,C'; Vi.iuntn,K' f i o n si n th e n e i g h b o u rh o o dofanislogtedsingular ity.Ann.Acad. 240'9pp' MR 19-404't59l No' (1957)' I' A' Ser' Fenn. Sci. Einheitdenschlichi'i eAaiUungendes 842. Levin, v. n'^"t"ng 'u 68- 70'U7l s k r ei seJb s. e r'D ' M' V ' 4 2 (1 933) ' dershclichten tioefJizientenpro-blem g43. Levin, y . EineE)irrruns zum lo-Tl FlvI51-367'u7l Funktronenil;' ; I'4' v' 42(1933)' der schlichten Koeffizientenoryble.yt 844. Levin, v. nii nrirrog ,u^
Funktioner.-Mil'i'zs(tgzt/;;)'306-3lr'zbr8-119'lr7'42' 45,49,521 r.-rc:-:^ r Klassenvon etntS( g45. Levin, v. jber die Koeffizientensummen t43' t59l
56s-^590: Mutn'Z' 38(rs34)' I|1^9o, Potenzreih'n'
84(,.Levin,Y.Someremarksontheco e f f i c i e n t s o f s c h l i [3',6', c h t f u10', ncns. q61-+ao''zbll2-l7l' ! ruru,t.so.. 39(193;), proc. l-onoo"n I 54'681 1 5 , 1 7 ,l g , 2 7 , 3 6 , 4 2 , 4 5 ' 5 2 ' i951 Pa'is' II proOlimesConcretsd;'lnity" Fonctionelle' 847. Levy, p' I ( S e c o n d t O i t i o t t f L e c o n s d ' A n a l y s e F o n c t i o n e l l e ' P a r i s ' 1 9 2 2 j ' tt I
deschitd th,orimes sur tes y.113;3T"1]? re.morques . euetques 848. Ann' Ijniv' Mariae univalenfes. relatifsa ,r'r'Jori de'fonctions (1957)'MR 19-738'[4' Sec'Ag(tq;s)' 149-155 Curie-sklodowska' de schild sur resth'eorbmes g4g. r.'**a1o2Jrr.i,z. Nouveilesremarques d'une uiivalentes(D,monstrotion relatifso uni ,toue de fonctionts sect' Univ. Mariaecuric-Skiodowskahypothiseir-s.iital .A.r,n. 20-292' MR summaries) (Polish'Russian (1958)' A 10(1956),81-94
de schitd th\orDmes sur tes reniarques ' Quetques f3;1,1i'l;'ll'' 850. )'*otenles' Ann' Univ' Mariae
t
I
relatifsa 'ni irto"-' de'fonctio's (1957).(Polish'Russcct.A q(iqjs), 149-155 curie-sklodowska 1 9 -7 3 8'14' ,17' tt'.3' ) ,^ ^,. s i a nsu mma ri e s)MR de fonctions ciasses |rd.enir|6de ce,ta:ne^s -\ur Z' 851. Lewandowsk!, u n i v a l e n r e s . | . A r u i . U r i i v . . r " t - i u . C u r i eMR - S k24A-37' l o d o w s[5' k a16] Sect.A 131-146'(Polish'Rt;;i;; t"mmaries) 12(1958), g 5 2 . L e w a n d o w ski ,z.su rrrrtr *r r r tor r esdefonctionsun' ivalentesinBull. Acad.Polon.Sci. -iii-'es' w."R;;;sinski. .t par P.Montel troduites (Russiansummary) MR Math. Astr' Phys' 7(1959)' 2l-l\94. [15, 19,39,' 42' 6Ei
dr F U N C T I O N S( P A R T I ) B I B L I O G R A P H YO F S C H L I C H T
univalentes Z' Sur certain-esclassesde fonctions 853. Lewandowski, d a n s d e c e r c l e , - u n i t i . A n n . U n i v . M a r i a e - C u r MR i e S k22A(2\-DA0' lodowskaSect.A
summaries)' r rs-ize' ipoti't''Russian l3(1959), ., [ 6 ,1 5 ,t 9 , 3 9 ,4 2 , 6 3 1 de fonctions c/csses certaine.s
g54. Lewandowskl,i'. i* l,identit|-de Sect.A ir,Ann. Liniv. Mariae curie-sklodowska univolentes. 11] t+(tqoo),19-46.MR 28-44'[5' holomorphes g55. Lewandowsxi,z . sur lesntaioraitesdesfonctions scct. Curie.-Sklodowska Nlariae dansIe rrrrln'\e i t Ann. Univ. 2663. N{ R [], 15] sunr nar ies) A 1 5 (1 9 6 15),_ li. ( polish.Russian subordination.Ann' g56. Lewandowski,z. starlike_majorantsand Univ.Mariae-SklodowskaSect.Al5(1961),,79_84.(Polish.RusMR 25-427'[1' 6] siansummaries) ring. univalintfunctionson_ocircular 857. Li, E. P. on tie theoryof 15_516. MR 4,75_471. D o kl . A ka d . Nout sssn N.S.) 92( i953) ,
Dokr.Aklg: onq circutarring. rear func-tions o^ typicary gsg.Lrl e10tr. M R 1 5 - 5 1 6 [' i 3 ' 1 5 ' 2 3 ' 6 6 ]
699-iC2' N a u k S S S R( N ' S ' ) 9 2 ( 1 9 5 3 ) ' M-' S' Meromorphic close-to-convex 859. Libera, R' i't ioUtttson' 2 4 A - 3 7 0 '[ 4 ' M a t h J ' 8 { 1 9 6 1 )1' 6 5 - t 7 5 'M R functions.n4itftOun 5 , 9 , 1 0 , 1 7 , 2 5 ,3 8 , 3 9 ] 3 6 0 . L i n d e l d f , E . M e m o i r e s u r c e r t a i n e spropri6t6s i n e g t i t \ s dnouvelles . a n s l a t hde ^ oces riedes et sur quelques fonctions mtonogines Acta Soc' d'un point iingulier essentiel' fonctionsaans tZ voisinage S c i .F e n n .3 5 ( 1 9 0 8 )N, o ' 7 ' [ 5 9 ] Amer. Math. Mon. g6l. Linis, v. xor, fn univarentfunctions. . R l6-809' [39] 6 2 ( 1 9 5 5 )1, 0 e - 1 1 0M Proc' inequalitieiln-tnt thecryof functions' On g62. Littlewood,J.8.. ' 5l-247 13' 421 481-519:'lY London Math' Soc' (2)' 23(1925)' of schlichtfunction;' Quart' 863. Little*ooa, J.' ;. O; lhe coeffic'ients 16' l7 ' 42' 45' 521 J. Math. qir-91[], v^-20' zbl 18-261'U' the Tieory of Functiorls' Oxford 864. Littlewood, J' E' Lectu"' on 6-261' l44l Univ. P.ers, 19M,243 pp' MR odd schlichtfuncg65. Little*ooo,'r.-r,.;'palev,R. E. A proof that an Soc' 7(1932)' Math' f' london tion hasbotmded coefficients' 1 6 7 - 9Z . bl 5-18'117,45,521 8 6 6 . L i u , L i - C h u a n . S o m e i n e q u a l i t i e s d e r i v e d f r o m fSinica u n d a m7(1957)' entallentActa Math' schlicht fun'ctions' mo concerning l'7 '22'25 '3Ol English'umma'y; MR 2l-25'' lg ' 313'326.(Chinese' in th.eunit circle. Acta 867. Liu, Li_ch;;;. Bounied schrichtfunctions (Cnint"' English summarv) MR Math. Sinica 7(1957)' 439-450' 2 l - 2 6 . I 1 5 , 2 2 , 2 4 ,6 1 7
il-T'
-
Y
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Potenzreihen.Monatshefte 868. Lochs, G. Zur Abschutzungschlichter 191 F . M a t h . 3 8 ( 1 9 3 1 )3, 7 7 - 3 8 0F' M 5 7 - 4 0 3 'U 7 ' of Hadamard ,E' On some compositions 'analytic 869. Loewner, C.; Netanyahu Math' Soc' fu-nctions' Bull' Amer' rype in ctosre,of Lowner' also See 42' 47]' 65(1959),284-2S6'MR 21-1350'[16' 23' S T 0 . L o h i n , I . F . R e m a r k s o n e s t i o m t e s f o r r e g u l a r f u - n c1t5! 1' ,1n7s'',3M4a1t ' S b o r 10' n i k N . S . 2 4 ( 6 ; )( 1 9 4 9 )u, 9 - 2 6 2 ' M R l 1 - 3 3 9 ' U ' g71. Lohwater, A l'. rne ixceptionalvaluesof meromorphicfunctions. Colloq'Math.7(1959),89-93'MR22A(1)-455'[591 mapping of o Jordan 872. Lohwater, A. J.; Piranian, G' Conformal regionwhoseboundaryhaspositivetwo.dimensionalmeasure. 14-262' 162l Michigan Math. J ' l, (1942)' 1-4' MR g73. Lohwater,A. J.; pi:anian, G. On the derivativeof a univalentfunction.Proc.Amer.Math.Soc.4(1953),591_594.\4R15_ ||4.|62] W' The derivativeof a 874. Lohwater, A. J'; Piranian' G'; Rudin' schlichtfunciton.Math.Scand.3(1955),103-106.MR17_249[4,62] examplein conformal mapping' 875. Lohwater, A. J.; Seidel, N' An MR 9-420' [62] Duke Math. J. l-5(1948),137-143' of w" * pw = 0' Pac' J' 875. London, D. On thterrio, of the solution N4ath.12(1962),979-e9r'[4' 31] modutus of n-volencefor analytic 877. Loomis, L. H,.,The radius and functionswhosefirstn_|derivativesvanish atapomt,Bull.Amer. ' R l-308' [4' 14' 19'72'37'431 M a t h . S o . . + ( f q a 0 ) , 4 9 6 - 5 0 1M 8Ts.Loomis,L.H.Thedecompositionofmeromorphicfunctionsinto rationalfunctionsofunivolentfunctions.Trans.Amer.Math.Soc. 5 0 ( 1 9 4 1 )l ,- 1 4 , M R 3 - 7 8 ' [ 5 9 ] 879.Loomis,L'H.Onaninequalityofseideland\ltllsh'Bull'Amer' 221 ' lvlath. Soc. 48(1942),908-911' MR 5-37 ll4' die Verzerrungbei konformen 880. Lowner, K. IJnters'uchungeni)ber < l. Leipzig Berichte Abbirdungen des Einheitskreiseslzl 6 9 ( 1 9 1 7 )8,9 - 1 0 6 .I ' M 4 6 - i 5 6 ' U 5 l Abbiidung des ggl. Liiwner, K. 1be:rExtremumsdtie iei der konforrnen 65-17'FM 17-325' Ausseren desEinheitkreises'Math' Z' 3(lglg)' [ 9 , 1 0 , 1 5 , 1 9 ,2 7 , 5 8 ,& l Abbildungen gg2. L6wner, K. rJntrirrrhungen i)berschrichtekonforme 49-714' I' N1ath'Ann' 89(1932)'103-l2l' FM desEinheitskreises'
u 5 , 1 7 ,2 3 , 2 4 , 4 2 1 rotationin theunitcircle' gg3.Lozovit*, v. c. Finctionswithbounded Do p o vi d i A ka d .N a u kUkr ainRSR( 1960) ,1584-20' 1588.( 231 Ukr ainian. ' 14' 17' 23A-177 gngfith MR summaries) *nJ Russian in the gg4. Lozovik,v. c.bn o classof functionswhichare univalent
-4
FUNCTIONS BIBLIOGF.APHYOF SCHLICTIT
(P'\RT D
59
Zaved'Matematika(1963)' . (Russian)Izv' Vyss' Ucebn' unit ci,,;/e 23' 641
U0' 15' 17' No. 2(33),ol-ig' Mn 26-9-80' if thtefunction exp z'\'o rodiuso; unr'otoni' ' te ' ig' MR 22A- i629'l28l 885. Luke, Y. L' fhe e xp (-f')4 r i tu nl.' ' Math 3( i96i) ' functionsin dissertations on univ'alent results 886. Lye, Su-cin'Some se"tion of the deportmentof written by studentsin the anals:ts;is mathematicsi-ntitei'{orth.WestUniversity.Advancementin}"{ath. MR 20-1074'l$l (Chinese) 3(1957),325-334' ,iot, derivitiie hasq positivereal gg7. MacG:egor,T. H. Funciions MR 25-797'll' part.Tran ' A*;;' Math' Soc'1C4(1962't'532-537' , ,411561 lg' ,20' 21' to , t2 ,15, 17,- 1.8' 2, 4, 5, 8 8 8 . M a c G"r e g o r ' r . r r . C o e f f i c i e n t eMs R tim a t 734' e s f o[6' r s9' t al0' r l i kl'e7' m36' applngs. 2710( 1963) ' 277ZSL J' Ma th ' Mi ch .
3r;;:3;!!;rit].H. of functions for srartike of convexitv rcli1s rhe 88r. MR 27-60'[2' Soc'14(1963)'71-76'
order1/2' Pioc'Rrnt'' Idath' 6, 10, 11- 12,23, 431 analytic rodiusof univat'!:t^:! certuin 890. MacGregor"T' i{' The MR p;;..--Amer. Math. Soc. r4(r963), 5t4-s20. functions. "76-1210. 12,4, 6' 10, I 1' 121 unalytic radiusof univalen''':^o/'"'tain The i{' i' MacGregor, 891. 521-524'MR 14(1963)' tt. proc. Amer. tutat'. Soc. functions. " 2 6 - 1 2 1 1 . 1 2 , 4 ,160, ,l 1 ' 1 2 1 8 9 2 . N { a c l n t y r e , A . J . T w o t h e o r e m s o n s c h17' l i c19' h t J68] unctioits'J.London 13- 2' 7r[15' ' Ma th .so .. i Jti oS6) ,7- r l' zbl 536-540' 2.44(1938), th'eorem.vrattr. 8g3.Mactntvre,i.'j. oi' uocit's zbl 19-419.u9l '\N inequalities W' ' Someelementary Rogosinskl' i'; 894. NIaclntvr.,'A' 1-3' MR NotesNo. 35(1945), irtfunciton';'r;;y.uiinuurgtr ruru,tr.
in the Probtems w' w ' Extrly.um ,rr. filil;,|1]., o. i.; Rososinski, MR Math' 82(1950)'275-325'
Acta theory of analyticfunctions' 12-89.[59] analytic problems in certarnc:hssesof 896. Maksimov, Y' D' Extremal 1041-1044' Nuak SSSR0'l'S') 100(1955)' functions''Oofti'Akad' 15 ( R u s s i a nf)' A n f O - S f O ' [ 5 ' 6 ' 1 0 ' ' 2 3 ' 6 3 ' ' ' 6 4 ] " e-starlikemultilocally y. gg7. Maksimov, D. on locatly'r-ronirr and 965t.tuut.SSSR(N.S) 103(1955)' valent\unliton,,. Dokl. Akad. y] ' 0 ' 1 1 ' 1 2 ' , 1 5 ' , 2 3 . ' 6 3 'certain 9 6 7 .M R 1 7 - 3 5 7 ' [ 5 , 6 1 of classes of ggg. Maksimov, y. D. Boundsfoitii'rortticients Nuuft SSSR110(1956)'507-510' analvtictun'iiin'' Dokl' etui'
-.-.-
-r I i
60
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
38] ' ' 6 ' 10'17' 36' ( R u ssi a nZ)b l 7 4 -5 6[5 convex structuralformulafor of Y';:E";;nsion -tie Maksimov, 899. circularregion'Dokl' multipty"ioiected a Transl' ni,I'nr'to univalent 136(di;' 284-287-"(Russian( Akad. Nauk $;* (N's') 601 vrn zze(z)-1376'[23' SovietMath. :;;'kl''t' 55-58' potiioi'iott' Canad'Math' Bull' M' A' 7''-i"n"lity for -eftie-l), 900. '"" Malik, os-eg' MR 26-742'[591 univolentes' '3y1':ou" sur lesfoncfions S' Quetque' Mandelbrojt, 901. 'zitg-zrc[3'13'l?' 3e'
iii-zoo fi' s"setro:+l' Bull.Sci.ruruti' c' R' conforme' repr\sentation la sur R' A' tr. fi;i.lJenko, zbrrr-26r'l'tl otuJ'sti' ussnottqisi'287-2s0' of (Dokladv) prcblems in the theory
I
i i I
l I
I I i
n' Some extrema'l 903. Marchenko,-e' u n i v l l e n t f u n ' ' t ' i o n ' ' L e n i n g r a d - 5 " t ' U " i " ' 421 IJc'Zap'144Ser'Mat'
tz-to6e' 116' Nauk z3lss:;;'\{i-isg' t"tn )-'n'o"* of Lusin'DukeMath' i.; zrr*u1g,.| 904.Marcinr.i.*rJl, [59] qti-+ss' zbr' 19-420' J. 4(1938), in a como-fo polynomial the ieros o! io'"i'"i't'! tut' 905.Mard.n, (1949)'MR 11- 10I' iso'-l ;;;";vt s"t' Ma'-'h' p lexvariabl' n*-t'' t59l .. . , ^^^^-s ot tnisibftte d'une fonct;cn et troisibme second " lesd0riv6es Sur F' Marty, 906. R. Acad. Sci. Paris dals;"';:;;,-unit6. c. univulente holomorphe 10'17'42-'s4'681
us' ts4(ts32)-;ff-iti0' zbt 4-261' a' MacLaurind'unefonc'o"'ttiti'nrc a" e ' iu' t' module Zbl
907.Martv, C.R. Acad.#i.;;;i; tionunival,nt,.
iqg(rql+),1569-1571l.
Pr' Ak' ';i:; Sitzsber' Funktionen' yolylltichte ,"1,:T;J';'l'2 (1e2ei;Ij-roo'{M ,08. 5l;it0' [6'1l' l5] -Math' Kl' Phvs' Math' wiss. ua;i ,ritirt,t Abbirdungen'
g0g. Marx, A. unter.suchunril 15' @' 68] rr"ria 3a l6',1:10',11' 932i33)'40-6't' 10?(i der Ann. dis Konvergenzrodius Bestgbsc'ho,iuns nin, ",ine, r.910. Niatth,,,,. anilytischen Fu;iktion. (Jmtcehrfun;';;;; Potenzreihecler N{R 1e-128'ul '\bgvl' 4s'7--4s8' ond a Arch.M";; "C' C-' Locolly one-to-onemappings Ofttt" H'' 911. Meistt", Duke Math' J' 30(1963)' schlicht";;;;'^ on theorem classical
';i
er2. fi.::,jf':' ;
qu'une fonction suffisantes-pour '::'condrtio'ts
u n i va l e n te so i th o l omo,pn,.i"".r nr u.r ' .Moscou40( 1933) ,3_2| .
n,r.
t*o.t'l;ll$' ins cutptane'Ptoc''Amer' { ''o' tvpi':j?-::atfunctions ztotl)-807'v', 13'41'551 863-s6;.'tfrn MathSoc.10(1959),
FUNCTIONS (PART D BIBLIOCRAPHY OF SCHLICHT
6I
univulence'Mich' Math' J' P ' BoundedJ-fractionsand E' Merkes, 914. 12',55]
[11', vrn zzetD-1373' 395-400' 6(1959), of o continuedfraction' univalenLce p'; Stott' W T'^9-n 915. Merkes,E' [11'12'55] 2iA(2)-20s3' MR pacificI' vutl'' ioiiqool'1361-13;9' theore'ns for S-J'ractions' p'l it"tt' fr,J - Covering E' Ir{erkes, 916. [15'l9' 28',43'55] zzeiz)-964' run L.',73(1960),333-338' Math. functions' hypergeontetric W' J^ S.tarlike P';;;' E' Merkes, 917. [4' 6' 28] -S';ses-a'a-a, 12(19orj' Soc' il";;' 7u1to,z-65' Amer. Proc. of Stott'W' T.-9' products E' p';-noUt"scn'M' MR 918.Merkes, 960_964. p,oc. Amet.r'lu,n.Soc.13(1a62),
starlike fun"rion,. 26-63.14,6, 431 den Normalabbildungsu. nezieh.ungen.zwischen 919. Meschkowski, funktionenii.ri,i,iedirkinformenAboiltlung.Math.Z. -i. MR 13- 734't6ol i s(tg st), rt4 -r24' der Theoricder Ext:.emalprobleme nfuis, .aus 920. N{eschkowski, Ser' A' I' Math' Abbildung'Ann' 1t"a' Sci' Fenicae konJ'ormen ' pp' M R 14- 361'l59l -P h ys.N o ' l 1 7 (1952)12 zusamVerzerrungssatze {" ':ne^hrfuch 921.Meschkowski,H' menhangendeBereich".co*poiitioMaih.ll(1953),44-59.MR 1 5 - 1 1 6[ .9 , 1 5 ,4 8 ,5 8 ] 9 2 2 . M i k i , Y . ' 4 n o t e o n c l o s e - t o - c o20] tnexfuncttons.J.Math.Soc'Japott MR 19-951'[5', 256-268' 8(1956), of a classof mut'tivalency u'iuot'n'y'ili tn' On U' Minami, 923. 33-35' AcaC'Jap' 12(1936)' functio"' P'ot''lmp' nleromorphic
'*',t"l1r1li;tll,t'r. ,*.
of of- coefficients on certainestimations
univalentanalyticfunctiotts'Ann'Polon'Math'7(1?60)'135-140' [9, 17' 25'39i MR 22A(1)-295' for the ondsuffici'ent J' On tne necessary 'conditions 925. Mioduszewski, p 'alLnt in'the usuclanciin the univat'"iL'l be to analvticfu';;;;;^ pofon' Math' 7(1960)' 127-133'MR generolized'-'"n'"'e""' 27 331 22A(l)-295.14,g, 14' 17' 22' 25' ', of multiplyconnected 926. Mitjuu, t. i '' u'ivalent 'onfo'iot-^opping' RSR (1961),158-160' rlomains.DopovidiAkad. Nuut u[rain. MR 234-618' [60] (Ukrainianl-d*'iu"' English'u-matie') conon univalent of sometheorems 927. N{itjuk,l. P' A generalization Akad' Nauk co:l:ect;ddomains'Dopovidi formal mapsof doubty Ukrain.RSR(1961),1115-lila.rut."inian.RussianandEnglish MR 24A-495'160l summaries) 9 2 8 .Mi tj u k,l 'P 'Quelquesappticatfonsdupr incipedelasym'etr i s oti on' (R u ssi a n .Fr enchandRoum un*i*' .,.- ar ies) .Bul.Inst.P ol i tehn.
h-*--
62
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
26- 980'Ill' 12' 241 1 (1 ) 9 6 1 )'N o ' .3- 4;15- 18'M R I a s i(N .S ')7 (1'fil'tiii^etrizsti'on principle{?' :n annulusand P: I, Mitjuk, 929. AtaO' Nauk Uklain' RSR Dopoviai applications' its of some MR and Englishsummaries) (1962),9-lI'-iikrainian' Ru"iun
'fi13:i.t'3ru*,ru de Rouch,' du th,orbme . Uneg,ndratisation 7 n3o. clasnikMet.-Fiz'Astr' Ser'II'
Drustvo. HrvatskoprirJdoslovno MR 14-32'[59] summarv) (1952)'f q-Zj' Gt'bo-Croatian'-French du th\orime de Ia contrattion 931. Mocanu,p.'+:;;;,i.irslisdtion Acad.R' P' Romine'Fil' s desfonctionsun:ivlalentes. dansla classe 303-3t2'MR 2l-1064' l24l Cluj. Stud' e;';' il"t' 8(1957)' n du t h6ori me de contr acti on io gi rZroi.irot 932. Mocan", . f. ;r;']),r" C a n s l o c" l o s s e d e s f o n c t i o " u n ' ' ' o l ' n MR l e s ' 2lA c 1064' a d ' R '16' P'R mine'Fil' 7'ol5' l4g159' 9 (1958) : c l uj . stu d " i ttt'n ru t' des danslo classe derecouvrement th'eorbme un sur T' P' nrr. fi;:;*,1u, f o n c t i o n s u ' ^ i ' o t " ' " ' G a z ' V f u tand ' f i ' ' SRussian e r ' A ( Nsummaries) ' S ' ) 1 0 ( 6 3 )MR (1958)' FrenJ (Roumanian' 4't3-47'7'
utrivatentes' desfoncticns rtestettnritt nro.i?"3"i;ltJlT. surresrayon.Cftl Stucl' Celc' Mat' ll(1960)' Acad. R' P' Romine' Fil' MR Hu"i-u"'"nd French sumrnaries) (Roumanian' 33'7-34L 7 6 - 7 M . [ 6 , 1 1, 1 6 , 4 2 7 univclentes'Studia tiaora^, sur lesfonctions g35. Mocanu, p. i.'i, U n i v . B a b e s - B o l y a i S e r ' f V f u t t t ' - p t t y t ' ( 1 9MR 6 0 )26-216' ' N o ' l ' 9 1241 1-95' summaries) nu"iun unO-f"*tt (Roumania=n' dons la classede fonctions II 936. Mocarr, ;:';.*;-pria^*r"rrtrr*ot Fil' cluj' Stud' cerc' Mat' R";i;; univalentes'Acacl' R' P' MR nuttiu" and French sumnaries) (196C),qg-iOe' (Roumanian'
2ltl;\#; [il'F' rnivatente'Akad' wetensch' sur tesfo-nctions 93?. 221 826-832' Zbl28-401" ll9 ' Amsterdam, Proc' 45(1942)' normalesde fonctions unall'ti' g3g. Montel, p. Legonssur lesry*iit^ 192?'FM 53-303' [59] queset t'uu oipticdtiort.s'Paris' ou multivalentes. sur tesfon.,',ro,, univalentes 939. Montel, P. LiEons Zbl 6-351' [44] Gauthier-Vill;t' Paris' lg33' locale' C' F-' acad' p. Sur l'univalenceor'ta iuttiuaienie lvlontel, 940. 681 t0't1:^11'
' zbt^r;zoiirbiol'57e-581 Sci.Paris divistes'J' p^rloiiiZtliart-diff6rences
I
94r. Montel,p. sur querqu^ tl_t07.u0, |4,491 ott Math.PuresAppl.(9)16(19;;;;,i]i_zzt.'zvi localeiitent univslentes g42. Montet, p.
s'ur
les Joict'ions
j
I
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
I s
tt t
t !
l
I I
a f
I7
63
(3), 54(1937)'39-54' Ann. Sci. 6cole Norm. Sup. multivalentes. FM 63-290.u4' 431 locales' ou demultivalence g43. Montel,p. sr,, irrtiins casd,univalence 'O"O-237 ' I'l1i Mathemati.uCiu:' f 4(1938)'190-195' methodsin the theoryoJfuncM' Top'olog;cul H;;;, M.; Morse, 944. tionsofacomplexvariable'II'Ann'ofMath'(2\46(1945\' IUR 8-21. [59] 625-6('6. funcof meromo;'phic Deformationclasses 945. Morse,M.; Heins,M' Math' Acta to inteiior transforrnritions. fionsond their cxienslons M R 8- 507'[s9] 7 g (rg 4 7 \,5 1- 103. conformal mappings' Simorr Stevin 946. ''-' Mullencler, P' On some MR lo-o7 ' [16',32] 26(1949),136-1'42' coniormal muppings' Simon Stevin 947. Mullender, P' On some ' 30(1954), 44-47'(Dutch)MR l5-787 l32l angentihertkreisformiger Abbitdung 948. Mu'er, M. zi lonpimen z. +j(tqrg)' 628-636'zbl l7-408' [59] Gebiete.rrroitt. in der Theorieder r-.'^7irr-iinigr'extremal Gr^ssen g4g. t"{yrb Ser' A' I' No' "rg, Funktionen'Atn'Acad' Sci' Fenn' meromorphen 461 '. , 284(1960),9 pp'..MR23A-55'U9' konformen schlichten der I'inea)isierung die iO" i'' 950. N'yrberg,P' Abbildung'n'Ant'Acad'Sci'Fennicae'Ser'A'I'lr4ath'-Phys' , p p ' ( 1 9 5 3 ) ' M R1 4 - 8 6 1[ '4 9 ] N o . 1 4 58 l der konin der Theorie Verzerrungssatz p'i''iiii a'n Myrb.rg, 951. A' N' R' 60' AF Finsia Vet' Soc'Forh formeneAiiiauns' Ofvers' 19'68] , 7 (1 9 1 7 -1 812. ) , FM 46- 551'[9' 15' , 9 5 2 . N a b e t a n i , K ' s o m e r e m a r k s o n a t h e o r e m c o n cAcad' e r n i n Jap' gstor-shaped o7 an analyticfunction' llo:'-'t*O' representatiun 10',12',16] 10(1934),Sit-sio. zbl lr-r2o' [3' 6' g 5 3 .N a b e ta n i ,K.Som einequalities- onmodutiofanalyticfunc ti ons . TohokuMath'J'41(1935)'lO9-124'Zbl12-212'U'3'6'10'13' .ng 1 5 ,4 5 , 6 -7 ,64,66,67i of concernl the sections theorems some on Remarks K. 954. Nabetani, FM 41(1936)'329-336' power ,rrir. i, tt' Tohoku Math' J' 62-366.[3' 20] certain'power series'Tohoku 955. Nabetani,K' On multivalencyof Zbl 14-23'Il4l Math. J. 4l(1936),402-405' in ine theory of conformal 956. Nabetani,K. On Study'sti'o"* 406-410'FM Toi'oku Math' J' 41(1935-36)' rcpresentatio'n' 6 2 -3 7 4[], . 6, 10,37] Math' Sem'Rep' No' 5-6 957. Nagu.a,S. ioA"'' polynomials'Kodai ( 1 9 4 9 )5,- 6 .M R 1 1 - 7 1 8u' 7 ' 5 3 1
64
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
II' Kodai Math' Sem' Rep' 1950 958. Nagura,S. Faber'spolynomials' ' 1 r 7 , 5 3 ,5 4 1 ( 1 9 ; o ) ,l 5 - 1 6 ' M R 1 2 - 3 2 7 theorems in the theory of 959. Nagura, S.; Komatu, Y ' Distortion l(1950)' 25-33' MR 12-490' scltlichrfurrtiin'' Nagoya-Math' J' [ 1 5 , 2 4 ,6 8 ] g60.Nakashima,K.Noteonsubordinotion'Mem'Fal'Sci'Eng'Wasedauniv. 16(1952),ll9-122' MR 14-549'Ul Rev. Fac. Sci. g61. Nazim, T. A. uL,r, arn Koebeschenverzerntngssatz. ' R 1 2 - 1 6 '[ 1 9 ] , 1 3 - 1 1 8M U n i v . I s t a n b u (l A ) l 5 ( 1 9 5 0 ) 1 vsleurs moyennesd'une foncrion 962. Neha ri, Z. Jni iroiri6t6' des 208(1939)'1785-1787'Zbl onalytique.C. {' Acad' Sc^' Paris
2r-r42.ls9)
par les fonctions g53. Nehar\, z. sur la d\formation de la frontiire univalentesconvexes.C.R.Acad.Sci.Paris20g(1939)'781_783. M R 1 - 1 1 2 .[ 4 , 1 0 , 1 5 ,6 4 ] Schworzlemmo' Duke Math' J' 964. Nehar\, Z. A generalizctionof 37] l 4 i l g 4 7 ) , 1 0 3 5 - 1 0 4 9M. R 9 - 3 4 0 ' [ l ' l 9 ' born'eesdons g65. Neha,i, z. u* in6gatit6danslo ti'eoriedesfonctions 224(1941)'1093-1095'\IR un onnenu.C' R' Acad' Sci' Paris 8 - 5 0 8 .U 5 , 2 2 , 6 l ) o.l Qnol.t'ric g66. Nehari, z. Tn' 'itipric moclularfunction and o ^closs 69(19'{7)' Nlathof J. by Hurwitz. Amer. functions J'irstconsidered 70-86. MR 8-454. [59] certain Pro7erties of possessing 967. Nehari, Z. On anolyticfunctions (2) 50(1948),120-136'lvIR univalence'Proc' London Math' Soc. 9 - 5 ' 7 6 [. 1 , 1 9 , 2 2 , 4 5 ] 9 6 8 ' N e h a r i , Z . A n a l y t i c f u n c t i o n s p o s s e s s i n g a p o s i t i v e601 realporl.Duke
37 Math.l. rs0q4si,ioll-to+2'MR l0-29C'12'9' '
969.Nehari,Z-Su-run'*'eorimetieM'Montel'C'R'Acad'Sci'Parls 228(1949),1325-1327.MR 10-696' [59] gT0.Nehari,Z.Thertdiusofrtnit'alenceoftnonalyticfunctio:i'\mer' 43l' J. Math 71(1949),845-852'MR 1l-426' ll2' Bull' g7l. Neha ri, z. The ichwarzian rierivariveand schlichtfunctions' M R 1 0 - 6 9 6 '[ 4 ' 9 ' 3 l ] A m e r . M a t h . S o c .5 5 ( 1 9 1 g \ , 5 4 5 - 5 5 1 ' gT2.Nehari,Z.Onboundedonalyticfunctions'Proc'Amer'\lath' S o c 1 ( 1 9 5 C ) - 2 6 8 ' 2 7M5R' l 1 - 5 9 0 ' 1 2 2 ' ? 7 1 atiied €x{rr'tilol g73. Nehari, z. A ciassof rio;itainlunctions and some ptoblems.Transemer'Math'Soc'69(1950)'161-178'MRl2-l5l'
[5e]
gT4.Nehari,Z.Noieonpositiveharmonicfunctions.J.London\latil. S o c .2 5 ( 1 9 5 0 )1, 9 - 2 6 'M R l l - " i 3 5 ' [ 2 ]
.,1
FUNCTIONS (PART I) BIBI-IOGRAPHY OF SCHLICHT
65
g T 5 . N e h a r i , Z , E x t r e m o l p r n h l e m s ' i n trs-to6' h e t h e oMR r y o f12-4e1' b o u n d u1' e d a i12' 'alytic
73(1eii)' functions.ot;;;: Math' -2?,431
(,'nlii,-i:tT:;:;:^:'Jl e76.-ri;i);i:.!,-,."1''{'f ::::':,i';:{:'ff ' Plementatres Buu.Amer.Marh.soc' anetyric^functions. ,,r'f'.8)rndtd ii.,li, ,rr. 60]l MR 13-222'122', 154-366' 57(1951), York' 1952' Manping]-vi.ciu*-Hill, New g7g. Nehart,z. coln-J-o-r,r,ol 396PP.MR l3-b40' [44] Trans' of i'iniatities -in the theory fuctions' i"*' Z' rt, Neha r ' 7' 22' 25' 979. un is- ti5' [9' zs6' - zge ?5( i953) ' rr" tn '!tt' A me r. t*';f; lineordifof second-order of solutions the zeroes on ,,tl' ' MR 689-697 ,rr. Amer' J' Math' 76(1954)' ferential "n'oi'oni'
Proc'Amer'Math'Soc' of univatence' nrt. '" " l{:,liri',21t'o^' criteria [4'311 MR 16-232' 700-704' itrgs4), and'lineardifferentialequaticns. functions 982. Nehar\, Z. Lj;ntivalent vu'iuUle'49-60'Univ' of Michigan ct*prt* u oi Fu;t;' of Lect. r 6 - 1 0 9 3[ '4 ' 3 l ] P r e s sn, n n e ' u o " t g s s 'M n n-iriy:r::, functions' Duke coefficien'ti ttie 7,.'o,t r\, Neha 983. [e' t'7'2s] MR"tl6-e16'
Math.:.zzigsi'li,-zzt-izt'
9 8 4 . N e h a r \ , Z . o n t h e c o e f f i c i eilR n t s18. o f 728' u n i vl4' a l,16' e n t17 f w' ,t19' c . t42) ,i . o n s . P r o c . A m e r . 7) ,291293' 8 (195 so c. Ma th . meromorphic of ' P" On tne coefficients 985. Nehar\, Z'; Netanyahu |5_23'MR ioc. 8(195,7), e*.,.-rurutl. Proc. schlichtfunctions. . 12,6, g, l'l ' 2l ' 25' 36', 471 18-648 9 8 6 . N e h a r i , Z ' ; s c h w a r z ' B ' O : t nsiig;a)'212-217' ' e ' i e f f i c i e n t s oMR f u n 15-786' i v a l e n t[6' Laurent Amer' Math' s"t' series.Proc'
nni.lf; Inthe scrlli,llt.f,tnctions probtem f,r ,]l;(,t;l7o2n)"rt,,,1^t nur. Dept'Math' 39(1954)'
exteriorof theunit circle'rttti"i;;JNo' 251 StanfordrJ' Zbl58-30519' 17' Funktione'die in gegebenen beschrankte Llber R' Nevanlinna, 988. PunktenvotgescltriebeneWel|reatnnehmen.Ann.Acad.Sci.Fenn. 1 3 ( 1 9 1 9N) ", ' f ' F N l. 4 7 - 2 ' 7 1 ' 1 2 ' l 0 ' ? l ' de s 4 ( Jber dii' schlic- htenAbbildungen R' 9 8 9 .N e va n l i n n a' E i n h e i tkreises' FinskuVtttnufup' - Sot' For handl( A) ' 62 ( 1920) ' ll2' 15' 17' 681 - ' "' N o . 7 , ti s-'FM 47.- 324' io^to'^''Abbitduns Sterngebieten' 990.Nevanlinna,R' nber die'
>---
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
SocietetenForhandlingar63(A)' Oeversiktav Finska-Vetenskaps No. 6 (1921).FM 48-403. 16, 17,36, 421 1936' 99i. Nevanlinna,R. EindeutigeAnalytischeFunktionen. Berlin, zbt 14-163. lsgl W. Ed992. Nevanlinna, R. EindeutigeAnalytische Funktionen. J. wards,Ann Arbor, Mich., 1944.MR 6-59' [591 Univ' Press 993. Nevanlinna, R.; et al Analytic Functions. Princeton 1960, 197 PP. Zbl lW-287. l24l of inner 994. Newman, D. J.: Shapiro, H. S. The Taylor coefficients ' functions. Mich. Math. J . 9(1962), 249-255 l59l problem for analytic functions 995. Nishimiya, H. On a coefficient typically.reolinanannulus.KodaiMath.Sem.Rep.9(1957)' 5 9 - 6 6 .M R 2 0 - 1 8 .[ 1 3 , 1 7 ,2 3 ' 5 1 ] the ex996. Nishimiya, H. on the coefficients of functions starlike in terior of a circle.JapanJ. Math. 29(1959),78-82.MR 23A-618. 12, 6 , 9 , 1 7, 2 5 , 3 6 1 Sci. 997. Noshiro, K. on the univalencyof certainpower series.J. Fac. l b | 4 _ 4 0 | .[ 4 , 1 0 ,| 2 , 2 2 , 3 9 '4 3 ] ) ,5 7 _ 1 6. Z H o k k a i d oU n i v . 1 ( 1 9 3 2 1 998. Noshiro, K. on the starshapedmapping by an anolyticfunction. Proc. Imp. Acad. Jap. 8(1932),275-277' Zbl 5-251' [5' 20] Hok999. Noshiro, K. On the theory oJ schtichtfunctions. J. Fac. Sci' kaidoUniv.Jap(1),2(|934_|935)'129-l55.Zb||0_263.[6,1]'49] J' 1000. Noshiro, K. on the univalencyof certain analyticfuncticns' Fac.Sci.HokkaidoUniv.2(1934),89-101'Zbl9-24''12'6'431 Sci. 1001. obrechkoff, N. sur lespolynomes univslents.c. R.. Acad. FM 60-1033'[4, 6, 14'321 Paris 198(1g34),2049-2050. ttal' 1002. obrechkoff, Nr. sri polinomi univalenti. Boll. Un. Mat. l4(1935),245-247.FM 6l-1 154. 132,491 1003. Obrechkoff, N. Sur lespolynomes univalents ou multivalents' ActesCongreslnterbalkanMath.Athenes,(1934),91-94.FM 6 l - l 1 5 4 . 1 4 ,6 , 1 4 ,3 2 i 100.1.Obrechkoff, N. Sur lespolynumes univolentsou m'ultiv1lenls' Bull. Sci. Math. (2) 60, (1935),36-42' FM 62-377' 16' 14' 321 functions- III. J. Nara 1005. ogawa, S. A note on clo,se-to-convex 201 GakygeiUniv. 9(1960),No. 2, 7-23' MR 25-427' 15' 6' l0' Japon Soc. 1006. ogawa, S. on some criteriqfor p-valence.J. Math' . R 2 6 - 6 1 1 .[ 4 , 1 2 , 1 4 , 1 5 ' 6 8 ] 1 3 ( 1 9 6 1 )4, 3 1 - 4 4 1M Univ. 1007. ogawa, s. some criteriafor univalence.J. Nara Gakugei l 0 ( 1 9 6 1 )N, o . I , 7 - 1 2 . M R 2 6 - 1 2 1 0 [' 4 ' 5 l Kodai 1008. oikawa, K. A distortion theorem on schlichtfunctions' Math.Sem.Rep.g(1957),|40.t44.MR19-iol5.[15,24,46,68j
ffi
SCHLICHT FUNCTIONS BIBLIOGRAPHY OF
(PART I)
61
Sci' properties mean muiiivctentfunclions' MR some On .of 169-175' 1009. Ono,l' gun'iLu Daigaku ittt' e' 4(1951)' Rep. Tokvo 33' 431 , ^ - t i in l 3 - 4 5 3 . l g , 1 7, 2 2 , 2 7 " i n tuna t n nrcorono ( t r o t l (cr i r c o l q r e . B o l l . L' S'rie'funzioniunivalenti onoi,i, 1010.
[4] jire40)-' MR3-201' 113-115' Un.Mat'ttiliji
1 0 1 1 ' o n o f r i , L . c o i , , i 4(1942)'21"1-224' o i , o a t t u t e o r i a -MR d e i 7-424' t e T u n[4' z i o19] niunilalerrfi.Bcll. (2) ltal' Mat' zur Un. Theodorsen von desVerfahrens ii'x'on'nrgentz G' z, Math' opit Arch' t012. Gebiete' t
[se] zbt18-3e5' Math.s".' 4'3ii;ii)'-tzr-tz6' mappingof a circleonto o rec-
V ' A' On the conJ'ormal MR 1014.Oserovic, r'tut'i' r:iiqori'No' 1' 111-ll7'
region'Ukrain' tangular 'iouil,till [59] -u'nifortnizotio'n 1920' der Funktiontheorie''Bertin' Lehrbuch F' th'eorem:lhe ,0,r. 1016.Osserman'R' Koebe's "n"fiiti' nt""icae SerieA' I' No' 258 parabolicto"' e"n' ecaa' (195s)' [24] A t-h;r,tltnopnonn onnahernd kreisfor' konforme A'bbildungen 0ber 'q'' l0l?. Ostrc\"ski'
miserGeaieie'JL;''otut"t"niiotit'ie"itt'39(1930)'78-81' ie nts?f : : ht'chi fu ncti on' oeffic c e nt n o ks r ^:::) r0r 8. :X; ?'':' ..so Sci.Rep.TokyoBunrikap"[.X-rtr933);283-28.|'Zb|,7-2|4. Rep' Tokyo of functioLrs"'Sci' multivale-ncy the On S' Ozaki, 1019. gg'-\oz'"ivl 12-24'14',14' 17' 501 2(1934)' A Daig' Bunrika und multivilencyoJ jjme re'markson the univalency s. ozak,, 1020. No' 31-32(1934)' Tokyo eun'iLu Daig' A' functions'Sti'ntp' li 25' 39'-501 ' 41-55'zvt\-z-zl'i4' 9' 14' ' Sci.Rep.Tokyo functions. ^"tii"ol,ent ot theory the orr S. 14] |02|. ozaki, roi-rse' zbl l2-?A"[4',6' BunrikaDaig' A 2(1935)' sci' Rep' II' oi ^irirolent functions' theory *e on s. 1022.Ozaki, MR 14-34'[6' l3' 14' n'iii+i;+s-g?' stt'' Daig' TokvoBunrika
u7l
,ozr il,*l i:';;' ii;ii;il|
in a muttiptv func't'ions of muttivatent Daig' Sect' A
*tO'-i"tt""Bunrika connecteddomain' Sci' r'tl
js' [4'14' 4(rsn),iri-r MR14-35' p'op'iti"
of multivalentfuncT' Yosida' S'; 1024.ozaki, 9n;;k;'; tions'Sci'Rep'TokvoB;;l;p"ieSect'A4(1949)'137-150' 43' ,501 MR 1 3 -4 5 3'1t+ ' tr ' 19'
68
B I B L I O G R A P H YO F S C H L I C H T F U N C T I O N S
propertiesin matrix 1025. Ozaki. S.; Kashiwagi,S'; Tsuboi, T' Some ' sp(tce.Sci. Rep.tot
llo,351
J. Reine und 1038. Peschl,E. Zur Theorieder schlichtenFunktionen. AngewandteMath.lT6(1936),61-94'Zbl16-35'16'17'24'29' 39,541 ttb' 1039. Peschl,E. ]ber die Bilder von S!':rn7ereiclrcnein uilgenieiner
F'UNCTIONS(PART I) BIBLIOGRAPHY OF SCHLICHT
69
bilcttngsatzimRaumemehrererkomolexerVeriinderlichen.Ber. 46)' il2-ll2(1g47)' MR 9-25' [59] Math. -tagung iubingen.(19 svstemeFunktionen' ^9^"'hriinkte 1040.Peschel,E';' ;;t;';:-'t:ii'i 85-22c' l\'iR15'.510j ln], Math.ann. rlciiqs:)' part' J' London reoi with positivc petersen, rur.'on functions G. 1041. '"-"' 49-51'MR 25-66'121 *u,rh. Soc'.35t1961)' Funktionen'Tubsch-lichte p-.iachsymm.eirisclrc tM2. pflaHz,E. ,t;r 42' 491 \l' 10-307'[5' 10' ingen,pi"t'iutio"' tqf+' Zbl l:unktionen'Mat\' schlichte Pfla nz'I-. (JberP-fachVmirye-tlische 1gra3. 491 z. ^o (rg 3 s),' 2- 8;'FM 61- 35C'u5' Comment' Math' kapizitiit' u-nd Extremull(ing'n A' Pfluger, 1gr4{. 621 to-sto 146', Helv.29(19st, 120-131't\4n 1 0 4 5 .P fl u g e r,A .r t,eo,ieder Rieman- n,,hen- [lachen.Ber ltn,1957.M R .
Abbldungkreisrdrmiger rheorie f1;l:%:;1" 1016. 9'lj:,"r"rmen FM 45-671'[31] P;it';; Rend':z(rqi+)' 34r-34" Bereiche.
analytischerFunktionen' beschriinkunrgen 1047.pick, G. Jil, ai' welchedurchvorgegebenepuntiioiswertebewirktwerden.Math. FM 46-4'74'l59l Ann. 7?(1916),'7-23' i"irrrrungssatz' Leipzig Ber' Koebesch.en aen pick, ul'ir G. 104g. 6 8 (1 9 1 6s8), 64'FM 46- 550'u5l l 0 4 g . P i c k , G . i o i r a i e k o n f o r r n i A b b i t d u n gGebiet' e m e s KWien' r e i s e s Ber' aufein b'eschranktes zugleich und schlichtes rv +e-ss3' 122'49ll 2'47-263' 126(1917), Leipzig t'o'to)i"n Abbildung' Ber' 1050.Pick, G' Zur schtichten 3-8' FM 55-789'{60l 81(1929), Ber' Sachs'Ges' Korbeschen'verzerrungssatz. den pick ,c.0i', 1051. 61' 681 Ma th . n o ( t%t) ,6l- 94' u5' .22' 1052.Pinnev.e,.A.onanoteofGalbraithandGreen.Bull.Amer. 10-39 .tt'l Math. sot' :+trq 48)' 527' MR ,Dokl' reelleFunktionenim Kreisring' typisch t)ber E' L' Pir, 1053' zbr's2-8t' (Russian) gztibijl, 6ss-7}2.
AkadNauksssR(N.s.)
im Kreisring. Funktionen ,oro. $i3r,f..,{.,::) Theorieder_schtichten Zbl (Russian) qltr g53)'475-477' Dokl.Akad'NauksssROls'l 5P1r::i"ftt Sem' schtichtfunction' abh' Math' An isotated 1055. U6l zii-ztg'-Mr 22L(D-1629' univ. Hamburg24(1960)' tug.tlorige Extremalprobleme ,rna 1056. pirl, fro,t.rrn."fu*.nr.hur'.;r Z' Martin-I'uther-Univ' HalleWitt' der konformen Abbildung'
** t7-33s'[591 +ii-qssl'1225-1252' witterrueie
70
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
von P. Kcebe. Gesellschaft 1057. Plemelj, J. Uber den Verzerrungssatz 9l 3)' DeutscherNaturforscher und Aertze, Verhandlungen,85(l II, 1, 163.t151 univalence' 1058. Pokornyi, V. V. On some sufficient conditionsfor Dokl.Akad.NaukSSSR(N.S.)79(1951),743_746.MR|3_222. [4,31] of s 1059. Polak, A. I. On s property of tocatly univalentfunctions complex variable. Dokl. Akad. Nauk sssR (N.S.) 96(1954), 241-243. MR 16-25. tsTl Ann' 1060. P6lya, G. tiber anolytischeDeformqtionen einesRechtecks' Math 34(1933),617-620.FM 59-348' t59l Paris 1061. P6lya, G. Sur la syrnmetrisationcirculaire.C. R. Acad' Sci' 230(1950),25-27.MR I 1-435. t59l de I'ex1062.P6lya, G.; Schiffer, M. Sur la reprlsentaticn conJ'orme Paris t€rieur d'une courbe ferm^e convexe. c. R. Acad. Sci' 248(1959),2837-2839.MR 2l-783. 17, 491 Poussin 1063. P6lya, G.; Schoenberg,I. J. Rentarks on cie la vall€e Math' J. Pacific meensand convexconformal maps of the circle. 8(1958),295-334.MR 20-t176. 14,6, 10, 16,471 l' 1064. P6lya, G.; Szeg6,G. Aufgaben und Lehrsatzeousder Anqlysis' II.Do'rerPubl.,NewYork,lg+5'MR7-418'[44] 1C65.P6lya, G.; Szegci,G. IsoperimetricInequolitiesin Mathematical Princeton,l95l . MR l3-27A' t59l Ph1,sl,tt. anci 1066. Pommerenke, Ch. On some problems by Erdds, Herzog' Piranian Mich. Math. J. 6(1959),221-225.MR 22A(l)-125' t59l Mich. 1067. pommerenke, Ch. On the derivative of s polynomial. Math.J.6(1959),373-315.MR22A(l)-16'122'321 of subordinatefunctions. Mich. tc6g. pommerenke, ch. on seauences Math.J.7(1960),181_l85.Zb|9|_252.MR27-316.u] 1069. Pommerenke, Ch. Uber die Mittlewerte und Koeffizienten multivalenterFunktion?tt. )rlath Ann. 145/ t46(1962),285-296' l v I R2 3 A - o 1 1 .[ 3 , 1 4 , l i , 3 3 1 con' 1070. Pommerenke,Ch. Imagesof convexdomains under convex 257-269.t10l formal mappings.Mich. Math. J. 9(1962), schlichter meromorpher 1071. Pomm.r.nk., ch. tlber einige klossen MR 28-258'[1, 3 , 4, 5, Funktionen.Math . 2.78(1962,\,263-284. 6 , 7 , 9 , 1 0 , 1 5 , 1 7, 2 5 , 3 6 , 3 7 , 3 8 , 3 9 , 4 9 , 5 8 ,6 3, & l 1072.pommerenke, ch. on the coefficients of close-to-convexfuncMR 26-980'[1, 3 ,4, 5,6' tions.Mich. Math. J. 9(1962),259-269. 7 , 9 , 1 5 , 1 7 , 2 5 ,3 6 , 3 8 , 4 9 1 J' London 1073. Pommerenke,Ch. On starlike anC convexfuncticns'
f I !
I
t
I r T
i'
t t? i I
t
t
(PART I) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1I
Math.Soc.37(|962),209-224.MR25_254.|6,7,10,15,17,18, 22,23,30, 36, 38,631 |0T4.Pommerenke,Ch.onhyperboliccopacityandhyperboliclength. Ir{ich.Math.J.10(1963)'53_63.MR26_t208.[59] functions' ch. on starlike and close-to-convex pommerenke, 1075. Proc.LondonMaih.Soc.(3)13(1963),290_304.MR26_499.|5, 6 , 7 , 8 , 1 7, 3 6 , 3 8 ,5 4 ] starlikefunctions.PacificI. Ch,on meromorphic |076. Pommerenke, I'lath.l3(1963),221-231MR27-59'[6'9'15'17'18'23'25'36' 58,631 propri6t6sdesfonctionsd'une variablecom1077.Popov,B. s. Quelques MR 2C-24(1954)' 4(1953), plexe.Bull.So1.Math.'phis.Macedoine 15-863. t59l
- -) , : ^ t - - , ! n r { n n h
parsilerschtitztheoremunendrich vielfoch 107g.posser, R. de zum Math' Gebiete.Nachr' Ges' wiss' Gottingen' zusammenhangender -Phys.Kl. (1931),199-202'Zbl 3-314' [9' 60] reprlsentation conforme' J' Postel, R. Quelquesprobt\mes ce 10.79. (1932),1-98. Zbl6-263 ' 16',621 Ecolepolytechnique,Cahier30(2), ccnforme propri€t1sde la repr1sentatic'n 1080. possel,R. Sur qurtqurl, rerationavecie th€oramedesfentes desmurtip!emenlccnnexes,^en Zbl 5-363' t60l parcttdtei.tvtattr.Ann. 107(1933),496'504. of coefficientsof odd univalent 1081. Potugina, I. v. on estimation ' Nauk SSSR(N.S.) 85(1952),l2l5-l2l'l frnctions. Dokl. Akad. MR 14-260.u7 , 45, 521 Ft:nktionen'Ark' Mat' 10g2. prawitz, H ioi, Mitteiwerteanalytischer 6, l -|2. FM 53-307, |3,27| Astron. och Fysik 20(1927/28), No. conqui donnentla reprbsentation 1083.Privalov, J . Sur lesfonctions f o r m e b i u n i v o q u e ' R e c ' M a t h ' D ' I ' S o c15', ' M a58] th'D'Mos:ou 9' 10', 31(l g24),350-i65. FM 50-254'[6' of Analytic Functiorzs'2nd 1084. Privalov, I. l. Boundary Properttes 1950' (RusEd. Gos. lz. Tehn. -teor. Lit., Moscow-Leningrad' sian)MR 13-926'[59] constanf'Amer' J' Math' ,H. On tt , nto,h-Landau 1085. Rademacher 65(1g43I 387-393.MR 4-270' ll9l konfomen Abbildungen' 1086. Rado, T. Zur Theorieder mehrdeutigen A c t a S z e g e d : ' ( | 9 2 2 ) , 5 5 _ 6 4 . F M 4 8 _ 1 2 3 5 . [ 5 9 ] variables' de do-maines 1087. Rado, T. sur la repr\sentationconforme ActaSzegedl(1923),180-186'FM49-247't591 lC8S.Rado,T.Bemerkun'genuberdiekonformenAbbildungenkonvexer g2g),+zg-qzg.FM 55_208.u, 10, 37, Gebiete.Math. Ann. 102(1 601
12
FUNCTIONS BTBLIOGRAPHYOF SCHLICHT
propertiesof the derivativeof extremal on I. a. Rahmen, 10g9. potynomiatiandratiionalfunctions.J.LondonMath.Soc. ,334-336'MR 23A-328't59l 3s(1960) functions.Dokl' the theoryoi univarent 1090.Rahmanov,B. N . on Akad.NaukSSSR(N.S.)78(1951),209_211.MR112_8|6.|4,6,
r'el. f;#"i31,
Dokl' B. N. on thetheoryo.funivaten_t-functions. 13_640. [6, 10]
2), 34|-3M . MR Akad. Nauk SSSR(N .S.) 82(195 Dokl' the theory of univsren_t _functions' 1092" Rahmanov, B. N. on A k a d . N a u k S S S R ( N . S . ) 8 8 ( 1 9 5 3 ) , 4 1 3 - 4 | 4 . M R 1 4 _ iDokl' 40.t|zj of univaren_t theory the on . N B. -functio'ns' 1093. Rahmanov, A k a d . N a u k S S S R ( N . S . ) 9 1 ( 1 9 5 3 ) , " 7 2 9 - 7 3 2 . M R i 5 - Dokl' 413.[49] theory'of univalen-t the on N. -fimctions' ts. 1094. Rahmanov, A k a d . N a u k S S S R ( N . S . ) 9 7 ( 1 9 5 4 ) , " g 7 3 _ g 7 6 . M } 1 6 -Dokl' |22.t4,6] theory'o.funivareni-functions' the on N. B. i095. Rahmanov, 369-371'MR 17-249'l4',6', Akad. Nauk sssR tN's') 103(1955);
r0e6 l.t;li;3li?
ands,ied resutts' inequatitv r. caratheodorv's
Math.Stucient9(1941)"13-77MR3-201 ' t 5 9 1 resurts'll' ,nequolityand--auied 1097. Rajagopal,c . T. cara'thecdory's 611 (1948).Vrir to-a+l' tl 5 ' l'7',22',30', Math. Studentl5(1g47),5-'7 Amer' for analytic.functions' 1098. Rajagopal, c. T . on"inequalities Math.Mon.60(1953),693_695.MR15-412 . | | 5 , | 720(1952), ,22,30,5r] on po,|er series.Math.Student 1099. Rajagopal,C .T. A note MR 15-113'12'20'221 gY-rdi(19s3)' clossof power an qbsoluteconstantfor c 1100. Rajagopal, c. T. on 267-270.MR 20-874' l59l series.Math. s.uni. 5(1957), absorutevaruesand fcr coefficients 1101. Rakovic, K. Inequatrities10r ofcertoinregulorfunctiolrs.ActaFac.Nat.Univ.Carol.,Prague MR e-232' UC' 14' 15' l?l 28-31(1946)' No. 172(1939), | | 0 2 . R a o , K . T w o t h e o r e m s o | l b o u n d e d f u n c t i o6ll ns.J.LcndonMath. 19-736't15''22' Soc. 32(1957)'430-435'MR Math' Soc' boundedfunctio"' J' Loncion on theorem A K. Rac, 1103. ' 5 ', 22', 6l l 36(1961),47 4-479' MR 26-615 il l l 0 4 . R a u c h , s . E . M a p p i n g p'pu.iri. r o p e r t i e s o f C e.s a4(1954), r o s u f t l s109-121 o f o r d e'r tMR woof J. tutattt ,riirrl geometric the 15-697.[2C' 35] ,__^^de )^ {,t, mtes.C. R. Acad. univttle clssse fonctions une Sur M' 1105. Reade, Sci.Paris239(1954),|758-1759.MR:16-579.|2,4,5,6,|7,36, 3 8 ,4 l i Math' univaleri functions' M!ch' 1106. Reade,M' On close-to-convex - 2 5' [ 4 , 5, 6 , i 7 , 3 6 , 3 8 , 4 2 1 J . 3 ( 1 9 5 5 )5, 9 - 6 2 'M R r 7
(P A R T I) B IBL1OGR A P H YOF S C H LIC H T FIJN C TION S
13
Duke The coefficients of close-to-convexfunctions' lr4. Reade, 110j. M a t h . J . 2 3 ( 1 9 5 6 ) , 4 5 9 - 4 6 2 . M R | 7 _ | | 9 4 . | 4 , 5 , 6 , 1 0 , 1 7 , 3 6.' 3 8 ] the coefficientsof certain univqrentfunctions 1l0g. Reade, M . on AnnAcad.Sci.Fenn.Ser.A.l.l.io.2|5(\956),6pp.MR 4 0 ' 6 3 ' ,6 - 4 i 1 7 - 1 0 6 9[.4 , 5 , 6 , 1 5 , 1 7 , 3 6 , 3 8 ' Report of unit,alence for \3e-"dt. Prc,hminary I l0g. Reade,M. A riadius B,-rll.Anrer.Math.Soc.Abstract63,lg3(i95?).i28] l l 1 0 . R e a d e , M . o n ( J m e z q w a , s c r i t e r i a f o r u5n 28i ivalence,J.Math.Soc. ' Japan 9(1957),214-238'MR 19-642' [4' il. J. Math Soc. (Jmezawa'sci.iterio for univuience. l r l r. Reade,M. on japan 10(1958),255-259'MR 20-877' l4l functions' Mich' of close-to-convex lll2. Reade,M. Two applications gl-g4' MR 20-404' 14'5' 281 Math. J. 5(1958), J. partiar sumsof certainLaurent expansions. 1113.Reade,M. on the M a t l r . S o c . J a p a n l g ( 1 9 6 3 ) , 6 6 _ 6 8 . M R 2 6 - 4 9 9 . | 9 , 2 0 , 4cer3] of certainfunctions for values of domains The I. M. l l 14. Red,kov, t a i n c l a s s e s o f b o u n d e d u n i v a l e n t f u n c t i o l r s . D o k l . A k -Dokl' ad.Nauk Transl' soviet Math' (Russian) 133(1960),284-287. sssR 484-851.MR 23A'330't291 1(1961), a certsinfunctional in the class lll5. Red,kov, M. I. The range o-f S,(d(w)).Izv.Vyss'Uc'laved'Mat'1962'No'2(27)'ll9-129' (Russian)MR 25-796' 122'621 certainfunctionarin the crasss'' 1116.Red,kov, M. I. The raige of a 134_142.(Russian) Izv. Vyss. Uc . Zaved.tutut. |g52, No.4(29), MR 25-796.t22, 621 anarytic functions. l1 1?. Reich, E. An inequarity -for subordinate 15-862. [1, 3' 18] pacific J. Math. 4(1954) , Zig-214.MR theoremof Beckenbach'Proc' I I lg. Reich, E. An alternateproo1 o.f a 37] , 578-579.N,IR|6-24. [3' Amer. Math. Soc. 5(1954) Math' Soc' Amer' Proc' 1119.Reich,E. on a Bloch-Landauconstant' ? ( 1 9 5 6 ) , 7 s - 7 6M. R 1 7 - 1 0 6 6t' 1 9 l coefficients.Duke Math' J' 1120. Reich, E. Schtichtfunctions with real . Zbl 70-299' tl3' i5' 22' 23' 24' 391 z3(lqio), 421-427 Acad' Sci' Fenn' Ser' A' 1121.Reich,E. on radial slitmappings.Ann' 12 pp' MR 23A-618'[59] I. No'- 296(1961), ccnforntalmaps o"f llZZ. Reich, E.; Warr.r,u*oi i, S. E. On canonicsl J' Math' 10(1960)' regions of arbitrary connectivit\' Pacific 965-985.MR 22A(2)-1376'122'241 Abbitdungen desEinheit1123.Reinhardt, K . (Jberschlichtekonforme 83-86' FM 54-378' skreises.Jber.Deutsch.ver. Math ' 37(1928)'
uel konformer Ab1124.Remak, R. ueber eine spezielleKlasseschlichter
14
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
B t1' 175-192; L2' bildungen desEinheitskreises.Mathematica MR 8-22. 14,6,32, 621 43-49(1943). in the crassof typically-real p rrz5. Remizova,M. . Extremarprobrems functions.Izv.Vyss.IJc.Zaved.Mat.(1963),No.1(32),|35_|M. MR 26- g82. [9, 13, 15, 23, 29, 58, 66] der konformen Abbildung' 1126.Rengel, E. Einige schtitztheoreme 1(1933)'139-162'FM schr. Math. sem. Inst. Math. univ. Berlin 5 9 - 3 5 1 .[ 5 e-Existenzbeweise ] mehrfach fur schlichte Abbitdungen llzj. Rengel, b. Nor malbereiche'Jber' Bereicheauf gewr'sse zusammenhiingender 60_286.[60] Deutsch.Ir{ath.-Ver. 44(|934),51_55.FM bei schtichterkonformer Ab1128. Rengel, E. Verzerrungi^ Rindes MR 5_37.[9' Math. 6(1942),370-393. bildunge|l,I,II. Deutsctre
lel of schticht functions.Publ.Math. rrzg.R6nyi,A. on thecoefficients ta-i:' MR' ll-92' U0' 17'38' 41'421 1(1949;, Debrecen
mapping' Acta Sci' 1130. R6nyi, A. Ort the geometry of confo:"mal Math.Szegedl2B(1950),215-222'MR11-(49'17'491 II' Ann' Acad' 1131. R6nyi, A. Son e remori, on univalentfunctions p p ' t v I R2 2 A ( l ) " 1 2 8 [' 5 ' s c i . F e n n .S e r .A . I . N o . 2 5 0 / 2 9( 1 9 5 8 ) , 7 1 2 , 1 5 , l b , 1 7 , 3 8 ,6 4 1 Bulgar' Akad' ll Jz. R.6nyi,A. Som, ,r^irks on univalentfunctions' B u l g a r i a nR ' ussian N a u k I z v . M a t . I n s t . 3 ,N o . z , 1 1 i - l 2 1 ( 1 9 5 9 ) ' summaries)MR 22A(l)-128' [5' 17' 38] per refunzioni maggioanti ,33. Ricci, G. su un probii^o di mqssimo Nincei' Rend' cl' Sci' Fis' delleseriedi potenze. Atti. Accad. Naz' Mat. Nat. tsi r8(1955),609-613.MR l7-1070. t39l einer stetigenFunktion l134. Riesz, F. Uber die Fo,urierkoeffiz'ienten 2(1918)' 312-315'FM von beschrankterschwankung.Math ' z'
46-4s2.
t5el Interpcrstior;sformelund einige 1r35. Riesz,M. Eine trigonometrische Ver' (Jngteichungen-fur Poiynome. Jber' Deutsch' Math' FM 45-405' [59] 23(lgr5),354-368. ' Math ' z' 27(1928)' 1136. Riesz, M. sur les fonctions conjug€es . 218-2M. t59l , a 1^ c. Sct' Acta holomorphes' 1137.Riesz, M. Remarquesur lesfonclions Math.Szeg,-dl2A(1950),53-56'Zbl38-229't591 Krummung ebenerKurven bei I 138. Ringleb, F. (iber das Verhaltender konformerAbbildung.Jber.D.M.V.45(1935),57-60.FM s l - 1 1 5 6 [. 3 5 1 Royal M. S' '4 noteon schlichtpolynomials' Trans' 1139.Robertson, 431 , Soc.Canada(3) 26(1932),43-48. Zbl 6-147 132,
FK BIBLIOGRAPHYoFSCHLTCHTFUNCTIONS(PARTI)75
functions' thecoefficientsof a typically-real I140. Robertson,lvl. S. On 1 2 - 2 1 2 ' 1 21 '3 '1 ? ' B u l l .A m e r .M a t h .s o c .4 l ( 1 9 3 5 )5, 6 5 - 5 7 2Z. b l 2 ' 3 ,4 5 ,5 1 ,5 2 1 fuitctions.Bull. M.s.,4 remarkon the odd schricht r141.Robertsotr, A m e r .M a t h .S o c. 4 2 ( 1 9 3 63) ,6 6 - 3 7 0F.M 6 2 - 3 7 3t 'l 6 , L i , 2 4 ' 4 2 ' 45, 521 ' starlikein one direction 1142.Robertson,M. S. Anatyticfunctions 1 0 ,1 3 ' 1 7' A m e r .J . M a t h .5 8 ( 1 9 3,64i6 5 - 4 7 2Z. b l 1 4 - 1 2 0 . 1 2 , 6 , 23, 36,38,40, 41, 421 oJ-aunivaient of the coefficients 1143.Robertson,M. S. On the o;'der 937),205-210'zbl 16-126'13'7', function Amer. J. Math. 59(1 1 5 ,l 7 , 4 2 , 5 4 .6 2 ,6 8 1 of univalentfunctions.Ann' ll*. Robertson,M. S. On the theory 1 0 'l 3 ' 1 5 'l 6 ' M a t h . 3 7 ( t 9 3 6 ) , 3 7 4 - 4Z0b8l 1' 4 - 1 6 5t l' ' 2 ' 3 ' 4 ' 6 ' ? ,0 , 3 6 ,3 8 ,4 1 ,5 1 , 5 4 ' 5 6 ; 6 1 6' 3' 6 4 '6, 6 '6 8 1 17,20,21,22,23 of Ceshrosumsof univalent 1145.Robertson,M. S. on the univalency 241-243'FM 62-36i' Bull. Amer.Math. Soc.42(1936), lunctions. 14,20, 3Zl o.fa univalert coefficients 1146.Robertson,M . s. on the ordero.fthe s9(1936).205-210'zbl 16-1'26'13'7' function Amer. J. Math. ' 8] 1 5 .1 7, 4 2 ,5 4 , 6 2 6 of all analyticfunctiortsin 1147.Robertson,M. S. A representation 38(1937)' termsof functionswith positiverealparf' Ann' Math' 770-783.2b117-407.12,13,15,17,21,23'28'36',40',45',51',52', 5 6 ,6 3 , 6 6 , 6 7 1 p' Bull' Amer' 1i48. Robertson,Ivt. s. Multivalentfunctionsof order Zb\ 18-315'U4' 171 282-285' Math.Soc.44(',938), infinitelymany 1149.Robertson,M. S. On certatnpowerserieshaving 339-352'Zbl2l-143' [13' Ann. Math. 40(1939), zerocoefficienls. 1 5 ,1 7 , 3 9 , 4 5 , 5 16, 6 1 univalency of analytic functions ' 1150.Robertson,M. S. Piecemeol 50, 54, l2O-128'zbl 20-i 41. [3, 14, 15, Ann. Math.40(1939), "7, 5 7 , 6 5 ,6 8 1 an analYtic V 1151.Robertson,M. S. The variationof the sign of for MR r-9. 12,3, sr2-519. 5(1939), function U + iZ. Duke Math' J' 1 4 , I 5 , 1 ' , 72 1 , 4 9 , 5 0 , 6 5 ] : 0 for n - 0 1152. Robertson,M . 5. Typicaity-realfunctions with Qn 1-214' (mod 4). Bult. Amer. tvtaitr.Soc. 46(1940),136-141'MR
u3,17,39,51,521
starlikefuncI153. Robertson,M. S. Thepartialsumsof multivalently g29-838. MR 3-79.16,14,20,431 tions.Ann. Marh tzl izog4t), functions' 1154.Robertson,M. S. Starcenterpoints of multivalent
16
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
DukeMath.J.l2(1945),669-684.MR7_379.|2,6,14,15,|7,19, 2 1 , 3 6 , 5 05, 4 ,5 6 ,6 3 ,6 5 ,6 8 1 of univaleryfynctions' Bull' 1155.Robertson,M. s. Th* coefficients M R 7 - 1 5 0 u. 3 , 1 7 , 3 9 , 4 5 , A m e r .M a t h .S o c .s r t r g +s \ , l l l - 7 3 8 . 541 . ..!tl^*.,tt withmultiplymonotonrc powerseries M. s. univarent ,56. Robertson, Sequencesofcoefficienfs.Ann.Math.(2)46(1945),533-555.MR 7 -201. 14,6, 13, 20,23, 39' 411 o1.alemmaof Feier to tvpicallv1157.Robertscn,M. S, eiiiiroiioni realfunctions.Froc.Amer.Math.Soc.l(1950),555-56i'MR 12-248.tl3 , 39, 41, 471 problemfor functionsregularin 1158.Robertson,M. s. A coefficient g52),407-423' MR 14-460'[13' an snnulus.Canad.J. vtatt,.4(1 1 4 ,1 7, 4 9 ,5 0 ,5 1 1 starrikefunctions.DtrkeMath. J' M. s. Muttivarentty r 159.Robertson, 2 0 ( 1 9 5 3 ) , 5 3 9 - 5 4 9 ' M R 1 5 - 6 1 3 ' l 6 ' , 1 3 '+, 1pw 4 ' ,-1 60'' , 1Trans' J',36',39',50',51] solutionsof w" 1160.Robertson,M. s. schiicht M R 1 5 - 7 8 61. 4 , 6 ,1 0 ,1 3 ' A m e r .M a t h .S o c. l i t t g s + ) , 2 5 4 - 2 7 4 . 3 1 ,4 i l Dirichtet series.canad. J. Math' il6r. Roberrscn,M. s. schticht MR 20-664't281 161-176. 10(1958) partialsumsof harmonicseriesexpan1162.Robertson,M. s. cesfiro MR 2l-413' 14,13' ?',g', sions.pacificl. vraitr.8(i958),829-846. 23, 4ll to of the subordinction PrinciPlc M' S' Applications 1163.Robertson, 11(1961),315-324' MR u'nivslentfunctions' Pacific J' Math. 23A-329.U, 6, 101 of schlichtfunctions' Proc' ll*. Robertson,M. s. convolutions A m e r . M a t h . S o c . r l ( r g o z ) , 5 8 5 - 5 8 9 . M R 2 5 _with 2 5 4positive .|6,9,47| J'orfunctiuns M. s. variationalmethorts I165. Rober*,son, soc 102(1962),s2-93' MR rear part. Trans. nmer. Iviath. 24A-612.ll , 23, 241 problemsfor analyticfuncions with I166. Robertsor,M. s. Extremal Trais. Amer' l'{ath' Soc' positiverea! pari qnd appiicotiotts. , l 4 ' 6 ' , 9 ' ,1 0 ' , 1 2 'N 1 0 6 ( 1 9)6, 2 3 3 6 - 2 5 3M ' R ' 2 6 ' 6 5 '1 2 ' , of convexityP'oblems'Mich' 1167.Robertson,M. S. Someradius
} v i a t h . J . l 0 ( i 9 6 3 ) , 2 3 i - 2 1 6 . I . { R 2 7 _ 3 |a3 schticht . i 2 , 5 , 9furiction' ,12,161 u for constqnt Btoch The M. R. '6g. Robinson, Zbl'|2_171.u9] Bull. Amer.lr'{ath.Soc.4l(1935),535-540. ,,on ihe theoryof Chen,spaper: -+r(i935), 1169.Robinson,R. NI.A note on 327428' zbl i. schtichtfunctions." Tohoku Math. 14-70.u6l
BIBLICGRAPHYoFSCHLICHTFUNCTICNS(PARTI)1-t
1 L',l 7 0 . R c l ; i n s o n , R . M . B l o c h f u n c t i o n s . D u k e M a t h . J . 2 ( | 9 ? 5 ) , . zbl 15-30'U9l 453-459 M. On tie mean valuesof an analyticfunction' ll.ll. Robi:rson,R. 489-u51.MR 2-79' t3'! Bull Amer. Ir{ath.Soc. 46(1940), ||T2.Robinson,R.M.BouLndedunivolentfunctions.Trans.Amer. M a t h - S o c ' 5 2 ( 1 g 4 2 ) ' 4 2 6 - 4 4 9 ' M R 4 - 7 7univ' ' t l 5 ' 2calif' 2 ' 2 4Publ' '61'oEl analytic functiirt. Bounded . M R. 1173.Robinson, 5-259'U5' 221 Math. (N.S.)l(1944)'13l-146'.MR Trans'Amer' Matir' Soc' Unlvalcntmajttrants' 1174.Robinron,i. fuf. 6 1 ( lg 4 7 ) , 1 - 3 5M. R 8 - 3 7 0 '[ l ] ||7).Robinson'R.M.Extremalprobte m s16-1096. forstarm p p 68i ings.Proc. [6,a15, MR Amer. Math. Scc.o(iqls), loq-lll. q of map' conditions for univalence lli6. Rogozin,V. S. Twotrnii''nt ping.Rostov.Gos.univ.Uc.Zap.Fiz.Mat.Fak.32(1955),135137. MR I 7-724'.!4, 9' 281 bei potenzreihenund ihren Bitischranken uber w. Rogosinski, rrjj. Abschnitten.Math.Z.|7(|923),260-27(,.FM49-23|.|2,|3,20, tJlr"rinski, sinusentwickrungen. w. tiber positiveharmonische 1l7g. r)' 2' Abt' 33-35't2l Jber.Di;;h' Math' ver' 40(193 Funk(Jberden wertevorrateineranarytiscrrcn rr.7g.Rogosinski,w. tion.Schrift.Konigsberg,Gel.Ges.,Naturw.Klassc,S(1931)' i-31 . zbl 2-272'[.1'9' 19' 37ll und Entwicklungen poiiti" harmonische 1180.Rogosinski,W. tlUelr' typischreelePotenzrernen.Math.Zeit.35(1932),93-|2|.Zb| 3-393.12, 13,231 r ^ - Funktiontheoric D,,-rrtinttthpnr' ' d:! I 181. Rogosir:ski,w . zum Maiorantenprinzip Math.Z.37(1933)'210-236'Zbl7-167'U'2 1 Lernma' Jber' Deutsch' I182. Rogosinsl:i,w. zum Schwarzschen Math.Ver'44(1g34'S'25t-261'Zb"f0-307'122'371 meinerArbeit: zum schwaruchen 1183.Rogosinski,w. Nachtragzu L e m m a . J b e r . D , . M . v . + s ( r 9 3 5 ) , 4 8 , 2anaiytischer 4 3 . F M . 6 1Funktion -348.[371 w . uber den wertevorroieiner l rg4. Rogosinski, sind' CompositioMath' 3(1936)' von der zwei Wertevorgegeben 199-226.Zbl14-353' [9' 19' 221 Phil' functions'Proc' camb' w. on subordinaie 1185.Rogosinski, l-26' Zbl20-140'Ul Soc.35(1939), J' LonnpU'rbach-Eilenberg' 1186.Rogosinski,W. On a theoremof donMath.Soc.14(1939),4_||.Zbi.20-376.(1,3,16,|7,|9,22, 341 of subordinatefunctions' I 187. Rogosinski,w . on the coefficients proc.LondonMath.Soc.(2)48(1943),-48-82'MR5-36'll'2'3'
b--*-
7E
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
6 , 1 0 ,1 7 ,1 9 , 2 7, 3 9 , 4 2 1 W'; ShaPiro'H. S. On certain extremum Problems 1188.Rogosinski, MR Acta Math.90(1953),287-313' for analYticfunctions' 1 5 - 5 1 6[ .5 9 ] du cerclede conA. sur ls repr€sentqtion-conforme 1189.Rosenblatt, Krak' Bull' (1917)'575-585' d''unes6riede'puissonces' vergence 68] FM 46-554.[9, I 5, 17,18, lg, 54'58', dansle cer' univslentes de puissances A. Sur les's€ries I190. Rosenblatt, cleunit€.Cir.Acaci.Sci.Pariszcz(t938),442-444.zbl|9-272. ll7 , 45, 52, 541 born\edansrecercreunit€.Bu[. soc. A. sur ress€ries Rosenblatt, 11g1. FM 6l-346' t15' 20' 22' 6ll Sc.Liegeitrqlsl ,..124-127' schlichtenFunktionen im rr9z. Roserrblatt,A. uber die reguraren 165-176.(Spanish)zbl Rev. ci. Lima 40(1938), Einheitskreis. 20-141.t17, 27, 45, 52, 541 der schlichtenReihen im 1193.Rosenblatt,A' Uberdie Koeffizienten -179.zbl 20-141. [17' Rev' Ci' Lima 40(1938)'t77 Einheitskreis' 27, 45, 52, 541 vorstehendenNote' Rev' ci' Lima 1194. Rosenbiatt,A. Bemerkungzur 11t,27, 45' 52' 54] 40(1938),1g1 182.(Sparr[n)zbl 20-141. Noten uber die schtichtenFunk1195. Rosenblatt,A. zusatz zu mcinen Z b l 2 0 _ 1 4 1u. 7 , 2 7 , 4 5 , t i o n e n .R e v .C i . L i m u + o ( t 9 3 8 ) 1, 8 3 - 1 8 4 . 52,541 n ,|^--^-.-; donsre desfonctions ,u.nivalente coefficients les Sur A. I 196. Rosenblatt, ' Zbl 2l-143' U 7 ' 541 5-41-545 cercleunit6.Rev. ci. Lima 40(1938), sur tescoefficientsdes s€ries rrg7. Rosenbratt,A. Nouveilesrecherches 547-553-Zbl 2l-143' U7' univalenfes.Rev. Ci. Lima 40(1938),
5+l ner cerchio A. suue funzioni univarentidispari lM-146' l rgg. Rosenblatt, vls 28(1938)' Rend' rtnitario. Atti. Accad. Nur. Lincei
zbl 20-l4l. u7, 27, 45, 52' 541
dansle desslriesunivarentes 11gg.Rosenblatt,A. sur iescoefficients -128' Z'bl 19(1939)'127 cercleunit6. Bull. Soc. N'iath' Grece' 2l' 143.U7, 541 ' Actas of univalentseries 12c0.Rosenblatt,A. On the coefficients - 7 ' l l 7 , 3 9 ' 4 5 ' 5 2 ' 5 4 1 4 A c a d .c i . L i r n a4 ( i g 4 t ) ,1 4 5 - 1 5 5M. R irt theunit circle-Revistaci' Lima A. on pow'erseries 120r. Rosenbratt, ' 22' 301 45(1943t , Ps-zzs' (spanish)MR 5.-176'tl7 anaryticin the unit of functions 1202.Rosenblatt,A. on the mod'urusgqi),27-M. MR 8-19' (spanish) Acad.ci. Linna8(1 circie.Actas
t5el
-_
BIBLIOGR'APHYoFSCHLICHTFUNCTTONS(PARTI)
s€riesde Turski, s. Sur les coefficientsdes A.; Rosenblatt, na3. dansle cercleunit€'c' R' Acad' Sci'Paris univalentes puissances Zbl ll-261' U7', 541 1270-1272' 200(1935), p. c. sonte propertiesof absoluteiyrnonotonrc 1204.Rosenblooirl, 458-462'MR 8-65' Mattr.soc. 52(1946), functions.Bull. Amer. t5el schricht funcH . L. Thecoefficientprobremfor bounded Royde', . 205 r g4g), MR 657-662' 35(1 tions.proc. Nat. Ac;. Sci. u.s.A. ll-426.122,24,291 on q rigitiity of cernin subtiomains corlforn:ql he T L. H. Royclen, 1206. Soc.76(|954),L4-25.MR Riemannsurface.trans. Amer. Math. I 5-51e.[5ei probremfor schrichtfunctions. 1207.Royden,H . L. The interporation MR 16-232.124'291 Ann. of Math. (2) 60(1qi+l, 326-344. rteformation'Reprintfrorn: Lectures 1208.Royden,H. L. Confirmal Univ' of MichiganPress' on Functionsof a complex variable; . i24l 1955.MR 16-1096 of onalyticfunctions' ond starrikeness Conrritty c. 1209.Roysrer,w . D u k e M a t h . J . i g ( I g 5 2 ) , 4 4 7 - 4 5 7 . M R 1 4p-vole;t -261l.[6'10] ' functions omiltedfi't 121C.Rol,ster,w. c. Noteon values D u k e M a t l r . j . 2 2 ( | 9 5 5 ) , 1 5 3 _ 1 5 6 . M R 1 6 _ 6Amer' 8 5 . u 4 ,Math' 16,19,22] univalent functions' Rational c. w. lzlL Royster, MR 17-1069.t39l , 326-_"28. Monthiy63(1956) prob.lgmfor functions regularin an l2|2. Royster,w. C. coellicient MR 2l-1064'[6, l3' 17' elipse.DukeMath. i'.zeggjq), 361-371. 40, 41,571 posit;verealpart in an ellipse' 1213.Royster,W. C. Functionshaving MR'2|-783.|2, |7 ,57ll Proc.Amer.Math.soc.10(1959)_,266_269. |2|4.Royster,w.C.Extremqtproblemsforfunctioryl...............tarlikeintheexMR l4(l962),540-551' teriorof the unit circle.Canad.J. Math. 26-499.[6, g, 16,l7 ,24,251 murtivarentfunctions. rzrs. Royster,w. c. Meromorphicstarrike MR 25-|2||. [6,9, 300_308. Trans.Amer.Math.Soc.roz(1963), 1 4 ,1 7 , 2 5 ,3 6 ,5 0 1 Akad' 1216.Saginyan,A. L. on the theory of univalentfunctions' NaukArmyan,SSR,Izv.Fiz'-Uat'Estest'Tehn'Nauk;9(1956)' N o . 7 , 2 9 _ 3 5 . ( R u s s i a n . A r m e n i a n S u m m a r y ) MJ' R18_728.u9'491 one direction' Math' l2l'7. Sakaguchi,K. On functions star tike in S o c . J a p a n 1 0 ( 1 9 5 8 ) , 2 6 0 _ 2 7 1 . M R 2 0 - 7 7 J' 1 . tMath' 6 , 1 0 ,Soc' 11,12,20,,40] K. On's certainunivalentmapping' 1218.Sakaguchi, ' 14'5' 6l , 72-7s' MR 2r-1063 rapai I 1(i959)
b--
I EO
BIB L IO GR AP H YOF S C H L ICH T FU N C TION S
of murtivarentfunctions. Sci' Rep' rzrg. Sakaguchi,K. some crasses 205-222'MR 22A(l)-18' Tokyo Kyoiku Daigaku.Sec.A 6(1959), 49ll 17 16g , , 1 0 ,1 1 , 1 2 , 1 4 ,1 5 , , 2 0 ' J' Math' Soc' Japan 1220.Sakaguchi,K . A note on p-valentfunctions' 1'+] t4(1962), 312-321' MR 2r-1209' [4' analytic of functions' J' Math' Soc' lZZL Sakai,E'. On the multivalency ' MR 12-601'[6' 14' 22' 43] Japan2(1950),105-113 of the convex functions' Bull' 1222. Sakashita,H. Some subclasses KyotoGakugeiUniv.SerBl4(i959),4-7.MR21-1350.|4,10, 1 5 , 1 7 ,3 8 1 caefficierrfs.Duke ivlath. J. |223. Salem,R. Power serieswith integral r2(1g45),153-172.MR 6-206' t59l Fourier anolysis'D' c' Heath 1224.Salem,R. ,4lgebraicnumbersand and Co., Boston1963,66 PP' t39l of varueof a schrichtfunction' rzz5. SarinaS,B. R. No/e on the region MR 14-460'u5' RevistaMat. His. -Amer. (4)I2Qg52),223-228. 24,29,681 on the Theory of Functions of 1226.Sansone, G.; Gerretsen,J . Lectures Functions' P' Noordhoff a complex variable I: Holomorphic (1960),488 PP' Zbl 93-268' t59l mapping' Math' Notae ', L. A. A theorem on conformal 1227.Santalo, ' 5(1945) 29-40' (Spanish)MR 6-261 t35l congrasdesMathemarzzg. Sario,L. on univarentfu'nctions.Treizieine 202-208' T..'u i Helsinki 18-23Aofft (1957)' ticiensScandinaves, 209pp' MR 2l-783' [9' 60] MercatolsJryckeri, Helsinki' 1958' convexity of bounded functicns ' 1229. Sasaki, Y. Theoremson the P r o c . J a p a n A c a d , 2 T ( | 9 5 1 ) , | 2 2 _ ! 2 9 . M R : 1 3 - 7 3the 3.u 0 , | cir2,22| un:t of the regionsto which 1230.Sasaki,Y. Cn the Hatiptsehne Proc' Japan Acad' cle ,s mappei by th; bounded func-tion' 216-2t8. MR l3-&2' l7' 221 27(1951), 't*3L Sasaki Y . On somefcrnily of multtvaientfimctions' Kodai Math' , 14-649'i4', 6', l0' 14' 351 Sem. Rep. lgsz(lgsz), a4-g} MR boundary valueproblem' contrib' 1232.Schaeffef,A . c. An'extremal (195i)' PP' 4l-47 ' Annais of to Theory of Riemann Surfaces ' Press'Princetotr'N' J ' Math. StudiesNu. 30. Princetonuniv MR 15-24. t62j C' Tht: coo-fficientsof schliclit Junc1233.Schaeifer,A. C'; SPcncer'D' M R 5 - 1 7 5 .[ 9 , 1 7 , 2 4 , tions.I. Duke Math ' J ' 10(1943)' 6 1 1 - 6 3 5 . 25,45,52,541 The coefficientsof schiichtfunc' 1234.Schaeffer,A. C'; SPencer'D. C. 'r-206' ' 22' IVIF il7 tions. II. Duke Math' J' 12(1945),107-i25. 24, 42, 541
I I
I
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTI)Er
of schlichtfuncA. c.; Spencer,D . c' Thecoefficients schaeffer, 71235. u's'A' i)ogqel' 111-ll6'MR sci' Aca'd' Nat. Proc. tions.III.
inconfor rrtetho'i A vqi'iationa! c. . D tz36iifl;lif;riti. 9., lp:nccr,
m a l m a p p i n g . D u k e N i a t l , . j . l 4 ( 1generol g 4 C , )ctas-s , 9 4 9of_ 9 56.MR9 _34|.i24j in, problems C';.3pencer'D ' C' A A' Schaeffer, 123'7. conformalmapping.p,o..Nat.Acad.Sci.Ii.S.A.3S(|947)' MR 8-575' l24l 185-189. of schlicht funcspenc.i,o. C - Thecoefficients c.; A. Schaeifer, 123g. tions.IV.Proc.}{at.Acad.SciU.s.e.35(1949),|43-150.MR the third Spencer,D. c. Modetsittustrsting c., i*,''n. ltr3? tzSs coefficientregionforschtichtfunctions,scripta.Math.l6(1950)' 'ons 67-71.MR 12-89't291 rcgr for schticht L'oefficient C' ' D 1240.Schaeffet,A' C'; Spencer' f u n c t i o n , . A - . , . M " t h . S o cD..CC. o l lCoefficient . p " u . 3 5 ( 1regions 9 5 0 ) . for M Rschlicht |2_326|441 A. c.; sp.ncer, Mass' |24|. Schaeffer, of i;tt' Cong' of Math" Cambridge' Proc' Trnrtion'" 2(1950),224-232'MR 13-546'l44l method'fcrsimply D ' C'; variational A' C'; Spencer' Schaeiler, 1242. connecteddomains.Proc.ofaSymp.lsg-191.}Iat.Bur.ofStandards,Appl.Math.-Ser.No.18,U.S.Govt.Printingoffice' l24l Wash.,p"C' (1952)'MR 14-'743-' scnirrer,M. The coefficient D.^C.,. ' |243. Schaeffer,A. C.; sp.n..,, '' 493-527 Duke Math' J' 16(1949) regionsof schticn,iuir,ions. M R 1 1 - 9 .11 2 4 1 desfoncpour l'evaluation nouueott principe un sur M. Schifrer, lz*. ' 231-240' bull. Soc. Math' France64(1936) tions holomorplrer. ' , 1 5 ,1 7 1 z b l 1 5- 3 5 9 u de' fonctions podr une{yt^'.tilte '109-7ll' zbl 1245.schiffer, M. un calcuide ,ariation plit 205(1937)' univalentes.c. n. acao. Sci.
*Tyy 1'^Y-:3:u::,',"J""' 3;i']' probti me!' e'xt |246[tffi; :2r1i' conforme.Bull.de.laSocietetvtatt,.-atiquedeFrance,66(1938)' 48-55- zbl18-409'[9' l7 ' 24' 25ll famiry of simple within tr';e variation of metnoa A . M 1247.Schiffer, functions'Proc'LondonMath'S;t'Q)M(1938)'432-449'Zbl lg-222. 124,42, 531 Proc' Lonof simple.functions' 1248.Schiffer,M. on the coefficients d o n M a t h . S o c . ( 2 ) 4 4 ( 1 9 3 8 ) , 4 s 0connec'ted - + 5 2 . a b domains' i t | 9 _ 2 2 2Duke .|24,42,531 multipty of spon The ' M l24g' Schiffer, 4-271' [9' 171 Math. J. 10(1g43),)og-zie'MR
hF-,---
I 82
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
|25o.Schiffer,M.VariationoftheGreenfunctionTydtheoryofthe p-valued'functions.emer.r.Math.65(1943),341-360.MPt 541 4-215.t9, i4, 17,24.' 42' 53', de M' Lowner' c' R' ,6q*1,"r'itff\rrntielle sur M. Schiff.i, rz5r. ' MR 7 -sr5' t24l Acad. Sci. Parrs Zlrtiqas;' xg--lt 1 double-connected ' domuins io'durus of th; on M. fer, schif rz5z. tgt-1r3'MR 8-325'[5e] Quart.i. or Math' titts+i)' snd variation of domainformula nadam)'d''' M' Schiffer, 1253. the in2 5 f u n c i i o n s . A n r e r . l . r v r a t t r . eo!g torthonormar r946),4|7-M 8.MR8.3 .v,9,24| functions 1254.Schiffer,M. An oiiirotii 147-156' Amer. J. Math' 70(1948)' theory0f confornal'iapping.
$lti;?:t*"';i)r 1255.
functhetheorvof univatent potvnomiats-in 10-26'
503-517'MR 54(1948), tions.Bull.Amer.tvtaitr.Soc.
rzs6.ih,?f'il:ti
[9'
mapof conformat in thetheory methods ariatiorrut
p i n g . p i o c . I n t . c " ' ' . n ' a t h . 1 9 5 0 V _ 2 . M RBull' ] 1 1 3Amer' _ 5 4 7 Math' .1241 domain lr,nrtionars. of variatiin . M rzsi. Schiffer, q:+)' 303-328'MR 16-233'1241 Soc.OO(f in the thr>thecrv thecryo1 " in variatioiatmethods of Appric-ations . M 125g.Schiffer, Sy*p'rsia irr Applied Math' conformal mappt'i"' i'ot,-"|^tlt ' 8t1956) , g3-113'MR 20-157 l24l in conproblemsand veriationalmethods Ext'eium ' M Schiffer, 1259. formclmapping.Proc.Internat.CongressMatlr.1958,pp. 2||-231'.CambridgeUniv.Press,.N.*York,1960.MR24A-612.
of in thetheory methods $;rlh?i;,?t;lii,icationsof variationot ' 1260. 1958,153pp' MR 20-157tz4l mapptr;.il;araw-Hill, conformal
Mapping cnd D' C ' Lectureson Conformat l26L Schiffer,M'; Spencer' ExtremgtMethods.princetonLectures,|g4g-1950.[59] problew for multiplyC' Tite coe'fficien't 1262.Schiffer, M'; Sptttt"p' 362-402'MR of fvfali''"'2 (2) 11950)' connecteddomainr. Ann.
1 2 -1 7 1 . [5 9 ] d -^* ntrrc /' n vnri ati onol variati on D' C' Some remarks Spencer' M'; of a Schiffer, 1263. ,onn,"ed domains' Proc' mutriply to applicabie methods ,C. S y m p ' 1 9 3 - 1 9 8 ' N u t ' B u r ' o f s t ap n i ' ' A p p l ' M a tMR h ' S e|4-143.|241 r'No'18'
iiqszl. U.S.Govt.Print.ofti.., w",t'., Sur' puicttonati of FiniteRiernsnn C' D' Sptnto' M'; Schiffer, 1264. 16-461't59l 1954'MR faces'Princeton' in ,on,o,iot mayyingof schiichtfunct265.Schild, A. on a problem MR 14-861'[6' .-,o(r953),4-7-51' tions.proc.Amer.Math. soc 1 0 ,1 2 ,1 9 ,3 1 ,3 9 1
FUNCI'IONS (PART I) BIBI-IOGRAPHY OF SCHLICHT
83
Proc' of functionsschtichtin the unit circle' schild,A. Q,r17cluss 1 1266. l 2 o .M R I 5 - 6 9 4 . 1 4 , 6 , 1 2 5' 'l 9 ' A m e r .M a r h .S o c .5 ( 1i S q ) , 1 1 5 321 Proc. claslof univalent,starshapedmappings. a on A, , Schird |267. . , 6 ,l 0 1 1 , 1 5 , l 5 1 - 7 5 7M. R 2 0 - 1 0 4[ 4 A m e r .M a t h .S o c . g ( l g i s, 7 l ' 7 ,2 7 ,2 ) , 31 , 3 2 , 3 6 ,6 3 1 of annuli-Thesrs'Stan, L. The,onior^al mapping 126g.schmittroitr ford, Univ., 1954't59l | 2 6 g . S c n o l z , D . R , s o n t e m i n i m u275-zg9' m p r o b lIVIII e m s15-802' i n t h e t[59] heoryoffuncJ. Math. 4(195+1, tions.Pacific |2,|0.Schottlaender,s.DerHada.mardscheMultiptikationssatzund weitereKonipositionssatzederFunktionentheorie.Math.Nachr. MR 16-346'l41l l1(1954) , 23.9-294' potenzreihen die im Innern des Einheitskreises r27r. Schur, I. 0a* beschriinktsind.Jour.furreineundangewandteMath., |47(|g|7\,205-232;1a8(1918),122-|4 F M 4' 667(1945)' _475.t59] of5 .Math J' Amer' poiynomials' Fab* On lZiZ. Schur,I. 33-41. MR 6-210.t53l theoremsand criteriaof lZ'73.Schwarz,B. Comptei non-osciltation 80(1955), 159-186.MR Trans.Amer. Math.. Soc. univalence. l7-3',10. [4' 31] , serrcs. of secortdordergeometrrc sutns partiar The . M Schweitzer, r274. D u k e M a t h . J . l 8 ( 1 9 5 : r ) , 5 2 7 _ 5 3 3 . M R 1 3 - 2 3 . t 5 9 ]Amer' functions' theorem for univqlent 1275.Scott,w. T . A coverintg 391 go-g4. 20-877. U9, gsil, MR Math. Monthly 6a(1 |2T6.Scott,w.T.CommentonapaperofC.Utuqay.Proc.Amer. p' 395' MR 2l-662' t19l Math.Soc.10(1959), of clunie'Acta' Fac'Nat' univ' Com1277.seda,v. A noteto Q'p'Qper Russiansummaries)MR enian. 4(1g5g),zss-zoo.(bzech and 23A-56.[5e] bei konfornten Ab1278.Seidel, W. Uber die R'dnderzuordnumg Zbt',1-19' U' z', 3',6', bitdungen.Mat' Ann' L04(193i),182-2131 0 , 2 2 , 3 7, 4 6 ] l of univalentfunctions' Bull' lz.lg. Seidel,W. On the order of growth A m e r . M a t h . S o c ' 4 2 ( l q g 6 ) ' 3 3 5 ' F M 6 2 - 3 ' 7 9 ' 1 6 2 i analytic of functions 12g0.Seidel,w.; walsh, J . L. on the derivstives univarenceand of p-valence. in the unit circreand their radii of Trans.Amer.Math.Soc.s2(|g42),|28_2|6.MR4_2|5.[3,15, 1 8 , 1 9 , 2 2 , 4 2 , 4 1 ,6 2 , 6 B i transform representalz8l. Seshu,S.; Seshu,L. Boinds antl stielties Matn. Analysis and Appl' tionsfor positive,ri functions. _l 3(1961 ), 592-604.MR 25-800' t59l
b--
E4
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
ond approximation by Generarizedderivatives E. w. g37)' 84-128' zbl Sevrell, r2g2. Soc. tranr. 41(l rnruit,. Amer. polynomials.
O:" r283iffii
sci' Acad'sinica furrctions' thedisto\ti?' :{:'!!"!^t MR 15-948't9l
209-212' Record4(1951)' yunrtions' J' chinese of schriilr't ,oejicients tne on T. rzg4. shah, M R 1 7 - 1 4 1U' 7 ' 3 9 ' 5 4 1 M a t h .S o c '( N ' S ' )l ( 1 9 5 1 ) ' ? 8 - 1 0 7 ' MR l2S5.shah,T.ontheproductofm appin g r a d i3(1953)' i f " r . ? . s yl-7 s t'e m ofnonsi"itu tviattr'" doniairiL--e.iu overlopping 17-141.124,261 luncthe theoryof univalent
1286 n -t+rv,n, 53l 2'vlR k:i;:;,,J{^!iJ"{1{;:\,':roi_' ?,lX? prcductof themopprisradiiof lol.overlappingdo-
t2g7. Shah,T. The il-lo. MR l7-142'l59l Marh.Sinica5(1955), ' Ac' mains.Acta functions ,lroo^ of anatytic i"*, it moi)ii tn, on . T r 2gg.Shah, $g-4s;:tcnin.re. Englishsummarv) ta. Math. sinicastiiisll of convexdomqinsin the p.roperties l*;"')t;ll],rring 421^ffir1,t r28s. e.." Math. Sinica7(|957), *ippi,s. confo,^oi of theorl, ' t9' 241 MR 2J-?89:-10 English 432.(Chinese' "'**u'v) - l,/2 is theradiusof superiority number(3 1290.Shah,T. Goluzin's insubordination.s.i.Recordo'11(1957),2|9-222.MR
oi
tzs| 3ffit: \,
dination' Sci the t1!i\'^:l ::p:::'l?-,' {, i"!r1r tll yg-133' MR 2o-r074'
the Record(N'S') 1(195;jt' of convexcomainsin properties covering some MR rzgz.shah, T. s.i. sinitu 7(1958)'816-828' iipi,ng. confor*rl of theory
ofsubordinainthethecrv '"*' i\'-llotities 3ilt1?i.l'3;11;?X" tzs3
tion.Acta.Math.si,'i.u8(1958),.arl&-+t2,.(Chinese.Engiishsum-
u' 17'l9l ,nuruivrn 2i-1350' tofunction' spaces rineor H. s liitiiirroi, of normed r2g4.Shapiro,
Arbor' theoreticextremalprobtems.l-",cturesonfunctionsofacomplex u"iu. of Mich' Press'Ann pp .lgg-44.'Iire variable,
tzss i?i: t5
t"";?l';':i s' Adn^bounded schticht f uncticn2Zl o ?to', ==r, t19' z(rgse eis-e77.MR 20-1074'
), in Mati. vancement functions.Advancement of schricht coefircients tne on S. 1296.shich, 20-968't17l . sii-e01. (chinese)MR in Math. 3(1957) saddlesurfaces isoprri^riii inequarityfor to ' ce'rrant' the on . M shiffman, F r2g7. and Essayspresented u,ith singularrrirr.-sioai., 9-303't59l irl+al, r;s:-tq+' MR
(PARI' i) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
E5
l 2 g g . s h l i o n s k y , H . G . o n e x t r e n t q l p r o b l e m s f o r dDokli J f e r Akaci' e n ; i a bNar'rk lefunctionals in the theory iy unfrotint funclicns. (Russian)MR 19-738. 124,601. sssR (N.S.) 113(19s7):280-282. SeeSlionskii' Amei ' mapsof circlesinto con'"exrcgions' l7gg. Shniad,H. on analytic Math-Mon.57(1950)'473-474'MR12-401't10'151 1 3 0 0 . S h n i a d , H . C o n v e x i r y p r o p e r t i e s65'l-666. o f i n t e g rMR a l m15-ll2' e a n s o fi3l analytic paciric J. iurutrt.ltr953), functions. potenzreihen;nit monotoner Koef-fizientenfolge' r301. sieron,S. ilbe, A c t a L i t t . S c i . S z e g e d g ( 1 9 4 0 ) , 2 4 4 - 2 4 6 . M R | - 2 ; 3 . [ 4dans , ? 2 ,le 39| lesfonctions univalentes,atg^briques sur L. Siewierski, 1302. demi-plan.Bull.Soc.Sci.Lett.Lodz.Cl.IiIMath.}iatur. 57] 7(1956),No' 4' l7 p ' Zbl 90-291'[9' l303.Siewielski,L.surlavgriqtionlocaledesfonctionsunivglentes, a l g e b r i q u e s d a n s l e d e m i - p l a n . B u | l . S o c . S c i . L e t t .57] Lodz.Cl.III g(lg5Zi, No. 3, 16 p. zblgo-291. [9' Natur. Math. Sci. extre,rtalesdans /esfamilles des 1304. Siewierski, L. sur resfonctions dons le demi-plan' Bull Soc' fonctions univalrnrrr,'o4AOrfques Natur. 8(1957),30 p ' zbl90Sci. Lert.Lodz. cl. rir sii. Math. ? 9 2 .[ 9 , 5 7 ] (Jnivalentand multivolentfunctions' Math' Student 1305. Singh,'S.Ii . 30(1962) ,79-90. MR 26-743' t44l 1 3 0 6 . S i n g h , S . K . ; S h a h , s . M . o n t h e m o x i m u m f u n c tl2l-128' i o n o f a MR 22(1954)' meromorphic function Math. Student 16-459.[9' 16] l30T.Singh,Y.Interiorvariationssndsomeextremalproblemsforcertainclassescfunivalentfunctions.PacificJ.Math.T(1957)' 1485-1504.MR 20-20' 122'241 problems for o new classof univalent 1308. Singh, V. Some extremil 7(1948),gtt-gzt. I\{R 20-771'u5,17 ' .frnctions.J. Math. Mech. 241 coefficients' of the bound1309. Singh,Y. Extremumproblemrf?'the edunivalentfunctions.Proc.LondonMath.Soc.(3)9(1959)' 24',?0',391 3g7-416.MR 22A(l)-18' t17'22' and coefficients of bounded I 3 10. Singh, V . Grunsky inefuatities Fenn' AI No' 310(1962)'22 schlichtfunctions. Ann. Acad. Sci' ' 14,221 PP. MR 26-2'77 ,c.^^^-h,,tn Uspehi conformal mapping of nearby-regions' onv . 1311.Siryk, G. l)' 57-60' (Russian)MR 19Mat. Nauk (N'S') 11(1956)'No' 5(7
2s8.[5el univalentfunctions' 1312.Stiottttii, G. on finite sumsof bounded -709 MR 15-516' 707 , Dokl. Akad. Nauk SSSR(N'S') 93(1953)
b*--
86
BIBLTOGRAPHYOF SCHLICHT FUNCTIONS
u 6 , 2 0 , 2 24 , 31
univalent functions'Dokl' 1313.Slionskii,G. on thetheoryof bounded MR 18(Russian) Akad. Nauk SSSR(N.S.i ril(1956), 962-964' 7 9 8 [. 9 , 15 , , 2 2 , 5 86, U problemsfor differentiablefunc1314.Sii""rtii, G. on the extremal vestnik Leningrad' tionslsin the theoryof univalintfunctions. MR Englishsummary) No. li, o+-s:. (Russian. Univ. 13(1g5g), 20-77r. t24l schtichtfunctions.vestnik r 3r 5. il";rl;i, G. on thetheoryof boundeti (Russian' EnglishsumUniv. l4(1959i,No. t 3,42-51' Leningrad 't221 nrarY)MR 22A(l)-455 L. N ' On a problemof-thetheorYof univalentfunc1316.Slobodeckii, 235-238. MR t;o;ts.Dokt. Akad' Nauk SSSR(N'S') 92(1953), 1 5 - 4 1 3t .9 , 1 5 ,5 8 ,6 0 1 desfonctions univalentes' r3r7 s;;"k',-L: contribution i la theorie CasopisPest.Mat'e2lg32)'l?-19'Zbl6-&'14'6'10'17'36'38' 421 for the argumentof an analytic G. S. on someestimates E*0, 1318. function.Dokl.Akad.NaukSSSR(N.S.)92(1953),7||-7t3. MR 15-613't59l (Russian) ihrorr* in functiontheo'';''Izv' Vyss' 1319.Spak,G. S.,4 coverin'g 218-223'(Russian) . Za,,ed.Matemulitu(1959),No' 1(8), Ucerrn MR 23A-731.[l , 19,221 aprv s1 Jor the modurusand rear r3zo'$0"[-o. s. some estimates pseudo-positivefunctions.Izv.Vyss.Ucebn.Zaved.Mat.|9o2, -lzo.6(31), 148-154' 12,15' 561 |32|.Specht,.E.J.Estimgtesofthemappingfu nctiongndits nearly circular regions' derivativesin conformal mapping of ' t59l MP' 13'337 Trans.Amer.N{ath.Soc.7l(1951),183-196' valentfunctions' II' Trans' 1322.Spencer,D. c. on finiteiy meon 2-82 13,17,33i Amer.lviaih.Soc.+girg4oi,418-435.MR ' i ' Lonidentities , D. c. I'roteon ,o*,, fun'ction-theoretic 1323.Spencef 2-82' 13' 271 a -don Math. Soc'15(i940)'84-86'MR Proc' Nat' Acad' Grunsky' o-f inequatity an on c. D. 1324.Spencer. 616-621'MR 2-79' U8' 191 Sci.U.S.A. 26(1940), valentfunctions'Proc' London 1325.spencer,D . c. on finitely mean 16, l'.i' 18'3],45' Niath.Soc.Q) 41(tg+z),iot-LlLlvIR 3-79.[3,
s2l in onalytic transformations' J ' 1326. SPen;cr, D. C. On distortion g4l), 124-126'MR 2-186' U6' Math. PhYs.N1ass.Inst. Tech. 20(l 1 9 ,3 3 1
FUNCTIONS (PART I) BIBLIOGRAPI{Y OF SCHLICHT
87
of Math. (2) one.valentf;;ictions. Ann. mean on C. . D |377. Spencet, 16' 17' 19',27', 331 42(lg4l), 614-633'MR 3-78' tl5', iS2S.Spencer,D.C.Note.onmeanone-vqlentfunctions.J.Math. Fhys.Mass.Inst.Tecrr.2l1lg4z),i78_188.MR4-138.[331 |32g.Spencer,D.C.Someremarksconcerningthecoefficientsof schlichtfunctions.J.Math.Phys.Mass.tn't.Tech.,2I(|942),
54i 63-68.,rnn4-76.t16, l7 , 42',
identity.Amer. J. Math' A function-theoretic c. D. Spencer, 1330. 461 ' , t47-160'MR 4-137 [33' 55(1943; ionfornrut mappins' Buti' i! problem, Somi C. . D Spencer, . I 3 I3 417-!39'MR 8-515'l4/'l Amer. Math' Soc'Sltrq+T' mappingsof the problem1or schlich-t t332. Springer, G. The,orlitfrni e x t e r i o r o f t h e u n i t " c i r c l e . T r a n s . A * . ' . M 5a3t h' 5 .Soc.70(1951)' 1 6' , 1 7 ' , 2 4 ' 2 5 ' , 2 7 ' , 8 1 t 5 ' 1 3 2 4 ' t n ' M R 421-450. FunkHi)ueschrichter derkonvexen Extreme'p'unkte G. Springer, 1333. t9', 15',17', i{R 16-1011' 230-232. fionenMath.Ann. t)g0955),
u:t1:*"!:::KX'ri:i'-'::; "#;o;{ , . onthemean 1334.3?;"1-l;,i'i'*. derivatives,Riv.Mat.Univ.parmaS(1957),361-369.MR21_ 1 0 6 3 .I 5 9 l .^rAr rRiesz' J' Loncl o n M a t h . S o c . P ' On a theorem o'f M' Stein, 1335. 8 ( 1 9 3 3, 2 ) 4 2 - 2 4 7 'F M 5 9 - 3 2 5 '[ 3 1 Proc' methids in conformsl mapping' 1336. Stone,M. H . Hitbert-rpo,, pp' 409-425' spr.., (Jerusalem1960), r-in!u, Sympor. Internat. JerusalemAcademicPress,Jerusalem;Pergamon,oxford;1961.
MR 25-39.t59l
andunivalent betweentypicary-rear 1337.Streric,s. I . on a connection(N.S.l nig57) No' 3(75)pp' 2llNauk functions.uspehilurut. 13' 4U ' 220.(Russianirurn 19-643'[4' an.alvticin o ctrc:k. functions 133g.Strelicas,S. Some^irop,irr,:;{ Daiuai. Mat' Fiz' chem' Mokslu vilniaus valst. univ. Moksl0 MR 22A(2)summary) Russian (Lithuanian. 6,7_71. Ser.4(1955), 2 0 9 3 . [3 , 4 , 1 7, 541
. ?,'(z) ,-, ..sl n* der Frerl i nhuns d, dA SS unter ,tor Bedinbung Ar.cf 1339.Stroganoff,w. G . \be, den f(z)diekonformeAbbildungerne,st.ernartigenGebietesaufdas Mat' Inst' z-Ebene tiefert' Trudy innere des Einheitskreisesder S t e k l o v a 5 ( 1 9 3 4 ) ' z ' + l - Z S g ' Z b l 9 - 1 7 3schlichten ' [ 6 ' 1 5 ' 6 8Funktionen' ] Th-eorieder 1340. Strohhhcker,E. B'eitros,,u' Math.Z.37(|933),356-380.nbl7-2:I4.|2,6,10,15,17,|9,29,
u3'u?rll|"r*, Einfachzussmmenhangender Abbitdung 1341i?;jr?;
E8
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Bereiche.B.C.Teubner,LeipzigandBerlin,lgl3.FMM_755.||, 1 0 ,3 7 1 |342.Suetin,P.K.Faberpolynomials-forregionswithnon-anolytic boundaries.Dokr.nr
n I |343lliJ:; :t8l" ontheorcter or?y,'?o:',:: !'S{,?-"RK'Ki'J moppingsincloseddomqins.pot.t.Akad.NaukSssR(N.S.) 22-23'MR r'7-956'122'60'621 107(lqsz),
1 3 4 4 . S u v o r o v , G . D . o n t l t e c o n t i n u i t yicaO' o f u n i vNauk alent.m appin gsofarSSSR N'S')
bitrarv closed ao*'oin' "' ?"-kl: t59l M^R. 108(1956 1, ltl -179' (Russian) .18-724' mapptngs in of distances un.ivarent 1345.SuvoroV,G .D. on iistortton +S(gz)(1958),rsq-180'(Russian) sb. N.S. regions.rurui. of ctosed
1346sj.HrL.*31
,,on distortionof correctionto the srticte
distancesinunivqlentmoppingsofclosedrlg|ns''.Mat.3b. (N.S.)48(90)(1959),25|_252.(Russian)MR23A_51.u6] andareaprincipl,'f?IQ-quasiconfor|34,7.SuvoroV,G .D, Thelength 126',7-1269' sssR 140(1961), mal mappings.ooti. ,i,t uo. Naut (Russianjvri 24A-372'[7' I5'z4l etner fur die Ableitungen beziehungen O. Ungleichtheits 1348. Sz6sz, Funktion beschrankte potenzreihedie eine im Einheiik"i" FM 47-274'll5' 22',6ll g7t9t2)),303-309. darsteutMarh. z. abdie den Einheitskreisschlicht r34g. sz6sz,o. uber Fuiktionen bilcten.Jber,Deutsch.Math.Ver.42(|932),73-75.Zb]t5-108. com,*\^r:?':.2ln,n, meonsof Fourier seriesand Riesz cesdro 1350. p o s i t o M a t h e m a , , i c a T ( | 9 3 9 ) , | | 2 - : 1 2developments 2 . M R 1 - 1 3 8and . t 5 of 9] of hormonic sums p-orifci e tt On O. l35l . Sz6sz, pcwerseries.T,ans.Amer.Math.Soc.52(|942),|2_7i.MR4_17.
^t o,' o, kiewicz' E'; za19rsr
starlikefunction,. MR 2G980' [5' 6] and English.summaries) l 3 5 3 . S z e g b , G . U b e r o , t t , o g o n a i e P o l y nMath o m e' dZ'i e9(1921)' z u e i n e 218-270' rgegebenen Kurve der kompterr:n-ibon' sehoien' FM 48-374' l59l uber die emetn staz von J. H. Grace zu Bemerkungen G' 1354. Szego, Math' Z' 13(1922)'28-55' wurzein algebraischir Gleichungen' -ver' FM 48-82. [59] Jber' Deiitsch' Math' Minimatflachen' Retative 1355. Szegci,G. 3l(1927't,4l-42' t59l
)
BIBLIOGRAPT{YoFSCHLICHTFUNCTIcNS(PARTI)E9
Form von einer quadratischen Maximum das nber -ver' G. 1356.szego, Jber' Deutsch' lvtath' vuroniirlichen unendlichvielen 3r(rgzz\ 85-88'FM 48-490't3lr;tit endtichvieienverschiedenen potei,izrrih,i ,'i.-tiuer ' FM r35.r.Szegb -8. Preuss.e.aJ. wiss. (lgzz)', 88-9! S. Koeffizienten.
E:,'.'::::'K!:,'*J^:{: eine uber 38iliil 5:'Abbitarngrn 22(1923)' :"','rlif{i:,;,i{ 1358 sitzber.B;;. Math' Ges' schtichten r35eI;H
. z. z3(rszs)' Matn :n #t rl,T: seti;onA. MarkofJ.
Ls-61. FM 5r-97' t59l
l 3 6 0 . S z e g o , G . T . u r T h e n , i e d e , s c h [6' l i c h'o' t e not) Abbildungen,Math.Ann. --^i-nthe sectionsof 100(1e;t,lss-zt 1' FM 54-336' concerning investigations ,,,,n, Some G. 1361.Szegti, p o w e r , e , i e , a n d r e l a t e d d e v e l o p m e221 nts.Butl.Amer.Math.Soc.
12'20' of 4z(iqrii,ios-szz'zbrr4-3s2' sequences multiply monoto-nic
power ,;;;r; with 39] t362. szegii, G. 8(194D: isg-so+'MR 3-76' [4', cr J. Mrth. Duke coefficienrs. t'heinteriorof an ellipseonto confor*ot'iopprni G. Szeg6 , "t r363. MR 12-401't5il . sl(t950),4'.74-478' circte.Amer. Ir{ath.laon and rineardifferentiarequq' schticht functio'nis ak. choy-T Taam, 467-480' 1364 r.n.frt'Analysis4(i955)' nat. r. orailr. secona of tions
n:{'^'21:Jio;l'Zor3',':;r" " JI?" " :!li:-h' ,365?:iff;l;i : .P 2: 14,6'10'201 56-e85' FM is-eo. 33ii;;dj, J. Math. rohoku
Rado' Jap' eine'rArbeit von Herrn zu Bemerkung s. 1366.Takahashi,
J . M a t h . ? ( 1 9 3 q ) ' r o t - t e " z ' n vund,hinre-ichende r 5 6 - 9 8 6 ' u ' 6 ' 1Bedingung 0'371
notwendige |367. Takahashi,S. uaer aie Proc' Imp' Acad' Einheitskreises' des aaittaung fur dieschlichte 431 ' Zit 6-05'14' 6' 11' 20' ,344-34:t von Jap.8(1932) xoifftztentenabschatzungen ' 6L';'S' 1368.Takahashi' -arc Imp' Acad' Jap n Potenzrriiin ' Proc' ungeradenschlichte 39' 42' 45' 521 ' 9(1933),l-2' zu e-ie2' t8 ',17', Funktionen Bemerkungeniber schtichte 431 1369.T akahashi,s. zwei juo 9(1933),iot_+e+.Zbl 8-168. |42, Proc.Imp. Acad.. schlichten einer ungeraden Abschnitte FM 1370.Takahashi,s. uber'die -Math. i;.. Jap'(3)16(1934)'7-15' pro.. phys. potenzreihe. 451 the 60-283.[6, 10' ll' 12' 20' and sufficientcondirionfor necessary the on S. 1371,Takahashi, iigular tn the unit circle' function analytic on ' multivalencyx FM 62-376 io..-lup ,3f iitrqldl, 353-355. proc. phys.-rurutr,. [4, 14]
,,.:,
b---.
90
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
of an anaryticfunction' Proc' s. on the murtivarency 1372.Takahashi, Imp.ecaj.Jap.l2(1936),59-60.abl|5-7 1^.[4'14] mappingsin severalcomplexvariables' univoleni S. Takahashi, t373. MR 12-818.[59] g,^ Ann. of Math. (2) 53(lt5 iu-+71. of schlicht of the coefficlents 13j4. Tammi, o. on the maximalizqtion sci' rennicaeser' A' I' Math' and related functions.Ann.Acad' -Phvs.No.l14,51pp'irqszl'MR14-366'[6'15',17',23'24'29' of schticht coeffic-ients o, certaincombinationsof the t3i s fihr,l3. f u n c t i o n s . A n n . A c a d . s . i . F e n nli5c 'a1. S7 .' 2 ' . 3A'5. E4 .' 6M8a1t h . . P h y s . N o . 1 4 01 3p p ' ( 1 9 5 2 )M' R 1 4 - 7 4 OU' 2 ' solutionsof Lowner'sdif1376.Tammi, o . on tnr rorfftcients-o1t.n' I' Math' Acad' Sci' Fennicae'Ser' A' tii. equation. fercntial -Phys.No. r+e,7 pp' (1953)'MR 15-302'Q4l of the coefficienth of bound1377.Tammi,o. on the maximalization r'ennicae Ser'A' I' Math' sci' functions.Ann'Acad' ed schlicht '24' 541 - P h v sN. o ' 1 4 9 'r A p p ' ( 1 9 5 3 )M' l 1 5 - 3 0 2U' 7' 2 2 ' 2 3coefficient to the domainsberonging r3Tg. Tammi,o. on the ,itri*or Sci' Fennicae'Ser' functions.Ann. Acad. ot of boundedschli;:lut A . I . M a t h ' - P h v s ' N t ' ' 1 6 2 ' 1 2 p p 'bounded ' ( 1 9 5 3 ) 's;rtricht M R l 5 -functions' 516'122'211 coefficients the on . o 9f r37g.Tammi, Tolfteskandirraviska"Matematikerkongressen'Lund'(1953)' ' 122'421 2g7-30r(1954)'MR 16-347 schlichtdo' ^opping of symryetric 13g0.Tammi,o. on theconformal i. i. vruitt'-Phys'No' 173'12 mains.Ann.Acad.Sci.Fenn.Ser. 421 ted pp. (1954)'MR 16-233'122'24'39' schlichtdomainsof bouna ,y**,tric on Note o. 1381.Tarr^mi, b o u n d a r y r o l a t i e n ' n n n . A c a d . S c i . F49' e n541 n.Ser.A.I.No. 39' '23' l7-5gg' t17 MR pp' 10 198(1955) Fac.Sci. coeffiiientthe.orem-Rev. 13g2.Tammi,o. Noteon Gutzmer,sg-i1' (f"t kish suinnary)MR 20Univ. IstanbulSer. A22(1957), 8 7 7 [. 1 , i 7 , 4 9 1 Polon' functionl. luil. Acad. o. on bcundedunivarent Ta^nrr.i, 13g3. (Russian sum' z(iqsg),413-417 Sci.ser. sci. Math. Astr. Phys. m a ry ) Z b l 9 4 -4 9 ' 1 2 2 ' 291 . :,-a:^- in t- the th,t thenr! i honrv of of tuni-!arrrmi,o. on a niet',hoiof symmetrization 13g4. Sci. Fenn. Ser. A' I' No' 302' valeritfunctions. irrn. Acad. ( 1 9 6 1 ) , 7 p p ' M R 2 4 A - 3 8 ' 1 2 4 1 - - , : - ^ t t n n i n t h o crass s*. ooff unt' in the r t n s cS extremerization of mcthod a on o. Tammi, 1385. ,',ulentlunctions.Ann.ecaa.Sci.Fenn.Ser.A.I.No.320(1962), 6 PP.MR 2s-426'1241 distortionunderq schlicht boundary p. Rerative M. 13g6.TamrazoV,
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTI)91
c o n f c r m a ! i n a p p ; n g o f g d o u b t y c o n n e c t e(ukrainian' d d o m a i n . Russiatt Dopovidi (1962L 338-340. nsi Ukrain. Nauk Akad. MR 26-743' t60l and Engti,t' mapplngs "t*maries) the'ry' of i'"li''h' ccnformal On-i'tie ' M P' 1387.Tarnra,ou, ofdoublyconnecrcd'.clomains.Dopo v i d i A k a d .summaries) NaukUkrain. (Ukrainian' Russianand English 1962,563-565' RSR
in theunitcircte' anatvtic of H' func'tions ;t:)!e t r388 Yrli? Stoss 19-130'[59] yokohamaMarh.J. alDiol, 4i .5.3.MR ln Acivancernent
sectioniof ichlicfu functiot's' 1389.Tang, i' fn' Math.3(lgsi),468_471.(Chinese.Englishsumnrary)MR20-
t f :;(::!,' Englishsumedisto-:':?: :-!' 478-.484. fi. itJ'i,3l'o'inthMath. " I3e0 ." :: : (chinese' lirqsz )", ":Ti;?#,
vancement 4 '5 8 '6 U m a r YM ) R 2 1 - 2 6 'l g ' l 5 ' 1 6 ' 2 2 ' 2 itrro'rr^-t of Hardybv Banach p.roofsof some New A.E. T,ayror, r39r. S p a c e m e t h o d s . M a t h . r u r u g . 2 3 ( 1 9 5 0 )den , 1 1 5Koeffiz,ienrcn -:t24..MR11_507.t3] zwischen Llngleic:hungen o. Teichmiiller, |392. Pr.urr. Akad' wiss'' Phys' Stizgsber. Funktionri. schlichter 24' 251 ' 363-3't5't9' 15' 17' -Math.Kl' (1938) und quoriionfoime Abbildungen Exti.ernare o. r 393. Teichmii'er, q u a d r a t i s c h e D i f f r e n t i a l e . A b h . p , . 'u ' ' . A k a d . W i s s . , M a t h . Kl' (193t)'No' 22' MR 2-187 t59lder konformen -Naturwiss' (iL" Extremalprobleme 1394.Teichmuller' O' Gcometrie'Dtsch'.Math'6tlg4l)'SO-ll'MR 3 - 2Sci' 0 2 'Univ' U7'271 Fac' verzerrungssa{, fev' r395. Terzio[ru,A. N. uber den ' 3 - 1 1 8Z' b l 3 8 - 5 2 'U 5 l I s t a n b uAl 1 5 ( 1 9 5 01) 1 1 3 9 6 . T e r z i o [ l u , A . N . ; K a h r a m a n e r ' S . E' iRev' n V e rFac' z e r r Sci' u n g univ' ssatzdes Funktionen Argur,tentesder sciirttten I s t a n b u l S e r . A . 2 0 ( 1 9 5 5 ) , 8 1 - 9 0Ubel . r ' n n 1 7 - 8Argument 3 6 . t l 5 , | 7der ,54,68] S' Kahramaner' las N.; A. A' Tcrzioflu, i3g7. univ' lstanbulser' Funktiiien. Reu. F; Sci' 15' analytischen (rurtirt, ,ur"*arv) MR 19-846'[9' 2l(1956) , r4s-153(i;;;).
fra,t"::',t-:::'t#{i;:it"' of continued l?ur., J' S' Univalence 1398. MR 17-1063' iiiqie ), 232-244' Math. Soc. forms.proc.Amer.
on{!.n:li.o!.', "' (r!i r3ee. Ii*, t.'i :'i',t.,o,em :' :'So :if',ff#' {u'.' 13-335' t4l MR ' 2w-205 rtiqsr )' Soc'ill Proc.Londonruruit''
1400.Titchmarsh,E.C.TheTheoryofFunctions.oxford,|932,454
Funk' positiver Entwicktung 140r ?t";f,i,i:3t' u#' 0,, oorrier'sche
hr.-*---
92
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
tionen.Rend.Cir.Mat.Palermo32(1911),|g|-|92.FM42-428.
tzl of schlichtfuncK. c . on a coveringtheoremin the theory Tong, 1402. Record4(1951i,37-4A.Zbl 42-315.u9l tions.Sci. schlichtfunctions'Proc' Amer' 1403.Townes,S. B. A theorim on 585-588'MR 16-25't39l Math. Soc.5(1954), whosereal part is positivein a 1404.Tsuji, M. On a rrsutoi function MR 1l321-329(1949)' unit circte.proc. Japarricao. 2l(1945), 3 3 8 .[ 2 ] equation in the theory of uni1405.Tsuji,M. On Lowner'sdifferential g47), 321-341'MR 10-440' vqlentfunctions' JaPanl. lnattt. 19(l l24l conformal mapping' J' M. ,4 deformation theorem on Tsuji, 1406. M a t h . S o c . l a p a n 2 ( | 9 5 1 ) , 2 | 3 _ 2 | 5 . M R | 3 _ 2 2 4 . |szego's 49| contheorem concerning 1407.Tsuji, M. A rimark on R'ei,ngers jecture.KodaiMath.Sem.Rep.1953(1953),117_1l8.MR 1 5 - 6 1 3U . 9l in o unit On the radial order at a certainregularfunction M. 1408. Tsuji, c i r c l e . J . M a t h . S o c . J a p a n 6 ( 1 9 5 4 ) , 3 3 6 - 3 4 2 . I V I equivalent R16-809.[62] which is conformauy surfice, niema,ni a on M. 1409. Tsuji, spherical area' Comment' to G Riemann surface witi a finite M a t h . U n i v . S t . P a u l 6 ( 1 9 5 7 ) , | - 7 . M R 1 9 - 1 0 4 3 . t 4 6nrcromo-r' ] boundcry behaviour9f .o 141C.Tsuji, M. A theorernon the Phic \un,,tion in l z l ' l7', 16',46',621 3(i960),53-55.MR ize'rz>-l899 oei der cesdro-mittel Konv:ergenz 14r. Turln,'i.- hbe,die monotone Phil' Soc' 34(1938)' Fourier und Potenzreihen.Proc' cambridge
t34-143.Zbr rg-ri. t59l funcin the theoryo.funivarent r4rz. Turkovskii,v . A. o; a theorem ' 189-191 (13)', 6' No' (1959), ticns.Izv.vyss.IJc. zaved.Mat. M R 2 4 A - 3 8 .[ 4 , 1 0 ,1 6 ,1 7 1 valuesof certainsystemsof func1413.Ulina, G. v . on the domainsof of univalentfunc-tions'-vestnikLeningrad tionalsin the classes MR EnglishSUITlIIl0,r-y) No. r,31-54. (Russian. Univ. 15(1q60), . 124,29, 397 22A(2)-965 prope;'tiesof yjllcht functions' 1414.uliman, J. L. Two mapping 9 ',231 proc. Amer. Math. Soc.^ittgiri, es+'ost.MR 13-223'[6' Amer' Math' in Faber poiynomials-Trans' 1415.Ullmatr,J. L. Studies
' zbrT-o' ' ts3l 515-528 soc.q+irqoo), auf mero' des Verzerrungssatz'es
1416.Uilrich, E. (lber eineAnwendung Math' 166(1931/32)' morphe Funktionen. J. Reine Angewandte 220-234. [9' 15]
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
93
Krummungsver' mit ausgezeichnetem r4rj. rJllrich, E. Betr,dtachen h a l t e n . M a t h . Z . 5 4 ( | 9 5 1 ) , 2 g 7 _ 3 2 8 . MlaR troisibme | 3 _ | 2 4 . [espdce' 2,35] de Btoch de les sur c. fonc:,t'ions 141g.ulugay, Conrm.Fac.Sci.Univ.AnkaraSer.A.6(1954),5-1C.MR 1 6 - l o l1 . U e l et de la lesfonctions de Bloch de Ia premibre iur i. ullrich, l4lg. A' 6(1954)' comm. Fac.Sci.univ' AnkaraSer' secondeespdce. 1 1 - 1 6M . R 1 6 - 1 0 1t11 9 l | 4 2 0 . U t l r i c h , E . o n t h e-88' c o n s t ui6ntC . CI 'o t19l mm.Fac.Sci.Univ.Ankara 101 MR Ser.A. itr gs4). 77 comnr. Fac' Sci' Broch-Lqndauconstants. r42.r.urlrich, E. on the (Turkishsummary)MR Univ. Ankara Ser.A. 7(1955).233-252. r7-472.tl9l of schworz'slemma'comm' generalization 1422.Ullrich,E. No/e on a 1-5. (Turkishsummary) Fac.Sci.univ. Ankal s.r. A. 8(1956), MR 1e-736.t5el of the third kind and the constant 1423.Ullrich, E. Bloch.functions U . P r o c . A m e r . M a t h . S o c . 8 ( i 9 5 7 ) , g 2 3 _ g constants 2 5 . M R 1B' 8 - L' 736.[16,19] Btoch-Landau the values'of exact The . E, 1424.Ullrich, J . R e i n e A n g e w . M a t h . l g g ( 1 9 5 8 ) , i 8 8 _ 1 9 1 . M RJ. 20-87,7.[19] of schrichtfunctions. Reiile coefficients tne on E. Urlrich, 1425. 2 1 - 1 1 9 5[ 3. ,l 5 ' 1 6' \ 7 , 4 2 ' 5 1 ' , A n g e wM . a r h. 2 0 2 ( t g 5 91i ;- 5 .M R 681 J' ir, the theoryo.fschtichtfunctions' 1426.U'rich , E. on inequarities ReineAngew.Math..202(|959),6-8.MR21-1195.[6,15,16,|7, 4 5 , 5 2 , 5 4 , 6 76,8 1 zeros' functionswith sssigned of murtivarent T. A crass 142,7.Umezawa, 13'14' proc.Amer.Math.soc.3(lg52),gti-szo.MR 14-260'[6, 1 5 ,1 7, 3 6 , 4 0 ,5 0 , 6 3 ,6 5 '6 6 1 convexitt oy.edi.rection'J' Math' 1428.Umezawa,T. Analyticfunctions Soc.Japan4(1952)'PI-ZOZ'MR14-461'[4'12'4 ll of analyticfunctions'J' Math' multivalency the on . T 1429.Umezawa, Soc.Japan4(|952),279_285.MR14_ 859.|4,6,10,14] of orderp in onedirecstarrike Anarytic T . functions 1430.umezaw&, MR 14-859't15' l7 ',39', tion.TohokuMath' l' kr 952)'264-27',7' functions' J' Math' of muttivate,nt 1431 th::lwa, T. on thecoefficients 49' 511 ni-tu' MR 15-302'U3' 17' 39' Soc.Japan5(1953); 1 4 3 2 . U n r e z a w & , T . S t a r - l i k e t h e o r e m s s n d cMR o n v15-947 e x - i i k' e[4' t h48] eoremsinan qnnulus.J. Math. Soc.Japan6(1954),68-75' 'f. functions'Duke of m'e:romorphic 1433.Umezawa, The coefficients ,3 6 '4, 0 1 1 5 - 9 4' 7t 1 6 ' , 1' 1 M a t h- J . 2 r ( 1 9 5 4 :) s, i - l o l ' M R
94
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
of univolentfunctions' Tohoku 1434.Umezawa,T. on the theory M a t h . J . 7 ( 1 9 5 5 ) , 2 1 2 - 2 2 8 ' M n 1 7 - 1 0 6 8 ' 1 4 ' , 9 ' , 1' 0 Proc' ',14',601 functions close-to-convex Multivalenil' T' 1435.umezawa, Amer.Math.Soc.s(l957'1,geg-uq.MR19_846.[4,5,7,|4,|5, 1 7 , 3 8 6, 4 ,6 5 1 Rsndvrzerrungbei konformer Ab1436.unkelbach, H. uber die b i l d u n g : . V t a t h . Z . . 4 ? ( | 9 3 8 ) , 7 3 9 - 7 4 2 . 2 b | Funktionen | 8 - 2 2 5 . t 4 6an ] vorrat anarytischer 1437.unkerbach, H. Llber den grassenFunktionswerten.Jber.Deut'sch.Math.Ver.49(1939)' 38-49. Zbl2l-143' [6, 10' 19] beischrichterkonformer 143g.unkelbach,v^. Uberdie Randverzerrung MR 2-83. [6, 10, 46] Abbitdung.Marh. z. ie!940), 329-336. IJberdieApp,ozimationschlichterkonformerAb1439.unkelbach,H-. speziellersternigeroder bitrlungendurch t onsrurnteIterat|onen 63-70'MR . z. 58(1953), konvexerkonfor*rr^bbildungen.Math 1 4 - 8 6 1[ .1 5, 2 2 1 o-fa univalent B. M. On theorgumentof thederivativ_e l4o. Urazbaev, Ser' 56(1948)' KazahssR star-shoped function.Izv. etua. Nauk 631 .2, |02_|2|.MR 13-546.[6, 15, Mat. rr,r.r' lc :ur le ilftirbme de NI' Borel dans l$L Valiron, G. Recherches 5't-97' Acta Math. 52(1928), theoriedes fonctionsmeromorphes. FM 54-348.[se] de fonctionsentibres d,univarence 1442.variron, G. sur resdomaines d , o r d r e n u l . C o m p o s i t o M a t h . 3 ( 1 9 3 6 ) , de | 2 9Riemann _ | 3 5 . 2 bdefinie ||4-266.|28| surface ls de rn Division feuitlets 1443.Valiroo,G . Appl' 9(19) (1940)' psr w : (e' - l)/ z + h". J. Math' Pures 339-358.MR 2-3s8.t59l ' Math' Ann' gttfvatureof level curves 71rs on s. Verbiunsky, I 14I . 125(1953 ),'472-47o'IIR 15-206't35l c. R' u,ni,arenles. fonctions anguraire'dei d6riv,ee ra sur c. visser, rM5. ';z+-s25.Zbl l0-120. [461 Acad.Sci.paris 199(19341, desfonctions univalentes' 1446.Visser,C' '\ur la i6'fuA' ongulatre Akad.Wetensch.AmsterdamProc.3S(1935),402-4l|,Zb|
r2-2s.t46l
lM7. Visser,C. Sur la deriveeangulairedesfotlctionsunivalentes.I|. ' Zbl l1' AmsterdamProc. 38(1935)'618-627 Akad. Wetetrscn 407' i46l 'tffatt k-fach symmetrisch'er spezu 1448. Waadeland, H' Uber einen .sch|ichtcrFunktionan.Norskevid.Selsk.Forh.,Trondheim
l9' 391 MR 16-916'tl7', rsi-r55.(1955), 27(rg54),
sternfdrmigeschlichte iMg. waadeland, H. uber k'-fachsymmetriiche
(PART I) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
95
AbbitdungendesEinheitskreises.Math.Scand.3(1955)'150_154. MR 17-25.16,17, 36, 491 einerArbeit von Golusin'Norske 1450.waadeland,H. Bemerkungzu , 2'9-32'I\t'tR! 8-201'U7' vid. selsk.Fcrh., Trcndireim29(\956) 42, 45, 52, 54i satz iber schlichteAbbildungen H. Ein Gorusinscher l45l . waacterand, 15530(1957)' von lyl > l.Norskevid. Selsk.Forh.Trondheim [9, 17,251 168.MR 2A-6(A'. ein kceffizientenProblemfilr schlichteAb\bq . l4sz. Waadeland,H bilCungendeslf l I'{R 20-664'[9, 17' 251 168-170. 30(1957), von scott' Bedeckungssatz 1453.waadeiand,H. Bemerkungzu einem 112-116'MR Norske vid. Selsk.Fcrh. trondheim 32(1959), 24A-370.U7, 541. ncr' (Jntersuchungen uber Aquivalenzklassen 1454.waadeland, H. Tron' Skr selsk' mierter, schtichterFunktionen Norske vid' 541 24A-254'Il7 '29' dheimirqsgl,No..3,47pp' MR I, II' Funktionen. 1455.waadeland,H. uber biichrankteschlichte MR Norskevid. selsk.Forh.Trondheim32(1959),84-91'92-94' 2 4 A - 2 5 4U. 7, 2 2 , 2 4 , 3 0 1 Funktionen.Nor1456.s'aadeland,H. zur The'orieder beschriinkten MR 26-748' 82-85. skevid. selsk.Forh. Trondheim35(1962), 115,22, 6ll
.
, r
a :^ - - ^ r \ T ^ . . V . ^-L
Fractions' New Yo:k' 1457.Wall, H. S . Anaiytic Theory of Continued Van Nostrand, 1948' MR 10-32' t59l curvesof Green's 1458.Walsh, J. L. Lernminscatesand equipotential function.Amer.Math.Month|ya20935),|_|7.t59] l 4 5 g . W a l s h , J . L . N o t e o n t h e c u r v a t u r e o f t e v e l c u r v e s o f G r e FM en's Sci. u.s.A' 23(1937),84-89' Acad. Nat. Proc. furtctictn 63-297. [9' 10] of Green'sfunctions' 1460. Walsh, j. l-. On the shape of level cttrves g37),2a2*213.FM 6-7-296.t59] Amer. Math. Monthrv ++(r traiectoriesof 1461. Walsh, J. L . Noteon the curvatureo.f orthogonal Amer ' Math ' Soc' level curves of Green's functions . Bull ' 44(1938) , 520-523-Zbl 19-271' [59] 1462.Walsh,J.L.onthecirclesofcurvatureoftheimagesofcircles a6(1939)'472-485' undr a conformal map. Amer. Math' Monthly M R 1 - 1 1 1 .[ 1 9 ' 3 5 ] analytic in the 1463. Walsh, J. L. Noteon the derivotivesof functions 515-523'MR 9-23' unit circle. Bull. Amer. Marh. Soc. 53(1947),
u 5 , 1 7 ,1 8 ,1 9 1
96
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
mapping of multiply connected 1464.Walsh, J. L. On the conformal 128-146'MR l8-290' regions.Trans.Amer. vrattr.Scc.82(i956),
t60l | 4 6 5 . W a l s h , J . L . I n t e r p o l a t i o n o n d a p p r o x i m a t i ocolloq' n b y r a Publ'20' tionalfunc Soc' in the complexdomain Amer' Math' tictns
t5el 2ndEd. (1e56)' mapsof multiplyH. J. on canonical Landau, walsh, J. L.; 1466. 81-96' Zbl Trans.Amer. Math' soc' 93(1959)' connectedregiorzs. 86-281.
[59]
.. , , , , - , ) ^ - , r ' x t n t t t , n o ,der A lrder Abreitungl o r Ab' Randverharten das Uber s. warschawski, r46i. Z' 35(1932)' bei koiformer Abbildung' Math' bitdunssfunktion 321-456.Zbl 4-404.u9' 461 at theboundaryin conderivatives 146g.warschawski,s. on int'nisier 310-340'Zbl Trans.eler. Math.Soc.38(1935), formatmapping. 14-267. t59l . ? - . , ^ - - ^ ^ L t i n h r , > r Funk .. , ,, schlichter F r t n k . warschawski, S. Uber die winketderivierten 1469 t i o n e n . C o m p o s i t i o M a t h . 4 ( 1 g 3 7 ) , 3 4 6 _ 3 6 6 . 2 b | | 6mapping -407.t46] method of conformal 1470.warschawski, s. on Theodorsen's o-fnearlycircularregions.Quart.ofApplieciMath.3(1945), 12-28. MR 6-207. t59l regions' s. on conformal mappingof nearly-circular warschawski, l4TL P r c c . A m e r . M a t h . s o c . l ( 1 9 5 0 ) , 5 6 2 - 5 7 4 . M R 1 2 _in 170.[3] of the boundory confor' on-diffe'rentrabttity s. warschawski, r4iz. molmappmg.Proc.Amer.Math.-Soc.|2(|961),614_620.MR
24L-2s3.t59l
DaJ@d' DukeMath' J' series 1473.whittaker,J. M. A noteon the 2l(rg54),571-573'MR t6-232' t59l pour la classedefoncde-Koebe 1474.wiatrowski,P . sur i tn\orbme 10(1959)' bornees.Bull' Soc' Sci' LettresL6d'2 tionsunivalentes
Ne. 14, 13 pp. MR 24A-37' t19] ^ r ,, .- --^)it- Enttr' variation of a function and its Fourrer 14j5. Wiener, N . The quudratic c o e - f f i c i e r r f . s . M a s s . J . M a t h . 3 ( 1 g 2 1 ) , , 7 2 _ 7 4the .FM 50_21i3.[591 quantum from 1476.wigner, E. P. on a classof enalyticfu'ictions (2) 53(1951)'35-6'7' I''{R theory of cottisions.enn. of lvlath'
mapsof convex sequences f9y ordinating factor *rllt;l?.t3],, r4.ti ), 689-593' MR so.. 12(196i
the unit circle.prol. em.i. Math. 2 3 A - 4 1 51. 1 , 2 ,1 0 ,1 6 ,4 i i of certoinentirefunctions' llr47g.wilf . H. s. Therartiusof inivarence l i n o i s J . M a t h . 6 ( 1 9 6 2 ) , 2 4 2 _ 2 4 . } , I P . 2 5 -schiicht 426.t28] of funcfions, coefficients the of Averages ivl. G. Wing, A7g.
FUNCTIONS (PART I) BIBLIOGRAPHY OF SCHLICHT
91
iroc.Amer.Math.Soc.2(|951),658-661MR13-123.||7,20,42, 541 l4S0.Wintner,A.onthe.principleofsubordinationinthetheoryo'f gnal},iicaifferentialequat.ions.ActaMath.96(1955),|43_156.
Studia Funktionen' rheoriederschtichten , $l,i,l;;it*ltirgj r48r ::, i0' l5' 58' 5+] 4(1933t , 66-69'Zbl8-319'[9' N1ath.
ru, t4?lyltr6sse einesschlitz-sebietes' nemelrlsH. wittich,' t4g2. rbr-:05' MR r2-49r' t49l Arch. Math. 2(195C)' Gebiete'Math' k!!i;;men ,Abbiirlungschllchter zur . H wittich, 14g3. MR 20-.401'U9' 241 Nachr. l8(1958)' 226-234' Ann. Acad' Abb,dung schticiterGebiete. Koiforye H. r4g4.wittich, (tvis), 12pp'.I\iR'20-53,'t49l sci. Fenn.ser.A. I. No.249i6 et d partierbette tlotomorphe ;';-t6grate-qLi:'f"::'::i r485.wolff ,";" p o s i t i v e d a n s u n d e m i p l a n e s t u n i .'vt'2' o l e41 nte.C.R.Acad.desSci. ' Zbl8-363 (Paris)lg8tfq:+)' l2O9'-1210 c' R' Acad' u-niluarentes' horomorphes 14g6.wolff , J. sur resfonctions M R 5 - 3 6 ' l ' 2 24' 9 ' 6 2 1 S c i .P a r i s2 1 3 ( 1 9 4 11)5' 8 - 1 6 0 ' Nederl' ,i*it^ po, kslonctiin.sunivalenles' ' MR p' 163 1 t4g.twolff , J. In6gqlit6s Errata prloir-. U, bSO-6el (19a1); Akad.Wetens.h.,
d'unefonctionhotodurradiriv'ee i;'.,li, ,"r'.t];31',il'"ru*es de la 1488 dansun demi-planau voisinage et iorn6, morpheunivalente MR P,o.. +str942),574-5,77. Wetensct,., ntaa. Nederr. frontibre.
3:" I48e. i;3ift,"1." nugatit6s,'i * p:: i ^:::..'':, : :':::';, l: :r,{",:'
h o l o m o r p h e s , u n t v q l e n t e s e t b o r n ,MR e e s5-231' d q n s u 122' n d e 571 n.i-plan.Com-
ment.Math'Helv' iiirq+'' ?9--6.2g8' analytique des W. Su, i^ cotefficients fonctions
1490.Wolibner, Studia Math I 1(1949)' univalentesa l,ext\rieur d'r: 1;rrtr. 421 MR 12-16'[9' 16' l'1', 25', 126-132' et suffisantes condiiioni n'ecessaries 1491.wolibner, w . sur certaines soit univalente'coll' Math' pour qu,unefonct.ionanalytiqui MR 14-35'-14'9' 531 2(rg51)(1g5z),249-253' J' Math' conformaiinvariants'Amer' l4gz. wolontis, V. eorpeiii, of tqttgiil, 58?-606'MR 14-36't5el of meromorphic functions. behavior 1493.Woolf, w. B. Thebo,ndo,y 1 3 0 5 ( 1 9 6 1 ) '1 p p ' M R n' r' N;' S e r ' F e n n ' S c i ' A c a d ' Ann. Acta Math' of functionsof starlikeness' 2l-22' r4g4.":,:,02',."r2'^, ctasses (chinese.Englishsummary)MR Sinica1(tg5'7),t5i-182.
_
-.!
98
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
u , 6 , 1 0 ,I 5 , 2 3 ,4 9 ,6 3 ,6 4 1
images'Acta Math' 1495.Wu, Z. A classof functions with star shaped summarv)MR sinica 7(1957),433-438.(chinese. English 23A-177.16,20,431 potynomials'Sugaku 1496.Yarnaguchi,K. On a property of schticht MR 26-7M' U5' 321 ll(lgsg/OOj,la-g9. (Japanese) of the expanr4g7.yan-sin, cin on the orgumentsof the coefficients sionofaunivalentfunction.ActaMath.Sinica4(1954),81_86. Russiansummary)MR 17-142'[4' 39] (Chinese. of nearlycirculardo' 1498.yoshikawa,H. On the coiiormal mapping , 174-186'MR 23A-329'16' moins.J. Math. soc. Japan12(1960)
4el
die p-wertigen Funkl4gg. Yosida, Tokurrosuke Bemerkungen i)ber gM),16-19' MR 7-288' [9' tionen Proc. Imp. Acad. Tckyo 20(1 1 4 , 1 5 , 1 7 , 2 5 , 4 3 '5 8 1 p-wertigen Funktionen' 1500. Yosida, Tokunosuke Ein Satz uber die Proc.Imp.Acad.Tokyozo(|g4p;),409.MR7-288.[14'15] on the boundaryvaluesof 1501. Yurchenko,A. K.; Durldudenko,L. E. in the circle lzl functions regular and univalent ukrain. Mat. z. 9(1957), 455-460'(Ruscertain spec;al classes.
sian)MR 19-846.16,231 schlic-ktJunc1502.Zamorski,J. Equationssatisfiedby the exiremal MR 18-568. tionswith a pole.Ann' Poton'Math' 3(1956),4r-45. 19,17, 24, 25, 291 star-likefunc1503.Z.artorsr,i,l. Equationssatisfiedby the extremal g58/5g),285-2gl'MR 2l-928' [6',9' tior.s.Ann.Polon.Math. 5(l 17, 251 ' Bull' J. Remsrkson a classof analyticfunctions Zamorski, 1504. 8(1960)'277Phys' Acad.Polon.Sci.Ser.sci. Math. Astroncm' 24A-40' 12,6' 9' 380.(Russiansummary,unboundinserts)MR 1 6 ,t 7, 2 5 , 3 6 i for theextrpmalstarlikefunc1505. zarnorski,J. Differentinrequations 22A(l)-295-16, tions.Ann.polon. Mat1. itr960), 279-283.MR 9, 241 of thestarlike 1i06. Zamorskl,J. Theestimationof the third coefficient Math. 8(1960),185-191'MR function tryithc pole. Ann. Polon. 22A(2)-t377. [6, 9, 17,25, 361 schlichtfunctions.Ann. 1507. zartorski, J. About tie extremalspirci MR 24A-37. |6| Polon.Math. 9(|960/6|),265_273. belonging' . Zarnorski,j . Estimationof the coefficientsof furrctions 1.508 Prace Mat' to twc ,ior.r6 of k-sym,netricschtichtfunctions'
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
(PART I)
99
5(1961),101_105.(Polish.RussianandEnglishsummaries)MR
,;H&lii r50e
Ann.polon.Math' schticht functions. . on Bazitevil
MR 20-278' [4' 17] 12(1962),'Sl-gO' ms in doiitttins ' On certcin:lcssesof schlichtiunctro, N V' Zasko, 1510. o f c o n n e c t i v i t y h . I z v . v y , , . U . . b l . Z a v e d . M a t e5' n t a15' t i k23' a ( 1641 960)' MR 24A-254'[4' No. 1(14),l16- 122'(nu'sian) zbl l 5 l l . Z a w a d z k i , R . S u r l e s f o n c t i o n st'latu'. u n v a t l8(1957i' e n t e s a lNo' g e b 1' r i q21 u epp s ,'. B ull.Sci. Math. Lett. Lodz. cl. III Sci.
. Lesequo'ionl t5tz.';;::^^j?tt] !:: {?:::'::,:,:X'{;::)l::i:ii non bornees'Bull' univllentesalgebriques des famittes fonctiorti lviatn'Natur'8' No' lO',2lpp' Sci. III br. Lodz. Lettres Soc.Sci.
des ;? f!'*"outes !uY,'il Soc' Bulr. ffia3:: r5r3 9::J; ::{r::}::,'),,!:i!,f,' inferieurement. borneeiunivarentes horomorphes t7' tions 15' No' 5' tpp'il'IR 24*-6ll' t9' tZ(t*ei)' ' Lodz Lettres Sci.
R.surturonti"::!: re1514'**;;),f,', )\!:\^;)!:\"iX!i!,'f,l,i::,,'' m'orp hes bornees inferieu nct i o ns-un rvaIen tes hoi o fent i Ite rc s fo No' 6' lj pp' MR Lodz 12(1961), ment. Sull. soc. sci. Lettres
Acad' Gebiete' konve.11 fur I]rrorrkungssltz ],'n' 1515';h:rl',#' 15-413' t10'16'191 Sci.Rec.s(l iSii, tt-it MR of Sinica son'tqclasses
the stru"u"- ii'muty^gf l5lS. Zmorovii, V. A. On univalentfunctions,-Dokl.Akad.Naut.SSSR(N.S.)72(|950), ' 12'221 833-836.MR 15-207 probremsof thetheoryof variationar ,irtoin on A. v . MR r5rT. zmoroviE, Mat. iu'nul' 4(1952)'276-298' univalentfunctioHs.ukrain. 49|j r s - l o r. l ; , 9 , l o , 1 5 ' 2 3 ' 3 5 ' univorent of onarylic.lynctions crasses MR . zmorovi.,V . A. on some 151g 62-7-652' N.d. nd+l (1953)', in a circularring Mar. Sbornik 1 4 - 1 0 7. 1 5 2 , 6 ,9 , 1 0 '4 8 1 functions of anarytic speciarcrqsses 4(62)', qtt954)' 1519.Zmorovi6,v. A. on scme No' (N'S') rur*' Nuuk circte.Uspehi' a in univalent 14'6' 10' 221 tls-tgz. MR 16-459'-the of univalent *eory-if specialclasses On A' V' 1520.Zmorovi6, functions.onpouidiAkadNauk"Ukrain.RSR(1959),5-9. okrainian.Ru,,iu,,,English,u**u,ies)MR2|_662.[4,5,10, o"f 23], of thecurvature v . A. on boundsfor thevsriqtion l52l . zmoroviE,
hr----
100
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
conformalmapping' the image o-fa plonecttrveundera univalent (1959),351-1-54'(Ukrainian' DopovidiAkad.Naukukrain. RSR R u s s i a n a n d E n g l i s h s u m m a r i e s ) M R 2 univarent |-662.135] functions' of crasses 1522. zmorovid,v . A. Theoryof speciar MR (Russian) 137-143. I. uspehiMat. Nauk tiogsri; No. 3(87), 22A(\-645.[4, 5, 16,4l] of univalentfunctions' crasses 1523.zmorovid,v . A. Theoryof speciar MR (Russian) 4(88) ,169-172. II. UspehiMat. Naukr+trbsql,No. ?2A(l)-645-[4,5,
10]
a , ^ t ^ ^ - t n t a n t nclssses certain c c o Q n f oJ of 1524.Zmorovid, v. A. on structure formulas ring' Dokl' Akad' Nauk anolyticfunctions univatlentin a circular SSSR(N.S.)86(1g52),465-468.(Russian)MR5_2 07.|2,6,10,23] conjuguees'Fund' Math' 13(1929)' les sur A. fonctions zygmund, . 1525 284-303.FM 5s-751. [59] series' cambridge univ' Press 1526.Zygmund, A. Trigonom'etrical
MR 2r-r20s.[s9l 1959.
SUPPLEMENTARY BIBLIOGRAPHY
101
SUPPLEMENTARY BIBLIOGRAPHY
prob1 . Aleksandrov,I. A. A variationalmethod of solving extremal
of anaryticfunctions. (Russian)Dokl. Ahad. lems in certion classes 999-1002.MR 27-312.12,10, 13,22,241 Nat,k sssR 151(1963), 2 . Aleksandrov, I. A. Variationalformulae for univalentfunctions in doubty connected domains. (Russian) Sibirsk' Mat' Z' 4(1963)' 961-976.MR 27-1124.16,U, 48i (Russian) 3. Aleksandrov, I. A. Extremal properties of the classS(,r"). -Mat. MR 24-58' 169(1963), Trudy Tomsk. Gos. Univ. Ser. Meh.
2e-6e4.I29l I. A.; cernikov, v. v. Extremalpropertiesof 4. Aleksandrov,
univalent stsr-like mappings. (Russian)Sibirsk. Mat' Z' 4(1963)' 1201-1207.MR 28-258. [6, 9, 17,25] 5. Alenicyn, Ju. E. ConJormil mappings of multiply connecteddomains onto multivalent canonical surfoces. (Russian)Dokl. Akad'
_
102
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
NaukSSSRl50(1963),711-714'MR29-258'U5'l8l of a multipty connecteddo6. Alenicyn, Ju. E. Conformal mappings (Russian)Izv' Akad' main onto many-sheetedcanonical surfaces. MR 29-258' U5' 18',601 Nauk sssR Ser. Mat.28(196/i),601-6q+. Proc' Amer' 7. Artemiadis. N . on a clossof hotomorphicfunctions' 879-885'tl3' 16' 17' 42' 5ll N{ath.Soc. 16(1965), qnclambiguousprime endsof func8. Bagemihl,F. Ambiguouspoints multiplicities of tions in simpty connectedregions, and boundory lg8-2H' MR 30-51' [62] schtichtluritions. Math. nnn. 156(1964), g. Basilewitsch, J. Compl\ment a mes notes "Zum Koeffizientenles th)ordmes de problem der schlichten Funktionen" et "sur N.s ' 2,689-697 u ' franz' Koebe-Bieberbaclt".Rec. math Moscou, e 697-698(1937). [Russisch][29] Zusammenfassun for a subclass 10. Bazilevid,I. E. Generalizationof an integrolformula (N.S.) 64(106)(1964)' of univalentfunctions. (Russian)Mat. Sb. 628-530.MR 29-694. 14,231 related conformal I l. Beckenbach,E. F. Isoperimetric inequalitiesfor 30_48. MR [6, 7, 18,47] maps.Mich. Math. J. ll(1964), 32|_326. Extensions of the convexity 12. Beckenbach,E. F.; cootz, T. A. 3, iss':eno. 8i, April theoremoi Study.NoticesA.M.S. vol . !z,no. 1965,P. 351 (Abstract)'[6] Berlin' 1961' 13. Betz, A. Konforme ,aLOiUune- Springer-Verlag' xi + 407 PP. MR 29-258' t59l sur les nnjorantes dans lc 14. Bielecki, A. Quetques rdiuttats r\cents Math' 11(1963/64)' th1orie desfonctir.,ns holomorpkes. Coiloq'
r4r-145.MR 29-2s9.tlj
certainesmoiorantesdesfonc15. Bielecki, A.; Lewandowski,z- sur Colloq' Math' 9(1962)' tions holomorphes dans le cercle unit6'
IUR27-510. u, 6, l0l 299-303.
-,..,:
desfonctions non analyti16. Bilimovitch, A. sur lesira'nsformations ques.C.R.Acad.Sci.Paris247(|956),i954-1955.[59] per le funzioni univalenti' 17. Bombieri, E. sul problema di B;eberbach Mat' Natur' (8) 35(1963)' Atti Accad.Naz. LinceiRend.cl. Sci' Fis'
469-471.MR 29-693.t42l dnd univalent in q holf 18. Bombieri,E. Onfunctionswhichore regular vol. l4A(1965),47-50' olane.Proc. LondorrMath So:' (series3),
i57l coefficienls.Bull' Amer. 19. Cantor, D. G. Power serieswith integral Math.Soc.69(1963),.362-366'MR27-3ll'[59] n von beschriinkten za. carath€odory, c. (Jber die winketderivierte Akad . (1929),l-l 8' [461 analytischerFunKtionen.Sitzungber.Preuss.
J
SUPPLEMENTARY BIBLIOGRAPHY
TO3
of univalentfunctions with real Extremal properties'fo'iisll' 21. eernikov, v. Y . Gos' univ' Ser' lvieir' coefficients.I, II. (Russian)Trudy 86-95' MR 29-260' l39l 69-85; ibid 169(1963), -Mat. 169(1963), (Rusunivalentfunctions w;th raal coefficienrs' 22. e ernikov, V . Y. on Nauk Arrnjan' SSR ser' Fiz' sian. Armenian summary) tzv. Rt
104
BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
' R 2 8 - 6 1 5 ' [ 4 '6 ' 9 ' 1 0 ' 1 5 ' 5 8 ] l g 6 4 , n o . 1 ( 3 8 ) ,1 6 6 - 1 7 2M generalizedSchild classes' 3 6 . grro'ti, T. b. Analytic functions of the uiv' Mariae curie(Russian.Polish and French summaries)Ann' (1964)'MR 29-260' U9', 321 SklodowskaSect.A 16(1962),151-l6l p-valent functions. (Russian' 3 7 . Ezrohi, T. G. On certain classesof curiepolish and French summaries) Ann. Univ. Mariae 964)'MR 29-260' [4' 6' 10', Sklodowskasect. A 16(l 962), 137-149(1
1 4 ,1 5 ,6 3 ,6 5 1 of p-valentfunctions' (Russian) grroti, T. G. On certain classes 38. 14,15'63', MR 2g..46t.14,6,10, ukrain. Mat-.2-16(1964),558-568. 651 -function'Proc' Amer' for the Green's 39. Fox,W. C . A newinequality 562-569'U9l Math. Soc.10(1959), Gunnar'4 distortiontheoremfor Hdllstrbm, af 40. Gehring,F. w.; Ann. Acad' sci' Fenn' Ser' AI functionsunivalentin an annulus. 601 No. 325(1963),16pp' MR 27-60'17' 48' 57' Mat' sb' (N'S') 64 (Russian) 41.Gel,fer,s. A. Typicallyrealfunctions. (106)(1964),17-l'-184.MR29-259'tll'13'15'661 J' LondonMath' 42.Goodmail,A. W. ,4 note on bivatentfunctions' ,215-219'MR 29-45't57l Soc.39(1964) ondparcllelplane 4j. Goodman,A. W. ,4 partial differentialequation Amer. Math. Monthtv,tvtatch1964,pp' 251-264't59l curves. of analyticfunctions' M. Goodman,A. w. on a characteri*ation A m e r . M a t h . M o n t h l y , M a r c h 1 9 6 4 ' p p ' 2 6 5 - 2 6 7 ' 1 . 5 9starlike 1 on multivalent 45.Goodman,A. w.; Hummel,J. A. A note Soc.16,no.2, April 1965,284-288. functions.Proc.Amer.Math. 14]
, . r -tt ^-^^ :tL^ ,,eit nirunit cir in the 46. G6rski, J. on the coefficientsof univalentfunctions MR 29-259' [17' 54] cle. colloq. Math. 1r(l 963/&), 131-135. a coniectureof schilc' Proc' 47. Gray, E.; Schild, A. A neu'proof of A m e r . M a t h . S o c . 1 6 ( 1 9 6 5 ) , 7 6 _ 7 7 . M R - 7 0 - 4 | 7 . | 6 , | 2 , 3 9Soc' | Ar^ler' Nlath' univalence' and rrqr'r:'nres Chain L. T. 48. Hayden, Jan'l9&' p'83' [6' 11' N o t i c e sv, o l . 1 1 ,n o . l , p a r t 1 , i s s r t en o . 7 2 , 28, 431 of univalentcontinuedfrac49. Hayden,T. L.; N{erkes,E. P . On classes tions.Proc.Amer.Nlath.Soc'15,no.2,April1965'252-257't551 5 0 . H a y m a n , w . K . M e r o m o r p h i c F u t i c t i o n s - , o x f o r d M a t591 hematical York (1964).['.' Monograpt's,oxford Univ. Press,New 5 l . H a y m a n , w . K . C o e f f i c i e n t p r o b l e m s . f o r u n i v a l e n t f u n c385-406' tionsand J. Lbndon Math. Soc. 40(1965), relaterlfunction classes. [6r
t4/l
SUPPLEMENTARY BIBLIOGRAPHY
105
in the complexdomain' Trans' 52.Ilille, Einar Oscillationtheoi'ems 350-385't31i Amer. Vfatft.Soc'vol' 23(1922)' fiir of sturm-ticuviilefunctions.Arkiv 53. I{i!re, Einar on the ,rrori I 6(1922),l-20' [31] Marematit.RrtronorniocrrFysik, of the zeroesof stu,n Liouviile 54.IIi'e, Einar convex distribuiion 'l'rans' functions.Bull.Amer.Math.Soc.2 s ( l g zAmer' 2 ) , 2 6 1Math' _ 2 6 5soc' .t31] theorems' Non-osciltaticn Einar 55. Hiile, 64(1948) ,234-252.MR 10-376't3ll of Faber of subsy'stems coinpletencss 56. Ibragimov, G. I. on the plane. (Russian)Mat' sb' polynornioison curvesin the iomplex (N.S.)55 (107)(1964),3-r7' MR 29-1129'[53] connected domain' in a multiply 57.Ionin, v. K. on o disk einbedded (Russian)TrudyTomsk.Gos.Univ.Ser.Meh..Mat.169(1963)' 8-12. MR
29-460. 1591
.,
r^ -^^+)^- nttn A nn c I
la sup,rieure d'une fonctionelle dans 5g. Janowski, w. sur le borne Lettres Sci' tiiivalenies bornbes' Bull' Soc' familte des fcnctions ?01 24' 22' tro' 6, 10 pp' MR 27-314' ll7 ' L6'J213(1962), - 6k))/(z' ta 1loe(d(e') fonctioneltc 59. lano*stii,'#l'iloiuoi'ion^ie univalenteset born€esinf€riew ez,)| dan'sta famitte desfonctions Math. 11(1963/64),l9l-t94' ment dansle cercleK(*, l). Colloq. MR 29-259. 19,221 des coefficients des fonctions 60. Janowski, w. sur utt€ \valuation holomorphesunivolrnteretborn\esinf\rieureme-ntdanslecercle K ( * , 1 ) . C o l l o q . t u t a t t ' . | | ( | 9 6 3 / o + ) , t - g z _ 1 9 0of .MR29_259.|9,22] of Bieberbachand Lebedev-Milin. 60a. Jen, Fu-yao on thefunctions S c i . R e c o r d ( N . S . ) 2 ( 1 9 5 8 ) , | 2 | _ | 2 5 . M R 2 7 - 3 1 4 . [ 3 4 ] 104theorems'Ill' J' Math'7(1963)' 61. Jenkins,J. A. on somespon ll7 . MR 27-59. [59, 60] theorem' (Ireatheoremsand a specialcoefficient 6?,. Jenkins,J. A. some 531 28=797' 19'27' Ill. J. ftfurtt' 8(1964),80-99' MR konformer und Verzerrungseigeischaften 53. Juve, Yrjii Llber gewisse quasikonformerAbbildungen.Rnn.a.uo.Sci.Fennicae.Ser.A.i. q!+)' 40 pp' MR 16-26' t59l Math. -Phvs.no' 174,(f of valueproblem arising in the theory 64. Kazdan, J. L. A boundary ' 28-79'7 MR l3(1964),283-303' univaientfunctions.J. uaitr. Mech.
E'] s?:i :::i::"1^o^'"!'-:::n'n*,'o' 65.[,'rl3".ufi,i. c. [Kirjackis, (Rusian' Lithuanian and Gcrman sum-
K^(E) and P(i)' classes maries.)Litovsk.Mat.su.3(1963),83_90,no.2.MR29-1123.u0'
o-f of sonrctheorems E.r An extension [Kirjackis, 66.1i,;,ll;,ltt'€1',o.
106
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
(Russian'Lithuanian and Aksent'ev and eakalov to the classK^(D)' 3(1963),9l-96, no' 2' MR German summaries)Litovsk. Mat. sb.
29-rr23.l32l divideddifwithnon-zero E1 Functions 6j . ir:i*uir, e. G. tKirjackis, summaries) Litovsk'
and German ference. (Russian. Lithuanian M a t . S b . 3 ( 1 9 6 3 ) , 1 5 7 - 1 6 8 ' n o ' 1 ' M R 2 9 - 2 6 0 ' [ 1 0 ' typically 1 5 ' 6 4 ] real the classof problems for Extremal E. W. 68. Kirwan, vol. 12,no. 5, issueno. 83, August 1965, functions.NoticesA.M.S., p. 549 (Abstract)'tl1, 13' 431 of onatyry fy:,:rions by Faber69. Kiselev,p. Ja. on the opp,ro*i*qtion Mat. Z. l5(1963), 193-199. Watshpolynom'als. (Russian)Ukrain.
MR 29-264.ls3l mit beschrtinktem derpotenzreihen 70. Kobori,e,. iaei dieschtichtheit ' Zbl7 -351'l22l 368-373 TohokuMath.J. 37(1933), ReslreiL a circular
of analyticfunctions in 71. Kocur, M. F. Somespecial classes ' zaved' Matematika' no' annulus.I, II. (Russian)lzv. Vyss. ucebn 4 ( 4 | ) ( 1 9 6 4 ) , 7 9 _ 8 5 . n o . 5 ( 4 2 ) , 3 0 _ 4 0 . M R 2 9 _ | t 2 3 Rep' . | 2 , 6no' , 1 0 ,3'1 5 , 6 3 1 Kodai Math' Sem' derivative' angular on Y. 72. Komatu, 13(1961) , 167-179.12,461 T3.Komatu,Y.Onfracrion'nlangularclerivative'KodaiMath'Sem' , 2) 4 9 - 2 5 4 ' 1 2 ' 1 3 ' 2 2 ' 4 6 1 R e p .n c . 4 , 1 3 ( 1 9 6 1 mapping onto polygons 74. Komatu, Y.; Nishimiya, H. Conformal , 243-248' Sem. Rep. 16(1964) boundedby spiral arcs.Kodai Math. MR 30-24r. l49l welcheCurch die schlichten 75. Koseki, f,.- tiL* die Integralgleichungen, Okayama Uliv' ll (1963)' Funktionen genilgt *ridrr. tvtatir. l' 119-124.MR 2t-3r4. l23l der schrichtenFunktionen. Iv76. Koseki, K. 1be' die Koeffizienten 125-157.MR 27-314' t24' 421 Math. J. okayama Univ.-ir(rgo3), with bounded mean 77. Kresnjakova, L. v. on re'gularfunctions SSSR |4.t/\|962), 290-293. madutus. (R.ussian)}oki. akad. Nauk . [ 3 , 1 1 , 1 5 ,4 3 ] MR 27-317 functions' Bull' Acad' 78. Krzyz, J. some remarks on close-to-convex Phys' 12(1964)'25-28' NIR Polon. Sci. 56r. Sci. Math. Astronom' 28-1000. 12,5, 6, 15, 29, 641 T g , K r z y z , J . S o m e r e m a r k s C o n c e r n i n g m y p a p e r , , o n u nsummarics) iy,alentfunc. (potistr-andRussian tionswith twopreassignedvalues." ' 129-136 Sect' A 16(1962) Ann. Univ. Mariae iuric-Sklo'dowsta
MR 2e-46r.t16l (1e64).
the integrai of univslentfunuions' 80. Krzyz,J.; Lewandowski,Z. On Bull.Acad.Polon.Sci.56r.Sci.Math.Astronom.Phys'11(1963)' 447-M8. I'tR 27-734.[4' l6]
SUPPLEMENTARY BIBLIOGRAPHY
107
of certain analytic gl. Krzyz,J.; Read€,M. O. The radius of univalence 6] J. 1l(1964), 157-159'tviR 29-45' [4' functions. Mich. Math. an onnulus' Math' g2. Kubo, T. on a thecrem of analyticfunctions in Jap. no. 1. 5(1958),17-20't59l ' on- analytic functions in cr! annulus theorems g3. Kubo, T. Some JapaneseJ. of Math ' 29(1959)'43-47' Ugl dey.konformen Ab' g4. Ktihnau,R. BerechnungeinerExtrema[unktion Ha[e-witten'verg. Math' bitdung. wiss. z. Martin-Luther-Univ. -Nat. Reihe?(1960),285-287' i'4R 2'7-3t2' [59] I. London Mattr' g5. Kuran, V. fwo theorentson univalentfttnctions. Soc. 40(1965),96-98' MR 30-417'1421 horomorphicand g6. Kuz,min&, G y . Covcrrns theoremi -rorlunctiotts 6(1965)'2l-2.5' [6' l7 ' 19'391 univalentwithin a disk. SovietMath' on startike typically-realfimctions' 87. Lai, wan-tsai [Lai, wan-tzei] (chinese) Translated as Acra Math. Sinica 13(1963),3gg-404. 29-693. [6'13] ChineseMath. 4(|964),.423-439.MR in the theory of univalent problems 88. Lavrent'ev, M. A. Bountiary fttnctions.Amer.Math.Soc.Transl.(2)32(1963),1-35.MR
27-rt24. l7l
'Z'; y'ariational formulae for funcZlotkiewicz' E ' 89. Lewandowski, the uni, disc.Bull. Acad' Polon' tions rnerotrtorphicand univalentir Phys. 12(1964), 253-254' MR Sci. 56r. Sci. Math' Astronom'
29-694.19,241 of the ampiitudesof coefficients 90. Li Ji-Min [Li, Chi-minl Theeffect of upon theschticht-ness of holomorphicfunctionsin tie unit circle (Chinese) 14(1964) ' 367-378' the functiins. Acta Math. Sinica MR 30-48'[4] as ChineseMath.-Acta5(1964),396-408' Translated problems'-DukeMath' J' 91. Libera, R. J. some radiusof convexity 1 0 '1, 2 '1, 3 '1 5 ' , 1'7,1 9 ' , 2 3 ' , 8 .R 2 8 - 6 1' 1 2 ' 4 ' 5 ' , 6 ' , 3 1 ( l9 6 4 ) , l 4 ? - 1 5M 36, 42, 631 functions' Notices' gz. Libera, R. J. Meromorphic close.-to-convex n o . 7 6 , A u g . 1 9 6 4p, - . 9 i A m e r .M a t h .s o c .v o l . i t , n o . 5 , i s s u e | 2 | _ | 2 8 .| 2 , 5 , 6 ,9 , 1 0 , ( A b s t r a c tD ) .u k eM a t h. 1 . 3 2 , n o . 1 ( 1 9 6 5 ) , !2, l7 , 25, 38, 431
. -, ^--1 c",-n,.innc prne of regulsrunivalentfunctions' Proc' 93. Libera, R. J. some classes l 0, ]6 , A m e r .M a t h .S o c .n o . 4 , 1 6 ( 1 b 6 5 ) , 7 5 5 - 7 5 8 . [ 4 , 5Proc'' Amer' 94. Mac Gregor,T. H. A classof univatentfunctions' Math.Soc.15(1964),311-317'MR28-434'12'7'8'10'11'12'15' l7 , 18, 39, 561 ? n^^;t,oc P rne Proc' convexmsppings' theorem for covering A . H T. Gregor, 95. Mac jto. MR 28-434.u0, 191 Amer. Math. Soc.15(l9g), functions. estimates for onarytic 96. Mac Gregor,T. H . Lengthandarea
r0E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Mich. Math. J. 1l(1964),317-320'F' l8l of domainsin theplaneand applicag7. Marcus,M. Transforma'tions 613-626' tionsin the theoryof functions,PacificJ. Math. l4(l964), MR 29-46r. l24l of univalentfunctionswith real 98. McGregor,M . T. On three classes J. LondonMath. Soc.39(l964),43-50'MR 29-45'[6' coefficients. 1 0 ,1 9 ,3 9 1 gg. Merkes,E. P . coveringtheoremsforstsrlikeond convexfunctions' pp' A.M.S.vol.lz,no. 3, issueno. 81,April 1965, 3L6-317 Notices (AbstracO.tl9l 100. Milin, I. M . |-heoreamethodin the theoryof univalentfunctions. Dokl.Akad.NauksssR154(1964),264-267;SovietMath' 78-81.no. 1' MR 28-258'14'27' 531 5(1964), of univalentfunctions'So"'iet 101. Milin, I. M . Estimatesof coefficients Math. 6(1965) , 196-198'[9, 17, 421 univalentfunction' 102.Minatani, T. on a propirty of some classof MR 27-59'[6' 19] uniu. No. 11(1962),7-8. sci. Rep.Kagoshima principiefor multiplyconnected 103. Mitjuk, I. P. Thesymmetrization Dokl. Akad. Nauk sssR 157(19&)'266-270' domains.(Russian) MR 29-460.l24l de rayondeconvex;tE 104. Mocanu,P. T . iu, le rayond'1toilementet le (1962), 57-63' (27) (Cluj) 4 fonctiomshotomorphei.Mathematica M R 2 7 - 7 3 4[.5 ,6 , l l , 1 2 ] 105. Nehari, Z. Someexompiesin the theory of univalentfunctions' (Abstract)I42l Amer. Iviath.Monthly,oo. 6, i2(1965),695. functionsin the r06. Netanyahu,ElishaExtiemalprobremsfor schlicht no' 2, vol' I l' exteriorof theunit circle.Amer.Math. soc-Notices, issuenc.73,Feb.l964(Abstract)'[6'9'16'17'24'251 derivativeof afunc107. Nosenko,o. s. on theiomain of valuesof the (ukrainian' Rustion convexand univalentoutsicleth'eunit circle' DopovidiAkad' Nauk ukrain' RSR sianarrcEnglishsummaries) 1963,l00l-1005.MR 29-460'[9' l0] (ukrainian. l0g. Nosenko,o. s. on the rdngeof certainJunctionals. DopovidiAkad' Nauk ukrain' Russianand Englishsummaries) MR 29-460'[10'29] RSRI963,1303-I307. problemscon' 109. Obrcck, A. E. The extremaifunctionsfer cerlain no' 697)' (whole schltchifrtnctions.Bull. Anner.N4ath.soc' c€i.riing vol. 71, no. 4, July 1965,pp' 626-628'1241 KodaiMath' Sem' 110. Oikawa,K.; Suito,N . Onpiraltel slitmappings' Rep. 16(1964),249-254'MR 30-241'l24l of univalentfunc' I 11. Ozawa,M. On certaincoefficientinequalities
d
APHY SUPPLEMENTARY BIBLIOGR
109
183-188'MR 29-1124' tions.KoclaiMath. Sem. Rep. 16(19tf),
u7, 541
of opial, Beesuckand Levinson' llz. Pederscr, R.N. on an ineauotity 1965'p' 174' t:591 Proc. A.M.S., voi i5, no' t' Ftb ' problemt oia coefficient regionsfor 113. Pfa-ltzgraff, J. A. Extremal by a Stielties integrol' Notices' analytic functions represenietl i s s u en o . 7 4 , A p r i l | 9 6 4 , p p . 3 6 3 A m e r . M a t h . S o c . ,v o l . l l , n o . 3 , 364. 129, 591 FoberschenForyiiome scnrichterFunk,4. pommerenke, ch. r-tberdie t i o n e n . M a t h . Z . 8 5 ( | 9 6 4 ) , | 9 7 . 2 0 8 . M R 2 9 _ | 1 2 9 . [ 5 3 j Funk' Familien onolytischer ,5. pommerenke, ch. Linea'r-invariante g@),108-154;ibid. 155(1964),226tionen I, II. Math. Ann. 155(t
262.MR 29-rr24.l44l
functionsand univarent power series ,6. pommerenke,ch. Lacunary 29-919't39l Mich. Math. J. 1l(1964),2lg-223'MR onolytic functions' Trans' ll7 . Pommerenke,Ch. On close-to-convex Amer.Math.Soc'114(196/l)'176-186'[3'4'5'6'9'10'12'15'17' 2 2 ,3 0 , 3 8 ,4 1 , 5 8, 6 2 , 6 4 1 Proc' Amer' Math' poole, J. T. A noteon iariotionalmethods' l18. Soc.no. 6, 15(l964)'929-932't24l functions. probtemsfor schricht 119. poole, J. T . coefficientextrernar NoticesAmer'Math'Soc"vol'12'no'5'issueno'83'August 1 9 6 5P, . 5 8 6 't 9 , 1 7 , 2 5 '5 4 1 of tevetlinesunderunivalentconlzo. popov,V. L Starlikentitoi arcs Jorma!mappings.SovietMath.,March-April1064,vol.5,no,2, pp. 510-513. [6, 9, l0l bkmsfor a class l2l.Privalov&,G'K';Saran'L'A'someextremalprot offunctionswhichisstar.shapedinthedirectionoftherealaxis. no' 4' 4l(1964)' (Russian)lzv. Vyss.Ucebn.Zaue* Matematika MR 29-461'[6, l5' 40' 63] 126-130. l,lyrent exponsnns' M. c . cn thepartis! sums-o!certain 122.R.eade, MR 29-260.19,20'431 colloq. Math. 1l(t96itu), 173-179. Publ' Math' univalence' 123.Reade,M. O . On O:go*oiicriterionfor 5' l0l 11(1964) , ig-ql' MR 30-417'14' Debrecen of thefunctionolIU@),"f(.,)' |24. Red,kov,M. |. Therangeof values Trudy Tomsk.Gos. , (a),1 , (0))in the rroris, ti .f@)| l. (Russian) f 59-68.MR 29-260'l29l Univ. Ser.Meh. -Mat. 169i1963), funco-fcertainimpedance 125.Reza,F. M. on the schtichtbehavior t i o n s . I R E T r a n s . C i r c u i t T h e o r y , C T - 9 ( 1 9 6 2 )with , 2 3 |positive _232.t28] probtemfor functions tz6. Robertsoil,M. s. ,4n extremat realparl.Notices,A.M.S.Vol.11,no.6,issueno.77,Oct.|964,
I-
110
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
p . 6 7 3u . , 2,4, 6, l0l ' and close-to-convexity 127. Robertson,M. s. Rsdii of starlikeness 847-852'12'4' 5' 6' li' 121 Proc.Amer.Math. Soc'16(1965)' I' II' Composito Potenzreihen' W. tlber beschriinkte 1 2 8 .Rogosinski, M a t h . 5 ( 1 9 3 7 ) , 6 7 - | 0 6 ; ( 1 9 3 8 ) , M 2 - 4 7 6 . 2co., b | | 7New - 2 6 9York' .||,22| chelseaPubl. series. Fourier w. Rogosinski, r29. 195b,176pP. MR ll-347 ' t59l conformede domaineslimit€s A. Sur la repr€seniation 1 3 0 .Rosenblat'-, l9t7 ' tl5 ' 22' 6ll sur le cercleclerayon u-n'Krak' Anz' l 3 l . Royster,w.c.APoissonintegralformulafortheellipseandsome [6' Amer.Math.Soc.no. 4, 15(1964),66|_670. apptications.Proc.
7 , 1 8 ,5 7 1 of rationa! 132.Rubinst ein, z. Extension of two resurtsin the theory Soc' ;f analyticfunctions' Amer' Math' functions to certain classes 73, Feb.1964 (Abstracll't59l Notices,vol. ll, no. z,issueno. polynomialsand their zeroes' 133. Rubinstern,z. some inequalitiesfor P r o c . A m e r . M a t h ' S o c ' , n o ' 1 ' 1 6 ( 1 9 6 5 ) ' 7 2 - ' 7 5 ' [ 4ot' 5most ] p in convexof order 134.Sakaguchi,K. Meromotrphicfunctions Natur' sci' l9(1961/62)' 109one direuion J. Nara catugBi univ' l l 2 . M R 2 7 - 3 1 3 .[ 1 0 , 1 4 ' 4 1 ] theorem for a certain cluss of 135. Sakaguchi, K. A repres;entition Japan 15(1963),202_209.MR mregularfunctions. J. Math. Soc. 2 7 - 3 1 3 [. 4 , 5 , 6 , 1 7, 2 3 1 Meromorphicfunctions rnultivalently 135. sakaguchi,K.; watanabe, S. Gakugei univ' Natur' Sci' starlike in o wide sense.J. Nara I l(1963), 3-7. MR 27-314' ll4' 231 von einer meromorphenFunk137. Sato, T . Ein Satz uber Schtichtheit Jap' l1(1935)' 212-213'ZlL 12-171'UOl ticn.Proc. Irnp. -a^cacl' oi order o' Amer' J' Math' 138. Schild, A. On starlike finctions 8 ? ( 1 9 6 .55) 5 - 7 0 . [ 6 , 1 1 , 1 5 , l 7 l oi posirivefunctions,Nctices,A'M'S'' w. J. Some notels 139. Schneicler, g3, Aulust 1965,p.586 (Abstract).[2j vol. 12, no.5, issueno. and non-'o*vex domains' J' Math' 140. sonc, N. univqlentfunctions S o c . J a p a n 1 5 ( 1 9 6 3 ) , 1 9 1 _ 2 0 | . M R 2 7 . 3 | 4 . | 4 , 5 , 1 6 univalenl ,17,38] teve! curvesfor properties of-su. 141. Stepanova,O. Y . Certain (N.S') 61 (103) (1963)' conformc! moppings. (Russian)tvtat. 24' 251 350-361.MR 27-313'[6, 7, l0' of iaber polynomials' (Russian) proprrties l4Z. Suetin, P. K. The basii lzs-t54. NIR 29-1129'[531 (li8),'convex uspehiMat. Nauk t9(1964),no.4 of functions' Noi'iuss' 143. suffndge, T. J. convolutions A.M.S.,vol.12,nc'2'issueno'80'February1965'P'244 (Abstract).[4, 5, 10, 47]
,&
APHY SUPPLEMENTARY BIBLIOGR
111
of convexfunctions' Notices' i44. Suffridge, T. J. convolutions Augus1965'pp' 579-580 A.M.S., vol. 12,no' 5' issueno' 83' (Abstract).[10' 47] Strgaku theoremof Jenkins'(Japanese) 145.Suita,N. O; thecoeff;cient I 2g-r37'MR 29-45' l24l 14(1962/63), a7 uitvarentfunctions reratedto 146.Suita, N. ,4 distortion theorem 26-30' Sem.Rep. 14(1962), symmeyicthree points.Kodai Math. MR 27-59.[9, 15,17,25, 58] tJnivairn.t *ippings of planedon:ainsend setsof l4j. Suvorov,G. D . measure,'ero' Dokl' Akad' prime endsoJ a domainof geniratizeC t49] MR' 27_73,|. Nauk SSSR|52(|963),296-298. theorems' Anrer' J' Math' vol' 148. Taam, choy-cak oscillation 317-324'I\{R 14-50't3U 74(195D, zeroesof functions of Sturml4g. Taam, Choy-tak on the complex 3(1953),837_843.MR Liouville type.Pacific J. Mathematics ' tn 15-625' [3 u theorems oJ ^ ^^ir ^ti nn n l 5 0 . T a a m , c t r o y . t a t < N o n . o s c i l t a t i o n e n c c o r 4 p a r |d^ Scoefficien o ts' Por-
comprex-varue rinear different i ar equat io ns wit h t u g a l i a e M a t h e r n a t i c a l 2 ( 1 9 5 3 ) , 5 7 - . 7 2 . M R 1 4of_ 8doublv 7 3 . [ 3con1] conJormalmapping ur:ir-ot€rtt on M. P. Tamrazov, 151. n e c t e d r e g i o n s . ( u k r a i n l a n . R u s s i a n a n d E n g l i s hMR s u m27-59' maries) 1962,ll42-1145' Dopovidi itaa. Nauk ukrain. RSR
t60l conforin thetheoryof univarent p. M. someestimates r5z. Tarnrazov, Russian (Ukrainian' mal mappingsof aoy,ily connectlddomains. Nauk ukrain' RsR 1963' andEnglishsum*urr.riDopovidiAkad. l 160-1163.MR 29-1125'[50] of a pottyntcof nf the thpderivative rler roots of the "^ 153. Walsh, J. L. On the locatiin InternationaldesMath6matinomisr.comptes Rendusdu congrds c i e u s . S t r a s b o u r 8 , 2 2 - 3 0 S e p t e m b r e 1 9 2 0 ' [ 5traiectories 9] of the of orthogonal curvature the on Note L. J. walsh, 154. 2' no' Amer' Math' Soc' level curvesof Green'sfunction III'Bull' . R 1-210't591 4 6 ( 1 9 4 0 )1, 0 1 - 1 0 8M of a o7 tie zeroesof the derivatives 155. Walsh, J. L. On the location polynomialsymmetricintheorigin.Bull.Amer.Math.Soc.No. 10, 54(1e48);942-s4s'MR 10-250' t59l of reiet curvesof Green'sfunction. 156. warsh, J. L . Noteon ,n' shape Anter.Math.Monthly,Dec.1953,67:r-674.MR15-4u.|59| of tevetcurvesof Green'sfunction' 157.Walsh, J. L. Noteoi"rt , shape 6 1 1 - 6 1 6M . R 1 5 - 3 1 0 '[ 5 9 ] D u k e M a r h . J . n o. 4 , 2 0 ( l 9 j : ) , of the ovals of lemniscates'Studies 15g. Walsh, J. L . On the coniexity topics' pp' 419-423'Stanford in mathematicalanalysisand related
II2
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Univ. Press,Stanford,Calif., 1962-MR 27-317' U0' 491 159. Waszkiewicz,J. Sur certainsprobtdmesextr)moux dans la famille des fonctions univalentes born1es inf€rieurement dans le cercle no. 3, 30 pp. MR K(-, 1). Bull. Soc. Sci. LettresL6dr. 14(1963), 29-694.[9, 15, 58] ld0. Whiteley,J. N.,A/ofeson a theoremon convolutions.Proc. Amer. M a t h . S o c .n o . l , 1 6 ( 1 9 6 5 )l -, 7 . l 4 7 l 161. Widder, D. V. The Laplace Transform. Princeton Univ. Press, London, 1946,406PP. MR 3-232. t59l 162. Wigner, E. P. On the connectionbetweenthe distribution of poles an(i residuesfor on R function and its invariont derivative.Ann. of Nlath. (2) 55(1952) ,7-r8. MR 13-733.t46l Mathematics 163. Wilf, H. S. for the PhysicalSciences.John Wiley and Sons,Inc., New York , 1962.284 pp. [441 164. Wilf, H. S. Calculations relating to a coniecture of P6lya snd Schoenberg.Math.Comp. 17(1963),200-201.MR 28-798.[10' 47] 165. Wintner, A. A criterionfor non-oscillatorydifferential equations. 10-456' Quarterlyof Applied Mathematics,7(1949),115-117.MR
[3r]
of conjugatepoints. Amer. J. 166. Wintner,A. Crt the non-existence MR 13-37.t31l 358-380. Math.73(1951), d'une th1ordmede Schwarz.C. R. g1n1;"alisation 167. Wolff, J. Surune 926),500-502.146l Paris183(1 168. Zlotkiewicz,E. On o variationalformula for starlikefunctions. (Polish and Russiansummaries)Ann. univ. Mariae curie. 1 5 ( 1 9 6 1l )l l,- 1 1 3 . I v i R2 8 - 4 3 4 . 1 6 , 2 4 1 S k l o d o w s kSae c tA
pr'-
I\4ATHEMATICAL -IOURNALS
113
MATHEMATICAL JOURI\ALS
Following is a list of twenty-two mathematicaljournals and paperson refer to schlichtfunctionswhich they contain. Numberswithin brackets ((A" indicate t1e main bibliography; numbers precededby the letter referencesto the SupplementaryDibliography' Acta Mathemoiiro,vol. l-113 (1882-1965)[18, 293, 508, 632, 648, 692, 840, 895, 945, I I 88, 1441,14801. American Journal of Mathematics, vol. 22-86 (1900-1964)[595' 5 9 8 , 5 9 g ,9 6 6 ,g 7 0 , 9 7 5 , 9 8 0 ,1 0 8 5, 1 1 4 2 ,1 1 4 6 , 1 2 5 01, 2 5 3 , 1 2 5 41, 2 7 2 , , 1 4 8 ,A 1 6 6 1 . 1 3 3 0 ,1 4 9 2 A Annals of Mathematics,vol. 8-81 (1906-1965, series2) 152,59, 215, 224,360,364,452,456,457,545,593,603,609, 614,615, 616,621,633, 1147,ll4g, 1150,1153,1156,1207,1262,1327' 534, 944, 1060,ll*, 1373,1476,A162l. Archive for Rational Mechanics and Analysis, vol ' 1- 19
II4
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
(1957-1965) [205, 266,3M, 3461. 7-7 | Bultetin cf the American Mathematicol society, vol' ( 1 9 0 0 - 1 9 6t5o)t , s + ,8 8 ,1 6 6 ,1 g 1 , 2 7,72 7 8 ,3 3 3, 3 4 7, 4 2 9 , 4 4 65, 3 6 ,6 2 8 ' , 1 4'1 1 1 4 31' ,1 4 5 ' , , 1 4 01 6 3 5 ,7 5 0 ,8 6 9 ,8 7 7 , 8 7 gg, 7 l , g 7 7 , 1 0 5 21, 1 0 9 1 1 3 6 11 4 6 l ' 1 1 4,81 1 5 2 ,1 1 5 51, 1 6,8l l 7 l , l z 0 4 , 1 2 5 5 , 1 2 5 7 , 1 2 7193, 3 1 , ' 1 4 6 3A, 1 9 ,A 5 4 ,A 1 5 4 ,A 1 5 5 1 . [91, 169, vol. I -17(1949-1965) CanadianJournalof Mathemotics, 1 7 2M , , 6 2 6 , 1 1 5 81. 1 6,1l 2 l 4 l . [l 1, 90' 92, 103, . l-?2 (1935-1965) Journal,,u'ol DukeMathematical , 1 0 l,l 1 , 1 6 l , 2 | 9 , 2 4 8 , 3 0,13 2 0 , 3 2 9 , 3 3 6 , 3 5 8 , 3 8 0 , , 091 , 081 1041 , 0 51 1 1 2 0l'l 5 l ' 5 2 g , 5 3 16,M , 7 5 5 , 8 7 5g,0 4 , , 9 l l9, 6 4 , 9 6 8 , 9 8130, 3 41, 1 0 7 , 1243,1249, 1154,1159,1170, 1209,1210,1212,1223,1233,1234,1236, 1274-1362,1433,1473,A.9l, A92,Al57l. 1620,622, Illinois Journaloj Mathematics,vol. l-9 (1957-1965) 753,1478,A48,A611. Pureset Appliqu'es, vol' 2-44 (1923Journal de Mathematiques 1965)[366,941,1443]Mathematik(formerlycrelle "Iournslfilr die reineund angewandte 1424'1425'142'6],' [581,1038,1416, vol.122-217(1900-1965) Jorrrnal), qnd Apptications,vol' l-11 ,Iournal of MathematicalAnalysis ( 1 9 6 C - 1 9 6l M 5 )9 , l 2 8 l l . sociery,vol.l-40 (1926-1965) of Journal theLondonMathematiccl 519' g 5, 3, 1 6 ,3 2 5 , 3 2 6 , 3 3' 374 0 ' , 4 8 9 ' , [ 8 5 ,I 1 3 , 2 1 1 , 2 1 6 , 2 1 7 , ? , 2 8 ,32M 974',1035' 521,522,5g4,608,612,662,663,6&, i54,817, 865' 892' , A26,A33' A42,A51' 1041,1073,1089,1102,1103,1186,1323,1335 A 8 5 ,A 9 8 1 . 194,116, 123' Annalen,vol. 53-158(1900-1965) Mothematische , 0 9 '1 0 3 7 ' 1 7 3 , 1 7 4 , 1 8158, ,71 8 9 ,! g 1, ) 2 3 , 2 g 4 , 4 8 34, 8 7, 5 4 1 , 6 9 08, 8 2 9 1040,1M7,1059,1080,1088,1278,1333,1360,14441' 120,62, ll8, 162' zeitschrift,vol. 1-88(1930-1965) Mothematische 53',2' 486' 523',528', 45),485, 300,302,?03,-324,341,342, 153,274,280, 893',916',919', 549,666,659,693,694,8M,809,810,812,8M,845,881' 1 3 5 , 1 3 61, t 7 7 ,1 1 8 0l,l 8 i , 1 3 4 0 , '31 3 5 41' ' 3 5 9 ' 9 4 8 ,1 0 4 31, 0 7 11, 1 3 4 1 1417,1436,1438 , 1439,1467,A1141' 1233,255' vol. l-12 (1952-1965) of Matheniatics, Journat Michigan i012', 1070' 1068, 1067, 1066 9g4, , 629,656,657 ,859, 872,888,914, t 0 7 4 , 1 1 0 6l ,l , l 2 , 1 1 6 7A, l l , A 3 4 ,A 8 l , A 9 6 ,A l 1 6 , A 1 2 6 1 ' 3!5' Pacific Journa!of Mathematics,vol. l-14 (195l-1964) [279' 1300', 5 5 1 ,7 5 2 , E 7 6 , 9 1150, 6 3 , 1 0 7I61.0 4 ,I I 1 7 , 1 1 2 2 , 1 1 6 I21, 5 3' 1 2 6 9 ' 1 3 0 7A, l 4 9 J . vol' I-16 Proceedingsof the American Mathematicalsociety,
A
MATHEMATICAL JOURNALS
115
271'288',335',432',433'434',437', U57,160,17l,l81' 264', (i950-1965) M 3 , 4 9 2 , 5 0 9 , 5 3 0 , 5 5glz,gsr 2 , 5 5 3 , 5 8 0 , 5 g 6986', ' , 5 g1118' 7 ' , 6 1119', 0 1 ' , 6ll57 0 2 ' ', 6ltf!y''', 07',815',873',889' ' 984'985', g90,891, 913,gl'l,918, 1427 ', 1435', 1423', 1403' 1414', 1398', 1257,1276', 1175,12i1,1265,1266, All8' Al3ll' 1 + l t , ' , 4 7 2\,4 7 7 , 1 4 7 9A,3 o , society'vol' 1-54series2 of theLondonMathen;ot'ical Praceedings 495', 3 s ( 1 9 5 1 - 1 9 6 [53)3 4 ,3 3 8 ,3 3 9 , 4 9 0 ' ( 1 g 0 3 - l g 5 l xr i o r .i - r 5 , s e r i eg6i 1309',1325', ', 1248', 1075',1187',1247 4g7 ,5M, 512,665,846,862, ',
'"'9\nuarterlv.lournal oJtv\t!t".t:'.i::'":t:',-.to;liltlli"li33 ,i?tJJt 2 (1950(rqlo-1949);vol. l-16, oxtord series
vol. I -z0,oxfordseriesr 1965)tl95, 196,3l'l, 494,498,8631' vol. 1-6 (1900-i965)[81' 179'831' SovietMathernatics-Doktady, t l 1 4 ,A 1 2 0 1 . society,vol. l-l18 of the AmericanMathematicar Trsnsactions ( 1 9 0 0 - 1 9 6 5 ) u 0 , 8 9 , 9 3 , 2 ? ! ' 2 4 g ' 2 g g ' , 3 1610', 8 ' 3 56ll' 7 ' , 3613', 6 1 '617 4 2',8624', ',431',435',436' 606', 5g2',605; 57g' 438, 43g,440,411,445,451" g 7 3 ,g 7 g '1 0 1 3 i' 1 , 6 0 ' 1 1 6 5 1' ,1 5 '5, l l 7 2 ' 1 1 7 4 ' , 6 2 5 , 6 3 0E, l 4 , 8 7 8 ,8 8 7 , 1468' nzl' 1322'1332'1415' 1464'1466', 1280,1282:, 1206,1215,12',73, A52,A551. society,vol. 1-31' of the ArnericanNtathematicar Traitsrstions 426'826'828'A88]' [371' 3'73'375'376'423' 2 (1955-1963) series
5
116
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
EXPOSITORY PAPERS
Following is a list of publicaticns which are devotedwholly or in part to a general survey of the development of the theory of univalent and p-valent functions. Nunrbersin bracketsrefer to the main bibliography. Numbers precededby the ieiter "A" refer te the SupplementaryBibliography. An asteriskindicatesa particularly comprehensivesource. 1.239 (Chapter8); lj00 (pp. 198-212);86abp. 163-185,205-226\; 1 2 5( p p . 7 i - 8 3 ) ; 1 0 6 4( v o l . 2 , C h a p t e r2 1 ; 4 0 3 * ;l 3 3 l * ; 1 2 4 0 * ; l M ; 9 7 8( C h a p t e r5 ) ; t 2 4 l ; 1 2 6 ( C h a p t e r5 ) ; s 1 4 ;5 l i * ; 6 1 8 * ; 5 3 7 (vol. 2, Chapters17, l8); 1305 4ll; 886; 939; A24; A5l; Al15; Ai63 (Chapter6)l
TOPIC REFERENCES
II1
TOPIC REFERENCES
closely topics dearing directly with or Following is a list of sixty-eight p-valent functions. Following each relatedto the thecry cf univJint urro resurtspertainingto that topic' topic is a list of referenceswhich contain numbcrs refer to the rnain bibliography; Numbers v,,ithin brackets (. A' ' refer to the SupprementaryBibriography' The precededby the letter . . . , T68 for purposesof referencc' topics are numberedTl, T2, ff, a containsso many referencesthat Topic Tl5 (Distortion Theorems) T65' T64' T56, T58' T61'-T63' breakdownof T15 is given iV fopics of ropic T17 (coefficient T66, T67 and T6g. Similarlvi u bieakdown T54' T36, T38, T50, T51, T52' and Bounds)is givenby T21,Ti5"T30, conT44 (Sur'ey Articles) should be The referencesgiven under iopi. the other topics. sulted in connectio' with any of
hr--
118
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T l . The Principle of Subordination. u , 35, 43,87, 100,102, 111, 130,132, 134,139,140, 212,231,320, 3 6 7 ,3 8 2 ,3 9 2 ,4 1 4 ,4 1 7 ,4 2 0 ,M 3 , M 6 , 5 0 3 ,5 9 8 ,6 0 5 ,6 l l , 6 7 7 , 6 8 5 , , &, 7 4 3 , 8 0 2 8, 3 6 ,8 3 8 ,8 5 5 ,8 5 6 ,8 6 3 ,8 7 0 ,8 8 7 ,9 1 0 ,9 5 3 ,9 5 6 , 9 6 0 9 9 6 7 , 1 0 6 8 ,1 0 7 1 ,1 0 7 2 ,1 0 8 8 ,l l l 7 , 1 1 4 4 ,1 1 6 3 ,1 1 6 5 ,1 1 7 4 ,1 1 7 9 , l l 8 l , 1 1 8 5 ,1 1 8 6 ,1 1 8 7 ,l 2 M , 1 2 7 8 ,1 2 9 0 ,1 2 9 1 ,1 2 9 3 ,1 3 1 9 ,1 3 4 1 , , 14, A15, A126, Al28l 1 3 6 6 , 1 3 8 2 , 1 4 7 71,4 8 0 ,1 4 9 4 A -F^
Lt.
Functians af Posiiive Real Part. 14,34, 46, 60, 108,186,196,226,233,268,272,315,350,380, 412, 426,456,519, 526,528,530, 577,703,7 17,7 18,7 19,720,721,887, , 8 8 ,9 9 6 ,1 0 0 0 ,1 0 4 1 ,1 0 9 9 ,1 1 0 5 , 8 8 9 ,8 9 0 ,8 9 1 ,9 1 3 ,9 6 8 ,9 7 4 , 9 8 5 9 1 1 4 0 ,1 1 4 2 ,1 1 4 4 ,1 1 4 7 ,1 1 5 1 ,1 1 5 4 ,1 1 6 6 ,1 1 6 7 , 1 1 7 71, 1 7 8 ,1 1 8 0 , 1 1 8 1 ,1 1 8 7 , l 4 M , 1 4 1 7 ,1 4 7 7 , , 1 2 1 3 ,1 2 7 8 ,1 3 2 0 ,1 3 4 0 ,1 3 6 1 ,1 4 0 1 , 5161 , 5 1 8 , 1 5 2 4A,l , A 3 1 , A 3 3 , A 7 l , A 7 2 , A 7 3 ,A 7 8 , 1 / 8 5 ,1 5 0 4 1 A91, A92, A94, A126, Al27, Al39l
T 3 . Integral Means. 1 7 9 8 6 , 8 8 , 1 3 5 ,1 3 9 ,1 4 5 ,1 4 7 , 1 4 8 ,1 5 2 ,l E l , 1 8 4 ,1 9 6 , 2 3 0 , 2 9 4 30rJ,305,328,337,338,339,378,407,409,410,413,417,423,489, 4 9 0 ,4 9 5 ,4 9 8 ,5 1l , 5 1 9 ,7 4 7 ,7 4 8 ,7 4 9 ,7 ) 2 , 8 3 1 ,8 3 2 ,8 3 3 ,8 3 4 ,8 3 5 , 8 4 6 , 8 6 2 , 8 9 4 ,9 0 1 , 9 5 2 , 9 5 3 , 9 5 4 , 1 0 6 9 ,1 0 7 1 ,1 0 7 2 ,1 0 8 2 ,l l l 7 , 1 1 1 8 ,1 1 4 3 ,l l 4 r ' , 1 1 4 6 ,1 1 5 0 ,1 1 5 1 , 1 1 7 1 ,1 1 8 6 ,1 1 8 7 ,1 2 7 8 ,1 2 8 0 ' 1300,1322,1323,1325,1335,1338,1356,1391, 1425,1471,477, A1171 T4. Sufficient Conditions fcr Uuivalency (p-valency). 1 2 2 ,2 3 , 2 4 , 2 5 , 2 6 , 5 2 ,7 7 , 1 0 8 ,i 2 l , 1 5 1 ,l 7 l , 1 7 2 ,1 7 5 ,1 7 6 ,1 7 9 , 18C,I 82, 183,205, 2ll, 217,227,211,255,259,289,295,296,297' 3 2 7 ,J 3 5 , 3 3 6 , 3 5 0 ,3 5 4 , 4 2 1 , 4 2 4+, 2 8 , 4 3 74, 8 5 , 4 9 2 , 4 9 3 , 5 0 05,3 0 , 5 4 2 ,5 5 4 ,6 5 2 , 6 5 56, 5 6 ,6 6 8 ,6 7 2 ,6 7 4 , 6 8 7, 7 1 9 , 7 4 3 , 7 4 6 , 8 4 88, 5 0 , 38 , 7 ,8 9 0 ,8 9 1 ,9 1 1 ,9 1 2 , 9 1 7 , 9 1 89,2 5 , 9 4 0 , 8 5 9 ,8 7 4 , 8 7 6 , 8 7 7 , 8 8 8 9 6 3 , 9 7 1 , 9 8 1 9, 8 2 ,9 8 4 , 9 9 7 ,1 0 0 1 ,1 0 0 6 ,1 0 0 7 ,1 0 1 0 ,1 0 1 1 ,1 0 1 9 ' 1020, 1021,1023,1025,1027.1029,1036,1058,1063,1071,10'72, 1 0 9 0 ,1 0 9 4 ,1 0 9 5 ,1 1 0 5 ,1 1 0 6 ,1 1 0 7 ,1 1 0 8 ,l l l 0 , 1 1 1 1 ,1 1 1 2 ,l l i , . 4 , l l # , i 1 4 5 , 1 1 5 6 ,1 1 6 0 ,1 1 6 2 ,1 1 6 6 ,1 1 7 6 ,1 2 1 8 ,1 2 2 0 ,1 2 2 2 ,1 2 3 1 , 1266,1267, 1273,t286, 1301,1310, l3l7 , 1337,1338, 1362,1365' i367, 1371,1372,1398,1399, 1412,1428,1429,1432,1434,1435, 1485, l4gl, 149't,1508,1509,l.slO, 1519, 152A,1522,1523,Al0,
TOPIC REFERENCES
119
A30,A35,A31A38,A80'A81',A90'A91',A93',A100',A117' A140',A1431 A12l Al ze, ttz7, A133'A135', (and generalizations)' T5. Ciose-toConvexFunciicns 11 | 28,9 7 ' 8 9 8 ' 9 2 2 ' 1 1 2 9 , 2 8 2 , b 5 6 , 6 8 7 , 7 6 5 ' 17 16 06 5' 81, 5110'681,5140' 8715, 19 0' 8881, 71'1809|,6 1 0 0 51, 0 0 71, 0 7| , | 0 7 2 ,| 0 7 5 , 1131,1132-1218,1352,1435'15]-0',1520'1522',t523',A33',A78' A9l,Ag2,A93,Al04,A117'A123',A127',A135',A140',A1431 generalizations)' T6. StarlikeFunctions(and 92',97',98', 52' 55' 60'-7.1',80',8l' 82'-8]',90', 34, 32, l' 3 28,30, 23, 14, 99,108,109,111,119,'128''tlz'134'137',142',156',157'216'21'l' 235,242,243,247,255,258'260',261^',274',282',257'',301',336',352', 430',43r',433',43'!'437'442'4r'5', 426'', 4l'7,izz' 4C0, 385, 381, 353, 673' 659'66r'663'665'
481,500,5i9,55r,ssz',s;,;sr{, 91?:,6s3, 846'853',856' 731', 733', 1??',723', lg', 1 16" 8"1 67 67'1, 6, 6'.7 5, 6i 4, 67 932',934',952', 909',gl7',91-8',
9O8; 888,889,890,891,895, 89;'898;ggg:1000', 1004'1005' 1001',J003' gge'998', 953,956,985,986,990; 1 0 2 1 , 1 0 2 2 , 1 0 3 8 , 1 0 4 2 , 1 0 6 3 ' 1 0 1 : ^I 1 - '0, 170'1,' 1 7 02'8',,11102743l' l',,4120' 7 5 ' , 1 0 ? 6 " ' 0 7 9 ' , 0 9 ; ;1 0 9 5 r' r 9 l ' , i 1 0 6 ' 1 0 8 3 1, 0 9 01, 0 9 1 1 1 1 6 41' ,1 6 6 1' ,1 6 71' ,1 7 5 ' , 1 ,1 5 41, 1 5 61; 1 5 91; 1 6 91' 1 6 3 ' , 1144,1153 1 1 8 7 , 1 2 0 9 , | 2 | 2 , | 2 | 4 , , | 2 | 5 . , | 2 | 7 , | 21360', | 8 , 1 2 1 9 , | 2 2 1 , | 2 3 1',l , | 2 6 5 , 1352',', 1365'1366'1367 1319', 1339' 1311" 1278, , 1266,1267 1 3 7 0 , 1 3 7 4 , 1 3 9 8 , 1 4 1 4 ' 1 4 2 6 ' t 4 2 7 ' 114520 961 ',,5104731,75' ,11841,3581' 9 , 1' m 0 ' , 1 4 / l l 9 ' , 1505' t s o + , r s o l , 1 5 0 i , t 4 g g , t4g4, 1495, A35' A37'A38' A45', A26',A3'2', 1524,A2, A4,All, iiz' eis ' A98',A102', A86', l 2 l ' A87',491', A92',-A93', A l 3 5 ' A41A48,A71, A78,-Ati'' A , 13l' A133, A 1 2 6 'A 1 2 7A A 1 0 4 ,A 1 0 6A 1 1 7 ,A i 2 0 , A 1 3 8 ,A 1 4 1 ,A 1 6 8 l
InvolvingArc-Length' T7. Relations 720' [ 2 , 8 0 , 8 1 , 8 2 , 8 6 , 8 8 ' 1 4 5 eoie', ' 1 5 2 ' 1 9 4664', ' 2 g665',700' 4'3N:37 4 17'718' 1'346'3 50'366' -;02'oiz' en' 545,610, 9Ui', 444,519, ', 1072'1073',1075' ',796, 909',g32',i062',1071 B2O'887, 767 , ' ,l l ' , ' , 5 1 7A 1 4 1 01 ' , 4 3 5 1' ,4 8 7 1 , 1 4 ,61 2 3 0 ' t 2 5 3 ' 1 1 j 4 7 ' , 1 1 3 01 , 1 4 31 A131',Al4U A25,A33, A40, A88' Ag4'A96', I - la" ll' T8. Boundsfo, l\on+t A94] 521'1075',1368', [56, I 46, 149,l5A,24l'
r20
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T9. Meromorphicunivalent(p-valent)Functions. ' 09' 1 4 ! ,1 5 5 ,1 7 6 '1 8 3 2 [ 3 , 5 , 3 6 ,7 3 ,7 4 , 7 5 , 7 6 , 8 18, 2 , 1 1 6 ,I 1 7 , 372, 368, 363,364, 2|5, 2|6, 234,235,264,277,230,285,307,335, 4 1 8 '4 2 6 ' 3 8 1 ,3 8 3 ,3 8 7 ,3 9 0 ,3 g 3 , 3 9 53, 9 7, 4 0 0 ,4 0 4 ,4 0 7, 4 0 8 ,4 1 6 ' 595',601', 579; 482,485,492,507,508,54y', 434,436,452,455,481, 625,629,682,697,705,709,7|2, 7|5, 72|, 722,73|, 6|9, 623,624., 80 04 7 ,,8 5 9 ,8 6 6 ,8 8 1 ,8 8 8 ,9 2 1 ' 9 2 4 ' , 9 2 5 ' , 732,734,741,7R2,7g1,8 1020,1071,1072,1076' g7g,983, 935,986,987,996,1009, 951,971, , 1 2 8l,L & , i i 6 6 , 1 1 6 71, 1 7 6l,l i g , l l 8 4 ' 1 0 7 81, 0 8 31, 1 1 31, 1 2 5 1 1255' 1189,1214,1215,l2lg, 1228,1246,1249,1250,1253,1254, 1 1 3 3 3 , 390, 1 3 3 2 , 1 ,3 0 4 1, 3 0 6 1, 3 1 3 i,3 1 6 , 1 2 5 9t,2 8 3 ,1 3 0 2 , 1 3 0 3 1490, 1392,1397,1414,1416,1434,1451,1452,1459,1476,1481, 1518' ' l 5 l 7 1 5 1 4 , l 4 g l , 1 4 9 9 , 1 5 0 2 , 1 5 0135,0 41, 5 0 51, 5 0 61, 5 1 3 , A4, A30,A35,A50,A59,A60, A62,A89, A92,A101,A106'A107', , 1 2 2 ,A 1 4 64, 1 5 9 1 A 1 1 7 ,A 1 1 9 ,A 1 2 0 A (andgeneralizations) T10. ConvexFunctio,,ns 8 2 ,8 7 ,9 0 , 1 0 8 '1 0 9 '1 1 1 ' 1 2 , 4 , 2 3 , 2 8 , 2 9 , 3 1 , 3 4 , 5 2 , 68 30 ,,8 1 , 262,274, 295,296, l 18, 132,|34, |42, l 89,2|7, 243,247,255,,261r, , 3 3 ,4 3 7 ' , 8 3 ,4 1 2 ,4 3 0 ,4 3 1 4 3 0 1 ,3 3 5 ;n 6 : , 3 3 g3, 3 g J, 4 g , 3 5 53,9 1 3 660' M3, 4/t5,453,454,4g2,546,550,552,564,570,636,642,659, 73l-, 7 )5, 723, 722, 7 |9, 66!, 663,673,674,675, 676,677,703,7|6, 8 , 90, 91' , 8 7 ,8 8 8 ,8 8 9 8 7 5 : ^ , 7 6 : r , 7 6 2 ,,786476 , 8 5 98, 7 0 ,8 8 1 ,8 8 4 8 , lo32' 956.953,988,997,1cc5 909,g4l, g52,953, 896,8g7,898, 1091' 1 0 3 31, 0 3,71 0 4 2 , 1 0 6 31,0 7 01, 0 7,11 0 7 3 ,1 0 8 31, 0 8 81, 0 9 0 , 1 0 9 51, 1 0 11, 1 0,7l l 2 g , 1 1 4 2 ,l l 4 r ' ' , l 1 6 01, 1 6 31, 1 6 61, 1 8 7 , 1 2 0 9 ' , 1299' 1217,!21g, 1222,12-2g,1231,1265,1267,1278,1289,1292, 1438' 13t7,I 340,I 341,I 365, 1366,I 3?0,1412,1429,1434,\437, 1524', 1523, 1459,1477,148l, 1494,1515,1517, 1518,1519,1520, A93' Al, Al 5, A26,A35,A3?,A38, A65, A67' A71,A9l ' A92' A134', A126' Ag4,A95, A98, A107,A108,A117,A120,Al23' A137A , 1 4 1 ,A 1 4 3, A l M , A 1 5 8 ,A 1 6 4 l Tl I . RaCiiof Starlikeness. 368,369,381'396'48i.'500'502'673'675' [28,i 73,'ti4,742,243. 889,890,891,89?'908'909',914', 676,677,682,747,748,74g,854, 1370, 915,g,28,g34,g75,ggg,|042,1090,L2|7,|2|9, |267,|367, A l 3 8 i , 4 8 ,4 6 3 , A 7 7 ,A 9 4 ,A 1 0 4 ,A l z T ' i 3 9 S ,A 3 2 , A 4 1A T12. Radii of ConvexitY.
."d
TOPIC REFERENCES
I2I
128,29,31,173,174,241368,502,673,676,677,747'765',848', , 8 9 ,8 9 0 ,8 9 1 ,8 9 7 , 9 | 4 , 9 1 59,2 8 , 9 5 2 , 9 7 0 , 9 7 5 , 9 8 9 , 8 4 g , 8 5 08,8 7 8 g g 7 , 1 0 0 61,0 9 0 ,l c g z ,l l 3 l , 1 1 6 6 ,1 1 6 7 , 1 2 1 7 , 1 2 1 9 , 1 212296, 5 , Aii7. | 2 6 6 ,| 3 7 0 ,| 3 7 5 ,| 4 2 8 , A 3 2 ,A 4 7 ,A 9 1 r ,A 9 2 ,A 9 4 ,A 1 0 4 , Ar27l Functions T13. TypicallY-Real 1 6 8 |,6 9 , 1 7 03. 3 5 , 3 - | 2 , [ 4 ,5 , 4 6 . 5 55, 7 ,5 8 ,6 0 ,1 0 9 l, l 1 , 1 3 | ,| 6 ' 1 , 416.422,426,427,432,436,445,580, 607,526,629' 371, 375, 41,3, 7 L 5 .7 5 : ^ , 8 M8, 5 8 ,9 0 1 ,9 1 3 ,9 5 3 ,9 9 5 ,| 0 2 2 ,1 0 3t , 1 0 5 3 1, 1 2 0 , 1 1 2 11 1 4 0 ,1 1 4 2l,l # ' , l l 4 7, 1 1 4 91, 1 5 2I, i 5 5 , 1 1 5 6I, t 5 7 ,I 1 5 8 , 1159,1160,||62,1|77,1i80,|2t2,i337,|427,|43|,|476,A|, A7, A4l, A68, A73,A87,A9ll T 14. p-valentFunctions [ 3 , 3 6 , 4 5 , 4 8 , 8 9 , 9 0 , 9 2 , 1 3 5 , 1 3 5 , 1 4 0 , 1 4 1 , | M ' 1 4 6 '3 157'197', , 48, 53, 2 0 8 ,2 4 2 , 2 4 6 , 2 5 5 , 2 5 8 , 2 6 | , 2 8 2 , 32 08 58 ,,3 2 5 , 3 3 03,3 6 3 428,430,43|,438, 3E9,396,406,410, 373,376,388, 356,367,368, 678,679, 507,508,5|2, 574,575, 576,6|4, 644,668, 44I, 445,505, 8 7 7 6 8 0 ,6 8 1 ,6 8 2 , 6 8 36,8 4 ,6 8 5 ,6 9 8 ,7 3 7, 7 5 9 , 7 6 0 , 8 1 6 , , 8 7 9 , 9 2 3 , g25,94]^,g42,,955, 1001'1003,1004,1006,1019,1020,|02|, |022, 1159, 1 0 2 3 , 1 0 2 4 , 1 016190, 11, 1 4 81, 1 5 01, 1 5 11, 1 5 31, 1 5 41, 1 5 8 , 1428, 1210,1215,l2lg, 1220,1221,1231,1250,t371,1372,1427, Al36l Al34' 1429,1434,1435,l49g' 1500,A37,A38,A45, T 15. Distortion Theorems , 8 , 4 9 ,6 1 ,& , 6 5 , 6 8 , 7 0 , 7 1 , 7 2 , 7 6 , 9121' 8 l' 2 l ' [ 4 ,5 , 3 9 , 4 0 ,4 1 4 , 5 6 |, 5 7 , 1 7 0l,9 ! . ,| 9 7 , 2 0 9 , 2 3 1 , 2 3 4 , 2 4 2 , l 3 l , | 4 | , | 4 2 , 1 4 8 1, 5 5 1 28]l,282,306, 246,247 , 255, 256,257, 258,25g,260,261,262,263, ' , 8 7' , ' ' 8 5 3' 8 6 3 3 2 5 , 3 5 3 ; 3 5 5 , 3 35 6 6, , 3 6 7 , 3 6 9 , 3 7 5 , 3 7 6 ,3388313 4a4,407 ,408,412, 396,397 ,399,400, 3gg,3gg;3g0,3g2,3g4,3g5, 455', 413,4r5,416,418,42'6,427,431,,434,435,436,453'454', 557 5M, 532, ,558, 505,507,519, 474,481,482,484,500, 460,46:^, 627, 626, 62|, 599,605, 595, 591, 590, 559,560,570,573,577,585, 709', 698', 697 687' 684, ' 677 ,679,680,682,683, 641,644,659,661, 7 6l' 7 7 lL,7n:, 7rc:,7 23,7 24,7 25,7 33,737,7 42,749,758'759' 60' 833'834'835',846', 808,826,828, 7g3,804, 762,763,764,766,788, gg0, g5g,g67,970, 881,882,884,887,892,896, g4g,g50;g52,g53, 953,959,963,965' 908,909,916,921,932,g4O,943,951, 8g7,906; 1071', 989,1006,1008,1030,t032,lM3, 1048,1051,1053,1057,
-
I22
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1072,1073,1076,1083,1095 , 1097,1098,I l0l , 1102,1103,I108, 51 05 , 11, 1 5 4 , 1 1 4 3 , l l 4 / ,1 1 4 61, 1 4 7 , 1 1 4 9 , 1 1 1 1 1 3 1 , 1 1 2 01, 1 2 5 , 1 ,1 8 91, l 9 l, 1 2 1 9 , 1 2 2 2l ,z M , 1 2 5 5 , 1 2 6 61 ,2 6 7 , 1 1 7 21, 1 7 3 , 1 1 7 5 1 2 8 01, 2 8,81 2 9 9 , 1 3 0 81,3 1 31, 3 1 61, 3 2 0 , 1 3 2 7 , 1 3 31 23 ,3 31, 3 4 0 , 69 , 7 ,1 4 1 6 1, 4 2 5 , 1 3 4 71, 3 4 8 , 1 3 7 4 , 1 3 7153,9 01, 3 9 2 , 1 3 9 5 , 1 3 9t 3 1499, r4r'/J,1456,1463,1481,1494,1496, 1426,1427,1435,1439, A 3 8 , A4l, 75 , , A 6 , A 2 5 ,A 3 l , A 3 5 , A 3 7 , 1 5 0 01, 5 1 01, 5 1 3 , 1 5 1A , 1 3 8 ,A 1 4 6 , A 6 5 , A 6 7 ,A 7 l , A 7 8 , A 7 9 ,A 9 4 ,A 1 1 7 ,A l 2 l , A 1 3 0A Ai59j Problems,OpenQuestions. Tlb. Conjecttlres, , ,333' 1 3 , 2 4l,l 0 , 1 3 8 ,1 4 6 ,l 5 l , 1 5 2 ,1 6 l , 1 7 2 ,1 8 4 , 2 7 8 , 3 031M 467, 512, 5I 6' 441, 445, 438, 432, 428, 431, 392, 339,346,360,364, 5I 8, 5I 9, 523,595,598,614,629,639,640,642,643,645,673, 674, , 51, , 3 4 ,8 3 5 ,8 4 9 8 , 6 7 , 7 8 17, 9 1 ,8 1 2 8 , 4 97 , 367 6825 , 8 47, 1 4 ,7 1 3 7 1055, 1063, 986,1035, 855,863,869,903,906,934,946,952,984, 1 1 8 6 , l z l D1, 2 1 4 , 1 3 0 16 3, 1 2 , 1 1 6 7 1 , 1 6 9 , 1 l 4 l 1131, ,11M,1159, 1346,1390,1410,1412,1425,1426, 1327,1329,1332, 1325,1326, 1433,1477,1490,1504,l5l5 , 1522,A7 , A25, A32,A33, A80, A106,Al40i Tl7 . CoefficientBounds [ 3 , 5, 3 2 , 3 7 ,4 5 ,4 8 , 5 5 5, 6 ,6 7 , 6 9 , 7 0 , 7 2 , 7 59, 2 ,i 0 3 , 1 0 7 ,l l 7 , , 0 5 , 2 0 6 , 2 0 i , 2 0281, 5 , 2 1 6 , 1 2 3 , 1 3 51,3 8 , 1 4 71,5 0 ,1 7 0 , 1 8 41,9 4 2 217,226,235,241,242,255, 256,257,259,261,263,264,269,27l, 271,294,304,305,328,329,349,355,363,364,365,370,372,374, 375, 376, 37g, 388,389,393.J94,396,407,408,dog,412,413,421, 428,430,431,432,415,436,M5, 493,505,509,5I 1, 512,5I 9, 521, , 8 6 ,5 8 7 5 , 01' , 996 5 5 2 , 5 5 4 , 5 6 2 , 5 6566,7 , 5 6 85,7 6 , 5 7 7 , 5 8508, 3 5 605,6I 0, tiI 9, 623,624,625,529,638, 639,640,645,65I . 651,660, 686,68'/,7C5,709,7 14,715,727,728, 661,677,679,682,684,685, , 9 5 , 8 M ,8 1 2 , 8 3 3 ' , 4 97, 5 5 , 7 8 87, 8 9 , 7 9 07,9 3 7 , 417 , 427 7377 , 407 868,870,882,883' 866, 865, 863, 859, 834,835,842,843,844,846, 983,984, 901,906,w7,924,925,957,958, 884,887,888,892,898, 1022, 1020, 1019, 1018, 1009, 996, 995, 985,986,987,989,990, 1030,1038,1069,l07l ,1072,1073,i075,1076,l08l' lo'23,1a24, 1 0 9 7 , 1 0 9l8l 0, l , 1 1 0 51, 1 0 61, 1 0 71, 1 0 8l,l 2 9 , l 1 3 l , 1 1 3 2 ,l l 4 0 ' ' , 1 4 61, 1 4 71, 1 4 8 , 1 1 4 9 , 1 1 5l 105, l, 1 1 5 2 , I l 4 l , 1 1 4 2 ,1 1 4 3 , l l 4 y 1 1 1 1 5 9 , 1 8 61, 1 8 7 ,1 1 8 91, 1 9 0 ,1 1 9 21,1 9 3, 1 1 9 4 , 1 1 5 8 , 1 1 5 41, 1 5 5 , 1213,1214, 1201,12A3,l2l2, 1195,1196,1197,1198,1199,120C,,
!l
TOPIC REFERENCES
123
lzw, 1246,1249,1250,1259,1267, 1215,l2lg, 1222,1233,123^., | 3 2 9 ,| 3 3 2 , | 2 8 4 ,| 2 g 3 ,| 2 9 6 , 1 3 0 81,3 0,9! 3 | 7 , | 3 2 2 ,\ 3 2 5 ,| 3 2 7 , , 7 7 ,l 3 8 l ' 1 3 8 21' 3 9 2 ' 1 3 3 31, 3 3 g1, 3 4 0 ;r 3 4 g , 1 3 6, 1g3 7 4 , 1 3 7 5t 3 1 4 3 5l'M 8 ' i 3 9 4 ,1 3 9,5 i 4 l z ' .l 4 ' / 5 , 1 4 2 6 , 1 4 2 17 4, 3 01, 4 3 11, 4 3'3 i499, | 4 4 9 , 1 4 5 01,4 5,1| 4 5 2 ,| 4 5 3 ,1 4 5 4 , 1 4,5|54 6 3 ,| 4 7 9 , 1 4 9 0 , A58', 1504,1506,1509,1513,1514,A4,A7' A25'A46', 1502,1503, A65,A86,Ag2,Ag4,Al0l,A106,A11i'A117'A119',A135' A 1 3 8 ,A 1 4 0 ,A 1 4 6 1 T18. RelaiionsinvolvingArea' 23L, 236,237, 250,277, 285, 350, 12,75,97, 137, 152,184,217' 7 2 0 , 7 5 87, 6 7 ,8 8 7 ' 417,429,435, 444,452, 496,6 8 7 ,7 1 7 . 7 1 8 , 1463,1487,A5, A6, l 0 ? 3, 1 0 7 6 ,l l l 7 , 1 1 8 9 ,1 2 8 0 '1324,1325, A l l , A 3 3, A 9 4 ,A 9 6 ,A l 3 l l T19. CoveringTheorems'
[ 3 , 1 0 , 2 0 , 3 9 , 5 3 , 7 3 , 7 4 , 7 5 , 7 9 , 9 7 , 9 8 , 9 92'3140' 0 1 '0,'3 ' l0 l 67' 1 2 0 ' , , 2' 17 00 1 ' 2' 1 71 , 9 32' 1 8 ' 1 2 2 , 1 2 4 , 1 3 7 , 1 3 g , 114401, , 1 5 81,8 4 1 309,310,348,360,384,3gr,3g3,4M,406'429'M4',4y';6',452',468', 598',614',621', 550', 524'538' 507,509, 493,505, 470,471,479,488, 6 2 7 , 6 4 2 , 6 4 7 , 6 8 5 , 7 0 5 , 7 0 9 , 7 6 1 , 7 6 2 , 7 5 8 ' 7 ' . 7 2 ' , 7893' 74',801',8M',8C7' 887',892', 881', 877 868' ', 852,853, 849, 846, 822,830, 810,813, 9 1 6 , g 3 3 , g 3 7 ' g 4 g , 9 5 1 , 9 6 1 , 9 6 4 , 9 6 7 ' 9 8 4 ' 1 0 1 1 ' 1102?1' ,04,' , 1 0 8 5 ' , 1 1 1 9 ' 1 1 8 71, 1 8 9 , | | 2 3 , 1 1 2 81, 1 5 41, 1 6 81, 1 7 c|,| 7 g , 1 1 8 41, 1 8 6 , 1319', 1289'l2g2' 1293'1295', 1277,1276;,1280, 1216,1265,1266, 1421', ' l4l8' 1419',1420', 1340;1358 ,1402, 1407 1324,1326,1327, A25' 1515' 1483' 1423,1424,1437,l#,g:,1462,1463,1467,1474, A36,A39,A83,A86,A91,Ag4,A95,A98'A99',A1021 T20. Partisl Sums,CesdroSums' 1 2 5 , 1 1 1 , 2 7 4 , 2 g 3 , 2 g 5 , 2 9 6 , 3 0 1 , 3 5 0 ' 355915''63, 357'4,6' 43182'6,'4513'2, ' 5 5 7 ' , 5 5 8 ' 5 5 9 , 5 6 0 , 5 6 1 , 5 6 4 , 556657, , 5 6 85,7 0 , 5 7 2 ' 5 7 5 ' , 6 5 3 , 6 7 2 , 6 7 3 , 6 7 5 , 6 7 6 , 6 7 7 , 7 3 3 , 7 g 1 ' 8 8 3 ' 8 8 7 ' , 9 2| |27' 7 , 9, 5 4 ' , 9 9 8 ' , 1 1 5 6|,| 6 2 , 1 0 0 51, 0 9 51, 0 9 91, 1 0 4r,r r : , | | 4 4 , 1 1 4 51, 1 5 3 , ' 3 6 11, 3 6,5| 3 6 7 ,1 3 7 01, 3 8'9| 4 7 9 , 1 1 9,1| 2 | 7 , | 2 | g , i 3 t z , t 3 6 0 1 t495, Al22l Resl Part' T2l. coefficientBoundsfor Functionsof Positive 1226,412,519,887,985,1144,1147'1151'1154',A3U
t24
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
T22. BoundedFunctions' [38,39,78,79,116,173,174'191',193',1g4',198',201',203',2m', 242,254,255,261,272,2g0'2g3'3?|7',330',369',378',379',396'412' ' 88' 5865 ' 875 : q3l ' 4 5 2 , 4 g 2 , 5 0551,9 ,f i z : , 5 3 85; 4 3 , 5 1 3 , 5 7 4 , 5 8 743',758', 662',664',665'700', 3; 62'7'639'641-', 589,590,591, 612,61 7',879', 8',7 867', 821',826',869', 7 7 59,7 60,7 61,'t62,',|68"7 69'77 L','T', gg'l 1009', 1049'1051' g25,g37,965, 96'7,g'72,n;'g77'g7g',988', ', , 2 0 '1, 1 2 2 ' , 1 1 0 31' ,1 1 51' 1 1 6I' 1 1 0 6 11 0 7 ,31 0 9 1 1 0 9 81; 0 9 91' 1 0 ? ' 1 2 0 51, 2 1 01, 2 2 1 , 1191 l l w , 1 1 7 2 , 1 1,7l l3g 2 " i r s + , 1 1 8 6 , , 1 2 0 ! ' | 2 2 9 , 1 2 3 0 , | 2 3 4 , | 2 , | 8 , , 1 2 8 0 , | 2 g 5 -1, 31 7390,71,31831003' 98, 3 11'331900, |' 3 | 2 , 1 3 1 3 ' , 3 4 g1; 3 6,11 3 7 7 '1 3 7 '8 1 3 1 5l,3 l g , t 3 4 3 1 Al', A23',A25', 1516',1519', 1439,1455,1456,148;, Ui8:7'1482', A26,A33,A58,A59,-A60'A70'A73',A117',A128',A1301 T23.RepresentationTheorems,structuralFormulas. 1 2 4 , 2 5 , 4 6 , 6 0 , 9 2 , 1 7 0 , 2 5 6 , 2 5 7 , 2 1 8659',6-60', ' , 2 6 2 ' , 665', 3 1 7686', ' , 3 1703' 9'353'355',3',72' 577'626-'65I', 4lg,422,426,436,5lt,540' 1073' 889',896',897',899',995', ii6,723,858,869,88i, 883'884' 1076,t120,1225'1140'1142''ll#,'1147'1156'1162'1165'1177' 1180,|374,|375,|377,,1381,|4|4,|4g4,1501,1510,1517,1520, A136l 1 5 2 4R, t o , 'A 3 3 ,A 7 5 ,A 9 1 ' A 1 3 5' T21. VariationqlMethods ',205',2}6', [ 1 6 , 3 4 , 6 9 , 7 1 , 7 5 , 7 6 , 7 7 ' 7 8 364'366' ' 1 5 1 ' 1 937 8 'l', 137 g 3' g ' 37 , 26' ( n377' ' Z C390' / 363, 23g,267,2'l2, 27g, 352"366, m', 439', 408, 415'416'418:4lg' 422', !25',438',554',592' 392,401,4fi4,405, 551',552',553', 487',505', 44!,M2, 463,465,4;t" 475' 476:' 623', 624',625', 6-21', 606' 614'617"619' 620', 598,500,601, 602,603; 7 ll',7 13',722', 707', &3'651' 685;696:',700', 6?9, 640,641"' 628,630, 778',779', 7&', 773' 777', 7 55'7 59'7 6'',7 63', 7 24,7 35,7 36,7 39,7 54:' goi gio',857;867', 882', '928',929' '828', 784,787,824,825,g)e"827 l11,6 5 ' ; ;,; , 1 0 0 8 , 1 0 3 0i,o l s ' | | 2 0 , | 7 2 2 . , 1 1 41237 9 3 1 , 9 3 59, 3 5 , 9 5 9 1234,1235,1236, ' 1233', t\72, i205, t207,li08 t214,n2," 1256', 1253', 1219',1251', n47" 1248', 1238 ,1242, 1243,1245,1246' 1308' t307' lzg8, iiso," t251 1285"1289,129,7' 1257,125'd,1251 t385' 1374,ll]le' 1377,i379'_1330,1384' 130g,1314,1332,t34.1', | 5 0 2 , 1 5 0 51, 5 1 31, 5 1 4A, 1 ' 1 3 9 0|,3 9 2 , 1 4 0 5t ,+ t 3 , 1 4 5 5 1, 4 8,i aioe A109',A1lu',Al18' Ar+i' A2, A58, A76,A89'Ag7'Al03' A 1 4 5 ,A l 6 8 l
TOPIC REFERENCES
125
FuncMeromorphic univarent (p-valent) Tz5. coefficient Bounds for tions. 15,215,216,235,264,27i'363'3t'1'372'408'601'619'623'624' 625,629,6t2,709,'141,804'859'866'g24',g25',979',983',985'986', 9 8 7 , 9 9 6 , 1 0 2 0 , 1 0 7 1 , 1 0 7 2 ' 1 0 7 6 ' 1 2 1 4 ' , 1 2 1 5 ' 1 12 53034' 1,1254066''1 2 5 9 ' , |49g,|502,1503, | 3 3 2 , 1 3 3 3, | 3 9 2 , 1 4 5 1, t q s 2 ,1 4 9 0 , 1 5 1 3, A 4 , A g 2 ,A 1 0 6 , A 1 1 9 ' A 1 4 6 1 no (Functionswirosedorr'ain of valueshave T26. tJnrelatedF'trctions Pointsin common)' s79',12851' 4 1 8 ,604,696,77g,82g,830,832,976, [ 4 0 ,4 1, 4 2 , 4 4 ,
T27. Areq Principte(and generalizations)' [5,36,45,51,83,105,107,117'139',141',155',183',205'277'280' 363,4,35,478,509,576,_601,646,682,728,804,831:8.J2,846,881' g25,1C09.1082,1187,!lg2'1193'1194',1195',1198'1267',1286' , l3g4' A62'A1001 1323,1327 , 1332,1333 (suchas Besselfunctions)' Functiorzs T28. univqlenceof special [161,171,1'72,200,201,213'243'321',34g'535',536',540'541', 542,652,686,738,748,750'751'752',753',885',916',917',1109' 1110,1112,1147,1161,1176'1398'lML'1478',1511',1512',A48', A1251 valuesof functionals)' of variabitity(of coefficients; T2g. Regions 1 3 1 , 3 2 , 3 3 , 3 4 , 4 6 , 6 0 , 6 3 , 7 8 ' r1', l7-'13 3 ' , 7163', 7 07' ,65', 1 77882', ' , Z7H ',287',399' 84', 723', 60 62'0', 5i, 55;,590', 404,M8,472, 523,5 8 2 6 , 8 2 8 , 8 3 0 , g 7 g , 1 0 3 , 8 , 1 1 1 4 , | | 2 5 ,A3', | 2 0 5A9', , ! 2 0A32', 7 , | 2A78', 25,t2?5,|239' 1502', 1454', 1413 138t, ' 1374, 1261,1340, A 1 0 8 ,A 1 1 3 ,A l 2 4 l Functions' T30. CoefficientBoundsfor Bounded 1 1 9 4 , 2 5 5 , 2 6 1 , 3 7 g , 4 1 2 , 5 8 3 A1171 '586'587'866',979',1073',1097',1098', 1144,tzot, 1309,1455,A25'A58' = 0' DifferentialEquationw" + pw Derivative-The T31. schwarzian [38,89,90,91,1'71,172,193'335'336',4g2',536',728'786',8M',
126
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
8 ' , 1 6 , g ' 1 1 , 9 8 0 , 9 8 1 , 9 8 2 ' 1 0 4 6 ' 1 0A5185' 101'A,6106' 5, 1'A216656' 1 ,1267',1273',1364', A149', A 1 4 8 ' a s s ' A 5 4 , A 5 2 , A 5 3 , ^2g, T32.UnivalentPolynomials_RemakSeries_HurwitzClass. 152,175,177,!7g,18-0-'l8l'202',210',242',330'533',651'678',848', 8 4 9 , 8 5 0 , 9 4 6 , g 4 ' 7 , 1 0 0 1 ' 1 0 0 2 ' , 1 0A66l 03',1004'1036',1067'1124'1139' A47', A36', L4g6' 1301 ' 1267, 1145, 1266, Functions(andgeneraiizations)' T33. Mean-valent (36,45,51,138,14!'145'146'147',360',3g3',50:'507',512',521', 522,610,614,756,'786'7g2'g25',1009'r00q',1322',1325'1326', 1328,13301 132'1, Functions(f(z)f?') + l)' T34. Bieberbach-Eilenberg , 1 16' ,2 7' ,7 3 7' ,8 0 5 '8, 0 6 ' , 3 1 9 '4 ^ 3 r6' 0 5 ' 6 l l ' 7 4 4 , , 2 2 8 , 2 7 5 ' 4 l , [40, A60al 8 3 3 ,8 3 4 ,8 3 5 ,8 7 0 ,1 1 8 61' 2 8 8 ' , T35. Curvature,Level Curves
'786'
95' 533' 6 6 r , 6 6 3 ,7 3 1 , 7 3 2 , 7 3 4 ' - ] A1411 l2g,l0g, 247,255,?91' 1521' tM4. 1462,l5\7, i o : r , 1 1 0 41,1 3 8 , 1 2' 2l 273 l ' l4r; ,
StarlikeFunctions' T36. CoefficientBoundsfor 1 3 2 , 5 5 , 9 2 , 2 1 ' 1 , 2 3 5 ' ? 5 51071 ' 2 6',11',01i', ' 4 0 01073', ' , 4 3 01075 ' , 4 3' 11076', ' 5 5 21105' ',67'.1',846'888' 1022', 996' 986,990, 898,985, l 3 l 7' 1 2 6 7 ' l l ! 7 : i r s + ' 1 1 5 9 l' 2 l 5 ' 1 1 0 61, 1 0 71, 1 0.8l l 4 2 ' l l w ' , A91l 1427,1433,l44g,1504'15C6' Lemma(andgeneraliza'tions) T37. schwarZ's ' 14' 5 '?, 8 '5' ,8 i ' 6 9 4 8 l g l ' 3 2 0 ' 3 6 9 ' , a 8 1 l 0 ' 2 ' 1 , 2 1 , 4 3 , 8 ? , ? 8 ' [ 1 0 ,I g.r.r,956,964,96g,giz,ro'gg,lllg,'tlrg,ll82,1l83'1278'1341' 13661 ConvexFunctions' T38. CoefficientBoundsfor 1131' 1 2 1 7 , 2 3 5 , 2 5 5 , 2 6 1 ' - 3 4 91 '130555r-1435''A65 -'i'4o , 3o0' l' l,0473'11' ,1505'82l 'l ,2696' 0 ' 6 8 7 ' 8 5 9 ' , 8 8 8 ' 8 9 8 ,1 0 7,11 0 7 2 , 1 0 1 ; t' b z s ' A1401 , Ag2'All7' t142,ll4, 1222,-l3li 1340' 1132, on amplitudes' coefficients(restrictions T39. speciarconditionson the
TOPIC REFERENCES
I21
realcoefficients)' moduli,g&PS, 134,49,71,103,105,208,211,241'242',280'283'284'295',296' z g i , 3 2 g , 3 6 4 , 3 7 5 , 3 8 1 , 3 8 3 , 4 0 8g52',853 ' 4 1 6 ' 4 3859' 0 ' , 4861' 3 1 '888' , M 5901' ',562',563',566' ' 5, i28,'/98,804, 60j, 621,638,64i,C,'7 9?A,986,gg7,1020,1036,1038'1071',1120',1i33'1149'1152' 1 1 5 5 , 1 1 5 6 , 1 1 5 ? , 1 1 5 9 , 1 1 8 7 , 1 2 0 0 ' l 2 l l l' 41l232' 41 '4132061' ,54'3112'7 5 ' 1 2 E 4 ' l g, o ' l 3 8 l ' 1 4 0 3 ' 1 3 0 11, 3 0 ,9l i q g " 1 3 6 2 ' , 1 3 6r 8 Ag4',A98',All6j lML, 1497,A2l, xzz, A47,A86' T40. StarlikeIn OneDirection' 1430' ll42' t147,1166,1212,lzli , 1427, 1108, 1022,1028, [660, 1 4 3 3A, 1 2 1 1 T4i. ConvexIn OneDirection'
1142,ll4y'.,1155'
ll2g, ,301, 660,911'1022,I 105, 1522,Al 17,A1341 t235,238,257 1428, , i tse, llsi, 1160,1162,1212,1337
(
ConiectureI a"I T42. Bieberbach , 8 42' 0 5' , 2 0 7' ,2 4 2 '2, 4 6 ' a',5 7 , 7 7 , 8 1 , ! 1 7' 1 1 9 'I 2 2 ' 1 161,72,73,7 5I1' 495', 440',M5', ', 428',431', 363,373,38i' 407 247,267 ,268,269,' 788',793 , 73;' nd' 73g' ?80',?81', , 643,651 5l'l, 521,629,639 888' 869'882' "794', 862,863, g0g,g09,g33,g34,835,844,846:,852,,853, 1146' 1143 ', \129' 1142', 990;lw\', r1-06-', 903,906, g07,-934,984, 1187,1234,1245,1247,1248,1250'1255,',-1280',1317',t329',1349', 1368,1369,1374,137q1380,1425',1450',1479',1490'A7',Al7' Al05l nrt , A64,A76,A85,A91, A101' (p-valency)' T43. Radiusof Schlichtness i6,i,25'17'1'22't751!76'179'180'182'240'242'256'259'263' 3 3 0 , 3 4 8 , 3 5 1 , 3 5 4 , 5 0 0 , 5 0 2 ' 5 4 0 ' , 5 5682', 7 ' 5 5 8',' 7 , 552', 6 0791 ' , 5' -799 6 7'' , 5 6 3 ' 5 6 4 ' , 5 6 6 ' , 672',', 7-33 &l ',651; 637 ,Llg' 572,595, 568,570, ', 1000', gig' gqz',g70', 88;' 901' 916', ?75',997 800,804, 877,887, 1 0 0 9 , | 0 2 4 , 1 0 3 5 , 1 1 1 3 , , 1 1 3 9 , 1 1 55671 3,|221,1280,|3|2,|367,1369, ' A92' Al22' 1495,ti9g"A4E, A68, A'11 Articles' TM. SurveY 8 8 6 ,9 3 9 ' 403, 4ll' 514',115' 5 3 7, 6 1 8 , 8 6 4 , 23g, 126, 125, [1M, A ? A ,A 5 l , A 1 1 5 ,A 1 6 3 1400', g78,106;,!240,1241,1305'1331', (ChaPter6)l
-I
128
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T45. Odd Univslent Functions. 295, 296, 3M, 363, 137,49, 70, 75, 184, 207,208, 241,242, 268, 3 6 5 ,3 7 4 , ' 3 g g4,1 3 , 5 1 95, 5 7 , 5 6 15, 6 5 ,5 9 5 ,6 2 5 ,6 3 7 , 6 3 86, 4 1 ,6 7 5 , 72g, 733, 731,804, 812, 8M, 846,863,865, 888, 953, 967, 1022, 10811 , 1 4 0 ,1 1 4 ,1l l 4 7 , l l 4 g , 1 1 9 0 ,1 1 9 2 1, 1 9 3 , 1 1 9 4 , 1 1 9151, 9 8 , 1200,1233,1325,1340,1368,1370,1426,14501 T46. Angular Derivative, SphericalDerivative, Invariant Derivative. 6 4 7 ,6 4 8 , 6 5 0 , t 1 9 3, 2 5 0 , 2 5 1 , 2 5 2 , 3 0 83, 1 1 , 3 1 2 , 3 1 3 ,5 2 8 ,6 2 0 , 1278,1330, t409, 1410,1436,1438, 725,839, g4g, 1008, lw, 1445,1446,14g7,l1bi, 1469,A20, A72, A73, A162, A167l T47. Convolution (Faltung)of Functions 985, 1031,1063, u43, 145,22g, 230,278, 198,518,7 19,721,869, , l 1 , A 1 4 3 , A 1 4 4 ,A 1 6 0 ,A 1 6 4 1 1071 , 1 1 5 7 , 1 1 6 4 ,1 2 7 0 ,1 4 7 7A T48. SchlichtIn An Annulus. 1 24 , , 5 , 5 4 ,2 3 1 ,2 5 5 ,2 6 5 ,2 6 6 ,3 4 6 ,5 4 9 ,7 \ 4 , 7 1 8 , 1054,1432,1518,A2, A34,A40l
7 8 4 ,9 2 1 ,1 0 5 3 '
T4g. SpecialGeometry of the Mapping (such as k-fold symmetry)' 234,255,260,261' 133,34.40, 56, 57, 78, 106, 123,133,I 38, 221, 301,305,3C6,322,352,367,383,434,458,474,179,480,487,546, 562,566,570,572,573,577,578,579,580,587,588,589,ffi7, 625' 7 32,7 34,770, 778, 77g, 7 89,7 93, 795,7 96, 8 I 6, 8M, 932', 654,660, 941,950,976, g9g,1002,1M2,1043, 1049,1062,l07l , 1072,1093' , 4 f , i 61,4 3 0 ' 1 1 3 0 ,1 1 5 1 ,1 1 5 8 , 1 2 1 6 , l 2 l g , 1 2 . 1 5 , 1 3 4 51 ,3 8 1 , l ? 8 2 1 1 5 1 7 , A 7 4 , A 1 4 7 ,A l 5 8 l 1431 , I M g , 1 4 8 2 , 1 4 8 4 , 1 4 8 61, 4 9 4 , 1 4 9, 8 T50. coefficient Bcunds for p-valent Functions. | 4 8 , 9 2 , 1 3 52, 5 5, 2 6 | 3 0 5, 3 7 6 , 3 8 8 ,3 8 9 ,3 9 6 , 4 2 8 , 4 3 0 , 4 3 | , 4 4 5 , 4 9 6 , 5 0 5 ,5 7 6 ,5 7 g , 6 8 2 ,6 8 4 ,1 0 1 9 ,1 0 2 0 ,1 0 2 4 ,1 1 5 0 ,l l 5 l , l t 5 4 ' 1 1 5 8 ,i 1 5 9 , 1 2 1 5 , 1 4 2 7 ) T5l. Coefficient Boundsfor Typically-RealFunctions. 715,9Ci, 995', [55, l7O, 31), 374, 375, 413, 432, 436, 44i5,580, 1022,I140, ll4r' , ll47 , 1i49, 1152,I 158,I159. 1431, A^71
TOPIC REFERENCES
I29
Odd UnivatentFunctions'
T52. CoefficientBoundsfor 374,ql3' 5l?' 363,365, 304, 242' 241', 208, 84,207, I 11?9' 137,49,70, n4t, ll47, 1152, 1 0 8 1irad, ' l o 2 2 ' 8 6 5 , g M , 8 4 6 , 8 6 3 , bli, 1325,1368,1426,14501 1 2 o o 1233" ' 1tgi,11931 , 1 9 41, 1 9 51, 1 9 8 ' Grunsky T53. Faber Polynomials'
Coefficients
95'l', 571', 363',393',!16',485',554-', '569', 205,234,261, |342, |332, [141, ?61' |272,1286, t'zsg, l,zso,.|25s, 958.|02g,|24.7,1248, l4l5,l4gl,A27'A23'A55'A62'A69'Alt)O'Al14'Al42l
T 5 4 . C o e f f i c i e n t B o u n d s f o r t h e C l a1' s swith ( S ) ( t h e c=l a s0'' ^f o'(0) | f u n=c t i!o' n s " f ( z ) /(0) < in i le univalent and regular 1 7 2 , 7 5 . 1 0 7 , 1 ! ' 7 , 1 8 4 ' 2 0 5 ' 2 0 6 ' , 2 4 1 , '568'12?' , 2 4 2 ' 2 6619' ? ' , T651 ^ \ ' ,'654' 329',363',364' 407'qoi'iit' 51i '5-?l'567' 8'3'3' 365,394,400, 834',846'906' 7g3' 804'
- , ' 1 1 478g 4 , |loo'', 727 1190' ,728,7 40,755,i 6;"2g8', l l 4 6 ^ _ i i s o1, 1 5 41, 1 5 5 1' 1 8 9 ' 1 0 7 5 g 0 . 7 , g 51g0, 3 g , ' 2 0 31' 2 3 3 ' l' \ 2 1 ' r 1 9 8 '1 1 9 91' 2 0 0 1 l l 9 t 6 1 1 9 5 , 1 1 9 4 , lrgz,t193, 1381'1396' 137',7', rJz;"ills '13'!',137s'', "475', t234. 1250,1284, A46',A111',Al 19', 11431 l'479 ' A5:i' 145?, 1426,1450,
Fractions' T55. Continued 1 0 3 5A' 4 9 l t 9 1 3, 9 1 4 , 9 1 59,\ 6 ' T56.DistortionT.heoremsforFunctionsofPositiveRealPart. A31' A94] 1154'1320', [887, 1144,1147, T5T.UnivalencyoverRegionaotherthantheL]nitCircle [ 5 0 , 4 7 1 , 1 0 5 9 , 1 1 5 0 ' 1 2 ! 2A42', ' l 2 ]A1311 -1','1302',1303',1304',1363',1398', 1488,1489,Al8' A40' 148',7, (Jnivalent(p-valent)FuncMeromorphic Theorems for T5g. Distortion tions' 1 5 , ' t 3 , 7 4 , ' , l 5 , 7 6 ' 1 5 5 ' 2 0 9 ' ;44',595', 3 8 ? : 3 9 0697 ' , 3'709 9 5 '',712', , 3 9 ' ,8M', 7 : 4 0881', 0'404',407',408' 455 ',481',422,426'ili' 1333' 416,418, 1332', 1316' 131-3'' 1076,rosl' llzi', 118-;',nss', 921,1071, A1591 17 ' A35' Al ' A146' 148| ' ;;;; '-1513 1390' 1397,
130
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T59. Relsted Results from Analytic Function Theory. 8 4 '8 5 '96' [ 8 , 9 , 1 2 ,1 3 , 1 41, 5 , 1 71, 8 ,1 g , 2 7 , 5 9 , 6 2 , 6 6 ' ' 9 3 ' 9146' 9551 66' ' 1 6 3 1 6 0 , 1 6 2 , , l & ' l l 2 , l 1 3 , l l . 4 , l 1 5 1, 2 7, 1 5 3 ,I 5 4 , 1 5 9 , 2 2 5, 2 2 4 , 2 2 3 , , 22, , 9 0 |, 9 2 ,| g 5 ,2 | 0 , 2 | 4 ,2 | 9 , 2 2 0 2 , 881 1 8 5 ,1 8 7 1 232,2M, 245,248,24g,273, 276, 286,287,291,292,298,299,302, 332,334,340,343,3M, 345, 303,3|4,316,319,323,324,326,331, , 7 , M 9 ' 4 5 0 ' 4 5 1 '4 5 7 ' , 6 1 ,3 6 2 , 3 9 8n,2 , 4 2 5M 3 4 7 , 3 5 7 , 3 5385, 9 3 504,506'510'513' 464,466,486,4gl, 494,497,499,501, 45g,462:, , 8 2 .5 9 3 , , 4 8 , 5 5 55,5 6 5 , 2 g , 5 3 15,3 4 , 5 3 55,3 9 ,5 4 7 5 , 275 5205 , 255 649,657 ' 658' 632,633,634,635, 5g4,5g7 ,608,609,616,622,631, 695,699,701'702'7A4'706' 666,667,669,670, 671,688,689,690, ' 37', , 8 3 , 8 1 ,8 1 7 ,8 1 8 ,8 1 9 ,8 2 3 8 7 2 6 ,n 0 : ,7 4 A , 7 4 57,7 1 , 7 7 57,7 6 7 938' 871,878,895,900,9M, 905,920,930, 840,841,845,847,860, ggl, 1014, 101 3, 1012, 994, 992, g44,g4S:,948, 962,966,969,973, 1 0 4 5 , l M 7 , 1 0 5 21, 0 5 61, 0 6 0 , 1 0 4 0 , 1 0 3 9 , 1 0 1 5t,o i z , t 0 2 6 , 1 0 3 4 . 1084,1086,1087,1089,1096,1100, 1061,1065,1066,1074,1077, n34, 1135,1136,1137,1188,1204,1206,1223,1226, llll, 1126:, 1282' 1252,1261,1262,1264,1268,1269,1271, 1274,1277,1281, 1351' | 2 8 7, 1 ' 2 9 4| 2, ,g 7 ,1 3 1 11, 3 1 81, 3 2 | ,| 3 3 4 ,1 3 3 6|,3 M , 1 3 5 0 , 1 3 9 31, 4 1 1|I4, 2 2 ,| M i , 1 3 5,3| 3 5 4 . , 1 3,5 15 3 5 71, 3 5 9|,3 7 3 ,1 3 8 8 , , 7 0 ,| 4 7 2 ,| 4 7 3 , | # B , | 4 5 7 ,1 4 5 81, 4 6 0|,4 5 : - |, 4 6 5 ,| 4 6 6 , 1 4 6 8| 4 A50' | 4 1 5 ,| 4 g 2 ,| 4 g 3 , 1 5 2 5|,5 2 6 ,A 1 3 ,A 1 6 ,A l 9 , A 4 3 ,A M , A 154, A 1 5 3 , , I l 3 , A | 2 9 ,A | 3 2 , A 5 7 ,A 6 l , A 6 3 ,A 3 2 ,A ^ 8 4A, 1 1 2 A , 1 5 7 ,A 1 6 1 1 A i 5 5 ,A 1 5 6 A Domains' T60. UnivalentFunctionsin Multipty-Connected ' 72', 4 6 9 '4 7 0 '4 7 1 4 [ 1 ] , 3 9 , 4 5 , 4 7 , 2 7 7 , 3 2 0 , 3 7 7 , 3 8476,7 , 4 6 8 , 7 54, |0, 7 708, 473, 482,502,596,615, 6|7,691, 692,693,707, 477, g 2 7 , 9 6 39, 7 7 , 1 0 5 01' 0 7 81' ,0 8 0 ' , 7 6 9 , 8 1 58, 2 1 , 8 5 78,9 9 ,9 1 9 ,9 2 6 , , 1434,l4&', i08E, 1127,1128 , 1254,1298,1316,1343,1386,1387 A6, A40,A61,A151,Ll52l for BoundedFunctions' T61. DistortionTheorems 5 7 3 , 5 8 55, 9 0 ,5 9 1 ,& | ' 1 2 4 2 , 2 5 53,6 9 , 3 9 64,| 2 , 4 8 2 , 5 0 55, 3 2 , ||M, 7 5 8 ,7 5 g , 7 6 0 , 8 2 6 , 8 6976,5 , 1 0 5, 1| c 9 7 ,1 0 9 8|,| 0 2 , 1 1 0,3 1172,11913 , i 3 ,1 3 4 81, 3 9 0 \, 4 5 6 ,A 2 5 ,A l 3 0 l T62. BoundaryBehavictrof univalentFunctionsg, 3I 8, 341'342'346',348', [23,178, 221,236,237,253,27 308,3!7,
TOPIC REFERENCES
ral
5 1 1 , 5 2 2 , 6 1 3 , 6 5 5 , 7 0 0 , 7 5 7 ' , 81280' 7 2 ' , 81343' ? 3 ' 81408' 7 4 ' , 8i410' 7 5 ' ,1486' !044',1079',1115', l27g' 1r16, llz4,l l43, 1146,lnz: A8l generalizaStarlike Fttnctions(inciuding for Tkeorenis Tb3. Drsrcrtion tions of starlikeness)'
6-1',7 ' 353'356,431,134,661, ,26A1?61',282', 157,255,258 142, 1154, 192, , ll4y' , ll4'7, 10]6'1108 1071 ' 1073', 896,-8g;,953, 716,853, A37' A38' A ?1 , A 9 1 ,A 1 2 1 1 l4g4' 1267,1340, 142:7,l'Ui}'
T64. Distortion Thet'remsfor tions of convexitY)'
C onvex Functions
(includir'g general\za-
661' 356,383,431,453':19' 355, 261, 255, 247 e63' ?9?' u 18, 142, , ;;i; 884;8e6,8s7,eoe'es3'A65 766' 762' jt6, 76r, iz3, ' ;8r,' 1510' ;;6, t43s' 148l, 1494, 144' r o l i , 1 0 9 51, 1 0 8 ,11 31 , 1 A67,A78,All7l
p-valent Functions' T55. Distortion Theoremsfor 75 60 85 '733'','73 1 4 8 , g 2 , 1 5 ? , 1 g ' 7 , 2 4 6 ' 2 5 5 ' 2 5 8 ' , 2 6 . :6 2 8 32 ''6, 8 34 7 '56'9, 3 6' ,36',7'3'76',, ';tt' 3 8 8 , 3 8 9 ,4 1 i , 5 0 5 ' 5 0 1 : ; M ' e w ' € 8 0A38l 1435', A37' 115C,rrsr',-l'154,1427' T66.DistortionTheoremsforTypicalty-RealFunctions. [4,170,375,413,415'427',436'626',858',953',1053',!125',1144', ll47 , ll4g, 1427,A41l odd univalent Functions' T67. Distortion Theoremsfor 1340',14261 557'733'804"953' 1147', 75,3gg,519' ?0, [49, the C/ass(S)' T68. Distortion Theoremsfor 383' 234',246',2!',281'306', 142:156', 71,'75,79,118' 68, 507' 500', 164,65,
415',453',115'484' 400', 394,ly)j,-igg', 19;', 828'833' 385,386,390, 826',', 7g3:'q04' 7ll"1za"74z|;l',zae', 599" g5g 557 ,558,559, ' 989'1006' gggg\z' 940'951 1 852';;;'g0o' 846, 834,835, 118e'r22s' rrl?:-1175', 11s+', n4',6;,1t.t^g' n;;, , 1008,1030,1051 11431 " 1426', 1425', 1339 1280, ,l3'14'1375'1396',
h-
I32
BTBLIOGRAPHYOF SCHLICHT FUNCTIONS
Corrections in the bibriographyindicatingdupliFollowing is a rist of references cationsor translationsof the samepapers'
Reference 389 426 476 559 565 s66 568 702 708 806 850 1145 r260 i292 1497
sameas
Reference 388 422 475 558 561 :62 567 70r 7M 805 848
rr43 I258 1289 2lr
ce 287: Erzohi should be Ezrohi Notes (a) R.eferen is sarneauthor as Lowner' K . Co)Reference869: Loewner, C.
^l
CONTENTS
133
BIBLIOGRAPFIYOF SCHLICHT FLINCTIONS PART II (1966-1975)
CONTENTS Preface BibliograPhY Topic References' 1966 T a b l el . R e f e r e n c e s P r i o r t o f : 1 t Year 1976 Table 2. Refertnttt in
t34 137 254 270
27r 27r P:!ltthtg*1tJ"":il;; Referen-ct: :' :'': . : . : : : : 27r rablel. Numitt "r (MR)Numbers Review
;ili:i. #r"iTddiil; vratt'. Correcilons
..::....
273
134
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
PREFACE
of univalent (Schlicht)funcThe first extensivebibliography in the field 1966.It is titled Bibliography tions was publisheciby this *rit., in May lviaihematicalSciences,New of schlicht Functions [courant Institute oi 41-019' IMM 351 (1966) York University, TechnicalReport I'lo' NRO to it as BibliograpiryI. Bibliix* 157pp.; MR i4 #zg4gj. w; shall rcfer the years 1907 (when the ogiaphy I connins i6g4 referencescovering the year 1965' and infirst substantialresultswere published)through papersappeared in 220mathemacludesthe work of 570 aurhorswhose of Schlichtfunctionsare' tical journais. Ttre variousresultsin the theory and cross-indexlistingsare in BiblicgraphyI, classifiedinto 6g subtopics Thus, eachsubtopicis followed given betweenreferencesand subtopics' 'ro that subtopic' and conversely' by a list of those referencespertaining subtopics dealt with in that forowing each referenceis a list of those reference.
PREFACE
135
to. Brbliograp'y i by individual reception The favorabre _given and industrial sutdcnts,oniu.rJiv iiuiuties, graduate mathematicians, *riter tt continuethe Oaborious) researchlaboratoriesencoururJ,his andcatarogr,ring the periodicflow rrurrTir.afion topic rea,.ling, effo'ts have collection, th: past tc,, yeais.These d,rring papers research of schlicht of new of the pr.r.ni Bibliography culminatedwith the publication as BibliographyII' we refer srrbslq,rently part which to II, of 523 Functions, refer.n..=rtothe publications 1563 contalns II Bibliography journalsandpublistring in 200mathernatical apeareci have which authors England'Germany'France' lnitr. u.s.e., tne ioviet Union, many symccmpanies other countries.It includes many in and China, technical Japan, dissertations,abstracts, univalent posiums, colioquiums,"o,,g,.,,.,, of f,ool,, dealing*i'tt the-theory reports,t..trrr.Ior.r, and o1^ *ole and mlltiply-connected (Schlicht)and multival.n, .uoping, 1966through r975' somepapers vJurr in domains.This survey.ou.rr-rrr. and which were not includedthe tieo rhe to v"i prior pubrished publishedin in Tabrer. Somepapers riri.a now y are i Bibriograpt
havebeen functions v.u' rs76"'.jlT11J;l:1lti;; theory of schricht sixty-eight
The first in BibliographyII, into nil:ll,uuiopits' I' The additionalsubclassifred, sameasin Bibli;;;aphy place9utof thesesubtt,picsaretrre or emphai, ittut rravetaKen deverop-.nr, n.* topicsreflect listingsareglven I, cross-index Bibliography o;i" years. ilexamples ing the our,'i* rt.,,, ittt rouowingtwo ,uuiopi.r. and references between of the Bibliography' of Schlicht lustratcthe principaluse firt';'Juau*ard products tiiot f Refer.n.. S' Examplel. by Ruscheweyh' ;;;;lt"' p6lya-Sctoenberg Math' functionsand the commen'+-' rhis r. ;;; is to paper andshe'-Smar, "nn.{i.^jii:i{':::,11i t:"tt*.of this 11_1-13:..A p"L.r s1\, year 4g, Helv.,votume (MR) of the AmericanMathenraticai nl"i.*, Niathematical 2' 4' in be found rhelnrr*bt's in bracketsll' olgt. * revi.* 4g, subSociety,Volume .onrui"u inrotmationregarding 6al indicatethat ,iri, pup., tovicsr t J4 inrerestedin Bieberbach-Eilenberg ]oi;;;.;].T;T : as T34' The will find;;i; subtopiclisted regarding relared.r"*.rl (or funcrions thatinformation rg,'.".-.', r493rinoi.ut" is a paper by bracketedreferences in i.r.l.-n* t9r rvhich iouna be may this subtopic paperby volgnec' fi+gil wtricnis a . ' ';tft"ntt A" Dov' Aharonov, I. A. into subtopicswasbased rcferences various the of the The crassification r.r'-rengthpapers),and for reprints tor reading on a deta'ed "i'g5
136
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
reviews' or of their(brief) abstractsor remainingreferenceson a reading authors' Therefore' in fairnessto the (in a few cases)from the titles ""rv' complete the do not alwaysindicate we emphasizeitru, the crassifications
eshavei:'::i::-': :l::1TT.j",:, enc " "1 ::Jl;ri#:T rhererer fall simply did not ?;; infornration or the contents
either to lack of avaitable the ninety subtopics' within the fixeOframework of T h e r e f e r e n c e s i n c l u d e | 5 2 a b s t r a c t s . S o perhaps m e o f t h under e s e w ea rdifenever published been have may others pubrishedin fu', have appeared while others are too recentto co-authorship, or titre ferent no Math' Review(MR) numhers' in full. Abstracts,of course''have have referenceswhich ate not abstracts One hundred and thirtylt*o notes, dissertatutuny of them are recture no Math. Review numbers'. published' or too reports' papers not yet special anO technicat tions, in the Reviews' recently puUtisttedfor inclusion published nature to cover everypaper It is difficult in a work of this omissions are functions' Reasons for on the subject of Schlicht ingo*.uer, it is felt that this bibliographydoes numerousand varied. yearsfollowing p*blications during the ten cluclea major portion of the
sutdents' theaidgivenmebv twograduate mein "totti;#o.lJ,,i; acknowledge assisted who Elmasriuriaur. AnthonyDiNardo, looking up MR' Mr. Mohammed papers' of
hundreds locating lournals, photocfoyi"s clerical tasks' referencesand nulnerous other Igivemanythanksalstltothemostcooperativepersonnelofthead. of library of the courant Insfitute of mirably stocked mathematicsyork university, and to the Director New at Sciences Mathematicar my sincere plsfsssor Peter Lax' Finally' I wish to-express the Institute, of south w. Goodman of the university e. Professor to appreciation cemplete this during the past ten years to Florida who encouragedme brbliograPhY' S. D' Bernardi March 1977
BIBLIOGRAPHY OF
(PART II) SCHLICHT FUNCTIONS
137
BIBLIOGRAPHY OF SCHLICHTFUNCTIONS (PART II)
l.Abe,H.onmeromorphicandcircumferentially-y:onunivalent function,.l.Math.Soc.lupun16(1964),1+z-lsl;MR31#238.7.|9,
in ctass of theBazitevic Functions A. . L Aksent,ev, o z. i^;Ji;,3i]u. ;
thediscandinanannulus.(Russian)D o k ! . lDokl' k l d N a15(1974)' ukSSSr 50 $+eg. [SovietMath' 2t4(1g74),24t-244;MR
,. f;,1?;
tii*xt.,
andreat-vatued comptex between A controst
Taytorseries.J.Austral.Math.Soc.l8(1vi+1,458-460;MR51 of power series(Ruson convotutions theorems certain f:,ij;,"rl] -. fuut uzSSRSer' Fiz'-Mat' Akad. Summarv).-tzv. sian.uzbek 10' 22' 471 no' 5' 5-lit ftf* 33 #5902'lI' Nauk9(1965), conformsl of the *ri,i of uniylleil qurrrion, certain H. 5. Acilov, mappings.(Russian.UzbekSummary)Izv.Aiad.NaukUzSSRSer. no' 5' 3-9; MR 34 #2848't4l Fiz.-Mat.Nauk 10(19d;
138
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
on an areally mean p-valent function' 6. Aharonov, Dov. A remark IsraelJ. Math' 6(1968)'I19-120' [33] Haymon. of Cartwright, Spencerand 7. Aharonov, Dov . The theoremgig)' ' #4377 t33l MR 3e
Math'soc iiliir J. London
\?-1t6;conditionfor univalence g. Aharonov,Dov. A *rr;;;;;; and,sufficient ofomeromorphicfunction.o,,t..Math.J.36(1969),599_604;MR 3 ,U 4 0# 2 8 6 5 . 1 4 , 9 of o theoremof Jenkins'Math' g. Aharonov,Dov. A generalization 34'861 ' ze\t.r rotiqiql, zt8-zz2;MR40#325'127
l0.Aharonov,Dov.Anoteonslitmappings.Bull.Amer.Math.Soc.
' [531 i:e -839;MR 4r #3725' 7s(l96e), Func*ons. Bull., . on BieberbachE,enberg
r 1. Aharonov, Dov A . N I . S . , 7 6 ( 1 9 7 0 ) , 1 0 1 - 1 0 4 ; M R 4 l # conjccture l g g 4 ' 1 3 4for ' 8 6a' 8certoin 71 prool-iy'rn, Bieberboch . Dov rz. Aharonov, J. of Math. 8(1970),102-lM; fun,ctions.Israel of univalent class MR 42 #486.139,421 of for univalence conditions of necessary 43 13. Aharonov,Dov. sequence puke Math. l. :g(r 97l), 595-598;MR function meromorphic #5015. t31, 53, 541 , . : ^ ^ r - . - n f n r f r t n r - t i n / t sw itl a for functionswith conjecture Bierberbach the on . Dov 14. Aharonov, Journa!of M;th. IS, no. 2(1973), smallsecondcoeffic:ent.Israel l3'7-t39;MR 48 #520'142'541 Duke of flnllions snd relatedclasses' 15. Aharonov,Dov. on pairi 8 6 4 7 # 8 8 3 7|.2 , 2 | , 2 6 , 3 4 , ,8 7 ] M R g 7 3 ) , e a o l o ; 4 0 ( l J . Math. with the s' ott an inequalityconnected 16. Aharonov,Dov.; Friedland, coefficientconjectureforfuncti\,:ofbouna:d.|:undoryrotation. Ann.Acad.Sci.Fenn.s.,.A.I.rvrutt'.,flc.524(|972),|4pp.u,1|, 'larY 771;MR 48 #519 ^ ,\, :,.-^tinnooj ,,f baunded h, bouna on S. functions pp' |7 . Aharonov, D,; Friedland, Ai Mat' no' 585(1974)'18 ser' Fenn' Sci. rotation Ann. Acad'
w' E.1'*:'!oo,:{,1#:"::;::ion'ar'c 18.lll'*"""v, Dov;Kirwan' applications.I.Trans.Amer.Math.Soc.163(1g72),369_377;l'{R 4 5 # 5 1 6 .[ 1g , 2 4 , 3 4 ' 3 5 ] lg.Aharonov,Dov;Kirwan,w'E'Amethodo'fsymmetrizationana ttpplications.Il.Trans.Amer'vratt','Soc'169(1g'72)'279-291;MR
19,241 47#2CA2.u6, 4|r c l a s s e s o l z o . A h a r o n o v , D o v ; K i r w a n , wMath. . E . C zittgl3), o v e r i n g4|2-4119; theorem sfo MR
yniyqie,i;fimction,. Ca,,ad.J. qoo. #2M1.[6, 10, 19] betweenthe coefficientsazand inequatity An v. Lars Ahlfors, 21.
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTII)139
certain problemsof Mathernatics a univarentfunctio;:. (Russian). r'Aut' "Nauka"' Leningrad' ;;.-'l(l+' and Mechanics(Russian;,
s; topics in geometricfunuicn nt r i u v s n i r ila ti "Jt .ttij,;ii zz. f;$;x
t l r c o r y . M c G r a w . H i l l S e r i e s i n l { i g h e r M a t h e n r a t|973. i c s . MIX c G+r a157 w-Hiii York-Dusseldorf-Johannesburg, New Book Co.,
,r.
oJnir}l
:.#\t);,),ii),
functionswithquasiconfor.ma.t onschticht Analysis
the sympl'ium on connplex extensions.proceedingsof LondonMath' Scc' Leclgtl)' Canterbu'L P-p'1-t0' (Univ. Kettt, London' 1974' '.urcNoiesSer'' No' I ; C^^;'*t^t }Jdu' Press' to Jf tn, principteof theergumeni p-.A, L. 24.rrkserrr,ev, Vtss Ucebn' "io,tl.-": f Jl' the study of univatrnr'['conditiont. l-rs; MR 39 #7078'[28',57] ;",.12 (7g)., tqig, "1Rt'ssian; theargumentto zaved.Marematika i theprincinleof oip'titirion An A. L. Aksent,eV, Ucebn' 25. tnustiu") yu' vvss' univatrnr{rinrditioni.lt' of the study MR 39 #7079'[28' 57] atika 19'6;'no't (Sa' l-tS; ZavedI'4aterT of inverseboundaryvalue sor,.,abitity u"niror*tt The A. L. 10(1973), 26.Aksent,ev, Sem. Kraev. ZadacamVyp. problems.(Russian)r,ujv ll-24; ivIR 5C#619' 14' 621 funcof univalent closs L' A'; AvhuAit"'F' G' A certain 10 no' . Aksent'eV, 1970' 2'7 u..u1, zaved.Matematika v;r. Izv tions.(Russian) ' [4' 9l (101), 12-20;MR 43 #7607 crite,' critens r],',t V'P v p ' Univalence Univalence V' N'; Uittu' Caidut' A'; L' 28.Aksent'ev,
f o r n - s y m m e f t i c T u " t i o n ' ' G u s sMR i a n )50 I z#4922' v ' V I : Ut4j cebn'Zaved' Matematikarg74,no.+ir+3),'3-13; for a special polynomials of Faber The S. fi. Zg.At-Amiri, l, issueno. 103, ")potii' Math. Soc.,uoi. t5, no. e*.i. Notice,, '1968. .function. .' t53l p ' 145(Abstract) Jun.rurf of order ot. on p.clo,,.,o.,tor functions S. Ha,soon, AI-Amiri, 30. [6',10' 11' 10j-108;MR 43/,'.l608' proc. Amer.Math. il. 29(1911),
o{"::o,t:!::,tJ:{X!'fr{i.'ri';:" ontheradiu' ,,. f,:f?;,ffl"..,25(tg72),Fasc. r, pp.lis-tzo;^rvrn 46#341'122'431 coiloq. Math funco-fuiiuorenceof certainonarytic # 6383' 4 8 32. AI_Amiri,H. s. on thi'iadius M R j g t f g : R ) ' fu " ' 1 ' p p ' 1 3 3 - t 3 9 ; t i o n s . C o l l o qM' a t h '
or runctions orstartike s-convexitv ,t ,, Kil; l?,,'I;Jt;f!;l?;i,X, MR 47 #445' proc. Math. Soc.iqtrgz:1,101-t09; ordera.
Amer.
anatvtic of certain ofstortikeness radius the o, l"lli,?;ir1,ru3l 34.K;
140
SCHLICHT FUNCTIONS BIBLIOGRAPHY OF ,t
functions.Proc.Amer.Math.Soc.42(|974),466-474;MR48#8768.
':"': Roura(ius ?t ffi'{*' fi-1,,:i,lt;it; 3r. ,o!.:::":".?l',i'nr2' < ,',!i 1' Rev' in the circuro,,rgion',- lzl : MR functions univarent [i2,69]; trq'sl, "o.8,863-868. m a i n eM a t h .P u r e so o o i . t i o l 52 #719.
H.S.; Reade, Monatsh llaxwef P.'.-?,1,:.:'':,::":;f:.'iiffi"fl 36Al-Amiri, orent runctions' iiii#r"'"i,:v' ii"ii; !l,if#;,1;,|;;nc' 4 -264,'.1:'J
' .257 *"i:L{,:,o,,n12':,!;::r:i:'{';;{ ?;; T l *;.1'T :{rfr 37Xff'l';l.K' " " 4 #; :,*'# i;'*:1filJ;,it ;:|5,\i?ff',*ii,l": "'1,*; oi{ii,;?ill;$li; -38; ill'i;iLliiiiililT""'#ii')vi"1i1;'{;1*'f -vru,. t75(ts6q,2e 38. . .h {J'",1. M :' K llll"r";i;*ii'IT" Math.80(l975),
il$'
(Russian) of Functionats o.fstsre.ms ronge Vyp' 3' 59-70; ,n. X,tul'u*:::,J11 !!te. Univ."i.'r.t i.h'-ftfu'' tgZ(lqeS)' TrudyTomsk.Gos.
holomorphic N{R 33 #7514' r, \r fnmilv of holomorPhic' V' Aa family O'; Baranova' V' and 40. Aleksandrov, I' iuoltlnian' English ,r**rri
a shift functionswith univatent Ukrain' RSR SerA Xa''^f'^ p"p""iAi fk'i9 Russian'u**u'ies)' ' t49l 46#5591 *l Russrun ,4j5t rglz,lszj;o V' V'; Kufarev' P' O'
Chernikov' MoS article 4l.Aleksandrov,I' A'; no. +; emer. Math. Soc., zo,diiol, vol Surveys, Math.
' tfl' cirulai,slll or.I'*'lTJ"?; l; formula' (Russian) o "t:;, having "::::fni'*:;:'K:'f functtois analytic of [Enelish "'u"'ral Mi 33#5e00 iosirqesi,qij-eso; sssn Nauk eiaa. 6'13',241 2' Dokt. u' Math.n"ii. oitgos),1;11-15351' probtemsfor transl.Soviet itii:"ii'rtii' v' Ja' Extremat (Rts:ian) A'; I' 4S.Aleksandrov' fornt'la' o Tuniticishaving "'u"ural of anatyttc 1l l-122;MR closses isq(tgOO)' Met''-vf"i' Ser. U"i". Gos. Tt,nst<. Trr-rciy classes
'SiUi'lt' i i llg""*'ol' MR 'Lt;' oo'J,ffi :L,'?:I:i*;''r',":r?8::',:{;,'':" rnru''Z' 7(1966)'3-22; functionr.tilri*i",tj tu-convex
Akad' Nauk ,r.I,JfiJ"l'Lt;'u'''T'"3iu'^"'kil,v,Ja;3:"X?f{{;::':IJ furrciicn.,-jqo"ian).Dokl' univateni of the theory r!:"'ir!'}" orvatues or y'"'n *:{"*X;q the ,.'fffi"**:"? f'ncilons of of coe'fficien-': coisistine ?f polynomialexpressions Univ' Stt' Mch'-Mat' i"'Oy
or E' (Russ"D T"*tul'bo'' ciassesS ' 124'291 30 #4925 nuti li-igt z' 175(l96+),vvp'
j
BIBLIOGRAPHY
OF SCHLICHT FUNCTIONS
(PART IT)
l4l
l' A:;K^onan'ev: :;i:';:':fr':':; i-; i; rf!r#Xi";:: 447.Aleksandrov' 68] nt r,nn,zztvs,4e, -r ^ j ,.;1i;it ttl trj.lffi,,{,ft1:[",f,!;:';ii;,q:,;1il;; '':*::::'::;'"illii'y::'{.'J; Areksana'u' 46 48 ,17"?,'lluiiT!{[{:;;+,un tzst.' Miqtg _, of bouna. ii coefficients iil,first ffi .1". andRus;. o., *,i".u";,; 49.Aleksanu,"", functi.ot iliiuiniun'-Bttelish nsx Ser'A 1973' ed hotoiorphic,*iuoiri xai;il;;1t' Dop""iii'e,tao. siansummaries)
*'t'.3J,':: :itrx:,{:;';^;!;i" ,,hjfl#*i Kit;'"li:ftl MR46#5600' o ,r'i;;:it8 ' 283; Dopo-vjai summaries) i"rr*r ull- Rtssian Trrrctionr.(ukrarnr"* nJriT., Akad.Nuui.ukrain. of I' E' o.f^:'.:l':,',',,,Ji o^problem oJ of solufion Solution u, 571 i --. r A';-Iopou' I. v. inurcurves(R l' A pooov.V"I' 51. Aleksandrov' v' Koiickiionstor-iotito t'i"I':vel andG' 30#!202'16'71 Bazitevic
Mat.i.'iir'gisl, to-iit'no* siuirsr,. sian).
52eleksana,oy* l* 13-20(1972); ' (Russtan' f uncfions s.., . u"i\'-'i irqoszT')' Mariaecurie-skroao*Ju MR 50#sez'l24l ""Jij'*rrffiltrJffl{|*'iiil.'"lii" SibirskMat'
53.Aleksandrcv'1'A.ifonova'G"AExtremalpropertiesofunivalent rJ'*tti' reql' offi1l ",^tllssian) horomorphicfunc,,9
sssR i??,:r'"1{f:*'i:;:,:;;,"z",hecurva, ;"-11'Akad'Nauk#2027 ,_iJf,t:j3;lf (RliJ*J' ' sp MR 46 on tne'rta$ Ievetcurves 43,4?1 ,iii|g,il,tr:"*ztiotrgl])'lii; 267269'".rr"rr'*. [6, |0,,29,35,certutn zo3(rg.t'), :lbjioa D?H. for nii'*oJ problems tsovietl(iatt'. o'''solort"'']t'f, '' t!,e.larf-ptane'-(Russian) 55.Aleksandrov' thatareuniv'oir"i"-ii qe#1e88 ' 124'571 of functions i crasses igt-'o?i* 'iti''lol' the'variational on extendingukrain'Mat' '' so,/;r.in.'n. S. c'onnected
r ' xu,o"vto-i-iuttiptv -r2r0; u. G. 7 of risttqorl'tzot "ii method N;;il'stsn ;;il.'ema'^ region(Russian) MR36#r626t"'#Jn;;;;;i''souiJtM;;'ootci"s(1e6?)'e80-e841 of theFifth
56. '{el'-sandrov,t- ii",ri,
I
I
" [24, 601 r A' 62 participants)'lyceedings lr:r:tot:1::i". .participants).(Univ. et al (62 l' { er Mariae C,rri.5T.Ateksandrov' r,n,iion'., i)ityii, pp' Ann' univ' Con.ference on.. et"'i' tlro;' iot #t0s62'
4s snoao*ska''"o"n''i+-22 ;;;tr goi/t'x lnn s..t.Tl Mariaecurie-SkroJo*rr.u t44l
53.etenicyn,Ju.E.Univalentfunctionswithoutcommonvaluesina
-=-I
t42
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
contemporary Problems in muttipty connectedregion (Russian)' Conf., Erevan, 1965(Russian)' Theory Anal. Functions. Internat. pp.9_11;MR35#55q7lDokl.NaukSSSR11167,9_ll;MR33#7515}.
59. ffJf$",
in a vatues functionswithoutcommon Ju.E. on univarent
m u t t i p l y c o n n e c t e d d o n t a i n . ( R u s s i a n ) D o k l . A k Soviet a d . N aMath' ukSSSR translation: 167(l 966),9-11;MR 33 #1Yj. tpnglish Dokl. 7(1966),305-3071'122'261 vtithout common valuesin a 60. Alenicyn, lu.'f,. Univaleit functions (Russian) Trudy Mat' Inst' steklov' muttiply connected domaiin". Akad. }iauk SSSR|67(|966), 94(1968) ,4-|8; MR 37 #|57g.[Dokl. of the GeometricTheoryof 9-11; MR 33 #7515},lBook: Problems ' Functions,An:er' Math' Soc' 19691 126l proceedings of itt. Steklov Institute of 61. Alenicyn, Ju. E. problems of the geometric Mathematics,No. 94(1968):Extremal E. Alenicyn.Translatedfrom the theory of irnctions. Edited by Ju. RussianbyA.Yablon,kv;A-,,.Math.Sco.,Providence,R.I. 1969.VI + 167PP'; MR 39 #2963'[44] of areosfor functions which are 62. Alenicyn, Ju. E. Sornetheorerns a n a l y t i c i n f i n i t e l y c o n n e c t e d d o m a i n . D o k l . A k 115-419]; a d . N a u k MR S S Sa8 R209 1a(1913), Math.-Dokladv SZi-sz+. lsoviet (1973), # 2 3 7 2 , # 1 1 4 6 ? . 1 2 7t
? , -r-.a:^{ .,nn!t^v,o uti t' analy-ticfunciions with thecrems for areq Certoin E. Ju. 63. Alenicyn, Mat' Sb' (N'S') 94(136) quasiconformal contin'utation.(Russiani' S S S R2 | 5 ( | 9 7 4 . )|,0 2 5 ( | 9 7 4 ) , 1 1 4 -| 2 5 , 1 6 0 ; D o k l . A k a d . N a u k
1028;MR 5| #3432'lrsl
of the G. V.; et al' Extremal problems 64. Alenicyn, Ju.E.; Kuz*inu, geometrictheor,ofJuticticnsofgcomplex,,ariable.Consultants Rus[Translatedfrom the Bureatr,New york, 1g74, pp. iu-ll7 6l; MR 50 #581' t4l sian. J. SovietMath '2(lg74t' no' aiid .l .Y . The curvaturecJ"leve!citrves 65. Aleksandrov,I. A.; sobole', the of conJormal mappings their orthogonal traiectories in certain 2.26(ig74), 510-516, 574' 135' hatf ptane. (Russian).ukrain. Mat. 571;MR 50 #4919 starlike schtichtfunctions' J' I'ondon 66. Anderso,l, J. M. A note on M a t h . S o c . 4 0 ( 1 9 6 5 ) , 7 1 3 - 7 1 8 ; M R 3 2 # 2 0 3 ' 1 6 ' 6 2 1 theorem' t'orollarl' of Teichmuller's 67. Antonjuk, G. K. A certain (Russian).Proc.Sixthlnteruniv.Sci.Conf.ofth eFarEaston Differential and Integral EquaPhysics and Mathematics, Vol. 3; Gos. Ped. Inst. Khabarovsk, ticns. (Russian),pp . |4-|g.Habarovsk. 1957;MR 4l #3744't54l , ? r ,.,- -t^...^r-: ^n) Zlotkie. Ttntl' gnd resultof Lewandowsk; certain a on K. . G Antonjuk, 68.
l*
BIBLIOGRAPHY
OF SCHLICHT FUNCTIONS
(PART II)
i43
wicz.(Russian).Trud.Tomsk.Gos.Univ.Ser.Meh..Mat.210(1969)'
in t:':r^;,!,;i"i;']?lr"?:!{"nctions thatareextremat
.r i;"*,1;
m''i'il;ii"il*' the coefficieittproble
Ucen' fr tuu*ot' Gos'Univ'
(Abstract no' 95' January196? ,,'fij*jnR:tii:,':yh,:iii,'{,i,artikerunc,ionsorovd issue f ti-'t"' ' Vol e' ft'f' S' Notices 642-111)'t6, 361 Dokl' T l . A v h a c l i e v , F ' G ' O n s u f f i c i e n 'oU'J' ' ? o ! , !i'LArc^''^ , ' ' ' , i o n s f o(Russian) r t h e u n i vlvlath' alenceofthe so'iet #rs82; 4r solutionsoI inverse ^iuunao'y ftR int:+s8;
Akad.NaulsssR rri(t;;;;i
tic runctio:' oranat; no' rqz0' 11(102)' i;iiri'i;"olln" ,, ?lliH*t'::#,!l; zur"a'il;;ffii"" u..i". vy:*. (Russian)'rzv.
se-! cto ild "''"^;;i:{r:{,ff{.'' Y!;1W ii!"""t ,, i;#li1 intesralrepresentotio'ii'rt'rutr'Z^^"j1r21Ol'581-592;MR44 of univolence #4|g1.lMath.Notes,iiniol,jso.liile"grishtrarrslationJ.t'21 tir'riois problem ona *iiL /i, on Sem'Kraev' G. .74.Avhadiev, . F i*;tti""l3rudv problet;: in inverseboundor,1"tute 50#618'[62'68] t:to'
in nonconvex vvp' 10qniiii Y'1 ri, uiiuarence zadcam' rir^t'iinaitt"rt sy .r5.Avhadiev, i. c. _
domains'(Russiatlii'i*rt'rnru''''"i\(l'l4)'963-971'1180;MRs0
u":Hu.l' '2:^I:,J'i|'ffii'i! #:";' t a'luffi':Y:^:::1",fli ,u maPPIng conformal for the ?93-802.[41 Sufficient-conditions A' L' G'; Aksent'ev' Dokl' Akad' Nauk 77.Avhadiev, F'
of onoty'ii,irrryyoll.^e#i1p univ'renci:e
,,
insur. iple pr inc \'}i;}ii:?:,.n 'SSR f:,{':}li*1,: fiiSl,Pi q"T' etao' Nauk e347i, un',ence'Gi$;;j Dokl'14(19?3)' ficiei'conditions #4288;5;;ilVath' oa 2rr0e7r,rs-22r'nrn31' 71-l 16, ,tn.'(| ,-i, +,5, 9,,
onsufficient results fttndqfttental
TslJ#iH;,ni,i:i;::n;!"fi;:i;i:il';';;"t*"*ianiiJs
onvex ctose-to-c or K]';-":# Izv' vyss' :'i:n (Russian) -. Xll"il#:S:3#:li# 'oii' p'oarc*'' '14' bounda'y to inverse MR3T#424't 3-r0; r-gog,'f,ileir:), ucebn.zaved.nn"r*"rir.u Istanbul (Turkish summary) sl functioHs.
functions
g 1. Ayirtmar, N . on univsrent
i;--*
r44
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
univ. Fen. Fak. Mec. Ser. A28 (1963),9-17; MR 34 #7785.t8l 82. Babenko, K. L A contribution to the theory of the secondvariation of functionals on the clsssS of univalent functions. Soviet Math. MR 45 #3690a.[Zal Dokl. l1(1970),no.4, pp. 1037-1041; of extremalproblemsfor theory the of aspects 8 3 . Babenko, K. I . Some univalentfunctions of classS. SovietMath. Dokl., Vol. 1l(1970)' no. 5, pp. 1141-1144MR 45 #3690b.1241 84. Babenko, K. I. On the structure of the cocfficient-domain for univalentfunctions of c/asss. Soviet Math. Dokl., vol. 1l(1970), MR 45 #3690c.[24] no. 5, pp. 1170-1173: of extremalproblemsfor univalentfunc' theory The K. I . 8 5 . Babcnko, of the SteklovInstituteof Mathematics, tions of classS. Proceedings No. 101 (1972).Translatedfrom the Russianby J. W. Noonan. Amer'.Math. Soc., Providence,R. I., 1975.III + 327 pp.; MR 51 #8397. [441 86. Baernstein,Albert, II. Someextremalproblemsfor univqlentfunc' tions, hormonic measures,and subharmonicfurtctions. Proceedings of the Symposiumon Complex Analysis (Univ. Kent, Canterbury 1973),pp. 11-15.London Math. Soc. LectureNote Ser.,No. 12, cambridge Univ. Press,London, 1974.Wal; MR 52 #59M, #843C, #9207 87. Baernstein,Albert, II. Integral meons, univclent functions ar"d cir139-169.U , 3, 16,U, cular symmetrization.Acta Math. 133(1974), 421 88. Bahtin, O. K. Certain extremttlproblems in conformal mapping. (Russian)Ukrain. Mat. 26(1974),517-522, 574; MR 50 #13490. [34,60] 89. Bahtina, G. P . A certain extremntproblem on the conformal mapp' ing of the unit discoitto nonoverlappingdomains. (Russian)Ukrain' 646-M8, 716; MR 5l #8398.124,261 Mat. Z. 26(1974), 90. Dahtina, G. P. The extremizationof certainfunctionals in ihe problem of nonoverldppingdomains.(Russian)Ukrain. Mat. 2.27(1975), 202-2M,285; MR 5l #8399.124,261 91. Bajpai, P. L. Somercdii of starlikenessunC convexityproblems. Indian Institute cf Technoiogy Kanpur, Kanpur, India. Doctoral Dept. of Mathematics,August 1973.12,6,9,10, ll,12, dissertation, 1 3 ,2 2 , 5 6 , 6 r , 7 2 , 7 3 , 8 2 , 8 5 1 gZ. Bajpar, P. L.; Singh, Prem. The radius of starlikenessof certain MR analyticfunctions. Proc. Amer. Math. Soc. 44(1974),395-402; 49 #fi3}. [6, I U 93. Bajpai, S. K. A note on a classof sturlikefunctions.Indian J. Pure
FUNCTIONS (PART II) BIBLIOGRAPFIYOF SCHLICHT
145
l2l g72)'no'5 '750-754:MR 48 #6384'16' Appl. Math' 3(1 analytic of theoremti, certainclasses 'f.p"t, convexity Two K. s. 1973)' Bajpai, ,4. Notitl' A'M'S' 20(Feb' (preliminary functions. 85]
Abr,ru.t ?3T-Eo2' [1] ' nr ^-ctnrl ) 5 . B a j p a i , s . K . T h e o r d e r o f s t a197' r l t k eAbstrari . n e s s o f alzr-8233' - s t a r l i k e P' f u nA-491' cttons. Notices A.l,{.s. 20, e.rgurt [ 11 , 6 9 ] 9 6 . B a j p a i , s . K . A n o t e o n o c l a s s o . f m D7l;eust11Lt^7,4T-P,99' e r o m o r p h i c u n i v a l e n t f[9' u n 851 ctions,,
Amer.Math.so..il,April Notices of norrnaliz a-convexitv gT.Bajpai,S' K ' Inftuen"if 1i2f;Q) ?'the Math' Amer' of ordlerB. Notices ici anorytrc funciri^ edstarrike p A-487't69j Proc' Soc.21,August.197+,elrirLih,fr-B141, for rlarlike-functions' of a-convexiiy gg. Bajpai,s. K: on regions t69l MR 49 #91'78' giil,365-368; of Amer.Math.Soc.44(r certainclasses
subordinationfor gg.Bajpai,S. K.; Dwivedi,S. P . A Math' soc' 2l(1974)'Abstract AmerNotic.s analyticfunctions. 10' 85] 74T-822'fi,pA-5M, [1: 6' oJ a-convexityfor sub' on.regiorts S'J'T Mehiok' n'; 100.Bajpai,"S' A' M' S' 20 August 19'3' of starlikefun'cionr. Notitti classes 691 and Abstract73T-B202'p'A-484' ll2' tie coefficientstructure on T.J.s. Mehrok, K.; s. spiral' Bajpai, rs 101. t"iyo.:cl' c'(z) growth theoremfor t:hieftnctiont irri iotlol (1973)'5-r2; MR 50 like.Publ' Inst' rnrutt''igeoeradXN'S;
r;XT,,L1',l:,'$ehrok' r'J?- 9,,! ":::,'::"":l':#;::::'1,"' toz. sturlike, convex and close-to-convex iirn orrr. iated
function f u n c t i o n s . I n d i a n J . P u 47', r e A85] ppl.rvrutr'.4(19.73),no.1,66-721,MR [4, 5, 6' 10' 16' 48 #478:9. p-valentstarlikei; .s. on the rqdiusof 103. Bajpai,s. K.; ror.nroi, n e s s a i l d p . v a l e n t c o n v e x i t y . R 6' e v . - R12' o , , 14' * u i 431 neMath.PureAppl. ** 50 #4923'14' I l' , 973-976' 19(19?4) of meromorphic ni;, on the ciass Nlehrok,T.J.s.,4 K.; s. lM. Bajpai, .|,43_40.t9l;MR 52 P;['. Math.litrql', no Ann. I. functions. #720
-
^ ^ - . n i - n t n c s o "n f n n a l v t i c f ' u n c -
1 0 5 . B a j p a i , S . K . ; S i l v i a , E v e l y n -lg73), M o n cAbstract e r t a i n c 701-30-17' l a s s e s o f apg' nalyticft 20(Jan. e.r.,i.s. tirtris.Notices
"'o R,t l :'';.:::o'f:{,:"#:#': $.t;.lli'*'i'""""u' t"it'llt, 106. Amer' Math' Soc' Proc' ' of ,ri"ilrit function'
starlikeness 11' l2l fufn45 #3687't5' 6' 10' 32(1972),153-160; l0T.Balasubrahmany"*,''Lakshminarasimhan,T.v.onsome
146
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
of functions analytic in the unit disc. Notices Amer. Math. classes Soc. 22, no. 7, November 1975;Abstract 75T-B251,p. A-712. 12,
2rl
108. Baranova, V. A. An estimatefor the coefficient cq of univalent 12 (1972), functions depending on | .r l . (Russian) Mat. Zametki Mn 47 #5245.14, 127-130.IMath Notes l2(r972), 510-512(1923)];
s4l
109. Baronov&,V. A.; Lebedev,N.A. On a lemma o-fG.M' Golozin' (Russian)Zap. Naucn. Sem.Leningrad.Otdel. Mat. Inst. Steklov. MR 5l #10609't68l (LOMI) 44(1974),7-16,186; 110. Baranov?,V . Y . Paramet:ic representationof functions with shtft symmetry. (Russian)Theory of optimal processes(Russian), pp' 54-63.Akad. Nruk Ukrain. SSR Inst. Kibernet., Kiev, 1972;MR
48#6385.t4e1
1li. Barnard, Roger W. On quasi-starlikefunctions. Notices Amer. Math. Soc. 21, January I 974, Abstract 7 ll-30-22, p. A- 123. 122,
241
ll1. Barnard, Roger W. On bounded univalentfunctions whoseronges containafixed disk.Notices.A.M.S., vol. 19, no. l, issueno' 135, Januarylg72 (Abstract691-30-7),p. A-112' [6' l6] 113. Barnard, R. w. on a coefficient:nequalityfor starl,kefunctions. MR 50 #4924.[5, 6, 41, Proc. Amer. Math. Scc.47(1975),429-430; 5 4 ,7 5 , 7 9 1 ll4. Barnard, R. w. on the radius of starlikeness of Qfi' .for "f uni,talenf.Proc. Amer. Math. Soc.53 (l 975),385-390.[6, I U; MR 52 #3497. l15. Barnard, R.W. A variationaltechniquefor boundedsrarlikefunct i o n s .c a n a d . J . M a t h . 2 7 ( 1 9 7 5 ) , 3 3 7 - 3 4 7M; R 5 l # 8 3 9 3 . 1 6 , 2 2 ,
241
115. Barnard, R.W . On the radius of univalenceof the imagesof linear cpe;"atorson the classs. Notices Amer. Math. soc. 23, Janrtary '/31-30-16,p. .\-101. 113,471 1976,Abstract ll7. Barnard, R. w.; Lewis, J. L . A counterexampleto the two thirds conjecture. Proc. Amer. Math.Soc. 4l(l 973), 525-529: MR 48 #4290.[6, 12, 16, l9l I 18. BarnarJ, Rogcr; Lewis, John L. Coefficient boundsfor some ,325-331.[6' of starlikefutictions. Pacific J Math.56(1975) clc,sses 361;MR 52 #730 of 119. Barr, Alv;,n F. The radit-tsof univalence of certain classes analyticfunctions. Nofices,A.M.S., vol. 18, no. 7, issueno' 133' Nuvembe; l97l (Abstract689-816),p. 1056' [6, l1' 43]
(PART IT) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
141
Trudy of certoinfunctions.(R.us;ian) 120. Basevic,B. v. Theunivaience 37 MR 137-143; Tomsk. Gos. Univ. ser. Meh.-Mat.rgg(i966), #2e64.IsTl of certainfunctions.I, II. (Russian) g. v. Theunivarence 1^2r.Basevic, TrudyTomsk.Gos.Univ.Ser.Meh.-Mat.200(1968),3_13;ibid. 14-19;MR 42 #480'[28' 60] 200(1968), polynomial' Math' T. On the radiusoJ'univaleiceof a lZZ. Baggcize, Z e i t . l 0 5 ( 1 9 6 8 ) , 2 g g _ 3 0 0 ; M R 3 7 t | 2 9 5 8 . | 3 7 ' 4 3 eJ | certainclasses analytic of univsrence the on . rz3. Baggiize,'Ttirkin MR' 39 J. Lcndon Math. soc. (2) I (1969),140-un; 1-t:nctions. # 5 7 8 1t .l l , 1 2 , 3 2 1 polynomials'compositioMath' , T. on the univalenceof 124.Baggcize zzl97o), 245-252;MR 42 #481' i4' 321 l 2 5 . B a g g c i z e , f . , F r a n k , J : L ' ; K e o g h ' F ' R ' O4ln c#1983. o n v e x u nlc, iva lentfunc20, U' MR tions.can.J. Math. zz(iglg),123-127; 221 T.; Keogh,F. R. TheHardy classof a spirallikefunction 126.BaEgoze, 26(1970)'266-269;MR and itsderivative.Proc.Amer. lvlattr'scc' 4 1 # 8 6 8 0t.3, 4 , 6 , 3 6 , 6 2 , 6 3 1 the coefficientsof bounded . Bavrin, I. I. Someestimatesfor 127 holomorphicfunctions.(Russian)Dokl.Akad.NaukSSSR16l (1965),jor-soe; MR 30 #4928'[22' 301 of univalentfunc' lz8. Bazilevid,J. E. on i*persion of goefficients MR 33 Mat. sb. N.S.) 68(li0) (1965),549-56C; tions.(Russian) #267.[9, 45] of regularfunctionsand l2g. Bazilevi[,I. E. A criterionfor univalence fordi'spersionoftheircoefficients.(R ussian)'Mat.Sb.(N.S.) [4',54' 621 74(lrOiti 967),t33-146;MR 36 #2',t90' criterion to thearticle"On a univolence l30. Bazilevi6,I. E. Supplem'ent coefficients"' the dispcrsionof their for regularfunctiorts and MR 44 #5441'[4' no.4, pp. 626-630; Math. ussR-sb., t3(19T1), 22,231 generalequations for 131. Bazilevich,I. E.; Dziubifiski,I. Lowner's Polon' Bull' Acad' quasi-a-starlike functions. (Russiansummary) 823-831;MR 49 2l(1973), sci. Ser.Sci.Math. Astronom.Phys. #5331.[6, 24, 631 of the coefficientsof 132.Bazilevid,I. E.; Lebediv,N' A' Dispersion functionswhich(Irep.vqlentinthemean.(Russian)Mat.Sb.(N.S.) MR 33 #7516'[331 71(113)(l 966),227-235; und quasikonform Differentialgleichung 133. Becker,J. Ldwnersche J' Reine Angew' Math' fortsetzbare schlichte Funktionen'
14E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
255(lg72),23-+3;MR 45 #8828'U ' 4' 241 und schlicht-heitskri' r34. Becker,J. L,wnerscheDifferenttitgtetchung 49 ffi197' [1' 9' 24' 58 terien Math. Ann. 202(lgill,32l-335; MR 681 schrichterFunktionen. ." ' ,,e homilomorphe o rrtu u tl tu l P rtc 'Fortsetz.ung ober Dgr n B e c k e r' JJ.. u rr\at\ 1 I 135. i".'.u.r, oo' 538(1973)'ll Ann. Acad. Sci. Fenn. Seie. I. Mathematica,
p p . ; M R 4 9 # 9 1 9 6[.l ' 3 U (tngteichung fiir quasikon' 136. Becker,lorrr.rr. iulr' ttnl Golutinsche '!31(1973)' 177schlichfeFunktionen'Math' Z' form fortsetzbare 182;MR 49 #7440.U, 9, 531 which . Behan,D. F. Constantmuttiplesof a holomorphicfunction 137 A'tvi'S' Notices' ore subordinateto that finction' Abstract: 1 7 ( 1 9 7 0P) P , .1 8 6 - 1 8 7U' l OfLa; Sla'lkowska,Janina' A certain area I 38. Beresniervicz-Rajca, ZeszytyNauk' theorem.(Polish.Russiinand Englishsummaries)' 127-l4l; MR 5l Politech. slask. Mat.-Fiz. zeszfi 24(1974), #10608. [34,861 of subordinatefunctions. Duke r39. Bernardi,s. D. speciat crasses [1' l0' 20' 47' 64' 851 55-67;MR 32 #585?'' Math. J. 33(1966), courant In140. Bernardi,s. D. Bibiiographyof schtichtfunctions' Sciences,New York University' Tech' stitute of tv{athematical + l57pp'; MR 34 ReportNo. NRM1-019,IMM35I(1966)IX ? -t, ^-^^ -F-^ra Trans. univalent functions. siarrike and l4l. Bernardi,s. D. convex 38 MR pp.429-46; Amer. Math. Soc.,vol. 135,January,|969, 6, l 0 ' 8 5 1 #1243.12,5 of certainanalyticfunc' l4z. Bernardi,S. D. The,idiu, of univalence MR 40 #4433' tions.Proc. Amer. Math. soc. 24(1970),312-318; 1 2 , 56 , , 1 0 , 1 2 , 4 3 , 7 3 , 8 28' 5 I of the uni.tdisk'NoticesA' 143.Bernardi,s. D. univalentconvexmaps M.S.,vol.|7,no.Z,issueno.!20,Feb.1970(Abstract70T.B54)' p . 4 4 1 . 1 4 , 5 , 61, 0 ,! 9 , 3 8 '5 4 1 of the unit circle' I I ' . Bernardi, s. D. (Jnivalentconvex inaps 144 no' l2l, April' 1970 Notices,A. M. S., vo!. 17, no. 3, isiue 64] (Abstract70T-B77)p' 566' [4' 5' 6' 10' 19' 38' unit circle' III ' the of mops 145. Bernardi,s. D. (Jnivalenteonvex |9i| (.Abstracf' nc. 130,.iung A. M. S.,vol. 18,no.4, issue Notices, 7 1 T - t s 1 1 3P) ,. 6 4 0 '1 4 ,5 , 6 ' l 0 ' 1 9 ' 3 8 ' 6 4 1 andstsrlikenessof certain 146.Bernardi,s. D. Theradiusof univalence Soc.' vol' 20' of anatyticfunctioni. Nctices,Amer. Math. classes I I , 43] no. 3, April tgll iAbrtru.t 73T-B135, A-332).[6, #2849. l44l
BIBLIOGRAPHYoFSCHI-ICHTFUNCTIONS(PARTII)|49
positive functions of proc. theoremsfcr dt,stortiun "convex New D. s. r4j . Bernardi, functions. to univatent rear pai t qna appiicaiioi, ' 12'10',1l ' 20' #10223 50 tg; Mn il+1,113-t 45(1 Soc. Math. Amer. 56,641
,
, . , ^ rbccnts - ! ^ ^ n , n sur
'trafites
ies nluJ(
dans Ia
143. Rielechi,A' Q'uelques.rtsultcts thioriedesfonctionsholornorplres.Colloq.Math.,vol.ll,Fasc. 2(lg&), l4l-145' ul .- c,,* certaines , . Z' mtes desfonctrtQJorr' Sur ^, Leandowski' Bielecri,-A'; l4g. '' vol' 9' Fasc' te cercleunit6' Colloq' Math dans holomorpltes tiens
deronctions d'unectasse coerricients des ?';?ij;,|'It'y"' r50.3\i?3il; ZeszytyNauk dcns !,on,,ou circulaire. et univalentes ar,.alytiques #2858'[39' praceM;. No. i o9A), l3-16; MR 34 Jagie[o. univ. 481 of typicallyreal W' E ' On thecoefficients Kirwan' G'; K' Binmore, ' u3 ',23', 151. 39#7087 I. 36t1969),455-46i;MR i"{ath. b*. functioir. 5l' 621
by ; of domains hounded
quosi'
+si+zes -88t, non tsz 877 rt, x;,?,",i##"'#tr:;"fil.riri w;i, tJ] g n rr f-nnfn
I 53. Hi.;t'*',
tions mappin m e r o e g h t n i r v e o c .' . : !"^i^:'I :','!.t.ff,n'
o n t o d o m a i n s b o u n d e d b y q u a s i - , i p. , , l e s . N o t i c e s491 ,Amer.Math.Soc. 731-30-20, A-102.t19, 23, January|916,el,,,u c:t danslesclasses rn module in domqine uroio-rotioi F. 154. Bogowski, " d e f o n c t i o n s a o , n 6 e . s p o u r t e spoton'm i . n o rSci' a n t e56r' s f QSci' ) e H Math' '.@nglishand A.19.' i"ir. summari.ri Russian 221 35:38;MR 50 #2478'lr ' Astronom.Phvs' ziogiil' subordination n'; stunt t'*::::^l:t' de 155. Bogowski,F.; luuror,rti"'F' modulespour certqinesclasses fonci6 inasoiiii, et en domaine Mariaecuriecercle'iita' Ann' Univ' le dans hotomc,rphes tions #37s9'U' 6' 101 r); MR.46
150
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
de la c/ass subordination en domaine dons le cas des minorantes Mariae CurieHo. (polish and Russian summaries)Ann. Univ. #11466'Il] 48 (1973); MR SklodowskaSect. A25 (1971),15-25 concerning 159. Bogucki, Zbigniew. On o theorem of M' Biernacki Univ' Ann' summaries) subordinatefunctions. (Polishand Russian 41 (1970); MR Mariae curie-sklodowskaSect.A 19(1965),5-10
#7081. tll
univalent 160. Bogucki, Z.; Waniurski, J. On the minorant setsfor Sect. A, vols. functions. Ann. univ. Mariae curie-sklodowska, pp. 33-38. t6,29j; lvIR s2 #722 22/23/24 (1968/1969/1970), of M' Bier' 16l. Bogucki, Zbigniew; Waniurski, Jozef. On a theorem SUIIIRussian nackt concerning convex maiorants. (Polish and A 19(1965)' maries) Ann. univ. Mariae curie-sklodowska Sect. 1 1 - 1 5 ( 1 9 7 0M ) ;R 4 | # 7 C 8 2I'l ' l 0 ] growth of subordinate 162. Bogucki, Z.; Waniurski, J. The relotive 357-354;MR 45 #8816'[1, 6, functions.Mich. Math. J. l8(1971), 10, I 8, 62]l whose 163. Bogucki, Z.;Waniurski, J . On boundedspiral-likefunctions Sci' Math' values,orT a fixed disk. Bull. Acad. Polon. Sci' ser' #3760.|6, 46 MR Astronom.Phys.,19(l97|), no. ! l, pp. 983-988; 1 9 ,3 6 , 6 3 1 o-f subordinate 164. Bogucki, Z; Waniurski, J. The location of z''roes radius of maiorization. B.11. functionts and irs infruence on the l9(1971)'no' Acad. Polon. Sci. Ser. sci. Math. Asti:onorr.PhyS', 11, PP. 989-996;MR 46 #3776'tU growth of subordinate 165. Bogucki, z.; waniurski, J . on the relative Ann' Univ' Mariae functions. (Polish and Russian summaries) MR 49 curie-Sklodowska Sect. A 22-24(1968/70),29-32(1972); #5332.[1, 6, 10] whose values 166. Bogucki, Z.; Waniurski, J . On univolentfunctions Sect' A covera fixed disk. Ann. uniu. Marlae curie-Sklodowska 22-24(1968/70), 39-44(1972). [6, I 0, 221 property of the Koebe 167. Bombieri, Enrico. On the local maximum MR 36 #1635'124,42'541 function Invent. Math. 4(l 967),26-67; detta funzione di 16g. Bombieri, Enroci. sulla seconda variozione (3)22(1967),25-37; Kcebe.@ngiishsummary)Boll. un. Mat. ltal .
MR 35 #6813.124,421 n t i nequ aliti es 169. Bombieri,Enrico. A geometricapproachtu coeffi ae Pisa (3)22(1968)' functions.Ann' ScuolaNorm' Sup. for univalent 317-397;MR 39 #430.124,541 a' for starlikefunctionsof order i1A. Boycl,A. V. Ccefficieniestimates
d
(PART SCHLICHT FUNCTIONS BIBLIOGRAPHY OF
ID
151
MR J3 #75|7, |6,22, 1016-1018; 17(1966), Soc. Ma^uh. Proc.Amer. oJ 30,36,491 univalentpolynomials regions for Coefficient . o 36 #39i1 [4' |7,,.Brannan, o. t+(tqoD,Joi-t59; MR rtegree.Mathem";i;; srncll I 29, 321 boundarvrotation' bounded of MF l'i2.Brannan, D' t: ?' fln'tions so. .(;' ro trqog/69)'-339-34?; il;ih. Edinbursh proc. of the
rl tf rctatio'n' boundarv bounded :!'' tJ\'7i B MR 4r #8643' tit lt'i:ffr; Math ff;J'i)'i:: sr.."iirgoe;, sit-izz: l Math' Glasgow Bull.London o:..'un'"ointnyiy'oirott o D' lA|.Brannan, 43 #22M'14'321 powersene , ,t,nroi, 1d-'07, MR pribtr*s for cert.ain or^riitj,ilrii Ken A. D. 1?5.Brannan, i"*pr.x Analvsis(univ' No s;;;;i;T the of proceedings :" Lecture i -T 1"{"t'Muth' l9t' r9T3), ,i'. canterbury, estimat Ser.,No'i2'Cambri'dltu"in''p"'l'iondoo'1974'lM'541 J.; Kirw;;w 'E'9-n{icient c1.,i"[, +7 A.; D. J' Matil' 22(1970)' r.76 Brannan, in'''i''n''^Cioa' star-lit'''' for a (jto"of 6' 9-'l0''25'361 +85;r"rn+i"tsot+' ll'"Z', C t rit*"t'-iw E' on thecoefficit t'"ttt' i' Ann' Acr rota-iion' l'l'l .Brannan'D' A'; bounidary aounae.d problemlor .functior^r'-if.rnu,t.,l"no ' Sn (1973)'t-i8; MR f.iuit ,. e. Sci.Fenn.Ser.
rortvpic'l t, Jl'-"o, 40#74 ;:';i .w t' l^ii;:;:'.'r!!ii'em ,r, f,t"Xi#,' tbitOgl' i53-1S5;MR realfunctions.CfurgoJ'fufurt,'
orboun c/csses s("rt€ on Y IM"th Soc' (2)l(1969)'43t-' ,rn.$1""f;'1t;i'i1:''f':L*' j. London univalentfunctiorr.10',22',-3'6',711 coefficient MR 40 #443l [6' 7' w' E"'Tfe Maclaurin Ki;;' A'; 2 (rt D' 180. Brannan, ionaon Math' Soc'' suli' ;;;';;rs. Bounded convex 22'3ol
uo' ,rn-t?+rt'rn42#6211' w: i"rt" A';-'itt$l D'
growthof the muxlt 805J' 38(1971)' 181.Brannan' functions';"k;tUlttt' univatiitt of modutus
,r, x*flff:T
',i;f,;f,? funcl thesetof-univatent o::':.of }z-ll+',y* 4| #M8.[88
Illin BuIl.Amer.tntattr.t"..?o(,n,oi, io*rtiit suuoiii-ior, L. "natvtic.functions' "i 183.Brickmar, M a t h ' 1 s ( 1 s | r ) ' ; ; ; - ' z ^proitems I ' i u r n 4for 3 #certa.in 2 2 0 sclasses ' t l ' 4 'of 1 0ar' 1 1g4. Brickman,Louis.'i*iriatrnrutt,j;;. ;;;,. functions.Proc.
46 l iittglzl,6T-73; MR
152
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
12,6, 23,241
Amer' Math' 185.Brickrnan,Lotris. 6-like analyticfunctions'I' Bull' MR 48 #8769'[4' 6] Soc.79(1973),555-558; points 186. Brickman,Louis. Certainalgebraicfunctions and extreme no. 3,20|_203.t88] of S. MichiganMath. J. 22(|975), D. R. Convexhullsof Wilkeo, H.; T. lg7. Brickman,i.; MacGregor, functions.Trans.Amer' Math' some classical famitieso1univalent ' 6 , 2 3 ,4 2 , 8 8 1 S o c .1 5 6 (9l 7 l t , 9 F l 0 7 ; M R 4 3 # 4 9 4 U T.H.; wilken, D. gutt.nbeck, D. J.; MacGregor, lgg. Brickmatr,L.i conR. Convexhullsandextremepoints of families of star-likeand IVIR vexmappings.Trans.Amer. Math. soc. 185(1973),413-428; 4 9 # 3 1 0 2u. , 6 , l o , 3 6 ,8 8 1 the set of 189. Brickman,-Louis; wilken, D. R. support points of univalentfunctions. Proc. Amer. Math. Soc. 42(1974),523-528; MR 48 #6399.[62,88] 190. Brodovic,M. T. A certainsufficientconditionfor theconformality sumof an arbitrory one-to-onemapping.@nglishand Russian 1974,489-492, maries)DopovidiAkad. Nauk Ukrain.RsR ser. A 572;MR 51 #8388.[4] S' Ann' 191. Bucka,Cz.; Ciozda,K. On a new subclassof the cless ; R 4 9 # 3 1 0 9t.6, 2 3 , 2 9 , 3 6 ^6 3 1 P o l o n .M a t h .2 8 ( 19 7 3 ) , 1 5 3 - l 6 lM Ann' defonctionsunivalenfes' lg2. Bucka,Cz.;Ciozda,K.Surune classe MR 48 #6386.16,23,29,36'631 , 233-238; Polon.Math. 28(1973) power series.II' 193. Buckholtz, J. D. Zeroesof partiat sums of vcl. 16,tto.3, issueno' i13, April, Notices,A.M.S. (Abstract), 1969,P. 5a0.[20] Notices,A' lg4. Burdick,c*y R. on a ratio of a univalentfunction. -30-24,pg. A-109 (Preliminary M. S. 20(Jan.lg73),Abstract701 r e p o r t )[.5 , 6 , 1 0 ,6 3, 6 4 , 7 4 1 of cnalytic lg5. Burstein,r-. H . Extremalproblemsfor certain classes zaved' Matematika1969' functions. (Russian)lzv. vyt*. ucebn. no. 6(85),9-16;MR 40 #Msl' 12,5,6' l0' 241 of l96. Burstein,'r-.rr. on the questioi of confcrmaltransformations the disconto nonoveriippinyregions- (Russian)Mat' Zametki ' t26l 6(1969),4r7-424.MR 40 #5345 - af (o) in a classof lg7. Burstein,L. H. The rootsof theequationf@ -52; reolfunctions. (Russian)Mat. zametki i0(1971),4l-455i' typically '#llggiEnglish Math. Notesl0(19'/1),49 translation: MR 44
291
u3, - af(qz) in the 198. Burstein,L. H ' The solutron of the eqrntion f(z') zaved' ciassof siar-shapedfunctions. (Russian)Iav. vyss. ucebn'
(PAR'T II) BIBLIOGRAPI{Y OF SCIiLICHT FUNCTIONS
I53
52 #8398 Mat . 1974,no. 12(l5l), 47-50' t6l; MR slit H , A geometricproperty for certain |gg. Busklein,F.; Waadeland, Noridsk Mat' Ticiskr' mappings. (Norwegian. English summary)
ztigtl), 33-39,Se;MR 49 #549'[491
polyttcn;ialsltmsand univalentcessromeans' 2w. Bustoz,J. Jat:otbi MR 5l #5917'U6,201 proc. Amer.Marh.Soc.50(t97s),zsg-264; uni' Jorm of the I /4 theoremfor 201.Byers,R. B. on a strenthened \valentfunction.s.Notice s , A m e r . M39] ath.Soc.,vol.20,no.3,April A-327)'[19' 1973(Abstract73T-Bi15, subordinattionresultsfor clsssesaf ZOZ.Byers, R. B. Some linela; soc' 47(1975)'143-146univalentfunctiorts.Proc. Amer. Math' MR 5| tia?3[1, 4, 6, l0] (Abstract)'Notices'A' 203.calys, E. G. A classof regutarfunctions' 1 9 6 8p, . 9 1 9 .[ 5 ' 8 5 ] M . S . , v o l . 1 5 ,n o . 6 , i r r r r .n o . 1 0 8 ,o c t o b e r A. M. S.,vol. Notices, of regular flln.ctions. 2M. Calys,E. G. on a class (Abstract). [2, 7, 18,20,211 17,no. 2, issueno. n\:re[. :970 of some and starlrkeness ZCs.Calys,g. C. The radiis of univalence '' 23(197l)'Fasc'4' of regt^larfunctions. compositoMath classes P P .4 6 7 - 4 7 0U. l , 4 3 , 8 2 ' 8 5 1 functionswith tocauyunivsrent 206.Campbeu,D. v. toriii univarent MR 44 Trans.Amer. Math. Scc. |62(|9?1),395-410; derivative'.,s. #4ree.l43l theorems Jor locally 207. campbell,D. I.{. Maiorization-subordination univqlentfunctions.Bull.Amer.Math'Soc.,78(1972)'no'4'pp' ' l 5 3 5 - 5 3 8M; R 4 5 # 8 8 1 7U theorems it. voiorization-subordination Micha 20g. campbell,Douglas 25(19'73)' ' Math II' Canad' J' for locclly univalentfunctioni. 420-425;MR 47 #3669'tll on compactaand locally 2og.Campbell, D. (Jnifornt convergence order' Monatsh' Math' univalent analytic funciions of finite 77(lg7il,2l-23; MR 47 #3664 functions.Israel 2|0.Campbell,D.M,Eventualtyoreollymeanp-valent MR 48 #11480.133,621 J. Math. io(rqz3), 216-236; of a linearcombination ztl. campbell,D. M. The radiusof convexity offunctions....Can.J.Math.25(|973),9E2-985;MR48#6387.
u2,821 theorem proo-fof a uniqueness 212.campbell,D. M. Appticationsa-nd J' Mountain order' Rocky of f or tinear invariont]'mtilies fjlttte Math.4(1g74),ozt-oy;MR50#|0235.tl,10,|2,|9,33,43,54, 62, 68l theorems for rocauy 2r3. Campbelr,D. M. Majorization-subordination
F-----
154
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
198(1974), univalent functions. III. Tratts. Amer. Math. Soc. 297-306;MR 50 #2480.U,22, 6ll combination 214. Campbell, D. M. A surveyof proper iiesof the convex no' 4, of uitvalent functions. Rocky Mountain J. Math. 5(1975), MR 52 4 7 5 - 4 9 2[ .4 , 5 , 6 , 1 0 , 1 1 , 1 2 , 1 6 , 4 3 ,M , 7 1 , 7 3 , 8 2 , 8 5 1 ; #3498 ' (z) and two Zt5. Campbell, D. M. The limiting behavior of d'Q)/f Soc'' coniectureson univalent functions. Notices, Amer' Math' p' A-120' U6l January 1975,Abstract 720-30-l l, Bazilevid functions. Notices Amer. Generalized 216. Campbell, D. M. p'A-104' [70] Math. soc.23, January1976,AbstractT3l-30-30, A' Linear 217. Campbell, D. M.; Cima, JosephA.; Pfaltzgraff, Johl analytic spacessnd linear-invariant families of tocally univalent g7l), l-30; MR 44 #5492' l4l functions. ManuscriptaMattr. 4(l of Univalent 218. Campbell, D.; Eenigenburg,P.; Nelson, D. The set Amer' Notices Functions as a subsetof a certain Banach space. p A- 100' Math. Soc. 23, January lg76, Abstract 730-30-12, . Func' BazileviE 2lg. Campbell, D. M.; Pearce,K . An extensionof the 22, April tions. (Preliminary report) Notices Amer. Math' Soc' l9,i5, Abstract 724-82, p' A-428' t70i the generolized 220. campbell, D. M.; Pfaltigraff , J. A. Properties of 5, issue 139, no. Koebe function Notices, A. M. s., vol. 19, August,lglz(Abstract696-30-6),p'A-637'14'5'6'l2l properties of log 22i. campbell, D. M.; pfaltzgraff, J. A. Mapping 49' g,Q). Coiloq. Math. 32(D75),fasc.2,267-276,310.[5,6, 10, 6 2 , 7 3 hM R 5 l # 1 3 2 0 8 derivative of 222. Campbell, D. M.; Ziegler, M. R. Argument of the close-to' linear-invarisn! Jomilies of finite order and the radius of 701-30-12' convexity. Notices, A. l,{. s. 20(Jan. 1973),Abstract p s . A - 1 0 6 .[ 6 8 , 7 3 ] classesof 223. cantrell, Grady Leon. A disto:tion theoremfor certain 1969'p' 906 analyticfunctions. Notices,A. M. S., vol 16, October (Abstract). Notices, 224. Caplinger,T. R. On certain classesof anatyticfunctions. 1 1 . g .A - 5 8 3 . 1 2 , , 4 3 , 5 6 , A. M. S. l9(1972),Abstract 7 2 T - 8 2 0 2P 851 V/' M' A clossof univalentfunctions' 225. Caplinger,T. R.; CauseY, 357-361;IviR47 #8833.V,6,7 , Proc.Amer. Math. Soc.39(1973),
1 2 ,l 8 l variable: 226.Carrier,C. F.; Krook,M. N. B. Funcions of a complex YorkNew Co., Book Thecry qnd technique.McGraw-Hill
(PART IT) BIBI-IOGRAPHY OF SCHLICHT FUNCTIONS
155
#5308'[44] Toronto, ont.-London, tg66.IX + 438 pp.; MR 36 of an Inunivalence 227. causey. w. M . The close-to-convexityond MR 35 #6807.14,5,10, 3ll . z99(1967),207-212; tegral.lviath of an integral'Proc' Amer' Math' 228. Causey,W. M . The un'ivalence Soc.27(1971),500-502;MR43/'&19'[3t'43'851 starlikenessof certain 22g. Causey, w. M.; Merkes, E. P. Radii of 579oi anolyticfunctions. J. Math. Anal' Appl' 31(1970)' classes 5 8 6 ;M R 4 | # 8 6 4 / . [ 6 ' I l ] u-sta"likc ft,tctions. z3o. celikka'at, L. varlational methctd and ser A 20(1971)' Arkare Llniv(Turkish summary)comm. Fac. Sci. 5 3 - 6 9 ;M R 4 8 # 4 2 9 1 '[ 6, 9 , 2 4 , 6 3 1 of o domain in the case 23I. cernei, N. I . Testsfor the stable convexity (Russran) ukrain' Mat' of univalent conformal mappings. l. no. l, 86-91; MR 34 #2850'tl0l Z18(1966), of regions under confor232. Cernei, N. I . Criteria for stable convexity no' 5' 8418(1966), mal mappings.II. (Russian)ukrain. Mat. z'
93;MR 34#60s8.tlOl
convexity of ciosed 233. Cernei, N. i. Certain theorems on the stable ukrain' Mat' z' curves under univalent mappings. (Russian) 2 3 ( | 9 7. ) , 2 7 6 _ 2 8 0 ; M R 4 4 i | 2 9 1 7 { E n g l i s h f r a n s l : r J k r a i n i a n M a t h .
r), 24r-2Mi. J. 23(197
v. Limitationson the comparativegrowth of the 234.t;tk;v,'v. of in a crass modurusof- afunction and thentodurusof itsderivative ' Gos ' . (Russian)Trudy Tomsk f unctioitswith real coefficients 26-27' 139,621 Univ. 163(1963), of the functionsl z3S.t.lrrir.ou, V. V. On the domain of values J_f(w)intheclassolboundedfunctionswitltrealcoefficients. Trudy fomst<.Gos. Univ' Ser' Meh'-Mat' 175(1964)' (Russian). VYP.2,78-84;MR 3l #324'124'357 of boundedfunc' 236.elirrttV, V. y. An extremalproblemin the class Gos' Univ' tionswith reat coefficients.iRussian)Trudy Tomsk' #5862' 33 MR 122,39' Vyp. 3, 96-105; Ser.Meh.-Mat.182(1965), 6ll on theclass of valuesof certainfunctionals 237. tonitoV, V .Y. Ranges ofboundertfunctionSwithrealcoefficients.(Russian).TrudyTom. MR 37 #1580' sk. Gos.Univ. ser. Meh.-Mat.189(1966),206-210; [22,29,39] in the 23g. E..ritov, V. y. Domoin of valuesof a certainfunctional (Rus' classof boundedunivalentJ'unctionswith real coefficients MR 33#717' 122'24'29'391 sian)Sibirsk.Mat. Z7(1966i,200-205; (Russian) v . y . Thea-convexityof univalentfunctions. z3g.ffi["v,
156
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
transl: Mat. Zametki||(|972), 227_232;MR 45 #7035.[English -1441'u2' 691 Math Notes ll(1972),l4l rongeof voluesof a certain 2p. E;;k"u, v. v.; Kosevarov,v. F . The of sc:,hricht functions with real coefficients. fttnctionarin the crass (Russian)Trud.Tomsk.Gos.Univ.Ser.Meh.-}/at.210(1969)' MR 43 #5019'129,391 122-129; for univalent V. V.; Sizuk,P. r. Distortiontheorems z4t. &jk;v, Gos' Tomsk' (Russian)Trudy functions with real coefficients. ,2ll-220; MR 37 #1581'[39'58] univ. ser.ldeh.-Mat.lggtrgoel propertyof univalentfunc' z4z. d;;ri["", V. v.; Sizuk,P I. A certain Tomsk' Gos' Univ' tionsw;th real coefficients.(Russian)Trudy |8g-2M; MR 4| #|984.|29,39| Ser.Meh.-Mat.200(1968), of the coefficients z$. E;;k;", v. v.; Sizuk,i;. r. certain estimotes Gos' univ' ser' of univalentfunctions.(Russian)Trud. Tomsk' 205-2|6;NlR 4| #3745.[9, 25, 54| Meh..Mat.200(1968), geometricpropertiesof zM. E;;;lk;", V. V.; Sizuk, P. I. Certain ' (Russian)Trud' Tomsk' schlrchtfunctions with r:eatcoefficients MR 43 #7609'129' 130-142; Gos.univ. ser.Meh.-Mat. zt0(1969),
3el
of Functions Asymptotic to 245. Chan"berlain,E. w . The Univalence Proc' Amer' Math' Soc' Nonconstant Logarithmic Monomials' l7(1966),302-309;MR 32 #7724'14' 491 of regularand p-valent in 246. Chandra,Susheel.On certain subclsssesg73), AbstractT3T-B,92' i the unit disc.Notices,A. M. s. 20(Feb'
tl4l
of the analyticfunctions' p. clssses 247. Chandra, S.; Singh, on certain MR 50 #2470,|2,4, Indian J. Pure Appl. Math. 4(1973),745-748; 10, I l, 12, 641 of the classof functions 24g. chandra, s.; Singh, P. certairt subclosses Math' (Basel)26(1975)' regular and univalent in the unit disc'Arch' 60-63:MR5lf/3413't4,5'6'10'39'82'851 on the coefficientsof univalent z4g. Charz1,fiski,Z. ; na*rinowicz, J. polynomrals.Coiloq.Math.16(1967),27_33;MR35#|768.|32| and analytic 250. Charzyi ski, Z.; Sladkowska, J. Aliebraic functions Russiansummary)Bull' vsriationsof univarentfu;rctions. lioose Phys' 16(1968)' Acad. Pclon. Sci. Ser. Sci. Math. Astronom' 793-794;MR 38 #4664'I24l algebriqueset variations 251. charzyftskl,z.;Sladkowita, I . Fonctions analytiquesdesfonctionsunivulentes.DissertationesMath.Roz. prawy Mat. 70(1970),77 pp; MR 43 #495'i}4l A' M' s., functions' I' Notices' 252. chase, w. E. p-clos'e-lo-convex
(PART II) BIBLIOGRAPHY OF SCHLICHT FUI'ICTIONS
157
p' 658-105)' (Abstract vol. 15,no.5, issueno. 107,August1968 7 4 9 .[ 4 , 5 , 1 6 ,4 5 , 6 7 , 7 4 1 Abstract:Notices'A'M' S' 253.Clrase,W. E. p-close-to-itar-functions. 1 7 ( 1 9 7 0P)., 1 7 2 .1 6 ,I l , 3 6 ,4 3 ' 6 3 1 cf certainanalyticJunc254.chen, Ming po. Tite taaiusof star!;keness no.2. i81-190;MR tions.Bull. Inst.Math.Rcad.Sinical(1973), 50#587. TamkangJ. Math.4 (l 973),no. 2,57-67.MR 49 #10866; 1 2 ,6 , 1 0 ,I l l of someanalyticfunctions' 255.Chcn, Ming Po. on tite convexity I2l #13478.12,4, TamkansJ: Marn.4(l g73),61-7t;NlR 50 2 5 6 . C h e n , M i n g P o . o n f u n c t i i n s s a t i s f y i n g R e |561 fg1/z|> 43', J. Math. 5il g74),Z?l-234;MR 5l #874'12' of cerand starlikeness 257.chen, Ming po. Theradiusof univalence St' Paul of analyticfunctiins. Comment'Math' Univ' tsin classes 43] fasc.z, tlg_145;MR 5| #|06c2.12,6, 11, 23(|974/75), 'Po ' Relf Q)i zl > cY ' on theregularfuncticnssatisfyins 258. chen, Minj tro' l' 65-70'l2l Bull. Inst. Math. Acad.sini.u 3(1975), convexityof closedcurves 25g.Chernei,N. I . Sometheoremsof stable 276-280' nolpings. utrain. Mat. Z. 23(19'71), uncterone-sheerca 233) 110l;MR 44 #29t7(Seereference upper boundsfo:" a Bloch A. 260.Chiang,Pou-shun;Macintyre, J. MR 32 #5883' constontProc.Amer.Mati. Soc.17(1966),26-31;
tl el
convexcurves'Amer' 261. chernoff, P. R. An area-widthinequalityfor M a t h . M o n t h l y , V o I . 7 6 , n o . 1 , J a n u a r y , 1 9 6 9 , p p . 3 4 - 3 5type' .u0'18] o-f Bloch theorems some J. A. Macintyre, S.; 262. chiang, P. 4n-424; MR 35 #5592.U9' 341 proc. A.M.S. 18(1967); of Landau's theorem' Math' 263. Chiang, P. S. Computlerinvestigotion comp. 23(1969),185-188;MR 39 #2950'tl9l 264.Chiba,T.onconvexunivalentfunctions.KenkyuKiyo.Gakushuin Kotoka No. 7, 1-8(1975)'t10l boundedunivalentJunc265. Chichra, Pran Nath . An area theoremfor 66(1969),317-321;MR 39 tions. proc. Cambridge Philos. Soc. # 5 7 8 2 .1 2 ,g , 2 2 , 2 5 ,2 7, 3 1 , 5 6 , 6 1 ' 6 8 1 on convex schtichtfunctions' 266. Chichra, Pran Nath. ,4 theorem G a n i t a 2 0 ( 1 9 6 9 ) , n o . 2 , 7 7 - 7 8 ; M R 4 2 / , 4 7 | 7 . | | 0 , 1 9 , 6 4certain ,681 snd convexityof startikeness p.N of radii the on . 267. Chichra, Soc.' 13(1972)'part of regularfunctions. J. Austral' Math' classes l2' 13' 56J ' 2, pp.ZOA-Z\8;MR 45 #8818'[2' l1' which zf (z) rs 268. Chichra, Pran Nath . Regular functions f Q) for 49(1975)' 151-160;MR 50 a-spiral-like. Proc. Amer-.Math. soc'
15E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
# 1 3 4 7 91. 2 ,4 , 5 , 1 0 , 1 2 , 1 6 ,3 1 , 5 6 1 Convexsum of univalentfunc269. Chichra, pran Nath; Singh, Ram. 503-507;MR 47 #7014'16' tiorts.J. Austral. Math. 5o.. l4(1g72; 1 0 ,4 5, 6 3 , 8 2 ,8 5 1 of tocatlyschlichtfunctions' 270. Cima, J. A. on the dual of o space issue no. 13l , (Abstract Notices, A. M. S., vol. l8 , no. 5 , 687-30-3),August 197I , P' 77| ' Notices' Amer' Math' 271. cima, J. on the tog of a schlichtfunction' p. A-120. [68] soc., January tg75; Abstract 720-30-10, of convex functions' Notices, Z7z. Cima, J. A. Haclqmard.products Amer.N{ath.Soc.23,Febr,raryl976,Abstract732-Bl'p'A-304' [ ] , 1 0 ,4 7 l l spaceof locally univalent 273. Cima, J. A.; Pfaltzgraff, J ' A' A banach no. 4, pp.32|-334.|4,5, 6, 10, 17(1970), functions.Mich. Math. J. 23, 881;MR 43 #3784 behaviorof u" + hu = 0 ?,74.cima, J.A.; Pfaltzgraff,J. A. oscitlatory (Abstract),vol. 17,flo. 5, issueno. for schlichth. Notices,A.M.S. 123,August, 1970,P' 772' I3ll normed linear spacecontatnrng 275. cima, l. e.; Pfaftzgraff, J. A. A lheschlichtfunctions.Monatsh.Math.,T5(1971),no.4,pp'296302;MR 46 #7531' Proc' London Z.,6.Clunie, J. On the derivativeof o bourdedfunction Math. Soc. (3) 14A(1965)'58-68' l22l ilou of univarentfunctions. En' zii . clunie, J. on the coeffrciints of a (Proc. Sympos' Pure tire Functions and ReiatedParls of Analysis Math.,LaJolla,Calif',1966)'pp'l7l-178'Amer'Math'Soc" P r o v i d e n c eR, . I ' 1 9 6 8 ' t 5 4 1 An arclengthproblem for 278. Clunie, J.; Duren, P. L. Addendum: soc' 4l (1966)' 181functions. J. LoncionMath' ciose-to-convex 182;MR 32 #7725' 12,5, 7 ' 16' 231 ierivative of integral and 2'1g.Clunie, J.; Haynr&Il, W. K. The spherical Ilelv' 40(1966)'I 17-148; merornorphic functicns. ccmment' Math' lviR 33 #292. tg, 46, 521 Proceedingsof the symposium 280. clunie, i.; Hayman, w. K.; et al. of Kent' canterbufY' on Complex Anolysis.Held at the university London Math' Soc' 1973.Editedby J. Ciunieand w. K' I{ayman' LectureNoteSeries,Nc.12.CarrrbridgeUniversityPress'London-
NewYork, rg74'vI + 180pp' l44l;MR 52l!944 of close-to' ponnnner€rike,Ch. C;i the coefficients
Zgl. Clunie, J.; cgnvexunivolent.firrctions.J.LondonMath.Soc.4l(1966),161_ 38' 54] t65;MR 32#7734[4, 5, 6' 22' 30' 36'
(PART It) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
159
pommer;nke, ch. on the coefficientscf univalentfunczgz. crunie, J.; 9' 14' Math. l. r 40967),71-78;MR 34 #7786'[3' tions.tvtictrigan 25,27,33, 501 niappings and some associatedprobze3. Ccban, i\4. I.t. Multivalued i05-108. 114] lems.SovietMath. Dokl. 11, no. 1(1970), T. H. Frechetdifferentiablefuncp. zE4.Cochran€, c.; MacGregor, of onalytic functions ' tionals and suppcrt poin-ts for famities no'l62,June 1975(Abstract Notices,A.M. S., vol .22,no. +, issue 75T-B117),P. A-46C' [88] 2 S 5 . C o h n , H a r v e y . C o n f o r m a l n w p p l n g o n R i e m a t t n s u r f a|967 c e s .' yort<-toronto, ont..London, McGraw-Hill Book Co., New XrV + 325-B. PP.;MR 36 #3974't411 of bounded on the fourth coefficientfor functions 2g6. coonce, H. A' M' S' 17(1970)'p' 129' boundary rotation Abstract: Notices, l7l, 771 rsdius rotation' Notices' A' 287, coonce, H. B . Functiorisof bounded M.S.,vol.l8,no.l,issueno.t27,January|971(Abstract682.30_ 18),P. 149.U, ll, 24, 627 method for functions o'f bounded 288. coonce, H. B. A variati'onql Soc' 157 (1971)'39-51; boundary rotation Trans. Amer. Math' 4 3 ' 7 1 ' 7 6 ' ,7 7 1 MR +z iagl. [4, I 2, 16,23,24, ' Notices' Amer' 28g. coonce, I{ar ry B. Kaptan-Mocanu functions 4T-890,p . A-374. |4, 69,70| Math. Soc. 2|,April |974,Abstract7 univalence'Notices' Amer' 2g0. Coonce, H. B. Some conditionsfor , b s t r a c t T 3 l - 3 0 - 3 1p' ' A - 1 0 4 ' [ 4 ' M a t h . s o c. 2 3 , J a n u a r y 1 g 7 6 A ' 69' 701' s of p-fold sym' Yr o ' r'rillor" q s Distot 2 9 | . C o o n c e , H . B . ; M i l l e r , s . S . D i s t o r t i o n p r o p e r t r csoc' ' 44(1974)' Amer' Math' metric alpha-starlikefunctions. Proc' 45' 49' 69' 83' 841 336-340tfufn 49 #9179'[6' 10' lg' radius of close-to-convexityof ZgZ.Coonce, H. B.; Zlegler,M. n . The rotation' Proc' Amer' Math' Soc' functions of boundedboundary
71',731 35(1g72),iol-zto; MR 45 #5335'[5' 1z', with bounded Functions R. B.; ziegler,Michaei
2g3.coonce, Harry PuresAppl' 19(1974)' Mocanu variation Revl RoumaineMath' 1 0 9 3 - 1 t 0 4 ; M R 5 0 l - 1 0 2-w. 2 4 ' 1 4 ' 6 ' 1 0 ' 2 3 ' 4 3 ' 6variability 9 ' 7 0 ' 7 1 ''for 76'831 c' Domains of 294.cowling, v. F.; Royster, Proc.Amer' Math' Soc' 19' no' 4' August UnivalentPolynomiais. MR 37 #2976'14'321 1968,PP. 767-772; regularand Zg5.Craig,C.; Macintyre,A. J . tnequilittesfor functions boundedinacircle.PacificJ.Math.20(1967),M9-454;MR34 #7806.122,49, 6ll
160
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
series'The Amer' porynomiarsand the Faber Faber . H J. ' curtiss, 296. -sge g'2s 27'531;MR 4s #2183 g;;;'
Math.Monthlv7s(1 #8893
s7:t
lf,'
"
_ t rj ai t rtrn.ti ,
functi onal s
in a
(Polish' zg|.Czubak,Jerzy.Extremgllimitfunctionsforcertotn o;''n'o' the identity' thst functions Mat' Przvrod' fomily of univatey! *""\ yti;'. L,6dLk.Nauki gzesiv;r summar French ' 122'6rl 3-30; MR 48 #11467 Ser.II zeszvt3g(Mai'i'tiqll)' of somefamilies of of radi:' the On ' J 2g8.Czubak, "::::,i'on'ia7"ss in the unit.disc'(Polishand k-symmetric holomorphicfunctions 208 Mat' Nauk,potitectr. L6d2. No' Zeszyiv summaries) Russian
#3499 , 3t-4s' tl lh MR sz(o',iitotnfunctionar) No.otisTs) in thecryss of esiiiotion sharp . J 2gg.czubak. (Polishand Russiansumrnaries)
irngti.ois. univslentk-symmrtrli'c ZeszytyNaukpolitech".L6d?'.No.208Mat.No.6(1975),77-105.
300f?l:.:i?tti:undnrv,ot:,::1.,,r^r-,!o','!"':':t:::ii::,T!,! (serbo-croatian'French of somec,lasslsof functio'ns. 31 resultant st-55; MR 15(1963)' Bull. Soc.Math. Phys.-itttit summary)
ti,T) o,::::'!,'fi,! properti,,, :'i 1 ,uo*urv) rt;:it" 1. Hii"1,;i (1967),169-l'tz; 30 ."!,', r(ir*li: 4(r9) tvtat.'T.rnir. French croatian.
du timites desvaterus d'existence theoremes MR 51 302.H#Jtf,t.'n|lr?)r^ Balkanica4(1914)'111-114; produit d,Hadamr;;.uatt,.
tJlltto rheschwarz r Lti'ltl 303 !::':,o^','ior(i{X{i{{'lil;;ttn'
CarusMathematicalMonograpr'',N".|7.T|:MuthematicalAs. s o c i a t i o n o f A m e r l t u ' g u f f u l o ' N of ' V ' the ' l g ' lGrunski'-Nehari 4 ' X - I + 2 2 8 p p 'Inetal \i-'Gener(rriz.atiiioir' D. pp' Temple, t53l 304. De Mav 18' 197o'99 stanfordUniv. (Disser;;i"t; q,tutities. bounded for w. on coefficientinequarritiesI' vol' 469 A) 305. De Tempre.Duane ecadl Sci' renn' (Ser' univalentfunctioni. enn. 22' 301 In(1970),l-20; MR 43 #5020'tl9' the Grunskv-Nehari .Tempre, Grnr-rouzott'onr'of . w Duan" 306. De vol' 44(1971/12)'93-120; Arch. iational Mech..A,'t'ur', equalities. 30' l-3' S+l o't fufn+q #556'ilg' 27' 24' for c subclass inrqualities w.-bruns*y-Nettori D. 307. De Tempre, b o u n d e d u n i v a l e n t f u n c t i o n ' r ,531 uns.Amer.Mattr.Soc.l59(1971I),
34' Yi -iaa;MRn t\ozz'u ' 22' methodfor
of univalentfuncsysterns area An w. D. Temple, 308. De ' z' tzg(1972)'23-33;MR ourrtoi'Math not ranges-io tions whose
(PART II) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
161
48 #2366.122,26,34, 49, 53, 54, 6tl generaliztttiunsof the Nehari ine' 30g. De Temple, Drrane w. Further MR 5l qualities. Trans. Amer. Math. Scc. 205(1975), 333-340; # 8 7 6 . 1 2 2 , 3 0 , 4 55, 3 1 probtem cf the iheory of special 310. Demahovskaja,R. t . An extremal Math' Phys' o"r,r-hliirhtfunctions. (Russian)Problems of classe,s andrheoryofFunctions,Il(Russian),pp.22-3l.Naukova Dumka, Kiev, 1964;MR 32 #7726' t7l of me'tn moduli in the 311. Denrahovskaja,R.. I. on the estimation (ukrainiatr. Rustheory of spicial classesof analyticalfun:tions. Nauk Ul
162
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
Funkspezielle Klossevon schlichten 3ZZ. Doppel, Karl. tiber eine tionen.osterreich.Akad.Wiss.Math.-Natur.Kl.S..B.II181 (1973),2gl-29g;MR 48 #11481't28l der ip [-nnropie und e-Kopazitiit Zinterhof,"p.-0i* K.; 323.Doppel, Monatsh. Math ,76(|972),222_ Familie der schlichtenFunktionen.
'The 225;MR 46#s60a't221
for application of electro-modeling cir324.DunduEenko,L. E. a rinesin convexmappingof riier of curvature trte estimating 33 Mat. z 7(1966),270-284;MR cular ring. (Russian)Sibirsk.
subctass fo-racertain formuta L' E' on ttieinversion 3zs.ir\1i5;Jl;tl3] oftypicallyrealfunctions.(Russian)Ukrain.Mat.Z|8(t966)'no.
U3' 231 3, 107-tti; MR 34#2851' of regurarfunctions L. E. on certain crasses 326.Dundudenko, u n i v a l e n t i n o i , l e l t i p s e . ( R u - s s i ' a p33 ] r#5853' z v . y v lt6' ' . U10' c e571 bn.Zaved MR MatematikaI g66,no'Z(Sfl' S8-61; doublyspirolin o ring' (Rusnedhr E. functjgls L. 32i . DunduEenko, MR 36 #3969'[6' 48] 1272-1283; sian)Sibirsk.Mat. 2.v,o967), of analytic{:t:ctio:t-i:,:" classes 3zg.Dundu6enko,L. E. oi some and Englishsummaries) Russian region (Ukrainian' n-connected N{R35 RSRSer.A 1967,109-112; Naul-ukrain. Akad. Dopovidi #3s7. oJfunctionsthatareanalytic L. O . On a certainclass 32g. DunduEenko, andRussian circutardomain(ukr;inian. English irtan n-connected summaries)DopovrdiAkad.NautUkrain.RSRSerA1-972' 398-400 , 475; lviR 46 #5598' t60l Trans. for startikefunctions. coniecture p. Marx the on L. Duren, 330. M R 3 1 . t I , 6 , 1 2 ,1 6 l A m e r .M a t h .S o c .u g ( 1 9 6 5 )3, 3 1 - 3 3 i ; me;omorphicschtichtfunctions' 531 331. Duren, peter L. ciliirienis -o! teq-172;MR 42/16212'19'25' proc.Arner.Math.s;;. zg(lglt), of univalentfunctions of coefficien;ts 332.Drifeo,Perer\,. Estimat;o'n J. London Matl'' soc' (2) 8 theoreiremainder Tauberion by a sr #877' ls4' 621 Arrrer' 0n4;,27g-2E2;MR of univateitfunctions' Notices' 333. Duren, P. L. Coefficients p' A-98' [9' 25' irt-:o-4' Math.soc.23,lunuurv lg76,Absi;ract tii homeo' o' scht'tarzianderivativesand L.; 3q4.lt;rii, .Lehto' morphicextensio,,.R,,n.Acad.Sci.Fenn.(SeriesA)I,vol. 3U mOgiol, l-11; MR 43 #7610'[4' - ? 3 5 . D u r e n , P e t e r t - . ; t u c r , a u g h l iJ., n , R\9(1972), enate.T w o3,- spp t i't m appingsandthe 267-273; tro' Marx conjectur".tutrchiglnvruth. M R 4 6 # 3 7 6 2[.] , 6 , 1 6 ' 1 9 ]
(PART II) BIBLIOGRAPHJ' OF' SCHLICHT FUNCTIONS
163
on t'- classof schlichtfunctions' 335. Duren, P. L.; Schober, G. E. 42' 45' 68] Mich. Math. J. l8(197ti, lSf-356; MR 45 #532c'[16, ? 3 1 . D u r e n , P . L . ; S h a p i r o , H ' S ' ; S h i e l d s ' A ' L ' s i n g u l a 247-254' r m e a s u r14' esand J' 33(i966)' Math' D,ike t;,'pesmiTnci; tti not icmuins 1 6 ,3 l l Funkticnen' l' (Czech and Rus338. Dvor6k, OlCrich. Uber schlicltte 162-192; MR 36 siansummaries)CasopisPest.Mat'.92(|967),
681 #6605.125,27, 42,..54, Funktionen.II.(czechsumnrary) scittichte uber . 33g. Dvorik, oldrich MR 40 #5846'14'42' Mat. 94(1969),146-167,222; casopisPes^r. 45,681 of univatent functionsand genei'al340. Dwivedi,.s.P . certain classes i z a t i o n s o f f u n c t i o n s w i t h b o u n d e d b o u n d a r y r o t a Doctoral tion.IndianlnMathematics; stituteof TechnologyKanpur, Dept. of 1975'[1' 5' 6' 9' l0' 12' 23' 42' 43' 49' 7l ' September dissertation, 7 3 ,i 6 , 7 7 1 extr\maresdansrafamirle 34r. Dziubiriski,I . L,equation desfonction ' Panstwowe et bornbes desfonctions univalentessymdtriques ' 122' pp.; MR 33 #5885 wydawnictwoNaukowe, Lodz, 1960.62 241
: -.---I:t.^ ^-) nttnciy'aridtionalformulas for quasi-starlikcand quasi 342. Dziuoifiski, I. Sect' A' convexfunctions. Ann. Univ. Martaecurie-Sklodowska' MR 5l #5908'[6, 10, vols. 22/23/24(tg68/tg6g/1970),pp. 63-67; 241 (Loose Russiansummary) 343. Dziubifiski, I . Quasi-starlikefunctions' BuIl.Acad.Polon.Sci.Ser.Sci.Math.Astroncm.Phys.16(1968)' 477-479;MR 38 #1244'[6' 361 Ann' Polon' Math" 26 344. Dziubifiski, I. Quasi-stirlfrc functions' 16] (1972).Fasc.2, pp' 175-197;MR 46 #335' [6' quasi-starlike funcof 345. Dziubirlski, I . Estimation of the coefficients -321 361 ' g7 t6' 3 297 tions.Ann. Polon. Math. lotr 5), fasc' , the of functional estimation i46. Dziubifiski, I.; Sicwierski,L. Sharp sci' Polon' quusi-convex functions' Bull' Acad' laol rn the classof no'5 pp '365-366; Ser.Sci.Math. Astronom.Phys.,vol .20(1'972), MR 46 #3769.[10' 38] of univarentfuncof crssses 347. Dzrbasjan, IvI. M. Tie stratification summaries)Izv' Akad' tions. (Russian. Armenian and English
NaukArmjan'SSRSer'Mat'4(1969)'no'4'225-243;MR42 #6206.16,23,36, 631 whoseimagesare 348. Eenigenburg,P . on'a classof analyticfunctions NoticeS'A' M' s'' vol 16' star-shapedJordan domains.(Abstract), 12' 361 n o . l , i s s u en o ' 1 1 1 ,J a n' 1 9 6 9 p' ' 1 9 3 ' [ 6'
164
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Notices'A' functions.(Abstract) p. J" on.u-spirorike 349.Eenigenburg, ' 621 anaivti M. s tl(t'iio), pp' 156-157'to of 'u'uoturefor convexanaiytic ioaii, "7 ti, On P. 350. Eenigenburg, MR 41 #5608'[7' 10' igO-+51; ZZtt970), i. Mat J. functions-6"r. the unit disk' 351 of starlikemappingsof p. J._A crass 35r. Eenigenburg, ' z'"ip'ns-zl8' MR46#336'16'
Math'' 'oinz;' iu" composito
' 12' "{;;:;{:: ii;|,'',' 4s#2177 #{'}{ ** 3szf#'11'ur,'J']. ry v:1:? : :o:":: z' ' no Jp'"iis-+t'' '';(ts;il' soc Amer'Math'
*'" Roumaine r: l.liriX#LltJ"t 353 .?!^,':::'::^r#;"::;; '** 50#z'4'll'122'697 Appl' '!t' sl+1'los-giot Math.Ptrres
p"' fn' Hardy classof some Ktogh' ''' l P' 'F" J' 17(1970)' 354.Eenigenburg' derno''t"''Mich' Math' ,nJrr oni function, univalent 621 e a t 't'nitller' l ' 2 ' 3 ' 5 ^ ' 6 '1 0 ' of clssses 3 3 5 - 3 4M 6 ;R + e * S '-,., Sl"i*J S' The He paul 355. Eenigenburg, Soc' 38(1973)'558-562; Amer. ilh' Proc. a-convexfunctions.
o on r; Reade,M 3?l ='oi i',';i'i;,i1 Soc' 356Y.*:S*: of nrrijrrir'Trnrtronr. Proc' Amer' Math' "ocanu,p o subcloss
or orstortikeness order b"'iil 3sibig*'*3-Yil,?'i:f:;ii
a . c o n y e x f u n c t i o n s , . N o t i c e s85] Amer.Math.Soc.23,Jartuary19T6' p' A-104' [6' 'S'uia, t 731-30-28' Abstrac g.. r"r. a coefficientinequalityfor p. i.; 35g. Eenigenburg, B a z i l e v i c f u n c t i o n s . . ' ( p o u , rp'' a n d R u s s i a n S('1975)' u m m a122' r i e s30' )Ann.Univ. Sect' iiog'13)' 5-12 curie-sklcdowska Mariae #r!9\: 69, t 0',81, 841;-Ml t? ,^,"i""ion unv(tlentfunctionswith for coniecture 359. Ehrlg, G' TheBieberbach :. Mat'' Soc' (2) 8(1974)' ,"rl\irirrt. second restricted
360 fi;Il?;'i
Bieberbach coniec?i'::X'' estimste':::' :;::'n:o' g74)' I 126' 142'541
I' An:-lvse I 1: ture 'Math' Z ' r+Otr iistortiontheorem' ,qhlfors' oi Rem;;i, G. 361.Eke,B. gl-ir4; NiR 35 #6806't62l Math' 19(196'7)' n;eati valentfuncbeha";;; of-arially orr^rir'otic The . G 362.Eke, B. vol ' zot't967)' 147-212; Math.*"ti'"e' tions.Journal o{""rrse MR 36 #533t' [8, 33] , -strrqs' -,-inn proc. Roy. Irish Acad. Secr.A 70, t on note A 363. Eke, B' G '
:l-ia(te7o);MR 43 #76M'[4e]
Fr'
RIBLIOGRAPHY OF SCHLICHT FUNCTIONS (PART IT)
165
gap series'Math' Nachr' 364. Eke, B. G . On multivalentfunctions with 43(1970),377-381;MR 4l #8652.U4,33' 391 mops at the 365. Eke, B' G' on the differentiabitity of conformal boundary.NagoyaMath. J' 4l(1971),43-54' 162l cf lcrg: growrh' 366. Eke, B. G . Typically real mesn univalentfunctions IsraelJ. Math.22(1975),no' I, 1-6' [13' 33] growth in two direc367. Eke, B. G . On multivalentfunctions of large 621 tions. Math. Scand.37(1975), 105-l lC' [14, of confo:me! 368, Eke, B. G.; Warsuhawski,s. E. On the distortion 625-630' M(1969), soc. ftisps at the bourtdcri,. J. Londen Math.
162l
of growth of 369. Fke, V. R.: Eke, B. G. Notes on the r'egulariry multivalentfunctions. J. AnalyseMath. 28 (1975), l-19' 1621 derivative snd 370. Ess6n, M. R. : Keogh. F. R. The schwarzian camestimatesof functions analytic on the unit disc. Math' Proc' bridgePhilos. Soc. 78(1975),part 3, 501-51I ' [4' 3l] comp&trY, 371. Evgrafov, M. A. Anatytic Functions. w. B. Saunders 1 9 6 6 ,3 3 6P P . t $ l (Russian. 372 Ezrohi, T. G. On a theorem of schitd-Lewandowski. French and R.omaniansummaries)B'rl' Inst' Politehn' Iasi(N'S')
q(12)(rs62),1s-18;MR 32#
t32l
(Russian)Problemsof 373. Ezrohi, T. G. A classof univalentfunctions. pp' l7l-185' (Russian), Math. Phys. and Theory of Functions,II Naukova Dumka, Kiev, |964; MR 32 #7728.[29' 39] of univalentfunc374. izrotri, T. G . Certain estimatesin special classes tionsregularin the circte lzl Dopovidi a.kad. Nauk ukrain. RSR 1965,984-988; ,u--ries) MR 33 #7518.U 2, 351 37s. F,zrohi,T. G . on the curvature of levet lines and their orthogonal (r{ussian) trajectoriesin the classof functions of bounded rotation. Ukrain. Mat. Z. l7(1965),no. 6, 9l-99; MR 33 #4245.t35I 3'16.izrohi, T. G. on q classof univalentfunctions. (Russian)Teor. Funkcii Funkcional Anal. i Prilozen Vyp .2(1966), 198-2M; MR 34 # 3 2 5 . 1 2 , 78 , , 1 0 , 1 1, 1 2 , 1 8 , 1 9 ,3 9 , 5 6 1 the 377. i,zrohi, T. G. Certain special classesof p-valent functions in
d i s cl z l
Izv. Vyss.Ucebn. ZavenMatematika1966,no' 1(50),174-181;MR 34 #2852.[6, 12, 14, 631 Bull' 378. i,zrohi, T. G . Someproperties of convexmappings of a disc' 36 MR Inst. Politehn. Iasi (N.s.) 12(16)(1966),fasc. 3-4,33-37;
#5321. u0, 351
166
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
connectedcirof functions regurarin murtipry 379. Ezrohi, T. G. A crass culgrdomains.(Russia,,.Ro-unianSummary)An.Sti.Univ...Al. I.Cllza,,IasiSect.tatutat.(N.S.)13(1967),273-216;MR40 #5847.[6, 60, 68] the curof convexitysnd boundsfor 380. Ezrohi, T. G . On the radius of functions regurar in the crasses certain i7 curves tever of vature
disc leI MR 35 113-117; Akad.Naukukrain.RSRSerA 1967, Dopovidi of of convexitvof certainctasses boundaries rhe f,l3;l]'i.'3. 38r. Anal' i
Teor. Funkcii Funkcional' analytic functions (Russian) MR 4l #8645' U2l Prilozen. Vvp' 8(1969)' ll7-125; i. e tansformqtion of regular functions 3gz. Ezrohi, T. G.; Ac1ov, h,alf-planeRc l. > 0' (Russian' which ore typically ,Lot in the Nauk 11 Nauk u*sn Ser' Fiz'-Mat' Uzbek summary)Izv. Akad. 571 (1967),no. +, ig-ll; MR 35 #6840'tl3',23' nh nrp rpsularin i of functions'w'hichare regular class i Acilov ';' G'; T. 383. Ezrohi, emultiplyconnected,ci,cleregion.(Russian.Uzbeksummary)Izv. Akad.NaukUzSSRSer.Fiz.-Mat.Nauk12(1968),tro.3,31-35; [60' 6E] MR 38 #',319. regionsfor slstems of functicnals 384. Feldman, J,t. s. certain extremal (Russianirruay Tomsk' Gos' Uiv' of boundedschlichtfuncitons' Ser. Meh.-Mat' 189(1966)'194-205 t22l regions for slst:ms of functionals extremal 385. Feldman, J&. s. certain ofbou-ndedschlichtfunctions.(Russian)TrudyTomsk.Gos.Univ. |22| MR 37#2965. Ser.Meh..Mat.rggtigoi),|94-205; on integrol meonsof the i.'ff ' Estimates 386. Feng, J.; MacGreuo;, Notices Amer' Math' Soc' 21' deriyativesof univole'ntfunctiors' p' A-492't-?' 5' 101 August lgl4Abstract7iT-F'163' T. H. Integral mean estiamtesfor 3g7. Feng, Jinfu; MacGiegor, of a positivi real ltort ' University-l\ dcrivat:ves of functiois wiih 'fechnical repol t TR '74 ' Maryland, Dept. of ivlathema'"ics February|914.[NoticesAmer.Math.Soc.2|,June|g74,Abstract 56' 881 llt-s,ti4, P' A-Mtf U ' 2' 3' ' Proc' estimatesof convex functions 388. Finkeistein, M. Growth il4q 35 #5598'[6' 10' 22'37' Anier. Math. Soc.rs(iqoD,4iz-4ls: 4 5 , 6 1 , 6 3 , & , 5 7, ' ! 2 1 Bull' the finite Blaschke Producls' of t utt conr-u The S. 3g9. Fisher, I128-ll29' Amer. Math' Soc ''74(1968)' continuatiortto a schlict function' 390. Fitzcerard, c. H. on anarytic ' 621 MR' 36 #2791'157 proc. Amer. Mattr. Scc. 18(l?ol),igs-lg2;
l'+
(P A R T II) BIB L IO GR A P H YOF S C H LIC H T FU N C TION S
167
geometricfunction theory. Dept. of 391. FitzGerald, c. H. Topics in 6,19,24,43' 49' Math., StanfordUniv., Stanford,california. [5, 54, 621 to a srarlikefunction. 3gz. FitzGerald,carl H. cn unalyricconiinuotion Arch.RationalMech.Anaiy.r5(I969),397-4A1;lvlR40fM34[6' 241 defined on Carl H. Anatytic continuotion of a function FitzGerald, 3g3. no' 9' pp' of points. Suit. London Math. Soc', 3(1971), a sequence 286-290.14,53l: MR 45 #3756 orito w-swirly domqins' 3g4. FitzGerald, C. Fi. Confolmal mappings 47 #446.|6' 49] Pacific J. Math. 37(197|),657-670;MR and coefficient estimotes 395. FitzGerald, C. H. euadratic inequalities Arch. Rational Mech' Anal' 46(i972)' .for schlicht functions. 53' 541 3 5 6 - 3 6 8M ; R 4 9 # 5 5 7' 1 4 ,! 6 , 2 4 ' 3 9 ' 4 2 ' cenain quadratic inequalities 396. FrtzGerald, carl H. Exponentiation of Amer. Math. Soc' 78(1972)'209-2lO1' for Scttlichtfunctions. Full. MR 46#5601.t53, 54, 681 NoticesAmer' Math' 3g7. FitzGerald, carl H. sums of stit mappings. p' A-105' U0 ' 491 Soc. 23, JanuaryI 976,Absiract 731-30-36, H. S. The levelcurvesof har398. Flatto,L.;Newman, D. J.; Shapiro, monicfunctio;ts.Trans.Amer.Math'soc'123(1966)'425-436'
u6,351 J. Reine 3gg.Frank, JamesL. on the convexunivatentfunctions.II. 52 #8400 Angew. Math .277(1g75),5-'7' [l ' l0]; MR odd derivotivesof evenen400. Frank, J. L.; Shaw, J. K. Univalenceof l-4' [90] tire functions. J. Reine Angew. Math . 277(1975), bounded index' of 401 Fricke, G. H. A charscterizationof functions IndianJ.Math.l4(1g72),207_2|2;MR50#7525.t89] 402.Fricke,G.H.Anoteonmultivalenceo.fafunctionofboundeding73),140-142; MR 47 #8854't89l dex.proc. Amer. Math. Soc.40(1 and their logarithmic 403. Fricke, Gerd H. Functions of bounded index #4308.t89l Math. Ann. zooir g73),2t5-223; MR 48 derivative,,s. positive zeroes' Indian J' 404. Fricke, G. H. Entire functions having Pure Appl. Math' 5(1974),478-485't90l 4 0 5 . F r i e d l a n d , s . o n o c o n i e c t u r e o f R o b e r t s o n ' A r c h i v e f o r R a42' tional MR 4l #456' U6' Mechanicsa'd Analysis37(1970),255-261; 45, 52, 541 inequality and its applica406. Friedland, s. GeneralizedHadamard MR 5l tions.Linear and Multilinear Algebra 2(1975),327-334; #3420.[53, 90] conditions and Sturm40i. Friedland, S.; Nehari, Z. Univalence
168
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
595-603: Math' Soc' 24(1970)'
L iouville eigenvalues'Proc.Amer. M R 4 0 # M 3 5 .[ 4 ' 3 l ] Schifa quadratic form of Duren and 408. Friedman,Neal' Remarkson ' u6' , ztz-zt4;MR34#7787 ' Soc' is(rqozl Math ' Amer Proc . fer 'c 24' 42], ^^-:^^ '^'ith 'ntrlt monotonr coefficients' with multiply 40g.Fuchs, Ilse' Power series
M a t h . A n n . 1 9 0 ( 1 9 7 1 ) , 2 8 g _ 2 g 2 , M R 4 3 # & 2 4 . |Koeffizienten' 4,23,391 mit mehrfach monotonen 410. Fuchs, Ilse. Potenzreihn Arch.l{ath.(Basel)zz'tt97l).275-278;MR45# 5 3 2 7complex ,|4,39| the theory of functions of one 4ll. Fuchs, W. H . J. Toprci fn Inc., Princeton, N'J'-Toronto' voriable.D. van Nostrand co., pp'; MR 36 #3954'1441 Ont.-London, 1967'VI + 193 und Krummungsmittelwertebei 412.Gackstatter, Fritz . Gesamtdefekt meromorphenFunktionen.Bayer.Akad.Wiss.Math.-Natur.Kl. MR 48 #4314'[35] S.-8. 1970,Abt. |I, 79-102(1971); 4 | 3 . G a i d u k , V . N . ; M e l k o n j a n , E . L . C e r (Russian) t a i n c o n dIzv' i t i o Vyss' n s f o rUcebn' the univslenceof n-symmet;ilfunctions' 2(141),45-50; M-R49 #rc874'l4l zaved.MatematikaI ilq,no. yreirtodender konformen Abbildung' Al4. Gaier, Dieier. Konstruktive Springer.Verlag,Berlin,|g64.xlll+294pp.;MR33#i507.|44j 4|5.Gaier,D:eter.Esiimatesofconforma!moppingsneartheboundary. [62] ttlR45#2151' g7
sgi-sgsi univ.Math.r- zitr | / 1972), rndiana of conforbehavior it, . On theboundary 116.Gaier,D.; Pommer.nf.., MR34#4470,|621
m a l m a p s . M i c h i g a n M a t h . J . l 4 ( 1 9 6 7 ) , 7 9 - 8 ;gtobar 2 univalence Jacobianmratrixand The H. Nikaido, D.; Gare, 4r7. 8l-93. Annalen 159(1965), of mappings.Mathemalisch. in the theoremfor functions bounded 418. Gal'peritr,I. M. A distortion l, 107-t09;MR ukrain. Mat. Z. 18(1966),no' unit disc.(Russian) 33 #2807. 122, 6ll of o-fseveralof the first coefficients 4lg. Gal,perir, I. M. on estimates Teor' in the unit disc' the Taylor serles of functions -unit'qlent 3s zen'Vyp' 2(1966)'75-78';MR Funkcii Funkcional.Anai. i Prolo
4zo.tlJl;ltj',
fiir die lasse\-spiratischer M. ,uberdeckungssatz
F u n k t i o n e n . ( R o m a n i a n s u m m a r y ) g u t48 t . I#2360' nst.Po litehnlasi(N.S.) t6l -Ine'quarities t-2'sect' l' 59-60;MR l8(22)(1g72),fasc' comnt' p. for the fifth coefficieni' rzr. Garabedian, R. 42' 531 MR 36 #5326'124, pure Appl. Math. rqiift6), 199-214; bearing of Grunsky'sinequalities p. R. ,4n extension -97; 4zz. Garabedian, ' J ' D'a"alyseMath' 18(i967)'8l coniecture on theBieberbach M R 3 7 # 1 5 8.31 2 4 ,4 2 , 5 3 '5 4 1
BIB L IO GR A P H Y OF S C H LIC H T FU N C TIC N S(P A R T IT)
169
p with the Bieberbuchcon423. Garabedian, . R. computer experiments pp ' j ecture. Proc. Internat. Congr. Math . (Moscow, l9d6)' |zdat,..Mir'', Moscow, 1968;MR 38 #342|.t42| 627_62s, M. M. on the Bieber424.Garabedian,P. R.; Ross,G. G.; Schiffer, MR bachconiecture for €v€ttn. J. Math. Mech. l4(1965),975-989; 32 #207. 14,24, 29,42, 53) locsl maximum theoremfor 425. Garabedian,P. R.; Schiffer, M' The Anal ' 26 the coefficients of univalent functions. Arch. Rational (1967),t-32; MR i7 #1584'124,42' 53' 541 E. V. Remorksabout lcc(tl maxima .126.Garabedian,P. R.; Sv,'e'Isf,n, Math' 23 of the coeJficientsof univalent functions' J' Analyse (1970),133-138;MR 42 #4724'124,42'45' 521 on extremalprcperties 427. Garoutte, D. E.; Nickel, P. A. A note Pacific J' Math' characterizingweaklyjt-valentprincipal functions' 25(1968),109-115;MR 3'7#404 tl4] univalenceof holomor' 428. Gavrilov, v. I. Remarks on the radius of lvIR 4l phic functions. (Russian)Mat. Zametki 7(1970), 295-298; #5609{Englishtransl.: Math. Notes711970), 179-i81}' [43] m 42g. Gavrilov, V. I . Behsvior along chordsof meromorphicfunctions 21216(1974)' the unit disk. (Russian).Dokl Akad' Nauk SSSR'
23.
lel certainfunciionals in a 430. Giec, T. The timit extremalfunctions for that are neorly the rdentity' zeszyly family of univalentfunctions II Zeszyt 20 Nauk. univ. L6d:k. Nauki Mat. Przyroc' Ser' . |22, 29| Matematyka(1966),161_t83;MR 50 #134q1 rG) - F[8o(D)' 431. Giec, Tadeusz' The range of the functional French summary) Zeszyy Ailr;tOlf in the classSlur . Folish. lI zeszyt29(1968)' Nauk univ . L6d2k. Nauki Mat. Pryzyrod' ser' 49-62;MR 40 #332.[22,30, 49, 6ll of bounded 432. Giec, Tadeusz. certain extre:matproblems in thelamily summary) zeszyty symmetric schlicht functions. (Polish. French Nauk.Univ.L6d2k.Naukiat.Przyrod.Ser.IIZeszyi34(1969}' 23-71M ; R 4 l # 1 9 8 '51 2 2 , 2 4 , 4 9 ' 6 l l ir the 433. Giec, Tadeusz. Estimition of thefunctional lz's'(Q)/s?Q)f Univ L6d2k' c/ass Sf . (Polish. French summary) Zeszyty Nauk' MR 48 43-51; (1911), Nauki traai.Przyrod.Ser.llZesz.yt 39 Mat' # 8 7 7 0 1. 2 2 , 4 9 , 6 1 l l of univalent 431. Giec, T. on some extremat probtems in the family Polon' sci' Ser' bounded and symmetricalfunctions. Bull. Acad. pp. 137-lM; MR 46 Sci. Math. Astronom.PhVi.,20(1972),no.2, #7501.122,24, 6lll
170
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
potynomisls' properties of extrema-l . Gocal, Ryszard. certain 435 Uttiu' Lodzk' Nauki Mat' Zeuitvfluk' (Polish.French Ml 48#8780't32l ""nrnu'yll iiMat. (1973;I s7-r7.1;
przyrod.Ser.rrzeszv, func' of univarent partiatsumiof a crass curie436.Goel,RamMurti. on the Mariae ult-"' summaries;itttt' tions. (polish and Russian [4' 5'20' MR 41#373s' Seci.A leii; i),,tt-n(r6zo); sklodowska
uni,'o!':"^{.'::::'X:::'f:"{i';:':#' .3.l.,, R'M' Theradius-of 437 ' 12'lt' o-1911 MR#358 :ss-4oi; J' (2)istiqeol' lv{ath' Tohoku 4 3 8 . G o e l , R ' M ' R a d i u s - o 7 " n i ' o Wisk. t ' : : : a n(3) d s14(1966) t a r l i k e,255-260; n e s s f o r MR ceriam Arch. Nie.io analyticfunction,. 431 34 #6059. [6, 1 l, 22' ---) starrikenessfor ^tntrit:ono
f:::':nl-!!oi3,!:"i:r"t"{ir!?' ofuniva':.'' R.M. A ctass 44a.S#] Arch' wisk' (3) 15(1967)' unit disc.Nieuw
realpar, in ii, positive 1 2 '1 8 ' 1 g ' 7 4 ' 7 5 ' 8 Z l 5 5 " 6 ?M; R 3 6 # 5 3 2 21"2 '5 ' a certoin clossof meromor' 2ElMl. Goel,R. M. Radius i7'ro,rrexill,of I'iath' Debrecen14(1967)' phicallystarlike\rnriior,.s.Publ. 284;MR 36 #5323'19' l2l M z . G o e l , R . M . o n K - f o t d s y m m - e t r39 i c c#4370' l o s e -[5' t o .12' con v e49' x f u74]l nctions. 2A' MR ll-u; i' oc' 18(1967), Ganita Russian functions.(Loose of close-to.convex M3, GoeI,R. M. A class 104-115;MR 37 Math. 1E(93X1968), czechoslovlak summary)
r::::,J:# t; '!,;lrt), coerfiwithfixedsecond uniul_te1t functions 444. gi-92;MR42#482'lr2,47' 727 Math.s.i.iiiqoql, cients.J. Inciiani' idath' schl'icht
functions' M5. Goel,R. M ' The'oo-gif"i:?{ 541 #3746' 123' ,25-2'7;MR 4l I l(1969) funct,' nivclentlunctions "A 'lott of univdlent to: corrisr'n-dum NI. R. Goel, " Nieuw M6. reailpart in tke-unit disc' positive hlave derivatives whose ilil 42 #483'12'5'12' 18' t9'74', Arch.wisk. (3)lstigio)' 80-8tt with starshapedimages' M. on a crassof functions 44j.ff;.ilt.. 34-38;MR 41 #M9' [6' 11' 20t951 llsiol. J. tutattl. czcckosiovak 201 Publ' Math' satisfyinsReVQ).1:).' o' on . M functions R. 44E.Goel, D e b r e c e n l 8 ( 1 9 7 1 ) , 1 1 1 - 1 . . 7 ( | gand 7 2 ) starlikeness ; r " r n + o # 7for 4 9 certain 4.12,20,43,72]t of conuixtty The'rsdius M' R" Goe!, Mg. 'yith jtxed secondcoelficienls.Ann. analytic funct;cns of classes
(PART IIT BTBLIOGRAP-IiYOF SCIILICHT FTT}.]CTTONS
IlI
25(l 97l)' 33-39(19i3); Univ. Mariae Curie-sklodowskaSect' A MR 48 #4292-12,I I , I 2, 43, 45, 721 whosederivativeshave 450. Goel, R. M. A clossof analyticfunctions 141-!45; realpcrt in the unit disc.Iiiliarr J. lviarhl3(1971)' positive M i t ' t 8# 6 4 2 5 . i 2 , 2 1 , 2 2 , 3 0 4' 7' 5 6 1 schiichtin the u;ti; circie.Rev. 4jl. Goer, R. M . on a crasso.ffunctiorts MR 45 #523.[4' 11' 12,20' Mat. Hisp.-Amer.(4) 3rirql D,20-33; 821 of certainanalyticfunctions' Ganita 452.Goei, R. M . On partiai sums 201 22(lg7l), no. 1, ll-20; MR 45 #7036' [2' close-to-convexity convexity' 453. Goel, R. M . On rodii of starlikeness, Analy' ' M(1972)' no' Rational Mech' fcr p-volentfunctions. Arch. 11' l2' 14'22' 6i' 73] 4 , p p . l z o - i z g ; M R 4 8 # 1 1 4 6 9[' 5 , 6 ' 1 0 ' for certain and starrikeness 454.Goel, R. M. Radiusof univarence 972),15-19;MR 48 #6388' analyticfunctlons. Indian J. Math. l4(l 12,ll, 431 oJ analytic R. M . The radius o.f convexityfor a certain -crass Goer, 455. pure Appl. Math. 4(1973), 318-324;MR 48 f.tnctions. Indian J. # 5 1 8. 1 2 , 6 , 1 0 , 1 2 , 3 6 1 funccrassof crose-to-convex 456. Goer, R. M . on the ciefftcients o.f a M '751; R 52 t i o n s . I n d i a Jn . P u r ee p p r . M a t h . 5 ( 1 ? 7 4 ) , 1 2 8 - 1 3[15'
#73r
qnd convexof order a' J' London 457.Goel, R. M . Functionsstarlike } l;R 5 | # 3 4 | 4 .[ 6 , 1 0 , 1 1 ] M a t h . S o c .( 2 ) 9 ( l 9 7 4 / 7 5 ) , 1 2 8 - 1 3 0 4 5 8 . G o e I , R . M . o n a c l a ' s s o f , a nj a ustral.tviath.Soc. t l yr at ircqf tu' n[ c6t' i1o1n's3.6J '. A 4 5 ' 6 3 '6 7 ' 6 8 ] g l s ) , p a r t M R 1 , 4 6 5 3 ; 20(l a classof storlike 45g. Goel, R. I\{.; Singh, Y. coefficient estimatesfor Appl. Math. 3(1972),no. 6, 1118_1130; functions.Indian J. Pure MR 50 #10211.12,6, 16, 21, 36, 631 of certain analytic 460. Goel, R. M.; Singh, Y. On rartii of univalence Appl. Math. 4(1973), 402_42|;MR 5l functions. Indian J. Pure 1 i 8 7 51. 2 ,5 , 6 , 1 0 , 1l , 1 2 , 4 3 , 7 3 , 8 2 1 junctions with quasiconformal 461. Gijktiirk , Z. Estimatesfor univalent pp. Ann. Acad. Sci. Fenn. Ser A I No. 589(1974),2| extensions. 462.Goldberg,J.L.Boundsonthederivativesofpositivefunctions. zli SIAM Rev. 8(1966),343-345;MR 35 #381'12' of funcderivqtives the on 463. Goldberg,J. L.; ullman, J . L. A note vol ' 14' S" M' in a half-plane.(Abstract),Notices'A' tions poiittrve no.2,issueno.96'February'1967'p'279'l2l o'f a complex 464. Goluzin, G. M. Ceometric:altheory of functions Moscow' 1966'628 pp' variable(secondedition). Izdat. "Nauka",
H=
I72
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
vol. 26, 1969,578pp']; tA. M. S.; Transl. of Math. Monographs MR 36 #2793;MR 40 #308. l44l 165. Goluzin&,E. G. On the rangesof certain systemsof functionols in the clossof typically real functions. (Russian. English summary) vesrnik Leningrad. univ. 20(1965), no. 7, 45-62; MR 32 #4277. Il3, 23, 291 of 466. Goluzino, E. G. The mutual growth of the coefficientsof a class p-valentfunctions. Dokl. Akad. Nauk sssR 169(1966),759-760; MR 34 #1508[soviet Math. Dokl. 7(1966),992-993].[6' 8, 14] 467. Goluzina, E. G. On the coefficient regions of a certain class of q (Russian)Trudy Mat. functions which ore merontorphic in disc. Inst. Steklov.94(1968),33-46;MR 37 #1585.lTranslatedfrom the Russian:Extremal Problemsof the GeometricTheory of Functions ( A . M . S . 1 9 6 9 ). 1 l 9,291 p-valent 46g. Goluzina, E. G. Mutual growth of coefficientsof a classof 94(1968),27-32; .functions. (R.ussian)Trudy Mat. Inst. steklov. MR 36 #6606.[6, 8 , 14, 821 469. Goluzin&,E. G. The coefficientsof a certain classof functions that ore regular in the disc and have an integral representationthere. (Russian)Zap. Naucn. Sem.Leningrad.Otdel. Mat. Inst. Steklov. (LOMI) 23(1972),63-77;I"IR 4'i #9328'123,281 470. Goluzin&,E . G. The rangesof valuesof coefficient systemsin the classof functions with posirive real part in an annulus. (Russian) zap. Naucn. Sem.Lenningrad.otdel. Mat. Inst. Steklov.(LOMI) 44(1974),17-25, 186; MR 5 | #8394' 12,29, 481 471. Goluzin&, E . G. The range of values of certain coefficient systems in the classof typicatly realfunctions in an onnulus. (Russian)Zap. Naucn. Sem.Leningrad.otdel. Mat. Inst. steklv. (LOMI) M(1974), 26-40,186;MR 5l #8395.[13,29, 48i qnd theproperty 472. Goncar, A. A. The rate of rational approximaticn cf univalenceof cn analytic function in the neighborhood of an (1974)' isoistedsingular ooint. (Russian)Mat. Sb. (N.s.) 94(136) 255-282, 336. poly413. GoodmaD, A. W . On the convexity of the level curves o"f a ' #5847 32 MR rromial.Proc. Amer. lvlath.Soc. l7(1966),358-361;
u0, 16,32,351
I. 474.Goodmao,A. W. Curvatureunderan analytictransformation. MR 38 #313.[16' 35i 527-533; LondonMath.Soc.43(1968), 475.Goodman,A. W. The valenceof sumsand products.Canad'J' MR 38 #314.i4,6, 10,14,16,43,821 1173-1177; Math.20(1968), 476.Goodman,A. W . Openproblemson univalentand multivalent l I
i i
1
I I I t
BIBI,IOGRAPHYoFSCHLICHTFUNCTIONS(PARTIDtT3
f u n c t i o n s . B u l l . A m e r . M a t h .4S4o1c . , v o l . 7 4 , n o . 6 , N o v e m b e r 1 9 6 8 ' ' 6' 0 ;R 3 8 # 3 1 5 U p p . 1 0 3 5 - 1 0 5M of certainmeon* J. AnalyseMath. 47i. Goodmatr,A. w. The varenci 40 #326'[16' 57' 821 lss-rot. N',IR 22(1969), the editors'ukrain' Mat' z' 24(1972)' 4,1g.Goodrnan,A. w. Letter to ' 14,9' 431 427;MR 45 #7037 theorem'J' A. w. ,4 noti on theNoshiro-warschawski A7g.Goodmatr, |2,4, 10,64] Math.250glz),401-408;MR 45 #88:r9. Arralyse functionsof higherorder. 4g0. Goodman,A. w. on crose-to-ronvex Set'" lvlath' l5(i972)' 17-30 Ann. Unrv. Sci. Budapest.Ebtvtis ( 1 9 7 3 )M ; R 4 8 # l \ 4 7 0 '1 3' 4 ' 5' 7' 1 8 1 Amer' for 1!e areatheorem'Proc' 4gl. Goodmatr,A. W. Coefifiient's #530' 45 123'271 | l; MR Math. Soc.,33(lglz),"ito'2' pp' +lg-4 lypicatly-real function' a of points 482.Goodman,A. W. The criticit MR47 #2043'u, 14' 16' proc.Amer.Iviath.soc.38(1973),95-102; 23, 37 , 431
prnn t rr-L ^- -^r,,-n"ninro the zeroesof Faberpolynomials'Proc' on note A . w A. Goodman, 483. Amer.Math.Soc.4g(|g75),407-410;}yIR51l#3409.t53] 484.Goodmafl,A.W.;Rah,,'un,Q.I.;Ratti,J.S.onthezeroesofa polynomiqlanditsderivative.Proc.\mer.Math.Soc.2|(|96)), 273-274.[16, 321;MR 39 #421 of univalent Functions 485. Goodman, G. s. on the Determination
withPrescribedlnitia|Coefficients.Arch.RationalMech,Anal..24 39' 42' 541 (r967),78-81;MR 34 #M78' 124'29' comparing univalentfunctions' 486. Goodman, G. S. A method for l96g:pp. 517-521;MR 40 #7433' Bull. Amer. Math. Soc.75,May
124,541
of functions. 01"certain crasses 4g7.Gopar, M. R. Rad iusof starrikeness 2, issue no. |20, Feb. 1970 Notices A. M. S., vol. |7, no. (Abstract),Pg' 409' [2' I ll V. S' Coefficient estimatesfor 4gg. Gopalakrishna,H. 5.; Shetiya, MR Sci. l8(1973),297-307; spira,ike mappings.j. f*nuiak Univ. 50 #588.[6' 36] of anatyticfunctions' (Russian)' 489. Gopengauz,B. E . certain closses 189 (1966),lM-160; Trucy Tomsk. Gos. Univ. Ser. rraerr.-Math. MR 37 #2967. 14,6, 9, 391 of anatyticfunctions' II' (Rus490. Gopengalrz,B. E. certain classes ser. Meh..Math. 200(1968),20sian). Trudy Tomsk. Gos. Univ. 30; MR 4l #3736'[9' 39' 58' 68] . the coefficient of functions from 4gl. Gopengauz,B. E. istimates of (Russian)irudy Tomsk' Gos' Univ' Kn(E) with reat coefficients.
Fr----
114
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Ser. Meh.-Mat. 200(1968),62-70;MR 4l #2024.[39' 541 492. Gopengauz, B. E. certain theorems on functions whose divided Gus' difference is different from zero. (Russian) Trudy Tomsk' univ. ser. Meh.-Mat. 200(1968),3l-42; MR 4l #2023.t39l positive real 4g3. Gopengauz,B . E. Functionswhosenth derivativehas part. (Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat' 240 (1968),43-61;MR 4l #2018.[2, 19,54, 68] positive 4g4. Gopengauz,B .E. Someremarkson functicns thqt have a Univ' Gos. Tomsk. rea!port of the n-th derivative.(Russian)Trudy 9-17; MR 43 #5037.12,7ll Ser.Meh.-Mat.210(1969), deriv4g5. Gopengauz,B. E. A certaingeneralizationof the schwarzian ative and its opplication. (Russian) Mat. Zametki l0(1971)' 229-238;MR M #5464(Englishtransl. Math. Notes l0(1971), 5595 6 4 .[ 4 , 3 l ] uni496. Gorjainov,V. V. A rotation theorem in the cla,ssof bounded oo' 5, 633-640' valentfunctions. (Russian)Mat. Zametki 18(1975),
lz2, 6ll
in 4g7. GorjainoV,V. V.; Gutljans'kii, V. Ja. The radius of starlikeness conformal mapping. (ukrainian. English and Russiansummaries)' l4R DopovidiAkad. Nauk Ukrain. RsR SerA 1974,100-102,187; 4 9 # 9 1 8 1[.l 1 , 2 2 1 points in 498. G6rski, J. Sotmeappticationsof the method of extremal the theory o,f analyticfunctions of one complex variaore. colloq' Math.ll(l96-1/64),151-156;MR30#4917'124'541 univalent 4gg. G6rski, J. some shorp estimations ctf coefficients of #3591. 3l MR t54l 199-207; functions. J. AnalyseMath. l4(1965), to needed points method 500. G6rski, J. Application of the extremal Ann. some variatioial problems in the theory of scl'tlichtfunctions. Polon. Math. l7(1965),t4t-t45; MR 32 #5859.124,54'881 of the c/assS' 501. G6rski. Jerzy.A sharp esti,nationof os in a subclass 27-29; zeszytyNauk uriiv. Jagieiio.Prace Mat. zeszyt l1(1966), MR 44 #2921.t54l Ann' Univ' 502. G6rski, J. A certainminimurnprobleni in the classS' 1969/ Mariae Curie-sklodowska,Scct. A, Vols. 22/23/24(1968/ 1970),pp. 73-77(1972);MR 49 #10872'l54l in the clqsss' 503. G6rsk!, J. Locai ineqtnlitiesJ'or scme functicnals [54] Ann. Poion. Ivlath.24(tg7\), Fasc.2,219-224lvIR 14 116949' in a5 Re and aa RE 504. G6rski, Jerzy.Some lotcalproperties of Re as, Katowice-eh-Prace the classS. (Polish srrmrniuY)Univ. 514516iu'r Mat. 2(1972),19-24;MR 46 #7496' l54l s. (Polish 505. G6rski, J. Local inequalitiesof coefficients in the class
(PART II) SCHLICHT |UNCTIONS BIBLIOGRAPHY OF
175
Summary)Univ.SlaskiwKatowicach.PraceMat.4(|973),23_26;
es',',#i{::r'"{:::I;'ff,:' r' r :?::sharp r"J lvfR 35 X*,fi,ti:tJ;ll-] 506. tutotrt.Mech'-ritr966)' 571-582: univalentfunctions.l.
-{"1, ffi%Tll;; MR 42 #477',1 .ii,li;i'ii;t 461; 5cT r}1g;*l' tlg' 22'ni, tLiil"gt.Ji,247-2'5i' z. . ""^tl'I;'}'ir:TI Math Bull' functions. analysis' H. crrvaturr-oni complex wu, MR 44 #473 50g. Greene,n. i., .rtri;;t), iMs-rMg. t35h soc not Amer.Math. lunctionsthat do of univalen-t iiriirir*ts The z. A. 50g. Grinspao, -;' (nu"iun)'Mat' Zametki11 and w it'i' of pair essumeony transi.:Math Notes||(|972), qs n/J,l @nglistr (|972),yt[;MP.
t!1Y1"' y'yr3(Igtz),1'iq-s-tist' MR 48#6403 1199; i':;;,';^ii#:Xi 510'.;1ll;11'1''|' ;i,n:{' i' : :::,:{,f Z. y"i. Sibirsk. 't421 (1973)] (Russian) 793-801 ilii-gl2)' transl.:siu.rianr.n"trr.l. principleto the [Enelish of the are.o opplication rni z. A. _ 609-618 5l I . Grinspan, zametr\11(1972)' fui[tions -n'r"t 8?l 86' Bieberbuch-Eilentrrs 34', ',
1i(letzi,-z'ir-311yyiru!1uY:.:27 closs []{ath.Notes Certainestinntesin the
5tZ. Grinipa^,A . Z.if"fJ"r"lyi^,2,^D. offuncrionsthatdonottakeanypairofvaiue'*.?nd..|.1.(Russian. univ' No' 19 Mat' Meh' Leningrai. -ia-l+'-tsi; v.ruril. Englishsummary) [26'3l' 34'87] r"rn49 13110' ot'g;t' Vvp' (R'ssian) Astronom' oi onot4tlr.,functicns' ,to* c'ertain a on 491 513. Gromov&, L.L. MRll iqz'tl'u9',23',4r', 11^0-113; itrqojt, vyp. sb. that Mat. volz. domains lie ryon-ouerlapping e' N' r-tit;t;' Univ' 24 514. Gromov3,L'r-'; ,rr**uryi v.unit Leningrad' Fnglirt, (Russian. q disk in ;;' it' 7-r2;lurn4r #8646'1261 (1e6e;; for nonover' N' A'-Area theorems itUtatu' L'; L' 515. Gromova' '126' lappingfinitetyconnectedregicn,.tt.(Russian.Englishsunrmary) ;;.'i ,l8-29;MR 41#8647 uniu.25(iqzo;, vestnikLeningruo.
ft analyti: yti : Junc' of anal .- rr /-tu certain nn.' l ,i n cl nssesof classes zluz\n,v^ L.; d,L. j;;:i16; }. ln u 1'23' 516.Gromov MR 33#42s5' 3(re65;, vrp. si. Mat. tions.Volz. 2 7 ,3 4 1
t' I t t::'^'":::'if::J:;:::;!i"o s17'8lo*ouu'L' L'; zvbina' pea. Inst. ucen. Zap. Vyp. 46 co,. functions.(Russi""l,su,uioy. diein Gebieten' von Abbitduns g*:[f, z::i:'f"ri'= f;'x] 685s18 Math' Anal' Appl' 34(1971)' J. einerRichtunst o*-;, srnd. ?01;MR 43 #7605'UOl
b-.-
176
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Spacemethod in the theory of 5 1 9 .Grunsky, H.; Jenkins,I, A Hitbert proceedingsof the Symposium on- Complex schlicht functions. pp' 75-79' London Math' Analysis(Univ. Kent, Canterbury1973)' Univ. Press,London, Soc. LectureNote Ser., No. 12, Cambridge
re74.t44l
t
the curvatureo'f levelcurvesand 520.Gudz', L.A. Shorpboundsfor theirorthogonaltrajectoriesinclassesofalmostconvexfunctions. Dopovidi Akad' (ukrainian. English and Russiansummaries)' NaukLlkrain.RSRAlgl4'4g4-4gg'573:MR5l#3415'[5'35] functions' 521.Gupta, R. s. on meromornhiclilcularly-symmetric G a n i t a r g ( r g o z ) , t r o . 2 , . 3 t - 3 . 8 ; M R 3 9 # 4 3 7 1 .of t 9o, 1crass 3 , 2 5of, 4 9 | starrikeness univarence.and of Radius s. 522.Gupta, R. analyticfunctions.J.Austral.Math.Soc.14(1972),Partl,1-8; MR 47 #5239.12,11,22,13,567 with positivereal 523.Gupta,R. S. An extrematpiobi* f?' functions part.Proc.Amer.Math.Soc.33(|972),455_462;MR45/2|67; MR 48 #4323.12,561 of analyticfunctions' J' Indian 524.Gupta, R. s. on certain classes Math.Soc.36(1972),fg-gg;MR47#7015't5'9'16'N'41'45'56' 63,67,15,78,791 of convexsum cf univalentfunc525.Gupti",R. S. Radiusof cortvexiry vol' 19,no, . l-4, 1972,39-42;MR 48 Math' Debrecen' tions.Publ. #2361.16,29,35,681 lunctions' of convexityof a classoJ'univulent 526.Gupta,n. s. Radius #5389. 48 [5, 6, 10, MR J. IndianMath. Soc. 36(|972),29|_296; 12, 821 of univalentfuncitons' Rev' Mat' 527.Gupta,R. s. on the integrals [6' 11' l2' 85] yR 50 #13480. (4)34(l974;),iog-zis; Hisp.-Amer. valuesof certainfunctionalssnd 52g.Gutljanskii,v. Ja. The'rangeof thepropertiesoftevetlinesonclassesofschtichtfunctions.(Rus71-87; 200(1968)' sian)TrudyTonnsk.Gos.Univ. ser' Meh'-lvlat' M R 4 l # 3 7 3 7 . 1 6 , 2 9 , 3658, 1 cf univarentfuncparametricrepresentation 52g.Gutrjanskii,v. Ja. 750-753;MR Dokl. Akad. Nauk sssR 194(1970)' tions.(Russian) t68l 1273-127.61' 42 #6201iSoui.tMath. Dokl. 11(19?0), of univalent class the of 530. Gutljanskii,V. Ja. The stratif;,o,,on analyticfunction.s.(Russian)Dokl.Akad.NaukSSSR196(1971)' 498-501;MR42ll7877.[SovietMath.Dokl.l2(197|),155-159}.
l24l theorem in a classof schlicht 531. Gutljanskii, V. Ja. The rotation (Russian)' Mat' Zametki 1C(1971)'239P-sYmmetricfunctions.
FUNCTIONS (PART II) BIBLIOCRAPi{Y OF SCHLICHT
111
242;MR45#sz|[Englishtransl.:Math.Notesl0(1971),565_566]. [49,681 parame*ic representations 532.Gutljanskii,v. Ja. Integro-differ,lltiarEnglishand Russiansumand variations!forntulie. (Ukrainian' Ser'A 1973'781-783' DopovidiAkad.Naukukrain' RSR maries). 859;MR 48 #8778'1241 of distortiongnd on theorems V ,.A. Scepetev, Ja.; V. 533. Gutljanskii, univarent functions.(Russian) rotationon the crassioromorphic S i b i r s k . l . . { a t . Z . 1 4 ( 1 9 7 3 ) , 8 6 7 - 8 7 2 ' 9 1 1 ;crea M P ' 4 9 # 5 6for 0't581 v . A. A generaiizeJ theorem s..p.irV, Ja.; v. Gutljanskii, 534. mappings.(Russian)'Dokl' o certoinclassof q-qiiri;conformat A k a d . N a u k . S S S R 2 : l 8 ( | g 7 q , 5 0 9 - 5 . 1 2 ; MoJ R5|#3434.|27| in thefamily schlichtfunc' estimates certain Eugeniusz. 535. Guz, (Polish' French summary) tionssatisfyingduxitiiary conditions' Przyrod'ser' rl zeszyt Mat. zeszytyNauk. univ. ioart. Nauki 3l-47; MR 39 #5783'[9' 58' 68] 29(1968), functions' oj k-symmetric,un.ivalent 536. Guzek.R. F . The,orlltrrnts ( P o l i s h . E n g l i s h s u r n m a r y ) . Z e s z y t y N(1966)' a u k . I J147-160; n i v . L o MR dzk.Nauki Matematyka przyrod. .ILzesivt20 Ser N{ar. . 122,30,491 50 #2477 uyllesof finitely valentfunctions' 537. Hacdad,David c. Asymptotic 361-368'U4l DukeMath' J' 39(1912)' tintits of locartyfinitery valent A'ngurar 53g. Haddad, David c. 12;MR 48 . 48(1973),107-1 functions.PlcificJ. Math holcmorphic #8802.lr4' 621 under of hyperbolic-curvature 539. Haifawi, M. M. on the behavior ift"d' Circ' Mat' Palermo(2) univalentboundedtransformati('n' 16(1967), 57-63; MR 39 #2964' t35l
tinnc StrrrliaS univarent functions.stucia Sci. theoremsfor Tauberian G. Har6sz, 540. M a t h . H u n g a r ' 4 ( 1 9 6 9 ) ' 4 2 1 - M O ; M R 4 0 # 5 8 4 2of '16'201 pointsof somefamilies univalent 541. Hallenbeck,David J. ;xtreme
functions.Notices,A.M .,u-ol.19,no.1,issueno.135,January' p'. S A-119' [88] lg72(Abstract691-30-32)' pointsof somefamilies extieme and 542. Hallenbeck,D. J. convexhuils Math. Soc. |92(|974),285_ of univalentfunctions.Trans. Amer. 4l' 56' 881 ' U ' 2' 4' 5 '9: -10'12' 16'21' 23'39' 292;MR49 #3103 closefor convex'starlike'ond 543. Hallenbeck,D. J . some'inequalities ' 4llJ' 24 (99) (1974) msppings.czectroslovakMath' to-convex 4 1 5 ;M R 5 0 # 5 8 9 [' 5 ' 6 ' 1 0 ' 6 3 ' 6 4 1 co)iecturefor the convexhulls of 544.Hallenbeck,D. J . On the Marx soc' convex*op"ptnss'Proc' Amer' Math' familiesof starlikeand
17E
BIBLIOGRAPHY OF SCHLICHT FUNCTTONS
4 2 ( 1 9 7 4 ) , 1 3 5 - 1 3M9R ; 4 8 # 4 2 9 3 't l , 6 , l 0 ' 1 2 ' 4 3 ' 8 8 1 of functions defined by 545. Hallenbeck,D. J . Extremepoints of classes MR 50 subordination proc. Amer. Math. Soc. 46(1974),59-64; #10225.[1, 6, 36, 88] points of families 546. Hallenbeck,David J. convex hulls and extreme J' Math ' 57 Pacific of starlike and close-to-convexmoppings. (1975),167-176.U,2,5,6,13,16,23,36,45,75,881;MR52#725 of extremepoint 547. Hallenbeck,D. J.; Livingston,A. E. Applicstions Amer' Math' iheory to classesof muitivalent functions' Notices Soc. 2l(1g74),AbstractT4T-P;221,p' A-5M' U4' 881 of extreme point 548. Hallenbeck, D.: Livingston, A. Applicotion Amer' Math' theory to classeso7 mittivalent functions. Notices p ,. A - 1 0 1 .u , 5 , 1 4 , 7 5 , S o c . 2 3 J, a n u a r y1 9 7 6A, b s t r a c t T 3 l - 3 0 - 1 5 881 chains ond 54g. Hallenbeck, D. J.; Livingston, A. E. Subordination 1976' p-valent functions. Notices Amer. Math. Soc' 23, January Abstract'731-30-6, P. A-99' [1, 4, l4l estimatefor 550. Hallenbeck, D. J.; Livingston, A' E' A coefficient mult;valentfunctions. proc. Amer. Math. Soc' 54(1976),201-2M' ; R 52#8401 [ 1 , 5, 6 , 1 4 , 1 6 , 4 2 , 5 0 , 8 8 ] M and extreme551. Hallenbeck,D. J.; MacGregor'T. H' Subordination ' point theory. Pacific J. Math. 50(l 974),455-468;MR 50 #13481
u , 2 , 3 , 5 , 6 , 1 0 ,1 3 , 2 38, 8 1
by convexfunc552. Hallenbeck,D. J.; Ruscheweyh,S. szborriination MR 51 #10603' tions.Proc.Amer. N{ath.Soc. 52(1975),l9l-i95; [ ] , 4 , 6 , 1 0 ,8 2 ] Mich' 553. Hansen,Lowell J. The Hardy classof a spiral-tikefunction' Math.J.,lS(1971),279-282;MR44/.4211'[6'36'6?l transformations of 554. Hartmann, F. W.; MacGregcr, T. H. Matrix J. AustralianMath' Soc' l8(1974)' 419-435; uni,talentpower series. tvtR 5 ! #10597.[4, 54, 68j of Apollonias' Por555. Haruki, H. On un application of a theorem trrgal.Math. 33(l 974), 167-170;MR 50 #13476.I3ll prob556. Hayman, w. K. Cor:rigendum:Stirvey article-coefficient classes.J. Lonlemsfor unifalent functions and relatedfunction donlviath.Soc.4l(1966),5-{0;MR33#7519.[44] probiems in function theory' The 557. Hayman, W. K. Reseu,rch vII + 56 pp'; Athlone Prcss(univ. of London), London, 1967, MR 36 #159.[16, 44] gops' Colloq' Math' 558. Hayman, W. K. Mean p-valentJunctionswith l 6 ( 1 9 6 7, ) l - 2 1 ; M R 3 5 # 4 3 9 5 '[ 1 4 , 3 3 , 3 9 ]
J
(PART Tt) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
119
de Les Presses multtvalent'es' 55g.Hayman,walter K. Lesfonctions 40 MR pp'; Que., 1968' 52 l,Universitede Montr6al,ivfontr'eal, . Il4, 441 #5S48 cf meon Hankcl cieterminent 560. Hayman, W. K. On the seconC Soc' (3rO series)'l8 univalentfunctions. Proc. Loqd'''rnMatir' (i968),77-94;MR 36 #2794't33l p-varintfunctionswith mini-gaps.Math' 56r. Hayman,w. K. Mean Nachr. 39(1969),312-324;MR 4C#336't33l multi'"'alent functions' Ac' 562.Hayman,W. K. Tauberiantheoremsfor MR 42 #3270'[seealso]viR48 #505' 269-298; ta N{ath.125(1970), MR 50 #5931.[14, 33, 621 on archproblens in function theory;progress 553. I{ayrnan,w. K. Rese Symthe of Proceedings the previousproblemr; ir* problems' 1973)'pp' CanterbufY' posiumon ComplexAnalysis(Univ' Kent, l2' LondonMath. Soc'LcctureNoteSer.'No' 143-154,155-180. CambridgeUniv.Press,Londor,|g74.Va]tMR52#5944,#8385' #8386 , , n^^:r.inequalilies and local valency. Pacific 564. Hayman, w. K. Differential
J . M a t h . 4 4 ( 1 9 7 3 ) , l l ' l - 1 3 8 ; M R 4 ' 7 # 5 2 4 0 ' t 1 4 1 of theminimummodulus func565. Hayman,w \.; Nicholls,P. J . o Math. Soc. 5(1973)' tionswith given ,orrirrirnrr. Bull. London 2gs-30r;MR 48 #4301'[33] questionctfM. L' cartwright' 566.Hayman,w. K.; Storuick,b. e. A +ig-qzz;MR 47 #5238't621 J. LondonMath. Soc.tz>sttg1z), and meansof the coefficients 567.Haytnan,w. K.; Weitsman,A. on Math. Proc' cambridgePhilos'Soc'77 functionsomittingvalues. ( 1 9 7 5 )1, 1 9 - 1 3 7M; R ' s 0# 1 3 4 9 5[ '3 ' 1 4 ' 6 2 1 Study concerningconformal 568. Heins, Maurice. On o theorentof dedicatedto A' J' mapswith conveximoges.MathematicalEssays Athens,ol^io, 1970; Macintyr€,pp. 17l-t:te. ohio urriv. Press, MR 42 #7878.UOl differentialequations' 569. Heins, Maurice.,4 note on the Lowner 46 #3771l. |24| PacificJ. Math. 39(197|), |73.177;MR 5 T 0 . H e i n s , M . O n a t h e o r e m . o J S t u d y c o n c e r n i n g cMR o n f49 o r#551' malmapswith conveximages.II.Math. Scand.32(1973),245-257; t10l to dowalter;fchober, Glenn. on schtichtmappings 571. Hengartner, 45(1970)' Helv' Math' mainsconvexin oni direction Comment' 791 78' MR 43 #3436'12' lg' 21' 4l' 303-314; closeto siZ. Hengartner,Walter; S.nof.r, Glenn. Analyticfunctions Amer. Math. soc' mappings convex in one direction Proc.
b--.-
1t0
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
28(l97l),519-524;MR43#3437'15,12'41'43'78'791 P,lya-schoenberg 573. Hengartner,w.; Schober,G. E. A remark on the no' 138, June conjecture.Notices,A. M. s., vol. 19, no.4, issue lg72 (Abstract 72T-B150),p' A-5 18 ' [47] des familles de 574. Hengartner, W.; Schober, G. Points extrAmsux sci. Paris 56r. A-B 274(1972), fonctions univalentes.c. R. Acad.
MR 45 #7038't88l A837-A838;
some classesof 575. Hengartner,w.; Schober,G. Extremepoints for univalentfunctions. Trans. Amer. Math. Soc' 185(1973),265-270; M R 4 9 # 5 5 9 .1 4 , 4 1 '8 8 1 of univalentfunc' 576. Hengartner,*.; Schoblr; G. Compoctfamities ' J' 21(1974),205Math tions and their support points. Michigan 2r7 (1975);MR 5l #898.[24' 88] points d'appui des . Hengartner, W.; Schober, G. Propriitds des 57'7 c. R. Acad' Sci Paris famittes compactesdefonctions univolentes. ; 5 l # 8 8 0 't 8 8 l 5 6 r . A . 2 7 9 ( 1 9 7 4 ) , 5 5 1 - 5 5M3R properties of support 578. I{engartn.r, W.; Schober, G. Some new Amer' poin-tsfor compoctfamities of univalentfunctions. Notices p' A-102' [88] Math. Soc. 23, January 1976,Abstract 731-30-18, moxof points counting for function 57g. Herztg, F.; Piranian, G. The proc. Pure Math., vol. ll(1968)' I^r Symposia of modulus. imum 24A-243.[68, 90] 580.Hindma,,h,L.;Volk,B.Schlichtcubesotile|< Math. Monthly, March 1976,'20'l-209'l32l Proc' 581. Holland,F. Somepropertiesof a classof regularfunctions' MR 4l #7084'16,2f,621 Roy. Irish Acad. Sect.A 69, 85-95(1970); relationsfor starlikefunctions'Proc' -A,72(1972), 582. Holland,F. some osymptotic no. 1, pp. 1-16; MR 47 #451' Roy. Irish Acad. sect.
16,621 Proc. 5g3. Holland, Finbarr. on the coefficients of starlike functions. Arner.Math. Soc.33(l g72),463-470:Ir{R 45 #531.[2,6,9,18'23' 25,zil
polynomials with 584. Holland, Finbarr. Some extremumproblemsfor MR 47 positivereal parf. Bull. London Math. Soc. 5(1973),54-58; #8824.12,321 j85. Holland,F. The extremepoints of a classof lunctions with positive 23, 881 reatport Math. Ann. ZOi(tg13),85-88;MR 49 #562' 12,21, slarlike func5g6. Holland, F.; l'homas, D. K. The orea theoremfor tions.J.London Math. Soc.(2)l(1969),127-134;MR 39 #7080'[6' 18, 27, 361 of a starlikefunctions. 5g7. Holland, F.; Thomas, D. K . On the order
A
FU N C TION S(P A R T II) | IBT ,IOGR A P H YOF S C H LIC H T
T81
189-201;MR 43 #343E'[3'6' Trans.Amer. Math' Soc' 158(1971)' 36, 62, 631 5 8 8 . H o l l a n d , F ' ; T w o m e y ' J ' B ' O n c o ftani' e f f i c i eAmer' n t m e slvlath' n s o f c Soc' e r t a i185 n c.f univalentfunctions' suttclos'ses q i r c l g 6 ' 1 2 ' 5 ' ,6 ' , 2 1 ' , 2 2 '3, 0 ' ,6 2 ' ,1 5 1 ( 1 9 7 3 ) ,I 5 1 - 1 6 4 ;M R o"f J 'K' A note on conforntalmappings Kr'owles' O'; C. Horgan, 589. convexmappings.Utrlita,tutu.t'.5(1974),75-78;MR49#9|75.|27, 53, 54'l mapping. Proc. bounclary values o-fo ,schlicht 590. Horn, R. A. on lgz-787; IVIR36 #2i92. i53' 62i Arncr. Marh. Soc...18(t961\, 59l.Hornich,Hans.(]berdieFixpunktederst:hlichterfi:nktionen. (Englishandltalia.nSummaries)Rent.Ist.Mat.Univ.Trieste2
itlzo;, 54-58;MR 42#i989' D.rfferentiargreichung in zusam' Eine . iartrette Hans Hornich, 592.
menhangmetdenschlichtenFunktionen.Monatsh.Math.T6(19,72), l2r-t23; MR 46 #2029' ' estimatesfor univalent PolYnomiols Coefficient D' Horowitz, 593. lgi 5, Abstract 7 20-30-28' P'
NoticesAmer' Math' Soc'' ianuarY A-125.132,121 coefficient estimates for 5g1. Horowitz, David' "1 refinement.for S o c . 5 4 ( 1 9 7 6 )1, 7 0 - 1 7 8 ' Math. univalentfunctio'ns'Proc' Amer'
und Abbitdungen konformer Faktorisieruns Die . lii;i:;,tiluo se5. A r t w e n d u n g e n . M a t . Z . 9 2 ( 1 9 6 6 ) , 9 5 - 1 0 9 ; M RArch' 3 3 # 2 Rational 808.[58,68] variationarlemma' 596. I{uckemann, F. on s.nif)r's MR 33 #1446' 162l Mech. Anal. 22(1966),lib-112; of conformsl irt certain crasses . Huckemann,F . Extremcr erements 5g.7 mappingofanannulus.ActaMath.lls(l96.7),|93-221;MR35 .t t^,uan rr Arnh Ravsriationarremma.II. Arch. Ra' schiffer's on F. 5gg. Huckemann, MR 39 #1652.162l tionatMech.Anal. lliiql"gl ,246.24:; ' J' AnalyseMath' 18 funciions Multivslrn't'ito'iike A. J. 599. Hummel, (1967),iil-160; MR 35 #359'[6',14] 600.Hummel,J.A.Extremalpropertiesofweaklystarlikep-valent functions.Amer.Math.Soc.Trans.rlotr963),544-551;MR36 #5332.[6, 14] of starlikefuttctions' Proc' A' M' 601. Hummel,J. A. Thecoefficients 36',-54\311-3tttMit 40 #M40't4',6', s.22(1969), funcj"' thecoeffi-cient bodyof univarent 602.Hummel,J. A. Boun;; 128andAnalysis36(1970)' for RationatMechanics tions.Archive 134;MR 42 #6213'[6' 36] #3048. t57l
iilt
.
H^-
I82
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
603. Hummel, JamesA. A counterexompleto the Marx coniecturefor starlikefunctions.Notices,A. M. S., vol. 19,no' 1, issueno' 135, Januarylg72 (Abstract691-30-15),p' A-114' U, 6, 16l 604. Hummel, JamesA. Lecttlreson varistionalmethodsin the theory of univalentfunctictns.University of Maryland, Dept' of Mathematics,Lecture Note #8, 189PP. [2a] pairs- J. 605. Hummel, J. A. Inequalitiesof Grunsky typefor Aharonov M;R 4 7 # 4 5 5 . 1 4 , 2 2 , 3 4 , 5 3 l j A n a l y s eM a t h. 2 5 ( 1 9 7 2 ) , 2 1 7 - 2 5 7 conjecture Marx The for starlike functions . 606. Hummel, J. A. pp. 257-266;MR 46 #3761.16, MichiganMath. J., I 9(1972),no. 3, 161 607. Hummel, JamesA. Lectureson variationalmethod in the theory of univalentfunctions. Univ. of Maryland (Studentbookstore),College Park, MarYland 20742. l24l 608. Hummel, J. A.; Schiffer, M. coefficient inequalities for Bieberbach-Eilenbergfunctions. Arch. Rational Mech. Anal. 32 , 7J (1969)8 , 7 - 9 9 ;M R 3 9 # 4 2 6 . 1 4 , 3 4 , 5 3 8 coefficientsof schlicht nearby growth of 609. Il'ina, L. P . The relative 715-722;MR 39 #1644. fttnctions. (Russian)Mat. zametki 4(1968),
t8l
in 610. Il'ina, L. p. Estimatesfor the coefficientsof univalentfunctions dependenceon the second coefficient. (Russian)Mat. Zametki 13 (1973),35r-357;MR 47 #7019.l42l 6tl. Il'ina, L. P.; Kolomoiceva,Z.D. The estimrttionof lcol as afunction of lcrl tn the classS. (Russian.Englishsummary)VestnikLeningrad.Univ. No. I Mat. Meh. Astronom.Vyp.l(1974),27-30,164; . t 2 7 ,5 3 , 5 4 1 MR 49 #9185 612. Inove, T. An cpplication of the variational method to hyperbolic capacity.Math. Japan. 12(1967),35-40; MR 37 4397.1241 613. Izdebski,Lucjan. A contribution to the theory of subordinationAnn. univ. Mariae curie-sklociowska sect. A l8(1964)' MR 38 #2298.[1, 16, 68J 9-12(1967); 611. Jab(orfski,F. F. Sur la subordination en module et en domqine des Sectfonctions holomorphes.Ann. Univ. Mariae Curie-sklodowska, 1970),p.79-83; MR 49 #5339.[], 6] A, vols. 22/23/24(lg63i1969/ certaines 615. Jahl,orfski,F. F.; Lewandowski. z carsct|risatioit de de foncitons huiomorphcs trtar!a sitbordirtotionmoduioire. classes 25-31. U ' 6l Ann. Univ. MariaeCurie-sklodowskaSect.A 19(1965), 616. .Iabforfski,F. F.; Wesolowski, A. Sur une famille de fonctions summaries)' holomorphesdans le cercleunit6. (Polish and Russian ')i (J)57), 9i-99 Ann. Univ. Mariae Curie-SklodowskaSect. A ( 1 9 7 2 )M ; R 4 8 # 8 7 7 1 [. 5 , 6 , 1 2 , 6 3 ]
(PART BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
ID
1E3
the elements of E. (Jniversal relstions between Jabotinsky, . 617 4||4|7; MR 35 Math. 17(196o,1, Grunsky,s matrix. J. Analyse # 6 8 0 8 . t5 3 l
,
.
tL^ ot.tnontc
ttl '
6lS.iauotinsty,E.(JniversalrelationsbetweentheelemenlsoJ Grunsky,smatrix.J.enutv,.Math.lT(1966),4114|i;MR'35 #6808.t531 6|9,Jack,I.S-,Functionsstarlikegndconvexofordera.J.London Nlath.Soc.(2)3(l97L),469_474;MR43t'l76l1.[6,10,i|,|2,|6,63, @l t )nt taafnrrnnl mnnninvs. of curvesunder;onformalmappin*s distortion LenSth S. , Jaenisch 620. l2l-i28,.MR 36 #5319.t?' 16' 35,621 Mich. Math. J. 15(1g9g), de sur la dtformatior dars tafamille ;:;''riAo'a^es Jakubo'.*", 62l. inf€ricureo:, p6r, simprea'"r'infiniet borndes fonctions univarentes mentdanslecercleK(-,1).panstwowewydawnictwoNaukowe' 58' 221 L6d2, 1962'43 pp'; MR 34 #326'[9' et p-sym'etriques univorentes 622.Jakubowski,Z. J. sur resfonctions (Russiansummary)Bull' Acad' born'eesdans un cerclounitoire. ' 637-642; polon. Sci. 56r. Sci. Math. Astronom'Phys' 14(1966) M R 3 4 # 6 0 7 1 . 1 2 2 , 4698, 1 At * aAz in the Z. I. rh; miximurnof thefunctional 623.Ja^iubowski, fttmilyofunivolentfunctianwititreatcoefficients.(Polish.French s u m m a r y ) Z e s z y t y N a u k . U n i v . L o d z k .#7502. N a u l c139, i M a541 t.Przyr'od. itqoo), 43-61;MR 50 zeszytzotvtatematyka et desfonctionsunivalentes 624.Jakubowski,Z. J. Sur iescoefficients (Russiansummary) Bull' ' sym'etriquesdans ur cercle uniruire &3Phys'14(1966)' Astronom' Acad.Polon.Sci.Sdr.Sci.Math. 646;MR ?1 #6072'122'30' 39i desfonctions univalentes 625.Jakubowski,Z. J. Sui tescoefficients19(1967)'207-233;MR 35 Math' dansle cercleunit€.Ann. Polon#6814.122,30,39,541 et p-symmetriques 626.Jakubcwski,z. J. LLsfoyctions_univarentes, 119-148; Polon'Math' 20(1968)' borneesdansl, ,rrr"tr-",itr/.Ann' MR 37 #2968.122,241 of Caraft1odoryfunctions' 62'1. Jakubowski,Z . J. O; the coefficients Sci. 56r' sci' Mat' Polon. (Russiansummarvi eutt. Acad. A s t r o n o m ' P h y s ' 1 9 ( 1 9 7 1 ) ' 8 0 5 - 8 0 9 ; Mthe R 4clunie 6 / i 3 7 7method' 0'12'21'561 of 628.Jakubowdki,z. J. on someapplication pp. 21| -zl7; MR 46 #20&' 12,13' Ann. poron.Math.,26(19:12), 21, 41,51, 791 of starlikefunctionsof some 629.Jakubowski,Z. J. on the coefficients c l a s s e s . A n n . P o l o n . M a t h . , 2 6 ( | 9 7 2 ) , N oPhys., . 3 , p p 19(1971)' .305-313[Also: Astronom. Bull. Acad.Polon.sci. 56r.Sci.Math.
b--.
lE4
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
, 7 4 9 7 .[ ] , 6 , 2 1 ' 3 6 ] n o . 9 , p p . 8 1 1 - 8 1 5 1M; R 4 6 # 2 0 3 0 # of thefunctional lf(")(e)l bound upper the On 630. Jakubowski,Z. J. of univalentfunctions. Commeilt. (n - 2,3,. . .) in some classes Math. PraceMat. 17(1973),65-69;MR 48 #2369.[54, 68] 631. Jakubowski, Z. J. On some properties of extremalfunctions o.f MR Carath\odory.Comment.Math. PraceMat. 17(1973),71-80; 48 #52?. [2, 56] 632. Jakubowski, Z. J. On some special class of regular functions. Math. Balkanica4(! 974),299-300. 633. Janczar, B. The structure of boundary functions in the classes quasi-startikeand quosi-convex.functions. Demonstratio Math. 5 (1973),17-27;MR 48 #2362.[6, 10,241 634. Ja;rczar,B. z"-quasi-convexfunctions. (Polish and Russian summaries) ZeszytyNauk. Politech. L6di* No. 186 Mat. no. 5(1974),
2t-42. UOI
635. Jankovics, Ronalci. Uber Funktionen mit der Eigenschaft Re[ei-lfQ)/z- p\ 5 l # 8 3 9 2 [. 6 , 1 1 , 1 2 , 2 0 1 636. Janowski, W. Sur une certainefamllle de fonctions univalentes. (Russian sunrmar!) Bull. Acad. Polon. Sci. 36r. Sci. Math. Asrronom.Phys. 13(1965),707-713;MR 35 #4386.124,291 637. Jancwski, tN. A certain famity of univalentfunctions. (Polish. Nauk. Llniv. Lodzk. Nauki lvlat. Przyrod. Frenchsummary)Ze,szyty Ser. II Zeszyt20 Matematyka (1966), 3-41; MR 50 #7498. t29l 638. Janowski, W. Sur une certain famille de fonctions univalentes. Ann. Polon. Math. 18(1966),l7l-203; MR 34 #327.124,29,621 639. Janowski, W. On the radius of starlikeness of some families of regulor funciton.". (Loose Russian summar.') Bull. Acad. Polon. Sci. 56r. Sci. Math. Astronom. Phvs. 17(1969),503-508; MR 40 #7438.[6, I l] &O Janowski, W. Extremal problems for a fu,tity cf functions with positive real part arid for scme relsred families. (Loose Russian summary)Bull. Acad. Polon. Sci. 56r. Sci. Math. Astronom. Phys' l7(1969),633-637;MR 4l #1986.12, 12,21, 561 of somefamiliesof &1. Janowski,Witold. On the radiusof starlikeness rcgular tunctions.Comment.Math. PraceMat. l4(1970), 137-149; Mk 42 #6208.[6, 1l] &2. Janowski, W. Extremat probtems -for a family of functions with positive i eal part and for sonrerelatedfamilies. Ann. Polon. Math. 159-177;MR 42 #2005.12,6, I I , 12, 13, 19,21,24' 23(1970/71), 40,411
-_
(PART BIBLIOCRAPHY Ci SCHLICHT FUNCTIONS
II)
1E5
of w. some,extremalproblens for certsin fomilies 643.Janowski, Astronom' Polon' Sci' S€r' Math' analyticfunctions. I. Bull. Acad. #3659' 12' 6' 12' 56' 631 Phys. 2l(1g73), lt-26; MR 47 oJ s'rtte extre;narprubre-msfor cei'tainfamilies 48 644.Janowski, w. MR Math. zgtr 973),297_326; analyticfunction.s.I. Ann. Polon. #6401. 12, 12. 551
. , , . - ^ u n - n t coefficient nnoffirient on normalizationin the general A. Jantes Jenkins, &5. Mathematicians(Stockholm' theorem. Proc. Internat. congr' MR 31 tnsi. Mittag.lef|ler,Djurslrolm,1963; |962), pp.347-350. #328iunctions' III' Trans' Bieberbach-Eilenberg on A. J. Jenkins, u6. "241 lvlR3l #5969'I-26,34'861 Amer.Marh.soc. t tq(iqos),lg5.2l5; 17 of Nehari.Proc.Amer' Math' Soc' ,isult a on A. J. Jenkins, &7. 25' 27'29' 541 (1966),62-66;MR 32 #5865'[9' lg' coeffi' certainextremarproblemsfor the 64g. Jenkins,JamesA. on D'analyseMath' l8(1967)'173cientsof univalentfunctions' J' 184;MR 35 #305l'124'541 inequalityconsidered bY Robertson' &g. Jenkins,JamesA' On on June1968,PP.549-550;MR 37 Proc.Amer.Math' Soc'19'no' 3'
#401.18,42, 541 result in conformal mapping' 650. Jenkins, James A. A uniqueness MR 39 #2958'[7,9' 19] proc. Amer. Math. Soc- zzhgog),324-325; ' Proc' on "puirs" of regularfunctions 651. Jenkins,JamesA. A remark A m e r . M a t h . S o c . 3 l ( 1 9 7 2 ' 1 , 1 1 9 - 1 2 1 ; M R 4 5 # 5slit | 9 .mappings' |26,34,86] of certain ripresentation The A. Ju*., 652. Jerrkins. January|g76' Abstract 731-30-21' l.IoticesAmer. Math. Soc. 23,
p. A-102. tglt A remark on P-valentfunc' 653.Jenkins,JamesA';Oikawa'K6taro' 3g'l-4M; MR 45 #3693' U4' tions.J. Austral'Math' Soc' 12(197t)'
of Ahtforsqnd ' on results K6taro oikawa' A'; James 654.?llurtr, 124,331 MR 45 #5332HaymanIll. J. Math.iitr sng,664-671; the coefficient
maximatityfor 655. Jenkins,J' A'; Ozawa' M' On'llocal 36 #r636a.142,53'541 aa. iltinois J. Math. rrtigiT),5g6-692;MR localmaximalityfor the coefficient 656. Jenkins,J. A.; ozawa, M. on ao.NasovaMath'J'30(196'l)'il-78;MR36#1636b'127'541 657.Juneja,o.P.;tvtog,a,M.L.Ac:lassofunivalentfunctions. NoticesAmer.Math.Soc.zl,Februaryir975,Abstract75T-864, P . A - 3 1 6 -1 2 ,1 2 , 2 1 ,5 6 1 and stqrlikefunctions of order a 658.iuneja,O. P.; Mogra,M' L' On ' Soc. 22, APril l9'15, Abst-ract
tYPe P. Notices Amer' Math
hrF'--
1E6
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
75T-B80,p. A-384. 14,6, 12, 36, 631 659. Kac, B. A. Ccnvexity and starlikeness of the level curves of polynomials. (Russian)Mat. zametki 15(1974),701-710; MR 50
#24s9.lr3l
660. Kac, I. S. Integral and exponentialrepresentationsof analyticfunctions mapping the upper inlf-plane into itself. (Russian)Problems of Math. Phys. and Theory of Functions,II (Russian),pp. 5l-62. Naukova Dumka, Kiev, 1964;MR 32 #7721-1231 66i . Kaczmarski, J. The least upper bound of a certianfunctional in the famity ofbounded univalentfunctions. (Polish. French summary) ZeszytyNauk. Univ. Lodzk. Nauki Mat. Przyrod. Ser.IlZeszyt20 Matematyka(1966),63-l0l; MR 50 #7505-122,24,291 662. Kaczmarski,J. SurI'equationfQ) - pf(c) dans la classedesfonctions etoilees.(Loose RussianSummary) Bull. Acad. Polon. Sci. 56r. Sci. Math. Astronom. Phys. l5(1967), 455-464;MR 36 #3970. [6,241 663. Kaczmarski, J. Sur I'equation f@ - p"f(c) dans la famille des fonctions univalenteso coefficient,sreels. (Russiansummary) Bull. Acad. Polon. Sci. Ser.Sci. Math. Astronom.Phys. 15 (1967),245251; MR 35 #4387. 124,391 of starlike func664. Kaczmarski, J. On the coefficients of some class'es Polon. Sci. S'er.Sci. tions. (Loose Russiansummary)Bull. Acad. .12,9,251 MR 40 #7437 Math. Asrronom.Phys.l7(l 969),495-501; g-p-N-spiral-starlikeness of the 665. Kaczmarski, J. On the ,oilirts of familyS*(o,},,M)ofspirol-starlikefunctionsinthedisc|z|< (Loose Russiansummary)Bull. Acad. Polon. Sci. 56r. Sci. Math. Astronom. Phys. l8(1970),467-473;MR 42 #4718.[6, I l] 656. Kaczmarski, J. On sotne extremalprobtemsfor certain classesof close-to-starlikefunctions. (Russiansummary) Bull. Acad. Polon. Sci. 56r. Sci. Math. Astroiiom. Phys. 2l(1973), 133-140; MR 47 ffi66j. 12,6, lll 667. Kaczmarski, J. Some radius o,f convexity problems in certainfontity of functions with bounded distortion. Bull. Acad. Polon. Sci. MR 47 #5241.12,l2l 56r. Math. astronom. Phys.2',(1973),27-34; 668. Kaczmarski,J. On the rsdius of convexityfor certain regularfunc' MR 50 tions' comment' Math' PraceMat' !7(1973i14)' -773-383; #2472. 12, l2l 669. Kaczmarski, J. Cn some extremal problem for certain classesof / close-to-starlikefunctions. Comment. Math. Prace Mat. 17 (1973i 74), 385-398;MR 50 #2473.[6, 1l] 67A. Kaliramaner, Suzan. Sur les coefficientsdesfonctions univuienies.
(PART IT) BIBLIOGRAPFIYOF SCHLTCHTFUNCTIONS
1E7
Fak' Mec' Ser'A 28(1963)' (Turkishsummary)Istanbuluniv' Fen' 1-7; MR 34 #M79' t50l 67|.Kahramun.,,suzan.surl,argttmentdesfonctionsunivalentes. (TurkishSumrna;y)Istanbul.Uniu.Fen.Fak.Mecm.Ser.A32 46 #e319'[68] itqoz), r-22(r97r);MR Japan'lt(1967)' T. A noteon schlichtfuncitcns.Math. 672.Kakehashi, ' 12'241 l4g-l5l; MR 35 #3049 classof univalentfunctions.Proc. 6.13.Kakctrashi,T. on a ,,,toin J a p a n A c a c . 4 3 ( i ' ) 6 7 \ , 4 6 9 - 4 1 1 ; M R 3coefficients 6 / ' 6 6 0 7 . |of 4 9Tsvlor ,54]l on the Note Y. Matsumura' T.; 674.Kakehashi, -132;MR 37 #2960't54l Math. lupun rzirqcg), 131 expansion. n'pop':'by LipmanBers'Ailn' of l\lath' 675.Kalmc,C. I ' Reinarksct: (2)gl(1970),601-606;MR 42 #7879't28l Trudy of Fabe'iotinomials' (Russian) 6.t6. Kan, V. I: The variation Tomsk.Gos.Univ.Ser.rvren.-Mat.|75(|964),Vyp.2,50_58;MR 531 34 #6119.124' 'Extremal for starlike propertiesof theFaberpolynomials I. 6'l'7. Kar,,V. cotttinuq.(Russian)rrudvTomsk.Gos.Univ.Ser.Meh.-Mat. Vvp' 3, 7l-85;MR 34 #2901't53l 182(1965), of ^'in of r:ertainclasses arirhmetic ,he On V. Karunakaran, 678. analyticluttcitons.(Serbo-Croatiansummary).Glasniklr{at.Ser. 249"256't82l -s'ubcrqss no' 2' III l0(30)(1975), part' of functions of positivereal 6.19.Karunakaran,v. A (Preliminaryreport)NoticesAmer.Math.Soc.ll,February11975' Abstract75T-855,P' A-314' 12'561 of functionswithpositive gen-erarizitton 6g0. Karunakaran,v . A ceriain NcticesAmer' Math' realpart in the theoryif ,ifuolent functions' A-276' 12,561 g\;,Abstract 76T'-87?'p. Soc.23, February problemfor pctsitive interpolation 681. Kas'janiuk,s. \. on a certain lviat' Nauk lhe unit circle,(Russian)uspehi in hrarmonic functions 231 no' 5(126)'98-101:MR 33 #2512'12' 20(1965), 682.Kas'janjuk,s.A.Estimatesforthecurvatureoflevelcurvesunder aconJ'ormalmappingwiithboundeddistortion.(Russian)Izv.Vyss. no. 6(61),54-58;MR 35 #'1046' ucebn. zaved.Mat#atika, 1967,
t35l 683.Kas,janjuk,S.A.;Finogenova'V.G.Theran gesofvaluesof coefficients ond their regions' typically real functions iitn fixed (Russian).Izv.Vyss.Ucebn.Zaved.tutut.*atika1968.no.4(71)' N-47; MR 37 #2977' U3 ' 291 with G' I' A property of functions 684. Kas,janjuk, S. A.; Tiacuk, positiverealpart.(Russian)Teor.FunkciiFunkcionalAnal.i
H-
18E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Prilozen.Vyp. I(1965),224-227;MR 34 #4508.[2, 39] 685. Kayser, Hans-Ji.irgen.Uber Abschatzungsproblemebei gewissen holomorphenAbbildungen.Bonn. Math. Schr. No. 49(1967),VIII + 55 pp.; MR 47 #452.[l9, 54] 686. Keogh, F. R. A strengthenedform of the f, theoremfor starlike univslent functions. Mathematical Essays Dedicated to A. J. Macintyre, pp. 201-211.Ohio Univ. Press,Athens, Ohio, 1970; M R 4 3 # 4 9 6 .n , 6 , l 9 l 687. Keogh, F. R. A sttbordinateproperty o"f univalentfunctions. Bull. ; R 4 5 # 2 1 5 5 .U , 4 , 1 0 , 1 9 , L o n d o nM a t h . S o c .3 ( 1 9 7 1 .1) ,8 1 - 1 8 4M
z0l 688. Keogh, F. R. On spiral-likeunivalentfunctions.Notices,A. M. S., vol. 19, no. 2, issue 136, February, 1972(Abstract 692-824), p. A - 3 6 2 .1 6 , 9 , 2 5 , 3 6 1 689. Keogh, F. R. On spiral-likeunivalentfunctions. NoticesA. M. S. 20(Jan. 1973),Abstract701-30-7 , pg.A-105 . 16,7l 690. Keogh, F. R. A characterisationof convex domains in the plane. NoticesAmer. Math. Soc., January 1975,Abstract 720-30-1,p. A- I 18. [201 691. Keogh, F. R. A charseterizationof convex domains in the plane. NoticesAmer. Math. Soc. 23, January 1976,At-,stra:t7'Jl-30-22, p. ,{-103. [20] 692. Keogh,F. R.; Ba;goze,T. The Hardv classof a spiral-iikefunciion and its derivative. Proc. Amer. Math. Soc. 26(1970), no. 4, 266-269. [5, 6h MR 4l #8680 693. Keogh, F. R.; Merkes, E. P. A coefficient inequality for certain of anolyticfunctions. Proc. Amer. Math. Soc. 20, January, classes 1 9 6 9 p, p . 8 - 1 2 :M R 3 8 # 1 2 4 9 [. 5 , 6 , 1 0 , 2 2 , 3 0 ,3 6 , 3 8 , 5 4 , 7 5 ] 694. Keogh, F. R.; Miller, S. S. On the coefficients of BazilevidfuncMR M #424.11, t:ons.Proc. Amer. Amth. Soc.30(1971),492-496; 4 , 5 , 4 9 , 7 0 ,8 l l 695. Kirrrchi, K. Starlike and convex mappings in s€v*€ralcomplex varit,bles.Pacific J. Math. 44(1973),569-580.[l, 6, l0] 696. Kim, W. J. The Schwarzianderivativeand multivalence.Pacific J. MR 40 #5849.[4, 3l] Math. 3l(1969),717-724; P. On an integral of powers of s spirallike Y. Merkes, E. Kirn, 697. J.; J'unction Kyungpook Niath. J., vol. 12, no. 2, December1972,pp. 249-253;MR 47 #8834. [4, 6, 85] 698. Kim, Y. J.; MeikcS, E. P. On certain convex setsin the spaceof locallyschlichtfunctions. Trans. Amer. Math. Soc 196(1974),217224;tdR 50 #2474.[5, 10, 851
(PART II) BIBI-IOGRAPHY OF SCHLICHT FUNCTIONS
1E9
boundedindcx. ,vgg.King, Amy C. A clo.ssof entire functions of . |,43,73, 89, s . M . S . 1 7 ( 1 9 7 0p)., l l 0 _ 1 1 1 u A b s t r a c tN: o t i c eA
e0l of uni;'alentJunc(Kiriackis,E:1 ccridin ciQsses 700.Kir,jackii, E. c. Germansummaries)Litovsk' lv{at' tions.(Russian.Liuhuarrianand Sb.12\1g72),no'3,75-84'207;IVIR47#5243't281 cert;oinclassof rational univelentfunctions' 1cl. Kir,jackii, E. G. A Litovsk' Mat' sb' (Russian.Lithuanian and German summaries) 1 3 ( 1 9 7 3 ) , t r o ' 2 , 7 g - 8 9 ' 2 5 9 ; M R 4 8 # 2 3 6 3 ' t 2 8 irear funcriuns' pr:obtemsfor the typicaii-t 102. Kirwan, v/. E . Extremar i3, 431 #2853,U2' MR 34 Amer. J. Math. 8g(196,6;,942-954; T03.Kirwan,w.E.Anoteonextremalproblemsforcertainciassesof anolyticfur,ctions.Proc.Amer.Math'Soc'17(1966)'1028-1030; , , 10,241 M R 3 4 # 2 8 5 4 . 1 2 , 56 domains' for a classof bounded Koebe'constant 704. Kirwan, w. E. The A n n . U n i v . M a r i a e c u r i e - S k t o d o w s k a S e c t ' a ' v7ll ol'21(1967)'Nos' 10' l6' 22' l-8, pp. 5-9( 1972);MR 48 #4294'[l ' typically realjunctiotts. ?05. Klrwan, w. E. on the rate of growth of DukeMathJ.35(1968),9_20t;MR36#2805.[13,62] T o 6 . K i r w a n , w . E . o n t h e c o e f f i c i e n t s o f f u ngos) c t i o n277 s w-282' i t h b oMR u n d e38 d , J. istt boundary rotation Mich. Math. # 1 2 5 0 .1 3 ,7 l , 7 7 1 T0T.Kirwan,w.E.Extrematproblemsforfunctionswithbounded boundaryrotation.Ann.Acad.Sci.Fenn.Ser.AIMat.No.595 ( 1 9 7 5 )i,q P P' 1 4 , 2 ! , 2 4 ' 4 3 ' 7 1 ' 7 6 1 and proble^' io' functions meromorphic 708. Kirwan, W. E. Extremal January Amer. Math' Soc' 23' univalentin the unit disi. Notices 25' 58] lgl6,Abstract 731-30-19'p' A-102' [9' extremepoints and supportpoints ?09. Kirwan, w. E.; Schobef,G . on ' J' 42(1975)' uni'valentfunctio"' Duke Math for sornefamilies of 285-296;MR 5l #3416'[6' 9' 88] maioration de K' Yosida' Nagoya Tl0. Kishi, M. Sur le prfnrf), de 33-36' tll; MR 4r #3796 Math. J. 3?(1970), diameterwith applications ?r. Klein, M. Estimatesfor th-e'transfinite toconformolmopping.PacificJ.Math22(|961),267_2i9;MR37
#1577.t1e] a' Trans' Amer' Math' Soc' 712. Klein, M. Functionsstarlike of order l3l(1968),99-106;MR36/i2795'[6'9'10'19'25'36'33] ' itatrlike multivalent furrctions ?13. Klein, Melvyn. Meromorphic NoticesAmer.Math.Soc.(Abstract63T-311),vol.15,no.2,issue 9' 25' 14] nc. lM, February,1968'p' 391' [6'
hr---
190
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
meromorphicfunctions' Math ' 7 14. Klein, M. S/ar radii for multivqlent 141;MR 52 #84A2 Japan.20(1g75),no' I ,59-63' tl1' problem in conformal mapping' 715. Kocak, Cevdet. An extremum .24(|971l),no. l , |22_ (TurkishSummary)IstanbulTek. Univ. bul 127;MR 48 #8779't82l problemsfor analyticfunc716. KocetkoV,A. P. on certain extremal StuOiesContemporaryProbtionswith positiverealpart (Russian) (Proc. SecondAll-union lems constructive Theory oi Frrn.tions Conf.Baku,1962)(Russian;,pp.249_254.|zdat.Akad.Nauk 33 #4272' l2l Azerbaidzan,.SSR, Baku' 1965;MR of one porameter 717. Kocetkov, v. K. The muttiple differentiation (Russian)Sibirsk. N{at. z. t2(1971), famities of schtichtfunctroni. 36,|-373;MR45#525[Englishtransl.:SiberianMath.J.l2(|97|),
26r-265.1
the solution of extremal 718. Kocur, M. F. on q new Q-methodfor that are problems in certain specisl classesof analytic functions positive;'ealpart in the disk' (Rusconnectedwithfunctions having-prikl' Mat' (Kiev) vyp ' l7(1972)' sian. English summary)vycisl'
t2l r52-t62;MR 46#s628'
de fonctions certaines sous-closses 7\g. Koczan, L.; Szapiel,W. Sur (Russiansummary)' Bull' Acad' Polon' Sci' Qpique'mrnt MR 49 #5356' Astronom.Phys.22(1974),115-120; ""it"' 56r. Sci. Math.
t13l von Potenzreihen720. Kohlhammer, Hans-peter. schtichtheitsradien abschnittenschlichterFunktionen.GesellschaftfurMathematik u n d D a t e n v e r a r b e i t u n g , B o n n . B e r . N o . g g , G e spp' e l l s c h a431 ftfur 120' Bonn, 1975'90 Datenverarbeitung. und Mathematik preciseorder of the bestapproximations izl , Kokilasvili, v. M. on the generslizedgop series with of analytic functions ,rpirrrrtable by r e s p e c t t o F a b e r p o l y n o m i a l s . ( R u s s i a n . G e o r g i a n sMR u m m34 ary). 4l(1 966), 529_534; Scobsc. Akad. Nauk Gruzin. SSR #78r1.t53l
derivativeof o merornorphic 722. Kolokol'nikov,A' S. The logarithmic {7529' Zarnetkil5 (1974),71t-718;NiR 50 function (Russian)tutu,. tel analyticfunctions wirh positive 723. Komatu,Y. On meonCistortionfor J. 23(1966),?Zl-228; MR 34 real Port in a circic' Nagoya l'{atn. #7807. 12, 561 remark on distoriton for fourth 724. Komatu, Y.; Nishimiya, H. A derivativeoffunctionsreguiurandunivalentintheunitcircle.Sci. MR3911427'142'631 Rep.SaitamaUniv'Ser'eO'(1968)'3-4
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTII)191
on the classof typicallyreal , 725.Kopanev.s. A. A certainfunctional Tomsk.Gos'univ' ser' Meh'-Mat'200 Trud. (Russian) functions. 291 iigog), loo-111;MR 4r #2019'u3 ' ii certaincrasses of univqlent ,726.Kcrobkova,I .K. Extremorprobrems ' expansrcns power in their coefficrents functionswith gapsof initiit Dopovidi Akad' (tJkranian.English and Russiansummaries) ,764 MR 44 #420.[6,9, Nauk,Ukrain.RSRSer.A |g70,684-688 121 ^ ., - - ----'r-. ^t ^n-lni,, nlrrccon of the convexitycf certcin crassebounciarics The K. I. Korobkova, 72i. ofanatyticfunctionstvithpurelyimuginlri.characleristics.(Ukrainian.EnglishandRussianSummaries)DopovidiAkad.NaukUkrain. RSRSer.A1970,589-592,667;MR44#2918'l6',9',121 T z s . K o r o b k o v a , I . K . A c e r t a i n p r o b l e m o n a b o u nDopovidi dextremu m. ' Akad (ukrainian - English and Russian sumrnaries) 861;MR 49 #552'[2' 1U Nauk Ukrain. RSR Ser.A(t 973),796-800, property of andlytic majorants and 72g. Korobkova, I. K. A certain (ukrainian' lnelish and Rusccnvolutions of schlicht functions' Nauk Ukrain' RSR Ser A 1913' sian summaries)Dopoviii Akad' 471 1 0 7 6 - 1 0 7 9 , 1 1 5 0M; R 4 9 # 5 5 3 'U ' A certain clqssof univclent \ V. 730. Korobkova, I. K.; Zmorovic, n i a p p i n . g s o f Q n a n n u t u , . ( U k r a i n i a n E n g l i s h aAn d(1972)' R u s s i612ansumRSR Ser' ukrain' Nauk Akad. Dopovidi maries) 615, 670 MR 46 #9321't48l (Russian. o-funivarentfunctio,rzs. 73r. Korobockin,B .r. o; tni ieory Englishsummary)Latvijasvalstsuniv'zinatn'Rakstr47(1953)' laid. l, 29-50;MR 34 #6060' t26l classof bourtdedunivalentfunc732. Kortram, Ronald. on an extenced t i o n s . A n n . A c a d . S c i . F e n n . S e r A I N o . 5 T s ( 1 9 7 4 ) ,of 16pp.|22,30]l coefficient regions bound' the on o. first rammi, R.; 733. Kortram, e d u n i v a l e n t f u n c t i o n s . A n n . A c a d . S c i . F e n n . S e391 r.AIMath.No. #5914' 122'24' 29' 5l MR (1975); pp' 27 5g2(1g74), the second coeJficientregion for 734. Kortram, R.; Tammi',o . on Acad' Sci' Fenn' Ser' AI Math' boundedunivalentfunctiorzs.Ann' 3gh MR 52 #8409 1(1975),no' 1, 1:5- 175'122'24'29' der schrichtenFunctionen. i35. Koseki, Keniti. (Jberdie Koeffizienten V.Math.J.okayamaUniv.-13(196.1),35-83;M R37#2978.t54] of Ketlog,s theorem. (Rus. .|36. generalizatio,n a on N. R. Koval,cuk, MR 33#2809'
104-108; sian)ukrain.Mat.z. lrltgos),no.4,
737.Kovari,T.;Pommerenke,Ch.onFaberpolynomialsandFober nxpanitons'Math' Z' 99(1967)'193-206't53l of Fekete points. ch. on thedistribution 73g. K6vari,T.; pommerenke,
lf-.-,
192
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Mathematikal5(1968),70-75;MR38#316'[68] Prelimi739. Kronstadt, E. Compact families of univalent .functio'ns' Abstract 1976, nary report. NoticesAmer. Math. Soc. 23, January 7 3 1 - 3 0 - 2 5P, . A - 1 0 3 . univalent analytic i40. Kruskal', S. L. Some extremal problems for 754-757; Nauk sssR 182(1968), functions. (Russian)Dokl. Akad. MR 38 #3429[sovietMath. Dokl. 9(1968),1l9l-1194]' 1,4l. Krzyz, Jan. on the region of variability of the ratio f(z)/"f(zz) sumwithin the clossS of univslentfunctiorzs.(Polish and Russian A. 17(1963)' maries)Ann. univ. Mariae curie-SklodowskaSect. MR 34 #323' 124,29, 681 55-64(1965); regular in on 742. Krzyz, J. on a theoremof Kubo concerningfunctions annulus.colloq. N{ath. l6(1 967), 43-47;MR 35 #1767't241 functions. syrrposia on Theoreii743. Krzyz, J. G . On close-to-convex Madras' cal Physicsand Mathematics,Vol. l0(Inst. Math' Sci" 1969),pp.23-27. Plenum, New York, l9i0 MR 4l #5610't5l Mariae Cr"'rie7M. Krzyz, i. en extremallengthproblem. Ann. Univ' 95-lM' Sklodowska,Sect. A., vols. 22/23/24(1968/1969/1970),
t4el
a 745. Krzyz, Jan G. The Greenfunction of domains containing fixed r0, etlipse.MichiganMath. J. 20(19i3), 1 3 - 1 9 ;M R 4 6 # 9 3 1 4[.1, 6 , 16,19,491 of smoll degree' 746. Krzyz, ran; Rahman, Q. I . univalent polynomials (1967), 79-90 2l Ann. Univ. Mariae curie-Sklodowska Sect. A (,1972); MR 48 #ll47l. tl 6,20,32, 43, 73' 851 classesoJ 747. Krzyz, Jan; Reade, M. O. Koebe domainsfor certain MR 35 analyticfunctions. J. D'analyseMath. l8(1967),185-195; # 3 0 5 0 [. 5 , 6 , 1 9 , 3 9 , 4 1 , 4 t , 4 9 ] with 748. Krzyz, J.; Zlotkiewicz,E. Koebe setsfor univalentfunctions A I No' 487 two preassignedvalues.Ann. Acad. Sci. Fenn' Ser' (197i), t2 pp.; MR 43 #7612.15,6, l0' l9l to aigehatc 749. Kubota, y. On extrematprcblems witich corresporid 412-428; univalent functions. rooai Math. Sem. Rep. 25(1973), MR 49 #563. 19, 24, 25, 29, 53, 541 urtivalent 750. Kubota, Y. On the fourth coefficient of meromorphic 26(1974/75),267-288' 19, 251; functir,ns. Kodai Math. Sem. Rep.
l,4R52 #7321 meromorphic' 751. Kubota, Y. A coefficientinequolity for certain 94; (1974/75),85unbalenifunction,r'.Kodai Math. Sem.ReP.26 MR 5| #5915.[9, 25, 391 with t52. Kudelski, F. A variationalformula for starshaPedfunctions
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTII)193
reulcoefficients.Bull.Acad.Polon.Sci.Ser.Sci.M ath. MR 30 #3203.[6, 24,39| Astronom.Phys. |2(|964),6|7-6:Igi classof .ij3. Kudelski, F. On the uniualenceof Taytor sums for a Ann'tJniv' R'ussiansummaries) univalentfunctions. (Poiish and A 1?(1963),65-67(1955)'MR 33 Mariae curie-skiodowskaSect. #5864.[20'43]
-.1
'
'
't-1^-:^)^^{nnnrinnt
quelquesprobr\me.sde ro thtorie desfonctions i54. Kucelski,F. sur summaries).Ann' Univ' subordonn4es.(polish and Russian MR sect.A 27(1973L43-48(lgi 5)' [1]; Mariaecurie-skiodowska 52 #84rr of condirions for the univarence sufficient certain N. S. Kudrjasov, 755. t h e ' s o l u t i o r t o f a n e x t e r i o r i n v e r s e b o u nno' d o r 3(46)' y p r o b105-l l e m .l0; (Russian) 1965' izv. vyss. ucebn. zaved.Matematika MR 3r #s970.t4I of ccnditionsfor the univalence 756.Kudrjasov,S. N. certainsufficient the theoryof filtration' (Rusa solutionof the inver* piiUiem in |966,no. 5(54),88-99; sian)Izv. Vyss.Ucebn. Zaved.Matematika I\IR 34 #606:' t4i -., .-^^ ^{ nmnt,,t' the univalence of analytic criteria for certain N. s. 757. Kudrjasov, Notes
Mat. zametkil3(1973)'3:9-366lMath' functions.(Russian) 9l 13(1973) ,2rg-2231;MR 47 #7022'14' cf G'M' Goluzin'(Rusvariational formula The o. P. Kufarev, 758. s i a n ) T r u d y T o r n s k . G o s . U n i v . 1 6 3 ( 1 9a6 3 ) , 5 8of -62.t241 of family univaletft S. v. A pr-operty 759.Kufarev,P. P.; Soboleva, Tomsk. Gos. Lrniv. Ser' Meh'-Mat' functions. (Russian;irudy 175(lglq),Vvp' 2, 5-7;MR 3l #5979'l9l ,160.Kufarev,P.P.;SoboleV,V.V.;Sporysev&,L.v.Acertainmethod problims for functions which are of invesrigationo7 exiremal Trudy Tomsk' Gos' univ' univalentin the noti-p,tinr.(Russian) 571 MR 41 #1987.124, 142-164; 'die ser. Meh._Mat.200(1;68), suf Abbitdung schlichtekonforme 16l . Ktihnau, Reiner. uber 37 MR 6l-7 i; Gebiete.Math. Nachr.36(1968), nichti)berlappende #2969. bei quasikonformen j6z. Kiihnau, Reiner. Koeffizientenbedingungen Ann' univl Mariae Abbildungen(Polishand Russian"'*-uties) i05-l l l(1972);M* 49 Sect.A zz-24(1968/70), cruie-sklodowska # 7 4 4 11. 4 , 3 15, 3 1 isch-funktionentheoretischeLbsung j 63. Kiiirnau, Reiner. Geometr ' J' Reine 4bbitdung eines Extremal problems der knoformtn #7434' MR 40 131-136; Angew.Math' 229(1968)' schlicht gewisser ,7&. Kiihnau,Reiner. Sc-hran'ken 7u, die Koeffizienten
hr-----
194
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
Nachr' 4l (1969)' 177 abbildenderLaurentscherReihen. Math. ' [9' 25] t83; MR 40 #32'7 den Rundungsund Stern765. Ktihnau, Reiner. Diskretisierungenzu Rev' RoumaineMath' Pures schrankenbei konformer Abbitdung' , !229-1234;MR 42 #471e'[121 Appl. 15(1970) Bemerkungenzur Theorie der 766. Kiihnau, Reiner.Weitereelementare Math' Machr' konformen und quasikonformen Abbildungen' ' 5 1 ( 1 9l/) , 3 7 7 - 3 8 2 ;M R 4 7 # 3 6 5 7 Arbeiten';on o' Dvorhk' 76j. Kiihnau, Reiner.Eine Bemerkungzu zwei M a t h . N a c h r . 4 8 ( 1 . 9 7 1 ) , 2 2 5 - Z Z O ; M R 4 5 # 5 3 2 b ' t 4 2 1 Math. schlichter Funktionen. 76g. Kiihnau, Reiner. uber vier Klassen Nachr. 50(1971),17.-26;MR 46 #9315'[53] schlichter konformer Ab769. Kiihnau, Reiner. uber zwei Klassen MR 48 #4300't241 bildungen.Math. Nachr. 4g(lg7l), 173-185; schticht abbildende 770. Kiihnau, R. Koeffizientenbedingungenfi)r summaries)Bull' Acad' LaurentscheReihen. (English and Russian Polon.Sci.Ser.Sci.Math.Astronom.Phys.20(197?),7-10;MR 48 #6397.[48' 53] 77|,Kuhnau,R.ZumKoeffizientenproblembeidenquosikonformfortMath ' Nachr ' setzbaren schlichten konformen Abbitdungen 25' 541 55(l g73),225-231;MR 48 #522' [9' konformer Abnichtschrichter iiz. Kiihnau, Reiner. Eine Krasse bitdungenmiteinerscitlichtenquasikonformenFortsetzung.Math. Nachr. 59(l 974),261-263;MR 49 #7M2' Ableitung bei der Schwarzschen 77i. Kilhnau, Reiner. Zur Abscitiitzung 59(l 974)' 195-198;MR 50 schlichtenl.-unktionen Math. Nachr' 31]
#594. [4' . , - . c ^ ,) ^1'nnDr, symmetrrc j j 4 . Kulshrestha, p. K. Coefficient bounds for k-fold u n i v a l e n t J - u n c t i o n s o f b o u n d e d r o l g t i o i l . N o t ip. ces,A.M.s.,vol.l9, 696-30-7), A-631.[4,9, no.5, issue139,August, 1972(Abstract i !, 1'il Ti5.Kulshrestha,P.K.Distoritonofspirnl-likemappin gs.Proc.Rcy. g73),MR 47 #70|6. [6' 63] 1-5(1 A73, Sect. Irish Acad. s' functions. NoticesA. M' 7i6. Kulshrestha,p. K. BoundecrRobertson 36,63,731 t-szl. [6, 12' 20, August 1g73,Abstra ct7C6-30-5,i. mpapings' jj. . Kulshrestha,p . K. Generalizedconvexity in conformol J.Math.Anal.Appl.43(1g73),44|-449;vrn49#g|821,6,29,69, 83,841 778. Kulshrestha,P.K.Coefficientsforaipho-convexunivalentfuncg74), 341-342;MR 49 #7434' tions. Bull. Amer. Math. Soc. SC(l [69, 84]
FUNCTIONS (PART II) BIBLIOGi].APHYOF SCHLICHT
195
T T g . K u l s h r e s t h a , P . K . C o e f f i c i e nAnal. t p r o bs+ir t e mg74),205-211; f o r a - c o n v e xMR u n i v51 alent Rationai tvtectr. er.rr. functionr. #878. 123,59, 70' 841 no. T S 0 . K u l s h r e s t h a , P . K . C o e f f i c i e n t p r Math. o b l e m f3l o r(|9-15/"t6), aclassofM o c a3,n u - , Polon. enn. functions. Bazilevic 2 g 1 ' -2 9 9 . i 6 9 , 7 0 , 84]
, ' - (Japanese' / | ^-^h6ca Fnol i sh surnsutn' English hyperbolas' and circles on , Inao 781. Kuroda, mary)Bull.YamagataUniv.Natur.Sci.5(1960),no.l,l|9_|32; t49l MR 4r #3',730. sumnary). .|82. t(g1tlda,Inao. on discsanri strips.(JapaneseErrglish MR 4l sci. 5(ig6t), no' 2' 241-258; Bull. yannagahuniv.-Norur. #3'73?,. t49]
.^nntntal rttto to tn ViktorsLm$' (Japanese sumq theoremdue On ' inuo Kuroda, 783. mary)Bull.YamagataUniv.Natur.Sci.5(1962),Do.3,525-528; MR 4r #7085a.[39] due to of the family of functions sources several Inao. 784.Kuroda, F r i e d m a n o r L i n i s . ( J a p a n e s e s r L r m#7085h' a r y ; B ut39l ll.YamagataUniv. 1-8; MR 41 nl"t ' 6(1963), Sci. Natur. circulqr qnd on figures bounded by two ?g5. Kuroda, Inao . on air,5 Bull. YamagataUniv' Natur' surnmary) Engish (Japanese. arcs. MR 4l #3'732'l49l Sci. 5(1963),no' 4' 807-821; regular' schlicht of ,n', fami! of functions vieiv a . lnao Kuroda, 7g6. summary)Bull' Yamaaisc.(Japanese snd norntarizedin the u"nit MR 3l #2388'[18' 44] garaUniv. Natur. s.i.-itrqo+l,l2g-137; schlicht rn, fmaily of functions regular' Bull ' 7g7.Kuroda, Inao. A vrewit . (Japanese summary) unit ctisc snd normalized in th; z, l2g-137;MR 4l #3738' yamagataUniv. Narur. Sci.6(1964;,nn.
. on thefunction,s 788.lll;#1, rnao !?:o:::^:::".':::':^::f{o'' summary)Bull' ti tne uttit aisc.(Japanese
schtichtand normslrz;d MR 41 6 (tq6S)''t'o' 3' 237-246; Sci' N;;'' Univ' Yamagata
ofthef:*it',,"f . A view fi,]ii;Jl?1"" 78e. ,{::::::: :,:,Y::,::ol'o' a n d n o r m a l i z e d i n t h e u n i t d i s c .tto. T | .+,383-393; ( J a p a n e sMR e s u4lm#3'139' mary)Bull. yamagata Univ.Nut.rr.sci.etrqoil,
?e0.lll;,ill",
hototnorpttic for functions G. v. coveringtheorems Akad NauksssR 160
rjotr' and univalentwititina disk Sussian) (1965),25_28;MR30#32o4tSovietMath.Dokl.6(1965),2|-25|. o'f a certain of thetransfinitediameter jsr.li;i'?ttt?t?1 G' v ' Estrntates
h---
-
196
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
familyofcontinuaandcoveringtheoremsforschtichtfunctions. ( R u s s i a n ) T r u d y M a t . l n s t . S t e k l o v . g 4 ( 1 9 6 8of ) , 4the 7 _Geometrtc 65;MR37#N.2 Russian:ExtremalProblems the from ITranslaied 1969)l'[6' 9' 19' 39] Theory of Functionstn. rur.s', properti'i'of tf" hyperbolictransfinite igZ. Kuz'mino, G . Y . Extre,nol Inin a rini. (Russian)Trudy Mat' diameterand schtichtfunctions from the MR 36 tslzo. lTranslated st. Stektov.g4(196g),io-rs; problemsof the GeometricTheory of Functions Russian:Extremar 4 81
(A. M. S. 1 9 6 9 )] ' 1 2 4 ' ^-^tntqni ,nnrttrtrs of certatn of oa certai .ig3.Kuz'min&,G. Y . Estimationof the conformai modulus ' covering theorims for univalentfunctions family of domain and Steklov dtott' Mat' Inst' zap. Naucn. sem. Leningrad. (Russian )'zi1t'vtD,
(LoMIi
lr{R46 #9312'Ugl 148-172;
cf problems of the geometric theory i94. Kuz,mina, G. Y. Exl:tremal by editcd variable' tI' A collectionof articles funcns of o complex G.v.Kuz,mina.Zap.Naucn.Sem.Leningrad.otdel.Mat.Inst. Steklov.(LOMD44(1g,74).|zdat...Nauka''Leningrad.otdel., Leningrad,1974'188PP' [441 .795.Labelle,G.; Rahman,q. r . Remarquesur la moyennesrithm'etique defonctionsunivalentesconvexes.Canad.J-Math.z|(1969)' -g81;MR 39 #7081'tl 0' 12' 64' 321 g'7'7 nianl-rArnnrn for certainmeromorptttc univalence of doniiins On . H S. i96. Lameier, functions.NoticesArner.tr{ath.Soc.2l,NovemberIgT4,Abstract ..' 717-P1,p'A-609't9l - n r v m n tderivative' ,loritnti '7g7 Lappan, Peter.A p-valentfunctions with o non-normsl . M a t h . Z . | M ( | 9 7 5 ) , H e f t 2 , | 4 7 - 1 4 8 . [ 9 , | 4 , 5 2 ] Minequolities R 5 2 # 7 3 4 for Grunsky 798. Launonen, Eero on exponentiated A I Ann' Acad' Sci' Fenn' Ser' ,n;vrylettt functions' bounded 34 pp' i22' 531Math. DissertationNc. 1ti975), univalent .,gg.Lawrynowicz, Ju1an. on the ,oeffictent prob.lemfor MR 87-98; pttiios' soi' 64(1968)' potynontiats.proc. CumUriJge
t32l 36#s327.
'fammi, olli' on estimotingof a fourth order ,N\cz,Julian: 800. Lawrync Sci' Fenn' univalentfunctions' Ann' Acad' bounded for iunctionat S e r . A I , 4 9 0 ( 1 g ' 7 : ^ ) ' p p ' 3 - 1 7 ; M R 4 4 # 5afifth 4 4 7 ' l 2orderfunctional Z'3Al J.; Tammi, C)' Onistimating 801. Zarn,ryn,wicz. colloq. Math' 25(t 972)'307-313' fcr boundedtmivslentfr,itctions. 301 326;MR 48 #4297' U6' 22' ? ' -..--)^) boundary hn,,n/tnrr) roto rotatton' g02. Leach, R. J. on odd functions of bounded Canad'J'Math'26(19741'551-564;MR49/i3t|l't4'5'6'23'45' 6 2 , 6 ? , 7 1 , ' t 3 , 7 6 ,i 7 \
(PART IT) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
191
l'lotices Ar^rer' g03. Leach, Rcnald J. Multivalent Bazilevi\ functions' 711-30-13,p' A-l2l ' (To Math. Soc. 21, January 1g74,Abstract et Appl.) [5, 14, 50,65] appearin RevueRomainedesMaths. Pures o1"bounderiborng04. Leach, R. J . coefficienis of symrrtetricfunctions MR 50#749v' dary rotation Canad.J. iviatn.26(1974),1351-1355; ll4,
71, 771
r . - -- : ! t-nn,n.to/l ofr bounded g05. Leach,R. i . Muttivalentanddmeromorphicfunciions boundaryrotation.Canad.J.Math.2T(|,9?5),186-199.[4,|2,|4, 39,52,71,75,771 futrctions' for somealpha'convex g06. Leach,R. J. TiteMarx conjecture #35W 52 NlR MichiganMath. J. zz(tgzj).no.2,188-190.t69l; starlikefunctionsof muttivarent g07. Leach,RonardJ. c,t soinecrasses MR 51#5909'[6' 14' Trans.Amer.Math.soc.209(le75),267-273; 50,65,881 functicns' Rev' Roumaine 808. Leach, Ronald J. on alpha-convex 123'U' 69' 701 Math. PuresAppl' I}(lgis), no' 5' 54-s-549' boitndory g09. Leach,R. J.; Noona', J. w. onfunctionswith bounded |971June 130, no. A. M. S.,vol. 18,no.4, isue rotation.NoticeS, 71T-B158), P' 654' t71! (Abstract of theareaprincipleto problemsof apiticatioi N. A. ,an 810. I-ebeJev, Dokl. Akad' Nauk finitety ,onnrrird domains. nonovertapping 7(1966)' 26-2(i;MR33#5865lsovietMath.Dokl. sssR 167(1966), 323-3271.1211 article"Applicationof the 811. Lebedev,N. A. An addendumto the oreaprincipletoproblemsonnon.overlappingregions.''(Russian. ur'iv ' 22(1967)'no' 7' English summary). Vestnik Leningrad' 64-73;MR 35 #$e9'126,27' 53' 541 (Rusg12. Lebedev,N. certsin ciroilqriesof an inequarityof Grunsky. Univ. |972, no. 7, sian' Englishsummary)Vestnik Leningrad. 4s-s5;MR 45 #8820't53l formula of G. Mgr3. Lebedev.N. A.; pin'-uan-F'eu.Thevariationar inst' n) zap. Naucn.Sem.Leningrad'otdel' Mat' Goluzin (Russia 46 #7502.|24| Steklov.(LOMI) 24(|972),|73_181;MR corollariesof Grunsky's Certain 814. Lebedev,N. A.; Din'-van-F'eu' inequalityandofthefundamentalareatheorem.(R ussian)Zap. Inst' Steklov' (LOMI) Mat' otdel. Leningrad. Sem. Naucn. 26, 187;MR 51 #8400'[9' 27' 531 44(1974),100-1 conditionsfor 815. Lebedev,fl. A.; Mamai, L. v. certain sufficient summary) English (Russian' univalenceof regular functions. 35 no. 1, 40-51;MR #6809.[4] VestnikLeningrad.Univ. 22(|967), o'f a certainine816. Lebedev,N. A.; Mamai, L. v. A generalization
I
t_
198
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
sumquality of P. Garabedianandd M. Schiffer. (Russian'English 43 MR 4l-45:, mary) vestnik Leningrad. univ . 25(1970),no. 19, #6422.126,27, 531 Math' Sem' 817. Lee, Boo Sang.On univalententirefunctions' Kodai 168-171;MR 46 #3772'[4' l0' 3l' 90] Rep. 24(1972), functions and coefficientcon818. Lee, Suk You ng. Quasi-subordinate no. 1,43-50' [], 16]; MR jectures.J. KoreanMath. Soc. 12(1975), 52 #8412 problem for typically 819. Leernan, G. B. The constrainedcoefficient (1973),177-189;MR 186 realfunctions.Trans. Amer. Math. Soc. 4 9 # 3 \ 1 2 .l l 3 , I 6 , 2 3 , 5 1 1 g20. Leeman,G. B. Jr. Someregularity theoremsfor tTpicallyreclfunc48 #2370' tions.Proc. Amer. Math. Soc. 40(1973), 191-198;MR
u3,51,661
g2r. Leeman, G. B. A local estimateof typically realfunctions. Pacific J.Math.52(1974),481-484;MR50#10232'U3'511 gzz. Leeman,GeorgeB., Jr. A new proof for on inequalityof Jenkins' Proc.Amet.Math.Soc.54(1976),||4_116.[54] extension' 823. Lehto, olli. schlicht functions with o quosiconfarmat pp.3_9.|9,?,5, A n n . A c a d . S c i .F e r r n .S e r i e sA I , N o . 5 0 0( | 9 7 1 ) , 2 7, 3 1 1 ;M R 4 5 # 3 6 9 2 and the Grunsky824. Leutwiler, H.; Schober,Glenn. Toeplitzforms MR 48 Nehari inequalities. Mich. Math. J. 20(1973), 129-136; #2371. 12,21, 531 M' s' Robertson' 825. Lewandowski, z. some remarks on o paper by curie(Polish and Russian summaries) Ann. univ. Mariae MR 33 #5867' [1' 6] Sklodowskasect. A 17(1963),43-46(1965); g26. Lewandowski, Z. On circular symmetriz,ationof starshapeddocuriemsins. (Polish and Russiansummaries)Ann. urriv. Mariae #5866. MR 33 [6' 19] SklodowskaSect.A l7(1963),35_38(1965); M' Biernocki conEzi. Lewandowski, Zdzislaw on sonteproblems of topics' (Polish cerningsubordinateJunciions and on some relcted and Russian summaries)Ann. Univ. Mariae curie-Sklodowska Sect.Al9(1965),33-46(1970);MR41#7086'[1] (Polish and Rus828. Lervandowski,z. on a problem of M- Biernacki' Sect'A l7 sian summaries)Ann. univ. Mariae crrrie-sklodowska MR 33 #4249'[43' 85] (1963),39-41(1965); univalent ma' 82g. Lewandowski, zdzislaw. some resultsconcerning jorants.(Polishand Russiansummaries)Ann' Univ' Mariae CurieiviR.38#2299'[], 54,681 l3-1S(1967); sklodowskaSeci.A 18(1964), maiorants cf 830. Lewandowski, Zcizislaw. Modular and domain
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTII)199
Russian summaries)Ann' univ' regular funciions. (Polish and A l8(l 964)' 19-22(1967);MR 38 Mariae curie-SklodowskaSect. #23w. [1, 6 ,321 , problem - ^ - ^ ^ L r ^ a{ n r a lnc< o oi{ for n .class g3l . Lerp.,anCo*r*i , 2.; Nltazga,J . An extremot Sci' S3r' Sci' posiiive"iritpart' Buli' Acad' Polon' functions with pirys. 2l(igzl), 233-240;MR 47 #3668'11,2,24' Math. Asrronom.
s.u1i' e1': .:::( ::': ^:'::,:!,:: !r:# ski, z.; Miazg . luJ*"r oov,, B3z ?: J.de Koebe' (Engtishand Russiansumdetermination desense,itU'tr,
poton. Sci' Sbr' scl' Math' Astronorn'Phys' maries)Bull. Acad. 22(rg74), 663-666;MR s0 #2479' t19l of J'; Szynal' J' On an applicotion 833. Lewandowski, Z'; Miazga' proibtr*s for functions wiilr sakaguchi,s method to extremal coefficients'Buli' Acad' Polon' positivereal part with vanishing Sci.56r.Sci.Math.Astronom.Phv'.zr(1973),241l-2M;MR47 #5248.12r
24, 561
,
r
tz^^L^ )n,vtniv.rc fnr un'
8 3 4 . L e w a n d c w s k i , Z , ; M i a Z E & , J . ; S z y nunder al,!.K o e b e d onormalizamqinsforuniMontel's vqlentfunctions with ,il'ro'fficients g i s ) , f a s c .3 , 3 3 3 - 3 3 6t' 6 , l 0 ' 1 9 ' 3 9 ' tion.Ann. polon.Math,30(l all; MR 5I #13210 E. Generatingfunc, Z.; Miller, S.; Zlotkiewicz, 835. Lewsa-ndowski Amer' Math' of univalentfunctions' Proc' tionsfor some classes 691,, S o c .( t o a p p e a r )1' 2 '4 ' 5 ' 6 ' : - - - . : ^ -E / a certarnconE' on ,2.;Reace, M. o'; Zlotkiewicz' 336. Lewandowski Russiansummaries)An' Sti' dition for univalence.(Romanian1nd (N.S.)l18(1965), l |9_|23; ..A1.I. Cuza,,Iasi Sect.Ia Mat. Univ. MR 34 #329.[4, 5, lo, 20] adioint Stankiewicz' Jan' On mutually 837. Lewandowski, Zdzislaw; Ann. (Potish and RussianSummaries) clost.to-convexfunction,s. Univ.Mariaecu,i.-st.lodowskaSect.Alg(1965),47_51(1970); M R 4 l # 5 6 1 1t.l , 5 , 6 , 8 2 1 of Jan' on the region of variability stankiewicz, z.; 838. Lewandowski, logf,(z)forSomeclassesofclose-to-convexfunctions.Ann.Univ. 46 A 20(1966):'45-52(1971);MR Mariae Curie-SklodowskaSect' .sntes modulaires #9322. 15, 29, 49, 74l J ' Les moJor Stankiewicz' Z': , Lewandowski 839. Sci' summary) Bull' Acad' Polon' 6toil6eset l',inclusion.(Russian #2033' 46 19(1g7-l)' 923-929;MR 56r. Sci. Math. Astrcnom. Phys'
yo'o.'::'"^:::y,':t:,,lresfo,nc840.I]l*-oowski, Z.; Stankiewicz''' (Ruisian summary) Bull' Acad' tionset incrusion desdomaines.
E" b--
2OO
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
917-922; polon. sci. 56r. Sci. Math. Astronom.Phys' 19(1971)' MR 46 #2032.lrl setsand Z.;Szynal,J.; Wajler,S' On the covering g4t. ffi;#wski, r rr.,ll A ^aA Bull. Acad'
i;:
summarv) ;;'i;;;tlo'ns. (Russian ^A/t^r/\ 1Cl
2/. N IIP MR 4),2e-34; ";;iiri,""' sci.Math.Astronom. Phvs. 22(re7 ;l;#.'*:ft;.
5 0 # 2 4 7 5 [. 1 , 6 , 1 0 1 of variability o'f g42. Lewandowski, z.; zlotkiewicz, E. or the domain meromorphic' univalentfuncthe secondcoefficientfor a classof Math' Astronom' Phys' tions.Bull. Acad. Polon. Sci. S6i. Sci' 24' 291 13(1965) , 2l-25; MR 3l #3593'19' g43. Lewandowski, Z.; Zlotriewicz, E. variational formulse for funct i o n s m e r o m o r p h i c o n d u n i v a l e n t i n t h e u n i t d i s c . ( P o l i s hA andRusCurie-SklodowskaSect' 17 sian summaries)Ann. Univ. Mariae 251 ( 1963), 47 -53(1965);MR 33 #4256' 19' 24' of starlikefuncE' On some classes 8M. Lewandowski,Z.; Zlotkiewicz, 74T-889' Amer. Math. Soc.21, April1974, Abstract tions,.Notices p. A-374.14,61 problem for bi-univalentfunctions' 845. Lewin, M.' on a coefficient 27,53,
u6, 63-68;MR 34#6074. proc.Amer.Marh.soc.18(l9aD, 541 of o certqin :-lassof analytic 846. Lewin, M. Boundsfor functionals 45 Math. So:. 3(1971),329-330;MR functions. Bull. London #7050. 122, 68,721
. r , , : y t - . -^ . i n s o
g47.Lewis,JohnL. on a probremof Gronwaufor Bazileviifunctions. , 23|-242;MR 49 #7432.v0, Trans.Amer. lv{atlr.Soc.195(1974) 801 , ^,? - tt-^^j,n n f suffridgc' lttffrirlsp of g4g. Lewis, John L. An n-speceanologue of a theorem p+rt 4. 385-404.t6] Proc. London Math. Soc. (3)30(1975), Math' soc' g49. Lewis, J. L. Noteon an ori lrngth problem. J. London (2\l'2(1975/7 5), no ' 4 ' 469-474' l7l suborriinatiort theoremsfor som€ 850. Lewis, J. L.; Barnard, R. w. s' 20' August 1973' of univalentfunctions. NoticesA' M' classes
zrr-9210,p' A-486'u ' 6l Abstraci
of afunction analyticin the 851. Li Ti-min' . Influenceof theorgu*'its MR 32 sci. Sinical+(r965),666-678; unit circleon itsuniva"lence. 14,391 canadian J' Math' R. J. univalento-spiralfunctions' Libera, 852. MR 35 #5599'[6' 36] 19(196i) , 449-456; J' Austral' Math' Soc' 853. Libera, Richard J ' Disk-likefunctii;ts' 6' 40',41',49I l1(1e7b) ,251-256;MR 42 #1990'14' 854.Libera,R.Sorrteinequulitiesforboundedunivalentfunctions'
(PART II) BIBLIOGRAFHY OF SCHLICHT FUNCTIONS
201
( P o l i s n a n d R u s s i a n s u m m a r i e s ) A n n . U n i v . M a r i a e C53' urieMR 50 #10236'122' Sect.A 26(tgiz), 17-2g(197g; Sklodowska 611 of sonteclasses A. E,.Cn the univalence E55.Libera,R. J.; Lr.lingst'on, ofregularfunctions.Proc.Amer.Math.soc.30(i9,71),327_336; M R 4 4 # 5 4 4 2[ -5 , 6 , 1 0 ,l l , z , 7 3 ' 8 2 ] functionswithpositive g56. Libera,R. J.; Livingston,A. E. Bounded 45 Math. .I. zz(g1)(lgiz) 195-209;MR reut part. Czechoslovak #'t039. 12, ?'Zl
, ,
. .r:,.^ .-,^e*.unrr-rhi?
A. E. Weakly sturlik.enler)inorphic 857. Libera, R. J.; Livingston, 181-191; Math' Soc' 202(1975')' univalentfunctiorzs.Tranr. A*t'' MR 50 #13482-16,9, 36, 62, 531 R' Regular functions F(e) for which 858. Libera, R. J.; Ziegler,M' pp' Amer'Math' Soc'' 166(1972)' zF',(z) ,s alpha-spiral.Trans. 63'731 3 6 1 - 3 7 0M ; R 4 5 # 5 2 6 ' 1 4 ' 6 ' 1 2 '3 1 ' approximationsfor Loewner-type . E. J 859. Libera, R. J.; Zlotki.*i.,, Notices, A. M. S., vol . 22, convexfunctions, Prelittinary report. 75T-8101)'p' A-455' [1' no. 4, issuenc. 162,June 1975(Abstract
10,821
E. J . Loewner'sdifferenial cquation 860. Libera, R. J.; Zlotkiew\cz, f o r s p i r a t l i k e f u r t c t i o n s ' N o t i c e s ' A ' p' M ' A-5 S'vo 2 '' n241 o'5'issueno' 09l ''216 163, August \gl S (Abstract75T-81 54)' convergenceof schlichtfunc861. Llck, Don R. Se/-'of non-uniform t i o n s . M a t h ' J a p o n ' 1 4 ( 1 9 6 8 ) ' 3 1 - 3 2 ; M R 4 1 # 1 9 8arcs 9 ' t 6under 21 a of exterior nttt*ation r',l'. t. Milin, A.; Ju. 862,.Litvincuk, Zametki 18(1975)'no' 3' univqlent mapping (Russian). Mat' 367-378 . bouttdedboundaryrototion' Proc' 863. Liu, Ming-chit. On fulctions of Amer.Math.Soc.29(|971),345-348;MRM/,42cf,.17,|8,62,7|] of some analytic functions' 864. Liu, Ming Chit. On the derivative Math,Z.-|32(|973),205-2c8;MR48#2351.t681 ' for symmetricschlichtfunctions g65. Liu, shu_ch,in. somi i,nequarities ( C h i n e s e ) S h u x u e J i n z h a n T ( | 9 6 4 ) , 2 2 3 _ 2 2 , 7 ; M R 3 9 # |Amer' 645.|49,54] ' Trans' functions close-to-convex p-valent 8.. 866. Livingston,A. Math.Soc.115(1965),161_179;MR33/7520.[5,6,14,50] func' g67. Ll'ingston, A. r.. pterornorphicmurtivarentcrose-to-convex #5860' 32 MR 167-177; Amer. Math. soc. 119(1965), tions.Trans. [5,9,14,38,75] tmivalenceof certain analyric 868. Livingston, A. E' On the radius of MR 32 ' Math. Soc. 17(1966),352-35'7; functions. Porc' Amer # 5 8 6 l .1 2 ,4 , 5 , 6 , 1 0 , I 1 , 12, 16l
bi----
202
BIBLIOGRAPHY
FUNCTIONS OF SCHLICHT
o! multivalent close-to-convex 5, The coefficientl E. A. g69. Livingston, ioi'-i'i, MR39#4378.|2,
fu,,tioi,.,p...
o.",.,. iittgtegl,
univalent thederiuatiYof a (1970)' beho.v.ior,of Boundary 195 J. sl:R 870. Lohwate,,A. ertad'" N;; ;;kl. p' 1620' 11(1e70)' M";':;okl' functio,i.'(Russian) MR o' rcii';-souitt 1033-1035; of univalent of deriv^at'ives 162l behavior boundary rle ' 6' 621 J. g71. Lohwarer,A. ''"'-i;o;Mn $ #760etl
14,2r,501
^{rf*r"iJ'T: ? I e *ui.,, z r-ot *1,:'J##-iJ-i"?l# s,t Athens,ohio. 1970; ii'ttg1;' frn'tioi'' l"ru'r'V conformol moqqmg:
ot,i" Macintyre,PP.257-26i. 621 IvIRq,s'tloi3. 14,.23,
unil ;;.
c or€atheoremfor starlikefunc*;il'&;l;\iST 4' NrR i, 4;o;;:*' 3;;$?J. li5ru""; 87 231 formulafor an in#i08'1.[6, 11,18, so'2'5 Ma'ih 4 i:;:i";:',x';llnii;i,f,t'' ;':^x:'"ii; 8-' ozltMR 52#E403
' l'""i"'i,,ut'":"zi ' s,|ep-funcfions in extremum 393-406 (1976)' . on tne uie,o}
Ann.Acad. blundaryrotation. 8,7i.Lonka,H.; |amTi,o aouryqla j6 of-thec^I;;S-*r,i proble.ms tt oo.rMR #660r'lz4"tr' +ietrnuri, N". i Sci.Fenn.Ser.o 7'.ll
876.Lohwater,A.J.;Pommerenk-e,Ch.onnor-ma'l.merom o rurut phicfunc. the
outside t i o n s . A n n . A c a d . i l i . Foliourded . " n . S e r .rotqfion ;i';.sso (rgrB),|zpp.[46,621 Dopovidi ol"iiiii'on, c v. .r-ozovik, 817 uoi English "'**utit$ Russian [2,9l M} 34#2s55. circle' (Ukrainian' ,nu,,*'#Eig' RSn functions' Akad.Naukur.,uin. 'o'tti"'i'nt' of !^!"ivalent Akad' o.''or^'rii v. Dopovidi g7g.Lozovik, English summarti;i 50J and (Ukrainian. nor.Jt v'itzs' ti+' 24'33' Mn tots-idirt -on *iil^isi+, reaifunctions' ukrain. Nar,k proiuii'es o! typicary - I e5; MR32 ceitoin G.. 8 g7g. Lozovik, v. ;;\"';' t' iiii' 1 e
: Nuur''zJd; (R.,r,iun) u wehi-M "; no4' u3' 231
MR 48,7_494; 8 8 0 . L u c a s , K . w . A t wj.o -tondo,, p o i n t ; nM;;;. o d u lSoc., u s b ooiiigog), undforareallymean p-valentfunction;. mean-p-vaieitt .tr'l'isgi' t31l (:oefficientsof areallv successve '-On W ' o\von; MR 39#4379. 881' tt"u'' f S"','(igog), Math J. '"'o* J.uncfions. ana of boundedvarintion [8,33] ru[ass functions gg2. Lustfield,charlesD.
FUNCTIONS BIBLIOGR.APHYOF SCHLICHT
(PART TI)
203
46 #3',163' [6' Portugal.Ir4ath.30(1971),73-82;MR starlikeness. ll, 12,43,7ll greaterthan cr' Proc' g83. McCarty,carl P. Functionswith realpart g72),211-2i6; l"in 45 #ic66'12'19',21"22', Amer.Math.Soc.35(1 5 6 ,6 1, 7 2 1 cv'Notices with realpart grealer -t-han 884. McCarty,Carl P. Functions rgt-845. 12,,6,12,721 A. M. S., vol. 20(Feb.1913),Abstru.l Notices gg5. McCarty, carl P. some ,lorru of analyticfunctions' ,,42, p. A_487. Abstract74T_B Amer.Math.Scc. 2| ,August|974, 12,12,21,561 with initiatlero coeJficients' '21 gg6. rviccarty,carl p. Anaryticfunctions ' lg74' Abstract74T--869 NoticesAmer. Math io. . , F etruary P. A-309. 12,391 problems'Proc' Amer' gg7. Mccarty, C. p. Tworadiusof convexity 6' 12'21',16',56', MR 48 #4295.12' Math.soc. 42(tg74),153-160t
fyl:!io!.''."11t 888.ffil.ur,r,carlP' srartike 'lT:l #11472' 6' 12'36' 631
Math'soc'
\4' 4 3 ( 19 7 4 ) , 3 6 1 - 3 6 6M; R 4 8 for staron thel coniecture note A E. D. ggg. McCarty, c. P.; Teppet, 46 Soc. 34(|912),4|7_421;MR tikefunctions.Prcc.Amer. Math. 1'91 #3764.[6, 12, 16, variotionfor extrematschlichtfunctions' 890. McCoy, T. L . A surface Notices,A'M'S"vol'19'no'fissueno'135'January'1972 (Abstract 691 -30-26)' p' A-lli ' l24l and starrikenessof gg1. McGregor, M. T. on'the arders of convexity Convexdomains.J.LondonMath.Soc,(2)2(|970),lll-t20;MR '^g 40 #5843. t6, 10, , 22, 6l ' 641 starrikefunctions ggz. Mclaughrin, Renate. on the Marx coriecturef9r ofordercx.Trans.Amer.Math.Soc.|42(|969),249_256;MR40 #328. [l , 6, 23, 24] problemefur eineFamilie schlichter 893. Mclaughlin, Renate. Estremal 10,24] ,320-330;MR 43 #2206.[6, Funktionen.Math. Z. |18(1970) extremal problems for functions 894. Mclaughlin, Renate. Some a6 Scand.zstr 971r),|29_138;MR univalentin an annulus.Math. #5606.124,46, 481
, . c ^ - .- ^ t ^ ^ - of n { symmetrrc ctt,r,ytp . Extremalproblemsfor a class 895. Mclaughlin, Renate 4' pp' Mech. Analy., 24(1972),no' Rational Arch. functiotrs. 48' 3 1 0 - 3 1 9[ 1 . 0 ,2 2 , 2 4 , 3 5 ' 6 l ] of oddfunctions g96. Mclaughrin,R.,4 ;aria*ionarmethodfor a cras,s 451 973),299-305'12+' in an annurus.colloq. Math. 28(l problemsof analyticunivalentfunctions 897. Mcleavey,J. O. Ex:tiemal
\.-_
204
FUNCTIONS BIBLIOGRAPHY OF SCHLICHT
w i t h q u a s i ' c o n f o r m a l e x t e n s i o n s . T r31' a n s531 .Amer.Math.Soc. 124' #10880' 49 MR Acta 195(l974),327-343; ii o conformal mapping' g9g. McMillatr, J. E. Boundary behaviof
MR 4r #1981't62l Math tlitt969), 43-6'7; ,o,,,,pondence u'nderconformal
the boundary 399. McMitla[, J. E. on 725-739;MR 45 #3684'1621 lltrlio;, of mapping. Duke Math. J. On ttte boundqry behavior Ch' Pom*t"nkt' E'; 900. McMillao, J' analyticfunctionswrthoutKoebeQrcs.Math.Ann.l8g(1970),
1'' 9'l 2i5-27g;"*ln44 #4210'[4' conformolorllquasiconforrnal g0l. McMillao, J. E. D,stirtion under p-.izt-141' tagh MR 42 #3273 126(1971), Math. Acta ntappings. wz.McMillar,J.E.;po**.renke,ch.ontheasymptoticvaluesof Iocallyunivalen,*,-*grphicfun-ltions.J.ReineAngew.Math. ' 24g(rs7r), 3I -3 3; MR 44 #434 t62l of the imagedomsinsof analytic i)ansttations H. T. MR 33 903. MacGregor, proc. Amer. Math. soc. rotrqoJ),1280-1286; functiois.
ti'r'?"::':o:^ bvuniuqtent PYk' (?ilhll;l; f fi. 'runction: e04. '
Math'J'34(196'7)'gS''tOz;MRyfOOel[1'6'10'13'16'22'30'
e05.UJ:;#;,lti]t',i:'
;:'
u,)', or quotient iifrerence minimum MR
rnruitr.so. . qiog6i), z''l-26g; univarent functions.J. Lrndo, 35 #360.ito, t 2, 16'64' 681 9 0 6 . M a c G r e B o f , T . H . , C e r t a i n48'-;iI{R I n t e g r a l 36 s o#5324' J - Y ! i '[1', y : '4', ; , ,5', t a6', n 10', dConvex Functions.Math.2. twtl968), 16, 47 ' 64' 851 a -^ :-nn,,nrit concerntng onalytic functions gO7. tutu.C"go'' i' H' An inequality ll'72-ll7'7; Math'' 21(1969)'
reoti";.canadian J' with a positive
coefficients whose lave' yoyerseries e08.Mll?JiTtil'; ?Irirorrlt MR N #2839 222-228; llztiqeql, z. . propertiis.Maih monotonic
conof^" rhe.uniyle^1ce ' H r' e'e.$;3ll.eor, 2lo-212;MR 38 44(1969), Math.-s;., ":ii[::r^'yr;!;i;tof vex mappings.J. Ltndon 68' E2l to a #466;;.7i,;,e, lo' 43' 63' subordinote bypolynomials q,iiro*irnatioi .' H T. 199-209; 910. MacGregor, Amer-rriuttt.soc. 148(1970), liu*r. .fttnction. univarent z}', 32' 431 Amer' MR 4l #2029'tl ' 4'5' 10' probremsin comprexanurysrs' Gro*rtric H T. , 911. MacGregof ++t-.161;MR 45 #7034't44l Math. Monthrvzq(i9721' of extreme-pointtheory to gl2. MacGrcBor,rnomas i.' erolic:at'ions
BIBLTOGRAPhIYoFSCHLICHTFUNCTIONS(PARTlI)
205
J. 19(1912),tro' 4, pp' univalent functions. Michigan Marir. 3 6 1 - 3 7 6 ; M R 4 7 l ' 4 4 7 ' [ l ' Z ' l ' 5 ' 6 : 1 0 ' 5 6 ' 6 3 ' 6 4 ' 7 4 ' 7 5problems '88] and extremul gr 3. rviacGregor,Tiromas H'. Hutt subordination 183 n:appirtgs.Trans' Amer' Math' Soc' for slartike'aridspiratlike 20' 881 (1973),499-510;MR 49 #3104'tl' 6' 10' the Rcnge of an analytic gl4. MacGreBcr, rhomas H. Rotationsof '14'16'24' g 7 3 ) , I I 3 - i Z O t; U n 4 8 # 6 3 9 0 f u n c t i o n f v i u t t .A n n . 2 0 1 ( 1 49,54,681 of ordera' gi5 ivlacGregor,T. H. -4 subcrdinationfor convexfunctions IviR 51#31|7.u,6, lOj g(rg75),530_535; J. London Math. Soc.(z), pri;t rt differentiablefunctionals and support 916. MacGregot, T. H. NoticesAmer' Math' Soc' pointsfor famities cf analyticiunctions' p' A-100' [6' 881 23, JanuaryI 976,Abstralt 7i1-30-11' ' (Polish and Russian gli . Mak6wk&, B. Quasiy-spiratstarlikefunittont L6d2' No' 208 Mat' No' srrmmaries) Zeszyty tiaut Politech 6 (1 9 7 5 ), 4 7 -7 5 ' t6 l ; I\' IR 52 #72i
,, ^,---^nl nti oti ,. ttr nnntvl i a geometricalcharacteristicof anolytic 918. Malec, M.; Nikitch, N. on functions.(Polishsummary)ZeszytyNauk.Akad.Gorn.-Hutniczej. t35l MR 50#10212'
. zesrytriirqzlj, 133-t35; Mat.-Fiz.-chem (Abstract),Notices, of a porynomiqr. on therlerivat-ive
9t9. Malik. M. A. 'ran' lgSg'p' 290' 127'321 A. M. S., vol. 16,no' f issueno' 111' transformation'capacityand con920.Marcus,M. A radial averaging f o r m a t r g d i u s . B u l l . R m e r . M u t H . s o . . T s arcs ( I 9 7of 2 )rever , 4 5 6curves -460.|241 gzr. Martynov,Ju. A. Thegeometricpropertiesof Trudy Tomsk' Gos' (Russian) underschlichtconformot^oppings. 53-6i;MR 43#5016.12,12'29',351 Univ.Ser.Meh.-Mat.210(1q69), functions' g22. Mathews,J. H. Coeficientsof yltf:rmly normol-Btoch Y o k o h a m a M a t h . J . 2' l ( 1 g 7 3 ) , 2 9 - 3 1 ; M R 4 8 3 2 1class ' of in# 4the g2t . Matsrur^oto,K. Note on Schiffer's voriation NagoyaMath' J' 32(1968)' univalentfunctionsin the unit disc. 273-276;MR 38 #1247' 124'421 for certqinfamily of func' gz4. Mazur, R. on the radiusof B-convexity Math. 8(1975\, Demonstratio tionsmeromorphicin the-u.nitdisc. . 12,l2l; MR 52 #8404 483-489 , of a certatnrng25.Mehrok,T. J. S.; Bajpai,s. K. o.n the univalence [6, 10,851; 5(1g74),186-191' N,lath. l. puJ, a',ppt. tegrat.indian MR 52 #350r growth of typicallyreaifunc926.Merkes,E. P . on convolutionsand to A' J' Macintyre'pp' 299DedicateJ Essays tions.Mathematical 1970;MR 42 #?880'[12' 13' 303.ohio Univ. pr.*, Aihens,ohio, 41,47, 621
b.-*
206
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
g27. Merkes,E. P.; Scott,W. T. Coveringtheoremsfor univalentfunc' 6, 10, tions.MichiganMath. J. l3(1966),4I-47; MR 32 #7729'[1, 19,22,301 g28. Merkes, E. p.; wright, D. J. on the univslenceof a certqin int e g r a l .P r o c .A . M . S . 2 7 ( l 9 7 1 ) , 9 7 - 1 0 0M; R 4 2 # 4 7 2 0 . 1 2 , 4 , 5 , 6 ,
10,851 E. P.; Wright, D. J. Typicatty.reqlpolynomiols of smafi 929.Merkes,
degree.Math. Student39(197l), 205-206(1972);MR 48 #8762.ll3 ' 3?j 930. Miazga, J. The radius of convexityfor a classof regularfunctions' (Polish and R.ussiansummareis) Ann. univ. Mariae curie-35(l 970; MR 50 #10226' 16, l2l SklodowskaSect.A 26(1972),3 I of convexi931. Miazga, J.; Stankiewicz,Jan; Stankiewicz,Zofia'Radii univ' ty for some classesof close-to-convexfunctions. Ann. 46 MR 53-57(1971); Mariae Curie-sklodowskaSect.A 20(1966), #3765. [5, I 2, 701 g32. Michel, c. Eine Bemerkungzu schlichtenFolynomen. (LooseRusser. Sci' sian and English summaries)Bull. Acad. Polon. Sci. 9 ;R . 4 3 # 6 4 2 3 [. 3 2 ] M a t h . A s t r o n o m .P h y s .1 8 ( 1 9 7 0 ) , 5 1 3 - 5 1M g33. Mikka, V. P . Sufficient conditionsfor the univalenceof the solupoints ' (Rustionsof inverseboundary valueproble,ztswith corner MR 50 sian) Trudy sem Kraev. zadacamvyp. 10(1973),95-106; #6?,0.l4l g34. Mikolaj czyk,L. certain properties of extremal univalentfunctions thatarep-Symmetricandboundedfrombelowinthedisc1z|> (Polish. English summary) zeszytyNauk. Univ . L6d2k Nauki Mat' Przyrod. zeszyt20 Matematyka(1966),103-115;MR 50 #13483' 19, 24. 49, 581 pour lesfonctions 935. Mikolaj czyk, L. Theoremesur ta deformation univalentis p-symetr!queset borneesinferieurment dans le domaine
lzl
581 Astrono*. ptrur. l4(l 966),245-250;MR 34 #330.19,24,49, et 42 936. Mikolaj czyk, L. Le domaine de variablilite des coefficrents reels' 43 ctesfinctions univalentes bornees avec des coelficients Math' Sci' 56r. (Russian summary) Bull. Acad. Polon. Sci. MR 34 #331.122,291 Astroncm.Phvs. 14(1966),251-254; g37. Nlikolaj czyk, L. Domqine de vsriation des coefficients '42 et As Polon' desfonctions univalentesborneesa coefficientsreels.Ann. Math.lg(1967),81-106;MR35#352'i22,29'391 univalent 938. Mikolaj czyk, L. A theorem on distortion Ju' circte the lzl p-symmetiicatfunctions bounded in
BIBLIOGRAPHY Oi SCHLICHT FUNCTIONS
(PART ID
201
35-51;MR 38 #2294'19' 22' 241 12(1968), a schlicht g3g.Mikolaj czyk,Leon. Relation betweenthe modulusof f u n c t i o n , p - S y m m e t r i c a l a n d b o u n d e d f rary) o m bzeszrty e l o w ,Nauk andthe moduhtsof itsderiveiive.(Polish.Frenchsumm 29(1968)'3-29; Univ. L6d2k Nauki Mat. Przyrod.56r' ll zeszyt MR 39 #7082.[9, 49, 58] of a schlicht g40.Mikolaj czyk,Leon.,nritation betweenthe modulus and the modurusoJ'itsderivative. function rita'tis bouncedberow Mat' summary)zeszytyNaukUniv 'L6d2k"Nauki (PcHsh.Errglisi), 3-2t;MR 4| #450.[9' 581 Przyrod.5617|7'eszytl-+,1i969), (e) - pf (g) g4l. Mikolaj czyk,Leon.A cer:tainsolutitrnof theequationf (Polish'Englishsummary) in the classof a-spiralsturli!:cJuncrrs' Przyrod.Ser.Il zeszyt zeszytyNaui
H--
20E
BIBLIOGRAPHY OF SCHLICHT
FUNCTIONS
Report 7225; Naval Research cients of Schlicht functions' NRL f ii + 164pp.; MR 43 #5017' Laboraiory, Washington,D' C '' l97
t53l
9 5 0 . M i l l e r ,J . E . Convexmeromorphicmappingsandrelatedfunctions. MR 4l #3740'12' 5'9' ZZO-ZZI; Proc. Amer. Math. Soc.Z5t(llrO;, 1 2 ,5 6 , 5 8 1 meromorPhic univalent 9 5 1. Miller, James. Extremal functions for -86; 44#s443 . , 24,
f
y ii,Lr:l :i"aryseMath. zAe D:77
MR
te
58,681 Proc' Amer' g52. Miller, James E. stcrrlikemeromorphicfunctions' M a t h . S o c . 3 l ( 1 g 7 2 ) , 4 4 6 - 4 5 2 ; M R 4 4 # 5 4 6 5 ' [ 6 ' 7 ' 9Pacific ' 5 8 1 J' functions' quasi-subordmate of sequences E. 953. Miller, J. M a t h . 4 3 ( 1 g 7 2 ) , 4 3 7 - # ;M2R 4 7 # 7 0 2 3 ' t l l modul,ls for meromorphic 954. Miller, James. on the maximum Virginia Acad' Sci' 45(1973)' univalent functions. Proc. west 360-365;IvIR 50 #10237' 19' Z4l ? for convex mops tn g55. Miller, J. E. subordinotingfactor sequences 1g74,AbstractTlT-Bl7' C'. NoticesA. M. S., vol. 21, Nov.-t.t P . 4 - 6 1 4 . t l , 1 0 ,4 7 1 of a Bqzilevii funciion cnd its 956. Miller, s. s. The Hardy class Soc. 30(197:r'1,|25_|32 \IR 44 derivqtive. Proc. Amer. Math. # 5 4 M . 1 3 , 4 ,1 6 , 6 2 , 7 0 ,8 l l f , n-fold symmetrrc g57. Miller, Sanford S. An ari-tength problen' for univglentfunctions.KodaiMath.Sem.Rep.24(|972),|95_202:'
M R 4 5# g b n .t 5, 6 , 7 , 1 0 ,3 5 ,4 9 1
functions' of alpha-starlike 95g. Miller, S. S. Distortion'properties 19' proc. Amer.Math. Soc.:'atrg:3),?tt-318;MR 46 #9324'14, 6 2 , 6 9 ,8 3 1 funciions.II' for crphc-convex g5g. Miller, Sanfords. TheHp crasses p' 1g74,AbstractT4T-880' NoticesAmer.Math. soc.2l, Aprit A-371.[6e] of bcurtdedargument of 960. Miller, s. s. TheHardy class functlcns February1974'Abstract rotation NoticesAmei. Math. Soc' 21, 74T-834,P. A-30i ' [62'71] functions. and carath€odory 961. Miller, s. s . Differeirtoiiniquarities # 7 5 3 31' 2 , 6 9 1 5 0 M R B u l l .A m e r .M a t h .S o c .8 1 ( i 9 7 5, 7) g - t _ 1 ; The boundedness' implying 952.I'{iiler,S. S. A d'Jfeientialinequatity (Ad1975 Monthly, vol . 82,no. 5, May AmericanMathematical vancedProblemsDepartment),p.529.|221 differential inequalitics implying 963.Miller, s. s. A iirt of y 1975'Abstract Noti.es^t.r. Math' soc.' Januat boundedness. 720-30-16, P' A- 122'l22l
I
BIBLIOGRAPHY OF SCTILICHT I]UNCTIONS(PAR,TII)
964. Miller, S. S. Second order differential inequalitiesand sorne applications in univalentfunction theory. NoticesAmer. Math. Soc. p. A-100. [2] 23, January1976,Abstract731'-30-10, -l'. T-heHgrdy c/al-'c'ffunctlons 965. Miller, Sanford S.; Mocanu, Petru Math. Soc. Ser. A 2l Austral. J. roiation. of boundedargument (1976), no. I , 72-i 8. t71l 966. Miller, S. S.; Mocanu, P. T.; ReaCc,M. O. Ali d.-convexfunctions ore starlike. Rev. Roumair.e Math. Pures Appl. 17(1972), MR 48 #2364.[4, 6, 9, 12, 69, 841 1395-1397: g57. Miller, S. S.; Mocanu, P. T.; Reade,Malwell O. The ru,lius oi ( a-convexity of rmivalent fltnctions, I < 6v @. @reliminary report) NoticesA. M. S. 20(Feb.1974),Abstract73T-860. U 2. 691 are 968. Miller, S. S.; Mocanu,P.; Reade,M. O. AII a-convexfunctions (1973), 553-554; 37 Soc. univslentand starlike. Proc. Amer. Math. MR 47 #2044.[6, 10, 691 969. Miller, S. S.; Mocanu, P.; Reade,M. O. Bazilevii functions and generalizedconvexily. Rev. RoumaineMath. PuresAppl. l9(1974\' 213-224;t{R 49 #3105.[4, 12, 16,68, 69,701 970. Miller, S. S.; Mocanu, Petru T.; Reade,M. O. The HarCy classes for functionsin the classMVla, kl. J. Math. Anal. Appl. 5l(1975)' 33-42.[71]; MR s2 #728 g7l. Minsker,Steven. ,4 newproof of Pick'stheorem.J. Res.Naf- Bur. StandardsSect.B 78B(1974),95-96;MR 49 #10873.14,22,301 972. Miro5nidenko, Ja. S. Certain extremalproblems of the theory o"f univalent functions. (Russian) lzv. \'yss. Ucebn. Zaved' Matematike1965,no .2(45).104-109;MR 32 #2574.[Amer' Math' . 17, 9, 35' 451 Soc. Transl. (2) vol 88(1970)l g73. Mirolnidenko, Ja. s. On the question of the curvature of level curves. (Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 210 (1969),62-65;MR 44 #6950.[35] gj4. Mitjuk, I. P. (Jnivalentconformal mappingsof multiply connected domain (Russian)Problemsof Math. Phys. and Theory of Functions, II (Russian),pp. 74-84. Naukova Dumka, Kie", 1964;MR 32 #5856.17, 18, 491 975. Mitjuk, I. P. Some properties of functions regular in a multiply connectedregion. Dokl. Akad. Nauk sssR 164(1965),a95-498; 124,601 MR 32 #5862.{soviet Math. Dokl. 6(1965),1252-1255]|. gj6. Mitjuk, I. P. The symmetrizationprinciple for an annulusand certian of its applications. (Russian) Sibirsk. Mat. Z' 6(1965)' 1282-1291;MR 35 #4396.[14, 24,33, 48] 97j. Mitjuk, I. P. The inner radius of a domain and certainof its proUkrain. Mat. Z. l7(1965),no. 1,ll7-122;MR32 perties.(Russian)
+
_
__
2IO
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
# 7 7 3 0 [. 1 4 , l 9 ] in an annulus' 978. Mitjuk, I. P. Some theoremson functions regular (ukrainian. Russian and English summaries) Dopovidi Akad. ; R 3 0 # 4 9 2 6 . [ 1 41, 9 , 3 3 , 4 8 ] N a u k u k r a i n . R s R 1 9 6 5 ,1 6 0 - 1 6 3M gig. Mitjuk, I. P. The principte of symmetrizationfor multiply conat' nectedregionssnd certain of itsapptications.(Russian)Ukrain' Z. t7(1965),no. 4, 46-54;MR 33 #7510'[6' 18] regular in 980. Mitjuk, I. P. Some covering theoremsfor functions muttiptl;-connecteddomsins. (ukrainian. Russian and English summaries)Dopovidi Akad. Nauk ukrain. RSR 1965, 550-554;
MR 33#28r1. u9l
regular func981. Mitjuk, I. P . A certsin subordination principle for 189 tions. (Russian)Trudy Tomsk. Gos. univ. Ser. Meh.-Mat' ( 1 9 t t 6 )1, 6 1 - 1 6 7M ; R ] 7 # 4 2 4 4 '[ 1 , 7 , 1 8 ] g82. Mocanu, P. T. Extremal domains in the clossof univalentfuncR' P' tions. (Romanian. Russian and French summaries)Acad. 30 MR 303-313; Romine Fil. Cluj Stud. Cerc- Mat. 12(1961), #4939.124,291 gg3. Mocanu, p. T. On an extremqlproblem relativeto univalentfuncR' P' tions. (Romanian. Russian aird French summaries)Acad. #5868' Ronine Fil Bluj Stud. Cerc.Mat. l4(1963),85-91;MR 33
l24l
9 8 - 4N . { o c a n u , P . T . O n the radius of convexity of holorr'orphicfuncUniv. tions. (Romanian. Russian and French summaries)studia MR 30 Babes-BolYaiSer. Math.-Phys. 9(1964),no. 2, 31-33; # 4 9 1 8U . 2,3ll - af(u) in the class of 985. Mocanu, P. T. On the equation f@ MR 32 univalentfunctions. Mathematica(Cluj)6(29)(1964)63-7e;
#773r.I24l
(Romanian)Stud' 986. Mocanu, P. T. Functions univalent an sectors. Cerc.NIat.i?(1955),925-931;MR34,M7514'57'l gg7. ivlocanu, p. T. Generulizedradii of stariikenessand convexity of Studia analytic functions. (Romanian and Russian summaries) MR 43-50; 2, no. (1966), l1 Ser. Math.-Phys. univ. ga-bes-Bolyai 3 5 # 6 8 1 0[.1 1 , 1 2 , 3 1 1 map988. Mocanu, Petru T. Convexity and starlikenessof conformol #5600' [6' pings. Mathematica (cluj)8(3 lx I 966), 9l-102; MR 35 10,I l, l2l of the exponen989. Mocanu,Petru T. About the radius of starlikeness Univ' tiat function. (Romanian and Russian summaries)Studia 41 MR 35-40; -Phys. 1, no. 14(1969), Babes-BolYaiSer. Math ' #1990.[6, I l, 23]
(PART TI) BIBLIOGRAPFIYOF SCHLICHT FUNCTIONS
2II
dans la gg0. Niocanu, Petru T. (Jnepropritt| de convexit, g€n'ralis€e (cluj)ll(34) th€orie de ta repr€sentationconforme. Mathematica (1969),127-133;MR 42 #7881'[6' l0' 12' 691 de ra reprlsentation conforme. 991. Mocanu, petru T. sur ra g,6on6trie 299-308;MR 48 #6391't6' l0' 351 Mathematica(Cluj)12(35)i1970), ggz. Mocanu, P. T. An ,*tir*ol problem .for univalent functions curiewith the Darboux formula. Ann. univ' Mariae associated 1970),p' 13l-135; Sklodowska,Sect.A, vols. 22,/23/21(lg6s/1969/ MR 49 #5335.[4' 16i dans la gg3. Mocanu, petru T . sur deux noiions ce convexiti g1niralis1e Russian summaries) repr€sen.totionconforme. (Romanran and 16(1971),tasc' 2' Studia univ. Babes-BolyaiSer. Math.-Mech. 13-19;MR 47 #366s'tl0l in conforgg4. Mocanu, petru T. A generatizedproperty of convexity malmappings.Rev.RoumainesMath.PuresAppl.l?(1972),13911 3 9 4M ; R 49 #5327'U2,35,491 , , th60rie , , < ^ - : ^de ) gg5. Mocanu, petru T. Sur unepropircte d'etoilementdans la R'Omaniansummaries) la representationconforme. (Russian and 17(1972)'fasc' 2' Studia univ. Babes-BolyaiSer. Math'-Mech' 5 5 - 5 8 ;M R s 0 # 5 8 6 '[ 6 ] the classof starlike 996. Mocanu, pe*,ruT. The radiusof a-convexityfor M' S' 20(Jan' 1973)' univalent functions, a reol. Notices A' Abstract(Prelim.report)701-30-34'p&A-112'U2'691 g97.Mocanu,P..f.; Moldovan,Gr.; Reade,M. o. Numericalcomputa(Romanianand Russiansumtion of the convexKoebefunction. Math.-Mech. 19(1974), maries) Studia Univ. BaLes-BolyaiSer. f a s c ' | , 3 ' 7 - 4 6 ;M R 4 9 # 3 1 C 6t' 6 ' l 0 ' 4 9 ' 6 9 ' 7 0 l of certainuniof starlikenes;s 998. Mocanu, P.; Reade,M. O. The order ' Soc' 18(1971)' 815' vqlent functions. Notices Amer. Math Abstract #7lT-B182. [69] conforg g g . M o c a n u P e t r u . ; R e a d e , M ' O ' O n g e n e r a l i z e ducexity o n in Appl. 16(1971),i 54|_ mal mappings.Rev. RoumaineMath. Pures 1544;MR 46 #7 495' 14' 5, 6 ' 10' 691 d'-convexfunctions' I' 1000. Mocanu, P.; Reade, ft'f. O . Muttivalent Notices,A.M.S.,vol.19,no.6,issuel40,october,|972 p' A-702' ll4' 691 (Abstract'72T-P;280), Notices'A' 1001. Mocanu, P.; Reade,rur o. on a-convexfunctions' M.S.,vol.19,no.2,issue136,February,|972(Abstract693_ B 1 3 ) ,P . A - 3 9 4 ' t 6 9 l rodius of a-convexity 1002. Mocanu, petru T.; Reade,Maxwell O. The ofcertainclassesofstartikeunivalentfunctions'areol'Proc' Amer.Math.Soc.5l(1975),395-400;Rev.RoumaineMath.
>|--
-
2|2BIBLIOGRAPHYoFSCHLICHTFUNCTIONS
PuresAppl.20(1975),tro'5'561-565;MR51#10604'[6'9'12' 29, 691;MR 52 #3502 E' on criteriafor the 1003.Mocanu,P.i Reade,M. o.; Zlotkiewicz, vol. 18,no. 4, of analytic functions.Notices,A.M.S., univalence p' 637'[69' 70] isueno. 130,June1971(Abstract71T-8104), E' on Bazilevitfunc1004.Mocanu,P.; Reade,P. T.; Zlotkiewicz, tions.Proc.Amer.Math.Soc.3g(1973),|73-174;MR47/2M5. [4, 5, 70] ' On Eligiusz PetruT.; Reade,MaxwellO'; Zlotkiewicz' Mocanu, 1005. thefunctionalV@)/.f,Qz\|,fortypically-reoifunctions.Rev. 3(1974),oo' 2' 209'214 Anal. Numer. Theori. eppi"ximatiorr (1975).U3, 661;MR s2 #s972 E' Bazilevid functions 1006.Mocanu,P.; Reade,vt. o.; Zlotkiewicz, vol' 19' S" M' A' p-valentfunctions'Notices' andclose-to-convex p. A-636. [5' 696-30-l), no. 5, issue139,August,tgiz (Abstract 1 4 ,7 0 , 8 0 ,3 1 1 vonM. Schiffer.Mitt' Math' 1007.Mogk, 8,. Uberein Variationslemma ii + 42 pp.; MR 40 #329'1241 Heft g2(1969), sem.Giessen p'oOti* of a certain clqssof 1008.Mogk, Eberhard.A; external Math' Sern' Giessen schiichtfunctions in an annulus.MITT' ' t48l g2(rg7r),pp. 5 r-54 MR 45 #5357 startike functicns in the unir disc' 1009.Mogra, M. L. on a classof nr. |63, August|975 Notices,A. M. S., vo|. 22, no. 5, iss,re p' A-51l ' [6' 12' 36' 631 (Abstract75T-B158), of univalent certain classes 1010.Mogra, M. L. Radii'o7,"n',exiti for Abstract 1975' Math. Soc', october functions. NoticesAmer. 75T-B190,P. A-625' 12' l2l of Junctionsunivalentin the disc r0r r. Mozgovaja,L. I. on a cra-ss
lzl
I a s i ( N . S . ) 1 0 ( l 4 X l g o + ) , n o . 3 - 4 , 3 7 _ 4 2 ; M R 3 2 # 2 0 5P^ .|4,23| probtems in lhe closses and extrentst certai'n . Aiicja 1012. Moleda, < l ' (Polish' English ShofJunctionshotoiorphic in the disclzl Mat' Przyrod' Ser' Il summary) zeszytyNauk univ . LodzNauki #3117.[6,23,24| Zeszyt52Mat. (1973),57-83;MR 49 deilefunzione univslenti 1013. Montaldo, oscar. sui comportamento summary) Boll' mell,intorno della funzioni ai Koebe. fEnglish U n . M a t . i , ' a - ! . ( 3 ) 2 i ( 1 9 6 6 ) , | 2 7 - 1 4 3 ; M R 3 4 # 3 3 3 . | 2 4 , 5with 4| univalent of functions generalization i lr. J., 1014. Moulis, E. Amer. Math. Soc' 174(1972)' bounded boundary roiation Trans. 3 4 5 - 3 6 8 ; M R 4 7 # 8 8 3 5 ' 1 4 ' 5 ' 1 1 ' 1 2 ' 2 3 ' 3 1 ' t l ' i 6 ' 7 1 theory 1 of cn an ineqr,s1ltyin the 1015. Mozgovaja, L. L; Aciicv, H.
(FA R T l l ) B IBL IOGR A P H YOF S C H LIC H T FU N C TION S
2" t3
of onatyticfunctions. (Russian,u1?"k stlmmar1l) speciol clqsses ll(1967),Do. 1, 3_8; Izv. Akad. Nauk UzSSRSer Fiz.-Mat.Nk MR 35 #4390.12,6, l2l 1 0 1 6 . M o z g o v a j a , L . l . A c e ' r t a i n g e n e r a l i z a t i o n o f t h c M a r x33_49: -Cskalov Z. 21(1959), classo1 lunctiotts. (Russian)Ukrain. Mzt, M R 3 9 # 5 7 8 4 . [ 2 ,1 1 , 2 8 , 4 3 1 of a complexvariable'S' Chanc 1017. Narayan, S. Theory of funciions Inc'), Mystic' conn' & co., Delhi (distributedby Lawrenceverry, 1966X + 379 PP ; I4R 37 #1561'1441 combinqtionsof g. Nasr, t\{. A. On the radiusof convexitycf convex l0! summary)' Glasnik certian analytic functions. (Serbo-Croatian 8?l Mat. Ser. IIi 10(30x1975),Do' 2,257-262' ll2' asoectsof linear second' l0lg. Nehari, zeev. some function-tl;eoretic Math' l8(1967)' 259order differential equations. J. D'analyse 276;fvfn g5 #4391.[26, 311 coefficienisof univalentfunc1020. Nehari, zeev. Inequariites-for the 301-330; MR 40 tions. Arch. Rational tUeL1. Anal. 34(1969), # 3 3 0 .[ 4 , 1 6 , 1 9 ,2 7 , 3 4 , 4 2 , 4 5 ,5 3 , 5 4 ] funcoJ'Bieberbach-Eilenberg r0zr. Nehari,'zss:x. on the coeificients 42 #7884. 13,4, MR tir,tns.J. AnalyseMath. izogio),297-303; 1 9 ,3 4 , 8 7 1 4 by Loewner'smethod' Pro1022.Nehari, zeev.A proof of laol s Analysis (Univ' Kent' ceedingsof the Symiosiu* ott Compiex CanterbUlY,|g73),pp.107_ll0.LondonMath.Soc.Lecture London, 1974.t54l Note Ser., No. 12, iambridge univ. Press, d'extremum ccncernsnt les 1023.Netanyahu, Elisha. Un pribrc*, c. R. Acad. Sci. ParisSer' A-B 267(1968)' fcnctions univalentes. A261-A 263 MR 38 #2296'[r9] of the imageboundaryfrom 1024.Netanyahu,E. The minimar rJistance t h e o r i g i n a n d i h e s e c o n d c o e f f i c i e n t o - f a u n i v a l e n t f u n c t3E ionin 100-112;MR 32(1969)' Anal. Mech. Rational Arch. r. lel . #3422. ll9, 291 dans le disquede 1025.Netanyahu,Elisha. sur lesfonctions univslentes donne'c' R' Acad' sci' rayon un dont I',imagecontientun disque paris s6r. A-BZlgdge\, A762-A765;MR 42 #487. U9' 241 in the unit disk whoseim1026. Netanyahu,E. On univalentfunctions Mathematique23 age containsa given ctisk.Journal D'analyse (1970),305-322;MR 43 #&20' U9' 24' 291 Hr/2 functions are conl0Z'1.Neuwirth, J.; Newman, D. J. Positive stants.Proc.Amer.Math.Soc.l8(1967),p.958.|3,62] l02S.Newman,D.J.Successivedifferencesofboundedsequences'
2I4
BIBLTOGRAPHYOF SCHLICHT FUNCTIONS
Proc. Amer. Math. Soc. 17(1906),285-286' of 1029.Nicholls, P. J.; Sons, L. R. Minimum modulus ond zeroes Math. Soc.(3)31(1975)' functionsin the unit disc.Proc. London 9 9 - 1 1 3 .[ 6 2 , 9 0 ] 1030. Nickel, paul A. A note on principatfunctions and multiply-valent MR 34 canonicalmappings.Pacific J. Math .20(1967),283'-288;
#4416. U4l
in the 1031. Nikolaeva,R. V . Certoinpropertiesof univolentfunctions
disclzI 1971,tro.7(ll0),50-53;MR45#2i56'[2,4,6'10i the P6lya1032.Nikolaeva, R. V.; R.epnina,L. G. On the quiestionof schoenberg hypothesis. (R.ussian)Mathematical Physics, No. 42 7(Russian),pp . t+l-t+l . Naukova Dumka, Kiev. 1970;MR #7882. l47l generalizationof 1033. Nikolaeuu, R. v.; Repnina, L. G. A certain theoremsddue to Livingslon. (Russian)Ukrain. Mat. 2.24(1972), 268-273;MR 45 #5336.12, lt, 12,73, 821 domains' 1034. Nishimiya, Han. conformal mapping onto gear-like Sci. Rep. Saitamauniv. Ser.A 5, 1-4(1965);MR 32 #201'123,491 1035. Noonan, James. Meromorphic functions of bounded houndar| no. 4, pp .343-352;MR 45 ,-otationMichiganIr/taih.J., 1S(1971), # 2 1 5 4 .1 9 ,2 3 , 7 l , 76 , 7 7 1 boun1036. Noonan, Ju..s w. Coefficientsof functions with bounded 43 MR .29(1971),307-312; dary rotat'ion Proc. Amer. Math. Soc # 4 9 8 .[ 6 , t 0 , 7 1 , 7 7 1 bounded 1037. Noonan, J. w. Boundary bahavior of functions with no' 3, pp' boundary rotqtion. J. Math. Anal. Appl., 38(1972), 721- 734; MR 47 #473.[4, 61, 621 with 1038. Noonan, James W. Asyrnptotic behavior of functions boundetibottndaryrotation Trans. Amer Math. Soc' !64(1972)' 3 9 7 - 4 1 0I;r ' I R4 5 # 3 6 8 8 .[ 3 , 5 , r 0 , 5 2 , 7 1 , 7 6 ' 7 7 1 Proc. Amer. 1039. Noonatr, J. w. cn functlons of bountled rotstiort. 18,23,62, 10, 7, 6, 91-101;MR 45 1t527. [3, Marh. Soc. 32(1972L 7tl of order g. Pacific J' 1040. Noonan, J. W. Ort close-to-convexfunctions . t 3, 4 , 5 , 8 , 1 0 ,2 3 , 4 5 , 1 9 , M a t h. 4 4 ( | 9 7 3 ) , 2 6 3 _ 2 8I0v;I R4 7 # 3 6 6 1 70,711 lMl. Noonatr, J. w. curvature and radius of curvaturefor functions with bounded boundary rotqtion Canadian J. Math. 25(1973), 1015-lO23;MR 48 #2365.[35, 7li deter' lc4z. Noonan, James w. coe.fficient dLfferencesand Handel
A
BIBLIOGRAPHToFSCHLICHTFUNCTIOI.IS(PaRTII)
minants of areally mean p-volent functions'
215
PRoc' Amer' Iviath'
4' 331 soc.46(1Vt+1,z'i-y; MR 5C#4927'U of meromorphic W. Qnefficient behavior of a clqss
1043. Nooiia-ll, J. -l 16' lvlach.27(1975),no' 5, ll57 165(1976)' functions. uanad. i . 9,23,25,62,711 powers of p-valent furtctions. Notices Amer' 1044.l.{oonan,J. w. p. A-121' U4' 331 lr{ath.Soc.,January1975,Abstract120-30-13, determinantsof mean-varentfunctions. i045. Noonan, J. w . Hanker 'IanuarYlg76' Abstract 731-30-I ' NoticesAmer. Math ' Soc' 23' p' A-98'
t33l tt ,'-^t )^l^-aimn*ttc nf nrpnllv D. K. Hankel determinantso! areally j. 1M6. Noonafl, W.; Thomas, Ma"h' Soc' 25(1972)'part meanp-valeritfunctions. Proc. London 621 3, 503-524;MR 46 #5605'[33' coefficientsof funcsuccessive on x. o. 1047.Noonao, J. w.; Thomas, tionsofboundedboundaryratation.J.LondonMath.soc.5 MR 47 #a,/;8'[8' 33'il'771 (1g72''t,656-662; D. K. The integral meonsof regular 1048. Noonan, J. W.; Thomas, functions.J.LondonMath.Soc.(2)9(1974ii5),557-560;MR51 #879.
[3]
^.c-.^t.,^- n{
httn fttltf-
1 M 9 . N o s e n k o , A . S . [ N o s e n k o , o . s . l T h e rC-functions' c n g e s o f v a(B-ussran) luesoftwofunc Ca'ithtodory's on definted are that tionols Ukrain.Mat.Z.25(|973),827-830,863;MR18#6392lEnglish t r a n s l : U k r a i n i a n M a t h . J . 2 5 ( 1 g 7 3 ) , 6 8 9 - 6 9 1 ( 1of 974)}.|2,291 and murtivarency certain 1050.Nunokawa,M. on the univarency analyticfunction.s.Math.Zeit.104(1968),394_4M;MR57/297|. 5 6 '6 1 ' 6 8 ' 8 5 ] 1 2 , 4 , 1 01, 4 ,2 2 , 3 1 , 4 3 , convexfunctions.Trans-Amer. 1051.Nunokawa,M. on Bazitevitand Math.Soc.143(1969),337-34|;MR40#2840.[3,5,6,7,10,18, 3 3 , 7 0 ,8 0 1 of s certainintegral'Trans' 1052.Nunokawa,M. on the univarence M R 4 0 # M 3 6 . 1 2 , 4 , 5 6, ' A m e r .M a r h .S o c .t + C ( r g e g ) , 4 3 g - M o ; 1 0 , 2 2 ,3 1 ,4 3 ,6 1 ,8 5 1 of a certainintegral' univorence 1053.Nunokawa,Mamoru-.on the Proc.JapanAcad.45(1969),841-845;MR42#|99|.|2,4,5,6, 1 0 ,8 5 1 functions.Proc' M . A noteon convexandBazirevit Nunokawa, 1054. Amer.Math'Soc'24(1970)'332-335;MR40/,M37'14'6'7'10' 1 6 ,1 8 , 7 0 1 of boundedboun1055.Nunokawa,Mamoru. on Bazilevitfunctionsno. 2, pp.215-278; 24(|972), daryrotation.J. Math. Soc.Japan, 7 1] 7 0 ' M R 4 ' ,#72 M 6 .[ 4 , 5 , 7 , 1 0 ' 1 8 '
216
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1056. Obrock, A. An inequality for certain schlicht functions- Proc. MR #6075-124,39,541 Amer. Math. soc. 17(1966),L25O-1253; 1057. Obrock, Arthur E. Grdtzsch Domains and Teichmilller Ine' qualities.Indianauniv. Math. J. 20(197l), 739-751; MR 42 #4714 105g. Obrock, Arthur E. On the use of Teichmiiller'sprinciple in conjunction with the continuity method. J. AnalyseMath .25(1272), 7 5 - 1 0 5 ;M R 4 8 # 8 7 7 5 [- 2 4 , 2 9 ] functions. I. J. Nara 1059. Ogawa,Sh6tar6. A note on close-to-cortvex #3588,15,64,741 3 1 M R G a k u g eui n i v . 8 ( 1 9 5 9 )n, o . 2 , 9 - 1 0 ; 1060. Ogawa,Sh6tar6.A note on close-to-convexfunctions.Il.J. Nara Gakugeiuniv. 8(1959),tc,. 2, ll-17; MR 31 #3589.[5' 2C] 1061. Ogawa, Sh6tar6. On some extension of radius of convexity. J. Nara GakugeiUniv. Natur. Sci. 12(1964),l-4; l'{R 34 #2856.15, 10,121 1062. O'Hara, P. J.; Rodri guez,R. S. Someproperties of self-inversive MR 50 polynomials.Ptoc. Amer. Math. Soc. 44(1974),331-335; #2460.t32l n, .a,,...,__:_.| 1063. ozaki, S'; Nunokawa, M' The Schwarzian derivative ona no' 2' pp' univalentfunctions.Proc. Amer. Math. Soc', 33(1972), 392-394;MR 4 #8821. [4' 31] 1064. Ozawa,Mitsuru . On the sixth coefficient of a univalentfunction. l-9; MR 3l #2394.142,53,541 Kodai Math. SemRep. 17(1965), 1065. Ozawa, Mitsuru. An elementaryproof of local maximalityfor a6' ,437-439;MR 38 #4670.142,53, Kodai Math. Sem.Rep. 20(1968)
541
1066. Ozawa,Mitsuru . On local maximatity for the coefficientsao snd as. Kodai Math. Sem.Rep. 20(1968),MO-4/1; MR 38 #4671.[54] 1067. Ozawa,Mitsurit. On the Bieberbachconjecturefor the sixth coefMR 39 #432. ficient. Kodai Math. Sem. Rep. 2l(1969), 97-128 142,53, 541 1058. Ozawa,Mitsuru. An eiementaryprccf of the Bieberbachconiec' ture for the sixth coefficienf. Kodai Math. Sem. Rep. 2l(1969), 129-132;MR 40 #333.142,53.541 1069. Ozawa, Mitsuru. On an elernentaryproof of tocal maximalityfor the coefficientaa. Kodai Math. Sem. Rep. 2l(1969), 459-462;MR
4t #7090.142,53,541 1070.Ozawa,Mitsuru. A Praof oJ' the Bieberbaclt coniecture fcr the fourth coefficient. Kodai Math. Sem. ReP. 24(1972),506-512; MR 47 #7020.142,53, 541 1071. Ozawa, Niitsuru. Certain coefficient inequalitiesfor univalent l-31; MR 47 #7021. functions.Kodai Math. Sen^.Rep'2i(1973),
t54l
I
(PART ID BIbLIOGRAPHY OF SCHLICHT FUNCTIONS
2I1
on the eight coefficientof l,'z. Ozawa,Mitsuru; Kubota, Yoshihisa. 32i-352;MR 42 univalent functions.J. AnalyseMath. 23(1970), # 6 2 1 4 1. 5 4 1 .,. ^ t t : ^ : ^ - ,n r Yoshihisa.On the eight cuefficientoJ 10,73.ozawa, Mitsuru; Kubota, univalentfunctions.II.KodaiMath.Sem.Rep.23(|971l),1_59; M R 4 4 # 4 2 5 .1 4 2 , 5 3 ,5 4 1 yoshihisa. Bieberbachconiecturefor r'.,4. ozawa, Mitsuru; Kubota, Rep. 24(|972),331--,s82:' the eight coefficient.Kodai Math. Sem. I\{R 47 s5246.i42, 53, 54J conieciurefor the eight coefl0?5. c)zawa,M.; Kubota,y. iieberbach 43 Sem. Rep. 25(1973),257-288;MR ficient.II. Kodai Nlath. #1298.142,5?, 541 of meromorphicfuncitoris classes 1076. Padmanabhan,K. S. On certain intheunitcircle.Math.Z.sg(|965),98-107.|2,5,9,||,20,43, 56,731 of univolenceand stcrlikeness l[.lj. padmanabhan,K. S. On the radius J- lndian Math' Soc' (N'S')29 -for certain analytic ftmctions. 4 3 '6 8 1 ( 1 9 6 5 )7, i - E 0 ; M R 3 2 # 4 2 6 2 '1 2 '6 ' 1 0 ' 1 l ' radius of univalenceand starlikeness 107g. padmanabhan,K. S. On the II. J' Indian Math' Soc' (N'S') 29 for certtin ttt,styticfunctions. (1965),201-zo3,MR34#M77'12'6'9'10',11',22'43'56'611 | 0 T g . P a d m a n a b h a n , K . S . o n t l t e r a d i u s o f c o n v e x i tcircle' y o f a c N{ath' e r t a i n Z' class in the unit of meromorphically starlike function 9 12',16]l 91(1966),308-313,MR 32 #7732'[6' ' istimatesfor a certain classof 1080. Padmanabhan,K. S. CoeJficient London Math' meromorphic starlike multivalent functions' ] MR 35 #1759'12'6' 9' 14' 23' 251 Soc., 42(1967),2(i^-207; of univalenceand starlikeness l0gl. padmanabhan,K. S. On the radius J' Indian Math' Soc' for a certsin classof meromorphicfunctions' MR 37 #6453.[6' 9' 11' lz' 431 (N.S.)30(1965),207-212(1967i; in the theory of univalent 1082. Padmanabhan,K. s. Developments Thebretical Physics and Mathematics' functions. Symposia on Vol.8(SymposiumMadras'1967)'PP'l4l-150'Plenum'New York, 1968;MR 38 #4666'[5' 441 of starrikefunctions in the 10g3. padmanabhan,K. s. on ceitain crasses unitdisk.J.IndianMath.Soc.(N.5.)32(1968),89-103,MR39 #2965.[6,9,12,23,631 of univaienceof certainclalses 10g4. padmanabhan,K. s. on the radius ofanalyticfunctions,J.LondonMath.Soc.(2)1(1969),225-23|: M R 4 0 # 3 3 1 . 1 25, , 6 , 1 0 , 1 1' 1 2 ' 7 3 l l growth for certainconvexand 10g5. padmanabhan,K. s . Estimatesof J' Indian Math' Soc' functions in the uitt disc' close-to-convex
-------
{ f
2lE
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
; R 4 1 1 9 9 1[.5 ,6 , 1 0 ,3 7 , 6 2 , 6 3 , 6 4 , 7 2 , ( N . S . ) 3 3 ( 1 9 6397)-,4 7M 741 i0g6. padmanabhan, K. S. On o certain clqss of functions whose derivativeshave a positive real part in the unit disc. Ann. Polon. M a t h . 2 3 ( 1 9 7 0 / 7 17)3, - 8 1 ;M R 4 l # 8 6 4 8 [. 2 , 4 , 7 , 1 2 , 1 8 , 2 1 '5 6 ] 10g7. padmanabhan,K. S. On the partial sums of certain analyticfunctionsin the unit disc.Ann. Polon. Math.23(1970/71),83-92;MR 4 2 # 4 8 8 . 1 2 , 56, , 1 0 , 1 1 , 1 4 , 2 0 , 2 1 ,3 6 ' 4 3 1 l0gg. padmanabhan,K. S. The rodius of univalenceand starlikenessof a certian classof analyticfunctions. Ann. Polon. Math .,26(1972), p p . 1 4 7 - 1 5 6M ; R 4 6 # 3 3 7- 1 2 , 4 , 6 , 2 3 , 4 3 , 5 6 1 pad,manabhan, K. s. on the arithmetic mean of univalentconvex l0gg. Mat. II19(29) functions. (Serbo-croatian summary). Glasnik (1974),65-68;MR 49 #9183.Ii0' 82] 1090. Padmanabhan, K. S.; Parvatham, R. Properties of a classof Ann. Polon. Math. 31 functions with boundedboundaryrotation. (1975/76n ) ,o . 3 , 3 l l - 3 2 3 - 1 4 , 6 ,1 0 , 1 1 , 1 2 , 3 1 , 7 1 , 7 7 1 1091. Palka, Janina. sharp estiamtesof lp(nv)|, org (p(w)/ w), lp'(nu)l , arg p'(w)) in a classof univatentpolynomials.Ann' Univ' Mariae Curie-Sklodowska Sect. A. , vois. 22/23/24(1968i 1969i 1970); r37-146;MR s0 #10227.1s21 palka, J. On the fourth order Grunsky functionals for bounded l0gl. univalentfunctions. Anu. Univ. Mariae Curie-sklodowskaSectA MR 48 #6398'122,3C'531 25(lg7l), 67-81(1973); 1093. Panasovic,V. A. On the construction of the mapping function and Faber polynomials for certain polygons. (Russian) First Part II, (Russian), Republ. Math. conf. of Young Researchers, pp. 552-560.Akad. Nauk Ukrain. ssR Inst. Mat., Kiev, 1965; M R 3 3 # 7 5 1 1[.4 9 , 5 3 ] 1094. pawel. Todorow . tJber den Radius des schlichtheitskreiseseiner KlassemeroutorpherFunktionen. Acad. Roy. Belg. Bull. cl. Sci' 869-876;fiR 32 h4274'[9' 43] (5)51(1965), 1095. Pederson,R. N. on unitary properties of Grunsky's matrix. Arch' ,370-377;MR 37 #2972.14,42,53, RationalMech.Anal. 29(1968)
s4l
1096. Pedersotr,R. N. ,4n extersion of Grunsky's inequality with ap' pliration to the coefficient problem. Notices, Amer. Math. Soc' (Asbtract68'f-213),vol. 15, no.2, issueno. lM, February,1968' p. 362.[53, 54] the l}g7. Pederson, R. N. ,4 proof of the Bieberbach coniecture for 33131(1968/69)' sixth coefficienf.Arch Rational Mech. Anal. 351;MR 39 #431.[4, 42, 53, 541
(PART TN BIBLIOGRAPHY OF SCHLICHT FUNC-I'IONS
2I9
local coefficieniproblem' Proc' 1098. Pederscn,R. N. ,4 note on the #4667.t42| Amer. Math. Soc. 20(1969),345-347;MR 38 of plane setsand the Schif' 1099. pederson,R. N. Weak timit directions i{cticcs Atrier. Math' Soc' 23' January J'erfuniamerital ler,i;ns. igl 6, Abstract 731-30-34,p ' A- 105' [62] Fur tircr generalizationsof the 1100. Pederson, R. N.; Schiffer, M. MR 42 J. AnalyseMath .23(1970),353-38C; Grunsky ir,equalities. #6210.f4, 34, 42, 531 proof of the Rieberbachconiecture 1l0l . Pederson,R.; Schiffer, M - A Mech' Anal' 45(1972)' for the fifth coefficient. Arch. Rationai 16l' t93; MR-47 #453' t42l with e univalentlvaccessible 1102. pehleckii, I. D. Rieminn- surfoces boundary.(Russian)PermGos.Univ.Ucen.Zap.|966,no.131, 27-32 MR 40 #5852'1621 Qp+3de la fon,ctionp-valente 1103. Pethe.K. Estimation du-coefficient summaries)Bull' Aca{' dans le circle unit6. @nglistr-andRus*ian Polon.Sci.56r.Sci.Math.Astronom.Phys.20(1972),2|9-220; MR 46 #5603.[14' 50] Bloch's theoren. Ann. univ. sci. 1104. petruska, G.A contributionto Budapest.EijtviisSect.Math.l2(l969),39_42;MR41#7080.u9] probrer;tsand coefficient regionsfor 1r05. pfartzgraff, J. A. Extremar integral.Trans. Amer' analyticfunctions represent;dby a stietties MR 33 #7526.|2,23,24,29] 270_282, Math. Soc. 115(1965), with boundeci 1106. pfaltzgraff, J. A . Ext'remalprobremsfor functions Soc' (Abstract655-87)' boundary rotation Notices,Amer. Math' p . 4 9 | . | 2 3 ,3 5 1 r , o ! .1 5 , n o . 3 , i s s u en o . 1 0 5 ,A p r i l 1 9 6 8 , with constrqints for classesof ll0l. Pfaltzgraff, J. A. variations analyticfunctions.(Abstract),NoticeS,A.M.S.,vol.16,no.l, ' ' 135'l?Al i s s u en o . t l l , J a n ' 1 9 6 9 P probremsfor functions l r0g. pfartzgraff, J. A. constrained ex.tremar A' M' S' 17(1970)'p' with positivereolparl. (Abstract)Nctices, 263. 124]l a classof close-to1109. Ptaltigruff, J. A . on the Mcrx conjecturefor l8(1 97l)' 275-278;MR 44 convexfunctions. Michigan Math. J' # 4 2 1 .[ 1 , 5 , 6 , 1 6 ,8 2 ] l l l 0 . P f a l t z g r a f f , I o h n A . U n i v a l e n c e a n d q u a s i c o n f o r m(Jan. a l e x t 1973), ensionof A. M. S. 20 holomorphic maps in Cn. Notices Amer' Math' Soc' 80 Abstract 701-32-3,pg. A-114; Bulletin (1974), 543-5M. [4' 68] integral (f' (e))^' Bull' London lll1. Pfaltzgraff, J. Univatince of the MR 52 #8410 Math. Soc. 7(1g75)'no' 3 , iSq-zs6' t85l; extremalproblems lll2. Pfaltzgraff, J. A.; Pinchuk, B. constrained
b-__
220
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
of meromorphicfunctions. Bull. Amer. Math. Soc., for closses vol. 75, no. 2, March,1969,pp.379-384;MR 39 #444.[9, 24, 58] l1l3 . Pfaltzgraff John A.; Pinchuk, Bernard.A variationalmethodfor classesof meromorphicfunctions. J. Analyse Math. 24(1971), 1 0 1 - 1 5 0M; R 4 3 # 7 6 1 3 . 1 2 , 4 , 6 , 9 ,1 0 , 1 6 , 2 3 , 2 4 , 5 8 '7 l l 1114. Pfluger, A. Theconvexityof certainsectionsof n-bodiesof coefficients of univalent functions. (Russian) Certain Problems of Mathematics and Mechanics (Russian), pp. 233-241. lzdat. "Nauka", Leningrad, 1970;MR 45 #7M0. l29l 1115. Pfluger,A. LineareExtremalproblemebei schlichterFunktionen. Ann. Acad. Sci. Fenn. Ser. AI No. 489(1971),32pp.; MR 45
#s337. l24l
I l 16. Phelps, Dean. On a coefficient problem tn univalentfurtctions. MR 40 #28M. t29l Trans.Amer. Marh. Soc. 143(1969),475-485; 1117. Pilat, Barbara. Sur une classede fonctions norm€esunivalentes dans le cercleunit€. (Polish and Russiansummaries)Ann. Univ. MR 33 Sect.A l7(1963),69-74(1965); Mariae Curie-Sklodowska #2803. l32l 1118. Pilat, Barbara. On typicatly realfurtctions with Montel's normali' zqtion (Polishand Russiansummaries)Ann. Univ. Mariae CurieSklodowskaSect.A l8(1964),53 -72(1967);MR 38 #317.U3 ,23, 661 l l19. Pinchuk, B. Extremql problems in the classof c'lose-to-convex functions. Bull. Amer. Math. Soc. 72(1966),l0l4-1017; MR 34 #332.12,5, 6, 10, 23, 56, 641 1120. Pinchuk, B. Extremal problens in the ctossof close-to-convex functions. Trans. Amer. Math. Soc 129(1967),466-478;MR 36 #370.12,5, 6, r0. 23, 24, 56, 641 ll2l. Pinchuk, B. A variationalmethodfor functions of bounciedboun107-113;MR dary rotation Trans. Amer. Math. Soc. 138(1969), 38 #6C42.124,7ll 1122. Pirrchuk, B. On starlike and convexfimct;ons or arder cu.Duke ; R 3 7 # 6 4 5 4 .[ 1 , 6 , 1 0 , 2 4 , 3 6 , 6 3 , M a t h . J . 3 5 ( 1 9 6 8 )7, 2 1 - 7 3 4M 64, J8l ll13. Fi,^chuk, B . Faber polynomials for starlikefunctions. Journal of M a t h . a n d M e c h a n i c1s 9 ( 1 9 7 0 ) , 9 E 1 - 9 9M0R; 4 l # 5 C 1 3[.6 , 2 3 , 2 4 , 53j 1124.Pinchuk, Bernard. Functions of bounded boundary rotation. ; R 4 6 1 1 3 3 8 - 1 2 , 4 , 5 ,l60,' I l , 1 2 , I s r a e Jl . M a t h . l 0 ( l 9 7 L ) , 6 - 1 6M 1 6 , 1 9 ,2 3 ,6 2 . 7 1 , 7 3 , 8 5 1 llZS. Pinchuk, B. The Harriy clssso-f.i'unctionsof boundeciboundary
{
(PART iI) BTBLIOGRAPHYOF SCHI.ICHT FUNCTIONS
221
355-360;MR 47 rotation Proc. Amer. Math. Soc. 38(l973), # 2 0 7 01. 3 ,4 , 2 3 ,7 l , 76 , 7 7 1 functions.IsraelJ. Math. 1126.pinchuk,B . Integrarmeaniof anarytic ' ' 3' 191 1 7 ( 1 9 7 41)0, 5 - 1 0 7M; R 4 9 # 1 0 8 6 8[ 1 Proc' Amer' Math' soc' curves' 1127.Piranian,G . Theshapeof tevel MR 33 #7498't35l l7(1966) , r276-1279; with Large circula:"vsriation' lrzg. piranian, G . BoundedFunctions Proc.A.M.S.19(1968),|255_|257;MR#6464.|7,22| ExtremalknPirl, i,ido.-1ber'die grorrtrische Gestqtteines 1,129. derkonferrtenAbbitrturg.Math' Nachr' tinuumsausder Theot.le MR 40 #7432 39(1969) , 297-312; . , . The ranse of the functionat KIF(6)'F(6)' 1130.piaskota,Wieslaw andschlicht F,(6), F,(O)lin thefamily of'functtonsmeromorphic in the circle lz l 63-88; Univ.L6d2k Naukirurat.Przyrod.Ser'llzeszyt2g(1968)' MR 40 #334.19,24, 291 de lafonctionnellel( [F(r)' r r 3r . praskcta,\\r . Le domainede variation et nteromorpircs Ftil, F'(r), F'(r)l dansIafamiiledesJonctions danste cercte\ z\ univslentes ls5-215;MR 39 #7083'19'241 praskora, w . on thecoefficteitsof somefamiliesoJregurarfurtcfi32. sci' Russian,,,*rnury)Bull. Acad'Polon'Sci'ser' tions.(Loose ' [6' 36] MR 4l #457 Marh.Astronom.Phys.17(1lo,s1,715-718; dansunefamilledefonc,33. plaskota,w . Limitation descoefficients dansrc cArciilzl tionsholomorphes MR 42 #6215'[6' 36] 65'-70; (rg70/71), extrbmouxdansles probldrnes 1134.Plaskota,Wieslaw. Surqu-elques familtesdesfonctionsg6n-6r€espcrlesfonctionsdeCarathbodory. 4 6 / 3 M . [ 6 ,1 1 , 3 6 ] A n n .p o l o n .M a t h .z s i r9 7 t / 7 2 ) ,1 3 9 - 1 4 4M; R an( curvaturebounds n35. pletne";C;;";it, i. c Radiiof convexit1 of functionsregularon the classes for the level curvesof certain Physics,No. 6(i969)(Russian)' tvtathematical unit disc.(Russian) |2, NaukovaDumka,Kiev,|969;MR 4l #7083.|2, pp. l 57_|68. 351 of analytic probtemsin classes 1136.pretneva,T. G. Certainextremal functions in the disc lz I 1< IrI A 1972'137-l4l' 188; ucpovioi Akad. Nauk ukrain. RsR Ser MR 46 #3766. t48l (ukrainian.Rysn37. pohilevid,V . A. on a theoremof M. Biernscki. ukrain' RsR DopovidiAkad' Nauk sianandEnglishsummaries)
222
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1965, 423-425;MR 32 #5863.[4' 16] pohilevid, v. A. on a theorem o-fM. Biernacki in the theory of 113g. univalentfunctiorzs.(Russian)ukrain. Mat. z. 17(1965),no. 4, 6 3 - 7 1 ;M R 3 3 # 5 8 6 9 . 1 2 3 , 2 4 1 1139. pohilevid, v. A. Extremal properties of certain classes of univslentfunctions. (Russian)ukrain. Mat. z. 19 (1967),no' 2, 49-59;MR 35 #4392.12,5, 10, 12, 681 of schlichtfunctions. pohilevid, V. A. On somenew specialclasses 1140. Dopovidi Akad. summaries) flJkrainian. Russian and English Nauk Ukrain. RSR Ser. A 1968, 620-623;MR 38 #6044' [2' 6l 1141. pohilevid,v. A. [pohilevid,v. o.l Meronnorphicclose-to-convex z.2l(1969)' 50-59; functions in the disc.(Russian).Ukrain. Mat. M R 4 0 # 3 3 7. 1 2 , 9 , 1 2 . 2 5 1 1142.Pohilevid,v. A. [Potrilevid,v. o.l The equivolenceof two clssses of univalentfunctions. (Russian)Teor. Funkcii Funkcional.Anal. i Prilozen.Vyp. 8(1969),57-62;MR 41 #7088'[5] of 1143.Pohilevid,V . O. Boundsof thc convexityand of the curvature oJ classes certain in the vel of the curvature of the level curves symmetr-icanalyticfunctions. (Ukrainian. English and Russian summaries).Dopovidi Akad. Nauk Ukrain. RSR Ser' A 197r' 122-427, 478;MR 45 #554.[351 t144. pohilevid,v . o. Meromorphic almosl convexfunctionsin a disc. (ltkrainian. English anci Russiarrsummaries).Dopovidi Akad. Nuak Ukrain. RsR Ser.A lg7l, 518-522,574;MR 45 #8845.12, 1 2 ,3 5 1 (w)1, 1145. palka, Janina.Sharpestimatesof lp(w)I, org (p(w)/w), lp' Mariae arg p'(w) in s classof univalentpotynomials.Ann' Univ' 1969/1970)'p' Sect.A, vols. 22/23/24(1968/ Curie-Sklodowska,
r37. I32l
of 1146. polomosnova, R. S. Variational problems for certain classes dornains. ccnnected functions, schlicntand rion-schlichtin doubly (Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 175(1964). Vyp. 2,59-72; MR 34 #6063.124,601 of 1147. polomosnova, R. S. Extremal properties of startike mappings en Qnnttlus.(Russian).Trudy Tomsk. Gos. Univ' Ser' Meh'-Mat' 966),i68-175;MR 37 #2973'[6' 48] 189(1 il4S.Polcmosnova'R.S.BoundaryfunctionsforclassesoJ.typicalty realfunctions and functions with positive reol part in an onnulus' (Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200(1968)' 173-180;MR 4l #45.1.12, 13,29, 481 pommerenke, Ch. ]ber nahe;u konvexeanalytischeFunkticnen. ll4g.
BTBLTOGRAPHYOF SCHLICT{TFI INCTIONS (PART ID
223
MR 32#7733'i5,7 , 18,74, 344-347; Arch. Math.(Basel)16(1965), 75I 150. Pommerenke,V. C. Uber die subordination analytischer FunkI i59-173;ivIR3! #4900ilonen J. RcineAngew.lvlath.218(1965).
u, 6l
Con1151. Pommerenke,C. Konforme Abbildung und Fekete-PunkleI formal mapping and extremal poin'"si.Math. Z. 89(1965),422438; MR 34 #605'5.[9, 53] 1152.pommerenke, ch. on the Loewner differentiai equ-trtion. ^35-443;MR 34 #6064.li,24l MichiganMath. J. 13(1966), 1153. pommerenke, Ch. On the coefficientsand Hankel determinants of univalentfunctions. J. London Ma-,h.Soc.4t(1966), lll-122; MR 32 #2575.[6, 8, 15,,23,27' 331 1154. pommerenke, Ch. On the coefficientsof univalentfunctions. J. London Math. Soc., 42(1967),471-474;MR 36 #5329.t54l 1155. pommerenke,C. Retationsbetweenthe coefficientsof a univalent #3972.[8, 9, 22,30, function Invent.Math. 3(l967),1-l5; MR 36 3 3 , 3 9, 4 5 , 5 4 ,5 8 . 6 8 1 pommerenke, C. On the Hankel determinontsof univalent-func1156. 108-ll2; MR 35 #6811.[54] tions.Mathematika14(1967), der Fekete-Punkte.Math. pom,nerenke, Verteilung, Ch. Uber die 1157. 111-127;IvIR 34 #6057' Ann. 168(1967), 1158. Pommerenke,Ch. On the logarithmic capacity and conformal mapping.Duke Math. J.35(1968),321-325;MR 37 #4246.[9' 58] 1159. pommeienke, ch. on the growth of univalentfunctions. Mich. Math. J. l5(1968),485-494;MR 38 #4668't68l l lF0. pommerenke, Ch. On the Grunsky inequalitiesfor univalentfunctions. Arch. Rational Mech. Anal. 35(1969),234-244; MR 40
#284s.t531
1161. Pommerenke,Ch. On a varlational ntethod.for univalentfunctions.MichiganMath. J. l7(1970),l-'3; MR 4l #452-l24l 1162. Pommerenke, ch. Normal functions . Proc. hlRL conf . on ClassicalFunction Theory (Math. Res. Center,Naval Res' Lab', Washington,D. C., 1970),pp.77-93. Math. Res.Center,Naval Res.La!., Washington,D. C., 1970;MR 48 #4322.U9,441 1163. Pommerenke,Ch. Esliamtesfor normal meromorphicfunctions' Ann. Acad. Sci. Fenn. Ser. A I No. 476(1970),10 pp'; MR 44 #2928.122,43, 46, 61, 681 (2) 1164. Pommerenke,ch. on Btoch Functio,ns.J. London Math. soc. 2(lg7}),689-695;MR 44 #1799'[16, l9' 621 1165. Pommerenke,ch. on the growth of the coefficientsof analytic
224
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
functions. J. London Math. Soc. (2)5(1972),624-628;MR 47 #2050.122,6ll 1166. pommerenke,Ch. Problems in complexfunction theory. Bull. London Math. Soc. 4(1972),351-366.tl6l ll6j. pommerenke, Ch. On the boundary behaviorof normalfunctions. proceedingsof the Symposiumon ComplexAnalysis(Univ. Kent, CanterbufY, 1973), pp. 1l3- I 14. London Math. Soc. Lecture Note Ser.,No. I 2, Cambridgeuniv. Press,London, 1974.IM, 621 1168. Pommerenke,C. Univqlentfunctions with a chapteron quadratic difJerentialsby Gerd Jensen Studia lvlathematicalNlathematische Lehrbucher,Band XXV. Vandenhoeck& Ruprecht, Gottingen, 1975,376pp. [44] 1169. Ponomar'ov, S. P. On the monogeneityof symmetricollydif' ferentiable functions. (Ukrainian) Teoret. Prikl. Mat. Vip. 2(1963),1l-14; MR 33 #4250. 1170. Poole, J. T. Coefficient extremalproblemsfor schlichtfunctions. Trans.Amer. Marh. Soc.l2l (1966),455-474;MR 32 #993' [6, 9, 2 4 , 2 5 ,3 6 , 5 4 1 llTL Poole, J. T. On siarlikefunctions. Proc. Amer. Math. Soc. 19 (1968),495-500;MR 36 #6602.[6, 9, 16,25, 36] lI7Z. Poole, J. T. A note on the coefficients of uitivalent functions. 9l-93; MR 36 #3973't52l Ann. Polon. Math. 20(1968), 1173. Popov, V. I . On the method of parametric representations.(Rus'trudy Vyp. Tomsk. Gos. Univ. Ser. Meh.-Mat. 175(1964), sian) 7 9 1 2 , 7 3 - 7 7 ; M R 3 l # 3 2 6 .1 2 2 , 2 4 , 2 9 , 1174. Popov, V. I . The range of a systemof functionsls on the c/assS. (Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 182(1965), vyp. 3, 106-132;MR 33 #7521.1291 il71. Popov, V. l. A certain variational formula for univalent functions. (Russian)Trudy Tornsk. Gos. Univ. Ser. Mch.-Mat. 200 ( 1 9 6 8 )1, 8 1 - 1 8 3M ; R 4l #451.1241 1176.pcpcv, V. I. Z. S. Ponrjagin's mcximum principle in the theory of univalentfunctions. (Russian)Dokl. Akad. Nauk SSSR 188 (1969),532.-534;MR 40 #7435. 1177. Prohorov, D. V. A certain gecmetricproperty of functions that arestarlikeof order a. (Russian)Mat. Zametki i0(1971),287-293; MR 45 #52g Brrgiish trarisl. ivla'rh.Nctes i0(1971), 597-000].[6'
4el 1178. prohorov, D. V. A generalizationof o classof close-to-convex -516- lMath. Notes i i functicns. Mat. Zametki ll(1972), 5C9 ( 1 9 7 2 ) , 3 1 l - 3 1 5M 1 ;R 4 6 # 9 3 2 5[-5, 7 0 , 7 4 1
/
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTID
225
(Russian) Bazitevii'sclass. ll7g. prohorov,D. v . Thefunctionsaf I. E. (LOMI) zap.Naucn.sem. Leningrad.otdel. Mat. Inst' Steklov' 187;MR 5l #10605't70l 127-130, 44(1974), of certainclasses I i30. ProhoroV,D. V . Thegeometriccharacterization Len-
Vestnik of univalcntfunctions. (Russian.English suIIlIIl4l'y) 51-'55' ingrad.Univ. No. 13 lv-{at'Meh' Astronom' Vyp' 3(1974)' t 5 6 ; M R 5 0 # 7 5 0 0 .[ 5 ' 7 ] of functions l lgl. prohorov, D. V. The [eometric characcterizqtion ' zaved ucebn vyss' (Russian)Izv. from Bazilevic subcla*t. MarematikaI 975, no' 2(153),i 30-1?2' UDi questionson the mapping of 1182. Qiu Hua-ji lch'iu Hua+hi] . some ShuxueJinzhan surfacesiy iornded analyticfunctions. (Chinese) 8(1965),243-250;MR 38 #2293' i39l NoticesAmer' Math' 1183. Quine, John R. on univalentpolynomials. Soc. 2O(1g13)'Abstract 709-838' p' A-666' I32l relating to close-to1184. Quine, J. R. some topologicat theorems 23, January 1976' convexfunctions. Notiies Amer' Math. Soc' Abstract731-30-35,P' A-105' [5] ' II ' Proc' 1I 85. Rahman, a. I. On s property of rational 1^unctions #10214'l32l Amer. Mtah. Soc. 40(lg7r, 143-t45; MR 50 on schwqrz'slemma' 1186. Rahman,Q. I.; Mohammad,Q. G. Remarks Pacific J. Math . 23(196'7),139-\42; 132' 371 inequalitiesand local 1187. Rahman, Q. I.; stankiewicz,J. Differential 5l #10593'12' valency.PacificJ. Math. 54(1974),165-181;MR 1 1 , 1 2 , 1 4 ,2 1 ,2 2 , 3 0 , 3 2 , 8 9 1 of rational functions' 1188. Rahman, Q. I.; Turin, P. on o property 16(1973),37-45 Ann. Univ. Sci. Budapest.EijtvcisSect. Math.
097a);MR s0 #r02r3'
analyticfunctions' l lg9. Ratti, J. S. The radius of univalenceof certain # 4 5 6 9 . | 2 , 6 , 1 0 ,l l , 4 3 ] M a t h. Z . | 0 7 ( 1 9 6 8 )2, 4 | - 2 4 8 ;M R 3 8 anilytic functions' 1190. Ratti, J. S. The radius of convexity of certain MR 4l #|992. [6, 30-36; 1, no. Ind. J. Pure Appt. Mattr'.1(1970), 10,l2l L.; Tepper, D. E. Starcenterpoints of starlikefuncRaymon, 1191. 505-5l0' [6] tions. J . Austral. Math. soc. l9(l 975), part 4, ||g2.Read,G.A.IJnivalentderivativesofentirefunctions.J.London Math.Soc.(2)1(1969),189-192;MR40#2860.[90] convexfunctions' I' 1193. Reacie,Maxwetl o. Generalizationsof atpha Abstract 74T-8138' NoticesAmer. Math' Soc' 2l ' August lg74' p. A-486 t6el I. rrg4. Reade, Maxwell o. Generslizations of Bazitevit functions.
>'---_
226
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
NoticesAmer. Math. Soc.21, June 1974,Abstract 74T-Bl I 1, p. A-438. t70l 1195. Reade, M. O. On functions of bounded boundary rotatton. Preliminary report. Notices Amer. Math. Soc., January 1975 , Abstract720-30-7, P. A-119. [71] 1196. Reade,M. O.; Mocanu, P. The radius of a-convexityof starlike functions. Notices,A. M. S., vol. 19, no. l, isssueno. 135, January 1972(Abstract691-30-l), p. A-110 [6, 12, 691 llg7. Reade,M. O.; Mocanu,P. T.; Zlotkiewicz,E. On thefuncitonal v@)/f,(b)l in sn. NoticesAmer. Math. soc. 21, January 1974, Abstract 7ll-30-25, p. A- 125. 129,39I 1198. Reade,M. O.; Ogawa, S.; Sakaguchi,K. The radius of convexity for a certain clossof analyticfunctions. J. Nara GakugeiUniv. l3 ( 1 9 6 5 ) l, - 3 ; M R 3 4 # 1 5 0 9 .1 2 ,l i , 1 2 , 4 3 ' 5 6 1 I 199. Reade,M. O.; Umezaw&,T. Somecriteriafor the multivalenceof certain analyticfunctions. Colloq. Math. 16(1967),23-26; MR 35 # 4 3 9 7 .1 4 , 5 , 1 4 , 8 5 1 1200. Reade,M. O.; Umezawa,T. An inequalityfor univalentfunctions due to Dvorak. (Czech summary) CasopisPest. 96(1971),2652 6 7, 3 0 1 ; M R .4 5 # 5 3 2 a .l L 6 , 4 2 , 4 5 , 6 8 J l21l. Reade,M. C.; Zlotkiewicz,E. I. Thz Koebe constantfor a class Norices,A. M. S.' vol .17, no. 7, issueno. of boundedJunctions. , 9 7 0( A b s t r a c6t 8 0 - 8 l ) , p . 1 M 5 . U 9 , 2 2 , 2 4 1 1 2 5 ,N o v e m b e r 1 1202. Reade, M. O.; Tlotkiewicz, J. On the equation .f (z) - p"f(o) in certain clossesof analytic functions. Ann. Univ. Mariae Curiep. 151sklodowska seci. A, vols. 22/23/24(1968/1969/1970), 281-286; (cluj) 13(36)6(1971), t53; MR 49 #5333;Mathematica
MR 48 #rr474.l29l
l2()?. R.eade,Maxwell O.; Zotkiewicz, Eligiusz, J. On urrivalenifunctions with two preassignedvclues. Proc. Amer. Math. Soc. 30 (1971),539-5M; MR 44 #422.[6, 19,22, 4li lzg4. Reacie,M. O.; Zlotkiewicz. E. J. Cn a tkeorem of Kaczmerski concerningthe equationf(z) - p-f(a). Notices,A. M. S., vol. 18, no. 1, issueno.127, January1971(Abstract682-30-2,Preliminary r e p o r t ) p, . 1 4 4 . [ 6 , 1 0 , l 3 ] 1205 Reade,M. O.; Tlotkiewicz, E. J. Koebe setsfor univalent func' tions with two preassignedvalues. Bull. A. M. S. 77(1971), 103-105;MR 42 #3267.16. 19, 22,24, 4ll 1206. Reade, M. O.; Zotkiewicz, E. On values omitted by univalent 24 functioris with two preassigned values. Compositio Math. MR 47 tf8831.[19,241 t1972),355-358;
d
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
(FART II)
227
realfunctionsof order cY'Notices'A' 1207.Redding,F-.w. Typi.cotty 696-30-3)' M. S.,vol. 19,no. 5, rssue139,August,lg7z(Abstract P. A-636.tl 3, 23, 51, 661 of c certainfuncof varucs 120g.Red,kov.M . t. concerniiigthedoinain Trudy Tomsk' Gos' Univ' 153 tional in the classs. (Russian) (1963),M-47. t29l o-f bourtdedunivarentfuncr20g.Red,koV,M. I. on the coefficients 1965'tto' I Izv. vyss.u..un. zavcd'Matenratika tions.(Russian) Transl'(2)vol' 88 (44),ll4-r22: MR y nzg. [Amer.Math' Soc' (1970)l . 122,24,2)\ in the classst(9). (Russian) 1210.Red,kov,M. r. Extremarproblems li6-183; 189(1966)' Trudy Tomsk.Gos. unrv. ser. Meh'-Mat' MR 37 #t582.122,291 valuesof s certainsystemof funcl,lL Red'kov,M. I. The r'qngeof Tomsk' funcitons. (Russian)Trudy tionalsfor boundedsch-lichi Gos.Univ.Ser.Meh.-},{at.210(1969).83-96;MR43#5018'122'
zel
the transfinitedismeterof a l2l|. Reich, E.; Schiffer, M. Estimatesfor MR 30 #4921'll9' 241 continuurz.Math .'L.85(tg64),91-106; of some theoremsof Robin1213.P-enFu-yao [Jen Fu-yao]. Extensions 8(1966)'780-787 (196',7); son cnd Golttzin ctinese Math'-Acta MR 37 #398.[49, 68J properties of mappings witlt 1214.Reshetnyak, Yu. G. Extremal b o u n d e d d i s t o r t i o l n . S i b e r i a n M a t h . J . l 0 ( 1 9 mapoings 6 9 ) , p . 1 3 0with 0[71] structure of yu. rocar The G. t2r5. Reshetnyak, J. l0(1969),p. 1311.[7u boundeddistortioln.SiberianMath. by univalentfunctions' (Rus1216.Rev;akov,M .I. on valuesomitted sian).TrudyMat.Inst.Steklov.g4(1968),|2?-129;MR37/2974. I T r a n s l a t e d i r o m t h e R u s s i a n : E x t r e m a1959)]' lproblemsofthe tl9l (A. M. s', GeometricTheory of Functions univalent func' theoremsfor 1217.Revjakov, M. I. certain covering tions.(Russian).|zv.Vyss.Ucebn.Zaved.Matematikal968,no. 7(74), 85-92;MR 37 #6455' tl9l vqlue theoremfor the complex l2lg. Robertson, J. M. A local meqn MR (2)16(1968/69),329_331; plane.PRoc.EdinburghMath. Soc. 4 r # 3 7 1 5 .[ 6 8 ] Bieberbacit conjecture for r2rg. Robertson, M. s. The Generorized SubordinateFunctions.MichiganMath.J.l2(i965),42t_429; MR 32 #2576.[1, 5, 6, 10' 16' 42]l of the Bieberbachcoefficient rzz0. Robertson, M. s. A g'enerstizatiin Math' J' 13(1966)' problem for univaleit functions' Mitnigun
b--=
22E
BIBLIOGRAPHY OF SCHLTCHTFUNCTIONS
1 8 5 - 1 9 2M ; R 3 3 # 2 6 9 '[ 5 , 8 , 1 6 , 3 8 ' 4 l ' 4 2 ' 7 9 1 wh;ch c'Q) is lzzL Roberrson, M. s. uniiatlent functions f(z) for spiratlike.Mich.Math.J.l6(1969),97-101;MR39115785'12'4' 6 , 1 0 , 1 6 ,3 1 , 5 6 ] monotonic coeffi1222.Robertson, M. s. Power serieswith muttipty #2966'[4' 5 '201 cients.MichiganMath. J. 16(1969),27-31;MR 39 with bounded boun1223. Robertson, M. S. coefficients of functions MR 41 #458' dary rototion Canad.J. uottt .21(1969),1477-1482 [ 4 , 1 2 , 4 1 ,7 l , 7 6 , 7 7, 7 9 1 Nfathematical 1224.Robertson, M. s. Quasi-subordinatefunctions' pp. 311-330'ohio univ' EssaysDedicatedto A. J. Macintyre. 13,16] P r e s sA , t h e n s ,o h i o , 1 9 7 0 ;M R 4 2 # 7 8 8 5 .[ 1 , 3 , 6 , cla'ssesoJ several 1225. Robertson, M. S. Vsriational formulae for 311-319;MR 43 #7614' analyticfunctions.Math. Z. 118(1970), [ 4 , 5 , 6 , 1 0 ,2 4 ,7 l l Coeff;cient Coniec1226. Robertson,M. S. euasi-Subordinqtionand , 9 ; N { R4 0 # 4 4 4 1[.1 , 3 , 6 , 1 0 ,1 4 , t u r e s . B u l l .A, . M . S . 7 6 ( 1 9 7 0 )l _ 16, 42, 541 Duke Math' J' 1227.Robertson,M. s. Tle.yum of univalentfunctions, 8 2 ,8 5 ] ; R 4 | # 8 6 4 9 t. 1 0 , 1 1 , 1 3 , 4 3 , 7 3 , 3 8 ( l 9 7 0 ) , 4 | | _ 4 | 9M analytic functions' 1228. Robertson, M. S. A distortion theorem for Proc.Amer.Math.soc.2s(l97l),551-556;MR43#7615'12,4'16l nearly circular domsins lzzg. Rosenbloom,p. C . Conformal mapping of III (Proc' Third and Loewner'sciifferentialequation. Inequalities, |969), pp. Sympos., Univ. California, Los Angeles, Calif., 49 #548' 1"22'6ll 301-31C.AcademicPress,New York, 1972;MR Grunsky coeffi' 1230. Ross, George G. On the computation of some ' comp ' 25 Math cients relevant to the Bieberbsch coniecture. (1971),733-741;addendum,ioid'25(1971)'no'116'Loose Microfichesuppl.A14-85; MR 46 #9329.|42, 531 iiitegral.lviichigan lzSL Royster,w . C. On the univalenceof a certain Math.i.12(1965),385-38'r;MR32'p'232i4'5'651 on univalentfunc1232.Royster,W. C. Proceedingsof the Symposium tlniv' cf tions and relate,Jtopics, Department of mafhematics' Kentucky' MaY l8-21 , 1967'l44l Indian J' 1233.Royster,w . c. on the derivativeof boundedfunctions' Math.11(1969),141-i43;MR4"ft2020'172'5ll Nlaihematical 1234.Royster, w. c. convex meromorpliic functions. pp. 331-339'Ohio univ' EssaysDedicatedto A. J. Macintyre, 1 0 ,2 3 , 2 5 | , h i o , | 9 7 0 ;M R 4 2 # 7 8 8 .3| 2 , 6 , 7 , 9 , P r e s sA , thensC dircction' one in convex 1235. Rcyster, w. c. (Jtiivole,ii functions
A
FUNCTIONS BTBLIOGRAPHYOF SCFILICHT
(PART II)
229
Notices,A.I{'S',vol'19'no'fissueno'135'January'1972 12' 41' 78] (Abstract691-30-31)'p' A-1i9' [7' T. J. Typically real polynomials' 1236.Royster, w. c.; suffridge, Notices,A.M.S.,vol.le''o.6,issueno.l16,october1969'p. 32' 5 1] 968 (Abstract69T'-8173)'[13' Ann' T. J. Typiiauy rearporynomials' 1237.Royster,w. c.; Suffridg€, Sect. A, vols' 22/23/24(1968/ univ. lvlariac curie-skiodo*sta, 1969/19?0),p.161.Pubi.Math'DebrecenlT(1970)',307-312
( r g 7 1 ) ; M R i s n o r t s ; M R 4 9 # 5 3 5 7 ' i()Qttss-Lucqs 1 3 ' 3 2 ' , 5 1 theorcm' 1
of the r23g.Ruber, L. A. some appricationsj-fg; M^ 34 #*,7'1321 Math fiit2(1g66),f Enseignemenr 26 o-problemof ltyeff' Pacific J' Mth' 1239.Rubinstein,zalman.-on ( 1 9 6 8 )1, 5 9 - 1 6 1M; R 3 8 # 6 0 3 4 ' t 3 2 1 meon anaryticfunctions satsifyingthe 1240.Rubinstein,zarman.on W. G. Dotson'Math'Mag' 42 valuetheoremand a riiirrruie of (1969),256-259;MR 4r #435' of a crassof meromormurtivsrence r24r. Rubinstein,zarman.on the No. 3, pp' 7'.71-784; phic Trnrtions.pacificJ Math., 38(1971), 431 MR 46 #3773.[6, 9, 14, 16' 32' Browne' On the multivqlence Dorothy lZ4Z. Rubinstein,Z.; Shaffei, of a classof meromorpl'icJunctions' snd order of starlik:ene'ss MR io ttozzS't6, 9' 11',rz',16', Israeii. Math t7(tgl4),302-314; 22, 32, 431 functionsomittingone on holomorphic 1243.Rung,D. c . Inequatities vol. 13,no. Amer.Math.Soc.(Abstra.t6l-]66), value.Notices, p ' 1 0 8 ' t l 9 '6 8 '9 0 1 1 , i s s u en o ' 8 7 ,J a n u a r y1' 9 6 6 ' thepartialsumscf s. on the"iariiusof univarinceof rz*. Ruscheweyh, MR Soc'4(1972)'367'-369; convexfunctions.Bull.LondonMath' 47 #5244.[10,20,431 Funktionen' . 1be, die Fattu.2g::hl:chter steprran t245.Ruscheweyh, 47] l0' ' [5' 6' MR 47 #7017 Mat. Z. 128(lg72)'8'5-92; der Basilevitstephan. Eine Invarianzeigenschaft 1246.Ruscheweyh, #11476'[5',6', 48 MR g73),215-21-9; Funktionen.Marh. i. t34(1
Extrematprobteme--fi)r . Nichttinesre rz4j it;r:llJ,?1,n, Stephan 19-23;MR 5l Z. 142(1975), holomorpheStiettjii,ntrgrole.Math. # 1 0 6 0 6U. 3 , 5 1 ,8 2 1 Proc' . Newcriteriafor univareltfunctions. Stephan r24g.Ruschewehy, g i 5 ) , 1 0 9 - l t i ;M R 5 l # 3 4 1 8t.4 , 6 , 1 0 ,1 6 ' A m e r .M a t h .S o c .+ q t r 3 6 ,3 8 , 6 3 , 6 4 , 6 8 1 productswith apstephan- Duaiityfor l{adamard 1249.Ruscheweyh,
230
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
plications to extremal problems for functions regular in the unit disc.Trans. Amer. Math. Soc. 210(1975),63-74. 12,5, 6, 12, 20, 2 2 , 4 2 , 4 3 ,4 7 , 5 6 , 7 4 , 8 8 1 ;M R 5 2 # 3 5 0 8 1250. Ruscheweyh,S.; Sheil-Small,T. Hadamard products of schlicht functions and the Polya-Schoenbergconjecture.Comment. Math. H e l v .4 8 ( 1 9 7 3 )1,1 9 - 1 3 5M; R 4 8 # 6 3 9 3 [. 1, 2 , 4 , 5 , 6 , 1 0 ,2 0 , 2 9 , 47,53,641 1251. Ruscheweyh,S.; Wirths, K.-J. Uber die Faltung schlichterFunkll-23; MR 47 #8836.[],12,22, tionen.II. Math. Z. 131(1973), 30,471 1252. Ruscheweyh,St.; Wirths, K.-J. Uber die Koeffizienten spezieller MR schlichterPolynome. Ann Polon. Math. 28(1973),341-355;
48#rr47s. l32l 1253. Ryan, F. B . On the Poisson-Stieltjesrepresentationfor functions with bounded real part. Michigan Math. J. 17(1970),301-310; M R 4 3 # 2 2 2 t .[ 2 , 2 2 , 6 2 1 1254. Ryff, J. V. SubordinateHp Functions. Duke Math. J. 33(1966), 3 4 7 - 3 5 4M ; R 3 3 # 2 8 9 .[ , 3 , 1 6 , 1 8 , 3 7 , 4 9 1 1255. Sakaguchi,Koichi. On certain multivalent functions. J. Nara G a k u g eU i n i v . 8 ( 1 9 5 9 )n, o . 2 , 1 9 - 2 3 ;M R 3 l # 3 5 9 0 . U 4 , 4 9 , 6 5 1 1256. Sakaguchi,K. ,4 variationsl method for Ju,tctions with positive MR 3l #1375. realpart. J. Math. Soc.Japan l6(1964),287-297; [2, 21, 23, 241 1257. Sakaguchi, Koichi. The radius of convexity for a certain class of regular functions. J. Nara Gakugei Univ. Natur. Sci. 12(1964),
5-8;MR34#rsrc.Uzl
1258. Sakaguchi, Koichi. On extremal probiems in the classesof functions with positive real part and typicaly real ones. l, II. Bull. Nara. Univ. Ed. Natur. Sci. l7(1969),no. 2, l-12; ibid. 18(1969), n o . 2 , l - 6 ; M R 4 4 # 5 4 7 1 . 1 21, 3 , 7 2 1 1259. Sakaguchi,Kcicli. A property of convexftrrtctions cnci an upplication to criteriafor univalencc.Bull, Nara Univ. Ed. Natur. S c i .2 2 ( 1 9 7 3 )n, o . 2 , 1 - 5 ; M R 5 0 # 1 3 4 8 6[.4 , 5 , 1 0 , 2 9 7 1260. Sakaguchi,K.; Watanabe, S. On close-to-convex functions. J. Nara GakugeiUntv. Natur. Sci. l4(1966),7-12; MR 34 #6065.14, 5, 12, 741 1261. Sakai, M. On bqsic domsins of extremal1'unctions.Kodai Math. Sem. Re. 24(1972),251-258;MR 47 #8838.t9l 1262. Sand"rs,R. W . The starlike radiusfor classesof regular bounded U l, 19,22, functions. Proc. Amer. Math. Soc. 54(1976),217-220. 61j j
I
i
(PaRT Il) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
231
Lectures on the theory o'f 1263.Sansone,Giovanni; Gerretsen,Johan' vuricblc. II: Geoirretrictheory. Wolters. functions of a complex x + 700 pp'; MR 41 Noordhoff Publishing,Groningen,1969.
#3714.l44l qf univsletrceradit:s' J' College 1264.Sato,Tsuneo.Somevariaiions MR 36 #6603'122' Arts Sci.ChibaUniv' 4(1965),no. 3,241-243;
43,821
v,hose it J'irstcoelficients are 1265.Schiffer, M. (Jnivarentfunctions MR 35 #5603'139'421 reol..i-.D'analyseMath.i8tf 967),329-349; probrentfor unlvorenrfunctions' r?,65.Schiffer, M. on the coeffriient 95-101;MR 37 #1249'124]l Amer. Math. Soc.rrans. 134(1968), in the theory of conformal 1267.Schiffer, M . Somedistortion theorems mapping.AccademiaNazionaleDeiLincei.Rendicontil0(1971)' r-20. t68l; MR 43 #343s o.f uni'"alentfuttctions' Ine126g.Schiffer, M. Inequalitiesin the theory qualities,III(Proc'ThirdSympos''Univ'California'Los Angeles,Calif.,1969),311-3lg.AcademicPress,NewYork, 1972;MR 49 #558' t44l '1 lt€w setof coefficient inequalities 1269.Schiffer, M.; Schmidt, H' G' Arch. Rational Mech' Anal' 42(1971)' for univalentJ'ur,ctions. ' 124' 531 346-368;MR 48 #11479 Coefficient problems and generqlized G. 1270.Schiffer, M.; Schober, with quasiconformal Grunsky inequalitiesfor Schliiit functions Anal' 60(1975/76)'no' 3' extensions.Arch. Rational Mech. 205-228. [53, 54] coefficientof d boundedreal lz|L Schiffer, M.; Tammi, O' Thefourth Ser' A i No' 354(1965)' univalentfunction. Ann. Acad. Sci' Fenn' 32 PP.;MR 35 #4394'122'24' 30' 31l-l coefficient of bounded 1272.Schiffer, M.; Tammi, O' On the foirth Soc' 119(1965)'67-78; univalentfunctiorzs.Trans. Amer' Ir{ath' M R 3 2 # 1 2 2 , 3 0 , 5 3 '5 4 1 af variationsfor functions 1273.Schiffer, M.; Tammi' O' A method Analyse Math' 17(1966)' with bounded boundary rotqtion' J' 109-144;MR35#5601'[6'!0'23'24'35'36'38'71'76'77] coefficientof univolent 1274.Schiffer, M.; Tammi, o. on the fourth Sci' boundary rotation' Ann ' Acad' functions with bounded M R 3 5# 3 0 5 2 . | 4 , 2 4 , 1 1 , 7 7 ] F e n n .S e r .A I n o . 3 9 6 ( 19 6 7 ) , 2 6 p p . ; univolentfunctions v'hich r275. Schiffer,M.; Tammi,'o. on bounded areclosetoidentity.Ann.Acad.Sci.Fenn.Ser.AINo. 26 pp'; MR 39 #4372'122'30' 531 435(1968), coefficientproblemfor bounded 1276.schiffer, M.; Tammi, o. on the
232
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
univalent functions. Trans. Amer. Math. Soc. 140(1969), 4 5 1 - 4 7 4M ; R 3 9 # 7 0 8 8 . 1 41, 6 , 2 2 , 2 4 , 3 0 , 5 3 1 1277. Schiffer, N{.; Tammi, Olli. ,4 Green's inequality for the power matrix.Ann. Acad. Sci.Fenn.Ser.A I No.50l(1971),15pp.; MR 4 5 # 5 3 3 9 . 1 2 2 , 3 05 ,3 j problem for a classof meromorphic 1278. Schnack,D. H. A coefJ'icient univalentfunctions. (Abstract),NoticesA. M. S., vol. 16, no. l, i s s u en o . 1 1 1 ,J a n . 1 9 6 9 p , .215. [9,25,39] 1279. Schneider, W. J. A uniquenesstkeorem for conformal maps. NoticesA. M. S. (Abstract 626-27),vol . 12, no. 6, issueno. 84, October,1965,p. 698. 1280. Schober, Glenn. Univalent functions-selected topics. Lecture notes in mathematics, vol . 478. Springer-Verlag,Berlin-|lew York, 1975.V + 200 pp. [aal 1281. Schoenberg,I. J. Extrema for gap power seriesof posiiive real part. J. AnalyseMath . 14(1965),379-391.12,2ll 1282. Scilard, Karl [Szilard, Karl] . On a known generalizationof the concept of convexity for plane regions and its application to distortion theoremsin the theory of conformal mappings. (Russian).ContemporaryProbiemsin Theory Anal. Functions(Internat. Conf., Erevan, 1965) (Russian), pp. 277-281. izdat. "Nauk", Moscow, 1966;MR 34 #6051.[0, 681 t283. Srivastava,R. S. L. Univalentspiralfunctions. Topics in analysis (Colloq. Math. Anal., Jyvaskyla, l97C), pp.327-341. Lecture Notesin Math,, Vol .419, Springer,Berlin, 1974.[6,441;MR 52 #3505 1284. Selljahova,T. N.; Sobolev,V. V. The mutual growth of the coefficients of functions that are univalent in the half-plane.(Russian) Dokl. Akad. Nauk SSSR218(1974),768-770; MR 50 #7503.t57l 1285. Sevcenko,V.l. On the questionof the univalenceof polynomial moppings. (Russian. Geogian and English summaries) Gamoqeneb.Math. Inst. Sem. Mohsen. Anotacie.Vi'p. 8(1973),5-8; MR 49 #9170.l32l 1286. Shaffer, Dorothy Browne. Distortion theoremsfor lemniscates and level loci of Green'sfunctions. J. Analyse Math. l7(1966), 59-70;MR. 36. p. 82 [35] 1287. Shafter, Dorothy Browne. Tne curvoture of levei curve,sci lacunary polynomials and Green'sfunction. Notices A. i\4. S., vol. 17,Do. 2, issueno. 120,Feb. (1970).Abstract,pg.393. t35l 1288. Shaffer, D. B. The ttrvature of level curves.Trans. Anier. Iviaih. Soc. 158(197l),143-150.[35]; i"IR 43 #3428
(PART II) BIBI-IOGP.APHYOF SCHLICHT FUNCTIONS
233
with Re.f(z)> t28g. Shaffer,Dorothy Browne..AnatyticFunctionsf(z) Notices,A. M. S., vol .19, no. 6, issue140, l/2 and applications. 1l l2l october,'1912(Abstract72T-8287),p. A-7C4. 12,9, , of derivative the l2g}. Shaiier-, Dorothy Bruwne. Oii bcunds .for 517-520; analyticfunctions. Proc. Amer. Math. Soc. 37("973), M R 4 6 # 9 3 5 .7 1 2 ,2 2 , 5 0 , 6 l l a special tzgL shaffer. Dorothy Browne. The rsdius of convexityfor ' 79 Soc Math' classof meromorphicfunctions. Bull. Amer' (1973), 224-225.12,9, 12, 561 a speciaiclass 1292.shaffer, Dorothy Brorvne.Dlslortion theoremsfor of analyticfunctions.Proc. Amer. Math. Soc.39(1973),281-287; MR 47 #3662.[2, 12, 19, 561 and convexityfor 1293. Shaffer, Dorothy B . The order of startikeness 20, August A' analyticqnd merontorphicfunctions. Notices M' S' \g73, Abstract706-30-6,p. 4-522' [2, lll ond convexity for 1294. Shaffer, Dorothy B. Radii cf starlikeness Appl' 45 specicl classesof analytic functions. J. Math' Anal' ( 1 9 7 4 ) , 7 3 - 8 0M; R 4 8 # 8 7 7 2 1' 2 , 6 , l 0 ' 1 1 ' 1 2 ' 1 4 ' 5 6 i in classH , r,,n^attd 1295.Shaffer, Dorothy Brow ne.Analytic functions 1975)' their applicatiois. Notices Amer. Math. Soc', January Abstract 720-30-22,p' A- 123' 12,9, 1I ' 12' 561 a special clqssof 1296.Shaffer, Dorothy Brcwne. In equalitiesfor vol. 22, no. 5, bounded onalyticfunctions. Notices,A. M. S., issuenc-r.163,August1975(Abstract726-30-2)'p'A-556'12'9' 12,221 ^ r. Trans.A. M' 1297.Shah,G. M . On somestarlikeand cont,exfunctions. 851 ; R 4 2 # 4 7 2 1 ' t 46' ' 1 0 ' 1 1 ' l 2 ' 4 0 ' 4 1 ' 6 3 ' 1 7 l ) , 8 3 - 9 1M S. 154(9 Pacific l2gg. shah. G. M . On the univalenceof someanalyticfunctions. 0R ; 4 7 # 2 0 4 7 . | 2 ,| | , 2 2 , 4 3 , 5 6 , 6 1 ] J . M a t h . 4 3 ( l g 7 2 ) , 2 3 9 _ 2 5M J' l2gg. Shah, G. M. On multivalency of some analytic functions' 1 1] ' N a t u r . s c i . a n d M a t h . l 2 ( 1 g 7 2 ) , 1 1 3 - 1 2 1M; R 4 8 # 1 1 4 7 7[ 2 ' of certain rationai functions' J' 1300. Shah, G. M. On the univ,alence Natur. Sci. aird Math . 12(1972),131-149;MR 49 #10869't28l in one direction' 1301. shah, G. M . On holomorphicfunctions convex MR 50 #13487.|4, J. IndianMath. Soc.tx.s.l 37(|973),25,7_276; 5 , 1 9 ,3 6 , 4 0 , 1 1 ,6 3 , 7 8 , 7 9 ' 8 5 1 of slow 1302. Shah, s. M. (Jnivalentderivativesof entire functions vol' 35, growth. Archive for Rational Mechanicsand Analysis, no. 4, 1969,p- 259-266;MR 40 #352' t90l mean p-valent 1303. Shah, s. M. Holomorphic functions with 45 #2160'[33] derivatives.Math. Ann . tg}(19'71),176-182;Ir'{R
>--_
234
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1304. Shah, s. M . Analytic functions with univalent derivativesand entire functions of exponential type. Bull. Amer. Math. Soc. 78 MR 45 #2157- 14,5,6, 16,31,33,42' 43' 4'4'901 (1972),154-172; 1305. Shah,S. M . iJnivslenceof derivativesof functions defined by Gap Power seriesIII. Notices Amer. Math. Soc. 23, January 1916, Abstract731-30-29,p. A-104. [39, 431 1306. Shah, S. M.; Trimble, S. Y. Univalentfunctions with univalent derivqtives,I. Bull. Amer. Math. Soc. 75(1969),153-157, 883; M R 4 3 3# 4 3 7 3 1. 4 , 2 2 , 3 0 , 5 4 '9 0 1 1307. Shah, S. M.; Trimble, S. Y. Univalentfunctions with univalent derivatives,II. Trans. A. M. S. 144(1969),313-320;MR 40 #2841.
14,43,901
(Jnivalentfunctions with univalent 130g. Shah, s. M.; Trimble, S. y. derivatives,III. Journaiof Math. and Mechanics,vol. 19, no. 5, N o v e m b e r , l 9 6 9 , p p . 4 5 l - 4 6 0M R 4 0 / . M 3 8 ' [ 4 ' 9 0 ] 130g. Shah, s. M.; Trimble, S. Y. (Jrivalentfunctions with univalent derivatives.NoticesA. M. S. (Abstract),vol . 17, no.4, issueno' 122, June, 1970,P. 661. t90l 1310. Shah, s. M.; Trimble, S. Y. Entire functions with univalenl derivatives. J. Math. Anal. Appl. 33(1971),220-229. MR 43 #6435.[4, 90] of 1311.Shah,s. M.: Trimble,S.Y. Retationsbetweenthe univalence M' A. derivativesof power seriesand entirefunctions. Nottces, s., vol. Ig, no. 1, issue no. 135, January, L972 (Abstract 691-30-27),P. A-l18. [901 i312. Shah,S. M.; Trimble, S.Y. Univalenceof derivativesof an even entirefunction NoticeS,A. M. S., vol .19, no. 6, issue140,October, lg72 (Abstract 72T-8284), p ' A-703 ' t90l 1313. Shah,S. M.; Trimble, S.Y. Univalenceof derivsttvesof a functions defined by a gap series.Notices A. M. S' 20(Jan' 1973)' AbstractiCl-30-i3, pg. A-106' [39] 'frimbre, S. Y. (Jnivulcnceo"f derivativesof gap 1314. Shah, S. M.; power series.Notices A. M. S., vol. 20, no. 3, April 197? (Abstract 703-824, A-371). [39, 43J 'frimble, s. Y. Entire functions witit some 1315. Sliah, s. M.; MR 50 dcrivutivesunivslent.canad. J. Math .26(1974),207-213;
#2493.142,901 , . Y . The order of an entire function witlt , . M . ; T r i m b l eS 1316S . h a hS somederivqtivesunivalent.J. Math. Anal. APPI. 46(1974),395409;MR 49 #9209- [4, 90] l3l7. Shah,S. lvl.;Trimble,S. Y. Univalenceof derivativesof functions
BIB L IOGR A P H Y OF S C H LIC H T FU N C TION S(P A R T TD
235
defined by gap power series. J. Lonrlon Math. soc. (2)9(l g7s), 5 0 1 - 5 1 2M ; R S 0 # t 3 5 2 0 .1 4 , 3 2 , 4 3 ,9 0 1 l3l8' Shah,S. M.; Trirnbl€, S. Y. (Jnit,alence of derivative,s of function,s defined by gap power seriesr/. Notices, A. ir{. s., vor. zz, no. 5. issueno. 163,August r975 (Abstracr75T-Br791,p. A-5 17. Lrz, 39, 431 1319. Sheil-Small,T. On convexunivalent function,s.J. L,ondcnMath. 2 ;R 4 0 # s g 4 / . S o c .( 2 ) l ( 1 9 6 9 ) , 4 8 3 - 4 9 M [ 6 , 1 0 , 3 6 , 3 g ,6 3, 6 4 ] 1320' Sheil Sinatl, 'f . Some confcrrnal mupping inequulities for starlike and convexfunctions..I.London Math. soc. (2)l(r 969),577-sgl; M R 4 0 # 2 9 4 21 . 2 ,3 , 6 , 7 , 1 0 , 1 6 l l32l ' Shei!-Snrall ,T. A note on thepartial sums01 Cottvexschlichtfunctions-Bull. LondonMath. Soc.z(t970),165-t6g;MR 42 #4gs. 14, 5, 6, 10,20,641 1322. Sheil-Small,T. Starlike univalentfunctions. Proc. LonCon Math. Soc.(3)21(1970), 577-613;MR 43 #2207, U, 16,62,6gl 1323. Sheil-Small, T. ()n lineor accessibitityand the confor*oi mapping of convexdomains. J. Analyse Math. 25(rg72),259-276;Mn +z #444.[5, 6, 10, 16, 20, 63, 64, 741 1324 Sheil-Smali,T. On Bazilevil functions. Quart. J. Math. Oxford S e r . ,2 3 ( 1 9 7 2 )n,o . 9 0 , p p . 1 3 5 - 1 4 2M : R 45 #gg4i.14,7ol 1325. Sheil-Srnall,T. On the convolutionof analytic functions. J. Reine A n g e w .M a t h . 2 5 8 ( 1 9 7 3 1 ) ,3 7 _ . [ ] , 6 , 1 6 , 4 2 , 4 5 , 4 7 1 1326. Sheil-Small'T. B . Some linear operatorsin function theory. proceedingsof the Synrposiumon complex Analysis (univ. Kent, canterbury, 1973), pp. r19-123. London Math. Soc. Lectrrre Note Ser., No. 12, cambridge Univ. press,London, 1974. l44l 1327. Sheil-Small,T. On linearly accessibleunivulent J. Lonfunctions. don Math. soc. (z)6(t973),385-398;MR 48 #4299. 14,5, 6, t6, 23,74,751 1328. Siewierski, L. The local solution of the coefficient problem for bounded schlicht functions . Societas Scientiarum Lodziensis, Sect. III, Nr.68; panstwowewydawnictwo Naukowe, Lodz, 1960.124 pp. MR 32 #7735.[16, 22, 301 1329- Siewierski, L. Sharp estimation of the coefficients of bounded univalentfunctions neer the identity. (loose Russiansummary). Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. phys. 16 (1968),575-576;MR 38 #1246.[22, 301 1330. siewierski,L. on the maximum volueof thefunctionol lo, - ooll in the classesof quasi-startikefunctions. (Loose Russian summary). Bull. Acad. polon. Sci. ser. Sci. Math. Astronom.phvs.
E--
'l 1
236
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
MR 38 #1245'[6' 36] 16(1968) , 5'73-574; of the'functionallot !17|i !: maximum the Cn L. Siewierski, 1331. Math' 22 func:tions'Ann' Polon' of quasi-starlike the classes zil-253; MR 40 #4142'16'361 (1969/701, of meromorH. on the coefficients L.; Smialkowna, 1332.Siewierski, p h i c q u a s i - c o n v e x f u n c t i c n s . A n n . U n i v . M a r i a 167-170; eCurie1970), .22/23/24(|968/|969/ vols A., Sect. Sklodowska, [9, 10,25] MR 51 #10607. functions' Proc' crose-to-convex 1333.Silverman,H. on a' ctaisof lvlR 1972,47i-484; Amer.Math. Soc.,vol. 36, nt .2,December 4 7 / l z c r ' ; 8 . t150, ,1 2 ,1 9 , 7 4 , 7 5 1 . ? of cottv€xmapptnSs' 1334.Silverman,Herb. Linear combinations MR 52 #35M RockyMountainJ. Math. 5(1975),629-631t82l; coefficients ' with negative 1335. Silverman,H. (Jnivalentfunctions ; R 5 l # 5 9 1 0[.4 , 6 , p r o c .A m e r .M a t h .S o c .s i ( r 9 7 5 ) ,r 0 9 - 1 1 6M 6 3 '6 4 '8 8 1 1 0 ,I l , 1 2 , 1 6 1, 9, 2 3 , 3 2 , 3 6 '3 8 '3 9 ' , cf univalentJ'unctionswith two 1336.Silverman,H. Extremepoints f i x e d p o i n t s . N o t i c e s A m e r . M a88J th.Soc.23,January|976, Abstract'l3l-30-7, p' A-99' 16'10' Marie' on the orderof conve'rity 1337.Siiverman,Herb; Silvia,Evetyn s' 20(Jan'1973)'Abstract of a-slarlike functions.NoticesA. M' 701-30-9, Pg' A-106' t69l of M. on linearcombinations 1338.Silverman,H. w.; Silvia,Evelyn report' NoticesAmer' ,onrr* lrnctions of arde:r(3.Preliminary 1975,Abstract iZO-10-2'p' A-118' U0' Math. Soc. Z;2,January 1 1, l2r 82l
'
. , ,., r . - ^^ t t ^ a n n r A r o l n t t N. spiral-like functions and related 1339. Silverman,H.; Telage, D. A' M' S" vol' 22' with fixed seiond coefficienf' Notices' clssses (Abstract75T-B 124)'p' A-462' lb' no. 4, issueno. 162,June lgli 1 0 ,4 5 1 of close' Extremepoints of a subclass 1340. Silverman,II; Telage,D. N. Math' Soc' 23' January1976' to-corivex functittns. NoticesAmer' 7 4 , 7 5 ,8 8 ] Abstrac7 t 3 1 - 3 0 - 1 4p, . A - 1 0 1 . | 5 . , of ,)ariqtronit ntethod,on certain classes 1341. s'via, Evelyn lvlaric. A houndary rotation' |lotrces Amer' Math' functions of bounded S o c . 2 O ( 1 g 7 3 ) , A b s t r a c t 7 3 T - B 3 0 4 ' p ' A - 6 3 4 ' - 1 2 1 ' 7 l l Proc' spiraitikefunctions. o subciess-of 1342. silvia, Evelyn lVlarie.on 69'831 '
qvno; Mir 49 tr7433L6'23' Amer.Maih.Soc. 44(tg74), reiotedtofunctioisof bounded p-v,arent crasses 1343.silvia,EvelynM. 23' January 1975' -"til Math' soc' boundary rotatiori. l-loticesAmer' 23' 7l' 761 Abstraci llt-30-3, p' A-98' U4'
,.1
*,11
}?
J
BIDLIOGRAPHYoFSCHLICT{TFUNCTIONS(PARTII)231
on chord distortion type problems 13l.l...Sinelnikova, N. I- Certain Trudy Tomsk' Gos' univ' of schtichtfunctions.(Russian)' classes 24',291
' 16', iurnrr #2975 rg+-193i Ser.Meh.-Mat.189(1966), of functicnsregularin rhe ccer'i'icienis c;; p.; s. chandra, Singh, 1345.
theunitcircle.NoticesAmer.Math.Soc.zo(August119.73), ' p' ,\-482' ll l ' 7'll Abstract73T-B193 of q rheoremof strohhdcker' converse 1346.Singh, Ham. A sort of MR 39 ll42Y't12l Ganitargtr 967),13-16; theoremfui ao"ndedconvexschllcht l34,L singh. Ram. ,4 covering l9' no. 2, 67-.i0;MR -?g#5185'[10', 1g(1957), Ganira functions.
t?lrn, of star-tike fun:,::::,::::::1""*:ri Ram.on a crass 1348.
1 9 ( 1 9 6 7 ) , l 8 _ [ Z ; c o r r e c t i o n o f u n . , ,19' o,w h i36' c h a63] ppearstnsameJ. 23' MR 39 #7084'[6' 12' 2l(1969),2i0-231; 19(1968)' of starrikefunctions.II. Ganita r34g.Singh,nurn. on a crass [6' 12' 36' 631 no.2' 103-t10;MR 4l #3'741' J. IndianMath' Soc' ,prror-tike funrcitons. un note A . Ram Singh, r350. I l', 12',16'29' 63] (N.S.)33(1969),qg-i's;itnn4L #454'[6', functions' J' Indian crose-to-convex r35r. Singh,Ram. Meromorphic 5' 9' 12' 16' l3-20;MR41 #3742.12' Math Soc.(N.S.)33(160q), 561
,.c ^^*i^t
?t'et7cnf
o cPrtain
| 3 5 2 . S i n g h , R a m . R a d i u s o f c o n v e x i t ft(tqzo), 1 o f p o r t i407-410; g l s u m sMR o f q 43 certa. powerseries.l. nusti. Math. soc. #7616.12,ll, 12,20,21' 56' 731 Rev' of regurarunivarentfunctions' 1353.singh, Ram. sontecrasses MR 43 #2208'[4,5,6' 109-114; Mat. Hisp.-Amer.t+j lotr97-0),
pl,bl' anotvtic functiom: bounded on theorem f'j.5la 1354.l?;J,rt; 972);MR 46 #7518.[2,221
l8(l g7|),183_185(1 Math.Debrecen Proc' Amer' Math' Soc'38 f'nctiois' noiitru'fi On Ram. 1355.Singh, MR 47 #Mg'129',70',82',851 (1973i,-2,61-271; estimates for s certainclassof coefficient . v singh, R.; Singh, 1356. 1 356. b o u n d e d s t a r l i k e f u . n , , t r o n , - . N o t i c v s ,p. A .954' M . S16', . , v22' o l . 1361 8,no.6,issue 7ir-gztq ' no. 132,October1971(Abstract of rqdii of convexityand starlikeness |357. Singh,V.; Goel,R. M. on 323-339; ' J' Mattr' sot ' Japan23(lg7l) ' of fu.nctiofrs someclasses 821 ' 12,6,9' 1l' 12' 22',56',61',72', MR 43 #7617 of functions on the univarence questioni 135g.Sirokova,E . r,. ciirta'in o f c l a s s E . ( R u s s i a n ) . M a t . Z a m e theorem. t k i l 8 ( 1 9 (Russian) 7 5 ) , t r o . 3Zap. ,403_410.t9] reg.ularity 1359.Sirokov,N. A. Hayman,s tvtai.Inst' Steklov'(LOMI) 24 otdel. Leningrad. sem. Naucn.
23E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
(1972), 182-2W; MR 46 #3774. t39l 1360. Sitarski, R. On some variation formulas for quasi-starlikefunctions. (Polish and Russiansummaries)Zeszyty Nauk. Politech. Lodz. No. 208 Mat. No.6(1975),107-116.[6]; MR 52 #729 1361. SiZuk,P. I. On a certainresultof Libera and Livingston.(Russian) S i b i r s kM . a t . z . 1 6 ( 1 9 7 5 ) , 9 8 - 1 0129, 6 ;M R 5 l # 5 9 1 1 . [ 1 1 , 8 2 ] 1362. SiZuk, P. l. Regular functions fk) for which C' (e) ts |-spiralshapedof order a. (Russian)Sibirsk. Math. Z. 16(1975),no. 6, 1286-I 290, 137l. t6l 1363. SiZuk,P. I.; Cernikov,V. Y . Certainpropertiesof univalentfunctions. (Russian)Mat. Zametki 17(1975),563-569. 1364. Skotnikova, G. A.; Goldina, N. M. Rangesof valuesof certain coefficient systemsof functions typicclly resl in o ring. (Russian) Trudy Mat. Inst. Stekrov. 94(1968), l3O-142; MR 37 #403. ITranslated from the Russian: Extremal Problems of the GeometricTheory of Functions,(A. M. S. 1969)1.tl3, 481 1365. Skupien,Z.On theproblem of coefficientsof univalentfunctions. ZeszytyNauk. Univ. Jagiello.Prace Mat. No. 10(1965),89-91;
MR 33#s877. t54l
1366. Sladkowska, Janina. Polynomes quasi-univalentset univolents. et polynomesext:emaux.SoctetasScienVariationselementaries tiarum Lcdziensis,Sect. III, Nr. 64. PanstwoweWydawnictwo Naukowe,Lodz, 1960;MR 33 #258.l32l 1367. Sladkowska, J. Sur les conditions de Grunsky-Nehsri pour ies fonctions univalentes bornees dans le cercle unite. @nglish and Russian summaries)Bull. Acad. Polon. Sci. Ser. Sci. Math' ; R 5 0 # 4 9 2 8 .[ 4 , 2 2 , 5 3 1 A s t r o n o m .P h y s . 2 l ( 1 9 7 3 ) , 3 0 7 - 3 l l M inequalities 1369. Sladkowska,.Tanina.Coefficient for Shah'sfunctions. Math. 5(1973),l7 l-192; MR 49 #5334.122,2i,34, Demonsrratio
s3l 1369. Sladkowska, Janirra.Les polyn\mes de Fcbe" ds'ts le th1o';e rie fonctions univslenlesborn\es. Demonttratio Math. 8ti975), 99I 12; MR 5l #5918.122,531 1370. Sljusarova,K. M. The domain of the valuesof C-functionswith fixed resl coefficients. (Ukrainian. English and Russian sum' inaries)DopovidiAkad. Nauk Ukrain. RSR SerA 1974,222-225,
2E6.l2ej
1371. Sljusarova, K. M. Certain estiamtesof C-functions and starlike functions't.'ith fixed Taylor coefficients. (Ukrainian. Englishand Russiansummaries).Visnik Kiiv. Univ. Ser. Mat. Meh. No. lo
(1974),105-108,176.t29l K. M.; Saran.L. A. Estimationof the curvatureof 1372.Sljusarova,
BIBLTOGRAPHYOF SCHLICHT FUNCTIONS (PART ID
239
level curves for functions that are convex with respoect to tke direction of the imaginary axis.(Ukrainian. English and Russian summaries)Dopovidi Akad. Nauk Ukrain. RSR Ser.A 1972,l4l141,189;MR 46 #376i. tlsl 1373. Slyk, V. A. Certain properties of functions that are weaklyp-valent in an snnulus. (Russian)Kuban. Gos. Univ. Naucn. Trudy Vyp. 1 4 8M a t . A n a l . ( 1 9 7 1 ) . 7 5 - 8 0M; R 4 9 # 5 5 5 . [ 1 4 , 4 8 , 6 5 ] 1374. Slyk, V. A. Certsin estimatesfor functions that are regulur and univalent in cn anru:lus.(Russian)Kuban. Gos. Unlv. Naucn. Trudy Vyp. 148tviat.Anal. (i971), 81-84;MR 48 #l1483.i48l 1375. Slyk, V. A. The Gronwsll problem in the classof bcundedfunc' tions that are wcakly univttlent in !!:e tnea4 with respectto a circie. (Russian)Metric questionsof the theory of functions and mappings.No. IV (Russian),pp. 165-17l. lzdat. "Naukova Dumka", Kiev, 1973;MR 49 #10870.Il4, 22:l 1376. Slyk, V. A. Certain covering theorems J'or weakly univalent, meromorphicfunctions in an annulus.(Russian)Metric quesfions of the theory of functionsand mappings,No. V (Russian),pp. 17l-178.Izdat "Naukova Dumka", Kiev, 1974.[19' 33] 1377. Smiatk6wna, H. On sonrc properties of Schroeder's un:valent functions. (Russiansumma;y). Buil. Acad. Polon. Sci. S;r. Sci. Math. Astronom. Phys. 23(1975),no. 9 , 947-949. 1378. Smoluk, A.; Zamorski, J. On conditionsfor extremalgeneralized spiratfunctions, involving their coefficienls.(Polish, Russianand Englishsummaries)PraceMat. 7(1962),I 19-125;MR 32 #4263.16l 1379. Sobolev,V . Y . On the problem of the relativeextremum of a certain functional on the classof fimctions that qre univalet;tin the hatf-plone.(Russian)Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200(1968),184-188;MR ^l #1988.129,571 1380. Sone,N. Srzlicient conditionsfo: p-valenceo-fregularfunctions. MR 33 #1440.14, l4J J. Math. Soc. Japan 16(1964),406-418; or convexity. starlikeness multivalently 1381. Sone, N. Some radii of ; R 3 2 # 7 7 3 6 -1 2 ,l l , 1 2 , 2 2 , 4 3 , M a t h . J a p o n .l 0 ( 1 9 6 5 ) , 3 0 - 3 4M 56,6ll 1382. Stankiewicz,Jan. On some classesof close-to-convex functions. 77-83 20(1966), A Sect. Curie-Sklodowska Mariae Ann. Univ. (1971);MR 46 #3768.[5, 23, 29, 64] 1383. Stankiewicz,Jan. Quelquesprobl\mes extr€mauxdans les classes desfonctions a-angulairement6toil6es.Ann. Univ. Mariae CurieMR 41 #8650'MR 47 SklodowskaSect.A 20(1966),59-75(1971); #3663. 16, 241 1384. Stankiewicz. J. Some remarks concerning starlike functions.
* l
t-
240
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Ser' Sci' Math' (LooseRussiansummary)Bull. Acad. Polon' Sci' #8650' 41 [6' 19] Astronom.Phys. 18(lgiO),143-146;MR starlikewith respect r3g5. Stankiewicz,Jan. some remarkson functions Ann' univ' to symmetricpoints. (Polish and Rrrssiansummaries) MR 41 Sect.A 19(i965),53-59(1970); Mariaecurie-Sklodowska # 5 6 1 2 [. 1 , 6 , 1 0 ,2 3 1 Ann' Univ' 1386. Stankiewicz,J. On a famity of starlike functions' MariaeCurie-Sklodowska,Sect.A22-2+(|968/70),175_181 (1972);MR 50 #5gA'[6, 10, !'I ' 12' t9' 23' 63] probtemsfor the classs-' Ann' 1387. Stankiewicz,Jan. some ext:remal 101-107(1973); univ. Mariaecurie-Sklodowskasect.A 25(1971), M R 4 8 # 6 3 9 4 . 1 2 , 61, 1 , 1 2 , 2 3 ,3 6 , 6 3 1 on someproperties 13gg. Stankiewicz,Jan. The inftuenceof coeJficients Ann' univ' of regularfunctions. (potistrand Russiansummaries) 12'43' Sect. A.27 (1973),99-107(1975)' Mariaecurie-Sklodowska 711 en domaine de certain 1389. Stankiewicz,Zof\a. Sur la subordination operateursdanslesclassesS(.',0).GolishandRussianSumSect'A27(1973)' maries).Ann. univ. Mariae curie-skloclowska g7s).tll; MR sz #8413 1u9-119(1 and inclusion cf domains. 13g0. Stankiewicz,z. An integral operctor Phys' 22(1974)' Bull. Acad. Polon. sci. Ser.Sci. Math' Astronom' 1201-',207;MR 5l #5912'Ill conjectureon subordina1391. starkov, v. v. A disprooj of ct certqin Akad' liauk SSSR'214 tion for starlikefunriionr-.(Russian)Dokl' (1974),52-55;MR 49 #3107'[l ' 6' 16] lines in univolentconformal 1392.stepanova,o. v. A property of levet mappings.(Russianluct
t35l
of univalentfunctions 1396. StumP, Robert K' I inear combinstions 23(l 97l), 7l2-7l7; Math. J. with comPlex coefficients' Canad. M R 4 4 # 2 9 1 9 [-1 0 , I l , 1 2 , 5 6 , 8 2 1
(PAT(TII) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
241
niultivalent functions with respect 1397. Styer, Da.,iri. Clo,se-to-canvex to wesklystartikefunctions. Trans. Amer. Math. Soc' 169(1972), i05-l 12; MR 47 #3656.12,5, 6, 14, 231 j' Ana'lyse 139g. Styer,David. On weaklystarlikc:riulitvalentiurtclions. Math. l8(l 973),217-233;MR 48 #6395'[6' 14] AnalyseMath' 38 1399.Styer, David. Multivalent convexfrmctions. J. (1975),50-77.U0, l4l of two convex 1400. Styer, D,; Wrigh*",D. On the valenceof the sum 511-516;MR 47 functions. Proc. Ainer. Math. soc. 37(1973), # 2 0 4 9 [. 5 , 6 , 1 0 , 1 4 , 1 6 , 2 3 , 4 5 , 8 2 1 J. of Math' 1401. Suffridge, T. J. Cunvolutionsof convex Functions. a n c lM e c h . 1 5 ,M a y , 1 e 6 6 , 7 9 5 - 8 0 4M; R 3 3 # 5 8 7 1 . [ 45, , 6 , 1 0 , 2 2 ' , 23, 471 of univalent 1402. Suffridg€, T. J. A coefficient problem fot' a class MR 39 #1646'16, functiois. Michiganlvlath. I. l6(1969),33-42; 1 6 , 1 7 , 1 9 ,2 2 , 3 A , 3 6 ' 5 4 1 Math' Soc' 1403. Suffridge,T. J. On univalentpolynomials.J. London 44(1969),496-504;MR 38 #3419' l32l 'I. J. The principle of subordinqtion applied to funcl4A^. Suffridge, tionsoj ,rurral variables.Pacific J. Math. 33(1970),241-248'U ' 6, iOl the unit disk' 1405. Suffridge, T. J. Someremarks on convex mops of MR 42 #4722.U, 101 Duke tvtattr.J. 37(1970),775-777; polynomidlshaving 1406. suffridge, T. J. Extremepoints in a classof univatit sequentiqrrimils. Trans. Amer. Math. Soc. 163(1972), 225-238;MR 45 #3679.14,321 spaces' 1407. Suffridge, T. I. Storlike and convex maps in Banach 575-590'[], 4, 6, 10] Pacificl. uattr . 46(1973), polynomials' 1408. Suffridge, T. J. Starl;kefunctions at limits of p' Notices Amer. Math. Soc., January 1975,Abstract 720-30-4, A-l18. [6,32] Math. 1409. Suffridge,T .-J. on univalentpolynomisls.NoticesAmer. 6,32,471 p. Soc. Zi, npril 1975,AbstractT23-837, A-410. [5, Amer' 1410. Suffridg€, T. J. Functions starlike of order u' Notices ' [6] p' 103 A73L-30-23, Math. 5o. . 23, January lg76, Abstract der konformenAb1411. Szilard,K. jber die Verzerrungseigenschaften ' L Studia bildung desEinheitskreisesauf " Qo-Konvexe"Gebiete S c i .M a t h . H u n g a r .1 ( 1 9 6 6 )1, 3 3 - t 3 6 ;M R 3 4 # 6 0 6 7 . t 1 9 1 der konformen Ab1412. Szilard, t<. tlUer die Verzerrungseigenschaften lL Studia bildung desEinheitskreisesauf "Qo-konvexe" Gebiete' Sci. Math. Hungar.2(|967),49_51;MR 35 #4393.[10]
242
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1413. Szilard, Karl. jbe, die KoebescheKonstant I/4. Aequationes MR 39 #7077.[14' 19] Math.2(1969),227-232; 14t4. Szilard, K. On the Wolff-Noshiro-Warschawski-theoremin the theory of univalent functions. Matematikai Lapok 21(1970), 45-50; MR 46 #7499.l4l 1415. Szynal, Anna; Szynal, Jan; Zygmunt, J. On the coefficientsof Russiansumfunctions whosereal part is bounded. (Polish and maries).Ann. Univ. Mariae Curie-SklodowskaSect.A 26(1972), ' 63-70(1,97a); MR 50 #2476-12,6,21, 36, 56i 1416. Szynal, Jan. On s certain classof regularfunctions- Ann. Univ. Un Mariae Curie-SkiodowskaSect. A 25(1971),109-120(1973); 4 8 # 8 7 7 3 .1 2 ,6 , 1 2 , 3 6 , 5 6 ,6 3 1 1417. Szynal, J. ,\om€ r €tttofks on coefficients inequality for d-eonvex Astronom. functions. Bull. Acad. Polon. Sci. Ser. Sci. Math. MR 47 #454.14,36,38,69, Phys.,vol .20, no. 1l(1972),917-920; 841 1418. Szynal,J.; Wajler, S. On thefourth coefficientfor a-convexfunc' tions. Rev. RoumaineMath. PuresAppl. 19 (1974),1153-1157:. M R 5 0 # 1 0 2 2 9[.6 , 1 0 , 2 2 , 3 0 , 3 6 , 3 8 , 6 9 , 8 4 ] 1419. Taka',suka,T. Multivalent 1'unctionsstar-like in one direction. 72-82;MR 32 #206.12,6,9, Trans.Amer. Math. soc. 120(1965), 6 3 1 2 3 , 2 5 , 4 A ,4 1 , 5 6 , 5 8 , I4ZO.Takatsuka,T. The theory o.f multivolentlunctions. Duke Math. . 2 , 4 , 6 , 9 , 1 0 ,1 4 '5 6 1 M;R 3 3 # 7 5 2 2 1 J . 3 3 ( 19 6 6 ) , 5 8 3 - 5 9 3 1421. Talbot, A. Some theorems on positive -functions. IEEE Trans. Circuit TheoryCT-12(1965) , 607-ffi8;MR 4l #2021.12,26,32,571 1422. Tammi, o. on the use of the Grunsky-Nehsri inequality for estimatingihe fourth coefficicnt of bounded univalentfunctions. Colloq. Math. l6(1967), 35-42; MR 36 #1637. 122'301 1423. Tammi. Olli . Grunsky type inequalities, and determination of the tataliiy of the extremalJunctions.Ann. Acad. Sci. Fenrr.Scr. A I , p p . ; M R 4 0 # ' 1 1 i 3 . 1 2 2 , 2 7 , 3 05,J l N o . 4 4 3 ( 1 9 6 92) 0 1424. Tammi, Olli. On Green's inequalitiesfor the third coefficient of boundedunivalentfunctions. Ann. Acad. Sci. Fenn. Ser' A I No' pp. 3-10; MR 43 #5021.122,301 481(1970), 1425. Tammi, Clli. Ort optimizirtg psrameters of the power inequality Ann. Acad' fcr aa in the classof bounded urtivalcntfunctions. Fenn.Ser.A I No. 560(1973),24pp.122,301 1426. Tammi, Olli. On Green's inequalities.Topics in analysis(ColloC' Math. Ar:aI., Jyvaskyla, lq70), pp. 370-375.Lecture Notes in Mah., vol. 419, Springer,Berlin, 1974;MR 51 #8396.122,301
(PART II) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
243
mappingsof 1427. Tamrazov, P. M. The theory af conformal univalent (Rusdomsins of arbitrary connectiviiy onto domains with s/irs. (RusII sian)Probiemsof Math. Phys. and Theory of Functions, sian),pp. 110-117.NaukovaDumka, Kiev, t964; MR 33 #5851. 1o0,226 , ll 142g.Tamrazov,P. M. A conformally metric theory of doubly-conrtected Dokl' i'egions snd a generalized Blaschke product. (P'ussian) Akad. Nauk sssR l6l(1965),308-31l; MR 3l #327.t48l 0n the covering of lines under o conl42g ramrozoy, p. M . Theorem-s (N.s.)66(i08x1965), 502f
l4el
(Chinese) 1436.Turg, Sung-shih.Two theoremson univalentfunctions' 68] ShuxueJinzhan7(1964),431-432;MR 38 #2295.[9, 58, distortion 1437. Teppef, D .E. On the radius o.f convexityand boundary 519of schlichtfunctions. Trans. Amer. Math. soc. 150(1970), 5 2 8 ;M R 4 2 # 3 2 6 8 - 1 2 , 6 ,1 2 , 4 9 , 6 2 , 6 8 ' 7 2 ] 1 A' 1438. Teppef, D . E. Integral meonsof schtichtfunctions' Notices' (Abstract M. S., vol. 19, no. 6, issue 140, October, 1972 72T-8274), P. A-700. t3l Notices 1439.Tepper, D . E. Lrnivalentfunctions with real coefficients' p' Amer. Math. Soc. 23, January 1976, Abstract 731-30-27, A-104. [39, 681
244
BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
lemma' J. 1440.Thakare,N.K. A note on the applicationof schworz's Shivajiuniv.4(lg7l),no.8(Science),109;MR50/.4931'[2'56] univalent func' l44L Thomas, D. K. on startike and close-to-convex #6812'[5, MR tions.J. London Math. soc.42(1967),427-435; 35 6, 7, 18] London Math' 1442.Thomas, D. K. A note on starlikefunctions. J. Soc.,43(1968),703-706;MR 37 #1248'[6' 7] Soc' Trans' 1443.Thomut, U. K. On Bazilevit Functions' Amer' Math' 132(1968),353-361;MR36#5330'[4,22'70'81] K. On an extremdtprobtem in uni"'slentfunctions' Thomas,-D. 1444. 16, 42'70]I Math. Z. |09(i969),3M-348;MR 39 #4374.|3,4,6, with boundpd 1445.Thomas, D. K. On the coefficients of functions l, November no' boundoryrotation Proc. Amer. Math. Soc. 36, 1972.123-129;MR46/'7498't7,9,25'71'76'771 univalent lM6. Thomas, D. K. On the coefficients of meromorphic 47(1975),161-166;MR 50 functions. Proc. Amer. Math. soc. #10233.[9, 16,25, 70, 8l] lMT. Todorou, p . The univalencyo.fa classof meromorphicfunctions' 3l (Russian) Dokl. Akad. Nauk sssR 162(1965),285-286; MR #2393.Isoviet Math. Dokl. 6(1965),674_675}.t9, 43| certain classof t118. Todorov, P . G. On the radius of univqlenceof a tro' meromorphicfunctions. (Russian)ukrain. Mat' z' 17(1965), 3, 135-137;MR 32 #5864't43l certain clcssoJ l1!4g.To,Jorov,P . G. On the radius of univalencefor a 20(1965)' meromoiphic functions. (Russian)Llspehi Mat. Nauk no. 6(126), 162-l{3; MR 33 #4252'[9' 431 einer 1450. Todorov, p. G. tibe, den Radiusdes Schtichtheitskreises summaries) Klasse^,rro*orpher Functionen. (Italian and English 108-115;MR 3a Ren,J.Accad. Sci. Fis. Mat. Napoli (4)32(1965), #6068.[9, 43].. einerl"lasse 1451. Todcr"u, p . tiber den Radius,iesSchlichtheitskreises Kl' Math'-Natur' rationalet.Fttnktionen dsterreich Akad. Wiss. S.-B.IIl't4(1965),559-566;MR34#6069'[9'43] meromoryhit 1452.Todorov, P . The radius of univolenceo-f a classof Z(f Zj(r965), 197-199;MR 33 functions. (Russian)Mat. Vesnik #5872.[9, 43]'UUu einerKlasse den RaCiusdesSchtichtheitskrcises 14JI Todorou,'p. Appl' ll meromorpherFunktionen. Rev. Roumaineivlatir. Pures (1966),95-l0l; MR 33 #7524'[9' 43] einer Klasst 14s4. tociorov ,p. UUrr den Radiusdes Schlichtheitskreises MF 379-386; , merornorpherFunktionen. Math. Nachr. 31(1966) 33 #5873.19, 431
(PART II) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
245
porsteilenund crenRqdiusdesschrichtheiip 1455.Todorov, . uber die Q. Acad' Roy' Belg' Bull' cl' der merci,icrphenKiasse skreises 43] Sci.(5)5ilgoq,799-8M; MR 34 #6070'[9', (Rusof schtichtnte''omorphic "fimciions' 1456.Todorov,P . On a class ( I 9e'6) i 9 ' casopisPest' Mat' sian.czechanclEnglishs,rrnmar;es) ' [9' 43] MR 32 #773'7 7'7-79; in the radiusof circulorunivalence r45j. Todorov,p . The poreiina ine Doki. Akarl. Nauk sssR 168 meromorphicc/assQ. (R.ussian) 593MR 33#4253.lsovietMath' Dokl'7(1966)', {1966).532-534; 6951. [9,43]
: , ^ - - ^ ^ t ^ r i n t n t o nt r n n f n r p. (Jeberdie Moegrichr:eiteneiner schrichtenkonfor' 145g. Todorov, durch die hypergecnnetrische men Abbitdung ce.sEinheitskreises Bull' summary)'Acad' Roy' Belg' Funktion von Gquss.(English C l . S c i . ( 5 ) 5 3 ( 1 9 6 7 ) , + l z - u t ; M R 3 6 # 6 6 M ' t 2 8 1 by meansof c-fschticht mappings 1459.Todorov, Pavel. on the theory (Russian)lrlat. vesnik 4(19X1967)'39?the meromorphic class@. 398; MR 37 #3000'[9' 43] der analytischenpositiven und 1460. Todorov, Pavel. zui Theorie durch zusQn'ttnengefasste schlichten kortfor,nen Abbitdungen einer endlichenAnzahl mit ganze und meromorpheFunktionen NuttstellenundPolstellen.Acad.Roy.Belg.Bull.Cl.sci.(5)54 (1968),sr2-526;MR 38 #6043'[43] coilPavell on the theoryof univalent |46|. Todorov, P. G. [Todorov, Jormalmappingsthatarerealizablebymeromorphicfunctionswit (iussian) Ukrain' Mat' z' 22 simplc polesand positiveresidues. (1970),4|6_422;MR42#|ggz.[SeeaisoMR45#.|03.7;MR43 #16961.14,9, 431 of schricht conformar mappings 1462.Todorov, p. G. on the theort classesof analytic functhat are realized by certoin Nevanlinna
tions.(Russian).Ukrain.Mat.Z23(|911),118-|22;MR43
#642r.t43l
conof analyticpositivesnd schlicht 1463.Todorov, P . G. The theory meromorphic meansof gener-altzidentire and formal mappingsby (Russian) poles' number of zeroet ol! functions-with a finite 5-15; MR 46 (N s')11(25X1971)' Publ' Inst' Math' (Beograd) #2028. 12, 431 Publ. der schrichten^bbirdungen. 1464.Todorov, p . G. zur Trteorie I n s t . M a t h . ( B e o g r a d X N . S . ) 1 1 ( 2 5 X 1 9 7 : I )with , | 7 _bounded | 8 ; i v l R 4rota6#2031.t4] mappings univotin't Maximal G. . P 1465.Todorov, a classof integrals of schwarztion that can be realized by Christoffettype.(Russian)Mathematica(Cluj)15(38X1973),307_
32e.ll rl
246
BIBLIOGRAPHY OF SCHLICHT FUNCTTONS
classes 1466.Todorov, p . G. Maximql domsins of univalencefor certqin ' 10 Math of *rro,*orphic functions. (Russian) Aequationes ; R 4 9 # 1 0 8 7 1[' 9, 2 8 1 ( 1 9 7 4 ) ,1 7 7 - 1 8 8M whose 146'i. Tonti, Norman E.; Trahan, Donald H. Analytic functions MR r.ealparts are boundedbelow.Math. z. ll5(1970),252-258; 4 l # 7 11 6 .I l , 2 , 6 , I I , 1 2 ,2 1 , 3 6 , 4 8 ' 5 6 ] 1468. Toppila, S. A remark on Bloch's constsntfor schlichtfunctions' Ann.Acad.Sci.Fenn.Ser.AINo.423(|968),4pp.;MR38 #1248.tl9l z. r09 1469.Trimbl;, s. y . The convexsum of convexfunctions-iv{ath. (1969),ll2-l 14; MR 39 #7085' 14,5, 6, 10' 821 1470. Trimble, S. Y. A coefficient inequalityfor convexunivalentfunc' tions.Proc. Amer. Math. soc. 48(1975),266-267;MR 50 #7504.
u 0 ,3 8 1
l4TL Turzynski, A. Problems related to the clossV' of holomorphic (Polish and Russiansummaries) functions of restrictedrotation. zeszytyNauk Politech. Lodz. No. 186Mat. No. 5(1974),61-80; M R 5 0 # 1 3 4 8 5U. 2 , 3 5 , 7 l , 7 7 1 clas-"es 1472. Turzynski, A. On someproblems in the classp* and some generatedby this class.(Polish and Russiansurnmaries)zeszyty 50 Nauk Politech. Lodz. No. 186Mat. No. 5 (1974),43-59;MR # 1 3 4 8 41. 2 , 6 , 9 , l 1 , 1 2 , 2 4 1 starlike 1473.twomey, J. B. An integrtt mean problem for bounded no' issuc 1, vcl .16, rro. functions.(Abstract),Notices,A. M. S., 1 1 1 ,J a n . ! 9 5 9 ,P . 2 6 9 .[ 3 , 6 , 2 2 , 6 2 1 Soc' 1474.Twomey, J. B. On startikefunctions. Proc' Amer' Math' 95-97;MR 40 #2843'[6, 16,62,631 24(19'10), J. London 1475. Twom ey: , J . B. On the derivativeof a stertikefunction. 53] M a r h . S o .. ( Z ) , 2 ( l g 7 ; ) . 9 9 - l l 0 ; M R 4 0 1 1 7 4 3[66., 9 , 5 8 , 6 2 , London J. 1476.Twomey, J. B. on meromorphic storlikefunctions. : { R 4 4 # 5 4 4 5 .t 3, 6 , 9 , 5 8 , 5 2 1 N { a t h .S o " . , 4 ( l 9 7 l ) , 2 3 1 - 2 3 9N Math' 1477.l'womey, J . B. On boundedstarlikefuncticns- J. Analyse 24(1971),lgl-Zc/dMR45#3689'12,3,6'7,22'561 14'18.Ulina, G. V. The rangeo.f valuesof a certainsystemof functionals in the classof schtichtfunctions with real coeJficients.(Russian) no' 3' B a s k i r .G o s . U n i v . U c e n . Z a p . V y p . 3 l ( 1 9 6 8 ) ,S e r ' M a t '
342-i50;MR 43 #7619.124,29,391 of 1479.Ullman, i. L. TIre locstion of the zeroesof the derivatives Foberpolynomials.Proc. Amer' Math' Soc' 34(1972), 422-424; MR 45 #8809.[9, 16, 53] Amer' 14E0.ulknan, J. L. An ereq theoren;for schlicht functions.
(P A R T II) B T BL IOGR A P H YOF S C H LIC H T FU N C TION S
247
47#3667 ' Math. Monthly, vol. 80, no. 2, Feb. 1973,184-186;MR
l21l problem C . A generalforrnulation of an extremalizction Ulugay, 1-481. pqrt' real positive to annlytic J'uncticns t+'ith arrci its appliciioit -surrrmary) comm. Fac. sci. univ. Ankara Ser' A 19 (Turkish s' l2l r); MR 45 #377 (1970),rr-22(r97
Univ' Ankara Ser' 1482.Ulugay, C. On the constonta. Comm. Fac. Sci' A 21(,972),77 -87; MR 48 # I 1460'[19] (Turkish summa:y) 1483. Ulu;ay , C'. Proof of Bieberbach'sconjecture. comm. Fac. Sci. univ. Airkara ser. A 22(1971),r-2A' i42l Gumma 1464. Umezaw?,T. Some theoremson multivalentfunctions. 1950. u4l Univ. sci. Report,vol. 1, no. 1, November regular of functions' J' Math' 1485. [Jmezawa,T. On some systems ' U4, 431 Soc. JaPan,7(1955),139-165 multivalence.GurrtmaUniv' Sci' of 1486. Umezaw?, T. Some criteria R e p c r ' rv, o l . 1 0 , n o . 2 , ( 1 9 6 1 )p, p ' 1 - 5 ' [ 4 ' 1 4 ' 3 1 ] Gummatlniv' Sci' 1487. Umezawa,T. A classof inultivslentfunctions' pp' 1g-23' 16'7 ' l l' 12' 14' 18' 201 Report,vol. 13(1965), Comm' Pure 1488. Ungar, Peter.Btoch circlesof univalentfunctions' Appl.Math.l8(1965),313-318;MR30#4927'tl9l v' G ',A problem 1489. Varjuhin, v. A.; Kas'jan;uk,s. A.; Finogenova' representableby of constrqinetJextremumfor a classof functions ucebn' zaved' o Stielties integral. (Russian) Izv. vyss' Matematikal966,no6(55),40_49;MR34#6||5. analysis'w' A' 1490. veech, william A. A secondcoursein complex 246pp'; MR Benjamin,Inc., New York-Amsterdam,1967,IX + 36 #39s5.l44l NoticesAmer. r4gr. viswanath, G. R . on convex univarentfunctiorzs. p' A-317' U0' Math. Soc.Ll,February 1975,Abstract75T-865, 23,38, 641 Bulletin Amer. Math. r4gz. volk, B. on the meximum n-th diameter. Soc.80,May|g74,446-448;MR48#||487.t191 mappings of classBL' l4gj. Volynec, I. A. Distortion theoremsfor 16-18' [34' 68] (Russian)Dokl. Akacl. Nauk sssR 213(1973), of anolyticfunc1494.Volynec, I. A. A certainconjecturein the theory |201t_|263: tions.(Russian)Dckl. Akad. Nauk SSSR209(|973),
MR 48 #s24-lsrl
by partial 1495.Vorobiov, M. M. Approximation of analvticfunctions English sumsums of t:heFaber siries.(Ukrainian. Russianand maries;DopovidiAkad.NaukUkrain.RSR1966,l38-141;MR 3 4 # 7 8 1 3 [. 5 3 ]
l
h-__
24E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1496.Vowels,R. E. A note on positive realfunctions.IEEE Trans. Circuit Theory cT-18(1971),383-386;MR 4J?#3429.l2l 1497. waadeland, H. on sn ineqttality of Bernardi. I. Norske vid. 27-33;MR 35 #3053.t19l Selsk.Forh. (Trondheim)39(1966), 149g. waadeland, H. on qn inequality of Bernsrdi. II. Norske vid. Selsk.Forh. (Trondheim)39(1966),34-40;MR 35 #3054.[19] l4gg. waadeland, H. ptaying with a lemma. (Norwegian.Englishsummary) Nordisk Mat. Tidskr. 19(1971),30-38, 60; MR 48 #516 l2l de la clqssedr_{!r:1500. Wajler, Stanislaw.Sur certainessous-classes tions quasi-€toil\es.DemonstratioMath. 8(1975),89-971'MR 51 #5913.[6, 63] (zo)| for 1501.Walczak, s. Estimstion of 17"kdl , lf (zdl, lf(o\ Nauk. Zeszyty functions of classS. (Polish. Russiansummaries) Univ. Lodzk. Nauki Mat. Przyrod.Ser.ll Zeszyt39 Mat. (1971)' 69-73;MR 48 #8776.t68l 1502. walczak, s. Extremat problems in the classof close-to-convex MR 45 #2158'15, functions. Ann. Polon. Math .25(1971),23-38; 23, 24, 74, 751 1503.Walczak,S. The radiusof conformity of some classesof regular MR 46 #9330' functions. Ann. Polon. Math . 27(1973),189-195; [43t 1504. Walczak, S. Typical realfunctiorts in the exterior of the unit cir; R 50 ) ,1 3 - 5 3 1M c/e. Comment.Math. PraceMat' 1 7 ( 1 9 7 3 / 7 4 5 #7534. U3 , 241 ' 1505. Warren, J. Holomorphic functions bounded on a spiral Jan' 1l l, no. (Abstract),Notices,A. M. S., vol. 16, no. l, issue 1969,P. 273. J. Rateof growth of sprial functions. Notices, Amer' warren, 1506. Math. Soc., January1975,Abstract,i20-30-14, p. A-121. 162l 1507. warschawski, s. E. Remarks on the angular derivative.Nagoya Ir{ath.J. +l(1971),l9-32; MR 43 #493.t46i circle' 150A.Watson, ivlartha. On functions thst are bivsleiit in the unit MR 35 #6815.[14' 50] J. AnalyseMath. l7(1966),383-409; des 1509. Wesolowski,A. Relationsentre la subordinationet i'inDgalit€ closse la mociules dans le cas des moiorantes appurtenant o 20 Nn(I, oiq).Ann. Univ. Mariae Curie-SklodowskaSect. A lvIR 46 #560'1'tll (1966),85-94(1971); des 1510. Wesolowski,A . Cotnmuniqubdesfornntles variationnelleset €toil€es' de fonctions certains resultatsrecusdans les sous-classes lvlariae curieUniv. Ann. (Polish and Russian summaries). MR. 50 #591' 972); SklodorvskaSect. A 22-24(1968/70),193-199(1 [Seerlso MR 46 #3391.[6, 23,24.361
(P A R T II) B IBL IOGR AP H YOF S C IILTC H TFU N C TION S
249
resultatsconcernantla classes*(a' B)' 1511. wesolowski, A. certains Sect' A 25(1971)' Ann. Univ. Mariae Curie-Sklodowska 23' 29' 36'-63] lzl-f tOtf 973);MR 48 #8774'[6' ll' Functic'ns'Notices'A' Bazitevic of l5lz. white, william L. A subclass M.S.,vol.22,no.4,issueno.|62,June1)75(Atlstract 75T-B 120),P' 4.-461' [6' 10' 701 on coefficinciseproof of Borel's theorem 1513. whiteman, R. A. A November vol '14' no' 9' cientbounds.TheAmer. Math. tvtonthly, 1967,P. 1094' lZ' 2ll of schiicht dnd_certairi Subcrasses i 514. whitema', R. A. compactness no' 6, June-July1969'PP' Functiorzs.Amer. tvtath.Monthly 76, 6$-647; .r'{R39 #2967' [5' 6' 10] ' J' equationand Grunsky'sinequulit;es 1515. whitney, E. L. Loewnrri, jzz-lsg; MR 37 #1586. 124'531 D'analyseMarh. 18(l 967), l 5 1 6 . W i a t r o w s k i , P . L i m i t g t i o n e x a c t e d u m o dunivalentes u l e d e l a t ] born€es' €riv€e togarithmique dans to famille desfonctions 60 pp'; MR 33 panstwou'eW1'da*niciwoNartkowe,Lodz, 196A' '(z)/f(z)Pl #qT'r3.lz2, 24',6ll thefunctional l*f of estimate sharp ^r' 1517. Wiatrowski,P' French summary) ,n ttle classof univileitt fun:tions. ipotittt. ZcszytyNauk.Univ.Loczk.NaukiNrat.Przyrod.Ser.IIZeszyt 2 0 M a t e m a t y k a ( 1 9 6 6 ) , | | 7 _ 1 4 5 ; M R 5 0 # | 3 4 9 2 .of | 2 holomor4,29] certainfomily a o.f coefficients The P. 1518. wiatrowski, p h i c f u n c t i o n . s . ( P o l i s h . - E n g l i s h s u m m a r y ) Z e(1971)' s z y t y N75-85; auk.Univ. lI Zeszyt39 Mat' s.' lrzyrod. Mat. Nauki Lodz. MR 49 #3tr5. [54] of convexityof somefamily of func' 1519. Wiatrov.,ski,P . On the radius tions regular in tn""in| 0 < lel 9' i2' 581 25(lg7l),85-98;MR 44 #4201' 12' in some ciassof regular problems pawel. Extremal 1520.wiatrowski, Polon' the unit circle and applications'Ann' functions defined in M a t h . , 2 6 ( 1 g 7 2 ) , F a s c ' 1 ' p p ' 1 3 - 2 9 ; M R 4 6 # 3 4 0 ' 1 2 ' 9 ' 1 2log '231 of valuesof the functionals 1521. wieczorek, Zbigniew. The range s1a!:*e in certaincla.sses (zr)/ zrl/\fG)/Lrll 1f 171a)/z) and log llf '73-86; f u n c t i o n . s . ( P o l i s h . F r e n c h s u m m u , y34(1969), l.z,'zytyN a u k U MR n i v . L4lo d z k zesty przyrod. II Ser. Mar. Nauki # 8 6 5 1 t. 6, 2 4 , 2 9 1 cf starrikefunctions of some 1522. wieczorek, z. on the coefficients 113-119;MR Comment.Math. P'utt Mai' 18(1974/75)' classes. 5 0 # 1 3 4 8 8[.6 , 9 , 2 5 , 3 6 1 functions' of close-to-convex lsz3. wilken, D. R. The intisral means #450' 4',7 [3' 5] MR g7z),no.4, pi.llt-380; MichiganMath. J. 19(1
250
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1524. Williams, R. K. An elementaryconsequenceof the orea theorem. Delta (Waukesha)3(1972/73), no. 3,27-29; MR 47 #7030.t271 1525. Wirths, Karl-Joachim. Uber Potenzreihertmit monotonenKoeffiMath. Nachr.66(1975),43-55; zientenfolgen. MR 5l #10599.t39l 1526. Wright, D. J. A note on the perturbation of starlike functions. Notices,Amer. Math. Soc.(Abstract648-93),vol.14, no.3, issue n o . 9 9 , A u g u s t ,1 9 6 7 p, . 6 5 7 . [ , 6 , I I , 8 2 1 1527. Wright, D. J. On a classof starlike functions. Composito Math. 2l(1969),122-124;MR 39 #7086.[6, 12, 19,23,36,631 1528. Wright, Donald J. The radius of p-valent starlikenessfor certain classesof onal;ttic functions. Ann. Polon. Math. 23(1970/71), 4 9 - 5 5 ;M R 4 l # 8 6 5 3 . 1 1 , 2 , 6 l, l , 1 4 , 2 2 , 4 3 ,5 6 , 6 l l |529.Yamaguchi,K.onfunctionssatisfyinsRelfQ)/z|> Amer. Math. Soc.17(1966), 588-591;MR 33 #268.11,2,4,20,t3, 561 1530. Yamashita, S. The derivative of a holomorphlc functiori in the disk. MichiganMath. J.2l(1974), 129-134.[l 6,621 1531. Yamashita,S. Bsnachspacesof locally Schlichtfunctions with the Hornich operatiorzs.ManuscriptaMath. 16(1975),fasc. 3, 261275. 1532. Yang, Chung Chun. On the coefficients of a bnunded univalent analyticfunction. Proc. Indian Acad. Sci. Sect.A 82(1975),no.2, 37-40. 122,301 1533. Yoshikawa, Hirosaku. On a subclass of spiral-like functions. Mem. Fac.Sci.K-vushu Univ. Scr.A, Math., vol. 25, no.2,1971. 271-279;MR 46 #9Y0. [6, I l, 12,631 1534. Yu, Cheng Shu; Chen, Ming Po. The radius of convexityof some regularfunctions. Kl,ungpook Math. J. 15(1975),83-87; MR 5l #34191 . 2,6, 10, 12,561 'fhe 1535. Zac'ko, V. N. houndariesof convexity of the classesSt @) und E! (m). Russian. Ukrain. lviat. Z. 210969), 386-392; MR 39 #43',t5.[9, 12, 4gl 1536. Zalcman, L. Hadamard Products of Schlicht Funcitons. Proc. Amer. Math. Soc.19,no. 3, June 1968,pp.544-548;MR 37 #399. 1 4 , 9 ,1 4 , 3 7 , 8 2 1 1537. Zawadzki, R . On some theore:nson distortion and rotation in the ;/ass of s,vminetricstarlike fun:tions of order a. (Loose Russian summary) Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronottl. Phys. 17(1969),639-645;MR 4l #7089;Ann. Polon. Math.24 ',s.W (1970/71),169-185;MR 44 #54/;5.[6, 9, 49, 631 1538. Zawadzki. R. On the radius of convexity of some classof analytic frtt
-.;, f
:. ti1* ti.,1 'Y'1
,r& tl:'iC
c6-
-
.-
FUNCTIONS(PAFT IT) BIBLIOGRAPHY OF SCHLICHT
251
summaries)Ann' functions. (Polish ald Russian K-symmetrical Univ.MariaeCurie.SklodowskaSect.A26(1972),79_1010974):' MR 49 #9184.[6, l2l of n-poriesin :on!:,^al mapsof 1539.Zeclek,N{. Thelinear meilSures theunitdisk.J.LondonMath.Soc.(2)6(1973),301-306;tv1R47 #8332.[4, i9] rearfurtctionswith starlikeimages' r540. zhang,Kai-ming. Typicary ActaMath.Sinica8(1958;,12-221Cttintte);translatedaschinese t v l a t h . - A c t a 8 ( l 9 f ' 6 ) , s q q _ o o z ; t v I R 3 6 | | 2 7 9 6Inciian . [ 6 , i 3J', 2cf3 , 6 6 1 univarent of functions" integrars e som tt. M. , r541. ziegref M R 4 1# 3 ' 7 4 3 ' 1 2 ' 4 ' 6 ' M a r h . ,v c l .1 r , n o . 3 ,S e i t . 1 9 6 9 , l 4 s - l 5 l i 10, 56, 851
^ . c ^ ^ - l ^ i - analytic fttnccertainn " t n l t t t i c func' of of storlikeness 1542.z\egler,M. R . The radius ttl I l, t-u_,, . z. t22(ig7l),ist-rs+ . 12,.6, tions.Math containing spirallike 1543. Ziegler^M. R. ,4 ,to* oi'rrgutar functions a n d c l o s e - t o - c o n v e x f u n c t i o n s . T r a n s . A m1 e2 r' 3. m 1 'a3t6h' .6S3o' 7c 3. ,j| 6 6 4' 5' 6' 8' # 5 2 g ' 4 5 1 2 ' M R 5 9 7 0 ; (1g72),pp' a Y ' The radius of starlikenessJor Karunakaran' R.; M. zieglef, 1544. c / a s s o f f u n c t i o n s r e g u l a r i n t h e u l i t d i s c .p. NoticesAmer.Math. ?6T-829, A-277' u 1' 851 Soc. 23, February tiro, Abstract von 'schlichtenFunlctionenmit 1545. z\rfterhof, Peter. Konstruktion u n e n d l i c h v i e l e n F i x p u n k r e t t . ( I t a l i a n a n d E n g l i972); s h s uMR m m a46 ries) 3(1971), 125-134(1 Trieste u,riu. Mar. Ist. Rend. #9331.t10l; MR 52 #840s de certainesfoncE. sur lesdomaines desvaleurs 1546. 7-Lotklewicz t i o n e l l e s d a n s l a c l a s s e U ( p ) . ( P o l i s h a n d R u s sAi a n 18(1964)^ Summaries). sect' curie-sklodowska Mariae Univ. Ann. 12' 24' 581 73-83(1geT; MR 39 #4376'[9' concerningmeromorphicunivslent . 7lotk\ewicz,b. Some rerrtarks 1547 A2l (1967)' Mariae curie-sklodowskaSect' functions. Ann. uni;. 24' 581 n o s . l - 8 , p p ' 5 3 - 6 1 ;M R 4 9 # 3 1 1 8 't 9' ,onirrning close-to-convexfuncl54g . 7f,otklewicz,E,. some remarks Sect'A' vol' 2l (1967)' tions.Ann.univ. Murru. curie-Sklodowska
47-51(1972);MR48#4296'[4'5'12'23'24 '29'!5'82'83'84'85] of var'iqb,ity o-f the ratio f(b)/f(c) 1549. zf,otk\ewicz,E. The regioi the and univalentfunctions in withirt the classof ntil omorphic u n i t d i s c . A n n . u n i v . M a r i a e c u r i e - S k l o d49 o w#s336' s k a ' S19 e c', t24', ' A '291 vols' p. 201-208;MR 22/23/24(1968/tgig1970), o-f of convexityfor starrikefunctions r550. Zmorovid, v . A. on boundsorder a in the circle lzl 1.Mat.Sb.68(110X1965),518_526;MR33#5875.lArner.Math.
I
b-_
252
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
20?-213|.[6, 9, l2l Soc.Transl. (2)80(1969), closs of extremalproblems associatedwith V. a A. On 1551. Zmorovid, regularfunctionswithpositiverealpartinthecircle|e|< no. 4, 12-21;MR 33 #5901.[Amer. Ukrain. Mat. Z. 17(1965), 6, 35,491 Math. Soc.Transl.(2)80(1969),215-226.1.12, 1552. Zmorovid, V. A. On certain theoremsof the theory of extremal of analyticfunctions. (Ukrainian. Rusestiamtesin special classes sian and Englishsummaries)Dopovidi Akad. Nauk Ukrain. RSi( 1965,980-984;MR 13 #5874.16,9, l2l 1553. Zmorovid, V . A. On the radius of |-spirality of |-spiral functions in the circle le I maries)DopovidiAkad. Nauk Ukrain. RSR 1965,1262-1265;MR 32 #7738.[6, I ll Si (m) and S, 1554. Zmorovid,V. A. Rolotion theoremsfor the classes (m; a; n) for functions univalentin lzl and English summaries)Dopovidi Akad. Nauk lJkrain. RSR 19661 , 1 1 7 - I l 2 I ;M R 3 4 # 2 8 5 7 . 1 2 , 6 1, 0 , 2 3 , 4 9 1 1555. Zmorovid, V. A. On the boundsof starlikenessand of univalence incertainclassesoffunctionsregularinthecircle|z|< tro. 3,28-39; MR 33 #7525.lAmer. Ukrain. Mat. Z. 18(1966), (2)S0(1969), 227-2421.[6, 11, 43] Maih. Soc. Transl. 1556. Zmorovid,V. A.; Acilov, H. On a classof univalentmappingsof a circularring. (Russian.Uzbek summary)Izv. Akad. Nauk UzSSR tro. 3,17-22; MR 35 #[email protected] Ser.Fiz.-Mat.Nauk 11(1967), 1557. Zmorovid,V. A.; Gudz,L.A. Sometheoremsthat ore connected with A. Marx's conjecture.(Ukrainian. English and Russiansummaries) Dopovidi Akad. Nauk Ukrain. RSR Ser. A 1974, 687-691,764;MR 50 #7501.[6, 13, l6] 1558. Zmorovii, V. A.; Jakubenko,O. A. On certaintheoremsfromthe theory of special classesof functions analytic in a disc. (Ukrainiar^. E,iglish anci Russian sunnmaries)Dopovidi Akad. I'{auk r.Jkrain.RSR Ser.A 1972,4M-407,4io; MR 46 #5599.[5, 10,53J 1559. Zmorovid, V. A.; Jakubenko, O. A. On the theory of extremal properties of special classesof conforntal mappings. (Ukrainian. English and Russiansummaries)Dopovidi Akad. Nauk Ukrain. 9 ;R 4 6 # 9 3 2 5 .[ 5 , j 5 , 4 9 1 R S R S c r .A ( 1 9 7 2 ) , 5 9 7 - 6 0 0 , 6 6 M 1560. Zmorovid,V. A.; Jakubenko,O. A. Bounciedsiarlikefunciionsin the disclzl Dopovidi Akad. Nauk Ukrain. RSR Ser. A(1972),691-693,7&; MR 46 #9327. 16,22, 231 1561. Zmorovid, V. A.; Korobkova, I. K. A certain generalizotionof
B IBL IOGR .A P H YOF S C H LTC H TFU N C TION S(P A R T II)
253
Bernqrdi's integral transform. (Ukrainian. English and Russian summaries)Dopovidi Akad. Nauk. Ukrain. RSR Ser. A 1974, 595-597 , 669;MR 50 #10230.[10, 851 1562.Zmorovid, V. A.; Korobkova, I. K. On the theory o"f antlytic functions, with positive real part in the disc. (Russian)Ukrai,r. .12, 551 Mat. 2.26(1974),545-549,575;|vIR 50 #13535 1563. Zmorovid,V. A.; Nikolaeva,R. V. An applicationof Abel's integral equation in the theory of univalentfitnctions. (Ukrainiart. surnmarieslDopovidi Akad. Nauk Ukrain. English and R.ussian RSR Ser. A 1975,no. 5, 3q7-399,473;MR 52 118406'
[--
254
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
TOPIC REFERENCES
Following is a list of ninety topics dealing directly with or closely relatedto the theory of univalentand p-valentfunctions.Following each topic is a list of those referencesin this B:blicgraph)' which contain '' reiults perraining-,othat topic. The toplcsare numberedl,'1,T2, T3, BibliT90. The threetopicsTl5, TlT,and r59 are nor beingusedin this ograph;'. Tl. The principte o.fSubordinatio;l(niajorization,quasi-subordination' hull-subcrdination). 136,I 37, 139,148,149', 14,42,43,50,78, 87,99, 125,133,I ?4, 13:, 188' i 5 4 , i 5 5 ,1 5 6 ,1 5 7 ,i 5 8 , l 5 9 , 1 6 1 ,1 6 2 , l & , t 6 5 , l ' 7 6 , 1 7 7 , 1 8 3 , 399,482' 202,207 ,208, 212,213,272,307,330, 335, 340,354,387, 629', 542,544,545,546,548,54g,550.551, 552.503,613, 614,615, 830' 686, 687,694,695,7M,710, 72g, 745,i 54,818,825,827,829, gl2' gM,906, 913' 910, 831, 837,839, 840,8+i, 850,8-59,892,903,
TOPIC REFERENCES
, 1 2 2 , 1 1 2 6 , 1 1 5l l0s ,2 , 1 2 1 9 , 9 1 5 ,g 2 7 ,g 4 2 , 9 5 39, 5 5 ,9 8 1 ,1 1 0 9 1 ,1404, 1224,1226,1250,1254,!322, 1325,1385,1389,1390,1391 , 5 2 6 , 1 5 2 81,5 2 9 1 1 4 0,51 4 0 7 , 1 4 6 71, 5 0 9 1 part (functionalsof positiverealprrrt). Tz. Functionsof poshive Real gl, 1 7 6 ,1 8 4 ,i 9 5 ' 2 0 3 '2, O 4 ' I l 5 , 3 2 ,3 4 ,4 2 ,4 3 , 1 0 7 ,1 4 1 ,1 4 2 ,1 4 7 , 354,376, 224,247,z's+,255,256,257,258,267,268,278, 319, 35,2, , 6 , M 8 ,M 9 , 4 5 0 ,4 5 2 , 4 5 4 , 4 5 45 5, 9 , 4 6 04' 6 2 '4, 6 3 ' , 3 8 7 ,4 ? 7 , 4 4 0M 583,584,585, 571l, 470,47g,487,4g3,4g4,522,523,542,546,551, 640,642,643,il4, 557,664'6o6'667'668'672' 588,627,628,531, , 56' 81 3 ,3 8 , 358 6 8, 1 6 , 8 4 ,7 0 3 , 7 1 6 , 7 1782, 3 , 7 2 8 , 8 2 4 , 8 3 679,68C g o 7 , g | 2 , 9 2 | , 9 2 4 , 9 2 8,950, 8 5 8 ,8 6 9 ,8 7 7 , 8 8 38,8 4 ,8 8 5 ,8 8 6 ,8 8 ? , 105J' 9 6 l , 9 6 4 ,1 0 1 0 ,1 0 1 5 ,1 0 1 6 ,1 0 3 1 ,1 0 3 3 ,1 0 4 9 ,1 0 5 0 ,1 0 5 2 , 1, 1 1 3 , 1 1 0 8 , 0 8 6 1, 0 8 7 1, 0 8 81, 1 0 5 , 1 0 7 6 1, 0 1 71, 0 7 81, 0 8 0 1, 0 8 4 1 1189, 1 1 1 9|,| 2 0 , | i 2 4 , 1 1 3 5t,1 3 9 ,1 1 4 0l,1 4 l , | | 4 4 , 1 1 4 81, 1 8 7 , |,2 8 9 , | 2 8 1 I 1 1 9 ,81 , 2 2 : r| ,2 2 8 ,| 2 3 4 , t 2 4 g ,| 2 5 0 ,| 2 5 3 ,| 2 5 6 ,1 2 5 8 , i295,1296,1298,1299,1320,l35l' 1290,l2g|, 1292,1293,1294, |420, | 3 5 2 , 1 3 5 4| 3 , 5 7 ,1 3 8 11, 3 8 71, 3 8 8|,3 9 7 ,| 4 | 5 , 1 4 1 6|,4 | 9 , 1513, | 4 2 t , | 4 3 7, | 4 4 0 ,| 4 6 3 ,| 4 6 7, | 4 7 2 ,| 4 7 7 ,1 4 8 1|,4 9 6 ,| 4 9 9 , 1 5621 1 5 5 4 ' 1 5 5 1 , 2 ,1 5 4 3 , 15191 , 520,1528,1529,1534 ,1541 T3. Integral Meons. 5l'7, 551' 567', 587', 387 [78, 87, 126,172,274,282,354,386, ,480, 1 1 2 5 ,| 1 2 6 , 7 0 6 , 8 7 4 , 9 5 6 , 1 0 ,2|10 2 7 , 1 0 3 8 ,1 0 3 9 ,1 0 4 0 ,l M 8 , 1 0 5 1 , | 523l. | 2 2 4 , | 2 2 6 , | 2 5 4 , | 3 2 0 , 1 4 3 8 ,| M , | 4 7 3 , | 4 7 6 , 1 4 7 7 , (p-valency); Trans' T4. Sufl^icient(necessary)Conditions for Univalency (J formations Preserving nivalency' [ 5 , 8 , 2 6 , 2 7 , 2 8 , 3 3 , 6 4 , 7 1 , 7 2 , 7 5 , 7 6 , 7 7 , 7 8 , 7 9 , 8 0 ' 1 0 1 ' 110920' ', 1 0 3 ' , 1 8 3 '1 8 5 ' , 1 0 8 , 1 2 4 , 1 2 6 l, 2 g , 1 3 0 ,1 3 3 , 1 4 3 , 1 4 4 , 1 4 5 , 1 7 l , 1 7 4 ' 255' 268' 273', 202, 203, 214, 217, 220, 225, 227, 245, 247, 248,252' 356',370', 281,288,28g,2g0,2g3,2g4,296,303,334,337,352'355' 4 5 1 '4 7 5 '4 7 8 '4, 7 9 ' , 3 9 3 ,3 9 5 , 4 0 7 , 4 0 g , 4 1 04, 1 3 , 4 2 4 , 4 3 6 , 4 3 7 , 4 3 9 ' 687,694, 6 4 8 0 ,4 8 9 , 4 g 5 , 5 4 2 , 5 4 9 , 5 5 2 , 5 5 4 , 5 7 5 , 660015, , 0 8 ,6 5 8 , 8 1 7 ,8 3 5 ,8 3 6 , 6 9 6 ,6 9 7 ,7 0 7 ,7 5 5 ,7 5 6 ,7 5 7 ,7 6 2 ,7 7 3 , 8 0 28, 0 5 ,8 1 5 , 9 1 0 ,9 | 4 , 9 2 8 , 9 0 8 , 8 M , 8 5 1 ,8 5 3 ,8 5 8 ,8 6 8 , 8 7 2 , 8 8 89, 0 0 ,9 0 3 ,9 0 6 , 1 0 0 4 ,1 0 1 1 ,1 0 1 4 , 9 3 3 , 9 4 6 ,9 5 6 , 9 5 8 ,9 6 6 ,9 6 9 ,9 7 1 r , 9 8 69,9 2 , 9 9 9 , 1055'1063' 1054' 1020, toz|[ 1031,1037,1040,1050,1052,1053, ll25' ll37' 1 0 8 6 ,1 0 8 8 ,1 0 9 0 ,1 0 9 5 ,l o g 7 , 1 1 0 0 ,l l l 0 , 1 1 1 3 , 1 1 2 4 , 1250,L259,|260, 1199,|22:^,|222, t223, |225, |228, |23|, |248,
h-_
I
256
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
, 2 9 7 ,1 3 0 1 ,1 3 c 4 ,1 3 0 6 ,1 3 0 7 ,1 3 0 8 ,1 3 1 0 ,1 3 1 6 '1 3 1 7 , 1 2 7 4 ,1 2 7 6 1 ,1406,1407,1414, , 3 3 5 ,1 3 5 3 , 1 3 6 71, 3 8 0 ,1 4 0 1 1 3 2 1 , 1 3 2 41, 3 2 7 1 1 4 1 7 , 1 4 2 01,4 3 8 , 1 4 4 31, 4 6 1 , 1 4 6 41, 4 6 9 , 1 4 8 61, 5 2 9 ,1 5 3 6 '1 5 3 9 , 1 5 4 ,11 5 4 3 ,1 5 4 8 1 functions), and Generalizations. T5. Close-to-Convex(linearly qccessible 1 8 1 ,1 9 4 ,1 9 5 , 1 3 4 , 4 4 , 7 88, 0 , 1 0 2 ,1 0 6 ,1 1 3, l 4 l , 1 4 2 ,1 4 3 , 1 4 4 , 1 4 5 , 2C3,2I4, 220,221,227, 248,252,273, 278, 281,292, 340,3 54, 386, 391, 436,440,442,443,446,453,456,46A,480,520,524,526,542, 7 ,0 3 , 7 4 3 , 5 4 3 ,5 4 6 , 5 . 4 85 ,5 0 ,5 5 1 , 5 7 2 , 5 8 86, 1 6 , 6 9 2 , 6 9 3 , 6 9 4 , 6 9 8 8, 6 9 ,9 0 6 . 8 6 7 , 8 6 8 8 6 6 , 8 5 5 , 7 4 7 , 7 4 8 , 8 0 2 , 8 0 38,3 5 ,8 3 6 ,8 3 7 , 8 3 8 , 1051 , 1052, 910, gl2, g28,931 , 943,950,957,999,1004,1006,1040, 1 0 5 3 ,1 0 5 5 ,1 0 5 9 ,1 0 6 0 ,1 0 6 l, 1 0 7 6 , 1 0 8 2 ,1 0 8 4 ,1 0 8 5 ,1 0 8 7 ,1 1 0 9 , , 1 3 9 ,1 1 4 2 ,1 1 4 9 , 1 1 7 81,1 8 0 ,1 1 8 4 ,1 1 9 9 , 1 2 1 9 , 1 1 1 9 ,1 1 2 0 ,1 1 2 4 1 1220,1222,1225,1231,1245,1246,1249,1250,1259,1260,1301' 1 ,4 0 0 , 73 , 3 3 ,1 3 4 0 ,1 3 5 1 ,1 3 5 3 , 1 3 8 2 , 1 3 9 7 1 3 0 4 ,1 3 2 1 , 1 3 2 3 , 1 3 2 1 1401 , 1 4 0 9 ,1 4 4 1 ,1 4 6 9 , 1 5 C 21,5 1 4 ,1 5 2 3 , 1 5 4 31, 5 4 8 ,1 5 5 9 1 T6. StartikeFunctions, Spiral-tike Functicns, and Generslizations. 1 0 1 '1 0 2 ' [ 2 0 ,3 0 , ] 3 , t 4 , 4 2 , 4 3 , 4 4 , 5 1 , 5 4 , 6 6 , 7 0 , 9 1 , 9 2 '9 3 ' 9 9 ' 1 0 3 ,1 0 6 ,l l 2 , 1 1 3 ,l l 4 , 1 1 5 ,l l 7 , 1 1 8 ,l 1 9 , 1 2 6 ,l 3 l , l 4 l , 1 4 2 ,1 4 3 , l M , 1 4 5 ,i 4 6 , 1 5 5 ,1 6 0 ,1 6 2 ,1 6 3 ,1 6 5 ,1 6 6 , 1 7 01, 7 6 , 1 7 9 , 1 8 11,8 4 ' I 85, I 88, I 9 l, I 92, Ig4, 195,I 98, 202,203,214,220,221,225,229, 230,248,253,254,257,268,269,273, 281,29l, 293,3 I 3, 314,319, 326,327,330,335, 340,342,343,344,345,347,348,349,351,352, 354,356,357,377,37g,388,391, 392,394,420,437,438,439,447, 453,455,457,458, 459,460,466,468,475,488, 489, 517, 525,526' , 4 2 ,5 4 3 ,5 M , 5 4 5 ,5 4 6 , 5 5 05, 5 1 , 5 5 2 , 5 5 35, 8 i , 5 8 2 ' 5 2 7 ,5 2 8 , 5 4 0 5 583,586,587,588, 5gg,600,601, 602,603,606, 614,615,616,619' 629,533,635,639,641, 642,543,658 665. 666,688,689, 692,693' 7'16-' 695, 697,703,70),7 12,7 13,726,727,7 45,747,748,7 52,775, 8 4 4 ,8 4 8 ' 7 7 7, 7 9 0 , 7 g 1 , 8 0 2 8 , 0 7 , 8 2 5 ,8 2 6 , 8 3 08, 3 4 ,8 3 5 ,8 3 7, 8 4 1 , 8 5 0 , 8 5 2 , 8 5 38, 5 5 ,8 5 7 ,8 5 8 ,8 6 0 ,8 6 6 ,8 6 8 ,8 7 3 ,8 7 4 , 8 8 28, 8 4 ,8 8 7 ' 92-7 8 8 8 ,8 8 9 ,8 9 1 , 8 9 2 , 8 9 3 ,g M , 9 0 6 , 9 1 2 , 9 1 3 9, 1 5 ,9 1 6 , 9 1 7 ,9 2 5 , g28,930,g41,952,957,966,968,97g,988,989, 99c,991,995,997.', ggg,1002,1009, 1012,1014,1015,1031,1036,1038,1039, I'M3' 1 0 8 3 ,l 0 q 4 ' 1051 , 1 0 5 2 , 1 0 5 3 ,1 0 5 4 ,1 0 7 1 1, 0 7 8 , 1 0 7 9 , 1 0 8 01 ,0 8 1 , 1 0 8 5 ,1 0 8 7 ,1 0 8 8 ,1 0 9 0 ,I 1 0 9 , I 1 1 3 , 1 1 1 9 ,1 1 2 0 ,1 1 2 2 ,1 1 2 3 ,l l ? : ' , 1 1 3 2 , 1 1 3 3 , 1 1 3 14 1, 4 7 , l l 4 g ,1 1 5 0 ,1 1 5 3 ,1 1 7 0 ,1 1 7 l, i \ 7 7 , l l l ? ' 1190,ll9l, 1195, 1203,1204,1205,l2lg, 1221,1224,1225,1226',
TOPIC REFERENCES
257
1250',1273' 1283' 1294', 1234,1241,1242,1245,1246,1248,!249' | 3 2 5 , | 3 2 7 , 1 3 3 0 ,1 3 3 1 ' | 2 g 7 , 1 3 0 4 ,1 3 1 9 ,| 3 2 0 , | 3 2 | , | 3 2 2 , | 3 2 3 , 1 3 5 3 ,1 3 5 6 ,1 3 5 7 ' 1 3 3 5 ,1 3 3 6 ,1 3 3 9 ,| 3 4 2 , B + q , 1 3 4 8, | 3 4 9 , 1 3 5 0 , 1 - 1 5 0 , | 3 6 2 , 1 3 7 8 , 1 3 8 3 , 1 3 8 4 , 1 3 8 5 , 1 3 8 6 , 1 3 8 7 , 1 3 9 11, |431962, , | 3 9 1 , , 4 0 8 ,| 4 0 9 , | 4 \ 0 , 1 4 1 5 , , | 4 0 2 ,! 4 0 4 ,| 4 0 , 71 1 3 9 8 ,1 4 0 0 ,1 4 0 1 1 4 1 8 , 1 4 1 9 , 1 4 2 0 , 1 4 3 7 , 1 4 4 1 , 1 M 2 , 1 M 4 ' 1 4 6 7 ' , 1 4 6 9 ' 11457221',1 4 7 3 ' , l51l, |5|2, 1514, | 4 7 4 | 4 7 5 , ! 4 , 7 6 |, 4 7 7 , | 4 8 7 , 1 5 0 0 ,1 5 1 0 , 1 5 3 8 ,1 5 4 0 ,1 5 4 1 ,| 5 4 2 , | 5 2 2 , | 5 2 6 , | 5 2 7 , 1 5 2 8 ,1 5 3 3 ,1 5 3 4 ,| 5 3 7 , 15411550,1551,1552,1553,1554'1555'!55?',1558'15601 T7. Length of Imoge Curve' [51,17g,204,225,278,287,310,311'?24'?49',350'376',480',620', 6 5 0 , 6 8 9 , 8 4 9 , 8 6 3 , 8 7 4 , g 5 2 , g 5 7 , g 7 4 ' 9 8 1 ' , 1 0 3 9 ' , 1 0 5 1l$s ',1054',1055' 1320',1392',l44l ', 14r',2', ' 1086, I 128, ll4g, 1180, 1234, 1235' 1477, 1487) TE. CoefficientBoutidsfor I\on*t I
- lont
[81,359,362,376,466,468,609'649'881',945',1040',1047',1153', 1155,1220,15431 T9. Meromorphic (JnivarentFunctions Convex, Close-to-Convex'etc'
(functionars),incrudingstarlike,
1 2 8 '1, 3 4 ' 1, 3 6 '1, 7 6 '2, 3 0 '2, 3 3 ' , 91 [ 1 , 8 , 2 7, 6 8 , 1 1 , 7 2 , ' , 1 8 , , 9 6 , 1 0 4 ' 243,265,27g,282,296,'314,315'316'317',331',333',340',421',129', 441,457,478,489,490',506,524'535'583',621 ',647',650',652',664' 7 51',757',759'764', 149',750', 727' 776:' 722:, 13, i 12, 7 709, 708, 688, 8 5 7 '8, 6 7 ' 8 7 7' , 9 3 49' ,3 5 '9, 3 8 ' , 77|,7g!,796,797,8148 ; 23,842'843' 1076'1078' g3g,g40,gM,950, g5r: g52,g54'966'1002'1035'1043', |0,7g,1080,1081,1083,1094,|||2,1113,1130,1131,1141,1151, 1155,1158,i170,||7|',|234,t241,|242,|243,|261,t278,|289, |2g|,|2g5,|296,|332,1351,|357,1358,|?94,|4|9,|420,|436' 1 4 4 5 , 1 M 6 , 1 4 4 7 , 1 4 4 9 , 1 4 5 0 , 1 4 5 1 ' 1 4 5 2 ' , 1 4 5 3 ' ,1520, 1 4 5 41522' ',1455',1456', l47g' 1519, 1476' 1475, 1472,, 1466:, 1461, 1457,1459, 1535,1536,153i,1546,1547'1549'1550',15521 Tl0.ConvexFunctions(andgeneralizations). 14,20,30,33,34,54,"1!,72'gl'gg'102'106',125',139',141',142' 143.144,145,147,155,161,162'165'166',176',179',180',183',188', |g4,|g5,20,2,2|2,2|4.,22|,227,23|,232,24,7,248,252,254,259,
25E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
261,264,266,268,269,272, 273, 29l, 293,324,326,340,342, 3 46, 350,352,354,376,378,386,388,397,399,453,455,457,460,473, 475,479,518,526,542,543,54A,551,552,568,570,619,633,634, 6 8 7 ,6 9 3 ,6 9 5 ,6 9 8 ,7 0 3 ,7 M , 7 1 2 ,7 4 5 ,7 4 8 ,7 9 5 ,8 1 7 ,8 3 4 ,8 3 6 ,g 4 l , 8 5 5 ,8 5 9 ,8 6 6 ,g 6 g ,8 9 l , 8 9 3 ,8 9 5 ,W , 9 0 5 , 9 0 6 ,9 1 0 ,9 1 2 , 9 1 3g, l 5 , 9 2 5 ,9 2 7 , 9 2 8 , 9 5 5 ,9 5 7 , 9 6 8 ,9 8 8 ,9 9 0 ,9 9 1 , 9 9 3 , 9 9 7 , 9 9 9 ,1 0 3 1 , 1 0 3 6 ,1 0 3 8 ,1 0 3 9 ,1 0 4 0 ,1 0 5 0 ,1 0 5 1 ,1 0 5 2 ,1 0 5 3 ,1 0 5 4 ,1 0 5 5 ,1 0 6 1 , 1577,1078,1084,1085,1087,1089,1090,I I 13, 1I lg, I 120, 1122, 1 1 2 1 ,1 1 3 9 ,1 1 8 9 ,1 1 9 0 ,1 2 0 4 ,l 2 l g , 1 2 2 1 , 1 2 2 5 , 1 2 2 61, 2 2 7 , 1 2 3 4 , 1244,1245,1246,1248,1250,1259,1273,1282,1294,1297,l3lg, 1 3 2 0 , 1 3 2 r , 1 3 2 3 , 1 3 3 2 , 1 3 i3333, 5 , 1 3 3 6 ,1 3 3 9 ,1 3 3 9 ,1 3 4 7 ,1 3 5 3 , 1 3 8 5 ,1 3 8 6 ,1 3 9 2 ,1 3 9 6 ,1 3 9 9 , 1 4 0 0l ,4 0 l , l 4 M , 1 4 0 5 , 1 4 0 7 , 1 4 1 2 , 1 4 1 8 , 1 4 2 0 , 1 4 6 9 , 1 4 7 0 , 1 419511, 2 ,1 5 1 4 ,1 5 3 4 1 , 5 4 1 ,1 5 4 5 ,1 5 5 9 , 15611 Tl l. Radiusof Slarlikeness(of various classesof functions). 1 3 0 , 3 2 , 3 4 , 9 1 , 9 2 , 9 4 , 9 51,0 0 ,1 0 3 ,1 0 5 ,1 0 6 ,1 1 4 ,I 1 9 , 1 2 3 ,1 4 5 , 147,205,214,224,229,247,253,254,257,267,287,298,376, 437, 438, 439,447,449.451,453,454,457,458,460,487,497,5 16,522, 5 2 7 , 6 1 96, 3 5 .6 3 9 ,6 4 1 ,& 2 , 6 5 5 ,6 6 6 ,6 6 9 ,6 9 9 ,7 1 4 ,1 2 8 ,8 5 5 .8 6 8 . 8 7 3 , 8 8 2 , 9 8 7 , 9 8 8 , 9 8190, 1 4 1 , 0161 , 0 3 3 , 1 0 7 61,0 7 7 1 , 0 7 8 ,1 0 8 1 , 1 0 8 4 ,1 0 8 7 ,1 0 9 0 ,1 1 2 4 ,1 1 3 4 ,I 1 8 7 ,1 1 8 9 ,1 l 9 E, 1 2 2 7 , 1 2 4 2 ,1 2 5 1 , 1262,1289,1293,1294, 1295,1297,1298,1299,1335,1338,1350, 1352,i357, 1361,1381,1386,1387, 1396,1467, i472, 1487,l5l l, 1526,I 528, I 533, 1542,l5M, I 553, I 5551
Tl2. Radiusof Convexity(of various classesof functicns). [32, 33, 35, 73, 91, 93, lffi, i03, 106,ll7, 123,142,211,212,214, 220,225,239,24i . 255,267,268,289,292,330,3,10,349, 35i, 374, 3 7 6 , 3 7 ,73 8 0 ,3 8 1 ,4 4 0 ,4 4 1 .4 4 2 ,M 3 , M 6 , M 9 , 4 5 1 ,4 > 3 , 4 5 i ,+ 6 0 , 5 2 6 , 5 2 ,75 4 2 , 5 4 4 , 5 7 2 , 6 1 56,1 9 ,6 3 5 ,6 4 0 . 6 4 2&, 3 , f f i , 6 5 7 , 6 5 8 , 6 6 7 , 6 6 87, 0 2 ,7 2 6 ,7 2 7 , 7 6 5 7, 7 6 ,7 9 5 , 8 0 58, 5 5 ,8 5 8 ,8 6 8 ,8 8 2 ,8 8 4 , 895, 887, 888, 889,905, 921, 924, 926,930, 93I , 950, 966, 967, 969, 9 8 4 , 9 8 7 , 9 8 89, 9 0 ,9 9 6 , 1 0 0 2 1, C 0 91, 0 1 0 ,l 0 l 4 , 1 0 1 5 ,1 0 1 8 ,1 0 3 3 , l c 6 l . 1 0 7 9 ,1 0 8 1 1 , 0 8 3 ,1 0 8 4 ,1 c 8 6 ,1 0 9 0 ,| 1 2 4 ,1 1 3 5 ,1 1 3 9 ,I l 4 l , Ll44,l187, I190, I196, I198, 1235,1242,1249,1251,1257,1260, 1289,1291,1292, 1294,1295,1296,1297,1318,1333,1335,1338, 1 3 4 6 , 1 3 4 81,3 4 9 , 1 3 5 0l J, 5 1, 1 3 5 2 , 1 3 5 7 , 1 3 8 11,3 8 6 ,1 3 E 7 , 1 3 9 6 , 1 4 i 6 , 1 4 3 7 ,i 4 6 j , 1 4 7 i . 1 1 7 2 ^1 1 8 7 ,1 5 1 9 , 1 5 2 0 , 1 5 2 '1, t5, 3 3 , 1 5 3 4 , 1 5 3 5 ,1 5 3 8 ,1 5 4 3 , 1 5 4 6 ,1 5 4 8 ,l 5 _ s 01, 5 5 2 1
r ,". 1"s ':
13
',il
TOPIC REFERENCES
259
Tl3.Typicolty.rea|Frunctiorrs(andgeneralizations). 1 4 2 , 4 3 , 9 1 , 1 5 1 , 1 7 8 , 1 g 7 , 2 6 7 ' 3702',705', 0 0 ' 3 0 11' , 3 1 9 ' 3819', 2 5 ' ,820' 366',382'4M', i, 628'512'583' 546,55 \?:725' 47l, 521,, 465, g?g'1005'1118' 1148'1204't207'l'224'122i' g2(1', 821, 8'79,904, 15571 , neq' 15M' 1540', , l'247,1258 1236,1237 ond Generalizations' T 14. P-volent(weaklyp-valent), 427' 453, 466,468, 475, 482, 3',77 ' ' 364,36',7 I03 ,246,282,28?, 653, u, , 5 8 '5 5 9 '5 6 2 '564,56i, 599,600, s i l , 5 3 8 ,5 1 ,' 75 4 8 ,5 4 9 ,5 5 0 5 976,977,978, '713,714,797,803, 804,805,807',866',867'E 6 9 , 8 7 8 , loSo'1 0 8 7 1, 1 0 3 1, 1 8 7 1, 1 9 9 , 1c06,rooo,lo3o, 1042,lo44,lo5o' 1398, ', 1375' 1 3 8 0 1, J 8 1, 1 3 9 ' 7 , , 1294,1343, 1373 i226:,n4l , 1255 I5361 1484,1485' 1486' 1 4 8 7 I, 5 0 8 , I 5 2 8 ,
, , 1420 tigg,1 400, 1413
(This topic is not being usec') Tl5. Distortion Theorerts T16. Coniectures,OPenProbletns' 1 1 g , 7 8 , 8 7 , 1 0 2 , 1 1 2 , 1 1 7 ' 1 7 739^5-,398' ' 1 8 7 ' 2 0405' 0 ' , 2 1 4 ' 2459' 1 5 '473', 2 5 2 474', '268',278', {q' 2gg,330,335,336,n;,aM,355' 613', 606', 603', ', 59-1', 550',55'7 542'146^'', ,482, 484"12'+' 475,476,4'77 g + s ' 8 6 8 ' , 8 7' ,18 ' , 7848' 9' , 9 C 4 ' , 819' 6 1 9 , 6 2 0 , 7 0 4 , 7 4 5 , 7 4 6 "8a108r '' ' ll24' 1109'1113 1079', gg2'1020-', 1054', 905,906, 914,956,96;' l z l g ' \ z } a ' l 2 2 l ' 1 2 2 41, 2 2 6 ' 1 1 3 11 1 53 , 1 1 6 4 , 1 l d, l l 7 l , 1 2 0 0 , ', 1304',1320',1323',1325',132'7 1279', 1228,1241,1242,124;"n54' 1 4 0 21' 4 4 41' 4 4 61' 4 7 4 , 1 4 7 9 ' t 3 2 g1, 3 3 51. 3 5 01, 3 5 i ,i l g r , r + o o, 1 5 3 01, 5 5 7 j (This topic is not beingused.) Tl7 . CoeJficientBourrds T18. Area of Image Domain'
6',M 0 , M 6 , 4 8 C ,5 8 3 ,5 8 6 , \72,,2M, 225,261,3I 1' 355',3',7 163,162, 9 8 1 '1, 0 3 9 1, 0 5 1 , 1 0 5 41 ,0 5 5 , '78',7 z g o , , 7 8 9 ,8 6 3 ,8 7 3 ,8 7 4 , 9 7 4 ' 9 7 9 ' 1086,1149,1254,l44l, 14871
values,KoebeSets,Bloch'sconstant). (m\ssed T 1 9 . CoveringTheorems
[1,18,19,20,11'7,143,1M,145,152'153',163'178'201',212',260', 2 6 2 , 2 6 3 , 2 6 6 , 2 g 1 , 3 0 5 , 3 0 6 , 3 1 3 ' 3 3745', 5 ' , 3747', 7 6 748', ' , 3 9790', 1 ' , 4791' 40'493',507',513' 7 ll',7 12', .650;685,686,68',7' 57l, 642,647 793,826,832,834,883,889,891'900',903',g27',958',97',7',978',980
260
B IBL IOGR AP H YOF S C H LIC H T FU N C TION S
1020,t021,1023,t024,1025,t026, I104, 1124,1126,tt62,r164, , 301, 1201,1203,1205,1206,1 2 1 2 ,1 2 1 6 ,l2l7 , 1243,1262,t 2 9 2 1 1 3 3 3 , 1 3 31347, 5 , 1348,1 3 7 6 ,1 3 8 4 ,1 3 8 6 ,1 4 0 2 1, 4 1 1 ,t413,1429, l48g 1469 1482, , 1492,1497,1498,1 5 2 7 , 1 5 3 9 1 , T20. Partial Sums(Cesiro sums). [3, 125,139,r47, 193,2m, 2M, 436,442,+47, 448,451,452,540, , 087, 6 3 5 ,6 8 7 , 6 9 06, 9 1 ,7 2 0 , 7 4 6 , 7 5 3 , 8 3 6 , 9 1 0 , 9 1130,6 0 ,1 0 7 6 1 15291 1487 1352, 1323, 125A, n2l, 1222,1,244,1249, , T2l. Coefficient Bounds (relations) -fo, Functions (functionats) of Positwe Real Part of Topic 2 . [15, 107,125,139,147,2M, 436,450,459,462,540,542,571,585, 5 8 8 ,6 2 7 ,6 2 8 ,6 2 9 , 6 3 5 ,6 4 0 ,6 4 2 ,6 5 7 , 7 4 68, 2 4 ,8 6 9 ,8 8 3 ,8 8 5 ,8 8 7 , 9 0 7 , 9 1 0 , 9 1 3 , 1 0 8 6 ,1 0 8 7 ,I 1 8 7 , 1 2 2 2 ,1 2 4 9 ,1 2 5 0 ,1 2 5 6 ,1 2 8 1 , 1323,1352,1415,1467,15i31 T22. BoundedFunctions (functionals). 1 4 , 3 1 , 3 25 , 9 , 9 1 .I I ! , I 1 5 , 1 2 5 ,1 2 7 ,1 3 0 ,1 5 4 ,1 5 6 ,1 6 6 ,1 7 0 ,1 7 9 , 180, 2 \3 , 236, 237, 238, 265, 216 ,28 I , 295, 297, 305, 306, 307, 30E, 3 0 9 ,3 2 3 , 3 4 1 , 3 5 13,5 3 ,3 5 3 ,3 8 4 ,3 8 5 ,3 8 8 ,4 1 8 .4 3 0 ,4 3 1 , 4 3 2 , 4 3 3 , 134,438,450,453,496,497,507,522,536,588,605,621,622,624, 625,626,661,693,704,732,733,i34, 798,800,801,846,854,856, 883, 891, 895, 904, 919, 927, 936, 937,938, 962, 963, 971, 1050, 1 0 5 2 ,1 0 7 8, 1 0 9 2 ,I 1 2 8 ,1 1 5 5 ,I 1 6 3 , I 1 6 5, 1 1 7 3 ,1 1 8 7 ,1 2 0 1 ,1 2 0 3 , 1205,1209,1210,l2ll, 1229,1233,1242,1249,1251,t253, 1262, 1264,1271,\272, 1275,1276,1277,1290,1296,1298,1306, l40l, 1329,1347, 1354,1356,1357, 1367,1368,1369,1375,1381,"328, 1402,1418,1422,1423,1424,t425, 1426,1427,1443,1473,1477, 1 5 1 6 ,1 5 2 8 ,1 5 1 2 i, 5 6 0 1 T23. RepresentationTheorems(formulas). [ 4 1 , 1 3 0 l, 5 l , 1 7 8 ,1 8 4 .1 8 7 ,l 9 l , 1 9 2 , 2 7 3 , 2 7 82 ,8 8 ,2 9 3 , 3 \ 9 , 3 2 5 , 3 4 0 ,3 4 7 ,3 5 2 , 3 5 53, 8 2 ,4 0 9 ,M 5 , 4 6 5 ,4 6 9 , 4 8 14, 8 3 ,5 1 3 ,. 5 1 65, 4 2 , 5 4 6 , 5 5 15, 8 1 ,5 8 3 ,5 8 5 ,6 6 0 ,6 8 1 ,7 0 7 , 7 7 9 , 8 0 28,0 8 ,8 1 9 ,8 7 2 ,8 7 3 , 874, 879, 892, l0l I , 1012,1014, 1034, 1035, 1039,lM0, 1043, 1 0 8 0 ,1 0 8 3 ,1 0 8 8 ,11 0 5 ,11 0 6 ,l l 1 3 , 111 8 , l l 1 9 , 1 1 2 0 ,1 1 2 3 ,1 1 2 4 , 1125,I 138,I 153, 1207,1234,1256,1273,1327,1335,1342,134?, 1 3 4 8 ,1 3 8 2 ,1 3 8 5 ,1 3 8 6 ,1 3 6 7 ,1 3 9 7 l, 4 S , l 4 0 l , 1 4 1 9 , 1 4 9 11, 5 0 2 , 1 5 1 0 ,l 5 l I , 1 5 2 0 ,1 5 2 7 ,1 5 4 0 ,1 5 4 8, 1 5 5 4 ,1 5 6 0 1
TOPIC REFERENCES
261
Methods' T?A. Variationai(symmetrization) 55' 56',68',82',83',84',87',89',90', [18,19, 37,42,44,45,46,52,53, i i l . l ! 5 , 1 3 1 , 1 3 3 , 1 3 1 , 1 5 2 , 1 6 7 ' 1 6 8 ' 1 6 9 ' 1 8 4395', ' l ? l ' 2 3 042r', ',235'238' 391',392', 408', 3n:,313'341'342', 250,251,287,288,3U6; 498',500',530',532',569',576', 422,474,425,426,$2:, 434,485'486' 645 648', 651',661', 662',672' 601,601 , 612,626,633;$6:,638' 642:', ', 49,7 52,758, 7 60,769,792,808' 74|, 7 42,,.1 676, 7 03,7 07,7 33,7 34,, 896', 895', 860;875'!78',890',892',!?3'894', 842,843; 813,831,833, gl 98r', 938'gll'95i', g54' >' 976',982', 891,gl4, g20,g23,934"935: l 1 0 5 5 1, 0 5 8i,1 0 5 ,1 t 0 7 , l 0 E , 9 8 5 ,1 0 0 71, 0 i 2 ,1 0 1 3 |, 0, 2 5 , r c i a e . | | | 2 , 1 1 1 3 , 1 1 1 5 , 1 1 2 0 , t | 2 | , | | 2 2 , 1 | 2 3 , 1 112c6', 3 0 , 1!1209 3 1' ,1212', 1138,||,46, 1205 ' 1201' 1l?5' fi73' 1170; 161, i 1150,1152, 1225,1256,1266,1269,1271'1273'1274',1276',1341',13M'1383' 1432,1472,1478,15021 univalentFunc' Bounds(relations)for Meromorphic T25. coefficient 'toPic 9 ' tions of U 7 6 , 2 6 5 , 2 9 6 , 3 1 4 ' 3 1 5 ' 3 1 6 ' 3 3 18'8333g ' 5' C t 64' 3 51'8038' 6014' 174' 616' 4 ' 6 8 8 ' ,1 0 '3, M 7 0 8 ,7 1 2 , 7 4 9 , 7 5l0i t,, 7 6 4 ' 7 7 1 '8 4 3 ' , l4/ts',t 146',15221 1170,1171, 1234,l27g:,n3;',2'l4lg', (imagedomainshaveno common T26. (Jnrelated(di.sioint)Functions values). u5,59,60,88,89,90,196'308'512'514',515'6/'6',651',73t',811', 8I 6, 1019, i 42ll T27, Are,l Principle(and generalizations). 1 g , 6 2 , 2 6 5 , 2 8 2g, 2 , ',589',611' '5, 01250' 1,' 5135431' 3- 5688' 134' ,2538' 7 i +9, 6 , 3 3 8 ' 4 8 1 ' 591416'1 6 4 7 , 6 5 6 , 8 1 0 , 8 l l , a i o ' 8 2 3 '8 4 5 ' , 1480,15241 (suchas Besselfunctions'or of Functions speciat of univalence T28. functionshavingsPecialforms)' I24,25,121,322,469,675'700'701',?88',989'1016',1300',1M7' 1457.1458,14661 T29. RegionofVariabitity(ofcoefficients,orofcertainfunctionals). g2,1g7,237,238',240',242' 146,47,48, 49, 54, 6 8 , 1 6 0 , i ' 7 1 , i g \ , 1470, 47| ,485' 525', 528', 623', 467, 465 , 42g ,430, 2M,314,319,373,
262
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
6 3 6 ,6 3 7, 6 3 8 ,6 4 7, 6 6 1 ,6 8 3 ,7 2 5 , 7 3 3 , 7 3 4 , 7 4 1 , 7 4 9, 873787,8 4 2 , 1105, lcp.z,1024,1026,1049,1058, 886,921,936,937,946,982, 1 2 0 8 ,1209, l z 0 / , 1 1 1 4I,l 1 6 , I 1 3 0 ,I 1 4 8 ,1 1 7 3 , 1 1 7 14 1, 9 7 , 1 2 0 2 , 1210,l2ll, 1250,1259,13M, 1350,1355,1370,1371,1379,1382, 1 3 9 41, 4 7 8l,5 l l , 1 51 7 ,1 5 2 11, 5 4 81, 5 4 9 1 T30. Coefficient Bounds (relations)for Bounded Functions of Topic 22. 1127,170,180,281, 305, 306, 309, 358, 431,450, 536,588,624, 5 2 5 , 6 9 3 , 7 3 2 , 8 0 0 ,8 0 1 , 9 0 4 , 9 2 7 , 9 7 1 , 1 0 9 2 ,1 1 5 5 ,! 1 8 7 , 1 2 5 1 , 1271,1272,1275.1276,1277,1306,1328,1329,1368,1402,1418, 1422,1423, 1124,1425,1426,1.532! T3l. SchworzianDerivative, the Differential Equation w" * Qw 0. [8, I 3, 72, 78, I 35,227, 228,2o5,268,274, 334,337,370, 407,495, , 9 7, 9 8 4 , 9 8 7, 1 0 1 4 ,1 0 1 9 , 5 1 2 , 5 5 5 6, 9 6 , 7 6 2 , 7 7 38, \ 1, 8 2 3 , 8 5 8 8 105C,1052,1063,1090,1221,1304,1486,1494,15431 T32. Univalenceof Polynomlals(Schild, Remak, Hurwitz). u 2 2 , l z ' J , 1 2 4 ,1 7 l , 1 7 4 , 2 4 9 , 2 9 4 , 3 7 2 , 4 3 5 , 4 7 31,8 4 , 5 8 0 ,5 8 4 , 593, 659,746,799,830,910,919,929,932,1062,1091,I I 17, l'^45' 1183,1185,1186,1187, 1236,1237,1238,1239,:241, 1242,1252, 1 2 8 5 ,1 3 1 7 ,1 3 3 5 ,1 3 6 6 ,1 4 0 3 ,1 4 0 6 ,1 4 0 8 ,l n 9 , l 4 2 l l T33. Mean-valentFunctions (and generalizations). 86 , 2 , 3 6 4 , 3 6 65, 5 8 ,5 6 0 ,5 6 1 ,5 6 2 , n, 6, 7, 132,210,212,282,353 9 7 6 , 9 7 8 , l M z , 1 0 4 4 , 1 0 4, 5l M 6 , 8 8 0 , 8 8 1 , 6 5 4 , 8 7 8 , 6 5 3 , 5 6 3 ,5 6 5 , 1 0 4 7 ,1 0 5 1 ,11 5 3 ,11 5 5 ,1 3 0 3 ,1 3 0 4 ,1 3 7 6 1 T34 Bieberbach-Ei!enbergFunctions (generalizations and related classes;Grrelferfunctions;Aharonov pairs, etc.) 5 ,0 q ,5 i l , 5 1 2 , 5 1 56, 0 5 , 6 0 8 ' [ 9 , 1 1 ,i 5 , 1 8 ,8 8 , 1 3 8 , 2 6 2 . 3 0 7 , 3 0 8 646,651,1020,1021,11,J0,14931
T35. Curvsiure.LevelCurves. u 8 , 5 4 , 6 5 , 2 3 53, 5 0 ,3 7 4 , 3 7 5 , 3 7 83,8 0 ,3 9 8 ,4 1 2 ,4 7 3 ,4 7 4 , 5 0 E ' 620,659,682,895,9I 8, 921,957,972,973, 991, 520,525,528,539, 8372, ,1 1 0 4 1I,1 0 6 ,l l 2 7 , l 1 3 5 ,I 1 4 3, i 1 4 4 ,1 2 7 31, 2 8 61, 2 8 7 , 1 2 8 1551,lst9rl 1 3 9 J1, 3 9 5 , "171,
.d
TOPIC REFERENCES
263
of ropic 6' (reretions) for startikeFunctions T36. coefficientBounds 602 [ 7 0 , 1 0 1 , 1 1 8 , 1 2 6 , 1 qSg, 6 3 , 488. 1 7 0 S1S ' 1 7 6S+0,, ' ! 7 g553 ' 1 8 8 ' l 9587 l ' 1'9601 2 ' 2' 5 3 '', 2 8 1 ' 3 4 3 ' , , 4SS :58!; ,458, 347 ,348, 345 , 6 2 9 , 6 5 8 , 5 8 8 , 6 9 3 , 7 1 2 , 7 7 6 , 8 5 2 ' 8|5277'3, 8,18370' 181,8381' ,9?1,M 3 3' ,01,c r O 9 ' , 1 0 8 7 ' 1 1 7,1| 2 4 8 , | | 2 2 , | | 3 2 , 1 1 3,3 | i 1 q , l 1 7 0 , 1418, 1 3 8 7t'+ o z , l 4 1 51, 4 1 6|,4 | 7 , 1 3 3 11, 3 3 51, 3 4 8|,3 4 g , 1 3 5 6 , ' i5431 1467,1510,151I, 1522'1527 Lemma(andgeneralizations)' T37. schwarz's 1186'12541 [388,482,1085, convexFunctionsof TopicI0' (relations) for Bounds T38. coefficient t 1 4 3 , 1 4 4 , 1 4 5 , 2 8 1 , 3 4 6 ' 61470', 9 3 ' 714911 12',867',904',1122'1220'1248' , l4l7' 1418' 1273,1319,1335 (suchas gaps'realness'rnonocoefficients on conditions special T39. tonicitY,etc')' 244'248'364' 237 201,214,236, 150, 53, :2?|'240;2!):24,2' U2, 558'624',625', &g,+ro' +g5'489',46',4gl',4g2'5-42' 834',85I' 373,376,395, 805', 7 84',790', 'llg7 7'91', 7 33,7 34,7 47"7 5l' 7 52',7 83'', 663,684, ' 12'71'12'78' ', 1265 ttry',--tigz' g37 irss ' ,1056, 908, 886, 1305,1313,1314,1118'1335'i359'1439',1478',15251 T40.FunctionswhichareStartikeinoneDirection. ' 13011 1524,642,853,1297 in OneDi;ection' T41. Functionswhichore Convex 8 3 4 '8 5 3 ' , 8 ' , - u L7' ,4 7 ' , 5 4 2 '5 7 1 ' ^ l ? ' , 5 7 56' 2 5 2 4 ' 5 1 3 , 3 N , u13, l2g7' 1301'14191 1235', ,121;'1zzo' 1223' 926,1203,1205 (la" I s n)' Coniecture T42.Bieberbach u 2 , 1 4 , 4 5 , 8 7 , 1 6 7 ' 1 6 8 '424',' 1 8 7 'qis', 3 3 3q2s',485', ' 3 3 6 ' , 35310', 9 ' 550', , - 3 3593', 9 ' , 3594' 40',359',360', 423' 422' 421' 408, 405, 395, 1068' 1067' 1065', gzl' lnz0',1064', 610, 649,655,724'-767'9M', 1200, l ,d i , | 0 g 7 ,1 0 9 81- ,1 0 01, 1 0 1 , | 0 1 4 , 1 0 7 5 1 0 7 3 , 1 0 7 0 , 1069, 1483' t265"1304;1315' 1325'lM' rzrg, tzzl, tz26,1zsoi,l24g' 15081
2M
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T43. Radiusof Univalency(p-valency)(of various classesof functions). ',206, 2r2, [30, 3 l, 32, 54, 103, 116, 119, 122, 142, 146,178,205, 437, 438, 436, 428, l, 39 340, 214,224,228,253,256,257,288, 293, ,720448,449,454,460,475,478,482,522,5M, 572,699,702,707 1 0 7 8 ,1 0 8 1 , l 0 ' t 7 , 1 0 7 6 , 1 0 5 2 , 1 0 5 0 , 7 4 6 , 7 5 3 , 8 2 88, 8 2 , 9 1 0 ,1 0 1 6 , 1087,1088, 1094,1163,1189,1198,1227, 1241,1242,1244,1249, 1 2 6 41 , 2 9 8 1, 3 0 4 ,1 3 0 5 ,1 3 0 7 ,1 3 1 4 ,1 3 1 7 , 1 3 1 81,3 8 1 ,1 3 8 8 , l M 7 , 1448,1M9,1450,1451,1452,L453,1454,1455, 1456,1457,1459, 1460,l16i, \462,1453,1485,1503, 1528,L529,1555] T/g. SurveyArticles, Books, Cotlections of Various Papers, Symposiums, BibliograPhies. 371, 1 2 2 , 3 84, 1, 5 7 , 6 1 ,8 5 , E 6 , 1 4 0 ,1 7 5 , 2 1 4 , 2 2 6 , 2 8 02,8 5 , 3 3 3 , 7 9 4 , 948, 4 1 1 , 4 r 4 , 4 6 4 , 4 7 6 , 5 1595,6 ,5 5 7, 5 5 9 ,5 6 3 ,7 8 6 , 7 8 ,77 8 9 , 1017,1082,1162,1167,l168, 1232,1263,1268,1280,1283,1304, 1326,14901 T45. Od(i UnivslentFunctions (classS or classE) , 3 C ) , 3 3 6 , 3 3 9 ,3 8 8 , 4 0 5 ,4 2 6 ,M 9 , 4 5 8 , 5 2 4 , [ 1 2 8 ,2 5 2 , 2 6 9 , 2 9 1 546,747,802, 896, gO4,972,1c20,1040,1155,1200,1325,1339, I 4001 T46. Invariant (angular, sphericcl) Derivative. 1279,507, 876, 894, I 163, 1507J T47. Convolution.(Flrttung) of Functions. Hadamard Product. 926,955' 14, 102,116, I 39, 272,300,302,M, 450, 573,729,9C5, . 5 l , 1 3 2 5 ,l 4 0 l , 1 4 0 9 , 1 5 3 6 j 1 a 3 2 \, 2 4 5 , 1 2 4 6 ,1 2 4 9 , 1 2 5 0l 2 T48. Schticht (or other properties) in an Annulus1008' 12,150, 327, 470, 471, 730, 770, 792,894, 895, 976, 978, 1 5 5 6 1 , 1 4 8 , 1 3 6 4 1, 3 7 3 , 1 3 7 41, 4 2 8 ,1 4 j 4 , 1 4 6 7 , 1 1 3 6 ,1 1 4 7 1 T1g. SpecialGeometry of Map (such as k-fold symmetry). , 5 3 ,1 7 0 , 1 g g , 2 2 1 , 2 4 5 , 2 9 1 , 2 9 5 . 2 9 9 , 3 0381,7 ' I 4 0 ,4 7 , 5 4 , 1 1 0 1 , 2 , 5 1 3 , 5 1 6 ,5 2 1 , 5 3 15, 1 9 ' 3 4 0 ,3 6 3 , 3 9 13, g 4 ,3 g 7 ,4 3 1 ,4 3 2 ,4 3 3 M 6 2 2 ,6 7 3 ,6 9 4 ,7 4 4 ,7 4 5 ,7 4 7 ,7 7 4 , 7 8 1 7, 8 2 , 7 8 58, 3 8 ,8 5 3 ,8 6 5 ,9 0 1 ' 9 0 3 , 9 1 4 , g 3 4 , , 9 3 g5 3, g , 9 4 , g 5 7 , 9 7 4 , 9 g 7 , 1 0 3 41,0 4 0 ,1 0 9 3, 1 1 7 7' , , 5 5 4 ,1 5 5 9 1 1 2 1 3 , 1 2 5 4 , 1 2 5154, 3 5 , 1 4 3 71, 5 3 5 , 1 5 3 71, 5 5 1 1
TOPIC REFERENCES
26s
p-valentFunctionscf Topic 14' T50. coefficient Bounds (reldiioits)for 869, 1103' 15081 1282,550,670,803,807, 866, Tvpicatil'-RealF-unctionscf T51. Coefficient Bounds (reiations)Jor Topic 13. [151,628,819,820,821,9M,1207,1236'1237',12471 odd u riivotent Functions o'f T 52 coeffi,'ient Bounds (relatians)foi' ToPic 45. t405, 426,9M, lL'721 T53.FgberPolynotnigls(Grunskycoefficients). [ 1 0 , 1 3 , 2 9 , 1 3 6 , 2 9 6 , 3 0 4 , 3 0 6 , 3 0 7 ' 3 0 68 0' 350'6,90' 8 3 '36, 11 'l,' ,369137' ',6, 31985' ,' , 3 9 6 ' , 4 0 6 , 4 2,14 2 2 , 4 2 4 , 4 2 5 , 4 8 3 , a g i g , 5 8 9 , 5 9 0 ' 655,676,677,721,737,749,762,768'770'798',811',8r2',814',816', 8 2 4 , 8 4 5 , 8 5 4 , 8 g 7 , g 4 g , 1 0 2 0 , 1 0 6 4 ' 1 C 6 5 ' 1 0 6 7 ' , 1 0 6 l8l'5, 1l ,0 6 9 ' , 1 0 7 0 ' 1 0 9 6 |, 0 9 , 71, 1 0 0 ,| | 2 3 , 1 0 7 3 |, 0 7 4 , 1 0 7 5|,0 g 2 , 1 0 9 3 1, 0 9 5 , , 369, | 2 7 , 7|,3 6 7 ,1 3 6 8 1 1 1 6 0 |, 2 3 0 ,| 2 6 9 ,| 2 7 0 . ! 2 7 2 ,| 2 7 5 ,| 2 7 6 , 1 4 2 3 , 1 4 7 9 , 1 4 9 l55,l 5 l Functions of the Class S" T54. Coefficient Bounds (relations) -for f(z)_-;io,,'+...AnalyticandUnivalentinlzl< [13,14,21,49,6',7,107,108,113'l2g'l5z'1 6 7 ' , 1 6 9 ' 1 ' ,4 7 15 9' ,'2 r 2 ' , 2 4 3 ' n ,2 : , 3 3 3 , 3 3 8 , 3 5 93' 5 0 '3 9 1 '3, 9 5 ' 3, 9 6 ' , 4 0 5 ' , 277,281,306,308 504' 4gl, 4g3' 498' 499' 500' 501' 5A2'503' 422,425,445,485,48;6', 647 623',625',630', ',648',649', 505,506,509,554,589;594,601'611' 6 5 5 , 6 5 6 , 6 7 3 , 6 7 4 , 6 8 5 , 6 9 3 , 7 3 5 ' 7 4 9 ' 7 7 1 ' 8 1 1 ' , 8 2 2 ' , 1068, 829',845',865' ' g03,g04, gl4,g44,looa, rciaL 1056,1064,1065,1066,106'7 1069,1070,1071,|072,|073,|074,1075,1095,1096,|097,1154, , 3 0 6 '1 3 6 5' 1 4 0 2 '1 5 1 8 1 1 1 5 5 ,1 1 5 6 ,1 1 7 0 ,1 2 2 6 ;1, 2 7 0 ,1 2 7 2 1 Functions)'[None] T55. ContinuedFractions(appliedto Schlicht of positiveReal Part of ropic 2' T56. Distortion TheoremsJor Functictns [ 3 3 , 9 1 , 1 4 7 , 2 2 4 , 2 5 6 , 2 6 5 , 2 ' 6 ' , 7 ' 2 6 8 ' 723', 3 7 6 ' 3 8 7 ' , 4 5883', 0 ' 5 2885', 2',523',524', '679''680', 831',833', 542,62'1 ,631, 640,643,644,651 8 8 7 , g | 2 , 9 5 0 , 1 0 5 0 , | 0 7 6 , 1 0 7 8 , 1 0 8 6 , 1 0 8 8 , 1 1 1 9| 3, |5| 7, 2, 103, 18 11 9, 8 ' 1 3 5 ] l |, 3 5 2 , | 2 2 | , | 2 g 0 , | 2 g | , t 2 s 2 , 1 2 9 4 |, 2 g 5 , 1 2 9 8 , | 4 7 . 71, 5 2 8 , 1 5 2 91,5 3 4 , 1 3 9 6 .1 4 1 5 , | 4 | 6 , | 4 | 9 , | 4 2 0 , | 4 4 0 ,| 4 6 , '7 1541 , 1 5 4 2 ,1 5 6 2 1
ti
266
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T57. (JnivalenceOver Regionsother than the Unit Disc. [24, 25, 50, 55, 65, 120,326, 382,390,477, 597,760,986,1284, 1379,t42ll T58. Distortion Theoremsfor Meromorphic Functions of Topic 9. u l , r 3 4 , 4 9 0 ,5 3 5 , 5 9 5 , 7 0 8 , 9 3 4 , 9 3 5 ,9 3 9 , 9 4 0 , 9 5 0 ,9 5 1 , 9 5 2 , , 5 1 9 ,1 5 4 6 , , 4 7 5 ,1 4 7 6 1 , 1 5 8 ,1 2 4 3 ,1 4 1 9 ,1 4 3 6 1 1 1 1 2 1, 11 3 , 1 1 5 5 1
ts47l T59. Related Resultsfrom Analytic Funuion Theorv. [This topic is noi:being used.] T60. Multiply-ConnectedRegions. [ 5 6 , 8 8 , 1 2 1 , 3 2 8 , 3 7 9 , 3 8 39, ' 1 5 ,1 1 4 6 ,1 4 3 1 ,1 4 3 3 ] T6l. Distortion Theoremsfor Bounded Functions of Topic 22. 132,91, 213,236,265,295,297,308,351,3E8,418, 431,432,433, 854,883,891,895,904,1037,1050,1052.1078, 434,453,496,8C6, 1163,1165, 1229,1233,1262,1290,1298,1357,1381,i516, 15281 T62. Boundary Behavior (rate of growth of coefficientsor of functionals). 1 2 6 , 6 6 , 7 4 1, 2 6 ,1 2 9 ,1 5 l , 1 6 2 ,1 8 l , 1 8 9 , 2 1 0 , 2 r 2 , 2 2 1 , 2 3 4 , 2 7 9 , 3 ,5 2 , 3 5 4 , 3 6 13,6 5 ,3 6 7, 3 6 8 , 3 6 9 , 3 9 03, 9 1 ,4 1 5 , 287,332,349,351 4 1 6 , 5 3 85, 5 3 ,5 6 2 , 5 6 6 , 5 6 7 , 5 8 15,8 2 , 5 8 75, 8 8 ,5 9 0 ,5 9 6 ,5 9 8 ,6 2 0 , 6 3 8 ,7 0 5 ,7 9 7 , 8 0 28, 0 5 ,8 5 7 ,8 6 1 ,8 6 3 ,8 / 0 , E 7 1 , 8 7 2 , 8 7 4 . 8 7 6 , 8 9 8 ' 899, 900, 902, 925, 947, 956, 958, 960, 1027, 1029,1037, 1038, 1039,1043, 1046,1085,1099,1102,1124,ll6y',1167,1253,1322, 1434,1437,11i3, 1474,i475, 1476,i506, 15301 T63, Distortion Theoremsfor Starlike Functions cf lopic 6. [30, I 26, 13l, 163,191,I 92, 194,230,253,269,347, 377,388, 458, 4 5 9 ,5 2 4 ,5 4 3 , 5 8 76, 1 6 , 6 1 9&, 3 , 6 5 8 , 7 7 5 , 7 7 6 8, 0 2 , 8 5 78, 5 8 ,8 8 8 ' 9 1 2 ,1 0 0 9 .i c 8 - ? ,i c 8 5 , l i z z . 1 2 4 8 ,1 2 5 0 ,1 2 9 7 , 1 3 0 i .1 3 1 9 ,1 3 2 3 , 1335,1348, 1349,1350,1386,1387, 1416,1419,1474,1475,1500, l 5 l l , 1 5 2 7 , 1 5 3 3 , 1 5 3 71,5 4 3 ,1 5 5 8 1 T&. Di,stortion Theoremsfor Convex Functions of Topic 10. 619' [30, 139, 143,14, 145,147,194.247,252,266,388,479,543,
r
s
TOPIC REFERENCES
261
1250, 7 g 5 , 8 9 1 , 9 0 5 , 9 0 g6 |, 2 , 1 0 5 9 ,1 0 8 5 l, l 1 g , | | 2 0 , | | 2 2 , | 2 4 8 , 1 3 1 9 ,1 3 2 1 , 1 3 2 31, 3 3 5 ,1 3 5 3 ,1 3 8 2 ,1 4 9 1 1 Topic 14' T65. Distorticn Theoremsfor p-valent Functions o-i [ 8 C 3 ,8 0 7 , I 3 7 3 ] of Top;g 13' T66. Distortion Theoremsfor Typicatty-RealFunctions [ i 7 8 , 8 2 0 , 1 c o 5 ,l l l E , 1 2 0 i , 1 5 4 ( ) ] of Topic +5' T67. Distortion Theoremsfor Odd Univalent Functions 1252,368,458, 5241 - z+ S: T68. Distortion Theoremsfor Functions of the Clqss fQ) ezzz+ . . . Analytic and Univalentin lzl 266,2ll, 321,336' 338' 339', 147,74, 109, t34. 212,,222,241, 265, 5 3 5 '5 5 4 ' , 3 7 g , 3 8 33, 9 6 , 4 3 7 , 4 5 84, g 0 ,4 g 3 ,5 2 5 ,5 2 8 ,5 2 9 , 5 3 15' 3 3 ' 8 6 4 ,9 0 5 ,9 | 4 , , 5 7 9 , 5 9 56, 1 3 , 6 2 2 , 6 3 0 6, 7 | , 7 2 4 , 7 3 87, 4 | , 8 2 9 . 8 4 6 , 1 2 0 0 ,| 2 | 3 , 9 5 1 , ) ( , 9 , 1 0 5 0 ,| 0 7 7 , 1 1 1 0 ,1 1 1 9 ,1 1 5 5 ,1 1 5 9 ,1 1 6 3 , 15011 1 2 1 8, 1 2 1 3 , 1 2 4 8 ,1 2 6 7 , 1 2 8 21, ,3 2 2 ,1 4 3 6 ,1 4 3 7 , 1 4 3 9 , 1 4 9 3 ' and T69. u-Convex, ..-Starlike Functions (Mocanu functions) Generalizations. 3 1 8 '3 5 3 '3, 5 5 ' [ 3 3 , 3 5, 9 5 , 9 7 , 9 8 ,l N , 1 0 5 , 2 3 9 , 2 8 9 , 2 9 0 , 2 9 1 , 2 9 3 ' g0 0 ,g ,g 3 5 ,9 5 8 ,9 5 9 , 9 6 1 , 9 6 6 , 9 6 7 , 9 6986' 9 ' 3 5 g ,7 7 7 , 7 i 7 8 , " 1 7 g , 7 g gg7,ggg,ggg,1000,1001, 1002,l00l , 1197,1195,1337' gg0, 996;,, 1342,l4l'7, 14181 T70. Bazitevii Functiores(and generalizations). 6 9 4 , 7 7 9 , 7 8 08' 0 8 '8 4 7' 9 3 1 ' 12,216,2lg,28g,2g0,2g3,353 65 , 8, 1055,1178, 956, 969, gg7, 1003,1004, 1006,1040, 1051,1054, 1 4 4 6 '1 5 1 2 1 l l 7 g , 1 l 8 l , l l g 4 , 1 2 4 6 ,1 3 2 4 , 1 3 5,5l M 3 , l M , T7 | . Functionso-fBoundedBoundary Rotation. g, 288,292,293' 340' 494'7M' ll7, 78, 172, 173, 177, 17 214,286, 965'970' 7 0 6 , 7 0 7 , 7 7 4 , 8 0 2 ,8 0 4 , 8 0 5 , 8 0 9 , 8 6 i , 8 7 5 ' 8 8 2 ' 9 6 0 ' 1 0 5 5 ,1 0 9 0 , 1 0 1 4 ,1 0 3 5 ,1 0 3 6 ,1 0 3 8 ,1 0 3 9 ,1 0 4 0 ,1 0 4 1 ,l M 3 , | 0 4 7 , 1274, 1113 , L l z l , 1 1 2 4 , 1 1 2 5 l,l 9 5 , 1 2 1 4 , 1 2 1 5 , 1 2 2 3 , 1 2 2 5 , 1 2 7 3 ' 1 3 4 1 ,1 3 4 3 ,1 3 4 5 ,1 3 8 8 ,! M 5 , 1 4 6 5 ,l 4 7 l l
26E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
T72. Distortion Theorems Involving Coefficients (various classesof functions). I 3 2 , 9 1 ,3 8 8 ,M , 4 4 8 , 4 4 9 , 8 4 6 , 8 8 3 ,8 8 4 ,8 8 7 ,1 0 8 5 ,1 2 5 8 , 1 3 5 7 ,
r4371 (of various classesof functions). T73. Rodiusof Close-to-Convexity l9l, 142,214,221,222, 292, 340, 453,460,699,7 46,776, 802, 855, 858, 1033. 1076,1084,1124,1227,1352,1353,15431 T74. Distortion Theoremsof Close-to-ConvexFunctions of Topic 5. [194, 252, 440, 442,M3, 446,838, 912, 1085,1149,1178,1249, 12ffi, 1323,1327,1333,1340,15021 T75. Coefficient Bounds (relations)Jor Close-to-ConvexFunctions of Topic 5. t 1 1 3, M 0 , M 3 , 4 4 6 ,4 5 6 ,5 2 4 ,5 4 6 , 5 4 8 ,5 8 8 , 6 9 3 , 8 6 7 , 9 1 2 ,1 1 4 9 , 1219,1327,1333,1340,15021 T75. Distortion Theo,'emsfor Functions of Bcunded Boundc,ryRotatiort of Topic 7l. 1 1 7 2 , 2 8 32, 9 3 , 3 4 0 ,7 0 7 , 8 0 2 , 8 0 5 1, 0 1 4 ,1 0 3 5 ,1 0 3 8 ,1 1 2 5 , 1 2 2 3 , 1273,1343,14451 T77. Coefficient Bounrlsfor Functions of Bounded Boundary Rotation of Topic 7l. Ir72, 173, 177,286,288,340, 706,774,802,804,805,875, l0l4' 1035,1036,1038,1047,1090,1125.1223,1273,1274,1345,14/5,
r47ri T78. Distortion Theoremsfor Functions Convex in One Directicn of Topic 41. 1524,57l, 572, 1235,l30l l T7g. Coefficient Bounds for Functions Convex in One Direction of Topic 41. , 2 2 3 ,l 3 0 l l t l L 3 , 5 2 4 , 5 7 1 , 5 7 2 , 6 2 8 , 9 7 21, 2 1 9 ,1 2 2 C 1 T80. Distortion Theoremsfor Bazilevic Functions of Topic 70.
,J
TOPIC REFERENCES
269
[847, 1006,1051] BazilevicFuncticns of ropic 70' tgr. Coefficient Rounds(rerations)for 1446] [358, 694,956,1006,|M:J, cf {JnivqlerfiFunctions' Tg2. Linear ccmbinations, Products, 1 3 2 . , 3 6 , 9 1 , 1 4 2 , 2 0 5 , 2 1 ! , 2 1 4 , 2 4 8 , 2 6 9 ' 3 58 1'440',446',451',460', 8 5 5 ' , 5 9 ' i,0 1 8 ' ,1 0 3 3 ' , 4 6 8 , 4 7 5 , 4 7.7 5 2 6 ,5 5 ? , , 6 7 8 , 7 1 5 , 7 g 5 , 8 3 ? ' 1355 , \ 3 5 7 ,1 3 6 1 ,1 3 9 6 , 1 0 8 9 ,l 1 0 9 ,| 2 2 7 , | 2 4 1 , | 2 6 4 , | 3 3 4 , 1 3 3 8 , 1400,1469,1526,1536,1542,15481 'Topic (a-starlike) Functions of a-convex Theorems for Distortion Tg3. 69. 1,342,I 5481 1291,293,777, 958, a-CotNex (a-stariike)Functions Tg4. coefficient Bounds (rerations)for of ToPic 69. 1291,358,777,778,77g,780,966,1417'1418'15481 T85. Univalenceof Integrals' 134,71,72,g1,94,95,gg,102,105'139'147',142',203'205'214' 2 2 4 , 2 2 8 , 2 4 8 , 2 5 g , 3 5 7 , ' 5 2 7 , 6 9 7 ' 6 9 8 ' 7 4 6 ' , 8 2 8 ' , 9 0 61' ,395235' ,' , 9 2 8 ' , l 2 3 l ' 1 2 9 7 '1 3 0 1 ' , 1 0 5 0 ,1 0 5 2 ,1 0 5 3 ,I I I 1 , I I 2 4 , l l g g ' 1 2 2 7 ' 1 3 5 5 ,1 5 4 1 , 1 5 M , 1 5 4 8 ,l 5 6 l l (and related classes) Tg6. Distortion Theoremsfor Bieberback-Eilenberg Functions of ToPic 34' 646,651] [ 9 , I 1 , 1 5 , 1 3 8 ,5 0 9 ,5 1 1 , Bieberbach-Eilenberg(ond Tg7. coefficient Bounds (relotions) for Functions of Topic 34' related classes) , 1 1 , 5 1 2 , 6 0 8 1, o 2 U [ 1l , 1 5 ,5 O 9 5 T88. ExtremePoint TheorY' [182,186,187,188,18g,2'73,284'387'500',541',542',s4y'.',545', 546,547,548,550,551,574,575,576'577'578',585',709',807',912' 9 1 3 ,9 1 6 ,g 4 2 , 1 2 4 9 , 1 3 3 51,3 3 6 '1 3 4 0 1
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
210
T89. Functions of Bounded Index' [40] , 402, 403, 699, I 187] T90. Entire Functions.
1192,1243,1302,1304,1306,
[400, 404, 406, 5'19,699,817' 1029, , 3 1 0 ,1 3 1 l ' 1 3 1 21, 3 1 51, 3 1 61, 3 1 7 1 13071 , 3 0 8 ,1 3 0 9 1
TABLE 1 which Following is a list of those referencesin this bibliography in included rrot were were publishedPrior to the Year 1966and which BibliographYI. Year
References
1950 1955 1959 I 960
u 4841 u 4851 12551 u059,1060,
r95l 1962 1963 t964
i965
[ 3 4 17, 8 1 ,1 3 2 81, 3 6 61, 5 1 6 1 1782,982,14861 , t{3 ,877,1378J u 4 9 , 1 5 0 , 3 7 2 , 6 2 i6, 4 5 7 758,782,784,785, [ 3 7 ,81 , 2 3 4 , 3 0 03, 1 2 , 4 9 86, 7 0 , 7 3 1 , 7 4 1 , 9 8 3 ,r l l 7 , 1 1 6 91, 2 0 8 1 , 52,759.786,'187, 07 , 67 u , 3 8, 4 5 , 1 4 8 , 2 3 53,1 0 ,3 7 3 , 4 1 4 , 6 5 6 1212,1256, , g o s ,8 7 8 ,9 4 7 , 9 8 49. 8 5 ,1 0 1 1 1, 0 6 1 , 1 1 4 6ll';3, 1257,1380,1427,1436,15461 2',76,31l,330, 374,375', 14,39, 42, 51,58, 66, 127, l-28,236, 68i' 4 1 7 , 4 2 4 , 4 3 6 , 4 6 5 , 4 g g , 55 01 03 , ,5 1 6 ,6 1 5 ,6 3 6 , 6 4 6 , 6 7' 7 837' 684, 716,736,7 53,7 55,788,790,825,826,827,828, 836' 9'.19' 842,843,851,866, 867,87g,903,972,975, 976,977,978' ll3i', i l05, 980,986, 1034,1064,1076,1077,1078,1093,1094, l23l' I l - ? 8 ,I 1 4 9 , 1 1 5 0 ,I l 5 i , 1 1 7 4 ,l l 3 2 ' 1 l 9 E, i 2 0 9 , l 2 l 9 ' L42l' 1419, 1264,lz]t, t2l2:, izig,l28l, 1365,1381, 1392, |487, | 4 2 8 , | 4 2 q 1 4 3 0 ,| 4 4 7 , | 4 4 8 , t + l g , 1 4 5 0 ,l 4 5 l , | 4 5 2 , , 5 5 1 ,t 5 5 2 . 1 5 5 3 1 1 4 8 8 ,1 5 5 0 1
A
TOPIC REFEP.ENCES
211
TABLE 2 which Following is a list of those referencesin this bibliography publishedduring the year 1975' $,/ere 3 5 7 , 3 g 7 , 5 4 85, 4 9 , 5 5 05, 7 8 ,5 8 0 ' 5 9 4 ' u 1 6 , 1 5 3, 2 1 6 , 2 ' t 8 , 2 7 2 , 2 g 0 , 3 3 3 , 10|.',1 ! 50' 9 9 ' 6 5 2 , 6 8 05, 9 1 , 7 0 8 , 7 3 g , 8 2 2 , 8 4 9 ,8 i 4 , 9 1 6 , 9 4 3 , 9 6 4 , 9 6 5 ' , 3 4 0 ,1 3 4 3 ,1 4 1 0 ,1 4 3 9 ,i 5 4 4 ) 1 1 8 4 ,1 2 6 2 ,i 3 0 5 , t 3 3 € . 1
TABLE 3 this Following is a listing of the total number of researchPaPersin bibliographywhich were publishedin eachof the given Years. Year
Total Number of PdPers
1966 lvo/ 1968 r969
r23
r970 197|
r972 r973 t9'14 t975
110 107 130 t46 t49 160 166 IM t25
272
B IBL IOGR AP H YOF SC H LIC H T FU N C TION S
TABLE 4 Followingis a list of Math. Review(MR) numbers(which had not in beenavailableat time of first publication)for someof the References the Bibliography,Part II. Ref. 17
MR# Ref. MR54 #2939 186
MR# Ref. MR53 #5849 332
MR# Ref. MR52 #8407 519
MR53 #5845
MR#
23
53 3297
194
53 788
345
52 11029 547
53 I1036
36
53 3288
20s
57 9950
3s9
53 3286
548
53 11036
37
54 528
222
54 7768
360
56 r2250
594
53 792
53 801
234
52 I l03l
366
52 t4259
632
54 2946
'/6
tt?
79
53 5848
258
3314
367
52 l 1030 678
52 1426r
87
54 5456
264
54 545I
370
57 t2837
52 t427|
153
54 525
271
53 8427
400
52 l 1039 720
57 r2839
r66
52 r42s8
303
53 l iu31
451
57 3372
54 54s7
175
54 537
320
52 ! l02r
496
53 I1043 776
780
52 14266 965
52 t1024
52 1262 it027
53 1376 5844
803
53 l1038 l0l8
52 53 t4263 1270 8409
52 r4265
805
52 53 r4268 1022 5846
822
52 t4267 1043
835
53 3282
54 2943
52 1090 rr025
707
758
t377
53 l1037
53 58 1280 22527 1388 3290 l3t8
54 5465
55 1425 r0662
1326
54 5479
53 1465 13549
TOPIC REFERENCES
MR# Ref. MR# Ref. 58 52 849 t4262 I 1 6 6 I 1 0 1 i 3.36 52 54 1358 11026 1 181 859 13057 53 53 1362 5847 I 1 8 3 862 I 1040 52 55 1 1032 1363 1 2 0 8 653 896 56 54 137| s862 554 1250 963
Ref.
MR# 54 294J
Ref.
MR#
53 1433 8 4 1 0 53 53 8429 1530 11041 52 r42& 53 8408
153I
54 2948
r532
53 3287
56 5857
Corrections
Reference 385 607 618 692
sameas
Reference 384 604
6r7 126
is Todorov' Pavel Notes (a) Reference1094: author Pletneva'T . G . (b) Ezroh;, T. G. is sameauthor as
LIJ
274
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
BIBLIOGRAPHYOF SCHLICHT FUNCTIONS 1) Part III (1976-198
CONTENTS Preface Bibliography Prior to Year 1976 Table l. References in Year lg82 2. References Table Table 3. Number of ReferencesPublisher!Each Ycar Corrections.
. 275 276 351 352 .,*352 353 .,i.
;,
J{
-
PREFACE
215
PREI.-ACE
tc contains1025references Dib'ography of SchlichtFunctions,Part III, (Schlicht)and multivalent publicationsin the theory of analyticunivalent through r981 and is a continuafunctions.part III coversthe ),ears19'76 Parts I' II' describedin tion of Bibliography of Schiicht Functions, earlierpages. and which werenot inSomePapersPublishedPrior to the year 1976 I. Somepaperspublishedir cludedin Parts I, II are now listedin Table numbers(MR) are inthe vear 1982are listedin Table II' Math. Review cluded for most references' Abstractshavebeen Part III differs from Parts I,II in two respects' and cross-indexlistingsare omitted and also no subtopic crassification justified becauseof their included. The omission of abstractsis easily results in the theory of transient value. classification of the various are usedin Part I' 90 subSchlichtfunctionsinto subtopics(68 subtopics and betweenreferences topics are usedin part II) and cross-indexlistings of hundreds task requiring subtopicsis a very valuablebut monumental prior to the publication hours of work-precious time not available deadlinefor Part III. S. D. Bernardi July 1982
t
216
BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
BIBLIOGRAPHYOF SCHLICHT FUNCTIONS (Part III) Sect' III 1. Abe, H. On some analyticfunctions. Mem. Ehime univ.
7 (t97|t,tro.4,tff-IQI: MRK lzk77. Engrg.
2. Abe. H. On multivalentfunctions in multiply connecteddomains.l. Proc. JapanAcad. 53 (1977),no. 3, 116-ll9; MR 56 #594. 3. Abe, H. On multivalent functions in multiply connecteddomains' lI. Proc.JapanAcad. Ser.A lvIath.Sci.53 (1977),no.2,68-71;MR 58 #6210. 4. Abiarr, A. The coefficients cf the Laurent expansion of analytic -functions.Arch. Math. (tsrno) 13 (1971),no. 2, 65-68' 5. Abian, A. Hurwitz' theorem implies Rouch€'s theorem. J' Math' A n a l . A p p l . 6 l ( 1 9 7 7 )n, o . 1 , 1 1 3 - 1 1 5 . 6. Abian, A.; Johnstotr,E. H. Zeros of partial sums of the Laurent l' seriesof anatyticfunctions. KyungpookMath. J. 2l (1981),no' 87-90. 7 . Abu-Muhanna, Y.; MacGregot, T. H. Variabitity regions for by bounded analytic functions wi;th apptications to families defined
FUNCTIONS (PAI(T iII) BIBLIOGRAPHY OF SCHLTCHT
271
subordination.Proc.Amer.MathSoc.s0(1980),22-l-213;MR 8 1m:30022. points of families of g. Abu-Muhanna, y.; MacGregor,T. H . Extreme 176 to cont'ex mappings' Math' Z' analyticfunctions subord;nate ; R 82d:3C02i' ( I 9 8 1 ) ,n o . 4 , 5 1 1 - 5 1 9 M T. H. Families of real and SymMacGregor. g. Abu.Muhanna, Y.; no' Amer' Math' Soc' 263(1981)' metricanolytic functions.Trans. l , 5 g - 7 4 ;M R 8 2 a : 3 0 0 1 1 ' mapping' inequalityinvoh'ingconformal lc. Acker, A. An isoperimetric g77)' no' 2' 730-234;NIR 57#3364' (1 Proc. Amer. Math. Soc' 65 Nores, in un'ivarent functiorts. Lecture ,,. AharonoV,D. speciar toiiri ' UniversitYof MarYland(l 971) A minimal-qreaproblem in conforS' lZ. AharonoV, D.; Shapiro, H' of the Symposium on complex mal mapping. (Abstracti-eroc. _ 1973,pp. i-5' London Math' canterbury, Kent, uni". Analysis Soc.LectureNoteSer.No.|2,CambridgeUniv.Press,London (]j7$; MR s4 #526' A short proof of the Denioy coniecture' 13. AharonoV,D.; Srebro,v. B u l l e t i n ( N . S . ) A m e r . N i a t n . S o c . 4 , n o . 3 ( M a y 1 9a3 8 1 ) . aq of a betweenthe coefficients and 14. Ahlfors, I- V. An inequality (1976). Soc. Transl. (2) vol. 104 univalentfunctiot,. Amer. Math.
pf;r:l;ltt. r5.
of fyn:t:::: ':i'!,"!l^'n,the unit disc' certainctasses
5 (1971)'Do' Z' 3'79-389' Bull. Inst. Math' Acad' Sinila tvith on stsrtike and convexfunctions K. P. Jain, ?.; o. Ahuja, 16. (2) 3 Bull' MalaysianMath' Soc' missingand negativecoefficienfs' ( 1 9 8 0 ) ,n t . 2 , 9 5 - 1 0 1 ;M R 8 2 d : 3 0 0 1 3 ' value solvabitityof inverseboundary l7 . Aksent'eV,L. A. The u-nivale'tt 4)' (1 Kraev' zadacam vyp' I I 97 problems. (Russian)Trudy sem. 9 - 1 8 ;M R 5 7 # 6 5 2 '
1 8 . A k s e n t , e V , L . A . ( ] n i v q l e n t c h a n g e o f g76),30-39; p o r y g o n a l rMR J.om ins.(Russian) 58a#22522' 13il zadacamvvp. Kraev. Sem. Trudy 1 9 . A k s e n t , e v , L . A . ; G a i d u k , V . N . ; M i k kproblem a , V . P . T h eau regular n i v o l efunc' nt for value boundary inverse the of solvability (Russian)Trudy Sem' Kraev' tion in a doubly connectedregion ' -8; MR 56 #15948 ZaaacamVvp' 12 (lg7 5)' 3 z 0 . A k s e n t , e v , L . A . : K u d r j a s o v , s . N . S o m e c o n dvarue i t i o nproblem s f o r t h efor inverseboundary univarenceof the sorution'ofan Vyp' 6 f1$V Sem' Krle-v' Zadacam a symmetricprofite' tnt"iunl (1969),3_15.Foru,.ui.*olthisitemseeZbl236#76007;MR58
# r 7l r 3 .
zIEBIBLIOGRAPHYoFSCHLICHTFUNCTIONS
of some 21. Al-Amiri, H . s. Applications of the domsin of variability (Polish and functionals within the classof Caratheocloryfunctions. Sect.A Russiansummaries)Ann. univ. Mariae curie-Sklodowska ; R 81e:30019' 3 l ( l 9 7 7 ) , 5 - 1 4( 1 9 7 9 )M Rev' 22. Al-Amiri, H. S. Certain anulcgy of the a-convexfunctions' MR 80i: RoumaineMath. PuresAppl.23 (1978),no. 10,1449-1454; 30017. in the 23. Al-Amiri, H. S. Certain nth order dif-ferentialinequqlities MR complexplane. canad. Math. Bult. 2l (1978),no. 3 ,273-277; . 80m:30002 within the 24. Al_Amiri, H. s. The domain of variobitity of afunctional summary) classof univolent starlike fuitctions. (Scrbo-croatian 81e:30018' G l a s .M a t . s e r . I I I 1 4 ( 3 4 )( 1 9 7 9 )n, o . 1 , 5 5 - 6 6 ;M R prestsrlike functions' J' 25. Al-Amiri, H . S. Certain generqlizationsof MR Austral. Math. Soc. Ser. A 28 (1979), no. 3, 325-334; 81b:30018. Ann. Polon. Math' 38 clerivatives. 26. AI-Amiri, H. S. On Ruscheweyh ( 1 9 8 0 )n, o . 1 , 8 8 - 9 4 ;M R 8 2 c : 3 0 0 1 0 ' 27. Al-Amiri, H.; Mocanu, P. T. certain sufficient conditions for gnivslencyo,f the classc'. I. Math. Anal. Appl. 80 (1981),no' 2, 387-392;MR82g:30033. Proc' 28. Al-Amiri, H.; Mocanu, P. Spiratlikenonanalyticfunctions' 5 ;R 8 2 j : 3 0 0 2 8 . A m e r . M a t h . S o c . 8 2( 1 9 8 1 ) , 6 1 _ 6 M in the theory of continustions 29. Aleksandrov, I. A. Parametric (1976)' 343 pp' univalent futnctions. Izdat. "Nauka," Moscow 2 . 0 8 r ;M R 5 8 # 1 0 9 9 . equation' 30. Aleksandrov,I. A. A caseof integrction of the Lowner MR (Russian)sibirsk. Mat. z. 22 (1981),no. 2, 207'209, 238; 8 2 f: 3 0 0 1 7 . problemsfor svstems 31. Aleksandrov,I. A.; Andreev,v . A. Extremal Sibirsk. Mat' Z' 19 (Russian) of functions without common vqlues. ( 1 9 7 8 )n, o . 5 , 9 7 0 - 9 E 2 ,l 2 l 3 ; M R ' 8 0 d : 3 0 0 i 8 ' conJormollymap 32. Aleksandrov,I.A.; Cvetkov,B.G. Functionsthat no' I '4-25' the strip into itsel,/.(Russian)Sibirsk.Mat. Z.2l (1980), 235. properties-of 33. Aleksandrov, I. A.; Mandik, v. P. Extremal 7" 2 simultoneouslyp-valent fuiictions. (Russian) Sit irsk. Mat' (1981),no. 4, 3-13,229;MR E2i:J0028' A.optimal t:!' 34. Aleksandrov,I. A.; Zavozin,G. G.; Kopanev,s. (Russial) Dif' trclsin coefficientproblernsfor univoteit ,frmcticns. 771; MR 54 ferencial'nyeUravnenijal? (1976),no. 4, 599-611, #536.
(PART III) BTBLIOGRAPHYOF SCHLtcHT FUNCTIONS
219
generalizedareas in the case oJ 35. alenicyn, J. E. Inequaiities for with circular cuts' multivalent conforrnal ,ropping't of domains (Russian)Mat.Zametkizg(19E1),no.3,387-395,479;MR . 629:3C040 o-fa form o-fa multiply connected 36. Alenicyn, J. E . On the !eastareL (Russian)Mat' of p-sheetedcoriformal mappings' dontqin in cr clas.s ' Zametki30 (1981),no' 6, 807-812'95'1 problems Brarrnan'D. A. Research 37. Andersofl,J. lr4.;Baith, K. F.; Math' Scc' 9 (19'77)'llo' 2' in camplex anal.vsis.Buli. London 1 2 9 - 1 6 2M ; R 55#12899' Hypernorma! meromorphicfunc' 3g. Arrderson,J. M.; Rubel. L. A. no' 3, 301-309;MR 80b:30026' tions.HoustonJ. Math. 4 (1978), L' Coefficient multipliers of Bloch 39. Anderson, J. M.; Shields,A' f u n c t i o n ^ s . T r a n s . A m e r . M a t h S o c . 2q2certain 4 ( | 9 7 6crdss ) , n oof . 2functions ,255.265. 40. Andreev, \,. A. Extremistprobiems for disc. (Russian)Dokl' Akad' that are regular snd bctriaed in the N a u k S S S R z z s ( 1 g 7 6 ) , n o ' 4 ' 7 6 9 - 7 7 1 ; M R 5 4 # 1domains' 3 0 6 7 ' (Ruso,fnonovertapping problems certain A. v. Andreev, 41. 715;MR 55 #3235' 3 sian)Siblrsk.Mat. Z. i (1976),no. ,183-498' ond convexity of certain 42. Anh, v. v.; Tuan, P D'. on starlike:ness analyticfunctio;ts.PacificJ.Math.69(1977),no.1,1_9,MR55 #5848. p-converity of certainstsrlike univalent 43. Anh, V. V.; Tuan, P' D ' On 10' Matlr. Pures APPI' 24 (1979)'no' functions. Rev' Roumatne 1 4 1 3 -1 4 2 4 M R 8 1 b : 3 0 0 1 9 ' An extremalProblemfor univalent 44. Astahov,V. N. (Astahov'V' M') Nauk Ukrain' SSR Inst' analYtic Junctions' (Russian) Akad. Processov(1977),18-24; Kibernet.PrePrintNo' 11 Teor' Optimal.
I\{R 58 #28472. 4 5 . A s t a h o v , V . M . T h e r a n g e o f v a l u e s o . f a s y ssummary) t e m o f f u nDokl' ctionalsin (Russian,English univalent funirfoir. of c/asses MR 58 no. 3, 195-t98,284; Akad.Naukukrain.ssR Ser.A (1978), #1129 ., ' - ^t -.-i,,ntnnt on the crassof univarenr 46. Astahov, v. M . The rangeof a functionar (Rrrssian)Theory of functions and functions with rent coefiicrerrc." mappings(Russian),"NaukovaDumka"'Kiev(1979)'pp'3-27' t 74 ; I V I R8 1 d : 3 0 0 1' 3 Gutljans'kli,V..J. Someextremal 47.Astahov,V. N. (Astalrov,V.M.); (Russian)Metric quesproblems for univalent analyticfunctions' mappings(Russian)"'Naukova tions of the theory of functionsand MR 58 #28475' Dumka," Kiev (1977),pp' 3-19' 166; of on some classes 48. Atzmon, A. Extremallinrtions for functionals
2E0BIBLIOGRAPHYoFSCHLICHTFUNCTIONS
(1978),no' 2, 333-338; analyticfunctions. J. Math. Anal. Appl. 65 MR 80c:30008. mappingand 49. Aumann, G. D,stortion of a segmentunder conformal International relatedproblems.Proceedingsof the C. Carath6odory Athens, Soc., Math. Symposium(Athens, |973), pp. 46_53.Greek 1974;MR 57 #&06. derivstivefor the 50. Avhadiev, F. G. Application of the schwarzian value probstudy of the univalent solvsbitity of inverse boundary 7 (1970),78-80; lems. (Russian)Trudy Sem. Kraev. zadacamvyp. MR 58 #17lt7. the half-plane' (Rus51. Avhadiev, F . G. some univslent mappings of MR 57 #642' (1 sian)Trudy Sem.Kraev. zadacamvyp. l1 974),3-8; and BMO' Indiana 52. Axler, S.; Shields,A. Extremepoints in vMo U n i v . M a t h . J . 3 l ( i 9 8 2 ) ,D o ' 1 , 1 - 6 ' mean oscillation' 53. Baernstein, A., II. (Jnivalenceand bounded (1977);MR 56 #3281' MichiganMath. J.23 (1976),no. 3 ,217-223 *-function solvesextremalproblems' 54. Baernstein,A., ll. How the Mathematiciarts Proceedings of the International Congress of 1980; (Helsinki, 1978),pp. 639-644,Acad. Sci. Fennica,Helsinki, MR 8lb:30028. for coniugatefuncticns' A., II. Somesharp irrcqualities 55. Baerns*-ein, MR 80g:30022' Indianauniv. Math. J.27 (1978),no. 5, 833-852; coefficientsof func56. Baernstein,A., II.; Rochberg,R. lv[eansand Prcc' Cambridge tions which omit o sequenci of values. Nlath. -57' Philos. Soc. 81 (1977),no' I , 47 inversecoefficientsof 57. Baernstein,A., II.; Schober, G. Estimatesfor Math' 36 (1980)' from ir,tegralmeans.IsarelJ. univalentfunci:tions no. I ,75-82; MR 82a:30022' (Russian)Akad 58. Bahtin, A. K . Coefficientsof univaientlunctions. (197E),8pp': MR Nauk Ukrain. ssR Inst. lvrat.Prepring-No.32 80c:30015. akaci' Nauk Ukrain' 59. Bahtin, A. K . Functi,ns cf classs. (Russian) Teorii Funkciii SSR Inst. Mat. Preprint(1979),no- 12, Issled'po Topologii,3-13; MR 81k:30014' of the coefficientsof 60. Bahtin, A. K. (Bahtin, o. K .) some properties and its ap' univslentfunctions. (Russian)The theory of functions Kiev (1979)i plications(Russian),pp. 3-8, 2U7,"NaukovaDumka"' MR
8lgz3lJ024'
n) - : - , , ^ ^ t c . . - n l i n n o o.f nr, s' (Russtat ",.? of functions n f c/ass 51. Bahtin, A. K. on coefficients Dokl.Akad.NaukSSSR254(1980),no.5,1033_35. (Rrrssian)Akad' 62. Bahtin, A. K. On functions of the cel'fer class.
FU N C TION S(P A R T III) BIB L IO GR .{P H YOF S C H LIC H T
2El
NaukUkrain.SSRInst.Mat.Preprint(1980),oo-.3l,oNekotor. Z a d a c a h v T e o r . o d n o l i s t . F u n k c i i , 3 - 1 0 ; M R 8 2 f : 3 0 0 2(Russian) 2. univalent functions' of coefficients of Extrems K. A. 53. Rahtin, Preprrnt(1980)'no' 30' 20 pp' Akad. Nauk ui
282
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
7 7 . Bajpai, S. K. The coefficients of power seriesgiving a coefficients characterizationfortype. (Italian summary)Rend.Mat. (7) I (1981), no.2,293-303. 7 8 . Bajpai, S. K.; Dwivedi, S. P. On the radii of starlikeness,convexity and closeto convexityof p-valentfunctions. Rev. RoumaineMath. PuresAppl. 23 (1978),no. 6, 839-842;MR 58 #17065. 7 9 . Bajpai, S. K.; Dwivedi, S. P. Certain classesnf univalent anslytic functions. Rev. ColombianaMat. 13 (1979),no. 3, 2O7-243;MR 81i:30016. 80. Bajpai, S. K.; Dwivedi, S. P. Certain convexity theorems for univalent analyticfunctions. Publ. Ins+".Math. (Beograd)N. S.) 28(42)(1980),5-l l 8 1 . Bajpai, S. K.; Mehrok, T. J. S. On rqions of a-convexityfor subclassesof starlike functions. Indian J. Pure Appl.Math.5 (1914),no. 10,902-908;MR 55 #5849. 82. Baranowicz, Jozef, On the coefficients of bounded real univalent functions.Ann. Polon. Math.32 (1976),no.2, 135-144.@rrata insert);MR 54 #10589. 8 3 . Barnard, R. W. On quasr-starlike functions. Ann. Polon. Math. 32 ( 1 9 7 6 )n, o . 3 , 3 0 3 - 3 0 8M ; R 54 #529. 8 4 . Barnard, R. W. On bounded univalentfunctions whoserantes contain a fixed disk. Trans. Amer. Math. Soc. 225(,1977),123-144;MR 54#10585. 85. Barnard, R. W. ,4 generalizationof Study's theorem on convex maps. Froc. Amer. Marh. Soc. 72 (1978),no. 1, 127-134 MR 80k:30014. 8 6 . Barnard,R.W. On Robinson'sl/2 conjecture.Proc. Amer. Math. S o c .7 2 ( 1 9 7 8 )n, o . 1 , 1 3 5 - 1 3 9M ; P -8 0 j : 3 0 0 1 4 . Barnard, R. W.; 87. Kellogg, C . Applications of convolutio;t operotors to problems in univalent .function theory. Michigan Math. J. 27 ( 1 9 8 0 )n, o . l , 8 1 - 9 4 ;M R 8 l f : 3 0 0 0 6 . 8 8 . Barnard, R.; Lewis, J. L. Subordinationiheorems1or scnneclosscs of starlikefunctions. Paciiic J. Math. 56 (1975),no.2,333-366; MR 52 #721. 8 9 . Barnard, R.; Lewis, J. L. Correctionto: "Subordination theorems for .someclassesof stcrlikelunctions" (Facific J. Math. 56 (1975), nc. 2, 333-J66).Pacific J. Math. 6l (1975),no. 2, 607:'MR 53
#584r. 90. Barr, A.; Causey,W. M. The radius of univalcn:z o.f certain classes of analyticfu;tctions.Indian J. Math. 17 (1975),no. I ,33-39. 9 1 . Barsegfatr,G. A. Ceernetricsiructure of the image of the circle in
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTIIT)
2E3
(Russian)Mat' sb' (N' s') mappings of meromorphicfunctions. r o o t l 4 3 )( 1 9 7 8 )n, o . 1, 3 5 - 4 3 , 1 4 3 ' Canad' Math' 92. Baggdze,T. Some resultson spirat-tikefunctiorts' no' 5 , 633-637;MR 53 #i3538' Bull. 18 (l 975'1, partial s. Differeniial operatorsfor 93. *Bauer, K. w.; Ruscheweyh, Lecture iheoretic applications' differential equations and'fu'nction Be;lin-Nevr York , lbt SpringerVerlag, Notes in Mathernatics (\98C).v + 2'59pp' ISBN 3-540-09975-r' qre reguiarfunctions in the disc that of Generttlization l.l. Bavrin, 94. (Russian' to the caseif t*rral-co:npiex vcriables' close-io-convex (1976),no. 4, 235-248. English summary)Anal. tvtaitr. 2 the Poinw. schwarzianderivatives', 95. Beardorl,A.F.; Gehring,F. Comment' Math' Helv' 55 cart metric and the kinet function' (1980),no. 1, 50-64;MR 81c:30020' univalentfunctions with quasicon96. Becker,J. some inequalitiesfor inequalities,2 (Proc' Second Internat' formal extensions.General l-415' Birkhauser'Basel' 1980; Conf., Oberwolfach,19?8)'pp'4l :30020
. MR 82f r . - -- t ^ - . + n - a i n m o extensions' g'i. Becker,, J. con.formal mappings with quasiconformal Aspectsofcontemporary.complexanalvsis(Proc.NATOAdv. Studylrrst.Univ.Durham,Durham,lg7g),pp.37_77,Academic Press,London, 1980;MR 82g:30034' theory. Generaringg. Becker, J. A probrem in uiivarent-function p. Conf., oberwolfach,1978), equalrties,2(Proc.SecondInternat. 82c:30019. 462,Birkhauser,Basel(1980);MR conformalingg. Becker,J.; Henson,c. w.; iubel, L. A. First-order v a r i a n t s . A n n o f M a t h . ( 2 ) 1 1 2 . ( 1 9 8 0 \ , n o . 1 , | 2 3 _ |Fortsetzung .78. die quasikonforme 100. Becker,J.; pommerenke',C. }ber (1978),no. l, 69_80;MR 58 schlichterFunktionen.Math . Z. |6| #22541 the anorysis.Four recturesgiven at n complex comprexana 101. *Begehr, H' Topics in and February 1977' Lecture university of Delaware in January Notes,No.4.InstituteforMathematicalsciences'universityof 49 pp' i Delaware,Newark, Del' (1977)' + a ,ritoin c/assof quasiconforr02. Berikov, v. s . An area tieorem for ntalntappings.(Russian)Sibirsk.Mat.Z.|i(|976),,no.6, 1203-1219,1437' theory' (Proc' *Belinskii, P . P. Someproblemsin modernfunction 103. Theory of Functions' Inst' conf . Modern Problemsof Geometric M a t h . , A c a d . S c i , U S S R , N o v o s i b i r s k , 1 9 7 6 ) .(Russian) Nekotoryevoprosy [Some konferencii. sovremennoiteorii funkcii. Materialy
284
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
of a Conferencel problemsin modernfunction theory' Proceedings Problemsof the GeoPaperspresentedat the conferenceon Modern metricTheoryofFunctionsheldatthelnstitutecfMathematics, of the ussR' Novosibirsk siberian Branch, Academy of Sciences SSSRSibirsk'Otdel' (1976).Editedby P. p. eeiinskii.Akad' Nauk pp' 1'00r' Inst. Mat., Novosibirsk(1976)'1!7 in the carstheodory interporation Hz r04. Belrer,E.; pinchuk, B. fufinlmat class.Proc.Amer.Math.Soc.T2(|978),no.2,289-293;MR . 80b:30027 TimoneY, R. M. Coefficienls of 105. Bennett,G.; Stegenga,D' A'; J. Math . 25 (1981),no' 3, Btoch anc)LiPscltitzfunctions' Illinois 5 2 0 - 5 3l . of O' On the Schwarzianfor the functions 106. Beresniewicz-Rajca, 9 (1976),No. 3, 307-319; Shah-Tao-Shing'Demonstratioivlath. MR 55 #3232. of star-like symmetrical 107. Beresniewicz-Rajca,c. The coefficients and Englishsummarles)zeszytyNauk' functions.(Polish,Russian 26 (1976)'161-168;MR Politech.Slask.No. 441 Mat.-Fiz- zeszyt
56#s9s.
f'mction' O . Coefficientsof the Grunsky-Shah 108. Beres,riewicz-Ra;ca, politech' Nauk' zeszyty (Polish, Russianand Englishsummaries)' S l a s k . M a t . - F i z ' N o ' 3 5 ( 1 9 7 9 ) ' 3 - 6 ; M R 8 1 k : 3 0 0 1 8 ' Part II' of Scht:chtJunctions' 109. *Bernardi, S. D. Bibt;srap'hy Technical Report' IMM-414' tJniuersity 1966-lgi5. New York New York University' Courant Instituteof MathernaticalSciences' New York (1977)'x + 168pp'; MR 80h:30017 problems. Indian J' Pure 110. Bharati, R. some radius oy' ,onrexity MR 80a:30009' A p p l . M a t h . 9 ( 1 9 7 8 )n, o ' i l , 1 1 1 8 - 1 1 3 0 ; Acad' functions' Proc' Indian 111. Bharati, R. on a-close-to-convex 8 l c : 3 0021' M R gg S c i .S e c r .A M a t h . S c i . ( 1 9 7 g ) ,n o . 2 , 9 3 - 1 0 3 ; J' problcms' II' Indian Pure ll2. Bharati, R. Sorne radiusof convexity A p p l . M a t h . l 2 ( 1 9 8 1 )n, o ' 9 ' 1 1 3 3 - 1 1 4 5 ' s. R.. Analytic furrctions with 113. Bhoosnurmarh.s. s.; Swamy, l2 (1981)'no' 6 negativecoefficienfs.Indian J. Pure Appl'Math' 7 38-'742; MR 829:30019' ou sujet d'un th\ordme de M ll4. Biernacki, M. Deux re:nsrques R , o g o s i r t s k i . N l a . . h e n n a t i c a , v o l . l 0 ( 1 9 3 4 ) , p p ' a 6 - 4 8com ' Funktionen' schtichte verzerrungssatz fur Ein 115. Blatter, c. m e n t . M a t h . H e l v . 5 3 ( 1 q 2 8 ) , n o . 4 , 6 5 1 - 6 5 9 ; M R 8 0 dmappini :30010. unirtarent funclions titeo'rems for covering K. D. '6. Blevins, circles.canad. J. Math onto domatnsbound.iby quasico,nformsl -631' 28 (1976),no' 3 , 627
B I B L I O G R A P H Y o F S C H L I C H T F U N C T I O N S ( P A R T I I I ) 2E5
of the classof closell7. Blezu, Dorin; Pascu,N N' ,4 generalizqtiort Studia Univ' Babesto-convexfu:nctions. (Romanian summary) Bolyai Math . 25 (1980),no' 2, 32-38' o"forder I18. Blezu,D.; Pascu,|.1.;P..otaru,P . Atpha-starlikefunctions p.(Romanian,EnglishSumrrler})Bui.Univ.BrasovSer.C2l (1979),4l-44; MR 82i:300i 7 ' and growth nuntbersof 119. Bogda,R. A.; shankar,H. Convolutions ' l0 (1980)' no ' 3' analytic functions. Rocky Mountain J . Math 475-5s3;MR 82a:30C02' d't;iiivaierlcp-cie certatns nA. Bogucki, Z; Zcierkiewicz,J' Le ra.yott Ann' Univ' (Polish and Russiansummaries) fonctions analytiques' MR (1979); 27-33 Mariae Curie-SklodowskaSect' A 3r$977), 8 I d:30022. majorantesconvexesdesfoncl2l . Bogucki, Z.; Zderkiewicz,J. Sur les Ann' Univ' tions analYtiques.(Polish and Russiansummaries) (1977),2l-25 (1979);MR Mariae Curie-SklodowskaSec. A 3l 8lf :30024. entre les modules des 122.Bogucki, z.; Zderkiewicz, J. In€gatiti€s le cas de maiorantescond\riv€es de fonctions subordonn\esdans Bull' Acad' Polorr'Sci' Ser' \.'exes.English and Russiansummaries) 1 1 , 1 0 9 3 - 1 0 9 3M; R 5 3 s c i . i v l a t h .A s t r o n o m .P h y s. 2 5 ( 1 9 7 7 )n, ,o '
#62W. J. Sur un probldmede Jenkinspour les 123.Bogucki , Z.; Zderkiewicz, Ann' Polon. Math. 38 (1980),no' 3',255-258; fonct;onsconvexes' NIR 82g:30020. de fonctions sous-classe 124.Bogucki, z.; Zderkiewicz, J. suptne \toit€esdontlesvgleursrecouvrentuncirclefixe.Ann.Polon. Math.38(1980),no'3,245-253;MR82c:30011' entre la subordependances 125. Bojarska, M.; wesolowska, M. Les le cas des maiorantesapdination'et i'inbgalti€ des modules dans Russian s* (cY ' P)' s* (cv' P)'(Polish and partenantesaux clcsses sumnraries)Ann.Univ.MariaeCurie-SklodowskaSect.A29 (1975),7-n0977)
. f . , ,_.. ^^t-,n n{ n set of singular points o"f a |26. Bondar, A. V.; Diab, F. M. The ttnivalentanalyticfunctton.(Russian)Ukrain.Mat.Z.z8(|976),' no. 2, 147-158,284; Ir4R54 #2936' *. clelq classE (E'nglish 127. Boutellief, R . Le thtordme de deforntation summary)C.R.Acad.Sci.ParisSer.A-B286(1978),no.1, A33-A35; MR 8le:30020' with bounded boundary 128.Boutellier, R. Curvature and functions rotatiott Math . Z' 177(1981)'no' 3' 395-400' extremalproblemsfor funcl2g. Boutellier,R. (with Pfluiger,,4./Some
286
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
J' Math' 39 (1981)'no' tions of boundedboundaryrotation' Israel l-2, 46-62;MR 82g:30021' Abbildungen 130. Brandt, M. Ein Existenzsatzfi)r schlicht-knoforme Norhoherer bei endtich-vielfach zusommenhtingenderGebiete Lett' L6d2 29 (1919)' mierurtg. (Polish summary) Bult. Soc. sci' n o . 5 , 1 3P P . of meromorphicstarlike l3l. Brannan,n. R. The Grunsky coefficients summaries)Ann' Univ' and convexfunctions. (Polish and Russian (1977), 45-48 (1979);MR Mariae curie-sklodowskasect. A. 31 81c:30054. equations.Aspectsof conr3z. Brannan, D. .A. The L\wner differentiar Adv' Study Inst'' Univ' iemporarycomplexanalysis(Pioc. NATO Durham,Durham,tglg),pp7g-g1AcademicPress,London, 1980;MR 32i 3A029' regionsfor starlike 133. Brannan, D. A.; Brickman, L. coefficient Ann' Univ' Mariae pulynomials. (Polish and Russiansummaries) #88l9' Sect.A 29 (i 975), l5-21 (1977);MR 56 curie-Sklodowska x/-sp€ctsof contempororycomplex 134. Brannan,D.A.; Clunie, J. G . Univ. Durham, Durham anolysis(Proc. NATO Adv. Study Inst., 1980.xiii + 572pp; MR 1979).AcademicPress,Inc., New York,
82f:30001. covering theoremsfor 135.Brannan,D. A.; Kirwan,W ' E. Some (2) 19 ('1979),no' 1' analYticfunctions' J' Londcn Math. Soc.
9 3 - 1 0 1 ;M R 8 0 d : 3 0 0I1' the derivative in conformal 136. Brennan, J. E. |-he integrabitity of mapping.J.LondonMatt'.so..(2)18(1978),no.2,261I-272. l37.Brickmatr,L.;Wilken,D.Subordinationandinsuperableelements' (1977);MR 54 #13a66', MichiganMath. J.23(1976),no. 3,225-233 MR 8ld:30041. classof suPPortPoints of l33.Brown,J.E.Geometricpropertieso'fo 256(1979),37l-382; univalentfuncticns- Trans' Amer ' Mattr' Soc. IvIR80k:30019. functions' inrcgral 139. Brown, J. E. Derivatives of close-to-convex z' 178(198i)' no' 3' meansand boundedmeyn oscillation.Math' 353-358;MR 82j:30046' Re lct + Xaz]' il140. Brown, J. E. (Jnivalentfunctions maximizing MR 82j:30022. linois J. Math,25 (|981),no. 3 ,446_454; univalentfuncfions r41. Bshouty, D. H . the Bieberbachconiccturefor l4g (1976), no' 2' with small second coefficients. Math . z. ' I 8 3 -1 8 7 ;M R 55 # 8 3 4 1 pro,cuctsof univalentfunctions' 142.Bshouty,D.A note on lladanard Proc.Amer.Math.Soc.s0(1980),2,7|-272;MR8lh:30017.
BIBI-IOGRAPHYoFSCHLICHTFUNCTIONS(PARTIII)281
FitzGerald inequalities' 143. Bshouty, D.; Hengartner, W . Asymptotic rviR80b:300t0' comment. Math. Helv. 53 (1978),no.2,225-238; the Koebe Estimatesfor lM. Bshouty,D.; Hengartner,w.; Schober,G. o'f classes univaleni conslc1tand the secondcoefficientfor some . 32 (1980), no. 6, 13i 1- 13]4; MR functions. Canad. J. Math 82f:30009. and problemsof the ma145. Bucka, c.; ciozda, K . some estimations of functions Sk (u,0/. Golish and Russian jcrizatlon in the classes Secr-'A 29 srrmma.i€s)Ailn. Univ. tvtatiae Curie-Slrlcdowska (1975),29-41(19i't); \'lR 57 #337C' 146.Bucka,C.;Ciozda,I(.Surl'interpretationgeometriquedecertains Ann' dc la clqsseS. (Polish and Russiansumnaries) saus-classes 29 (1975)' 23-28 1l9ii); Univ. Mariae Curie-SklodowskaSect' A'
M R 5 8# r l r 7 . econ147. Buckholtz,J. D.; S h a h , s . M . A b s o l u t e s t a r l i k e a n d a b s o l u tMR (1980), I l3- 143; 38 ' Math Analyse J. vex functions. . 82b:30009 with constraints 1 4 8 . B u c k h o l t zj,. D . ; S h a h ,S ' M. Analytic functions (tggt), no.5,553-564;MR on coefficients. Nonlinear A n a l . 5 829:30032. *Ccmplexanalysis.Proceedings l4g. Buckhcltz, J. D.; Suffridge, T. J. SwarupchandM' of the Conferenceheld in honor of Professor Ky', May 18-22' Shah at the university of Kentucky, Lexington, |9T6.EditedbyJamesD.BuckholtzandTeddyJ.Suffridge.LectureNotesinMathematics,vol.5gg.Springer-verlag'Berlin-New MR 56 #3260. York, |977. x + 159pp. ISBN 3_540-08343_X; and the Poincarb metric' 150. Burbea, J, The Schwirzian derivative g7g),no.2,345-354;MR 8lg:30013. PacificJ. Math. 85 (1 151.Burdick,G.R.;Keogh,F'R';Merkes'E'P'Onaratioofa (1916),no.2,221-224' univalentfunction. J.Math. Anal. Appl. 53 p ratios of certainanalyticfuncr52. Burdick, G. R.; Merkes, E. . on 1,23-28;MR 53 #5842' tions.Rev.colombiana Mat. 9 (1975),Do. V. on the theory of stor-like 153. Busovaskaja,o. A.; Gorjainov, v. summary)Dokl' A,kad' Nauk ukrain' functions.(Russian,English 82k:30011' S S RS e r .A ( 1 9 8 1 )n, o ' - 2 ' 6 - 8 ' 9 5 ; M R function' Ann' 154. Byers, R. B. On the derivativeof a typically-reat Math'-Phys' 5 (1919)' Fac. sci. univ. Nat . zaire (Kinshasa)Sect. no. 1-2, 47-53;MR 82h:30008' and a related 155. Byers, R. B. On growth of typically-realfunctions 39-45; MR l' ' (1981),no class.Bull. Inst. Math. Acad. sinica 9 8 2 f: 3 0 0 1 0 . typically-realand 156. Byers, R. B.; MerkeS,E. P. Subordinationsfor
b-___
2SSBIBLIOGRAPHYoFSCHLICHTFUNCTIONS
Math' 11 (1981)' no' 2' relatedfunctions. Rocky Mountain J' ' 297-304;MR 82e:30015 of eventuqllyareattymeonp-valent growth The 157. campbell, D. M. functions-Bull.CalcutcaMath.Soc.6s(1976),no.1,31-36;MR 56#15904. p-vatentfunctions' Rocky Mountain 158. campbell, D. M. Eventually MR 56 #3282' J. Math. 7 (1 g'77),no' 4, 639-658; univalentfunctio't' Michigan 159. campbell, D. M. A truly isolated Math.J.27(1980),253-255;MR8lh:30020' all of whoselevel sets are of 160. campbell, D. M. Analytic functions i n f i n i t e l e n g t h . H o t t s t o n J . o f M a t h . 5 , n o . l ( 1 9 8 0 ) , 1 5in- 1all 7 .Ho K. A Blochfunction Stephenson' J.; Cima, D.; Campbell, 161. Soc' 78 (1980)'no' but not in BMOA. Proc' Amer' Math' classes, 2, 229-230;MR 80k:30033' Hayman, w. K. Researchpro162.campbell, D. M.; clunie, J. G.; of contemporary complex blems in complex onalysis. Aspects analysis.(Proc.NATOAdv.StudyInst.,Univ.Durham,|9,79), pp. 527-572,AcademicPress'London' 1980' pearce, K. GeneralizetlBazilevit functions. 163. campberl, D. M.; R o c k y M o u n t a i n J . M a t h . g ( 1 g , 7 9 ) , n o . 2 , | 9 7 _ 2 2 6 ;and MR8 0d:30005. linear behavior Boundary A. . J Pfaltzgraff, M.: D. |64. Campbell, i n v a r i a n t f a m i t i e s . J . D ' a n a l y s e M a t h . 2 9 ( | 9 7 6 ) . 6 7 _ 9 2 pro. vikramaditya)' valcrice (singh, v. Singh, M.; D. 165. campbell, Math ' a differential equation' Pacific J ' solution-of the of perties -a+ 8la:30006' tf gli), no. I ,29-33; MR The qrgttmentof the derivativeof 166. campbell, D. M.; Ziegler,M. k. ond the radius of close-tofamiries of finite order rinear_invqriant Ann' Univ' Mariae convexity. (Polish and Russian summaries) (1976);MR 54 #1758' curie-SklodowskaSect.A 28 (1g74),5-22 B' Starlike and prestarlike 167. Carlson, B. C.; Shaffer, D. available in Applied h;tpergeometric functions. [Preprint Icwa StateUnl:tt:ttll' MathematicalScience,Ames LaboratofY, /. o1 certainfunctions "'it,li 168. causey,w. M.; white, \ L. starlikeniss integralrepresentations.J.Math.Anal.Appl.64(1978),no.7, 458-466;MR 57 #16561' *Romanian-Finnishseminar on comprex Anarysis' l69. cazacu,c. A . Bucharest' June 27-July 2' Proceeclingso1 the sentinar held in Aurel cornea' Martin 1976.Edited by cabiria Andreian cazacu, Notes in mathematics' 743' Jurchescuand Ion Suciu. Lecture lg7g. xvi + I Lr pp' ISBN Springer-verlag,Berlin-New York, 3-540-09550-0;l'{R S0i:300C2'
(P A R T III) B IBL IOGR .A P H YOF S C H LIC H T FU N C TION S
289
the curvatureof levelcurvesin a cerlT0. iernikoV, V . Y . Estimstion of 19 (1976)'Do' 3' 381-388;MR tuin class.(Russian)Mat' Zantetki 53#13537. prcoertiesof typically-realfuncljI. iernikoV, V . Y. Some extremul tiotts.(Russian)Sibirsk.Mat.Z.zl(1980),tro.6,208_209,274; ' MR 829:30023 of all regular onvexity of order a o.f the crass cv-c v. v. r.rz. iernikov, in the disc'(Russian)Mat' Zametk\29 functions fliat are urtivalent ( l 9 S l ) , n o . 6 , 8 5 9 - 8 6 69, 5 6 ' Somepropertiesaf star-likeunivalent 173.iernikoV, V. V.; Sizuk,P. I. no. 1, 193-200' (Russian)Sibirsk. Mat. z. lg (1973), functions -239; MR 5'7#603, MR 58 #22503' I. Some properties of spiral-shaped li4. iernikov, V. V.; Sizuk, P. quistiont of the theory of univalentfunctions. (Russina)Metric ;'Naukova Dumka," Kiev' 163, functions.(Russian),pp. I 32-'135, 1980;N{R.82k:300i2' Hadamard'sproducl' B. F. Anolytic contrnuqtionvia chambers, 175. S I A M J . M a t h . A n a l . g ( 1 9 7 8 ) , n o . 6 , 1 0 9 6 _ r 1 0 4Indian ; M R 8 0J'f :Pure 30002. p schlicht mappings. 176.chand, R.; singh, . oicertqtin A p p l . M a t h . 1 0 ( l g 7 g ) . n o . 9 , | | 6 7 - | | 7 4 ; M R ' 8 0 jIndian : 3 0 0 1 5J'. Pure on regularfunctions' results some S. chancra, 1.77. g7i)' no' 8' 915-919' APPI.Math' 8 (1 the regurarp-valentfunctions' 17g. chandra,s. coefficie'ntestimatesJ'or Ann.Fac.Sci.Univ.Nat.Zaire(Kinshasa)Sect.Math.-Phys.3 ( 1 g 7 7 ) , n o1 . , 6 5 - 7 8 ;M R 5 7 # 6 3 9 9 ' of meromorfor certain classes l7g. chandra , s. coefficient estimates Math . 8 (|977), no. 9 , phic functions. Indian J. Pure Appl. 987-991; MR 58 #28498' Pure on regular functions. Indian J. 180. Chandra, S. Some results g77)'no' 8' 915-919;MR 57 #9951' Appl. Math' 8 tl transformationof someclasses 1g1. chandra, S.; Singh,i. ,q,ninteg,al 6 Indian J' Pure Appl' Math' of regular univslent functioni. MR 57 #3371' (1975),l27O-12'75; the J. A simple method of deriving 182. Charzynsk\,Z.; Lawrynowicz, Proceedings algebiaicfunctions' Lowner equationwiti the hetp of School in complex Analysis of the First Finnish-polish summ.i (Podlesice,lg|'7),Partl'pp1-9'Univ'Lodz'Lodz'1978;MR 81i:30033 cf some univalenceand storlikeness 183. Chen, frn. P . The radius of Math' Univ' St' Paul' 24 of analYticfunctions' Comment. classes ( l g 7 5 / 7 6 ) n, o' 2 , 9 l - 9 5 ; M R 53 #8404.
L-
2goBIBLIOGRAPHYoFSCHLICHTFUNCTIONS
storlikenessof some lg4. chen, M. P. The radius of univalenceand (1975)'no' 1' of analyticfunctions. chinese J. Math' 3 clssses , R 53 #84M' 1 7 - 2 2 ;M R 5 4 # 1 3 0 5 3M stortikefunctions.Nanta Math' 8 (1975), of class ig5. chen, M. P . on a n o . I , ' t 9 - 8 2 ;M R 5 4 # 1 3 0 5 4 ' SoochowJ' Math' 6 186. Chen, M. P. A clsssof univalentfunctio'rus' (1980),49-57;MR 82h:30009' of the classof close-to-convexfunc187. chichra, P. N. New subclssses no. l, 37-43; MR 54 tions. proc. Amer. Marh. Soc. 62 (1976), #l 3055. J' Indian Math' 188. Chichra,P. N . Convexsum of regularfunctions' #10586' Soc.(N.S.)39 (19?5),2gg-304(1976);MR 54 of analytic.functions' Soochow J' 189. Chou, T. W. On some classes Matt'.Natur.Sci.3(|977),|09_122;MR58#11348. schlicht functions' 190. Cima, J. A. Hsdamard products of convex Mariae curieuniv' Ann. (Pclish and Russian summaries) MR 58 #17066' sklodowskaSect. A 29 (1975),49-60(1977); 8l for -f in S. Monatsh.Math' l9l. Cima, J. A. A note on iog 111a)/z) ( 1 9 7 6 )n, o . 2 , 8 9 - 9 3 . Internat' J' lclz. cima, J. A. The bssicpropertiesof Btochfunctions' Math.Nlath.Sci.2(|g7g),LC.3,369-4i3;MR80k:30037. H. on the dualsof somespacesoJ'locallg3. cima, J. A.; Stegbuchner, 27 (1978),no. 4, ty schtichtfunctions. Indiana Univ. Math. J. 539-550. convexesvers I'axe reel lg4. ciozda, K. Sur la classedesfonctions Acaci' Polon' Sci' negatif. @nglish anclRussiansummaries)Bull' .27 (|g7g),no. 3_4, 255_26|;MR 80m:30011. Ser.Sci. rvratrr des dans les clqsses 195. Ciozda,K. Sur quelqueiprobfimes extr\maux ree! negatif. (Engiish summary)Ann' fonctions cortvexesvers l'axe Polon.Math.38(198C),no'3,311-317;MR82b:30010' cur"'elheory' The Univer196. Ciemens,C. H . A scrapbookof complsx New York-London siry Seriesin Mathernatics.Plen;m Press, (1980),ix + 186pp. ISBN 0-306-40536-9' univalentfunctions' J' 197. clunie, J. G. Inversecoefficientsfor convex D'analyseNlath. 36 ( lg79),31-35;IvIR'81i:30017' points in function theory' 198. Clunie, J. G . Someremarkson extreme (Proc' NATC Adv' Aspects of contemporary complex analysis 1g7g), pp' 137-146' Study Inst., univ. Durham, Durham, AcademicPress,London,lgS0;MR82g:30024. centerso/ plane do' 199. Clunie, J. G.; Rubel, L. A. Riemann-Lebesgue mains.Illinois J. Math . 22 (|978), nc. 4 , 682-692.
FU N C TION S(P A R T IIt) B IBL IOGR A P H YOF S C H LIC H T
29I
T' H Frechet differentiablefuncZA0.Cohrane, P. C'; MacGreSor' of anatyticfunctions' Trantionals and support pornt;fo; famitle-s sactionsAtner.Math.soc.2 ( | 9 ? 8 ) , 7 5 _ 9 2 ; M R 5 7 # 6 0with 4. p.3 6 J .; iir.et".,X: Eenigenuurg. B.; H. \'^,ounttions zcr. coonce, summaries) II. (Polish and Russian bounded Mocanu variatioi. 23-28 (19'74)' Sect' A 28 Ann. univ. Mariae curie-Sklodowska
MR s3#r1035' (1976); in s thatareunivolent functions resurts for some G. B. cvetkov, (Proc. zcz. theory
problenrsi;r rnodernfunction strip. (Russian)Sorne Inst. GeontetricTheory of Functions, Conf . Modcrn Problem: of (Russian)' pp. Novosibirsk, |976) USSR, Sci. Acad. Math., NovosibirSibirsk.o'oti' Inst' Mat., t6g-i73. Akad, Na-uksssR sk,lgT6.ForareviewofthisitemseeRZMat119,77#118146.[|or t h e e n t i r e c o l l e c t i o n , . . M R 5 T # 1 5 8 1 3 . ] ; M Rsubclasses 5 8 # 2 2 5 of 2 4close. propertiesof.certain on P. Singh, N.; R. 203.Das, Ann' univ' and Russiansummaries) rc-convexfunctions. tpolish (1978);MR 58 Sect.A 3t og76), 15-22 curie-sktoaowstca tdariae o-l p . rJn the coefficient bounds of a subclcss singh, N.; 40 204.H:rl.. disc.i- tnoian Mattr' Soc'(N's') analyticfunctions in the t,nil ( 1 9 1 7 )M ; R 56 #327'7 ( 1 9 7 6 )n, o ' f - 4 ' 1 5 3 - 1 5 8 J' of schlichtmapping'Indian on subclasses 205.Das, R. N.; Singh,P. P u r e A p ! ' ' l ' M a t h ' S i 1 9 i i ) ' n o ' ^ 8 ' 8 6 4 - 8 7 2 ;aMcertain R 5 E # 6subclass 2 0 1 ' of convexityfor of Raiius Singh 'P'' N'; 206.Das, R' (N s') 41 (1977)' J. Indian Math' Soc' closeto convexfunc:tionr. 80a:30010' no. 3 -4,363-369; MR '.
r ^ + - u t i t z n , . r o cncf
cert'
2 0 7 . D a s , R . N . ; S i n g h , P . T h e r a d i u s o f sMath' tarlike n e s s o f c e r(1978)' tatn Debrecen25 Publ' analyt'i'c iutnctionr of subclasses 1349' no. I -2, g7 -106; MR 58 #1 20S.deBranges,L.coelicrentestimates.J.Math.Anal.Appl.S2
taacoeffi' approach Loewner A A. r., 3.1i,1;1tX0,,,, z,s.!?+:,#,o.,
c i e n t i n e q u a l i t y f o r b o u n d e d u n i v a l e n t5 functions.Proc.Amer. g 7 ' 7 ) ' n o1 ' ' 1 2 1 - 1 2 6 ;M R 6 # 3 2 7 8 ' ( 1 6 5 S o c ' Math. coeffiD. B . Formulasfor the Nehari 210. de Temple,D. w.; oulton, cien|sofbounder]unit,alentfunctions.Canad.J.Math.29(|9,77), 6' j no. 3 , gr-oo5; MR 56 #327 oJ G'M' of the variationarformula extension An zri.Din_van_F,eu. of the gussian) Extremal problems onnrtur. en to Goluzin geometrictheoryoffunctionsofacomplexvariable,ll.Zap. Naucn.Sem.Leningrad.otdel.Mat.tnst.Steklov.(LOMI)M
L
292
BIB L IO GR AP H YOF S C H L IC H T FU N C TION S
( 1 9 7 4 )1, 3 1 - 1 7 81; 8 8 ;M R 5 6 # 5 8 6 3 ' ersteAbleitung 212. Doppel. rc. tibe:rlokal schlichteFunktionen,deren Argument hdt. Ann. Acad' Sci' Fenn' Ser' A 1 Math' beschrtinktes 3 ( 1 9 7 1 )r,o - 2 , 3 1 7 - 3 2 5 ;M R 5 8 # 2 2 5 0 4 ' ilber Fix213. Doppel, K.; Koctitz, H.; TimmAnn, s. Bemerkttngen sumEnglish and punktmengenschlichter Funktionen. (Italian (1977); mary)Rend.Ist. Mat. Univ. Trieste8 (1976),no.2,162-166 MR 57 #3375 der Menge der 214. Doppel, K.; Zinterhof, P. Uber die e-Entropie wiss' schlichten Funktionen. Anz. osterrreich' Akad' K1. (1971),no. 3,45-46; MR 52 #5953. Marh.-Narurwiss. method. (Russian) Zl5. Dubinin, V. I\I. A certain symmetrrzation Trudy Mathematicalanalysis,No. 2. Kuban. Gos. Univ' Naucn' ; R 53#5852' V y p . 1 8 0 1 1 9 7 4 ) , 5 0 - 6 41 ,6 0 - 1 6 1M mappZt6. Dubinin, V. N . Covering o-f verticalsegmentsin c'onformal 167; MR ings.(Russian)Mat. zarnetki 28 (1980),no. 1, 25-32, 8 i m:30008. S. V. MaP2l'7. Dundudenko,L. I. (Dundudenko,L' O.); Goncarenko, cut'salong with plane ping on n-connectedcirculsr domain onto o (1977),no' drcsof logarithmic spirals. (Rrrssian)Mat Zametki'21 3,'329-334;MR 57 #600. of univalent 218. Duren, P. L. Asymptotic behavior of coefficients Sem'' (Proc' theory functions. Advances in complex function pp. |7-23. Lec. Univ. Maryland, CollegePark, Md., |973-|974), 56 #597' ture Notesin Niath.,Vol. 505,Springer,Berlin, 1976;MR inequality' 2lg. Duren, P. L. Apptications of the Gsrabedion-schiffer #10656. 55 MR J. AnalyseMath. 30 (1976),l4l-149; (Proc' Conf' Univ' 220. Duren, P. Subordination. Complex analy'sls Notes in Kentucky, Lexington, Ky., |976), pp. 22-29. Lecture Math., Vol. 599,Springer,Berlin, |97i; MR 56 #|2252. Bull' Amer' ZZI. Duren, P. L. Coefficients cf univalentfunctions; R 57 li99$. t " { a r h s. o c . 8 3 ( 1 9 7 7 )n, o . 5 , 8 9 1 - 9 1 1M of univalent functions' spaces points of 222. I)uren, P. L. Extreme Res' Inst'' Linear spacesand approximation(Frcc. Conf., Math' Math'' Oberwolfach. lg77), pp. 471-477.Internat' Ser' Number' Vol. 40, Birkhauser,Basel,1978;MR 58 #17072' gePfficienrs
FUNCTIONS (PART III) BIBLIOGRAPHY OF SCHLICHT
293
I. Arcsomittedby supportpoints of univalentfunc225.Duren, P. t i o n s . C o m m e n t ' l v t a t h ' H e l v ' S O ( 1 9 8 1 ) 'of n o ' 3 ' 3 5 2 -func365' y. I . Logarithmicco'efficients univalent p. Leung, ; . Durcn, 226 81i:30C18' Ma-th't6 (1979)'36-4:r;MR tions.J. D'analyse urtivsrent furictions'Math' hr:tnvanisiring p.; G. schober, Duren, . 227 MR 81e:30021' Z. 170(1980),195-216; 228.Du'ivedi,S'P';Bhargunu'G'P';Shuklu'1'1--?n^someclasseso'f meromorphicunivatent,functions.-_Rev.RoumaineMath.Pures MR 81g:30016' Appl. 25 (1980),no' 2' igg-zt5; ' integral rteans of unalyticfunctions ZZg. Ecnigenburg,P. J. in, 127,3|3...s2:2. oxford Ser.(i) 32 (|981),no. Quart.r. viatt,. fcr alpha' starlikeness p. on the)raei of p.; z3o. Eenigenburg, Ner:on, convexfunctions.rurutt.*atica(cluj)1-8(41)(1976)'no'2' ' 143-146;MR 58 #22505 z3l.Eenigenburg,P'J';Nelson'J'D'Onareaandsubordination' Complexanalysis(Proc.s.u.N.Y.Conf.,Brockport,N.Y.,1976)' pp.5j-60.LeltureNotesinPureandAppt.Math.,Vol.36,Dek. #6211' - -,,ntitvfor quasl. ker,NewYork, 1978;MR 58 ouat' J. An Qreainequalityfor Waniurski, J.; P. 232.Eenigenburg, subo:,dinateanalyticfunctions.Ann'Polon.Math.34(1977),no.1, 25-3i. (erratainsert);MR 55 #652' 2 3 3 . E e n i g e n b u r g , p . ; y o s r r i k a wtneoiy. a . H . A nf.aVtuth' p p l i c aAnal' t i o n oAppl' . f t h e56 methodof Zmorovit in geomrtri,irnrrfon MR 54 #13056' no' 3, Oel-Oe8; (1976), Amer' M. R. Bestradii of univalence' 234.Egerland,w. o.; zi"it i, g'tl)' pp' 1031-1032' Math. Monthly,vol' iS tf functions. for murtivarent 235.Eke,B. G. on thenieoeiuach'co-njecture (1976),tro. t, tg-26;MR 53 #79|. J. LondonMath. S; (2) 13 o univarentfunctionssatisfying of uii"rii Boundaii M. 236.Essen, Hijlderconditton.Proc.Amer.Math.Soc.s3(1981),no.1,83-84; MR 82i:30010' 2 3 7 . F a i t , M . ; K r z y z , J ' G ' ; Z y g m u n t ' . J ' E x p t i c i tcomment' q u o s i c o nMath' formalextenuntudlent functions' ii ,torri, som, sionsfor MR 54 #10587' Helv. 51 (1976),no' 2' Z7g-zg5; J' On some classesof Zygmunt' J'; Stankiewicz' M.; . Fait, 238 polynomials,(PolishandRussianSumm-aries)Ann.Univ.Mariae Curie.SklodorvskaSect.A29(1975),6|_67(1977);MR56#|2236. 23g.Fait,M';notkiewicz'E'Convexhurllsofsomeclassesofunivalent f u n c t i o n s . ( P o l i s h a n d R u(tqz;), s s i a n 35-41 s u m m(19J8); a r i e sMR ) A n80c:30009' n.Univ.Mariae Sect.A 30 curie-sklodowska J. Math' Anal' Appl' 66 1un'itions. Distortion-iu'nfroteit K. Fan, Z4O. MR 80a:30015' (1978t,no' 3, 626-631;
L
294
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
probZ4l. Fedorov, S. I. On the maximum of a conformal invariant in o lem on nonovertappingdomains. (Russian)Analytic number theory and the theory of functions, 4. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov(LOMI) ll2 (1981),172-183,202. d'itne s€rie sur son circle de convergence Z4Z. Fej6r, L. La convergence le de puissonceeffectuantune reprlsentation du c|rcle sut' plan simple. ComptesRendus,vol. 156 (1913),pp' 46-49' 243. Fej6r, L. }bt, gewissedurch die Fouriersche und Laplacesche Reihe definierten Mittelkurven und Mittefliichen. Rendiconti del Circolo Mat. di Palermo,vol. 38 (1914),pp' 79-97' ZM. Fej6r, L. jber die Grenzender Abscnitte gewisserPotenzreihen. Acta Szeged,vol. 4 (1928-29),pp 14-20' of Bazilevidfunctions. Romanian245. Fekete,O. On some subclasses Finnish Seminaron Complex Analysis (Proc., Bucharest,1976), pp. 268-273,LectureNotesin Math.,743, Springer,Berlin, 1979; . MR 80k:30015 classoJ Bazilevil fitnctiori,s.(Romanianand certain A O. 246. Fekete, Math .22 (1977),no. Engiishsummary)studia Univ. Babes-Bolyai l, 26-34; MR 58 #22506. of for clas,ses 24i . Feng, J. E.rtreniepoints ond integral mean e.stimates at York New analyticfunctions. Ph.D. thesis,StateUniversityof Albany (1974). 248. Feng, J.; Macgregor,T. H. Estimates on integral means of the derlvatives of univolent fitnctions. J. Analyse Math. 29 (1976),
203-23r.
24g. Fenton, P. c. on conformal maps with storlike images. Math' ; R 54 #13050' S c a n d .3 9 ( 1 9 7 6 )n, o . 1 , 1 0 2 - 1 1 2 M and analyticcontinuqtion' inequalities 250. FitzGerald,C .H. Quadrstic J. AnalyseMath. 3l (1977),19-47;MR 58 #61d9' Z5l. FitzGer-ald,C. H. Quadratic inequalitiesand univulenrfuitctions' Aspects of contemporarycomplex analysis(Proc' NATO Ar'iv' Study Inst., univ. Durham, Durham (i979), pp. 393-397, AcademicPress,London, 1980;lvIR 829:30001' 252. FitzGerald, C. H.; Horn, R A. On the structure qf ilermifian' (197',7)' symmetric Inequaliries.J. London Math. Soc. (2), 15 4r9-430 J' 253. Frank, J. L. Suborrlinationand convex unit,aleninoiyrrornials. Reine Angew. Math . 290 (1977), 63-69; MR 56 #3269. 254. Fricke,G.H.; Shah,s. M. Noteon o theoremon analyticfunctiols with univolentderivatives.Indi:n J. Math .2t (lg7g), no' 1, 57-51" . MR 82b:30011 op255. Friedland,s.; Schiffer,M. Globat resultsin control theary with
J
(P A R T l l t) B T BL IOGR A P H YC F S C H LIC H T FU N C TION S
295
Math' Soc' 82' no' 6 plications to univqlent-functions.Bull. Amer' (NovemberI 976), 9 l3-915' regionsof univalentfunc256. Friedland,s.; Schiffer, M. On coe-fficient MR 58 #22519. iicns.;. nnaiyselv{ath.3l (1g77),i25-168; of (dkD'i2. and starrikeness zsj. Fukui, s. on the radii oJ-c:anvexit;, Sci', ro ' 27 (1978)' l-4; Bull. Fac. Ed. wakayama Univ. Natur' MR 80k:30Ct16' 25S,Fukui,s.Theradiiofstarlikenessandconvexitl'forcertainclassof anal;lticfunciions.Bull.Fac.Ed.V/akayamaUniv.Natur.Sci., n o . 3 0 ( 1 9 8 1 ) i,- 4 ' extension of a thec:,cm oJ- s. 25g. Fukui, S.; Sakaguchi, K. An Sci., no,29 Bull. Fac. Ed. WakayamaUniv. Natur. Ruscheweyh. ( 1 9 8 0 ) 1, - 3 ; M R 8 1 g : 3 0 0 i 7 ' typically-realfunctions to inverse 260. Gaiduk, v. N. Applicotion of boundaryvalueproblens.(Russian)Trudy.Sem.Kraev.Zadacam ' VYP. 6 (1969), 26-30; MR 58 #r7 r24 of the soruiionsof univarence 261. Gaiduk, v. N . some conditionsfor (Russian)Trudy Sem' Kraev' inverseboundary value problems. ' 58 #17125 ZadacamVvp' 7 (1970),98-102;MR of univalence the solution of an 262. Gaiduk, V. N . Someconditionsfor n-symmetricfunctions' (Rusinverseboundarl' vslueproblem for sian)TrudySern.Kraev.ZadacamVyp.8(19.7|),55-58.Fora reviewofthisitemseeZbl236#30023;MR58#|7|26. 263.Gaicluk,V.N.Theunivalenceofthesolutionsofinverseboundary v a l u e p r o b l e m s . ( R u s s i a n ) T r u d y S e m . K r a e v . Z a d a cMR amV yp.9 58 Zbl 299 ffi0a13; see item this of review a For (|9,|2),39-48. #17127
ler
, '.,,r..--^ - ^ ^ ^ L - f n n h zusammenhtingena atten mehrfach 264. Gaier, D. Konfonne Abbildung 81 (1978/79)'no' 1' Gebiete.Jahresber.Deutsch.Math'-verein' 25-M. of the coefficientsof multivalent 265. Gal'peritr, I. M. on the probtem Mat' z' 32 (1980)' no ' 4' spiral functions. (Russian) ukrain. 5 4 5 - 5 4 8M ; R 81k:30019' products of crose-to-starrikeand crose-to-convex 266. Ganesan,M. s. functions.IndianJ.PureAppl.Math.|2(|981),no.3,336_346: MR 82d:30014' and the Riemannmqpptng ?.67.Garabedian,P. R. univalentfunctions MR 54 (1976),no.2,242_244; theorem.Proc. Amer. Math. Soc.61
#13052. Pure and appliedMath26g. *Garnett, J. B. Boundedanalyticfunctions. press, Inc. [Harcourt Brace Jovanovich' ematics, 96. Academic (1981), xvi + 467 pp. ISBN Publishers], New York-London
296
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
0-t2-276150-2. 269. Gehring,F. W. Someproblems in complexanalyslb.Proceedingsof the First Finnish-Pclish Summer School in Complex Analysis (Podlesice, 1977),Part II, pp. 6I-&, Univ. L6d2,L6d2, 1978;MR 80b:30013. 270. Gehring, F. W. Univalentfunctions and the Schwarzianderivative. Comment.Math. Helv. 52 (1977),no. 4, 561-572;MR 56 # 15905. 27| . Gehring, F. W. Remarks on the universal Teichmiiller space. Enseign.Math.(2) 24 (1978),no. 3-4, 173-178;MR 80d:30012. 272. Gel'fer, S. A. p-valentfunctions. (Russian)Izv. Vyss.Ucebn. Zaved. Matematika(1977),'no.5(180),l5-24; MR 57 #6400. 273. Gel'fer, S. A.; Kresnjakova,L. V. Meon voluesof onalyticfunctions. (Russian)Sibirsk. Mat. Z. l8 (1977),no. 4, 747-754,955; MR. 56 #8836. 274. Gevirtz, J. An upper bound for the John constant.Proc. Amer. Math. Soc. 83 (1981),no. 3, 476-478;MR 82j:3N26. 275. Gocal, Ryszard. Une remarque sur la mesure des domaines correspondantaux fonctions extr1males.(Polish summary) Bull. Soc. Sci. Leu. f6a229 0979),no. 9,4 pp.; MR 8li:30043. 276. Goel, R. M. The radii of convexityfor certain classesof analytic functions.J. Math. Sci. 8 (1973),1,7-22097a); MR 57 #9951. 277. Goel, R. M. On a classof analyticfunctions.Indian J. Math. 17 (1975),no. I ,9-2Q; MR 82i:30011 278. Goel, R. M. A subclass of a-spiral lunctions. Publ. Math. Debrecen2j (1976\,no. I -2, 79-84; MR 54 #2940. 279. Goel, R. M. Radius of storlikenessof close-tct-spiraUike functions. Indian J. PureAppl. Math. 8 (1977),no.4, 394-400;MR 57 #9952. 280. Gce[, R. M. Radius of convexity of convexcombination of certain 'famkang analyticfuncticns'. J. Nlath. l0 (19791,no. i, 75-79; MR 8ld:30C14. of 281. Goel, R.M.; Mehiok, B. S. On the coefficientsqf a subclass stsrlike functions. Indian J. Furc Appl. IUath. 12 (1981),tio. 5, 634-647; NIR 82s:30026. 282. Goel, R. M.; Mehrok, B. S. Orr a classof close-to-convex func' tions. Indian J. Pure Appl. Math.12 (1981),no. 5,648-658;MR 82e:30017. 283. Goel, R. M.; Mehrok, B. S. Some invarianceproperties o"[ a subciass of close-to-convex funciions. Indian J. Pure Appl. Math. 12 (1981),no. 10, 1240-1249. 284. Goel, R. M.; Sohi, N. S. On o subclassof univalentfuncfions' TamkangJ. Math. 10 (1979),tro. 2, l5l-i64; MR 8li:30019. 285. Goel, R. M.; Sohi, N. S. A new criterionfor p-valentfuncfions'
.nd
B IBL IOGR A P H Y OF S C H LIC H T FU N C TION S(P A R T III)
291
; R 8lb:30020. P r o c .A m e r . M a t h . s o c . 7 8( 1 9 8 0 )n, o . 3 , , 3 5 3 - 3 5 7M anaiytic of c/asses Junctions' 286. Goel, R. M.; Sohi, N. S. On certain MR 1308-1324; 10, no. (1980), 11 Math. Appl. Pure Indian J. 8lj:3002a. hrclianJ' Pure 287. Goel, R. M.; Sohi, N. S. l'lewcrileriafor p-volente' A p p l . M a t h . I I ( 1 9 8 0 ) n, o . 1 0 , 1 3 5 6 - 1 3 6 0M; R 8 2 c : 3 0 0 1 2 . of univalentfunctions' 288. Goel, R. M.; Sohi, N. S. Subclasses 1 , 7 7 8 1 ;M R . 8 2 9 3 A 0 2 5 ( 1 9 8 0 ) I , 1 o . T a m k a n gJ . M a t h . 1 1 Indian }tt. Gcrel,R. M.; Soiri,N. S. Ort u ciassof spirat-tikefunctions' . 1 .P u r eA p p l . I r 4 a t h . 1 2( 1 9 8 1 )n, o ' 5 , 6 2 8 - 6 3 3 ' coef2g0. Goel, R. M.; Sohi, N. s . Muttivalentfunctions with negaiive ( 1 9 8 1 )n, o . 7 , 8 M - 8 5 3 ; M R f i c i e n t s . I n d i a nJ . P u r A p p l . M a i h. 1 2 82i:30012. ap2gl . Goel, R. M.; Sohi, N. S. A new criterionfor univalenceand its 16(36) III Ser. plicutions. (Serbo-Croatiansummary)Glas. Mat. ( 1 9 8 1 )n, o . 1 , 3 9 - 4 9 . pair of 2g2. Gohberg, I. C.; Lerer, L. E. Resultant operators of a anaiyticfunctions.Proc. Amer. Math. Soc 72 (1978),no. I , 65-73. 293. Goldberg,J. L.; Ullman, J. L. A note on positiverealfunctions' s I - \ M r . v a t h . A n a l . 8 ( 1 9 ' , r 7n) ,o . 5 , 7 5 7 - 7 6 2 ;M R 5 6 # 8 8 5 4 . 294. Goluzina, E . G. The mutuol growlir coefficientsof p-valent closeto-cont,exfunctions. (Russian)Someproblemsin modern function theory (pioc. Conf. Modern Problemsof GeometricTheory of (RusFunctions,Inst.Math., Acad. Sci.USSR,Novosibirsk,1916) Mat., sian), pp. 2l-2'1. Akad. Na,rk sssR Sibirsk. otdel. Inst. (1971) #10 Novosibirsk(l gi6). For a reviewof this item seeRZMat ' p 177.[For the entirecollectionseeMR 57 #15813.];MR 58 #2250'7 of 2g5. Goluzin?, E. G. On the rongesof valuesof cer'ain systems functionats in classesof functions witlt positive real part- (Russian) Analytic number theory and the .theory of functions, 3. Zap' 100 Naucn. Sem. Leningrad.otdel. Mat. Inst. Steklov. (LOMI) (1980),l7-25, 173;MR 82b:30036' in 296. Goluzina,E . G. Rangesof valuesof somesystemsof functionals (Russian) direction. a classof functions that are convex in one 4 ' Zap' Analytic number theory and the theory of functions, 112 Naucn.Sem.Leningrad.otdel. Mat. Inst. Steklov'(LOMIA( ( 1 9 8 1 )5, 1 - 5 8 ,1 9 9 . 297. Goodman, A. w . on the coefficients o.f a multivalent function' Mathematical Structures-Computational Mathematics-Mathe60th Anmatical Modelling. Papersdedicatedto ProfessorIliev's niversary,Sofia (1975),pp' 273-279' 2g8. Goodman, A. W. The dornaincoveredby a typically-realfunction'
298
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
MR 56 #3301. Proc. Amer. Math. soc. 64 (1977),no.2,233-23',7; 299. Goodman, A. W . The domain of univalenceof certainfamilies of rationalfunctions.Proc. Amer. Math. Soc.66 (1977),no. l, 85-90; MR 58 #28463. 300. Goodman,A. W . Koebedomainsfor certoinfamilies. Proc. Aner. Math. Soc. 74 (1979),no. I , 87-94;MR 80d:30006. 301. Goodman, A. W. An invitation to the study of univalent and rnultivalentfunctions. Internat. J. Math. llath. Sci.2 (1979),no. ; R 80f:30013. 2 , 1 6 3 - 1 8 6M Proc. Amer. Math. Soc. 79 302. Goodman, A. W. Valencesequences. (1980),422-426;MR 81c:30026. 303. Goodman, A. W.; Saff, E. B. On the definition of a close-to' convexfunction Internat.J. Math. and Math. Sci., vol. I (1978)' ' , 2 5 - 1 3 2M; R 5 8 # 1 1 1 8 . 304. Goodmatr,A.W.; Saff, E. B. On univalentfunctionsconvexin one direction Proc. Amer. Math. Soc.73 (1979),no.2, 183-187;MR 80e:30006. 305. Gopalakrishna,H. S.; Shetiya, V. S. On the real part of the derivativesof certainanalyticfunctiorts. (Italian summary)Atti Accad. Naz. LinceiRerrd.Cl. Sci. Fis. Mat. Natur. (3) 59 (1975)'no. ; R 56 #8829. l - 2 , 2 2 - 2 5 ( 1 9 7 6 )M S.; Shetiya, V. S. Coefficient estimatesfor H. 306. Gopalakrishna, spirattikefunctions. Ann. Polon. Math. 35 (1977/78), no. 1, l-9; MR 58#l i 355. for 307. Gopalakrishna,H. S.; Urnarani, P. G. Coefficient estimo-tes of spiral-likefunctions.Indian J. Pure Appl. Math. I I soine classes ( 1 9 8 0 )n, o . 8 , 1 0 1 1 - 1 0 1 7M; R 8 2 a : 3 0 0 2 3 . of the solutionsof the Liiwner308. Gorjainov, V. Y. Somepro-Derties Kufarev equation lRussian,Englishsummary)Dokl. Akad. Nauk u k r a i n . s s R S e r .A ( 1 9 7 8 )n, o . 3 , 2 0 7 - 2 1 0 ,2 8 5 ;M R 5 8 # 1 1 3 6 0 . 3C9. Gorjainov, V. Y. A distortion theorom for a ciassof univalent Theory oi functionsand mappings(Russian), functions. (R.ussian) pp. 75-85, 177,"Naukova l)umka," Kiev (1979);MR 8li:30t)20. 310. Gorjainov, V . Y . On poramefiic representationof univalentfunctions. (Russian)Doki. Akad. Nhuk SSSR 245 (1979), no- 5, 1038-1041; MR 8 ld:30C'40. 311. Gorjainov, V. V. Cn q parametric melhori of ii,€ theorY oi univalent functions. (Russian) Mat. Zametki 27 (1980), no. 4, 559-568 , 669',MR 8l f:30017. 312. Gorjainov, V. V. Distortion iteorem in the classof bounded unrvalentsymmetricfunctions. (Russian,English summary)Dokl'
J
BT B L T O GR AP H OF Y S C H LIC H T | U N C TION S (P A R T l l l )
299
A k a < l .N a u k u k r a i n . S S R S e r . A ( 1 9 8 0 ) r, 1 o . 8 , 1 l - 1 4 , 8 6 ; M R 8 l i : 3 0 0 2.1 in the class 13. Gorjainov,v. v.; Gutljanskii,v.I. Extremalproblems coliection(Russiarl),pp. 242-246.lzl,iatherl'latics sv. (R.ussian) ,,Naukova Dumka," Kiev (1976);MR 56 #12244dat. points of ii4. Grassmann,E.; Hengartner,W'; Schober,G' Support Bull' l9 the ciassof close-to-convexfunctions. Canad' Math' (r976), no. 2, 117-179;MR 58 #6202' conforrnal 115. Grassmann,E.; Rekne, J . Calculationo"fsonteextrcntal nrappitigs.SIAMJ.Math.Anal.g(1978),Do.1,87_105. problemsfor ll6. Grassmann,E.: Rokne, J. CalculationoJ extremum (1979), no' 1, univslent func:tions. SIAM J. Math. Anal. l0 850-874;MR 8lc:30024. the moduli of \17. Grinspail, A . Z. The sharpeningof the differenceof probadjacent coefficients of schlicht functions. (Russian)Some of Problems iems in modern function theory (Proc. ccnf . Modern Sci' USSR' GeometricTheory of Functions,Inst. Math., Acad' Sibirsk' ssR Novosibirsk,Lg16)(Russian),pp . 4l-45. Akad. Nauk this item see otdel. Inst. Mat., Novosibirsk(1916).For a reviewof MR 57 RZMAT (1977)#ll 8141. [For the entire collectionsee # 1 5 8 1 : . 1M ; R 58 #22520. of univalent 318. Grinxpan, A.Z. Taylor coefficicntsof cerlain classes of the theory of' functions functionsi;.(Russian)Metric questions MR (Russian),pp. 28-12,153,"Naukova Dumka," Kiev (1980); 829:30027. (Rus319 Grlnxpan,A. Z. Coefficientsof powersof univalentfunctions' sian)Sibirsk.Mat. 2.22 (1981),no. 4, 88-93,230;MR 82i:30023' of areasfor 320. GrinSpan,A. Z; Kolomoiceva, z. D. The ntethod (Russian, English summary) functions without common values. (1979)'vyp'4' Vestnik Lenirrgrad.Univ. Mat. Meh. Astronom 3 1-36, 122;MR 8 1e:30035. jzr. Gronau, D" Eine Be:nerkungzu einerpartiert Differentialgleichung mit den schlichtenFunktionen' von Hornich im zusafti,lt€fihQng Akad' Wiss' Collection in honor of Hans Hornich. Osterreich' 3 , 2 7 - 3 0 ;M R 5 6 M a t h . - N a t u r w i s sK.l . s . - B . I I 1 8 5( l 9 7 6 ) ,n o . I #15906. in Multipb' con322. Grunsky, H. Lectures on Theory of Functions und nected Domsins. Vandenhoeckand R'uprechtin Gottingen Zurich (1978),253 PP.;MR 57 #3365' of functions univalent 323. Gupta, V.P.; Ahmad, Iqbal Certain classes 5 (1977),nc' 2' Sinica in the unit disc.Bull. Inst. Math. Acad.
300
BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
379-389;MR 57 #&M. of functions univslent in 324. Gupta, V. P.; Ahmad, I. Certain classes the unit disc. II. Bull. Inst, Math. Acad. Sinica 7 (1979),no. l, 7 -13; MR 80c:30016. 325. Gupta, V. P.; Ahmad, I. On starlike functions. Bull. Austral. Math. Soc. 22 (1980),no.2,241-247; MR 82a3AOl2' 326. Gupta, V. P.; Jain, P. K. A note on o classof Bazileviifunctions. T a m k a n gJ . M a t h . 7 ( 1 9 7 6 )n, o . l , l I 7 - l 1 9 ;M R 5 4 # 7 7 6 9 . 327. Gupta, V. P.; Jain, P. K. Certain classesof univalentfunctions /s. Buii. Austral. Math. Soc. i4 (1975),no. with negativecoefficie,n 3, 4A9-416;MR 54 #2941. 3ZB. Gupta, V. P.; jain, P. K. Certairt classesof univalentfunctions with negativecoefficients.lL Bull. Austral. Math. Soc. l5 (1976), no. 3 , 4oi-473; MR 55 #8334. 329. Gupta, V. P.; Jain, P. K. On starlikefunctions.(Italian summary) Rend.Mat. (6) 9 (1976),no. 3,433-437;MR 55 #&l' 330. Gupta, V. P.; Jain, P. K.; Ahmad, I. On the radiusof univalence of certain classesof analytic functions with fixed second coefficient. (French summary) Rend. Mat. (6) 12 (1979), no. 3-4, 423-430( I 980); MR 8 lj :30025. 331. Guttjanskii,V . J. The methociof ','crialicnsfor univalentanolyti: functions with a qucsiconformal extension.(Russian)Dokl. Akad. MR 57 #3376. Nauk sssR 236(D77), no. 5, 1045-1048; of univalentfunctions. (Rus332. Gutljanskii, V. J. One some clas,ses sian)Theory of functionsand mappings(Russian),pp. 85-97, 178' "Naukova Dumka," Kiev (1979);MR 8li:3W22. 333. Gutljanskii, V . J. The method of variationsfor univalentanolytic Mat. functions with a quasiconforma!extension.(Russian)Sibirsk. Z . 2 l ( 1 9 8 0 )t,r o. 2 , 6 l - 7 8 , 2 3 7. 334. Gutljanskii, V. J.; Scepetev,V.A. Exact estimateso-f the modulrts of a univslent onalyticfunction with o quosiconformal extension' (Russian)Akad. Nauk Llkrain. ssr Inst. Mat. Preprint No' 13 ( 1 9 7 9 )2, 8 p p . ; M R 8 l j : 3 0 0 3 1 . 335. Haario, H. On coefficient ltodies or univalent functions. Ann' No.22 (1978),49 Acad. Sci. Fenn. Ser.A I Math. Dissertationes p p . ; M R 8 0 b : 3 f 0 tl . 335. Hall, R. R. The tength of ray-images under starlike mcppings' Mathematika23 (1976),no.2, 147-i50; MR 55 #642. 337. Hall, R. R. A conformal mapping inequalityfor starlikefuncfions of order Ih. Bull. London Math. Soc. 12 (1980), 119-126;MR 8lh:100t5.
FUNCTIONS (PART III) BIBLIOORAPHY OF SCHLICHT
301
clunie ond sheil'smalL Bull' Lon38. Haii, R. R . on a coniectureof donMath.Soc.l2(f980),25-28;MR81b:30021' E. Applicationsof extremepoint 39. Hallenbeck,D. J.; l-ivingston,A. ' Trans' Amer ' lviath' t lteory tct clssseso1 mitivatent, functions Soc. 221(lg7 6), no ' 2, 339-359' nonvanishingunivalentfunc' ;40. Hamilto1, D . Extrernatproblemsfo;' analysis(Proc' NATO tions. Aspects of contemporarycomplex Durham' lg79)' pp' 415-q20' Adv. Sturly Inst., Univ' Durham' 82g:30C35' AcadcmicPress,London' 1980;MR NI' s' R'obertson'J' London of ]41. Hamiltoo, D . H. on o cotuecture lvIR 8li:30023' Math. soi. (2) 21 (1980), 265-278; p. D . Arr extremarprobtemfor functions 342.Hamiltoo, D. H.; Tuon, ofpositiverealpartwithapplicationtoaradiusofconvexityprobelm.Proc.Amer.Math..so..72(1978),no.2,313-318:MR 80e:30007.
'.' r-n-t,av p. D. Radiusof starlikenessof convex Tuan, H.; D. Hamilton, 343. Proc' Amer' Math' combinationsof univale'ntstcrlike ftmctions' 81f:30007' S o c .7 3 ( 1 9 8 0 )n, o ' 1 , 5 6 - 5 8 ;M R for Lo-vatuy! anal)'ticfunc3M. Harris, L. A. coefficient incqualities no' 3 ' 347-350' ticns.canad. Math. Bull. 24 (1981), o-t some classical homeontorphisms 345. Hartmann, F. w. Linear Proc. Amer. Math. Soc. 63 (1977), families of univalentfunctions. n o . 2, 2 6 5 - 2 7 2 ' in probtemson the distortion 346. Havinsoo, S. J. Extremolfunctions by bounded analytic of lenghts and areas undir trarsfor^itiont Inz'-Stroitel' Inst' Sb' Trudov No' functions. (Russian)Moskov. 1 3 0( 1 9 7 5 ) 3, - 6 ; M R 5 6 # 1 5 9 1 1 ' xTransfinitediameterand its applications'Notes 347. Hayman, W. K. MatscienceReport, No' 45' Inby K. n. unni. SeconJ"printing. Madras (1966)'ii + 61 pp'; MR sti..uteof Mathematicalsciences, 52 #14272. 34S.Hayman,w.K,somemathematicalachievementsofJohnEdensor and its Appl ' 12' no' 7 (July Littlewood. Bull. Institute of Math'
1976),196-198. of Litttewood. J. AnalyseMath. 34g. Hayman, w. K. on a coniecture 36 (1979),7 s-95(1980)' derivativeof multivalentfunc350. Hayman, W. K. The logarithmic 2, t4g-17); MR 82k:3W22' tions.MichiganMath . l.zl (1980),no. l.; Pommerenke'c' on the coeffi351. Hayman,w. K.; Patterson''s. Math' Proc' Cambridge cients of certain automorphic functions' -367' Philos. Soc. 82 (1977)' no' 3 ' 357
302
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
352. Hayman,W. K.; Storvick,D. A. On normalfunctions. Butl. London Math. Soc.3 (1971),193-194. 353. Hayman, W. K.; Wu, J. M. G. Levelsetsof univalentfunctions. C o m m e n t .M a t h . H e l v . 5 6 ( 1 9 8 1 ) n, o . 3 , 3 6 6 - 4 0 3 . 354. Hazalija, G. J. The meonsof the moduii of anaiytic functions in doubly connecteddomahs. (Russian)Dokl. Akad. Nauk SSSR226 (1976),no. 6, 1287-1290[Englishtranslation:SovietMath. Dokl 17 MR 53 #5850. (1976),no. 1, 300-3031; 355. Heath L. F.; Suffridge, T. J. Starlike, convex, close-to-convex, spiraltike, and Q-like mqps in a communtative Banach algebra with iCentity.Trans. Amer. Math. Soc. 250 (1979), 195-212. 356. Heins, M. Structure theoremsfor conforma! maps of regionscon' vex in a given direction Memorial issuefor Marston Morse. Bull. Inst. Marh. Acad. Sinica6 (1978),no. 2, part l, 379-388;MR 80h:30012. 357. Hengartner,W.; Schober,G. A remark on levelcurvesfor domains convex in one direction. Appl. Anal. 3 (1973),10l-106; MR 52 #14260. 358. Hengartner, W.; Schober, G. Some new properties of support points for compactfamities of univalent-functionsin the unit disk. Michiganldath. J.23 (1976),no. 3,207-216(1977);MR 58 #lt36l. 359. Higginsotr,C. G. The asymptoticBieberbachconjecturefor weakll' p-valentfunctions. Proc. London Math. Soc. (3) 35 (1977),no.2, 291-3i2; |.dR.56 #5859. 360. Hohlov, J. E. Operatorsand operations on the clossof univalent functions. (Russian)Izv. Vyss. Ucebn. Zaved.Matematika(1978), , 3 - 3 9 ;M R 8 1 m : 3 0 0 1 2 . no. l0 (197)8 361. Holland, F.; Twomey, J. B. Hordy spacesof close-to-convexfunctions and their derivatives.Trans. Anrer. Math. Soc. 246 (1978), 359-372;MR 80h:30029. and the areoftinc362. Holland, F.; Twonney,J. B. On Hardy classes 2 ,275-283M ; R 58 ( 1 9 7 8 ) t , r o . ( 2 ) 1 7 tions..IL . o n d o nM a t h . S o c .
#625s.
363. Holland F.; Twomey, J. B. Integrai means of functions with positive real part. Canad. J. Math.32 (1980),no. 4, 1008-1020; MR 82b:30037. 364. Hornich, H. Bemerkungenilbcr schlichteFunktioner. Csr.elr';ich' MR 5l Akad. wiss. Math.-Natur.Ke. S.-B.II 182(l 974),103-106;
#r32rr.
365. Hornich , H,. Zur Seltenheitder schlichtenFunktionen. Anz. OsterKl. (1975),tro.6, 59-6i; MR reich.Akad. Wiss.Math.-Naturwiss. s3 #3289.
BIB L i OGR A P H Y OF S C H LIC H r' FU N C TION S(P A R T rrr)
303
366. I{crnicir, H. Zur Verteilitngder schlichtenFuiiktionen. @nglish summary)Monatsh.Marh. 82 (1976),no. I ,27-29; MR 54 #zg4z. 367. Horowitz, D. Coe.fficientestimotesfor univalent poll,nomials. J. A nal5'se Math. 3 i ( 1977),tt2-124: N4R53 #ttJSl . 368. Horowitz, D. A further refinement for coefficient estimateso-f univalentfuncticns. Proc. Amer. Math. Soc. 7 | (1978),no. z, 217-2'21;kIR 58 #1126. 369. Hou, Ming Shu. a-starlikefunctio,ns.(Chinese)KexueTongbao24 ( 1 9 7 9 ) , : o . 2 , 5 2 - 5 7 ;M R 8 0 9 : 3 0 0 0 6 . 370. Hu. Ke. On the distortion theoremof schtichtfunctions. A translation of KexueTongbao(Chinese) 25 (1980),no. 13,577-579. Kexue Tcngbao(English)25 (1980),nc. 12,977-980;MR 82j:30023. 37| . Hu, Ke. Distortion theoremsfor univalent functions. (Chinese, Englishsummary) chineseAnn. Math. I (lgs7), no. 3-4, 421-427. 372. Hummel, J. A. A variational method for Gel'fer functions. J. Analyse Math. 30 (1976),271-280;MR 55 #12906. 373. F{ummel, J. A. Lagrange multipliers in variational methortsfor univalentfunctions. J. AnalyseMath.32 (1977),222-234;MR 57 #3377. 374 . Hummel, J. A. The br, bz coefficient bod1,for BierberbachEilenbergfunctions. J. Analyse Marh. 33 (1978). 168-r90; MR 80g:300I 4. 375. Hummel, J. A. The second coefficient of univalent BieberbachEilenbergfunctions near the itlentity. Proc. Amer. Math. Soc. 80 (1980),237-243;MR 81h:30018. 376. Hummei, J. A.; Pinchuk,B.; Schiffer,M. M. Boundedunivalent functions which cover a fixed disc. J. Analyse Math. 36 (1979), ; R 82a:30031. I l 8 - 1 3 8 ( 1 9 8 0 )M 3'17. Hunrmel, J. A.; Schcinberg,S.; Zalcman,L. A coefficientproblem for boundednon''tanishing functions. J. AnalyseMath. 3l (1977), 169-190;lv{R58 # I 1358. 378. Hummel, J. A.; Sctriffer, lvi. M. variationol methods -for Bieberbach-Eilenbergfunctions and for pairs. Ann. Acad. Sci. Fenn. Ser.AI Math. 3 (1977),no. I ,3-42; MR 58 #28473. 379. Hurwitz, A. tlbe, die Entwicklung der attgemeinenTheorie der analytischenFunktionen in neuererZeit. MathematischeWerke, vol. 1, Funktionentheorie, pp. 461-480,Birkhauser,Basel(1932). 380. Husbaktov, S. D. Geometricproperties of a function of a discrete complex argument. (Russian)Taskent. Gos. Univ. Naucn. Trudy Vyp. 460 Voprosy Mat. (1974),lM-148; 180;MR 54 #5475. 381. Hwang, Jun Shung. On a coefficient estimateof angulorfunctions. TamkangJ. Math. I I (1980),rro. l, l4l-143; MR 8Zi:30024.
30 4
B IBL IOGR AP H YOF S CH LIC H T FU N C TION S
382. Hwang, J. S. A problem on a geometricproperty of lemniscates. P r o c .A m e r . M a t h . S o c . 8 2( 1 9 8 1 )n, o . 3 , 3 9 0 - 3 9 2 . 383. Hwang, J. S. On the radial limits of analytic and meromorphic f u n c t i o n s .T r a n . A m e r . M a t h . S o c . 2 7 0( 1 9 8 2 )n, o . I , 3 4 1 - 3 4 8 . 384. Iliev, L. G. Extremalproblemsfor univalentfunctions. PLISKA S t u d .M a t h . B u l g a r .4 ( 1 9 8 1 ) ,1 3 7 - 1 4 1 . 385. *Imai, I. Conforntal mappingsand their applications.(Japanese) IwanamiShoten,Tokyo (1979).xiv * 309 pp.;MR 82j:30013. 386. Jablonski,A. On a certain clsssof regularfunctions. Demonstratio Math. l0 (1977),no. I ,33-43; MR 56 #3270387. Jacob,M.; Offorci, C. Lesfonctions aleatoiresdansle disqueunit6. (Englishsummary)C. R. Acad. Sci. ParisSer.A-B 290(\980),no. 8, A367-369. ',vith 388. Jain, P. K.; Ahuja, O. P. A classof univalentfunctions (Italian summary) Rend. Mat. (7) 1 (1981)' negativecoefficient,s. no. I , 47-54;MR 829:30028. 38g.Jakubowski,Z.ontypicatly-'ealfunctions'AnnalesPolonici Mathematici,to appear. 390. Jakubowski,Z. J.; Kaminski, J. On somepropertiesof multivalent alpha-starlikefunctions. Demonst:atio Math.9 (1976), no. 2, 257-265;MR 53 #8405. 391. Jakubowski,Z. J.; Kaminski, J. On somepropertiesof the coefficientsof regularfunctions with positive real parr. (Polish and RusSect. A29 Ann. Univ. Mariae Curie-Sklodowska sian summaries) ' r 9 - 9 2( 1 9 7 7 ) ; (1975), MR 58 #1161. 392. Jakubowski,Z. J.; Kaminski, J. On somepropertiesof MocanuJanowskifunctio,ns.Rev. RoumaineMath. PuresAppl .23 (1978)' n o . 1 0 , 1 5 2 3 - 1 5 3 2M; R 8 0 i : 3 0 0 1 8 . 393. Jakubowski,Z. J .; ZielitLska,A.; Zi'5lqowska,K. Sharpestimation of even coefficients of bounded symmetric univalent functions. Ann. Poloni,-iMath., to appear. 394. Janczar,B. zo-euasi-cortvex functions. (Polish and R 'issiansummaries)ZeszytyNauk. Politech. L6d2. No. 186Mat. No. 5 (1974), 27-42; MR 57 #9953. 395. Janczar,B. On quasi-convex functions. (Polish and Russiansummalies) TeszytyNauk. Poiitech. L6di. Mat. No. 7 (1976),37-58; lvfR 55 #5850,IUR 57 #9953. B. Extremal problems in the class of zo-quasi-convex Janczar, 396. -functions(Polish and Russiansummaries)ZeszytyNauk. Politech' ; R 54 #10588. L 6 d 2 . N o . 2 4 5M a t . N o . 8 ( 1 9 7 6 ) , 6 1 - 6 8M and univalenceof cer' ctf startikeness radrus The 3g7. Jarcnen!:c, L. A.
,J
(P A R I !II) BIB L IO GR AP H YOF S C I:LIC H T FU N C TION S
30s
< 1' (Rusof functions that are regular in the circle lz I tain classes and its application sian)Questionsin the metric theory of mappings Generalizations (Proc. Fifth coiloq. Quasi-conformalMappings, anciApplications,Donetskl9?6).(Russian),pp.|7|_|75,188, " N a u k o v a D u m k a , " K i e v ' 1 9 7 8 ; M R 8 2 d : 3 0 0qnd 15' the convexity boundary starlikeness The A. L. Jaremenko, 398. in the unit disc' boundary for certain classesof regularfunctions (Russian)Ukrain.Mat.Z.3l(1979),no.3,329_333,336;MR 8lc:3ff\22. of ceriain clsssesof regular 3gg. Jaremenko,L. A. Extremal p;-operties questionscf the theory of functions functions. (Russian)Metric ;'N^ukova Dumka," Kiev (1980)' (Russian),pp . 145-151,164, of the three-circrestheoretn.l 400. Jenkins, i. i. on the sharp form no. l-2, 155-158;MR 53 Kodai Math. Sem. Rep. 21 itgzo,
#rrm4.
whosetraiectorystructure 40r. Jenkins, J. A. on quadratic differentiars (Proc' s'u'N'Y' conf'' of rrngdomains.complex analvsis consists Brtrckport,N.Y.,|976),pp.55_T0.LectureNotesinPureand 1978' Appl. Math., Vol' 36, Dekker' New York' Landau's theorem' ll' canad' 402. Jenkins,J. A. on explicit bour'csin J . M a t h . 3 3 ( 1 9 8 1 )n, o ' 3 , 5 5 9 - 5 6 2 ' "secondfundamentaline403. Jenkins,J. A.; oikaws, K. on Ahtfors' qualitl'."Proc'Amer'Math'Soc'62(1977)'no'2'266-270;MR 55#10655. theoremof Csrath^odoryand Fe' 4M. Jenkins,J.A.; Oikawa,K. On a jtr. Bull. London Math' Soc' 9 (l 977)' no' 2' 165-167' inequatityfor b;-univalent 405. Jensen,E.; Waadeland,H. A coefficient Skr. (Trondheim)(1972),no' 15, 11 functions. Norskevid. Selsk. pp'; MR 54 #10590'
,, , ,.r --^)".^l^ nr nnntttt' Hadamard products of onalytic 406. Jevtic, M. sorne properties of new function.s.(Serbo-Croatian,Englishsummary)Mat.Vesnik4(|1) (32)(1980),no' 2 , 157-162' brought up to date' comm' 407. John, F. A clterion for univalency PureAppl.Math.29"(|976),no.3,293_295;MR54#|0592. po,a*porynomiarsand their applications 40g. Jondro, H. vsriationi of toextremalproblemsin"thefamityofboundedunivalentfunctions. Nauk' Politech' (Polish; Russianand English summaries)zeszyty MR 80h:30020. Slask.Mat. -F\2.No. 30 irqzg) ,271-287; 4 0 g . J o n d r o , H . V a r i a t i o n s i n a c l a s s o f u n i v a l e n t f u n c t i o n sSlask' '(Polish; Nauk' Politech' zeszyty summaries) English and Russian Mat.-Fiz.No'34(1979),85-95;MR8ld:30015'
306
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
410. Jondro, H. Sur une methode variationnelle dans la famille des fonctions de Grunsky-Shch.(Engllsh and Russiansummaries)Bull. Acad. Polon. Sci. Scr. Sci. Math . 27 (1979),no. 7 -8, 541-547 (l e80). 4ll. Juneja,o. P.; Mogra, M. L. on starlikefunctions of order u and type P.Rev. RoumaineMath. Pures Appl. 23 (1978),no. 5, 751-765;MR 80c:30010. 412. Juneja,O. P.; Mogra, M. L. Radii of convexityfor certain classes of univalent qnalyticfunctions. Pacific J. lrfaih. 78 (1978),na. 2A, 359-368;MR 80a:3001 l. 413. Juneja, o. P.; Mogra, M. L. A classof univalent functions. (Frenchsummary)Bull. Sci. Math. (2) 103(1979),no. 4, 435-447; MR 8la:30008. 414. Kac, B. A . Convexityand starlikenessof the levelcurvesof rational functions. I. (Russian) Izv. Vyss. Ucebn. Zaved. Maternatika (1977),no. 3 (178),32-42;MR 57 #3373a. 415. Kac, B. A. Convexityond starlikenessof the levelcurvesof rational functions. II. (Russian) Izv. Vyss. Ucebn. Zaved. Matematika (1977),no. 4 (179), 44-52;MR 57 #3373b. 416. Kaidar. v. o.; PohileviE,V. o. The rangesof valueso-fa certain functional on specialclassesof starlikefunctions. (Russian;English summary)Dokl. Akad. Nauk. Ukrain. SSR Ser. A (1976),no. l, 5-9, 92;MR 53#13539. 417. Kaidan, V. O.; Fohilevid. V. A. Somepropertiesof arcs of level curves outside the circle of the radius of convexity. (Russian) Mathematicalanalysisand probability theory (Russian),pp. 74-79; 212, "Naukova Dumka," Kiev (1978);MR 80m:30012. 418. K-aidan,V. O.; Pohilevic, V. O. Boundariesof q,-convexityfcr subclassesof star-like -functions (Russian) Ukrain. Mat. Z. 3l (1979),no. 5, 551-555, 620;MR 8li:3ffi21. 419. Kanrinski, .I. Seme growth problems for certuin a-convexfunc tions. Demonstratio Math . 12 (1979), no. l, 2ll-230; MR 8l f :30008. 420. Kamockii, V. l. A representationof functions of cldssS. (Russian) Theory cf functionsand functional analysis(Russran),pp. 60-60. LcningraC.Gos. Ped. Inst., Leningrad(1975);l,{R 58 #28,455. 421. Kamockii, V. l. Application of the areo theoremfor studying the classes S(a).(Russian) Mat. Zametki28 (1980),no. 5,695-706,802; -,{ts MR 82g34032. .:: 422. Kamockii, V. l. Estimateof integral meansin the classS(a).6Russian) SibirsxM . a t . Z . 2 l ( 1 9 8 C )n, o . I , 2 l l - 2 1 5 , 2 3 9 ; M R 8 2 c : 3 0 0 1 3 . 423. Kaplan, W. On the trajectories of a quadratic differential. II. iiiy;
'f: ;ff il
#n-
(PART III) BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
307
Math.Nachr.93(1g79),259-278;MR81m:30044' analytic of 424. Kapoor, G. P.; Gopal,K. on the coefficients functions Ann Mat' Pura Appl' in the unit dischavingfast ratesof growth' (4) I 21 (l 97e), 337-349. rii functions' '/. certttin classesof regut(tr utlt'JTle 425. Karunakaran, PacificJ.Math.6l(1975),no'1'L73-182;MR53#8406' in the unit 426. Karunakaran, V. A certq'in classo-f analytic functions disc.Appt.Math.T(1976),fro.12,]381-1399;MR8lb:30022. in the unit . Karunakaran,Y . On a clossof meromorphicfunctions 42'7 MR 53 #5843' tlisc.Math. Chronicle4 (i9161,no' /-3' ll2-l2l; for a clossof meromorphic 4zg. Karunakaran,y . Radiusof starrikeness Univ. St. Paul' 25 (1976/77)' no' 2' iunctions. Ccrnment. Maih.
I 53-157;MR 55 #tu3' for a certain class of 4Zg. Karunakaran'V. Radiusof starlikeness APPI. 22 (1977), analyticfunctions.Rev' RoumaineMath' Pures
n o . 7 , 9 2 7 - 9 3 1 ;M R 5 7 # 6 0 5 ' convexity problem' Publ' 430. Karunakaran, v. A certsin racius of Math.Deb,ecen24(1g77),no.I_2,1_3;MR56#327l-. a classof convex 431. Karunakaran v . A subo,r'dinationtheorem for meetingof the Tamil Nadu Academyof .functions.Presentedat the Madras (India)' Scieucesheld on 27-l-1g77 at Matscience, of bounded radit's rota4?2. Karunakaran, v.; Padma, K. Functions MR no. 5,621l_627; tion.. Indian J. Pure eppl. Math. |2 (|981), 82j:30018. ^, The ratlius of starlikenessfor a 433. Karunakaran, Y.; Ziegler,M. R. integral' Pacific J' Math' classof regularfunctrons define,cby an ' 9l (1980),no. I , 145-151;MR829:30029 Koeffizientenkorper schlichter 434. Kasten, v.; Schmieder, G. Die MR 81g:30025. Trinome.Math. z. tzr trgg0), no. 3 ,269-284; Klassevon Trinomen'Arch' 435. Kasten,V.; Schmieder,C. t;'Ur,'eine MR 82e:30018' Math. (Basel)35 (1980i,no' 4' 374-385; of analyticfunctions' and 436.Kasymov, S. Tests\oi'ttre univqlence ucebn' zaved' Matematika their application.(Russian)Izv. vyss' (1977),no. 9(184),38-42; MR 58 #6212' 4 3 7 . K e n n e d y , P . B . ; T w o m e y , J . B . S o m e p r c p e r t i e s oProc' f b o u nRoy' ded of univalentfunctions and ietated clssses -functions. MR 35 #4388' Irish Acad. Sect'A65, 43-49(1967); priA' qnd Riesz'Proc' Amer' Math' 438. Keogh, F. R. On a tniorim oi Soc. 20 (1969),45-50' of convex domains in the plane' 43g. Keogh, F. R. A characterisation 2, 183-185;MR 57 #6392' Bull. London Math. Soc. B (1976),tro. in the theory of univalent 440.Keogh, F. R . somerecentdevelopments
308
BIBLIOCRAPHY OF SCHLICHT FUNCTIONS
functions. Complex analysis (Proc. Conf. Univ. Kentucky, Lexington, Ky., l9i6), pp. 76-92. Lecture Notes in Math., Vol. 599, Springer,Berlin (1977);MR 56 #12245. Ml. Keogir, F. R.; Merkes, E. P. Preservationof subordination. J. Math.36 (179),1979-183;MR 82a:30013. D'arralyse 442. Kesel'man,G. M. Extremal properties of functions of the Bazilevit class(Russian)Mat. Zametki 25 (1979),no. 3,341-350,475; MR 82k:300I 4 . 443. Kesel'man, G. M. Extremal properities of certain spiral-like functions.(Russian)Sibirsk.Mat. 2.20 (1979),no. 5, 1050-1059,I166; MR 8li:30025 441. Kir'jacxii, E. G. (Kirjackis, E.) A family of functions connected with o linear-fractiona! tronsformation of the unit circle. (Russian, Lithuanian and English s.rmmaries)Lito..'sk.Mat. Sb. 16 (19'76), n o . l , 1 0 3 - 1 1 0 , 2 4 7M ; R 54 #778. M5. Kir'jackii, E. G. (Kirjackis, E.) Some operatorsconnectedv,'itha linear-fractional transformation of the unit circle. (Russian, Lithuanian and English sumrnaries)Litovsk. Mat. Sb. l6 (1976), n o . l , 1 l I - 1 2 2 ,2 4 7 ;M R 5 4 # 5 4 5 3 . M6. Kir'jackii. E. G. Cn a family of univalentfunctlons. (Russian, Lithuanianand English summaries)Litovsk. Mat. Sb. l5 (1976), n o . 2 , I I l - l 1 6 ,2 4 2 ;M R 5 5 # 5 8 5l . 447. Kir'jackii, E. G. (Kirjackis, E.) So:nepropertiesof functions with nonzerodivided difference. (Russian,Lithuanian and Enigish surn' maries) Litovsk. Mct. Sb. 19 (1979), no. I, 97-113, 230; MR 80j:30016. 448. Kirwan, W. E. Extremal properties of slit conformal mappings. Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Du.ham, 1979), pp. 439-449, rtcadenricPress,London, 1980;MR 829:30036. M9. Kirwan, W. E.; Pell, R. W. A note on e clas,sof slit conformal map NIR 80d:30013' pings. Canad.J. Math. 30(1978), no.6, 1166-1173; +50. Kirwan, W. E.; Pell, R. Extremal properties o-fa classof slit con' formal mappirtgs. Michigan Math . J. 25 (1978), no. 2, 223-232; MR 58#6213. 451. Kirwan, W. E.; Schober, G. Extremalproblemsfor meromorphic itnivaientfiinctions. ,1.AnalyseMath. 30 ( 1976),330-348;MR 56 #3283. 452. Kirwan, W. E.; Schober, G. Inverse coefficientsfor functions oI boundedboundary roiation J. Analyselviath.36 (1979), 167-176 (1980);MR 8rj:30026
BIBLIOCRAPHYoFSCHLICHTFUNCTIONS(PARTIII)
309
*Advancesin complexfunction theory , Kirwan, W. E. ; Zalcmatr,L. 45-1 Ad1973-1974)' (Proc. Sem.,Univ. Maryland,collegePark, Md', at held of seminars vancesin complexfunction theory' Proceedings |973_|974.Editedby W. Marylanc University,CollegePark, Md. , in Mathematics'Vol' 505' E. Kirwan and L. Zalcman.Lecture Notes 53 #776. Berlin.NewYork, |975, viir * 2c3 pp.; MR Springer-Verlag, Derivier*Abschotzungenim Bereichder schwqrzschen 454. Krouth, R. Inaugural-Dissertationzur ten und gewisserverallgemeinerungen' issetrM:thematisch-Naturw' EriangungdesKoktorgr"d.r der Hohen t Friedrici'-Wilhelrn-Lini"ersita schafilichen Fakultat der Rheinische't Schriften' Nr ' 82' Bonn, Bonn, lg75. Bonner Mathemtische (1976)'v + 126 Institut der UniversitatBonn' Bonn Maihematisclles PP.; MR 58#11346' verallgemeinerte schwarzsche 455. Klouth, R. Abschtitzungen fur nenfam itien' [Estimations Deriv ierten in I inear-invarianien Funkt io forgeneralizedSchwarzderivativesinlinear-invariantfamiliesof functions]Arch.Math.(Basel)36(1981),no.5,455_462;MR 82k:30015. new extremal properties of the 456. Klouth, R.; wirths, K-J. Two 80 980),:94-596; MR Koebe-fitnction.proc. Amer. Math. Soc. 1t 82d:30017. conformal mapping' lstanbul 457. Kocak, c. An extremumproblem in MR 58#28474' T e k . U n i v . B u l ' 2 8 ( 1 9 7 5 i n' c ' 1 ' 1 0 5 - 1 1 9 ; of certainnew speciarclqsses 45g. Kocetkov, v. K. Extremarproperties of functions' Differential of univalentfunctions. (Russian)Theory I (Russian),pp' 73-89' 216' equationsand their uppli.u,ions,No. 58 #28466' Kaimyck. Gos' Univ', ntittu (i976); MR univqrentfunctions. (Rus45g. KocetkoV,v . K. Higher order paraboric .fheory of functions.Differential equationsand their applicasian) tions,No.l(Russian),pp.90_95,2|6_217.Kalmyck.Gos.Univ., Elista (r976); MR 58 #28469' method for some clqssesof 460. Kocetkov, v. K. A construction Naucn' Centra univalentfunctions. (Russian)Izv' Severo-Kavkaz' V y s s . S k o l y S e r ' E s t e s t v ' N a u k ' ( 1 9 8 0 ) ' n o ' 3 ' 2 5 - 2 7 ' 1certain 09' and convexity for starlikeness of Bounds F. M. Kocur, 46|. specialclassesofanals,ticfunctionsinthedisc.(Russian)Izv.|/yss. no' 7 (lB2)' 57-60; MR 56 Ucebn. Zaved. tlatimaiitT (1977)' #8830. the radius of convexityof the 462.Kocur, M. F . Curvaturebounds and the classQ@'(ukrainian' image'of,n, circle lzl - r, 0
31 0
B T BL IOGR AP H YO F SC H LIC H T FU N C TION S
No. l9 (1977),127-129,153;MR 809:30007. 463. Kocur, M. F. Rsdii of startikenessand of convexity in some classes of analyticfunctins in the clisc.(Russiarr)Mat. Zametki 25 (1979), no. 5 ,, 675-679,798;MR 8le:30022. 464. Komatu, Yusaku. A one-parameterfamily of operatorsdefined on analyticfunctions in a circle. Analytic functions, Kozubnik (197) (Proc. SeventhConf . Kozubnik, 1979),pp.292-300,LectureNotes in Math.,798,Springer,Berlin, 1980.[Bull. Fac. Sci.Engrg.Chvo Univ. 22 (1979\,l-221; MR 8li:30026. 465. Korobeinik, J. F. The basisproperty of a certain systemof functions. (Russian,English summary)Anal. Math. I (1975)'no. 2, 1 0 3 - 1 1 3M; R 5 2 # 8 3 8 8 . 466. Kortram, R.; Tarnmi, O. On the range of validity of certain inequolifiesJ'or tlrc fourth coelficient of a bounded univalentfunctions.(Polishsummary)Bull. Soc. Sci. LettresL6d224 0974), no. ; R 55 # 1 0 6 5.7 l , 6 p p . ( 1 9 7 5 )M 'l'ammi, combinationsof O. Nonhomogeneous 467. Kortram, R. A.; coefficientsof univalentfunctions.Ann. Acad. Sci. Fenn.Ser.A I M a t h . 5 ( 1 9 8 0 )n, o . 1 , l 3 l - 1 4 4 ;M R 8 1 m : 3 0 0 1 7 ' 468. Krjuckov, B. J.; Popova,G. A. The reductiono-fan optimal contrtrl prcbtern in Ldwner's theory to a Cauchyproblem for a systent of ordinary' differential equations. (Russian) Theory of optimal processcslRussian),pp. 47-52. Akad. Nauk ukrain. ssR Inst. Kibernet.,Kiev Q974);MR 58 #6217. 469. Kronstadt, E. P. compact families of univalent functions' MichiganMath. J.23 (1975),no. 4, 367-374(1977);MR 56 #5861' 470. Krzyz, J . A counterexampleconcerningunivalentfunctions. Folia SocietatisScient.Lubliensis,vol. 2 (1962),pp' 57-58' 471. Krzyz, J. C. *Problemsin complex varictbletheory. Trznslation of the 1962 Polish original. Modern Analytic and Computational MetlioJs in Scienceand Mathematics,No. 36. American Else"'ier Publishing Co., Inc., New Ycrk; PWN-Polish Scientific Warsaw(1971),xvii + 283 pp.; MR 56#5844. Publishers, 472. Krzyz, J. G. Convolution and quasiconformalextension.Com; R 53#3298. m e n t .M a t h . H e l v . 5 l ( 1 9 7 6 )n, o . 1 , 9 9 - 1 0 4 M and quasimajoriza473. Krzyz,J.; Stankiewicz,J. Quasisubordination tion. (Polish and Russiansummaries)Ann. Univ. Mariae CurieSklodowskaSct. A 3l (1977),7l-74 (1979);MR 8ld:30042. 474. Krzyz, J. G.; Zlotkiewicz, E. Two remarks on typically-reaifun.ctions.(Polish and Russiansummaries)Ann. Univ. l'{a;iae CurieSklodowskasect. A 30 (1976),57-61(197S);MR 58 #l7l0l '
(P A R T III) B IBL IOGR AP H YOF S C H LIC H T FU N C TION S
317
anclassof analyticfunctions in an 4j5. Kubo, T.; owa, Sh. on some itulus.Tech.Rep.osakaUniv.29(|g7g),no.1459-|49|,1-8;MR Slrn:30018' nterumorphic univQleittfuitctions' 4i6. Kubota, Y. coefficients of KodaiMath.Sem.Rep.2s(1gi6/71),no.2_3,253_26|;MR5j #10658 ^f ....^--.-n,nhir the third coe_fficientof neromorphi'4.r.7. Kubota, y. A rernark on Sem'itp'29 (1977)'no' l-2' univaleil functions.Kodai Math. 197-206;MR 51 #&0r' schlichterkonFortsetz'Oarkeit 4'r8.Ki.ihnau,R. Zur quastkonforn'ten
f o r m e r A b b i t d u n g e n . ( P o l i s h s u m m a r55 y )#12910' Bull.Soc.Sci.I-ettres (1975);MR Lodz24 {1g74),nt' 6, 4 pp' Abbirriungen auf nichtuberlap47g. Kiihnau, R. scrrrichte koil0rme pendeGebietemitgemeinsamerquasikonfornterFortsetzung. Math. Nachr' 86 (1978)'175-180' lon Koeffizienten'-Bedingungen' 480. Ki.ihnau,R. zu den Gntnskyschen Ser' Fenn' typel Ann' Acad' sci' coefficlentccncitionsof Grunsky A I M a t h . 6 ( 1 9 8 1 )n, o ' l ' 1 2 5 - 1 3 0 ' schrichterAbbildungen' in einer Krasse 4g1. Kiihnau,R, Der Frtichensatz [ T h e a r e a t l r e o l € f f i i n a c l a - s s o f u n i1v1a1l9e-nl lt2m appings]Rev.Roumaine l' (1981)' no' 8' ' . 2 ^ ^ t t i - i n - t n mbei Math. Pures Appl ''26 h dritten.Koeffizienten des bschiitzuT''g ,4 w. 482.Kiihnau, R.; Niske, Funktionen der Klasse den quasikonform fortsetzbaren"ititFtten S. Math. Nachr' 7S(1977)' 185-192' fur schlichteL}sungen Existenzbeweis 483. Kiihnau, R.; Renelt,H. Ein durch eine InIinearer ettiptischerDrfferentiolgleichungs-systeme 5'l #12840' Nactrr.79 (1977)'225-232;MR tegralgleicltung.Math. 484.Ktihnau'R.;Thuring',B.Bere9ln.unseinerquasikonformenExt r e m a l f u n k t i o n ' M a t [ ' N a c h r ' 7 9 ( 1 9 7 7 ) ' 9 9 - 1of1 3u;ivalence ' and G' The rariius c. Shivamurthy, v.N.; 4g5. Kulkarni, Univ' of regularfunctions' J' Karnatak of some classes starlikene,ss , 2 - 1 7 ;M R 8 2 c : 3 0 0 1 4 ' S c i .2 3 ( 1 9 7 8 ) 1 on the univolenceof someanalytic 486. Kulkarni, v. N.; Swamy,s. R. functions.IndianJ.PureAppl.Math.g(1978),no.5,467-480; MR 57 #16562. R. on the univalenceof someanal)'tic 48'7.Kulkarni, v. N.; swamy, s. no' 1l ' l. Pure Appl. Math. 9 (1978), Indian II. functioni. 1131-1137;MR 8Cd:30007' Mat' (6) 9 p. functions.Rend. 4gg. Kulshrestha, K. Bounded Robertson (1976),no' I , 137-150'(Frenchsummary) J' KarnatakUniv' Sci' 489. Kumbi, V. K . A note on starlikefunctions'
3I2
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
22 (1977),50-55;MR 80h:30013. 490. Kumbi, V. K. The radius of univolenceand starlikenessof order p of some classesof regular functions. J. Karnatar Univ. Sci. 22 (1977),5-10; MR 8la:30009. 491. Krrz'mind, G. \ . Moduli of families of curves and quadratic differentiols.(Russian)Trudy. Mat. Inst. Steklov. 139(1980),241 pp. 492. Kuz'mina, G. V. Covering theorems in classesof BieberbachEilenberg functions. (Russian) Analytic number theory and the theory of functions,4. Zap. Naucn. Sem.Leningrad.otdel. Mat. Inst. Steklov.(LOMI) ll2 (1981),143-158,201. 493. Kyoto lJniversity. *Extremal prohlems in function theory. (Japanese)Proceedingsof a Symposiumheld at the ResearchInstitute for Mathematical Sciences, Kyoto University, Kyoto (February8-10, 1978).Surikaisekikenkyusho Kokyuroku N o. 323 (1978). Research Institute for Mathematical Sciences,Kyoto University,Kyoto (1978),pp. i-ii and l-172; MR 80e:30002. 494. Labelie,G.; Rahman,Q. I. Remarquesur la moyeeneg1omdtrique defonctions univalentesconvexes.C. R. Acad. Sci. Paris, vol. 266 ( 1 9 6 8 )p, p . 2 0 9 - 2 1 0 . 495. Lachauce,M. Reinark on Junctions with all derivctivesuntvalent. Internat. J. Math. Math. Sci. 3 (1980),no. l, 193-196;MR 8lg:30018. 496. Lahi, L. Some classesof functions generotedby an integral. Ann. Fac. Sci. Univ. Nat. Zaire (Kinshasa)Sect.Math.-Phys.4 (1978), n o . I , 2 5 - 3 5 ;M R 8 l g : 3 C C l 9 . 497. Lahi, L.; Merkes,tr. P. Extrem.epoints for the logarithm of functions in certain classesof analyticfunctions. Ann. Fac. Sci. Univ. Nat. Zaire(Kinshasa) Sect.Math. Phys.2 (1976),ro. l, 3l-42; MR 55 #8335. 498. Lakshminarasimhan,T. V. On subclassesof functions starlike in the unrt ciisc. J. Indian Nlath. Soc. (N. S.) 41 (1977), no. 3-4, 233-243;MR 80a:30C12. 499. Landau, E. Ubu einen Satz von Herrn Dieudonne'. Math . Zeit, vol. 24 (1933),pp. 22-27. 500. Landau, E. Darstellung und Begrunciungeiniger neuerer Ergeb' ni,sserler Funktionentheorie.ChelseaPublishing Co., New York, i.l. Y. (1t46). ,, 50l.Lau,K.;Liu,M.onacriterionfortheunivalenceofhotomorphic functions. Proc. Amer. Math. Soc.80 (lqRO). 651-652; MR ,u$ '.'1., 8l j:30028. 502. Launonetr,E. On er\,q,nenliatedGrunsky inequatitiesfor bounded ?i,;
OF S C H LIC H T FU N C TION S(P A R T l tl ) B rBr-T OGR AP H Y
313
A I Math' Disserunivalentfunctions. Ann. Acad. Sci. Fenn. Ser' tationesNo. I (1975),34 pp'; MR 57 #61'l' methodof of 503. I.aura, p. A. A. A surveyif moaern applications ,the no' mappirig.Rev.un. tviat.Argentina2T(1974/75), 3, con-torrria! 167-179(1976\;MR 54 #2937' order Grunsky func504. Lawrynowicz, J.; Tammi, O. On fourth Lodz 26 (i976)' tionars.(porish summary)Bull. Soc. sci. Lettres n o . 7 , 6 P P . ;M R 5 6 # 1 5 9 0 1 ' Rev' Rour'aine 505. Leach, R. i. Multivalent Buzitevil functions' Math. PuresAppl. 2l (1976),no' 5,52i-527 ' of nigher orde:" (Polish 506. Leach, R. J. strongly'startikefunctions curie-sklodowska and Russian summaries)Ann- univ. Mariae Sect.A30(1976),63_67(1978);MR80c:30011. certain multivalent func507. Leach, R. J. coefficient estimatesfor 1 3 3 - 1 4 2M ; R 58#22521' l , t i o n sP . a c i f i cJ . M a t h. 7 4 ( 1 9 7 8 ) n, o . Bazitevit functions. 50g. Leach, R. J. The coeffiiient probrem for Houston J. Math. 6 (1980),543-547' theorem' (RussianZap' 509. Lebedev,N. A. On Hayman's regularity Steklov' (LOMI) 44 Naucn. Sem. Leningrad. Otdel. Mat' Inst' (1974),g3-gg,l87; MR 5l #13209' theor.vof univalentJunc510. Lebedev,N. A . The areaprinciple in the pp. 2'l9r; MR 56 #8334' tions.Izdat."Nartka," Moscow(1975),336 q classof functions' (Russian' 511. Lebedev,N. A. (Jnivalenceo-f Meh' Astronom Englishsuinmary)vestnik Leningrad.Univ' Mat' ; R 82e:30019' ( 1 9 8 1 )v, y p . 1 , 1 1 3 - 151, 1 2 2 - 1 2 3M in a crsssof bounded 5rz. Lebedev,N. A. Rangeof varuesof a functionar vestnik Lenunivalent functions. (Russian, English summary), vyp' 3,33-3',7,124-125' ingrad.Univ. Mat. Meh. Astronom.(1981), Vestnik Leningrad 513. Lebedev.l'1. A.; Milin, I. M. An inequality' _158 (in Russian). pp. |57 University,vol. 20 (1965),no. 19, extremal problems in 514. Lebedev,-N. A.; Starkov, v. v. some Vestnik LeningraC' Basilcvii'sc/ass.(Russian,English summary) 4,47-49' 122; MR univ. Mat. Meh. Astronom. (1979),vyp' 8le:30034. functions' J' Korean of close'to-convex 515. Lee, S. Y. On a subclass M a t h . S o c . 1 4 ( 1 9 7 7 )n' o ' 1 , 1 - 8 ; M R 5 6 # 1 2 2 4 6 . coefficient of odd s)'mtnetric 516. Leeman, G. B., Jr ' The si;eventh ; R ( 1 9 7 6 )n, o ' 2 , 3 0 1 - 3 0 7M univalenlfunctiorzs.Duke M a t h. J . 4 3
s3 #1354s.
non'circulardo517. Lehtinen, M. On the inner radiusof univalencyfor mains.Ann.Acad.Sci.Fenn.Ser.AlMath.5(1980)'no.1,
3I4
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
45-47;MR 82c:30020. 518. Lehto, O. On univalentfunctionswith qudsiconformolextensionsover MR 5i #6422. the boundary.J. AnalyseMath. 30 (1976),349-354; 519. Lehto, O. Domain constantsassociatedwith Schwarzianderivative. . Comment.Math. Helv. 52 (1977),no. 4, 603-610;MR 56 #15901 520. Lehto, O. Llnivalent functions and Teichmiller theory. Proceedingsof the First Finnish-PolishSummer School in Complex Analysis(Podlesice,1977);Part I, pp. I l-33. Univ. Lodz, Lodz, 1978;MR 58#6229. 521. Lehto, O. Univalentfunctions, Schwarzianderivqtivesand quasiconformal mappings. Enseign. Math . (2) 24 (1978), no. 3-4, 203-214;MR 80c:30020. 522. Lehto, O. Remarks on Nehari's theorem about the Schwarzian derivstive and Scltlichtfunctions. J. D'analyseMath. 36 (1979), 1 8 4 - 1 9 0M ; R 8li:30034. 523. Leirto, O.; Tammi, O. Area method and univalentfunctions with quasiconformal Ann. Acad. Sci.Fenn.Ser.A I Nlath.2 extensions. ( r 9 1 6 ) , 3 0 7 - 3 1 3M; R 5 7 # 6 4 2 r . 524. Lehto, O.; Tammi, O. Schwarzianderivativein domainso.fbounded rotstion. Ann Acad. Sci. Fenn. Ser.A I Math. 4 (1979),no.2, 253-'257;N4R.8 I b:10014. coefficientsof starlikefunctions. Bull. Lon525. Leung, Y . Successive ; R 58#llz7. d o n M a t h . S o c .l 0 ( 1 9 7 8 )n, o . 2 , 1 9 3 - 1 9 6M 'Y. of some univalent rneans o-f the Cerivatives Integrql 526. Leung, J. functions. Bull. London Math. Soc. 11(1979),no. 3,289-294;MR 80m:300I 3 . 527. Leung, Y. Robertson's conjecture on the coefficientsof close-toconvexfunctions. Proc. Amer. Math. Soc.76 (1979),no. I ,89-94; tviR 80i:30019. 528. Lewandowski,Z. On a univalencecriterion. (Russiansummary) Bull. Acad.Polon.Sci.Ser.Sci.N'iatir.29(1981),no.3-4,\23-126; MR 82k3M23. 52g. Lewandowski,Z.; Libera, R . J .; Tlbtkiewicz,E. J . Vsluessssumed by Getfer functio,rzs.(Polish and Russiansummaries)Ann. Univ. Nlariae Curie-SkiodowskaSect. A 3l (1977), 75-84 (19791;MR 8l f :30023. 530. Lewandowski,Z.; Miazga, J. lhe Koebe dumain for the classof typicatly-real functions under Mcntel's normalizaticn (Russian summary)Bull. Acad. Polon. Sci. Math. 23 (1980),no. 9-10,465470(r981);MR 82i:30013. 'Zloikiewicz, E. Gqmma-starlike 531. Lewandowski, Z.; N{iller, S.;
BIBLIOGRAPH-/oFSCHLICHTFUNCTIONS(PARTtII)315
functions.(PotishSndRussiansummaries)Ann.Univ.Mariae C u r i e - S k l o d o w s k a S e c t . A 2 3 ( 1 9 ? 4 ) , E. : : . sGenerating s ( 1 9 7 6 ) ;functions MR54#530. zotkiewicz, Mi'e;'-s"; Z.; i, 56 532.Lewando*rt Proc' Amer' Math' Soc' Trnrtions' unrrairnr of fcr someclasses
t;::3.',;,T;:'!?'" "r, llun\,-*'ri*i; 3 t3l:l#1"i,1 53 ^,,'1,,,i" MR 54 u n i v a l e n t f u n c t i o n s . ( Rprrv u s s i a n(l'gis')' S u m mno' a r4' y )?l'7-271; ButlA.:d.Polon.S.-i. s.24 Ser.Sci.Math.Astron"*.
'quen':entreelles ). #?9'7 .r_-- c\ Sur typt en,.les to< ionctions S' Z'; W ajler' 534. Levrandowski' Ann. Univ. Mariae Russian summaries; and (Polish bornbes. i9- 64'nnq.;MR 53#13578'
secr.n zs trgz+1, g6n6ralis6e Crrrie-Sklorlowska de L6""'ner s.^t'rq,ro'rion w;j;, z.i sum, (Russian 535.Lewandowski de fonctions univalenfes' sous-cl;;;, Phys' 24 pour ,r'r,oi-nns Sci. Math' Astronom' ser. p"i;;. sci. mary) Brrll. Acad. 54 #531' (1976),;"- 4' 223-229;MR lndiana Univ' funcfions starlike of Convolutions 536. Lewis, J ' L ' MR 58 #1124' to Jacobi Math ' J ' Z'7(1978)'671-688' cJn'votutiontheorem a of Apptications g1g)'no' 6' 1110-1120' 53'7-Lewis, J ' L' Anal. 10 (1 ;.'nn"tr. sIAM pob,nomials. equatiotsfor Sonle Loewner-type . J E. Drotk\ewicz, conf" 538. Libera, R. J .; uttuiysi' (ptot -s'u'N'Y') comple* ^pp of clssses functions. r-.trureNotesin Pureand
ls-ii. N. y. (rqio), Brockport, A p p l . ' M a t h ' , v o l ' 3 ; ' p t r t rJt' tLoewner-type ' , Y i Y o r k ' 1 approximations-for 978;MR58#1119'
E' 539. Libera, R' J ';7lrctr<\t*it''
MR 54 3;i; giol,no' i ' t43-151; c;i;q.'tuurrt. convexfunctionr. # 13 0 5 '7 5 4 0 . L i n , C . o n S o mgel lcl 'l a s s e s o fM univalentfunctiols.SoochowJ.Math. t O r - t O Z ; R 5 8# 1 1 3 5 0 ' starlike'funcN a t u r 'S c i '3 ( 1 theorentfor meraltoryhic rotation The Z' L' 541. Liu, tions.(Chinese,Englishsummarvik.*ueTongbao24(1979)'no. ' MR 80j:30017 ,ic tmivalent ,. func16,'tz4-'726; starlikemeromorph E'"i'okly A' 542. Livingston' tions.Il.Proc.Amer.tvtatt.,.Soc.62(19,76),no.1,4.|_53;MR55 meromo.rphic #8336. univalent' on theintegralmeansof E. . A MR 5b Livingston, 543. 1' 167-180; pacific'i. tuturh.72 ilglll, no' funct-ions. prO-
r A Qtrttrtrl fe and extremal ' J' A' Structure Pfaltzgraff E'; A' 5M. Livingston' btemsforclassesoffunctionsllllyticinanann^ulus.Colloq.Math. (1981);MR 829:30030' 43 (1980),no' l ' r6i-181 #12247
t*_
cf
316
BIB L IO GR AP H YO F SC H LIC H T FU N C TION S
545. Lohwater, A. J. Some function-theoretic results involving Baire category. Topics in analysis (Colloq. Math. Anal., Jyvaskyla, 1970),pp. 253-259.LecturesNotes in Math., Vol. 419, Springer, Berlin, 1974:'MR 5 | #13234. 545. London, R. R. A note cn Hadamard's threecirclestheorem.Bull. London Math. Soc. 9 (1977),tro. 2, 182-185. 547. London, R. R. On derivativesof the msximum modulus of o starlikefunction. Bull. London Math. Soc. l3 (1981),no. 3 ,207-213; MR 82i:30Ct14. 548. Lupu, M.; Pascu, N.; Pociaru, V. Calculation of the order of starlikeness for u-starlikefunctions. (Romanian,English summary) Bull, Univ. BrasovSer.C 20 (1978),73-77;MR 81i:30027. 549. L,yzzaik,A. Multivalent linearly accessible functions snd close-toconvexfunctions. Proc. London Math. Soc. (3) 44 (1982),no. l, n8-192. 550. Lyzzaik, A.; Styer, D. Goodman's conjectureand the conqfficients of univalentfunctions. Proc. Amer. Math. Soc. 69 (1978),no. l, I I l - 1 1 4 ;M R 5 7 # 6 1 2 . 551. !.,yzzaik,A.; Styer, D. A coveringsurfaceconjecture.Brannan and Kirwan. Btill. London Math. Soc. 14 (1982),no. 1, 39-42. 552. Macaev, V. I.; Mcgul'skii, E. Z. tt division theoremfor analytic functions witlt a given majorant, and some of its applications. (Russian,Englishsummary)Investigations on linearoperatorsand theoryof functicns,VI. Zap. Naucn. Sem.Leningrad.Otdel. Mac. I n s t . S t e k l o v (. L O M I ) 5 6 ( 1 9 7 6 ) , 7 3 - 8 9 , 1 9 6 . 553. MacFariane,A. G. J.; Postlethwaite,I. Extendedprinciple of the argumenl.Internat.J. Control 27 (1978),no. I ,49-55. 554. Majchrzak, W. On univalent p-symmelricfunctions in the unit , o . 2 , 1 3 5 - 1 6 3 ;M R 5 7 # $ 9 6 . d i s c .A n n . P o i o n .M a t h . 3 4 ( 1 9 7 7 ) n of 555. Majchrzak, W. An extremalarclcngthprobiem in some closses univalent and p-symmetric functions. Ann. Polon. Math . 36 (1979),no. 3 , 287-297;MR 80j:30018. 556. Makowk?, B. On some subclasses of univalentfunctions. (Polish and Russiansummarics)Ze-czyty Nauk. Politech.L6d2. Mat. l.lo. 9 (1977),7l-'76; MR 58 #28467 . 557. Makowka, B. Convexfunctionsof order-a and ivpe-7. Golish and Russiansrlmniaries)Zeszytyiiauk. Pclitech. #a2. Mat. No. l0 (1978),47-57;MR 80j:30019. 558. Mandik, V. P. Pqirs of functions that are simultaneouslyp-valent in the meon with respectto the circle. (Russian,English summary) Some problemsin mcdern frrnction theory (Proc. Conf. Modern
,d
BIB L IO GR A P H YOF S C H LIC H T FT]N C TION S(P A R T l l l )
317
Inst' Math'' Acad' Problemsof GeometricTheory of Functions, Akad' Nauk pp. Sci. USSR, Novosibirsk, 1976)(Rtrssian), 83-87. (1976)'For a review sssR Sibirsk.otdel. Inst. Mat., Novosibirsk ofthisitcmsceRT\hat|}77#11R153.[FortheentirecollectionSee M R 5 ? # 1 s 8 l 3 . lM R . 5 8 # 2 2 5 2.s multivalentfunclions' 559. Mandik, V. P . ,4realheorentsfor s;'slemsof 1 4 0 8 ;M R ( R u s s i a nS) i b i r s k .M a t . Z . 2 0 ( 1 9 7 9 )n, o . 6 , | 2 7 5 _ ! 2 8 1 , 8 1 a : 3 0 0 1. 3 imageof the unit disk 560. Marcus,M. Somegeometricpropertiesof the (2) 13 (19'76)'no' l' by confoi'trrulmaps. J. London Math. Soc. r77-182;MR' 54 #527. Amer. Math. Monthly, 561. Marderr,M. Much Ado About Nothing. v o l . 8 3 , D o . 1 0 , D e c e m b etr9 7 6 , 7 8 8 - 7 9 8 ' theoremsconnectedwith 562.Martio, o. New methods in injectivity Schwcrzianderivative.lsthscandinavianCongressofMathematiin Math., 11, cians (Aurhus, 1980), pp. 4|1_415, Progress Birkhauser,Boston,Mass', l98l; MR 82k:30025' 563. Marusciac,I . Someestimationsfor strongll'a.m-convexfunctiotts' Math '25 (1930)' (Romaniansummary)Studiauniv. Babes-Boiyai no.2,39-44. in the Hcrdy classHr ' 564. Mateljevic, M . The isoperimetricinequality r)(rqzg),oo. 2, 159-178;MR 82i:30052. Mat. Vesnik3(16)(3 and argument o"f a 565. Mazur, Ryszard.Estimation of the modulus (1976)' nc' 4' quasi-B-starlikefunction Demonstratio Math ' 9 639-64s;MR 55 #3233' in the classof functions 566. Mazur, R. on some extremalproblems zeszyly summa-ries) with bounded rotation (Polish and Russian
MR 5s #z2sc8. Nauk.p;ii;;h. L6d2.rvrat.No. e (re77),77-88;
of cont'exfunclions' (Polish and Russian 567. Mazur, R. On a subclass y6ai. Mat. No' l3 (1981)' summaries)ZeszytyNauk. Politech. 15-20. merontorphic of 568. Mazur, R.; Treska,A. On some classes $-starlike 1l (1978), no' 3' k-symmetricfunctions. Demonstratio Math' 7 3 5 - 7 5 0M ; R 8la:30010' of power D.; Fricke,c. H.; Beyer,w. A. Remainders J. McCall, 569. MR J. Math. Marh. Sci.2 (lg7g),no' 2,239-250; series.Internat. 80i:30003. extremql schlicht 5 7 0 . M c C o Y ,T . L . A partial surface varietion for Soc. 234 (1977),no' 1' I 19-138; functions. Trans. Amer. Math. MR 57 #12841a. variation for extremal 571. McCoY,T. L. Erratum: "A Partial surface
3lE
BIB L IO GR AP H YOF SC H LIC H T FU N C TION S
schlichtfunctions." Trans.Amer. Math. Soc.240(1978),393;MR 57 #r284tb. 572. Mclaughlin, R. Two inequalitiesfor starlike functions. Colloq. Math. 34 (1975/76),no. 2,287-292;MR 53 #11039. 573. Merkes,E. P. A coveringtheoremfor odd typically-realfunctions. Internat. J. Math. Math. Sci. 3 (1980), no. l, 189-192;MR 82c:30008. 574. Merkes, E. P. Psrtial sum subordinatian of univalentfunctions. HoustonJ. Math. 6 (1980),77-83;MR 8lf:30009. 575. Mikka, V. P. The univalentsolvsbility of certaininverseboundary value problems. (Russian)Trudy Sem. Kraev. ZadacamVyp. 9 (1972),200-207.For a reviewof this item seeZbl 299 #30037;MR
5 8# t 7 r 3 r . 576. Mikka, V. P. Two sufficient conditicns for the univalenceof analytic functions. (Russian)Mat. Zametki 19 (1976), no.3, 33r-346M ; R s3 #13547. 577. Milcetich, J. G. A generalextremulproblernfor the classo_fcloseto-convex functions. Trans. Amer. Math. Soc. 225 (1977), 307-323;Ir{R 58 #22509. 578. Milcetich,J. G. Analytic mappingso_frhe unit disk cn a convexdomain. American|4ath. Nl.lnthly84, no. 8 (October1971)(Advanced Problemsand Solutions),p. 663. 579. Milcetich, J. G. Inequality o-f Lo norm,so-fa derivativeof afunction. AmericanMathematicalMonthly 87, no. 9, (November1980) (Solutionsof AdvancedProbleffiS),p. 759. 580. Milin, I. M . *Univalenifunctions und orthonornialsystems.Trans. Math. Monographs,Vol . 49, Amer. Math. Soc., Providence, R. [ . (1977),iv + 202 pp.; MR 55 #651. 581. Milin, I. M. Loose errata: Univalent functionsand orthonormal p. 194.Amer. Math. Soc.,Providence, systems, R. I. (1977);MR 5 5 # 6 5 i , N , { R5 6 # 9 9 3 5 . 582. Iviilin, I. M. A property of logarithmic coe.fficientsof univaleni functions. (Rirssian)Metric questionsof the theory of functions (Russian), pp.86-90, l6l. "Naukova Dumka," Kiev, (1980);MR 82i:3N26. 583. Milin, V. N. [V. I.l A certainfamily of non-univalentJunctions that satisfythe Prawitz areatheorem.(Russian)Sibirsk.Mat. 7.. 11 ( 1 9 7 6 )n , o . 2 , 3 0 4 - 3 1 74 , 7 8 ;M R 5 3 # 1 3 5 " i 8 . 584. Milin, V. I. Estimateof the coefficientsof odd univalentfunctions. (Russian)Metric questionsof the theory of functions(Russian),pp. 78-86, 160, "Naukova Dunika," Kiev, (1980);MR 82i30A25.
BIB L IO GR AP H YOF S C H LIC H T
FU N C TION S(P A R T III)
319
of odd univalentfunctions' (Rus585. Milin, V. I. Neighboringcoefficients -157, 231;MR 82i:30021' sian)Sibirsk. Mut . Z . 1z(lqtif l, no . 2, l4g 535.Miller,J.E.convexandstarlikemerotrtorphicfunctions'Proc' MR 81k:3001:' A m e r . M a t h . S o c ' 8 0 ( 1 9 8 0 ) '6 0 7 - 6 1 3 ; properties of alpha587. Miller, s. s. Arclength and subordination (,1974)', no' 1, 93-98; (Cluj) 16(39) convexfunctions.Mathematica MR 53#13540. theory' Edited by San588. Miller, S. S. Prohlemsin contplexfunction (Proc' s 'u 'N ''i ' corrf ' ' State ford s. It{iller. compler analysis (1976),pp. l!?-177' Lectttre univ. New york, Brockport,i.i.y., Vol .36,Dekker,New York, 1978; Notesirt Pureand Appt. tr,tattr., MR 58#11363. 32 of startikefunctions' Ann' Polon' Mat|' 589. Miller, S. S. On a class #3283' (1976),no. 1,77-81' (erratainsert);MR 53 imptying boundedinequarities 5g0. Miller, S. S. ,4 clqssof differeniiatr -649 ' 647 ness.IllinoisJ ' Math' 20 (1976)'no' 4' u'l/' Y' conf" Brockport' s' *complex (Proc' analysis 591. Miller, s. s. of the S.U.N.Y ^/. Y,, 1976) Complex analysis.Proceedings Function Theory held at rhe Brockport conferenceon complex .7 N. Y., June _9, |916. Edited StateUniversityCollegc,Brccliport, in Pure and Applied by Sanford s. Milier. I-ecture Notes Mathematics,Vol.36,MarcelDekker,Inc.,NewYork-Basel, 1978.xii + 117pp' ISBN 0-8247-6725-X' Math' 5 9 2 .M i l l e r , S . s . c o n a ; t i o n- f o r \ f f z l \ < l ' \ z l < l ' A m e r i c a n Monthly,Vol.84,no.3(March|977)(AdvancedProblenrsDepartment),,P. 223. ,,A probiem" -for functions of positi"e real port' 593. Miller, S. S. Amer.Math.Monthly85,flo.3(1978),p.203.(Solution:Same j o u r n a l ,V o l . 8 6 , n o ' 8 , O c t o b e r1 9 7 9 p' ' 7 1 1 ) ' 5 9 4 . M i l l e r , S . S . : M o c a n u , P . T . A l p h a - c o n v e x f u n c tBabes-Bolyai ionsand Studia Univ' derivativesin the Nevanlinna class' Math. 20 (1975),35-40;MR 53 #820' p. order differentialinequalities 595. Miller, S. S.; Mocanu, T. Second inthecomplexplane.J.Math.Anal.Appl.65(1978),no.2, 289-305;MR 80f:30009' T. Differentiat subordinatiortsand 596. Miller, s. S.; Mocanu, P. J' 28 (1981)'no ' 2' l5'7-112' univalentfunctiorzs.MichiganMath' subordirt,teto of 5g7.Miller, S. S.; Mocanu,P .T. On classes functions PuresAppl' 26(1981)' the Koebefuncrion. Rev. RoumaineMath' n o . 1 , 9 5 - 9 9 ;M R 8 2 i : 3 0 0 3 3 ' M. o. JanowskialphQ-Convex 598. Miller, S. S.; Mocanu, P.] Reade,
32 0
BIB L IO GR AP H YO F S CH LIC H T FU N C TION S
functions. (Polish and Russian summaries)Ann. Univ. Mariae Sect.A29 (1975),93-98(1977);MR 56 #8831. CUrie-Sklodowska convex599. Miller, S. S.; Mocanu,P.T.; Reade,M. O. On generalized ity in conformalmappings.II. Rev. RoumaineMath. Pures.Appl. 2l (1976),no. 2, 219-225;lvIR 54 #2938. 600. Miller, S. S.; Mocanu,P.T.; Reade,M. O. On the rsdiuso-falphaconvexity. (Romaniansummary) Studia Univ. Babes-BolyaiMath. 22 ( 1977),3 5-39; MR 55 #8337. 601. Miller, S. S.; Mccanu, P. T.; Read€,M. O. A particularstarlikeintegral operator. (Romanian summary) Studia Univ. Babes-Bolyai . Math . 22 (1977),no. 2,'41-47; MR 58 #17067 M. O. Sturlike integral 602. Miller, S. S.; Mocanu, P. T.; Reade, operators. Pacific J. Math . 79 (197E), no. l, 157-168; MR 80g:30008. 603. Miller, S. S.; Mocanu, P. T.; Reade, M. O. The order of starlikenessoJ alpha-convexfunctiorts. Mathematica (Cluj) 20(43) ( 1 9 7 8 )n, o . ! , 2 5 - 3 0 ;l v l R 8 l d : 3 0 0 1 6 . 604. Mii'man, D. A.; Musaev, B. I. The approximatesolution o"f a problem of conformal mapping of nonstarlike dcmains. (Russian, Azerbaijanisumrnary)Azerbaidzan Gos. Univ. Ucen.Zap. (1974), no. 1, VoprosyPrikl. Mat. i Kibernet,60-68;MR 54 #7761. 605. Minda, C. David. The imageof the Ahlforsfunction Proc. Amer. M a t h . S o c .8 3 ( 1 9 8 1 )n, o . 4 , 7 5 1 - 7 5 6 . 606. Minda, C. D.; Rodin, B. Extremal length, extremal regions and quuCraticdifferentiols.Commcnt. Math. Helv. 50 (1975),no. 4, 455-475. 607. Miniowitz, R. On almost boundedfunctions. Trans.Amer. Math. Soc.223 (1976),93-102;MR 55 #&4. 608. Mista, K. Estimatesof the secondand third derivativpin a ciassof functions a multivalentin the mesn. (Polish, Russianand English summaries)Zeszyty Nauk. Politech. Slask. No . 441 Mat .-Fiz. Zeszyt26 0916), 159-174;MR 56 #598. 609. Misia, K. Sur tesin6galit6sbittineaire,sde Grunsky pour les couples de fonctionsqui n'emplietentpas I'une sur I'autre. I. Demonsfiatio M a t h. 1 2 ( 1 9 7 9 )n, o . I , 7 l - 1 0 3 ; M R 8 0 i : 3 C 0 3 1 . 610. Mista, K. Interiorpairs o-fAharonov. (Polish,Russia,rand English s u m m a r i e sZ ) e s z y t yN a u k . P o i i t e c h . S l a s k . M a t . - F i z . N o . 3 4 (1979),137-145;MR 8id:30017. 6l l. Mista, K. Sr,rrlesin|gatitls bilineairesde Grunskypour lescouples dc fonctions qui n'empietent pasi'une sur I'sutre. ll. Demostracio M a t h . i 4 ( 1 9 E 1 )n, o . 1 , 3 3 - 5 8 ;N f R 8 2 i : 3 0 0 1 5 . 612. Mitjuk, I. P. Symmetrization methods, and their application in
J
BIBLIOGRAPHYoFSCHIICHTFUNCTIONS(PARTIII)
32r
lzv - Severo-Kavkaz'Naucn' -iunction theory'.(Russian) s,€otiEt!'ic Nauk. (1976),no. 2, 3_10,l 16; Centravyss. Skoly Ser. EsteStV. MR 55#5R53. ratiuitarfut;ciians. Uiiiv. 613. Mitrinovic, D. s. on trte univalcnceof Frz. (1979)' no. Beograd. publ. Elektrotehn. Fak. Ser. Mat. 634-677 , 221-227;MR 81i:30028' nonanalyticfunction's 614. Mocanu, P. T . Sta:liknessand convexityfor no' i ,-7'7-83;MR in the unit disc.(Marhematic(cluj) 22(45)(1980), 82i:300I 6 . D. The order of sturlike615. Mocanu, P. T.; Reade,id. o.; Ripeanu' (cluj) 19(42) nessof o Libera integral cperator. Mathematica (1977),no. 1, 67 -73 (1978);MR 58 #22511' (Ripianu, D.) An extremalproblem 616.Mocanu, P. T.; Ripeanu,'D. of a continuum' Romanian-Finnish for the transfinite diameter Bucharest' 1976)' pp' Seminar on complex Analysis (Proc., 1979;MR LecturcNotesirr Math .,743, Springer,Berlin, 323_330, 81c:30043. in the unit disc' I' J' . 617 Mog:a, I\4. I-. On a classof startikefunctions 1-4,159-161(1977);MR Indian Math. soc. (N. s.l +o (1976),no' 58 #6203a. in the unit disc' lI' 618. Mogra, M. L. On a classof starlikefunctions g no. 2, 157-165;MP' 58 Indian J. pure Appl. tvtaitr. (1977), #6203b. 619.Mogra,M.L.onaclassoffunctionswithpositiverealparl.Riv. (l 979);MR 80i:30020' Mat. Univ. parma (4) 4 (rbie), 101-108 estimatesfor starlike 620. Mogra, M. L.; Juneja, O. P. Coefficient Soc. l6 (l 977),no. 3,415_425;MR functions.Bull, Austral.Math. 56 #5860. et lespolyn\mes d'inter521. Montel, P. sur unefcrmula de Darboux polationAnnalidellaR.ScuolaNor'malesuperiorediPisall'vol' I ( 1 9 3 2 )P, P . 3 7 l - 3 8 4 ' a classof analyticfunctions' 622. Moulis', E-J., Jr . The univalenceof Brockport,N. Y ., |976), Complexanalysis(Proc.S.U.N.Y. Conf ., pp.89-g4.LectureNotesinPureandAppl.Math.,Vol.36,Dekker, New York, 1978;MR 58 #62M' Robertsonfunctions' Pacific 623. Moulis, E. J . Generalizationsof thc .T.Math. 81 (1g7g),no' I ' 167-174;MR 81c:30023' vsriationsof analyticfunc624. Murai ,T. on orea integralsand radial (1976), 135-159;MR 54 tionsin the unit disk lugoya Math. J. #10603. bounded Lipschitzfunc6zs. Mustafa, c. The extensiono.f starshaped (1980),no. 1,93-99' tions.Anar. Numer. Theor. Approx. 9
32 2
BIB L IO GR AP H YO F S CH LIC H T FU N C TION S
626. Nasr, M. A. On convexcombinationof certqinanolyticfunctions. IndianJ. PureAppl. Math. 6 (1975),no.4, 337-346;MR 56 #3272. 527. Nasr, M. A. Convex hull and extremepoints of two families of univalentfunctions.Proc. Indian Acad. Sci.Sect.A. 83 (1976),no. 4 , 1 3 8 - 1 4 4M ; R 54#532. 628. Nasr, M. A. On a classof functions with boundedboundory rotat i o n . B u l l . I n s t . M a t h . A c a d . S i n i c a5 ( 1 9 7 7 )n, o . 1 , 2 7 - 3 6 ;M R 5 8 #6214. 629. Nasr. M. A. On the Hardy clqss of certain subclassof Bazilevit function Ann. Polon. Math . 34(1977),no. 3, 265-268; MR 57 #640. 630. Nasr, M. A. On the radius of d.-convexityof certain classesof no. 5, starlikefunctions.Proc. Indian Acad. Sci. Sect.A 8-{(1977), 367-378;MR 56 #596. 63I . Nasr, M. A. On Bazilevii functions and generalizedconvexity. lo. 9 , 1279-1281 ; MR Rev.RournaineMath . PuresAppl . 22(1977), 58#22512. 632. Nehari, Zeev. A property of convex conformal maps. J. Analyse 3 ;R 5 5 # 1 2 9 0 1 . M a t h . 3 0 ( 1 9 7 6 ) , 3 9 0 - 3 9M 633. Nehari, Zeev. Univalencecriteria ciependingon the Schwsrziartde-ivative.IllinoisJ. N,iath23t1979),no. 3 ,345-351;MR 80i:30033. 634. Netanyahu,E. Extremalproblems-for schliclit.functionsin the e.r' terior of the unit circle.CanaoianJourn. Math., vol. l7(1965),pp. 335-341. 635. Netanyahu, E. Extemal properties of some classesof univalent functions.Ann. Acad. Sci.Fenn.Ser.A I Math.2 (1976),345-360; MR 57#16569. 536. Netanyahu,E. On the local maxima of the coefficientsof univulent functions. J. AnalyseMath. 30(1976),394-403;MR 56 #3280. 637. Netanyahu,E.; Pinchuk, B. Symmetrizationand extremalbounded (1980); univalentfunctions. i. Anaiyse Matli. 36(1979), i 39"M MR 82a:300i2. 638. Netanyahu,E.; Schiffer, M. On the monotonicity of somefunc' tionals in the famity o.f univalentfunctions. Israel J. Math. 32 (1979),no. I , 11-26;MR EOm:30014. 639. Nevanlinna, R. *Proceedingsof the Rol.fNevanlinna Symposiurn on ComplexAnallsi-". Held at the MathematicalResearchInstitute of the University of Istanbul in Silivri (September20-25, 1976)' Publication of the Mathematical ResearchInstitute, Istanbul, 7' MathematicalResearchInstitute,Universityof Istanbul,Istanbul, 1978.iv * 142 pp.; MR 80e:3C004.
BIBLIOGP.AIHYCFSCHLICHTFUNCTTONS(PARTIII)323
positive regionso.fLaurent t:'!:t with 640. Nrshrmiya,H . on coefficient pp' 25-39' Repoits'vol' I l(1959)' realparl. Kodai Math. Seminar p-vdtenrfunctions' J' Austral' Math' . Noonail, J. w . Powersof 641 ro '- l ' 65-70;MR 57 #&02' Scc. Ser. A 25(197S)' detertninent D,.K. on the secondFiankel 642.Nconan, J. w.; Thomas, ofareallynleanp-valentfunctions.Trans.Amer.Math.Soc. '223(19'76), 337-346;MR 54 #10593' Univ' J ' functions' Punjab 643.Noor, K. I . A noteon close-to-convex g75)' 11-14: MR 5'7#9954' Matn. (I-ahore)8(1 6 M . N o o r , K . i . o n H a n k e l d e r e r t ' : t i n ' Q n l s o fMathematics c l o s e - i 0 - ! o t lconference vex'functioits' National Porceedingsof the Seventh Tabriz' l9'76)'pp' 137-151' (Dept. vta'ttr.,Azarabadeganuniv" Univ ' ' Tabriz ' l9'7-l' Azarabadegan functions' Comment' of close-to-convex 645. Noor, K. I: On a subclass flo. |,25_28; Ml 81k:30016. Math. Univ. St. Paul. 29(|980), ianke:t determinants of crose-to-convex 646.Ncor, K. I. on the no.3, J. Math. Math. Sci.3(1980), utlivulentfunctiolzs.interrrat. 447-481; MR 8 i k:30020' relatedwitli functions of bound64',7.Noor, K. l. on analyticfunctions edboundaryrotation.Co**ent.Math.UnivSt.Pat'l30(1981), no.2,113-ll8' Comconjecturefor univalent-functions' Bieberbach . I K. Noor, 64g. ment.Math'Univ'Sr'Patrl'30(1981)'lo'2"131-133' univalentfunctions.In. K. Qua.sl-convex D Thomas, l.; K. Ncor, 649. no' 2 '255-266;MR 81f:30010 ternat.J. Math' Math' Sci' 3 11980)' of functions with incregso. S.) C/c sses 650. Nosenko,A. S. (Nosenko, (Russian) derivative of order p' ing argument o-f th.e circular # 6 , , 8 2 7 - 8 3 08, 6 3 ;M R 5 3 1 3 5 4 1 ' U k r a i n . M a t. 2 . 2 1 ( i g l 5 ) , n o . siartike boundary of univolentfunctions' 651. Nunokawa, M. On the ( J a p a n e s e ) S u g a k u 3 l ( 1 9 7 9 ) ' n o ' 3 ' 2 5 5 - 2 5 6 ;coefficient M R 8 l e : 3 0nor' 023' inequalitieswithout Teichntilller E. A. 652.Obrock, lviR 52 g,7|), 391_416; Soc. 159(1 malizatioti. Trans.Amer. Math.
Kodai functiorrs. of univarent derivatives 653.ttl?T; , K. on angurar M a t h . S e m . R e p . z 7 ( | g 7 6 ) , n o . 1 - 2 , | 9 3 _ 2 1 0 ; M R 5 5 domains. #639. i'nnturtipty-connected criteria unrv)tence . G B. 654.osgood, ' no. 2,459-473;MR 81h:30021 Trans.Amer. Math. Soc.260(1980), Soc' in'equarily.Bulr. Amer. Math. 655. ossermao,R . Trrcisooerimetric 8 4 , n o ' 6 ( 1 9 7 8 )1' 1 8 2 - 1 2 3 8 ' 6 5 6 . O w a , s . o n t h e u n i v a l e n t f u n c t i o n s w i t h a q u a sM iconformalextenno.2,259-261; R 80b:30017' s i o n M a r h . J a p o n. z 3 ( l l i t t l s l ,
324
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
657. Owa, S. On the distortion theorems. I. Kyungpook Math. J. l 8 ( 1 9 7 8 )t,r o . 1 , 5 3 - 5 9 ;M R 5 8 # 2 2 5 1 3 . 658. Owa, S. ,4 remark on new criteriafor univalentfunctions. Kyungp o o k M a t h . J . 2 l ( 1 9 8 1 )n, o . 1 , 1 5 - 2 3 ;M R 8 2 j : 3 0 0 1 9 ' 659. Owa, S. On applicationsof the fractional calculus.Math. Japon. 25(,1980) , no...2,195-206;MR 8li:30004660. paarero, V . jber die Konforme Abbildung mehrbliittriger Gebiete Randdrehung.Ann. Acad. Sci. Fenfl.,A. I. 128 von beschriinkter 0952\, pp. 1..7. paatero 661. , V . ]ber die Verzerrungbei der Abbildung mehrbliittriger Gebietevon beschriinkteiRanddrehung.Ann. Acad. Sci. Fentr.,A. l . 1 4 7 ( 1 9 5 3P) ,P . l - 7 . 662. paatero, V. Uber die Randdrehung der mehrbltittrigen einfach Gebiete.Ann. Acad. Sci. Fenn., A' I' l9/' zusqmmenhangenden ( 1 9 5 5 )p, p . 1 - 7 . 66j. pacevic, E. L. Sufficient conditionsfor univalenceof certain integral representations.(Russian)Mat. Zametki 27(1980),no' 3, 399-410,493; MR 81h:30016. pachulsk\, Z. On the radius of convexityfor certainfamily of func' 664. tions meromorphicin tnit disc. DemonstratioMath . 12(1979)'no. I , 2 8 l - 2 8 7 ;M R 8 0 h : 3 0 0 1 4 . 665. Padmanabhan,K. S.; Parvatham,R. On the univalenceond convexity of partial sums of a certain clqssof analyticfunctions whose derivativeshavepositiverealparl. Indian J. Math. 16(1974),no.2, 67-77. 666. Padmanabhan,K. S.; Parvatham,R. Radius of'convexitY of Par' tial sums o-fa certsinpower series.IndianJ. Math. l7(1975), no. 3, ! 3 3 - 1 3 8M ; R 82h:30011. 667. Padmanabhan,K. S.; Parvatham,R. On functions with bcunded boundary rotation. Indian .I. Pure Appr. Math . 6(i 975), no . 1I , 1236-1247;MR 57 #607,#12E32. 668. Padmanabhan,K. S.; Parvatham,R. On a certain classof funclicns with bounded boundary rotaticn Rev. Roumaine Math' PuresAppl. 2l(1976),no. 8,lo77-1084;l,{R 57 #12832. 669. Padmalluthun, K. S.; Parvatham,R. Radii of starlikenessof cer' tain classof analytic-functions.Rev. RournaineMath. Pu:es Appl' 23(19i3),Do. i0, i 545-'t55t;NiR ttld:30018. 670. Padmanabhan,K. S.; Parvatham,R. On certaingeneralizedclose' to-starfunctionsin the unit disc. Ann. Polon. Math.37 (1980)'no' l, l-11; MR 8li:30029. of cer' 671. Parvatham,R.; Padmanabhan,K. S. Radii o1 startikeness
BIBLIOGRAPHYoFSCHLICHTFUNCTIONSTPARTIII)325
Mathematica (Cluj) l6(J9) tain clessesof analytic functions' ; R 53 #13542' ( 1 9 7 4 )n, o . I , l + ' 3 - 1 5 7M functions' Romanian-Finnish 672. Pascu,tl. N . Atpha-close-to-convex 1975)'pp'?31(Proc., Br-rcharest' Seminaron Compier Analysis 335,LectureNo-,esln|dath.,143,Springer,Beriin,1979;ivIR. 80j:30021. functions' Studia 6jj. pascu, N. N. Janowski atpha-starlike-ccnnex U n i v . B a b e s . B o l y a i M a r h . 2 l ( 1 9 7 6 ' 1 , 2 3 - 2 7 ; M R 5 3 # , 7 8Bul' 9. rtike functions.(Romanian,Englishsummary) N. ry-sla 674. pa-sc,,r, MR 80j:30c20' g77), 3i--79(1978); univ. BrasovSer. C 19 (1 P' catculuso1"the alpha-starlike 675.Pascu,N.; Podaru, v.; Rotaru' order' (Romanian' German radit,sfor starlik, frrrtions of the betq MR C |g (|97.7),41_a6(197E); Summary)Bul. Univ. Brasov Scr. 80j:30022.
. : , . . ^ t ^ n t n n on { "nirnl spiral convexityof a classo'f spiral676. Paskulev?,D . Z. The radius o,f likefunctions.(Russian)C.R.Acad.HulgareSci.30(1977),no.12, 1 6 ' 7 5 - 1 6 7M 7R ; 58#11351' that are co|lvexin one direc677. Paskuleva.D , Z. Ltniva|entfunctions sci' 3l(1978)'no' 7 tion.(Russian)c. R. Acad. Bulgare "795-198; MP- 8l f :30011'
6 7 3 . P a s k u l e v a , D . Z . ; D i m k o v , G . M . P r o o f o . f o c o n . Sci' i e c t30(1977)' urefor R' Acad' Bulgare a-convex functions. (Russian)c. ; R 58#22514' n o . 1 2 , 1 6 7 l - 1 6 7 3M points of functions of On extren'te 679.Patil, D. A.; Thakare, N. K. relatedresults'Indian J' Pure order u wiih positive,eqt part and A p p l . M a t h . g ( 1 9 7 8 ) , n o ' i 2 ' 1 3 5 3 - 1 3 5 8 ; N I R 8 0 e : 3of0 p-valent 013' on coefficientbounds K. N. patil, Thakare, A.; D. 6g0. }r-spirolfunctionsofordera.IndianJ.PureAppl.Math.l0(19.79), ' no- 7, 842-853;MR 80k:30017 Radiiof c9nv1xit1of certainclssses 681. Patil, D. A.; Thakare, W 'K' ofp-vatentanalyticfunctions.Bull.Math.R.S.Roumaine(N.S.) ' 23Q1Xl979),tro' l, 7l-84; MR 80i:30021 univalenceof certainintegrals'In682.Patil, D. A.; Thakare,N. K . on dianJ.PureAppl.,Math.ll(1980),flo.|2,|626_|642;MR 82f:30011. 683.Paul,s.,4nextremalproblentforstarlikefunctions'IndianJ'Pure A p p l . M a t h ' 7 ( 1 g 7 6 ) ' ' n o ' 1 0 ' 1 1 9 9 - 1 2 0 2 ; M R 8 lpoints f : 3 0 0 1of2 ' Hs' s and extren'te o.f points support New K. 684. Pearce, ) ,o . 3 , 4 2 5 - 4 2 8M; R 8 2 b : 3 0 0 1 2 ' proc.Amer.Marh.so.. 81(1981n a-ndan application' Fo classes 685. Pearce,K. A product theoremfor lo . 4, 509_515 . Proc. Amer. Math . Soc. 84(1982),
326
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
686. Pell, R. Supportpoint functions and the Loewnervariatiorr.Pacific ; R 82a:30014. J . M a t h . 8 6 ( 1 9 8 0 )n,o . 2 , 5 6 1 - 5 6 4M 687. Pengra, R. W. On entire conformal mappingsof simply connected MR 52 #5950. regions.Proc. Amer. Math. Soc.50(1975),249-254; Collection Abbildungen konforme 688. Peschl,E. tlbe, unverzweigte in honor of Hans Hornich. Osterreich.Akad. Wiss. Math.N a r u r w i s sK. l . s . - 8 . I I 1 8 5 ( 1 9 7 6n) o, . l - 3 , 5 5 - 7 8 ; M R 5 8 # 1 1 5 8 . 689. Pethe,K. An estimateof the coefficientsAq and A5 as a function o-f42 in a subclassof the univalentfunctions. (Polish; Russianand English summaries)Zeszyty Nauk. Politech. Slask. Mat.-Fiz. Zeszyt.25(1974),53-64;MR 55 #5852. 690. Pethe, K. An estimate of the coefficient b^ of an areally mean p-valent function outside the unit disc. (Polish; Russian and English summaries)Zeszyty Nauk. Politech Slask. Mat.-Fiz. 137-157;MR 55 #10659. Zeszyt.25(1974), 691. Pethe, K. The coefficientsof areally p-valent functions. (Polish; Russianand English summaries)ZeszytyNauk. Politech. Slask. Mat.-Fiz. ZeszyI. 25(1974),223-246;MR 55 #10660. 692. Perhe,K. The dornain of thefirst coefficientsof p-valentfunctions in ihe tnit ciisc.(Polish; RussiananciEnglish summaries)Zeszyty Nauk. Poiitech. Slask. Mat . .f iz. iio. 35(1979), 39-47; MR 8l d:30023. 693. Pethe,K. Maximum of the ftnctianai 1., | - i., I tn the clussof functions S,vrsnd Si). (Polish; Russianand English surnmaries) MR ZeszytyI.lauk.Politech.Slask.Mat .-Fiz.No. 35(1979),49-58; 8 1d:30024. 694. Pethe,K. Estimationof thefunctionals lcp+2- oi|*rl, lco*rl lco*rl of p-valentfunctions in the unit disc. (Polish;Russianand Englishsummaries)ZeszytyNauk. Politech.Siask.N{at.-Fiz.No. 35(1979),59-70; MR 8 ld:30025. 595. Pethe, K. iVlaximumsnd ntinimurn of the fuiiclional Re(co+z* .rc"*r) tn rhe classo"f p-valentfun:,ions. (Polish; Russianand Englishsummaries)ZeszytyNauk. Politech.Slask.Mat.-Fiz. No. 'll-78; MR 8ld:30026. 35(1979) , 696. Pfaltzgraff, J. A.; Reade,M. O.; Umezawa,T. Sufficient conditions for univalence.Ann. Fac. Sci. Univ. Nat. Zaire (Kinshasa) No. 2 , 211-218;MR 55 #8338. Sect.Math.-Phys.2(19:.6), 697. Pfluger, a. On a coefficient problem for Schtichtfunctions. Advancesin complex function theory (Proc. Sem., Univ. Maryland, Coilege Park, Md., 1973-1974),pp. 7g-gl. I.ecture Notes in Math., Vol 505,Springer,Berlin, \976; lviR 54 #5455.
d
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTIII)321
boundaryrotation and convexi698. Pfluger, A. Functiurrsof bounded MR 56 #599' ty. J. AnalvseMath. :dtr 976), 43'l-451; starlikefunctions' Ann' 699 pf!,-rger,1,. Somecoeffiiient problemsfor MR 58#11359' A c a c t S c r .F e n n .S e r .A I v a t t r . 2 ( 1 9 7 6 ) , 3 8 3 - 3 9 6 ; on conformal mapping' 700. Pfluger, A. On a uniqueriesstheorern MR 56 #593. MichiganMath. J. 23(l'gi6), no. 4 , 36.3-365(|911); schlicht functions' 701. Pfluger, A. On d coefficienr inequality for Analysis (Proc'' Romanian-Fennish Sentinar on complex Notes in Ma"h ' ' 743' E,rcharest, 1976), pp . 335-343. Lecture SPringer,Berlin, 1979;MR 81d:30027' *contrrbuiions to analysrs(Internat. slmnos. Analysis, 702. pfluger, A. E i d g e n o s s . T e c l t . t r o c h s c h . , Z u r i c h , l g T s ) . C o n t r i bEidgenutionsto Analysis held at the on Symposium International analysis. Zurich, April 10-15' 1978' In ossischeTechnischeuoctrsctrute, Monographiesde I'Enseignehonour of ProfessorAlbert Pfluger' mentMathemaiique.2i.L'Enseignemen'tMathematique'UniversitedeGenet'e,Geneva,lg79'106pp'(lplate)' probtemsfor starlikefunctions' J' 703. Pfluger, A. Nontinearextremal A n a l y s e . M a t h . 3 6 ( | 9 7 9 ) , 2 | 1 - 2 2 6 ( \ 9 8 0 ) ; M R 8 2 a : 3 0Lectures 033. KoeffizientenschlichterFuitktionen 104. pfluger, ;.'i;rr)i, fromtheColloquiumo,'tr'.OccasionofErnstPeschl'sT0thbirthday(German),pp.4|-6:.,BonnerMath.Schriften,|2|,Univ. Bonn, Bonn, 1980;MR 82f:30014' o'f uniyalent in some classes 705. Piotrowska, J. Extrematpt'oblems functionsinahalf-plane.Ann.Polon.Math.34(1977),no.2,201t_ 220; MR 57 #6405' modulusof a univalentfunc706. Piranian, G. The pointsof maximum Univ. Kentucky,Lexington, tion.Complex analysis(Proc. Conf., Ky.,197b),PP.96_l00.LectureNotesinMath.,Vol.599,Spring. er, Berlin, 1977;MR 56 #12256' length' comment' j07. piranian, G.; weitsmatr,A. Level setsof infinite j:30029' MR 8l Math. Helv. 53(1978),no ' 2' 16l-164 of problems in special classes 708. Platynowicz,B. On some extremal condition' Demonstratio holomorphicfunctions at certainadditlonal ' 81b:30043 Math . l2(lg7g), no ' 3' 7 53-768; MR of holomor' problemsin c.lasses T0g.Platynowicz,B. on ro,nrextremal Vesnik 4(17X32X1980)' phic function,Sfel, S;(q), ff(ej. Mat. no. 2, 203-219;MR 82f:30012' of certain pohilevi6, V. A. (pohilevid,v. o.) Rangesof values 710. (Russian) o.f analytic functions' ..Naukova functionals on special classes 17. |zdat. Mathemeticscollection (Russian),pp. 13-
328
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
Dumka," Kiev (1976);MR 57 #12833. , .O.) 7 l l . P o h i l e v i dV, . A . ( P o h i l e v i dV, . O . ) ; K a i d a n ,V . A . ( K a i d a n V The ranges of values of certain functionals on special classesof analyticfunctions.(Russian)Ukrain. Mat. 2.30(1978),no.2, 192200,282; MR 8Cm:30050. 112. Pommerenke,C. Problemeund Methodenfiir schlichteFunktionen. no. 4, 183-190. Math.-Verein.76(1974/75), Jber. Deutsche. 713. Pommerenke,C. *Univalentfunctions. With a chapteron quadratic differentials by Gerd Jensen.Studia Mathematica/Mathematische Lehrbucher, Band XXV. Vandenhoeck& Ruprecht, Gottingen ( I 975),376. pp. DM 83.00;M R 58 #22526. 714. Pommerenke,C. On the angular derivativesnd univalence.(Russiansummary)Anal. Math. 3(1977),no. 4, 291-297;MR 57 #?357. 715. Pommerenke,C. SchlichteFunktionenund analytischeFunktionen von beschrrinktermittlerer Oszillation. Comment. Math. Helv. 52 (1977),no 4, 591-602;MR 56 #12268. 716. Pommerenke,C. On univalent functions, Bloch functions and VMOA. Math. Ann. 236(1978), no. 3,199-208;MR 58 #11352. 717. Pommerenke,C. On the growth of normal analyticfunctions. J. AnalyseMath . 36(I 979), 227-232(1980) 718. Pommerenke,C. Boundary beliaviour of conformal mappings. Aspects of contemporarycomplex analysis (Proc. NATO Aov Study Inst., Univ. Durham, Durham, 1979), pp. 3 l3-331, AcademicPress,London, 1980;MR 82i:300C8. 719. Popova, G. A. A certain optimal ccntrol problem. (Russiarr) Theory of optimal processes(Russian),p1t. 72-81. Akad. Nauk. Ukrain. SSRInst. Kibernet.,Kiev, 1972;MR 53 #8411. 720. Popova, G. A. A study of the extremal properties cf a classof univalentjunctions on the basis of L. S. Pontrjagin's maximum (Russian),pp. 35principle. (Russian)Theory of optimal processes MR 57 41. Akad. Nauk. Ukrain. SSR [nst. Kibernet.,Kiev (,1973); t 6 5 7 l . # 721. Poreda, T. On structure of coefficientsoJ'quasi-stcrlikefunctions. (Polish and Russiansummaries)Zeszyty Nauk. Politech. Lodz. No. 245 Mat. i.lo. 8(1976),(,9-79;MR 54 #13058. 722. Prohcrov, D. V. A certaingeneralizationof the Christofrel-Schv,arz fo;'muia. (Russian)Mat. Tameiki i7(19'15),tro. 5,749-756;MR 56
#s92. 723. Prohorov, D. V. The geometric characterizationof functions of Bozitevil subclasses.(Russian) Differencial'nye Uravnenija i Vycisl.Mat. Vyp. 6(1976),part 2, 124-135,t7l; tr{R.57 #t6563. '124. Prohorov, D. Y. Inlegrals of univalent,functions.(Russran)Mat.
*d
B IBL IOGR AP H YOF S C H LIC H T FU N C TTON S(P A R T III)
329
Zametki 24(1978),no. 5 , 671-678,734;MR 80h:30015' jLs. prohorov, D. V. Linearly invariant extensionsof families of analyticfuncrions. (Russian)Izv. \/yss. Ucebn. Zaved.Matematika ( 1 9 7 9 )n, o . 9 , 4 1 - 4 7 ;M R E l i ; 3 0 0 3 0 . i26. Prohorov, D. V. Integral transformations irt some classesof univalerit functions. (Russian) Izv. Vyss. Ucebn. Zaved' Matematika(1980),no. 12,45-49;MR 82h:30012' of jZ7 . Prohorov, D. V.; Rahrnanov,B . N. The integralreDresentation o certait classof univaieni functions . (Russiarr)Mat. Zametkl tro. l, 4l-48; MR 58 #1172. 19(1976), 728. Prohorov, D. V.; Rahmanov, N. B. The radius o1 close-tofunctions of convexity of order u in the classof close-tu-cortvex order 0. (Russian)Differencial'nyeUravnenijai Vycisl. l,[at. Vyp. 6(1976),part 2, 135-140,171;MR 57 #9955. jyg. prohoroV, D. V.; Szynal,J . Coefficientestimatesfor boundednonvanishingfunctions. (Russiansummary) Bull. Aca.d.Polon. Sci. , o. 5 6,223-230. S e r .S c i .M a t h . 2 9 ( ; 9 8 1 ) n no. geometry of p(Sl). pacifici. Math.64(1976), 730. egine, J. R. The 2 , 5 5 1 - 5 5 7M; R 5 6 # 5 8 9 . poilnomials.Proc.Amer. Math. soc.57 731. Quine,J. R. on univalent ( i 9 7 6 ) ,n o . I , 7 5 - 7 8 '132. Quine, J. R. Sometopologicsltheoremsrelotingto close-to-convex no. I ,39-42; MR 58 functions. J. London Math. Soc.(2) 14(1976), #225t5. 733. Quine, J. Criterionfor a subclassof univalentpolynomials.Complex analysis(Proc.S.U.N.Y. Conf., Brockport,N.Y., 1976\,pp' 99-104.LectureNotesin Pure and Appl. Math., Vol . 16, Dekker, New York, 1978;MR 57 #16549. 731. Rahman, Q. I. Some inequalitiesfor polynomials. Proc. Amer. MR 57 #3358' Matir. Soc. 56(1976),225-230; G. Inequalitiesfor polynomialson the i35. Rahman,Q. I.; Schrneisser, no' l, 93-100; unit interval.Trans. Amer. Math. Soc. 231(1977), MR 57#33s8. '136. of univalentpolynomials. Rahman,Q. I.; Szynal,J. On some classes c a n a d . J . M a t h . 3 0 ( 1 9 7 8 )n, o . 2 , 3 3 2 - 3 4 9 ;M R 5 7 # 3 3 5 9 . '131 . Rahman, Q. I.; Waniurski, J. Coefficient regionsfor univalent trinomials.Canad.J. Math.32(1980),no. 1,l-20:' MR 81b:30027' of dnivalentfunctions.(Russian) 738. Rahmanov,B. N. Certain classes Studiesin differentialequationsand the theory of functions,No. 3 (Russian),pp. 63-65.lzdat. Saratov.Univ., Saratov(1971);MR 53 #8400. j3g. Rahmanov, B. N. The radii of convexity and starlikenessof
330
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
univalentfunctiors. (Russian)Studiesin differentialequationsand the theoryof functions,No. 3 (Russian),pp.58-62.Izdat Saratov. Univ., Saratov(1971);MR 53 #8407740. Rahmanov, B. N. Star-tikefunctions. (Russian)Differencial'nye uravnenija i vycisl. Mat. vyp. 2 (1975),137-142,l8l; MR 55 #8339. j4l. Rahmanov,B. N. On seriesof univalentfunctions. (Russian)Mat. ' no. 4, 593-600;MR 58 #11353 Zametki 23(1978), univalent of product functions' (Russian) 742. Rahmanov,B. N. The no. 5 , 697-708;MR 58 #11354. Mat. Zametki 23(1978), 743. Rangarajan,M. R. On the radiu-.of univalenceand starlikenessof a classof analyticfunctions.Indian J. Pure Appl. Math. I I (1980)' no. 2, 245-251 ; MR 819:30020. 744. Range, R. M. On a Lipschitz estimatefor conformal maps irt the plane. Proc. Amer. Math. Soc. 58(1976),375-376;MR 53 #11033' 745. Ratti, J. S. Theradiusof convexityof certainanolyticfunctions.ll. Internat. J. Math. Math. Sci. 3(1980),no. 3, 483-489; MR 82b:30013. 746. Rauch, J. Illumination of boundeddomains.Amer. Math. Mont h l y 8 5 , r t o . 5 , M a Y ( 1 9 7 8 )P' . 3 5 9 . 747. Reade,M. O.; Todorov, P. G. Tlte radii of starlikenessand convexity of certain analytic functions. Proc. Amer. Math. Soc. 83 (1981),no. 2, 289-295. 74g. Red'kov, M. I. The domain of valuesof a certainfunctionalon cer(Russian)Tomsk. Gos' of boundedunivalent.functions. toin classes univ. ucen. zap. No. 36(1960),33-50;MR 52 #5951. 74g. Red'kov, M. L A correctionto the poper: "The domain of values of a certcin functional on certain cla,ssesof bounded univalent 36 U9601,33-50)' funciions" (Tomsk.Gos. univ. ucen. zap. No. (Russian)Trudy Tomsk. Gos. univ. 163(1963),152-!54; MR 52 #5952. 750. Ren, F. Y . Coefficientsof inversesoi meromorphic univalentfunc' tions.A translatton,cf Kexue Tongbao (Chinese)25(1980),no' 1' tro. 4,277-280;MR 193-195.KexueTongbao(English)25(1980),
82f:30015. ffir schlichte l.osungen elliP75r. Renelt,H. Ube, Extremalprobleme Comment. Math. Helv' tischer Differentia!gleichungssysterne' Do. l,17-41. 54(1979), 752. Rr;Zd,F. M. Restrictionsof the derivativesof positive real funcno' 5 , 327-334' tions. J . Franklin Inst. 312(1981), '(2il (tu casdes fonctions 753. Ripeanu,D. Sur la fonctionnellef(zr)/f
,#
(P.{R'TIII) BTBLTOGRAPHYOF SCHLICHT FUNCTIONS
331
no' 2' I. Mathemarica (Cluj) 2l(44)(19'79)' t),piquement-reelles. 1 6 3 - 1 8 8M ; R 8 1 m : 3 0 0 1' 3 '(z) oy '1s desfonctions i 54. Ripeanu. D. Sur Io .fonctionnellef(zr)/f no' 1' 22(45)(1980)' eelles.ll. iviathematica(Cluj) ti,piquetrtent-r
irt-t65; MR 82j:3oo2o'
of p'vateil functionsand subor155. Robertson,M . S. complexpowers s.u.N.Y. conf., Brockport' dinqtion compiex analysis(Pioc. Pureand Appl. Math., , p . 1 _ 3 3 .L e c t u r eN o t e si n N.Y., 1976)p 58 #62|5. Voi. -?5,Dekker,New York, 1978;}vIR Rev' anall',tic.function-s' 756. Robertson,lvl. s. coefficien'ttheorentsfor pur.s Appl . z3(r978),no. 3, 479-486;MR 57 Roumai'e i,Iarh.
#12838. of starlike uniM' S' A characterizqtionof the class 151. Robertson, 26(1979)'no' 1' 65-69; MR valentfunctions' MichiganMath. J' 80f:30010. - L^ ^L^.,-)' stqrrikewith respectto a bound' L,nivorent s. functions M. 75g. Robertso', MR 82i:30017' ary poinl. J. Math. Anal. ippt. 81(198l),327-345; univalent funclengtltantl '759. Rodin. B.; warschawski,s. E. Extremal tions.I.Theangularoe.iuatiue.Math.Z.|53(|917),tro.|,|_|7; MR 58 #2846r. Extremaltengthand itnivqlentfu'tc760. Rodin, B.; warschawski,s. E. distortionproperty. Bull' tions.IrI. consequence,or the Ahlfors Inst.Math'Acad'Sinica6(1978)'no'2'part2'583-597;MR 81k:30013. E . Extrematlengthand univalentfunc' 761. R.odin,B.; warschawski,s. tions.ll.Integralestimatesofstripmappings.J.Math.Soc.Japan , o ' 1 , 8 7 - 9 9 ;M R 8 1 k : 3 0 C t 1 2 ' 3 1 ( 1g 7 9 ) n .762.Royster,w.C.;Z\eg|er,M.UnivalentfunctionsConvexinone 23(1976),no. 3_4, 339_345;MR di:ee,tion.Publ. Math. Debrecen 51 #13059. shsredby an entirefunction and '763. Rubel, L. A.; Yang, c. c. values i / - s d e r i v a t i v e . C o m p l e x a n a l y s i s ( P r o c . C o n f in .,Univ.Kentucky, LectureNotes Math., vol' 1O1-101. 19'76):,pp. ., Ky Lexingron, 57 #633' 599,Springer,Berlin' lg77; MR nor,764.Rung, D. a . A localforrtt of Lqppan'sfive-point theoremfor MR 53 vath. j. zltr gls),,no.2, l+l-145; ntaifurtctions.Michigan #135i5. (Polish and Russiar'sum'7 65. Ruscheweyh,S. On starlikefunctions' maries)Ann ' U n i v . M a r i a e " C u r i e - S k l o d o w s k a S e c t . A 2 s ( 1 9 7 4 ) ' ; R 55 # & 5 . 6 5 - 7 0( 1 9 7 6 )M Q-tikefunctibns' J' '766. Ruscheweyh, S. ,4 subordinationtheoremfor
332
BIB L IO GR AP H YOF S C H LIC H T FU N C TION S
no. 2, 275-280;MR 54#533. London Math. Soc. (2)13(1976), 767. Ruscheweyh,S. On functions with non-vanishingdivided differences.Math. Nachr. 73(1976),143-146;MR 55 #646. 768. Ruscheweyh,S. An extensionof Becker's univalencecondition. Math. Ann.220(1916),no. 3 ,285-290;MR. 53 #3284. 769. Ruscheweyh,S. Linear operators between classesof prestarlike functions. Comment. Math. Helvetici 52(19'77),497-509;MR 58
#rt23. 770. R-rrscheweyh, S" Some convexit\t and convolution theoremsfor analyticfunctions. Math. Ann. 238(1978),no. 3, 217-228;MR 80i:30023. 77l. Ruscheweyh,S. On the Kakeya-Enestromtheoremand Gegenbauer polynomial sums. SIAM J. Math. Anal. 9(1978),no. 4, 682-686; MR 57#16551. 772. Ruscheweyh,S. On the partial sums cf prestarlikeancirelatedfunc9 ;R t i o n s . I n d i a nJ . P u r eA p p l . M a t h . 1 1 ( 1 9 8 0n) ,o . 1 2 , 1 5 8 7 - 1 5 8 M 82i:30018. 773. Ruscheweyh,S. l{eighborhoods of univalent functions. Proc. ; R 82c:30016. , o . 4 , 5 2 1 - 5 2 7M A m e r . N { a t h .S o c .8 l ( 1 9 8 1 ) n problemsfor func174. Ruscheweyh,S.; Singh, Y. On certainextremo,l tions with positive real part. Proc. Amer. Soc. 6l(1976), no.2, 329-334;MR 54 # 13060. 715. Ruscheweyh, S.; Singh, Y. Ctna Briot-Bouquetequationrelatedto univslentfunctioas. Rev. R.oumaineMath. PuresAppl. 24(1979), no. 2,285-290;MR 80i:30022. 776. Ruscheweyh,S.; Wirths, K. J. Riemann'smapping theoremfor no. 3,287-297; MR 53 n-analyticfunctions. Math. Z 149(1976), #t3543. S.; Wirths, K. J. Convexsums of convexunivalent 177. Ruscheweyh, funciions.InclianJ. Pure Appl. Math-7(i975),no. I ,49- 52; N{R s6 #8832. 77g. Sabalin,P. L. The univalenceof the generalsolution of an interior inverseboundaryvslueproblem. (Russian)Izv. Vyss.Ucebn.Zaved. Marematika1975,ho. l2(153), 92-95(1976). lEnglishtranslation: 1 2 , 7 7 - 8 0[ 1 9 7 6 ] )M r o . S o v i e tM a t h. U z . V u z . l 1 9 t l 9 7 5 1 , ; R 55 #837r. 17g. Sabalin, P. L. Llnivalenceclsssessnd V. I. Smirnov's domains' (Russian)Trudy Sem. Kraev. Zadacam No. 16(1979) , 218-226, 246: MR 82c:30022. 7E0. Saff, E. B.; Sheil-Smali,T. Coefficientand integralmennestiontcs J-orolgebraicond trigonontetricpolynomials with restrictedzeroes'
FU N C TION S(P A R T III) BIB L IO GR AP H -,'oF , S C H LIC H T
333
J . L o n d o n M a t h . S o c . ( 2 ) 9 ( 1 g . 7 4 / - t 5 ) , | 6 _ 2 2 ; M R 5 z # ] 4 9and |. of p-fold syntmetric 7gl. Sakaguchi, K. On the coefficienrs no' Ed. Natur. Sci. 30(1981), trrtivarent functions.Bull. Naia univ. I l-15 '.' r,.-^^ttn66 ^1..1 ,nlrrtrtrl functions and related alpha'starlike ort s. Fukui, K.; Sakaguchi, i82. function.s.Bull.ofNaraUniv.ofEducation,zs(|919),pp.5_|2; N4R82a:30015' , . , - ^ LMath' ' ^ + L J' r 5 < Hiroshima slits' parallel of sets extrental 783. Sakai,M. On ' (1975),no. 3 , 499-516;MR 5i #1290? preserved and coni'exi11, .7g4.Salagean,G s. prope'rtiesoJ stcrrikeness Seminaron comb), some integral operators.Rc'manian-Finnish plexAnaiysis(Proc',Bucha'rtst'1g76)'pp'367-37?'LectureNot:s MR 81e:30024' in Math., 7 43'Springer'Berlin' 1979; and univalentderivatives with ' Functions 785. Salmassi,M'; Shah' S' M ofirregulargrowth'IndianJ'PureAppl'Math'12(1981)'no'6' 749-75?;MR B2i:300i9' parls are B. A..Functionswhosereal 786. Sarangi,S. M.; Uralegaddi, -43; MR 3'7 ' Sci' 22(191'7)' greqrer than a. J. iarnatak Univ 8 1 a : 3 0 0l .1 ,787 Sarangi,s. M.; Uralegaddi,B. A ' The rttcius of cortvexityand . anall'ticfuncticns witl' itegative starlrkeness for ce,.taiic/assesof Lincei Rend. Cl. Sci. Fis. Mat. coefficie,,t,,|. Atti Accad. Naz. 2,
N a t u r . ( 8 ) 6 5 ( 1 9 7 8 ) , n o ' l - 2 ' 3 8 - 4 2 ( l g l g ) ; M R 8of1 dttnivalence : 3 0 0 1 9 ' of B. A' on the radius Uralegaddi, M.; s. Sarangi, 788. certginanall,ticfuncti-ons.J.KarnatakUniv.Sci.23(1978),18_24; 5' MR 82c:3001 :onvexityand stQrUralegaddi,B. A.. Theradiusof M.; 789. Sarangi,S. coefof anaryticfunctions with negative rikenessfor certain crzsses sci' cl' ntti. nccad. Naz' Lincei Renci' ficients.Il. (Italia.nsummu.yi g7g),Do. |_2, |6-20 (1980);MR 82k:30016. Fis. Mat. Natur. (8)67(1 *Funclio) theo,rl,on the unit circle'Notesfor lectures , D. 790. Sarason Institute and State given at a Conferenceat Viiginla Polytechnic 19?8. Departmentof B, Va., June tg_zl, University, BlacksbUf Mathematics,Virginia"PolytechniclnstituteandStateUniversity, B l a c k s b u r g , V a ' ( 1 9 7 8 ) ' i v * 1 3 8 p p ' $ 6 ' 0 0 ; M R quasicon'forntal 80d:30035' theorem'for '7g1 Schiffer,M'; Schober' G' A ctistoriion . function theory (Proc' Sem'' mappings. Advancesin complex pait, Md', lg73-1914)'pp 138-147' Univ. Maryland, College LectureNotesinMath.,vot.505,Springer,Berlin,lg16;MR54 #10598. of univalentfunction'switlt 792. Schild,A.; Silverman'H. Convolutions Ann' Univ' summaries) n egat i ve coe.fficien ts' (Polishand Russian
334
BTBLIOGRAPHYOF SCHLICHT FUNCTTONS
Sect. A29(1975),99-107(1977);MR 56 MariaeCurie-Sklodowska # 15902. 793. Schild, A.; Silverrnan,H. Some properties of schlichtfunctions with "smell" coefficients. Complex analysis (Proc. S.U.N.Y. , . Y . , 1 9 7 6 )p, p . 1 0 5 - l 1 4 .L e c t u r eN o t e si n P u r e C o n f. , B r o c k p o r tN and Appl. Math., Vol. 36, Dekker, New York, 1978; MR 58
#r7069.
794. Schober,G. *Univalentfunctions-selected topics. Lecture Notes in Mathematics,Vol . 478. Springer-Verlag,Berlin-New York (1975).v + 200 pp. $9.90;MR 58 #22527. 795. Schober, G. Coefficients of inversesof meromorphic univalenr MR f u n c t i o n s .P r o c .A m e r . M a t h . S o c .6 7 ( 1 9 7 7 )n,o . l , l l l - l l 6 ; 56 #t2z5l. 796. Schober, G. Coefficients of inversesof univalentfunctions with quasiconformalextensions.Kodai Math . J. 2(19i9), no. 3, 4ll419;MR 8lb:30C39. 797. Schober,G. Coefficientestimatesfor inversesof Schlichtfunctiotrs. Aspectsof contemporarycomplex analysis(Proc. NATO Adv. Studynst.,Univ. Durham,Durham, 1979),pp. 503-513,Academic Press,London (l180); MR 82j:30021. 798. Schwarz, G. Zur partietlen Differentialgleichung der st'hlichten Funktionen. Collection in honor of Hans Hornich. Osterreich. s .l . S . - B .I I 1 8 5 ( 1 9 7 6r)1, o .l - 3 , 8 9 A k a c i .W t s s .M a t h . - N a t u r w i s K 93;MR 56 #15908. ' 99. Seiler,A. Inegalitesde Grunsky du type Garabedian-Schifferpour despairesdefonctions univalenles.(Englishsummary)C. R. Acad. no. 10, Aii, 4755-A757; MR 54 Sci. Paris Ser. A-B 283(1976), #13064. 800. Sekigawa,i-I. SchwarzianderivativesoJ someconJormulmappmgsno. 3, 309-3i8; MR 80j:30029. Tohoku Math . J. (2)31(1979), 801. Selberg,H. L. rJberdie Potertzreihenmit posiliven Koeffizienten. N o r s k eV i d . S e l s k .S k r . ( T r o n t h e i m () 1 9 7 5 ) n, o . 5 , 6 p p . ; I V I R5 - i #10578. 802. Selljahova,T. N.; Sobolev,V . Y. Thestudy of extremalproperties o_fa classof urtivalentconformal ntappingsof the half-olane onto Someproblemsin modern function theory (Proc' itsetf (R.ussian) Cor:f. Modern Problemsof GeometricTheory ol Functions,Inst' Math., Acad. Sci. USSR, Novosibirsk, 1976)(Russian),pp . 142145.Akad. Nauk SSSRSibirsk.Otdel. Inst. Mat., Novosibirsk' 1976.For a reviewof this item seeRZMat 1977#10 8178. [For the MR 58 #22501. entirecoiiectionseeMR 57 #15813.1;
U,M
(PART III) BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
335
(Rrrs803. Seretcv,V. G. Harmonic mappings,and univalentfunctions Univ' Naucn' sian) Mathematicalanalysis,No. 2. Kuban. Gos' TrudyVyp.ts0(1974),143-153,166-167;MR55#r29ll' and starlikeiiessof a 8M. Shaffer, D. B. Cn the orrler o-f conve:ir-v J' Math' speciat class of anulytic and meromorphicfunctions' Anal.Appl.64(1978),no'1,216-222;MR57#16564' uitivalentand 805. Shah,s. M. Anal|,ticfttnctioris with somederivatives Naz' Lincei a relateCconjecture. (Italian summary) Atti' Accad' (1977); Rend.cl. Sci.Fis. Mat. Natur. (s) 61 (1976),ilo. 5,344-353 MR. 58 #6236. of 806. Shah,S. M.; Trimble, S' Y' Llnivalenceof derivatives functions (1976),no' 56 deftned DYga7 Power series' II. J. Math. Anal. Appl. | , 28-40. with univalent 807. Shah, s. M.; Trimble, S. Y. Analytic functions MR 82a:30016' derivatives.Indian J. Math. 20 (1978),265-299; of univalentfunctions 808. Shah, S. l.'I.; Trimlrle, S. Y. On the zeros Appl' (4) 121(1979)' Pura Mat. with univalentderivqtives.Ann. 3 0 9 - 3 1 7M ; R 8lc:30027' defined by dif809. Sharma, A.; Tzimbalario, J. Classesof functions Anal. APPI. 61 (197'7)'rlo' 1, ferential inequalitie's.J' Math. 122-135;MR 80j:3CC36' linesr trdns-fcrmqtions 810. Sheil-Small,T . The Hadamardproduct and Math. 34 (1978)' of classesof analytic functions' J' Analvse 204-239(1979);MR 8lb:30023' of g11. Sheil-Small,T. Applicationsof the Hudsmard producl' Aspects Adv' Study Inst'' contemporarycomplex analysis(Proc. NATO AcademicPress' univ. Durham Durham, (lg7g), pp. 515-523 London, 1980;MR 82g:30042' gl2. sheng, G. A simple proo| of Bieberbachconiecturefor sixth coefficient.sci.Sinica23(1980),no.1,1-15;MR8lg:30026' (2) 24 gl3. Sheng,G. On FitzGeratdinequalities.J. London Math' Soc' (1981),no . 2, 227-242; MR 82k:30021' g14. siewierski, L. sharp estimation of the coefficientsof bounded Math ' Rozunivalentfunctions closeto identity. Dissertationes prawy Mat. 86 (1971),149pp'; MR 55 #10661' -o-f g 15. Siewierski,L. The maximum'of thefunctional a, od in clesses summaries) quasi-convexfunctions. (Polish; Russianand English No' 28 (1971)' ZeszytyNauk. Politech. L6d2. No. 134Mechanika
s-}r; MR s2 #713
L.t Smialk6wna, H. Zeszyty Naukowe Politech-niki 816. Siewiersf.i,Lodzkiei, Mat. (1973),PP' 105-124'
336
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
817. Silverman,H. Products of starlike and convexfunctions. (Polish and Russiansummaries)Ann. Univ. Mariae Curie-Sklodowska , 0 9 - 1 1 6M ; R 57 #608. S e c t .A 2 9 ( 1 9 7 5 ) 1 of a theory of Zmorovic. Complex Applications H. 818. Silverman, analysis(Proc. S.U.N.Y. Conf. , Brockport, N.Y. , 1976), pp. l4l-157. LectureNotesin Pureand Appl. Math., Vol .36, Dekker, N e w Y o r k , 1 9 7 8 ;M R 5 7 # 1 6 5 6 5 . 819. Silvermafl,H . Extremepoints of univaientfunctions with two fixed p o i n t s .T r a n s .A m e r . M a t h " S o c . 2 l 9 ( 1 9 7 6 ) , 3 8 7 - 3 9 5 . of univalentfunc820. Silverman,H. Convexity theoremsfor subclssses tions. Pacific J. Math. 64 (1976),no. I ,253-263; MR 54 #2944. 821. Silverman, H. Subclassesof starlike functions. Rev. Roumaine ; R 809:30009. M a t h . P u r e sA p p l. 2 3 ( 1 9 7 8 )n, o . 7 , 1 0 9 3 - 1 0 9 9M 8'22. Silverman, H. Univalent functions with varying arguments. Houston J. tvlath. 7 (1981),no. 2, 283-287. 823. Silvermatr,H.; Silvia, E. On linear combinationsof convexfunctions of order 9. Rev. Roumaine Pures Appl . 22 (1977),no. 6, 8 5 1 - 8 5 5M ; R 57 #609. 824. Silverman, H.; Silvia, E. Convexfamilies of starlikefunctions. , o . 2 , 2 6 3 - 2 6 8 ;M R 5 8 # l l } t J . H o u s t o nJ . M a t h . 4 ( 1 9 7 8 ) n Prestarlikefunctions with negative E. M. 825. Silverman,H.; Silvia, Internat.J. Math. Math. Sci.2 (1979),no. 3,427-439; coefficie,n/s. MR 80i:30024. 825. Silvermatr,H.; Silvia, E. The influenceof the seconcicoefficienton prestarlike functions. Rocky Mountain J. Math. l0 (1980)' 469-474;MR 8lm:30014. H.; Silvia, E. M. Fixed coefficientsfor subclassesof Silverman, 827. starlikefunctions. Houston J. Math . 7 (1981),129-136. 828. Silverman,H.; Silvia, E. tvi.; Telage,D. N. Locally univaleil funcPacific J. Math.77 (1978),no-2, tions and coefficientdistortio,,ns. 3. 533-539;MR 80a:-l0C)l 82g. Silverman,H.; Sih'ia, E. M.; Telage,D. Convolutionconditions for convexity, stariikenessand spiral-tikeness.Math . Z. 162(19i8), no.2, 125-130;MR 80i:30025. 830. Silverman,H.; Telage,D. N. Spiralfunctions and relatedclasses witit fixed secondcoefficienl. Rocky Mo'rntain J. Math .7 (i977), n o . l , I I l - 1 1 6 ;t l I R 5 6 # 3 2 7 3 . 831. Silvermatr,H.; Telage,D. N . Extremalpropertiesof o subclassoJ no' close-to-convex functions. Rocky Mountain J. Math .7 (1977), 2 , 3 7 1 - 3 7 6 ;M R 5 6 # 3 2 7 4 . e"fciose832. SiivermaD,H.; Telage,D. N . Extremepoints of subclasses
3ii]LIOGRAPHYoFSCHLICHTFUNCTIONS(PARTIII)331
14 (1979),no' l, to-convexfunctions. Proc. Amer. Math. Soc. 59-65; MR 80c:30012. of positive real Part with 833. Silvcrman, H.; Ziegler, M' Functions (1978),ro . 2, 269-275; negtttit'ecoe-fficients.Houston J' Math' 4 f v I R5 8 # 1 1 2 1 . of functions' g34. Silvia,E. N,I. A variationalmethod on certainclasses pures Appl. 2l(l 976),no. 5, 549-557;MR Rev. Roumainelr{ath. 54 11534. relatcdto furtcticns o'f b"undeCboun' E35. Silvia, L,. t\'l. p-','Qlentclasses 7 (1977),no' 2' 265-274; ciur1,rotsiion Rockl' MouriLa,inJ. Math. MR 55 #8340. of p-valentfunctions' Rocky g36. silvia, E. M . A ncte on special classes MountainJ.Math.g(|g7g),no.2,365_370;MR80c:30013. univalent g37. Sindalovskii, G. H. Drfferelntiabilityand analyticity of nrappings.(Russian)con.Akad.NauksssRz4g(1979)'no'6' 1325-1327;NIR'8 1d:30020' analytic g3g. Singh,D. B . on tltc rsdiusof univalenceof somefunctions Appl ' 23 (1978)'no' in tlte unir clisc.Rev. RoumaineMath' Pures '7 , l l 0 7 - 1 1 1 4 ;M R 8 0 f: 3 0 0 1 1 ' of regularunivale;tt I-. Sorte classe: 839. Singh,D. B.; Srivastava,R. S. f u n c t i c n s G a n i t a 3 0 ( l g ' t 9 ) , n o ' 1 - 2 ' t 4 6 - 1 5 4 ' in the unit disc' 840. Singh,P.; Tygel, M. on some univalentfunctions 4, 513-520;MR 82k:3ffi24' Indian J. PureAppl. Math.12 (1981),no. of functions representation 841. Sirtgh,Prithvipal; singh, Prem Integral Pure Appl' J' in certairt classesof-univalent functions. Indian Math.l2(1981),no'4,459-471;MR82i:30020' univalence' Publ' Math' 812. Singh, R. A sufJiciert condition -for -2, l-3; MR 58 #6205' Debrecen25 (1978),no' I univalentfunctions' Proc' 843. Singh, R.; Singh, S. Integratsof certain MR 81e:30025. Amer. Math. Soc. 77 (Lils1, no. 3 ,336-340; starrike functions. ln' g44. Singh. R.; Singh, v . on a crassof bounded MR 55 #&7. d i a n J . P u r e A p p l . M a t h . 5 ( | g 7 4 ) ,n o . 8 , 7 3 3 _ 7 5 4 ; Indian J' 845. Singh Sohi, N. ,4 c/css of p-valent analyticfunctions' pure Appl. Math. 10 (1gigi, no. 7, 826-834;MR 80i:30026. of u-spiral-tikefunctions' Indian 846. Singh,S.; Singh,R. On a subclass J.PureAppl.naatn.ll(1980),160_164;MR82a:30017. 84'7.Singh,S.;Singh,R.Subordinationbyunivalentfunctions'Proc' Amer.Math.Soc'82(1981)'no'l'39-47;MR82f:30019' funcof close-to-convex 848. Singh, S.; Singh, R. On new subclasses 743_748. 6, no. tions.IndianJ. Pure Appl. Math . |2 (|981), in the unit g4g. Singh, y . univalent fuiittons with boundedderivative
33E
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
disc.Indian J. Pure Appl. Math. 8 (1977),no. I l, 1370-1377;MR 8. 80k:3001 850. Singh, V. Bounds on the curvature of level lines under certain of univalentand localty univalent mappings.Indian J. Pure classes Appl. Math. 10 (1979),no.2, t29-144;MR 80c:30014' 851. Singh,V.; Chichra,P. N. (Jnivslentfunctions"f(z)for whichd' @) is a-spiral-tike.Indian J. Pure Appl.Math. 8 (1977), no. Z, 2s3-259;MR 57 #6397. 852. Singh, V.; Chichra, P. N. An extensionof Becker's criterion of J.Indian Math. Soc.(N.S.)41 (1977),no.3-4,353-361 univolence. (1978);MR 80j:30024. 853. Singh, v.; Gupta, R. s. Radiuscf convexity of a-spirallikefunctions.IndianJ. Pure Appt.Math. 6 (1975),no. 3,322-3?6;MR 56 #12248. 854. Singh, v.; Gupta, R. s. An extremalproblem for functions with positive real part. Inciian J. Pure Appl. Math. 8 (1977),no' 11, 1279-1297 ; MR 81d:30054. 855. Singh, V.; Paul, S. Constrainedextremalproblemsfor symmetric Math. 12 functions with real part positive. Indian J. Pure Appl. (1981),no . 4, 492-512,MR 82g:30039. 856. Singh, V.; Paul, S. Constrai;rcdextremalproblemsfor functions with positiverealparl. Indian J. Pure Appl.Math. 8 (1977),no' 4, 454-462;MR 58 #28511. 857. Singh, V.; Singh, R. On a classof functions schlicht in the unit disc.Indiani. Pure Appl. Math.7 (1976),no. l, 116-120;MR 57 #6',^0. 858. Singh, V.; Singh, R. The radii of starlikenessof certain classesof closelo-convexfuncrions. Indian J. Pure Appl. Math' 8 (1977)' MR 80h:30016. no.12, 149'i-15U4; 859. Sirokov, N. A. Approximation of continuousanalyticfunctions in domains with bounderiboundary rctaticn (Russian)Dokl. Akad' Nauk SSSR225(1976),nc. 4, 809-812. 860. Sirokova,E. A. The univalenceof certainintegrals.(Russian)Izv' Vyss. Ucebn. Zaved. Mathematika (1977),no. 9 (184), 107-ll4; MR 58 #6206. 861. Siterski, R. ()n some application o-f a parametric methcd. Polish and Russiansummaries)ZeszYtYNauk. I-.odz.Mat. No. 9 (1977), 63-69; MR 58 #22530. 862. Sitarski, R. Extren;al problemsfor certain classesof holomorphic and boundedfunctions. (Polish and Russian summaries)Zeszyly i{auk. Politech.Lodz. Mat. No. 12 (1979),45-61'
-
(P A R T III) BT B L IO GR A P H YOF S C H Li cH T FU N C TION S
339
qlrnoslconvexityof order a in a classoJ 863. Sizuk, P I. The radiusof 20 (1976)' no' 1' schlicht functions. (Russian) Mat. Zametki 1 0 5 - 1 1 2M ; R 54#13061' o-fa-ccn"'svfiincl.; cernikov. v. v. The cocfficieiiis P. 864. siZuk, no' 5' 679-686' (1978), tionsof orderp. (Russian)IvIat. zametki24 734 MR 809:30010' anuli'tic g65. siZuk,G. I.; Sizuk,P. I. on thetheo,y of specialclassesof function,s.(Russian)Ukrain.Mat.Z,32(|980),no.2,256_262, 286; MR 8lg;1Q044' o/ the classof ti;picall|'realfuncdons' 866. skalska, K. certain subclo.sses Ann.Polon.Math.3s(1980),no.2,|41-152;MR82a:30018. g67. Sladkcn.ska,J. Coe.ffictentinequslitiesfor Bieberbach-Eilenberg functions.(Polish;RrrssianandEnglishSummartes)ZeszytyNauk. (1974),ll-46; MR 55 #12903' Politech.Slask.Mat.-Ftz. zeszyt25 g6g. sladkowril; t. Th\or,inrc desaires dans la theorie desfonctions i0 (1977' no' 2' univqieni)r'iornlrr. I. Demonstra*,ioMath' aires dans la theorie des 28,|_316;MR 58 #2847|a. Thaortsmedes Math ' 10 (l 977)' foncticns,,rlvalentesborn6es.II. Demonstratio itemsseeRZMat 1978#'7 no. 3-4,547-569.For reviewsof these #28471b' B21r anrl RZMat 1978#g 81 15; MR 58 dans les familles contFqber 869. Sladkowska,J. Lespoll'n\mes de Math' Prace pactesde fonctions univalentesborn'ees.comment' For a reviewof this Mat. 20 (l 977),tro.l ,205-214;MR 58 #22528. item seeZbl 371 #30012' satisfaisant g70. Sladkowska,J . sur resfonctions univarentes,born'ees, no' 2' (1978)' 11 Math' deuxau moinsD^-equqtions.Demonstratio ' 3 51 - 3 7 8 ;M R 8 2 c : 3 0 C7 1 univalent theorems for a family of weokly 871. slyk, v. A. Distortion no' 6' (1980)' (Russian)Mat' Zametki 27 functions in a circle. ' 927-933,990; MR 81m:3CC15 mappingso'f multiply of 872. Slyk, V. A' On the theorlt nonunivalent number theory and the connecteddomoins. (Ruisian) Analytic Leningrad'ctdel' Math' theoryof functions,4. Zap. Naucn.sem' ' 203' Inst. Steklov.(LOMI) l12 (1981)'184-197 annulrtsfor weakly trnivalenl 873. Slyk, V. A. Some estimatesin on on a circle'(Russian)Izv' Vyss' Ucebn' functions tltat ontit values Zaved.Matematika(1981)'no' 8' 85-86' inequalityfor univalent'sym874. Smigielska,J . The Gruns'ky-Nehqri Russianand English summetric snd boundedTunctions.(Polish; Mat'-Fiz' No' 34 (1979)' maries) zeszytyNaut. Politech. Slask' ' 97- 105;MR 8 I e:30027
340
BIB L IO GR AP H YOF SC HLIC H T FU N C TION S
875. Smigielska,J. Varistionalformulas in a classof univalent,symmetric ond boundedfunctions. (Polish; Russianand English summaries) Zeszyty Nauk. Politech. Slask. Mat .-Fiz. 34 (1979), 107-l 6; MR 8ld:30021. 876. Smith,H. V. Bi-univalentpolynomictls. SimonStevin50 (1976,/77), n o . 2 , I l 5 - 1 2 2 ;M R 5 4 # 1 3 0 6 5 . 817. Sohi, N. S. On a subclassof p-valentfunctions. Indian J. Pure $ p p t . M a t h . l l ( 1 9 8 0 )n, o . l l , 1 5 0 4 - 1 5 0 8M; R 8 l m : 3 0 0 1 t i . 878. Spak, G. S. The range o"fboundedfunctions that havepre.scribed values at two points. (Rtrssian)Mat. Zametki 23 (1978), no. 2, 2 3 1 - 2 3 5M ; R 5 B# 1 1 1 3 . 879. Srivastava,G. S.; Juneja, O. P. The maximum term of a power series.J. Math. Anal. Appl. 8l (1981),no. I , l-7. 380. Srivastava, J. K. Semigroups of classesof univalent functions. Math. Balkanica6 (1976),237-244(1978);MR 809:30012. 881. Srivastava,R. S. L.; Bajpai, S. K. Some distortion theoremsfor univalentu-spiralfunctions.J. Math. Sci.7 (1972).101-108(1974): MR 57 #12834. 882. Stankiewicz, J. Quasistrbordinationand quasimajorization of analyticfunctio;rs. (Polish and Russiansummaries)Ann. Univ. MariaeCurie-Sklodowska Sect.A 3l (1977),l2l-135 (1979);MR 8le:30036. 883. Stankier,vicz, J.: Stankiewicz,Z. Some remarks on subordination and majorization oJ functions. (Polish and Russian summaries) Ann. Univ. Mariae Curie-Sklodowska Sect.A 3l (1977),119-126 (1979);MR 8ld:30044. 884. Stankiewicz,J.; Waniurski, J. Some classesof functions subordinate to linear transformation and their applications.(Polish and Russiansummaries) Ann. Univ. MariaeCurie-Sklodowska Sect.A 28 (1974),85-q4Q976);MR 56 #5858. 8E.5.Stankiewicz, Z. Sur la subordination en domaine de certains operateurs.(Polish and Russiarrsummaries)Ann. Univ. Mariae Curie-Sklodowska Sect.A 28 (1974),95-103(1976);MR 56 #8837. 886. Starkov, V. V. The subclassesS"o-f univalent functions. Vestnik Leningrad.Univ. (1976),no. 7 Mat. IVIeh.As'rronom.vyp. 2, 82-87,163;MR 56 #12254. 887. Starkov,V. V. A variationolformulo in tlrc classo1 Bazileviijunc' tions. (Russian;Englishsumnlary)VestnikLeningrad.Univ. Mat. Meh. Astronom. No. 19 Mat. Meh. Astronom. Byp. 4 (1978), 8 l - 8 8 , 1 5 1 ;M R 8 0 d : 3 0 0 0 9 . 888. Starkov, V. V. Certain properties of functions o-f the Basilevi|
."SAil
B IBL IOGR AP H Y oF.S C H LIC H TFU N C TIoN S (P A R TIII)
34r
univ' Mat' Englishsummary)vestnikLeningrad' class.(Russian; Meh.Astronom.No.13Mat.Meh.Astronom.no.3(1978)' 148-t49;160;l'{R 80d:30008' propertiesof f uncgs9. starkov,v. v . Letterto the editors:"certain Leningrad'Univ' Mat' Meh' tionsof tke Bazilevii,lorr" (Vestnik vestnikLeningrad' (Russian) Astronom.lg7g, vyp. t, l4g-160). g7g'vyp' l' J32' Univ- Mat. Meh' Astronom'I crass functions.(Rusgg0. starkov, v. v . A propertyof the Ba|ilevii sian;English,.,.-u,gVestnik-Leningrad.Univ.Mat.Meh. 35' Astrono*. tf g7g),vYP'I ' 84-87' i g g l . S t e g b u c h n e r , H . E i n i g e B e m e r k u n g e n u b e r d l - FHornich' ixnunkteder in honor of Hans Collecticn Funktione,f. schlichten Kl' s'-B' II 185(1976)' Akad.wiss. Math'-Naturwiss' osterreich. ; R 5 6# 1 2 2 5 5 ' n o . l - 3 , 1 0 5 - 1 t 3M and fixed-pointsof schlichtfunc' carleson-sets H. 8g2.Stegbuchner, t i o n s . R o n n a n t a n . F i n n i s h s e n i n a r o n C in o mMath.,743.SprplexAnalysis(Proc.' l9?6),pp. 373-388.LedtureNotes Bucharest, inger,Berlin,1979;MR 81c:30028' of merocrasses K. weok subordinationand stabre(1980)'565-577 gg3. Stephenson, ' Math' soc' 262 morphicfunctions.Trar's.Amer' 8g4.Styer,D.4nanalyticcharacterizationofgeometriylllstarlikefuncMR 53#135M' Math. J.23 (1976),no'.i,137-139; tions.Michigan 8 9 5 . S t y e r , D . ; W r i g h t , D . J . T y p i c apuit. l l y . rProc. e a l f uLondon n c t i o nMath' s a n dSoc' their of positiu.i.a functiorrs associatecr no' 2' lg3-212;MR 56 #3275' (3 ) 34 (1,977), functions'Proc' on bi-univalent 896. Styer,D.; wright, D. J. Results gz tigal), no.2,243-248;MP-82c:30018' Amer.Math.soc. of porynomruls.Adgg7. suffridg€, T. J. Starrikefunctions 4s timits (Proc sem''-univ' Maryland' vancesin complexfunctiontheory LectureNotes in g14)' d' rc4-?:03-' CollegePark, Md', 1973-1 M a t h . , V o l . 5 0 5 , S p ' i n e e r ' B e r i i n ' 1 9 7 6 ; M R 5 8 # 1 1Indiana 22' ggg. Suffridge,T. J. A ,ri criterionfor storry!ry,'ctions' qzg-M3;MR 8lb:30024' univ. Math. J. 2g (tq7q),no. 3, (Russian) fungtions and mappings. ggg. Suvorov,G. D. *rheoiy of i'NaukouaDumka"' Kiev (1979)'180 Editedby G. D. Suvorou. 002' (RusP P . ;M R B l b : 3 0*Metric of the theoryof functions' questions D. G. 900. Suvorov, s i a n ) . . N a u k o n a p u m k u , , , K i e v ( t q s oof) ,certain 1 6 4 p panolytic . ; M R 8func1j:30002. g0l . Swamy,s. R. (A) Therauliusof univairnrc of certainanalyticfunctions' tions.I. (B) Theradiusof uniiatence rl-15; MR8lf:30013a'(B) II. J. Karnatakuniv.sci. 22\1977'1,tei
342
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
1 6 - 2 3 ;M R 8 l f : 3 0 0 1 3 b . 902. Szapiel, M. Sar la subordination dans la classede fonctions typiquement-reelles.DemonstratioMath. l3 (1980),no. 2, 461-467; MR 82a:30019. 903. Szisz, O. Uber Potenzreihen die im Einheitskreise beschrtinkte Funktionen darstellen.Math . Zeit., vol. 8 (1920),pp. 222-236. g/|'4. Szilird, K. Ube, die Abschiitzung Cer Ko"-ffizienten der Poten' z,'eiheeiner analytischenFunktionen, die einchschlichteAbbildung des Emlteitskreisesauf ein Sterngebietverwirklicht. Proccedingsof the Conferenceon the ConstructiveTheory of Functions (Approximation Theory),B'tdapest,1969,pp.415-476.AkademiaiKiado, Budapest(1972);MR 52 #5954. 905. Szynal, J. Regions of variability of functionals represented by Stieltjes integral with side conditions. (Russian summary) 3ull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 22 (1974), 897-901;MR s3 #794. 906. Szynal,A.; Szynal,J . On someproblems concerningsubordinstion and majorizationof functions. DemonstratioMath. I I (1978),no. 2, 331-350;MR 80j:30023. W7. Szynal,A.; Szynal,J.; Wajlef, S. On the Gronwall'sproblet,rJ'or of univalentfunctions. Analytic functions, Koz.rbnik some classes (1979)(Proc. seventhconf., Kozubnik, 1979).pp. 429-434,Lecture Notesin Math.,798, Springer,Berlin, 1i80; MR 82a:30020. 908. Szynal, J.; Wajler, S. Sur les fonctions H-quasi-btoil6es. DemonstratioMath. 8 (1975),no.2,205-214; MR 57 113374. 909. Szynal, J.; Waniurski, J. Some problems for linearly invariont families. (Polish and Russiansummaries)Ann. Univ. Mariae CuriesklodowskaSect.A 30 (1976\,91-i02(1978);Vtn 80c:30017. 910. Taladaj, H. Quasi-convex functions. Prcc. of the conferenceon analyticfunctions, Lublin, PP. 23-29, August (1970). 911. Tammi. O. tise of the Power inequality in connectionof coefficient regionsfor bounded univalentfuncticns. Proceedingsof the Sixti' Conferencecn Analytic Functions (Krakow, 1974).Ann. Polon. Math. 33 (1976),no. I -2, ll7-123; MR 57 #16566. gl2. Tammi, O. Inequalitiesfor the ffth coefficient for bounded real univalentfunctions. J, AnalyseMath. 30 (1976),481-497;MR 55 #8?+2. 913. Tammi, O. On generalizingthepower inequalityfor thefirst coeificient region in the classof bounded univalent functions. Proceedingsof the Rolf NevanlinnaSymposiumon ComplexAnalysis (Math. Res. Inst., Univ. insta.rbul, Siiivri, 1976),pp. lO3-129.
;td
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS (PART IIT)
343
publ. Math. Res.Inst Instanbul,7. Math. Res.Inst., Univ. Instanbul, Istanbul,1978;MR 8lf :i0ll4. gl4. Tammi, O. *Ertremum problemsfor boundedunivslentfunctions. l-ecture Notes in Mathematics,Voi. 646. Springer-Verlag,Ber!!nj-540-08756-7; MR NervYork (1978).vii + 313 pp. $13.i0. ISFN
58#rr3?7.
with coefficient 915. Tammi, O. On optimized inequalitiesin connection bodiesof boundedunivalentfunctions. Ann. Acad. Sci' Fenn' Ser' A I lvlath.4 (1q79),no. I ,45-52; I"'lR80f:30012' o-f univaientfuncttons qnd 916. Tammi, O. A surve)'of sonie classes methodsfor studyingthem. (Finnish;Englishsummary)ArkhirneCes 33 (1981),no. 4, 215-231. gl7. Targosz, l.; futgosz, R. The variational metliod applied to Gel'fer bounded functions. (Polish; Russian and English summaries) zeszytyNauk. Politech. Slask. Mat.-Fiz. Nu - 34 (1979),127-135; lviR 8 1i:30042. Aharonov 918. Targosz, R. Formulas for the Nehari coefficientsfor paiis of univalent functions. (Polish; Russian and English sum(1979), maries) zeszytyNauk. Politech. Slask. Mat.-Fiz. No. 34 l l 7 - 1 2 6 ;M R 8 1 i : 3 0 0 3 2 . 919. Thangamani, J . The radius of univalenceof certain analvticfunctions.Indian J. Pure Appl. Math. l0 (1979),no. 11, 1369-t373; MR 8la:30012. 920. Thangamani, J. On storlike functions with respect to symmetric points. Indian J. Pure APPI. Math. 1l (1980),no. 3 ,392-405;MR
8li:30031. of the classof functionswith 9Zl. Thangamani,J . On a generalization boundedMocanuvariation Proc. rndianAcad.Sci.Math. Sci.90 ( 1 9 8 1 )n,o . 3 , 2 1 3 - 2 1 8 . and sufficient ccndition fcr Bloclt 922. Timoney, R. M- A necessarY -266;MR functions.Proc.Amer. Math. Soc.7l (1978),no.2,263 58#l159. glj. Todorov, p. On certain univalent conforrnol mappings that sre hypergeometricfunction (Bulgarian; Russian realized by Gauss',s Plovdiv.Univ. Naucn.Trud . 12 (1974),no' and Frenchsummaries) l, 59-64;MR 53 # I 1034. g24. Todorov , P. Maximal univalent mappings with bounded rotation that qre realized by the classof integrals of schwarz-christoffel univ' type.(Bulgarian; Russianand French summaries)Plovdiv' Naucn. Trud . 12 (1974),no. l, 49-58' g25. Todorov, P. G. Application of maximal univalencedomains of
344
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
of rotional functions with sintplepoles and politive residues classes to the ttncoveringof the structure of magneticfieldt o"fsystemsof equally directed direct currants. (Russian:French summary) Plov; R 58 ) ,o . 1 , 3 1 7 - 3 2 1( 1 9 7 7 ) M d i v . u n i v . N a u c n .T r u d . 1 3 ( 1 9 7 5 n #22529. 926. Todorov, p. G. On the unique maximal domain o"f univalenceo.f the derivative classo(v - lxR,) of the rational classo(R,). (RusDo. sian;Frenchsummary)Plovdiv. Univ. Naucn.Trud. 16(1978), 1 , 3 0 3 - 3 1 4( 1 9 8 0 ) . g27. Todorov, p. G. New expticit formulas for the coefficients of p-symmetricfunctions. Proc. Amer. Math. Soc. 77(1979)'no' l, 8 1 - 8 6 ;t v I R8 1 g : 3 0 0 2 1 . g28. Todorov, P. G. A simple proof of the Kirwan theorem for the radius of startikenessof the typicaily real functions and one new no. 4, 334-342; result.Acad. Roy. Belg.Bull. Cl. Sci. (5)66(1980), MR 82a:30021. g1g. Todorov, p . G. Radius of convexity for a l'{evanlinnu class of analytic functions. (Bulgarian; Russian and English summaries) ro. 1, 315-323(1980);MR Plovdiv.Univ. Naucn.Trud. 16(1978), 8 2 f: 3 0 0 1 3 . 930. Todorov. p. G. Limite de convexit| d'une classede Nevanlinnade no. 2, 127fonctions analytiques.Arch. Math. (Basel)34(1980), l2l;MR 8lk:30017. of 931. Todorov, p. G. New expticitformulas for the nth derivative I no. ,217-236. compositefunctions. Pacific J. Math.92(1981), g32. Todorov, P. G. Explicit formulas 1or the coefficients of Faber polynomials with respect to univalent functions of the clsss E ' P r o c .A m e r . M a t h . S o c .8 2 ( 1 9 8 1 )n,o . 3 , 4 3 1 - 4 3 8 ;M R 8 2 f : 3 0 0 1 6 ' cf 933. Todorov, P. G . Uniquenessof the maximal univalencedomain (Russian; the derivativeclassOi'-')(R,) of the rationcl classO(R"). I-itovsk. Mat. Sb. 21 (i981)' Lrthuanianand French summa,Iies) nc. I ,203-20u; MR 82j:t0024' g34. Townsend, D. w. Imaginary valuesof meromorphicfunctions m no' I ,225-242' the disk Pacific I. Math. 96(1981), Ctose-to-convex -functionsartd their 935. Trimble, S. Y.; Wright, D . J. 3' extremepointsin Hcrnich space.Monatsh.Math' 85(1978),no' 2 3 5 - Z M ;M R 5 8 # 1 1 3 5 5 . 936. Tsanov,v. v. (canov, v.v.) Extremepoints and uniformizati-o-n' c. R. Acad. Bulgaresci. 30(1g77),no. 2, l7g-t8l; MR 56 #5868' g37. Tsuji, H. A generalizationof Schwarz lemma. Math' Ann ' 75(' ( 1 9 8 1 )n, o . 3 , 3 8 7 - 3 9 0 .
i4
(P A R T IIt) BT B L IO GR A P H YOF S C H LIC H T FU N C TION S
345
and convexityfor g3g. Tuan, p. D.; Anh, v.v. Radiiof starlikeness ' Math ' Anal' Appl' certain classesof anals'tic functions' J 54(19?8).no. I , 146-158;MR 53 #1125' of classes g3g. Tr.a-n,P. D.; Anh, V. V. Raciiiof convexitl'c-f two no' 1'29-41; regularfunctions.Bull. Austral.Math. soc.21(1980), MR 8lg:3}022. probternsfor functions of 940. Tuan, P. D.; Anh, v. v. Extremal with a rea! part ',;ith a fixeci ccefficient and applications' positi,",e Math' J' 30(105)(1980)'no' looseRussiansummary.Czechoslovak ; R 8if:30015' 1 , 3 0 2 - 3 1 2M of holog4l. Turzynski, A. Estimation of coefficientsin sotne classes Nauk' zeszyty mcrphic functions. (Polish and Russiansummar\es) Politech.Lodz.No.245Mat.8(1976),81-84;MR54#7770. of startikefunctions' (Polishand Rusg42. Turzynski, A. on a subclass Lodz' Mat' No' 11 sian summaries) zeszyty Nauk. Politech' ' (197S) , 73-79;MR 82k:3Ct017 g4S.Twomey,J.B.Anintegralmeuninequalityforstarlike.functions. MR 82k:30018' M a t h e m a t i k a2 8 ( 1 9 8 1 )n, o ' 1 ' 8 8 - 9 8 ; g44.Ulugay,c.onanextremalizationmeihodinthetheoryofanalytic comm. Fac' Sci' Urriv' Ankara Ser functions.(Turkish summarl') A 23(1974),no. 9, 85-93;MR 54 #13062' of spiral-likefunctions. Indian J' g45.Umarani, p. G. on a subclass PureAppl.Math.l0(1979),flo.10,1292-|29.1;MR80i:30027. classo.f functions o-f boun'Jed 946. Umarani, p. G. on'a generalized Rend' Mat' (7)1(1981)'no' boundoryrotation (Frenchsummary) ; R 82i:30021' l , 1 2 7 - 1 3 8M has a g47. Umezawa, T.; Reade, M. o. Functions whosederiv-ative positiverealpart.CollectionsofarticlesonmathemaiicsandmathSaitamaUniv. Urawa ematical eciucation,No. 1, pp. 103_108, (1980);MR 82k:30019' close-tog48. Umezawa, T.; Takijima. K. On the univalence and Univ' Fac' Ed' Math' convexity of a certain integrcl. J' Saitama ' Natur. Sci. 23(lg'74), 3-8; MR 54 #13063 g4g.IJmgeher,K.ZurFragernultivalenterLosungenvonlinearen Wiss' Math'-Natur' Differentiat-gteichungei.Osterreich'Akad' MR 54 #535' K l . S . - B .t r r S t ( r g l i ) , n o ' 8 - 1 0 ' 4 1 3 - 4 2 1 ; mit multivalenten 950. Umgeher, K. Lineare Differentialgteichungen Hornich' osterreich' L\sungen. collection in honor or Hans )' o' 1-3' II 185(1976D A k a d . w i s s . M a t h . - N a t u r w i s sK. l . s ' - B ' 1 1 5 - 1 2 0M ; R 56#15909' 95l.Umgeher,K.DieVerteilungderschlichtertFunktionenineinem
346
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
8l(19',76)' Funktionenraum. (English summary) Monatsh' Math' ; R 5 4 # 2 9 4 '7 n o . 4 , 3 1 1 - 3 1 4M holomorpher Funk952. Umgehe., f . tiber eine Produktdarstellung Bolognacl' Sci' tionen (Italian summary)Atti Accad. Sci. Instit. . :30003 Fis. Rend.(13)5(1g77/78), no. 1, |49_156;MR 80f that are of 953. Vazdaev,V.p. Extremalprobtemsin classes functions Ucebn' Zaved' regular in the half-ptani. (Russian) lzv. Vyss' 13550. Matematika( |g75), no. l 1(|62), 33_40;MR 53 # univolent functions. Portugal'Math' g54. Viswanath,G .R. on convex . 35(1976),no. 3-4, 221-225;MR 57 #6398' in Kreisringe 955. Vo, D. T. Verhaltenschlicht-lconformerAbbildungen MR 57 99-134; eingebetteterGebiete. Math. Nachr. 74(1976), #3369. bei schlicht-konfornrcr 956. Vo, D. T. (lber einigeFlticheninhaltsformeln Math. Nachr' 74(1976), Abbildung von Kreisbogenschlitzgebieten
253-26r.
g5j. vorkovyskii, L. I. *euestions in Mathematics.(Russian)Partial on GeometricTheory of Proceedingsof the Seminar-Conference FunctionsofacomplexvariableheldinTashkent,May10-19 Tash(19-t5).Edited by L. l. volkovyskii. Taskent.Gos' Univ" kent, 1976,156PP.;MR 57 #6377' r. G xProblemsin 958. Volkovyskii,L. I.; Lunc, G. L.; Aramanovic, from the the theiry of functions of a complex vqriable. franslated from the 1975 Russianty Vlctor Shiffer. Secondedition, revised Publishers' Mir Russian edition published by lzdat. "Nauka." Moscow (1977). of classBL' (Russian) 959. Volynec, I. A. Distortion under mupptngs S i b i r s k .M a t . Z . | 8 ( 1 9 7 7 )n, o . 6 , | 2 : 9 _ | 2 7 0 ,1 4 3 5 . oi polynomisls with 960. Waadeland,H . 'Someunivalentcompositions no' l, 65-73: univalentfunctions. Ann. Polon. N{ath. 38(1980), . MR 82e:30021 extremoin the class 961. walczak, s. (A) Investigationsof conditionar I' of Hardy function, uri i, the famity of univalent functions' summary) (Polish (poiish iuir1nury) (B) Same title as in (A). II' 7, 15 pp'; MR no. (A) 27(1977), Bull. Soc. Sci. Lett. Lodz, 80f:30025a;(B) 28(1978),no' l, l/r pp'; IVIR'80f:30026b' tt esis(1978),University 962.Waid, J. K . On siariikefunctions. Ph.D. of Delaware,Newark, Delaware' 963.Wang,S.L.Thebehtavioroffunctio,lsregular!r.theunitcircle. 91-93; MR (Chinese)Acta Math. Sinica 21(|978), no. l, 80d:30036.
BIBLIOGRAPHYoFSCHLICHTFUNCTIONS(PARTIII)341
o"f on exftemalpropertiesfo'^:,:','ain family note A . J waniurski, 964. convexmappings.(PolishandRussiansummaries)Ann.Univ. MariaeCurie-Sklodowsk.aSect.A2g(1975),151_158(1977\:MR56
b:'*':: :'::'::':::r:,i:;iljiJ;, (i,1?l3;r*', retatio.ns. r. some e65. Funcitcns Conferenceon Analytic Sixth or it't
tions.Porceeclings (Krakow,|974).Ann.Polon.Math.3-?(1976),no.|-2,131-135;
die einen Funktionenim Einheitskreis' schtrchte e66.$}t,il'l:ot;' RandbogenineinenR-andbcgenabbilden.J.ReineAngew'Math. 285(lgtq,24-2't; MR 54 #538' D*(o' ?)' dans it clusse estin':ations certaines sur ,\. 961. wesolOwsk;, (PolishandRussiansummaries)Ann.Univ.MariaeCurie. S k l o d o w s k a S e c t . A 2 g ( 1 g 7 5 ) , 1 5 9 _ 1 6 5snd ( 1 9starlike 7 7 ) ; Mfuncttons R 5 6 # 8 8' 3 3 . convex on renrark A 'I Feng' R'; 968. Wilken, D' ' 287-2g0;MR 81f:30016' (2)' 21(1980) J. London Math' Sot' functions. the linearitl, of one-to-ory-:ntire 969.Wiliiams, R. K. on no' 2 ' 72-7'7;MR 55 f3256' Delta (Waukesha)O(rgjO)' Kl.ssenholomorpher fur gewisse 970. Wirths, K.-J . i.iberC'ru'nrisssatze von Ernst des 55 Geburtstages Fut,ktionen. Festbani unLUli.f, P e s c h i , p p . T | - T 6 . G e s e l l s c h . M a t h . D a t eBonn n v e r a(|9,|2); r b e i t uMR n g B5lo n n , B e r . Math. Datenverarbeitung, No. 57, Geseilsch. #n2A7 m Satzvon Fej€r. (Russiansumztl €tn€t gl l . Wirths, K'-J ' Bemerkungen
m a r v ) A n a l ' Y . u t h ' i i l q i s ) ' n ozahlenfolgen' ' 4 ' 3 1 3 - 3 1 Arch' 8 ; M RMath'' s 3 # ' 7vol' 8r' 972. wirths, K.-J . Llbertotalmonotone 5), PP' 508-5l7' 26(19'7 '(iberholomorpheFunktionen' die einer l4rqgltslumsg73. wirths, K.-J . no' 6' Arch. rt'ruttt' (Basel)30(1978)' untertlegen. beschrtinkung
or tvpe rornvlrs o{9*nskv-Nehari t.!:);l'7;"':' MR si11$f;f13,)f enn. polon. Math 37(1980),Do' 2' l7g-t98; vectorfunctions.
sTs.iii;iTllu,
for theorem of theGarabedian-schiffer K. Anatogues
pairsofvectorfunctions.o.mon,tratioMath.l4(1981),no.2,, 32t-341;MR 82k:30020' g . T 6 . W r z e s i e n , A . o n m e r o m o r p h i c q u a s i . B - s nPolitech' i y l - l t a r l iLodz' kefunctions. zy;! Nauk' ,u**uri.r)'1., Russian and (polish M a t' N o ' 1 2 (1 9 '79)' 63-81'
-^t^tn,:t to tn starlike ctnrl i ke funcf of onalyticfunctionsrelated gi:. Wu, Z.R. on a class tions.(Chinese)ActaMath.Sinica24(|981),no.2,283_290.
348
BIBLIOGRAPHY OF SCHLICHT FUNCTIONS
978. Yamashita,S. The derivotiveof a boundedholomorphicfunction no. I ,60-64; MR 5l in the disk. Proc. Amer. Math. Soc.53(1975),
#r323s. g7g. Yamashita,S. Almost tocallyunivalentfunctions. Monatsh. Math. 8 l ( 1 9 7 6 )n, o . 3 , 2 3 5 - 2 4 0 ;N I R 5 3 # 1 1 0 4 2 . of a function meromorphicin the 980. Yamashita,S. Local schlichtness disk. Math. Nachr. 77(1977),163-166;MR 56 #12243. 981. Yamashita,S. Schtichtholomorphicfunctions and the Riccati difno. l,19-22; MR 58 #6216. Math. Z. 157(1977), ferentialequatio,'1. g8Z. Yamashita, S. Conformality and semiconformality of a function holomorphic in the disk Trans. Amer. Math. Soc.245(1978/79), ; R 80h:30018. I 1 9 - 1 3 8M no.2, 983. Yamashita,S. On the John constant.Math. Z. 161(1978), 1 8 5 - 1 8 8M ; R 58#22516. 984. Yamashita,S. A univalentfunction nowheresemiconformalon the . r o c .A m e r . M a t h . S o c . 6 9 ( 1 9 7 8n) ,o . 1 , 8 5 - 8 6 ;M R 5 7 unit circleP #6403. 985. Yamashita,S. The normality of the logarithmic derivative.Comment. N{ath.Univ. St. Paul. 27(1978/79),25-28986. Yamashita,S' Inequalitiesfor tl;e Schwarzionderivotive' Indiana ; R 8lj:30030. U n i v . M a t h . J . 2 8 ( 1 9 7 9 )n,o . 9 . 1 3 1 - 1 3 5M 987. Yamashita,S. On a theorerncf Duren, Shapiroand Schields.Proc. ; R 80b:3Ct012. ) ,o . 2 , 1 8 0 - 1 8 2M Amer.Math, Soc.73(1979n classHp.Proc. Hardy oJ to be 988. Yamashita,S. Criteriaforfunctions Amer. Math. Soc.75(1979),no. I , 69-72. 989. Yamashita, S. Criteria for functions to be Bloch. Bull. Austral. Math. Soc. 2l(1980),no. 2, 223-227;MR 8lg:30041. 990. Yamashita, S. Criteria for functions to be Bloch. Brrll. Ar-tstral. Math. Soc. 2I(1980),no. 2, 223-227;MR 8lg:30041. ggl. Yamashita, S. The normalit'', of the derivative. Rev. Roumaine Math. Pures-{ppl. 25(1980),qo. 3, 481-484;MR 81g:30023. gg;. Yamashita,S. Gqp senesand a-Blochfunctions. YokohamaMath. J . 2 3 ( 1 9 8 0n) ,o . i - 2 , 3 1 - 3 6 . gg3. Yamashita,S. Length estimatesfor holomorphicfurictions. Proc. A m e r . M a t h . S o c .8 l ( 1 9 8 1 )n, o . 2 , 2 5 0 - 2 5 2 . gg4. Yamashita,S. Thc order o.f normality and meromorphicunivalent 82i300a4' functions.Colloq. Math.44(1981),no. 1, 159-163;NiR' functions.J. 995. Yoshikawa,H.; Yoshikai,T. Somenoteson BozileviE no. l, 79-85; MR 80i:30028. London Math. Soc. (2)20(1979), 996. Zderkiewicz,J. Sur la courbure des lignesde niveau dans la ciusse desfonctions convexesd'ordre cr. (Poiish and Russiansummaries)
B IBL IOGT{A P H YOF S C r{ LIC H T FU N C TION S(P A R T III)
319
Sect.;27(1973), l3l-138 Ann. Univ. I\{ariaeCurie-Sklodowska (1975);MR 53 #3285. gg7. Zderkrcwicz,J. Sur lq ccurbure des lignesde niveau dans la classe (Polisli and Ru:sian summaries),\nn. Univ. Mariae Curiel: Sklodowskasect. A 28(l 974), 12l-125(1976);MR 5+ #5454. 998. Zderkiewicz,J. Sur la subordinationdans la classeS*(p) desfonctiortsetoileesd'ordre q. Comment. Math. PraceMat. l9(i976/77), no. 2, 409-414;ivIR 57 #128359gg. Zderkiewicz,J . Sur la courbure de I'image du ralon Cansla classe SZ ciesfoncticns convexestJ'ordre a. Comment. ivlath. PraceMat. l9(1976i77),no. 2, 415-419;MR 57 #12836' 1000. Zderkiewicz,J. Surle rayon de A-convexit/de lafamilleDt. Ann. no. I ,39-42; MR 55 #649' Polon. Math. 34(1977), 1001. Zeheb, E. Root locus techniquesapplied to proving equivalence betweenpositive reolnessconditions.IsraelJ. Tech. l3(1975),no. 4 , 2 ' 1 6 - 2 7 8M ; R .5 4 # 1 0 5 7 7 . 1002. Zemyan,S. M' A minimal outer areaProblem in conformal map' ping. J. AnalyseMath.39(1981),ll-23; MR 82i3A022. 1003. Z\egler,M. R. ,4n extrematprobtem for functions of positive real part with vqnishingcoefficients.(Polish and Russiansummaries) Ann. Univ. lvlariaeCurie-SklodowskaSect. A 30(1976),85-89 (1978);MR 58 #22st8. 1004. Zielinska,A.; Zyskowska,K. On estimationof the eighth coefficient of bounded univalent functions with real coefficients. DemonstratioMath . 12(1979),oo. l, 231-246;MR 80i:30032' 1005. Zmorovid, V. A.; Gudz, L. A. On A. Msrx's conjecturefor the convex hull of the classof func;ions that are star-shapedin the no. 3, 390-393,430; MR disc.(Russian)Ukrain. Mat. Z 28(1976), 55 #650. 1006. ZmoroviE,V. A.; Gudz,L. A. Someextremalestimatesforclasses of normstized univalentfunctions with the secondcoefficient of their Taylor expansionfixeri. (Russian) Mathematics collection (Russian),pp. 68-72. lzdat "Naukova Dumka," Kiev (1976); MR 56 #12249. 1007. Zmorovid,V. A.; Gudz,L. A. The coniectureof A. Marx.for the classofk-tuplysyntmetricstarlikefunctionsinthedisc|z|< (Russian;Englishsummary).Dokl. Akad. Nauk Ukrain. sSR Ser. A (l976), no. 7, 587-590,670; MR 55 #3234' 1008. Zmorovtd,V. A.; Gudz, L. A. A parametricmethodfor the solution of extremal problems of the theory of special classesof analyticfunctions. (Russian)Ukrain. Mat. Z' 30(1978),no' 3,
350
BIB L IO GR AP H YOF SC H L IC H T FU N C TION S
362-367;MR 58 #17070. of univalentfunctions 1009. Zmorovi|, V. A.; Gudz, L. A. Some classes in the disc i"I Mathematicalanalysis and probability theory (Russian),pp. 59-63,210,,'NaukovaDumka," Kiev (1978);MR 8lb:30025. 1010. Zmorovi[, V. A.; Gudz, L. A. On a methodof the theoryof extremsl problems.(Russian;Englishsummary)Dokl. Akad. Nauk Ukrain. SSRSer.A (1981),no . 8, 20-22,96. o"fa lCll. ZmoroviE,V. A.; Jakubenko,A. A. A certaingenerolization col(Russian) Mathematics classof u-convexMocanu functions. lection (Russian),pp . 2:4-257. lzdat "Naukova Dumka," Kiev (t976); MR 58 #6208. 1012. ZmoroviE,V. A.; Jakubenko,A. A. (Jakubenko,O. A.) Some sharp estimatesin the classBo@), (Russian;English summary) , o.8,686-689, D o k l . A d a c . N a u k u k r a i n . s s R S e r .A ( 1 9 7 7 ) D 7 63: MR 57 #9956. 1013. Zmorovid, V. A.; Jakubenko,A. A. A generalizationof the Mocanu-Readetheoremon the boundary of a-convexityof a class of starfunctions. (Russian)Mathematicalanalysisand probability theory (Russran),pp. 70-74, 2ll, "Naukova Dumka," Kiev ( 1 9 7 8 )M ; R 8lb:30026. 1014.Zmorovid,V. A.; Jakubenko,A. A. (Jakubenko,O. A.) The boundary of u-convexity of order 7 of classS*(m). (Russian; Dokl. Akad. Nauk Ukrain. SSR Ser. A No.3 Englishsur^lmary) (1979),I 55- 168,237; MR 80i:30029. I 0l 5 . Zmorovid, V. A.; Jakubenko, O. A. On the boundary of a-convexityof order I o,f classSilm).(Russian;Englishsummary) Dokl. Akad. Nauk Ukrain. SSRSer.A (1981),no. 10,6-9,93' of 1016. ZmoroviE,V. A.; Korcbkova, I. K. On the order of starlikeness convexfunctions o-f order cv.(Russian;English summary)Dokl. Akad. Nauk ukrain. ssR Ser.A (1977),no.7,584-587,669;lr{R 58 #6209. o.fa 1017. Zmorovid,V. A.; Korobkova,I.K. The o'de'of storlikeness q 2. (Russian)Mathematical c/ass of a-convexfunctions for pp. 63-66, 2ll, (Russian), probability theory analysis and "Naukct'a Duinka," Kiev (1978);MR 8li:300'2'r. 1018. Zmorovid,V. A.; Korobkova, I. K. The order oJ sturlikenessof of a-convexfunctions for a ) 0. (Russian) certain subclasses ; R 3Ca:3ft014. U k r a i n .M a t . Z . 3 0 ( 1 9 7 8 )n, o . 4 , 5 3 6 - 5 3 9 , 5 7 3M transformsin integral 1019. ZmoroviE,V. A.; Nixolaeva,R. V. Certain of univalentfunctiottt. (Ukrainian; English and Russian classes
,ilM
OF S C H LIC H T FU N C TION S(P A R T III) B T BL T OGR A P H Y
35r
RSR Ser' A (1975)' summaries)DopovicliAkad. Nauk Ukrain' ' n o . I 1 , 9 7 6 - 9 7 8 ,1 0 5 0 ;M R 5 8 # 6 2 0 7 integraltransformsin certain v. R. 1020. Zmorovir, V. A.; i.{ikolaeva, Englishand Russian oi ,uiratent functions. (Ukrainian; classes Ukrain. RsR Ser. A (1975)' summaries)popovidi Akad. Nauk ' n o - I 1 , 9 7 6 - 9 7 8 ,1 0 5 0 ;I U R 5 8 # 6 2 0 7 Y. Integral transformationwith 1021. Zmorovid,v. A.; Nikolaeva, R . l o g a r i t h m i c k e r t r c I s i n s o | n e c l a s s e s o f u n i v a i e (Russian)' n t f u n c t i o pp' ns.(Rusanalysisand prcbabilitytheory sian)Ir4athema.tical 6 6 _ . t 0 , 2 | | , . N a r r k o v a D u m k a , ' ' K i e v ( r 9 7 8 ; M R 8 2a-convex d:30016. v. A' (Pohilevitl Y' o'l rc22. Zmorovi6, v. A.; Pohilevi6, uk'ain' Mat' z' 31(1979)'no' 4' ( (R.ussian) functionsfor cY c. 431-433, 478; MR 8 I e:30026' O. On a-almostconvexfunctions' 1023. Zmorovir,v. A.; Pohilevi6,v . ( R u s s i a n ) U k r a i n ' M a t ' Z ' 3 3 ( 1 9 8 1 ) ' n o ' 5 ' 6 7 0 - 6 7 3(Russian) '718' Bloch functions' problems for Some V. I. 1024.Zuravlev, MR56#15903. Dokl.Akad.NaukSSSR236(|97.7),no.l,2l_22 and reichmilller spaces.(Rusr025. zuravrev,r .ti. univarentfunc;ions sian)Dokl.Akad'IrlaukSSSR250(1980)'no'5'104'7-1050;MR 81b:30085. Table 1 in this Bibliography(Part III) Forowing is a lisr of thosereferences year lg76 anrl which werenot included which werepublishedprior to the (Part II)' in eitherBibliography(Part I) or Bibliography Year Reference 1 4 5 1 4 6 ' , 1 5 2 ' 1 8 1 '8, 3 '1, 8 4 '1 8 5 ' 1 9 ' 7 5 1 g , 6 9 , 8 88, 9 , 9 0 , 9 2 , 1 2 5 , 1 3 3 , ' 1 9 0 , 2 3 8 , 2 7 7 , 2 g 7 , 3 0 5 , 3 4 C 3 6 5 ' 4 2 0 ' , 4 2 5 ' , 4 5 7 ' ,722', 4 6 5 740', '502'510' 66'7 ', 687', 713', 594,598,606, 625"643,650' 666' g4g', 5',12, ', g25' ', 964' 96',7 953',95',7 783, 7g2,'7g4,801,8rl, 853, 908, 9 7l , g 7 2 , 9 7 8 ,1 0 0 1 ,1 0 1 9 ,1 0 2 0 ' 394',466',468' 215'247',364',380', lg'74 12, 17, 51, 67,81,I 66,20l,2ll' 4 ' 7 8 , , 5 0 3 , 5 0 9 , 5 3 1 , 5 3 4 , 5 8 7 , 6 0 4 ' 6 6 5 ' 6 7 1 ' , 6 8 9944', ' , 6 9948', 0',691',712', 911',923' 924', 765,?80, 803, 844, 867"884, 885' 905' 99't. lg-131,49,,218,276,,357,453,697,720'7gl'816',897',996'
352
BIB L IO GR AP H YO F S C H L I C H T FU N C TION S
1972 l97l 1970 1969 1968 1967 t966 1965 1963 1962 1960 1959 1955 1953 t952 1946 1934 1933 t932 l9z8
263, 405,575, 7 lg, ggI , 904, 970. l l , 2 1 4 , 2 3 4 , 2 6 2 , 3 5 2 ,4 7 1 ,6 5 2 , 7 3 E , 7 3 9g,l 4 . g l 5 . 50, 261, 545,g I 0. 20, 260,439. 494. 437. 347. 5 1 3 ,6 3 4 . 749. 470. 748. 640. 662. 661. 660. 500. rt4. 499. 379, 621. 244.
r9z0 903. t9t4 243. 1913 242.
Table 2 Followingis a list of thosereferences in this Bibliography(Part III) which werepublishedduring the year l9E2: Referenc'es: 52, 1 6 7 , 3 8 3 5, 4 9 , 5 5 16, 9 5 .
Table 3 Followingis a listing of the total number of researchpapersin this Bibliography(Part III) which werepubl:shedin eachof the givenyears.
;:j'.k
(P A R T III) B IBL IOGR A P H YOF S C H LIC H T FU | { C TION S
353
Year Total Number o-f PaPers r9j6 1977 1978 1979 1980 1981
r99 148 r32 r43 130 107
II contains38 references' Notes For the year 1g76,BibiiographyPart a iotal while Belrliographypart IiI contains199references,-for of 237 references'
Corrections (Part III) inFollowing is a list of referencesin this Bibliography dicatingduPlicationsof PaPers: Reference sanleas Reference 989 990 9 101 1020
h.*-