Preface
xxv
1 The Atmosphere
1
1.1 1.2 1.3 1.4 1.5
History and Evolution of the Earth'sAtmosphere 1 Climate 4 The Layersof theAtmosphere 6 Variationof Pressurewith Height in the Atmosphere 9 Large-ScaleMotion of the Atmosphere 10 1.5.1 The GeneralCirculation 10 1.5.2 Troposphere-Stratosphere Transport 14 1.6 TemperatureandWaterVapor 16 1.7 ExpressingtheAmount of a Substancein the Atmosphere 18 1.8 Compositionof theAtmosphere 21 1.9 Radiation 23 1.9.1 SolarandTerrestrialRadiation 26 1.9.2 Absorptionof Radiationby Gases 29 1.10 EnergyBalancefor Earth andAtmosphere 33 1.10.1 SolarVariability 37 1.10.2 Earth'sEnergyBalance 38 1.11 SpatialandTemporalScalesof AtmosphericProcesses 40 Appendix 1 Derivation of the GeostrophicWind Speed 43 References 47 Problems 47 2 Atmospheric Composition, Global Cycles,and Lifetimes 2.1 2.2
2.3
AtmosphericResidenceTimes 50 2.1.1 ResidenceTime 51 Sulfur-ContainingCompounds 55 2.2.1 Dimethyl Sulfide (CH3SCH3) 2.2.2 CarbonylSulfide (OCS) 62 2.2.3 Sulfur Dioxide (SO2) 63 2.2.4 The AtmosphericSulfur Cycle Nitrogen-ContainingCompounds 67 2.3.1 Nitrous Oxide (N2O) 67 2.3.2 Nitrogen Oxides(NOx = NO + 2.3.3 ReactiveOdd Nitrogen (NOy)
49
61
63
NO;) 70 71 vii
s
191 sw~Iqold 091 s~:)u~J~J~~ L~I SUO!~:)u~~ Jo ~:)u~pu~d~a ~Jnss~ld r~.£ v~1 UO!~uw!xOJddy ~~mS-Apu~~s-opn~sd ~ql. I.~'£ Z~I s:)n~u1)l{1!:)!W~q:) ~'£ Ovl ,(n,S1W~q:>o~oqd :)p~qdso~y v'£ ~£I xnw :)!Un:)y £'£ uondIosqy puu~U~!:)YJ~:)uondIosqy r£ ££1 uon~s SSOJ:) 6Z1 uonuwu~ JUIoSJoJ,(n,~WO~D q:lJU3 rI'£ LZI q:lJU3uo P~A!~:)~~ UO!~U!PU~ ltIIoS 1'1'£ ~ZI ~J~qdsow~y ~q:IU! xnw ~A!~UWU~ 1'£ SZI
s:>pau!)lltt:>!waq:) putt A.lJs!waq:>oJoqd:>!.IaqdsomJY £
I'll sw:}{qoJd LII s:}"u:}J:}J:}~ ~11 (El:J:JEH:J) uuoJOJOIq:JIAqt~W Ot I~POWtu~W:tJUdwo:J~qt Jo U09B~!IddV Z"V'Z vII °9B'M gU!X!W ~wnIoA pUB SSBW~p~qdsoW1VU~~Mt~gU09BI~'M I.V.Z 80 1 S~I~A:J [B~!W~q~o~gO!g[BqoID Jo sI~poW [B:Iu~wPBdwo:J Z x!pu~ddV LOI (s~rxO.LJ!V) stumnIIod J!V snopJBZBH II'Z VOl U09BIS!g~ u09nIIod J!V 01'Z VOl gU!wng SSBWO!g 6'Z s~pOtU~AuISUO!ss!W3 8'Z £OI
£0 1 s~I~9lBd sno~~Buoqm:J 00 1 J~ttBW~tBIn~9lBd ~p~qdsoW1VJo s~~Jnos 001 s~I~9lBd ~p~qdsowtV Jo S~Z!s 66 (N:J:J) !~I~nN UO!tBSU~pU°:J pnoI:J 86 IOSOJ~V~p~qdsodoJ.LJo stu~uodwo:J [B~!W~q:J 86 IOSOJ~V~p~qdSOtBJtS L6 £6
9.L.Z ~.L 'z v. L'Z £.L 'z Z' L'z 1.L.Z
(sIOSOJ~V)J~ttBW~tBIn~9lBd
L.Z
v6 ~uozO ~p~qdsodoJ.L £.9.Z ~J~qdsodoJ.L~qt °t ~J~qdSOtBJtS ~qt WOJJxnw ~uozO Z.9.Z Z6 ~uozO ~p~qdSOtBJtS 1'9'Z 98
16 ~uozO ~p~qdsoW1V spunodwo:J gu!U!Btuo:J-u~gO[BH
9.Z ~,
98 ~P!XO!a uoqm:J 9'v, ~8 ~P!XOUOW uoqm:J ~.v, Z8 suoqm~OlpAH ~!U~gO!g v.v, 08 spunodwo:J ~!UBgJQ~I!tBIOA £.v, 8L ~UBqt~W 'l"v, suoqm:>OlpAHJo U09B~Y!SSBI:J l'v,
~L
~L
spunodwo~ gu!U!muo:J-uoqm:J vL
17
v,
(ERN) B!U°WWV V'£, !;.T.NHlNO:1 mA
CONTENTS
4 Chemistry of the Stratosphere 4.1 4.2 4.3
ChapmanMechanism 164 HO x Cycles 171 NO x Cycles 173 4.3.1 N2O StratosphericSourceof NO x 173 4.3.2 NOx Cycles 175 4.4 ClOx Cycles 177 4.5 ReservoirSpeciesand Coupling of the Cycles 180 4.6 StratosphericSpeciesObservationsand Predictions 184 4.6.1 Upper Stratosphere 184 4.6.2 Lower Stratosphere 186 4.7 OzoneHole 189 4.7.1 Polar StratosphericClouds 192 4.7.2 PSCsand the OzoneHole 194 4.7.3 Antarctic OzoneHole Measurements 198 4.7.4 Arctic OzoneHole 199 4.7.5 Summary 202 4.8 Heterogeneous (Nonpolar)StratosphericChemistry 203 4.8.1 Heterogeneous Hydrolysis ofN2Os 203 4.8.2 Effect of Volcanoeson StratosphericOzone 207 4.8.3 Summaryof Midlatitude andTropical Stratospheric OzoneChemistry 210 4.9 TransportBetweenthe Tropical andMidlatitude Stratosphere 210 4.10 Ozone-DepletingPotentialof Halocarbons 212 4.11 Effect of Aircraft Emissionson StratosphericOzone 215 4.12 CarbonylSulfide (OCS)and the Stratospheric Aerosol Layer 216 4.12.1 AtmosphericChemistryofOCS and OCSLifetime 217 4.12.2 StratosphericAerosol Layer 217 4.13 Projectionsof FutureOzoneChange 218 Appendix 4 Sensitivity/UncertaintyAnalysis of Atmospheric ChemicalMechanisms 219 4.A.l SensitivityCoefficients 222 4.A.2 The Direct DecoupledMethod 223 4.A.3 Adjoint Methods 224 4.A.4 Green'sFunctionMethods 224 References 226 Problems 230 5 Chemistry of the Troposphere 5.1 5.2 5.3
Basic PhotochemicalCycle of N02, NO, and03 235 AtmosphericChemistryof CarbonMonoxide andNOx 239 AtmosphericChemistryof FonnaldehydeandNOx 244
ix
£ 1£
vl£ S;)~1J1!N£.vl.~ £1£ S;)l1J1!N Z.vl.~ £1£ S;)u!UIV I.Pf.~ spunodwoJ U;)~OJ:J!N p;)':Jnp;)~Jo Al1s!W;)qJ ':J!l;)qdsoWtV V1.~ fI£
A~~A~~':JtI;)~ ftI~U;)W;)l':JuI Z.£I'C; 60£ AJ~AfJ':JtI;)~HO I'£I'C;
60£ uofJtlWlod ;)UOZOOJJ':J;)ds;)~qJ!A\AJ!A~J':JtI;)~ ':J~UtI~lO £I'C; £0£ u09t1WJod;)UOZO ftI':J!W;)q':Jo~oqd U! load Itl':J!Ptl~;)qJJo lO!Atlq;)g pUtl U!~!lO Z l' ~
66Z 66Z
ZO£ raN] o~ [EO] JOU09t11;)~ £.II'~ 00£ ~OldqJ;)ldOSI;)UOZO Z"II'~ °9t1~ rON/JOA ;)qJJO;)':JUtI:jlodWI l'II'~
U09t1WlOd;)UOZOU! raN pUtl JOAJo S;)lO~;)A!~tll;)~ Il'~ S6'l S~U;)WUOl!AU3 ftlln~ pUtl UtlqlO U! U09t1WlOd;)UOZOuo ;)lmtll~W;).LJO ~':J;)JJ3 £'OI'C; L6Z ws!Ut/q':J;)WP;)Z!ftll;)U;)DJo lO!Atlq;)g Z"OI'C; Z6Z Al1S!W;)qJrON/':J!UtI~lO P;)Z!]tIl;)U;)D l'OI'C; Z6Z Al1S!W;)qJr ON/':J!UtI~lOJo Amwwns c.IT"C Z6Z
suoqltl':JOlpAH':J!U;)~O!gl;)qJO Z"6.~ 6SZ ;)u;)ldoSI 1.6'~
SSZ suoqltl':JolpAH':J!U;)~O!g Jo Al1s!W;)qJ ':J!l;)qdsoWtV
(.;"C ~
LSZ SP!':JV OI'S'C; 9SZ sloqo':JIV 6'S'C; 9SZ Sl;)qJ3 S'S.C; 9SZ slAuoqJtlJ p;)~tllmtlSUo-f/ 'XJ L'S.~ vSZ S;)UO~;))l 9.S'~ ZSZ (sNVd) S;)~tlJ:J!N lA':JtlAXOl;)d C;'S.~ ISZ S;)PAq;)PN v'S'C; LLZ s':J!~tlwoJV £'S'C; S9Z S;)U;)){lV z"S'C; 'l79Z S;)umJlV I'S'~ v9Z ;)l;)qdsodol.L ;)qJU! spunodwoJ :)!UtI~lO ;)UtlqJ;)WUON Jo Al1S!W;)qJ Z9Z
--
7~7
~r~ -
;)UOZO':J!l;)qdsodol.LftlUO!~;)~Jo A~OlO~tlW!lJ C;'L'~ 19Z ;)l;)qdsodol.L;)qJJo ~;)~png ;)UOZO V'L'C; 6C;Z r ON Jo ;)~tld £' L'C; L~Z ;)UOZOJo ;)':JJn°S':J!l;)qdsodol.L Z"L' C; ~~Z ;)UOZOJo s){U!S':J!l;)qdsodol.L I' L. ~
r ON Jo ;)10~ ;)qJ pUtl ;)l;)qdsodol.L ;)qJ Jo ~;)~png ;)UOZO ;)q.L
£~Z ]tI':J!ptl~;)~tlJ:J!N ;)q.L O~Z ]tI':J!ptl~lAxolpAH ;)q.L 6vZ ;)P!XOl;)d U;)~OlpAH 9vZ U09t1P!XO ;)UtlqJ;)W 9vZ S!s.\to~oqd ;)UOZO
~vZ
,LO) . :)O)
COC ~ ~
£'v'C; Z"v'~ I 'v'~
;)l;)qdsodol.L pUnOl~){':Jtlg;)qJJo Al1s!W;)qJ
,'C 1-
Srn3J.NO.:J
x
CONTENTS
xi
5.15 AtmosphericChemistry(GasPhase)of Sulfur Compounds 314 5.15.1 Sulfur Oxides 314 5.15.2 ReducedSulfur Compounds(Dimethyl Sulfide) 315 5.16 TroposphericChemistryof HalogenCompounds 317 5.16.1 ChemicalCyclesof HalogenSpecies 318 5.16.2 TroposphericChemistryofCFC Replacements: Hydrofluorocarbons(HFCs)and Hydrochlorofluorocarbons (HCFCs) 319 References 323 Problems 331 6 Chemistry of the Atmospheric Aqueous Phase 6.1 6.2 .6.3
6.4 6.5
6.6
Liquid Waterin the Atmosphere 337 6.1.1 Cloud Typesand Liquid WaterContent 338 AbsorptionEquilibria and Henry's Law 340 6.2.1 Gas/Aqueous-Phase Distribution Factor 343 Aqueous-Phase ChemicalEquilibria 344 6.3.1 Water 344 6.3.2 CarbonDioxide/WaterEquilibrium 345 6.3.3 Sulfur Dioxide 348 6.3.4 Ammonia/WaterEquilibrium 353 6.3.5 Nitric Acid/Water Equilibrium 355 6.3.6 Equilibrium of OtherImportantAtmosphericGases 356 Aqueous-Phase ReactionRates 361 S(IV) to S(VI) Transformationand Sulfur Chemistry 363 6.5.1 Oxidation of S(IV) by Dissolved03 363 6.5.2 Oxidation of S(IV) by HydrogenPeroxide 366 6.5.3 Oxidation of S(IV) by OrganicPeroxides 367 6.5.4 UncatalyzedOxidation of S(IV) by O2 368 6.5.5 Oxidationof S(IV) by 02 Catalyzedby Iron andManganese 369 6.5.6 S(IV) Oxidationby the OH Radical 372 6.5.7 Oxidation ofS(IV) by Oxidesof Nitrogen 374 6.5.8 Reactionof DissolvedS02 with HCHO 376 6.5.9 Comparisonof Aqueous-Phase S(IV) Oxidation Paths 378 Aqueous-Phase Nitrite andNitrate Chemistry 380
6.6.1 NOx Oxidation 380 6.7 6.8 6.9
6.6.2 Nitrogen Radicals 381 Aqueous-Phase OrganicChemistry 381 Oxygenand HydrogenChemistry 383 Dynamic Behaviorof Solutionswith Aqueous-Phase ChemicalReactions 384 6.9.1 ClosedSystem 385
337
£Lv
uoIsnJJIQ ~I:>I~d
I'S'S
PI~Id ~:>JOdJ1!w~~x3Ut! uI ~I:>I~d IOSOJ~Y Ut!}O u090W
69v
OLv s~I:>I~d IOSOJ~Y }O u090W Ut!IUMOJg S'S PI~Id :>!J1:>~I3 Ut! uI ~I:>!1JUd p~8Jt!q;) 11}O u090W l'voS
69v
~9v
Z9t
t'S
L9v aN AUV JO}s~I:>I~d}O 8UIIU~S 1'£oS ~I:>!1JUd IOSOJ~YUt!}O 8UII~~~S J1!u0911~IAlIJD £oS
£9v JO~:>lId u09:>~JJO;)dIIS :s~:>~JJ3 mnnu9uo:>uoN pUt! MlI'1 ,s~:JI°~S zoZ'S ~u~I:>Y}~O;) 811JQ~q.L :MlI'1 ,s:):JI°~S o~su09:>:)JJO;) 1°'l"S 6~v MlI'1 ,s:):JI°~S:~I:>!1JUd :)I8uIS 11uo 811JQ:)q.L £~v Z~v
'l"S
~lId ~Jd Ut!~W~q.L 1'1'S
S:>IUJ1!UAQ mnnu9uo:>uoN pUt! mnnu9uo;)
I'S
saI3!}.I8d Ioso.lay aISU!SJo S3!W8UA
uofJ!sodwoJ 8£v
SIOSOJQV SIOSOJQV
~£v
SWQlqold v'L £. L
L 'Z' L 9'Z'L
QQJd
~.Z' L v.Z'L
J1!m"M
£.Z'L Z'Z'L
Ol!qJO
I.Z'L
QZ!S 10SOJQV tUQ!qwy 10SOJQV
JQqtQ
Z'L
6.1. L
Qq1 Jo SQWOOOJd
J1!UUON-g°'l
8.1' L
Qq1 gU!ttOld
L .1. L
uofJnq!I!S!OJ1!UUON-g°'lQq.L suofJnq!I!s!o
uo PQS1!g
SQ:>UQJQJQ'H
J1!:>WQA 10SOJQV
PQSQO l1!IOd
QtOWQ"M
J1!tUQufJuoJ
QupgW
SIOSOJQV
suofJnq!I!s!o suofJnq!I!s!o J1!UUON-g°'l
uofJnq!I!s!o
UO!t1!pgA
SIOSOJQV :>!lQqdsodoJ.L
J1!tUQufJuoJ
SIOSOJQV
SIOSOJQV
6'lv
uofJnq!I!s!o v'lv
J1!:>!WQqJ SIOSOJQV
L£v 9£v ~£v
££v
6'lv 9'lv ~'lv
I'lv 61 V
9.I.L
QZ!S Jo SQ!PQdOld
8Iv tUQJQJJ!O
9Iv vIv
~.I.
L
SQlq1!pgAtUQPuQdQPUI
suofJnq!I!s!o
QZ!S gU!t1!IQ'H
v.I.
da goTpOl! da uI uo PQS1!gsuo!tnq!I!s!o
L
£'I.L
suofJnq!I!s!o SS1!W pOl! 'QwnIOA '1!QJVQ:>1!pnsQq.L Z' 1.L IIv (da)NU uofJnq!I!s!o JQQwnNQq.L 1.1.L 80v
uofJ:>unduofJnq!I!s!o QZ!SQq.L
1.L
loso.lav 3!.laqdsow:tV aq:tJo sa!J.ladWd L pop sw~Iqold 66£ S~~U~J~J~~ 16£ t1:jUa~9~uf)l pm ~!W1!UApOUJJ~ql.9 x!pu~ddV L8£
su09~u~~ ~suqd-sno~nbv q1!A\
t~IdoJau U! s~gmqJ u09uJ:lu~~uoJ Jo uo!tuIn~JUJ Z"6"9 ~.T.N:;r.I.~O:)
(IX
CONTENTS xiii
8.5.2 Aerosol Mobility andDrift Velocity 475 8.5.3 MeanFreePathof an Aerosol Particle 478 8.6 PhoreticEffects 480 8.6.1 Thermophoresis 480 8.6.2 Diffusiophoresis 483 8.6.3 Photophoresis 483 8.7 Aerosol andFluid Motion 484 8.7.1 Motion of a Particlein an IdealizedFlow (900 Corner) 485 8.7.2 StopDistanceand StokesNumber 486 8.8 Diametersof NonsphericalParticles 488 References 488 Problems 489 9 Thermodynamics of Aerosols
491
9.1
ThermodynamicPrinciples 491 9.1.1 Internal Energyand ChemicalPotential 491 9.1.2 The GibbsFreeEnergy,G 493 9.1.3 Conditionsfor ChemicalEquilibrium 495 9.1.4 ChemicalPotentialsof Ideal Gasesand Ideal GasMixtures 499 9.1.5 ChemicalPotentialof Solutions 501 9.1.6 The Equilibrium Constant 506 9.2 Aerosol Liquid WaterContent 507 9.2.1 ChemicalPotentialof Waterin AtmosphericParticles 508 9.2.2 TemperatureDependenceof the DRH 510 9.2.3 Deliquescenceof Mu1ticomponent Aerosols 514 9.2.4 Crystallizationof Single andMulticomponentSalts 519 9.3 Equilibrium VaporPressureOver a CurvedSurface: The Kelvin Effect 519 9.4 Thermodynamicsof AtmosphericAerosol Systems 523 9.4.1 The H2SO4-H2OSystem 523 9.4.2 The Sulfuric Acid-Ammonia-Water System 529 9.4.3 The Ammonia-Nitric Acid-Water System 531 9.4.4 The Ammonia-Nitric Acid-Sulfuric Acid-Water System 537 9.4.5 OtherInorganicAerosol Species 539 References 541 Problem 543
.
10 Nucleation 10.1
ClassicalTheory of HomogeneousNucleation: KineticApproach 547 10.1.1 The ForwardRateConstant.Bi 550 10.1.2 The ReverseRateConstantYi 551
545
L09
919
1:){doJQU U! UO!snJJ!Q
:)suqd-sno:)nby Jo :)W!l. :)!1sJ:j:)1:)umq:)v'r 11 v 19 su°!1:)u:)"M u°!1U!:)OSS!Q sno:)nby Jo :)W!l. :)!1sJ:j:)1:)umq:)£'Z'll 119 :):)uP:)1uI:){:)!1IP.d-SUD :)q:IU! wnJ:jq!{!nbg :)A:)!q:)y 01 :)W!l. :)!1SJ:j:)1:)UJT?q:) r'l.11 019 :){:)!1IP.d U 01 uo!snJJ!O :)suqd-suP JoJ :)W!l. :)!1sJ:j:)1:)umq:) 1"l'11 /.J1S!W:)q:):)SUqd-sno:)nby U! SUO!1U1!W!'11JOdSUUJl. ssuw
96~
~09 1U:)!:)YJoo:)u°!1upowwo:):)y :)ql. v.l'll 109 :)W!~:)"Mu°!1!SUUJl.:)qJ. £.1.11 009 :)W!~:)"M:)!1:)u!)l :)ql. r I'll 96~ :)W!~:)"MwnnU!1uo:) :)ql. 1.1.11 s:){:)!:IJUd :)J:j:)qdsOW1Y 01J:)JSUUJl. 1u:)Hpuu ssuW
r 11
I'll
A.lJS!Waq;:> ;)f.IaqdsowJY jO S};)adsy .lajSu8.I.L SS8W
96S
~6~ 16~ 6S~
~S~
u09:)Y
SS1?W10 M1? ~~
u09:)1?~~ {l!:)!W~q:J
woll
10SOl~Y gu9S!X~~ld
OL~
1?10 ~:)u~s~ld
S'OI
Z" L '0 1 I' L '01
~qt U! U091?~I:)nN
L '01
~qt U! U091?~I:)nN AmU!8:
U091?~I:)nN sno~u~gowoH
AmU!8:
l~tsnl:J
9~~
9'01 ~'OI
s~q:)1?olddysnologrM
{l!:)!SS1?I:J ~qtl°
SU091?:)Y!POW
P'OI
U091?~I:)nN sno~u~gowoH
l~qUIP.q:J uo!sUt?dx3
£'£'01
tS1?d
Z"£'OI
UO!sOJJ!O {l!WJ~q.L pmMd[l
1"£'01
s~t1?~ UO!t1?~I:)nN 10 tU~W~lnS1?~W {l!tu~wp~dX3
u09nq!Ils!o
6"01
Z"S'OI I'S'OI
U091?~I:)nN sno~u~gol~t~H
ZS~ UO!t1?~I:)nN AmU!8: UO 10SOl~Y gu9S!X~ld 1?10 t:)~113
UO!t1?~I:)nN mln:)~lowowoH-sno~u~gowoH
6L~
W~tSAS OzH-POSzH
fJo~~
P'£'OI
Sl~qUIP.q:J gU!X!W tu~lnq~ 99~
l~qUIP.q:J pnol:J ~9~
sw~lqold
£6~ s~:)u~l~l~~ 01 x!pu~dy
U091?~I:)nN
9S~ UO!t1?~I:)nN p~:)npuI-uoI ~:)1?pns ug!~lOd ~lqnlosuI Ut? uo UO!t1?~I:)nN ~S~
OzH-POSzH 6L~
~L~
S9~ ~lOW pUt? fJo~~ L9~
{l!:)!SS1?I:J 10 U091?n{l!A3 rmu~wp~dX3 L9~ ~9~
£9~ 19~ It! tU~!:)Yl~:J
09~ S~~
U091?lm!d1?:)~~
q:)1?olddy
P'Z"OI £'Z"OI
p~u!1?Jtsu°:J
Z"Z"01
~~ld
wnpq!l!nb3
1'Z"O 1
p~u!1?Jtsu°:J
U091?~I:)nN sno~u~gowoH
~t1?~ U091?~I:)nN ~qtl°
£"01
~'Z"OI
~t1?~ UO!t1?~I:)nN uo!t1?lod1?A3 ~~
wnpq!l!nb3
U091?WJod l~W-! 10 Agl~u3 9~~ :fJo~q.L
1~~
{tJ:)!SS1?I:J
U091?Ap~a
'l'OI
£'1'01
S~OJ
A!X
CONTENTS
xv
11.2.5 CharacteristicTime for Aqueous-Phase ChemicalReactions 617 11.3 MassTransportandAqueous-Phase Chemistry 617 11.3.1 Gas-Phase Diffusion andAqueous-Phase Reactions 618 11.3.2 Aqueous-Phase Diffusion and Reaction 620 11.3.3 Interfacial MassTransportandAqueous-Phase Reactions 621 11.3.4 Application to the S(IV)-Ozone Reaction 623 11.3.5 Application to the S(IV)-Hydrogen Peroxide Reaction 626 11.3.6 Calculationof Aqueous-Phase ReactionRates 627 11.3.7 An Aqueous-Phase Chemistry/Mass TransportModel 634 11.4 MassTransferto Falling Drops 635 11.5 CharacteristicTime for AtmosphericAerosol Equilibrium 636 11.5.1 Solid Aerosol Particles 636 11.5.2 AqueousAerosol Particles 638 Appendix 11 Solution of the TransientGas-Phase Diffusion ProblemEquations(11.4)to (11.7) 641 References 643 Problems 645 12 Dynamics of Aerosol Populations 12.1
12.2 12.3
12.4 12.5 12.6
MathematicalRepresentations of the Aerosol SizeDistributions 648 12.1.1 DiscreteDistribution 648 12.1.2 ContinuousDistribution 649 Condensation 649 12.2.1 Solutionof the CondensationEquation 652 Coagulation 656 12.3.1 Brownian Coagulation 656 12.3.2 Coagulationin Laminar ShearFlow 664 12.3.3 Coagulationin TurbulentFlow 665 12.3.4 Coagulationfrom GravitationalSettling 665 12.3.5 Brownian Coagulationand ExternalForceFields 666 12.3.6 The CoagulationEquation 672 12.3.7 Solutionof the CoagulationEquation 676 The DiscreteGeneralDynamic Equation 680 The ContinuousGeneralDynamic Equation 682 Evolution of an Aerosol SizeDistribution During Gas-to-ParticleConversion 684 12.6.1 Diffusion-ControlledGrowth 685 12.6.2 SurfaceReaction-ControlledGrowth 686 12.6.3 VolumeReaction-ControlledGrowth 688 12.6.4 DimensionlessSizeSpectraEvolution 689
648
L9L aJaqdso~V JaA\°'l aqJ U! sd!qsuo!~BIa~aJnJBJOOWa.L pUBaJnssald L9L 99L
6tL
I'I'vI
aJaqdsow~VJaA\°'l aqJ U! aJn~BJOOWa.LI'vI UOnDUOd.I!V JO A'S°I°.lO3J3W tl
V9L sw~Iqold I~L s~:>u~J~J~'M uoqmJ :>!~8JO p~ IU1u~w~I'iIJo tu~w~Jnsu~W £1 x!pu~dV 8tL s:)!U~80!g L'£I LtL s~suqd IOSOJ~V p~ suO ~qt U~~Mt~g 8u!uo!t!tmd t.9.£1 ~tL ,\.J:IS!W~qJ:>!l~qdsoW1V £.9.£1 ~tL suo!}nq!J:)S!G~!S Z"9'£1 1;17L s~:>JnosUO!ss!W'iI 1.9.£1 (SHVd) suoqm:>OlpAH:>!}uwoJV:>!I:>A:>AIOd 9.£1 £tL
ZtL s~!1J~dOld{1J:>!SAqd~.~.£I 8£L s~suDJosJn~ld t'~.£1 ~£L spunodwoJ :>!~8JO Jo 8u!uO!}!1J1?d ~I:>!1J1?d/suD p~ UO!twosPV £.~'£I LZL spunodwoJ :>!~8JQ Jo 8u!uo!t!tmd ~I:>!1J1?d/suD p~ uo!tnIoss!G Z"~.£I tZL SAUMqtUdUO!tuUJJod IOSOJ~V:>!~8JQ ,{Jp;puo:>~s Jo M~!AJ~AO I '~. £ I tZL
60L
uoqmJ :>!~8JO Ampuo:>~S
£ZL uo!}nq!J:)s!G~Z!S JO AmW!ld £.t'£1 tlL uo!t!sodwoJ {1J:)!W~qJ Z"t.£1 ZIL s~:>Jnos l't"£1 ZIL uoqmJ :>!~8JQ Amw!ld IlL uoqmJ :>!~8JQ Ampuo:>~SsnsJ~AAmw!ld Z"£.£I SUO!}uJtu~:>uoJ uoqmJ :>!UU8JO IOSOJ~V tu~!qWV 1'£.£1 6OL uoqmJ :>!~8JO
~.£I
t'£1
£.£1
80L s~I:)!1J1?d sno~:>uuoqmJJo ,\.J:Is!W~qJsno~u~80J~t~H 9'Z"£1 80L SIOSOJ~V tU~!qwV U! J'iI Jo 8u!x!W Jo ~~8~ ~.Z"£I LOL uo!}nq!J:)s!G~Z!S uoqmJ {1Jtu~w~I'iItu~!qwV t.Z"£1 ~OL SUO!}uJtu~:>uoJ uoqmJ IU1u~w~I'iItU~!qwV £.Z"£I ZOL uoqmJ IU1u~w~I'iIJo s~:>JnosUO!ss!W'iI Z"Z"£I OOL uoqmJ IU1u~w~I'iIp~ tOOsJo UO!}uUJJod I .Z"£I OOL uoqmJ IU1u~w~I'iI DOL stu~uodwoJ IOSOJ~V :>!~8JO
00£
Z"£I 1'£1
SIOSO.l3V;),.l3qdsow:JV ;)'U8~.lO
£1
969 swaIqoJd ~69 sa:>uala1a}l
£69 (l6'lI) 1° u°!1nIos II x!puaddy S.l~OJ
lAX
CONTENTS xvii
14.1.2 TemperatureChangesof a Rising (or Falling) Parcelof Air 770 14.2 AtmosphericStability 772 Problems 775 15 Cloud Physics
777
15.1
Propertiesof WaterandWaterSolutions 777 15.1.1 SpecificHeat of Waterand Ice 778 15.1.2 Latent Heatsof Evaporationand of Melting for Water 778 15.1.3 WaterSurfaceTension 779 15.2 WaterEquilibrium in theAtmosphere 780 15.2.1 Equilibrium of a Flat PureWaterSurface with the Atmosphere 780 15.2.2 Equilibrium of a PureWaterDroplet 781 15.2.3 Equilibrium of a Flat WaterSolution 783 15.2.4 AtmosphericEquilibrium of an Aqueous Solution Drop 784 15.2.5 AtmosphericEquilibrium of an AqueousSolution Drop Containingan InsolubleSubstance 790 15.3 Cloud andFog Formation 793 15.3.1 IsobaricCooling 794 15.3.2 Adiabatic Cooling 795 15.3.3 Cooling with Entrainment 798 15.3.4 A Simplified MathematicalDescriptionof Cloud Formation 799 15.4 Growth Rateof Individual Cloud Droplets 801 15.5 Growth of a Droplet Population 805 15.6 Cloud CondensationNuclei 809 15.7 Cloud Processingof Aerosols 812 15.7.1 NucleationScavengingof Aerosolsby Clouds 813 15.7.2 ChemicalCompositionof Cloud Droplets 814 15.7.3 NonrainingCloud Effectson Aerosol Concentrations 816 15.7.4 Interstitial Aerosol Scavengingby Cloud Droplets 821 15.7.5 Aerosol NucleationNear Clouds 823 15.8 OtherFormsof Waterin theAtmosphere 823 15.8.1 Ice Clouds 824 15.8.2 Rain 828 15.9 Cloud Climatology 832 References 834 Problems 839 16 Micrometeorology 16.1 16.2
BasicEquationsof AtmosphericFluid Mechanics 841 Turbulence 847 .
16.3
Equationsfor the Mean Quantities 849
841
£06
8I 6
U09ROhHUO!soJJ!O;)p~qdso~V ~~ Jo UO!:l°IOS R SRUO!:lROhH ~wold UR!SSORD ~~ Jo UO!:lRAp~O Z'81 916
SUO!:loq!.QS!O UO!:lRJ:lU~;)UOJ UR!SSORD 1'81
s.laqJO pUB uo!JBob3 awold UB!SSOB~aql :UO!SOlJ!O;)J.laqdsowJV.lOj SU°!J°IOSIB;)!JA{BUY 81
ZI6 sw~lqold ZI6 s~:)u~J~J~~ 116 (6L'LI) Ot(LL'LI) Jo uoflnlos £'V'LI 016 (69"L1) p~ (89'L1) Jo uoflnlos Z"V'L1 806 (6t"LI) Ot(Lt"LI)JO uoflnlos I'V"LI 806 suoflnlos J~qtJnd L1 x!pu~ddV L06 s~!l°~~ UO!snJJ!G :)!l~qdsoW:lV Jo Amwwns 8'L1 S!XV P~X!d ~ Ot ~AfI~I~'M ~1:)!tJUd~lgU!S ~ Jo UO!tOW 106
uo!snJJ!G :)!l~qdsoW:lV Jo S~Jm~~d ~Aflm!~n() 106
668
suo!tnlos
Z"L" L 1 I" L"L 1
UO!snJJ!G tu~lnqro.L Jo AJO~q.L ~:)!tSfims
~:)Jnos tU!Od snonufluo;)
Jo Amwwns
868 q:)~oJddV ~!l~ln3 £68 q:)~oJddV ~!g~Jg~'l
~88
s~q:)~oJddV ~!l~ln3
L"L 1
£'9" L 1 Z"9' L 1 1'9' L 1
£68 s~:)Jnos snonufluo;) mOl} UOfl~I!U~:)uo;) ~~W Z68 ~:)Jnos sno~um~tsuI ~ JoJ uofl~nb3 uo!snJJ!G :)!l~qdsoW:lV ~Qt Jo uo!tnlos 688 s~q:)~oJddV ~!g~Jg~'l 988 uo!t~nb3 uo!snJJ!G :)!l~qdsoW:lV ~Qt Jo AtW!~A JoJ SUOflWUO;)
t88
9' L 1 ~"L 1
£'t"L 1 Z't"L 1 I't'L
1
~88 ~:)u~lnqro.L U! S~!:)~S Jo UOfl~I!U~:)uO;) ~~W ~Qt gU!W~AOD SUOfl~nb3 s~q:)~oJddV ~!g~Jg~'l p~ ~!l~ln3 Jo uospudwo;) £88 q:)~oJddV ~!g~Jg~'l 088 q:)~oJddV ~!l~ln3 S;}!.lO;}q.r uo!snlJ!O
t. L 1 £"L 1 Z'L 1 I'L 1
;)!.I;}qdsowtv
LI
LLS sw:}Iqold 9LS S:}JU:}l:}J:}'H ~LS S1U:}W:}lnSU:}W{1JJ!gOI01O:}1:}W S'91 £LS l:}AU'l AmpUnog :}A!1J:}AU°:J:}q.L L'91 £LS
s:}ssuI:J A1!I!qms ll!nbsUd :}q.L
OLS P:}~S PU!A\ UU:}W :}q110J uInUllod {1JJ!l!dW3 OLS *n A1!JOI:}A UO!1JPd:}q1 Jo u09UU!Ull:}1:}G L9S
9'91
~'~'91 v.~'91
l:}AU'l :}JuJJnS J9uqU!PUUON :}q1 U! s:}Iyold PU!A\ £.~.91 6~S l:}AU'l :}:)uJlns :}q1 uo :}ro1U1~W:}.L Jo S1J:}JJ3 r~'91 9~S SUO!1!PU°:JJ!1uquWV U! l:}AU'l :}JuJJnS :}q1 U! A1!JOI:}A Ut!:}W
I' ~'91
~~S :}l:}qdsoW:lV:}q1 U! 1qg!:}H q1!M PU!A\ Jo u09uPtJA 1~S llodSUU1.L 1u:}Inq1n.L10J SI:}POW q1gu:}'l-gU!X!W
~.91 v'9 I
S~OJ
!!!AX
CONTENTS
xix
18.3 18.4
Summaryof GaussianPoint SourceDiffusion Fonnulas 923 DispersionParametersin GaussianModels 926 18.4.1 Correlationsfor uyand UzBasedon Similarity Theory 926 18.4.2 Correlationsfor uyand UzBasedon PasquillStability Classes 929 18.5 PlumeRise 931 18.6 Analytical Propertiesof the GaussianPlumeEquation 933 18.7 FunctionalFonns of MeanWind SpeedandEddy Diffusivities 938 18.7.1 MeanWindSpeed 938 18.7.2 Vertical Eddy Diffusion Coefficient Kzz 938 18.7.3 Horizontal Eddy Diffusion Coefficients Kxx and K yy 942 18.8 Solutionsof the Steady-State AtmosphericDiffusion Equation 943 18.8.1 Diffusion from a Point Source 943 18.8.2 Diffusion from a Line Source 944 References 947 Problems 949 19 Dry Deposition
958
19.1 19.2
DepositionVelocity 958 ResistanceModel for Dry Deposition 960 19.2.1 AerodynamicResistance 962 19.2.2 Quasi-LaminarResistance 963 19.2.3 Surfaceof CanopyResistance 965 19.2.4 RelativeMagnitudesof ra, rb, and rc 968 19.3 Dry Depositionof Particles 969 19.4 A Model for Dry DepositionCalculations 971 19.5 Measurementof Dry Deposition 977 19.5.1 Direct Methods 978 19.5.2 Indirect Methods 979 19.5.3 Comparisonof Methods 980 19.6 SomeCommentson Modeling andMeasurementof Dry Deposition 980 19.7 InteractionBetweenEquilibration Processesand Dry Deposition 982 19.1.1 Solutionof the Model Equations 987 19.7.2 TheDepositionRatio 988 19.7.3 Effects of Equilibration Processeson Dry andWet Deposition 989 References 993 Problems 995 20 Wet Deposition 20.1
GeneralRepresentation of Atmospheric Wet RemovalProcesses 997
997
lOll
0111 swl}lqOJd SO I I
SI};)UI}JI}JI}"M
va I I SI};)!PUI~U!;)JOdI}AflB!pB"M I}AflBII}"M L' l'l At!AfI!SUI}SI}tBW!O pUB~U!;)JOdI}A!tB!PB"M 9"1'l 00 I I SPOOl;)Jo St;)I}JJ3I}AflB!PB"M ~"I 'l
8601 SI}W!l.tul}W:}snfpv pUBSl}wflI}J!'l ;)!Jl}qdsoW:}V £"v"l'l 9601 st;)BdWIru;)!Wl}q;) t;)I}J!PUI 'l"v"I'l v601 st;)BdWII}A!tB!PB"M t:):}J!O l'v'l'l £60 I
I}~UBq;)I}tBW!I;) pUB.\Jts!Wl}q;) ;)!Jl}qdsowtV v" l'l LSOI I}P!XO!OuoqJU;) £"I'l ~u!UJJtJA\. ruqoIO Jo St;)I}JJ3I}Iq!SSOd 'l"1'l 9S01
SLOI SLOI
'lSOI At!I!qB!JBAJUloS 'l"1"1'l pJO;)Q"M I}Jn:JBJ~WI}l.ruqoIO 1}qJ. 1"1"1'l
At!I!qB!JBAJUloSpUBpJO;)I}"M I}JntBJl}dwl}l.ruqoIO
1"1'l
aJuw!I;) puB A"JsIWaq;:>;)J.laqdsowJV n
SLOI
6901 swalqold 9901 sa:)uaJa1a~ 6~01 L~OI
u°f!:)npold
9~0 I
hJts!WaqJ u~~ P!:)¥
atu~!N pug atu11ns J01 SAUMq'!UdJU:)!WaqJ
v' L 'OZ £"L "OZ
L~OI uof!!sodao taM snsJaAAlO r L "OZ uof!!sodao P!:)¥ U! paAloAuI sa!:)ads JU:)!WaqJ I" L "OZ 9~01
S!Saq'!uAS ssa:)°ld uof!!sodao P!:)¥
1~01 At!JUaU!'l 8tOI sd!qsUOf!Ula~Jotda:)a~-a:)Jnos LtOl uof!!sodao taM pug s~Od 9tOI uof!!sodao JatuMpnoD ~tOl uof!!sodao P!:)¥ 1° st:)a113 spuaJ.Lpug muo u~~ P!:)¥ tua.unJ 0£01 Ma!AJaAOu~~ P!:)¥
££01
L"OZ
L"9"OZ 9"9"OZ ~"9'OZ v"9"OZ £'9"OZ r9'OZ I "9"OZ
0£01 uof!!sodao P!:)¥ Uo!t!sodao taM pug sassaJOldpnoD aol ~U!~UaAu:>s pnoD-uI
aol . 8101
9"OZ ~'OZ v'OZ
IZOI satu~ ~U!~UaAu:)s r£"OZ A:)ua!:)Y13UO!SmoJ IOSOJa¥-dolpu~~ I"£'OZ 9101
saI:)rJmd1° ~U!~UaAu:)suof!ut!d!:);}Jd
0101 suO aIqnIos AIq!SJaAa~u 1° ~U!~UaAu:)spnoD-MoIaH
£"OZ
rroz
£001 suO aIqnIos AIq!SJaAaJJ! ug 1° ~U!~UaAu:)spnoD-MoIaH £001 0001
I 'z'oz
sasuo 1° ~U!~UaAu:)spnoD-MoIaH
sa!pms uof!!sodao taM U! paso sJatawumd
roz
I"I"OZ S~3.LNO;)
xx
CONTENTS
22 Radiative Effects of Atmospheric Aerosols: Visibility and Climate 22.1
ScatteringandAbsorptionof Light by Small Particles 1114 22.1.1 RayleighScatteringRegime 1120 22.1.2 GeometricScatteringRegime 1122 22.1.3 ScatteringPhaseFunction 1123 22.1.4 Extinction by an Ensembleof Particles 1123 22.2 Visibility 1126 22.3 Scattering,Absorption,and Extinction Coefficientsfrom Mie Theory 1131 22.4 CalculatedVisibility ReductionBasedon AtmosphericData 1135 22.5 Direct Effect of Aerosolson Climate 1139 22.5.1 Optical Depth 1143 22.5.2 UpscatterFraction 1146 22.5.3 ScatteringModel of an Aerosol Layer 1147 22.5.4 Cooling VersusHeatingof anAerosol Layer 1152 22.5.5 ScatteringModel of anAerosol Layer for a NonabsorbingAerosol 1154 22.5.6 Direct AerosolForcing of Climateby SulfateAerosols 1156 22.5.7 Effect of Mineral Dust on RadiativeForcing of Climate 1160 22.5.8 Effect of Carbonaceous Aerosolson Radiative Forcingof Climate 1166 22.5.9 Internaland ExternalMixtures 1166 22.6 Indirect Effect of Aerosolson Climate 1170 22.6.1 RadiativeModel for a Cloudy Atmosphere 1173 22.6.2 Sensitivityof Cloud Albedo to Cloud Drop NumberConcentration 1175 22.6.3 Relationof Cloud Drop NumberConcentrationto Aerosol Concentrations 1177 22.6.4 Estimatesof Indirect RadiativeForcing of Aerosols 1179 22.7 Summary:Estimatesof Contributionsto RadiativeForcing ~ 1180 22.8 Climate Responseto AnthropogenicAerosol Forcing 1182 Appendix 22 Calculationof ScatteringandExtinction Coefficients by Mie Theory 1184 References 1185 Problems 1190 23 Atmospheric Chemical Transport Models 23.1
Introduction 1193 23.1.1 Model Types 1194 ?~ 1 2 Tvne~of AtmosohericChemicalTransportModels 1195
xxi
faI
9L'l1 ~W!.Lgu9reMJOp°!l~d wn1~"M P~1:)oox3 Z'~"vZ ~L'l1
s~:)~P~~:)x3)O u09nq!l1S!a ~L'l1
l"~'vZ
sl~A~ IU:)9!lJ)O s~:)~P~~:)x3
~'vZ
vL'll s~nIUA~W~I!X3 Z'v"vZ s:)9S9g1SJ~pJO)0 AgoI0U!Wl~.Lp~ su090N :)!Sgg l"v'vZ £L'l1
g1ga A1!IUnbJT;V)0 s:)9s9ms J~pJO aL'll 69Z1
69Z1
v'vZ
S1U~WOW)O poq1~W Z'£"vZ s~I9~nb)opoq:a~W l"£"VZ
su09nq!l1S!a ~q:aU! SJ~1~wgmd)oU09gW9S3
£"vZ
89Z1 u09nq!l1S!a nnq!~M ~q.L Z'Z"vZ L9Z1 u09nq!l1S!a IUUJJON-gO']~q.L l"Z'vZ
~9'lI £9'lI
SU09gI!U~:)uoJ1umnnod JT;VJO)SUO!1nq!l1S!a A1!I!qgqOJd
Z"vZ
sI~POWJ01d~:)~"M uo!1:)und IUuogOq:aJO IU:)!l!dw3 £'l"vZ 8~Z1 S!SAIUuyJ01:)gd Z"l"vZ (gWJ) ~:)~IUg SSgwIU:)!W~qJ l"l"vZ 8vZl
~vZl
stn
spoq:a~WgU!I~POWJ01d~:)~"M l'vZ
siapow 18;}!JS!J8JSn
8£ZI
Z17ZI sw~Iqold 017ZI s~:>u~J~J~~ UO!:lUn~A3I~poW 8"£Z
8£ZI JOJIns~qoID £"L"£Z 9£ZI u:>!l~WVq:lJ°N U! UOfl!sod~a P!:>Y r L "£Z 17£ZI gows ~:>!W~q:>o:loqd U!sug s~I~guy s°'l I" L "£Z 17£ZI sI~poW :jJodsUUJ.L ~:>!W~q;) :>!l~qdsow:lYJo SUOflU:>!Iddy L "£Z
8IZI L IZI
.
6ZZI UOfl:>~APY 6ZZI UO!sOJJ!a £ZZI s:>fI~u!)l ~:>!W~q;) gufI:I!IdS Jo:luJ~do-w~Iqold gU!Idno;)
17"9"£Z £"9"£Z r9"£Z I"9"£Z
sI~poW :jJodsUUJ.L ~:>!W~q;) Jo uo!:lnIos ~:>!l~wnN
9"£Z
9IZI S~:luu!pJOO;) ~:>!l~qdS £"~"£Z ~IZI W~:lSAS~:lUU!pJOO;) p~sug-~Jnss~ld r~"£Z IIZI °flu~ gU!X!WJo sUJJ~.L U! p~ss~JdX3uoflunbH uo!snJJ!a :>!l~qdsoUJ:jy I"~"£Z I I ZI
sI~poW :jJodsUUJ.L ~:>!W~q;) Jo SUJJodJ~q:lO 80ZI sI~poW UU!guutJU'l ~UO!SU~W!a-~UO
~"£Z 17"£Z
90ZI SUOfl!PUO;) A.Jt!punog £"£"£Z 90ZI SUOfl!PUO;) IU!:I!UI r£"£Z 17OZI u!UJJ~.L U~A~UO-W~:lSAS~:lUU!pJOO;) I "£"£Z
EO'll sI~poW :jJodsUUJ.L ~:>!W~q;) :>!l~qdsoUJ:jy~UO!SU~W!a-~~Jq.L £"£Z OOZI I~poW xog UU!gUUJgU'l Y rr£z L6II I~poW xog uu!l~In3 ~q.L I "r£Z
L6II
sI~poWxog
r£z
S~O:)
!!XX
CONTENTSxxiii
24.6
Alternative Formsof Air Quality Standards 1277 24.6.1 Evaluationof Alternative Formsof the OzoneAir Quality Standardwith 1971Pasadena, California, Data 1279 24.6.2 Selectionof the AveragingTime 1281 24.7 RelatingCurrentandFutureAir Pollutant StatisticalDistributions 1281 References 1283 Problems 1285 Appendix A
Units and Physical Constants
1289
A.l SI BaseUnits 1289 A.2 SI Derived Units 1289 A.3 FundamentalPhysicalConstants 1292 A.4 Propertiesof theAtmosphereandWater 1293 A.5 Units for RepresentingChemicalReactions 1294 A.6 Concentrationsin the AqueousPhase 1295 A.7 Symbolsfor Concentration 1295 References 1295 Appendix B
Rate Constantsof Atmospheric Chemical Reactions
1297
References 1307 Index
1309
The study of atmospheric chemistry as a scientific discipline goes back to the 18th century, when the principal issue was identifying the major chemical components of the atmosphere, nitrogen, oxygen, water, carbon dioxide, and the noble gases. In the late 19th and early 20th centuries attention turned to the so-called trace gases,speciespresent at less than 1 part per million parts of air by volume (1 JLmol per mole). We now know that the atmosphere contains a myriad of trace species, some at levels as low as 1 part per trillion parts of air. The role of trace species is disproportionate to their atmospheric abundance; they are responsible for phenomena ranging from urban photochemical smog, to acid deposition, to stratospheric ozone depletion, to potential climate change. Moreover, the composition of the atmosphere is changing; analysis of air trapped in ice cores reveals a record of striking increases in the long-lived so-called greenhouse gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N 20). Within the last century, concentrations of tropospheric ozone (03), sulfate (SO~-), and carbonaceous aerosols in the Northern Hemisphere have increased significantly. There is evidence that all these changes are altering the basic chemistry of the atmosphere. Atmospheric chemistry occurs within a fabric of profoundly complicated atmospheric dynamics. The results of this coupling of dynamics and chemistry are often unexpected: witness the unique combination of dynamical forces that lead to a wintertime polar vortex over Antarctica, with the concomitant formation of polar stratospheric clouds that serve as sites for heterogeneous chemical reactions involving chlorine compounds resulting from anthropogenic chlorofluorocarbons-all leading to the near total depletion of stratospheric ozone over the South Pole each spring; witness the nonlinear, and counterintuitive, dependence of the amount of ozone generated by reactions involving hydrocarbons and oxides of
nitrogen(NOx) at the urbanandregionalscale-although both hydrocarbonsandNOx are ozoneprecursors,situationsexist wherecontinuing to emit more and more NO x actually leads to less ozone. The chemical constituents of the atmosphere do not go through their life cycles independently; the cycles of the various species are linked together in a complex way. Thus a perturbation of one component can lead to significant, and nonlinear, changes to other components and to feedbacks that can amplify or damp the original perturbation. In many respects, at once both the most important and the most paradoxical trace gas in the atmosphere is ozone (03). High in the stratosphere ozone screens living organisms from biologically harmful solar ultraviolet radiation; ozone at the surface, in the troposphere, can produce adverse effects on human health and plants when present at levels elevated above natural. At the urban and regional scale, significant policy issues concern how to decreaseozone levels by controlling the ozone precursors-hydrocarbons and oxides of nitrogen. At the global scale, understanding both the natural ozone chemistry of the troposphere and the causes of continually increasing background tropospheric ozone levels is a major goal.
xxv
"Aijn:)YJ!p 10 ~~J~~P.. ~ tp!/t\ p~po:) ~JP.sUl~IqoJd ~~ °SUO!t~m!S/t\~u °t J~td~q:) ~tp U! U~A!~ stIns~J ~tp pu~tx~ Ot u~soq:) u~~q ~A~q sUl~IqoJd ~tp s~s~:) AUt!UI uI o~!J~t~UI ~tp 10 ~U! -pUt!tsJ~pun J~q JO S!q ~t~n~A~ °t J~p~~J ~tp ~Iq~u~ Ot P~P!AOJd ~m sUl~IqoJd snoJ~UlnN °J~td~q:) p~t~!:)oss~ ~tp Ot ~u!pJo:):)~ p~J~Ulnu ~m pUt! J~td~q:) J~td~q:) u~tJ~:) ~ Ot :)y!:)~ds ~Jnt~u ~ 10 ~sotp ~SJ~tt~IAq p~t~U~!S~P ~m
t~qt tp!/t\ m~d~
pUt! :>{ooq~tp 10 pu~ ~tp t~ m~d~ ~Jnt~u ~J~U~~ ~ 10 ~sotp :U~A!~ ~m s~:)!pu~d~ 10 S~At o~ °S~U!Id!:)s!p ~:)u~!:)s pu~ ~u!J~~U!~U~ ~U09!P~Jt UlOJl ~sotp JOl s~ II~/t\ s~ S~UO!SS~l -oJd JOl :>{ooq ~:)u~J~l~J ~A!su~q~JdUlO:) ~ s~ ~AJ~S II!/t\ :>{ooq ~tp :>{ooqtx~t ~SJno:) ~ s~ ~sn St! UlOJl ~P!Sv °m~A :)!Ul~p~:)~ IInl ~ °t J~tS~UI~SJO J~tmnb ~uo UlOJl tp~u~I U! AmA tq~!UI t~tp ~:)u~!:)s :)!J~qdsoUlt~ U! ~SJno:) ~ JOl :>{ooqtX~t ~ s~ ~AJ~S Ot p~pU~tU! S! :>{ooq ~q.L °sumJ~oJd ~:)u~!:)s :)!J~qdsOUlt~ pUt! A~OIOJO~t~UIU! s~ II~/t\ s~ ~In:)!JJn:) ~u!J~~U!~U~ ~:)!dAt U! I~A~I ~t~np~J~ JP.~A-tSJYJO J°!U~s ~tp t~ p~UI~ S! tU~UIt~~Jt ~tp snq.L o(su09~nb~ ~9U~J~11!P) s:)9~UI~tp~UI ~u!J~~U!~U~ pUt! '(J~lsUt!Jt SS~UI pUt! t~~q Jo/pUt! s:)!Ut!q:)~UI P!nlJ) ~u~Ulou~qd tJodsUt!Jt 'S:)!umuApoUU~tp U! S~SJno:) AJot:)npoJtu! p~q s~q J~p~~J ~tp t~tp s~Ulnss~ :>{ooq ~q.L o~J~q~:)~ds ~A~q ~/t\ q:)!Q/t\ JOl ~sotp pUOA~ stIns~J pUt! s~!J°~tp pu~t -x~ Ot ~Iq~ ~q II!/t\ pUt! s~ss~;)oJd :)!J~qdsoUlt~ 10 U09d!J:)s~p ~tp ~U!A{J~pun ~:)u~!:)s ~tp 10 ~U!pumsJ~pun tUt!:)y!U~!S ~ u~~ II!/t\ J~p~~J ~tp 'A~/t\ S!tp uI °S~Id!:)u!Jd tSJY UlOJl p~dOI~A~P ~JP. stIns~J ~Jtu~:) ~tp ~~JP.q:)~~ uI o~UlnIoA tu~s~Jd ~tp U! I~t~P U! p~J~AO:) S! StU~UI -~I~ ~s~tp 10 q:)~H o~J~qdsOUlt~~tp 10 sI~poUl tJodsUt!Jtflt!:)!Ul~q:) ~:)9~UI~tp~Ull° u09~InUl -JOl ~tp pUt! 'S~I:)!tmd pUt! s~~~ 10 St:)~l1~ :)9~UI!I:) pUt! ~A9~!P~J ~tp '~t~UI!I:) pUt! AltS!Ul~q:) :)!J~qdsoUlt~ 10 u09:)~J~tU! ~tp 'spnoI:) 10 AltS!UI~q:) pUt! u09~uuol ~tp '~J~qdsoUlt~ ~tp U! S~!:)~s 10 ~AOUl~J pUt! 'uo!snl1!p 'tJodsUt!Jt ~tp 'UO!tnIIod J~ 10 A~OIOJO~t~UI~tp 'SIOSOJ~~ 10 s~9J~oJd pUt! 'S:)!UI1JUAP'tp/t\OJ~ 'u09~uuol ~tp ~u!pnI:)u! '~J~qdsoUlt~ ~tp 10 AltS! -Ul~q:) ~tp 10 tu~UIt~~Jt ~A!su~q~JdUlO:) 'snoJo~!J ~ ~P!AOJd Ot S! :>{ooqS!tp 10 t:)~rqo ~q.L °s~s~~ ~:)~Jt P~A!I-tS~~uOI ~tp 10 s~~:)s ~Ul9 ~p~~p ~tp pUt! su09~In:)J!:) ~qoI~ Ot AltS!Ul~q:) ~:)!P~J ~~Jll° s~~:)s ~UI!t tS~tS~l ~qt pUt! S~!PP~ tu~InqJnt tS~I~UlS ~tp Uloll stu!od tnq ~m ~J~qdsot~Jts ~tp pUt! 'J~A~I Ampunoq ~U!J11U1 ~tp '~J~qdsodoJt ~tOUl~J ~tp '~J~qdsoUlt~ Ut!qro ~tp q:)!q/t\ U! s~~:)s I~!t~ds 10 Ulnnu9uo:) ~ S! ~J~qdsOUlt~ s,tpmH ~qt t~tp 'suu~t :)Y9U~!:)s ~A!t~t9Ut!nb U! 'P~Z!U~o:)~J /t\ou S! tl 1I~St! ~t~UI!I:) uo s:>{:)~qp~~lJ!~qt pUt! ~J~qdsoUlt~ ~tp 10 AltS!Ul;}q:) ~U!A{J~pun ~qt uo St:)~l1~ °t ~:)u~J~l~J tnotp!/t\ 'zOJ uo AI~A!SnI:)x~ p~sn:)°l q:)m~s~J ~t~UI!I:) 's~~ms AIm~ St! U! 'AImI!UI!S o~Ioq/t\ ~ s~ ~J~qdsoUlt~ s,tpmH ~tp 10 AltS!Ul~q:) ~qt 10 t~tp UlOJl AI~t~J -~d~s ss~I JO ~JOUI p~JJn:):)o st:)~l1~ St! pUt! UO!tnIIod J~ u~qJn 10 Apms ~qt AI~:)!JOtS!H O~t~UI!I:)
U!
UI~IqoJd A~:>{~ S! ss~u!pnoI:) s,tpmH ~tp uo sI~A~I IOSOJ~~~qoI~ ~U!S~~J:)U!10 t:)~l1~ ~tp os 'UI~tSAS~t~UI!I:) roo 10 StU~UI~I~ tuBtJodUl! tSOUl ~tp 10 ~uo ~m spnoD °spnoI:) ou 'SIOSOJ~~ ou-uuol St~IdoJP spnoI:) q:)!q/t\ punom !~I:)nu ~tp os~ ~m SIOSOJ~V°qtmH ~tp 100:) '~U! -op os U! 'pUt! ~:)~ds °t :>{:)~qUO!t~!P~J mIos t:)~lJ~J SIOSOJ~V°AltS!Ul~q:) x ON 10 Am!p~UJJ;}t -U! ~tp q~noJtp tnq 'Ap:)~J!P tOo 'spunodUlo:) ~u!J°Iq:) Aq ~uozo 10 u09:)nJts~P :)9A{m~:) ~qt U! ~t~d!:)!tmd '~Idumx~ JOl '~J~qdsot~Jts ~tp U! SIOSOJ~~:)!Ut1:)IoA °s~s~~ :)!J~qdsOUlt~ qt!/t\ SA~/t\ p~z!U~o:)~JUn ~J010t~~q U! AI~:)!Ul~q:) t:)~J~tU! pUt! ~t~UI!I:) t:)~JJ'P;J~ ~qt U! S~I:)!tmd t~qt /t\00:>{/t\ou ~A\ °s~s~~ ~:)~Jt 10 S~I:)A:) ~qt qt!/t\ A~/t\ ~Iq~!~Jdd~ AUt! U! t:)~J~tU! tOO P!P SIOSOJ~~:)!J~qdsoUlt~ t~qt tq~notp S~/t\ t! sm~A AUt!UI JOd °At!Jtr1.l0UlUt!Ulnq U! ~S~~J:)U!tUt!:)! -l!U~!S ~ ~sn~:) A~UI SIOSOJ~~ 10 sI~A~I ~U!S~~:)U! t~qt sts~~~ns t~tp m~p ~:)!~OIO!UI~P!d~ 10 ApOq ~U!/t\o~ ~ S! ~J~q.L °pmzuq tp~~q Ut!Ulnq ~ ~JP.pUt! At!I!q!S!A t!q!qu! A~qt sI~A~I p~t~A -~I~ tv o~J~qdsoUlt~ ~qt U! S~I:)!tmd Ot s~s~~ u!t!:IJ~:)10 UO!SJ~AUO:) ~tp UlOJl pUt! S~I:)!tmd 10 SUO!SS!UI~Uloll Ap:)~J!P ~s!J11A~~ o~J~qdsOUlt~~tp U! p~pu~dsns S~I:)!tmd ~m SIOSOJ~V
3;)Vd31ld
JAxx
PREFACE xxvii
for the benefit of the studentand the instructor.The designation(A) indicatesa problem that involves a straightforwardapplicationof materialin the text. Thoseproblemsdenoted (B) requiresomeextensionof the ideasin the text. Problemsdesignated(C) encouragethe readerto apply conceptsfrom the book to currentproblemsin atmosphericscienceandgo somewhatbeyondthe level of (B) problems.Finally, thoseproblemsdenoted(D) are of a degreeof difficulty correspondingto (C) but generallyrequiredevelopmentof a computer programfor their solution. This book isa successorto John H. Seinfeld'sAtmosphericChemistryand Physicsof Air Pollution (Wiley, 1986),which has been widely usedfor a decade.Substantialadditions havebeenmadein virtually all areascoveredby the earlier book, reflectingthe significant increasein our understandingof atmosphericprocessesthat hasemergedover the last decadeand reflecting the truly global scopeof the scienceof atmosphericchemistry and physics. We extendsincereappreciationto Marta GoodmanandLaura Shaheenwho providedso much valuableassistancein making this book a reality and to Cecilia Lin who draftedthe figuresso skillfully. JOHN H. SEINFELD SPYROSN. PANDIS
1 1.1 HISTORY AND EVOLUTION OF THE EARTH'S ATMOSPHERE It is generally believed that the solar system condensed out of an interstellar cloud of gas and dust, referred to as the "primordial solar nebula," about 4.6 billion years ago. The atmospheres of the Earth and the other terrestrial planets, Venus and Mars, are thought to have formed as a result of the release of trapped volatile compounds from the planet itself. The early atmosphere of the Earth is believed to have been a mixture of carbon dioxide (COz), nitrogen (Nz), and water vapor (HzO), with trace amounts of hydrogen (Hz), a mixture similar to that emitted by present day volcanoes. The composition of the present atmosphere bears little resemblance to the composition of the early atmosphere. Most of the water vapor that outgassed from the Earth's interior condensed out of the atmosphere to form the oceans. The predominance of the CO2 that outgassed formed sedimentary carbonate rocks after dissolution in the ocean. It is estimated that for each molecule of COz presently in the atmosphere, there are about 105 COz molecules incorpor~ted as carbonates in sedimentary rocks. Since Nz is chemically inert, non-water soluble, and noncondensable, most of the outgassed Nz accumulate~ in the atmosphere over geologic time to become the atmosphere's most abundant constituent. The early atmosphere of the Earth was a mildly reducing chemical mixture, whereas the present atmosphere is strongly oxidizing. The dramatic rise of oxygen (Oz) as an atmospheric constituent over time was the result of the production of Oz as a by-product of photosynthetic activity. It has been estimated that the current level of Oz in the atmosphere was achieved approximately 400 million years ago (Cloud, 1983). The present level of Oz is maintained by a balance between production from photosynthesis and removal through respiration and decay of organic carbon. If Oz were not replenished by photosynthesis, the reservoir of surface organic carbon would be completely oxidized in about 20 years, at which time the amount of Oz in the atmosphere would have decreased by less than 1% (Walker, 1977). In the absenceof surface organic carbon to be oxidized, weathering of sedimentary rocks would consume the remaining O2 in the atmosphere, but it would take approximately 4 million years to do so. The Earth's atmosphere is composed primarily of the gases Nz (78%), Oz (21%), and Ar (1 %), whose abundancesare controlled over geologic time scales by the biosphere, uptake and release from crustal material, and degassing of the interior. Water vapor is the next most abundant constituent; it is found mainly in the lower atmosphere and its concentration is highly variable, reaching concentrations as high as 3%. Evaporation and precipitation control its abundance. The remaining gaseous constituents, the trace gases, comprise less than 1% of the atmosphere. These trace gases playa crucial role in the Earth's radiative
1
-~J P~z!Ig!J:Isnpu!
J~AO S~Sg~J:>U! Sg~ ~snoqu~~J~
'~J~qdS!Ul~H w~q:lJ°N ~q:J Jo SUO!~ JO :J:>~JJ~~U!UImM ~q:J ){SgUl O:J~~mI APU~!:>
-YJns ~q AgUl :J:>~JJ~~U!IOO:> ~tp :Jgq:J~:Jg:>!PU! SIOSOJ~g Aq ~:>gds O:J){:>gq UO!:Jg!pgJ mIos )0 UO!:J:>~lJ~J~q:J UlOJ) ~u!:JIns~J :J:>~JJ~~U!Ioo:> ~tp )0 s~:JgUl!:Js3 '!~I:>nu UO!:JgSU~puo:> pnoI:> Sg ~IOJ J!~q:J UlOJ) pU1J ~:>gds O:J){:>gq UO!:Jg!pgJ mIos :J:>~lJ~JO:JA:J!I!qg J!~tp UlOJ) S~S!Jt! SIOSOJ~g :>!.l~qdSOUl:Jg )0 ~IOJ :>!:JgUl!I:> ~ql. -!IdUl!
u~~
'Sg~IB UgqJn U! A:J!I~OUl
~Agq pU1J SUO!:JgIlU~:>UO:>~UOZO :>!.l~qdso:JgIls
'sJosJn:>~Jd JOdgA )0 UO!SJ~AUO:> ~I:>!~d-o:J-sg~ (sIOSOJ~g) S~I:>!~d ~J~qds!1ll~H
:>!.l~qdSOUl:JY 'uo!:JnIoA~~
w~q:lJ°N
-g~Ul ~woq-uooIlUq ~J~qdsodoIl ~tp
m~u
~uozO
pU1J A:J!P!qJOUl U1JUlnq U! P~:Jg:> pU1J ~:JgUl!I:> :J:>~)JP.Ug:> SIOSOJ~Y
UlOJ) pU1J SUO!SS!Ul~ :J:>~J!P UlOJ) q:Joq ~S!Jt! Ig!J:IsnpuI
~tp ~:>U!S AIP~){mUl
P~Sg~J:>U! ~Agq
~tp )0 SUO!~~J P~z!IU!J:Isnpu! U! S~I:>!~d ~woqJ!g )0 S~!:J!:JU1Jn() 'Sm~A Of: :Jnoqg JO) ~pgUl u~~q ~Agq S:JU~Ul~JnS ~J~qM AIlUqoI~
SUO!:Jg:>°I M~) g O:JP~:J!Ul!I S! 'II~M Sg I~A~I punoJ~
~tp )0 :JS~J~q:J JO) pU1J 'UO!~~J S!tp U! sI~A~I ~uozo ~uozo
U! S~~Ugq:> O:J ~A!:J!SU~S :JSOUl S! ~:JgUl!IJ
~AOqg
uo UO!:JgUlJO)U! ~~sngdodoIl
'~:JgUl!I:> uo
s:J:>~))~ Sgq OSIg
's:JU1JIdpU1J tplU~q U1JUlnq uo S:J:>~))~~SJ~Apg ~Agq U1J:>~J~qdSOUl:Jg J~MOI ~q:J U! ~uozo
'UO!:Jg!pgJ :J~Io!AgIlIn
mIos In)UlJt!q
Sg~J~qM 'AIIU:>!xOpgmd w~tpnos
's~pm!:JgIP!Ul
punoJ~
~tp
U! I~A~I
UlOJj SUlS!U1J~JO~U!A!I s:J:>~:JoJd~J~qdso:JgIls
g '~u!.lds
u~~q
~tp
~Agq
sI~A~I
~uozo
:>!.l~qdso:JgIls
w~q1JON Sg~J~qM.
~tp J~AO PUg :>!:J:>JY~tp J~AO S~Sg~J:>~p :>!:Jgumlp ss~I
IUIISng ~tp ~u!.lnp
AIIU!:Ju~ss~
~tp U! ~uozo
'~U!Sg~J:>U! u~~q 'AJmu~:> :Jsgd ~tp J~AO '~Agq ~J~qdS!Ul~H :Jg ~soq:J '~U!POJ~ PUg w~q:lJou
p~:JU~Uln:)Op OSIg ~Agq SUO!:JgAJ~sqO ,,'~Ioq -~Ulou~qd ~:J~IdUlo:>
~uozo
~J~qdso:JgIls
p~:JU~Uln:>Op
:>!:J:>;IP;Juy" ~tp p~UlJ~:J u~~q Sgq :Jgq:Juou :>!:J:>m:Juy ~q:J U! ~uozo )0 ~:>ugm~dgs!p
~Agq
SUO!:JgAJ~sqO
'f.J:IS!Ul~q:>
:>!.l~qdSOUl
-:Jg ~1U:>S-~~IBI qJn1J~d O:JS~!:>~s ~:>gJ:J)O SUO!SS!Ul~ )0 A:J!I!qg ~q:J )0 ~:>U~P!A~ ~U!){!J:IS S~P!A -old
~Ioq ~UOZo :>!:J:>m:Juy ~tp)O
'1HJ
'£0
'ZOJ
~:>U~~J~Ul~ ~ql. 'SpUnOdUlo:> ~U!U!g:JuO:>-U~~OlUq PUg 'OZN
~pnI:>u! S~Sg~ ~s~ql.
pU1J ~:>gpns s,q~3
'~:>gpns ~q:J 0:J ){:>gq UO!:Jg!pgJ S!tp)O UO!1JOd g ~:Jg!pgJ~J
~tp UlOJ) UO!:Jg!pgJ p~mJ)u!
-:Jg Sg :J:>g"S~Sg~ ~snoqu~~J~" ~P!xO SnOIl!U '(1HJ)
~s~ql.
qJosqg A~ql.
'sJo:JgInsu! IgUlJ~q:J :>!.l~qdSOUl
'SpunOdUlO:> ~U!U!t!:Juo:>-u~~OIgq
~U1Jtp~Ul 'ZOJ
sno!Jt!A
PUg '(OZN)
Sg q:>ns S~Sg~)O SUO!:JgIlu~:>uo:> ~tp U! S~Sg~J:>U! IUqOI~
':>!:Jgumlp )0 pJo:>~J g ~P!AOJd S~JO:> ~:>! U! s~Iqqnq
U! p~dgIl
J!g :Ju~!:>Ug )0 S~SAIUUg q:J!M
p~Idno:> S:Ju~Ul~JnSg~Ul Agp-:JU~S~Jd '~IU:>s IgqOI~ ~tp uo ~U!~U1Jq:> S! ~J~qdSOUl:Jg ~q:J)O uof! -!SOdUlO:> ~tp :Jgtp UMOqS ~Agq su°f!gAJ~sqO J~d s~d
'~UlnIoA
Aq Odd) UO!II!J:I J~d ~d
1 'J!g)O
~d
01_01 :JsOUlIU)O sI~A~I O:JUMOp S~!:>~s ~:>gJ:J:>!.l~qdSOUl:Jg)O UO!:Jg:>g!:Ju~P! P~IqgU~
~Agq AJmu~:> q:JO'l ~q:J )0 J~~nb
:JSgI ~q:J U! UO!:Jg:JU~UlnJ:ISU!U! SUO!:JgAOUU! mIn:>g:J:>~S 's~ss~:>OJd :>!u~~odoJtpug
-O!q 'lg:>~~OlO~~ O:Jp~:>gIl ~q U1J:>s~!:>~ds ~S~q:J )0 ~:>u~S~Jd ~ql. su!t!:Juo:> ~J~qdSOUl:Jg ~q:J :Jgq:Jm~l:> ~UlO:>~q Sgq:JI '~UlnloA MOI~
pU1J '1U:>!Ul~q:> '1U:>!~OI
's~~:>~s
hq (Uldd)
~:>gIl JO pg!.lhUl
UO!II!Ul J~d ~d
g
1 '9_01
SUOf!:>gJ) ~IOUl ~U!Agq ~soq:J 'S! :Jgtp 's:Ju~m!:JSUO:> ~:>gIl O:Js:JU~m!:JSUO:>:>!.l~qdSOUl:Jg
JOfgUl ~q:J UlOJj P~:JJ!qs sn:>O) AJmu~:> tpO'l 'S~Sg~ ~mJ ~q:J pU1J 'ZOJ
AIm~
pU1J tp6 1 ~:JgI ~tp UI 'P~qS!Iq~s~
AI~~m'l
-:Jg qS!PU~AgJ
~J~M
'JOdgA J~:JgM 'ZO 'ZN '~J~qdSOUl:Jg ~tp )0 S:JU~UOdUlO:>JOfgUl PUg
A:J!:JU~P! ~tp 'S:JS!:>!SAqd PUg S:JS!Ul~q:> AJmU~:> tp61 )0 J~qUlnu J!~tp q~noJIP U~qM
g)O
~soq:J Sg II~M Sg 'S1JOJJ~
'~J~qdSOUl:Jg ~q:J )0 S:JU~UOdUlO:>Ig:>!Ul~q:> ~q:J ~U!UlJ~:J~P O:JP~:JdUl~:J
AJU~H pU1J 'J~!S!OAg'l
:JU~Jng'l-~U!O:JUY
AJmU~:> tpS 1 ~tp O:J ){:>gq p~:>gIl
'A~pS~!.Id
qd~sof
Sg q:>ns S:JS!Ul~q:>
~q U1J:>f.J:IS!Ul~q:> :>!.l~qdSOUl:Jg )0
's~!.lmU~:> OM:J :JSgI ~tp J~AO AIqg){mUl~J ~Agq S~:>Ugpunqg Sg~ ~:>gJ:J~ql.
'~J~qdsOUJ:Ig ~tp)O
S~!1J~OJd
ApmS ~IU
pU1J AIP!dgJ p~~U1Jq:>
Ig:>!Ul~q:> ~tp U! pU1J ~:>U1JlUq
~)J~J.f"~OWTV
7:
!tJ.f.T
HISTORY AND EVOLUTION
OF THE EARTH'S ATMOSPHERE
3
The atmosphere is the recipient of many of the products of our technological society. These effluents include products of combustion of fossil fuels and of the development of new synthetic chemicals. Historically these emissions can lead to unforeseen consequences in the atmosphere. Classical examples include the realization in the 1950s that motor vehicle emissions could lead to urban smog and the realization in the 1970s that emissions of chlorofluorocarbons from aerosol spray cans and refrigerators could cause the depletion of stratospheric ozone. The chemical fates of trace atmospheric species are often intertwined. The life cycles of the trace species are inextricably coupled through the complex array of chemical and physical processesin the atmosphere. As a result of these couplings, a perturbation in the concentration of one species can lead to significant changes in the concentrations and lifetimes of other trace species and to feedbacks that can either amplify or damp the original perturbation. An example of this coupling is provided by methane. Methane is the predominant organic molecule in the troposphere and it is the sec.ondmost important greenhouse gas after CO2. Methane sources such as rice paddies and cattle can be estimated and are increasing. Methane is removed from the atmosphere by reaction with the hydroxyl (OH) radical, at a rate that depends on the atmospheric concentration of OR. But, the OH concentration dependson the amount of carbon monoxide (CO), which itself is a product of C~ oxidation as well as a result of fossil fuel combustion and biomass burning. The hydroxyl concentration also depends on the concentration of ozone and oxides of nitrogen. Change in C~ can affect the total amount of ozone in the troposphere, so methane itself affects the concentration of the species, OR, that governs its removal. Depending on their atmospheric lifetime, trace species can exhibit an enormous range of spatial and temporal variability. Relatively long-lived species have a spatial uniformity such that a handful of strategically located sampling sites around the globe are adequate to characterize their spatial distribution and temporal trend. As species lifetimes become shorter, their spatial and temporal distributions become more variable. Urban areas,for example, can require tens of monitoring stations over an area of hundreds of square kilometers in order to characterize the spatial and temporal distribution of their atmospheric components. The extraordinary pace of the recent increases in atmospheric trace gases can be seen when current levels are compared with those of the distant past. Such comparisons can be made for CO2 and C~, whose histories can be reconstructed from their concentrations in bubbles of air trapped in ice in such perpetually cold places as Antarctica and Greenland. With gasesthat are long-lived in the atmosphere and therefore distributed rather uniformly over the globe, such as CO2 and C~, polar ice core samples reveal global average concentrations of previous eras. Analyses of bubbles in ice cores show that CO2 and C~ concentrations remained essentially unchanged from the end of the last ice age some 10,000 years ago until roughly 300 years ago, at mixing ratios close to 260 ppm by volume and 0.7 ppm by volume, respectively. (See Section 1.4 for discussion of units.) About 300 years ago methane levels began to climb, and about 100 years ago levels of both gases began to increase markedly. Before the large-scale production of chlorofluorocarbons the natural level of chlorine in the stratosphere was 0.6 part per billion (ppb) by volume; now it is 3 ppb, a factor of 5 increase. Activities of humans account for most of the rapid changes in the trace gases over the past 200 years-combustion of fossil fuels (coal and oil) for energy and transportation, in-
~sud ~q! J~AO Jo~'O
~noqu ~SOJ ~Jn~uJ~dw~~ ~~UJ~AU s,q1JU3 ~ql.
"sn1sl~J
S~~J~~p ItJJ~A~S
Aq ~Jn~uJ~dw~~ s,q1JU3 ~q! Jo ~SU~J:>u1 uu o~ pu~1 o~ ItJ1~U~~od ~q~ suq ,,'s~su~ ~snoqu~J~" ~q~ '~J~qdsoW'!u ~q~ o~ S~SU~ ~:>UJ:JJo ~SU~I~J ~q! ~uq! 'J~A~MOq '~u1~unow S1 ~:>U~P1A3 .u~JPI1q:> Jno Jo ~SOq! pUB s~w9~J11 Jno UBq! J~~UOI q:>nw q:>nw ~ItJ:>S ~W1~ U uo ~~UBq:> O~ p~wnssu
SUM ~~UW11:>'AI~U~:>~J 11~Ufl '~~UW11:>JnO ~:>npoJd O~ AUM :>1~ouq:>PUg X~ldwo:>
J~q~~~o~ ~AU~M u01~uln:>J1:> :>p~qdsow~u
u U1
~q~ pUB 'S~U~JJn:> UU~:>O 'SpnOI:> 'U01~U1pUJ JBIOS
.~J~qdsow~u ~q~ WOJJ ~U1WO:> A~J~U~ U1 s~~uuq:> O~ ~snfpu O~ J~~UOI JO Sq!UOW ~:>uJlns u~s ~q! S~){U~ ~1 'UB~:>O ~q~ U1 ~U1 -100:> JO ~U1WJBM U O~ SAUP M~J u U1 pUOdS~J UU:>~J~qdsow~u -UJ~dW~~ U1 S~:>U~J~JJ1P~no q~oows
~q~ SU~J~qM. "A~1U1IUSpUB ~Jn~
O~ ~:>USUB~:>O~q! 'AUM S1q! U1 A~J~U~ ~u1~nq1J:lS1P~J Ae:
'SUU~:>o S,PPOM ~q~ ~noq~nOJq~ SpU~JdS ~Uq! J~~UM AAU~q JO ~U~JJn:> U ~U1~U~J:>'){U1S O~ J~~UM ~:>uJlns ~q~ ~snu:> ~ItJS SS~:>X~pUB S~Jn~uJ~dw~~ J1tJ 100:> ':>1~UBI~Y q1J°N ~q~ UI .J~SU~p SMOJ~ ~1 'A~ItJS AI~U1SU~J:>U1 S~WO:>~q J~~UMU~S sy U~S ~q~ WOl]
.~1 ~:>Uld~J UB:> SMOg J~Ap JO U1tJJ UBq~ J~~SUJ
S~~UJOdUA~ J~~UM 'UU~UBJJ~~1P~W ppu
~q~ ~A1JP sdl~q ~ItJS 'SUB~:>O ~q~ UI '~J~qdsow~u
~q~ ~){11 'SU~JB ~WOS J~AO '~U1~U~ ~u~q
~q~ 0~U1 ~u~q S~SU~I~J ~uq~ ss~:>OJd U 'MOUS JO
U1UJ SU S~SU~pUO:>JOdUA J~~UM ~J~qM SJOP~~U1ItJ~U~U1~UO:> pUB SU01~~J J~PI°:> O~ SI~AUJ:JU~q! PUg JOdUA J~~UM sqJOsqu SUU~:>OWJBM ~q! J~AO J1tJ 'U01~UJOdUA~ q~noJqJ. S~SSUW Aq ~Ol~
"J1tJAlp pUB ~~MJO
~q! J~AO P~1JOdSUBJ:JOSItJ S1 A~J~U3 "SAUP M~J AJ~A~ q1J°J pUB ){:>uq J~q~o
q:>U~ qsnd SII~:> ~Jnss~Jd-q~1q
PUg ~JnSS~Jd-MOI
pUB S~UOJJ WJO~S 0~U1 A~J~U~ sdwnd
'SUOSU~S J~PI°:> ~q! UI 'S~UB:>1JJnq SJ~MOd
~I 'JB111UJUJIIU ~JB ~M q:>1qM q!1M ~~UW11:>~q~ S~~U
-J~U~~ 'S~Jn~uJ~dw~~ ~Z1ItJnb~ O~ ~dw~~~u S~1U1 '~U1~U~ ~u~q ItJqol~ -In:> Aq PUg ~J~qdsow~u
~q! U1 SPU1M Aq p~pm:> '~qol~
Jo~unb~ ~q! JB~U p~qJOsqu A~J~U~ 'q~noq~ sqJOsqu q1JU3 ~ql.
S1qJ. 'SUB~:>O ~q~ U1 S~U~J
~q~ JO SU01~~ J~PI°:> ~q~ O~ SpU~JdS
'~W1~ J~AO "Jo~unb~ S~1JB~U U01~U1pUJJBIOS ~SOW
"Sq!UOW J~~U1M ~q~ ~upnp
AIIU1:>~ds~ 'SU01~~J JBIOd p~J~AO:>-~:>1 '~~1qM
~q~ s~q:>U~J A~J~U~ JBIOS ~IU11 AJ~A "~qol~ ~q~ uo ~U10d JBln:>11JUd q:>U~ ~U ~:>UBItJq ~OU S~p
~1
'q1JU3 ~J1~U~ ~q~ JOJ ~:>UUluq ~snw ~~~pnq U01~U1pUJ~q! SU~J~qJ\\ '~~UUld ~q! ~U1AU~1 ~uq~ Aq p~:>UBIUq S1 q1JU3 ~q! ~U1q:>U~J A~J~U~ JBIOS ~uq~ OS s~snfpu q1JU3 ~q! JO ~Jn~uJ~dw~~ ~ql. '~~UW11:>IUU01~~J ~q~ WJBM AIP~){JBW UU:>spnol:> AAU~q 'S:>1dOJ~~q! su q:>ns 'SU~JB ~WOS U1 q~noq!ItJ 'q1JU3 uo ~:>~J
-J~ ~U1100:> ~UU:>g1u~1SU 1J~X~ spnol:>
'~:>UUItJq UO '~:>uJlns ~q~ JB~U A~J~U~ ~U1ddUJ~ Aq q1JU3
~q~ WJBM SJ~q!O ~~:>uds O~ ){:>uq U01~U1pUJ JBIOS ~U1~:>~g~J Aq ~~UBld ~q~ 100:> spnol:> ~WOS '~IOJ :>1~UW11:> JOfUW U AUld spnol:> '~J~qdsow~u
~q~ u1 S~SU~ WOJJ ~P1sy "s~Jn~uJ~dw~~ J~MOI
q:>nw ~U ~nq 'A~J~U~ UMO s~1 S~1W~~J pUB ~:>uJlns ~q~ Aq P~~U1pUJ A~J~U~ ~q~Jo q:>nw sqJosqu 'J~A~MOq '~J~qdsow~u
~ql. .~:>uds o~ ){:>uq u01~U1pUJ P~JBJJu1 spu~s ~1 'SWJBM ~:>uJlns ~q~ sy
"~:>uJlns s,q1JU3 ~q~ PUg ~J~qdsoW'!u
~q~ Aq p~qJosqu
s1 MOUS pUB spnol:> JJo ~:>~g~J ~OU s~p
~uq! A~J~U~ JBIOS '~:>uds o~ ){:>uq AI~~U1P~ww1 p~~:>~g~J s1 u01~U1pUJ s, uns ~q! Jo %0£ ~noqu ~~~uUld ~q~pq
u q:J.m3 ~){Uw SU~JB ~~1qM ~ql.
's~u~u1~uo:> UMOJq pUB 'SUB~:>O ~nlq '~~1qM Jo
SU01~~J p~J~AO:>-MOUS pUB spnol:> ~~lqJBW P~JOl°:>1~lnw
u s1 q1JU3 ~q~ '~:>uds WOJJ P~M~1A
:ilJ.VWI'1;)
'Z'"I
'SR~ lRJmRU pUR '1!0 '[t!o:> Jo AJ~AO:>~J ~q1 ~U!lnp SSRWO!q '~U!P~Jq
SR~ JO ~~R~~1
pUR 'sl1ypuRl
[t!d!:>!unw
U! A~!A!~:>RlR!qOJ:>!W '~u!wnq
~1~~R:>'UO!~RA!~ln:> ~:>!l AIU!RW '17H;) JoJ ~s:>!doJ1 ~q~ U! UO!~R~S~JOJ~P
pUR UO!~snqwo:>
l~nJ-l!ssoJ
Alu!RW
-JOJ~P pUR '(UO!~Rt~~~A JO ~U!Wnq
~m
s~:>Jnos ~q1 '~ldumx~
~q1) ~U!Wnq
JoJ 'zO;)
JOd 'U°!1R~S~
SSRWO!q 'S~!~!A!~:>R lRJn~ln:>!l~R pUR [t!!J:jsnp
3~3HdSOmV3H.L
CLIMATE
5
century. It has been estimated that a doubling of CO2 from its pre-Industrial Revolution mixing ratio of 280 ppm by volume could lead to a rise in average global temperature of 1.5 to 4.5°C. A 2°C warming would produce the warmest climate seen on Earth in 6000 years. A 4.5°C rise would place the world in a temperature regime last experienced in the Mesozoic Era-the age of dinosaurs. Although an average global ~arming of a few degrees does not sound like much, it could create dramatic changes in climatic extremes. It has been estimated, for example, that, in the event of an average global warming of 1.7°C, the frequency of periods of 5 days or more exceeding 35°C (95°F) in the Com Belt of the United States would increase threefold. Such conditions at critical stages of the growing season are known to harm com and lead to reduced yields. With a doubling of CO2, the number of days exceeding 38°C (100°F) and nights above 27°C (80°F) have been estimated to rise dramatically in many major American cities. Changes in the timing and amount of precipitation would almost certainly occur with a warmer climate. Soil moisture, critical during planting and early growth periods, will change. Some regions would probably become more productive, others less so. The North American Grain Belt, according to at least one climate model, will shift northward into Canada as warming produces hotter, drier conditions in the American Midwest. Of all the effects of a global warming, perhaps none has captured more attention than the prospect of rising sea levels. This would result from the melting of land-based glaciers and volume expansion of ocean water as it warms. Prevailing opinion is that a sea level rise of about 0.5 m could occur by 2100. In the most dramatic scenario, the West Antarctic ice sheet, which rests on land that is below sea level, could slide into the sea if the buttress of floating ice separating it from the ocean were to melt. This would raise the average sea level 5 to 6 m (Bentley, 1997). Even a 0.3 m (1 foot) rise would have major effects on the erosion of coastlines, salt water intrusion into the water supply of coastal areas, flooding of marshes, and inland extent of surges from large storms. To systematically approach the complex subject of climate, the scientific community has divided the problem into two major parts, climate forcings and climate responses. Climate forcings are changes in the energy balance of the Earth that are imposed upon it; forcings are measured in units of heat flux-watts per square meter (W m-2). An example of a forcing is a change in energy output from the sun. Responsesare the meteorological results of these forcings, reflected in temperatures, rainfall, extremes of weather, sea level height, and so on. Much of the variation in the predicted magnitude of potential climate effects resulting from the increase in greenhouse gas levels hinges on estimates of the size and direction of various feedbacks that may occur in response to an initial perturbation of the climate. Negative feedbacks have an effect that damps the warming trend; positive feedbacks reinforce the initial warming. One example of a greenhouse warming feedback mechanism involves water vapor. As air warms, each cubic meter of air can hold more water vapor. Since water vapor is a greenhouse gas, this increased concentration of water vapor further enhances greenhouse warming. In turn, the warmer air can hold more water, and so on. This is an example of a positive feedback, providing a physical mechanism for multiplying the original impetus for change beyond its initial amount. Some mechanisms provide a negative feedback, which decreasesthe initial impetus. For example, increasing the amount of water vapor in the air may lead to forming more clouds. Low-level, white clouds reflect sunlight, thereby preventing sunlight from reaching the
.~U!X!W
fl?;)!:}J~A P!d~l
:1q~!~q q1!M ~lm~l~dw~1
~U!S~~l;)~P
Aq p~Z!l~1;)~lP.q;)
~w9 pUt! ~pm9~1 uo ~U!PUOO~P ~pm!11~ ill){ ~I 01 01 1~ S! q;)!qM
'~sn~dodol1
:lP.~A JO ~qJ 01 dn
~;)~Jlns s,q:tm3 ~q1 moll ~U!PU~1X~'~l~qdsow1~ ~qJ Jo l~A~1 1S~MOI~qJ. "iJ.liJlfdsodo.ll :(1'1 ~Jn8!d) ~m ~J~qdsowt~ ~q:l1° suo!8~J ~ql. '~J~qdsowt~ ~q:l1° SJ~,(~I~qt 8u!qs!n8u!ts!p J01 S!S~q ~q:I S! ~pm!tJU qt!M ~lyoJd ~Jm~J~dw~t ~8~J~A~ ~q:l1° U09~!JP-A~q:ll;)~1 uI .tq8!~q q:I!M ~Jnss~Jd pUt! ~Jm~J~dw~t 10 SUO!t~!JP-A,(q p~z!'J~t;)~IP.q;)S! ~J~qdsowt~ s, qtm3 ~ql.
..{WOUO.JiJV P~II~;)
S! ~J~qdsowt~
J~dn
~qt 10 ,(pms
.'.{8%.loiJJiJW s~ UMOm{ S! ~J~qdsowt~ J~MOI ~q:l1° ,(pms 1m){) SJ~t~WOI!){o~ tnoq~ 10 ~pm -9JU Ut! '~J~qdsot~J:lS ~q:l1° dot ~q:I Ot pu~tx~ Ot p~J~P!SUO;),(IJUJ~u~8 S! ~J~qdsowt~ J~MOI
~ql. 'suo!8~J J~dn pu~ J~MOIOtU! P~P!A!PS! ~J~qdsowt~ ~qt 'sUJJ~tI~J~u~8tSOW~qt uI
n3HdSOW.LV 3H.L.!IO S33AV'l 3H.L
,gU!llimM -:)J 'qS!ggnIs -n:):)ds
:)q1 gU!1gqJ:):)gX:) pug lOJ
:)q1 dwnd
:)q1 01 ){U!S SJ:)1gM :):)gpnS
:)1guoqm:)
01 S! lOJ
-1:) AIuO :)q1'J:)A:)MOH
Sg JO lOJ
IgqOIg 19q1 P:)1gI
PIa:) :)J:)qM ':)!1ugpy
q1JON :)q1 :)){!I
'Joog Ug:):)o :)q11g S1U:)W!P:)s :)q1
sno:)sgg P:)AIOSS!P Sg J:)q1!:) 'Ug:):)o d:):)p :)q1 01U!
U! :)Sg:)J:)U! :)!l:)qdsOW1g
:)q1 J:)11nq 01 sug:):)O :)q1 JOl AgM :)A!1:)g1
"SJ:)1gM J:)d:):)p WOJl J:)AgI :):)gpns:)q1
AIMOIS pmMuMop
for
dn :)~1 01 A1!I!qg J!:)q1 gU!:)np
:)JOW :)WO:)gq 01 S1U:)JJn:) ,Sug:):)O :)q1 :)sng:) PIno:) gU!llimM
:)Agq :)WOS 'w0110q
'SUO!1g:)OI M:)l g U! ug:):)O d:):)p :)q1 01U! UMg.lp gq AgW lOJ U! :)IU:)s 19q1 S:)I:)!~d uoqm:)
:)!l:)qdsOW1g
-J:)1U! lOJ
10 :)sng:):)q
Ug:) uoqm:)
:)1gJP.d:)s 19q1 S1u:)!pgJg ~UJJ:)q1
S:)AOW pug J:)1gMg:)S 10 os JO W 001 d01 :)q1 q1!M AIUO S1:)g
'sg:)m 1S0W UI 'SUO!1gj:JU:):)uo:) :)!l:)qdsOW1g
:)J01S 01 A1!:)gdg:) ,SUg:):)o :)q1 U! s:)gugq:)
sg S:)W!1 O'l pug oo:)qdsOW1g :)q1 sgop Sg uoqJP.:) q:)nw
I~wS
snqj,
SUg:):)o :)qj,
JOl '){U!S g Ugq1 J:)q1gJ ':):)JnOS
1ugId JOl S:):IgW!1S:) 10 :)gugJ :)q11°
-ms:)J01:)P JOl s:)1gW9s:) 10 :)gugJ :)q11° pu:) J:)qg!q
uo 1:):)11:) :)gmI g :)Agq
'S1ugId PugI op Sg q:)nw
Sg S:)W!1 ~~ u!muo:) "lOJ
1:)U g Sg :)AJ:)S ug:) S1ugId ':))[mdn
:)q1 gu!1d:):):)y
pu:) J:)MoI :)q1 PUg UO!1
'SUg:):)o :)q1 PUg S1UgId Aq
pgqJosqg S! I-JA 10 ~'9 01 ~"l pug oo:)qdsOW1g :)q1 U! su!1!w:)J 10 ~"'l 'sugwnq Aq :)J:)qdsow -1g :)q1 01 p:)ppg 1_Jf.10 6 01 ~ :)q11° 'snqj, "AI~nuug :)J:)qdSOW1g:)q1 01 uoqm:) 1010 t 01 dn gU!Ppg
S! UO!1mS:)J01:)a
"J!OAJ:)S:)J q:)g:) 01 sgog q:)nw
sug:):)O PUg S1ugId Aq pgqJosqg I-JA 10 ~ :)q11° l~q (I-JA
1noqy
S! 1S:)J :)qJ. 'SI:)A:)I lOJ
("g 901 SIgnb:) lW
MOq 1sn[ 01 sg S1S!X:) A1U!t?1J:):)un 1nq gU!S!l Sg :)J:)qdsOW1g :)q1 U! su!1!w:)J
'U01 :)!J1:)w I) ":)J:)qdsOW1g :)q1 01 uoqm:)
10 ~) m:)A Jgd SU01 :)!J1:)W 601 X ~ 1noqg SPpg At?po1 UO!1snqwo:)
AIqgnOJ :)q PInoM ugwnq
'q:JJP.3 :)q11° q:)nw
x:)Idwo:)
,(j:)A pug :)su:)WW!
:)q1 ugq1 :):)ug:)y!ug!S
10
"p:):)Ug~q
:)q1 :)m SI!OS
J:)1g:)Jg U:)A:) 10 AIqgqold
J:)AO:) 19q1 gJPum pug 'sPugISSgJg 's1s:)JOl :)q11° :)suods:)J
's:)nss9
1ugId U! 1! gU!l01S pug :)J:)qdsOW1g :)q11°
lOJ-qg!q gU!S!l
"spnoI:)
g U! J:)1Sg1 MOJ'S sdoJ:) ~JmIn:)!lgg
01 S1ugId 10 :)suodsoo
:)A9:):)AUO:) 'qg!q
10 1unowg
I:)A:)I-MoI
I:)nl-I!ssOd
ug:):)o pug 'S1UgId ':)J:)qdsOW1g :)q1 U:):)M1:)q uoqm:) 10 SMOg :)q1 ':):)u:)ngu!
1nOq1!A\ 'SUO!1:)gJ:)1U! :)J:)qdsOW1g-ug:):)0
pug S1UgId ~!J1s:)JJ:)1 gU!AIOAU! ){:)gqp:):)l UMOm[ S! :)JU!'l lu:)WUOJ!Au:) "SI:)A:)I lOJ
1no uoqm:)
I:)A:)I-MoI
:)JOW 01 pg:)I PInoM
:)sng:):)q S! S!qJ. "gU!UUl!M
:)q1 gU!Sg:)J:)uI
:)q11noqg
:)woS
J:)q10UY s:)JmgJgdW:)1
AI:)A!1:):)11:) Aq:)J:)q1 'sd01
J:)qg~
19 MoI:)q
:)snoqu~Jg
:)q1 gU!Sg:)J:)U! Sg:)J:)qM 'gU!llimM
10 :)ggJ:)AO:) Ig:)!qdgJgo:)g
:)JOW gU!IInd
19q1 :)1g:)!PU! s:)!pmS
:)q1 s:)AIOAU! A1U!1!1J:):)un ){:)gqp:):)l
:)JOW JO spnoI:)
P:)Sgoo:)U! J:)q1:)qM A1U!1!1J:):) q1!M UMOm[ 10U S! 11 'AgJ:)U:) gu!ddgj:J J!:)q1 WOJl :):)gds 01U! AgJ:)U:) :)1g!pgJ A:)q1 ugq1 s:)m1gJ:)dw:)1 qJosqg spnoI:) :)A9:):)AUO:) 'qg!q :)A9:):)AUO:) 'qg!q spnoI:)
WOJl AgJ:)U:)
:):)Ugqu:) PIno:) spnoI:)
:)snoqu:):)Jg
":):)gpns
:):)np:)J PInoM
:)q1 gU!llimM
PUg q:JJP.:)
3~3HdSOW.LV3ffi
9
'HE LAYERS OF THE ATMOSPHERE
7
Stratosphere. Extends from the tropopause to the stratopause (-45 to 55 kIn altitude); temperature increases with altitude, leading to a layer in which vertical mixing is slow. Mesosphere. Extends from the stratopause to the mesopause (-80 to 90 kIn altitude); temperature decreaseswith altitude to the mesopause, which is the coldest point in the atmosphere; rapid vertical mixing. Thermosphere. The region above the mesopause; characterized by high temperatures as a result of absorption of short wavelength radiation by N2 and O2; rapid vertical mixing. The ionosphere is a region of the upper mesosphereand lower thermosphere where ions are produced by photoionization. Exosphere. The outermost region of the atmosphere (>500 kIn altitude) where gas molecules with sufficient energy can escape from the Earth's gravitational attraction.
'~J~qdS01l?J:lS ~q"JU! ~uozo Jo ~~u~s~Jd ~q1 Jo 1lns~J l? S! ~J~qds01l?J:lS~q"JJo ~Jm~nJ:)S(1?UJJ~q1 (1?~!:IJ~A~~
"~~l?Jlns s,qUlJ3 ~q"J1l?)J 88'l Jo ~8l?J~Al?~q1 Ut?q"JJ~MOI q~nw 10U ~Jml?J~d
-W~1l? '~Snl?d01l?J:lS ~q11l?)J ILl 8u!q~l?~J 'ill)( O~ 01 O'l WOJJ S~Sl?~J~U!AI~A!SS~J80Jd~Jml? -J~W~1 'S~pm!1l?IP!W 1l?ill)( O'l 01 I I 1noql? WOJJ 1S!X~s~op UO!8~J Il?UJJ~q10S!Ul?q8noq"JIY 'J~Al?18u!ul?~w ZUnIV.lIS pJOM U!1l?'l ~q1 wol] ~J~qds01l?J:lS~q"JUO!8~J ~q"Jp~Wl?U ~H 'os JO ill)( I I 1l?1Ut?1SUO~ p~u!1?w~J pUt?8U!I(1?Jp~dd01S 1nq '~pm!11l?8u!Sl?~J~U!q1!M OJ~Z~1nlos -ql? 01 ~Sl?~J~~pAI!Pl?~1S10U P!P ~J~qdsOW1l?~q1 U! ~Jml?J~W~1 ~q"J'Al?P ~q"JJo J~!I~ reIn -dod ~q"J01 f.mJ:lUO~ 1l?q1punoJ ~q 'SUOOI(1?q U! S~~!A~P 8u!lnSl?~w-~Jml?J~W~1 dn 8u!pu~S "1JOH~p ~U~J~SS!~J.~d!l!qd uon 1s!8010JO~1~W q~U~Jd ~q"JAq Almu~~ q"J0'l ~q"JJo wm ~q"J1l?p~J~AO~SWSl?M 'ill)( O~ 1noql? 01 W)( I I 1noql? wol] 8U!PU~1X~ '~J~qds01l?J:lS~qJ. "~J~qdsodOJ1-J~ddn PUl? -P!W ~q"J01 ~~l?Jlns s,qUlJ3 ~q1 01 ~sol~ wol] J!1?8u!1JodsUt?J:IJoJ WS!Ul?q~~w ll?d!~U!ld l? 1~l?J U! oS!spnol~ snlnwn~ q"J!M P~1l?!:>OSSl? UO!1~~AUO~(1?~!1J~A'spnol~ q~ns U! p~q~l?~J ~ Ut?~ puo~~s J~ SJ~1~WJo S~!1!~01~A1j1?JpdnpUt? 'UO!qSl?JS!q"JU! p~~npoJd ~ spnol~ snlnwnJ 'UO!1l?SU~pUO~;)JOW 01 8uWl?~1 '~JOW U~A~ preMdn S~1l?J~I~~~l?pUt? 1Ut?Aonq S! [~~red ~q"J'sJn~:>o S!q"Ju~qft\ 'J!1?8u!punoJJns ~q"JJo 1l?q"J~AOql? [~~red J!1?~q"JJo ~Jml?J~W~1 ~q1 u!mu!1?w 01 [~~red ~q"JJo 8U!ll?~q 1U~!~YJns ~P!AOJd Ut?~Jodl?A J~1l?MJo UO!1l?SU~pUO~ 'S[OO~ J!1?Jo I~~md 8U!AOW pmMdn Ut? q8noq"J U~A~ '1.[8U!1S~J~1UI's~su~puo~ J~1l?MSl?1l?~q1u~1 -l?1Jo ~Sl?~I~J~q"JAq p~snl?~ A~Ul?Aonq (v) pUt? '~~l?Jlns s,qUlJ3 ~q"J1l?S~Jml?~J~!qdl?J80d01 J~AOMOg (1?1uoz!l°q (£) 'SMOg (1?1UOZ!loqJO ~~U~8J~A!PJO ~~U~8J~AUO~(z) '~~l?Jlns s,qm3 ~q"JJO 8U!1l?~qm[OS WOJJ U°!l~~AUO~ (I) WOJJ1[nS~J~J~qdsOW1l?~q"JU! SUO!10W(1?~!1J~A 'spno[~ JO UO!1l?UJJOJ ~q"JS! 1InS~J~qJ. 'UO!1l?Jml?sJ~dnsU~A~ pUt? (%00 I
= H'M)
UO!1l?Jml?S q~l?~J 01 J!1? ~q"J ~snl?~
Ut?~SJ~1~WJo sp~Jpunq M~J l?Jo SUO!10WJ!1?pmMdn 1[ns~J l? sY "[~~md ~q"JU! (H'M) A1!P!W -nq ~A!1l?[~JU! ~Sl?~J~U!(1?!1Ut?1sqns l? Aq p~!Ut?dwO~~l?~ Ut?~[~~md J!1?8U!S!ll? Jo ~Jml?J~d -w~1 Jo ~Sl?~J~~pS!q1 '~Jml?J~w~1 Uo ~Jnss~Jd JOdl?AUO!1l?Jml?S ~q1 Jo ~~u~pu~~p 8uoJ:ls ~q"JJo ~snl?~~H lU~UO~ J~1l?MS1! uo 8u!pu~~P JoO I 01 ~ WOJJ ~Jml?J~dW~1U! ~Sl?~J~~p Ut?~ill)( I 01 ~~l?Jlns ~q"JWOJJp~1JodsUt?J:IS! 1l?q"J I~~md J!1?uY '(vI J~1dl?qJ U! P~O[~A~P ~q Il!M s!q:I PU!q~ AlO~q"J~q"J)W 001 J~ Jo I 1noql? '[l?!1umsqns S! ~8Ut?q~JO ~l?J S!q"J'J!1?Alp JOd ';)Jnss~Jd (1?~0[~q"J01 ~suods~J U! s~8ul?q~ ~Jml?J~W~1 S1! 'AI(1?~!1J~AS~AOWJ!1?sy '~snl?dodoJ:l ~q"J01 ill)( I 1noql? WOJJ 8UWU~1X~ 'iJ.liJ1/dsodo.l1iJiJ.tj ~q"JpUt? 'ill)( I 1noql? 01 dn ~~l?Jlns s, qUlJ3 ~q"JWOJJ 8u!PU~1X~ :liJAVl 'c/vpunoq 'c/VliJUVld ~q1 01U! P~P!A!P ~ Ut?~~J~qdsodoJ:l ~qJ. iJ09~ - ) )J L I 'l1noql? Jo ~8l?J~Al?Ul?01 U~Ill?J Sl?q~Jml?J~W~1 ~q"J'~snl?dodoJ:l ~q11Y 'qUIJ~ p~wmM-uns ~q1 WOJJ ~~umsW 8u!sl?~J~U! ~q"JS! ~U!I~~P ~A!ss~tBOJd S!q"JJoJ UOS1?~J ~qJ. 'I-ill)( )J L' 6 S! ~1l?J~sdl?[ ~q"JJ!1?!.JP JOd lq8!~q q"J!M AJm~U!1 1S0W(1?S~Sl?~J~~p~Jml?J~W~1 ~q"J '~J~qdsodoJ:l ~q1 UI 'SSl?W 1l?101S1! Jo %08 1noql? SU!l?1UO~1! '1q8!~q 1l?101S,~J~qdsOW1l? ~q1 Jo UO!1 -~l?JJl(1?wSl? AIUO JoJ S1UnO~~l? ~J~qdsodoJ:l ~q1 q8noq"J[Y 'JOdl?AJ~1l?Ms,~J~qdsOW1l?~q1Jo 1(1? 1S0W(1?su!muo~ ~J~qdsodoJ:l ~q"J'J~q"Jl?~M1(1? Jo uoJP(1?~~qJ. '8u!x!W pUt?~~u~[nqJm SS~[ -~Sl?~~Jo uo!8~J l? S! ~J~qdsodoJ:l ~q"J'8u!wm 8u!ul?~w 'SOdO.l1pJOM )(~~JD ~q1 wol] 'Ml?qS J~!dl?N J!S ,s!8010JO~1~W qs!l!lH Aq P~U!O~~umu ~qJ. 's~[od ~q"JpmM01 8U!AOW pmMuMop 8u!do[s 's~!doJ:l ~q"JJ~AO 1q8!~q wnw!xl?w l? 1l? S! ~snl?dodoJ1 ~qJ. i~661 '"[l? 1~ U01[OH) 1- ill)( )J 'l p~~~x~ 10U s~p ill)( 'l 1X~U ~q"JU!q1!M I~A~[ AUt?pUt? [~A~[ S!q"Ju~~M1~ p~8l? -J~Al? ~1l?J~sdl?[ ~q"JpUt? SS~[JO 1-ill)()J 'l 01 S~Sl?~J~~p(iJIV.l iJsdVl iJ.lnlv.liJdzuiJl ~q1) 1q8!~q q"J!M ~Jml?J~w~1 Jo ~Sl?~J~~pJo ~1l?J~q"Jq~!qM 1l?I~A~I 1S~MOI~q"JSl?P~uY~P S! ~snl?dodoJ:l ~q1 '(OWA\) UO~1l?Z!Ut?8JO (1?~!8010JO~1~WP[J°N\. ~q1 Jo UO!1U~AUO~AH 'W)( 8 1noql? S~lod ~q"JJ~AO ~ill)( 8 I 1noql? S! ~snl?dodoJ:l ~q"JJo 1q8!~q ~8l?J~Al?~q"JJ01l?nb~ ~q"JJ~AO
3'M3HdSOW.LV 3ffi
8
VARIATION OF PRESSURE WITH HEIGHT IN THE ATMOSPHERE
9
Absorption of solar ultraviolet radiation by 03 causesthe temperature in the stratosphereto be much higher than expected, based on simply extending the troposphere's lapse rate into the stratosphere.
1.4 VARIATION OF PRESSUREWITH HEIGHT IN THE ATMOSPHERE The variation of pressurewith height in the atmospherecan be addressedwith the hydrostaticequation,! dp(z)
dz
=
.p(z)g
(1.1)
where p(z) is the massdensityof air at height z and g is the accelerationdue to gravity. From the ideal gaslaw,
p(z)=
MairP(Z) RT(z)
(1.2)
where Mairis the averagemolecularweight of air (28.97g mol-I). Thus dp(z)
dz
-
Mairgp(z) RT(z)
(1.3)
which we can rewrite as d lnp(z) - -~
dz
where H(z)
= RT(z)/
-
H(z)
(1.4)
Mairg is a characteristic length scale for decrease of pressure with
height. The temperaturein the atmospherevariesby lessthan a factor of 2, while the pressure changesby six ordersof magnitude(seeTableA.8). If the temperaturecan be takento be approximatelyconstant,just to obtain a simple approximateexpressionfor p(z), then the
'Units of pressure. Because instruments for measuring pressure, such as the manometer, often contain mercury, commonly used units for pressure are based on the height of the mercury column (in millimeters) that the gas pressure can support. The unit mm Hg is often called the Torr in honor of the scientist, Evangelista Torricelli. A related unit for pressure is the standard atmosphere (abbreviated atm): 1 standard atmosphere
= 1 atm = 760
mm Hg = 760 Torr
The unit of pressure in the International System of Units (SI) is newtons per meter squared (N m-'), which is called the pascal (Pa). In terms of pascals, the standard atmosphere is 1.01325 x 10s Pa. Another commonly used unit of pressure in atmospheric science is the millibar (mbar), which is equivalent to the hPa (see Tables A.5 and AR) Thp .t"nti"rti "tmn.nhprP i. 101, ?~ mh"r
P~~~!P~Js~ f.3'J~U~mIos Jo ~unoum ~ums ~q! SUO!3'~JmIod ~q! U! 'S~I3'U~mIos J~MOI ~~ '~Id -umx~ JOd '~u!od ~q! Jo ~pn~!~~I ~q! uo s~ "~M S~ 'ss~U!pnoI:) Jo ~~J3'~p ~q~ p~ (~~s SnSJ~A P~I '"3"~) ~:)~Jlns ~q! Jo ~Jn~~u ~q! uo '~d U! 'spu~d~p ~:)~Jlns s,q:)J'!!3 ~q~ 3'U!q:)~~Jf.3'J~ -u~ Jo ~unoum ~q.L "q:)J'!!3~q! uo ~u!od f.J~A~ ~~ ~:)U~~q U! ~OU~m f.~q~ '~:)~~q
U! f."~!~U~S
-S~ ~m q:)J'!!3 ~q~ wol] p~ o~ f.3'J~U~ ~~!P~J Jo ~nd~no pu~ ~ndu! ~~o~ ~q~ q3'noQ1U~A3 '(v66I '~ow~"!nD p~ q~~qu~J.L) 3'){ 8101 x £1"~ ~q O~P~~~W!~S~ S! 'u~~W ~nu~ ~ s~ p~~~In:)~:) '~J~qdsow~~ ~q! JO ss~w f.Jp ~~O~~q.L 'UO!~~!P~JmIos ~Q1 JO UO!~Od ~ f.I~:)~J!P sqJOsq~ ~J~qdsow~~ ~q! q3'noq~I~ '~:)~ds q!!M p~3'~q:)X~ ~m wn~u~w -ow p~ ss~w ~I~~!'l 'pu~I p~ ~~:)o 3'U!f.IJ~pUn ~q! p~ ~J~qdsow~~ ~q! U~~M~~qp~~~q:) -x~ ~m f.3'J~U~ pU~ 'wn~u~wow '~Jn~S!OW 'u09~In:)J!:) I~J~U~3' ~q! s~ O~p~JJ~J~JS! q:)!qM JO ~Jn~:)nJ1S~qOI3' ~q~ 'SPU!M ~q! s~s!Jdwo:) ~J~qdsoW'!~ ~q~ Jo UO!~OW~I~:)S-~3'mI ~qJ. UO!}81°;>.I!:)
18.1aUa~ aq.L
~H:mdSOWJ.V:mJ. ~O NOIJ.OW ~'1V3S-~DHV'1
"p~1Jods~~ S! 1t!~q JO A1!1~nb
~[qt!l~P!SUO:> t! q:>!qM 1t! [~A~[ t! p~
p~sn u~1JO S! '~pm!:l[t!
-t!1U~S~ld~llOJ
pmpums
[t!:>!~0[OlO~1~W '[~A~[ mqw
1SlY ~qt St! '~lmt!l~dw~1
O~S ~q.L 'mqw
00£
Aqdt!l~od01
At!W ~ross~ld
:")"1
sol
st! lI~M St! p~1t!:>0[
~qt Jo q:>nw ~Aoqt! [~A~[
st! q:>ns 'S~!1!1~nb
w)[ ~"I 1noqt! 1t! S! 'S'V
st! MO[ st! ~
:>!l~qdsow1t!
~[qt!.L wall ~qt 'w
Jo UO!1
~~s ~M st! 'q:>!qM
OOOS l~AO Jo ~pm!1[t!
~ q:>t!~l q:>!qM 'su!t!:Junow 1s~q~!q ~q1l~AO ~Aqdt!l~od01 ~:>t!jJns Jo 1:>~JJ~~qt S1:>~lJ~l ~n[t!A l~MO[ ~q.L 'mqw 17S6 st! P~1t!W!:lS~ S! 'ut!~:>o p~ put![ q10q l~AO p~1t![n:>[t!:> '~lnss~ld ~:>t!Jlns ~~w
[t!qO[~
-It! sn°!lt!A
~mqw
£101
1t! ~lnss~ld
S! [~A~[ t!~S 1t! ~lnss~ld
~u!ssn:>s!p
A[UOWWO:> 1S0W 1!Un ~qt S! (mqw)
~:>t!Jlns ~~W
'~l~qdsow1t!
U~qM 1! ~sn lI!M ~M '~lmt!l~1![ mq!II!w
P~[[t!:>-os ~qt U! ~pm!1[t!
qt!M
l~MO[ ~qt U! ~lnss~ld S 1noqt!
~qt U! p~sn
p~
~ross~ld
Jo UO!1t!!lt!A ~ql 1=+=A[[t!m:>t!) W)[ S
lOJ ~[t!:>s qt~U~[ ~uw[oJ-a
S! H 1q~!~q
S! q:>!qM
IS ~q.L 'S'V ~[qt!.L U! U~A!~ S! ~l~qds
~lmt!l~dw~1
iW)[ S! ~l~qdso~t!
1t! W)[
~qt U! s~pm!1
[t!:>!~0[OlO~1~W
~qt ~snt!:>~g "mq!II!"W ~qt 011u~[t!A!nb~
't!dq '[t!:>St!d01:>~q ~q1 S! S'V ~[qt!.L U! p~sn 1!Un ~lnss~ld -OW1t! pmpums
A[~1t!W!XOlddt!
= .I
S~W!1~WOS S! 11 ')1 £a
~[t!:>s ~qt
'~l~qdsOW1t!
'1q~!~q qt!M A[P!dt!l11°
~qt 1t!q1 p~1t!1S l~MO[
~qI uI
[[t!J (J)l '~X 'lV O") s1u~uod
-WO:> AAt!~q ~qI pUt! "d01 ~qt 01 ~s!l" 01 pu~1 (~H p~ H) s1u~uodwo:> 1s~1q~![ ~qI op W)[ O'l[ 1noqt! ~AOqt! A[UO '~l~qdsoW1t! l~MO[ ~q1 U! In:>:>o 10U s~op s~sst!w It![n:>~[ow uo p~st!q uo!1t!md~s
S!qt 'l~A~MOq
Jo ~snt!:>~g '~pm!1[t!
'~l~qdsoW1t!
l~1t!~l~
~qt U! ~U!X!W 1u~Inqlm
t! 01 pu~1X~ p[nOM 'zH p~
~qI 01 ~SO[:> P~1t!~U~:>Uo:> ~q 01 pU~1 p[nOM J)l p~
Jo 1:>~JJ~ ~U!W[~qA\l~AO
~H 's~st!~ l~1q~![
~q1
put! ~:>t!jJns s, q:lJt!3
~X ~)[![ s~st!~ sst!w m[n:>~[ow
q~!q S!S
-t!q S!qI uo lq~!~q ~[t!:>s l~~m[ A[~UWuods~JJo:> t! ~At!q lI!M l!tJ JO 1t!q1 ~qt ss~[ 'W 1qg!~M IP.[n:>~[ow t! q1!M s~!:>~ds V '! s~!:>~ds JO ~lnss~ld [t!!1Jt!d ~qt (2) Id qt!M ;,9 IW / .IN IH
=
'S~!:>~s
:>!l~qdsOW1t!
01 AI[t!np!AWU!
p~![ddt! lq~!~q
~q ~:> 1q~!~q ~[t!:>s JO 1d~:>uo:> ~q,L ~[t!:>s ~qt P~IIt!:> S! ,9l!UW /.IN = H ~l~qM
°d (2)d
H/Z-.1=
(S"y)
'lUnU~uodx~ f.I~1gUI!xOJddg S! 1q~!~q q1!M ~Sg~J:)~p~Jnss~Jd
01
3~3HdsomV3HJ.
ARGE-SCALE MOTION OF THE ATMOSPHERE
11
to the tropics must pass through more atmosphere and intercept a larger surface area. The uneven distribution of energy resulting from latitudinal variations in insolation and from differences in absorptivity of the Earth's surface leads to the large-scale air motions of the Earth. In particular, the tendency to transport energy from the tropics toward the pola( regions, thereby redistributing energy inequalities on the Earth, is the overall factor governing the general circulation of the atmosphere. In order to visualize the nature of the general circulation of the atmosphere, we can think of the atmosphere over either hemisphere as a fluid enclosed within a long, shallow container, heated at one end and cooled at the other. Because the horizontal dimension of the "container" is so much greater than its vertical dimension, the curvature of the Earth can be neglected, and the container can be considered to be rectangular. If such a container were constructed in the laboratory and the ends differentially heated as described above, one would observe a circulation of the fluid, consisting of rising motion along the heated wall and descending motion along the cooled wall, flow in the direction of warm to cold at the top of the box, and flow in the direction of cold to warm along the bottom of the box. In the atmosphere, then, the tendency is for warm tropical air to rise and cold polar air to sink, with poleward and equatorward flows to complete the circulation. However, the general circulation of the atmosphere is not as simple as just described. Another force arises because of the motion of the Earth, the Coriolis force. At the Earth's surface an object at the equator has a greater tangential velocity than one in the temperate zones. Air moving toward the south cannot acquire an increased eastward (the Earth rotates from west to east) tangential velocity as it moves south and thus, to an observer on the Earth, appears to acquire a velocity component in the westward direction. Thus air moving south in the Northern Hemisphere appears to lag behind the Earth. To an observer on the Earth it appears that the air has been influenced by a force in the westward direction. To an observer in space, it would be clear that the air is merely trying to maintain straight-line motion while the Earth turns below it. Friction between the wind and the ground diminishes this effect in the lower atmosphere. From the standpoint of air motion, the atmosphere can be segmented vertically into two layers. Extending from the ground up to about 1000 m is the planetary boundary laye!; the zone in which the effect of the surface is felt and in which the wind speed and direction are governed by horizontal pressure gradients, shear stresses, and Coriolis forces. Above the planetary boundary layer is the geostrophic laye!; in which only horizontal pressure gradients and Coriolis forces influence the flow. . To predict the general pattern of macroscale air circulation on the Earth we must consider both the tendency for thermal circulation and the influence of Coriolis forces. Figure 1.2 shows the nature of the general circulation of the atmosphere. At either side of the equator is a thermal circulation, in which warm tropical air rises and cool northern air flows toward the equator. The circulation does not extend all the way to the poles becauseradiative cooling of the upper northward flow causesit to subside (fall) at about 30° Nand S latitude. The Coriolis force acting on these cells leads to easterly winds, called the trade winds. The same situation occurs in the polar regions, in which warm air from the temperate zones moves northward in the upper levels, eventually cooling by radiation and subsiding at the poles. The result is the polar easterlies. In the temperate regions, between 40° and 55° latitude, influences of both tropical and polar regions are felt. The major feature of the temperate regions is large-scale weather systems, which results in the circulation shown in Figure 1.2. The surface winds in the Northern Hemisphere are westerlies because of the Coriolis force.
:}J:}qdso:}uJts-o:}-:}J:}qdsodoJt
{u:)!doJt
Jo
M:}!A
f!:?uOfl!puJt
:}qj.
°A{f!:?:)fIJ:}A f!:?!l:}:}UW s:jJod
-suuJt A{gUOJtS UO!:}:):}AUO:) :}S!OW s:)!doJt :}q:I UJ °suofloW :}f!:?:)s-:}gm{ :}S:}q:I Aq P:}:}:):}JJB Ap:):}J -!P :}SOW :}J:}qdso:}uJts J:}MO{ :}q:I U!q:}!M UO!g:}J :}q:I SMOqS £°1 :}Jng!d U! gU!puqs :}qJ. °In:):)o :}snudodoJt
:}q:I Jo s:}u:}w:}:)u{ds!p
:jJodsUUJj. o:}guuq:)x:}
f!:?U!pm!:}U{ :}gm{ su SAUM q:}oq SJn:):)O :}snudodoJ:} :}q:I SSOJ:)U
:}J:}qdsodoJt-:}J:}qdso:}uJts
Jo s:}:):}dsu {U:)!umUAP
o:}J:}qdso:}uJts :}q:} Jo SUO!g:}J WOJJ P:}AOW:}J puu O:} p:}!lddns -oJt q:)!qM
:}u :}:}UJ :}q:I ~!l:)s:}p
OM:} U:}:}M:}:}q :}:}UJ :jJodsuuJt -:}p snqj.
s:}:)!d:}p £°1 :}Jng!d :}m s:}!:)~s
:}{gU!S u Aq :}guuq:)X:}
:}J:}qdsodoJt-:}J:}qdso:}uJts
s:}!:)~s
gU!q!l:)S
u su :}J:}qdso:}uJts :}q:} JO :}d:}:)uo:) :}q:} :}Uq:l A{dW!
:}q:I U! :}U:}WUOJ!AU:} :}A!:}U!PUJ pUU f!:?:)!W:}q:) :}q:I U! A:}!:}U:}gowoqU!
{U:)!:jJ:}A :}q:}
:}q:} U! :jJodsuuJt f!:?:)!:jJ:}A JOJ :}f!:?:)S:}W!:}gOOf A{:}A!:}U{:}J :}qj. °S:}U:}W s:}W!:}:}wos
:}J\\ O:}JOWJO m:}A U O:} sq:luow
:}JP. :}J:}qdso:}uJts
{u:)!w:}q:)
sn{nwn:)
puu J!U Jo :jJodsuuJt
'uo!:}:}{d:}p
:}uozo
puu :}J:}qdsodoJt
UU:) :}J:}qdsodoJ:}
f!:?:)!:jJ:}A ~s:}{u:)s:}wfI
:}q:} s:}:}mflsuo:)
:}q:} Jo q:ld:}p
gU!x!W
f!:?:)!:jJ:}AU!
:}SOW :}uq:} uou:}wou:}qd 's:}!:):}ds
puu :}J:}qdsodoJt
:)!l:}qdso:}uJts
:}q:I O:}U! :}uozo Jo 'A{:}SJ:}AUOJ .UO!:}
f.J:}S!w:}q:) :}q:I :}:}ufI!U! :}J:}qdso:}uJts :}q:I o:}U! :}J:}qd
s:}!:):}ds :)!u:}godoJq1uU
':}{dumx:}
puu :}J:}qdso:}uJts :}q:} U:}:}M:}~
w~qtnos
pm! w~q1J°N
~UOJ:lS ou pm!
u
:}gm{ q:I!M p:}:}U!:)ossu s:}JuJpdn :}A!:}:):}A uo In:):)o
:}q:I s:}qs!ngu!:}sw
U! p:}A{OAU! :}sOq:l guwn{:)u!
f!:?AOW:}J :}:}uWfI{n
:}q:I :}Uq:l :}AOqU
s:}'fI1:} :}J:}qdso:}uJts :}q:} U! :}gUUJ :}pm!:}{U m{!w!s
{U:)!:jJ:}A StJ:}J:}qM 'uofluWJoJ
U!A sJnoq M:}J U SU :jJoqs su s:}{u:)s:}wp
:}q:I S! :}J:}qdso:}uJts ~:} WOJJ :}J:}qdsodoJt
AUUW JoJ WS!uuq:):}w
U s:}u:}s:}Jd:}J :}J:}qdso:}uJts :}q:} WOJJ :jJodsuuJt pmMuMop JoJ :}{q!suods:}J
:}q:I WOJJ p:}:jJodsuuJt
SPU1M qtnos-q1Jou
:)!l:}qdsod
O:} S! :}s:}J:}:}U! Jo A{f!:?:}J S! :}uqft\ °A:}!{!:}n p:}:}!W!{ A{UO suq S:}xoq ssuw
°p!f!:?A A{f!:?:}J :}OU S! xoq P:}X!W-{{:}M
:}J:}qdso:}uJts
pUU 'J:}A:}MOq ':}J:}qdso:}uJts
-:IJ1!dwo:) p:}:}U{OS! su p:}pmg:}J p:}UO!:}u:}w
J:}AO :jJodsuuJt -uo:) guoJts
:}q:I :}noqgnoJq:} A:}puds!p
:}q:I ':}AOqU p:}:}ou sy
:}:)Jnos :}uu:)y!Ug!S
-:}{d:}p :}uozo :)!l:}qdso:}uJts -sodoJt
U! ss:}:)oJd A:}){ U S! :}J:}qdsodoJt
JOd 'f.J:}S!w:}q:) s:}!:):}ds {u:)!w:}q:)
:)!l:}qdsoUl:}u JO :jJodsUUJj.
J.lOdSU8.J.L a.laqdsoJ8.1JS-;J.Iaqdsodo.J.L
's~J~qds!W~H tBqt
U11JJpm!
~qt U~~Mt~q
ss~u1pnoI:)
,,"sol
S~SB~ X1W Ot pU~t PlnoM
~IqBJ~P1suo:)
SBq U01~~J ~qt
'~UOZ S1qt U1 S~S1.IJ1B ~snB:)~H 'JotBnb~ ~qt tB ;JUO:' ;J.Ju;J8.l;Ji\uo.J /v.J!do.lJ.l;JJU! ~qt 10 ~:)u~s~Jd ~qt WOJl s~s1.IB s~J~qds!W~H w~qtnos pm! w~q1J°N ~qt U~~Mt~q ~U1x1w JOl ~W!t ~uOI ,(I~A9BI~J ~~ '~J~qdSOWtB J~MOI s,q:IJ1J3 ~J!tu~ ~qt q~noJqt s~!:)~ds B X!W Ot P~P~~u ~m sm~,( Z Ot I '~J~qds!w~q
B tnoq~noJq!
S~!:)~s
B X!W Ot sqtuow
Z Ot I tnoqB s~~
t! SB~J~qA\
~J~qdsot~lJSw~q:lnos/~J~qdsot~lJsw~qpoN ~J~q d SOt~lJ S/~J ~ q d sodoJ.L
~J~qdsodolJw~q:lnos/~J~qdsodolJw~qpoN
:(~661 'u!'J~syeS) 'JJe s~u'JW1JUdwo~ ~!l'JqdsOW1t! u'J'J""~'Jq s'JgUl!q~x'J JOj s'JW!~ ~!~s!l'J~~t!JeqJ .'J~t!u!W°p'JJd o~ spu'J~ 1JOdSUt!J1ye~!1J'JA 'J'J~U!"" 'Jq~ U! 'J(!q"" 'SPU!"" (t!~uoz!l°q Aq J'Jwwns 'Jq~ U! ApU'J!~ -Yj'J 'JJOW SJn~~Oye!l'J~t!W jO UO!SJ'JdS!O"JJ'JqdsodoJ1 J'Jddn 'Jq:I U! A(U!t!W Jn~;)O S'JgUl!q~ -X'J ~!l'Jqds!W'JqJ'J~UI 's~u'JW1JUdwo~ ~!l'JqdsOW1t! Jo[t!w 'Jq:I guowt! put! U!q:I!"" s'JgUl!q~x'J ye~!1J'JAput! ye~UOZ!l°q 'Jq:I Apn~S O~('JpOW J'J~t!J1(t!~!W'Jq~ yeUO!SU'JW!P-'J'JJq:I t! p'JAO(dw'J (L861) 'ye ~'JJ'Jq~t!ld 's~u'Jw1Jt!dwo~ P'JX!W-U'J"" gUOUJt!SJ'JjSUl!J1st! p'J~u'Js'JJd'JJs'JW!~'Jwos
~3HdSOW.LV
tol
3H.L
LARGE-SCALE
MOTION OF THE ATMOSPHERE
15
10 ~
~===~~e-driven ~ 11
I
I
I
~,--.?" Larie-scale sub :idence
~ t/)
100 -~~
)
\r---Y--
-
-
-
II
-
Large-scaleascent
I
)--;;-Pump"
-
<~
.
\[---y---,, ~
-
"F~I .
I
'"
I
I
~ 'S
...
4x~atroPiCa1-
I
I
~~,
30
~_400---
£ 300
--
'~
~
.~
~ cumulonimbus some
~ /"
3
clouds
Two-way exchange tropopause folds
penetrate
~
Pole
Equator
Latitude FIGURE 1.3 Dynamicalaspectsof stratosphere-troposphere exchange(Holton et al., 1995).The tropopauseis shownby the thick line. Thin lines are surfacesof constantpotential temperature(in kelvin units).(Potentialtemperaturewill be definedanddevelopedin Chapter14.For now,thesesurfacescan be thought of as those on which horizontal transportoccurs.)The shadedregion of the stratosphereis that within which so-called tropopausefolding occurs. (Tropopausefolding is a processwherebya thin band of stratosphericair intrudesinto the tropospherealong strongly tilted isentropes.Part of the stratosphericair in the fold returnsreversibly to the stratosphereand part is drawnirreversiblyinto the troposphere.)The regionof the stratosphereaboveabout380 K potential temperaturedoesnot havedirect stratosphere-troposphere exchangein the midlatitudes.The broad arrowsindicatetransportby the global-scalecirculation,which is driven by the "extratropicalpump:' The extratropicalstratosphereactspersistentlyon the tropical lower stratosphereasa kind of globalscalesuction pump, the strengthof which varies seasonallyand interannuallyand in which air is graduallywithdrawn from the tropical stratosphereandpushedpolewardandultimately downward.
exchange is that air is forced into the stratosphere by tropical cumulus convective turrets. More consistent, however, is that the net flux from the tropical troposphere to the stratosphere is actually a result of the wave-driven pumping from the extratropical stratosphere (the large horizontal arrows in Figure 1.3). It is this pumping that is the cause of the steady ascent of air in the tropical stratosphere (Holton et al., 1995). The shaded region of the stratosphere, the lowermost stratosphere, is the only part of the stratosphere that can receive material from the troposphere by transport along surfaces of constant potential tem-
.vI J~~d1!qJ U! ~Jm1!J~W~~ I1!!~u~~od o~ wn~~J [[!M ~M .0 ~U1!tSUO:J Jo S~:J1!Jlns uo AII1!!~U~SS~~AOW SI~:>J1!dS~I1!:Js~w!1 J~1Joqs UO '~J~qdso~1!J~S~q1 U! S)[~~M JO S~[1!:JS~W!1 UO In:J:JO s;}ss~:JOJd :J!11!q1!!P~:JU!S .:J!~1!q1!!p1!S! UO!~OW ~q1 U~qM SI~:>J1!dJ!1! Aq p~AJ~SUO:JS! ~Jn~1!J~W~~ I1!!~U~~Od .od ~JnssaJd o~ 1 aJn~1!J~w~~ pUll d ~Jnss~Jd WOJJ p~ss~Jdwo:J
AII1!:J!~1!q1!!p1!~J~M ~! J! U!1!~~1!PInoM I~:JJ1!d J!1!
UlI ~1!q1aJn~1!J~w~~ ~q1 S! 0 .AI~A!~:J~S~J 'J!1! fJp Jo ~1!~q :JY!:J~s pUll ~U1!tSUO:Js1!3 ~q1;)J1! doJpUll N PU1! '1!dq OOOI = °d 'aJnss~Jd S! d '~Jn~1!J~W~
S! 1 ~J~qM 'd"lN(d/odli
= 0 S1! S1!3 [1!~P! U1! JoJ P~uY~P S! ~Jn~1!J~W~~ I1!!1u~~Odz
I~A~1lP.qw 0001 ~q~ ~u ~s:>!doIl ~q! U! In:>:>os~nYUA~s~qg!H "puuq ~pn~!~ul u punolP. P~gUJ~AU lP.qw O~ pUB lP.qw 000 1 U~~A\~~q686 1 o~ 086 1 po!J~ ~q~ J~AO~Jn~uJ~dw~~uu~w ~q~ SA\oqs v" 1 ~Jng!d "UO!~UA~I~pUB ~:>upns ~q! uo UO!~U:>°1 q~!A\ S~!lP.A~J~qdsow~u ~q~ U! ~Jn~uJ~dw~.L
'HOdVA 'H~.LVM.aNV nfl.LV'H~dW~.L
9'1
.~snl1dodoJ1 ~q1 S~SSOJ:>1! ~W!1 ~q1 WOJJ ~J~qds0111J1S ~q:I JO sI~A~I J~ddn s~pmfll1IP!W ~Wfl1JodsUl!J1
~q:I q:>l1~J 01 S~!:>~ds 11 JoJ Sru~A AUl!W s~){1!11I .(~661
111UDf 6 I 01 ~.8 1
-
01 (UDf 91'-
'.{l11~ ~u!J~OH)
) ~snl1dodoJ1 {l1:>!doJ1 ~q1 WOJJ sq:luow
Ul!~W 11J~JU!'01 p~ZA{l1Ul! ~J~M '~Idwl1X~
JOJ '£661
9 01 V Jo
Al1W pUl! Z661 J~qw~AoN
U! ~J~qds0111J1SJ~MOI ~q:I U! JOdl1A J~111MPUl1 zOJ Jo S1U~W~JnSl1~W nl!.\" U! sno~Ul!1Inw!s "(~661 '.{l11~ U01IoH) J~1U!M w~q:lJou U! I-S ww v'O 01 J~wwns -q1JOU U! 1- S WW Z'O ~ru ~snl1dodoJ1 {l1:>!dOJ1 ~q:I ~Aoq111snf S~111J1U~:>Sl1P~!Idw! -S0111J1S~IPP!W
~q:I 01U! Il~M
w~
~q.L .~J~qd
'Sru~A OM1 Sl1 ~UOI Sl1 JoJ ~Iql1~:>floU SU!l1W~J ~snl1dodoJ1
~q:I
111J~111MJo ~U!AJp ~Z~~JJ Aq p~:>npoJd 111U~!S0!111J~U!X!W ~U!A.mA Alll1nuul1 ~q.L 'uO!111In:>J!:> ~{l1:>s-~~ruI ~q:I Jo p~OOS ~q:l111 pruMdn ~111~l1dOJd 111q1SO!111J~U!X!W JOdl1A J~111Mq~!q PUl1 Mol Jo SJ~A111~U!111W~1{l1Sl1 ~Iql1AJ~SqO S! ~snl1dodoJ1 {l1:>!dOJ1 ~q:I Jo 0!111J~U!X!W UO!111Jml1S ~U!A.mA Alll1UOSl1~S ~q:I Jo 1u!Jdw! ~q.L .sq:luow AUl!W JoJ ~Jml1U~!S JOdl1A J~111MJ!~q1 U!111~J ~snl1dodoJ1 {l1:>!dOJ1 ~q:I q~nOJq1 pruMdn
~u!ssl1d J!l1 Jo SJ~A111'MOIS AI~A!111I~J S! ~J~qds0111J1S
{l1:>!dOJ111J1X~pUl! 111:>!doJ1~q:I u~~M1~q pruMdn
~U!AOW
J!"11Jo J~A111 q:>l1~ uo
1JOdSUl1J1 1111UOZ!J°q ~:>U!S "(~66 I '111 1~ U01IoH) "p~pJo:>~J"
S! 0!111J ~U!X!W
UO!111Jml1S wnw!u!w
~q.L .~Jml1JOOW~1 ~snl1dodoJ1 Jo ~I:>A:> 111nUUl!~q:I q1!M AI{l1UOSl1~S A.mA ~J~qds0111J1S 111:>!doJ1 ~q1 ~u!J~1U~ J!l1 Jo SO!111J~U!X!W JOdl1A J~111A\ ('~J~qds0111J1S ~q:I U! SJn:>:>o 111q1~Ul!q1~w Jo UOfll1P!XO ~q:I Jo 1Ins~J 11Sl1 ~snl1dodoJ1 ~q:I WOJJ s~s!J 1! Sl1 P~U~1S!OW s~wo:>~q Alll1npl1J~ J!l1 S!q1 'v J~1dl1qJ U! ~~S Il!M ~M sy) '~snl1dodoJ1
'~n{l1A UO!111Jml1S~:>! ~q1 01 p~:>np~J 0!111J~U!x!W
S1! q1!M
~q:I Jo ~Jml1J~dw~1 Pl°:> ~q:I q~nOJq:I s~ssl1d 1! Sl1J!"11~q1 Jo 1no U~ZOJJ AI~A!1:>~JJ~
S! JOdl1A J~111A\ 'SO!111J~U!X!W Jodl1A J~111M :>!J~qdsodoJ1 {l1:>!dA1 ul1q1 J~MOI ruJ S! ~nIl1A S!q.L .~snl1dodoJ1 {l1:>!dOJ1 ~q:I Jo SJ~1~WOI!){ M~J 11U!q:I!M UO!Il!W J~d S1J1!d M~J 11Jo wnw!u!w 11 S1!q!qx~ Alll1m:>l1 0!111J~U!X!W JOdl1A J~111M~q:l1nq 'JOdl1A J~111MAq P~1!q!qx~ ruI!W!S
111:>~dx~ PlnoM
J!"11Jo s~wnld
~uO .~J~qdsodoJ1
~q 01 JO!Al1q~q
111:>!dOJ1~q:I U! UO!1:>~AUO:>1S!OW d~~p WOJJ ~U!S!J
~U!1:>~g~J '~J~qdS0111J1S {l1:>!doJ1 ~q:I 01U! dn Il~M pU~1X~ SO!111J~U!X!W ~s~q.L
's~nIl1A :>!J~qdsodOJ1 ~U!q:>111W '~snl1dodoJ1 :>!J~qds0111J1S1s~~ruI J!~q1 ~Al1q 01 p~AJ~sqo Sl1 q:>ns 'SO!111J~U!X!W ~U!PIOJ ~snl1dodoJ1 -S0111J1S1s0WJ~MoI
:>!J~qdsodoJ1
{l1:>!dOJ1 ~q:I ~AOql1 AI~111!P~WW! SO!111J~U!X!W ~ru 'suoqru:>oJongoJolq:>
WJoJ!un
q:I!M uofl:>~uuo:>
Alru~u
~q1 pUl! OZN 'VBJ
q1!M s~!:>~ds 111:>!W~q:>P~A!I-~UO'1 .S1U~A~
U! In:>:>o 01 P~A~!I~q
~q:I WOJJ 1JOdSUl!I¥ ~UOZO ~q:I Jo q:>nw
S! ~J~qdsodOJ1
~q1 01U! ~J~qd
'UO!~~J p~pl1qS ~q:I pUl! UO!~~J S!q:I
~U!Al1{J~AO ~J~qds0111J1S ~q:I u~~M1~q 111q:1Ul!q:I J~1S11JApUl1:>Y!U~!S ~q Ul!:> ~J~qdsodoJ1 pUl! ~J~qds0111J1S ~q1 Jo UO!~~J p~pl1qs ~q:I u~~M1~q ~~Ul!q:>x3 1SJY 1noq1!M
~J~qdsodOJ1
.UMOqS Sl1 '~U!pu~:>s~p
~q:I
AIMoIS
~q1 q:>l1~J 10UUl1:> UO!~~J S!q:I ~AOql1 J!"11:>!J~qdS0111J1S z.~Jml1J~d
91
3~3HdSOW.LV3H.L
TEMPERATURE AND WATER VAPOR
SOc 100 r;>
2001 250 300 1
~ '8
500 250
C/} C/}
"'""""
-d =
~==~;/
275
£
90°S
60°
30°
0°
30°
60°
90"N
Latitude FIGURE 1.4 Meanatmospherictemperatureover the period 1980to 1989between1000mbarand 50 mbar averagedarounda latitude band(Salstein.1995).Data not availablein blackenedareas.
the averagetemperatureexceeds295 K. The annualmeantemperaturestructureis largely symmetricabout the equator(although the highest temperatureoccursat about 10° N), with the differencein meansurfacetemperaturebetweenthe tropics and the poles about 35°C.At the top of the troposphere,aboutthe 200 mbar level, the meridionaltemperature gradientbeginsto reverse;at 100 mbar, for example,temperatureincreasespolewardby about20°C. Watervapor is distributedthroughoutthe lower troposphere,at highly variablelevels. The watervaporcontentof the atmospherecanbe expressedin a variety of ways: 1. Mole (or volume) mixing ratio--moles of water vaporper mole of air (seeSection 1.7). 2. Amount of water vaporto dry air by mass[g H2O (kg dry air)-']. 3. Specifichumidity-proportion of watervapor to total air [g H2O (kg air)-']. 4. Relativehumidity-ratio of the specifichumidity to the maximumspecifichumidity possibleat a given temperatureandpressure(dimensionless).(SeeSection1.7.) 5. Massconcentrationg H2O (m3air)-'. 6. Massmixing ratio g H2O (g air)-'. Figure 1.5showsthe zonalmeanspecifichumidity for the period 1980to 1989.Maximum specifichumidities are reachedin the tropics, about 16 g kg-I. By the 500 mbar altitude, the valueover the tropics hasdecreasedto 2 g kg-I. This value of 2 g kg-I also holdsin the northernand southernpolar regions.
(Lor)
.LH d
= !);.=
(1!IOI,)
N
S! ~J~qdSOW:lB ~q~ U! ~u!od AUB ~B UO!~BI}U~:)UO:) mlow "JfI/ Jo UO!~BI}U~:)UO:) mlow
IB~o~ ~q~ MBI SB~ IB~P! ~q1 wold
{B~o~ ~q1 S! 1"101.)pUB ! Jo UO!~BI}U~:)UO:) mlow
~q1 S! 1.) ~J~qM
S! ! s~!:>~ds tJ 10J 0!~tJ1gU!X!W ~wnloA ~q.L '~S~l~~U! JO ~:>ug~sqns ~q~ Aq p~~nq!l:luo:> (SStJW 10 )~unowg ItJ~O~~q:} JO U°!1:>tJ1J ~q~ ~snr S! °!1tJ1 gU!X!W snQ.L 'l~~tJA\ ~stJqd p~SU~pUO:> 10 l~~~tJW ~~tJln:>!:jJt!d gU!pnl:>U! IOU ~nq 'lodtJA l~~tJA\ guwnl:> -U! 'S~:>ug~sqns sno~stJg UtJ s~pnl:>U! s~u~n~!1suo:> UtJ JO wns ~q:} ~:>utJ~sqns sno~stJg tJ 10J UO!~! -uy~p
S!q:} UI '~wnloA
~tJq~ U! s~u~m!1Suo;j lItJ JO (SStJW 10) ~unowtJ ImO~ ~q:} O~ ~wnloA
tJ U! ~:>ug~sqns ~q:} JO (SStJW 10) ~unowg U! O!llJ.J 8U!X'.1W '~wnloA
~q:} JO °!1tJ1 ~q:} StJ p~uy~p
~tJq~Aq P~P!A!P ~wnloA
U~A!g
S! AJ~S!W~q:> :>!l~qdsow~tJ
U~A!g tJ U! ~:>ug~sqns tJ JO (SStJW 10) ~unowg
~q:} S! UO!~tJ1~U~:>UOJ 'l_loW 1:001 X ZZO'9 = YN 'l~qwnu s,OlptJgOAVS! loW 1 U! s~ln:>~ -loW 10 SWO~tJ JO l~qwnu ~q.L "(lOW) ~loW ~q~ S! ~:>ug~sqnstJ Jo ~unowg ~q~ 10J ~!un IS ~q.L
3B3HdSOW.LV 3H.L NI 3:JNV.LSaI1SV.!IO .LNI10WV 3H.L DNISS3BdX3 L°1
6861 01 0861 p°!lad aq1 lOj [l-(l!e
",- (l!e Alp ~~) ~ 1 AlaAa pa:>edsalt1 sau!losI "(~661 'U!a1SJ1!S) ~~) OzH ~] A1!p!Wnq :>y!:>adsueaw Jeuoz S.I :!nIfl~M gpm!1U'l
N 006
009
00£
00
00£
009
.
S 006
~
~
(/J (/J
oo~
I
~
g.
00£ ~
O~Z ooz .
I
I
I
I
I
I
I
r
I
I
I
I
I
I
I
I
I
, OOl . O~
81
3~3HdSOW.LY3H.L
EXPRESSING THE AMOUNT OF SUBSTANCE IN THE ATMOSPHERE
19
Thusthe mixing ratio ~i andthe molar concentrationarerelatedby Cj ~j = -;;jiiT
(1.8)
- pfRT -~=~
p
where Pi is the partial pressure of i. Concentration (mol m-3) depends on pressure and temperature through the ideal gas law. Mixing ratios, which are just mole fractions, are therefore better suited than concentrations to describe abundances of species in air, particularly when spatial and temporal variation is involved. The inclusion of water vapor in the totality of gaseous substancesin a volume of air means that mixing ratio will vary with humidity. The variation can amount to several percent. Sometimes, as a result, mixing ratios are defined with respect to dry air. It has become common use in atmospheric chemistry to describe mixing ratios by the following units:
partsper million (ppm) partsper billion (ppb) partsper trillion (ppt)
.umolmol-l nmolmol-l pmolmol-1
10-6 10-9 10-12
These quantities are sometimes distinguished by an added v (for volume) and m (for mass), that is, ppmv ppmm
partsper million by volume partsper million by mass
Unlessnotedotherwise,we will alwaysusemixing ratiosby volumeandnot usethe added v. The parts per million, parts per billion, and partsper trillion measuresare not SI units; the SI versionsare,asgiven above,JLmolmol-I, nmol mol-I, andpmol mol-I. The concentrationof air moleculesat any temperatureand pressurecan be computed from the ideal gaslaw (1.7).At T = 298 K andp = 1 atm, for example,the concentration, expressedin moleculescm-3, is .01325X 105 N/m2
= 40.897 mol m3
=
mol' m3 )
m3
106cm3
6.022 X
1023 molecules
mol
(ZI"I) 'd :}Jnss:}ld ;)!l:}qdsom:lt? :}q~ pUt? Oz~d Jo SWl:}~ U! U:}~~!lM :}q Ut?;)uo!~t?nb:} S!~
(11'1)
(wdd)
s,(
ffiI pOI = ,(9°1
= [OZH] Aq U',)A!~ s! wdd U!
0!1~J ~U!x!W JOd~A J',)1~A\',)qt 'UO!1~~JJ',)wnloA ',)qt 01 1u',)1~A!nb',)s! UO!1~~JJ',)loW ',)qt ',)~U!S
s.{
(01'1)
~OOI=HM ,s.{ UO!1l!Jn1l!S 1l! 1l!q:I 01 .{ JOdl!A J~1l!M Jo UO!1:>l!JJ ~loW 1l!n1:>l! ~q:I Jo 0!1l!J ~q:I S! H'M
'AI~A!1l!W~1IV
'1u~:>J~d U! p~ss~Jdx~
AI{l!nSn S! H'M ~snl!:>~
p~sn S! 001 Jo J01:>l!J ~q:I ~J~qM
otHd
0 0ZHd" 00 I = H~
(6'1)
';)lmU1;)dw;)'! l;)'!UM JO ;)lnSS;)ld '!U;)!qwu
;)WlJS ;)q:J '!U ;)lnSS;)ld 10duA UO!'!U1mUS S'!! O,!
]tJf1md ;)q:J Jo 0!'!U1 ;)q:J SU P;)UTJ;)P S! H'M A'!!p!Wnq
U;)A!g u 10d 'wdd
;)AUq O,! AmSS;):);)U Apu;)nbooJ
;)A!'!UI;)l '.1 ;)lmU1~W;)'!
10 £_W gTf 1;)q:J!;) JO s'!!Un U! 10duA l;)'!UM JO UOPUj:JU;):)UO:) ;)q:J S! '!! ,\J:JS!W;)q:) :)!l;)qdsow'!u
U! SUO!'!uIn:)]tJ:) ,!no gU!,(J.Ig:) UI
I-W:) s~ln:)~low LOl x £9v'Z £_w:) s~ln:)~low 0101 X £9v'Z
£_w:) s~ln:)~low £101X £9v'Z
:jdd I qdd I wdd I :~J11SUO9Bl1U~:)UO:)
~u!puods~no:)
j!~qt
pUB SO!tBj ~U!X!W
~U!MOIIOJ ~q:J 'wtB
I
=
d pUB )l 86Z
=
1 tB 'snqj,
3H3HdSOmV3H.L
oz
COMPOSITION
1.8
COMPOSITION
OF THE ATMOSPHERE
21
OF THE ATMOSPHERE
The atmosphere is composed primarily of nitrogen, oxygen, and several noble gases, the concentrations of which have remained remarkably fixed over time. Also present are a number of trace gases that occur in relatively small and sometimes highly variable amounts. In spite of its apparent unchanging nature, the atmosphere is in reality a dynamic system, with its gaseous constituents continuously being exchanged with vegetation, the oceans, and biological organisms. The so-called cycles of the atmospheric gasesinvolve a number of physical and chemical processes. Gases are produced by chemical processes within the atmosphere itself, by biological activity, volcanic exhalation, radioactive decay, and human industrial activities. Gases are removed from the atmosphere by chemical reactions in the atmosphere, by biological activity, by physical processes in the atmosphere (such as particle formation), and by deposition and uptake by the oceans and earth. The average lifetime of a gas molecule introduced into the atmosphere can range from secondsto millions of years, depending on the effectiveness of the removal processes. Most of the species considered air pollutants (in a region in which their concentrations exceed substantially the normal background levels) have natural as well as man-made sources. Therefore, in order to assessthe effect man-made emissions may have on the atmosphere as a whole, it is essential to understand the atmospheric"cycles of the trace gases,including natural and anthropogenic sources as well as predominant removal mechanisms. The important atmospheric gasesare listed in Table 1.1 arranged according to the nature of their global cycles. The total quantity of a species both in the atmosphere and dissolved
-U!W JO U09gp!XO
Aq p~wnsuo;')
s! U~~AXO °S!S~~UAso~oqd
-~q S! U~~AXO s,q1JR3 ~q~Jo ~Sow °ll/l
PUg O~/l
Aq p~;')npoJd u~~q ~Agq O~P~A~!I
U~~M~~q S~!I'W lliw
'U~~AXO JOd °S~I;,)A;,)Jt!;')!W~q;')O~~ pUR SUR~;,)O~q~ q~!M wnpq!l!nb~ g ~u~s~Jd~J ~s~~ 1:0;) ;')p~qdsow~g
~gq~ AI~){!I ~SOW S! ~! q~no~Jt! ~~
~U!W~AO~
JO ~~UgJ P~~gW!~S~ ~~
Jt!;')!W~q;') Jo UO!~gU!qwo;')
'P~U!UJJ~~~p Alm~l;') u~~q ~OU ~Agq ~U~~UO;')
AIJt!n~;')g s~ss~;,)oJd ~~
-p~S ~~gUoqm;') Sg ~U!~S!X~ ~SOW qi!M
°J~~gM U! PUg PURl ~~
'W~~SAS UR~;,)o-~J~qdso~g
-gqx~ Aq ~;')gJlns s,q1JR3 ~~ o~ P~Sg~I~J1:0;) IJt! Jo
~
uo S~U~W!
~~ U! P~U!gW~J Sgq UO!~gl
AIUO ~g~ P~~gW!~S~S! ~I 's~ss~;,)oJd
Jt!;,)!~OIO!qAq Sg II~M Sg su09;')g~J Jt!;')!W~q;');')p~qdsow~g Aq P~II°J:}uo;,) ~m SI~A~1~P!XOUOW uoqm;') pUR '~P!XO SnO~!U '~UR~~W '~J~qdsow~g J~MOI PUg J~ddn ~q~ U! s~ss~;,)oJdJt!;')!W~q;') Aq '~~S IIgqs ~M Sg 'P~U!UJJ~~~PS! ~;,)URpunqg ~UOZO '~Jn~gJ~W~~ q~!M J~~gM JO ~Jnss~Jd JOdgA ~~ Jo UO!~g!mA ~~ Aq P~II°J:}uo;,) S! ~J~qdso~g ~~ Jo uo!~!sodwo;') J~~gM ~q.L °S~Sg~ ~U~J~JJ!PJOJ AmA S~Sg~ wnpq!l!nb~
~q~ Jo ~;,)URpunqg ~q~ W~AO~ ~g~ s~ss~;,)oJd ~q.L 's~Sg~
wnpq!l!nb~ Sg s~!;')~ds ~s~~ ~U!qS!lqms~ Alm~l;') '£_01 :;: 'wlliw O!~gJ~q~ '101 ~lqg.L UMOp uo 1:0;) wold 01 UR~ J~~g~J~ S! 1:N PUg S~Sg~ ~Iqou ~q~ JoJ 'wlliw O!~gJ~q.L °S~Sg~wn!.l -q!/!nba-!svnb
JO ~A!~glnwn;');')guou P~IJt!;')~q UR;,)S~Sg~q;')ns °SUO!~!puo;')~~g~S-Apg~~s-!sgnb
U! ~u9InS~J s~ss~;,)oJd Aq p~u!UlJ~~~p S! I~A~I UO!~gJ~u~;,)uo;,) S~! PUg ~J~qdsow~g ~q~ U! S! Sg~ ~q~Jo ~unowg IIgWS g AluO ,.W> IiW 'pURq J~~O ~~ uo 'JI °Sg~ iJl1!lv/nwn:J:Jv URP~IIg;') ~q Ug;') ~! 'UOSg~J ~gq~ JoJ 'pUR ~J~qdsow~g
IiW JI ,'w
+
IiW
= /W
~q~ U! P~U!gW~J Sgq ~u~n~!~suo;') ~q~ Jo ~sow
,.W <
snq.L o/W '~W!~ J~AO JOp~~U! s,q}Jt!~ ~q~ WOJJ P~Jt!qx~ u~~q Sgq q;')!qM
~g~ Jt!nb~ ~snw "w 'AgS '~U~W!P~SSg q1JR~~~ uo p~~!sod~p ~g~ pUR 'IiW 'AgS 'SUR~;,)O ~~ U!
{t!:>!W;}q:>O:>!SAqd
'l't; ~lqR!J1!A
{
I-OI-z_OI
\R:>!W;}q:)
\R:>!W;}q:>
':>!U;}~O!q
z_01-g_01
':>!U;}~OdOlqtUV
\R:>!W;}q:>
wnjlq!1!nb;}
pUR
£_O1-,,_O1
:>!U;}~O!g
lO \R:>!lli;}q:>
':>!U;}~O!q
,,_01-~_01
':>!U;}~OdoJqtUV
;}~1!~s-l.p1!;}~s-!s1!nO pUR
IR:>!W;}q:>
pUR
\R:>!lli;}q:>
11£"0
:>!U;}~O!g
8~"0
:>!U;}~O!g
put! ;)!U~~OdOlqtUV
;)!U~~O!q
put! ;)!U~~odOlqtUV
1t!;)!W~q;)
1t!;)!W~q;)
ZI"O
(HN)
90"0
(HS)
~~£
pUt! 1t!;)!~OIO!g {
OP8'08L
1"1
:lPA:>oN
81
-
£oo.v t;IO'SI Sv 900'9v 900'0£ LI 90'W ZIO'vv 9IO'Z 010'8Z OIO'VP £170'91
ZL'I
put! ;)!U~~O!g
Z£ £IO'8Z
09P'60Z
1t!;)!~OIO!qOl;)!W
l,
O£'I£I 08'£8 6LI'OZ 8176'6£
60"0
I.Jms!Q s,q1Jt1ggupnp uo!1\JInwn:>:>y
OP£6
(wdd) °!111~
~[:)AJ
Sn:j1!1S
gU!X!W
~H O"H EO "ON ON EHN "OS O"N "H 0;) zO;) ~;) Zo zN ';IX l)l ';IN lV
1qgj:li\\ Iejn:J:ljOW
:)gl1l:)AV
S;}SU~J!.I;}qdsow~V
1'13'1HV.L
3113HdSOWLV3HL
zz
RADIATION
23
erals at the Earth's surface. Thus the oxygen concentration in the atmosphere is probably a result of both accumulation and geochemical cycles. While in the air, a substancecan be chemically altered in one of two ways. First, the sunlight itself may contain sufficient energy to break the molecule apart, a so-called photochemical reaction. The more frequently occurring chemical alteration, however, takes place when two molecules interact and undergo a chemical reaction to produce new species. Atmospheric chemical transformations can occur homogeneously or heterogeneously. Homogeneous reactions occur entirely in one phase; heterogeneous reactions involve more than one phase, such as a gas interacting with a liquid or with a solid surface. During transport through the atmosphere, all but the most inert substancesare likely to participate in some form of chemical reaction. This process can transform a chemical from its original state, the physical (gas, liquid, or solid) and chemical form in which it first enters the atmosphere, to another state that may have either similar or very different characteristics. Transformation products can differ from their parent substance in their chemical properties, toxicity, and other characteristics. These products may be removed from the atmosphere in a manner very different from that of their precursors. For example, when a substancethat was originally emitted as a gas is transformed into a particle, the overall removal is usually hastened since particles often tend to be removed from the air more rapidly than gases. In spite of the fact that the atmosphere is composed predominantly of relatively inert molecules such as Nz and Oz, it is actually a rather efficient oxidizing medium. One reason for the atmosphere's oxidizing capacity arises because the atmosphere contains minute amounts of very reactive molecular fragments, called free radicals. The most important free radical in the chemistry of the troposphere is the hydroxyl (OH) radical, which reacts with nearly every molecular species in the atmosphere. In addition, the atmosphere contains trace amounts of species less reactive than free radicals but nonetheless reactive enough to attack a variety of airborne compounds. Ozone (03) is one important oxidizer, which also participates in the formation of the hydroxyl radical. Once emitted, species are converted at various rates into substances generally characterized by higher chemical oxidation statesthan their parent substances.Frequently this oxidative transformation is accompanied by an increase in polarity (and hence water solubility) or other physical and chemical changes from the precursor molecule. An example is the conversion of sulfur dioxide (SOz) into sulfuric acid (HzS04). Sulfur dioxide is moderately water soluble, but its oxidation product, sulfuric acid, is so water soluble that even single molecules of sulfuric acid in air immediately become associated with water molecules. The demise of one substance through a chemical transformation can become another species in situ source. In general, then, a species emitted into the air can be transformed by a chemical process to a product that may have markedly different physicochemical properties and a unique fate of its own.
1.9 RADIATION Basically all the energy that reaches the Earth comes from the Sun. The absorption and loss of radiant energy by the Earth and the atmosphere are almost totally responsible for the Earth's weather, both on a global and local scale. The average temperature on the Earth re-
-J~!;)t!Jt!q;)
'p~qJosqt!
s~ ~;)t!Jlns s!~ B'U~q;)t!~J AB'J~U~ !Ut!~pt!J lIt! !t!q! Ap~doJd
~q OS{t! Ut!;) Apoq){;)t!{q
~q! Aq p~Z~
Y 'ApOq ~q! JO JO{O;) ~q! O! ~;)U~J~J~J OU St!q "Apoq){;)t!{q"
UJJ~! ~q.L 't!~Jt! ~;)t!Jlns put! '~Jmt!J~W~!
~!n{Osqt!
'q!B'U~{~At!M
~q! JO A{UO UO!};)UnJ t! S~ApOq
-){;)t!{q t! Aq P~!!~W~ UO!}t!~pt!J JO A!~SU~!U~ ~q! snq.L 'A;)U~m!}SUO;) S!~JO SS~{pJt!B'~J ApOq){;)t!{q AJ~A~ JOJ {B;)!}U~P~ S~ WnW~X1!W s~q.L ',cpoq'f:JVZq t! P~{{B;) S~ ~Jmt!J~dw~! -~pt!J Jo A!~SU~!U~ ~{q~ssod wnw~X1!w
~q! 'q!B'U~{~At!M
-!PV.i ,cpoq'f:JVZq ~q! P~{{B;) S~ ~Jmt!J~dw~! 'ApOq t! JO t!~Jt! !~Un J~
U~A~B' t! !t! !t!q! A{{B!u~w~~dx~
~q! UO A{~B'Jt!{ spu~d~p
P~!t!J}suow~p
wnw~X1!w
s~Q.L wnw
u~~q st!q !I 'ApOq
ApOq t! WOJJ P~!t!~pt!J AB'J~U~ JO !unoUJt!
~q.L
;)~!~UB't!WOJ};)~{~ ~q! JO SUO~B'~J!U~
B'U~~JJ!P JO s~{n;)~{OW Aq AB'J~U~ !Ut!~pt!J JO UO!}dJosqt!
!U~J~JJ~P Jo s~{n;)~{ow
~q! '~t!qs
JoJ !U~J~JJ~P '{t!J~U~B' u~ 's~ S{~A~{ AB'J~U~ U~~M! ~;)U~J~JJ~P ~q! O! spuods~JJO;)
~q! J~ A{UO AB'J~U~ !Ut!~pt!J qJosqt! Ut!;) ~{n;)~{ow
t! JO UO~!dJosqt! ~q! O! s~~{ddt! OS{t! (fl'{)
~q! U~ s~ UO!}t!!pt!J ~q! pUt! (q!B'U~{~At!M ~q! '~B'Jt!{ s~ 3V
= :J 'Wnn;)t!A
u~t!p~;) t! !t! UO~!t!
AJ~A~ JOJ 'S~!t!~pt!J !t!q! ApOq Y 'UOPV
u~t!p~;) t! JoJ UO~!t!~pt!J Jo !unowt!
~W!} !~Un J~d P~!!~UI~ ~q Ut!;) !t!q! AB'J~U~ !Ut!~pt!J JO !unowt!
-~X1!w t! s~ ~J~q! ~Jmt!J~dw~! ~q! JO ~Jmt!J~W~!
'WnI!;)~S -J~JJ!P U~ sJn;);)o ~Jm;)nI!S put! uo!}~sodwo;)
-~q B'u~;)t!ds ~q! ~;)U~S 'S{~A~{ AB'J~U~ S!~ JO OM! U~~M!~q -~pt!J ~q! JO q!B'U~{~At!M Aq AB'J~U~ JO Uo!oqd JO At!J-X A;)u~nb~lJ
UO!}t!
t! snQ.L '~{n;)~{ow
t!
UO~!t!nb3 °UO~B'~JAt!J-t!WUJt!B'
{{Bws AJ~A) qB'~q s~ Uo!oqd
P~!~;)x~ ~q! JO
~;)U~J~JJ~pAB'J~U~ ~q! U~QA\ "(9°Y ~{qt!.L ~~s) I-S w 801 X 6L66'Z
U~ !qB'~{JO p~~s
~q! pUt! 's f vE_OI X 9Z9°9 = If '!Ut!!SUO;) S,){;)Ut!{d ~J~qM
y = 111{ ;j{ = 3V
(£1°1)
Aq U°!1U!PUJ p:}U!W:} :}qt 'Y:}A:}Y ynuy pun YU!t!U! :}qt U:}:}Mt:}q AgJ:}U:} U! :}:)U:}J:}Jj!P
JO A:)u:}nb:}JJ :}qt Ot p:}tuY:}J S! '3V :}q.L 'AgJ:}U:} JO Y:}A:}YJ:}MOY u Ot sdolp
uoj:J:):}Y:} un U:}qM J:}UUW WOJJ p:}U!W:} S! UO!tU!PU"M
'p:}sn Apu:}nb:}Jj S! (1- W:) J:}qwnU:}AUM -:}WOJ:)!W JO (wu)
SJ:}t:}wounu
:}qt 'wnJ:I:):}ds
U! J:}qt!:} p:}ss:}Jdx:}
:}qt Jo pud p:}Jt!JJU! :}qt uI iw'rf)
SJ:}t
'qtgU:}Y:}AUM St! Aq UO!tU!PUJ :}Z!J:}t:)UJt!q:)
Ot UOWWO:) S! t! wnJ:I:):}ds :}qt Jo uo!tJod :}yq!S!A pun t:}YO!AUJnn :}qt uI lqg!y Jo p:}~S :}qt (\ Aq p:}tUY:}J:}Jt! Y qtgU:}Y:}AUM PUg (\ A:)u:}nb:}Jd °j-Y (.! J:}qwnU:}AUM
=
S!:J :}J:}qM 'Y/:J :}qt pun
'(\
=
A:)u:}nb:}JJ
:}qt
'y
qtgU:}Y:}AUM
-of :}qt AJ!:):}ds Ot p:}sn :}Jt! s:}Jnsu:}w Aq p:}U!w:}
:}qt
'wrut:):}ds
:)!1:)uguwoj:J:):}Y:}
p:}tuY:}JJ:}tU! :}:}Jq.L o:}J:}qdsowtu
:}qt U! UO!tu:)
pun :}:)upns
s,qPUg
:}qt
tuqt pun UO!tU!PUJ Jt!Yos :}qt Jo tSOW SJ:}AO:) :}gunJ S!q.L 'w'rf DOY Ot wu DOl WOJJ
:}gunJ qtgU:}Y:}AUM :}qt 'p:}Jt!JJU! Jt!:}u :}qt PUg ':}yq!S!A :}qt 't:}YO!AUJnn .J.g:}u :}qt J:}AO spu:}tx:} q:)!qM
'UO!g:}J yn:)!tdo p:}yyn:)-os :}qt Ot p:}uyuo:)
Ot OOv WOJJ sqtgU:}Y:}AUM p:}tuj:Ju:}:)uo:)
Jo puuq
:}q n!M ts:}J:}W! Jno
MOJJUU :}qt 'wrut:):}ds
:}q.L °9°1 :}Jng!d
'wnJ:Ij:}ds
U! UMOqS S! wnIj:):}ds
qpgg
:}qt JO :}:)upns
:}J!t
:}q.L °UO!t
'AgJ:}U:} tunwu"M
Jo wnourn
:}qt sY°j:Juo:) ':}W!t
:}qt s:}q:)u:}J Ayynm:)u tuqt u°!1U!PUJ Jt!Yos Jo wnowu
:}qt 't:)uJ UI °qpgg
Ot w:}Jt!dsunj:J
:}qt s:}tm!tSuo:)
:}yq!S!A :}qt JU:}U
:)!t:}uguwoj:J:):}Y:}
:)!t:}uguwoj:J:):}Y:}
p:}nu:) S! 'y sqtgU:}Y:}AUM St! Jo J:}pJO U! p:}gunjJt!
o:}:)uds OW! s:}du:)s:} tuqt UO!tU!PUJ yn!Ils:}JJ:}t gu!ogtno
AgJ:}U:} s,qpgg
o(w'rf L °0 Ot voO) wu DOL
:}qt Jo uo!tJod
S! AgJ:}U:} :}qt Jo tSOW ':}:}S n!M :}M su 'qgnoqtyn
-u:} :}qt J:}AO s:}tU!PUJ uns -U!PUJ Jo Uln.ll:Jads:}qt
:}urns :}qt tU 'pun
:}qt sY°j:Juo:) :}J:}qdsowtu u sAuyd 'u°!1U!PUJ
:}qt Jo :}:)uuyuq AgJ:}U:} :}qt U! :}YOJtuntJodw!
:}q ot Jt!:}ddu
AUW t! qgnoqtyn
AgJ:}U:} WU!PUJ gu!ogmo
AJ:}A
':}J:}qdsoUJ:Iu :}q.L o:}:)unynq
PUg gU!wo:)U!
:}qt JoJ gu!1uno:):)u
:}q.L °uns :}qt WOJJ UO!tU!PUJ Aq P:}A!:}:):}J S! su :}:)uds OW! )[:)uq u°!1U!PUJ:}J Aq AgJ:}U:} q:)nw su :}soY :}YOqM :}qt uo :}J:}qdsoUJ:Iu :}qt PUg qpgg
:}qt tuqt
gU!tu:)!PU!
'tumSUO:) A{J!UJ su!Uw
..'"
3~3HdSOWl.V3Hl.
RADIATION
106m
104m Low Frequency
High Frequencyr
102m
(Radio) i 10 m
10 cm
cm -1
10
cm
lO-2cm
-4
10 cm
Visible Ultraviolet
j lO-6cm
X-Rays{
lO.scm
Gamma. RHV~ ---J- { lO-lOcm
Cosmic Rays
1012cm
FIGURE 1.6 Electromagneticspectrum.
~
~ -< ~
-
~ = (JQ ~
>-'
25
'SS~Jd :>!W~p~:>v JO UO!ss!WJ~d Aq p~1u!ld~~ '(£861 'l~qbU (~u!1 p~qs~p) )l LLL~ 1~ Apoq~:>~lq ~ Jo 1~q1 01 p~J1!dwo:> (,_wTf z_W;\\) ~:>u~!P~lJ! 1~l1:>;JdSJ1!IOS Lot :onIn~I.!I
wl1 'l{:}guaIaAeM O'Z
9' I
Z'I
8'0
v'O
0
~
~ ~ ~
~ 3,N ~ 3,
]CO)
~
~ ~ §"
CO) ~
"(9'V ;)Iqt!.L)tUt!tsuo:>uut!wZtIog ;)~ S!'l ;)l;)qM
I (vI'I)
-
.LY~II/";}
= (y)Hd
.- Y'lZ:Jll'l Aq q:lgu~I~At?M
a:} P~:}t?I~J S! (I_UI
z_UI M.)(y)8d
Apoq){:>t?Iq t? Jo J~Mod
put? ~Jmt?J~dUI~:}
~A!SS!UI~ :>!:}t?UIOJq:>OUOUI~q.L
°p~Jl!JJU! ~Iq!S!AU! ~q:I U! UI'ri 0 I moqt? :}t?SJn:>:>OA:}!SU~:}U! uo!:}t?!pt?J U! ){t?~d ~q.L °q1Jl!3 ~q:I gU!:}t?UI!xOJddt? ')I 00£ :}t?Apoq){:>t?Iq t? UIOJJ AgJ~U~ :}Ut?Wt?JJo UO!SS!UI~ ~q:I SMOqS 80 I ~Jng!d
lSt?IIuO:> uI o(UI'ri ~00)
UIU OO~ moqt? :}t? UInJ:}:>~ds ~Iq!S!A ~q:} U! SJn:>:>o UO!:}t?!pt?J :}u~P!:>U! Jo A:}!SU~:}U! UInUI! -1rnUI ~Q.L 'L 0I ~Jng!d U! UMOqS S! )I LLL~ :}t?Apoq){:>t?Iq t? Jo :}t?q:Iq:}!M p~mdUIo:> st? uns ~q:} Jo UInJ:I:>~ds AgJ~U~ ~q.L ')I 0009
moqt? :}t?Apoq){:>t?Iq t? Jo :}t?q:}s~:}t?UI!xOJddt? AI~SOI:> ~J~qd
~q:I Jo liD{ OO~ J~mO ~Q.L °UO!:}t?!pt?J :>!:}~ugt?UIOIl:>~I~ Aq AIu!t?UI SJ~
-SO10l{d ~q:I P~IIt?:> 'uns
UO!:}t?!pt?"M°q:lJl!3 ~q:I uo P~A!~:>~J UO!:}t?!pt?J ~q:I Jo :}SOUI S:}!UI~ 'iJ.JiJl{d
-so:}oqd ~q:I Aq p~n!UI~
-At?I J~mO ~q:I a:} p~JJ~JSUt?II S! AgJ~U~ :}t?q:IP~A~!I~q ~uo o:}U! SUIO:}t?H JnoJ Jo uo!snJ) ~q:I UI °UIn!I~q
S! :}J "( SSt?UIJo ssoI IJt?UIS t? q:I!M 'UIO:}t? ~H
SUO!!:>t?~Jm~I:>nu
Aq p~:>npoJd
S! AgJ~U~ uns
~q:I Jo ~JO:>
1Jl!d ~uo pUt? U~gOJPAq s1Jl!d ~~Jq:I AI~:}t?UI!xOJddt? Jo dn ~pt?UI S! !I og){ oEOI
X 66°1 moqt? SSt?UI Jo pUt?liD{ ,01 X 96°9 !noqt? sn!pt?JJo ~J~qds sno~st?gt? S! uns ~q.L
92:
3113HdSOW.LV 3ffi
1'6'1
UO!}8!P8H I8!.I}Sa.I.l3LPU8 .l8IoS
RADIATION
I
I
I
I
I
I
I
60
70
27
30
-'8
/
300 K Blackbody
201
:j.
C'1 '8 ~ ~
~~
10
01
.' 0
I
I
10
20
I
I
~-,--,-,
30 40
Wavelength,
50
~m
FIGURE 1.8 Spectralirradiance(W m-2 p,m-l) of a blackbodyat 300 K.
As can be seenfrom Figures 1.7 and 1.8, the higher the temperature, the greater is the emissive power (at all wavelengths). We also see that, as temperature increases, the maximum value of FB(A) moves to shorter wavelengths. The wavelength at which the maximum amount of radiation is emitted by a blackbody is found by differentiating (1.14) with respect to A, setting the result equal to zero, and solving for A. The result with A expressed in nm and T in kelvin units is
Amax=
2.897 X 106 T
(1.15)
Thushot bodiesnot only radiatemore energythan cold ones,they do so at shorterwavelengths.The wavelengthsfor the maximaof solar andterrestrialradiationare480 nm and about 10,000nm, respectively.The Sun, with an effective surfacetemperatureof about 6000 K, radiatesabout2 X 105more energyper squaremeterthan the Earth at 300 K.
.1 Ot 0 jO :J\U;)S1! UO p:Jss:JJdx:J':Jl:Jqdsowt1! :Jqt (p) PU1!'lod1!A l:Jt1!N\ (;) ':JUOZOPU1! U:J~AXOJ11jn;):Jjow (q) lOj 1!J:I;):JdsUO!twosqy .UO!twosq1! lOj :Jjq!SUOdS:Jls:Jjn;):Jjow :Jqt :Jt1!;)!PU!SUO!~
-:Jl p:Jp1!qS l:JA:Jj1!:Js t1! PU1!:Jl:Jqdsowt1! :Jqt jO dot :Jqt t1! :J;)U1!!p1!ll! j1!lt;):JdS J11jOS(1!)
6.[ DL19I.!I
run 'q1B'UgIgAR M.
> 0-
~ 0 .a a. -< ~.
~
~
0
'S <' ~,
~
~
~ 'S
-< '< wTi 'q!gUgIgA~A\ 'l°£
-- 8°Z
voz
O'l
9'1
l'l
,-.-r-r P~lP.J1UI
'loJozIf
8.0
:
t'O
,-.-
0
~Iq!S!A :I . tI --
I I ~
~(I ! i\fl~ 1';.0
~~
yaA~ gas 19 aAJn:) a:>Ut!!pgJJI JP.YoS ZoO
.
alaqdsow1V ap!S1no aAJn:) a:>ug!pgJJI JP.YoS )l 0009 19 f.poq){:>gYH lOJ aAJn:) f.glaug:
\ \
~~
~
10'
8, N
J! ,
=' 8, I/}"Z
I
.(g). . . . . .. . , I I . . . . , . . . , . . . . . . . . . .
'Z
3~3HdSOW.LV3H.L
SlZ
RADIATION
29
If (1.14) is integratedover all wavelengths,the total emissivepower FB (W m-1 of a blackbody is found to be
aT4
where u 1.9.2
= 5.671 X
(1.16)
10-8 W m-2 K-4, the Stefan-Boltzmann constant.
Absorption of Radiation by Gases
Absorption of radiation by gases is one of the most important aspects of both global meteorology and atmospheric chemistry. The solar spectrum is radically altered by absorption as the radiation traverses the atmosphere. It is important to note that the molecules that are responsible for the most pronounced absorption of both solar and terrestrial radiation are the minor constituents of the atmosphere, not N2 and O2. Thus ozone in the upper atmosphere effectively absorbs all solar radiation below 290 nm, whereas water vapor and carbon dioxide absorb much of the long-wave terrestrial radiation. The most significant absorbing gasesin the atmosphere are O2, 03, H2O, and CO2, Figure 1.9 shows the solar irradiance at the top of the atmosphere and that at sea level. The absorption spectra are quite complex, but they do indicate that absorption is so strong in some spectral regions that no solar energy in those regions reaches the surface of the Earth. For example, absorption by O2 and 03 is responsible for removal of practically all the incident radiation with wavelengths shorter than 290 nm. However, atmospheric absorption is not strong from 300 to about 800 nm, forming a "window" in the spectrum. About 40% of the solar energy is concentrated in the region of 400 to 700 nm. Water vapor absorbs in a complicated way, and mostly in the region where the Sun's and Earth's radiation overlap. From 300 to 800 nm, the atmosphere is essentially transparent. From 800 to 2000 nm, terrestrial long-wave radiation is moderately absorbed by water vapor in the atmosphere. Table 1.2 summarizes the attenuation of solar radiation by the atmosphere. Figure 1.10 shows the penetration of radiation as a function of height in the atmosphere. Wavelengths shorter than about 100 nm are absorbed by O2 and N2 and do not penetrate below 100 krn. O2 absorbs strongly in the range 100 to 175 nm, the so-called Schumann-Runge continuum, and also in the range 175 to 200 nm, the Schumann-Runge bands. Wavelengths in the 200 to 245 nm range are absorbed in the stratosphere, mainly by O2 (the weak Herzberg continuum). Wavelengths between 200 and 230 nm do penetrate as low as 30 krn altitude. Ultraviolet absorption by ozone, which peaks near 254 nm (the Hartley band of 03 absorption), attenuates solar radiation over the entire range of 230 to 300 nm. As a result, solar radiation of wavelengths shorter than about 290 to 300 nm does not reach the Earth's surface. Why molecules absorb in particular regions of the spectrum can be determined only through quantum chemical calculations. In general, the geometry of the molecule explains, for example, why H2O, CO2, and 03 interact strongly with radiation above 400 nm but N2 and O2 do not. In H2O, for instance, the center of the negative charge is shifted toward the oxygen nucleus and the center of positive charge toward the hydrogen nuclei, leading to a separation between the centers of positive and negative charge, a so-called electric dipole moment. Molecules with dipole moments interact strongly with electromagnetic radiation
gaa='O
oQ'g'
°0" oQo
r::.
0
N
'0 '0
~ o' ..,
g. ~
0 -= ~ '" (") ~ ~ n ~. =' (IQ ~ 8-
~ ~.
;.
~ 0
='
0
~ ~.
.
I
a
[
~ ='
~(D
-. ::s
" .g
g'~
~.
S
0 ~
0 ::s
~(JQ
sP;
z §
~ (")
::s
'" -.
C/O
!1.g0?
n
N ~
;j. ... =' '< (') (")
~ 8.
Of
N ::: ~8[
Q.
(JQPOa'PO8 ~qtt1 po 8 ... po a' _. po =' '" =' '" '" "'- =' n n 0 Q. 0.. ::T '" .. """"'-d..n 8(JQ '0 Q. ... Ei P! _. '< go ~ o' =' 'it ~
[ 3'<""
IO~.
. 3 '" ~::s
::s>
~
=,' ~
~.
~ ~ '< '0' ~ =-8 '<
~ ~
= =;.
~ 0 '"
~ e. o'
= =
.0 ~ -.In..,
.., n
... N"",g. 0 0-
;J.
'< <
~
=
'"1 '0 a. 0
'"
II'
3
='
-
Q. ~, '
'"
= ~~~~ 'A ... ~ ~,
(j-. 0 0-
~~.
~,
~
;Q. ~O'I'<::J:Q.o ~~'O ...~, '~
~
~,
'"
a =-'<~~ CD'
~
~. '<
0 "1
§. () ~
e.
~. 0
'8 '"
~
~
~ ;],0 = ~ 3 = ~ 0'1 O
-. 9
=CD='O '" =-
~=Q1", ~ 0
~~OQW 90; g
..,
'" '"
;=.,-11'0 ~ II' :3. = = (JCI 0
S' 3
~
0""" ...
(")~=c:r II' "'-
'"
~3~O
'"
3
n
o
3
'"
0 ~ '"'
~
N
0\
~o~
-
0.' =N p:.
a. °
-.J.aOQ
tVo-q.
-°=
'"
51
< ~
-~"'\Q~C/J I
-'0-8' 8'<",.. (: ~ =' (D ~ ..
(: '0'0
'"
'-'
'"
_...3
e:.
a
\-" \-"
= ~
a. 0 ° '"
.aOQ
°= 0
'"
=. ~
3 ~
(D
3 ~ ~o"§;~~.:;c ~ '" 0' -.=- 0 0 ~e!.5'Ja 0 g=-.a@ ==""-< '0 0 ~ ~ g (") '< C'. '" N~~g'8 0", =' N~s:§ S ... N" §-
0 = '"
os:~ W n
0 = '"
:r
@@~ (JQ"'(JQ _. '0
Oo~~~-~O ~ a
3 0\ ~. ~ ~ § ~ "'. Q.,&' -~ '<' w~
~
n
~~""OtI: -a8.C:'ii'a~
.
.N
.
-
~ 0 t"
n
N-~
...
... 3
~
;" '0 r?~ ~ < ="_=;n ~n~no=' -n~=n ~... .~ 0 0 ~. =" = '"
~
E
~!:!..gg n
-'"";I>s 'i5:~~~~ n'g.=-~ - n : n
"'~~~;I>
...J;I>
0 c ...
~ ... po ~ ~ ...
~=o 3~~9: ~ 0 ~
""a"8Z
-~
'< < n .:,
~ ~
Of) tIj
...
'" tI1 3 0 ~ n =~
.,
o~ ~ ~. = 0
~. ~ 8 I;T "0 '"
~o~
I..) 1..)...°
~'<
5 '"0
'Q C'.
a"-d
~
~'"
=' a"
",O",0-0 ~. "' '" o~' 0 a" c~
tV 0
cn 0
0-
g>~g 3 ~
~ VI
§'
110 I 110
~~ ",'0 =-=0 (D ~ :1. ~ .~
~
0 ~
~~ (D (D ~>< -<~
~ ~. 3
VI
"5
t-J"'-J
0°
...J5~ ~ 0
"t: H
UI
~'O.o VI \0
.08.0 VI \0 ~ 0
~
~ <
[ .,.
;l>-
e:
~
~ ~
o.
w N
N 10
N 0
~ '" 3
.
0""0 VI VI
]
w VI
. o. 0""0
~
N "t:
~6'~ (,.)
~
-0
~8~ N
~o~
N N 0 ~
~ ~ =
~. 110
~
~ ~
'< t:t. '" 0 (") = 110 ~. ~ = (D no :1. = = '" (Jq ~. ~. '< = 110 (")'0 @'O
'" s-g~ . c:r
<=E;" ~ ~ ... (D 110 ~. ~ t:t. ~
~ ~ 110 no
3
~~.9~.o.o '0 .. '" tV
CD' 0:<:
8 0 '0 ~ ~""a'
~e:.>o 08 a""
~
I 'g. ~ ~ ~ ~ ~ c ~ ... =" = So > ~ ~ C Q.
=" = So rI1 Q ;... ~ !. !" =" = ~ ~ ;:. ~ >
> ;: 5 a
N
I-"
~ 1= ~
Of
RADIATION
200 '
I
I
I
50
100
150
I
I
I
200
250
300
150
8
~
Qj
] ~ 50
0
-
Wavelength, nm FIGURE 1.10 Depth of penetrationof solar radiation through the atmosphere.Altitudes correspondto an attenuationof lIe (Kluwer AcademicPublishersAeronomyof the Middle Atmosphere, 1984,Brasseur,G. and Solomon,S. with kind permissionfrom Kluwer AcademicPublishers).
because the electric field of the wave causes oppositely directed forces and therefore accelerations on electrons and nuclei at one end of the molecule as compared with the other. Similar arguments hold for ozone; however, nitrogen and oxygen are symmetric and thus are not strongly affected by radiation above 400 nm. The CO2 molecule is linear but can easily be bent, leading to an induced dipole moment. A transverse vibrational mode exists for CO2 at 15 JLm,just where the Earth emits most of its infrared radiation. Considering the outgoing long-wave infrared radiation, the spectral region from about 7 to 13 JLmis also a window region; nearly 80% of the radiation emitted by the Earth in this region escapesto space. Most of the non-CO2 greenhouse gases, including 03, CH4, N2O, and the chlorofluorocarbons, all have strong absorption bands in this window region. For this reason, relatively small changes in the concentrations of these gasescan produce a significant change in the net radiative flux. As the concentration of a greenhouse gas continues to increase, it can absorb more of the radiation in its energy bands. Once an absorption wavelength becomes saturated, further increases in the concentration of the gas have less and less effect on radiative flux. This is called the band saturation effect. For CO2, for example, the 15 JLmband is already close to saturated. In addition, if a gas absorbs at wavelengths that are also absorbed by other gases, then the effect of increasing concentrations on radiative flux is less than in the absence of band overlap. For example, there is significant overlap between some of the absorption bands of CH4 and N2O; this overlap must be carefully accounted for when calculating the effect of these gases on radiative fluxes. Even with the band saturation effect, it is incorrect to conclude that because there is already so much CO2 in the atmosphere, more CO2 can have no additional effect on absorption of outgoing radiation. When gases are present in small concentrations, doubling the concentration of the gas will approximately double its absorption. When an absorbing gas is present in high concentration the effect of further addition is not one-to-one but it is not
.(~661 'JJdI) p~xy Sl~1~WultJd l~q10 lIu ~U!Ploq 'SI~A~I 0661 01 0861 S1!wol} UO!1Ul1u~:) -uo:) "OJ ~Q1~U!SU~l:)U!JO 1lns~l U su ~snudodol1 ~q11u ~:)UU!PUll! 1~U U! ~~uuq:) (:) puu :(~IU:)S :)!W -Q1!JU~01~Q1 ~10u) p;}lUl}U! IUUll~q1 ~q1 U! "OJ Jo S~U!IIUl1:);)ds ~Q1Jo Q1~U~l1S~Q1Jo UO!1U1U~S~ld~l (q) :~snudodol1 ~Q11U (I-('-W:) "_w M) ~:)UU!PUll! p~ltJlJU! 1~U (u) :"OJ Jo 1:)~JJ3 11"1 ::!nIf}f)I.!l
I-W~ OOOZ OO~I 1-_:'-_-~I~I_JIIIIII'I'lllllj£OO'O-
'l;}qwnU;}A~A\ 0001
OO~
0
~~9
s~nlt!A 0661 Ot 0861
-
WOJJ ~P!XO!a uoqJt!:)
zoo.o-
gU!St!~J:>UIJO ~:>Ut!!Pt!JJI -
~snt!dodoJl.
uo
I
t:>~JJ3
3 ~ ~ ~ =
n~ §. 100.0-
3
~
8
(:)
0 OO~T
Don?
nnnT
,,_or
5.
t"""'
or S" ~ ~.
,_or
""
w
'0
(q)
-sq:tguaI!sau!'l 'loJ
.
I
I
-
OOCT
I
I
r
or
-J
~
I
I
I
I
I
-
v
v'O
Q.
C/)
'
~~ 8g
£'0
I
~ "-"
I
~
~'L
01
~I
OZ
Ov
001
wri 'q}~U~I~A~ 1\\
0
o;..O~.-;., (')
3,'"
~~
0
~ !:j ~I
(~) I
(') '" = =r q 3
~-g~
I'or
00<:
0
'
Z'O
~sn~dodoJ.L 1~
~:)U~!P~JJI1~N .
p;)1eJmes P;);)PU! S! UO!1Wosqe ZO:J ;)q"! ~1:);)JJ;) ou 1sowIB seq UO!1eI!U;):)uo:)zO:J U! ;)se;)J:)u! ;)q1 'pueq wrl ~I ;)q"!Jo J;)1U;):);)q"! 1Y 'P;)xy PI;)q 'ss;)u!pnoI:) se q:)ns 'SJ01:)eJJ;)q10 ne q1!M (0661 010861 wol] UO!1eI!u;):)uo:) U! ;)gueq:)) ;):)uepunqe zO:J U! ;)gueq:) snO;)Ue:jue1Su!ue Jo 1:);)JJ;)P;)I;)POW ;)q1 SMOqS;)Wtll] wouoq ;)q.t 'wrl ~I IP.;)US1S!X;)pueq UO!1Wosqe gUOI!S e 'J;)!IIP.;) P;)10U sY 'W1U!:)oos UO!1Wosqe zO:J ;)q1 SMOqS II' 1 ;)Jng!d Jo ;)WtlJJ ;)IPP!W ;)q.t ';):)epns ;)q1 gu!Ae;)1 1eq1se ;)wtlS ;)q"! ;)q PlnoM ;)snedodoI! ;)q"!gu!q:)e;)J ;):)ue!peJJ! ;)q"! 'u0ge!peJ P;)IP.JJU!011U;)IP.dsueI! ;)J;)M ;)J;)qdsoW1e ;)q"!JI 'spnol:) pug s;)seg ;)snoqu;);)f3 Jo ;):)u;)s;)Jd ;)q"!WOJJ1Ins;)J W1U!:)oos ;)q"! U! S;)q:)10U ;)q.t 'wri
~ 1 pug 0 1 U;);)M1~ S;)!I wnw!xew
;)q"! s;)JmeJOOW;)1:)!l;)qds
-OW1e IB:)!d,(11Y ';)JmeJOOW;)1 pug q"!gu;)I;)AeM U;)A!g e 1e P;)11!W;) ;)q ue:) 1eq"! ,(gJ;)U;) wnw ;)q"! ';)AJn:) ;)q"! Jo ;)dOI;)AU;) J;)ddn ;)q"! Jo ;)deqs ;)q"! S;)U!UJJ;)1;)P (v 1 ' I) UO!1:)unJ :J[:)ueld
-!xew
;)q.t 'I-(I-W:)) z_w M. U! ';)snedodoI! ;)q"! 1e ;):)ueweJ P;)IP.l]U! ;)q1 U! UO!1e!JBAIBI!:);)ds ;)q"! SMOqS II' 1 ~~!d Jo ;)WtlJJ d01 ;)Q.L 'SMOnOJ se P;)U!Bldx;) ~ ue:) wol] S;)wo:) ;)se;)J:) -U! S!q1 ;)J;)QM. "(~661 ':J:JdV 1:);)JJ;);)snoqu;);)Jg Ie101 S1! U! ;)se;)J:)u! %O'l 01 01 e 01 spe;)I ;)nleA ,(ep-1u;)s;)Jd S1! WOJJ zO:J Jo uO!1eI!u;):)uo:) ;)q"! gU!Iqnop ';)IdWtlx;) JOd "J;)q"!!;)OJ;)Z
Zf
3~3HdSOW.LV 3H.L
ENERGY BALANCE
FOR EARTH AND ATMOSPHERE
33
in this portion of the spectrum. Away from this band, however, where CO2 is less strongly absorbing, the increase in CO2 does have an effect. As more and more CO2 is added to the atmosphere, more of its spectrum will become saturated, but there will always be regions of the spectrum that remain unsaturated and thus capable of continuing to absorb infrared radiation. For example, the 10 .urn absorption band is about 106times weaker than the peak of the 15 .urn band, but its contribution to the irradiance change in the lower frame is important. And as CO2 concentrations increase, the importance of the 10 .urn band will continue to increase relative to the 15 .urn band.
1.10 ENERGY BALANCE FOR EARTH AND ATMOSPHERE The Earth's climate is controlled by the amount of solar radiation intercepted by the planet and the fraction of that energy that is absorbed. The flux density of solar energy, integrated over all wavelengths, on a surface oriented perpendicular to the solar beam at the Earth's orbit is about 1370 W m-2. This is called the solar constant.3 Let the solar constant be denoted by So = 1370 W m-2. The cross-sectional area of the Earth that intercepts the solar beam is 1TR2,where R is the Earth's radius. The surface area of the Earth that receives the radiation is 41TR2.Thus the fraction of the solar constant received per unit area of the Earth is (1TR2 /41TR1 = 1/4 of the solar constant, about 343 W m-2. Of this incoming solar radiation, a fraction is reflected back to space; that fraction, which we can denote by Rp, is the global mean planetary reflectance or albedo. Rp is about 0.3 (Ramanathan, 1987; Ramanathanet al., 1989). Contributing to Rp are clouds, scattering by air molecules, scattering by atmospheric aerosol particles, and reflection from the surface itself, the surface albedo (the surface albedo is denoted as Rs). The fraction 1 - Rp represents that fraction of solar short-wave radiation that is absorbed by the Earth-atmosphere system. For Rp = 0.3, this corresponds to about 240 W m-2. This amount is matched, on an annual and global average basis, by the long-wave infrared radiation emitted from the Earth-atmosphere system to space(Figure 1.12). The infrared radiative flux emitted at the surface of the Earth, about 390 W m-2, substantially exceeds the outgoing infrared flux of 240 W m-2 at the top of the atmosphere. Clouds, water vapor, and the greenhouse gases(GAGs) both absorb and emit infrared radiation. Since these atmospheric constituents are at temperatures lower than that at the Earth's surface, they emit infrared radiation at a lower intensity than if they were at the temperature of the Earth's surface and therefore are net absorbers of energy. The equilibrium temperature of the Earth can be estimated by a simple model that equatesincoming and outgoing energy (Figure 1.13). Incoming solar energy at the surface of the Earth is Fs
=
So
-(1
-
Rp)
(1.17)
4
3Since the late 1970s, regular satellite measurements of the solar constant have been perfonned (Mecherikunnel et aI., 1988). Maximum differences in the value of Soamong the instruments is about 2 W m-2, corresponding to a little more than 0.1 % of the value of So. Over the period 1980 to 1986 the so-called SMM/ ACRIM instrument measured an average value of So of about 1386 W m-2, whereas that on NIMBUS- 7 reported an average So of about 1370 W m-2.
(61"1) ~/I
.ot
°S(dN- I)
= a.r
,a.LJOj uo!ss;)Jdx;) 3'U!MOIIOj ;)q1 SPI;)!A 7d PUg Sd 3'Uflgnbg a v~.o = 7.!J
(81'1) S! ;}qol~;}q!
J;}AO P;}~RJ;}AR xng P;}~~!W;} ;}ARA\-~UOI;}q!
;}q! UO P;}U!J;}P '3.L 'W;}~SAS ;}J;}qdSOW~R-q!JR3
;}q! JO ;}Jn~RJOOW;}~Apoq){;)Rlq
'(91"1)
Jo S!SRq
;}~RJ;}AR OR JOd
":I:>BjJnS:lq:J ,{q p:lqJOSqB ,{j1S0W S! J:lPU!lIW:lJ :ltj! pue p:l!:>:lIJ:lJ S! UO!!B!PBJ J1!IOS8u!wOJu!)0 (z_w 1\\ £01-) pJ!q:J-:lUO !noqy "U09BWBJ P;)J1!JJU!)O !nd!no !:lU ,{q P:l:>uBIBq :lq !snw
uBIBq '{8J:lu:I IIBJ:lAO s, tj!JB3 nO! :!nIfl~I.!I
~J~qdsodoIl ~q:J pue ~:>epns ~q:JmJeM Ot S! S!q:JJO t:>~JJ~~-.'s~seg ~snoqu~~Jg
;)J;)qdsOW1g .'
JP.;)IJ
qgnOJq1s;)ssgd
uo!:jg!pgJ
JP.(OS
~qt Aq p~tt!W~-~J pue p~qJOsqeS! u0ge!peJ p~Jt!JJU!~q:JJo ~woS
t
'~
r~
z_W1\\ £01 '3"M3HdSOW.LV 3H.L aNY 3;:)Vd"MOS S,H.L~V3 3H.L AH 03.L;:)3'ld3"M SI NOI.L VIOW ~V'10S 3WOS
t
~ 'Z"_W
M. Ot'Z' 'NOI.L VIOVlI
O~lIVlI.ilNI
DNIOD.LflO
,_w M. £f'£ 'NOI.! VIOVH HV'IOS ~NIWO::>NI
.L~N
P£
:;nI3HdSO~V3H.L
ENERGY BALANCE
FOR EARTH AND ATMOSPHERE
35
Reflected Emitted
For Rp = 0.30, this equation gives Te = 255 K. If the Earth were totally devoid of clouds,
then the global albedo would be about Rp = 0.15. With this value of Rp, the equilibrium temperature Te = 268 K. This simple equation predicts that Te varies about 0.5 K for a 10 W m-2 (0.7%) variation in the solar constant, or for a reflectance variation around Rp = 0.3 of ~Rp = 0.005. The net radiative energy input, F net
= Fs -
F L, is zero at equilibrium. If a perturbation
occurs then the change in net energy input is related to the changes in both solar and longwave components by
= ~Fs - ~FL
(1.20)
To reestablish equilibrium, a temperature change ~T eresults, which can be related to ~F net by a parameter }.O,
whereAo,having units K (W m-1-1 is called the climate sensitivityfactor. If we neglect any feedbacksin the climate system,Aocanbe estimatedas (8Fe/8Te)-I,
~=,
Te 4FL
(1.22)
'p~xy PI~q ~lP. SlOt:)nJJ~qtO pun tu~ -!pn1'i ~JntnJ~dw~ In:)!tJ~A ~q:! J! '~:)unJnq A~J~U~ ~q:! ~JOtS~J°t )I Z'I Aq ~s!l tsnw ~JmnJ~ -W~1 ~:)nJlns ~q.L 'sqJosqn 1! unq:! A~J~U~ ss~I S~1n!pnJq:lm3 ~qt pun p~:)npro AI!lP.lodw~t S! ~:)nds Ot P~U!"W~A~J~U~ ~q:! 'J~q~!q w OOZJ~PI°:) S! t! ~snn:)~H 'w OOZtnoqn Aq s~s!l ~:)nds Ot s~n:)s~ A~J~U~ JnUlJ~q:! q:)!qM moll ~pm!}Jn un~w ~q:! tnq:! S! tIns~J ~q.L 'W~tSAS~l~qd -sow1n-q:lm3
~q1 Jo J~Mod p~tt!W~ un~w ~q:! s~.qS!U!W!P I~A~I In!l1snpu!~ld ~q:! wolJ cOJ
Jo ~U!Iqnop y '~pm!}Jn W:>J9 tnoqn tn p~q:)n~J S! 'W~tSAS ~J~qdsowtn-q:lm3 ~q:! Jo l~MOd P~U!"W~un~w ~q:! Ot ~u!puods~JJo:) ~Jntnl~dw~1 Apoq){:)nIq ~qt ')I ~~Z Jo ~JntnJ~w~t ~q:! 'I-W:>J)I ~.~ Jo tq~!~q q:!!M ~JmnJ~w~t Jo ~sn~J:)~p Jo ~tnJ ~~nJ~An JnqoI~ n ~wnssn ~M JI ')1 88Z Jo ~JmnJ~w~t ~:)nJlns un~w tU~JJn:) ~q1 WOJJ ~U!tlP.tS UMOqS S! ~IyoJd ~lmnJ~dw~t :)!l~qdsowtn un~w ~q.L l:)~JJ~ ~snoqu~~J~ ~q:! M~!A Ot AnM J~q:!oun SMOqSV I 'I ~Jn~!d '(~66 I 'JJdD ~:)unJnq uo!}n!pnJ ~~nJ~An Jnnuun pun JnqoI~ ~q:! Ot c_w 1\\ ~OZ+ tnoqn p~tnq!l1uo:) ~Anq Ot p~tnw!t -s~ ~lP. uo!}nIoA~'M In!l1snpuI ~qt ~:>u!s sOHO J~qtO pun cOJ Jo suo!tnJtu~:)uo:) U! s~sn~J:)uI l:)~JJ~ ~snoqu~~J~ P~IJn:>-oS~q:! S! W~tSAS~J~qdsowtn-q:lm3 ~q:! pun ~:)nJlns s, q:lm3 ~qt Jo S~JmnJ~w~t Apoq){:)nIq ~q:! U~~Mt~q ~:)u~J~JJ!P)I ££ ~q.r ')I 88Z Jo ~lmnJ~W~t Apoq){:)nIq n °t spuods~JJo:) 'c_w 1\\ 06£ 'UO!ss!"W~ ~:)nJJns ~q.r ')1 ~~Z JO ~JntnJ~dw~t Apoq){:)nIq n Ot spuods~JJo:) 'c_w 1\\ OvZ 'W~tSAS ro~qdsoUltn-q:lm3
~q:! Jo l~MOd p~tt!W~ un~w ~q.L
'Uo!}dJosqn p~lP.JJU!p~:)unqu~ un ~:)u~q pun 'JOdnA J~tnM ~JOW su!1!tuo:) ~J~qdsow1n J~WlP.M n tnq:!1:)nJ ~q:! '~Idwnx~ JoJ '~pnI:)U! s){:)nqp~~J q:)ns 'J~!IlP.~ p~tOU sy '~U!WlP.M ~:)unqu~ Ot t:)n tnq:! s){:)nqp~~J Jo ~snn:)~q t:)!p~Jd sI~poW ~tnw!I:) tnqM unqt ss~I S! ~sn~J:)u! ~JmnJ~dw~t S!q.L ')I VOI = '.LV Jo ~Jmnl~W~t un~w JnqoI~ ~q:!U! ~sn~J:)u!un Ot pn~I PInoM S!q:! '1- (0- w 1\\) )I £'0 = °y q:!!1\\ z- w 1\\ 9°v = 7dV ~:>npold 01 p~tnw!ts~ S! I~A~I In!l1snpu!~Jd ~q:! wolJ ~:>unpunqn cOJ ~q:!Jo ~U!Iqnop y '1-(c-W 1\\»)1 £'0 ;:;:;Oy pun
1ue!Suo:> PI:lq :Ill! SJm:>ej J:lq!O pUR !U:l!peJ~ :lJmeJ:!dw:I! :lq! j! ':I:>ueleq A~J:lU:l :lq! :lJmS:lJ m )I z" 1 Aq :ls!J !snw :lJmeJ:!dw:I! :I:>epns :lqj, 'sqJosqe !! ueq! A~J:lU:l ss:l1 s:l!eweJ ~3 :lq! vue p:I:>np:lJ Al!J11Jodw:I! S! :I:>eds m P:l!!!W:I A~J:lU:l :lq! ':lJ:lqdsodoJ! :lq! U! S:lO~ :lUO dn J:lq~!q :lq! 'J:lpl°:> S! !! :lsne:>:lH ':I:>eds m s:!de:>s:l A~J:lU:lleUJJ:lq! q:>!qM. WOJj 1:11\:11 ue:lw :lq! W OOZ !noqe Aq ~U!S!1!J 'UO!!wosqe
p:lll!JjU! )l 88Z
s:lse:lJ:>u! zO:) ~u!lqnoa
1:>:111:1 :lsnoqu:I:lJD
trI
nn~L!I
'~lmtJl~dw~.L ~~Z
-> tillf/Jo~.~
-~dOIS),
UO!ss!W~]0 I~A~I U1J~U1 S~SfBlZOJ X 'l J
/
[
(D
s
3~3HdSOmV3H.L
9£
ENERGY BALANCE
FOR EARTH AND ATMOSPHERE
37
Global climate changeis inducedby a forcing that disturbsthe equilibrium andleadsto a nonzeroaveragedownwardnet flux at the top of the atmosphere(TOA), -Foe!
=
So -(1
-
Rp)
-
FL
(1.23)
4
It is customary to write (1.23) in terms of downward flux, -Fnet, at the TOA; an increase of - F net corresponds to heating of the planet. Primary forcing can occur as a result of changes of So,Rp, or FL, Changes in incoming solar radiation have resulted from changes in the Earth's orbit and fromyariations in the Sun's output of energy. Changes in the planetary albedo Rp can result from changes in surface reflectance from human activity (agriculture, deforestation), from changes in the aerosol content of the atmosphere from both natural (volcanoes) and anthropogenic (industrial emissions, biomass burning) causes,and to a lesser extent from changes in levels of gases that absorb solar wavelengths (e.g., ozone). Changes in the emitted long-wave flux F L result primarily from changes (increases) of absorbing gasesin the atmosphere and to a lesser extent from changes in aerosols. As we have seen, in the long-wave portion of the spectrum gasesand aerosols absorb much of the radiation emitted by the surface and reemit radiation to space at their lower temperature.
1.10.1
Solar Variability
The amount of solar radiation reaching Earth and Earth's changing orientation to the Sun have been the major causes for climatic change throughout its history. If the Sun's radiation intensity declined 5 to 10% and there were no other compensating factors, ice would engulf the planet in less than a century. Although no theory exists to predict future changes in solar output, the effect of changes in Earth's orbit as it travels around the Sun is beginning to be understood. During the past million years, Earth has experienced 10 major and 40 minor episodes of glaciation. All appear to have been controlled by three so-called orbital elements that vary cyclically over time. First, Earth's tilt changes from 22° to 24.5° and back again every 41,000 years. Second, the month when Earth is closest to the Sun also varies over cycles of 19,000 and 24,000 years. Currently, Earth is closest to the Sun in January. This month-of-closest-approach factor can make a difference of 10% in the amount of solar radiation reaching a particular location in a given season. Last, the shape of Earth's orbit varies from being nearly circular to being more elliptical with a period of 100,000 years. The climatic cycles caused by these orbital factors are called Milankovitch cycles after the Serbian mathematician Milutin Milankovitch, who first described them in 1920. Superimposed on the Milankovitch cycles are changes in the Sun that occur over days or months or a few years. Over the period 1979 to 1990, for example, total solar irradiance varied by about 0.1 % (Hickey et al., 1988; Willson and Hudson, 1988). Even though studies of ocean cores have shown that these orbital changes are the principal determinant of the times of glaciation, the exact mechanisms by which Earth responds to the orbital changes have not been established. Orbital changes alone appear not to have caused the vast climate shifts associated with glaciation and deglaciation. Feedbacks, such as changes in Earth's reflectivity, amount of particles in the atmosphere, and the carbon dioxide and methane content of the atmosphere, act together with orbital changes to enhance global warming and cooling. The levels of carbon dioxide and
xnlJ ~AgM-guoI JO p~J1!JJU!~q"! 'xnlJ J1!IOS~q1 :s~ss~JOJd Jo S~dA1~;}Jq"!SU!R1UOJpug ~JUg -IRq AgJ~U~ s,q:lJR3 ~q"! s1J!d~p ~I'I ~Jng!d ('z_w 1\\ £17£- S! ~J~qdsOW1g~q"!Jo d01 ~q"! 19 xnlJ J1!IOS~ggJ~Ag ~q"! 'Z_W 1\\ OL£I Jo 1UR1SUOJ J1!IOSg uo P~SgH) 's1!Un 001 Sg P~1u~s~Jd~J ~
ugJ 'J1!~Ag J~AO P~ggJ~Ag 'W~1SAS~J~qdsOUJ1g-q:lJR3~q"! uo gu!gu!dw! ;};)UUlug ~.I;}U~
xnlJ J1!IOS~U
s,q~u~
ZoOr1
°z-W M. zoo tnoqe jO 8u!:JJoj ~AfJe!peJ e Ot tu~(1!A!nb~ ~ plnOM
JOd °Op~(1! s,qtm3 ~q:I S! dN ~~qM 'v/(dN
-
I) Aq ~:JUtJ!peJJ! mlos {mOtU! ~8UtJq:J ~q:l8u!
-AldfJlnW Aq p~u~tqo ~ UtJ:Jmdtno mlos 8u!8UtJq:J WOJj 8u!nns~J 8u!:JJoj ~A!te!peJ ~qJ. -U~:JuO:JJ!~q:I AqM JO MOq Ap:JeX~ UMoillf tOO S! t! q8noqt(1! 'spo!J~
°lIej PUg ~s!J suo!tejt 8U!w.mM 8u!Jnp ~se~J:J
-U! pUtJ uo!te!:JeI8 jO S~W!t 8u!Jnp ~se~J:J~p 'Stu~w~Jnse~w ~JO:J~:J! U! UMOqS se '~UtJq:I~W 3113HdsomV3ffi
8£
ENERGY BALANCE
FOR EARTH AND ATMOSPHERE
~O
from the Earth, andnonradiativeprocesses.Of the 100units of incoming solar flux: -26 units are absorbedwithin the atmosphere(-22 by cloud-free air and -4 by clouds)
- 30unitsarereflectedbackto space 4 (- 7 from the cloud-free atmosphere, -17 from the cloudy atmosphere,and -6 from the Earth's surface) -44 units absorbedby the Earth's surface The Earth-atmosphere system emits thermal infrared radiation. The upward flux from the Earth's surface is -115 units. The cloud-free atmosphere emits -33 units back to the Earth's surface and -34 units out to space. The cloudy atmosphere emits -67 units back to Earth and -36 units out to space. Thus -70 units of infrared radiation leave the top of the atmosphere, balancing the net -70 units of solar radiation penetrating the top of the atmosphere.The net upward flux of infrared radiation at the surface of the Earth is -15 units, consisting of -115 units emitted by the Earth and -100 units radiated back to Earth by the cloud-free and cloudy atmosphere. The incoming solar energy absorbed by the Earth is -44 units; this is balanced by the net upward flux of infrared radiation of -15 units, plus -6 unit loss by sensible heat conduction, and - 23 unit loss by latent heat. The Earth emits -115 units of infrared radiation to the atmosphere, whereas the atmosphere emits -170 units of infrared radiation, a net deficit of -55 units. Since the atmosphere absorbs -26 units of solar radiation, the net radiative loss from the atmosphere is -29 units; this is made up for by the sensible and latent heat fluxes. The net radiative cooling of the atmosphere is thus balanced by the latent heat of condensation released in precipitation processes and by the convection and conduction of sensible heat from the surface. The average annual ratio of sensible to latent heat loss at the surface is called the Bowen ratio. With -6 units of sensible heat loss and -23 units of latent heat loss, the Bowen ratio is -0.27. Figure 1.16 shows the zonally annual averaged absorbed solar and emitted infrared fluxes, as observed from satellites. We note a net gain of radiative energy between about 40° Nand 40° S, and a net loss of energy in the polar regions. This pattern results largely from the decrease in insolation to the polar regions in winter and from the high surface albedo in the polar regions. The outgoing infrared flux displays only a small latitudinal dependence. The tendency for the outgoing infrared flux to be greatest in the tropics where the surface temperature is largest is muted by the larger amount of atmospheric water vapor and the higher and colder clouds in the tropics. As a result of the net gain of radiative energy in the tropics and the net loss in the polar regions, an equator-to-pole temperature gradient is generated.
'The average value of the albedo, the incoming radiation that is reflected or scattered back to space without absorption, is usually taken to be somewhere in the range of 30 to 34%. It is important to note that the albedo varies considerably, depending on the surface of the Earth. For example, in the polar regions, which are covered by ice and snow, the reflectivity of the surface is very high. On the other hand, in the equatorial regions, which are largely covered with oceans, the reflectivity is low, and most of the incoming energy is absorbed by the surface.
{U1U~U!1UO:) JO S1U~UI~AOUI SSBUI J!B ~gnq 01 ~Z!S U! ss~I JO J~1~UI!1U~:) B Jo S~!PP~ AU!1 UIOJJ AJ1!A ~J~qdsOUI1B ~q1 U! UO!10UI Jo s~{U:)s ~ql. iL I. I ~Jng1d) ~pm!ugBUI 1Bq1 SUO!10UI S1! U! s~IB:)s I~flBds
Jo SJ~pJO 1qg!~ sUt!ds
Jo ~gUt!J B S1u~s~Jd JI~S1! ~J~qdSOUI1B ~ql.
-UI~1 pUt! {B!1Bds Jo ABlit! 1SBA B J~AO p~AOUI~J pUt! p~:)npoIJu! Jo PB!JAUI B q:)!qM
U! J01:)B~J I~:)!UI~q:)
snoUJJou~
gU!~q AIIBnU!1uo:)
.s~{U:)s {BJod ~m S~!:);}ds
Ut! 01 P~U~){!{ ~q UtI:) ~J~qdSOUI1B ~ql.
S3SS3:)O'Hd :)nI3HdSOW.LV.iO S3'1V:)S '1V'HOdW3.L aNV'1VI.LVdS 11'1
lu~q tu~Wl jO podsuult ~q:} U! ~U!nns~J '~J~qdsoww ~q1 U! ~JmS!OW JOj s)[U!S ~JU su~JU ~pm!Wl-q~!q puu SUO!~~J lu!J01unb~ SU~J~qM 'JOdUA J~WM JOj SUO!~~J ~;)JnOS SU ~AJ~S sn~q [U;)!doltqns 'oOt
~AOqU S~pm!Wl
W pUU n~q
-x~ UU S! ~J~q:} s~J~qds!w~q -ill! tsnw
[u!Jownb~
uo!Wt!d!;)~Jd
[Unuuu
S! uo!1uln;)J!;)
-!SU~S jO podsuult
~q:} snqJ. .UO!1UJOdUA~ Sp~~;)X~ uo!wt!d!;)~Jd ~q:} uI .uo!Wt!d!;)~Jd
qtoq jO sn~q [U;)!doltqns
~~JUl 'J~A~MOq '~JU ~J~Q.L .~Ol~
~q:} Ot p~ldno;)
J~AO UO!WJOdUA~ jO SS~;)
~qt uI .SUO!~~J P~Z![U;)°l
UO!Wln;)J!;)
U! S~;)uu[Uq
~qt J~AO UO!WJodUA~ [Unuuu lmOt ~qt ,(q P~;)Uu[Uq ~
[UtOt 'p~AJ~SUO;) S! SSUW J~WM [U10t ~q:} ~;)U!S '~l;),(;) ;)!~OlOJP,(q ;)!J~qdsoww
,(q w~q tu~Wl jO podsuult
[U!1Umsqns U U! Snns~J ~J~qdsow1u
~Q.L lu~q
~q:} jO uo!1uln;)J!;)
U ~u!;)npoJd
tU~Wl puu ~lq
~[U;)S-~~JUl ~qJ.
'SUO!~~J ~JnSS~Jd-MOl JUlodqns
~q:} puu S~lod
~q1 puu Jownb~
'SUO!~~J JUlod ~qt uI '11iJ') tCiJlplJH ~qt su Ot p~JJ~j~J S! s;)!doltqns
U~A!JP ,(l[UUJJ~q:} JUl!W!S U
W StS!X~ MOIJl!U UY .SJn;);)O UO!Wln;)J!;)
~q:} pJUMOt Sl~A~l J~dn
,(~lPUH
~q:} U~~Mt~q
-~
UO!Wln;)J!;) U~A!JP ,(l[UUJJ~q:} S!qJ. .~;)upns
~Jnss~Jd-q~!q
[U;)!doltqns
WOJj PJUM~lod
'S~lod ~q:} pJUMOt Sl~A~l J~MOl W puu J01unb~
~q:} W Jownb~
~qt U~~M1
~q:} Ot swn1~J puu (00£ -)
s1l~q
~q1 U! s)[U!S puu SlOO;) 'PJUM~lOd S~AOW t! su 'J!U S!Q.L 'Jownb~
SMOg J!U ~~qM
S~W~J;) pUU pJUMdn spuudx~
's~pm!t[U
J~dn
~qt
~q11U ~;)JOj tU~!PUJ~ ~Jnss~Jd PJUM~lod
J!U UUUM 'UO!~~J [u!Jownb~
~qt U! 'J~!lJU~ p~Ssn;)s!p
':)UI 'SS~ PlOJXO JO UO!SS!Ull:ld f.q p~Sn ':)UI 'SS~ld f.~!Sl~A!Un PlOJXO f.q
U
~M SY
f.~!SJ~A!Un
Z661 @ ~qgJlf.do:J 'no!i olIN-on}!
f.q gU!I~POW PUI! UO!~I!AJ~sqO 'f..J0~~ :~l~qdso~V ~q:I U! s~ss~:>Old pnoI:J PUI! UO!~I!!pI!}f WOld 'f.I~A!1:)~ds~l 'ssoI PUI! uJIIg f.gl~U~ ~~ou~P sug!S - pOI! + ~q.L '~l~qdsOW11! ~q:I Jo do~ ~q1 ~I! xnIJ p~J1!lJ -U! {1!Ull~q:I P~UJW~ PUI! xnIJ J1!IOS~lOSql!
~q:I Jo s~u~uodwo:) ~gl!l~AI!
~pm!~g'1
N 006 00~ I
00£ I
001 00 001 I I I
f.I11!UOZ 91"1 :!nIfl91.!1
S 00~ 006 I
00£ I
L
--:::~~~-=:::))7 \\
II
xnH lBloSp"qJosqy
'"
+
~ I
~ 3,N
/ .
.
I
I
I
I
I
I
I
.
H1I3HdSOWJ:V HH.T
/\tY
SPATIAL AND TEMPORAL SCALES OF ATMOSPHERIC PROCESSES
41
Urban or Regional or Synoptic to MicroscaleI Local scale Mesoscale Glohal ~cale tLong-l!ved
lOOyr
I I I
lOyr
~ "oa u rI)
-
Species 8NP 8CH4 8CH3CCl3
~8CH3Br Moderately Lon!! ~-Liv~ti ~l"'l'i..~ ~._~...8 AerosoIs I
1 .vr
..~
1
.;
Inter-hemispheric Mixing Time
J
8S02 IC3H6 .
Intra-hemispheric Mixing Time
I
I
NOx88H202 ~ 8T)MS
Boundary Layer Mixing Time
I
l
1h
100
-
I I I
~&'
8Trop 03 e 1 day ~
,. 8CFCsi
~I!!-
,.
.
~:~~o,
HO2
,J,
Im
10m
,
-r
,
,
,I
r
.NO3 Is \80H
./
"
J 100m
I km
IOkm
lOOkm lOOOkm IO,OOOkm
Spatial Scale FIGURE 1.17 Spatialandtemporalscalesof variability for atmosphericconstituents.
dimensions. Four rough categories have proved convenient to classify atmospheric scales of motion:
1. Microscale. Phenomena occurringon scalesof the orderof 0 to 100m, suchasthe meanderinganddispersionof a chimneyplumeandthe complicatedflow regimein the wakeof a largebuilding. 2. Mesoscale. Phenomenaoccurring on scalesof tens to hundredsof kilometers, such as land-seabreezes,mountain-valley winds, and migratory high- and lowpressurefronts. 3. SynopticScale. Motions of whole weathersystems,on scalesof hundredsto thousandsof kilometers. 4. Global Scale. Phenomenaoccurringon scalesexceeding5 X 103kin. Spatial scales characteristic of various atmospheric chemical phenomena are given in Table 1.3. Many of the phenomena in Table 1.3 overlap; for example, there is more or less of a continuum between (1) urban and regional air pollution, (2) the aerosol haze associated with regional air pollution and aerosoVclimate interactions, (3) greenhouse gas increases and stratospheric ozone depletion, and (4) tropospheric oxidative capacity and stratospheric ozone depletion. The lifetime of a species is the averal!:etime that a molecule
°(6861) u~lru:J pUll lapallJD :iJ:1Inos °HN alii U! l:Jaj -ja al!soddo alii sllq mq HS alii U! 8u!UUaIJ-jlaS saqs!u!w!P 'H:) :(HS) saJaqds!WaH waqlnos pUll (HN) waqlJoN alii U! luaJajj!p S! aJuupunqll HO 8u!JnpaJ f.q aJaqdsowl1I allljo 8u!UUaIJ-jlaS alii qS!U!W!P 01 'H:J jO f.Juap -ual alU °aloq auozo J1!lodalii U! IdaJxa 'uO!laldap (0 JjlaqdsolllJls saIIlJO!laWIIf.IlIlJaua8 'H:J "apm!l[1Iuo 8u!puad -ap (0 JjlaqdsolllJlS ataldap JOaJuuqua Jalll!a UUJ'ON pUll 'O'N "O:J 'aldUJ1!xaJOd "f.J1!,.. UUJsu8 allljo l:Jajja alii 111111 aIIlJ!pU! (-/+) su8!s Illna "UO!IIIJo!laWIIaIIlJ!pU! su8!s snujW :IJajja alii 01UO!lnqJlluOJ11aIIlJ!pU! suS!Ssnld"
+ .!-
£0 s:)d:) ~OS (~ON + ON)
raN O~N 0:) ~:)
-/+
+ -/+ (HO S~S1!~J:)~a) ~J~qdSOW1V
-/+ -/+ uO!1~[d~a EO
~O:) 1:)~JJ3
:)!J~qdS011!J1S ~snoqu~;)jD
1u;lWJ!udWI A1!I!Q!S!A
UO!1!sod;lQ P!:JV
uo!1nllod
S\!D
l!V UUQlJ1
)0 ~U!U1!~[:J-)[~S p~S1!~J:)~a
~q:J p~
S~!;)~S
fUd!;)upd
~q:J Jo S~W!1~J!1 fU;)!W~q;) ~q:J U~~M1~
1lns~l ~AOqU UMOqS uu~wou~qd lO ~lOW ~WO;)~~;)
IU;)!W~q;)
gU!ldno;)
~1U;)!l1U! ~
-~
fU!~uds u suq (HO)
IU;)!PUl IAXOlpAq
~~q1~W
~q:J 's 10'0 UUq1
~l!1U~ ~q:J Jo 1Uq:J01 IUnb~ ~fU;)S fU!1UdS ;)!1S!l~1;)Umq;) U
AJ~A q:J!M S~!:>ads ~~fU;)S 1l0dS~l1
01 UO!1UUllOJS~l1
AmA s~w9~J!1
fU;)!W~q;)
wol]
;)p~qdsow1u SnOpuA ~q1 JO S~IU;)S IU!1Uds ~~ 'q:Ilt!3 ~l!1U~ ~q:J l~AO P~X!W AIUllOJ!Un SS~I
'Sm~A 01 1noqu JO ~W!1~J!1 S1! q:J!M 'puuq l~q10 ~q:J uo '(~J)
'W;) 1 1noqu AIUO JO ~fU;)S 1lods~l1 SS~I JO ~W!1~J!1 U q:J!A\ '~l~qdsow1u
~AUq Sm~A JO S~W!1~J!1 q1!M ~SOq1 ~1!qM S~IU;)S fU!1UdS ;)!~S!l~1;)Umq;) lfUwS Alqumdwo;) S~W!1~J!1 1loqs
q1!M P~1U!;)oSSV 'S~ln;)~IOW ~lqU1s 1S0W ~q1l0J lOJ PUO;)~S U ~q:J SS~I moll
fUAOW~
000'017-[ 00[-[.0 000'017-[
fU!1UdS ;)!1Sp~1;)Umq;)
Sm~A A~W
;)P~qdsoUl1V ~lOJ~
S;}ss;}:>old
u S! S~!;)~S
~AUq q;)U~
01 SIU;)!PUl ~~lJ ~A!1;)U~l1S0W ~q1 '(fUAOW~l
~l~qdsoW1U
su S1UnO;) S~!;)~S
~q:J U! S~P!S~l S;}!;)~S
UO!}1!P!XO PU1! uodsu1!l1
l~q:JO 1Uq:JJO
:>!l;}qdSO11!11S
;}8u1!q:>x;} :>!l;}qdsodol1-:>!l;}qdsO11!l1S S;}SS;}:>old UO!}1!p!XO PU1! uodsu1!l1
000'017-00[ 000'017-000[ 000'017-000[ 00[-[.0 OOOZ-oo[ 000 [--0 [ 00[-[
:>!l;}qdsodo1.L
SUO!}:>1!1;}1U! ;}11!W!I:>-IOSO1;}Y S;}S1!;}l:>U! s1!8 ;}SnoqU;};}lD UO!};}ld;}p
;}UOZO :>!l;}qdsO11!l1S S1U1!1nIIOd 1!1! :>!X°.L UO!}!Sod;}PfU!1!l UO!}nIIod
P!:>y
1!1! I1!Uo!8;}~
UO!}nIIod
(W:Jj)~[RJSqtB'U~
1!1! U1!Q1!1
UOU;}WOU;}qd
3~3Hdsomv 3ffi
'Zt
DERIVATION OF THE GEOSTROPHIC WIND SPEED
43
atmosphere's scales of motion. Much of this book will be devoted to understanding the exquisite interactions between chemical and transport processes in the atmosphere. In anticipation of much of the remainder of this book, Table 1.4 summarizes atmospheric effects of trace gases.
APPENDIXl
DERIVATION OF THE GEOSTROPffiC WIND SPEED
The direction of winds in the geostrophic layer is determined by horizontal pressure gradients and Coriolis forces. As we have discussed, an air parcel moving southward in the Northern Hemisphere as a result of pressure gradients is accelerated toward the west by the Coriolis force. We can actually compute the wind speed and direction at any latitude as a function of the prevailing pressure gradient if we assume that only pressure and Coriolis forces influence the flow. It can be shown that the acceleration experienced by an object on the surface of the Earth (or in the atmosphere) moving with a velocity vector u consists of two components, -0 x (0 x r) and - 2(0 x D), where 0 is the angular rotation vector for the Earth and r is the radius vector from the center of the Earth to the point in question. The first term is simply the centrifugal force, in a direction that acts normal to the Earth's surface and is counterbalanced by gravity. The second term, 0 x u, is the Coriolis force. This force
arisesonly when an object, suchas an air parcel,is moving; that is U :;t: O. Even though the Coriolis force is of much smaller magnitude than the centrifugal force, only the Coriolis force has a horizontal component. Since the winds are horizontal in the geostrophic layer, the Coriolis acceleration is given by the horizontal component of the Coriolis term, namely, 2uGQ sin cf>,where Q is the rate of rotation of the Earth and cf> is the latitude.The direction of the Coriolis force is perpendicular to the wind velocity, as shown in Figure I.A.I. Wind speed UG at latitude cf> lies in the horizontal plane.
(9"V"I) (~.V.I) U~q:I ~o U! p~~U~pO S! JO~:>~A I.~!:>OI~A ~q~ q:>!qM U! u09gn~!s PUg ~U~!pgi3
= 11OSpug
'UO!~:>~J!Px ~q:I
~q:I J~P!suo:> sn ~~'1.~:>JoJ S!IOpoJ
~q:I
~Jnss~Jd ~q:I U~~M~~q P~A~!q:>g S! ~:>UgIgq g ~gq:l OS S~AOW JfI! ~q:I ~gq:l ~~S ~A\
n
(v.V.I) xe
n
ne 'U!TI1QO;}M '(Z.V.I)
01U! (t'V.I)
~u!1m!1sQns
';}JOj;}J;}q.L.11
01 ;}A!1gI;}J P;}1:);}I~;}U ;}q AIIgnSn ug:) M 1u;}uodwo:)
(t'V'I) (t/> U!S It -
U°!1°W Apg;}1S JOj pug n s1u;}uodwo:) ~1uozpoq ;}q1
A1!:)°I;}A ~:)!1l;}A
=
t/> U!S nUl-
=
t/> so:)
t/> so:)
nUl
m)Ul-
=
;}q1 'S1q~!;}q 19;}J~ 1V
23.!l "3.!l X3.!l
: (0 X u)z:-odwo:) ~q:I ~m ~I:)!P1!d t1 uo SU09:)~1!P 2 pUt! ',( 'x ~q1 U! ~:)lO) S!I°!l°:)
=
:J~}O
S1U~U
~q1}0 s1u~uodwo:)
~ql '~pm!1t1I~q14> pUt! q:lm3 ~q:I }O UO!1t1101 }O f.1!:>OI~AmIn8Ut! ~q:I S! U '~lO}~q sy .~:)t1} -lns s,q:lm3 ~q1 01 It1WlOU S!Xt12 ~q:I pUt! 'qpou ~q:I 01 8U!PU~1X~pUt! rt11UOz!l°q S!Xt1,( ~q:I '1St1~~q:I 01 8u!PU~1X~ pUt! Jt!1UOZ!l°q S!Xt1x ~q1 q:I!A\ 'q:lm3 ~q:I U! p~xy ~ S~Xt1~q11~'l ~~Jq1 ~q:I ~m 2d pUt!
,,(
d
'~:)lO) It1W~1X~~q1}0 s1u~uodwo:)
'Xd PUt1f.1!:)OI~A ~q:I}O s1u~uodwo:) ~~lq1 ~q1 ~m M pUt! '(1 'n ~l~qA\
2e d
Z.l+.:I de
ze
-I me
m+
,(e
me
(z'v"r)
xe Ie n+ me me
11+
xe n+ ae xe n+ ne
iCe Ile
(1.+
iCe ne
11+
Ie ae Ie ne pUB
xe ne
(I'VOI)
:}Ie P!ng e q:>ns l01 UO!!OW pUl1 A!!nU!!uo:> (ss:}IUO!!:>P1) P!:>S!AU! S! :}l:}qdsow!e
10 suo!!enb:}
:}q! !eq! p:}wnsse
:}q.L o'\\og Ieu!weI
:}q Aew !! l:}AeI :>!qdoI!so:}~
';l)I';IUA!:nw
U! pUl1 :}q! uI
1\1 ';IU 1
~
DERIVATION OF THE GEOSTROPHIC WIND SPEED
45
Low p
~ Parcel initially at rest here FIGURE 1.A.2 Approachto geostrophicequilibrium.
Weusuallydenote20 sin r/> by f, calledthe Coriolis parameter.From the continuity equation (I.A.I), we seethat au/ax = 0, since v = w = O.Thusfrom (I.A.5) op/ox = 0, and the direction of flow is perpendicular to the pressure gradient op/oy. In addition, from
(I.A.6), we seethat the componentof the Coriolis force, -ju,
is exactly balancedby the
pressuregradient, (1/ p) op/oy. Therefore the geostrophic wind speed UGis given by
Ua=
apjay 2pQ sin 4>
(I.A.7)
The approach to the geostrophic equilibrium for an air parcel starting from rest, accelerated by the pressure gradient and then affected by the Coriolis force, is shown in Figure I.A.2. The geostrophic balance determines the wind direction at altitudes above about 500 m. In order to describe the air motions at lower levels we must take into account the friction of the Earth's surface. The presence of the surface induces a shear in the wind profile, as in a turbulent boundary layer over a flat plate generated in a laboratory wind tunnel. In analyzing the geostrophic wind speed we found that for steady flow a balance exists between the pressure force and the Coriolis force. Consequently, steady flow of air at levels near the ground leads to a balance of three forces: pressure force, Coriolis force, and friction force due to the Earth's surface. Thus, as shown in Figure 1.A.3, the net result of these three
forcesmust be zero for a nonacceleratingair parcel. Sincethe pressuregradientforce Fp must be directed from high to low pressure, and the frictional force Ff must be directed opposite to the velocity u, a balance can be achieved only if the wind is directed at some angle toward the region of low pressure. This angle between the wind direction and the isobars increases as the ground is approached since the frictional force increases. At the ground, over open terrain, the angle of the wind to the isobars is usually between 10° and 20°. Because of the relatively smooth boundary existing over this type of terrain, the wind speedat a 10 m height (the height at which the so-called surface wind is usually measured)
'wmU;}WOW JO 1.IOdSUeIl}u;}lnqJm ssn~s!p O} ,(}!un1.Ioddo ;)q} peq ;}Aeq ;}M U;}qM 'Z"9 I W;}lqOJd IrIon {eJ!ds uew){3 ;}q! Jo UO!}eA!l;}p e J;}J;}P;}A\ "lv.I!ds uvlU'lH ;}q! se UMOU){ S! ;}pm!}{e q!!M UO!}~;}J!P PU!M Jo UO!}e!Jt/A ;}q.t 'q£'V" I ;}Jng!d U! UMOqS se '}qg!;}q q!!M swm ,(Iuowwo~ u°rl~;}J!P PU!M ;}q! 'S}~;)JJ;}{eUO!}~!lJ ;}S;}q}Jo }lns;}J e sv 'smqos! ;}q} O} o~t Jo ;}Ig -ue ue }e ;}q ,(ew PU!M ;}~eJlns ;}q! ;}se~ S!q! uJ 'ss;}uqgnoJ ;}~epns ;)q} ,(q p;}~npu! gU!X!W ;}q! O} gU!MO 'P;};}ds PU!M ~!qdoIlso;}g ;}q} Jo %O~ ,(luO ;}q ,(ew }qg!;}q w 0 I e }e P;};}ds ;}q! 'pueq J;}q!o ;}q! uo 'se;}m dn-}I!nq J;}AO "P;};}ds PU!M ~!qdoIlso;}g ;}q! JO %06 }SOWle ,(pe;}J{e S!
;}Jnss;}Jd guowu
lUJ!ds U1!W){g ;}~ (q) "UO!1:J!lJpuu ';}:JJO} S!I°!J°:) lU;}!PUJg S;}:JJO}}O ;}:JU1!IUH(u) ";}pm!1IU q:I!M UO!1:J;}J!PPU!M }O UO!1u!JUA £.V.l nfl~L!f (q)
;}Jnss;}Jd MOl
3113HdSOW.LV
3H.L
91'
PROBLEMS
47
REFERENCES Bentley,C. R. (1997)Rapidsea-levelrise soonfrom WestAntarctic Ice Sheetcollapse?Science,275, 1077-1078. Boering,K. A. et al. (1995) Measurements of stratosphericcarbondioxide andwater vapor at northern midlatitudes:implications for troposphere-to-stratosphere transport,Geophys.Res.Lett., 22, 2737-2740. Brasseur,G., and Solomon,S. (1984)Aeronomyof the Middle Atmosphere.Reidel, Dordrecht,The Netherlands. Cloud,P.(1983).The biosphere.Sci.Am., 249, 176-189. Graedel,T. E., and Crutzen,P.J. (1989)The changingatmosphere,Sci.Am., 261,58-68. Hickey,J. R., Alton, B. M., Kyle, H. L., andHoyt, D. (1988)Total solarirradiancemeasurements by ERB/Nimbus-7:a review of nine years,SpaceSci. Rev.,48,321-342. Holton, J. R., Haynes,P. H., McIntyre, M. E., Douglass,A. R., Rood, R. B., and Pfister,L. (1995) Stratosphere-troposphere exchange,Rev.Geophys.,33,403-439. IntergovernmentalPanel on Climate Change (IPCC) (1995) Climate Change 1994: Radiative Forcing of ClimateChangeand an Evaluationof the 1PCCIS92 EmissionScenarios.Cambridge University Press,Cambridge,UK. Iqb~l, M. (1983)An Introduction to Solar Radiation.AcademicPress,Toronto. Liou, K. N. (1992) Radiation and Cloud Processesin the Atmosphere.Oxford University Press, Oxford, UK. Mecherikunnel,A. T., Lee, R. B., Kyle, H. L., andMajor, E. R. (1988)Intercomparisonof solartotal irradiancedatafrom recentspacecraftmeasurements, J. Geophys.Res.,93,9503-9509. Prather,M., McElroy, M., Wofsy, S., Russell,G., and Rind, D. (1987) Chemistryof the global troposphere:fluorocarbonsastracersof air motion, J. Geophys.Res.,92,6579-6613. Ramanathan, V. (1987)The role of earthradiationbudgetstudiesin climate and generalcirculation research,J. Geophys.Res.,92,4075-4095. Ramanathan, V., Cess,R. D., Harrison,E. F., Minnis, P.,Barkstrom,B. R.,Ahmad,E., andHartmann, D. (1989)Cloud-radiativeforcing andclimate:resultsfrom the earthradiationbudgetexperiment, Science,243,57-63. Salstein,D. A. (1995) Mean propertiesof the atmosphere,in Composition,Chemistry,and Climate of theAtmosphere,editedby H. B. Singh.VanNostrandReinhold,New York, pp. 19-49. Trenberth,K. E., andGuillemot, C. J. (1994)The total massof the atmosphere,J. Geophys.Res.,99, 23079-23088. Walker,J. C. G. (1977)Evolution of theAtmosphere.Macmillan, New York. Willson, R. C., and Hudson,H. S. (1988) Solar luminosity variationsin solarcycle 21, Nature,332, 810-812.
PROBLEMS l.lA Calculatethe concentration(in moleculescm-3) andthe mixing ratio (in ppm) of water vapor at groundlevel at T = 298 K at RH valuesof 50%, 60%, 70%, 80%, 90%, 95%, and 99%. The vapor pressureof pure wateras a function of temperaturecanbe calculated with the following correlation: PH10(T)= Ps exp[13.3185a- .976a2- O.6445a3- O.1299a4]
"aJmeJ~wat U! )I ~"OJO a~ill!q:) e Ot ~u!puodsaJJo:) opaqIe I1JqoI~ u! PUg tumsuo:) mIos U! UO!te!IP.A aq't ateIn:)l1J;) ')l89Z S! aJmeJadwat wn!lq!I!nba aqt teqt MOqS '~I"O = dN JOd ")I ~~Z tnoqe S! (uo!te!peJ pamJJu! ~u!o~tno Jo Uo!1wosqe :)!laqdsowte ou ~u!wnsse) qtmg aq't Jo aroteJadwat Wn!lq!I!nba aq't teq't MOqS '£"0 = dN JO opaql1J ueaw I1JqoI~ e JOd v9°J laAaI gas te )I 86Z te tdd U! s°!1eJ ~U!X!W Ot sanl1JAasaq't :J.IaAUO;)"£_W ~u OO~Ot O~Z JO a~ill!J aq't U! aJaM e!ill!wse.LJJo uo!tez!lat:)emq;)
~66I Jaqwa:)aO-JaqwaAoN
IosoJay aq't ~u!lnp (£H;)S£H;))
pat:)npuo:) (I-g;)y)
I-tuaw!ladxg
apYIns IAq'taW!p Jo stuawaJnseaw
vsoJ
j,)I 86Z pill! IaAaI gas te uo!teIJua:)uo:) S!q't Ot ~u!puodsaJJo:) °!1eJ ~U!x!W aq't S! teqA\. "£_w:) saIn:>aIow 901 tnoqe S! sl1J:)!peJ (HO)
IAXOJPAq JO uo!teIJua:)uo:) IeqoI~ 11J:)!dAty ")I 86Z
= .L pill!
wte I
v~oJ
=d
te qdd 11£ Jo °!1eJ ~U!X!W e te OzN JoJ (£_w ~rf U!) uo!teIJua:)uo:) aq't au!UJJatao v£oJ "W){ t;Z p~ 'W){ t;1 'W){ 01 'W){ t; 'ill){ Z 'ill){ [ '[;}A;}I U;}S!U (E-W:> s;}In:>;}Iow u1) s;}In:>;}Iow J1U1° U01!UltU;}:>uo:>IntO! ;}q! ;}!ndwo:) ",I
U;}A1~s1U01!UI;}JJo:> ;}!UW;}!It!uy) "(.r/t;I"£L£)
-
1 = 1)p~
("Z"t;I ;}Iqul. u1 mqw t;Z'£10I = sd;}J;}qM
0..
3~3HdSOW.LV 3H.L
2 Virtually every element in the periodic table is found in the atmosphere; however, when classifying atmospheric species according to chemical composition it proves to be convenient to use a small number of major groupings such as: 1. Sulfur-containing compounds. 2. Nitrogen-containing compounds. 3. Carbon-containing compounds. 4. Halogen-containing compounds. Obviously these categories are not exclusive; many sulfur-containing compounds, for example, also include atoms of carbon. And virtually all the atmospheric halogens involve a carbon atom backbone. We do not include in the above list species of the general formula HxOy; with the exception of water and hydrogen peroxide (H2O2), these are all radical species (e.g., hydroxyl, OH) that play key roles in atmospheric chemistry but do not necessarily require a separate category. Every substance emitted into the atmosphere is eventually removed so that a cycle of the elements in that substanceis established. This is called the biogeochemical cycle of the element. The biogeochemical cycle of an element or a compound refers to the transport of that substance among atmospheric, oceanic, biospheric, and land compartments, the amounts contained in the different reservoirs, and the rate of exchange among them. The circulation of water among oceans, atmosphere, and continents is a prime example of a biogeochemical cycle. The term biogeochemical cycle is often used to describe the global or regional cycles of the "life elements," C, 0, N, S, and P, with reservoirs including the atmosphere, the ocean, the sediments, and living organisms (Rodhe, 1992). A condition of "air pollution" may be defined as a situation in which substancesthat result from anthropogenic activities are present at concentrations sufficiently high above their normal ambient levels to produce a measurable effect on humans, animals, vegetation, or materials. This definition could include any substance, whether noxious or benign; however, the implication is that the effects are undesirable. Traditionally, air pollution has been viewed as a phenomenon characteristic only of large urban centers and industrialized regions. It is now clear that dense urban centers are just "hotspots" in a continuum of trace speciesconcentrations over the entire Earth. Both urban smogs and stratospheric ozone depletion by chlorofluorocarbons are manifestations of what might be termed in the broadest senseas air pollution. The first recognized type of air pollution was that typified by high concentrations of sulfur compounds (S02 and sulfates) and particles, resulting from combustion of coal and high-sulfur-containing fuels. Cities with this characteristic type of air pollution are often in cold climates where electric power generation and domestic heating are major sources of emissions. 49
AIUO tOu 'SW~m!tsuo~ -Ol~!wqns -b!I
e se
SijnS~ll~ueW ~y~qdsowte lO StS!X~
~!dO~SOl~!W teq:l
'l~teM
~teIn~!ped guowy Jo
S! puu
~lnd
td~~x~
~WOql!V
'At!X~IdWO~
'SUO!SU~W!P SUO!t!PUO~
mIn~~Iow IeUllOU
'~~uutsqns
AUU
St! U! ~nb!un uuqt
l~pUn Ot l~J~l
s~telodeA~ 't~Idolp
t~Idolp
e Aq
~qt
p~gu~Ae~s
J!
l!1:l
~qt
S! ~I~!ped
moll lO
seg
p~AOW~l
lOJ
~q:I
U~qM ~m
!~I~nu
se
'~Idwex~
'U!1:ll
q~!qM
"~'!)
Aq
S~I~!ped pue
~q:I
~y~qdsow~e goJ
A~q:I
U~qM
'St~Idolp
U!
lO
AIIem~e
U~A~
teqt puu
IeAow~l
e UllOJ
~q:I
Ala
(£)
uo
S! l~uew tnq ~qt
"l~ueW
U!
~teIn~!ped ~Z!S P!IOS
~teIn~!ped.,
~!do~s lO
tOU
Aew Ot
~I~!ped
wepodw!
q:loq
ueqt lO
seg
S! tI
t~Idolp U!
e q:I!M p~telod
uo!tesu~p
:goJ
lO
'U!1:ll
(I)
:(goJ
S~!~~S
~woq
'uO!t~t!d!~~ld
sno~s~g
puu
q:loq
'S~!~~S
Alp
uo!t!sod~p s~!~~ds
Aq ~A~~I
p!n
AH
°t gU!IIeJ AIIemu~A~
~tou U!qt!M
~qt Jo (z)
UO!mIOSS!p ~m t~A\
puu
t~M IeAow~l
Jo ~uo
:t~Idolp
~y~qdsowte {tIAOW~l Jo
P~ll~JSUUlt 'UO!t!sod~p
'~t~In~!ped
s~ss~:>Old
~s~qt
pue
Ot l~teM Jo
~y~qdsowte Ot
~q:I
Ot
'uo!t!sod~p
ue~
OMt
~q:I
l~qtO
s, q:)Je3
;:Jq
'S~mOl
s~seg
s,q:)Je3
'puuq
~~~J.Ins uo!t!sod~p
APU~!U~AUO~
MoI~q
Jo pnoI~
~y~qdsowte U!
~~eJ.Ins
s~ss~dwo~u~ puu
S~tOU~p
p~dnolg
S~I~!ped
~woql!e
sno~nbe lIe
sp~~~old
t~~l!P
t~Idolp
~Al~S lOJ
UllOJ
s~ss~~old
moqt!M
OtU!
~q
e qgnoqt 'spnoI~
~I~!ped Apu~nb~sqns ~qt
pnoI~
'MOUS
-l!1:l
P!1:l ~qt
Jo
OMt
l~glUI
~l~qdsowte ~M
'qpe~ l~qtel teqt
S~P!IIO~ -lO~U! -UO~ 'sdolp lO
l~JSUUJ:j
Jo
-~te~
:s~yog
~y~qdsowtv
l~teI
lO l~UOOS
tsnw
l!1:l
~qt OW! p~S~~I~l s~!~~dS 'JI~st! q:)Je3 ~q:IJo ~~eJ.Ins~qt pue uo!t~t!d!~aJd :St!X~ ~tew9In OMt sW~s~ld ~l~qdsowt~ ~q.L 'p~AOW~l S! t! ~lOJ;:Jq~l~qdsowt~ ~q:I U! AU:jSII!M ~~uutsqns ~q:I Jo ~In~~Iow ~A!t~W~S~ld~l ~ guoI MOq ~g~l~A~ uo sn SII~t ~W!t ~~U~P!S~l S!q.L '~~uutsqns t~qt lOJ alUll a:Juaplsa.l ~gel~Ae lO ~W!t~J!I ~gel~A~ uu SPI~!A ~~uutsqns e Jo s~In~~Iow lIe Jo s~YOtS!q ~J!I ~qt gU!gnl~AV 'p~AOW~l ~.rn AI~tnW!ijn A~qt ~lOJ~q ~;)unts!p tn~lg n P~POdSunlt ~q pu~ ~l~qdsowt~ ~q:I OW! qg!q P~!JlU~ t~g tqg!W Sl~q:lO '~~eJ.Ins s,qpe3 ~q:llO St~Idolp ~WOql!1:l q:I!M t~~WO~ Aq UO!SS!W~Jo W!od l!~q:I Ot ~soI~ p~AOW~l ~q tqg!W ~woS 'l!~ ~qt OW! P~u!W~
e Jo s~In~~Iow
~~uutsqns
{tInp!A!pU!
~q:I II~ MoIIoJ
S3WIJ. 3:JN30ISn
PIno~ ~M teq:l ~U!g~wI
:Jnl3HdSOWJ.V
rz
"qdd OOC;S1!q~!q S1! S~nJ1!A p~q:J1!~J ~A1!q S~J~qdsOW11! Ut!qJn U! sI~A~I :qdd 09 01 OZ WOJJ ~U!~Ut!J SO!11!J~U!X!W 11! ~J~qdsOdOJ1 punOJ~){:J1!q 'Ut!~I:J ~q1 U! 1u~s~Jd AIJ1!Jm1!u S! ~uozO
"~~1!UJ1!p 1Ut!Id pUt! UO!11!'!!JJ! ~A~ S1!q:Jns S1:J~JJ~JoJ ~Iq!suOdS~J
~J1! 11!q:I S1U1!:1nnOd
f.J1!pUO:J~S ~q1 S! 11 10SOJ~1! 11!:J!W~q:JO10qdp~IJ1!:J-OS pUt! 'suOqJ1!:JOlpAq P~!P!XO 'S~11!J1!U :J!U1!~JO Jo ~U!1S!SUO:J OSI1! 1nq '~uozo S! q:J!qM Jo 1Ut!1JodW! 1S0W ~q:I 'S1U1!:1nnod f.J1!pUO:J~S 01 P~1J~AUO:J AIP!d1!J ~J1! q:J!qM -010qd ~ows
U! s1Ut!1nnod f.J1!W!ld
'spunodwo:J
:J!Ut!~JO PU1! ~P!XO :J!J1!U ~J1! ~ows
u!1!w ~q.L lq~!Iuns
1q~!lq
J1!:J!W~q:J
pUt! S~Jm1!J~dW~1 q~!q q:I!M SJn:J:JO
J1!:J!W~q:J010qd "U~~oJ1!U Jo S~P!XO pUt! S~S1!~ :J!Ut!~JO q1!M U~P1!I ~J~qdsOW11! Ut! S~11!
-!p1!JJ! 1q~!IunS
U~qM ~:J1!Id s~){1!:I11!q:I AI!S!W~q:J x~Idwo:J
Jo s1:JnpoJd pUt! S1Ut!1:J1!~J~q:l1nq
~OJ JOU ~){OWS J~q:I!~U '1:J1!JU! 'S! 1! '~oJ pUt! ~){OWS Jo UO!11!SU~puo:J qS!I~U3 -Joq Alq1!wns~Jd
'(,,~ows
J1!:J!W~q:>O10qd" Jo) "~ows,,
puo:J~s S!q:I An1!:J!l01S!q q~noq:lIV 'OI°1!d
01!S pUt! 'fJ,!::> o:J!X~W
U! 1!~J1! U1!:I!IodoJ1~w w~IqOJd
Uo!1nnOd
~q:I wol]
p~n1!:J u~aq S1!q u09nnod
p~MOJ
J!1! Jo OOA1
"S~!1!:J P~1:J!OJ1! 1S0W ~q:I Jo ~wos Jo S~IdUJ1!x~ ~J1! I!Z1!Jg
'su~q:lV
'OA){O.L :S~I!qow01n1!
AUt! U! ~P!MPPOM
Jo ~sn AA1!~q 1! S! ~J~q:I q:J!qM
SJn:J:Jo MOU 'S~I~~UV
so.
01 ~A!snI:Jx~
-Iod J!1! Jo OOfJ, S!q.L "S~I~~UV sO'"] U! p~J1!OOd1! SUO!SS!W~ ~I!qow01n1! -g~p
S1! 1Ut!1nnod
~:JUO 'uO!1nI
01 ~Iq1!1nq!J111! AI~1!U
J!1! u1!qJn 1SJg ~q111!q:I C;P61 1noq1! 19un 10U S1!M 1! 'C;I61
J!1! J1!9u~10d 1! S1! P~Z!U~o:J~J S1!M 1sn1!qx~ ~I!qow01n1!
q~noq1IV
1! S1! ~U!IOS1!~ Jo ~sn p1!~JdS~P!M ~q:I q:I!M AluO p~J1!OOd1! u09nnod
S3Wll3dI'l
aNY 'S3'l:>A.:> 'lV80'lD
S1! AIJ1!~
l~nJ
J010W
J!1! Jo ~dA1 puo:J~s V
os
'NOI.LISOdWO:> :>I~3HdSOW.LV
ATMOSPHERIC RESIDENCE TIMES
51
from direct emissionsof particlesbut also from emissionsof certaingasesthat either condenseas particlesdirectly or undergochemicaltransformationto a speciesthat condenses as a particle.A full descriptionof atmosphericparticlesrequiresspecificationof not only their concentrationbut also their size,chemicalcomposition,phase(i.e., liquid or solid), andmotphology. Onceparticlesare in the atmo~phere, their size,number,and chemicalcompositionare changedby severalmechanismsuntil ultimately they are removedby natural processes. Someof the physicaland chemicalprocessesthat affect the "aging" of atmosphericparticles are more effective in one regimeof particle size than another.In spite of the specific processesthat affect particulateaging,the usualresidencetime of particlesin the lower atmospheredoesnot exceedseveralweeks.Very closeto the ground,the main mechanisms for particle removalaresettling anddry depositionon surfaces;whereasat altitudesabove about 100m, precipitationscavengingis the predominantremovalmechanism. As air risesthrougha cloud andbecomesslightly supersaturated with water vapor (i.e., asits relative humidity exceeds100%),cloud dropletsform on condensationnuclei-usually solubleaerosolparticles(e.g., microscopicparticlesof various salts)that exist in the atmosphereat concentrationsof 100 to .1000cm-3-and grow by condensationof water vapor.As the droplets grow and collide with each other they becomeraindrops,which grow rapidly asthey fall and accretecloud droplets. 2.1.1
Residence Time
The fundamental physical principle governing the behavior of a chemical in the atmosphere is conservation of mass. In any imaginary cube of air the following balance must hold:
Rateof the species flowing in
Rateof the Rateof introduction (emisspecies + flowing out sion) of the species
-
Rateof removal of = the species
Rateof accumulation of the speciesin the imaginaryvolume
This balance must hold from the smallest cube of air all the way up to the entire atmosphere. If we let Q denotethe total massof the substancein the volume of air, Fin and Foulthe massflow ratesof the substancein and out of the air volume,respectively,P the rateof introductionof the speciesfrom sources,andR the rate of removalof the species,thenconservationof masscanbe expressedmathematicallyas dQ dt
(Fin
-
Fout)+ (P - R)
(2.1)
If the amountQ of the substancein the volume or reservoiris not changingwith time, then Q is a constant and dQ/dt
= O. In
order for Q to be unchanging,
all the sources of the
substanceto the reservoirmust be preciselybalancedby the sinks of the substance.This meansthat Fin
+ P = Foul+ R
In such a case steadv-state conditions are said to hold
(2.2)
"l..l{R:)!1J~AP~X!W U~M U~A~ 10U S! ~J~qdsodoJ1 ~q1'){~~M ~UO1noqu JO ~W!1 ~:)U~P!S~Ju ~AUq 01 P~1UW!1S~~m q:)!qM 'spunodwo:) JnJlns JoJ 1nq :sm~1..01 Jo ~W!1 ~:)u~P!S~JtJ suq q:)!qM 'J)l~8 JoJ P~X!W U~M p~J~P!suo:) ~q un:) ~J~qdsodoJ1 ~q1 snq.L "m~1..~uo 1noqu S! '~l~qd -sodoJ1 ~q1 U! ~qolg ~q1 punom I..lqgnOJOq11U~m!1SuO:)u X!W 01 p~J!nb~J ~W!1 ~q1 '~W!1 gU! -X!W {R1UOZ!J°qs,~l~qdsodoJ1 ~q1 SU~J~qM~){~~M~uo 1noqu S! '~snudodoJ1 ~q1 01 dn punOJg ~q1 woJJ I..IUlJOJ!un s~!:)~ds u X!W 01 p~J!nb~J ~W!1 ~q1 '~J~qdsodOJ1 ~q1 U! ~W!1 gU!X!W {R:)!1J~A:)!1s!J~1:)umq:) ~q1 'P~10U ~AUq ~M su '~ldUJP.x~ JOd "SUO!1:)~J!P1U~J~JJ!PJoJ 1U~l~J -J!P ~m ~J~qdsow1u ~q1 U! S~W!1gU!X!W ~q1'U~~S ~AUq ~M su '~JOUlJ~q1Jnd "s~!:)~ds q:)u~ Jo ~W!1 ~:)u~P!S~J~q1 uo gu!pu~d~p 'SJ~q1oJoJ P~X!W I..pood pU1!S~!:)~s ~wos JoJ P~X!W U~M ~q U1!:)J!OAJ~S~Jmln:)!1JUd u 1uq1 SU1!~WS!q11uq1 ~10N ".1 '~W!1 ~:)u~P!S~J S~!:)~s ~q1 q1!M p~mdwo:) Uuws 10U S! 'J'I.1 '~W!1 gU!X!W :)!1s!J~1:)umq:)~q1J! s~!:)~ds mIn:)!1JUd u JoJ P~X!W I..pood S! J!OAJ~S~JV "J'I.1 ~W!1 gUIX!W :)!1s!J~1:)umq:) ~q1 Uu:) "J!U Jo ~wnIoA 1uq1 U! Iu:) -!W~q:) u X!W I..IqgnolOq1 01 p~p~~u ~w!1 ~q1 su ~wnIoA 1uq1JoJ ~W!1 gU!x!W :)!1s!J~1:)umq:) u ~uy~p U1!:)~M '~J~qds01UJ1S~l!1U~ ~q1 JO ~J~qds!W~H w~q1J°N ~q1 U! J!U Jo ~wnIoA ~q1l0 1..1!:)u J~AO J!1:IJo ~wnIoA ~q1 'I..us '~J~qdsow1u ~q1 Jo UO!g~J mIn:)!1JUd u J~P!suo:) ~M JI "~J~qdsoUJ1u~q1 WOJJ p~AOW~J S! 1! ~JoJ~q ~woqJ!U U!UW~J 01I..I~){!I S! s~!:)~ds U ~:)Jnos S1! WOJJ mJ MOq gu!1UW!1S~U! InJ~sn ~q un:) S~W!1 ~:)u~P!S~J Jo Suo!1uln:){R:) "I..I1JoqsU~A!g ~q U!M s~xnlJ JnJlns Jo ~1UW!1S~~1uln:):)u ~JOW u 1Uq1~10N )f~~A\T
='
I_JA- g ~,-7101 x
OOZ ---=.1
~q 01 P~1BW!:lS~ S! ~J~qds
-odOIJ ~q:I U! spunodwo~ JnJlns Jo ~W!1 ~~U~P!S~J~q:I 'I-JA g 0101 x 00'(; 1noqB Jo d lR101B ~A!g 01 ~1nq!J:Iuo~ JnJlns Jo S~~Jnos ~!U~godOJq:lUBpm! lRJn1BUJI.g 0101 X V = () S! ~J~qds -odoIJ ~q:I U! spunodwo~ gU!U!B1uO~-JnJlns Jo SSBWlR101~q1 'g 1001 X V 1nqqB ~J~qdsod -OIJ ~q:I Jo SSBW~q1 q1!M u~q:I '1S!X~ ot p~wnssB S! ~1mSApB~1SB pUB (wqdd) SSBWAq UO!I -I!q J:)d llBd 1 S! spunodwo~ ~s~q:IJo 0!1BJ gU!X!W ~gBJ~AB~q1JI '~J~qdsodoIJ ~q:I U! spunod -wo~ gU!U!B1uO~-JnJlns IlB J~P!SUO~'~W!1 ~~U~P!S~JJo 1d~~uo~ ~q:I Jo UO!1BIJSnIl!m! sy
l SUO!1WUO:> ~1~1S-AP~~1S J~pUn u~q1 'J!OAJ~S~J~q:I S~ U~~1 S! ~J~qdsow1~ ~J!1U~~q:I 11 u,,!/
(p.z)
+
cl
=.1
D
Aq U~A!3' OSJt!S! ~W!~ ~:>U~P!S~l~q1 ,old + J =
m~+H D
(£"V
mod
+ H SUO9!PUO:)~1ms-,(pu~1S1U~:)U!S
=1. S1 'J;)1IJP.;)
p;):)npoIlu1
S;)1:I1~Ut!nb;)q:ljO SUJJ;)~u1 '.l ;)w1:l ;):)U;)P1S;)J ;)g~J;)A~ ;)ql. oN
s~1 I~nb;) ~snw S;):)Jnos wolJ
u01~:);)fu1jO
;)~~J s~1 'su°1:l1puo:)
pUt! '0 = In~ pUt! 0 = U!d U;)q~ ';)J;)qdsoWt~
= c/ '{tJAOW;)JjO ;)~~J
;)~~~S-AP~;)~S~~ ;):)Ut!~sqns ~ JOj
;)J1~U;);)q:I s1 o~ gU1.lJ;)j;)J;)JP.;),\\
;)wnIoA
;)q:ljI
S3WI.L3d11aNY 'S3'IJAJ 'IVaO'ID 'NOI.LISOdWOJ JI1I3HdSOW.LV
ATMOSPHERIC RESIDENCE llMES
53
The stratosphere can be considered well mixed vertically only for atmospheric species with residence times greatly exceeding 50 years. In fact, one of the only examples of such a long-lived species is He, which has its source at the Earth's surface and its sink as escape through the very top of the atmosphere into space. Thus the stratosphere is poorly mixed vertically for essentially all atmospheric trace constituents. Frequently the rate at which a chemical is removed from the atmosphere is proportional to its concentration (first-order loss)-the more that is present, the faster its rate of removal. This is generally the case for both dry deposition at the Earth's surface and scavenging by cloud droplets. Consider a species for which steady-state conditions hold and which is removed at a rate proportional to its concentration with a proportionality constant A. Such a species is 85Kr,the only significant removal process for which is radioactive decay. For 85Kr,then
Q -)..Q
1 -)..
Thus to estimate the residence time of 85Kr does not even require knowledge of its atmospheric abundance Q, but only of the radioactive decay constant. Consequently, it does not matter whether 85Kris uniformly mixed throughout the entire atmosphere or not to estimate its lifetime. In a case where the removal process is first order, then even for a poorly mixed species a simple and accurate estimate for its residence time can be obtained provided that its removal rate constant can be accurately estimated. Now consider a species with mass Q in the atmosphere that is removed by two independent processes,the first at a rate kl Q and the second at a rate k2 Q, where kl and k2 are the first-order removal coefficients. Its overall residence time is given by
or ~ = kl + k2 1:
Process1. for example.could be dry depositionand process2 cloud scavenging.We can actually associatetime constantswith the two individual removalprocesses,
.. = kl
T2= k2
where ., canbe thoughtof asthe residencetime of the speciesif the only removalprocess is process1, which is alsotrue for .2. From (2.8) and (2.9) we canexpressthe overall residencetime. in termsof the two individual removaltimes ., and .2 by
..:.=..:.+..:. . .1 .2
(2.10)
~J~qdsott!I!S~qt Ot podsut!I! iH SUO!t~t!~J Jt!~!W~q~ jH uo!t!sod~p t~M aiH
uo!t!sod~pAlp
'N
;H
SUO!1:JRglft!:J!Wgq:J }d SUO!SS!Wg:J!UggodoJq1UR Jd SUO!SS!Wgft!lmRU Jd
IJ
:sUo!!nq~uo:> gU!MO{ -{OJ ;)q! JO !S!SUO:> !N pm! !cl SW.!;)! ;)q.L 'S;)!BJ SSO{ pUB ;):>JnOS ;)q! !U;)S;)Jd;)J !N pUB! cl ;)J;)qM
(£I.V
'N-'J= s~ U;)U!lM
;)l;)qdsOW1~
Jp lOp ;)q U~:) ;):)U1!{tJq {tJ!l;)1~W :)!W~UAP ;)~
;)q1 U! ! s;)!:);)ds ~ Jo S;)10W 1t!:I°1 ;)q1 ~U!W;)AO~
'S{tJ:)!P~l HO Jo UO!1~J:)U;):)uo:) :)!l;)qdsodoJ:)
suo!1~nb;)
"0
;)q1 dOl;)A;)P sn 1;)'1
P;)~~l;)A~ Al{tJqOl~ ;)1~!ldOldd~
U1! S! [HO]
;)l;)qM
[HOJ'! = (ZI'V
() [HOJ'! =.1 ()
~:)U~P!S~Js,punodwo:)
'(g'V WOJJ 'S! ~W!t ~q:I u~q:I '(:>[HO]'! = N S! IUAOW~JJo ~tUJ St! puu ~J~qdsodoJt ~qt U!
V s~!:)~ds Jo At!tU1!nb IUtOt ~qt S! (:>J! 'S~W!t ~:)u~P!S~J :)!l~qdsowtu Jo S!SAIUU1! ~qt wold 'U!~J~qt p~u~uo:) S~!:)~s ~q:I JO uofluJtu~:)uo:) ~qt ~tOU~p st~){:)UJq ~qt ~J~qA\ '[V][HO]'! S! UO!t:)u~J ~qt Jo ~tUJ ~qt tuq:I q:)ns 'UO!t:)U~J ~q:I JoJ tU1!tsuo:) ~tUJ ~q:I S! '! J~t~UJUmd ~ql.
s1:)npold+-- V + HO 'f
U01~:)11:}J {U:)1W:}q:) -:)0 {U:)1p11J lAXOlpAq
:}q1 q11M ~:)11:}J ~11q1 spunodwo:)
:}q~ O~ ~U1PJO:):)11 SJn:)
:}soq~ Jo :}J:}qdsodoI!
:}q1 u1 {UAOW:}'M ':}~11J {UAOW:}J
:}q1 JOJ S:}~11W1~S:} ~U1AOJdW1
uo
:}q SA11M{U Plnoqs
u1 'Sq111d 111Aow:}J
~U1~~WO:)
sn:>OJ 's:}1:):}ds
:}m :}J:}q~ U:}qM
'snq.L
~S:}~S11J n11J:}AO
o~ J:}pJO
:}q1 :}~11w9s:}
+ IJ.
{UJ:}A:}S
11Jo :}W1~ :}:)u:}P1s:}J
{UAOW:}J :}A1~:):}JJ:} :}JOW :}q~ S1 Z ss:}:)OJd 'z ss:}:)OJd q~1M P:}~111:)OSS11~11q~ UtJq~ s1 1 ss:}:)oJd Aq 111Aow:}J q11M P:}~111:)oSS11 :}w1~ :}:)u:}P1s:}J :}q~ I Z2 « 12 JI
'WS1UtJq:):}W J:}~UOI q:)nw
~J.
(II'V
'Z2 ;:;:; 2 PU11
=2.
~J.IJ.
(OI"V J:}I{l!wS
U:}A:} S! ~RQ1:}:)~~S!s:}J
wold
IR~o~ R :}A!g o~ pPR I:}IIRmd
:}:)u:}P!s:}J IR~o~ R :}A!g o~ J:}q~:}go~ pPR SQ1Rd IRAow:}J
S3Wll3dI'
":}:)~~S!s:}J ~s:}IIRWS :}q~ ~q~
U! S:}:)UR~S!S:}J{l!:)!J:j:):}I:} :}){!I ':}W!~
:}~Rmd:}s ~RQ1SMOqS (01"Z)
aNY 'S3';)J..;) 'YHO'O
uo!~Rnb3
'NOI.LISOdWO;);)I1I3HdSOW.LY
tS
SULFUR-CONTAINING
COMPOUNDS
55
The loss processesare usually representedas first order; for example, Rt = kt Qi' wherethe first-orderrate constants,which we will denoteby k's, must be specified.Thus (2.13)becomes dQi dt
= p.n , + p.Q I + p.C , - (k~ I + k!lJ , + k'! , + k~ , )Q,'
(2.14)
If the concentration of the species is not changing, then a steady state may be presumed in which
p.n+ p.a+ p.C,
,
,
( kd
+ ,
k!1'
+ ,
k':
+ ,
k~
)
Q,
'
=
0
I
The meanresidencetime of speciesj can be calculatedby either
-
.,.,=
kd, + k!V , + k,:I + k~I
or
t";=
Qi
p!'I + p.a I + p.C I
(2.17)
To use (2.16) the individual first-order rate constants for removal must be estimated, whereas in (2.17), estimates for the total number of moles in the troposphere, which can be derived from a concentration measurement, and for the source strength terms are needed. If the k; values are difficult to specify, mean residence times are often estimated from (2.17).
2.2 SULFUR.CONTAINING COMPOUNDS Sulfur is present in the Earth's crust at a mixing ratio of less than 500 parts per million by mass and in the Earth's atmosphere at a total volume mixing ratio of less than I ppm. Yet, sulfur-containing compounds exert a profound influence on the chemistry of the atmosphere and, likely, on climate. The main questions that we will seek to answer with respect to sulfur compounds, and indeed for all classes of atmospheric compounds, are: 1. What are the species present in the atmosphere? What are their natural and anthropogenic sources? 2. What chemical reactions do they undergo in the atmosphere? How fast are these reactions? 3. What are the products of atmospheric transformations? 4. What effect does the presence of the compound and its chemical transformation products have on the atmosphere? In this chapter we focus on the first question.
=
9+ £ON ~+ = ~OzN '!:.ON '£ONH 17+= ZON £+ = ZONH
Z+ = ON 1+ = OzN 0= ZN £- = N£~'HNz~'zHN~'£HN :sMo1l01 su ~Jt! S~!;)OOS;)!J~qdsowtu
°j-
:lql ':I[dwux:I
S! s:lIUlS u°!1up!XO}O wns :llJI' !ONJOd pm! u:l80J!!u
U! u~goJt!U 1° s~tUtS u°!tuP!XO
9+ = -~OS 9+ = "OSzH
t+ = -~OS t+=ZOS 'l- = SzH :SMOIlO} S1!:ljTJ :I:Juu1Jodw! :J!l:lqdsoW1u }O spunodwo:J 'IA + S! -~OS U! WOIU In}[ns
SnO!Jt!A U! In}Ins }O S:lIUIS UO!IUP!XO
JO} 'sj1!J:lwnu m!WOJ lJI!M P:lIU:J!PU! :ljTJ S:lIUIS U°!1!1p!
-XO 'S:lW!1:1WOS o~+ }O :lIUlS U°!1UP!XO m! :lAUq ISnW u:l80JI!u
u:l80Jp!.q
o£- S! u:l80J1!u}0
'Z-
}O :lIUIS UO!IUP!XO m! S1!q u:l8!.xo
:llUlS U°!1UP!XO:llJl pm! 'j + S!:HN
:llJI JO} S:lIUIS u°!1uP!XO }O wns :llJI ':ljdwux:I
wns :llJI 'UO! uu JOd °punodwo:J
:I:JU!S
U! SWOIU
JOd °UO! :llJI}O :l8jTJq:J :llJI [Unb:lISnw
juJ!n:lu !.IIU:J!J!:>:I[:I m! JO} OJ:lZ :Iq Isnw °j-
S:IIUIS u°!1uP!XO :llJI }O wns:I~
}O :lIUIS u°!1uP!XO m! p:lu8!sS1! S!.UM[U S! :lu!l°nll
spunodwo:J
o'HJ pm! '£HN 'O"H -U! s:ljdwuX3 °j-
'jJH
°9
SI! UI o~ :lpn[:J
°1 + }O :lIUlS u°!1uP!XOm! p:lu8!ssu S! u:l80Jp!.q 'SjUl:lWUOUlJI!M spunodwo:J IU:I[1IAO:J SI! UI °v
}O :llUlS u°!1uP!XO m! p:lu8!ssu S! u:l8!.xo
o£OS pm! '"OS '"OJ
'OJ
S1!q:Jns 'spunodwo:J
q:Ju:I :lJ:lqM 'S:lP!XOJ:Id U! SJn:J:JO:I[IU S!lJI 01 uo!1d:l:Jx:I uy IU:I[UAO:J SI! U! Z-
}O :lIUIS u°!1uP!XO uu p:lu8!sS\! S! u:l8!.xO
°:l8jTJq:J SI! SU :lWUS :llJI S! UO! :J!WOIUUOW U }O :lIUlS u°!1up!XO:l~ °0 S! IU:lW:lj:l m! U! WOIU m! }O :lIUlS u°!1up!XO:l~
o£ °z OJ
::ljTJ S:lIUlS u°!1uP!XO 8u!u8!ssu JO} s:I[n}l °1
+
S! u:l80Jp!.q
q:Ju:I }O :lIUlS u°!1uP!XO
:lIUIS u°!1uP!XO SI! pm! 'suOJI:J:lj:l OMI}O SS:I:JX:Im! u:l8!.xo
':ljdwux:I
-:>:Ij:l JO} U°!1:JUJlIU J:llu:lJ8 U suq u:l8!.xo
pm! u:l8!.xo
:llJIlUlJI p:lwnsS1! S! I! 'O"H
U! u:l80Jp!.q
:llJI S1!q IUlJI WOIU :llJI 01 !.j:lI:l[dwo:J
:lql
pm!
'suoJ!:J:lj:l
OU suq u:l80Jp!.q
q:Ju3
°z
~
S!
:llJI s:lA!8 S!q.L °suoJ!:J:I[:I :llJIj[1l s:lss:lssod WOIU u:l8!.xo
}O S:lIUlS u°!1uP!XO :lql 8u!u8!ssu
JO} ':ljn:J:ljow
U! os 'u:l80Jp!.q
m!lJI SUOJ!
J:lIUM :llJI uI °suoJ!:J:I[:I :llJI JO} U°!1:JUJ!IU J:l8uOJIS
p:lu8!sS1! :ljTJ suoJ!:J:I[:I p;IjTJqs :llJI 'p:lAjOAU! :ljTJ SWOIU IU:lJ:lJj!P OMI U:llJM
!.j!Jt!J!!qjTJ !.q p:luJUlqo :ljTJ spunodwo:J
-jTJd 01 suoJ!:J:I[:I :llJI 8u!u8!ssu
;IjTJ SUOJI:J:I[:I :llJI 'SWOIU [u:J!1U:lP! OMI U:I:lMI:Iq puoq IU:ljUAO:J U JOd °SWOIUjTJ[n:J!1
°OMI :llJI U:I:lMI:Iq !.IIunOOI!jds
IU:I[UAO:J U! SWOIU }O S:lIUlS u°!1uP!XO :I~I
w~Q1nos pUB w~qpoN U~~M~~ UO!S!A!P p~~eW!~S~ gU!pnI;)U! '{BJn~eu pUt! ;)!U~god -OJQ1ueQ1oq '~J~qdsoW1e ~q~ O~ SUO!SS!W~JnJlns Ie~o~JO S~~eW!~S~S~U~S~JdZ"Z ~Iqe.L .U09!Sod~p Alp pUB ~~M Aq {BAOW~J Aq p~U!WJ~~~p ~Je S~W!~~;)U~P!S~JS~!;)~S JnJlns '~~e~s(9+)S ~q~ U! spunodwo;) o~ p~P~A -UO;) ~;)UO .S~~Idolp JO S~I;)!ped U! punoJ ~q o~ pu~~ u~~Jo spunodwo;) (9+)S ~Q1Se~J~qM '~seqd seg ~Q1U! AIIe!~U~J~J~JdIn;);)O s~!;)~ds JnJlns p~;)np~J ~~~e~suo!~ep!xo Q1!M s~se~J;)u! s~!;)~ds JnJlns Jo A~!I!qnlos J~~eM ~q.L .sAep M~J e Jo S~W!~~J!I ;)p~qdsow~e gU!~InS~JQ1!M 's~!;)~d~ J~Q1oAq '~u~x~ J~SS~Ie o~ 'pUt! {B;)weJ IAXOlpAq ~Q1Aq P~Z!P!XO AIP!deJ ~Je '1JO z-
~~e~suo!~ep!xo q~!M ~soq~ 'spunodwo;) JnJlns p~;)np~"M .~~e~suo!~ep!xo JnJlns J!~q~ o~
p~~eI~J AI~SJ~AU!S! spunodwo;) JnJlns ;)p~qdsow~e Jo A~!A!~;)e~JIe;)!w~q;) 1.~J~qdsow~e ~q~ U! s~~e~suo!~ep!xo ~AY U! SJn;);)o JnJlns .oOS pUB .S;)O .oS;) 'EH;)SEH;) 'soH ~Je ~J~qdsow -~e ~Q1U! spunodwo;) JnJlns {Bd!;)Upd ~q.L .spunodwo;) JnJlns ;)p~qdsoW1e S~S!II'Z ~Iqe.L SHWI.L3d11aNY 'sa.J},.J .V80.0
9S
'NOI.LISOdWOJ JI~HHdSOW.LV
'"
'g 5 Co
'" Q
§ U s.. S = [/} CJ 'c ~ i S <
-g
ui
u ';: Q) .g,
I ~ Q) ~ 3 ~~~~~ ~'" ~~~~~
-;£
'3
C/O C/O C/O
c-'-"'>,"0>,
~ ~
-;£
i
0: Y
* fI) '"
~
.;r; U ~ rI5 '" ~ U
~ :;s
=' .~
~
.~
-S ~ 8
~ 8 -'0>,
>,.~ a a ~
:I:~UU~
~-SCC~ ..,~oo~ "08.0.0",,"
~
:5t1:tl:tI:~ ~ '3 '3
~i~~~
~
~
r;;
'" :I: U rn ~ '" N~ ..:;'~~U~ UUOU
i~~~~ u~ o:u~ou
] ~ 1Y~~1
~
z
I
ttS
'8 ~ ~E Ucn
= 0
cn
';:J Q) ~s .~ ><
a
'" = 0
£ u
I
I O=rll -.
'" =
'" =
'" =
=
0
I""
~ ~ ~
'" = = = 0'0'0' 0«<
0 II ~
'ti !
.;r:
C/)
"0 .><
~
.g -= u ... =-= "'.~ = ~cn
B
0 = .~
=
~ -£. .., ""ON'" 0 ~~~~
=' '"
~ "0 .~ oS 0 ;a
-
~
=' rn
~ .Q
~
1
0
'0 e ~ ~ =' g =' C' tU ~ ~
s
a ~ ~
'0 .~ u "c @ = CfJ
\0
'0
g, ~
~
8 ~ ~ ., g g. ~
b
e ~ ~ =' 0
I 0
"'... 0 cn
I
r/) =t:
c .2 B ~ '3 '"
I. 0
I:: .~ B ~ "3 '" ~
57
i~
.5 ~ 8
:I:
~
1'"
Q ~
:I.-
0'. 0 "
~ :3. "
)0~ '"
g '"
'iO[
ClJC:: S '"
~ ~. CD e?.
rag'
VJ(j
~ 5;"
'1j
~
z
CD
0 CIJ ~. SQ.~
!, =
a ~
0 :I:
I (') '":I:
I
0 :I:
I
I
O=rJ)=O
O=rJ)=O
I
I
:I: '"
(') :I: '"
~
(')
=
~
(") :I: 'f.,) 0
~ 0:
s; e. (")
n '" =
~n t/)9~§
""'~
Q
~ = to
Of) c
~
~.
0
:I: N
:I:
R ~ '(n 0 ':c
~
O=rJ)=O
:I: ~ cn ?:;
~
E.a O'~ ='< n' a ~ ~ ~, ~ Q.§
",'<
0\
I5.
n
~
'?J 0 aS'
...
N
~
~ =
8S
i
,...,
~ ,..., r.IJ ~
=
t, !
.j '" ~ ~ Q '~ '" 'S ~ "oS '3 r.IJ -; ,Q Q '3
~ N ~ ; ~
~
00 10 '-' ,-.. '" 0 00 0I
"0 g r-~ r--
c= 0
'"
...
~
.= .0
()
O~
-e
Q)"'.o
oQ '-"'-",-..00 -:'O:N"-..r.-; --0r'1--_010 ~~~""r-: 'O~"" ""~...,r-~ 0""
"
N,-..
~
r.-;1r)~9=09 IN-Ir)I~l C"!,),0;C"!t"')r'11r)
0 N rf'\
ic1;c1;
N-OOa-r-N
d~
I
8 9 M
1
I
~
"or)
0
0;
-
~ I I I~ I/') f-0XI 0;0; ""~
co-"
I
QOOX:N o v 000 Q~ Q I
~ \0\0 tn9d r'1 N
I
§9~
I .),$~ -00
""!
~ -'on tI -11'1
~ .-
VVooo
0; 00
CO .-c= §
~-"'-
,-..'"= m 0
-
~
0 .~.- 0 ... ()-:~ c= m
'-'~'"
'
0 Q)~ """COO...
c= ~
..e.s", ~+88.:!:;,~,-.. ..:::.5~~~:t:.~8]:~ 0
~O...5:;>c
0 .- 2 ~ -y ~+oQ)~5.£-Sa1j;"O~
~
ob 0-
...
~
e
'"
]Co 'S
e
.. :c
s
.s
..
~
C/)
'8.
..
e
.~ .. :c
0
e
~
~
'" ..
0< = =
.
'"
'" C CO'" 0 ..~ -
0
.
~=]r--.E (0 ,c
~Ec-'.a '" c
Co
(0
.-
'-:"
00-
'"'"
~
~
..: '"
e 'OJ
g:
U
"8u~'" -5 - ~):J ~ ~ -6 2 oa ' .S '0
.S '0
.. (0
~
~ '.
c~~-g ~ 01) 01) ~ .. .-
t .c
§~]~ ~JfJ!!"'~~
59
.(~d (= ~.,O( = ~60( = ~D ()~D'SUO~lI~!~ Jo Sa(d!~(nUlS1!passaJdxa Ua1JoaJ1!'( 'Z aJn~!d Jo ap!s pUt!q-~q~!Jaq1uo UMOqSS1!'saxnll .OJ .(~)( (0 ( = ~ 90( = ~ 1) UO~JJj1aUlaq1 Ao(dUla o~ S! aA!~lIUla~ll1 uy "(~ .1°1 = ~.L 1),_JA ~.L Jo sa(d!~(nUlSll passaJdxa A((lInSnaJ1!'I"Z aJn~!d U! UMOqSSll 'a(dUlllXa JoJ 'saxnll JnJ(ns '~'y a(qll.L U! UaA!~ saxYaJd aq~~u!sn 's~unoUlll A(J1!aAU! passaJd -xa aJ1!aJaqdsolll1l1aq1 O~U!sapads Jaq1opUt! JnJ(ns Jo saxnld 'saxnll PUlI Sa11!J UO!SS!UlaJ!JaqdsoUl~lIJo S~!uf1.
OOOS puu 'S:)O 'Os:) uoflsnqwo:)
'£H:)S£H:) 'SoH Jo SOflUJ ~U!X!W pc;}AJC;}sqosC;}zp11wwns £oZ C;}lqu.L °UU!q:) U! {lJ0:) Jo C;}snpC;}suC;}J:)U! C;}qtS! U!sy WOJJ SUO!SS!wC;}JnJlns Jo q:lMOrg C;}qtJoJ uosUC;}J
c;}uoiu:)!lC;}wy:tPJ°N JoJ I-JA (S)~.L ~I> qt!M pC;}mdwo:) su '9861 U! I-JA (S)~.LOZ<) 1861 tnoqu
C;}:)U!StuC;}U!tuo:) ~U!u!wc;}-JnJlns
puu PC;}C;}wuH°xng C;}q.LoiZ661)
JnJlns
{lJqol~
~UWUC;}I C;}q:IC;}wo:)~
suq U!sy
tuqt
C;}tUWflsc;}UOU~!a
{lJJmUU C;}q:IJo c;}~UUJ pC;}tUW!tsC;}C;}q:IC;}tu:)!PU! SC;}U!IpC;}qsup
°{lJ tc;} OJ!dS puu '(Z661)
Jo U:jup uo pC;}suq '098 I C;}:)U!S°os
UOU~!a
puu PC;}C;}wuH'(6861)
Jo SUO!SS!wC;} luqol~
PC;}C;}wuHpuu UOU~!a
PC;}tUWflsC;}SMOqS I °Z C;}m~!d °C;}JC;}qds!WC;}H
WC;}q:tJ°N C;}q:IU! In:):)O SUO!SS!wC;}:)!uC;}~odoJq:luu C;}q:IJo %06 puu 'SUO!ss!WC;} JnJlns {lJtOt Jo %~L tnoqu JoJ tuno:):)u SUO!SS!wC;}:)!uC;}~odoJq:luU 'tuC;}sC;}Jdty °1-JA (S)~.L OZI Ot 86 Jo c;}~UUJ C;}q:IU! (t{lJsuC;}s ~u!pnl:)xc;})
SUO!SS!wC;} {lJqol~
{lJtOt C;}:)Uld sC;}tUW!tsC;}tu~n:)
°C;}JC;}qds!WC;}H
"(:l1t1Jlns 11t1Stl:lS~u!pnl:>x:l) xny JnJlns ItlJmtlU Itlqol~ :lq1 JOJ :I~URJ p:l1RWj1S:l :lq1 :l1R:>!PU!S:lU!1p:lqstlG ":I:>U:lJ:lJ:lJJOJ UMOqS:lJII (:lAJn:> P!10S) SUO!SS!W:IZO;) "(s:lJllnbs ~Z661) "itl1:1 OJ!dS pUt! '(S:lI~UR!J1 ~Z661) UOU~!G pUt! P;);)WRH '(s:ll:>J!:> ~6861) P:l:lWtlH pUR UOU~!G WOJJ;)JI! tl1RG "(~661 '"iR 1:1W!:lqs:lJJ:lH) 0981 :I:>U!SSUO!ss!W:I zO;) PUtI zos :>!u:I~odoJq1utlIRqoID
rz
nn~L!I
JB~A
0 0861 I I 0961 I I Ot61 I I OZ61 I I 0061 I I 0881 - --0981 " 0
..
I n
O'l
-
'"'I '
Ot ~ ~ >< ..
£'
t
(J) ~
~
SUO!SS!W3 JnJlns ItlJmtl N ItI~°J..
0 N
-~
~ ><
"'"
1-0
OQ "'"'
n ,..,.'-<
~
..T
09
~'lOJ
~ OQ (f) --
08
(Z661) 1t! 1~ OJ!dS L
s
(Z661) P~~Wt!H W uoua'!O
9' I
'-< "1
I
"
(6861) P~~wt!H W uoua'!O . I
I
I
I
"qWUq~T'
I
I
I
I
(1p.J'rf"'~':1J..:1 '\1'80'0
I
I
I
I
IDOL
'NOI.LISOdWO:J :JI1I3HdSOW.L\1'
09
SULFUR-CONTAINING
COMPOUNDS
61
TABLE 2.3 Observed Mixing Ratios of Atmospheric Sulfur Gases CompoundandLocation H2S Marine surfacelayer Coastalregions Forests Wetlands Urban areas Freetroposphere(2-5 kin) CH3SCH3 Marine surfacelayer Continentalsurfacelayer Freetroposphere(2-5 kin) CS2 Marine surfacelayer Continentalsurfacelayer Freetroposphere(2-5 kin) OCS Total troposphere Marine surfacelayer Continentalsurfacelayer SO2 Marine surfacelayer Freetroposphere(>5 km)Europe/NorthSea/Arctic North America cleancontinental CoastalEurope Pollutedcontinentalair
Average Mixing Ratio (ppt)
3.6-7.5 65 35-60 450-840 365 6-8.5 80-110 8-60 1.5-15 2-18 35-120 5-7 500 500 545 20 50 160 260 1500
Source: Berresheim et al. (1995) (detailed references given by the authors).
2.2.1
Dimethyl Sulfide (CH~CH3)
Dimethyl sulfide (DMS) is the dominant sulfur compound emitted from the world's oceans. DMS was discovered in the surface ocean by Lovelock et al. (1972), who suggested that DMS may be the biogenic sulfur species that was needed at the time to balance the global sulfur budget. DMS is produced in oceanic waters by both benthic and planktonic marine organisms (Dacey and Wakeham, 1986), suggesting that it may be ubiquitous in the surface ocean (Barnard et al., 1982). It is thought to originate from the decomposition of dimethyl-sulfoniopropionate produced by marine organisms, in particular, phytoplankton (Andreae, 1990). Its concentration in the upper layer of the ocean varies between a few nanograms of S per liter to a few micrograms of S per liter (Lovelock et al., 1972; Barnard et al., 1982; Andreae and Raemdonck, 1983; Cline and Bates, 1983; Nguyen et al., 1984, 1988). The DMS surface seawater concentration is highly nonuniform; its average concentration is approximately 100 nanograms (ng) of S per liter. It has been observed that the concentration of DMS is dependent on diurnal (Andreae and Barnard, 1984) and seasonal variations (Turner and Liss, 1985), and on depth and location (Andreae and Raemdonck, 1983).
:)J:)qdsodoJ! :)qI 01 s1 81, £9'v q:>1qMJo '81, Z'~ :)q o~ :)J:)qdsow~u :)q~ 01 SJO Jo A~1~ounb{U~ -o~ :)qI P:)~uw1~s:)(~66I) S1AUa pun °1qJ 's~o:)w:)Jnsu:)w :>1.1:)qdsow~u Jo s1suq :)q~ 00 ':):>un -Iuq 01 Alq8noJ ~ o~ P:)J:)P1soo:>:)q un:> ~:)8pnq s1q1's:)~uw1~s:):)qI Jo A~O1U1J:):>on :)q~ 0:)A1D
laq:lO a~tdn I1oS uO1t:)ualHO a~tdn tUUId S'5fiI!S
3'u!wnq
J~q:lO SSUWO!H
UO!SS!W~ uu~:)O UO!~Up!XO os:)
s:):>Jnos
:(L661 'u~z~nJ:) pUB ~e~Jpuy) (._JA(S:)O)5'.L U! IJt1) S){U!S pUB S~~JnOSJO S~~eW!~S~5'U!MOIIOJ ~qt O~P~I ~I~A~ S:)O leqol5' ~q~JO S!SAJt1Ut! ~U~~~JY .~dd OO~ ~noqe JO °rleJ 5'U!X!W ~!l~qdsod -0I1 ~5'eJ~AeUt! S~!q!qx~ S:)O '(~661) S!Aeo pUt! U!q:) Aq P~M~!A~J u~~q ~Aeq s~xnlJ ~~e.J.Ins pUB SO!~eJ5'U!X!W S:)O ~!l~qdsow~e JO S~ij~W~JnSe~w 'J~Ael 10SOJ~e~~eJlns ~!l~qdso~eI1s Jt1UJJOU ~qt JO ~~Ut!U~~U!t1W~qt JOJ ~lq!SUOdS~J ~q O~ p~J~P!SUO~S! ~J~qdso~eI1s ~qt O~U! S:)O JO ~ndu! ~qt '~~eJUI ('sUO!~dnJ~ ~!Ut!~IOA U! ~J~qdso~eI1s~qt O~U!"OS JO UO!~~~rU!~~~J!P ~qt S! UO!~d~~X~uy) .~J~qdso~eI1s ~qt J~~U~O~S~A!AJnS~eqt punodwo~ JnJlns AIUO ~q~ S! ~I .~W!~ ~~U~P!S~J5'UOI AI5'U!puodS~JJO~S~!pUt! ~J~qdsodOI1 ~qt U! A~!A!~~e~JMOl S~!JO ~sne~ -~q ~J~qdsow~e pUnOJ5'){~eq Jt1qol5' ~q~ U! Se5'JnJlns ~Ut!punqe ~SOW~q~ S! ~PYlns IAuoqm:)
(S~O) 3pYlns IAUOq.l8~ rrz o~ J~1dBqJ ~M o~J~qdSOW1B ~u!lBw P!;)B ;)!uoJIns
~q1 U! "as
U! swa
swa
-dB Jo ~pm!IdwB
;)!l~qdsOW1B
o~£I
~q1 S! swa
~J~M swa
's oZI)
gU!lnp
~
~q1 01 Wm~J II!M
S!q1 gU!lnp
SJ01Bg!1S~AU! ~s~q.L) °1dd ~8 AI~1BW!xOJd Jo S~I;)A;) I~!P 1U~1S!SUO;) pUB 'Z66I
J~ABI fJBpunoq
Jo S1U~W~JnSB~W pJBoqd!qs
~u!lBw
1Jod~J (9661)
~W!11qg!U B q1!M '~I;)A;) I~!P B 1!q!qx~
'1Ins~J B sy lUB1Jodw!
Jo UO!1BP!XO (o£oZ ~IqB.L U! U~A!g
AIqBJ~P!SUO;) '1dd £6 + £~v ~q 01 pO!l~d
UB~W ~q1 punoJ
UB q1!M p~AJ~sqo
SABp 9 JoJ (M ;)!l~qdsow1B
Jo AJ1S!W~q;) ;)!l~qdsow1B
Jo ~;)Jnos 1UBU!WOP ~q1 pUB '~J~qdsOW1B ~q1 U! (YSW)
~UBq1~W Jo ~;)Jnos ~A!snI;)x~
SOnBJ gU!X!W Jo ~gUBJ ~q1 uBq1 J~qg!q 0!1BJ gU!X!W
gU!lnp swa
pUB WnW!XBW ~U!lBW 1qg!IABP
;)Y!;)Bd
q;)JBW
{B;)!doJ1 ~q1 U! sI~A~I
°(B 1~ UOAA °wnw!u!w
SUO!1BJ1U~;)UO;) swa
~W!1ABP
J~ABI fJBpunoq
PIno;) UO!1;)B~J EON ~q1 U~qM 1qg!U 1B UBq1 J~q1BJ SJnoq
AI~A!1;)~JJ~ ~JOW p~AOW~J S! swa
'~;)JnOS {B;)!W~q:>O10qd
B SBq IB;)!PBJ
HO ~q1 ~snB;)~H o~J~qdsow1B ~U!lBW ~q1 U! S~1BU!WOp~Jd UO!1;)B~J {B;)!PBJ IAXOJPAH °{B;)!PBJ (EON) ~1BJ1!U ~q1 q1!M OS{B pUB {B;)!PBJ IAXOJPAq ~q1 q1!M APUBU!WOp~Jd
S1;)B~J swa
'~J~qd
-SOW1B ~q1 01U! ~;)BP~1U! B~S-J!B ~q1 SSOJ;)B J~JSUBJ1 J~1JY o~J~qdsodOJ1 ~~JJ ~q1 U! UO!II!J1 Jad S1JBd M~J B 01 ~pm!1{B q1!M AIP!dBJ I{BJ SOnBJ gU!X!W °SJ~1BM (gu!II~Mdn
swa
'£oZ ~IqB.L U! P~1B;)!PU! sY
'ImSBO;) 'ogo~) ;)!qdOJ1U~ J~AO qdd I SB qg!q SB s~n{BA q;)B~J UB;) 1nq 1dd 0 I I
01 08 Jo ~gUBJ ~q1 U! S! ('lHW)
J~ABI fJBpunoq
-AB ~q.L °p~1;)npuO;) u~~q ~ABq ~J~qdsow1B -B~W snOJ~wnu
'P~qs!Iqms~
~u!lBw
~u!lBw
~q1 U! 0!1BJ gU!X!W
~q1 U! SUOnBJ1U~;)UO;) swa
SBM ~I;)A;) JnJIns {BqoIg ~q1 01 swa '~J~qdsow1B
-q!I!n~
s~n{BA ;)!l~qdsow1B
1Bq1 ~soq1 Jo SS~;)X~ U! ApB~Jg ~JB SUO!1BJ1U~;)UO;) swa S1! pUB ~J~qdsow1B
swa
~gBJ~
Jo S1U~W~Jns
Jo ~;)UB1Jodw! ~q1 ~;)UO
~q1 01 UB~;)O ~q1 WOJJ swa
Jo ){;)BI S!q1 Jo 1Ins~J ~Q.L "(066 I '~B~lpUY)
~q PInoM
J~1BMB~S U! 1UB1SUO;)MBI S,Aro~H
Jo xnlJ B S! wn!l
q1!M Wn!lq!I!nb~
;)!UB~:>O '(9 J~1dBqJ
~q1 U! SUO!1BJ1U~;)UO;) swa
U! ~~s)
uo P~SBH
Z9
S3WIJ.3d11aNY 'S31;)A;) 1V801D 'NOIJ.ISOdWO;);)I~3HdSOWJ.V
SULFUR-CONTAINING
:
"
"
Artivity
..<
Soils and Land. 3x
63
Marine Atmosphere 3.2
Continental Atmosphere 1.6 Human
COMPOUNDS
Lakes and Rivers ! 300 Ocean 1.3xlO
9
Marine Biota ?,.
Lithosphere 2x 1010
FIGURE 2.2 Major reservoirsandburdensof sulfur, in Tg(S) (Charlsonet al., 1992).Reprintedby permissionof AcademicPress.
and 0.57 Tg in the stratosphere.Basedon the estimatedglobal OCS sourcestrengthof 0.73Tg yr-I, the global atmosphericlifetime of OCS is estimatedto be about7 years.We will return to the global cycle and chemistryof OCS in Chapter4 in connectionwith the stratosphericaerosollayer. 2.2.3 Sulfur Dioxide (S02) Sulfur dioxide is the predominant anthropogenic sulfur-containing air pollutant. Mixing ratios of S02 in continental background air range from 20 ppt to over I ppb; in the unpolluted marine boundary layer levels range between 20 and 50 ppt. Urban S02 mixing ratios can attain values of several hundred parts per billion. We will consider the atmospheric chemistry of S02 in Chapter 5.
2.2.4 The Atmospheric Sulfur Cycle Figure2.2 depicts the major reservoirsin the biogeochemicalcycle of sulfur. with estimatedquantities(in Tg(S» in eachreservoir.Directions of fluxes betweenthe reservoirs areindicatedby arrows.The major pathwaysof sulfur compoundsin the atmosphereare depictedin Figure 2.3. The numberson eacharrow refer to the descriptionof the process givenin the captionto the figure (not to fluxes).All the processesindicatedschematically in Figure2.3 will be studiedlater in this book.
(61"'l)
(81'Z)
0
0
= toS(} (to~'f +
= zosv (ZO~'l+
to~'f)
-
~oS(} ~o~'f
ZO~'l+ ZO~'l)- zo~d + zo~d
u~~qo ~M '-~OS pU11"OS q~oq 101 (~I.z)
gU!~!lA\
._~OS pU11zOS 10 S~W!~~l!I ~q~ 101 S~~gW!~S~u~~qo o~ S! IgOg lno .UO!~!SOd~p ~~M pU11Alp Aq ~l~qdsOW~g ~q:I woll p~AOW~l os~ S! ~~glIns .U09;)g~1 ~;)!W~q;) Aq ~glIns o~ P~Z!P!XO pU11UO!~!SOd~p~~M PUg Alp Aq p~AOW~l S! "OS ."OS o~ S~!;)'JdslnlIns p~;)np~ll° UO!~gP!XO~q:I woll u09nq!ltuo;) ~ s~pnI;)u! ZO~c/.AI~A!~;)'JdS~l,ZO~c/pU11ZO~c/Sg
"OS 10 SUO!SS!W~;)!U~godoJq:lU11pU11~ln~gU ~q~ ~~ou~p II!M ~A\ .£'Z ~lng!d U! UMOqS ~~gl -Ins pU11"OS gU!AIOAU! ~I;)A;) lnlIns IgqoIg ~q~ 10 uo!:tJod ~gq~~ZAIgU11o~ MOU qS!M ~A\
"(9+)S
pUR '(p+)S
'SJOJO
uo!~!sod;Jp
(£1) ~IOSOl;JR(9+)S IRnp!S;Jl gU!AR;Jll;J~RM-pnol:> Jo UO!~RlodRA;J(ZI) ~SIOSOlpAqO~U!-;J~RJlns AIU!RW -IOSOl;JR (9+)S Jo qtMO~fUo~dJOSqR (1 1) ~(SUO!IR~;JW:>!~AIR~R:> Jo SI;JA;JIp;J~RA;JI;J Jo ;J:>u;Js;Jld;Jq~ U! ~O Aq pUR) SIOSOlpAq U! (bR)~O~H Aq (p+)S JO UO!~RP!XO;JSRqdP!nb!1 (01) ~(S;JI:>!1J1!d 10SOl;JR~S!OW 'S~;Jldolp u!Rl/goJ/pnol:» Aq s~:>npold (p+)S
SlosOlpAq O~U!'~OS AIU!Rw '(p+)S
Jo uO~dJOSqR (6) ~;Jl;JqdsodoJ1;Jq~U! HO
l;Jq~O pUR ~OS JO UO~RP!XO (8) :;Jl;JqdsodoJ1;Jqt O~U!'J:>Rq;J~RJlnspUR '~OS 'SJO
:>p;JqdSO~RJ1S JO tlOdSURJ1
(0
~;Jl;JqdsO~RJ1S ;Jq~ U! ~OS JO UO~RP!XO (9) ~;Jl;Jqdso~RJ1S ;Jq~ U! ~OS UUOJ o~
SWO~R0 q~!M UO~:>R;JllO SJOJo
S!SAlo~oqd (~) ~;Jl;Jqdso~RJ1S ;Jq~O~U!SJOJo
tlOdSURJ1(p) ~;Jl;Jqdsod
-OJ1;Jqt U! EON Aq 'SWG pUR 'HO Aq ~SJ pUR 'S~H 'SWG JO UO!~RP!XO(£) ~(9+)S pUR (p+)S JO UO!S -S!lli;J (Z) ~SJO pUR '~SJ 'S~H 'SWGJO UO!SS!W;J(I) :S;JSS;J:>old ;Jq~O~gU!PlO:>:>Rp;Jl;JqRI;JJt! sq~Rd;J~
"(~66 1 'lR~;J W!;JqS;Jll;JH);Jl;JqdsoW~R ;Jqt U! spunodwo:> lnJlns Jo SARMqtRdlofRW
SaWI.L3dI' aNY 'sa,;)}..;) 'YBO'O
foZ :lHflDI..f
'NOI.LISOdWO;);)I~aHdSOW.LY
t9
(61 'V (8I'V
0
0
= .OSo ('O~'f +
= "lQSD(to~'t + . -~OS p~
'O~'f)
-
'OSo 'O~'f
to~'t + to~'t) - to~d + "lQ~d
u~~qo ~M '-~OS p~ "OS ~oq JOj (~I"V gU!~!lA\ zOS jO S~W!~~j!I ~q~ JOj S~~BW!~S~ u~~qo O~S! {lJog Jno
.uo!~!sod~p ~~M p~ Alp Aq ~J~qdSOW~B~~ WOJj p~AOW~J OS{lJS! ~~BjIns "UOfl:>B~J{lJ:>!W~q:> Aq ~BjIns o~ P~Z!P!XO p~ UOfl!sod~p ~~M pUB Alp Aq p~AOW~J S! "OS ."OS O~S~!:>~S Jnj{ns p~:>np~JjO UOflBP!XO ~~ WOJj UO!~nq~uo:> g s~pnI:>U! ZOJJ .AI~A!~:>~S~J ,ZO~J p~ ZOJJ SB "OS jO SUO!SS!W~:>!U~godoJ:q'!~ p~ {lJJn~BU~q~ ~~OU~pII!M ~A\ .£"Z ~Jng!d U! UMOqS ~~Bj -Ins p~ "OS gU!AIOAU! ~I:>A:>Jnj{ns {lJqoIg ~~ jO uo!:)Jod ~Bq~~zAIBUB o~ MOU qS!M ~A\
"(9+)S
pUR '(p+)S
'S:JOJO UO!~!SOd;Jp
(£1) ~IOSOl;JR(9+)S IRnp!S;Jl gU!AR;Jll;J~RM-pnol:> Jo UO!~RlodRA;J(ZI) ~SIOSOlpf.qO~U!-;J~RJlns f.IU!RW -IOSOl;J~ (9+)S Jo qtMO~fUO!1WOSqR (I I) ~(SUO!I~~;JW :>!~f.I~~R:> Jo SI;JA;JIp;J~RA;JI;J Jo ;J:>u;Js;Jld;Jq~ U! ~O f.q pu~) SIOSOlpf.q U! (b~)~O~H f.q (p+)S Jo UO!~RP!XO;Js~qd P!nb!1 (01) ~(S;JI:>!lJ1!d10SOl;J~~S!OW 'S~;Jldolp U!Rl/goJ/pnol:» f.q s~:>npold (p+)S
SIOSOlpf.q O~U!'~OS f.IU!t1w '(p+)S
Jo UO!1WOSqR(6) ~;Jl;JqdsodoJ1;Jq~U! HO
l;Jq~O pu~ ~OS Jo U°!1RP!XO (8) :;Jl;JqdsodoJ1;Jqt O~U!'1:>~q ;J~~Jlns pUR '~OS 'S:JO (0 ~;Jl;JqdsO~RJ1S ;Jqt U! ~OS JO U°!1RP!XO (9) ~;Jl;Jqdso~RJ1S ;Jq~U! ~OS uuoJ o~
:>!l;JqdsO~~J1S JO tlOdSURJ1
SWo~~ 0 q~!M U°!1:>~;JllO S:JOJo S!sf.lo~oqd (~) ~;Jl;Jqdso~~J1s;Jq~O~U!S:JOJo tlOdSURJ1(p) ~;Jl;Jqdsod -OJ1;Jqt U! EON f.q 'SWG pUR 'HO f.q ~S:J pUR 'S~H 'SWG JO UO!~RP!XO(£) ~(9+)S pUR (p+)S JO UO!S -S!lli;J (Z) ~S:JO pUR '~S:J 'S~H 'SWGJO UO!SS!W;J(I) :S;JSS;J:>old ;Jq~O~gU!PlO:>:>Rp;Jl;JqRI;JJf] sq~Rd ;JqJ.
"(~66 1 'lR~;J W!;JqS;Jll;JH)~l;Jqdsow~~~qt U! spunodwo:> lnJlns JO Sf.RMqtRdlOr~W
SaWI.L3dI' aNY 'sa,;)}..;) 'V80'0
foZ 3HflDI.i
'NOI.LISOdWO;);)I~aHdSOW.LV
"9
SULFUR-CONTAINING
COMPOUNDS
65
The meanresidencetime of SO"is 7:S02
= P;02QS02 + PS02 a k~o, + k~O2+ kso,
whereas that for sulfate is QSO4
1'SO. =
kSO,QSO2
kSO4d+ kSO4
The meanresidencetime of a sulfur atom is t's =
QSO2
+ QSO4
P;O2+ P:~
which canbe expressedin termsof the two previousmeanresidencetimes as 1:S
= 1:S02 + b1:s04
(2.23)
where
b=
ksozQs~
(2.24)
PSOz + Ps~
the fraction of S convertedto SO~- beforebeingremoved. We can alsodefineindividual characteristictimes suchas
'so, d = (kso, d'
.502= (ks02)
t'SO4 d
= (kSO4, d'
sothat
1"S04
~ 1"S04
w TSO,
We can also define the mean residence time of a sulfur atom before surface removal or pre.
cipitation scavengingby d,w -TS
Qs~ + QS04 Q + kd.w kd,w SO, S02 SO.QS04
'PPOM ;)q:J10 s1lUd p;)tt?{ndod U! ;){J,(J ln1{ns ;)qt uo ;)Ju;)ngu! ugwnq 10 uo!td!lJS -;)P ;)tt?lnJJt? ug ;)P!AOld tOU op S;)gt?l;)At?{t?qO{g ';)l;)qdsowtt? ;)q:JU! ln1{ns 10 ;)W!t ;)JU;)P!S;)l tloqs ,({;)A!tt?{;)l ;)q:Jput? S;)JJnos J!U;)gOdOlq:JUt? 10 uo!tnq!lts!p
SJ. m
S.1
06
O~
{t?!tt?dsU;)A;)Un;)qt 10 ;)snt?J;)H
O'll
-
S.l P
:(SJnoq u!) ;}Ip. S;}W!} ~:>U;}P!S;}Jwo}g'JnJ{ns ;}q} '~'O = :J gu!wnssy
:(slnoq u!) S~W!~~:)U~P!S~l Jn1Ins ~~ 10 s~n{\1A P~~BW!~S~SBq (SL6 I) ~qpo~ .~OS S! ~B~ Jn1Ins {\1~0~~~ 10 UO!~:)Bl1~~ S! oJ'( I £"v 10 ~n1J!A Ag
(z£"z)
=.7
~J~qM 'osj.
P
(:J - I)
ZOS,l
+-L=L :J
Sol
T ;}Aeq
~OSD
;}M
S.l P
+ zosD
1uq1~U!10N 'S1\\01l0j su -~OS puu "OS JOj s:}w9 :}:>u:}P!s:}JluAow:}J :}:>uJlns uu:}w :}q1 01 P:}1ul:}J~ uu:> (~U!~U:}AU:>S UO!1U1!d!:>:}JdJO) luAow:}J :}:>uJlns :}JOj:}q W01U Jnjlns U JOj S:}W!1 :}:>u:}P!s:}JUU:}W :}q.L
(6Z'V 1~g ~M
(8ZOV ~u!sn 1Rq1os
S3WllHdI' aNY 'S3';)},.;) 'Y80'O
'NOI.LISOdWO;);)I~3HdSOW.LY
99
NITROGEN-CONTAINING
COMPOUNDS
67
2.3 NITROGEN-CONTAINING COMPOUNDS Aside from N2, which is extremely stable chemically and is not involved in the chemistry of the troposphere or stratosphere, the important nitrogen-containing trace species in the atmosphere are nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NOJ, nitric acid (HNO3), and ammonia (NH3). The first of these, nitrous oxide (N2O), is a colorless gas that is emitted almost totally by natural sources, principally by bacterial action in the soil. The gas is employed as an anesthetic and is commonly referred to as "laughing gas." The second, nitric oxide (NO), is emitted by both natural and anthropogenic sources. Nitrogen dioxide (NOJ is emitted in small quantities from combustion processesalong with NO and is also formed in the atmosphere by oxidation of NO. The sum of NO and NO2 is usually designated as NOx' Nitric oxide is the major oxide of nitrogen formed during high-temperature combustion, resulting from both the interaction of nitrogen in the fuel with oxygen present in the air and the chemical conversion of atmospheric nitrogen and oxygen at the high temperatures of combustion. Other oxides of nitrogen, such as NO3 and N20S, exist in the atmosphere in relatively low concentrations but nonetheless participate importantly in atmospheric chemistry. Nitric acid is an oxidation product of NO2 in the atmosphere. Ammonia (NH3) is emitted primarily by natural sources. Finally, nitrate and ammonium salts are not emitted in any significant quantities but result from the atmospheric conversion of NO, NO2, and NH3' Nitrogen is an essential nutrient for all living organisms. The primary source of this nitrogen is the atmosphere. However, N2 is not useful to most organisms until it is "fixed" or converted to a form that can be chemically utilized by the organisms. (Nitrogen fixation refers to the chemical conversion ofN2 to any other nitrogen compound.) The "natural" fixation of N2 occurs by two types of processes.One is the action of a comparatively few microorganisms that are capable of converting N2 to ammonia, ammonium ion (NHt), and organic nitrogen compounds. The other natural nitrogen fixation process occurs in the atmosphere by the action of ionizing phenomena, such as cosmic radiation or lightning, on N2. This process leads to the formation of nitrogen oxides in the atmosphere, which are ultimately deposited on the Earth's surface as biologically useful nitrates. In addition to natural nitrogen fixation, human activities have led to biological and industrial fixation and fixation by combustion. Humans have increased the cultivation of legumes, which have a symbiotic relationship with certain microorganisms capable of nitrogen fixation. Legumes provide an increase in the soil nitrogen and serve as a valuable food crop. Industrial nitrogen fixation consists primarily of the production of ammonia for fertilizer use. Combustion can also lead to the fixation of nitrogen as NOx' In the process of nitrification, ammonium is oxidized to N°"i and NO3 by microbial action. N2O and NO are by-products of nitrification; the result is the release of N2O and NO to the atmosphere. Reduction of NO3 to N2, NO2, N20, or NO is called denitrification. Denitrification is accomplished by a number of bacteria and is the process that continually replenishes the atmosphere's N2. Figure 2.4 depicts the atmospheric nitrogen cycle. 2.3.1
Nitrous Oxide (N2O)
Nitrous oxide (N2O) is an important atmospheric gas that is emitted predominantly by biological sources in soils and water. Although by comparison to CO2 and H2O, N2O has a far lower concentration, it is an extremely influential greenhousegas. This is a result of its long
01 ON Jo 1ndu! Jo[gW ~q! ~U!P!AOJd'ON SPI~!A(01)0 Aq OzN Jo uo!'!gp!XO '(%01 1noqg) (01)0 'SW01g U~~AXO :)!W°1g P~1!:)X~ q!!M uo!,!:)g~J pug (%06 1noqg) ~J~qds01gJ1S~q! U! UO!1g!:)OSS!P010qdS! ){U!S :)!l~qdsOW1g Jo[gW S1!~~J~qdsodoJ1~q! U! P~U! S! ~P!XO snoJ1!N
i _JA
(N)~.L
L' L
01 L'£ S! S~!1!A!1:)g:)!U~~OdOJq!ug wolJ s1Ins~J 19q1~J~qdSOUJ1g~q! 01U! OzN Jo xnlJ 1U~JJn:) ~q.L izl 01 9 ~~ugJ) I-JA (N)~.L 6 AI~1gW!xOJddg SgM ~:)Jnos OzN Ig!J1Snpu!~Jd {1!101~q.L 's~:)Jnos OzN 1ug:)y!U~!S ~m sug~:)O ~q.L i~66'l 'lg 1~ UgWMnog) ~1gW!1S~011In:)YJ!p ~m s~:)Jnos ~s~q! WOJJ UO!SS!W~Jo S~!1!1ugnb ~q! q~noq1Ig 's~ss~:)oJd {1!!J1snpu! pug 'S~!1!A!1:)g {1!JmIn:)!l~g 'J~1gM uo!,!g~!Jl! Jo ~U!SSg~~P '~u!wnq SSgWO!q Sg q:)ns 's~:)Jnos J~q!O JO J~q -wnu ~~mI g,{q S~!1!1ugnbJ~I{1!wS U! P~11!W~OSIg S! OzN iv'z ~Iqg.L) I-JA (N)~.L V 19 P~1gW -!,!s~ S! ~:)Jnos S!q! ~~J~qdsOW1g~q! 01 OzN Jo ~:)Jnos 1U1J:jJOdw!1S0W ~q1 ~ SI!OS{1!:)!dOJ.L ,zOJ Jo 19q! S~W!100£ 1noqg S! (I Z J~1dgqJ ~~S) OZN Jo {1!!1U~10d~U!wmM {1!qOI~~q! SSgW 1!Un J~d '~In:)~Iow J~d A1!:)gdg:) UO!'!wosqg A~J~U~ ~~mI AI~A!1gI~J S1! pug ~W!1 ~:)u~P!S~J
'S;}~IJU!gjJON\0JJ1J;}ql q:>!qN\ WOl) s;}!:>;}ds ;}q1 ql!N\ UO!l:>IJ;}lS;}y!ug!S N\0JJ1J UIJl;}i\O U;}lljJN\ S;}!:>;}ds\f 'spunodwo:> U;}gOJ1!U)O ;}j:>A:>:>jJ;}qdSOW1IJ;}ql U! S;}SS;}:>°Jd to" :!nIfl~U
- - - - tHN }
'IN
O'lN
~
:ON
:ON
ON ~ON
ON
tHN +
-
EHN
'l N
:uO!tBX!d
~ON :UO!tB:>Y!Il!U~a
~HN
-
~
:u°!18:>Y!.l1!N :U°!1g~y!UOWWV
VHN :UOQ8I!W!SSY
~-{~ON
U~~OIl!N P~X!d ~U!JUW pUB I!OS
S3WIL3d11 aNY 'S3'1JAJ
'1YIIO'10 'NOILISOdWOJ
JI1I3HdSOWLY
89
NITROGEN-CONTAINING
COMPOUNDS
69
TABLE 2.4 Estimated Sourcesand Sinks of N2OTypical of the Last Decade Sources
Range(Tg(N) yr-l)
Likely (Tg(N) yi
NATURAL
Oceans Tropical soils Wet forests Dry savannas Temperate soils Forests Grasslands
1-5
3
2.2-3.7 0.5-2.0
3 1
0.1-2.0 0.5-2.0 9
Total natural sources ANTHROPOGENIC
Cultivated soils Biomassburning Industrial sources Cattle and feedlots
1.8-5.3 0.2-1.0 0.7-1.8 0.2-0.5
3.5 0.5 1.3 0.4
Implied total sources (atmospheric increase + total sinks)a "The observed atmospheric increase implies that sources exceed sinks by 3.9 Tg(N) yr-i. Source: IPCC (1995).
the stratosphere.We will return to this processin Chapter4. Sourcesof N2Oexceedestimatedsinksby 2.4 Tg(N) yr-i. Estimatesfor the atmosphericlifetime of N2Ocomefrom stratosphericchemicaltransport modelsthat havebeentestedagainstobservedN2Odistributions.The bestcurrentestimate for the lifetime ofN2O is 120 :t 30 years.Becauseof its long lifetime N2Oexhibits more or lessuniform concentrationsthroughoutthe troposphere.Ice core recordsof N2O show a preindustrialmixing ratio of about276 ppb. N2O levels haverisen approximately 15% since preindustrialtimes, reaching 311 ppb in 1992 (IPCC, 1995; Machida et al., 1995)(Figure 2.5). This observedatmosphericincreaseis consistentwith a differenceof 3.9 Tg(N) yr-1 excessof sourcesover sinks, which is in reasonableagreement,given the uncertainties,with the mismatchbasedon attemptingto estimatesourcesand sinks indeoendentlv.
a:>mos :>jlaqdsodoIl
;}:!ld
('ON
HN %~6 ~a:>lnOSW)( ZI-9 a:>lnOS :>jlaqdsodol.L a:>lnOS :>jlaqdsodoIl
1111019"0)
1"0
~"O £ ~ 8
aald
a:>lnOS a:>1!Jlns11!:>!dOl.L
'(~661) JJdI
:iJ:JJnos
:Jl:JqdsO1I!l1Swolj1lodsUl!lj. 111!lJl!V UO!1I!p!XO£HN ~U!U1q~!1 ~u!wnq
SSI!WO!8
( J!u:J~OdOJq1UI!
ZI PZ
a:Jlnos a:J1!pns 11!1Uau!1uo:) HN %~6<
~a:Jlnos a:J1!pns
s!uawwo:)
pUll Il!lntl!U) :JSI!:JI:Jll!OS UO!1snqwOJ l:Jnj-I!Ss°tl
(,_JA(N)g.t) ~pm!ugt!w
apB:Jaa JSB'l aqJ JO IB:J!d.\l. xON Jo SUO!SS!W3IBqolD paJBwps3
S, 3'lHV.L
1Z66 1 "[B }~ }IRqqg) s~pmflRIP!W w~qpou }R S~pm!}[B ~soq} }R punol xON ~q} 10 UOfl;)RJl ~gJP.IR JOl ~lq!suods~J AIIR!}u~}od ~JP.A~q} '~;)Jnos uo!}snqwo;) [B}O} ~q}1° UO!};)RJl IIRWS R AIUO ~JP. SUO!SS!W~q;)ns qgnoq}[B pUR '~;)RJlns ~q}}R URq} J~q}RJ w){ ZI O} 810 s~pm!}IR }R ~J~qdsod -OJ} ~~Jl ~q} U! APURU!WOp~JdP~SR~I~J~JP.A~q} ~SnR;)~q ~'Z ~lqR.L U! AI~}RJP.d~sP~}S!I ~JP. SUO!SS!W~}lRJ;)J!V 1Z661 'uoug!O pUR P~~UJP.H)9861 U! I-JA (N) g.L £'vZ O} OL61 U! I_JA (N)g.L 1'81 WOJl p~SR~J;)U!uoflsnqwo;) I~nl- I!SSOl WOJl x ON 10 SUO!SS!W~[BqoIg P~}RW!}Sg .~'Z ~IqR.L U! U~A!g ~JP. ~PR;)~P }SRI ~q} 10 IR;)!dA} xON 10 SUO!SS!W~[BqoIg P~}RW!}sg 'AJ}s!W~q;) J!~q} O} UO!}U~}}R~IqRJ~P!SUO;)){ooq S!q} U! ~}OA~P II!M ~M. .AIJS!W~q;) ;)!l~qds -OUJ}RU! s~In;)~low }uRPodw! }SOW ~q} guowR ~JP.'cON pUR ON 'u~gOJ}!U 10 S~P!XO~q.L
(ZON + ON = XON)sap!xo uaSO.l1!N ZO£'Z
"1!11!p~qt 011Y 1! S! ~Aln;) P!IOS "s~l1!nbs Aq U~A!g ~l1! 1661 01 LL61 pOJlad ~q1 JOj ~IOd qtnos ~q111! S~nl1!A U1!~W l1!nuuy "(~661 '11! 1~ 1!P!q;)1!W) 1!11!p~JO;) ~;)! WOJj P~U!1!1qOSl1!~A O~Z 1S1!1~q1 J~AO SOj11!JgU!XJW OzN ;)Jl~qdSOW1Y
S.t :!nIfl~M
JP,~A
OOOZ 0~61
0061
0~81
0081
S3WI.L3dI'aNY 'S3':)J..3"'80'0
O~Ll
DOLI
'NOI.LISOdW03 3I~3HdSOW.L"
OL
NITROGEN-CONTAINING
COMPOUNDS
71
Detailedemissionsinventoriesareavailablefor Canada,the United States,and western Europethat describethe spatialpatternsof NOxemissionsfrom combustionof fossil fuels andfrom industrialprocesses(Lubkert andZierock, 1989;Placetet al., 1990).Between40 and 45% of all NOxemissionsin the United Statesareestimatedto comefrom transportation, 30 to 35% from power plants,and about20% from industrial sources.About half the NOx emissionsassociatedwith transportationcome from light-duty gasolinetrucks and carsand approximatelyone-quarterare from heavy-dutygasolineanddieselvehicles.3 2.3.3
Reactive Odd Nitrogen (NO,)
Reactive nitrogen, denoted NO" is defined as the sum of the two oxides of nitrogen (NOx = NO + NOJ and all compounds that are products of the atmospheric oxidation of NOx' These include nitric acid (HNO3), nitrous acid (HONO), the nitrate radical (NO3), dinitrogen pentoxide (N2Os), peroxynitric acid (HNO4), peroxyacetyl nitrate (PAN) (RC(O)OONOJ and its homologues, alkyl nitrates (RONOJ, and peroxyalkyl nitrates (ROONOJ. Nitric acid (HNO3) is the major oxidation product of NOx in the atmosphere. Because of its extreme water solubility, HNO3 is rapidly deposited on surfaces and in water droplets. Also, in the presence of NH3, HNO3 can form an ammonium nitrate (NH4NO3) aerosol. The nitrate radical (NO3) is an important constituent in the chemistry of the troposphere, especially at night. NO3 is present at night at mixing ratios ranging up to 300 ppt in the boundary layer. Nitrous oxide (N2O) and ammonia (NH3) are not considered in this context as reactive nitrogen compounds. Measurement of total NO, in the atmosphere provides an important measure of the total oxidized nitrogen content. Concentrations of individual NO, species relative to the total indicate the extent of interconversion among species. NO, is indeed closer to a conserved quantity than any of its constituent species (Roberts, 1995). There is a sizable body of data on the concentrations of NOx in the atmosphere, but caution must be exercised in drawing conclusions from these measurements. Many measurements of NO x have been made by devices that convert NO2 to NO, which is then measured by the phenomenon of chemiluminescence. Comparison of these measurements with more specific techniques suggests that surface converters that can convert NO2 to NO also convert other reactive nitrogen oxide species, such as peroxyacetyl nitrate (PAN), to NO, thereby causing interference. In urban locations, where the local NO sources are typically large, NO and NO2 are probably the dominant constituents of the total reactive nitrogen NO,. Thus, in urban areas, interference from PAN and other oxides of nitrogen is believed to be relatively small. In rural and remote locations, however, the interference can be substantial. For this reason, all nonurban NOx measurements made with surface converters must be considered upper limits (biased toward a high measurement). Given the dominant role of anthropogenic emissions in the budget of atmospheric NOx and the fact that the sources of these emissions tend to be located in or near urban areas,elevated concentrations of NOx are to be expected in these locations. Observations of NOx support this expectation. The range and variability of NOx measurements are reflected in measurements made in 29 cities across the eastern and southern United States during the 3It is estimated that in 1994 there were 147,000,000 light-duty motor vehicles in the United States, 48,000,000 trucks (85% light-duty), and 676,000 buses. Total vehicle miles traveled were estimated as 235 X 10'2, with 1.4 X 10'igallons of gasoline consumed.
P~~~10S!-SS~1 ~~ p~lns~~w SU09~J:lu~:)uo:) uuq~ l~Mol f.l~u~:)y!ug!S ~q o~ pu~~ s~~~~SP~~!Ufl ~q~ U! S~~!S~lm P~~~10S!~~ u~)[e1 S~u~w~lns~~w .P~~!W!1 ~m SUO!~~J:lU~:)uo:)xON uuq -lnuou ~uy~p o~ p~p~~u ~s~q~~~p ~tp Jo f.~!I!q~!I~l puu ~Z!S ~tp ~lns~l ~ s~ pu~ '( qdd 1 Mol~ su09~J:lu~:)uo:) raN) s~I~:)°1 u~qlnuou U! xON ~lns~~w o~ f.~!I!q~~:)~~~pJo ~gUUl puu f.~!A!~ -!su~s ~u~!:)YJns tp!M ~lq~I!~A~ u~~q s~nb!uq:)~~ ~A~q os lO ~p~:)~p ~s~d ~tp gu!lnp f.luO .xON f.q P~~~U!WOPf.l~l~u~g ~m SUO!~~:)°1u~qln U! su09~J:lu~:)uo:) 'ON 'spunodwo:) 'ON l~tpO o~ xON :)J~AUO:)o~ slnoq ~l~A~S S~~~~! ~sn~:)~q puu xONJo s~:)lnos~gml ~A~q s~~m uuqln ~sn~:)~g 'ss~w l!~ ~tp U! p~lln:):>o s~q ~~tp UO!~~P!XO~tp Jo ~A9~:)!PU! S! f.~!~uunb S!tp snq.L ,xON Jo uo!~:)npoJ:lu! ~9 -!U! ~tp l~~J~ ss~w l!t! uu U! Sln:):)o ~~q~gU!ss~:)old 1~:)!W~q:) ~q~ S~:)~lJ~l'ON o~ xON Jo O!~ -~l ~q.L 'slnoq OZ o~ V S! s~!:)~ds 'ON l~tpO o~ xON Jo UO!Sl~AUO:)lOJ ~W!~ :)!~s!l~~:)~mq:) ~q~ ~~q~P~~~w9s~ u~~q s~q ~! 's~!pms ~UO!~~Al~sqo Jo l~wnu ~ wold '~:)lnos ~ Jo PU!MUMOP ~:)uu~S!P tp!M UO!~~J:lU~:)uo:)xON ~q~ Jo ~U!I:)~P ~!~~ds pu~ l~lodw~~ Jo ~~~l ~tp Jo f.pn~s MOn~ S~u~w~lns~~w u~qln ,xON Jo S~:)lnos P~~~J:lu~:)UO:)~Aeq s~~m uuqln ~sn~:)~g 'O!qO 'puul~A~IJ U! qdd vII puu 'sex~.L 'f.~!J sex~.L U! qdd 81 U~~M~ -~ P~!JeA p~!pn~s S~!~!:)~q~ ne lOJ ~gel~Ae ~q.L .f.~!:) q:)e~ lOJ sUO!~e!A~ppmpue:js ~q~ puu SO!~elgU!X!W xON UU!P~W puu ~g~l~Ae ~tp sMalls 9.Z ~lng!d 'w'e 00:6 pUR .w.e 00:9 'lnoq qsm gU!WOW ~tp gu!lnp ~pew ~l~M S~U~W~lns~~w ~q.L "sm~f. tpoq U! S~!~!:)~q~ Jo 01 U! ~pew ~l~M S~U~W~lnse~w xON '(9"Z ~lng!d) (9861 's~ngn~g) ~861 puu v861 Jo Sl~WUJns
S3WllHdI. aNY 'S3.;)A;) .Y80.0
'NOI.LISOdWO;);)I1I3HdSOW.LY
'll.
NITROGEN-CONTAINING
COMPOUNDS
73
TABLE 2.6 Typical Boundary Layer NOx Mixing Ratios
Urban-suburban Rural Remotetropical forest Remotemarine Source: National Research Council (1991).
rural sites and generally range from a few tenths to 1 ppb. Measurements of NOx in the atmospheric boundary layer and lower free troposphere in remote maritime locations have generally yielded mixing ratios of 0.02 to 0.04 ppb (20 to 40 ppt). Although the databaseis still quite sparse, mixing ratios in remote tropical forests (not under the direct influence of biomass burning) appear to range from 0.02 to 0.08 ppb (20 to 80 ppt); the somewhat higher NOx concentrations found in remote tropical forests, as compared with those observed in remote marine locations, could result from biogenic NOx emissions from soil. A summary of the NOx measurements made in the four regions of the globe mentioned above is presented in Table 2.6. It can be seen that NOx concentrations decreasesharply as one moves from urban and suburban to rural sites in the United States and then to remote sites over the ocean and tropical forests. The striking difference of three orders of magnitude or more between NOx concentrations in urban-suburban areas and remote locations is compelling evidence for the dominant role of anthropogenic emissions of NOx over strong anthropogenic source regions such as North America. Because the ability to measure Nay was developed only recently, the rural and remote Nay databaseis even more limited than that for NOx' However, there are enough data to establish a rough indication of the Nay distribution. Average Nay concentrations observed at many sites in the United States are quite similar; median mixing ratio values range from 3 to 10 ppb. These are somewhat lower than NOx mixing ratios typically observed in urban and suburban locations, which range from 10 to 1000 ppb. The contrast in Nay concentrations found in rural areas of the continental United States with those observed in the remote troposphere is illustrated in Figure 2.7. The measurement sites are Scotia, Pennsylvania, a rural site in the eastern United States; Niwot Ridge, Colorado, an isolated inland site in the western United States; Point Arena, California, a site on the West Coast that often receives air from the Pacific Ocean; and Mauna Loa, Hawaii, a remote maritime site. Two of the sites, Mauna Loa and Niwot Ridge, are at high elevations (approximately 3 kin), and thus the air sampled there is not necessarily representative of the boundary layer. There is a progressive decreasein the contribution of NOx to Nay as one moves toward more remote regions. On average, NOx at Scotia accounted for 59% of the observed Nay. At Niwot Ridge in 1987, NOx accounted for 32% of the Nay, and at Mauna Loa, NOx accounted for only 15% of the Nay. Because Nay enters the atmosphere as NOx, the decrease in the ratio of NOx to Nay as one moves to more remote sites can be understood in terms of the increasing chemical conversion of NOx to organic nitrates (principally PAN) and to inorganic nitrates (principally HNO3) with increasing distance of the site from major anthropogenic sources.The most remote sites are characterized by the lowest ratios of NOxINOv' Those sites at hi.e:haltitudes have the lar.e:estratio of
ERN JO s~:JJnOS!UU:Jy!ug!S ~q.L '~J~qdsOW!g ~q! U! punodwo:J gU!U~!UO:J-u~gOJ!!U !Ugpunqg !SOW ~q! S! 'O'N PUg 'N J~!JB 'PUg ~J~qdsOW!g ~q! U! Sgg :J!Sgq Amw!ld ~q! S! g!UOwwy (£HN) 8!UOWWY
t'£'Z
.a1meu u! ~qoIg ueq! 1aq~e1IeUO!ga11o ~;)°I aq o~ pa~;)adxa am S~P!xO u~gOl1!U Jo SUO!SS!W~]0 S~;)~JJ~10few ~q! 'S~W!~~J!I ;)!l~qdsow~e 1Joqs ,(I~A!~e -I~l ~S~q! Jo ~sne;)~H .s,(ep 6 o~ £ Jo ~gue1 ~q! U! '~~el1!u ~~eIn;)!~d 10J ~eq~PUg s,(ep 17o~ I Jo ~gue1 ~q~ U! aq o~ pa~ew!~sa S! '£ONH gU!pnI;)U! 'XON snoaseg 10J aw!~ ~;)U~P!S~l ;)!laqds -odol1 ue~w ~q~ 'suo!~el1u~;)uo;) PUg sq~gu~l1S a;)lnOS p~~ew!~s~ ~q~ Jo s!seq ~q~ uO '~l~qdsodol1 ~~lJ ~~owa1 ~q~ U! S~!;)~S 'ON ~uepunqe ~sow aq! S! NVd 'P~~PUI 'Al1S!W~q;) ;)!l~qdsodol1 ssn;)s!p ~M U~qM l~~eI o~ wn~~l II!M aM ~eq! ~;)eJ e "ON/NVd
.(1661) I!Juno;) qJJ11~S~~ leuopeN u! U~A!~ ~le S~JlnOSe1ep leU!~!lO °e1epJo %89 lel1u~J S! e~J11 p~peqs ~ue~w S! ~u!l P!l°s ~s~nleAJo ue!p~w S! ~u!l p~qsea °e1epJo ~~uel ~ql MOqSSJ11g°(1661 'I!Juno;) qJJ11~S~~ leuopeN) !!eMeH pm! s~1e1Sp~1!Ua le1U~UpUOJ ~q:IU! S1U~W~lnse~w'ON L"'l31l£1DM
1'0 L861 l~wwns 0:) '~gP!'M 10i\\!N
Z'O
~'O
~861 l:JWWns
z
'"0
Vd 'B!10:>S
~ _. >< S' (JQ
8861 gu!JdS IH 'RO. RunRW
~ ~ _. 0 '0 'go
~861 gu!ldS V:J 'BU'JlV 1U!Od
101
m
S3WIL3dI'1 aNY 'S3'1;))";) '1YHO'10 'NOllISOdWO;)
;)I~3HdSOWLY
tL
CARBON-CONTAINING
COMPOUNDS
75
TABLE 2.7 Estimated Global Ammonia Emissions Emission
Sourceof Ammonia
(Tg(N) yr-1
,NTHROPOGENIC
Dairy cattle Beef cattle/buffalo Pigs Horses Sheep/goats Poultry Fertilizer Biomassburning Subtotal NATURAL Wild animals Vegetation Ocean Subtotal Total
5.5 8.7 2.8 1.2 2.5 1.3 6.4 2.0 3OA 2.5 5.1 -1.:Q 1.4,.Q 45.0
Source: Dentener and Crutzen (1994).
are animal waste, ammonification of humus followed by emission from soils, losses of NH3-based fertilizers from soils, and industrial emissions (Table 2.7). The ammonium (NHt) ion is an important component of the continental tropospheric aerosol. Because NH3 is readily absorbed by surfaces such as water and soil, its residence time in the lower atmosphere is expected to be quite short, about 10 days. Wet and dry deposition of NH3 are the main atmospheric removal mechanisms for NH3' In fact, deposition of atmospheric NH3 and NH: may represent an important nutrient to the biosphere in some areas. Atmospheric concentrations ofNH3 are quite variable, depending on proximity to a sourcerich region. NH3 mixing ratios over continents range typically between 0.1 and 10 ppb.
2.4 CARBON-CONTAINING COMPOUNDS 2.4.1
Classification of Hydrocarbons
Let us review briefly the classifications of carbon-containing compounds, particularly those of interest in atmospheric chemistry. The carbon atom has four valence electrons and can therefore share bonds with from one to four other atoms. The nature of the carbon-carbon bonding in a hydrocarbon molecule basically governs the properties (as well as the nomenclature) of the molecule.
;)u;)!ng-z ;)u;)!ng-I (;)U;)IAdoJd) ;)u;)doJd
EH;)H;) = H;)EH;) H;)zH;)EH;) H;)EH;)
:H;)
=
zH;)
=
zHJ = zH;)
(;)U;){Aq!;) ;)U;)q!3
:~re S~U~)(IU UOllilliO:> }O S~Id1UUX3 "lliO!U uoqre:> ~q:I }O J~qllinu
~q! Aq P~!U:>!PU! U~!}O S! puoq
~q! B'U!J1Jqs SlliO!U uoqre:> OJ\\! ~q:I }O !SJy ~q:I S! !Uq:I ~In:>~Iolli
~Iqnop
~q! JO pU~ ~q:I O! !S~re~U lliO!U
uoqJ1J:> ~q! JO UO!!U:>OI ~ql. 'SUY~IO JO ~~U~IA)({1J SU UJ\\Ollf OS{1J~re S~U~)(IY "puoq ~Iqnop P~IIU:>-OS U 'SUOI!:>~I~ JO J~d U ~J1Jqs SlliO!U uoqre:> B'U!JoqqB'!~U OJ\\! SSUI:>S!q:I UI SiJUiJ'II" ~q:I
.
S! AI!S!lli~q:>
:>!J~qdSOlli!~
U! ~IOJ {1J9U~SS~ ~
U! !S~J~!U! JO SpUnOdlliO:> B'U!U~!Uo:>-uoqre:>
JO SSUI:>!X~U ~ql.
'AI!S!lli~q:> :>!J~qdSOlli!U AUld s{1J:>!PUJ~~JJ 'P~!OU ApU~J{1J ~AUq ~J\\ sY '~A!!:>U~J AI~lli~I!X~ S~!:>oos
~q:I S~)(1Jlli {1J:>!PUJ ~~JJ U U! UOI!:>~I~ p~J~dun uInlliJoJ
~ql.
"dnoJB' IA)({1J ~q:I Jo J~qlli~lli
AUU JoJ
{1J:>!lli~q:> ~q:I S~!OU~P ~ ~J~qJ\\ '. ~ P~!UUB'!S~PAIdlli!s U~!Jo ~re s{1J:>!PUJ IA)(IY
IA~ng-u IAdoJdoSI IAdold-u IAq:l3 IAq:I~W
:H:J
tH;)
EH;)
-tH;)
EH;)
.tH;)
EH;)
EH;) - H;) .tH;) - tH~
EH;)
,EH;)
:~Jt?s~:)!peJ (A){(e JO s~(dwex3 '(e:)!peJ (A){~ ue ~se:) S!q1 U! '~:)!peJ ~~JJ e S~WO:)~ ~(n:) -~(OW ~q1 pue UOJ1:)~(~p~J~dun ue seq mOte uoqJt?:) p~/\.(o/\.U!~qt '~ue){~ ue WOJJp~/\.OW~J S! mOte U~gOJPAq e ~:)uO .WOte U~gOJPAq e JO tu~w~:)e(d~J Aq t:)e~J A(~J~U~g s~ue){(V '~ue){(eO(:)A:) e se Ot p~JJ~J~JS! ~(n:)~(ow ~q1 ~se:) q:)!qM U! '~Jm:)nJ:}s gu!l e U! P~gueJJP.~q OS~ Aew s~ue){(V ;JUl!X;Jlllf,q1;JW!O-P'Z
;}U1!IU~OJOlqJ-E-OWOJe-L I
Z
£
'HoJ - HoJ- HoJ-
t
V
HoJ-
£
~
HoJ
~
9 EH.J
17
£
'l
'H:) - H.? - 'H:) - H:;>
, Jg
(HoJ
I:)
'H:)
:H:)
:(SWO!t! uoqJ'P.:) ;}q:I MoI;}Q P;}!t!:)!PU! S! W;}!SAS gull~wnu ;}q:I) ;}J'P.S;}Ut!){{t! p;}!m!!sqns U;}q:I S! q:)!qM
)0 S;}IdUIP.x;} {t!:)!d~
.dnoJg)o
~A!
;}q:I ;}pnI:)u!
O! P;}Y!POW
';}UIP.U ;}St!q ;}q:I St! U;}){t!! S! SWO!t! uoqJ'P.:) )0 U!t!q:) SnOnU!!Uo:) !S;}guoI ;}q:I)O
;}UIP.U ;}q:I 'S!S!X;} u!t!q:) uoqJ'P.:) ;}P!S t!)1 .;}Jm:)ru!S
u!t!q:) !qg!t!J!s
lHJ lHJ EHJ
~HJ EHJ
;}umng-u EH;) ;}~doJd ;}~q:l3
t! ;}At!q !OU P;};}U S;}Ut!){IV
EH;) .EH;) EH;) ~;)
;}UBq:I;}W
:;}Jl?~Jm:>nJ:ISurnq:> ~q~!UIIS B ~U! -ABq suyjBmd Jnoj ~SJY~qJ.. .;:+uzH":) S! S~UU){IBjO BInUJJoj IB:>!W~q:>IBJ~U~~ ~qJ.. 'suyjBJt!d SB 'f.I~u~IBA!nOO 'JO sauv'llv SB O~ ~JJ~j~J ~Jt! ~f.~ S!q1 jO s~In:>~Iow 'spuoq uoqJt!:>-uoq -Jt!:> JOj p~J!nb~J J~qwnu wnw!u!w B JOj ~d~:>x~ SWO~BU~~Olpf.q q1!M p~Jt!qs ~Jt! spuoq uoqm:> ~q1 liB q:>!qM U! ~SOq1~Jt! s~In:>~Iow uoqJt!:>OJpf.q ~S~IdW!S ~q~ ~SU~S~WOSUI
S3WIl,3d11 aNY 'S31:)A:) lY801D
'NOllISOdWO:) :)I~3HdSOWl,V
9"
CARBON-CONTAINING
COMPOUNDS
77
Moleculeswith two doublebondsarecalled alkadienes,an exampleof which is CH2=CH-CH=CH2 1,3-Butadiene
Moleculeswith a singletriple bond areknown asalkynes,the first in the seriesof which is acetylene,HC ~ CR. Double-bondedhydrocarbonsmay also be arrangedin a ring structure.This class of molecules,of which the basicunit is benzene,
H /C, HC
"
CH or
HC,/
CH C H
is calledaromatics.Other commonaromaticsare CH3
6
CH3
CH3
9
arCH3
CH3
Toluene
a-Xylene
m-Xylene
p-Xylene
Hydrocarbonsmay acquireone or more oxygen atoms.Of the oxygenatedhydrocarbons,two classesof carbonylsthat are of considerableimportancein the atmosphereare aldehydesand ketones.In eachtype of molecule,a carbonatom and an oxygen atom are joined by a doublebond.Aldehydeshavethe generalform 0 R
c
H
whereas ketones have the structure
0 II
R-C-R Thus the distinction lies in whetherthe carbonatomis bondedto one or two alkyl groups.
-W! ~q]. '~~Ul {UAOW~l ,_11\ (~;))g]. ',_11\ (VH;))g].
O£ P~~UW!~S~ UU s~~nq!l1uo:J
OP ~U P~~UW!~S~ '~l~qdsO~Ul1S
p~~UW!1S~ '~l~qdsOdOl1
~q~ U! (HO)
SI!OS U! ~)[U~dn {U!qOl:J!W
~q:a U! U°!1:JU~l 1\q pUU '[_11\ (VH;))g].
~VV ~U
S{U:J!PUl 11\XOlp1\q q~!M UO!~:JU~l qgnOJq1 ~l~qdsow~u
~q~
moll p~AOW~l S! ~uuq~~W 'S~:Jlnos :J!l~qdso!q moll l~pU!UW~l ~q:apuu 'Uo!~snqwo:J l~nJ I!S -sol wolJ s~wO:J ,_11\ (VH;))g]. 001 'S~:Jlnos :J!U~gOdOlq:aUU moll ,_If.. (VH;))g]. ~L£ p~~uw -!1s~ ~q:aJO 'SpUUI~~Mmoll SUO!SS!W~gU!~ uo!~nq!l1uo:J ~U~U!WOld ~sow ~q~ q:a!M 's~:Jlnos {UJn~uuo~ p~~nq!l1~u S! ,_11\ (~;))g]. 091 'SUO!SS!W~{Unuuu {UqoIg P~~UW!~S~~q:aJO i~661 ';);)dV
(099 o~ 0 I P ~gUU1) ,_11\ (VH;))g]. ~£~ ~UP~~UW!~S~~m q:J!qM 'VH;) Jo S~:Jlnos {UqoIg
~q:as~z!lUwwns
6,
~Iqu]. '~l~qdsoUl1u ~q:aU! uoqm:Jolp1\q ~uupunqu ~sow ~q:aS! ~uuq~~W
auuqJaw "'p',, ';}l;}qdsowtg ;}qt u! puna} s;}!;);}ds ;)!ugglO }O l;}qwnu g StS!I 8'Z ;}Iqg.t u!alOJ:JV H::> HJ
~H::>
II 0
~UOJ~~f.Q1~If.Q1~W
'H:J'H:J:1'H:J
ff
0
~UO1~:)V
EH;);)EH;) II
0
H:)H
H:JEH:J ] 0
ap,{qap~uuod
~pf.q~PJ1!t~:>v
0 :;)m S;)U01;)){puu S;)PAq;)P~ JO s;)!dumxH
HO
HOEH:J HOO:JEH:J HOO:JH
U!1!"H U!1!"H
qdd 01-0
EH:J(O):JEH:J OH:JH:JzH:J OH:JEH:J OH:JH 8HL:J ~9:J zHz:J 8H':J ~E:J
HO'IIl{
HO 'Ill{ HO'IIl{ HO HO qdd 00[-0 HO qdd O£-ZOO EO'HO qdd O~-O EO'HO qdd 001--0 qdd O£--o qdd 001--0
S'JIJ!Q'JAJO10W s'JIJ!q'JA JO10W s'JIJ!Q'JA JO10W s'JIJ!q'JA JO10W s'JIJ!q'JA JO10W UO!1t!1'J~'JA s'JIJ!q'JA JO10W s'Jss'JJOJd f1!!qOJJ!W
£O'HO HO HO HO
qdd L"I
's'JIJ!q'JA JO10W
jOURq1;JW
SjoqO:JjV
P!:>R:>p;J:>V P!:>R :>!WJ°d ;JUO1;J:>V
SP!:JY S~UO1~)f
U!;JjOl:>V ;Jpf.q;JPjR1;J:>V ;Jpf.;JPjRWJOd
s;lPAq;lPIV
;Ju;Jnj°.L
S~UA)jIV
;JU;Jjf.1;J:>V
S;)!1I!WOlV
;JU;JZU;Jg
;JU;JldOSI ;Ju;Jd°ld
~~::> tl~::> ~~::>
s'JIJ!Q'JA JO10W s'JIJ!q'JA JO10W St!~ It!Jmt!u 's'Jss'JJOJd 1t!!qOJJ!W
S~U~){IV
~U~q13 ~U1!X~H ~U1!q13
"H:)
S;JUt!)(!V
;lm!q1;1W
sa!JadsJ!UB~.lO JJ.laqdsowJV awos 8, 3'18V.L S3WI.LHdI' aNY 'S3';)}.;) 'Y80'D
'NOI.LISOdWO;);)I~3:HdSOW.LY
8L
CARBON-CONTAINING
COMPOUNDS
TABLE 2.9 Estimated Sourcesand Sinks of Methane (Tg(CH4) yr-1 Identified Sources
Individual Estimate
Total
NATURAL
Wetlands Termites Oceans Other Total identified natural sources
115(55-150) 20 (10-50) 10 (5-50) 15 (10-40) 160 (110-210)D
ANTHROPOGENIC
Fossil-fuelrelatedsources Natural gas Coal mines Petroleumindustry Coal combustion Total fossil-fuel related Biosphericcarbon Enteric fermentation Rice paddies Biomassburning Landfills Animal waste Domesticsewage Total biospheric
40 (25-50) 30 (15-45) 15 (5-30) ?(1-30) 100(70-120)b 85 (65-100) 60 (20-100) 40 (20-80) 40 (20-70) 25 (20-30) 25 (15-80) 275 (200-350)
~
375 (300-450)"
Total identified anthropogenic sources Total identified sources
Sinks TroposphericOH Stratosphere Soils Total sinks
445 (360-530) 40 (32-48) 30 (15-45) 515 (430-600)
Total global burden:4850Tg (C~) aA preindustrial level of 700 ppb would have required a source of2l0 Tg(CH.) yr-1 if the lifetime has remained constant, and 280 Tg (CH.) yr-1 if current tropospheric chemical feedbacks can be extrapolated back. The total anthropogenic emissions of CH. based on identified sources, 375 (300--450), is slightly higher than the inferred range from preindustrial levels, 270-340, but is well within the uncertainties. bpractional source from fossil carbon based on a measure of the atmospheric ratio of "CH. to 12CH.. Note: The observed increases in methane show that sources exceed sinks by about 35 to 40 Tg each year. All data are rounded to the nearest 5 Tg. Source: IPCC (1995).
-oItpUl! 10 AJ01U;}AU! (dYdYN) WUlgOld 1U;}WSS;}ssy UO!1U1!d!:);}ld P!:)Y yuuO!1UN 's'n ;}Q.L ",{IsnOuuou;} AJUA Ul!:) s;}!:);}ds yunp!A!pU! 10 lO!AUq;}q :)!l;}qdsow1u ;}q:I ;}:)U!S ;}lmX!W ;}l!1U;} ;}q:I ;}1m9suo:) 1uq1spunodwo:) yu:)!W;}q:) yunp!A!pU! ;}q:l1nq sJOA YU1011snf10U s;}l!nb -;}j ,{IYU;}P!SUO!SS!W;}JOA gU!Z!l;}1:)umqJ ";}yu:)s yuqoIg ;}q1 01 Ul!qln ;}q:I WOll ,(IJ,S!W;}q:) :)!l;}qdsoW1U 01 YUl1U;}:);}m sJOA "OOJ pUl! OJ gu!pnI:)X;} S:)!Ul!glO :)!l;}qdsoW:lu ;}suqd -loduA 10 1;}S;}l9U;} ;}q:I ;}10U;}P 01 p;}sn S! (SJOA) spunodwo:) :)!Ul!glO ;}I9UIOA UU;}1 ;}q.L spunodwoJ
;)!ue~.lO ame(oA
foP,
'I-JJ\ ("H.J)~.L 08Z ~noq~ Jo ~:>Jnos ~J~qds!W~H UJ~qJJ°N ss~:>x~ Ut1o~ spuods~JJo:> ~:>U~J~JJ!P%9 S!q.L '~J~qds!W~H UJ~q1JON~q1 U! AI~Ut1U!wop~Jd~S!X~pu~ p~s~q PUt1IAIf11!~U~SS~ ~m "H.J J.o s~:>Jnos~~q~~:>~J~q1 Aq P~U!l!Idx~ S! q:>!qA\ '~J~qds!W~H UJ~q1JON ~q~ U! Ut1q1 ~J~qds!W~H UJ~q1nos ~q~ U! J~A\OI %9 ~noq~ ~m SI~A~I "H.J :>!J~qdsow~V '~!U~wS~.L 'w!JD ~d~.J ~~ ~P~W S~U~W~Jns~~w:>!J~qdsow~~ uo p~~q S! q:>!qA\ '~AJn:>P!IOS ~q1 JO u09d~:>x~ ~q1 q1!A\ '~:>!~:>m~uvU! S~JO:>~:>!U! p~dd~I! s~Iqqnq J!~ U! "H.J uo p~s~q ~m s~u!od ~~~P ~q1 IIV 'I-JA ~.L o~~ ~noq~ S! (S){U!Sf11~0~+ ~S~~J:>U!:>!J~qdsow~~) "H.J JO ~:>Jnosf11~0~ P~!Idw! ~q1 '~S~~J:>U!JO ~~~Jp~AJ~sqo ~q~ uo P~S~H 'I-JA ("H.J)~.L Ot o~ ~£ ~noq~ JO ~:>Ut1I~qW!){U!s/~:>Jnos ~ WOJJ S~InS~J~S~~J:>U!UO!~~I!U~:>UO:> :>!J~qdsodoJ~ ~q.L '(t661 "I~ ~~ A){:>u~){O~nIa) qdd OZLI JO ~nI~A A~p-~u~s~Jd ~ o~ qdd DOL m~u °9~J ~U!x!W I~!J:ISnpu!~Jd ~ woJj p~S~~J:>U!s~q "H.J 'sm~A 0001 ~s~d ~q~ J~AO SO!~~J~U!x!W "H.J SA\oqs 8"Z ~Jn~!d '~W!~ J~AO AIq~J~P!suo:> p~~u~q:> ~A~q SUO!~~I!u~:>uo:>"H.J :>!J~qdsow~V "~J~qdsow~~ ~q1 U! ~u!~~Inwn:>:>~ S! ~Ut1q1~w~~q1s~~~:>!PU!6'Z ~Iq~.L U! "H.J Jo s){U!S pUt1 s~:>Jnos ~U~JJn:>~q1 U~~A\~~ ~:>Ut1f11q
Uomsuuj}
q100ws ;}q1 ;}1Uj}SUOW;}P01 p;}pnjJu!
.S1U;}W;}JnSU;}WJ!l;}qdsow1u OJ ;}lOJ ;}J! wall ;}jp, 'U!UUWSU.L'W!lD ;}dU:J WOl) U1UPJ!l;}qdsOW1Y
.SUO!1U;)Oj 1U;}l;}J)!P ;}1U;)!PU! S1u!od U1UP 1U;}l;}))!Q .(~66j ':JJdV PUUjU;};}lD puu UJ!1JlU1UY wall S;}lOJ ;}J! wall P;}U!Ull;}1;}P su SlU;}A OOOj 1SUj ;}tp l;}AO SO!1Ul~U!X!W ;}uuq1;}W 8,3HflDL!I m~A
OOOZ
,
008I ,
'
009I '-'
. v. ~ f ~ ~~ ~ d<[] "[] . X
OOrI ,_v~v
.D t7V~
OOZI I
vx.Vv ¥ ~ .. ~
'
XX
0001 --1-
.0~9
XX
--
~
~
(j :I:
~ ~. S' ~
I
{j
~
~ ~ ...
... !!!U!!WS!!.L
'W!lD
ad!!:)
.0'
'0
{
1!:>Q:>l1!1UY
{
PU1!IU:I:lJD
)
.
S3WI.L3dI'l ON" 'S3'l:>;":> 'l"aO'lD
~
'go
. 0
'NOI.LISOdWOJ JI»HHdSOWl"
f\SI
CARBON-CONTAINING
COMPOUNDS
81
TABLE 2.10 Estimated Global Anthropogenic Emissionsof NonmethaneVolatile Organic Compounds
FUEL PRODUCTION/DISTRIBUTION Petroleum
Natural gas Oil refining Gasoline distribution
8 2 5 2.5
FUEL CONSUMPTION
Coal Wood Crop residues(including waste) Charcoal Dung cakes Roadtransport Chemicalindustry Solventuse Uncontrolledwasteburning
3.5 25 14.5 2.5 3 36 2 20 8
OTHER
10
Total
142
Source: Middleton (1995).
pogenic VOC emissions included, for example, about 600 different compounds (Placet et al., 1990). Motor vehicles are the dominant contributor to VOC emissions in the United States. VOCs emitted from motor vehicles are mainly hydrocarbons that result from the incomplete combustion of fuel or from its vaporization. These contributions are generally categorized and reported as exhaust and evaporative emissions. Within the exhaust emissions category are included the unburned and partially burned fuel and lubricating oil in the exhaust and gases that leak from the engine. The evaporative emissions category includes fuel vapor emitted from the engine and fuel system that can be attributed to several sources: vaporization of fuel as a result of the heating of the fuel tank, vaporization of fuel from the heat of the engine after it has been turned off (hot-soak emissions), vaporization of fuel from the (uel system while the vehicle is operating (running losses), fuel losses due to leaks and diffusion through containment materials (resting losses), and fuel vapor displacement as a result of filling fuel tanks (refueling losses). Motor vehicles are the major sources of alkane and aromatic emissions. Estimates of global anthropogenic nonmethane VOC emissions in 1990 are given in Table 2.10. In general, a breakdown by chemical compound is not yet available for global anthropogenic VOC emissions. As seen in Table 2.10, transportation is the largest source ofVOC emissions worldwide, with solvent use following as the second largest source. As an illustration of the large number of organic compounds identified in the atmosphere, Table 2.11 lists the median concentrations of the 25 most abundant nonmethane organic species measured in the 1987 Southern California Air Quality Study.
ZI'Z ;}IquJ.. 'P;}u!W;} JO ;}JmUU sn011nb1qn
;}q uU:J 1uq1 spunodwo:J
:J1UUa'JOJo A1;}!JRA ;}q:I pUU SU01SS!W;} :J1U;}a'°1q
;}q:I P;}1UIJSUOW;}P ;}AUq sdoJ:J JUJmIn:J!Ja'u puu S;};}IJ JUnp1A1pu1 P;}1:J;}I
-;}S WOJJ S;}1pmS U01SS1W;} q:l1M p;}Idno:J
su;}m JUJmIn:J!Ja'u puu P;}POOM U1 S1U;}W;}Jnsu;}w "(1:'661 '1q:Jno){0),. ~1;66I '£661
~Z661 'lu
1;} PI;}JU;}sq;}d
puu spunodwo:J :£661
'L861
:1;861 "JU 1;} AOJOpOSJ) ;}J;}qdsow1u
;}S;}q:I Jo u011nq1J:ls1P ;}q:I puu '(Z661
'9861
'uuWJ;}WW1Z
'1;861 'lU1;}qum'l:1;661
:1661
puu u;}ssnwsu'M)
1U;}A\ '0961
I.q
~qt
:886 I 'lu
punodwo:> uoqJl1:>
JO
~qt UO!II!q
:1;961 '1U;}A\ snOJ;}W
;}q1 Jo !.J:IS1W;}q:J ;}q:I UO 1:J;}JJ;} 1UU:JY1Ua'1SU ;}AUq SUO!SS!W;} m!IoJ
01 spunodwo:J
Jo J;Id
J1;}q:I
1;} UUWJ;}WW1Z
'S){;};}WPUUS1WV~6L61 'u;}ssnwsu'M
IUJmUU Jo U011U1:J;}ds ;}q:I P;}1Ua'flS;}AU1 ;}AUq sJ;}q:Jm;}s;}J s, q:lm3
UI ';}J;}qdsoW1U;}q:I
P~!ld!tlnw SWOt!!
"JU 1;} U){Z1UOW
;}q1 u1 s1:JnpoJd uoflup1xO
"JU 1;} uosuoW
'lU1;}J;}q:lU;}nO:1861
"JU 1;} A;}a'U1J..) U01SS1W;} Jo ;}1UJ J1;}q:I '(OL61
s:)OA
-nu 'Apms 1Uq:I ;}:Ju1S ';}J;}qdsow:lu
PIno:J UO!1U1;}a';}A J;}q:lo puu S;};}IJ WOJJ s:)OAJo (0961)
JUJmUU 1Uq:I p;}sodoJd
O!tUJ stJUd
u!I!W
~qt
'BU!X!W ;lqt
(;)qdd)
puu
U!
~Wn(OA S!
1SJY
:J!UUa'JO S;}SU;}I;}J AIJUJmUU UO!1U1;}a';}A SUOq.lB;)O.lpAH
"(Z661)
"~ln:>~low
U!
;lqt
SWOtU ~qt
uuuuuni
uoqJl1:>
I.(dw!s
uoqJu:>
;)!U;)~O!g
tOtO"
:iJ.J.lnos
Jo
S!
Jo
ij
UO!II!q
J:Jqwnu
"~(n:>;I(ow J;Id
v'ZZ
stJUd"
;}UOJ;}:>Y
8'v[
;}pAq;}prUJ;}:>Y
['6
;}pAq;}prUWlOd
Z'8
;}U;}ZU;}QrAq1;}Wpj.-p'z'r
OOO[
;}U;}rAX-O S;}U;}rAX-d puB -Ui
r~z 9°L
;}U;}ZU;}QrAq13
;}UUX;}qOr:>A:>rAqJ;}W
ooL
;}U;}nr°j.
1'6v
0'9
;}uUJd;}H
voL
;}UUX;}qrAq1;}W-£
O'LI
;}U;}ZU;}g
[OO[
;}UUJU;}dOr:>A:>rAqJ;}W
8'01
;}UUX;}H
;}UUJU;}drAqJ;}W-Z
O'9[
;}UUJU;}drAqJ;}W-£
8°[1
oovZ
;}UUJU;}d
v'Z~
;}UUJU;}d-!
;}uuJng ;}uU1ng-! ;}u;}dOld ;}uudOld
O'Zv v'6[ 8'L O'9~ £'L[
,uoqm:J)O
;}U;}rA1;}:>Y
;}uuq13
['a
;}U;}q13
£'U
u°!II!H
l;Jd S1l11d
U! °9t1'M gU!X!W Utl!p;JW APOJS AJ!lBO() .lIY BIU.l°J!lB;) L861 .l3WWOS 3qJ UI p3.10SB3J\! spuoodwo;)
U.l3qJOOS
JIUBS.lO 3UBqJ3WUON
JUBpUOqy JSOJ\! SZ 3qJ JO °pB}J SUIXIJ\! UBIP3J\!
SHWI.L3dI'l aNY 'SH'l::>}"::>'lV80'lD
n,
3'IHY.L
'NOI.LISOdWO::> ::>I~HHdSOW.LV
,,8
TABLE 2.12 Organic CompoundsEmitted by Vegetation"
Isoprene
=~>==
Camphene
a-Pinene
f3-Pinene
~ IlJ
2-Carene Sabinene
3
~ -Carene a-Terpinene
d-Limonene
y-Terpinene
Myrcene
/\.
Terpinolene
Ocimene
f:J-Phellandrene
a-Phellandrene p-Cymene
/"\ "In the simplified molecular structures here bonds between carbon atoms are shown. Vertices represent carbon atoms. Hydrogen atoms bonded to the carbons are not explicitly indicated. 83
10 xng wnw!~w ;)q1 'sq1UOW J;)wwns 8upno 'S;)9!SU;)P SSBWO!q;)8JP.Ipun s;)JmBJ;)dw;)t q8!q 10 U09BU!qWO:J B WOJl tIns;)J ;)S;)q1, 'punodwo:J P;)tt!W;) tUBU!WOP ;)qt 8u!;)q ;)u;)Jdos! qt!M 's:J!doI} ;)q1 U! In:J:Jo SUO!SS!W;)uOqJP.:JOlpAq:J!u;)80!q ts;)8JP.I;)q1 ';)yn:JsynqoI8 B uo
°t 6'l WOJl 8u!8unJ SUO!SS!W;) uoqJP.:JOJpAq :J!u;)80!q 's'o
',_JA 81, I~ [mOt P;)tBW!tS;)(£66[) 'IB t;)
qum'l :;)8JP.[;)JP.S;)POtU;)AU!;)S;)q1U! S;)!tU!BP;):JUO'SUO!ss!W;) yntOt PI;)!A Ot 'zw U! ';)8BJ;)AO:J pun[ SSB[:Juo!tBt;)8;)A Aq P;)!Id!tInw U;)q1 ;)If! q:J!qM 'I-U!W z_w 8w U! 's;)xng UO!SS!W;)Ot 'I-U!W 1_8 8w U! p;)ss;)Jdx;) 'S;)tBJ UO!SS!W;)s;)!:J;)ds tUBId ynnp!A!pU! P;)AUO:JOt p;)J!nb;)J S! 'B;)JP.10 z_w 8 U! p;)ss;)Jdx;) 'At!SU;)P SSBWO!H'SJOt:JBlAt!SU;)P SSBWO!qpun BtBp ;)sn PUB[ uo P;)SBq 'suo!8;)J yn:J!qdBJ80;)8 ;)J!tU;) ot dn ;)[B:JS°t St:J;)l1;)tq8![ ';)u;)Jdos! JOl 'pun ;)JmBJ;}dW;)t JOl tUnO:J:JBtBq1 swqtp08yn IB:Jp!dw;) q1!M p;)sn ;)JP.s;)!:J;)dstunId ynnp!A!pU! WOJl StU;)W;)Jns -B;)W ;)tBJ UO!ss!W3 '(~66I "yn t;) J;)qtu;)no pUB :£661 'L86I "yn t;) qum'l ;);)S"8';) SUO!SS!W;) uOqJP.:JOlpAq:J!u;)80!q 10 S;)POtU;)AU!;)[!dwo:J °t SPOll;) 10 J;)qwnu B U;);)q ;)ABq ;)J;)q1, 'uo!tm;)8;)A WOJl P;)tt!W;) punodwo:J tunU!WOP ;)qt ;)q Ot JB;}ddB S;)OP;)u;)JdoSI 'S;)U~;)touow tUBU!WOP ;)q1 10 J;)qwnu B pUB ;)U;)Jdos! :spunodwo:J 10 J~wnu P;)t!W![ A[;)A!tB[;)J B JOl p;)pod -;)J U;);)q ;)ABq StU;)W;)JnSB;)W;)tBJ UO!SS!W;) ;)A!SU;)tX3 'spunodwo:J P;)tt!W;) 10 UO!tB[nW -n:J:JB;)qt 8UpnSB;)W pUB S;)JnSO[:JU;) U! S;)q:JunJqJO StUBId [ynws 8U!:JB[d Aq A[yntu;)wp;)dx;) P;)tBW!tS;) U;)~ ;)ABq S;)!:J;)dstuBId ynnp!A!pU! WOJl S;)tBJUO!SS!W;)uOqJP.:JOlpAq:J!u;)80!H J;)Wwns toq uo ts;)q8!q A[ynJ;)u;)8 ;)JP.SUO!SS!W;)JOA
'SABp ynJmBU '[Bnb;) 8u!;)q SJOt:JBlJ;)q10
Iyn 'snq1, 'SJ;)l!UO:J8U!tt!W;)-;)U~;)t WOJl ;)SB;)J:JU!~'I 10 JOt:JBl B U! pun S;);)Jt snonp!:J;)p 8u!tt!w;)-;)u;)Jdos! WOJl SUO!SS!W;)JOA ynJmBU10 ;)tBJ ;)q1 U! ;)SB;)J:JU!V 10 JOt:JBlB U! t[ns;)J un:J Jo~£ Ot ~'l woJJ ;)JmBJ;)dw;)t tU;)!qwB U! ;)SB;)J:JU!un tBqt S;)tB:J!PU!(L86I) 'yn t;) qum'l Aq BtBp SUO!SS!W;)10 S!SAynunuy 'UOSB;)S8U!MOJ8 B 10 ;)SJno:J;)q1 J;)AO sJOA :J!u;)80!q 10 uo!t:JnpoJd 10 ;)tBJ ;)q1 U! UO!tBpBA ;)8JP.[B U! tIns;)J un:J ;)JmBJ;}dW;)t uo SUO!SS!W;)P!OU;)W;)t pUB ;)U;)Jdos! ynJmBU10 ;):JU;)pu;}d;)P;)Q.L';)JmBJ;)dw;)t tU;)!qum q1!M AmA op A;)q1tnq '(tq8!u tB ;)nu!tuo:J AUB:J!dAt A;)q1 pun) tq8![ uo AI8uOI}s pu;}d;)P tOO op SUO!SS!W;);)U;)W;)t l[nS;)J B sy 'spunodwo:J P!OU;)W;)t ;)qt 10 ;)Jnss;)Jd JOdBA ;)q1 pUB SU!S;)JpUB SI!Ojl!;)[ ;)qt U! tu;)s;)jd ynP;)tBW P!OU~;)t 10 tunoum ;)qt q1!M P;)tB!:JOSSBS;)ss;):JOJdyn:J!sAqdo!q Aq p;)J;)88!J:} ;)q Ot W;);)S SUO!SS!W;)P!OU;)W;)t 'tSBJtUO:JAH 'UO!tBu!Wnu! tnoq1!M P;)tt!W;) S! ;)u;)Jdos! OU A[yn9U;)SS;):tu;)pu;)d;)p tq8![ pun ;)JmBJ;)dw;)t ;)JP.SUO!ss!W;);)u;)Jdos! 't[ns;)J B sy 'stun[d Aq P;)Z!Ioqm;)W JO U!q1!M P;)JOtSS! ;)u;)Jdos! tBqt ;):JU;)P!A;)ou S! ;)J;)qt :q1oq JO 'uo!tBJ!ds;)Jotoqd 'S!S;)q1UAsotoqd 10 t:JnpOJd-Aq tu;)pu;)d;)p-s;)!:J;)ds B ;)q Ot JP.;)ddBSUO!SS!W;);)u;)JdoSI l:JU!t -S!P ;)t!nb ;)q Ot JP.;)ddBosyn SUO!SS!W;);)S;)qt 10 ;)tBJ ;)q1 [OI}uo:J tBq1 S;)ss;):JOJdyn:J!sAqdo!q pun yn:J!W;)q:JO!q;)qt tnq 's;)!:J;)ds tun[d 8uoum AIqBJ;)P!suo:J AmA SUO!SS!W;)P!OU;)W;)t pUB ;)U;)Jdos! ;)q1 op AIUO tON 'S;)SB;)J:JU!;)JmBJ;)dw;)t SB UO!SS!W;)U! ;)SB;)J:JU!8uoI}s B 8u!t!q!q -X;) 'UO!tB!PBJ ;)A9:JB AUB:J!t;)qtUASOtoqd 10 ;):Ju;)s;)Jd ;)qt U! uo!tBt;)8;)A snonp!:J;)p ApSOW 10 At;)pBA ;)P!M B WOJl P;)tt!W;) S! tI lunId B U! At!A!t:JB :J!t;)q1UAsotoqd Ot d!qsUO!tBI;)J St! U! sUOqJP.:JOlpAq:J!u;)80!q;)q1 8uoum ;)nb!un S! (8H~J ';)u;)!pmnq-£'I -[Aq1;)W-z) ;)u;)JdoSI '(066 I "yn t;) t;):JB[d :066 I 'unWJ;)WW!Z pun q8u!S :686 I "yn t;) J;)U!/'f.. :~86 I "yn t;) AOJOpOSI);)u;)u!d-f/ pun -v pun ;)u;)Jdos! unq1 J;)q1o spunodwo:J 10 dn ;)PBW S! U09Bt;)8;)A Aq P;)tt!W;) SSBWJOA ;)qt 10 ;)JOWJO lynq U;)tl0 '(~96 I 'tU;)/'f.. pun u;)SSnwsB'M) ;)u;)u!d-f/ pUB ;)u;)u!d-v SB q:Jns S;)U~;)t t!W;) A[yn:J!dAt SJ;)l!UO:J :(8H~J) ;)U;)Jdos! S! S;);)I} snonp!:J;)p Aq P;)U!W;) A[yn:J!dAt punodwo:J ;)UO 'poqs ;)t!nb ;)q Ot PU;)t s;)[n:J;)[OW ;)S;)q11° S;)W!t;)l![ ;)qt tBqt t[nS;)J ;)q1 q1!M ';)J;)qdSOWtB ;)qt U! ;)A!t:JB;)JA[q8!q ;)[n:J;)[OW ;)q1 SJ;)PU;)JtBqt puoq ;)Iqnop :J!UY;)[Oun Aq P;)ZP;)t:JBJP.q:J S! 'l I "l ;)[qB1, U! UMOqS spunodwo:J ;)qt 10 q:JB3 'suOqJP.:JOJpAq:J!u;)80!q uowwO:J ;)qt 10 ;)WOS10 S;)Jm:JnI}Syn:J!W;)q:J;)qt SMOqS S3WI.L3dI'1ON" 'S3'1JAJ '1"80'10 'NOI.LISOdWOJ JI~3HdSOW.L"
.,8
CARBON-CONTAINING
COMPOUNDS
85
TABLE 2.13 Global Biogenic VOC Emission Rate Estimates by Sourceand Class of Compound (Tg yr-1
821 120 194 5 9
127
260
.Other reactive biogenic VOCs (ORVOC). bThese totals include additional non-reactive VOCs not reflected in the columns to the left. Source: Guenther et al. (1995).
biogenic hydrocarbon emissions in the southeastern United States is predicted to be as large as that in the tropics. An estimate of global biogenic VOC emissions appears in Table 2.13. On a global basis, biogenic hydrocarbon emissions far exceed those of anthropogenic hydrocarbons. 2.4.5
Carbon Monoxide
The global sources and sinks of CO are given in Table 2.14. Methane oxidation (by OH) is a major source of CO, as are technological processes (combustion and industrial processes), biomass burning, and the oxidation of nonmethane hydrocarbons. Uncertainties in each of these estimated sources are large. It is estimated that about two-thirds
TABLE 2.14 Estimated Sourcesand Sinks of CO Typical of the Last Decade
Technological Biomassburning Biogenics Oceans Methaneoxidation NMHC oxidation
Sinks
':)!uaa'odOl1pUR SUMq:)!qM jO %C;8 'qdd c;'£ O! paSUaJ:)U!puq a'U!PUOlau!.I°lq:) I1J!0! aq! C;66I Aq ~apuw-UUW SUM %C;Z !noqu q:)!qM jO 'qdd 1 !noqu SUM C;t6I U! aJaqdsow!U aq! U! 1~/l.al~U!.I°lq:) ~a'UJ~/l.UlUqOla' ~ql. '(C;661 'qa'U!S) 0661 U! I-JA a'l. C;'z !noqu O! Ot6I U! S~!!!! -URnb ~lq!a'!Ia'~U AII1Jn:jJ!/I.WOJj M~~ suoqm:)°luq ~pUW-URW lI1JjO ~J~qdsow!u ~q! O! SUO!S -S!W~ I1JqolD 'S!U~/l.10SpUR 's!uun~doJd 'S!URJ~a'!.IjaJsu ~sn I1J!J!snpu! pUOOdS~P!MP~/I.~!q:)u a/l.uq suoqm:)OI1JH 'oa'u smaA OC;J~/l.O P~Z!ua'o:)~J ~J~M: S!UUJ~a'!.Ij~JSU s~!:jJ~doJd J!~q! pUR fJmu~:) q!6I ~!Ul ~q! U! p~z!Saq!UAS !SJY ~J~M (SJdJ) suoqm:)oJonuoJolqJ 'fJmu~:) !sud ~q! JOj UMOW{ uaaq ~/l.uq suoqm:)°I1Jq :)!!~q!UAS 16C;6I 'UOSS){!.I3) su~a'OI1Jqsno~sua' jO ~:)Jnos u su !I1Js u~s WOJj ~som ~J~qdsow!u ~q! U! su~a'OI1JqU! !S~J~!U! !s~!lm~ ~ql. S~U;}gggu!qs!ngu!~x;} ;}lY Sg p;}sn AUg!:>;}ds;} 'suoqm:>o~q gU!U!t?"!uo:>-;}U!wolq-sUOIgH (SWO~gU;}go~q q:I!M p;}~gln~gSspunodwo:» WO~g U;}go~q g SU!t?"!uo:> puoq uoqm:> ;}IqgI!gAg .\J;}A;} q:>!qM U! suoqm:>o~q-suoqm:>°Igql;}d
.
o~ UO!~!PpgU! 'U;}gOlpAqjO SWO~ggU!U~~UO:>suoqm:>o~q-(s::>dH)
;}u!l°ng pug uoqm:> suoqm:>OlongolpAH
;}u!l°ng PUg ';}u!l°Iq:> 'UOqIB:>O~UO!~!Ppg U! 'U;}gOlpAq jO SWO~ggU!U~~UO:> suoqm:>o~q-(s::>d::>H) suoqm:>olongoloIq:>OlPAH SWO~g;}u!l°ng Pug ';}u!l°Iq:> 'uoqm:> gU!U~~ -uo:> suoqm:>o~q Jo S;}!l;}Sg o~ U;}A!g ;}WgU ;}A!~:>;}U°:>;}q:I-(s::>d::» suoqlg:>olongoloIq::> spunodwo:> :>!ugglO gU!U~~uo:>-U;}goIgq o~ gU!Jj;}j;}l WJ;}~~l;}U;}g g-suoqm:>OIgH
:sa~u
JO A1a1Jt?A U Aq 01 paJJaJaJ alP. spunodwoJ
gU!U!1!1UOJ-uagoJUQJ!laqdsow1V
SONnOdWO3 9NINIV.LNO3-N~90'1VH
S"Z
01, J~:ld~qJ U! ~OJ 10 ~I:>A:>I~qoIg ~q:I J~P!suo:> II!M ~M '~:I~W!I:>U! ~OJ Aq P~A~Id ~IOJ [e:>!:I!J:>~q:ll° ~sn~:>~g °UO!SJ~AUO:> ~sn pu~I pUt! 'uo!:I:>npoJd :lU~W~:>'SI~ -nl I!SSOll° uo!:}snqwo:> 10 :lIns~J ~q:l S! I_JA wdd ~01 :lnoq~ 10 ~S~~J:>U!10 ~:I~J:lU~JJn:>~q.L 0£661 U! wdd 9~£ 0:10081 U! wdd 08, :lnoq~ WOJl p~S~~J:>U!~A~q sI~A~I ~OJ :>!J~qdsow:lV ap!xo!
9."."
'IIBJ AIIP.~ JO J~WWnS ~!BI ~q! ~u!lnp punoJ
S~wnw~u~w
-~XBW ~~
~q'! pUB ~u!lds
'~J~qds~w~H
w~q'!nos
IB:JOI ~q'! ~U~Jnp In:>:>o O! p~AJ~sqo ~q'! u~ UB~W ~q'! !noqB
S~ UO~!BJ:lU~:>UO:>wnw
%OZ=i= pUB ~J~qds~w~H
w~~oN
~q! U~ UB~W ~q! !noqB %Ov=i= !noqB ~q O! p~qs~IqB!S~ u~~q ~ABq SUO~!B!JBA IBUOSB~S 's o~v IP.~U qdd
09 !noqB
Jo °!:lBJ ~U~X!lli
SPU~! 0;:) ~J~qds~w~H
w~q!nos
-odoJ:l ~~JJ B O! ~J~qds~w~H 'IBJ~U~~ UI 'S~pm~!BIP!lli ~J~qds~w~H
w~q!nos
-U~ S!u~W~JnSB~W B SBq ~p~xouow
B q!~M AIIB:>~!J~A p~x~w
'qdd
AIUJJoJ~un AIIP.~U ~JOW ~q O!
~q'! UI 'N o~v IP.~U qdd OZI !noqB Jo ~nIBA ~~BJ~AB :>!l~qds
w~~oN
w~q!Jou
~q'! u~ ~pm!:l1B q'!~M S~SB~J:>~p O~!BJ ~u~x~w 0;:) ~q!
!B ~:>Bpns ~q'! IP.~U punoJ ~u~~
~q'! U~ UBq! ~J~qds~w~H
'~J~qdsodoJ:l uoq:m;:)
w~~oN
s~nIBA wnw~xBw
~q'! q!~M
~q! U~ 0;:) ~JOW s~ ~J~q'! !Bq! ~!B:>~p
~q'! Jo ~IB:>S IBqoI~ ~q! UO SABp 06 O! O£ Jo ~W~!~J~I 1B:>~w~q:> OOZ O! Ov WOJJ ~~UBJ SO~!BJ ~u~x~w 's~!nOJ JOU~W ~u~~
0;:)
:>!l~qdsodoJ.L
~J~qdSO!BJ:lS ~q'! O!U~ uo~snJ
-J~P pUB ~){B!dn I~OS q'!~M 'SIB:>~PBJ HO q'!~M UO~!:>B~JS~0;:) JOJ ){U~S JOfBW ~q.L ,vH;:) p~A!l~P AIIB:>~u~~odOJq:lUB JO U°!:lBp~XO ~u~pnI:>U~ 'S~~!~A~!:>B:>~U~~OdOJq!UB WOJJ S~WO:> 0;:) ~q! JO
S3WI.LHdI1aNY 'S3'1JhJ '1V80'10 'NOI.LISOdWOJ JI~3HdSOW.LV
98
HALOGEN-CONTAINING
COMPOUNDS
87
As a group of atmospheric chemicals, halogen-containing compounds have a wide variety of anthropogenic and natural sources. They are produced by biological processesin the oceans, from sea salt, from biomass burning, and from industrial synthesis. Their atmospheric lifetimes vary considerably depending on their mechanism of removal, ranging from a few days to several centuries. Table 2.15 lists atmospheric halogenated organic species with global average concentrations, atmospheric burdens, lifetimes, sources, and sinks.4 Of the exclusively man-made organic halogenated species, the chlorofluorocarbons are used as refrigerants (CFC-12, HCFC-22), blowing agents (CFC-ll, HCFC-22), and cleaning agents (CFC-113). Methyl chloroform (CH3CCI3), methylene chloride (CHzClz), and tetrachloroethene (CzCI4) are used as degreasersand as dry cleaning and industrial solvents. Methyl bromide (CH3Br) is a widely used agricultural and space fumigant. All the monomethyl halides in Table 2.15 have natural sources. Methyl chloride (CH3Cl) and CH3Br are also products of biomass burning. Lovelock (1971) first detected SF6 and CFCl3 in the atmosphere using the electron capture detector. In landmark work in atmospheric chemistry for which they received the 1995 Nobel Prize in Chemistry, Molina and Rowland (1974) showed that CFCs that are immune to removal in the troposphere could decompose photolytically in the stratosphere to release Cl atoms capable of catalytic destruction of stratospheric ozone. The very lack of chemical reactivity that makes chlorofluorocarbon molecules so intrinsically useful also allows them to survive unchanged in most commercial applications and eventually to be released to the atmosphere in their original gaseous form. The usual tropospheric sinks of oxidation, photodissociation, and wet and dry deposition are ineffective with the chlorofluorocarbons. The only important sink for CFC13and CFzClz is photodissociation in the midstratosphere (25 to 40 kill) by solar ultraviolet radiation with wavelengths shorter than 230 nm. These same CFCs that lead to stratospheric ozone depletion are efficient absorbers of infrared radiation and potentially important greenhouse gases. There is a sharp demarcation in atmospheric behavior between fully halogenated halocarbons and those containing one or more atoms of hydrogen. Halocarbons containing at least one hydrogen atom, such as CFzHCl, CHCI3, and CH3CCI3, are effectively broken down in the troposphere by reaction with the hydroxyl radical before they can reach the stratosphere. Atmospheric lifetimes of these species range from months to decades. Some of these gases also react with seawater; it is estimated that 5 to 10% of the removal of CH3CCl3 occurs by absorption into the ocean. The hydrohalogenated species such as
'The tenD hydrochlorofluorocarbons is the collective name given to a series of chemicals with varying number of carbon, hydrogen, chlorine, and fluorine atoms. The somewhat arcane system of numbering these compounds was proposed by the American Society of Heating and Refrigeration Engineers in 1957. For the simpler hydrochlorofluorocarbons, the numbering system may be summarized as follows: 1. The first digit on the right is the number of fluorine (F) atoms in the compound. 2. The second digit from the right is one more than the number of hydrogen (H) atoms in the compound. 3. The third digit from the right, plus one, is the number of carbon (C) atoms in the compound. When this digit is zero (i.e., only one carbon atom in the compound), it is omitted from the number. 4. The number of chlorine (CI) atoms in the compound is found by subtracting the sum of the fluorine and hydrogen atoms from the total number of atoms that can be connected to the carbon atoms.
CCI2F2 C2CI2F4 CHCIF2. CCI3F CFC-12 CFCI-114 CFC-22 CFC-II
=
0
=
()Q ~
~
'<
~ =~ :0 'C UI ':-"
~
?
C()QCO "'"~"'~
"'
II
Z '
~
~ ~ g ~
s'
0 C '"
~ C'.
~. ~ [n ~ 9: .9 II
g C
~ '" 0 -g. ~ ~ ~ ;-
f '" II
~ ~ 9 ~
~ -g. R
s'
C'. 0 C
~~ OJ '" 9:c:r (") c e!.3 ~ S' ",()Q (") .
ag: ~ 0
.g § 0 n' :z:~ II ~ ~II
~ 5 ""& ~... ~ e!. .. ~ ""~ "'~
~
~.
'"
~ ~..:;: n' UI 0 ~ . .
0 ...
~
~ ~. ~
"
II ~ ;:- §
n"'""""" " ... "'"'=-o ~ 0
~
.. .
~ ~~ ~ ~ ... ~~[n>
u'"
8 ~~~~' - ~
0 '-'
oooooooooo~~~oooo~~~~~ ~~~~~~~~~~n~~~~~~~~~~~
~
~~~O'
,
,
nn~
NO~'
W
W'
~~
':-' '6 ':-' t= .> t= t= tD
'6
w,
ioo;"'u.ou.~ u.u.
ooo-u.1.-.1.-.
NONNUt UI
1+ 0 0\
,
N
-
8 ~oON
ONON'-UOO
NOoo-t..j",)
--N-
n~~ a -'"
~N~~~~~ ~N~~~--a 0 ~ OO~ 6: G;8g. ~ ~O"a 0 ~. Co ",
~
OOOO;"'o,;"';"'OOIJli--J 0-.10-0 O'I'-UNOOOO'l
--,
000000000000
~8 3 ~ &5o~ ~. ~ Co ,. ~
0 8 0
,~o
--=
~~O-O
(')(')(')~
~. 0
-
~ ~
cn
~
1+ Q~ ~ ~ =:.
t""
=
'""';0 ~ Q.~ ,,-,()::r
~3 () ~. (")
>
~.
><
-.
'0""1-.> '0 ~ ~ '-'c:r
~
~ :3. r> Z
C'J
= = Q ~ ~
e ~ '0 =~ ., ~.
>
N ;... UI
~ ~ ~
~
() .; 0
"'..
~
~~~~~~~~~~ff~~~~~~~~~~
'6 '-'
»»»»»»>z>z»»» Z
~
0 Co 0 UJ u.
O-OO~N-~~-W~~---~~W~-~ , --J' , , , ~' ,
88 t,.)
00
/I
O~=oNN 0 NN~~NN~ ~ ~ a ~~N-~~~ ~ ~ ~~~~ 5~ ~~ ~ 0 = ~. ~ Co ~
~~~~~~~~~~~=~~~~~~~~~~ ~-n~' , , ,
n ~ -'" ~ 0 (')'" ;;
~~~nn
~('):s:(')~~~~~~tn~~:S:~:S::S:(')(')(')(')(') ~~~~(')(')(')(')(')(')~~~~(')~~~~~~~
-
~~~n~~~~~ (') ~(')(')O~O
(')(')(')(')(')(')(')(')(')(')~(')(')(')(')(')(')(')(')(')(')(') n~~~(')~~~~~~~~~~~~P~~~~ r(')nO~(')nn(')(')
88
HALOGEN-CONTAINING
COMPOUNDS
89
800 )C )(
,~ >.
..
600
,. ,.
~
)(
~ ~ = 9
C
CCC
.. .. C CCCCC
~
,
,
,
,
CC
cC
,
.. ,
1::1
C
... ... ..~
C c
.*".,++++ 0
.
)(
)(
... .. ."" ..
400
)(
)C)C)C )(
C
.., -
~
+
I ~ +++.~
,
,
,
x
CFC13 CF2C12 C2F3C13 CF2HCl CH3CC13
(CFC - 11) (CFC -12) (CFC - 113) (HCFC - 22)
.
1972 1976 1980 1984 1988 1992 Year FIGURE 2.9 Annual emissionsof industrially important halocarbonsfrom 1972to 1992(IPCC. 1995).
methyl chloroform (CH3CCI3) and the HCFCs are also significant infrared absorbers but their shorter atmospheric lifetimes reduce their radiative impact relative to the fully halogenated CFCs. Discovery of the stratospheric ozone-depleting potential of CFCs in the mid-1970s led to a ban in the United States (announced in 1976 and effective in 1978) on the use ofCFCs as aerosol propellants and to similar restrictions in Canada and Scandinavia. When the Antarctic ozone hole was discovered, subsequently, an international protocol outlining proposed actions to protect the stratospheric ozone layer was signed in Montreal in September 1987. The so-called Montreal Protocol specifies a 20% reduction from 1986 emissions of fully halogenated CFCs by 1994 and a further 30% reduction by 1999. Global emissions of CFCI3, CF2CI2, C2F3C13,CF2HC1, and CH3CC13up to 1992 are shown in Figure 2.9. The turn-down in emission rates reflects the results of the Montreal Protocol. Atmospheric levels of CF2CI2, CFCI3, and CH3CC13from 1978 to 1992 are shown in Figure 2.10. Mixing ratios increased steadily until about 1990. Methyl chloride (CH3Cl), at an atmospheric abundance of about 600 ppt, is the dominant halogen compound in the atmosphere. To maintain the steady-state CH3Cl concentration, with an atmospheric lifetime of order 2 years, requires a source strength of about 3.5 Tg yr-1 , most of which comes from the ocean. Southern Hemisphere (SH) CFC concentrations lag behind those in the Northern Hemisphere (NH) by about 1 year, reflecting the predominant source of CFCs in the NH and the approximate 1 year mixing time between the NH troposphere and the SH troposphere. At present, the atmosphere contains approximately 20 ppt of bromine, about half of which is methyl bromide (CH3Br). Methyl bromide is an ubiquitous component of the atmosphere, arising from both man-made and natural sources.A calculated atmospheric lifetime of 1.7 to 1.9 years, based solely on removal by reaction with OH radicals, is consistent with a global source of 90 to 110 Gg (109 g) yr-l (Singh and Kanakidou, 1993). A shorter lifetime of about 1.3 years (see Table 2.15) results if deposition/hydrolysis losses are also considered. Available data provide an estimate of global sources of CH3Br that divide 35% (20 to 50%) man-made and 65% (80 to 50%) natural. Oceans are supersaturated with CH3Br and constitute the major natural source of CH3Br of about 60 Gg yr-1, which could
°1!!U1!WS1!.L
PU1! 'UO~~lO 'PU1!I:IlI :S~1!S ~~lq1 10j UMOqS ~11! S~nl1!A 1!1! U1!~I:I U1!~W Alq1UOW o(~66 I ';)::>dU Z66I
01 8L6I
wOl)
1;);)EH;)
PU1! 'EI;)d;)
'1;)"d;)
jO S~:lu1!punq1! :I!J~qdsow1V
01,
nfl~I.!l
lP.~A l6, 06. ' , , -. 88.,. -t/IUt/liSt/ ... T
°
UO~;)JO
/
98. , , v8.. . l8.,.
--+ A./"'/'/'-/'o/
PUt/I;)lI
08. , ' 'O'~Ib9
"++
I
0171 !091
1\"
v
~
EI;:);:)EH;:) I
I
I
.
I
I
I
I
.
~
OZI
~1-
$,,'1,,- ~, .<..,,/
.;~
++'.fT I I
08
i:". >< . 001 ~.
_.~
.
'"' ~-~
~
.
I
~ ~o :g
081
100Z
I
JP,~A
Z6. 8L, , . 06, . , 88, , , 98. , . 178, , II Z8, I 08, . 11001
-
~!U1!ws~J.
---
UO~;}JO
PU~I;}JI
.-
.;7
+
,,"
iO~I
-,
ooz
~ _. >< _. = (JCI
~ ~ _. ~o
IO~'l
E[JdJ
-
~
:g
. . , , , . . . . , , . . , , .00£ J'P,~A Z6, 06. 88. 9R. trR. 7:R.o~. O~Z
e!~wse.L uog~JO - - pueI~JI +
r
00£ IO~£
-
..""
0017
,,'"
,
I
O~t
_/r
...,..,.
~
...' ~ 5' (JQ ~ ~ ...' ~o
"0 'S
DOC;
.=~
SaWI.L3dIi aNY 'sai:)}":) ivaOiD
'NOI.LISOdWO:):)IH3HdSOW.LV
fit;
ATMOSPHERIC OZONE
91
range from 40 to 80 Gg yr-l. CH3Br mixing ratios in the Northern Hemisphere ar,ound 1992 were about 14 ppt, with a ratio of NH to SH mixing ratios varying between 1.2 and 1.4 depending on season.The seasonalvariation is a result of source strength and OH variations. CH3Br levels have been increasing at a rate of 0.1 to 0.2 ppt yr-i. Despite the fact that CH3Br is largely removed in the troposphere by OH reaction, enough survives to enter the stratosphere and contribute to halogen-induced stratospheric ozone depletion.
2.6 ATMOSPHERIC OZONE Ozone(03) is a reactiveoxidant gasproducednaturally in traceamountsin the Earth's atmosphere.Ozonewas discoveredby C. F. Schonbeinin the middle of the last century;he alsowas first to detectozonein air (Schonbein,1840,1854).Schonbein(1840) suggested the presenceof an atmosphericgashaving a peculiarodor (the Greekword for "to smell" is ozein).Spectroscopicstudiesin the late 19th century showedthat ozoneis presentat a higher mixing ratio in the upper atmosphericlayersthan closeto the ground.Attemptsto explainthe chemicalbasisof existenceof ozonein the upperatmospherebegannearly 70 yearsago.Within the last 30 years,however,while increasedunderstandingof the role of other trace atmosphericspeciesin stratosphericozonewas unfolding, it becameapparent that anthropogenicallyemitted substanceshave the potential to seriouslydepletethe natural levels of ozonein the stratosphere. At aboutthe sameperiod, ironically, it was realized that anthropogenicemissionscould lead to ozone increasesin the troposphere. Whereasstratosphericozoneis essentialfor screeningof solar ultraviolet radiation,ozone at groundlevel can,at elevatedconcentrations,lead to respiratoryeffectsin humans.This paradoxicaldual role of ozonein the atmospherehas, on occasion,led to the dubbing of stratosphericozoneas "good" ozoneandtroposphericozoneas "bad" ozone. Most of the Earth's atmosphericozone(about90%) is found in the stratospherewhere it plays a critical role in absorbingultraviolet radiation emitted by the Sun. Figure 2.11
S1U~m~Jnsu~m ~1!"~1US '~upds puu J~1U!M U! 1S~1U~J~~m s~ssoI ~q.L 'OL6 I punom ~:>u!s p~SU~J:>~p~AUq (N 009 01 N 00£) s~pm9uIP!1U UJ~q1Jou J~AO sI~A~I ~uozo :>p~qds01UIJS auozo
;)!.laqdsoJu.lJS
1"9'"
oglgqdsow~g gq1 O~U!suoqm:>olongoloIq:> Jo gSggI -~l ~q1 s~:>p~S~l~gq~A~g~l:}IgUO!~gW~~U!ug PUg Al:}S!W~q:>:>p~qdso~gl:}s U! Wgl~Old q:>m~s -~l It!qoI~ ~u!nu!~uo:> 'lofgW g p~~gInw!~s Sgq ~uozo :>p~qdso~gl:}s Jo ssoI P~~:>~fOldPUg ~U~lln:> ~ql. '(17l~~dgqJ ~~s) fJ~S!W~q:>o~oqd p~:>npu!-u~~oIt!q :>p~qdso~gl:}sJo ~Ins~l ~q~ S! q:>!qM '~upds :>9:>m~uy q:>g~ u~~s AIIt!:>!~gumlp ~SOW'l~AgI ~uozo :>p~qdso~gl:}s ~q~Jo SUO!~ -lad ~ug:>y!U~!SJo UO!~:>nIlS~p:>!~AImg:>~q1 S! ~~ugId ~q1 ~U!:>gJ s~nss! ImU~WUOl!AU~ ~Ug:> -Y!U~!S ~sow ~q1 Jo ~uO '~l~qdsow~g ~q~ U! punoJ ~uozo Jo s~unoum ~q~ U! s~~ugq:> ~noqB g~gp ~A!~!UY~P o~ P~I Sgq S~U~WnIlSU! ~woq-~~!Il~~gS pug 'p~~unow-~Jtll:>l!g 'P~~!S-pUnOl~ q~!M ~uozo :>p~qdsow~g lO~!UOW o~ A~!I!qg pgAOldw! lno 'S~pg:>gp OM~ ~sgd ~q1l~AO °q:llUg uo ~J!I uo pug gl~qdsoW'!g ~q1 uo ~:>u~ngu! punoJold B Sll~x~ ~uozo '~~A '){:>!q~ww £ ~noqg AIUO l~AgI g ~:>npold PInoM~! '~lnss~ld PUg ~ln~gl~dw~~ pmpug~s ~g ~:>gJlns s,q:llUg ~q1 o~ UMOp ~q~nolq ~l~M ~UOZo s,~l~qdsoW'!g ~q1 lIt! J! ~gq~~:>gJ~q1 Aq P~~g!:>~lddg ~q ug:> ~l~qdsow~g ~q1 U! ~uozo Jo ~unowg ~nu!w ~ql. o~OI~ ~q1l~AO 00 01£ o~ 06Z wall ~~ugl s~nIt!A ~uozo w:> W'!g E_OI ~!unuosqoOI '(~l~qdsow
uwnI°:> It!~°l. 'z_w:> s~In:>~Iow9101 X 69'Z
=
=
-~g I pug )l £LV ~lnss~ld pug ~ln~gl~dw~~ pmpug~s ~g Adn:>:>oPInoM uwnI°:> ~uozo ~q1 ~gq1'l~~~W!Il!W g Jo sq1p~lpunq Jo s~!un U! p~lnSg~W 'ss~U){:>!q1gq1 S! 00 ~uO "(00) sJ!un uosqoa Jo SUll~~ U! p~ss~ldx~ Ug~Jo S! '~l~qdsow~g ~q~ Jo do~ ~q~ o~ q1lUg ~q~ Jo ~:>gJlns ~q1 wall P~~gl~~~U! EO JO ~unoum It!~o~ ~q1 oS!~gq1 '~uozo P~~gl~~~U! uwnI°:> It!~o~ ~ql. o~l~qdso~gl:}s ~q~ U! W){ O£ o~ ~Z Jo ~pn~!~It! Ug ~g wdd 01 ~noqg Jo °9gl ~U! -X!W wnw!xgw g S~q:>g~l ~uozO '~l~qdsodol:} l~dn ~q~ U! SO!~gl~U!X!W l~q~!q ~gqM~WOS q1!M qdd 017o~ 01 Jo ~~Ugl ~q1 U! ~m SO!~gl~U!X!W ~uozo ~l~qdsodol:} p~~nllodun '~u!~spd ~q1 uI lIt!ws AI~w~l:}x~ S! 'P~U!qwo:> ~l~qdsodol~ PUg ~l~qdso~gl:}s '~l~qdsow~g gq~ U! EOJO ~unoum It!~o~~ql. "(0661 "It! ~~ ugwqS!d) ~l~qdsodol:} ~q~ U! punoJ S! 'Imo~ :>p~qdsoW'!g ~q1 Jo %~I o~ 01 ~noqg '~uozo ~u!lln:>:>o AIIt!ln~guJo ~unoum ~Ug:>y!U~!Sg '1l!~S (ol~~dgq:>S!q~Jo pu~ ~q~ ~g Z'Z w~Iqold ~~S) 'UO!~gl~U~:>UO:> U! ){B~d S~!s~op ugq~ ~pn~!~It!l~q~!q g ~g Sln:>:>o O!~gl ~U!X!W ~uozo U! ){B~ ~q~ '~pn~!~It! q~!M AIIt!!~u~uodx~ ~no SU!q1A~!SU~Pl~qwnu mIn:>~ -loW :>p~qdsow~g ~q~ ~:>U!S"(wdd 01) qdd 000'01 Ugq1 ~lOW Jo SO!~gl~U!X!W :>!l~qdso~Bl:}S ){B~ snSl~A ()l 86Z pug I~AgI g~S ~g E-W:> s~In:>~Iow ((01 X ~'Z = qdd 01 :l!g Jo s~In:>~ -lOW/EO Jo s~In:>~Iow) °9gl ~U!X!W U! (qdd) UO!Il!q l~d s:llUd Jo su~~ M~J g AIIt!nSn-IIt!WS ~m ~uozo :>p~qdsodol~ Jo SUO!~Bl:}U~:>UO:> It!lmgU '~l~qdso~gl:}s ~q~ q~!M p~mdwo:> sy .~uozo Jo ~:>ugp -unqg ~q1 ~u!:>u~ngu! s~ss~:>old It!:>!W~q:>~q1 punom Sl~~U~:>Al:}S!W~q:>:>p~qdso~gl:}S °UO!~g -!pgl Jo UO!~dJosqg ~uozo Jo ~Ins~l ~q~ S! (1'1 ~ln~!d ~s) ~Iyold ~ln~gl~dw~~ :>p~qdso~gl:}s ~ql. (og- AO U! ~Sg~l:>U!%Z g o~ Spg~I ~uozo :>p~qdso~gl:}sU! ~Sg~l:>~p% I g ~gq~S! qwnq~-Jo -~Iru ~~gw!xolddg uy) 'sIt!np!A!pU! ~Iq!~d~:>snsU! l~:>Ug:>U!){SJo ~:>u~P!:>U!P~Sg~l:>U!o~ pg~I ug:> q:>!qM 'puno~ ~q1 ~g g-AOJo sI~A~I P~Sg~l:>U!o~ Spg~I ~uozo :>p~qdso~gl:}sU! uo!~:>np~l y '~A!~:>gAIIt!:>!~OIO!q S! 'g-AO pgIIt!:>-os 'wu OZ£ o~ 06Z ~~ugl q1~U~I~AgM ~q1 U! UO!~B!P -gl ~~IO!Agl~In 'UO!~!Ppg uI °sIt!W!Ug pug S~ugId l~q~!q Jo sll~:> ~:>gJlns o~ pug SWS!ug~lO mI -nll~:>!un o~ InJwmq S! UO!~g!pgl q:>ns 'wu 06Z pug 017ZU~~M~~q sq~~u~I~AgM Jo UO!~g!pgl ~~Io!Agl:}In mIos ~q1 Jo llg AIIt!nll!A SqlOSqBl~AgI ~uozo :>p~qdso~gl:}s P~IIt!:>-os ~ql. 'W){ O£ o~ OZ Jo UO!~~l ~q1 U! Sln:>:>o(UO!~gl:}u~:>uo:»A~!SU~Pl~qwnu mIn:>~Iow gUOZOU!){B~ gql. '~86I '~I Ipdy
o~ ~Z q:>mw '(S o~) I!Zglg 'It!~gN l~AO l~AgI ~uozo :>p~qdso~gl:}s ~q~ SMOqS
S3Wll3dIi
aNY 'S3i3A.3 ivaOiO
'NOI.LISOdWO33I~3HdSOW.LV
,6
ATMOSPHERIC OZONE
93
SBUV - SBUV/2
:g ~ u
.
1/79 - 5/94
0
1/79- 5/91 Dobson
..g
~
...
1/79- 2/94
~
1/79- 2/91
Latitude FIGURE 2.12 Annual latitudinal variation of the total ozonefrom January1979to May 1991or February1994,as indicated(IPCC, 1995).
from 1979to 1991have shownthat broadly similar midlatitudelosseshavealso occurred at equivalentlatitudesin the SouthernHemisphere(IPCC, 1995).Figure 2.12 showsthe annual,latitudinal variation of the total ozonetrendscalculatedfrom the Dobsongroundbasedmeasurementrecord and satellite observations.The effect of the Antarctic ozone hole is seenin the data from 60° S to 90° S. Analysis of the total ozonemappingspectrometer(TOMS) dataover the period 1979to 1989between69° S and69° N revealsa total global averageozonedecreaseof 3.5% over that 11year period (Hermanet al., 1991). Statisticaily significant decreasesin total ozoneare now being observedin all seasonsin both the Northernand SouthernHemispheresat middle andhigh latitudes(Stolarskiet al., 1992).
2.6.2
Ozone Flux from the Stratosphere to the Troposphere
Ozone from the stratosphere is transported down across the tropopause by so-called tropopause folding events (Danielson, 1968) in which tongues of stratospheric air intrude into the troposphere, usually at extratropicallatitudes (recall Figure 1.3 and associated discussion). Estimates of the amount of 03 transported from the stratosphere to the troposphere on an annual basis rely on measurements of conserved tracers or on general circulation models but are quite uncertain. In the NH ozone fluxes seem to maximize in spring, being as much as five times the value in the fall. The NH stratosphere-totroposphere ozone flux has been estimated to fall in the range of (3 to 8) X 1010molecules cm-2 S-l (Crutzen, 1995). The SH flux may be about half as large. An estimate for the total 03 production in the stratosphere is about 5 X 1013molecules cm-2 S-I; only about 0.1 % of all 03 produced in the stratosphere leaks down to the troposphere (Crutzen, 1995). The estimated global 03 loss from photolysis in the troposphere is 14 X 1010molecules cm-2 S-I, which generously exceeds the amount of 03 from stratosphere-to-troposphere exchange.
"uo!8aJ apm!1uIP!W waq1Jou aJ!1Ua aq1}0 ai\!1U1 -uasaJdaJ aJ1! ;JdOJn3 Jai\O pai\Jasqo SpUaJ1 aq1}! uai\a 'ssol :I!Jaqds01UJ1S alj1}o UO!1:1UJ}IIuWS U I.luo pa1:1UJa1UnO:l ai\uq 01 pai\a!laq
S! auozo :I!JaqdsodW1
IUUO!1!PPU aq1 snu
"% 1 1noqU I.q auozo }O a:luupunqu
uwnl°:l
IU101 alj1
aSUaJ:lu! plnoNl auozo :I!JaqdsodW1 U! aSUaJ:lu! %01 aq1 '1UI!1SUO:lpaU!UWaJ SUO!1UJ1Ua:lUO:lauozo :I!Jaqds01UJ1S}I~
pU~ uI "~gu~q:) SUO!!!puo:) ~:)!goI0JO~!~W 1~:)°1 s~ A~p O! A~p WOJJ £ JO Z JO JO!:)~J~ Aq !Jp,A O! '~:)U~!SU! JOJ '~!!S ~qJn ~ !~ UO!!~J!U~:)UO:)~UOZOWnW!Xt!w Al!~P ~q! JoJ uowwo:)un !OU S! !I lX~U ~q:I O! A~p ~UOWOJJ ApU~:)y!ug!S !Jp,A ~:) OS~ UO!!~:>O1U~A!g ~ !~ suofl~J!u~:) -uo:) ~uozo '~I:)A:) ~wn!p ~ J~AOSUO!!~~A O! UO!!!PP~ uI "~UOZOJo ~:)~m~dd~s!p ~Wfl!qg!U ~!~ldwo;) ~q! ~sn~:) O! qgnou~ guoJ!s S! ~:)Jnos ON ~q! s~~m ~qJn AURW U! '!:)~J uI "ON p~ ~uozo U~~M!~ UO!!:)R~JP!dRJ ~q! Jo ~snR:)~ p~:)unouoJd ~!!nb ~q UR:)~uozo U! wnw! -U!W ~W!!!qg!U ~q! 'ON Jo s~:)Jnos ~gml m~u SUO!!R:)°1uI "~lyoJd ~JmRJ~dw~! I~UJJOU~q:IJo UO!SJ~AU!~ Aq P~!!q!qU! S! !JOdSURJ!lR:)!!J~A p~ s~s~~:) uo!!:)npoJd lR:)!W~q:)o!oqd U~qM '!qg!U !R (ON) ~P!XO :)!J:I!U q!!M UO!!:)R~Jp~ uo!!!sod~p Alp Aq ssol ~uozo q!!M P~U!qwo:) '~AoqR WOJJ J!R q:)!l-~uozo Jo !Jods~J! pmMuMop JO uo!!:)npoJd lR:)!W~q:>o!oqd ~W!!ARP WOJJ s!lns~J w~uRd S!~ 117I"Z ~Jng!d) UOOW~!JR~!Rl ~q! U! WnW!XRW R p~ UMRp ~JoJ~ sJnoq gU!WOW Alm~ ~q:I U! wnw!u!w R q!!M ~1:)A:)[RWn!p R J~AO !Jp,A O! punoJ u~~q ~ARq SUO!!RJ!U~:)UO:) ~uozo 'S~!!S ~:)RJlns [RJnJ !SOW !Y "~A!SU~!X~A[J~J S! ~OJn3 pUR R:)!l~WY q!J°N U! s~~m ~qJnqns pUR uRqJn JOJSUO!!RAJ~SqO ~UOZO[~A~[-pUnOJg JO ~SRqR!RP~q.L 'lR!~
Il~MOJg ~~861 'lR!~ A~URpO) AS ~q! U! !~U!wop~Jd
R S! 'ON p~
1Z661 'lR!~ ~R~JpUY :8861 S! !Rq! uo!!:)npoJd EOJO ~:)Jnos
suoqm:>OJpAq ~URq:I~WUOUJo ~:)Jnos JOfRW ~ 'J~A~MOq 'gu!wnq
SSRWO!g
"AN ~q! U! SUO!SS!W~raN J~qg!q Jo ![ns~J R SRuo!!:)npoJd [R:)!W~q:>o!oqd J~gm[ pUR AN ~q! U! xnlJu! :)!l~qdSO!RJ!SJ~gm[ ~ q:I!M !U~!S!suo:) 'AS ~q! U! ~q! AN ~q! U! SUO!!RJ!U~:)UO:) EO J~qg!q ~!R:)!PU! OS~ m~o 1£661 'n!! p~ P[~Ju~sq~d ~~S '"g"~) ~J~qdsodoJ! J~dn ~q! U! uo!!:)npoJd EO !U~!:)YJ~ ~JOW p~ ~g~q:)x~ ~J~qdsodoJ!-o!-~~qdSO!~J!S JO ~A!!~:)!PU! '~pm -!![R q!!M SO!!RJgU!X!W EO JO ~SR~J:)U![RJ~U~g R ~!~:)!PU! S!U~W~JnSR~W~UOZO~qO[D "~J~qds!w~q pUR UOSR~S q:I!M UO!!R~A !U~:)y!ug!S S! ~J~q:I!nq '00 O£ !noqR ~gRJ~ARS:J!!!SU~PUwn[o:) ~UOZO:)!l~qds -odOJ.L 1Z66 [ '066 [ 'l~ !~ URwqS!d) A[~A!!:)~dS~J '~UOZO :)!J~qdSO!RJ!SpUR ~UOZO uwn -[0:) ~!O! !:)~!~P q:)!qM '3DYS p~ SWO.L 'S!U~WMSU! ~!!Il~!RS OM! JO S!U~W~JnSR~W~q! JO ~:)U~J~JJ!P~q:I WOJJ P~U!UJJ~!~P~ UR:)~J~qdsodoJ! ~q:I U! Uwn[o:) ~UOZOP~!RJg~!U! ~q.L 19661 'gun}.. p~ g~!f) m~A J~ %817"1 Aq p~SR~J:)U!Apu~mddR R:)!l~WY q:lnos :)Y!:)Rd [R:) -!doJ! ~q! U! SUO!!RJ!U~:)UO:) ~uozo :)!l~qdsodoJ! Z66 [ O! 6L61 WOJJ '~~:)O :)Y!:)~d ~q! pu~ s~puY qg!q ~q! U~~M!~q R!RP(SWO.L) J~!~woJ!:)~dS gu!dd~W ~uozO [R!°.L UOp~SRg ~1£l"Z ~Jng!d) (6861 'q:)R~f) sm~A O£ !sRd ~q:I J~AOSUOflRJ!U~:)UO:) ~gRJ~A~U! ~SR~J:)U!~nuu~ %Z O! I R S~!R:)!PU!S~!!S ~~OJn3 ~!OW~J Al~A!!~I~J U! ~p~w S!U~W~Jns~~w ~uozo Jo S!SA~~ uy 16861 'q:)~~f :17661 'AA~ p~ S~W!10 :1661 'P!wq:)S p~ U!I~q~R!S :886[ 'u~nnJJ :8861 'Ao){fog ~8861 'A~[)l p~ Z[OA) qdd ~17pUR OZ U~~M!~q ~g~J~AR~OJn3JO s:).mdp~!n[ -[odun !SOW ~q:I U! SO!!~J gU!X!W !U~JJn:) :qdd 01 !noqR P~gRJ~A~OgR sm~A 001 s~d m~u SO!!RJgU!X!W ~uozo ~:)RJlns !Rq:I p~MOqS S!SA~UR J!~~ "~nb!uq:)~! !U~W~JnSR~W ~U!g!lO ~q:I P~!RJq![R:)~J OqM '(8861) A~[)l p~ Z[OA Aq P~ZA1~~~J u~~q ~ARq 0161 O! 9L81 WOJJ 's~d m~u 's!lnos!UOW !~ ~pRW ~uozo :)!l~qdSOW!R Jo S!U~W~JnSR~W 1886 1 '){:)~umA\) q:I~~q ~!oWOJd O! P~A~![~ SRM !! '!~!:)~JU!S!P R ~ O! UMOU){ SRM ~uozo ~snR:)~g "~UOZO:)!l~qdSOW!R U! !S~J~!U! q:)nw SRM ~J~q:I s0081 ~!R[ ~q:I gu!lnp ~J~qM '~OJn3
WOJJ
s~wo:) ~uozo :)!l~qdsodoJ! Jo S[~A~[ ~U![~SRq p~SR~J:)U!JoJ ~:)U~P!A~ ~q! Jo q:)nw 10661 '9861 'OWA\) gU!SR~J:)U!S! ~uozo :)!l~qdsodoJ! 'gU!UU!q:I S! ~uozo :)!l~qdSO!RJ!S S~~J~qA\
auozo :>!.laqdsodo.J.L £.9, S3WLL3dI'
aNY 'S3';:>J,.;:>'VHO'O
1-6
'NOLLISOdWO;:> ;:>I~3Hdsomv
ATMOSPHERIC OZONE
95
101
10 20 25 ..
a "8
1988 ~
50
\ I I
20
~ =
{/) {/) Q) ~
1001 -,
'\
15 '-1969
200 10
500
5
I: ,
10001-'II--illllllll'II!0 0 50
100
150
°3 Partial Pressure,nbar FIGURE 2.13 Selectedannual meansof ozone balloon soundingsover Payeme,Switzerland (StaehelinandSchmid,1991).The annualmeanaltitudeof the tropopauseat Payemeis about 10kIn, varying from about 8 kIn in winter to 12 km in summer.(Reprintedfrom Atmos. Environ., 25A, Staehelin,J. and Schmid,W., Trend analysisof troposphericozoneconcentrationsutilizing the 20year data set of balloon soundingsover Payeme(Switzerland),p. 1739,1991,with kind permission from ElsevierScienceLtd, The Boulevard,Langford Lane, Kid1ingtonOX5 1GB,UK.)
downwind of large urban areas,under certain meteorological conditions, emissions of NO x and VOCs can result in ozone concentrations as high as 200 to 400 ppb. Such production of ozone and related oxidant species is called photochemical air pollution; it was first recognized in the Los Angeles basin in the 1940s. The database of ozone observations suggests a systematic pattern of decreasing daily maximum concentrations as one moves from urban-suburban locations to rural locations and then to remote locations. Daily maximum ozone concentrations within the atmospheric boundary laver tend to be lar2est in the
OV-O'l Ot-O'l O'lI-O~ OOt-OOI
1661) (!:)unoJ q:)l1!~S~~(\!UO!I\!N :a:JJnos 'JU!Jt!W 'J10W'J~ 1S'JJOjIt!:>!doJ1 'J10W'J~ It!Jn~ ut!qJnqns-ut!qJn
uo!ga~ SUOp8J~U33UO;)
3UOZO
WnW!X8W AI!8Q 3W!JJ3WWns 183!d.(.L 91', 3'18V.L
i\\~N 'U!R1UnOW ~:)Rj~1!qM 01 SJ~j~ Wdft\)
('J~A~IR~S~AOqR W'! ~'11R P~1R:)°I',!lOA 'P~1R;)O1~lR ,(~q1 q:)!qi\\ U! ~1R1S~Q1,(q P~Y!1U~P! ~m S~1!S
'(6861 'U1180j) ,(Inc U! S~1R1SP~1!uf1 ~q1 U! S~1!SIRlnJ 1R~uozo jO lO!ARq~q IRWn!G 'J4 -
vl' '(p)
Ol'
I
I
I
". ". " "'" .
I
l'1
I
I
8
I
I
V
3HllDI.!I
0 0
I
--
Ol'
"
~
'"
tI,
'Aea !o ew!!
91
I
-.
~
-
"",."
N l
/,:iji .':.0'
~ .'.'. /.".
' , '-
-""
HO
Ov
,
VLt'J
/ ~..~ -""'. ;=~._':"';":';'""""
Vd
09
(~)NI 08 0
0 w
~ 8: ::J ao
Ol'
;c OJ o'
Ot'
"C "C 0"
09
(q)
Ov
AN'W.:JM
09
Ol Ov S3WI.L3d11ONV 'S3';)},.;) ,vao,o
'NOI.LISOdWO;);)I~3HdSOmV
Q6
PARTICULATE MAlTER
(AEROSOLS)
97
urban-suburban atmosphere, where maxima well above 200 ppb have been observed (Table 2.16). Ozone concentrations in rural areas tend to be more moderate and rarely exceed 150 ppb. In remote locations, ozone concentrations typically range from 20 to 40 ppb.
2.7 PARTICULATE MATTER (AEROSOLS) Particles in the atmosphere arise from natural sources, such as windbome dust, sea spray, and volcanoes, and from anthropogenic activities, such as combustion of fuels. Whereas an aerosol is technically defined as a suspension of fine solid or liquid particles in a gas, common usage refers to the aerosol as the particulate component only (Table 2.17). Emitted directly as particles (primary aerosol) or formed in the atmosphere by gas-to-particle conversion processes (secondary aerosol), atmospheric aerosols are generally considered to be the particles that range in size from a few nanometers (nm) to tens of micrometers
TABLE 2.17 Terminology Relating to Atmospheric Particles Aerosols,aerocolloids, aerodispersesystems Dusts Fog
Mists
Particle
Soot
Tiny particles dispersed in gases
Suspensions of solid particlesproducedby mechanicaldisintegrationof materialsuchascrushing,grinding, andblasting.Dp > I JLm. A looseterm appliedto visible aerosolsin which the dispersedphaseis liquid. Usually,a dispersionof water or ice, closeto the ground. The solid particlesgeneratedby condensationfrom the vapor state,generally after volatilization from meltedsubstances, and often accompanied by a chemicalreactionsuchas oxidation.Often the material involved is noxious.Dp < I JLm. An aerosolthat impedesvision and may consistof a combinationof water droplets,pollutants,and dust.Dp < 1 JLm. Liquid, usually water in the form of particlessuspendedin the atmosphereat or nearthe surfaceof the Earth; small water dropletsfloating or falling, approachingthe form of rain, and sometimesdistinguished from fog asbeing more transparentor as havingparticlesperceptibly moving downward.Dp > I JLm. An aerosolparticle may consistof a single continuousunit of solid or liquid containingmany moleculesheld togetherby intermolecular forcesandprimarily largerthan moleculardimensions(> 0.001 JLm). A particle may alsobe consideredto consistof two or more suchunit structuresheld togetherby interparticleadhesiveforcessuchthat it behavesas a singleunit in suspensionor upondeposit. A term derivedfrom smokeand fog, appliedto extensivecontamination by aerosols.Now sometimesusedloosely for any contaminationof the air. Small gas-borneparticlesresultingfrom incompletecombustion,consistingpredominantlyof carbonandother combustiblematerial,and presentin sufficientquantity to be observableindependentlyof the presenceof other solids.Dp 2: 0.01 JLm. Agglomerationsof particlesof carbonimpregnatedwith "tar," formed in the incompletecombustionof carbonaceous material.
gU!pg~1 SUO!SS!UI~ :>!u~godoJq:luV
's~Sgg :>!UggJO A:t!I!:tgIOA-MOI Jo UO!:tgSU~puo:> :>!l~qdSOUI
-:tg UIOJJ :tlns~J ug:> JO s~:>Jnos Aq Ap:>~J!P p~:t:t!UI~ S! uoqJP.:> :>!uggJO ~:tgln:>!:tJP.d 's~ss~:>oJd UO!:tSnqUIO:> UIOJJ ApugU!UIOp~Jd :>9!qdgJg
'~J~qdSOUI:tg ~q:t O:tU! Ap:>~J!P P~:t:t!UI~ S! ':tOOS JO 'uoqJP.:>
'uoqJP.:> )[:>glq P~l[!l:> OSlg 'uoqJP.:> Imu~UI~13
Jo s:tS!suo:> SIOSOJ~g ~q:I Jo UO!:t:>gJJ sno~:>guoqJP.:> ~~ sno~:>gUoqJP.:> 'sIm~UI :>!l~qdsodoJ.L
'U!g!lO
~:>gJ:l '~P!l°Iq:> U! :>!u~godoJq:tug
'uoqJP.:> :>!UggJO PUg Ig:tu~UI~I~ q:toq 'J~:tgM Pug 's:tu~UI~I~ [!I:tsru:> 'Ig!l~:tgUI
'UIn!pOS '~:tgJ:l!U 'UIn!UOUIUIg S! 10SOJ~g :>!l~qdsodoJ:l
'~:tgJlns u~:tuo:> SIOSOJ~g
~q:I Jo UO!:t:>gJJ :tug:>y!ug!S V
loso.l-aV;)!.I-aqdsodo.I.LJo sJu-auodwo:) IU;)!w-aq:)
"L.Z
"SmaA Z JaAO JOJ SlaAal 10SOJaR:Jpaqds01R~S pa:JUt!qua 01 pal pUt! AJmua:J q10Z aq1 U! 1sagml aq1 SRM oqmRU!d lW Jo u09drua 166 I aunf aq1 'aJaqds01RJ1Saq1 01 gj, O£ Jo U09!PPR SSRW10SOJaRpa1RW!1SaUR q1!M. "SUo!ss!wa :J!Ut!:JIOAAq paqJnpadun AI{t!101 S! 1Rq1a1R1sR U! woPlas S! 10SOJaR:Jpaqd -S01R~Saq1 'SuO!1drua :J!UR:JloAJo A:JuanbaJJ aq1 UaA!g '1Rq1os 'smaA Jo JapJo aq1 uo aW!1 :J!1Spa1:JRmq:J R SRqSU09!puo:J pUnOJg){:JRq01 UO!1RXRlaJS,aJaqds01R~Saqj,"{oSOJaR punOJg -){:JRq IRJmRU aq1 wlaqMJaAO 1Rq1sa9!suap IR:J!1dO1R AI{t!qOlg pa1nq!J}S!p aq 'Sq1uow Jo popad RJaAO 'Ut!:J spnol:J 10SOJaRP!:JR:JpnJlns 1uanbasqns aqj, "166 I U! oqmRU!d pUR 'Z86 I U! u9q:J!qJ 13 '£96 I U! gungy apnl:Ju! suo!1drua JOfRW 1ua:Ja"M°aJaqds01R~SP!WpUt! JaMoI aq1 01U! Ap:JaJ!p "aS Jo Sa!1!1Ut!nb1Ut!:Jy!ug!S 1:Jafu! SuO!1drua :J!Ut!:JIOA1uanbaJJ SR 'JaAa -MOq 'amJ AlaA9RlaJ aq ARW 10SOJaR:Jpaqds01R~S punOJg){:JRq paqJnpadun Jo a1R1Sy °aJaqds01R~Saq1 01 papodsUt!J1 aq 01 aJ~qdsodo~ aq1 U! qgnoua guoI 1S!sJad10U op '"SJ pUt! 'swa '"aS 'aldumxa JoJ 'sa!:Jads gU!U!R1UO:J-JnJlns pa11!Wa-a:JRpns Jaq10 "{oSOJaR:Jpaqds01R~S {t!JmRU aq1 Jo 1uauodwo:J f.mwpd aq1 'P!:JR :JpnJlns UJJoJ AI{t!muaAa 01 UO!1R!PRJ1alo!AR~ln JRIOSAq Sa1R!:>OsS!P 1! aJaqM aJaqds01R~S aq1 01U! sasnJJ!p 11 "aw!1aJ!1 :Jpaqdsodo~ guoI R SRq pUt! alqnlosu! Ja1RM pUR pau! AI{t!:J! -waq:J S! SJO °a:JRpns s,q1JR3 aq11R sa:JJnOSS1!SRq q:J!qM '(SJO) apYlns IAuoqm:J JO UO!1 -RP!XO S! 10SOJaR:Jpaqds01R~S punOJg){:JRq paqJnlJadun 'pa1nq!J}S!p AIIRqOlg aq1 JO a:JJnOS aqj, "(~661 '"{R 1a uaqs) AlaA!1:JadsaJ 'Jo~V- 0108WOJJ saJmRJadwa1 JoJ P!:JR :JpnJlns %08 01 09 Jo uo!1nlos P!:JR :JpnJlns snoanbR Ut! Jo pasodwo:J S! 10SOJaR:Jpaqds01R~S aqj, loso.laY;)!.laqdso}u.l}S
I"L"'l
'S:>fggM MgJ t? O} SAt?p MgJ t? WOJJ AIUO AJt!A gJgqdsodoIl
gq:l U! SgI:)!Pt?d Jo SgW!} g:)Ugp!SgJ 'glOm JO AJmUg:) t? O} PUo:)gS t? Ut!q} SsgI
WOJJ ~U!~Ut!J SgW!}gJ!I gAt?q Sgst?* g:)t?II :)!lgqdsow}t? put? UO!}t?J}Ug:)uo:) U! AIgp!M -red Jo uo!}nq!J:Is!p
st?gJgqA\ °q:lJt?3 gq:l JgAO uo!}!sodwo:)
AJt!A SIOSOJgt?:)!lgqdsodoIl
It?:)!qdt?J~o~~
AI~A!}t?I~J O} Pt?~I uo!}!sod~p
~q:I ~SM:)~q
'UJJoJ!unuou
put? '~J~qdsodoJ}
Alp put? }~M ~snt?:)~H iuo!}!sod~p
AIq~!q
S! sg:)Jnos gI:)!}
~q} U! S~W!} ~:)u~P!S~J }Joqs }~M) uo!}t?}!d!:)~Jd
Jo UO!}t?w
-JoJ ~q:I ~u!lnp S}~IdoJp pnoI:) O}U! UO!}t?JodJo:)U! put? (uo!}!sod~p Alp) ~:)t?Jlns s,qPt?3 ~q:I}t? uo!}!sod~p :SWS!Ut!q:)~w OM} Aq ~J~qdsOW}t? gq:l wol] p~AOW~J AIIt?mu~A~ ~m s~I:)!Pt?d °E-W:) I Ut!q:I ss~I su09t?IIu~:)uo:)}t? -!P wn
I ~U!P~~:)x~
-u~:)uo:)
~soq:l ~EW:)J~d pUt!snoq:l
:)!l~qdsow}t?
pUt! ~oJ ~wo:)~q -w~q:)
punoJ
It?J~A~S O} U~} punom
~At?q AIIt?J~U~~ J~}~UJt?!P wn
AIIt?nsn ~m J~}~Wt?
WOJJ ~~ut?J ~q:I U! SUO!}t?II
I Ut!q:I J~IIt?wS s~I:)!Pt?d
'S}~IdoJP pnoI:)
O} UO!}t?Jmt?sJ~dns J~}t?M Jo ~:)u~s~Jd ~q} U! UO!}t?A!}:)t? Aq JO 'UO!}:)t?~J It?:)!
Aq 'S~I:)!Pt?d J~q:lo q}!M ~u!}t?In~t?o:)
-uo:) Aq uo!}!sodwo:)
Aq 'UO!}t?JOdt?A~ Aq JO s~!:)~ds JOdt?A Jo UO!}t?su~p
pUt! gZ!S J!gq} ~~Ut!q:) Ut!:) SgI:)!Pt?d '~woqJ!t!
S3Wll3dI'1
aNY 'S3'1:)A.:) '1V80'10
~:)uO °J~}~UJt?!P U! (wn)
86
'NOI.LISOdWO:) :)nI3HdSOW.LV
PARTICULATE MATrER
Remote (11 areas)a Nonurbancontinental (14 areas)a Urban (19 areas)a Rubidoux,Califomiab (1986 annualaverage)
15
5
24
32
9
31 18
87.4
II
(AEROSOLS)
99
4
37
8
6
28
6
20
6
"Heintzenberg (1989). bSolomon et aI. (1989).
to atmospheric aerosol have increased dramatically over the past century and have been implicated in human health effects (Dockery et al., 1993), in visibility reduction in urban and regional areas (see Chapter 22), in acid deposition (see Chapter 20), and in perturbing the Earth's radiation balance (see Chapter 22). Table 2.18 presents data summarized by Heintzenberg (1989) and Solomon et al. (1989) on aerosol mass concentrations and composition in different regions of the troposphere. It is interesting to note that average total fine particle mass (that associated with particles of diameter less than about 2 .urn) in nonurban continental, (i.e., regional) aerosols is only a factor of 2 lower than urban values. This reflects the relatively long residence time of particles. Correspondingly, the average compositions of nonurban continental and urban aerosols are roughly the same. The average mass concentration of remote aerosols is a factor of 3 lower than that of nonurban continental aerosols. The elemental carbon component, a direct indicator of anthropogenic combustion sources, drops to 0.3% in the remote aerosols, but sulfate is still a major component. This is attributable to a global average concentration of non-sea-salt sulfate of about 0.5 .ugm-3. Rubidoux, California, located about 100 km east of downtown Los Angeles, routinely experiences some of the highest particulate matter concentrations in the United States.
2.7.3 Cloud CondensationNuclei (CCN) Aerosols are essential to the atmosphere as we know it; if the Earth's atmosphere were totally devoid of particles, clouds could not form. Particles that can become activated to grow to fog or cloud droplets in the presence of a supersaturation of water vapor are termed cloud condensation nuclei (CCN). At a given mass of soluble material in the particle there is a critical value of the ambient water vapor supersaturation below which the particle exists in a stable state and above which it spontaneously grows to become a cloud droplet of 10 JLmor more diameter. The number of particles from a given aerosol population that can act as CCN is thus a function of the water supersaturation. For marine stratiform clouds, for which supersaturations are in the range of 0.1 to 0.5%, the minimum CCN particle diameter is 0.05 to 0.14 tLm. CCN number concentrations vary from fewer than 100 cm-3 in re-
p~Audun puu p~Aud woll tsnp AUMpUOl)S~:>lnOS ~A9!~nJ Iu!J:Isnpu!uou 's~ss~:>oldIu!J:I -snpu! 'uo!tsnqwo:> I~nJ :s~po~~tu:>~:>lnosmoJ WOlJ AIpuwpd ~spu suuwnq Jo S~!t!A!t:>U ~qt Ot ~Iqutnq!J:Itu l~ttUW ~tUIn:>!1JUdJo SUO!SS!W3'S!suq I1!qoI~ U uo 'S~:>lnos :>!U~~odOlqtUU puu I1!lmUU WOlJ p~tUl~U~~ S~I:>!1JUd Jo s~tUW!tS~ UO!SS!W~Jo ~~UUl U stu~s~d 6 I 'Z ~Iqu.L 'SUO!SS!W~sno~su~ Iulmuu U~~Mt~q SUO!t:>U~lpuu '~u!wnq SSUWO!q'AUlds U~S'UO!t:>u:>!uu:> -loA 'osnp I1!!J:Is~JJ~t)spq~p )[:>Ol puu I!OS ~pnI:>u! S~I:>!1JUdJo S~:>lnos I1!lmUU tuu:>y!U~!S .la118W a18In:Jp.l8d :J!.laqdsow1V Jo sa;).lnos
SoL °l'
'~pOUI ~smo:) JO !~y:)nu ~q:! J~qt!~ u! ~SOq:! uuqt S~UI!t ~:)U~P!S~J :)!l~qdSOUItU
J~B'UOY AyqUJ~P!SUO:) ~AUq
m pu~t ~pOUIUO!tuynUIn:):)U ~qt U! s~y:)!t.rnd'~B'UUJ
UO!tuynUIn:):)U ~q:! U! tU~!:)YJ~U! ~m UInJ:):)~S ~Z!S ~q:! JO S~UI~I}X~ ~y:)!t.rnd ~B'my puu YTUUIS ~q:! tU tU~!:)YJ~ ~m tUq:! SUIS!UUq:)~UI TUAOUI~J ~snu:)~g '~UI!t tJoqs AyqUUOSU~J U U! ~J~qd -SOUItU ~q:! JO tnO ~yu~s A~qt tuqt S~!t!:)°Y~A UO!tUtU~UI!P~S ~B'my ApU~!:)YJns ~AUq s~y:)!t.rnd ~smoJ 's~y:)!t.rnd tsnp TUJmUU puu ~pUUI-UUUI JO StS!SUO:) AYTUnsn puu s~ss~:)oJd TU:)!uuq:) -~UI Aq p~UJJOJ S! 'J~t~urn!P
UI'ri ~'Z<
UIOlj '~pOUI as.iVo:J ~~
'~J~q:! ~tuynUIn:):)U m s~y:)!t.rnd
B'u!snu:) '~UI!B'~J S!q:! U! tU~!:)YJ~ tSU~y ~m SUIS!UUq:)~UI YUAOUI~J ~y:)!t.rnd ~snu:)~q p~UIUU os S! ~pOUI UO!tuynUIn:):)U ~~
'~B'UUJ ~Z!S S!q:! mU! MOJB' m UI~qt B'U!Snu:) 's~y:)!1JUd B'U!tS!X~ mOO
SJOdUA JO UO!tUSU~pUO:) UIOJJ puu ~pOUI !~y:)nu ~q:! U! s~y:)!t.rnd Jo u09uynB'uo:) ~qt S! ~pOUI UO!tuynUIn:):)u ~q:! U! s~y:)!1JUd Jo ~:)Jnos ~q.L 'SSUUI YOSOJ~U~qt JO t.rnd TU!tumsqns u puu u~m
'~pOUI UO!Jv/nUln:J:Jv
-pu~tX~
YOSOJ~U~q:! Jo tSOUI JOJ Stuno:):)u
~:)uJlns
AYTUnsn 'J~t~UIU!P UI'ri ~'Z tnoqu
B'u!lnp
-snqUIO:)
'J~t~urn!P
m Y'0 UIOJJ B'U!
~q.L 's~y:)!t.rnd J~~my q:!!M UO!tuynB'uo:) Aq Anud!:)u!ld
A~q.L 's~y:)!t.rnd qs~JJ UJJoJ m s~!:)~ds :)!l~qdsoUItU
~woqJ!U
's~[:)!t.rnd
isoy ~m
Jo UO!tu~y:)nu ~q:! UIOJJ puu s~ss~:)oJd UO!t
SJOdUA toq JO UO!tUSU~pUO:) UIOJJ p~UJJOJ ~m ~poUI !~y:)nu ~q:! U! S~[:)!t.rnd Jo SSUUI YUtm ~qt JO tU~:)J~
~s~qt '~Z!S nUUIS J!~q:! JO ~snu:)~ UI'ri y '0 m ~OO'O tnoqu
M~J u uuqt ~JOUI JOJ tuno:):)u
~J~qUInu Aq s~y:)!t.rnd Jo ~:)uuJ~puod~Jd
A[~mJ s~[:)!t.rnd ~qt JoJ Stuno:):)u
UIOJJ B'U!pu~tX~ '~pOUI !a/:Jnu ~q.L 'apoUi UO!Jv/nUln:J:Jv ~qt
puu apoUi !a/:Jnu ~qt :S~pOUI OMt mU! A[qB'nOJ P~P!A!P ~q U~UO uu:) s~[:)!1JUd ~U!d '[OSOJ~U
~q.L
U! :)!tUUI~q:)S P~Z!TU~P! uu U! UMOqS ~m S~Z!S ~y:)!t.rnd ~:)u~n1Ju! tuq:! uu~UIou~qd
~JnB'!d
:)!l~qdsoUJtu
UU Jo u~m
~:)uJlns
Jo uo!tnq!l1s!p
TU:)!dAt ~qt
st:)!d~p
q:)!qM
'~Y'Z
'S[OSOJ~U Jo St:)~JJ~ qtyu~q JO 'tU~UI~JnSU~UI 'f.JtS!UI~q:) JO uo!ssn:)sw
AUU U! ~UO TUtU~UIupunJ u S! s~[:)!1JUd ~smo:) puu ~uY U~~Mt~
's:)!SAqd ~qt
UO!t:)U!tS!P ~q:!
~JOJ~J~q.L l:)UI} f.JmuJ!ds~J ~q:! U! sw~ttud uo!t!sod~p J!~qt U! APUU:)Y!UB'!S J~JJ!P puu 'S~!t -J~oJd yu:)!tdo tU~J~JJ!P ~AUq 'U09!sodUIO:) YU:)!UI~q:) tU~J~JJ!P ~AUq 's~:)Jnos UIOJJ [UAOUI
p~UJJOJSUUI} ~m 'A[~tumd~s
p~AOUI~J ~m 'A[~tumd~s
tU~J~JJ!P ~J!nb~J
-~J J!~q:! JOJ s~nb!uq:)~
~smo:) puu ~uY ~q.L ,,'~smo:).. -~J A[TUJ~U~B' ~m J~t~urn!P
(y)
su J~t~urn!P
'SUIS!UUq:)~UI tU~J~JJ!P Aq ~J~qdSOUItU ~q:! UIOJJ ~tUU!B'!JO 'TUJ~U~B' U! 'S~pOUI ~[:)!t.rnd
UI'ri ~'Z uuqt J~tU~JB' ~soqt puu ,,~UY.. su m p~JJ~J
U! UI'ri ~'Z UUq:! ss~y s~y:)!t.rnd 'SJ~t~UIOJ:)!UI p~lpunq
[UJ~A~S
m
SUIOI}SB'UU JO SU~t M~J U UIOJJ ~Z!S U! B'U!B'UUJ s~[:)!t.rnd Jo tS!suo:) S[OSOJ~U :)!l~qdsoUJtV SiJ(:J!}.l8d :J!.liJqdsowJV
Jo SiJZ!S
to.L.'Z'
'uo!~~~!d!;)~Jd u! ~J~qd -soun~ ~~ UJOJJp~AOUJ~J~U!~q AII~n~;)~ ~JoJ~q S~[;)A;) UO!~~JOd~A~pno[;)fUO!~~A!~;)~pno[;) 0 [ o~ ~ ~;)u~!l~dx~ II!M N;);) ~~~J~A~ ~ ~~q~os ')[~~M [ ~noq~ S! N;);) ~ Jo ~UJ!~~J![~~~J~ -A~ ~q.L 'spnO[;) ~P!S~nOSA~p M~J ~ Aq P~MoIloJ 'pno[;) ~ U! sJnoq M~J ~ '~~~J~A~ UO 'pU~S II!M [~;)md J!t? uy 's~~m ~qJn
p~~nIlod U! £-UJ;) p~snoq~
S3WI.L3dI' aNY 'S3'JJ..J 'V80'O
A~UJ O~ SUO!~~J~U~UJ ~~OUJ
'NOI.LISOdWOJ JI~3HdSOW.LV 001
p~ABdun pUB p~ABd moll
1snp ABMpBOl) S~:)lnos ~A9!gnj
IB!J'!snpu!uou 's~ss~:)old IB!J'!
-snpu! 'UO!1snqwo:) I~nj :s~POg~1B:)~:)lnos lnOj WOljAlpBwpd ~spB sUBwnq jO S~!1!A!1:)B ~q:I 01 ~lqB1nq!JUB l~11BW~1Bln:)!~d jO SUO!SS!W3'S!SBqIBqOIg B Uo 's~:)lnos :)!U~godOJq:lUB pUB IBlmBU moll P~1Bl~U~g S~I:)!~d jO S~1BW!1S~UO!SS!W~jO ~guBl B S1U~S~ld61"l ~IqBl 'SUO!SS!W~sno~sBg IBlmBU U~~M1~ SU09:)B~l pUB 'gu!wnq SSBWO!q'ABlds B~S'U09:)B :)!UB:) -lOA '(1snp IB!J'!S~ll~1) spq~p ){:)Ol pUB I!OS ~pnI:)u! S~I:)fIlBd jO S~:)lnos IBlmBU 1UB:)Y!Ug!S
.la}}uw a}uln;Jp.lud ;J!.laqdsow}V Jo sa;J.lnos ~'L 'l' .~pow ~smo:J lO !~I:Jnu ~q1l~q1!~ U! ~soq:l UUq1S~W!:I~:JU~P!S~l :J!l~qdsow:lg l~guoI Alqgl~P!SUO:J ~Agq 0:1pU~:I ~pOW UO!:lglnwn:J:Jg ~q:l U! S~I:J!:IlP.d'~gUUl uo!:lglnwn:J:Jg ~q1 U! :lU~!:JYJ~U!~lt! wnl:j:Joos ~Z!S ~q1 Jo S~W~l:jX~ ~1:J!:IlP.d~gml puu I{t?ws ~q1 :lg :lU~!:JYJ~~m :lgq:l SWS!uuq:J~w IgAOW~l ~Sng:J~g .~W!:I :jloqs AlqgUOSg~l g U! ~l~qd -SOW:lg~q1 Jo :lno ~P:l~S A~q1 :lgq1 S~9!:J°I~A UO!:lg:lU~W!P~S~gml APU~!:JYJns ~Agq S~I:J!~d ~smoJ 'S~I:J!~d :lsnp {t?ln:jgU puu ~pgW-UUW Jo S:lS!suo:JAI{t?nSn PUg s~ss~:Jold {t?:J!uuq:J -~W Aq P~WlOJ S! 'l~:I~um!P W7J' ~'Z< wall '~pow as.Jvo:J~ql. .~l~q:l ~:lglnwn:J:Jg 0:1S~I:J!~d gu!sng:J '~W!g~l S!q:l U! :lU~!:JYJ~:lSg~1~lt! SWS!uuq:J~w {t?AOW~l~1:J!~d ~sng:J~q p~umu OSS! ~pow uo!:lglnwn:J:Jg ~ql. '~gUUl ~Z!S S!q1 O:lU! MOlg 0:1w~q:l gu!sng:J 'S~IO!~d gU!:lS!X~ O:lUO slodgA Jo UO!:lgSU~puo:Jwall PUg ~pow !~I:Jnu ~q:l U! s~I:J!~d Jo U09glnggo:J ~q1 S! ~pow uo!:lglnwn:J:Jg ~q1 U! S~I:J!~d Jo ~:Jlnos ~ql. 'SSgW 10SOl~g~q1 Jo ~d {t?!:luu:lsqnsg puu g~m ~:JgJlns 10SOl~g ~q1 Jo :lSOWlOJ s:luno:J:JgAI{t?nsn 'l~:I~Wg!P W7J' ~'Z :lnoqg 0:1 1'0 wall gO! -pu~:lx~ '~pOW uo!Jvlnzun:J:Jv ~ql. .S~I:J!~d l~gml q:l!M Uo!:lglnggO:J Aq AIIgd!:Ju!ld 1s01~lt! A~ql. 'S~I:J!~d qS~lJ WlOJ 0:1S~!:J~ds:J!l~qdsOW:lg Jo UO!1g~l:Jnu~q1 wall puu s~ss~:JOld UO!:I -snqwo:J gU!lnp slodgA :loq Jo UO!:lgSU~puo:Jwall P~WlOJ ~m ~pow !~I:Jnu ~q1 U! s~I:J!~d 'S~I:J!~d ~UlOql!t! Jo SSgW{t?:lO:l~q1 Jo 1U~:JlOOM~J g Ugq1 ~lOW lOJ :luno:J:JgAI~lt!l S~I:J!~d ~s~q1 '~Z!S l{t?wS l!~q:l Jo ~sng:Jaq :l~qwnu Aq s~I:J!~d Jo ~:Juul~puod~ld ~q1l0J s:luno:J:Jg 'l~:I~Wg!P W7J'1.0 0:1~OO'O:lnoqg wall gU!PU~:lX~'~pow !al:Jnu ~ql. 'apozu uo!Jvlnzun:J:Jv ~q:l puu apozu !al:Jnu ~q:l :s~pow OM:I O:lU! Alqgnol P~P!A!P ~q u~:lJ° UU:JS~I:J!~d ~U!d 10SOl~g :J!l~qdsow:lg Ug Jo g~m ~:JgJlns Jo uo!:lnq!J:js!p Ig:J!dA:I ~q1 s:I:J!d~p q:J!qM '~I.Z ~lng!d U! :J!:lgW~q:JsP~Z!{t?~P! uu U! UMOqS ~m S~Z!S ~1:J!~d ~:Ju~nIJu! :lgq:l gU~wou~qd ~ql. .SIOSOl~gJo S:I:J~JJ~ q:llg~q lO ':lU~W~lnSg~W 'Al:IS!W~q:J's:J!SAqd ~q:l Jo uo!ssn:Js!p AUg U! ~Uo {t?:lu~umpunJ g S! S~I:J!:IlP.d~smo:J puu ~uY U~~M:I~q UO!:I:JU!:lS!P ~q:l ~lOJ~l~ql. l:Jgl:j f.JO:lgl!dS~l ~q1 U! SUl~ugd UO!:I!sod~p l!~q:l U! APUg:Jy!ug!S l~JJ!P PUg 'S~!:I -l~dold {t?:J!:ldo:lU~l~JJ!P ~Agq 'uo!:I!sodwo:J {t?:J!W~q:J:lU~l~JJ!P ~Agq 's~:Jlnos wall {t?AOW -~l l!~q1l0J s~nb!uq:J~ :lU~l~JJ!P ~l!nb~l 'SWS!Ugq:J~W:lU~l~JJ!P Aq ~l~qdsow:lg ~q1 wall p~AOW~l ~m 'AI~:lgmd~s P~WlOJSUUl:j~m 'AI~:lgmd~s ~:lgU!g!lo 'lgl~U~g U! 's~pow ~1:J!~d ~smo:J puu ~uY ~ql. ".~smo:J" Sg l~:I~Wg!P W7J'~'Z Ugq:ll~:lg~lg ~soq1 puu "~uY,, Sg 0:1P~ll~J -~l AIIgl~u~g ~m l~:I~Wg!P U! W7J' ~.Z Ugq:l ss~1 s~I:J!~d .Sl~:I~WOl:J!W p~lpunq {t?l~A~S 0:1 (y) SWOl:jsguu Jo su~:I M~J g wall ~Z!S U! gU!gUUl S~I:J!~d Jo :lS!suo:JSIOSOl~g:J!l~qdsow:lV
sal;)!1.18d ;)!.laqdsow1VJOsaz!s t. L.'Z 'uo!tt!t!d!~;)Jd
U! ;)J;)qd
-SOUQt! ;)q! illOJJ P;)AOill;)J B'U!;)q AI1t!m~t! ;)JoJ;)q S;)I~A~ UO!tt!Jodt!A;) pnoI~fUo!tt!A!t~t! 01 Ot ~ ;)~u;)!l;)dx;) 11!/t\ N;);) ;)B't!J;)At! Ut! tt!q! os '){;);)/t\ 1 tnoqt! S! N;);) t! Jo ;)ill!t;)J!I -At! ;)ql.
.spnoI~
;)p!stno
11!/t\ I;)~Jt!d J!t! uy
SAt!p /t\;)J t! Aq P;)/t\°l1oJ.pnoI~
.st!;)Jt! Ut!qJn p;)tnl1od
U! f_ill~
pnoI~ ;)B't!J;)
t! U! sJnoq /t\;)J t! ';)B't!J;)At! UO 'pu~s
pUt!snoqt
S3WI.L~Il aNY 'S31::>A::> lYIlOIO
AUt!ill
Ot SUO!B';)J ;)U!lt!ill
;)tOill
'NOI.LISOdWO::> ::>I~3HdSOW.LY 001
PARTICULATEMAnER (AEROSOLS) 101
Chemical Conversion of Gasesto Low Volatility Vapors
IHot Vapor " Condensation
-~
Volatility Vaoor r-'
Coagulation
Homogeneous Nucleation
..
Chain
Condensation Growth, Nuclei
'ind Blown Dust + Emissions + Sea Spray + Volcanoes
..J
Plant ~articles
Coagulation
I
,.I,. &---
,
mental
WII~hrult
-
0.001
-
.J"
-10
-
0.1
0.01
1
-100
Particle Diameter, ~m Transient Nuclei or Aitken
Nuclei
+
Accumulation
Range
Fine Particles
Range
Mechanically Aerosol
GeneratedRange
Coarse Particles-
FIGURE 2.15 Idealized schematicof the distribution of particle surfaceareaof an atmospheric aerosol(Whitby and Cantrell, 1976).Principal modes,sources,and particle formation and removal mechanismsareindicated.
roads, wind erosion of cropland, construction, etc.), and transportatIon sources (automobiles, etc.). Fugitive particles are those not emitted from a definable point such as a stack. Industrial fugitive dust emissions result from wind erosion of storage piles and unpaved plant roads and from vehicular traffic over plant roads. Fugitive process emissions result from industry-related operations such as materials handling, loading, and transfer operations. Three broad categories account for nearly all of the potential process fugitive emissions-mineral products, food and agriculture, and primary metals. Nonindustrial fugitive particulate emissions, commonly termedfugitive dust, are caused by traffic entrainment of dust from
.uoqre:> p~ s01s~qs~ jO AIU!l1W p~sodwo:> ~re p~ W77'1 u~q:I ss~1 ~re S~U!U!I ~){1!JqWOJj s~I:>!:tJUd.uoqre:> AI!lUWpd ~re pu~ (W77' 1 u~q:I ss~1~re %0'l1noq~) W77'01 u~q1 ss~1 ~re re~M ~J!1 WOJj S~I:>!:tJUd jO %017 1noqy .J~1~W~!PU! W77' 1 u~q1 J~"~WS ApSOW ~re p~
J~11~Wsno~:>~uoqre:> p~
'S~1~jlnS 'S~P!{Uq P~~I jO AI!lUWpd p~sodwo:> ~re SUO!SS!W~
~1~ln:>!:tJUdp~1~I~J-~U!gu3 .re~M ~){1!Jq pU~ 'q:>1nl:>'~J!1 WOJj S~I:>flJed P~1~I~J-~I:>!q~A(z) p~ 1sn~qx~ ~1:>!q~A (I) :S~POg~1~:>OM1 U! In:>:>o SUO!SS!W~~:>JnOSuo!1~podsu~J1. .s~~re {UJnJ U! AIU!l1W 1S!X~s~:>JnOS1Snp ~A!1!gnj p~ '~:>JnOS ~q1 WOJj ~:>~1S!P poqs ~ ~P1~S1~q1S~I:>!:tJUd ~grel ApSOW ~re SUO!SS!W~~q1 ~sn~:>~qP~1!W!1 S! 1:>~dw! J!~q1 's~~re 1S0W U! s~:>Jnos 1u!od AreUO!1mSWOJj SUO!SS!W~~1~ln:>!:tJUdp~~:>x~ SUO!ss!W~1snp ~A!1!~nj 1~q:IP~1~W!1S~S! 1! ~1!qA\ 'S{UP~1~WUOPU!M jO S~:>JOj~q1 Aq p~ Sl~ -P~1~W q:I!M f.J~U!q:>~WjO u09:>~J~1U!~q:I Aq 1U~WU!~J:}U~1Snp l!mU~ s~:>JnOS~s~q1 "~ '1S~1 ~q1 JOj 1d~:>x3 's~JY p~
'UO!1:>nJ:ISUO:> 'SUO!1~J~doI~Jmln:>pg~ 'Sp~OJ p~A~dun pu~ p~A~d
"(~661) :lqpo~
pul1lq:l!)l
"(SS1!W!up) I_JA g.L :1!Un xnld "SIII1SWn!UOWWI1 SI1In:J:)O 01 p:lWnSSI1 :lJt! S:lII1J)!U PUI1 S:lII1]lns
:a:J.Inos :aloN
"AI:I/I!I:J:ldS:lJ 'wTf I1\\OI:lq pU11:I/lOql1 J:lI:lWI1!P :l1:J!!Jt!d UI1:1W01 J:I]:lJ S:I!JOg:lll1:J :lZ!S :lUY PUI1 :lSJt!°Jn
:>!U;l~OdOJq1UI1I1110.L
061
;)U!d
06
;)U!d
O~
;)SIeO:> AjU!I1W
01
;)U!d
JOA J!u~~odoJq!u1!woJj SJ!U1!~JO xON WOJ)S~!1!J!!N ~u!wnq SS1!WO!H tos WOJ)s~!1!)lns hJ1!pUOJ~S
~UY AIU!l!W ~smo:> pUB ~U!d
oz
01 001
O£I
~ ot'
!OOs (!OOS!d~Jx~) .J!~ 1snp l1!p!snpuI hJ1!W!Jd :JIN3DOdOHHJ.NV
;lSltJO:) p~
;lU!d
"OS :>!UI1:>loAwolJ sa~I1Jlns sas118:>!ua80!q WOlJ sa~I1Jlns
;lU!d
raN WOlJ sa~I1l1!N :>!ua80!q WOlJ la~~I1W:>!uI18l0
;lU!d
JOA
;lU!d
f.J1!puo:>';}S ;)SlUO:) ;)SlUO:) ;)SlUO:) ~SJ1!O:>AjU!I1W
q~!H
1S~H
08 00001 00001 000£
o~ O£ 00£1 00~1
9Z t 0001 0001
sJlqap 111:>!8010!8 ~snp :>!UI1:>loA
~II1S l1as (losolal1 l11laU!w)~snpI!OS f.J1!Wjld 'lV1In.LVN
"AJog~11!J
aJlnOS
1\\°'1
~Z!S ~1:>!1J1!d
(,_JA g.t) xnJd P;>1RW!1S3 SO861aqJ u! sadA.LlosoJav JOrBJ\IJOj saJBwns3 UO!SS!W3IBqolD S3Wll3dI'
aNY 'S3';)}..;) 'V(lO'O
61"" 3'1HV.L
'NOWSOdWO;) ;)I~3HdSOW.LV lOY
EMISSIONSINVENTORIES 103
Atmospheric particulate matter samples can be analyzed routinely for more than 50 trace elements. Trace element emissions arise from a large number of different source types in urban areas.For example, motor vehicles burning leaded fuel, electric arc steel furnaces, Kraft recovery boilers, and secondary lead smelters contribute to atmospheric lead concentrations. The wide spectrum of sources, together with the fact that trace metals often are only a minor fraction of the mass emissions from each source, obscure the relative importance of the contributors to atmospheric trace element levels. As with all atmospheric species, trace metal emissions undergo atmospheric transport and dilution before they reach a particular receptor site. Mathematical models can be constructed based on the fundamentals of atmospheric chemistry and physics that will track the contributions from many emission sources as they undergo atmospheric transport. Indeed, the development of such models will receive considerable attention in this book. In the case of particulate emissions, an alternative is available. It is possible to attack the source contribution identification problem in reverse order, proceeding from measured particulate concentrations at a receptor site backward to the responsible emission sources (see Chapter 24). The unique metals content of the emissions from each source type is viewed as a fingerprint for the presence of material from that source in an ambient aerosol sample. 2.7.6
Carbonaceous Particles
Carbonaceous particles in the atmosphere consist of two major components-graphitic or black carbon (sometimes referred to as elemental or free carbon) and organic material. The latter can be directly emitted from sources or produced from atmospheric reactions involving gaseous organic precursors. Elemental carbon can be produced only in a combustion process and is therefore solely primary. Graphitic carbon particles are the most abundant light-absorbing aerosol species in the atmosphere. Particulate organic matter is a complex mixture of many classes of compounds (Daisey, 1980). A major reason for the study of particulate organic matter has been the possibility that such compounds pose a health hazard. Specifically, certain fractions of particulate organic matter, especially those containing polycyclic aromatic hydrocarbons (PAHs), have been shown to be carcinogenic in animals and mutagenic in in vitro bioassays.
2.8 EMISSIONS INVENTORIES An estimate of emissions of a species from a source is based on a technique that uses "emission factors," which are based on source-specific emission measurements as a function of activity level (e.g., amount of annual production at an industrial facility) with regard to each source. For example, suppose one wants to sample a power plant's emissions of SO2 or NOx at the stack. The plant's boiler design and its BTU (British thermal unit) consumption rate are known. The sulfur and nitrogen content of fuel burned can be used to calculate an emissions factor of kilograms (kg) of SO2 or NOx emitted per metric ton (Mg) of fuel consumed. The U.S. Environmental Protection Agency (EPA) has compiled emission factors for a variety of sources and activity levels (such as production or consumption), reporting the results since 1972 in "AP-42 Compilation of Air Pollutant Emission Factors," for which supolements are issued regularly. Emission factors currently in use are developed from only a
-~J ~~n~S-lnJ~p~j ~q:I s~qS!lqn~s~ ~:>n~ql. "0661 pun 'LL6 1 'OL61 U! ~pnw ~J~M s~u~wpu~we Jofew pun '£961 U! Mnl o~U! P~ug!S seM ~:>eleu!gj:Jo ~ql. "SS~JguoJ 'S"n ~q~ f..q p~~:>e -u~ Mel Jn~u~WUOJ!AU~w~pow ~SJY~q~ seM ~:>VJ!V ue~IJ ~ql. 's~u~wpu~UJe S~!pue ~:>V J!V un~IJ £961 ~q:I S! s~~e~sp~~!Un ~q~ U! ~u~w~~eqe uo!~n"od J!n JOj s!seq ~A!~eIS!g~1~ql.
NOI.LV'lSID:I'l NOI.Lfl'l'lOd
HIV
01,
iZ66I '066I 'ofU:j~ u~wqS!d ~Z66I "fU:j~ ~~~lpuV) (qdd OOI O:j09) SUO!3'~JP~Z! -fU!J'!snpu! u~qJn 10 :)!:js!l~:j:)~mq:) ~soq:j q:)~oJdd~ :j~q:j sI~A~I ~uozo ~I~:)S-I~UO!3'~JO:j sP~~I ~:)!llV U! uos~~s Alp ~q:j U! 3'u!wnq ~UUUA~S~fU:)s-~3'm'l lUU:jJodw! AII~:)!:j!l:) S! 's:)!doJ:j ~q:I U! AImIn:)!~d
'~:j~W!I:) pu~ AJ:jS!W~q:) :)!l~qdsoUJ:j~ uo 3'u!wnq
SS~WO!q woll
SUO!S
-S!W~ 10 :j:)~11~~q.1 i~'z ~Iq~.1) 3'u!wnq I~nl-I!ssOl WOJl :j~q:ll° pJ!q:I-~uo AIfUqoI3' ~:jnq!J'! -uo:) O:j p~:j~W!:js~ S! 3'u!wnq SS~WO!q ,raN JOd ivI'Z ~Iq~.1) p~:j~W!:js~ S! I-JA 3'.1 OOL'l O:j 008 I 10 ~:)Jnos {U:lo:j~ 10 :jno I-JA 3'.1 OOL O:j 00£ 10 ~:)Jnos 3'u!wnq SS~WO!q~ 'OJ JOd °3'u!wnq SS~WO!q10 :jIns~J ~ S! (6°Z ~Iq~.1) I-JA 3'.1 ~L£ 10 xnlJ :)!u~3'odoJq:lu~ Imo:j ~ 10 :jno I-JA 3'.1 Ov :j~q:Ip~:j~W!:js~ S! :j! '~Idumx~ JOl 'vA:) JOd 'J~:jd~q:) S!q:j U! s~Iq~:j ~q:ll° AU~W U! U~A!3' u~~q AP~~JI~ ~A~q 3'u!wnq SS~WO!qWOJl S~S~3'~:)~J:j10 SUO!SS!W~fUqoI3' 10 s~:j~W!:js3 °p~~ds PU!M I~:)OI puu 'A:j!p!Wnq '~Jm~J~dw~:j :ju~!qum ':ju~:juo:) ~JmS!OW s:j! uo :jnq 'UO!:j -~:j~3'~A10 ~A:j ~q:I uo AIuO :jOUpu~~p ~JY SS~WO!q~ WOJl SUO!SS!W~10 ~dA:j puu A:j!:ju~nb ~q.1 °J~U~W ~:j~In:)!~d :)!UU3'JOpu~ fU:ju~w~I~ puu 'suoqm:)OJpAq ~u~q:j~wuou pu~ vA:) ,raN 'OJ "OJ ~pnI:)u! puu ss~:)oJd uo!:jsnqwo:) P~II°J:juo:)un AUUWOJl ~soq:j 10 I~:)!dA:j ~J~ uo!:jm~3'~A 3'u!wnq WOJl SUO!SS!W3's:)!doJ:j ~:j U! SJn:):)O3'u!wnq S!q:ll° :jsoW o~J~qdsow -:j~ ~q:I O:j s:j:)npoJd uo!:jsnqwo:) 10 ~:)Jnos JOr~W ~ U! s:jIns~J puuIl° gu!wnq fUUO!:ju~:jU!~q.1
DNIN1IflR SSVWOIR 6, .SUO!SS!W~ ~tUW!tS~ Ot SJOt:>UJUO!tu:>OIIu TUJodw~t pUt! TU!tuds Jo uo!t:>unJ U su P~T~ -AUIJ S~T!W ~T:>!q~A uo UtUP At!A9:>U Qt!M P~tUJodJO:>U! U~Qt ~Ie UtUP ~s~q.L '~dAt pUt! ~~U ~[:> -!q~A JO u09nq!J:}s!p
p~y!:>~ds
AUU JO S~[:>!q~A [IU JoJ ~~UJ~AU t~~lJ IUUO!tuu ~qt JoJ p~![ddu
~q Ot SJOt:>uJ UO!SS!W~ ~Qt '~[dUIeX~ ~tuTnw!s
Ot P~O[~A~P
stTns~J uo p~sug
U~~
"(d.Ld)
JOJ 's~[yoJd
d!J:} PUg 'S~JmuJ~w~t
suq [~POW J~tndwo:>
~Jnp~:>Old
pUt! ~JmuJ~dw~t
~A9mu~s~Jd~J
'sp~~ds p~Y!:>~s
JoJ
S!Ssuq:> U qt!M p~UJJOJ
Jo ~U!tS~t AJOtUJoquT WOJJ J~qtUJ uo p~suq S! ,raN
JoJ SJOt:>uJ UO!SS!W~ Jo uo!tuTnUJJoJ ~q.L
Ut!:> SUO!tUU!UJJ~t~p JOt:>uJ UO!SS!W~ Qt!M p~tU!:>Ossu S~!tU!u:jJ~:>un xaN
~)[ ~'L SU p~:jJod~J SUM ~dAt ~:>Jnos S!Qt JOJ JOt:>UJ UO!SS!W~ ~[dwus
~)[ IT Ot ~ WOJJ A[~tuw!xOJddu
p~JY A[IU9u~~Ut!t
tU~J
tU~!qUIe p~y!:>~ds U Jo uo!t:>unJ U
~qt S~U!UJJ~t~p q:>!qM 'J~t~WOWUUAp
S! ~U!tS~t ~T:>!q~A .S~[:>!q~A JOtOW JO sdnoJ~
U! p~sn S[~POW U09UW!tS~ UO!SS!W~ x~[dwo:>
.~[qUJ~P!suo:> ~
-[!oq
U 'UtUP SUO!SS!W~ ~[:>!q~A JO t~S S!qt WOJJ
tS~.L TUJ~P~d ~qt P~IIu:> S! ~T:>A:>~U!tS~t p~Y!:>~S
-In:> ~q.L '~[:>A:> PUO[ pUt! 'p~~ds 'At!p!Wnq su ~[:>!q~A U JO UO!SS!W~ tSnuqx~ -J~
UtUP Qt!M uo!t:>unfuo:>
pUt! s::>aA Jo s~:>Jnos JofuW ~Qt 's~:>Jnos ~[!qow
~q.L 'IU°:> Jo UOt :>!J:}~w J~
~Qt pUt! p~~UJ~AU SUM uo!tu[ndod J~d xaN
-Utu~s~Jd~J
'p~[~nJ-IU°:>
~q.L "(066 T "IU t~ t~:>uTd) p~wnq
[go:> Jo UOt :>!J:}~w
~~Ut!J tuqt SJOt:>uJ UO!SS!W~ Jo Suo!tu[n:>IU:> °t P~[ SJ~
Jo StS~t ~:>Jnos O£ '~TdUIeX~ JOd 'uo!tu[ndod
ATIU:>!tS!tUtS ~q tOO tq~!W
pUt! s~[dwus
s~nIUA ~Qt pUt! 'AJO~~tu:> U~A!~ AUt! JoJ uo!tu[ndod
p~t!W![
~qt Jo ~A!t
~soQt Jo ~~UJ~AU Ut! ~Ie p~:jJod~J
~:>Jnos SUO!SS!W~ ~QtJo ~u![dwus
S3WllHdI' aNY 'S3':)1..:)wao,o
P~t!W![
'NOllISOdWO:):)I~3HdSOW.LVPOI
AIR POLLUTION LEGISLATION
105
lationship that requires the U.S. Environmental Protection Agency (EPA) to develop National AmbientAir-Quality Standards(NAAQS) andempowersthe statesto implement and enforceregulationsto attain them. The act also requiresthe EPA to set NAAQS for commonand widespreadpollutantsafter preparingcriteria documentssummarizingscientific knowledgeof their detrimentaleffects.The EPAhasestablishedNAAQS for eachof six criteria pollutants:sulfur dioxide, particulatematter,nitrogendioxide, carbonmonoxide, ozone,and lead.At certainconcentrationsand length of exposurethesepollutantsare anticipatedto endangerpublic healthor welfare.The NAAQS arethresholdconcentrations basedon a detailedreview of the scientific information relatedto effects.Concentrations below the NAAQS are expectedto have no adverseeffects for humansand the environment. Table 2.20 presentsthe U.S. national primary and secondaryambient air-quality standardsfor ozone,carbonmonoxide,nitrogendioxide, sulfur dioxide, suspendedparticulate matter,and lead. In the CleanAir Act Amendmentsof 1970,Congressset 1975asthe deadlinefor meeting the NAAQS. By 1977,2 yearsafter this deadline,many areaswere still in violation of the ozoneNAAQS. The 1977amendmentsto the CleanAir Act delayedcompliancewith the ozone and carbon monoxide NAAQS until 1982, and areasthat demonstratedthey could not meetthe 1982deadlineweregiven extensionsuntil 1987.The 1990amendments classify nonattainmentareasaccordingto degreeof noncompliancewith the NAAQS. The classificationsareextreme,severe,serious,moderate,or marginal,dependingon the area's ozone design value and the percentageby which the value is greaterthan the NAAQS. Ozonedesign valuesare ozoneconcentrationsthat are statistically determinedfrom airquality measurements for eachnonattainmentarea.If monitoring datafor an areaarecomplete,the designvalue is the fourth highestmonitor readingover the past 3 years.Design valuesareusedto determinethe extentof control neededfor an areato reachattainment. The 1990amendmentsof the CleanAir Act establishan interstateozonetransportregion extendingfrom the Washington,DC metropolitanareato Maine. In this denselypopulated region, ozone violations in one area are caused,at least in part, by emissionsin upwind areas.A transportcommissionis authorizedto coordinatecontrol measureswithin the interstatetransportregion and to recommendto the EPAwhen additionalcontrol measuresshouldbe appliedin all or part of the region in order to bring any areain the region into attainment.Henceareaswithin the transportregion that arein attainmentof the ozone NAAQS might becomesubjectto the controlsrequiredfor nonattainmentareasin that region. The CleanAir Act requireseachstateto adopta plan, a so-calledStateImplementation Plan (SIP), that provides for the implementation,maintenance,and enforcementof the NAAQS. It is, of course,emissionreductionsthat will abateair pollution. Thus the states' plansmust containlegally enforceableemissionlimitations, schedules,and timetablesfor compliancewith suchlimitations. The control strategymust consistof a combinationof measuresdesignedto achievethe total reductionof emissionsnecessaryfor the attainment of the air-quality standards.The control strategymay include,for example,suchmeasures asemissionlimitations, emissionchargesor taxes,closing or relocationof commercialor industrial facilities, periodic inspectionandtestingof motor vehicle emissioncontrol systems,mandatoryinstallationof control deviceson motor vehicles,meansto reducemotor vehicle traffic, including suchmeasuresas parking restrictionsand carpool laneson freeways,and expansionandpromotionof the useof masstransportationfacilities.
~
[
~ ='
-
:i'
0 c
..' .., ..,
.. p,
I"
=
I"
00.
~
Q.
=
0
'g.
..
=
I"
I"
So.. <
~
=-.0,<
r-<,
~;~ ~...
"
-, a
S
~
.,.'
,."
.. ~
g. ..
0.
I" r;
.. '" 0
0.3
§..
n' c
a, .., --
"'~
0.",
~ ..<
§
~ ~o.
,.
C g: n' ~ ..:" -
"'-0
..
""-~ ~
0.=
-, ~ r; 0. -;1 0
.. ~ ~ 0
-'
'"
...0
0.
r;c'O
0..S?
..,
aCe!.
§'-g I"
'O~.8 ",-c
~;;cJ "'~
~
~~g.
!): ~
~ei S I" =-.J
"UI'"
c!r, UI
1 = --.J
UI
-=
-
p,
=
'" ~,
~ = -
'5
C)
-.J .'" c:: '
.
-
UI'"
0 _ '"
~~ ~.. '
~
a. ..,0\ C
.
~",o. § ~
1~
!):
8.~§
~UI~
~
0
=
~ <
,." Ntn~ ~= < ~ -, ~a" 0 =
o
'UI 0=
2..-
~'
..
...
f"~" =--" -, 0 c S "'r-2. 1'"
0;'
, ~ 0.,"
'WOQ N -,
g.r;'" ~..,,<
0
§
'"
~
~
'"
"" ~
I\) 8"
v' - .. ~ 0' ~
'"
0.
,."
...
ro
e!.a'g
..
"""1\)
:::.
E.=o ~ '"
..1"':1' P. ~ 0
<S .. ~
"
0\
-
og~
UI =-
o.~-
=
-0
-0
. '"
~g.E.S
"'&"
'-OQc
e!.S...
~"'~~ !"'a-OQ
;:~.. ~n"=
.="'-I"
u~
N
=~.. a"'S
1"°'"
~...~ OQI"~
-
..,
~
§!)::;;.. 2. ~
C ~
:::. '0
~ OQ 5'
.w~~
-,
'8~8.§ "
I"
I
r;~=0' """0 g
..,
..
OQ2.g. S, '0 ..
:::=-~ UI§o.
..,
"O:=S ~ -roc' ':1' S
':1' C
;l!Sr;" ..=o.~
..~='<
.."... ~!):a'g
E.~..,0.0'<':1'
~ .. -
~ s' '" ~
00.=",
a.
<~..c
§=
~Q.;;;S
""'g'o."I"~~=
§
~w..,s§§o."""o
~ 5 0.
~ ~ ~
~, g
~>..
..,
p,. .., -, -0
~
"3122
~;:;~~~~i~a.[
0.
[
==I"OQI"=Ol"o.
§'
~~"""'§'O
~~~8.8§:~P~2. s~=-;-Ss§~~S r;' S =- g
.
§ S
t...':;'=&55~=::;'>'
N:::tn~~~
~>
~~ FJ~ a
IA;~gllll~~e!.&"
...:;,c::
6'"
1i e!,
~r;""'OSO".
:3.
~ -~.
~
~
...~Po
n
:3.
'it
~
n
~~;A;A;A;A ...,
v~ n
u.:o~
00
-
:3.
000 000 '-"L/IL/I
--
8.~ ~
~
Po=
n
0000 000
:3.
>,oNN N <=~~l,.,)~ ~ ~ =-- =-- =-- =-~OOOO
~~====
-N~~ VlO\OO\
O'I-J au.
03030303 8.~ 8..z8.~ ~ ~ ~
--OOOVI iJ.iJ.
~ ~.
"0 C/J Z e1 Po ~ Po e. ~.~. a: ~. d ~ (") 0 ... 0-
cn~cn~cn~cn~
~
Po
h ~ 8
'"
~. = (Jq
::jn~ ~~
...:;'
a
OQ 31
~>
OQo 3.l.~ '-'
~ '-' ~0
>
~> 3,;.~"
~ g' ~~
VlZ g ~
c
(D
r:!.
0'
~
.
8-
"C ::3n 3. :3.
... VJ ~ 0_.0 =' ~ ~ 0
n
~~ >g. < n
§
§ g g. 3 =' > C/O -
§ n n='
(')
'"
=
~ ~ >< _.
Q" -
G' ~
0
~ ~
=
0
-
-
(D
(")
=
(j> 0
3
3
=
~
~.
(D
~
~~
~ = c ~
~ II! S" = g. = ., g. '"
s' = !.. > a ~ ;' a. > :;' ,0 = !..
i ~ z =
8: II!
0 e,
~ =
N
~ = ~ ~
901
HAZARDOUS AIR POLLUTANTS (AIR TOXICS)
107
2.11 HAZARDOUS AIR POLLUTANTS (AIR TOXICS) Hazardousair pollutantsor toxic air contaminants("air toxics") refer to any substances that may causeor contributeto an increasein mortality or in seriousillness,or that may posea presentor potentialhazardto humanhealth.Title III of the CleanAir Act Amendmentsof 1990completelyoverhauledthe existing hazardousair emissionprogram.Section 112of theAmendmentsdefinesa new processfor controlling air toxics that includesthe listing of 189 substances,the developmentand promulgation of Maximum Achievable Control Technology(MACT) standards,and the assessment of residualrisk after the implementation of MACT. Any stationary sourceemitting in excessof 10 tons yr-1 of any listed hazardoussubstance,or 25 tonsyr-1 or moreof any combinationof hazardousair contaminants,is a major sourcefor the purposeof Title III and is subjectto regulation.Congress establisheda list of 189 hazardousair pollutants in the CAA itself. It includes organic chemicals,pesticides,metals,coke-ovenemissions,fine mineral fibers, and radionuclides (including radon).This initial list may be revisedby the EPAto either add or removesubstances.The EPA is required to add pollutants to the list if they are shown to present, throughinhalationor other routesof exposure,a threatof adversehumanhealtheffectsor adverseenvironmentaleffects,whetherthroughambientconcentrations,bioaccumulation, deposition,or otherwise. Congressdirectedthe EPA to list by 15 November 1995,the categoriesand subcategoriesof sourcesthat represent90% of the aggregateemissionsof:
.. .. .. .
Alkylatedleadcompounds Polycylicorganicmatter Hexachlorobenzene Mercury
Polychlorinatedbiphenyls 2,3,7,8-Tetrachlorodibenzofuran 2,3,7,8-Tetrachlorodibenzo-p-dioxin
Congress further directed the EPA to establish and promulgate emissions standards for such sources by 15 November 2000. The emissions standards must effect the maximum degree of reduction in the listed substance, including the potential for a prohibition on such emissions, taking into consideration costs, any non-air-quality health and environmental impacts, and energy requirements. In establishing these emissions standards, the EPA may also consider health threshold levels, which may be established for particular hazardous air pollutants. Each state may develop and submit to the EPA for approval a program for the implementation and enforcement of emission standards and other requirements for hazardous air pollutants or requirements for the prevention and mitigation of accidental releases of hazardous substances. The California Air Resources Board (ARB) (1989) has developed a list of substancesof concern in California, called "Status of Toxic Air Contaminant Identification." This list and the organization of substances within it are subject to periodic revision, as needed. The February 1989 Status List groups substances into three categories. Category I includes identified toxic air contaminants: asbestos,benzene, cadmium, carbon tetrachloride, chlorinated dioxins and dibenzofurans (15 species), chromium (VI), ethylene dlbromide and
.p;JJ!S;JpJ! '(;JpOW IU;Jw1J1!dwo:>-;JAY I! Ij:>ns 01 p;JpU;JIX;J ;Jq UI!:> x!pu:Jddl! S!ljl U! IU;JWdOI;JA;Jp ;J1j.L.s;JJ;Jljdsoll!J!s J1!lod 01 ;JP"!!II!(P!W
HS pUll HN ;J1p pUll ;u;JljdsoII!JIS (1!:>!doJI ;J1p 'slu;Jw1J1!dwo:> ;J;ulp Aq p;Jlu;Js;ud;JJ ;Jq AI(I!"!:>I!
p(nOM ;JJ;Jljdsoll!J!s ;J1p 'UO!S!A!P I! Ij:>ns 1p!A\ "(966 ( '11! I;J '!(OA) ;JJ;JljdsoII!JIS ;JP"!!II!IP!W
pUll (1!:>!doJI ;Jljl U;J;JMI
-;Jq ;Jq p(nOM UO!S!A!P (1!Iu;Jw1J1!dwo:> J;Ju;Jq I! '~\i!X!W pUll )Jodsul!J! :>!l;Jljdsoll!J!s Jo ;JSI!:>;J1p UI .;JJ;Jljdsoll!J!s ;Jljl U! ;J(ql!:>!(ddl! SS;J(S! UO!S!A!P I! Ij:>ns 'SIU;J"!!ISUO:> :>!l;JljdsodoJI P;JA!I-~UOI A(;JA!II!(;JJ Jo S;JW!I;JJ!( ~U!II!W!IS;J Jo M;J!A Jo Iu!od ;Jljl WOJJ ;Jlql!uOSI!;JJ S! 'HS pUll HN ;J1p 'slu;Jw1J1!dwo:> OMI OIU! ;JJ;JljdsodoJ! ;J1p Jo UO!S!A!P ;Jljl ;J1!lji\\q
(~l~qdsodOI1 HN OtU1uo1ss1w~ ~:Jlnos)
HNJ+ (~l~qdsodoI1 u1 ]1JAOW~l) HN~ 1'1/.LVHN'
(J.V.V
(~l~qdSOt~I1S pUt! s~l~qdsOdOI1 HN U~~Mt~q ~gUt!q:JX~) HN~S/.L'I/.LV HN'1
HN~.L/S'I/ SV HN'
+
(s~l~qdsOdOI1 HS pUt! HN U~~Mt~q ~gUt!q:JX~) HN(}HS/HN:y
1
1
- HS(}HN/HS:y =~ 1 1 H~(} P
S! 1u~uodwo~ ~J~qdsodoIJ HN ~q1 U! ~~uu1sqns Jo ssuw ~q1 uo ~~uuIuq ~!WUUAPV .~~upns s,q1JU3 ~tp 1UIUAOW~J~pnI~u! osIu uu~.L1f .~J~qdsO1UIJS~tp U! S!SAIO1 -oqd 1u~s~Jd~JPIno~ s1fpuu ~J~qdsodoIJ ~tp U! UOfl~U~JHO '~Idwux~ JoJ '1u~s~Jd~ PIno~ .L1f .H~Ds1f puu H~Ds1f ~m s~J~qdsO1UIJSOM1 ~q1 U! fUAOW~JJO S~1UJ~q1 ~H1D.L1fpuu H~D.L1f
~m s~J~qdsodoIJ OM1 ~q1 U! ~~uu1sqns ~q1 JO fUAOW~JJO S~1UJ~q1 sn~ .L1f'S1UmSUO~ ~1UJ J~pJO-1SJY Aq p~Z!J~1~umq~
'~J~qdsO1UIJS puu ~J~qdsodoJ1
.s1f puu
~q1 U! s~ss~:)oJd
J~pJO-1SJY 1U~J~'y!PAq p~AOW~JS! 1S~J~1U! JO ~~uu1sqns~tp 1Uq1~wnssu II!M ~M .P~ZAIUUU ~q UU~ S~I~A~ IU~!W~q~o~gO!q
IuqoIg
q~!qM WOl) suo!1unb~ ~~uuIuq ~A!J~P 01 ~I~!q~A u su s1u~w1JUdwo~ ~!J~qdsow1u P~1~~U -UO~J~1U!JnoJ Jo I~poW S!tp ~sn ~M 9.~J~qdsO1UIJS HS puu HN ~q1 puu ~J~qdsodoIJ HS puu HN ~q1 'P~1~!d~p ~m SJ!OAJ~S~J~!J~qdsow1u fUJmUUJnoJ q~!qM U! I .V.Z ~Jng!d J~P!SUO;)
S3'l~A~ 'lV~IW3H~O3DOIR 'lVRO'lD .tlO S'l300W 'lV.LN3W.LHVdWO~ 'l XION3ddV
°IZ"Z ;)Iqt?L ul p;)z1Jt?wwns pUt!
';)PlloIq;)
;)U;)PIIAUIA
Sl spunodwo;)
';)U;)ZU;)qOIJIU
-ut?w ';)P1lPAqUt? ;)l;)Jt?w 'SJ;)q1;) I°;)AIg ';)PlloIq;)
IAzu;)Q
';)PlloIq;)
-oqdJOWOSOIJIU-N
;)S;)q:I uo UO11t?WJOjUl ;)Iqt?Ilt?AV 'S;)U;)IAX
'WJOjOJOIq;)
';)u;)JdoJOIq;)
IAq:I;)W
JOj S;);)ut?1sqns s;)pnI;)ull11 ';)U;)JA1S 'S;)PII;)nUolpt?J
';)UIIIUt?lP;)U;)IAq:I;)W-,V'V
';)PIWOJq
'IOU;)qd/sIOU;)qdoJOIq;)
IAIJt? 'Ul;)IOJ;)t? ;)JP. ;)S;)q.L '!t\;)lA;)J
-JOjUl q:lIt?;)q Jt?uOI11PPt?q;)lq!t\ pUt! 'S;)1t?Ut!A:)OSOllP ;)u;)nI01
';)U;)ZU;)qOJOIq;)lP-d
IAq1;)W
';)S;)ut?g
';)U;)zu;)Q°JOIq;)
01 JOIJd P;)P;);)U sl uol1t?w
AJOg;)1t?J '(Jou;)qdOJOIq;)1l1-9'v'Z
';)PIXO ;)U;)IAdOJd
'AJn;)J;)w
'Pt?;)I ;)lUt!gJOUl
';)1t?IAJ;)t? IAq:I;) ';):){OWS 0;);)t?q01 Jt?1U;)WUOJIAU;) ';)1t?jInS IAq:I;)WW -(IAX;)qIAq1;)-Z)lP
'S;)UIUJP.SOIJluIA:){lt?lP
'SgJd
'SHVd
';)UII
';)U;)ZU;)qOJOIq;)t?X;)q
';)Ut!xOIP-v'I
'suolss!W;)
';)1t?Jt?q1qd
U;)AO-;):){O;) 'wnlI
-IAJ;)Q ';)I1IJIUOIAJ;)t? ';)PAq;)PJt?1;);)t?) P;)!t\;)lA;)J 1;)A 10U S;);)Ut!1sqns £Z SUlt?1UO;) glI
AJog;)1t?J
i;)PlloIq;) IAuIA put? ';)U;)IAq:I;)OJOIq;)1IJ ';)U;)IAq:I;)OJOIq;)J;)d 'I;):){;)lU ';)PlloIq;) ;)U;)IAq:I;)W ';)lU;)sJP. ;)lUt!gJOUl ';)PAq;)PIt?WJOj 'WJOjOJOIq;) ';)U;)lpt?1nq-£' I) ss;):)OJd !t\;)lA;)J Jt?WJOj ;)q:I ul APt?;)JIt? S;);)Ut!1sqns ;)UIU su1t?1UO;)VII
AJog;)1t?J ';)PIXO ;)U;)IAq1;) pUt! ';)PlloIq;)lP
S3WI.L3d11GNY 'S31JAJ lYBOlD
;)U;)IAq:I;)
'NOI.LISOdWOJ JI~3HdSOW.LY 801
or-.
~
'"
§ O:= ~
"" ~ Co
0\
'" ;>. .a N ..".
:;;
= d)
'""'
...~... . -00
's ~
.c ~ 8
... I
'"
I
00
~
E
I J ~
I .( I EUE.c
.
bl)Obl)~ =~Q.O '-'0
'r) 0
] >
0 = e ~
0 ~ ";:
.
bi) s ~ ~
'" '" 0 .-='""' '"
.-~:i, '" c<
'e
e
>-
0
§
'" 0
~";: "~ >
~
.0
0() = ~
'" I
co =
Ir! 7
..
'" r--
'" ~ .::. Q) 8 ",.0
.g, 0r'") 10 0
"8p. ..., 0
N ~
=
'~ OQ .
= 0
.g, ~ ~
$I
'-'
o.(/)
< Q.~ 0 '"
'"
~ "0 8 N '"
(Ij
c u
';'
c(/) ~'-'-t... ('oj-o
,c o-,c 0-01-0ON -N
$I.g,
=
1-
8<0.,0 bI)~~~
.g, Co.., ~I ,.., e 9~ ~8 ON
I
>,
.c
"3 > 0
8 ~ 0 .. ':;;
= ,~
"
0
00
~ Q) 0000 0 ~
00 r.I)r.I)
>
0 ~
~ Q)
0)0)0) > c
c C.~. t:
..:-0..: (,) 0)
"8Co N N 0
'" >,
~ CX) I or)
(Ij
= ~ 8
0 r.I)
>
C
(,)
,~ O)"~O)
(,) (,) '= 0) '= t=;:t=
~
..,,-
'8 ... '" 0 ~ >, ... ~5~_>,"'7'"'7'
'0= N::>
~~ 0
~ = ... ..:-.,:(,) =0.3"'0) OQ 0)
(,)
,~(Ij"""'"~ (,)...=...,~'" = ~ '" .0 .08 :g "'0) 0)
0 '~ (,) ~ (Ij-~--"~,= '""'~
]
~--
N =
-0==0(,».~0) (Ij ,~ ..s 0 OQ(Ij
~"=
8
= = = ~ ~ bObO 0 0 = =
... r.I)
'" "t:
-t=;:=(Ij(Q
~
=
~ g
.~ .~ U U
u'+"O) U
~ g
(J d)
Q)
:ri§
°.z ~
.~ u Q)
.~ .~ U QJ
Q) 0 ... 0
§ 0 :2 u 'C E'"'
~ ,s
=
OJ
.£ ~
.~
.~ .~ () () Q) Q)
~
£
-
~ ~~
~:2 Q)
>,
~~ .0.0 0 0 ~~
Co) '8 4)
~ ~ :3 :3 ~~
~ .c
4)
:g ~ ..9 Co) .d ,~ Co) a >.f.I! = 0 ;;;,.E
-.= u£ Q) = Q)
OJ
~
-8 O;< 0 g ~ >, ~
.g ~ 'C 0 Q)
~ .0
~ U
~ c
't= 0 :a ~
~
j;
§ os U
~
£
c ~ 0 c
~
"0=
= ° ';:j '" =
...~>-~ep. >-=.o~~~~
:= .. '8 ~ ~ ~p. -~ =
... = 0
.~ -~
'
Q..~ =
-5 -u .,
,~
.~"8
bi)--a'"'= .-~ .~= ~ = 0 Q..~ d) '" ~ p '" t: = 0 .~ '" ., .0
\'1 ~ '0 'U .~ -
-> 0 '" . d) = ,~
U~
= ~5 0 bI) 0 .-= = u .~ ~ 0) U
~ 0 c .~ u
cf:£
§ 's ~ d
Q) 'a
> ~ ~ ~
~ ~ ~ :f
c
o~oOE:= ~Q..auo== 0 U
5
00 0 =
~ Q) >.
~ ~ g 0 u
"~ ""
'8.~o.~S .
'"
=
0 =
~
;g ~ ~
U "0 'u .~ & oS =
0 '"
~
>.
'"
CocnCocnIO,-,~,-,I
c ~ 0 c
£
.~ t) .£ ~
.~ u ~ ~ .g ~
~
.~ u § § :I:
'
i C'I 0
'E = Q = ~ ~ = ~ ~ ~ "< = 'e oS :; u ... Q ~ :i1
~ .c ;; = = =
§ = s ~ 'E ~ = = ~ ~ .e ~ ~ Qj ] ~ ~ Q 'C ~ ~
Q U ~ Qj oS ~ ~ y = s '"
'C 0
~ ~ 's
>,
.g ~
e
~
:§ :a
~ N ~ ~ =
.c :a Q) = Q)
~
~
~ ~ O~ 8
109
~ s. ;: ~
~
:t:
'&
;;
n = n s
~ ~ ~. ~ D. ~ Po n
9, 'v;'
~. (") e!.
0' =: _.
~ ~
~.~ ~ ~ n~. = ~ '"
go ~
N
~. e!. (")
g. < -. = ~ ,. ~,.
~ ~ s'
'"
~ ~
0'
'<
~a-'<~w "'=~ '-'0
~
3
N ,: OCI
= V1
-
==... """.
.!... ..J 8
-
0 VI
~ '< '"
tH \0
§
0
3~
~
~=... ~. ~
'"
=. (')
(i"
,. =
(")
~ ~. ~~ '""~(')
~ ~
n
0'"
.
~ Ci'
0
'"
~
='
b ~
.0 -
[
~. g' o' @ =' 3 0
00.'< ~ (D '" '" ""0 0 0
O\r:ro. ::r,< ~
0
~
~ ~
=.'"""~'
o' '-<
~...
0 ~~ ~ ~
~ ~
0
~ ~ S' S'
~
~; ~ 2 (DO...
3c!.
0'1
~
Q. ~
::1" ::I' 0,0 c:Tc:T ~'~ -'~ ~ n n
~-Q.
g.~
-s 0 := ~.
~
» n n
Q
(')
:g cr'
U1
'<~g '1 '"
!J11O 0'1::'-
=
.'"
,.
=
<
C/J =
~
0
~
COO 'g.
0 -
0
~~ g c ~
N ~ 10 '0 'g.
t\~ -f
o.::r~
'" ~
:g.
(5
:g.
.0 ..\H
~ I
0
~
0 VI VI
'""
(') ~
c::
=. =
~. ~. 0 ='
I '"
3c!.
= ~
N
8
W =' (JQ
-J
< (D 00
'"I (D 8 0
.g~ '"
~~ 000
~ '"
~=~~OQ =:. ~ '-<
~..
~
g.g.~ ";; ~ g.'*' ""
~ e:go
g. < ~ :I:
.E. ~
3 ~ == '""'.
;"',0 '" = ~ e:'" _.
'"
a '"
~'g. ~ ~ ~ ~. ~. (")
~
~>
~
0 ..., c: '" ~
=' (11
g. ~Oa
0 ... V)... 0 ~ (:J (11 '"
>- ~~ =
0 ~ ~
~ g. ~ ~ n ~ S'
z[ ,
= ... ~ =:. = =:. 'it ~ ~= 'it ~ e1
,.
~
~ 5' 0 og ~~~.e.~.(')
(") (")
0 0 ()Q()Q ~ ~ OJ OJ
~~ ~~ ,., ,., ~ ~ S' S'
=(') 0 1'"
= 0
a" ~
8
a 0"
g 0
(")
~~ ~ a" a"
[~ -. 0n,< = Q. n n
~~
.-'11 0
8.~'"" gnC:~ '" (')
"'
.~.
eog" 0" '" 0 ~. ... ... = ~ ... ~ g.~
~
~
(') ~ 8" ~=s
~ -
0
-
~ c' :3
~ (1)
~ c:T ~
o::r ~
~. = n '"
~ '< 8: § '"
0
~ =:. 3 8. ~ ~ g.[ .~. '0~ =
0 3
3 0 5-
~
0
:g
~ '"
~ 5' 0 ~~
5"
~ ~
~ = ...
g =
6 r;" ::r 0..,
~
() ~ g' ~0
w ~= \0,-, tI
.
=
~
~ 8' ~~
g. < .,. = = .,. ,., n
(j(j
~ ~. =' 0
n ~. =' 0
~
~
n
CTCT -~
~
I"
~.
gg
.
~
~ '" O~g. § ~ (D ,.
0",," , ~ (D ~"
0'";:3 ,;,"
- 0 ~'O ,
~~CT c:T ~ ~ ~ ~ ii" ~
'&
~.'§;
~ -C/O ~ ~
~~
tI10 9- ~.
g
0 ~
~ g. ~ Ci' n ~ S'
n
='
~
='
g
...,
0-
~
~
~
~. ~
g
n 0 = (")
~ ~
S' =
~ 0 =
N
~
N
~ =
011
j
e
i ~ f'! N
~ ~
= ~
~
0 -= ~ c 8 c 0 U
.0
8: ("'j
=
0
.g, ~ ~ '9 r-r") "'"
] > 0-=
Q)
\0
I
e
0
bO I ..:
'I e co c
~
I ~ c: 0
.
c
v
-
'" ., 8. ~ 0 ., .c
e .-
=
...
>. .c
0
-= ~ -~
-
>..c 1.c~0\
.~
'B 0
M ~ "~ ...
££
u = := .-
"~
QO"~
~B"~
u =
U
eo
§:=0 ."O~ 0 0 '"
~ ~e -5 u
, .~g , z ~ , ..;z
~ =
'i'e ~ 0
..
>.
v, .0 '"
'i'e 01) = -t 'j Ir) 0
~
~ >
'"
~
~
'"
c 0
.=
0)
'"
>. ."3 8.
C '" 0
.= .I".o~
~
c
] ~
g
os
M
e8.8~~'" ~.g!::;0».~
0
~"3>
~ o
.
J
0
§
8
u g
c ~ 0 c
~ g "g (.)
:I:
~ ~ .g ~
~
~ '8 ~
.~ u Q)
...
,.
0 "= ~ !!J' 0 .c
&-Be§ 8
0,"=
U
~
~ c u~.co
~ ~ ~ o'="",u C/O ,cc ~ .~ 0
LI]
_.c
1=-="'-2~ 8.
.~ c
0
]
>. >
'"
I
0100>'"00\0 "OePoN OQ)~ r'"\... ~r'"\ r---
U .E ~ ~ ~ ..c > 0< ..~ ~
"0 8"0 =' tU
-<
c v
c v
ti ~~ c c
u .~
~
= ~ z
~ =
~ ~
.~ .~ u u v v -.c.c ~ .~.c
.~ 8~ :Q 0~
~... '" 8
e u ...
"8 ~ ~
~ .3.
IC
.
~ =
I I
.c
~ 1.8 \0 '"
8:1 ~
~
g
"C
'"
u~.~
~
~= ~ ~"B~~-5 "8~ c;3
.~ u Q)
.g,
~ ':fi 'C E'"' -C. ~. ,...
~ "'=
'" ~ ..
= "- ~ 8 e ->. u ":I:
e
(du~~"-8t ~ u ~ " C .. "~ = ~ ~ ~"'.c~Q.~Q. ~ u~
c
0 of
= =
~
~ 0 c
co
~~ g g g
.~ .~ u u ~ ~
.~
(.) QJ
~;s C/O .c
~ c ~
~ ~ >. g .~ :a
~
~ .g ~ £~
~ c ~
'0 = u
::g .c £
0
~ ";<
~ Q) ~ ~
?;o.a C/)~
~
o/)c .5 ~ '" 0 ~ c Q) .-
g
0
...
Q) U
'" ~ ...,
>... Q)
-0 .-
~ E .-
~
u~
c
§-o .~
.-Q)
0
'" ...
.1:
.1: B
~
... 0
~~ c ~
g
~
.~
c
0/)
~
u
E
~ .cu ]~ 's II
:=
~
Q) -0
~Q)
.-
c !:
8 ~
~ .-
:
's
§
~] ~ ..0:
~] .g
~
~
~:= ~ II
.
'i:'"
8
8
!:
§ .5 c
U
.
0 .c ~ ~ ~ ~.o:
E
.~
~~~ .E >-~
g
Q)
.
5~
O/)c .( Q)
E ~ ~~ '" ~
e
.~
.
.£8-
~
.-:.
~ ~ ~ :=
UQ) 0 E
~ g
00(
0/)
~ ~ >
~'c
-~
e
.-
'"
5
Q)~
c0
~
~.d .(~
.cO/)
g Q)u
>-
u""
e
.-
'9... .>.£ Q)
...o .£::; .~ ~ U 1S-o
-
Q)
,Q~ -o
'"
~
.~ ~ ~ 0
"
~
~u
C Q) '"
~
'" CQ) Q) C 'u ~
.~
~
.
.-c
-
Q) o -5.5 ~ 0
C Q) E
~ 's0/) II
'"
~~ ,,~
00... C
~ .1:
uU"'Q)-5~
" .1:B ~~ u
.-~ !:
I
.( .1:.. .~ -~~~~
111
(v'V'V
HSd+ H~V.l~~'l + H~V HS/H~'l+ Hlv (H~'l + S~~" + HN/Hl'l) - ::;:0
SPI~!A ~l~qdsodoI!
(£.V'V
HNJ
HS ~q! UO ~:)m!{Uq ~!mS-Ape~!S lP.I!W!S V
+ H~D.LJJ'f + HfDHN/HJ'f + H~D (H~'f + SJ~'f + HS/H~'f)-
= 0
S1!Dg~U1!JJ1!gJ gO UU;) U;)IUM
HNJ
+ H~OH~'t-
HN~S/.Lv - HN~.L/Sv + HN~HS/HNv - HS~HN/HSv =0 .LV HN" SV HN" .LV .L-' .LV .L"
(Z'V"V
'~:)UUluq S){U!S PUU s~:)Jnos ~qt '~tUtS ApU~tS tv
sf xny ;lSl;lA;ll ;lq1 PUl!
Il!!l;l1l!W
HN ;lqt moll
HN/Hl;y
',(IIP.lfWfS P;lUY;lP ;lIP. s;lxny Il!1U;lW1Jl!dwo:>l;l1Uf l;lq10 'Hlo H~O HS/H~;y sf ;ll;lqdsodolt
HS ;lq1 01 ;ll;lqdsOdolt
Jo xny ;lq.l 'S;l1l!Uf~!l0 xny ;lqt ;ll;lqM lfOAl;lS;ll ;lq1 uf punodwo:> ;lqt Jo 1U;l1UO:>;lqt 01 Il!UOf1Jodwd ;lIP. SlfOAl;lS;ll;lqt
u;I;lM1;1q s;lxny ;lq.l'H~O
pm
'Hlo
'H~O
'H~O
P;l10U;lP;lIP. SlfOAl;lS;ll mol ;lq1
uf 1S:Il;l1UfJo S;lf:>;lds ;lq1 Jo S;lf1f1Ul!nb;lq.L ',(I;lAf1:>;lds;ll ';ll;lqdsodolt HS PUl! HN ;lqt uf punodwo:> ;lq1 Jo S;l1l!1uofssfw;I ;I:>moS;lIP. Hscl PUl! HNcl '(;ll;lqdsodolt =.L ';ll;lqds01l!ltS = S ';ll;lqdsfw;lH Ul;lq1nos = HS ';ll;lqdsfw;lH
w;lq1l0N
= HN) ;ll;lqdsOW1l! ;lq1 Jo I;lpow 1u;lwtl1!dwo:>-mod
HScl
{"y"", 3Hfl~I.!I
HNcl
HNV HS/HN'[ .L .L
HSD '.liS" S ,HS
HSD' SI.!". .! HS
HN(}'JlS:>[ SHN
HND'SIX" X .HN
HND HS/HN'f S S S3WI.LHdI'l aNY 'S3'l;)A;)
'lVaO'lD
'NOI.LISOdWO;) ;)I~3HdSOW.LV
ZIT
COMPARTMENTALMODELS OF GLOBAL BIOGEOCHEMICAL CYCLES
113
Comparablebalanceson the two stratospherecompartmentsyield 0
=-
(k~H/SH+ k~rT + k~H) Q~H + klH/NHQ~H + k~rsQ~H
0 = - (k~H/NH+ k~fT + k~H) Q~H+ k~H/SHQ~H + k~~SQrH
(2.A.5) (2.A.6)
Equations (2.A.3) to (2.A.6) constitute four equations in the four unknowns Q~H' Q~H' Q~H' and Q~H' It is useful to rewrite these equations as
0 = -alQI +a2Q2 +a3Q3 + PI
(2oA.7)
0 = -a4Q2
+ asQI + a6Q4 +
(2.A.8)
0 = -CX7Q3
+ CXSQ4+
0 = -aloQ4 where QI
+ all
Q3
P2
CX9QI
(2.A.9)
+ al2Q2
(2.A.IO)
= Q~H' Qz = Q~H'Q3= Q~H'Q4= Q~H'PI = PNH,andPz= PsH.Also, at a4
+ kTIS NH + kT NH SH + k SH + kTIS T
a5
= k~/SH
ks NH + kS NH NH/SH + kSIT
as
= k~H/NH
+k SIT SH +k SH S
all-
T -- kNH/SH
--
a7 --
kSH/NH T
- ks
alO=
SH/NH
a2
= k§H/NH
- ks
a3
=
a6
=
k SH
a9
=
k NH
a.?= .-
kSH TIS
I:
NH/SH
kNH SIT
SIT
TIS
Equations(2.A.9) and (2.A.lO) can be solvedsimultaneouslyto obtain Q3and Q4in terms ofQ. and Q2' Q3
= .81 Qz + .8ZQI
(2.A.II)
Q4
= .83QZ+ .84QI
(2.A.I2)
where
The resultingequationsfor QI and Q2are 0 = (a3.82- at)Qt
0 = (a~ + a"BJJ.)01
+ (a2 + a3.8t)Q2 + PI + (a"B~ - aJJ.)O, + P,
(2.A.I3) (2.A.14)
gizOI x ZL"O= ~l~qdso!nJ1s ~q:I U! l!n Jo ssnw
=
M
J~~
gizOI x 9~"v= ~l~qdsodoJ1~q:IU! l!n Jo ssnw = Jl~ M ~sn ~A\ ~sodJnd S!q! JOd 'J!OAJ~S~J~q:j U! J~ jO SSBWIB:jo:j~q! sp~~u ~uo J!OA -J~S~JB U! SSBW~q! O:j O!:jBJ~U!X!W ~q! ~:jBI~J°.1 O!:jBJ ~U!X!W ~~BJ~AB S:j! S! ~~UB:jsqns B
.~
JOj ~IqBI~AB Apu~nb~Jj S! :jBqfi\ .(~) SSBWjO s:j!Un ~ABq Suo!:jBnb~ ~U!O~~JOj ~q:j U! s,O ~q.1
oneH ~U!X!WawDloA pue ssuW;)!.laqdsow~VuaaA\~aguo!~elaH ["V'l lu:JU!1JRdwo:) :JIgU!SU SUP:Jl:JP!SUO:):Jq uu:) :Jl:Jqds01UJJS :Jq:I ':Jl:Jqds01UJJS:Jq1 q:)U:Jl 1Uq:I S:J:)UU1sqnsAUUW lOJ 'gU!X!W Iu:)!}J:JA uuq1 l:J1SUJq:)nw os S! :Jl:Jqds01UJJS:Jq1'U! gU!X!W {tI1UOZ!.l°q :Jsnu:):JH lu:Jwpudwo:) :JIgU!S U SU P:Jl:JP!SUO:) :Jq UU:) :Jl:Jqdsodol1 :Jl!}U:J :Jq:IU:Jq:I':JW!1 gU!X!W :)!l:JqdS!W:Jql:J1U!:Jq101 p:Jmdwo:) gUOI S! :JW!}:JJ!I S,:J:)uu1sqns:Jq1JI 'lOJ P:JI{tI:) S! ':Jl:Jqdsodol1 HS puu :Jl:JqdsodoJJ HN 'I:Jpow 1u:JW -pudWO:)-OM1 U u:Jq:I ':Jl:JqdsodOJJ {tIqoIg :Jl!1u:J:Jq11noqgnolq1 X!W 01 p:Jp:J:Ju:JW!1:Jq1uuq1 l:J}JOqS S! :J:)uu1sqnsU q:)ns Jo :JW!1:JJ!I:Jq:lJI 'p:Jl:Jp!SUO:):Jq p:J:Ju s1u:Juodwo:) :)!l:JqdS!w:Jq :)!l:JqdsOdOJJOM1 :Jq1 AIUO ':Jl:JqdsodoJJ :Jq:I U! P:JAOW:JlAI:J1:JIdwo:) S! 1uq1:J:)uu1sqns U lad 's1u:Jwpudwo:) :)!l:JqdSOW1UlnoJ UUq:ll:JM:JJ01 P:J!J!Idw!s :Jq UU:)S!SAIUUUgU!Og:JlOJ:Jql lu:Jwpudwo:) 1Uq:IU! :J1Ul:J:)lnos 1:JU:Jq1Aq p:Jp!A!P 1u:Jw}Judwo:) :Jq1U! A1!1 -uunb :Jq:Iwol] p:J1uIn:)Iu:) :Jq UU:)s1u:Jwpudwo:) lnoJ :Jq:lJo AUUU! S:JW!1:J:)U:JP!S:Jl:JgUl:JAV
<8I'V.Z)
HSd + HNd
=2
(81010 's~:>JnOS WOJJ
UO!1:>npOJ1U! JO ~1eJ 1\1:101S1! Aq ~J~qdsow1e
~q1 U! A1!1Uenb 111101S1! ~U!P!A!P
Aq p~u!e:lqo
~q ue:>~J~qdsow1e ~q1 U! ~:>ue1sqns~q1Jo ~ln:>~low e Jo ~W!1 ~:>u~P!S~J~~eJ~Ae lIeJ~AO ~ql.
(LI 'V"V
H~{J
+ H~{J + Hl{J + H~{J = [UIOI{J 'S1U~UIllRdUIO:)
JnoJ ~q1 U! S~SSRUI ~q:I JO UInS ~q1 S! ~J~qdSOUI1R ~J!1U~ ~q1 U! ~:)UR1sqns ~q1 JO SSRUI ~q.L .s1u~U1:)mdUIO:) JnO) ~q:I )0 q:)R~ U! s~ss~:)oJd J~pJO-1SJY ~1Rmd~s Aq p~AOUI~J pUR ~J~qdsOdOJ1 ~q1 01U! P~U!UI~ S! 1Rq:I ~:)UR1sqns R )0 I~POUI 1U~UI1JRdUIO:)-JnO) R )0 S!SAIRUR ~1R1S-ApR~1S'IRJ~U~g R ~P!AOJd
SUO!1Rnb~~S~q.L '("I .V.V pUR (II 'V'V
UIOll P~U!R1qOu~q1 ~m 'H~D
= VD
pUR H~D
= ED
'SJ!OAJ~S~J :)!.l~qds01RJ1S 01\\1 ~q:I U! SUO!1RJ1U~:)UO:) ~1R1S-ApR~1S 'S1U~UI1JRdUIO:) Jno)
~q1
)0 SJ~1~UIRmd IRAOUI~J pUR 1l0dSURJ1 ~q1 IIR pUR S~J~qdS!U1~q 01\\1 ~q1 01U! S~1RJ~:)JnOS ~q1
)0 UO!1:)un)R SR'(HiD = ZD pUR H~D = ID) AI~A!1:)~dS~J '~J~qdsOdOJ1 HS pURHN ~q:I U! ~:)uR1sqns ~q:I)O SUO!1RJ1U~:)UO:)~1R1S-ApR~1S~q:I ~A!g (91 .V'V
pUR (~I .V.V
Suo!1RnbH
(9J"V"V (~I'V'z) ;)Ip. q:J!qA'. JO SUO!1n[OS ;)q1
!:\1WT T\1.1T'"1rIM\{
'!:\1'"1:11:1 '"1\{SlO'"1n 'MOTU!:OAWO:1
:1T>I\1HA!:OWIV
"TT
COMPARTMENTALMODELS OF GLOBAL BIOGEOCHEMICAL CYCLES
115
It can be assumedthat thesemassesdivide equally betweenthe NH and SH. With the averagemolecularweight of air, Mair= 28.9 g mol-I, the troposphericmassof a substanceof molecularweight M that hasa troposphericmixing ratio of ~ T is
(2.A.19) Similarly, for the stratosphere, s QS= ~~sM Mair
(2.A.20)
(2.A.21) If the troposphericmassis divided into Q~Hand QIH' (2.A.22)
-
Q SH T -
-Wa{r/2t:T SSHM
(2.A.23)
Mair
As an example,the averagemixing ratios of OCS in the troposphereand stratosphere are (Chin andDavis, 1995) ~Jcs = 490 ppt = 490 x 10-12 ~JcS = 380 ppt = 380 X 10-12
The total atmosphericmassofOCS is (Mocs = 60 g mol-I) 4.56 X 1021
Q
(490
x 10-11+
, 28.9 = 4.63 x 1012g + 0.57 x 1012g
0.72 X
1021
28.9
= 4.63Tg + 0.57Tg 5.2Tg
2.A.2
Application of the Compartment Model to Methyl Chloroform
(CH3CCI3)
Methyl chloroform is a man-made substance, the total emissions of which to the atmosphere are reasonably well known. Its atmospheric degradation occurs almost entirely by hydroxyl radical reaction. The CH3CCl3 mixing ratio in the atmosphere is well established;
"~I"'l
~lql1.L
~Sq
"SUO!!
-IJln:>ll1:>
I~POW
IIJUO!SU~W!P-~~JqI
UO
p~sIJq
SJB~f.
9"0
=1=
v'~
S!
(~661)
3JdI
f.q
p~IJw!ls~
~w!I~J!I
£133£H3
~q,LD
"JAO.~ 1dd~L 1dd6ZI
q!dd 091
(JA) ;!W!l;!)!! :J!J;!qdsowlV Odd) OpRJ gU!X!W :J!J;!qdsolRIIS Odd) O!lRJ gU!X!W :J!J;!qdsodoJ.L
I~POW1u~wtJedwo:J-lnod Aq p~teln:>le:J
°MoI~q U~A!~
~m s~Ins~l ~q.L O'O;)'H;)
10 ~W!~ ~;)U~P!S~l ;)!l~qdsow~~ I~l~AO ~q1 pu~ ~l~qdso~~I!s pu~
~l~qdsodoI! ~q1 U! 'I;);)'H;) 10 SO!~~l ~U!X!w ~~~~S-Ap~~~S ~q1 ~~~w!~S~o~ 'S~~~l UO!SS!w~ AIm~A pU~ s~nI~A J~~~ummd ~AOq~ ~q1 q~!M 'p~sn ~q U~;) I~poW ~u~W1JBdWO;)-ln01~q.L
[_JA £90'0
(96.61 'l;}PI;})l pUR U;}i\.Oq:lI;}Auei\.)
[
(9661 'J~Pl~)l pUBu~Aoq:Jl~AUBA)
- JA
t. O
= s~~'l = s~~'l =
HSo,= .L/Sv HN°'
.L/Sv
_JA ~Z'O = HS/H~'l = HN/H~'l = HS/H~'l = HN/Hl'l [_JA 0'1
:s~nJtlA ~U!MOI -IOj ~q1 ~sn ~M. °s!u~UImdUIO:) :)!l~qdsOUI!e Jn01 ~q1 ~UOUIe S~!eJ ~~UBq:)X~ ~q! p~~U ~M. . ('l66I le!~ uu!ld) I-JA 'lIO'01° !U~!:)YJ~:) ssol J~pJO -!SJY e q1!M ~:)eJlns s,q1JB3 ~q1 O! uo!!!sod~p Aq !SOI S! £I:):)£H:) 'AIJtlU!d '~J~q!! !:)~I~~U II!M ~M os 'Uo!!:)e~J HO UBq1J~MOIS S~UI!! 00017 !SOUIle ~!eJ e !e !nq '~J~qdso!eIls ~q1 U! S!SAIO! -oqd Aq p~peJ~~p OSJtIS! £I:):)£H:) '£_UI:) s~ln:)~loUI 901 X 817'910 uO!!eIlu~:)uo:) e O!U! 'UI:>{ 'lI !e 'S~!eISUBII q:)!qM '(17J~!deq:) ~~s) !dd I S! ~pm!!eIP!UI ~q1 U! o!!eJ ~U!X!UI HO :)!l~qd -SO!eIlS ~~eJ~Ae UY '('l661 "e!~ uu!ld) £_UI:) s~ln:)~loUI ,01 X L08 se u~:>{B!S! uO!!eIlu~:)uo:) HO :)!l~qdsodoJ! ~~eJ~Ae Jtlqol~ Y °)1 L'9I'l = .L '~J~qdSOUI!Y pmpUB!S 's'n ~q! U! UDI 'll !e !eq1 se u~:>{B!S! ~J~qdso!eIls ~q1 J01 ~JmeJ~dUI~! ~~eJ~Ae uy ')I LL'l1° ~JmeJ~UI~! ~~eJ~ -Ae :)!l~qdsodoIl
~q! ~sn ~M '~J~qdso!eIls pUB ~J~qdsodoIl ~q1 U! !UB!SUO:)~!eJ ~q! 10 s~nJtlA
~~eJ~Ae~!enJtlA~01. iI'S
01_01 X 8°1 = Jf!ue!suo:) ~!eJe q1!M
~lqe1.~~s) (L/O~~I-)dx~
OZH+ EIJJzHJ +- HO + EIJJEHJ 'UO!!~1J~JHO Aq p~AOW~J s! EIJJEHJ
=
I-JA g 0101 x £Z'Z I-JA g 1101 x
(;}gBJ;}AB0661 O} 8L61) :(Z661
"{B};}
UU!Jd) ;}{qB{!t!AB ;}Jt! £O;)£H;) .£O;)£H;)
-Jn01 ;}{dw!s
10 };}gpnq
;}q"! A{ddB ;}A\ ;}J;}q }nq '(Z661
B q}!A\ P;}qS!{dWO:J:JB AnBnsn
HSd
LV9.~ = HNQ
J01 B}BP SUO!SS!W;} gU!A\On01 ;}q.t
{l!qO{g ;}q} ;}ZA{l!UB O} I;}POW }u;}wpudwo:J
"{l!};}
UU!Jd) {;}POW POdSUBLI {BUO!SU;}W!P-;);}Jq"!
;}Jt! S;}}BW!}S;} q:Jns 'UO!}BLlU;}:JUO:J {B:J!PBJ HO ;}gBJ;}AB {l!qoIg
B gU!}BW!}S;} 10 SUB;}W B SB p;}sn ;}q UB:J £O;)£H;)
10 };}gpnq
S3WI.L3dI' aNY 'S3':JA:J 'V80'O
;}}B}S-APB;}}S IBqoIg
;}q} snql
'NOI.LISOdWO:J:JI1I3HdSOW.LV 911
REFERENCES117
REFERENCES Andreae,M. O. (1990) Ocean-atmosphereinteractionsin the global biogeochemicalsulfur cycle, Marine Chem.,30, 1-29. Andreae,M. 0., andBarnard,W. R. (1984)The marinechemistryof dimethylsulfide,Marine Chem., 14,267-279. Andreae,M. 0., and Crutzen,P.J. (1997)Atmosphericaerosols:biogeochemicalsourcesandrole in atmosphericchemistry,Science,276, 1052-1058. Andreae,M. 0., and Raemdonck,H. (1983)Dimethylsulfidein the surfaceoceanand the marineatmosphere:a global view, Science,221,744-747. Andreae,M. 0., et at. (1992) Ozoneand aitken nuclei over equatorialAfrica: airborneobservations during DECAFE 88, J. Geophys.Res.,97,6137-6148. Arnts, R. R., and Meeks,S. (1981)Biogenic hydrocarboncontribution to the ambientair of selected areas,Atmos.Environ., 15, 1643-1651. Barnard,W. R., Andreae,M. 0., Watkins,W. E., Bingemer,H., and Georgii, H. W. (1982)The flux of dimethylsulfidefrom the oceansto the atmosphere,J. Geophys.Res.,87, 8787-8793. Barnes,R. A., Holland, A. C., and Kirchhoff, V. W. J. H. (1987) Equatorialozoneprofiles from the groundto 52-km during the SouthernHemisphereautumn,J. Geophys.Res.,92, 5573-5583. Baugues,K. (1986)A review of NMOC, NOx,and NMOC/NOxratios measuredin 1984and 1985. U.S. EnvironmentalProtectionAgency report EPA-450/4-86-015,ResearchTrianglePark,NC. Berresheim,H., Wine, P. H., and Davis, D. D. (1995) Sulfur in the atmosphere,in Composition, Chemistry,and Climateof the Atmosphere,editedby H. B. Singh.Van NostrandReinhold,New York, pp. 251-307. Bojkov, R. D. (1988) Ozone changesat the surfaceand in the free troposphere,in Tropospheric Ozone,editedby I. S. A. Isaksen.Reidel, Dordrecht,pp. 83-96. Bouwman,A. F., Vander Hoeck,K. W., andOlivier, J. G. J. (1995)Uncertaintiesin the global source distribution of nitrous oxide,J. Geophys.Res.,100, 2785-2800. Browell, E. V., Gregory,G. L., Harriss,R. C., and Kirchhoff, V. W. J. H. (1988)Troposphericozone and aerosoldistributionsacrossthe Amazon.J. Geophys.Res.,93, 1431-1451. California Air ResourcesBoard (1989) Information on substancesfor review as toxic air contaminants.ReportNo. ARB/SSD/89-01,Sacramento,CA. Charlson, R. J., Anderson, T. L., and McDuff, R. E. (1992) The sulfur cycle, in Global BiogeochemicalCycles,edited by S. S. Butcher,R. J. Charlson,G. H. Oriana,and G. V. Wolfe. AcademicPress,New York, pp. 285-300. Chin, M., andDavis, D. D. (1995) A reanalysisof carbonylsulfideasa sourceof stratospheri'4backgroundsulfur aerosol,J. Geophys.Res.,100, 8993-9005. Cline, J. D., andBates,T. S. (1983)Dimethyl sulfidein the equatorialPacificOcean:a naturalsource of sulfur to the atmosphere,Geophys.Res.Lett., 10, 949-952. Crutzen, P. J., (1988) Troposphericozone: a review, in TroposphericOzone,edited by I. S. A. Isaksen.Reidel,Dordrecht,pp. 3-32. Crutzen, P. J. (1995) Ozone in the troposphere,in Composition,Chemistry,and Climate of the Atmosphere,editedby H. B. Singh.Van NostrandReinhold,New York, pp. 349-393. Dacey,J. W. H., andWakeham,S. G. (1986) Oceanicdimethylsulfide:productionduring zooplankton grazingon phytoplankton,Science,233, 1314-1316. Daisey,J. M. (1980) Organiccompoundsin urbanaerosols,Ann. N. }: Acad. Sci., 338, 50-69. Danielson,E. F. (1968)Stratosphere-troposphere exchangebasedon radioactivity,ozoneandpotential vorticitv. .1.Atma.'!. .S'ci..25.502-518.
'0691-£L91
'YLl
"uO.Ill\u3 'soWJV 'I~poW AdoUt!:> 1S~l01 ~Idw!s 11~u!sn 'v's'n
AJ01U~AU! UO!ssJW~ uoqm:>OlpAq :>!U~~O!q V (£661) '.1 '~:>l~!d PUI1 "H '~l~q1s~M "0
~q1l01
'A110 "S 'qW111
'96Z-18Z 'dd '){lOA M~N 'A~I!M '~l~qu~Z1U!~H 'r PUI1 UOSIll1qJ 'r '}l Aq P~1!P~ 'aJvwl/J fo 8Ul:J.l0,1 loso.lav U! 'SIOSOl~1101 ~np ~U!:>l01 II1UOSI1~S PUI1 II1:>!qdl1l~O~~ ~U!I~POW -!dOJ1l~AO Z661 01 6L61l01
(~66I)
'H '~qpo}l
PUI1 ".1 'r 'Iq~!)1
'91 L-V 1L 'lLl 'a:Jual:JS '11111P SWO.1 wol111:>Jl~WV q1nos :>Y!:>l1dII1:> ~UOZo :>Jl~qdsodOJ11° SUOpl1J1U~:>UOJ (966 I) "] 'A '~un);. PUI1 "A '~UI1!r '~6Z81-68Z81
's.(!fdoao
'r 'uopI11~ldJ~1U!
PUI1 'SUOpI1Jl1!A II1UOSI1~S 'SI!111~P pu~l1
:~uozo
't6
"saN
~:>I1Jlns (686 I) '3 'M 'q:>I1Ul1r
'8-1 '61 "UO.llI\U3 'sowJV 'S1S~l011° ~l~qdsow -111~q1 U! spunodwo:> :>Jl~qdsow111~IpI1IOA (~861) 'A 'S '~JJOI pUt! "0 ~~PJlqwI1J al\pvlpvN
'sol.lvua:JS UOlsS1W3 Z6S1 JJdI :fr66l
'091-617 1 'HIt
a8ul:II{.J aJlJUIl/.J (~661)
a!fJfo uopvnlvI\3 (JJdV
'snna,L 'M~!A~ll1-~l~qdsodol1 '~0£LI-L6ZLI
'I 'q:>!A~){Uaz "V 'A 'AOlopoSI
')In '~~PJlqWI1J 'sS~ld A1!Sl~A!Un uv puv a8uv!fJ aJvwl/.Jfo 8Ul.J.lo,1
~~Ul1qJ ~111W!IJ uo I~Ul1d II11U~WW~AO~l~1UI
Il1qoI~ ~q1 U! S~I:>!1lf1d~U!d (686 I) 'r '~l~qu~Z1U!~H
'06 "saN 's.(!fdoao
~uozo ~~l1l~AI1 Il1qoIO (1661) '}l 'uospnH
'r '066 I AI1W 018L61l~qw~AoN
PUI1 "0
wol1 ~~ul1q:>
'0){lI11 "}l '!){SmI01S "}l 'Sl~1~d:>W "}l 'r 'Ut!Ull~H
'£9I-6~1 'It ":JossV'a8vuvw aJsvM.llV 'r '986I-i)L61 uopsnqwo:> I~n1 I!SS01 U! S~P!XO lnqdlns 'r 'SUO!SS!W~ punodwo:>
PUI1 U~~Ol1!U 10 SUO!SS!W~Il1qoIO (Z66I)
'r 'UOU~!O PUI1 "s 'P~~WI1H
'Z688-£L88 '001 "saN 's.(lfdoao :>!UI1~lO ~IpI1IoA Il1lml1u 10 I~poW Il1qoI~ V (~66I) 'I11 1~ "V 'l~q1u~no 'L6~-68~
PUI1 ~1!II~111Swol1
'tS "s.(lfd :l.la,L 'soWJV 'r 'S1u~w~lnsl1~w ~puos~uozo
s:>!doJ1 ~q1 U! ~uozo :>Jl~qdsodoJ1 10 uopnq!J1s!o
(Z661)
'I11 1~ "r
'ul1wqS!d
'L I 9£-66~£ 'S6 "saN 's.(lfdoao 'r '11111P ~1!II~111S wol1 P~U!Ull~1~P ~uozo :>Jl~qdsodoJ110 uopnq!J1s!o (066I) 'V 'r 'Ut!~o'] PUI1"J 'r 'u~sm'] "3 'J 'uOS111M"r 'ul1wqS!d '0£17-68£ '9 'sal:J.(.J 'walf:Joa8o1H IvqolO
'AJ1S!W~q:>:>Jl~qdsow111l01 suopl1:>!Idw! ~q1 pUt! UOpI11~~~Awol1
spunodwo:> :>!UI1~lO~IPI1IoA 10 UO!SS!W3 (Z66I) "s 'n!'] "s 'qWI1'] "N 'J 11!M~H "s
'd 'UI1Ull~WW!Z PUI1 "H '~l~q1s~M "W 'l~U!l1l.1
'V 'l~q1u~no
"d 'uI1PIoO "}l 'IIl1d "r 'U~AII1J "J
'd 'PI~1u~sq~d
'I£Z-69I'dd '){lOA M~N 'l~!A~SI3 'ss~~lms '.1 'M PUI111!M~H 'N 'J Aq ~1!P~ 'a8uvlf.J Iv:Jlwalf.J :Jl.lalfdsowJV IvqolO U! 'S~:>lnos PUI1 uopnq!J1s!p :~uozo :>Jl~qdsodol.1 (£66I) 'J 's 'n!'] PUI1 "J 'd 'PI~1u~sq~d 'VO17-~L£ 'II
'snna,L 'suopl1:>!Idw! II1:>!~OIOP~dPUI1'II1:>!W~q:>
-o~~ 'II1:>!~OIOlO~1~W '~lml1U U! lnJIns PUI1 ~PJloIq:> 10 uopI1In:>l!:> AIm~A ~q.1 (6~6 I) '3 'UOSS){Jl3 '8£L£-~ZL£ -oJ1l~ddn
'L6 "saN 's.(lfdoao
~q1 U! xON 10 uopnq!J1s!p PUI1 s~:>lnos
(Z66I)
'r 's~pmpI1I-P!W w~quou
111~l~qdsod
'V 'l~uqI1M PUI1 "d 'l~lqO}l
"H '0 1I11qq3
'6~LI-£~LI '6l£ "paw 'r '18U3 'N 'S~P!:> 's'n
X!S U! A1!II1UOWPUI1uopnIIod
lJ11u~~M1~q UOPI1!:JOSSI1 uv (£66 I) '3 'd 'l~z!~dS
PUI1"lr '0 's 'sJll~d "3 'W 'Al1d "H 'r '~mM "0 'r 'l~I~U~S '£VOLI-IZOLI
"X 'nx 'III 'V 'J '~dOd "M '0 'AJ~){:>OO
'66 "saN 's.(lfdoao
'r "'HJ
:>Jl~qdsow1111° uopnq
-Jl1S!P PUI1~111lq1MOl~ ~q,L (1766I) 'V ')I '~JlI1S~W PUI1"W 'd '~UI1'] "d "] '~I~~1S "r '3 'A){:>u~){O~nIa '981-08I 010981
'6£ ":JossV :lJu°.J 'Jnnod .llV 'r '086I
wol1 S~P!XO lnJIns PUI1 U~~OJ1!U10 SUO!SS!W~Il1qoIO (686I)
's 'P~~WI1H PUI1 "r 'UOU~!a
'69£-1££
'61 "walf.J
'sOWJV
'r '~I:>A:>I1!UOWWI1Il1qoI~ ~q11° I~poW II1UO!SU~W!P-~~lq1V (1766I) 'r 'd 'u~z1ruJ pUt! "r 'd 'l~u~1U~a '06 "saN 's.(lfdoao
'6Z17Z-~Z17Z 'r 'S~lY UOpI11~~~AII1:>!dol1 ~II1:>s-~~mI wol1 UO!SS!W~ ~q1 U! ~uozo p~:>npold
AIII1:>!W~q:>010qd(~861) 'r 'd 'u~z1ruJ PUI1"d 'V '~lnq1lf1M "s 'Sl~1II1M "d 'UOSU~~I1I1H"J 'V 'A~UI1I~a
S3WI.LHdI1aNY 'S3lJAJ weOlD
'NOI.LISOdWOJ Jnl3HdSOW.LV 811
REFERENCES 119
Lamb, B., Guenther,A., Gay, D., and Westberg,H. (1987)A national inventoryof biogenic hydrocarbonemissions,Atmos.Environ.,21, 1695-1705. Lamb, B., Westberg,H., and Allwine, G. (1985) Biogenic hydrocarbonemissionsfrom deciduous andconiferoustreesin the United States,J. Geophys.Res.,90, 2380-2390. Lamb, B., Westberg,H., andAllwine, G. (1986) Isopreneemissionfluxes determinedby an atmospheric tracertechnique,Atmos.Environ., 20, 1-8. Logan,J. A. (1989)Ozonein rural areasof the United States,J. Geophys.Res.,94,8511-8532. Lovelock, J. E. (1971)Atmosphericfluorinecompoundsasindicatorsof air movements,Nature,230, 379. Lovelock, J. E., Maggs, R. J., and Rasmussen,R. A. (1972) Atmosphericdimethyl sulfide and the naturalsulfur cycle, Nature,237,452-453. Lubkert, B., and Zierock, K. H. (1989) Europeanemissioninventories-a proposalof international worksharing,Atmos.Environ., 23,37-48. Lurmann,F. W., andMain, H. H. (1992) Analysis of the ambientVOC datacollectedin the Southern California Air Quality Study. Final Report. ARB Contract No. A832-130, California Air ResourcesBoard,Sacramento,CA. Machida,T., Nakazawa,T., Fujii, Y., Aoki, S., andWatanabe,O. (1995) Increasein the atmospheric nitrous oxide concentrationduring the last 250 years,Geophys.Res.Lett., 22,2921-2924. Middleton, P. (1995) Sourcesof air pollutants, in Composition, Chemistry,and Climate of the Atmosphere,editedby H. B. Singh.Van NostrandReinhold,New York, pp. 88-119. Molina, M. J., andRowland,F. S. (1974) Stratosphericsink for chlorofluoromethanes: chlorineatom catalyzeddestructionof ozone,Nature,249, 810-812. Monson,R., Jaeger,C., Adams,W., Driggers,E., Silver, G., andFall, R. (1992)Relationshipsamong isopreneemissionrate, photosynthesis,and isoprenesynthaseactivity as influencedby temperature, PlantPhysiol., 92, 1175-1180. Montzka, S. A., Trainer, M., Angevine, W. M., and Fehsenfeld,F. C. (1995) Measurementsof 3methyl furan, methyl vinyl ketone,and methacroleinat a rural forestedsite in the southeastern United States,J. Geophys.Res.,100, 11393-11401. Montzka, S. A., Trainer,M., Goldan,P.D., Kuster,W. C., and Fehsenfeld,F. C. (1993)Isopreneand its oxidationproducts,methyl vinyl ketoneandmethacrolein,in the rural atmosphere, J. Geophys. Res.,98, 1101-1111. National ResearchCouncil (1991) Rethinking the Ozone Problem in Urban and Regional Air Pollution. NationalAcademyPress,Washington,DC. Nguyen,B. C., Beloriso,S., Mihalopoulos,N., Gostan,J., andNival, P.(1988) Dimethyl sulfideproduction during naturalphytoplanktonicblooms,Mal: Chem.,24, 133-141. Nguyen, B. C., Bergeret,C., and Lambert, G. (1984) Exchangeratesof dimethyl sulfide between oceanandatmosphere,in Gas Transferat WaterSurfaces,editedby W. BrunsaertandG. H. Jirka. Reidel, Dordrecht,pp. 539-545. Oltmans,S. J., and Levy, H. II (1994) Surfaceozonemeasurements from a global network,Armos. Environ., 28, 9-24. Placet,M., Battye, R. E., Fehsenfeld,F. C., and Bassett,G. W. (1990) EmissionsInvolved in Acidic Deposition Processes.State-of-SciencelTechnology Report I. National Acid Precipitation Assessment Program.U.S. GovernmentPrinting Office, Washington,DC. Prinn, R., et al. (1992) Global averageconcentrationand trend for hydroxyl radicalsdeducedfrom ACF/GAGE trichloroethane(methyl chloroform) data from 1978-1990,J. Geophys.Res.,97, 2445-2461. Rasmussen,R. A. (1970) Isoprene:identified as a forest-typeemissionto the atmosphere,Environ. Sci. Technol.,4,669-673.
.)jlO).. J\\;lN 'SS;lld :)!W;lPB:)V .iJ.iiJl{dsOW1VllJ.inJlJN iJI{1Jo tCl1s1WiJl{.) (8861) .d ')j:);lUlt1M. .ZPZ-oVZ "l(£ U! ;lpBW S1U;lW;llnSB;lW ;lUOZOJo S;lP;lS spnos1uow
'iJ.inJlJN '!.lmu;I:) ~U;I;l1;1U!U;lq1
;lq1 Jo UO!1BnIBA3 (8861) .0 'A;lI){ pUB "'1 'ZIOA
.89L 1-£9L I "lL'l 'iJ.JUiJl.JS';ll;lqd -S01Bl1Sl;lJ\\ol ;lpm!1BI-p!W PUBIB:)!dol1 ;lq1 U;I;lJ\\1;1q1JOdSUBl1gU!AJ!1uBn?) (9661) "lB 1;1'.W.J ')jloA .P£PI-6ZPl '101 '.SiJN .sAl{doiJD "f .uO!1nIOS;llIB1UOZpOq pUB UO!1BlnUllOJ I;lPOW 01 A1!A!1!S -U;lS :;lgUBq:)X;I ;ll;lqdsOdOl1-;ll;lqds01Bl1S JO S;I)BW!1S3 (9661).H 'l;lPI;l){ pUB ,. f .d a 'u;lAoq1I;1A UBA .Z£Z-£ZZ "l '.WiJl{.) .SOUIJV"f '1U;lWUOl -!AU;I ;lUp11W Jt!1SBO:)B U! S;lSBglnJlns snOp11AJO S1U;lW;llnSB;lW (~861) .S a 'SS!"1 pUB '.W .S 'l;lWn1. .OZI-£6 'A;I)jlt1qS .0 .1. Aq p"1~
.dd 'VJ
'og;l!O UBS 'SS;lld :)!W;lPB:)V .A;lUOOW.V.H
'S1UlJld Aq suolsslw:i/
SlJD iJ.JlJ.i.LU! 'spunodwo:)
pUB 'PUBIIOH.V.3 :)!UBglO ;l1!1BIOAl;l~O
pUB S;lU;IW;l10UOW JO SUO!SS!W;I;lq1 gU!IIOl1UO:) Sl01:)Bd (1661) .f 'l;lq;lM. pUB '.0 'l;lWnj,
'.0 'A;lgU!1.
.6P£-ZP£ '9S'l 'iJ.JUiJl.JS';lUOZO :)p;lqdS01Bl1S U! SPU;ll1 p;llnSB;lW (Z661) "[ 'AUPOJ\\BZ pUB '.f 'U!I;lq;lB1S '.J 'SOJ;ll'dZ '."1 'doqs!S 'VS'l
,.~ 'Ao)jfos
,.~ '!)jSlt1101S
.6PLI-6£LI '.UO.iIi\U:i/ .SOW1V '(pUBll;lZ1!J\\S) ;lW;lABd l;lAO sgu!punOS UOOIIBq JO 1;1SB1BP lt1;1A-OZ ;I~
gU!Z!I!1n SUO!1Bl1U;I:)UO:) ;lUOZO :)p;lqdsodol1
JO S!SAIBUBPU;ll.1 (1661) .M. 'P!Wq:)SPUB '.f 'U!I;lq;lB1S
.9£09-£Z09 'L6 '.SiJN .sAl{doiJD "f .uo!1nloS;ll 01 x 01 q1!J\\ SUO!ss!W;llnJlns Jo !.l01u;lAU! IBqolO (Z661) .V .f 'UBg°"1 pUB ,. f .0 'qO:)Bf '.V .d 'Ol!dS .£91-P~1 '6£ '..JossV 1°.i1UO.) .1nnod .iIV "f .B;llt1 s;ll;lguv IB:)!W;lq:J (6861)
S°"1 ;lq1 U! P;l1:);lII°:) SIOSOl;lBo'Wd Jo S:)!1SP;l1:)Blt1q:)
'V 'UOSP!ABO pUB "V .H 'ABlO ,.~ .0 'SSBJ '."1 'UOWIBS ".1 'lIed "v .9£1-££1
.d 'uowoloS
'O'l '.I1i17 .SiJN .sAl{doiJD ';lP!WOlq IA~;lW
Jo S)jU!S pUB S;I:)lnos :)p;lqdsoW1B ;I~ JO UO!1Bg!1S;lAU!uv
(£661).W
'nOp!)jt!UB){ pUB "s
.H 'qgU!S
.~£Z-LL 1 .dd ')jlO).. J\\;lN 'A;lI!M. .ngBPN .0 .f Aq P;l1!P;I 'PZ "lOA 'A8010UI{.JiJ.LpulJ iJ.JUiJl.JSllJ1UiJWUO.iIi\u:i/ ul SiJ.JUlJi\PV U! 'suoqlt1:)olp -Aq ;lUB~;lW-UOU Jo S;I:)lnos pUB SUO!1nqp)S!p :)P;lqdsow1V
(0661) a 'UBUll;lWW!Z pUB "s
.H 'qgU!S
.0~Z-91Z
.dd ')jlO).. J\\;lN 'PloqU!;I~
puBl1S0N UBA 'qgU!S 's
.H Aq P;l1!P;I 'iJ.iiJl{dsOW1V iJI{1 Jo iJ1mull.)
PUlJ 'tCl1s1WiJl{.) 'UOI11sodwo.) U! '1U;lWUOl!AU;I :)p;lqdsow1B
;lq1 U! SU;lgOIBH (~661)
's
.H 'qgU!S
.ZPP-P6£ .dd ')jlO).. J\\;lN 'PloqU!;I~ PUBl1S0N UBA .qgU!S 's .H Aq P;l1!P;I 'iJ.iiJl{dSOW1ViJI{1JO iJ1lJWIl.) PUlJ 'tCl1s1WiJl{.) 'uOPlsodwo.) 'UO!1;1ld;lp ;lUOZOpUB UO!1nIlOd :)p;lqds01Bl1S (~661) .f.W
U!
'BU!IOW pUB '.f a ';lgP!lPIOoM. '."1-.1. 'u;lqS .OO£-L~Z
'68
'.WiJl{.) 'uuv
.SAl{d 'uuv
'sg!q;l!1 'SII01sl;lnBs
S;lP ;lPU111snz;lU;lP;I!q:)Sl;lA l;lq(l
(P~81)
'q:)nJ;lg u;lpul;lq:)!J\\1U;I q:)!;1 u;lz1!ds snB 1B1!Z!l1:);lI;I u;lq:)!luqgJ\\;lg
W;lP pun Sl;lSSBJ\\ S;lP UO!1BSAIOl1)j;lI;l l;lP !:Iq U;lP l;lqn
u;lgumq:)Bqo;lS
.d .J
'U!;lqugq:)S
.919 'os '.WiJl{.) l;lP u;lwgl1ssnB
(OP81) .d .J 'U!;lqugq:)S "ZL-~~ .dd
'V:J 'og;l!O UBS 'SS;lld :)!W;lPB:)V .;lJloM. .A .0 pUB 'SUB!lO .H .0 'UOSllBqJ .f .~ 'l;lq:)1ns Aq P;l1!P;I 'SiJl.JA.) llJ.JIWiJl{.JOiJ8018 llJqolD
's 's
U! 'S;lI:)A:) IB:)!W;lq:)O;lgO!q gU!I;lPOW (Z661) .H ';lqpo~
.089-IL9 'n '.UO.iIi\U:i/ .SOUIJV'spunodwo:)
lnJlns :)!l;lqdSOW1B JO S;lW!1l;lAO-wm
pUB s1;1gpns (8L61) .H ';lqpo~ .~IZ-9LI
.dd ')jlO).. J\\;lN 'PloqU!;I~ PUBl1S0N UBA .qgU!S 's .H Aq P;l1!P;I 'iJ.iiJl{dsOW1V iJI{1Jo iJ1mull.) PUlJ 'tCl1S1WiJl{.)'UOPlsodwo.) U! ';ll;lqdSOW1B ;lq1 U! (AON) u;lgOl1!U-PPO ;lA!1:)B;I~ (~661) .W .f 'S1J:lqO~ .OZZ-~IZ
'£S '(vsn)
.1.JS.pv.JV 11lJN ..JO.id
';ll;lqdsow1B ;lq1 U! U!g!lO 1UBIdJO IBP;l1BW :)!UBglO ;l1!1BIOA(~961) .M. .d '1U;lM. pUB "v .~ 'U;lssnWSB~
S3WI.LHdI1aNY 'S3'1:J}":J'1V80'10 'NOI.LISOdWO:J:JI~3HdSOW.LV on
PROBLEMS 121 Went,F.W. (1960)Organicmatterin the atmosphereandits possiblerelationto petroleumformation, Proc. Natl. Acad. Sci. (USA),46,212-221. Whitby, K. T., and Cantrell, B. (1976) Fine particles,in InternationalConferenceon Environmental SensingandAssessment,Las Vegas,NV, Institute of Electrical and ElectronicEngineers. Winer, A. M., Arey, J., Aschmann,S. M., Atkinson, R., Long, W. D., Morrison, L. C., and Olszyk, D. M. (1989)Hydrocarbonemissionsfrom vegetationfound in California's CentralValley.Final Report.ContractNo. A 732-155.California Air ResourcesBoard, Sacramento,CA. World Meteorological Organization (WMO) (1986) Atmospheric Ozone 1985. Global Ozone ResearchandMonitoring Project:ReportNo. 16, Geneva. World MeteorologicalOrganization(WMO) (1990)Reportof the InternationalOzoneTrendsPanel: 1988.Global OzoneResearchand Monitoring Project:ReportNo. 18,Geneva. Yokouchi,Y. (1994) Seasonaland diurnal variation of isopreneand its reactionproductsin a semirural area.Atmos.Environ.,28,2651-2658. Yvon, S. A., Saltzman,E. S., Cooper,D. J., Bates,T. S., and Thompson,A. M. (1996)Atmosphere sulfur cycling in the tropical Pacificmarineboundarylayer (120S, 1350W): a comparisonoffield dataand modelresults I. Dimethylsulfide,J. Geophys.Res.,101,6899-6909. Zimmerman,P.(1979) Testingof hydrocarbonemissionsfrom vegetation,leaf litter andaquaticsurfaces, and development of a method for compiling biogenic emission inventories. U.S. EnvironmentalProtectionAgency Report,EPA-450-4-70-004,ResearchTrianglePark,NC. Zimmerman,P.,Greenberg,J., andWestberg,C. (1988) Measurements of atmospherichydrocarbons and biogenicemissionfluxes in the Amazonboundarylayer,J. Geophys.Res.,93, 1407-1416.
PROBLEMS 2.1A In the simplified calculationof the atmosphericsulfur cycle in Section2.2.4, if the valueof c, the S02 fraction of the total sulfur, is takenas0.5, a sulfur atomresidence time of 50 hoursis estimated.What is the value of b, the fraction of sulfur converted to SO~- beforebeing removed,that is consistentwith this choiceof c? 2.2A
Preparea plot of ozonemixing ratio versusaltitudefrom groundlevel to 50 km. Total molecularnumberdensity of air can be obtainedfrom TableA.8, and 03 molecular numberdensity is given in Figure 2.11. Why do the molecularnumberdensity and mixing ratio peakat different altitudes?
2.3A One Dobsonunit correspondsto 2.69 X 1016molecules03 cm-2 integratedover a vertical column to the top of the atmosphere.Show how vertical ozonecolumn data canbe convertedto Dobsonunits. 2.4A Calculatethe changein total ozonecolumn, as measuredin Dobsonunits, between 1969and 1988for the ozoneprofiles in Figure 2.13. 2.5A Confirm the calculationspresentedin Section2.A.2 on the concentrationandlifetime of methyl chloroform. 2.6B Derive the balanceequationsfor a substancethat is completelyremovedin the troposphere,but for which two tropospheric reservoirs should be considered(see Appendix 2). Apply the balanceto CO using the sourceand sink data from Table 2.14.As a first approximation,assumethat anthropogenicsourcesaretotally concentratedin the NorthernHemisphereandthat biomassburning sourcesaretotally in the
~q! '~AOqR P~!OU SY o(AIUOU!g!lO :)!U~godOJq:lURJo S! S~!:)~s q:)R~ !Rq:I gU!WnSSR) R!RP UO!!:)npold IR!O! wall P~!RW!!S~ f Jo s~nIRA q!!M l~q:I~gO! 'SO!!Rl gU! -X!W :)!l~qdSOW!R S!U~S~ld q:)!qM 'I °dol ~IqRl. U! s~!:)~ds ~~lq:l ~q:I Jo S~W!! ~:)u~p -!S~l :)!l~qdSOW!R ~q:I ~!RW!!S~ sn !~I 'AJO~q:IgU!Og~lOJ ~q! Jo UO!!R:)!IddR UR sy °q '(d + .1)/.1 N f' I « J.I lad 'd/I SRp~!RIn:)1t1:)~ UR:) l. pUR P~U!W -l~!~P ~q UR:) d '.I pURf gU!A\OU)l °P~!!!W~ A!9uRnb ImO! ~q! pUR punodwo:) ~q:I Jo UO!!RJ:lU~:)UO:) :)!l~qdSOW!R p~lnsR~w ~q! wall P~!RW!!S~ ~q UR:)f Jo ~n1t1AY 1 10J UO!!RI~l ~q:I wall Amss~:)~u J! P~!RW!!S~ ~q UR:) 'l. '~W!! ~:)U~P!S~l UR~W ~ql.
- (J)W -~=f S! J ;)W!~ ~~ ;)J;)qdsow~~
;)q~ U! II9SJUO!~:)~JJ
;)Q1 os
S! J ;}U1!:I u! p;}=>npoJd A:I!:IURnb {R:lO:l ;}q:I :lRq:l MOqS
d+.I (ld-tJ- l.ltJ)-oa = (J)W
S! uo!~nIos ~q~ ~nq~pun
0 = (O)W
Wd
-
Jp
l.ltJ°d=
Wp Aq p~W~AO~ S! W !Bq1 MOqS 'J ~W!! !B ~l~qdsOW!B ~q! U! SSBW = (J)~ds ~q1 Jo ~!Bl UO!SS!W~~q! !~'1 °u
JB!O! ~q1 S! (J)W JI "/.1;1°<1
-old
O! q~nou~
"~l~qdsodoJ:j ~q! U! UO!!BJ:jU~:>UO:>SnO~U;)~Owoq B ;)P!A !SBJ S! s~l~qdS!W~H W;)q1nos pUB w~q:jJ°N ~q! U~;)M!;)q ~U!X!W !Bq!
~WnSSB sn !~'1 "J ~W!! AUB !B ;)l~qdsOW!B punodwo:>
~q1 U! ~U!U!BW~l
lI!!S J ;)W!! O! dn p;):>npold
~q1 JO !UnOWB JB!O} ~q1 JO JUO!!:>BlJ ~q! ;)!Bln:>JB:> sn !~I 'l_lA
d S! S;)SS;):>old
=
lIB Aq ~l;)qdsOW!B ~q! WOl] JBAOW~l JO ;)!Bl IBUO!!:>BlJ ;)q! JI °0 J 'ABS ';)W!! B !B ~l~qd -SOW!B ~q1 O! P~!!!W~ !Slg SBM !Bq1 pUB ;)PBW-UBW AlIB!O! S! !Bq! S~!:>~S B l;)P!SUOJ
:>L °'Z'
"P~Al~sqo ;)Soq! q!!M ;)md -WO:> pUB 17I"Z ~IqBl. U! S~~UBl ~q! Jo s;)nIBA UB~W ~q! ~u!sn 'HS pUB HN ;)q! U! SO!! -Bl ~U!X!W OJ;)q1
;)!Bln:>JBJ °I09 ~IqBl. U! U~A!~ S! !UB!SUO:> ;)!Bl UO!!:>B~l HO-QJ
pUB 'p~WnSSB ;)q UB:> ._W:> S;)In:>~Iow
,OI
~q!
X L"8 JO UO!!BJ:jU~:>UO:>HO UB;)W IBqoI~ V
°p;)sn ;)q UB:> Z"V"Z UO!!:>~S U! S;)!Bl ~~UBq:>X~ HS/HN -loddB
;)ql. "O!!Bl ~Sl;)A~l ;)q} U! P~UO!!
~q UB:> ~){l:I:Idn I!OS "HN O! HS O!!Bl I : Z B O! ~U!PlO:>:>B ;):>lnos UB~:>O ~q! pUB
'HS pUB HN ;)q! U;)~M!~q p~uofIJOddB AI;)l!!U~
AIJBnb;) ;)q UB:> S~:>lnOS OJ
;)q O! p~WnSSB ;)q UB:> UO!!BP!XO JHWN
:>!U~~O!g "HN ;)q! U!
°UO!!BJ:jU;):>UO:>tHJ
~q! O! ~U!PlO:>:>B P~UO!:jJoddB ~q UB:> ;):>lnOS UO!!BP!XO tHJ
S3Wll3d11 QNY 'S3iJJ..J iyeOiD
JO O!!Bl HS/HN
;)ql. "~l~qdS!W;)H
W;)q1nos
'NOIJ.ISOdWOJ JI»3HdSOWJ.Y
2:2:1
PROBLEMS 123
atmosphericresidencetime. = p-l. Given valuesof land r,p canbe calculated from 1= rf(r + p) sincethesespecieshave beenemitted long enoughso that rt» 1. Plot/versusp (and .) for r = 0.15 yr-1 showingpoints corresponding to the threecompounds. c. Let us now assumethat the tropospherecan be divided into Northern and SouthernHemisphereswith an interhemisphericfractionalmixing rateof m yr-i. The rate of removal from the atmosphere,p yr-l, is assumedto be the samein both hemispheres.If all the manufactureand releaseof the compoundare assumedto occur in the NorthernHemisphere,then let us find the ratio of concentrations,R, betweenthe Northernand SouthernHemispheresat any time t. Let
= massof speciesin NorthernHemisphere Ms = mass of species in Southern Hemisphere
MN
Showthat the hemisphericmaterialbalancesare
dMN= Poert - pMN + m(Ms - MN) dt dMs = m(MN- Ms)- pMs dt MN(O)= Ms(O)
0
Po MN + Ms = _(err r+p
- e-pt)
show that e-pt
R=
MN(t) Ms(t)
p + m)ert - (r + p + 2m)e-pt - (r + p)e-(2m+p)1 --2(r +2me,t - (r + p + 2m)e-pt+ (r + p)e-(2m+p)t
For err »
R~
+ r+p m
LO'O L£'O LS'O
8 £tI 69
~.1 ~ =+= O'l L~
U Ll ):;:
s
:;:)1 :;:)9 08
J a: v
N ~J~qds!W~H
(1dd) sofJu~ 8u!x!W :):!J~qdsoW1V s'OJ!J'OJdS 'OJ;).Iq.L Jo sop°}l Su!X!w JJ.I'OJqdsow~V I'd"l3'IHV.L
'SIe;)A 9 JO t; 1noq~ u~q:I ;)JOUJ 10U S! 9 Jo 1~q1 pu~ 'Ie;)A I ~q:I
SS;)I S!
;) Jo ;)UJ!1 ;)~U;)P!S;)J ~!J;)qdSOUJ1~ ;)q:l1~q:I Ie;)I~ S! 1! '£ JO 'l Jo J01~~J ~ Aq JOll;) U!
;Jq AI!P~;)J Plno~ S;)1~UJ!1S;) ;)S;)q1;)1!qA\ ',_JA 'l == lU JoJ P;)U!~1qo ;Jq ~~ -S!1~S 1~q:I MOqS ',_JA
uo!1~ln~I~~
= :Jd
P~ '! _JA £°0 = ad' I-JA p'O
Jo sPOq:l;)UJ q10q U;);)M1;)q 1U;)UJ;);)J~~ f.J01~~J
t;IoO = J Jo ;)nItlA ;)1~UJ!xOJdd~ ;)lq~UOS~;)J ~ ~u!UJnssy .J Jo ;)~!oq~ U;)A!~ ~ JoJ d Jo S;)1~UJ
-9S;) Mol pu~ '~1~P Y UJOJJ lU JO ;)1~UJ!1S;) q~!q ~ 'N JO S;)nItlA p;)Jns~;)UJ J;)MOI 01 SP~;)I AlItI~!1~UJ;)1SAS ;)J;)qdS!UJ;)H w;)q:lnos
;)q:I U! spunodUJo~
Jo ;)S~;)I;)J 1~;)J!P ;)q1
'p~q J;)q:lo ;)q:I uO .u09~ln~I~~ 1SJY ;)q:I U! p;)sn S;)1~J uO!1~npoJd ;)A!1~I;)J Jo SUO!1 -~UJ!xOJdd~ ;)q1 Jo 1U;)pu;Jd;)PU! ;)Ie d Jo S;)1~UJ!1S;);)q.L 'P;)U!UJJ;)1;)P ;)q ~~ S;)nl~A
lU U! ;)~~J ;)UJ;)J:lX;) ;)q1'10'0 + £0.0 = dp~
'£0'0 +£1'0 =
J
"l°0 + poI = N Aq
U;)A!~ S;)~U~JJOll;) ;)q:I JOd 'I-JA poOS! lU JoJ ;)nItlA ;)1~!JdOJdd~1S0UJ;)q:I '! _JA WoO N ;)nl~A ;)q1 ~U!SO ,_JA t;I'O = J JoJ d snSJ;)AN Jo 10Id
= d q:I!M I-JA t;I '0 = J pu~ 'y JoJ Iod°'l ;)lq~.LUJOJJ P'I oLoOp~
=
'poO "l°0 = lU p~
~ ~U!J1Jd;)JdAq (,_JA) d Jo S;)nItlA ;)q:I ;)1~UJ9S;)';)J;)qdS!Ul;)q q~~;) U! U09~J:lU;)~UO~ punoJ8){~~q P;)x!Ul Ayq~nOJOq:l;)q:I Jo S;)1~UJ9S;)q~nOJ s~ I °d°'l ;)lq~.L U! ~~p ;)q:I ~U!SO °s;)J;)qds!Ul;)H w;)q:lnos p~ W;)q1J°N q10q J;)AO;)~~ItIq ItIqol~ ;)q:I ~U!UlJ°J -J;Jd Aq ;)P~UJ;Jq ~~ S;)UJ9;)~U;)P!S;)J~!J;)qdsoUJ:j~JO uo!1~ln~ItI~ 1U;)pu;Jd;)PU!uy 'p
SaWll3dI.
aNY 'sa.:)}..:) .V90.0
'NOI.LISOdWO:):)I~aHdSOW.LV tZI
3
Atmospheric Photochemistry and Chemical Kinetics
3.1 RADIATIVE FLUX IN THE ATMOSPHERE The essentialenergyflux in atmosphericchemistryis the flux of solarradiation.The radiantflux densityF is the radiantenergyflux acrossany surfaceelement,without consideration of the direction; F is measuredin watts per squaremeter (W m-1. The radiant flux densityis called the irradiance E when the radiation is receivedon a surface.Thus F and E are often usedinterchangeably.We will use F in generaland E when we are referring specificallyto the radiantflux densityon a surface.The radianceL is the radiantflux as a function of the solid angled{J)crossinga surfaceperpendicularto the axis of the radiation beam;L is measuredin wattsper squaremeterper steradian(W m-2 sr-I). The radianceas a function of direction gives a completedescriptionof the radiativefield. Considera beamof radiation of radianceL crossinga surfacedS with the beamaxis making an angle e to the normal to dS (Figure 3.1). dS projectsasdS cos e perpendicular to the beamaxis of the radiation,and the radiantflux densitydF on dS is
dF
= Lcos(J dw
The radiant flux density,or irradiance,on the surfacedS is obtainedby integratingthe radianceover all angles,
E
=
f L case dw
When the radianceL is independentof direction, the radiative field is called isotropic. In this case,(3.2) canbe integratedover the half space,n = 271; andthe relation betweenthe irradianceandthe radianceis
E = JrL
12-"
I
",_WU z_W 1\\ su p:)ss:)Jdx:) S! '(Y)H ',,:JUV!PV.l.l!lV.lJ:J"ds :)q1 ':):>upns u uodn 1u:)P!:>U!UO!1U!PUJ~u!.l:)P!suo:> U:)qM 'ApU:)flJA!nbH
i
1- WU z- W 1\\) J:)1:)WOUUU J~
J:)1:)W :)mnbs J~
S11UMU! p:)ss:)Jdx:)
'flJAJ:)1U! Q1~U:)[:)AUM 1!Un
J~ A1!SU:)Pxng 1UUWUJ:)q1 S! '( Y)d 'N!SU"P xnlf JUV!PV.llV.lJ:J"ds JO :JpfJIUO.ll{:JOUOlU :)q.t iz.£
:)Jn~!d :):)s) () :)1~UU:)Q1Aq P:)Z!.l:)1:>Umq:> S! WU:)q ~U!WO:>U!:)Q1JO UO!1:>:)J!P:)Q1:)J:)qM
(V'£)
CPP(JP(JU!S(JSO:>(CP'(J)7 of °f=:I Jil Jill 'tj> p~
() S;}!UU!pJOO:) IU:)!l;}qds
;}q! J;}AO ;}:)~!PUJ
-;}!U! Aq ;}:)UU!PUJgU!WO:)U! ;}q! WOJ) P;}U!U!qo S! ;}:)upns IU!uoz!l°q
;}q! gU!!UJg
U uodn ;}:)~!PUJJ! ;}q.L
S:Jll3NI)f 1Y:JIW3H:J aNY A1I.LSIW3H:JillOHd :JI1I3HdSOW.LY 91I
RADIATIVE FLUX IN THE ATMOSPHERE 127
Sometimesthe spectralradiant flux density is expressedas a function of frequency v, that is, F(v). Becausethe frequency v of radiation is relatedto its wavelengthby (1.13), v = ciA, F(A) andF( v) can be interrelated.Sincethe flux of energyin a small interval of wavelengthdA mustbe equalto that in a small interval of correspondingfrequencyd v,
F()')
Since dv
d)'
= F(v)
dv
= (cj)..2) Id)..l, F()')
=
~)F(V) -;;)F(v) V2
Generally we will deal with wavelengthas the variable rather than frequency,although they can easily be interrelatedasindicatedin (3.6).
3.1.1
Solar Radiation Received on Earth
Light absorption and scattering by atmospheric constituents attenuate the solar radiation as it passes through the atmosphere. The amount of attenuation depends on the nature and concentration of gases and particles and on the pathlength through which the solar beam passes.The pathlength is a function of the angle of the Sun, which depends on time of day, latitude, and date. Also, reflection of radiation from the Earth's surface contributes to the radiation at any point in the atmosphere. Table 3.1 gives the solar spectral irradiance, normalized to a solar constant of 1367 W m-z. Solar UV radiation, expressed in units of photons cm-z S-I nm-l, at the surface (0 kIn), 20, 30, 40, and 50 kIn is shown in Figure 3.3. (A discussion of the processesthat lead to the progressive attenuation of radiation was given in Chapter 1 in association with Figure 1.9.) Usually radiative transfer through the atmosphere is calculated by radiative transfer models that divide the atmosphere into layers and the radiative spectrum into wavelength intervals (Goody and Yung, 1989; Liou, 1992; Lenoble, 1993). The vertical distribution of trace gasesand particles and the surface albedo serve as inputs to such models. Near the Earth's surface the spectral distribution shows a steep cutoff, when moving from longer to shorter wavelengths, beginning at about 320 nm. Radiation below 290 nm does not reach the Earth's surface; as noted in Chapter 1, this cutoff is the result of absorption of solar radiation by stratospheric ozone. There is no overlap between the absorption cross section of the major atmospheric gases,Nz, Oz, COz, and HzO, and the solar spectrum at the Earth's surface. Overlap does exist, however, with a number of trace gases that are
panUllUO.)
860{ PLOt 8PO{ 6{O{ 6'L86 8L~6 £'P£6 {'6{6 ~'£O6 {'L88 L'698 6'O~8 9'{£8 8'{{8 9'O6L ~'89L {'L~L £'~PL P'££L £'{ZL 8'80L 0"969 0"£89 L'699 {'9~9
rZP9 6'a9 £'£(9 r86~ 8L8~ ~'L9~ P'{~~ O"~£~ L'~{~ L'86P {'{8P £'£9P r~pp L'9ZP P'80P 8'68£ {'{L£ £L~£ ~'£££ £'~{£ {'96Z P'98Z
L'9a (._w 1\\) 2'-W -~" M ,,(P(,'()A.~r
PLP"O 96P"0 ~P~"O 809"0 I99"O ~PL"O Z9L"0 L9L"0 008"0 0£8"0 ~06"0 096"0 L66"0 ~VO"I I80"I £PI"I 6~I"I 88I"I ~OZ"I 8£Z"I £9Z"I 6~Z"I LZ£"I Z££"I L8£"I 88£"1 O~P"1 P6v'I 81~"1 £L~"1 809" I 919"1 1179"1 9£L"I ~OL"1 8PL'I ~I8"I OP8'1 ZLL'I ~P8"I 1798"1 ZLL"1 P~6"1 ££8"1 6v6'I 6~8"I 8Z6"1 600'Z (I-WU z_w M) (y),f L9f1 Jo ,.--JuB}suo:)
~"Z~ZI ~"ZOZI ~"Z~11 ~"ZOIl ~'Z~OI ~'ZOOI 0'186 0"196 0"lP6 0"IZ6 0"106 0"188 0"198 0"IP8 0"IZ8 0"108 0"16L 0"I8L O"ILL 0"19L O"I~L O"IPL O"I£L O"IZL 0"1 IL O"IOL 0"169 0"189 0"IL9 0"199 0"I~9 O"IW 0"1£9 ~"OZ9 ~"OI9 ~'009 ~'06~ ~"08~ ~'OL~ ~"09~ ~"O~~ ~"OP~ ~"O£~ ~"OZ~ ~"OI~ ~"OO~ ~"~6P
--~"06P (wu)
'(
v"L9Z v"L~Z £"LvZ I"L£Z £"La I"LIZ 6"90Z 8"961 L"981 I"LLI £"891 8"6~1 £"Z~1 8"£vl 1"~£1 £"9Z1 0"811 ~"601 0"£01 L9"L6 a"Z6 LL'L8 ~L"18 Z~'9L 9~"OL 9r~9 69"09 Z~"~~ LL"O~ Ll"9v 69"lv 98'~£ ~1"[£ 9V"a £O'vZ v~"OZ 9r8[ [~"~[ 6["£[ vv'OI V9£"8 III"£, ~vr9 L~r~ lZ6'£ L96"Z L8£"Z Z60'Z
.l810S 8 OJ paZ!l8W.ION , IYP(,Y)d~J '33U8!P8.I.II '
SJll3NI:>I1YJIW3HJ
t;°t;8t
t;°OU
£6rO 08rO ZOl'O 680'0 6~O'O
t;°t;U
ooro
t;°08Z
Z£8'l L£O'Z 810'Z 6L8'l VW'Z ZW'Z 9£O'Z 9vl'Z £Z8'l ~lL'l ~ZL'l 9£1'1 L69'l 09L'l 9£L'l ZO~'l ZL9'l 6179'1 8L£'l £U'l v~6'O 68r1 lvl'l ~LO'l £9r1 6L6'O 8~O'l 611'1 L96'O Z66'O Z86'O vv1'l 9179'0 ZlL'O ~69'O ~6v'O 08~'O £Ov'O 8v~'O £Z9"0 1v1'O Zll'O
(I-WU t_W It\) (Y)d
18.1J33dS .l810S
t;°08t t;°t;Lt t;°OLt t;"t;9t t;"09t t;'t;t;t t;'ot;t t;'t;tt t;°Qtt t;'t;£t t;°O£t t;°t;Zt t;°OZt t;°t;lt t;°Olt t;°t;Ot t;°OOt t;°t;6£ t;"06£ t;°t;8£ t;°08£ t;°t;L£ t;°OL£ t;°t;9£ t;°09£ t;°t;t;£ t;°0t;£ t;"t;t£ t;°Ot£ t;°t;££ 0°0££ rt;Z£ oom£ rt;l£ 0°01£ t;°t;0£ t;°OO£ t;°t;6Z t;°06Z t;°t;8Z
t;°t;9Z t;°09Z t;°t;t;Z t;°Ot;Z (wu) '(
'£ 3'I8VJ.
aNY A~SIW3HJO.LOHd JI~3HdSOW.LY 8'lI
RADIATIVE FLUX IN THE ATMOSPHERE 129
TABLE 3.1 (Continued) F(A)
A (nm)
(W m -2
om
-I,
0.438 0.387 0.353 0.323 0.296 0.273 0.247 0.234 0.217 0.187 0.169 0.148 0.133 0.126 0.116 0.093 0.075
J;F(X)dX (W m-1 1120 1140 1159 1176 1191 1205 1218 1230 1241 1251 1260 1267 1274 1281 1287 1298 1307
A (nm)
F(A) (W m-2 nm-1 0.066 0.054 0.047 0.041 0.036 0.031 0.024 0.019 0.015 0.012 0.010 0.008 0.005 0.003 0.002 0.001 0.000
f;F(A')dA' (W m-2)
1313 1319 1325 1329 1332 1336 1342 1346 1349 1353 1355 1357 1360 1362 1364 1366 1367
Source: Frohlich and London (1986).
important in troposphericchemistry.In spite of its stratosphericabsorption,a sufficient overlap exists betweenthe solar UV spectrumat the Earth's surfaceand the absorption crosssectionof ozonethat 03 photolysisis also importantin troposphericchemistry.
3.1.2
Earth Geometry for Solar Radiation
Because of the rotation of the Earth around the Sun and its daily rotation around itself, the solar irradiance actually received at a given location on Earth depends on the location on the Earth, the date of the year, and the time of day. The Earth describes an ellipse around the Sun. The shortest distance between the Earth and Sun, occurring around January 3, is 1.471 X 108kIn, and the largest distance, around July 4, is 1.521 X 108kIn. The mean distance, the average of the two extremes, is 1.496 X 108kIn. The Earth rotates in an eastward direction around the polar axis, which is inclined at 23 °27' from the normal to the ecliptic plane. The line joining the center of the Earth to the center of the Sun makes an angle 11with the equatorial plane, which is called the Sun declination with the equatorial plane. 11reaches its maximum value of + 23 °27' at the summer solstice around June 21; it reaches its minimum value of -23°27' at the winter solstice, around December 21, and is zero at the spring and fall equinoxes. 11can be computed at any day of the year by 11(in radians) = -0.4cos[27r(dn + 10)/365], where dn = 1 for January
1,2 for January2, andsoon.
"pJ1!M:}S~M 0081 -
-~q ~A!:}R~~UpUR pJ1!M:}SR~0081 pUR 00 U~~M:}~q ~A!:}!sod 'q:}nos ~q:I woll "q:lnos :>!qdRl~O~~ ~q:ll°
~q:} pJ1!MO:} U~)[R:} AlIt!l~U~~
S! :}Rq:} ~:>u~l~l~ll°
pUR 00 U~~M:}
p~msR~w S!
O
~URld IR:>!:}J~A R pUR uns
~URld It!:>!:}J~A ~q:I U~~M:}~q ~I~UR ~q:I S! (t/> ~pm!:}RI q:I!M p~snluo:>
~q O:} :}ou) O
l{JnZU!ZlJ ~ql. "s:}u~m!:}suo:> :>!l~qdSOW:}R Aq ~U!l~:}:}R:>S pUR UO!:}WOSqR Aq A:}!SU~:}U! U! UO!1:>np -~l ~q:ll~:}R~l~ ~q:} pUR ~l~qdsoW:}R ~q:} q~nolq:l UO!:}R!PRl J1!IOS 10 q:I~U~Iq:lRd ~q:} S! l~~uoI ~q:} '~I~uR q:I!U~Z J1!IOS ~q:ll~~J1!I -~p U! p~lnsR~w
'IR:>!:}J~A pmMdn
~ql. "(uoz!l°q
p~:}!ufl)
uo uns)
U! UMOqS ~J1! uns ~q:}l°
10 pJ1!M:}SR~ ~A!:}!sod '0081
q:>!MU~~lD
pR~ql~AO)
00 woll
~q:}l°
S~~l~
~I~UR ~q:} S!
S~:}RU!PlOO:> It!:}UOZ!l°q
~ql.
'pJ1!M:}S~M ~A!:} S! 7 "UR!P!l~W
pUR 00 u~~M1~q p~lnSR~W
~q:I pUR 'It!:>!:}J~A IR:>°I ~q:} pUR S!XR J1!Iod ~q:} Aq p~ug~p
IR:>°I ~q:} U~~M1~q ~I~UR ~q:I S! 7 ~pm!~uoI w~q:}J°N
006 O:} (uns
It!:>OI ~q:I O:} :}:>~dS~l q:I!M UO!:}:>~l!P s,uns
De alBulJ l{1!UaZ J1!IOS ~ql. .~"£ ~ln~!d -R~~U pUR q:>!MU~~lD (wop~Uf)I -P!l~W
pUR ~l~qds!W~H
~q:I U! ~A9!sod
~ql. '~l~qds!W~H
'(006+)
w~q:}nos
'UR!
~q:} U! ~A!:}R~~U
~Iod ~q:} O:} (00) lo:}Rnb~ ~q:I wolJ
S~~l~~p
'~URld It!!lo:}Rnb~ ~q:I pUR It!:>!:}J~A It!:>°I ~q:} U~~M:};;Iq ~I~uR ~q:I S! ~pm!:}RI ~ql. "(v"£ ~ln~!d) 7 apm!Buol S:}!pUR t/> apm!llJl S:}!Aq p~Z!l~:}:>RJ1!q:> S! q:lIe3 ~q:I uo :}u!od V
U! p~lnsR~w
t/>
'Jq} }I! pUt! s'Jpmml! SnO!JI!A }I! (I-WU
I-S z_W:) suo}oqd)
iv66[ '"[I!}'J 'JJOW'JO) 'J:)l!jJns s,qUl!3 xny :)~u!1:)1![I!J}:)'Jds Jt![OS fOf nODI.!!
wu 'q!~U~I~Ae1\\ oat
o~£
00£
O~l
OOl
O~T 6°1
I
oz'
101°1
O'l
Ot
n~ v\
.=
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
01
"(",01
S:)ll3NI}I 'V:)IW3H:) aNY A~.LSIW3H:)O.LOHd:)I~3HdSOW.LV Ofl
RADIATIVE FLUX IN mE ATMOSPHERE 131
FIGURE 3.4 Definition of latitudeand longitudeof a point M on the Earth. Oz is the local vertical.
The period of the Earth's rotation is constant and is measured by the interval of time between two successive passagesof a star in the observer's meridian. This is called the sidereal day. The interval of time between two successive passagesof the Sun in the observer's meridian, the solar day, is slightly longer (by about 4 minutes) than the sidereal day. Also, becauseof the ellipticity of the orbit and the inclination of the axis, the solar day is not constant throughout the year. For practical purposes, we use a mean solar day divided into 24 hours. Local mean time (LMT) noon is defined on this basis. The real Sun passes in the meridian either earlier or later than the average Sun. The passageof the real Sun in the observer's meridian defines the local true solar time (TST) noon. The difference between the true solar time and the local mean time is ET = TST - LMT, which varies between :t 15
FIGURE 3.5 Horizontal coordinatesof the Sun:
eo= solar zenith
angle;
angle; h
= azimuthalangle.
= altitude
cf>
so:) Of}U!S (v
Iv - 4>1= Of}
S! ~I3'UUq1!U~Z lUloS ~q1 '(0 = H)l.Sl.
U!S
-
cf>
uoou Iu:>OI1\1'
U!S Of)so:)) = Oct> so:)
H so:) V so:) so:) + v U!S U!S = Of}so:)
:H ;)Ig~ Jnoq ;)q:I p~ 'f/J ;)pm!!~I ;)q:I 'v UO!!~U!I:J;)Puns ;)q:I O! of/J;)Ig~ ~q:lnw!z~ ;)q! p~ Of} ;)Ig~ q:I!U;)Z lP.IOS ;)q! gU!!:J;)uuo:J P;)A!J;)P ;)q ~:J d!qsu09~I;)J ~ 'Al!;)wouog!J! I~:J!J;)qds uo P;)S~H .J;)!JB;)J;)q:I;)A!!~g;)U P~ uoou ;)JOJ -;)q ;)A!!!SOd S! H .S;);)Jg;)PU! H S;)uY;)Pq:J!qM '(.LS.L - ZI)~I = H 'Jnoq J~ o~I ,(q S;)g~q:J pu~ .LS.L uoou !~ OJ;)ZS! !I 19"f .g!t!) U~!P!J;)W JP.IoS;)q:I P~ U~!P!J;)W S,J;)Aj;)sqo ;)q! U;);)M! -~ ;)Ig~ ;)q:I S! H ;)Ig~ Jnoq ;)q.L .u~!P!J;)W q:J!MU;);)JO ;)q:I WOJJ !S~;) ,{I;)A!!!sod p;)!uno:J 'S;);)Jg;)P U! ;)pm!guoI ~:J°I ;)q:I S! 7 ;)J;)qM '.L3 + 717+ .LWO .LS.L S! ;)W!! lP.IOS ;)nJ!
=
;)q.L lS;)M gU!og !unOW~;)ulp.S;)q! ,(q S;)S~;)J:J;)P pu~ !S~;);)pm!guoI Jo 0 I J~ s;)!nu!W 17,{q S;)S~;)J:JU! ;)W!! U~;)W I~:J°I ;)q! 'q:lm3 ;)q! JO UO!!~!OJ009£ O! spuods;)JJo:J sJnoq 17Z;):JU!S Jo ~!P!J;)W
;)q! !~ ;)W!! ~;)W
.wopgU!)l P;)!!UO 'q:J!MU;);)JO I~:>OI ;)q:I S! (.LWO> ;)W!! U~;)W q:J!MU;);)JO ;)q,L .s;)!nu!w
S;)ll3NI)I 'lY;)IW3H;) aNY A}l.LSIW3HJO.LOHd;)I}l3HdSOW.LY Z£I
ABSORPTION COEFFICIENT AND ABSORPTION CROSS SECTION
133
3.2 ABSORPTION COEFFICIENT AND ABSORPTION CROSSSECTION Considerthe propagationof radiationthrougha mediumand selecta layer of thicknessdx perpendicularto a beamof intensity F (Figure 3.7). The lossof intensity F over the infinitesimalslice dx as a result of light absorptionis dF
= -baF dx
(3.10)
where ba is the absorption coefficient (m-l) of the medium. For a finite path between Xl and X2,integration of (3.10) gives F(X2)
= F(x,)
exp( -8a)
where ba{x) dx
(3.12)
is the absorption optical thickness (dimensionless) between Xl and X2' If the medium is ho-
mogeneous,ba(x) = ba,independentof X, and
F(xV
I
= F(XI)eXp[-ba(X2
-XI)]
(3.13)
This resultis known asthe Beer-Lambertlaw of extinction.Whenx is measuredvertically in the atmospherethe optical thicknessis called the optical depth. The transmittanceof the layer betweenXI and X2along the direction of propagationis definedby F(xV = exp( -b'a) 'f=~
Ildx
.
..
F(x.;
F(~
FIGURE 3.7 Propagationof radiationthrougha medium.
yp
'if
Jp
I
Vuv ~~npoJd 01 Jp q:I!M ~uoIU ('S'H~'1) ~p!S puuq-1J~I ~q1 011q~nOJq ~q UU~ q~!qM 'J~AUI ~q:I Jo ~wnloA IU:l01~q:l1Snr S! ("S"H'"M) ~p!S PUUq-1q~!l ~q1 uo J01~UJ1SJg ~q.L ro\
yp
.
y
(Y) VD(Y) Vct>f
(l)p (tP'(J'Y)7!
I
r
spf zp 1- = VNP
(Jp Vu)
'Sq:lgUgIgAUM IlU jgAO pUt! 'jg,{UI gq:l JO g:)upns jgddn gqt jgAO 'SgIgUU P1IOSIlU jgAO gU1tUjggtu1,{q pgUret -qo S1Jp lUAJgtu1 gw!:! U u1 gWnIOA gq:l U1 gU1JJn:):)ovNP SU01tU1:JOss1P Jo jgqwnu IUtOt gq.L
yp Ip rop zp sp
(cp'e 'Y)7Vu(y)v.o(y)vcp
S! yp ~~UBJ ~~u~I~AB/t\ U! lp ~UJ!1U! P~1B!:)OSS!Ps~ln:)~loUJ Jo J~qUJnu ~~ snq.L ("P/iJ!,( Ulnluvnb ~~ P~IIB:) S! S!q.L) " (y)v4> S! ~1B!:)OSS!P ll!/t\ ~ln:)~loUJ ~~ 1Bq1 A1!I!q -BqOJd ~~ 'p~qJOSqB u010qd q:)B~ JOd "()so:)/zp
=
«()Ul "8°£ ~Jn~!d U! U/t\oqs ~~u~lq1Bd
~q1 S! «()Ul pUB V JO ~ln:)~loUJ B JO (Z-UJ:) UO!1:)~SSSOJ:)UO!1dJOSqB~~ S! (y) VD ~J~q/t\ YP Jp (l)p sp fjSO:) (CP'fj 'Y)7(fj)
UlVU(y)V.o
su yp ~~UUJq1~u~I~AUA\ U! Jp ~W!1 U! p~qJosqu suo1oqd
SJI.L3NI)l 'lYJIW3HJ aNY A~.LSIW3HJO.LOHdJI~3HdSOW.LY 9£1
ACTINICFLUX 137
As indicated,the quantity on the R.H.S. multiplying nA is jA. The spectralactinic flux is then the radiative quantity that drives the photodissociation,that is, the quantity that multiplies rPA(A)aA(A)to producea product that when integratedover all wavelengthsproducesthe photodissociationrate coefficient. The spectralactinic flux I (A) is then I(J..)
= !L(J..,(},»
dw
w
=
ff
(3.23) L(A, 0, 4» sinO dO d4>
t/> IJ
The spectral irradiance E()") is the radiant energy crossing a surface (per unit surface area, time, and wavelength) and is calculated from L()", 0, 4» by (3.4),
E()")
=
ff
L()", e, 4» cose sine de d4>
(3.24)
"'9 The factor cos () reflects the change in the projected area of the surface as the angle of incidence is varied. This factor does not appear in the expression for the actinic flux because the projected area and the pathlengths offset exactly. As the angle of incidence is changed from overhead «() = 0°) to nearly glancing «() -+ 90°), the energy (irradiance) incident upon the layer decreases,but the actinic flux remains unchanged because the lower intensity is exactly compensated for by the longer pathlength of light through the layer. Two special casesexist, collimated and isotropic light, in which simple relationships exist between actinic flux and irradiance (Madronich, 1987). These two limiting cases often can be used to approximate atmospheric situations. Collimated light can be considered to be parallel, having originated from a very small solid angle Ll(JJ(j.An example is the direct solar beam, which subtends Ll(JJ(j~ 7 X 10-5 sr at the Earth. Over this small solid angle the radiance may be taken as constant, while at all other solid angles it equals zero: L«(}"p) Lo = constant over the solid angle Ll(JJ(jcentered about «(}o,CPo).In this case (3.23) and (3.24) become
=
10
= Lo~~
(3.25)
Eo= Locas(Jo~~ Thus, if
(3.26)
Lois the extraterrestrial solar radiance, Eo is the solar irradiance at the top of the at-
mosphere. The other special case is that of isotropic radiation, L«(J,4»
=
Ll
= constant. In
this
case
= 21TLI
(3.27)
E = 1TL.
(3.28)
I
Equation(3.28)is identicalto (3.3).
SJll3NDI 'lVJIWHHJ aNY A&SIWHHJO.LOHd JI~HHdSOW.LV 8fl
ACTINICFLUX 139 TABLE 3.2 Relation Betweenthe Slant Path Optical Depth m and sec 80for a Standard Rayleigh Atmosphere
SOUIre: Kasten and Young (1989).
If Foo(A)is the spectralradiantflux densityat the top of the atmosphere(TOA), that at groundlevel on a planeperpendicularto the solarbeamcanbe determinedfrom an extension 0(3.11), F(A) = Foo(A)exp[-m8(A)]
(3.37)
where 8(A) is the total atmospheric optical depth at wavelength A, and m is the ratio between the slant path optical depth for the actual solar zenith angle (Joand the overhead Sun optical depth (Figure 3.8). When the Sun is directly overhead «(Jo= 0°), m = 1.0andatmospheric attenuation is at its minimum. As the Sun approaches the horizon, (Joincreases toward 90°, m increases and the attenuation of sunlight increases as a result of the increased pathlength. When the sphericity of the Earth can be neglected,
m=
-
1
= secf}o
(3.38)
coseo
This relation holds for eo less than about 75°. For larger values of eo, m has to be computed, taking into account the path through the spherical atmospheric layers, the vertical profile of absorbing and scattering species, and the curvature of the optical rays as a result of refraction. Values of m are given in Table 3.2 for the molecular atmosphere, that is, the Rayleigh scattering optical depth!
2The TOA radiative flux can be estimated by measuring E()..) on a surface at ground level for various solar zenith angles
(Jo and
plotting
In E()..)
versus
m and
extrapolating
to m
=
O. The
slope
of the best-fit
straight
line
is 8()..)
This method of calculating E-C)..) is called the Bouguer-Langley method. Integrating E_()..) over all wavelengths
producesthe solarconstantSo'
-J;)AUO:>;)Q
,_lOW 11!:»j
= 06£Z"O
X (,_lOW PI) S! ,-lOW 11!:»j PUI! ,-loW PI U;);)M1~ JO1:>l!j UO!S
",-(OW 11!:»j S! s;)ln:>;)low qt!M P;)11!!:>OSSI! S;)!gJ;)U;) gu!ss;lJdx;) JOj S1S!W;)q:>f.q p;)sn 1!Un (I!UO!1!PI!J1V,
UOf!dJosqy .;):>t!ld ;)){t!"!s;)ln:>;)low U! SUO!t!sut!I1 :>!UOI1:>;)l;) q:>!qM tt! S;)!~J;)U;);)q:I Ot Alq~noJ puods;)JJo:> In:>:>o Ut!:>;)~Ut!q:> ]t!:>!W;)q:>q:>!qM tt! sq:I~U;)l;)At!M. 'wrut:>~s :>!t;)u~ewoI1:>;)l;) ;)q:IJo UO!~;)J ;)lq!S!A ;)q:I U! ;)!l UO!t:>t!;)J]t!:>!W;)q:J~uf!oWOJd Jo ;)lqt!dt!:> ;)Jt! teq:l suotoqd A~J;) -U;) tS;)MOl ;)ql. "(wu OOt moqt! Jo qt~U;)l;)At!M t! ot spuods;)JJo:> q:>!qM) I_lOW PI 00£ 1noqt! S! A~J;)U;) puoq ON-o ;)q:I '"ON U! :,_lOW PI ~Ol1noqe S! A~J;)U;) puoq ~o-O ;)qt ';)In:J;) -loW ;)UOZO ;)q:I U! ';)ldUJt!x;) JOd 'S;)!:>~s Ot ;)[qt!Jt!dwo:>
S! wM:>;)ds
-uo:> A~J;)U;) ;)ql.
]t!:>!W;)q:> punoq
A[;)SOOI J;)q:lt!J Jo S;)!~J;)U;) puoq ;)q:I
;)lq!S!A ;)q:I Jo PU;) P;)J ;)qt Jt!;)U sqt~U;)[;)At!M
's;)[n:>;)[ow
Jo S;)!~J;)U;) puoq
qt!M
p;)Jt!dwo:J
~
Jo suotoqd
U! P;)U!t!:I
Ut!:> S;)!~J;)U;) uotoqd
1~lo1At!I'Jln wnn;)t!A 1~lo1At!I'Jlnm~N
O~-OOl OOl-OO17 Ol17 OL17 O£~ 08~ Ol9 OOL
-009 0017Z009- -00£ 08l O~l O£l OIl 061 OLI
1~lo1A ~nlH U~~JD Moll~J.. ~gUt!JO p~~ ~lq1s1A -~
~WUN
(wu) Sq:lgu~I~A~M Jo ~gu~"N JO q:lgu~I~A~M [B:>!df.J.
(I_TOW PI) S;)!gj;)ug JO ;)g~~ ~:)!d.\L
:~m f\IJS!W~q:) :)p~qdsow:ag U! :as~J~:aU! Jo WnII -:)~ds :)!:a~uggWOJ:l:)~I~~q:aJo uo!:lJod ~q:aU! S~!gJ~U~pUt! sq:agu~I~AgMJo s~gUt!J ~:)!dA.L
y
=3
lOW PI ~OI X ~'l96I'I
'wu u! Y qt!M 'S! y q:lgu~I~AeMJUIn:J!tmde qt!M p~te!:Josse£,(gJ~U~~q.L
-y J\Y x 'l'lO'9 =
(6£'£)
;)'1 £"GV
11'1£"GOYX 'l'lO'9
= 3
'I_lOW saln~alow 1:001X 'l'l0"9 'laqwnu S,Olp~~OAVAq '(\11~U!AldrllnW Aq a~umsqns~}O alow lad passaldxa aq U~~A~laUau010qd
0 + ON +- 111{ + zON I '.ON 10 S!sf..l010qd ~q1 J01 '~Idwu -x~ J01'ltlf su u~11!lM S! UO!1:>U~J lu:>!W~q:>u U! 1ug1:>U~J u S! 1~q1u010qd ~q1 'f..l1S!W~q:>O10qd :>!l~qdsow1u uI .It If S! It f..:>u~nb~J11° u010qd ~uo 10 f..gJ~U~~q1 'MuI s,){:>uuld 01 gU!pJO:>:>Y
A.H.LSIW3H:JO.LOHd:Jm:rndSOW.LV S:>ll3NI}J
'V:>IW3H:>
aNY
A~SIW3H:>O.LOHd
:>IH3HdSOW.LV
to°£ Otl
ATMOSPHERICPHOTOCHEMISTRY 141
of radiation can only occur if an upper energy level of the molecule exists that is separated from the lower level by an energy equal to that of the incident photon. Small molecules generally exhibit intense electronic absorption at wavelengths shorter than do larger molecules. For example, N2 and H2 absorb significantly at wavelengths less than 100 nm, while O2 absorbs strongly for A < 200 nm, H2O for A < 180 nm, and CO2 for A < 165 nm. As radiation penetrates deeper into the atmosphere the shorter wavelengths are progressively removed (recall Figure 1.10; also Figure 3.3). Photochemistry in the troposphere is confined to molecules that absorb radiation of wavelengths exceeding about 290 nm. The primary step of a photochemical reaction may be written A+hv~A* where A * is an electronically excited state of the molecule A. The excited molecule A * may subsequently partake in: I
Dissociation A*--+-B1 + B2 2 Direct Reaction A* + B--+-CI + 3 Fluorescence A*--+-A+hv 4 Collisional deactivation A* +M--+-A+M 5 Ionization A*--+-A+ +e
C2
The quantumyield for a specificprocessinvolving A * is definedasthe ratio of the number of molecules of A * undergoing that process to the number of photons absorbed. Since the total number of A * molecules formed equals the number of photons absorbed, the quantum yield cf>ifor a specific process i, say, dissociation, is just the fraction of the A * molecules that participate in path i. The sum of the quantum yields for all possible processesmust equal 1. The rate of formation of A * is equal to the rate of photon absorption and is written4
d[A *] = ;A [A]
dt
(3.41)
where jA, having units S-I, is the first-order rate constantfor photolysisor the so-called specificabsorptionrate; jA is normally takento be independentof [A]. The rateof formation of B 1 in step I is
~
dt
=cf>tjA [A]
(3.42)
where cf>lis the quantum yield of step 1. Photodissociation of a molecule can occur when the energy of the incoming photon exceeds the binding energy of the particular chemical bond. Thus the excited species A * can lie energetically above the dissociation threshold of the molecule. One or more of the prod'In writing chemical reaction rate equations we will generally use [A] to denote the concentration of species A, r..thpr th.." r.
(917'£) 'S~J\.I~}U! q}gU~I~Al1M I~wS J~AO UO!}l1WWnS11Aq s~sodJnd ~Uo!}l1}ndwo:> JOJ P~}l1W!XOJddl1U~}JO S! (~t.£) U! ~Jg~}U! ~ql.
'~~~SUO;) ;)~UJ S!S,(lO~oqd J;)pJO-~SJY ;)q~ su P;)Y9U;)P!
°UJU06<: -dJosqu
q;)!qM
(vv'£)
=
8~In:>~Ioill
U;);)q ,(PU;)JIU suq S~;)){;)UJq U! ,(~!~~nb ;)q.L JOj ';)J;)qdsodoJ:) ;)q1 JOd .SJn;);)Q UO!~
I Y ';)ldUJux;)
~U sq~~U;)l;)AUM ~S;)~UOI P~
_8 (_ill:>
~S;)1Joqs ;)q1 ',(l;)A!~;)~S;)J
[V]
';)m Zy puu Iy ;)J;)qM
YP (y)/(y)Vl/J(y)V.o 's~8u:)1
-:)A~M :)lQ1ssodlIt! J:)AOU01sS:)Jdx:) s1~ }O It!J8:)!U1:)q! s1 V}O :)!~J S1SAIO!oqd It!!0! :)qJ. (£v£)
[V] YP (y)[(y)vcj>(y)v.o
S! yp + Y 0:1Y UO!~;}l q:l~U;}I;}ARM ;}q:I U! S!SAI°:loqd ;}q:I Aq uo!ss;}ldx;}
Jo ;}:lRl ;}q:l snqJ. '(y) VI/> 'S!SAI°:loqd
;}AOqR ;}q:I AId!:lInW
0:1 P;};}U ;}M V JO S!SAI°:loqd
I-S f-W:)sUO:loqd
lOJ PI;}!A wn:lURnb
Jo ;}:lRl ;}q:I ;}:lRIn:)IR:) OJ.
[V] yp (y)/(y)V.o
'(E-W:) s;}In:);}Iow) V Jo UO!:lRJ:jU;}:)UO:) l~WnU ;}q:I pUR '(I-WU I-S o_W:) suo:loqd) (y)/ xnlJ :)!U!:I:)R {RJ:j:);}ds ;}q:I '(I_;}In:);}IOW oW:) (y) V.o u09:);}S SSOl:) UO!:lWOSqR S:I! JO :I:)npold ;}q:l S! yp
+ Y 0:1 Y UO!~;}l q:I~U;}I;}ARM R U! V ;}In:);}IOW R Aq P;}qlOSqR suo:loqd Jo l~wnu (,.0 0:1 :ldp:)sqns U! SR '.0 UO "O" :ldp:)sqns;}q:I
Aq A:I!:lU;}P! jp,In:);}Iow
;}qJ.
;}q:I ;}:lR:)!PU! ;}M l;}q:lRl
~U!qlOSqR UR Jo (E- OJ:)
'( 1_;}In:);}IOw 0W:) V.o 'V Jo UO!:I:);}S SSOl:) UO!:lWOSqR ;}qJ. 'V ;}In:);}Iow
'(91'£)
~(9I'£)
[V]
U!R:I;}l 0:1 AmSS;}:);}U;}q :IOU II!M:lV
:I!un l;}d
U! P;}uY;}P SRM
;}q:l MOm{ 0:1 P;};}U ;}M UO!:I:)R;}l {R:)!W;}q:>O:loqd R JO ;}:lRl ;}q:l ;}:lRIn:){R:) OJ.
-oqd Jo l;}qwnu
UO!:lRJ:jU;}:)UO:) U;}A!~ R ~U!U!R:lUO:) l!R Jo ;}wnIOA
s;}In:);}Iow)
p~lOSqR
SUO:l
';}l;}qdSO:lRJ:jS ;}q:l U! xONJO
;}:)lnOS {Rd!:)upd;}q:I
S! ooN
q:l!M UO!:I:)R;}l (01)0
-pRl HO JO ;}:)lnOS R S! lodRA l;}:lRM q:I!M (01)0 -oqd
moll
~U!~l;}W;}
s;}In:);}Iow
pUR ';}l;}qdsOW:lR II!M
;}l!:lU;} ;}q:l U! SIR:)!
SR EO JO UO!:lR!:>OSS!P°:l
;}M :U;}~AXO jp,In:);}Iow
0:1 P;};}U OU ;}ARq II!M ;}M q:ll°J;}:)U;}H)
01£ :lnoqR Jo q:I~U;}I;}ARM PIoqS;}lq:l P;}:I!:)X;} Jo l!l!d
JO UO!:I:)R;}l ;}qJ. ('00
U;}~AXO IIR ;}:lR:)!PU! AIdw!s
S;}:lR:lSP;}:I!:)X;} AIIR:)!UOJ:j:);}I;} qs!n~U!:lS!P
;}q:I U! s;}!:);}ds P;}:I!:)X;} AI{R:)!UOJ:j:);}I;} :lUR:Ilodw! ;}qJ. 'wu
S! s:I:)npold ~u!pu;}d;}p
:lSOW ;}q:l S! '(0,)0
;}q:llOJ ;}Iq!ssod
Jo
';}l;}qdSOUl:lR
'WO:lR U;}~AXO O-:l;}I~U!S
P;}:I:);}dX;} UR:lR UllOJ q:)!qM
'(8'\1 ()ZO + (0 ()O
A~l;}U;} :lS;}MOI ;}qJ. 'UO!:lR!PRl :lU;}P!:)U! Jo q:I~U;}I;}ARM
00 pUR a s:I:)npold
0+
;}q:I uo
;}jp, S;}:lR:lS:)!uoJ:j:);}I;} Jo SUO!:lRU!qwO:) snopuA
Zo +- 111{ + fa .~uozo JO S!S
-hI010qd
~q1 J~P!SUOJ .p~1!:JX~ hIJtI:J!UOJ1:J~I~ ~q s~AI~sw~q1
hew UO!1e!:JoSS!P010qd Jo S1:Jn
S:>IJ.HNDlIY:>IW3H:> aNY A~J.SIW3H:>OJ.OHd:>I~3HdSOWJ.Y ZtI
ATMOSPHERICPHOTOCHEMISTRY 143
where the overbar denotes an average over a wavelength interval ~>"i centered at >"i.The width of the wavelength intervals ~>"i is usually dictated by the available resolution for the actinic flux /(>"). A typical size of ~>"i is 5 nm from 290 nm to over 400 nm, and 10 nm beyond 400 nm.5 Values of (1(>..)and 4>(>")may not be available on precisely the same intervals as for /(>..),so some interpolation may be necessary. Table 3.3 summarizes important light-absorbing molecules in atmospheric chemistry. Photodissociation of molecular oxygen is key to stratospheric chemistry and will be adTABLE 3.3 SomePhotochemicalReactionsof Importance in Atmospheric Chemistry" Comments
Reaction O2 +hv ~O
+ O('D) > 50km
~O+O
I
03 + hV--02 2
--
+ 0
O2+ 0(10)
Photodissociationof molecularoxygenresultsprimarily from absorptionof solar radiationin the 200-220 nm wavelengthregion.The 185-200nm region, the O2Schumann-Rungebandspectral range,is also importantsincesolarradiationpenetratesefficiently into the stratosphereat those wavelengths.Recommendedabsorptioncrosssections are given by DeMoreet al. (1994). 03 absorptioncrosssectionsare given in WMO ReportNo. 16 (1986) and DeMoreet al. (1994). DeMore et al. (1994) presenta polynomialexpressionfor the quantumyield forO(ID) production, cP(OID),as a function of Ii and T in the range 305-320 nm. The upperlimiting value of cP(OID) is takenas 0.95 at 305 nm. Discrepanciesexist betweenpublishedO(ID) quantumyields, which can be separated into two groups: those that show
cf>
to
drop to zero at about315 nm (DeMoreet al., 1994)andthosethat exhibit a "tail" extendingbeyond 320 nm (Michelsenet al., 1994).In evaluating ambientdataagainstboth groupsof quantum yields, Hofzumahauset al. (1995) found that the cf> dataexhibiting a tail above315 nm betterrepresent observed data. As noted in the text, the implication of this finding is that solar photolysis of 03 at wavelengths longer than 310 nm contributes significantly more to tropospheric O(ID) formation than that based on the recommended correlation of DeMore et al. (1994).
h = 10-3 S-I h = 10-5s-t
at 40 kID at 10 kID continued
SMadronich and Weller (1990) calculated tropospheric photolysis rate constants for N02, 03, HONO, HCHO, and CH3CHO using high spectral resolution (~A = 0.1 nm) and compared these to values calculated with ~A = I, 2,4,6,8,
and 10 nm. Depending on the molecule, substantial errors were found to be introduced with the coarser
resolution calculations.
pilnU!lUO.J °SOO
1noq11 )0 PI~!,( wmu11nb
11S11q q111d ONOH
+ 0 ~q1 wu £61 ,(8 °wu ZZZ 01 UMOp ,(1!Un jTJ~U S! l~uu11q:>"ON + HO ~q1l0) PI~!,( wmu11nb ~q.L 0(P66[) 1111~ ~lOW~a,(q U~A!g ~jTJwu 0~£-o6[ ~gu11l ~q1l~AO SUO!1:>~S SSOl:>uOpWOSq11P!:>11:>!l1!N
U~A!g ~jTJwu 96£-0[£
ONOH
+
0
+-z
"ON + HO+--tll{ I
+ 'ONH
0(P66[) 1111~ ~lOw~a,(q ~gU11lq1gu~I~A11M~q1l~AO
suop:>~s SSOl:>uopwosqV
0~l~qdsow111 ~q1 U! SI11:>
-!P11l HO)O ~:>lnos 11S! ONOH)O
UOP11!:>OSS!P010qd
ON + HO-4:-- Ifl{ + ONOH
°PI~!,( wmu11nb 1!un q1!M p~:>npold S! EON 0(P66[) 1111~ ~lOw~a ,(q P~1U~S~ld ~l11wu OSZ-OOZ~gu11lq1gu~1 -~A11M~q1l~AO 'O"N)O
suop:>~s SSOl:>uopwosqV
EON + tON +--
tfl{ + ~OtN
0,(1!un S! UOP11!:>DSS!P010qd
lO) PI~!,( wmu11nb~q.L °)1OZ£-v6 [ l~AO WU OPZ -£L [ ~gu11l q1gu~I~A11M~q1 U! O"N lO) suop -:>~SSSOl:>UO!1WoSq111U~S~ld (P66 [) 1111~ ~lOw~a
1_861.0 -8910.0
(01)0 + zN~
It/{ + OzN
= Z{ = If
:;}:)t!pns s,q1J1!3 ;}q11t! uns pt!;}q -l;}AO lOj S1Ut!1SUO:) ;}1t!l UO!1t!!:)OSS!P010qdgU!A\OI -IOj;}Q1 PU;}WWO:);}l (P661) 1t! 1;} ;}lOW;}G '(1661) ;}UAt!A\ put! (P66I) 1t! 1;} ;}lOW;}G Aq P;}A\;}!A -;}l U;};}q ;}At!q q<1>put! '<1>'SPI;}!A wmut!n() '(P66I) 1t! 1;} ;}lOW;}G Aq U;}A!g ;}l1! wu OL9-009 ;}gUt!l q1gU;}I;}At!A\ ;}q1 U! EON lOj SUO!1:);}SSSOl:) UO!1WOSqV
lU)j o£ 1U I-S ;I:Jupns1U I-S ,-or '(1766 [) "IU}~ ~lOw~a
0 + tON +z Zo + ON +I
If'l + EON
Z-or= x 8=
raN!
f.q P~}u~s~ld OS[U~m
SP[~!f. wmuun() o(~66[) "IU}~ ~uu~!l9W f.q p~}lod -~l U~;Jq ~AUq SUO!}J~SSSOlJ UOj1wosqu }U~J~l ~lOW u~A3 o(1766[) "IU}~ ~lOw~a
f.q p~pu~wwo
-J~l u~~q ~AUq WU ZZv-ZOZ ~gUUl q}gU~[~AUM l~AO suoj1J~S SSOlJ UOj1wosqy
~q}
'UOj1JU~l }uu}lodw!
f.[~W~l}X~ uu S! snq} pUR ~l~qdsodOl} ~q} U! ~UOZO )0 ~JlnOS [UJ!W~qJ nl!S U! f.[UO ~q} m SPU~[ WmU u~gf.xo ~q} gu!Jnpold
"IU}~ ~lOw~a
"ON)O
uoj1U!JOSS!pmoqd
0 + ON +--tfl( + ~ON
i1766[) f.q P~}u~s~ld ~lU wu O~£-o6[
~gUUl ~q} l~AO "O"H)O
suoj1J~S SSOlJ UOj1wosqy
HO + HO+-- II" + lOtH UO!1:)11~~
S!U;}WWOJ
(panupuo;»
S:)IJ.3NI)l.Y:)IW3H:)
£O£~'IHV.L
aNY A~J.SIW3H:)OJ.OHd:)I~3HdSOWJ.Y 17171
TABLE 3.3 (Continued) Comments
Reaction I
Formaldehydephotolysisis a significantsourceof free radicalsin the troposphere.Absorptioncross sectionsfor HCHO aregiven by DeMore et al. (1994). DeMore et al. (1994) give quantumyields,
HCHO + hv--+- H + HCO 2 --+- H, + CO
cf>1
andcf>20from301to 356nm.Channellpre-
dominatesat shorterwavelengthsand channel2 at longer wavelengths. CH3OOH+ hv--products
Absorptioncrosssectionsfor CH3OOHfrom 210 to 360 nm aregiven by DeMore et al. (1994).
Cl2+ hv~CI
Absorption cross sections for Clz from 260 to 470 nm are given by DeMore et al. (1994).
+ CI
ClOG + hv-+CIO OCIO + hv--'O HOCI + hv
+ 0
Absorption cross sections for ciao from 220 to 280 nm aregiven by DeMore et aI. (1994).
+ CIO
Absorption cross sections for OCIO from 272 to 475 nm aregiven by DeMore et al. (1994).
OH + CI
1 CIONO2 + hv-+CI
Absorptioncrosssectionsfor HOCI from 200 to 380 nm are given by DeMore et aI. (1994).
+NO3
2 -+CIO
Absorptioncrosssectionsfor CIONOzfrom 196to 414 nm are given by DeMoreet aI. (1994).The
+ NO2
preferred quantum yieldvaIuesarecf>1 = 0.6(). < 308nm), cf>.= 1.0(). > 364nm), and cf>z= I - cf>1'
CCl3F + hv--+products
Absorptioncrosssectionsfor CCI3Ffrom 170to 260 nm are given by DeMore et al. (1994).
CCl2F2 + hjl~products
Absorptioncrosssectionsfor CClzFzfrom 170to 240 nm aregiven by DeMore et aI. (1994).
OCS + hv~CO
Absorptioncrosssectionsfor OCS from 186to 296 nm are given by DeMore et al. (1994).The recommendedquantumyield for photodissociation is 0.72.
+ S
I
CH3CHO+ hv--+CH4 + CO 2 --+CH3 + HCO
CH3C(O)CH3 + hv-CH3
+ CH3CO
Absorptioncrosssectionsfor acetaldehydehave beenmeasuredby Martinez et al. (1992)at 300 :t 2 K over the wavelengthregion 200-366 nm. Recommended quantumyields for channelsI and 2 havebeentabulatedby Atkinson et al. (1992). Absorptioncrosssectionsandquantumyields for acetonehavebeensummarizedby Atkinson et al. (1992).An averagephotodissociationquantum yield for CH3COformation is about0.33 over the wavelengthregion 280-330 nm.
"Many of the rateconstantsfor reactionsimportantin atmosphericchemistryaresurveyedperiodicallyby a group organized through the Jet Propulsion Laboratory (JPL), Pasadena, CA. The latest report is that of De More et aI. (1997) Evaluation No. 12, JPL Publication 97-4. Recommended values of rate constants, absorption cross sections, and quantum yields appear in these reports.
145
'(17'£ ~lqg.L ~~s) wu OZ£ = Y pug wu 00£ = Y U~~M!~q ~pm!uggwJO J~pJO Ug !noqg Aq S~Sg~J:JU!xnlJ :J!U!!:Jg 11!IJ:J~S ~q:I 'q~3 ~q! Jo ~:JgJlns ~q! !y .Y q!!M S~!Jt!A (y)/ MOq uo !u~pu~d~p Ang:J!!p:J S! (OJO JO uo!!:JnpoJd Jo ~!gJ Igm:Jg ~q:I os 'y q!!M AIP!dgJ s~gUgq:J !:JnpoJd (.L 'y)(OI)°t/J(.L 'y)£OD ~q:I snq.L 'OJ~Z !SOW11!O! 6'OWOJJ sdoJp UO!!gUJJoJ(01)0 JoJ Pl~!A wmugnb ~q:I pug '01 Jo JO!:JgJg Aq sdolp UO!!:J~s SSOJ:JUO!!wosqg ~q! 'wu OZ£ = y O! wu 170£ = Y WOld 'Al~A!!:J~dS~J 'UO!!:JnpoJd (OJO JoJ Pl~!A wmugnb ~q:I pug UO!!:J~sSSOJ:J UO!'!wosqg £0 ~q! '01 '£ PUg 6'£ S~Jng!d gu!Jt!dwo:J Aq U~~S~q ug:J S!SAI0!oqd U! q:lgu~I~AgM Jo ~10J 11!:J!!p:J~q.L '!u~pu~d~p ~JmgJ~dw~! OSlg S! ~AJn:J q!gu~I~AgM-Pl~!A wmugnb ~q.L 'UO!!g!:JOSS!P gu!sng:J U! AgJ~U~ uo!oqd ~q! q!!M !:JgJ~!U! Ug:J suo!'! -mOl PUg SUO!!gJq!A 11!UJ~!U!U! P~U!g!UO:JAgJ~U~ ~sng:J~q UO!!!SUgJ! :J!UOI!:J~I~mln:J!~d g O! gu!puods~JJo:J q!gu~I~AgM ~!~J:JS!Pg!g ~gUgq:J d~!s !:J~Jl~ g !!q!qx~ !OU op 01"£ ~Jng!d Sg q:Jns S~AJn:JPl~!A wmugn() 'uo!!:JnpoJd (0,)0 JoJ Pl~!A wmugnb ~q:I JoJ (17661) 19 !~ u~sl~q:J!W Aq p~z!mwwns g!gp SMOqS01'£ ~Jng!d ,(£"£ ~lqg.L ~~s) wu 01£ ugq:l J~guol Sq:lgu~I~AgM !g uo!!:JnpoJd (01)0 Jo Pl~!A wmugnb ~q! gU!UJ~:Juo:JASJ~AOJ!UO:J u~~q Sgq ~J~q.L '£0 ~!g!s-punoJg WOJJuo!!:JnpoJo J!~q! JoJ !!W!I :J!!~gJ~U~~q! s~q:JgoJddg AgJ~U~ S!SA -IO!oqd ~q! Sg AIP!dgJ SngJ s~!:J~ds ~s~q! Jo uo!,!:JnpoJd JoJ PI~!A wmugnb ~q:I wu 01 £ m~N 'wu 00£ ugq:l J~uoqs Sq:lgu~I~AgM !g A:JU~!:JYJ~!!un AI11!:J!!:JgJdq:I!M Zo PUg (01)0 s~:Jnp -Old ~uozo Jo S!SAIO!oqd ')l £LZ !g UO!!:J~sSSOJ:J UO!!wosqg ~UOZo ~q! SMOqS6'£ ~Jng!d "I Alnf pug 1 Amnugf uo ~pm!!gI N oO17!gxnlJ :J!U!!:JgIgI!:J~S I~A~I -punoJg P~!gW!!S~ S~A!g 17"£~lqg.L '17J~!dgq;) U! p~ssn:Js!p ~ os11!n!M PUg wu 06Z ugq! J~guol Sq:lgu~I~AgM O! ~J~qdsodoI! ~q! gU!q:Jg~J !qg!1 Jo !!W!I q!gu~I~AgM-uoqs Al~A!!:J~JJ~ ~J~qdso!gIJS ~q:I U! £0 Aq UO!!g!pgJ mlos Jo UO!!wosqy
~q:I S!!W!I
'17J~!dgq;) U! p~ss~lp
.(9861) SU!d PUI!S~~!d-uOSAI!IU!d :;J;J.Inos
AmnURf uooN (I-S Z_W:> suo1oqd) vi-Or
X (Y)/
;JpnJpB'] N oOt JB (Y)/ S;JXnl~3!UP3Y IB.IJ3;JdSI;JA;J']-pUnO.I~ PiJJBWPS3 to£ 3']HY.L ~:)u.:;Jt\)rn '1V:)IW:;JH:) Ot\)V J.}!.L~IW:;JH:)O.LOHd :)I}/3HdSOW.LV
9t11
ATMOSPHERICPHOTOCHEMISTRY 147
Photolysis Wavelength, nm -0 '-' 0
-
320 I
'
300 I-'
280 I.'
1.0
260 I
'
240 I
'
""""""",.c',.""".'...'
' &
-~
0.8
'0 "0 0.6 '"Q) ~ 0.4
8 ~
0.2
;:$ QI
32
34
36
38
40
.- ~3
tJ.?
Photolysis Energy, cm-l FIGURE 3.10 Primaryquantumyield for 0(10) formationfrom 03 photolysisat 298 K. Summary of datapresentedby Michelsenet al. (1994).
J;}~UOI !Y °wu OOP Jt!;}U sq!~U;}I;}AgM
U! P;}U!g!uo:)
A~J;}U;} ;}Q! O! SPUOdS;}llO:)
'.-loW PI 00£
!noqg 'ON PUg 0 U;};}M!;}q A~J;}U;} puoq ;}q! 'J;}!IJt!;} P;}!OU sy °In:):)o !OU S;}OP UO!!g!:)os -S!P wu OZP !noqg ;}AOqg PUg AIP!dgJ 110 sdoJp ;}~g!u;}:)J;}d S!Q! wu OL£ ;}AOqy iz 1°£ ;}Jn~!d) 0 pOl! ON O!U! ;}!g!:)OSS!P II!M ~U!qJosqg s;}In:);}Iow zON ;}q! 10 %06 J;}AO wu OL£ PUg 00£ U;};}M!;}g i 11°£ ;}Jn~!d) ;}J;}qdsOUJ:IgJ;}MOI ;}q! U! wnJ!:);}ds Jt!IOS ;}q! 10 ;}~Ol!J !;}IO!Agl! -In pOl! ;}Iq!S!A ;}J!!U;} ;}Q! J;}AO sqJosqg!! ~;}J;}qdsodoJ! ;}q! U! ;}In:);}Iow !Ol!!Jodw! AI;}W;}J!X;} Ol! S! ;}P!XO!P U;}~Ol!!N °wu 06Z ;}AOqg wnJ:I:);}ds ;}q! 10 uo!!Jod ;}q! U! qJosqg !gQ! ;}soq! ;}Jt! I..l!s!Ul;}q:) :)!l;}qdsodol! 10 M;}!A 10 !u!od ;}q! WOJl !S;}J;}!U! 10 s;}!:);}ds ~U!qJosqg ;}q! ';}J;}qd -sodol! ;}Q! S;}q:)g;}Jwu 06Z !noqg Ugq! J;}!Joqs q!~U;}I;}AgM 10 UO!!g!pgJ Jt!IoS ou ;}:)U!S °I..l!S!W;}q:) :)!l;}qdsodoJ! pOl! :)!l;}qdso!gl!s p;}!gInw!s U! ;}:)u;}nyu! !ug!Jodw! Ug !J;}X;} ;}pm -!U~gW S!Q!10 S;}~Ugq:) 0%~11° UO!!gl!U;}:)uo:) HO U! ;}Sg;}J:)U!P;}!gW!!S;} Ug O! Spg;}I (0.)0 U! ;}Sg;}J:)U!S!q.L 0(P66l 'O~!;} U;}SI;}q:)!W) ;}J;}qdso!gl!s J;}MOI PUg ;}J;}qdsodol!;}Q! U! %OP O! dn Aq (0\)010 ;}Sg;}J:)U!p;}!gIn:)Ig:) g O! Spg;}I '(£°£ ;}Iqg.L ;};}s) A;}AlnS 'ldf ;}Q! Aq P;}PU;}WWO -:);}J OJ;}ZO! ;}soI:) ;}nIgA;}Q! Ol!q! J;}q!gJ 'wu OZ£ O! 01£ ;}~UgJ q!~U;}I;}AgM ;}q! U! £°0 O! Z"01° PI;}!A wmugnb y °(0.)0 ~U!UllOl '£0 ;}ZAIO!oqd O! ;}J;}qdsodoJ!;}Q! O!U! ;}!gl!;}u;}d ;}~UgJ S!q! U! sq!~U;}I;}AgM PUg 'SIg:)!pgJ HO :)!l;}qdsodol! 10 ;}:)Jnos ~d!:)u!ld ;}q! S! (0.)0 '~ J;}!dgq:) U! ;};}S II!M ;}M Sg ';}sng:);}q S! S!q.L °I..l!S!W;}q:) :)!J;}qdsow!g O! !Ol!!Jodw! AI;}W;}l!X;} S! wu OZ£ PUg 01£ U;};}M!~
sq!~U;}I;}AgM JOl uo!!:)npoJd
(0.)010
PI;}!A wmugnb
;}s!:);}Jd ;}q.L
~ ~
-
.g, 0 = n a
0, (')~
~ ~
C/) ~
8N() 0 =
~ z 0 N
S~I.L3NI)llY~IW3H~
aNY J..~.LSIW3HJO.LOHd~I~3HdSOW.LY 8"1
ATMOSPHERICPHOTOCHEMISTRY 149
IL,
nm
FIGURE 3.12 Primaryquantumyield for 0 formationfrom NO2photolysis,ascorrelatedby Demerjian et al. (1980).
wavelengths, there is insufficient energy to promote bond cleavage. The point at which dissociation fails to occur is not sharp becausethe individual molecules of NO2 do not possess a precise amount of ground-state energy prior to absorption. The gradual transition area (370 to 420 nm) corresponds to a variation in ground-state energy of about 40 kJ mol-I. This transition curve can be shifted slightly to longer wavelengths by increasing the temperature and therefore increasing the ground-state energy of the system. Table 3.5 gives tabulated values of the NO2 absorption cross section and quantum yield at 273 and 298 K, and Table 3.6 illustrates the calculation of the photolysis rate jN02 for noon, July 1, at 40oN.
Example 3.2 Atmospheric Heating Rates: The Chapman Function The natureof the attenuationthat occursasradiationpenetratesthe atmospherecan be seenby considering the Beer-Lambertlaw of light absorptionfor a singleabsorbingcomponent, dF(A)
= -a(A)NF(A)
dx
(3.47)
where a(A) is the absorptioncross section(cm2 molecule-'), N is the concentrationof the species(moleculescm- 3), F( A) is the spectralradiant flux density at wavelengthA (W m-2 nm-I), and dx is an incrementof optical path. If the absorbingspeciesis uniformly mixed in the atmosphere,that is, it has a uniform mixing ratio, its concentration can be written as
N = Nt~
(3.48)
'2 O! ';}l;}ljdsOW!U !ljJ3!;}lj AUU !U (y):/
;}lj! Jo dO! ;}lj! '"" = 2 moll
P;}!U1J3;}!U!;}q UUJ (O~.£) '~l;}ljdsow!u
U1U!qo 0.1 .uns ;}lj! JO lj!ud !UUIS ;}lj! 10J s!unOJJU (8£.£)
s,lj!lug
-s;}ld 10J !ljJ3!;}lj ;}IUJS ;}lj! S! H puu ;}JuJlns
.-tdN(Y):/(Y).D-
(O~.£)
2p Ul(H j2-)dx;}
;}lj!!U
;}lj! U! 2
Aq U;}!\.!J3Ul ;}l;}ljM
= (Y):/P S;}WOJ;}q (Lt.£)
(6V.£)
UO!!Ul!U;}JUOJ
U;}4.1 .;}lnS
IU!O! ;}lj! S! dN ;}l;}ljM
(H /2- )dx;) dN = IN
«~'[) ~~s) Aq A[~!UlU -!XOlddU U~A!j3'S! ~l~qdsOlU!U ~q! U! ~pm!!Iu jO uo!!:Junj U su UO!!Ul!U~:JUO:Jsuj3' [U!O! ~ql "(UO!!:JUlj
~IOlU) O!~Ul j3'U!X!lU s;)!:J;)ds ~q~ S! :7 pUU UO!~Ul!U~:JUO:J suj3' [U~O! ;)q~ S! IN ~l~qM
8810'0 £090.0 8£1.0 ~L~£.O ~69.0 'l6.0 96.0 696.0 £PL6.0 6L6.0 186.0 £86.0 P86.0 986.0 L86.0 886'0 686.0 66.0 166.0 'l66.0 £66.0 P66.0 ~66.0 966.0 L66.0 866.0 9866.0 666.0 1 1
OZ17
O~£
£I"£v
~~£
LI"Lv
09£
££"8v
~9£
99"1~
OL£
~I"£~
~L£
80"~~
08£
PP"9~
~8£
L~"L~
06£
a"6~
~6£
~v"8~
0017
IZ"O9
~017
18"L~
0117
66"6~
~117
1~"9~
~09~ L06~ LoL~ 1°09 £oS~ 6~ £oL~ r9~ 6'v~ 6°Z~ £ol~ 10Sv L09v soZv
ZI"8~
SOL~
~86"16Z
ZL"6
~ 1£"96Z
v~"11
~Ol I
LL'OO£
PP"£I
vO£1
9£"~0£
68"~1
so~1
~60"01 £
L9"81
~OSI
~I£
£~"IZ
vOIZ
OZ£
LL"vZ
9°vZ
LO"8Z
soa
O££
££"1£
~££
~Z"v£
017£
86"L£
~17£
~9"OP
rot 9°L£ 6°££ 1£
8L" L8Z
~1"8
vloS
IL06
)I 86Z )R
(ZW:).o
~OUv ~oLlv ~°'llv ~oLOv ~°'lOv ~oL6£ ~°'l6£ ~oL8£ ~°'l8£ ~oLL£ ~°'lL£ ~oL9£ ~°'l9£ ~oL~£ ~°'l~£ ~oLv£ ~°'lv£ ~oL££ ~°'l££ ~oU£ ~oLI£ ~°'ll £ 690LO£ £00£0£ I ~086'l 'llov6'l ~8°68'l I L 0~8'l
L"£8Z
69°18'l
~£L"6a
£O"~
~. a£
~Z£
L
66°9
88"~
6°~ ~O"~
4>
8LoLa
~L8"~a
~OLlt ~OZlt ~'LOt ~OZOt ~oL6£ ~oZ6£ ~oL8£ ~oZ8£ ~oLL£ ~'ZL£ ~oL9£ ~oZ9£ ~oL~£ ~oZ~£ ~OLt£ ~OZt£ ~oL££ ~oZ££ ~oLZ£ ~oZZ£ ~oLI£ ~oZI£ 690LO£ £00£0£ 1~086Z ZIOt6Z ~8°68Z ILo~8Z 69°18Z 8LoLLZ L6°£LZ (wu) y :wOJd
ozO 1
)l £L'l1U
uon:J~s SSOlJ uondJosqy
)f 86'l pUB £L'l JB S!SAIOJoqdtON .lOj PI3!A WOJUBOl)PU8 UOP;)3SSSO.I;)uopd.losqy S'£ 3'1HY.L S;)U3NI)I 'lY;)IW3H;) aNY A~.LSIW3HJO.LOHd;)I~3HdSOW.LY OSI
ATMOSPHERICPHOTOCHEMISTRY 151
TABLE 3.6 Calculation of the Photolysis Rate of NO2 at Ground Level, July 1, Noon, 40° N, 298 K
3.14 X 1012 3.35 X 1013 1.24 X 1014 2.87 X 1014 4.02 X 1014 5.08 X 1014 7.34 X 1014 7.79 X 1014 7.72 X 1014 8.33 X 1014 8.32 X 1014 9.45 X 1014 8.71 X 1014 9.65 X 1014 1.19 X 1015 1.07 X 1015 1.20 X 1015 9.91 X 1014 1.09 X 1015 1.13 X 1015 1.36 X 1015 1.64 X 1015 1.84 X 1015 1.94 X 1015 1.97 X 1015 9.69 X 1014
1.22 1.43 1.74 2.02 2.33 2.65 2.97 3.28 3.61 3.91 4.18 4.51 4.75 5.00 5.23 5.41 5.57 5.69 5.84 5.86 5.93 5.86 5.89 5.78 5.73 5.78
0.9976 0.9966 0.9954 0.9944 0.9934 0.9924 0.9914 0.9904 0.9894 0.9884 0.9874 0.9864 0.9848 0.9834 0.9818 0.9798 0.9762 0.9711 0.9636 0.9360 0.7850 0.4925 0.2258 0.0914 0.0354 0.0188 Total jNO2
jNO2 a
Actinic flux from Finlayson-Pitts and Pitts (1986).
= 8.14
X 10-3 S-l
= 0.488min-1
(£~'£)
I-S E-W~
{N'Ng.DJt
zit
{'lUll
= {IZ
.z'lg
(9L6 I 'uosu~g) s! fw ss~w Jo [ ~I.:I Jo s~In:)~Iow q:a!A\ 'w ss~w Jo ! ~dl.:I Jo s~ln:)~Iow Jo s~~ Jo ~wnloA :I!un J~d SUO!S!II°:) Jo I.:)u~nb -~JJ ~q:a 'f.J0~q:a :)!:I~uPI f.JmU~W~I~ wold '~u~~Jq puoq 0:1 P~~I u~:) :I~q:l ~~Ul!q:)x~ I.~J~ -u~ :I:)~J!PJoJ J~q:aOUl!~Uo 0:1q~nou~ ~soI:) ~Wo:) I.~q:au~qA\ I.luo :I:)~~JUl!:) s~ln:)~low s~D
S:JI.L:ilNI)f 'lV:JIW:m:J
-t/J 8u!x!W sawnsst/ ('l~.£) t/jnuuoj
~'£
'apmpjt/ q1!i\\ !Ut/~~LlO:lS! Op jt/:I!~Ajt/U1! aq1 st/aJaqi\\ 'apm!~J1! q1!i\\ O!~t/J8u!x!W auozo U! a8U1!q:l
aq1 JOj s~uno:l:lt/ uopt/jn:ljt/:1 S!U .SUOP!PUO:lJa~u!i\\ JTJjodjO aApt/!uasaJdaJ S! aAJn:l paqst/p aq1 ~SUop -!PUO:ljt/!Jo!t/nba jO aApmuasaJdaJ uopnq!J1s!p auozo UtI JOj S! aAJn:l P!jOS aq.L .008 '009 '00 = o(J saj8ut/ q1!uaz JTJjOSJOj auozo Aq uopt/!pt/J JTJjOSjO UO!~dJosqt/ woJj a!t/J 8upt/aH I_A~P;)o ~'l
0001
.. . . su°!1!PUO:l
00£
a
O'l I
. , , .
'~1~"M ~1 I
£r£
nflDM
~U!1~~H
. . , ,
01 I
---
J~~U!A\ JP-Iod
SUO!~!puo;') f1J!J°~gnhH
.... . . .. ~
0
I
-
01
001
01
~ (/)
OE
'E (/) ~ ~
£
-4
Ov
~O9 = n-
10£
-~
> g"
0G
S
...
c"-"O = Of}
~=O9
o~
£'0
S:)ll3NDI .Y:)IW3H:) aNY J..~.LSIW3H:)illOHd :)I~3HdSOW.LY ZSI
(£~'£)
4:I!M IW SSgW JO
I-S r_W:) "
(N1N(I.o.1l Z
'lIJ
(lUll!'
) = (IZ
.LJf8 ,
(9L61 'uosu~H) S! fW SSgWJO r~A1 JO S~ln;)~IOW ! ~A1 JO S~ln;)~IOWJO Sgg JO ~wnIoA 1!un J~d SUO!Sm°;)Jo A;)u~nb
-~JJ ~q1 'f.J0~q1 ;)!1~UPl Am1U~W~I~ wold .gu~~Jq puoq 01 pg~I Ug;) 19q1 ~gQgq;)X~ AgJ~ -u~ 1;)OO!PJoJ J~4:l°Qg ~Uo 01 qgnou~ ~SOI;)~WO;) A~4:I U~qM AIUO 1;)g:)JQg;) s:)In;):)Iow Sgo
S3IJ.~NI)J ~V3IW~H3
so£
.';Ipmnll! q'!!M lUl!l!iUOJ S! on -I!l gU!x!W s';IwnsSt! (z~.£) I!lnUllOJ II!JnAII!U\! ';Iq'! SI!';Il';lqM ";Ipmnll! q'!!M Onl!l gU!x!W ';IUOZOU! ';IgU\!qJ ';Iqll0J SlUnOJJI! UO!ll!lnJ{t!J S!qJ. .SUO!lWUOJ l';llU!M l\!lod Jo ';IA!l111U';Is;ud';llS! ';IAlnJ p';Iqsl!p ';Iq'! ~SUO!l -!PUOJ II!!lOll!nb';l JO ';IA!ll!lU';Is;ud;u uonnq!J1s!p ';IUOZOU\! lOJ S! ';IAlnJ P!IOS ';IqJ. .008 '009 '00 = of) s';IlgU\! ql!U';IZ l\!IOS lOJ ';IUOZOAq UO!ll!!pl!l l\!IOS Jo uondJosql!
1_Aep Jo '~!e~ ~Z 0001 ' . . . ozI . SUO9!puo:)
I
wol]
';Ill!l gU!ll!';IH
£1"£ DflDI.!I
~U!!e~H
. . .~I . . .
. 01 . . . . I
~ I
. . . ,
0
---
SUO!tWuo:) l~tU!A\ ltIlod
00£
a
ItI!lOttlnbg
-
01
001
'8
Of:
~ ~ ~ £
:::::
01
10£
.,. --"::::~
-> -. 5-
~~ S
017
£
o~ £'0
~'Uq"'N .,"'rWq~,
°"'" x}Jr~rWqH'mO~" 'r}J~~"S:OW.lV 7f;I
~
CHEMICALKINETICS 153 where Nj is the number concentration of species i (cm-3), (8kT /;rmij)1/2 is the rootmean-square relative speed of the i and j molecules, k is the Boltzmann constant, mij mimj/(mi + mj) is the reducedmass,and ;rUi} is the so-calledcollision crosssection of molecules i andj. The characteristic time during which molecules in thermal motion in a gas are close enough to interact is brief, on the order of 10-12 to 10-13 s. At ambient temperature and pressure the mean time between molecular collisions can be shown from (3.53) to be on the order of 10-9 s. Thus collisions are short in duration compared to the time between collisions. Whereas the collision of two molecules is a necessary condition for reaction, sufficient energy must be available to break chemical bonds. Theory indicates that the fraction of collisions involving energy greater than a required energy E is given by exp (- E / kT). In this form E has units of energy per molecule. More commonly, E is expressed in terms of energy per mole, and we use exp( -E/ RT), where R is the universal gas constant. The rate of reaction is expressed in a form that accounts for both the frequency of collisions and the fraction that exceed the required energy,
=
(3.54) The preexponentialfactor A(T) may dependon temperaturesincethe translationalkinetic energyand internal degreesof freedomof the moleculesinfluencethe probability of reaction in any collision event. The rate of reactionis usually written as r = kcjcj, wherethe parameterk is calledthe rate constant,6
k
= A(T)
exp( - E'
(3.55)
RT
If A(T) is independent of T, we have the Arrhenius form, k
=A
exp( - E / RT). The max-
imum possible value of the rate constant of a bimolecular reaction is achieved if every molecular collision between molecules of i and j results in reaction. This is called the gas-kinetic collision rate, and the corresponding value of the second-order rate constant k at room temperature is about 2 X 10-10 cm3 molecule S-I. Most reactions have rate constants less than this. First, the activation energy E must be overcome for the reaction to proceed. Second, molecules that are geometrically complex may have to be aligned properly at the point of collision for reaction to take place and perfect alignment is not achieved in every collision. Consider the potential energy surface for the bimolecular reaction (most elementary reactions can be considered to be reversible) f
A+BC~AB b
+C
~e rate constant k is not to be confused with the Boltzmann constant. The latter will always appear as a product with T in this context.
'qtnJI ;Jill 01 ;JSOp I! S! pO!J:!d It!qt J;JI]t! A[UO pUt! 'pO!J:!d ;JW!I U!I!IJ;J:J t! JO] ";J![,, t! S! YSSd ;Jill 'A[IJOIIS ;J;JSII!M;JM SY "';J![,, SUt!;JW J[;J;JJDU! sopnasd pJOM ;J~L
y
:>!~~gJ~U~ uu ~:>npoJd
o~ (~uOJ~d~q:>
UO!~:>~~J ~) W ~ln:>~low
punoJg){:>~q
-!II°:> Aq Y JO UO!~~A9:>~~q:I Jo ~S!suo:>sd~~s Am~u~w~l~ ~SOqM ';) + g -~IOW!Un
~q:I J~P!SUO;) '~Idurnx~
uu Jo A~M Aq YSSd
'WS!U~q:>~w
~q:I U!Uldx~
~
~ q:I!M UO!S
Y UO!~:>~~J mln:>
o~ ~S~!S~~ sd~qJ~
UO!~:>~~J 1~:>!W~q:> ~ Jo ~~~J II~J~AO ~q~ gU!A!l~P
S~~~!P~WJ~~U! ~A9:>~~J q:>ns q~!M gU!J1!~P JO A~M J1!~u~w~punJ -d~ ~~~~S-Ap~~~s-opn~sd ~m A~q:I S~ AIP!d~J
~ S! (YSSd)
~q.L .SUO!~~J~U~:>UO:>MOl !...I~A ~~ ~S!X~ AI~U~nb~suo:>
S~ AIJ1!n1J!A p~wnsuo:>
~m 'A~!A!~:>~~J qg!q
S! ~I U~qM
LUO!~~W!XOJd pU~ p~WJOJ
J!~q~ JO ~lnS~J ~ S~ 'q:>!qM
'SJ1!:>!P~J ~~JJ S~ q:>ns S~!:>~ds ~~~!P~WJ~~U! ~A!~:>~~l !...I~A ~AIOAU! SUO!~:>~~l 1~:>!W~q:> AUUW
UOP8W!XO.lddy a}8}S-Ap8a~S-OpnaSd aq.L
[,SOt
'f.~l~U~ UO!:lnA!:I:)n Ol~Z n
~Anq suo!:I:)n~lln:)!pnl ~~lJ :)!l~qdsow:ln f.unw ('3l0) j/ q:l!M (~~'£) U! H f.~l~U~UO!:lnA!:I:)n ~q:I f.J!:lU~P!0:1!.mWO:lSn:)S! :II ,.lHV sn ~~lnl sn :lsn~1:In '3 'f.~l~U~ UO!:lnA!:I:)n un ~Anq :lsnw pun :)!Wl~q:lopu~
S! (U~1 0:1:lq~!l)
u°!:l:)n~l
-
~Sl~A~l ~qL '~A!:ln~~U S! S1uul:>e~H
sl:>npoldH
= .lHV pun ':)!Ull~q:lOX~ S! 171'£ ~ln~!d U! p~q:):I~){S(:Iq~!l 0:1U~O uO!:I:)n~l plnMJoJ ~qL
.lHV = .1.2- [.2
(9~'£)
tuqt ~tON
s! UO!t:)u
..lm
-~J Jo Ad{t1q:}u~~q.L ..13 s! UO!t:)u~J ~SJ~A~J~q:} JoJ tuq:} ~13 S! UO!t:)u~J pmMJoJ ~q:} JoJ A~J~ -u~ UO!tUA!t:)U~q.L .ss~:)oJd ~q:}Jo S~!~J~U~~qt U~~Mt~q d!qsuO!tUI~J ~qt SMOqSvl.£ ~Jn~!d .UI~tSAS~q:}Jo ~:)upns A~J~U~ {t1!tu~tod ~qt U! tu!od ~IPpuS u S! tu!od S!q.L i9L6 I 'uosu~H) p~tUUI!tS~ ~q AUUI 3 A~J~U~ UO!tUA!t:)U ~qt ~tUtS UO!t!suuJ:j S!qt Jo ~Jm:)nJtS ~qt ~U!tUUI!tS~ AH .UO!t:)u~JOt pu~I Ot S! J~tuno:)u~ ~qt J! ssud tSnUI StUUt:)U~J~qt q:)!qM q~noJqt ~tU!P~UJJ~t -U! P~A!I-poqs U S! 'X~IdUIo:) p~tUA!t:)U ~qt P~Ilu:) S~UI!t~UIOS'tJHY 'U!U~U~SU~J:)~pOt S:lmtS A~J~U~ ~qt q:)!qM pUOA~q 'tJHY Aq p~tOU~p 'p~q:)u~J S! tu!od Y .s~s!J UI~tSASUO!t:)u~J ~qt Jo A~J~U~ ~qt 'J~qtO q:)u~ q:)uOJddu s~In:)~IoUI tUUt:)U~JOInt ~qt sY .vlo£ ~Jn~!d U! UMOqS su
'UOpJ1!;}ll1!jnJ;}jow!q
1! lOj ;}11!U!PlOOJUOpJ1!;}l ;}l!1 gUOj1! ;}J1!Jlns ,(gl;}U;) j1!PU;}10d
t['£
31Iflf>L!I
;}11!U!PlOOJ UO!1J1!;}"M gUO[1! ;}JU1!1S!G
S;)I.L3NI)f 'Y;)IW3H;) aNY J..~.LSIW3H;)o.LOHd;)I~3HdSOW.LY J-SI
CHEMICAL KINETICS
155
moleculedenotedby A *, followed by decompositionof A * to give B + C,
A*~B + c Note that A * may return to A by collision and transfer of its excess energy to an M. The rate
equationsfor this mechanismare d[A]
dt
=
-k(f[A][M]
+ k1b[A*][M]
The reactive intennediate in this mechanism is A *. The PSSA states that the rate of generation of A * is equal to its rate of disappearance; physically, what this means is that A * is so reactive that, as soon as an A * molecule is fonned, it reacts by one of its two paths. Thus the PSSA gives
kIf [A] [M] - k1b[A*][M] - k2[A*] = 0
(3.59)
From this we find the concentrationof A * in terms of the concentrationsof the stable moleculesA and M,
[A*] =
k1f[A][M]
k1b[M] + k2
This expressioncan be usedin (3.57) to give d[A] -- - klfk2[M][A] k1b[M]+ k2 dt
(3.61)
We see that the single overall reaction A -+ B + C with a rate given by (3.61) depends on the concentration of M. If the background species M is in such excess that its concentration is effectively constant, the overall rate can be expressed as d[A]/dt = -k[A], where k = k1fkz[M]/(k1b[M] + kz) is a constant. If k1b[M] »kz then d[A]/dt = -k[A], with k = k1fkz/k1b. On the other hand, if k1b[M] «kz, then d[A]/dt = -k]f[M][A], and the rate of the reaction depends on the concentration of M. One comment is in order. The PSSA is based on the presumption that the rates of formation and disappearanceof a reactive intermediate are equal. A consequenceof this statement is that d[A*]/dt = 0 from (3.58). This should not, however, be interpreted to mean that [A*] does not change with time. [A*] is at steady state with respect to [A] and [M]. We can, in fact, compute d[A*]/dt. It is d[A*] -- ~ k)f[A][M] dt k)b[M] + k2 dt
(3.62)
w+l:o+--w+Zo+o I: S! ss~:>oJd ssol JOr~W ~ql. ('UO!1~WJOJJo ~1~J~q1 01 UO!1nq!'l1uo:>~ s~ P~1:>~I~~U~q u~:>Z UO!1:>~~J WOJJ
.
UO!1~WJOJ S1J) I UO!1:>~~J U! p~WJoJ W01~ U~~AXO ~1~1S-pUnOJ~ ~q1 J~P!suo:> sn 1~1 MoN
'1~1SU! AU~ 1~ Ploq II!M (OJO JoJ UO!1~W!xOJdd~ ~1~1S-AP~~1S ~q:I 's ,_01 1noq~ u~q1 J~~UOI ~m 1~q:Is~{U:>s~w!1 J~AO ~~u~q:> A~q1 s~ ~UOI s~ '~U!~~q:> S! [W] JO IN J! 1~q1 S! S~~W S!q1 1~qM 'S~!ld -d~ uo!ss~Jdx~ ~1~1S-AP~~1S ~q1 's v_OJ 1noq~ u~q1 J~1~~J~ S! I s~ ~UOI sy 'I-S 1_~ln:>~low ,w:> 11_01 X £ = [W] "'f pu~ ,_ill:> s~ln:>~low viOl X £ = [W] '~pm!11~ W){ 08 1Y .~nl~A ~1~1S-AP~~1S S1! 1~ S! [(01)0] '[W]z'f /1 < < I JOd ('alvls .1.JVUO!IVlsolol{d ~ s~ ~1~1SAP~~1S ~q:I 01 J~J~J ~:> ~M 'UO!1:>~~J1~:>!W~q:>O10qd~ S! d~1S UO!1~WJOJ~q1 q:>!qM U! ~S~:>~ uJ)
[w]Z'// IN
= SS[(a1)0] U;}q'! ';}1t!1SApt!;}1St! U! S! (0\)0
«l[W]Z'l-)dx~ - I) -[W]Z'l
JI
= [(°1)0]
IN S! [w] p~
IN 1umSUO:>p~
'0 = 11~ SU!~~q 1~q1UO!1~!P~llOJ q:>!qA\ Jo uo!1nlos ~q:I
[W][(OI)O]Z".-
IN =
Jp [(OI)O]P
S! UO!!UWJOj (G,)O
JOj uo!!unb;}
;}!UJ ;}q.L 'IN ;}!UJ U!U SJn:>:>o I UO!!:>U;}"M
w+o 7 w+(o\)o '"0
0 + (°.)0 ~
JO
"N q!!/n UO!S!II°:)Aq p~q:)u~nbpUB
1\1{ + ~o
'S!S,{IO!oqd Zo ,{q P;}WJoJ S! (0,)0 '(W){ 08-) ;}J;}qdsow!e J;}ddn ;}q! UI '(1661 ';}u,{eA\) ;}J;}qdsow!e J;}ddn ;}q! U! swo!e U;}g,{xo Jo uo!!eI!u;}:>uo:> ;}!e!s-,{pe;}!s ;}q! ';}Idwex;} ue se 'J;}P!suo:> sn !;}'l .(£9'£) ,{q U;}/I.!g S! !U;}W -!snfpe MoIs !eq.L ';}:>UlIIeq !eq! u!e!u!ew O! se os [V] U! S;}gUllq:>q!!M p;}!e!:>osse ;}ye:>S;}W!! ;}q:I uo ,{IMOIS s!snfpe [* y] ;}w!! !eq! J;}!JY ';}!e!s ,{pe;}!s ;}q! qs!Iqe!s;} O! se os ;}!eJq!I!nb;} O! *Y Jo ;}:>UlIm;}ddes!p pue uo!!eWJoJ Jo s;}!eJ ;}q! JoJ P;}P;};}U Ie/I.J;}!u! ;}w!! ye!!!U! :lJoqs e J;}!Je
,{IUO
P!Ie/l.
S! (09.£)
!eq:l
;}!OU ;}M '(£9'£)
q!!M
(8';.£)
WOJJ
0
=
Jp /[* y]p
;}I!:>uo:>;}J °.L
~(~:y+ [W]ql:y) lp -=[Y]~[W]~:yf~:y [. y]p
(£9.£)
S! '}UU}SUO:J S! [W] J! 'q:J!qM
S:JI.L3NI)! 1Y:JIW3H:J aNY AlI.LSIW3H:JO.LOHd:JI1I3HdSOW.LY 9S1
:HEMICAL
The time behaviorof 0 following irradiation beginningat t
[0]
Rl k3[O2]
KINETICS
1-"7
0 is
[Mj (1 exp(-k3[OZ] [M]t))
(3.64)
At 80 km, T = 200 K, at which k3 = 1.4 X 10-33cm6molecule-2S-I. The exponential term in (3.64) is <0.01 for t ~ 1.8 X 105s (50 h). Thus the time neededfor 0 to establish a steady-stateconcentrationis much longer than that over which the solarintensity varies, and 0 is neverin steadystateat this altitude in the atmosphere.The reasonwhy, at this altitude, 0(10) achievesa steadystateand0 doesnot, is basedon the relativeratesof the removal reactions.That for 0('0) is sufficientlyfast; that for 0 is too slow to "keepup with" the formation step.In the lower regionsof the atmosphere,wherethe pressureis large,and hencethe concentrationof third bodies, M, is large, removal reactionsfor both 0 and 0(10) are, under all conditions,sufficiently fast that steadystatesare rapidly established for both species. 3.5.2 PressureDependenceof Reactions Certain reactionshave an order that is variable with pressure;they are third order at low pressureand secondorder at high pressure.Consider,for example,the combinationof two oxygenatoms(0(3p) in the triplet- P ground state,which we will denotesimply by 0) to form O2,Upon collision the newly formed O2moleculepossesses the combinationenergy of 0 + O. Unlesssomeenergyis removedwithin the time of one vibrational period, the freshly formed O2 will decomposeback to 0 + O. The excessenergyis removedby the third body,M. The overall reactionis written as O+O+M-+O'J+M But the elementarystepsare
0+0
ot2 +O,+M
wherethe dagger-denotes vibrational excitation.The rateof formation of a productAB in the generalsystem
A+B ABO d[AB] dt
M
ABt +AB+M
kaks[A][B][M]
ks[M] + kr
3.65)
If the newly formed moleculeis larger than diatomic, there are severalvibrational modes into which the bond combinationenergycan be converted.In sucha case,the lifetime of the newly formed moleculecan extendover severalvibrational neriodsheforethe critical
(IL'f)
00"+ 0" 00"0,,
='l Sg
(OL'£)
(69.£)
[W]~ ./'/ = O,/ "Jf= OOJf 's~n~A ~U!!!W!I ~Jnss~Jd-A\OI puu-q~!q ~q:IJo SUJJ~! U! p~ss~Jdx~~q uu:) 'f ~J~qA\
(89'£)
[g][v]'! = ~ lP 'l~plO puo:)~s-opn~sd SBU~~~!lA\~q UtI:) (~9'£) uo!~Bnb~ ~~Bl ~ql. .~~Utll ~lnss~ld :)!l~qd
-SOW~B~qt U! P~!q!qx~
~m S:)!~~U!){l~PlO-Pl!q~ pUB-pUO:)~Sq~oq ~l~qA\ ~u!od ~q~ ~B~snr ~!I
W+EO+-W+ZO+O puu
W+ £ONH+- W+ lON+HQ 'a:)u~~
-JodW1 :)1Jaqdsow~~ ~~:)g1ug1s jO su01~:)~aJOM1, 'saJnssaJd :)1JaqdsodoJ~ I1~ ~~ JapJo puo -:)as s1 '8H":) 'aua~nq- I 'aua){11Ja~ o~ 11J:)1P~JHOaq~jO u01~1PP~'p~q
Jaq~o aq~ uO 'W~~ ,,0I
o~ dn ,(~M a~ II1JJapJo PJ1~ s1 "H UJJOj o~ SWo~~uagoJp,(q OM~jO u01~~u1qwo:) 'aIn:)aIow ~:)npoJd a~ xaIdwo:) aJOW aq~ JaMoI s1 JapJo puo:)as o~ JapJo PJ1q~WOJj sagu~q:) J01A~qaq a~~J u01~:)~aJ a~ q:)1qM ~~ W jO u01~~J:jua:)uo:) aq1, '"0 pu~ "N jO wns aq~ s1 W aJaqd -SOW~~a~ u1 a:)u1s arossaJd aq~ o~ ,(I~:)aJ1Ppa~~IaJ ,(I1~nsn s1 '[wJ ',(poq PJ1~ aq~ jO U01~~J~ -ua:)uo:) aq1, 'sapow l1Ju01~~Jq1A aJOW pu~ aJOW guow~ pa~nq1J~s1Ps1 ,(gJaua u01~~u1qwo:) aq~ asn~:)aq sas~aJ:)ap .I".jO anI~A aq~ 'xaIdwo:) aJOW sawo:)aq BY aIn:)aIow ~:)npoJd aq~ sy
[g][y]",! = ~ IV
(L9'£)
'J~pJOpUO~~S S! UO!t~g~J~qt u~qt '[W] 'Jf » 'Jf JI Jp
(99°£)
[gyJp 'J~pJO pJ!q~ S! UO!~:>B~J ~q~ '[W] '" «
"" J! '(~9'£) wold
'~U!U!W -J~~~p ~~BJJ~~UOI OU S! W ~In:>~Iow pJ!q~ B f.q f.~J~U~ ss~:>x~ ~q~ Jo IBAOW~J IBUO!S!II°:> ~Bq~~B~J~OS'.1qUB:>~W!~~J!I ~qt '~In:>~Iow ~:>npoJd~~mI f.I~U~!:>YJnsB q~!A\. 'u~){OJq S! puoq
S:)ll3NI)llV:)IW3H:)
aNY J..~.LSIW3HJO.LOHd:)I~3HdSOW.LV 8S1
CHEMICAL KINETICS
159
Actual experimental data on the pressure variation of the pseudo-second-order rate constant k do not conform with (3.71). The reason is that the elementary rate constants ka, kr, and k.,should have been defined for each individual quantized vibrational level of ABt, and the individual rates summed to give the total rate. Also, vibrations and rotations can interconvert in the newly formed molecule. A widely used modification of the treatment of pressure-dependent reactions is due to Troe (1983). In the Troe theory, the right-hand side of (3.71) is multiplied by a broadening factor F that is itself a function of ko/ koo'
(3.72) Third-order reactionsoften exhibit decreasingrate with increasingtemperature.The higher the temperature,the larger the thermalkinetic energypossessed by the reactantsA and B, andthe largerthe internal vibrationalenergystoredin theABt molecule.The larger this energy,the higher the chanceof recombinationand the largerthe value of kr. The rate constantskaand ksdo not dependstrongly on temperature,so in the low-pressureregime sincekr increasesas T increases,the overall rate constantdecreases. This temperaturedependenceof kois frequentlyrepresentedempirically by a factor Tn in the overall rateconstant(seeAppendix B).
'SS~ld A1!Sl~A!Ull P1O}XO °p~ pUZ 'UO!IV!PtJ?/ .J!.l;JlfdsoIUJV (6861)
.)111 'P1O}XO °'1 A 'guoA pUR 'oW o~ 'ApOOO
°UA~U~O '6171 °oN OlJUO!1UZ!UUg1O IU:)!gololO~1~W
PpoM
°
L °oN s~!l~S UO!1u:)!IQDd(d~JM)
pup SIU;JWn.lISU/UO!IV!PV?/ uo Ivnuvw
wu1gold q:)m~s~~ ~1UW!IJ PpoM 'SIU;JW;J.lnsv;JW
UO!I.Jn.llsu/ p;JS!i\;J?/ (9861) (osp~) of 'uoPUO'1 pUt! 'oJ 'q:)!lqQ1d o~loA M~N 'A~I!M .s;Jnb!UIf.J;J.LIVIU;Jw!.l;Jdx:i/
pup
SlVIU;JWVpund :,{.JIS!W;JIf.J .J!.l;JlfdsoIUJV (9861)
°lf oN of 'SU!d pUR 'of °g 'S11!d-UOSAUIU!d °VJ 'uU~PUSUd 'f.J01U10QU'1UO!SIodold
1~f °9Z-176 UO!1u:)!IQDd '1df
'II
°ON UO!1UOJUA3 °8u!l;JpoW
Iv.J!W;JIf.Jololfd puP S.J!I;JU!)JIv.J!W;JIf.J (17661) of oW 'uu!I°W 'Of OJ 'pmMoH
'of ow 'oIf.JO)l
'od o~ 'uosdwUH
.J!.l;Jlfdsolv.lIS
pUt! °3 oJ 'QI°)l
U! ;JSn .l01 viva
'o~ °V 'um~uuqS!AU~
'oW °0 'U~PIoO '"d os 'l~pUUS '°0
oM '~lOW~O
°6~P-69£ '01 '70ulf.J;J.L ?JS °UO.l!i\U:i/ °i\pV '~l~qd -SOdOIl1~MOI ~q1 U! S~!:)ads :)!l~qdsow1u }O S1UU1SUO:) ~1U1:)!1AI010qd pUR xoy (p~1U1g~1U!AIIU:) -!l~qds)
:)!U!1:)U}0 S~1UWflS~Iu:)fI~lO~q.1 (0861) °.1 of 'uos1~1~d pUt! '°'1 °)1 '~l~q:)S '°'1 °)1 'UUn1~W~0 o~lOA M~N 'A~I!M °p~ puz 'S.J!I;JU!)JIv.J!W;JIf.JolU.l;Jlf.L (9L61) oM os 'uosu~g
°89~1-~ZII 'It 'viva :!;J?/ °W;JIf.J °S.(lfd Of 'AI 1u~W~IddoS :f.J:tS!W~q:) :)!l~qdsow1u 10} U1UPIu:)!W~q:)010qd pUt! :)fI~U!~
P~1uoIuA3(Z661) f '~01.1 pUR 'oV of '1l~)I 'olf "d o~ 'uosdumH 'oV o~ 'XOJ '°'1 °0 'q:)Ioug 'o~ 'UOSU!){1V o
S:iI:JN3H:iI.iI:ilH
S;)I.L3NI)llY;)IW3H;)
aNY A~.LSIW3HJO.LOHd;)I~3HdSOW.LV 091
'SS~Jd A1!SJ~A!Ufl pJOjXO °p~ pUZ 'uOPVlpV2[ :Jl.liJl{dsolUJV (6861)
PIJ°A\. °LooN
S:lp:lS uoj1t/:>!IQ"d (~JA\.)
puv slUiJWn.llsu/ uopvlPV2[ uo Ivnuvw
°)lfl
'pJOjXO
°, A 'gun};. put/ 'oW o~ 'ApOOO
°t/A:lU~O '6tI °oN QJjUO!1t/Z!Ut/gJO It/:>!goIOJO:l!:lW wt/JgOJd q:>Jt!~s~~ :l1t/W!D pp°A\. 'SIUiJWiJ.lnsviJW
uop:Jn.llsu/ PiJSllliJ2[ (9861) (osp~) Of 'uopuo,
pUt! 'J
'q:>!IqgJtl
O){Jo}..M:lN 'A:lI!A\. °siJnblUI{:JiJ.LIVIUiJW1.liJdxH puv
SlVIUiJWVpund
:,{JIslWiJl{.)
:Jl.liJl{dsolUJV (986 I)
°Jf oN of 'S!!!d
put/ 'of °8 'S!!!d-UOSAt/IU!tl
°VJ 't/u~Pt/St/d 'AJO!t/JoQt/, UO!SIndoJd 1:1f °9Z-176 uoj1t/:>!IQ"d
'df
'I looN
uoj1t/n{t!Ag
°SUlliJPOW :Jl.liJl{dsolv.lIS
Iv:J1WiJl{:Jolol{d puv s:JPiJU1)/Iv:J1WiJl{.) (1766I) of oW 't/U!IOW put/ °g J 'Ql°)l '"{ J
'PJt!MoH
'of oW 'OIAJn)l
'°tl o~ 'uosdwt/H
'oW °a 'u:lploO °6~v-69£
'a
ul iJSn .loj
viva
'o~ °V 't/Jt!){Ut!qS!At/~
os 'J:lput/S '°0
°A\. ':lJOw:la
'01 '70ul{:JiJ.L °l:JS °uO.IllluH °IlPV':lJ:lqd
-sodoIl J~MOI :lq1 U! S:I!:>:lds :>p~qdsOW1t/ jO S1Ut/1SUO:> :l1t/J :>j1AIO!oqd put/ xny (p:l!t/Jg~1U! Allt/:> -p:lqds)
:>!uj1:>t/jO s:l1t/Wj1S:I It/:>j1:1JO:lq.1(0861) °.1 "{ 'UOSJ:I!:ld put/ '°, °)1 ':lJ:lq:>s '°, °)1 'ut/nJ:lW~a O){Jo}..M:lN 'A:lI!A\. °p:l puZ 's:JPiJU1)/ Iv:J1WiJl{:J0IU.liJl{.L(9L6I)
°A\. os 'UOSU:l8
°89~I-~ZII 'n 'viva jiJ2[ °WiJl{.) °S.(l{d "[ 'AI 1u:lw:llddns p:l1~nlt/Ag (Z66I)
:/iJ:lS!W:lq:> :>p:lqdsow1~ JOj 1!1t/p It/:>!W:lq:>010qd pu~ :>j1:1U!){
of ':lOJ.1 put/ 'oV Of 'JJ:I)I 'oJf 'tl°~ 'uosdwt/H
'oV o~ 'xoJ 'o,oa
'q:>Int/8 'o~ 'UOSU!'PV
S:iI;)ND:iI.!I:ilH
S;)ll3NDI 'lY;)IW3H;) aNY AmSIW3H;)O.LOHd ;)I~3HdSOW.LY 091
PROBLEMS 161 Hofzumahaus,A., Kraus, A., and Milller, M. (1995) Comparisonof troposphericphotolysis frequency data J(O'D) measuredsimultaneouslyby chemical actinometryand spectroradiometry: test of laboratoryO(ID) quantumyield data,in TroposphericOxidation Mechanisms,edited by K. H. Becker.EuropeanCommission,ReportEUR 16171EN,Luxembourg,pp. 71-76. Kasten,F., andYoung,A. T. (1989)Revisedoptical air masstablesandapproximationformula,Appl. Opt. 28,4735-4738. Lenoble,J. (1993)AtmosphericRadiativeTransfer:A. DeepakPublishing,Hampton,VA. Liou, K. N. (1992) Radiation and Cloud Processesin the Atmosphere.Oxford University Press, Oxford, UK. Madronich, S. (1987) Photodissociationin the atmosphereI. Actinic flux and the effectsof ground reflectionsand clouds,J. Geophys.Res.,92,9740-9752. Madronjch, S., and Weller, G. (1990) Numerical integrationerrors in calculatedtroposphericphotodissociationrate coefficients,J. Atmos.Chem.,10, 283-300. Martinez, R. D., Buitrago,A. A., Howell, N. W., Hearn,C. H., andJoens,J. A. (1992)The nearUV absorption-spectra of severalaliphatic aldehydesand ketones,Atmos.Environ., 26, 785-792. Merienne,M. F., Jenouvrier,A., andCoquart,B. (1995)The N02 absorptionspectrum.I. Absorption cross-sections at ambienttemperaturesin the 300-500 nm region,J. Atmos.Chem.,20, 281-297. Michelsen,H. A., Salawitch,R. J., Wennberg,P.O., andAnderson,J. G. (1994)ProductionofO(ID) from photolysisof 03, Geophys.Res.Left., 21,2227-2230. Troe, J. (1983) Specific rate constantsk(E, 1) for unimolecularbond fissions,J. Chem.Phys.,79, 6017-6029. Wayne,R. P.(1991) Chemistryof Atmospheres,2nd ed. Oxford University Press,Oxford, UK. World Meteorological Organization (WMO) (1986) Atmospheric Ozone 1985. Global Ozone ResearchandMonitoring Project,ReportNo. 16,Geneva.
PROBLEMS 3.1B Considerthe following reactionsystem
A~B B+M~C AssumeM is presentin great excess,so that [M] ~ constant.The concentrationsof B and C arezero at t = O. 8. Derive analyticalexpressionsfor the exactdynamicbehaviorof this systemover time. Show mathematicallyunder what conditions the pseudo-steady-state approximation (PSSA)can be madefor [B]. b. Use the PSSAto derive a simpler setof equationsfor the concentrationsof A, B, andC. 3.28
The most importantoxidizing speciesfor troposphericcompoundsis usuallythe hydroxyl (OH) radical. A standard way of determining the OH rate constant of a compound is to measure its decay in a reactor in the presence of OH relative to the decay of a second compound, the OH rate constant of which is known. Consider two compounds A and B, A being the one for which the OH rate constant is to be determined and B the reference compound for which its OH rate constant is known. Show that the
.ssn:)s!o .SUO!1!PUO:)~:)~Jlns 1~ v" SnSJ~A 02/.L2 JO 10Id ~ UO S~!:)~ds ~S~q1 JOJ 02/.L2 JO s~n -I~A p~1ndwo:) ~q1 ~:)~Id lqg!~qJO 1u~pU~d~pU! 'E-W:) s~In:)~Iow 901 S! UO!1~J1U~:)UO:) ~:)!P~J HO ~q11~q:I ~wnss~ UO!1~In:)~:) ~q1 JO ~sodJnd ~q:I JOd 'soH P~ 'EH;)SEH;) 'OOdH;) 'OEH;) J~P!SUO;) 'I~:)!P~J HO ~q:I q:I!"" ~m SUO!1:)~~JI~AOW~J ~d!:)u!Jd ~soq"" S1U~m!1SUO:) :)!J~qdsow1~ ~:)~J! ~wos 01 AJO~q:IgU!og~JOJ ~q1 AIdd~ sn 1~'l zp (ZVH-
)dx~ [(zX) -
°.L)~ /"'3~
]dx~.L OJ vH H=-
(°.LH/VH-)dx~[(.lHVH-)dx~- I] S! ~:>gJJnSs,~3
OJ. .£j.
~q:I tg tgq:l Ot Z ~pm!t~
tg V S~!:>~sJo ~W!t~J!I ~q:IJo °!lgJ ~qt tgqt MOqS "1- W)f )l ~"~ = .v pug )l £6Z = °.L ~J~qM 'zv - °.L= (Z).Lf.q p~tgw!xOJddg ~q Ug:>~IyoJd ~JmgJ~w~t :>!l~qdsodoJ!~~
,(q U~A!~ S!.LH tq~!~q :>!l~qdsodoJ'! ~qt J~AO V JO ~w9~J!I :>!l~qdsodoJ'! ~qt tgqt MOqS .(2 H - )dx~ Od = d '~pm!tyg qt!M
= V:J Sg ,(IygJ~U~~
~JnsS~JdJo~Sg~J:>~p yg!tU~uodx~~qt Ot ,(~oygUg,(q (2VH- )dx~ OV:J P~tU~S~Jd~J ~q Ug:> V JO UO!tnq!IlS!p
UO!tgJ'!U~:>UO:> Ig:>!1J~A ~qt tgqt ~wnSsg
sn t;)']
'UH /"3 - )dx~ °\1 = ¥,/ 'uo!ss~Jdx~ sn!u~qJJV ~qt ,(q U~A!~ S! tm!:lSUO:>~tgJ :>!su!IlU! ~ql. .t! U! 8 Jo UO!tgJ'!u~:>uo:>~qt s~pnI:> -U! tgqt tm!:lSUO:>~tgJ J~pJO-tsJy-opn~sd g ~q ug:> ¥,/ u~qt '8 s~!:>~ds punoJ~){:>gq qt!M = "H oS! tgqt 'UO!t:>g~J J~pJO-tSJY UO!t:>g~J Jo tIns~J ~qt S! V Jo ygAOW~J ~qt JI '¥:J ¥,/ -
g Sg p~ss~Jdx~ ~q ug:> ~J~qdsowtg ~qt wol} IgAOW~J ~SOqM V s~!:>~ds g J~P!suoJ 'UO!tgJ'!u~:>uo:>:>!l~qdsodoJ'! UJJoJ!un g ~Agq ,(gW s~!:>~ds ~qt 'uo!snJJ!p Jo ~tgJ ~qt Ot ~A!tgI~J Mols S! ygAOW~J'pugq J~qtO ~qt uo 'JI 'p~AOW~J S! t! ~JoJ~q ~J~qdsodoJ'! ~qt U! ,(IUJJoJ!un P~x!W t~~ tOU n!M s~!:>~ds ~qt 'uo!snJJ!p Jo ~tgJ ~qt °t ~A!tgI~J p!dgJ ~m s~ss~:>OJdIgAOW~J ~qt JI 'uO!tg!:>oSS!potoqd ,(q JO 'St~IdoJp PUg s~I:>!pgd OtU! UO!t -dJosqg ,(q 'S~!:>~s J~qtO qt!M UO!t:>g~Jyg:>!W~q:>,(q p~AOW~J ~q ,(gW ~W!t ,(ug tg pug ~J~qdsodoJ'! ~qt OtU! pmMdn s~snJJ!p ~In:>~Iow g '~:>gJlns s, qpg3 ~qt tg P~Sg~I~J~:>uO ::>£'£ '~dOIS ~qt WOJJ ¥,/ ~tgIn:>Ig:>Ot ~uo sMoIyg 11,/~U!MOU)l 'II,//¥,/ ~doIs qt!M ~U!I tq~!gJtS g SPI~!,(
1!1uI
I[H]
0[Hj OJ SnSJ~A
O[V]
gU!~:lOId 'snq.L 'S:lUU:lSUO;)~:lRJ HO ~q:l ~m 1I;ypUR V;y PUU '1 ~W!:I :lR SUO!:I -RJ:lU~;)UO;) ~q:a ~m 1[8]
puu I[y]
'SUO9RJ:lU~;)UO;) IR!:I!U! ~q:l ~m °[8]
puu O[y]
~J~q/t\
:UO!1gI~J ~U!MOIIOJ ~q1 A~qO Jm:Jg~J g q:Jns U! g PUg V JO SUO!1gI1U~:JUO:J
S:Jll3NI)! '1Y:JIW3H:J aNY A~.LSIW3H:JO.LOHd:JI~3HdSOW.LY 191
.~J~qdsodOJ1
'!:>t1J U! oS! ,\.n,S!W~q:> J!~q.L .~J~qdsodoJ1 P~P!AOJd S! ~:>Jnos !t1q.L .S!q:I Ut1q:1J~poqs !OUUt1:>~J~qdsodoJ1
"("ON)
~P!XO!P U~~OJ1!U Aq
Sq:I~U~I~At1M Jo UO!!t1!pt1J sqJosqt1 AluO q:>!qM '"a
~q:I U! U~~AXO :>!WO!t1 ~q:I Jo ~:>Jnos ~q! '~J~qdsodoJ!
!t1q! S! ~J~qdsow!t1
~q! s~q:>t1~J wu
~snt1:>~g .U~~AXO mln:>~low
~q:I U! SJn:>:>o !t1q! UO!!:>t1~J ~U!UJJoJ-~uozo
pUt1 :>!WO!t1
AIUO ~q! 'v J~!dt1q:)
!:>npoJd lt1d!:>u!.ld ~q! St1p~J~P!suo:> ~q Ut1:>~uozO
O! AI{t1UY pUt1 "ON
O! P~Z!P!XO S! ON 'AI~U!puods~JJo:)
O! P~Z!P!XO ~m q:>!qM 'EH:)SEH:)
O! AI{t1UY pUt1 'SP!:>t1 O! u~q:I 's~PAq~Plt1
PUt1 soH St1q:>ns spunodwo:> ~:>Ut1Apt1 spunodwo:>
."OS"H
O!
JnJlns p~:>np~J
~U!U!t1!uo:>-JnJlns
O! P~!:>t1~J ~m suoqm:>OJpAH
JoJ S! A:>U~PU~! ~q! :wn!p~w
.~!t1!S P~Z!P
~A!!t1p!XO Ut1 S! ~J~qdsod
~q! Jo ,\.n,S!W~q:> ~q:I U! A~)[ S! xON PUt1 'st1~m {t1!U~U!!uo:> pUt1 Ut1qJn U!
punoJ~)[:>t1q
Jo !lns~J
"f'l
~q! Jo ,\.n,S!W~q:>~q! ApmS O! U!~~q O! ~:>t1ldpoo~ t1 ~q! Jo ,\.n,S!W~q:> ~q:I U! ~IOJ 1t1J1u~:>t1 At1ld U~~OJ1!U
JO S~P!XO 'SS~I JO qdd t1 AIUO JO SI~A~I !t1 !u~s~Jd u~:lJ° q~noq.L ~
06Z !noqt1 AluO ~U!P~~:>x~ Sq:l~U~I~At1M Jo iq~!luns U~~M!~q
U! P~!OU sy .,\.n,S!W~q:> :>!.l~qdsodoJ1Jo .EONH u~q:I PUt1 "aS
q:I!M ~U!Pt1!S 'S~!mS UO!!t1P!XO Jo u!t1q:> ~q! q~noJq! ."0:)
-!XO ~JOW t1 O! p~AOW ~q O! S~!:>~s -0J1 ~4.L .~J~qdsodoJ1 !S!X~ ~J~qdsodoJ1 uo!!snqwo:>
t1 sy
~q! U! ~soq! J~AO xON Jo SI~A~1 p~:>Ut1qu~ Apt1~J~ 'SUO!SS!W~
lu~s~Jd
:>!u~~odoJq:lUt1 J~q:lo Jo J~qwnu
~~ml
~m s~!:>~ds :>!Ut1~JO PUt1 suoqm:>OJpAq t1 ~J~qdsodoJ1
:>!U~~O!q PUt1
1t1!U~U!!uo:> PUt1 ut1qJn ~q! UI .~Ut1q!~W
Aq p~l~nJ S! ~J~qdsodoJ! punoJ~)[:>t1q ~! Jo ,\.n,S!W~q:> ~q! PUt1 '~Ut1q!~W S! ~J~qdsodoJ1 ~q! U! uoqm:>OJpAq !Ut1U!wop~Jd ~q.L .UO!!t1!pt1J mlos Aq P~P!AOJd S! A~J~U~ !t1q! PUt1 'SUO!! -:>t1~J ~q! ~A!.lP O! p~J!nb~J
S! A~J~U~ Jo ~:>Jnos It1W~!X~ Ut1 'SUO!!t1J!U~:>UO:> Mol ..(j~A ~s~q:I
JO ~snt1:>~g .UO!II!q J~d sPt1d U~A~ JO UO!II!W J~ t1 s~AIOAU! UO!!t1P!XO :>!.l~qdsow!t1
sPt1d JO SO!!t1J ~U!X!W !t1 'l~nJ ~!nl!p
'J~A~MOq 'Uo!!snqwo:>
~)[!IUfl
.X~ldwo:>
..(j~A
PUt1 ~UOI ~q Ut1:>
SU!t1q:> ~s~q! s~ln:>~low :>!Ut1~JOJOd .SUO!!:>t1~J 1t1:>!Pt1J~~JJ JO SU!t1q:> t1!A sp~~:)oJd UO!!t1P!XO :>!.l~qdsow!t1 '~umlJ t1 ~)[!'llq~!IUnS JO UO!!:>t1 ~q! J~pun U~~OJ1!U JO S~P!XO JO ~:>u~s~Jd ~q! U! s~ln:>~low
:>!Ut1~JOJO UO!!t1P!XO ~q! s~AIOAU! ~J~qdsodOJ!
O! 1t1J1U~:>'~S!M~)[!I
~q! JO ,\.n,S!W~q:> ~st1qd-st1~ ~q.L
.~J~qdsodOJ! ~q:I JO ..(j!S!W~q:> ~q! oS! {t1AOW~J pUt1 UO!!t1UJJOJ ~UOZo :~UOZO AOJ!S~P pUt1 UJJOJ !t1q! SUO!!:>t1~J
~q! s~AIOAU! ~J~qdsO!t1J1s ~q!JO ,\.n,S!W~q:> ~q.L .JOdt1A J~!t1MJO UO!!t1J1U~:>UO:>q~!q AI~A!!t1I~J ~q! S! ,\.n,s!W~q:> :>!.l~qdsodOJ1 U! !Ut1Podw! -o!oqd
JO!:>t1Jy .~J~qdsodOJ1 ~q:I U! SUO!!:>t1~J 1t1:>!W~q:>
!Ut1:>Y!U~!S ~!OWOJd O! ~J~qdsodOJ1 ~q:I O!U! ~!t1J!~u~d Sq:l~U~I~At1M :>!!~~J~U~ APU~!:>
-YJns '~J~qdsO!t1J1s ~q:I U! p~AOW~J ~m sq!~U~I~At1M
mlos
:>!!~~J~U~ !SOW ~q! q~nOq:l U~A3
.~J~qdsodOJ1 ~q:I U! p~AOJ1S~p ~m OS JO m~A t1 !noqt1 Ut1q! ss~1 s~w!1~J!1 {t1:>!W~q:> q!!M ~soq! PUt1 ~:>t1pns s,q:IlP.3 ~q! !t1 P~!!!W~
~m S~!:>~s
JO pt1!.lAW Y 'JI~S!! ~J~qdsodOJ1
~q! U!q!!M
~U!X!W Ut1q:1J~MOIS q:>nw S! ~J~qdsO!t1J1s ~q! O!U! ~J~qdsodOJ1 ~q:I WOJJ S~!:>~s JO podsUt1J.L '~J~qdsO!t1J1s ~q! WOl] !:>U!!S!P AI~A!!t1I~J J!OAJ~S~J 1t1:>!W~q:> t1 St1 S~At1q~q ~J~qdsodOJ! ~q.L
s
BASIC PHOTOCHEMICAL
5.1
CYCLE OF N02, NO, AND 0,
235
BASIC PHOTOCHEMICAL CYCLE OF N02, NO, AND 03
When NO and NOz are presentin sunlight,ozoneformation occursas a result of the photolysis of NOz at wavelengths< 424 nm, NO2+hv
~
NO+O
O+O2+M~O3+M
(5.1) (5.2)
whereM representsN2 or O2or anotherthird moleculethat absorbsthe excessvibrational energyand therebystabilizesthe 03 moleculeformed.Thereare no significantsourcesof ozonein the atmosphereother than reaction5.2. Once formed, 03 reactswith NO to regenerateN02,
03 + NO --
N02 + O2
Let us consider for a moment the dynamics of a system in which only these three reactions are taking place. Let us assume that known initial concentrations of NO and NO2, [NO]o and [NO2]o, in air are placed in a reactor of constant volume at constant temperature and irradiated. The rate of change of the concentration of NO2 after the irradiation begins is given by d[NO2] dt
- j5.1[NO2] + k5.3[O3][NO]
Treating [02] as constant,there are four speciesin the system:N02, NO, 0, and 03, We could write the dynamicequationsfor NO, 0, and03 just aswe havedonefor N02. For example,the equationfor [0] is d[O] dt
= j5.I[NO2] - k5.2[O][O2][M]
However,if we were to evaluatethe right-handside numerically we would find that it is very closeto zero.Physically,this meansthat the oxygenatom is so reactivethat it disappearsby reaction5.2 virtually asfast asit is formedby reaction5.1. In dealingwith highly reactivespeciessuchasthe oxygenatom,it is customary,as notedin Chapter3, to invoke the pseudo-steady-state approximation(PSSA)and therebyassumethat the rate of formation is exactly equalto the rateof disappearance, for example, jS.1
[NO2]
= kS.2[O][O2][M]
The steady-stateoxygenatomconcentrationin this systemis then given by
[0]88=
jS.1 [NOz] ks.z[Oz][M]
-X!W
JU9!U! ~q1 Jo u09~unJ
t! st! p~u!t!!!t!
O!!t!l gU!X!W ~UOZO ~q! ~!ndwo~
Ut!~ ~'" os 'qdd 0 T
s! s!!un O!!t!l gU!X!W U! p~ss~ldx~ E.,,!/1.'[ JO ~nJUAIt!~!dA! t! !t!q! l~!t!I ~~s II!'" ~A\
(OI.~)
£.~'f I.~r
[
O(ZON]~ E'~
Z/I
+
.V
( T.fr E'~ )]
}
z.
~
=
SS[EO]
I o~s;):)np;)J(6'~) '0 = O[ON] = °[£0] JI
(6.~) ~- =
88[£0]
T '(!URtJodw! o! I'~
SUOfl:JR;)J hIuO q:J!qM U!) Zo SS;):JX;) pUR 'EO 'zON
'ON
jO ;)In!X!W
;)Jt! £'~
hUR ~U!!R!PRJJ! hq
;)!R:jS hPR;)!S !R P;)UJJOj UO!!Rj:}U;):JUO:J ;)UOZO ;)q:I JOj UOflRI;)J ;)q! U!R!qO ;)M '[EOJ JOj ~U!AIOS
[ON] - O[ON]
= [£0] -
'ON
0[£0]
q1!A\ EO JO Uo!~:>n:)J :>~:)WO!q:>!O~S :)q1 pun
O[ZON]+ O[ON] = [ZON] + [ON] 'ua~oJ:}!U JO UO!~UA;IaSUO;) mOlJ pau!t!~qo alU as~Q.L .[ON] puu ["ON] ~~ndmo;) o~ p~au MOU aM. .0!~Ul [ON]/[ZON]
~q~ o~ IUUO!JJodold S!
UO!~uJ:}u~;)UO;) ~uozo ~~ms-Apu~~S~q~ ~uq~a~ou aM. .uo!Jvla.l aJvJs A.ivuOpVJSOJo!{daq~ p~wuu ua~q suq '£'~ o~ 1'~ SuO!~;)UalJo S!SAIUUU~~U~S-ApU~~S ~q~ molJ ~U!~Ins~l 'uo!ssaldxa
[ON] Eo,'I
(S'C;)
S!q.t
= 88[£0]
[ZON] !O,!
Aq U~A!g s! UO!:j~J1U~:)UO:) ~UOZO
~:j~:jS-AP~~1S ~q.L ('(L.~) Aq U~A!g AP~~JI~ S! SWO:j~ U~gAXO JO UO!:j~J1U~:)UO:) ~:jmS-Ap~~:jS sn :j~
-wo:)
.~I:)A:) S!qI U! P~A~!q:)~
~q.L)
'p~u~:ju~w
EO pUt! '"ON
'ON
Jo SUOfl~J1U~:)uo:) ~:jms-Ap~~1S
.s~gUt!q:)
~q:j ~:jnd
S! ~I:)A:) ~:j~:jS-Ap~~:jS ~ :j~qI :js~J os p~UJJoJ~J pu~ p~AOJ1S~p S! "ON
~J~qM :ju!od ~ q:)~~J II!M SUO!:j:)~~J ~~Jq:j ~s~q:j :j~qI ~~S ~M (~.~) pu~ (v~) '(L .~) AJS!:j~S O:j sm~dd~ ~ uo 'snqj.
-~J1U~:)UO:) "ON
UO!:j~J1U~:)uo:) "ON
~qI U! s~gu~q:)
-~J UO!:j~w!xOJdd~
S!q:j :j~qM
WOJJ 'J~A~MOH
SA~Mll! SS[O] 'S:)!umUAP "ON
~qI Ut!q:j J~:js~J ~pm!ug~w
~q:j Jo ~ll!:)s~wfI
Jo SJ~pJO AUt!W UO!:j
O:j s:jsnfp~ UOfl~J1U~:)uo:) WO:j~ U~gAXO ~qI :j~qI S! sUt!~w AIll!
.ssoI pu~ uofl:)npoJd
:jUt!:jSU! AUt! :j~ :j~qI A~M ~ q:)ns U! fON]
Jo ~:j~J s:j! U~~M:j~q P~A~!q:)~ S! ~:)Ut!ll!q ~
qI!M S~!lBA :j! J~qI~J ::jUt!:jSUO:) :jOU S! SS[O] :j~qI ~:j°N
~HHdSOdOll.L Hill dO J..lI.LSIWHH:) 9fZ
~
BASIC PHOTOCHEMICAL CYCLE OF N02. NO. AND 0,
237
ing ratio of N02 with [03]0 = [NO]o = 0:
100 1000 If, on the other hand, [NOz]o = [03]0 = 0, then [03] = O. This is clear since with no N02 there is no means to produce atomic oxygen and therefore ozone. Thus the maximum steady-state ozone concentration would be achieved with an initial charge of pure NOz. The mixing ratios of ozone attained in urban and regional atmospheres are often greater than those in the sample calculation. Since most of the NOx emitted is in the form of NO and not NOz, the concentration of ozone reached, if governed solely by reactions 5.1 to 5.3, would be far too low to account for the actual observed concentrations. It must be concluded that reactions other than 5.1 to 5.3 are important in tropospheric air in which relatively high ozone concentrations occur. Shortly we will see what those reactions are.
Example 5.1 Measurement of the Photolysis Rate of NOz The photolysis of NOz is a key atmospheric reaction. Its photodissociation rate can be calculated if the actinic flux I (A)-is known. However, such measurementsrequire specialized apparatus that is complex and expensive. A method that allows one to determine the NOz photodissociation rate, j5.1, directly circumvents the need for elaborate measurementsof the radiation intensity. By exposing a mixture of NOz and Nz to sunlight one can determine the value of j5.1 by comparing the measured NOz decay as a function of time with that obtained by integration of the rate equations. To integrate the rate equations it is necessary to assume a value for j5.1. The desired value of j51 is that which produces agreement between the observed and predicted NOz decay. In the previous analysis we considered only reactions 5.1 to 5.3. There are several other reactions that occur in the NOx-Nz system that should be included for a more complete analysis. These are'
0 + N02 -+ NO + 02 0+N02 +M
-+
(5. 11)
N03 +M
(5. 12)
NO+ N03 -+ 2N02
(5. 13)
0 + NO + M -+ N02 + M
(5. 14)
N02 + N03 + M -+
N20S
+M
(5. 15)
N20S+ M -+ N02 + N03 + M
I
(5. 16)
Actually in the presence of sunlight NO3 photolyzes very rapidly (see Section 5.6) so that we do not expect day-
light NO, levels to be appreciable.
NO, is added to the mechanism
at this point largely
for completeness.
31I3HdSOdO~.L3H.L dO J..~SIW3HJ
8fZ
~
ATMOSPHERIC CHEMISTRY OF CARBON MONOXIDE
6.0.
I
I
I
I
I
AND NO,
239
I
5.0 4. 6
~2 = 1 atm
3.0
.~ ~ OJ) 2.0 = ><
k I = 0.14min-
~ N 0 Z
kl = 0.32 min-
. .
. . .
0
1.0
0.61
01
0,8
Experimental data
~
Integrationof mechanism I
I
I
0
I
23 Irradiation
0
0 I
4 56 Time, min
I
0
~
7
FIGURE 5.1 NO2mixing ratio asa function of time in a systeminitially comprising5 ppm NO2in N2. Experimentaldata and the predictionsof the mechanismin the text are shownfor two light intensities(Holmeset al., 1973).
5.2 ATMOSPHERIC CHEMISTRY OF CARBON MONOXIDE AND NO, We noted that in order to explain frequently observed atmospheric ozone levels it is necessary that reactions other than 5.1 to 5.3 must be invoked. For these we must turn to the next major class of tropospheric compounds, carbon-containing species. In some respects the simplest atmospheric carbon-containing species is CO. Carbon monoxide does not, however, react readily with any of the species present in the NOx-air system. We already know from Section 4.2 that ozone photolysis to produce both ground-state (0) and excited singlet (O(ID)) oxygen atoms is important in both the stratosphere and troposphere,
03 +hv
-+-
0+02
(5.21a)
-+-
0(10) + 02
(5.21b)
The ground-state0 atom combinesrapidly with O2by reaction5.2 to reform 03, so reaction 5.21afollowed by reaction5.2 has no net chemicaleffect. However,when 0('0) is produced,sincethe 0('0) ~ 0 transition is forbidden,it must react with anotheratmos-
"(9£"v uO!1:)e~J) ~J~qdsO1eJ1S~q1 U! uo9:)e~J 1ue1Jodw! S!q1 p~J~1uno:)u~ f.pe~Jle ~Aeq ~M 'U!egy
'RO + zON +- ON+ . zOR 'ON q!!M S! S~o~J~pun ~:)!PUJ "OH ~Q! !uq! UO!!:)u~J :)!l~qdsow -!U !uupodw! !SOW ~q! '!u~s~d S! ON u~qA\ "JI~S!! "0 uuq! ,(I~~JJ ~JOW q:)nw S!:)U~JIu:)! -pUJ "OH ~u!!InS~J ~q! pUt? '"0 U! puoq 0-0 ~q! SU~){1:!~M "0 Ot WOtU H Ut?Jo UO!!!PPU~q.L (vZ'~)
,ZOH
+
zOJ
+-"lQ
'HO
+
OJ
s~ v'l'~ UO!1:)~~J~1!JM A{dW!S u~:) ~M 's~sodJnd pu~ S1U~1U!II~ JOj '1~q1
w + .'lOR *- W + 'lO + . H '"OH ~:>!pt!J IAXOJ~OJpAq ~q:I uuoJ o~ "0 q:I!!t\ API:>!nb os s~u1qwO:> 17Z'~ UO!~:>t!~J U! P~uuoJ Wo~t! U~~OJpAq ~q:I put!
'H+ zoo:)+-
(tl.~)
"HO+OO:)
'£Z'~ UO!1:)~1U! P~UllOJ ~:)!pgl If.xOlpf.q ~q1 Q1!M 1:)g~1n!M ~P!XOUOWuoqmJ .s~!:)~ds ~:)gIl :)!l~qdsOW1g 1S0W q1!M 1:)g~101 S~A!AlnS 1! '1Ins~1 g Sg 'PUg 'u~gf.xo pmM01 ~A!1:)g~lUn S! 's~In:)~Iow gu!u!muo:) -uoqm:) wall P~UllOJ s1U~WgglJ mIn:)~Iow f.ugw ~:>I!Iun 'Ig:)!pgl S!q.L .~:)!pgl If.xOlpf.q ~Q1 Jo SUO!1:)g~1~q1 U! ~!I 011no wm n!M f.IlS!W~q:) :)!l~qdsodoIl gU!Pug1s1~pun 01 f.~:>I~q.L .P~zf.I010qd ~In:)~Iow EO l~d HO ~In:)~Iow ZOOf.I~1gW!XOlddg Jo PI~!f. HO Ug 01 Spg~I S!Q1 '£ZO~ UO!1:)g~1U! P~UllOJ ~m s~In:)~Iow HO OM1 ~sng:)~g .HO ~1g1~u~g 01 OzH q1!M S1:)g~1
p~:)npold (01)0 ~q1Jo %01 Sgq:)nw Sg '(1.9 ~Iqg.L~~s) Zo 10 ZN = W q1!M ZZO~UO!1:)g~1 gu!q:)u~nb ~q1 ugQ11~gmI 01 Jo 101:)gJg 1noqg 1Ug1SUO:) ~1g1g Sgq £ZO~UO!1:)g~1~sng:)~q PUg (%1) wdd toOl 01 dn SO!1g1gU!X!W 19 ~l~qdsodoIll~MOI ~Q1U! 1U~S~ld S! OzH ~sng:)~g ."10p,,
1~1U~:)
Ig:)!pgl ~Q1Q1!M s~!:)~ds ~:)!pgl ~1g:)!PU! f.P!:)!Idx~ n!M ~M 'f.1!l\1I:) 10J 'uo 1u!od S!Q1wold
'HO'l +- O'lH + (0,)0
(£Z"~)
'(L I °v UO!1:)U:}J IIu:):}J) s{t!:)!PUJ IAXOJPAq 0A\1 s:}:)npoJd
PUg O"H
q1!A\ s:}P!1
-10:) (01)0 'J:},\:}A\oq 'AIIUUO!SU:):)O o:}I:)A:) IInu J:}q1ouu 1Sn! S! ZO'; PUg "lZO'; 'qIZO'; SUO!1:)U -:}J Jo ~U!1S!SUO:) q1ud S!q1 'EO qS!U:}ld:}J 01 "0 q1!A\ S1:)U:}J 1Sn! U:}q1 W01U U:}~AXO :}q1 :}:)U!S
w+o
+-
W+ (0,)0
'~tUtS punOJ3' St! Ot (Or)O 3'u!q~u~nb puu A3'J~U~SS~~X~~qt 3'U!AOW~J'ZO JO zN qt!A\ S~P!IIO~ (Or)O U~tJO tSOW .s~!~~ds ~!J~qd
3'H3HdSOdO~.L3H.L dO A~.LSIW3HJ Of'"
ATMOSPHERIC CHEMISTRY OF CARBON MONOXIDE
AND NO,
241
The atmosphericoxidation of CO can be summarizedasfollows: ~
CO+OH.
~
CO2+ HO2'
HO2.+NO
~
NO2+0H.
NO2+hv
~
NO+O
O+O2+M~O3+M Net
co + 202 + hv--+ CO2+ 0,
Note that neitherOH nor H02 is consumedin this reactioncycle, which can be viewed as a catalytic oxidation of CO to CO2-Net formation of 03 occursbecausethe conversionof NO to N02 is accomplishedby the H02 radicalratherthanby 03 itself. This setof reactions can occur repeatedlyuntil one of the moleculesis removedin a terminationreaction. Terminationof the chain can occur when OH and N02 reactto form nitric acid, OH. +NO2+M
-+ HNO3 +M
(5.26)
Again, we have already encountered this reaction in the stratosphere. (Termination can also occur when HO2 reacts with itself, but at this point we assumethat NOx concentrations are sufficiently large that the self-reaction of HO2 is not favored.) In analyzing this mechanism, the PSSA, as applied to this system, can be represented in terms of the rates of the nine reactions as2' [0]88
=
Rs.I - RS.2+ RS.22 0
jS.1[N02] - kS.2[0] [02] [M] + kS.22 [M] [0(10)] = 0 [O(IO)]SS
RS.21b- RS.22+ RS.23= 0
kS.21b [03] - kS.22[M][0(10)] - kS.23 [H2O] [0(10)] = 0 2Rs.23- RS.24 + RS.2S - RS.26 =0
[OH]ss [HO2]ss
2kS.23[H2O] [O( 1D)]
[03]88
- Rs.2s=
RS.24
RS.2
-
0
kS.26[OH] [N02]
= 0
- RS.3- RS.21= 0
kS.2[0] [02] [M] - kS.3[03] [NO] - kS.21b [03] =
{\
2In writing rate equations for reactions of the type A + B + M ~ AB + M, for example, reaction 5.26, one must decide whether to express the rate of the reaction as k[A)[B][M] or k[A)[B]. This is simply an issue of notation, since the value of the rate constant k will depend on the concentration of the third body M through its appropriate formula, as given in Appendix B. We will often choose not to explicitly indicate [M] in the rate equation for such three-body reactions, keeping in mind that the value of the rate constant will depend on [M] through its appropriate formula.
i8'~)
UO!!RI~J ~!R!S AJRUO!!R!SO!oqd ~q:I O! s~:>np~J SS[£O] 'vqlzo':J[ «
vQIZ."J/ r'
';)UOZO 10J U09UI;)1 VSSd
+ fot\Jl£"'J/ ~. .
[ON]£o':J[
SR guoI sy
= 88[£0]
;)q~ ;)U!WUX;) sn ~;)I suo!~unb;)
;)~U1 ;)q1 ;)AIOS ;),\\ ;)10J;)8
U!t!~qo ~A\ 'SUO!~t!J1U~:>uo:> J1!:>!pt!l ~~lJ ~q~ 10J s~Ins~l VSSd
~q~ ~u!sn
pUt! su09t!nb~
~s~Q1 O~U! S~~t!l ~Q110J SUO!SS~ldX~ ~q~ ~U!~n~!~sqns
./ 9r~N - ~r~N+ £'~N+ I'~N- "=
Ip CZON]P
~m OJ put! 'ON '~ON lOj suo!!t!nb~ ~!t!l ~q.L [OZH]£Z"'"
[W]U'", + I =v ~J~qM
u!l:l~qo ~M Suo!~Bnb~ ~AOqB ~q~ 3'U!AI0S (.uo!~Bnb~ SS[HOJ ~q~ U! 0 = ~z'~N - Irz'~N 3'u!sn ,(q P~~BU!W!I~ SBM SS[ZOHJ .suMoWlun
JnoJ q:I!M suo!1Bnb~ mol ~HHdSOdO}il
~ABq ~A\
Hffi dO A~.LSIWHHJ 'Z'n
ATMOSPHERIC CHEMISTRY OF CARBON MONOXIDE
AND NO.
243
The qualitative featuresof the set of CO/NOxreactionscan be describedas follows. PhotolysisofN02 producesNO ando. The 0 atomimmediatelycombineswith an oxygen moleculeto form 03, Ozonethen reactsmainly with NO to regenerateN02oThe cycle of thesethreereactionscan be representedconciselyas (whereO2is not indicated) hv
NO2 ~ NO+O3 The characteristictime of this cycle is usually shortenoughrelativeto the competingreactions so that a steadystateis achievedquickly. The concentrationof 03 at sucha steadystatecondition is given by the photostation~ staterelation (5.8). If we now considerthe reactionsresulting when CO is present,we seethat the simple reversiblecycle aboveis modified to be3 hv
NOz~ NO+03 r HOz I The HO2radical that convertsNO back to NO2is convertedin the processto OH, which then is availableto react with anothermoleculeof CO. Thus we obtain two interwoven cycles,a "fast" cycle and a "slow" cycle, hv NOz .
~
NO + 01
CO+ qH-E~ .
NO
.
The CO/NOxreaction mechanismis a chain reaction with OH as the chain carrier. The chain length Lc of sucha reactionis definedas the numberof propagationstepsoccurring for eachterminationstep,
Lr =
RS.2S
RS.26
= RS.24
kS.Z4[CO]
RS.26
kS.z6[NOz]
(5.31)
Since the steady-state 03 concentration achieved in the fast cycle is proportional to the ratio of [N02] to [NO], the effect of the slow CO cycle is to slowly convert NO to N02 and therefore to increase the steady-state 03 concentration. Thus, because of the rapidity of the N02/O3 cycle, an independent path that changes the ratio of [N02] to [NO] indirectly controls the ozone concentration. It is common to refer to such oxidation chains that are driven by sunlight as photooxidations. The basic reaction mechanism of the CO/NOx system exhibits many of the key features of those involving much more complex organic molecules. In particular, the role of OH as -'
The presence of water is also necessary to provide a path for formation of hydroxyl radicals after ozone photo]
ysis to give O('D).
OJ
[ON] .Z".". [ZON]9ZO'>j/[OH;:)H]EE">j
+
[OH;)H]UZ£'~{Z
[ZON]9Z'~'t
SS[ZOH]
= 88[HO]
[OHJH]UZE'~rz: [ON]E'~'t
= 55[£0]
[ZON]I'~r u~~qo ~M 'W~~SAS ~q~ U1 ~SOq1 O~ U01~1PpB U1 .££.~ pUB 'q'l£.~
'B'l£.~ SU01~;)B~lO~YSSd ~q~ gU1A(ddy
iO66( 'Sl~gO~) q'l£.~ Aq %~~ pUB B'l£.~ U01~;)B~lAq sp~~;)old S1SA(0~oqd~q~Jo %~V SU01~1PUO;) uns pB~ql~AO lod
(££'~) (q'l£.~) (U'l£.~)
OZH+ OJ + .~OH
to-HO + OHJH
OJ + zH +OJ + . zOH 'l
toIll{ + OHJH SU AI",S!:J
-uO:J U"'!!j:JM "'q AUW SU°!1:JU",J ",PAq"'PJRUJJ01 "'q! 'UO!!:JU",J S!q! 1° A!!p!duJ
0;)
"'q! 1° ",SnR:J"'H
+ .zOH+- Zo + O;)H '00') pUtJ ~:>
-!pt!J lAXOJ~doJPAq
~q1 Pl~!A o~ Zo q~!/t\ AIP!dt!J AJ~A S~:>t!~Joslt! 'Oo')H
ozOH Vl~!A o~ Zo q~!/t\ Al~~t!!P~WW!
'1t!:>!Pt!J lAWJOj ~~
S~U!qwo:> Wo~t! U~gOJPAq ~q~ 'P~~OU Apt!~J~
OZH+O:>H
(££'t;)
~At!q ~/t\ sy
°HO+ OH:>H
+-
'HO q1!M UO!1;)n;)lpun
OJ+ zH +-
(qZ£")
OJH +'H
(RZ£")
+- (\'/ + OHJH '(£'£
~Iqgj. ~~s) S!SAIOtoqd ';}J~qdsowtg ~qt U! SUO!t:)g~JU!gW OMt S~O~J~pUn~pAq~P~UJJOd 'spunodwo:) :)!Ug~JOjO AJ:IS!W~q:)~qt Ot UO!t -:)npoltu! Ut! Sg II~M Sg AJ:IS!W~q:)~uozo jO uo!ssn:)s!p Jno jO uo!tgnu!tuo:) g Sg qtoq S~AJ~S ~JOj~J~qt UO!t:)~s S!qj. 'AJ:IS!W~q:):)!l~qdsodolt jO SWS!Ut!q:)~w I~ AlIgn1J!A Ot uowwo:) S! ~pAq~p~UJJOj jO AJ:IS!W~q:)~qt snqj. 'AJ:IS!W~q:):)!l~qdsodolt jO 1u~uodwo:) Ig!tU~ss~ Ug S! tI .suoqJP.:)OJpAqjO t:)npoJd UO!tgp!XO Ug S! OS~ pUt! s~:)Jnos WOJj p~tt!W~ S! ~pAq~P~UJJOd
rON ONV :ilOAH:ilO'lVWHO.!I
°J"P!SUO:)O~"In:)"Iow -I"A"P WS!~q:)"w
.!IO AHJ.SIW:ilH3
~"P! u~ S! (OHJH)
3n1:i1HdSOWJ.V
"PAq"PI~UJJOJ '"sownd
£'S
~~q~JOd 'sdo
uo9:)~"J U!~q:) IeI!W!S "q~ i\\oq ,,"S o~ OJ u~q~ P"~~:)!Idwo:) "JOW ~~qi\\
-"wos S! ~~q~"In:)"Iow ~ o~ p",,:)oJd o~ InJ"sn S! ~I .WS!U~q:)"w xON/:)!U~~JO :)!J"qdsow~~ f..J"A" An~n1J!A O~I~J1U":) "Ie "OH Aq UO!SJ"AUO:)"ON o~ ON "Q"! pu~ S"!:)~s ~U!Z!P!XO "q~ 3~3HdSOdO~l. 3ffi dO J.~l.SIW3HJ
f'f'Z
CHEMISTRY OF THE BACKGROUND TROPOSPHERE 245
The rate equations for the photooxidation of a mixture of NO2, NO, and HCHO are, as a result,
[HCHO] The chain length of the HCHO photooxidationis given by
Lc=
R5.25 RS.Z6 2jS.32a
+ RS.33
RS.z6 1 +
kS.33[HCHO]
kS.Z6[NOz] We seethat Lc is alwaysgreaterthan one as long asHCHO is presentin the system.Each moleculeof HCHO that photolyzesvia reaction5.32aleadsto the conversionof two moleculesof NO to N02 and at the sametime generatestwo OH radicals.The HCHO-OH reaction,on the other hand,leadsto one NO to N02 conversionand producesa singleOH radical. The reactivity of the systemis controlled by the amountof HCHO. Upon photolysis, HCHO providestwo H02 radicalson one pathandnoneon the other.Sincethesepathsare roughly comparablein rate, we can sayapproximatelythat eachHCHO moleculeleadsto one H02 molecule.(It leadsto exactly one in the OH reaction.)The conversionof NO to N02 andthe formation of 03 arethereforedriven by HCHO throughits productionof H02. Thus the theoreticalmaximumamountof 03 that could be producedin this systemis [03]
= [HCHO]o +
[N02]o
When all the NOx is converted to HNO3, the system ceasesreacting.
5.4 CHEMISTRY OF THE BACKGROUND TROPOSPHERE We have begun a systematic development of the chemistry of the troposphere. We began with carbon monoxide since its atmospheric chemistry is the simplest, while exhibiting some of the essential elements of hydroxyl radical attack, formation of the hydroperoxyl radical, and conversion of NO to NO2. We then proceeded to formaldehyde, the atmospheric chemistry of which is slightly more complex than that of carbon monoxide. The next logical step would be to consider the simplest alkane, methane (CH4), and that is, in fact, what we will now do. It turns out, moreover, that methane is the principal hydrocarbon species in the chemistry of the background troposphere. Thus, in studying the atmospheric chemistry of methane, we are led naturally to the chemistry of the background troposphere.
(q 't?Iv~)
w + ZONOOtHJ ::;::!'; W + zON + .zOtHJ 'ZON q1!A\ 1:)U~Joslu uu:) Iu:)!PUJ f.xOJ~d If.q:I~w ~q.L (~Z'~)
'HO+ zON +-, ON + ,zOH 'IU:)!PUJ RO ~qt S~tUJ~U~~~JON q:J!M "OR Jo UO!t:)u~~
ZON+ 'O£H:)
+-
ON + . zO£H:) 'Tg~!pgJ (O£HJ)
:}q1jO
UO!1gWJOj :}q1 01 Spg:}T ON
q1!M UO!1~g:}J :}qj,
lug1Jodw!
1S0W :}q1 ~U!:}q
AXOq1:}W s1t?~!pgJ
"OH pug ON q1!M SUO!1~g:}J :}q1 q1!M 'S1t?~!pgJ ("O"M) AXOJ;}d ~!ug~JO J:}q1o PUg 'STg~!pgJ "OH pug '"ON
'ON
q1!M 1~g:}J Ug~ Tg~!pgJ AXOJ:}d TAq1:}W :}q1 'SUO!1!PUO~ ~!l:}qdsodoJ1 azR
+
.ZaER:)
+-.0
.Ra
+
J:}pufl
VH:)
SB AI;}S!~UO~ U;}11!JM ;}q ABill UO!1~B;}J Ho-~J
;}q11Bq1 os
w + . ZOEH::> +- W + Zo + . EH::>
OZH+
(8£"C;)
'ZOtH;) '[I!;)!PRJ I.xOJ~d Il.q:j~w ~q:I PI~!I. 0:j"0 q:j!i\\ I.Isno~u 'IR;)!PRJ Il.q:I~w ~q:j 'WO:jR u~gOJpl.q ~q:j JO ~SR;)~q:j U! sy
-R:jUR:jSU!I.IIRn:IJ!1'.S:j;)R~J'tH;)
.EH.:> +- 'HO+~':> '~J
q:}!M 1:>U~JsIu:>!PUJ lAXOJPAH
UOnUp!XOauuq}aw
Z't'S
":)J:)qdsodOIJ :)q:I Jo uo!t!sodwo:> It1:>!w:)q:>:)q:I su!t!tu!t!w f.l:)ttlWf!ln :)uozo '~U!OP os uJ ":)J:)qdsodoIJ :)q:I Jo f.:>u:)!:>YJ:)~U!sUt!:)I:> JO ~U!Z!P!XO :)qt s:)U!UJJ:)t:)p t! HO Jo UO!ttlUJJoJ:)q:I q~noJq:I':)J:)qdsowttl :)qt U! :)uozo 1ft! Jo %01 tnoqtl f.luo s:)spdwo:> :)uozo :>p:)qdsodoIJ q~noqtlY "(£661 'u:)ztnJJ pUt! J:)u:)tu:)Q) :)pm!tft! Jo tu:)pu:)d:)pu! f.lqtluOStl:)J ~ at 'Ins:)J tI Stl ,no swm UO!ttlIJu:):>uo:>ft!:>!ptlJ HO :)q:I ':)pm!tft! ~U!Stl:)J:>U!qt!M S:)Stl:)J:> -U! f.lft!J:)U:)~ O!ttlJ ~U!X!W :)uozo :)qt pUt! '(Z661 'UO!ttlZ!Ut!~JO ft!:>!~010Jo:)t:)W PpoM) :)J:)qdsodoIJ :)q:I U! :)pmf!ft! ~U!Stl:)J:>U!q:I!M S:)Stl:)J:>:)P O!ttlJ ~U!X!W JOdtlA J:)ttlM :)q:I :)sntl:>:)g ":)uozo Jo S!sf.latoqd :)qt WOJJp:)ttlJ:)u:)~ Wattl (OJO JOOP:)UJJoJ:)Jt! sft!:>!ptlJ HO Z"O 'f.t!P!W -nq :)Af!tll:)J %O~ pUtl :)JmtlJ:)dw:)t WOOl ttl 'J:)!IJt!:) p:)tOU Sy l:>:)JJ:) ft!:>!W:)q:>OU q:I!M :)1:>f.:> unu tI at ~U!Ptl:)1 'Z'~ UO!t:>tI:)Jq~nOJq:I £0 UJJOJ:)J'ZZ'~ UO!t:>tI:)J'swattl (0\)0 JO UO!ttlA!t:>tI -:)p WOl} P:)UJJOJJO 'tlIZ.~ UO!t:>tI:)J'£0 JO S!Sf.latoqd:)q:I U! f.P:>:)J!PP:)UJJOJSWattl 0 :)qJ.
"HO Z +- OzH+ (0,)0
(£Z'~)
(0,)0 + Zo +- (\'1+ £0
(qIZ'~)
'S~:J!PRJ HO 0A\1 ~1RJ~U~~01 OzH q1!A\ U09:JR~J(0,)0 I.q P~A\OlIoJ 'W01R (01)0 P~1!:JX~I.IIR:J!UOJ:l:J~I~~q'! PI~!I. 01 wu 61£> sq1~u~I~ARA\ 1R ~uozo Jo S!s1.I010qd ~q'! S! f.J:IS!W~q:J:J!J~qdsodoJ:l pUnOI5){:JRq J~~~!J:I 01 p~J~P!Suo:J ~q UR:J1Rq'! UO!1:JR~J ~ql.
S!SAIOJOqd auozo ';r)l';rUA~()A())lT
rt.S
';rUT ~() X)lT~TWqU:)
Qt.7
CHEMISTRY OF THE BACKGROUND TROPOSPHERE 247
Methyl peroxynitrate,CH3OONObthermally dissociatesback to the reactantswith a lifetime with respectto thermaldecompositionof 1 secondat room temperatureand atmosphericpressure,which increasesto ~2 daysfor the temperatureandpressureconditionsin the upper troposphere(Atkinson et aI., 1989;Atkinson, 1990).Methyl peroxynitratecan act asa temporaryreservoirof NO2andCH3O2radicalsin the uppertroposphere. The reactionof CH3O2with the HO2radicaIleadsto the formation of methyl hydroperoxide, CH302' + H02' ~ CH300H + 02 (5.42) ~
which can photolyzeor reactwith the OH radical CH300H + hv --+- CH30, + OH.
(5.43)
CH300H+ OH, ~ H2O + CH3O2'
~
(5.44a)
H2O+ CH200H -!-
(5.44b)
fast
HCHO + OH.
wherethe fractional splits indicatedare thoseat 298 K. The lifetime of methyl hydroperoxide in the troposphereresultingfrom photolysisandreactionwith the OH radical is calculatedto be - 2 days.Methyl hydroperoxideis thena temporarysink of radicals,with its wet or dry depositionbeing a troposphericloss processfor radicals. The only important reactionfor the methoxy radical under troposphericconditionsis with O2to form formaldehydeandthe H02 radical,
CH30.+ 02 ~ HCHO+ H02'
(5.45)
Formaldehydeis a "first-generation"productthat reactsfurther, by photolysisby reactions 5.32aand5.32bandwith the OH radical,reaction5.33.Formaldehydeis the first major product of C~ oxidation with a lifetime longer than a few seconds.The lifetimes of HCHO resulting from photolysisand OH radical reactionare -4 hours and 1.5 days,respectively,leadingto an overall lifetime of -3 hoursfor overheadsunconditions. Major chain-terminatingstepsin C~ oxidationincludenitric acid andhydrogenperoxide formation,4
OH. + N02 + M -+ HN03+ M H02. + H02. 4
-+ H202 + 02
(5.26) (5.46)
The recommendedrateconstantfor reaction5.46 is (Stockwell, 1995): kS46 = (kc + kp)fw kc = 2 X 10-13 exp(600/T) kp = 1.7 X 10-33 [M] exp(IOOO/T) fw = 1 + 1.4 X 10-21 [H2O] exp(2200/T)
where Tis in K and [M] and [H2O] are in molecules cm-3. kc is the bimolecular term, kp is the pressure-dependent term, andfw is a water-vapor-dependent factor. Stockwell (1995) has shown that the contribution of the water-dependent term can be very important; at the surface the value of kS46in air saturated with water vapor is over twice the value of kS46in dry air. Above about 15 km the water-dependent contribution is negligible and above 25 km the reaction is almost completely bimolecular.
oO£H:J
~
ON
.U!uq:> UO!lUP!XO ;luuql;1w :>!J;lqdsowlV
Z"S nfl~I.!I
ZOJ
UO111sod~pAla
1\1{
-
-. / 1~A\
HOO £H:J
.ZaER;)
'of
aZR + .ER;) -RO PH;)
-!XO OH:JH pm! O:J Jo S!SAIUm!~qt gU!MOIIOd 0£0 Jo uo!t:>npold IUUO!t!PPUOt spu~I ~pAq -~PIuUJJoJ Jo UO!tUP!XOl~~nd '~In:>~Iow "H:J q:>u~ WOlJ tIns~l ~uozo Jo s~In:>~Iow OM!
OZH+ EO'z;+ OH,')H +-- (\l{'z;+ Zo 17+~,')
ON + ,zOH
zON+ .HO ~
1\l{ + ZON)Z
(0 + ON ~
W+ Zo+on
(w+ EO~
,zOH + OH:)H ~ zON + 'OEH:) ~ azH
st? U~11pM ~q Ut?:Jr~ AXOJ~
-U! 0:)
~Jng!d
J~AO S~1t?U!W°p~Jd
qg!q APU~!:JYJns ~ put? OH:)H
+
,ZaEH.J
+-"'0
!;)N
Zo + .OEH:) ON+ .zOEH:) 'Ha
+
1'H.J
u! P~1:J!d~p u!t?q:J u°!:lt?P!XO ~Ut?q1~w ~Q1 'su°!:l:Jt?~J-JI~s ON
Q1!M 1:0EH:)
sI~A~I "ON u~qM. 'r~ ~Q1 qgnoJlp
pUt? 1:0H s{l!:J!pt?J AXOJ~
~Jng!d
{l!:J!pt?J
~Q1 Jo u°!:l:Jt?~J 1t?Q1
U! UMOqS S! 's1:JnpoJd "~Iqt?1S,, ~1t?!P~UU:J1
'UO!1t?UUOJ 1:0:) 01 gU!Pt?~I ~:Ju~nb~s UO!1:Jt?~Jnt?J:JAO ~q.L
q)fqJ.[.f~().f()}fT
qJ.[T~()
X}fT~TW:;rH:1
SltJ7
CHEMISTRY OF THE BACKGROUND TROPOSPHERE 249
dation and assumingthat the photostationarystateholds at any instant, the local rate of formation of 03 as a result of the abovecycle is po]
= {kS.2s[HO2]+
kS.4o[CH302]} [NO]
As a result of peroxy radical-NO reactions,the photostationarystaterelation must be adjustedto (Parrishet al., 1986;Ridley et aI., 1992;Cantrell et aI., 1993) [NO2] -[NO]
kS.3[O3]
+ kS.2S[HO2] + kS.4o[CH302] j5.
Measurements made during the spring of 1988 at Mauna Loa, Hawaii, indicated that peroxy radical mixing ratios of 60 ppt or so were required to account for observations of this ratio (Ridley et al., 1992). Production of 03 in the CH4 oxidation chain is interrupted if the peroxy radicals H02 and CH3O2react with something other than NO, for example, themselves, N02, or 03 itself, or if NOx is removed from the active cycle by reaction with OH to form HN03. For the H02 radical, besides reaction 5.46, another important reaction is
H02' + 03 -+- OH. + 202
(5.47)
Reaction 5.46 is the principal gas-phasesource of H2O2in the atmosphere.
5.4.3
Hydrogen Peroxide
Hydrogen peroxide is the dominant oxidant in clouds, fogs, or rain in the atmosphere. Photochemical activity largely determines the diurnal, seasonal, and latitudinal variations of the H2O2concentration. H2O21evelshave been found to be higher in the afternoon, during the summer, and in the southern latitudes (Sakugawa et al., 1990). The major gas-phase destruction pathways for H2O2are its reaction with OH and its photolysis,
H202+ OR. ~ H2O+ H02
(5.48)
H202 +hv ~ 2 OR.
(5.49)
The destruction of H2O2 in the aqueous phase, mainly by reacting with dissolved S02, is considered in Chapter 6. Van Valin et al. (1990), Boatman et al. (1990), and Daum et al. (1990) reported continuous airborne measurements of H2O2 over the northeastern United States in June 1987. The range of H2O2mixing ratios was < 0.2 to 37 ppb, with an average of 2 to 4 ppb. H2O2 concentrations are typically low near the surface, rise to a maximum at the top of the boundary layer, then slowly decrease with height. 'Photochemical model predictions indicate the H2O2levels depend on whether the atmosphere is in a high or low NOx regime, according to whether radical production is greater or less than the NOx emission rate (Kleinman, 1991). In the low NOx regime, more radicals are formed that can react with NOx, and the "excess" radicals are removed by radical-radical reactions that are the source of peroxides (e.g., reaction 5.46). In this regime, peroxide formation is nearly proportional to the difference between radical source strength and NOx emission rate. In the high NOx regime, peroxide formation is suppressed.
=
l-sl-~In:>~Iow EW:> (.L/O~~I-)dx~ ZI-OI x g.I
= "H;)'!
_SI-~In:>~IOWEW:>(.L/OOgI-)dx~
:( I 'g ;}Iq~.L ;};}S) ;}JP."H;) -A~ l~qol3' ll;}M
;}q! wolJ
AI;}A!t~I;}J
-~P!XO ~!qOJJ!W
pm! £1;);)£H;)
';}W!t;}J!1
ZI-OI x ~9.'l
((;);)(H;)'!
Jo StUU1SUOJ ;}t~J HO ;}q.L 'HO Jo uo!tnq!lts!p
P;}U!WJ;}t;}P ;}q m!J ;}W!t;}J!1 St! '£I;);)£H;)
S! "H;)
3'UOI AI;}A!t~I;}J
;}3'~J;}
;}"){!I 'pu~ ';}qol3' ;}q! J;}AO P;}X!W
St! Jo ;}sn~J;}g
Aq pm! HO qt!M UO!tJ~;}J Aq ;}J;}qdsowt~
,01 x
'SJ;}A~1 ;}J~Jlns
I!OS U! UO!t
;}qt WOJJ P;}AOW;}J S! ;}U~q!;}W
Z>
;)W!Uqg!N
901X ~-I
(J;)1U!M) ;)W!1A110
UI:>s~ln:>~loUI 901 X Ol-~
(J;)WWns)
;)W!1A110
:s~8~J 8u!A\OIlO) ~qt ~tt!;)!PU! ~J~qdsodoJ:l ~q! U! [HO] )0 s~tt!W!tS~ 1t!;)!t~JO~qt p~ p~Jnst!~W i£_w;) S~ln;)~loW 901 X 9"1)0 ~8t!J~At! ~W!tAt!p Jnoq ZI t! Ot tu~It!A!nb~) £_W;) s~ln;)~low ~Ol X (6.0 + 1"8))0 UO!tt!J:lU~;)UO;)1t!;)!Pt!JHO ~8t!J~At! Jnoq vZ t! p~A!l~P (Z661) '{t! t~ uu!ld 'poqt~W S!qt 8u!sn .SWS!~q;)~W {t!;)!W~q;) ;)!l~qdsodoJ:l woiJ AI{t!;)!t~JO~q! p~t;)!p~Jd t~A~1 ~qt Ot ~W!t ~;)U~P!S~J tt!q! Ot 8u!puods~JJo;) I~A~I HO ~qt ~mdwo;) Ot u~qt p~ ~W!t ~;)U~P!S~JSt! J~)U! ot ~Iq!ssod S! t! 'I~A~I ;)!l~qdsowtt!
tu~s~Jd st! p~
'A;)t!Jn;);)t! ~lqt!uost!~J Ot UA\Om{ S! p~
;)!u~80doJqt
-~ AI~!tU~ S! q;)!qA\ 'UO!SS!W~UJJO)OJOlq;)IAqt~W )0 AJOtS!q ~q! wold '£I:):)£H:) )0 ~W!t ~;)U~P!S~JUt!~W ~q! S~U!UJJ~t~PHO )0 UO!tt!J:lU~;)UO;)~8t!J~At! {t!qO18 ~qt os 'HO q!!A\ UO!t;)t! -~J Aq AI~IOStSOWlt! ~J~qdsOUJ:It!~q! WOJ) p~AOW~J S! (£I:):)£H:)) UJJO)OJOlq;)IAqt~W '~Idwt! -x~ JOd 'HO Aq AIUO p~wnsuo;) ~q ot UA\OU){~m tt!q! S~!;)~dS)O st~8pnq 8u!;)~It!q uo p~st!q u~~q AIlt!nSn s~q SWS!~q;)~W {t!;)!W~q;) ~qt Aq p~t;)!p~Jd SI~A~1~qt )0 UO!tt!UJJYUO;)'tln;)y -.J!P AI~W~J:lX~ S! SI~A~I HO ;)!l~qdsowtt!)O tu~w~Jnst!~w t;)~ ~;)U!S .~~;)O ;)y!;)t!d ~ow -~J ~q! J~AO£_W;) S~ln;)~IOW 901 X ~"1 )0 I~A~I t! ot p~soddo St! '£_W;) S~ln;)~IOW 901 X ~"L S! I~A~I HO {mu~U9UO;) t! tt!q! p~tt!W!tS~ S! t! :S~~:>o ~qt J~AO ~q! StU~U!tUO;)~q! J~AO J~q8!q ~ )0 Jot;)t!) t! tnoqt! ~m SI~A~I 1t!;)!Pt!JIAXOJpAH 1! qt!A\ UO!t;)t!~J q8noJq! HO ~;)np~J Ot t;)t! tt!q! ~J~qdS!W~H W~q:lJ°N ~qt U! S~!t!A!t;)t! ~wnq Aq p~;)npoJd 0:))0 stunowt! ~8ml ~q!)0 tlnS~J t! St! ~J~qdS!W~H w~q!nos ~q! U! J~q8!q %OZ tnoqt! ~q ot p~t;)!p~Jd ~m SI~A~I HO 'UO!t!Ppt! UI .(0\)0
Ot S!SAIOtoqd £0 WOJ) UO!t;)npoJd HO)O ~tt!J q8!q t! Ot Pt!~1 s~xnlJ
;)!U!t;)t! 8uoJ:ls pUt! S~!t!P!Wnq q8!q ~J~qA\ 'S;)!dOJ:l~q! U! p~t;)!p~Jd ~m SI~A~I HO tS~q8!H .£_W;) S~ln;)~IOW 901 ot ~01 X Z WOJ) )0 UO!tt!J:lu~;)UO;)HO p~8t!J~At! AIlt!qOI8 p~ 'AIlt!U -In!P 'AI{t!UOSt!~St! ts~88ns SuO!tt!ln;)It!;) q;)ns "HO)O UO!tt!J:lu~;)UO;);)!l~qdsowtt! ~q! ~tt!W!t -S~ Ot ~lq!SSOd S! t! 'f.J:IS!W~q;);)!l~qdsOdOJt ~tt!lnW!S Ot WS!Ut!q;)~W 1t!;)!W~q;) t! 8u!sn Ag "SJnoq tq8!IAt!p 8u!lnp £_W;) S~ln;)~IOW 901 )0 J~pJO ~q! uo SUO!tt!JtU~;)UO;)p~u!t!tSnS Ot 8U!Pt!~1 'S~I;)A;) ;)!tAlt!tt!;) U! p~tt!J~U~8 S! HO 's~st!8 ~;)t!Jt ;)!l~qdsOWtt! q!!A\ 8U!t;)t!~J u~qA\ 'tt!q! S! A~){ ~q.L .AJtS!W~q;) ;)!l~qdsodoJ:l U! J~At!ld tut!:}JodW! UtI ~q Ot 'At!A!t;)t!~J q8!q St!)O ~t!dS U! 'A\01 OOtm) ~q PlnOA\ UO!tt!J:lu~;)UO;) St! 'p~tt!J~U~8~J ~q J~U~W ~WOS U! tOU put! S~!;)~S J~q!O qt!A\ t;)t!~J ot AldW!S HO ~J~M. 'UO!tt!J:lU~;)UO;)q8!q AI~A!tt!I~J St! p~ S~ln;)~IOW J~qtO pmA\Ot At!A!t;)t!~J q8!q St! qtoq WOJ) S~A!l~P ~;)ut!:}JodW! St! put! '~J~qdsOWtt! ~qt U! S~!;)~S ~;)t!J:ItSOW qt!A\ St;)t!~J HO 'P~~PUI "~J~qdsodoJ:l ~q! U! S~!;)~dS~A9;)t!~J tut!:}JodW! tSOW ~qt S! t! t~A 'OzH JO 'l0:) 'l0 'IN St! q;)nS '~J~qdsOWtt! ~q! )0 stu~m!tSUO;) JO[t!W ~qt )0 AUt! qt!A\ t;)t!~J tOU s~op 1t!;)!Pt!JIAXOJpAq ~Q.L
'lV3IOVH 'lAXO'HOAH ~HJ.
S.S
3'M3HdSOdOll.L3ill dO J..1I.LSIW3H:> OSZ
THE HYDROXYL RADICAL
251
Because the temperature dependences of these two rate constants are quite close, the atmospheric oxidation rate ofCH4 can be scaled to that ofCH3CCI3. An atmospheric CH4 destruction rate' of 440 :t 50 Tg yr-1 can be inferred in this way. From the current atmospheric loading of CH4 of about 4850 Tg, a mean atmospheric lifetime of 11 (:t 10%) years is derived based solely on OH reaction. When loss in the stratosphere and removal in soils are also considered, the lifetime shortens to about 10 years. Only in the past few years have reliable direct measurementsbeen made of lower tropospheric OH radical concentrations (e.g., see, Felton et al., 1990; Eisele and Tanner, 1991; Hofzumahaus et al., 1991; Comes et al., 1992; Hard et al., 1992; Mount and Eisele, 1992; Eisele, 1995). These measurement show that, as expected, OH radical concentrations exhibit a diurnal profile, with daytime maximum concentrations of several 106molecules cm-3. Ehhalt et al. (1991) have evaluated the extent of agreement between calculated and measured OH concentrations on May 20, 1983, 0908 to 1130 hours, at Deuselbach, a rural area in Germany, assuming that OH and HO2 levels were governed by the CH4 oxidation cycle. Figure 5.3 shows the calculated concentrations and fluxes between species. Since inter-
,,°2
hv 1.5 x 107 t "N2;O2
HCHO: 0.5 x HZ : 0.4 x °3 : 0.3 x 80Z : 0.1 x
OCD) 1.9x 10-2
H;O 1.9x
106 106 106 106
Ux ~106 ; '/
'.':'::::::::::\ ',".,'
~ - --, 0"
-'
~/
~
"
."'. o"i
I-.
:-:.:8.2 ..
'-.
NO2 1.8x106 A
~.
°3: 2.2 x lO~
-;S'"
'"104
Kaiiiout HeterogeneousRemoval 1.8x 106
l::)
x 10.:
/
bt OH ~/ 4 .~')~/ 3.5 x 10
-~.~ .b~ -\\O');
HNO3 1.5x1011
~
. ',,'
':""""HO:':' :::::: . . 2:7:
()
')3.9xl0;~
"'~
'v-'
I Rainout 1.3 x 104
~
FIGURE 5.3 Concentrationsand fluxes betweenOH and HO2(Ehhalt et al., 1991).The calculation simulatesan airmassobservedbetween0908 and 1130hours, May 20, 1983 at Deuselbach, Germany.Numbersin boxesarecalculatedconcentrations(moleculescm-3); numberson arrowsare conversionratesofOH and HO" (moleculescm-3s-').
-~Jd (0661)
'(8861
"1111;) U!)jU;)f) lodl1A O"H pUlJ "ON Jo UO!I;)I1;)l ;)41 f.q P;)UllOJ ;Jq OSII1UI1;) P!;)11SnOll!N,
)J~AII:!:J PUI:! q;)!UOJpI:!W lq:3!U
-!XI:!Ul AI:!PP!Ul gq))1:! (xou!nbg jO SUO!)l:!l)Ug;)UO;) zOH P~1;)!pgld sgln;)~loUl ul:!qln
'g;)I:!Jlns
P~);)!p~ld
sl~A~1 4:I!/I\ pgll:!dUlO;) gOl X Z-ljO
11:!,_Ul;)
S~ln;)g[OUl
'~pm!11:!1 N o~17) (_Ul;)
(1861)
'[I:! )~ UI:!:30'l
901 X 01-1 s~[n;)g[OUl
'sl~poUl
PUI:! UlnUl gOl X £'£
11:!;)!Ulgq;)010qd
Aq
gq UI:!;) gE'UI:!J S!q.t 'SUO!1!PUO;) A){S-ll:!g[;) 19pUn (_Ul;)
~E'Ul:!l ~q) U! SI:!/I\ [ZOH]
A[!l:!p UlnUl!XI:!Ul
UI:! PUI:! J!I:! gU!1t1Ul UI:!~[;) Aq pgZ!1~1;)1:!1I:!q;) ~1!S gUO 'slnoq
'UO!SUl:!dXg SI:!:3q1!/1\ AI:!SSI:!g;)U~;)SgJonlJ pglll:!;) gnb!uq;)~)
'Sg)!S q)oq )'1 '~1!S 817 0) 9£ JO spo!lgd
SnonU!1uO;) 10J Sg1!S UOE'glO 0/1\1 )I:! SUO!1I:!J)Ug;)UO;)zOH pgU!U1lg)~P
(Z661)
'[I:! 1~ P1t1H
I:! :3U!SO .S!SAII:!UI:!Injgll:!;)
PUI:!
UO!)I:!)U~UlnJ1SU! pg11:!;)!)s!qdos SgJ!nbgl 'III:! 11:!~lq!sSOd J! 'J!I:! U! SUOpl:!l)U~;)UO;) [I:!;)!pl:!l gglJ Jo 1UgUl~lnSI:!~Ul 1;)~1!a (S;Z'S; uo!pva)j) ON l{1!M slv.J!pv)j zoHio UO!PViJ)j
'.J
lUI:!U!UlOP gUlO;)~q sg;)Jnos 19q)O gJOjgq S[I:!;)!pl:!l HO jO g;)lnOS E'U! -UJOUl AIJI:!~ 1UI:!;)Y!UE'!S I:! ~q UI:!;) UO!11:!!;)OSS!po)oqd Sl! '1q:3!UJgAO Sgll:![nUln;);)1:! ONOH JI 'tins E'U!UJOUl AI1t1g 10J lnoq ONOH
1 1noql:! 01 uns qE'!q 11:!Sg1nU!Ul 011noql:!
UlOJj SgE'Ul:!l
JO gUl!1~J!1 UO!11:!!;)OSS!PO10qdgq.t 'Sl:!g1t1ul:!qln 10J gsoq1 uI:!q1 19/1\O[ q;)nUl AliI:!
-nsn g1t1 Sl:!g1t1~10Ul~1 JoJ pg110d~1 sgnll:!A '(17661 "[I:! 19 1JgAII:!:J) qdd 01 :3U!q;)l:!olddl:! s~nll:!A UlnUl!XI:!Ul
01 qdd
1 1noql:! Ul01J gE'U1:!JSO!11:!1E'U!X!Ul ul:!qln
~Ul!11qE'!U 11:!;)!dA.t
.~lgqdsOUl11:! ul:!qln ~q1 U! gUl!llqE'!U E'U!lnp SUO!lI:!J)Ug;)UO;) UlnUl!X1]Ul S1! SgA~!q;)1:! P!;)I:! snOIl!u 'uo!1!sodUlO;)gp010qd S! ONOH Jo ssg;)old 1I:!AOUl~1 [l:!d!;)U!ld ~q1 ~;)U!S
W+ONOH
( 11);'1);) ',ON
+-
W+ON+
°HO
q~!N\ SIU;)!PUl HO Jo UO!~;)Ugl gq~ WOlJ pgUllOJ S! P!;)U snol~!N
ON+ .HO
(o~.~)
+-
rtt{
+ ONOH
'( t66 I 'It?:I;) :jJ;}AIt?:)) slt?J!Pt?J HO PI;}!A 0:1 sJnoq ;}W!:lAt?p lJu!Jnp
wu OOt>
sq:li5'U;}I;}At?M :It? P;}ZAI°:loqd
;}W!:I!qi5'!U i5'u!Jnp :lu;}s;}Jd S! qJ!qM
'ONOH
AIP!dt?J S! 's;}J;}qdsow:lt?
'P!Jt? snoJ:I!N
')I 86Z :It? a!JJO~Jo A:I!p!Wnq
ut?qJn U! sJnoq
P!.JV sno.ll!N
.P;}WJoJ WO!t? (0,)0
fo S!SA]010lfd
;}A!:lt?I;}J t? :IV .slt?J!Pt?J HO ;}JnpoJd
HO Z"O !noqu
"0
pUt? "N Aq p;}qJu;}nb
.q
qJt?;) JoJ P;}WJoJ ;}Jt? slt?J!Pt?J
Jo UOQJt?JJ lIt?wS V .ZZ"S; UO!:lJt?;}J Aq (dJO
UO!!Jt?;}J Aq JOdt?A J;}!t?M q:l!M S:lJt?;}J (0,)0 ;}:It?:lSpunoJi5' ;}q:l 0:1 ,Jt?q
-X;) ;}q:l Jo :ls°1/'ll .qlZ"S; UO!:lJt?;}J Aq '(0,)0 U! 'PI;}!A 0:1 S;}:lt?!JOSS!po!oqd
AIlt?J!sAqd
0:1 £Z"~
;}Jt? SWO:lt? (0,)0
P;}:I!J
'SWO!t? U;}i5'AXO P;):I!JX;} AIlt?J!UOJ:lJ~I;} 'md
to wu 6 I £ ut?q:l ss~1 sq:llJU;}I;}AUM :IV
:S~ss~:JOJd B'U!N\OIIO] ~l[! U!A ~J~l[dsodoJ!
;-0 fo S!SA]010lfd
.0
~l[! U! p~WJO] ~JU slu:J!PUJ l/i.xOJP/i.H
a.laqdsodo.I.Laq} U! sa}no}f uo!}Jnpo.ld 00 Jo aJuu}.lodWI aA!}Ula}f rs aldwux:iI
JO ~;)!pt!J
xOH Ut! Jo ~W!t~J!I
Ot stunoWt!
S!q.L ,EONH
'P~I;),(;) S! ~;)Wt!J
°SPUO;)~S ~p xOH Ut! Jo ~U!I;),(;)~J t!
~~t!J~At! Ut! pUt! SPUO;)~S 6 !.l~A~ ~;)!pt!J
UJJoJ Ot UO!tt!U!UJJ~t ,(q p~AOWro S! t! ~JoJ~
s~w!l
~AY '~~t!J~At! uo
xOH Ut! ',_s E-W;) S~In;)~IOW 901 X 8'1 Jo ~tt!J t! tt! ~u!lln;):)O
-t!U!UJJ~t ~ON-HO
~1p 1p!A\ o,_s E-W;) s~ln;)~Iow
~q.L °E-W;) s~ln;)~Iow qt!M U°!l;)t!~J
HO ~tt!tS-,(pt!~tS
~1p '~nb~
UO!t;)t!~J UO!t
901 X 6 S! ~t!J UO!SJ~AUO;)J~tU! ~OH-HO
901 X £op JO u°!lt!Jtu~;)UO;)
HO
Ut! Ot sPt!~I ~tt!W!tS~
,(q ~AOW~J St! Ot S!S,(IOtoqd EO ,(q UO!tt!J~U~~ St! ~u!tt!nb~
U°!lt!JtU~;)UO;)
Ut! q;)ns
,(q p~tt!W!tS~
~
'~ON Ut!;)
,(IJP.~U ~JP.~OH pUt! HO U~~Mt~q S~tt!J UO!SJ~AUO;)
3'M3HdSOdO~ H~ dO J..~SIWHHJ
lSl
~
THE NITRATE RADICAL
253
5.6 THE NITRATE RADICAL We recall from Chapter 4 that the gaseous NO3 radical is formed via the reactions (see Atkinson, 1991, Wayne et al., 1991, and Platt and Heintz, 1994, for comprehensive reviews of the nitrate radical),
N02 + 03 -+ N03 + 02 M N02 + N03 ~ N20S
(5.52) (5.15,5.16)
with N2Os being in a relatively rapid (characteristic time to reach equilibrium -1 minute at 298 K) equilibrium with N02 and the N03 radical. Nitrate radicals were first detected in the troposphere in 1980. N03 is a strong oxidizing agent and reacts with a number of other atmospheric species. The prerequisite for N03 radical production is the simultaneous presence ofN02 and 03 in the same airmass, as reaction 5.52 is the only primary source ofN03 in the troposphere. The equilibrium with N2Os,reactions 5.15 and 5.16, is an important feature ofN03 chemistry. During daytime N03 radicals photolyze rapidly via two paths (see Table 3.3),
N03 + hV(A < 700 om) -+ NO + O2
(5.53a)
N03 + hV(A < 580 om) -+ N02 + 0
(5.53b)
with a noontimelifetime of -5 seconds,andreactwith NO,
NO3+ NO
~
2NO2
(5.13)
sufficiently rapidly that NO andN03 cannotcoexistat mixing ratiosof a few partsper trillion (ppt) or higher. For typical daytime conditionsof [N02] = 40 ppb, [03] = 50 ppb, and [NO] = 40 ppb, the maximumN03 mixing ratio will be 0.6 ppt. At nighttime,however,when NO concentrationsdrop nearzero,dueto reactionwith 03, the N03 mixing ratio can reach 100 ppt. Under conditionstypical of rural areasin industrializedcountries (N02 mixing ratio of -1 ppb), N03 andN2Osconcentrationsareroughly the sameorderof magnitude.Whereashomogeneousreactionsof N2Oswith water vapor and other trace
°HS ~q1 U! ~A!1:>~))~~lOW ~ 1qg!W s~ss~;)old {t!AOW~l ~:>~Jlns-m~u 1~q:llO ~UOZOHS )0 ~:>lnos ~ ~ ,(~w HN ~q:l1~q1 s1s~ggns HS ~q:I 01 HN ~q1 wall s~g ~uo s~ EO u! ~S~~l:>~pp~AJ~sqo ~q.L o~:>~Jlns~q:I m~u s~ss~;)oJd {t!AOW~l ~uOZO p~:>~qu~ )0 ~:>u~s~Jd ~q:I gU!1s~ggns '~~qdsodoJ:} laddn ~q:I U! 1~q:I wall S~pm!1{t! l~MOI 1~ ~S~~l:>~p SI~A~1~UOZo 1~q1 ~~s os{t! ~M. oM. 00£ guoI~ ,(pSOW ':>!1~PY ~q:I U! ~S!ru:> w~quou ~ uo Uiills./vlod I~SS~Aq:>m~s~l ~q1 wall p~S~~I~l s~puos~uozo ~!A u~~ ~l~M Vo~ ~lng!d U! EO )0 S1U~W~lnsu~w ~q.L °P~1~:>!PU!~m 0!1~l gU!X!W EO 1umSUO:> )0 Sq:I~ldos! p~ 'S~SSOJ:> q:I!M UMOqS S! ~sn~dodoJ:} ~q:I )0 UO!1~:>°1~1~W!XOldd~ ~q.L o~l~qd -sodoJ:} ~q:I 01U! ~uozo :>p~qds01~J:}S)0 xnlJU! ,(q p~zp~1:>~mq:>s~ L86 I Ipdy p~ q:>mw gU! -lnp N 00£ 1noq~ 1~ (£01 ~lng!d I{t!:>~) ~~q JO PIal ~sn~dodoJ:} ~ SMOqSvo~ ~ng!d o~uozo :>p~qdsodoJ:} )0 ~:>lnos ~ S! l!U :>p~qds01~J:}S)0 UO!snj:}U! 1~q:I P~10U ~M Z l~1d~q.J uI o~p~:>~p1s~d ~q1l~AO AJ:}s!W~q:>:>p~qdsodoJ:} U! q:>m~s~l ~q:I )0 q:>nw p~!dn:>;)O s~q ~IOqM ~ s~ ~l~qdsodoJ:} ~q:llO) p~ ,("~:>Ol q10q ~uozo )0 s){U!S p~ S~:>lnos ~q:I )0 gu!pums -l~pun ~A!1m!1~nb ~ u!Ug 01 gu9dw~11Y °{t!AOW~l Alp p~ 1~M p~ UO!1:>nj:}S~p{t!:>!W~q:> -010qd {t!;)O1~m S){U!S~q:I S~~l~qM 'UO!1:>npoJd{t!:>!W~q;)O10qd{t!;)O1p~ ~J~qdsodoJ:} ~q1 )0 SUO!g~ll~q:lO wol) p~ ~J~qds01~J1S~q1 wall Uodsu~J:} ~m S~:>lnos ~q:I UO!1~:>°1,(u~ 1~ 1~q:I MOU){ ~M ',(I~A!1~1!I~n() i,~IOqM ~ s~ ~J~qdsodoJ:} ~q1l0) p~ ,("~;)OI q10q '~uozo )0 S){U!S p~
S~:>lnos ~q:I ~m 1~qM. :S! ~UOZo :>p~qdsodoJ:} 011:>~ds~l q1!M uo!1S~nb Imu~W~pun) ~q.L
ZON~O 3'1011 3D.L aNV D3DdSOd01l.L 3D.L ~O .L3f>CIOH3NOZO 3D.L L.S
('v~'~ UO!!:)RaJ Aq UO!! -RWJOjEONH O! !SOIAlSnonupuo:)am saln:)alow ~OzNjO UO!!:)RJjawos !nq 'v~.~ UO!!:)RaJ Aq Alq!SJaAaJJ! !SOI S! ORq! EON + cON O! )(:)Rq sasodwo:)ap aln:)alow ~OzN UR !Rq! Ala){!I aJow S! !! snq.L 'saSR:)jO A!!lofRW aq! U! paAJasqo ORq! saw!!aj!1 EON Ja!Joqs q:)nw O! pRaI PlnoM S!q! 'aln:)alow EON ORjO SSOIalq!SJaAaJJ! O! pRaI PlnoM aln:)alow ~OzN UR gU!WJOj UO!!:)RaJq:)Ra jl) 'EON q!!M Wn!lq!l!nba U! S! q:)!qM 'v~'~ UO!!:)RaJAq '~OzN jO SSOIR q!!M !ua!s!suo:) !SOW am saw!!aj!I EON asaq.L 'sa!!!P!'Wnq asaq! punom saI:)!:)JRdIosOJaR :)!Jaqd -SOW:JR[B:)!dA! jO a){mdn Ja!RM aq! jO aA!!R:)!PU! Ala){!I !SOW 'sa!nu!w Maj R jO JapJo aq! O! doJP saw!!aj!I EON paAJasqo '%O~ ~ H~ aAoqR :sa!nu!'W Ov jO JapJO aq! am saw!!aj!I EON '%O~ ~ H~ MolaR '(v661 'z!U!aH pUR !!Rld) A!!p!Wnq aA!!RlaJ jO uo!!:)unj guOI!S R Ja:ljR pagJawa v~'~ UO!!:)RaJ R!A EONH O! xON jO UO!SJaAuo:) aq! jO a:)um
[B!uaw!ladxa
EON paAJasqo 'aJaqdsodoI! aq! U! S[B:)!PRJEON jO a:)uasaJd aq! jO UO!!R:)Y!laA
aJR saw!!aj!I
-Jodw! aq! jO UO!!RZ![Ba~ '9Z' ~ UO!!:)RaJ'HO Aq P!:)R :)!I!!U O! xON jO UO!SJaAuo:),,[B:)!waq:) -o!oqd" aq! O! a:)UR:)Jodw! U! [Bnba 'sasR:) AORW U! 'S! v~'~ UO!!:)RaJ 'paapuI 'P!:)R :)!I!!U O!U! xON !JaAuo:) O! 9Z'~ UO!!:)RaJO! q!Rd aA!!RWa![B OR sap!AoJd v~.~ UO!!:)Ra~ 'PazAIO! -oqd AIP!dRJ S! 'Z~'~ UO!!:)RaJR!A ~OzN O! JosJn:)aJd aq! 'EON asnR:)aq !qg!IARP U! !UR!Jod -ill! aq O! pa!:)adxa !OU S! UO!!:)RaJS!qJ. 'S!aldoJp pnoI:) JO sal:)!:)JRdIosOJaR U! SJn:):)Oq:)!qM
(v~.~)
taNH 'l +- (S)OZH+ 'OzN
'(a.v uo!t:)e~J)~OzNJo S!sf.IOJPf.q(~seqd-~I:)!tJBd)sno~u~goJ~t~q~qt Jo ~J~qdsoteJ:ls ~qt UI ~:)ue:jJodUJ!~qt U~S f.pe~JIe ~Aeq ~M 'MOIs f.I~UJ~J:lx~~q Ot P~A~!I~q ~m s~seg ;I~3HdSOdO~.L3ffi dO A~.LSIW3HJ
tSZ
THE OZONE BUDGET OF THE TROPOSPHERE AND THE ROLE OF NO.
255
] ...r fo Q) x
Latitude FIGURE 5.4 Meridianal crosssectionof 03 (in ppb) obtainedduring March and April 1987via ozonesondes releasedfrom the researchvesselPolarsternon a northerncruisein theAtlantic, mostly along 30° W. Approximate location of the tropopauseis shown with crosses.(Figure presentedin Monthly Update,Departmentof EnergyAtmosphericChemistry Program,originally presentedby Smit et al., in Ozonein the Atmosphere,edited by R. D. Bojkov and P. Fabian,DeepakPublishing, 1989.)
5.7.1 Tropospheric Sinks of Ozone The principal photochemicalsink of 03 in the troposphereis reactions5.21b, 5.22, and 5.23.Becausethis removalpath dependson the concentrationof watervapor,it is mosteffective in low latitudesat low altitudes,wherethe radiationis intenseand the humidity is high. An estimateof the magnitudeof the local rate of 03 destructionby reactions5.21b, 5.22,and5.23 canbe obtainedby assumingthat [O(ID)] is in a pseudo-steady stateasa result of thesethreereactions.The pseudo-steady-state concentrationof O(ID) is given by
[0(10)]88=
j5.2Ib[O3] ks.zz[M] + kS.Z3[HzO]
Ozonedestructionoccurswheneveran OrO) reactswith H2O,sincethis removesOrO) from the system;otherwise0(10) is just quenchedback to 0 in reaction5.22, and 0 immediatelyreforms03 by reaction5.2.Thusthe rateof 03 removalby reactions5.2Ib, 5.22, and 5.23 is d[O3] dt
= -kS.23[O('D)][H2O] =
k5.Z3 [HZO]j5.Z1b[O3]
k, ""fMl + k, "'tfH,,Ol
("6861 'gU!qS!1q~ ~d~~O 'UU!qud "d pun Ao)jfog "0 "}l Aq P~1!P~ 'aJal{dsoIUJval{J U! auo20 U! '"Iu 1~ 1!WS Aq P~1U~S~ld AIIUU!g!lO 'wulgold .\l1S!W~qJ :>!l~qdsOW1Y Agl~u3 10 1u~w1JUd~0 'aJvpdn .{!l{JUOW U! P~1U~S~ld ~l~!d) "loduA l~1UM q:I!M gU!1:>U~l (0,)0 qgnolq11s01 AI~1UW!1ln ~lU 1Uq:I(0,)0 01 S!SA1010qd gU!ogl~pun s~ln:>~low £010 UO!1:>Ul1~q11u~S~ld~l s~u!1°sI "uu~:>O :>!1uupy ~q1 ~AOqU J\\ 00£ guolu p~lnsu~w S~IYOld A1!p!Wnq uo p~suq 'L861 l!ldy puu q:>JUW gu!lnp ';)J~qd -SodOJ1l~MOI ~q1 U! ssol ~uozo lu:>!W~q:>O10qd IUU°!1:>Ul110 u°!1:>~s SSOl:>IUUU!P!l~W
N 00£ "OZ
;}pm!~~'l 001 ,,0 001
S'S 3}lfl~M
oOZ S 00£ I
~1'O .0
~O'O
,10 II, I' I) 0.'0
~['O
~l f
J
!
~
-
I
cooo --
" :1\-1"
10'0
!,:
I.
~ ~
~ r ~ 3 Iv
I',!!"
!
I'
f . I
.
I
I
110'0 -
Ii.
.;
';)pm!1\e pUB ;)pm!1e\
q-J~M UO~1eJ1U;):>Uo:>JOdeA ooH jO UO!1e!leA ;)q-JjO 1\nS;)J ;)q1 A\;)gjp,\ S~JO!Aeq;)q
S~Q.L'U;)A;)S jO ~no ;)UO 01 J;)SOI:> s~ s~q1 ;):>ejJns ;)q11e :P;)AOJ1S;)P AI;)1eW~1In S! S~SAI010qd S;)og -J;)pun
1eq1 001 jO 1nO ;)In:>;)IOw
£0 ;)UO 1noqe 'ill){
t; 1V 'W){ t; jO ;)pm~1Ie ue 01 ;);)ejJns ;)q1
o~ ;)Sol:>WOJj ;)pn~~ugew jO J;)pJO ue 1Sowll! Aq puB N 00£ 01 N 00 I WOJj £ - jO J01:>eje Aq ;):>ejJns ;)q-J1es;)Se;)J:>;)pssol .0 ll!uO~1;)eJj;)q11eq1 ;);)S;)A\ 'Ue;):>o :>!1uepV ;)q1 U~p't; ;)Jng!d jO ;)S~ru;) ;)q1 U~ A\ 00£ gUOll! p;)JnSe;)W S;)IYOJd A1~p~wnq uo p;)Seq uO~1enb;) ;)Aoqe ;)q1 WOl] p;)1ndwo:> 'L86 I l!ldV puB q;)jp,W gU!lnp ;)J;)qdsOdOJ1J;)MOI ;)q1 u~ SSOI£0 leuO~1:>eJj jO UO~1:>;)S SSOJ:>ll!ue~P!l;)W ;)q-JSMOqS t;"t; ;)Jng~d leAow;)J £0 lemU;)A;) 01 pe;)\1eq1 qlz't; UO~1;)e;)J U~ S~SAI010qdogJ;)pUn 1eq-Js;)ln:>;)IOW £0 jO J;)qwnu ;)q1 jO uO~1:>eJj;)q1 u~e1qo ;)M
/
qIl'~r
--.!!.- !.:Q!
[EO] P I
'qIZ.~ q:lRd Aq EO JO ~UR~SUO:) ~~Rl S!SAIO~oqd~q~ Aq P~P!A!P U~q:I S! ~~Rl S!q:IJI [OZHl EZ".:y+ [W] U".:y
-
qIZ.~! [OZH] EZ.~'J[
---Jp
[£0]
[£0] P I '[fO]
-!P ,(q P;)U!t?1qO S! (I-S
U! p;)ss;)ldx;)
,(q ;)P!S q:)t?;) ~U!P!A
1u;)s;)Jd fO JO 1UnOWt? 11:1:>01 ;)4"1 01 P;)Z!It?UJJOU ;)1t?JV
3~3HdSOdO~J. 3HJ. dO A~J.SIW3HJ
9SZ
THE OZONE BUDGET OF THE TROPOSPHERE AND THE ROLE OF NO.
257
The fractional 03 photochemical loss in Figure 5.5 can be converted into absolute 24hour averages of the normalized 03 destruction rate (in S-I) by multiplying the fractions in Figure 5.5 by the 24-hour average of j5.21b. For example, at 10° S at the surface, j5.21b~ 7 X 10-6 S-l, and a photolysis lifetime of 03 is estimated as about 11 days. In contrast, the lifetime of 03 resulting from dry deposition to the surface of the ocean can be estimated as about 35 days on the b~sis of assuming a dry deposition velocity of 0.05 cm S-1 (see Chapter 19) (Smit et al., 1989). Since reactions other than photolysis also contribute to photochemical 03 loss, such as reaction 5.47, one concludes that photochemistry is likely the major sink for 03 in the boundary layer at 10° S and not dry deposition (Ayers et al., 1992). In fact, ozone destruction by the photochemical processes 5.21b, 5.22, and 5.23 is estimated to account for roughly 75% of the tropospheric loss of 03 by gas-phase routes; the remainder is primarily the result of reaction 5.47. This conclusion is strengthened by the lack of observed 03 decreaseat night, which would occur if dry deposition to the ocean were having a noticeable effect on 03, since photochemical destruction occurs only during daytime and dry deposition operates both day and night. (Over land the 03 dry deposition velocity may be as much as an order of magnitude larger than that over the ocean, and with a nighttime boundary layer generally shallower than that over the ocean, dry deposition of ozone may compete effectively with chemical removal.)
5.7.2 Tropospheric Sourceof Ozone The principal in situ chemical sourceof ozone in the troposphereis photochemicalproduction through the methaneoxidation chain. The level of NO is critical in this chain in dictating the fate of the HO2radical. Reaction5.25, +NO~
NO2+0H.
(5.25)
OH-+202
(5.47)
leadsto 03 production;reaction5.47, +03
~
destroys ozone. The break-even concentration of NO, below which 03 is destroyed and above which it is produced, depends on the local 03 concentration. Tropospheric air may be called NOx rich when NO mixing ratios exceed those of 03 by more than the ratio of the rate constants of reactions 5.47 and 5.25. The ratio of the rates of these two reactions is RS.47
= --kS.47[03]
RS.2S
kS.2S[NO]
The rate constant ratio, k5.47/k5.25~ 2.5 x 10-4. The 03 mixing ratio near the Earth's surface in the remote continental troposphere is about 20 ppb. Then R5.25> R5.47for NO mixing ratios exceeding about 5 ppt. This amount of NO is roughly equivalent to 15 to 20 ppt NOx. A competition also exists between NO and the H02 radical for reaction with the CH3O2 radical, and the preferred route depends on the concentrations of H02 radicals and NO. The rate constants for the reaction of the CH3O2radicals with NO (reaction 5.40) and H02 radicals (reaction 5.42) are of comparable magnitude (see Table B.l). Based on expected H02 radical concentrations in the troposphere, Logan et al. (1981) calculated that the reaction of the CH3O2radical with NO dominates over that with H02 for NO mixing ra-
~sng;);:Iq ~Sg~J;)U!S~W!~~J!I 's~pn~!~gl J~qg!q ~v '~;)gjlns ~q~ m~u UO!~gJ:lU~;)UO;) JOdgA J~~gM J~qg!q ~q~ JO ~Sng;);:Iq~;)gjlns ~q~ ~g J~tJoqs OS{t?~m S~W!~~J!'l 'J~WWnS ~q1 U! s~xnlJ mlos J~qg!q ~q1 JO ~lnS~Jg Sg J~~U!M ~q1 U! Ugq~J~WWnS ~q1 U! J~tJoqs ~m S~W!~~J!'l 'UOSg~SpUt? '~pn~!~gl '~pm!~{t? uo gu!pu~d~p APUg;)y!ug!S A.rnA ~J~qdsodoJ~ ~q1 U! S~W!~~J!I ~uozO '~J~qdsodoJ~ punoJg){;)gq ~q1 U! EO JO ~;)Ug{t?qI{t?J~AOUt?O~pg~1 O~pUt? ~J~qdsO~gJ:lS ~q1 WOJJ UMOp p~tJodSUgJ~EO JO ~UnOWgp~~;)~dX~ ~q~ AOJ:lS~pO~p~p~~U S! ~gqM ~noqg ~snr S! S~~gJUO!~;)npoJd pUt? SSOI~q1 U~~M~;:Iq~;)U~J~JJ!P~q.L 'J~~g~J'JAI~qg!IS ~q O~P~~;)!p;}Jd SSOI q~!M '~;)Ut?{t?qU! ~noqg ~snr ~m SSOIpUt?UO[!;)npoJd EO SI~A~I ~S~q1~g ~gq~~~S ~M 9"; ~Jng!d WOld. '(Z661 "{t? ~~ A~IP!~) ~dd 01- ~g [ON] ~gPP!W q~!M '~dd O£- AIIg;)!dA~ S! [raN] ~gq~ ~~g;)!PU!!!gMgH J~AO SUO!~gJ:lU~;)UO;) ;)!l~qdsodoJ:l J;}ddn JoJ t?:}go "SAgp L 1 Jo ~W!~~J!I EO ug S~A!g ~~gJssol S!q1 'qdd 017Jo O[!gJ gU!X!W EO Ut?JOd "I-S E-W;) s~ln;)~low .01 X '; ~noqg ~g ""ON Jo ~u~pu;}d~PU! ~sow{t? ;:Iq o~ U~~SS! ~~gJSSOIEO ~q.L 'O!~gJgU!X!W xON Jo uo!~;)unJ g Sg (~U~W!l;}dx3 f.J:IS!W~q;)O~oqdg°'l gungw) X3dO'lW ~q~ gu!lnp !!gMgH ~AOqg ~J~qdsod -OJ:l~~JJ ~q~ JoJ S~~gJssol PUg uo!~;)npoJd ~ggJ~Ag-Jnoq-17Z 'p~~gln;)lg;) SMOqS9"; ~Jng!d "P~~gW!~S~AI!Sg~ ~JOW ;:Iq Ut?;) 1:07 JO (Dc! JO q;)!qM uo spu~d~p ~sn O~~sooq;) ~M SUO!SS~Jdx~OM~ ~q1 JO q;)NM
'O'J
-='0,1 [EO]
JO
£oc/
-='0,1 [EO]
J~Q1!~~sn Ul1:>~A\ snq.L 'SWS!Unq:>~w ssoI pUl1 uo!t:>npoJd In:>!w~q:>otoqd Jo tlns~J n sn ~:>un{nq U! ss~I JO ~JOW S! uo!tnJtu~:>uo:> £0 In:>°I ~Q1sn guoI sn 'ssoI JO UO!t -:>npoJd J~qt!~ Jo ~tnJ In:>OISt! Jo s!snq ~qt uo p~tnw!ts~ ~ un:> ~uozo Jo ~W!t~J!I In:>OI~q.L
= E07
[EO][~OH] Lt.~'l+ [O~H] [<0\)0] E~'~'l
[ON] {[~OEH:J] Ot'~'l+ [~OH] ~~'~'l}= EOJ ;}l'P. EO)O S;}!RJ SSOI pUR UO!!:>npoJd
;}q! sn~
.Lv'~ pUR £'l'~ SUO!!:>R;}JAq SJn:>:>oUO!!:>nJ!S;}PIR:>!W;}q:>o!oqd {l/:>O'l
'SUO!!:>R;}J OM! ;}S;}q! U! p;}:>npoJd
ZON ;}q! )0 S!SAIO!oqd
;}q! WOJ) p;}:>npoJd
'HO + zON+- ON + ,zOH
(~'l'~)
'OEH;) + zON +- ON + . zOEH;)
(OV'~)
S! EO ;}J;}qM
'Ov'~ pm! ~Z'~ ;}lp. uo!:a:>npoJdfa JO) SUO!:a:>~;}J gU!IIOJ:aUo:>-;}:a~J ;}ql .SA\OIIO) S~ P;}:a~W!:aS;} ;}q m!:> ;}J;}qdsodoJ:l punOJg){:>~q ;}q:I U! fO)O uo!:a:>npoJd1~:>!W;}q:>o!oqd!;}N lU!od J;}AOSSOJ:> ;}q:I A\01~ Alq~qOJd S! ;}J;}qdsow:a~ ;}q:I)O UO!g;}J S!q! 'snqlldd 01 !noq~ ;}lp. SI;}A;}I raN ~qdd 9 O! ~ !noq~ AIUO ;}JP.m!;}:>0 :>Y!:>~d;}:aOW;}J;}q! J;}AO J;}A~I ..(.mpunoq ..\.m:};}m!ld ;}q:I U! s°!:l~J gU!X!W ;}UOZO ldd O£ !noq~!~;}q o:aP;}J;}P!suo:>AlIUnsn S! uo!!:>npoJd pu~ UO!!:>nJ!S;}Pfa U;};}A\!;}q raN JO) :au!od J;}AOSSOJ:> ;}!~w!xOJdd~ ;}ql .~Z'~ pm! Lv.~ su°!:l:>~;}J)O s:aumSUO:> ;}!~J ;}q!)O O!!~J ;}q:I uo !snf P;}S~q ;}nIUA ;}q:I m!q! J;}glP.I !~qA\;}WOS S! SJn:>:>ouo!!:>npoJd fa :a;}Uq:>!qA\ !~ UO!!~J! -U;}:>UO:> U;}A;}-~;}Jq raN ;}q! 'S!SAIO!oqd Aq SJn:>:>o!~q:I UO!!;}ld;}p ;}UOZO;}q:I )0 ;}sn~:>;}H S;}:a~U!WOP
.
zOH q!!A\ IU:>!P~JzOfH;) ;}q:I)O u°!:l:>~;}J ;}q:I ':add o£ > SO!!~JgU!X!W ON JOd '(;}J;}qdsodoJ:l J;}A\OI ;}q:I U! f-W:> ;}In:):)low 801 X L)O UO!!~J:lU;}:>uo:> ON m! O! !U;}IUA!nb;}) !dd o£< SO!!
~HHdSOdO~.L Hill dO A~.LSIWHHJ 8SZ
~
THE OZONE BUDGET OF THE TROPOSPHERE AND THE ROLE OF NO-
259
-'~
..., 'e u
~ rJ) rJ) 0
~ "0
= cIS = 0 (,) ='
£ Q) § N 0
NOx, ppt FIGURE 5.6 Calculated24 hour average03 production and loss rates for the free troposphere aboveHawaii during the MLOPEX as a function of the NOxmixing ratio (Liu et al., 1992).
of the reduced solar intensity. At 20° N, for example, it is estimated that 03 lifetimes at the surface are about 5 days in summer and 17 days in winter, whereas at 40° N these increase to 8 days in summer and 100 days in winter. At 20° N, at 10 kIn altitude, estimated summer and winter 03 lifetimes are 30 days and 90 days, respectively, increasing by about a factor of 6 from those at the surface. The key to understanding background tropospheric ozone is to determine whether a region is in a local 03-producing or 03-destroying condition. Because of the critical role played by NOx, assessing the effect of anthropogenic NOx emissions on background tropospheric NOx is one of the major issues in tropospheric chemistry. Increasing NOx weakens the net photochemical sink of 03 in the background troposphere, leading to an overall increase of 0,.
5.7.3 Fate of NO., At first glanceit might appearthat NOx releasedin urban and regional areaswill have a lifetime too shortto permit its transportto the remotetroposphereto influencebackground 03. For typical OH levels,reaction5.26,
N02 + OH. + M -+ HN03+ M
(5.26)
leads to NO2 lifetimes of a day or so, with HNO3 subsequently removed by dry and wet deposition, typically in about a week. Because NO and NO2 are relatively insoluble in precipitation, however, they can be vented to the upper troposphere by storms, where reaction 5.26 still occurs but the HNO3 is not subject to dry deposition and generally not to wet de-
-;}l
~;}M
JI "P;}AIOS;}l ;}q o~ SU!1:IW;}l fJ!S!W;}q:)
JO ;}IOl ;}qj. 1Z66I
'le~;}
uosuqof)
;}:)epns
;}l;}qdsodoIll~dn
;}~ ~e ue~
UO xON
ill)} 01 ~e l;}~e;}l~
p;}~:);}rU!-1Jel:)l!e
S;}W!~ OZ;}q f.ew P;}~
-~!W;} ON Jo ~!un l;}d p;}:)npold EO JO ~unowe ;}q~ ~eq~ p;}~eW!~S;} U;};}q seq ~I "MOIS S! JeAOW -;}l pUB ~UOI ;}111S;}W!~ ;}:)U;}P!S;}l ;}l;}qM '(ill)} ZI o~ 6 ~e SUO!SS!W;} ~;}d) ;}snedodoIl ;}~ l11;}U f.P:);}l!P ;};}s) I_lf.
p;}~:);}rU! S! ~unowe (N)~j.
S!q~ ~eq~ ~d;}:)x;} 'S;}:)lnos
~"O ~noqe ;}111~Jt?l:)l!1:l wall
;}q~ Jo ;}WOS 10J ;}Iq!suods;}l;}q ~~661 'le~;} -eq:);}w
suPlIod
xON 1;}~0
SUO!SS!W;) xON
xON pUB HOO;)H
uo!~eIlU;}:)uo:)
"ON
o~ ;}A!~eI;}lIJews
IenuUB Imoj.
~q~!W SUO!SS!W;} xON ~Jel:)l!e
~v661 'PI;}y~eq;))
Je:)!:W;}q:) e (v) ~(9Z"~ UOn:)e;}l e!A f.IP!del
S! HO J!) Mol OO~ ;}q f.ew
(~"Z ;}Iqej.
"xON "~U!SS!W,'
(~) pUB ~(966I
o~ EONH
'le~;)
;}q~f.ws
Sll;}AUO:) ~eq~ S~S!x;} WS!U
OO~ P;}AOW;}l ;}q n!M "ON
P;}~:)!p;}ld
'P;}~:)!P;}ldJ;}AO
;}q~ (£) ~(l;}IJewS O!~el xON /EONH
P;}~:)!p;}ld ;}q~ ;}A!lP PinoM q:)!qM Jo ~oq 'l;}~l111 ;}q PinoM "ON P;}~:)!p;}ld ;}q~ pUB l;}neWS ;}q PinoM EONH P;}~:)!p;}ld ;)~ ~oq u;}~ 'p;}sn ~eq~ ueq~ l;}~l111 S! UO!~:);}S SSOl:) Ien~
~~"~ uO!~:)e;}lloJ
-:)e ;}q~ J!)
EONH
10J UO!~:);}S SSOl:) UO!~dJosqe ;}~ U! f.~u!B1l;}:)un Jo ;}sne:)
-;:IQ q~!q OO~;}q f.ew SUO!~:)!p;}ld EONH (z) ~(966I
'f.;}IS01;))
UMOU){Un S! SI;}A;}I :)!l;}qdsodol~
;}~OW;}l ~e S~U;}W;}lnSe;}W EONH Jo f.:)eln:):)e ;}~nIosqe ;}q~ (I) -U! ;}S;}qj. "p;}:)UBApe U;};}q ;}Aeq Onel xON /EONH -se~ U;};}M~;}q f.:)UBd;}l:)S!P O~ ;}AneI;}l
;}q~ 10J suo!~eUBIdx;}
xON q~nOU;} ~OU pUB EONH
q~U!S ~v661 'PI;}y~eq;) O!~el e ;}:)npold ;}q~ ~e NVd
~Z66I '"Je~;} n!'l)
'e~ep P;}AJ;}sqo ;}~eInw!s
Jo uo!~!sodwo:);}p
-W;}~ l;}PI°:);}~ :)!l;}qdsodoIl pUB EONH
~e 'NVd
q:)nw ~-
:~U!MOnOJ;}q~ ;}pnI:)
;}~ 10J e~ep pUB f.J0;}~ ;}Iq!ssod
Je:)!W;}q:) ;}seqd
JO f.~;}!l11A V "p;}lnSe;}W
OO~ ~:)!p;}ld
S! ~eq~ [raN]
SI;}pow
;}~
/ [EONH]
'S! ~eq~ '(9661
S! ~eqM '"Je ~;)
P;}AJ;}sqo o~ P;}~:)!p;}ld Jo
o~ ~u!~dw;}~~e U! 'SI;}POW Ie:)!w;}q:) :)!l;}qdsodolj. ";}l;}qdsodoIll;}MOI ;}q~ Jo S;}ln~el;}dw;}~ l;}Wl11M
IeWl;}q~ ;}q~ U! p;}Se;}I;}l S! ';}l;}Ildsodol~
U! P;}l;}~s;}nb;}s "ON
1v661
'le~;}
l;}ddn
WIoqpues)
;}q~ Jo S;}ln~el;}d
s;}!:);}ds l!OAJ;}S;}l-xON
~UBllodw! ~sow ;}q~ f.I;}){!I ;}111(~"8°~ UO!~:);}S ;};}s) (NVd) "ONOO(O);)EH;) "ON Jo s~u;}uodwo:) ;}~ JO °S;}!:)~s q:)ns Jo ;}~!ns Ie!~u;}~od ;}q~ s;}pnI:)u! ' ::.ON
+ "ONO'M+ NVd + EONH+ ONOH + ~O"NZ+ EON+ xON = 'ON 'sseI:)U;}~OIl!U ;}An:)e;}l
;}qj. "fJ!S!W;}q:)
:)!l;}qdsodoIl
U! ~uellodw!
l;}!llt!:)_xON
f.Iuo ;}~ ~ou S! p!:)e :)!l~!N
"){;};}M e o~ sf.ep Iel;}A;}S Jo 1;}P10 ;}~ UO ;}q ue:) 'ON.l ';}~l11I;:IQ ue:) O!~el "ON
/ ON
;}~ ;}l;}qM
/ ON
1;}P10 uo S! 'ON.l 'news S! Onel "ON
+
[ON]
=
/1
.ON.l 'aw!:}aJ!I
wall
-lOJSUlJJ:} :}l!q:} lOJ a{l!:>sawfj
laddn
rON
;}l;}qdsodoIll;}ddn
;}~ U! '~seIlUO:) UI °f.ep e Jo
;}q~ pUB q~!q ;}111S{;}A;}{ HO ;}l;}qM punol~
[ZON]
aq:} pUlJ '[W][HO]9rS"
UOfj:>l!al S! Sn:}l!:}S"aAfj:>l!"
.ONJ.
;}q~ l11;}N
= rONJ.
s! aw!:}aJ!I rON aq:} uaq:} '~~"~ uO!:}:>l!al :}:>aIgau aM PUl! '9Z"~
'ON
gU!AOWal
ssa:>old AluO aq:} :}l!q:} awnSSl! aM JI "UO!:}l!W
aq:} a:}l!w!:}sa a:} pUlJ WJoJ aAfj:>l!U! UlJ o:}U! paWJoJsul!J:}
q:>!qM Aq sassa:>Old aq:} M°ill{
A.mA alaqdsodol:} l!OAlaSal
a:} paau aM ,raN
aq:} U! SO!:}l!l gU!X!W
Jo aw!:}aJ!I
S!q:} Jo aJ!I-J{l!q
S! rON
:>!laqdsow:}l! aq:} a:}l!w!:}sa °.1 ldd 00 1 a:} Olaz mau wall
P!:>l! :>!J:}!N "AJ:\s!waq:> :>!laqdso:}l!J:}s U! sa!:>ads
aq:} Sl! U!aA aurns aq:} U! rON lOJ sa!:>ads l!OAlaSall!
:}noql! S! ill){ 01 :}l! uofj:>l!al
Sl! :}:>l!UlJ:> EONH snq.1 .SAl!p £'l
aq.1 "HO q:}!M uO!:}:>l!al Aq ':}ua:}xa lassaI l! a:} 'pUlJ
'HO + zON +-
(~~.~)
+ EONH
ill{
'(£'£
;}lquj, ;};}s) S!SAI0:joqd Aq xON o:jU! ){;)uq P;}uuoJSUUJ:l~Jl;}s:j! UU;)EONH S!qj, 'l;}q:j!;} uo!1!sod 3113HdSOdO~ 3~
dO AlI.LSIW3H;)
09"
THE OZONE BUDGET OF THE TROPOSPHERE AND THE ROLE OF NO.
261
moval is indeed occurring, predicted HNO3 concentrations and the HNO3/ NOx ratio can be reduced to a value close to those measured. The heterogeneous hydrolysis of N2Os,reaction 5.54, has been suggestedto play an important role in tropospheric chemistry (Dentener and Crutzen, 1993). Particles on which HNO3 has formed can be transported to the dry upper troposphere, where it is expected that most water and HNO3 would evaporate. From the point of view of explaining the reason for the mismatch in predicted and observed HNO3/ NOx ratios, reaction 5.54 does not help; if the HNO3 is indeed released the result should be, more or less, equivalent to that if the original NO2 were simply converted to HNO3 by OH. Understanding the relationship between HNO3 and NOx in the upper troposphere remains as an outstanding problem in atmospheric chemistry.
5.7.4 OzoneBudget of the Troposphere The global tropospheric balance on ozone includes the following: Production: transport from stratosphere; in situ chemical production Loss: dry deposition at Earth's surface; in situ chemical destruction Transport from the stratosphere and dry deposition rates can be estimated. The estimated downward flux of 03 from the stratosphere is (3-8) X 1010molecules cm-2 S-I. Loss of 03 by dry deposition on the Earth's surface is estimated at about 8 X 1010molecules cm-2 S-I (Galbally and Roy, 1980). The principal mechanism for in situ chemical destruction of 03 is photolysis and subsequent reaction of 0(10) with H2O, estimated also to be about 8 X 1010molecules cm-2 S-I (Lelieveld et al., 1993). The most difficult term to estimate, of the four, is the average rate of in situ chemical production. We know that in situ production of 03 on the global scale is driven by the oxidation of CO and CH4. Thus a good starting point is to estimate the amount of 03 that can be produced globally from the oxidation of CO and C~. Average destruction rates of CO and CH4 by OH reaction are 3 X 1011molecules cm-2 S-I and 1 X lOll molecules cm-2 S-I, respectively (Lelieveld et al., 1993). If all the CO and CH4 oxidation were to occur in NOx-rich environments, yielding one 03 molecule per each CO and 2.7 03 molecules for each C~ (this number accounts for oxidation of the formaldehyde formed as a product of C~ oxidation), the average global production rate6 of 03 would be 3 X 1011+ 2.7 X lOll ~ 6 X 1011molecules cm-2 S-I. This production rate exceeds substantially the amount of 03 that can be destroyed by reactions 5.21b and 5.23 and that which can be removed by deposition at the Earth's surface. The conclusion one reaches is that large portions of the troposphere must contain so little NOx that these regions lie below the NO crossover concentration with respect to 03 formation. At present, the tropospheric 03 budget can be calculated by global chemical models, but the validity of such calculations must be assessedby careful comparisons with field data that provide all inportant components of production and loss. Nonetheless, there is little doubt that production and loss of tropospheric ozone are dominated by in situ chemistry and not by downward transport of 03 from the stratosphere. Manzerall et al. (1996) have quantified the ozone budget over remote high northern latitudes in summer using chemical and meteorological measurements between 0 and 6 kIn "Globally, the methane oxidation chain has been estimated to result in a net annual loss of about 0.22 molecules of OH for every CH. molecule destroyed (Tie et aI., 1992). The associated average annual yield of CO from methane oxidation is about 0.82 molecule of CO per molecule of CH. destroyed. The global methane oxidation chain is estimated to produce, as a result, about 1.15 molecules of ozone for each molecule of CH. destroyed.
pUt! tJglpdn tU~l~qO:) Jo U013'~l g Sg p~Z1l~t:)gJt!q:) PUg 'UO!tgt1d1:)~ld P~tgltU~:)uo:) Jo UO!3' -~l g Sg Jt!pgl UO UMOqS 'n~:) g S! snqw!uolnwn:) g Jo t!un ~tu~wgpunJ ~ql "UO!,!gUllOJSUt!lt ,(3'l~U~ PUg 'UO!'!gZ!Ut!3'lO'~l:),(:) ~J!ll!~qt U! tug:)Jodw! s1 u01tgt1d1:)~ld "(~l~qdsodolt ~qt Jo tq3'1~q ~l1tU~ ~q:} U~tJo) tq3'1~q tUg:)Y1U3'1S Jo spnol:) ~A1t:)~AUO:)~Jt! spnol:) snqw1uolnwnJ "sad,(t pnol:) Jo ,(t~1Jt!A g JO U01tgUllOJ ~q:} t1Ull~d ,(gW sw~tS,(S l~~~M '~~lJ-pnol:) ~ ,(gW sw~ts,(s ~lnss~ld-q3'1q lofgW q3'noqtlY
"~d,(t PUg ~z1s l1~q:} uo spu~d~p :)JOdSUglt Ig:)!:)J~A
UO spnol:) Jo t:)~JJ~ ~ql"(8861 'lg t~ 3'U1qJ ~L861 '"~ t~ UOSl~){:)1a ~9861 ',(U~~MZ~){IY PUg 3'U!qJ ~9861 ,nqu~~lD ~v861 'lg t~ tnqu~~lD ~v861 'U~ZtruJ PUg PI~YtgqJ ~£861 'I~P1D '"3'"~) 8U!lU;Ji\ Sg UMOU){ ss~:)old g '~l~qdsodQlt laddn PUg '~lPP1w 'l~MOI ~q:} OtU1l~,(gI f..mpunoq :)ll~qdsowtg ~qt moll stumnnod 3'U1:)JodsUt!ltu1 ~IOl tug:)JodW1 Ug ,(gId spnoIJ "U013'~l ~q:} Ot l1g l~Ug~I:) 'l~Ioo:) S3'U~q tgqt tuOlJ g Jo ~3'gssgd ~qt ,(q p~tgU1Ull~t u~tJo ~Jt! S~POS1d~~UOZOq3'1H "~l~qdsodolt l~ddn pUt! ~IPP1w ~qt u1 s~:)gJlns ~lnss~ld-q3'1q Jo S~3'Pll qt1M p~tg!:)OSSg~Jt! ~:)gJlns s,q:}Jt!g ~qt tg sW~ts,(s ~lnss~ld-q3'!q lofgw "S~tgl ~~d tg Sln:):)o ~UOZOJo uo!t:)np -old Ig:)!W~q:)otoqd 'w~ts,(s ~lnss~ld-q3'!q ~qt pUnOlg SMOg ,(IMOIS l~ ~qt Sg 'PUg '~sll SUO!t -gltU~:)UO:) losln:)~ld 'Sg~Jt! Ugt!Iodolt~w lofgW l~AO s~ssgd l~,(gl f..mpunoq MOngqs ~q:} U! l~ 3'U!AOW-MOIS~q:} sY 'q3'1q ~t!nb ~wO:)~qs~lmgl~dw~t l1g pUt! (~13'Ut!qt1U~Z ngWS g tg s1 uns ~q:}) t:)~l1P tSOW S! u01tg1Pgl Jt!loS U~qM ,q3'11,(gp Jo tunowg tS~tg~l3' ~qt qt1M ~W1t ~qt S1s1ql"(6861 'Ut!3'0'l) l~wwns ~qt U1sdol~A~P w~ts,(s ~lnss~ld-q3'1q '3'U1AOW-MOISg U~qM In:):>Q s~POS1d~;}uozo ~U013'~l ~l~A~S tSOW ~qt 'adolng PUg S~tgtS P~t1UO w~tSg~ ~qt UJ "~UOZOJo u01t:)npold ~:)1w~q:)otoqd ~q:} lOJ ~IqglOAgJ ~Jt! OSIg sw~ts,(s ~lnss~ld-q3'1q ~3'Jt!I qt!M P~tg1:)oSSgsu01t!puo:) WJt!M PUg ss~IpnoI:) u~tJo ~ql 'l~,(gI ,(Jt!punoq :)ll~qdsow -tg ~q:} U1 ~tgInwn:):)g Ot slosln:)~ld lOJ ~:)Ugq:) l~tg~l3' g S1~l~qt ,q3'1I ,(I~l~U~3' ~Jt! sw~t -s,(s ~lnss~ld-q3'1q lOfgw qt!M P~tg1:>QSSg SPU1M~sng:)~g '~AOqg l1g l~WJt!M ~q:} q:}1M x1w tOO s~op MoI~q l1g l~loo:) ~qt PUg ,q3'1~q qt1M S~Sg~l:)u1~l~qdsodolt l~Mol ~qt U1l!g ~qt Jo ~lmgl~dw~t ~qt 'U01Sl~AU1Ug 3'ullna "~l~qdsodolt ~q:} U1l~,(gl MOngqs g U! stugtnnod U1gt -uo:) Ot P113'UOltSg Sg S~AJ~Sq:)1qM '(~l~qdsodolt ~q:} u1 tq3'1~q q:}1MS~Sg~l:)~p ~lmgladw~t ,(l~UllOU) ~lyold ~lmgl~dw~t ~UllOU ~qt Jo U01Sl~AU1p~:)unouold g s~tg~l:) sW~ts,(s ~lns -s~ld-q3'1q ~3'Jt!1q:}1MP~tg1:)oSSgl~ Jo ~:)u~P!sqns ~ql '~l~qdsodolt
~q:}Jo tSOW q3'noJqt l1g
Jo 3'U!){U1Spg~lds~P!M ,(q p~zll~t:)gJt!q:) ~Jt! sw~ts,(s ~s~ql 'sw~.ts,(s l~qtg~M ~lnss~ld-q3'!q '3'U1AOW-MOISq:}!M p~tg!:)OSSg~Jt! ~uozo Jo su01tgltu~:)uo:) q3'!q Jo s~pos!d~ ~UO!3'~llOfgw
auozo ;}!.laqdsodo.I.L leUO!~aHJo ,(~olo.eWJI;) S'L.S '£0 JO u01~:>npOld~:>1Ul~q:>0~oqd~q1 ~~OUlOld I.q~l~q~ P~ xON pUnOl~){:>gq ~q1 ~:>Ugqu~ I.gUl S~lY PUg 1l0ds~11 ~~Ugl-~UOI ~gq~ 'l~A~MOq '~~OU Plnoqs ~uO O%Z I.Iuo 's~Ulnld ~lYPI1M u1 u01~:>npOld PUg '%6 '1l0dSUgl~ ~~Ugl-~UOI '%Ll '£0 :>ll~qdso~gl1s Jo xngu1 '%Z910J p~~uno:>:>g(~dd OI o~ ~ ~g) ON pUnOl~){:>gq I.q u01~:>np -old Ig:>1Ul~q:>0~oqdnJ!s u! 'U01~~1 ~q1 u1 £0 Jo S~:>lnos I~l~AO ~q~ JO '~nb~ I.I~~gUl1XOld -dg ~q o~ punoJ ~l~M UUlfll°:> liD{ 9 o~ 0 ~q1 u1 £0 Jo ssoI PUg u01~:>npold Ig:>1Ul~q:>0~oqd 's~Ulnld ~lY P~~g u1 [0-:)] V /[£O]V Jo °1~gl ~U~Ul~:>UgqU~~q1 Ul01J P~~gUl1~S~ SUM s~Ulnld ~lYPI1M SSgUl01q U1 p~:>npold £0 JO u01~nqll~uo:> ~q.L 'VO":) JO xngu1 ~~U ~q~ I.q P~Ig:>S '[I'{:)Z:)]V /[£O]V JO °1~gl ~U~Ul~:>Ugqu~~q1 Ul01J P~~gUl1~S~ SUM S~:>lnOSu01~nIIOd Ul01J £0 JO xngu1 ~~U~q.L 'l~pOUl ~:>1Ul~q:>0~oqdg Ul01J p~~gIn:>~:>~l~M SSOIp~ u01~:>npOldnJ!S U/ '(~1~qdsO~gl1S/~1~qdsOdo111~ddn~q~ Ul01J llodSUgl1 pmMUMOp p~ 'S~Ulnld ~lYPI1M SSgUl -01q U1 u01~:>npOld £0 'U01~~1 ~q1 0~U1£0 JO U01~:>~Apg'u01~:>npOld ~:>1Ul~q:>0~oqdnJ!S un S~:>lnos PUg (UOf!1S0d~pp~ SSOI~:>1Ul~q:>o~oqdnJ!S un S){U1S:~~~pnq £0 ~q~JO S~U~UOdUlO:>
I~ p~pnI:>u11.~q.L'(H£ 3'lHY) U01~1P~dx3 l~l.g'll.mpunoH
:>f!:>lY066 I ~q1~u11np~pgUl
~3HdSOdO~.L 3RL dO A~.LSIW3HJ
Z9Z
THE OZONE BUDGET OF THE TROPOSPHERE AND THE ROLE OF NO,
263
downdraft. Cumulonimbus clouds are classified by their cells, organization, and life cycles. Ordinary cumulonimbi contain a single cell that has a life cycle of 45 minutes to an hour. Many thunderstorms are composed of a number of cells, each having lifetimes of 45 to 60 minutes. These multicell storms can last for several hours and vertically redistribute large quantities of ozone and its precursors. Supercell storms, composed of a single steady cell, with strong updrafts and downdrafts, can last 2 to 6 hours and inject large quantities of pollutants into the upper troposphere (Dickerson et aI., 1987; Pickering et aI., 1989). Not all cases of convection cause such transport (e.g., convective clouds above a cold front; Pickering et al., 1988). Convective redistribution of ozone precursors may lead to an increase in the production rate of ozone averaged through the troposphere (Pickering et aI., 1990).
Example 5.3 The Troposphere/StratosphereTransition The transitionfrom troposphereto stratosphereis traditionally definedbasedon the reversalof the atmospherictemperatureprofile. That transitionis also dramaticallyreflectedin how the concentrationsof tracespeciesvary with altitude below andabovethe tropopause.Of tracespecies.H02 and OH exhibit perhapsthe mostprofounddifferencesacrossthe tropopause(Wennberget al., 1995).In the lower stratosphereH02 andOH participatein HOxCycle 4, which is the predominant cycle involved in 03 removal in that portion of the stratosphere.We saw in Chapter4 that in the lower stratospherethe H02/0H ratio is describedby [HO2]
k4.ll [03]
[OH]
k4.36[NO] +k4.14 f03]
The presenceof NO short-circuitsHO" Cycle 4 by reconvertingH02 backto OH beforeit hasa chanceto reactwith 03, This ratio variesfrom about4 to 7 anddecreases as [NO] increases.[OH] itself is essentiaIlyindependentof [NO] and dependsalmostentirely on solar zenith angle.This independence of OH on NO is a resultof the fact that the increaseof OH that resultsfrom reaction4.36 is offset almostexactly by a decreaseof the ratesof reactionsthat generateOH, reactions4.14, 4.40, and4.41.This occursbecausethe HO2that participatesin reaction4.36 is not otherwiseavailablefor reactions4.14 and4.40. The behaviorof HO2and OH in the uppertroposphereis dominatedby CO chemistry. (Becauseof its I to 3 month lifetime, CO is more or less uniformly mixed up to the tropopause.Above the tropopause,CO faIls off with increasingaltitude. Becauseof the much slower vertical transportrate in the stratosphere,the rate of the CO-OH reaction competeswith the rateof vertical mixing.) TroposphericCO oxidationproceedsaccording to reactions5.24 and 5.25,coupledto reactions5.1 to 5.3. (Note that 4.36 and5.25 arethe samereaction.)From Section5.2 we canobtainan expressionfor the HO2/OH ratio in the uppertroposphere.Basedon the steady-staterelation for HO2,we obtain [HOz] [OH]
k5.24[CO] k .5.25,
[
NO .
]
As one proceeds up in the troposphere, the NO2/NOx ratio decreases,achieving its lowest value at the tropopause, and then increases moving into the stratosphere. The increase of NOz relative to NO in the lower stratosphere is the result of reaction 4.36 (5.25). (The NOx /NOy ratio is more or less constant in the upper troposphere, falling off as one goes
(8~'~)
IS!!}
W + .zo~ +-- w + Zo +.~
:(Z661 '1t!:I~ UO:l~U!I{t!A\ put! 'Z661 "{t! :I~ :lOOj:lq~!'l Aq S{t!:>!pt!l ZO"M jO ,(n,S!W~q:> ~q:I jO SM~!A~l ~A!SU~q~ld -WO:>~q:I ~~S) (ZO"M) {t!:>!pt!l AXOl~ IA){It! ut! PI~!A 0:1SUO!:I!puo:>:>!l~qdsow:lt! l~pun Zo q:I!M 'AI~A!Snl:>x~ pUt! 'AIP!dt!l S:I:>t!~l{t!:>!pt!l ("M) IA){{t! ~U!nnS~l ~q:l'{t!:>!pt!l IAq:I~W ~q:I q:I!M SY 'sdnol~ EH;)- ~q:I moll %0£ put! WO:lt! uoq;m:> A;mpUO:>~s~tp mOl) UOf:l:>t!J:lsqt!WO:lt!-H Aq Sln:>:>oU°f:l:>t!~l HO
(_zHJ-)
~q:I jO %OL :It!q:I :I:>!p~ld SUO!:lt!I~llo:> A:I!A!:I:>t!-~lm:>nJ:Js~s~q:I '~IdWt!x~ lOj 'EH:)zH:)EH:) '~Ut!dOld lod 'SWO:lt! H A;mw!ld lOj :ls~MoIs ~q:I S! put! WO:lt! H A;mpuo:>~s t! uo :It!q:I Ut!q:I l~:lSt!j AI{t!l~u~~ S! WO:lt! U~~OlpAq A;m!:IJ~:It! uo ){:>m:lt! IAXOlpAH '(17661 'L86 1 'uosu!){:IY) ~In:>~Iow ~q:I U! SWO:lt! U~~OlpAq (H:)<) A;m!:IJ~:Iput! '(_zHJ-) 'A;mpuo:>~s '(EH;)-) A;mw!ld jO l~qwnu ~q:l lOj :luno:>:>t!:It!q:I s~Ut!){{t! jO :lUt1:ISUO:> ~:lt!l HO ~q:l ~u!:lt!In:>{t!:>lOj p~dOI~A~P u~~q ~At!q SUO!:lt!I~llo:) '~S~q:IjO q:>t!~ lOj spuoq H-:) ~q:I jO Sq:I~U~J:lS~q:I pUt! SWO:lt!U~~OlpAq ~Iqt!I!t!At! jO laqwnu ~q:I S:I:>~lJ~l:lUt!:lSUO:> ~:lt!l I{t!l~AO ~q.L '~In:>~Iow ~q:I U! WO:lt! U~~olpAq punoq APJt!~M :lSOW~q:I :I:>t!J:lsqt!0:1pu~:I II!M {t!:>!pt!l HO ~q:I 'AI{t!l~u~D '){:>t!ut! HO 0:1 ~Iq!:ld~:>sns S! ~Ut!){{t! ~q:I U! WO:lt! H AUY '"M '{t!:>!pt!l IA){{t! ~q:I ~:>npold 0:1
OZH + °"M+- °HO + H"M
(9~'~)
EONH + '"M +- EON + H"M
(L~'~)
'spuoq H-:J WOJ) u°!1:)~Jtsq~ WOt~-H ~!A p~~:)oJd SUO!t:)~~Jqtog .SUO!t!puo:) ~W!tf.~p J~p -un ss~:)oJd SSO{:)!l~qdsowt~ ~ s~ ~:)u~odw! (%0 ( ::;:) JOU!W)O ~U!~q f.{~J~U~~ ss~:)oJd J~tt~{ ~Q"!Q"!!M S~:)!p~J EON pu~ HO Q"!!M t:)~~J S~~){~
'SU°!1!PUO:) :)!l~qdsodoJt J~PUfl sauu}JIV
{"8.S
'S~!:)OOS:)!U~glO ~S~qI JO f.I!s!W~q:) ~qI U! S~!1!X~Idwo:) p~pp~ ~qI puu (suoqm:)OlpAq :)!1~WOm pUU 'S~U~){JtI'S~UU){JtI)s~ss~I:) Sn°!lP.A JO s::>OA AUUWJO ~:)u~ -s~ld ~q1 Jo ~sn~:)~q P~1~:)!Idwo:) ~lOW APUU:)y!Ug!S S! ~l~qdsodol1 I~UO!g~l puu uuqln ~qI Jo f.I!S!W~q:) ~qI '~l~qdsodol1 p~1~U!W°p-~u~q1~w 'u~~I:) ~qI Jo f.I!S!W~q:) ~qI Jo UO!SU~1X~ UU '~Id!:)upd U! 'qgnOqlIV .s1:)npold UO!1~P~lg~P S1! puu ~u~q1~w Jo ~SOqll~AO ~1~U!WOP SUO!SS!W~xON :)!U~gOdOlqlUU puu ::>OA :)!u~godol1puu puu :)!U~gO!qJo SUO!1:)~~lI~:)!W~q:) ~q1 's~~m uuqln U! AIJtI!:)~ds~ puu 's~~m ~U!1Spd 1S0W~ql1nq IJtI U! ~l~qdsodol1l~A\OI ~qI uI
:[H:mdSOdOH.L ~H.L NI SONflOdWO:J :JINVDHO ~NVH.L~WNON .!IOj\.H.LSIW~H:J 8.S
~3HdSOdO~
3H.L dO A~SIW3HJ
t9Z
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 265
These alkyl peroxy radicals can be classed as primary, secondary, or tertiary depending on the availability of H atoms: RCHzOO.(primary); RR'CHOO. (secondary); RR'RNCOO. (tertiary). The alkyl radical-Oz addition occurs with a room-temperature rate constant of ~IO-IZ cm3 molecule-1 S-l at atmospheric pressure. Given the high concentration of Oz, the R + Oz reaction can be considered as instantaneous relative to other reactions occurring such as those that form R in the first place. Henceforth, the formation of an alkyl radical will be considered to be equivalent to the formation of an alkyl peroxy radical. Under tropospheric conditions, these alkyl peroxy (ROz) radicals react with NO, via two pathways,
RO2' + NO
-M
--
RO.+ NO2
(S.S9a)
RONO?
(5.59b)
For alkyl peroxy radicals,reaction5.59acanform the correspondingalkoxy (RO.) radical togetherwith NO2,or the correspondingalkyl nitrate,reaction5.59b,with the yield of the alkyl nitrate increasingwith increasingpressureand with decreasingtemperature.For secondaryalkyl peroxy radicals at 298 K and 760 Torr total pressure,the alkyl nitrate yields increasemonotonically from <0.014 for a C2 alkaneup to -0.33 for a Cg alkane (Atkinson, 1990).The rateconstantfor the CH3O2'+ NO reactionis (seeTableB.l): kS.40 = 4.2 X 10-12exp(180/T) = 7.7 X 10-12cm3molecule-1S-I at 298 K. Rateconstantsfor higher (;=:C2)alkyl peroxy radicalswith NO are taken as (Atkinson, 1994):kS.S9 = 4.9 X 10-12exp( 180/ T) = 8.9 X 10-12cm3molecule-l S-I at 298 K. Alkyl peroxy radicalsreactwith NO2by combinationto yield the peroxynitrates(recall reaction5.41), RO2' +NO2 + M
-..ROONO2+ M
(5.60)
Limiting high pressurerateconstantsfor ~C2 alkyl peroxyradicalsareidentical to that for the C2HsO2, radical: kS.60= 9 X 10-12cm3molecule-I S-I, independentof temperature over the range250 to 350 K, Alkyl peroxy radicalsalsoreactwith HO2radicals, R02' + H02' -+ ROOH + 02
(5.61)
or with otherRO2radicals.The self-reactionof RO2. andRO2.proceedsby the threepath. ways R(RzCHOz"+ R(RzCHOz"-+ 2 R(RzCHO"+ Oz
(5.62a)
-+
R(RzCHOH+R)RzCO+Oz
(5.62b)
-+
R)RzCHOOCHR)Rz+ Oz
(5.62c)
Pathway 5.62b is not accessible for tertiary ROz radicals, and pathway 5.62c is expected to be of negligible impcrtance. Under urban conditions, and indeed possibly for much of the lower troposphere in anthropogenically influenced continental regions, reaction with NO is the dominant reaction pathway for ROz radicals. Alkoxy (RO.) radicals are formed in the reaction of alkyl peroxy (RO2') radicals with NO, reaction 5.59a. Subsequent reactions of alkoxy radicals determine to a large extent the
'(P661) UOSU!'PV,(q
papuawwoJaJ 1U~ pm! l'g alqu.L U! 1U\j1uaaM1aqJ01JUJIU!1uauodxaaJda~ Jo anluA a\j1 U! aJuaJajJ!p1\jg!ISUa10NL
(,{XOtU~d-z)
zON + EH::>ZH::>ZH::>H;)EH::> ~ .0
I
~.
OzH + EH::>zH::>zH::>H::>EH::>
ON + EH::>zH::>zH::>H::>EH::>
I
.zO
HO + EH::>zH::>zH::>zH::>EH::>
I .zO :{t!J!PUJ AX01U;}d-Z ;}q! ;}JnpoJd
01 S1\\0110) SU sp;};};)oJd UO!1JU;}J HO-;}UU1U;}d-u
;}q.1
";}uu1u;}d-u )0 UO!1JU;}J HO ;}q1 J;}P!SUOJ sn 1;}I 'UO!1UZ!J;}UIOS! IUJ!PUJ AXO){{t! ;}1UJ1snl1! 0.1 'dnoi3 JO 01\\1 )0 SU!uqJ UI01U-;)
IAUOqJP.J ;}q1 01 P;}qJU11U q1~U;}I U! SUI01U ;) J;}1\\;})
;}AUq 1Uq! SIUJ!PUJ AXO){IU AmUI!Jd
q1!1\\ UO!1JU;}J 'AI1UJ;}U;}D lUJ!PUJ
JO) q1ud P;}JJ;});}Jd ;}q! S! "0
AXO){{t! JP.InJ!1JUd U JO) UO!1!SOdUIOJ;}P puu UO!1JU;}J "0 )0
;}JUU1JOdUI! ;}A!1UI;}J ;}q1 ;}U!UIJ;}1;}P 01 ;}UO S1\\OI{t! 1Uq! UO!1UI;}JJOJ U S1U;}S;}Jd (1766 I) uosurov
"M(O):) I'M + "M ~
(99'~)
OH:)I'M +"'M
(~9'~)
~
'O:)"MI'M'M "OH:)I'M'M
OH:)H + "M ~ 'O'H:)'M
(P9'~)
'IAuoq -JP.;) B pUB ITI;)!PBJ IA)[IB UB sg;)npoJd
'pUBq Jgq10 ~q1 UO 'uo!}!sodwo;)~p
JP.In;)~Iow!Ufl
'WO}B U~gOJpAq ~IqBI!BAB AI! -pB~J B Jo ~;)U~SqB ~q} Jo ~SnB;)~q "0 q1!M };)B~J O} p~};)~dx~
)l 86Z"!u ,1-01 x 8 1~8 1~~In:>~Iow EW:> (.L/OOZ-)dX~tl-OI
X ~'I
)l 86Z"!u 'I~OI x ~'6 1_8 1~~In:>~IOW EW:>(.L/O~~-)dX~tl-OI
X 0'9
}OU ~JP. SITI;)!PBJ AXO)[ITI AJP.!}J~l.
= = =
(ZO +.
=
OH;:)Z'MI'M)E9°",
(ZO +.
OZH;:)'M)E9°", L'(17661'UOSU!)[IV)
s:}~:,{IB lod
'1'8
:}q:I WOlj
p:}UJJOj sIB:)!PBl AXO:'{fB ('OH;)z"N1"N)
:}lqB.L U! u:}A!g:}m
SUO!t:)B:}l Zo + 'O"HZ;)
!,.,mPUO:):}S pUB ('OZH;)"N)
pUB Zo + 'O£H;):}q:I
!,.,mwpd
lOj StmJ:ISUO:):}tB"N
,ZOH+ OHJ,'M +- Zo + 'O'M
(£9.~)
's:}!:):}ds Il.uoqlP.:) ~ p~ ~:)!P~J ':OH u~ :}:)npoJd Ot ':0 I.q WOt~ u:}~Olpl.q ~ }O UO!t:)~I!sq~ s:}AIoA -U! UO!t:)~:}J ':O-~:)!P~J I.xO){I~ I~J:}U:}~ :}q.L ":0 q1!A\ UO!t:)~:}J SnSJ:}Auo!t!sodwo:):}p lP.I -n:):}Iow!un :}lp. s:}ss:}:)oJd :}A!t!t:}dwo:) :}q1 :}s:}q1JO} :UO!t~z!l:}WOS! O~J:}pun Ot tJoqs oat :}lp. swot~ uoqlP.:) :}AY u~q1 J:}A\:}} qt!A\ S~:)!P~J I.xO){IV ":0 q1!A\ UO!t:)~:}JJO 'UO!t~z!l:}WOS! lP.In:) -:}Iow!un 'uo!t!sodwo:):}p lP.In:):}Iow!un :s:}ss:}:>QJd}o I.t:}!Jl!A ~ ~!A suof\!puo:) :)!l:}qdsodoI! J:}pun t:)~:}J sI~:)!P~J I.xO){IV 'sJOA
}O UO!t~P!XO :)!l:}qdsowt~
:}q1 wOl} ~U!tIns:}J st:)npoJd
3'H3HdSOdO~l. 3Hl. dO J..&SIW3H:>
99Z
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 267
The 2-pentoxyradical canthen reactwith 020decompose,or isomerize:
o.
"
Decomposition
Isomerization
/ CH3CHO+ CH3CHzCHz or CH3. + CH3CH2CH2CHO CH3CH(OH)CH2CH2CH2' CH3C(0)CH2CH2CH3 + H02 . Rate constants for alkoxy radical isomerizations can be combined with rate constants for alkoxy radical decomposition and reaction with O2 to predict the relative importance of the three pathways (Atkinson. 1994). Alkoxy radicals can also react with NO and N02. but under ambient tropospheric conditions these reactions are generally of negligible importance.
Aq sp;};};)old U°!1:JI1;tl HO ;}qI}O pU11 ';}U;}!nq-Z-IAqI;}W-Z }O U°!1:JI1;tl HO
";}l;}q qll1d 111q1I:J;}lg;}U II!M ;}M Inq 'UO!I:Jl1l1Sql1WOII1-H %01 01 dn Sdl1qlOO 'SU!l!q:J ;}P!S IAJUI1 qI!M S;}U;}}(l1Ilod
'S;}U;}lfiq-Z
Il1Il;}AO ;}qI }O %~>
;}qI ';}uOOOld IAqI;}W-Z
';}uooold)
lO} All1Il;}U;}g sIUnO:J:J11sdnOl2
.O~HJ~HJOH + ~ON ~
'(;}U;}lfiq-Z-IAqI;}W!P-£'Z
S;}U;}qI;} p;}!n)!1sqns-IAqI;}W EH;J-
;}qI pU11;}U;}qI;}
WOl} U°!1:Jl1l1Sql1 WOII1 U;}gOlpAHs
ON + . ~O~HJ~HJOH
l88j
.zOzHJzHJOH+-- Zo + .zHJzHJOH .ZH:)ZH:)OH ~
'HO + 1'Hz:)
S1ws1~q:)~W U01!:)~aJHo-~u~q!~ ~q.L 8'wm~ U~gOlpAq ~ gu1!:)~J:jsq~ U~q:I J~q:I~J puoq ~Iqnop ~q:I m spp~ HO 's~u~:>J~ 10 ~s~:) ~q:I uI '~:)1P~J IA:>J~~ p~ ~In:)~Iow J~!~A\ ~ UJJ01m wm~ U~gOlpAq ~ 10 U01!:)~J:jsq~ s1 ~In:)~Iow ~~:>J~ u~ uo :>J:)eu~HO u1 d~!s ~91u1 ~q:I !~q:I A\~S !sn[ ~A\ '("HZ;))
:}u:}q:I:} ':}u:}:>J~ tS:}ldw!s
-!peJ lAXOJPAq :}q:I q:I!M U!5'~ -~
sn t:}'l
sq:led J:}q:lo :}q:I qt!M :}A!t!t~wo:>
uoflep!xo -pel 'ON
:}u:}:>J~ t~tJodw!
~
~
:}q:I uo sn:>oj p~
'SmOte a jO uoflej:}u:}:>uo:>
Annj
:}uozo
:}M MOU AH 'se:}m ueqJn
:}m s:}u:}:>J~ 'uofleWJoj
t:} s:}P!:}weq;))
'V
uo!t:>e:}J ~:>
q:I!M uo!t:>e:}J :}q.L 'U:}5'AXO :>!wote
U! uo!teWJoj
:}uozo Ot t:>~s:}J
s:}fI!:> 's'n
u°!1.1Vi1N no
WS!~q:>:}w
Mol Al:}W:}j:}X:} :}q:ljO :}sne:>
tou AneJ:}u:}5' S! smOte U:}5'AXO qt!M teq:l se:}J:}qM 'qted ~:>
:}q:I ':}UOZo qt!M t:>e:}J OS~ n!M A:}q:I 's:}ln:>:}low
J:}q:lo p~
:}uozo
'u!BW
:}[q
q:I!M t:>e:}J 1[!M s:}u:}:>J~
[~J:}AO Ot sJotnq!ltuo:>
qt!M At!A!t:>e:}J q5'!q J!:}q:ljO
("661
pUB '~:>!
:}u:}:>J~ U! smOte uoqm:> p:}puoq
-nop :}q:ljO :}sne:>:}H ':}se:> :}qt p:}:}pU! S! teqt pUB '[e:>!peJ lAXOJPAq:}q:I teq:l t:>~x:} -Jodw! ',~
pUB uueWJn'l)
t~t
:}sne:>:}H i"661
U!seq J!B s:}[:}5'uy
s°'l
:}q:I U! uo!tej:}u:}:>uo:> punodwo:> :>!~5'JO :}~q:I:}wuou :}q:ljO %01 tnoqe JOj stuno:>:>e spunod -wo:> :>!~5'JO jO ssel:> S!q.L .SUO!SS!w:} tsneqx:} :}1:>!q:}A JOtOW p~ sl:}nj :}u!loSe5' jO Stu:}nI!tS -uo:> :}m s:}u:}:>JIY
i suY:}I°
Jo) s:}u:}:>J~jO f.J:}S!w:}q:> :>!l:}qdsowte :}q:I Ot p:}:}:)OJd MOU :}M. saua~IY
r8'~
31I3HdSOdO~.L3m dO J..~.LSIWHHJ 89Z
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 269
CH3CH2CH (~.) NOI
r
CH3CH2CH2CH202'
CH3
Nol r
CH3CH2CH(ON02)CH3
CH3CH2CH (0.) CH 3 °2 ICH,CH.C(O)
I
CH, I
+
-
CH3CH2CH2CH20NO2
CH3CH2CH2CH20.
,,-
V2!
I
;onm
~
irH ,rH.rH.rHOI
CHJCH2O2° + ICH3CHOI
! NO
CH2(02.) CH2CH2CH2OH
+
H02"
102
! NO
HO" 2
CH3CH20"
CH2(0.) CH2CH2CH20H
i
02
fsom.
@~
CH2(OH) CH2CH2CHOH
+ H02. + H02"
FIGURE 5.7 Atmosphericphotooxidationmechanismfor n-butane.The only significantreaction of n-butaneis with the hydroxyl radical. Approximately 85% of that reactioninvolves H-atom abstractionfrom an internalcarbonatomand 15%from a terminalcarbonatom.In the terminalH-atom abstractionpath,the CH3CH2CH2CH2O. alkoxy radical is estimatedto reactwith O225% of the time and isomerize75% of the time. The secondisomerizationis estimatedto be a factor of 5 fasterthan the first isomerizationof the CH3CH2CH2CH2 O. radical, so that competitionwith O2reactionis not consideredat this step.The predominantfate of a-hydroxy radicalsis reactionwith O2,For example,
.CHzOH+Oz-+ HCHO+HOz', and CH3CHOH+Oz-+ CH3CHO+HOz', In the n-butane mechanism,the a-hydroxy radical, CHz(OH)CHzCHzCHOHreactsrapidly with O2to form 4-hydroxy-l-butanal, CHz(OH)CHzCHzCHO.In the internal H-atom abstractionpath,the alkoxy radical CH3CH2CH(0.)CH3reactswith O2to yield methyl ethyl ketone(MEK), CH3CH2C(0)CH3,and decomposesto form CH3CHOand CH3CH2.,which, after reactionwith O2 and NO and O2 again, yields anothermoleculeof CH3CHOand H02.
The HOCH2CH20.radicalthen decomposesand reactswith O2: HOCH2CH2O. ~
HCHO+ .CH20H
HOCH2CH20. +02 ~ HOCH2CHO+ H02' The numbers over the arrows indicate the fraction of the reactions that lead to the indicated products at 298 K. Finally, the .CH2OH radical reacts with O2 to give formaldehyde and a hydroperoxyl radical,
.CH20H + 02
--+
fast
HCHO+ H02
v~ l~ " / £~/ :)-;) I . "I ~ HO (L9't;) V'M\
/
;)[qnop
/'l'M
I'J-J . I "t ~
£'M/
-fl B UJJOj O~ puoq
V'M
'\ J = :)/
£'M/
HO
l'M
+.HO
'\I'M
:(P661 '6861 'UOSU!:>nY) [B:>!PBJ [A)[{BAXOJpAq ;)q1 o~ U°!1!PPB {B:>!PBJ HO B!A p;);):>oJd SUO!~:>B;)JHQ-;)U;))[[Y
V
£
Z
I
>:J=:J-:J=:J< tl1 In;);)o Ot P~t;)~X~ S! W~ts,{s J -I,{qt~w-z)
=J-
~u~Jdos! pUB ~u~!pl1tnq-£'I
"ZH:)(H O)H~£ H:)
J
=
:SUOfl!sod-p J°/pUI1 - I ~qt
J ~Q1°t UO!1!PPI1 111;)!PI1J HO '( ~U~!pmnq-£'I
SI1q;)ns 'spuoq ~Iqnop p~tl1gnrUO;) Q1!M S~U~!PJoi{ ~
~£'O
HOzH~H:)£H:) ~~9'O "HO + zH:) = H:)£H:) "", '~Id~x~ {t/:)!ptlJ HO ~q~ 'spuoq :) =:)
JOl '~u~doJd JOd 'puoq :) =:)
~q~10 pu~ J~q~!~ o~ pptl Uti:)
p~~tI~nruo:)uou q~!M S~U~!J:tJO 'S~U~!P 'S~U~){ItlOUOWJOd
"s~:)npoJd p~~tlU~~l.xo 10 UO!~tlWJol ~q~ pUt! UO!SJ~AUO:) "ON o~ ON ~~ U! S~!~!JtII!W!S~~ ~~S ~M '~utldoJd 10 ~tlq~o~ WS!Ut!q:)~w S!q~ ~u!Jtldwo:) I.g "{t/:)!ptlJ Il.xOlpl.q tll° UO!~tlJ~U~~~JpUt! '(OH:)"H:)OH) ~pl.q~P{t/ Io:)I.I~ 10 s~In:)~Iow 8'["0 PUtl ~pl.q~P{t/WJOll0 s~In:)~Iow tt' I 10 UO!~tlWJol '"ON o~ ON 10 s~In:)~Iow OM~10 UO!SJ~AUO:)S! ~u~q~~ UO ){:)tI~~tI{t/:)!ptlJ Il.xOJPl.q 10 ~Ins~J I{t/J~AO ~q~ ~tI~ ~~S ~M
'HO + OHJlHJOH 8Z"O+ OHJH vv'r + lONZ
+-
ONZ +, HO + ~lJ
~A!g O:J'ON Q:I!M AI~IOS S:J~~~J~OH ~wnss~ un~ ~M '~undoJd Q:I!M P!P ~M sy .lOH
+ OH.JlH.JOH 8Z.0+ OH.JH Pt.r + lON
-:)~~J OM! ~s~q! U! '\IUO p~wnsuo:)
(,ZOH
pUR p~:)npoJd
+-
ON +. HO + 'Hl.J
s~ UO!!:)~~J II~J~AO u~ ~!!lM UR:) ~M 'suo!:! s! ZOZH:JZH:JOH !~q! ~u~wnss~ ',\IJUU!.o:{
+ OH::>zH::>OH)8ZO0+ (. zOH
+
OH::>H
+
OH::>H)ZL
'0 +
zON
t::-; oz
ON
+
. zOzH::>zH::>OH
.zOzH::>zH::>OH -- . HO + ~z::> to ;)ABq 'SUO!t:)B;)J
tSBJ ;)qt
~U!tBU!W!I;)
Aq WS!ueq:);)W
;)qt
~U!SU;)PUO:)
JO ;)Jnp;):)OJd
~3HdSOdO~.L
Jno
;)[\\
~U![\\OIIOd
3H.L dO A~.LSrWHH:1
"'7
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 271
followed by rapid addition of O2to yield the corresponding{3-hydroxyalkylperoxy radicals, OH
RJ, "
R~
.
c-c
R/2
OH 00. R)",I I /R3
:c-c
M + °2 -=--
\R 4
R1 2
"R4
In the presence of NO, the {3-hydroxyalkyl peroxy radical reacts with NO to form either the {3-hydroxylalkoxy radical plus NO2 or the {3-hydroxynitrate:9
OH 00' RI" I I /R3
:c-c
+ NO
\R 4
RI2
-
(5.69)
,c-c
NO2+ R/2
R4
Rate constants for the reactions of f3-hydroxyalkyl peroxy radicals with NO are essentially identical to those for the reaction of NO with more than C2 alkyl peroxy radicals formed from alkanes (Atkinson, 1994). The f3-hydroxyalkoxy radicals can then decompose, react with O2, or isomerize. Available data show that, apart from ethene, for which reaction of the HOCH2CH20. radical with O2 and decomposition are competitive, the f3-hydroxyalkoxy radicals formed subsequent to OH addition to ~C3 alkenes undergo decomposition and the reaction with O2 is negligible. The decomposition reaction is
08 O. Rl~
I
1/ R1
,C-C" RI2
R4
OH 0 RI" I II ,C. + R3CR4 R1 2
Carbonylyields from alkene-OH reactionsare summarizedin Table5.1. The yields of HCHO and RCHO arising from cleavage of the -C = C- bond of l-alkenes RCH = CHz decreasemonotonically from ~0.90 for propeneand I-butene to 0.21 to 0.39 for l-octene.H-atom abstractionfrom the CHzgroupsin the l-alkenesis expectedto accountfor an increasingfraction of the overall OH radical reactionasthe carbonnumber of the l-alkenes increases,with about 15% of the I-heptenereactionbeing estimatedto proceedby H-atom abstractionfrom the secondaryCHzgroups.The propene-OHreaction mechanismis shownin Figure 5.8.
"The {3-hydroxynitrate formation pathway accounts for only -I to 1.5% of the overall NO reaction pathway at 298 K for propene (Shepson et aI., 1985). The yields of {3-hydroxynitrates from the propene-OH and 1butene-OH reactions are about a factor of 2 lower than those of alkyl nitrates from the propane-OH and n-butane-OH reactions. These observations suggest that the formation yields of {3-hydroxynitrates from the OH reaction with higher l-alkenes could also be a factor of 2 lower than those from the reactions with the corresDondinl! n-alkanes.
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 271
followed by rapid addition of O2to yield the corresponding{3-hydroxyalkylperoxy radicals, R OR 00
OH RJ
" c-c
R~
.
I",
M
+ °2 -=--
.C-C.
R4
R{
I
R'l
II
R4
R1 2
In the presenceof NO, the f'-hydroxyalkyl peroxyradicalreactswith NO to form eitherthe f'-hydroxylalkoxy radical plus NO2or the f'-hydroxynitrate:9 OH 00. RI",! I/R3
:c-c
RI2
+ NO
\R 4
-
(5.69)
:c-c
NO2+ R/2
R4
Rate constants for the reactions of f3-hydroxyalkyl peroxy radicals with NO are essentially identical to those for the reaction of NO with more than C2 alkyl peroxy radicals formed from alkanes (Atkinson, 1994). The {3-hydroxyalkoxy radicals can then decompose, react with O2, or isomerize. Available data show that, apart from ethene, for which reaction of the HOCH2CH20. radical with O2 and decomposition are competitive, the f3-hydroxyalkoxy radicals formed subsequent to OH addition to 2:C3 alkenes undergo decomposition and the reaction with O2 is negligible. The decomposition reaction is
08 O. Rl" I I / R1 ,C-C" RI2 R4
-
08 RI", I
C. +
0 II R'tCR,i
R1 2
Carbonylyields from alkene-OH reactionsare summarizedin Table5.1. The yields of HCHO and RCHO arising from cleavage of the -C = C- bond of 1-alkenes RCH = CHz decreasemonotonically from ~0.90 for propeneand I-butene to 0.21 to 0.39 for l-octene.H-atom abstractionfrom the CHzgroupsin the 1-alkenesis expectedto accountfor an increasingfraction of the overall OH radical reactionasthe carbonnumber of the 1-alkenesincreases,with about 15% of the 1-heptenereactionbeing estimatedto proceedby H-atom abstractionfrom the secondaryCHzgroups.The propene-OHreaction mechanismis shownin Figure 5.8.
"The {3-hydroxynitrate formation pathway accounts for only -I to 1.5% of the overall NO reaction pathway at 298 K for propene (Shepson et aI., 1985). The yields of {3-hydroxynitrates from the propene-OH and 1butene-OH reactions are about a factor of 2 lower than those of alkyl nitrates from the propane-OH and n-butane-OH reactions. These observations suggest that the formation yields of {3-hydroxynitrates from the OH reaction with higher l-alkenes could also be a factor of 2 lower than those from the reactions with the corresponding n-alkanes.
t~,
"~
(IL'~)
/Z'M -:)/
I'
£'M/
'lONO
-
t'M,
£ON+
~
/z~
J=J~ (}II
\I~
'~~:>y!u8!su! AI~A!~el~J s! UO!~:>eJ1sqe wo~e-H p~ puoq ~Iqnop ~q:I o~ sppe 'ON 'SuO!1:>e~J~U~){{t?-HO U! sv "(1661 'uosurov ~066 1 "Ie ~~ q1JOfH ~066 1 "Ie ~~ s~weg) le:>!peJ ~~eJ1!u~q:I q~!M ~:>e~JS~U~){IV "){mdIIeq ~ums ~q:I U! S! s{t?:>!peJOM~~q:ll° {t?!~u~~oduo!~ep!xo ~q~ "ON 10 ~eq:l~q~ J~~sel S~W!1000 1 o~ 01 S! S~!:>~s :>!~8JO q:I!M HO 10 uo!~:>e~J~q:I ~:>U!S "(t661 'Z~U!~H p~ ~~eld) ,_w:> s~ln:>~low 901 ~noqe S! uo!1eJ1U~:>Uo:> HO ~8eJ~Ae Jnoq t'l ~q~ 'uos!Jedwo:> Ag "(~8eJ~Ae Jnoq tV ,_w:> s~ln:>~low LOt x 8 ~noqe 01 8u!puods~JJo:> '~dd £ ~noqe ~ o~ punol seM I~A~I 'ON ~8eJ~Ae ~q~ 'A~WJ~D 'euo){JV de)! 10 ~~!S {t?~seo:>~q~ ~e suo!~eAJ~sqo WJ~~-8uOI WOJl '~Idwex~ JOd .s{t?:>!peJ 'ON p~ HO JOl ~Iqemdwo:> S! S~!:>~s Auew q:I!M uo!~:>e~JI{t?J~AO~q~ ~eq:l os 'HO ~q:I suo!~eJ1u~:>uo:>J~q8!q q:>nw U! ~u~s~Jd ~q ue:> 'ON 'HO 10 ~eq:l ueq:l J~MOIS AI~~:>y!u8!s S! s~se8 ~:>eJ1q:I!M 'ON 10 uo!~:>e~J~q~ q8nOq:llV 's~!:>~s :>!~8JO :>!J~qdsow~e 10 {t?AOW~J ~w!uq8!u ~q~ U! ~IOJ ~~~odw! ue Aeld ~:> le:>!peJ 'ON ~q~ 'suo!~eJ1u~:>uo:>~w!uq8!u q8!q
AI~A!lel~J S~! p~
A~!:>ede:>8u!z!p!XO 8uoJ1s S~! 10 ~sne:>~g
.(q~66I)
u°!1.1oaN fON
"q
.~ 1~ UOSU!)(1V :~;).Jnos
~HHdSOdOll.L 3~
dO AlI.LSIW3H:J ZLZ
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 273
This is followed by rapid O2addition: ONO2 I /R3 C-C R/ o""R
R"", 2
ONOz RI" I /R3 C-C R/ I "R4 Z 00.
+°24
to producethe {3-nitratoalkylperoxy radical, subsequentreactionsof which are
+NO -
+ NO2
(5.73) R},
ONO2 R
I / "c -C,
/
I
R2
3
"R4
ONO2
The latter reactionis expectedto be minor. Furtherreactionsof {3-nitratoalkoxyradicalsinclude R
+°2-
ONOz R
I" I
/
4
C-C R /
z
+
HO.
II
2
0 if R3 = H
0 II
0 II
R)CR2 + R3CR4 + NO2
ONO2 RI~ I /R3 C-C R/ - I~R 2 0. 4
+NOZ -
of which the last reactionis expecedto be minor. Figure 5.9 showsthe mechanismof the orooene-NO,reaction.
~v66I '"{TI ~~ ~~rSOJD ~I66I '~B~1JOOWp~ ~!l°H ~v86I 'J~1JBJ pUB UOSU!)[~Y) I..I~A!S -U~~X~p~!pn~S U~~ ~ABq UO!~:>B~J £O-~U~){{TI ~sBqd-SB~ ~q:I JO s~:>npoJdp~ S:>!~~U!)[~q.L IB:>!PBJ!H 0'1 + Il..uoqm:>I...mW!ld0'1 +- £0 + ~U~){IY :~AOqB U~A!~ UO!~:>B~J£o-~U~){{TI {TI!~!U! ~q:I q~!M ~U~~S!SUO:>~m S~lnS~J ~S~q,L '~U~JI..~s JOJ 980"0 ::;: 086'0 p~ S~U~){{TI 'l'l JoJ (UO!~B
I...mw!ld
£0 IB!~!U! ~q:I wol)
Ivl"O
-!A~P pmpums
~uo)
::;: £66"0 p~~BJ~AB (966I)"{TI
~~ ~~rSOJD
WOJJ sll..uoqm:>
(){:>B~~B
Jo SPI~!A '£0 q~!M S~U~){IB Jo s~!l~s B Jo UO!~:>B~J ~q~ JoJ SPI~!I..
~:>npoJd Il..uOqJB:> ~q~ p~JnSB~W ~ABq (9661) iv86I p~wnssB
'{TI ~~ ~~rSOJD
pUB (B~66I)
'B ~~ UOSU!){IY
'J~1JBJ pUB UOSUPPY) IBnb~ 1..1~~BW!XOJddB ~q o~
I..IIBJ~U~~ ~U!~q (q) pUB (B) sI..BMq:lBd UO!~:>B~J~q~ JO ~:>~1Jodw!
*[.OO?L~I~
~A!~BI~J ~q~ q~!M
.
'" [ OO?V"M£"M ]
]
+ V'M -
+
;)_£'M
z~
II
0 ~
- ;)-[~
II 0
Ie
(~L'~)
p~ z~ "':>-:>/ £~/ I I"'I~
*
v~ O"
- £0+
J=J
£~/
;}q1 01 UO!1!PPU fa
~~
p!duJ Aq P;}MOII01 'puoq
U SU UO!1:)U;}J JU:)!PUJ faN
;}W!11qg!U ;}q1 puu SUO!1:)U;}J {U:)!PUJ
'1:)U1 U! ';}Jp, ;}UOZO q1!M SUO!1:)U;}'M ';}UOZO q1!M UO!1:)U;}J
~
I IOH:J (zONO)H:J£H:J1
+ OH:JEH:J
t
'0
I
;}{qnop
JU!1!U! U!A Sp;};}:)oJd UO!1:)U;}J ;}U;}){{U-;}UOZO ;}q.L 'S;}U;}){{U ;}q1
;}W!1AUP ;}q1 q:t!M ;}A!1!1;}dwO:)
.ZOH +
I
/ "I~
~oP
:;}P!UOZO{OW gU!1{nS;}J ;}q:t 1° UO!1!sodwo:);}p :)!uy;}{O
J01 SS;}:)OJd SSO{ :)!l;}qdsodoJ1 HO
01 ;}{q!1d;}:)sns S;}U;}){JUSJ;}PU;}Jpuoq ;}{qnop ;}q1 1° ;}:)u;}s;}Jd ;}q.L
'WS!ut!q:>~wUO!~:>t!~l EON-~u~dold zON +
~
t
u°!13vaH
auozo
'3
6'S :!nIfl9I.!I zON +
,zOH +
I
+ OH:J£H:J
t
.OzH:J (zONO)H:J£H:J
I
IzONOzH:J(O):J£H:JI '0
I
t
zONOzH:J(. O)H:J£H:J
ONt
ONt
,zOzH:J (zONO)H:J£H:J
zONOzH:J(,zO)H:J£H:J
(umdUI1!W AIQ1!QOJd) t Zo
Zo EON I
"H:)
=
H:1£H,")
I
3"M3HdSOdO~.L 3H.L dO A~.LSIW3HJ
PL'l
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 275
Atkinson, 1994;Horie et al., 1994a, b; Neebet al., 1995;Thomaset al., 1995;Neebet al., 1996)and are reasonablywell understoodfor a large numberof the smalleralkenes.The major mechanisticissueconcernsthe fate, under atmosphericconditions,of the initially energy-richCriegeebiradical, which can be collisionally stabilized or can undergounimoleculardecomposition, [RI CH2t(R2)O6]~
-+- RI CH2C(R2)O6
(stabilization)
-+- RICH2C(O)R2 + 0 -+- [RICH2C(O)OR2]'" -+- [RICH
(5.76a) (5.76b)
-+- decomposition
= C(OOH)R2]'"
-+-
RICHC(O)R2 + OH.
(5.76c) (5.76d)
At atmosphericpressure,0 atomsarenot formedin any appreciableamount,sopath5.76b can generallybe neglected. Hydroxyl radicalshave beenobservedto be formed from alkene-O3reactions,sometimes with close to a unit yield (1 molecule of OH per 1 molecule of alkene reacted) (Atkinson andAschmann,1993).Atkinson et al. (1995a)reported.OH radical yields from a seriesof alkene-O3reactions: Alkene
OH Yield
I-Pentene I-Hexene I-Heptene l-Octene 2,3-Dimethyl-l-butene Cyclopentene I-Methylcyclohexene
0.37 0.32 0.27 0.18 0.50 0.61 0.90
(Estimateduncertaintiesin theseyields area factor of -1.5.) At I atm, fractional yields of stabilizedbiradicalsareestimatedas (Atkinson, 1994): Ethene Propene trans-2-Butene 2-Methylpropene 2,- 3-Dimethy 1-2-butene
0.37 0.275 0.18 0.174 0.30
The reactionpathwaysof Criegeebiradicalsare generallywell establishedfor the first two compoundsin the seriesalthoughthe exactfractionsthat proceedvia eachindividual pathare still opento question(Horie and Moortgat, 1991): M --+-
CH200. (stabilization) CO2+ H2 CO + H2O
0,
2HO2. +CO2 HtO + OH.
(5.77)
-!t! J~pun
~!t!U!wop~Jd
II!A\ OzH
qI!A\
sJt!~!pt!J!q
1710.0 £'lOOO'O ~LIO'O ~'l'0
,(
v66 I 'UOSU!:>[JY)SUO!!!PUO~~!J~qdsow
P~Z!I!qt!!S
10 UO!!~t!~J ~qI !t!qI
gU!MOIIOJ ~q~ ~!M
sJ1!:)!peJ 'OO~H:?
zHJ
-
sm~dt!
!I
lON OlH OJ OHJH ~J1J
O~ ~A!~eI~J 's~!:)~ds
// (O8'~)
HOOJ"
UO!~RZ!l~WOS!IeIn:)~Iow!un
'zos ~!M UO!~:)e~J ~q~
Jo suo!~:)e~J JoJ S~ue1SUO:)~~e'M
tHJ
/ OO-~'\ . tHJ
£HJ
o~J~pun ARW 'OO:)Z(EH:)
H~ /'" a "" /H J
(J6L.~)
.~/
J ~O-O/
-
SRq:)ns S{R:)!PRJ!q'UO!~!PPRUI
OHJ,~ +
~~
vOSzH+ OH;)'M~
(P6L.~)
s:jJnpoJd~
(;)6L.~)
0;) +
zos +
OzH + HO(O);)'M ~
(~6L.~)
ZON+ OH;)'M ~
(q6L.~)
atH EON+ OH;)'M ~ zON +
(:>6L.~)
ON + OzH + <;>OH-?'M
:sa!:>~s JO Jaqwnu e q~!A\ ~:>eaJue:> s{e:>!peJ!q paz![!qe~s aQ.L
+ HOEH:) ..,.--
0:)
zO:) +~:)
..,.--
.OEH:)+ O::>H ..,.-(8L'~)
zOH + ZO:)+ . EH:) ..,.-to .HO + 0:)+ .EH:) ..,.-.OOH:)EH:) ..,.-. W "".['OOH~EH;)] 3113HdSOdOllJ.3H.L dO AlIJ.SIW3H:)
9LZ
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 277
5.8.3 Aromatics Aromatic compounds are of great interest in the chemistry of the urban atmosphere because of their abundance in motor vehicle emissions and becauseof their reactivity with respect to ozone and organic aerosol formation. Understanding the atmospheric oxidation mechanisms of aromatics has long been cited as the most critical need in further development of reaction mechanisms for the urban and regional atmosphere (National Research Council, 1991). The major atmospheric sink for aromatics is reaction with the hydroxyl radical. Whereas rate constants for the OR reaction with aromatics have been well characterized (Atkinson, 1994), mechanisms of aromatic oxidation following the initial OR attack have been highly uncertain. Aromatic compounds of concern in urban atmospheric chemistry are given in Figure 5.10.
CH~
~
CH3
A
~
~
,CH~
CH3
CH3
A
A ~
~
Benzene
C2Hs
X
Toluene
0
-Xylene
y
ij
CH3 P - Xylene
-
m Xylene
CH3
CH3
A
A
~CH~
y
~
'CH~
, CH3
~
'CR3
CH3
Ethyl benzene
0
- Ethyl
toluene
,2,4 Trimethyl benzene
m - Ethyl toluene
,3,5 Trimethyl benzene
p - Ethyl toluene
FIGURE S.10 Aromatic compoundsof interestin troposphericchemistry.
(I8.~)
'SI~:)!P~J ;Jq! S;J!OU;Jp ;JAOq~ ;JJm:)nJ!S ;Jq! !:)npoJd
UO!!!PP~ !SJY ;Jq! JOd
UO!1!PPV
U°!l:>Bj:JSqy
OZH +
9 ZH:)o
.HO +9 £H;)
::)m SAtJA\q:ltJd UO!~:>tJ:)J:)S:)q~ :)u:)nlo~ JO} ':)ldwtJx:) JOd "8u!l :>9tJwom :)q:I o~ U09!PPtJ ~:>!ptJJ HO 8U!AIOAU! (%06 J:)pJO }o) AtJA\q:ltJd UO!~:>tJ:)JJOr -gill tJ (q) pug :sdnoJ8 ~u:)n~!~sqns-IA){ltJ:)q:I 'suoqm:>OJPAq :>!~tJwom p:)~n~!~sqns-IA){~ JO} JO '8u!l
:>!~tJwom :)q~ ':)u:)zu:)q
JO} '}O spuoq
H-J
WOJ} u09:>tJj'JsqtJ Wo~tJ-H 8U!AIOAU! (%01
J:)pJO }o) :)uo JOU!W tJ (tJ) :sAtJA\q:ltJd OA\~ tJ!A sp:):):>oJd UO!~:>tJ:)JItJ:>!PtJJ HO-:>!~tJwom
:)q.t
3"M3HdSOdO~.L 3H.L dO A~.LSIW3HJ
8U
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 279
The H-atom abstractionpathwayleadsmainly to the formation of aromaticaldehydes
6
02
6
6 CHO
CH20.
oCHZ
°2
+ H028
(5.82)
Benzaldehyde As noted above,this H-atom abstractionpathwayis minor, accountingfor <10% of the overall OH radical reactionfor benzeneand the alkyl-substitutedaromatichydrocarbons. The radicalsresultingfrom OH addition to the aromaticring are namedasfollows:
c
f~H
CH3
CH3
6~H
CH3
l
)
C ~~H H
"OH
Methyl hydroxycyclohexadienyl radicals (from toluene)
Hydroxycyclohexadienyl radical (from benzene)
For toluene, and other aromatics, there are several possible sites of attack for the OH radical. Some sites are less sterically hindered than others or are favored because of stabilizations resulting from group interactions. Andino et al. (1996) have performed ab initio calculations to determine the most energetically favored structures resulting from OH addition to aromatic compounds. For toluene the most favored structure is that resulting from OH addition at the ortho position 1°:
CH3
6~H 100M addition to the meta and para positions of toluene yield structures that are only I to 2 kcal mol-I less favorable than addition at the ortho site and thus cannot be ruled out categorically. For our purposes, we will consider OH addition at the ortho site only.
,~
H~~. £H:J S! ~~!P~J ~!I~A~!q P;}JOA~JAI~~!:a;}8J;}u;} ;}q:a'q£8'~ UO!:a~~;}J Jo :a~npoJd ;}q:aJOd 'sI~~!P~J ~!I~A~!q 8u!uuoJ ';}Z!~!I~A~ o:aP;}A;}!I;}q ;}Jp.':aS~J:aUO~ U! 'q£8'~ UO!:a~~;}J Jo :a~npoJd ;}q:as~ q~ns 'S~~!P~J AXOJ;}d ~!:a~WOJV'(:au;}s;}JdS! ON :aU;)!~ -YJns 8u!wnss~) S~~!P~J AXO){I~ uuoJ o:aON q:I!M :a~~;}JAII~J;}u;}8 S~~!P~J AXOJ;}d IA){IV iqdd 00£) £_w~ s;}In~;}Iow "1°1 X 6 :anoq~ 8u!p;};}~X;} SUO!:a~J:lU;}~UO~ "ON JoJ ;}~uu~y!u8!s Jo ;}q II!M :a~npp~ Ho-;}u;}nIo:a ;}q:I q:a!M UO!:a~~;}J"ON ;}q:I 's:aumsuo~ ;}:a~J;}S;}q:auo P;}S~H i17661 'UOSU!){:IV~Z66I 'l~:a;} !lWnoD ~066I 'l~:a;} q~sz:a;}Z ~066I 'l~:a;} I;}ds!U)l) AI;}A!:a~;}ds;}J'I-S 1_;}In~;}IOW £w~ 11_01 X £- puu I-S ,_;}In~;}IOW £W~ 91_01 X ~- ;}Jp."ON puu "a q:I!M ~~!P~J IAU;}!P~X;}qoI~A~AXOJPAqIAq:I;}W ;}q:aJoJ s:auu:aSUO~ ;}:a~~ ~u~nIO10Il!N
(v8.~)
OLH +
- UI
ZONlQ
.
'lON
+ HO H'
£HJ :S:J!1BWomOJ:)!U 01 sPB~11:JnppBHO ~q1 JO UO!1:JB~J"ON ~~
"(0661 'uosu!)[IY)
~u~nl01 JoJ WS!UBq:J~W}B:J!PBJHO I}BJ~AO~q1
Jo %91 - JoJ gU!1Uno:J:JB'JOU!W Al~A!1BI~J ~q 01 UMOqS u~~q SBq 'IOS~J:J-oSB q:Jns 'spunod
-WO:J :J!IOU~qd Pl~!A 01 B£8"~ UO!1:JB~JUO!1:JBJ:)SqB W01B-H ~ql. "(9661 '"{B 1~ OU!puy) AI}B:J -!1~gJ~U~ p~JOABJ1S0W 1Bq1S! ~AOqB UMOqS 1:JnpoJd ~q1 U! UO!1!PPB"0 Jo UO!1B:J°I~~
(q£8'~)
UO!1!PPV
{OSal:) - 0
(1!£8'~)
UO!1~gJ:!sqV
.'lOH
'lO + HO
+
H'
HO.Q
£H:)
S! qlBd UO!1;)B -aJ "0 aqj, '"ON JO "0 q1!M 1;)BaJUtI;) 1;)nppB aq1 '1;)nppB HO aql Jo UO!1BWJOJ gU!MOIIOd ('(9661 "JB 1a OU!puy) dnoJg IAq1aw 1Uam!1S -qns B 01 oqpo UO!1!SOdB S! ;)!1BWOm UtI 01 UO!1!PPBHO Jo a;)Bld paJJaJaJd aq1 'IBJauag uJ) 3~3HdSOdO~.L 3H.L dO A~.LSIW3HJ
08'l
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 281
After bicyclic radical formation, O2rapidly addsto the radical, forming a bicyclic peroxy radical, for example, CH3
.OO-&~H
This radical is then expectedto react with NO to form a bicyclic oxy radical and NO2,for example, CH3
.O_-r-;"~"~H '
~'OH
The only path for this bicyclic oxy radical is fragmentationvia favorable/3-scissionreactions.For the aboveradical, suchscissionwould produce
.0
H
O~
OH
H
1
/'
~ - Scissi°!l.O~
'(-1
/
Decomposition B H
OA~.
a 1l
H
+ O~
H 0 ~-../'
yOH
H
OH + .~
I( a
'1( 0
Observedring-fragmentationproductsof the toluene-OH reactioninclude the follow ing: 00 II II HCCH Glyoxal 5.8.4
00 /I /I
CH3CCH Methylglyoxal
0II
CH I 30
HCCH=C
II
CH
Methyl butenedial
0 II
0 II
HC CH =CH CH 1.4-Butenedial
Aldehydes
Aldehydes are important constituents of atmospheric chemistry. We have already seen the role played by formaldehyde in the chemistry of the background troposphere. Aldehydes are formed in the atmosphere from the photochemical degradation of other organic com-
pUt! -tHJ-
~lj1 1j10qJo spuoq H-:)
;)I~!U
')1 86Z 111 0!111J V: I II U! sdnoJg OHJ~1j1moJJ SJn:J:Jo UO!1:JIIJ1Sqll m0111-H'(OH:)lH:)OH) ~Pf.Ij~PIIIIO:Jf.lgJOd"
jAUO!dOJdAXOJ;)d
ZONOOJZHJ£HJ II 0
;)!UJ"j!U ,A!;):)UAXOJ;)d
ZONOO;)£H;) II 0
;}m S;}!l;}S ;}q:I U! spunodwo:) OM11SJY ;}qj. .~Ows In:)!W;}q:)010qd 10 s1u;}uodwo:) sn sO~6 I AIm;} ;}q1 U! P;}J;}AO:)S!P1SJYsnM (sNVd) S;}1nJ1!UIA:)nAxoJ~
P;}I{tI:) ZONOO(O);)"M
nInUJJ01 InJ;}U;}~ 10 spunodwo:) (sNVd)
(I6.~ 'O6.~)
10 ssnI:) ;}qj.
saJ8.1J!N IA38Axo.lad
S'8'S
w + ZONOO(O):)"M ~ W + zON + 'OO(O):)"M
zO:) + '"M+- 'O(O):)"M
(68.~)
zON + ' O(O):)"M+- ON + 'OO(O):)"M
(88.~)
'"ONOO(O);)"M 'S~!t!I! -!U If.~t!f.xOJ~d O! ~U!Pt!~1 J~!!t!1 ~q! '"ON JO ON q!!M !~t!~J u~q! s1t!~!pt!J f.xOJ~d If.~t! ~s~ql. ISBj
W + 'OO(O);)"M ~
(L8'~)
W + Zo + O;)"M
In:>!pnJ AXOJ~d IA:>n ill! PI~!A Ot Zo sppn AIP!dnJ tnq'!
OZH+ O:;>~+- 'HO + OHJ~
(98'~)
II'It?:>!Pt?J (O:;>"M) lA:>t? ~u!puods~JJo:> ~q:I ~:>npoJd o~ UO!~:>t?J:lsqt?wo~t?-H
s~AI0AU!
S~pAq~PIt? q:I!M UO!~:>t?~JIt?:>!Pt?J lAXOJPAH
'(17661) UOSU!){IVAq ~m S~pAq~PIt? J~q~!q JOj SP1~!A wn~ut?nb put? SUO!~:>~sSSOJ:>UO!~dJosqt? uo t?~t?a
p~z!Jt?wwns
O~H+ . EH:) +-
( QC;8.C;)
0:) + ~:)
(~C;8.C;)
.£.£ ~Iq~l. U! P~t!;) ~m SPI~!A wm~nb
+- 1\1{+ OH:)EH:) (£.£ ~Iq~l.) Aq S~ZAIOtoqd ~PAq~PI~t~;)V P~ SU09;)~S SSOJ;)UO!tdJosq~ P~PU~WWO;)~"M.££.~
UO!t;)~~J Aq AO qt!M St;)~~JP~ q'l£.~ P~ ~'l£.~ SUO!t;)~~ Aq S~ZAIOtoqd ~pAq~P[I!WJOd .sIR;)!P~J AO qt!M UO!t;)R~JpUR S!SAIOtoqd ~AIOAU! S~SS~;)OJdSSOIJOr~W ~qt snqt 'S~pAq~P[I! JO] ss~;)oJd uo!tdwnsuo;)
R SR ~;)U~POdW! JOU!W AI~A!tRI~J ]0 S! S[I!;)!PRJ EON qt!M UO!t;)R~"M.SI~;)!PRJ
EON qt!M UO!t;)R~JP~ 'SI~;)!PRJ AO qt!M UO!t;)~~J 'S!SAIOtoqd O~J~pUn s~PAq~PIV .spunod ~3HdSOdOll.L 3H.L dO J..1I.LSIW3H;:) 'l8'l
~
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 283
Peroxyacetylnitrate, the first compoundin the seriesof PANs, which itself is usually called PAN. is formedfrom the OH reactionwith acetaldehyde,
CH3CHO+ OH, -+- CH3CO+ H2O
(5.92)
CH3CO+ O2-+- CH3C(0)02'
(5.93)
CH3C(0)02' +N02 + M ~ CH3C(0)02N02 + M
(5.94, 5.95)
Reaction5.94 must competewith the NO-to~NO2conversionreaction CH3C(O)OZ. + NO
-.-+-
NOz + CH3C(O)O.
(5.96)
followed by CH~C(O)O. ~ CH3O2'+ CO2
(5.97)
Peroxyacetyl nitrate does not absorb radiation above 290 nm so this class of compounds is not expected to photodissociate in the troposphere. Peroxyacetyl nitrate is not highly water soluble; it is more soluble than NO and NO2 but considerably less soluble, for example, than nitric acid. Thus aqueous-phasescavenging is not expected to be an important tropospheric removal path for PANs. Once thought to be of importance only in polluted urban atmospheres, PANs are now recognized to be ubiquitous, having been detected in urban, rural, and global environments (Roberts, 1990). By virtue of their photochemical inertness, relative insolubility in water, and low OH rate constant, PANs can have an appreciable atmospheric lifetime. The principal loss mechanism is thermal decomposition by reaction 5.91 or 5.95 back to the peroxyacyl radical and NO2. The thermal decomposition is highly temperature dependent; at temperatures of the upper troposphere PANs are quite stable and can be transported long distances. The thermal decomposition rate constant for PAN, reaction 5.95, is both temperature and pressure dependent, being in the falloff region at room temperature at and below atmospheric pressure. Using the Troe falloff expression, over the temperature range 280 to 330K,
k=
ko[M] F{I
ko[M]
1+-
'gJoko[M]/koof}"
(5.98)
koo
the specificvaluesfor PAN are ko = 4.9 X 10-3exp(-12100/ T) cm3molecule-I S-I koo
= 4.0 X 1016exp( -13600/
T) S-I
F=0.3 Thus koo= 6.1 X 10-4 S-I at 298 K and kS.9s= 5.2 X 10-4 s-t at 298 K and760 Torr total pressure. The decomposition rates of the higher peroxyacyl nitrates are expected to be sim-
(;)66'~)
(q66'~) (~66'1;)
£H;:)(O);:)ZH;:)ZH;:)OO' + OzH +ZO OOlH;)(O);)lH;)EH;)
+
OlH
~ to
EH:)(O):)H:)EH:)+ OzH +--
.0
EH:)(O):)zH:)EH:)+
'HO
I 00
:SUlO~B U~~OJpf..q U!B~UO;) ~Bq~ SUlO~B uoqJB;) ~~Jq~ ~q~ JO f..UB ){;)B~~B UB;) {B;)!PBJ HO
JOU!Ul JO f..IqBqOJd S! S!sf..Io~oqd
.~;)UBPOdUl!
JOd .ss~:)oJd ssoI ;)!l~qdsodoJ:l
JOJ '~IdUll!x~
JOfBUl ~q:I ~JB IB;)!PBJ HO J:}q~!q
~q:I ~UO~~){ If..q:I~ If..q~~Ul
JOfBUl ~q~ u~q~ S! IB;)!PBJ HO ~q:I q~!/t\ UO!~;)B~'M '(II.~
~Jn~!d
q:I!/t\ '~Bq:I ~~B;)WU! ~IqBI!BAB B~Bp {B~U~Ul!lOOX~ P~~!Ul!I ~~ ;)!l~qdsOUl~B
Sy .s:}n~OIoUloq
~~s) ~UO~~;)B JO uo!~d~;)x~ .(6861
'uosu!){1Y)
'(~661
"{1!:I~ qgU!S)
aq:l U! :luasald
~q:I JOJ
S! SpUnOdUlO;) ;)!UB~JO JO SSBI;) S!qj,
~Iqu!lt!A
AIqg!q
S! ~:>~punqu
:luapuadap
S:I! qgnoq:l{1!
am :ldd 001 Jo A:I!U!:>!A aq:l U! SO!:lUl gU!X!Ul NVd
OS{1! S! EO JO u09Ul:jua:>uo:>
U09UUllOJ
q:I!/tA 'OO(O):)EH:)
aq:l 0:1 IUUO!:IlodOld q:I!A\ aA!:I!
'{1!:>!PUl IA:la:>uAxolad
S! NVd Jo Uo!:lul:jua:>uo:> aq:l salmUladUla:l ag~l-guoI aq:lloJ gU!A\OI{1! ,raN aq:l su a:lUU!UlOP II!A\ S!SAIO:loqd 10
S! UO!:I!SOdUlo:>ap IuUllaq:l
aq:l:lV
a:lU:lS-ApUa:lS ~q:I
a:ln:lS-Apua:lS aq:l a:>u!s '(8'~)
'O!:lUl ON/'lON
q:I!A\ uO!:I:>ual {1!:>!PUl IA:la:>uAxolad NVd
a:ln:lS-ApUa:lS aq:l Aq paw~Aog
lapuQ orON Jo :Ilods~l:j NVd 'ssa:>old ssol NVd
S!q:I U! 'os 'Sq:lUOUl A~Ul aq:l Jo saln:juladUla:l
p~
9'S"S
°:ldd Z ~q:I ss~I AIIU:>!dA:ll~AUI A.mpunoq ~U!lt!Ul ~q:l U! SO!:I {1!:>!:Il~A gUOl:jS U S:I!q!qx~ NVd lU~IUA~ld u~:lJo ~m :ldd 01 m~u SO!:I
aalJ waq:llou
aq:l 0:1 IUUO!:IlodOld
aq:l UlOld
JO UO!:lul:jua:>uo:> a:lU:lS-ApUa:lS aq:l 'ON
U09:>ual HO 'UO!gal
sag~l
~q~
S~ss~;)oJd ssoI
~q~ q~!/t\ UO!~;)B~J pUB S!Sf..IO~oqd 's~pf..q~PIB
S~! pUB :}UO~~;)B f..q P~Y!IdUl:}X:}
S;}UO};})l
-Ul gU!X!Ul q:I!A\ lU~!PUlg
-Ul gU!X!UI s:>!dol:j ~q:I m~N 'al~qdsodol:j
'UO!:lUl:jua:>uo:> EO aq:l 0:1 {1!UO!:IlOdOld S! UO!:lUl:jua:>uo:> NVd 'O!:lUl ON/'lON
UO!:lUI:}l ~:lU:lS A.mUO!:lU:lso:loqd £O/'lON/'lON S! NVd
-:lOOUlO:>pun zON 0:1 {1!UOfllodold aq:l Jo u09ul:jua:>uo:>
UImA\ AP~J :In SUO!:lpuo:> ~qln 10J l!OAlaS~l U su S:I:>UaloJ~laq:l
'alaqdsodol:jladdn UlOlj
0)1 £a:lu
slnoq
8-
Ul01J aUl!:laJ!I NVd
0:1)1 86Z:lu
almU1OOUla:l AIguOl:jS S! a:lul:j!u I!J,a:>uAxolad
sa:lnu!UI O£-
Jo aUl9aJ!I
a~
'sasJ:j uns aq:l uaqA\ sa!:>oos aA!:I:>u AI{1!:>!Ulaq:> -o:loqd Jo l!OAlaSal U 0:1puaI PIno:> a:>uanbas S!q.L '~tO~ UO!:I:>ual 'apAqaPIuUlloJ Jo aIn:>a{oUl U a:>npold p~ zON 0:1 ON l~q:lO~ :IlaAUO:> AUUl JIas:I! q:>!qA\ '{1!:>!PUl AxoladIAq:laUl U sa:>np -old
p~
zON 0:1 ON
S:IlaAUO:> :luq:l 96'~
-X!Ul qg!q AIaA!:lUIal U q:I!A\ alaqdsOUl:lU °Ula:lSAS NVd
06'~
u09:>ual
~:lU!:I!U! ~:> (qdd
01"g'a)
uu U! NVd Jo U09!sodUlo:>ap
ON Jo O!:lUl gU!
IuUllaq:l
aq:l :lqg!U:lV
aq:l UlOlj sIU:>!PUl IA:>UAX01OO aAOUlal 0:1 saAlas :luq:I 96°~ uO!:I:>ual gU!:ladUlo:>
aq:l Jo asnu:>aq ~In:>aIoUllauuI puadap
II!A\ ~Ul!:I p~
aq:l 'ON
UO!:lu:>°I A~:lU
p~
zON Jo sI~A~I {1!:>°I aq:l p~
punodUlo:>
SUO!:I:>U~l 0:1 gU!P10:>:>U UlnJ:jq!I!nba
NVd
aq:l o:llasoI:>
almUl~dUla:l
aq:l uo
U Jo Uo!:lul:jua:>uo:> aq:l snq.L '16°~ pun
Iu:>!Ulaq:> U! :lS!X~ 0:1 palap!Suo:> 'NVd
alnssald-qg!q
10J ~q:I
aq ~:>
~lnssald
sNVd
UaA!g u :In :I!Ul!I
gu!aq S:I~:lSUO;) a:lUl UO!:I!SOdUlo:>ap aq:l q:l!A\ 'NVd
10J :luq:l 0:1mI!
~3HdSOdO~J. 3HJ. dO J..~J.SIWaHJ t8'l
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 285
with 5.99abeing the major reactionpathway.Subsequentreactionof this particularradical with NO leadsto
00.
O.
I I CH3CHC(0)CH3 + NO -.. N02 + CH3CHC(0)CH3
CH3C(0.)HC(0)CH3
-..CH3CHO+ CH3CO
The major reaction products from the atmospheric reactions of the ketones are aldehydes and PAN precursors. Acetone is an ubiquitous atmospheric species having a mixing ratio of about 1 ppb in rural sites in a variety of locations (Singh et al., 1994, 1995). Under extremely clean conditions, ground-level background mixing ratios of 550 ppt have been found throughout the NH troposphere. In the free troposphere, acetone mixing ratios on the order of 500 ppt are present at northern midlatitudes, declining to about 200 ppt at southern latitudes (Singh et al., 1995). From atmospheric data and three-dimensional photochemical models, a global acetone source of 40 to 60 T g yr-1 has been estimated, comprised of 51 % secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene), 26% direct emission from biomass burning, 21 % direct biogenic emissions, and 3% primary anthropogenic emissions (Singh et al., 1994). Atmospheric removal of acetone is estimated to result from photolysis (64%), OH reaction (24%), and deposition (12%). Acetone photolysis, which produces the PAN-precursor CH3CO radical, is estimated to contribute 40 to 50 ppt of PAN in the middle and upper troposphere of the Northern Hemisphere. Based on tropospheric models, up to 50% of observed PAN may be formed by this mechanism. The average lifetime of acetone in the atmosphere is estimated to be 16 days (Singh et al., 1995). By virtue of its photooxidation chemistry (Figure 5.11), acetone is a source of HOx radicals in the upper troposphere. Under the dry conditions of the upper troposphere, where 0(10) + H2O is relatively slow, acetone makes an important additional contribution to
(q£OI'~) (R£OI.~)
'O£HJ + OzH +-
HOzHJ"+ OzH+- "HO+ HO£HJ
S! UO!1~~~JHo-Iouuq1~w ~q1 '~Idw~x~ JOd 'spuoq H-;) v ~q! WOJl AIU!~W 'UO!1~~J:lsq~wo1~-H ~AIOAU! ~s~q1 ~(686I 'UOSU!){1Y) UMOU){ ~J1!SUO!1!PUO~~!l~qdsow1~ J~pun sIoqo~I~ ~!1~qd!~ J~Idw!s ~q1 JOl s~~u~nb~s UO!1~~~J~ql sIoqOJIV
'g:jUWJOj lAQ:jgW S! ZOI"r; UO!:j:>UgJ U! :j:>npoJd gU!u!t!:juo:>-uoqm:>
('l01.~) (101 .~) (001.~)
,ZOH+ EH:)O(O):)H +--
6'S'S
gq:j gJgQM
ZO+ 'OZHJOEH:)
'OZH:)OEH:) + zON+-- ON+ .ZOZH:)OEH:) ,ZOZH:)OEH:)+-tn 'HO + EH:)OEH:)
S! l~q~~ IAq~~W!P lol WS!~q:)~w UO!~:)~~l~q.L "(1661 'md~f P~ uo~gU!II~A\ ~1661 '0661 '"~ ~~ md~f ~6861 'uosuf'PV ~6861 '8861 '1~ ~~ uo~gU!II~A\) spuoq H-J woll UO!~:)~J1sq~wo~~-H ~!A '1~:)!P~l HO ~q~ q~!M AI~IOS AII~!~U~SS~SUO!~!P -uo:) :)p~qdsow~~ l~pun ~:)~~l 'l~q!~ IAq!~!P p~ l~q~~ IAq~~W!P s~ q:)ns 'Sl~q~~ :)!~~qd!~ ~q.L s.l3q13
S.S.S
's~:)npold s~ P~WJol ~Jp,'s~Pf.q~PI~f.xolPf.q pu~ s~Pf.q~PI~ q~!M l~q~~gO~ 'sIf.uoqJp,:)!P-V 'U!~gv 'puoq ~Iqnop ~q~ o~ UO!~!PP~~:)!P~l HO f.q f.Iuo Sln:):)o I~:)!P~l HO ~q~ q~!M UO!~:)~~l :)p~qdsow~~ lOr~W ~q:I ~uo~~){ If.U!A If.q:I~W s~ q:)ns S~UO~I}){pl}~~ln~~sun-f/'v I}q~ lod l~xO -f.IgIf.q:lI}W pu~ I~xof.Ig s~ q:)ns sIf.uoqJp,:)!P-V o~ I}Sp ~A!g f.II}~~w!~In o~ pl}~:)l}dxl} 1}Jp,sl}pf.q -I}p~ pl}~~ln~~sun-f/'v I}sl}qj. '(6861 'UOSU!){1V) dnolg OHJ-l}q~ woll UO!~:)~l~Sq~wO~~-H pu~ puoq I}Iqnop I}q~ o~ UO!~!PP~~:)!P~l HO :sf.~Mq~~d UO!~:)~l}lOM~~!A pl}l}:)old u~:) UO!~:)~ -I}l I~:)!P~l HO 'sI}Pf.qI}PI~ I}q~lOd 'ssl}:)old SSOIlOr~W I}q~ s~ UO!~:)~l}l~:)!P~l HO I}q~ gU!A~I}I 'l}:)u~:)y!ug!S lOU!W 10 OS~ 1}Jp,SUO!~:)~l}lEO I}q~ SUO!~!PUO:):)pl}qdsow~~ ll}PUfl '~:)u~1JOd -ill! lOU!W 10 1}Jp,UO!~:)~~lI~:)!P~l EON pU~ S!Sf.IO~Oqd'SI~:)!P~l HO q~!M p~ I}UOZOq~!M ~:)~ -I}J O~ UMOmJ
1}Jp, '(£H::>(O)::>H::>
I}Pf.qI}PI~UO~Ol:) '(OH::>H::>
=
=
ZH::»
ZH::»
=
~UO~I}){ If.U!A If.q~I}W pU~ '(OH::>H::>
U!I}IOl:)~
f.q
PI}Y!IdWI}XI}
H::>£H::»
'spunodwo:)
I}sl}qj.
SIf.uoq.le;:> pa}e.ln}esufl-f/ 'v
L"8"S
O(~66r 'OIl! t~ qgU!S) ~UOt~:>t1 Jo S!SAIOtoqd WOlJ ,_s E-W:> s~In:>~Iow EOr 6 pUt1O~H + (01)0 WOlJ I-S E-W:>s~In:>~IowEOr x L Jo S~tt1lu09:>np -old xOH ~gt1l~At1lnoq Pl p~:>npold (~uOt~:>t1qdd ~oOPUt1'O~H wdd 06 'EO qdd O~ 'w){ r I
x
'N oOP) xou!nb~ ~qt tt1 aJ~qdsodoIJ l~dn
~qt lOJ uo!tt1In:>It1:>I~poW It1:>!W~q:>otoqd ~Idw!s
V °O~H + (0,)0 Jo UO!t:>t1~l ~qt WOlJ l Jo PI~!A t1Ot p~mdwo:> St1'(£.0 X P + l Jo tIns~l ~qt) l"£-
S! ~UOt~:>t1 Jo S!SAIOtoqd ~qt WOlJ PI~!A xOH ~qt snqj, 's~In:>~Iow ~OH ~lOW OMt
PI~!A Ot q:>Ut1lQgU!UJJoJ-Il!:>!pt1l~qt t1!A ~ZAIOtoqd s~In:>~Iow OH;)H ~qtJo %0£ pUt1'([~ON] « [ON] U~qM) s~In:>~Iow OH;)H OMt PUt1 ~OH OMt SPI~!A ~UOt~:>t1Jo S!SAIOtoqd .xOH 'J~'JUAcnAn~
T 'JU T .:In 1 ~ T CTW';IU,
O!l7
CHEMISTRY OF NONMETHANE ORGANIC COMPOUNDSIN THE TROPOSPHERE 287
with the first reaction pathway accountingfor -85% of the overall reaction at 298 K. Since, as shown earlier, both the .CH20H andCH30. radicals react with O2 to yield formaldehydeand H02, the overall methanol-OHreactioncan be written as ~ CH30H + OH. --+ H2O + HO2' + HCHO
The ethanol-OH reactionproceedsas follows: OR. + CH3CH20H
-.. H2O + -.. H2O + -.. H2O +
CH2CH20H
(-5%)
(5.104a)
CH3CHOH
(-90% )
(5.104b)
CH3CH20.
(-5%)
(5.104c)
wherethe branchingratios arethoseat 298 K. The secondtwo channelsresult in identical productsunder atmosphericconditions,H02 + CH3CHO.The first channelforms the intermediateCH2CH20H, which, underatmosphericconditions,leadsto the sameproducts as the OH + ethenereaction.Using the ethene-OHmechanismgiven earlier, the overall ethanol-OH reactionmechanismcan be written as C2HsOH+ OH. +0.05 NO -+ 0.05 NO2 + 0.014 HOCH2CHO+ 0.072 HCHO +0.95 CH:1CHO + HO2. + H2O with the principal products being acetaldehyde and the HO2 radical. Free tropospheric concentrations of methanol range from about 700 ppt at northern midlatitudes to about 400 ppt at southern latitudes (Singh et al., 1995). In general, ethanol abundance in the free troposphere is an order of magnitude lower than that of methanol. Average lifetimes of CH3OH and C2HsOH in the atmosphere are on the order of 16 days and 4 days, respectively.
5.8.10
Acids
The atmospheric sources of formic and acetic acid are still open to question. In the Shenandoah Cloud and Photochemistry Experiment conducted during 1990 in the rural continental atmosphere at a mountaintop (1014 m) in Virginia, median mixing ratios for HCOOH and CH3COOH were 5.4 and 2.1 ppb, respectively (Talbot et al., 1995). Formic acid mixing ratios often approached or exceeded 10 ppb. An observed lack of correlation between HCOOH and CH3COOH with peroxide speciesargued against a significant source from permutation reactions of peroxy radicals (e.g., reaction 5.61). A strong correlation between the mixing ratios of both acids was suggestive of a common source, although combustion emissions could be ruled out. Correlation between the seasonalvariation of the two acids and ambient temperature is consistent with a soil microbial source. Together, the two acids contribute between 16 and 35% of the free acidity in North American precipitation and between 25 and 98% of the free acidity in precipitation in remote areas. Photochemical production of organic acids occurs in the gas phase from ozone-alkene reactions and in cloud water by the hydrolysis of aldehydes followed by aQueous-phasereaction with OH radicals (see Chapter 6). These routes can explain, in part,
sot'
"I" L ~m~!d Jo t~SU! ~q:I U! p~tt!I!snIl! ~m SJ~t~wt!!P jO ~~Ut!J ~IOqM ~q:I ~U!MOqS Aq tSOI UO!tnqpts!p ~Z!S ~qt jO sIret~p ~q.L lIn~YJ!p uo!tnqpts!p az!S Ilnj ~q:I Jo uo!tmu~s~Jd ~q:I s~)(t!w S~Z!S~I~!tmd IOSOJ~t!~q:I Jo ~~ut!J snoWJou~ ~q:I tt!q:I atON "I"L ~Jn~!d U! Wt!J~OtS!q t! Jo WJOj ~q:I U! p~tu~s~Jd S! uo!tnqpts!p S!q.L 'S~I~!tmd ~q:I I(l! jO SJ~t~Wt!!P ~q:IJo pt!~tSU! (SUO!tt!I!U~~UO~~u!puods~JJo~ ~q:I put! SUO!t~~S~Z!S ~qt Jo s~!Jt!punoq ~qt) sJ~wnu ~Z AIUO s~J!nb~J uo!tnqpts!p ~Z!S IOSOJ~t!~qt jO Amwwns t! q~ns 'I"L ~Iqt!.L U! UMOqS S! SIt!AJ~tU! ~Z!S ZI ~u!sn uo!tnq!I!s!p ~Z!S IOSOJ~t!Ut! JoJ u09t!WJoJuI 'U!q ~Z!S q~t!~ U! S~I~!:)Jl!dJo J~qwnu ~q:I Jo uo!tt!In~It!~ pUt! s(l!AJ~tU! ~t~J~S!P OtU! ~~Ut!J ~Z!S ~I~!tmd ~qt Jo UO!S!A!P S! ~U!tUno~~t! AmSS~~~U~qt 8U!Aj!IdW!s U! d~ts tSJY y "~WOS -J~qwn~ ~q PInOM '~~t!ds pUt! ~W!t Jo UO!t~unJ t! st! AmA PInOM tt!q:I 'S~I~!:)Jl!djO sput!snoqt jO SJ~t~wt!!P ~q:I jO tS!I t! '~Iqt!IreAt! ~J~M UO!tt!WJOjU! q~ns J! u~A3 '~I~!tmd q~t!~ jO ~Z!S ~q:I jO 8u!tuno~~t! ut! ~pnI~u! os(l! ut!~ uo!tnqpts!p ~Z!S IOSOJ~t!~q:IJo uo!td!l~s~p ~t~Idwo~ y 'oIOI punom w1f 1 jO J~t~wt!!P t! q:I!M ~uo pUt! 's~In~~Iow ~01 AI~tt!W!xOJddt! suretuO~ w1f 10'OjO J~t~Wt!!P t! qt!M ~I~!tmd t! '~Idwt!x~ JOd 'S~I~!tmd IOSOJ~t!tS~Ilt!WS ~q:I U~A~ ~s!ldwo~ tt!qt s~In~~Iow jO J~wnu
~8mI ~qt Jo ~snt!~~
~~!t~t!Jd U! p~sn ~q touut!~ uo!tnq!lts!p
IOSOJ~t!
~q:l8u!z!l~t~t!mq~ Jo poq:l~w ~t~J~S!P S!qt 't~~JJO~ AISnOJ08!l q8nOq:lIY 's~In~~Iow 'I 8u!u!t!t -uo~ S~I~!tmd jO (J!t! Jo £w~ J~d) UO!tt!I!U~~UO~~q:I "IN Aq 'S! tt!qt 'J~tsnI~ q~t!~ Jo UO!tt!JtU~~ -uo~ J~qwnu ~qt Aq p~z!l~t~t!mq~ ~q u~q:I PIno~ uo!tnqpts!p IOSOJ~t!~q.L "s~In~~Iow OMt 8u!uretuO~ tt!q:I st! ~Id!~u!ld U! p~uy~p ~q PIno~ ~I~!:)Jl!d IOSOJ~t!tS~Ilt!ws ~q.L 'SJ~WOUOW JO s~In~~Iow jO 'I J~qwnu J~8~tu! Ut! Jo tS!SUO~Ot p~J~P!SUO~~ ut!~ ~I~fIJt!d IOSOJ~t!uY 'S~I~!tmd (l!~!l~qds AIUO J~P!SUO~pUt! ~dt!qs ~I~!tmd Jo t~~jJ~ ~q:I t~~I8~u ~M J~tdt!q~ S!q:IjO s~sodJnd ~qt JOtl "su09nq!lts!p ~Z!S IOSOJ~t! 8u!z!l~t~t!mq~ AI(l!~!tt!w~q:lt!w Jo spoqt~W dOI~A~p Ot l.Jt!ss~~~u ~JoJ~J~qt S! tI "S~!tJ~ -doJd It!~!W~q~ put! (l!~!sAqd J!~q:I put! ~J~qdsowtt! ~q:I U! ~W!t~j!I J!~qt qtoq St~~JJt!S~I~!tJt!d ~s~q:IJo ~Z!S ~q.L 'w1f 1 ut!qt J~I(l!wS S~I~!:)Jl!dU! punoJ AIU!t!W S! s~ss~~oJd It!~!W~q;)Otoqd Aq ~J~qdsowtt! ~q:I U! p~~npoJd It!!l~tt!W 'w1f 1 tt!q:I J~~mI AIlt!J~u~8 ~m tIt!s t!~S pUt! 'stU~W -8t!Jj tUt!Id 'su~Ilod 'tsnp uMoIq-PU!M 'w1f 1 st! ~8mI st! put! SJ~t~wout!u M~J t! st! Ilt!ws st! ~q Ut!~ '8u!wnq
pOOM pUt! 'UO!tt!J~U~~ J~Mod 'S~I!qowotnt! WOJj ~soqt st! q~ns 'S~I~!tmd
p~tt!J~u~8-uo!tsnqwo;) 'S~I~!tmd wu 01 UO!Il!q ~uo Jo sst!w ~qt Ot tU~It!A!nb~ S! ~I~!t -md J~t~Wt!!P w1f 01 t! Jo sst!w ~qt tt!qt J~P!SUO~Ot sp~~u tsnf ~uo ~~ut!J ~Z!S ~P!M S!qt ~tt!!~ -~Jddt!o.L 'w1f 001 punom Ot SJ~t~WOUt!uM~J t! WOJJ '~pm!u8t!w Jo SJ~pJOJnoJ J~AO Ut!ds S~I~!tmd ~s~qt jO SJ~t~wt!!P ~q.L '£_W~ 801 Ot LOI St! q8!q St! S~W!t~WOS S~I~!tmd IOSOJ~t! JO SUO!tt!I!U~~UO~tUt!~Y!U8!S suretUO~ 'st!~m ~tOW~J JO Ut!qJn U! J~qt~qM '~J~qdsOWtt! ~q.L
NOIJ.:)N!1~ NOIJ.!1HIHJ.SIO ~ZIS ~HJ.
I"L
L
THE SIZE DISTRIBUTION FUNCTION
409
TABLE 7.1 Example of SegregatedAerosol Size Information
11111 20000 3000 2000 1000 750 1250 563 117 160 80 2
100 300 330 350 390 450 650 830 890 910 915 916
100 200 30 20 40 60 200 180 60 20 5 1
0.001-0.01 0.01-0.02 0.02-0.03 0.03-0.04 0.04-0.08 0.08-0.16 0.16-0.32 0.32-0.64 0.64-1.25 1.25-2.5 2.5-5.0 5.0-10.0
250
", I
E t) . c 0 ~ e c Q) t) c 0 Co)
200
2001 150 i
0-
0.1
0.0
100
0.2
~ Q) .a
E :J Z
50 I
n ¥
-
0
1
2 Diameter,
3 JIm
4
5
FIGURE 7.1 Histogramof aerosolparticlenumberconcentrationsversusthe sizerangefor thedistribution of Table7.1. The diameterrange0 to 0.2 ILm for the samedistribution is shownin the inset.
~q1 q10q (£' L ~lng!d) l~1~Wg!P ~q1 lOJ p~sn s! ~Ig:)s :)!wq1!Jt!gO[ g JI .wrf 1.0 ugq1 l~gJt![ ~Jt! S~I:)!Utld Iyg 1S0WIg 19q1 S~1g:)!PU!1! Sg 'gU!pg~[S!W ~ AgW I. L ~lng!d ~)[!I 10Id V .wrf 1.0 Ugq1 l~[[gWS ~Jt! s~[:)~d ~q1 Jo Jygq AIqgnol 19q1 S~1g:)!PU!Z' L ~lng!d .UO!1gJJU~:)uo:) l~wnu ~q1 01 [gUO!1l0dOld S! ~AJn:) ~q1 MO[~q g~Jt! ~q1 MOU 1nq '~dgqs s~gugq:) uO!1nq!JJS!p ~q.L 'Z. L ~lng!d U! P~1gl1Sn[[! S! PUg (I. L ~[qg.L) E-W:) I-w'ri U! p~ss~ldx~ UO!1gJJU~:)uo:)g S! 1[nS~l ~q.r .~gugl ~Z!S gu!puods~JJo:) ~q1 q1!M UO!1gJJU~:)uo:)~q1 gU!P!A!P Aq UO!1nq!l1S!p ~q1 S~Z!ygUJJouU~1JO~uo 's~Sg!q q:)ns P!OAg °.L 'l~11g[ ~q1 SlOAgJ ~gUgl wu 091 g l~AO 19q1q1!M wu OZ Jo ~gugl ~Z!S g gU!l~AO:) s~[:)!Utld Jo UO!1gJJU~:)uo:)~q1 Jo uos~dwo:) S!q1 'l~A~MOH 'w'ri Z£'O 01 91.0 WOlJ E-W:) ~[:)!Utld OOZ l~q10Ug PUg w'ri ZO'O 01 10.0 WOlJ ~gugl ~q1 U! E- ill:) ~[:)~d OOZ ~Jt! ~l~q11gq1 ~1g:)!PU! I' L ~[qg.L U! SUO!1gl1U~:)UO:) l~qwnu ~q.L .s~[:)!Utld Jo 10[ g ~Jt! ~l~q1 ~gugl ~Z!S q:)!qM U! 1no pug 011UgM AgW ~uo '~[dwgx~ lod l[n:)YJ!P SUO!1 -gJJU~:)UO:)~1n[Osqg Jo UO!1g1~ldJ~1U!~q1 s~~w Sq1P!M 1U~l~JJ!P q1!M SU!q ~Z!S Jo ~sfl 'UO!1gJJU~:)uo:)l~qwnu ~I:)!Utld Ig101~q1 S~1g:)!PU!uO!1nq!JJS!p ~A!1gInwn:) ~q1 Jo ~nygA 1SgI~q.r .w'ri to'O ugq1 l~Iygws ~Jt! 19q1E-W:) s~I:)!Utld OC;£~Jt! ~l~q11gq1 S~1g:)!PU!~gugl ~!S w'ri to'O 01 £0.0 ~q1 lOJ UO!1nq!JJS!p~A!1gInwn:) ~q1 Jo ~nIgA ~q1 .I' L ~Iqg.LJo uO!1nq!JJS!p ~q1 lOJ '~IdUJt!x~ lod '~gugl ~Z!S S!q1 01 ygnb~ lO ugq1 l~[[gWS ~Jt! 19q1S~I:)!1Jt!dJo UO!1gJJU~:) -UO:) ~q1 Sg p~uy~p S! UO!1:)~S~Z!S g lOJ ~nygA uO!1nq!JJS!p ~A!1gInwn:) ~q.L .uO!1nq!JJS!p~ArI
-gInwn:) S1!gu!Sn Aq P~!l:)s~p ~ osygug:) uO!1gIndod~I:)!Utld g Jo uo!1nq!JJS!p~Z!S~q.r 'OSO~3V :Jlli3HdSOmV 3m dO S3ll~3dO~d
OIt
THE SIZE DISTRIBUTION FUNCTION
~
411
20000
'E u
-I
[ I::
15000
0 ~
~ 0+I:: Q) U I::
10000
0 U
IQ) .D E :J Z
5000
01'1"1111
IIIIIIII
I
I'~
0.01
0.10 1.00 Diameter. J.1m FIGURE 7.3 SameasFigure 7.2 but plotted versusthe logarithm of the diameter.
large-andsmall-particleregionsare depicted,but it now erroneouslyappearsthat the distribution consistsalmostexclusivelyof particlessmallerthan0.1 j.Lm. Using a numberof sizebins to describean aerosolsizedistribution generallyresultsin lossof information aboutthe distribution structureinside eachbin. While this may be acceptablefor someapplications,our goal in this chapteris to developa rigorousmathematical frameworkfor the descriptionof the aerosolsizedistribution.The issuesdiscussedin the precedingexampleprovide valuableinsights into how we shouldexpressand present ambientaerosolsizedistributions.
7.1.1 The Number Distribution nN(Dp) In the previoussection,the valueof the aerosoldistribution nj for a sizeinterval i wasexpressedas the ratio of the absoluteaerosolconcentrationNj of this interval and the size range ~Dp. The aerosolconcentrationcan then be calculatedby Ni = ni ~Dp The use of arbitrary intervals ~Dp can be confusing and makes the intercomparison of size distributions difficult. To avoid these complications and to maintain all the information regarding the aerosol distribution, one can use smaller and smaller size bins, effectively tak-
'J~U~W S!q1 U! SUO!1nq!IlS!p ~q1 ss~Jdx~ osJU II!M ~M UOfl~10U uowwo:> ~q1 q1!M WJ01UO:>°.L . (da)NU 10 P~~1SU! p~sn U~1 -10 S! dap/ NP UO!1~10U~q1 p~ 'uo!mq!Ils!p
(Z'L)
~gut?J ~Z!s ~q1 u!
dap NP
IOSOJ~~~~S
~q11U~s~Jd~J(Z'L) 10 S~P!Sq10g
(da)NU
st? U~11!J!t\ ~q ut?:) (da)NU U~q1 '(dap + da Ida) s~I:)!:IJt?dJO J~qwnu ~q1 S~10u~p dap (da)Nu NP JI
=
O~Z!S~I:)!pgd JO A1!SU~PA1!I!qt?qOJdP~Z![BUJJou ~q:I 011u~It?A!nb~ ~JOJ~J~q:IS! 1! :(dap + da 'da) ~gUt?J ~q:I U! J~1~wt?!P t? st?q ~I:)!:IJt?dpa1:)~I~s AIWOPUt?Jt? 1t?q:IA1!I!qt?qOJd aq:l st? pa!t\a!A aq osIt? Ut?:)(da)N~ u°!:J:)unJ UO!1nq!J:Is!paz!s P~Z!It?UJJOUaq.L 0,- w1f am (da)N~ JO S1!un aq.L
da p + da 01 da d6uw d'l{1u~ S.JilJillUV!P Eu!llVl{
ElU:J .Jild silf:J!J.lvdjo
.Jilqwnu
fvJoJ ill{Jjo
uoP:Jv.Jj ill{J
= dap
(da)N~
!eQ1 q:>ns 'N j(da)NU
"(v' L ~Jng!d) U!gpo ~Q1m~u ~:'{!ds MOneU UO!!:>un] UO!!nq!l:lS!p J~qlUnu ~Q1puB tUrf 1'0 ueQ1J~I{elUS SJ~!~
e S!!q!qx~ AI{enSn (da)NU
UO!!:>un] UO!!nq!l:lS!p ~Z!S P~Z!{eWJOUe ~uy~p ue:> ~M
= (da)N~
Aq (da)N~
-lUe!p ~Aeq s~I:>!!Jed ~Q1]0 !SOlU ~J~qdsoUl!e ~q! uI '001 punom 'AeS 's~ln:>~IOlU]O J~qlUnu U!e!J~:>e pUOA~ P!leA S! UO!!nq!l:lS!p ~Z!S SnOnU!!Uo:>e ]0 UO!!dlUnSSe S!q.L .da J~!~lUe -!P ~q!]O UO!!:>un] SnOnU!!Uo:>e !nq 's~ln:>~lolU ]0 J~qlUnu ~q!]O UO!!:>un] ~!~J:>S!Pe J~guoI ou S! UO!!nq!l:lS!p J~lUnU ~Q1 !eq! ~lUnSSe AP!:>!ldlU! ~M (da)NU UO!!:>un] ~Q1 gU!Sn AH
(IOU
dap
(da)NU
oo}=N
s~ 'N '£- W:) J~d s~{:)~1JBdJo J~qwnu {g!O! ~q! PUg £- w:)
~snru~q~ wrf ~m (da)NU JO S~!Un~ql
dap + da OJ da ~6uv.J,~'lf1u~ S.J,~1~WV~p 6u~av'If .J,~v fo
:SA\OIIOJsu '(da)Nu
£w;; .J,~d s~l;;~MVd
fo .J,~qwnu
~'lf1
=
dap (da)NU
UO!!JunJ Uo!!nq!l!S!p ;)Z!S ;)q! ;)uy;)P UUJ ;)UOU;)q.t ,dap
O! f1!nb;) puu [f1!WS A[f1!W!S;)!!UYU! S;)WOJ;)q daY'
'!!W![ S!Q! !V '0 +- daY'
!!W![ ;)Q! gU!
10S01lHV ::>nlaHdSOmV aH.L dO S3ll1l3dOlld
ZIP
THE SIZE DISTRIBUTION FUNCTION
I') I
413
10"
E u
I
5
E :1
5 10'
-~ q -~ ~
0.0
~
~I
0I 600
Ol) I
Dia~2eter
I
I
0.4
,Di~met,er,
I
I
E u E :1
300
.-::~ ~ -rIJ ~
0
Ol) I
16
E u
N E :1
~
:~ 0
~ ~
~,'
I 2
I
I
,
,
I
4
6
I
I
8
I 10
Diameter. IJ.tn FIGURE 7.4 Atmosphericaerosolnumber,surface,and volume continuousdistributions versus particlesize.The diameterrange0 to 0.5 JLmfor the numberdistributionis shownasan inset.
Example 7.1
. ') exist.
For the distribution of Figure 7.4, how many particles of diameter 0.1 j),m
According to the inset of Figure 7.4, nN(O.1 fLm)
= 13,000 fLm-l
cm-3. However, this
is not the numberof particlesof diameter0.1 fLm (it evenhasthe wrong units). To calculate the numberof particleswe needto multiply nN by the width of the size range ~Dp. But if we are interested only in particles with Dp
= 0.1
fLm this size range is zero and
thereforethereare zeroparticlesof diameterexactly equalto 0.1 fLm. Let us try to rephrasethe abovequestion. Example 7.2. For the distribution of Figure7.4, how manyparticleswith diameterin the range 0.1 to 0.11 .urn exist? The size distribution is practically constant over this narrow range with n N(0.1 JLm) cm -3. The width of the region is 0.11 - 0.1 = 0.01 JLm and there are 0.0 I X 13,000 = 130 particles cm -3 with diameters between 0.1 and 0.11 JLm for this
= 13,000JLm -I
size distribution.
(~.L)
(E-W:> ~w1f)
~JOJ~J~q:Ipun
da p + da OJ da d6uw d'l{1U~ S.ld1dWV~P 6u~av'l{
.l~V /0
EW;) .ldd Sdl;)~1.lvd /0 dwnloa
d'l{1
= dap
(da)AU
su P~UY~P;Jq uu:) (da)AU
UO!:}n
-q!J:JSW~wnloA lOSOl~U~q.L .p. L ~ln~!d U! ~Aln:) (da)SU ~Q1MoI~q U~JU~Q1Ot lunb~ S! pUB
(v'L)
(E-W:> ZwTf)
dap (da)SUoo}
= dap
(da) NU:a oo}.1C=S
U~q1 S1J~ JO EW:) J~d IOSOJ~g~q1 Jo S g~m ~:)gJlns {UtOt ~q.L
(£"U
(da) NU:a JL
(£_W:> wrf)
= (da)SU
U°f!!UY~P Aq u~q:l1ng odap (da)NU~a
1£
S! t!~m ~:)t!Jlns J!~q:I ~JO1~J~q1pUt! ~gUt!J ~Z!s S!q:I U! S~I:)!1IP.d dap (da)NU ~m ;}J~~ o~a 1£t!~m ~:)t!Jlns St!q w~q:ll° q:)t!~ pUt! 6da JQ1~um!P~ums ~q1 AI~Af!:)~jJ~ ~At!q ~gUt!J ~Z!S MOJJt!UAlft!W!S~1!UYU! S!q:I U! S~I:)!1IP.d~q:I IIV .s~J~qds st! S~I:)!1IP.d1ft! J~P!suo:) sn 1~1pUt!
da p + da OJda ~fjuw ~'l{7u~ SJ,~7~illV~p
fju~av'l{
J,~v JO Eill;)
J,~d S~l;)~7.tvd
Jo
VaJ,V ~;)vJJ,ns
~'l{7
= da p
(da)SU
s~ (da)SU u°!1nq!I!S!p ~~JU ~:>~Jlns Iosol~~ ~Q1~uy~p sn!~ .~Z!S ~I:>!!JUdO! !:>~S~l q!!M su°!1nq!I!S!p ~wnIoA puu ~~JU ~:>~Jlns ~I:>!!JUd ~q! uo pu~d~p S~!P~dOld Iosol~~ ~l~A~S
suopnqf.lJS!O SSUWPUg 'awnloA 'ua.lva;)upns
aqJ.
rl" L
'OSO~3V ::>nl3HdSOYi.LV3H.L dO SHll~HdO~d
tIt
THE SIZE DISTRIBUTION FUNCTION
415
The total aerosolvolume per cm3 of air, V, is
andis equalto the areabelow the nv(Dp) curve in Figure 7.4. If the particlesall havedepsity Pp (g cm-3) then the distribution of particle masswith respectto particle size, nM(Dp), is
)
Pp nv(Dp) ,1"66
=
Pp .106
)("6, D~nN(Dp) 7r
(,ug ,um-l cm-3)
(7.7)
where the factor 106is needed to convert the units of density Pp from g cm -:I to ILg ILm -:I, and to maintain the units for nM(Dp) as ILg ILm -I cm -3. Becauseparticle diameters in an aerosol population typically vary over several orders of magnitude, use of the distribution functions, nN(Dp), ns(Dp), nv(Dp), and nM(Dp), is often inconvenient. For example, all the structure of the number distribution depicted in Figure 7.4 occurs in the region from a few nanometers to 0.3 ILm diameter, a small part of the 0 to 10 ILm range of interest. To circumvent this scale problem the horizontal axis can be scaled in logarithmic intervals so that several orders of magnitude in Dp can be clearly seen (Figure 7.5). Plotting nN(Dp) on semilog axes gives, however, a somewhat dis-
a6uw
daU{
p+
daU{
07 daU{
az~s a'l{7 u~ .L~Vfo Ew;; .Lad sal;;~7.Lvd fo .Laqwnu
da ul P (da UV";U
SB (da UV~U UO!}:)un1 UO!}nq!j"JS!pJ~WnU ~q} ~uy~p ~J01~J~qJUB:) ~A\ 'P~}B:)!PU! AP!:)!ldX~ }OU S! pUB w1f { S! J~}~UJB!P~1:)!PBd "~:)u~J~1~J,, ~qJ ~J~qM '({Ida) UI Ul!~W AI11!~J~M 'da UI ~}!lM ~M U~qM 'snqj,'A}9UBnb 11!UO!SU~W!P B 10 wqJ!JBgoI ~qJ ~~ }OUUB:)~M 'AI11!UJJOd'uo!}nq!j"Js!p ~Z!S 10SOJ~B~qJ }u~s~Jd~J O} ABM }U~!U~AUO:)}SOW ~qJ U~}1° S! da 10 PB~}SU!da goT JO da u11° Suo!}:)un1 SB su09nq!j"Js!p 10SOJ~B~q} ~u!ss~JdX3 da SOl pUB da UI UO p3SBg suopnqI.lJsIO
;)q1 'f.1!~;)l UI 'wrf
£'rL
"(9' L ;)ln8!d) Ignb;) 1S0W~ ;)m S;)POWOM1 ;)q1 U! S;)I:>!lIP.dJo Sl;)qwnu ZO'O punom P;)l;)1U;):>;)POW l;)lIgWS ;)q1 U! ;)m S;)I:>!lIP.d;)q:}Jo %06 URq:}
;)lOW 1Rq:}1s;)88ns 01 smOOdR~' L ;)ln8!d ';)Idumx;) lod 'uO!1gl1U;):>uo:>l~wnu SPUOdS;)llO:> l;)8UOI OU ;)Aln:> ;)q:} MOI;)q R;)m ;)qj.
'uO!1nqp1S!p
IOSOl;)R;)q1 01
IOSOl;)R ;)q:} Jo ;)ln1:>!d P;)P01
'hl~A!1~dS~J '~WnlOA pUR '~:>RjJnS 'J~qwnu lOSOJ~RlR101~q1 01 puods;wo:> S~AJn:>~~J1:!1~q1 Mol~q SR~J1!~~
'SUO!1nq!J1S!p~WnlOA pUR ~:>RjJnS~q1 ~J1!UMOqS OSlV .da gOl SnSJ~AP~110ld pUR da
30l JO UO!1:>UnJR SRp~SS~JdX~ ~. L pUR V' L S~Jng!d U! SRUO!1nq!J1S!plOSOJ~R~WRS~q.L
9' L 31If1f>I,j
wT1 .Je~eWDla OO'O~
OO'~
O~'O
~O'O
10S0~3V Jnl3HdSO~V
3H.L dO S3I.L~3dO~d 91..
THE SIZE DISTRIBUTION FUNCTION
417
Theunits of n~ (In Dp) arecm-3 sinceInDp is dimensionless.The total numberconcentrationof particles N is
N =
{(X}
n~(In Dp) d In Dp
(7.8)
(cm-3)
J -(X}
The limits of integration in (7.8) are from -00 to 00 as the independent variable is In Dp. The surface area and volume distributions as functions of In Dp can be defined similarly
to thosewith respectto Dp,
n~(lnDp) = 11"D;nN(ln
Dp)
(,um2cm-3) (.um3cm-3)
(7.9) (7.10)
with
The aboveaerosoldistributionscan alsobe expressedas functionsof the base10 logarithm log Dp, defining nN(log Dp), ns(log Dp), and ny(log Dp). Note that nN, nN' and nN aredifferent mathematicalfunctions,and,for the samediameter Dp, they havedifferent arguments,namely Dp,ln Dp, and log Dp. The expressionsrelating thesefunctions will be derivedin the next section. Using the notation dNjdSjdV
= the differential
number/surface/volume of particles
in the sizerange Dp to Dp + dDp we have dN
= nN(Dp)
dDp
= n~(ln
dS
= ns(Dp)
dDp
= ns(lnDp)
dV
= ny(Dp) dDp = nt(ln
Dp) d In Dp d InDp
Dp) d In Dp
= n~(log
= ns(log
= ny(log
Dp) d log Dp
(7.13)
Dp) d log Dp
(7.14)
Dp) d log Dp
(7.15)
(LI'U
Aq da Oy O! !:);}dsal q!!M asoq:l O! pa!Ryal am da O! !:)adsal q!!M soo!!nq!IJs!p aq.L
'AIIP.I!W!S
s~wo~~q(LI"U 'da£O£"z/dap da goTP (da goo~u (da
gov~u
pUU(da)NU
= £O£"z/da uI P = da
~OI P ~~U!S
= dap (da)Nu
JO ~SU~mIn~!~d
~q:I U! snq.L °uo!~~unJ u09nq~
-s!p ~Z!s ~q~Jo U09d!l~s~p ~q~ JoJ p~sn uo!ss~Jdx~ ~q~Jo ss~Ipmg~J ~ums ~q:I S! dap + da O~ da ~gUUJ ~Z!S JUW!S~~!uyU! UU U! NP S~I~!1Jud Jo J~qwnu ~q.L "(£IoU uo p~suq p~A!l~P ~ uu~ UO!~UI~Ju q~ns oda goI ',(us '~IqU!JtJA ~u~pu~d~pu! J~q:louu uo p~suq ~uo o~ 'da ',(us '~Iqu!JtJA ~u~PU~~PU! ~uo uo p~suq uo!~nq~s!p ~Z!S u ~~UI~Jo~ AmSS~~~Uu~~Jo S! ~I
Sa(q8!.l8A JuapuadapuI Jua.laJj!(l uo pas8g suonnq!.lJS!(l aZ!S ~Un8(aH
da ~OI P = (da 8oV~u AP
(91'0
~~ SP
da OJ P
= (da
.,.r L
Ou1U
AP
= (da gov~u
da OJ P
= (da uO~U
SP
da ~OIP = (da goo~u NP
da OJ P
= (da
U{)";U
NP ~Jp,suo!!nq!J!S!p ~Z!S Sn°!lBA ~q! 'UO!!t!!OU !t!q! uo P~st!H 10SO'M3YJrnHHdSONV Hill dO SHll'MHdO'Md SIt
THE SIZE DISTRIBUTION FUNCTION
419
This procedurecanbe generalizedto relateany two sizedistributionfunctions n(u) and n(v), whereboth u and v arerelatedto Dp. The generalizationof (7.17) is n(u) du = n(v) dv
(7.24)
and dividing both sides by dDp
(dvfdDp) = n(v)(d~)
n(u)
7.1.5
(7.25)
Properties of Size Distributions
It is often convenient to summarize the features of an aerosol distribution using one or two of its properties (mean particle size, spread of distribution) than by using the full function n N (D p) . Growth of particles corresponds to a shifting of parts of the distribution to larger sizes or simply an increase of the mean particle size. These properties are called the moments of the distribution, and the two most often used are the mean and the variance. Let us assume that we have a discrete distribution consisting of M groups of particles, with diameters Dk and number concentrations Nk, k = 1,2, ..., M. The number concentration of aerosols is therefore M
N = L Nk k=l
(7.26)
The meanparticle diameter,Dp, of the populationis M
Dp = ~~1 =;--.--NkDk = ~ L N
NkDk
k=1
(7.27)
The variance,0'2, a measureof the spreadof the distribution aroundthe meandiameter Dp, is definedby 1
M
NL -D Pr k=l Nk(Dk
(7.28)
A value of a2 equalto zero would meanthat every one of the particlesin the distribution haspreciselydiameterDp. An increasinga2 indicatesthat the spreadof the distribution aroundthe meandiameterDp is increasing. We will usually deal with aerosoldistributionsin continuousform. Given the number distribution nN(Dp), (7.27) and (7.28) can be written in continuousform to define the
-!J1S!P l~qwnu
~ql)O
WnW!x1!w
UO!lnq l1!;)O'l
OPOWa
0=
~l;)!1J1!d ~q1 )l1!q-~uo
)l1!q-~uo
q;)!qM
MOl~
(
dap
apoWa'la~aWU!papow
(da)NUp,
s~!I ~wn -loA
~AOq1! PU1! S~!I ~wnloA
q;)!qM
~l;)!1J1!d ~q1 l~l~W1!!G
dap (da)AU
001
= dap(da)AU
f
'"AaO!
WAa 'l~1~Wl!!P
Utl!paW ~wnIoA
S~!I 1!~J1! ~;)1!) -lns
~l;)!1J1!d ~q1 )l1!q-~uo
q;)!qM
PU1! S~!I 1!~J1! ~;)t!Jlns )l1!q-;}UO
q;)!qM
~AOq1!
~l;)!1J1!d ;}q1
Mol~q
UO!l1!lndod
l~l~W1!!G
d(}p (da)Su
t
"sa '1~1~W1J!P U1J!P~W1J~lP.~;)1JJlns
Aa
~SOqM
;}l;)!1J1!d ;}ql )0 l;}l;}W1!!G ;}ql)O
da(da)t\uooOf= 1atN
'l~1~WtJ!P
U1!~W ~wnloA
1!;}J1!;};)1!Jlns
;}l;)!1J1!d ;}ql )0 l;}l~W1!!G ;}q1)0
001
= dap (da)Su Uls,.,°j
;}q1 )0 ~wn
-lOA U1!;}W ~q1 Sl1!nb;} ;}WnlOA
UOp1!lndod
U1!;}W ;}ql Sl1!nb~ 1!~J1!;};)1!Jlns ;}SOqM
UOp1!lndod
;}WnlOA
~~1!l~AV
dap (da)SU dap(da)AU
ooOj
= ~allN
Orfl. ooJ
=
A -
I
UOp1!lndod ;}q1)0
1!~lR ;};)1!Jlns ;}~1!l~AV
dap
(da)SU
OJ!i.
=
00
S -
I
Sa 'l~1~W\J!P u\J~w \J~ll! ~;)\JJlns
.t1'~wnIOA
£ 'R~J1! ~:)RJlnS
'U11~W
UR~W
;}!I S;}l;)!1J1!d ~ql )l1!q -~Uo q;)JqM
;}AOq1! pUR ;}!I S;}l;)!}J1!d
~q1 )l1!q-;}UO UOp1!lndod
q;)!qM
MOl;}q l;}l;}WR!G
~ql)Ol;}l;}WR!P
~~Rl;}AV
Nf=
dap (da)NU -aO!
dap (da) Nuda 000!= dQ
~Wa dQ
'l~1~W1!!P
'l~1~W1!!P
U1!!P~W
U1!~W l~wnN
uopoqJ.I~SJ
t" L 3'1HV.L
'UO!:lnq!J:JS!p ;)Z!S IOSOJ;)B Ut!
gU!Z!l;):I:>BJBq:> U! p;)Sn U;):I]O;)JB :lBq:!S;)n{BA UB;)W J;)q:lo JO J;)qwnu B S:lu;)s;)JdZ'L ;)IqB.L
dap (da)NU
(Of.V
(da - da)
Z -
Of~ 001 I
Aq UO!1nq!l1S!p ~q1 JO ~:)Ut!!lt?A ~q1 put!
dap (da)NUda
(6ZOL)
or !::!. 0011
f.q u09nq~s1P ~qt Jo J~t~urn1P~I~1tJ1!d ~~W 'OSO~3V :)nl3HdSO~V
Hill dO SHll~HdO~d
OZt'
THE SIZE DISTRIBUTION FUNCTION
7.1.6
421
The Log-Normal Distribution
A measured aerosol size distribution can be reported as a table of the distribution values for dozens of diameters. For many applications carrying around hundreds or thousands of aerosol distribution values is awkward. In these cases it is often convenient to use a relatively simple mathematical function to describe the atmospheric aerosol distribution. These functions are semiempirical in nature and have been chosen because they match well observed shapes of ambient distributions (Hinds, 1982). Of tbe various mathematical functions that have been proposed, the log-normal distribution (Aitchison and Brown, 1957) often provides a good fit and is regularly used in atmospheric applications. A series of other distributions are discussed in the next section. The normal distribution for a quantity u defined from -00 < u < 00 is given by (u - U)2
(7.31) 2a2
u
whereu is the meanof the distribution, a; is the variance,and N=
j
OO
n(u) du
(7.32)
-00
The normal distribution has the characteristic bell shape, with a maximum at Ii". The standard deviation, au, quantifies the width of the distribution, and 68% of the area below the curve is in the range Ii"::!::au. A quantity u is log-normally distributed if its logarithm is normally distributed. Either the natural (In u) or the base 10 logarithm (log u) can be used, but since the former is more common, we will express our results in terms of In Dp. An aerosol population is therefore log-normally distributed if u = In Dp satisfies (7.31), or
where N is the total aerosolnumberconcentration,and Dpg and ag are for the time being the two parametersof the distribution. Shortly we will discussthe physicalsignificanceof theseparameters.The distribution nN(Dp) is often usedinsteadof nN(ln Dp)' Combining (7.21)with (7.33)
A log-normal aerosol distribution with Dpg
7.7.
= 0.8,urn
= 1.5 is depictedin Figure
and O"g
uptll-" 'DUI Y'/('dQUI-~aUJ)
(L£' L)
o~qO;}A\ pUt/3D°I if/(3dQ
(9£"L)
dap
[
8DzOI Z
°I
-
] NY
00
= (~a)Nd
da OJ)= U ~;}I;}A\
- ] dx;)-da
(8da °I - da oJ) z -
IgJg;}~O!S!~ ;}~gn~A;} 0.1
Y 8D °I Z/I(llZ)
I d .a
~JOJ~J~Q1 pUt? (11£'0 Aq U~A!g s! (da)NU
N
d = (.a)Nd
'IgWJou-goI S! uo!tnq!j:Js!p IOSOJ~g~Q1JI
'S! 1eq1':a 01 Ienb~ JO ueq1 J~IIeUJs SJ~1~UJe!pq1!M UO!1eIndod ~q1 U! S~I:)!1 -xed}o UO!1eIJU~:)uo:)~q1 se <:a) Nd UO!1nq!J1S!p~Z!S ~A!1eInUJn:) ~q1 ~uy~p sn 1~I os op oj. q SJ~1~UIP.xedOM1 ~q1 }O ~:)ue:)y!ug!S {t!:)!s,(qd ~q1 ~u!UJex~ 01 qS!M MOU ~M. .8.0 pUt! 8d
°;JAJn:J (da
gOj)~U ;Jq1MOI~ 1!;JJ1! ;Jq1S! J;Jqwnu IOSOJ;J1! ;Jq.L °;JIq1!!J1!A1U;JpU;}d;JpU!1U;J
-J;J.Y!P1! ;JSnA;Jq1;JSn1!:J;Jq J;Jq10q:J1!;JWOJJ J;J'y!P A;Jq1'uo!11!Indod IOSOJ;J1! ;JW1!S;Jq1;Jq!J:JS;JpSuO!1:JunJ ;J;JJq1II1! J! U;JA3 oda gOI SnSJ;JA~o[ -JOu-goI 1! JoJ (da
Uj)t.;U PU1! (da
=
8D pUt! wrl
goO = 8da U°!1nq!J1S!p IOSOJ;J1! p;J1nq!J:jS!p AII1!W
gOj)~U '(da)NU
w1f
a~
I
'SUO!1:JUnJUO!1nq!J1S!p IOSOJ;J¥
L"L 3HflDL!I
J8~8WD!a
~
,."...~
~'O
'.:""7 \
~0'0
Ia z
\
~
s
NU a
fu
\.~
/
C' ~ "1
/
aas
~ rn ('+ "1
/
C'
~ ('+
\
aaa~
NU 0
0 =-
"%j ~ =~ ('+ 0 ~
OO~l 10SO~3V ;)nl3HdSO~V
Hffi dO S3ll~3dO~d
U..
~
THE SIZE DISTRIBUTION FUNCTION
423
The error function erf z is definedas erfz anderf(O) = O.erf( 00) = 1. If we divide the integralin (7.37)into onefrom -00 to 0 and thesecondfrom 0 to (In D; - In D pg) 1.J2 In (1g. thenthe first integralis seento be equal to In 12 and the second to (In 12)erf[(ln D; -In Dpg)/.J2 In (1g].Thus for the lognormaldistribution
For Dp
Dpg.
since erf(O) = 0 N F(Dpg) = "2
and we seethat Dpg = Dmedis the median diametel; that is, the diameter for which exactly one-half of the particles are smaller and one-half are larger. To understand the role of ug let us consider the diameter Dp17for which Ug = Dp17 /Dpg. At that diameter, using (7.39),
1
( 1
1
F(Dp,,) = N 2"+ 2"erf "J2) = O.841N Thus ag is the ratio of the diameterbelow which 84.1% of the particleslie to the median diameterand is termedthe geometricstandarddeviation.A monodisperseaerosolpopulation has ag = I. For any distribution, 67% of all particleslie in the rangefrom Dpg/ag to Dpgagand 95% of all particleslie in the rangefrom Dpg/2ag to 2Dpgag. Let us calculatethe meandiameterDp of a log-normally distributedaerosol.By definition, the meandiameteris found from Dp
~ rooDpnN(Dp) N Jo
(7.42)
dDp
which we wish to evaluatein the caseof nN(Dp) given by (7.34).Therefore ( exp
(In Dp -In
-Dpg) 2
-
2 In2 a~
dDn
After evaluating the integral one finds that
Dp = Dpgexp We seethat the meandiameterof a log-normaldistribution dependson both Dpg and D'g.
'AlaA!1:>~SaJ'~. [ PU1!'l
= 3D PU1! wrf
[ JO Ja1aW1!!p U1!aW aA1!q SUO!1nq!J1S!paq.L 'J~
-1!d A1!I!q1!qOJd-gOI UO pa110ld SUO!1nq!J1S!pJaqwnu 10SOJa1!I1!UJJou-gol aA!11!lnwnJ WTf O~
S'L 3Hf1DI.!I
'J9J9WD!O ~
0
e Ot SpUOdS~llO:JU0ge!A~p pmpuets news V '1~q:l0 q:Je~ Ot I~nemd ~m s~teU!p100:J At!l!qe -q01d-gOI U! P~ttOld U~qM UO!te!A~p pmput!}s ~ums ~q:I qt!M SUO!tnq!J:js!p [eUllOU-gO'l 'UO!tn -q!J:jS!P ~qt JO UO!te!A~p pmpuets :J!J:j~wo~g ~q:I ot p~tel~l ~lOJ~l~q:I S! ~U!I ~qt JO ~dOIS ~ql. .3Dda da 10 3D UI+ daUI daUI 10J Sln:J:JOpg'O (da)Nd te tu!od ~ql. '~19u~:J -ladqtOt; ~qt S~SSOl:JNd 10 tOld ~U!I tqg!t!l}S ~q:I ~l~qM da Jo ~n[eA ~qt S! uo!tnq!J:js!p ~qtJo 'ue!P~w 10 'ue~w -;!lt~wo~g ~qt ~lOJ~l~ql. ,3da = da U~qM Sln:J:)O t;'O = (da)Nd
=
=
=
te tu!od ~ql. '(g' L ~lng!d) ~U!I tqg!el}s e S! uo!tnq!J:js!p [eUllOU-gOI e Jo uo!t:JunJ u09nq!J:js!iJ ~A!telnwn:J ~qt sqde1g ~s~qt uI 's!xe At!l!qeq01d e Jo ~sn ~qt MOne osle Sum1g01d s:J!qde1g l~tndwo:J le1~A~S 'spu~ ~qt m~u ~le:Js ~q:I spuedx~ PUg (tu!od %Ot;) ue!p~w ~q:I m~u ~le:Js ~q:I s~ss~ldwo:J gU![e:Js S!ql. .uo!t:JunJ 10ll~ ~q:I Ot gU!p10:J:Jep~le:Js S! s!xe ,( ~q:I PUg :J!wqt!l -egol S! s!xe x ~qt swe1ge!p ~s~q:I uI 'l~ded qde1g At!l!qeq01d-gol le!:J~ds uo l~t~We!p ~1:J!t -led Jo wqt!lt!gol
~q:I tsu!t!ge P~ttOld ~q ue:J (da)N
~
UO!t:Je1JuO!tnq!ltS!P ~A!telnwn:J ~ql.
3D uI if
(9v"U
8da OJ- da OJ SU!B1qo ~UO
(~N
(~v' L)
-ndod
= (da)N4
'UO!1nq!IlS!p ~A!111Inwn;) P~Z!{nWJou IOSO1~11p~1nq!l1S!p ,(I{nWJOU-~OI 1110j (da)Nd
~q:I ~U!uY~a .(6£. L) ,(q U~A!~ S! UO!111I uO!1;)unj u09nq!Ils!p ~A!111Inwn;) ~q.L
uopnql.lfsl(l
I8w.10N-SO'l aqf SUPfOId LorL
10S0~3V JmtlHdSO~V
311i dO S3ll~3dO~d
I'll'
THE SIZE DISTRIBUTION FUNCTION
425
narrowdistribution and to a steepline in the log-probability graph (Figure 7.8). The geo~etric standarddeviation can be calculatedas the ratio of the diameter Dp+a for which FN(Dp+a)
= 0.84 to the mean diameter
~
ag =
7.1.8
(7.47)
15"
Properties of the Log-Normal Distrjbution
We have discussed the properties of the log-normal distribution for the number concentration. The next step is examination of the surface and volume distributions corresponding to a log-normal number distribution given by (7.34). Since ns(Dp) = 1TD;nN(Dp) and ny(Dp) = (1T/6)D~nN(Dp). let us determine the forms of ns(Dp) and ny(Dp) when n(Dp) is log-normal. From (7.34) one gets (In Dp -In
2
Dpg)
"2i~ By letting D; = exp(2 In Dp), expandingthe exponential,and completingthe squarein theexponent,(7.48)becomes
2 2 [In Dp - (In Dpg + 2 In Ug)]
x exp -
2 In2ug
Thus we see that if the number distribution nN(Dp) is log-normal, the surface distribution ns(Dp) is also log-normal with the same geometric standard deviation C1g as the parent distribution and with the surface median diameter given by
-
-
2
In Dpgs= In Dpg + 2 In Ug
(7.50)
The abovecalculationscan be repeatedfor the volume distribution and one can show that
exp( -
(In Dp -In
2 Dpg)
or by letting D~ = exp(3 In Dp), expandingthe exponential,andcompletingthe squarein theexponent,(7.51) becomes
( x
exp
[lnDp
-
(lnDpg
+
-
2 In2ag
3 In2ag)f
(7.51a)
MeT-J~MOd £- gu!puods~JJo:) ~q} '}OTd uo!}nq~s!p ~WnTOA J~}~We!p-gO[ e uO .UO!}mU~S -~Jd~J q:)ns I.q }SO[ I.[m~[:) ~m suo!}nq~s!p ~s~q1 Jo S~Jme~J }ueuodw! 'J~A~MOH 'UO!}:)unJ Me[-J~MOd £-
e I.q P~}u~s~Jd~J ~q Ut!:) suoflnq~s!p
-S!P J~qwnu ~q} Jo }SOW 'uo!}ew!xoJdde
[OSOJ~e[e}u~u!}Uo:) ~q} JoJ suo!}nq!J}
}SJY e O} '}eq1 p~sodoJd (T 66 T) :)eesI pUB q:)}!e~'l
= (da
(v~.L)
gov~u
'(0 I' L) ~u!sn p~:lRIn:>IT1:> ~q UR:>uo!:lnqp:as!p ~UInIoA ~u!puods~JJo:> ~q~ '(6' L ~ln~!d) (086 I 'U~I)I pUt! l~q:>Rddrud) suo!:lnq!l:ls!p Iosol~R :lU~!qUIR lOJ P~:ls~~~ns u~~q ~ARq ~ 0:1'l wall XJJo s~nIT1A'SlOJJ~ :lUt!:>y!ug!S ~:>npoJ:tu! ARUI S~Z!Sl~gmI lO l~IIT1UIS0:1UO!:lRIodRJ:tx~pUR ~~URl ~Z!S P~:I!UI!I R l~AO AIuo ~:lRln:>:>R~m suo!:lnqp:as!p p~A!l~P ~q~ '(w 11 1'0 < da lOJ AIIT1 -nsn) S~gUt!l ~Z!S :>y!:>~dslOJ AIuO pUt! UO!:lnR:>q:I!M p~sn ~q PInoqs uo!:lnqp:as!p MRI-l~Mod ~q:I os ~l~qdsOW:lR ~q:l U! ~ru:a AIIRl~u~~ :IOU S! S!q~ '~Z!S ~I:>!:amd gU!SR~l:>U! q:l!M AIIR:> -!UO:lOUOUIS~SR~l:>~pUO!:lRJ:tU~:>UO:> l~qwnu Iosol~R ~q:l :lRq:ls~wnSSR uo!:I:>unJ uo!:lnqp:as!p da lOJ pUt! XJ- ~OIS q:I!M ~U!I :lq~!RJ:tSR U! s:lIns~l
S!q~ "(6' L ~ln~!d) .J S~:lRU!PlOO:> goI-~oI
= ~u 'w11I =
uo uo!:lnqp:as!p
MRI-l~Mod
.,(dO)
(£~.L)
~q:I Jo ~U!:I:lOId .S:lUR:lSUO:>~m XJ pUR.J
~l~qM
= (da gov~u
oJ
(086 I ':1:1:)1)1pUU l:)q:)uddrud) :):)U:)!:)S :)!l:)qdsOW:lU U! p:)sn U:):)q U:):lJO suq UO!1nq!l:lS!P ':)~Unf 10 'MUI l:)MOd :)q.L .SUO!:lnq!J:IS!p IOS01:)U :)!l:)qdsow:lu JO UO!:ld!l:)s:)p :)q:l10J P:)SOd01d U:):)q :)AUq SUO!:I:)unJ IU:)!:lUW:)q:luw
l:)q:lO
JO S:)!l:)S
\f
uo!Jnq!JJS!U MU]-.laMOJ a'l.!
suopnq!.lJS!Oloso.laY.laqJO
6.{" L
'AI~A!1:)~dS~J'wrf 'lop puu wrf 9°'l AI~1UW!xOJddu ~m SJ~1~WU!PUU!p~W ~wnIoA puu u~m ~:)uJlns ~U!1InS~J~q1 'O"l = 8D pUU wrfO'J
= 8da
41!M soL ~Jn~!d U! UMOqSuO!1nq!J1s!p~41 JOd '(UO!1U!A~Ppmp
-UU1S~wus) J~41° q;u~ 01 I~IJUmd S~U!I 1q~!UJ1SU! 1Ins~J osJU PInoM J~dud A1!I!qUqOJd-~OI uo UO!1nq!J1S!pIOSOJ~UIUWJOu-~OI U }O SUO!1nq!J1S!p~wnIoA puu ~:)uJlns ~q1 ~U!110Id °U09U1U~S~Jd~J IU:)!1UW~41UWS!q1}0 S~~mUUApU1U~J~~41}0 ~Uo S! UO!1nq!J1S!pIUWJOu-~oI AUUJO} SUO!1nq!J1S!p~wnIoA puu '~:)uJlns 'J~WnU ~41 JO} UO!1U!A~Ppmpuu1s 1UmSUO:)~q.L
8.0 OJ £ + 8da OJ
('l~' U
~
-
= A8da-
OJ
Aq U~A!g l~!~UIR!P UR!P~UI~UIn{OA ~q! q!!M pUR UO!!nq!l!S!P !u~md ~q! SR 8.0 UO!!R!A~P pmpUR!S :)!l:}~UIO~g ~ums ~q! q!!M {RUllOU-gO{ OS{RS! (da)AU UO!!nq!l!SW ~UIn{OA ~q! '{RUllOU-gO{ S! (da)NU
UO!!nq!l:}S!p l~qUInu
iOSOll3V JmaHdSO~V
~q! j! ~lOj~l~qJ.
Hill dO S3ll1l3dOlld
9,..
THE SIZE DISTRIBUTION FUNCfION
427
1 It) I
E U ~
10.2
Q.
Q
C) .p. '-"
10
o~ c:
10.6
10.80.1
1.0 Diameter.
FIGURE 7.9 Power-lawdistributionsfor C
10.0 ~
= 0.001,anddifferent valuesof a
1000.0
106
c = 91.658 a = 3.746 10' '" I
c=
91.658 a = 3.746
,
/"
',/
,,
100.0
Q. ~ Q;
10Z
E u
~
01 2-
0 CO
10.0
11
~ ~ "0
3c.. () 3
\~ 4 1.0
I c..
10
0.1
10.6
.
I I I "",1
0.1
'"
"".!
1.0 Diameter.
FIGURE
t:J
~
'\
10
..,
7.10
I I I I ",,1
1",,1
100.0
10.0
"
I '" ,,1
0.1
IJtT1
volume distributions
pears to match the number distribution,
I ",,1
1.0
10.0
Diameter.
IJtT1
Fitting of an urban aerosol number distribution
comparison of the corresponding
'"
(right).
I'
with a power-law
I I "i11 100.0
distribution
Even if the power-law
it fails to reproduce the volume distribution.
(left) and
distribution
ap-
sla}aW1!J1!d aq})o
SUO!}1!U!qWOJsn°!J1!A lO) suo!}nq!l}s!p
Iosola1! 1!WW1!g pay!pow
OJPU1! '8 'q '\I WL
DflDI.!I
w11 .J9~9WD!a £
~
~
0 0
t = q
'\ z
:J
~ -a "'?~ o~
£ = q
,
~ 3
.!.
~ = q
= .?
() 3
Z = 8 OOL = ~
I '"
Ol 0
\ l l
::I
SOl = 8
~
:2:
CJ
;(
~
o~
\
~ 3
\z ~'8-
= .? = q
-
C) 3
OG
S'~ = 8
OO~ = 'V - - , ,
z
n
'
::J
= .1',
~
'C3 ~ ~
o~
=
~ 3
l = 8 £ = q ~ = V
'-"
£ =
.?
I
C)
3
o~
I (H
.suo!~nq!J:IS!p ~wnIoA p~ ~:)eJlns ~q~Jo sI~poW ~~enb~peu! ~Je A~q~ ~nq UO!1nq!l~S!p l~q -wnu Iosol~e :)!l~qdsow~e ~q~Jo s:jled o~ s~y ~Iqeuose~ ~P!AOld ue:) suo!ss~ldx~ /t\eI-l~/t\°d .~ln~:)nJts ~~:)y!ug!S
~Aeq ~eq"! SUO!~nq!J:IS!pIosol~e ~u~!qwe Jo uo!~d!l:)s~p ~q~ lOJ ~~enb
-;)peu! u~~Jo S! ~! ~nq 'A~!:)!Idw!s S! uof!nq!J:Is!p /t\eI-l~/t\od
~q"! Jo ~ge~ueApe U!eW ~q.L
.p~P!OAe ~ PInoqs (s~~el uo!~esu~puo:) 'S~!:IJ~dOld {e:)f!do '.g.~) l~~~We!p ~q~Jo sl~/t\od uo puad~p ~eq"!S~!:lJadold Iosol~e Jo uo!~eIn:)Ie:) ~q"!lOJ uof!nq -!J:IS!P/t\eI-l~/t\od p~~~y e Jo ~sn ~lOJ~l~q.L losol~e ~SJeO:)~q"!Jo ~wnIoA ~q"! S~:)!P~ldJ~pun f.Isno!l~S PUg S~I:)!:jled Uol:)!wqns ~q~ Jo ~wnIoA ~q"! S~:)!P~ldJ~AOAIssolg 1! '(01. L ~lng!d) uo!~nq!J:Is!p ~wnIoA ~q"! Jo uo!~eIn:)Ie:) ~q"! lOJ p~~elg~~U! S! uo!~nq!J:Is!p /t\eI-l~/t\od ~q~ u~q/t\ 'l~A~/t\OH .uo!~ew!xoldde ~Iqeuose~l e ~P!AOld o~ sJe~de ~! p~ e~ep uo!~nq!J:Is!p ~Z!S Iosol~e ~qln o~ p~~~y S! uo!~nq!J:Is!p /t\eI-l~/t\od V .01. L ~lng!d U! p~~:)!d~p S! w~Iqold S!q.L .~qg!eJ1sse/t\ suo!~nq!J:Is!p ~wnIoA p~lnse~w ~q"!Jo ~uou ~~A '~U!I ~qg!1JJ1S e ~snr S! uo!~:)unJ
'OSOll3V :>11I3HdSOmV am dO S3I.L1I3dOlld St"
AMBIENT AEROSOL SIZE DISTRIBUTIONS 429
The Modified Gamma Distribution The modified gammadistribution (Deirrnendjian, 1969) has been proposedas another function that approximatesambient aerosol size distributions, nN(Dp)
= AD;
exp(-BD~)
(7.55)
whereA, b, B, and c are all positive parameters.This distribution form providessignificant flexibility (Figure 7.11). but its use is often cumbersome.The total aerosolnumber concentrationN is equalto
N=
AB-(b+l)/c
r(~
c
wherer is the gammafunction. The maximumof the distribution occursat diameter Dm. )
Dm=
I/c
!!.Bc
7.2
AMBIENT
AEROSOL SIZE DISTRIBUTIONS
Atmosphericaerosolsizedistributionsareoften describedasthe sumof n log-normaldistributions, ( exp
(log Dp -log -
-Dpj) 2
2 1 2 og aj
where Ni is the number concentration, Dpi is the mean diameter, and O"iis the standard deviation of the jib log-normal mode. In this case 3n parameters are necessary for the description of the full aerosol distribution. Characteristics of model aerosol distributions are presentedin Table 7.3 following the suggestions of Jaenicke (1993).
7.2.1 Urban Aerosols Urban aerosols are mixtures of primary particulate emissions from industries, transportation, power generation, and natural sources and secondary material formed by gas-to-particle conversion mechanisms. The number distribution is dominated by particles smaller than 0.1 ILm, while most of the surface area is in the 0.1 to 0.5 ILm size range. On the contrary, the aerosol mass distribution has usually two distinct modes, one in the submicron regime (referred to as the accumulation mode) and the other in the coarse particle regime (Figure 7.12). The aerosol size distribution is quite variable in an urban area. Extremely high concentrations of fine particles (less than 0.1 ILm in diameter) are found close to sources (e.g., highways), but their concentration decreasesrapidly with distance from the source (Figure
Off'
~
~
~ 8~ ==
AMBIENT AEROSOLSIZE DISTRIBUTIONS 431
0.01
0.10 1.00 10.00 Diameter, IJIn FIGURE 7.12 Typical urbanaerosolnumber,surface,and volumedistributions.
7.13). Figure 7.13 describes the number of particles as a function of their diameter (both in logarithmic scales) for a variety of environments. There are roughly an order of magnitude more particles close to the freeway compared to the average urban concentration. Figure 7.14 illustrates the corresponding volume distributions. These distributions show that most of the particles in an urban area are smaller than 0.1 JLm,while most of the particle mass is found in particles with diameters larger than 0.1 JLm. An important feature of atmospheric aerosol size distributions is their multimodal character. Mass distributions, measured in urban centers, are characterized by three modes with a minimum between 1.0 and 3 JLm. The size range of particles larger than the minimum (supermicron particles) is termed "coarse," while the smaller particles are called "fine." The three modes present in the mass distribution of Figure 7.14 correspond to the nuclei mode (particles below 0.1 JLm),accumulation mode (0.1 < Dp <' 1 JLm),and coarse mode (Dp > 1 JLm) (Whitby and Sverdrup, 1980). Thus the fine particles include both accumulation and nuclei modes. The boundaries between these sections are not precise (recall in Chapter 2 that we divided fine and coarse modes at 2.5 JLmdiameter). Note that our definition of modes has been based on the mass (or volume distribution). The location of modes may be different if they are based on the number or surface distribution.
z£~ .SUO!1!P -UOJUt!q1n~~t!l~At!10Jput! (At!M~~lJ)~:)lnOSt! 011X~Usuopnq!l1S!p ~wnloA IOS01~V ~r L 3Hfl9I.!I
wTi ,da "l°l
01
'l~1~Wg!a ~I~!~d 1
1_01
-.01
I{'II
~ ~
. . .
OZ . . . Of
~ 0 (YQ -.,J:::J
':-' ~ -1
Ot
3"" (") 3,
""
IO~ ABM~~Jd
.
-In lOj 'ul1qln ~~l1l~Al1l0j
I
+ UBqJO..J I
I
109
'SUOmpUO:Jpunoli1)[:Jl1q lOj PUI1'pUnOl~)[:Jl1q p~:Ju~nIJU! Ul1q '(AI1M~~lj) ~:JlnOS 11011X~U suopnq!l1S!p l~qwnu Iosol~V £r L nfl~I.!I
wli ,da '1~1~~!a ~I~!:)lRd zOI
01
1
1_O1
z_OI
~ ~
0
OCI .~~ '::-" (") 8,
I..-
AMBIENT AEROSOLSIZE DISTRIBUllONS
433
The mass concentrations of the accumulation and coarse particle modes are comparable for most urban areas. The nuclei mode, with the exception of areas close to combustion sources, contains negligible volume (Figures 7.12 and 7.14). Most of the aerosol surface area is in particles of diameters 0.1 to 0.5 jJ.m in the accumulation mode (Figure 7.12). Becauseof this availability of area, transfer of material from the gas phase during gas-toparticle conversion occurs preferentially on them. The sources and chemical compositions of the fine and coarse particles are different. Coarse particles are generated by mechanical processesand consist of soil dust, seasalt, fly ash, tire wear particles, and so on. Nuclei and accumulation mode particles contain primary particles from combustion sources and secondary aerosol material (sulfate, nitrate, ammonium, secondary organics) formed by chemical reactions resulting in gas-to-particle conversion (see Chapters 9 and 13). Th~ main mechanisms of transfer of particles from the nuclei to accumulation mode is coagulation (Chapter 12) and growth by condensation of vapors formed by chemical reactions (Chapter II) onto existing particles. Coagulation among accumulation mode particles is a slow process and does not transfer particles to the coarse mode. Processing of accumulation and coarse mode aerosols by clouds (Chapter 15) can also modify the concentration and composition of these modes. Aqueous-phase chemical reactions take place in cloud and fog droplets, and in aerosol particles at relative humidities approaching 100%. These reactions can lead to production of sulfate (Chapter 6) and after evaporation of water, a larger aerosol particle is left in the atmosphere. This transformation can lead to the formation of two modes in the 0.1 to I jJ.m size range, with the smaller one called the condensation mode and the larger one the droplet mode (Hering and Friedlander, 1982; John et al., 1990; Meng and Seinfeld, 1994). Terms often used to describe the aerosol mass concentration include total suspended particulate matter (TSP) and PMx (particulate matter with diameter smaller than x jJ.m). TSP refers to the mass concentration of atmospheric particles smaller than 40 to 50 jJ.m, while PM2.s and PM 10are routinely monitored. For a description of the sampling issues and problems related to the measurement of TSP, PM2.s, and PM 10the reader is referred to the EPA Particulate Matter Criteria document (U.S. EPA, 1996). 7.2.2 Marine Aerosols In the absence of significant transport of continental aerosols, particles over the remote oceansare largely of marine origin (Savoie and Prospero, 1989). Marine atmospheric particle concentrations are normally in the range of 100 to 300 cm -3. Their size distribution is usually characterized by three modes (Figure 7.15): the nuclei (Dp < D.l JLm) the accumulation (D.l < Dp < D.6JLm), and the coarse (Dp > D.6JLm) (Fitzgerald, 1991). Typically, the coarse particle mode, comprising 95% of the total mass but only 5 to ID% of the particle number (Figure 7.16), results from the evaporation of sea spray produced by bursting bubbles or wind-induced wave breaking (Blanchard and Woodcock, 1957; Monahan et al., 1983). Typical sea-salt aerosol concentrations in the marine boundary layer (MBL) are around 5 to 3D cm-3 (Blanchard and Cipriano, 1987; O'Dowd and Smith, 1993). Figures 7.15 and 7.16 show number and volume aerosol distributions in clean maritime air measuredby several investigators (Meszaros and Vissy, 1974; Hoppel et al., 1989; Haaf andJaenicke,198D;De Leeuw, 1986) and a model marine aerosol size distribution. The dis-
-d:Jl 01 p:Jsn UO!1nq!l1S!p
j:Jpow
U puu suo!1nq!l1S!p
wTi O'OO~
.
:JwnjOA
'SUO!1!PUO;J :J~Ul:JAU 1U:JS:Jl jOSOl:JU :Ju!J1!w p:Jlnsu:JW
91" L DflDI.!I
J9J9WD!O
O'O~
O'~
~'O 0
Q.
~
Q:
Ol
0 tC """"' CJ "t)
v
Of
3 ... n 3 I
..
09 -Jt?q:)!qM) p~~ds PU!M St?q:)ns SUO!1!PUO:) {t?:)!gOIOJO~1~W pug UO!1t?:)°1gU!ldwt?s U! s~:)u~J~J -JW Jo 1lns~J ~q1 ~m SUO!1nq!l1S!p~Z!S ~s~q1 U! s~:)u~J~JJ!P~q1 q:)!qM 011U~1X~~q1 ~U!UJJ~1~P 011In:)YJ!p S! 1101- s w 'll St?Mp~~ds PU!M ~gt?J~At?~q1 U~qM SpO!l~d gU!lnp sug~:)O ut?!PUI put? :)!1Ut?pV q1nos ~q1 U! p~u!l!1qo t?J1:)~dsJo ~gt?J~At?Ut? S! (PL61) ASS!A put? soJYzs9W Jo UO!1nq!IlS!p ~q.L °AI~A!1:)~dS~J':)!1ut?pV qpoN put? {t?:)!doIJqns ~q1 U! 1- S w ~ ugq1 ss~1 Jo sp~~ds PU!M 1t?p~U!l!1qo ~J~M (9861) Mn~~l ~a put? (6861) It? 1~ l~ddoH Jo SuO!1nq!II
'SUOmpUOJ -d~J 01 p~sn UO!1nq!J:jS!p
I~poW
U pUB suopnq!J1S!P
wrl OO'~ ~
J~qwnu
IOSOJ~U ~U!JUW p~JnSU~W
~gUJ~AU 1U~S~J sr
L :!IHflDI.!I
...Ie~eWD!a O~'O
~O'O
0
,~
I
~,~,~~, y . ~ ....."
Q. ~ Q:
. OO~
0 (,C \
I 0 ..,
V
"-"
uol~nq!J~S!a19po~ (~l61)
.(ssl/\ PUD SOJpZSp~ (696 9)f°1U9Dr t) olD ~a PUD )addoH JDDH
(O96t)
I II"
, I I
"
I,I
I I I I
I
-
() 3
OOr
I ...
--B-
I
I"
, , -
10S01l3V JI1I3HdSOmV 3ill dO S3I.L1I3dOlld tft
AMBIENT AEROSOL SIZE DISTRIBUTIONS 435
fectsthe concentrationsof the largerparticles),or to uncertaintiesinherentin the different measurement methods. 7.2.3
Rural Continental Aerosols
Aerosols in rural areas are mainly of natural origin but with a moderate influence of anthropogenic sources (Hobbs et al., 1985). The number distribution is characterized by two modes at diameters about 0.02 and 0.08 .urn, respectively (Jaenicke, 1993), while the mass distribution is dominated by the coarse mode centered at around 7 .urn (Figure 7.17). The mass distribution of continental aerosol not influenced by local sources has a small accumulation mode and no nuclei mode. The PM 10concentration of rural aerosols is around 20 .ug m -3.
7.2.4RemoteContinental Aerosols Primaryparticles (e.g., dust, pollens, plant waxes)and secondaryoxidation productsare the main componentsof remote continental aerosol (Deepak and Gali, 1991).Aerosol number concentrations average around 2000 to 10,000 cm -3 and PM 10concentrations are
'sU°!1nqjJ1S!p ~wnloA pmJ ~:)tJJlns 'l~qwnu
wrl OO'O~
IOSO1~tJItJ1U~U!1UO:) ~10W~1 ItJ:)!dAj.
SrL
nnDI.!I
. J9J9WD!O
OO'~
O~'O
~O'O
0 ::J '<0
.
v 8
~ 3
c..
n 3 I c..
0
os
:, (1)0
~ 3 N
OO~
C) 3 I c..
OS~ OO~ 0
ooo~~ ::,
0
w
n
ooo~ 3 I c..
~lOUI ;)~R:)!PU! 1.[[R:)!dl.~ RII:)~S ~'l"0
pUR
[0.0
~qJ. 'su09Wuo:)
Jo
Sl;)~;)urn!P
~l;)qdsodoIl
:)!l;)qdsodoIl
;)[PP!Ul
UR;)UI O~ PUOdS;)llO:)
:)!l~qdsodoIlP!UI
-1JA;)[~-q~!q ~R ~no P~!ll1:I:) U~~ -~l SRq ~! ';)UIn[OA
~q~ ~AOq1J ;)l~qdsodoIll~ddn
~U!~:)~lJ~l
;)qJ. "(6[.L u09nq!Ils!p
S;)SSRUll!1! ~Uw!sqns
~Jn~!d)
(£66[
l;)qUInu
;)~
';))(:)!U~Rf) U! S~pOUI
U! 10 S;)~!S punoii.
~ARq S~U~UIalnSR;)UI ~SOW .UO!~U;)UR ~[~~![ 1.[;)A9R[;)l ;)~ JO UO!~:)1JlJ ~UR:)g!U~!S R s~!dn:):)o
~! q~noq~[y
pUR -P!UI ~~ U! punoJ S! [OSOl;)R :)!l~qdsodoIl
U09 P;)A!;):)
.spnO[:)
~;)lJ pUnOl~)(:)Rg
sloso.lay ;)!.Iaqdsodo.lj. aa.l~
S,' L
i81" L :)lng!d) (£661 ':)){:>!u:)Rf) wTf Z pUR '1"0 'ZO.O Sl:):I:)UlR!P:IRs:)pow :):)Jq:l Aq p:)z!l:):I:>Rmq:>:)q ARW uo!mq!J:jS!p l:)Qwnu 10SOl:)R:)qJ. "S:>!URglOpUR 'wn!UOWWR ':):lRJlnsJo AIu!RW :lS!SUO:> pUR SSRW01Wd :)q:IJo %08 0:1017:lu:)s:)ld:)ll:):I:)WR!P U! wTf ~.Z URq:ll:)I1RWS
s:)I:>!:lmd.(9661 'Yd3 .S"n) E-w gTf LI 0:1£ moll ~'ZWd pURE-W gTf ~Z 0:1~ moll AmA SR:)m :):lOW:)l U! SUOflRJlU:):>UO:> OIWd
s:):lR:lS P:):I!Ufl
IR:jU:)U!:jUo:> :)q:llod
"(17661 ':)){:>!U:)Rf
pUR!!gou:)smO)l ~£661 '"{R :I:) !!gou:)smO)l ~Z661 '.IR :I:) RAolnqsug) E-w gTf 01 punom '10S01l3V ;)IlI3HdSOmV
~
dO S3ll1l3dOlld
9ft
AMBIENT AEROSOLSIZE DISTRIBUTIONS 437
0.01
0.10 Diameter.
1.00 J.1tn
10.00
FIGURE 7.19 Typical free troposphericaerosolnumber,surface,and volume distributions.
particlesin the accumulationmoderelative to lower troposphericspectra,suggestingprecipitation scavengingand depositionof smaller and larger particles (Leaitch and Isaac, 1991). 7.2.6
Polar Aerosols
Polar aerosols, found close to the surface in the Arctic and Antarctica, reflect their aged character; their concentrations are very low. Collections of data from aerosol measurements in the Arctic have been presented by a number of investigators (Rahn, 1981; Shaw, 1985; Heintzenberg, 1989; Ottar, 1989). The number distribution appears practically monodisperse (Ito and I wai, 1981) with a mean diameter of approximately 0.15 J1.m;two more modes at 0.75 and 8 J1.m(Shaw, 1986; Jaenicke et aI., 1992) (Figure 7.20) dominate the mass distribution. During the winter and early spring (February to April) the Arctic aerosol has been found to be influenced significantly by anthropogenic sources, and the phenomenon is commonly referred to as Arctic Haze (Barrie, 1986). During this period the aerosol number concen-
AMBIENT AEROSOLSIZE DISTRIBUTIONS
0.01
0.10 Diameter.
1.00 ~
437
10.00
FIGURE 7.19 Typical free troposphericaerosolnumber,surface,and volume distributions.
particlesin the accumulationmoderelative to lower troposphericspectra,suggestingprecipitation scavengingand depositionof smaller and larger particles (Leaitch and Isaac, 1991). 7.2.6
Polar Aerosols
Polar aerosols, found close to the surface in the Arctic and Antarctica, reflect their aged character; their concentrations are very low. Collections of data from aerosol measurements in the Arctic have been presented by a number of investigators (Rahn, 1981; Shaw, 1985; Heintzenberg, 1989; attar, 1989). The number distribution appears practically monodisperse (Ito and Iwai, 1981) with a mean diameter of approximately 0.15 ,urn; two more modes at 0.75 and 8 ,urn (Shaw, 1986; Jaenicke et al., 1992) (Figure 7.20) dominate the mass distribution. During the winter and early spring (February to April) the Arctic aerosol has been found to be influenced significantly by anthropogenic sources, and the phenomenon is commonly referred to as Arctic Haze (Barrie. 1986). During this period the aerosol numher cnnc~n-
S! Inp;)tnUl {BtSnJ;) pun SI!OS JO UO!t!SOdUlO;);)gnJ;)An uy ,(ZZ' L ;)Jng!d) (£661 ';)){;)!ugnr) AI;)A!t;)~S;)J 'Ulrf 01 pun 'Ulrf ~O'O 'SS;)I JO Ulrf 10.0 Jo SJ;)t;)U!B!P tn S;)POUl gu!ddnl -J;)AO;);)Jqt t!q!qX;) ot SPU;)tuo!tnq!I!s!p J;)qUlnu StI 'At!:>OI;)APU!N\ ;)qt uo AIguOI}S SPU~;)P tnq 10sOJ;)n{BtU;)U!tUO;);)tOUl;)JJo tnqt Ot Jt!1!Ul!S S! uo!tnq!I!s!p ;)Z!S St! Jo ;)dnqs ;)~ "(9661 '.{B t;)!'l ~£861 'ztnq;)s pun np!;)UlIY ,p ~8L61 'ztnq;)s pun ;)){;)!u;)nr) sun;);)o sn q;)ns SUO!g;)J tu;);)nfpn J;)AOAlqnJ;)p!suO;) SPU;)tX;)Aunm;)n 'st.!;)S;)PJ;)AOtu;)s;)Jd ;)SJno;)Jo '10soJ;)n t.!;)S;)Q
Sloso.lay J.lasao
Lor L
.ssew ~qJ JO %017 f..lqgnol gU!1U~S~ld~l ~1eJlns q1!M £- w grf ~ ueqJ ss~1 ~m SUO!g~l mlod ~q1 U! suO!1el1U~~Uo~01Wd 10sol~V .~l~qds!w~q gU!PUOdS~l -lO~ ~qJ Jo SUO!g~l P!le WOlJ 1snp yel~U!W PUg 'ue~~o gu!punoJJns ~qJ WOlJ 1yese~s '~1eJlns 'S~~lnos uo!1nuod ~pm!1elP!w WOlJ ye!l~1ew sno~~euoqm~ su!l!1UO~ 10sol~e mlod ~ql. .(17861 'Meqs) pug '(17861) .ye 1~ ~)[pe~ '(0861) gl~qu~Z1U!~H f..q p~POd~l u~~q ~Aeq S1U~W~lnse~w Jel!W!S ill" L ~lng!d) (£661 'gl~qu~Z1U!~H PUg P~AOJ) wrf ZOO1e ~pow u0gelnwn~~e ~q1 pug wrf ~O'O 1e S! l~1~We!p ue~w ~pow uo!1e~l~nu ~qJ. .£- w~ OOZl~AO 01 s~Se~l~U! UO!1el1
'suo!}nqjl}S!p
.
aWnjOA PU1!'a:>1!jlns 'laqwnu
wT1 OO'O~
jOSOla1!l1!jod j1!:>!dAj,
Ot'L 3HflDI.!I
.J9~9WD!a
00' ~
O~'O
~O'O 0'0 ::J <°
/
£'0
~
3(II (") 3
g'O
I (II
0 ~ Ci)O
~ l
. 1= 3
'"
() 3
~
I tII
0 :3 o~2:0
~ ()
o~
3 I c..
Of:
'OSOll3V ;)I1I3HdSOmV 3111dO S3ll1l3dOlld
8Et'
0.01
0.10 Diameter, J,Lm
1.00
FIGURE 7.21 Comparisonof the aerosoldistribution during Arctic haze with the typical polar distribution.
4:\9
:Jq:IU! APURU!WOp~Jd pUna] ~m S}R1~W UO!1!SURJ1U!R1l~:> pUR 'uoqm:> }R1u~W~I~ pUR :>!UR~JO 'wn!uowum '~1R]Ins S~!:>~s ~s~q1 wold 'J~1RA\ pUR 'SUO! U~~OJpAq '1}RS R~S 's~!:>~ds }R1sru:> 'IR!l~1RW :>!UR~JO 'wn!UOWWR
'S~1RJ:}!U 'S~1R]Ins
U!R:IUO:> S~I:>!~d
IOSOJ~R :>!l~qdsow1V
NOIJ.ISOdWO:J 'IV:JIW~H:J 'IOSOH~V
f" L
o~oL ~1qu.L U! P~Z!l
-uwwns ~JU soof..! 1cjSOJ~U JofuW ~q! JO UO!!UJ:l~:JUO:J~wn1oA pUR J~qwnu ~3'UJ~AU~q.L ow){ OOO~UUq! J~qunJ U~!JO 's~:JumS!p 3'UO1J~AOp~uodsUUJ:l ~JUwrf 01 uuq! J~1{uwS s~1:J -!!JUd f..1uo 'SUO!3'~J~:JJnos ~q! U! punoJ ~JUJ~!~WU!P U! wrf 001 su ~3'JU1su S~1:J!!JUd~1!qA\ o(~66I 'oJ~dsoJd) UU~:JO :JY!:Jud ~q! SSOJ:JU U!sy Jo su~s~p ~q! WOJJ SJn:J;)QuodsuuJ:l !snp JU1!W!S'sq!uow J~wwns ~q! 3'u!lnp f..!!1!q!S!A~:Jnp~Jf..puu:JY!U3'!SO! U~JU!UJU!W ~q! mU! P~!l -JU:JS! !snp UUJUqRS q3'nou~ !uq! P~!s~3'3'ns (L86 I) °{u !~ OJOOSOJd '~1dUJUx~ JOd
i I 66 I '°{U!~
!!O) S~!U!S P~!!Ufl ~q! Jo !SUO:J!SU~~q! m ':J!!uupy ~q! SSOJ:JU 'u:J!lJY Jo !SUO:J!S~MqUOU ~q! wol] {u!l~!UW J~JsuuJ:lm UMOqSu~~ ~AUq u~s~p uJUquS ~q! WOJJsUJJms!snp {Unp!A!puI l!OS ~q! U! SUO!!UJ:I -U~:JuO:J~A!!U1~JJ~MO1~AUq !uq! 'UN pUR '3'W 'uJ su q:Jns S!U~W~1~~lqn1os ~q! Jo uo!!d~:J -x~ ~q! q!!M '){:JOJ{U!snJ:J~q! Jo !uq! m JUl!W!S S! uo!!!sodwo:J 1!OS~q.L 'P' L ~lqu.L U! UMOqS
(E_w~rf)OIWd
;JdA.L
(£_w gTf)'Wd
S;Jdq IOSQ.I;JV J!.I;JqdsowJV Jo s;Jp.I;Jdo.ld soL 3'lHV.L
'(8861) ){:JaW11,\\ :iJ.:1Inos
8 001 OOZ 0~8 009'17 009'£1 00£'9 00£'9 OOL'£1 000'8£ OO£'IL 000'0££
ZI 86 8v OL9 OOv'v 00~'6Z 006'1£ 000'££ OOL'~Z OO£'v£ OOv'LL 000'11£
0;:) A l;:)
uw !1. )l RN 8W R;:) ~d IV !S
I!OS (SSBW
1u~w~I3
Aq wdd) ~:>UBpunqvl1!lU~W~13 }(;J°H IBJSD.I:) pUB nos UJ S}UOJWOJI3 .IOrBW JO SOJ;JUBpunqy OJSB.lOJAY t'L 3'IHY.L
'OSO~3V JI~3HdSOmV
Hill dO S3ll~3dO~d
Ototo
AEROSOLCHEMICAL COMPOsmON
441
Aerodynamic Diameter. Dae. Jim FIGURE 7.23 Measured size distributions of aerosol sulfate, nitrate, ammonium, chloride, sodium,and hydrogenion in Claremont,CA (Wall et al., 1988).
fine particles. Crustal materials, including silicon, calcium, magnesium, aluminum, and iron, and biogenic organic particles (pollen, spores, plant fragments) are usually in the coarse aerosol fraction. Nitrate can be found in both the fine and coarse modes. Fine nitrate is usually the result of the nitric acid/ammonia reaction for the formation of ammonium nitrate, while coarse nitrate is the product of coarse particle/nitric acid reactions. A typical urban aerosol size/composition distribution is shown in Figure 7.23 (Wall et al., 1988). These results indicate that sulfate, nitrate, and ammonium have two modes in the 0.1 to 1.0 Jl,m size range (the condensation and droplet modes), and a third one over 1 Jl,m (coarse mode) (Figure 7.24). The condensation mode has a peak around 0.2 Jl,m and is the result of condensation of secondary aerosol components from the gas phase. The droplet mode peaks around 0.7 Jl,m in diameter and its existence is attributed to heterogeneous, aqueous-phasereactions discussed in Chapter 6 (Meng and Seinfeld, 1994). More than half of the nitrate is found in the coarse mode together with most of the sodium and chloride. This coarse nitrate is the result of reactions of nitric acid with sodium chloride or aerosol crustal material (see Chapter 9). This is an interesting case where secondary aerosol matter (nitrate) is formed through the reaction of a naturally produced material (sea salt or dust) and an anthropogenic pollutant (nitric acid). More than 40 trace elements are routinely found in atmospheric particulate matter samples. These elements arise from dozens of different sources including combustion of coal, oil, wood burning, steel furnaces, boilers, smelters, dust, waste incineration, and break wear. Depending on their sources, these elements can be found in either the fine or the
o£-ro 001-rO O~I-Z 0~1-~.0 00£-1 00~-1 00~-v OOO'~-£ 00~'1-1 OO~'Z-Z OOO'L-rO OOO'8-~1 000'06-0£ 008'£1-0£1
O£-IO'O 01-1'0 O~-I L-~'O 08-1 091-~O'O OOI-P 00£-£ 001-£ 8l-1 OOO'I-P'O 00v-01 OOL'I-l OO~'PI-~~ [\1Jn'M «(-
Z'o-10'O 1-0 01-10'0 1-0 09-10'0 1-10'0 ~I-IO'O ~1-£O'O ~1-10.0 Z-10'O 1-10'0 O~P-£O'O ~9-10"0 OOZ'H"O
'(L861) '{I! I~ J~p~J!jJS '~poW ~OJ
=J
;;1;).1nOS
:~poW~U!l = ~
~s
;) PUgtI ;) PUgtI ;) PUgtI tI ;) PUgtI
0;) J;) qS !N 3H
uw
;) pUll tI ;) pUll tI ;) PUgtI II tI tI tI ;) pUll tI
n;) A sy P;) uZ qd ~d lu~w~13
-
w gu) UO!t1!Jtu~:>uOJ
SalJp.lBd J!.laqdsowJY U! puno~ SJuawal3 snoJ.lBAJo uopnq!.lJs!(l aZ!S pUB (£_W ~U) SUOpB.lJUaJUo:) 9'L 3'18Y.L
;}q:I u~ 1S~X;) A{JUnSn uo~1snqwO:) ~u!Jnp p;):)npoJd S1U;}W;){3 'SU09~J1U;):)uO:) MO{ Aq P;)Z!J;}1 -:)~Jl!q:) ;}Jl! AUOW~1~ p~ '!..In:)J;)W '1{~qO:) S~ q:)ns S1U;)W;){;) ;){~qM 'SUO~1~IJU;):)UO:) 1S;}q~~q ;}q1 ;}A~q J~do:)
p~
'UOJ~ 'P~;}{ s~ q:)ns S1U;)W;){;} '{~J;)U;}~ uI 'S;}:)Jnos {~:>O{ Jo 1:);}JJ;} ~UOJ1S
;}q:I ~U~1~:)~PU~';)pm~u~~w
Jo SJ;}pJO ;};)Jq:l1S0W{~ J;)AO AmA S{;)A;){ uo~1n{[od Jl!{~W~S JoJ U;)A;}
S1U;}W;}{;} ;)S;)q1 JO SUO~1~IJU;):)UO:) ;}q.L '9' L ;){q~.L u~ UMOqS ~ ;}S;}q1 ;}J;)qM ;}pow
punoJ
A{[~nSn ;}Jl! S1U;)W;){;)
;}Z~S ;}q:I q1~M J;}q1;)~01 S1U;}W;){;} P;}1:);}{;)S Jo SUO~1~J1U;):)UOJ ';}POW ;}SJl!O:)
'(0661 '"[111auqof) L861 )0 Jawwns aql gu!Jnp salaguy s°'1 JO)JalaWI1!papow )0 UO!lJUn)11SI1saz!s sn°!JU")o sapow all1)lns)o aJuaJJnJJOpaAJasqo)o AJuanbaJd 11, L :!nIfl~I.!I
wTi
'l~}~~!a
~pow
:>!Weu,(pOl~V
iOSOll3V Jnl3HdSO~V
3m dO S3ll1l3dOlld
Ztt
AEROSOLCHEMICAL COMPOSITION 443
TABLE 7.7 Comparison of Ambient Fine and CoarseParticles
Formationpathways
Resuspended dust Coal and oil fly ash Crustal element (Si, AI, Ti, Fe) oxides CaCO3, NaCI Pollen, mold, spores Plant, animal debris Tire wear debris
Composition
Combustion(coal, oil, gasoline,diesel,wood) Gas-to-particleconversionof NOx' S03' andVOCs Smelters,mills, etc.
Source: Adapted from Wilson and Shuh (1997) and U.S. EPA (1996).
fonn of oxides (e.g., Fe203, Fe304, AI203), but their chemical fonn is in general uncertain. A summary of chemical infonnation regarding the coarse and fine modes is presented in Table 7.7. The composition of sea salt reflects the composition of seawater enriched in organic material (marine-derived sterols, fatty alcohols, and fatty acids) that exists in the surface layer of the oceans (Schneider and Gagosian, 1985). Seawater contains 3.5% by weight sea salt and when first emitted the sea salt composition is the same as that of seawater (Table 7.8). Reactions on sea salt particles modify its chemical composition; for example, sodium chloride reacts with sulfuric acid vapor to produce sodium sulfate and hydrochloric acid vapor
H2SO4(g) + 2NaCI ~ Na2S04+ 2 HCI(g) leadingto an apparent"chloride deficit" in the marineaerosol.
(19"0
I~HI =U
~
~J~qM
(09.0 (£661 '~){:)!U~Rf) S! ~IYOld ~q'!}0 UUO} R}O u09s~~~ns ~uo pUR ~pm!~JRq'!!M AIJR!~u~uodx~ ~SR~l:)~p 10 ~SR~l:)U!ARW U09RIJU~:)UO:)l~qwnu IOS01~R~q.L '~Z' L ~ln~!d U! UMOqS ~Ie S~IYOld UO!~Rl~U~:)UO:) SSRWIOS01~R JR:)!ll~A ~U!PUOdS~llO:) ~q.L 's~dA~ IOS01~RIeIOd ~q'! 10} W 000'0£ pUR 'll~S~p ~q'! 10} W OOOZ'JR~U~U!~UO:) ~~OW~l ~q~ 10} W O£L '~U!l1!W ~q'! 10} W 006 o~ JRnb~ dB }O s~nJRAp~sod -old (£661) ~){:)!U~Rf '~q~!~q ~JR:)s ~q'! dB pUR UO!~RIJU~:)UO:) ~:)RJlnS ~q'! S! (O)W ~l~qM
(6~.L) su p~ss~Jdx~ ~ u~qt uu:> tqg!~qjO uo!t:>unj U su UO!tuIJu~:>uo:>ssuw IOSOJ~U~q.L '(1661 'SUJo) ~pmrlIu tuqt ~AOqU ~IyoJd tUUtSUO:>J~qtUJ U puu dB tqg!~q U Ot dn ~pmrlIu qt!M ~SU~J:> -~p JU!tu~uodx~ UU SMoqS AIJU:>!dAtUO!tuIJU~:>uo:>ssuw IOSOJ~UjO u°rlnq!J:js!p JU:>!tJ~A~Q.L
NOI.LVIHVA'lV;JI.LH3A
:)!l;}ljdSOW11J gU!loug!
L-OI .-01 x ~'l-9-01 .-01 x v'I -9-01 .-01 x v'I -.-01 .-01 x v-.-OI t-OI x ~-.-OI £-01 x ~-9-01 £-01 x v'6-t-OI t-OI x v'I t-Ol x v'I £-01 x ~'~-t-OI £-01 x L'8-£-OI 61'0 1'1 91'1 69'£ 89'L 19'0£ PO'~~
PUIJ J;}1IJMIJ;}SjO U09!sodwo:)
x x x x x x x x
6 ~'l v'I Z'I v'I ~ £ vol
x 9'v x ~'£
POL
'SU09IJWJOjSUIJJ1 ;}lj1 UO P;}S1!HD
A uw :HN qd uZ ~d ~ON !S I eo IV (~teuoqJl!:)uou) :J JO )J e:J ~W v -zOS eN I:J s~!:>~dS
1qg!~M Aq 1U~:Jl~d
JIBS-BasJOuomsodwo:)
S"L 3'lHV.L
'OSOll3V :Jrn3HdSOmV 3ffi dO S3ll1l3dOlld
ttt
VERTICAL VARIATION
445
and N B is the numberconcentrationof the backgroundaerosolaloft. For marine aerosol H; varies from -290 to 440 m. Note that if H; is negative n = -I, and (7.60) can be rewrittenas -1
N(z) = N(O)[ exp(~
+
N(O) NB
(7.62)
Becausein this caseN(O) « NB, the equationhasthe correctlimiting behaviorboth for z -+ 0 and z -+ 00. Model vertical number concentrationprofiles are shown in Figure 7.26.
°66~£-£8~£
'£8 'osaN °s,clfdoao "f 'UO!g;}l SPUl!ISI ;}Pl;}A OOl!J ;}q1 U! IOSOl;}l! ;}:>l!jlns
;}q~Jo S;}!~;}dOld Il!:>!W;}q:> PUl! Il!:>!sAqd Jo Apn~s ;}A!SU;}q;}ldwoJ °1£-1 odd :VJ °Aod Aq P;}~!P;} 'SUOll.1V.lalu/ aIVUlll.J-pnol.J-loso.lav °ILZ-Z9Z
(8L6 I) °, 'z~nq:>s PUl! 'o~ ';})j:>!U;}l!f
'og;}!a
Ul!S 'SS;}ld :>!W;}pl!:>V °sqqoH
U! 'SIOSOl;}l! :>Jl;}qdsodol.1 (£661) o~ ';})j:>!U;}l!f
'6S 'oudf °.1°S "lO.loalaW"f
';}l;}qdsow~l!
;}q~ U! S;}I:>!1J1IdU;})ft!1! Jo UO!~l!l~U;}:>UO:> ;}q~ U! ;}Sl!;}l:>U! u;}ppns ;}q~ uO (1861) °Ja 'uo~gU!qSl!M .111UVIIValfl.1al10 .la,crTI tClvpunofl aul.lvw .11.lalfdsoWlV (6861)
alfl ulsap.lado.ld
:>!~:>ll!~UV
')I '!l!MI PUl! '°.1 'o~I
'88 I 6 ~od;}~ '~N
IV.1pdO pup suopnql.lls1a
of °3 ')j:>l!W PUl! '°3 o~ 'UOSJI!' 'oW '0 ')j:>Jld 'oM 'f 'PIl!l;}gz~!d
°uva.10
a21Sloso.lav 'oV 'M 'IoodoH
°9~£I-vv£I 't'l '"l°.loalaw "lddvalvwll.J "f 'S;}!goIoqwow
pUll 'suop!sodwo:>
qg!q ;}q~ l;}AO ;}l;}qdsodolt
It1~U;}W;}I;}'suopnq!l1s!p
;}Z!S °1 °S;}~1!1S P;}~!Ufl ;}q1 Jo SU!1!Id
l;}MOI ;}q1 U! S;}I:>!1J1Id(~86 I) °d °, ';}Wl!~
PUl! 'oV °a ';}IPMOH '"A °d 'sqqoH
°)jloA M;}N 'A;}I!M ',c8010ulf.1a.L10sO.lav (Z86 I) oJ 'M'SPU!H °9)9Z-L119Z '91 'oUO.llI1U:l °SOWIV 'U!St1q S;}I;}guV so, ;}q1 U! suopnq!l1s!p o))-o~
n!s
lnJlns IOSOl;}l! JO SU!gJlQ (Z86I)
'81 'olqwV
'SUO!g;}lll!Iod
°)1 os 'l;}PUlIIP;}Jld pUll '"A os 'gUJl;}H
U! UO!~nIIod l!l! :;}Z1!q :>!~:>lV(6861) of 'gl;}qU;}Z~U!;}H °09Z-I~Z
"l£ 'snlla.L ';}Zl!q :>!~:>lVJo S;}!~;}dOld Il!:>!~do PUl! uopnqJl~s!p ;}Z!S ;}I:>!~l!d (0861) °O££-IZ£
'II
'ol.1S10so.laV"f
of 'gl;}qU;}Z~U!;}H
'SIOSOl;}l! :>Jl;}qdsow~l! Jo ;}gUl!l
U;})j~!V;}q1 U! S~U;}W;}lnSl!;}W uo!~nqJl~s!p ;}Z!S P;}AOldw! Jo s~Ins;}~ (086 I) o~ ';})j:>!U;}l!f PUl! 'oM 'Jl!l!H °9~£~-~v£~ '96 'osaN °s,clfdoao "f 's:>!sAqdol:>!W IOSOl;}l! :>Jl;}qdsodolt ;}l;}qds!w;}q o)V)-££)
'VS'l
'oUO.lll1u:l °SOWIV 'M;}!A;}ll!
w;}q~nos
(1661)
Ivuopvu.lalu/
alf.L (1661)
°19-1) °0 'Mn;};}, ;}a
°)jloA °a 'Ul!![pU;}Ull!;}a
Iv.11.lalfds uo 8Ul.lauV.1S .1paU8VUlO.ll.1al:l (6961)
wv.l80.1d 10sO.lav IvqolO
°, of 'Sl!lO
:sIoSOl;}l! ;}uJll!W (1661) oM of 'PIl!l;}gz~!d
'H8£ 'snna.L ';}:>l!jlns l!;}S ;}q~ ;}AOql! ;}soI:> S;}I:>!1J1Id~Ul!!g Jo S;}Iyold Il!:>!~;}A (9861) M;}N 'l;}!A;}SI3 'suols.ladslP,clod
oVA 'uo~dwl!H ){1!d;};}a °uvld (dVO/)
IOSOl;}l! Il!l;}u!W Jo suopnq!l1s!p
'gU!qS!Iqnd
°0 '!Il!O pUll 'oV ')j1!d;};}a
o£vZ-££Z "l'l /O.Ioalaw "lddvalVUlllJ "f 'l!JI!q11S ;}q1 Jo SI!OSpUll ;}wnloA PUl! SSl!W 'l;}qwnN (£86 I) °, 'nnq:>s pUll 'oV °0 'l!P!;}WIV,P oL66Z-686Z 'V L'l 'oUO.Ill1u:l °SOWIV 'PJI!qll!AS 'pUnS;}IY AN
~t110S0l;}l! Jo S;}!~;}dOld 1l!:>!W;}q:>pUll suopnqJl~s!p ;}Z!S (£661)
"{ 'gl;}qU;}Z~U!;}H PUl! 'oS °a '~;}AOJ
°Z)I-)vI '6 'snna.L ';}:>Ul!:>y!ug!S Il!:>!goIOlO;}~;}W S~!pUll l!;}S ;}q~ U! UO!~l!:>Y!POWPUl! UO!~l!UllOJ ;}IqqnH (L)6I) °H °V ')j:>o:>pooM pUll 'oJ °a 'PJI!q:>Ul!IH °9Z) '0££ 'a.lnlvN ';}~l!W!I:> Jo UO!~l!Ing;}l Il!:>!goIO!H (L86I) suopnq!l1s!p
n!s
of o~ 'oul!Jld!J
PUl! 'oJ 'a 'PJI!q:>Ul!IH
°661-161 '£'l °l.1S10so.laV"f 'l!Jl;}q!S U! !;}I:>nu UO!~l!SU;}puo:>:>Jl;}qdsow~l! Jo S~U;}W;}lnSl!;}W (Z66 I) "{l! ~;} 'oS 'A 'l!AOlnqSl!H °£99-£119
'O'l "UO.I!l1u:l °SOWIV ';}gp;}IMOU)j ~U;}lln:> Jo M;}!Al;}AO Ul! :uO!~nIIod l!1! :>!~:>JV(9861)
°v °, ';}Jll1!H
O;}gPJlqUJ1!J'SS;}ld A~!Sl;}A!Ufl ;}gPJlqUJ1!J 'uop.1und
uopnq!.llS!a
IVlU.lou8lT]
alf.L (L)61)
oJ °V Of 'UMOlH
pUll 'of 'uosN:>~!V
S:iI::>N:iI'H:iI.!I:iI'H
'~J~qdsodoJ1 Aq p~:>u~nlJU! SR~IP. 's~UJnld
~~JJ ~Q1 U! StU~A~ u09R~I:>nu
gu!lnp
JO 's~:>Jnos IR:>°I
:>!U;)godOJQ1UR U! SUO!tRJ1U~:>UO:>IOSOJ~R U! p~AJ~sqo
-!lRA tUR:>Y!Ug!S 'S~gRJ;)AR UJJ~t-guoI Jo suo!tmu~s~Jd~J
S! At!I!qR
qgnoJ ~m S~IyoJd fR:>!1J~A ~s~q.l
'OSO~3V ;)I~3HdSOffiV ~
dO S3ll~3dO~d
9tP
REFERENCES447 JaenickeR., Dreiling V., LehmannE., Koutsenogii,P. K., and Stingl, J. (1992) Condensationnuclei at the GermanAntarctic StationVonneymayer,Tellus,44B, 311-317 John,W., Wall, S. M., Ondo,J. L., and Winklmayr, W. (1990) Modes in the size distributionsof atmosphericinorganicaerosol,Atmos.Environ., 24A,2349-2359. Koutsenogii,P. K., and Jaenicke,R. (1994) Number concentrationand size distribution of atmospheric aerosolin Siberia,J. AerosolSci., 25,377-383. Koutsenogii, P. K., Bufetov, N. S., and Drosdova,V. I. (1993) Ion composition of atmospheric aerosolnearLake Baikal, Atmos.Environ, 27A, 1629-1633. Leaitch, W. R., and Isaac,G. A. (1991) Troposphericaerosolsize distributions from 1982to 1988 over EasternNorth America,Atmos.Environ., 25A,601-619. Li, X., Maring, H., Savoie,D., Voss,K., and Prospero,J. M. (1996) Dominanceof mineral dust in aerosollight scatteringin the North Atlantic tradewinds, Nature,380,416-419. Meng, Z., and Seinfeld,J. H. (1994) On the sourceof the submicrometerdroplet modeof urbanand regionalaerosols,AerosolSci. Technol.,20,253-265. Meszaros,A., and Vissy, K. (1974) Concentration,size distribution and chemical natureof atmospheric aerosolparticlesin remoteoceanareas,J. AerosolSci., 5, 101-109. Monahan,E. C., Fairall, C. W., Davidson,K. L., andJones-Boyle,P.(1983)Observedinter-relationshipsamongst10-m-elevationwinds, oceanicwhitecaps,andmarineaerosols,Q. J. R. Meteorol. Soc.,109, 379-392. O'Dowd, C. D., andSmith, M. H. (1993)Physicochemicalpropertiesof aerosolsover the Northeast Atlantic: evidencefor wind-speedrelated submicron sea-saltaerosolproduction, J. Geophys. Res.,98, 1137-1149. Ott, S. T., Ott, A., Martin, D. W., andYoung,J. A. (1991)Analysisof trans-Atlanticsaharandustoutbreakbasedon satelliteandGATE data,Mon. WeatherRev.,119, 1832-1850. Ottar, B. (1989)Arctic air pollution: a Norwegianperspective,Atmos.Environ.,23,2349-2356. Prospero,J. M. (1995)The atmospherictransportof particlesto the ocean,in SCOPEReport:Particle Flux in the Ocean,Ittekkot, V., Honjo, S., Depetris,P.J. (Eds.),Wiley, New York, NY. Prospero,J. M., Nees,R.T., andUematsu,M. (1987)Depositionrateof particulateanddissolvedaluminum derived from saharadust in precipitation in Miami, Florida, J. Geophys.Res., 92, 14723-14731. Pruppacher,H. R., and Klett, J. D. (1980) Microphysics of Cloud and Precipitation, D. Reidel, Dordrecht,The Netherlands. Radke,L. F., Lyons, J. H., Hegg, D. A., and Hobbs, P. V. (1984) Airborne observationsof Arctic aerosols.I: Characteristicsof Arctic haze, Geophys.Res.Lett., 11, 369-372. Rahn, K. (1981) Relative importanceof North America and Eurasiaas sourcesof Arctic aerosol, Atmos.Environ., 15,1447-1456. Savoie,D. L., andProspero,J. M. (1989)Comparisonof oceanicandcontinental sourcesof non-seasalt sulfateover the Pacific ocean,Nature, 339, 685-687. Schneider,J. K., and Gagosian,R. B. (1985) Particle size distribution of lipids in aerosolsoff the coastof Peru,J. Geophys.Res.,90, 7889-7898. Schroeder,W. H., Dobson,M., Kane,D. M., andJohnson,N. D. (1987)Toxic traceelementsassociatedwith airborneparticulatematter:a review,J. Air Pollut. Cont.Assoc.,37,1267-1285. Shaw,G. E. (1984) Microparticle sizespectrumof Arctic haze, Geophys.Res.Lett., 11,409-412. Shaw, G. E. (1985) Aerosol measurementsin Central Alaska 1982-1984,Atmos. Environ., 19, 2025-2031. Shaw,G. E. (1986) On physicalpropertiesof aerosolsat RossIsland,Antarctica,J. Aerosol Sci., 17, 937-945.
(w)Wu w 6.9 = (da goo ~u 1uq1 MOqS ,cia ~oI uo P;)suq uO!1nq!J1S!P ssuw u 01 UO!1;)Unj UO!1nq!J:tS!p 1Uq:l1J;)AUO;) 01 P;)J!S;)P S! 11 'wp
+
w 01W ;)~UUJ ;)q:I U! S;)SSUW ~U!AUq S;)I;)!:)JUd U! P;)U!u1UO;) J!U jO EW;) J;)d SSUW IOSOJ;)U
=
wp
(w)Wu
1Uq:I q;)ns (w)Piu
UO!1;)Unj uO!1nq!J:tS!p ;)Z!S IOSOJ;)U uu U;)A!~ ;)JP. no}...
Y£"L
'SWUJ~01S!q ;)1;)J;)S!P su UJJOj P;)Z!{t!w
-JOUpUB P;)Z!{t!UJJou-uouq10q U! (da ~oV 1u pUB (da)AU '(da ~oV ~u ,(da) Su SUO!1nq!J:tS!p ;)wnIOA
pUB U;)JP. ;);)upns
;)q:l10IP
.
I' L W;)Iqold
~£ov ~Io£ voZ ~6°I Lol ~oI £°1 1°1 6°0 LoO ~00 £°0 1°0
~£ Z£ Z9 ~9 Z~ ~9 ~L ZIT 8£1 ZPI Z£I 08 01
(w1f) IUAl~tuI ~Z!S1° uu~W
IgAJ~:lUI
u1 s~I:)1~d 1° l~qUlnN
U! U;)A!~ U1UP ;)q:I JOd
1°~-9°£ 9°£-LoZ LoZ-l°Z I°Z-gol gol-9°1 9°1-17°1 vol-zol ZO1-0°1 0° I-goO g°0-9°0 9°0-17°0 v°o-ZOO ZOO-G
(wrf ) I~AJ;)tUI ;)Z!S
'S~lgmS!q ;)t;)l:>S!Psu N /(da goo~u pug
N/(da)NU
= (da)N~
SUO!tnqptS!p
;)Z!S P;)Z!{uWlOU
'P;)tS!1 S;)gugl ;)Z!S ;)qt U! S;)I:>!:IlUd 10SOl;)U Jo l;)qwnu
;)qt
tOld
= (da goo~~ pug
;)tulnqut
;)qt uo mup gU!MOIIOJ ;)qt U;)A!D
SW::!I'lHOHd
'(sS~Jd u,) ":JOSSV 'a8vuvwa1svM .llV 'f 's~,pms Ie:J,goIoJW~p,d~ Ot tU1!A~I~J sd,qsuO'teI~J uo'teJtu~:Juo:J :s~I:J'tJ1!d ~SJ1!O:J pue ~u'd (L66 I) 'H 'H 'qnqs pue "3 'M 'uosI'M
lV1UaWuO.lli\u:fl ul saJuvi\pv' "){
'd 'J~IT~nw
"w
'0
LI~-LLv ',(P'H
'AN '){JOA M~N ',(~I!M "6 'loA '.(8010UIfJa.L puP aJuaps 'dd ,(,sP3) 'f 'f "){SMOIOS~M pue ',~ 'S 'IaddV "cr 'U1!~fsOJo
'(X:flH.JV)
alf1 WO.lj s11nsaHjo 1sa81a V :sloso.lav
1uaWl.ladx:fl
UO11vzl.lapv.lVIf.J
loso.lav
Jl.lalfdsoW1V jo SU18,.10 pup .lapv.lVIf.J
V1U.l0!llv.J
alf.L u, 's:JjtsJJ~t
-:JeJ1!q:JIe:JJW~q:J pue Ie:J,s,(qd J'~q:I :sIosoJ~e e,woJ!Ie::> (0861) 'W '0 'dnJPJ~AS pue ".1 '){ ',(Qt,qM 'V::> 'og~,cr ues 'SS~Jd :J,w~pe:JV 'a.lalfdsow1V lv.lrnvN '9~91-6v91 ~teJt'u JoJ suojtnqjJts,p
'u
~z's IosoJ~e Jo tu~W~Jnse~w
alf1jo t\.l1s1walf.J (8861) a '){:J~UJ1!M
"UO.lli\u:fl 'SOW1V 's~':J~ds :J,uo, Jofew pue (886 I) "1 'f 'opuo
pue "M 'uqof "W 'S 'ITeM
'::>N '){J1!d ~IgueJJ.1 q:JJ1!~S~~'IOO/~6-d/OO9Nd3 'J~ttew ~teln:J'tJ1!d JoJ eJJ~tJJ::>,(t!Ien() J,V (9661) ,(:Ju~gv uojt:J~tOJd Ietu~wuoJ'AU3
s~tetS p~t,u!1
'OSO~3V :JffiHHdSONY Hill dO SHll~HdO~d
8.,.,
PROBLEMS 449
Showthatthe varianceof the sizedistributionof a log-nonnallydistributedaerosolis
7.48
7.SA Starting with semilogarithmicgraph paper,constructa log-probability coordinate axis and showthat a log-normaldistribution plots as a straightline on thesecoordinates. 7.6A The datagiven below were obtainedfor a log-normally distributedaerosolsizedistribution: SizeInterval (,urn) 0.1-0.2 0.2-0.4 0.4-0.7 0.7-1.0 1.0-2.0 2.0-4.0 4.0-7.0 7.0-10 10-20 U
GeometricMean of SizeInterval (I/.m)
Numberof Particles in Intervalu
0.1414 0.2828 0.5292 0.8367 1.414 2.828 5.292 8.367 14.14
50 460 1055 980 1705 680 102 10 2
Assume that the particles are spheres with density p = 1.5 g cm -3.
8. Completethe abovetable by computing the following quantities: ~Ni / ~Dpi. ~Ni/N~Dpi,~Si/~Dpi, ~Si/S~Dpi. ~Mi/~Dpi. ~Mi/M~Dpi, ~Ni / ~ log Dpi, ~Ni / N ~ log Dpi, ~ Si/ ~ log Dpi. ~ Si/ S ~ log Dpi, and
~Mi / ~ log Dpi, ~Mi / M ~ log Dpi, where M = particle mass.
b. Plot ~Ni / ~ log Dpi, ~Si / ~ log Dpi, and ~Mi / ~ log Dpi as histograms. c. Determinethe geometricmeandiameterand geometricstandarddeviationof the log-normaldistribution to which thesedataadhereandplot the continuousdistributionson the threeplots from part (b). 7.78 For a log-normally distributedaerosoldifferent meandiameterscan be definedby
-
-
2
DplI = Dpgexp(v In ag)
where v is a parameterthat definesthe particular meandiameterof interest.Show that Diameter Mode (mostfrequentvalue) Geometricmeanor median Number(arithmetic)mean Surfaceareamean Massmean Surfaceareamedian Volumemedian
v
-1 0 0.5 1 1.5 2 3
PROBLEMS 449
7.48 Showthatthe varianceof the sizedistributionof a log-normallydistributedaerosolis
7.SA Starting with semilogarithmicgraph paper,constructa log-probability coordinate axis and showthat a log-normaldistribution plots asa straightline on thesecoordinates. 7.6A The datagiven below were obtainedfor a log-normally distributedaerosolsizedistribution: SizeInterval (,urn) 0.1-0.2 0.2-0.4 0.4-0.7 0.7-1.0 1.0-2.0 2.0-4.0 4.0-7.0 7.0-10 10-20 U
GeometricMean of SizeInterval (ILm)
Numberof Particles in Intervalu
0.1414 0.2828 0.5292 0.8367 1.414 2.828 5.292 8.367 14.14
50 460 1055 980 1705 680 102 10 2
Assume that the particles are spheres with density p = 1.5 g cm -3.
8. Completethe abovetable by computing the following quantities: ~Ni / ~Dpi, ~Ni/N~Dpi,~Si/~Dpi, ~Si/S~Dpi, ~Mi/~Dpi, ~Mi/M~Dpi, ~Ni / ~ log Dpi, ~Ni / N ~ log Dpi, ~ Si/ ~ log Dpi, ~ Si/ S ~ log Dpi, and
~Mi / ~ log Dpi, ~Mi / M ~ log Dpi, where M = particle mass.
b. Plot ~Ni / ~ log Dpi, ~Si / ~ log Dpi, and ~Mi / ~ log Dpi as histograms. c. Determinethe geometricmeandiameterand geometricstandarddeviationof the log-normaldistribution to which thesedataadhereandplot the continuousdistributionson the threeplots from part (b). 7.78 For a log-normally distributedaerosoldifferent meandiameterscan be definedby
-
-
DplI = Dpgexp(vln
2
ag)
where v is a parameterthat definesthe particular meandiameterof interest.Show that Diameter Mode (mostfrequentvalue) Geometricmeanor median Number(arithmetic)mean Surfaceareamean Massmean Surfaceareamedian Volumemedian
v
-1 0 0.5 1 1.5 2 3
i,tsnp p;)tnqJ:jts!p AIIBWJou-~ol B S!q:JsI .q
Of_ill;)~ 9.1
= dd
q:I!M S;)J;)qds ;)jp, S;)l;)!pt!d lIB ~U!WnSSB J;)dBd qdBJ~ JB;)U!1 UO SSBW pUB 'B;)jp, ;);)BpnS 'J;)qwnu ;)qt Jo (% U!) suo!tnq!J:Js!p A;)u;)nb;)JJ ;)!\.!tBlnwn;) ;)qt tOld '8
01 01 01 01 01 01 01 01 01 01 J~qwnN Aq %
::}snp
OL-6v
6v-Iv 111-9£ 9£-££ ££-1)£ O£-8Z 8Z-~Z ~Z-IZ IZ-~'LI ~'LI-L (w1f)
~
10J
..(:)U~nb~lJ
It?AJ;)1UI ;)Z!S
~Z!s
'I°S01~~
-S!P
S!q:}
l~:}~Ul~!P
q:):}~Ul
JO
a:}
p~p~~u
S~I:)!~d
q
U!
p~
:J
~UlnloA
S:}U~:}SUO:)
IOS01~~
~~
JO
I~:}o:}
~~
11t;"t; =
SdQ
;}~ JO UO!1nq!J:IS!p
t?
Aq
s~n~A
Jo
~~
8U!MOnOJ
U~A!8
~q:}
~U!Ull~:}~a
UO!:}:)~lJ
~q:}
S!
~~
a:}
U~A!D
86'L
Uo!mq!II
.da
~~
(da)Ad
ss~I
~l~qM
= (da)Ad
(~a;J- )dx~ -
moJ 'J;}dt?d A1!I!qt?qOJd-80I
pU1J W
IOSOJ;}t?
S!~
UO IOSOJ;}t? S!q1 Jo SUO!1nq!J:IS!p
1u;}S;}Jd;}J
;}wnIoA
01 P;}J!S;}P
put? J;}qwnu
S! 1!
;}q1 10Id
"q
"8
"9£"1 = SD q:I!A\ UO!1nq!IlS!pleWlou-gol e seq IOSOJ:}eue 1eq1:}wnssy
".0if
118' L
jJ~] ZI;D..liJ!!.liJnDz/I(Z/.1l) =
;.0.1+ !!) - '7
{.oz
np
7I]
z<~ - n)
:~sn Jo lulg~1U! S!q1 puy hUW no).. :JuJH 10ld ~q1 uo sl~1~WU!P ~AOqU~q1JO q:>u~hJ!1U~P!puu 0., 8.0 puu wrf 0.1 8da q1!M wrf L
=
=
010 WOlJ da Jo ~gUUl U l~AO u°!1nq!J1s!p ~Z!S ~1:>!1JUd IUWJou-gol P~Z!r:e-WJouU 10ld lOSO~3.V :>ffi3HdSOmV affi dO Sall~adO~d
OSt
991. UO!tl1m!S ~q1pU~ UO!tOUl pJ~MUMOp JO pJeMdn Jaq1!~ UlOJJP~:I!q!qU! ~Je SI~:>JedJ!~ '( saS~~J:> -U! U~A~ JO) ~IyoJd ~:>uaJ~JaJaq1 ~q1 :lq3'!~q q1!M AIMOIS aJOUl SaS~~J:>apaJm~JadUl~t ~qt J! 'p~q J~q10 ~q1 uo o~Iq~tsun s~ Ot paJJ~J~J S! UO!:I!puo:>~ q:>ns °P~:>~Ids!p ~J~M Aaq:l q:)!qM U! UO!t:>~J!P~qt U! tU~Ul~AOUl J!~q:l ~nufluo:> n!M A~q1 'pmMUMOp JO pJeMdn J~qt!~ P~:)l1IdS!p ~Je A~q1J! 'S! :I~qt ~~Iq~:lsun ~Je :lq3'!~q A~ :I~ SI~:>JedJ~ '~IyoJd ~:>u~J~J~J~q1 u~q1 tq~!~q q1!M J~:lS~JS~S~~J:>~p~Jm~JadUl~:I ~q:l JI o~IyoJd a:>u~JaJ~JS!q1 UlOJJ :lU~J~JJ!P~IyoJd ~ml1J~dUl~:I~ U! s:lIns~J AI~nsn ~u~Ulou~qd ~~:>s-~3'JeI p~ 3'U!:I~~q~:>~JlnsJo ~:>u~ngu! ~q:l :UIn!Jq!I!nb~ ~:I~:>!I~Pq;)ns U! UloPI~s Al~A 'J~A~MOq 'S! ~J~qdSOUl:l~~ql. °n~J JO as!.! 0:1J~q:l!~ A:)U~pU~:I ou s~q :I! 'S! :I~q:l~Ulnpq!I!nb~ ~J:ln~u U! s1 :lq3'!~q A~ :I~J~ JO I~:>Jed~ '~J~qdSOUl:l~ ~qt U! S1S!X~~IyoJd ~ q:>ns JI l~~q Jo ssoI JO U~3' OUq:l!M ~Jnss~Jd J~MOI 0:1AIMoIS sp~dx~ pm! ~J~qdSOUl:l~~Iq~:ls AI~:>!:I~:lsoJPAq~ U! pJeMdn S~AOUl:I! S~ J~ Alp JO I~:>Jed~ JoJ paAJ~s -qo 111q1 S! p~3'pnr ~Je SJ~q:lon~ q:>!qM :lSU!~3'~~IyoJd ~Jm~J~dUl~:I ~ql. lq3'!~q q1!M ~Jnss~Jd U! ~Sl1~J:>~p ~q1 JO ~sn~:>~q ~pm!:I~ 3'U!S~~J:>U!q1!M S~S~~J:>~pAn~UJJOU~Jm~JadUl~1 ~q:l ~~qdsodoJ:l ~q1 uI °Ul 000 I :ls~MoI ~q:l U! ~:>u~InqJm pu~ ~Jm:>ru:ls PU!M uo :I:>~JJ~:I~:jJOdUl! m! sl1q(~pm!:lI~ q1!M ~Jm~J~dUl~:IJo UO!:I~!JRA~q:l) ~IyoJd ~Jm~JadUl~:I :>p~qdSOUl:l~~qJ. o~:>~Jlns~q1 Jo 3'~JP ~UO!:I:>!JJ~q1 pu~ SMOg I~A~I-q3'!q 3'U!I~A~Jd ~q1 Aq p~:>u~ngu! ~Je SPU!M 'J~A~I AJtIpunoq AJtI:I~U~Id~q:l U!q:l!A\ '~J~qdSOUl:l~~q1 U! ~Jm:>nI!,S PU!MUO~:>~Jlns S,q:lJU3 ~q:l JO ~:>u~ngu! JO :lU~:lX~~q:l S:lU~S~Jd~JJ~A~I AJtIpunoq AJtI:I~~Id ~qloUJ 0001 :lS~MOI ~q1 AIq3'nOJ 'JaA~I AJtIpunoq AJtI:I~~Id p~n~:>-OS ~q:l S! UO!SJ~ds!p p~ tJOdSUl1J:I 3'U!W~AO3' ~J~qdSOUl:l~~q1 JO UO!3'~J ~q1 'uo!:lnnod J!~ ~qJn 0:1:I:>~dS~Jq:l!A\ O~~:>S :>!:ldo -UAS~q:l uo :jJodsu~J:I 0:1 SJ~J~J AIUOUlUlO:> ,,:jJodsu~J:I ~3'~J-3'UOI" JO S~UJ!:I:>!:lSP~:I:>~Jeq:> ~A~q UOflOUl JO S~I~:>S :>!:ldOUAS 'AI~U!d -lad Jo ~SJadS!P pu~ :jJodsu~J:I ~:>u~ngu! Jo .J~pJO ~q:l uo s~~:>s J~AO ~:>~Id ~~ sp°!J~d :lU~J~JJW J~AO q3'noq1~
~u~Ulou~qd
UJJ~:I ~ql.
'S){~~M 0:1 SA~p
°SA~p 0:1 SJnoq J~AO S:I~:lnI
~~:>SOS~Ul S~~J~qM 'sJnoq
0:1 S~:lnU!Ul
S:I:>~JJ~~:>!3'OIOJO~:I~UlOJ:>!Ul 'aIdU1Ux~ JOd '~Ulfl Jo
'uo!:lnnod
J~ U! ~IOJ ~ SAl1Id UO!:lOUl Jo s~I~:>s ~s~q:l Jo q:>~3
.gU!Pl!nq ~g;ml u Jo ~){t!M ~q1U! ~W!g~J MOg P~~U:>!ldwo:>~Ip puu ~wnld A~UW!q:>u JO uo!sJ~ds!p puu gu!J~puu -~W ~q~ su q:>ns 'w)( 1 Jo J~pJO ~Ip Jo s~1tI:>suo gu!Jjn:>:>o uu~wou~qd
"'lv.JSO.l.J!W o£
's~UOJJ ronss~Jd-MOl puu -qg!q f.Jo~UJg!W puu 'SPU!M A~11t1A-u!u~unow 'S~Z~~Jq u~s-puul S1!q:>ns 'SJ~~~wol!:)f Jo sp~JPunq Jo s~1tI:>suo gu!JJn:>:>o uu~wou~qd o"lv.Jsos"W °Z (0~1tI:>SOJ:>uw ~~ou~p o~ p~sn Aluowwo:> S! .J!ldou,(s UJJ~~~ql.) 'S~U~U -9uo:>puu suu~:>o ~q~ J~AO ~P!S~J~uq~su~;m ~Jnss~Jd-MOl puu -qg!q ~u~uuUJJ~d!w~s
S1!q:>ns'SJ~~~wol!:)f Jo spuusnoIp Jo s~lu:>suo gu!Jjn:>:>ouu~wou~qd "'llJ.JSO.l.JvW°1
:(I I -ow Jo S;}lg:)s ~:)!goI0l0;}:j;}W
0
O;}l;}qdsow:jg
I UO!:j:);}S ;};}s) SMolloJ ;}q:I Jo s:)!wguf.p
Sg P;}Zpog;}:jg:)
;}q:j Jo f.pms
;}q ug:) UO!:j
;}q:I S! f.gol0l0;}:j;}W
TEMPERATUREIN THE LOWER ATMOSPHERE 767
is referred to as stable. The stability condition of the atmosphere plays an important role in determining the rate of dispersal of material. The phenomenon of direct interest in predicting the dispersion of air pollutants is turbulent diffusion. Actually, turbulent diffusion is something of a misnomer. The phrase refers to the observed spreading of a cloud of marked particles in a turbulent fluid at a rate many ordersof magnitude greater than that from molecular diffusion alone. The spreading is really not due to a "diffusion" phenomenon such as results from molecular collisions but ratheris a result of the rapid, irregular motion of macroscopic lumps of fluid (called eddies) in turbulence. Thus the scales of length in turbulent diffusion are much greater than in moleculardiffusion, with the contribution of the latter to the dispersion of pollutants in turbulence being virtually negligible. The lev~l of turbulence in the planetary boundary layer increaseswith increased wind speed, surface roughness, and instability. Turbulence therefore arises from both mechanical forces (shear, surface friction) and thermal forces (buoyancy). Lower atmospheric temperature profiles determine in part the stability of the atmosphereor, in other words, the degree to which turbulence induced by wind, surface roughness,or buoyancy will propagate through the layer. Under strongly stable conditions, disturbancesare highly damped and mixing of species is strongly suppressed. It is under such conditions that the worst air pollution episodes have occurred. The importance of winds to the atmospheric aspectsof air pollution is clearly evident. Our discussion of winds in this chapter will be largely qualitative; in Chapter 16 we shall treat air motion in the lower atmosphere from a quantitative standpoint.
14.1 TEMPERATURE IN THE LOWER ATMOSPHERE Thelayersof the atmospherecan be classifiedin a numberof ways, suchas by temperature,density,and chemicalcomposition.From the standpointof the dispersionof air pollutants,the most importantclassificationis on the basisof temperature. 14.1.1 Pressure and Temperature Relationships in the Lower Atmosphere We shall utilize the concept of an air parcel, a hypothetical mass of air that may deform as it moves vertically in the atmosphere. The concept of an air parcel is a tenable one as long asthe parcel is of such a size that the exchange of air molecules across its boundary is small when compared with the total number of air molecules in the parcel. As such a parcel rises in the atmosphere, it expands to accommodate the lowering pressure; however, it does so in such a way that exchange of heat between the parcel and the surrounding air is negligible. As the parcel expands upon rising, its temperature decreases.The process of vertical mixing in the atmosphere can, for simplicity, be envisioned as one involving a large number of parcels rising and falling. If there is no heat exchange between the parcel and the surrounding air, the parcel and the surrounding air may be at different temperatures (but not different pressures). The relation of the parcel's temperature to that of the air determines whether the parcel will continue rising or falling or whether it will reach a point of equilibrium. Therefore the variation of temperature with altitude in the atmosphere is a key variable in determining the degree to which contaminant-bearing air parcels will mix vertically.
()'vI)
J!"W/H + II:] . 8
J!"W/Hw + II.) 8w
--
zp .LP ~:)~ :)A\ :)S:)q!
3u!u!qwoJ
"z q~!A\ d pun.L 10 uo!~nI:)J :)q~ J01 '(vv1)
J!1!W/NlU +
(v'vT)
pun (£"1) 'suo!~nnb:)
OA\~ :)Anq:)A\
A\ON
n.J = dp
.LP
dJ!1!W/ LNlU
u!U~qo ;}!\\ '~U!~ut!JJR;}"M
(£.PI)
-OUIJ~q11° Mn11SJY ~q1 '0
= 0 P 10 UO!1!PUOJJ!1nqn!pn
01 s~Jnp~J SJ~u,(p ~q1 q1!M J~q1~3'01'11ns~JS!q13'U!sj)
=
dPA + Apd
(rvI)
. = (Ad)p JI1!W .LPHlU
U;}q.1 .l!t! JO W ssnw
n 10J J!1!W
/ .LHw =
Ad
sn MnI sng JtI;}P!;}q!
sS;}JdX;};}M
'S!qt op 0.1 ..L pun d gU!AIOA
-U! WlOJ n Ot AP d P;}AUO:J;}M snq.1 .;}wnIoA pun ;}lnSS;}ld q!!M unq! l;}q!n1 s;}Iqn~A ;}qt sn ;)lmnl;}dw;}t pun ;}lnSS;}ld qt!M ){lOM Ot W;}!U;}AUO:J;}lOW S! t! os pun '( £.1) q!!M tInS;}llnO ;)U!qwo:J II!M ;}M AI;}tnW!tIfl .;}l;}qdsowtn ;}q! U! SPU;}:JS;}P 10 spU;}:Jsnl;}qt!;} t! sn gU!gunq:J S! ;)wnIOA ;}SOqM I;}:Jmd l!n un Ot S:J!Wl!UAPOWl;}q!JO MnI tS1Y ;}q! AIddn Ot S! W;}W! 1no .;}wnIOA wntS -UO:Jtn W;}tSAS ;}q! JO At!:Jndn:J tn;}q ;}qt S! II.] ;}J;}qM '.LP II.] Ot Innb;} S! n P Ag1;}U;}Inw;}t -U! U! ;}gunq:J ;}q.1
.AP
d -
'AI;}Wl!U 'W;}tSAS ;}q! JO ;}wnIOA
;}qt l;}nn
Ot ;}UOP ){lOM JO nnS;}l
n sn sgU!pUnOllns ;}q! Aq W;}tSASuo ;}UOP Ag1;}U;};}qt S! M P pun 's;}~punoq -SAS ;}qt Ot tndu!
tn;}q ;}q! S!
DP
St! SSOl:JnW;}t
'W;}tSAS ;}qt JO Ag1;}U;} Inw;}w! JO ;}gunq:J ;}qt S! n P ;}l;}qM
MP+ OP = flP
(I'tI)
(1'6) 'S:)!urnUApOWJ~q1
su p~ss~Jdx~
S! S:)!urnUApOWJ~q1 Jo Mul :aSJg ~qJ.
Jo Mul :aSJg ~q:a pUt! Mul SUB' ItI~P! ~q:a AluO p~~u ~M UO!:aul~J p~J!S
-~p ~q1 u!1!:aqo oJ. 's~lgoJd
ItIn:a:)u lIt1 ~mdwo:)
o:aq:)!qM :asu!1!B'U~lgoJd
~Jn:auJ~dw~:a ~:)u~J~J~J
u 8U ~AJ~S Il!M :a! su '~B'uuq:) ~Jn:auJ~dw~:a S!q:a JoJ UO!:aul~J ~q1 ~Ap~p Il!M MOU ~A\ '~J~qdsow -:au ~q1 Jo A:jJ~doJd :)!suq u S! 'sB'u!punoJJns
s:a! q1!M :au~q Jo ~B'Ut!q:)x~ ou q:a!M 'S! :auq1 'AIIt1:)!
-:auqU!PU sloo:) :auq1J!U Alp Jo 1~:)md B'U!SP u JoJ :aqB'!~q q:a!M ~Jn:auJ~dw~:a Jo UO!:aU!Jt!A ~qJ.
NOllflll0d
~IV dO ADO10~O~3W
89L
/
:J!~uqU!PU WOlJ ~Iyold ~lmgl~dw~1 ~m:Jg ~q1 Jo ~ln1lUd~p ~q1 Jo ~lnSg~W g S! 2p (JP snqj,
(vI'vI)
2p J+-", .LP
zp fJP
f.q P~1UlU!XOJdduu~11° S! (£IOtI) '.L 01 aso!:J~1!nb S! () '~pm!ugulU u! '~:)u!S o~Jnss~Jd~:)upqs ~q1 su u~){U:IS! Od 1!.L = () '0 = Z 1V
(0 'vI)
(J+
:leq:l ~~S ~M (ZI'vI) wold 'J ~:leJ ~sdeI :J!~Rqe!pe~q:l pUB.L ~JmeJ~dw~:I ~:lnIosqe Jo :lu~!peJ~ ~q:l Jo sUJJ~:Iu! p~SS~Jdx~ ~q I.ew z V!M (J Jo :lU~!peJ~ ~ql. 'sMoIIOJ se (J ~JmeJOOw~:lIB!:lU~:lOd~q:l :I~JdJ~:lU!J~q:lJnJ ueJ ~1\\ 'suos!ledWOJ q:Jns~U!:le:l!I!JeJ I.q~J~q:I '(J snSJ~1\Z Jo :laId e uo IBJ!:IJ~I\ ~m ~JmeJ~dw~:lIB!:lU~:lod uo p~seq S~IyoJd~JmeJ~dw~:I J!:leqe!PV '~:leJ ~sdeI J!:leqe!pe ~q:I 0:1~IyoJd ~JmeJ~dw~:llBmJe ~q:I :):leI -~l 0:1:lueM ~M pUB J!:leqewe WOPI~s S! ~J~qdsow:le IemJe uB :)sneJ:)q ~JmeJ~dw:):l1B9U~:lod ~V :)JnpOIJU! :)1\\ °a.lnjv.ladwaJ /V!JuaJod :)q:l P~IIBJ S! (Z I 'v I) I.q p:)uy~p (J ~JmeJ:)dw:):I :)ql.
Aq u~A1~ 81 od 0:1Ang:J1:1gqg1Pg :lq~nOJq J1 ~UJO:JPInoM d '.L ~:lg:l8~q:l u1 f.1~U1~1l0J~ Alp q:J1qM 0:1e ~JmgJ~dUJ~:I~q:l 'I~A~I punOJ~ ~q 0:1u~)jl!:I 8112 J1 '~Idurnx~ JOd
[ (12)d
(1I'vl)
,{/(I-,{)
(Z2){i
= (12).1
(Z2).1
SI UOQRJ~~:jUl S!q1}0 :jlns~J ~q:j '":;Id:; = t! UO!:j!uy~P ~q:j pUR 'J!1JW IN + ":; = d:; UO!:jRI~JS~~ I~~P! ~q1 's:ju!Od OM:j AUR U~~M:jgq (v.vI) ~U!:jRJ~~:jU!Aq puno} S! ~IyoJd ;)!:jRqR!PRURq:j!M
8U!AOldwg
~l\}qdsoW:jR UR U! s:jq~!~q OM:j :jR s~Jnss~Jd pUR s~JmRJ~dw~:j ~q:j U~~M:j~q d!qsUO!:jRI~J~q~ .I!V)O la3.1ud (SU!lIU.{ .10) SU!S!H U)O saSuuq:) a.luJu.ladwa.L
,1"1:'1
"OM~ ~q~ U~~M~~q ~:)U~J~11!P ~I~~!I S! ~J~41 SUO!~~J mIod
PIa:) U! SR~J~qM '~~RJ ~sdRI :)!~RqR!PR f.Jp ~411° pJ!q~-~uo
~sdRI :)!~RqR!PR ~~M ~q~ J!R !R:)!doJ1 UJmM uI "z 10 ~u~pu~d~pu! J!~RqR!PR ~~M ~q~ snq.L "~Jn~RJ~dUJ~~ ~q~ uo AI~uOJ1S spu~~P
~umsuo:)
zpj"mp
AIq~noJ
S! ~~RJ
R ~ou S! ~~RJ ~sdRI
A~!~URnb ~41'~Jn~RJ~d
-ilIa~ q~!M AIP~:)[mUJ f.J~A S~SR~J:)U! J~~RM 10 ~Jnss~Jd JOdRA UO!~RJn~RS~q~ ~:)U!S "J!R f.Jp J01
Nonn"Od 'MIVdO J..DO'0'M0~3W
OLL
TEMPERATUREIN THE LOWER ATMOSPHERE 771
conditions.Integrating(14.14)with respectto z gives
One might ask: Why does not the atmosphere always have an adiabatic lapse rate as its actual profile? The reason it does not is that other processes such as winds and solar heating of the Earth's surface lead to dynamic temperature behavior in the lowest layers of the atmospherethat is seldom adiabatic. These other processesexert a much stronger influence on the prevailing temperature profile than does the adiabatic rising and falling of air parcels. Let us compute the temperature change with z of an isolated parcel of air (or possibly other gas) as it rises or falls adiabatically through an atmosphere that is not adiabatic. We assumethat conduction or convection of heat across the boundary of the parcel will be slow compared with the rate of vertical motion. Thus an individual parcel is assumed to rise or fall adiabatically, even when the surrounding air is nonadiabatic. Let T denote the temperature of the air parcel and T' the temperature of the surrounding air. At any height z, the pressure is the same in the parcel as in the atmosphere. The rate of change of T with p in the parcel is given by (14.4), and the rate of change of p with z is given by (1.3). Combining these two relations, we find that
dT dz
T
=-rr
Thereforethe rising air will cool at a greateror lesserratethanthe adiabatic,dependingon whetherits temperatureis higher or lower than that of the adjacentatmosphere. If A is the actuallapserate in the atmosphere,then at any height z
T'(z) = T~- Az
(14.17)
Then,from (14.16)and (14.17),
dT dz Integrating(14.18)with T(O)
=-r
T(z)
(14.18)
1:' - Az 0
= To.the surfacetemperatureof the rising parcel T(z) = To .!i-=!:.31:'
riA
0
so that, in general,
dT dz
=-r
~!!:!:. T~
(r-A)fA To
(14.20) "TJ
'.J!Jvqv!pv.Jadns P:)I1g~ :)m .1 < V q~~A\ 10J V S:)tg1:)sdg'l °a/qvJsun P:)I1g~ S! :)l:)qdsow -tl1 :)q1 .1 < V J! 'A~ugAonq Aq p:)~Ugqu:) S! u090W {1J~!:)J:)A:)~U!S o:)l:)qdsowtg :)q1 U! :)tg1 ~Sd111 :)q1 ugq1 ss:)I S! ~U!tg:)q ~9gqg!pg Jo :)tg1 St! J! pU:)~S:)p Ot :)nU!tUO~ I1!A\ l!g ~U!pUnO1
-lnS~qt ugqt l~IOO~1~ JOI~~md g 'AlmI!W!S '~s!l Ot s~nu!tuo~ I~~md ~q1'.1 < V Sg~UOIsy ,1 .-
8=
;)A\.
~~
.L
..07 I.L
J! 'SMOIlOj
Sg V
p~
J
S;):lgJ ;)sdgI OM:I ;)q:} jO SUU;):I U! UO!:lgJ;)I;)~~g ;)q:} ss;)Jdx;)
',1 < .L Sg guoI Sg ;)s!.l 0:1 s;)nu!:luo~
I;)~Jp,d ;)q:} p~
Z q:}!M S;)Sg;)J~U! U09gJ;)I;)~~g
'"
07
;)q:l snq.L
(~,.L- .L) a= d-
8
,d
= UO!tgJ~I~:):)V
S1 I;):)IP.d ;)q:I Aq P;):)u;)1.1;)dx;) u011eJ;)I;):):)e ;)q:I ',d
J1t! ;)q:I Jo
11!q1pOl! d s1 I;):)IP.d ;)q:I Jo A11SU;)P;)q1 JI °2 q:l1M S;)Se;)J:)u1 s8U1PUnOJJnS ;)q1 pOl! I;):)IP.d 8U1S1.1 ~Q1U;);)M1;)q ;):)U;)J;)JJ1P ;)JmeJ;)dUJ;)1 ;)q11nq 'AI{t!:)11eqe1pe SIOO:) I;):)IP.d J1t! ;)~ '(;)1eJ ;)sdeI :J1l1!Qe1pe;)q:I SP;);):)X;) ;)1eJ ;)sdel S11) ;)1RJ :)11eqe1pe ;)q1 ueq1 2 q11M AIP1deJ ;)JOUJ S;)Se;)J:) -~p ;)JmeJ;)dUJ;)1 q:)1qM U1 ;)J;)qdSOUJ1e Ol! U1 ;)s1.101 SU18;)q I;):)IP.d UJIP.M e ;)soddns
sn 1;)'1
.UO!!OW Jt!;)!1l'JA'Jsoddo s'J;)JOj A;)~Aonq-alqIJIS .UO!!OW 19;)!:)J'JA 'J;)Ugqu'J s'J;)JOj A;)~Aonq-alqIJISul1
:J~q1!~ S! ~J~qdsOW1g~q.L '~lyoJd ~lmeJ~dw~1 :)!1gqg!pg Ug Sgq wopl~s ~J~qdsOUJ1g~q1 's~:)u~nlJu! J~q1g~A\ Ig:)°1 pug gU!1g~q ~JeJlns Jo ~sng:)~q 'J~A~A\OH 'A1!I!qg1S/V.llnaU P~I~:) S! 's~:)JoJ A:)ugAonq Aq P~1:)~JJtl10U ~m s1u~w~:)glds!p ~:)!1J~A q:)!qA\ U! 'UO!1!PUO:)g q:)ns 'sgU!pUnOJJnS S1! q1!A\ wn!lq!l!nb~ ~eS,(gA\lg S! Al~:)!1J~A P~:)glds!p J!g Jo 1~:)md g ':)!1gqg!pg S! ~1gJ~sdgl ~q1 JI 'J~ Jo UO!10W \1!J!1J~A~q1 uo ~:)u~nlJU! 19~~ g Sgq ~J~qdsOW1g ~q1 Jo uo!1Jod J~A\OI ~q1 U! ~1gJ ~sdgl ~ql.
A.LI'lIHV.LS ;)IH:!IHdSOW.LV Z"t'I
':>!1~q~!P~ ;}q:J ~qt aql t~ p;}:>np°I!u!
gU!IOO:> 10 ;}t~J tU;}J;}l1!P ~ ;}A~q II!"'?r
#
°.r ;}Jm~JOOW;}t ~ t~ punoJg
J~ 10 I;}:>md ~ ';}t~J ;}sd~I :>!t~q~!P~ u~ s~q ;}J;}qdsowt~
?z OJ J-
(I'l'vI)
;}qt 1! U;}A;} 'snq.L
= 2p .LP U~q1 'J
NOIffillOd
= V J! '~Slno:)JO
~IV dO AD010~0~3W
lLL
ATMOSPHERICSTABILITY
773
On the other hand, if A < r, a rising air parcel will cool more rapidly with height than the surroundings and a point will be reached at which the temperature of the parcel equals that of the surroundings. We see that, if A < r, the acceleration will oppose the motion of a parcel. Thus any fluctuations in the temperature of an air parcel will cause it to rise or fall, but only for a short distance. When A < r, the atmosphere is said to be stable. Summarizing, the conditions are:
A = r, neutralstability A > r. unstable(vertical motionsenhanced) A < r. stable(vertical motionssuppressed) These same arguments may be applied to the case of a moist atmosphere. Because of the releaseof the latent heat of vaporization, a saturated parcel cools on rising at a slower rate than a dry parcel, since
rdry> r wet Thus a cloudy atmosphere is inherently less stable than a dry atmosphere, and a stable situation with reference to the dry adiabatic lapse rate may actually be unstable for upward displacements of a saturated air parcel. Figure 14.1 summarizes the types of temperature profiles found in the lower atmosphere, and Figure 14.2 shows a typical diurnal variation of temperature near the ground. The airmass near the ground is adiabatic only under special circumstances. Adiabatic conditions are reached usually when the sky is heavy with clouds and there is a moderate to high wind. The clouds prevent radiation from reaching the surface and ensure that the temperatureof the ground does not differ greatly from the air just above it. The wind serves to mix the air, thereby smoothing out temperature differences. Vertical movement is then a re-
FIGURE 14.1 Temperature profiles in the atmosphere. (1) Adiabatic lapse rate (neutral stability, about 1°C per 100m) T decreaseswith height such that any vertical movement imparted to an air parcel will result in the parcel maintaining the same T or density as the surrounding air. (2) Superadiabatic (unstable): a rising air parcel will be warmer than its environment so it becomes more buoyant and continues rising. (3) Subadiabatic (stable): a rising air parcel is cooler than its surroundings so it becomes less buoyant and subsides. (4) Isothermal (stable): temperature is constant with height. (5) Inversion (extremely stable): temperature increases with height.
8u!x!w
MoII\1qs
U! 8urlIns;)J
S!q:l1ng
U;)1jO 'AIMols
°J;)AUI ;)Iqms ;)JOW U Aq p;)dd01 AII\1nSn S! J;)AUI °os JO SJ;)1;)W p;)JPunq
1SJY ;)q:I JOj ;)IyoJd
100:> S1;);)J:jSpuu S~u!PI!nq
-lnp SUO!ss!W;) jO U°rlUI!1U;)A
;)In:jUJ;)dW;)1 ;)Iqu1sun Ut!
'S;)!1!:> U! 1q~!U 1Y °A1!:>U U! 1q~!U ;)q:I ~U!
;)q:I S1U;)A;)Jd SUO!SJ;)AU! I\1uO!1U!PUJ luwn:j:>OU jO ;):>u;)s;)Jd ;)q.t
'u°rlU!PUJ Aq 1q~!U 1U sloo:> punoJ~
;)q1 U;)qM Apu;)nb;)Jj
SJn:>:>o UO!S.liJI1U! IlJUO!JlJ!PlJ.l Y
O;)Z;);)Jq PUt!I WlUM U Aq P!UIJ;)AO S! ;)Z;);)Jq U;)S 100:> U U;)qM ;)su:> ;)q:I U! su 'P~1gA;)I;) JO 'SU!Uld PIa:> J;)AO SMOY J!U WlUM U;)qM su 'P;)Suq-;):>upns
;)q Ut!:> UO!SJ;)AU! ;)q.t
°J!n J;)PI°:> JO ;):>upns PIa:> U J;)AO SMOY J!U WlUM U;)qM P;)UlJOj S! UO!S.liJI1U! iJl1!J.JiJl1plJuy lUOJj PIa:> U pUt! WlUM U q:loq jO ;):>UP;)1U! ;)q:l1U 1S!X;) II!M UO!SJ;)AU! uy jO uorl!sod
;)q:I ~U!MOIIOj
lUOJj
;):>upns ;)q1
U!UJ pUt! UO!1USU;)PUO:>01 SPU;)I J!U WlUM ~U!SP ;)q:I '1UOJj PIa:> U jO
~Sg:>;)q:I U! pUt! 'J!U PIa:> ;)q1 S;)P!JJ;)AO J!U WlUM ;)q1 ;)su:> q:>U;) uI °USJ;)A ;):>!A puu '1UOJj PIa:> g su UMOW{ S! 1UOJj ;)q:I '~U!:>UUApU S! J!U J;)PI°:> jl
O;)Jnss;)Jd pUt! 'A1!p!Wnq
'S;)Jn:jUJ;)dW;)1
1U~J~JJW ;)1!nb jO S;)SSUUlJ!U OM1 U;);)M1;)q ;):>UP;)1U! uu 1U In:>:>o Ut!:> UO!S.liJI1U! IlJJuO.l!y "iJ.JuiJp!sqns
P;)UlJ;)1 S! ss;):>oJd uo!ss;)Jdwo:>
puu ~u!){U!S ;)~
llns;)J
II!M UO!SJ;)A
-U! Ut! '1U;)!:>Yjns S! ;)SU;)J:>U!;)In:jUJ;)dW;)1 ;)q1 jl ";)Jn1UJ;)dW;)1 U! ;)SU;)J:>U!1S;)1U;)J~;)q:I snq:l pUt! uo!ss;)Jdwo:>
jO ;);)J~;)P 1S;)1U;)J~ ;)q1 ;):>u;)p;)dx;)
-un SJ;)AUI J;)ddn sy "AIIU1uozpoq
A;)q1 ';)~Ut!q:> UO!1UA;)I;) 1S;)1U;)~ ;)q:I O~J;)P
S;)AOW 1! su SSUUlJ!U uu jO uo!ss;)Jdwo:>
pUt! '~u!){U!S
'~U!
-pg;)Jds ;)q:I ;)AIOAU! ;)AOqU WOJj ~U!1U;)q jO 1lns;)J ;)q:I ;)Jt! 1Uq:I SUO!SJ;)AUI "SUO!SJ;)AU! iJ.JlJjlns 10 piJSlJq-puno.l8
P;)UlJ;)1 ;)Jt! SUO!SJ;)AU! q:>ns ("J;)1UM ;)q:I Ut!q1 J;)IOO:> ;)q AUW ;):>upns PUt!1
~q:l1q~!U 1U 1Uq:I ;)10N) "UO!SJ;)AU! Ut! s;):>npoJd OSIU (J;)1UM) ;):>upns 100:> U ;)AOqU 01 (pUt!{) ~:>gJlns WlUM U ;)AOqU WOJj SSUUlJ!U UU jO 1U;)W;)AOW ImuozpOH
"punOJ~ ;)q11U ~U!IOO:> U°rl
-g!PUJ jO ;)snu:>;)q '1q~!U 1U AIJt!In:>!:IJ\1d 'UlJOj U;)1jO SUO!SJ;)AUI ";)AOqU WOJj ~U!1U;)q JO MOl -~q WOJj ~U!IOO:> q~nOJq1 'SAUM OM1 jO ;)UO U! UlJOj 'I"v 1 ;)Jn~!d
U! UMOqS su 'SUO!S.liJl1u/ O;):>UId
S~){n1I\1P;)1UW jO ~U!X!W ;)p:j!I puu ';)lqu1s AJ;)A S! J!U ;)q1 SUO!1WUO:>;)S;)q:I J;)PUfl }g~J~ jO ;)Jt! 'SUO!1!PUO:> UO!SJ;)AU! P;)II\1:>-oS '1q~!;)q U! SUO!1Un:j!S '1u!odpUt!1S
";):>Ut!:jJodw!
q1!M S;)SU;)J:>U! ;)In:jUJ;)dW;)1 ;)q1 q:>!qM
UO!1nIlOd J!U Ut! WOJd "A:>uuAonq 10U 'S;):>JOj I\1:>!Ut!q:>;)W jO 11ns
.:)!1I!ql!!PI! J1!:JU01 :J!y01d :JJn11!1:Jdw:J1 :Jq1 SUln):J1 UOOUl:J:y1!:Jq1U! gU!!OO:):Jq1 .w.d t 1V "(:)!1I!ql!!pI!1:JdnS) gU!11!:Jqp:JnU!1uO:)S! :J1:Jq1.w.d Z 1V "(:)pl!ql!!pl!qns
Apqg!lS) :Jspuns 1:J1)1!A!P!dl!l p:J11!:JqS! pun01g:Jq1 .W.I! 61V .UO!Sl:JAU!
p:Jsl!q-pun01g I! gU!:)np01d '1!1!:Jq1UI!q1 :J1n)1!1:JdW:J11:J,\\0!1!01 pun01g :Jq1S!OO:)A}JS}J:)I!!q 01 q1J1!:J:Jq1 WOlJ UOpl!!pl!l .W.I! t 1V .pUn01g :Jq1J1!:JUS:J1n)1!1:JdW:J1)0UOpl!!J1!A !I!Uln!p !1!:)!d,\J. .w.d Z
.w.d t
.W.I! 6
rill
nflDI.iI
.W.I! t
.L
NOun"Od
~IV dO ADO'O~O~HW
f'LL
PROBLEMS 775
Figure 14.3showsmonthly averagediurnal and seasonalvariationsof the vertical thermalstructureof the planetaryboundarylayer at rural site nearSt. Louis, Missouri.
PROBLEMS 14.1A Showthat if the atmosphereis isothermalthetemperaturechangeof a parcelof air rising adiabaticallyis T(z)
= Toe-rz/To
Where Toand T~are the temperaturesof the parcelat the surfaceand of the air at the surface,respectively. 14.2A A rising parcel of air will cometo rest when its temperatureT equalsthat of the surroundingair, T'. Showthat the height z wherethis occursis given by 1
. 1;,r
1{(r-A)
0
z= A ,~
What condition musthold for this result to be valid? 14.3A Show that the condition that the density of the atmospheredoesnot changewith height is
i, U!S~q ~J!~U~~q:I J~AO UO!SJ~AU!gq~ AOJ:JS~P O~J~pJO U! p~J!nb~J I!O }O ~unow~ ~q:I S! ~~qA\ '1-(J!O)g){/I~:> LOI x pool S! A:>U~!:>YJ~%001 q~!A\ gU!Wnq I!O Aq p~:>npoJd AgJ~U~ ~q:I pUU Zill){ 00017 S! U!S~q s~l~guv SOl ~q~ }O ~~J1!~q~ }I
JoV'ZZ= .l.r
JoI.vI = fl.r 'q:>g"'H goo']
W~~OI = .LH
w~Lv= HH
"'Sf} .w.g L!g 'g!woJ!~;) !g SUO!!!puo:> l"'Qw",!d",S Ig:>!dl.! 10J .1' JO ",n~A "'q! ",!gW!!S3
°m",u!I S! UO!Sl",AU! "'q:I U! !qg!",q q:I!M ",Sg",l:>U!",In}gl",dw",! JO ",!gl :lq! !gq:l PUg :>!!gqg!pg S! UO!Sl",AU! "'q! JO ",Sgq "'q:I MoI"'q ",!gl ",sdgI "'q:I !gq! ",wnssy UO!Sl~AU!}O dot puu ~s~q}O s~lm~l~dw~
= .L.r 'u-.r
UO!Sl~AU!}Odot puu ~s~q}O Stq~!~q = .LH = d:J
'HH
l!~ }O At!:)~d~:) t~~q
l~}O
At!SU~P ~~~l~A~ = d
;Jl;JUM
f.q U~A!~ S! MoI~q WOJJ ~U!1e~q f.q UO!SJ~AU!p~1eA~I~ ue f.OJ1S~P01 p~J!nb~J H f.~J~U~ ~q1 1eq1 MOqS "d01 UO!SJ~AU!~q11e 1eq1ueq1 J~q~!q :lJn1eJ~dw~1e 01 UO!SJ~AU!~q1 Jo d01 ~q1 MoI~q J!e ~q1 lfe ~U!1e~q f.q JO ~seq UO!S -J~AU!~q11e 1eq1MoI~q ~JmeJadw~1 e 01 pmMdn ~seq UO!SJ~AU!~q1 wol] J~ ~q1 ne ~U!IOO~f.q J~q1!~ ~uop ~ Plno~ S!q1 '~Id!~U!ld uI "J~f.eI UO!SJ~AU!p~1eA~I~ ue ~U!1eU -!W!I~ Jo f.1!I!q!Se~J ~q1 J~P!SUO~01 ~U!1S~J~1U!S! 11 "SW~IqOJd UO!1nnOd J!e f.1!UnW -WO~Jo ~~U~P!~U! ~q1 JoJ ~lq!suods~J J01~eJ ~W!ld e ~JP.sJ~f.el UO!SJ~AU!p~1eA~13
)0 f.1!~ede~
~q1 q1!M 11ns~J mof.
. I-q
~JP.dwoJ
IIS'tI
"A\){ 901 x ~Z"1 :wea J~AOOH ill){ L Jo f.1!~01~A e q1!M sseUJJ~
:lq1 ~AOW 01 p~J!nb~J J~Mod ~q1 ~U!Wl~1~a .u°!1~!lJ pUnOJ~ f.q p~1ed!ss!p f.~J~U~ :lq1 01 fenb~ S! MO~ uf!!:}sns 01 p~p~~u f.~J~U~ wnUl!u!lli ~q1 pue '~'O ~q 01 p~wns -se S! u!seq ~q1 J~AO ~U!AOW J~ JoJ u°!1~!lJ Jo 1U~!~YJ~0~ ~~ 'W 0017Jo 1q~!~q ue~w e q1!M UO!SJ~AU!p~1eA~I~ ue Mol~q p~uyuo~ S! J~ p~1nnod ~q11eq1 pue z ill){ 00017Jo e~m ue seq u!seq ~q1 ~wnssv "u!seq S~I~~UV sO'] ~q1 J~AOJ~ Jo ~wnloA ~q1 ~U!~elds!p U! S1U~w~J!nb~J J~Mod ~q1 ~u!WlJx~ 01 ~JP.no}.. .S1J~S~p~u!punOJJns ~q1 01U!1no J~ ~q1 ~u!dwnd pue u!seq ~q1 ~u!punoJJns suf!!:}unow ~q1 U! sl~uum ~~ml
~Um!lP f.q p~1eqe~q ue~ S~I~~UVSOl U! uo!1nnod J~ 1eq1p~sodoJd u~~q seq 11 iIt'tI NOllfl'I'IOd
lIIV dOJ..DO'IO1l0~HW
9LL
Clouds are one of the most significant elements of the atmospheric system, playing several key roles.
1. Cloudsarea major factor in the Earth'sradiationbudget,reflectingsunlightbackto spaceor blanketing the lower atmosphereand trapping infrared radiation emitted by the Earth's surface. 2. Cloudsdeliver waterfrom the atmosphereto the Earth'ssurfaceasrain or snowand arethus a key stepin the hydrologic cycle. 3. Clouds scavengegaseousand particulatematerialsand return them to the surface (wet deposition). 4. Cloudsprovide a mediumfor aqueous-phase chemicalreactionsandproductionof secondaryspecies. 5. Cloudsaffect significantlyvertical transportin the atmosphere.Updraftsanddowndraftsassociatedwith cloudsdeterminein a major way the vertical redistributionof tracespeciesin the atmosphere. Despite their great importance, clouds still remain one of the least understood components of the weather and climate system. We begin our discussion of clouds by summarizing the properties of their basic constituent, water. We then investigate the formation of droplets in a cooling air parcel. The microphysics of a droplet population and the dynamics of cloud formation are then examined. Finally, we revisit the chemical processestaking place in clouds and fogs using the material already developed in Chapter 6. A comprehensive discussion of cloud physics, beyond the scope of this book, can be found in Pruppacher and Klett (1980).
15.1 PROPERTIES OF WATER AND WATER SOLUTIONS Liquid water, H2O, is characterized by the strong hydrogen bonds between its molecules, which give rise to a number of unique properties. Because of the strength of these bonds, a relatively large amount of energy is required to evaporate a unit mass of water. Similarly, the latent heat of freezing is also relatively large, as a result of further strong bonding in ice crystals. The surface tension (surface free energy) is also large. Table 15.1 summarizes thesephysical properties of water. In the following sections we discuss the atmospherically relevant properties of water and and its solutions.
777
.AIUO ~Jm~J~dUl~~ UO pu~d~p o~ p~UlnSS~ ~ OS~ II!M s~!d~q~u~ ~s~q~ 's~sodJnd Jno JoJ 'snql. 10861 '~~~I)l pu~ J~q:)~ddrud) %Z"o Ut?q~sS~1Aq s~~Ut?q:)UO!~~JOd~A~JO Adl~q~u~ ~q! 'w ~ Jo SUO!~~J~u~:)uo:) IJ~N ~~ U~A~ 'J~A~MOH .suo!~nl -os JOJJ~JJW o~ p~~:)~dx~ ~JP.pUt?s~~u~q:) ~s~qd J~~~M~Jnd o~ J~J~J s~!dl~q~u~ ~AOq~ ~ql.
(v'~I)
z.L ~OIO.O- .L £O.Z+ ~.£££= (I-~
f)IUHV pUB
(£'~I)
SB~m ""HV
')I U!.L ~lmB1~dw~~ 1°1 SMoIl01 '~U!~I~W 1° pUB ,nHV 'UO!~B10dBA~1° S~B~q~u~~Bl:JY!:J~s ~q:I o~ s~Y yB:J!l!dwg .la}u,\\ .l°J ~u!~law Jo pUtt uoPU.lOdUA3 Jo sJuaH JuaJu']
'l"J'SI
.aJm~J;:)dwa1 uo ,(IuO spuadap puu UO!1~J:)ua~uo~1aIdoJp aq1Jo 1uapuadapu! s! Ja1~MJO ,(1!~~d~~ 1~aq aq11~q1 awnss~ n!M aM 'SUO!1~~!Idd~pnoI~ JOJ 'aJoJaJaq.L .W 1.0 u~q1 JaIfBws SUO!1~J:)ua~uo~a1nIos JoJ aIq!g!Igau S! aguuq~ S!q11nq 'Ja1 -~M Jo ,(1!~~d~~ 1~aq aq1 JaMoI SUO!1S0W .Ja1~M aJnd 01 SJaJaJ,(1!~~d~~ 1~aq aAoq~ aq.L
.]-)1 ]- g f U! S! md:Jpuu )I U! S!.L aJaqM
80£ >" .L >" £Ll ('l'~I) (I'~I)
',(80£ -.L) 8-01 x 9'1+
z{80£ - .L).-01 x £'1 + ~LI'v
£Ll>" .L >" ££Z
=
tnd:J
'z{£Ll - .L),-01 x Lv"£+ 81Z'v = tnd:J
sd!qsuO!tt!I~l It!:)!l!dUI~!UI~s "Qt Aq p~q!l:)S~p ~q Ut!:) pUt! ~lmt!l~dUI~t qt!h\ S~!lt!A .mdg 'l~tt!h\ P!nb!I}O tt!~q :)y!:)~ds ~ql.
a;)! pUB .latu/t\. JOJuan ;)y!;)ads
I'I'SI
offlD
z- W f £LO'O
1_8 PI ££'0 1_8 PI ~Z"l 1_8PI~"l 1-)l1_8 f £9t'l 1-)l1_8 f 81Z't 1-)l1_8 f 'l~6'1
(;)oOV
UO!SU~1 ~:>RjJns
l!t!pa}1!A\
UO!StlJ JO 1R~q 1U~1Rl
;)00
IUHV
;)0001
aHV mae mde ade
;)nJt!A
UOj11!lod1!A;) }O 11!;)q 1U;)11!'1
;)00 lod1!A (;)00)
;)Wn\OA
1U1!1SUO:>11! 11!;)q :>Y!:>~S
P!nb!'1 lod1!A
~lnSS~ld
1U111SUO:> 111111~q :>Y!:>~S
,(1l~Old
'.}lmUl'.}dw'.}lJ'.}suqd
JiJ}1Ift\JOsiJ!}JiJdoJd l'SI 3'1HVJ. SJISJ..Hdana']J
8LL
PROPERTIESOF WATERAND WATERSOLUTIONS 779
15.1.3 Water Surface Tension Thesurfacetensionof water decreaseswith increasingtemperature.Pruppacherand Klett (1980)recommenduseof the following function: (Two
= 0.0761-
55 x IO-4(T - 273)
for the temperature range -40 to 40°C, where awo is in J m -2. The surface tension of water is 76.1 x 10-3 J m-2 at O°C, and decreases by 1.55 x 10-3 J m-2 for every 10°C. Note that these values can be used for supercooled water also, that is, liquid water existing at temp,eraturesbelow O°C. The dissolution of other compounds in water alters its surface tension. Experimental valuesof the variation of water solution surface tension with the solution concentration are tabulatedin the Handbook of Physics and Chemistry. For salts like NaCI and (NH4)2S04 the dependence of the solution surface tension, aw, on the solution molarity is practically linear over the range of atmospheric interest:
O"w(mNaCI,
T)
= O"wo(T)+
1.62 x 10-3 mNaCI
O"w(m(N~n so.' T) = O"wo(T)+2.17 x 10-3 m(NH.)2S0. where uwo(T) is the surface tension of pure water and mNaCland m(N~nS04 are the molarities of NaCI and (N~)2 SO4 in M, respectively. I A last issue is the dependenceof the water surface tension on the size of the droplet. One would expect that as the droplet surface tension is the result of attractive forces between water molecules near the surface, a change in droplet diameter would change the number of molecules interacting with the molecules at the surface, thus changing the surface tension.However, becauseof the small range of molecular interaction, this dependenceof Uwo on size is significant only for extremely small drops, consisting merely of a few thousands of molecules, and the exact dependence is still a subject of debate (Pruppacher and Klett, 1980).The change is probably smaller than 1% for water drops as small as 0.1 JLmand becomessignificant only at drop sizes less than 0.01 JLm. Therefore the dependence of surfacetension on droplet size can be neglected for atmospheric cloud applications.
]Because solutes alter the surface tension of water, one would expect variations of the concentrations of these speciesnear the droplet-air interface. For example, as nature tries to reach states of lower energies, if a solute increasesthe surface tension of water, this species at equilibrium should have lower concentrations at the interface than in the bulk solution. The opposite should happen for a surface-active compound that lowers the surface tension. One would expect higher concentrations of this species near the interface than in the bulk. For a I M NaCI solution this surface tension effect results in a NaCI deficiency at the interface of less than 1% (Pruppacher and Klett, 1980). The same authors suggested that for drops with diameters larger than 0.2 JLm and NaCI concentrations lower than I M, this concentration gradient due to surface tension is less than I % and can safely be ignored. The effect of solution inhomogeneity due to surface tension will therefore be neglected for our discussion of atmospheric droplet formation.
O£
I
I
I
I
I
I
I
I
I
Sl I I
I
I
I
"J;}!1!1V!.(;}jq1!!S1!!;}W)
P;}jooJJ;}dns
O! puods;}JJOJ
JoO
IV!.Oj;}q s;}nj1!A rSI
::>0
Ol I I
I
I
I
S~ I I
";}Jnt1!
:I1InDM
'9JnJDJ9dw91 I
I
I
0~ I I
I
I
I
S I
I
I
0 I
I
I
I
I
I
I
SI
I
I
o~I
I
,0
5
~ c
-
CD ., <
(') 0 :J n CD
S~
C "C 0 ..,
O~
~
Ol
a o' :J
SZ <0 3 I CIO
OE
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
-
(mil
I
I
I
I
I
1I1l).z
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
= .LP
mW(.z)IIHV
odp
:uO!1t!nb;) UOJA;)dt!{:)-sn!Snt!{J ;)q1 Aq '6 J;)1dt!qJ U! st! 'p;)1t!{n:>{t!:>;)q Ut!:>;)Jmt!J;)dW;)1q1!M ;)Jnss;)Jd UO!1t!Jmt!S;)q1Jo ;)~ut!q:> ;)q.L
-
W ~ M;)J t! Jo J;)pJO ;)q1 'S!st!q sst!w t! uo oS!SUO!1!PUO:> :>P;)qdsOW1t!1t! J;)1t!M
/ od
S1! Aq P;)U!UJJ;)1;)PS! punodwo:> t! Jo '.IN
= 0.7 'UO!1t!J:lU;):>
,-- --,---'o~';)Jnss;)Jd JOdt!A UO!1t!Jmt!SS1!01 UOP!uY;)P Aq {t!nb;) {t!!1Jt!d ;)st!qd-st!~ S1! 'JOdt!A S1! q1!M wnpq!{!nb;) 1t! S! ;):>Ut!1sqns;)Jnd t! U;)qA\. ;J.I;Jqdsow}V ;Jq} q1!M ;J;)8J.l°S .I;J}8M. ;J.lDd }81.I 8 JO WO!.lqmob3
r,~1
.P;}A!J;}P ;}q I1IA\ t;}IdoJp uoItnIos sno;}nb~ U\1JoJ SUOItIpuo:>wn!JqII St:>;}l1;};}S;}q:!'AI~UId .;}:>~Jlns uoItnIos J;}t~A\ t~lJ ~ .;}J;}qdsowt~
.
v
-
c
.
C.,.'
..
-
...
'suoflnIos sno:)nb~ Jo UO!1~WJOJ:)q1 puu S:)I~!~d :)q1 Jo :)Jm~AJn~ :)q1 :S1~:)JJ:)OM1 Aq 's:)s~qd sno:)nb~ puu s~~ :)q1 U:):)M1:)qWn!lq!I!nb:) J:)1~MJOJ UO!1~:)SS!q1 uI 'S:)I~!~d
IOSOJ~~1~M pUU S1~IdoJPJ:)1~M
. J:)1~M S~ ~s~qd s~~ :)q1 U! S1S!X:):)J:)qdsow1~ ~q1 U! J:)1~A\ D:!IHdSOWJ.V:!IHJ. NI WillHm,m():!I
H:!IJ.VA\. rSI
S:)ISAHd ana'I:)
08L
WATEREQUILIBRIUM IN THE ATMOSPHERE 781
TABLE 15.2 Saturation Vapor Pressureof Water Vapor Over a Flat Pure Water or Ice Surface pO(mbar) = ao + a) T + a2T2 + a3T3 + a4T4 + asTs + a6T6 (T is in °C) Ice (-50 to DOC)
Water( -50 to +50°C) ao = 6.107799961
= = a3 = a4 = as = a6 = al
a2
4.436518521 1.428945805 2.650648471 3.031240396 2.034080948 6.136820929
x x x x x x
10-1 10-2 10-4 10-6 10-8 10-11
Source: Lowe and Ficke (1974).
where ~Hv is the specific heat for water evaporation, Mw is the molecular weight of water, and Vv and Vw are the molar volumes of water vapor and liquid water correspondingly. Assuming that Vv » Vw and that water vapor satisfies the ideal gas law (pOvv = RT), then (15.7) becomes (9.68), dpO dT
""
~Hv(T)pOMw RT2
Replacing in the above equation a function describing the temperature dependence of the latent heat of evaporation (e.g., (15.3)), one can integrate and obtain an explicit expression for pO(T). A series of such expressions exist in the literature (see Problem 1.1), and that proposedby Lowe and Ficke (1974) is given in Table 15.2.
15.2.2 Equilibrium
of a Pure Water Droplet
In Chapter 9 we showed that the vapor pressure over a curved interface always exceedsthat of the same substance over a flat surface. The dependence of the water vapor pressure on the droplet diameter is given by the Kelvin equation (9.86) as
E~
( exp
4Mwaw" ~
pO wherePw(Dp) is the water vaporpressureover the dropletof diameterDp, po is the water vaporpressureover a flat surfaceat the sametemperature,Mw is the molecularweight of water,O"wo is the air-water surfacetension,and Pwis the water density.The equilibrium watervaporconcentrationsat O°C and 20°C are shownin Figure 15.2asa function of the dropletdiameter.Note that the effect of curvaturefor water dropletsbecomesimportant only for Dp < 0.1 /.Lm.
.
'u01~nIos ~aIdolp snoanb~ ~ }o l01A~qaq a~ gU1P~~slapUn lO} AmS
-sa:)au S1~aIdolp la~~M alnd ~ }O l01A~qaq a~ guw~~slapUn 'laAaMOH 'spunodwo:) paAIos -S!P u1e:1uo:)sl.~MI~ I.a~ ~la~~M }O aA1snI:)xa ~s1suo:) laAaU alaqdsow~~ aq~ u1 S~aIdola aIq~lI°l:luo:)un S! uoll~qlnllad
'q~MOlg s~1 lO} lO ~aIdolp a~ }O U01~~lod~Aa a~aIdwo:) aq~ lO} la~1a ~ua1:)y}ns lOU!W V 'iJ/qvlsun S! liJ/dD.Lp .iiJ1VM iJ.ind v fo wn!.iq!/!nbiJ iJl{l ~~~ a~~:)!pu!
s~uawngm aIdw!s asaq.L .gull~lod~Aa anu1~uo:) II!M ~aIdolp aq~ pu~ '~UaWUOl!AUaa~}o ~~q~ paa:)xa 111Ma:)~J.Ins ~aIdolp ~~ ~~ alnssald lod~A l~~~M ~~ '~S~~l:)~p 111Ml~~aW~!p ~aIdolp aq.L '~~Idolp ~q~ ~A~aI saIn:)aIow l~~~M Ma} ~ }1 u;:>dd~q II!M ~~!soddo ~q.L 'alOW uaAa MOlg o~~~Idolp aq~ p~ ~aIdolp ~~ uo asuapuo:) o~ saIn:)~Iow l~~~M ~lOW gu!sn~:) '(~a)md < md alO}ala~
p~
aq.L '(~a)md
pag~q:)
~ou s~q
~U~WUOl!AUa aq~ U! Uo!~~l:Iua:)uo:) lod~A
o~ UO!~~lq1I1nba~~Idolp a~ lO) pal!nbal
la~~M
alnssald lod~A la~~M ~~ U! ~s~al:)~p
I{t!wS ~ asn~:) 111Ms1q,L '~a o~ I.I{t/W!S,;}~!UYU1as~al:)u1 o~ la~aWU!p S~! gu!sn~:) ~aIdolp aq~ q1!M ap!II°:) lod~A la~~M }O saIn:)aIow Ma} ~ ~~q~awnss~ sn ~a'l . (da)md = md alnssald I~!~d lod~A la~~M ~ aA~q II!M alaqdsow~~ a~ '.L ~~ ~~~suo:) aln~~ladwa~ a~ gu1U!U~U!~W 'alaqdsow~~ a~ ~!M wnpq!I1nb~ U! s1 da la~awu1P ~!M la~~M alnd }O ~~Idolp ~ }~q1~wnss~ aM. 'a~~~swnpq!I!nba ~ q:)ns }O 1.~!I1qe:ls~q~ a~~g1~s~AU!sn ~~'l .~aIdolp lI~wS ~ 10} Amss~:)au S! uoll~ln~~sladns agmI ~ ~nq 'Amssa:)~u S! uoll~ln~~sladns ~sapow ~ '~aIdolp la~~M alnd agmI ~ }O u01~~lq!I1nba aq~ lad 'lod~A la~~M q~1Mpa~~ln~~sl;:>dns~q o~ spaau l!U aq~ ~UaWUOl!AUa~q~ q~1M ~aIdolp la~~M arod ~}O wnpq!I1nb~ lO} 'ad < (da)md a:)u!s
°JoO'l pUU JoO JO) J:I!:lWU!P !:lldOJp)o l:l!:lWU!P )0 !:lldolp
u°!tJun)
U J:lAO J:I!UA\ )0 :llnSS:lld
wrl ~
U su 'od ':lJupns tug U l:lAO !uq! O! ,{da)lnd
JOdUA wnjlqmnb:l
:lq! )0 °!tu~
rSl
oda
31I!l9I.i
.J9J9WD!a ~'O
~O'O
~. ~ 't] ~ ~
b
~ 't] 0 Z' ~ ::>00
0 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
E'
S:JISAHdOnOi:J
'l8J.
WATEREQUILIBRIUM IN THE ATMOSPHERE 783
15.2.3 Equilibrium of a Flat Water Solution Let us considera water solution (flat surface)at constanttemperatureT andpressurep in equilibriumwith the atmosphere.Waterequilibrium betweenthe gasand aqueousphases requiresequality of the correspondingwater chemical potentialsin the two phases(see Chapter9): ,uw(g) = ,uw(aq)
(15.10)
Water vapor behaves in the atmosphere as an ideal gas so its gas-phasechemical potential is .uw(g)
= .u~(T)+ RTlnp~
(15.11)
wherep~ is the water vapor partial pressureover the solution.The chemicalpotential of liquid water will be given by JLw(aq)
= JL~+ RTlnywxw
(15.12)
whereYwis the water activity coefficient and Xw the mole fraction of water in solution. Combining(15.10)to (15.12)we obtain
~
=
(
exp
/10 t"'w
-
* ' .uw
(15.13)
RT
YwXw
Theaboveequationdescribesthe behavior of the systemfor any solution composition. Notethat the right-handside is a function of temperatureonly and thereforewill be equal to a constant,K, for constanttemperature.Consideringthe caseof pure water (no solute) wenotethat when Xw= I, Yw-+ 1 and p~ = po = K (T), wherepo is the vaporpressure of waterover pure water.Therefore(15.13)canbe rewritten as
0
Ps = Yw Xw P
0
(15.14)
Equation(15.14) is applicablefor any solution and does not assumeideal behavior. '.~"'---".
-"
" Yw,
The mole fraction of water in a solution consistingof nw water moles and ns solute molesis given by Xw
= nwnw + ns
(15.15)
andtherefore the vapor pressure of water over its solution is given by
p; =.
n... -
YwpO
(15.16)
';)se:> {el;)U;)~ S!q1 :le;)I! 0:1 SnnS;)l SnO!A;)ld OM:I ;)S;)q:l ;)U!qWO:> 0:1 P;);)U ;)M OS 'S;):lnIOS P;)AIOSS!P u~:luo:> ~d
SAeM{e AI{en:ll!A
e l;)AO ;)lnSS;)ld
lodeA do.lO
S:I;)Idolp
l;):leM ;)q:llOj oopoIoS
:>!l;)qdsow:lY
suo!ss;)ldx;)
sooaoby
.uO!:lnIOS :leg e vue :I;)Idolp
l;):leM
p;)dOI;)A;)P ;)M SUO!:I:>;)SSnO!A;)ld ;)q:l uI
08 JO WO!.lq!I!ob:il
;)!.laqdsowJV
tOrSI
lIRS Jo ;}dA! ;}q! uo AIguoj:JS spu;}d;}p uo!!:>np;}J
S!q! pUR ';}!R!:>OSS!P !OU Op !Rq! S;}!nIOS Op URq! ;}JOW J;}!RM JO ;}Jnss;}Jd
lodRA ;}q! ;}:>np;}J (S!yRS '.g.;})
;}!R!:JOSS!P !Rq! S;}!nIOS .;}IqR!JRA !U;}pU;}d;}pU!
U°rlRj:JU;}:>UO:>;}q! MOU gU!Sn 'v.~1
;}Jng!d
Jo J~wnu
;}q! S;}W!! ;};}Jq! S! uo!!nIos
Jo S;}IOW Jo J;}qwnu
;}q! SR !IRS JO
U! U;}A!g S! WRJgR!P JRI!W!S \I .;}:>UO AIUO p;}!Uno:>
s! ;}In:>;}IOW P;}!R!:>OSS!pUn UR SR;}J;}qM 'S;}In:>;}IOW!
SR P;}!R;}J! S! SUO! ! O!U! P;}!R!:>OSS!P
snq !Rq! ;}In:>;}IOW P;}!R!:>OSS!P R 'SU 'UO!!nIOS U!S;}IOW JO J;}qwnu tins P;}AIoss!P lod l;)RN
;}q! ;}:>!M! S! uo!!nIos
;}q! gU!!RIn:>IR:> UJ .S;}IOW
U! SUO! Jo J;}qwnu
;}q! 't'OSZ(t'HN)
U! S!U;}IRA!nb;} Jo J;}qwnu
;}q! 'SUO! OM!
O!U! S;}!R!:JOSS!P I;)RN ;}SnR:>;}q !Rq! ;}!ON .JO!ARq;}q uo!!nIos yR;}P! ;}q! S! UMOqS osI\I .£.~I ~g!d U! UMOqS S! su°rlnIos t'OSZ(t'HN) pUR I;)RN J;}AO J;}!RM Jo ;}Jnss;}Jd JodRA ;}qJ. .u°rlnIos
;}q! J;}AO ;}Jnss;}Jd JOdRA wn!Jq!I!nb~
J;}!RM ;}q! Jo uo!!:>np;}J R S;}SnR:>;}!nIos ;}q! pUR
0dlnx = 0sd
(Ll'~I)
'al01~l~ql"1
'MnI sJInon~ Aq U~A!~ S! l~:lnM 10 ~lnss~ld lodnA ~q:I 'uo!:lnI!p q~!q :In +- m;{ :I!W!I uo!:lnI!p ~:I!uyU! S:l! s~q;)nolddn m;{ u~q:l '~:lnI!p S! uo!:lnIos ~q:l 11
'UO!1R!:JOSS!P a1aldwo:J J!aq11UnO:J:JR01U! gU!'\R1 pa1Rln:JIR:Juaaq SRq S11RS aq1JO U°!:l:JRJJalow aq.L 'u°!:lnlos IRap! UR pUR "OSZ("HN) pUR IJRNJO u°!:lnlos JOJ Jc~Z 1RU°!:l:JRJj ;lIOW a1nlos aq1 JO U°!:l:JunJ R SR (cd / ~d) °!:lRJ aJnssaJd JOdRA Ja1RM.Jo u°!:lR!JRA
UOI~ODJJ 91oW l'O
£'0
9Jnlos ~'O
£.SI 3HI19I~
0'0 08'0
/"""
zv .. os (HN)
58'0
)',\
uoun loS' , ID9PI
"d co 06'0
I~DN
~ "d
0
56.0
"'"
00. SJISAHdanDlJ
t8L
U! (~Z'~I)
mdll mW"u9
=8
s~ (9Z"~I) puu md,rH =Y mDmWp ~!IJM O! All?WO!Sn:) SI !T
'(tZ'~I) gU!"gId~'M .At!SU~P St! IIId pug l~tgM JO tqg!~M lP.ln"~Iow
~qt S! IIIW ~l~qM
md ~ mil
(~Z'~I)
mW OS!tgqt ~l~tgM ~lnd JO ~wnIoA
ltJIOW ~qt Ot ~nb~
S!UO!:}nIoS~:}nI!P g 10J q~!qM 'u09nIos ~qt U! l~tgM JO ~wnIoA JBIOW ~q:I S! m~ tgqt IIg~~~
(vZ'~I)
JQ.!:-m~su9
~U!IIt?:>;)J os :0 +- ~a .1l/m~su9 put?
(£r~l)
J.Q.!!-+
damd.LH
=
m.omWf7
od (d(i)ind
°1
puy ~M 0 +- x S~x ~ (x + I)UI 1~q:I +- mil.1~q:I~wnss~ osI~ u~:>~uo suo9nlos ~1nI!plOd damd.L)J
) ul - mil UI +
m{1sUQ
mDmWV
cd ""d(1}iiid
UI
at P~Y!Idw!s ~q Ug;J(1'l.~I)
9
(ZZ')I)
~a
»
l~~~WRW JO u°!1nIos
~~Idolp
~wnIoA
~~Idolp
~q:I
~q~ '~~nIW S! UO!~nIOS ~q:I JI
~WRS ~q:I ~R 'ad '~;)RJlns ~Rll R l~AO l~~
~q:ll~AO
-11MJO ~Rq:I O~ da
'~ln~Rl~dw~~
PUg
S(lSu
'S! ~Rq~ ~~wnIoA o~ ~A!~RI~l P~~;)~I~~U ~q OR;) ~~nIos ~q:I Aq p~!dn;);)o '~ln~Rl~dw~~
~UR~SUO;)U!RW~l "u
-11nb~ S!q.L 'S~~URq;) l~~~WR!P ~~IdOlp ~upnp PU11'~lnSS~ld
~Rq:I p~WnSSR AI~!;)!IdW!
~ross~ld
lodRA l~~RA\ ~q:I S~~RI~l UO!~ 'S~IOW ~~nIos JO l~WnU
~ARq ~A\ (IZ'~I)
JO UO!~RAP~P ~q~ UI
S;)ISJ..Hd ano.;)
98L
WATEREQUILIBRIUM IN THE ATMOSPHERE 787
Equations (15.21), (15.24), (15.26), and (15.27) are different forms of the Kohler equations (Kohler, 1921, 1926). These equations express the two effects that determine the vapor pressure over an aqueous solution droplet-the Kelvin effect that tends to increase vapor pressure and the solute effect that tends to decreasevapor pressure. For a pure water drop there is no solute effect and the Kelvin effect results in higher vapor pressurescompared to a flat interface. By contrast, the vapor pressure of an aqueous solution drop can be larger or smaller than the vapor pressure over a pure water surface depending on the magnitude of the solute effect term, BI D~, relative to the curvature term, AI Dp. Note that both effects increase with decreasing droplet size but the solute effect increases much faster. One should also note that a droplet may be in equilibrium in a subsaturatedenvironment if D~A < B. Figure 15.5 shows the water vapor pressure over NaCl and (NH4)2S04 drops. The A term in the Kohler equations can be approximated by
A=
4MwO"w RTpw
0.66 ::::: T
(15.28)
(in JLm)
where T is in K, and the soluteterm, (15.29)
(in JLm3)
where ms is the solute mass (in g) per particle, Ms the solute molecular weight (in g mol-I), and v is the numberof ions resultingfrom the dissociationof one solutemolecule. For example,v = 2 for NaCI and NaN°3, while v = 3 for (NH4)2S04.
0.5I']
I
I
. ,
o. ~
a
0 :.j =
~ +" = ~ 100 ~
§' f/)
I
I I II'I
0.')1
I
I
I I I
~- -
. (NH4)2S NaCI I I ~ 4 II'
,
.
. D =0.05 .urn
. . . , . .
0.3
I
p
0.1 J.l,m
o. 0.0
-0. -O.:t
- 0.3 III0
- . ,, , , , , ,
" 'I"
.
, 10.5
.,
Ji,m
,
"I ilill 1
I;
'I IIIIII 10
Wet Diameter.
I
I I IIIIIJ100
p,m
FIGURE 15.5 Kohler curves for NaCl and (NH4)ZSO4 particles with dry diameters 0.05, 0.1, and 0.5 ILm at 293 K (assuming spherical dry particles). The supersaturation is defined as the saturation minus one. For example, a supersaturation of 1% corresponds to a relative humidity of 101%.
'~~g){U!JqS JO q1MOJ~
1~ldoJp sno~U1!1uods s~sng:) s~u!punonns S1! JO JI~S1! 1~ldoJP ~q1 J~q1!~ Jo Uo!1gqJn1J~d l~wS V .s~u!punoJJns S1! q:I!M wn!Jq!l!nb~ ~lqg1S 19 ~q 10UUg:) 1~ldoJP J~1gM ~Jnd n 19q1 UO!1:)~SSno!A~Jd ~q:I U! u~~s Apg~J{T!~Agq ~A\
SliJldo.lU .1.uiJJ{dsOUlIV/0 .f1!l!ql1JS
'uo!11!nb~ J~IqQ)l ~q1 Aq U~A!g S~11!1S wn!lq!I!nb~ ~q:I Jo A1!I!q1!1S~q1 ~11!g!1S~AU! 01 p~~U ~M '~J~qdsow -11!~q1 U! S~ss~:)oJd UO!11!~l;)gOJ pUt! pnOI;) ~q:I pU1!1Sl~pUnpUt! suo!:ls~nb ~S~q1J~MSUt!01. l,S;)tmS wn!lq!l!nb;) OMt ;)l;)q:I ;)lV l,soo!tt!nb;) l;)lqQ)I ;)q:I AJS!tt!SUt!:>t;)ldolp ;)q:I q:>!qM 10J Sl;)t;)Wt!!P OMt ;)It! ;)l;)qt UO!tt!lmt!S :>!l;)qdsowtt! U;)A!g t! 10J J! su;)ddt!q tt!qA\ l,;)l:>!tmd U;)A!g t! 101 UO!tt!lmt!sl~ns -mt!sl;)dns ;)q:I pUt! 10dt!A l;)tt!M qt!M p;)tt!lmt!sl~ns
J~wnu
u s~sod S~AJn:>wn!lq!I!nb~
]t!:>!t!l:> ;)qt SP;);):>X;)UO!tt!l
S! ;)l;)qdsowtt!
;)qt J! su;)ddt!q tt!qA\
:suo!}s~nb ~U!}S~J~}U!Jo H~ SnSJ~A~Z!S su P~M~!A ~q U1!:>S~AJn:JJ~IqQ)l ~q} }uq:I
~U!Z!{t!~~ .s~u!punoJJns S}! q}!M wn!lq!I!nb~ }U ~q PInoqs suo!}unb~ J~IqQ)l ~q:I ~U!AJS!}US da J~}~wg!P U ~U!AUq pug ~}nIos Jo s~IoW Su ~U!U!U}uo:J }~IdoJP U ""d S! ~J~qdsoW1u ~q} U! ~Jnss~Jd IUfiJUd JodUA J~}UM ~q:IJI '( S~n{t!A A}!p!Wnq ~A!}UI~J Jo) su09uJ}u~:>uo:>JOdUAJ~}UM }U~!qwg }U~J~JJ!PJOJ}~IdoJP U Jo ~!S wn!lq!I!nb~ }uq:I ounowg
~q:I }u~s~Jd~J osIu S~AJn:>J~IqQ)l ~qJ.
.J~}UM ~Jnd O} JP.I!W!Ss~wo:>~q }~IdoJP ~q:I ~}nIos p~xy O} SJ~J~J~AJn:>J~IqQ)l q:>u~ }uq:I I{t!:>~J) ~~ugJ S!q} U! IIuWS os S!
UO!}uJ}u~:>uo:>~}nIos ~q:I'AI{t!:>!SAqd l~IdoJp J~}UM ~Jnd U Jo wn!lq!I!nOO ~q:I Aq P~}u~s~Jd~J 'u09unb~ U!AI~)l ~q:I q:>uOJddu S~AJn:>J~IqQ)l IIu ~~ugJ S!q:I UI lU~P!A~ S! }:>~JJ~U!AI~)l ~q:I Jo UO!}uu!W°P ~q:I J~}~WU!P Iu:J!}!l:> ~q} pUOA~q AIIUUY pug 'S~SU~J:>U! }:>~JJ~~}nIos ~q} J~AO }:J~JJ~U!AI~)l ~q:I Jo ~:>ug:jJodw! ~A!}UI~J ~q:I 'S~SU~J:>U!J~}~wg!P }~IdoJp ~q:I sy '~}uu!W°P S}:>~JJ~~}nIos ~J~qM UO!~~J U S}u~s~Jd~J S~AJn:>J~IqQ)l ~q} Jo uo!:jJod ~U!s!l AId~~}s ~qJ.
S1"'s 'UO1!UJmusIU:)!!!l:) ~q! 'J~!~WU!P fU:)1!!l:) ~q! !U ~JOj~J~q! puu wn!lq!l!nb~ !~Idolp JOj p~J1nb~J ~:)uJlns J~!UA\ ~Jnd !ug U O! ~A!!UI~J UO!!UJmUS~q! S! ad /ffid O!!UJ ~q.L
(-flU) -- "( -of cd )
(I£.~I)
z/1 ,£VP
,
md
(.7 td!l:)sqns
~qt Aq p~tOU~p) J~t~W~!P S!qt t~ pU~
"'da -1!.1;) ~q!!B
In;);)O BW!Xt!W ~s~q.L 'wnW!Xt!w
B qgnOlq!
SSBd S'SI
~lng!d
:ltJltJlUV!P ItJldo.1p IV;)! U! S~AJn;) ~q! IIV'
SJISAHdanolJ
88L
WATEREQUILIBRIUM IN THE ATMOSPHERE 789
Let us consider first a drop lying on the portion of the Kohler curve for which Dp < Dpc. We assume that the atmospheric saturation is fixed at S. A drop will constantly experience small perturbations caused by the gain or loss of a few molecules of water. Say that the drop grows slightly due to the addition of a few molecules of water. At its momentary larger size, its equilibrium vapor pressure is larger than the fixed ambient value and the drop will evaporate water, eventually returning to its original equilibrium state. The same phenomenon will be observed if the droplet loses a few molecules of water. Its equilibrium vapor pressure will decrease,become less than the ambient, and water will condense on the droplet returning it to its original size. Therefore drops in the rising part of the Kohler curve are in stable equilibrium with their environment. Now consider a drop on the portion of the curve for which DIJ > Dpc that experiences a slight perturbation, causing it to grow by a few molecules of water. At its slightly larger size its equilibrium vapor pressure is lower than the ambient. Thus water molecules will continue to condense on the drop and it will grow even larger. Conversely, a slight shrinkage leads to a drop that has a higher equilibrium vapor pressure than the ambient so the drop continues to evaporate. If it is a drop of pure water, it will evaporate completely. If it contains a solute, it will diminish in size until it intersects the ascending branch of the Kohler curve that corresponds to stable equilibrium. In conclusion, the descending branchesof the curves describe unstable equilibrium states. If the ambient saturation ratio S is lower than the critical saturation Sc for a given particle, then the particle will be in equilibrium described by the ascending part of the curve. If 1 < S < Sc, then there are two equilibrium states (two diameters corresponding to S). One of them is a stable state and the other is unstable. The particle can reach stable equilibrium only at the state corresponding to the smaller diameter. If the ambient saturation ratio S happens to exceed the particle critical saturation Sc, there is no feasible equilibrium size for the particle. For any particle diameter the ambient saturation will exceed the saturation at the particle surface (equilibrium saturation), and the particle will grow indefinitely. In such a way a droplet can grow to a size much larger than the original size of the dry particle. It is, in fact, through this process that particles as small as0.01 JLm in diameter can grow one billion times in mass to become 10 JLmcloud or fog droplets. Moreover, in cloud physics a particle is not considered to be a cloud droplet unless its diameter exceeds its critical diameter Dpc. The critical saturation Sc of a particle is an important property. If the environment has reached a saturation larger than Sc, the particle is said to be activated and starts growing rapidly, becoming a cloud droplet. For a spherical aerosol particle of diameter ds (dry diameter), density Ps, and molecular weight Ms, the number of moles (after complete dissociation) in the particle is given by
ns=
V7rd; Ps
(15.33)
6Ms
andcombiningthis result with (15.32)we find that
1/2
In Sc=
(15.34)
~[qn[osu!
'SUO! 1[RS ~q1 JO J~1RM q1!M IIR 1R 1;)RJ~1U! '[R!J
-JRJj SSRW q1!M [R!J~1RW ~[qn[OS SU!1?1UO;)~IJ!1Jt?d [RU!~!JO ~q11Rq1 S! UO!1dwnSSR Jno
UO!1
10U S;)OP uo!1Jod
~q1 1Rq1 ~WnSSR OS[t? ~A\ '~[qn[OSU!
S! 1S~J ~q1 pUR ""3
-;}1RW ~[qn[OSU! jO ~;)U~1S!X~ ~q1 JOj 1UnO;);)R 01 UO!1;)~S Sno!A~Jd ~q1 jO S1[nS~J ~q1 pU~1x~ 01 S! ~J~q [RO~ Jno o(';)1~ 'uoqm;) [t?1u~W~[~ '1Snp) S~;)Ut?1sqns ~[qn[OSU!-J~1RM pUt? ~[qn[OS-J~1 -RM q1oq U!'t?1UO;)S~[;)!1Jt?d ;)!J~qdSOW1R 1SoW 0%001 SP~~;)X~ H~ ~q1 SR A[~1~[dWO;) S~1R!;)OS -S!P 1Rq11IRS ~[qnlos
R jO S1S!SUO;)~I;)!1Jt?d [OSOJ~R ~q11Rq1 p~WnSSR SRq lRj os S!SA[RUt? Jno
aJU8:JsqnsalqnlosuI U8 ~U!U!8JU03 do.lO uopnlos snoanbv U8 )0 Wn!.lq!lJDb3 ;}J.laqdsowJV S"rSI
"Cl;)1RM ;)lOW SqlOS -qR ;)I:>!1lRd ;)qt) l;)1;)WR!P JR:>!1!J:>dolp
~qt S~SR~l:>U! pUR CAI!SR~ ~lOW P;)1RA!1:>RS! ;)I;)!1lRd
;)q1) ~I:>!1lRd ~qt Jo 0!1Rl UO!1RlmRS JR;)!:!!J:>~q1 sl~MoI pUt? UOraR!:>DSS!P~:!;)Idwo;)
lOJ ''as
Z("HN)
.UO!1RlmRSl~ns pUt? A1!Un URq1l~q~!q
UO!1R!:>DSS!P1Rq1 ;)10N "UO!1R!:>DSS!POU
lOJ S;)Aln:> l;)IqQ)J JR:>!1!J;) ~qt SR I
;)qt S1U~S;)ld L"~I
~ln~!d
- "s = "s s~uY;)PU;)1JO ;)UO
SARMJR ;)lR SUO!1RlmRS JR:>!1!J:>1Rq1 ;)10U PInoqs
Jo UO!1:>unJ R SR s~I:>!1lRd 1JRSJR:>!J~qds lOJ UO!1RlmRSl;)dns
~uO .Sl~1~WR!P l!~qt
JR:>!1!J:>~q1 SMOqS 9.~I
~ln~!d
""S < S SR ~uoI SR AI;):!!UY~PU! MOl~ pUR P;)1RA ;)IqR1S R 01 ~Wo:> S sp~~:>X;) "'s
aqt 1R ~Z!S wn!Jq!I!nb~
S! "s
-!1;)R ;)Wo:>aq S MoIaq
~SOqM S;)I:>!1lRd IIV
IIR 'S1S!X;) S UO!1RlmRS P~xY R u~qA\
O;)Aln:> l~IqQ)J
l!;)q1 uo 1U!od ;)1R!JdolddR
'UO!1RlmRS JR:>!1!J:>asoqM
"UOraRlmRS JR:>!1!J:>S1! l~q~!q
S~I:>!1lRd
~q1 ;)I:>!1lRd ;)qt l;)IJRwS
aqt 1Rq1 ~10N .sp l~1~WR!P JO ~I:>!1lRd fJp R lOJ UO!1RlmRS JR:>!1!J:>~qt S~A!~ UO!1Rnb~ S!q.t
O){ £6Z w (s~J:>!~d
JI1:>Jl~qds ~UJWnSSI1) Sl~1~WI1!P ~J:>!1l11d Alp ~q1 JO UOj1:>Unj SI1 "OSZ("HN)
pU11 J:JI1N JO ~sodwo:>
s~J:>!"J.II!d JOS01~11 ~Uj111Aj1:>1110J UOj1111n111s1;)dns JI1:>j1Jl:J
wrf
.J9l9WD!O
l
9"SI
:!nIfl~I~
I.JO
L"O
~O"O
~O"O
~'O
VI I:: "0 CD -, (II C -+I:: -, C == 0 :]
~
S:)ISAHd anOl:)
06L
WATEREQUILIBRIUM IN THE ATMOSPHERE 791
(NH4)2S04, T= 20°C
-
.01
- - -.
No dissociation Complete dissociation
1.009
1.007
s .005
I
0.02 ~m---
I
~I
1.003
I I
I
1.001
'?
0.04~m-
I 0.999I
;
.
I
10.2
, .
- --
~O.l
I
I
10.1 Wet
FIGURE 15.7
,
,
~m
1 Radius,
. 10
Ilffi
Kohler curves for (NH4)2S04 assuming complete dissociation and no dissociation
of the salt in solution for dry radii of 0.02, 0.04, and0.1 ILm.
ts, all at the actiODOr
v and
Our analysisfollows exactly Section15.2.4,until the derivationof the mole fraction of water Xw in (15.19) and (15.20).The existenceof the insoluble material needsto be includedin theseequations.If the insoluble particle fraction is equivalentto a sphereof diameterduothen the droplet volume will be
1 and ~(the e ab-
1 7r 6"
D3 p
- 1 = nwvw+ nsvs+ 6"7rdu3
(15.35)
andthe mole fraction of water Xwin the solution will be given by
--
digwa.
Xw
+
ns
=
(15.36)
nw
Substitutingthis expressioninto (15.18)we find not
In
=
4MwC1w
RTp:D;
+ In Yw- In
(15.37)
.)1 £6Z}tI 0.1 pm! '9.0 'vO 'z'o SUOp:>tll) SSl!W;}lqnlos lO) wrf 1.0)0 l;}};}Wtl!P ;}\:>plt!d Alp \t!!}!U! Uti lO) \tI!l;}}tlW ;}\qn\osu! pm! vOSZ(vHN) gU!u!t!}uo:>dolp uo!}n\os sno;}nbtl Uti )0 ;}lnSS;}ldlodtlA wn!lq!\!nb;} ;}q})O UO!}tI!ll!A S'SI DnDM UIrf OOL
'.I818UIUJU
O~
18M. ~
~'O
00.0
SO'O 0 ~'O
O' ~
, ,
I
I
I..,
"
"
r;.. ~ "1 ~
I,.,. . . . I
I
rn ~ '0
~ ~'O Ol.O
9'0
Sl'O
V'O
O£.O
z'O= w,3 'I""
:::': 0 ~
~
~£'O
,.,
OV'O
(6£.~1) :1U3u09:>nJJ ssnw ~qt pug np J~t~wg!P ~JO:>~IqnIosu! ~qt U~~A\t~q StS!X~d!qsuO!tnI~J ~U!A\OIIOJ~qt sp J~t~wn!p Jo ~I:>9Jnd Alp n JoJ u~q.L .nd At!SU~P n snq In!l~tnw ~IqnIos -U! ~qt tnqt ~u!wnssn '1U3 In!l~tnW ~IqnIos Jo u09:>nJJ ssnw ~qt qt!A\ np In!l~tnw ~IqnIos -U! ~qt Jo J~t~wn!p tu~JnA!nb~ ~qt ~u!:>nId~J p~doI~A~P ~q ug:> uo!ss~Jdx~ ~A!tnw~tIn uy lug:>y!U~!S ~JOW t:>~JJ~~mIos ~qt pug J~q~!q ~ II!A\ uo!tnI1u~:> -uo:> UO!mIOS ~qt 'J~t~wg!P t~IdoJP IJnJ~AO ~wgs ~qt JoJ '~JoJ~J~q.L 'J~tnA\ tU~InA!nb~ ~qt ~U!:>nIds!p '~wnIoA t~IdoJP ~qt Jo :)Jnd JoJ ~Iq!suods~J S! In!l~tnw ~IqnIosu! ~qt 'AlIn:>!SAqd l:>~JJ~ ~mIos ~qt SWJ~t ~mIosqn U! ~sn~J:>u! Ot S! In!l~tnw ~IqnIosu! ~qt Jo t:>~JJ~~q.L
(~p- ta) (8£'~I)
od
da =
v
8
;)SU~S!Q1U! ';)ldwux;) lod.8
'
(d(I)ind
S;)WO~;)q(L'l.~I) pun (9Z.~1) O! snag
pun V JO SU09!uy;)P ;)WUS;)q! Q1!1'1\ (L'l.~I)
-olUun SUO!SS;)ldx;)u!U!qo pun ;)lOJ;)q su (L£'~I)
hJndw!s hUW ;)1'1\'u09nlos ;)!nlW U lad
SJISJ..HdGnolJ
Z6/.
CLOUD AND FOG FORMATION 793
ns analothis case
£
1.00
=0.01
'\.
~
'~.1 0.5""
, c 0 :;: a L. :J
"0 III
"'" ""
'"
0.10
L. Q) a. :J VI
te effect. isplacing :ion conof the inIt the inallowing
" '"
0
-.'- -
-
0.10
'"
,,-" 1.0
01 Dry Diameter,
,u,m
FIGURE 15.9 Critical supersaturationas a function of the particle dry diameterfor different contentsof insolublematerial.The solublematerialis (NH4)2S04.
(15.39)
ontaining Ible mass
~
and (15.38) can be rewritten as a function of the particle soluble fraction and the initial particle diameter provided that the densities of soluble and insoluble material are known. The number of moles of solute are in this case given not by (15.33) but by the following expression:
(15.40)
Kohler curves for a particle consisting of various combinations of (NH4)2 SO4 and insoluble material are given in Figure 15.8. We see that the smaller the water-soluble fraction the higher the supersaturation needed for activation of the same particle, and the lower the critical diameter. Critical supersaturation as a function of the dry particle diameter is given in Figure 15.9.
15.3 CLOUD AND FOG FORMATION The ability of a given particle to becomeactivateddependson its size and chemicalcomposition andon the maximumsupersaturation experiencedby the particle.If, for example, the ambientRH doesnot exceed100%,no particle will be activatedanda cloud cannotbe formed2. In this sectionwe will examinethe mechanismsby which cloudsare createdin 2The classic Kohler formulation does not consider the cases of solutes that are not completely soluble or soluble gases, both of which influence the solute effect term in (15.27). In such cases cloud droplets can exists at S < 1
since B/D~ > A/Dp.
t~g ~/t\ '~°.L ;;;:;P.L°.L t1!q:Ios qgnou~ II1!WS S! ~gUt!q~ ~Jm1!J~dw~t ~qt t1!qt gu!wns -S1!pUt! 'At!P!Wnq ~A91!I~J {1!!t!U! ~qt Ot {1!nb~ S! ~P!S pUt!q-tJ~I ~qt UO O!t1!J~q:I t1!qt gu90N
('lv~I) t~g ~/t\ P.1Ot °.1 wall tumSuo~AI~tt!W!XOlddt!S! "BV tt!~q tU~tt!I ~qt tt!qt gu!wnssy
z.LH P.L J = d OJP(O.L)od{ O
(Iv.~I)
.LP~V
mdJ
SPI~!A
ffid
'P.r P~ (°.r)od '°.r U~~A\!~q UO!!B.Ig~!UI '(g'C;I) uo!!Bnb~ UOJA~dBIJ-Sn!SnBIJ ~q! Aq U~A!g S! ~JmBJ~W~! UO ~Jnss~Jd JOdBA UO!!BJmBS ~q! JO ~;)U~PU~~P ~~ '(P.r)od = ffid !u!od /s\~P~q!!B !Bq! P~ (°.r)od /ffid = H}l UO!!!uY~P Aq !Bq! gU!Z!ugO;)~J p~!Bln;)Jt1;)~ UB;)P.r P;JIJt1;)S! P.r ~JmBJ~W~! ~qJ. i,(1
=
'lu!od Map JO a.lnJtJ.ladwal Map ~q! H}l) p~!BJmBS ~WO;)~q II!A\ !! q;)!qA\!B P.r ~JmBJ~W~!
;Jq! S! !BqA\ '(I O! 0 WOJJ) H}l A!!p!Wnq ~A!!BI~J pUB °.r ~JmBJ~dw~! B SBq AIIB!!!U! I~;)md B J! 'SpJOA\ J~q!O UI 'p~!BJmBS ~WO;)~q II!A\ I~;)md ~q! u~qA\ ~!Bln;)IB;) O! ~:,{!I PlnOA\ ~M. '(P.r)od O! (°.r)od WOJJ ~Jnss~Jd JOdBA UO!!BJmBS~q!JO ~SB~J;)~PB O! PB~I II!A\ P.r O! °.r ~nJt1AJt1!!!U! UB WOJJ ~SB~J;)~P~JmBJ~dw~! y lUB:jSUO;)U!t!W~J II!A\ (ffid) ~Jnss~Jd IB!:lJBd JOdBA J~!BA\ ~q! 'sgu!punOJJns S!! p~ I~;)md J!t! ~q! U~~A\!~q ~g~q;)X~ SSBW!;)~Ig -~U UB;) ~A\ !Bq! gu!wnssy 'AIIB;)!Jt!qoS! P~IOO;)S! !Bq! J!t! !S!OW JO ~wnlOA B J~P!SUO;)sn !~'l ~U!IOOJ ;)!.l8QosI
1'£'SI
'UO!~BWJOJ pnol"J JO SWS!UBq"J~W OM~ ~s~q~ JOJ SUO!~BI~J ;)!WBUApOWJ~q1
;)!sRq ~q1 AlJ~pq
~U!W1!X~ sn ~~'1 '~U~WUOJ!AU~ S~! pUB 1~"Jmd ~q1 U~~M~~
~~URq;)X~ SSBW pUR ~B~q ~WOS SABM{t! S! ~J~q1 A~!IB~J UI ,,'~U!IOO;) "J!1BqB!PB" p~WJ~~ AI{t!nSn S! ss~"JOJd P~Z!{t!~P!
S~l.
.~U~WUOJ!AU~ ~q~ pUR J!l:I JO I~;)md
~B~q OU S! ~J~q1 UO!SURdX~ S!q~ ~upnp 'sdoJP ~Jn~BJ~dw~~ S~! pUR 'spURdx~
~U!Sp ~q1 U~~M~~q p~~URq;)X~
~Bq~ S~WnSSB ss~"JOJd B q"Jns JO I~POW ~S~ldW!S ~ql. I~;)md
~q1 'S~SB~J"J~p ~Jnss~Jd S~! '~J~qdSOW~B ~q1 U!
SpU~"JSB1~"JJBd J!l:I UR JI 'SSBWJ!l:I J~PI°"J JO ~"JBJlnS J~~BM JO PURl J~PI°"J B J~AO SSBWJ!B UR JO ~U~W~AOW {t!tuozpoq
JO (UO!~BWJOJ Sn~BJ1SMOl pUB ~OJ) A~J~U~ JO S~SSOI ~A!~B!PBJ JO ~Ins
-~J ~q1 S! AIIBnSn ~I '~Jnss~Jd ~UR~SUO"J J~pUn I~;)md J!l:I UR JO ~U!IOO"J ~q~ S! ~U!IOO"J ;)pRqosl '~U!IOO"J ;)!~BqB!PB pUR ~U!IOO"J "JpRqOS! :sdnoJ~
OM~ O~U! SWS!UBq;)~W ~S~q1 ~~Bmd~s O~ InJ
-~sn S! ~I '~J~qdSOW~B ~q~ U! 100;) UR;) SI~"Jmd J!l:I q;)!qM
Aq SWS!URq"J~W {t!J~A~S ~m ~J~ql.
.S~SB~J"JU! H"M S~! ~JOJ~J~q~ pUR 'S~SB~J"J~p ~Jn~BJ~dw~~ S~! SB S~SB~J;)~P UO!~BJ~U~"JUO;)JOdBA J~~BM UO!~BJ -n~BS S~! '~~URq"J ~OU S~Op 1~"Jmd J!B ~q1 ~P!SU! SSBW J~~BM ~q1 J! U~A3 l~;)md ~U!IOO"J JO ~lnS~J ~q~ AI{t!nsn
J!B ~S!OW B JO
S! ~SB~J;)U! H"M S!qJ. .%001 ~U!P~~;)X~ ~n{t!A B O~ I~;)md J!l:I UB
JO H"M ~q~ U! ~SB~J"JU! ~q1 S! UO!~BWJOJ pnol"J S!q1 JOJ UO!~!PUO"J A.mSS~"J~UV '~J~qdSOW~B ~q1
S;)ISAHd GnO.1;)
t'6J.
CLOUD AND FOG FORMATION 795
For an air parcelinitially at 283 K with a relative humidity of 80% (RH = 0.8),a temperaturereductionof 3.3 K is requiredto bring the parcelto saturation.The dew point of a subsaturated air parcelis alwayslower than its actualtemperature(Figure 15.10).The two becomeequalonly whenthe relative humidity reaches100%. 15.3.2 Adiabatic Cooling Thethennodynamicbehaviorof a rising moist air parcelcanbe examinedin two steps:the coolingof the air parcel from its initial condition to saturationfollowed by the cooling of thesaturatedair. Let us considerfirst a moist unsaturatedair parcel.Assumingthat the rise is adiabatic (no heat exchangewith its surroundings)and reversible,then it will also be isentropic. Recallthat for a reversibleprocessd Q = T dS andthereforewhen d Q = 0, dS = 0 also. Undertheseconditionswe haveshownin Chapter14 that if the air parcelis dry (no water vapor),its temperaturewill vary linearly with height accordingto (14.6), dT dz
=-r
(15.44)
wherer = g/cp = 9.76°C km-1 is the dry adiabaticlapserate. If the air is moist, then, as we saw in Chapter 14, the heat capacity of the air parcel cp must be corrected.The changesare small as the water vapor massfraction is usually less than 3%. Even at this ratherextremecondition, the lapserate of the moist parcelis 9.71°C km -I, an essentially
(6v'~I)
Aq AIdw!s -nu (8v'~I)
puna]
~
Ug:> ':>'1{
"1;)'1;}q"!!g
-. T = '1;)'111 !q:3!;}q ;}q"! 'P;}U!UU;}!;}P S! 7.L ;}:>uO '7.L JO] AIJt1:>!l;}W
:3U!AIOS Aq p;}!gIn:>Jt1:>;}q ug:> I;}A;}I UO!!gSU;}puo:> :3U!!]!I ;}q!!g
."
(8v'~I)
(
(7.L)odmW OOdlimOW
)
°.L =
;}JmgJ;}dw;}!
;}q.L
7.L
1~g 01 'I~;)md ~q11° ~lnss~ld l~e I1J~1~u~ ~q:I s~ o"d ~l~qM '~;dXl = °.L AIye~1~U~ 1eq1 gu~10u p~1eu~w~I~ gq ue;) Xl 1ue1SUO;)~ql am"w
'I
X)= 7.z
(Lv.~I) (1.z)odmW)
,,)/
'(~P.~I)
ilm"w
O~U!gu!~n~!~sqnsp~
="d
(7.L}od mW '(9v'~I) Ot ~U!pJo:>:>l!';)q II!M tq~!;)q S!q:I tl! ;)Jnss;)Jd J!l! ;)q.L '(1.z) od = IIId ;)JOJ;)J;)qt pUll P;)tl!Jntl!S S! J!l! ;)qt IJI ;)q:I tV ';)Jnss;)Jd {l!!Pl!d JOdl!A J;)tl!M °t O!tl!J ~U!X!W JOdl!A J;)tl!M ;)q:I !J;)AUO:>Ot p;)Sn ;)q Ul!:>(9v'~I) 'AJl!SS;) -:>;)UJI 'SO!tl!J ~U!X!W ;)S~qt ~u!sn AIql!J;)P!suo:> P~9!Idw!s ;:Iq UlI:>suo!ss;)Jdx;) P;)tl!:>!Idwo:> l;)q:ll!J Jl!J~A~S 'p~tl!:>!PU! ;)S!!i\J;)qtO ss;)Iun J;)tdl!q:> S!q:I U! p~sn ~q II!M S!Sl!q SSl!W;)q.L 'S!Sl!q SSl!Wl! JO '~wnIoA l! 'Jl!IOW l! uo P;)ug~p ~q UlI:>pUll St!Un ;)Al!q tau op A~q.L 's:>!SAqd pnoI:> U! S;)9!tul!nb InJ~sn AJ;)A ~Jl! 1m pUll 11mSO!tl!J ~U!x!W J;)tl!M P!nb!I pUll JOdl!A J;)tl!M ;)q.L VdVW
(9t'r;I)
mdmw
="m
:IB~P! ~le S~SBg q~oq ~snB;)~H lUB~SUO;) U!BW~l II!M am O!~Bl gU!X!W SSBW lodBA l~~BM ~q~ '~S!l I~;) -led l!B ~q1 gu!lnp
p~Al~SUO;) ~le S~SSBW lodBA l~~BM pUB l!B ~q~ q~oq ~SnB;)~q ~Bq~ IIB;)~l O~
p~~u OSIB ~M. i ~wnloA ~Ut!~SUO;)l~pun A~!;)BdB;) ~B~q S~! O~ ~lnSS~ld ~UB~SUO;)l~pun A~!;)BdB;) tB~ql!B ~q1JO °1~Bl ~q1 S1 ag/dg = A) 98'l'O;:;:: A/(I - A) = ")f pUt! ~Ut!tSUO;)B S! X) ~l~qM
"dlJ= D)/
(~v.~l)
.L
Ot gU!P10:):)R "d ~lnSS~ld JO UO!t -:JunJ SRS~!lRA gU!Ioo:) :)!tRqR!PR gU!ogl~pun I~:)md 1!R URJO ~lmR1~dUl~t ~qt tRq! ((I I 'vI) ~~s) IIt!:)~l Ot P~~u ~A'. 'I~A~I UO!tRSu~pUO:)gU!tJ!I ~qt tR 7.L ~lmR1~dUl~t ~qt ~tRIn:)It!:) °1 '~sRq pnoI:) ~q! Ot ~soI:) Al~A AIIt!nSn S! pUR ('l:)'l) [alta[ Uo!Jvsuapuo.:J 8u!J/![ ~q! P~IIt!:) S! tqg!~q S!qj. 'p~tR1mRS ~UlO:)~q II!A'. I~:)md ~q! q:)!qA'. tR tqg!~q ~qt ~tRIn:)It!:) Ot I~:)md 1f!! p~tR1mRsun gU!S!l R Jo S~gURq:)~lmR1~dUl~t tnoqR UO!tRUllOJU!~AOqR~qt ~sn UR:)~M. 's~sod -lnd It!:)!:j:)R1dlIt! 10J 10ll~ ~Iq!g!Ig~u U! StInS~l J ~tR1 ~sdRI :)!tRqR!PR Alp ~qt Ot It!nb~ ~tR1 ~sdRI :)!tRqR!PRtS!OUl ~qt gU!tt~S tRqt ~tOU (0861) tt~DI pUR l~q:)Rddnld
.~gURq:) ~Iq!g!Ig~u
S;)ISAHd Gno!;)
96L
CLOUD AND FOG FORMATION 797
The lifting condensation level hLcL is shown in Figure 15.11 as a function of the initial temperature and relative humidity of the air parcel. If the air parcel is lifted beyond the LCL, water will start condensing on the available particles, and latent heat of condensation ( - ~ H v) will be released. The lapse rate r s in this casecan be calculated by an energy balance, assuming that the air parcel remains saturated. The cooling rate of the air parcel is balanced by the work necessary for the expansion of the air parcel and the condensation latent heat released. If the air parcel contains a water vapor mass mixing ratio Wvs(the subscript s is used to denote saturation of the atmosphere with water), where Wvs= Mwpo/ MaPa, then the energychangedue to cooling will be cpdT (c p is the heat capacity of air, which will be almost equal to the heat capacity of the air parcel including the water), the latent heat released will be ~Hv dwvs, and the expansion work is vdp = RTdpa/PaMa. Therefore the energy balance is
+ .1.Hvdwvs - RT - dpa = 0
A Cp dT
(15.50)
PaMa
anddividing by dz leadsto the expression
r S--
( dz ) =~~--~~ dz -~
A
Cp
4000
E
I
I
I
I
'
(15.51)
A
MaPacp dz
I
I
I
'
I
I
3500
RH=O.2 ~ >
3000
Q) ~
c: 0 :0= C
1/1
2500
2000
c: Q) "0 §
1500
u
~ :0=
1000
:J 500
0
I
0
I
5
I
I
I
I
I
I
10 15 20 Temperature. °c
I
I
25
I
.
30
FIGURE 15.11 Lifting condensationlevel as a function of initial temperatureand relative humidity of the air parcelassumingthat the air parcelstartsinitially at the groundat p = I atm.
°AI{u:>!1S!{Ua1 a10W q:>nw UO!1UWJOJpnoI:> saq!l:>sap puu JoZ 01 I Aq a1U1asduI aq'J sasua1:> -U! (~~o~I) Aq pa1uasa1da1 1uawu!11l1ua 10J UO!1:>allo:>a~ lUaWU01!AUa aq'J pm? spnoI:> snInwn:> U! s1j1!lpdn UaaA\1aq sa:>uaJaJJ!p a1mu1adwa1 aq'J Sa1uW!1Sa1aAoAIIunsn (£~o~I) Jo asn 1Uq'JA\oqs SUO!1UAlasqo ",.L < .L pm? '~m < 11m '0 < i1 asnu:>aq SJ spaa:>xa "J
d:J
(C;C;'C;I) [(,.[
-
(.Lpj "limp) I1HV + d:? .[)dg + (~m IIm)IIHv)]a + 8
-
-
+~= 8
zp- = 3J .LP
(086 I 'ttaDI p~ Jaq:>BddnJd)Aq UaA!gs! :JJ pnol:> aq:l U! atBJ asdBI aq:l tBq:I MOqS ~:> QUO',.L aJmBJadUJat St! p~ ~m S! Ia:>md gU!S!l aq:l punom tuaUJUOJ!AUaaq:l JO O[!BJ gU!X!UJ JodBA JatBM aq:l JI 'ssa:>OJdtuaUJu!BIIua aq:l Jo :>!tS!
-Jat:>Bmq:> a{B:>sq:lguaI aq:l S!] aJaqM '] II
= a SBUatt!lM uatJo S! atBJtuaUJu!BIIuaa~
zp Ui
(P~.~I)
=iJ
Uip I
(086 I 'U;)D! p~ l;)q:>uddn.Id) su a alD.l lUaWU!D.llUa ;)q:I S;)uY;)P ;)UOI;):>md l!U ;)q:IjO ssuw ;)q:I S! W jl °JT;rI 8U!pUnOllns ;)q:I q~!M P;)X!W S! I;):>md 8u!s!l ;)q~ wol} l!U ;)l;)qM 'spnoI:> II1~l U! ;)su:>;)q:I AI;)ml S! s~J. °W;)~SASP;)soI:> U su I;):>JUdl!U 8u!s!l U P;)~U;)J:I;)AUq ;)M mj oS
JuaWU!8.1JU~qJ!A\ ~U!IOO3 £'£'SI
"~~ldJ!U UR U! spnol:> qgnOJq~ UMOg SRqOqM ~UOA~ Aq p~:>!~OUu~~q ~A1!qII!M SR'spnol:>]O A:>~Aonq ~q'! S~:>~qu~ ~Jn~RJ~W~~ J~qg!q S!q.L "J!U~~J]-pnol:> gU! -punonns ~q'! ~q'! J~wmM spnol:> S~){t!W UO!~RWJO]pnol:> gupnp ~SR~I~J~R~q~U~~RI~q.L "OM~~q'! U~~M~~q ~:>u~J~l1!P~P~!I S! ~J~q~p~ MOl S! (.Lp/Sllmp) SUO!g~JJl!lod PIa:> uI "PJ ~RJ ~SdRI f.Jp~q'!]0 %0£ AIUOS! SJ p~ qg!q S!.LP/ Slimp s:>!doIJ ~q'!]0 s~Jn~RJ~dw~~qg!q ~q:Itv "~Jn~RJ~W~~]0 u°!1:>un] guOIJS R J~q~RJ~nq '~~~suo:> R ~OUS! SJ ~~RJ~SdRI ~q~ '~Jn~R -l~dw~~]o
uo!~:>un] gUOIJS R S! (.LP
/ Slimp)
~A!~RAP~P O!~RJ gU!x!"W UO!~RJn~RS~q'! ~:>U!S
(£~'~I)
!~~ MOqS O! .Lp/""mp O! zp/""mp ;)A!!~AP;)P ;)q! ;)!~I;)J UB~ ;)UO ';)!~J ~!!~q~!P~ Alp;)~ Jo %09 !noq~ JO'p;)!~ln~{t1~S! 1- W){ Jo 8't; }O ;)!~J ;)sd~I ~ JoO pu~ mqw 0001 JoJ ';)Idw~x;) JOd 'J!~ Alp JoJ UBq! SS;)I S! J!~ p;)!~Jm~S ;)!~J ;)~ ;)JoJ;)J;)q.t ,dg/8 = J > "J 'J;)!~M Jo U09~SU;)PUO~gupnp ;)A!!~g;)U ;)q II!M 'UO!!~~JJ ss~w JOd~A J;)!~M UO!!~Jm~S ;)q! Jo ;)gUBq~ Jo ;)!~J ;)~ 'zp/""mp ;)~U!S
}O gU!loo~.Jo
('l~'~I) ~;}B';}A\.LH /vdvWa'-
= zp/vdp
Aq U;}A!B'S! ~U;}!pt!lB' ;}lnSS;}ld;}q:I ~t!q:I~~t!l;}q:I B'U!Sfl
S:)ISAHd GnOl:)
861..
CLOUD AND FOG FORMATION 799
15.3.4 A Simplified Mathematical Description of Cloud Formation Let us revisit the rising moist air parcel assumingthat we are in a Lagrangianreference frame,moving with the air parcel.The air parcelis characterizedby its temperatureT, watervapormixing ratio wv, liquid water mixing ratio wL, andvelocity W.At the sametime weneedto know the temperatureT', pressurep, and water vapor saturationw~of the air aroundit (Figure 15.12).The pressureof the air parcel is assumedto be equalto its environment. Let us assumethat the air parcel has massm and air density p (without including the liquid water).The velocity of the air parcel will be the result of buoyancyforces and the gravitationalforce dueto liquid water.The buoyancyforce is proportionalto the volumeof theair parcel,m/ p, and the densitydifferencebetweenthe air parceland its surroundings, pi - p. The liquid water massis mWLand the correspondinggravitationalforce gmwL. Theequationfor conservationof momentumis -d (mW) = gm p'-p
p
dt
-WL
(15.56)
wherep' is the densityof the surroundingair. As the air parcel is moving, it causesthe accelerationof surroundingairmasses,resulting in a deceleratingforce on the air parcel.The decelerationforce is proportionalto the massof the displacedair, m', and the correspondingdeceleration,-dW/dt. Pruppacher andKlett (1980) show that this effect is actually equivalentto an accelerationof an "induced"mass m/2 and thereforea term -!m dW /dt shouldbe addedon the right-hand sideof (15.56). Using the ideal gas law (p' - p)/ p = (T - T')/T' and the modified (15.56)canbe rewritten as
3dW
Wdm
--+--=g 2 dt
m dt
T-T' T'
-WL
(15.57)
(Z9.~I)
Zp
111=
,.LP'
tp ,.LP
o~ gU!PlO:>:>g gU!gUgq:> ~m SUO!~!PUO:> ~U!pUnOllnS
~q~ ~gq~ I~:>md l~
~U!AOW S! I~:>md l~
~q~ qt!M gU!AOW l~AJ~SqO ug O~ m~ddg
~q~ ~sng:>~q u~q.L .UMOill{
-UO:> ~m lOdgA l~~gM Pug ~ln~gl~dw~~
~m PUg (Z)~m
}O S~Iyold
ll!M ~! 'M
Pug (Z),.L
p~~s
qt!M
~g ~W!~ q~!M ~ug~S
{t1~U~WUOl!AU~ ~qt ~gq~ ~WnSSg sn ~~
(~m- 1m+ "m)Mi1- lp
(I9'~I)
tmp
--
Jp limp
!~q:I puy ~A\ Jp ,(q ~U!P!A!P pUU S{l!!!U~J~JJ!PJO s!:JnpoJd ~U!!:J~I~~N
(Ulp + UI)(7mp + 7m + limp + 11m)= Ulp ~m + (7m + IIm)UI
-UM P!nb!I
01 ~U!pJO;);)U ~~uuq;) II!M SO!1UJ~U!X!W J~1 pug JOdUA J~1UM ~q1 u~q1 ~P!S1nO ~q1 WOJJ I~;)md ~q1 SJ~1U~ wp ssuUJJ!U JI l~;)md
~U!U!UJ:!U~ ~q1 JoJ ~;)Uureq SSUW J~1UM ~q1 q~noJq1l\m
d:J
(O9'~I) M I
01 P~1UI~J S! J~1UM p~SU~PUO;) ~qJ.
Jp
dg ME
d(!
=
Jp .LP
S! tIns~J Ieuy ~~ .suo!teJmesJ~ -nsJouo!te~J:)~qt/t\°IJBotl\m Aqp~:)eId~J~qpInoqsSl\m teqtOSIepue'zp/.zPM = Jp/.zp 1eq1gU!tou '(~~.~I) gu!sn p~1eIn:)JB:)~q ue:) ~m1eJ~dw~1Jo ~gueq:) Jo ~1eJ ~ql.
(6~'~I)
zMa~
-
(
7m
-
) 8~ = !.!!-.-
~
IX - X
Z
MP
f..q p~q!J:>S~p S! I~:>md J~ ~q1 Jo f..1!:>OI~A ~q1 ~JoJ~J~q.L Jp Ul
WI
(gt;'t;I)
= Ma
'a ';}~~J~U;}WU~J:lU;};}q1 Jo UO!~!uy;}P ;}q~ ~U!l.oIdw;} I.q pu~
S:>ISAHd ana']:>
008
~
GROWTH RATE OF INDIVIDUAL CLOUD DROPLETS 801
and
15.4 GROWTH RATE OF INDIVWUAL CLOUD DROPLETS Whencloud and fog dropletshavediameterssignificantly larger than 1,um,masstransfer of water to a droplet can be expressedby the masstransfer equationfor the continuum regime(seeChapter11) dm ~
= 21fDpDv(cw.oo-
c~)
(15.64)
by
Dv--~ p
(.!.273 )
D'v---
.94
(15.65)
Dv 2D.,.
.
)
'~
+acDp
RT
,7:0 1/2
(15.66)
;lq1 }U ;l1mU1;ldUl;l} ~q.L .sgU!pUnOllnS }~Idolp ~q} O} p~SU~I~l }U~q ~q} O} Iunb~ S! UO!}US -u~puo:) l~}UM gupnp p~SU~I~l }U~q ~q} ~}mS APU~}S}U }uq} S~}U}SAIdUl!s (L9.~T) uo!}unbg .S}:)~JJ~ UlnnU!}Uo:)UOU
(L9'~I)
10J P~}:)~llO:)
Jp
1J:11 JO A}!A!}:)npUo:)
{UUll~q}
~A!}:)~JJ~ ~q} S! ~'l ~l~qM
I1HV- = ("L - OOL)~'fda ll'l
wp
«IZ.II) osIR ggs) SgA!g g:)URJRqf.gJg -Ug UR '~UgWUOJ!AUggqt 10 gJn~RJgdwg~gqt 00.L pUR g:)RJlnS dOlp gqt ~RgJn~RJgdwg~gqt S! °111 .g:)URJRqf.gJgUg g~RpdoJddR UR gU!Apgp f.q gJn~RJgdwg~~gIdolp gq~ g~RIn:)JR:)sn ~g'l .gJn~RJOOWg~ ~Ug!qUJRgqt URq~Jgqg!q gq o~ pg~:)gdxg S! gJn~RJgdwg~ !gIdolp gq~ pUR 'g:)RJlns !gIdolp gqt ~RpgSRgIgJ S! ~Rgq'UO!~RSUgpUO:) Jg~RMgupnp 'JgAgMOH .gJmRJgdWg~ 10 uo!~:)unl R SR Z.~1 UO!~:)gs U! pgApgp Uggq SRq pUR g:)RJlns ~gIdoJp aq1!R UOfjRJ:jUg:)UO:) gqt O! spuodsgllo:)(v9.~I)
U! UO!!RJ:jUg:)UO:) JOdRAwnpq!I!nbg
gqj,
\0861 '~!gDl pUR Jgq:)RddnId) SUO!!!PUO:)IRJn~RUJOl SIgpOW q1MOJg10 SUO!~:)!pgJdIJRJgAOgqt uo ~:)gl1g gIU!I gARq o~ smgddti .(~u!t!:lJg:)un S!qt 'JgAgMOH .(9861 '.JR ~g q:)~!t!g'l) f.~!un O! JgsoI:) gnJRAR ~sgggns O! WggS S~ugWgJnSRgW~Ug!qUJRgI!qM '(0861) ugDl pUR Jgq:)RddnId f.q pgSn SRM ~VO'O 10 gnJRA V .g~Rqgp 10 !:)gfqns gq! Uggq SRq:>1)10 gnIRA gqj, .f.~!un URq! JgMOI S! gnJRA:>1)gqt 1! f.I~UR:)y!ug!S SgSRgJ:)U!UOfj:)gllO:) gqt 'JaAgMOH .wn ~ URq! JggmI SJg~gUJR!P ~gIdolp JOl %~ URqt SSgI pUR wn 1 URqt JggmI SgI:) -!!JRd JOl %~Z URqt SSgIgq PInoqs UO!~:)gllO:) gqt 'f.~!un o~ IRnbg gnJRA R JOd .pgsn !Ug!:)Ylg -0:) UO!~RPOWWO:):)R Jg~RMgqt 10 gnJRAgq~ uo f.IguOJ:jSspugdgp UO!~:)gllO:)gqt 10 gpn~!ugRw
.W1U
[
= d puu)l
£8Z
= .L
1U l;}1;}WU!P
1;}[dolP
;}l{1 Jo UO!1:JunJ U su UO!1UPOW
-wO:J:JU1:J;}Jl;}dw! pUB S1:J;}JJ;} WnnU!1UO:JUOUlOJ P;}1:J;}llO:JA1!A!SnJJ!p loduA l;}1Ui\\
O'OO~ ,, , I ,
I
w1i '.Je+eWD!O O'O~ O'~ I' , , , , , " I' , , , , ,
I
StO'O
.
£1"SI ::!nIf}{)I.!I
~'O O'0
0
= 1) ~ '0
b
N
(/I
G'O ()
~ = 'D
. I I
I
I
I
I
I
I
I I I
I
I
I
I
I
I
I E' 0
S:)ISAHd anal:)
ZO8
GROWTH RATE OF INDIVIDUAL CLOUD DROPLETS 803
droplet surface is then
(15.68) where we have used the mass balance dm
(15.69)
dt and we have defined
(15.70) For atmosphericcloud dropletgrowth 8 « I; however,let us continuethe dervationwithout assumingthat Ta = T~.Combining(15.64)and(15.69)andusingthe ideal gaslaw, we find that Pw(Dp. Ta)
dDp -- 4D~M~) DP-"dt
PwRT
Sv.oo
pO(Too)
(15.71)
whereSv.oo = Pwoo/po (Too) is the environmental saturation ratio. Recall that for a relative humidity equal to I ()()% the partial pressure of water in the atmosphere Pwoo is equal to the saturation vapor pressure pO (Too) and Sv,oo is equal to unity. The ratio of the water satura-
tion pressures at Ta and Toois given by the Clausius-Clapeyron equation as pO(Ta)
(15.72)
pO(Too)
Combining(15.68),(15.71),(15.38),and (15.72)we finally get dDp
DP&-
-
4D~Mwp~
Sv,oo
PwRToo
(15.73)
4MwO"w
+ RTpwDp(l
+ <5)
The aboveresult can be simplified since 11«
and
exp [~Hv Mw8/ RToo(l + 8)] ~ 1 + ~Hv Mw8/ RToo After somealgebrathe implicit dependence on 8 can be resolvedto obtain
.H~ %08 1Uwn!lq!I!nb~ 1UAIIU!1!U!~m sdolp ~~ .~W!1 Jo uop:JunJU su s~ssuw Alp 1U~J~JJ!P q1!tt\ sdolp Iunp!A!pu! Jo Q1tt\OJgIuuo!snJJ!G tI'SI 31Ifl~L.!I
O'O~
U!W feWI! O'~
~'O
~
o~
~ c 3 CD
CD ~.,
~ 3
."X) ~U;)!:)YJ~:)
UO!~UPOWWO:):)U SSUW ;)q:l1°
puu u!t11-I;):)un os{tJ S! .LX) 10 ;)n{tJA ;)q.L .~JI;)!:)Y1~:)
-
(9L')I) ~/I
;)n{tJA ;)q~ 01 {tJnb;) ~;)S U;)~1° S! ~!
uO!~Upowwo:):)u
".LH . d.')dda.LX) v+1
OwlCZ
V'll
{tJUU:)q:I :)q:I S!.LX) ;)J;)qM
/ ""= ~"
S:)ISAHd ano'1;)
f'O8
GROWTH OF A DROPLET POPULATION 805
For a cloud droplet larger than 10 JLffi,using ac = aT = I, at 283 K,
anddefining Sv,eq asthe equilibrium saturatiQnof the droplet, (15.74)can be rewritten as
-
SV,eq)
where Dp is in cm and tin s. The growth of an aerosol size distribution under constant supersaturation of 1% is shown in Figure 15.14. The rate of growth of droplets is inversely proportional to their diameters so smaller droplets grow faster than larger ones. As a result, small droplets catch up in size with larger ones during the growth stage of the cloud.
15.5 GROWTH OF A DROPLET POPULATION
.The growth of an aerosol population to cloud droplets can be investigated using the growth equation derived in the previous section. In general, one would need to integrate simultaneously the differential equations derived in Section 15.3.4 for the air parcel updraft velocity, temperature, water vapor mixing ratio, and environmental temperature and water vapor mixing ratio, coupled with a set of droplet growth equations, one for each droplet size class. The liquid water mixing ratio of the population consisting of Ni droplets per volume of air of diameters Dpi will then be n
WL =~.:!:.
L N;D:;
Pa 6 ;=1
(15.77)
where we have assumed that there are n groups of droplets. It is instructive, before examining the interactions between cloud dynamics and microphysics, to focus our attention on the microphysics. Figure 15.15 presents the results of the integration of these equations for a polluted urban aerosol population (Pandis et al., 1990a) for an aerosol distribution consisting of seven size sections. At time zero the relative humidity is assumed to be 100%. At this time the particles have grown several times from their dry size as a result of water absorption and are assumed to be in equilibrium with the surrounding environment. The temperature of the air parcel is assumed to decreasewith a constant rate of 2 K h -1. As the temperature decreases,the saturation of the air parcel increases.The particles absorb water vapor, but the cooling rate is too rapid compared to masstransfer and the air parcel becomes supersaturated.After a few minutes the particles startbecoming activated. The larger particles become activated first (Section 15.2) and the smaller soon follow. As particles become activated, they are able to grow much faster. Note that based on the Kohler curves as a particle grows the driving force for growth
'sal:J!1JRd 1l!!1 -!U! Jo saz!s L a10uap su°!1:Jas aq.L '(066 I "Il! 1a S!Pm!d) pnol:J u Jo aw!1aJ!1 aq1 ~uJlnp SJa1awu!p al:J!1 -JIId pm! 'uo!1UJn:jusJadns '1ua1uo:J Ja1UMprnb!l 'aJn:jUJadWa1Jo u°!1nloAa pa1ulnw!s SI"SI 31Ifl9I.f
U!W
09
O~ I
Ot I
'~W!.L
Of I
O'l I
01 I
0
I 1'0
~-~i~J I
'VI ~. ~ ~
s '0-
CI)
c: ]
-.0
I
'"1 '" ~ c: '"1 ~ 0 =
0 1.0 Z'O
~ ()Q
£.0 0.£
s,
~ (D
~.£ O"t ~.t .
I
I
I
I
I
O'~
~ .., ~ c: ~~ 0 n
SJISAHdanolJ
908
~
GROWTH OF A DROPLET POPULATION 807 (cw.oo
- c~q)becomeslargerfor almostconstantCw.oo,becausec~ decreasesrapidly with
size. Therefore, as more and more particles get activated, the rate of transport of water from the vapor to the particulate phase increases, while the rate of supersaturation increase due to the cooling remains approximately constant. The result is that the supersaturation increaseslows down and after 6 min reaches a maximum value of 0.1 %. Let us describe the above situation quantitatively, by deriving the equation for the rate of change of the supersaturation sv.The water vapor mixing ratio Wvis related to the water vapor partial pressure Pw by (15.46), while by definition
+sv=
Pw pO
Therefore combining these two relationships one gets
v--
S
MaPa
Wv-
(15.78)
Mwpo
Differentiatingthis expressionwith respectto time andrearrangingthe termswe obtain
~ = ~~ - (1+sv)( ~~ - ~~ dt Mwpodt po dt Padt )
(15.79)
Thechangeof the air pressurewith time can be calculatedassumingthat the environment is in hydrostaticequilibrium so that
~ = -~w dt
RT
wherewe have assumedthat T' ~ T. The changeof the parcel saturationpressurewith timecan be calculatedusing the chain rule and the Clausius-Clapeyronequation, °
do -=-.
tt
dpo dT
dT dt
= ~HvMwpOdT RT2
(15.81)
dt
Substituting(15.80)and (15.81)into (15.79)one gets MaPa dwv dsv = -Mwpo dt dt
If we assumethat there is no entrainment(e = 0) and substitute(15.60)and (15.61)into (15.82),we obtain
dsv = dt
~HvMwg cpRT2
gMa RT
w-
PaMa poMw
+
~H2M v w
dWL
cpRT2
dt
(15.83)
"suO!1nJmnsJ~dns q'J!M 'S1U~WUOJ!AU~ J~Ol!~D ~q'J uo pOl! (suO!1nJmnsJ~dns
J~q~!q U! 1{nS~J A{{1;JnSn 'SUO!1nJ1U~:JUo:J {OSOJ~n J~MO{
"(uO!1nq!J1S!p
~Z!S {osoJ~n
~q1 Jo S{!~~P
J~q~!q U! 1{nS~J s1JnJpdn J~~mv
P~1u~s~Jd~J S:J!umUAP pnO{:J ~{n:JSOJ:Jnw ~q1 uo q1oq pu~d~p '£"~{ -x~ suo!1nJmnsJ~dns
Jo s~~un~
SUO!1!PUO:J:J!l~qdsow1n -nJmnsJ~dns ~n{1;JAun!p~wv -nJmnsJ~dns
'~{dumx~
'J~umM.)
~q1) s:J!SAqdOJ:J!W
S~!1!:J0{~A 1Jl!JPdn pno{:J ~q1 Aq suO!1nJmnsJ~dns
1nq1 ~10N
~Iqn.L U! U~A!~ ~m S~A1 pnO{:J Sn°!lP.A U! P~1:J~d un sn ~J~q P~1u~s~Jd 1nq1 01 m{!w!s
Jo S1U~W~Jnsn~w
~s~q1JO ~~P~{MOill{ "(8961 1U~!qwn
01 ~u!puods~JJo:J
~u!sn
J~q1nJ ~m pOl!
suO!1n{n:J{n:J {n:J!1~Jo~q1 Uo p~snq
Jno Jo 1S0W 's1u~W~Jnsn~w
S! SUO!1
~s~q1 U! p~1Jod~J snM % 100Jo
%Z p~~:Jx~ J~A~U 1S0W{n pOl! % 1 Ol!q1 ss~{ A{{1;Jnsn ~m suofl
1nq1 p~1n:J!pU! ~Anq S1U~W~Jnsn~w
s~Uo p~1nJmnsqns
sno!A~Jd
011X~U SUO!~~J p~1nJmnsJ~dns
~m spno{:J 1nq 'uO!1nJmnS WOJJ UO!1n!A~p nnms n ~Jnsn~w -{nq:J A{~W~J1X~ u~~q ~Anq spno{:J U! suO!1nJmnsJ~dns
's~ssnw
p~u!nJ1u~
"Alp"
q1!M Aq:J1nd Apu~nb~JJ
01 f.;n, ~Uo s~op A{UO 10N O~U!~U~{
1U~!qwn Jo S1U~W~Jnsn~w O~!S U! wn
01 MOJ~ pun p~1nA!1:Jn 1~~ {{1;J(wn
£00 unq1 J~~m{ S~Z!S Alp)
1:J~J!a
01 0l!q1 J~~m{ S1~{doJP
s~{:J!~d
~q1 Jo 1S~J ~q.L .~Z!S
U! ~JOW MOJ~ 01 ~W!1 ~q1 ~Anq 10U op pOl! S~1nU!W M~J n J~1Jn ~1nA!1:Jn~p A~q1 's~sn~J:J~p uo!1nJmnsJ~dns
~q1 sn 'J~A~MOH
-J~dns wnw!Jmw
'wn
~. 1 Jo ~Z!S n 01 ~U!MOJ~ ~1nAfI:Jn A~q1 os 'UO!1nJmnS
~q1 0l!q1 J~MO{ Apq~!{S
-J~1U! ~JOW n 1!q!qx~
(wn
S! UOflnJmnsJ~dns
ZOOJ~1~um!P Alp)
1 UO!1:J~S U! s~{:J!~d 'wn
{1;J:J!1!l:JJ!~q.L °JO!Anq~q ~U!1S~
UO!1:J~S ~Z!S puo:J~s ~q1 U! S~{:J!~d
pno{:J ~q11noq~noJq1 wn!lq!{!nb~ U! u!nw~J s~{:J!~d -IoJ 'A{MO{S ~1nJodnA~ u~q1 pOl! UO!1nJmnS wnw!Jmw ~Z!S Alp)
~Z!S 01 ~u!puods~JJo:J
~1nA!1:Jn 01 1U~!:JYJns snM
1nq1 ~10~1 ~Jn~!d £00 A{~1nW!xoJddn
~q 01 q~nou~
Z unq1 J~nnws
'~W!1~J!{
~s~q.L °A1!p!Wnq ~A!1n{~J ~q1 ~U!MO{ ~q1 JoJ wn ~00 01 dn MOJ~ (wn 1'0
U! ~10N "~I'~I unq1 J~~m{
% 1'0 Jo UOflnJmnSJ~ns
~Jn~!d
U! L 01 £ SUO!1:J~S
SJ~1~um!P Alp
wnw!Jmw
O~pm!u~nw Jo SJ~pJO ~~Jq:I Jo S~~Ol!q:J ssnw 01 ~u!puods~JJo:J pno{:J pun (wn
tOl!:JY!U~!S u!muo:J
q1!M S{osoJ~n
~q1 '~{dumx~
Jno
{osoJ~n
OM1 01U! p~1nmd~s
~q.L "l°SO.liJV /V!I!IS.liJ1U!
MOJ~ J~A~U 1nq wn!lq!{!nb~
P~{{1;J:J~m pun
01 ~SO{:J U~W~J
~JoJ~J~q1 S! pno{:J s1~{doJP p~J~P!suo:J
1S~J ~q.L °s1~{doJP pno{:J ~WO:J
n!M ~n{nA S!q1 unq1 J~MO{ suo!1nJmnsJ~dns
Ol! S! ~oJ/pnO{:J
~q1 uo spu~d~p
uI
s~sn~J:Ju! ~Z!S q1!M 'S1~{dOJp
A{{1;JnSn~m S~Z!S l!~q1) p~1nA!1:Jn 10U ~m 1nq J~1nM Jo s1unoum
1nq1 S{osoJ~n {n!1!1SJ~1U! 'sdnoJ~
n ~P!SU! UO!1n{ndod
-~q pOl! p~1nA!1:Jn ~wo:J~q "1~1~Wnmd 1un1Jodw!
{n:J!1!l:J q1!M S~{:J!~d
n ~P!SU! p~q:Jn~J uO!1nJmnsJ~dns
wnw!xnw
~q.L
'uO!1nAfI:Jn Jo ~1n1s J!~q1 uo pOl! uo!1nq!IlS!p wm
-!~d
l~
U! q:J!qM 'S~{:J!~d
011JodsunJ1
~Z!S ~{:J
~q1 pOl! ~1nJ ~U!{OO:J ~q1 u~~M1~q ~:J0l!1nq n Jo 1{nS~J ~q1 S! pno{:J ~q1
o~sn~J:Ju! J~1nM p!nb!{ ~P!SU! uO!1nJmnsJ~dns Jo UO!1~U~s~Jd~J
~q11nq1 s1s~~~ns 11 °s1u~wn~m
{1;J:Jflnw~q1nw ~q1 S! (£8°~1)
ssnw ~q1 Aq P~1!W!{ S! J~11n{ ~q.L
{1;J:J!1~JO~q1~AfI~!{1;Jnb
uO!1nnb3
sno!A~Jd
Jno
10l!1SUO:J os{1;JS! ~1nJ ~U!{OO:J {~:Jmd
~q1 ~JoJ~J~q1 pun '10l!1SUO:J 1S0W{1;JS! A1!:>O{~A 1Jl!JPdn ~q11nq1 p~wnssn
t Jp
~Anq ~M ~J~qM
8
(PS't;I) ~;;:M
,.LP
~tgl gU!IOO:>~qt qt!M f.t!:>OI~A tJelpdn ~qt u°!1gnb~ ~AOqg ~qt U! ~:>gId~l PIno:> ~uO 'UO!tgSU~puo:>l~tgM f.q P~Sg~l:>~PS! pug f.t!:>OI -~A tJglpdn ~qt qt!M f.Im~u!I S~!l11AUO!tglmgS ~qt 'UO!tgSU~pUO:> JO ~:>U~sqg~qt U! tgqt SIg~A -~l uo!1gnb~ ~AOqg ~ql. 'spnoI:> U! 10'0;;::; liS Sg '1 ;;::;liS + 1 tgqt p~wnssg ~Agq ~M ~l~qM
S:>ISAHd anol:>
808
CLOUD CONDENSATIONNUCLEI
809
TABLE 15.3 Updraft Velocities and Maximum Supersaturations for Clouds and Fogs
0.25--0.7 0.3--0.8 Stratiform Fog
'" 0-
~O.O5 ~O.l
Pruppacher and Klett (1980) Pruppacher and Klett (1980) Mason (1971) Pruppacher and Klett (1980) Pandis and Seinfe1d (1989)
15.6 CLOUD CONDENSATION NUCLEI Supersaturations of several hundred percent are necessary for the fonnation of water droplets in particle free air (see Chapter 10). The need for such high supersaturations indicatesthe necessity of particles for cloud fonnation in the ambient atmosphere. The ability of a given particle to serve as a nucleus for water droplet fonnation, as we have seen in the previous sections, will depend on its size, chemical composition, and the local supersaturation. Particles that can activate at a given supersaturation are defined as cloud condensation nuclei (CCN) for this supersaturation. In the cloud physics literature one often defines as condensation nuclei (CN) those particles that fOnD droplets at supersaturations of ~400% and therefore CN include all the available particles. One can therefore assume that the CN concentration is equal to the total aerosol number concentration. This CN definition should be contrasted with the CCN definition where supersaturations often well less than 2% are used.Therefore CCN represent the particles that can fonD cloud droplets under reasonable atmospheric supersaturations. We caution the reader that CCN concentrations always refer to a specific supersaturation, for example, CCN(I%) or CCN(0.5%) and one should be careful when comparing CCN concentrations measured or estimated at different supersaturations. The CCN concentration of a given supersaturation corresponds under ideal cloud formation conditions (e.g., spatial unifonnity) to the number concentrations of droplets if the cloud had the same supersaturation. We will use the symbol CCN(s) for CCN at s% supersaturation. For a given aerosol population CCN(s) depends on both the size and composition of the particles. In the simple case of an aerosol population that has unifonn size-independent composition, by definition, CCN(s) = roo JDs
n(Dp) dDp
(15.85)
where n(Dp) is the number distribution of the aerosol population, and Ds the activation diameter for s% supersaturation of these particles. Note that CN = CCN(oo) according to the above notation. Therefore, if all particles had the same composition, one ne~dsto know only the activation diameter and the size distribution of these particles to estimate the cor-
.uo!~!sodwo:J ~U;}pu;)d;}P-;}Z!S t! st!q put! P;}X!W AIIt!W;}~U! lOU AIIt!W;}~X;} l;}q~!;}U S! ~t!q~UO!~t!lndod 10SOl;}t! ~u;}uodwo:J!~lnW 1t!:J!dA~t! (q) pUt! uo!~!sodwo:J 1t!:J!W;}q:J UllOJ!Un (t!) lOJ N:J:J ;}q~ ~U!~t!:J!PU! t!;}l1! P;}pt!qs ;}q~ qt!N!. uo!~nq!l~s!p ;}Z!S 10SOl;}t! Ut! Jo :J!lt!W;}q:JS (q)
da
gU!111:)!PU! S1U~Ul~lnSI1~Ul 10J ~
(6~61)
= 'J[ PUI1 009 = :J pug
P~1l0d~1
(696 I)
1!11 ~U!l11Ul10J
PlSMO){:)~!:)rOA\ 'J[ pug 01£
f=
pug
= :J Jo
A~UlOM.L "J[ PUI1 :J Sl~1~Ull1red J11:)!l!dUl~ ~q1 U! p~pp~qUl~
9rSl
nll~I.!I
(~)
sa
A~UlOM.L "1!11 J111U~U!1UO:) s~nll1A ~gI11~AI1 P~1s~ggns S! UO!111lndod 10SOl~
~q1
Jo U09!sodUlO:)/~Z!S ~q11noql1 UO!111UllOJuI 'SUO!111:)!lddl1 s:)!sAqd01':J!Ul pnol:) AU11Ul10J 1U~!:) -YJns U~1JO S! 'J[ pug :J sl~1~ureJP.d ~q1 JO ~gp~IMOill{ 111q1P~10U ~q Plnoqs 11 'UO!1111mI1S1~dns %1 111~A9:)11 S~I:)9lP.d ~q1 '(%I)N;);) ~g1!1U~:)1~ 11SI1 p~ss~ldx~
~q1 01 spUOdS~llO:):J
1ug1SUO:) ~q.L i6~61
'A~UlOM.L)
UO!1111mI1S1~dns ~q1 S! s pug £_Ul':J S~I:)!1lP.d U! S! (s)N;);)
(L8.~I)
'f
S:J =
~l~qM
(s)N::>::>
'M~I JaMod u q}!M (tua;)Jad) 5' u09~Jm~sJadns;)!laqdsoun~ Ot Uo!tuj:}ua;)uo;)(5')NJJ sat~IaJmIndod tsow aq} Jo auo 'stuawaJnsuaw ;)!laqdsowt~ uo pas~q padoIaAap uaaq aA~qsu09~z!J:}aumJ -ud IR;)!l!dwa Jo sa!las ~ 'sa!tladoJd NJJ J!aq} t~q} wol] ~u9~In;)IR;)uaqt pUt! 'uo!tnq!lts!p UO9!sodwo;)az!s IosoJauaq} Jo tuawaJns~aw qJ!M patu!;)OSS~ sa!tIn;)YJ!paqJJo asnu;)ag ("l'l Jatd~qJ U! saI;)flJRdpax!w AIIRWatU!Jo tda;)uo;) aqJOt WmaJ 11!MaM.) 'auo JOOJaz Jaq}!aaq 11!M(da) sf '(uo!t!sodwo;) IR;)!waq;)aums aqJaA~qJataum!p aw~s aqJJOSaI;)!:tJt?d 11U) pax!w AIIRwatu! am SaI;)!:tJt?d IOSOJa~ aqJJ! t~qJatON '(q9I.~I aJn~!d) %5' U09~JmusJad -ns t~ pat~A9;)~am t~qJ da Jataumw JOSaI;)!:tJt?d IOSOJa~ aqJJo UO!t;)~l]aqJS! (da) sf aJaqM
oo}
dap (da)U(da)rj
(98'~I)
-:)unj P~:lR:)!IdUIo:) ~l~q/t\
su09RIndod
= (s)N::>::>
~lOUI R S! U09RJ:jU~:)UO:) N.-J.-J ':lu~pu~d~p IOS01~R 10j 'l~A~/t\OH
"(R9I'~1
~lng!d)
'UO!:I ~Z!S S! UO!:I!SOdUIO:) IR:)!UI~q:) UO!:lRJ:jU~:)UO:) N.-J.-J gU!PUOdS~l
S:JISAHdOnO'I:J 018
CLOUD CONDENSATIONNUCLEI
811
c = 600 and k = for continental air. Hegg and Hobbs (1992) reviewed more recent measurements of marine CCN and suggested values of c = 200 and k = 4. Other values for c and k based on ambient measurements are given in Table 15.4. As expected, because of the variability of the aerosol size/composition both spatially and with time, the parameters c and k vary significantly, making the use of such empirical relationships rather questionable. Generally, CCN(1 %) concentrations in maritime and modified maritime airmasses are around 100 cm-3, while concentrations in excessof 1000 cm-3 are found in air that has been over land for several days. The fraction of aerosol particles that are CCN(I%) is also quite variable. Over the oceansthis fraction is roughly 0.5 (Hegg and Hobbs, 1992), but it does vary from 0.2 to 0.6. For polluted conditions the fraction is much lower, usually less than 1%. This is mainly due to the existence of thousands of ultrafine particles (less than 50 nm) that cannot get activated at this supersaturation regardless of their chemical composition. Since ambient supersaturations rarely exceed 1%, the above CCN measurementsindicate that cloud droplet concentrations should range from 200 to 1000 cm-3 over continents and from 10 to 200 cm-3 over oceans. These values agree well with the drop concenti:alions found in continental and maritime clouds. The link between aerosol chemical composition and CCN behavior is still not completely understood. Whereas behavior of soluble inorganic aerosols is relatively well established, much less is known about the ability of organic aerosols (alone or mixed with inorganic components) to serve as CCN. A series of studies have reported the activation efficiency of particles generated during fuel combustion. These results were summarized by Lammel and Novakov (1995) and are
.lof 59) for
TABLE 15.4 Empirical Parameters for the CCN Concentration Dependenceon the Supersaturation s
0.3 0.5-0.6 0.5 0.8 1.3-1.4 0.4-0.9 0.4 0.5 0.4,-0.6 1.0 0.3 0.4 0.5 0.4 0.9 Source: Hegg and Hobbs(1992).
Maritime (Australia) Maui (Hawaii) Atlantic, Pacific Oceans Pacific North Atlantic North Atlantic Arctic Cape Grim (Australia) North Atlantic North Pacific North Pacific Polluted North Pacific Equatorial Pacific Continental Continental (Australia) Continental (Buffalo, NY)
'~J~qdsow:j~ ~q:j WOJJ JU~~:j~WJo T~AOW~JO:j ~U!P~~T 'spnoT~ punom p~ U! q:joq STOSOJ~~ ~q:j p~ sdolpu!UJ ~q:} U~~M:j~q SUO!:j~~J~:jU!T~UO!:jWP~~m ~J~q:} '~U!u!UJ S! pnoT~ ~q:} JI "sdoJp pnoT~ guow~ ~~u~~s~JUo~pu~ 'sdoJp pnoT~ p~ STOSOJ~~ T~!:j9SJ~:jU!U~~M:j~q SUO!S!IlO~'~s~qd sno -~nb~ ~q:j U! UO!:j~~~JJU~!W~q~ ~U!pnT~u! 'uo!mq!J:js!p ~q:} AJ!POW U~~ s~ss~~oJd T~UO!:j!PP~ Jo s~~~s ~ 'J~A~MOH "UJJOJJUU!~~O S:j!O:j Wm~J PTnOM u09nq!J:js!p TOSOJ~~ ~q:j UO!:j~JOd~A~ pnoT~ J~:jJTI'~~~Td ~u~:j ss~~oJd ATuO~q:j ~J~M S!q:}JI "s:j~TdoJppnoT~ ~q:j Jo uo!:j!sodwo~ Jl?9!U! ~q:} S~U!UJJ~:j~p'STOSOJ~~ Jo 8u!8uai\v.:J1! UO!lva/.:Jnu S~ p~q~~s~p U~UO 'ss~~oJd S!q.L 'S~T~9JP.d T~9!:jSJ~:jU!s~ su!Uw~J :jS~J~$ ~T!qM S:j~Tdolp pnoT~ s~wo~~q p~ p~:j~A!:j~~S! UO!m -q!J:jS!PTOSOJ~~ ~q:}Jo UO!:j~~JJ~ ':jSJ!tl "S~ss~~oJdJo A:j~~A ~ Aq p~UJJOJS~J:jS! UO!mq!J:jS!p uo!:j!sodwo:>-~z!S TOSOJ~~ ~q:} pnoT~ ~U!U!~JUOU~ Aq T~~md J!U ~ Jo ~U!ss~:)oJd ~q:} ~u~na
S'IOSOH:lV ~O DNISS:l30Hd 0[10'13
L.~I
'(6861 'lu 1~11~IJUH :PL6I "JU1~UU~U3)NJJ ~A!1;JUAUUW ~;JnpoJd S~JY 1S~JOd'~){OWS I!O JoJ A1!A!1;JUNJJ JO SI~A~I J~MOI q;Jnw p~'JJod -~J ~AUq (1661 'lu 1~ SJ~~O"M)S~!pmS J~q:lO '~){OWSJ!~q:I Jo UO!1UA!1;JU ~U!1U1!I!;JUJ 1qnop ou '100SpUU ~1uJIns puu (s~u!.lq PI~Y I!O) 1IuSJo SUO!1UI!U~;JUO;J q~!q p~U!U1UO;J S~JYI!O 1!UMn)J ~q.L '%Z'O MoI~q SUO!1UJmusJ~dns1U U~A~ ~A!1;JU~J~M S~I;J!~d ~s~q:I Jo A1!.lOfuw ~q.L 'UO!1UJmusJ~dns% 1 1U NJJ ~A!1;JU~J~M ~wnId ~JY I!O 1!UMn)J ~q:I U! (wn PW'O < da) ~q1 Jo %OL AIq~nOJ 1uq1 p~'JJod~J (Z66 I) ){IP.O puu uospnH '~Idwux~ JOd .NJJ su
S~I;J!~d
UO!1;JUJJ ;J!UU~JO~~reI U ~u!u!muo;J S~I;J!~d Jo ~;Juu'JJodw! ~q11;J~I~~U 10U PInoqs ~uo 1uq1 ~1UI!SUOW~pS~!pmS ~AOqU ~q.r .fJo~q1 J~IqQ)J ~q1 Aq p~q!.l;JS~p ~q UU;JJO!AUq~q UO!1UA!1 -;JUS1!1Uq:Ipuu 'NJJ UJJoJUU;JIOSOJ~U;J!UU~JOAIP.pUO;J~S ~Jnd 1Uq:Ip~MOqS (L66 I) swuud puu znJJ 'S~I;J!~d uo!1snqwo;J Jo U09UA!1;JU~q1 ~U!U!UJJ~1~PJ01;JUJ'AIuO ~q:l10U 1nq 'JofuW ~q1 S! s1u~uodwo;J ~IqnIos Jo A1!I!quI!UAU 1uq1P~1s~~~ns SJoq1nu ~s~q.L 'C;'C;I ~Iqu.L U! U~A!~
.uO!~1!Jm1!sJ;)dns %8'0 ~V"
pUB UO"B.lDJBS.l3dns
SUOI' 31qnlos JO JU3JUO;J .I!3q.L % 1 JB S31;)".lBd IOS0.I3V Jo UO,,;)B.I..!I P3JBA";)V S'S1 :!I'IHV.L
S:)ISAHd ano,:)
us
CLOUD PROCESSINGOF AEROSOLS 813
Finally,thereare other processesthat cwoccur aroundcloudsthat may leadto the formationof new particles. 15.7.1 Nucleation Scavengingof Aerosolsby Clouds Nucleationscavengingof aerosolsin cloudsrefersto activationand subsequentgrowth of a fractionof the aerosolpopulationto cloud droplets.This processis describedby (15.74) andhasbeendiscussedin Section15.5. If Ci,ois the concentration(in massper volume of air) of an aerosolspeciesin clearair beforecloud formation (e.g., at the cloud base),and Ci,cloudand Ci.intare its concentrationsagainin massper volumeof air in the aqueousphaseandin the interstitial aerosol,respectively,one can definethe cloud massscavengingratio for speciesi, Fi' as
Fi =
Ci,O-
Ci,int
COI. O
Notethat if thereis no productionor removalof i in the cloud then Ci,o = Ci,int
(15.88)
+ Ci,cloud'
The mass scavenging ratio defined above may vary from zero to unity. The number scavenging ratio F N can be defined as
No- NiDI FN=
No
(15.89)
where No is the aerosol number concentration before cloud formation and NiDIis the number concentration of interstitial aerosol. Theoretically, as particles larger than 0.5 .urn or so become cloud droplets in a typical cloud and these particles represent most of the aerosol mass, one would expect mass activation efficiencies close to unity. Junge (1963) predicted sulfate scavenging ratios from nucleation scavenging alone to range from 0.5 to 1.0. Since then all theoretical studies have predicted high mass nucleation scavenging efficiencies for all aerosol species. For example, Flossmann et al. (1985, 1987) reported calculated aerosol scavenging efficiencies exceeding 0.9 in typical cloud environments. Pandis et al. (1990a) estimated scavenging efficiencies of 0.7 for sulfate and 0.8 for nitrate and ammonia in polluted clouds. In other numerical studies, Flossmann (1991) reported mass scavenging efficiencies of 0.9 or higher for warm clouds over the Atlantic. These theoretical estimates are in good agreement with the high mass scavenging efficiencies measured in the atmosphere. Ten Brink et al. (1987) observed nearly complete scavenging of aerosol sulfate in clouds. The data of Daum et al. (1984) also showed that the bulk of the sulfate mass is incorporated into cloud droplets. Hegg and Hobbs (1988) reported scavenging ratios for sulfate of 0.5 :i: 0.2. On the contrary, low number scavenging efficiencies are expected in clouds influenced by anthropogenic sources becauseof the prevalence of fine aerosol particles; number scavenging efficiencies of a few percent or less are expected in most such situations. Only in clouds in the remote marine atmosphere does the total number scavenging efficiency exceed 0.1.
-UO:) ~mTos g ~Agq UIr1' vZ J~:j~UIg!P JO sdoJp -UO:) ~:jnTos g ~Agq UIrf
OT punoJg
Sg~J~qM '1- 'l ~UI OOT ATq~nOJ JO UO!:jgIJU~:)
J~:j~UIg!P JO S:j~TdoJP pnoT:) ~JmgUI g JOJ :jgq:l ~:j°N
O~Z!S
~U!Sg~J:)U! q:j!M S~Sg~J:)U! UO!:jgIJU~:)UO:) ~:jnTos ~q:I q:)!qM JOJ S:j~TdoJP PUg '~Z!S ~U!Sg~J:)U! q:j!M S~Sg~J:)~p UO!:jgIJU~:)UO:) ~:jnTos q:)!qM JOJ S~T:)~d p~:jgA!:j:)gUOU JO ~:)U~:jS!X~ JO :jTns~J g S! UInUI!U!UI
S!q.L °UIrf OT punoJg:jg
UInUI!U!UI
g SMOqS UO!:jgJ:jU~:)UO:) ~:jnTos pnoT:) ~JmgUI g
JOd o~Sg~:)~p SUO!:jgIJU~:)uo:) ~:jnTos J!~q:I 'p~:jgA!:j:)g ~UIO:)~q STOSOJ~gsy °OgN -OdUIO:) :)!T!qdoJpAq illnJ:j:)~ds
Sg q:)ns S:jU~U
u!1!:juo:) A~q:j Sg SUO!:jgIJU~:)UO:) J~MOT Apq~!TS ~Agq s~T:)!t.rnd J~~mT PUg
~Z!S ~q:I SSOJ:)g q~!q
S! UO!:jgIJU~:)UO:) ~:jnTos 'UO!:jg~J:) pnoT:) ~oJ~q
'AT11I!:j!U! :jgq:l
~:j°N L To~T ~Jn~!d U! UMOqS (g066 T) 0111 :j~ S!PUgd Aq ~soq:j ~)[!T Suo!:jgTn:)11I:) Aq p~:jJoddns 0
~m S:jU~UIn~m ~s~q.L O~Z!S ~T:)!t.rnd q:I!M ~Sg~J:)U! O:j pU~:j PTnoM Uo!:jgTndod S:j~TdoJP Jo SUO!:jgIJu~:)uo:) ~:jnTos 11I:j0:j~q:j '~UI9 q:j!M ':jgq:l s:js~~~ns :jU~UIn~m o~u!lln:):>o q:lMOJ'5 J! S~UO la
8u!u!qwo:)
TOSOJ~g Ug JoJ ~AOqg ~q.L
ss~:)oJd :jUgU!UIOP ~q:I S! UO!SnJJ!p J~:jgM Aq
J~~mT ~q:j Ugq:j ~:jgJ J~:jSgJ g :jg p~:jnT!p ~Jg 'Ia
<
(£6'~1)
pUR (I6'~I)
(~"
z Zal
~
'S:j~TdoJP J~T11IUIS~q:I pug
~~a I~a
1Rq1spuy ;)UO('l6'~I) U;)q.t -Ia Jo uo!1:)unJ ){t1;)MAJ;)A R AIUO S! 1Rq11UR1SUO:) R S!)J ;)J;)qM
'a ~
(Z6.~I)
)J
lp
'ap
pUR ((vL.~I) ~~S) l~!~WR!P !~IdOlp ~q!JO ~Sl~AU! ~q! O! {RUO!POdOld f.I~!RW!XOlddR S! ~!Rl q!A\Ol~ ~q:I S!~Idolp ~~mI f.pU~!~YJns lad JpjZap
(16'~1)
= Z"MO
'a -
Jpj'ap za
I"MO
za > la q:I!M sdnoJg IosOJ~nOM} JOJu~q:I ,(.~}~ 'UO!}nIngno~'s~sngJO gu!gu~1\.n~s~){!I s~ss~~OJdgu9~~Ig~u '.~'!) ~W!} q}!M }un}SUO~ sU!lJW~J! dnoJg]o S}~IdOJpU! IosOJ~np~gu~1\.n~s JO ssnw ~q:I}nq} gu!wnssn pun
Jp 'X -= 'XP I
(O6.~I)
jO ~:JeJP~Z!{l!UJJou ~q:I se!
1~a
':J~IdOJp~q:JU! uo!:J:JeJJssew ~:JnIos ~q:I Jo ~~ueq:J UO!:J:J~sJo '~a ~:JeJuo!:JnI!p ~q:I ~U!uY~a 'J'a/"Sa) = 'X
S! ! UO!:J:J~sU! S:J~Idolp Jo uo!:J:JeJJ ssew ~:JnIos ~q:J 'E- W:J ~ I S! S~I:J!1lBd Alp ~q:I jO A:J!SU~P~q:I :Jeq:lA:J!:J!Idw!s JoJ ~u!wnSSV ola sJ~:J~we!p Jo S:J~Idolp sno~nbe ~WO:J~qpUB MOJ~ S~I:J!1lBd ~s~q.L I'sa sJ~:J~we!p Alp JO sdnoJ~ ~I:J!1lBd ! JO S:JS!SUO:J UO!:JeIndod IOSOJ~e 0
~q:J:Jeq:J~wnssv '(8861 "{l!:J~ ~uooN) :Ju~wn~m ~U!MO"OJ ~q:I Aq UMOqS ~q Ut!:J S!q.L 'S~uo J~~mI ~q:I Ut!q:I J~:JseJ~:JnI!p ~JOj~J~q:IpUt! J~:Jsej MOJ~ S:J~Idolp J~I{l!WS 'mIn:J!1lBd U! 's~:JeJ :Ju~J~jJ!P:Je~:JnI!p S~Z!S:Ju~J~JJ!PJo S:J~Idolp 'pnoI:J e JO ~~ms q:lMOJ~ :J~Idolp ~q:I ~U!lna S}3Ido.lO pnol3
Jo uo!J!sodwO3
18;)!W3q3
r L .SI
S:)ISJ..Hdano,:)
toY8
CLOUD PROCESSINGOF AEROSOLS 815
105
,
, , ""'1
"'"
"'I
,.
,-
-~ eo d' 104 0 ~ 'E a.> g 0 u
5 10 1031
5
-
(a)
0 ~
, ,,'"
10" ,.
'"
"",,;Ii",
, ,"OJ
~~~~ : miD , '"
10" .
"'"
,.".
...,
",-
~ g 1041
103
;
"
'0 rI')
(b) 10' -~~"""'" 10.1
\
1
""";¥'",,
10
Diameter , ~m FIGURE 15.17 Predicteddependenceof the total soluteconcentrationon droplet diameterduring thelifetime of a cloud (Pandiset. al., 1990a).
centration that is 3.4 times higher. During the evaporation stage of a cloud, smaller droplets get deactivated and evaporate first (Figure 15.17b). Therefore the minimum gradually disappearsand the system returns close to its original state. The above predictions agree with measured concentration/size dependencies measured in clouds that are not heavily influenced by anthropogenic sources. Noone et al. (1988) sampled droplets from a marine stratus cloud and calculated that the volumetric mean solute concentration of the 9 to 18 J.Lmdroplets was a factor of 2.7 smaller than in the 18 to 23 J.Lmdroplets. Ogren et al. (1989) reported similar results for a cloud in Sweden. On the other hand, similar measurements for cloud and fog droplets in heavily polluted environments suggest that solute concentrations decreasewith increasing droplet size (Munger et al., 1989; Ogren et al., 1992). No satisfactory explanation exists for such behavior.
"(6861 "{1J ~~ ,(II~)l) S~!:)~s ~:)npoJd p~ Jo suo9~J:lu~:)uo:) U! ,(~!I!q~!.ffiA {1J!~~dsp~
s~U~~~~J
,(~!I!q~~SU! I~JodUJ~~ pu~ ~U~~uo:)J~~~A\ P!nb!I
pnoI:) Jo ,(~!I!q~!.ffiA ,(q p~J~PU!q u~~Jo S! SUO!~:)~~J~u!:)npoJd-~~~JIns Jo uo9:)~~~a "(P661 "{1J ~~ n!'l ~P661 '){I~A~a ~Z661 '~!PZOA\S p~ ~!PZOA\S ~Z661 "{1J ~~ S!PU~d ~1661 "{1J ~~ u!UsnH ~6861 'PI~JU!~S p~ S!P~d ~8861 'L861 'sqqoH P~ ~~~H) S~U~UJUOJ!AU~ ~u:)J~JJ!P U! s~oJ P~ spnoI:) U! p~~:)!p~Jd JO/p~ p~~:)~~~pu~~q s~q ~~~JInsJo uo!~:)npoJd ~~:)Y!U~!S suope.l}uiJ;>uO;) 10SO.liJVuo S};>iJ.JJ:iI POOl;) ~u!u!e.luON
£"L "SI
'pnol:> :}~ Jo ~u:}~uo:>J:}~eM P!nb!l :}~ pUB (:}:>u:}ngu! :>!u:}~OdOJq1UB Jo :}:}J'B:}p) ~U!peOllOSOJ:}e :}q~ q~oq Jo :}sne:>:}q Al~UB:>Y!U~!SAJtIA suo!'!ejJu:}:>uo:> :}S:}~ 'SJO~e~!~S:}AU! JO J:}qwnu e Aq p:}~u:}s:}Jd u:}:}q :}Aeq suo!'!ejJu:}:>uo:>J:}~eMpnol:> ){lnq Jo s~u:}w:}Jnse:}w .61' ~ 1 :}Jn~!d U! p:}~:>!d:}p:}soq~ ue~ J:}q~!q U:}A:} AlqeqoJd :}Jl! s:}:>u:}J:}]J!Plen~:>e :}~ '~U!ldums ~u!lnp s:}z!s ~u:}J:}JJ!PJo S~:}ldolp ~uoum ~U!X!W ~UB:>Y!U~!S Jo :}sne:>:}q ':}JOW ~:>uO 'p:}AJ:}sqo :}Je s:}:>u:}J:}]J!P Hd ~UB:>Y!U~!S's~u:}WUOJ!AU:}Jo A~:}peA e U! (t661) 'lB ~~~~:}ll°;) Jo s~u:}w:}jnse:}w s:}zpewwns 61'~1 :}Jn~!d 's:}Z!S ~u:}J:}]J!PJo S~:}ldoJp ~uoum A~! -P!:>e U! s:}:>u:}J:}JJ!PAq p:}!UBdwo:>:>e :}Jl! suo!~ejJ~:>uo:> :}~nlos U! s:}:>u:}J:}]JW:}Aoqe :}qj, 's:}:>u:}J:}]J!PlBm:>e :}~ ~~ew!~s:}J:}pun AlqeqoJd UMOqS sUO!~e!A:}puo!~ejJu:}:>uo:>:}q~ :}JoJ:}j:}q~ pUB de]J:}Ao ~ue:>y!u -~!S ~!M S:}ldums OM~ AluO O~U!p:}~eJl!d:}s seM s~u:}w:}Jnse:}w :}s:}~ U! UO!~elndod ~:}ldolp ~~ '81'~1 :}Jn~!d U! UMOqS :}Je pnol:> e U! S~:}ldolp :}~Jl!l pUB IlBwS U! p:}Jnse:}w s:}!:>~s IosoJ:}e Jofew :}wos Jo suo!~ejJu:}:>uo;) 'suo!~ejJu:}:>uo:> ~:}ldolp ~u:}pu~:}p-:}Z!S JoJ uose:}J lBUo!~!ppe ue S! :}J:}~ '~u:}pu~:}p :}z!s AIlBJ:}U:}~ osIe :}Jl! suo!~ejJu:}:>uo:>IosoJ:}e J!:}~ :}sne:> -:}q 's:}!:>:}ds lBnp!A!pU! JOd 'uo!~ejJu:}:>uo:> :}~nlos lB~o~ sw:}:>uo:> uo!ssn:>s!p :}Aoqe :}qj,
o(t66[ '"ju 1ananO;» £66[ Alnf U! 'U!WOJ!IU;)':JIUadunOf Ui1U spno[:) smUjJs f1!1SUO:) U! pa1:)an°:) S1aldolp pnol:) aglUl puu nuws aq) JO UO!1!sodwo:)palnsuaw srsl :!nmDM +H
-~OS
~ON
_I;)
+zU;)
+zgw
+)1
:HN
+UN
3
(") a ) ~ ..0 c: < = e?. q
~
~ rI' 0 - .?
ft. '"'I
S:)ISJ..Hdanol:)
9[8
CLOUD PROCESSINGOF AEROSOLS 817
8
7
#
0 0
6 =s.
. .
c: e 0 Q) 00 ~ ..J
4
0
o! DO! L'1
! !
00
0 0
. A
3
0
,2
.
0
-
Ll
CentralCA valley SouthernCA coast Angora Pk., OR Mt. Mitchell, NC WhitefaceMt., NY
One-to-one line
-
3
4
5
6
7
8
Small Drop, pH FIGURE 15.19 MeasuredpH of small and large dropletsin a seriesof clouds and fogs in ty1>ical environments(Collett et al., 1994).
During cloud formation, aerosols that serve as cloud condensation nuclei (CCN) become activated and grow freely by vapor diffusion. Soluble gases such as nitric acid, ammonia, and sulfur dioxide dissolve into the droplets. The cloudwater serves as the reacting medium for a series of aqueous-phase reactions, most importantly the transformation of dissolved SO2, S(IV), to sulfate, S(VI). The sulfate formed is not volatile and remains in the particulate phase. Other reactions, for example, the oxidation of formaldehyde to formic acid, result in volatile products that return to the gas phase (Figure 15.20). During the cloud evaporation stage, several species that were dissolved in the cloudwater evaporate.Others, like sulfate, remain in the aerosol phase. Ammonia often accompanies the sulfate formed as the neutralizing cation. Species like nitrate or chloride that may have existed in the original particle can be displaced by the sulfate produced and forced to return to the gasphase.The result of these aqueous-phaseprocessesis usually an overall increase in particle mass and size. Chemical composition of the particles may also change, with sulfate and ammonium concentrations generally increasing and nitrate and chloride decreasing (Pandiset al., 1990b). Available evidence suggeststhat the single most important reaction during aerosol processingby clouds is the oxidation ofHSOj"" by H202. This reaction, as we saw in Chapter
'tt!q:I P~tt!UI9s~ sJoq:lnt! ~UIt!S ~~ 'SUO!t:)t!~J ~st!qd-sno~nbt! t!!A S1~ldolp pnol:) U! p~UJJOJ St!M S~tt!tS P~t!Ul1 W~1St!~q:lJOU~qt J~AO ~tt!Jlns :)!l~qdsodoJ:j Jo %~9 J~AO 'UI~tSAS UJJOtS ;}pm!tt!IP!UI t! JO ~~t!sst!d ~u!lnp 'tt!q1 p~tt!ln:)lu:) (0661) '{t! t~ :>{~:)It!M."S~Jt!:)sJt!qol~ put! It!UO!~~J UO Jt!J~U~~ U! SSUUI10SOJ~t!put! ~tt!Jlns Jo ~:)Jnos JOft!UI t! S! ~U!ss~:)oJd pnoD "(1661 'dVdVN 'S'n) J~UIUInS JO ~u!lds U! ut!q:I J~tU!M U! Jt!~U!IUOU~JOUI ~U!~q d!qsuO!tt!I~J ~q:I q1!M 's~~Ut!q:) UO!SS!UI~'lOS 01 It!UO!1l0dOJd Ut!q:I SS;}I~q II!M SI~A~1~1t!Jlns 10SOJ~t!U! s~~Ut!q:) 'p~t!UI!1 tUt!p!XO S! UO!t:)npoJd ~tt!Jlns ~J~qM S;}st!:)uI 'J~AO:) pnol:) uo pUt! S1Ut!p!XOJo At!l!qt!I!t!At! qtoq uo spu~d~p SI~A~1 ~tt!Jlns Ot spnol:) Jo UO!tnq!J:juo:) Jt!uosu~s ~q.L "Sq:lUOUIJ~1U!M ~u!lnp put! s~:)Jnos 'lOS Jt!~U p~:)unou -old ~JOUI UO!tt!t:fUI!1t! 'spno~:) U! UO!tt!UJJOJ~tgJlns Ot ~U9!UI!1 U~tJo S! ~P!XOJ~d U~~OlpAq Jo At!l!qt!I!t!AV "Sq:lUOUIJ~tU!M ~qt ~u!lnp tS~MoI ~q1 pUt! J~UIUInS ~qt ~U!lnp s~nJt!A tS~q~!q ;}qt q:I!M (066 I "{t! t~ t!Mt!~n:>{t!S) qdd L"9 01 Z'O UIOJJAmA S~tms P~1!Ul1 1t!J:ju~:)put! W~tst!~ -q:lJou ~q:I J~AO SO!tt!J ~U!X!UI ~st!qd-st!~ 'lO'lH p~Jnst!~w 'S~1ms P~1!Ul1 W~tst!~qllou ~qt U! UO!tt!UJJoJ~tt!Jlns sno~nbt! ~t!U!UIOP Ot p~1l0d~J u~~q st!q ~P!xOJ~d U~~OlpAH lU~~t!~J ~U! -t!UI!1 st! St:)t! ~P!xOJ~d JO 'lOS J~q1!~ q:)!qM U! ~P!xOJ~d q:I!M 'lOS Jo UO!t:)t!~J ~A!tt!t!tut!nb pUt! P!dt!J ~qt qt!M tU~1S!SUO:)w~1tt!d t! 't!SJ~A ~:)!A pUt! Mol St!M 'l OS Jt!!t9SJ~tU! u~qt q~!q St!M 'lO'lH JI ilz'~1
~Jn~!d) J!t! pnol:) 1t!!t!tSJ~1U!U! tS!X~O:) tOO P!P 'lO'lH
P;}MOqS (17861) '{t! t~ UInt!G
'1-
pUt! 'lOS tt!qt
q 'lOS %001 ~U!P~~:)x~ u~tJo S~tt!Jq1!M tst!J AIJt!ln:)!1lt!d S! '9
'~j:>!1JudjOSOJ~U uu Jo gU!ss~:>oJdpnoj:> ~q1Jo :>puw~q:>S O,SI ~fl~L!I
NOI.L WOdV A3 ~3.L V it\.
(e):Jd.
~l)J t (l)g
4 .
!t (l)Y
~
(())):Jd
(u)g ~t
(u)y 1~IdOJp pnoI:> JO god
NOI.L VSN30NO;)
~3.L v 1\\
3SVHd SVD
Q
~
S;)ISJ..Hdano'1;)
818
)UD PROCESSINGOF AEROSOLS 819
;S02'
ppb
FIGURE 15.21 Measurementsof the gas-phasepartial pressuresof H202 versusthe S02 partial pressurefor interstitial cloud air (Daum et aI., 1984).Arrows signify that the mixing ratio wasbelow the detectionlimit.
during a 3 day springtime period, chemical reactions in clouds occupying I to 2% of the tropospheric volume were responsible for sulfate production comparable to the gas-phase reactions throughout the entire tropospheric volume under consideration. McHenry and Dennis (1994) proposed that annually more than 60% of the ambient sulfate in central and eastern United States is produced in mostly nonprecipitating clouds. Similar conclusions were reached by Dennis et al. (1993) and Karamachandani and Venkatram (1992). Aqueous-phase SO2 oxidation in clouds is predicted to be the most important pathway for the conversion of SO2 to sulfate on a global scale (Hegg, 1985; Langner and Rodhe, 1991). Effect of cloud processing of aerosols in the remote marine atmosphere has been demonstrated in a series of field studies (Hoppel et al., 1986; Frick and Hoppel, 1993). Figure 15.22 shows the formation of a second peak in the accumulation mode as an airmass is advected off North America to the Atlantic and the Pacific Oceans. Note that the two modes observed in the number distribution should not be confused with modes of the mass distribution. Hoppel et al. (1986) proposed that cloud processing of aerosol is an efficient mechanism for accumulating mass in the 0.08 to 0.5 j),m size range in the marine
~pow !~ldolp ~q! pu~ (wrf ZoOJ~!~Wt!!P :)!Wt!UApOJ~~~!~w!xOJdd~) ~pow UO!!~SU~puo:)~q! s~ O! p~JJ~J~J ~m ~s~q.L "(0661 'l~ !~ uqof ~8861 "IR !~ lIRA\. ~£861 'UOSI!A\. pu~ Annw:)w ~Z861 'J~P~IP~!ld P~ ~u!l~H) ~~~J J~!~Wt!!P wrf 0'1 O! 1'0 ~q1 U! !S!X~ U~!Jo s~pow !:)UPS!P OM! !~q! UMOqS ~A~q UO!!nq!J:IS!p SS~W IOSOJ~~~qJn ~q1 JO S!U~W~JnS~~W 'S~:)~!Swn:)J!:) IIR J~pUn P~!:);Jdx~ ~m UO!!nq!J:IS!p SS~WIOSOJ~~~q! uo S!:)~JJ~!~:)Y!U~!S 'J~A~MOH 'J~qwnu IOSOJ~~I~!O! ~q! JO UO!!:)~JJ !~:)Y!U~!S ~ S! NJJ JO J~qwnu ~q! ~J~qM '~J~qdsOW!~ ~!OW~J ~q1 U! AIUO !ue!JodW! ~q O! p~!:)~dx~ ~m UO!!nq!J:IS!p J~qwnu IOSOJ~~ ~q! uo S!:)~JJ~~s~q.L ,,'d~~ I~ddoH" ~q1 S~ O! p~JJ~J~J U~!JO '!InS~J ~ S~ 'S! (£Z"~1 ~Jn~!d) SUO!!nq!J:IS!p J~qwnu
IOSOJ~~ ~U~W
.)In'HOI
~!OW~J !SOW U! p~AJ~sqo d~~ ~q.L '~J~qdsOW!~
~XO uOlgU!IP!)I
':lURi PlOJgURi 'pmA:llnoH
:lq.L '.Pli
:I:>U:I!:>S
l:l!A:lSI3 WOlJ UO!SS!Ull:ld PU!~ ql!M 'O661lqg!lAdoJ '6P9-~t9 '.W .0 '~:>!ld pUR .Y.1\\ 'l:lddoH 'yt'l '.UO.l!i\U3 .SOIUJVWOlJ p:llU!ld:l}! .R:>!l:lWY q1l0N 11° p:ll:>:lAPR S! SSRUll!R :lq} SR:Jft1:1d IRUOmppR URJO UO!lRUllOJ :lql gU!lR:>!PU! 10SOl:lR :lU!J1?W:ll0W:ll JO SlU:lW:llnSR:lW UO!lnq!l1S!p :lZ!S
wTi
U.SI
3HflDI.!I
'Sn!p~}I
SJISJ..Hd ana'J
OZ8
CLOUD PROCESSINGOF AEROSOLS 821
Radius, ~m FIGURE 15.23 Typical remotemarineaerosolsizedistributions.Reprintedfrom Atmos.Environ., 24A, Hoppel,W. A. andFrick, G. M., 645-649, Copyright 199O,with kind permissionfrom Elsevier ScienceLtd., The Boulevard,Langford Lane, Kidlington OX5 1GB, UK.
(aerodynamic diameter around 0.7 J1,m).These two submicrometer mass distribution modes have also been observed in nonurban continental locations (McMurry and Wilson, 1983; Hobbs et al., 1985; Radke et al., 1989). Hering and Friedlander (1982) and John et al. (1990) proposed that the larger mode could be the result of aqueous-phasechemical reactions. Meng and Seinfeld (1994) showed that growth of condensation mode particles by accretion of water vapor or by gas-phase or aerosol-phase sulfate production cannot explain existence of the droplet mode. Activation of condensation mode particles, formation of cloud/fog drops, followed by aqueous-phase chemistry, and droplet evaporation were shown to be a plausible mechanism for formation of the aerosol droplet mode. Simulations of the aerosol-cloud-aerosol cycle have shown that sulfate formed during cloud/fog processing of an airmass favors aerosol particles that have accessto most of the cloud liquid water content, which are those with diameters in the 0.5 to 1.0 J1,mrange (Pandis et al., 1990a). Figure 15.24 depicts simulation of fog processing of an urban aerosolpopulation. Note that the shape of the aerosol distribution changes with the creation of an extra mode, resulting mainly from the formation of (NH4)2S04. Note also that there are significant changes in the aerosol chemical composition before and after the fog with sulfates replacing nitrate and chloride salts. 15.7.4 Interstitial
Aerosol Scavenging by Cloud Droplets
Interstitial aerosol particles collide with cloud droplets and are removed from cloud interstitial air. The coagulation theory of Chapter 12 can be used to quantify the rate and effects of such removal. If n(Dp, t) is the aerosol number distribution and nd(Dp, t) the droplet
(96'~1)
-dad
t;)ldoJp
-tlns;)J pnol;)
'wn
;)SJ~S1POuOW
(W77'01 'da»)JPN
11 q;)ns
JOd
01 Jo SJ;)t;)UJl11P ;)Al1q sdolp
;)qt tl1q:1 ~u1wnSSl1 ;)tl1J u01t;);)II°;)
011;) (x'
da))f
tU;)1;)YJ;)0;) u01t;);)II°;)
"£- ill;)
t;t;6
= (da)v = PN
Ot S;)Y1Idw1S (t;6"t;1) Jo u01tl1JtU;);)UO;) J;)qwnu
U01tl11n 11u1 ~u1
IJ11tl1q:1 pO11£- W ~ t;"0 Jo tU;)tUO;) J;)tl1M P1nb11 11Sl1q s1q:1 ;)tl1W1tS;) sn t~
;)qj,
'OZ J;)tdl1q;)
-dl1;) ;)Jl1 S;)I;)1PtJd U;)q:I 'AJOeU01t11'!S ;)J1! St;)ldo,ip
pnol;)
"(Lt;"Z I) f.q P;)tl1W1tS;) ;)q U;)q:I
u1 u01t1Sod;)p t;)M J;)P1SUO;) ;)M U;)qM
p;)ssn;)s1P ;)q II1M doJp ~u11J11J11f.q S;)I;)1PtJd Jo u01t;);)II°;)
[I(da)y-]
;)qj, 'u01snJJ1P 0111UMOJH f.q p;)Jm
tl1qt ~u1~
;)W1t ;)q:I JoJ ~u1Wnssv
dx~(0 'da)U = (I 'da)U
f.q U~A!g ~q PInoM UO!wq!l1S!P J;Jqwnu ~q~Jo uo!~nIoA~
~q~u~q~ '(da)y
(~6.~1)
O~~nb~ ~J~M put! ~w!~ q~!M AJeA~OUP!P ~U~!:)YJ~O:) gU!gU~At!:)S ~q~JI Ie
xp (1 'X)Pu(X 'da))J
001=
(l'da)U
- = (1'da)y
(I 'da)Ue-~
'UO~:jRIndod:j~IdoJp IInj ~q'! JOj (1 'da)v :jU~~;) -Yj~O;) ~U~~U~AR;)S~q'! ~uy~p UR;)~uO 'X J~:j~urn~pjO :j~IdoJP R pUR da J~:j~urn~pjO ~I;)~1JRd IOSOJ~RJR9~:jSJ~:ju~ UR U~~M:j~q SUO~S~II°;)JOj :ju~~;)Yj~O;)UO~:j;)~II°;)~q'! S~ (X'd a»)J
(v6'~I)
~J~qM
Ie = (I'da)ue
co}of (I 'da)U
xp (1 'X)PU(X 'da))J
f.q P~W~AOg s! sdoJp pno{:) f.q gU!gU~A~:)S ot ~np J!l! JO ~Wn{OA 1!Un J~d s~{:)fIJt1d {OSOJ~~Jo ~1~J SSO{~q:I ') ~w9 1~ UO!1nq!J:jsw ~Z!S
'(qO661 ',\e 1aS!pUed) apos!da gOj e la1je pUR alOjaq SUo!1nq!l1S!pUo!1!sodwoJ-az!s losolae pa1:>!pald -.,SI 31IflDL!I wl1 ,da E
Z
J
wl1 ,da
~'O
J'O
E
~
-.-r.-; I
Z
[~'O I
';~~~::::::::::~:::f-
J'O
--; 0
~OSZ8N
1°1
fONvHN
~
~
! i
l:JtHN-
OZ
I:JIIN.
I" C/O C/O
""'
Of
{ '-'=
.£ONVHN OV
~
0' OQ
EO~N~C
..
I...
. . .
..
I., , , .
..
I
. . . . . . ..
I
."t1
109
SJISJ..Hd anolJ
U8
OTHER FORMS OF WATERIN THE ATMOSPHERE 823
TABLE 15.6 Estimated Lifetimes of Aerosols in a Nonraining Cloud (N = 955 cm-3, Dp = 10 J.Im, WL = 0.5 g cm-3) at Standard Conditions
4x 1.6 x 1.1 x 2.2 x 1.03 x 3x
0-5 0-6 0-7 0-8 0-9 0-10
and K(Dp, 10 ,urn) can be calculated from (12.57) (see also Figure 12.5 and Table 12.3). Corresponding particle collision efficiencies and lifetimes are shown in Table 15.6. Nuclei smaller than 10 nm will be scavenged in a few minutes by such a cloud whereas particles larger than 0.1 ,urn will not be collected by droplets during the cloud lifetime. The above results indicate that for average residence times of air parcels in clouds (on the order of an hour) only the very fine aerosol particles will be collected by cloud droplets. These particles often represent a significant fraction of the aerosol number, so the total number may be reduced significantly, and the shape of the aerosol number distribution may change drastically. However, these particles contain little of the mass and therefore the mass distribution effectively will not change. These qualitative conclusions are in agreement with detailed simulations of aerosol processing by clouds (Flossmann and Pruppacher, 1988; Flossmann, 1991). 15.7.5 Aerosol Nucleation Near Clouds Clouds remove individual fine aerosol particles by scavenging. Even so, enhanced aerosol number concentrations in the vicinity of clouds have been observed (Saxena and Hendler, 1983; Hegg et al., 1990, 1991; Radke and Hobbs, 1991). Saxena and Hendler (1983) suggested that observed high aerosol number concentrations near clouds could be a result of shattering of rapidly evaporating droplets. Hudson and Frisbie (1991) suggestedthat these high particle concentrations may actually be an artifact due to droplet splashing. Hegg et al. (1991) proposed that the high actinic flux near cloud tops resulting from upward scattering of solar radiation could lead to high OH concentrations, rapid H2SO4 formation, and subsequentnucleation of new H2SO4-H2O particles. Kerminen and Wexler (1994) estimated a high nucleation probability associated with high relative humidity areas around clouds in relatively clean environments. Note that such a nucleation process in the vicinity of the clouds produces very little aerosol mass but a large number of particles and may influence significantly the shape of the aerosol number distribution, especially in remote regions.
15.8 OTHER FORMS OF WATER IN THE ATMOSPHERE Our discussion in the preceding sections has focused on "wann" nonraining tropospheric clouds. Water in the atmosphere can also exist as ice, rain, snow, and so on. We summarize here aspects of the formation and removal of these water forms that are most associated
.(£961 '1111~ AO)[!UOlOg) l1!SSn~ l~AO spnoj:) l~Al1j U! ~lml1l~dw~1 Jo u°!1:)unJ 11Sl1spnoj:) ~:)! PUl1 '~sl1qd P~X!W 'l~111M p~joo:)l~dns
Jo ~:)ul1lt!~ddl1 Jo s~!:)u~nb~lJ ~gl1l~AV ;)0
Ot-
O£-
Sl'SI
3H!1DI.!I
'.L
OZ-
01-
---.
0
~
..0 =
amCI'l
SdOlG uo!tnIos
~ =' (") "< 0 ...,
03XIW
.::It; '0 ~ ~
3;)1
§ (") ~~
~
'UO!1UJodUA~10 Ad{Uq1u~ ~q1 gU!:)Uld~J UO!1uw!lqns 10 Ad{Uq1u~ ~q1 q1!M '(8";1) Wn!lq!l!nb~ J~1UM-JoduA J~1UM J01 uo!1unb~ uoJA~duIJ-sn!SMI.') ~q1 01 JUI!W!S S! (86";1) 1Uq1~10N
~.LH ~ sHV
(86.~1)
.LP
"j"Sd OJ P
u~q! 'Sl1g {11~P! Ul1 Sl1 S~Al1q~q JOdl1A J~!l1M !l1q! PUl1 1{1 «
iI{1 !l1q! ~wns
-Sl1 ~M JI 'JOdl1A J~!l1M PUU ~:>! JO S~WnYOA JP.YOW~q! ~m iI{1 PUl1 1{1 PUU 'UO!!l1W!yqns
~:>! JOJ
'(dYl1q!U~myow ~q! S! sHV '~:>! J~AO J~!l1M JO ~Jnss~Jd JOdl1AUOfll1Jn!l1S~q! S! !'IBsd ~J~qM
(Ia (L6'~I)
-
"a).[
.LP
=
sHV
1'lBsdp
tgljt SPUY :}UO (L. ~ I) ~U!A\OIIOd .uo!:}gnb:} uoJA:}dgI:J-sn!SngIJ :}ljt Aq p:}q!JJS -:}p ~ UgJ :}J! pOl! JOdgA J:}tgA\ u:}:}A\t:}q wn!Jq!l!nb:} :}IfI Jo :}Ju:}pu~:}p :}JmgJ:}dw:}t :}lj.L .pnolJ :}wgs :}IfI U! sdolp J:}tgA\ IfI!A\ tS!x:}OJ s:}IJ!~d :}J! 's:}JmgJ~w:}t A\01 :}s:}ljt tv .sdoJP J:}tgA\ Jo AI:}J!:}u:}tS!SUOJspnolJ Jo %0 I :}noqg AluO JoO'l- tg PUg ':}Jm -gJ~w:}t ~U!Sg:}JJ:}p ljt!A\ s:}Sg:}JJU!:}J! Jo poolj!I:}){!I:}IfI 'J:}A:}A\OH .JoOI - Ol!ljt J:}WJt!A\ S! :}JmgJ~w:}t dot pnolJ J! AIIg!J:}ds:} ':}J:}ljdsowtg :}IfI U! UOWWOJ :}t!nb :}Jt?spnolJ P:}IOOJJ~ -ns tgIfl SA\oljs ~'l.~I :}Jn~!d .JoO A\OI:}q s:}JmgJ:}dw:}t tg :}J:}ljdsowtg :}ljt U! punoJ Apu:}nb -:}JJ :}Jt?spnolJ J:}tgA\ pOl! 'SIOOJJ~ns AI!pg:}J J:}tgA\ tgIfl :}tgJ!PU! SUO!tg/\J:}sqo J!J:}ljdsowtv SPOOl;) OJ;)I
01 U°!1gUllOjU! ~lOW lOj p~ll~j~l
1'8')1
'U!~l~q1 S~:)U~l~j~l PUg (0861) 11~I)l PUg l~q:)gddnld S! l~pg~l P~1S~l~1U!~q.L 'Al1S!W~q:) :)!l~qdSOW1g q1!A\ S:)ISJ..Hdano']:)
J"l8
~
OTHER FORMS OF WATERIN THE ATMOSPHERE 825
Finally, if the Clausius-Clapeyronequationis applied to the equilibrium betweenice andwater,we get
~Hm
dpm dT
(15.99)
wherePmis the melting pressureof ice, ~Hm the molar enthalpyof melting, and Vwthe molarvolume of water.Equations(9.66), (15.98),and (15.99)can be integratedand plotted to producethe p-T phasediagramfor pure water shown in Figure 15.26.Note that there is only one point (T = QoC,p = 6.1 mbar),the watertriple point for whichall phasescoexist.Another interestingobservationis that for temperaturesbelow QoCthe water vaporpressureover liquid water is higher than water vapor pressureover ice, Psat,w > Psat,i
(T
So if air is saturated with respect to ice, it is subsaturated with respect to water. As a result, supercooledwater droplets cannot coexist in equilibrium with ice crystals. Note that Figure 15.26 refers to the equilibrium of bulk water (curvature is neglected), without any impurities (zero solute concentration). Curvature and solute effects cause the behavior of water in
10000
ro
D-
Q) ':J cn cn Q) 'D-
1000
""iij
~ Triple Point
t ro D'Q) ~ ~
WATER VAPOR 100 v .20
~
I .15
I
I .10
I
I -5
I
I 0
I
I 5
I
I 10
I
I 15
I
. 20
Temperature, °C FIGURE 15.26 Pressure-temperature phasediagramfor water.The dashedline correspondsto suo percooledwater and its metastableequilibrium with water vapor.
-qo ~M 'ffiUjSU-
~ ffiX UI = ffip UI }uq} gU!}ON 'z°.L ~ ~.L°.L}uq} puu ffiX = ffiV }Uq} os {U~p!
S! UO!}nIOS~q} }Uq} ~wnssu uu:) ~M uo!ss~Jd~p S!q} jO ~}Uw!}S~ uu }~g 0.1 'uo!ss~Jd~p }u!od gU!Z~~Jj Wn!lq!I!nb~ ~q} S! ~.L - °.L= J.LV ~:)u~J~jj!P ~q.1 .~JmuJOOW~} gU!Z~~Jj J~}UM ~nd ~q} uuq} J~MOI S! ~.L :}In}UJOOW~}gU!Z~~Jj M~U ~q} pUU 0 "< ~.L- °.L '1 ::;: ffiV ~snu:)~g
(VOI.~I) .a.1 01 °.1 woll
:mv uI-
IUHV = a.L- °.L
I~
{UAJ';}1U! ,;}lm~l;JdW';}1 ';}q1 U! 1u~1SUO:) AI';}1~W!xOldd~
m"
lIV '.L
,_m7 -
J
.LP¥!-
(£OI"SI)
O
=
IRv UI
P
S! U/HV
1~q1 ~u!WnSS~
'°.L Aq ~Jmt!J~W~1 ~U!Z~~Jj J~1t!M ~Jnd ~q1 ~U!10U~P pUt! 'I = Inv J~1t!M ~Jnd JOj 1t!q1 ~U!10U 'SMO110j st! P~1t!J~~1U! ~ ut!:) S!qj. .~:)! ~nd pUt! uo!1nlos 1Jt!St! u~~M1~ wn!lq!I!nb~
(Wl'~I)
~
= = 'Hz.LN - mH
d
~q1 s~!l:)s~p
uO!1t!nb~ S!qj.
.Ie
mv or e
IUHV
~JOJ~J~Q1 PUg d
~ -'H
(101'~1)
Aq Ad{t!q1U~ ~q1 01 P~1~I~J S! {t!!1U~10d {t!J!W~qJ d
(OOT.~T)
.Ie IRvul e
d
=
H+
d
~q11ng
.re (.r/I'ri)e,
'd ~Jnss~Jd1umSUO:) J~pun.L o11:)~S~Jq:I!M 8U!1~!1U~J~J1!P puu.L Aq 8U!P!A!Q
mlJU[ .IN + (.I)~11 = 111 U~q:I uo!1nlos U! J~1gM JO A1!A!1:)g~q:I S! 1110JI .lIIrf = Irf '~WgS ~q:I ~ I1!M s~sgqd ~:)! PUg sno~nbg ~q:I U! J~1gM JO [U!1U~10d[U:)!W~q:) ~q:I wn!lq!I!nb~ :)!WgUApOUJJ~q:I01 ~U!pJO:):)V .~:)! q1!M wn!lq!I!n~ U! uo!1nlos 1[USsno~nbg Ug pUt! J!g su!U1uo:) pUt! ~Jnss~d 1Ul!1SUO:) Sgq W~1SASJno 19q:l ~wnssg '~~Ugq:) S!q1AJ!1Ut!nb 01 J~pJOuI 'J~1gMJo 1u!Od ~U!Z~~JJ ~q:lJo UO!SS~Jd~p~q1 S! S!q:lJo 1Ins~J 1:)~J!PV 'uo!1nlos ~q1 J~AO~Jnss~d JOdgA ~q1 SJ~MOIJ~1gM U! 1[USg Jo uo!1nloss!o
UO1SSa.ldaalul°cl 3ulZaa.l.!l 'N\OI~q
AlJ~!Jq St:>~lJ~ ~S~q:J ssn:>S!p ~ft\ '9Z'~1
~ln~!d
woll
Ap~:>Y:!U~!S
~tg!A~P Ot ~l~qdsowtg
S;)ISJ..Hd ano,;)
~q1
9l8
OTHER FORMS OF WATERIN THE ATMOSPHERE 827
tain the estimate
RT~Mw ~Tf = 1000 ~Hm m
(15.105)
where m is the solution molarity. For ideal solutionsthis resultsin a depressionof 1.86°C M-1 of solute,and for a salt that dissociatesinto two ions this resultsin a depressionof 3.72°C M-1 of the salt. Due to the nonideality of real saltsactualdepressionat I M concentrationis 3.35°C for NaCI. Curvature Effects Ice crystals in the atmospherehave a variety of shapes,with hexagonalprismatic being the basic one (Pruppacherand Klett, 1980). For instructive purposeslet us ignore this complexity and concentrateon the behaviorof a sphericalice particle of diameter Dp. Our analysisfor water dropletsand the Kelvin effect is directly applicablehereand the vaporpressureof water over the ice particle surface,Pi. will be
(15.106) where Psat.iis the vapor pressure over a flat ice surface, O'iathe surface energy of ice in air, and Pi the ice density. Pruppacher and Klett (1980) reviewed theoretical and experimental values for O'iaand suggested that it varies from 100 to 110 ergs cm -2. This surface tension that is higher than the water/air value results in relative vapor increases(p / PsaJ higher than those for a water droplet of the same size. Pruppacher and Klett (1980) show that the freezing temperature decreases with decreasing size of the ice particle. This decreasebecomes particularly pronounced for crystal diameters smaller than 20 nm and is further enhanced by the solute effect for solute concentrations larger than 0.1 M. Ice Nuclei Ice particles can be formed through a variety of mechanisms. All of these require the presence of a particle, which is called an ice nucleus (IN). These mechanisms are (1) water vapor adsorption onto the IN surface and transformation to ice (deposition mode), (2) transformation of a supercooled droplet to an ice particle (freezing mode), and (3) collision of a supercooled droplet with an IN and initiation of ice formation (contact mode). Formation of ice particles in the absenceof IN is possible only at very low temperatures, below -40°C (Hobbs, 1995). The presence of IN allows ice formation at higher temperatures. Aerosols that can serve as IN are rather different from those that serve as CCN. Ice-forming nuclei are usually insoluble in water and have chemical bonding and crystallographic structures similar to ice. Larger particles are more efficient than smaller ones. While our understanding of the ice nucleating abilities of aerosols remains incomplete, particles that are known to serve as IN include dust particles (especially clay particles such as
'q:!MOJ~ IlJUO!S!UO~ JO ';)~U;)~S;)IlJO~ 'UO!:!uIn~uo~ 'UO!:!;)J~~U Aq q:lMOJ~ S! ss;)~oJd ;)q:I ~U~1J;)AO
sdolp
IUUO!:!u:!!AUJ~ P;)UU~ osllJ S;)w!'!;)WOS
s!QJ. 'W;)q:! q:I!M ~U!~S;)IUO~ puu ~U!P!UO~
J;)~Jl!I ;)q:! U! ~U!:!InS;)J 'sdolp
;)u!J1!w
;):!OW;)'M 'uo!:!nq!I!s!p ;)Z!S dolp
Jo A:!In~YJ!p
;)q:! Jo ;)~u;)pu;)d;)p
;)~npoJd
o:! PU;):! puu uo!:!nq!I!s!p
MOJJl!U U UUq:I :!u;)wdOI;)A;)P pnoI~
pUOJq U AJJl!;)D
;)q:I Jo ;)A!:!U~!PU! S! s:!;)Idolp
'ss;)~oJd UO!U!W
ImU;)U!:!uo~
J;)IllJwS Jl!I!W!S
;)Z!S pUOJq ;)AUq O:! PU;):! uo!:!u:!!d!~;)Jd
o:! ;)A!~np
IIlJJ;)AO ;)q:! ~U!q!l~S;)P U Jo :!no ;)UO uo uo!:!m
~!:!UUJl!lp ;)qJ. '!;)I~nU UO!U!W U U! ;)UO ;)q:! U!U~U ;)Jl! q~!qM
-!1J1!d :!uu!~ uo UJJoJ sdoJp ;)~Jl!I ;)S;)qJ. 'sdoJp pnoI~
-!d!~;)Jd
'sdolp
J;)IllJwS uuq:I J;):!suJ IIlJJ sdoJp J;)~Jl!'1 'spnoI~
uuq:! AI;)A!:!~;)JJ;) ;)JOW uo!:!u:!!d!~;)Jd spnoI~
-UO~ ;)JOW S! UO!:!nq!I!S!p AI;)A!:!u:!!'!uunb -!d!~;)Jd
l;)d ;)UO S! uo!:!m!d!~;)Jd
;):!U!:!!U! o:! p;)J!nb;)J
sdolp
'S;)I~
UO!U!W U Jo :!no ;)UO AIUO JO 'J!U Jo J;):!!I
;)~Jl!I Jo UO!:!u~U;)~UO~ 1lJ~!dA:! ;)qJ. 'UO!:!U:!
;):!U!:!!U! :!uq:I S;)UO ;)q:! ;)Jl! A;)q:! ;)SnU~;)q ;)~uu1Jodw!
Jl!In~!1J1!d Jo ;)Jl! WnI}~~S
doJp
pnoI~ ;)q:I U! sdolp :!S;)~Jl!I ;)q:! ;)JoJ;)J;)qJ. 'q:ludIIlJJ J!;)q:I U! ;)!I :!uq:I S:!;)Idolp J;)IllJwS ~U!:!~;)UO~ Aq ;)Z!S uo!:!u:!!d!~;)Jd o:! MOJ~ uu~ sdolp ;)~Jl!I '(;)~! ou ~U!U!U:!UO~ ";)'!) spnoI~ WJl!M JOd 'dolpu!UJ ;)q:I JO % 1'0 AIUO P;):!~;)UO~ suq dolp
;)~UJ;)AU UU JO SSUW J;):!UM
;)q:I Jnoq ;)J!:!U;) uu J;):!JV 'wrf
001 o:! q:!MO~
doJp lOJ
% 1 Jo uo!'!uJmusJ;)dns :!uu:!SUo~ U J;)pun f.mSS;)~;)U S! Jnoq uu :!uq:! S;):!u~SUOW;)P tI'~I ;)Jn~!d 'ss;):)oJd MoIs U S! dolp U Jo q:!MOJ~ J;)q1JnJ 's;):!nu!W M;)J U U! wrf 01 o:! J;):!;)WOJ~!W U Jo UO!:!~UJJU WOJJ S;)I~!1J1!d IOSOJ;)U Jo q:lMOJ~ Iu!'!!U! ;)q:! JoJ WS!uuq~;)W ;)I!qft\
'UO!:!USU;)PUO~ JOdUA J;):!UM Aq s:!;)Idolp
-uo~ JOdUA J;):!UM (1) :SWS!uuq~;)W punoJl!
;)Z!S ;)Iqm!d!~;)Jd
;)A!:!~;)JJ;) AJ;)A U S! S!q:I
Jo q:lMOJ~ ;)q:! P;)U!UJl!X;) APU;)JIU ;)AUq ;)M.
'S;)ss;)~oJd ;)~! (£) puu ';)~U;)~S;)llJo~ :!;)Idolp (z) 'uo!'!USU;)P Jo S;)!l;)S U U!A p;);)~oJd uu~ S:!;)Idolp Jo q:!MOJD 'ww 1
o:! MOJ~ o:! P;);)U sdolp
;)WOS 'uo!:!u:!!d!~;)Jd
;):!UJ;)U;)~ o:! pnoI~ U JOd U!8'M
'NI JoJ (1661)
~ll~qdsow:}t!
now
Jo SUO!:}t!l1U~~UO~ pUt! 'su!81l0
~o pUt! SJ~80"M pUt! '(0861)
-~J S! J~pt!~J ~qj.
°su09t!JmsJ~ns
q8!q
J~:}U!lds ~~! 'S~I~!:}Jt!d ~~! AJt!wlld put! ou8Ut!"M) ~:}t!q~p Jo J~nt!w ~~! Jo :}u~w~~Ut!qu~ MoI~q
-
n~DI
'~Jmt!u
pUt! '8u!z~~lJ
~pnl~u!
'l"S'SI
~q1 Jo uo!ssn~s!p
pUt! J~q~t!ddrud
AIJt!nsnun
Jo dn){t!~Jq
'(IL61)
uost!w
:}~ldoJp 8ullnp
SUO!:}t!Ut!ldx~ p~sodoJd
NI ~q:} ~pm!u8t!w
SIt!:}sf..I~ ~~! Jo J~qwnu
s~Jmt!J~w~:}
MoI~q
J~q:}JnJ O:} p~JJ~J
uo!:}~npoJd
"( I 66 I 'sqqoH
t! ll!:}s S! SUO!:}t!l1U~~UO~ NI ~q:} J~AO UO!:}t!l1U~~UO~ ~1~!:}Jt!d
~qJ. "u09t!J:}u~~uo~
spnol~ U! p~AJ~sqo 'JoO'lJ 00 I
°
Jo SJ~pJO It!J~A~S Aq sp~~~x~ u~Uo
S!qJ. °\- 'l 00£ o:} 0 I WOJJ AJt!A SUO!:}t!l1U~~UO~ ~q:}
JOd °\- 'l 00'l
o:} 1'0 WOJJ 8U!AJt!A SUO!:}t!l1U~~UO~ u~A!8 ~At!q
s~Jmt!J~W~ do:} pnol~ JoJ SUO!:}t!l1U~~UO~ ~1~!:}Jt!d ~~! Jo s:}u~w~Jnst!~W UtI st! ~AJ~S ut!~ S~I~!:}Jt!d UO!II!W t! Jo :}nO ~uo ':}sow :}t! 'os 0.- 'l S~I~!:}Jt!d 901
NI
pUt! \- 'l NI I su!t!:}UO~ AIJt!~!dA:} ~J~qdsow:}t!
~q1 JoO'l-
JOd "ss~~oJd ~A!:}~~l~s f..I~A t! S! ~J~qdsow:}t!
[(.1
(LOl'~I)
st! MOl st! s~Jmt!J~dw~:}:}t!
'~ldUJt!x~
~q:} U! UO!:}t!~I~nu ~~! :}t!q:} s:}s~88ns UO!:}t!I~J S!qj.
- £~z)9'O]dx~ = ( VNI
(0861 'tt~DI pun J~q:>nddnJd) S! ~JmnJ~dw~t Jo uo!t:>unJ n sn uo!tnJtu~:>uo:> J!~q:I JoJ u°!:lnI~J {u:>!l!dw~ p~sodoJd V '~Iqn!J1JA ~t!nb ~m ~J~qdsoUJtn ~q:I U! su°!:lnJtu~:>uo:> NI '~JmnJ~dw~t gu!sn~J:>~p qt!M s~sn~J:>U!uo!tnIndod UMOqS ~Anq StU~W!l~X3
IosoJ~n un Jo uo!t:>nJj ~A!t:>n gu!tn~I:>nu ~:>! ~qt tnqt
'( S~p!XO Int~w gU!u!Utuo:» s~I:>!pgd uo!tsnqwo:> pun (~t!u!Ionq
SJISJ..Hd analJ
8Z8
OTHER FORMS OF WATER IN THE ATMOSPHERE
~
"'
""0
.
'
a
b
FIGURE 15.27 Schematicof the flow arounda falling drop. The dashedlines are the trajectories of small dropsconsideredas masspoints.Trajectory a is a grazingtrajectory,while b is a collision trajectory.
The collision processis illustratedin Figure 15.27for viscousflow arounda sphereof diameterDp. As the large droplet approachessmall drops of diameter dp, the viscous forcesexertedby the flow field aroundthe large droplet push the dropletsaway from the centerof flow, modifying their trajectories.In Figure 15.27droplet b is collectedby the raindropwhile droplet a is not. Thereforethe falling raindropwill in generalcollect fewer dropsthan thoseexisting in the cylinder of diameter Dp below it. Dropletsin the cylinder of diametery will be collected.The distancey is definedby the grazingtrajectory a and is a function of the raindrop size Dp and drop size dp. One definesthe collision efficiency E asthe ratio of the actualcollision crosssectionto the geometriccrosssection,or
E=
y2
(Dp + dp)2
(IS.IO8)
Notethat all dropsof diameterdp in the cylinder with diametery, below the falling drop with diameterDp, will be collectedby it. Becausesmall dropstendto moveaway from the falling raindrop, E is expectedto be smallerthan unity for most cases. Figure 15.28showstheoreticallyestimatedcollision efficienciesamongdropsas functionsof the radii of the small and large drops.There is a rapid increasein collision efficiencyas the two drops approachequal size.This is due to fluid mechanicalinteractions thatacceleratethe upper drop more than the lower one but havelittle importancefor the atmospherewhere the probability of collision of equal-sizeddrops is extremely small.
.S:}~Idolp gU!P!II°:J OM:}JO ~:JU~:JS~IgO:J JO A:}!I!qgq01d ~q:I s~y!:}ugnb (60 I .~ I ) 'dolp gU!IJt!J g Aq :}d~MS g~m ~q:} s~q!l:Js~p (80I.~I) ~I!qM :}gq:l ~:}°N ."H 10J :}!W!I l~ddn Ug Sg P~M~!A ~q AIqgq01d ug:J (60I'~I) uo!:}Rnb3 'wn 0017 < da 10J ~Iqg:J!Iddg S! q:J!qM
(60I'~I)
dp+ da z -"-dG
="3
S! J,Jo-g:Junoq !gydolp ssglppn O! (y L6 I) !S!'l pun gynpdygqA\ Aq pg!sgggns "H A:JUg!:JYJgg:Jug:Jsgyno:Jyn:J!l!dmg uy l:Jn!Uo:J O!U! gmo:J un:J Agq! gJoJgq pgU~lp gq !snm !nq! sdoJp OM! gq:l UggM!gq J~ Jo uo!qsn:J gq! S! g:JUg:JSgyno:J O! Jg!JJ1!q ynd!:Ju!ld gq.L "Jgq!O q:Jng JJo g:Junoq !nq g:JSgyno:J!OU Anm Sg!l°!:JgfnJ:l UO!S!U°:J uo sdolp !nq:l !:JnJ gq:l Aq pg!n:J!ydmo:J Jgq'JJnJ S! uo!!nUJJoJ u!nJ Jo ssg:>oJd unJgAO gq.L "(0861 '!!gDI pun Jgq:JnddnJd) sg!!yn:JYJ!p yn:Iugm!lgdxg O! gnp sg!!u!n!jg:Jun my!m!s Aq pg!undmo:J:Jn S! SUO!!:J!pgJdyn:J!!gJogq:lgSgq! Jo uo!!n:JY!lgA y~ugm!lgdxg 'Ayg!nun!j°Jun lyn:JYJW H Jo sg!nm!!sg yn:J!!gJOgq:l gu!){nm 'guwPgqs APpg pun 'suo!!nU!:Jso g){l!M 'uo!!nUJJoJgp gdnqs sn q:Jns nugmougqd Aq pg!n:J!ydmo:J gm sdoJp Jggmy JoJ suo!!nyn:JynJ "q:lMOJgynuO!!gJ:J:JnJo uo!!nJgyg:J:Jngq! JoJ pgJ!nbgJ S! gZ!S Jggmy O! sdoJp Jo q!MOJg pun A:J -Ug!:JYJgUO!S!U°:Jyynms n gAnq mrf O~MOygq sJg!gmnw q:I!M sdolp !nq! SMOqS8'l"~1 gJng!d
SJISAHd GnolJ
O£8
OTHER FORMS OF WATERIN THE ATMOSPHERE 831
The growth of a falling drop of mass m as a result of accretion of drops can be described by dm dt
1T = 4Et(Dp
2
+ dp) WL(VD- Vd)
(I5.IID)
where Et is the overall accretion efficiency (collision efficiency times coalescence efficiency, Et EEc), WL is the liquid water content of the small drops, and VD and Vdare, respectively, the fall speeds of the larger and smaller particles. Equation (15.110) is called the continuous accretion equation and assumes that the smaller drops are uniformly distributed in space. The description of the size change of droplets falling through a cloud by (15.110)implicitly assumesthat all dropletsof the samesize will grow in the sameway. According to the continuous equation, if several drops with the same initial diameter fall through a cloud, they would maintain the same size at all times. In reality, each dropletdroplet collision is a discrete event. Droplets that collide first with others grow faster than droplets that had initially the same size. As a result, the simple continuous equation can seriously underestimate the collision frequency and the growth rate of falling drops, especially when the collector and collected drops have the same size. The coagulation equation (see (12.80)) is a better mathematical description of these discrete collisions. Equation (12.80) (often called the stochastic accretion equation in cloud microphysics) describes implicitly individual collisions and predicts that even if all falling droplets had initially the samesize some will grow more than others. The role of ice in rain formation was first proposed by Bergeron in 1933, based on the calculations of Wegener. Using thermodynamics, Wegener showed in 1911 that at temperatures below O°C supercooled water drops and ice crystals cannot exist in equilibrium. Using this result, Bergeron proposed that in cold clouds the ice crystals grow by vapor diffusion at the expense of the water droplets until either all drops have been consumed or all ice crystals have fallen out of the cloud as precipitation. Findeisen later produced additional observations supporting the above mechanism, which is often called the Wegener-Bergeron-Findeisen mechanism. Mathematically the description of the mechanism requires solution of the growth equations by vapor diffusion for both ice crystals and water drops in a supersaturatedenvironment (Pruppacher and Klett, 1980).
=
Raindrop Distributions A number of empirical formulas have been proposedfor the raindropspectrum.The distribution proposedby Best is often usedto describethe fraction of rainwatercomprisedof raindropssmallerthan Do, F{Do):
F(Dp) = 1 - exp[ -
2.25
(15.111)
wherePois the rainfall intensity in (mm h-l) and Dp is in mm. Probablythe most widely usedis the Marshall-Palmer(MP) distribution,where n(Dp) = no exp (-1{1 Dp)
where n(Dp) mm-l, and
1/1
(15.112)
= dnjdDp is the number distribution in drops m -3 mm -I, no = 8000m-3 = 4.1PoO.21mm-l. The MP distribution is often not sufficiently general to
-UJ:lU~:>UO:>J~wnu
dolp
uuq1 J~q:JUJ ~Z!S dolp
"UO!1 Aq 1U~1X~ ~gJP.I U 01 P~U!WJ~1~P S! 11 "£
"d01 pnoI:> ~q1 pJP.M01 S~SU~J:>~p u~q:J puu 'pnoI:> ~q:J 10 1Iuq J;Jddn ~q1 U! ~J~qM~WOS ~n{UA wnw!X1Jw
U s~q:>u~J '~suq pnoI:> ~q:J ~AOqU 1qg!~q q1!M S~SU~J:)U! 11 'Z
"A1!:>OI~A J!U Iu:>!:IJ~A ~q1 U! SUO!1U!J1!A 01 ~np AI{l!tUOZPOq
AIqUJ~P!SUO:> S~!JP.A 11 "I
:s~rot~~J :J!ts!l~t:J~mq:J JnoJ s~q spnol:J Jo Pl~Y tU~tUO:JJ~t~A\ p!nb![ ~qt t~qt ~tou (0861) U~DI pu~ J~q:J~ddnJd 'uO!t~JOd~A~ pno[:J ~u!lnp OJ~ZOt SWm~J pu~ 'pno[:J ~Jm~W ~ JoJ wnw!X1?w ~ s~q:J~~J 'UO!t~UJJoJpno[:J ~u!lnp OJ~Z tSOW~ WOJJ StlRtS [~:Jmd J~ u~ Jo tU~tUO:JJ~t~A\ p!nb![ ~~ .,(n,S!W~q:J:J!J~qdsowt~ JoJ s:J!ts!l~t:J~mq:J pno[:J tUt!:)Jodw! tSOW ~qt Jo ~uo S! J~t~A\ P!nb!'l
A.~O~O.LVWI~:J aflO~:J
6"SI
ow:) Z1"O "<: da JOJ~Iqg:)!1ddg ,(P:)!J1s S! !! PUg ~~ugJ ill:) Z1'O O! ZO"O~q:I U! S!~Idolp "gillS JO J~WnU ~q! %O~ Sg q:)nw Sg ,(q ~!gW!!S~J~AO ,(gW UO!!nq!J1S!p dW ~q.L '6Z'~1 ~Jn~!d U! UMOqS~re Ou ~Iqg!lgA q!!M UO!!nq!l!S!p dW P~!!Y g PUg gJ1:)~s dolpu~JJo s~!l~s V "I-Will PloO!!dS'£ = J/l PUg I-Will f-W LfogdOOOL = Ou JO ~sn P~!S~~~nS ,(~q.L .,(!!SU~!U! "gJU!gJ ~q:I uo spu~d~p J~q!gJ !nq !Ug!SUO:) g !OU S! Ou !gq:l P~!s~~~ns SJ~q!O~uoure (1L61) gAg!SgA!lS pug UOq){~S "gJ!:)~S U~J p~AJ~sqo ~q!l:)S~p
°sl~qS!Iq~
:>!m~pu:>v l~N\nI)I
mol} UO!SSJWlOOPU!}j q1!N\ '0861 '°0 Of '11~I)l pun .o~ °H 'l~q:>uddnld 'uopvl!d!.JiJ.ld puv spnol.J fo s.J!SAl/do.l.J!W mOl) p~1UJld~~ °SUO!1nqJl1S!pdW P~11Y pun Ul1:>oos dolpu!u~ 6,oST DflDI.!I
Will
v
"
'\
,da
l
£:
Will
0 P
,da
0
'l
£
01
\
""
\
~
01 ~ ,-.. ,,01 -
'\
I-tt WW Z"L =Od lJUW 8a
I- q WUI 8.£=od
=111
I-wW
.WW ("_wOOtL =ou
\--\
!!riJ '-"
3, ,°1 ~
\ ,,01
IZ.v =1fI
.WUI__W OOO~Z =ou
.01 S:)ISAHdano,:)
l£8
CLOUD CLIMATOLOGY
833
TABLE 15.7 Microphysical Cloud Characteristics
<500 312 350 500 100-250 St (marine) St (continental) Sc (California) Sc(California) Sc(U.K.) Sc(WashingtonState) Sc(North Sea) Sc(England) As-Ac (Russia) As-Ac (Alaska) As-Ac (Wisconsin) As-Ac (Wisconsin) As-Ac (WashingtonState) As-Ac (U.S.)
200-350 200-700 25-125 200-500 302 200 200-400
< 19
0.1-0.9 0.3 0.1 <0.1 0.15
12 (base) 19 (top) 11 7 18 10
300 100
< 0.7 <0.5 0.09-0.17 0.03-0.09 <0.01
12-20 8-14 9-11 7-10 <9
25
<0.1
15-20
<0.2
14-19
70-1000 35-75
Source: Heymsfield(1993).
4. It is lessthanthe liquid watercontentcalculatedassumingadiabaticascentof an air parceldue to entrainmentof dry air. This deviationis on the order of 10%or so for the lower half of stratiform cloudsand it increaseswith height. Average droplet diameters are usually in the 10 to 20 ,urn range. Marine clouds are characterized by relatively smaller droplet concentration and larger diameters, where continental clouds tend to have smaller droplets (Table 15.7). Minimum droplet diameters are a few micrometers, where large droplets exceed 100 ,urn. In general, droplet spectra are wider for orographic clouds, less wide for stratus, and rather narrow for cumulus cloud types. Continental cumuli drop sizes range only from a few micrometers to around 20 ,urn in diameter. Frequency distributions of the mean cloud droplet size for various cloud types are shown in Figure 15.30. Squires' (1958) observations suggested that high drop concentrations are associated with narrow size spectra and small drop sizes for continental clouds. Bimodal droplet spectra are often encountered in the upper half of clouds. Lee and Pruppacher (1977) explained this bimodality by entrainment of fresh CCN into the cloud.
CLOUD CLIMATOLOGY
833
TABLE 15.7 Microphysical Cloud Characteristics
<500 312 350 500 100-250 St (marine) St (continental) Sc(California) Sc(California) Sc(U.K.) Sc(WashingtonState) Sc(North Sea) Sc(England) As-Ac (Russia) As-Ac (Alaska) As-Ac (Wisconsin) As-Ac (Wisconsin) As-Ac (WashingtonState) As-Ac (U.S.)
200-350 200-700 25-125 200-500 302 200 200-400 300 100 25
0.09-0.63
< 19
0.1-0.9
12 (base) 19 (top) 11 7 18
0.3 0.1 <0.1 0.15 < 0.7 <0.5 0.09-0.17 0.03-0.09 <0.01
10 12-20 8-14 9-11 7-10 <9
<0.
15-20
<0.2
14-19
70-1000 35-75
Source:Heymsfield(1993).
4. It is lessthanthe liquid watercontentcalculatedassumingadiabaticascentof an air parceldue to entrainmentof dry air. This deviationis on the orderof 10%or so for the lower half of stratiform cloudsand it increaseswith height. Average droplet diameters are usually in the 10 to 20 JLmrange. Marine clouds are characterized by relatively smaller droplet concentration and larger diameters, where continental clouds tend to have smaller droplets (Table 15.7). Minimum droplet diameters are a few micrometers, where large droplets exceed 100 JLm. In general, droplet spectra are wider for orographic clouds, less wide for stratus, and rather narrow for cumulus cloud types. Continental cumuli drop sizes range only from a few micrometers to around 20 JLmin diameter. Frequency distributions of the mean cloud droplet size for various cloud types are shown in Figure 15.30. Squires' (1958) observations suggested that high drop concentrations are associated with narrow size spectra and small drop sizes for continental clouds. Bimodal droplet spectra are often encountered in the upper half of clouds. Lee and Pruppacher (1977) explained this bimodality by entrainment of fresh CCN into the cloud.
'SUO!1gAl~sqo ~q! JO SUO!1g1!W!1 01 ~np W){ L. I 19 p~xy S! ss~illf:>!q! 1!~q11nq ~pm!1g1 q!!M AmA S1qg!~q ~Sgq snJJ!:>~q! 19q! ~10N 'u°!1nlos~l 001 g q1!M UMOqS ~m l~AO:> pnol:> pUt! 'sS~illf:>!q1 '~pm!1Ig ~q.L 'smgl1SoqW!U pUt! 'snqw!uolnwn:> 'snlnwn:> '(:>S '1S) spnol:> Mol '(:>y 'Sy) spnol:> ~IPP!W '(S;) '!;) spnol:> qg!q :S~dA1 pnol:> X!S UO P~Sgq AgoI01gW!I:> P~ggl~Ag AIIgUOZ g SMOqS 1£.~1 ~lng!d
'S~dA1 pnoIJ Sn°!J1!A JOj ~Z!S 1~IdoJp pnoIJ U1!~W ~q1jO su°!1nqjJ1S!p AJu~nb~Jd
wli "7<
"7-~7
t?z-oz
Of"SI :ilHn~I~
'l~1~~~a 6I-~I
vI-OI
6-0 0
01
"I1
~ OZ "§ ~ ~ '<
0 , 0 Of p, = ~ ::: Q 017
o~ S:)ISAHd GnOl:)
17£8
835
-Aq ;}111W!I:>-pnol:>-SWa -UO:> pnol:>
PUI1 !;}I:>nu
.££L81-LZL81
'96
'.saN
;}q1 01 d!qSUO!1111;}11!;}q1 pUt! ;}1;}qdsoW111 ;}uJl1!w U;})j1!V}O
S1U;}W;}lnSI1;}W
(1661)
"A a 'sqqOH
;}uJl1!w
q1!M. P;}111!:>OSSI1uO!1:>npo1d 'L '.wal{.)
;}1:>!1l1!d (0661)
.SOWIY .r 'S;}1111SP;}1!Ufl
U! uo!1:>npp1d
;}q1}0
.A .d 'sqqoH
'S6
pUt! '.d .,
1S110:>1S;}M.q1J°N
~11111!UPUI1 ;}111}lns }O suosJl1!dwo;) '.IiY]
.saN .s.(l{doao
;}111}lns}0
.s.(l{doao
;}q1 U! !;}pnu
pUt! '.d .,
.9Z6£I-LI6£1 'spnol:>
.£££-~Z£ ;}q1 uo spnol:>
.IZL-6IL'tl U! U°!111P!XO ;}UOZO 01 ;}np UO!1:>np01d
(8861)
';})jPI1}! '.saN
.r's!s;}q1od UO!111SU;}P '.v.a
.s.(l{doao
';})[PI1}!
(L861)
;}q1 U! ~OS}O U°!111P!XO;}sl1qd-P!nb!I}O
;}q1 W01}
'01
U°!111Zjl;}1:>I1Jt!q;)
q1M.01~ 10;}1;}W01pAq
'"]oul{:Ja.r
.A a 'sqqOH
PUI1 "v
7]nEl
'l;}AI1I AJ1Ipunoq ;}Z!S IOS01;}11}0
;}uJl1!w
'Sl;}~O}!
(OL61)
'U°!111UllO}
PUI1 '.0"( 'u 'v
'I;}POW
d!qS1!V
(£661)
'V
.M
'~~;}H .r
.a '~g~H
'~~;}H
'~g;}H
'.f '11~III1H
'1;}1111M PUI1 '.N
'I;}ddoH
'111n)jnd
'tL
PUI1 '.W
S:>!WI1UAP pnoI:> II1UO!SU;}W!P-0M.111
uo!1!sod;}p
PUI1 'u°!1nqjl1S!p;}1
111:>!1;}10;}q1V (8861)
'.!:JS .sowlY
'I;}POW
'.:J°S
.0
')jJJld
pnop
PUI1 1 .V'uul1wssoId
Aq P;}gU;}AI1:>S AISnO;}UI11InW!S
PUI1 ;})j111dn ;}q.L :lIll11d
.s1ul11nIlod
PUI1 '.a.M
pnoI:> ~U!M.01~
'III1H
SI1~
:>Jl;}qdsow111 '1.V'UUI1WSS°[d
Aq ~U!~U;}AI1:>S uo!1:>l1dw!
;}q.L :1 1l11d .s1ul11nIlod
'l;}q:>l1ddn]d
'snlla.r
~u!sn
';})j111dn ;}q.L .£ s1u111nIlod
.}! .H 'l;}q:>l1ddn]d
pnoI:> ~U!M.01~
'l;}q:>l1ddn]d
.r 'Sd01p
'8£t
'.saN
pnol:> PUI1
'uospnH
'.!:JS .soUIJy.r'l;}pOW .,
;}q1 U! SU°!111l1U;}:>UO:> SI1~ ;}:>1111PUI1 'l1l1:>;}ds 1;}Idolp
S1U;}W;}lnSI1;}W
'.!:JS .sowly.r
Apms
'sdolp
u°!1nqjl1S!p;}l
II1:>!1;}10;}q1 V (L861).}!.H ''It
S;}I:>!1l11d IOS01;}11 }O u°!1nqJl1S!p;}1 II1:>!1;}lO;}q1 V(~861).}!.H .IZ£-IO£
.a '~g;}H
PUI1 '.v.a '06
;}:>ul1llodw! ;}qJ. (~86 I) .v.a .!:JS ]oso.lay
(6861).d.;)
}O s:>!1;}U!)I
.ZOZZ-~6IZ .wy
'su°!1nqjl1s!p
'St
II1AOW;}11;}M. ;}q1}0
'.!:JS .sOUilY.r
PUI1 S;}I:>!1l11d ~OS~(~HN)}O Apms
.909-£8~ p;}lmdl1:> Apms
pUt! '.a.M
'III1H
PUI1
:>Jl;}qdsow111 '1.V
pnoI:> P;}I!1!1;}P II1UO!SU~w!P
'uul1wssoId
0M.111 ~u!sn
S;}dA11U;}1;}}J!P 0M.1}0 ~U!gU;}AI1:>S ;}q.L (1661) 1 'v 'uUt!wsso[d .r 'S;}lY 1S;)l0}}0 A1!U!:>!A U! su°!1nqjl1s!p ~Z!S 1;}Id01P pnol:>
(PL61) .d.'
S1U;}W;}lnSI1;}W
.8L91-~99I -qo PUI1 su°!111Inw!s
"v
:>Y!:>l1d PUI1 :>!1UI1PV-PJW
.A a 'sqqOH
'uo!111nb;} ;}1111:>!1;}Upjl1 q1!M. spnol:>
suOSJl1!dwo;)
.6LL£-£LL£
.r '~l;}qdsodol1
.s.(l{doao
.£8-oL ;}Z1!q 10} SIOS01;}11 u°!1snqwo:>}o
.ZLII-o911 111:>jl;}qds ~lodl1A
7°.l0alaw pnoI:>
.IL81-L~81
~A!1:>;}AUO:>11 Aq S;}I:>!ll11d ~OS~(~HN)}O Jjl;}qdsoW111}0
.£Z6Z-ZI6Z'tt ~OS
}O II1AOW;}11;}M. ;}q1}0
u°!111;}I:>nu qgn01q1
}O II1AOW;}11;}M. ;}q1}0
p;}111In:>II1:>S;}I:>!1l11d IOS01;}11 ;}UJlI1W}O .L~~-£~~ '£1 '"]O.lOalaw 7ddy PUI1 !;}I:>nu U°!111SU;}PUO:> pnoI:>}o
'8'l
'.UO.l!I\U3
';})[PI1}!PUI1'.A.d 'sqqoH '.;).}! 'UI1~t!3
.sowlY
'snInwnJ
PUI1 Sm11l1S U! SU°!111Al;}S
I;}POW U;};}M.1;}q uosJl1!dwo:> 11-Al1SJW;}q:> pnoI:> 10} I;}POW V (P66 I) .d "{ ')jI;}A;}a . L66-~L6 'u '.UO.l!I\U3 .sowlY '11111pPI;}Y q1!M. suosJl1!dwo:> qgn01q1
(£661)
gU!1J;}1l0;)
;}q1 ~U!1S;}1 PUI1 SlOll;}
u°!1:>~OJ
.M.a
'unA8
}O U°!1:>;}llO:>
PUI1 '.S.d
pUt! !..l;}AO:>S!P-UO!1J!~ldJ;}pUn
'!)jSM.0)jU!8
'.}!.M
.8~PI-Lt7tIl 1;}111M.P!nb!I
'1~q:>Jt!8
'68 '.saN
U! S1u;}m!1suo:> P;}111I;}1 PUI1 :>!P!:>V (P861).'
'spunodwo:>
'UI1WM.;}N
'.N
;}111}Ins Way}!
.f '!..lU;}H:>W
'.,.}!
.r 'spnoI:>
.s.(l{doao
PUI1 '.3.S
'S!UU;}a
UllO}!111l1S
'Z1l11M.q:>s '.H.d
'wnl1a
.PIZZ-~OZZ '1£ '.uO.l!I\U3 .soWlY ;}q.L (L66 I) .N 'S 'S!PUl1d pUt! '.;) 'Znl;)
IOS01;}11 :>!UI1~lO AJ1IPUOJ;}S }O A1!A!1:>11 N;);)
.96£Z-£6£Z'n '.IIiY]
.saN .s.(l{doao
'uo!1:>np01d
;}111}Ins :>jl~qdsoW111}0
S;}1111uo ;}:>u;}nuu!
SSOl:>11SUO!111Jl1!A A1!P!:>V (P661) .8 'ZOW;}a
d01p pnoI:>;}q1
PUI1 '.X
1!;}q1 pUt! wnJ1:>;}ds
'011}! "V
'101118 '.If
1;}111S1'W;}II1Snl;}f :>Y!1U;}!:>S 10} '.3
WI11~Old
.A 'U!Al;}U!W
I;}111S1 's:J!S.(I{c!
'.d 1 'U!Z1!W
'.A
pnO].)
(£961)
"A 'A;}Jt!1S°)l
'.0
'W
.3
'S
')j1!Z
'Sl~1;}wqS
'1
.,
.,
~Z!S
.f '11;}II°;)
'su°!111IsUI11.L
PUI1 '.)1
'!!)jSU010A!1!0
'V
"W
'UI1!~lq)l
'V
'AO)j!U0108
S~;)Nn~.!I~H SJISJ..Hdano']J
9£8
REFERENCES837 Hegg,D. A., and Hobbs,P.V. (1992)Cloud condensationnuclei in the marineatmosphere:a review, in Nucleation and Atmospheric Aerosols, edited by N. Fukuta and P. E. Wagner. Deepak Publishing,Hampton,VA, pp. 181-192. Hering,S. V., andFriedlander,S. K. (1982)Origins of aerosolsulfur distributionsin the Los Angeles basin,Atmos.Environ., 16,2647-2656. Heymsfield, A. J. (1993) Microphysical structures of stratiform and cirrus clouds, in Aerosol-Cloud-Climate Interactions, edited by P. V. Hobbs, Academic Press, San Diego, pp.97-121. Hobbs,P.V., Bowdle, D. A., andRadke,L. F. (1985)Particlesin the lower troposphereover the high plains of the United States,1. Size distributions,elementalcompositionsand morphologies,J. Climat.Appl. Meteorol.,24, 1344-1356. Hobbs,P.V. (1995)Aeroso1-c1oud interactions,in Aerosol-Cloud-ClimateInteractions,editedby P. V. Hobbs.AcademicPress,SanDiego, CA, pp. 33-73. Hoppel,W. A., Frick, G. M., and Larson, R.E. (1986) Effects of non-precipitatingclouds on the aerosolsizedistribution in the marineboundarylayer, Geophys.Res.Lett., 13, 125-128. Hoppel,W. A., andFrick, G. M. (1990) Submicronaerosolsizedistributionsmeasuredover the tropical and southPacific,Atmos.Environ.,24A, 645-659. HoughtonH. G. (1985)PhysicalMeterology,MIT Press,Cambridge,MA. Hudson,J. G., and Clark, A. D. (1992)Aerosol and cloud condensationnuclei measurements in the Kuwait plume,J. Geophys.Res.,97, 14533-14536. Hudson,J. G., and Frisbie, P. R. (1991) Cloud condensationnuclei nearmarinestratus,J. Geophys. Res.,96, 20795-20808. Husain,L., Dutkiewicz, V. A., Hussain,M. M., Khwaja, H. A., Burkhard, E. G., Mehmood, G., Parekh,P.P.,andCanelli, E. (1991)A studyof heterogeneous oxidationof SO2 in summerclouds, J. Geophys.Res.,96, 8789-8805. John,W., Wall, S. M., Ondo, J. L., andWinklmayr, W. (1990) Modes in the size distributionsof atmosphericinorganicaerosol,Atmos.Environ., 24A,2349-2359. Junge,C. E. (1963)Air Chemistryand Radioactivity.AcademicPress,New York. Karamachandani, P., and Venkatram,A. (1992) The role of non-precipitating clouds in producing ambientsulfateduring summer-results from simulationwith the Acid Depositionand Oxidant Model (ADOM), Atmos.Environ.,26, 1041-1052. Kelly, T. J., Schwartz,S. E., and Daum,P.H. (1989)Detectionof acid producingreactionsin natural clouds,Atmos.Environ., 23,569-583. Kerrninen,V. M., and Wexler,A. S. (1994) Post-fog nucleationof H2SO4-H2O particlesin smog, Atmos.Environ., 28, 2399-2406. Kohler, H. (1921)Zur KondensationdesWasserdampfe in der Atmosphiire,Geofys.Publ., 2,3-15. Kohler, H. (1926) Zur Thermodynamic der Kondensation an hygroskopischenKernen und Bemerkungeniiber dasZusammenfliessen der Tropfen,Medd.Met. Hyd1:Anst. Stockholm,3 (8). Lamme1,G., andNovakov,T. (1995)Waternucleationpropertiesof carbonblack anddieselsootparticles,Atmos.Environ., 29,817-823. Langner,J., and Rodhe,H. (1991)A global three-dimensionalmodel of the troposphericsulfur cycle, J. Atmos.Chem.,13,225-263. Leaitch,W. R., Strapp,J. W., Isaac,G. A., and Hudson,J. G. (1986) Cloud droplet nucleationand scavengingof aerosolsulphatein polluted atmospheres, Tellus,38B, 328-344. Lee, I. Y., and Pruppacher,H. R. (1977)A comparativestudy of the growth of cloud dropsby condensationusing an air parcel model with and without entrainmentPure Appl. Geophys.,115, 523-545.
';lP!XOl;ld
pnolJ
U;I~OlpAq :>!l;lqdsow1V
(0661)
'A 'u;lqOJ
"l9v 1-'l~v 1 'v'l 'loul{:Ja.r '!:JS 'UD.l!I\U3 pUR "M '!RS.L ,.~ "I 'URldR)I "H 'RMR~n~s
'08~'l-IL~'l 'VS'l "UD.l!I\U3 'SOUliV 'S;lI:>!1l11d;I~OWS pOOM/I!O ;lpru:> Aq UO!1R;lI:>nu1;11dOlp (1661) '0 'f 'UOS1RMpUR "f 1;11IRH '.'} .~ 'l;lUUR.L "S 'R~SU!I;I!Z "0 'f 'uospnH "d 'J 'Sl;l~O~ . L8-o8 '7ddns 'sAl{doao
"(\aN '0661-L861
s:>!SAqd pnol:> .A.l01RlOqRIU! S;I:>URAPV(1661)
'f a 1}OW;lO pUR "J
'0 'Sl;l~O~
'Iv'l-LO'l'LI1 ':JoS 7o.l0a/aw 'N"f '0 'spnol:> UlloJ!lnwn:> ;lW!1!lRW lRIOd IIRWS U! 1U;lWdol;lA;lP UO!1R1!d!:>;lldpUt! SUO!1Rl1U;I:>UO:> ;l1:>!1l11d;1:>1(1661) 'A 'd 'sqqoH pUR "'} 'V 'OU~UR~
'£611-0611 '8t '!:JS 'SOUllV"f 'spnol:> snlnwn:> IIRWS;lWOSpunolR spl;lY ;l1:>fJl11d pUt! A1!p!WnH (1661) 'A 'd 'sqqOH pUR "d "} ';I~pR~ 'O£v'l-L 1v'l '£'l 'UD.l!ItU3'sow/V 'S;lSSRW l!R lRlod pUR;lpm!1RI-p!W U! S;lZRqJO S1U;lW;lJnSR;lW lRP!1pUR10SOl;lV(6861) 'J .~ 'lI;luq:>s pUR "A a 'sqqoH "H 'f 'SUOA'}"V'J '~:>OlS "d "} ';I){pR~ 'SPURp;lq1;1N
'I;lP!;I~
'uopp/!d!:Ja.ld
pup
spnOl.J jo
s:J!sAl{dD.l:J!W (0861)
'~OJ uRqln URU! uo!}:>npold ;l1RJlns snO;lU;I~Ol;l1;1H ('l661)'J
'0
;lQ.L 1q:>;llplOO
"f 11;11)1 pUR ,.~
'H 'l;lq:>RddnJd
"l'l~'l-60~'l 'V9'l 'UO.l!I\U3 'SOUliV 'S!U!I!d pUR "H'f 'PI;lJU!;lS "N'S 'S!PUt!d
'OO~81-68v81 'S6 'saN 'sAl{doao "f 'uo!1!sod;lp P!:>RpUR ;l1:>A:>~OWS-~OJ-~OWS ;lq.L (q0661) 'J 'S!U!I!d pUR "H 'f 'PI;lJU!;lS "N'S 'S!PURd '6961-L~6.1 'Vv'l 'UD.l!ItU3 'SOUliV 'S;lZ!S 1U;ll;llJ!P JO S1;11dolp ~UOWR S;I:>U;ll;llJ!P UOfl!sodwo:> IR:>!W;lqJ (R0661) 'J 'S!U!IM pUR '"H 'f 'PI;lJU!;lS "N 's 'S!PURd
'9LI'lI-9~I'l1 't6 'saN'sAl{doaO"f'~oJ UOflR!PRl 01 ;lnp UOfl!sod;lp P!:>RJO ~U!I;lpOW IR:>flRw;lq1RW (6861) 'H 'f 'PI;lJU!;lS pUR "N'S '08~-oL~ ;l1!1RIOA-UOU JO UOflRl1U;I:>UO:> ;lq1 JO ;I:>u;lpu;ld;lp
'1 £-v'l Jo S1u;lw;llnsR;lW
'HIt
"uO.l!ItU3 'sow/V
'Htf'
'S!PUt!d
'snlla.r 'S1;1ldolP ~OJ U! IR!l;l1RW ('l661) "lR };I "V .f 'U;ll~O
;lZ!S ;lq1 JO S1U;lW;llnSR;lW
'snlla.r 'S1;1ldolp pnol:> U! SUOflRl1U;I:>UO:> ;l1nlos Jo ;I:>u;lpu;ld;lp-;lz!S ;lq1
(6861) 'f .~ 'UOSIJRqJ pUt! "f ')1 ';luooN
-uo:> ;l1nlos :S1;1ldolp pnolJ
'£'l
"V 'l;lqnz
"f '~l;IQU;lZ1!;lH "V'f
'U;ll~O
"l8v6-LLv6 '£6 "saN 'sAl{doao "f 1u;lpu;ld;lp ;lZ!S S! UOflRl1U;I:> (8861) 'f '~l;IQU;lZ1U!;lH pUR "s '0 '1l;lAOJ "f'~ 'UOSllRqJ '1')1 ';luooN
1St!0:> ;lQ1 moll
JO UOfl!Sodwo:> IR:>!W;lqJ (6861)
'0'l£'l-~0£'l ;I:>UR1S!PpUR ;lZ!S 1;11dolp Uo ;I:>u;lpu;ld;lp :spnol:> IRISRO:>
.~ 'W 'UURWlJOH pUR "S ';lqnRO ''If
'f 11;1110J '"M 1 'l;l~unw
'~9'l-£~'l 'O'l '70ul{:Ja.r '!:JS loso.lav 'SIOSOl;lR IRUO!~;ll pUR uRqln JO ;lPOW 1;11dolPl;l1;1WOl:>!Wqns ;lq} JO ;I:>lnos ;lq1 UO (v661) 'H 1 'PI;lJU!;lS pUR "z '~U;lW "801~-101~ '88 "saN 'sAl{doao "f 'A1!p!Wnq ;lAflRI;ll JO suofl:>unJ SRUO!1RUllOJ10SOl;lR 1U;I!qWR AlRPUO:>;lS01 suoflnq!l1uo:> (sno;lu -;l~owoq)
;lSRqd-SR~ pUt! (sno;lU;I~ol;l1;1q) ;lsRqd 1;11dolO (£861) 'J 'f 'UOSI!M pUR "H 'd 'Allnw:>w
'~06-o68 '££ '7°.loa/aw 7ddV "f 'I;lPOW UOfl!sod;lp P!:>RIRUO!~;ll ;lq1 Aq P;l1:>!P;lld SR UO!1:>npOld ;l1RJlns 1U;I!qWR :>!l;lqdsoW1R 01 spnol:> pUR SARMq1RdUOflRP!XOJO ;I:>uR1l0dw! ;lAflRI;IJ ;lq.L (v661) "}'~ 'PlOJXO 'SS;lld PlOJXO 'spnol.Jjo
'S!UU;lO pUR "N'f
S:J!SAl{d al{.r (IL61)
'.A.lU;lH:>W 'f'S
'UOSRW
'R!WOJ!IRJ 'A;ll;l1UOW 'looq:>S ;l1RnpRl~1S0d IRARN 'A1!1!:>Rd IR1U;lWUOl!AUg 'vi-v l;ldRd IR:>!Uq:>;I.L(vL61) 'w 1 ';I~:>!d pUt! ,.~ 'd ';lMO'}
q:>lR;lS;I~ UOfl:>!~ld '68£-89£ (v661) 'V'H
';lq;l!M
'HSt
'snlla.r 'RPRURJ '°!lR1UO l;lAO pnol:> l;lwwns
pUR "M'f
'ddRl1S "V"O
':>RRSI"w
R U! uofl:>npold ;l1RJlns
'V 'PIRUOO:>W ,.~ 'M 'q:>1!R;I'} ")1 'S a 'n!'}
":1T"
XH" (Inn":1
ll"ll
PROBLEMS 839 Saxena,V. K., and Hendler,A. H. (1983) In-cloud scavengingand resuspensionof cloud active aerosolsduring winter stormsover Lake Michigan, in Precipitation Scavenging,Dry Deposition andResuspension, editedby H. R. Pruppacher,R. G. Semonin,andW. G. N. Slinn. Elsevier,New York, pp. 91-102. Sekhon,R. S., andSrivastava,R. C. (1971)Dopplerobservationsof drop sizedistributionsin a thunderstorm,J. Atmos.Sci, 28, 983-994. Squires,P.(1958)The microstructureand colloidal stability of warm clouds,Tel/us,10, 256-261. Swozdziak,J. W., and Swozdziak,A. B. (1992) Sulfate aerosolproduction in the SudetyRange, Poland,J. AerosolSci., S369-S372. TenBrink, H. M., Schwartz,S. E., and Daum,P.H. (1987) Efficient scavengingof aerosolsulfateby liquid water clouds,Atmos.Environ, 21, 2035-2052. Twomey,S. (1959) The nuclei of natural clouds formation. Part II: The supersaturationin natural cloudsand the variation of cloud droplet concentration,Geofis.Pura Appl., 43,243-249. Twomey,S., and Wojciechowski,T. A. (1969) Observationsof the geographicalvariation of cloud nuclei,J. Atmos.Sci., 26, 684-688. UnitedStatesNational Acid PrecipitationAssessmentProgram(1991) Acidic Deposition: Stateof Scienceand Technology,Vol.I Emissions,AtmosphericProcessesand Deposition,editedby P.M. Irving. U.S. GovernmentPrinting Office, Washington,DC. Walcek,C. J., Stockwell,W. R., and Chang,J. S. (1990)Theoreticalestimatesof the dynamicradiative andchemicaleffectsof cloudson troposphericgases,Atmos.Res,25,53-69. Wall,S. M., John,W., and Ondo,J. L. (1988) Measurementsof aerosolsize distributionsfor nitrate andmajor ionic species,Atmos.Environ, 22, 1649-1659. Warner,J. (1968)The supersaturationin naturalclouds,J. Appl. Meteorol.,7, 233-237. Whelpdale,D. M., and List, R. (1971)The coalescenceprocessin droplet growth, J. Geophys.Res, 76,2836-2856.
PROBLEMS ls.lA Show equations (15.39) and (15.40). 15.28 Derive equation (15.53). ls.3A You dissolve 5 g of NaCI in a glass containing 200 cm3 of water. The glass is in a room with constanttemperatureequalto 20°C andrelativehumidity 80%.Calculate the volume of water that will be left in the glass after several days of residence in this environment. Repeat the calculation for a relative humidity of 95%. ls.4A Your grandmother and grandfather are upset, because it has just started raining. After listening to the weather prediction for a cloudy day but without rain, they planned to spend the day working in the garden. They have started criticizing the local weather forecaster who, despite the impressive gadgets (radar maps, 3D animated maps), still cannot reliably predict if it will rain tomorrow. They turn to you and ask why if we can send people to the Moon we still cannot tell if it is going to rain or not. Explain, avoiding scientific terminology.
'~!l~"!gW ~lqnlosu! ~q"!Jo UO!"!:>gJJ SSgW ~q:I ~"!gln:>lg:>'~!l~"!gW ~lqnlosu! PUg rOSz(~N) P~U!~uo:> s~l:>!~d ~q"! pm! %~O'O SgM u09gJmgsJ~dns wnw!:Jrnw ~q:I JI "q wnw!xgw
~q"! ~q PlnoM "!gqM 'rOSz(~N)
(,J~Agl goJ ~q"! ~P!SU! uo!"!gJmgsJ~dns Jo Al~J!"!u~ p~"!S!suo:>S~l:>!~d ~q:I JI "8 'Sg~m
UgqJn U! sgOJ U! p~AJ~sqo u~~q ~"gq wrt
~'O AlqgnOJ JO SJ~"!~um!PU09g,,!"!:>g f.Ja
"6"SI
'SUO!"!gAJ~sqo JnOA
ssn:>s!p pm! (t'~l)
,(v;)[ = ~;)['lla
q"!!M ~mdwoJ
= ~a
'~tO'O
= :>X)"!gq"! gu!wnssg
9'~1
w~lqOJd
"!g~d~"M J8"SI
'SUO!"!gAJ~sqoJnOA ssn:>s!p pm! 9'~1 w~lqOJd q:I!M ~mdwoJ "!gq:l ~wnssg) s"!:>~JJ~wnnu!"!uo:>UOu JOJ S~!"!!"!"!:>npuo:> 19W
-J~q"!pm! s"!u~!:>YJ~O:> Uo!snJJ!p ~q:I O"!U09:>~JJO:> ~q"!gU!"!:>~lg~u9'~1 w~lqOJd "!g~d~"M JL"SI
g q:>g~JO"!~l:>!~d
'"!u~!:>YJ~O:> UO!"!gpOWWo:>:>g A"!!Ung ~wnssv (,wrt ~ JO J~"!~um!P ~q:I JOJ ~)(t1"!"!! n!M guol MOH 'U09gJmgsJ~ns J~"!gM %£'0 g q"!!M
~J~qdsoW"!g m! O"!"!qgnOJq Alu~ppns S! ~l:>!~d
rOSz(rHN)
f.Jp J~"!~Wg!Pwu 001 V J9"SI
(,lg!l~"!gW ~lqnlosu! %O'l pm! '£ONrHN %0£ 'rOSz(~N) %O~ Jo gU!"!S!suo:>S~l:>!~d JoJ uo!"!gJmgsJ~ns %£'0 "!g J~"!~um!P UO!"!g,,!"!:>g ~q"! S! "!gqA\ as"SI
S;)ISAHdana,;)
Of'8