This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
= 4>l(P),
'(o)/ = d qll,n '(g) suoltenbo lBql ) o Jl .ue,ll .0.2.0 .xg Jo uoll€lou oql ur
E
aqt urorJ s/holloJ lI '(nh
in the notation of Ex. (0.2.4). Then, if a equations (2), with p = t(w), that
l(X), it follows from the
do t1 =
=
=
tr ap. ll
tr pa
,t pue (A)g uo srurou arll roJ r(1uopesn aq IlI,\{ 'll pu" '(nh uo urou ertl roJ Ill .ll ar1r,r ,tonbasaqr uI IIBqsea
In the sequel, we shall write 11.11 1 for the norm on l(X). and 11·11 will be used only for the norms on l(X) and R
srsrc.rexl
Exercises .'(nh ? 3 = d ta.I
(0.2.5). Let p E l(X).. Let p = r ant ~ TI be a decomposition of p as in Ex. (0.2.3). n' n
se d go uolllsoduroJapu oq
'u''lr'o
'O"r:;:'1}ili
0. O. Introduction Introduction
8
t t o cconsequently, onsequently, n l11.11 ((a) a ) TThe s cconvergent o n v e r g e n t iin l ' l l ' 1, aand . 1I,i , , 4TI, , iis h e sseries e r i e s IL. r ,cxn 'In' n
for any any xx in in E(lf), I(X), trtr px px == 1P,x7
== XL cr,r<x(rr,rl,r>; cxn<x~n,Tln>; in in particular, particular, for L ccxn<~ r - < ( .,TIn>' ,'->' ttr r Pp == E for for any any orthonormal orthonormal basis basis {5,,} gn} of of r.X. (c) u s t i f y aan o Appeal Cauchy Schwarz n aappeal p p e a l tto o jjustify ((Hint: Hint: A c h w a r z tto p p e a l tto o C a u c f i y - -and and S Parseval.) 0 O Parseval.) The use use of of the the word word ntrace" "trace" is is vindicated vindicated by by part part (c) (c) of of the the last last The p, main exercise: in any matrix-representation of p, the main diagonal diagonal is a of exercise: in ot h i c h ddoes 0 . 2 . 1 ) ) aand o e s nnot Ex. which by E um, w h e ssum, n d tthe x . ((0.2.1)) e q u e n c e ((by ssummable u m m a b l e ssequence of co-ordinate system, system, is the trace of of p. p. depend on the choice of 0.3. Thrcc Three Locally Locally Convcx Convex Topologics Topologies on on q10 l(1t) () N~, then at(y) E N4>. () N; and so at(y)x, xat(y) E M4> and the expressions 4>( ~(y)x) and 4>(xat (y» are meaningful. Notice, incidentally, that the same symbol 4> is also being used for the linear functional induced by t~e weight 4> on M4>' The KMS characterization of the modular group a now becomes:
(b) vlrirv. Verify lrtul that ;*;''= p~p = rL o|rn,,,n,, CX~/Tln TIn and and hence hence that that llcll, IIplll == rL o,, cxn = = (u)
tr(p*p)1/2. ' tt(P* P)rlz (c) Show Show that that tr tr pp == EL
several reasons, reasons, the norm topology is not a very very good topology For several (Reason: represent on I(X). For example, I(X) is nonseparable. (Reason: represent lfX as as nonseparable. example, t(lf) on I(lf). 2[0,1], and for ( ( p r o j e c t i o n p , t h e s u b s p a ce o n t o t h e L " I " 1, let P be the projection onto the subspace l , l e t b e t f o r 0 1 2 [ 0 , 1 ] ,a n d t of functions functions supported supported in in [0,t];-if [0,/]; if s < l, I, then Pt Pt -- P" p. is a non-zero non-zero of projection and hence hence has has norm one.) one.) Also, Also, if if lt, Mn is an increasing increasing (lvtn) sequence sequence of subspaces and M = ~, if the sequence {M } is not l'1 U , if the sequence of subspaces n I t turns n o r m . It turns i n the t h e norm. eventually n o t true t r u e that t h a t PPnn ... i t is i s not c o n s t a n t , it e v e n t u a l l y constant, ' P in consider certain out that, in such d-b better to consider one would do such situations, situations, one other topologies t(lf). topologies on I(X). on t o p o l o g i e s on c o n v e x topologies Let l o c a l l y convex a b o u t locally r e c a l l something s o m e t h i n g about b r i e f l y recall L e t us u s briefly is aa vector space space M is vector seminorm on aa vector vector spaces. spaces. Recall that aa seminorm - [0,00) = 1>.lp(x) p(\x) = mapping p: pi M ... such that p(>.x) v) "< p(x) + lrlp(x) and p(x + y) [0,-) such t\ f a m i l y p(y) whenever E M and >. E ([. Suppose that a family {Pi: \ e C . S u p p o s e t h a t a M a n d p(y)w h e n e v e r x,y e x,y { n r :ii Ee I} is the the ot M is given. The induced topology on of seminorms induced topology is given. on M is seminorms on pt is is each Pi to which each smallest respect to on M with respect vector topology topology on smallest vector A} M e in cr net a continuous topology, a net {xcx= at the the origin; in this topology, continuous at {x; cx E A} f o r each e a c h ii Ee I./ . converges i f Pi(x x ) ' ... 0 0 for M if i f and a n d only o n l y if in M t o xx in c o n v e r g e sto F { x CX o -- x) t(lf) is is the the topology topology (a) The Definition on I(X) topology on The strong strong topology 0.3.1. (a) Definition 0.3.1. = pq(x) = lf) defined bv p~(x) (pq: ~E Ee X} defined by induced seminorms {p~: family of of seminorms by the the family induced by
Ilx~11. ll' I ll.
the induced by by the t(lt) is (b) is the topology induced the topology (b) The on I(X) weak topology topology on The weak pt.n(x) lf) defined by P~ (Pr TI:n:1,0 definedby family {p~ ~,TI Ee X} TI(x) == l<x~,TI>I. l<x('4>1. family of of seminorms seminorms by the the induced by (c) t(lf) is is the the topolo'gy topolo'gyinduced on I(X) (c) The o-weaktopology topoldby on The a-weak = pp(x) D xPl. S(Xf)-} by family E I(X).} defined by pp(x) = Itr xpl. 0 : p e defined ltr seminorms(p famity of of seminorms {pp: p P with respect respect to x.r with l(tf) converges In in I(X) convergesto net {xi} language,aa net In simpler simplerlanguage, {x1}in to the: to the: - ~ II ...'00 for iff xi 1?, i.e.,iff xrl~ ...'xlX ~ for all all ~( Ee X, i.e., (a) iff Ilx (a) strong topologyiff strongtopology llx,( i ~ - Xttll in the strong topology on X ; lf on in the strong toPologY ;
(a) When X is infinite-dimensional, show that (x e :e(X): x 2 = O} is strongly dense in :e(X). (Hint: let a e :e(H); a typical basic neighbourhood of a in the strong topology is of the form (x e :e(X): II(x - aHjll < e for I ~ i ~ n}, for some set {t1' ..., t n} f X and e > O. Argue that the tj's may, without loss of generality, be assumed to be linearly independent, even orthonormal. Then pick 7}1' ..., 7}n e X satisfying (i) Ilatj - 7} j ll < e for each i, and (ii) {tl' ..., tn' 7}1' ..., 7}n} is linearly independent. Let x be a finite rank operator such that xt j = 7}j and X7}j = 0 for each i and xt = o whenever t e (t 1, ..., tn' 7}1' ..., 7}n}.L.)
r " ' e r ur u 1 " " ' I l ) r ! r a a a u a q mg - (1("t = : r p u u , r { J ? aJ o J Q = r g x p u e l t t = l l r l € q l q r n s r o l u r a d o {uzr ,...J]) e l r u r J B e q r l r . I ' l u e p u e d o p u rf l r e e u r l s l ( " u , " . , r t r . ' l (lt) pue ', qcee roJ r > - ! : r ; ; ( r ) E u r f g s r l e sf i r ' { , r . . . . , r r rr t c l d ;;ltr uaqJ 'l€ruJouoqgo ua^6 'luapuddepur flreeurl aq ol pounss€ oq ',(1r1e:_ouaE 'feru s.!l orll l€ql anEry .0 < r pue Jo ssol lnogll^\ ""'tl} Irs eruosro3'{a } I > I roJ r > lllt(p -- x)ll :(r{h ,i i {"1 r x) ruro3 aql Jo sr ,tEo1odo1Euorls oql ul r go pooqrnociqtrau crseq 1ec1d,{t e l(g)g ) o t?l :lulH) .(,l)f ur osuop flEuorls sl (O = { :Qit r x) 1eq1 ^\oqs .I€uorsuourp-olrulJul sl fi uaq/t\ (e)
'(e'e'o)
(0.3.3).
('a qc€a ro; frleuosr u€ sI ,rn se .{lEuorls 0 I utt alrr{^r{lEuortrs 0 -,r*z leql f3rrarr lslseq leru.rouoglroue sr r="{u1; ereq,n
r
where (tn}:=1 is an orthonormal basis; verify that u*n ... 0 strongly while un 0 strongly, as un is an isometry for each n.) ur,I+u( I=u . t t1 3 =n
u=r.t , n=1 t n+1,t n 00
"e'I irJIrIs tlrrrr,ron "
(a) When :e(X) is equipped with either the weak or the a-weak topology, the adjoint operation x ... x· is a continuous self-map. (b) Let X be infinite-dimensional. Then show that the adjoint map is not continuous with respect to strong topology. (Hint: let u be a unilateral shift; i.e.,
'{Eo1odo1Euorls ol eq n lel;luIH) lcadser qll^\ snonurluoc lou sI cleru gurofpe oql ^\oqs uarll 'luuorsuourp-alrurJur eq g p1 (q) lrql 'deru-31assnonurluoc € s! +r e r uolluJado fulofpe eq1 .fEo1odo1 {€er\-o eql ro {€a^r eql raqlle qll^r paddrnba sr (g)g uag1\ (e)
'(z's'0)
(0.3.2). (a) Show that a net (x) converges to x weakly if and only if tr pX j ... tr px for every operator p of finite rank. (b) If S is a norm-bounded set in :e(X) (i.e., sup{ IIx II: xeS) < (0), show that the weak and a-weak topologies, when restricted to S, coincide. (Hint: Use (a) and the fact that finite-rank operators are dense in :e(X)•.)
('-(A)f ur asuoperu .aprculoc srolu:edo pue eql (e) osn :lulH) l€rll lcBJ {uur-elrurJ ',Sol pelclrlsar uaq^\ 'sorEolodol pu€ oql /noqs leql {€e^r-o {€a,tr '(- > € sl S JI (q) {S t x:llxll)dns "e'I) (A)r ul las pepunoq-rurou
\xd, srrluopu,Jr;ffij;'l':i {:rk",ilj'fl:li;l','iJri'":h (e) (r's'o) (0.3.1).
Exercises
soslcraxe
'sarEoloclol 'tuorls-o aql .f .sartolodol Jeqlo *Euorls-o pue *-8uor1s leru?u aarql Jo suolllurJep aql erB sosrJrexe aql ur popnlcur osle lsasrcroxo eql uI polsll 0JB serEolodol eseql Jo soJnlBeJ {relueruelo otuog
Some elementary features of these topologies are listed in the exercises; also included in the exercises are the definitions of three other topologies, namely, the a-strong, strong-* and a-strong* topologies.
''(nh Jo aceds lunp eqt Euleq stl Jo anlrl^ fq '(Ah pelrror,{ur ,{q fEolodol eql uI x * Ix 33r ..{11ue1errrnba '.ro '*(&h ur d fre,ra roJ *IBa1r - !x)d rll JJI ,{Eo1octo1 0 € l(x IEe^\-o (c) : ul f . r a r e r o 3 ' g u o f E o l o d o l > l u o , t ar q l u [ l x * I n , "o'l'$ ur g'! ro3 :'rc JJI 0 * l -
(b) weak topology iff I<Xjt,71> - <xt,7}>1 ... 0 for t,7} in X, i.e., iff Xjt ... xt in the weak topology on X, for every t in X; (c) a-weak topology iff Itr p(x j - x)1 ... 0 for every p in :e(X)., or, equivalently, iff x j ... x in the weak* topology inherited by :e(X), by virtue of its being the dual space of :e(X) •.
Qth uo sar8olodoaxa^uoC f11eco1oarql .€.0 0.3. Three Locally Convex Topologies on :e(X)
9
n t rtrod o d uuction ction 0O.. I In
l 10 0
s nnot ot u l t i p l i c a t i o n i is When multiplication hat m h o w tthat n f i n i t e - d i m e n s i o n a l , sshow ((b) b) W s i infinite-dimensional, h e n 1Iff i is jointly continuous continuous when when I(19) :e(lf) isis equipped equipped with with any any of of the the three three jointly opology, H i n t : FFor o r tthe h e sstrong t r o n g ttopology, e a k , oa-weak. - w e a k . ((Hint: t r o n g , wweak, l topologies: o p o l o g i e s :sstrong, n EEx. x' i t h au aas s i in e a k ttopologies, o p o l o g i e s , wwith n d wweak a ) ; ffor - w e a k aand o r tthe h e oa-weak uuse s e ((a); ' ' u' 00 so weakly, (0.3.2)(b), note that u*n ... 0 a-weakly and hence weakly, so un ... hence and o-weakly (0.3.2)(b),note that il*n 0 = n') a-weakly and weakly; however, u*nun = 1 for all n.) I for all u*nttn however, weakly; and o-weakly (c) IfIf sS is is aa norm-bounded norm-bounded subset subset of of r(xf), :e(lf), then then multiplication multiplication is is (c) with respect s, jointly continuous, when restricted to S, with respect to to the the to jointly continuous, when restricted strong topology. topology. (The (The example example in in (b) (b) shows shows that that even even this this is is itrong false in in the the o-weak a-weak and and weak weak topologies). topologies). false (d) In In all all three three topologies, topologies, show show that that multiplication multiplication is is separately separately (d) ' t x '... n d yYix x l aand y , x ! i ' t h e n continuous; i.e., if x € :e(H) and Yi ... Y, then xYi ... xy E ( I I ) a n d /, continuous; i.e., if x e yx. yx.
(0.3.4). A A net net {x,} {xi} in in l(lf) :e(lf) is is said to to converge converge to to xx in in t(xt) :e(:I£) with with (0.3.4). respect to the: r e s p e c tt o t h e : (i) (i)
a-strong topology topology <+ # rI: ll(tr Il<xi -- x)t,ll2 xHJ2 -... 0 whenev.t whenever Illi"ll2 I: II~J2 '< -; o-strong n n 00
;
(ii) o-strong* a-strong* topolosy topology o # f~ tllt",
00 ;
- x)tllz for each each x)*qll') (ll(xi (iii) 11 2 +* Il<x d1 2) ...- 0o for ll(t,i -- x)* ( i i i ) strong* topology#<+
Xi'" x i - 00
(strongly) (stronglY)
x F i ' 0o #( + xtxi'"
(weakly) (weakly)
xi'" xi - 00
(a-strongly) (o-strongly)
xlxt ...- 00 #€ xtxi
o-weakly) ((a-weakly)
xi'" xi'00
(strongly*) (stronglY*)
x,xf - 00 "F, ++ xixi'" #€ xtxi
(weaklY) (weakly)
xi'" xi - 00
(a-strongly*) (o-strongly*)
rixl- ... 00 xfx, #<+ xi Xi ++ xixt
((o-weakly)' a-weakly).
o-strong the a-strong that the show that sets, show (d) norm-bounded sets, to norm-bounded (d) When restricted to when restricted (resp'' strong (resp., the strong with the (resp., coincides with topology coincides (resp., a-strong*) o-strong*) topology strong*) topologY. strong*) topology. the that the X, show show that set X, on aa set (0.3.5). topologies on (a) If 12 are are topologies (0.3.5). (a) If Tr,1 and and T2 following equivalent: a r eequivalent: c o n d i t i o n sare f o l l o w i n g conditions
(i) ( X , r1r) ) isi scontinuous; ( X , r2r) ) '... (X,T continuous; ( i ) idl dx*::(X,T
' , ( 1 " 1 S )= ( r + r r ) SP U B r ( r S ) = ' S o 1 1 r ' t ' t ( 1 1 e r a u eaE: o 1 4 1 = (S')'
and S(n+l)
=
(S(n),.
'{S r x II€ roJ .xx = x,x:
for all xeS}.
(nh r rx) = tS
aq ol peulJep sl (fih Jo S: lesqns B Jo lu€lnruuoc aql IuerosIII
lu"lnuluoS
olqnoo oql
't'0
('erroJ E ur IIIIs sr flrlrqe:edas 3o uogldunsse aqt l4 Jo II€q llun oql u r e c u e n b o so s u o p € o s n : l u r H ) ' e l q u z u l a r u s r ( 1 e a n o 1 * E u o r l s - o ) serEoloclol xrs oql Jo qcea 'sles papunoq-rurou uo lBrll /y\or{S (p) ('s1auroprsuoc ol ,(ressaJeusr t1 lop tou 11r,nsacuanbes 'snql) 'r(Eolodo1rurou eql lclacxe (q) (S'g'O) 'xg ul pauolluoru serSolodol eql Jo due ol lcedser qll/'r -- flrlrqelunoc Jo urolx€ lsrrJ eql ,(gslles uele lou seop 'lce3 ul -- elqezrrloru lou sl (a)f (c) (loldrcurrd sseupapunoqrxroJlun :lurH) 'oJoz l(11ea,vr (-x] ol soEraluoJ Jo ecuenbasqns ou ]€r{l ^\oqS (q) ('saEraltp selJes oruour€q oql oculs '0 < r l(u€ toJ 'u ,(ueu flelrulJul roJ t t-w ) ,1.-tr'": tl i
?
nJrn
' - > r l < * & ' ' r 'tl = u l l ' t lil L 1< ~n,17m>12 <
co ,
l
=
!
II ~J2
I
o"ut
L
JI:lulH)'r=l{*"}
r='('l) sorJsrlBs eql ol sauoleq-0tuqr froqS (e) Jo ernsolc*Euo:1s-o
°
I
More generally, write SIt
S' = {x' e :f(Jf): x'x = xx'
The commutant of a subset S of :f(Jf) is defined to be 0.4. The Double Commutant Theorem for infinitely many m, for any e > 0, since the harmonic series diverges.) (b) Show that no subsequence of {x m } converges weakly to zero. (Hint: Uniform boundedness principle!) (c) :f(Jf) is not metrizable -- in fact, does not even satisfy the first axiom of countability -- with respect to any of the topologies mentioned in Ex. (0.3.5) (b) except the norm topology. (Thus, sequences will not do; it is necessary to consider nets.) (d) Show that on norm-bounded sets, each of the six topologies (a-strong* to weak) is metrizable. (Hint: use a dense sequence in the unit ball of Jf; the assumption of separability is still in force.) 0 ; 1<~n,17m>12 :Ii mole then
n
(a) Show that belongs to the a-strong* closure of {x m }:=l' (Hint: if {~n}:=l satisfies m' m -
(0.3.6). Let {17 m}:=l be an orthonormal basis for Jf, and let x m m l / 2t 17 17 for each m. 'w
q'ee ro
t''- l' 1 r,r*
(c) Prove, by examples, that if Jf is infinite-dimensional, each of the above inclusions is strict.
'lsrrls sr suolsnlcul e^oqe eql Jo rIJBe'l€uolsuerurp-olrurJul sl ll JI leql 'salclurexe ,{q 'erro:4 (c)
; D :
1 = urc lol pue ? roJ srseq lerurouor{trouB aq t=l{*t } ia1
I
=
D
strong;
'{BOlr\
EEuorts
=
'(996:o)
E Euo.Its :J
weak.
I
strong
ull
ull
ull
lln l l l nl ll l n i i t = = = {?e^\-o c Euorls-oc *EuoJls-oC turoN Norm; a-strong* ; a-strong; a-weak
(b) Prove the following "inclusion" relations between the different topologies on :fPf):
:fu1)guo sel8olodol luaJaJJrp 0rll u3e,{l3q suollEler ,,uorsnlcur,,Eur.no11o3er{l e^oJd (q)
'2r.5 r.l e11r^ ' p l o q s u o l l l p u o c e s e q l ueq71;pesolc-zt sl tes pesolc-rt f:ene (rrr) : X ' q u 1 . r p u ? Xul (!x) leu fue rog '(rr)x - tr € (zr)r - !r (g)
(ii) xi .... X(T 2) Xi .... x(T 1)' for any net {xi} in X and x in X; (iii) every TI-closed set is T2-closed. When these conditions hold, write TlfT2.
*
ursroaql lu€lnuuoc olqnoc srII 't'0
0.4. The Double Commutant Theorem
II
II
t12 2
ntroduction 0O.. IIntroduction
Proposition 0.4.1. 0.4.1. Let S,T g £; t(tf). :f(Je). Proposition
((a)a ) sSC.T"*T'C.S'· cr+z' cs,. (b) ;S -f "" S" =-sw-olo = S(2ii) a;d sr S I = 5(2n-1) s(2n-l) fur for n 2 ~ r; 1; i;i
"*
self-adjoint ) S) S' is self-adjoint. self-adjoint. (c) S is self-adjoint S' is, for any S, a weakly weakly closed closed subalgebra subalgebra of of \0 :f(Je) and I1 eE S). S'. (d) S' is, for Exercise! Proof. Exercise!
0 D
Before proceeding proceeding further, further, itit would would help to set set up some some notation and terminology. For a subset subset S S of of 13, Je, we shall always write write I[S S ]l for the smallest smallest closed closed subspace subspace of of lf Je which which contains contains S; for for S gC. f(Xf) :f(Je) for and £; fJe,, w wee sshall write sS E S S}. x l : xXES, ) . -A e S , (t e A sset et rite S o r ({xt: S ffor imply w h a l l ssimply a nd S g 10. Since S of operators operators on lf Je is said to be non-degenerate non-degenerate if if t,Slfl [SJf] = =:If. Since ran x = ker x*, x*, it it ffollows if S is self-adjoint, then S is ranrx ollows that if 0 ) iimplies non-degenerate and only = ({O} t = = 0O.. f ,St S g= mplies 6 f a n l y iif n o n - d e g e n e r a t eiif nd o stage is now set set ffor Neumann's double commutant or von Neumann's The stage whose power will bee illustrated ower w i n tthe e s t of h i s section. section. ill b i l l u s t r a t e d in h e rrest o f tthis hose p ttheorem, heorem,w
01
Theorem Theoren 0.4.2 0.42
of non-degenerate self-adjoint self-adjoint algebra of Let M be be a non-degenerate operators following conditions tl. The equivalent: The following conditions on M are equivalent: operators on Je.
(i) M = M'. (ii) M is weakly weakly closed. closed. (iii) (iii) M is strongly snongly closed. closed.
"* "*
"*
(iii) are Proof. The implications (i) ) (ii) + (iii) are immediate (cf. Ex. ( i ) , it p r o v e (iii) ( i i i ) + (i), ( 0 . 3 . 5 X a ) ,(b». ( b ) ) . To (0.3.5)(a), i t clearly suffices to prove the T o prove following: following:
(*) (*)
1l and exists a Ee M such such , .... tEr, If E Je and Ee > 0, 0, there there exists lf a" e M', t1L,..., a" EM', n € 1
) ( i l l <. . E that t n a tIl
for f o r 1I ,( ii ,( n. n.
= PM' pt = pM. It It is is J't= [Mt1l l. Let M and p' We verify (*) in case case nn = 1. We first first verify fMlr) and is g .M, p ' xxp' p t == xp' i n M. M . Since S i n c e M is clear f o r all a l l x in t \ and x p ' for M ! \ £; a n d so s o p' c l e a r that t h a t MM p ' x * p ' == x*p'. x* pt . self-adjoint, s o p'X*p' M , then x * Ee M and a n d so i f x E€ M, t h e n x* s e l f - a d j o i n t , if previous w i t h the Comparison t h e previous t h i s equation e q u a t i o n with t h e adjoint a d j o i n t of o f this o f the C o m p a r i s o n of p ' Ee M'. w h e n c e p' M ' . So S o a"p' a"pl equation y i e l d s p' p t xx == xp' i n M, M , whence f o r all a l l x in x p t for e q u a t i o n yields Jvtit to it suffices == ppta", 'a", and is dense in .M, suffices to M(,1 is dense in c )t Since Since Mt hence a"M a"It £;.M. and hence p ' xt x l t 1 =- xt a n d so so " l , .1r and prove p r o v e that I ' t For i n M, M , clearly F o r any c l e a r l y p' e .M. a n y x in t h a t t[ ,1, E = O. o. p t x \ 1r = 0; M ( l -- P')tl) 0 ; thus t h u s M(l x(l-p'H r l r1 -- p'xt i l r 1 -- xp' x p t t[ 1 x ( l - p ' ) E 1r = xt r')Et) = r = xt (and The M ensures ensures that of M self-adjointness) of The assumed non-degeneracy (and self-adjointness) assumednon-degeneracy g , and p ' ) [ ,1 == 0, lt (1 ""( l -- plH h e n c e tE1t Ee .M. a n d hence genelgl n, (t) for 1l be of nn copies copies Returning let Je direct sum sum of for gener3,1 n, let be the the direct Returning to to (*) (n xx n) n) of an (n 10 corresponds naturally to to an corresponds naturally !f. Every Every operator operator on on Je of Je. *-algebra :f(Je)-va1ued this t(lf)-valued matrix, being aa *-algebra matrix, this correspondence correspondence being isomorphism. let i d e n t i f i c a t i o n , let W i t h this t h i s identification, i s o m o r p h i s m . With
(0.4.4). Let M be a (not necessarily non-degenerate) self -adjoi~ subalgebra of :f(lt). Let e = PM, where M = [Mlf] = (n (ker x: x EM}) . Prove that:
'1(Urt > x :x ra{) = 'Wtl = a p-I '(A)f;o Jrnf#illt U) ltUql=Woraq,r\ .$.V-O) (alurauoSop-uou ,{llrrssecau 1ou) E aq I4[ n1 ltrrofpe-g1es Exercises seslJrrxa
'osrcraxo 8 u 1 r t o 1 1 o 3 e q l ul lno lleds 'sroleredogo erqaEle p u e l u l l u o s s o u rs l e c u a r a J J r pa q l lurofpu-g1as pesolc r(14ee,n e oq ol erqaEle uuerunaN uol € eulJep ^eql l a l e r c u a E e p - u o uo q o l s e r q e g l € u u r u n e N u o l e r r n b o r l o u o p s r o r { l n € atuos 'erqe8le uuetunrN uol € sl srolerado Jo uoJlJelloc qcns f,ue '7'y'g ruoroor{I fq 'e1rq,tr'(,|)t Jo erqaEleqns Isllun tuJofpe-31es pasolc,{11ua,e n s r e r q c E l uu u e t u n e Nu o l B . ( p ) t . 1 . 0 u o 1 1 1 s o d o r 4 , ( g
By Proposition O.4.l(d), a von Neumann algebra is a weakly closed self-adjoint unital subalgebra of :f(lt), while, by Theorem 0.4.2, any such collection of operators is a von Neumann algebra. Some authors do not require von Neumann algebras to be non-degenerate; they define a von Neumann algebra to be a weakly closed self-adjoint algebra of operators. The difference is inessential and spelt out in the following exercise. Definition 0.4.3. A self-adjoint subalgebra M of :f(lt) is called a von Neumann algebra if it satisfies M = M'. 0
",hl = tr41serJsrlBsll JI €rqeEl€ uuBr,uneN o uol B poll€c sl (A)f jo q etqaEleqns lurofpz-Jlas V .€-t-0 uoIrIuIJeC
'uerleq€'relncrlred ur 'pue 'r u r s l e r r u o u , { 1 o3do l e s a q l J o o r n s o l c Suorgs aql sJ ,,{x) ueql '*x = Jc Jr :uotluau go ,(rJ1.ro,rsr oseJ lercads '{t} n S , { q p a l e r e u o Ee r q e E l ua q l J o a r n s o l c E u o r l s o q l s r , , S u a r l t V 'sroleJodo 'snql .y Eululeluoc erqaElr J o l o s l u r o f p e - g 1 a s, { u e s r S J I lurofpe-310s (pasolc l(11ea,n 'osle) pesolc ,(1Euor1slsollErus aql sl ,,f .oS uoql 'sro1€rado e r q e E l e e l € J e u a E e p u o u , ( u e l u r o t p e g 1 o s s l 3 o f J I 'l{ 'ul pauleluoc) s1 ueql Jo arnsolc Euorls oql ol lenbo (ocuaq puB ,,,12g 'srolerodo go erqeElu l u r o f p u - 3 1 e so l e r a u e E e p - u o uB s \ n y l e q l s e l t l s f11en1ceruoroeql eql Jo goord eql ur (*) uorlrass€ or{l l€gl {re{ueU
Remark that the assertion (*) in the proof of the theorem actually states that if M is a non-degenerate self-adjoint algebra of operators, then M" is (contained in, and hence) equal to the strong closure of M. So, if A is any non-degenerate self-adjoint algebra of operators, then A" is the smallest strongly closed (also, weakly closed) self-adjoint algebra containing A. Thus, if S is any self-adjoint set of operators, then S" is the strong closure of the algebra generated by S U {l}. A special case is worthy of mention: if x = x*, then {x}" is the strong closure of the set of polynomials in x, and, in particular, abelian.
'rueroaql E '1 _aql Jo oouorl puB (*) Jo ' 0 < I p u e __ o . . . o r 1 , n ^ q p a c e l d a - rr p u e ; o o - r d a q 1 a l e l d r u o co l tl ? q l l ^ ( * ) . l o I = u e s € c p e q s r l q e l s ar p e e : 1 e ; e q i o r ^ - o u l e e d d y
Appeal now to the",already established case n = I of (*) with M, ~1 and E replaced by M'~l $ .. , $ ~n and E > 0, to complete the proof of (*) and hence of the theorem. 0
,f":i : 0
.
a" 0
: a"
M'
'JAl ) uo
o .
...
E
'1
n 0 0
= "A[
'" = M"
a
l:
[ [ (c)
o
(c)
a" 0" . . . 0
.
)
0 " D
'" is a non-degenerate It is relatively painless to verify thJlt (a) jvf self-adjoint algebra of operators on It; (b) M I {«a/ j)): ail j E M' Vi,j}; and
Pue i{/'r4 !]u:((f,rp))) = ,n > ,w (q) tg uo sroleractoJo erqe8leruioJpe-31es alureuaEap-uouB sl ,t|^ (e) fnlf d.Jrre,rol ssalur€d^la^rleler sl lI
' 0 0
tt
= W
" o o
0 0
[^
' 0 t )
't'0
0.4. The Double Commutant Theorem
13
r , u a r o e q ll u B l n r u u o J a l q n o c e q l
€l
14 L4
o.. IIntroduction ntroduction 0
(a) (b)
exe for for all x in in M; in in particular, particular, MI4 MM C f M; Itt; xx = exe if Me = (xllt {xlM: x e E Ml, M}, then Me Me is a non-degenerate non-degenerate self-adjoint self-adjoint if subalgebra of of t(It); l(M); subalgebra
(c) (c) lvlt M' = = {x' {x' e $ y Y
x' eE MJ, M~, y eE t(l'll)}, l(M1 )}, and and : x)
M"=--( x{x" $}.1 l l lIttd1·:. xx"" eE \M~ ). W " O , , \>. eECCl:}.
(Thus, a degenerate degenerate von Neumann algebra, algebra, as as considered considered by other (Thus, authors, is just a von Neumann algebra algebra -- in in our sense sense --- of of operators operators authors, subspace.) on a subspace.) (0.4.5). Let (X,f,lt) (X,T,y) be a separable separable o-finite a-finite mea-sure measure space space (so (so that (0.4.5). L 2(X,It) is a separable separable Hilbert Hilbert space). space). For 04> in in L-(X,1t),let L ""(X, It), let m5 m~ denote denote r2(x,tt) (rz6t,)(s) = 0(s)l,(s), associated multiplication multiplication operator: operator: (m4>0(s) 4>(sH(s), for for (~ in the associated L 2(X, It) = = :If. Y. L21X,1t1 - m~ (a) z-(X,p) (a) The map 4> ""(X,It) into isomorphism of of L m6 is an isometric* - isomorphism O .. = m4». t(lf) (where the '*' l(:If) *' refers to the assertion mf, = m6). assertion m~ ( b ) If M iis s aan n (b) then ==M' M t and ^ n d ' consequently c o n s e [ u e n t l yM I f M ==( ^(m~ 6 0 e 4> E L""(X,It)}, L'1X,1t11 , t h eMn M case of abelian von consider the case voh Neumann algebra. algebra. (Hint: First, consider o , ~o = xx't |~o' = m4> y ; if r ? 1 6where w h e r e 4> finite i f x ' I Ee M', M ' , show s h o w that t h a t xx't = f i n i t e p.; lo Q= g e n b r a l f o l l o w s by c a s e follows by being f u n c t i o n 1; l ; the t h e general case c o n s t a n t function b e i n g the t h e constant o-f initeness decomposing measure. Is a-finiteness f inite measure. sets of of finite decomposing X into sets necessary?) necessary?) (c) The a-weak M coincide; under the o-weak and weak topologies topologies on M with the weak* identification coincides with identification m4> mh -* 4>, topology coincides 0, this topology ""(X,It) by virtue topology inherited virtue of its being the dual inheritdd by L L'(X,tt) space o f L rl(X,It). (X,tD. s p a c eof general von Neumann algebra M' if if and only (d) A general algebra M satisfies satisfies M = M' l(xf). if M is a maximal abelian von Neumann algebra algebra in l(:If). if a lt, let M (0.4.6).If M1= (0.4.6). 1 = (p operators on :If, If M is is aa von Neumann algebra algebra of operators 1p = 0 "Ix t(Xt)*, t(13)*:tr px = Mg E 1 is aa closed Vx in M}. M). Then M closed subspace subspace of l(:If)., e l(:If).: J M, and with (l(:If)./M1)* ~ agrees with and the induced weak* topology on M agrees GQt)-/Ml* the 0E o-weak topology. topology. the a-weak the restriction to M of the v o n Neumann a d m i t s aa The N e u m a n n algebra a l g e b r a admits l a s t exercise s h o w s that t h a t every e v e r y von T h e last e x e r c i s e shows p r e d u a l is p r e d u a l . It determined predual. i s uniquely u n i q u e l y determined t h a t such s u c h aa predual I t can c a n be b e shown s h o w n that g o into p r o o f of w e shall n o t go i n t o aa proof o f that that up i s o m e t r i c isomorphism, i s o m o r p h i s m ,but b u t we s h a l l not u p to t o isometric 'the' predual predual of M, which will will here. we may talk of 'the' here. Consequently, Consequently, we usually be denoted by M •. M*. be denoted (as aa norm-closed generated (as norm-closed subspace) subspace) by Just ""(X,It) is generated as LL'(X,u) Just as is indicator v o n Neumann N e u m a n n algebra a l g e b r a M is i t is i s true e v e r y von f u n c t i o n s , it t r u e that t h a t every i n d i c a t o r functions, (as aa norm-closed generated generated (as the set set P(M) P(lul) of its norm-closed subspace) subspace) by the double projections. To obtain this and other consequences the double projections. consequencesof the preliminary lemma. lemma. commutant theorem, helps to establish establish aa useful preliminary theorem, it helps lf is aa norm-closed norm-closed Recall that aa C*-algebra operators on :If C*-algebra of operators f(8). Clearly von Neumann algebras are self-adjoint subalgebra algebras are subalgebra of l(:If).
Thus, the scholium implies that just about any canonical construction applied to elements of a von Neumann algebra never leads outside the algebra. It follows from the above Corollary that any von Neumann algebra is generated as a norm-closed subspace by the set of its projections. (Reason: let M o be the norm closure of the set of linear combinations of projections in M; since M o is
sr on eruJs i1,r1uI suorlcaford Jo suorleuJqruoc rueurl Jo les aql Jo ornsolc rurou oql aq "n 1a1:uoseag) .suollcoford slr Jo los eql ,{q acedsqns ptsolc-rurou € s€ pelurouaE sr trqaElu uueruneN uo,r fue leql frelloroC e^oq€ oql ruorJ s^\olloJ lI .urqaElu aql eplslno spBOI Ja^eu €JqoElu uuerunaN uo^ B Jo sluauele ol pallddu uoJlcnJlsuoc IBJruouBc f ue lnoq? lsnl l€rll sarldrur unrloqcs eql .snql
'uoluosse srql allles E ol elras (e) ul posn auo aql ol snoEoluue d.11cexalueurnErg us pue roleraclo Ierurou ? Jo uollnlosar Ierlcads aql Jo sseuonbrun eql (q) 'goord eql seleldruoc unrloqcs aq1 ',{rerlrqr? s?Arrn esurs .lxl = r- rnlxlrn pue n = ytnnln ecurH ''-,nx,n Jo uolllsodruocap J€lod (eql acueq pu€) ? oslc s l ( r _ r n l x l r n ) ( r _ r n n r n=) vrflxtz lBrll J€olc sl lJ.pu?rl Jeqlo eql uo ilxln = x = r-,nxtn uo{l 'rl{ ur rolerodo {relrun s sl In JI (?) -JooJd
Proof. (a) If u I is a unitary operator in M', then u' xu 1-1 = X = ulxl; on the other hand, it is clear that u I xu' -1 = (u' uu' -l)(u 'Ixlu 1-1) is also a (and hence the) polar decomposition of u I xu 1-1. Hence U uu,-l = u and u'lxlu,-l = Ixi. Since u' was arbitrary, the scholium ' completes the proof. (b) The uniqueness of the spectral resolution of a normal operator and an argument exactly analogous to the one used in (a) serve to 0 settle this assertion. 'x ds lo l lasqnsTatog tuata rcl n r (x)dt uatlt,lotutou sl x /I iW > lxl'n uaqt 'x /o uotltsoduocap nlod ary n lxln = x !1
If x = ulxl is the polar decomposition of x, then u, Ixl E M; If x is normal, then IF(x) E M for every Borel subset F of sp x. 'n ) x puo otqaSlo uuvunaN uo^ o aq n ta7
(a) (b)
(q) (e)
.5-g-6 itue11oro3
Corollary 0.4.9. Let M be a von Neumann algebra and x
E
M.
0
n
'Joord
Proof. Exercise! ioslcroxa
'rw u! ,n to|otadottotun ttata rct x = *,nx,n ptu s! n o7 6uo1aq o1 x .ro{ uoltlpuoo Tuatuttns puo tLrossacau y .11uo s.tolotado {o otqaSp uuounaN uo^ o n puo (U)5, , x p7 T-}-0 unlloqrs
Scholium 0....8. Let x E :t:(Je) and M a von Neumann algebra of operators on Je. A necessary and sufficient condition for x to belong to M is that u I xu'· = x for every unitary operator u I in M'.
'erqaEle uueruneN uol ? ol sEuoleq roleredo uB ueq^\ tulururralep JoJ uorJelrJc InJasn Eu1,no11og eqt sp1a1f ,(tW = t, qll^\ pcrlddu) €ruruol o^oqu eql qll^\ paldnoc uaq,r 'ruaroeql lu€lnruuoc elqnop orII
The double commutant theorem, when coupled with the above lemma (applied with A = M'), yields the following useful criterion for determining when an operator belongs to a von Neumann algebra.
'y o1 Euolaqecuaq pu€'I pu€ r dq pelerauot erqaElu-*3 E eql '(x)*, ol Euolaq 'x Jo suollcunJ snonuyluoc Euyaq 'sroleredo eseql isrolerado frelrun o^U go oEurorruuB s€ r go uorssordxr u? sl
x = -[{x + i(l _X 2)1/2} + {x -i(I _x 2)1/2}] 2 is an expression of x as an average of two unitary operators; these operators, being continuous functions of x, belong to C·(x), the C·-algebra generated by x and I, and hence belong to A. 0
l Q l r Q x - I ) l - x | + { t , / r- Q , x r- ) r + x \ l I = x I
ueql 'I > ll xll pue v ) *x = f, JI l€r,ll ecllou 'lurofpu-Jlos ol /y\ou seJrJJns lI 'f ur srol?rado ere ty tr* eragj$ 'ux| + 'x = x uolllsoduocap u€Iseu€C agl sllurp€ y ur x ,{.uy -Joord
Proof. Any x in A admits the Cartesian decomposition x = xl + ix 2, where xl' are self-adjoint o,perators in A. It suffices now to notice that if x = x· E A and Ilx II " I, then
x,
'V u, stolorado {..rolun tnol lo uotlourgtao? tpauq D so alqtssatdxa st .o"rqa61o-*2 v /o tuawata {tatg lolun p aq el)g3 V n7 Z-tg GuE I
Lemma 0....7. Let A f :t:(Je) be a unital C··algebra. Every element of A is expressible as a linear combination of four unitary operators in A.
'€ruruol eql roJ ,t\oN ('n ul osuop i(1ea,n-o sl rlcrq^\ 7g p etqatluqns-*J redord u sI {[I.g]J t Q 9w) ps 0rll'ernsEeur anEsaqel t pu€ [I'0] = X qll,n .(S.l.O).x:I Jo uoll€lou eql uI 'aldruexa rog) 'onrl ruoplos sl rsre^uoc eql 1nq .serqeEle-*3
C·-algebras, notation of set {m4Y 4> E dense In M.)
but the converse is seldom true. (For example, in the Ex. (0.4.5), with X = [0,1] and If. Lebesgue measure, the qO,I]} is a proper C·-subalgebra of M which is o-weaky Now for the lemma.
't'0
0.4. The Double Commutant Theorem
15
Illerooql tu€lnruruoJ elqnoc oqJ
SI
ntroduction 0O.. IIntroduction
l16 6
self-adjoint, itit suffices suffices to to verify verify that that ifif xx == x* x* €E M, M, then then xx eE Ms: M o; self-adjoint, for this, this, let let 0r, 4>n be be aa sequence sequence of of simple simple functions functions on on sp sp .lr x such such that that for 4>n(t) '.. tt unifoimly uniformly on on sp,x, sp x, and and note note that that by by Corollary Corollary 0.4.9(b), 0.4.9(b), 0"(x) 4>n(x) 0,,(t) -- xll E Mo for each each n and and lim lim llO"(x) l14>n(x) xII == 0.) 0.) e"Mnfor 'iurther Before discussing discussing some some further properties properties of of aa von von Neumann Neumann BeTore algebra, let let us us briefly briefly digress digress with with some some notational notational conventions. conventions. If If algebra, {e i: i e E I} l} is any family of of projections projections in a Hilbert space, space, the the symbols symbols {er: ViEf'i and and A,rae, AiEf'i will will denote, denote, respectively, respectively, the projections projections onto onto the V,rre, subspaces tui61 [UiE1 ian ran e,l e i] and and q€r f'\EI ran ei. e i• For a finite collection collection er,.'., el' ..., en, en' subsiaces V A... A we shall shall also also write eerV V ... Ve and e A ... A en' e, err. -. e, and we 1 1 n Exercises Exercises (0.4.10). If If M is a von Neumann algebra algebra and (er) {e) cf P(tr4), P(M), then Yer, Ve i, (0.4.10). lattice') E Ae P(M). has of complete lattice.) E 0 (Thus a complete of P(tu}. has the structure P(M) Mi,i An extension extension of of the above above exercise exercise is given by the following following An assertion: assertion: (incteasing or Proposition 0.,Lll. 0.4.11. Every uniformly uniformly bounded bounded monotone monotone (increasing Proposition tt is weakly convergent. convergent. decreasing) on If operators on self-adioint operators net of of self-adjoint decreasing) net Xf operators on If Proof. Suppose I} is a net of self-adjoint operators e /) Suppose {Xi: {x,: i E ( b ) there exists a ( a ) if a n d (b) t h e r e exists r ; and satisfying t h e n xi x , '{ xx.; i f i,j i , j - eE If and a q C i1 .,{ ij,, then s a t i s f y i n g (a) v e c t o r ~I F o r a unit u n i t vector constant f o r all i n "J II.. For a l l - i in t h a t IIx s u c h that c o n s t a n t c > 0 such l l xi,IIl l ,{ c for in r e a l n u m b e r s in n e t o f i n c r e a s i n g in : i E I} is a monotone increasing net of real numbers m o n o t o n e l f , {<xi~'~> e / ) i s i n If, {<x1l,i>: from It [-c,c], and consequently convergent to its supremum. It follows from supremum. convergent consequently [-''c,c], 1 | , the ( 0 . 4 . 1 2 ) )for € If, the ( c f . Ex. f o r any a n y ~,77 the p o l a r i z a t i o n identity E x . (0.4.12)) i d e n t i t y that t h a t (cf. l,n E t h e polarization is limit net {<xi~,77>: i E I} is convergent. Denoting this limit by [~,77] net {<x,l,rl>: e I) is convergent. [l,n] it is l f . H e n c e ( b y f o r m o n clear is a bounded (by c) sesquilinear form on If. Hence s e s q u i l i n e a r c ) i s a b o u n d e d c l e a r that t h a t [.,.] [.,.] !1. e 1f. f o r all a l l ~,77 < x t , 4 > == [~,77] l ( l f ) such there t h a t <X~,77> i n :e(lf) s u c h that \,n E t h e r e exists e x i s t s x in [ ( , n ] for (xt: id E Clearly, then, e I} 1) converges net {Xi: converges weakly to x. then, the the net
Exercises Exercises v e c t o r space s p a c eV, (0.4.12). f o r m on o n aa complex c o m p l e x vector ( 0 . 4 . 1 2 ) . If i s aa sesquilinear s e s q u i l i n e a rform % I f [.,.] [ . , . ] is then, in V, V, for any any ~,T) then, for \,0 in 33
k[ ~ ++ ikT), 4[ ~,T)] == rt ii\q ikn1. ikn, ~q,++ ikT)). 4[!,,n] k=O k=0
net of of self-adjoint self-adjoint (0.4.13). increasing net (0.4.13). Let (x,: ii E monotone increasing e I} I\ be be aa monotone Let {Xi: = lim ( a s in Then, i n Prop. P r o p . 0.4.11). 0 . 4 ' l l ) . Then, operators l f and l e t xx = l i m xi x t (as o n If a n d let o p e r a t o r son
x strongly. (Hint: if 1\x.11 , c for all i,''then Ikx-x)~ II , (a)x." 211·lkx-x)1/2 d ,i'(2c)1/2Ikx-xl/2 ~ II; use II(x-xl/ Ex. (0.3.4)(c), *f ill',;1;'.',[ ,kill,,irri-ll1,ei'" fii"-{,,)liill',1';,,qYilf applied to {Xi -
(a)
x}.) applied to {x, - x}.)
'2 uer = p '[44r] araqn n = (a)c uer uaql '(74/)d t a pus erqaEle uu€runeN uol € sI l{ JI ( ' p u o c e so q l _ s e l l d r y lp u e . 1 e r z r r rs1J u o r l r a s s Bl s r r J
Let N be a von Neumann algebra of operators on Jf; let M be any closed subspace of Jf and let e = PM' (It is not assumed that e E N.) Then = AU E P(N): e II f} is a projection in N and ran = [N' M], the smallest N '-invariant closed subspace containing ran e. (b) Let N 1 and N 2 be von Neumann algebras acting on Jf. then (N 1 U N 2 )' = N: () N 2 and (N 1 () N 2 )' = (N: U N 2)". (Hint: The first assertion is trivial, and implies the second.) (c) If M is a von Neumann algebra and e E P(M), then ran c(e) = [MM], where M = ran e. 0
(c)
_ aqa:1urg) ',(llu n llu) = ,(a,vu I,,g)pue f/{ u Iru =-,(,,,un t,,r) uotll t{ uo turlce surqeEleuuerunoNuo^ oq z.Mpue rN ta.I (q)
'a uet Eurureluoc ocedsqns pasolc luerrelur- | y'1 lsollurus or{l .[W,N] = auer puu// u1 uollceford€:^I U > a:(U)d ) Ilv = auaqJ, (W ) a teqt peunsse tou sl U) 'Nd = a lal pu3 I go eceisqns pasolc ,{ue eq W lel .}i uo sroleraclo go erqeEls uu€runaN uo^ E oq N lo.I (e)
e
e
(a)
( st l' o )
(0.4.15).
Exercises
sesrJJoxa
'(ap Jo uorldltcsap eleJcuoo eloru B ol sp€el esrcrexA 'a Eu1mo11og eqa Eurleuluop uollcaforcl Ierluec lsollurus oql sI (a), 3uotllulJap tq :(n)a , a releuoqa ((I^DD4 t (a)c .(Ot.l.O).xA ,{q 'acuoH 'erqeEle uu€runaN uurloq€ ue s1 erqe8l€ uueruneN uo^ e Jo orluec eyl 'thl U n = Q,r1)7ecurs .telncrlred ur iu:qaE1e u€runeN uo^ e ure?e sr setqoEle uueruneN uo^ Jo flrrue3 fuu go uollcosrelul aql leql uaroeql luelnrutuoc elqnop oql Jo ecuenbosuoc ,{see uB sl lI
It is an easy consequence of the double commutant theorem that the intersection of any family of von Neumann algebras is again a von Neuman algebra; in particular, since Z(M) = M () M', the centre of a von Neumann algebra is an abelian Neumann algebra. Hence, by Ex. (0.4.10), c(e) E P(Z(M» whenever e E P(M); by definition, c(e) is the smallest central projection dominating e. The following Exercise leads to a more concrete description of c(e).
'Q[ (n)d. t s a:(n)Zv n !)v = (a)c [,q paurJep uoJlcaford aq1 sr '(a)c [,q palouep 'a ,n ur a uorlcaforct E rog (c) Jo reloc I€rluac aql '{O I r :tll = (nl)Z Jr rolc?J € peIIBc sr Jrtl (q) 'UI)Z tq pelouop pu€ n Jo el1uec arll peller sI 0{ ul ,{ 11erog xt = rtx :7,t1t xl las eqJ (e)
The set {x E M: xy = yx for all y in M} is called the centre of M and denoted by Z(M). (b) M is called a factor if Z(M) = (>.l: ). E ct}. (c) For a projection e in M, the central cover of e, denoted by c(e), is the projection defined by c(e) = AU E P(M) () Z(M): e II f}. 0 (a)
'll .1 I-1q-O uoplulJaq
Definition 0.4.14. Let M be a von Neumann algebra of operators on K
uo sroleredo 3o erqaEl€ uueruneN uol B eq n
rc-I
'raldeqc lxeu e q l u l p a p e a u e q I I I / ' \ l s q l ( t I ' t ' 0 ' d o r 4 ) s r o l J ? J E u r u r a c u o cl s E J c l s € q € pue rolc€J 8 Jo uolllurJep oql qlJ^\ uollrss slql epnlcuoJ e^,l
We conclude this section with the definition of a factor and a basic fact concerning factors (Prop. 0.4.17) that will be needed in the next chapter.
'!r dns = x ellJrrr n II€rIs e/r\ 'uosuar srql roJ !f I x uaql 'l IIe roJ r( > !x salJsrlss (n)f L{ ;I (p) ('(p)(l'g'O) 'xg pu? (u) esn iparro-rdoq poou ecueEro,ruoc Euorls-o ,{1uo 'tu1ofp€-Jles er€ r '!x aculg) .*[18uor1s-o x - !x (c) X a-strongly*. (Since xi' X are self-adjoint, only a-strong convergence need be proved; use (a) and Ex. (0.3.4)(d).) (d) If Y E :f(Jf) satisfies xi II y for all i, then X II y; for this reason, we shall write X = sup xi' 0
(c)
xi'"
n=N+l
('ll"t.ll ', * ll"tll'*l="
+ 2c
L
.
II~nll
linn II.)
'1' l.'t ''l(lx --r)tl , 1.'u'ul(lr- ")rl i N Xi'" X a-weakly. (Hint: if I)I~J2 < .. and Ln lhJ2 < .., and N any integer, then
N pu€r ' ,ll"ull"3pu, - > zll"rll"3Jr :rurH)Trlt"r::;tlt jl;
(q) (b)
'r'0
0.4. The Double Commutant Theorem
17
rueroer{I lu?lnuuoJ
LI
elqnoc eql
r188
ntroduction 0O.. IIntroduction
Lemma 0.4.f6. 0.4.16. Let Let M M be be aa von von Neumann Neumann algebra algebra and and e,f e,f €E P P(luI). (M). The The Lemma following conditions are equivalent: equivalent: are conditions following (i) (i) (ii) (ii)
exf == g0 for for all all xx in in M. M; exf = c(e) c(f) = O. 0. c(e) c(n
Proof. (i) (i):} (ii). The The hypothesis hypothesis is is that that MI'l MM cf ker ker e, e, where where lv1 M== ran ran ,/. f. ) (ii). Proof. whence ec(/) ker Hence, by Ex. OA.15(c), it follows that ran c(f) f ker e, whence ec(f) e, ran cU) Hence,by Ex. 0.4.15(c),it follows that e -= 0. O. This This means means ee (~ I1 -- c(fl, c(f), and and so, so, by by the the definition definition of of the the central central (n. ccover, o v e r ,c(e) c ( e )(~ I1 -- c c(f). D (ii) + :} (i). (i). Reverse Reverse the the steps steps of of the the proof proof of of (i) (i) ):} (ii). (ii). 0 (ii) Proposition 0.4.17. 0.4.17. If If e and and ff are are non'zero non-zero projections projections in a factor factor M, Proposition there exists non-zero partial partial isometry isometry u in M such such that that u*u u*u 4~ e and and existsa non'zero there uu* < , f. f. uu* Proof. The The assumptions assumptions ensure ensure that c(e) c(e) = = c(f) == l'1. Lemma Lemma 0'4'16 0.4.16 Proof. that fxe I'I- 0. then guarantees guarantees the the existence existence of an an x in M such such that O. Let then uh be be the the polar polar decomposition decomposition of ffxe. This u does does the the job. job. I0 xe. This xe = uh ffxe
' { > ra n a teqr qcns (y4)4 uy Ia s1s1xeercqt y E ! | a '.1 = *nn puB ? = n*n leql qcns Jrtlur r frlaruosl l e l l r e d B s l s r x e erel{l ossc ul I - a {ldtuts ro (14 pt) t - 2
e '" I (reI M) or simply e '" I in case there exists a partial isometry u in M such that u*u = e and uu* = I; e { I if there exists e 1 in P(M) such that e '" e 1 ' I. 0 > I'a p1
E
:alrr^\ IIETISoA,\ 'U4)d
'I't'I
(b)
(q)
(a)
(u)
Definition 1.1.1. Let e,f
P(M). We shall write:
uoplulJaq
'lig ur suollcsford go aclll€l alalclruoJaql (,rtl) pue '€rqeEle d uuerun?N uol € alouep sf e,n1e ilr.a n loqufs aql 'r{lroJeJueH
Henceforth, the symbol M will always denote a von Neumann algebra, and P (M) the complete lattice of projections in M. uoJr"IrU crLL 'I'I
1.1. The Relation ... - _ (rei M) (n pt)
'uustuneN uo^ puu ferrn;41 fq ,uorlcunJ uolsueruJpolrlslar, ? palleo s r p e s n 1 o o 1l e d J c u r r d o q J ' s a d f 1 o e r q l o l u l s r o l 3 e J J o u o l l € c r J l s s e l c ,(reurrd € slcaJJe 'rerp€e pessncslp uolleler Japro eql go s1s,(1eue 'eruardns alrurg Eur>1elropun a^llellluenb e t1,r 'uollcos IBUrJ oql pelresercl sl ssouallulJ feql Euraq 11nseJururu eql lsuollcotordqns redord ol luele,rrnbe lou esoql suollceforcl allulJ seurrrr€xa 'parapro ^ll€lol sr JolcEJ e ur suollcoforcl egl uorlJes lxeu eql Jo sass€lcaouel€^lnbe Jo los eql 'JapJo I€rnluu e ol lcadsar qll,r 'leql sl llnser l€rJnrc er{} eraq^\ 'l'I uollces 3o lcafqns aql sl 'W rolceJ uerr,rE€ ruoJJ oruoc ol porrnber are -- frlaruosl lerp€d ot{l s€ IIoA\ s€ suollcaford eql -- peureouoc sJoleJado oql II€ uoq/$'acuel€rrrnba sIqI ',(:1aruos1 I€lU€d e go saceds I€urJ pu€ l€Illul gql ere soEuur rraql J I l u o l € ^ r n b e E u l a q s e s u o r l c e f o r d o , r l s r a p r s u o ce u o ' [ 1 1 e r a u a E o r o r u 'gr sruectctesrpuelqord slrlJ 'z/ + r! ol lualearnbe ,(1r-relruns1 za + Ia teql enrl flu?ssecou lou sl I 'tI f tI pu" ", f ', JI pue 'Z'l = t toJ '11 o1 lualerrrnbe ,{yr-rellun sr Ia leql qcns suollcaford o:e ,! pun r! 'za 'ra J r : e s u e s E u r , n o y l o g? r l l u J a ^ l l r p p ? E u r a q l o u 3 o e E e l u e r r p u s r p el{l sBq 'l€rnl€u lsour Eureq o1rq,vl'ecualerrrnbofrelrun Jo uollou aql
The notion of unitary equivalence, while being most natural, has the disadvantage of not being additive in the following sense: if e 1, e 2, 11 and 12 are projections such that e i is unitarily equivalent to Ii' for i = 1,2, and if e1 1 e2 and 11 1 12, it is not necessarily true that e1 + e2 is unitarily equivalent to 11 + 12, This problem disappears if, more generally, one considers two projections as being equivalent if their ranges are the initial and final spaces of a partial isometry. This equivalence, when all the operators concerned -- the projections as well as the partial isometry _. are required to come from a given factor M, is the subject of Section l.l, where the crucial result is that, with respect to a natural order, the set of equivalence classes of the projections in a factor is totally ordered. The next section examines finite projections -- those not equivalent to proper subprojections; the main result being that finiteness is preserved under taking finite suprema. The final section, via a quantitative analysis of the order relation discussed earlier, effects a primary classification of factors into three types. The principal tool used is called a 'relative dimension function' by Murray and von Neumann.
Chapter 1 THE MURRAY - VON NEUMANN CLASSIFICATION OF FACTORS
rJrssvlf suorf,vj Jo Norrvf, NNVlAtnSN NOn - AVUUn1^| 3Ht I rardeq]
20 20
actors f FFactors Murray-von l a s s i f i c a t i o n oof e u m a n n CClassification u r r a y - v o n NNeumann he M l1. . TThe
e l a t i o n oon n n eequivalence q u i v a l e n c e rrelation s i indeed n d e e d aan e r i f i e d tthat h a t -..,. i is e a d i l y vverified IIt t i is s rreadily ither e p l a c i n g eeither y rreplacing s uunimpaired n i m p a i r e d bby a l i d i t y oof f ee !i /f iis h e vvalidity h a t tthe n d tthat PP(M) ( M ) aand or ff by by an an equivalent equivalent projection. projection. We We shall shall adopt adopt the the notatio\ notation u: u: ee ee or to mean mean that that u, u, ee and and /f belong belong to to M M and and are are as as in in (a) (a) of of the the -..,. ff to efinition. aabove b o v e ddefinition. ith ork w o w e a s t , tto Wee sshall work with h a p t e r , aatt lleast, n tthis h i s cchapter, i n d iit t cconvenient, o n v e n i e n t , iin h a l l ffind W '-+P M , w e m ay 1 1 subspaces rather than projections. Via the transition M PM, we may p r o j e c t i o n s . t r a n s i t i o n V i a t h e r a t h e r t h a n subspaces (and will) will) use use such such statements statements as as u: u: ItM -..,. I'11 M1 gf N N.. Since Since we we are are only only (and concerned with with ?P(luI), (M), we we should should only only consider consider subspaces subspaces which which are are concerned aa s\ight to consider the ranges of projections in M. It will be useful to consider slight projections wil\ be useful M. lt in the ranges of generalization of of this this notion. notion. generalization
Definition 1.1.2. 1.1.2. A A (not necessarily necessarily closed) closed) linear linear subspace subspace D J) of of Xt Je is is Definition g iin n D f o r a l l a r D i f a ' D said to be affiliated to M, denoted by J) T/ M, if a IJ) f J) for all a' n M , said to be affiliated to M, denoted by M'. M r.
n0
It follows follows from from the double commutant theorem that that ifif l'1 M is a closed closed It general, there exists py In then MT/M if and only if PM E In general, exists subspace, e M. if I\nM if only subspace, tthere here i n s t a n c e , i f , f o r M ; several non-closed subspaces affiliated to M; if, for instance, t o a f f i l i a t i d s u b s p a c e s n o n c l o s e d several ould b uch an a w h e n rran exists a iin M ssuch not would bee ssuch o t cclosed, l o s e d , tthen a n a iiss n h a t rran n M u c h tthat e xists a necessary it becomes an example. example. To deal with with such such subspaces, subspaces, it becomes necessary to an deal with unbounded operators. In this context, the following following operators. deal with definition Definition 1.1.2. e f i n i t i o n 1.1.2. s u p p l e m e n t sD d e f i n i t i o n supplements affiliated to M, be affiliated I is said said to be Definition operator A closed operator 1.1.3. A closed Definition 1.1.3. I dom A i f ~I €e dom i . e . ,if e M t ; a ) denoted A T/ M, if a' f Aa' for every a' E M'; i.e., f o r e v e r y A a ' n M , i f a t A denoted e a t A~. Al' A a t \~ =- a' and ~ €e dom 0I a n d Aa' d o m A and i m p l y a' arE M ' imply a n d a tI €e M' (the double double commutant Observe operators, (the f or bounded bounded operators, Observe that for 'belonging to ' a f f i l i a t e d to 1 } 4and a n d 'belonging t o theorem ensures that) the notions 'affiliated M' to n o t i o n s t h e t h a t ) e n s u r e s theorem reader that the reader convince the M' should convince exercisesshould following exercises The following /lf coincide. coincide. The w i t h this this p o s s i b l eto d e a l with t o deal i s possible i t is this a n d that t h a t it o n e and n a t u r a l one i s aa natural n o t i o n is t h i s notion notion by considering only bounded operators. o p e r a t o r s . b o u n d e d o n l y notion by considering
Exercises Exercises The linear operator. operator. The (1.1.4). defined linear densely defined and densely closed and (1.1.4). Let be aa closed Let AA be (iii) if (ii) 4 M; A* (i) n M; A following conditions are equivalent: (i) A T/ M; (ii) A* T/ M; (iii) if iollowing conditions are equivalent: e M lr(H) M and e u A, then AA == uH is the polar decomposition of A, then u € M and IF(H) € M' of polar decomposition uH-is the for of [0,00). Borel subset subsetFF of for every every Borel [0,'). M == and M s p a c eand m e a s u r espace o - f i n i t e measure (1.1.5). ( 1 . 1 . 5 ) . Let ( X , T , t t )be s e p a r a b l ea-finite b e aa separable L e t (X,f,/l) 2(X,/l» (cf. a c l osed ( 0 . 4 . 5 ) ) . t h a t ( c f . S h o w E x . (m~: ~ € Loo(X,/l)} f :e(L Ex. (0.4.5». Show that a closed r Q 2 6 , u D e L ' ( x , t t ) \ im^:.O e only i f and a n d only M if to M densely a f f i l i a t e d to 2 ( X , 1 tis )i s affiliated o n LL2(X,IJ,) o p e r a t o rAA on d e f i n e d operator d e i l s e t ydefined that s u c h that f u n c t i o n t/J0 such m e a s u r a b l efunction if p - a . e finite-valued .f i n i t e - v a l u e d measurable e x i s t saa IJ,-a.e. i f there t h e i e exists 2(X,/l): t/J~ € L 2(X,/l)} and = ( l ' i n d o m f o r A l = a n d dom A = (~ E L A~ = t/J~ for ~ in dom A. L I ( X , P ) ) e { l d o m . 4 ( l e L 2 1 X , 1 r 1$:l ( c a l l e dthe the r p ( A ) (called l e t rp(A) A , let (1.1.6). o p e r a t o rA, d e f i n e d operator d e n s e l ydefined ( 1 . 1 . 6 ) .For F o r aa closed c l o s e ddensely
tz
uollulag eql
(n pt)
1.1. The Relation ... ". ... (reI M)
21
'I'I
n. . .('uolllsodruocap 'Gildt - (V)dt relod:luIH) l€rll pu€ n > GVD\-'o)1 = (V)dt Wrqt /yrotls?,{ u y Jl 'y uet oluo uollreford eql eq (V Jo uollceford aEue:
range projection of A) be the projection onto ran A. If A T/ M, show that rp(A) = 1(0 co)(IA*D E M and that rp(A) ". rp(A*). (Hint: polar decomposition.)' 0
'W ol pep1.Jgge sacedsqnspesolc olouep s,(ear1e'pagglcads osr^\Jaqlo ssolun 'lll,r\ u pu? g '1y '14sloqur{s oql 'roldBrlc slql Jo lsor aql roJ
For the rest of this chapter, the symbols M, N, Band :R will, unless otherwise specified, always denote closed subspaces affiliated to M.
uY1 "N 'u e uatP * la ro{ -"N e: -ry til -l^l "N '""2'l = -"w /! iasuasSutuonol atti tt ro/ Pue Pup T T ur a^tttppo (1qo7unoc st Q,r1pt) uottolat aUJ 'Z'I'I uopFodord
Proposition 1.1.7. The relation ... ". ... (reI M) is countably additive in the following sense: if Mn ". Nn for n = 1,2, ..., and Mm .L Mn and N m .L Nn for m ~ n, then $ Mn ". $ Nn'
6 eql lgrll .'srsaqlocl,{q orll Jaqun 'aos 01 f see sr ll 'u .acuonbes N '}{ t', JI 'n u"N ''14 oculs n u"N e ''il o lsql a^Jesqo lsJrc 'Joord
Proof. First observe that
Mn, $ Nn T/ M since Mn, N n T/ M.
$
If un: Mn
". Nn' it is easy to see, under the hypothesis, that the sequence O:~=lum}:=l converges strongly to a partial isometry u such that u:
.u11 e-'14o D :n w:q.l qcns n {r1auos1 1e1}red e o1 ,{1Euo:ls seEJa^uoc l=j{-rr=t3} ". $
Nn .
0
NTW
Mn
N - W t(1dut y1l 11 puo
$
'S'I'f uopFodord
Proposition U.S. M,{ Nand N,{ M imply M". N. ull, !0N .r,n = oreqrn '-O < u , \cea JoJ tl11 6 oN :ol'ld,r,tre^BrI 'olrf,r* = " l , l p u " W = h o J aq^\'O
Proof. Let u: M ". M' f N and v: N ". N f M. Set M1 = wM, where w = vu. It is clear that w E M and that wlh is a partial isometry for each n (since w maps M isometrically into itself) such that w n: Mo ". Mn for each n ~ 0, where Mo = M and Mn = wnMo' Since No f M, we also have wnPNo: No'" Nn for each n ~ 0, where N n = w n No;
consequently, for n
~
0,
'O
oNa o}.la)ut '("N o "l^t)fN o ow):( wn(PM
o
- PN
0
): (Mo g No)'" (Mn g Nn),
where we write M g N for M ("I ~. The construction shows that M No ~ M1 ~ N1 ~ ..., and so ("InMn = ("In N n = :R (say). Appealing to Proposition 1.1.7, we get: u lt roJ N 0 ll| 3llr^\
!l leql s^\oqs uollcnrlsuoJ aqJ
e^\ araq^\
0 " N )e e 8e o ' l ^ I )e L('--l^r J L(-N J=w '(,{es) l*"lttil"t:tt*"] Eulleecrdy o, pur'l3.E-tfn''l s ='N'u ='l^['u .l{v
= Mo ~
g Nn)]
$
[n~o (N n g ,, . o=u I
f .r,
[m~o (Mn
Mn+l)] $:R ( .t*u
,,
o=u I
M=
o'N)e J e L(',vu h) g J de L('-'t,t $
[n~o (Nng
o=u'l
N n)]
,,
r
[n~l (Mn g
Mn+l)] $:R
r .,,.
I=u')
".
'N -oN =
No'" N,
D (rN O ril) - fN O ow)l?ql e^oqe pa,rordIJBJ eqt pesn a^Br{ad\ ereq/r
where we have used the fact proved above that (Mo g No) ". (M l g Nl ) 0
""-('Ne
zil)-
T T N to N T w nwla uaqt'n o1 palotlt/ln sacodsqns ptto y1 t1 'toycol o s! n asoddttg 6I'I uogFodor4
Proposition 1.1.9. Suppose M is a factor. If M and subspaces affiliated to M, then either M,{ N or N,{ M.
y
". ... •
pasop ato
". (M2 El N2)
N are closed
,(lrrueg E sr reqr,uarulecrdi(1 asoq^r 'les oql olouep t rc1 'oraz-uou arE N Pue W qloq l8ql ',(lllereuaE 3o ssol ou qllm 'aurnssy 'Joord
Proof. Assume, with no loss of generality, that both M and N are non-zero. Let f denote the set, whose typical member is a family
22
ication of The Murray-von Murray-von Neumann Neumann Classif Classification of Factors Factors l.1. The
I [/. t l'1, {(1\, t/,): Ni): ii eE 1} I} where where }t, 1\, N, Ni I'# (0) (0) for for each each i,i, \t-\.l Mj and and N, Ni.l Nj for for ii {(l't, j,4'-N N, Propoiition"0.4.l7 g i. • '# j, M. '" N for all i, and M. eM, N. c N for'all for all I. Proposition 004.17 It c N,1 for all i, and 4 1 * 1 1-non-void. ensures thdt that the the above above set set If is is non-void. The The set set Ff is is clearly clearly "nsrrris partially ordered ordered by by inclusion, inclusion, and and the the union union of of aa totally totally ordered ordered partially collection of of families families of of the the above above sort sort is is again again aa family family of of the the collection element, f maximal has a above sort. So, by Zorn's lemma, the set f has a maximal element, set lemma, the above sort. So, by Zorn's say t(!q, {(1\, N,): N): fi eE 1). I}. Since Since:lf is separable, separable, the the index index set set 1I is is countable' countable. lf is say - N It follows from Proposition Proposition 1.1.7 1.1.7 that that t't M'" ti. where where It-follo'ws'from M= = ,ED? ,M.4 X iEI 1
? ,N.. Nt' ED aand n d!ti. == ,iEI 1
The maximality maximality of of the the collection collection {(ili, {(Mi , l\l,): Ni ): ii eE /}I} and and Proposition Proposition The r e bboth oth tthese h e s e aare N i n c a s e 004.17 -applied to M g M and N g Ii , in case 0 U-, applied to il e ! and 0.4.17 E N t l t o r nonzero -ensure that M = M or N = ti ; i.e., MiN or N i M. 0 N = U . : i . e . , M L N o r nonzero--ensurethatM=I'1 1.2 Finitc Finite Projcctions Projections 12 enote a ill a lways d For the the rest rest of of this this chapter, the ssymbol M w will always denote ymbol M For eing r i m a r y rreason h i s bbeing o r tthis e a s o n ffor factor of of operators operators on !1, :If, the pprimary factor Proposition 1.1.9. Proposition 1.1.9. if eo eo Ee finite if Definition 1.2.1. A projection e in M is said to be be finite 1.2-1. A Definition s a i d tto o i s said c a s e ' e is c o n t r a r y case, I n the t h e contrary P((M) e ' In i m p l y eo e o == e. € o (~ e imply a n d e - eo ? M ) and l'1 affiliated be infinite. Correspondingly, a closed subspace M which is affiliated subspace closed Coirespondingly] be infinite. finite or as PM to infinite according as finite or infinite PJvlis finite be finite to M is said to be infinite. 0O infinite. !4 is finite; then M Proposition If finite, then finite; in 14 L N and N is finite, If MiN 122 Proposition 1.2.2 ll is is infinite. infiniteparticular, if lviexists, then :If exisls, then infinite M if any infinite (check it!), it!), preserved under equivalence equivalence (check Proof. is preserved finiteness is Proof. Since Since finiteness lle l'1, g lvl then If l'1 ' generality, N assume, with no loss of generality, that M f N. If M '" M f M, then loss no 4 assume, o g M) N= Q 0 x)g a n d consequently c o n s e q u e n (0) t l y (=0 )N N (N Q f NN and = !Mt eED( N M )'"- JM'ot nEDe(N ( NQ 0 M) N = I't In In of M. finiteness of the finiteness (1\ establishing the (14^ED (N Q iln, l'1 Q 0 M thereby establishing M)) == M e (N 0 M)) o' thereby the establishing the thus establishing J'lis is finite, finite, thus particular, every M then every pa"rticular, if is finite, finite', then if :Iflt is O contra positive of the second assertion. 0 a s s e r t i o n . s e c o n d o f t h e contrapositive the o f the d e v e l o p m e n tof f u r t h e r development The i n the t h e further v e r y crucial c r u c i a l in i s very r e s u l t is n e x t result T h e next theory; it is a sort of Euclidean algorithm. a l g o r i t h m . E u c l i d e a n o f theory; it is a sort (0). Then exists aa Then there there exists proposition 1.23. N '#t (0). Proposition M and and N I\ N N T)n M Let M, 123. Let I\ and aa of subspaces pairwise family {N i: i E I} of pairwise orthogonal subs paces of M, and orthogonal Il of familv { lrl,: i e 'subsiaci - N all R, N e Ni N Nr) M,llM == (ED lor all subspace :RR'of of M i' :RR T)n M, N ) ED:R, i '" for N,, 14such that N suchthat 1e,rriEI i N ).) . b u t R f* N i i and N but:R ( i n the t h a t:RR i' L N N (in s e n s ethat t h esense a n d :RR .~ 1 N exists there exists infinite, there set II isis infinite, If, index set the index decontpositiott,the strchdecomposition, one such If, in in one = (0)' R term rentainder another decomposition in which the remainder term :R = (0). the which in anither decomposition
'.,{l1u13ur scrlslrelcBrEr{o Jo Jalrlc o q l a u J r u r o l o po l u o t l l s o d e q l u l A \ o u e r € e l r , : f r e l l o r o c E u l p e c a : d eql Jo (q) lred ece.lerd uuerunall uo^ pu€ i(errn141tlolqa r{lt^\ lueuatsls oql peer o1 Eullrelgp fltueseald ll pulJ lrlElur repear orll
The reader might find it pleasantly diverting to read the statement with which Murray and von Neumann preface part (b) of the preceding corollary: 'we are now in the position to determine the chief characteristics of infinity'.
'(q) .lo n 'dor4) s ql llnser uralsurag-rep.grrlca J I B q p u o c a s a r l l s a r l s l l q e l s e( g ' 1 ' 1 qt1,vr:eq1eEol 'qc1q,n '(q) Jo JIsrI lsrlJ oq1 soaord srqa 'parrsap s€
as desired. This proves the first half of (b), which, together with the Schroder-Bernstein result (Prop. 1.1.8) establishes the second half of (b). 0 n
ED
B1 )
ltg
eug
6
'g"] t[*. "g'1"]tt
L;2 B
f M,
L
ED:R) 1
'wi
n
-
L;2 B
ecueq lelqelunoc sr les eql 'elq€r-Bcles sqt ocurs 'rB 1 '6 rg pue lt!o) = ,tg r{l1an e (,!g N ol €'Z'i N taa o1
n
B
Ig l g pu€
N1
ED :R, with Bi' 1 to get N = (EDiEI B B1' Since Jt is separable, the set I is counta ble; hence
uolllsodord ,(lctcle'(q) roy l"zg t=ja = g
!,.2.3 to Nand
'(e) erord oa lnd fldurrs 'u
1.2.3 that M admits a decomposition M = $:=1 Bn , where Bn - B1 for all n. _ To prove (a), simply put B = $:=1 B2n ; for (b), apply Proposition
ll?, roJ r g - ug ara{,n '"g t=j* = * uoltlsodruocap e sllrupe W leql €'Z'I
ug l=je uolllsodor4 Jo ued puoras aql urorJ s/AolloJ ll tt i teqt pue "g (o) Igl e q l ' z 1 1 er o 3 r g - ' g luql reelc sl ll'(rlt 6*il)"r = * 'tnt 'W o 'Joord i JI 11!itt esoddns os l1e1arrl sr (e) ur uoJlecrldur aug
Proof. One implication in (a) is trivial; so suppose u: M - M1 f M. If B n = un(MClO:1 g M ), it is clear that B n '" B1 for all II, that B 1 '# (0) and that $n=1 ts n f M. It follows from the second part of Proposition
'luaptmba ato suotlcatotd a7rut[utouy tuo 'tolntrltod u1 :tt I 1. uaqt 'at1ut/u! sl W l! puo W tr N 1^t/l (q) '(g '(g O W)e g =y1uoltlsodwozapDSllLupDW O W)- g -N4t!u 'IAttr 'VZt ^rtuz11oro3 {r [yto puo I! altut{ur st W uaqJ N t 6) ta7 @)
two infinite projections are equivalent.
Corollary 1.24. (a) Let (0) '# M Tl M. Then M is infinite if and ollly if M admits a decomposition M = B $ (M g B), with M '" B - (M g B). (b) If M, N Tl M and if M is illfinite, then N 1 M; ill particular, any
'a t=J. = y uotll'uN lte roJ. U:..llV pue lN *, = lN pue .-.N _' -_; O .F 6 W:tt JI ''N '-;e - y legl 8'l'l uollJsodor4ruor3 apnlJuoC
Conclude from Proposition L.1.8 that M - $:=1 Nn. If u: M and N'n = u* Nn , then M = $ n= 1 N'n and N'n - N for all n.
rj
$""=1
Nn
'Ni"N t6"Tw M -1
n=1 $
""
Nn f
M.
'snqllrry E sl rg orolll N T 6 ecurs'rryJooredsqns.rorrrrri '"N '6" o ru 'E"eu-'N ti"t*=* ( ' * ' N - N - ' N o c u l s") ,
where :R' is a suitable subspace of N1, since :R 1 N '" N1; thus, - :R'
Nn -:R
$
$
n~2 Nn'
"" N (since N n n ""
$ n=2
-
N '" N n+l)
'("''g'z'll = l€rll osllou ueql 1 lEql etunss€ feur om ? .lo ,(tlttqeredas agl Jo Arerl uI 'uollrasse puocas arll roC 'N l U lBqr eq lsnu lI'6'1'1 uotllsodord,{q ',(lluanbosuoc '(lN It''o) I ry / u teqr sernsue{!N) .lo i(lrleurxew eql 'flrodo.rd o^oqE aql ol lcedsar qll/d lErurxeru s1 ,(1$ueg O W = d JI eql ltql ^uedord eql qll/r\ 'N .ol lualurrrnbe qJ€e .14 Jo socedsqns leuo8oqlro osr,nrlecl 3o I r | :r N) fpure; e sple1{ euural s.uroz ol l€oclde,u€ '6'I'I uolllsodord Jo Joorcl eql ul sV '0N - N leql q c n s 1 5 0 1 s l s r x a e r s q l l B q l o s 1 , rT r u l € q l 6 ' I ' I u o l l r s o d o r 4 u r o r S s^\olloJ ll 'es€c e^rleuroll€ or{l uI 1,1= d 'Q = I los 'N } W JI 'JooJd
Proof. If M ~ N, set I = 4>, :R = M. In the alternative case, it follows from Proposition 1.1.9 that N 1 M, so that there exists No f M such that N - No' As in the proof of Proposition 1.1.9, an appeal to Zorn's lemma yields a family {N i: i E I} of pairwise orthogonal subspaces of M, each equivalent to N, with the property that the family is maximal with respect to the above property. If:R = M g ($iEI N), the maximality of {N i} ensures that :R J. N ; consequently, by Proposition 1.1.9, it must be that :R ~ N. For the second assertion, in view of the separability of Jt, we may assume that I = {l,2,3,...}. Then notice that 1.2. Finite Projections
23
s u o l l c e f o . t go l I u I C ' Z ' l
EZ
24 24
The Murray-von Murray-von Neumann Neumann Classification Classification of of Factors Factors l.1. The
The next next few few lemmas lemmas lead lead up up to to aa proof proof of of the the main main result result in in this this The finite projections a is again -section -that a supremum of two finite projections is again a finite finite of two supremum that a section projection. Some Some of of these these intermediate intermediate results results --- particular particular Lemma Lemma projection. -1.2.5 -- are are interesting interesting in in their their own own right. right. 1.2.5 h e nM., I\ N M e$ N Let N,, BB nn M M,, l 4 Mt1N Nand N.' TThen N a n d BB ceM e t tM.,\ N 25. L LLemma c n n a I1.2-5. nd ! g1,, N r @$ N B aadmit = sM.1 $1 N=~=N~l N2, o$ N Ng" aand d m i t ddecompo~itions e c o m p o s i t iM on l t e= IM 11212$e M aand nd B B == Mz M2 e$ N2 N2 e$ Bo, Bo' with With \,Mi , Ni, Ni' Bo /:So nn aM and and satisfying: satlsfymg: B M2z==M B,, iMlgs== M B I1 i l nn B M ! tnn B
N2z==NN()n B, Ngs==NNn n B B1t N 8, N
eg1) ' L ) xMr1 == i M l oQ ((Ml '21$2 M N 2z$e Ng)r ) N1 r==NNQe ((N Boo=={t{ E+ l At: + A tl :El edom d o A}, m.,{}, where A is is aa closed closed operator alfiliated affiliated to M such such that dom A == l1y M1, where -"" Nl. Bo Mrran A == Nl, N1, ker ,4 A = = (0). (0). Further Further M "" B NI' |ffi o 1 o == let 8 a n d let a b o v e , and a s above, , , N ', N l 4ga Proof. 2' ' N N,g as BOo I 11'= r, , M21, ,M define M S i m'N,1. p l y define P r o o f . Simply 1 N2 = B B; pti'. ker(el Rot. that piq ^ia B Q (l{, $ N ). Let e = PM and f = PN' Note that ker(el B) = /:S n n e rete b e 1u" f'= 2 further is N and consequently el B is one-to-one; further one-iir-one; e[ Bo and 6onsequently N == N; o [
( i ! t, eE l M ' 1 and ! , , D Vn ) n Ee B 6 V t( eE 1M1Q
M l,n t n B1 8 I == i Mg. l..
Bo ilr. Thus Thus el el B Eoo == MI' hence that that eB I1r,and It ltr1 $e ~, and hence eB == M that eB It follows follows that o
l'tt. D of MI' maps onto D subspace densesubspace onto aa dense one-to-one maDS B 8^ o one-to-one one-to-one maps B Bo that 11 8o An 0 one-to-one showsthat reasoningshows similar reasoning /l B An exactly exictly similar o maps = where T)n ,4 D'Nr by onto a dense subspace A: of N l' Define A: D .. N by At = fn Define I fn where of Nr. onto a densesubspace 1 that at once follows It er\.= is the unique vector in B such that en = t. It follows at once that Bo that s-uch vector in \. is the unique o A l : ltED}. eDl' Bo-N, o=. =g{ (++ At: N1rand andB A i a nAA == N I is i s one-to-one, o n e - t o - o dom n e , dAAo=mFM|1,r ,ran precisely e N1 means meansprecisely t"t, The df M 8o subspaceof is aa closed cloied subspace fact that that B The fact 1 $ o is 9r
-9I(
9r(:
ueql 'slf F zru :(r) ase3 's'z'I Bturua'Iul sB aq, 'og 'tN 'h i'tt 'Joord V
Proof. Let~, Ni' 80 , A be as in Lemma 1.2.5. Case (i): N2 i M3• Then
either
8 i M or (M
$
N) g 8
i
N.
uaqr.N r w t , t u . No wj s p o ' N n t r ? tf .; lTf ] ; ' - l J f # H
Lemma 1.2.7. Let Jot, N,
8
n M and 8 f M $
N, with M1
N.
Then
'xg ('(s's'z)
this last assertion follows readily from the spectral theorem -- cf. Ex. (2.5.5).)
'Jc -- ueroeql Ierlceds aql uroJJ flrpear s^\olloJ uollrasss lsEI slql tf;u oo =
Do = n~1 ran I [o,n](H);
:1.g;tu'ollur,
'"
oraqa 'g 3o qderE aql ur esuapsr oi o, o.rrrrlser 11 'uollrass€lsel '0 < H roJ leql lcEJ eql poou plnoA\nof 3o qder8 eql aql roJ l0 = 1 ro Q = 11os€cu! 'l JoJ e,r1os' 8d alnduoc ot 2(u'u*V-) + (:p,'t) = 1u*)) lcr{l qcns *ts ruop r t. pue r urop r t anblun B slslxe pue 'V*v ruop ol ereql ? I (ff) JI :lurH) 'g ul asuap,(lluonbasuoc l'ld Bd y go qclerE uortcl.llsir eqt oql sl eEuer oql t?ql opnlcuoJ 3o 3o 'lu€rrE^c,,(eur esecoql s€' NI Jo l'11se palarctJolul eq ol sl I eJeq/
where 1 is to be interpreted as 1M of IN ' as the case may warrant. Conclude that the range of P8 PM is the graph of the r~!Iiction of A to dom A*A, and consequently dense in 8. (Hint: if U..!2) E le, there exists a unique ~ E dom A and n E dom A* such that (fv,n) = (~,A~) + (-A*n,n); to compute PB ' solve for ~, in case 11 = 0 or ~ = 0; for the last assertion, you would need the fact that for H ~ 0, the graph of H restricted to Do is dense in the graph of H, where
;l
N a' [ :
y(Y*Y +
L vGvv + l )*v
y(v+v + t)
,lr-Gvv+ r)*vv
=
p u € [ ; : ] =
PH
[ A(1 + A*Ar l
AA*(1 + AA*r l A*(1 + AA*r
= g d
(1 + A*At l
l
],
l]
=*
'N lerll ^{ogs e W = ;X uorgrsodruo3ep 'N aql ol ]coclsar qlll\ Jo +y {uop ec8dsqns osuep eql J,f olul ruorJ rolarodo reaurl e se aV Eu1,no1rr'(*Z ruop t u :(u'lt*y-)) = r g uoql 'pr 3o qderE eql elouap g lo'I 'rolerodo pesolc e ae N - Ci:y 'N 'O'Z'I) lel pue W Jo oc€dsqns r€eurl esuop E oq C lol e ll = fi le'I
(1.2.6). Let le = M $ N, let D be a dense linear subspace of M and let A: D'" N be a closed operator. Let 8 denote the graph of A. Then 8 1 = {(-A*n,n): n E dom A*}, viewing A* as a linear operator from the dense subspace dom A* of N, into M. With respect to the decomposition le = M $ N, show that Exercise )sIcrexl
it would follow from Ex. (1.1.6) that Ml "" 8 0, The asserted equality can be directly proved without much difficulty; it can also be deduced from the following exercise. Similarly, consideration of IP8 would prove 8 1 "" 8 0, 0 o
'og - tg eaord plnon ogdy E 'l(1re1gur15'oslcJexo Eur,vrolyogegl uroJJ pecnpop Jo uoll?Jeplsuoc eq osl€ u€c ll lltllncrggrp qcnu lnoqll^r po^ord fllcarrp oq u€c , ( l r y e n b ap a l r a s s eo q l ' 0 g - T 1 4l € r l l ( q ' t ' l ) ' x X r u o r J ^ \ o I I o J p l n o ^ \ l l
.og= ,ofu u", 8 0,
0
gd,
=
= Ml ;
lsql rr\oqs u?c e^\ J! lril =
J.B 0 e
ran
o
We already know that ran eP8
If we can show that
ue, lBrll-lYroul ,(p-ea:1ee11
'n u og 'tN 'fu ecuys 7
that A is a closed operator. It is a routine matter to verify that A M, since ft\, Ni' 80 n M. __ .
n
u V leql fgrraa ol Jell€ru eullnor B sl lI
'rolerodo pasolr E sI Z l?r{l
1.2. Finite Projections suollcaforo 4lIuIJ'Z'l
25 'L
26 26
The Murray-von Neumann Classification Factors actors eumann C he M urray-von N l a s s i f i c a t i o n ooff F l1.. T
B = Boo $e lM' 2t r$e N22 $ N, N2 -..,.M t'1, Itl1 e$M 2 e
lI x M r 1e $M I l 22 o$M l L3==M, 1 1. Case (ii): !1, M3 {1 N2. N2' Case Regarding A as a closed closed densely densely defined defined operator operator from 1"1r. M1. to Nt, Nl' as-a Regardinglet A+ denote denote the the closed closed densely densely defined defined operator operator from Nt N to J"lt M1 let 1 the adjoint adjoint of ,1. A. Then Then ,4+, A+, viewed viewed as as an an operator operator in 1?, 1f, is is which is the clearly affiliated affiliated to M: M; further, further, from from the the general general fact fact about about the the clearly graph of the the adjoint, adjoint, it is is clear clear that (J'lr (M1 e $ /Vl) N1) 09 B0 80 = {-n {-T) + A+n: A+T): n T) e € graph dom l+). A+}. Arguing Arguing exactly exactly as as in the the proof proof of Lemma Lemma 1.2.5, may be be 1.2.5,it may dom seen that Nl N1 -..,. ((q «M1 e $ ^Jl) N1) 0 9 B0) Bo) -..,. Mr; M1; hence, hence, seen (M $ N) N) e 9 B = ((Jvtr «M1 e $ Nr) N1) 0 9 Bo) Bo) oM, $ M3 e $ N, N3 (J'1o
1 N. . I N1r $e N2r$. N3 3= = N 1.1.9,one one of the The proof is by Proposition Proposition 1.1.9, the two two is complete, complete,since, since,by The proof cases must arise. O arise. 0 casesmust then Lemma M.l N, and M and finite, then are both both finite, !\ N T)n M, M, X l- N, and !4 and N are 12& If If 1\ Irmna 1.2.1. M $ N is finite. J'le is finite.
'chief characteristics Proof. of characteristics is infinite, infinite, then, then, by by the the 'chief Proof. If If M $e N is (!t $e N)..,. infinity', t"te Nand N) - B N and (M 8 T)n M such such that that B fc M$ infinity', there there exists exists B ( M$o N) N) ( M$e N) - «M N) 1 ..,. o r (M ( ( J v$t eN) 1 . 2 . 7either N ) 9e B). B ) . So, L e m m a1.2.7, e, i t h e r(M S o ,by b y Lemma I M or would then the 1t N. I't o N would then contradict contradict the infinitenessof M$ The assumed assumedinfiniteness i/. The (cf. Prop, finiteness It or N (cf. Prop.1.2.2). 1.2.2). 0n finitenessof Mor I't N) 1 Lemma 1\ N ([M + N] Nl Q M, then Lemma 1.2.9. 129. If N T)n M, then(tl"t+ e N) I .M. ryll, Proof. Proof.
=p l ( [ x++ N]) N]) N l 90 N [M N = PN N.l([M t l '+l + N] ivl)l == [{p N.l ~: l: ~E €e M}] t(pNI ran P == ran P N.lPM NIPM
- r a n P M P IN gl,t
(1.1.6)) ( b YEx. E x '(1.1.6» (by
o
N are so is is M and are finite, so Theorem If l\ N and N N T)n M, M, and and if if M f2f0. Il 1\ Thcorcn 1.2.10. many generally, N]; slightly more generally, the supremum of finitely many of tlte suprenunr more slightly N l; finitely finite projections is is finite. /inite. finite projections
[M [Jut++
. a s r c r a x es r q l Jo Joorcl e ldurall€ ol z(e,rsnor^qoauo Jo lq8ly eq1 uI
In the light of this exercise; one obvious way to attempt a proof of M.,.. N dim M = dim N ; M is finite (reI M) dim M < co . the equation D(M) = dim M satisfies the conditions (a) - (c) of Theorem 1.3.1; if D ': P(:e(:If)) ~ [O,co] is a function satisfying (a) - (c) of Theorem 1.3.1, then D' = cD where c = D' ( N), for any one-dimensional subspace N of :If. 0
I A J o N e J € d s q n sl e u o r s u o r u r p - o u o f u e r o J ' ( N ) , c r = ? a l e q 1 Y \e c = t Q u e q l ' I ' g ' I l u e r o e q l J o ( o ) - ( e ) E u r f g s l l € s u o l l c u n J B s r [ - . 0 ] - ( ( A ) f ) a : r e J l (p) l 1 ' g ' 1r u e r o a q l Jo (c) - (€) suoJlJpuor eql salJslles W rulp = (il)O uollunba aql (c) ' o > urlp !f <+ jtt pt) atlurJ sr l^l (q) l N * l p = W u l l p ( + N - W (e)
(d)
(a) (b) (c)
**
**
:e^ord '(Ah = n rc'I '(Z'e't)
(1.3.2). Let M = :e(:If). Prove: Exercises
seslrrexg
'N TOJ uollounJ uorsuarurp e g Eurllec ,(3r1snfIIr^\ pue .os€c l€rJeds eldurs e u I u e r o a r l l e q l J o f l r p r l e l a g l q s r l q e l s o I I I ^ \ o s r J r a x a B u r a t o 1 1 o go q 1
The following exercise will establish the validity of the theorem in a simple special case, and will justify calling D a dimension function for M.
Further, such a function is uniquely determined up to a positive constant multiple. 0
tuolstto) atrtltsodn ol dn paulwralap t(lanbun st uotlcunl ,Orrn, ?:::r'j:;:
'- > (W)O attu!{ st W (c) e puoi(11)o+(w)o=(N ot,t)(+ N Tl^t (q) (a) (b) (c)
**
M", N D(M) = D(N ); M1 N D(M $ N) = D(M) + D( N ); and M is finite D(M) < co .
** *
:( l)o = (w)o<+ N - l^t (e)
p(M) ~ - W)d.
Theorem 1.3.1. Let M be a factor. There exists a function D: [0, CO] such that 1o4l qcns l-,gf :q uolnunt o stswa ararlJ ..rorco/ D aq n ta7 -11gl rueroeql
'llnser E u r n o l l o ; a q l t u l l o r d ol pelo^ep aq '(W)Oelrr^\ .1Wd;gEullrr.n IIr^\ uorlJes sIrll Jo JI?rI lsrlJ aql llBr{s e,n u€gl rerll€r 'osl€ irolceJ € ol pelsrlr3ge sacedsqns pasolc elouap s,(e,n1u IIr/r\ g pue g 'N sloqru,{s or{l .suorloes Euro8erog aql J4 ul sy 'N T W .ll fluo puu y. ( Nd)q > 0,t4O Eu1,{gslresl_,gl _ (l^t1 4 :dr uorlJunJ B ecnpur plno^r qcns .[*,0] € pasolc a oluo lesqns O Jo -/(t4l)d 3o g usrqdroruosl fu lrqrqxe .Ol)a uo IIrr'A uorlJas srql | .rapro aqt ,fq pacnpur Eureq rapro eql -- n ur suorlcaford Jo sass€lJ acualezrrnbaJo - /04t)d. los perepro 1(Ilelol aqt ,{q peplnord s! n roJ l u e r r € A u r a u o f l r u a l c ' s r o l c € J J o u o l l € c l J l s s € I ce q l r o { . , { r o E o l e ce q l '(froEaluc elerrdorclde aql ul) usrqdroruosr ;o slcefqo lcro^os arll Jo o 1 d n ' u o l l e c r J r s s e l ca q l s l f r o o q l f u e u r s r u o l q o l d c r s s q e q l J o e u g
One of the basic problems in any theory is the classification, up to isomorphism (in the appropriate category), of the several objects of the category. For the classification of factors, clearly one invariant for M is provided by the totally ordered set P(M)/ '" of equivalence classes of projections in M -- the order being induced W the order i on p(M). This section will exhibit aJl isomorphism D of P(M)/onto a closed subset of [O,co]. Such a D would induce a function D: P (M) ~ [O,CO] satisfying D(PM) 1IO D(PN ) if and only if MiN. As in the foregoing sections, the symbols M, N, Band :R will always denote closed subspaces affiliated to a factor; also, rather than writing D(PM)' we shall write D(M). The first half of this section will be devoted to proving the following result. '€'I
1.3. The Dimension Function rorlJunc uorsurrurq aql
' u o r l r e s s ep u o c o so q l s p l e l f l u a r u n E r eu o r l o n p u l , ( s e eu u ! 9 . 9 . 1 O tuorJ s^\olloJ rualoeql eql Jo uorltoss€ lsrrJ oql lsacedsqns a1ru13 y e u o E o q l r of 1 1 en l n u J o r u n s l o a r r p e s e I N + W ] g o u o r s s a r d x eu e s r 'Joord N @ (N 0 tN + wl) = [w + w] leql 6'z'I eurrue'I uorJ s^\olloJ lI
Proof. It follows from Lemma 1.2.9 that [M + N] = ([M + N] g N) $ N is an expression of [M + N] as a direct sum of mutually orthogonal finite subspaces; the first assertion of the theorem follows from 1.2.8; an easy induction argument yields the second assertion. 0 The Dimension Function
27
LZ
uollJunJ uorsueur(J eqf
'€'I
1.3.
actors f FFactors Murray-von l a s s i f i c a t i o n oof e u m a n n CClassification u r r a y - v o n NNeumann he M l 1. . TThe
..28 28
Theorem 1.3.1 1.3.1 would would lead lead one one to to seek seek the the abstract abstract analogue analogue of of aa Theorem the by is afforded one-dimensional subspace. One such abstraction is afforded by the abstraction One such one-dimensionalsubspace. following definition. definition. following Definition 1.3.3. 1.3.3. An An 11 M nT/ M M is is said said to to be be minimal minimal ifif j'l M I~ (0) (0) and and ifif Definition N = l t N T/ M, N f M imply N = (0) or N = M. 0 O N = ( 0 ) o r NnM, Ngtlimply is clear clear that that minimal minimal projections projections are are finite finite and and non-zero; non-zero; the the ItIt is The M. in exist trouble is that such projections may not even exist in M. The next next projections not even may trouble is that such definition yields yields aa partition partition of of the the class class of of factors factors into into three three definition subclasses, depending depending on on the the availability availability or or otherwise otherwise of of certain certain subclasses, kinds of of projections projections in in M. M. kinds Definition 1.3.4.. 1.3.4.. A A factor M M is said said to be be of of type type I, II II or III III Definition according as as itit satisfies satisfies the corresponding corresponding condition condition below: below: according M contains contains a minirnal minimal projection; projection; M M contains contains no no minimal minimal projection, projection, but does does contain contain non-zero non-zero M projections; finite projections; contains no no finite non-zero non-zero projection' projection. (III) M contains
(I) (II)
is of exactly It the definition that any factor is exactly one one any factor definition that is clear clear from the It is order, the type. We We shall prove Theorem treating, in order, the types types l'3'l by treating, Theorem 1.3.1 shall prove type. examine the III, Before doing that, however, however, it will help help to examine the doing that, It. Before Iii, I and and II. earlier established quantitative of the Euclidean algorithm established earlier algorithm Euclidean quantitative aspects the aspects (cf. (cf. Prop. 1.2.3). Prop. 1.2.3). Il (0) and is finite. and,I4 Proposition M is I\ N T/n M; M; suppose suppose N ~* (0) finite. If Let M, 1.3-5. Let Proposition 1.3.5. (as Prop' R in e and M = ($j€I N :R with N j ..... N for all i € I and :R ~ N (as in Prop. ) $ { i = Nr R (@ier e wit& t't N,) fo.r j
the is independent independentof the 1.2.3), cardinality is its cardinality and its is finite set I is ;ir; index iidex set l.n), the finite and particular chosen. cltosen. particular decomposition decomposition
Nn
and proof. Suppose decompositionand suchdecomposition (o,.-r Nl) $e :RRtI is is another Proof. anothersuch 14== ($j€J SupposeM which is is T: II -+' JJ which map T: suppose, that there exists possible,t'trit'ttrere exists aa map if possible, suppose,if ' N R that note r(1); { e injective but not surjective. Let jo € J \ T(I); note that :R ~ N injective but not surjective. Let "to "I \ ' Ro. Then, R N q .1 • So, there exists :R C N .' such that :R ..... :R Then, ' that Nf such Rn N Jo . So, there exists o ~ o Jr 0O JJ g f
r , r [$ =[ j€I ,e1n e Nr1'u ' ]) $:R L iet
M=
Ni1'lJe Ro .'. L~IL,?'Nh>] -l
$:Ro
C$ Nlc 14, c e N.'cM, ~I j€J j€J
=
JJ ;
from the the follow from l'1. Both assertionsfollow contradicting Both assertions of M. finiteness of the finiteness contradicting the p a i r of admissible o f admissible a n y pair non-existence f o r any a b o v e for a s above o f aa TT as n o n - e x i s t e n c e of decompositions. decompositions. 0n
iZ < [,N /N] teqt qcns rN oroz-uou3trurJ € stsrxeoraql uagt,Qzlu) ecudsqnsalrurJ orez-uou€ sr N JI leql a,,rordol secrJJnslI .Joord
Proof. It suffices to prove that if N is a non-zero finite subspace (nM), then there exists a finite non-zero N' such that [N I NI] ~ 2; for all n.
u 11otot olaz-rtoua1ru{ lo t]t"fVi Z < [t+"N /"Nl trrtt t1cnsQ;gu) sacodsqns acuanbaso stslxa ataqt ,ll adtQ to to1cnl o q n II 2.g.1 uunucl
{N n}:=l of finite non-zero subspaces (nM) such that [N nl NnH ] ~ 2
Lemma 1.3.7.
If M is a factor of type II, there exists a sequence
'etutuale ql1,r ul8eq oA{ 'pa^lo^ur ororu 0lllll € sr as?cslqt ul uollcnrlsuor aql 1 ad,{a
Type II. the construction in this case is a little more involved. We begin with a lemma.
' NO( w)O - g'flluanbosuoc pue J,1 erlurg {rozra ro3 ( l,/)OtN /Wl = (tt)O uettl .t.€.t rurrosrlJ Jo (c) - (e) Eurfgsrl€suorlcung{ue sl O JI (q) pue.I.€.I rueroaql Jo (r) - (e) suolllpuoc serJsll€s NO (e) 1eq1{3poa 01 .,rou ,fseo ii lI 'l pre) = (W) NO osBJraqlle u1 .acue11.Ol.Z.l rusroaql fq ,elrurg sI il uaqt 'allulJ sI 1 Jl 'pueq roqlo aql uo lelrurSur sr X ecuaq^\ 'w5"Ntru-"N t6"=N @ tu'u' '( "" 'z'I) = d.es'e11urgurst ielqeredas sr oJurs olqelunoc sr / les eql 7 ' 0 = d l u q l e p n l c u o r1. 1JI€ r u r u r u r s l Jl N a i u l s _ . 11 1 r r o 3 ! 1 -y N l U l e q l qJns W go uolllsoclruoJep s eq U e (tN trte) = ll lal,n U W fue rog
whence M is infinite; on the other hand, if I is finite, then M is finite, by Theorem 1.2.10. Hence, in either case DN (M) = card I. It is easy, now, to verify that (a) DN satisfies conditions (a) - (c) of Theorem 1.3.1, and (b) if D is any function satisfying (a) - (c) of Theorem 1.3.1, then D(M) = [MI N ]D(N) for every finite M, and consequently, D = D( N )D N . n=l
n
n=2
M= eN". eN co
n
eM, =
co
For any M n M, let M = (eiEI Ni ) e :R be a decomposition of M such that :R ~ N "" Ni for all i. Since N is minimal, conclude that :R = O. The set I is countable since Jf is separable; if I is infinite, say I = {1,2, ..., }, then
'orlutJst
if Mis finite.
W JI
'[N
[MI N] ,
/}{]
co,
'
-
N
=,*,no
(M) = {
olrurJursl l.f JI
D
if Mis infinite
]
eurJop puc .letururur eq N lol
.1 e
Type I. Let N be minimal, and define
'CI= t O s n q l p u € { 0 } I W J I - = ( i l ) r c r l e q l s o r n s u a( c ) 'III ad^l .(q) = sr. ({o}), eculs 16 = fq ({o)), os (oD,a rcqr n Jo cI a(, pue (c) l(q - > ({O}),4' uaqt'(c) - (e) EurfSsllss uollrun3.,(ue sr ,g 'flasre^uoC 'I'€'I ruoroaqJ Jr Jo (c) - (e) suolllpuoc aql sorJsll€s Cr l€ql r€alc sl ll 'elIuIJuI sl r'{ u W oraz-uou fre,re .srseqloclfq ,(q .acurg
Since, by hypothesis, every non-zero M n M is infinite, it is clear that D satisfies the conditions (a) - (c) of Theorem 1.3.1. Conversely, if D I is any function satisfying (a) - (c), then D' ({O}) < co by (c) and D'({O}) = 2D'({0}) by (b), so that D'({O}) = 0; since M is of type III, (c) ensures that D' (M) = co if M ~ {OJ and thus D' = D.
' ( o ) * x . l l' - l
D(M) = {
if M ~ (0).
co ,
I (o)=lrJI 'o)
= (w)o
0 ,
if M = (0)
eurJap 'eJuelsrxe roC .Ut addt
Type III. For existence, define
'I'g'I tuaJoaql .luaprcc€ u€ Jo goord oql ol peaoord /r\ou sn la.I lou s l ( I + u > / ) u J J l u = [ l ] ) u o r l c u n ; r a t e l u r l s a l e o r Ee q l r o J u o l l e l o u 3{l qtl,n flrrelrrurs eql os ' N rulp^r lurp p333xa lou saop qclqil\ reEalul lsalearE eql sl I w /Nl ,0Ih = 7g eldurexe eql uI lsr{l ?loN
Note that in the example M = l(Jf), [MI N] is the greatest integer which does not exceed dim M/dim N, so the similarity with the notation for the greatest integer function ({t] = n iff n ~ t < n + I) is not an accident. Let us now proceed to the proof of Theorem 1.3.1.
' g ' g ' 1 ' d o r 4 u r s € ' . 1 rp r e c r e E e l u r p a u r r u r e l e p flenbrun eql elouop O 'ellulJ pu€ oroz-uou rlloq dte n tl N T JI .9.€-I uolrlulJeo t ry/wl lal
Definition 1.3.6. If M, N n M are both non-zero and finite, let [MI N ] denote the uniquely determined integer card I, as in Prop. 1.3.5. 0
uollsunc uolsualur(eqJ '€'I
1.3. The Dimension Function
29
6Z
actors f FFactors l a s s i f i c a t i o n oof e u m a n n CClassification h e MMurray-von u r r a y - v o n NNeumann l .1. TThe
330 0
then the the l,l's ~'s can can be be inductively inductively defined. defined. Since Since NN is is not not minimal minimal (M (M then B (0) * B being of type II), there exists B nM such that (0) f. B .F f N;-th9 N; the nM such exists there being of type II), .that finiteness #N of N tnto..s ensures finiteness finiteness of of B. B. IfIf t[ N/B NIB I] )~ 2, 2, set set N' NI == 8;-if B; if .. iinit".nrtr BB;; I o R w i t h R { N = [N I B ] = 1 -note that[ NIB] > 0 -then N = B $:R with :R { = | n o t e t h a t l N / B l > 0 t h e n irulrf N ' = R ' D s e t a n d further :R f. (0) since B f. N; note that [ NI:R] ~ 2 and set N I =:R. 0 i u r t h e r R l ( 0 ) s i n c e B* N ; n o t et h a tI N / R ] > 2 Definition l-3.8. 1.3.8. AA sequence sequence S S == 1N,,)l=, {N n}:=l as as in in Lemma Lemma l'3.7 1.3.7 will will be be Definition U called aa fundamental fundamental sequence sequence for for the the type type IIII tactor factor M' M. 0 called The following following bit bit of of notation notation will will facilitate facilitate some some of of the the The subsequent ptools: proofs: let let us us agree agree to to write write kN kN for for any any subspace subspace of of the the subsequent form N, Nj e$ ... ... e $ Nk , with with N Nij -.... N N for for all all i.i. Thus' Thus, for for example, example, ifif M M Nn, form and N are finite and non-zero, then then non-zero, and N dre finite and
tFlN, m,[[F]. rlru
Lemma 1.3.9. 1.3.9. Let Let I\M, N, N, 8B be linite finite and non-zero' non-zero. Lcmna
(a)tFltFl [*]. t[#]. 'l[[F]. '1, r M e B ' l' Ll ixl -1l * < [M: [~ [~ ] 2. 1ft1., I F ] . t +f - nlB]I [~ [f (b) il if M 1 B then (b) 14I 8 ,, then
] +
],
<
] +
+
pairwise number of pairwise preciselythe largest number Proof. the largest is precisely Note that that [MIN] Proof. Note -tM/N I is f irst l"t The into f itted into M. The first orthogonal be fitted which can can be copies of N which orthogonal copies Turn consequence. (b), inequality, of both (a) and (b), is an immediate consequence. Turn (a) immediate is an and inequality, both to second: to the the second: implv would imply t) would Nl. ++ I) (tBlltl lXtM/N] (a) B 1M] ++ 1)([MI (a) The The inequality inequality [B / Nl ~> ([ tB IN] pairwise 1 ) pairwise l J ' l 1++ 1)([MI I X I M /N] r y 1++ 1) the B1M] B , of o f ([( t B i n s i a e B, t h L ' eexistence, x i s t e n c e ,inside l)-pairwise B/yJ if ([([ B orthogonal if 1M] +* 1) pairwise consequently, and consequently, N, and of N, copiesof orthogonalcopies is aa which (tM/NI l)N) + (since !t orthogonal copies of M (since M { ([MI N] + 1) N) which is 1,1 { of copies ortholonal con tradiction. contradiction. (a)' proof of of (a), (b) comment in the the proof parenthetical commentin (b) By By the the parenthetical
, , t e B . r [ r.I' -. ][ + ] . r)l r u. ( t MN] / N l++ [t BIN] B / N I ++ e x i s t([MI i f there t h e r eexist (Strictly v a l i d only o n l y if i s valid t h i s is ( S t r i c t l y speaking, s p e a k i n g ,this then ~lf not true, is lf; if that 2) pairwise orthogonal copies of N in~; if that is not true, then in N of copies pairwise orthogonal i) must with f i n i t e , with m u s t be b e finite,
[F]. [F].[*].,,
N] isis clearly clearly since [:RI follows since in inequality follows [R/ N] the desired desired inequality which case case the in which that of I e from 1"1 by monotone in:R.) Since finiteness is inherited by M $ B from that of is inherited finiteness monotone in R.) Since E f a l s e . b e Ml ' 1and B, the desired inequality cannot be false. 0 c a n n o t i n e q u a l i t y d e s i r e d t t r e 6 , and M and and seqttencefor proposition 1.3.10. for M Proposition b" aa fundamental Let {N f3.fg. Let fundamental sequence {N n}:=l r,}i=r be
I€
uollcunc uolsuelurosrII '€'I 1.3. The Dimension Function
31
'uaqJ 'otaz-uou puo artutl aq n u g \
ral
let M, B n M be finite and non-zero. Then,
~
0 eventually; in fact
[+]
[;. ]
[~ ] /' + .. ; and
,",
n
n
ffi
ti i (q)
lim [MI Nn ] exists and is a finite positive number. n-+" [B INn]
'raqlunu artttsod aty{ o s! puorrrr""
a^Br.I3 , h ' I < u f u e r o 3 ' ( e ) o ' g ' t eruuel
[g
(b)
p u 2o- . .
Tcou l 1 i t l p n l u a n aro [+]
(a)
Proof. By Lemma 1.3.9 (a), for any n ;, I, we have
'[4],.",. [+]t4l. l # l [t ];, [}][: ];,
2
n l - [:
'Joord
n
J;
-UNJLW L J L W I '7 raEalur,(ue rog 'usql "N 'ou 't 'os i o r < [ " N / p ] s p : o , nr o q l o u l : t ^ tT
since { N11M] is a fixed finite integer it follows that [N n/M] = 0 for all sufficiently large n; thus, there exists an integer no such that M l N n for all n ~ no; so, if n ~ no' Nn i 11; in other words [MI Nn ] ;, 1. Then, for any integer k,
N
[N:o+k] ~ [N~ ][~] ~
,1+or,..ot , . {*ou a 'r-,rzI l-"+ll#| . l-=ll-l 0
2
k
-1,
0
'I < ["N /g I r"ql eErelos sr u JI l€ql aas e^\ '(c) 6'€'t €turuel u1 seytllenbauleql qtoq ol Eurleaclcly(q) 'perrordsr (e) puu
and (a) is proved. (b) Appealing to both the inequalities in Lemma 1.3.9 (a), we see that if n is so large that [ B I Nn ] ~ I,
I I . f 1_ t*rWinJ tffiJ'-T*ffi
[MI Nn±k] ,{[MIND] + I} . {[ NDI ND±k] + I} [ BIN n+k] [ BIN n] [ N/ Nn+k]
[ t * " N/ ' N ]
I ' N/ e i
(*)
(*)
[ { + " 1/ g yJ
l€rll (e) lred pue flrlenbeur e^oqe oql ruorJ pue 'qEnoua oErel a JoJ o > ')c > 0 lerll (e) lrrcl IuorJ s^rolloJ tI '["N / g|/t" I /Wl = 'n Eurlrr16 'l < 4 ra8alur fue ro3
for any integer k ~ 1. Writing an = [MI Nn]/[B INn]' it follows from part (a) that 0 < an < .. for n large enough, and from the above inequality and part (a) that an ;
-n
w
I
,
I
dns u11
lim sup a p p -+ ..
) -n
-
-
d
'O <'o ruJIl€r{l ueos n f g 'ellurJ sl pue slslxo ll,,'g pue W J.o solor oqt EulEueqcrolur ,ll -rc-t-rull ecuaH '-o Jul urll > "rc clnsur1 leql opnlcuoc'tr Eurfre,r fq
by varying n, conclude that lim sup a p , lim inf an' Hence limn-+..a n exists and is finite. By interchanging the roles of M and B, it is seen that lim an > O. 0
Euratroylog aqt f;sgtzs ol uaas frrs'a sr 56; uortcu"J ".,;t:""i1;p-;;; pu€ elruu are N pue g l,t .lt '(A| Ot'e't 'dor4 ,(q paaluerenE sr ecuelsrxeesoqa llruJl erll aq ol )(g /W) ourJap 'oraz-uoupue olrurJ ere g puu x JI 'w toJ ecuenbesleluourepunJE eq t=j{" ry; = -I'g'I "uua'I Jo Joord Jo puA S pue II adf] Jo rolceJ e eq n lc'l
End of Proof of Lemma 1.3.1.. Let M be a factor of type II and S N n}:=l be a fundamental sequence for M. If M and B are finite and non-zero, define (MI B)S to be the limit whose existence is guaranteed by Prop. 1.3.10 (b). If M, Band N are finite and non-zero, the function (+) S is easily seen to satisfy the following conditions: = {
]
[~]S '[*
N~
=
€ N-W M".
=
[}]S; ''[*]
(l)
(i)
='[+],1=t[+](') ''[-*]'[#] ":Hl='[-fi] (ii)
[:
Js = 1; [~]s
=
[MB Js [~ Js ; [~]s = [~ ]~l ;
l1..
332 2
actors f FFactors Murray-von Neumann Classification eumann C l a s s i f i c a t i o n oof urray-von N TThe he M
~ B]S= Lt[ [~]!S LfJr= rlte 8'r
(iii) l'1 M i1 IB t::} (iii)
[ M
rll'l N
.+
rBt
[-}]S;
(use (use Lemma Lemma r.3.e 1.3.9 (b)) (b» Lnf ;
(t4 I r8'l ^ <' l v l -]S' ((iv) i v )lM.{ ' _{18B +::} l p - l ]S . L'' JS L'' JS
[~
[~
Now fix fix a finite finite non-zero non-zero IB and define define Now
i f !M1==(0) (o) II o0 ,, i f = (x/ I ifif lt Dg D S (x) (M) = M is finite finite and and non-zero non-zero )S , |{ (. .M/ B)S', if M infinite. 11 infinite' if is ' L It is readily readily verified that Dg DS satisfies satisfies the the conditions conditions (a) (a) -- (c) (c) of It Theorem 1.3.1. Theorem1.3.1. '[0,'] Conversely, if if D: D: P(M) P(M)'" [0,"] is is any any function function satisfying satisfying (a) (a) -- (c) (c) Conversely, Theorem 1.3.1, 1.3.1, it is clear clear that that for finite non-zero non-zero M and and N, of Theorem
1
L( 1
rlot l~ ]r,N D( N ) )( , D(]t) D(M) . , ~ + 11 D( ru N);y; [h [F1. L''
I
consequently, for finite finite non-zero non-zero !t M, and and n n = = 1,2, 1,2,..., ..., consequently, N.l N,l t [M/ N ] D(M) [M/ N ] + 1 il{/ n ll't/ .....::...-,--_nu.:...._ li. D(M) • - _ _ ,.[t Bf N n] + 1 D( B ) [ B / N n] , D ( B ) I 1 B l N" l ' B/N"l+ ' o and - - ,, recall D ( X ) == t h a t D(M) let c o n c l u d e that a n d conclude r e c a l l that t h a t [B/ ] ..... l e t n ..... I B / NN" n] o for l( conclude (lv1)= .. conclude that for infinite infinite M, D(B )DS (M). S (M) (m). Since D(!t) = D DS Since D(M) D(8 )D3 D (B)DS' x ) D s . 0o D D == D(
' [0,"] as in in P(tnO D; P Proposition factor and (M) ... and D: Let M be be aa factor l3-f f. Let Proposition 1.3.11. [0,-] as 1.3.1. Then, Theorem Theorem1.3.1.Then,
**
(a) N); and (a) M.{ D( N); and MI N D(11),< D( ^J e D(M) pairwise (Jtl") is aa sequence sequenceof pairwise (b) } is t,f {M (b) D is i.e., if additive -- i.e., countablyadditive is countably n = ID(M"). (nl4) 14 6t4n, D(M) then (7'/M) and if M = $M then D(M) = ED(M , orthogonal subspaces and if orthogonalsubspaces n ). n
l'l .{I N that M (a) and (b) of Theorem 1.3.1imply imply that Proof. Theorem1.3.1 and (b) The conditions conditions(a) Proof. The
+ D(M) yields: M D(N (a), this I't << N N ::} D(M)<< D( ::} N ); this yields: ) D(M) coupled with (a), ); D( N); N); coupled D(l't) ,< D( (resp., D(l't) < D(N) thus, M .{ N (resp., M ~ N) implies that D(M) , D( N) (resp., D(M) >> (resp., D(x) I't that implies lt N) thus, I N I - N a n dM N are mutually M ~} N a r e mutually p o s s i b i l i t i eMs M D( ~{ N, N ,M x Nand t h e possibilities D (N». N ) ) . Since S i n c ethe possibilitiesD(M) D(1"1) D( N D(J't)<< D( N ),)' D(M) exclusive == the possibilities as are are the and exhaustive, exhaustive,as exclusiveand (a) in follows. D(N) and D(M) > D(N ), the reverse implication in (a) follows. D(N ) and D(X) > D(N ), the reverseimplication N
the (b) is of the is aa consequence consequenceof For the assertion(b) the assertion For finite finite sequences, sequences, D. Assume, Assume, (cf. (b) (b) of 1.3.1)of of D. Theorem1.3.1) assumed of Theorem finite additivity additivity (cf. assumedfinite I (0) for all n. Xn (11") that M then, } is is infinite infinite and and that the sequence sequence{M that the then, that n '# (0) for all n. n N, for all N, that, D show Finite additivity and monotonicity of D show that, for all of Finite additivity and monodonicity
nt"!, D(il")= '1"9, L~l ,'lnj n]
N
D(Mn ) = D
I
M
'D(M);
consequently ) ,< D(M). D(M). ID(JV1") consequently W(M n particular' for for in particular, If Then ED(M ID(Jv1,) possible, let D(M). Then tet ED(M Ib(il") a in If possible, n ) << 00; n ) << D(M). D(N) << E.e' that D(N) M such such that each 7'/ M non-zero N N"n finite non-zero e*is'dsaa finite there exists 0, there each Ee >> 0,
Proposition 1.3.14. Let D,6. be as above. Then 6. is one and only one of the following sets: 'a^oqo so aq j'q {o auo {1tto puo auo s, V uaqJ
la7
0
I
:s1as3utuo11otaql 'rl'E'l uoglpodor4 'Joord
Proof. Exercise! ieslJrexl
tD3 pup 'V "rc3 "' '4o'rp , v ) € rc > p u o i yt g - r c € D > g puv vrBto
6. £; [D,a]; a,13 E 6. and 13 < a:} a - 13 E 6.; and al'~'''' E 6. and Lan' Lan E 6..
a:}
l[='o]j v
(a) (b) (c)
(c) (q)
(u)
'uaqJ '(A)C = b 'e '€I-€'I "unurf tal puv a^oqv so aq V ta7
Lemma 1.3.13. Let D, 6. be as above and let
a = D(:I£).
Then,
'{W u W : ( W ) O )= V l e s e q l r o ; u a d o o r e l € q l s a 1 t l 1 1 q 1 s s o d a q l E u r r a p r s u o c, { q J e q l J n J e l l l l l ? s r s { 1 e u e e q l e n u r l u o c s n l a . I
Let us continue the analysis a little further by considering the possibilities that are open for the set 6. = {D(M): M T} M}.
Definition 1.3.12. Any function D as in Theorem 1.3.1 -- there are not too many of them! -- is called a dimension function of M. (Murray and von Neumann call it a "relative dimension function"; we dispense with the adjective "relative", one justification for such impertinence being: who has ever heard of a relative Haar measure?) 0
(eerns€atu D r€8H o^ll€leJ € Jo pr€eq re^e s€q oq/tr :Eu1aq acuoullredrul qcns roJ uolleclJllsnf ouo ',,aArg€ler,, elrlcefpe aqt qll^r osuedslp o/r\ l,,uor1cun; uorsueurp elrlelor,, B lr II€o uu€runeN uol pue ,{errnq) 'n Jo uollJunJ uorsuaurp B pallec sr -- iruarll 3o fueu ool lou 'Z,['E'I uoTllulJeq er€ oraql -- I'g'I ruaroorl.1.ul s€ cr uollcung fuy 'Joorcl eql seltlduroc E uotlotp€rluor slqJ '(W)O > ("W)Og- (W)O = r > (w)O > (y)g acuaq ' o ^ l l l p p e i ( 1 q e l u n o cs l - e c u l S pu€'N i l14e - !f lulll epnlcuoc ' p s l J r r e ^ s l u o l l r e s s €a q l p u B
and the assertion is verified. Since .... is countably additive, conclude that M .... $ M~ £; N, and hence D(M) , D( N) < E = D(M) - LD(Mn) 'D(M). This contradiction completes the proof. 0
'[i*'E'] oNSr+ul.[6l+ull ....
M~+1 ;
Ng
qJnsJrtlu t''l u al,rslsrxoaraql os M~+1 T}
L~l Ml J.
M such that l€ql
Mn +1
so there exists
J>n
> .L D(M) ~ D(Mn+1);
i(r+"w)o< (fw)o"if j=l
J
( , h ) o ' i r(-N ) o= [ [ ' - ' E] ur ] o ::*rt#,* i*rwT^:#.; >.f>I > r ror ,rw r ,h,"r^rrr;;3'1,:rffi'r:rl - I11 y'g = D(
N ) - 1:: D(W)
Assertion: There exists a sequence {M~} of pairwise orthogonal subspaces of N such that Mn .... M~ for all n. We shall construct the M~ inductively. To start with, D(M1) < D( N) implies M1 {N and so there exists M~ T} M such that M1 .... M~ £; N. If, now, M~, ..., M~ have been chosen satisfying Mi ' 1 Ml for 1 , i < j , n, and Mi .... 1'\' £; N for 1 ' i , n, then,
'g 5
le{l qcns
slsrxa oreql os pue
u
}
so11dtu1
N 't'r^ u€rs fy (,')o'Iw(r'u)o :*,,jr:ijrl;rjr";,1"",1t#*1i"r"",::l; leuo8oqlro asymrled Jo tlW) ecuanbes € slslxe erar{I :uollressv '( '{N+'l^l},(q {"w} Eulcelcler l' )o t fw)og leql -- 1gaErel roJ fq -- ,(lryerauaEgo ssol lnoqlJ/vrorunssei(eru en 'o5 'N qcea roJ
for each N. So, we may assume without loss of generality -- by replacing {Mn } by {Mn +N }, for large N -- that LD(Mn) < D( N). N=u N=u') ,, -l"t,t "* ("w)c"3 lo = ("w)o3 - (t,t)( (,,
n]- n~ND(Mn)
M
L
r=u
n~l D(Mn) = D [n~N
o
o
)
D(M) -
@
' a ^ I l l p p e { 1 a 1 t u t 3s l leql olou Creouls '("W)O3- (W)g > , pexrJ B roJ N uE qcns >1crd
Pick such an N for a fixed E < D(M) - LD(Mn). Since D is finitely additive, note that 33
'€'I
1.3. The Dimension Function uollcun{ uolsus{ul( eqI
€€
334 4
(In) (I-) ((10)) I) ((Ill) IIl) (110)) (II-) (III) (III)
l1. .
actors Murray-von Neumann Classification f FFactors eumann C l a s s i f i c a t i o n oof TThe he M urray-von N
{O. eE. 2€, 2E•...• nE}. where where 00 .< ?E << -0>;; (n (n == 1,2, 1.2....) .'.) (0, ..., nZ), , 1 , 2 , . . o>}. . , * )w , h e r e00 < where ({nE: n 7 : nn == 00.1.2•...• where h e r e 00 <
consider. separately, separately. the three cases cases corresponding to the Proof. We consider, possible type type of of M. possible Case (i): M is of of type I. Case r o o f ooff i n tthe h e pproof N nn M bbee m minimal. Wee hhave e e n ((in a v e aalready l r e a d y sseen inimal. W LLet et N i er NNi ,j' o r m JM" t= Theorem 1.3.1 = o $jEI h e fform_ n y 1M4nn M iiss ooff tthe o r ttype y p e II)) tthat h a t aany T heorem 1 . 3 . 1ffor A g N with I countable and N ~ N for each i. and so 6 f {n E : n = N , f o r i , a n d s o each w i t h l c o u n t a b l ea n d ,2, { n 7 : n = 0 , 10.1.2• j ( i ) = lX f iiss ffinite inite a i f nd ...} u {o>} where E D( N). It is easy to see that (i) if and s e e t h a t I t i s e a s y t o w h e r e ? D ( N U ...) {-} ). i i ) iif n f i n i t e , tthen hen f X [XI N l]== nn., tthen 6 == t{kk 7E:: k == 00.1 n}) a and Xt iiss iinfinite. n d ((ii) , 1•...• , . . . ,n hen a llt/N 6 ,=={n A @ E: 7 : nn ==00.1 , 1•...• , . . .o>}. ,-). Case (ii): M M is of of type II. Casc ot oes n Since has 6 d does not o l l o w s tthat hat A e q u e n c e ,iitt ffollows a s a ffundamental u n d a m e n t a l ssequence. Since M h smallest positive number. number. Let d = D(Xf). D(X). Infer Infer from from contain a smallest hat n t e g e r k ssuch u c h tthat or a n y iinteger Lemma E A A, tthen E A 6 ffor any f a e h e n kka o. e 1 . 3 . 1 3tthat h a t iif L e m m-
a
a.
Case Case (iii): M is of type III. Clearly. case 6A = {O.o>}. Clearly, in this case {0,-}.
0n
II- or IIt, 110> I,, II*coo Ill' be of type type In' Definition is said f3-15. A factor M is said to be Definition 1.3.15. f u n c t i o n of o f M satisfies satisfies III d i m e n s i o n function r a n g e of o f the t h e dimension a s the t h e range I I I according a c c o r d i n g as I, F a c t o r s of o f type t y p e In 1 . 3 . 1 4 . Factors the P r o p o s i t i o n 1.3.14. o f Proposition c o n d i t i o n of t h e corresponding c o r r e s p o n d i n gcondition -) and called are called types are the other other types (n (n << 0» finite, and and the called finite. II, are are called and III (rel f i n i t e (reI i f X f is i s finite infinite. ( T h u s , aa factor i f and a n d only o n l y if i s finite f i n i t e if f a c t o r M is i n f i n i t e . (Thus. (Thus a M).) Factors of type I or II are said to be semifinite. (Thus a factor to be are said M).) Factors projections.) f i n i t e projections.) n o n - z e r o finite M is i f it i t contains c o n t a i n s non-zero i f and o n l y if a n d only i s semifinite s e m i f i n i t e if
o0
f a c t o r s of of t h a t factors g i v e n later 4 . 3 to t o show s h o w that Examples l a t e r in i n Section S e c t i o n 4.3 w i l l be b e given E x a m p l e s will all exist. types exist. all these these types papers would would be be No Neumann papers Murray-von Neumann of the the Murray-von No treatment treatment of p a s s i n g s o c a l led t h e m e n t i o n o f complete without at least a passing mention of the so-called l e a s t a complete without at i s expressed expressed a l g e b r a is v o n Neumann N e u m a n n algebra reduction w h e r e b y every e v e r y von r e d u c t i o n theory. t h e o r y , whereby abelian t h e abelian o n e uses u s e s the as V e r y briefly. b r i e f l y , one f a c t o r s . Very i n t e g r a l of o f factors. a s aa direct d i r e c t integral Hilbert u n d e r l y i n g Hilbert von r e p r e s e n t the t h e underlying Z ( M ) to t o represent a l g e b r a Z(M) v o n Neumann N e u m a n n algebra in m e a s u r e s p a c ein a space as a direct integral of Hilbert spaces over a measure space o v e r H i l b e r t s p a c e s o f i n t e g r a l spaceas a direct ' s c a l a r decomposable' operators. d e c o m p o s a b l e 'operators. such a s 'scalar Z ( M ) acts a c t s as w a y that t h a t Z(M) s u c h aa way ( a compact compact t o be b e (a b e taken t a k e n to (Actually. m a y be B o r e l space s p a c emay ( A c t u a l l y , the u n d e r l y i n g Borel t h e underlying
subset of) the real line, since every abelian von Neumann algebra acting on a separable Hilbert space is generated by a single self-adjoint operator -- but that is not really crucial.) The theory goes on to show that if 3t = J~(>,)d J,L(>'), there is, for each >., a factor M(>.) f :f(3t(>.», the assignment >. -+ M(>') being "measurable" in a certain sense, so that M is the collection of operator~ of the form x = f$x(>')dJ,L(>.), where x(>') E M(>.), the map x( .) being measurable in an appropriate (weak) sense and satisfying IIx II = ess. sup IIx( .) II < 0>. Using this theory, one may speak of the type of a general von Neumann algebra; call M type Ill' for instance, if each (i.e., a.e.) M( >.) is of type III and so on. After deliberating on whether or not to devote a section in this chapter to a more elaborate exposition of this theory, the author opted for "not to," on the following counts: (a) the material is not really pertinent to the remainder of the book; (b) it is not really necessary to torment the uninitiated reader with the spectre of non-measurability that is inescapable in anything like a serious discussion of disintegration; and (c) the initiated reader does not need the section anyway. The interested reader should go directly to the fountainhead for as readable and self-contained an exposition of the theory as is possible.
pus ;ilXT::l u€ paur€luoo-Jles sr se {roaqr aql Jo uolrgsoctxa
sE roJ p€oqur?lunoJ al{l ol ,{llcarrp oE plnoqs ropeor pelserelur srll ',{e,r,{ue uollces eql paeu lou saop repeor palelllul eql (c) pue luorlerEalurslp Jo uorssncslp snorras s oIII Eu1q1f,ue ur olqedecsoul s! teqt ,ttlllqerns€3tu-uou 3o erlcads aql qll/$ rop€ar pol€lllulun oql lualurol ol ,(resseceu ,{11eerlou sr 1r (q) i4ooq oql Jo rapul€Iuer oql ol lueuruad ,i.11ear lou sI lerraleru aql (B) :sluno3 Eut,vrollo; eql uo ,,'o1 1ou,, :o3 paldo Joqlne oql ',(roaql slqr Jo uolllsodxo al€roqsle erou € ol Jelderlc s l q l u l u o l l o e s B a l o ^ e p o l l o u r o r o q l a q ^ r u o E u l l B J a q I I e pr e U V "e'1) q3eo 'uo os pue rII oclfl JI 3o sI (\)4 ('a'e 'ecuelsur roJ 'rII ad6,1ya1 11eclerqaEl€ uu€runeN uol lereuaE B Jo ed,{l f e u r a u o ' { r o a q l s l q t E u t s n ' - > l l ( . ) ] c l l d n s ' s s a= l l r l l eql 4 e a d s J o (" Eurf .;sylespuB asuos (4ue,tr) alerrctorctcle ^.uBul eiQern$'eauEulaq ;x dsru eql'(x)n t (1)x eroq,n'(\)7,p(\)reJ = x ulroJ oql Jo srolerado '3su3s u!€u3c e uI ,,elq€rns€alu,, JO uollJsllos aql sl w wql os Euroq (1[,g - 1]ueruu8Jsse eql'((\)fih f (r)Ztt ro1ce; e'1 qcee -ro3'sr araql'(1)rlp(r)A-l = lf JI lBql ^roqs ol uo seoE^roaql eql ( ' l e r c n 1 5 ' , ( 1 1 B leoru s I l e q l l n q - - r o l € r a d o t u l o f p e - J l a s a18u1s B ^q palerauaE sI oc€ds ueqIIH alq€reclas € uo Eullce 'eut1 erqaEle uueruneN uo^ uelloqe fra,re eculs lear aql (Jo lasqns
s€
uorlJunc uolsuelulceql
'€'I
1.3. The Dimension Function
35
Chapter Chapter2 THE TH E TOMITA-TAKESAKI TOMITA-TAKESAKI THEORY THEORY
question(which, (which, in the Section 2.1 discusses Section2.1 discussesthe following Question the following the case caseM == g finite, is LL'1X,7,y) co(X,f,IL) with IL is answered answeredaffirmatively by the the existence existenceof - [0,1] the the Lebesgue Lebesgueintegral): integral): if if m: m: P(M) is countably countably additive additive in ?(tuO.... [0,1] is the the sense sensetha thatt
-["!,""] V en] =r m(e n) @
m[
n=l
=
t
n=1 n=l
m(e^)
projections in M, for any countable countable collection of of pairwise orthogonal orthogonal projections does m n extend to a linear functional does functional on M which is well-behaved well-behaved under monotone monotone convergence? convergence? Section 2.2 2.2 is devoted Section devoted to the celebrated celebrated GNS construction, construction, which, in = L case co(X,f,IL) yields the Hilbert 2(X,f,IL) and the case M = L'1X,r,p1 Hilbert space spaee L Lz(X,r,p1 r e p r e s e n t a t i o nof representation m u l t i p l i c a t i o n operators. o f M as a s multiplication operators. ( c o n j u g a t e linear) S e c t i o n 2.3 2 . 3 is i s concerned w i t h the Section c o n c e r n e dwith t h e (conjugate l i n e a r ) operator o p e r a t o r on the o n the - x* of M. The climax is GNS space space which is induced by the map x .... t h e Tomita-Takesaki T o m i t a - T a k e s a k i theorem w h i c h involves the t h e o r e m which i n v o l v e s a thorough t h o r o u g h analysis a n a l y s i s of of p o s i t i v e factors p o l a r decomposition the t h e anti a n t i unitary u n i t a r y and a n d positive f a c t o r s in i n the t h e polar d e c o m p o s i t i o n of of the above above mentioned mentioned operator, operator, and their commutation relations relations with with the operators operators in M. One One crucial fact emerging emerging from from this theorem theorem is g r o u p (called ( c a l l e d the the t h e existence e x i s t e n c e of o f a certain c e r t a i n one-parameter o n e - p a r a m e t e rgroup t h e modular modular group) of of automorphisms automorphisms of M, which is of of fundamental importance when M is of of type III. As the proof of the theorem theorem is long and p r o o f is p r e s e n t e d only technical, t e c h n i c a l , the t h e proof i s presented i n the v e r y special when o n l y in t h e very s p e c i a l case c a s e when the t h e above-mentioned a b o v e - m e n t i o n e doperator i s bounded. A l t h o u g h this never o p e r a t o r is b o u n d e d . Although t h i s case c a s e never (as will arises III (as will be arises when M is of type III be established established later), this option p r o o f and h a s been has b e e n taken t a k e n as a s a compromise n o proof c o m p r o m i s e between b e t w e e n no a n d complete complete proof, both alternatives being distasteful to the author. weights, which are Section Section 2.4 2.4 introduces introduces weights, are non-commutative p r o o f s in analogues i n f i n i t e measures. a n a l o g u e sof o f infinite m e a s u r e s . There T h e r e are a r e few f e w proofs i n this t h i s section. section. The T h e results r e s u l t s are m a d e at a r e stated s t a t e d and a n d some s o m e tentative t e n t a t i v e effects e f f e c t s are a r e made at plausible convincing c o n v i n c i n g the t h e reader r e a d e r that r e s u l t s are t h a t surely s u r e l y the t h e stated s t a t e d results a r e plausible enough. e n o u g h . The T h e statement T o m i t a - T a k e s a k i theorem i n its i t s full full s t a t e m e n t of o f the t h e Tomita-Takesaki t h e o r e m in
37
uollerEalulalll€lnruuocuoN'I'Z 2.1. Noncommutative Integration
tc
'lsrxa suollelcedxe l?uolllpuoc lerulou qJlqa ur suollenlls esoql serJrluepr qJIq,t\ rueroeql s.lI€se{3I pu€ suollelcoclxa I€uolllpuoc (q) pu€ 'l{€sa{€J pue uesreped Jo rueroeql ur,{po>11p-uopeg e^lt?lnuuocuou eql (e) Jo uolssncsrp € qll,r\ spua ralduqc eql 'tqE1a,yrB qll/tr pelelcosse dnorE rslnpou oql go (uo11cnrlsuoJ SNC eql ol lgadd€ lou seop 1eq1) uollusrrolJer€qc crsulrlur ue sealE qclq,n 'uollypuoc f .repunoq Sn) aql pellec 'uorrelrrJ IEcruqcel InJ3sn l(Jr^ € ol sulBUad uollcos lxeu eql 'uolloes srql ul ecuereadde uE so{€ru osle [111erouaE
generality also makes an appearance in this section. The next section pertains to a very useful technical criterion, called the KMS boundary condition, which gives an intrinsic characterisation (that does not appeal to the GNS construction) of the modular group associated with a weight. The chapter ends with a discussion of (a) the noncommutative Radon-Nikodym theorem of Pedersen and Takesaki, and (b) conditional expectations and Takesaki's theorem which identifies those situations in which normal conditional expectations exist. uorlsr3clul
aapslnuuocuoN'I-Z
2.1. Noncommutative Integration
' - 6 3 ( ' W \ f r g 1 ' f 1 l u e l e , r r n b e ' r o ' I 4 l u r .x 0 qcns Jo uollcelloc oql lle roJ 0 ( @*xh JI e^lllsod eq ol pr€s sl .jrtluo 0 leuorlcunJ r€aull v '3q plnogs foql asrnoc Jo s€'luel€,rrnbo are g 4 x pue-y,7 t n'eJu€lsur rog'snq1+n, * - d u a q , t rf l a s l c a r dr ( > r f q e r e q m q/,{ '.;ry .rolcol Iuer er{l uo Japro u€ ecuds 3o slueuala 1u1o[pe-Jlos Jo ''n potouap oq III,n.;4r ur srolerodo saulJep -yg euoc eaglgsod aqa fq 'eceds o,rll1sod Jo uollcelloc eql UaqllH alqerudes e uo srolerodo Jo erqo8le uu€runoN uol € olouop s[e,rn1e ilr.^ n loqurfs arlJ
The symbol M will always denote a von Neumann algebra of operators on a separable Hilbert space. The collection of positive operators in M will be denoted by M+. The positive cone M+ defines an order on the real vector space M h of self-adjoint elements of M, whereby x , y precisely when y - x E M+. Thus, for instance, x E M and x ~ 0 are equivalent, as of course they should be. linear functional 4> on M is said to be positive if 4>(x*x) ~ 0 for all x in M, or, equivalently, if 4>(M+) f IR+. The collection of such 4> will be denoted by Mt. An element 4> of Mt is called a state if it is normalized so that 4>( l) = 1.
A
q l/4.. srrr Jrer'rsBparrec ;f .ff fitil:,ii;t[-;:,x sop ruaural,
sesrcjaxg
Exercises E
Mt.
'-*ntQ
alrlrsod
to-I (I-I.Z)
(2.1.1) Let 4>
:flrlenbeur zre,nqcg.fqonBJ eql sorJsll€s0 (q) tti uo ruroJ olrurJop-rluos = [rf'r] uoylenba eql (e)
reourpnbsos ? saurJap (x*d)f
(a) The equation [x,y] = 4>(y*x) defines a sesquilinear positive semi-definite form on M. (b) 4> satisfies the Cauchy-Schwarz inequality: 76(t*ths11(r*x)0
> l(x*,q01
l4>(y*x)1 , 4>(x*x)1/24>(y*y)1/2. '
= ;1r;1 s! 0 (c) ourt;'dHlL; x*x , IIx 11 2 1.)
=
osn pue (q) ul I = t lnd :1urg) '(t)0
(c) 4> is bounded and 114>11 = 4>(1). (Hint: put y
in (b) and use
x*x
('acuelsulroJ '[I ,rry] u1 punoJ oq feu syqt E 'f1r1uapleqf l€ rurou sll sulell€ 3o goord e lo,rrlrsod{lluclleurolne sr qJIq^\ 'n uo uollcunJ r€eull pepunoqfu€ luql 'fyesranuoc'anJl sI lI)
(It is true, conversely, that any bounded linear function on M, which
attains its norm at the identity, is automatically positive; a proof of this may be found in [Arv 1], for instance.) 0 eq ot pr€s sl /,t/uo 0 leuollcunJ r€eurl errllsod v
'Z'I'Z uolllulJeq
Definition 2.1.2. A positive linear functional 4> on M is said to be
.n ut D f IIB roJ (*rx)Q = (x*x)p JI l€rcerl (lll) :(tt'l'O 'dor4 'gc)-n u\ {tx) 1euEulseorcuJ ouolouou s Jo runuerdns aql sr x rolauaq^\ '(lx)O ldns = (r)0 .ll l€rurou (ll) i0 < (x)0 serldrur-n t x I 0 Jl InJqllBJ (l) (i)
faithful if 0 'I- x E M+ implies 4>(x) > 0; normal if 4>(x) = sUPi 4>(x), whenever x is the supremum of a monotone increasing net {Xi} in M+ (cL Prop. 0.4.11); (iii) tracial if 4>(x*x) = 4>(xx*) for all x in M. 0 (ii)
heory The Tomita-Takesaki Theory he T omita-Takesaki T 22.. T
3388
Exercises Exerciscs (2.1.3) If If 04J eE M|, ~, show that that the ffollowing quivalent: o l l o w i n g cconditions r e eequivalent: (2.1-3) o n d i t i o n s aare ((i) i) (ii) (ii) (iii) (iii)
racial; f4J iiss ttracial; 4J(xy) = O(yx) 4J(yx) for for all x,y x,y in in M: M; Q(.xy) 4J(uxu*) = 0(x) 4J(x) for for all all x eE M and unitary unitary uU eE M. Q@xu*)
r o v e ((iii) iii) + i i ) bby ii) a Use 9 ((ii) and 9 ((ii) o l a r i z a t i o n ffor i) + y ((Hint: Hint: U n d pprove o r ((i) s e ppolarization (iii) as as Q(ux) 4J(ux) = b?u) 4J(xu) and using the fact that that the unitary unitary re-stating (iii) operators ass a vvector e c t o r sspace.) n M sspan pace.) pan M a o p e r a t o r s iin
(2.1.4) Let M = L-(X,T,p), L ClO(X,f,jL), and let 6 4J eE W. ~. (2-1.4) with m.p. in the notation of of Ex. (0.4.5).) (0.4.5).) with m,y,
(We (We have identified identified 0c/J
e a s u r eo The equation 4J(IE) defines additive measure onn ((a) a) T initely a dditive m (E) = 0 e f i n e s a ffinitely he e q u a t i o n vv(E) (lo) d which absolutely with i t h rrespect ((X,f), X,F), w e s p e c t tto o pjL.. h i c h iiss a b s o l u t e l y ccontinuous ontinuous w ( a s above) in (b) 4J is normal a 9 d i t i v e , in (b) Q i s countably c o u n t a b l y additive, i f vv (as a b o v e ) is is n o r m a l if i f and a n d . only o n l y if which case 4J(f) = f lc fg dpfor d jL for some non-negative g Ee Lr(X,v); L 1(X,jL); some non-negative which case 0(,f) ith continuous w (c) 4J is jL is with (c) 0 if p i s absolutely i f and a b s o l u t e l y continuous f a i t h f u l if i n d only o n l y if i s faithful respect to v. v. 0D respect
J
g e n e r a l fact: fact: a ( b ) is m o r e general Exercise ( 2 . 1 . 4 ) (b) i s a special c a s e of o f a more s p e c i a l case E x e r c i s e (2.1.4) i f it i t is is positive p o s i t i v e linear n o r m a l if i f and a n d only o n l y if i s normal f u n c t i o n a l on o n M is l i n e a r functional '- one one may a-weakly We shall omit a proof of this fact _. o-weakly continuous. continuous. We - - but i n the w i l l freely i t in t h e sequel. sequel. be f r e e l y use u s e it f o r instance i n s t a n c e -b u t will i n [Dix], f o u n d in b e found [ D i x ] , for p o s i t i v e linear w i l l be b e denoted denoted The l i n e a r functionals f u n c t i o n a l s will n o r m a l positive T h e collection c o l l e c t i o n of o f normal M*.* M* and are dual and M* by M* +. 1" are establish that M It is not too hard to establish *. It t l l i.e., f o r all a l l 4J0 i f 4J(x) cones M , if i f and a n d only o n l y If M , then i . e . , if i f x Ee M, t h e n x Ee M+ c o n e s :. 0 ( x ) ~> ''u0 for ( w i t h the r o l e s of and x t h e roles o f 4J in t h e dual d u a l statement s t a t e m e n t(with i n M* M * +, a n d similarly, s i m i l a r l y , the 0 and - , and ( A s above, w e shall t h i n k of o f the the interchanged) v a l i d . (As a b o v e , we s h a l l think i s also a l s o valid. i n t e r c l i a n g e d ) is elements of M* as linear functionals on M.) M.) as elements
Exercises Exercises = {x1", the the von Neumann (2.1.5) Let 4J0 Ee M*,+' Mo (2.1.5) and let M M*.*, let xx Ee M and o = {x}", algebra g e n e r a t e dby l. a n d 1. b y x and a l g e b r a generated measure (a) ( E ) ;=0 (4J(IE(x» l B ( x ) ) defines d e f i n e s aa measure ( a ) If t h e equation e q u a t i o n v *(E) I f x is i s normal, n o r m a l , the ( / ( x ) ) for f o r every every d vx* == 4J(f(x» on t h a t J fI dv o f x such s u c h that t h e spectrum s p e c t r u m of o n the bounded s p x. x. f u n c t i o n f/ defined d e f i n e d on o n sp B o r e l function b o u n d e d Borel w i t h the t h e notation notation (b) ( b ) For g e n e r a l x, i f 4J0 is i s tracial, t h e n , with t r a c i a l , then, s h o w that t h a t if F o r general x , show (a), vvl*l == vlx*1 tl**l . of (a), of . 0tr 1xl
J
verification 4 . 3that t h e verification The t h a t the l a t e r , in i n Section S e c t i o n4.3 w i l l notice n o t i c e much m u c h later, r e a d e r will T h e reader by w i l l invariably a c c o m p l i s h e dby that g i v e n finite i n v a r i a b l y be b e accomplished i s finite f i n i t e will f i n i t e factor f a c t o r is t h a t aa given p o s i t i v e linear f u n c t i o n a l Tr l i n e a r functional first n o r m a l tracial t r a c i a l positive f a i t h f u l normal f i r s t constructing c o n s t r u c t i n gaa faithful y i e l d s aa t o P(M) on r e s t r i c t i o n of o f Tr to P ( M ) yields t h e restriction t h a t the o b s e r v i n g that M , and a n d then t h e n observing o n M, v a l u e l . f i n i t e t o dimension function for M which assigns a finite value to 1. w h i c h M a s s i g n s a f o r f u n c t i o n dimension
'plqtlo/
, aq - ,n
E
M.,+ be faithful.
Then there exists a triple
a1du1 o stslxa apql uaqJ
Theorem 2.21. Let 4> (lf4>,n4>'04» where
) Q ta7
atatlu 1QV'QY'Q$1 -IZZ uerorql
'erqaEle uu€runoN uol 3 uo leuorlcunJ r€eull errllysod Ieurou InJqlleJ € Jo esec eq1 ,{1uo JeprsuoJ lleqs e^\ pu€ speau rno ol luelelerrr sr flrlerauaE qcng 'qEnorql oE ol uollcnJlsuoc erll roJ elenbepe Euraq 'ssay uala ro erqetle-*3 u lsnf .erqe8le uueuneN uo^ B paeu ue^a lou saop auo 'lcBJ ur lleurrou eq ua^a lou paau tl ilnJqtleJ eq lou paeu l€uollcunJ e^lllsod oql -- f111e-rauaE .uoJlcnJlsuoc (SNC relearE qcnur uI plle^ sr uollculsuoc slttl ol peler^arqq€ qpoJecuaq) leEag-{rsurr€N-pueJleg pa}€rqaloc aq} Jo lueluoc aql sI '1,y(uer.1eqe.{lrressocau1ou) lereuaE B roJ lno perrrec .sroluredo uollecrldrllnu aq f eu srsf1eue rBlrrurs frea B lerll s€ n Jo uollulu3seJdeJ pelurcosse eql pue (a,!,X)27 eceds lraqllH eql lcnrlsuoc flalerparurur u€c auo 'n B r,lJns uo^rg .IG-y.Z) 'xg 'JJl t ol '^lrnulluoc alnlosqB .luelB^Inbe lBnlnu Jo asues aql ul sl qJlqa n ornscarrr elrurJ c EuJsooqc ol slunorus n ao l€uollounJ r€aull enlllsod IBrurou InJrlll€J e Eursooqc '(tt'!'X)-.1 = l{ uerIA\
When M = L ""(X,r,p.), choosing a faithful normal positive linear functional on M amounts to choosing a finite measure v which is equivalent, in the sense of mutual absolute continuity, to p. [cf. Ex. (2.1.4)]. Given such a v, one can immediately construct the Hilbert space L 2(X,r,v) and the associated representation of M as multiplication operators. That a very similar analysis may be carried out for a general (not necessarily abelian) M, is the content of the celebrated Gelfand-Naimark-Segal (henceforth abbreviated to GNS) construction. This construction is valid in much greater generality -- the positive functional need not be faithful; it need not even be normal; in fact, one does not even need a von Neumann algebra, just a C*-algebra or even less, being adequate for the construction to go through. Such generality is irrelevant to our needs and we shall consider only the case of a faithful normal positive linear functional on a von Neumann algebra. 2.2 The GNS Construction uoprnrfsuoJ
sNc
crIJ
lrz
'It'Ol - (W)d :Lu rsarns€eru,, e^lllppB f lqelunoc {11,n uuql ror{lBr 'sleuorlcung r€eull o^lllsod (lerurou) rlll^r {Jo^\ qUoJocuoq II€qs a^\ .spJo^\ rarllo ur iarnseau oqr qll^\ u?rll JorllBJ lerEelur aql qllrrr {Jo^\ o} osoogc 11uqse,n ,og 'e = ll lurp uaq^\ luesard ore uralqotd eql Jo sslJ€clJlur er{l II€ 'oroq uana -- uoseelg ol enp ueJoeql (1er,rrr1-uouflalrur3ep pue) pelerqoleJ € ^q pallles flanrleurrJJ€ sl .(nh = n dse) lercads fre,r eq1 u1 '1,yuo l€uollounJ rBaurI aaltlsod I€rurou e o1 (n serrleruosr IEIIr€cl roJ Qnn)w = (n*n)u turi(gsrles flrrussecou lou) [I.0] U4I)d :u uollcunJ 3^lllppe flqelunoc leraua8 e Eurpuelxa 3o urelqord oql (q) pue 1,,11srolerado 3o sEurg,, uI lel€l teo6, e fluo pa111espue ',,sro18redogo s8ulr uO. ul I I urelqord sB pelels sr slql lBrll lc€J aql ,(q pacuopr,re s€ 'uu?runoN uo^ uo^e paxoJ flrrerodural lseel le a^€q ol suees rolc€J olrurJrruos € roJ ualqord Eurpuodserroc eql (€) 'uelqord slql eql qsrlqelso ol acrJJns plnoqs Jo .,{.1r1erarr1-uou suoll€clpul on1 Eur,nolloJ aql 'lueredsuerl -lo elslparurur sueoru ou ,,(q sr uollnlos aql 're,realo11 'e^oq€ pelsaESnsrauu€tu eql ul peulJep oq lsnu r Eugllnsor eql pue 're/rrsue e^rlerurrJJe u€ e^€q peopul seop qcler8ered eq1 Jo lrels eql le pelsa8Ens ruelqord eq1 .n uo IsuollcunJ r?aull I€rurou o^llrsod e ol spuelxa pue ,q;4ruo leu-ollcunJ r e e u l l I B a r e l a u l J e p r l € q l q s r l q e l s oo l _ l d u a l l e p u e ( 1 ) * n p 1 = ( x ) r J '((r)st)O = (g)*n fq r ds uo *n ernseau eqt eur3dp pynoc les uo_ql ouo 'q.;tg, ,( JI leql lsaE8ns sosrcrexe Eulpocard aqa .1e!c"r1 p,re 'slsrxa 'rtclq^\ 'n uo ll JI InJr{ll€J eq f11ec1}eurolneplnoa luuorlounJ r€aull alllysod I€rurou e ol spualxe rolc€J elruU B Jo uorlcunJ uolsuerulp aql reqleq^i ol sB urelqo.rd asraauoc eql /hou raprsuoJ
Consider now the converse problem as to whether the dimension function of a finite factor extends to a normal positive linear functional on M, which, if it exists, would automatically be faithful and tracial. The preceding exercises suggest that if x E M h , one could define the measure V x on sp x by v/E) = D(I E(x», then set T(X) = ).dvx ().) and attempt to establish that T defines a real linear functional on M h , and extends to a positive normal linear functional on M. The problem suggested at the start of the paragraph does indeed have an affirmative answer, and the resulting T must be defined in the manner suggested above. However, the solution is by no means immediate or transparent. The following two indications should suffice to establish the non-triviality of this problem. (a) The corresponding problem for a semifinite factor seems to have at least temporarily foxed even von Neumann, as evidenced by the fact that this is stated as Problem 11 in "On rings of operators", and settled only a year later in "Rings of operators II"; and (b) the problem of extending a general countably additive function m: P(M) ... [0,1] (not necessarily satisfying m(u*u) = m(uu*) for partial isometries u) to a normal positive linear functional on M, in the very special case M = I(lf), is affirmatively settled by a celebrated (and definitely non-trivial) theorem due to Gleason -- even here, all the intricacies of the problem are present when dim If = 3. So, we shall choose to work with the integral rather than with the measure; in other words, we shall henceforth work with (normal) positive linear functionals, rather than with countably additive "measures" m: P(M)'" [0,1].
J
39
2.2. The GNS Construction
uollrnrlsuoSsNc eql'z'7,
6E
40 40
2.. 2
The Tomita-Takesaki Theory heory T he T omita-Takesaki T
11 0 is a t-algebra *-algebra homomorphism homomorphism of of M (a) n6 into f,QtQ, Minto :f(lf4»' tt6 lf4> being a Hilbert space; space; Hilbert (b) oO 04> eE !t5 lf4> and fr6 lf4> = = ,6(Wa6 114>(M)04>. :; and (c) 0(x) 4>(x) = = <26(x)op'o6'for
',o') is another Such a triple is unique unique in the the sense sense that that if if (lft,tt (If',l1',O') another such such Such !l' triple, there exists a unique unitary operator w: tl1 lf4> ... If' such such that that w04> wa6 = = operator w: triple, there exists unique 0' Qt and 11' (x) = = Wl14>(x)w* for all x in M. wn5(x)w* for n'(x) Further, the the imaie image 114>(M) Neumann algebra of of operators operators on on n5(M) is a von von Neumann lf norm-preserving as as well as as being a o-weak a-weak homeomorphism homeomorphism of of tt6i n6 is norm-preserving 0; 114> onto 114>(M). M onio n6(M).
If x,y € E M, define [x,y] [x,y] = Q(y*x). 4>(y*x). The positivity positivity and Proof. If positive-definite) e n u i n e ((positive-definite) faithfulness of 4> ensure that genuine f a i t h f u l n e s s o f 0 e n s u r e t h a t [.,.] [ . , . ] iiss a g r o d u c t oon n M nner product M.. Let denote off M i nin tthis h i s iinner ompletion o L e t l tlf4> 5 d e n o t e tthe h e ccompletion iinner nner p O d O. (l) = product. Let n:: M ...- elf4> denote map, and n(l) = o 04>' p roduct. L ap, a et n nclusion m n d llet et n e n o t e tthe h e iinclusion If x,y e E M, note note that' that If
= o(,y*r**nl y*y)= llrll' llntylll', < ll'll'o( lln(xy)ll' 2 2 y*x*xy ,< y*(llxl1) y*(ll"ll)'r)y. So, where l, and l)y. So, wherewe we have haveused and so so y*x*xy usedx*x x*x ,< Ilxl1 llrll'r, 1f6 z6(x) such there exists a unique bounded operator l14>(x) on lf4> such that bounded operator exists v e r i f i e d that z 6 is is a t h a t 114> l14>(x)n(y) n ( x y ) for f o r all i n M. M . It I t is i s easily e a s i l y verified n 6 k ) n ( i l = n(xy) a l l y in *-'algebra homomorphism t(lt5). As a sample, show that *-algebra M into :f(lf4>.)' sample, we show homomorphism of Minto Xf6, and preserves adjoints. n(M) is dense dense in lf4>' 114> note that n(M) n6 preserves adjoints. For this, note that for all y,z in M, if x Ee M, then for tliat if
(t(,2* xv) = 4>«(x*z)*y) 0(@*z)+v) Lxv,zl= 4>(z*xy) 6k)n(il,n(z), = [xy,z] - [y,x*z]
( b ) and ( c ) of o f the the T h e assertions a n d (c) conclude z 6 ( x * ) = l14>(x)*. z 6 ( x ) * . The a s s e r t i o n s (b) t h a t l14>(x*) c o n c l u d e that o 6 and inner t h e inner theorem o f 04> a n d the f o l l o w immediately i i n m e d i a t e l y from f r o m the t h e definition d e f i n i t i o n of t h e o r e m follow 1f6. product in lf~. i n M, M, ( l f r , n t , o r ) is f o r x and a n d y in If n o t e that t h a t for i s another s u c h triple, t r i p l e , note I f (If',l1',O) a n o t h e r such
= 4>(y* = x) Q(y*x)
=^tt', =.116 the existence existenceof aa i1@N deducethe since M) 04> = lf4> and (M) 0' = If', deduce i611tr;116 and 11' since114>.( ' + lf n ! 1 6 6 , that (w weerlrl - odeelTr ni nee( ld, ,) 'unitary w n . : such (well-defined) operator w: lf4> ... If' such that Wl14>(x)04> == o p p s e r r a a t t u o r r u unri t adrryy .wnq(x)o6 = l1'(x) w , since t h e two iwo n ' ( x ) 0o w, s i n c ethe l1'(x)O'. Q l14>(x) n t .56(\ x. \)) = th n a t w 0o rI t is ri ss fairly If a ri rrlryy clear sc rl egaarr that [nI'l(' x( x) O . r rf r '.. It qense mapping o p e r a t o r s mapping ,ld(1vllrrd n6(M)a , both b o t h operators operators sEr set 114>(M)00' tne dense dense set agreg on the operators agree = or, = 11'(1)0' O r , and the a n d the AO= w nt(l)Or = w.'n6(l)O l14>(y)04> 114>(1)0.4>O = also,w ,. 04> n60)A6to r'(xy)Or; also, to l1'(xy)O'; proved. second part of the is proved. theorem is the theorem se'cond-part
'alcldruoc (;,i11eur.y) sl Joord eql pu€ ,snonurluoc O i(14ee,n-o oslB sl uorssnJsrp a^oqB l€r{t oql uoJJ s/AolloJ 'urslqdrouowoq-* *I! ly o,rrlcefur uB sI Ierurou ltl - UtDu :r_u oculs ('ararl lcrll olur oE tou op a^\ puB 'tuaJoeql flrsuep s,[>1suelde; sosn slql Jo Joord auo ipasolc {y1ea,n-o sl ll JI ,{1uo pue Jr posolc fl4eam sr urqeEle lurofpe-31as € l e q l I J B J € s r l I ) ' e r q a E J eu u s u n a N u o r r e f l l u o n b e s u o c p u E p e s o l J f11eom-o sl (rI)u leql opnlcuoJ 'posolc-*{€e.n sr II€q lJun slr gr fluo pue JI pasolc-*{Be^\ sr ec?ds lunp (-qcuueg) B go ocedsqns rBouII E lBrll salsls ([so1] 'ocuelsur rog ..gc) ruaroaql ueIlnruqcg-ulalrcqg 'lJedruor f p1ec,n-o aql sr (n Ileq)u = (lU)u llsq laqt raJul 'crrloruosr sr U acurs pus lc€duroc i(14ea,n-osl (I > llxll:n t x) = 1t1 'snonulluoc f .spro_^\roqto tiJ 'l{14ee,n-o (r)z IIBq ecurs 14ca,n-osr u - ('n)u 'Arerlrqre s.e.trO acurs .((r)u)d - ((lx)z)rfi ucql .r o1 f1>1ea,n-o .oS .($-t:d .xg EurmolloJ saEraruoc 7y ur. (tx) lau € s{reruar JI '3c) pue ,(1r1uurou lEqt IIBcar lualenrnba eru f lrnulluoc ' s l e u o r l c u n J J s e u l l r o ; ' r o n e m o 1{1B' e( l^e\u- or o u arc u pu€ 0 Vtoq acurs) I E u o r l c u n J r e e u r l I E r u J o u3 s l u o 0 , u a q l . ( ( , f i ) a u o l B u o r l c u n J J s a u r l snonurluoc,(11eam-o € s E p o ^ i c r a )t . ' ( , $ h r 0 J I l e r l l e l o u . l x a N ('{(x)u ds r 1 :l(1)/l)dns = ll((x)x)/ll t snonurluoc rog l E q l l o B J a q l p u e u o l l € r u r x o r c l d ul e r u r o u f 1 b d f l u o " s o r r n b e r l c B J l s € I slql eql) '((x)u)I = (@)hu oruls ,(lrrrrlceful slclpBrluoc u Jo Joorcl 3o '0 '0 = ((r)u)/ uaql .x ds u1 oreq,nfrerre slql * G)I ellq,r\ 1ou lnq (x)u ds uo saqsrue^ qcrtl,,A.r ds uo / uoytcung IBeJ snonurluoc € slsrxe aJeql ueql llcrrls sr uorsnlcur slql osoddng .x ds j (x)u cls 'snql '(r_(f - x))u osrarul {11,r .alqrlraaur sl \ _ (r)u acuaq lruerooql lu€lnuuoc alqnop eql fq ,y t ,_(\ _ r) leql clou .x ds / f JI .slgl ro{ 'r ds = (x)u ds lerll i$or{s ol luercrJJns uer{l eroru sl 11 .snlper l e t l c a d s s l l o l l e n b e s r r o l e r a d o l u r o t p e - 3 1 a su J o r u r o u e q l o o u r s : x ue qrns xrj 'w ) *x = r ue{^r llxll = ll(r)ull reqr fJ1raa ol (llx*xll = 'becrg3rts d5rrlauosl sJu andro oi ll ellrll) f lltuapl-*C or{l ol slueql
We shall complete the proof by showing that if n: M .... :e(JfI) is an injective normal *-homomorphism of Minto :e(Jf'), then n is isometric, n(M) is a-weakly closed and n is a a-weak homeomorphism of M onto n(M). To prove n is isometric it suffices thanks to the C*-identity
'Utt)u owo n Jo rusrqclrouoeuoq e sr pue pasolofl4earrr-osl 0{)u .crJlourosl u {€e^\-o st u ucql'(,$)t olul rusrqd.rououoq-*Ieurou aaltcafu1 n Jo u€ sr (r$h * m :u Jr.l_uqtEul,rnoqs ,{q goord aql .elcldruoJIIBqseA\ ('palressB se '(x)92t (tx19yleql epnlcuoc.9lX= @)u se t((lx)u) leu aql sr os 'pcpunoq flurro.;run sr (!r) lau erll ecursffir r( 11ero3
nrm-
for all y in M; since the net {Xj} is uniformly bounded, so is the net (n(x)}; as = Jf¢, conclude that n¢(x j) ? n¢(x), as asserted.)
tv
'z'z
2.2. The GNS Construction
41
uollsnrlsuoJsN9 eql
42
The Tomita-Takesaki Theory heorv he T omita-Takesaki T 22.. T
A'\
e n e r a l l y tthan o i n t oout as may more was han w e r e tthat, o r e ggenerally u t hhere hat, m IItt m a y bbee rrelevant e l e v a n t tto o ppoint r o o f , iitt iiss ttrue njective h a t aan n iinjective r u e tthat n tthe h e aabove b o v e pproof, eestablished s t a b l i s h e d iin **-homomorphism - h o m o m o r p h i s m bbetween p o s s i b l y aabstract) C*-algebras bstract) C * - a l g e b r a s iiss w o ((possibly e t w e e n ttwo a s s i n g tthrough may h r o u g h aan n r o m tthis h i s ---- bby y ppassing a y bbee iinferred n f e r r e d ffrom iisometric; s o m e t r i c ; iitt m - h o m o m o r p h i c iimage u o t i e n t aalgebra m a g e ooff a l g e b r a ---- tthat h a t a **-homomorphic aappropriate p p r o p r i a t e qquotient C*-algebra The may eader m a y cconsult o n s u l t [[Arv h e iinterested n t e r e s t e d rreader orm-closed. T C * - a l g e b r a iiss nnorm-closed. A r v l1]] details. ffor or d etails. - h o m o m o r p h i s m bbeing Wee sshall, off a **-homomorphism eing r e e tto alk o e n c e f o r t h , ffeel e e l ffree o ttalk W h a l l , hhenceforth, r e s e r v e sm meaning monotone and o uuse s e tthe he i m i t s ---- a n d tto o n o t o n e llimits e a n i n g tthat h a t iitt ppreserves nnormal o r m a l ---- m roof o emerging off tthe Theorem, hat a h e o r e m , tthat he T r o m tthe h e pproof m e r g i n g ffrom ffact, act, e **-homomorphism - h o m o m o r p h i s m iiss o ormal. a-weakly and only f iitt iiss nnormal. f a n l y iif nd o - w e a k l y ccontinuous o n t i n u o u s iif It as in the C*-case, C*-case, that the image n(I() n(M) of of a von Neumann It is true, as algebra under a normal *-homomorphism *-homomorphism is o-weakly a-weakly closed closed and algebra roof o hence Neumann algebra. The proof off tthis assertion his a s s e r t i o n iiss he p on N eumann a lgebra. T h e n c e a vvon outlined exercise. n tthe ollowing e xercise. h e ffollowing o u t l i n e d iin
Exercises Excrcises (2.2.2) be a a-weakly (2.2-2) Let fI be o-weakly closed closed two sided sided ideal in M. Show that the (a) (a) Let x Ee M have ulxl. Show have polar decomposition decomposition x = ulxl. (iii) ( i i ) Ixl ( i ) x Ee f; 1 ; (iii) I ; (ii) following conditions are e q u i v a l e n t : (i) f o l l o w i n g c o n d i t i o n s a r e equivalent: l x l Ee f; <+ / 1l1n (0 ClO)(lxD E f. Conclude from (i) # (ii) that f is self-adjoint. e 1. Conclude -1(lxl) = x 1l 1(0oClO)(IxD ( i ) #e (ii); (ii); x = . - 1 ( l x la ) n d so so (iii) ) ( f l i n i : Ixl (Hint: u * x and a n d so s o (i) l x l = u* ' a i r ' a p p rand o p r i a t e(iii) = Borel p i c k ( i i ) + ( i i i ) , f o r an appropriate Borel ( i ) ; for (i); (iii), pick Yr nn = In(\xD, f o r (ii) , f , , ( l x l ) ,for = note l{r7n,-1(lxl), function In' such function such that IxlYn = l(l/n,ClO)(lxD, and note that lxlyn /,,
*
*
o-weaklv') 1 1 6 , - y ( l x l )a-weakly.) 1 1 r 7 " , - y ( l x..l ) ' 1(o,ClO)(IxD 1(l/n,ClO)(lxD 1 / n .. - 1l1n-1(x) (b) (0 ClOl(x) a-strongly. o-strongly. (b) If e M-, then then xxr/n If x EM, (c) a n d so so e V ( c ) If ? Q O () l i m ( e + l)l/n n f, o - s t r o n g lim(e / , then t h e n ' e' i ' VV I1 == a-strong l f e,j e , f Ee P(M) . / ) r / " and f.f Ee f;I: in particular, P(M) P(lrj () n f1 is is an an upward directed net (which is (0)). if fI ~t (O}). non-trivial if is non-trivial (Hint:e (d) d eEl ,f,i nin ( d ) If P ( M ) I: f Ee If}, ( M ) . (Hint: l , then t h e ned eE fI o()Z Z(M). If e e ==VV{f { f Ee P(M): ( c ) and /; o - w e a k closure c l o s u r e of o f f; view t h e a-weak i n (c) a n d the v i e w of s t a t e m e n tin o f the t h e second s e c o n dstatement P(ttO n fl and is aa to (M) () and ua is if If Ee P is central, note that if central, note to see see that that e is P(M) n f, 1, and conclude that uni tary element and conclude M, then ufu* Ee P then ulu* element of M, unitary 114 ()
e
ueu* udu*
e.)
== d.)
(Z(U), then Me P (Z(M», then Me if e Ee P (e) (e) Show conversely, if M€, and and that conversely, Show that fI == Me, ( H i n t : T h e s e c o nd is a a-weakly closed two-sided ideal of M. (Hint: The second M . i d e a l o f o w e a k l y c l o s e d t w o s i d e d is a e I, i f t r i v i a l ; assertion Me are trivial; if x E f, M e a r e i n c l u s i o n fI :) w e l l as t h e inclusion a s well a s the a s s e r t i o n as 2 h e n c e x == a n d hence ( a ) and l 1 s , * ; ( l x l )II( Z and t~n o f d , ~0,4IXI) t h e definition d e f i n i t i o n of a n d the t h e n by b y (a)
e,
e
xe.) xa.) *-homomorphism, is n(lv[) is (f) homomorphism, then then n(M) t(lt')I) is (f) If is aa normal normal *n: M M ..- :e(:If If n: t(t8r). of :e(:If o-weakly '). von Neumann subalgebra of Neumann subalgebra hence aa von and hence o-weakly closed closed and may be be (Hint: M(\ -- e) (e) to note that that M(l (Hint: Apply write ker ker n n == Me, M€, note Apply (e) to write O may \sr ~, L, ~~\. \\l\ ~"I\.\\.-~ srr "'-1:.'"l\.I:.~I:.~ ~\.'61:.~'-~ lsrr\!\\\\\ Ngs\r'l, ~o;:.:\.\.~'6 trtt"'.g '\)~ \'rg\r g\ ~'" ts'a~ "l,\)~""",,1:.'\).Th.~~~ \\\S\
snql pue '@)Qu qll,r\ l{ l(gr1uap1II€qs e^\ 'n uo O luuollJunJ rs?uJl anlllsocl I€rurou InJqlrBJ u uarrgEore ?^\ ueq,n '1ou ueql uelJo oroIAI
More often than not, when we are given a faithful normal positive linear functional ~ on M, we shall identify M with Tl~(M), and thus
'a1du1 S N C e q l J o u o r s r e ^ e u o .s p y a t { s l q l l E I l l a l E r p e I U I u r O s l l I ' t o x J o . 9 t t o t u o l l c r r l s e r e q l e q ( x ) O u t e t p u e 1 ;@$ 3 l ( n , x :9u(t o x))l = 9g let pue (q) ul s€ eq 0U let 'esec srql u1 'snonJEA lou sl I'Z'Z rueroeql feqt os'al€ls l€urrou InJqlr€J € sllrupe oJBCls UaqIIH alqeredos e uo Eurlce erqa8le uu?uneN uo,r {rela l?ql s^\oqs slql 'n ) x rc1 xd rr=(x)0 ret.(q)ur s€sJd pue(A)f j n il(c). "lr7ln"3 = 9u 'I @x = (x)Ps puB'l o @ t+ = 94 EulDos [q peurelqo sl arnlcrd crqdroruost uff' (i>tcaqC)
An isomorphic picture is obtained by setting X~ = X @ X, n~ = Lna~/2~n @ ~n and Tl~(x) = x @ 1. (c) If M f I(X) and p is as in (b), let ~x) = tr px for x E M. This shows that every von Neumann algebra acting on a separable Hilbert space admits a faithful normal state, so that Theorem 2.2.1 is not vacuous. In this case, let nIP be as in (b) and let XIP = [{(x @ l)n!p: x E M)] f X @ X and let Tl~(x} be the restriction to X!p of x @ 1. It 1S immediate that this yields one version of the GNS tnple. 0 'll
(Check!)
'("ur)e = lurr6)(x)0u'("lzlh) ti" = tu n~
=
n~1 (~/2~n)' Tl~(x)($
I1 n) =
$
(Xl1 n )·
co
ug qtlrn 'u II€ JoJ I = T=U .tfi -e = QU
with Xn = X for all n, X~ =
n=1 $
Xn '
co @
,{q uerrE sr eldul SNg eql Jo uolsro^ B leql .(grra,t ol preq lou sl lI
It is not hard to verify that a version of the GNS triple is given by n=1
t3" .
~x) =
L an<x~n'~n>' co
'1rr1u1 x f,ue r o J s r s € q I s r u r o u o q u o u B ( " 1 ) p u e o > to3 'g < un qllr'r) n
{~n}
an orthonormal basis for X), then, for
"n'''n
tJ
tl'tlr
n=1
t ' o I=u = d
g
= L a
rog'uaql'(ri
(with an > 0, Lan < co and any x in M, p
J
co
'l{ uo JI l€ql sloN l€uollsunJ r8eurl oirltlsod leurou InJqllEJ € seurJep xd t1 = (x)Q ueql ;X uo rolerodo pue (A)f = hl n1 1q1 sselc-eo€rl ozrglrsodealtcefug uB aq d 101 '(a'!'X)27 uJ rog = /u f.q paurJap q'fZ'Z / ,6(rln/af)I ruaroaql {q paaluerenE sr ecualSlxa asoqx\ 'rol€reclo frelrun eqa ( np1
The unitary operator, whose existence is guaranteed by Theorem 2.2.1, is defined by wi = l(dv/dJL)1/2 for I in L 2(X,f,v). (b) Let M = I(X) and let p be an injective positive trace-class operator on 'Jf. Then ~(x) = tr px defines a faithful normal positive linear functional on M. Note that if
[~~
| = , u ' 3 1 = 8 A ) . u ' ( t l ' a ' x ) c=7r g ( l l ) =
r/
|*
n'
'
(ii) X' = L 2(X,f,JL), Tl'(f)g = Ig,
71{ aP ) p u € 1 1= 0 U ' A Y = A g l Q y ' ( a ' g ' 1 g ) r 7 = Q y g ( l )
(i)
X~
Tl~(f)g
= L 2(X,f,v),
2
n~ == 1; and
= Ig,
Example 2.2.3. (a) Let M = L""(X,f,JL); let v be a finite measure with the same null-sets as JJ.; then the equation ~f) Idv defines a faithful normal positive linear functional ~ on . Two possible GNS triples are given thus:
:snql ue,ryEare seldyrl g51g Olqrssod o/AI 'II uo 0 l€uorlcunJ rBeurl aaglgsod I€rurou InJqlr€J = AW uoll€nbe egl ueql irl sB sles-llnu erues aql e saurgep np/ J qll/r\ arns8aru airurJ B aq n ta1 i(rl'|'y)-7 = hl le1 (s) '6'97 alduerg
=J
In view of the uniqueness assertion in Theorem 2.2.1, we shall talk in the sequel, of the GNS triple (X~,Tl~n~) associated with a faithful normal positive linear functional~. Note incidentally that n~ is a unit vector if and only if ~ is a state.
n s,0ureqr,{rrerueprrur :L'"XI"j^ii,J#'ilJ:: aroN.'.fT";fij'i!
elctrrl g5ig arq Jo'lenbesoql ul InJqIIBJ€ qlIA pelslcosse1Q64y'Qy1 )1€l II€qs et 'I'Z'Z ruoroeql ur uollressessauanblunagl Jo ?nerl uI (.uorUass€ aql n 'a,r1lca[u1 s1 Jo esBJa,rllcaful paqsllq?tsefpeerle eql ol l€edde puu is injective, and appeal to the already established injective case of the assertion.) 0
'z'z
2.2. The GNS Construction
uollJnrlsuoc sNc eql
43
E'
44 44
2. The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
assume that that lil Mg&; t(D l(lf) and that that 0(x) 4>(x) = <xq(> <xn,!l> for for a vector o0 in in lfIf such assume that [Mo] [MO] = = lf. If. The vector o0 is known known to mathematical,,Fhysicists mathematical physicists as as that i n ccase The ). T he a c u u m sstate e c t o r oorr tthe t a t e ((in a s e l11011 a c u u m vvector h e vvacuum tthe h e vvacuum l 0 l l = l1). faithfulness of of 04l translates translates to this separating separating property property of of fI n: ifif xx eE faithfulness = 0 ifif and only only ifif xo xO == 0. O. Thus, in in the terminology terminology of of the M, then x = following definition, definition, the vector O 0 is cyclic cyclic and separating separating ffor or M. following Definition 2.2.4. 2.2.4. A A set S c&; ltIf is said to be Definition (i) (ii) (ii)
cyclic for M ifif [MS [M S ]] = 1? If ;; for M cyclic separating for if for in M, x == 0 ifif and only only ifif xS in for M if for x separating
= = {0}. {OJ. E 0
Exercises
(2.2.5) Let M g&; r(lt) l(lf) and let 0(x) 4>(x) = tr tr px, px, where p is a positive trace (2.2.5) class operator, operator, given by class dr, tBrr,Er, X cxn p == I: t~ ~ , P n' n
faithful as as a with cxn 4l is faithful with cr,, > 0 and gn} t[,,,) orthonormal. Show that 0 f o r M. M. linear i s separating i i t if i f and i f gn} s e p a r a t i n g for f u n c t i o n a l on a n d only o n l y if l i n e a r functional on M { t " } is g If, if S is (2.2.6) S &; (2.2.6) If for M if if and only if f, show is cyclic for If show that S is = {OJ; ) x'[MS] ( H i n t : x' separating M ' a and n d x'S xtlMS I = x r S = {OJ f o r M'. M ' . (Hint: x t Ee M' s e p a r a t i n gfor {0}; { 0 } :9 if is so, if S is cyclic for M, S is separating for M'. Conversely, if S is f M) . Conversely, f separating or if or so, - p')S ( l p ' ) S p t = P[MS M ' a n d t h a t separating 1 E M' and that (1 = n o t e that f o r M', M ' , note t h a t p' s e p a r a t i n gfor PluS l, = 1.) {OJ, p'' = l.) whence p { 0 ) , whence if and only if if (2.2.7) If 4>(x) == <xn,!l> <x4o> for x in M, M, then then 4l0 is tracial if Ilxoll = Ilx*oll for all x in 0n ir M. M.
ftiii'= iilsii'
Thus, functional 4l0 on M, faithful normal positive linear functional Thus, given aa faithful the GNS construction leads leads to aa realization of M as as aa von Neumann is aa cyclic 86, in which there algebra there is Hilbert space space lf4l' algebra of operators operators on aa Hilbert vector is and is automatically aa cyclic vector for f or n4l(M); n6(M)i this vector separating vector and separating and v e c t o r for f o r n4l(M)'. n6(M)'. s e p a r a t i n g vector a n d separating von c l a s s of o f von We w i t h an i m p o r t a n t class a n important t h i s section s e c t i o n with W e shall s h a l l conclude c o n c l u d e this and Neumann algebras with aa natural cyclic and come equipped equipped with algebras which come separating Neumann algebras algebras vector -- the so-called group-von the so-called separating vector Sroup-von Neumann groups. associated discrete groups. countable discrete associatedwith countable group, whose we shall shall Let G whose identity identity element element we discrete group, countable discrete G be be aa countable irreversibly ( t h e symbols denote h a v i n g already b e e n irreversibly a l r e a d y been a n d 1I having b y Ee (the s y m b o l s ee and d e n o t e by ! ' ( G ) denote p r o j e c t i o n sand identified L e t j2(G) denote i d e n t i t y operator). w i t h projections t h e identity o p e r a t o r ) . Let a n d the i d e n t i f i e d with the functions on on G: G: Hilbert space of square-summable square-summablefunctions spaceof the Hilbert
<-]. ! 2 ( G=) [ r ' o - o : I: IW)1 2
,r"li(r)12 where P(G), where There orthonormal basis G')of of j2(G), basisgt: There is is aa canonical canonical orthonormal {8,:tt Ee G}
Recall that a faithful normal tracial positive linear functional on a factor will, by restriction, yield a dimension function which assigns a finite value to 1. Hence, an infinite factor does not admit such a functional. However, every factor (operating on a separable Hilbert space) does admit several faithful normal states [cf. Example 2.2.3(c)]. Suppose, then, that ~ is a faithful normal state on a (not necessarily factorial) von Neumann algebra M. According to Ex. (2.2.7), ~ is tracial if and only if IIn~(x)n~1I = IIn~(x*)n~11 for all x in M. So, in order to study infinite factors, it might be instructive to examine (the lack of isometry of) the operator n~(x)n~ .... n~(x*)n~. The advisability of such an investigation is convincingly demonstrated by the celebrated Tomita-Takesaki theorem, which provides a powerful tool for the study of infinite factors (and
pue) srolceJ elrurJur 3o fpnls orll JoJ lool InJJa^\od e septrrord qclq^\ 'ruaroaql r{€se{BJ-BlruroI palerqoleJ oql ,(q pelerlsuoluep , t l E u r c u . r n u o c .s r u o g l e E l l s a n u l u e q c n s J o f l t l t q e s l a p e e q l '9u1*x;9u * 9u1x;9a rolerado eqt (3o frleruost Jo )toBI aql) oulruexa o l a ^ l l c n r l s u r a q l q t n u 1 1 ' s r o 1 c e 3a l l u l J u r , { p n l s o l r e p r o u l ' o S ' W 'Q'Z'() u r x I I B r o 3 ; 1 9 u ( * r ) Q u l= l 1 1 9 u 1 x 1 9 u3;r; i ( 1 u op u e J I I B I r B r l s \ q 'xE o l 6urpioccy 'yy' eqe?p uubunep uo,r (ler.lolce; flrressocou B uo el€ls lururou lnJr{lleJ e sl 0 teql 'ueql 'esoclclns lou)
'I(c)t'z'z
oldruexg 'Jcl salEls Ierurou InJrllr€J IBrelas llrup€ soop (aceds ' : a r r a m o 1 1' l e u o l l r u n J l r a q l l H a l q e r e d a sr u o E u r l e r a d o ) r o l c e g f r a r r a € qcns llurp€ lou soop rolJ€J ellulJul u? 'acueH 'l ol enlE^ ellulJ u suSrsseqJlq/rr uollcunJ uolsuorulp e plarf 'uo1lc1r1sar,{q 'lgn JolcBJ € uo I€uollcunJ r€aurl errlllsod I€lc€rl lerurou InJqll€J € leql ll€cau oq.;. 'eZ
2.3. The Tomita-Takesaki Theorem (For States) (sefefs rog) uerocql
rfssc{sl-Glluol
Tomita-Takesaki theorem, towards which landmark we shall now head.)
('peaq /t\ou IIBIIS e^\ {JErupu?l qCIq/t\ SpIB^\ol 'ruaroaql lIBseIeI-slIIuoJ eql Jo ecuanbasuocB s€ 'uoglcas lxeu eql ur eS.rauraIII/( slql i,,(g t l :rd1 = ,ou lBql assc aql 'lce3 ur 's1 11) 'palress€ sE "hl ro3 crlc{c s1
is cyclic for M', as asserted. (It is, in fact, the case that M' = (pt: t E G}"; this will emerge in the next section, as a consequence of the It is trivial to verify that each Pt commutes with each }.s' and hence {pt: t E G} f MI. Since ptn = ~ -1 for every t, it is clear that n t
'/,{rela rog r-1, = gld aculg ',Ni u leql realc sr 11 {g t l:rd1 3cueq pu€ "\ qc?o qlla salnuuoc ld qcea leql fgrran ol IBr^Irl sJ lI '@ G).
assertion established later, in Section 4.1.) Let n = ~E and observe that }.tn = ~t for each t, and, consequently, that n is cyclic for M. We shall verify that n is separating for M, by proving that n is cyclic for M ' [cf. Ex. (2.2.6)]. Analogous to the }.t'S, we may also construct the right-regular representation t ~ Pt, defined by (Pt~)(s) = ~(st) (or, equivalently, Pt~ = ~ 1 for all s,t in s st_ 1 8
u r , ' s I I e r o g I - ' l = ' l l d ' , { l l u a l u a r n b a ' r o ) ( 1 s ) != ( . r x l l d ) , { q p a u r g e p 'rd 's,11 I uoll€luasardar rulnEar-1qEu eql lJnJlsuoJ oslr feu en aqt ol snoEoluuy 'lO'Z'd 'xA 'Jcl thl roJ c11c,(csl U l€rlt Eurrr,ord f,q'n ro; Euylerudoss1 g leql fglroa lleqs e,,l[ 'n roJ cr1c,{csr U l€rl} ',(lluonbesuoc'pu€'t r l o e e r o 3 11 = Ul\ lerll a^rasqopue tl = U lo'I ( ' 1 ' p u o r l c e g u r ' r o 1 € 1p e q s l l q € l s ou o l l r o s s e 1e:eueE eroru € luorJ /AolIoJ III/'\ slql l- > ,l(l)xlDtl3 selJslles n * g : x a r a q / h ' l \ ( t ) r c ' t 3 = r S O T J Ol uSo E r e l u o c ] f 1 E u o r 1 s - o € J o u n s e q l se elqrsserdxa flanbrun sl .tg Jo luetualo {ra^e leql enrl 'lJ€J ur 's1 lI)
(It is, in fact, true that every element of M is uniquely expressible as the sum of a a-strongly* convergent series x = LtEGX(t».t' where x: G ~ [ satisfies LtEG lx(t)1 2 < "'; this will follow from a more general t
'acuaq :(tr =)t Eululeluoc 'ow ,r-1'1 = lr Jo ernsolc Euorls orll sl lg ecurs) erqeEle e s1 s,11 or{l Jo suolluulqruoJ r€ourl ellulJ lurofpe-g1os on les eqJ '@)*ll {q pelouep eq III,I\ pue g 3o erqoEle uu€runoN Jo uo,r dnorE eql pellec sI ,,{g r , :l\} = py etqeap uuBr,unaNuo^ orII '9
The von Neumann algebra M = {}.t: t E G}" is called the group von Neumann algebra of G and will be denoted by W*(G). The set M o of finite linear combinations of the }.t'S is a self-adjoint algebra (since }.t = ). -1) containing 1(= }.E); hence, M is the strong closure of Mo' G.
l'\ Jo uoll€luasardar relnEar lJoI pallec-oj aql sr 1r l(9)r1 ul (l\'\ = ''e'I) t\ - / deur oqj 'g u! s g IIe roJ Jo uolluluase:der ,{relrun e sl "l -'1'\',(lluolerr,rnba'ro'(sr-l)l = (sXllf) snql ll ^q uoll€Isu€rl lJeI o1 EulpuodsarJoc roleJedo frdlrun eql elouep t\ lel 'g il rlo€e ro{
For each t E G, let }.t denote the unitary operator corresponding to left translation by t; thus (}.t~)(s) = W- 1s), or, equivalently, }.t~s = ~ts for all s in G. The map t ~ }.t is a unitary representation of G (i.e., }.st = }.s}.t) in R2(G); it is the so-called left regular representation of if t
~ S
S I ' J I
if t = S
s=rJI
.:]
= 819= (s)r1
't'Z
2.3. The Tomita-Takesaki Theorem (For States)
45
(se1e15rog) tuaro0ql I{Es0{BI-ElltuoI
9V
oql
46 46
2.. T The Tomita-Takesaki Theory heory omita-Takesaki T 2 he T
of type III, III, in in particular). factors of Till further further notice, assume assume that M M is a von Neumann algebra algebra acting Till on lf}f and that O 0 is a cyclic and separating separating vector ffor or M.
2.3.1. Let So So and Fobe F 0 be the the conjugate-linear conjugate-linear operators,with operators, with Proposition L!-ldomains MQ MO and M' 0, respectively, respectively, defined (unambiguously) (unambiguously) by So(xo) So(xO) MtCl domains = x*$ x*o, Fo(x'a) F o(x' 0) = at*q x' *0. Then F 0 are are densely densely defined closable closable Then So So and Fo denoted by S Sand respectively, satisfy satisfy S = = operators; their closures, closures, denoted and F, respectively, operators: F S aand n d FF = SS** == SS6' 3. F** == FF6 0 is cyclic and separating separating for for M M as as well as as for for M' M' (cf (cf.. Proof. Since Since o (2.2.6», it it is clear that both So F 0 are densely densely and ^90 and Fo Ex. (2.2.6)), unambiguously defined. M', observe t, o hat a n d xx't e M b s e r v e tthat u nambiguously d e f i n e d . IIff x e M and
By t h i s says says o f a conjugate-linear c o n j u g a t e - l i n e a roperator, o p e r a t o r , this B y definition d e f i n i t i o n of o f the t h e adjoint a d j o i n t of = So; implies i.e., So ^to fg r.3. FSlMo = So; i.e., that MO F6 and that F61MO F6' This implies Ma f! dom Ffi the i s closable. I f F denotes d e n o t e sthe that 0 is i s densely hence Fo c l o s a b l e . If F 3 is d e n s e l y defined d e f i n e d and a n d hence t h a t F6 if S denotes denotes So So So is closable closable and if So. So closure F 0' then F* = Fl F6 ~ closure of Fs, I So' = f3 S. closure of So' Se, then F* = the F6"s.ippose ~ the closure : S. q#. f'fi and F6~ Ffi[' == ~#. For the reverse dom F6 ,eue.ie inclusion, suppose ~I ee dom w i t h domain M ' Q0 by Define d o m a i r t M' b y Qo(x' D e f i n e operators a n g Qt, b o t t r with operators Q Q o ( x t0) o ) == O 6 i , both Qo6 and i f x',y' M t , then then x' Notice i ' l #~#. . N b t i c e that t h a t if x ' , y ' e€ M', a n d Qt(x' x ' t ,~ and C f , { x ' 0) o ; == x' t a ) , y' y ' o0> > = <x' < x t ~,y' < O o ( x'0),
(#) ( b y definition (by d e f i n i t i o n of o f ~#)
= <x' o)>. <x'gOJ(y o,Qt(y ,' 0». is closable; closable;if Q Hence, Q and consequently consequently Hence,as as before, before, Q6 Q On Of, ~ OI and ) Qt o is verify It-is to verify trivial to denotes Qt. It is trivial si Qo' ihen Q* the closure closureof denotesthe Ot ~)Ot. Qo,then Q* == Q6 easy h e n c e ,by b y an a n easy a n d hence, M t , then x'Q o , and that Qo' i f x' t h e n Qox' t h a t if x t e€ M', Q o * ' ~2 x' passto and conclude conclude approximation we may to the the closure closureand may pass argument,we approximationargument, M. is affiliated affiliated to to M. that linear operator operatorQ denselydefined definedlinear that the the closed closeddensely O is
(sel€ls rog) ruo:oaql l{€sal€I-€llruol
LV
'E
Z
oslv 'u qcse roJ (lAl)lu'ol | =ua er?q^ n ? Jo uolllsodurocap reloct eql aq l)ln = O :c-l
Let Q = ulQI be the polar decomposition of Q. Then, u M where en = 1[O,nj(IQI) for each n. Also ,
E
E
M and en
n
111l)t"'olilAl)n=ua6 =lb
u(lQII [O,nj(lQI»
'A
qn = Qe n =
) n'uaql
E
47
'a pue n
agl
2.3. The Tomita-Takesaki Theorem (For States)
M
'puer,I reqlo oql uO 'sl * *?'a Pue I : 2*nuanl?ql apnlcuoc \1+O = U*O = c*l puc "a '((l't'l) 'ig 'Jc) lsql eloN VO = 1 acuib l@ dt I *n"an pue *0 dt I
(cf. Ex. (1.1.4». Note that en /' rp Q* and uenu* /' rp Q; since ~ = Qn and ~# = Q*n = Q+n, conclude that uenu*~ .. ~ and en~# .. ~ . On the other hand, an = plQln*nuan = TSlQlu an = glub *nu an = 7SQ*nu
= uenlQln = uenu*ulQln = uenu*Qn = uenu*~, '1
qnn
while SOn (q n) = q*n ~#' Conclude, # from the n = e nQ*n = e n definition of S, that ~ E dom S and S~ ~, thereby establishing that F~ f S, and hence, that S = F~ = F*. The dual statements, with F and S interchanged, are proved identically, with the roles of M and M' interchanged. 0
',{.11ecr1uapy 'pe8ueqcrelu\ D tlal pue n Jo solor aql qll^\ perrord erE 'pa8ueqcrolur s puB I rllln 'slueruolels IEnp aql 'ocuoq pue 'S '*.{ = = r€I{l i 3-{ reqr Euyqsllqelsa s 9.{ = pu€ ^qareql '*l ruop r I luql 'S Jo uolllulJap t S S '#1'a = orll ruorg*'epnlcuoJ v*Oua = ulD = (uur)o5 ollq,r\ ary to uotltsodruocap tolod aLfi aq zltyf
'uarlJ 'g .toyotadopasop = S ta7 ?€Z uoplsodord
Proposition 2..3.2. Let S = J/l1/2 be the polar decomposition of the closed operator S. Then,
'Ul t / II€ roJ 1,V= I1rV1 r€lncllr€d ul l(r-v)l = f(v)lt ueql '(o'Ql uo uollrunJ lorog (penler-e1rur3 ',(11ereuet = (c) ir_V erou lnq pepunoqun dlqrssod) {ue sI ./ JI .tv1= :JS yv puo sJ = v tarytnt ig /o uoltlsodtaocap tolod atp s! alyyt = g (Q) l(t-t sl g ''a'y)'slolotado papunoqun lo asuas aW u! alqlrn^u, s! qtrt!frr tolotado Turotpo-{ps atrttsod D s! V puo tolotado,ttottuntluo Tuto{po-tps o s! t (e)
(a) J is a self-adjoint antiunitary operator and /l is a posItIve
self-adjoint operator which is invertible in the sense of unbounded operators (i.e., /l is 1-1); (b) F = J/l- 1/ 2 is the polar decomposition of F; further /l = FS and /l-1 = SF' (c) J/lJ: /l-1; more generally, if f is any (possibly unbounded but finite-valued) Borel function on [O,co), then Jf(/l)J = 1(/l-1); in particular J /lit J = /lit for all t E IR .
eql ol lJal ^loJes eq ^Bru pu€ arnleu ul oullnor fyarnd sl uollBJIJIro^ eql izlry ol frooql lerlcecls aql Jo uoltEcrldd€ eullnor € puB = t|1yv| ruorJ pe^Irap oq u?c (c) .lo {1rpr1e'r oqa '(c) 3o 3oo-rd zlry eql ul dels arrlslcap erll Jo s€ IIa^\ se (e) 30 300rd eql selelduoJ 'z/ty = slrtl t|1yyI Pu? *f = yf = I splarf slql "{:e11un1lue sl 1 sv '*t|1yYt = zlrv pue I = { *\t saaluerent uorllsoduocep relod aql Jo ssauinbrun eql 'rolerado tulo[pe-.;1as olltlsod elqllre^ul ue sl *12lr_V/ sJuIS '*fs,1yVf = zlrYzf ecueH '*[71yY = = = = = g ra{ = r-S S 71fl1 lEqi salldul oslBr-S 5 uoltenba eqt l(g) = s puB^olqllJo^ur z l l y r e T e c u r s e l q l l r e ^ u r s r v l E r l l s e r l d r u rs r q l : r - s sl'5: rBql s/hoqs luerunSre uoll"rulxordcle oldurrs e "Ys = us aculs '(A Utoq are saceds I€urJ pue "e'l) .{re1run11uesr 'g uer 5 0S u", = g7U I€rlrur sll ,l^ leql epnlcuoc pu€ J uer i 0g uat =l)tN acurs 'S uuJ ecsdsI€urJ pu€ JLqB.l acods Ierlrur qllm ,{rlauosr lerlred reourl olsEnluoc s sI 1 osle la,rllysod sl v os puB sJ = s*S = ,Q1{) = v aA€r{ o^\ 'uolllulJep l{g 'Joord
Proof. By definition, we have /l = (/l1/2)2 = S*S = FS and so /l is positive; also J is a conjugate linear partial isometry with initial space ran-J:' and final space rallS. Since Min = ran Fo fran F and Mn = ran So fran S, conclude that J is anti unitary (i.e., its initial and final spaces are both ~). Since So = SOl, a simple approximation argument shows that S is invertible and S = S-l; this implies that /l is invertible since ker /l1/2 = ker S = {OJ; the equation S = S-l also implies that J/l1/2 = S = S-l = /l-1/2J*. Hence J2/l1/2 = J/l- 1/ 2J*. Since J/l- 1/ 2J* is an invertible positive self-adjoin t opera tor, the uniqueness of the polar decomposition guarantees that J2 = 1 and /l1/2 = J/l- 1/ 2J*. As J is anti unitary, this yields J = ]"1 = J* and J/l- 1/ 2J = /l1/2. This completes the proof of (a) as well as of the decisive step in the proof of (c). The validity of (c) can be derived from J/l-1/2J = /l1/2 and a routine application of the spectral theory to /l1/2; the verification is purely routine in nature and may be safely left to the reader. As for (b), conjugate the equation S = J!l1/2 to get F = /l1/2J = J J /l1/2 J = J /l-1/2; this completes the proof. 0 = tclfl
.Joord aql selalduoc slq-l irlr_vt = tslyIt n = g nE ot = g uofwnba oql aleEnfuoc '(q) rog sy i6:-yr 'r3p€3r
4488
2. The The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
The stage stage is is now now set set for for the the Tomita-Takesaki Tomita-Takesaki theorem. theorem. The The proof proof The u i t e llong o w e r f u l aand o n g aand n d eelaborate. laborate. s qquite h e o r e m iis i f f i c u l t ttheorem n d ddifficult oof f tthis h i s ppowerful As we e sshall n l y ssupply upply h a l l oonly h i s cchapter, hapter, w n tthe n t r o d u c t i o n tto o tthis A s sstated h e iintroduction t a t e d iin the proof proof in in the the very very special special case case when when ,S S (or (or equivalently equivalently A) tJ.) is is the proof general the bounded. For a reasonably short proof of the general assertion, the assertion, of the reasonably short For a bounded. reader may may consult consult [BRI]. [BRI]. reader
Theorem L3-32.3.3_ With the notation established established in in Theoren propositions, the following following statements statements are valid: propositions,
the
preceding preceding
(a) AitMA-it tJ.itMtJ.- it = =M M lor for all all t in R; IA ; and M'. ((b) b ) JJMJ '. MJ = M are Suppose that ,S S is bounded. bounded. This means means that .S, S, A tJ. and F Fare Proof. Suppose everywhere defined defined bounded operators; operators; it it also also means means that A-r tJ.- 1 is an defined bounded operator, operator, since since a-l tJ.- 1 = JAJ. JtJ.J. everywhere defined For x,y and z in in M, note that that For
(1) (l)
(Sx)(z*y*Q) = «SxS)y)(zn) = (Sx)(z*y*n) = yzx*CL yzx*n. ((^tx.S)yXzo)=
= zx*Q; = 1I to conclude (Sx^lXzQ) = 2*+q combined Apply with y./ = conclude that (SxS)(zn) Apply this with = (y(^Sx'S))(zn). from the (Sx'S)yXzo) Infer from with (1), this yields: (SxS)y)(zn) = (y(SxS»(zn). Infer yields: (l), with (Sx^S)y== y(SxS). y(SxS). Since arbitrary, cyclicity O that (SxS)y Since x and y were arbitrary, of n cyclicity of we MI. g e t : SMS t. w e get: S M S fC M (M',F) (M,S) and (M' roles of (M,S) An entirely analogous ,F) with the roles argument, with analogous argument, interchanged, yields: FMI F f M. y i e l d s : F M t F interchanged, 9M. results in above results A combination of inclusions established established above of the two inclusions 1 1 = = FS and tJ.!:J.MtJ.= SF); (since tJ. A-r ,SF);conclude conclude that A= AMA-Lf! M (since
(2) (2)
tJ.nMtJ.L n M An' nft MM
for 1 , 2 ,'". . . . f o r n = 1,2,
los \ for>. = g(tJ.). (0,-), and write tJ.z Ao = For g(I) = >.z \z = e"zZ log>' for \ Ee (0,"), C, let g(>.) For zz Ee cr, 8(A)' z i n cr. C A u f o r e a c h i s b o u n d e d , Since tJ. is invertible, it is clear that tJ.z is bounded, for each z in Since A is invertible, it is clear that ( c l e a r l y e n t i r e ) t t t h e Now, fix x E M, x' E M', t,n E :If and consider the (clearly entire) e a n d c o n s i d e r € M ) , e M , x t f i x Now, l,rt function by f u n c t i o n defined d e f i n e d by
l(z) = llall-'".ta"" a-o, xt)l,o>,z e (L A ab -- ba. ba. A by [a,b] where defined definedby the commutator commutator denotesthe where[a,b] la,bl== ab [a,b]denotes yields crude yields estimation crudeestimation
R If(z)1 II. z l lzall·IltJ." l l .zlll·llx l a -11·llx' " l l ' l l11·11 ' l l 'dl l."lin l' l n l ' l l 'r l l l l a l lRe - ' "Z" 211tJ. t f ( z,)
R"", n"zil"ll== 11tJ.112 z II2 = II
roJ rotccl Eulleredos pue c11c,{cs sv 0g uaql '1Qu'Qy'QU1 eyd1r19519 p a l e l c o s s €q \ / ^ n u o I E u o l l c u n J r E a u r l a n l l l s o d I € u r r o u I n J q l r € J e s r 0 leqt pue erqaEle uuuuneN uo.rrleraueE e sr.n leql ^\ou osodclns '79 3o rusrqdJoruolne-*.;o dnorE relouered-euo snonurluoJ *,(18uor1s-o € seurJep *_VrrrV e x leql eslcrexe etoq€ aql uoJJ s^\olloJ ll 'ruerooql r{Bsa{BJ-Blrruol or{l Jo Eurllas aql ol Eururnlag
Returning to the setting of the Tomita-Takesaki theorem, it follows from the above exercise that x .. t::,.itxt::,.-it defines a a-strongly* continuous one-parameter group of *-automorphism of M. Suppose now that M is a general von Neumann algebra and that ¢ is a faithful normal positive linear functional on M with associated GNS triple (:If¢, Tl¢,O¢). Then O¢ is a cyclic and separating vector for to prove (strong* and hence) strong continuity; this requires a standard E/3 argument.) 0
O ( ' l u e r u n E J eg / r p r e p u e l s € seJrnbtJ slql lfllnulluoc Euorls (ocueq pue *Euorls) orrord o1 s e c l J J n sl r ((p) (t'g'O) 'xg 'Jo) os 'pepunoq-rurou sl {UJ, I :(r)rn} 'l{ r x ' n u l x q c e a r o J ( * f 1 8 u o r 1 s - o )( r ) r n les arll JI :turH)
.. at(x) (a-strongly*) for each x in M. (Hint: if x E M, the set {at(x): t E IR) is norm-bounded, so (cL Ex. (0.3.4) (d» it suffices n
(*)uto € / - t/ leql esues eql ur snonulluoo *^lEuorls-o sl rlorrl/ir 'N n go swslqdrouolnE-* 3o dno:E relaurered-auo€ seulJep ']nxrn = (r)ln uorlenbo eql 't " ler{l ^\oqs ile roJ W = ? "' UJ > | inry'n lBql qcns ,{ uo srol€redo ,(relrun go dnor8 ralaur€rBd-euo snonurluoc ,(lEuor1s e sr Utlllnl esoddns pue ($h j 79 asoctcln5(q) (1'7'7 waneqJ Jo JI€rl puoooseql Jo Joord 'leruJou sr D '-n aql ol leeddy lBql epnlcuoJ :r_D soop sE ur ernlcnrls ropJo arll so^reserd r :1ur11; 'J1esll ol:uo n Jo ursrqdroruoauorl l€ea-o crrloruosr ue sr p ueql 'n lnv t p JI (e)
(a) If a E Aut M, then a is an isometric a-weak homeomorphism of M onto itself. (Hint: a preserves the order structure in M+, as does a-I; conclude that a is normal. Appeal to the proof of the second half of Theorem 2.2.1.) (b) Suppose M f :e(:If) and suppose {Ut}tEIR is a strongly continuous one-parameter group of unitary operators on :If such that utMUi = M for all t. Show that the equation at(x) = utXUi, t E IR, X E M, defines a one-parameter group of *-automorphisms of M which is a-strongly* continuous in the sense that t n .. t at (x)
*
'/t/
(2.3.4) Let Aut M denote the group of *-automorphisms of M. Jo srusrqdrourolnu-*3o dnorE aql olouop n $y
n1
(V'E'Z)
Exercises sesltrexx
'sasrcJaxaeJolu euos oruoJ oJOrI'oS 'r(€i[ aql Jo lno slueualels ,{.reluauro1aoruos lo8 ot dleq plno^\ ll 'ruoroor{I r{€so{€I -€lrtuol aql Jo seouanbesuocoql Jo etuos r{ll/r\ Euypaecord eJoJag
Before proceeding with some of the consequences of the TomitaTakesaki Theorem, it would help to get some elementary statements out of the way. So, here come some more exercises.
0
E 'n3Itn.I
'(q) turqsrlqetsesnql
thus establishing (b).
= f61yYthl11yYt = ttWt
and
puB SWS = ta1yYN71{I
= Ilttt
= Jt::,.I/2Mt::,.-1/2J = SMS f
M'
tn3
JMJ
'ecuaq 'o z u\ II€ roJ th[ = z_vrhlzv l€rll s,nolloJ oslE lI '(B) Jo uorlualuoc aql ,{lasrcerd sr srql 't! = z JoJ b rrr. z lle toJ n = z_ywzy spler,( (z-) ot srql Eurfldde $ ur z lle roJ n = z-vryrv lertl epnlJuoC a v! z II3 roJ 0 = Q)I lBr{l -- (asrcerclf11elnrq oq ol ? > I oruos qlr^\ 'O < z ad roJ (;r;,1a)0= G)/) / go qlmorE aql uo uolllpuoo ra{Eolr e Jopun prlea si qclq^{ -- (ltlf] 'gc) ruoroaql s.uoslreJ uorJ s^\olloJ "" 'Z'I'0 - u toJ '(Z) fq 'os1e 16 z eig.auetd-Jl€q eql tI < 0 = @){
if Re z ~ O. Thus, the entire function I is bounded (by 2 IIx II Ilx' II II d II 17 II> in the half-plane Re z ~ 0; also, by (2), I(n) = 0 for n = 0,1,2, .... It follows from Carlson's theorem (cL [Tit)) -- which is valid under a weaker condition on the growth of I (f(z) = 0(e k1zl ) for Re z ~ 0, with some k < n, to be brutally precise) -- that I(z) = 0 for all z in cr. Conclude that t::,.zMt::,.-z f M for all z in [; applying this to (-z) yields t::,.zMt::,.-z = M for all z in [; for z = it, this is precisely the contention of (a). It also follows that t::,.zM't::,.-z = M' for all z in
u t ( l l u l ll l l l l l l , t l l l l t l l s , { q )p e p u n o sqt . / u o t l c u n Ja r r l u oo q l ' s n q a '0
49
2.3. The Tomita-Takesaki Theorem (For States)
6'
2. The The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
5500
F6, J6 n~(M). Here Here and and in the the sequel, sequel, we we shall shall denote denote Uy by SO, S ~ F~, J ~ and and A ~
oft") 0t(x) = = n-q,(aiot n4/<~~t z6(x)A6it). n~(x)~4r). b) a a c t Athat that assertion Ex. 2.3.4 and . 3 . 4((b) n d tthe h e ffact rom E x. 2 ((The T h e ccontinuity o l l o w s ffrom s s e r t i o n ffollows ontinuity a r o u p ({at} o f ) is is o-weak homeomorphism.) The one-parameter group he o n e - p a r a m e t e rg omeomorphism.) T is a o -weak h zn~ 6 is o r ssimply, group off m modular automorphisms modular odular roup o he m i m p l y , tthe odular a u t o m o r p h i s m s ((or he g ccalled d t t e a tthe associated with with the positive functional functional 0. ~. 0 n group) associated
Exercises functional on M, (2.3.6) ~ be be a faithful (2.3.6) Let 0 faithful normal positive linear functional AO,SOFO, as above. above. "16 and lfg, lf~, nb n~ ~~, S~F~, J ~ and 46 ~~ be be as 04; F6oq o6 Ee dom S~ t1 dom F F6~ and s~n~ SO0O = F (a) Show 56 () (a) I/>nl/> = nl/>; Show that n~ = nl/>; = J" 1I/>nl/> ng; A g and A O a O= 6 0 6= e dom d o m lJ.1/> a n d ~I/>nl/> that'O conclude n~O E c o n c l u d e that aitn6(x)o6. nd(oP(n))ad (b) Show ot(x»n~ = ~~tn4!(x)n( (c) ( c ) Show a r e equivalent: equivalent: f o l l o w i n g conditions c o n d i t i o n d are t l i e folloWIng S h o w that t h a t the
(i) ( i ) I/> i s tracial; tracial; Q is (ii) I/> is (ii) S i s anti 56 a n t i uni u n i tary; tary; F ( i i i )S~ s o== J~ (iii) = F~; !lr'o = o ; (iv) ~I/> a6 =- llf~ (iv) ; (v) IR . ( " ) 0t(x) Y x Ee M, M ,tt Ee R o f ( x =) =x x Vx + (v) ( i v ) :} ( v ) are ( i i i ) #( 9 (iv) ( i i ) #< + (iii) e a s y ; use use (Hint: ( i ) #< + (ii) a r e easy; ( H i n t : The T h e implications i m p l i c a t i o n s (i) (b) ( v ) :} + (iv).) ( i v ) . ) 0n ( b ) for f o r (v) Tomitat h e TomitaLet w i l l illustrate i l l u s t r a t e the t h a t will l o o k at a t some s o m e examples e x a m p l e s that L e t us n o w look u s now Takesaki T a k e s a k i theorem. theorem.
Sf
where vv is is aa a", where Example oo(X,r,/L) and (a) Let and ~(f) Let M M == LL-(X,T,tt) 2.3.7.(a) Exanplc 2.3.7. Q(fl == It dv, g i v e n 1 f 5 == i s b y finite measure equivalent to /L. The GNS triple is given by lf~ T h e G N S t r i p l , i t o finite measure equivalent & = ' J~ "/d t h a t S~ ^ S d= ( d v / d 1 l r l 2 . It i s easy t o see s e ethat a5= l t is e a s y to LL 22(X,/L), = (dv/d/L)1/2. n;(f) = m mf r and a n d n~ ( X , y ) , nl/>(f) - - note = II -i! n o t e that t h a t I/>0 is 46 = == FFep6 is t h a t ~I/> ( X , t t ) and a n d that m a p f7 ...- 1 d n Lt z2(X,/L) i s the t l i e map 7 on = JMJ Mt = JMJ t h a t M' i n f < i r m sus u s that traclal T h u s , the t h e o r e m informs t h e theorem M is i s abelian. a b e l i a n . Thus, as M t r a c i a l as (0.4.5)(b). (b). Ex. (0.4.5) == M which is of Ex. (since Jm! is the the content content of nr;), JmrI == m M (since f ), which
'puu (r{h o t = Of(t o (a)f)Of ocuaH 'r Jo l€ql Jo al€Enluoc-xolduroc (esr,n,{:1ua)aql sl 1"1) srseq IErurouorllro oql .ol lJodso.l qll/r\ xrrleu s s o g / hr { u o r o l B J a d ol s g l s J x e r s q ^ \ ' r 6 I = Q r ( t . o r ; 9 1 l e q t s l e a ^ o r '(reou11 91 ^\ou u o l l e l n d u r o c i t s e o u y a l u S n f u o c s 1 l e r l l I J B J eql roJ "l -l = "1;91 (*l q l n q ' d s r u d l t J o q t i ( l l e r l u a s s as r s r q t ) o 1 e q 1q c n s Jot€rodo[rclrunlluu.lnblun aqr sl 94 pue ,_d o d = 0t '": o ulrrfou3 = \rU 'l @ f = (.y)vu 'll @ ll = 9J[ .alnlcrd clqdrouosr u€' uI
by"" $k( aj/p), a!).d conclude that, by self-adjoint ness, b. is this operator: (b.O(k) = ai/p~(k). (The details aJe spelt. out in Ex. (2.5.5) & (2.5.6.).) Since S = Jb. 1/ 2, conclude that J~~n) = ~~m) fQr all n~,n. .I t is easily deduced from the above formula for b. that af(x) = pltxp-It for all x E At, t E IR . In an isomorphic picture, :lert>. = :Ie @ :Ie, 7lrp(x) = x @ 1, 0rp = [na~/2~n @ ~n' b.rp = P @ p-1 and J d> is the unique antiunitary operator such that J rp( ~n @ ~m) = ~m @ ~n (this is essentially the flip map, but for the fact that Jrt> is conjugate linear). An easy computation now reveals that J rp(x @ I)Jrp = 1 @ X, where is that operator on :Ie whose matrix with respect to the orthonormal basis {~n} is the (entrywise) complex-conjugate of that of x. Hence J rp( :I:(:Ie) @ l)Jrp = 1 @ :I:(:Ie) and,
x IIe roJ
x
= (x)jo r€.qlv roJ BlnruroJe^oqe,u, u,orY
3":"#"i ,r-d"r,d ,(lrseesr li 'ttiiuge rd; 1-'il = ru]:I lcql apnlcuol ,r11vf= g oJurg z9 (S'S'Z)'x:r uI rho"iredddfe slrelepoq1) '(tr)i?y,]"= (U)(:v) ('('S'S'z) :rolerodosrql sr 'ssaulurofp€-Jlos ,(q 'l€ql epnlcuoJpte''1dr-{n){eaQ V r Jprr k
:Ie): [
: ( g : M ) r rr I E J12(lN;
k
~ IIpr(k) 11 2 < "'} a
t- "ll(z)3dll i 3
{r )
Do' Note that Do is a core for the posi ti ve self-adjoin t opera tor defined on
uo paurJap r o l e r a d o 1 u 1 o [ p e - g 1 aasa r l r s o d a r l l r o J e r o c B s 1 0 g l e q l e l o g ' 0 G x
ut ? II€ rog (1)!dr- p = (ZXIV) ltrql pue V ruop i og teql opnlouoJ uol ak-1P~(k)
"" 6
"" Conclude that Do f dom b. and that (b.O(k) n
for all ""~ in
'. (r u" )( J zf r r l g J= ( -u). l r
Fr~m) =
[:m f/2 r~).
It is not too hard to verify (do it!) that the linear span Do of (r~m): m,n E IN} is contained in dom F and that lBrll puB J urop ur poureluoc sg {g
r u'la
:1*jt) .lo og ueclsr e e u l l e g r r e q l ( i r l o p ) f S r r a r r o l p r E q o o l l o u s l l I
'(rf r * n l =(dlos ,,,15;J So~~m)
""
and thus
=
[a~ ]1/2 ""~~).
'nql Pue
m
^ 'rtJ r * p ' ) =ou(*1."i";eu ,r,LEJ
7lrp(x~m)*)orp =
[ : - ] 1/2
r~),
elrq/h'(ujl = 01r1,*jx10zlEr{l alou pu€
"
and note that llrp(x~m)orp = r~m), while
*:'ul,r/ilo
n
m
= t_j,
x(m) = a- 1 / 2t
~n'~m
ourJc.p'M ul u'tu rof ''l{*g = (Z)r-lt eroq/h'(g a u'ar:,-\1} i(q uanrE !l 911ro; srs?q lturouor{lro 1e-rnird} 'ulrlio = (r)Qu :(a)fx = ( u ) ( l ( x ) v s ) : ( A u r t p , { r l l e u l p r e cJ o l o s e , ( q p a c e l d e ia q l s n r u M ' l 6 u ;r l1efiorsuorulpellulJul sI 4 paunsse e^€rl e,r\) ("''Z't) = M aror{^\
where IN = {l,2,...} (we have assumed :Ie is infinite dimensio!).al; if ng.t, IN must be replaced by a set of cardinality dim :Ie); (llrp(xH)(n) = xj(n); 0rp(n) = a~/2~n' A""natural orthonormal basis for :lerp is given by (~~m): m,n E IN}, where ~~m)(k) = 5mk~n' For m,n in IN, define n
e l l (i l )?i tta * N 3 ) = ( s : s) r a =0 x1
{r::N
"':Ie: [
' {- >
:lerp = J12(lN ; :Ie) =
Ilr(n)1I 2 <
",},
where an > 0, [an < '" and {~n} is an orthonormal basis for:le. version of the GNS triple is given thus:
: s n q l u a r r r 8s 1 a 1 d t r 1S N O o q l J o u o l s r o ^ uo3'0 tn 'll toJ sls€q < eroqrn leurouoqlro ue sr {"11 pue o r r:,r1, ,o 3 = d
One
ouo
.
(b) Let At = :I:(:Ie) and rp(x) = tr px, where p is an injective positive trace-class operator, with canonical decomposition
u o l l l s o c h u o c a pI E c r u o u B cr l l r / r \ ' r o l e r a d o s s B l c - e c s J l a,rrlrsod err.rlcafurue s1 d ereq^\ 'xd tl = (x)0 pu€ (r{h = hl p1 (q)
(srluls rol) uroroeql r{sse{BJ,-ullruofeqJ. 't'z
51
2.3. The Tomita-Takesaki Theorem (For States)
I9
522 5
2.. T The Tomita-Takesaki Theory heorv 2 he T omita-Takesaki T
consequently, (l(13) (:f(lt) o @ l)' 1)' = I1 @ @ t(lf). :f(lt). consequently, it may be shown (see (see [Tak [Tak l] 1] for for details) using the More generally, it Tomita-Takesaki Neumann algebras M cf o r vvon on N eumann a h a t iif, f , ffor lgebras M T o m i t a - T a k e s a k i ttheorem h e o r e m tthat :f(lt) and N g f t( :f( K), K), we define define M @ @ N = = (x {x @ @ yi y: x e E M, yYEN}" :f(lt o @ l(18) e /{)" cf t(Xf = q u i t e M @ K K )) tthen @ n N)' M' @ N'. This fact is quite non-trivial and o n o n t r i v i a l M ' T h i s f a c t i s a n d N ' . h e n ((M r open problem for for a long time before Tomita Tomita resolved resolved it. remained an open We shall, shall, however, however, not go into a proof proof of of this here. here. We countable group and M = W*(G), (c) Let G be a countable W(G), the group von a s sshown Neumann algebra discussed att tthe end off Section 2.2. was . 2 . It It w nd o Section 2 hown N eumann a lgebra d i s c u s s e da he e and M.. Since O = l~E e c t o r for for M Since yclic a n d sseparating e p a r a t i n g vvector tthere h e r e tthat hat n e iiss a ccyclic _ r , it ( r ) r . " iiss rEe = i n e a r sspan r),:~E f(e = i t ffollows o l l o w s tthat h a t tthe h e llinear Pan D = \),r --1~E = (~ r -1' :Doo o off ((~t}tEG t
t
in dorn dom S and that contained in
(s(Xr)= i(r-r) all and ~ iin :Doo ---- rrecall i n e a r . Since e c a l l tthat o n j q g a t e llinear. Since ffor or a n G a n D h a t S iiss cconjugate l l t iin nd E preseruing this map is norm preserving and :Do Do is dense Iz(G), conclude conclude that dense in ,Q2(G), --:1 = I (cL = F = = , S and = W(cf. (S(Xt) = A = (SOU) I 2 ( G ) , that i n ,Q2(G), t h a t t> f o r all a l l ~( in that J = a n d that [ ( t - 1)) for (2.3.6)(c)). It Ex. (2.3.6)(c». J that J\rJ J),tJ == Pprl ; It follows from from the definition definition of ,I t = {p = JMJ hence M' = JMJ = G}"; thus, the commutant of the : t E of e G}"; thus, hence Mt {pr: t g e n e r a t e d by left-regular v o n Neumann N e u m a n n algebra by l e f t - r e g u l a r representation r e p r e s e n t a t i o nis i s the t h e von a l g e b r a generated the O t h e rright-regular i g h t - r e g u l a r rrepresentation. epresentation. 0
24. Hilbcrt Algebras Algcbras Yeights and and Generalized Gcncralizcd Hilbert 24. Weights (X,I) can A positive measure Borel space can be be viewed as as aa measure Ilp on aa Borel space (X,f) p o s i t i v e linear ( n e c e s s a r i l y faithful (necessarily l i n e a r functional f u n c t i o n a l on f a i t h f u l and n o r m a l ) positive on a n d normal) L oo(X,f,Il), via integration, only when it is measure. If If Ilp is is is aa finite finite measure. L'1X,T,1I1, - - typically n o n - z e r o constants infinite, f u n c t i o n s -t h e non-zero constants i n f i n i t e , some t y p i c a l l y the s o m e bounded b o u n d e d functions p-integrable. Worse be made made reasonable sense can be -- are Worse still, no reasonable sense can are not Il-integrable. = IE l F , where w h e r e E and a n d F are a r e disjoint disjoint i f , for f o r example, l E -- IF' of e x a m p l e , f| = o f ) f| d lIlt if, however, sets f u n c t i o n s , however, i n f i n i t e measure. m e a s u r e . With W i t h non-negative n o n - n e g a t i v e functions, s e t s of o f infinite there i n t e g r a l can a l w a y s be be t h e integral c a n always i s no n o such s u c h difficulty d i f f i c u l t y and a n d the t h e r e is " n u m b e r " in prompt h e u r i s t i c s prompt meaningfully i n [0,00]. T h e s e heuristics a s aa "number" m e a n i n g f u l l y defined d e f i n e d as [ 0 , - ] . These the f o l l o w i n g definition. definition. t h e following
J
is aa Definition algebra is Definition 2.4.1. 2.4-1. A weight on aa von Neumann M algebra = w h e n ever y ) I O ( x ) mapping M+ .... [0,00] such that 4>(),x + y) = ),4>(x) + 4>(y) whenever m a p p i n g 4>: M , ' s u c h t h a t 0 ( y ) @(\x Q: [0,-] o == 00 @and a n d ),.00 - - with \.x,y * 00 w i t h the c o n v e n t i o nthat), that I + M - and), t h e convention x , y Ee M+ a n d \ Ee [0,(0) [ 0 , - ) -- if - = = O. = 00 w e i g h t 4>Q is i s said = w h i l e 0. T h e weight s a i d to t o be be 0 . 00 0 . The 0 , while i f ),\ > 0, (i) (i) (ii) (ii)
faithful, i m p l y 4>(x) 0; i f x Ee M+ M - aand n d x i-l 00 imply f a i t h f u l , if 0 ( x ) >> 0; ( o - s t r o n g * ) limit limit normal, w h e n e v e r x is i s the t h e (a-strong*) n o r m a l , if i f 4>(x) s u p 4>(x) O ( x i ) whenever 0 ( x ) == sup net (x) it M+; M*: of aa monotone monotone increasing increasing net {x1} in (iii) aa trace, in'M. (iii) M. 0 if 4>(x*x) trace, if 0(xx*) for all x in 0(x*x) == 4>(xx*)
apply this with Tl n = ~n to get rllx~J2 = rllx*~J2; combine this with the previous equalitx applied to x*.) 2 (b) If x E :f(:If), define IIx = r Ilx ~n 11 , where {~n} is any orthonormal basis for Jf. Let C2(:If) = {x E :f(:If): Ilx 11 2 < co}; the members of C2(:If) are called Hilbert-Schmidt operators. Prove the following:
: E u 1 m o l 1 oagq l o^ord 'srolerado lplur{Js-lroqlrH palluc an (y)zg Jo sraqrueru : ( , t ) x , x ) = ( 1 1 )-z=J l e . 1 f i r o J s r s e q l e r u r o u o t l l r o eqr i(- t'll"ll " '(ah t x i(ue sl {ul) araqa,l 'rll"?x1;3 JI (q) lll"ll eulJep parlddb ,{tlyenba eql qll/t\
IIi
(1*x ol snorlard sr qteul quor :a llu t*xl=lzl 3 l " l x1 1ral 8o 1'l = ' r , q ll^\sr q l, ( t d cl€ = rl<-rr''lx>lff= r;1't"11f :zllu(r*xll3
r IIx ~J2 = rr I <x ~n,Tlm>12 = r Ilx*Tlm11 2;
:lulH) '1enbeeru seprso^u aql puu 'reqlo aql sl os "e'l -'allulJ sr sprs auo JI ,;;"rrxll3.= zll:.rrll3 l?ql a^orcl tt "e roJ seseqleurouorllro 3o rted ar't ('u) '{'l}'pue (r{h t x JI (s) (a) If x E :f(:If) and {~n}n {Tl n} are a pair of orthonormal bases for :If, prove that rllx~nll2 = rllxTlJ2 -- i.e., if one side is finite, so is the other, and the two sides are equal. (Hint:
0'v'z) (2.4.4)
Exercises saslcrexg
'sesrcrexe las Eur^\oIIoJ eql Jo u r e u o p s r s r q l i s r o l e r o c l ol p r u q c s - u a q l r H p e l l E c - o s e q l l n o q ? s l c € J clseq euos loolloc ol luapnrd oq lqttu ll '(n)X uo ac?rt IEsIuouBc 'uellaq? lou sl aql Eulssncslp ol Jolrd W eJeq^\ aldruexa u€ a a s o l p o o E e q I I I / { l l ' r e A e ^ \ o q' l 8 q l . e r o J e q ' p a q s l l q e l s ee q u o o s I I I ^ \ pu€ pll€^ sfe,nle sr i(1r1enbaslqt l+7g u 9W = 99 tu{1, 'as?c slql ul '((rt'!'X){1 'eloN '(TI'X)fl u (rt'X)-1 = 9y pue f!'X)rZ v (a'y)-7 = 9y 'ernsualu alIuIJuI t { pue 'a'B 0 < { :(rl:X)^1 ) {l = vC '3s€c s5tl uI ue s1 rl eroq^\ 'TIp II ='ArA pue (rf'4f)-'I = Iy fq uar18.s1 (at1u13 '[1rea13 lou sI qclq,$) 33Erl- IBruJOu InJIIIIEJ u 3o alduruxe euo
Clearly, one example of a faithful normal trace (which is not finite) is given by M = Lco(X,f,p,) and 4J(f) = dp" where p, is an infinite measure. In this case, D4J = (f E L co(X,p,): I ~ 0 a.e. and I E L 1(X,f,p,)}, N4J = Lco(X,p,) n L 2(X,p,) and M4J = Lco(X,p,) n L 1(X,p,). Note, in this case, that Dd> = Md> n M+; this equality is always valid and will soon be established. Before that, however, it will be good to see an example where M is not abelian. Prior to discussing the canonical trace on :f(:If), it might be prudent to collect some basic facts about the so-called Hilbert-Schmidt operators; this is done in the following set of exercises.
II
'^Ia{II suees 'pallFuo aq III/!\ p ldlrcsqns eql n uolsnJuoo ou pu€ 'uolssncslp rapun lqElo^\ euo ,(1uo sI eJeql uel{rl6
When there is only one weight under discussion, and no confusion seems likely, the subscript 4J will be omitted. 0
','' = ' '011 t tt'\x ' tnj" tit] = ory 9ru = ot^t
N1'I' N,/,'I'
=
i=l
{r
I
I
x~y.:
x.,y. EN,/"'I' I I
'
=
n = 1,2, ...}.
["'
M,/,'I'
i {- > (r*r)P :7,t1t x} =Qy
N4J
= {x
EM: 4J(x*x) < co} ;
t x) =Qg I {- > (x)P :+7,t1
D4J
= {x
E M+: 4J(x) < co} ;
oulJap 'n uo 0 tt{Etan e to1 'E'V'ZuoPIuIJaq
Definition 2.4.3. For a weight 4J on M, define
'aoloq ua,rr8ere suorlrulJapesoq^\i7g secedsqns 3o ur€lreo go slsfleue uE sr 0 lqElo,n e go [pn1s aqt ol leluauepunJ
Fundamental to the study of a weight 4J is an analysis of certain subs paces of M, whose definitions are given below.
+nW = luql qcns O f7g , O slslxa aroql (rrr) i- > (t)g E (gy)ierrulSsl O (I) :sdtllypuocEuptollog aqTJo ecuolu,rlnbeeql e^ord +n ur. x IIs roJ - > (x)0 JI allulJ oq ol ples sI 0 lqEIa/Y\Y G'V'C)
Mt
(2.4.2) A weight 4J is said to be finite if 4J(x) < co for all x in M+. Prove the equivalence of $.he following conditiQ.lls: (i) 4J is finite; (it) 4J( I) < co; (iii) there exists 4J E such that 4J = 4JIM+. 0
sssltrexx
Exercises
'V'Z serqaElyuaqllH pezllerauogpue s1qE1a11
gs
2.4. Weights and Generalized Hilbert Algebras
53
5544
22..
heory The Tomita-Takesaki Theory T he T omita-Takesaki T
IIx II , Ilx 11 11.11
for xx eE C (Hint: ifif It is a unit unit vector, consider CzQt). ll"ll < llrll,2 for 2(:If). (Hint: = q t.)' ; a s i s ({t u c h tthat h a t qt 1' = r t h o n o r m a l bbasis aan n oorthonormal ' ( - )} ssuch (ii) ll. ll,2 ir is a norm norm on C'2(:If) with respect respect to which which - Cr{r) C2(:If) is a C'jttl with (ii) ( H i n t : ( i ) Hilbert space. (Hint: use (i) to locate the limit of Cauchy l i m i t a C auchy l o c a t e o f t o t h e u s e Hil6ert space. sequence in in Cr(Xf); C2(:If); the inducing inducing inner-product inner-product is given by by <x,y> <X,Y> sequence = Ir <xlrr,yE,r>, <xtn,yt n>, where (En) {tn} is any,orthono-rmal any orthonormal basis basis for for 1f') :If.) -llrll, (iii) x e E C 2(:If) x· e E iJ?i) C2(:If) ana and = ll"*llr. (Hint: see see hint hint to to (iii) c-i(h1-"+'x* 2 = 2. (Hint: (a).) (a).) (iv) 2(:If) is a two-sided ideal in in t(Xf): :e(:If); in in f.act, fact, if if #x fE .,Cr(Xf) C2(:If) and yY eE (iv) ' ' CC 2(1f) ri#j, ' llyll :e(:If), in.n then lly'll, lIyx 11 2 < lIy ll"ll, 11 2 un,i'llxyll, and IIxy 2 < Ily ll"llr." 11 2, lHint: (Hint: tt'e the ' llyll i i i ) , iitt iimplies easy, and, with i t h ((iii), m p l i e s tthe he ogether w n e q u a l i t y iiss e asy, a n d , ttogether ffirst i r s t iinequality second.) second.) 0. Then x eE C 2(:If) € x e E K(xf) K (:If) and x admits a (v) Let x )~ 0. Cr(lt) decomposition = Irant, 0,, Ir "a32 . '
*
Ilx 11
II IIx
Ilx·11
11
II IIx
n
n
**
""n'''»n
*,
n
( Enn} ) tto H i n t : ffor ann oorthonormal extend ann o a x t e l d , , {t or g e e q u e n c e . ((Hint: a r t h o n o r m a l ssequence. or ), u se orthonormal basis and use basis use a s i s tto o ccompute o m p u t e l l x l l2r;; ffor nd u s e tthat hat b asis a o rthonormal b @ tto a s finite finite has € > 0, 1 1 6 , - y ( x ih f o r each 0 , l(E each E c o n c l u d e tthat, h a t , for o conclude l l r l l r2. < co hence , i s compact.) e n c e tthat h a t xx is compact.) rrank, a n k , and and h t(Xf)*, in e :e(:If)*, (vi) If 2(:If) if and only if x·x E if x*x I(lf), show that x E e C"(Xf) if If x E e :e(:If), olar ( H i n t : if h as p e Cr2(:If) if x E which has polar w h i c h case t r x·x. x * x . (Hint: c a s e l l x lII~l'= l = tr ( x f ) 2 t(-Xf),; e if decomposition x = ulxl, use (v) conclude IXl E :e(:If)*; if to conclude alxl, use decomposition lxl2
IIxl1
Ilx11 CO}(x)
*,
Ilx
2 Ixl l x l 2== rr oan r , /t, [ r r ,,[ r ,
"'n'''''n
( . co and ( t ,nr}r }to t o an an e with dr, < o r t h o n o u r m a l extend , x t e n d {t w i t h an c r n ~> 0, a n d {t 0 , rE an { l rnr}} orthonormal, lf and compute orthonormal basis ,) compute IIx basis for :If llr.) llx " 2 (cr) x E e (vii) (vii) Let x E t(lf)r. The following equivalent: (a) following conditions are are equivalent: e :e(:If)+. (7) (B) rI <xtn,t :e(:If)*; basis {t f(lf)-; (13) ix[,,,|,r> {1"}; n> < co for every orthonormal basis n}; (')') - f ofor r some (7) + ( H i n t : for f o r (')') b a s i s {t r<xtn,t s o m e orthonormal o r t h o n o r m a l basis I c x ( , , ( . >n> . < co { 1n, }. } . (Hint: 1 2 (a), / ). 0 c'irniide, Xx'l'). 1cr),consider
*
(separable and) Let M = :e(:If), f(xf), with 1f (separable infinite-dimensional. Define with :If and) infinite-dimensional. = w h e r e {t i s any a n y orthonormal orthonormal :e(:If)+ by = r<xtn,t > where f ( x f ) * ' [....0 ,[O,co] '] b y ~x) E < x E , ' ' t r , > 0(x) { 1n"}} is -, = "", = tr a n d ~(x) ( ( " ) . Thus i f x is i s of c l a s s and basis o f trace t r a c e class t h u s ~(x) t r . rx if f o r {tn}' 0(x) = b a s i s for 0(x) = p a r t i c u l a r , the is ( b ) (vii» ( v i i ) ) -- in otherwise ( b V Ex. t h e definition d e f i n i t i o n is i n particular, f x . (2.4.4) o t h e r w i s e (by Q . 4 . 4 ) (b) t h e fact fact f a i t h f u l trace; t r a c e ; the independent }. It is clear that ~ is a faithful i n d e p e n d e n t of o f {t {(n n }. It is clear that 0 is a reason (2.4.4)(b) (b) (iii). (In fact, the the reason that ~0 is Ex. (2.4.4) is aa trace trace follows from Ex. ( i i i ) , stems 2 . 4 . 1(iii), stems for D e f i n i t i o t 2.4.1 i n the s e n s eof o f Definition w o r d trace, t r a c e , in t h e sense f o r using t h e word u s i n g the v e r i f i c a t i o n is is T h e verification from i s normal. n o r m a l . The F u r t h e r m o r e , ~0 is f r o m this t h i s example.) e x a m p l e . ) Furthermore, l(Xf)'- must must be be l(lf)* and fairly ) x, the e :e(:If)* and x tf :e(:If)* the cases cases x E if xi x, ~ fairly easy; easy; if and treated for this~, this Q, N~ Nd == C2(:If) finally, that for Note, finally, separately. Note, treated separately. r(lf) and = M I(lf)i. l'1d cb = :e(:If)*. g e n e r a l weight. p r o c e e dnow weight. Let w i t h the n o w with a n a l y s i sof o f aa general t h e analysis L e t us u s proceed ~: Q:
D, spaces D, Proposition M, with with associated associated spaces weight 011 on M, Let ~Q be be aa weight Proposition 245. 24.5. Let N 14as 2.4.3. Definition 2.4.3. and M as ill in Definition N alld
.14 Eurrreq ra13e '1eql ^€^\ aql fllcuxe sl stql) Jo II€ ol puc]xe ueql pu€ '-N ;o ueds Jeaull I€aJ ar{l ol uolr{suJ peulJap-lle^\ s ul puolxa o t C u o 0 J o f f r ^ l l l p p B e s n : ( p ) J o a J u e n b a s u o c€ o s l € s l o c u a l s l x S '(p) -lo ecuenbesuoJ ol€rpeutul uB sl Q u qcns .;o ssauonbrun (J) '(q) &ory acuo lB s^\olloJ slql (e) '*t[t-f l e q l o s ' + N U N ) z l t x P . u " O< x u e q l ' G I r 3 r ' , ( 1 o s r a , r u o 3 'G -l,l lerll sarlsllqtlsc slql lg ) z l€ql (€) ruorJ apnlcuoc J
conclude from (a) that zeD; this establishes that M+ f D. Conversely, if xeD, then x jl and X 1 / 2 e N II N*, so that x e M+. (e) This follows at once frolp (b). (f) Uniqueness of such a 4> is an immediate consequence of (d). Existence is also a consequence of (d): use additivity of 4> on D to extend in a well-defined fashion to the real linear span of M+, and then extcnd to all of M. (This is exactly the way that, after having
°
, E (x. + y.)*(x. + y.) e D; j=l J J J J
I g r (t,r+ fr;*11,r * f")tit, n
tif = {(f,r- lx)*(l,r- tx)- (f,r + fr)*(r,(+ lr)) =
j=I
J
J
J
J
J
J
J
J
E {(x. + y.)*(x. + y.) - (x. - y.)*(x. - y.)} n
j=l
J J
J
J
I=!
1rrj,r+ !4*)z .ut -
E 2(x'!'y. + y'!'x.)
=
n
4z = 2(z + z*)
(*z+z)7=zp
'e3ueq pue
'*W r " JI *z = z uarll
If z e M+, then z = z* and hence,
-€,2,(o= qceeroJ I
.g r
tit lrrol + tr;*1t"nl* tn)
j t (Yj + ikxj)*(yj + ikx j) e D,
for each k = 0,1,2,3.
'(q) fq 'acu1s'(p) ul uollressu puoces aql so^orcl rIJIq^\
which proves the second assertion in (d), since, by (b),
oin tit = ro lfxnl + l.r;*1lxnl* r,(),rl
4z = E E ik(y. + ikx.)*(y. + ikx.) J J J J j=I k=O 3
n
lo8 o1 ,{1r1uep1 uollezlrulod eqt fldcty ' ry r l,f'11W1^ 'ttrjxl=Il = " asodctng(p) '1eap1-tqEp '(q) uor3 ,(1rsea s^\olloJ ? sI slql (c) N oculs 'N * 5 'x*xzllrll x,(*t*x = > Nr{ l€tll roJul pue (xf)*(rQ leql alou'tr47 t t'x gr'f11eurg 'N 3 N + N" l'tqr epnlcuoc
(c) This follows easily from (b), since N* is a right-ideal. . (d) .Suppose z = Ej=lxjYj' with xj,yj eN. Apply the polarization Identity to get
conclude that N + N f N. Finally, if x,y e M, note that (yx)*(yx) = x*y*yx , IlyI12 X*X, and infer that MN f N.
i(t(*t. + x*x)7 = =
2(x*x + y*y);
(r-r)*(,t-r) + (t+x)*(t+x) I (d+r)*({+x) (x+y)*(x+y) , (x+y)*(x+y) + (x-y)*(x-y)
Proof. (a) Easy. (b) Trivially N is closed under scalar multiplication. If x,y e M, note that
l€ql elou '147t t('x 'uor1ec11d1t1nru releos repun pesolJ sl N fllernrra (q) 11 'fsug (e) 'Joord
(;)
(e)
'0 = *Wlg L!?txs y1 tto toauq anbmn o st araql tDllt Q ' lottotluml l^t>zt(*x+Wtt'N tz'x ig lo stuawal.atno{ +W = Io ttotlourqtuoj .toaurlo st y1lo ruawala {tara puu'*w \) W = c i(t3o1odo1tuo ur pasop t(lrtossacau,ou puD 1 Ettttrtoltroc t(lltossacau tou) n to otqaSluqns tuto[po-tps o s! W '.W Lt, l0apt-{a1 o st N ig t z + x > z'-tI ) z'C t r puo'g t d + x1 € (-'01 ) \ pttn g t t'x "a'1 iauoc adltlsod tta7tpataq ? s.rC
(f)
(a)
(d)
(p)
(b) (c)
h + y e D, and xeD, z e M +' z , x zeD; N is a left-ideal in M; M is a self-adjoint subalgebra of M (not necessarily containing and not necessarily closed in any topology); D = M+ = M II M+, and every element of Mis a linear combination of four elements of D; x,z eN, y e M x*yz e M ; . . there is a unique linear functional 4> on M such that 4>IM+ = 4>.
*
*
(c) (q)
(a) D is a hereditary positive cone; i.e., x,y e D and ~ e [O,co)
*
(B)
serqo8lyuaqllH pazrlBrauagpuu stqElaTg'r'Z
55
2.4. Weights and Generalized Hilbert Algebras
s9
556 6
22..
heory TThe h e TTomita-Takesaki o m i t a - T a k e s a k i TTheory
ne u n c t i o n s , oone o n - n e g a t i v e ffunctions, o r nnon-negative n t e g r a l ffor e b e s g u e iintegral h e LLebesgue ddefined e f i n e d tthe unctions.)D 0 n t e g r a b l e ffunctions.) o ccomplex o m p l e x iintegrable n t e g r a l tto h e iintegral o t i o n oof f tthe h e nnotion eextends x t e n d s tthe
A weight weight 0~ can can be be trivial trivial in in the the following following sense: sense: A O'
0(x) ~(x) = = { ..., {: For this 0, ~, DO D~ = = For I
.tt,
{
iiff x == 00,,
°
iiff xx >> 0 *~ N~ = = ilO M~ = = (0) {OJ and not much more can be said. said. NO
Definition 2.4.6. 2.4.6. A A weight 0~ on M M is said to be semifinite semifinite ifif l'16 M~ is Definition a-weakly dense dense in in M. 0 O o-weakly Loosely speaking, speaking, semifiniteness semifiniteness means means that that there are sufficiently sufficiently Loosely f M v a l u e . F t r r e x a m p l e , iif many elements at which ~ has finite value. For example, M = = f i n i t e w h i g h h a s a a t many elements 0 L "'(X,r,lL) and 0(,f) ~(f) = l7 dv, where v is a positive measure measure with with the L'1i,7,1t7 u n d e r tthe ssumption o null ass i/L,\ then assumption off h e sstanding tanding a t h e n ((under u l l ssets ets a ssame ame n a-finiteness of of p), IL), semifiniteness semifiniteness of of v is equivalent to o-finiteness a-finiteness of of o-finiteness f(Xf) since is semifinite, v. Observe, also, canonical :f(Jf) since trace on that the canonical v. Observe, also, o-weakly operators, :e(Jf)., finite rank opera tors, is a-weakly l(lt)*, by virtue virtue of containing all finite some alternative dense In the following f(lf). f ollowing exercises, exercises, some dense in :e(Jf). which say say that characterizations are given, which semif initeness are characterizations of semifiniteness or s e n s e or i n one o n e sense o f D in semifiniteness a s ampleness a m p l e n e s s of i s the t h e same s a m e as s e m i fi n i t e n e s s is another. another.
Sf
Exercises Exercises (2.4.7) (2.4.7) E(Xf)), ( i . e . , hf t -1l ee :e(Jf», i s invertible i n v e r t i b l e (i.e., (a) i f h/ r is ( a ) If a n d if M - satisfy s a t i s fy hh ,< kk and I f h,k h , k Ee M+ 1 1 ( H i n t : i f x i)) 0, 0, t h a t if < / t - r. . (Hint: Observe O b s e r v e that then i n v e r t i b l e and a n d kk - r 'hi s invertible t h e n k is is t h e o r e m ) s p e c t r a l then (by an easy application of the spectral theorem) x is t h e ( b y o f an easy application then care e . l ; this t h i s takes t a k e s care t h a t xn i)) E.l; invertible e >> 0 such s u c h that i f f there exists E t h e r e exists i n v e r t i b l e iff + hh -1r/l2zhhh h1-/r2l 2 ~< of s e q o n d ,hh ,< kk :} F o r the t h e second, a s s e r t i o n . For f i r s t assertion. o f the t h e first 1/ 2kh- 1/ 2, and so Ilkl/2h-I/2~ II i)> lid for r(xf)isis if e hall ~; if x e :e(Jf) x and so llkllzh-rlz\ll lltll for arr t; tx-rtzkh-rt2, = t h e n x * p o l a r u l x l , invertible, with polar decomposition x = ulxl, then x* = Ixlu* w i t h invertible, lxlu* = . d e c o m p o s i t i o n; ; u*xu*, u * x u + conclude . c o n c l u that d e * aIIh-l/2kl/2~ t | | n - U 2 tII< i)' / , II~ \ | II| >for l | i | all | r o ~, r a whence l l [ , w h eIn c~ e l < 1 = 1.) 1 / 21k- 1 / 2 ~4 h- k1'r-t'.1 kl/2h-lkl/2, pL/2;-iprlz, and so kk-L k-rl2lk-rlz and so = Y e r i f y that that + e h )1-.l . Verify (b) If h E M+ and E > 0, define hE = h(l + eht > h e h ( l (b) lf h e M* and e 0, define
°
°
M: ( i ) hE / r , E€ M; a n d hE h . i)) 0 and (i) 0; h e /'T h aass Ee !I 0; (ii) ( i i ) he i f Ee -i) ) E' e ' and a n dhe h r Ir if h i ~< hE ( l ++ ( g e t (1 ( l ++ ehr e f t )1- l i)> (1 ( a ) ( H i n t i t o (iii) h , k :} hE 'ke(Hint: Use (a) to get U s e f t e k . . a ' < t ' t iiii) 1 ekr n o t e that that e k ) - ', , and a n d note 1I 1 hE h , = !-(1 ( l - (- l +(1e +f tEht ) - r )).). ) E
i(swns altul[ {o -n ut x 11oto{ tau aqt {o tlwll aLfi so patatdtalut Sutaq wns aqt) *''n3 (r)r,frrt!3 = (x)O tollt qcns {f r,t :'4t}tlttuo{ o slslcr.aaralfi '.*n q x yo .to! (x)Q (x)trt, t *'*n D slstxa araql auolouow Sutsoatcut u! tau loql qzns 0 , I :!,1,) ilotutott st Q
4> is normal; there exists a monotone increasing net {.pi: i E I} in M.,+ such that .pi(x) )' 4>(x) for all x in M +; . there exists a family {.pi: i E J} &; M. + such that 4>(x) = LiEJ.pJx) for all x in M+ (the sum being interpreted as the limit of the net of finite sums); For a weight 4> on M, the following conditions are uo Q tqSnu D rol
(ltl)
(II) (l)
(i)
an suotttpuoc 7utuo11ot aW 'n
(iii) (ii)
:ruapunba uopFodo-r4
Proposition 24.9. equivalent:
6tZ
('[ee11]u1 ';oord leulEyo 'lcalqns slql ul ulorJ ferrrre leE eql aas ol e^llcnrlsul eq fq8lu lI f11ear J3Aau u€c auo lerll sluorunEre ,,ac€ds-to1ce,r-1ec1Eo1odol,, Jo lJos 'ernlnJ erll ul ^laerJ ll eql oas ol oIII plno/$ oqr\ reps3r oql Joc) 'dlrleutrou asn llsqs e/A lnq 'goord ou tlll^\ ^\olaq llnsoJ eql alels el[ eql seqsllq€lse rIslq/'\ dnraEuell Jo suolllulJap l?ra^es Jo ecual€^lnbo 's1qE1o,tr ol enp llnsel E sI eroql Jo f lrlerurou Eulurecuo3
Concerning normality of weights, there is a result due to Haagerup which establishes the equivalence of several definitions of normality. We state the result below with no proof, but we shall use it freely in the future. (For the reader who would like to see the sort of "topological-vector-space" arguments that one can never really get away from in this subject, it might be instructive to see the original proof, in [Haa].) 'I/txpuetlle
(i) 4> is semifinite (ii) I = V{e E P(M): 4>(e) < "'} (iii) there is an increasing net {Xi} in D such that all i and Xi )' 1. 0 n
qcns rorr > ;;rr;; ,lill ruur c ur{!x),i: :",:lr:&iir",,'},i,1tl Ilx i II
< I for
agrur3Suasst p
(l)
aI{I (p) e:e f lqEler'r B uo suolllpuoc Eu1,t'o11oJ :1ua1e,r1nbs Jo eJnsolc {ee/r-o aql uI se\l ata os pus esuas{€elt\-o aql ul
in the a-weak sense and so eye lies in the a-weak closure of M. (d) The following conditions on a weight 4> are equivalent: 'W
xEII
2t2= ,,rrtr,r*Wfi
limx l / 2yx l / 2 = eye,
leql anEre'lau papunoq '*n ) € sr V ocurs '@) S'V'Z 'dor4 ,{.qA ) zl;trlrx € V r x ueq} r( 3r 'esrarruoJ aql roC '3m2 q paul€luoc sl l^l Jo ernsolc {ue^\-o eql l€I{}epnlcuo] 'Ima ) ros?=x > x uegl'V t x JI:luIH) 'e,roq€ s€ a qll^l (J) '3 'I ! SI W Jo ornsolJ l€e^' 1,-oeql l€r{l ,vroqs ('a = a x
(c) With as above, show that the a-weak closure of M is e M (Hint: If x E II, then x , x = e so x E eMe. Conclude that the a-weak closure of M is contained in eMe. For the converse, if y l 2 I 2 E M+, then x E A 9 x / YX / E D by Prop. 2.4.5 (e). Since 1\ is a bounded net, argue that
e
e.
x e = e.)
= x luql opntcuoc22x= x snqr7 > t"l(:-.o)ros pu€ c t (x)(-,.:ll
(a) Show that II is directed upwards; Le., if xl'x 2 E II, there exists x E II such that xl ' x and x 2 ' x. (Hint: Verify that hi = xp -xitl E D, since hi ' kX i for some k > 0, and that xi = hp+hl l . Let h = hI + h 2 (E D), put x = h(I + ht l and use Ex. (2.4.7) (b) (iii).) (b) Since, by (a), A may be viewed as a monotone increasing net in M, let x = lim A Show that x is the projection e = V{e: e E R:M) n D}. (Hint: If e E p(M) n D and 0 < ~ < I, then ~e E II and so ~e , x; hence e 'x. Since 0 , x , 1, conclude that e , I {l}(x), and so e 'I{l}(x). ~onversely, if_ x E A, argue tEat I[E."')(X) E D and so I(O,"')(x) , e; thus x = xe; conclude that x =
'v r x gr 'i(1esrarr,uo3'(x;trrI > a os pu€ '(x1t'rt leql an8:e y a f € { l o p n l c u o c '>I x > 0 o c u l s ' r > r o c u e q l x > a \ o s p u c v r a \ u e g l ' I > \ > 0 p u €G v @ ) d ) a J l : l u l H ) ' t a u ( , w U ) a :a)1 = a uollceford eql sl ,. ]€tll /$oqs V tull = x ldl'W '(e) ,(q 'eculs (q) ul leu Eursearculouolouou € s? pe^\al^ eq ,(eurV
('(ur)(q)Q'v'z)
z q r 1 1= | F I ' r - { ! t l + t l , t ' x E e s np u e ! r - ( { + l ) t l = r 1 n d ' ( G -t ) = - f x l e q l p d e ' 0 . - r y a r u o s t o 1 - l * r y ! r 1e c u l s ' g r , - 1 l x - 1 ; ! r = lr7 teqt fgrran :lulH) 'x , tx pue x > ]x leql qcns V 7 palJerlp sI v l€ql ^\oqs (e) x slslxe eroql 'v ) tx'rx JI ''e'l isp.re,ndn '(t > llxll iC t x) = sB eq il pu€ N'g la1 pue ;4 uo gqEra,ne aq"$'ta.I (8't'z)
(2.4.8) Let ~ be a weight on M and let D, Nand M be as usual. Let A Il: Ilxll < I}.
= {x E
v le1lznsn
'7'7 serqa8ly lreqllH pazll€raueg pue s1q8tor11
2.4. Weights and Generalized Hilbert Algebras
57
L9
58 58
2. 2 . The T h e Tomita-Takesaki T o m i t a - T a k e s a k i Theory Theorv
o-weakly lower (iv) 4>A is is a-weakly lower semicontinuous; semicontint ous; i.e., i.e., if il xi ..- x a-weakly, a-weakly, xj'x xi,x Ee l+[*, then M+, then 4>(x) lim inf inf 4>(x). 0E 0(x) ,< lim Q(x,). v e r y minor With W i t h very m i n o r modifications, m o d i f i c a t i o n s , the g o e sthrough t h e GNS G N S construction c o n s t r u c t i o n goes through for f o r weights. weights. Proposition 2.4.10. 2-4-lO. Let 4>Q be Proposition be a faithful, normzl, semi/inite sentifinite weight weight on on M. lt[. faithful, normal, !46 be D6, N4> be the the associated associated subspaces Let D4>' subspacesof I[, as Definitiort N6 and M4> of M, as in Definition 2.4.3. Let us us use use the 2.4.3. the same same symbol syntbol 4>Q for the extension, extension, as as a linear linear for the !16, as to M4>' functional, as in Prop. Prop. 2.4.5 2.4.5 (f). Then Then there there exists exists a triple fturctional, to (trq,n6,nq,)where tvhere' (Jf4>,n4>,n4» lt6 is a Hilbert Hitbert space; (i) Jf4> space; *-algebra homomorphism nO is (ii) a *-algebra is,a hontontorphisntof t(l|.6); M into :f(Jf4»; ol Minto (ii). n4> (iii) n4>: NO- Jf4> fO is n6: N4>" is a linear linear map (iii) map such such that that
involutive, associative associative algebra; algebra; is an involutit,e, equipped with an inner product which which satisfies: satisfies: is eEdpped ((i) i) < (4,[> = r , , l #~> s 5 > ffor L l; <~n,~> = <
( ' r p u o s p u e q f e 1o 1; Xu l ( N ) U g o , { l r s u a pa s n p u e '(t ,(q) papunoq sr (x*d)rf = ruroJ r€ourlrnbsas 3rlt [(,{)&.(x)u] leql a r o u : l u r H ) ' ( e N = ) N u I t , x g e . r o ; < ( d ) t r . ( x ) u , o >- ( x * d ) ( r p u e 1 ) r p ) 0 l€rll qcns r.rr{t ,o toleJado enbrun e slsrxa eJaql lBrll ^\or{S (e)
(a) Show that there exists a unique operator a' E M' such that 0 , a I , 1 and c/J(y*x) =
- .n , rf asodcrns ,'V,:r'; :,',fi'.fJ$i#'$,''rr)Ior> I :tttd;
(2.4.13) Let 4> be a fns weight on M; assume that M f '£(X) and that n4>(x) = x for x in M; also, write n for n4>' Suppose c/J E AI.,_ satisfies c/J , 4> (i.e., c/J(x) , 4>(x) for all x in M+).
lEr{l puE (a)r j n wqt aunss?'.w no lt1E1e,r suJ B 3q o lo.I (gt.v-z) .du.$x.4fi;elorrl
(a) Show that Ic/J = {x E M: c/J(x*x) = O} is a left-ideal in M. (Hint: imitate the proof of the corresponding statement regarding N¢ol (b) The equation <x + Ic/J' y + Ic/J> = c/J(y*x) defines (unambiguously!) an inner-product on the vector space Mil c/J' (c) Let Xc/J be the completion of Mil w with respect to the above inner product, and let 0c/J = 1 + f eJr Show that there exists a unique normal *-homomorphism nU; M ... ,£(Xc/J) such that nl/J(x)(y+I c/J) = xy + I c/J for all x,y in M. Note that ncjJ(M) is a von Neumann algebra of operators on Xc/J and that c/J(x) =
S - \ C a q l S u r u r e c u o cl u e u a l e l s s s a u e n b r u ne e l o r d p u € . e l E l n r , u + o C( p )
tltr;:*,;-""""r1i'1fr = (x)4rr'u pu' (t,truo ,ro,o.,r'#',,;
uo,\ E sr (4/)'? leql eloN .y ur. t,x IIB roJ QJ +,(x = (1+rt)g)Ay rcr{l qcns ('t'r{)I e ly'l :t,tt^ r.usrr{clroruouorl-* IBrurou anblun .t'I E SlSrx0 S J a q l / r \ o q s = ' l , g l E r { l + lol puB.lcnpord rouur | r\oqE eql ol Qt/n;o l c e d s o r ; + r . ^ u o r l a l c t r u o re q l a q 4 4 t e 1 ( c ) ' r ' I / n e c e d sr o l c o z r eql uo lcnpord-Jeuul uB r , . i l s n o n 8 r q u e u ns) a u l 3 o p( x * f ) f l - . Q I + , ( , $ l + r > u o r l e n b aa q f ( q ) ( v N E u t p r e E a rl u e u o l e l s S u r p u o d s e r r o ce q l Jo Joorg eql alElrrul :lurH) '/.1/ur IBapr-UaI B sl {0 = (r*x)fl :1tyt x} = 01 legt ,noqg (e)
'+'*y1 z tlt D1 ('lnJqtleJ ,{pressecaulou ere rlclq,r\ Jo sluauela roJ uollculsuoc sNc oql sI eslcraxe slqa) (zt-v-c)
(2.4.12) (This exercise is the GNS construction for elements of AI. +' which are not necessarily faithful.) Let c/J E M.,+' . ''L,'.rt'
Exercises sasrJJtxa
' s a s r c r o x e8 u r m o 1 l o g [ aqt ur peulllno sr puu 'parr.1o,rurleq^\aruos sl (p) Jo JooJd eqJ
with ~i = n(xf/2) and ni = n(xf/2x ). This shows that U 2 is in fact dense in n( N), which is more than what (c) states; note, in particular tha t U is dense in X . The proof of (d) is somewhat involved, and is outlined in the following exercises. 0
relncrlredur 'o1oulsolels(c) reqmueql erorut, .$;l^":i;orrtt;l"rt? lreJ ur sJ z n leql s/y\oqs srqJ .1xr,]x)u= Ir, pue (ri.*)u = Ii qtt^ ' rurl rujt = 1!r uriy= 1 ~
= lim x.~ = lim i i i
1 1
~.n.
,
Proof. The assertions (a) and (b) are clear. (c) Since 4> is semidefinite, there exists a monotone increasing net {xi} such that xi E D, Ilxill < 1 and xi ;0 1 (cL Ex. (2.4.8) (d». For each i , note that x~/2 E N rI N*·' if x E N , also x~/2x E N* N c N rI 1 1 N *, since N (resp. N *) is a left- (resp., right-) ideal in M. Since xi ... 1 strongly (in fact, even a-strongly), conclude that if ~ = n(x), with x EN, then
ueql'N r r qll/r\ '(x)x = '(fyEuorls-o .1ce3 Ix apnlcuoo tuqt ua,re 1 ur) fl8uo:1s JI I .dsar) .* o3urs_'W ur. Wapl.(-tqElr ..dser) -Ual B sr (* ry N ecurs N t xzix oste'N u x i l+N 'N-;' ,ix *rti'atou.r qcea u J I N N * N ? rr reqr qcns (!x) JoJ '((p) (8't'Z) 'ie 'Jc) | r' tx pu€ I > ll'"ll ti'i l 0 u E u r s e a r c u ra u o l o u o u s s l s r x a a r a q l . a t J t i r g 5 p l r u ossr O o o u r s ( c ) 'r€olc ar? (q) pue (e) suorlross€oqJ .Joord 'n {o X4uor|alduo? aW ltl g to1otado pasop o ot spuatxa ^ = luS tq pauttap ' n - n :aS totorado toattq a1o7n{tioc aql (p) ''l
i=l
1 1
1
1
~.n.: ~.,n.
I=! { J =)'n (c)
t!a'!1'!U!1
{£:
E
~ I,
i p t t t a s u a pr t ( { " ' ' Z ' r = t t ' p
U 2 (=
'ol
and (d) the conjugate linear operator So: U ... U, defined by So~ extends to a closed operator S in the completion X of U.
(c)
U, n = 1,2, ...}) is dense in U;
.V.Z serqoElylraqllH pazrl€reuogpuu s1q8ra11 2.4. Weights and Generalized Hilbert Algebras
59
6S
heory o m i t a - T a k e s a k i TTheory h e TTomita-Takesaki 22.. TThe
660 0
(b) (b) Let Let (1f,r-II,r*Q,r,) (Jft/J'nt/J'0c/J) be be aa GNS GNS triple triple for for 0. c/J. Show Show that that there there exists exists aa n.p(x)o4,. z lf that !1,1, such unique isometric operator operator u: u: lec/J ... le such' that u nljJ(x)0clJ, == uniquet-ilo#etric H i n t : nnote f a ) . ((Hint: o t e tthat hat N a'1/2 Tl(x) for all x in N, with 'N::::l n ((a). w i t h aa'' ' aas s iin i n N , x a ' r l z n ( x )f o r a l l M, so so that that (by (by semifiniteness semifiniteness of of 0) 4» N N isis o-weakly a-weakly dense dense in in M; Ii; l'! argue that that ng( 7lc/J( N N)ng )0c/J must must be be dense dense in in 1f4; le~ observe observe that that argue
for all all x,Y x,y in in N.) N.) for (c) In In the the notation notation of of (b), (b), show show that that uu n4r!) nc/J(x) == xu xu for all xx in in M; M; (c) conclude that that ifif l0 tc/J == u0,!o u0t/J' then then conclude
N;; n N o r xx iin ((i) i ) rxt.p r l 2 Tln(X) ( x )ffor E , , ,= aa '11/2 (ii) ifif {x,} {xi} is any any net net in N N such such that that x, xi -... II strongly, strongly, then then (9 tc/J == (ii) a' 1/2Tl (x i ), and and consequently consequently (i) uniquely uniquely determines determines 1.1; tcb.; lim a'rl2n(x,), (iii) (x) c/J(x) = <x(rhl0> <xtt/J'tcb.> for all x in M. M. (Hint: (Hint: verify this this for x'in x in '1i; N *'N * N,, usirig using (i) and and the the def definition a',, and and note note that that inition of a) N both sides sides of the the desired desired equation equation depend depend o-weakly a-weakly both continuously on on x.) x.) continuously [Mtc/Jl = ran a'. (iv) tM(gl ilfr- 7.
N )).) (Hint: (Hint: lMl,ll [Mtc/J1 = = t[ NEgl tc/Jl == 1a'rl2n( [a ,l/2 Tl( N)].)
monotone Il be (2.4.14) be aa- monotone M. Let {c/Ji: weight on on M. f ns weight (2.4.14) Let 4>0 be {ft: i Ee I} be aa fns (cf' M* (cf. each t increasing net in M. + such that c/Ji(x) )" 4>(x) for each x in M+ that Mr SUCh QQ\fi(x) in..ruting net * (= tl/J) be and. tlri (= tP) be let ai' a,' E M~ and Prop. (ii)). For Foi' each each i Ee I, let 2.4.9(ii». Prop. 2.4.9 .r.MI (c), (a) respectively. associated with as in Ex. (2.4.13) (a) and (c), respectively. 1 (2.4.13) and Ex. with c/Jrf, as associated i t t. ^:d net in M~ (a) increasingnet monotoneincreasing is aa monotone (a) {a /) is i': ii Ee I} {al: YI and ai' Ii- )" 1. hence, M, and hence, for : (b) i E I} is cyclic and separating for M, and separating and is cyclic ((i: e /) f (b) Show that {t Stiow that i = {i(t) )"t 4>(x), is <xli,\i> also (Hint: if and 4>0 is M, <xti,t Q@)'and if xx Ee M, for M'. 2".'1Hint: also for i> = c/Ji(x) (iv)' Ex.-(2.4.13) ily M.' faithful; so nil is separating for M. By Ex. (2.4.13) (iv), [Mtil == for (ft) [Mi;] is separating faithful; so (a)') rianQ; an a i'; also bY (a).) af )"'t.lI by alsoai' = lf i.e., i'e" [S in le, is total total in (c) = {a e Mt) is at EM'} (;lll2 i,i Ee I,I, a' [s 1] = ajl:: (c) The rne set sit' Ss = j : i,j i ,1/2 a't K (Hint: use (a) and (0).) (b).) ,t. (Hint: use (a) and (c) is is of (c) (d), show set SS of the set that the (d) 2.4.11 (d), show that (d) If Prop.2.4.ll in Prop. it as ", in .i^ is If So closable. Soisis closable. and So definedand contained denselydefined Sfiisis densely so,S6 Sfi;so, in dom domS6; cont;inedin f,orany any xx Ee that,for showthat, (Hint: (c) to (il repeatedly to show (c)(i) repeatedly (2.4.1"3) (Hint:use Ex.(2.4.13) useEx. = alrlza'li' <son(x), I, € NN nO N*, a' E M' and i,j E I, <SoTl(x), ai' 1/2 , tj> = a i,j M) and N+, ai e
It is not too hard to show that the generalized Hilbert algebra arising from a fns weight on a von Neumann algebra M is achieved; if U = T/¢( N¢ () N ¢), then the left von Neumann algebra :e( U ) is just 7l¢(M). In the converse direction, Combes has shown (cf. [Com 2]) that every achieved generalized Hilbert algebra U is of the form
ruroJ eql Jo sl n erqe8le lraqllH pezrlutaueE pe^erqce d.re,ratcqt ([z ruo3l '3c) u^roqs s€q sequroJ 'uollcorlp esranuoJ eql gI '(n)Qu nnf. sl ( n )f erqaEle uueuneN uo^ Uat aql ueql '(9 N u 9w )Or, = n JI lpalerqce sr y,g erqoEle uuerunaN uol B uo lqEla/ suJ € tuorJ Eulslre erqe8ye UeqllH pazrlureuaE eql leql ^\oqs ol pr€rl ool lou sJ lI
'(n )f t(q polouep puu'n go erqe8lu uu€unoN uo^ Uel D e q l p a l l € c s l , , (n ) u e r q a S l e u u € r u n e N u o n e q l l , , p = n J r p e ^ a r q J e eq ol pr€s sr p erqoSyu lroqllH pazrlereuo8 eq1 'gI'y'C uoqrrrlJa(I
Definition 2.4.16. The generalized Hilbert algebra U is said to be achieved if U = U"; the von Neumann algebra 7l( U)" is called the left von Neumann algebra of U, and denoted by :e( U). 0
equal to L 0>[0,1].
ore,,11pu€rl? qloquoql:[I'0]z? " ," orl:r?;3il'fiit: Jolesqns 'u qo, 1], regarded -as a subset of
U C U", but the inclusion may be strict -- suppose U L 2[0,1]; then both U, and U" are ;1 asoddns -- lJrlls aq f eru uolsnlcur eql lnq
n j n
=
It is clear that leql realc sl lI
'{,0 ) uA l l r , l l>, l l t ( u ) , u€| ;0 < r E : * c I t } = " r ? U"
=
g
E
DII : 3 c > 0 ~ 117l'(T/H II ~ cllT/1I
VT/
E
U '}.
commuting with right multiplications. A simple argument -- of the sort repeatedly gsed in the proof of Prop. 2.3.1 -- shows that if T/ E U', then T/ E U, and 7l'(T/b) = 7l'(T/)*. The following assertions are also valid: U, is dense in If -- in fact U' is a core for F, meaning U' f nb and the graph of FI u' is dense in the graph of F; 7l'( U') is a self-adjoint subalgebra of :e(lf) -- in fact, if T/1'T/ 2 E U', then 7l'(T/2)T/1 E U' and 7l'(7l'(T/2)T/l) 7l' (T/l)7l' (T/2); finally, 7l' ( U ') is strongly dense in 7l( U )'. Continue this game one step further and consider the set
les aql -raprsuocpu€ JeqlrnJ dals auo eureE slql enulluoJ ',( p ) u u r e s u a p f l 8 u o r l s s l ( r I ? ) , u ' , { 1 1 e u r l. (; z t r ) , 2 ( I t r ) , u = l l t r ( 6 t r ) , u ) , u -p u u r l l z r u ( z u ) , u u a . t i ' , l j t ztt'rtt JI 'IJEJ ul -- Qth 3o erqaEleqnslurofpr-Jlos € sl (,0 ),u 2I go qderE eqr ul esuap sr r n lJ go qderE oql pu€ oA 3 ,p Euruearu .g rog eroc 3 sl uI -ul esuap st :prlB^ osl€ eIB l c € J s u o llrossB t , t i p f i ',p E u 1 , y r o 1 1 oogq a ' * ( u ) , u = ( a t r ) 1 2 p u e t D I ) tr JI ou ueql l e r { t s / A o q s- - l ' E Z ' d o r 4 3 o ' g o o r d o q t u 1 p a s d f l p a l e a c l e r 1 r o s a q l 'suorlecllclyllnru lqErr qtlrr Eultnrutuoc Jo -- luaunEre eldrurs y suollecllcllllnu lJol go aldrcurrct plo aql -- ,(p)u 5 (,t? ),u ter{t 'n ul po{ceqr flrs€a sl lI I II€ rol uQ)u = l(u),x l€ql qcns ,t u o ( u ) , u J o l e r o c l o p e p u n o q ? o l e s r r s e z r r E, { l r e a l J r l ? u I U q c e g
Each T/ in U' clearly gives rise to a bounded operator 7l'(T/) on If such that 7l'(T/H = 7l(~)T/ for all ~ in U. It is easily checked that 7l' ( U') f 7l( U)' -- the old principle of left multiplications
'{n ul tn l l t l l ,> l l u ( t ) u€l lo < , E i q c , u } = t t 1 U' = {T/
E
Db; 3
c > 0 ~ 117l(~)T/1I ~
clld
V~ in U}.
:slueuola sselc Eur,nolloJ aql .Arou .teprsuoC rpepunoq-lqErr. 30 '( p )z erqa8le rolerado luro[pu-310s oql Jo (ueroaql luBlnruuoc-alqnop aql ur posn sB pro^\ eql Jo asuos oql ul) fceraueEap-uou olur selBlsuBrl ll ul zll go ,{lrsuap 0r{I '*(l)u = (11)z pue (a)u(l)u = (trl)u "e'r's€.rqaBle e^rlnlo^ur 'raqlrng 'luqt pue . p ur &.1 3o rusrqdrouroruOq? sI u deur eql IIe roJ ul = tr(l)u l€rll qcns (;x)t - n :u deru e sr orarll g uogteldruoc 'leql aes ol fsEe sI rtll,Y. pezrlerauaE urqaEle e uerrS UaqllH n U ('n uJ uollerado ,,dr€r{s,,eql qll/$ luelsrsuocsr slrll'lJ r I leql lc€J snor^qo eqt acrtop) 'oc ) J I puB lS = J a A O u o q ^U \ I = , el1r,r pue'flarrrlcailser Q O1 !'J R u e i l G I -U pu? sulBruop or{l roJ qA pue 1C elrr^\ IIEqs orlA S Jo 'sr,urel I e J I s n u e s e q l 3 o a E e s n " o q lJ o s s a u a l E l r d o r d d e er{l lnoq€ a8els ra1e1e le ^es ol pro^\ E o^BrI IIBqs e1yflaarlcodsar 'sro1e-redo ulBIJu pus ,,dJ€qs,, aql s€ ol petJaJal sor,ulloruos ore eseql 'flarrllcodsar 0S Jo lurofpe eql pu€ 0^S Jo arnsolJ eql rog 'f laallcodser 'J pue S elrra lleqs arr pue 'p go uollaldruoJ eql elouep ,i lal IIETIS a , n ' u a a r E s r p e r q a E l € l r e q l r H p a z r l e r o u a 8l c ? r l s q e
abstract generalized Hilbert algebra U is given, we shall let If denote the completion of U, and we shall write Sand F, respectively, for the closure of So and the adjoint of So respectively. These are sometimes referred to as the "sharp" and "flat" operators, respectively. We shall have a word to say at a later stage about the appropriateness of the usage of these musical terms. We shall write Dl and Db for the domains of Sand F, resRectively, and write ~ I = S~ and T/b = FT/ whenever ~ E Dl and T/ E Db. (Notice the obvious fact that if ~ E U, this is consistent with the "sharp" operation in U.) It is easy to see that, given a generalized Hilbert algebra U with completion If, there is a map 7l: U ... :e(lf) such that 7l(OT/ = ~T/ for all ~,T/ in U, and that, further, the map 7l is a homomorphism of involutive algebras, i.e., 7l(~T/) = 7l(07l(T/) and 7l(~II) = 7l(~)*. The density of U2 in U translates into non-degeneracy (in the sense of the word as used in the double-commutant theorem) of the self-adjoint operator algebra 7l( U ). Consider, now, the following class of "right-bounded" elements:
serqe8ly lraqllH pezrlsreuag pue slqElarg 'V'Z
2.4. Weights and Generalized Hilbert Algebras
61
I9
62 62
2. The The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
U == nO( TI¢( NO N¢ nn Nb), N~), where, where, in in fact, fact, M M == t(tJ r( U)) and and 0¢ is is defined defined by by Lt
lIdll', iiff xx == nn(t't), with i t htEe€Uu ( ( * t ) ,w Ilk
¢(x) = = o(x) { 00 , t-,
2
,
is not not of of the the above above form. form. ifif xx is
If U U is is not not achieved, achieved, one one can can argue argue with with U U"" exactly exactly as as one one If he l e t s tn(t) t ( t , ) ddenote e n o t e tthe argued with U' to find that if, for t in U", one lets i n U " , o n e argued with Utto find that if, for I = n i n t h en f o r U ' , unique operators on If such that n(t)TI = n'(TlH for all TI in U', then r t ' ( n ) l a l l n ( t , ) n l f t h a t o n s u c h o p e r a t o r s unique 7l( g') U") is is aa self-adjoint self-adjoint algebra algebra of of operators operators on on lL If. This, This, in in turn, turn, n( equips gU"" with with the the structure of of aa generalized generalized Hilbert Hilbert algebra' algebra, which which cquips t t (( U t)' f a c t tthat h a t rn' can be shown to be achieved; finally, one has the fact U')' h a s t h e f i n a l l y , o n e a c h i e v e d ; can be shown to be ")", so U generalized Hilbert algebras 7l( U U)" n( U")", so that both generalized Hilbert algebras U = = n( the both that rt( U )" U"n hhave Neumann lgebra. on N e u m a n n aalgebra. e f t vvon a v e tthe h e ssame a m e lleft aand nd U We are are now in in a position to state state the Tomita-Takesaki theorem in in We its full full generality; we shall state state itit as as a theorem about generalized generalized Hilbert algebras, algebras, and feel ffree interpret itit as as a statement statement ree to interpret Hilbert concerning the GNS representation representation of of a von Neumann algebra algebra that is concerning associated with weight. eight. i t h a ffns ns w a s s o c i a t e dw of a Neumann algebra of Thcorem von Neumann f( U) the left left von be the U ) be L1.17. Let M = r( Thcorcn 2.4.17. U. of U. lt denote the completion completion of denote the generalized Hilbert Hilbert algebra U. U . Let If generalized J Then there exist a self-adjoint antiunitary operator and an invertible antiunitary setf-adioint Then there exist A in If tt such that: such that: (possibly positive self-adjoint self-adioint operator fj. (possibly unbounded) unbounded) positive = Jfj.-1/2 sharp of the the sharp (a) = Jfj.I/2 decompositions of the polar decompositions (a) S J6-rl2 are the S = JALI2and F = and flat flat operators; _ operators; (b) JM f(fj.-l) for for any Borel function JI@)J == 7(a-t) A-t, and consequently co:nsequentlyJf(fj.)J ta.r := fj.-l, fI on (0,-); and on (0,00); (c) 0E = M for M). (c) fj.itM and JMJ = M'. A-it = AitM fj.-it E and for all t ee IR, finite case of aa finite the case Having balked even in the theorem even the theorem at proving the balked at then other then the proof other weight, about the (naturally?) say say nothing about weight, we we shall shall (naturally?) p r e c e d i n g f a c t s c o n c e r ning that the reader may find it, as also the preceding facts concerning t h e i t , a s a l s o f i n d m a y that the reader generalized 1]. l ] . i n [Tak g e n e r a l i z e dHilbert a l g e b r a sin H i l b e r t algebras [Tak = dom & == (a) that at/2 and D* = and nb It dom fj.1/2 that n of (a) in the statement of the statement is implicit implicit in It is 'musical" notation ' justifying notation dom fj.-1/2; we rest the case for justifying the "musical" the dom a-1l2; we rest the case for "flat". ' s h a r p nand "sharp" a n d "fIat". von weight on on aa von fns weight As if ¢0 is is aa fns weights, if finite weights, of finite in the the case case of As in (1t6,fl6,n6),an of an application application of Neumann triple (If¢on¢oTl¢), with GNS GNS triple M, with algebra M, Neumann algebra 'wliich v o n l e f t i s t h e f l A ( M ) ' the Tomita-Takesaki Theorem to ndJ(M) -which is the left von the Tomita-Takesaki Theorem to o w e a k l y i n a = r e s u l t s N D n 6 ( Neumann algebra of U ¢ = TI¢( N ¢ () N ~ -results in a a-weakly N 6 o f a l g e b r a u 6 Ncumann | automorphisms gro[.rp (or9; of continuous "modular" automorphisms of"'modular" one-paramete'r group continuous one-parameter of by defined by of M, M, defined
{at>
at(x) n¢(x)fj.~it). z6(x)A6it). n-or(aiot oft"l == n~l(fj.~t left fixed left group with with aa fixed Example compact group locally compact be aa locally Let G G be 2.4.1E. Let Example 2.4.18. the that Recall ds. by Haar measure, which we shall simply denote by ds. Recall that the denote we simply which shall measure, Haar
'slr{Elaaa r llulJ roJ ssncsrp l s r r J I I B r l se ^ r q c r q ^ \ ' u o l l r p u o c frepunoq (lanbes aql ul 'SW)) raEurmqcg-ulpel4l-oqn;1 aql ,{q uarrrE s 1 d n o r E r e l n p o t u e q l J o u o l l e z r J e l c e r e q cE q c n s ' l l e l E u o l l c n r l s u o o 'lqE1a,v.€ qlr^\ pelelcosse dnoJE SNC eqr ol l€acld€ lou seop qclq/( relnpol'u aql Jo uolldlrcsap crsurJlur ue e^€q ol 'acrlcerd ug '1n3asn s l l l ? o 1 u l e E e { c e q u o q l p v e ( 0 ' n ) . ; o a c e d s S N C e q l o 1 E u g s s e df q peurelqo se,r dnorE slql ollq1ystuslqdroutolne Jo (U, r , :,61o) clnorE € ol aslJ se4? 1q uo O lqElo/y\ sug f:ere 'uorlJas lsEI eql u'! ueas sy
As seen in the last section, every fns weight 4> on M gives rise to a group {at: t E IR} of automorphisms. While this group was obtained by passing to the GNS space of (M,~) and then back again to M, it is useful, in practice, to have an intrinsic description of the modular group associated with a weight, which does not appeal to the GNS construction at all. Such a characterization of the modular group is given by the Kubo-Martin-Schwinger (KMS, in the sequel) boundary condition, which we shall first discuss for finite weights. 'SZ
25. The K.MS Boundary Condition uoplpuoJ
f-repunog S5DI cgl
'srol€rodo uoll€lsu€rl pu€ (V fq) uor1ec11d1l1nur uea^Ueq SUOII€Ior uOIlSlnIuuOC oql uO SasnJoJ -- n = rr_Vy'tlrrV .,,(g > -- ruaroeql r{Ese{Bl-elruol eql t:tdi'= ,('g Jo JIuq roqlo eql 1 :'\) ?^?q a^\ 'g elerosTpJo essr agl ut sa'oJueq ig ur. 7 qc?a roJ-3 rd 'oelnturog = trxt l€rll polJuol ,(1rseasl ll lrclldxo esaql Eursn '(uorlcungrelnpou eq1 Euglouep lqEu oql uo V arll)
(the 6 on the right denoting the modular function). Using these explicit formulae, it is easily verified that J>'tJ = Pt for each t in G; hence, as in the case of discrete G, we have (>'t: t E G)' = '
(s)t(s)v= (s)Gv)po€
= (sxl.r) 1('s)l z/r_(s)v (JO(s) = 6(sr 1/ 2 t(s-l)
and (6t)(s) = 6(sH(s)
fq peurJap ore V pu€ 1 srolerado eql ]Br{t IBe^aJ suorlelndruor aaJ v ('serlrtuopl eleurxordde Surrrlolur sluaurn8re prspuels Jo esn eql s o r r n b e r- e l l q ^ \ ' r € a 1 cs r j u o r s n l c u r e q a ) . , { g t t : l \ } = ( n h l e q l uolt?luasordar 1ur8a1u1o^oq€ eql tuorJ e_pnlJuocuec auo .((C)rZ I ? acurs) esues reuqcog eql u1 ro (sp<)'tr'l>(q)l[ = < 1 . r rQ)u>)i1:1ee,r j (t)u , palordrelur Euraq srql -- sp'r(s)l l u r E e l u r n , I JJ lsr{l 'uogllulgep aql uorJ 'ree1c sr '(g)"2 I sr uorloldruoc ogl ll puB lSnt fi
The completion Je is just L 2(G), and it is clear, from the definition, that if t E U, 7l(O = t(s)>'is -- this integral being interpreted weakly «7l(t)lJ,t> = Jt(s)<>'slJ,t>ds) or in the Bochner sense (since t E L1(G». One can conclude from the above integral representation that f( U ) = P't: t E G}". (The inclusion f is clear, while ~ requires the use of standard arguments involving approximate identities.) A few computations reveal that the operators J and 6 are defined by
J
JtCs) lJ(s)
sp_(s)r, (s)l J = .rr'lt
puc and
ds .
,-(t)v = (s)*l
t #(s) = 6(sr 1 t(S-l),
Itt)t
'tp(sr-r)u(r)l J = 1s)(u1) nlJ)(s) =
Jt(t)IJ(t-ls)dt,
modular function of G is a continuous homomorphism, usually denoted by 6, from G into the multiplicative group ~ of positive reals, which is characterized by the requirement that, tor any t in Cc(G) (the space of compactly supported continuous functions on G), t(st)ds = 6(tr 1 t(s)ds, for every t in G. The function 6 is the kadon-Nikodym derivative of the inversion map in G; i.e., t(s-l)ds = Jt(S)6(s-1)ds for t in Cc(G). The left- and right-regular representations of G are the strongly continuous unitary representations of G in L 2(G,ds) defined, respectively, by (>'to(s) = W-1s) and (Ptt)(s) = 6(t)1/2 t (st). The set U = Cc(G) has the structure of a generalized Hilbert algebra, if the product, sharp and inner-product are defined, respectively, by
fq'l(lolrlcodser 'paulJap oru lcnpord-rouur pu€ dreqs 'lcnpord aql JI .erqaEle lreqllH pazrlereueEE Jo ornlcnrls eql seq (9)r3 = p- las eql
j?t:;llril,i.,lllili .pour3e, = (sXr,r) .(q.rlarrlrcedsar (,:'f3',:..-1jl"r= f:elrun snonurluoc [1Euor1s oql er€ g Jo suollelueserdal reln8ar-1q.Err pue -lJol oqJ, '(C)"^: ur I roJ sp(r-s)9(s)lJ = . tp(r_s)tJ ''a'l lg ur deu uorsralur oql Jo a^llu^rrop,rufpo4rp-u
r
J
J
63
uolllpuo3 [repunog Sn) aql
'S'c
2.5. The KMS Boundary Condition
€9
6644
heory h e TTomita-Takesaki o m i t a - T a k e s a k i TTheory 22.. TThe
Definition 2.5.1. 2.5.1. AA 04> in in M* M. *+ is is said said to to satisfy satisfy the the KMS KMS boundary boundary Definition -weakly 13 == l1) with a t iinverse ) w i t h rrespect e s p e c t tto o aa oa-weakly n v e r s e ttemperature emperiiure B ccondition o n d i t i o n ((at continuous one-parameter group group {~: t € IR} of automorphisms of of M M R) t e of automorphisms continuous one-parameter {crr: '... 00,, ffor ' x y (i.e., at(x) ... x a-weakly as t each x) if, for each x and y i in n f o r x a n d i f , e a c h o r e a c h x ) o w e a k l y a s t c r r ( x ) 1i.e., M, theie there exists exists aa bounded bounded continuous continuous function function F: F: {\ p, eE Ccz:: 00 (" Im 1m \>. (" .ll, cr, wwhich n d ssatisfies atisfies h e sstrip t r i p aand n tthe n t e r i o r ooff tthe h i c h iiss aanalytic h e iinterior lI} ) -.... G n a l y t i c iin F(t ++ i) i) = q(xcr,(l)) 4>(xat(y» and and F(t) F(t) = Q(cdl)x), 4>(at(y)x), F(r
for all all It in in R IR.. O 0 for
For brevity brevity in in exposition, let us say say that that "F "F is KMS-admissible KMS-admissible for for T o bbee whenever F,, x aand Definition . 5 ' 1 . ((To n D e f i n i t i o n 22.5.1. ", w henever F n d yyare a r e aass iin .xx aand n d yy", precise, 04> and (cxr) {at} must also also be incorporated into into the abbreviated precise, hich n w will which h e ccontexts o n t e x t s iin pphrase, h r a s e ,bbut y tthe i l l bbee cclearly l e a r l y ddetermined e t e r m i n e d bby u t tthese hese w the phrase will be used.) p h r a s e w i l l u s e d . ) be the following Exercises Exercises list a few few simple facts from from complex The following which will out off tthe h e ssubsequent ubsequent i l l ssmooth u t ssome ome o hich w mooth o ffunction u n c t i o n ttheory, heory, w proofs. p roofs.
Exercises Excrciscs = 1,2, ( \ Ee cz:: G tr j, "( l , 2 , let l e t /fj: For i = (2.5.2) ( 2 . 5 . 2 ) Let r e a l numbers. n u m b e r s . For b e real L e t t l1 < t 2z <1 tt,a be , : {>' i n t e r i o r of i n the of t h t i interior f u n c t i o n s , analytic a n a l y t i c in 1m bee continuous C'b c - o n t i n u o u sfunctions, i m >.r "< tj+l} ! , -' 'r1) '1-... cr I m >.\ == tl z2 ,, the b o u n d a r y 1m t h e common c o m m o n boundary a g r e e on o n the a n d ff 2, agree t h e strip. s t r i p . If ff 1t and G t/ 1t ~( o n {>' show d e f i n e d on f u n c t i o n consequently c o n s e q u e n t l ydefined t t r e global s h o w that t h a t the { \ Ee cz:: l t o b a t function Cauchy's } Morera's converse 1m is analytic. (Hint: use Morera's converse of Cauchy's use Im >.\ "( ttr) a theorem.) theorem.) ' Ccr be in a n a l y t i c in a n d analytic ( 2 . 5 . 3 ) Let l } ... b e continuous c o n t i n u o u s and (2.5.3) I m >.r "< I} L e t f: G 0 "( 1m f : {>' { r Ee cz:: the interior. t h e interior. C f u n c t i o n /f:, {>' (a) ( a ) If t h a t the t h e function r e a l line, l i n e , show s h o w that i s real r e a l on o n the t h e real I f f/ is 1 f E. cz:: - l "1m>. ' Ccr defined ( I m \ "< I} bY -I l ) ... d e f i n e d by
I m >.\ ("l 1 ..... {f(>')' " 1m [ , r { t ) if ,i f 0o < f(>') / ( \ )== {- - l (" I 1m m \ >.( o i f -I " 0 Lf(>:) / ( D if is strip. i n t e r i o r of o f the t h e strip. i n the t h e interior i s analytic a n a l y t i c in to an an = uniquely to (b) f(t) = f(t + i) for all t in IR, in lR,then then f/ extends extends uniquely (b) If for t + f) all If f(t) f(t p e r i o d i.i . entire w i t h period f u n t i o n with e n t i r e funtion identically i s identically t h e n f/ is (c) e d g e , then e i t h e r bounding b o u n d i n g edge, ( c ) If o n either i s constant c o n s t a n t on I f f/ is (a).) a n d a p p l y constant. (Hint: assume the constant is zero, and apply (a).) ( H i n t : i s z e r o , t h e c o n s t a n t assume constant. respect to to with respect KMS condition (in M. condition with Lemma tfte KMS M* +) satisfies the If 4>Q (in 2-5.4. If l*.nna 2.5.4. -) satisfies dt == 4>Q for group) {at}, (ar), then then 4>0 0o at (the (the a-weakly die-parameter group) for o-weakly continuous continuous o'ne-parameter all all t.t. y. Then F(l ++ i)i) == Then F(t) F(t) == F(t Proof. for II and and y. KMS-admissible for Let FF be be KMS-admissible Proof. Let
uolllpuoC frepunog Shl) eql
s9
2.5. The KMS Boundary Condition
65
'g'Z
', l(u€ ro3 ',{lluanbasuoJ 'luelsuoc sr J l€gl uaroaql s.alll^norl ruorJ s^\ollo3 11 '(uolllugep f q) I > \ rul I 6 drrls eql uo papunoq sr / 'rerrainoq 'aculs 'r porred Jo uollcunJ errlua u? ot spuelxe J uollcunJ arll ((qX€'S'Z) 'xg fq) 'oS ', II€ roJ ((f)to)@
cP(CXt(Y» for all t. So. (by Ex. (2.5.3)(b» the function F extends to an entire function of period i. Since. however. f is bounded on the strip 0 :6 1m ). :6 1 (by definition). it follows from Liouville's theorem that F is constant. Consequently. for any t.
o
E
'(,f)g= (0)g = (r)t = ((4b)0
cP(~(y» = F(t) = F(O) =
cP(y).
'ureql EuluraouoJ slc€J ^seo auos raqleEol reqleE ol -- speeu Jel€l puE elBrparurur roJ rlloq -- InJasn oq plno^\ ll 'srol€redo papunoqun 'qUoJ?Jueq 'lleqs rA\ eouls {lg,n f lluanber; Ieap ol e^€q
Since we shall. henceforth. have to deal frequently with unbounded operators. it would be useful -- both for immediate and later needs -- to gather together some easy facts concerning them. saslJrexx
Exercises
'(U e U ur,(Eo1odo1-rurou qderE eqt ul asuep sr oGlZ Jo rIClerE eql aql ol loodsor n {11,n; 3o 0g ecedsqns rgaull s 'c leql llecau JI ,/ JoJ eroJ E pell€o sI c Jo ureurrropqt!/'\ ,l ur :oleredo pasolo paurJap ,{losuap E eq V lo-I (S.S.Z)
(2.5.5) Let A be a densely defined closed operator in X' with domain D. Recall that a linear subspace Do of D is called a core for A if the graph of AIDo is dense in the graph of A (with respect to the norm-topology in X' $ X').
l e q l ^ \ o q s ' l u r o f p e - g 1 a ss l Z J I (q) 'lVl toJ oroJ e sl ll JI f luo puu J\ v toJ aroc B sr 0g acedsqns reaull B l€rll ,noqs 'y 3o uolllsodruocap relod aql s! lVln = V Jl (e)
(a) If A = ulAI is the polar decomposition of A. show that a linear subspace Do is a core for A if and only if it is a core for IAI. (b) If A is self-adjoin t. show that co n~l (ran (I [-n,n] (A)))
rf;" (((u)t,,u_lr) orr; 'ssaulurofpe-g1es,{q loclf S 3 V Jo ernsolc oql sl f pue posolc sr g :lulH) 'E 3 oglv lsgl qcns y rcJ oG oroc € sr er3rll 3r ,{.1uopue JI g = V fiqt ,roqs g ur srolerodo lurofpe-J10s ere g pue v JI (c) 'y cls uo uollcunJ (lqEnoua sr papunoq f11eco1)snonurluoJ fue s1 8 oreq,n '(V)B tol aroc B sr
is a core for g(A). where g is any continuous (locally bounded is enough!) function on sp A. (c) If A and B are self-adjoin t operators in X'. show tha t A = B if and only if there is a core Do for A such that AIDa f B. (Hint: B is closed and A is the closure of AIDo; by self-adjointness. A f B
(g=v+v=s+
9 BfA 9 A = B.)
:uolldrrcsardEur,no11o3 oql fq 'n e ul p rc1endo u€ eurJap'"' (Z'l = u roJ'g u1 roleredo lurofpe-gles€ sI "tt lt $.5.2) (2.5.6) If H n is a self-adjoint operator in X'n for n operator H in $ X'n by the following prescription:
urop r u: : 'l e) = rl urop ~n E
?
:
dom H n
Vn.
'uA
~n
1.2..... define an
pue
dom H = {$
=
and
(-, (zll"l"nll + ull"tll) i
1:
'Fl urop r "l e JI
'("t"H)o = ("1 e)17
H($ ~n) = $(Hn~n)'
if $
~n E
dom H.
,(raao ros('H)sre= (^n)sr Yrll1# ll;it reqrpuE,ulofp"-:rrj
(e)
(a) Show that H is self-adjoint and that lE(H) Borel set E in IR ; (b) If. for each n. Dn is a core for H n • and if
$IE(Hn) for every
'tH roJ oroo E sl tC 'u qceo rog 'g1 ( q ) JI pu€
"l 'rA 'C ': '{u fueur [1alrur; ,(1uorog r :'l e] = 0C 0I
Do = {$
~n: ~n E
Dn Vn.
~n ~
0 for only finitely many n}.
qcea leql porunssefluo sl ll JI i(es noi( uB3 l€rli6 (c) .H roJ oroJ B sr og uaql
then Do is a core for H. (c) What can you say if it is only assumed that each H n is closed? apasolc s;'g
22..
6666
heory The Tomita-Takesaki Theory T he T omita-Takesaki T
Definition 2.5.7. 2.5.7. By a flow flow on M M is meant a one-parameter one-parameter group Definition crr(x) (cxt}tEIR of automorphisms of M such that t ... cxt(x) is o-weakly a-weakly M such that / {ot)tep of automorphisms of continuous, for for each each x in in M. n0 co'niinuous, hich Wee sshall main which e s u l t ooff tthis h i s ssection, ection, w a i n rresult o w llead e a d uup p tto o tthe he m W h a l l nnow o s i t i v e llinear M,, i n e a r ffunctional u n c t i o n a l oon n M o r m a l ppositive a i t h f u l nnormal f 0$ iiss a ffaithful h a t iif sstates t a t e s tthat is the only flow on M with respect to which $ satisfies the w h i c h s a t i s f i e s t he w i t h r e s p e c t t o f l o w M i s o n t h e o n l y tthen t r e n {{at} 0 of) KMS boundary condition. o s i t i v e llinear Suppose, $ iiss a ffixed normal positive inear ormal p i x e d ffaithful aithful n hat 0 h e n , tthat S u p p o s e ,tthen, functional on M M and that {
Lemma Lcmma 2.5.8. 25.E. IX on IR; (a) B H for g(H), for for any continuous function g on continuous function core for u is a core (b) B B H; t f MQ; (b) Mq the sharp sharp invariantunder under the (c) case CXt B is is invariant o9, the the subspace subspaceB in^cise t.l in % == at, operator s. S. g(/rlk(f| bounded Proof. is (a) Note that g(H)lK(H) is an an everywhere everywhere defined bounded Proof. (a) g(/4. operator, hence B H f dom g(H). In view c dom hence f fg IR; s,ii K compact set operator, for any compact ft " prove the lx(Fl)( (b), it suffices to prove if ~| == lK(HH of Ex. (2.5.5) (b), the following: if Ex. (2.5.5) n such s u c h that t h a t ~n R , there for t h e r e exist e x i s t ~n s e t K fg IR, f o r some c o m p a c t set l r , ' ... I ~ s o m e compact [ r , E. B H - g(H)~. p i c k xx n, , in i n - M such s u c h .that t h a _ xnn tx n 0 ' ... and this, first pick f i r s t g ( f / ) ( ,n, ... T o see s e e t h i s , a n d g(H)~ C U r l . To 00 • (for in l(.. ( ~; c (IR) such 1 for all t/ 1ll (For (; next, €e C:(D such that f(t) next, select se'iectany /f E f(t) =="1 If K K is is aa the f or example example [Yos].) air f, see, for such an the existence existence of such /, see, [Yos].) If compact observe that tl.n == f(H)xnn the support support of f, compact set set containing the "f(I/)x'O Ee I observe (since f(H) is is bounded), and that B bounded), and n, that t\n ...- f(H)~ 8 Hs for all n, .f(m\ == ~q (since J (We have g(1/)/(1/) g(H)~n ... g(H)f(H)~ ~ g(H)~ since g(H)f(H) is bounded. (We have is bounded. since sUI)t c(m^il| s(/48" used fact that that the fact used the
f(II)\= f(H)r1(m\= lr(rDi = E.) N o t i c e that that M . Notice w i t h /f! E C:(IR) (b) ( b ) Let C : ( l R )and a n d x Ee M. 8 sH' L e t ~\ == f(H)xn f ( m x o E€ B '7, with -' even the is of the Fourier transform of f is in L 1(1R) -this is true of even the ll(lRi this true is in of Fourier transform the (cf. [Yos]); consequently larger functions (cf. Schwartz functions class of of so-called so-called Schwartz larger class [Yos]); consequently is applicable: the applicable: Fourier analysis analysis is theorem of of Fourier inversion theorem the inversion
(c) If ~ E dom eO, to > 0, there exist ~n in B H such that etH~n ... etH~ for 0 10 t 10 to' (Hint: use Lemma 2.5.8 (a) and (b) above.)
.. ('erroqe(q) pulJe) 8'g'Z€ruruelesn:lurH)^'Or> , > 0 roJ:Hla * ' : s l , 1 e q 1q c n sH g u r ' 1 l s r x ee r e q l ' 0 . 0 / ' r o * a r u o p r 1 ' j 1 ( c ) t
H
('(e) ul flrlenboul oql osn:lurH) '01> I > 0 roJ 0 * u1.,2 'lror, pue 'l '0 . ol'rof ruop uaql '0 J {"1)'jr (q) 0 JI pue
(b) If {~n} f dom eO, to > 0, and if ~n'" 0 and eO ~n'" 0, then etH~n ... 0 for 0 ~ t 10 to' (Hint: use the inequality in (a).) t H
10 IL~«-CO,O]) + ..
t
H
J( > "e> 0dlL~(>").) )"
('(\):rp\orzao'*'J * ([0.*))1rr >
Jco
~
-co
(>"100)
~
0
>..
2t
(>">0)
~
= tr)lrrpr(rrr) (r)lrp,rrr(0"'J* (r)lnprrrr(ott'J lJ (et>")2dlL (>..) = J
e 2t >"dlL (>..) + J
(Hint: let IL~ be the measure given by observe that
e 2t >"dlL (>..)
ql€r{l a^rosqo = (a)trl fq ueirr8 arnseau aql aq tfl pl :tuIH)
+ ,ll:Gr)Io''-)t11 t , lllHt ' ll zlll"o,a(H)(-'o)rll H
"orauoPrl t
10
111(_co,OI (HH112
+
pue '<:'l(ll)slt
IL~(E) =
and
'
'/ qcns ,(ue
~ E dom e 0 any such t,
Ill(O,co)(H)/OH~112.
ro;'raqlrng l0l > I > 0 roJ Hraruop ) t € 0 . 0l pue
IletH~112
(a)
and to > 0 =9 ~
E
dom e tH for 0 ~ t ~ to; further, for
(e)
(2.5.9)
G's'z)
' u o l l € l o u e^oqE eql urBlall
Retain the above notation. Exercises
saslcrexa
.g = a ^ B r { O S I € O r n . r _ S= S ' 0 3 u l s . 1 C eu31 . g B S E g,S oS 'lroddns lceduroc Jo uollounJ;, B osle sr (t-)! - / eruls
So SB
c
=
since t ... /(-t) is also a Cco-function of compact support. B . In fact, since S = S-l, we also have SB = B . 0
' 8 r u * x ( VE o F U= =
f(-log fj.)x*n E B,
UxsSvt(yEoFU = =
/(-log
fj.)Jfj.1/2 x
n
rJx(sEoDl.1rv1= (ux(v Eot)/)S S(f(log fj.)xn) =
J fj.1/2 f(log
fj.)xn
'W)xpuB
Hence ~ = (27lt 1/ 2J !(t)eitHxn dt, the integral bxing interpreted strongly. On the other hand, the "integral" (27lf1/2 Jf(t)cxt(x)dt makes sense a-weakly and defines an element y of M. (Such a-weak integrals will be treated rigorously in Section 3.2; the reader, if he feels uneasy at the preceding discussion, may take it on faith that the argument is not specious, and re-visit this proof after having perused Section 3.2.) It follows from the definition of H that eitHxn = cxt(x)n and so ~ = yo, as desired. (c) When H = log fj., since the function g(t) = e t / 2 is certainly continuous, conclude from (a) that B f dom fj.1/2 = n#; if f E C:(IR.) and x E M,
(Ul)jf , / JI lrC = zlrY ulop 3 g ler{l (e) uror; epnlcuoc 'snonutluoc ,(1urelrec sr. ,'jra = (l)B uollcunJ eql ecurs 'V 8oI = g uaqrq (c) 'parrsop s€ ,{ = t I os pue g(x)ln = Uru*a rcql H Jo uolllulJep eql uorJ s/AolloJ lI (Z'E uortces pesnrod E u r a e q r e U B J o o r c l s l q l l l s l ^ - e r p u € ' s n o r J e d sl o u s 1 l u o u n 8 r e e q l ' u o r s s n c s r pt u l p e c a r d e q l 1e fseeun sleo3 lBql qlrsJ uo lr e{Bl ,(eru eq 3r ':apear arll lg'g uo;tca5 ur i(lsnoroSrr paluerl eq III^\ sler8alur '41 {Beln-o q3n^s) 3o r( luauolo u8 seurJep pue f 11eam-o osues se{€ru eql 'pueq raqlo eql uO 'flEuorls t p ( x ) ' n ( t ) { 1 , t , ( u Z ) , , 1 E r E e 1 u r , , = : ocueH palarcfrolur Eur5{"'ier8a1ur a\t 'tp rJx^r,ae)I !rn_@d , . . e ? 'tPyvPQ)I = (t)/ -J ut-@d
f(>..) = (27lt 1/ 2 J: !(t)eit>"dt.
uollrpuoJ i{rupunogsW) eql
67
'9'z
2.5. The KMS Boundary Condition
L9
68 68
2. 2 . The T h e Tomita·Takesaki T o m i t a - T a k e s a k i Theory Theorv
- ,6tt E ( d ) If (d) D f , there A t [ nn ... a t l and A t l jnII I f tI IIfE nil, t h e r e exist e x i s t t( ,n e i nBt : such s u c h that a n d ,6tt t h a t ,6tt ",( H ( c ) with ...- ,6tt A t ( t for < l / 2 . (Hint: use a and f o r 0 ( t '1/2. w i t t r .H i z == log l o g ,6 u s e (c) a n d to ro - ,6tt = 1/2, = E B such that ,6tt ... for t E [0,1/2]. e At(. Atq, e l/2, to choose choose t!,such that. E l0,l/21. " - J,61/2 t ~ = n J,61/2 l Note = N o t e that t h e above t h a t t~ J a r l 2tn l n ... above l: lgrtlt, - , -til, l * , - , ^by b y the ' /( = 1/2; = = ,61/2J,61/2t convergence = = Jt A1/2q I 6 1 1 2 1 6 1 1 2 l , fe' 6 r t = l / 2 ; ' i lalso s o ,61/2t~ J l ,n c o n v e - r g . e n cfor n "tj " ... Jt q,,.) = ,61/2t ( c ) with p l a c e of = t~ in 0E 6 L l 2 gII;t ' again with a p p e a l to t o (c) i n place a g a i n appeal o ' i tn')
°,
Lemma n eEDnil, L c m m r 25.10. Z 5 - r O .If I f tl eEB Band andn * , t then hen < a n q , n * >= . n , a r - i l * r
for all z in C;
function of the value defines an entire the complex variable variable z. the common contmon value entire function of the los ).\ is a continuous Proof. Note that as fe>.,) == ).Z \' == e"zZ log function on as /(I) continuous function (s ( 0 , - ) , it ( a ) and ( c ) that (O,co), follows from Lemma 2.5.8 i t f o l l o w s f r o m L e m m a 2 . 5 . 8 (a) t h a t both a n d til a n d (c) b o t h t( and belong so that the above expressions are A' for all all z in [, so above expressions are belong to dom ,6z Q (b), B fg Mn. meaningful. Further, by Lemma 2.5.8 MA 2.5.8 (b), First B . Then, w h e n n is i s also i n B. T h e n , t[ == xCl F i r s t consider t h e special s p e c i a l case c a s e when a l s o in ;sfl c o n s i d e r the yQ for and n = yCl some x and y in M. Then, for some and M.
<,6z <,6zxn, J ,61/2 y Cl> =='.:',';:::^',':
(since (since Jr == J*) r*)
= <,61/2 JxCl> y n, ,6-;: n-iJxr>
=7@-')t) (since /(,6-1)J) (since Jf(,6) Jf(A) =
=
(since (since ,6-1/2J A-1/2,/= S) .S;
.
*t , = =
Theorem Let 4>0 be faithful normal positive positive linear functional Thcorcn 25.11. Ls-ll. be a faithful equivalent: on following conditions on M are equivalent: The lollowing conditions on on a flow {at} on M. The {o'r} on
at
dt = of for (i) at for all all t; (arl. (ii) 4> respect to {at}. (ii) satislies the /&e KMS condition with respect Q satisfies
*
= yo. yfL Since Ds, Since tq, Ee nil, Proof. (i) + (ii): Let and let t[ = xCl xo and n = Let x,y Ee M and ' 4 :,6t [ t and ( 2 . 5 . 9 )(d) ( d ) to p i c k ti - in use a t tl -n ... I such a n d . ,6t a tt~ ( : ... in B s u c h that t h a t ,6t E x . (2.5.9) t o pick u s e Ex. a o ( * a " q : ... ,6Zt II for fo? 0 ,6tt a z inn ... ,6Zt a " l and a n d ,6Zt~ t h e n , ,6Zt a t qII, sfor f o r 0 < ,t ,< 1/2. l / 2 . ~lear1Y, C l e a r l y , then, ,( Re ( s i n c e ,61t u s i n g the the n o t hard h a r d to t o see, s e e , using A ' t is I t is i s not i s unitary). u n i t a r y ) . It R e z ,( 1/2 l / 2 (since ( 2 . 5 . 9 ) (a), ( a ) , that converge inequality a b o v e sequences s e q u e n c e s converge t h a t the t h e above i n Ex. E x . (2.5.9) i n e q u a l i t y in
°,
°
'[(c)(S'S'Z)'xX aas]Ea toJ oroc e sr Hg aculs'Hg luaE v lerll ^\oqs-ol soorJJnsll :Ha = V i-eq1^\oqs ol peau alA" 'g'9'g eruura.Iur sE eq H g le.I u, ul / pue n u[ x roJ ur*rr.t = g(x)'n lEql qcnsu uI H rol€r3do lurotpe-31as€ slsrxo oroqt teql g'g'Z eturual Eurpece:d uoJssncsrp eql urorJ s/AolloJlI 't'g'Z €ururo.I^q 0 - lrco O uaqt ,uoyllpuocgy,111 eql selJsllssO tlrltt^\ ol lcadsor qll^\ ^\olJ e sr {rn) JI :(l) + (II) 'd pue x roJ alqrsslupe-Sn) sl jr spro^\ roqlo ul
in other words F is KMS-admissible for x and y. (ii) 9 (i): If {cxt } is a flow with respect to which ¢ satisfies the KMS condition, then ¢ 0 CXt = ¢ by Lemma 2.5.4. It follows from the discussion preceding Lemma 2.5.8 that there exists a self-adjoint operator H in ~ such that cxt(x)n = eitHxn for x in M and t in IR Let B H be as in Lemma 2.5.8. We need to show that t. = e H; it suffices to show that t. ~ eHI BH' since B H is a core for eH [see Ex. (2.5.5)(c)].
:((r)jox)p=
F(t + i) =
(r(Qfo)O=
and
pu€
= ¢(of(y)x)
q;tyxr,-vl(r,v> = (lA u = Ut,-v ecurs) $rt-V*{ .Urlr_V>= qy*d tJr11-v>= (tU 'salJsllespu€ 'rorJoluror{l ur cllfleue sr qcrq,$ fo r I ro3 > z rul > 0 duls ogl uo uollcunJ snonurluocpepunoq€ saurJep
defines a bounded continuous function on the strip 0 " 1m z " 1, which is analytic in the interior, and satisfies, for t E IR, 'I
'
1/2" 1m z " 1 | > z tJrl> (,/l
{
_
0 " 1m z " 1/2
(,/l > z rul > 0
. < o t r . l " , _ v >| J
= (z)r F(z) =
'(Q'S'd'xA 'Jc) ooueH .(u/)
,qloq .are
F 2(z) =
o c u o n b e sa q l J o l I r u I I o q l 'z/t = z .uIoulleqruo::i3.:irll'r,'j,,t^",:l,"tifio3,,, '(oq1 aculs
posolcoql ul snonurluor pu€ papunoq's1 .i"1q^ ,.0i",-lv,ut'= (i)zl
(again using the estimate in Ex. (2.5.9) (a)). _ By Lemma 2.5.10, it is true that fn(z) =
q-oll3unJ aql ol I > z url > Z,/l drrls eq1 ur flurogrun saEraruoc ("/) lerll otou-.'eAoq? su [1lc-uxa EurnEry .z wl - I--= e.l - I)eU l€r{l ocllou :
+ rlltll)> llrull(lll,vll'trns. ) > l(z)'.rl ll*!llrt'Qlllzlrvll uniformly in the strip 0 " Re z "1/2. Since f (z) =
:duls aql ul papunoq osle sl rg uollcun3 aqa 'rorrelur aql uI c1t,{1euepue Z/l > z ull > 6 dr-r1seql ur s.nonulluoJ s.r
69
uolllpuo3 frepunog Sn) oql
'9'Z
2.5. The KMS Boundary Condition
69
70 70
2. Theory 2. The The Tomita-Takesaki Tomita-Takesaki Theorv
= ~et Let ~q, = xn . BM' e M. M. Note that the function function given by G(z) G(z) = vq € Bu, Yy € (use (a)) <e-1zHxn, y*O> is entire (use Lemma 2.5.8 (a» and that for t € IR, G(t) ."-izHrq y*o> e R, 2.5.8 C(t) eri^tire - <e-itHxn, = ,p(at(y)x). = <xn, = <xn,at(y*)o> (cr,(l)x). It = y*O> = <xg eitHy*o> <xgcrt(/*;o = follows <e-itHx$ y*o> It follows eitHy*o> = (2.5.3)(c) to F -- G where F is KMS-admissible (on applying Ex. (2.5.3) KMS-admissible for for x and y (relative to at» R. Hence, Hence, cr,)) that G(t C(t + i) = ,p(xat(y» f(xcrr(y)) for all tr in IR.
Setting crt(y)Q we find find that Setting T)n = at(y)n, = <eH~,
for M O This T h i s means e dom a n d that t h a t F eH~ e H ( = S~. Sf. f o r all a l l T)n in i n Mn. m e a n s that t h a t eH~ eHl € d o m F and = FSt = p-l, = ran F and so A[ = Since f,Jl = F-1, dom F = S( € e dom F and £It Since F = so S~ = eH~, p r o o f is eH~; 0D A and A[ = i s complete. i . e . , ~( € e dom a n d the t h e proof complete. e H g ; i.e., d o m £l a n d £l~ e H l , and 2.5.4 -An immediate consequence Theorem 2.5.11 2.5.11 and Lemma 2.5.4 consequenceof of Theorem -- is = Aito which can also be directly verified using the fact that £litn = no -verified using also be directly stated reference. stated below as as a corollary for convenience convenience of of reference.
o! == ~. Corollary C-orollary2.5.12 Ls-lz- ~0 0o at 6.
0O
= {at}t€1R flow acr = fixed point algebra Definition algebra of a flow Definition 2.5.13. 2.5.13. The fixed {crr),.p on givei bl' M is the von Neumann subalgebra, by W, of subalgebra, denoted denoted by ~, of M given ar(x) = x ~ W = {x e M: M : at(x) {x €
for all t}. for t).
write If If ~ faithful normal positive linear functional, functional, we shall write 0 is a faithful
M~ ttf for f or Ma~. Mov:, thus thus,, A
ptQ== {x M~ o!{i == x u: at(x) G €e M:
for all t}. l}.
0D
which, The next result is a very elegant M0 which elegant characterization characterization of of M~ oP among home the fact that the modular group a~ among other things, things, drives home effectively measures the lack of traciality traciality of ~. effectively measures 0.
Corollary faithful normal functional ?J.1L Let ~ normal positive linear linear functional Corollary 2.5.14. be a faithJul 0 be on for x to belong belong necessayyand sufficient suf ficient condition for on M. Let x €e M. A necessary q1x) lor to the fixed point algebra M~ for all all y in M. In MQ is that ,p(xy) the lixed QQfi = ,p(yx) particular, particular, Z(M) Z(n ~ M9. 2 MIp.
Proof. If let F be for y and x. If x € e M~ MQ and e M, M,let be KMS-admissible KMS-admissible for and yI €
uolllpuoJ ,{repunog SW) eql
IL
2.5. The KMS Boundary Condition
71
'S'Z
'n .io u \ t g € r o J o 0 = ((x- 1r)jo;r;g'snqa Q =g aculYs.((x)jor)@ .luelsuoc Scuaq = (x(,f)lfo)Q = Q-)t = (0)J'= $t(.)g ,t fue'rog .og puB papunoq sl qrlq^r uollcunJ erllue u€ ol spuslxo .{ lsql t.g.z 8urru3.I '(l + t)t = ((Qjox)Q = (r(rfo)O = (/)J lugl Jo Joord eql ul se enEry sornsua r uo slseqlod^q eqr l€r1l olou ld p'ue r -ro.;alqfisrrupe-Sn) eq '1,t1 g 1e1 pue 'd xrg ur.t(. roJ etp.. = (,tx)Q leql f lesronuoc asoctdns IIU '(xt)q = (rfx)p 'relnclU€d ur .leql os .luelsuoc sr J lEql (c) (g.S.Z)'xA ruorJ opnlcuoJ U ul , IIB roJ 'gt()q = (t + t)t pu€ (,(r)0 = (rhr uoql
Then F(t) = 4>(xy) and F(t + i) = 4>(yx), for all t in IR Conclude from Ex. (2.5.3) (c) that F is constant, so that, in particular, 4>(xy) = 4>(yx). Suppose conversely that 4>(xy) = 4>(yx) for all y in M. Fix y, and let F be KMS-admis~ible for x and y; note that the hypothesis on x ensures that F(t) = 4>( at (y)x) = 4>(xat(y» = F(t + i). Argue as in the proof of Lemma 2.5.4 that F extends to an entire function which is bou~ded and henC$ constant. So, for any t, 4>(yx) = F(O) = F(-t) = 4>(a_ t (y)x) = 4>(yat (x», since 4> = 4> 0 at Thus, 4>(y(at(x) - x» = 0 for all y in M. Put y = (at(x) - x)* and appeal to the assumed faithfulness of 4> to conclude that at(x) = x. 0
or o JosseurnJrrr'J paunsss eqror ,"rR" ,"; if!?;;T)t:1l"l,i:
's^\oIIoJ s€ popuerrrusl uorlrpuoc .slq81e,vr Sn) orII suJ Jo asec srlt ol pepualxe eq uec srsfleue EuroEerog orlf Jo IIy
All of the foregoing analysis can be extended to the case of fns weights. The KMS condition is amended as follows.
Jl n uo {rn} molg B ol lcectser{11,n 1, = g tu) uolllpuoc frepunoq SW) eql fgsyles ol pl€s sr J/ uo 0 lqEle,r suJ V .tl.g.Z uogIrIJaC
Definition 2.5.1'. A fns weight 4> on M is said to satisfy the KMS boundary condition (at 13 = 1) with respect to a flow {~} on M if
'((/)lox)Q = (, + r)J'(r(d)rn)g = (r)./ U O ul roJ 'serJsll€s pue drrls egl Jo JorJelur eql uI cllfleue s1 , IIB qclq,n b * {t }^z ru1 0 .? ) z} ii uorlcunJ snonurluoc papunoq .l B slslxe eraqt TN u v N ur f puu x slueuele go rred frane roy (il) p u e! g u I , l l e t o J ' + n u o O = t o o O (l)
(i) 4> 0 at = 4> on M+, for all t in IR ; and (ii) for every pair of elements x and y in N 4> () N;' there exists a bounded continuous function F: {z E (l;; 0 , 1m z , I} ... a:, which is analytic in the interior of the strip and satisfies, for all t in IR, F(t) = 4>( at(y)x), F(t + i) = 4>(xat (y». 0
:sauoceq ^\ou ^ do dnorE relnpotu eql Jo uorl€zrrolJ€r€qo SI/{) eql 'YW uo 0 tq8le,n aql ^q pecnpul leuollJunJ reaurl oql roJ pesn Euleq osle sl -0 Ioqurfs erues-oql leql .r(11e1uaplJul.aJIloN .ln3Eurueeu are (({)rnx)p pue (x(f)b)p suoJssarclxe. oql pue 014 t (tetix .x(rf)ln os pue try u 9N ? (rfp u.eql'?N u 0N r l('x gr .og 4y = 1014;1n flluonbasuoc pue 9ry = (9N )rD ueql ? = to o O JI lpql eloN
Note that if 4> 0 at = 4>, then ~( N4» N4> and consequently a t(M4» = M
:Tualounbaan) W uo (\\ uo[ o uo uo y13taa su1 p st Q II .rII-SZ trraroaql
Theorem 2S.11'. If 4> is a fns weight on M, the following conditions on M are equivalent:
'fn) ol tcadsat qtltt4uoltlpuor SW) atg sa{sgos 0 (lt) idrttlloto/jo=tn (l)
(i) at = at for all t in IR ; (ii) 4> satisfies the KMS condition with respect to {at}.
E
{~}
suottlpuol Eutuol1o/ aqt'n
on a flow
0
leql asues eql ul c1l{1rue [1>1ea,n-osI C (B) ler{l qcns N - D il uollcunJ 8 slslxe 3rorll JI iloo roJ c1lf1eur,, n Jo x lueuola uB IIBJ :s^\olloJ s3 palculsuoc s[ -- rIBsa{?J ,(q erqaEle Bllurol aqt- pe4ec -- 0p ? qJnS A V z fre,re ro3 'rv toJ aroc B aq lsnu ('n )qu (q) pue isn o1 alqup€Ae ore sluaunEre uoJlerulxordd€ lsql os ',pgur aldrue {1tue1c1y;nsoq lsnu 11 (e) :sanlrrr o^rl e^€q lsnru 0 f? B rlcns^ 'esec elrulJ eq1 Eulnord u1 posn g los aql Jo elor eql fBId uec (op )Pu teqt qcns 7g ;o 0p ececlsqnsecru e Jo plorl qerS o1 st ruerooql a^oq€ eql 8u1,rord ur dals lsrlJ ogJ 'slqEran olrurJrrues Eururecuoc sluerual?ls Jo sJooJd reqlo pue slql olul saoE leql ldacuoc auo uocln 11o,npflgorrq ll€rls o,rr .p€olsul .[Z uroC] ul punoJ eq u?c rIJIrI,n 'usroorll slql Jo Joord B lnoqe EuJqtou fes llsqs aA\
We shall say nothing about a proof of this theorem, which can be found in [Com 2]. Instead, we shall briefly dwell upon one concept that goes into this and other proofs of statements concerning semifinite weights. The first step in proving the above theorem is to grab hold of a nice subspace U0 of M such that T/4>( U0) can play the role of the set B used in proving the finite case. Such a U 0 must have two virtues: (a) it must be sufficiently ample in M, so that approximation arguments are available to us; and (b) T/cIJ( U0) must be a core for t:.. z, for every z in a:. Such a Uo -- called the Tomita algebra by Takesaki -- is constructed as follows: Call an element x of M "analytic for a¢.' if there exists a function F: a: ... M such that (a) F is a-weakly analytic in the sense that
The Tomita-Takesaki Theory heory omita-Takesaki T 22.. T he T
7722
.»
cb(F( function for for every $l/J in in M*, M., and (b) F'(t) F(t) = o9(x) 4(x) rl,(f(.)) is an entire function Such n eentire ntire i n c e aan f iitt eexists, n i q u e ssince u n c t i o n , iif x i s t s , iiss uunique n lIR R S u c h a ffunction, ffor o r t iin rite e sshall we write ine; w hall w e a l lline; a l u e s oon h e rreal y iits t s vvalues n tthe e t e r m i n e d bby ffunction q n c t i o n iiss ddetermined at(x) for F(z), z e E C,. for o!G) " Let t,to M o d'enote denote the set set of of oO-analytic a
a:.
at(>.x + y) y) = lof >.at(x) at(y), of tr) *+ o!{il, trr + at {xil (xy) = = o! at {*)o! (x)at {il, (y), o!
and a nd
at t"*) (x*) = = qh{r)*, OS
E M M and 0, , tthe ntegral h e iintegral lIf f x e and 1 7 > O
2
fIR .*o exp [-t a
2r 1I 2 (27l)' /z (2r-y\-t
2
]
t
M. (This converges x1 of of M. o-weakly to an element element x1 converges strongly and a-weakly 'probabilists') "Gaussian smoothing" It process of friend of of probabilists.) It process otd friend smoothing" is an old of "Gaussian is not hard facts: f o l l o w i n g facts: h e following ot h a r d tto o establish e s t a b l i s h tthe is n x-y (i) (i) x,
(ii) (ii) (iii) (iii)
;/)2J
2r 1 / 2 fIR exp [ - (t (2rryzy-t/z E M o! (x e Mo anaat G)1 ) == (27l)' o and Ip ,*o l-#)o! 2
at(x)dt; {iat;
- x a-weakly x , ... ... ; 0; o - w e a k l y as as 1 7'0 1 =
MOis is.o-weakly Mo.l Consequently a-weakly and M o-weakly dense dense in M and Mo is a-weakly Consequently M o is o () M
Exercises Exercises Xf. Let positive invertible self-adjoint operator (2.5.15) operator in It (2.5.15) Let H H be be aa positive ~I Ee :Ie are equivalent: equivalent: The following following conditions conditions are lf and to >r O. 0. The and to
(i) (i)
iz, for 0 ,( 1m Z , to; ~| Ee dom H'io, for 0 Im z 4 tsi dom W t
(ii) ( i i ) ~t eEa dom o m l rH t o0;; F: (strongly) continuous function F: (iii) (norm-) bounded continuous function (iii) there bounded (strongly) there exists exists aa (norm-) (strongly, or {z equivalently, lf which which is or equivalently, is (strongly, Im Zz ,4 to} t) ...- :Ie Q, 00 ,( 1m {z Ee [; F . ( l )== a n d satisfies s a t i s f i e sF(t) weakly) s t r i p and i n t e r i o r of o f the t h e strip i n the w e a k l y ) analytic t l e interior a n a l y t i c in Wit~ in IR lR.. for tt in F/-itE for
Isrurou ,(reao lcnrlsuoc u€c ouo ,147uo (tf =) O lqEroa suJ € sBq euo eJuo lerll slrass€ ruoJoaql ru[po>1r1q-uop?UIecrsselc eql .snq1 .fl ol lual€^rnbe sr n ueq^r d.lasrce:dy'g uo lqEle^\ suJ B sr 4,1 teqt acJloN
Let (X,f,lL) be a (separable and a-finite) measure space and let M = Every (positive a-finite) measure v on (X,f), which is absolutely continuous with respect to IL, defines a normal semifinite weight l/Jv on M via the equation l/JV
elrurJlruos r{lr^{uorlrollqul are1! oncodsar r€rurou trtfl Lirlt;{Lt#
flelnlosqe ere qclq^\ 'sernseaur olIuIJ-o ocueH ^,fr = ,ft sacrog rfi 3o ,(lrlerurou leql reolJ sr 1r l(n) (p) (g.l'Z) .xg EI^ .rJr3o ssauelrurJrues e g l J o e c u o n b a s u o cu E u r a q n J o s s a u o l l u r J - o o q l - - ( 1 f ) u o n e r n s € a r ua l r u l J - o ( a r r l r p p e d l q e l u n o c ) e s e u r J a p( s t h = ( A , ) nu o J t e n b e eyl ueql 'n uo ellulJrruos leruJou B sl 0 ;r .flasraluo3 lqEJe,r '(n = U)^rl, uorlenba oql atn yg io n,l, lqara,n ) I) ^p II elrurJrues Ierurou e sourJap .t ol lJeclsal qll/rr snonurluoc {1a1n1osqe .(d, sr rfcrqrn '(J?) uo n erns€eru (alrurg-o errrlrsod) ftolg l,X)^7 = N Fl pu€ ac8(ls orns€aur (o11urg-opuu elqerudas) e aq (rt,t,X) t:,l
If
L co(X,f,IL).
suoltrulccdrg
-92
2.6. The Radon-Nikodym Theorem and Conditional Expectations luuoqrpuoJ
puc trrrrqrql
u{po1rtr1-uopg1
eql
'[fa] ut goord alelduoc eql purJ uer rapeer palserelur eqt leql pue .(e) 9'y.7 .dot4 pue (l) + (ll) uolleclldrur eql uorJ /holloJ paepur seop uaroeql aql Jo luauelzls tsBI oqt l€r{l lclecxa '3oord aql lnoq€ Eurqlou frs IIBTIs aA{
We shall say nothing about the proof, except that the last statement of the theorem does indeed follow from the implication (ii) 9 (i) and Prop. 2.4.5 (e), and that the interested reader can find the complete proof in CPT]. (ii) xM4> f M4>' M4>x f 11tb and 4>(xy) particular, Z(M) f M'I': o
,r 4w rt t 11o to! (xt)Q= qxlq=puo&,{:ff1t,;';'g"d;X
X E
4>(Yx) for all y i11
In
M4>·,
i6w t x
'n
(ll) (l)
:1ua1nt1nba ato x uo suorl!puoc8uruo11ol ) x tal puo 14 uo 7t18nd{ suJ o aq Q p'I 'fi1's7 rnrrcrqJ
E
M.
aAJ
(i)
Theorem 2.S.14 1• Let 4> be a fns weight on M and let x following conditions on x are equivalent:
The
'[ra] ul punoJ found in CPT].
eq feu py9'7 fi,tegoroJ Jo uoJsuelxe Eug,vrolyogorll pue ('cla .0 n '"n uo) leql aroJaq lerreleru oql Jo lsoru 'esroroxa Eurpecord eqJ
The preceding exercise, most of the material before that (on M o' U 0' etc.) and the following extension of Corollary 2.5.14 may be = WIZ~.)
0
(z)g puuzr-l/uop , I l'rn .{11ereuaE pu' .r0," errfl(olrTf; oror,u 0
t
~nd
F(it o) = H
~
~,and
more generally, that
~ E
dom H- 1Z and F(z) .
ruop , 1 lerll epnlcuoc 'lurotpe-91o, .r org pue frurlrqr€
H
Since t was arbitrary and H
sB,$ I ecurg
= <1.(o/r)g> .
0
t
is self-adjoint, conclude that ~
E
dom
. .lofl.lt
to
t>.
os ' 0 = z rul aull eql uo eerEepue 'frepunoq eql uo snonurluoc.dJr1s eql ul cllfleue ete
aloN 'or;/ ruop r t lal '(l) e (lll) toJ ,.|rr_H= e)i los .(rrr) € (l) roJ :(e) (0'S'Z)'xe fq (l) + (lt) egq,n 'f1rea1c(ll) + (l) :lulH) '0/ > z ru1 y 0 roJ lzr_F/= Q)I ueql .peryslleserB suolllpuoolualE^rnbaeseqlJI for (i) 9 (iii), set F(z) =
WIZ~;
for (iii) 9 (i), let t E dom H . Note
.
~
If these equivalent conditions are satisfied, then F(z) = H-iz~ for 0 , 1m z 'to' (Hint: (i) 9 (ii) clearly, while (ii) 9 (i) by Ex. (2.5.9) (a);
ruerooql urIpo1r51-uop€U aqJ '9'Z
73
2.6. The Radon-Nikodym Theorem
9t
The Tomita-Takesaki Theory heory he T omita-Takesaki T 22.. T
7744
semifinite weight weight 0l/J (= 0v) l/Jv ) using using~. In case case the density dv/dtt dvldIJ. is semifinite 0. In o r ssome ~ c c~ f 0l/J < Q ffor ome e f o r m u l a t e d tthus: h u s : iif a n bbee rreformulated h e o r e m ccan h e ttheorem bbounded, o u n d e d , tthe exists h in in M, M such such that 0U) l/J(I) = Q(hf) «hI) for for all ff in in M*. M+. In In c > 0, there exists alid, t i l l vvalid, h e aabove b o v e eequality q u a l i t y iiss sstill e n s i t y , tthe n b o u n d e d ddensity, n uunbounded tthe h e ccase a s e ooff aan w i t h i n tthe on N eumann must made Neumann a n g u a g e ooff vvon h e llanguage a d e ssense e n s e ooff ((within u s t bbee m bbut ut m ith M when h iiss uunbounded with M.. u t aaffiliated ffiliated w hen & n b o u n d e d bbut aalgebras), l g e b r a s ) ,w Wee sshall prove non-commutative Radon-Nikodym off r o v e tthe heorem o a d o n - N i k o d y m ttheorem on-commutative R he n W hall p inite p nd Pedersen and Takesaki only IJ. aand o ffinite n tthe o r r e s p o n d i n gtto h e ccase a s e ccorresponding akesaki o n l y iin nd T P e d e r s e na enerality, w ill o and bounded dvld The generality, will only bee nly b n iits t s ffull ull g h e rresult, e s u l t , iin v / d *II- T v a nd b ounded d stated, and the reader desirous desirous of of a proof proof is directed to [PT]. [PT]. stated, i n i t e ccase The problem one encounters even roblem o n tthe a s e ---- iiss h e ffinite v e n iin ne e n c o u n t e r s ---- e T h e ffirst irst p if $~ e M** M. + and if if h, h, x e M*, M+, there is no reason reason why why Q(&x) ~(hx) this: if s i n c e , tthen hen S non-negative. This ~ is ~(hxJ f 0 i s ttracial r a c i a l ((since, h i s is i s ttrue r u e iif on-nigative. T (/rx) sshould h o u l d .be be n 1 2 ~ 0) but not in g roup o = «h( h1/r 2l 2xh Thus, group ae eneral. T = Q modular g h u s , tthe h e modular O ) b u t n o t i n general. x l t/r /)' ) > naturally makes presence r e s e n c effelt. elt. ts p a k e s iits n aturally m r e a m b l e , llet After preamble, uss sset et u e t tthe he engthy p h i s ssomewhat o m e w h a t llengthy A f t e r tthis e t t i n g a ffew ball byy g getting observations, ((non-commutative?) n o n - c o m m u t a t i v e ? )b e w ssimple imple o bservations, olling b a l l rrolling in g u i s e of way. o u r way. o u t of o f our i n the o f exercises, e x e r c i s e s ,out t h e guise Exercises p o s i t i v e linear M. f u n c t i o n a l on o n M. (2.6.1) l i n e a r functional (2-6-l) Let ~ n o r m a l positive faithful normal be a faithful 0 be d e f i n e d b y o n If denote the linear functional on M defined by l i n e a r f u n c t i o n a l t h e If heM, h e M, let «h.) 0(&.) = ~(hx). (~(h.))(x) (O(&e.)Xx)= $(hx).
t ..
(a) (a) The map h - ~(h.) M into M M*. •. 0(h.) is aa linear map from Minto 1 2 1 2 (b) e M, Def. 2.5.13) and x e M, then ~(hx) = $(h / xh / ), (bi If x then 2.5.13) and rf hh ee M+ u! (cf. rcr'.'Def. 9(!r) frQllzxhrl\, particular, h,k M\ and and hlr ~( kk h,k ee M+ and M* +; consiquently~(h.) and consequently Q(h.)ee M. -; in particular, imply ' implv ~(i') O(ft.). 0(4.)~< ~(k.). (0). ker h/r == (0). (c) then ~(h.) (c) If faitfrful if and and only only if ker is faithful M!,,then lf hh ee M+, 0(ft.)is q1n.1for all (Hint: ~0 0o lR. (Hint: (d) all tt in IR (d) If U!, then lf,hh ee Mt ttren «h.) ilh.) 0o ol == ~(h.)
atoP= ~.).o.l.E =
at
U
positivelinear linear functional Proposition normal positive Let ~0 be be aa faithful Proposition 2.6.2 262 Let functional laithlut normal M*,* are are equivalent: equivalenti on in M.,+ on aa l/J{ in conditionson The following M. The on M. following conditions U!; ; (i) (i) l/J,t)= ~(h.) in M~ somehh in OQ) for for some ^ (ii) some c > 0, and . . ( i i ) l/J0 ~< c~ c 0 for s o m e c > 0 , a n l/JV d 0o o Y = tl/Jl tfor f o rall a l tl tini nIRl R for
at
-- with (b) and parts (b) and tto- parts Proof. II ---- from (i) ) (ii): (ii): This with c, == Ilh follows -This follows llnll Proof. (i):} (d) (2.6.1). (d) of Ex. (2.6.1). of Ex. <x$0> generality that (ii) that ~(x) (i): Assume, without loss loss of of generality (ii) :}+ (i): Assume,without 0(x) == <xn,!1> Notice vector for f or M. M. Notice for o is and separating separatingvector wheren is aa cyclic cyclic and M, where in M, for xx in the on well-defined is that the sesquilinear form [xn,yn] = l/J(y*x) is well-defined on the {(y*x) that the sesquilinearform [xQya] dense Mn and is bounded, since since is bounded, and MQof of Jf, densesubspace subspace 4
'ecueqpue [(c) '/ 1 seop se tlcee roJ rrv rIll/h selnuruoc I r7 .,{11eurg
Finally, h' commutes with /1it for each t, as does J [cf. Prop. 2.3.2 (c)] and hence, e'Ee
'dord '3c]
'(xtt)p =
=
=
= <xn,h!l>
<1;rt/lrx> =
= <xn,h'!l>
!JJ(x) =
'n vI x ,{ue rog 'aouo11
Hence, for any x in M,
hn = Jh' In = Jh' n = h' n.
lJtI =ur4l =Utrvt =U4 l€r{l t f ,It = U lsrll s^rolloJlI
E
pue (uraroeql l{Esal€I-€llurol orll fq) 'n
that
It follows that h = Jh'J
M+ (by the Tomita-Takesaki Theorem) and
1JtVf = tJt%alyvf = tJr4I = tJt4
h'n = Fh'n = J/1-1/2h'n = Jh'n.
Recall that M' n f dom F and Fa' n = a' *n for a' in M'; since E M~, and h' commutes with 11, conclude that
luql epnlJuoc! q1;,nsolnuuoc tQ pue'In > ,rl ecurs1,.;4r ur 13 roJ u+to = ur"J pue c rrrop3 urhl t€r{l IIE3eu (.
h'
\)x,I> =
=
= !JJ(y*o4>(x)) = !JJ( o4>t(y)*x) t -
(r*(uf)riolfr = 11x;jo*,f)rlr=
y!l>
:uos?3g) 'V qll^\ oJueq pus '/ 11ero3 c t 4 ! e \ l l s E J a q l o l u l s a l e l s u B r l4 r J o O J U E T J B A U T - 6 o i l V t l l l 4 s e l n u u oqfE{9g 4y pue eqf pue rog elrl/{ f.1ctrurssn la-IY v .f.J.S' 'tw ) tq leql epnlcuos
conclude that h' E M'. Let us simply write S,F,J and /1 for S4>,F~,J4> and /1¢- Th~ o4>-invariance of ll! translates into the fact that h commutes with /11t for all t, and hence with /1. (Reason:
= <xh' yo,
i <152\St,4x> =
z!l> ;
=
= !JJ(x*z)*y)
(tk*z\ft = <1Sz\Sttx ,t1>
'147ut z'tt'x tue roJ osle le,rltlsod s1 rfi acurs 0 I t4 l€rll eloN -n ur. t ,x toJ @*,(),1, = q.Jd!r,tt> WrIl qcns fi ao ,I .rolerodo pepunoq € stslxa oroql oS
So there exists a bounded operator h' on 3f such that
'llurll = lluxll2 ~ c
71{t*th s11(x*xpc}
((q) (r'r'Z) 'xa ,{q)
l!JJ(y*x)1 ~ !JJ(x*x)1/2!JJ(y*y)1/2
(by Ex. (2.1.1) (b))
) l(x*,{hl 711({*t)$76(x*x}tr 2.6. The Radon-Nikodym Theorem
75
ruarooqlu,{po>1rp-uopBU ar{I'9'Z
9L
7766
heory 2. The TTomita-Takesaki Theory omita-Takesaki T 2. it = h= = /::;.itM= o!{D, at(h), 6it1r6-it ft
i.e., h e E Mt M~ . i.e.,
0 o
apology, we state state below, without without proof, proof, the With no ffurther urther apology, Radon-Nikodym theorem of of Pedersen Pedersen and Takesaki in in its general general Radon-Nikodym form. form.
Theorem 26.3. 2.6.3. Let Let 0$ be a fns weight ,on on M. Let rb c/J be a normal Theorem semifinite weight on M M such such that 4t c/J o 0 of at = = $c/J for for all all t. Then Then there there semifinite exists unique ,positive positive sel/-adioint self-adjoint operator H H (possibly (possibly unbounded) unbounded) exists a unique affiliated to MP M$ such such that 0c/J = 0@): $(H.); where where 0(H.) $(H.) is defined defined to be be alfiliated the limit limit (as (as eE -... 0) of of the the increasing net {O(He.): {$(H E'): €E > 0) O} (directed the E E2 + ~ 0(1{e $(H E .) > ~ [email protected] $(H E of normal normal semifinite semijinite weights weights so that €r of so 1 < €z 1r.) 2 -
.»
(Q@e)@) = S@!/2xn2/\, on ry M defined defined by $(H~/2XH~/2), where HE = H(l + where H, by ($(HE.»(x) on EH)-l. e m - L0. n As might might be be expected, expected, this this result result will suffer suffer the the same same fate fate as as As we shall other semifinite we weights: shalluse useit semifiniteweights: resultsconcerning concerning otherunproved unprovedresults in w i t h complete i n the f u t u r e with c o m p l e t e equanimity. equanimity. t h e future The f a r as a s the t h e subsequent subsequent i s a digression, a s far d i g r e s s i o n , as T h e rest r e s t of o f this t h i s section s e c t i o n is prior has had no prior trend of this book is concerned. reader who has concerned. The reader probability exposure to probability theory, who might consequently not consequently exposure proceed to the next appreciate section may safely proceed rest of of this section appreciate the rest chapter. chapter. = L'"'(X,f,Il), L-(X,T,1L),it Let M. If lf M = subalgebra of M. Let M Mo be aa von Neumann subalgebra o be projections, generated follows, lrom from the fact that M is generated by its projections, that Mo o = (is M = L'"'(X,f ,ll) where f the a-subalgebra of f which) consists of (is consists o-subalgebra fo where thi L-(X,Fs,p) Mo o o o function defines aa those whose indicator indicator function I, multiplication in- f, multiplication by whose sets in th-osesets (i.e., 1l(X) probability measure l) the the projection in Mo' measure (i.e., is aa probability Mo. When When Ilp is u(X) == I) + M Mo classical map E: E: M ... is aa linear map expectation is classical conditional expectation o satisfying: E' is is aa projection of norm 0; (ii) E satisfying: (i) x ~> 0 implies Ex ~) 0; (iv) l i m i t s ; and a n d (iv) one; ( i i i ) E is m o n o t o n e limits; i t respects r e s p e c t smonotone i n that t h a t it i s normal, n o r m a l , in o n e ; (iii) = (,f) bv ~ 0 E = $, where $ is the faithful normal state defined by $(f) = is faithful state where the o 0 Q f, so state on is faithful If dll for f in M. Notice that $ is a faithful normal state on M, so a M. to, ay O ll I triples for I(s: tne GNS GNS triples that on M state on is aa faithful faithful normal state ltrat $0 0o = $IM AlMo o is o; the (r2(x,7,!t),m.,Q), z. (Lz(x,T6,F),rr.,o) (Mo,$o) 2(X,fo,Il),m.,n) and 2(X,f,Il),m.,n), where m. (ir,O) are and (L (Mo,Ooi and are (L ana (M,$) ' m , and T h e l . o f u n c t i o n n is the constant function l. The is i s t h e c o n s t a n t a n d r e p r e s e n t a t i o nff ... i s the i t r d representation f GNS the (Mo,ilo) GNS ,4J sits naturally as a subspace of the GNS ) as a subspace 1lo for (M slts GNS space space :leo o o the (and easy derive, from the space it is well-known (and (fr{,Q),and easy to derive, Xl for for (M,4J), and-it-is space :Ie properties ( i ) -- (iv) ( i v ) listed that p r o p e r t i e s(i) l i s t e d above) a b o v e ) that
= n4J Tl 4J(x)n) = plto(zo(x)o) tt6o(Ex)o P:le/ (Ex)n.. o proceedings with with an an old old We non-commutative proceedings the non-commutative shall commence commence the We shall valid p r o j e c t i o n s ' The r e s u l t is i s valid T h e result result n o r m one o n e projections. T o m i y a m a on o n norm t o Tomiyama r e s u l t due d u e to version t h e version i n f e r r e d from f r o m the in m a y be b e inferred a n d may o f C*-algebras C * - a l g e b r a sand i n the c o n t e x t of t h e context we v o n N e u m a n n a l g e b r a ; we given via the so-called enveloping von Neumann algebra; g i v e n below, v i a e n v e l o p i n g t h e s o c a l l e d below, v o n Neumann algebras. shall, f o r von N e u m a n n algebras. w i t h the r e s u l t for t h e result c o n t e n t with h o w e v e r , be b e content s h a l l , however,
~ IIRe(eoxoe o + >.e o) II ~ la + >'1.
'ft + pl < ll(oar + oaoroa;aa;;1
(3)
Ilx o + >.eoll ~ Ileo(x o + >.eo)eoll
(€)
l l o r ( o r+r o r ) o a ;<; ; ; o a r+ o x ; ;
uaql '0 I 1n fe{l qcns raqrunuI€ar fuu s1\ JI pue -- (r{ + ,(ft = t eU aroq^\ -- ((0a0x0a)aa)cls r n gr 'pueq roqlo eql uO On the other hand, if a E sp(Re(eoxoe o and if >. is any real number such that a>'
~
0, then
» -- where Re y = ¥y + y*) --
' r N+l t r
, 1 +
1>'1 2•
lIeoxetxeo + 1>'1 2eoli
oaxlaxoall = ;;oarkl+ =
Il<eoxet + >.eo)(eoxet + >.e o)*11
= + ll*(oar+ faxoa)(oa1 faroa);;
(2)
Q)
, lIeoxet + >.e o ll 2
zlloar+ faxoa;;> ot;1
IIx o + >.e o ll 2
= IIE(eoxet + >.e o) 11 2
=.zlloar + allfar + Jaxoa1z11
Notice that for any>. in
cr,
? ul \ Au? roJ l3r{l oclloN
'g =oaoxla= =oaoxoa JaoxJa ueqt 'faxoa)z = ox JI leql r\oqslsnu eoxoe o = etxoet
= etxoeo = O.
For I = I j, i = 1,2, notice that 0 , lxi' I since 0 , x , 1; hence, by (a), 0 , E(fxf) , EI = I, since I E Mo' This implies that E(fxf) = IE(fxf)I, thereby establishing (1) when i = j. For i ~ j, it suffices (by considering adjoints) to c.fnsider the case i = I, j = 2; thus we must show that if X o = E(eoxe o )' then
a^\ snql iZ = [ 'l = t eseceql raprsudco1 (slurofpuEurraprsuoc fq) sacrJJns11'{ * ! tof 'I = r uo{A{ (1) Eurqsrlqelse fqoraqt,IAxl)Zl = l e q l s a l l d r u sl l q l ' o n t t o c u r s y = { g > ( l x I ) Z > 0 ' ( e ) , { q U x n Z ' e c u a qi I > r ) 0 e c u r s/ > / x ! ) 0 t e q l o c l l o u ' Z ' l = ! ' t 1 = ! t o g
= IjE(fjxlj)/j'
l ' i,j , 2.
> f.t> I,!!(l!*tnzt1
Assertion: E(fjxlj)
.z
=(llrtryz:uollressv
(1)
(r)
.or.I x | = lt= > a = z I p o t o a= r ! n 1 > 0 pue (on) d I 0a re,reuaq,n(r)goa 1xoa\gluqt ^ror{sol seclJJns ll '((B) o1 slueqt) slurofpe se,rrosardpue l€rurou sr g acurg (q) '((c) (f'f'Z)'xg ul {rurrrerI€rlleqluor€deql'Jc) lW, Z o 0g reqr sarldrursrql 'luluole ftltuapl eqt lE rurou slr sulell€ g o oQl€gl os
so that ,po 0 E attains its norm at the identity element. This implies that ,po 0 E E (cf. the parenthetical remark in Ex. (2.1.1) (c». (b) Since E is normal and preserves adjoints (thanks to (a», it suffices to show that E(eox) 1 eoE(x) whenever eo E P (Mo) and 0 , x ,1. Let 1 1 = eo and 12 = eo = 1 - eo'
Mt
'l(ra)oot ( lla o ooll. llooll= (r)00= (ra)00 's1ql rog l€gl elou
'in
Proof. (a) It suffices to prove that if x E M+ and _,pQ E ~ +' then ,po(Ex) ~ 0; in other words, we must show that ,po E MQ + ~ ~o 0 E E Mt. For this, note that .
, z o lg^c *'k r 0g,tuqriroqs lsnu an 'spron reqlo ul :o < T"aFO uoql '- in t "Q pue -n r r JI lsrll o^ord ol secrJJnslI (B) 'Joord 'n '(x*x)g u! x tol > @Z)r@Z) (c) 11,o p(d) :oW sq'oo.'n t x ll'oq(xg)oo = 1oq*oop > :+'on t xZ ++n ) x''a'1 2O< A (e)
(Ex)*(Ex) ' E(x*x), lor all x in M.
E ~ 0; i.e., x E M+ ~ Ex E Mo +; E(aoxb o) = ao(Ex)b o' if x E M; ao,b o
E
Mo;
'auo uaqt 'lotarou st tt?ttltr'r turou uolna[o.rd o st o1,t1 - 141 lo '1tg otqa?pqns uuotunaN uo^ o aq oyg ta7 ?'92 uoplsodord /o
01 M. II E:
:Z lI
(c)
and
(a) (b)
Proposition 26.4. Let Mo be a von Neumann subalgebra M ... Mo is a projection 01 norm one, which is normal, then
ruoroarll rufpo4lp-uop€U oql
'9'Z
2.6. The Radon-Nikodym Theorem
77
LL
7788
2. The The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
(2) and and (3) (3) arc are to to be be compatible compatible for for all all r>. of of the the same same sign sign as as cr ex IfIf (2) and of of arbitrarily arbitrarily large large modulus, modulus, itit must must be be the the case case that that aex == 0' O. and Since Re(eoxoeo) Re(eoxoe o) is is self-adjoint self-adjoint and and cr ex was was an an arbitrary arbitrary number number in in its its Since = reasoning similar spectrum, conclude that Re(eoxoe ) = O. An exactly similar reasoning An exactly 0. Re(eoxses) that spectrum,doriciude o that Im(eoxoeo) Im(eoxoe o) == 0, 0, whence whence elsxs€s eoxoe o == 0. O. shows that shows roles of Re'trsi1g the, the roles of eo eo-ao.loints and efet iir in the the above above reaspninp, reasrninl' we we find find and Rev,ersi48 that e{rpdxe)e* eoE(eoxeo)eol == 0; 0; take adjoints to to conclude conclude that that efxoef eoxoe o == 0. O. tnat The coichisi6ns conclusions of of the the preceding preceding paraglaphs paragiaphs show show that, that, with with Thd respect to the decomposition decomposition lfJe = e# eoJe @ $ eo{f, eoJe, the the operator operator xo X respect o is represented by by a matrix of of the form represented
: :].
ft o o ll t t . Lb 0l
[
To complete complete the the proof proof of of the assertion, assertion, we must show that that b == 0' O. To \, Minor computations reveal that for any scalar >., for Minor
;] [,i,,,
= ro * rejxoeo= E(eoxef, + rejxoeo),
and hence, and hence,
relxoeo) IIbll, IIll max{l>'+ll max{lr+ll llrt"orrf ++ >.etxoeo) llolll== IIE(eoxet llall,lIalll r"fxoeoll , lIe ll ll"o"r$ oxe t ++ >.etxoeo
lll:,;lll max{l\l == max{l>.llIbll, ll'lll, llall,lIelll, inequalitv this inequality validity of of this where The validity ,*!,,-.... eoJe. t&' The e$lf):elJe where es == (eoxet lerxe[ I1etJe): proved' = is assertion for large positive>. forces 11b II = 0, and the assertion is proved. posiiivi the \ 0, and f6rces for large llDll Conclude, that finally, that Conclude, finally,
=r,"[,,L, [J Iirfi,) Xli]
eoE(x) = IlE eoE(x)
=
l,J=l
f ,L, 'E(f"fi)fi 2
= j =Ll E(flxI ru,*fJ·),) =.r J=l == E(flx) E(eox), E(f:x) == E(eox),
6L
ueroarlJ ur{po>1r51-uop€U aql'9'Z
79
2.6. The Radon-Nikodym Theorem
'pa^orclsr (q) pue and (b) is proved.
((xz - x)*(xz - x))A > 0
(c)
0 , E«x - Ex)*(x - Ex))
(c)
= E(x*x - (Ex)*x - x*Ex
((xZ)*GS)+ x7+x- x*(xg) - x*x)Z = '(q) rq
by (b).
o
= E(x*x) - (Ex)*(Ex),
+ (Ex)*(Ex))
0
'@s)*@g)- (x*x)g =
etqa3leqns uueruneN uol e eq oyg p1
.S.9.2uopIuIJeC
Definition 2.6.5. Let M o be a von Neumann subalgebra of M.
'pg p
o;,g €parr€c eqrrr,,r oluo (e) ^'f""::: #,# ff?ff:ir:1J",:"JttJJ"; (a)
A normal projection of norm one of M onto M o will be called a conditional expectation of M onto Mo' If 4' is a faithful normal state on M, a conditional expectation E of M onto Mo is said to be !p-compatible if 4' 0 E = 4'. 0
'Q = g o otuo 1,r7 n 0 JI elqrl€duroJ-ooq ol pl€s sr o1,t1 1o 3r uollulcadxelBuolllpuoxe'1A1uo ol€ls l€rurou InJr{ll€J€ sl O JI (q) (b)
sa^e oql ur ruJel eql Jo esn oql {grlsnf 11ratl, ruorlelcedxa 1uuor1rpuoc,, -- ,'9't 'dord Jo (q) lt1re1ncr1rud -- qclqa .uollelcadxa leuolllpuoc lereueE u Jo seJlredord auos slsll llnsoJ s.eu?frruoa .ocue11
Hence, Tomiyama's result lists some properties of a general conditional expectation, which -- particularly (b) of Prop. 2.6.4 -will justify the use of the term "conditional expectation" in the eyes of a probabilist. To a probabilist, however, the notion that we have called "!p-compatibility" is the crux of the matter. When M = L ""(X,r,IJ,), the classical conditional expectation settles the question of the existence of 4'-compatible conditional expectations. For a general non-abelian M, the modular group 04' intervenes as an obstruction; the following result shows that it is the only obstruction.
I€uorllpuoc lecrssBlc 1r! ".: e^Br{o,,, :l "i';it'l,:i,T#;J?'jl r€r' uo,ou:?l :Jiji ili?rXll,
ar{r sJ lf l'qr s^\orrsllnser Eur,noIIoJer{l ruoglcnrlsqo;:tlt"''Jlllir:Hr; .suoll€lcedxo ,o dnor8 J€lnpou eql'n u€rloqc-uoulerauaEB rog ieuolllpuoc alqlleduroc-o Jo oJuelsrxo eql Jo uollsenb eql solllas uollBlcedxa oqt .(rl.4.x)-7 = u?r.ll1A aro suotrrpuocEutuollo! aqa 'n uo aprs purou tntqtt;"'J':t;u; ial puo '1rgto otqaSlzqns uuounaN uor o aq oy,1ta7 gg7 uoJrlsodord
Proposition 26_6. Let Mo be a von Neumann subalgebra of M, and let
4' be a faithful normal state on M. equivalent:
iow otuo n [o g uoltotcadxa1ouo1tlpuoralqltodwoc4 D stslxa anqt
(l)
(i)
The following conditions are
there exists a !P-compatible conditional expectation E of M onto
M o;
.onlQ oQ on oQ = {q ua47 ,o awts f)urou p!t1t1o! aW ot Su\puodsat.rocon swsttyd.rotuono dnot7 rulnpotu lo lo on u! 0* aLfi s! o^o llo to! (0x)olo -e atatlu \1 ut t pup "9 = 10x;jo (gl) on - (fu$o (ll) UJur I 17oto! (ii)
at(Mo) f Mo for all t in IR;
= a~O(xo) for all x o in Mo and t in IR, where 04'0 is the modular group of automorphisms of Mo corresponding to the faithful normal state 4'0 on Mo given by 4'0 = 4'IMo'
(iii) at(x o)
.sroleradorelnporusoql elouap(0v pue 0f '0i'0g ..ctsar) V pue.f..{.S lelf '(o['on) rog e1drr1gNc e sl (u'02'0fi)leql ,(.;r.raaol l"tnrrl rt l-I 'l'Q =.r roJ (!,lh olul oy'vgo ursrqdrououoq-*Ierurou e s1tz eraq^\ 'la g ug =^ oql 9l lcadsar {ll,n 1o^ ur 0x aruosrog) f1^uoflf socttuocap 1ox)tue (-ux)oururo^Joql go sr (07g)uul roleredo qcea 'flluanbasuoc iu$O Xl = ? sl os '(u,;,,g)u erqeEletulofpe-31as eql repun luerre,rursr 0g = 0g ret puu '(O?) rog alctlrr SNC or{l eQ (u.u?) rat e^cuts 'un uo !J%)-, elels lerurou InJglleJ € sl 0/{p = 0g leql r€olc sl lI .Joord
Proof. It is clear that 4'0 = 4'IMo is a faithful normal state on Mo. Let (Je,7l,n) be the GNS triple for (M,4'), and let Jeo = 7l( Mo ) Q Since Jeo is invariant under the self-adjoint algebra 7l(Mo)' so is Je l = Je 9 Jeo; consequently, each operator in 7l(Mo) is of the form 7lo(x o) $ 7l 1(X O) (for some X o in Mo) with respect to the decomposition Je = Jeo $ Je l , where 7l. is a normal *-homomorphism of Mo into I(Je.) for j = 0,1. It is trivi~l to verify that (Jeo,7lo,n) is a GNS triple for (Mo'4'o)' Let S,F,J and!:" (resp., So' F o' J o and !:"o) denote the "modular operators" on Je (resp., Jeo) associated with (M,4') (resp., (Mo'4'o)) via the TomitaTakesaki construction.
-BrIIuor aqlBr^((ol'on)''dse:) (0?) qrl,v, rrt;ir"rtl:Jilil?J;51t:*
80
2. The The Tomita-Takesaki Tomita-Takesaki Theory Theory 2.
(i) t=> (ii). (ii). If If xx eE M M a'nd and xo Xoe E Mo, M o' then then (i)
= = f(E(xf;x)) «E(x~x» = = f(xfiE(x)) cP(x~E(x» = =
o Consequently p(n(M)n) p(n(M)n) !f dom dom S; S; also, also, for any any x in M, M, Sp(z(x)o) Sp(n(x)n) = = Consequently n«Ex)*)n = n(Ex+)o n(Ex*)n = pS(lt("r)n). pS(n(x)n). Since Since n(M)a n(M)n is is a a core core for S S (bv (by z((Ex)*)o definition of S), S), this this implies implies that that p,S pS c f ,Sp. Sp. It also also follows follows from from the the definition above equation equation that Sn So = = Sl(dom Sl(dom S n () lto) Jeo) and and that in fact S = = 'S0 So o e ^tr Sl above an appropriate appropriate conjugate conjugate linear linear closed closed operator operator ^S, Sl in ltt) Je l ) with (for an -' the = lfo o 111 direct sum sum of respect to to the the decomposition Je = Jeo e Jel -the direct decompositionlf respect (cf. Ex. unbounded operators being defined the natural natural way way (cf. Ex. defined in the operatorsbeing unbounded (2.5.6». case the reader reader feels he is being hoodwinked hoodwinked by aa case is being (2.5.6)). (In case feels he case the "hand-waving",he of somewhat he may may be be pleased pleased to to know know excessive"hand-waving", somewhatexcessive preceding verification of the the preceding that gruesomedetails the verification details of the that the the gruesome (2.6.7).) statements Ex. (2.6.7).) out in Ex. are spelt spelt out statementsare "modularoperators" admit direct direct It follows operators"admit all the the "modular now that that all follows easily easilynow A == /),.0 A o eo A/),.1' r . In In a n d /),. sum F s= Fl' e ,JI l, and L ,JJ = J oo Q decomposition : FFoo eo F s u m decompositions: particular, if particular, E M t E IR, ' e R, if Xxo e Mo, o o n( ot (xo»n (xo))o == /),.it A't n(x n(xo)A-ito z(of o)/),.-itn
(since no Ee Je 1?6) == t,.~no(xo)t,.oitn af;no(xo)aoltn (since o) =-
cPo
cPo
n(olo(xo))o. nno{ofo{"'))n 0t (xo»n. o( 0t (xo»n == n(
concludethat that Since vectorfor for ncP(M), n6(M),conclude is aa separating separatingvector Sinceno is , t cP cPo(x ) Ee M Mo. 0t olo(xo) of (x {xo) o. o) = 0t o (ii).) (iii) =>+ (ii).) (i) =>) (iii), (iii), but (We proved(i) but clearly clearly(iii) (Wehave haveactually actuallyproved assumption the assumption o!r{uto),and and^1o_, + (iii), aoo fg o~t(Mo)' (ii) so, the (ii) => (iii) If Mo, then M rc ot(M o!@Jo) f! M o' then defines ='M o!\Mo clea-rly dt = O~Mo clearly defines isis that The equation equatibn at ail t.t. The Mo-f or all ot@lo) = that of(M o for : KXS condition the KMS aa flow condition which cPo satisfies the to which witf, respect respectto
cPo or all t.t. Theorem at olo ffor all o, == 0t 2.5.11, Theorem2.5.11, (iii) with, that (i). Observe, that (iii) =>) (i). to begin beginwith, Observe,to
urrreroaql rufpo1r51-uopsgeql
r8
2.6. The Radon-Nikodym Theorem
81
.9.2
-u(f')oJo)ou = ftr1ox)u)r!v (u(ox)ou)fv it it t.o(n(xo)O) = t.o(no(xo)O)
.xe^q) (q)(e'€'z)
4>
= no(ot o(xO»O
(by Ex. (2.3.6) (b)
4>0
u(ex),b;u = = n( 0t (xo»O
(by hypothesis (iii»
(again by Ex. (2.3.6)
r , q l ( g ' € ' z ). x g , ( q u l e E e )
U((ox)jo)u =
= (uex)u),,e = t.it(n(xo)O)
( ( t t t ) s l s o t { l o c l f qf q )
= n(of(xo»O
(t.'1
Since n( M o ) 0 = Jeo' this implies that t.itp = pt.it and that '::"':':Xo • ~ t. Since t is arbitrary, this forces pt. f t.p and t.o = ~dom :. n i!c)' Further,
(le u j urop),?= og pue dv -= secroJslql .{rer1rqr, ,r't"ltj,llt ',h - crf",?let{l pue,,vd= dr,v vd sallor.irl itqr'oit ='ven)u ecuig teqt J(t.1 / 2n(x o)O) = n(x~)o = no(x~)o = J ot.~/2no(xo)a
ufr)0uzl9v01= U1!x)0u= U(!x)u = 1rJ1ox)urhy)t = J o(t. 1 / 2 n(x o)O)'
.(s(ox)ur7rv)01 = Note that n(Mo)O is a core for t.~/2, which is in"'ertible, and so, t.~/2no(Mo)O (= t. 1/ 2n(Mo>0) is dense in lto. Conclude from the preceding equality that JJeo f lto and JIKo '" J rr Since J is self-adjoint, it foHows that Jlto = lto and J = J o • JI' where J 1 is a self-adjoint antiunitary operator on lt r
sr f oouls of - oa!^fpue oU -= ol+t luql rlrienbe Eulpaca-rd aql uorJ :pnl3uoJ '$ ur esuap sr ltJel/{)u.1rv u(n)ourt;v 'uf,vl)u ^=) 'os pup 'alerlr3.rursr qJ!q^\ '711vn1 aroc € q lsql eloN
.}r"ot =, ouJlru"='.ff','fi^rTlil#tli.l:f €srrr orcr{.n ) x JI
E
xtlEru role.lado aql ser{ (x)z pue n
Assertion. If x
M and n(x) has the operator matrix
.uoJuessv
:,:] l'^"*,
Ieuorlrpuor alqJredruoc4 e s! g lEql ^\ou i(grrer "t ;:l##t11;: uB sl lI 'uorlrass€or{l ur sB prlelar lrx pue r qll/r\ .1rlx;r9u= G)z .iq on - I4l tZ aulJop {1
with respect to the decomposition It = Ko • K , then Xu E no(Mo)' 1 If acl E no(Mo)', then Joapo E no(Mo); if X o E M o and Joapo no(x o)' then n(x o) = no(x o) $ n 1(x O) = Jrf1JJo $ n 1(x O)' Note that In(xo)J E n(M)', whereas In(xo)J = aJ $ J 1n 1(xO>Jl' since J = J o $ J r Hence n(x) commutes with acl $ J1n1(xo)J r Comparing the (I,I)-entries of the two products, we find that xuacl = aclxu' The arbitrariness of acl and the double commutant theorem now settle the assertion. To complete the proof of (iii) ~ (i), simply define E: M ~ M o by E(x) = n;/(x u )' with x and Xu related as in the assertion. It is an easy matter to verify now that E is a 4>-compatible conditional expecta tion.
sosJcrcxl
Exercises
araq.rr'&v = sv p1 'z'l = ! ro1'$4 =td 1a1 'C= y luop qlr/h .sl 0G'g 'ofi - ,{ ul roleredo peurJap^lrsuep pesolc e eq V p1 e.g.Z) e
(2.6.7) Let A be a closed densely defined operator in K • K1 $ Je2, with dom A = n. Let Pi = PJe. for i = 1,2. Let A O = Aw>. \1l,'here nO is 1
8822
heory o m i t a - T a k e s a k i TTheory h e TTomita-Takesaki 22.. TThe
i n e a r , oor r r e llinear, h e ooperators p e r a t o r s aare I n tthis l l tthe i t h e r aall h i s eexercise, x e r c i s e ,eeither o r AA.. ((In aa ccore o r e ffor i n e a r ' ) SSuppose uppose t aand r a cconjugate o n j u g a t e llinear.) n d PP2' o r pPI u t ffor p e r a t o r s , bbut h e ooperators, aall l l tthe 2 , aare that prAo PIAo gf Aopt AOp r that
(a) (a)
P2AO tf Aop, AOP2' and in in particular, particular, piD0 PiDO cf Do, DO, ii == l'2. 1,2. (Hint: (Hint: D0 DO is is aa prAo - PI~') P2~ nd P llinear i n e a r ssubspace u b s P a c eaand ll.) r \ == q~ - P
If D9 D~ == D0 DO n() 1f., X., then then Df D~1 == p.Do-and p.Do and hence^Df hence D~ is is dense dense in in 1f,, 1f., for for Ii == It • 1 1 • • Do'being aa 1,2. 1 (Hmt: Ddj = = r,tofi Pj(D0j ) If r,(D01 Pj(D )n () 4Xj g f D0 D h () rr, Xj, while whIle D01 bemg of 1,2.'(Hint: X f . ) n R) e n s e iin A iis e c e s s a r i l yddense s nnecessarily efined,4 e n s e l y ddefined o r tthe h e ddensely ccore o r e ffor H i n t : bby e f i n i t i o n ooff y ddefinition r 2 . ((Hint: , ( D ) == D o r ii == l1,2. APi D n() X Xi'f i ,ffor r A ef A ((c) c ) pPbA p ; aand n d pPieD) o [ , --+ h a t [~n DO0 ssuch n D u c h tthat x i s t l~n n ' (-+, ~, lAO~n h e r e eexist bD, b , iif i (~ ' , e oD,, tthen t t i n tthere . iin A~.) A \.) (d) Let Let D, Di = pi(D). PieD). Since Since l(D,) A(D) gf 1f,, Xi' define_an define an operato\ operator (t Ai i! in Xfi.with Xi with i s nd = l , c loseda D , . t h a t = dom A. D by Ai~ A~ for ~ in D Show that Ai is closed and , . i n S h o w A l ' f o r b , , A , l i dom 2, i by i f t _with ^ w i t ha H i n t : IIdentify d e n t i f y lXi D?f iiss ia ccore Ai' = 1 1,2. , 2 . ((Hint: for i = , for o r e - for for A tthat hat D closed subspace of of ifX and notice that that G(.4r) G(A) = G(A) G(A) n() (ft (Xi e$ 18s).) X).) closed'subspace 2 € o fl e 1 = , { \ r = (e) t h a t d o m Show that A = Al $ A in the sense that dom A = {~l $ (~2 e JXl $ s e n s e (e) Show that A t @ A2r i n t h e z) = , 4 1 8 1e D Arl2). ((, e I,i| a X dom and $ (~2) = ((AI~I) $) ( (A2~2)' 0 n d lA(~l , , ii - = 1,2} I t2r:: \~ir ee d o m /Ai'
(b) (b)
°
°
Example 2.6.8. M = r(X) with dim tt X > 2. 2. Let e be be a projection projection f(Xf) with 2.6.8. Let M p o s i t i v e = racei n v e r t i b l e ttracep of {e}'. be Let b e a positive invertible let Mo n a n d let a n k one, o n e , and o f rrank t e ) t . Let = p f a l t hful = d e f i n e s t r class operator with tr = 1. Then 4>(x) = tr px defines a faithful 1 . T h e n w i t h t r 0(x) Px class operator - - tha.t - - from ( b ) -o f ( { ) == t h a . ! at(x) 2 . . 3 . 7(b) f r o m Exa~ple E x a m . p l e2}.7 n~rm~l M . Recall R e c a l l -s t a t e on o n M. n o r m a l state = € pttlt{[p-'o = pltxp-It pttMop-" = M Mo R. Notice that pltMop-lt M, tt e IR pitxp-it for for xx ee M, o # pltM~p-lt c o m m u t a n t d o u b l e t h e Md; however, (by the remarks following the double commutant ( b y f o l l o w i n g the remarks Ml: however, (0'e' p: tnat. \,p e C}. P(Mil theorem) M~ = {e}" = {),e + /L: ),,/L e [}. Notice that P(Md) = {O,e, MI thlorem) tle {e}" _= p r o j e c t i o n in Hence, i n MJ. M i . Hence, l:-e, r a n k one o n e projection i s th~ o n l y rank t h e only l ) and t h a t e i~ l - e , l}. a n d - that pltMop-lt exists aa 4>-compatible pi'ep-i' == e. Thus, t~ere there e~ists ,. Thus, O-compatible pt Mop-t' == M Mo o #e pltep·lt = ep. pe = ep. lR#€ pe Vt in IR conditional epit Vt onto M #€ plte e*bectution of M onto cond"itional expectation Pi = eplt algebras, v o n Neumann N e u m a n n algebras, Thus, f i n i t e - d i m e n s i o n a l von f o r finite-dimensional T h u s , even e v e n for n o t exist. n e e d not exist. 4>-compatible 0n e x p e c t a t i o n sneed c o n d i t i o n a l expectations 0 - c o m p a t i b l econditional case 2.6.6 to to the the case Prop' 2.6.6 Remarks (a) There of Prop. is an extension of There is an extension 2.6.9. (a) Remarks 2.6.9. - - which 2] o f [Tak t h e m e of w h i c h is i s the t h e theme when r e s u l t -T h e result w e i g h t . The [ T a k 2] f n s weight. i s aa fns w h e n 4>Q is i s still s t i l l aa - - is t h a t 4>IM M such s u c h that -w e i g h t on on M f n s weight i s aa fns Q l Moo+. +is i f 4>0 is i s that t h a t if ( i i i ) of ate P r o p . 2.6.6 2 . 6 . 6 are ( i ) -- (iii) o f Prop. semi t h e conditions c o n d i t i o n s (i) w e i g h t , then t h e n the s e m finite i f i n i t e weight, i n t h e c l a s s ical h y p o t h e s i s equivalent. (Recall the a-finiteness hypothesis in the classical ( R e c a l l o f i n i t e n e s s t h e equivalent. is t h e o r e m is t h a t theorem w h i c h hypothesis, h y p o t h e s i s ,that Radonw i t h o u t which t h e o r e m ,without N i k o d y m theorem, n a O o n - Nikodym false.) f alse.) i s not n o t satisfied, s a t i s f i e d , iti t ( i i i ) of 2 . 6 . 6is P r o p . 2.6.6 (b) o f Prop. ( b ) Even w h e n the t h e condition c o n d i t i o n (iii) E v e n when ( i ) as ( i i i ) ) (i) as p r o o f of o f (iii) t h e proof isi s possible p u r s u e the o f the r e a s o n i n g of p o s s i b l e to t h e reasoning t o pursue M, i f xx ee M, p r o p o s i t i o n , notice n o t i c e that t h a t if follows: t h e proposition, o f the n o t a t i o n of w i t h the t h e notation f o l l o w s : with then If n(tr{o)t n(lt[)t, fc Tl(M "/n(x)./ ee Tl(M) then JTl(x)J o)'. . If
*
lni, nlrf I, Vi, olzJ
Jn(x)J = |
'uolleEllsolur D -[3V] ttnsuoc feru rapsar eql u€ qcns slr?lap rog 'og uo sroleredo erqa8lu uu€runeN uol Jo 3o 'on € lou sl (n)A ftW as€c egl eq ua^e l(eru U Jo a3€clsqnsradorcl u s r f : l e r u o s r . 1 e r 1 r e cslr q l J o e c e d s 1 e u r 3o q l l e r l l l n o u J n l u o ^ e u E c l I 95$il9y s1 9U1r)Pa spues qcrg^\ .9g eceds SNg eql uo -- uorlcoforcl B flrr€ssecou lou -- {r1auros1 1e11red? saonpur e^oqe s€ peurJep A deru ogl 'es€c lereuaE eq1 u1 'on oluo /,{ Jo uoll?looclxe l€uorlrpuoc elqlleclruoo.f enblun o-gl sJ ll asec gclq/rr ur '1eul sI (lll) uorllpuoc aql uoqA flasrcerd -- on Jo slueurole sexlg ''a.1 -- 01,'goluo uollcaford E sl ^A slr{l rerll ^roqs ol llnclJJlp lou sl lI (',,uoll€r0do-uorsserduroc,, e pue srusrqdroruoruoq IBruJou Jo olrsocluroc e Euraq .anllJsocl dlelalduoc osl€ sr g 'esues se{su slql uoq^r ol JepseJ aqt rog) -on ol Jtll tuoJJ rolerado J€eull- en_Jlcerluoc'leurrou 'Eulurrasard-flrrrrlysod = (x)g Aq on - N :E eulJac e sI ? lsq-l _r_ee-tc sl u '(lrloofir9u '(on)ou , ofr'loot l€ql acueq pue",
in the decomposition Je = Jeo $ Je1, it follows -- as in the proof of the Assertion -- that a~ 1 E Tlo(Mo) I, and hence that Joa~ 1JO E Tlo(Mo). Define E: M ... M o by E(x) = Tl(/(Joa~ 1JO)' It is clear that E is a positivity-preserving, normal, contractive linear operator from M to Mo. (For the reader to whom this makes sense, E is also completely positive, being a composite of normal homomorphisms and a "compression-operation".) It is not difficult to show that this E is a projection onto M o -- i.e., fixes elements of M o -- precisely when the condition (iii) is met, in which case it is the unique cP-compatible conditional expectation of M onto Mo' In the general case, the map E defined as above induces a partial isometry -- not necessarily a projection -- on the GNS space Je41' which sends Tl4J(x)n4> to Tl4J(Ex)n~ It can even turn out that the final space of this partial isometry is a proper subspace of Jeo' It may even be the case that E(M) is not a von Neumann algebra of operators on Jeo' For details of such an investigation, the reader may consult [AC]. 0 g8
2.6. The Radon-Nikodym Theorem
83
ruaroaqlru[po>1r51-uop€U orIJ'9'Z
Chapter 33 Chapter THE CONNES CLASSIFICATION OF O F LASSIFICATION THE C O N N E SC TYPE III FACTORS F A C T O R S I I I TYPE
.oup o odula, g The discusses extent which modular group a~o h i c h tthe he m o w x t e n t tto he e i s c u s s e stthe i r s t ssection ection d T h e ffirst he recise d depends upon weight ~. . T The precise description e s c r i p t i o n iiss tthe he p eight O ns w h e ffns p o n tthe d epends u o{ulo hat m l o o s e l y , tthat unitary which modulo h i c h says, s a y s , loosely, C o n n e s ,w o f Connes, h e o r e m of c o c y c l e ttheorem u n i t a r y cocycle oY modular the group of inner automorphisms of M, the group a~ is the of automorphisms the independent ~.. of 0 i n d e p e n d e n t of unitary c o n t i n u o u s unitary Stone's s t r o n g l y continuous e v e r y strongly t h a t every s t a t e s that t h e o r e m states S t o n e ' s theorem given + l f i s given s p a c e H i l b e r t represent~tion t -+ u of the real line IR in a Hilbert space Jf is J R i n r e a l l i n e reDresentation t- o f t h e 1tH tt. i n Jf. o p e r a t o r H in by s e l f - a d j o i n t operator d e t e r m i n e d self-adjoint u h i q u e l y determined f o . a uniquely b y u t, == e i t H for "the F / as a s "the sp H p h y s i c i s t s , one r e g a r d sp Taking m a y regard o n e may t h e physicists, f r o m the c u e from T a k i i r g aa cue this i m i t a t e this i s to t o imitate i d e a is spectrum A r v e s o n ' s idea r e p r e s e n t a t i o n{u o f the t h e representation s p e c t r u m of { at,}". } " . Arveson's p r o ofs t h e S i n c e procedure for flows on a von Neumann algebra. Since the proofs a l g e b r a ' v o n N e u m a n n procedure for flows on a abelian g e n e r a l setting l o c a l l y compact c o m p a c t abelian are o f locally s e t t i n g of m o r e general i n the t h e more n o harder h a r d e r in a r e no j u s t IR), i n Section S e c t i o n 3.2, 3.2' g e n e r a l case i s treated t r e a t e d in groups c a s e is ( r a t h e r than l R ) ,the t h e general g r o u p s (rather t h a n just from r e s u l t s from n e c e s s a r y results which t h e necessary o f the r a p i d survey s u r v e y of w i t h aa rapid w h i c h begins b e g i n s with a n d some some g o e s on d e f i n i t i o n and abstract t o the t h e definition o n to a n d goes h a r m o n i c analysis, a n a l y s i s , and a b s t r a c t harmonic group o f aa group s p e c t r u m of elementary A r v e s o n spectrum p r o p o s i t i o n sconcerning t h e Arveson c o n c e r n i n g the e l e m e n t a r y propositions " s p e c t r u m " being b e i n g aa action s a i d "spectrum" t h e said a l g e b r a , the N e u m a n n algebra, v o n Neumann o n aa von a c t i o n on group. certain closed subset of the dual group. certain closed subset of the dual ,rr in g r o u p {at} ( o y ) would, w o u l d , in The m o d u l a r group t h e modular o f the A r v e s o n spectrum s p e c t r u m of T h e Arveson the i n t r o d u c e s the 3 . 3 introduces general, S e c t i o n 3.3 w e i g h t 4J; f n s weight w i t h the t h e fns g e n e r a l , vary v a r y with 0 ; Section the o f the r e f i n e m e n t of i s aa refinement Connes g r o u p action, w h i c h is a c t i o n , which o f aa group s p e c t r u m of C o n n e s spectrum ( a ) p r o p e r t i e s : p l e a s i n g the Arveson spectrum and has the following pleasing properties: (a) the f o l l o w i n g h a s t h e a n d Arveson spectrum the o f the s u b g r o u pof i s aa closed c l o s e dsubgroup Connes M is G on on M a c t i o n of of G a n action o f an s p e c t r u mof C o n n e sspectrum M , the the w e i g h t s on o n M, f n s weights dual t w o fns ( b ) if a n y two a r e any g r o u p r; i f ~0 and a n { c/J0 are t ; and a n d (b) d u a l group r ( 14) m a y d e f i n e T h u s o n e Connes spectra of {at} and {at} coincide. Thus one may define reM) ( o f ; ( o p ) c p i n c i d e . and Connesspectra of M. w e i g h t o n f n s w h e r e i s a n y to be the Connes spectrum of {at} where 4J is any fns weight on M. ( o f l ) o f s p e c t r u m Q t h e C o n n e s to be invariant t h e invariant Since e n u m e r a t e d ,the e a s i l y enumerated, i r e easily o f IRl Rare s u b g r o u p sof c l o s e dsubgroups t h e closed S i n c e the Neumann M u r r a y - v o n Neumann reM) t h e Murray-von o f the r e f i n e m e n t of l e a d s to t o aa refinement f ( M D leads classification. classification. somewhat g i v e n in 3 . 3 isi s somewhat The i n Section S e c t i o n 3.3 l ( l r t ) given o f r(M) T h e definition d e f i n i t i o n of to d e v o t e d to p u r p o s e sSection ;S e c t i o n3.4 3 . 4 isi s devoted unmanageable, c o m p u t a t i o n a lpurposes; u n m a n a g e a b l efor ,f o r computational
on K Notice that x E M+ ::} x l l'x 22 E M+ and J.b.aJ when x.} 0, Xu = x = O. (Check this, by examining <xt,t> where t = },lt l $ },2t2 for arbitrary },i E ([ and temporarily fixed t j jn K) Consequently the equation 8(x) = 4J(x u ) + c/J(x 22 ) , x E M +' is meaningful a.Jld is easily seen to define a faithful, normal weight. Furthermore 4J is semifinite. (Reason: since 4J (resp., c/J) is semifinite, there exists (cf. Ex. (2.4.8» a monotone net {xi: i E l} f Dq, (resp., {Yj: j E J} f Dc/J) such that xi 7' 1 (resp., y. 7' 1). The set K = I x J is directed upwards with respect to the oraer (il' j l) , (i2,j2) # i l l; i 2
'l tl > e (['z!) > (I.r'Il) ropro aql ol locdser qll^\ spre^\dn pc1ccr.1p s l f x / ^ = X l c s c q l _ ' f i t , , t ' ' d s a t )I , 1 r x l € r l l V c n s( ' | g j { t t t:t,{} ''dsar) 'xg 'J3) lsrxc eraql v C . 3 s {t t t :rx) 1au euolouou e ((S'l'Z) 'allulJlruos ''dsar) 'cllulJltuos s r ( { i s r a rouraqlrnl 0 aJuls :uoseag) 'lqEre,vt ' 1 n 3 q l r e g B , o u r J a p o l u a a s , { . 1 r s r : a p f0e sr If,turou lngEurueaur sr 'nII -t X '(zzx),t, + (Irx)Q = (l)g uollrnba aql ,{11uinbosuo3 (4 -u! t: pexlJ ,(lrrerodruol puu I r' I\ ,t.rerirqre roJ ,:ar e l l ' r = I e r e r { m< l ' l x > S u r u r r u e x e^ q , s r r l l l c a r { J ) . 0 = I c 0 = r r t = IIr'0 ir uar{,v'felf pue +y1 7 czv'rrx ++n r r reqr acilou .r{ uo srolerado go erqaEle uuurunaN uol € sl r'{ leql perJuo^ flrpear 31 lI
x 22 = 0 ::}
It i.§, readily verified t!J.at M is a von Neumann algebra of operators .....
(
zz*
rzxl ')
' l n r r t * : ( {e)|r =(v)zn@ = rny 1 , . _ t,t,"IJI L L"* J 2 matrix with 1 in the (i,j) place and 0 (r'l)
aqt
ur
I
qllrr\
xrJlt{u
x
eceld
Z x IJ
0 pu€
where e jj is the 2 elsewhere. Let Z oql
l0'I 'eJeq/\{ASIo st fla eraq^
i,j=l
lJ
. :rr: A €r,' : r=t'l :]f _-I T
x ...-+ L x .. .....
@
2
e·· ,
Proof. Let if = ~ $ ~; we shall identify operators; on if with 2 x 2 matrices «xi'»' '):here xi" E :f(~) for 1 , i,j '2. There is a natural identificatio~ :f(~) ;;; :f(Jf) @ M 2«([) (where M 2«([) is the set of 2 x 2 complex matrices) whereby
ercqm) z x e roreseqrsr(n)2p,1 6fwr^fi1#T,lli'fifi"1;li,ffii
'Z Iernlcu € sl eraql > ['l > I roJ (A)f a lrx eraqR .((,,x)) socrrlau uo sroteredo fJrluepr IIBrls 3^\ ille u = fi lo.I .Joord zx zrtrllt fl I
' '("n)$orn "*rt1 (q) = y1 ut 1's 11uto! puo u! x 11oto! ]n(x)$o rn = (x)$o (e)
(a) 0r(x) = u t 0f(x)ui for all x in M, t in IR , and (b) ut +s = utof(u s )' for all s,t in IR .
'A u! t'n
Theorem 3.1.1. If 4J and c/J are fns weights on M, there exists a strongly continuous map t -+ U t from IR into U(M) such that
toql q?ns (II)n oru! Vl taot/ rtt * 7 dow snonurfitor t13uot7s o stsffa ataqt'yrl tto syq8tau suJ aro (tt pup Q {t -t-fe urcrocql
'uorlcos srrll Jo lrBerI eql ol pOaJord sn lel'^B^r aql Jo lno er^rJl Jo llq slql qllA (.0 -.lr,r.l!n> ed Z n - tn = - r r ) l l u o q l ' J t r I J I p u e ' , { 1 4 e a an 3r :uoseog) l(rr "tuorls ' a pzilcl tul liZo c szi lrlS olodol puc I€e^\ oql ,(n)n ol pelJlrlsar 'leql lceJ crseq s sl lI 'lr{ ul sJolurado frelrun 3o dnorE aql 'lenbes s r l l u l ' a l o u s p I I I r h ( , r f ) n 1 o q u r , ( se q l ' e r q a 8 1 e u u € r u n e N u o ^ B s r / { J I
If M is a von Neumann algebra, the symbol U(M) will denote, in the sequel, the group of unitary operators in M. It is a basic fact that, restricted to U(M), the weak and strong topologies coincide. (Reason: if ui -+ U weakly, and if t E ~, then Il -+ 0.) With this bit of trivia out of the way, let us proceed to the heart of this section. 'I'€
3.1. The Unitary Cocyele Theorem
ucrocql
c1c,(ro3.(rclrun
c{I
'sed,{l snorr€^ eql Jo srolJ€J go saldruexe Jo uorlcnrlsuor or{l ol palo^ep sr rIOrq^\ .€.t uollJ3S ur InJesn euocoq IIr^\ r4Jrrl^\ uolldlrcsap slql sl 1r. ,.147 uo lq8rear, s u J u e r r , r Se u o q l r ^ \ p o l € r c o s s B9 9 r o l e r a d o r E l n p o u e q l J o s t u r o l u r poqucsap oq uec 'urn1 ul 'r{clqm (/,{)S tuerre^ur raqloue Jo sruJal ur s r s u o r l d r r c s a pa s o q l J o a u o ' ( n ) l p s u o l l d r r c s o pr e q l o E u r q s r l q u l s e
establishing other descriptions of r(M). One of these descriptions is in terms of another invariant S(M) which, in turn, can be described in terms of the modular operator t.4J associated with one given fns weight on M; it is this description which will become useful in Section 4.3, which is devoted to the construction of examples of factors of the various types. tueroeql a1c,(co3{re1ru61 eqa 'I'€
85
3.1. The Unitary Cocycle Theorem
98
8866
The Connes Classification Type Factors y p e IIII II F actors he C o n n e sC l a s s i f i c a t i o n ooff T 33.. T
and j,jl (^ ' 7r; j2; the ne nett {.rc, {xi e (& yr: Yj: (i,) (i,j) eE K} K) is monotone, monotone, lies in in Dg Da and xt xi
@ (& yi Yj )/' rft.) lif·) Slllce Since
- -
(ini)i,.i=
2
,!,
rilr,i,
i xx r ,,x h u s , iif f i~ E N Nag ({:9 E N~6 aand Thus, N n d xXr12 z ,X , x 22 2 z ,E N ,c/rl , T cconclude o n c l u d e tthat hat; ~ e n x 221. e E N a and if y is the matrix obtained byy ssetting off tthe matrix atrix he m i s m e t t i n g ssome ome o e N g and if / the atrix o btained b entries off i eequal and other entries unchanged, nchanged, e a v i n g tthe ntries u ero a n d lleaving he o ther e q u a l tto o zzero e ntries o 1g(l o articular, Ng r r ) c£; particular, a(l 0 en) and 0 e en) g, a n d ssoo }Ma(l e r 1 ) I£; Na, n p e N a; (l e tthen h e n tyEN g i iin l s o ((1l @ Ma.0 . S Since ass iiss II 60 een' also 0 m p l i e s tthat hat a tg r ' tthis h i s iimplies M elf-adjoint, a i n c e lM a iiss sself-adjoint, en)M C £; Mg. Ma. Finally, Finally, some some simple simple matrix matrix multiplication multiplication shows shows that e11)Mg
x
a
x,y e E Ne, Na, if 7,y
e((l xlrt21) err)T*V)= a«l e0 en)x*y) = ¢(x!lYn Y21) O(xir/rr + x;l = e(t*t(l = a(x*y( 1 o 0 err)). en»'
a; so, in M Conclude, by 2.5.14' that M for any i10; ,o, for any xx in Theorem 2.5.14) that (l 0@en) err) Ee M by Theorem Conclude, and t in IR, lR, o,0((l0o en)(x errXl 0e en» er1)) o,9{"0t en) err) == o~«(l err)(x 0o en)(l o~(x = =
err); (l 0o eerrXoro(x n)( o~(x 0o eerr))(l n»(l 0e en);
routine crr(x) Ee M. M. -A hence A routine crr(x)0@ en e' for some some at(x) ore(x 0e en) err) == at(x) t ence o~(x .2.5.7. Def verification is a flow on M, in the sense of DeL 2.5.7. flow M, the sense is a on verificafionshows showi that that {at} {crr} Assertion: respectto to {at} and KMS condition condition with respect Assertion: 4>0. satisfies the KMS satisfies the {crr}and Vt. hence henceat cr,= ot o? Vt. First, F i r s t ,ifi f x €El tM+, t[,, = g(crt(x)@err) = elore(xo er1))= g(x o err) = 0(x). O(cxr(x)) f .a l g()n Ne, N[, Next, N e x t if , i fX,Y x , y Ee N¢ N A ,notice n o t i cthat e t h xa t0x en' e u eYr 0.oueen yt t €E N N O()n N;, and and that that and and
e((oPfu a« o~(y 0o en»(x at(y)x) err))(:r0o en» er1))== 4>( f,(crlr)x) g((x0e en)(ot(y a«x err)@!00o en» err))== 4>(xa 61xcr,(l)); t (y»;
(relative to 0), to a), en (relative thus for xx 0E en and Y| 0@en KMS-admissible for e' and if F is is KMS-admissible thus if ( r e l a t i v e to a n d the the then t o 4», f o r x and a n d Yy (relative K M S - a d m i s s i b l e for i s KMS-admissible t h e n F is 0 ) , and proved. assertion i s proved. a s s e r t i o nis o p t " ) 0t ( l 0o en) o r o { t 0o en) e r 1 ) == ot(x) We i f oa and a n O that t t u t o~(x e r r ) Ee M h a v e shown t h a t (l W e have s h o w n that m a y be be en . oIn an entirely analogous manner, it may a n a l o g o u s , , m a n n e r , e n t i r o e l y l t t [ ,t , E€ '8l & a n f o r xx Ee M, e ' for n -it a Iand = "K") 0o eerrfor M, seen ore(-r0o eer2) l}y'u and that that o~(x s6in that that (l 1l 0o eerr) 22 for xx Ee M, 22 ) Ee M 22 ) = ot(x) tt Ee IRl R. . = (l err)(ore(t 0e o,e{t 0o eerr) Since ttrat o~(l conclude that Since eer, 22 e21 ell' conclude 21 == e€22€21€1y 21 ) = (l 0@ e22)(o~(l
Outer equivalence is an equivalen.:e relation on the set of flows. (Hint: if {lit}: {at} ~ {B t }. then {II:}: {l3t} ~ {at} and. although taking adjoints is not strongly continuous, it is weakl~ continuous and hence, when restricted to U(M), it is strongl ~ con tinuous.) If {at} is a flow on M and if t ... lit is a strongly continuous rna;, from IR to U(M), let l3 t(x) = uta/x)II:; show that if {lit} satisfies lIt+s = lI ta t (lI s)' then {Bt} is a flow on .\t. which is necessari::. outer equivalent to {at}.
( t o ) o l l u a l e r r r n b cr e l n o '("n)lnln = 8+1n .:irrEsso3cusr qcrq.t '/r' uo .nolJ e sl {tg) uaql s r r J s r l € s( r r r ) J I l e r { r . f , o r { s: j r r 1 r ) t n r n= ( x ) l g t ? l ' ( h l ) n o l U l r u o r J i e r u s n o n u r l u o c{ l t u o r l s E s r r n - / J I p v a W u o ^ \ o l J e s r { l n } 3 y ( q ) ('snonurluoc i 1 3 u o r 1 ss l l I ' O y ) n o l p r l f , r r l s e r u o r l A \ ' a c u e q p u E s n o n u r l u o J i 1 1 e a , ns l l l ' s n o n u r t u o r i l t u o r l s l o u s r s l u l o t p e E u r > 1 eq1t n o q l l e 'pue '{'e) .sir{otJ {1n} ; {rO} :(,lrr}u:qr ; {ln) :{?n) JI :lurH) (e) _to les aql uo uorlElar ::utlenrnba u€ sr acualulrnba rolno
(b)
(a)
(e'r'e )
(3.1.3) Exercises
srsr3JSxg
'sldacuoc i.;rre1c ot dlag llr^\ sosrcJaxaaldrurs eruog asaqr 'lualelrnba relno are;g uo srqtla^\ suJ Jo rred fue ol Eurpuodso-rroc s d n o r E r e l n p o u a q l l c q l s r r r s s Br u a r o e q l e 1 c , ( c o cf r e l r u n a q l a J u e H
Hence the unitary cocycle theorem asserts that the modular groups corresponding to any pair of fns weights on .\f are outer equivalent. Some simple exercises will help to clarify these concepts.
'II ul sJoleJado frrlrun O ;o dnorE :cleure:ed-euo = 1x1rn s n o n u r l u o J iftuorls e s; ereqr\ {14) }nxrn ',(l1ue1ezrrnba 'rl' r xA a = (x)lr ,{q ua,rrE) 'Jo '(U l ^\olJ ler^rrl _1r 3 r { l o l l u e l e r r r n b ar o l n o s t t r J r r a u u r a q o l p r e s s l { l p } , n o 1 3y ( c ) ']n(x)rnrn = (x)lg pue ur ,'s IIe roJ 'leql qcns (/.{)n ol UJruorJ E slsrxearoql JI -- d : p fq palouop
Definition 3.1.2. (a) An automorphism a of .\f is called inner if there exists u in U(M) such that a(x) = IIXII* for all x in M. (b) Two flows {at}tEIR and {l3t }tEIR are said to be outer equivalent -denoted by a ~ l3 -- if there exists a strongly continuous map t ... II. from IR to U(M) such that, for all s,t in R and x in M, ut+s = lI ta t (II.) and l3 t (x) = utat(x)u:' (c) A flow {at} is said to be inner if it is outer equivalent to the trivial flow (given by Et(X) = x Vx E.'!, t E R), or, equivalently, if at(x) = utXUi where {Ut} is a strongly continuous one-parameter group of unitary operators in M. 0 "jln 1tn;rnln =
'147ur. x puE
' r r - t d u r u s n o n u l l u odcl t uU ols
-- luale^rnbeJalnoaq ol prEs rre Ul?t{tg)pue Utlllo; s"rrro13 orna (q) 'nulx IfE .roJ .nxn = (xF leql qcns (7,9)lJ ur 11slsrxs araql JI rauur poll€Js! /f Jo D tusrqdrouolne uV G) 'Z'fg uorllulJeq 0
'rueroaql aqt turqsrlqelse ,(qaraql
'rza
@
O
thereby establishing the theorem.
= ut at(u s)
e 21'
o ("n)$orn =
((Ira o 'r)(rzt o t))rro = =
a~(us
@
a~((I
@e 21 )(II.@e n
»
e 21)
( r z ae " n 1 ] o = =
(Izae t)g'oo jo = rza@8+1n ut+s
@
e 21 = ate
0
ase(I
@
e 21 )
' ',(1EuIl ']ng)]otn = U 2-r'sJr 1x)jo l€q"l epntcuoc or 'izla @ Ixrra e xxlza e I) = (zzao x) u6rlrnba a,ji or ^toly_ ,,o snonurluocflEuorgsu s1rn - , lurll uoll3asslrll Jo qderErrecll€llrur rql urorJ .ragur'snonulluor ({11eo,r acuoq pue) d.14eo,n-o sl (rza e I)rto e / acuJg 'W)n ?,tn ''r'l 21 = ]nrn = tnln leql pulJ puy-';o ..-l_paxrJ "a_@ pue "a O r e p u r u u r r E o q ' " u a€ I = * ( ' o t o l e q l O I I I;a e = (Iea pue IIa : @ I) o 6 1) suorlenbaar{l or .fo flooy I)*(Iea rrt oruosroJ rzaI rn = (rza @ e l)jo lcrll ooueqpue '(rrao6rt)((Iza 1'1r e 21 »(I @ en)' and hence that a~(I @ e 2l ) = u t @ e 21 for some lit E .\! Apply a~ to the equations (1 @ e 21 )*(I @ e 2l ) = 1 @ en and (1 @ e: 1 : @ e )* = 1 @ e 22 , bear in mind that I @ en and 1 @ e 22 are fixed r:. 21 a~, and find that UiUt = utui = 1; i.e., u t E U(M). Since t ... a~(l 8 e 21 ) is a-weakly (and hence weakly) continuous, infer from the initial paragraph of this section that t ... u t is a strongly continuous map. Apply a~ to the equatiqn (x @ e 22 ) = (I @ e 2l )(x @ en)(I @ e 12 ), to conclude that af(x) = utaf(x)u:' Finally, if s,t E IR, rueJoarlJ alcfco3 ,{rellun eq1 'I'€
3.1. The Unitary Cocycle Theorem
-S
3.. T The Connes Classification off T Type Factors y p e IIII II F actors he C o n n e sC lassificationo 3
888 8
Let 41,, {!P,, {u bee aass iin t h e sstatement of) Theorem 3.1.1. ((3.1.4) 3.1.4) L ( r tt}} b n ((the heorem 3 .1.1. et 0 t a t e m e n to f) T ((a) a)
roup o If (wt}telR one-parameter group off ne-parameter g If 1 t r o n g l y ccontinuous ontinuous o rv1)1 Re iiss a sstrongly
unitary operators operators in in Z(M), and ifif vt vt = = w#v WtU t ' show show that {v unitary {vr) t } is a ath o n i t a r y operators hich a path off q~nitary n M M,, w which also lso o p . e r a t o r siin sstrongly t r o n g l y ccontinuouJ ontinuoup p = vtat(x)vi, = vrof(vr) vrof{x)uf, for satisfies vr*, vt+a = vtat (va) and of(x) at (x) = for x e M, s,t s,t e R. IR. satisfies
(b) (b)
(Hint: you will will need need to use M4J.) use Z(M) tf M0.) - v If, IR ttoo froq R r ,t , is i s a strongly I f , conversely, c o n v e r s e l y , t .... s t r o n g l y continuous q o n t i n u o u s .map , m - a nfrom, = vtaf(v = vtaf(x)vi, (nf which also of(x) = vrof(x)vf, vt+a = vrof(vr) also satisfies satisfies vr+, [U(M) a) and ar(x)
group show c o n t i n u o u s one-parameter o n e - p a r a m e t e rgroup h t tthere h e r e exists e x i s t s a strongly s t r o n g l y continuous s h o w ttht p u t ( H i n t : {w U(Z(M» such that = WtU for all t. (Hint: put ( wtr}) in f o r w t, = v t w { t a l l t . in U s u c h t h a t QQ()) t t t} is as wonderful as it is claimed to be.) w o n d e r f u l i t i s t o b e.) v e r i f y ttha i s a s a s c l a i m e d u f v t, and a n d verify h a t {w {wr} If M is unitary T h e o r e m 3.1.1 is o f Theorem 3 . 1 . 1 is i s a factor, f a c t o r , tthe he u n i t a r y cocycle c o c y c l e of If M uniquely upp ttoo scaling byy a continuous continuous scaling b u n i q u e l y determined determined u g r o u p of one-parameter unit modulus, o d u l u s , i.e., i . e . , if if nit m c o m p l e x scalars s c a l a r s of of u o f complex o n e - p a r a m e t e rgroup {u unitary unitary i s of of ( atr}) is n i t a r y cocycle c o c y c l e is i s one n i t a r y cocycle, c o c y c l e , any a n y other other u o n e ssuc~ u c h .u the 0t r R ..)) f o r some i n IR f o r m vrtt == e1tau e i t ' utt for s o m e a in t h ! form
utv
(c) (c)
r e s u l t s of In w e shall t w o results of s h a l l discuss d i s c u s s two I n the r e m a i n d e r of o f this t h i s section, s e c t i o n , we t h e remainder p a r t of t h e cocycle cocycle Takesaki's: f i r s t result r e s u l t is i s a consequence c o n s e q u e n c eof o f the o f the t h e first T a k e s a k i ' s : a part p r o d u c e s a cocycle theorem, which c o c y c l e which w h i l e the r e s u l t explicitly e x p l i c i t l y produces t h e second s e c o n d result t h e o r e m , while is w h y the t h e o r e m is works t h e cocycle c o c y c l e theorem w o r k s in i n some a n d also a l s o explains e x p l a i n s why s o m e cases c a s e s and sometimes Theorem. The Radon-Nikodym Theorem. as Connes' Connes' Radon-Nikodym sometimes referred to as w e shall p r o o f s of proofs r e s u l t s are t e c h n i c a l , and a n d we shall a r e somewhat s o m e w h a t technical, o f both b o t h these t h e s e results p r e s e n t the p r o o f under only hypothesis t h e proof u n d e r some s o m e additional a d d i t i o n a l hypothesis o n l y present T h e theorems invariably i s bounded. b o u n d e d . The theorems i n v a r i a b l y that t h a t some s e l f - a d j o i n t operator o p e r a t o r is s o m e self-adjoint g e n e r a l i t y , while will w h i l e the f u l l generality, t h e simplifying simplif ying w i l l be i n their t h e i r full b e stated s t a t e d in j u n c t u r e in proof. assumption i n the t h e proof. w i l l be a p p r o p r i a t e juncture b e spelt s p e l t out o u t at a t an a n appropriate a s s u m p t i o n will p r o c e e d i n g Before proceeding to these results, however, we w e n o t i o n of extend the notion r e s u l t s , h o w e v e r , e x t e n d t h e of Before to these p o s s i b l y non-factorial, g e n e r a l , possibly v o n Neumann Neumann semifiniteness n o n - f a c t o r i a l , von t o aa general, s e m i fi n i t e n e s s to algebra. algebra.
Definition is said be: algebra is said to be: Dcfinition 3.1.5. 3.1.5. A von Neumann algebra (a) (a) (b) (b)
semifinite, if if it admits aa fns trace; trace; finite, f a i t h f u l normal n o r m a l tracial t r a c i a l state. state. f i n i t e , if i f it i t admits a d m i t s aa faithful
0n
Theorem following conditions LI are equivalent: The following on M equivalent: Thcorcm 3_1_6. conditions on 3-l-6. The (i)
(ii)
M is is semifinite; sentifi4ite; the f ns weight weight 410 on on M; is inner, inner, for sonte fns the flow ltow {at} lor some 1of) is
(iii) the l{. (iii) f ns weight weight 41Q on on M. is inner, inner, for every fns the flow for every Ttow {at} {o!\ is
*
l+[; trace Tt on M; Proof. exists aa fns trace Proof. (i) + (ii): By assumption, assumption, there there exists ( t r i v i a l l y ) inner. inner. then ( o f ) is h e n c e (trivially) f l o w on i s the t h e trivial t r i v i a l flow o n M and a n d hence t t r e n {a[}
*
(ii) + (iii).
4J is i, weights on M, and and suppose suppos" ao0 Let on M, Let 410 and and !P0 be be fns weights
=
= <e h'/2 x
n,
eh'/2 y Cl>
i J t z / , , . t a\ r r / , r t ,
= at zl,a-azI rY \Jx 71.q-a 711Y>
= <1::>.1/2e-h/2 x n,
1::>.1/2e-h/2 y Cl>
= <(tsxs tl tv t' (tJ[z/ q-a)x1{ t> 1,a-a) = <J1::>.1/2(e- h/ 2yn), J111/2(e- h/ 2xn»
iJz /,t-a*x 1J71u-a*t> -
n,
=
x*e- h/ 2Cl>
T(XY*) = <e- h/ 2xy* e- h / 2n,Cl>
(iii) ::} (i). Fix a fns weight ~ on M and assume, with no loss of generality, that 1f = 1f~ and Tl~(x) = x for x in M. Let us simply write I::>. for I::>.¢.. The assumption that o~ is inner means that there exists a strongly c0!1tinl;l0us one-parameter unitary group {lit} in /If such that utxu: = I::>.ltxl::>.-lt for .all x in M and I in P. . Set x = lis to infer that Us commutes with I::>.lt for all sand t; in other words {lI t }.f M~. Another consequence of this commutativity is that if II: = 1I:111t, then u: +s = u:u: for s,1 in IR. Thus {II:} is a strongly continuous one parameter unitary group in 1f; further u: xui* = x for all x in M, so that ui E M' for all I. By Stone's theorem (and the d$uble commutant theorem), the.re exist self-a.dj?int operators H 1) M ~nd If.' '? IIf' such that u t = e ltH and ui = e ltIl for all I in IR. Since I::>.lt = eltHeltH, and since Hand H' commute, it follows that 1::>.1/2 is the closure of the operator eH/ 2eH'/2 -- for unbounded A and B, AB being defined naturally on dom AB = dom B () B- 1 (dom A). (If Hand H' are bounded, then I::>. = eH+H', and 1::>.1/2 = eH/2+H'/2 = eH/ 2eH'/2; for unbounded Hand H', the above equations are valid if the sum and product of two commuting selfadjoint operators are defined as the closures of the sum and product defined on the natural domains; a couple of exercises at the end of this theorem may clarify these matters to the reader who is not too comfortable with unbounded operators.) Since e- H is an invertible positive self-adjoint operator affiliated to M~, we may define T = ~(e-H.) as in Theorem 2.6.3. The theorem will be proved once it has been established that this T is a fns trace on M. We shall establish this under the assumption that both Hand H' are bounded and ~ is a finite weight. So, suppose ~ E MOt and H = h E M~, H' = h' EM'; since we are assuming that the actIOn is taking place in the GNS space of ¢, there exists a cyclic and separating vector n for M such that «x) = <xn,Cl>. Finally, we have d~fined T(X) = ~(e-hx) = ~(e-h/2xe-h/2) = <xe- h / 2 n, e- h / 2 Cl> since h E M~. It follows from Ex. (2.6.1) that T is a faithful normal positive linear functional. To verify that T is tracial, pick x,y in M and compute:
:atnduoc pue nt ur f'x '1erce:l s r . 1 .t e q t , { ; 1 r a l o a ' l € u o l l c u n J r c e u r l e n r l r s o d I E u J o u lord ' 5 t r Vt t l o J u r s < U e l q _ a InJglrEJ e sr :' leql (I'9'Z)'xg uorJ s^\olloJ lI = (xq-a)Q = (x)r paut.;6p o^eq o^\ ',(11eurg !s7*-ar> = (z/,1-axzl,a-a)Q ' = (x)0 l e r l l q c n s n r c J U r o l c a ^ E u l l e r c d a sp u e c r l c f c € s l s l x e a r a q r ' p 3 o a c e d sS N C e q l u r a c e y dE u 1 4 e 1s l u o r l c € e r { l l € r l l E u r u n s s u a . r ea . $ a c u r s i , T g) , 4 = r H ' 5 W ) t l = H p u e ' , W r Q e s o d d n s ' o S ' ' t q E l a n na l l u l J € s r p u e p e p u n o q a r e @ 'n r H p u e H q l o q l € q l u o r l d u r n s s €e q l r a p u n s r q l q s r l q ? l s eI I € r I s o i 6 u o a J E r l s u J € s l r s l q l l B q l p o q s r l q 8 l s eu e o q s ? q l l o c u o p e r r o r d a q '€'9'Z lu?Joegl ut se ('".-a)p = l' oulJaP f'evt em'6hl IILY\uleroeql eql o l p a t B l l r J J Er o l € r o d o l u r o f p u - g 1 a sa r r l l l s o de l q r l r e ^ u r u e s r " _ a a c u r $ ('srolerado pepunoqun qlI^\ elqelroJruoc oot lou sl oq^\ repBer eql ol sralleu asaql ,{.;rre1cfeu rueroeql slql J o p u e o q l l E s a s r c r o x oJ o e l d n o c u i s u l e u r o p I B J n l B u a q l u o p e u l J a p l c n p o r d p u e t u n s a q l J o s a r n s o l ca q l s B p e u r J e p e r e s r o l s J e d ol u r o f p u -g1asEullnuuoc o/hl Jo lcnpord put runs erll JI pllul ere suorl€nba pug e ^ o q B 2 \ t , r H p u e H p e p u n o q u n r o J i t l , H a z f t i a z / , H + 2 . / n= a 711v 7 'papunoq ete '(p, ',g+g, = ruop) r-g U dr ruop V ueql tH puu // JI) = gV wop uo fllernleu paulJap ?urcq gy 'g pue Z pepunoqun roJ -'alnuruoc z/,^az/sa rolerodo aql Jo ernsolc aql sl z/rv lerll s/ ollo3l 11 = = , ^ r rp u g l / a c u l s P u € ' , H l ! a H r ! a t t g e c u r g - 1 6 1u l t l l E r o J , u r r a f r r p u e ='n l€ql qJns til tt"t11 pue ( l 1 1 s r o l B r e d o r u r c i l p ' e - 3 l olss l x e HTt 6W eraql '(uaroaql luelnuuoc olqndp aqt pue) rueroaql s,auols ,{g '/ IIe roJ tn ? i?t lBr4l o s ' 7 . gu r : c I I B r o J x = * l n x l n J a q l r n J l X 1u l d n o r E f r e l r u n J e l e u € J e d o u o s n o n u r l u o c , ( l 8 u o - r 1u ss r ( f r r ) s n q a u , u r t ' s r c i l n l n = ' f f n u o q l = fn 31 1eq1sr [1rn11e1nruuocslql Jo eJuanbosuocr-oqlouv 'qw 11vln "n j'{1n) spro.tr,raqlo ur ll pue s IIB roJ 1eq1 rajur 1rVt{l1rrrsalnuuoc 8x p u e n u r r g B r o J r r - V x r r v= ] n x r n l e q l q o n s ol 1x laS' U ul, 7 9 u r ( l r r ) d n o r S , { . r e l r u n r a l e r r r € r e d - o u os n o n u r l i i o c , ( 1 8 u o r 1 s? s l s r x e e r s q l l E q l s u e e u J e u u r s l / , o l e q l u o l l c l u r n s s na q l ' 9 y r o J v o l r r ^ \ 'flllerauaE 'rt u\ x roj x = (r)Qu pue Q$ = ,{1durs sn la'I leql U '(l) 'arunsse pue n uo Q tqEJen suJ B xlC Jo ssol ou qrr^r e (gt) 'louut st
inner; thus o~ ~ E, where E denotes the trivial $10""'. By Theorem 3.1.1 (ol/J ~ o~) and Ex. (3.1.3) (a), conclude that a ~ E and hence orP is inner.
'xg p u u ( t o a J u a r {p u E , l e q l epntcuoc'(e) (g't'e) rto) t't'g _ fo oo snql :reuul t l l e r o a q l . \ g ' . Y \ o l JI E r ^ I r l 3ql selouep t Sreq/\\' t ; Oo
89
68
luoroorlJe1c{co3,{.re1ru11 aq1 'I'€
3.1. The Unitary Cocycle Theorem
90 90
3. T h e Connes 3 . The C o n n e sClassification C l a s s i f i c a t i o n of o f Type T y p e III I I I Factors Factors
= <eh'x4 /o> ;
(*) (*)
so, SO, T(Xy) t(xv)
= T«xy)l*) r((xv)l*)
= <eh'xyQo>
(by (*» (*)) (by
= <eh'Yg x*o>
( s i n c eh' (since MI) t) h ) Ee M
= T(yx) = r(yx)
(againby (*)), (again by (*»,
proofis and is complete. andthe the proof complete. 0O Exercises Excrciscs (3.1.7) Let {en}:=l projections such (e")i=1 and Un}:=l (3.1.7) be sequences sequencesof projections such that {/")l=, be a n d In? l. en? e n ) 1| and f n ) 1. (a) (a)
(b) (b)
A In If en A In l. (Hint: en en A e, and In commute for all n, n, then then en en A If fn ,f,, commute ln ?) 1. jointly h y p o t h e s i s , and m u l t i p l i c a t i o n is i s jointly en/n € n f n under u n d e r the t h e hypothesis, a n d multiplication continuous i n the t h e strong c o n t i n u o u s in s t r o n g topology, t o p o l o g y , on o n bounded b o u n d e d sets.) sets.) Show S h o w that t h a t en m a y be b e 0 for f o r all n , if i f ^ tthe h y p o t h e s i s of of e n A In a l l n, f n may h e hypothesis 2[0,1], lf = L12[0,1], commutatiyity let ran en iiropped. (Hint: in Jf co-mmutativify is dropped. e,., = p o l y n o m i a l s of 1 l / n , 1] l l and r a n In L 22[1111, a n d ran s e t of o f polynomials o f degree d e g r e e << n; n; / , , = set p o l y n o m i a l s cannot v a n i s h too non-zero n o n - z e r o polynomials c a n n o t yanish t o o often.) oftcn.)
= =
( 3 . 1 . 8 ) Let (3.1.8) L e t Ml , fI M2z f{ ... be i n c r e a s i n g sequence b e an a n increasing s e q u e n c e of o f closed closed w subs s u b spaces, p a c e swhose , h o s e union u n i o n is i s dense i n l f . If If T Z is i s aa closed d e n s e in:lf. c l o s e d operator o p e r a t o r such such g l't, I UM UJytn, }tn that dom T TM f M and T*M f M for all n, show that: , 7*l'1o C for rr, f ~ fMn n n n n n (a) (a) (b)
TlM bounded for each each 11. n. (Hint: closed closed graph theorem.) theorem.) lM,n is bounded = PMn' (Hint: pr, pn uM,, p14r,then P pnT fC T. a 11 and PnT UM is a core for T. (Hint: if P = n n n ?) 1| and T pnn·)) TP
(3.1.9) Let A and B be Xf such (3.1.9) such that 1l"(l) be self-adjoint operators operators in Jf E (A) ( f o r example, and B ) commute, l R(for a n d 1l rF((B) c o m m u t e , for f o r all a l l Borel B o r e l subsets a n d F of o f IR example, s u b s e t sE and p r o o f of H , B = H tI as i n the T h e o r e m 3.1.6). L e t ee n = 1[ 1 1 _ .J(A), ,.1(,4), A = H, a s in t h e proof o f Theorem 3 . 1 . 6 ) . Let In = 1 P = en A In' n -n,n _ ,n](B), l[-n,r,](B), en /r, Pn fn' n n r (a) (a) (b) (b)
p^ pnA fI AP pnB f{ BP l, PnA is Apn and PnB Bpn all 11. n. (Hint: enA enA is P n and n for all n ?) 1, w i t h In') bounded b o u n d e d and a n d commutes c o m m u t e swith /,.) = U pnn is g ( B ) , for Do= , ran Do ran P i s aa core f o r I(A) w e l l as f o r g(B), f o r any c o r e for a s well a s for a n y two two f ( A ) as g(A)D. u D0' continuous U g(B)D f further, I(A)D continuous functions If and and g on IR; f(A)Do ft further, o ! Do. o ( H i n t : Apply ( 3 . 1 . 8 )to g ( B ) , with (Hint: A p p l y Ex. E x . (3.1.8) w i t h Mn, == ran rx1 t o each e a c h of o f I(A) a n d g(B), I U ) and PPn') n ·)
0r{l l€rll oloN) 'pcpunoq ete pva stoleredo e q l ( l l ) p ue +'*^ H . y , _ H :.r4t'0 (I) lerll suolldurnssu rerjl.rnJ arll ropun srql qsrlq€lsa II€qs oi6 't !, ol l J e o s o r r l l l ^ \ u o l l l p u o c S W ) e q l s o r J s r l c sf l B r l l r l s l l Q e t s aa , t r lueutrrotuoql po^ord aq rueroorll eqj ,1,_H(r)jo1rH= (r)rn acurs l7g llll'r 'iorten'bj'eql uo ^\olJ B saurJap = (x)ln lErll opnlJuoc 1r_fl1r_VxqrVilg '!11^t trSS- 'tt ug dnorE frulrun .ralauerecl_euo snonurtuoJ uH e s1 ,(ltuanbasuoC ./ pu€ s IIB roJ elnu{uoc sr11 llE_uortt ,dl"{r,v1-,//} puu rrv lerll (rolerado lurofpe-Jlas o^lllsod alqrlro,rul u€ sr g ocu!i) ,aW ile toJ " = leql s^\olloJ fI orurs t\ tl rr-V rrv H f}AolloJ lI .'A 'YliIoJ 'tr p,uY^ts .i,,,tu\ * pus alrr,vr f V S ldurs llEqs eA,\ Ile roJ .arunssy .Joord x-lV= \x)Yu pue vn = |l lBr{l flllercuaE Jo ssol lnoqll^\
Proof. Assume, without loss of generality that Jf = Jf4> and n4>(x) = x for all x in M. We shall simply ~rite J~ 8 and A for J4>' 84> and A4>' Since H 1) M~, it follows that A1t H A-It = H for all t. It follows (since H is an invertible positive self-adjoint operator) that Ait and His commute for all sand t. Consequently {HitAi\elR is a .strongly continuous one-parameter unitary group in Jf. Since Hit e 1.1, conclude that the. equatio~ at(x) = HitAitxA-itH-it defines a flow on 1.1; since at(x) = Hlto~(x)H-It, the theorem will be proved the moment we establish that t/J satisfies the KMS condition with respect to {at}. We shall establish this under the further assumptions that (i) 4>,t/J e 1.1',+ and (ii) the operators A, Hand H- I are bounded. (Note that the
Theorem 3.1.10. Let 4> be a fns weight on M. Let t/J be another fns weight on M such that t/J 0 ot = t/J for all t. Then (x) = Hitof(x)H- it for all t in IR and x in 1.1, where H is (the Radon-Nikodym density di/i/d4» as in Theorem 2.6.3.
{rtstyay
arrDst H alatrtr,r,rt ?i,'yt;X3'i'ri,ti
i!:'!:, "utpo7r1,7-uop,v '1 ayH\x)$oa,H = $)do uaqJ ltv rot A = io o tlt tzltt LlrnsLU tto Tq7rau .0I-I-g ltrrrocrll suJ rai.ltouL,aq 4'ta7 .t[ tto Ttl?tau suJYo aq Q ta7
of
D
(l,nntygtt)
= (,n*")r/ = ra zlrv and
puE
(,H+H)a= v
so that
leql os
' (,u+n){a = ,H42HqZ = rlV leql sfes slql '9'I'€ rroroaqJ Jo txeluoc aql uI)
(In the context of Theorem 3.1.6, this says that '(s.+v)ra=(
(ezAe zB ) = ez(A+B) .
srayra)
leql ^\oqs'D u! z ,{ue rog
(e)
For any z in [, show that
(e)
('(llfxo) roJ lulq ees:1urg) '@)AeY roJ aroc B sl oC (gt) lolqesolcsr (g)3(y)/ os pue'(y)I@)ie*(@)aGV)
(f(A)g(B»* ~ g(B)!(A), and so f(A)g(B) is closable; (iii) Do is a core for f(A)g(B). (Hint: see hint for (c)(iii).)
uoql '3 pue soleEnfuoc-xelduoc a q l o l o u e p p u e / f 3 o g 1 ( ll) , f :paurJap ,{lesuap sI @)8(il (t)
(i) (ii)
If! and
g denote
the complex-conjugates of f and g, then
f(Al$(B) is densely defined;
:lBrll ^\oqs 'U, u o s u o r l J u n J ( p a n l e r r _ x c l d t u o c )n o n u r l u o c s 'CFI ruop)r_) aq 3 pue n1 ulop = (Xil / ruop qlr^{ '.{11ern1eusror'rodo papunoqirn U X o/yu Jo ){// lcnpord oql eurJaa (p)
(d)
Define the product HK of two unbounded operators naturally, with dom (HK) = dom K () rI(dom H). Let f and g be continuous (complex-valued) functions on IR. Show that:
uer - "W,{ll^.lqEll ul srolerado e q l I I e o t ( g . 1 . g.)x g - 1'"d ,{1dde:1ur11)'oroc e se 06 ser{ pue lurotpe-31cssl (gtZj (gt) ielqesolcst (A + y) os pue *(A + v) j fA +n) (g) i p e u r g a p f l o s u espr . g + V (l)
(i) A + B is densely defined; (ii) (A + B) f (A + B)* and so (A + B) is closable; (iii) (:4+11) is self-adjoint and has Do as a core. (Hint: apply Ex. (3.1.8) to all the operators in sight, with Mn = ran Pn .)
Define (A + BH B. Show that:
uopu u ruop= (s + z) ruopr I Jr 2a+ 1v= :(;T;i::?rrE = A~ +
B~
if
~
e dom (A + B)
= dom
A () dom
I6
(c)
(r)
'r'g
3.1. The Unitary Cocycle Theorem
91
uoroer.II clJ^co3 f:u1run aqa
I I FFactors actors y p e IIII f TType l a s s i f i c a t i o n oof h e CConnes o n n e s CClassification 33.. TThe
992 2
1 4> (l:; frJJ (l:; ccr2Q 4> n e q u a l i t y ccrlO o tthe h e iinequality 1 - 1aamounts m o u n t s tto l a n d 1Hf l Hand bboundedness o u n d e d n e s soof .) , cCo2 >> 00.) o n s t a nts t scc'l' ffoor r ssome o m e cconstan Q. r i t e HH == hh eE M Consistent M4>. e t uus s wwrite o n v e n t i o n , llet S t u t i o n " f cconvention, i t h oour u r r inotational C o n s i s t e n twwith = l f d t h a t g o i n g x f m e a n s i n The assumption that all the action is going on in Jf = Jf4> means that o n The assumptionthat all the action is = Q t h a t M s u c h ' there is a cyclic and separating vector fi for M such that 4>(x) = f o r v e c t o r 0 ( x ) s e p a r a t i n g a n d c y c l i c there is a <xn,fi>, and and consequently consequently 0(x) rJJ(x) := 1/r.x$6.
F(t) ==
while while F(r+l)
=
(since /i-l/2 (since J == S) a-1/2"1 s;
it h xh it of(y» == 4>(ho!0)) xnit O(h-irh == 4>(h.xhitaf(y)h-it) glh.xhito!(y)/r-it)
(since |r-it , 76Q1
rp(xcxr(r))i == rJJ(XlXt(y»; rl) and (relative to and to rJJ) and yy (relative in for xx and K M S - a d m i s s i b l efor i s KMS-admissible w o r d s , FF is i n other o t h e r words, w e h ave c a s e s p e c i a l the theorem is proved, at least in the special case we have i n t h e l e a s t a t the theorem is Proved, considered. c o n s i d e r e d . 0n factor, w e i g h t s on o n aa factor, f n s weights In ( c ) , if a r e fns ( 3 . 1 . 4 )(c), i f .4>0 and a n d rJJr I are E x . (3.1.4) v i e w of o f Ex. I n view in a s in c o c y c l e u . n i t a r y and if rJJ is invariant under 04>, then any u.nitary cocycle {llt} a n y o 9 , t h e n { r r r )as u n d e r i n v a r i a n t i s and if 0 1t ), Hit R' in IR, for some some ),\ in 11rt' Theorem for form llt u, == esrt\ the form be of of the must be 3'l'1 must Theorem 3.1.1 " R a d o n N i k o d y m i t o w i t h r e s p e c t o f rJJ{ with respect to 4>" 0 " inn where d e r i v a i i v e of w h e r eHI / isi s the t h e "Radon-Nikodym derivative to m a n a g e dto h a s i f o n e the sense of Theorem 2.6.3. It follows that if one has managed f o l l o w s t h a t I t 2 . 6 . 3 . the senseof Theorem a o n e p a r a m e ter i s a c t u a l l y find then {tit} is actually a one-parameter t h e n c o c y c l e{llt}, u n i t a r y cocycle f i n d one o n e unitary [ur], {ur)
€rqaBIE-* B sr (/)n - / lerll s^\olloJ rl '(L)ap(L)I | = U)n aurJap em JI '(g)r7 ur / rog '(;L't>- * (L't) Iq pcsscrdxa"1' p_ur g uac/hleq , { 1 r 1 e n pa { 1 ) ( L ) a p r - . L ' r r [ = r r r l e q l q c n s ( ( A ) f ) d - J S : a a r n s t o r u 'g aceds lrcqllH e ul g Jo uoltelucsarder IerlJeds e slslxa areqt udql ,(relrun snonurluoc ,{lEuor1se sr lrr F , JI lErll so}BlstueJoar{ls.euolS . '(t-){ = (t)J puu sp(s-r)3(s)/l = (t)B * | suolrerado agl puc tll .-[-Ti lcadser qll^\ erqoEl"e r{o€uEge^Jl€lnuuoJ ?^rlnlo^ur u€ sr.(9)rZ 'relncrlred u1 'ornsBeru r B E H o l l c a d s o r q l l / h s n o n u y l u o c f l a l n l o s q e s a r n s u a r uJ o E u l l s l s u o c ( D W u \ I € a p r p o s o l c o q l q t r ^ \ p e r J r l u o p r e q u e c ( g ) r Z a c e O sa q a 'Q)rZ ot (g)rZ tuo.t3 rolerado ^J€lIun e sr / / ur:o3suerl IererlJueld -rerrnog aql legl uasorlJ os suollEzrleuriou aql -- Lp puu tp iq , ( l d r u r sp e l o u a p - - J p u € g u o s a r n s e e t ur e B H x l J ' l l e r o J p u € o r u o '(t)apQ V)n J = (A)(n * zl) lcnpord uoltnto^uoc pue ') =t3 tll' f t 1 . l ( ' ^ ? } ,: l ( ! a )I'7_ ons = llrtllI to uolrtllBd Ieros B tt tt uJ
and convolution product (Il * v)(E) = f Il(A - t)dv(t). Once and for all, fix Haar measures on G and r -- denoted simply by dt and d1 -- the normalizations so chosen that the FourierPlanche rei transform f ... is a unitary operator from L 2(G) to L 2(r). The space Ll(G) can be identified with the closed ideal in M(G) consisting of measures absolutely continuous with respect to Haar measure. In particular, Ll(G) is an involutive commutative Banach algebra with respect ~ III and the operations f * g(t) = ff(s)g(t-s)ds and f*(t) = f( -t). Stone's theorem states that if t ... lit is a strongly continuous unitary representation of G in a Hilbert space le, then there exists a spectral measure e: f r ... P(:e(le)) such that lit = f
!
L~l IIl(E)I: {Ei}f=l
(f l{c
= sup
a Borel partition of G}] LL
[ 111l" )
Throughout this section and the next, the symbol G will denote a (Hausdorff) locally compact abelian group, with dual (or character) group r. While it is true that, as far as our application is concerned, only the case G = IR is relevant, we shall persist with the abstract situation for the following reasons: (a) when G = IR, the dual r also becomes identical with IR, the consequent identification of G with r being not particularly desirable; and (b) the proofs are no harder for a general G than for IR, and no student has been irreparably harmed for having had to learn some abstract harmonic analysis. (For the reader who is unfamiliar with a non-empty subset of {locally compact group, character group, Haar measure, Fourier transform}, there is a brief appendix devoted to these notions.) We shall assume that G satisfies the second axiom of countability. One consequence is that G is metrizable and separable, so that, in considering L 2(G), we shall still stay in the category of separable Hilbert spaces; another consequence is that all open sets in G are a-compact -- i.e., coun ta ble unions of compact sets -- so that there need be no fuss about Baire sets and Borel sets. The class of Borel sets is the smallest a-algebra f G containing all the compact sets in G; this a-algebra will be the domain of definition of all measures we shall consider. The space of finite, regular, complex measures on G is denoted by M(G); the set M(G) has the structure of an involuti~ Banach algebra, when equipped with the involution 1l*(E) = Il( -E), total-variation norm
rurou uorlelJE^-lBlol ' ( g - ) t I = ( S ) * T l u o r l n l o l u r e q l q l l a p o d d y n b au o q ^ \ ' e r q o E l e q c u u e g a-,r-!Ii-lo,ruruB Jo ernlcnrls aql scrl (g)ru les eql :(C)n fC, palouap sr g uo sernseaurxeldruoc 'relnEor 'allulJ Jo aceds cr{I 'JoprsuoJ IIBqs eA\ scrnseeru IIE Jo uorlrurJ3p Jo ur0luop aql oq 11r,nrrqeSlB-o slr{l 19 ur sles lcedruoc eql ll€ 3u1u1e1uocc4 e:qe81e-o lsoll€rus orll sI sles 'sles I e r o g J o s s E l ce q l larog pu? sles srreg lnoq€ ssnJ ou eq peeu eraql loql os -- sles lceduroc Jo suorun elqelunoc ''e'l -- lceduroc-o e J u J ) u l s l a s u a d o 1 1 e l € q l s r a c u e n b a s u o cJ e q l o u e l s o c e d s l r e q l l H a l q € r e d o s g o , ( r o 3 a 1 e ce q l u l , ( e 1 s y p l s l l e q s e ^ \ ' ( g ) r l E u r r a p r s u o c u r ' l e r { l o s ' o l q e r e d o s p u s e l q € z r J l a r us r g l e r { l s r o c u e n b o s u o ca u g 'i(1r1rqe1unoc ruolxe puocos aql selJsll€s g l€r{l erunsse Ileqs oA\ Jo ( ' s u o r l o uo s a q l o l p e l o ^ a p x r p u a d d e € sr aroql ' { u r o g s u u r l r c r r n o J ' a r n s e o r ur u e 1 1 ' d n o r E r a l c e r e q c 'Jdenror q r8 lcedruoc ,{11tco1) Jo losqns dldrue-uou B rlll^\ r€rllrusJun sr orl,r re pEOr e q l J o J ) ' s r s , { 1 e u ec l u o r u r s r l l o e r l s q € o r u o s u r e a l o l p € q E u r n r q r o 3 porur€rl pue g lurauaE e ,(lqerudorrr :oJ uoaq ser{ ou u[rll luapnls t r o J r e p r e q o u a r e s J o o r d o q t ( q ) p u u i e l q e ; r s o p, ( 1 r r 1 n c r 1 r e d 1ou Suyoq J rlllly\ ,) Jo uorlBJIJIluopr luanbesuoc 0rll tJ r{ll/l\ Ieclluopr souoceq o s l p J I € n p e q l t l = g u c q m ( e ) : s u o s c o rE u r m o l l o ; c q l r o J u o l l € n l l s lsEJlsqB aql qll/r\ lsrsrad IIBTIS3^\ '1uune1orsl u, = g osEc aql fluo ' p o u r e o u o os r u o l l e c r l d d e r n o s € r e J s B ' l e q l e n r l s r '1 U ellq71\ dnorE ( r a l c e r e g c r o ) l e n p q l l i r ' d n o r E u s r l a q e l c e d u r o c K 1 1 e c o(1; ; r o p s n u g ) € alouap IIIrt\ I loqrufs eql 'lxcu eql puB uortcas slqt lnoqEnorqa 'TE
3.2. The Arveson Spectrum oC an Action
uopty
ua Jo rrrulccds
uosr^rv
aql
' t u e r o e q lu r , ( p o 4 r 5 1 - u o p B€ lI I'l'€ r u o r o c r { I 8 u 1 1 1 e cr o J a s e o E u o r t s € s r c r a r { } ? c u c H ' { l l ) d n o r S a q l 'rEI€Js cnrlrsod J o r o l € r o u a E l e u r r s a l r u r J u re q l J o I e l l u a u o c l x ae q l s E e , ( q u o r 1 e c 1 1 d r 1 l n rou1 d n ' p a u r r u r e l a p s y g , , , ( 1 1 s u a pe,q, l p u e d n o r E
group and the "density" H is determined, up to multiplication by a positive scalar, as the exponential of the infinitesimal generator of the group {lit}. Hence there is a strong case for calling Theorem 3.1.1 a Radon-Nikodym theorem. uollcv uE Jo runrlcodguoscrry aqa 'Z't
g6
3.2. The Arveson Spectrum of an Action
93
94 94
actors I I FFactors y p e IIII Connes Classification f TType he C l a s s i f i c a t i o n oof o n n e sC 33.. TThe
homomorphism of of ll(C) L 1( G) into in to l(lf); :e(~); itit is is not not hard hard to to see see that that u(f) u(j) == homomorphism f u r t h e ^ r ' b e sseen een I t ff(t)utdt, in the strong sense of the integral. It can, furthe,..r, be i n t e g r a l . c a n , o f t h e s e n s e i n t h e s t r o n g l1t'1udt, anishes ~:f :uu(jH whenever G ) and a n d ff vvanishes h e n e v e r ff e€ LLt1((G) ( f ) \ = 00 w a n ee(E) ( E ) = {gE e€ X lthat t r a t rran s tto E}, E iin Our o ccarry arry n tthis e c t i o n , iis h i s ssection, n fr.. O u r aaim, i m , iin et U o r aany l o s e d sset ) , ffor n y cclosed oon n E Neumann lgebra. r o u p aaction on N e u m a n n aalgebra. c t i o n oon n aa vvon n a l y s i s ooff aa ggroup oout u t aa ssimilar i m i l a r aanalysis Definition 3.2.1. 3.2.1. (a) An An action a of of G on a von Neumann algebra algebra M M Dcfinition roup A u t M ooff Aut n t o tthe h e ggroup r o m G iinto o m o m o r p h i s m ca r ffrom iiss aa hhomomorphism **-automorphisms - a u t o m o r p h i s m sooff M .e.' o i n t w i s e oa-weakly M,, w which - w e a k l y ccontinuous o n t i n u o u s ---- ii.e., h i c h iiss ppointwise ' c r . ( x ) M.. n M o r eeach a c h xx iin - w e a k l y ccontinuous, o n t i n u o u s , ffor /t ... at(x) iiss oa-weakly M , G , a ) cconsisting on dynamical off a vvon onsisting o ((b) b ) ' AA d r i p l e ((M,G,a) y s t e m iiss a ttriple y n a m i c a l ssystem Neumann algebra algebra M, a locally compact compact group G, G, and an action cx a of of Neunlann M.. 0 E G oon nM or the Notice that we have have written written dt at rather than
o-weak sense sense the pointwise flcrduQ) atd lJ.(t) -- the pointwise a-weak interpreted in the integral being being interpreted the integral ' cx(1J.) !-"induces p ... M(G) into the a(1t) from -induces an M(G) into the homomorphism IJ. an algebra algebra homomorphism front on operators algebra (¥) of a-weakly continuous linear operators on M. Further, o-weakly continuous algeblp :eEo(!,O,,ol a 1Icx(1l) llpll. l l c ( p )IIl l ,< 1I1l11. M* Proof. Recall that every M(G), x in M, ~0 in M.. Fix IJ.g in M(G), Proof. Fix r * - a u t o m o r p h i s m of ( g n d a-weakly s o t/ ... *-automorphism o - w e a k l y continuous); c o n t i n u o u s ) ; so i s isometric i s o m e t ; i q ,(and o f M is ( b ( b y IIxll o n G (byy f u n c t i o n on c o n t i n u o u s function
?
most Ilxll norm at M* of norm at most defines functionalon on M. linear functional ll"ll IIILII; llpll; boundedlinear definesaa bounded which we we shall shall in M, M, which since in (M*)* == M, uniqueelement ele,mqnt M, there existsaa unique thereexists since(M.)* denote such II ,s 111111 II and and cr(p)x, suchthat that lIa(ll)x by a(ll)x, denoteby llsll Ilx llxll llcr(p)xll
Sf
p)(r) g(t ++ s)dv(s)d1L(t) s)dv(s)du1) f g(t)d(v ** Il)(t) == s@a{u II g(t I
•
To
If x € M and ex(f)x = 0 for all f in Cc(G) (the space of continuous functions with compact support), then x = O. (Hint: C c(G) is dense in L I( G) and the dual of L I( G) is L <»( G).) {¢ 0 cx(f): ¢ € M., f € Cc(G)} is a norm - total subset of M •. (Hint: if M. o is the closed subspace generated by this set and if M. o eM., appeal to the Hahn-Banach theorem and (a).)
('(e) pue uaroar{l rlcuu€g-uqeH eql ol IEedd.B,,hl 3 o',r[ 0'*7g :lurH) J I p u e l o s s l q l f q p e l e r a u a Eo c r d s q n s p a s o l J o r { l s r JJ *N J o l e s q n s l ? l o l - r u r o u u s t ( ( g ) ' Jt / " w ; Q : $ ) n o Q l
(b)
(q)
(@)-z sl (o)rz Jo lenp oql puu (c)rz ut asuapsr (9)'3
: l u I H ) ' 0 = x u a q l ' ( l J o d d n s l c o d r u o cq l J / r \ s u o r l c u n J s n o n u l l u o c go eceds orll) (O)", ul ./ IIB roJ 0 = x(!F pue n ) x JI 't[ uo D Jo uorlce uE aq D l€-I
(a)
(u)
(3.2.3) Let ex be an action of G on M.
G'Z'€)
Exercises
scsrcJcxS
lp @l | =
If f thus
snql !(Jrt)n rog (/)o e1rr,n fldrurs IIBr4s a^\ 'tp ! = trtp puz, (C)rZ > ! ll
L I (G) and dlJ.r
€
=f
dt, we shall simply write ex(f) for ex(lJ.r);
' a l a l d r u o cs 1 'f1leurg '((S'l'O) E 3oord eqt 'xg Eur,l,o11oJsluatutuoc eq1 '3c) snonulluoc .,(14ea,n-oflluanbasuoc 'snql pue reaurl aallrsod e sl (rr)" o l€uorlcunJ, IBruJou '
o3uaH 'g ,(q peceldar y qll/K pll€^ Q sur€ruar I luotuelels o^oqe erll leql paonpap flrsee s1 ll 'lceduoc-o sl g sV y, X, (t[tn
) t J
As G is a-compact, it is easily deduced that the above statement remains valid with K replaced by G. Hence
f
'(t)rtp<|'e)'r >
f
<ext(x),¢>d1J.(t) /' K <ext(x),¢>d1J.(t).
'g j X lcudruoc roJ tsql s.trolloJ t1 i9 3o slasqns lcedruoc uo ruroJrun oq lsnu acuaEraluoc eql ' u r a J o a q ls . 1 u r q { g ' < 0 ' ( x ) ' o > u o l l c u n J snonurluoJ eqt ol osr/r\lurod s o s € o r _ J u ls u o l l c u n J s n o n u r l u o r J o { . 0 ' ( ! x ) ' o > ) l a u e q l . u a q J 'x 1\x lrql pue *n u! lau ouolouoru ? sl {!r} teqt mou esoddng
Suppose now that {xi} is a monotone net in M+ and that xi /' x. Then, the net {<ex. (x i),¢» of continuous functions increases pointwise to the continuous function <ex. (x),¢>. By Dini's theorem, the convergence must be uniform on compact subsets of G; it follows that for compact K f G, cx(1J.»
f <ext(x),¢> dlJ.(t)
< Q)rtp 0
=
jil
'O
<x, ¢
O.
'+n x u l roJ acurs'0 < (tlc o O ruql 0 < '0 'a,r1l1sodsr .ool .srql < rl uorg s/{olloJ lI 0 0 l€ql otunsse ,(eu arrr toJ :;W r (rt)p o Q sorlclurr ,W ? Q lBrll ir\or{s ol poau ol[ 7' eJnseau e ^ l l r s o d € r o J s l g l o p o l s e J r J J n s { 1 , r e a 1 cl 1 l s n o n u J l u o c , { 1 1 e e m - o sl (d)p qc€e ltql ,{,grrarr ol peeu eA\ '3ootd cql alalduoc oJ
To complete the proof, we need to verify that each a-weakly continuous; it clearly suffices to do this for a measure jI.. We need to show that ¢ € M. implies ¢ 0 cx(1J.) € this, too, we may assume that ¢ is positive. It follows from jil 0 that ¢ 0 cx(1J.) jil 0, since for x in M+,
ex(lJ.) is positive M.; for IJ. ;. 0, ¢
' =
= <ex(v)cx(IJ.)x,¢> .
Sf <ex.+t(x),¢>dv(s)d1J.(t) = f <ex(IJ.)(ex.(x»,¢> dv(s) = f <ex.(ex(lJ.)x),¢> dv(s) (s)^p
(s)np = J
* lJ.)x,¢>
(t)rtp(s)apcq'(x)r+'ot = l! 'acuoq19 uo E uoll3unJalqurnseeru pepunoqi(ue rog
=
for any bounded measurable function g on G; hence,
uollcv ue Jo r,untlccdg uoserrryoqa 'Z'e
95
3.2. The Arveson Spectrum of an Action
96
9966
actors y p e IIII I I FFactors Connes Classification f TType l a s s i f i c a t i o n oof he C o n n e sC 33.. TThe
((c) c)
G ) ---o r lLr (l(G) d e n t i t v ffor p p r o x i m a t e iidentity ) bbe e aa bbounded o u n d e d aapproximate LLet e t {{k k ,j :: ii eE II} i.e., {k } is a net such that n e t t h a t i s s u c h i . e . , { k 1j } a
'" ss~p y p l l k i l l<< @
IlkjIIt l
il.
1
aand no
lim llt,-/ Ilkjd -- /ll fll == o0 tim j
f or all all ff in in Lr(G). L l( G). Then Then for
lim 11et> o 0 c(k,) cx(k.) -- Oll et>11 = = o 0 rim ll0 j 1
i
et> in M*. M.. (Hint: (Hint: as as sup sup ll
ll; ,l llII!JJII ,l llIlwll l , t l,Ilfl rl* *k , - ffll; l < n < t i-) cx(f)1I - " t n< l o l11cx(f)cx(k) l1Iet>l o0 ocx(k) ( r , ,- )et>11 - o< j -
((d) d)
also .11(G) Ll(G) is commutative.) commutative.) also l l c ) , tthen hen o r ILl(G), If is approximate d e n t i t y ffor p p r o x i m a t e iidentity ( k i ) i € r i s a bbounded ounded a If cx(k)x i... x o-weakly a-weakly for for each x in in 11L M. 0 E cr(k,)r
(kj}jEI
J
{l e as rlc;: i n Wee sshall use denote E z Ll(G): has e t tC = ^(f h e sset o d e n o t e tthe s e tthe h e ssymbol y m b o l tC tto hall u W w i l l t h e s u g g e s t compact support}. It is hoped that the notation C will suggest the c n o t a t i o n t h e i s h o p e d t h a t I t compact support). "compactly supported Since phrase "compactly Fourier ^tra.nsform" transform" to the reader' reader. Since phrase supported Fourier I t is is Z r ( G ) ' It i n Ll(G). (f g)" i d e a l in i s an a n ideal hat C a is c l e a r tthat (f * * d ^ = i ; , ^iti t - iiss clear gather f unctions. W well-known Wee gather o f functions. r a s a rrich i c h supply s u p p l y of hat C C thas w e l l - k n o w n tthat instance) f o r instance) together ( w h i c h may i n [Rud], f o u n d in m a y be b e found r e s u l t s (which s o m e results t o g e t h e r some [ R u d ] , for ( c ) of ( b ) and f ollowing ( P a r t s (a), ( a ) , (b) t h e following o f the which a n d (c) n e e d . (Parts w e shall w h i c h we s h a l l need. i n [Rud].) 2 . 6 . 6in 2 . 6 . 8and a n d 2.6.6 proposition 2 ' 6 . 2 ,2.6.8 T h e o r e m s 2.6.2, p r o p o s i t i o n are, r e s p e c t i v e l y ,Theorems [Rud].) a r e , respectively,
J g,
Proposition 324. Proposition 3.2..4. C in C exists ff in there exists If with K compact U open, open, there and U t,^with compact and If K fg U U fC r,,, ' such that I f , lu' s u c h t h a Kt l K ( / < l u . such in LC such (b) there exists exists kk in is a compact f, and 0, there il E€ >> 0, and if ( b ) If set in in r, K,,is,,a ibntpact set If K Ko n K. " that + Ee and a n dk k ===l I on t'ti'i';"tt(C), h a t Ilkll l l k ll l ,<. lI + that Ilf sttchthat (c) in C t such llt -thereexists existskk in (c) If f E Ll(G), and ina Ee >> q, Q, there Lr(c). in Ll(G). in particular, C in 0n k.fll partictilar, norm-dense t isis norm-dense i.l[],l <. E;e;'iri (a) (a)
Exercises Excrciscs (3.2.5) 111 <. 2}. 21. (3.2.s)Let A == {k b: Ilk Let A llkll, {k Ee C:
= t on the [.r, supportof the support (a) if i<, (a) If A, say that kkll ~I kk2 say that If kl'k k,,k, 2 Ee A, 2 == 1 on 2 if 9f l .
k
k
i.e.,if il relation;i.e., Show that A upwards by order relation; bi this this order A isis directed directed'upwa'rds SnoJ'tfiat = 1,2. 1,2. fot i k, ki kl'k Ee A such that k ~ k for i = A that such 4,,there existskk, there exists k,k,2 Ee I\., j 3 _1 3 set compactset (b) with any compact (Hint: and KK any wit\ Ee == 1I ^and (ftint: apply Prop.3.2.4 3.2.4(b) apply Prop. containing of and k .) kr.) and bothkkt of both supports thesupports containingthe l 2 tr(C). for Ll(G). identity for (b) identity (b) Show apiroxima"se boundedapproximate that AA isis aa bounded Show that prove that to A, is (Hint: Ilk II < 2 for all k in A, it is enough to prove that (Hint:since it enough since llt ll . Z for all k in
f
'{s
M: sPa(x)
E}.
0
i (r)Dds :yrgt x} = (gd)n
,(q ,,ecedsqns Jo lasqns posolc € sl g JI
'l IETIJAdS{ p0l€rcossB 3r{l eurJap
L 1( G): o:(f)x
n
E
r, define the associated "spectral
= 0}1 = {1
= x(,iF :(9)J
(r)
) l\ = 1r)Dds
E
r{O
= {f
. { 0 = & ) l + 0 = x ( / ) D : J) L\ =
M(o:,E) = {x
subspace" by
If E is a closed subset of
If x
E
r: a(f)x = 0
=9 J(1)
= O}.
M, let
]aI,W 9 X JI E
(q)
&)l c 0 = u),r :1 t Ll =T(0 = aF :@)rz r /) = n ds
= {f
E L (G): 1
a(f)
= 0}1 = {1
E
r:
o:(f)
=0
=9
.{0 =
(c)
sp a(x)
(b)
sp a
fey) = O}.
Define the Arveson spectrum of a by
f q n g o r u n r l o e d su o s o ^ J v o r l l o u l J o q
(a)
(e)
'n uo 'z'z'€ uolrlulJeq I Jo uollcs u€ 3q D l3.I
Definition 3.2.7. Let a be an action of G on M. '[oo1] go 3'19 n = !r se/r\ se parro:d sr (e) uorlc3s ur ruoroor{l € sl (q) lorroqe 1@)t 'i 'I ) Io pootltoqqSou D uo sallstuo^ ! uary I tutlt Llrns st (C)rZ t ! lt puo (D)rl'ut papt pasop o s! I It G) -(Z)"1 = Z puo (C)rl ut papt uo s! {Z lo pootpoqq8nu D Lto saqsyorr I i(g)J ) I\ = @)ot uary'1 ut tas pasolz o s! g lt @) 9'7:g uollpodorf,
(a) is proved as was 37.C of [Loo]. 0
E=
I(E)l above; (b) is a theorem in Section
L 1(GJ I vanishes on a neighborhood of E} is an ideal in L (G) and E = Io(E) A (b) II I is a closed ideal in L 1(G) and il f E L 1(G) is such that I vanishes on a neighborhood 01 11 , then f E I. 1
froposition 3.2.6. (a) If E is a closed set in r, then Io(E) = {f
E
'([oof] '3c) tlnsar Eutltrollog aq1 fq JoJ palesuaduroc uauo sr srsaqluz(sIErlcads Jo >Ic€l oql 'acllcerd 'slseqluf uI s lerlcods e^rq slos uolalEurs leql sel€ls r,uoroeql 'Z rol€lrqruu€ rlll^\ utrreqn€I rouell[ pel€rqolac eql @)rl ur Ieepl pesolc ,{luo aql sl (^?)131 slseqtu,(s lerlceds e^€q ol pr€s sr J ur 'srsaq1u,{s ? los posolcy I e r l c o d s J o r u o l q o r d p s l l € c - o sa q l o l p o l s l s r sr uoueruouaqd srrll 'lcrJts oq 'rarr.emoq'uec uorsnlcur srql '(-S)f 'S s7 er5qm E u l u l e l u o c J s1 leqt pue leepr pesolc lsellerus aql sl '(j))r? j 'uorl€nlrs = l€rll reels sI ll s uar{,r Ienp aql uI
Conversely, for any suJ>set E of r, let I(E) = {f E L 1(G): J(E) = {O}). It is clear that I(E) = I(E) and that I(E) is a closed ideal in L 1(G). If 1 t E, Pr2p. 3.2.4 (a) shows that there eXIsts I in ~.t(G) sucf that J(1) = 1 and f(E) = 0; cO.Dsequenry 1 t I(E) . Since E f I(E) (clearly!), we have shown that E = I(E) . In the dual situation, when S f L 1(G), it is clear that Sl = It, whire Isis the smallest closed ideal containing S, and that Is f I(S). This inclusion can, however, be strict. This phenomenon is related to the so-called problem of spectral synthesis. A closed set E in r is said to have spectral synthesis if I(E) is the only closed ideal in L 1( G) with annihilator E. The cele bra ted Wiener Tauberian theorem states that singleton sets have spectral synthesis. In practice, the lack of spectral synthesis is often compensa ted for by the following result (cf. [Loo]).
ft r" 'oT"u,': .(ii(1rra1c) :?l; / l, ^;TlXlto;fl-"1"il -(z)r= !r ecurs..,@)r
(L)I (9),7 ur s1s{xa (e) areql s^\ogs idq'g rcr$ L l€rll dcns / V'Z't / ''(rh7 ur I€epl pasot3B sr (a)t reqt puB (a)1 = Q)t leql ree15-sr 11 JI '({O)= 'f1os:aauo3 @)l :@)fl ) {} = @D l:l'J Jo ? lasq-ns,{ue rog .J s,(en1e sl TS les a{l '(g)r7 u1 t f,ue roJ snonulluoc sl ./ II€ roJ d = &)/ :J r f} - Ts: rol€lrqruu€ eql eulJep € ro; 'asrcard ad oa ('fEoldctol leura{-llnq polleJ-os €opl slql 'lJ€J uI) '€sre^ ecr^ puB J Jo slesqns Jo sleapl pesolc ruor3 ssed ol ,(e.n IBrnlBu e sl areqJ
r.
E
underlies the set S f L 1(G),l in S}. Since I a closed set in
ul les pasolc e '{s ut / acurg 'tc)rl i s tes eql sellrepun posol3 ol (rh7
There is a natural way to pass from closed ideals of subsets of r and vice versa. (In fact, this idea so-called hull-kernel tOPflogy.) To pe precise, for a define the annihilator S = CY E r: 1(1) = for all f is continuous for any f in L 1(G), the set S is always
L 1(G) to closed
f or a dense set of !'s; if I E C, note that there exists k o in A such that k * f = f for all k in A such that k o ~ k; for this, you need to use the injectivity of the Fourier transform.) 0
('ruro3suerl rerrnoC aill Jo ,(1rrr1lcofuroql osn ol poau [ n o , { ' s l q l - r o 3l 1 l 0 Z t t q f q c n s V u l l l l u r o J ! = / * Z l u q t q c n s 0Z slsrxo ereql luql alou ') ) :s../ les asuop € roJ V ul / J I J o v trt kEA
0 = ll/ - /'211tu'y lim
Ilk./ - III
= 0
uollJv uB Jo unrlccd5 uosarrry oq1 'Z't
97
3.2. The Arveson Spectrum of an Action
L6
98 9E
3. T h e Connes T y p e III I I I Factors Factors 3 . The C o n n e sClassification C l a s s i f i c a t i o n of o f Type
Lemma l. l-cmma 3.2.8. 32-t. Let x €e M and let E be be a closed closed set set in r.
1
(,f)x = 0 whenever €e M(o:.,E) such that M(q,E) #<+ a(f)x whenever jf €e Ll(G) is ts ,suclt that I (i.e., E fc Int vanishes vanishes on ht (f)J.., where Int lnt on a neighborhood neighborhood oj of E (i.e., {f)-, where denotes M(qE) is o-weakly closed denotes interior); consequently consequently M(o:.,E) is a a-weakly closed subspace of M; M', subspaceoj ( b ) spCX<x) (b) # ( 9xx = 00;; s p c r ( x=) ~= 0 ( c ) spcx(x) i'::) inGG( i(i.e., M s T and , a n dx *i-0 .O. s p ; ( x )== {O) { 0 ) #( + ccxt(x) r f x ) = x fjor o r aall l l tt i n . e . , xx €e ~),
(3) (3)
X x
= (f = 0). Proof. Ll(G): a(f)x 1* is is aa closed Proof. Let Let Ix I* = cr(flx = closed ideal in 0). Clearly Ix {f €e !-'(C): -- recall L l(G) -from G. intrerits commutativity tt(c) recal-i that Ll(G) .r,l(C) inherits G. Further, by commutativity ?rom definition, d e f i n i t i o n , spcx(x) spo(x) = {. ( ) ) and ( € ) are ( b ) and ( a ) The (a) T h e implications i m p l i c a t i o n s (9) a n d (*) a r e easy e a s y consequences c o n s e q u e n c e sof o f (b) and ( a ) of (a) P r o p . 3.2.6 i d e a l Ix f * and t, 3 . 2 . 6 applied a p p l i e d to t o the t h e closed c l o s e d ideal a n d the t h e closed c l o s e d set s e t E, o f Prop. respectively. f i r s t in i n view v i e w of r e s p e c t i v e l y . The T h e second a s s e r t i o n follows f o l l o w s from f r o m the t h e first of s e c o n d assertion the the a-weak o-weak continuity continuity of the a(j)'s. cr(/)'s. ( b ) If ( a ) (applied ( a p p l i e d to (b) w e find f i n d that c(rx I f spcx(x) s p o ( x ) = ~, b y (a) t o E = ~), t h a t cx(f)x o , -then t h e n by 0 ) , we = 0 for ( 3 . 2 , 3 )(a), ( a ) , x = 0; = i t is i s clear, f o r all a l l /j in i n Ll(G), L ' ( G ) , and a n d so, s o , by b y Ex. E x . (3.2.3) 0 ; it clear, using Prop, 3.2.4, spo(0) == ~. using Prop 3.2.4,that sPcx(O) 6. (= sPcx(x» (c) If (c) (0), it follows from Wiener's Wiener's Tauberian If II If (= sn..(x)) = {O), ( { €, Ll(G): theorem = 0). Let 1 * = I({O» 1 ( { 0 } ) = (f L ' ( G ) : 1(0) 0 } . L e t A be b e the t h e bounded bounded t h e o r e m that t h a t Ix /(0) approximate i t i - e n t i t yfor f o r ^Ll(G) l r ( C ) constructed i n Ex. E x . 3.2.5. I t is i s clear a p p r o x i m a t e identity c o n s t r u c t e das a s in 3 . 2 . 5 . It clear - - in A, A : k(O) that l } is i s co-final i n A -i n fact, f a c t , kl'k k ' k , 2 €e A, t h a t the t h e set s e t Aoo == {k k ( 0 ) == 1) c o - f i n a l in { k €€ A: Ao. Ao is ' kkrl ~1 kk22 and kk,l €e A imply k €e A Thus A also a bounded Ao is bounded k, also a o o 2 o (d), ( 3 . 2 . 3 )(d), approximate i d e n t i t y for f o r Ll(G) Z ' ( G ) and a n d so, b y Ex. E x . (3.2.3) a p p r o x i m a t e identity s o , by
r;.
x = a-weak o-w€Bk -- lim cx(k)x. cx(k)x. k€A k€Ao o -i
f) IQ)
-. .
x,~> x,Q> dt = = O.
- - since Since i s arbitrary, Z I ( G ) is i s L""(G) I-(G) -S i n c e /j is a r b i t r a r y , conclude c o n c l u d e -s i n c e the t h e dual d u a l of o f Ll(G) (with respect
f
. l e(f)x (= ) f(t)ar(x)dt) a(f)x j(t)cxt(x)dt) = I(O)x /(0)x
1((0))I == for any fj in Ll(G). LL(G). So, if x i-* 0, Ix== I({O» 1((0)) and so so sPcx(x) spcx(x)= I({O»J.. So, if O, Ix (0). t0).
0n
p r o p o s i t i o n lists f acts The T h e following l i s t s some f u r t h e r elementary e l e m e n t a r y facts f o l l o w i n g proposition s o m e further w e use concerning n o t i o n s introduced i n t r o d u c e d in i n Definition D e f i n i t i o n 3.2.7; u s e the the c o n c e r n i n g the t h e notions 3 . 2 . 7 ; we
66
uorlJv uE Jo unrlcadg uosc,rry aq1 'Z't
99
3.2. The Arveson Spectrum of an Action
I: spt I = 1- 1«(£ \ {O}).
\ l)r-{ = I $s :1 uollcunJ aql Jo lroddns aql roJ / lds uollttou
the support of the function
t t ta7 6'f€
E
lasqns pasop D aq Z puo'1,r7t x'(9){I
Proposition 3.2.9. Let f
L 1(G), x
E
M, and E be a closed subset of
r.
'1{o
I for
'(tO)
notation spt uolrFodor4
(q) uaqt'hl {o lasqns1o7o1t1>1oau-o [uo s! I {I i(r)Dos-=1*x)Pds (r)
(a)
(b)
spc:x(x*) = - spc:x(x); If B is any a-weakly total subset of M, then
:-[{r)" o sB i^ ] = o o , sp c:x = (
u
yE B
SPc:x(y)f;
:D ut t ilo to! (az)w = (r'nfufiin (c) (;) (e) (p)
(d) (e)
(f)
c:xt(M(cx,E)) = M(cx,E) for alL t in G; spc:x(c:x(f)x) f spc:x(x) () spt !; "'/ E sp c:x # M(cx,V) ~ {O} for every neighborhood V of ",/. If IJ. E M(G) and ~ vanishes identically on a neighborhood of spc:x(x), then C:X(IJ.)x = O.
'g = x(rl)n uary'(x)nds {o poor1toqtlStauo uo,(1ptc1yuapt saqsluv^ tl puo (g)n t TI {I 'L {o,t pootltoqqSrauttaaa rcl {O\"* Qf4n <+ D ds , f :/ lds u 1r)Dos 3 (r(/)D)Dds
(c)
suorlenbe polJlre^ ,(lrsee or{l ruory s^\olloJ sltIl (E) 'Joord
Proof. (a) This follows from the easily verified equations
Pu€ *x(IF = *(x(/)n)
and
~
-A-
' (L-){ = (L) {
(c:x(f)x)* = c:x(f)x*
f ("'/) = f(-"'/) .
(b) Clearly a(f) = 0 implies a(f)y = 0 for all y in M; it follows that sp c:x ~ spc:x(y) for all y, and since sp c:x is closed, we get
'pasolc sr p ds aculs pue 'd loE e,tr 11ero3 (f)Dds f n ds l€rll s^\olloJ t\'.AI u\ f 11erog O = tU)n serldurr O = (/)p ,(1rea13(q)
si^1eo o, -[t,o"o,
sp a ~ ( U spc:x(y)f yE B 3r
Conversely, if
'I1osre,ruo3
'_[{o"or[A^1 It "'/
~
( uBsPc:x(y)f ' yE
'A[ ur. x Al. ,(yrea13 7 5 (^x)DOs IIB roJ p ds 5 (r)pcls ecurs 1o ds r t AL >1c1diE I (^x)Dcts '(q) 8'Z'€ Brurua'1 ,(q 'uaqt '(l'n)lU s ^x * 0 ',{1esrarluo3 'L JI Jo tl pooqroqq8tou ,(raro roJ {0) * U%DU esodclns r ds / L os l0 * &)3 stlr{1( 0 = (3)n snqJ 'g = x(3)n os puE '(A'o)w I x(3)n arueq^\ '71j 661")pds leqt selldur (p) uud 'm u\ x fuu ro3 'uaql 'A 3 3 lds puu I = (1.)Btcrll q c n s J u r 3 4 c 1 d ' L J o A p o o q r o q q S r a ua u o s i o ; t O ) = C 4 ! o D t / J i ( e ) .(x(/)D)Dds / l. acueq ig * (L)3 olq,r\'0 = (x(/)n)(3)n leql os O = { * 3 leqt apntcuoJ 'dor4 ,{q) slsrxe '0 = {3 pue i = G)B leql qrns ;r ut 3 ((e) V'Z't rpueq reqro e"qr ug '(x(/)n)Dds q (x)Dds os 16 oraql't tds / L JI = x(3)n(/)n = (x)(3 * t)p = (x)(I * 3)o = (r(/)nXt)p e g = x(3)n (p) '@'o)ltt a (r)to (e) €rurue'I ruorJ s^\olloJ r x leql S'Z'g @'byit e ',{lluanbasuoJ 'Q = g = (f,)/ ter{l os '(L)[,-
pick f in L (G) such that 1("'/) = 1 and I vanishes on an open neighborhood of (u EB sp~(y)r. It follows from Lemma 3.2.8 (n) that c:x(f)y = 0 for all in /j. The assumption on B and the a-weak continuity of c:x(f) now ensure that c:x(f) = O. Since 1("'/) ~ 0, infer that "'/ ~ sp ex. (c) Not~ that c:x(f)c:xt(xt = C:X(ft)x, where ft(s) = f(s - t); also t("'/)
J
I
100 r00
3. T h e Connes 3 . The C o n n e sClassification T y p c III I I I Factors Factors C l a s s i f i c a t i o n of o f Type
So, fi sp Z () cx ~I rJ>, So, V sp ex every open open neighborhood neighborhood V V of 1; cr is since sp sp ex is 0, for every 7; since closed, closed, conclude conclude that 1 cr. sp ex. 7 €€ sp /'.... A A 1(G), then (f) If vanishes on aa neighborhood lf If €e L LL(G), neighborhood of tlrrn I/i * JL = I? iJL vanishes (a), cx(f)cx(JL)x sPex(x) spcr(x) and so, so, by Lemma Lemma 3.2.8 o(/)o(tr)x == O. was 3.2.8 (a), 0. Since Since I/ was ( 3 . 2 . 3 )(a) ( a ) that arbitrary, 0E a r b i t r a r y , conclude c o n c l u d e from f r o m Ex. E x . (3.2.3) c r ( p ) x= O. t h a t ex(JL)x 0.
We w i t h an W e conclude c o n c l u d e this t h i s section s e c t i o n with a n analogue a n a l o g u e of o f the t h e statement s t a t e m e n t that that g spt(f f s pt f + s pt g. spt(/ ** g) sprEp-t s) s.
Proposition Proposition 3.2.10. Let E 32f0. Let E,1 and and E E,2 be be closed closedsubsets subsets01 of rT and and let let E == Er,T, If Xi M(a"E1) xre€ M(cx,E) l-,2,and e M(c"E). £1 + £2' II lor i = 1,2, and x = X X ' then x € M(cx,E). x= xrxz,then iori 1 2 (i). SPex(xi) Proof. is compact, for i == 1,2. Proof. Case Casc(i). spo(x,)is compact,for 1,2. (a), we In view we need view of Lemma Lemma 3.2.8 3.2.8 (a), need to cr(flx == 00 to show show that that cx(f)x 1 wheneverIf €e LLr(G) whenever (G) is is such vanishesin aa neighborhood such that that j vanishes neighborhoodof E. E. Also, Also, in the the case we may may assume caseunder under discussion, discussion,we assumeE E,1 and and E E,2 are are (by replacing compact replacing E compact (by fi i by by sPex(x); spo(x')); then Et1 + E E,2 is is also then E == E also compact. compact. !-et V Let V + V be neighborhoodof 00 in rf such vanisheson be aa neighborhood such that E+ +^V that f vanishes on E pick V. Appeal Appeal to V. and pick f· in C such that to Prop. Prop. 3.2.4 3.2.4 (a), and C such is {a), fi ^that /, is identicallyequal neighborhood identically borhood of E equal to to one one on on aa neigh E,i and E,i + V, and spt spt Ii V, /i fc E (Locally compact f or i == 1,2. 1,2. (Locally for Hausdorff spaces regular!) Notice compactHausdorff spacesare are regular!) Notice (f), cx(/i)x that, by Prop.3.2.9 "(/i)xii == Xi' that, by Prop. 3.2.9(f), xr, i == 1,2. 1,2. So, M*, So,for any any rJ>Q in M.,
f
f
•
A
f..
= =
= fffl(t)/ (x2r)),Q> o,tH dt dt dt1Ld »,rJ»dt = (t1)/ (t2)«at+ (x 1r))( »(a dtt22 r)f 2,(t t 1r(x r)<(..r*t *r,2(x I | ! t Ult 1r
= JfJftrlfrts, + s1 s)/r(s, s) s, -- s)· = fffl(s)/ 1(S1 -- s)/ 2(S2 + . <(crrr(xr)Xcxr ds ds ds1rd .«a +s (x 2)),Q, »,rJ»ds dss,2, s1(x 1»(as1r+" 2r(* (i) Fubini's where we we have where have used used(i) Fubini's theorem o-weakcontinuity theoremand and the the a-weak continuity "taken inside" which ensures of cx(g) c(g) may a(g) which ensuresthat that a(g) may be inside" aa a-weakly o-weakly be "taken (ii) Fubini's defined defined integral, integral, in the the second secondequality, equality,and and (ii) Fubini's theorem theorem and the the substitutions substitutionsss == t,l, s1 Jl == tI + tl' tt, s2 s2 =- tt2 tr, in the the third third and 2 - tl' equality. equality. Hence Hence
=
and and
k(s'sr)= J /tr)/rtr, - s)fz!z+ s, - s)ds.
I=f
Ilx~JI ~ j t 1<~j,~?1 Ilx~jll ~ II~JkI: Ilx~jI12)1/2 .
t.r :' !1 ' l3u > ll':"ll 3 )l z/r (zl l f:xl l l t:l>l g l ftx;1
ueql [(*: '"' 'It)] = [(ul l€ql qons les lururouorllro us sl {"1 '"''I:} JI '(O re g
for all x in I(}f). (Hint: First pick ~l' ..., ~m in }f and E > 0 such that Ilx~jll < E for 1 ~ i ~ m :9 14>(x)1 < 1 (by continuity of 4> at 0). If gl' ..., ~n} is an orthonormal set such that [{~l' ..., ~n}] = [{~l' ..., ~m}] then '""r:)l
) > . ; o{ 1 r n u r l u o c , ( q € r t r> I > I r o J , > l l ' : r l l l p q l q 3 n s - :I' " ' ' Il :( x ) 0 1 '(A)ru'i x 0 < r pu€,l ul {cld lsrrg:lurg) IIB roJ ( ..,- .. I=!l
14>(x)1
~ K Lt Ilx~jIl2r/2
-zlr\ , - l r l l ' : *{ lJl " > l(x)01
Show that there exists an orthonormal set gl' ..., constant K > 0 such that
leql qcns 0 < ) lu€lsuoc u pu€ ,l ul {"1 "" "l} tos I€rurouoquo u8 slsrxo ejsql lerll ^\oqs
(a)
~n}
in }f and a
(€)
'snonurluoc ,{1Euor1s sJ rlclr{/AIuuollounJ reourl e aq O - (A)f :0 la"I (tt.Z.g) (3.2.11) Let 4>: I(}f) ... continuous.
cr
be a linear functional which is strongly
Exercises srsIJJexl
Since multiplication is jointly strongly continuous on bounded sets, (a(/)x l )(o:(gj)x 2) ... x l x 2 strongly, and hence weakly. By Case (i) and Prop. 3.2.9 (d), each of the products (o:(I)x l )(a(g·)x 2) belongs to M(cx,E) which, by Lemma 3.2.8 (a), is a-weakly closed; since, on bounded sets, the a-weak and weak topologies coincide (cL Ex. O.3.1(b», conclude that x l x 2 E M(cx,E).
'@'o)n '((q)l'€'0 z x r x t l€rll opnlouoc 'xg 'JJ) oplculoc sar8olodol 'slas papunoq lean pue {Ba^\-o eql uo 'ocurs lposolc {11eaa-o sl '(e) B'Z'€ €rurue'1 ^q 'gclq ^ (Z}o)W '(p) 'ctor4 o1 sEuolaq 1 z x 1 ! A p ; 1 I x 1 ! 1 1 ns;l c n p o r d a q l J o q c e a - 6'Z'€ pue (I) ase3 [g ',(1>1eo,n oouoq pue '[1Euor1s zxrx * 1zx1!A;n;1rr1lp; 'slas papunoq uo snonurluoc [ISuorls fllurof sl uoll€clldlllnru eJurs
rrt ' - ' re!(ll"(r:)"ll ';1Ix1!1p1;1ons sUP
co.
Case (ii). xl'x 2 arbitrary. For any y in M, it follows from Ex. (3.2.5) (b) and Ex. (3.2.3) (d) that y belongs to the a-weak (and hence weak) closure of the set {a(k)y: k E C, Ilk III < 2}. This set is convex, and it is true that for convex subsets of I(}f), the strong and weak closures coincide (cL Ex. (3.2.1 1». Select nets {f)iEI and {g.: j E J} such that /j,gj E C, II/jill' Ilgjll l < 2 and a(/)x l ... xl and a(g)X 2 ... x 2 strongly. Note that
Gx zx1!31n pue Ix * I"(!F pue g t I;;!a;; leql -eloN 'f18uor1s '((rrtz'E) "ll7ll 'c t t3't{ ql qrns (r t l s { : l t 1 p u e l t ! 1 ' y ;s l o u l r a t a s 'xg rgc)'oprcuroo sernsolJ{€e,lr\pue tuorls oql '(fi)f Jo slasqnsxeluoJ roJ leql anrl sr tl pue 'xeluo3 sl les slql '{Z r rll 4ll 'J ) 4 lt({o} acuaq pue) {ee^\-o aql'6l"sElolaq d leql les oql Jo ernsolc(>1ea,v' (p) (€'Z'€) 'xX pue (q) (S'Z'€) 'xA uorJ si(oltoJ 1r.'147 ur.( f ue rog 'frerlrqr? ax'Ix (1g)ese3 '(r) asec goordaql sapnlJuocslql '{rerlrqre s€,r ocurs 0 '0 = <0'xU)p> leql;o'Arou 'sernsuoruoroegl s.lurqnC Jo uolleJrldde application of Fubini's theorem ensures, now, that was arbitrary, this concludes the proof of case (i).
=
O.
'0 = (zs'.)ry'os pu€ = raqloue la1 tttu"nbosuoJ 0 .{'"'zI.t!).{ -) 'A + zg + Ig u1 paugeruoJsr qJIq^\ u'-'a1rds + A + g I + A + Yet another
+ spt /2 ,-8
2
which is contained in E l + V + E 2 + V f E + V + V.
essentially the convolution of /1 and /2,-8 ) is supported inside spt /1 2
t/ to, eplsul polroddnss\ (2"'z! pue r./ Jo uollnlo^uocorll {11er1uesse ,
2
sr qcrq,n) (""'z!.t./) rgq^ 'A + A + ? uo s a q s l u B ^ $ ' $ {
For a fixed S2' note that k( -,S2) is the convolution product / * (11' /2,-8 )' where the dot denotes pointwise product and gt(s) = g(s-t); 2 notice that / vanishes on E + V + V, while (11 -/2 -8 )" (which is
ocllou
L
:(r-s)S = (s)r3 puE lrnpord esr,nlurod selouep l o p o q l e r a q / $ ' ( - " - ' N I ' r { ) * / lcnporcl uollnlo^uoJ aql sl (us'.)Z leql alou 'Gs pexrJ s Joc
101
'Z't
3.2. The Arveson Spectrum of an Action uollcv ue Jo unrlJaclg uoselry aq;
IOI
3. of Type The Connes Typc III Factors Factors ConnesClassification Classification 3. The
102 t02
«.x)
(b) (b)
t Q(x)= O. (by considering Note 00 for j 9 fo.r all considering Note that that IIx~) all..j Q. Show Show(by ll"i,ll -=r m a x , l l x ( , lworks.) Kwl o r k s . ) K -1lx) x ) that K =i c1max.llx~.11 e thatK -
l/!
(well-dbfin6d)bounded Xf, There linear functional functional 0 on on if, There exists boundedlinear existsaa (well.d~fin~d) where where
"" Jf=Jf$ f r = f t e.... . $Jf .o n copies copiee
lf
such s u c h that that
"r,]==4>(x) ,[,i, X~j] o{") l/!L~l (c) (c)
t(lf). ffor or all x in :f(Jf). rl1,..., vectors 7)1' lf such There exist ..., 7)n 4r, in Jf such that exist vectors n
= .t, <x~J.,7)J.>; <xl,,n,>; 4>(x) 0(x)=.L j=1 J=l
(d) (d)
( H i n t : look ( b ) and p a r t i c u l a r , 4> in w e a k l y continuous. l o o k at a t (b) and i n particular, i s weakly c o n t i n u o u s . (Hint: 0 is appeal Riesz.) t o Riesz.) a p p c a l to A convex I ( l f ) is i s strongly w e a k l y closed i f f it i t is strongly o f :f(Jf) i s weakly c l o s e d iff c o n v e x subset s u b s e t of ( l o c a l l y convex ( H i n t : the closed. v e r s i o n of o f the) t h e ) Hahn-Banach Hahn-Banach t h e (locally c o n v e x version c l o s e d . (Hint: i n aa locally l o c a l l y convex theorem s e t in convex s a y s that t h a t aa closed c l o s e d convex c o n v e x set t h e o r e m says point topological v e c t o r space f r o m any a n y point s p a c e can c a n be b e separated s e p a r a t e d from t o p o l o g i c a l vector outside 0n i t by l i n e a r functional.) functional.) b y aa continuous c o n t i n u o u s linear o u t s i d e it
3.3. Action 3-3. The Thc Conncs Conncs Spectrum Spcctrum of of an Action (whcre If w e shall, i n Definition D e f i n i t i o n 2.5.13 2 . 5 . 1 3(where I f aa is i s an a n action o n M, M , we s h a l l , as a s in a c t i o n of of G C on a the point f i x e d point only l R was w a s considered), t h e fixed t h e case c a s e G = IR c o n s i d e r e d ) ,denote d e n o t e by b y Mo o n l y the a = {x Ee M: Yt Ma algebra: at(x) = x Vt E G}. Clearly ~ is a von Mq M: er(x) e Gl. Clearly^_ a algebra: M {x Neumann subalgebra W, eMe eMe may may be be 1L For aa projection ee in ~, subalgebra of M. viewed as M" of operators e. Since Since ee as aa von Neumann algebra operators on ran e. algebra Me e a , it follows that aa induces M" such E of G on Me € M Mq, induces an action acre such that crr(e)= ee is is needed needed to ensure a~(exe) ai@xe) = e(at(x))e. ensure that e(crt(x))e. (The invariance at(e) Verify i s an this i s unambiguous, t h a t aaee is a n action. a c t i o n . Verify t h i s definition u n a r n b i g u o u s ,and a n d that d e f i n i t i o n is this!) this!)
a) P(l'tq) e, el'e e,ez2 Ee P(M Proposition actiott of of G 011 ott M; let e, Proposition 3.3.1. be all an actioll 3.3.1. Let aq be
and a n d let l e t E f; b e closed. closed. l l r be (a)
M.(a",E) = M(q,E) i M.i
(b)
eer1 ~l eer+ 9 sp 1 f; 2; c sp sp ac(tl sp ao"2; 2
(c) (c)
(q(tt)x)b; if n d a,b I + { d ,then t h e na(jJ.)(axb) c x ( p X a x b== ) aa(a(jJ.)x)b; M ( G ) , x Ee M aand a , b Ee A~, i f jJ. u eE M(G), a , then itt M l+:[q, then if x E M and if a and b are invertible operators e l+[ are invertible operators ill if iI
(d)
e
e
= sPa(x). spo(axb) = spa(.r). sPa(axb) 1 i\ L Lr(G) Proof. (a) If (G) cre(flx = a(f)x c(f)x for for all Ifin If x Ee Me' M", note note that ae(f)x
'n uo g to p ttottco tto tol
.€-€-€ uollFodord
Proposition 3.3.3. For an action a of G on M, It is clear from the definition that rea) is always a closed subset of r. The content of the following assertion is that in defining r(a), it suffices to consider only non-zero projections which are central in Ma .
ur eJe r{Jrq^\ suorlceford oJoz-uou ,(1uo raprsuo, o, ,rrrg;nffl Ie'luec ' ( n ) 1 E u r u r 3 e pu l l € r { l s l u o r l r e s s eE u r , n o l l o ge q l J o l u o l u o o a q l . J J o l e s q n s p e s o l c e s , { e m 1 es l ( p ) . 1l u q l u o l t l u l J a p e q l u o r J r e e l c s l l I
o
! '(Gn)a ) a * 0:"n dslu = (D)J :snql paurJop sl '(lr)l ,{q palouop !o 3o urnrlceds sauuoJ oql 'n uo g Jo uorlce u€ sr lc JI .2.€.€ uoIfIuIJa(
Definition 3.3.2. If a is an action of G on M, the Connes spectrum of ex, denoted by r(a), is defined thus: r(a) = n{sp a e : 0 ~ e E P(~)}. E
'(gxz)pds
3 (r-q(qxo)r-u;pds = 1x;pcrs e o u r s' s / I \ o l l o Ju o r s n l c u r o s r a ^ o r e q l
the reverse inclusion follows, since l(r)Dcts =
f ({O} + spix ) + {O}t -({O} + (x)Pcts+ t0}) j
f (sPa(a) + sPa(x) + spib)t
-((q)"cls + (x)Dds + (u)Dos)j (gxa)Dds sPa(axb)
leql (c)8'Z'€ €ruua'I pu€ OI'Z'€ 'dor4 ruorg apnlcuo3 .(p)
since multiplication is separately continuous in the a-weak topology (cL Ex. (0.3.3) (d». (d). Conclude from Prop. 3.2.10 and Lemma 3.2.8(c) that
'((p)(e'e'o)'xs 'Jc)
,{8o1odo1{Belr\-o eql ul snonurluoc flaleredas sr uoglecrldlllnru aJurs ' =
= ,
=
J
o> = Q)ap
J
= =
',n ul0 ^u€ JoC (c)
(c) For any cP in M.,
e
'xl
z"
=, "o o , _ [t" l '" " 0 r ' "T*]
(X»)-
2
?"lrte*l
1
e
U [ xEM
=
~
~
(
^i.] r. = _[tr)"0, ~
=
~
sp
2
.2"o. ds l(t , n ds = oa _l..c)""
1
Sp e
xEMe
(X») -
= Sp a
e2
.
U xEMe
=
=[
.
1
[u
SPiX»)-
_[(" rd r'" ^ ;-]
e1
( (e).;c)
sp a
(cL (a»
The desired assertion follows immediately. (b) By Prop. 3.2.9 (b),
'.{1a1erperuw,r^",,;:o)'f ;i;:r11";:,{'1J%. '1x;"Pds=
1x;Dds
and hence
ecueq pu€ ( ^ . 1 Itp a(x)' n aQ)l '| = tp(axa)' p(t)I "ll) L f(t)at(exe)dt =
J f(t)e
at(x)e dt)
g0r
[J
uoJlJV uB Jo runrlceds sauuoJ oqJ. .€.€
3.3. The Connes Spectrum of an Action
103
104 104
3.. 3
The Connes Classification off T Type Factors y p e IIII II F actors T he C onncsC lassificationo
r(cr) = fl {sp ce: 0 * e e P(z(Mq)));
particular, if if Mo M a is a factor, factor, then then t(a) f( a) = sp d. ex. in particular, Proof.
We shall show show that if if 0 *'# e e€ We
P(M a ), then there exists exists a P(M'\,
»
e
e
e = a such that sp non-zero d in P(Z(M = sp ln fact, define d == Sp acre rp ao{e. In non-zero PQ@[c\) such a s i n c e it V{ueu*: € U(Arx)}. hand, € M q since i t is i s tthe a n d , ed e he Y(ueu*: u e one h O n tthe h e one U ( l / q D . On a p r o j e c t i o n s ; supremum of a family of projections in M on the other hand, a n d , it i t is is i n i f d ; t h e f a m i l y o n other h of supremum of (W)' , (by (bv clear that ueu* U(M a ) and so € (Arx) for all u in Lt(L{c1 so ed e udu* = ed for a Scholium 0.4.8); € P(Z(M P(Z(MG\). 0.4.8); thus e e
e
».
e e (by P ( e ) and r o v e sp In prove Prop. i t suffices r o p . 3.2.9 3 . 2 . 9 (e) and s u f f i c e s (by I n order o p S p aq e == sp s p aq {, it o r d e r tto (a)) to show Prop. 3.3.1 M(cx,E) n Me t, M(o,E) ItI, '#t for any closed closed set set E in f, Prop. show that, for 3.3.1 (a» (as e < (0). Since (OJ M(cx,E) n M; M; '#* {OJ. Me {f M; M; (as ~ f, the if l+{(o"E) Since i{" if and only if {0} if " o n l y if" a r t is "only part € M( M ( a,E) a , E ) tn1 Me; M u ; since since if" p i s clear; c o n v e r s e l y suppose s u p p o s e0 '#I x e c l e a r ; conversely y xe, therc there exist € U(Mo) U(M a ) such vev*) '#* 0; 0; then Y cxist u,v u,v e such that (ueu*)x( x = eVxV, Qteu*)x(vev*) a, it = eu*xve it u , v €€ M q = M " ; and a n d since s i n c e e, e , u, , and i t is i s clear t h a t y/ €e Me; a n d it c l e a r that e L f x v e '#1 00, E, s p o ( x ) fC E, follows L e m m a 3.2.8 3 . 2 . 8 that t h a t sPa(y) s p c r ( y )fC sPa(x) f r o m Prop. P r o p . 3.2.10 3 . 2 . 1 0and a n d Lemma f o l l o w s from (0), as whence 0O whence M(cx,E) M(",8) n Me Me '#t (0), as desired. desired.
e>,
v i a aa s e c t i o n via We m a i n result r e s u l t of o f this t h i s section h e a d towards t o w a r d s the t h e main W e shall s h a l l head sequence lemmas. s e q u e n c eof o f lemmas. I[. If If A) be Lemma of ft and let x €e M. e^I\) be an open open c2ver cover of Irmma 3_3.4. 3.3.4. Let (Y.: {Vr: j €,. h and and V,j /or sonte ji in 1\ x '#10, 0, there for some that spt spt /f fc V exists f in C such such that there exists a(f)x d(f)x '#t O. 0.
I
ll(C) Proof. elements of LI(G) combinations of elements Proof. Let 1Io0 be be the set set of linear combinations i n s i d e compact s u b s e t s of of whose c o m p a c t subsets w h o s e Fourier F o u r i e r transforms t r a n s f o r m s are a r e supported s u p p o r t e d inside i d e a l in i n LI(G); Zl(G); members is an ideal i s clear I t is c l e a r that t h a t 1/ n m e m b e r s of o f the t h e cover c o v e r {V.}. { 2 J, } . It 0 is an If 1 hence, i n LI(G). L r G ) . If i n LI(G) t l ( G ) is i s aa closed h e n c e , the o f I io in c l o s e d ideal - i d c a l in t h e closure c l o s u r e Ir of 7 €e ( a ) , in p i c k r, pick j €e 1\ such that 1 €e V.; then, using Prop. 3.2.4 (a), choose f in P r o p . A c h o o s e V r i t ! , e n , u s i n g 3 . 2 . 4 s u c h t h a t / / A J A fA, g V.; there C such f(1) = 1I and spt /f C Z,; thus, each 1 and ^spt thus, for each such that that f(i 7 in r, there h a n d , it i t is i s aa (;lct fgct exists o t h e r hand, i n I such 0 . O n the t h e other a n ff in s u c h that t h a t )(1'1. e x i s t s an l ( 7 \ { '# O. lf id^eal LL(G) and (cf. [Loo J, Section 37) that if I is a closed id"eal in L I(G) and if I .1 if is a closed 37) Section I [Loo], i n I. I. LI(G), f o r all a l l f in i n rt such t h a t if(1) t h e r e exists e x i s t s aa 1 s u c h that L L ( G ) , then t h e n there 0 ) == 0 for 7 in Conclusion: is dense in LI(G). Zl(G). Conclusion: 11o 0 is dense ( 3 . 2 . 3 ) (a) ( a ) and f a c t that w i t h Ex. t h e fact that E x . (3.2.3) a n d the T h i s conclusion, t o g e t h e r with c o n c l u s i o n , together . . This p r o o f of l e m m a .0 E Ila(g)1I t h e lemma. i n LI(G), r t ( G ) , completes t h e proof o f the f o r all a l l g in c o m p l e t e sthe l l g l Il , for l l . ' ( g ; ; ; ~< IIgll
On
a , which projections in M lrt[q, wltich are Lemma are non-zero projections are Lcmma 3.3.5. Il ee,l and and eez 3.3.5. If 2 are non-zero (as in Def. equivalent Def. 1.1.1), l.l.l), then then relative to I{ (as to M equivalentrelative e2 f(ael) ). r(..u2)' r1
( b y symmetry) r ( o " r),) , if is if V Z is Proof. i f 17 €e r(a I t suffices t o show s h o w that t h a t if P r o o f . It s u f f i c e s (by s y m m e t r y ) to p r o j e c t i o n in in M I ya' s any i s any n o n - z e r o projection i f f/ ,2 is a n y non-zero a n y neighborhood n e i g h b o r h o o d of o f 1, a n d if 7 , and such s u c h that t h a t ff 22 4~ ee,2t, hthen en
uollcv uE Jo rrrulceds seuuoJ aql
s0r 105
€
3.3. The Connes Spectrum of an Action
*'tw u (A"b)I^t 2
~
{O}.
'{d
'E
M(cx,V) () Me
qcns ,{lo,rglcadsar(: ut) 0 pu€ l. 3o spooqroqqElau dq til pue n t:-I
Let U and W be neighborhoods of '"1 and 0 (in r) respectively such that U+W"f V. Next, choose an open cover {Vj} of [ such that V j V. C W for all j. J By hypothesis, there is a partial isometry u in M such that u*u ;,= e 1 and uu* = ",e 2. Sin",ce 12u ~ 0, use Lemma 3.3.4 to choose a g in C such that spt g - spt g f Wand a(g)(f2u) ~ O. Let x = 0:(g)(f2u) and note that (by Prgp. 3.3.1 (c» x = 12xel' since 12u = 1 2 ,12u ·el' and that spo:(x) f spt g (by Prop. 3.2.9 (d» so that spo:(x) - sPo:.<x) f IV. Let 11 = V{rp O:t(x*): t E G}. It is clear that 0 ~ 11 E P(MO:); also, as O:t(x) = O:t(f2xe1) = 1 20:t (x)e1' note that 1 1 ~ el' Since U is a
'rxaN - tA n*qtqcnsr p (t) roaocuadouE osoorrc \t;"j41t:'(,
€ s r l ? a J u r s : t a > r I l e q l a l o u ' r a ( x ) r n z 1 = 1 r a x z 1 1 r n= ( r ) r n s e 'os1e l ( o 7 g ) 4 t r ! r e e l c s l lI '(D t t:(*x)tn dll=tI I0leql t"-l 'dor4 r(q) 3 ,lL i ({)oos - (x)pcts le ql os ((p) O'Z'e lds J (x)pds le ql = nzq aruls 'taxN! = x ((r) I'€'€ 'dbra fq) teqr atou puB 'r?.,{{.zl 'O puv 1nz/161n - rc la.I * @zl)(8)p pue /14j .s lds - 3 1ds leqr qcns '0 'zi Ia V a € esooqJ ol V't't etuue'I asn 1 nz1 ec"urg *nn puu ? 'slsaqlod,(q ,{g : n*n leql qcns ,{ ur n frloruosl leltrud u sl eroql " t / , c ' I = d i ( 1 r 1 e n b ec q l p u e r ; g o u o r l l u l J a p e q l -tt^ , (np)n ut u(luaruele orez-uou B slsrxe aJoql'(ra)r)1 r l, puu,( 3o pooqroqqErau
neighborhood of '"1 and '"1 E [(o:e 1), there exists a non-zero element y in M(cx,U) () Me' The definition of 1 1 and the equality y = 1 1y 1 1 1
'r/ leql rlcns g ur.zt Jo acualsrxe aql oJnsue
ensure the existence of t1' t 2 in G such that I *(x)alP tllx'1rrn= z
= O:t (x)y O:t (x)* ~ O. 1
'o
Z
2
pue 'zt^ ) zI zz! = z $qr rzelc sr l! 'l 1Ie rog (r)tn z1 = 1")to ,ruij
Since O:t(x) that
= 12
O:t(x) for all t, it is clear that z
= 1 2z
12
E
Me' and 2
lErll
- ({)Dds + 11x;Ib;Dos)j (z)Dcrs -111r;ztn;Dos sPo:.
+ spo:(y) - spo:.
1
2
-((x)Dds- (d)Dds+ (x)Dos;= =
(sPo:.<x) + spo:(y) - spo:.<xW
-(n + 'il3
f (W + Ur
f V, ' A j
'ocueqpue
and hence, Z E
M(cx,V) () Me'
" 7' n v U \ n ) z * o 2
o
o~
0
dBlu snonurluoc .{l8uorls € sl aJor{lJI (s1oqu{s ul .g : n) luelulrnba r a l n o o r e h l u o g J o d p u e p s u o r l c e l e q l , { r s l 1 e q se , i , - - [ f = g a s e c otll ol se^los.rnopal3rrlsar e^\ eJoq^\ -- (q) Z't'g uotlrurJoq ul sv
As in Definition 3.1.2 (b) -- where we restricted ourselves to the case G = IR -- we shall say that actions 0: and /3 of G on M are outer equivalent (0: ~ /3, in symbols) if there is a strongly continuous map t .. u t from G into U(M) such that ut+s = uto:t(u s) and /3t(x) = uto:t(x)ui, for all s,t in G and x in M.
= (r)?dpue(',r;tnrn = "rr,1,r#;rt":'r;\f Xll;tj'J""J,rlt9t3'
tvqt Llans(1'1'g uatoaql 'lc) (l)ztrt = g uo ttortcu up sts:rr.aitatg uatla @ L to lootd n hl lo 'W Lto g .d o asoddttg 9-g-€ suur-I lo sttotlcv ato g puD b atal1x ;
Lemma 3.3.6. Suppose 0: ~ /3, where 0: {)..nd /3 are actions 01 G on M. Then there exists an action '"1 01 G on M = M 0 M 2([) (cl. prool 01 Theorem 3.1.1) such that rra
6r (x)tn = lIIa 6r r)tl, putt
and
106 1 06
The Connes Classification Type Factors y p e IIII II F actors he C 33.. T o n n e sC l a s s i f i c a t i o n ooff T
7r@oe2)=Br(x)6e* for all t in G and and x in M. M. for
Proof. If {ar}: (crt}: {Bt},simply define
',[;;:;;;]l l;;;:,, ;1.;l''l
verify that does the job. that'l1 does and verify
I0
Theorem 3-3-7. 3.3.7. Let q 0: be be an actiort action of of G on M. Thcorcm ((a) a) ((b) b) ((c) c)
If(( 0:) c x+) +sps p0:c=t =sps p0:;o g f(o:) is a closed closed subgroup subgroup of of t; f; I(cr) If 13 another action action of of G on M, wlticlt which is outer equivalent equivalent to q, ex, If B is another then f( 0:) = f(I3). r(B). T(a) then
Proof. (a) P(MO:), then e is an identity Me and hence (a) If identity for for M" and hence If 0 ~I e Ee P(Mo), (c)), so sp e(e) = {OJ so that 3.2.8 (c», spo"(e) {0} (cf. Lemma 3.2.8 0:
o e(e) f: cru; sp o:e; 0 Ee sp spo"(e) G sp 0:
so f(cx)+ sp d ~ ct Suppose, Suppose, conversely, conversely, I sp sp ex. I(o) and consequently sp 0: consequently f(o:) so 0 Ee [(0:) M(q"lO ~I {OJ for verify that 1 E f(o:) and 1 sp 0:; we need to verify that M(ex,V) E oq need f(cr) € e sp that 7L and 7,2 {0} for 1 (7,1 + 1'yr1. Z, such any neighborhood of (1 ). Pick neighborhoods Vi of 1 such neighborhoods Z-of ndighborhood V 7, 2 i non-zero element element oc there that VI + V 2 f: there exists exists aa non·zero c V. v. Since Since 1 sp ex, tnat ffi 7,2 Ee sp proof ( a s in i n the t h e proof x ,2 in V l r p O:t(x;): n o t i c e (as c x . ( x f ) :t Ee G} G | and a n d notice P u t ee == V{rp i n M(ex,V A 1 a , V2,).7 . Put t ( c x ) ,there t h e r e exists e x i s t s aa of P i U a y Since S i n c e 1/ ,1 Ee f(o:), L e - - a 3.3.5) i . l . S ) that t t r a t 0 ~* ee Ee - P(MO:). o f Lemma f r o m the definition non-zero n Me. I t follows f o l l o w s from t h e definition i n M(ex,V M ( a , V1r) ) () M o It n o n - z e r o element e l e m e n t xl x , in that i n G such s u c h that of e x i s t s t in e x11, , that t h a t there t h e r e exists f a c t that t l i a t 0 ~* Xl x r == ex a n d the t h e fact o f ee and (as = e M(q"V) O:t(x )x ~ 0; set X = O:t(X )X and notice that X E M(ex,V) (as notice x * ar(xr)x1and er(xr)x, x 0; set 2 1 2 1 spo(xr))spo(xr))- == ((spo(xr; sP o:(O:t(x 2» + SPo:(x1»spo:(x) SP o:(x 2) + spo:(x1)r spa(x) fc ((spo(crr(xr))
( V2, ++ VIr V ) - ft nV). fC (V . ( a ) that t ( c r e )+ + (b) f r o m (a) t h a t f(o:e) ( b ) Fix i n p(ft,fX) a n d conclude c o n c l u d e from n o n - z e r o ee in F i x aa non-zero P ( M ' \ and r(ct) f(cr) = sp o:e = sp o:e. Since clearly f(o:) f: f(o:e) f: sp o:e, infer that f(o:) + f(o:) cr", infer r(cr) f("") sp de. cre Since sp sp ! ! I(cx)fc f(o:). f(
It follows from Corollary 3.3.9 (b) that factors of type Ill), are of type Ill, for 0 :I; ), :I; 1. Examples of factors of all these types will be exhibited in §4.3. The existence of factors of type IlI o shows
'E'tS s^\oqs oIII edft Jo srol3€J Jo ocualsrxocql p a l r q rqxo eq u l 'I 'III adfl 1 1 r ms c d f , 1e s o q l I I B J o s r o t J B J g o s a l c l r u t x S > \ > 0 roJ J o a r c \ 1 1 1 e d , { 1J o s r o l J B J l c r l l ( q ) 0 ' g ' g r ( r 1 1 1 o r o 3r u o r J s ^ r o l l o J l I
' ( - ' o )= 0t): JI'Iut (r)
(0) lII o' if M is of type 1II and reM) = {l}; (),) 1II)" if reM) = {),n: n E iZ} (for), in (0,1»; (1) lIlt' if reM) = (0,"'). 0
D
l((t'o) ut \ roJ) {z r u :,1} = (tDs JI '\III : ( r ) = O t ) _ rp u e I I I a d f l g o s t 7 g J I ' 0 I I I
(r) (O)
.0I.€.€ uolllulJcq
Definition 3.3.10. A factor M is said to be of type odfl 3o aq ol prus sr 111rolceJ V
'{t) = (ro)1 = .3c) pue prt = hr os :n O At)t ((c) g'Z.e eurula-r ul r pu€ U, ul , 11f ro3 x = (x)lo ueqt 'N uo er€rl sug e-sr r JI (q) 'seuocrlc^c ar{l 3r€ (1ry clnorE crqdroruosr erll Jo ',(lluanbasuoc pue) 6 3o sdnorEqns posolc 'Joord IcrlrJl-uou fluo aql lerll loeJ aql Jo eJuenbesuoce sr srql (e)
Proof. (a) This is a consequence of the fact that the only non-trivial closed subgroups of IR (and consequently, of the isomorphic group ~) are the cyclic ones. (b) If T is a fns trace on M, then a[(x) = x for all t in IR and x in M; so M = M T and (cL Lemma 3.2.8 (c» reM) = r(aT ) = {l}. 0 '(t) = (rV): uatp'a7rutlnuas sr trI It Q)
(b) If M is semi/inite, then reM) = {l}.
'(-'0) = Qtr)-l (t) r u:,1) = @)S (r) l{l) = Qtt): (O)
E
iZ} for some), in (0,1); l ( 1 ' g )t t t \ a u o s t o ! ( Z
(0) reM) = {l}; (),) reM) = {),n: n (1) reM) = (0,"').
:s1as3utuo71o! aLfilo auo [1uo ptto auo sr Q;g)1 (e) '6.9'9 [ru11oro3
Corollary 3.3.9. (a) reM) is one and only one of the following sets: '7,9uo lqErom su3 f ue s1 Q aroqrrr '(ao)l = U,tt)l D etqe?le uu€unaN uo,r frerlrqJe ue roJ 'g'g'g'uo1t1u13cq
Definition 3.3.8. For an arbitrary von Neumann algebra M, define reM) = r( a 4J ), where 4J is any fns weight on M. 0 eurJap '4
'N uo JEInpou,, eql $ pue Q slqEre^\ suJ qll^\ palBrcossB,rs./AolJ er€ do pue do oraq^\'(6o)1= (Oo)r tcqt (c) f'g'S pue I'l't sueroeql r u o r J s i r , r o 1 1 ot r3' e r q o 8 1 e u u e u n e l q u o l i ( r e . r l r q r B u B s r l t l J I ' t L =
We are finally in a posItIOn to harvest the consequences of the elaborate machinery we have developed in the last two sections. Let G = IR. We shall identify the dual group r with the multiplicative grol;lp ~t of positive real numbers, the duality being given by
11
.(d)J = (n)1 ecuoq
hence r( ex) = r(I3).
(M,G,I3) = (M10e ' G, )' 22
', 'zzt@r^) (B'c'n) i(,r. = ""e6I 1 ".
10e
$
_
22
);
puB and
11
'g 'rr"@r (r, ^) = (o'c'n) '-a@IL
(M,G,a) = (M 10e ' G, )' _
".
. 10e
11
)
On the other hand, it is clear that there are natural isomorphisms of dynamical systems:
:suels,{sleclrutufp spueqroqlo aql uO IBrnl€uor€ oreql l€r{l rBalcsl ll Jo sruslgdrouosr = (,, (,, " " a @ I ,()J . ' a 6 I L)s r()'
10e
11) = r()'
10e
22).
l s q l s p n l J u o c' S ' E ' €
3.3.5, conclude tha t
uorlov ue Jo unrlcrds souuoJer{I '€'E 3.3. The Connes Spectrum of an Action
107
l0l
I I FFactors actors Connes Classification y p e IIII f TType he C l a s s i f i c a t i o n oof o n n e sC 33.. TThe
1108 08
while hile ( l u t = ({l}, I ), w h e ccondition o n d i t i o n lr(M) tthat h a t tthe means o m e a n s ssufficient. ufficient. s bby y nno ssemifiniteness, e m i f i n i t e n e s s ,iis
bbeing eing
nnecessary e c e s s a r y ffor or
3.4. Altcrnativc Alternative l)cscriptions Descriptions of of r(liI) r(M) 3.4e sshall e r i v e ssome ome Ass tthe we h a l l dderive nnounces, w h i s ssection e c t i o n aannounces, A h e ttitle i t l e ooff tthis equivalent dcscriptions descriptions of of r(fut), r(M), which which will will be be useful when itit comes comes omputation. tto o eexplicit x p l i c i t ccomputation.
Lemma 3.4.1. 3.4.1. Let Let qex be be an aclion action of of G on a lactor factor lt[ M of of type llI. III. Then, Then, Lcnna rr(( ex) c r =) =()n{sp { s p13 B: 'exo ~i 813}. }.
Proof. If If cr ex 3~ B, 13, then r(cr) r( ex) = r(B) r(l3) g f sp B 13 and so so r(cr) r( ex) cf n(sp (){sp 8: 13: cx ex j~ B). 13}. Proof. reverse inclusion will will be proved once once we show t-hat that for for each each The reverse non-zero ee in in P P (Mc\, (Mex), there is an action B 13 such such that ct ex j~ B 13 and sp sp a" exe non-zero = sspP 13. B. wo II, a n y ttwo So, € P(M off ttype any y p e IIII, P ( M ex q);) ; ssince i n c e M iiss o u p p o s e 0 I'I- e e S o , ssuppose a r t i c u l a r , tthere here n p non-zero projections M are equivalent, and particular, r o j e c t i o n s iin n d iin n M quivalent, a are e n on-zero p = e = |I and Since e e uu* = a n d uu* exists e.. Since € u*u = i n M such s u c h that t h a t u*u i s o m e t r y u in a n isometry e x i s t s an ex = = each t in G; G; for each ctr(u)crr(u)*= e for M = It and ext(u)ext(u)* crr(u)*cx1(a) it follows follows that that ext(u)*ext(u) L[d,, it unitary c o n t i n u o u s unitary so s t r o n g l y continuous u * d r ( u ) defines d e f i n e s a strongly e q u a t i o n vtt = u*ext(u) s o the t h e equation path in M. for any s,t s,t in G, C, M. Notice that for u* a"(u)) = u* e o.r*"(tt)= Vr+, vrcrr(ur)= u*crt(u)crt( = ( b ) , the ( 3 . 1 . 3 ) (b), e q u a t i o n I3Btr(x) (x) = (since t h e equation E x . (3.1.3) ( s i n c e u*e h e n c e , by b y Ex. u * ) : hence, u * e = u*); is outer outer equivalent to M, which is vtext(x)v: on M, action 13B of G on an action defines an vrcrr(x)rf defines ex.
be operator u may be the operator Observe u*a,(ux u*)u; u*)u; the Observe now that I3B.(x) t(x) == u*ext(ux an w h i c h sets s e t s up u p an l f to r a n e, regarded f i o m Jt t o ran e , which b p e r a t o r from u n i t a r y operator r e g a r d e d as a s aa unitary e) --(M",G,cr") (lr[,G,B) and (Me,G,ex isomorphism I3) and system (M,G, the dynamical system between the isomorphism between = v o n n l g e b ra N e u m a n n i s a explicitly, if l1(x) = uxu*, then 11: M'" Me is a von Neumann algebra M ' M . n uxu*, then explicitly, if z(x) i n G. G . Consequently, Consequcntly, f o r all a l l t in isomorphism < r !0o 11z == 11t t 0o I3Bt t for t h a t ex: s u c h that i s o m o r p h i s m such e proof is sp 0I is complete. complete. the proof sp excx"and and the sp 13B = sp cocycle t h e unitary u n i t a r y cocycle The t o the c o n v e r s e to i s aa sort o f converse l e m m a is s o r t of T h e next n e x t lemma p r o o f are n o t strictly strictly a r e not i n the t h e proof theorem. i n v o l v e d in t e c h n i q u e sinvolved t h e techniques S i n c e the t h e o r e m . Since result t h e result s t a t e the w e shall s i m p l y state in s h a l l simply h e r e , we w i t h those t r e a t e d here, t h o s e treated k e e p i n g with i n keeping p r o o f is r e s u l t is o f t h e without proof; the reader desirous of seeing a proof of the result p r o o f ; a o f s e e i n g r e a d e r d e s i r o u s without the directed 1]. l ] . t o [Kal d i r e c t e d to [Kal actio,l Il 13B is is any anY action M. If Lemma a fns weight weight on on aa factor Let ¢Q be be^a^fns 3-42 Let Lcmmr 3.4~ factor M. M weight l/J{t on on M fns weight of that a¢ unique fns exists aa unique ov ~J 13, there exists B, there l+[ such such,that on M ol IRlRon = such lR n = for all t in IR . 0 . ol att t in that I3B, such that /or t
at
Lemma l{ is therr If M is aa factor, Lcmma 3.4.3. 3.4.3. If factor, then
is a convex, norm-bounded set. The set K is a-strongly* closed since multiplication is jointly strongly continuous on bounded sets and since cP, being normal, is a-weakly lower semicontinuous (cf. Prop. 2.4.9). It is a fact that a convex set is a-strongly* closed if and only if it is a-weakly closed. (The reader is invited to fill in the details: one must show, using an argument similar to the one developed in Ex. (3.2.11), that any a-strongly* continuous linear functional on :f(Je) is a-weakly continuous. With the notation as in Ex. (3.2.11), one must consider
rsplsuoJlsnu auo '( 1I'Z'E) 'x:I ur s€ uorlBlou orll r{ll/'r;snonurluoJ ,(1>luarrr-o s1 Oh uo leuortounJr€aull snonurluoc*{1Euorls-oltue lcql '(lt.Z'g) .xg u1 pedolclep auo er{l ol JelrrursluorunEreuu Eursn'moqs lsnu euo :slrBlapoql ul IIIJ ol pall^ul sr rapearaq1) 'pasolcf14eam-osl ll JI ,(1uopue Jr pasolc*f1Euo-r1s-o sl las xe^uoc B leql IJEJ e sl lI .G.V'Z 'dor4 'gc) snonuJluocluos Je^\ol f14eam-osr 'lzurrou Euraq 'Q ocurs pus sles p0punoq uo snonulluoc,(1Euor1s ,{ttulol sr uo1lec11dr11nu 'xaluoc € sr ccurs pasolJ*,(1Euor1s-o sl X las aql 'las pepunoq-r.uJou
'll"ll> > ll(z)0a;; {ll(r)0r,11 ll'll '0N t z\ = y K = {z
E
NeP: Ilzll '''xii, IlneP(z)II , IlneP(x)lb
J
If eP is infinite, assume (with no loss of generality) that f that f(t)dt = 1; notice that the set
les eql l8ql esrlou : r = t p ( t ) ! f t n q t p u e 0 1 I W , q t ( i ( l r l e r a u a EJ o s s o l o u q l 1 , n ) c r u n s s e'e1rurgu1 si 0 JI ~
0 and
'0ux,4v= 0u'Qv"r0,v = Ou1r)jo since
OJUIS
'Ou"(r{v){= tp tr!)$o(t)l =Qu$(h'o) = (x(!)ro)Qu t = 0N
'uoql acurs) I E t ^ r J l s r u o r l r o s s €l s J r J o q l ' o l l u l J
allq,\{ 'Utl s l O e s B Ju I
In case M), while
eP is finite, the first assertion is trivial (since then, NeP
=
'(x10u1,0-y14 =gg)ro)Qa pueOry t rU)Qo= /6Ory ) x :uoruessy ',{14eaalpo}orclrolur Euraq lerEalul eql
the integral being interpreted weakly.
f(0,00) f(t) f).i~~ dt
tp ?F(t)I
t''o'1= tgoly '"
J(f).-}) =
IBI{I pue '0g uo rolurado papunoq peulJep . , { 1 1 n . ; S u r u e aeu s l . ( r ? v ) / ( g t e p a u r g c p l o u s r / q S n o q t ) l e r l l s i ' r o l l o J 'elqrlra^ur sr 9y octrs llp,,_t(l)"/ ll | = (r)/ l(q (-'0) uo peurJep uollounJ snonurluoc pepunoq aqt s1'/ u"qi '(U/)rz r ./ Jt 'Joord
Proof. defined follows defined
If f E L 1(1R), then is the bounded continuous function on (0,00) by )().) = f(t).-itdt; sil).ce f).cP is invertible, it that (though f is not defined at 0) f(f).'4/) is a meaningfully bounded operator on JeeP' and that
f
J
IRt.)
If eP is a fns weight on M, then sp a cP = sp f).eP () (0,00). (The symbol sp f).cP denotes, of course, the spectrum of the positive self-adjoint operator f).eP; also, as at the end of Section 4.3, we are identifying the dual group of IR with
(fu ,ttt^ g to drrotS pnp aLfi Sutttvuapl a r o a t u . ' € ' V L t o l l r . a sl o p u a a t i l t D s o ' o s l o ' . Q g t o t o t a d o r u 1 o { p o - l p s art|tsod ?qt Io untlcads aqt 'astnoz lo 'sa\ouap 0y ds pqw,$ atla) '(-'0) u 9y ds = ,o ds uatp'141 tto tt13pu suJ , sl O /7 'r't€ uuue-I
Lemma 3_4.4.
'ErurualEur,rro1lo3 cls Eururuexa Jo dals lxau lernleu grll
The natural next step of examining sp a cP is taken up in the following lemma.
eql uI dn ue4e1 s1
,o
'Z' n't pue I't'€ s€ruruo'I J p u e I ' I ' g r u a r o o r l J g o a c u a n b e s u o JB s r u o l l r o s s p e q l ' I I I e d , { l g 9 s r 7 . 9 'n uo e}eJl s suJ sr r JI {I} = ,o ds lsrlt lJeJ snor^qo eql puB (q) JI 'Joord 'allulJlrues sr 6'9'9 f:e11oroJ ruorJ s^\olloJ uo1lr5ssuaql /.t/ JI
Proof. If M is semifinite, the assertion follows from Corollary 3.3.9 (b) and the obvious fact that sp aT = {l} if T is a fns trace on M. If M is of type III, the assertion is a consequence of Theorem 3.1.1 and Lemmas 3.4.1 and 3.4.2. 0
'{1t1tro 1t18pusuJ r, :ro ds} v = (n)l 0
r(M) = () {sp a cP:
cP
a fns weight on M}.
(n)l p suolldycseq o^rl€urollv 't'E 3.4. Alternative Descriptions of r(M)
109
601
l110 l0
3. The The Connes Connes Classification Classification of of Type Type III III Factors Factors 3. '"
= [le =
co $
n=-
xtn= fr,, len' with with lfr, len == lfle for for n > 0, and len = 1l le
Hilbert space) space) for for n < 0.) 0.) (the conjugate Hilbert closed convex set set which which contains of(x) ot(x) for for Thus K is a o-weakly closed all l;t; since since ff )~ 0 and ) lQ)at f(t)dt = = l,1, conclude that that all
f
= !fIf(t) vy = @ o0t(x)dt ! { ; o aE tK;e x :
observe that that for for arbitrary arbitrary z in in observe
N¢, NO,
<71¢(y),71¢(Z» = = iQ*y) ¢(z*y)
= = If f(t)
thus establishing the validity validity of the the assertion. assertion. the thus establishing Hence, H e n c eif, i ff f Ee L 1(1R), r(R),
^Jo ** o¢(f)x vx in N¢ oO(flx == 0o Vx <+J(~t)71¢(X) vx in in N N¢o ** = 0o Vx l1a-4|ln6(x) <+J(~t) ** i1a-l)== 0o €* J (so ~t a;rr()n ~ mp vanisheson on (sp ** / vanishes (9 J (sp ~¢ AO()n 1R:p, lRl), vanisheson on (sp ** f vanishes
o¢(f) oQ(n ==o0 I
n : r t . Set Set the ~d> f r o m the e q u a t i o n J¢ JOA Q JJ¢ 6 == ~~1. f o l l o w i n g from t h e equation t h e last l a s t equivalence e q u i v a l e n ^ c following e 1 = = = (f n , R l ; s tatement I = E L (1R): o¢(f) = O} and E = sp ~¢ () ~; the above statement t h b , a b o v e a v ( f ) 0 } a n d S P e I r ( l R ) : {f AO translates E , as o e '= = Ii P = I(E)l I ( E ) - = E, a s desired. desired. I ( E ) , and h e n c e ,sp s p o¢ i n t o I/ = I(E), a n d hence, t r a n s l a t e sinto
o
Theorem Thcoren 3.4.5. If M is is a factor, then 3-45. If factor, then (n(tp ~¢: n (Il{sp aE: 4>Q aa fns fns weight luI)). reM) r(ln, == ~ weight on on M». RI. () of Lemmas Lemmas 3.4.3 3.4.3 and and 3.4.4. 3.44. Proof. immediate consequence Proof. This This is is an an immediate consequenceof
o
Following notation i n t r o d u c e the l e t us u s introduce t h e notation F o l l o w i n g Connes, C o n n e s ,let weight on lul). SCM) n{sp ~f A0 ¢Q aa fns fns weight on M). S(M) == Il{sp if M D I is i s aa f u r t h e r , if Then i s o m o r p h i s m - i n v a r i a n t ;further, T h e n SCM) i s clearly c l e a r l y an a n isomorphism-invariant; S ( I 4 ) is i s aa factor, t h a t SCM) S ( 1 4 is a n d 3.4.5, 3 . 4 . 5 , that i t follows, f o l l o w s , from f r o m Theorems T h e o r e m s 3.3.7 3 . 3 . 7 and f a c t o r , it
'+'"nlQ- "o ttl'eN)
Let ¢ be a fns weight on a factor M. ¢e = ifJIMe .+.
If 0
~
e
) a I 0 /I
'yr1 lo1co{ o uo ltl?tau suJ o aq Q ta1
P (M¢), let
d.
Proposition 3.4.7.
E
2-g-g uogrl$dor4
'7,1uo lq8ra/rr suJ paxrJ suo fue Jo srural ur sl ll leql (g't'€ rueroorlJ ,(q ualrE leql rano) a3uluc^pe orll seq lsql Utt)l lo uogldlrcsep reqloue rllli( uollcas slql epnlcuoc IIEqs a/,1 1 - ' 6 1r o ^ ( Z r u : , , \ ) n ( 0 ) ' ( I ' 0 ) s l O t l ) ^ Ss e E u r p r o c c u tIII ro (t > r > 0) \ttI '01f1 ad,(1lo rl lt, rolceJ e 'g'v'€, uorllsodo:d g'p'E lueroor4J Jo ecuanbasuoc B sE ,leql osle aclloN
Since ~¢ and ll4>1 are anti-unitarily equivalent, the above result shows that if M is a type III factor, then ll¢ is necessarily unbounded, for every fns weight ¢ on M. Notice also that, as a consequence of Theorem 3.4.5 and Proposition 3.4.6, a factor M is of type 111 0 , III). (0 < ). < 1) or III l according as SCM) is {O,I}, {O} u {).n: n E 1l} or [0,0». We shall conclude this section with another description of reM) that has the advantage (over that given by Theorem 3.4.5) that it is in terms of anyone fixed fns weight on M. pue
,{lrrrssacau sr 0v uor{r,rojfinlo rlttt}iT';'rt"#
::';:ii'::X1: ore ,9v puu 9y eculg llnsar e^oqe aql 'luslcnrnbai(1r-rellun-lluB 'alrurJlruas q n'g'l'E rueJoeqldq'ecuaq n pue':auur sl 60 iholJoql'spto,nJeqlo.ulU ul I pue g41Qyur r IIB JoJ lErll qrns (hl)vUur.{'n} dnort frelrun raleuered-auo |nx'n = H|_axH!'Ja snonulluoc ,{ltuorts E lsrxe lsntu araql 'suolllpuoc esaql flesgcord rapun leql sel?ls-- serqe8leuuerunoNuol suorle^rJep tururacuoc Jo sIJBJeruosuo sarlar ;oord asoq,n-- ([leS] 'gc) re>1eg ol onp llnsor V
A result due to Sakai (cf. [Sak]) -- whose proof relies on some facts concerning derivations of von Neumann algebras -- states that under precisely these conditions, there must exist a stro~ftly .continuous one-parameter unitary group {u t } in 7l¢(M) such that e1t xe- ltH = utxu: for all x in 7l¢(M) and t in IR; in other words, the flow a¢ is inner, and hence, by Theorem 3.1.6, Mis semifinite. 0
@)Qu = 11t.-e(14)Qu"r,a uJ ut r IIe roJ tuql qonsg;1u^oJoleradopapunoq A ^ " * r L P X S o l : U ' o S ' ( L ' 0 ) u r r a l u o sr o 3 ( r _ r ' r )5 9 y d s l c q l a p n l o u o r 'v frYvvf = Yv aJuls v9 ds / 0 teql qcnsy'{ uo Q lqEramsuJ B slsrxe araql l€ql sl (lll) uortdunsst oql '(l{)S ;o uoltyul3ap,{g :(l) e (lg) 'IIO:(III)€(II) eitH71¢(M)e-itH = 7l¢(M)
for all t in IR .
(ii) 9 (iii): 0 ~ 1. (iii) 9 (i): By definition of S(M), the assumption (iii) is that there exists a fns weight ¢ on M such that 0 t sp ll~ Since ll¢ = J~~~lJ¢, conclude that sp ll¢ f; (E,C 1) for some E in (0, I). So, H = log b.¢ is a bounded operator on }f¢ such that t
rfi1 ry '{t} f,v = = (ru)S cls os pue ueqt 5 'W uo ac€rl suJ € sl 1' gr 'i(1es:e,ruo3'(n)S > I l€rtl g't.€ r,ueroaql ruorJ s^\olloJ ll '(t'€'€ 'qI 'Jc) (/t/)l r I ecurg :(rr) 6 (r) .Joord
Proof. (i) 9 (ii): Since I E reM) (cf. Th. 3.3.7), it follows from Theorem 3.4.5 that 1 E S(M). Conversely, if T is a fns trace on M, then llT = l}f and so SCM) f; sp ~T = {l}. 'U/'t)s
(ii) SCM) = {I}, (iii) 0 t SCM). (lll)
/ o '{r) = Un)s (l)
(i)
M is semi/inite;
ia1luttnaas s1y,t1 (l)
equivalent:
conditions
on
a
factor
to7ct{
following
Mare W
D tto suo!1!puo? Euruol1ot
Jualottnba '9.V.€, uolllsodor4
The
atv
Proposition 3.4.6.
aqJ
'elluJJlulas sl JrtluoqiY\,(losrcard acuereJJlp ou sr aJer{l leql sr uolllsodord Eur,nollog or{l Jo lueluoc aql '0 reqrunu aql l(q lsour l€ raJJIp snql uec (f,V)Spue (79)1 stos aq1
The scts reM) and SCM) can thus differ at most by the number O. The content of the following proposition is that there is no difference precisely when M is semifinite. 'rolcuJ B sl ttl Jl
.IUl
reM) = S(Jor1) ()~,
if M is a factor.
u (tt)s = Uu)J
:scruoceqg't'€ r,ueroeql '0{)S Jo sural uI 'n uo 0 t q 8 l a , v ' s u 3 , ( u e r o J C Z V ) ^ S .rual q u n u e r r l l l s o d { u e { q u o l l e c r l d r t l n r u ropun luerJelur lJel sl 9v ds leql r.Icns (-'Ol Jo losqns pasolc
closed subset of [0,0» such that sp ll¢ is left invariant under multiplication by any positive number in S(M) for any fns weight ¢ on M. In terms of S(M), Theorem 3.4.5 becomes: (.rt)r ;o suoJldJrcsaq e^lleurotlv
Alternative Descriptions of r(lI..f)
III
III
'v'E 3.4.
112 rt2 (a) (b) ibi
3.. 3
The Connes Classification off T Type Factors y p e IIII II F actors T he C o n n e sC lassificationo
4>e is a ffns Me; ns weight on M"i Q" r(M) = = Ri n dtp (){sp 64> ;6 0 *~ e e Lq": ;in
tRt ()
e
E P(z@qD: P(Z(M4>))}; in in particutar, particular, if if MQ M4> is is e
factor, then then r(nfi r(M) = = nl tRt n() sP sp AO 6¢a factor,
4>e is a faithful faithful and normal weight on M.. Me' Proof. (a) It 11 is clear that 0" Dpi so Since E Mv, M4>, it from Theorem 2.5.14r 2.5.14' that eD6e e'1)4>e cf'1)4>; so it follows from Since e e D6"2 '1)4> :2 eD6e. e'1)~. e
The semifiniteness semifiniteness of 0 4> ensures ensures the the existence existence of a a monotone monotone net net {x) The {x;} in D6 '1)4> such such that xi /' (2,4.8»; then {exl} monotone net .t' 1 I (cf. Ex. (2.4.8)); {ex,e) is a monotone in '1)4>i " which weakly e,, tthe off M Me; " i cconsequently e a k l y tto dentity o onsequently w h i c h cconverges o e h e iidentity in D o n v e r g e sw e
4>e-. iiss ssemifinite. emifinite. 0 ((b) b ) IIn off Prop. and 3,4,4 w o u l d ssuffice Lemma 3 i t would u f f i c e to to viey o P . r o p . 3.3.3 . 4 . 4 , it n view 3.3.3 a n d Lemma g = t O " t O a4>e for non-zero e in P(Z(M~». Since N 4> f N 4>', i n S i n c e o 9 " f o r n o n z e r o P ( Z ( M A D . h a t (a4»e sshow h o w tthat 1o$" e
w i t h respect it K M S condition respect c o n d i t i o n with i t is i s trivial t h a t 4> s a t i s f i e s the t h e KMS t r i v i a l to t o ^verify v e r i f y that 0 e satisfies to 0n ( o P ) " ,and follows. f l o w (a4»e, a n d the t h e c~ncl c d n c lusion u s i o n follows. t o the t h e flow
Corollary If M is a factor, factor, then then Corollary 3.4.8. 3-4-E. If S(M) : 0 ~* ee Ee n{sp 64> aO": S(tt4) == (){sp
P(Z(M4>))}, PQ@\)),
e
3.4.7. for any fns weight M, with 4>e as in Proposition Proposition 3,4.7. weight 4> on M,with 0 on 0eas for (i): M is of type III. Proof. Case III. Case (i): p(z(aQ)), since In this case, since lf 0 ~t ee Ee P(Z(M~), Prop. 3,4.6. 3.4.6. If case, 0 E€ S(M), S(M), by Prop. l+[ such M is of type III, isometry u in M such that u*u == 1| III, there there exists exists an isometry - uxu* and uu* algebra map x ... e: the map ttxtr+ is aa von Neumann algebra uu+ =- e; III; isomorphism and hence M"and hence Me M" is is also also aa factor of type III; isomorphism of M onto Me ( a ) , 0 Ee sp 4 6 "•. so, P r o p . 3,4.7 s p 64> P r o p . 3,4.6 a n d Prop. 3 . 4 . 7(a), s o , by b y Prop. 3 . 4 . 6and e
Case Case (ii): M is semifinite. non-zero must exhibit In this ca$e, Prop. 3,4.6. We must exhibit aa non-zero cage, 0 t| S(M), S(luI),by Prop. 3.4.6. We A g " is is ( Z ( M \ ) such A O'" ,or, t h a t 64> e q u i v a l e n t l y , such s u c h that e in in P t h a t 0 tI sp s p 64> o t , equivalently, s u c h that ? (Z(M
»
e
e
2.6.3, there there bounded. M. So, So, by Theorem 2.6.3, be aa fns trace trace on ot M. bounded. Let Tr be p o s itit ive v e self-adjoint exists ble s u c h that t h a t 4>0 o p e r ator t o r H n M such i n vverti ertib l e posi s e l f - a d j o i n t opera e x i s t s an a n in - - by k n o w -W e know by y r 1)(H) ( H ) ~1 0O.. t h a t ee == 1l 6 == T(H·). (E,,liE We r ( H . ) . PPick i c k Ee >> 0 such s u c h that
it , for x in M and thus x Theorem 11it*11-it', and tI in IR; of{r) == HitxHTheqrem 3.1.10 ttrut at(x) 3.1.10-- that ft thus E ; in in w i t h lE(H) f o r all B o r e l sets s e t s E; E l B ( H ) for a l l Borel i f and i f x ^ commutes i o m m u t e s with e M4> u Q if a n d only o n l y if -'e p a r t i c u l a r , ee Ee P(Z(M4»). particular, that e e ~( H l / ee ~( Cle e that I t follows f o l l o w s from f r o m Ee P ( Z ( M v ) ) . It
! e Me,+) er(y) < 0(y) < e-rr(y); so, SO'
('g'p'g [ru11oroJ pu€ (q) f'f'g 'dor4 3o s3oord aql al€llrul :tulH)
(Hint: Imitate the proofs of Prop. 3.4.7 (b) and Corollary 3.4.8.) e
'tQfud ) a * o'"Oyorp = Ov)s (q) S(M) = n(sp
t.~: 0 'I- e
E
e
a,
(b)
r(M) = ~ () n(sp t.~
:0
P(M~)}.
P (M~)};
:(Qw)d ) a* 0 :0v ds)uulUl= Czvl: (e) 'I- e
E
'hl totceJ fue rog lBlll /t\oqs
(a)
(3.4.9) For any factor M, show that
(A'V'e)
Exercises
sesrJJexfl
11e.¥2e II,
'perrsap s€ t > r-r t il#ott l€rll os c1<
as desired.
00,
0
E
so that
'zll(r)"ou;1r-r = (x*x)Qz-,
,
E-2~(X*X)
(*rxP = = «XX*) e
= all(*')"0u;; =
1171~ (x*) 1 2
"9 "0 = zl1*;o u:frv"oril tt:fivll* N u N' x zl1co'o X
E
e
N~ () N~
e
ee
eee
* 11t.¥271~(x)112 = IIJ~t.¥271~(x)II2
' 3 C u e qp u B
and hence,
'(r*xlPr-r
* ~(XX*)'
E-1T(XX*)
=
E-1T(X*X)
(x*r)lr_ r
X E Me
(*r(x)lr-r ) (*xx)g +"n
>x
(n)l p suolldlrcsoqo^ll€urallv 'r't
3.4. Alternative Descriptions of r(M)
113
€II
Chapter Cha p t e r 44 CROSSED-PRODUCTS CROSSED-PRODUCTS
nd urray a The was employed byy M Murray and a s ffirst irst e mployed b onstruction w T h e ccrossed-product r o s s e d - p r o d u c tcconstruction II. n d IIII. Neumann exhibit examples off ffactors off ttypes and y p e s II,, IIII a actors o xamples o xhibit e o e vvon on N e u m a n n tto The set-up set-up is is as as follows: one starts starts with with a dynamical system system (M,G,q.) (M,G,o:) The -- with with G not neceSsarily necejsarily abelian --- and constructs constructs an associated associated von larger Hilbert oo a (usually M G) on algebra denoted @o: G) Hilbert Neumw-n by denoted M algebra Neumgpn space Xf. K. space i s a countable countable w h e n G is Section t h i s construction c o n s t r u c t i o n when 4 . 1 discusses d i s c u s s e s this S e c t i o n 4.1 crol;sed features discrete group, and develops some of the features of the cr~sed group, some develops discrete f o r M to to c o n d i t i o n for product; a n d sufficient s u f f i c i e n t condition p r o d u c t ; for n e c e s s a r yand f o r instance, i n s t a n c e , a necessary a. be the action 0:. terms of the is given in terms be a factor, is trace use a fns trace In Section is sWlifinite sgmifinite and use that M is 4.2, we assume assume that Section 4.2, whose M, associated on M to construct a fns weight 4J on M, whose associated modular a construct 0 on compute is used used to compute operator description is conlputed; this description is explicitly explicitly comjluted; operator is the is aa factor. factor. M is .S(14),when M invariant S(M), the invariant of f a c t o r s of o f factors Section o f examples e x a m p l e sof c o n s t r u c t i o n of t o the t h e construction i s devoted 4 . 3 is d e v o t e d to S e c t i o n 4.3 these a l l these ( 0 ,< )..\ ,< I). l ) ' Practically P r a c t i c a l l y all all I I * III).. I I I \ (0 I I t^crossed-p?oduct , 11_ I , , , 1_ I * III' t y p e s : In' a l l the t h e types: an ergodic ergodic examples as the oo(X,r,jL) by an the crossed-product of LL-(X,T,p1 arise"as examplej arise I I I l ' )..\ Ee o f t y p e f a c t o r s group of automorphisms; the construction of factors of type III).., o f g r o u p o f a u t o m o r p h i s m s ;t h e c o n s t r u c t i o n g r o u p s o f a u t o m o r phisms [0,1], requires the construction of ergodic groups of automorphisms e r g o d i c o f t h e c o n s t r u c t i o n r e q u i r e s [0,11, " r a t i o s e t s " in of s e n s e of i n the t h e sense of w i t h specified s p e c i fi e d "ratio sets" s p a c e , with m e a s u r e space, o f aa measure Krieger. Krieger. c r o s s e d - p r o d u c twh~ ,w h e 3 Section o f the t h e crossed-product, c o n s t r u c t i o n of u p the t h e construction 4 . 4 takes t a k e s up S e c t i o n 4.4 g r o u p . If f f lJ! c o m p a c t group. G l o c a l l y compact ( n o t necessarily d i s c r e t e )locally g e n e r a l (not n e c e s s a r i l ydiscrete) i s aa general A G is lf on M o f rI on a n action a c t i o n exd of == M a b e l i a n ,an a n d abelian, c o m p a c tand with G l o c a l l y compact @ qG, G , with G locally M @o: d u a l i t y i s T a k e s a k i ' s is constructed. The main reJult of this section is Takesaki's duality s e c t i o n t h i s is conitructed. The main reSult of @ l 4 t o i s o m o r p h i c theorem which states that M @o: r is naturally isomorphic to M @ t n a t u r a l l y @ d i s M w h i c h t h a t s t a t e s theorem 2 M ;;;= that M i s the c a s ethat i f iti t is t h e case :e(L g e n u i n eduality t h e o r e mif d u a l i i y theorem r ( t 2(G». ( G ) ) . This T h i s isi s aa genuine large f a i r l y large f o r aa fairly M (G». i s the t h e case c a s e for s u c h is t h a t such f & z2G D . It I t is i s shown s h o w n that M @@ :e(L a l g e bras, v o n N e u m a n n ( t h e p r o p e r l y class of (the so-called properly infinite) von Neumann algebras, i n f i n i t e ) so-called class of which factors. i n f i n i t e factors. a l l infinite w h i c h includes i n c l u d e sall when M M isi s c a s ewhen 4 . 4 to t o the t h e case Section S e p t i o n4.4 o f Section r e s u l t sof t h e results 4 . 5 applies a p p l i e s the S e c t i o n4.5 4J = ly'. weight on = is fns where a aa factor of type III, G = IR and 0: = a , where 4J is a fns weight on M. o9, cr lR and III, G 0 factor of type
('(e) asn 's1ql ro3 lecuo8reluocEuorlsazr,ord o l ' ( q ) , ( q ' s a c r 3 3 nrsl t l l 4 l l ' l l t l l ) x e u r > l l u n s ; e r l r e d ( o r r u r 3 ) ,(ue;;ccurs:lulH) '*f1Euoi1$'-o Bu'iEranuoc tqSrr aqt uo s3rrasoql
the series on the right convergin& a-strongly*. (Hint: since Ilany (finite) partial sumll , max
' (t'tt) {(rt,s)xct" = 1l.s;z '9 ) t's uaql'tX = pue (r{h ) A Z Z,{,X JI (c) 19 r 1's4 *(s'l)I = (/'s)*{ uSql .(Ah , { JI (q) i I ur rurou ur EurEraauoc tqEJraq1uo"i;arreseq1 z(s,t) =
(b) (c)
r
x(s,u)y(u,t),
the seriet,on the right converging in norm in K ; If x E l(K) , th~n x*(s,t) = x(t,s)* V s,t E G; If x, y, Z E l(X) and Z = xy, then V s,t E G,
Dit = '(r)l(r's)t (rXlx) tEG
x(s,t)r(t),
" r I pue(a)r r I .lI (e) If
xE
l(Je) and r
E
Je,
'o ut s ,o, urui
r
(xr)(s) =
(a)
then for s in G,
(r'r'l)
(4.1.1)
Exercises sasrJraxl
for all ~,T/ in R
dr(t),l'1(a»
,l ur U'l IIB roJ <1e;t{'11;1I>
= < & ' : ( / ' s ) { > E u r f g s l l e s r o l eredo papunoq anbrun oqt s1 (l,s)1 u o { 'g ur. puE s qcee JoJ J'areq,n -- g ,(q pexepur suunloJ pu€ s1r\or t r{ll,!r -- (((l's)E)) xrrlBu enbrun e ,{q poluese:der sr (A)f ul { ^uV t { r o J s r s € q l e - t u r o u o r l u ou e s r { 9 r y . s : 1 , ! l } . r e y n f r l r e d u l ! 9 u r I puu g.trr ! 11ero3 rl o--l -- (r)l {qaroq,n tcl)-i-o $ = u uorlcrrJlluepr 'l'"9 = .g tfl (i')f,,,1 errrm IBrnlBu B sr arer4l , pue $ ur I 11uqde,n rot '- > d?ru € sl ,t Jo luauota uV ., IIB a l l ( r ) t l l 3l e y l - q o n s i l ; ' b ; l -> roJ rf = rg'5re[lh 'r$cere = arunss€ller{s eA{ rrt put (A)f nier$ I '[?tj ul uolltluosarder .ru1-nEar (-tqElr ..ctser)-lJel eql ,rou.O 9 Jo''dsar) r\ / / pue (t"g = (s)tl [.q peulgap) (g)rt to1 srseq luturouoquo ,D I B c r u o u B co q l o l o u a p ( g t 1 : , 1 ) Jo luouelo {1r1uepr eql elouap r tel IIBqs d^ '7,'(, uollcas Jo pue oql le sv .1,t1etqeEp uu€unoN uol e uo g dnoJE (uerlaqe {lrressoceu lou) aleJcsrp olq€lunoJ E Jo uorlc? ue sr rc l€ql arunsse II€rIs e^\ .uorlJes slql lnoqEno:q1
We shall assume thaj. M &; l(K) ~nd let K = $tEGKt' w!J.ere Kt = K for all t. An element of K is a map ~: g, .... K such that rllw)112 < co. For ~ in K and t i,p G, we shall wri te ~ (~(s) = 0at~. There is a natural identification K;;;; K 0 ....R2(G) whereby ~(t) ....... ~ 0 ~t for all ~ in.... K and t in G; in partisular, (~~t): s,t E G} is an orthonormal basis for K. Any x in l(K) is represented by a unique matrix «x(s,t))) -- with rows and columns indexed by G -- where, for each sand t in G, x(s,t) is the unique bounded operator on K satisfying <x(s,t) ~,n> = R2(G).
....
Throughout this section, we shall assume that a is an action of a countable discrete (not necessarily abelian) group G on a von Neumann algebra M. As at the end of Section 2.2, we shall let E denote the identity element of G, gt: t E G} denote the canonical orthonormal basis for R2(G) (defined by ~t(s) = Oat) and t .... >'t (resp., t .... pt ) denote the left- (resp., right-) regular representation of G in 4.1. Discrete Crossed-Products
SlJnpord-ptssorJ cltrtsrq'I't'
This section contains very few proofs; instead, some heuristic arguments are given, which, it is hoped, will leave the reader with a "reasonable belief" in the result that a factor of type III is "essentially uniquely" expressible as the crossed-product of a semifinite von Neumann algebra N by a one-parameter group {B t } of automorphisms of N which satisfy T 0 Bt = e-tT for all t in IR, for some fns weight 1; on M.
roJ"uu' rr' toJtt-a= roo 1 ,{ssyres ,{rrfiT lJ'l?.13fr.'r:',"""
Jo {'g} dnorE raleuerud-euo e fq 1g erqaEle uu?uneN uo^ alrurJlruas € Jo lcnpord-pessorc eql s€ alqrssardxa ,[lanbrun i(1yu11uossa,, sI rolceJ adf ? eql uI ,,Je!loq alq€uos€ar,, t l8ql llnsar III Jo 'padoq sl sgcJg^{.uerrrEa:e sluaun8re 3 qll,r\ rep€eJ orll e^Bal 11raa, ll cllslrneq euos 'peelsul isgoord ,reJ r(raa sulBluoJ uollJes sIqI
4.1. Discrete Crossed-Products
s l c n p o r d - p e s s oor lce r c s r q ' I . y
115
9II
16 I116
44.. CCrossed-Products rossed-Products
Definition 4.1.2. 4.1.2. With With the the above above notation, notation, define define Definition
M= tx{x eE r(i): :f(ie): I(s,/) X(S,t) eE M M and and l(s,t) x(s,t) = = ex _1(x(sr1,E» irt= 1-r(i(st-1,e)) t
f or all all ,,, s,t ,n in G). G}. for .,. The set set ffM is is called called the the crossed-product crossed-product of of M M with with G G (by (by cr) ex) and and also also The denoted sometimes sometimes by by M M @oG. 0 ex G. 0 O denoted .,. Note that that ifif 7x eE ftM and s,t,u e E G, G, then then and s,t,u Note x(su,tu) = = cr,r_Ji(s,t)). ex _l(x(s,t». i(su,tu) u .,. .,. It is easy easy to see see that M !s is weakly weakly closed closed (in [(il);; :f(lf»; it it is not not mugh mu«.1l that f4 It harder io to verify verify that M M is a self-adjoint self-adjoint subalgebra subalgebra of f(Xf) :f(lf) harder conUtining l, 1, and and consequently consequently A ~ von von Neumann Neumann algebra algebra of operators operators contlrining on ii. If. (For instance, instance, ifif 7,,! x,y e E M and z = = 77, xy, it it follows follows from Ex' Ex. and V on (4.1.1) (c) (c) and and the the fact that weakly closed, closed, that that V(s,t) z(s,t) e M: M; that M is weakly (4.1.1) further, further, z(s,t) = Ir i(s,u)I(u,t) x(s,u)y(u,t) = = Ii(s,u)crr-r(I(ul-1,e)) r x(s,u)ex _lC}i(url,e» z(s,t) u
u
rv
= = E x(s,vt)ex = jy(v,e) = r(s,v/)cr,-17(v,e) t
t
ct-r(i(sr-1'u)/(v,e)) rex _l(x(srl,v)ji(v,e» v! t
= excr_1(z(sr1,e».) -.,(Z(sl-r,e)).) .,.t
'
ext
(When - M (n(x))(s,r) == 56rrcrr-1(x). Define ir by tne prescription (7l(x»(s,t) Uy the n: M ... Define 71: 8t _l(x), (When sometimes w e shall s h a l l sometimes there a r o u n d , we f l o a t i n g around, a c t i o n floating o n e action m o r e than t h a n one i s more t h e r e is *-algebra is aa normal *-algebra write verified that 7ltr is rJpadily verified It is is tkadily z.) It write 7ln-ex for 71.) subalgebra IJeumann subalgebra isomorphism n(I4) is is aa von Ijeumann M. Hence Hence 7l(M) M into M. isoggorpiism of Minto i(s,r) == M for for which x(s,t) of precisely the those x7 in M the set set of those is precisely fact it is M: in fact of M; o0 wwhen s ' I t. .,. hens#t. ( \ ( u ) ) ( s , l )== 58 equivalently, 6 rut' , u , or ,o r equivalently, f ( l f ) by Ne~t, l e t t i n g (>.(u»(s,t) b y letting \: G G ...' :f(lf) d e f i g e >.: N e g t , defiDe of G G e p r e s e n t a t i o n of (>'(IU~)(t) i s aa unitary u n i t a r y irepresentation t h a t \ is I t is i s cle~r c l e g r that>. ( r ( , r i x r ) == ~(U-lt). \ 1 u ' r t 1 . It = i s @ r u ' I t e a s i lv = r ( u ) I in t t 6 ! 2 ( G ) , If; in the identifis.ation If = If 0 J!2(G), >.(u) = 1 0 >'u' It is easily k in'f; i" the identifigation verified that >'(G) f M and that g that I(G) M arLd verified that
(4.1.1 ) (4.1.1)
>'(u)7l(X)>'(u)* n(cr.,(x)) I(ri)n(x)\(u)* == 7l(ex u (x»
for .,. M. in M. in G G and and xx in for all all uu in (n(M) Uu >'(G»" M; the the that (7l(M) It discussion that above discussion XG))' fc M; the above from the follows from It follows i n c l u s i o n . p r o o f r e v e r s e following exercises outline a proof of the reverse inclusion. o f t h e a f o l l o w i n g e x e r c i s e so u t l i n e
Ltl
slcnpord-passorc el0rcsro'I't
117
4.1. Discrete Crossed-Products
sssrcJcxfl Exercises
(e'r'r) (4.1.3)
M;
Let x E say that x is supported on the uth diagonal, for some U in G, if x(s,t) = 0 whenever srl ~ u. Show that x is supported on the· uth diagonal if and only if x = 7l(x)>'(u) for some x iu. M. (When u = E, this has al~ady been noted.) If x E r(lt') and u E G, define x(u) E r(lt') by
fq (t)r ) (n)X eulJap 'D ) n pue (nh r { JI (q) ('pelou uaaq ,ipuCile seq slql ') = n ueq1\) ',;igtr x auros rog (n)1(r)u = { JI [1uo pue g1 leuoturp qln,oql uo palroddns sI I l"ql A\oqs 'n * vls ra^aueq^\6 = (t's){ JI .g ul n auos rog 'leuoEelp qfr? aql uo palroddns st I l?ql 6,es,.7t9, I lo.I (e) if srl =
x(s,t),
U
'nt r-rsJI
J
I = (r'sx(n){) I
{ 0,
if srl ~
'0
(x(u»(s,t) =
'(l's)I
(b)
n = ,_ls J[
(a)
U.
Show that x = LuEGX(U) the series on the right being interpreted as the g-strong* limit of the net of finite sums. If x E M, show that
ler{l ^\orls 'n ) X Jl (c) 'srunselrurJ Jo lou eql Jo l1tu11*tuorls-6 oq1se palordralurEuraqlqErr oql uo serJeseql (r[c,"3 = r l€Hl ,no{S =f
x
= L
7l(au (x(u,e)))>.(u),
'(n)1(((r'n)gfo)u"i'
(c)
uEG
'" =",(7l(M) V the sum being interpreted Jls in (b); in particular M >'(G»"; more explicitly, if M o is the set of those x in M wJ1ich are supported on finitely many diagonals (or equivalently M o is the set of operators of the form
qclf,y. n q X asogl Jo les eql sl 0// JI '[1l1cJ1clxa aroru i,,((9)1 n Q;q)u)-=,2Vr€lncllr8ct ur i(q) ur sf pelerctrolurturoq uns oql
s1oy,1 {lrualerrnba ro) sluuoEuJo H:'.tllri,XrT",*?:l'j:rt:: :H L 7l(x(u» >'(u),
cl" .1r;111n;x;u uEG
fq uanrEsr uo11ecr1d1t1nru-dnorE aroq,n 'y x .F/sl 1asturi(lrepun osoq^r9 dnorE oql sI 'X o@H {q olouop l1eqs o/h I{cIq/$ 'lcnpoJd lcoJrpruraseql l€ql l1ecar 'usrqdrououroq e sr G/)lnV - ) : rc pup sdnorEelercsrpalq€lunoJ ere X pue H JI (q) '@)*ll erqeEle uu8unsN uo,r dnorE oql lsnf sl "(gx = n ese)srql ur .snqa .n\ qllan palJrlueprsraE(n)1 = (t\E ,(Cf,r Vl1,ttpelJlluaprfJlurnluu ,pue II sr fi uar{I ', II€ JoJ,,p! ='o 1a1'dnorEeloJcslpalq€lunocfue rog ? = .fr snql l(A)f = n pue leuorsueurp-auooq fi lo-I (€) .y.1.9sa1
where<.. x: G ... M satisfies x(u) = 0 for all but finitely m~ny u), then M o is a a-strongly* dense self-adjoint subalgebra of M.
Examples 4.1.4. (a) Let It' be one-dimensional and M = r(lt'); thus A.f. ;;; [. For any countable discrete group, let at = id M for all t. Then It' is naturally identified with R:£G), 7l(>.I) = >'1 and >.(u) gets identified with >'u' Thus, in this case M = >'(G)" is just the group von Neumann algebra W*(G). (b) If Hand K are countable discrete groups and a: K'" Aut(N) is a homomorphism, recall that the semidirect product, which we shall denote by H @a K, is the group G whose underlying set is H x K, where group-multiplication is given by
'.(zrtrr!'(c rl)r4or tt) = ( tt,8rl)(r t!) 4,r (h l ,k l )(h 2,k 2)
= (hi a k
(h 2),k l k 2 );
1
lcql slee^eruollelnduoc fsee ue
an easy computation reveals that
'Qr\tt'(ur9o'9no) = (tt'tDr-(>t'o u)
(*)
(*)
(ho,kotl(h,k) = (t\_l(hr/h), kr/k).
°
'H > tl'((rl)r-'1o)l = (rlXl{n) uollenba 3ql leql parJrra^ flrsee sI lI It is easily verified that the equation (ukO(h) = ~(C\-l(h», h
E
H,
4. Crossed-Products Crossed-Products 4.
118 ll8
E f(m j2(H) def defines representation /< k -... u, uk of K in l21H;; j2(H); if if r, >'H ines a unitary representation I~ e denotes the the left-regular left-regular representation representation of 1{, H, it it is easy easy to check check that that denotes uk>'H(h)u: = = r" >'H (cr1(/r)) (cxk(h» for k in K and and h in H. H. It It follows follows that there there aulr(lr)af exists an an action action d. Ci of K on on W(H) W*(H) such such that d1(x) Cik(x) = = u*xuf ukxu: ffor or all x in eiists W*(H) and and k in K. K. W(m -"" 'The The crossed-product crossed-product W(m W*(H) od 0Ci K acts acts on the the Hilbert space space tf :It = = lz(K: j2(K; = j2(G). x j2(H) which can be naturally identified j2(H n21Fl t2161. with K) identified !2(m) which can be natural$ Under this this identification, identification, Under
( z6( l"(ft o))I)(h,k) = E(crk-1(&6r)/,,k) and and
= i6, (r(ko);x&,k) (>.(ko)r)(h,k) r(h, *-orrr'; kc/k)
r
for ho e E H, H, ko ko e E K and and i in l2(c). j2(G). for ho If ri w denote! denotes the the (clearly (clearly unitary) unitary) operator operator on on !2(G) j2(G) defined defined by lf
"" = ""f(
= iq:o'n,4 ()r/ra( rH(ft0))w*ixlr,t) and and
(h,k)== (w>'(ko)w*r)(h,k) 1wr1&o)w*i)
tortl; r(l(cr, cx _l(h), -r(/r),kr/k); o kko-
in view of equation (*), this says says that wz6(\H(fts))w* = rc(lto,€x)
and and w\(ko)w* = \o(er, ks);
thus thus @a K)w* = W*(H w(W*(H) W(H 0oo w(W(H) 0a cx K).
0E
Remark 4.1.5. the crossed-product crossed-product 4.1.5. Although the the construction construction of the lf on is aa seems acts, it is Hilbert space space :It on which M acts, depend upon upon the the Hilbert seems to depend - - which p r o v e in wi{r 4 . 4 , when w h e n dealing d e a l i n g wit» fact w h i c h we w e shall i n Section s h a l l prove S e c t i o n 4.4, f a c t -i s o m o r p h i s m class c l a s s of of M continuous t h a t the t h e isomorphism c r o s s e d - p r o d u c t s-- that c o n t i n u o u s crossed-products system depends o f the t h e dynamical d y n a m i c a l system i s o m o r p h i s m class c l a s s of d e p e n d s only o n l y on o n the t h e isomorphism (Mr,G,a), if (M,G,cx); (M,G,a,);explicitly, 1,2, are systems and if if (Mj,G,cx are dynamical systems explicitly, if j), i == 1,2, or,t i s o m o r p h i s msuch s u c h that t h a t 11t r 0o CX1,t 11: M M is a von Neumann ... v o n N e u m a n n algebra f l ; 1, ' a l g e b r a isomorphism 2, i s a = cx = d2,r then 2,t 0o 11z for all t,/, then
ft tluo puo Il aart st D uottlo aLlJ 6'1'g [ru11oro3
Corollary 4.1.9. The action a is free if and only if
'a^oqc (e) ur se 'aorJ sr ln ursrqdrourolnu E aql 'r I I roJ JJ aarJ oq ol plBs sr ,,ryuo I Jo )c uollJB uv (q) '0 = r salldrur n u\ K Il€ roJ x({)g = {x 'g'I't uoIfIuIJeC JI aarJ aq ol ples sl .ZVJo g tusrqdrouotneuV (e)
(b) An action a of G on M is said to be free if for t automorphism at is free, as in (a) above. 0
~ E,
the
xy = 8(y)x for all y in M implies x = O.
Definition 4.1.8. (a) An automorphism 8 of M is said to be free if
'oleldruoJs1 '(sr_n= I Eulltnd uo) .yoordaql pue
= u-1s),
and the proof is complete.
0
[
(on putting t
u
't)X = ((t 'r-nn){)t-"o (+
a Jx(utu- 1, E» = x(t, E)
Vt in G
I ul ,A
G
#
u
g ul sA (r 'sr-n)x = ((r 'r-,?s)I)r-"o<+ #
Vs in G
a _1(x(su- 1, E» = x(u-1s, E)
g ul sA (r 'sr-n)E= (/,'s)I <+ #
x(s,u) = x(u-1s. E)
Vs in G
's)(1(tz)1) = (r 's)((n)19)q9 9 ut sA (r #
Vs in G
(x>.(u»(s, E) = (>.(u)x)(s, E)
{(n)1 = (r)1x
x>.(u) = >.(u)x
ueql 'D ) n n'I (q) 's/r\olloJuolilOssseql pu€
and the assertion follows. (b) Let u E G. Then
= a t - l(y)x(t,
(e 'l)1(d)I-rn= /q) 'DX e
#
(xn(y»(t,E)
E)
= (n(y)x)t,E)
'g ul ,A
x(t, E)Y
= (r'r)((f)ug) e X(Ou = (t)uX (>'r(XQ()u)
= n(y)x
Vt in G, Vt in G
'n ) t le'I (€) 'Joord
M. Then
uaql
E
9 ul tA
# xn(y)
Proof. (a) Let y
'g u! n't yo toS ((r'l)g)"n = ({ywn)X <+ ,(g)f r I
x(UtU·1,E) = au(x(t,E» for all t, u in G.
>'(G) , #
( t ' t ) y ( t ) f - n= , { ( r ' 1 ) I ( * r ( n f u ,
E
E
naCM)
I
#
igult pupnultllotol
(e)
X
(q)
x
X
X(t,E)Y = a _/y)X(t,E) for all y in M and t in G;
'n t 'l'I't x 147
(b)
(a)
Lemma 4.1.7. Let
"'" x E M.
"uutI
'JolcEJB s\ n IBIII ernsuaqJlg/r.(n'?'n) uralsfs luclueudp eql uo suolllpuoc ao uo$sncslpB ol lxeu urnl eA,\
(M,G,a) which ensure that M is a factor.
We turn next to a discustion of conditions on the dynamical system
Prove that E is a faithful, normal norm-one projection of "'" M onto the von Neumann subalgebra nJ.M). "'" If ~ is any J:ns weight on M, defne"",~x) = ~X(E,E» for x in M+; show that ~ is a fns weight on M. (Hint: for semifiniteness, use the semifiniteness of ~ via Ex. (2.4.8) (d).) 0
el^ ssauallulJlrues aql osn 0 D ('(p) Q'7d'xg Jo 'ssaualrurgruras 'n roJ :fulH) uo suJ B sl tqEle,n 0 l€ql ^\oqs t-ry ut I ro3 ((r'r)f)9 = (XDtuJep'n uo 1qE1am suf fue sl O JI (q) '$t1lu e4e?IuqnsuuuruneNuo^ oql oluo 'InJqlleJ B sl g teql e^ord (e) W Jo uoq)aford euo-ruroulcurrou
(b) (a)
'((r'r)g)z = XZ 8q (4)u - W :Z elurJae (S't't)
'it
(4.1.6) Define E:
-+
n(M) by Ex
=
n(x(E,E».
Exercises
srslrJexg
o
'g'oo'I,tt
= gtort^
4.1. Discrete Crossed-Products
119
s l c n p o r d - p 0 s s o JeJl a J c s r c l ' l ' ,
6II
120 r20
4. 4. Crossed-Products Crossed-Products .,.
M f , t()n Tlex(M) n 4 ! W, )==TlJZ(M». IJZ(M)).
Proof. Proof. Suppose Supposethe the action cr is is free. free. Then, Then, it follows action ex follows from Lemma Lemma (a) that 4.1.7 4.1.7(a) that ( / , e ) == 00 for x7 €e M() M n nTlJM)1 J M ) ' 9) f x(t,€) f o r t ~* €e 9)7x = Tl(x(€,€» fl(i(e,e))€e Tl(M). n(A.
Since is 1-1, l-1, t!le Since Tlzo tle assumption assumptionxI €e TlJM)1 nJIr|.' forces forces x(€,€) i(e,e) to to belong belong to to ex is Z(M), I fc Tlex(Z(M»; z(M), and n Tlex(M) and so, not(M)t not(z(lut); the inclusion is so, M () the other other inclusion is obvious. obvious. (by If If conversely, conversely,there cr, is is not there exists exists t, ~* €e such such that that ext not free, free, then then (by definition) in M M such