AN INTRODUCTION TO THE MATHEMATICAL THEORY OF GEOPHYSICAL FLUID DYNAMICS
This Page Intentionally Left Blank
NORTH-H...
6 downloads
483 Views
3MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
AN INTRODUCTION TO THE MATHEMATICAL THEORY OF GEOPHYSICAL FLUID DYNAMICS
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATlCS STUDIES
41
Notasde Matematica (70) Editor: Leopoldo Nachbin Universidade Federal do Rio de Janeiro and University of Rochester
An Introduction to the Mathematical Theory of Geophysical Fluid Dynamics
SUSAN FRIEDUNDER Department of Mathematics University of Illinois at Chicago Circle Chicago, Illinois, U.S.A.
1980
NEW YORK NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM
OXFORD
Q North-Holland Publishing Company,
1980
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN 0 444 86032 0
Publishers NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM*NEWYORK*OXFORD Sole distributors for the U S A . and Canada: ELSEVIER NORTH-HOLLAND. INC. 52 VANDERBILT AVENUE. NEW YORK. N.Y. 10017
Library of Congress Cataloging in Publication Data Friedlander, Susan, 1946Introduction to the mathematical theory of geophysical fluid dynamics. (Notas de matem6tica ; 70) (North-Holland mathematics studies ;41) Bibliography: p. Includes index. 1. Fluid dynamics. 2. Geophysics. I. Title. 11. Series. QAl.N86 no. 70 [QC809.F5] 510s [532 '.05] 80-16811 ISBN 0-444-86032-0
PRINTED IN THE NETHERLANDS
To E r i c
This Page Intentionally Left Blank
PREFACE
This work i s based on a s e r i e s of l e c t u r e s given t o graduate students both a t the University of I l l i n o i s , Chicago Circle i n t h e United S t a t e s , and a t Oxford University i n England.
It i s intended t o provide a framework f o r such a
course given primarily t o graduate students i n applied mathematics, a s well a s t o be a u s e f u l supplementary t e x t f o r students of oceanography, meteorology and engineering.
A
f a m i l i a r i t y with b a s i c f l u i d dynamics i s assumed and some knowledge of asymptotic techniques would be h e l p f u l .
Since
the material presented i s confined t o a s i n g l e course, the t o p i c s covered r e f l e c t t o a c e r t a i n extent personal preference.
A number of important t o p i c s , p a r t i c u l a r l y those con-
cerning aspects of non-linear r o t a t i n g f l u i d dynamics a r e omitted here and await treatment elsewhere.
However, the
fundamentals of t h e o r e t i c a l geophysical f l u i d dynamics a r e given from f i r s t p r i n c i p l e s i n order t h a t they may be e a s i l y a c c e s s i b l e t o a motivated reader. The authors wishes t o thank Professor L. Nachbin f o r h i s p a t i e n t supervision of t h i s monograph and t o acttnowledge t h e very constructive c r i t i c i s m given by Professors V . Barcilon, F. Busse, E . Isaacson, N. Lebovitz and W . Siegmann.
The author
i s most g r a t e f u l t o the Mathematical I n s t i t u t e a t Oxford f o r Y ii
viii
Preface
t h e i r h o s p i t a l i t y and support. supported by N.S.F.
This work was a l s o p a r t i a l l y
Grants MCS 78-01167 and MCS 79-01718.
F i n a l l y , t h e author extends thanks t o Ms. S h i r l e y Roper
f o r h e r e x c e l l e n t typing of t h i s book.
Susan Friedlande r
Chicago, I l l i n o i s January, 1980
TABLE O F CONTENTS Page INTRODUCTION CHAPTER 1: CHAPTER 2:
CHAPTER 3 : CHAPTER 4:
1
EQUATIONS OF MOTION POTENTIA L VORTIC ITY Problems NON-DIMENSIONAL PARAMETERS Problems GEOSTROHIC FLOW Taylor-Proudman Theorem Taylor Column Application t o Geophysical Motion f3 Plane Approximation Problems
-
CHAPTER 5:
CHAPTER 6:
CHAPTER 7:
CHAPTER 8:
CHAPTER 9:
THE EKMAN LAYER EKmn Layer Equations Example of C y l i n d r i c a l Flow Ekmn Layer S p i r a l Mass Transport i n t h e EkLcman Layer Spin-up Time S c a l e Tea-cup Experiment Problems THE GEOSTROPHIC MODES The Geostrophic Mode i n a Sphere Geostrophically Free, Guided, and Blocked Regions Circulation Problems INERTIAL MODES X Real and 1x1 < 2 Orthogonality Mean C i r c u l a t i o n Theorem I n i t i a l Value Problem I n e r t i a l Modes i n a Cylinder Plane Wave S o l u t i o n Problems ROSSBY WAVES S l i c e d Cylinder @-Plane Problem Plane Wave S o l u t i o n Problems VERTICAL SHEAR LAYERS E Laye r E1’4-Layer S l i c e d Cylinder An Ocean Model: Sverdrup’s R e l a t i o n Problems
’-
ix
5 11
15 17
20
21 21
23
26 28 33 35 39 43 46 47 48 52 54
62 63 65 67 68 70 71 72 74 77 80 85 86 89 95 97 99 100
102 110
114 120
X
Table of Contents Page
CHAPTER 10:
ANALOGIES BETWEEN ROTATION AND STRATIFICATION Problems
CHAPTER 11:
THE NORMAL MODE PROBLEM FOR ROTATING STRATIFIED FLOW The Steady Flow Potential Vorticity Problems ROSSBY WAVES I N A ROTATING STRATIFIED FLUID The P o t e n t i a l V o r t i c i t y Equation Rossby Waves f o r a S t r a t i f i e d Fluid Roasby Radius of Deformation Problems
CHAPTER 12:
CHAPTER 13:
CHAPTER 14:
CHAPTER 15:
CHAPTER 16:
APPENDIX BIBLIOGRAPHY INDEX
INTERNAL WAVES I N A ROTATING STRATIFIED FWID Plane Wave S o l u t i o n Waves i n Bounded Geometry Variable N ( z) Oceanographic Results Problems BOUNDARY LAYERS I N A ROTATING STRATIFIED FLUID The S t r a t i f i e d Ekman Layer The Side-wall Layers Problems SPIN-DOWN I N A ROTATING STRATIFIED FLUID Spin-down i n a Cylinder S e c u l a r Growth The Steady S o l u t i o n The Decaying Modes Further Comments Problems BAROCLINIC INSTABILITY The Eady Model The S t a b i l i t y C r i t e r i o n Experiments : Laboratory Models Problems BOUNDARY LAYER METHODS
123 131 133 137 141 147 151
151 153
156 159 161
163 166 176 187 189 191 193 196 206
'Log 2 12 2 19 220 222 'L 26 228 231 232 2 36 243 247 249 263 269
INTRODUCTION
For many c e n t u r i e s man has attempted t o g a i n some understanding of the behavior of the ocean and the atmosphere, with the impetus f o r such work coming from the need t o p r e d i c t the motion of the water and a i r t h a t surround us.
I n ancient times
knowledge came almost e n t i r e l y from records of p r a c t i c a l observation, but the l a s t century has seen g r e a t advances i n t h e t h e o r e t i c a l , numerical and experimental techniques which a r e used t o study t h i s important branch of science. Geophysical f l u i d dynamics, in i t s broadest sense, is the study of f l u i d motions in t h e e a r t h .
The purpose of t h i s book
is t o give a mathematical d e s c r i p t i o n of a c e r t a i n c l a s s of such phenomena.
We w i l l be concerned with those problems f o r
which the length s c a l e i s s u f f i c i e n t l y l a r g e t h a t t h e e a r t h ' s r o t a t i o n has a s i g n i f i c a n t e f f e c t on the dynamics of the f l u i d . Hence we w i l l exclude many i n t e r e s t i n g small s c a l e problems, f o r example, those connected with s u r f a c e tension, but we w i l l discuss the mathematics t h a t describes b a s i c models f o r the motion of the ocean and t h e atmosphere.
Besides the relevance
t o geophysics, the s u b j e c t i s a n appealing one t o a mathemat i c i a n because the p a r t i a l d i f f e r e n t i a l equations which a r i s e frequently d i s p l a y i n t e r e s t i n g and r a t h e r unusual p r o p e r t i e s . We consider the t h e o r e t i c a l aspects of geophysical f l u i d
I n t roduc t i o n
2
dynamics by g i v i n g a n i n t r o d u c t i o n t o t h e mathematical theory of r o t a t i n g f l u i d motion.
I n Keeping with t h e theme of r e l e -
vance t o geophysical problems, t h e l a t e r s e c t i o n s of t h e booic i n c l u d e a f u r t h e r c h a r a c t e r i s t i c f e a t u r e of t h e ocean o r t h e atmosphere, namely t h a t t h e motion i s influenced by t h e e f f e c t s of g r a v i t y on a f l u i d of non-uniform d e n s i t y .
Thus t h e f i r s t
h a l f of t h e book concerns a r o t a t i n g homogeneous f l u i d , and t h e second h a l f c o n s i d e r s a f l u i d s u b j e c t t o t h e f o r c e s of both r o t a t i o n and s t r a t i f i c a t i o n . We develop t h e mathematical a n a l y s e s i n a n ordered f a s h i o n , s t u d y i n g f i r s t t h e equations t h a t d e s c r i b e t h e s i m p l e s t physics, namely small p e r t u r b a t i o n s from t h e e q u i l i b r i u m of a homogeneous i n v i s c i d r o t a t i n g f l u i d .
We t h e n proceed from
t h i s base t o add l a y e r upon l a y e r of mathematical complexity a s f u r t h e r r e l e v a n t p h y s i c a l f a c t o r s a r e included i n t h e model. Where i t i s a p p r o p r i a t e , we w i l l d e s c r i b e simple l a b o r a t o r y experiments t h a t i l l u s t r a t e phenomena c h a r a c t e r i s t i c of a rotating fluid.
Given t h e scope of t h i s book i t i s not p o s s i -
b l e t o provide d e t a i l s about t h e many a p p l i c a t i o n s o f mathematics t o geophysics.
We w i l l however mention s e v e r a l r e l e -
vant problems and g i v e a more e x t e n s i v e d i s c u s s i o n o f t h r e e r e p r e s e n t a t i v e examples.
I n t h e oceanic example we u s e
boundary l a y e r theory t o e x p l a i n t h e e x i s t e n c e of t h e Gulf Stream on t h e western s i d e of t h e A t l a n t i c .
I n t h e metero-
l o g i c a l c o n t e x t we show t h a t a n i n s t a b i l i t y a s s o c i a t e d w i t h t h e l a t i t u d i n a l v a r i a t i o n of s o l a r h e a t i n g of t h e atmosphere i s c r u c i a l t o t h e formation of cyclone waves.
We a l s o g i v e a n
i n t e r e s t i n g a s t r o p h y s i c a l a p p l i c a t i o n , d e s c r i b i n g i n some
Introduction
3
d e t a i l , the formulation of a well posed mathematical problem i n terms of a s i n g l e p a r t i a l d i f f e r e n t i a l equation w i t h approp r i a t e boundary conditions, whose s o l u t i o n sheds l i g h t on the s o l a r spin-down controversy. The basic construction of each mathematical model t r e a t e d i n t h i s book is given i n d e t a i l i n order t o provide s u f f i c i e n t information t o communicate the essence of the material t o an u n i n i t i a t e d reader.
However, a f a i r l y extensive l i s t of r e f e r -
ences and sources i s provided f o r those who wish t o pursue a p a r t i c u l a r topic i n g r e a t e r depth.
Included i n the references
a r e basic t e x t s , e a r l y seminal papers and recent surveys of r e s u l t s , a s well a s c u r r e n t advances i n c e r t a i n a r e a s .
We
o f f e r the following b r i e f s e l e c t i o n of b a s i c t e x t s t h a t a student should find p a r t i c u l a r l y valuable i n the study of geophysical f l u i d dynamics. Fluid dynamics :
Batchelor Lamb
[5]
Rotating f l u i d s :
Greenspan Carrier Howard
[ 271
Stratified fluids:
Yih
[ 741
Geophysical f l u i d dynamics:
PedlosKy
[51], [ 5 2 ]
Oceanography :
Kamemovich [ 371 Krauss [393 Phillips [55]
[ 401
[81 [ 331
I n the appendix we give a b r i e f i n t r o d u c t i o n t o boundary layer techniques a s they a r e used t o study s i n g u l a r perturbat i o n problems.
For a more d e t a i l e d exposition of t h i s branch
of asymptotic a n a l y s i s the reader is referred t o S c h l i c h t i n g [60] Van DyKe [67].
This Page Intentionally Left Blank
CHAPTER 1
EQUATIONS O F MOTION
The problems t h a t we w i l l consider a r e characterized by the importance of r o t a t i o n .
To r e a l i z e i t s s i g n i f i c a n c e i n the
geophysical context we observe t h a t
-
6 x 108 em
R -
n
( r a d i u s of the e a r t h )
7.5 x 10-5 s e c - l (angular v e l o c i t y )
hence the v e l o c i t y i n equational l a t i t u d e s , r e l a t i v e t o the a x i s of r o t a t i o n , i s of the order
4 x lo4 c d s e c .
Such a
v e l o c i t y i s very l a r g e compared with t y p i c a l winds i n t h e atmosphere ( f o r example, a hurricane wind i s
0(104) cm/sec).
Also, the v o r t i c i t y ( t h e physical concept t h a t measures the llswirl'lo r " c u r l " i n a f l u i d motion) due t o the e a r t h ' s rotat i o n i s very l a r g e compared w i t h the v o r t i c i t y of t y p i c a l motions t h a t occur on a large s c a l e i n the ocean o r atmosphere. Thus, when t.he h o r i z o n t a l length s c a l e i s comparable t o the radius of the e a r t h , i t i s always necessary t o take i n t o a c c m n t the e f f e c t of the e a r t h ' s r o t a t i o n . It i s frequently convenient i n the study of r o t a t i n g f l u i d
motion t o w r i t e the equations of motion i n the r o t a t i n g coordinate system.
Let us b r i e f l y review r o t a t i o n i n 2-
dimensional motion. angular v e l o c i t y
n
Consider a plane r o t a t i n g with constant about the
k axis. 5
Let
(i,j,k) . ) A
denote
6
Rotating co-ordinate System
Cartesian u n i t vectors i n the i n e r t i a l frame of reference and
(1' ,3'
,&I
)
denote Cartesian u n i t s vectors i n the r o t a t i n g
frame of reference.
I
V 'i
The i n e r t i a l and r o t a t i n g co-ordinates FIGURE 1 A t a time
Let
&
t
the u n i t vectors s a t i s f y t h e r e l a t i o n s
It
=
t
COB
3'
=
-t
sin
nt + 3 nt + 3
sin cos
nt nt.
(1.1)
(1.2)
denote d i f f e r e n t i a t i o n following a p a r t i c l e .
Let
be a vector which can be w r i t t e n as
+ A23 + A ~ +Z A~k j l +
A = All
=
A3k
( i n e r t i a l frame) ( r o t a t i n g frame).
9
Equations of motion Then
2 ?' + 2 1' + 2 3' -
d4 = dA'
dA'
dA'
dA'
dt
I n p a r t i c u l a r , i f we taKe
+
A:
&+A!& dt
L dt
-
AiP )
+ n(Al,j'
4
=
7
from ( l . l ) - ( l . Z ) .
the radius vector measured
f,
from the common o r i g i n of the co-ordinate s y s t e m , we o b t a i n
-d,r- -dtI
Where dz dtR
=
[Note:
ds dtI
&'
=
gI,
dr dtR
+ nk
x
4.
v e l o c i t y measured i n the i n e r t i a l frame and
v e l o c i t y measured by an observer i n the r o t a t i n g frame
.
i f the p a r t i c l e s a r e i n r i g i d body r o t a t i o n
91
=
nR
I f we now s e t
x
4 = gI
qR = 01.
and
we o b t a i n the r e l a t i o n s h i p between the
a c c e l e r a t i o n i n the two frames of reference, x
[gR + nii x 41
nf x 5). I n t h i s equation the f i r s t term i s a c c e l e r a t i o n i n the r o t a t i n g co-ordinate system, the second term i s c a l l e d C o r i o l i s ' a c c e l e r a t i o n , and the t h i r d term is c a l l e d c e n t r i fugal acceleration.
With a l i t t l e more work a general formula
corresponding t o (1.5) can be derived i n terms of general c u r v i l i n e a r co-ordinates
.
We r e c a l l the Navier-Stokes equations which govern the motion of a viscous f l u i d .
I n an i n e r t i a l frame they a r e
8
Nav i e r-S t okes equations
given by the following two vector equations:
T h i s i s the equation of conservation of mass which mathematlc-
a l l y describes the f a c t t h a t , i n the absence of 8ources o r sinks, each f l u i d p a r t i c l e may move around but the t o t a l mass remains constant dtI
.
= -VP
+
pot3
+ po 2CJ* + Lfp
V'cJI.
T h i s i s the equation of conservation of momentum which is the
a p p l i c a t i o n of Newton's law of motion [Force = mass x acceler a t i o n ] t o a f l u i d system. Thus rewriting the Navier-Stokes equations I n terms of a uniformly r o t a t i n g co-ordinate system gives
dQ p[<
+
2n
2 2
X
qR]
=
- vP + p v ( G - n;?r)
[We remind the reader t h a t it i s only the time d e r i v a t i v e of a vector quantity that changes from an i n e r t i a l t o a r o t a t i n g frame of reference:
s c a l a r s and s p a t i a l d e r i v a t i v e s such a8
gradients and divergences a r e unaffected . ] The symbols represent the following:
Equations of motion
9
p = density
P = pressure G = gravitational potential =
c o e f f i c i e n t of v i s c o s i t y .
We note t h a t c e n t r i f u g a l force can be w r i t t e n a s the gradient of a s c a l a r and hence i t s r o l e i s only t o modify the e f f e c t i v e gravitational potential.
C o r i o l i s f o r c e , however, can not be
t r e a t e d i n t h i s manner and we w i l l show t h a t t h i s f o r c e plays a much more s i g n i f i c a n t r o l e i n the behavior of t h e equations. For n o t a t i o n a l s i m p l i c i t y we drop the s u b s c r i p t
R, however
throughout t h e following chapters we w i l l be working with t h e system of equations given by (1.4) and (1.5) which describe t h e motion of a viscous f l u i d i n a co-ordinate system r o t a t i n g with uniform v e l o c i t y
3.
TO complete the system we must add t o (1.4) and (1.5)
the
equation of s t a t e p = p(P,T), where
together with an equation f o r of thermodynamics.
T T
i s temperature, derived from the f i r s t law
For the f i r s t p a r t of t h e book we w i l l
consider the simpler case of a homogeneous f l u i d , i . e . , T
p
and
a r e constants, which w i l l of course r e s u l t i n some s i m p l i -
f i c a t i o n of ( 1 . 4 ) and (1.5).
I n t h e l a t e r s e c t i o n s we w i l l
include t h e e f f e c t s of s t r a t i f i c a t i o n which produces s i g n i f i cant modifications t o some geophysical problems.
However i n
l i g h t of the type of problems t h a t we a r e studying we w i l l not consider general equations of s t a t e and thermodynamics, but r a t h e r model the f l u i d , f o r example, water o r a i r , by the simplest reasonable r e l a t i o n s .
We assume t h a t the d e n s i t y i s
Heat equation
10
l i n e a r l y proportional t o temperatuse.
P = p0
-
We a l s o assume t h a t the i n t e r n a l energy temperature; e = cT.
(1.6)
p 0 u(T-T~).
e
is proportional t o
Physical arguments then imply t h a t
T
s a t i s f i e s the equation e = where
K
2=f
O'T
+
non-linear terms
i s the c o e f f i c i e n t of thermal d i f f u s i o n .
there a r e no i n t e r n a l heat sources).
(1.7) (We assume
We note t h a t i n using
the simple equations (1.6) and (1.7) we a r e ignoring c e r t a i n physical properties of a f l u i d , however we have retained the c h a r a c t e r i s t i c s of s t r a t i f i c a t i o n t h a t a r e s i g n i f i c a n t f o r most geophysical problems.
CHAPTER 2 POTENTIAL VORTICITY
Since we have already s t a t e d t h a t we consider r o t a t i o n t o be a dominant f e a t u r e of geophysical dynamics, i t is not s u r p r i s i n g t h a t the v o r t i c i t y f i e l d measure of the behavior of the f l u i d .
8
is a very s i g n i f i c a n t
[Recall
9
= v x
Taking the c u r l of (1.5) gives the v o r t i c i t y equation
= -0
x
=+pox-
P
v29 P *
Hence ( 2 . 1 ) becomes
11
41.
E r t e l ' s theorem
12
From (1.4) v .g =
-
gn
P dt
.
Hence we obtain the equation
Consider the case where f l u i d i s i n v i s c i d , i . e . , p = 0 . A
2 = 0,
be any s c a l a r quantity such t h a t
conserved a s a p a r t i c l e moves w i t h the f l u i d . s c a l a r product of
VA
i.e.,
X
Let
is
Take t h e
with ( 2 . 2 ) t o obtain
VX
Since gives
$$ =
+
9.VA
= 0,
a l i t t l e manipulation of ( 2 . 3 )
=
vx
*y.
(2.4)
P
Equation ( 2 . 4 ) i s known as E r t e l ' s equation. U t e l ' a meorem
i.e.,
the quantity
If we choose
TT =
* P
(€J
A
+
such t h a t
20)
Known as the p o t e n t i a l
v o r t i c i t y , is conserved as a p a r t i c l e moves with the f l u i d . For an i n v i s c i d , non-rotating, homogeneous f l u i d i t i s well Known t h a t the v o r t i c i t y i s a conserved quantity. now obtained the analogous expression
TI
We have
t h a t i s conserved
i n the more general case of an inviscid but r o t a t i n g s t r a t i f i e d fluid.
We note t h a t the d e r i v a t i o n of ( 2 . 4 ) d i d not require
P o t e n t i a l Vort i c i t y
13
t h a t the conservation of mass equation be reduced t o
v.3
= 0,
hence E r t e l ' s theorem holds even f o r a compressible f l u i d . However, i n many geophysical contexts t h e compressibility of the ocean and atmosphere can be neglected, and i t can be assumed t h a t
= 0.
Since the d e n s i t y a l s o s a t i s f i e s vp x V P
vp
the density f i e l d
I
0,
i n the case of an incompressible f l u i d
p
i s i t s e l f a s u i t a b l e candidate f o r t h e s c a l a r
X
and E r t e l ' s
theorem b ec omes
A second p a r t i c u l a r case i s t h a t of a barotropic f l u i d
where the density i s a function only of t h e pressure f i e l d , i.e.,
p = p(P)
.
I n t h i s case
v p x V P i s i d e n t i c a l l y zero,
hence E r t e l ' s theorem holds for any conserved s c a l a r X . We note t h a t i f
p
i s a constant ( i . e . ,
the f l u i d i s
and equation (2.2), i n t h e i n v i s -
homogeneous), then v p = 0 c i d case, reduces t o
Recalling t h a t
3
inertial
=
,g + 9 x 5,
we see t h a t
4+
22
i s , of course, the v o r t i c i t y i n the i n e r t i a l co-ordinate
system.
Hence equation (2.6) gives the well known r e s u l t t h a t
f o r an i n v i s c i d homogeneous f l u i d , i f the v o r t i c i t y i s i n i t i a l l y zero, the v o r t i c i t y w i l l remain zero.
14
E r t e l ' s Theorem I n l a t e r work we w i l l make use of E r t e l ' s theorem i n
s e v e r a l d i f f e r e n t contexts.
For example, we w i l l show t h a t
f o r a homogeneous f l u i d of t h i n l a y e r depth
h ( x , y ) , the
express ion =
2
h(x,y)
(a
+
2q)
is conserved.
15
Problems t e r 2 Problemg 2.1)
The r o t a t i o n of the e a r t h i s almost, but not q u i t e , constant; t h e r e is a s l i g h t “wobble”. What w i l l the e f f e c t s be on the p o t e n t i a l v o r t i c i t y equation when
n i s allowed t o be a function of time?
Derive a modified p o t e n t i a l v o r t i c i t y equation f o r an i n v i s c i d , incompressible f l u i d r o t a t i n g w i t h angular v e l o c i t y
n 2.2)
=
no + a ( t ) ,E
<<
1.
Determine the p o t e n t i a l v o r t i c i t y equation f o r a homogeneous r o t a t i n g viscous f l u i d .
Explain the
r o l e v i s c o s i t y plays i n the generation of v o r t i c i t y .
This Page Intentionally Left Blank
CHAPTER 3
NON DIMENSIONAL PARAMETERS
We have s t r e s s e d t h a t i n t h i s t e x t we w i l l consider f l u i d motion i n which the e f f e c t s of r o t a t i o n a r e important.
It
i s t h e r e f o r e u s e f u l t o rewrite t h e equations so t h a t we can a s s e s s the regions of physical parameter space i n which C o r i o l i s force i s s i g n i f i c a n t r e l a t i v e t o the o t h e r f o r c e s i n the momentum equation.
For s i m p l i c i t y we w i l l i n i t i a l l y d i s -
cuss the s c a l i n g f o r a r o t a t i n g homogeneous f l u i d :
in later
chapters we w i l l include the e f f e c t s of d e n s i t y s t r a t i f i c a -
t ion. Let
n-l, U, c h a r a c t e r i z e t y p i c a l length, time and r e l a -
L,
t i v e velocity:
we then introduce dimensionless co-ordinates
by w r i t i n g
r =
I)
LS*, t
=
t*J 3 =
uy,
I n t h e case of constant d e n s i t y
p,
P = pnuLp.
equations (1.4) and (1.5)
reduce t 0
0.3 a
~ where
(G
P
+
c
p 2Ql
x +a =
- LPv P + ! v
2
3,
i s now the reduced pressure incorporating
- @).
gives
~
= 0
S u b s t i t u t i o n of the dimensionless co-ordinates
Ekman number and Rossby number
18
=
(k
-
nu v * p ,
.5 v* 2g* L
+
i s the u n i t v e c t o r i n the d i r e c t i o n of the a x i s of rota-
tion.)
- v*)j*
+ ~(3*
Hence
=
( v = k/p
- oP*
+
2k x
g*
+ m*23*.
(3.3)
i s the Kinematic v i s c o s i t y ) .
I n most geophysical problems, both
E
and
E
a r e very small.
A small Rossby number i n d i c a t e s t h a t the deviation from r i g i d
r o t a t i o n i s small and t h a t C o r i o l i s force dominates the nonl i n e a r terms ( i n most regions).
A small Ekman number implies
t h a t Coriolis force i s much l a r g e r than the viscous force which w i l l be generally neglected almost everywhere.
In a
simple experiment t h a t we w i l l describe s h o r t l y , where water
i s s t i r r e d i n a tea-cupr L = 5 cm, n hence, E = 2 x 10-4
.
= 2
sec -1, v = 0.01 cm2 /sec,
I n a n oceanographic context i t i s a l i t t l e more d i f f i c u l t t o estimate the v i s c o s i t y since i t i s probably more reasonable t o consider some s o r t of turbulent v i s c o s i t y r a t h e r than the molecular v i s c o s i t y .
However the length s c a l e s a r e
Non-dimensional parameters s u f f i c i e n t l y l a r g e t o ensure t h a t
E
remains small.
20
3.1)
a)
Problems
Show t h a t the Rossby number measures the r a t i o of the convective force t o Coriolis force.
b)
Show t h a t t h e Ekman number measures the r a t i o of the viscous f o r c e t o Coriolis f o r c e .
3.2)
Assume t h a t a c h a r a c t e r i s t i c surface s t r e s s of magnitude fluid.
S
generates motion i n a r o t a t i n g
Introduce appropriate non-dimensional
co-ordinates and determine the relevant nondimensional parameters.
CHAPTER 4
GEOSTROPHIC FLOW
I f we neglect the terms multiplied by equation (3.3)
a
(-a t
= 0)
E
and
E
in
and we assume t h a t t h e flow is steady
, we o b t a i n 2; x
g
= -vP
(4.1)
( f o r convenience we now drop the s t a r s ) , and (3.1) remains
v.3
(4.2)
= 0.
Hence the momentum equation has reduced t o a balance between C o r i o l i s force and the pressure gradient. peostrou
balance
of r o t a t i n g flow.
T h i s is known as
and i t i s a fundamental c h a r a c t e r i z a t i o n
O f course equation (4.1) was derived a f t e r
major s i m p l i f i c a t i o n s of the physics, however it gives a remarkably good d e s c r i p t i o n of t h e b a s i c behavior of a r o t a t i n g f l u i d and we w i l l use geostrophic flow as the fundamental s t a t e t o which we w i l l add physical complexities. =lor-Prwdman
Theorem
Assume the flow is i n geostrophic balance, hence described by equations (4.1) and ( 4 . 2 ) .
TaKing t h e c u r l of ( 4 . 1 ) and
using (4.2) gives
(k*v)g 21
f
0.
(4.3)
Taylor-Proudman theorem
22
I n terms of Cartesian co-ordinates (XaYaZ), where
z
is the
co-ordinate p a r a l l e l t o the a x i s of r o t a t i o n , (4.3) can be w r i t t e n as
t h e r e i s no v a r i a t i o n i n the v e l o c i t y f i e l d with respect
i.e., to
z.
This property of geostrophic flow is known a s the
Taylor-Proudman theorem because of the foundational work of two distinguished f l u i d dynamicists, G.I. Taylor [65] and J . Proudman [56], who contributed many important r e s u l t s t o
the subject i n t h e e a r l i e r p a r t of the century.
Writing t h e vector equation (4.1) i n component form ( i n Cartesian co-ordinates with
3
= u1
2v =
u
-2u =
u
o =
u
+
+
vj
wk)
gives
ax
ay
(4.5)
az
I n vector form, equation (4.4) can be w r i t t e n a s J~
=
$x
VP, where
jH uz 3
+
v3.
Thus, as we have already observed, the v e l o c i t y f i e l d is independent of t h e v e r t i c a l co-ordinate velocity
Z,
and the h o r i z o n t a l
qH i s given as d e r i v a t i e s of the pressure
II
P(x,y)
However, the geostrophic equations alone will not uniquely determine the flow, since any function geostrophic balance.
P(x,y)
w i l l satisfy
It w i l l then be necessary t o i n t r o -
.
Geos t rophic flow
23
duce more physics ( s e e Chapter 5 ) t o determine which twodimensional pressure
P(x ,y)
describes a p a r t i c u l a r problem:
once t h i s is done the geostrophic r e l a t i o n s ( 4 . 4 ) immediately determine the h o r i z o n t a l v e l o c i t y .
-3 An i n t e r e s t i n g and f a i r l y e a s i l y observed phenomenon t h a t can be explained using t h e Taylor-Proudman theorem is t h e Taylor Column.
Consider the following experiment :
Take a right c i r c u l a r cylinder w i t h r i g i d top and bottom.
Fill the cylinder full of water i n which f i n e p a r t i c l e s (aluminum f o r example), a r e suspended. b a l l a t the bottom of the c y l i n d e r .
Place a small metal
Set the cylinder on a
uniformly r o t a t i n g t u r n t a b l e and allow enough time f o r t h e f l u i d t o achieve r i g i d body r o t a t i o n .
Without d i s t u r b i n g
the f l u i d , move the small b a l l slowly with v e l o c i t y
1
r e l a t i v e t o the r o t a t i n g f l u i d ( t h i s could possibly be done with a magnet if the b a l l were magnetized). physical parameters
c),v,U,L
such t h a t
so t h a t the flow i s geostrophic.
E
Choose a l l the
<<
1 and
E
<<
1
By shining a l i g h t through
t h e cylinder t h e alignment of the f i n e p a r t i c l e s w i l l make
i t possible t o observe t h a t t h e e n t i r e column of f l u i d above the b a l l moves as though i t were r i g i d l y attached t o the b a l l . This e f f e c t is known a s a Taylor column.
24
A Taylor Column
A Taylor Column FIGURE 2
Geostrophic flow
25
The explanation of t h i s phenomenon i s the following: cylinder has a r i g i d top perpendicular t o w
component of v e l o c i t y
is
0
k,
a t t h e top.
the
hence the normal I f the f l u i d
above the b a l l were not t o move w i t h t h e b a l l t h e r e must be flow over t h e b a l l , and such a flow requires a non-zero component of v e l o c i t y
w.
However, the Taylor-Proudman
theorem t e l l s us t h a t t h e r e can be no v a r i a t i o n i n respect t o
z = L
z , hence it i s impossible t h a t
and nonzero a t
z = z ball.
w
w
with
be zero a t
Thus t h e r e can be no flow
over the b a l l , and the same argument a p p l i e s a t any l e v e l of
z.
Hence t h e column of f l u i d above the b a l l moves as though
i t were r i g i d l y attached.
As an i n t e r e s t i n g v a r i a t i o n of t h e experiment, consider moving t h e b a l l impulsively along t h e bottom through t h e fluid.
( a ) I f t h e f l u i d i s not r o t a t i n g (n = 0 ) t h e b a l l
moves i n a straight l i n e . slowly, s o t h a t
E
( b ) I f the f l u i d i s r o t a t i n g very
i s not small and geostrophic balances does
not hold, then t h e t r a j e c t o r y of t h e b a l l w i l l be d e f l e c t e d by t h e r o t a t i o n .
(c) I f
n i s increased so t h a t
E
<<
1,
the motion is e s s e n t i a l l y 2-dimensional and the b a l l again moves i n a s t r a i g h t l i n e , but now i t c a r r i e s a column of f l u i d above i t .
We note t h a t i f the b a l l i s not kept i n
motion by a n e x t e r n a l f o r c e i t would rapidly l o s e v e l o c i t y because of transference of energy t o t h e column of f l u i d t h a t
must move with the b a l l v e l o c i t y . A Taylor column i s t h e r e f o r e a s t r i k i n g i l l u s t r a t i o n of the
2-dimensional nature of r o t a t i n g flow.
Despite t h e s i m p l i c i t y
of the geostrophic equations, they can be used t o understand an
Application t o geophysical motion
26
i n t e r e s t i n g and a t f i r s t glance, unexpected f l u i d motion. Taylor columns have even been suggested ( s e e Hide [ 2 9 1 ) a s a possible explanation f o r the "Red Spot" on J u p i t e r .
We should,
however, note t h a t t h i s explanation i s somewhat c o n t r o v e r s i a l . Alternative explanations have been proposed; Maxworthy suggests t h a t J u p i t e r ' s ''red spot", "white oval" and other c h a r a c t e r i s t i c markings a r e the r e s u l t of the v o r t i c i t y d i s t r i b u t i o n of non-linear d i f f u s i v e waves i n the presence of strong v e r t i c a l shears.
The equations ( 4 . 4 ) f o r geostrophic balance were derived by considering a f l u i d on a horizontal plane r o t a t i n g about the perpendicular a x i s .
For geophysical problems the more r e a l -
i s t i c geometry i s t h a t of Plow i n a s p h e r i c a l s h e l l ( o r a portion of a s p h e r i c a l s h e l l i n the case of a n ocean).
Let
us t h e r e f o r e consider equation ( 4 . 1 ) i n component form, i n s p h e r i c a l co-ordinates
k
=
i. cose
where
e
s i n e , q = w:
+
(r,e,+)
-6
i s co-latitude, vz
+
ui.
We w i l l a l s o e x p l i c i t l y include g r a v i t y , w r i t i n g
VG =
-g1.
The component equations a r e
e
=
-a -g ar
2v cos 6
+
2w s i n
-2u s i n
e
(4.6)
=
-
1
r sin 6
2
a+
(4.8)
Geost rophic flow
Co-ordinates i n a s p h e r i c a l s h e l l FIGURE 3
27
8-Plane approximation
28
Now i n oceanographic o r meteorological problem i t i s reasonable t o assume t h a t t h e f l u i d is constrained t o move i n a narrow s h e l l where
$, <<
1, [see Figure 31.
<<
equation then implies t h a t
can be neglected with respect t o
i n the e q u a t o r i a l regions where
The divergence
1. Hence i n (4.8)
v cos 8
cos 8
everywhere
-, 0. The narrow
s h e l l assumption a l s o enables us t o approximate radius
%
of the sphere.
w sin 8
r
by the
Thus t h e equations reduce t o
(4.10) I n most problems t h e h o r i z o n t a l v e l o c i t i e s a r e small compared with those produced by g r a v i t y , hence (4.6) approximates t o
.a2
ar
Equations (4.9),
=
-g.
(4.11)
( 4 .lo), (4.11) a r e the geostrophic approxima-
t i o n f o r a spherical s h e l l .
The equations f o r geostrophic balance i n a s p h e r i c a l s h e l l a r e of course s i m i l a r t o the Cartesian equations ( 4 . 4 ) .
They
do i n f a c t correspond exactly i f we maKe Use of the so-called "@-Plane Approximation."
Consider an ocean, o r s e c t i o n of the
atmosphere centered a t a c o - l a t i t u d e
8*:
we then assume t h a t
the l a t i t u d i n a l s c a l e of the problem is small enough t h a t we can neglect the curvature of the e a r t h and approximate the
Geos t rophic flow geometry by a tangent plane centered a t
E
The tangent plane FIGURE 4
29
8,.
[See Figure
[4]]
30
@-Plane approximation
Define l o c a l co-ordinates
eo
a(eo-e) = y, a(eO-+) s i n Let
2 cos 8 = f
= x, r
-
a = z.
( c a l l e d Coriolis parameter).
We w r i t e
f
i n a Taylor s e r i e s as f
,.
eo
‘L cos
-z
eo[e-e,l
sin
+
....
For small v a r i a t i o n s i n l a t i t u d e we approximate f
where
f o = 2 cos O o
-
and
fo +
p =
2
f
by
BY,
sin e a
The geos trophic equations then become (4.12)
fv =
-Q
iE
2 ax (4.14)
az
We have therefore approximated the problem of flow i n an ocean basin by flow on a plane r o t a t i n g about an axis ponding t o
^r a t point
(610,$o)), with
A
kt
an angular v e l o c i t y
which i s no longer constant, but v a r i e s l i n e a r l y with [Note increasing on the plane].
y
(corresy.
corresponds t o the northward d i r e c t i o n
I n l a t e r chapters we w i l l discuss i n d e t a i l
the very i n t e r e s t i n g e f f e c t t h a t t h i s l a t i t u d i n a l v a r i a t i o n has on the behavior of a r o t a t i n g f l u i d , and show how i t can be used t o explain observed oceanographic phenomena.
Geos t rophic flow
31
Clearly, equations (4.12), (4.13), (4.14) again imply t h a t u
v
and
a r e independent of
v e r t i c a l co-ordinate
.
z , where
z
i s now the l o c a l
However, combining t h i s system with
the divergence equation, V'J
=
0,
implies
Thus
hf 3Y i s no longer zero
Because
conclude t h a t
w e do
a z = 0. I n o t h e r words, t h e Taylor-Proudman theorem does not hold on
a
@-plane, where the l a t i t u d i n a l v a r i a t i o n of C o r i o l i s para-
meter
is
f
O(f3)
i s approximated by
f
-
fo
+ .@,
I n t h i s case
%
and given by
(4.16) As a f i n a l remark i n t h i s s e c t i o n we note t h a t equations ( 4 . 1 2 ) and (4.13) can be combined t o give
where
gH i s the h o r i z o n t a l v e l o c i t y .
I n o t h e r words, the
flow l i n e s of h o r i z o n t a l v e l o c i t y a r e p a r a l l e l t o l i n e s of constant pressure.
I f we were t o assume t h a t the atmosphere
i s i n geostrophic balance, which i s o f t e n a reasonable approximation, w e conclude t h a t t h e isobars on a weather map correspond t o the stream l i n e s of the flow.
Geostrophic motion
I n summary, geostrophic motion occurs when the h o r i z o n t a l components of the pressure gradient and Coriolis force a r e in approximate balance and f r i c t i o n a l e f f e c t s a r e confined t o t h i n boundary l a y e r s .
For a study of geostrophic motion as
applied t o large s c a l e motions of the oceans and the atmosphere, we r e f e r t h e reader t o the important a r t i c l e on the subject by N. P h i l l i p s [ 5 3 ] . He considers s e p a r a t e l y two types of geostrophic motion:
type 1 where the h o r i z o n t a l
length s c a l e
L
i s smaller than t h e radius of the e a r t h , and
type 2 where
L
i s comparable t o the radius of the e a r t h .
Type 1 motions a r e successfully applied t o describe such problems as wave s t a b i l i t y , v e r t i c a l propagation of energy, and Gulf Stream meanders.
Motions of type 2 have q u i t e
d i f f e r e n t properties and a r e used t o analyze the very slow motions of the i n t e r i o r of t h e ocean.
Problems
33
Dter 4 Problems I n the t e x t we discussed the two dimensional nature of strongly r o t a t i n g flow.
We remarked t h a t a b a l l
moving across a strongly r o t a t i n g flow could move i n a s t r a i g h t l i n e , but i n a weakly r o t a t i n g flow the b a l l would be d e f l e c t e d by r o t a t i o n .
Illustrate
t h i s statement by considering t h e following mathematical problem.
Consider a Taylor Column bounded
between h o r i z o n t a l p l a t e s a t
z
= 0
and
Neglect t h e e f f e c t s of boundaries i n the y
z = 1. x
and
directions.
Show t h a t the v e l o c i t y of the f l u i d i n the Taylor Column moving i n a s t r a i g h t l i n e s a t i s f i e s the l i n e a r geostrophic equations. Determine a n
O(E)
c o r r e c t i o n term t o the v e l o c i t y
t h a t s a t i s f i e s an Oseen approximation t o t h e nonl i n e a r momentum equation. Consides the f u l l Navier-StoKes equations f o r the motions of a r o t a t i n g f l u i d .
What physical assump-
t i o n s must be made i n order t h a t t h e s e equations can be used t o explain the phenomenon of a Taylor Column? Show t h a t under these assumptions
34
Problems
4.3)
Consider t h e p o t e n t i a l v o r t i c i t y e q u a t i o n s a t i s f i e d by t h e motion of a homogeneous r o t a t i n g f l u i d i n
a
p-plane,
-&(z.k + Assume t h a t
B
f ) = 0.
i s small and c o n s t r u c t a l i n e a r i z a -
t i o n of t h i s e q u a t i o n t o g i v e -d9
at
2p
+ p g = o .
CHAPTER 5
THE EKMAN LAYER
I n t h e previous s e c t i o n we i n v e s t i g a t e d the fundamental s t a t e of a r o t a t i n g f l u i d , namely geostrophic balance. equations ( 4 . l ) and ( 4 . 2 )
,
From
i t i s immediately demonstrated
t h a t t h e v e l o c i t y and pressure f i e l d s i n a geostrophic flow a r e independent of
t h e v e r t i c a l co-ordinate, and t h a t t h e qH = 21-K x v P . However, a s we have
z,
horizontal velocity
previously observed, t h e p r e s s u r e f i e l d i t s e l f can not be uniquely determined from these equations (any f u n c t i o n P(x,y)
w i l l s a t i s f y ( 4 . 1 ) and ( 4 . 2 ) ) .
Hence, t o determine
the flow we must r e t u r n t o the f u l l momentum equation given (Again f o r convenience we w i l l drop t h e s t a r s ) .
by ( 3 . 5 ) .
Let us consider t h e case where the p e r t u r b a t i o n from r i g i d r o t a t i o n i s very small s o t h a t we can l i n e a r i z e t h e equation by s e t t i n g
E = 0.
The equations of motion a r e t h e n
aa9t +
-
2K x
9
= -0P
v.9 =
+
2
Eo 9.
0.
(5- 2 )
We w i l l now perform a l i t t l e v e c t o r manipulation of these equations t o reduce t h e system t o a s i n g l e equation f o r the pressure
P.
Consider
which implies
ka(5.1)
55
The pressure equation
36 Because
0.3
= 0
the expression
i . [ v x (5.1)] becomes
and (5.3) and ( 5 . 4 ) give
From the divergence of (5.1) we o b t a i n L
2K.V
X
9
2
= V P,
Hence (5.5) and (5.6) combine to give
($ -
,,+4q
=o.
2
az
Thus the general linearized equation s a t i s f i e d by t h e pressure rotating fluid f i e l d f o r the motion a homogeneous, VISCOUS,
i s a s i x t h order, time dependent, p a r t i a l d i f f e r e n t i a l equation. We note t h a t i f , instead of completely neglecting the non-linear term, we were t o use an Oseen approximation ( i - e - , writin@; Eg-vq
=I
E ~ ~ Q C J ,where
1
the v e l o c i t y
is assumed
known), the equation f o r the pressure becomes
[% +
EU.V
-m ]
v2P+ 4
2
az
9
= 0.
I n t h e case of the geostrophic approximation E
= 0,
and
z.
= 0,
E = 0, (5.7) reduces t o
which is consistent w i t h t h e r e s u l t t h a t of
5
P
i s independent
The reduced i n v i s c i d equation i s n a t u r a l l y of lower
37
The Ekman l a y e r
order and hence can not be used t o s a t i s f y boundary conditions on t h e t a n g e n t i a l , as well a s , the normal components of velocity.
A s i s customarily the case i n a problem i n f l u i d dyna-
mics, f r i c t i o n a l e f f e c t s must be included i f t a n g e n t i a l veloc i t y conditions a r e t o be s a t i s f i e d a t t h e boundary.
We w i l l
achieve t h i s by assuming t h a t t h e viscous parameter ( i n t h i s case the Ekman number E ) i s small but non-zero.
We w i l l then
follow t h e standard techniques of asymptotic a n a l y s i s : we w i l l o b t a i n an approximate s o l u t i o n i n terms of a matched asymptotic expansion which i s composed of a n expansion v a l i d i n the int e r i o r region t h a t i s i n v i s c i d t o the f i r s t order, and an expansion t h a t i s v a l i d i n a viscous boundary l a y e r . To i n v e s t i g a t e t h e s i z e of the h o r i z o n t a l boundary l a y e r
l e t us f i r s t consider t h e steady form of equation (5.7), E V P
+
4
5 = 0. az 2
namely
(5-8)
We note t h a t t h e f i r s t term represents t h e viscous f o r c e and t h e second term C o r i o l i s f o r c e .
T’
The Ekman l a y e r co-ordinates FIGURE 5
38
The boundary l a y e r thiclzness
I n most s p a t i a l regions
2 6
E v P
is very small since
E
<<
1,
however i n a narrow region c l o s e t o the boundary, the derivat i v e s could be l a r g e . layer by s c a l i n g
z:
We examine the h o r i z o n t a l boundary write
z
=:
EaS.
Hence
Equation (5.8) becomes
Retaining only the dominant terms gives
If the boundary layer i s t o be n o n t r i v i a l , there must be
balance between t h e two terms i n equation ( 5 . 9 ) , requiring
Hence t h e horizontal boundary l a y e r which is called the EKman laver i s of non-dimensional thickness
O(E1’2)
and the equa-
t i o n f o r the boundary layer pressure is
T h i s i s a 6-th order P.D.E.,
and thus the boundary value
problem is well posed i f boundary conditions determining t h e t h r e e v e l o c i t y components a r e prescribed a t
5 =
00.
f
= 0, and
We note t h a t the balance i n (5.10) between viscous
force and Coriolis force is c h a r a c t e r i s t i c of the Ekman l a y e r . We a l s o note t h a t we would o b t a i n t h e same boundary Layer
The EKman l a y e r
39
equation f o r any boundary l a y e r i n a r o t a t i n g f l u i d on a boundary t h a t i s
co-planar with t h e a x i s of r o t a t i o n
k.
Consider a boundary surface w i t h outward u n i t normal v e c t o r
A
and l e t
fi-v
= E
-‘I2 A
becomes
?I*;
provided t h a t
The boundary l a y e r equation then
as
We will d i s c u s s i n a l a t e r s e c t i o n
0.
the s t r u c t u r e of a boundary l a y e r a t a surface where i.e.,
5.f
= 0,
p a r a l l e l t o t h e a x i s of r o t a t i o n .
As we remarked, we w i l l use the method of matched asymp-
t o t i c expansions with t h e convention t h a t 9Interior
+
gboundary l a y e r - prescribed condition atboundary =
and as
sboundary l a y e r - r O That i s , the condition a t
5
5 - a ~ . = 0
on the boundary l a y e r solu-
t i o n c o r r e c t s f o r the behavior of the i n t e r i o r s o l u t i o n a t t h e wall.
Let us denote Ekman boundary l a y e r q u a n t i t i e s by
Since the Ekman l a y e r i s expansion of
*
P
and *
O(E1/‘)
+ G 1E l l 2 + + vlE lI2+ w 0 i &E l 1’2 + B, + PlE”2 + a
-
w
=
k
=
we consider an asymptotic
i n powers of
u = u0 a v = vo 1
a
(”).
...
... ... ...
40
The boundary l a y e r equations
*
Consider t h e steady v e r s i o n of equation (5.1) i n t h e EKman l a y e r where
EV
=
+
S u b s t i t u t i o n of t h e expan-
O(E1’2).
s i o n i n t o t h i s equation gives t o f i r s t order
Now
Po
-
O = - E - 1/2
0
as
5
-
co
Po
Po
hence
.
s
= 0.
The divergence equation (5.2) gives
wo cI
hence
Q
= 0,
f; = 0.
Thus t h e Ekman l a y e r equations a r e -ZG0
=
2Go =
G
Go
uoc 5
+ G OX
Q5
o y + 9 13
= O .
Equations (5.11) and (5.12) combine t o give
(5 14)
The Elrman l a y e r since
(Go
lim
5-a
+
16,)
41
= 0.
Let us consider a p a r t i c u l a r example where t h e r e i s a r i g i d boundary a t
z = 0
with imposed v e l o c i t y ( i n t h e
r o t a t i n g co-ordinate system)
sH = Q,I 3
Let t h e i n t e r i o r v e l o c i t y Then
+
vo
+ ?o
=
n
uo = Q1 = Q~
90
so +
E 1/’2 41 +
at
z=O,
5-0
at
z=o,
5=0
... .
s a t i s f i e s t h e geostrophic equation
‘zk
x go = -vPo
v*jo Hence
Q.3.
wo = 0 .
and
Also
uo
+
uo, vo
and
wo
= 0.
a r e independent of
z
and t h e
boundary conditions t h e r e f o r e imply n
uo = Q1
Go
=
Q2
wo = 0
- Uo(X,Y)
- V,(XJY)
at
5=0
everywhere.
S u b s t i t u t i n g (5.16) i n t o expressions, (5 .l5) gives
From equation (5.13),
can be determined t o g i v e
The Ekman l a y e r S u c t i o n c o n d i t i o n
42
Now
wo = 0, hence t h e divergence e q u a t i o n i m p l i e s uox
+ v
- 0 .
OY
And f o r c o m p a t i b i l i t y , t h e imposed h o r i z o n t a l v e l o c i t y
must a l s o s a t i s f y
Q1
+
X
Since
Qz Y
= 0.
Hence (5.18) g i v e s
wo = 0, t h e h i g h e s t o r d e r boundary c o n d i t i o n on
w
becomes i;,
+
w1 = o a t
S=O,
Z=O.
Hence (5.19) g i v e s w1 = which c a n be w r i t t e n i n v e c t o r form a s
Expression (5.20) i s known a6 t h e EKman l a y e r s u c t i o n c o n d i t i o n and i t i s a very important f e a t u r e of r o t a t i n g flow. We observe t h a t somewhat remarKably a p r e s c r i b e d h o r i z o n t a l velocity
CJH
induces a small v e r t i c a l v e l o c i t y
t h i s v e l o c i t y is a n o r d e r
smaller t h a n C&).
w1
(remember We a l s o
n o t e t h a t although i t was n e c e s s a r y t o s o l v e t h e EKman l a y e r equations t o o b t a i n (5.20) , t h e e x p r e s s i o n i t s e l f i n v o l v e s
The Etrman l a y e r only t h e i n t e r i o r v e l o c i t y .
43
We t h e r e f o r e c o n s i d e r t h e Ekman
l a y e r a n a c t i v e boundary l a y e r t h a t p l a y s a c r u c i a l r o l e i n determining t h e i n t e r i o r s o l u t i o n .
From t h e i n t e r i o r momen-
turn e q u a t i o n s we observe t h a t t h e v i s c o u s term i s the
O(E1’2)
O ( E ) , hence
v e l o c i t y components of t h e i n t e r i o r flow a l s o
s a t i s f y t h e e q u a t i o n s of g e o s t r o p h i c balance implying t h a t wl,
as well as
u1
and
v l,
a r e independent of
z.
Thus
t h e Etrman l a y e r s u c t i o n c o n d i t i o n , ( 5 . 2 0 ) which was d e r i v e d
a s a boundary c o n d i t i o n h o l d i n g a t f o r a l l v a l u e s of and
z=O,
must i n f a c t hold
z, s i n c e t h e q u a n t i t i e s involved, wl, go
€&, a r e a l l independent of
z.
We w i l l g i v e a n example
t o i l l u s t r a t e t h e power of t h i s r e s u l t i n d e t e r m i n i n g t h e s t e a d y flow i n a r o t a t i n g c y l i n d e r . FxamDle of C v l i n d r i c a l Flow
z = 1
z = o
FIGURE 6
A c y l i n d r i c a l example
44
Consider a c y l i n d e r of f l u i d i n r i g i d body r o t a t i o n with angular velocity bottom p l a t e t o
n:
i n c r e a s e t h e a n g u l a r v e l o c i t y of t h e
n ( 1 + ~ ) I.n
terms of t h e dimensionless para-
meters, and in t h e r o t a t i n g c o - o r d i n a t e system, t h e boundary conditions a r e
We write
9
4
=
9
=
re^ a t 0
at
Z=O
z=1.
i n c y l i n d r i c a l co-ordinates
9
=
u;
+
ve"
(r,e,z)
as
+ wi;.
Applying t h e Ekrnan l a y e r s u c t i o n c o n d i t i o n (5.20) a t
z=O
gives
To analyze t h e EKman l a y e r a t
and
a az -
-E-
''' a t
.
z=1 we w r i t e
1 - z = .gE1/2
Hence we o b t a i n a s i m i l a r e x p r e s s i o n
f o r t h e s u c t i o n c o n d i t i o n , but with a s i g n change, namely
where
€ &
is t h e imposed v e l o c i t y of t h e t o p s u r f a c e .
Applying t h i s c o n d i t i o n t o t h e problem g i v e s
Since t h e problem i s axisymmetric, we will assume t h a t t h e s o l u t i o n is a l s o axisymmetric, i . e . , A = 0. (5.21) and ( 5 . 2 2 ) are independent o f
all
z.
ae
Expressions
z and hence hold f o r
Equating t h e s e two e x p r e s s i o n s g i v e s
The Ekman l a y e r
therefore
45
v = r/Z.
S u b s t i t u t i o n of t h i s value f o r
v
w1 =
-
i n t o ( 5 . 2 2 ) gives -1 2 -
The divergence equation f o r axisymmetric geostrophic flow i s hence
ru i s a constant, which w i l l be equal t o zero i f the
s i d e walls a r e r i g i d .
Thus t h e f i r s t order steady flow i s i m -
mediately obtained from the Ekmn l a y e r conditions a t t h e t o p and bottom boundaries.
A s one might i n t u i t i v e l y expect, we
f i n d t h a t t h e i n t e r i o r angular v e l o c i t y increases t o b e t h e average of t h e top and bottom boundary v e l o c i t i e s , and t h a t t h i s i s accompanied by a small constant v e r t i c a l v e l o c i t y .
z = 1 O(E1’*)
r/
z = o
V e r t i c a l v e l o c i t y component driven by Elcman l a y e r suction. FIGURE 7
46
The Elcman l a y e r s p i r a l
-
Of course t o complete the problem i t i s necessary t o examine the s i d e wall layers which must e x i s t t o r e t u r n t h e v e r t i c a l
mass f l u x .
We w i l l consider t h i s problem i n a l a t e r s e c t i o n .
I n c y l i n d r i c a l co-ordinates the Ekman l a y e r equations a r e
again
I f we consider the case where the boundary condition i s
2
=
rO
at
5=0
and assume t h a t t h e i n t e r i o r flow is un-
a f f e c t e d , then t h e s o l u t i o n I n the Ekman l a y e r i s
5 + iG
$ = e-5
thus
-
= i r e ( l+i 1t ,
sin 5,
$ = e-5
Hence a hodograph plane diagram i n which n
against
V
5
cos 5 .
is plotted
gives the c h a r a c t e r i s t i c Ekman l a y e r s p i r a l ,
which is sketched i n Figure 8.
The Ekman l a y e r
The EKman l a y e r s p i r a l FIGURE 8
s TransDo r t I n t h e E K m a n
The
O(1) =
. I . .
ui
v e l o c i t y i n the EKman l a y e r i s
+
-1
vj
( r e t u r n i n g t o Cartesian co-ordinates).
Hence t h e mass t r a n s p o r t
i s given by
Now Hence s u b s t i t u t i n g f o r
and
i
from (5.17) gives
47
The spin-up time s c a l e
48
=
+ i; x
$[(cpJo)
I f we again assume t h a t transport is a t
z0
is zero, we observe t h a t the mass
45O t o the imposed v e l o c i t y 9.
$Din-ur, Time SI n t h e previous
WOrK
we have discussed the steady flow i n
the i n t e r i o r and the Ekman l a y e r .
We w i l l now consider the
time s c a l e on which t h i s i s achieved. The time-dependent form of the EKman l a y e r equations (5.11) and (5.12) give
aii 2 - Go
=
iio
55
The s o l u t i o n of t h i s system, together with appropriate bounda r y conditions, can be obtained using Laplace transforms ( s e e Greenspan [ 2 6 ] ) , and i t i s found t h a t t h e time dependence goes a s
erf(2it)
and
erfc((l+i)t”‘).
Hence, a s we
would expect from t h i s system of equations where each term i s 0(1), the time dependence decays t o give a steady s o l u t i o n on
a time s c a l e of
O ( 1 ) . I n other words, the steady Ekman layer
has developed a t t h e boundary a f t e r a couple of revolutions. The steady Exman l a y e r w i l l now modify t h e i n t e r i o r v e l o c i t y by means of the c i r c u l a t i o n induced by E K M n layer suction.
49
The Ekman l a y e r
This process i s known a s spin-up ( o r spin-down i f t h e boundary v e l o c i t y i s decreased r e l a t i v e t o
n), and t h e time taken f o r
the i n t e r i o r v e l o c i t y t o reach a new steady s t a t e i s c a l l e d t h e spin-up time s c a l e . Let us consider t h e time dependent equations s a t i s f i e d by the
and
O(1)
i n t e r i o r flow:
O(E112)
v.3 Thus
= 0.
x (5.25) gives
k.V
Now the v e r t i c a l v e l o c i t y boundaries is
0(E1”).
w
induced a t t h e top and bottom
I f t h e angular v e l o c i t y of both t h e
t o p and t h e bottom is increased, t h e induced v e l o c i t y a t
z
and
= 0
z = 1 w i l l be of opposite s i g n s ( r e c a l l t h e EKman
layer analysis).
in w
Hence t h e order of
per Unit change i n h e i g h t , i s
g, which
i s t h e change
O(ElL2).
We a r e assum-
ing i n i t i a l l y t h e f l u i d i s i n r i g i d body r o t a t i o n with
k-2 =
0:
i n t h e f i n a l steady s t a t e t h e angular v e l o c i t y of
t h e f l u i d is increased t o t h a t of t h e boundary, hence i n our scaling,
k-9 =
O(1).
Thus we observe from (5.25) t h a t such a
balance of terms r e q u i r e s t h a t t h e time s c a l e on which becomes
O ( 1) must be
spin-up time s c a l e i s
O(E-1’2)
:
o(E-~/~).
i .e.,
k-5
t h e non-dimensional
Spin-up c i r c u l a t i o n
50
/
/
/
/
/
/
/
1
/ \ \ \
\
\
\
\ I
\
\
\
\
\
\
? Tr I
I
I
I
/
/
\
I
\
I
I
\
\
\ \
\
\
\ \
\
/ \
\
\
\
\
\
\
/ /
\ \
I
I
I
I
I
Spin-up c i r c u l a t i o n
FIGURE 9 We can describe spin-up i n physical terms i n the example of a cylinder where the boundary v e l o c i t y i s increased from
to
n(l+c).
n
After a couple of revolutions Ekman l a y e r s form
on the upper and lower boundaries.
The f l u i d i s spun rapidly
outwards and f r i c t i o n a l forces allow the angular v e l o c i t y t o increase. ior.
A small v e r t i c a l v e l o c i t y i s induced i n the i n t e r -
We can consider the Ekman layer a s "sucking in" f l u i d
51
The Ekman l a y e r
from the i n t e r i o r t o replace the f l u i d t h a t i s spun r a d i a l l y outward.
This s u c t i o n gives r i s e t o a s t r e t c h i n g of the
vortex l i n e s and hence an increase of the i n t e r i o r v o r t i c i t y (another very common example of t h i s process i s the s t r e t c h i n g of vortex l i n e s by g r a v i t y a s water drops down the d r a i n i n a bathtub:
t h i s spins up the f l u i d i n t o a v o r t e x ) .
Equation
(5.25) gives a mathematical d e s c r i p t i o n of the process: v e r t i c a l gradient i n vorticity.
w
a
gives r i s e t o a n i n c r e a s e i n the
When t h e f l u i d is spun-up t o the increased angu-
l a r v e l o c i t y of
n(l+E)
the v o r t i c i t y ceases t o change and
equation (5.25) reduces t o the steady form
which i s a now f a m i l i a r r e s u l t contained i n the TaylorProudman theorem. The mechanism and the time s c a l e of spin-up i s of g r e a t importance t o geophysical f l u i d dynamics because i t provides a very rapid way f o r a boundary condition t o be communicated t o the i n t e r i o r flow.
Consider a non-rotating f l u i d where
viscous d i f f u s i o n i s the only means of communication.
When
the boundary v e l o c i t y i s perturbed, the time s c a l e on which the i n t e r i o r steady s t a t e i s achieved i s the viscous d i f f u s i v e s c a l e of
O($).
I n the r o t a t i n g problem, the spin-up
time s c a l e , i n dimensional terms, i s
Since
v
tional to
i s small, t h e spin-up time s c a l e , which i s propor-
v-~",
is m c h f a s t e r than t h e d i f f u s i v e s c a l e
52
Tea-cup experiment
which is proportional t o
v-’.
Sea-CuD ExDeriment We suggest performing the following simple experiment t o i l l u s t r a t e spin-down.
Take a transparent Pyrex d i s h , prefer-
ably w i t h s t r a i g h t s i d e s ; h a l f f i l l the d i s h w i t h water and add cooked t e a leaves which should sink t o the bottom.
t e a leaves tend t o f l o a t ] .
[Fresh
S t i r the water uniformly u n t i l
the water is i n r i g i d body r o t a t i o n .
Cease t o s t i r and ob-
serve and time the spin-down process.
It is very easy t o
follow the motion of the t e a leaves i f t h e d i s h is placed on a n overhead p r o j e c t o r and the experiment is projected onto a screen.
It w i l l be seen t h a t the tea-leaves s p i r a l i n t o the
c e n t e r of the d i s h w i t h reduced angular v e l o c i t y ; they ceaee t o move a f t e r a time s c a l e
’’‘
o(L/(n
T h i s is, of
vl/”)).
course, the predicted motion in the Ekman l a y e r when the angular v e l o c i t y of the boundary is decreased r e l a t i v e t o the fluid
.
Example:
Note: i.e.,
L = 5cm, 0 = Z/sec,
2 v = 0.01 cm /sec.,
spin-down time s c a l e
a
Diffusive time s c a l e
=
% = 35 s e c s . r;4
hence the
= 2500 secs.
if the process were purely d i f f u s i v e , the time f o r
motion t o s t o p would be very much longer. This experiment is only an approximation t o t h e o r e t i c a l spin-down s i n c e the perturbation of the boundary v e l o c i t y is not small, i n f a c t , t h e Rossby number
E =
1, hence the non-
53
The EKman l a y e r l i n e a r terms can not s t r i c t l y be neglected.
However, the
experiment does produce a spin-down time t h a t i s remarkably c l o s e t o the predicted value. We note t h a t t h e phenomena of spin-up o r spin-down of a f l u i d t h a t i s i n i t i a l l y i n r o t a t i o n a r e equivalent ( i n t h e l i n e a r theory).
However, the problem of spin-up of a body of
f l u i d t h a t is i n i t i a l l y a t r e s t i s fundamentally d i f f e r e n t s i n c e i n t h i s case i t i s not i n i t i a l l y possible t o induce v o r t i c i t y by t h e mechanism of vortex l i n e s t r e t c h i n g .
Viewed
i n terms of the equations, i t is c l e a r l y the case t h a t i f t h e f l u i d i s i n i t i a l l y a t r e s t , the C o r i o l i s term i s missing from equation (5.23).
Hence the s t r e t c h i n g term
e x i s t s i n the v o r t i c i t y equation (5.25),
no longer
and a c r u c i a l mechan-
i s m by which v o r t i c i t y can be changed i n a r o t a t i n g f l u i d i s absent.
Problems
54 Chapter 5 P r o b l e w
Derive the f-rst order steady
3w
i n a cy Lnd e r
with the following boundary conditions.
3
9= C J
-r8
at
z=O
+r^e
at
z=1
r5
at
z=1.
=
=
Legend has it t h a t the oceanographer Ekman was led t o i n v e s t i g a t e the viscous boundary l a y e r a t the surface of the ocean a f t e r observing an iceberg move a t r i g h t angles t o the w i n d .
Explain t h i s
phenomenon by showing t h a t t h e mass t r a n s p o r t i n the Ekman layer i s a t wind s t r e s s
9 0 '
t o a n imposed surface
z.
Consider a r o t a t i n g homogeneous viscous f l u i d bounded by a surface with outward u n i t normal
n.
vector
.)
Show t h a t t h e surface boundary l a y e r has the form
of an EKman layer everywhere except i n the regions where
n - b = 0. A
*
What i s the thickness of the Ekman layer? Why does the Ekman l a y e r a n a l y s i s break down when
= 01
55
Problems
5.4)
Determine t h e steady flow d r i v e n by t h e Ekman l a y e r i n a sphere when t h e lower hemisphere i s r o t a t i n g with angular velocity
n(l-c)
and t h e upper
hemisphere i s r o t a t i n g with angular v e l o c i t y n(i+c).
This Page Intentionally Left Blank
CHAPTER 6 THE GEOSTROPHIC MODE
We have seen t h a t i n r o t a t i n g f l u i d motion t h e r e a r e t h r e e important time s c a l e s ; the l a y e r develops; the and the
O(E’l)
residual effects.
O(E-u2)
O(1)
s c a l e on which t h e Ekman
s c a l e on which spin-up occurs;
s c a l e on which t h e r e is viscous decay of We will now d i s c u s s t h e t r a n s i e n t motion
t h a t occurs before the steady s t a t e i s achieved by t h e mechan-
ism of spin-up.
To do t h i s we w i l l assume t h a t t h e i n t e r i o r
s o l u t i o n can be w r i t t e n a s a superposition of a l l the I n v i s c i d modes, namely
so
i s the mode t h a t corresponds t o eigenvalue zero.
This
mode c l e a r l y s a t i s f i e s the equations of geostrophic balance and
i t is c a l l e d the geostrophic mode.
Since we have Observed t h a t
t h e steady geostrophic mode describes the flow on t h e time s c a l e we could reasonably expect
57
-
O(E 1/2 )
The gesotrophic mode i n a sphere
58
The time-dependent l i n e a r i z e d i n v i s c i d equations a r e
2+
zi; x
q = -VP L)
v.3 Hence the equations f o r
so zir x
= 0.
and
CJm
so =
are (6.2)
-VB0
and
I n t h i s s e c t i o n we w i l l i n v e s t i g a t e the solutions of (6.2) and (6.3) f o r the geostrophic mode i n a closed container.
I n the
following s e c t i o n we w i l l study the wave-like s o l u t i o n s t o (6.4) and (6.5) which a r e c a l l e d i n e r t i a l modes. GeostroDhic Mode i n a S ~ h a Let us consider the example of flow i n a sphere. boundary condition on (6.2) and (6.3) i s s p h e r i c a l geometry becomes,
9.;
=I
0, where
r a d i a l vector i n s p h e r i c a l co-ordinates.
9.;
= 0,
The which i n
? i s the u n i t [we note t h a t a
t a n g e n t i a l boundary condition can not be imposed upon the i n v i s c i d equations]
.
59
The geostrophic mode
I l l u s t r a t i o n of s p h e r i c a l and c y l i n d r i c a l co-ordinates FIGURE 10
Let
be s p h e r i c a l co-ordinates and
(r,e,4)
c y l i n d r i c a l co-ordinates.
Hence
;.so
=
(k
cos
e +
TaKing
k. ( 6 . 2 )
sin 0)
1 [T k x
Thus t h e boundary c o n d i t i o n
‘-so =
A
0
(R,+,z)
gives
vio
implies
+ wkl.
be
60
and hence
w
-
=
Geostrophic contours x ofo
- $ % fi.k
+w
e
cos
x vOo, on
= 0,
r = a.
Now t h e geostrophic equations i m p l y t h a t w
value of
must be the same a t
and a t
0
(6 * 7 ) Hence the
= 0.
(n-0).
From
(6.7) we observe t h a t t h i s can only occur i f
Writing
sin 0
we observe t h a t condition (6.8) re-
as
quires the p o t e n t i a l
)o t o satisfy
The above condition, together with the f a c t t h a t t h e geo-
ar 2
s t r o p h i c mode s a t i s f i e s
= 0,
implies t h a t the geostrophic
p o t e n t i a l i n s p h e r i c a l geometry must be a function only of the c y l i n d r i c a l radius, i . e . ,
fo
= o ~ ( R ) . Thus from
-’^o 8oo aR
- 2
(6.6)
(6.9)
(R).
Thus i n geostrophic flow the f l u i d moves around each c i r c l e of l a t i t u d e of radius
ar
2 bR
(R).
R
w i t h a constant v e l o c i t s of
I n a sphere t h e r e e x i s t s two c i r c l e s of l a t i t u d e
corresponding t o a given value of
R
(one i n the upper hemi-
sphere and a symmetric one i n the lower hemisphere). height
h
The
of a v e r t i c a l column bounded by these two c i r c l e s
i s a function of the radius
R.
Clearly the v e l o c i t y given
The geostrophic mode by expression (6.9) implies t h a t each COluttUl of f l u i d of height
h(R)
moves a s a u n i t , maintaining constant length,
around the boundary c i r c l e s which a r e c a l l e d geostrophic contours.
(See Figure 11).
I
Geostrophic contours i n a sphere FIGURE If
61
Free, guided and blocKed regions
62
BostroD-lv
Free. Guided. and
I n a general geometry the existence of such closed geos t r o p h i c contours bounding a column of constant height allows geostrophic motion t o occur.
h,
It i s possible t o extend
the a n a l y s i s t h a t we have given f o r the sphere t o any closed container where the boundary can be covered by geostrophic contours.
A formulation of t h e general theory, together with
some supporting experimental r e s u l t s is given by Greenspan and Howard [ 2 5 ] .
I n an a r b i t r a r y geometry it i s u s e f u l t o
c l a s s i f y the boundary i n t o t h r e e t y p e s of regions ( s e e Howard
Geostrophically f r e e i n which every contour lying
i n the upper and lower boundary surface i s a geostrophic contour:
an example of t h i s i s a c y l i n d e r .
Geostrophically guided i n which it i s possible t o cover the boundary with a unique s e t of geostrophic contours:
a n example of t h i s i s a sphere.
Geostrophically blocked where geostrophic contours do not e x i s t :
an example of t h i s i s a s l i c e d
cylinder i n which the top and bottom a r e not p a r a l l e l . The problem of steady flow i n a cylinder, which i s geostrop h l c a l l y f r e e , i s degenerate because the height constant.
h
is a
I n t h i s case the geostrophic equations give l e s s
information, and w i l l be s a t i s f i e d by any pressure
cg(x,y).
However, as we i l l u s t r a t e d i n Chapter 5, i t i s possible t o solve the problem by introducing the EKman boundary l a y e r .
The geos t rophic mode
63
I n the case where the boundary i s geostrophically blocked i t i s impossible t o o b t a i n exact geostrophic balance and the
steady geostrophic mode b r e a m down i n t o an i n f i n i t e s e t of' low frequency waves.
These a r e c a l l e d Rossby waves which we
w i l l study i n Chapter 8.
For a container whose boundary i s geostrophically guided, a n a l y s i s s i m i l a r t o t h a t given f o r a sphere shows t h a t the
# o can be w r i t t e n as a f u n c t i o n purely of
pressure
(note f o r a sphere radius where
R
2
=
a'
- %). 2
a , we can w r i t e
#o
=
h
P0(h)
The v e l o c i t y i s then given by the
express i o n
(6.10) Where
&,
and
n,g
bottom such t h a t
a r e the vectors normal t o the top and
&-k
= 1 and
= -1.
C irc u l a t ion Let us consider the c i r c u l a t i o n around a geostrophic contour
r = 4; 9 . i ~ . C
I n the case of a sphere we use expression (6.9) t o o b t a i n
(6.11)
Hence the geostrophic mode possesses non-zero c i r c u l a t i o n
64
Circulation of the geostrophic mode
around each geostrophic contour.
I n the case of a general geostrophically guided geometry, the vector p a r a l l e l t o the geostrophic contour w i l l be perpendicular t o both
*&,
and
&.
Thus we can write
and expression (6.10) implies (6.12)
Hence, i n general the geostrophic mode possesses c i r c u l a t i o n .
Problems
65
ChaDter 6 Problem 6.1)
Consider flow i n a geostrophically guided region. Show t h a t no geostrophic flow can have any n e t f l u x through any s u r f a c e h(x,y) curve
6.2)
X
of constant height
associated w i t h a c l o s e d geostrophic C.
I d e n t i f y the labeled regions i n the following diagram as e i t h e r geostrophically guided, free o r blocked.
3-dimensional figure
l e v e l curves
h(x,y)
66
Problems
6.3)
Let
I: be t h e s u r f a c e of a g e o s t r o p h i c a l l y guided
c o n t a i n e r where t h e top and bottom a r e defined by z = z,(x,y)
and
z = z,(x,y)
respectively.
Write t h e normal v e c t o r s ~
Let
C
f
~
=
v kz T - and
=
-(k
- ozg).
be a geostr-phic contour and l e t
h
be
t h e height of t h e column bounded by t h e a s s o c i a t e d p a i r of geostrophic contours. a)
Show t h a t t h e geostrophic p r e s s u r e f u n c t i o n purely of
b)
.
Show t h a t t h e geostrophic v e l o c i t y &O=
6.4)
h
- 1 3 2 ah
go
is a i s given by
ax&*
Consider a r o t a t i n g sphere of f l u i d .
I n the
r o t a t i n g co-ordinate system t h e i n i t i a l v e l o c i t y i s given by & C
=
Ak,
where
A
i s a constant.
Determine t h e geostrophic mode.
CHAPTER 7 INERTIAL MODES
I n S e c t i o n 6 we assumed t h a t t h e time dependent p a r t of t h e flow can be represented by a s u p e r p o s i t i o n of normal modes. These a r e c a l l e d i n e r t i a l modes and s a t i s f y equations ( 6 . 4 ) and ( 6 . 5 ) , t o g e t h e r with t h e boundary c o n d i t i o n
9.A
t h e prescribed i n i t i a l conditions f o r t h e problem.
and
= 0
Again t h e
t a n g e n t i a l boundary conditions can not be s a t i s f i e d by t h e
O( I) problem which i s e s s e n t i a l l y i n v i s c i d .
The following
manipulation, which should by now be f a m i l i a r t o t h e r e a d e r , gives t h e equation f o r t h e p r e s s u r e f i e l d We compute
and
k.(6.4)
ix,
:“,am
and
k
x (6.4)
Bm. t o give
+ “r~k-$,-~~l (7.2) =
-kxm,.
S u b s t i t u t i o n of (6.4) and (7.1) i n t o ( 7 . 2 ) gives
(7.3) Because
v .Q = 0, t h e divergence of equation ( 7 . 3 ) g i v e s -m “m z (7.4) - ‘ 2 V B r n
67
x
68 Hence
Bm
1x1
r e a l and
<
2
satisfies
which I s Known a s Poincark's equation. We will l a t e r show t h a t
A
equation (7.5) is hyperbolic.
9m-g=
0
is r e a l and
IAI
<
2,
thus
However t h e boundary condition
on the closed boundary
C
of t h e container is of
the type u s u a l l y associated with a n e l l i p t i c equation.
In
general, Poincar'e's equation would be i n c o n s i s t a n t with the boundary condition values
Am
9.;
= 0
on
C, but a t p a r t i c u l a r eigen-
there e x i s t s a s o l u t i o n t o t h e problem:
this
property, of course, is used t o determine .,A A rigorous a n a l y s i s of the i n i t i a l value problem with prescribed boundary conditions, including t h e study of the inv i s c i d spectrum as the l i m i t of the VISCOUS s o l u t i o n and a determination of t h e completeness of t h e normal modes, is very d i f f i c u l t and w i l l not be attempted here.
However, i t
is possible t o e x h i b i t c e r t a i n f a i r l y simple p r o p e r t i e s of the normal modes.
u Let [ (6.4)
3:
be the complex conjugate of
Qm.
Computing
gives
I n t e g r a t i n g (7.6) over the volume of the container gives
69
I n e r t i a l modes
From Stokes
However,
theorem
V*C&
*
= 0,
*
and
Sm-n = 0
on the boundary, hence
(7.7) becomes
We write
-
= A
Q -Dm
+
*
iB, Q r
rm
-- -
= A
LB.
Thus
Hence we conclude t h a t
am is r e a l and
It is possible t o eliminate t h e case
manner.
Assume
x
= 2
Computing
s*
+ ax$
x (7.9)
iS*XS + Hence
< 2.
A = 2
in the following
is an eigenvalue; t h e eigenfunction then
s a t is f i e s is
lXmI
=
-
+
va.
(7.9)
gives iQCJ1z
-
(cJ* k)g =
4i.s*xg + 191’ - Iq.2
L? =
-
+
9*xoa.
- 5 (irX9*).VP.
and from t h e complex conjugate of (7.10) we have
(7.10)
(7.11)
O r thogona l i t y
70
icxLJ*
V.S* =
since
(7.12)
.V@
0.
7.12) and i n t e g r a t i n g over
Combining (7.11) and
Evaluating (7.8) a t
shows t h a t the
km = 2
gives
V
L.H.S.
of (7.13)
i s zero, hence
v#
and
= 0
Q*E = 0.
Thus (7.10) becomes
which coupled with t h e divergence equation implies t h a t
v-s
-
Since
Q-G = 0
v.kxg
and
= 0
we can write
Q =
above conditions we observe t h a t functions of
x
and
y
= 0.
ui
+
u
and
and applying the
v?
a r e analytic
v
f o r each value of
z.
9-i=
E.
Thus
$. must
satisfy
v 29
= 0
with
T h i s problem has the unique s o l u t i o n
0
on
Q s 0.
-?
no n o n - t r i v i a l eigenfunction corresponding t o
Thus t h e r e i s A = 2.
Orthoaonality Let
(SmjAmm)and
eigenvalues
(6.4)
.
, hence
Both
$
Sn,Xn) and
be d i s t i n c t eigenfunctions and
%
s a t i s f y a form of equation
I n e r t i a l modes
71 (7.14)
and
A d d i t i o n of ( 7 . 1 4 ) and (7.15) and i n t e g r a t i o n over t h e volume
v.C&
Now
gives
V
*
=
v.9 n
= 0
and
r
*
n-C.Jrn=
= 0
on
2 , thus
a p p l y i n g StOKeS' theorem t o (7.16) g i v e s
i -n .Q*dv Q
= 0,
rn
n,
V
i.e.,
d i s t i n c t eigenfunction a r e orthogonal.
We note t h a t t h e proof f o l l o w s through if
A n = 0, hence
t h e g e o s t r o p h i c mode i s o r t h o g o n a l t o each i n e r t i a l mode i n t h e s e n s e of t h e energy i n n e r product g i v e n by ( 7 . 1 6 ) . &an C i r c u l a t i o n Theorem A s we showed i n S e c t i o n 6 , t h e c i r c u l a t i o n
r
of t h e
g e o s t r o p h i c mode i n t e g r a t e d around a g e o s t r o p h i c c o n t o u r i s non-zero.
We w i l l now show t h a t t h e c i r c u l a t i o n of a d e p t h
averaged i n e r t i a l mode i s z e r o ; thus t h e g e o s t r o p h i c mode must c a r r y a l l t h e c i r c u l a t i o n p r e s e n t i n t h e i n i t i a l conditions. Let mode,
<sm>b e
t h e d e p t h averaged v e l o c i t y of a n i n e r t i a l
I n i t i a l v a l u e problem
where
z = z
container.
d e f i n e s t h e t o p and
T
z = z
B
t h e bottom of t h e
I n t e g r a t i n g e q u a t i o n ( 6 . 4 ) with r e s p e c t t o
from t o p t o bottom gives ihm<2J
+
2;
X
<9,>
= -0
sz,
ZT
idz
+ PT&
+ o*%
z
(7.17)
Hence, iXmV
since
v.<,&J
x <€J&=
= 0
and
v x (IT* + P*%),
&
= 0.
(7.18)
Computing t h e s u r f a c e
i n t e g r a l of (7.18) on a cap bounded by a g e o s t r o p h i c contour C
on t h e s u r f a c e of t h e c o n t a i n e r , and applying Gauss'
theorem g i v e s
However a s we remarked i n
S e c t i o n 6, t h e v e c t o r p a r a l l e l t o
a g e o s t r o p h i c contour w i l l be p e r p e n d i c u l a r t o hence
-+ads
provided t h a t
=
-%.cis
X,
= 0.
0.
% -
and
-%,
Thus (7.19) g i v e s t h e r e s u l t t h a t
Hence only t h e depth averaged g e o s t r o -
phic mode can c a r r y c i r c u l a t i o n . J n i t i a l Value Pr oblem I f we assume t h e completeness of t h e s e t of modes we a r e now a b l e in p r i n c i p l e , i f not i n p r a c t i c e , t o w r i t e down a
I n e r t i a l modes
73
s o l u t i o n t o t h e i n i t i a l value problem f o r flow i n a r o t a t i n g c o n t a i n e r whose boundary i s composed of geostrophic curves. We can attempt t o give t h e s o l u t i o n a s a Fourier s e r i e s expansion i n terms of t h e orthogonal i n e r t i a l modes and t h e geos t rophic mode :
Let t h e i n i t i a l c o n d i t i o n be of t h e modes we then have
-
q = u(r).
- *
From o r t h o g o n a l i t y
And from t h e mean c i r c u l a t i o n theorem
C
where
C
C
is a geostrophic contour.
Thus
so
i s t h e unique
geostrophic flow t h a t c a r r i e s t h e mean c i r c u l a t i o n of t h e i n i t i a l depth averaged flow.
I n o t h e r words, t h i s i s t h e
property t h a t f o r a p a r t i c u l a r i n l t i a l value problem, d e t e r mines t h e s p e c i f i c value of t h e f u n c t i o n
I O ( h ) , from a l l t h e
p o s s i b l e geostrophic p r e s s u r e f i e l d s allowed by t h e c o n t a i n e r , which i s t h e unique geostrophic s o l u t i o n . Let us r e c a l l t h e problem i n t h e case of a g e o s t r o p h i c a l l y f r e e boundary (e.g.,
the c y l i n d e r ) .
I n t h i s case any p a i r of
closed contours i n t h e upper and lower bounding s u r f a c e s a r e geostrophic contours.
Hence we s e e t h a t f o r such geometry
74
I n e r t i a l modes i n a c y l i n d e r
i t i s necessary t o Know t h e i n i t i a l mean c i r c u l a t i o n about
every c l o s e d c o n t o u r , which ( f o r a simply connected r e g i o n ) , i s e q u i v a l e n t t o r e q u i r i n g t h a t t h e v e r t i c a l component of t h e i n i t i a l v o r t i c i t y be s p e c i f i e d .
I n o t h e r words, the unique
s o l u t i o n c a n only be determined when s t r o n g e r requirements a r e placed on t h e i n i t i a l d a t a .
From t h e s e o b s e r v a t i o n s and t h o s e
i n Chapter 6 , we conclude t h a t although t h e concept of geos t r o p h y is v a l u a b l e i n computing t h e s t e a d y flow i n a geos t r o p h i c a l l y guided geometry, i t i s l e s s powerful when t h e problem is such t h a t t h e f l u i d i s s u b j e c t t o two c o n s t r a i n t s , namely t h e geometry and t h e e f f e c t s of r o t a t i o n , t h e p o s s i b l e flow p a t t e r n s a r e s t r i c t l y l i m i t e d .
However i f t h e two con-
s t r a i n t s c o i n c i d e , a s they do i n a c y l i n d e r , l e s s i n f o r m a t i o n i s immediately a v a i l a b l e from t h e g e o s t r o p h i c a n a l y s i s . D e r t i a l Modes i n a C . v l i n d u We have shown t h a t t h e i n i t i a l v a l u e problem c a n be solved
i n terms of a F o u r i e r s e r i e s expansion i n t h e i n e r t i a l modes and t h e g e o s t r o p h i c mode.
However t h e d e t e r m i n a t i o n of t h e
e i g e n f l m c t i o n s a s s o l u t i o n of P o i n c a r e ' s e q u a t i o n (7.5) with z e r o normal v e l o c i t y i s i n g e n e r a l , v e r y d i f f i c u l t , and has only been c a r r i e d out f o r a few r e l a t i v e l y simple geometries. Aldridge and Toomre [ 11 , have g i v e n g e n e r a l polynomial formulas f o r t h e s p h e r i c a l and s p h e r o i d a l modes.
In the case
of a s p h e r e , i t i s a l s o p o s s i b l e t o compute t h e e f f e c t of v i s c o s i t y on model decay ( s e e Greenspan [ 2 6 ] ) ,
and r e s u l t s
a r e i n good agreement with experimental d a t a .
The s p h e r i c a l
75
I n e r t i a l modes problem has a t t r a c t e d considerable a t t e n t i o n because of i t Is obvious geophysical relevance.
We w i l l now give a s an example of t h e mathematics involved
in a simple geometry, t h e computation of t h e normal modes in a cylinder.
This problem was f i r s t considered by Kelvin [ 3 3 ]
and t h e r e have been many recent additions t o t h e theory.
We
wish t o solve
(7.20)
with boundary conditions
~ a =k o
-
e
6
Q - r= 0
at
z = 0,1;
at
r = a.
The co-ordinates a r e c y l i n d r i c a l co-ordinates w r i t e t h e boundary conditions i n t e r m of
@
(r,B , z )
.
To
we observe
equation (7.1) gives
hence,
ar az =
0
at
z = 0,l.
(7.21)
Also the h o r i z o n t a l components of the momentum equation (6 . 4 )
s a t i s f i e d by the i n e r t i a l mode give
76
Cylindrical solution
Hence t h e boundary c o n d i t i o n a t
r = a
becomes
We w i l l now s e e k s o l u t i o n s t o e q u a t i o n (7.20) with boundary
c o n d i t i o n s ( 7 . 2 1 ) and ( 7 . 2 2 ) u s i n g t h e method of s e p a r a t i o n of v a r i a b l e s .
We w r i t e 0 = F(r)eiKe cos mz,
where
K = $1, 2 2 , .
..
[Note t h e boundary c o n d i t i o n s a t
n = +1, +2,.
z = 0
and
that a Fourier cosine s e r i e s i s appropriate].
.. 1 indicate
Substitution
of t h i s form of s o l u t i o n i n t o e q u a t i o n (7.20) g i v e s
-5 F + (+ r 2
-1 b r4 r
( y ) ,where
Hence
and
F = JIKl
J
IKI
is t h e
k)-th
a
2 2
1) n n F = 0 .
(7.23)
satisfies
Bessel function.
From t h e boundary
c o n d i t i o n ( 7 . 2 2 ) we o b t a i n t h e t r a n s c e n d e n t a l e q u a t i o n f o r namely iA
;
u,
I n e r t i a l modes Thus
a = 5 mntc
which i s the
and the eigenvalue
,,x
m-th
77
p o s i t i v e zero of
i s given by
=
e(l+
k? -1/2 k 2 z) .
nn a
We note t h a t as one would expect i n a 3-dimensional problem, the eigenvalue spectrum is a t r i p l y i n f i n i t e s e t . Hence i t i s c l e a r t h a t even i n the r e l a t i v e l y simple geometry of a cylinder the eigenfunctions giving the i n e r t i a l modes a r e f a r from simple. J?&gg W a ve S o l u t i o a
We w i l l now i n v e s t i g a t e i n e r t i a l waves by SeeKing a plane wave s o l u t i o n i n a n unbounded f l u i d .
[We note t h a t i n a n
unbounded f l u i d our arguments f o r excluding hold.]
X = 2
no longer
We seeK a s o l u t i o n t o Poincarkls equation of the form
where the wave vector
-5
frequency of the wave.
=
+ u2j + K3L,
and
i s the
I n an unbounded f l u i d i t i s no longer
necessary t o s a t i s f y boundary conditions, thus be t r e a t e d a s constants.
A
and
i
can
S u b s t i t u t i o n of t h e plane wave form
i n t o Poincark's equation gives
Plane wave s o l u t i o n
78
L 2 ( K 12
+ u22 +
ns> 2
-
4~~ 2 =
0,
and
(7.24)
Thus t h e frequency depends on t h e d i r e c t i o n b u t not t h e magnitude of t h e wave v e c t o r .
From t h e d i s p e n s i o n r e l a t i o n (7.24),
t h e phase v e l o c i t y and t h e group v e l o c i t y c a n be computed. The phase v e l o c i t y constant
-
is t h e v e l o c i t y of s u r f a c e s of
C i s the ‘g v e l o c i t y with which energy is t r a n s p o r t e d by t h e wave. ($a$
Lt)
EP
and t h e group v e l o c i t y
The phase v e l o c i t y
c -“2=+2. -P - In1
2U
I* I
(7.25)
Thus t h e system i s d i s p e r s i v e with t h e phase v e l o c i t y b e i n g i n v e r s e l y p r o p o r t i o n a l t o t h e magnitude of t h e wave v e c t o r . Hence t h e long waves t r a v e l f a s t e s t and i n t h i s r e s p e c t i n e r t i a l waves behave liKe s u r f a c e waves. The group v e l o c i t y
C
-g
=
vK-A.
Hence
(7.26) Thus We n o t e t h a t
c
Q ‘
= -
151
2 - c
-P.
I n e r t i a l modes
79
= 0.
Hence energy i s transported a t right angles t o the d i r e c t i o n i n which the phase of the wave i s seen t o move. of the curious p r o p e r t i e s of an i n e r t i a l wave.
T h i s i s one A further
unusual property ( s e e P h i l l i p s [ 5 4 ] ) i s t h a t r e f l e c t i o n does not s a t i s f y S n e l l ' s Law, but r a t h e r t h e r e f l e c t e d wave and incident wave maKe the same angle w i t h the a x i s of r o t a t i o n , which i s independent of the alignment of the r e f l e c t i n g surface !
Problems
80
ChaDter 7 Problem
7.1)
For an incompressible, i n v i s c i d , r o t a t i n g f l u i d show t h a t the plane wave s o l u t i o n
satisfies
9-3 =
0.
Is t h i s r e s u l t t r u e more generally? 7.2)
Show t h a t i f K
m
p
i s any vector perpendicular t o
then
$.=%xg+ie. 7.3)
-
I n problem 7 . 2 ) choose 2
K
and the outward normal
plane.
t o be co-planar with t o an i n f i n i t e
Hence show t h a t a wave incident upon t h i s
plane is r e f l e c t e d i n such a d i r e c t i o n t h a t the Incident wave and the r e f l e c t e d wave make the same angle with t h e d i r e c t i o n of a x i s of r o t a t i o n .
k
of' t h e
Problems
7.4)*
81
An i n e r t i a l wave with group v e l o c i t y the
x
-
If
in
z plane bounces back and f o r t h between
t h e walls of a wedge
13).
2g
z
AB = d , and
=
x t a n Y.
BC = 4 ' .
( s e e Figure
Show t h a t
L L lSgl
\
=
l$l
k
FIGURE 13 *[The problems t h a t appear i n the t e x t marKed w i t h a n a s t e r i s k o r i g i n a t e from a course on r o t a t i n g f l u i d dynamics taught by the M.I.T.
Mathematics department .]
Problems
82 #
Consider Poincare's problem f o r i n e r t i a l modes i n a sphere. Write equation (7.5) and the boundary condition *
% an
on
= 0
r
2
+
z'
=
i n c y l i n d r i c a l co-
a'
ordinates. Introduce oblate spheroidal co-ordinates (b ,q)
defined by
=
[*
.=[-)-
1
y qp
.
Obtain the separable s o l u t i o n f o r
I
as
where
Obtain the transcendental equation t h a t defines the eigenvalue
Am.
a3
Problems
7.6)
Derive t h e frequency of t h e i n e r t i a l waves f o r a homogeneous f l u i d bounded by a r i g i d w a l l a t z = 0
and a f r e e s u r f a c e a t
z = Ho
[see
f i g u r e 141.
z = H 0 + q
z = H
0
F l u i d of density
FIGURE 14
Note:
The f r e e s u r f a c e e l e v a t i o n i s
The boundary conditions a t are:
w = a
at
z = Ho
+
q(x,y,t). q(x,y,t)
This Page Intentionally Left Blank
CHAPTER 8 ROSSBY WAVES
I n the previous s e c t i o n s we have discussed the geostrophic mode which e x i s t s when the boundary of t h e container can be covered with geostrophic contours, e.g.,
t h e sphere, the e l l i p -
soid, and i n a degenerate sense, the c y l i n d e r .
We w i l l now
consider t h e problem of flow i n a container i n which t h e r e a r e no geostrophic contours, namely t h e s l i c e d cylinder ( s e e Pedlosky and Greenspan [ 491 )
.
1
z
El
E
A s l i c e d cylinder FIGURE 15
85
S l i c e d cylinder
86
I n t h i s geometry t h e r e a r e no contours around which a column of f l u i d can move and r e t a i n a constant height, hence the [See Figure 151
geostrophic mode can no longer e x i s t .
.
How-
ever we have shown t h a t t h e i n e r t i a l modes c a r r y no mean c i r c u l a t i o n : thus if the i n i t i a l flow possesses mean c i r c u l a t i o n , i t must e x c i t e a mode t h a t is d i s t i n c t from the i n e r t i a l modes.
We w i l l show t h a t i n t h e absence of geostrophic con-
tours the c i r c u l a t i o n i s c a r r i e d by low frequency waves which a r e c a l l e d Rossby waves.
Let us assume t h a t the s l i c e angle consider a perturbation expansion i n tions are
as + at
I
a a.
i s small and we w i l l The i n v i s c i d equa-
-
2k x j = -VP
v.q = 0 w
2.;
with boundary condition
= 0.
We seek an o s c i l l a t o r y
solution
where
k,
9
and
I
can be expanded i n powers of
x -
9 I We note t h a t we s e t
Xla
a
as
+. ..
so + Sla +... = R0 + +... .
=
Lo = 0
ilU
since we a r e i n v e s t i g a t i n g t h e
e f f e c t on the geostrophic mode of the existence of the s l i c e
Rossby waves a t angle
87
a.
S u b s t i t u t i o n of t h i s form of s o l u t i o n i n t o t h e equations and equating successive powers of
Thus
&o
m
The
a
gives t o
O(1)
has t h e p r o p e r t i e s of a geostrophic mode. O(a)
problem i s
with
(zo+
and
*
(-.k +
a;) = o
at
z = t a n ay
-
ay.
Now Hence t o
O(a)
&o.;
.
The lower boundary c o n d i t i o n i s
-
&-(Ql
+
y
o 9) 39 =
at
z = 0.
(8.5)
We manipulate equations ( 8 . 2 ) i n the f a m i l i a r way t o o b t a i n t h e equation f o r t h e pressure: Taking
Since obtain
v x (8.2) gives
$
= 0 , we can i n t e g r a t e (8.6) with r e s p e c t t o
$1 =
ix +
(z-1)v x
so + $X,Y)l
z
to
88
Pressure equation f o r Rossby waves
hence
ihl and
4.; =
=
ix +
( z - 1 ) v x $o
from boundary condition ( 8 . 4 ) .
0
(8.7) S u b s t i t u t i o n of
(8.7) i n t o (8.5) gives
Recalling t h a t
Qo s a t i s f i e s the geostrophic equations, we
m
know t h a t
.%b = az
0
and
$o
=
x vio(x,y).
Hence (8.8) becomes
This is the equation s a t i s f i e d by t h e Rossby wave.
We note
t h a t we derived t h i s equation from the r e l a t i o n between and
k-Sl a t
t h e boundary
only terms t h a t a r e independent of holds f o r a l l
0
i
z
I
So
z = 0, however (8.9) involves z,
hence t h e equation
1.
The above procedure i s r a t h e r t y p i c a l of the manner i n which r e s u l t s a r e obtained i n r o t a t i n g f l u i d problems.
The
reader may draw a n analogy with t h e Ekman l a y e r a n a l y s i s of Section 5 where t h e equation defining t h e i n t e r i o r flow was obtained by studying the boundary conditions.
The f a c t t h a t a
f i r s t order problem can be obtained from the boundary condit i o n s on the higher order problem i s of course dependent on the Taylor-Proudman theorem.
This c l e a r l y gives a valuable
technique t h a t should be exploited when the Taylor-Proudman
89
Rossby waves theorem i s v a l i d . 8-Plane Probleg We have derived t h e equation s a t i s f i e d by Rossby waves
which r e p l a c e t h e geostrophic mode when a c y l i n d e r i s s l i c e d . We w i l l show t h a t we can o b t a i n e x a c t l y t h e same equation t o d e s c r i b e t h e low frequency modes t h a t e x i s t on a
8-plane.
I n o t h e r words, t h e r e i s dynamic equivalence between t h e waves t h a t e x i s t i n a geometry where t h e h e i g h t v a r i e s with a h o r i z o n t a l co-ordinate, and t h e waves t h a t e x i s t on a where C o r i o l i s f o r c e v a r i e s with l a t i t u d e .
p-plane
I n S e c t i o n 4 we
derived t h e geostrophic equations t h a t approximate flow i n a t h i n s h e l l on a s e c t i o n of a r o t a t i n g sphere.
Equations
(4.12) and (4.13) i n v e c t o r form g i v e
ft x where
f = fo
+
By, [ y
-
(8.10)
q = -vp,
i n c r e a s e s towards t h e n o r t h ( s e e
Figure 3 ) ] . We a l s o r e c a l l t h a t t h e p o t e n t l a l v o r t i c i t y was shown t o be
a conserved q u a n t i t y i n S e c t i o n 2.
Clearly we could follow
through t h e same s t e p s i n t h e proof of E r t e l ' s theorem i n t h e p-plane context and o b t a i n (8.11)
where
X
i s any s c a l a r such t h a t
p a r t i c u l a r expression f o r
X.
2
= 0.
We w i l l choose a
Consider a t h i n l a y e r of f l u i d
above a bottom s u r f a c e of v a r i a b l e h e i g h t
H(x,y).
The
E f f e c t s of topography
90
following a n a l y s i s shows t h a t t h e q u a n t i t y
(y)i s
con-
served and hence t h i s q u a n t i t y i s a s u i t a b l e candidate f o r t h e r o l e of t h e s c a l a r
X.
Variable depth ocean FIGURE 16
Let
z = h(x,y)
denote t h e bottom s u r f a c e and l e t
t h e l e v e l s u r f a c e of t h e top. L-H(x,y).
The height
The divergence equation gives
H(x,y)
z = L
is
be
ROssby waves
(ux-vy),
(8.12)
w=Uhx+vh. Y
(8.13)
az
and a t
z
-
91
=
= h,
Since the flow i s geostrophic,
and hy = 0.
= 0
az
Thus (8.12) can be i n t e g r a t e d using t h e boundary condition (8.13) to give
w
=
(h-z)(ux+v ) Y
A t the upper surface
z
= L
uhx
+
we have
u + v = X
+
uh
+
w
Vhy
-
(8.14)
0, hence
I
vh
H
Y
Therefore (8.14) can be w r i t t e n i n the form
from which we conclude t h a t The
9 L = z] = dt [
0.
@-plane approximation was derived assuming flow i n a
t h i n s h e l l , hence the h o r i z o n t a l components dominate t h e v e r t i c a l component
w.
Thus
u
i s conserved.
v(?)
i(f+
v
,B i s approximately
and the p o t e n t i a l v o r t i c i t y , Ti = 2 P
and
- E)
92
Analogy between v a r i a b l e
and v a r i a b l e
f
M.
I n the case of a homogeneous f l u i d t h i s r e s u l t gives
From t h i s equation we can derive Rossby waves supported by or variable
e i t h e r variable
f
&& a)
be constant and l e t
Let
H
H.
+ py.
f = fo
Lineariza-
t i o n of equation (8.15) gives
u
Substituting f o r
and
v
i n terms of
5 V2P + p 2 Writing
P = @(x,y)eut
from (8.10) gives
P
(8.17)
= 0.
gives the wave equation
which is equivalent t o the Rossby wave equation given by (8.9).
U b) Treat
f
as a constant and l e t
H
E
L
-
ay.
Again
l i n e a r i z a t i o n of equation (8.15) gives
From t h e geostrophic r e l a t i o n s the equation f o r
4 at .v 2 P
+ ia %
= 0,
P
is
(8.20)
Rossby waves
93
which is once again the Rossby wave equation. Thus we see t h a t t h e s l i c e d c y l i n d e r i s a dynamic model f o r the behavior of flow i n an ocean b a s i n on a r o t a t i n g sphere, and both s i t u a t i o n s s u s t a i n Rossby waves.
I n view of
t h e analogy between the two problems we have labeled t h e shallow s i d e of the s l i c e d c y l i n d e r i n Figure 15 the north. Clearly i n the geophysical context t h e C o r i o l i s parameter increases towards the north.
f
Our a n a l y s i s o f equation (8.15)
shows t h a t t h e laboratory model of the s l i c e d c y l i n d e r and t h e p-plane a r e i n dynamic correspondence when t h e height decreases towards the north.
H
Experimentally, i t i s of course
very u s e f u l t o be a b l e t o model an ocean basin by considering a s l i c e d cylinder:
we remind the reader t h a t the b a s i s f o r
t h i s modeling i s dynamic r a t h e r than geometric. I n the general problem, where C o r i o l i s parameter
f
is a
f u n c t i o n of l a t i t u d e , and the height describes an a r b i t r a r y topography
H(x,y), l i n e a r i z a t i o n of equation (8.15) again
gives r i s e t o an equation t h a t supports wave-1iKe s o l u t i o n s . These w i l l be somewhat more complicated, but of t h e same b a s i c s t r u c t u r e a s t h e Rossby waves of cases ( a ) and ( b ) .
The
pressure equation i n the more general case i s
(8.21) We remarK t h a t the Rossby wave node, l i k e the geostrophic mode, has non-zero mean c i r c u l a t i o n , and i s orthogonal t o each i n e r t i a l mode. cause the
O(1)
These properties of the Rossby wave hold beflow f i e l d s a t i s f i e s the equations of geostro-
94
Helmholtz e q u a t i o n
phic balance g i v e n by (8.1).
I n a n i n i t i a l v a l u e problem i n
which t h e C o r i o l i s parameter, o r t h e h e i g h t , i s non-constant, i t i s p o s s i b l e t o s e e k a s o l u t i o n i n terms of normal modes.
However, i f t h e r e a r e no g e o s t r o p h i c c o n t o u r s , any i n i t i a l c i r c u l a t i o n w i l l e x c i t e Rossby waves r a t h e r t h a n t h e g e o s t r o We n o t e t h a t i t i s p o s s i b l e t h a t t h e boundary
phic mode.
c o n t a i n s g e o s t r o p h i c c o n t o u r s and y e t Rossby waves could be excited.
For example, l e t
H(x,y) = L - a ( ~ ~ + y ~ ) ~ /I n ' . this
c a s e t h e geometry s u p p o r t s both a g e o s t r o p h i c mode and Rossby waves, however t h e g e o s t r o p h i c mode would c a r r y a l l t h e i n i t i a l circulation. Let u s c o n s i d e r t h e s o l u t i o n t o t h e Rossby wave e q u a t i o n
(8.9) i n t h e geometry of t h e s l i c e d c y l i n d e r .
The boundary
condition i s
-2-
We seeK a s o l u t i o n
#o
= A(x,Y)e
ibl.
Substitution into
(8.9) g i v e s t h e Helmholtz e q u a t i o n :
(8.22)
with
A = 0
on
r = a.
The s o l u t i o n s f o r t h e e i g e n f u n c t i o n
a r e g i v e n by t h e doubly i n f i n i t e family
A,
where
Kmn
= cos m0 Jm(K,r/a),
i s the
n-th
s i n me J,(K,r/a),
p o s i t i v e z e r o of
J,.
The eigen-
Rossby waves
95
values a r e given by
Hence,
Plane Wave S o l u t i o n The plane wave s o l u t i o n t o t h e Rossby wave equation d i s plays a c h a r a c t e r i s t i c f e a t u r e of Rossby waves, namely t h e r e e x i s t s a mode t h a t propagates t o t h e west ( s e e Figure 15) w i t h speed
ax1.2
Consider a s o l u t i o n of t h e form
-is
02 and 3.s = K1x + K2y. S u b s t i t u t i n g t h i s where I 0 = c e form f o r @ o i n t o equation (8.9) gives t h e d i s p e r s i o n r e l a tion
(8.24) Hence t h e phase v e l o c i t y
The phase of t h e Rossby wave t h e r e f o r e t r a v e l s i n t h e d i r e c -
96
Plane wave s o l u t i o n
tiOn of negative
x , o r i n t h e context of t h e
p-plane model
A d e t a i l e d d e s c r i p t i o n , with i l l u s t r a t i o n s ,
towards the west.
of t h e propagation of a Rossby wave towards t h e west i n a d i f f e r e n t i a l l y r o t a t e d s l i c e d c y l i n d e r is given i n Pedlosky and Greenspan [49]. The group v e l o c i t y
C
-g
=
ouaXl(~)
Thus energy w i l l propagate towards t h e e a s t i f towards t h e west i f
2
K2
2
> ul.
2
U1
>
2 K2,
and
It has been shown by Longuet-
Higgins [43] t h a t waves i n c i d e n t on a western boundary with 2
K~
>
2 ulJ
2 g1
r e f l e c t as waves with
2
> u2
(and vice-versa on
an e a s t e r n boundary).
It can a l s o be shown ( s e e Pedlosky
[ 4 8 ] ) t h a t waves with
'cl
2
>>
d i s s i p a t e d by viscaus a c t i o n . waves with
2 g2
2
> u1
2
K ~ a , re
those most s t r o n g l y
Hence energy t h a t a r r i v e s i n
a t a western boundary has a tendency t o
be r e f l e c t e d i n waves t h a t a r e d i s s i p a t e d by v i s c o s i t y . Therefore not a l l of t h e a r r i v i n g energy i s returned t o t h e i n t e r i o r , but some of t h e energy i s used t o b u i l d up a viscous boundary l a y e r .
This formation of a western boundary l a y e r
by a mechanism of "trapping energy" i s of g r e a t importance i n t h e dynamics of oceans s i n c e i t gives r i s e t o s t r o n g western boundary c u r r e n t s of which t h e A t l a n t i c Gulf Stream and t h e Kuroshio c u r r e n t off t h e c o a s t of Japan a r e two examples.
8.1)
(a)
Problems
97
Discuss the Rossby waves t h a t e x i s t i n a cylinder with a h o r i z o n t a l top a t and a parabolic bottom
z
= L
z = a ( x2+y 2 ) .
Obtain the s o l u t i o n t o t h e Rossby wave equation. (b) Is t h e r e a geostrophic mode f o r t h i s
container? (c)
What modes c a r r y the i n i t i a l c i r c u l a t i o n ?
z = L
I I
I I I
1.
k’
/
/
/
2
= cL(x+Y
’’
FIGURE 17
2
1
->
98
Problems
8.2)
(a)
Consider the Bout-
p-plane problem
hemisphere.
i n the
Discuss the d i r e c t i o n
of propagation of the phase v e l o c i t y and the group v e l o c i t y of Rossby waves i n a southern ocean basin. (b)
Does the boundary layer form on the western o r e a s t e r n boundary?
(c)
I n t e r p r e t your answer i n terms of the strong ocean boundary currents i n the southern hemisphere.
8.3)"
( a ) What i s the flow i n the annular region
bounded by i n f i n i t e l y long concentric cylinders of radius with angular v e l o c i t y respectively.
.
rl
and
nl
r2
and
rotating
n2
[The f l u i d i s incompressible
and v i s c ou6 ] (b)
Assuming t h a t t h i s flow i s not t o o much a f f e c t e d by h o r i z o n t a l end walls, can the v a r i a t i o n of the zonal v e l o c i t y be used t o model the
p-plane e f f e c t ?
[ I n o t h e r words,
can we use d i f f e r e n t i a l r o t a t i o n of a v e r t i c a l wall of an annulus mounted on a t u r n t a b l e t o simulate the
@-effect.]
CHAPTER
9
VERTICAL SHEAR LAYERS
I n problems concerning flow i n a r o t a t i n g cylinder t h a t we considered i n Section 5 J we have shown t h a t i t i s possible t o determine the
0(1)
i n t e r i o r motion by considering t h e e f f e c t s
of Ekman l a y e r s u c t i o n .
We r e c a l l the example i l l u s t r a t e d i n
Figure 7 where the angular v e l o c i t y o f the bottom of the cylinder i s increased.
I n t h i s c a s e J Ekmn l a y e r sunction
induces a negative v e r t i c a l mass f l u x of
O(E1’2).
In a
general problem we again expect a small i n t e r i o r v e r t i c a l flux.
I n order t o r e t u r n t h i s mass f l u x i t i s c l e a r l y
necessary t o i n v e s t i g a t e the v e r t i c a l shear l a y e r s supported by a r o t a t i n g f l u i d . We w i l l f i r s t consider the case of a right c i r c u l a r cylinder.
We r e c a l l the steady viscous equations of motion I
2k x
3
=
0.9 =
-VP
+
2
Ev j
(9-1) (9.2)
0.
The manipulation of these equations given i n S e c t i o n 5 gives the pressure equation
99
100
El/3-w We consider the s t r u c t u r e of a s i d e wall layer by writing X E = ~
r
- a,
thus
The dominant terms i n equation (9.3) become
Hence, balance between these two terms requires
1.e
., t h e r e
thickness
e x i s t s a v e r t i c a l shear l a y e r of dimensionless O(Ev3).
We now seek an asymptotic expansion f o r denotes a n E113-layer
quantity].
6
and
Since we require t h i s
boundary layer t o r e t u r n a v e r t i c a l mass f l u x of the v e r t i c a l component of v e l o c i t y
[(-)
= O(Ea)
O(Ev2)
where
The problems we a r e considering is axisymmetric, hence we w i l l a8sume
= 0.
The divergence equation then gives
Thus a balance of t e r m requires
V e r t i c a l shear l a y e r s
6
=
O(E 1/2 )
101
.
The components of the momentum equation give: -23 =
-E-’I3Fx
+
-
E 1/3-uxx
E1/3;
2u =
-
0 = -P
+
z
E
xx
1/3wXx*
Hence bala ce of terms i n (9.7) and (9.8) requires
5
=
and
O(E
i
=
O(E 1/2 )
.
Thus the v e l o c i t y components and pressure a r e given by an asymptotic expansion i n powers of
-
E1’2G3
u =
-
v = E 1/67
+
i
+
=
-P =
+
...
+
...
......
...... EU2F
And the highest order equations a r e : i l
3X
+w
lz
=
-P
2 3 =
7
-23,
= o
3x
o=-F
IXX
3z
+ i
lxx
as:
102
B1/4-Lave We have found a v e r t i c a l boundary l a y e r of
O ( E’’l
)
where
t h e o r d e r of t h e v e l o c i t y components i s such t h a t t h e v e r t i c a l
mass flux i s of t h e o r d e r of t h a t of
t h e i n t e r i o r , namely
0(E1I2). However we observe t h a t t h e t a n g e n t i a l v e l o c i t y component
G
is
Hence i t i s
O(E1’6).
t h i s boundary l a y e r t o match t h e
possible t o use velocity
O(1)
v
i n t e r i o r with a g e n e r a l s i d e w a l l boundary c o n d i t i o n . that the i n t e r i o r velocity
v
i n the [Recall
i s determined by t h e Ekman
l a y e r s u c t i o n c o n d i t i o n and w i l l not n e c e s s a r i l y s a t i s f y t h e s i d e wall boundary c o n d i t i o n ] .
It i s t h e r e f o r e necessary t o
s e e k a f u r t h e r v e r t i c a l s h e a r l a y e r i n which t h e v e l o c i t y component
v
i s prescrib.ed t o be
O(1).
I n t h e second l a y e r we w r i t e qEB = r
-
a , where
p
4 l/j.
Hence
Let
(*)
denote a boundary l a y e r q u a n t i t y .
The dominant
terms i n t h e p r e s s u r e e q u a t i o n ( 9 . 3 ) g i v e
For v a l u e s of
p
>
1/3
t h i s e q u a t i o n reduces t o
V e r t i c a l shear layers
103
However t h e r e i s no n o n - t r i v i a l s o l u t i o n t o an equation of t h i s form t h a t could s a t i s f y the boundary conditions on t h e
v e l o c i t y component
#u
v
and a l s o ensure t h a t lim
-
P = 0.
-03
Hence
must be l e s s than
f3
1/3
and the equation (9.13)
reduces t o
9 = 0. az 2-
The components of the momentum equation a r e
and the symmetric divergence equation i s
Recall
m
v = 0(1), hence from (9.16) we require, 1-28 ) and from (9.18), = O(E m w = O ( E 1-23). m
<
Since
p
1/3, the dominant term on t h e R.H.S.
E-8?n,
hence balance w i t h
2;
requires
of (9.15) i s
El/‘- l a y e r equations
104
h
P = O(EB),
II
and (9.17) reduces t o
I f we again impose t h e condi-
Pz = 0.
O ( E ’I2)we o b t a i n
t i o n t h a t t h e v e r t i c a l mass f l u x i s
6
hence
= 1/4.
Thus t h e second boundary l a y e r has dimensionless thickness 0(EV4) : t h e components a r e given by an asymptotic expansion i n powers of
as:
EV4
h
v = vo
h
-
U2 E
u = h
.....
+
h
w =
h
wlE114
+
I*
F1E114
+
P =
112+
.....
.....
.....
And the highest order equations a r e h
u2 51 h
+ EilZ
= 0
(9.19)
h
(9.20)
-2v0 = -pl rl 2C02 = vo h
nn
h
0=P1
z
.
We note t h a t (9.22) implies a weak form of t h e Taylor-Proudman theorem holds i n t h e the
E’/’-layer
El’‘-layer.
However, we observe t h a t
equations have a d i s t i n c t l y d i f f e r e n t char-
a c t e r from t h e i n t e r i o r equations, and i n f a c t , t h e possesses a high degree of v e r t i c a l s t r u c t u r e .
E1”-layer
We thus have a
V e r t i c a l shear l a y e r s
105
progression from the i n t e r i o r where t h e r e i s no v e r t i c a l s t r u c ture, t o the
z and
m
w
E1/4-layer
where
depends l i n e a r l y on
CI
and
z,
( s e e equations (9.19)
. . )
v
-
a r e independent of
u
(9.22)), t o t h e s t r o n g v e r t i c a l s t r u c t u r e of the
E1I3-layer.
These v e r t i c a l shear l a y e r s a r e c a l l e d Stewartson l a y e r s : they can e x i s t a t any localized d i s c o n t i n u i t y , f o r example as i n t e r n a l shear l a y e r s bounding a Taylor column o r a s boundary l a y e r s a t t h e walls of a c y l i n d e r . We w i l l consider i n a l i t t l e more d e t a i l the equations
-
describing the
We wish t o solve equations (9.19)
E1l4-layer.
(9.22) with t h e appropriate boundary conditions.
the Ekman l a y e r i s much thinner than the
E1/4-layer,
Since the
Ekman l a y e r s u c t i o n condition holds here a s i t does i n the interior.
Hence we o b t a i n t h e boundary condition =
Where
vB
1/2
&
E 2
. E-l/4
A a,, (vo-vB)
at
z = 0,1.
i s t h e imposed wall v e l o c i t y a t t h e top and bottom
of the c y l i n d e r .
Now
vB
=
v B ( r ) , hence
Thus balancing terms of the same order i n the EKman l a y e r s u c t i o n condition gives m
w1 = i 2 aq v~ L,
at
z
= 0,1.
(9.23)
The s i d e wall boundary condition i s m
v0 = V,
- v,(a)
at
q =
o
(9.24)
106
V e r t i c a l mass flux
where
V,
i s t h e imposed s i d e w a l l v e l o c i t y and
vI
is the
i n t e r i o r v e l o c i t y t h a t can be determined u s i n g t h e a n a l y s i s given i n S e c t i o n 5 . From equations (9.19) and (9.21) we o b t a i n v,
+
N
rlrlrl
ZGl
= 0. Z
Since (9.20) and ( 9 . 2 2 ) imply t h a t
-
vo
(9.25) i s independent of
z,
we have
Hence from t h e boundary c o n d i t i o n s (9.23) we o b t a i n t h e equation for
#u
vo, namely
from boundary c o n d i t i o n ( 9 . 2 4 ) and e q u a t i o n ( 9 . 2 7 ) .
vo
t u t i n g t h i s expression f o r
Substi-
i n t o e q u a t i o n s (9.19) and
(9.21) g i v e s
and
u2
= [VW’VI(
w1
=
- JZ
a ) ] e- J2TJ
(z
- $1
[vw-v1(a)le - J 2 q
Thus t h e s o l u t i o n f o r t h e v e l o c i t y components i n t h e layer is e a s i l y obtained.
(9.29) (9.30) E 1/4-
We n o t e t h a t a s c o n s t r u c t e d , t h i s
l a y e r s a t i s f i e s t h e boundary c o n d i t i o n on t h e azimuthal v e l o c i t y component.
However, t h e t o t a l v e r t i c a l mass f l u x
Vertical shear layers
107
= 0.
It i s n e c e s s a r y t h a t t h e narrower s i d e - w a l l l a y e r o f
O(E
1/31
a l s o e x i s t s t o r e t u r n t h e i n t e r i o r v e r t i c a l mass f l u x . Let u s now 1ooK a t t h e
E1’3-layer
The e q u a t i o n s d e s c r i b i n g t h e flow a r e g i v e n by ( 9 . 9 ) (9.12).
-
i n a l i t t l e more d e t a i l .
From (9.9) and ( 9 . 1 1 ) we o b t a i n
-
-2w1
z
-
=
v
=
w
lxxx ’
and from (9.10) and ( 9 . 1 2 ) ,
-
ZVl
Z
Hence
3%
--$+4w1 ax
zz
-
(9.32)
lxxx
=o.
(9.33)
We observe t h a t t h e coupled e q u a t i o n s (9.31) and (9.32) have a somewhat s i m i l a r s t r u c t u r e t o t h o s e t h a t d e s c r i b e t h e EKman l a y e r , w i t h t h e r o l e s of t h e h o r i z o n t a l and the v e r t i c a l i n t e r changed.
These e q u a t i o n s c a n be i n t e r p r e t e d i n terms of gene-
r a t i o n of v o r t i c i t y :
w r i t e t h e v o r t i c i t y i n component form
as : 0
xg=_B=xS+Yi+zk.
Then t o h i g h e s t o r d e r
Y =
-; and 1,
and (9.32) can be r e w r i t t e n as:
Z =
7
lX
.
Thus (9.31)
Problem f o r the
108
-
-2w1
-
and
-2V1
Z
z
E1/’-layer
= zxx
(9.34)
= Yxx.
(9.35)
Hence shear i n the v e r t i c a l component of v e l o c i t y (Or s t r e t c h i n g of the flow l i n e s ) produces a v e r t i c a l component of v o r t i c i t y which determines t h e c i r c u l a t i o n of h o r i z o n t a l velocity.
Also shear i n the h o r i z o n t a l v e l o c i t y ( o r t i l t i n g
of the flow l i n e s ) produces a h o r i z o n t a l v o r t i c i t y which determines the c i r c u l a t i o n of v e r t i c a l v e l o c i t y . To determine the boundary conditions we again observe t h a t
t h e Ekman layer is much thinner than t h e
E1’3-layer,
the Ekman layer suction condition holds.
Thus the upper and
lower boundary conditions a r e
-
w1
hence
z = 0,l (9.36)
= i
I n the p a r t i c u l a r example I l l u s t r a t e d i n Figure 6, where V w = r
at
z = O
and
at
Vw = 0
z
= 1,
the boundary con-
d i t i o n becomes t o t h e highest order
-
at
w1 = 0
z
x
(9.37)
0,l.
We therefore seeK the s o l u t i o n t o the equation
a%
-++4G1 ax
ZZ
= o
w i t h boundary conditions (9.37) and the condition
a
together w i t h
J;
s,il
w dxdz -1
= 0
at
=
x
Ja,
r
= 0,
winterier and
-
dr,
0
as
x
-
a,.
V e r t i c a l shear l a y e r s Thus
109
3 w1 = e -mx s i n m ( z - 1 )
where Since t h e r e a r e two eigenvalues with p o s i t i v e r e a l p a r t f o r each i n t e g e r
n, i t is possible t o s a t i s f y both t h e boundary
condition on the f l u x on
vl,
Jy
wldx,
and the boundary condition
and hence determine the s o l u t i o n t o t h e problem.
We have described the s t r u c t u r e of two side-wall l a y e r s t h a t e x i s t t o r e t u r n the i n t e r i o r mass f l u x and t o match the i n t e r i o r and side-wall boundary conditions.
However, t h e r e
a r e a l s o o t h e r p o s s i b i l i t i e s f o r side-wall boundary l a y e r s . More complicated geometries and boundary conditions involving mass i n j e c t i o n can lead t o asymptotic expansions i n powers of
or
E '15 o r
Ell7.
I n general, the boundary layer
problems t h a t occur on surfaces where t h e normal v e c t o r and the r o t a t i o n vector a r e perpendicular ( i . e . , much l e s s t r a c t a b l e than those where
G-2
A-9 =) 0.
= 0)
are
I n t h e sphere
the troublesome region i s a t t h e equator where the Ekman l a y e r a n a l y s i s breaks down.
The e q u a t o r i a l boundary l a y e r has been
examined by Stewartson [6 2 ], who showed t h a t , i n a band of l a t i t u d i n a l width
O ( E 'I5)about t h e equator, the boundary
l a y e r thickens t o become
O(E215).
When considering flow
between concentric spheres, Stewartson's a n a l y s i s shows the need f o r a f u r t h e r boundary layer
O(E117),
t o remove a
s i n g u l a r i t y i n the azimuthal v e l o c i t y , a t t h e equator of t h e inner sphere.
Clearly the s u b j e c t of v e r t i c a l boundary l a y e r s
i n a r o t a t i n g f l u i d can lead t o very complex asymptotic
-
Boundary l a y e r s i n a s l i c e d c y l i n d e r
110
analysis.
We w i l l now i n v e s t i g a t e t h e
c a s e of a s l i c e d c y l i n d e r .
E l”
boundary l a y e r i n t h e
We have a l r e a d y s e e n t h a t i n t h i s
geometry, where t h e r e a r e no g e o s t r o p h i c c o n t o u r s , t h e beh a v i o r of t h e flow i s markedly d i f f e r e n t from t h a t of a r i g h t circular cylinder.
We w i l l show t h a t t h e r e i s a l s o a d i f f e r -
ence i n t h e v e r t i c a l s h e a r l a y e r s t h a t can e x i s t i n t h e two geometries. The s l i c e d c y l i n d e r i s no longer axisymmetric, hence i t i s necessary t o c o n s i d e r t h e equations of motion where not s e t e q u a l t o z e r o .
The
-2G1
=
2ii3 =
E1”-layer
equations t h e n become
-F
-
(9.381
3,
+ Fj e + G
o=-P
3Z
1 -
‘3x
+;
+ a ‘le +
(9.39)
IXX
( 9 -40)
lxx
’
1,
(9 -41)
= 0.
The boundary c o n d i t i o n , i n g e n e r a l , w i l l a g a i n be t h e t o p and bottom.
is
ae
*
3.n
= 0
However, i n t h e s l i c e d c y l i n d e r problem
t h e normal v e c t o r i s no longer p a r a l l e l t o t h e a x i s of r o t a tion
k. From t h e geometry i l l u s t r a t e d i n Figure
11, we
observe t h a t a t t h e bottom s u r f a c e i n t h e boundary l a y e r a t r = a, z
-
ay = a a s i n
e , ( f o r small a)
at
V e r t i c a l shear layers hence
n -*q . I
A t t h e s ie-wall
vl,
on
x
=
-
+
-wl
= 0, we
111
-
a cos 0 v l .
a g a i n have a boundary c o n d i t i o n
together with the condition t h a t the flux
returns the i n t e r i o r v e r t i c a l flux.
The boundary l a y e r
q u a n t i t i e s decay away from t h e boundary, hence
3,Eliminating
us
0
and
il -.
as
0
x
-
OD.
from e q u a t i o n s ( 9 . 3 9 ) and (9.41) g i v e s
?(- al -PJg
+ c
IXX
) + 1a -
Vlg
x
+
ijl
= 0, Z
and s u b s t i t u t i o n of (9.38) g i v e s , - a1 Vlg + 2V
Thus
lxxx +
-
V
lxxx
a1 - + Wlz Vlg
- .
= 0.
(9.42)
= -2w1
Z
From (9.38) and (9.40) we o b t a i n t h e e q u a t i o n (9.43) Hence t h e same coupled e q u a t i o n s f o r
-
w1
and
3, hold i n
both t h e symmetric and non-axisymmetric c a s e s . We must t h e r e f o r e s e e k a s o l u t i o n t o t h e problem g i v e n by
(9.44) w i t h boundary c o n d i t i o n s
Western boundary l a y e r
112
-il +
a cos e
G1
-
=
o
wl-0 : 1 = 0
at
x
= 0,
o
at
z =
as
x-CO
and
Jr
( f o r small
ildx
a)
prescribed.
we again have a s o l u t i o n of the form
(9.45) and The lower boundary condition now requires tan?
3
=
a cos e .
The condition of exponential decay r e q u i r e s
small
>
0, thus, f o r
m, we have
mand
Rm
120 cos
e I 1/3
when
cos 0
>
0
m-
However, i n order t o s a t i s f y both the boundary condition on
-
v1
at
x = 0, and the condition on
J:
-
Gldx, i t is of course
necessary t o have two eigenvalue s o l u t i o n s f o r
rn.
problem can only be solved i n the region where
cos 0
negative.
Thus the
is
I n t e r p r e t i n g t h i s r e s u l t when the s l i c e d cylinder
i s viewed as a dynamic model f o r an ocean on a
@-plane [ s e e
Figure 141, we expect t o f i n d a boundary layer only on the
western s i d e of a n ocean basin ( i n t h e northern hemisphere). This phenomenon i s i n f a c t , r e a d i l y observed:
the i n t e r i o r
V e r t i c a l shear l a y e r s
113
ocean c i r c u l a t i o n i s returned i n narrow boundary l a y e r s on the western s i d e of an ocean.
The narrowness of the boundary
layer induces high speed c u r r e n t s :
i n the A t l a n t i c t h i s
current i s c a l l e d the Gulf Stream and i n the P a c i f i c i t i s c a l l e d the Kuroshio c u r r e n t .
A s we remarked a t t h e end of
Section 8, the energy for the boundary l a y e r c u r r e n t s can be deduced from t h e r a t h e r curious r e f l e c t i o n p r o p e r t i e s of the Rossby waves. Further l i g h t can be shed on the nature of the s i d e wall l a y e r i n a s l i c e d cylinder by t r e a t i n g t h e s l i d e angle a power of
E.
We w r i t e
a = EY
boundary l a y e r equations a s when
Y
>
1/2
a
as
and we i n v e s t i g a t e t h e
Y varies.
We f i r s t note t h a t
the p e r t u r b a t i o n of the bottom of the cylinder
i s of smaller order than the thickness of the Eeman l a y e r . Hence i n t h i s case the s l i c e angle i s s o small t h a t t h e bottom does not penetrate t h e Ekman l a y e r and t o t h e f i r s t order our a n a l y s i s of the s t r u c t u r e of the s i d e wall l a y e r s remains unchanged. We now consider the range
0
<
Y
<
1/2.
From equations
(9.45) and ( 9 . 4 6 ) we observe t h a t t h e dependence of the boundary l a y e r q u a n t i t i e s on the s t r e t c h e d co-ordinate, x = E-1’3(a-r),
is of the form ,-I2
cos 8 ) 1/3 EY/3 E-1/3(r-a)
Hence the thickness of the side-wall l a y e r i s
O(E(1-Y)’3).
The Ekman l a y e r s u c t i o n condition on the s l i c e d bottom should t h e r e f o r e be w r i t t e n i n the form
Sv erdrup s r e l a t i o n
114
The balance of terms i n t h e boundary c o n d i t i o n (9.47) w i l l be determined by t h e s i z e of
Y. When Y
<
1/4, t h e boundary
c o n d i t i o n becomes
which i s t h e boundary c o n d i t i o n t h a t was v a l i d i n t h e preceeding a n a l y s i s of t h e s i d e w a l l l a y e r i n a s l i c e d c y l i n d e r . When
Y
>
1/4, t h e boundary c o n d i t i o n becomes
-
-wl
= E
1/6
+
~ / 3L Za ax
’
which i s t h e boundary c o n d i t i o n t h a t i s c h a r a c t e r i s t i c of t h e side wall layer.
Eli4
(See 9 . 2 3 ) r a t h e r t h a n a n
We can summarize our o b s e r v a t i o n s a s f o l l o w s . continuously r a i s i n g t h e s l o p e of t h e bottom.
of s l o p e
i s l e s s than
a
u n a f f e c t e d by t h e s l o p e . O(E1’2)
of a n O(E1l4)
<
a
<
O(E1j4),
E1/4-layer.
<
a
<
0(E1I2) As
a
E1”-layer. Imagine
When t h e a n g l e
the side wall layers are
increases, so t h a t
t h e s i d e w a l l l a y e r has t h e s t r u c t u r e
When t h e s l o p e becomes g r e a t e r with
1, t h e s i d e w a l l l a y e r h a s t h i c k n e s s
and e x i s t s only on t h e western s i d e of t h e c y l i n d e r . t r a n s i t i o n p o i n t when EW4
a =
O(E 1/4
O(E/a)’/’ A t the
t h i s l a y e r has t h i c k n e s s
and hence t h e two s i d e - w a l l l a y e r s c o i n c i d e .
An Ocean Model:
Sver-D’s
Relac
We w i l l c o n s i d e r a s t r e s s - d r i v e n ocean model and d e r i v e a well-known e x p r e s s i o n i n oceanography f o r t h e i n t e r i o r northward t r a n s p o r t .
The r e t u r n of t h i s t r a n s p o r t , v i a a boundary
115
V e r t i c a l shear l a y e r s
l a y e r , which our previous a n a l y s i s has shown must l i e on the western s i d e , gives r i s e t o the western i n t e n s i f i c a t i o n of the ocean c u r r e n t . I n t h e i n t e r i o r the
p-plane equations a r e 1
-
fk x q =
-
-vP
(9.48)
v.q = 0
where
f = fo
-
A
By, q = u i
+
A
vj
+
A
wk.
E
Components of wind s t r e s s on the ocean FIGURE 18
116
S t r e s s d r i v e n flow
The boundary c o n d i t i o n s a r e
[E-1/2(~1,~2)
a r e t h e s c a l e d components of t h e a p p l i e d s u r f a c e
wind s t r e s s ] with
u
=
v = w = 0
at
z = 1.
From e q u a t i o n (9.48) we have t h e f a m i l i a r i n t e r i o r r e s u l t
I n t h e upper Ekman l a y e r we w r i t e
and t h e equations become
We can t h e r e f o r e d e r i v e a n e x p r e s s i o n f o r t h e EKman l a y e r
s u c t i o n c o n d i t i o n f o r s t r e s s d r i v e n flow, namely
V e r t i c a l shear layers
117
Also the northward mass t r a n s p o r t i n t h e EKman l a y e r i s given by
T1
(9.52)
=-T
We r e t u r n t o the i n t e r i o r s o l u t i o n . hence
&Y dz
are
w
and
o r smaller ( s e e ( 9 . 5 1 ) ) J thus equa-
O(Eli2)
t i o n (9.50) shows t h a t
We note t h a t
v
i s also
O(E1/‘).
The lower EKman
layer i s t h e r e f o r e r e l a t i v e l y unimportant because i t w i l l only induce a s u c t i o n of
smaller than t h e order of
O(E1”)
v.
Thus the I n t e r i o r problem i s given by equation (9.50) w i t h boundary conditions (9.511)~and t i o n of (9.48),
w = 0
at
together w i t h the f a c t t h a t
S u b s t i t u t i n g t h i s value f o r
w
z = 0. = 0,
Integragives
i n t o the boundary condition
(9.51) gives (9.53) We can combine expressions (9.55) and (9.53) t o o b t a i n the t o t a l northward mass transport
namely
Streamlines i n an ocean model
118
-1/2
-
0
;I;.oxz
.
(9.54)
This I s Known a s the Sverdrop r e l a t i o n f o r the northward mass
transport.
The general wind s t r e s s
5
has non-zero c u r l :
hence f o r a f i n i t e ocean with side walls, i t i s necessary t o consider a side-wall boundary layer capable of returning t h e northward mass t r a n s p o r t .
A s we have previously shown, t h i s
boundary layer may e x i s t only on the western s i d e of the ocean.
Figure 19 shows a sketch of the streamlines of an
ocean model constructed by Stommel [63], where a p l a u s i b l e f’unctlon i s chosen f o r the wind s t r e s s The dynamic analogy between the
&.
p-plane model f o r ocean
c i r c u l a t i o n and motion I n a s l i c e d cylinder has stimulated considerable experimental work.
Some of the most important
laboratory models studied i n the past t e n years a r e reviewed by Maxworthy and Browand
[44], who comment on the success and
the l i m i t a t i o n s of such models i n simulating oceanographic phenomena.
Their a r t i c l e a l s o gives an idea of t h e complexi-
t i e s of the apparatus involved i n such experiments.
Vertical shear layers
Stream lines showing the western boundary current in an ocean model due to Stommel. FIGURE 19
Problems
120
t e r 9 Problew
9.1)
Discuss the time-scale on which the v e r t i c a l boundary layers form.
9.2)
Consider the s t r u c t u r e of the s i d e wall l a y e r when t h e r e i s both v a r i a t i o n i n the bottom topography and v a r i a t i o n i n C o r i o l i s force with l a t i t u d e .
fo +
Write
f =
and
z = aly
surface where
BY
+
alJ a Z J and
a2x
B
on the bottom
a r e small parameters.
Discuss 1) the cases where one small parameter dominates. 2)
The case where a l l the small parameters a r e of the same order.
Would you be surprised t o find the boundary l a y e r on the e a s t e r n s i d e of a lake i n the northern hemisphere?
9.3)
Obtain t h e highest order terms i n the v e r t i c a l boundary layers f o r steady flow i n a cylinder w i t h the following boundary conditions.
a)
2
b)
--
o
-r8
at
z =
q = +re
n
at
z = 1
q = o
at
r - a
ri
at
2 - 0
at
z = 1
at
r = a
=
-I
q =
0
n
= re
q = o
c)
3
= re
at
z =
q = o
at
z = l
q-re
at
r = a
w
A
0
P r ob lems
9.4)
121
Consider flow i n a rectangular ocean b a s i n 0
x
< a,
0
g b
with constant depth.
Assume the s u r f a c e wind s t r e s s has t h e form r = -A
Compute
cos
Jf
i.
a)
The t o t a l northward mass t r a n s p o r t .
b)
The northward mass t r a n s p o r t i n the EBman l a y e r .
c)
The t o t a l upward t r a n s p o r t i n t o t h e Ekman l a y e r .
Assume
*
9.1
= 0
at
x = a.
Is i t possible t o
compute the eastward mass t r a n s p o r t ?
SKetch
the t o t a l mass t r a n s p o r t p a t t e r n .
9.5)*
A h o r i z o n t a l c i r c u l a r d i s K immersed i n a r o t a t i n g
cylinder of f l u i d i s rising very slowly.
Describe
the quasi-steady flow when the d i s c is h a l f way between the top and bottom boundaries.
This Page Intentionally Left Blank
CHAPTER 10
ANALOGIES BETWEEN ROTATION AND STRATIFICATION
I n Sections ( 3 )
-.
( g ) , we have considered problems of
flow i n a r o t a t i n g homogeneous f l u i d .
We w i l l now i n v e s t i g a t e
the e f f e c t of s t r a t i f i c a t i o n on a r o t a t i n g f l u i d .
Clearly,
t h i s is important i n many geophysical problems, s i n c e both the ocean and the atmosphere a r e composed of f l u i d of v a r i a b l e density.
For example, t h e r e i s a v e r t i c a l d e n s i t y gradient i n
the ocean caused by s o l a r heating of the surface:
t h e non-
uniform concentration of s a l t in s e a water a l s o gives r i s e t o a nonhomogeneous d e n s i t y f i e l d . The Navier-Stokes equation t h a t describes the motion of a r o t a t i n g f l u i d with nonconstant d e n s i t y a r e given by ( 1 . 4 ) and
(1.5).
To c l o s e t h e system i t i s necessary t o add t o these
equations a f u r t h e r equation s a t i s f i e d by t h e temperature f i e l d T
( i n the case of thermally induced s t r a t i f i c a t i o n ) and a l s o
the equation of s t a t e , s a t i s f i e d by t h e f l u i d , which gives the density as a function of temperature and pressure.
We s h a l l
assume t h a t the thermodynamics of the f l u i d can be described by the simple p l a u s i b l e equation t h a t leads t o a l i n e a r temperature-density r e l a t i o n p =
-
;U(T-T),
(10.1)
124
Equilibrium s o l u t i o n
where
i s t h e c o e f f i c i e n t of thermal expansion.
a
temperature
The
s a t i s f i e s t h e equation
T
(10.2) where
p
and
v
c o s i t i e s and
K
a r e t h e kinematic and kinematic bulk v i s -
i s t h e c o e f f i c i e n t of thermal d i f f u s i b i l i t y .
We f i r s t make t h e following observation.
-
Let us seek a
s t e a d y s o l u t i o n i n which t h e f l u i d i s i n equilibrium, i . e . , q = 0.
Equations ( 1 . 4 ) ,
(1.5) and (10.2) t h e n reduce t o
-vP + pv (G
(10.3) (10.4)
v x (10.3) gives 2 2 - 9) = 0,
v p x v (0
thus
=
V2 T = 0 .
and Computing
2 2 - y) 0
p = p ( G - q ) .
Let us consider t h e case where
G = gz; equation (10.5) then
implies 2 2 p = p ( z - * ) .
Hence from (10.1),T = T ( z
-
q),
however t h e r e i s no non-
t r i v i a l s o l u t i o n t o Laplaces equation (10.4) which has t h i s
Analogies between r o t a t i o n and s t r a t i f i c a t i o n f u n c t i o n a l form.
125
We t h e r e f o r e conclude t h a t a steady s o l u t i o n
i n which t h e r e i s no motion is not possible and hence some convection must occur.
i.e.,
However, i n most geophysical problems
the g r a v i t a t i o n a l force i s much l a r g e r than t h e c e n t r i -
f i c a l f o r c e , hence i t i s reasonable t o approximate the potent i a l by
gz
and neglect t h e centrofugal c o n t r i b u t i o n
2 2
.
When t h i s i s done, t h e convection induced by the c e n t r i f u g a l force i s neglected and a s t a t e of s t a t i c equilibrium can be This approximate i n i t i a l s t a t e i s given by
assumed t o e x i s t .
q = 0, p = po(z), -.
T = T0(z).
I m p l i c i t i n t h i s equilibrium s t a t e is the assumption t h a t t h e s t r a t i f i c a t i o n i s s t a t i c a l l y s t a b l e with a heavier f l u i d p a r t i c l e lying below a l i g h t e r p a r t i c l e .
I n order t o o b t a i n a system of non-dimensional l i n e a r i z e d equations we consider a small p e r t u r b a t i o n about t h e approximate equilibrium s t a t e .
The p e r t u r b a t i o n i n the v e l o c i t y from
r i g i d r o t a t i o n i s characterized by scales are
L
and
E ~ L : the length and time
respectively.
The d e n s i t y and tempera-
t u r e f i e l d s a r e given a s the composite of t h e average value, the f i e l d due t o v e r t i c a l s t r a t i f i c a t i o n , and t h e d e v i a t i o n of
O( E )
produced by a v e l o c i t y
O( E O L ) .
We t h e r e f o r e w r i t e
126
Equations f o r a Boussinesq f l u i d
T = ?
+
AT T 0 ( z )
+
E
. I2lQ k2
AP
T'
The l i n e a r i z e d p e r t u r b a t i o n equations a r e obtained by s u b s t i t u t i n g t h e above expansion i n t o equations (1.4), (1.5), ( 1 0 . 2 ) and using (10.11, and neglecting terms
O(E').
We also make
the Boussinesq approximation which follows from our choice of the simple equation of s t a t e (10.1) and leads t o t h e r e s u l t t h a t t h e perturbation d e n s i t y is only retained where i t appears i n conjunction w i t h t h e g r a v i t y .
A systematic
d e s c r i p t i o n of the Boussinesq approximation is given by Spiegel and Veronis [ 6 1 ] .
Thus the l i n e a r i z e d non-dimensional
equations f o r a Boussinesq f l u i d a r e
0.3
2
+
2i; x C J =
= 0
-oP
+
(10.6) Ti;
+
Ev 2j
(10.7)
(10.8)
(The primes have been dropped f o r convenience). dimensional parameters a r e 0
= v/K,
t h e Prandtl Number
The new non-
1 27
Analogies between r o t a t i o n and s t r a t i f i c a t i o n
f
N2 = A&
and
P
[We note t h a t
, the
dimensionless B r u n d t Vaisala frequency, which i s a l s o referred t o a s the buoyancy frequency
n
.
can a l s o be w r i t t e n i n terms of t h e tempera-
N2
t u r e gradient a s
&T
thermal expansion
:3 , *
a =
2
a l t e r n a t i v e l y denoted by
:]. 1 fR
where the c o e f f i c i e n t of The parameter
, where
N2
(which i s
f R i s c a l l e d the in-
t e r n a l Froude number) i s a measure of the s t r e n g t h of the stratification.
I n many of the problems t h a t we w i l l consider
i s t r e a t e d a s a constant, however i n p r a c t i c a l geophysical
N2
problems t h e r e i s frequently v a r i a t i o n i n v e r t i c a l co-ordinate
N2
with the
z.
For convenience we w i l l a t present choose t h e equilibrium temperature f i e l d potential vTo =
To
t o be proportional t o t h e g r a v i t a t i o n a l
gz, hence i n the non-dimensional co-ordinates
g.
Before we continue t o study i n some d e t a i l t h i s system of equations describing t h e flow of a r o t a t i n g s t r a t i f i e d f l u i d , we w i l l i n v e s t i g a t e t h e analogy between t h e r o t a t i o n a l and the stratified constraints.
This i n t e r e s t i n g analogy has been
described by Veronis [ 6 8 ] and we w i l l now summarize h i s observations. Let us consider a f l u i d t h a t i s s t r a t i f i e d (with t h e approximations assumed i n the previous pages) but Bo_fL r o t a t ing.
Since t h e r e i s no longer a c h a r a c t e r i s t i c v e l o c i t y
nL,
i t i s necessary t o s c a l e t h e parameters by dimensions governed by the d e n s i t y gradient
Ap.
-
We then o b t a i n a system of equa-
t i o n s which i s equivalent t o (10.6)
(10.8),
with Coriolis
128
P o t e n t i a l v o r t i c i t y equation f o r a s t r a t i f i e d f l u i d
f o r c e removed.
(10.10)
V ' j = 0
:f = +
q-k =
-VP
Q
+
Tk
+
-
Ro 2 q
(10.11)
(10.12)
v2T
where We now manipulate t h i s system of equations i n t h e f a m i l i a r manner t o o b t a i n t h e p o t e n t i a l v o r t i c i t y equation f o r t h e pressure f i e l d .
Computing
k
(5- RV2)w Substitution for
Now
v
(10.11)
Hence by taking
w
(10.11) g i v e s =
-
+
T.
(10.13)
from (10.12) gives
implies
&
of (10.14) and s u b s t i t u t i n g (10.15) we
o b t a i n t h e equation
(& - RV2)(& -
v2)v2P
+
2
vHP = 0 .
(10.16)
We r e c a l l t h e p o t e n t i a l v o r t i c i t y equation f o r a r o t a t i n g
but not s t r a t i f i e d f l u i d given by ( 5 . 7 ) , namely ( S - E V 2) 2 v 2P + 4 $ = 0 . az
(10.17)
Analogies between r o t a t i o n and s t r a t i f i c a t i o n
129
It i s t h e r e f o r e obvious t h a t t h e r e i s a n exact analogy between t h e two physical system i n t h e case of two-dimensional motion
(& =
0)
when e i t h e r or
a ) motion i s steady (and l i n e a r ) b ) the P r a n d t l number
Q
= 1.
I n such cases equations (10.16) and (10.17) a r e equivalent, with t h e r o l e s of the changed
.
x
and
z
co-ordinates being i n t e r -
We remind the reader t h a t many of the p r o p e r t i e s of a rot a t i n g f l u i d discussed i n the previous s e c t i o n s were derived from the p o t e n t i a l v o r t i c i t y equation (10.17).
Thus we would
expect t h a t an a n a l y s i s of the s t r a t i f i e d equation (10.16) would lead t o analogous r e s u l t s .
A general review of pheno-
mena associated with a s t r a t i f i e d f l u i d i s given by Yih “761. We w i l l describe t h r e e examples of the equivalence between two-dimensional s t r a t i f i e d flow and homogeneous r o t a t i n g flow. (1)
Corresponding t o a Taylor column, t h e r e e x i s t s the phenomenon of blocking i n which a column of f l u i d ( p a r a l l e l t o the the
A
j
a x i s and i n f i n i t e i n
y-direction) moves a s a r i g i d h o r i z o n t a l
slab. (2)
S t r a t i f i c a t i o n provides a r e s t o r i n g f o r c e t o support waves.
I n two dimensions they a r e
analogous t o i n e r t i a l w a v e s and they a r e c a l l e d i n t e r n a l g r a v i t y waves.
The plane
wave s o l u t i o n i s
( 10.18)
Boundary layers
130
which is equivalent (with interchange of axes) t o the dispersion r e l a t i o n of i n e r t i a l waves given by ( 7 . 2 4 ) .
(3)
Clearly, the steady form of equations (10.16) and (10.17) w i l l admit t o t h e same boundary layer analysis.
For a two-dimensional s t r a t i -
f i e d f l u i d the equivalent of a n Ekman l a y e r e x i s t s on v e r t i c a l boundaries a t
x = 0,1,
and the equivalent of Stewartson layers e x i s t a t horizontal boundaries
z = 0,l.
There i s
a l s o a two-dimensional s t r a t i f i e d analogy t o the spin-up problem which is c a l l e d the "heatup" problem where t h e imposed v e r t i c a l temperat u r e gradient is suddenly increased a l i t t l e . Circulation driven by the v e r t i c a l boundary l a y e r s u c t i o n then e f f i c i e n t l y heats up t h e interior fluid. The analogy between r o t a t i n g and s t r a t i f i e d flows breaks down i n three dimensions.
T h i s is e s s e n t i a l l y because rota-
t i o n i t s e l f constrains t h e f l u i d t o motions t h a t p r e f e r t o be two-dimensional, however a s t r a t i f i e d f l u i d t h a t is f r e e t o move i n t h r e e dimensions w i l l do so without a prefered horizontal direction. I n the remaining sections we w i l l consider problems i n which both r o t a t i o n and s t r a t i f i c a t i o n a r e s i g n i f i c a n t f a c t o r s . We w i l l be p a r t i c u l a r l y i n t e r e s t e d i n the r o l e t h a t s t r a t i f i c a t i o n plays i n modifying the r e s u l t s f o r homogeneous r o t a t i n g flow
Problems
191
ChaPter 10 Problema From equations (10.10)
(10.12) obtain t h e
equation s a t i s f i e d by t h e pressure f i e l d f o r i n t e r n a l waves i n a s t r a t i f i e d f l u i d . Assume a s o l u t i o n t o the equation obtained i n (10.1) of t h e form
P = eiAt#(,r).
Show t h a t , i n a closed domain with zero flow normal t o the boundary, the eigenvalue
X
must be r e a l . Eigenfunctions corresponding t o d i s t i n c t eigenvalues a r e orthogonal. Compare these r e s u l t s w i t h those obtained i n Chapter 7 f o r i n e r t i a l waves i n a r o t a t i n g fluid
.
Would you expect low frequency waves analogous t o Rossby waves t o e x i s t i n a s t r a t i f i e d f l u i d ? Discuss your reasoning. a)
Obtain the equations s a t i s f i e d by two-
dimensional flow i n a s t r a t i f i e d f l u i d i n a v e r t i c a l boundary l a y e r a t
x = 0.
Obtain a n analogous condition t o the Ekman l a y e r s u c t i o n condition s a t i s f i e d by the I n t e r i o r flow at
x = 0.
What i s t h e "heat-up" time s c a l e ? Solve f o r the f i r s t order steady i n t e r i o r and boundary l a y e r flow i n a s t r a t i f i e d f l u i d with boundary conditions a s shown.
Problems
132
z = 1
T = To q = o
-+
z = o
x = o
T = O q = o
+
FIGURE 20
Assume the flow is two-dimensional. is constant.
Case a )
T~
Case b )
To = TO(z).
x =
CHAPTER 11
THE NORMAL MODE PROBLEM FOR ROTATING STRATIFIED FLOW
I n chapter 7 we considered the i n i t i a l value problem f o r r o t a t i n g homogeneous flow.
We proved orthogonality f o r t h e
s e t of i n e r t i a l modes together with t h e geostrophic mode.
We
a l s o showed t h a t t h e geostrophic mode must c a r r y a l l the i n i t i a l depth averaged c i r c u l a t i o n .
I f we assumed completeness
of t h i s s e t of normal modes, i t is possible t o represent t h e s o l u t i o n t o an i n i t i a l value problem i n terms of the superp o s i t i o n of the i n t r i n s i c modes of the container.
This notion
has been generalized by Howard and Siegmann [35] t o the s i t u a t i o n of a r o t a t i n g compressible f l u i d under t h e influence of a gravitational field.
They study t h e l i n e a r i z e d equations
of motion f o r a non-dissipative r o t a t i n g s t r a t i f i e d flow and they prove t h a t t h e motions of such f l u i d s s a t i s f y c e r t a i n general p r o p e r t i e s even i n the case of a compressible f l u i d . We w i l l now consider some of the i n t e r e s t i n g f e a t u r e s of their results. We r e c a l l the equations of motion given by ( 1 . 4 ) and (1.5). For a non-dissipative f l u i d , the l i n e a r i z e d non-dimensional equations f o r a small perturbation from t h e basic s t a t e become
(11.1)
Energy equation
134
(11.2) Where G(z)
pO(G)
is t h e d e n s i t y f i e l d of t h e basic s t a t e , and
is t h e s c a l e d g r a v i t a t i o n a l p o t e n t i a l .
The h e a t -
equation (10.2) becomes (11.3) Where
TO(G) i s t h e basic temperature f i e l d .
For a n a r b i -
t r a r y f l u i d t h e equation of s t a t e i s given by determining t h e d e n s i t y as a f’unction of t h e p r e s s u r e and t h e temperature, i.e.,
p =
f(T,P).
The p e r t u r b a t i o n f i e l d then s a t i s f i e s t h e
l i n e a r i z e d equation
+
p = f T
T
(11.4)
fpP.
[The simplest thermodynamics leads t o t h e equation of s t a t e given by (10.1) where
fp
B
0
and
f T = -a].
The boundary conditions a r e those a p p r o p r i a t e t o nond i s s i p a t i v e flow i n a r i g i d c o n t a i n e r , namely
6
t h e boundary
I: of the c o n t a i n e r , where
u n i t normal.
I n t h e i n i t i a l value problem
prescribed a t
t = 0.
Manipulation of equations (11.1) following equation f o r t h e “energy“.
-
-
q*h = 0
on
i s t h e outward q, p
and
T
are
I)
(11.4) y i e l d s t h e
dG
I n t e g r a t i n g (11.5) over t h e volume of the c o n t a i n e r and using
135
Normal mode problem Gauss' theorem coupled with t h e boundary c o n d i t i o n on
r:
CJ-?I
= 0
gives ( 11.6)
The f i r s t term i n t h e i n t e g r a l i s t h e k i n e t i c energy and t h e second two terms r e p r e s e n t t h e p o t e n t i a l energy of t h e flow.
fT(2)-' <
Hence equation (11.6) s t a t e s t h a t energy i s conserved with time.
It i s u s u a l l y t h e case t h a t
(i.e.,
statically stable).
r a t i c form
E
fp
2 0 and
0
Under t h e s e conditions t h e quad-
i s positive definite.
The s t r u c t u r e of
suggests t h e d e f i n i t i o n of an energy i n n e r product
E
of
t h e following form
=
s
C P O g l ' 4 e*
+
f fn P o PIP; - -2- TIT;]dv. dTn
-
(11.7)
dG
Again a l i t t l e manipulation of (11.1)
% E1,2
(11.4) shows t h a t
= O.
(11.8)
we w i l l now use t h i s r e s u l t t o prove t h e following g e n e r a l p r o p e r t i e s f o r model s o l u t i o n s whose time dependence has t h e form e i x t
.
(1)
The frequency
A
is real.
Consider t h e r e s u l t (11.8) i n t h e p a r t i c u l a r case
Orthogonality and uniqueness
136
From (11.7) and (11.8) we obtain
Since t h e integrand i s p o s i t i v e , we conclude t h a t and hence
b
*
b =
is real.
Two normal modes of d i f f e r e n t frequencies a r e
(2)
orthogonal: Let and where
b1
+
A29
Equations (11.7) and (11.8) then give t h e r e s u l t n
Since
b1
4
n
b 2 , we conclude t h a t the i n t e g r a l i s zero and
hence the two modes a r e orthogonal i n the sense of the inner product ( 11.7).
(3)
The s o l u t i o n t o t h e i n i t i a l value problem i s unique :
Let
(s,F,?)
be the d i f f e r e n c e of two s o l u t i o n s t o the
i n i t i a l value problem.
Since the d i f f e r e n t i a l equations a r e
l i n e a r , t h i s quantity is c l e a r l y a s o l u t i o n t o the equations and boundary conditions with zero i n i t i a l condition.
The
Normal mode problem energy
E
137
s a t i s f i e s (11.6) w i t h i n i t i a l condition
E(0) = 0.
We t h e r e f o r e conclude t h a t
dG
f o r a l l time
t 1 0.
Since the integrand i s p o s i t i v e , i t
follows t h a t
Thus the two s o l u t i o n s t o the i n i t i a l value problem must be identical. A s i s s o o f t e n the case, i t i s much more d i f f i c u l t t o prove
-
the existence of the s o l u t i o n t o the i n i t i a l boundary value problem f o r equations (11.1)
(11.4).
I n the case of a
s t r a t i f i e d , but incompressible, r o t a t i n g f l u i d , Friedlander and Siegmann [ 2 2 ] demonstrate t h e existence of s o l u t i o n s i n p a r t i c u l a r geometries by obtaining exact expressions f o r the normal modes. Steadv Flow I n our study of a homogeneous r o t a t i n g f l u i d we have seen t h a t the steady o r geostrophic mode corresponding t o the f r e quency
= 0,
i s of p a r t i c u l a r importance and i n t e r e s t .
i s also true f o r a stratified rotating fluid.
This
We w i l l show
t h a t t h e geostrophic node i s c r u c i a l l y dependent on the nature of the boundary.
Again i t i s s e n s i b l e t o c h a r a c t e r i z e the
boundary i n t o t h r e e regions i n the same manner a s we described
138
Steady flow
f o r homogeneous flow i n Chapter 6 .
However, f o r s t r a t i f i e d
flow t h i s c h a r a c t e r i z a t i o n i s dependent on t h e n a t u r e of t h e gravitational potential. The time-dependent forms of equations (11.1)
-
(11.4) are (11.11)
= 0
V*(P0$
(11.12)
p = fTT
The c r o s s product o f ( 1 1 . 1 2 ) with 2[k3*0G
-
J
g] +
+
fpP.
oG
(11.14)
gives
1 VG x VP = 0.
Since t h e b a s i c s t a t e temperature
i s a f u n c t i o n dependent
To
only on the g r a v i t a t i o n a l p o t e n t i a l
(11.3) r e q u i r e s
G,
(11.16)
J - V G = 0,
i.e., 0.
t h e v e l o c i t y f i e l d i s p a r a l l e l t o s u r f a c e s of c o n s t a n t From (11.15) and (11.16) we o b t a i n t h e r e s u l t q =
(11.17)
V G x vP,
and s u b s t i t u t i o n of (11.7) i n t o ( 1 1 . 1 2 ) g i v e s
PO%
[VG*PZ
-
G,VP]
+
PO
vP
+
PO
vG = 0.
139
Normal mode problem P
Hence
(11.18)
p - 2 .
Gz
Equations (11.17) and (11.18) a r e t h e equivalent of t h e geostrophic r e l a t i o n s f o r a compressible r o t a t i n g f l u i d . Clearly these equations, together w i t h the equation of s t a t e
(11.4) determine the v e l o c i t y , temperature and d e n s i t y f i e l d s f o r the steady flow once the pressure
P
i s Known.
We there-
f o r e ask what a r e t h e conditions t h a t t h e geostrophic pressure must s a t i s f y ?
S u b s t i t u t i o n of (11.17) i n t o (11.11) gives
v
.I-[
Gz
i
= 0,
which can be r e w r i t t e n i n the form
Hence t h e r e a r e no r e s t r i c t i o n s on appears t h a t any function
(11.14).
P
P
if
VG
x vGz
5
It
0.
w i l l s a t i s f y equations (11.11)
This s i t u a t i o n i s analogous t o homogeneous
geostrophic flow i n
a
cylinder where the geometry alone does
not uniquely determine the s o l u t i o n . the regions i n which
V G x VG,
Siegmann, geos t rophlcally f r e e
= 0
.
Because of t h i s analogy a r e c a l l e d by Howard and
I n t h e regions t h a t a r e not geostrophically f r e e , i n t e g r a l curves of
VG x
vG,
geostrophic curves.
can be constructed.
They a r e c a l l e d
The regions where the geostrophic curves
cross the boundary a r e c a l l e d geostrophically blocKed.
The
regions which we a r e covered by geostrophic curves t h a t do not i n t e r s e c t t h e boundary a r e c a l l e d geostrophically guided.
In
140
Guided and blocKed regions
a blocIced o r guided r e g i o n e q u a t i o n (11.19) r e q u i r e s t h a t i s c o n s t a n t along g e o s t r o p h i c c u r v e s .
P
I n t h i s c a s e (11.17)
becomes
-
V G x vG,.
2pOGz a G Z
(11.20)
Hence t h e v e l o c i t y v e c t o r i s p a r a l l e l t o t h e g e o s t r o p h i c curves.
This i s a g a i n analogous t o homogeneous flow i n a
a sphere).
g e o s t r o p h i c a l l y guided c o n t a i n e r ( e . g . ,
For a
given c o n t a i n e r t h e s p e c i f i c g e o s t r o p h i c mode t h a t s a t i s f i e s t h e boundary v a l u e problem must have t h e form of (11.20) t o ge t h e r with t he boundary c o n d i t i o n
-
L
qen = 0
on
I n a guided r e g i o n t h e v e c t o r
(11.21)
Z.
VG x VGZ
is parallel to
t h e s u r f a c e , hence t h e v e l o c i t y given by (11.20) a u t o m a t i c a l l y s a t i s f i e s t h e boundary c o n d i t i o n ( 1 1 . 2 1 ) . of
3
Also, t h e magnitude
on a given g e o s t r o p h i c curve i s p r o p o r t i o n a l t o
(VG x vGz
I. In
a blocKed r e g i o n the boundary c o n d i t i o n
(11.21) applied t o (11.20) requires A * ( V G x VG,)
= 0
a t some p o i n t on t h e g e o s t r o p h i c curve, hence t h e c o n s t a n t of p r o p o r t i o n a l i t y must be z e r o . i s zero.
Thus t h e s t e a d y v e l o c i t y v e c t o r
This s i t u a t i o n i s analogous t o homogeneous flow i n
a sliced cylinder.
We note t h a t when
2
= 0, e q u a t i o n (11.12)
Normal mode problem
141
becomes VP
Thus
v G x VP = 0
+
(11.22)
~ v G= 0 .
and we conclude t h a t
P
i s constant not
only on geostrophic curves, but a l s o on t h e l e v e l surfaces G = constant.
potent i a 1 Vort i c i t v I n Chapter 2 we showed t h a t t h e r e e x i s t s a n a t u r a l extens i o n of the concept of v o r t i c i t y t o r o t a t i n g s t r a t i f i e d flows. We derived an expression c a l l e d t h e p o t e n t i a l v o r t i c i t y
ll
and we proved t h a t f o r a non-dissipative f l u i d the p o t e n t i a l v o r t i c i t y i s conserved.
We have made use of the concept, a s
i t a p p l i e s t o a r o t a t i n g homogeneous f l u i d , on a number of
occasions i n the preceeding chapters.
We w i l l now derive a
p a r t i c u l a r form f o r the p o t e n t i a l v o r t i c i t y of a r o t a t i n g compressible flow i n an a r b i t r a r y g r a v i t a t i o n a l f i e l d , i n
-
which the equations of motion a r e approximated by t h e l i n e a r i z e d equations (11.1)
(11.4).
Because t h e b a s i c s t a t e q u a n t i t i e s a r e functions t h a t depend only on
G , equation (11.3) can be r e w r i t t e n a s dT
+ 9*vG $=
0.
Consider the c r o s s product of ( 1 1 . 2 ) with
(11.23) vG:
(11.24) S u b s t i t u t i o n of
j-vG
from ( 1 1 . 2 3 )
gives
Potential v o r t i c i t y i n a rotating s t r a t i f i e d f l u i d
142
-
&[qXVG
+
21 +
0
ZqG,
dG
+
PO
x V G = 0.
(11.25)
Hence
(11.26) dG
TaKing t h e divergence of (11.26) and using (11.1) gives
I n g e o s t r o p h l c a l l y free regions ( i . e . ,
where
VG x
vG,
= 0),
equation (11.27) shows t h a t t h e q u a n t i t y
( 11.28)
i s pointwise conserved.
This q u a n t i t y t h e r e f o r e p l a y s t h e
r o l e of a p o t e n t i a l v o r t i c i t y .
I n a g e o s t r o p h i c a l l y guided or a g e o s t r o p h i c a l l y blocked region the conserved q u a n t i t y i s a l i t t l e more complicated. Howard and Siegmann show t h a t i n a guided region
where
r
i s a closed geostrophic curve, s a t i s f i e s
Normal mode problem
145
I n a blocked region a f u r t h e r modification i s necessary t o o b t a i n a quantity t h a t i s conserved f o r each h o r i z o n t a l surface. It is an easy matter t o construct the p o t e n t i a l v o r t i c i t y i n c e r t a i n p a r t i c u l a r examples.
Let us consider f i r s t t h e
example of a laboratory experiment with v e r t i c a l g r a v i t a t i o n a l force whose p o t e n t i a l
G = +gz.
We assume i ) t h a t t h e
Boussinesq approximation i s v a l i d , ii) t h a t f T = a, a constant.
fp = 0
and
of motion a r e those derived i n Chapter 10 given by (10.6)
(10.8).
-
The l i n e a r i z e d , non-dimensional equations
For an i n v i s c i d f l u i d the equations become
v.3
(11.31)
= 0
( 11.32)
$$ + N2g.k [Recall
N2
=
= 0
.
(11.33)
y]. n~
I n t h i s problem
GZ
i s constant, hence
the s i t u a t i o n is geostrophically f r e e .
vG x v G z
= 0
and
We use (11.28) t o
o b t a i n the expression f o r the p o t e n t i a l v o r t i c i t y .
I n terms
of the non-dimensional s c a l i n g c o n s i s t a n t w i t h t h e q u a n t i t i e s i n equations (11.31) potential vorticity i s
-.
(11.33), t h e expression f o r the
Geostrophic and h y d r o s t a t i c balance
144
[Note:
i n t h i s case
V-2
= 0, hence t h e term
Zp
disappears
from e q u a t i o n (11.2'01. The g e o s t r o p h i c , o r s t e a d y mode s a t i s f i e s (11.31) (11.33) with
& = 0.
-D
Thus t h e g e o s t r o p h i c flows a r e g i v e n
by
3
- x VP = 2 2 k
T = 9p az
and
*
Equation (11.55) is e q u i v a l e n t t o g e o s t r o p h i c balance and e q u a t i o n (11.56) is c a l l e d h y d r o s t a t i c b a l a n c e .
Substitution
of t h e s e e x p r e s s i o n s i n t o (11.54) g i v e s t h e e x p r e s s i o n f o r t h e p o t e n t i a l v o r t i c i t y of a g e o s t r o p h i c flow,
In Chapters 1 2 and 13 we w i l l s t u d y t h e waves supported by a r o t a t i n g s t r a t i f i e d f l u i d i n a g r a v i t a t i o n a l f i e l d of p o t e n t i a l G = +gz.
We w i l l n o t e t h a t t h e e x p r e s s i o n f o r t h e p o t e n t i a l
v o r t i c i t y g i v e n by (11.34) i s e q u i v a l e n t t o t h e p o t e n t i a l v o r t i c i t y t h a t c a n be d e r i v e d from E r t e l ' s theorem g i v e n i n Chapter 2. A second i n t e r e s t i n g , but simple example i s flow of a
Boussinesq f l u i d i n a s p h e r e i n a r a d i a l g r a v i t a t i o n a l f i e l d with p o t e n t i a l
G = g r2
.
This could be considered a simple
Normal mode problem
145
model f o r an astronomical body where the g r a v i t a t i o n a l force points r a d i a l l y inwards. f
T
We again assume
fp = 0
and
I n non-dimensional form the l i n e a r i z e d equations
= -a.
-
v.q = 0
+ We compute
vG
and
Hence , (where
+
y2
+
P N 2g.2 = 0.
(11.40)
t o be
G,
VG
r2 = x2
(11.38)
x vGz = ( 2 g l P 3 x
k.
(11.41)
z2).
Thus t h i s problem i s not geostrophically f r e e .
The geostro-
phic curves a r e c i r c l e s of l a t i t u d e on spheres of constant radius.
Therefore the boundary of the sphere
geostrophically guided.
r
= 1
is
The p o t e n t i a l v o r t i c i t y i n terms of
the non-dimensional q u a n t i t i e s is (11.42) I n t h e case of axisymmetric flow v o r t i c i t y can be w r i t t e n
($
= 0)
the potential
(11.43) ( (r,O ,+)
a r e s p h e r i c a l p o l a r co-ordinates)
.
The geostrophic
146
Conserved p o t e n t i a l v o r t i c i t y
mode s a t i s f i e s (11.44) Thus v e l o c i t y and temperature f o r the geostrophic flow can be w r i t t e n i n terms of the pressure:
(geostrophic balance)
1s
and
T = 22 a z
(11.46)
(hydrostatic balance). We s u b s t i t u t e (11.45) and (11.46) I n t o (11.43) t o o b t a i n the following expression f o r the geostrophic p o t e n t i a l v o r t i c i t y : "g
" + 4 J J J U a2 2 2 sin ae cos2 ae
+
b 4 1a]' N2 az z 2 az
(11.47)
I n t h e i r study of the i n i t i a l value problem Howard and Siegmann [ 3 5 ] show t h a t the concept of a conserved p o t e n t i a l v o r t i c i t y allows the complete c h a r a c t e r i z a t i o n of the geos t r o p h i c p a r t of the flow. (%a
P g a Tg )
T h i s steady c o n t r i b u t i o n
t o t h e s o l u t i o n of an i n i t i a l boundary value
problem i s the unique geostrophic flow t h a t has t h e same p o t e n t i a l v o r t i c i t y a s the i n i t i a l flow.
Problems
147
Chapter 11 Problems
-, (11.4) show t h a t
11.1) Using equations (11.1)
Lat J2{
Igl2po
f + -2
- fr
P2
3 2
PO
11.2)
TZ}
+
v.(pq)
= 0.
aG
Consider the problem of flow i n a cylinder with gravitational potential
G = gz.
The i n i t i a l
conditions a r e
q(z,O) a)
=
So(,r)
and
T ( 2 , O ) = To(:)
.
What is the equation s a t i s f i e d by t h e geostro-
phic pressure f i e l d ? b)
The boundary conditions can be shown t o be
pazp
= To
So
ar
and
on do
=
2n
J,
z = 0,1,
Q,.;
P = constant on
dB
r = a
on
r = a,
f o r fixed
z.
Determine the geostrophic flow i n the case where the i n i t i a l conditions a r e axisymmetric with
Qo = v ( r , z ) B , To = T o ( Z ) .
[Assume the
s o l u t i o n is axisymmetric].
11.3)
Show t h a t the s o l u t i o n t o the i n i t i a l value problem given i n ( 1 1 . 2 ) is unique.
148
Problems
11.4)
Consider the problem of flow in a s p h e r i c a l s h e l l with g r a v i t a t i o n a l p o t e n t i a l
a)
Describe the geostrophic contours.
b)
Assume t h a t the Boussinesq approximation i s v a l i d and t h a t
f p = 0, f
T = -a. Assume
the non-dimensional s c a l i n g of Chapter 10 i s valid. Compute the p o t e n t i a l v o r t i c i t y a s a funct i o n of v e l o c i t y and temperature.
c)
Express the p o t e n t i a l v o r t i c i t y f o r a geostrophic flow a s a f u n c t i o n a l of the geostrophic pressure.
11.5)
Consider the problem of flow i n a sphere with G = gr2
discussed i n t h i s chapter.
The
viscous c o r r e c t i o n t o the equations of motion gives the following equations
(U
is the dimensionless parameter c a l l e d
the Prandtl number).
P r ob l e as
a)
Show t h a t these equations can be manipulated t o give
at b)
n(q,T,N2)
-
= E F(q,T,N
Determine the time s c a l e f o r a n
2
u). O(1)
change i n the p o t e n t i a l v o r t i c i t y .
Is
t h i s time-scale dependent on the s i z e of
o?
This Page Intentionally Left Blank
CHAPTER 1 2
ROSSBY WAVES I N A ROTATING STRATIFIED FLUID
m e P o t e n t i a l V o r t i c i t v Fguation We have already seen a number of instances of the importance of p o t e n t i a l v o r t i c i t y i n c h a r a c t e r i z i n g the behavior of a rotating fluid.
I n Chapter 11 we derived a g e n e r a l i z a t i o n
of p o t e n t i a l v o r t i c i t y f o r a r o t a t i n g compressible f l u i d i n an a r b i t r a r y g r a v i t a t i o n a l f i e l d .
We w i l l now r e t u r n t o the
expression f o r the p o t e n t i a l v o r t i c i t y of a r o t a t i n g , s t r a t i f i e d f l u i d derived i n Chapter 2 , namely
n = where
h
P
(,B + 29)
is any s c a l a r such t h a t
= 0
(12.l)
and
1 = x (P,p)
.
I n Chapter 8 we used the f a c t t h a t ( f o r a n i n v i s c i d f l u i d ) p o t e n t i a l v o r t i c i t y i s conserved, t o study Rossby waves i n a homogeneous r o t a t i n g f l u i d .
We w i l l now apply t h i s p r i n c i p l e
t o i n v e s t i g a t e Rossby waves i n a r o t a t i n g s t r a t i f i e d f l u i d .
%
Let us consider a s t r a t i f i e d , incompressible f l u i d , i . e . , = 0.
Obviously the density i t s e l f is then a s u i t a b l e
candidate f o r the s c a l a r
A.
We follow the a n a l y s i s given i n
Chapter 10 and we assume t h a t the perturbations from the equilibrium s t a t e a r e small.
The l i n e a r i z e d equation of conserva-
t i o n of the p o t e n t i a l v o r t i c i t y becomes
P o t e n t i a l v o r t i c i t y equation
152
(12.2)
I n order t o study Rossby waves i n a s t r a t i f i e d f l u i d we cons i d e r motion on a
@-plane by w r i t i n g
29 = 2n cos
ek
-
n(fo+py)i.
Repeating t h e non-dimensional l i n e a r i z a t i o n given i n Chapter 10, ( w i t h the
@-plane modification), t h e d e n s i t y f i e l d be-
comes
( f o r convenience we have chosen the equilibrium s t r a t i f i c a t i o n t o be proportional t o
z).
Thus the l i n e a r i z e d p o t e n t i a l
vorticity is
n
(€3' +
=
where
fk)
f = fo
(k +
+
2
vp')
(12.4)
By.
The l i n e a r i z a t i o n of equation (12.2) gives n
[For convenience we have again dropped the primes on the perturbation quantities].
We note t h a t t h i s expression f o r
is equivalent t o (11.31) when Coriolis parameter
f
T[
is a
constant. We consider t h e case where the g r a v i t a t i o n a l p o t e n t i a l G(r) = gz.
To f i r s t order t h e non-dimensional perturbation
v e l o c i t y and density s a t i s f y the steady and i n v i s c i d form of equation (10.7),
namely
153
Baroclinic Rossby waves
3
A
fk X
L.g
Thus and
= -VP
=
1
+
A
(12.6)
pK.
2 VHP
(12.7)
P = , , *
(12.8)
S u b s t i t u t i o n of (12.7) and (12.8) i n t o equation (12.5) gives the l i n e a r i z e d p o t e n t i a l v o r t i c i t y equation
+
a-[V2P
at
9 1+ g
fZ 2
-4j N
(3
az
= 0.
(12.9)
This i s the equation t h a t describes the behavior of Rossby waves i n a s t r a t i f i e d f l u i d .
bv Waves f o r a StratifkLE&&l We o b t a i n a wave-like s o l u t i o n t o equation (12.9) by writing
P where The function
5.3
=
-
i ( z ) ei ( f . J A t )
= lrlx
+
(12.lo)
K2Y.
i (z) c a r r i e s the v e r t i c a l s t r u c t u r e a r i s i n g
from the s t r a t i f i c a t i o n . w - 0
at
As boundary conditions we take z = O
and
z = h .
(12.11)
Equation (10.8), together with t h e assumption t h a t t h e equilibrium f i e l d i s such t h a t
VTO =
c,
implies f o r a n i n v i s c i d
fluid (12.12)
From (10.9) and the equation of h y d r o s t a t i c balance (12.8) we
154
Eigenvalue problem
have T =
hE
(12 .lj)
az
Combining (12.11), ( 1 2 . 1 2 ) and (12.13) gives t h e boundary cond i t i o n on
namely
# (z),
at
az = 0
z = 0,h.
(12.14)
S u b s t i t u t i o n of expression (12.10) i n t o the Rossby wave equat i o n ( 1 2 . 9 ) gives
+
-A[-(K1+K2)I 2 2
Hence
+ f2
N
2
3+] az
+
BK,#
satisfies
i
(12.15) with boundary conditions ( 1 2 . 1 4 ) .
This eigenvalue problem has
the s o l u t i o n 0,
= cos
y
,
2 BK (yy = J$ (++ #f +
where
fo
(12.16)
I(;>,
giving A,
=
2
K 1
for to
n n
=
0,1,2,.....
= 0
.
+
2
K2
+
2 2 2 ’
fon
(12.17)
N2h2
We note t h a t t h e mode corresponding
has eigenvalue
Baroclinic Rossby waves
Ao=
and eigenfunction
=
2 K1
+
155
(12.18)
2
K2
constant.
T h i s mode c l e a r l y corresponds t o the homogeneous Rossby wave.
It i s c a l l e d the barotropic mode and i s unaffected by s t r a t i fication.
Because t h i s mode i s independent of
a r y conditions imply t h a t
w
must be
z, t h e bound-
zero everywhere.
Hence
the motion i s purely h o r i z o n t a l and a f l u i d p a r t i c l e i s not required t o cross the density gradient and experience the e f f e c t s of s t r a t i f i c a t i o n . The v e r t i c a l s t r u c t u r e of s t r a t i f i e d Rossby waves appears i n the higher modes
n = 1,2,.
.... .
These a r e c a l l e d t h e
b a r o c l i n i c modes and the pressure i s given by
From the geostrophic balance Implied by equation (11.5) the h o r i z o n t a l v e l o c i t y components a r e :
And from ( 1 2 . 1 2 ) and (12.13) the v e r t i c a l v e l o c i t y i s given by
Thus the higher modes have a s t r o n g degree of v e r t i c a l s t r u c -
156
Rossby radius of deformation
t u r e with the v e l o c i t y components having s i n u s o l d a l dependence.
z-
We a l s o note t h a t unlike t h e homogeneous problem,
wn
the v e r t i c a l v e l o c i t y I n f a c t , the values of
m = 0, il, a 2 , ...)
i s not zero f o r a l l values of a t which
z
wn
i s zero
(z
=
z.
mh
n ' a r e p r e c i s e l y those values a t which the
magnitude of t h e h o r i z o n t a l v e l o c i t y i s g r e a t e s t . i t-
0
on
0
Let us consider the dispersion r e l a t i o n (12.16) f o r the n-th
Baroclinic mode.
It can be r e w r i t t e n as
where the e f f e c t s of s t r a t i f i c a t i o n a r e r e f l e c t e d i n t h e term
0 f2n n2 . 1 N2h2 Clearly the eigenvalue
Xn
[K: + K:]
only d i f f e r e e a-gnificantly from
t h a t of the barotropic ( o r homogeneous) mode
Lo,
given by
( 1 2 . 1 8 ) , when
Hence the e f f e c t s of s t r a t i f i c a t i o n a r e only s i g n i f i c a n t , f o r each mode, when the following c r i t e r i o n i s s a t i s f i e d , namely
15 7
Baroclinic Rossby waves
(12.19)
Now
2 [U1
+
is t h e square of the h o r i z o n t a l wave number,
Ui]
hence o(gl 2
where
L
+ u2)2
=
o(n2n2L-2),
i s the h o r i z o n t a l length s c a l e .
Thus t h e s t r a t i f i -
c a t i o n c r i t e r i o n (12.19) can be r e w r i t t e n i n t h e form
The value
* fO
L > = . fO =
$
(12.20)
i s c a l l e d the Rossby radius of deformation.
We conclude t h a t , f o r a given s t r e n g t h of s t r a t i f i c a t i o n and given depth
N
h, Rossby waves a r e only influenced by s t r a -
t i f i c a t i o n i f the h o r i z o n t a l length s c a l e exceeds the Rossby radius of deformation.
We remark t h a t t y p i c a l values of
i n the atmosphere and ocean a r e lOOOkm and 60km, r e s p e c t i v e l y . These a r e length s c a l e s t h a t a r e frequently encountered i n t h e study of motions I n the atmosphere and ocean. We have given here a n i n t r o d u c t i o n t o t h e theory of Rossby waves i n a geophysical context.
Since the i n i t i a l study of
the t o p i c by Rossby [ 5 7 ] , i n 1939, the complexity of the subj e c t has increased considerably.
A s i g n i f i c a n t body of work
has developed which shows the importance of Rossby waves i n understanding the movement of l a r g e s c a l e disturbances i n the oceans and the atmosphere.
The e s s e n t i a l f e a t u r e s , t o d a t e ,
a r e given i n a n a r t i c l e by Dickinson [ 141.
V a r i a b l e depth We p a r t i c u l a r l y mention s e v e r a l e x t e n s i o n s of t h e work d e s c r i b e d i n t h i s c h a p t e r , t h a t a r e discussed i n d e t a i l by DicKinson.
F i r s t , i n geophysical problems, t h e depth
t h e l a y e r of f l u i d is not g e n e r a l l y c o n s t a n t .
h
of
The i n t r o -
d u c t i o n of a v a r i a b l e depth l e a d s t o a f u r t h e r term i n t h e p o t e n t i a l v o r t i c i t y e q u a t i o n ( s e e Chapter 8 and e q u a t i o n (8.21)).
It is t h e n a p p r o p r i a t e t o g e n e r a l i z e
mean p o t e n t i a l v o r t i c i t y g r a d i e n t .
'N
=
-Pa az
4
t o the
Second, t h e parameter
is not c o n s t a n t , i n f a c t , i n t h e ocean i t has a
f a i r l y high degree of v e r t i c a l s t r u c t u r e which d e f i n e s t h e thermoclines.
It can be shown t h a t t h e f i r s t b a r o c l i n i c mode
( n = l ) i s s t r o n g l y dependent on t h e s t r u c t u r e of .'N
Hence
a r e a l i s t i c study of ocean Rossby waves r e q u i r e s working w i t h
a p o t e n t i a l v o r t i c i t y e q u a t i o n with non-constant c o e f f i c i e n t s .
Prob lens Chapter 12 Problems 12.1)
I n a s t r a t i f i e d f l u i d t h e equation f o r Rossby waves i s given by
Obtain t h e s o l u t i o n f o r waves i n a closed cylinder by SeeKing a s o l u t i o n of t h e form P = A(x,y,z)e
- A
i x ,ipxt
t h a t s a t i s f i e s the above equation, together with t h e boundary conditions
az
=
o
at
z = 0,1
and
u = o at
ae
12.2)
r = a .
How do the Rossby waves i n a s t r a t i f i e d f l u i d obtained i n problem ( 1 2 . 1 ) d i f f e r from t h e barotropic Rossby waves described i n Chapter 8?
12.3)
I n oceanic models the presence of a f r e e s u r f a c e modifies the boundary condition.
~
We t h e r e f o r e consider the problem
159
Problems
160
w 1t h t h e boundary c ondi t i o n s w = g z at
Z = O
w=o
z = -h.
and
a)
Obtain t h e plane wave s o l u t i o n of t h e form P = r(z)e
b)
at
i(KIX
+
K2Y)
How does t h e s o l u t i o n d i f f e r from t h e Rossby wave s o l u t i o n i n a c o n t a i n e r w i t h a r i g i d lid?
CHAPTER 13 INTERNAL WAVES I N A ROTATING STRATIFIED FLUID
S t r a t i f i c a t i o n provides a r e s t o r i n g force and hence allows the existence of i n t e r n a l waves ( s e e Problem ( 1 0 . 2 ) .
I n view
of the analogy between r o t a t i o n and s t r a t i f i c a t i o n (Chapter lo), we would expect i n t e r n a l g r a v i t y waves t o have similar
p r o p e r t i e s t o t h e i n e r t i a l waves supported by r o t a t i o n :
this
i s i n f a c t the case ( Y i h [ 7 6 ] ) . We w i l l now consider the int e r n a l waves t h a t e x i s t when a f l u i d i s both r o t a t i n g and stratified. We seek wave-like s o l u t i o n s t o t h e i n v i s c i d l i n e a r i z e d equations of motion given by
a9
at +
28 x
9
0.9
= -0P
+
Tk
= 0
We have assumed t h a t t h e Boussinesq approximation is v a l i d , 6
t h a t t h e equilibrium temperature f i e l d s a t i s f i e s
vTo = K,
and t h a t t h e l i n e a r i z e d equation of s t a t e i s
-uT (Chapter
10).
We s u b s t i t u t e
( q , P , T ) = eiAt($,,l,s)
tions t o obtain
16 1
p =
i n t o t h e s e equa-
Pressure equation
162
(13.2) (13.3) We manipulate these vector equations to obtain the equation for the pressure field 5 . computing ko(l3.1) gives
-
+ s,
2(wii-$1
=
ixw =
(13.4)
and (13.3) and (13.4) give
Now
k
(13.1) gives
X
il(L€J)+
-ic
x Ol
.
(13.6)
Hence v (13.6) implies that
-
0
Uv-(kxQ)
We substitute for
k
x
GJ
+
(13.7)
from (13.5) g i v e s the equation for
the pressure as
+
% = 0.
from (13.1) and (13.3) to obtain
Thus, substitution for w
V21
2
2 N
q az
= 0.
(13.9)
We note that in the case of no stratification, i.e., N2 = 0,
163
I n t e r n a l waves
t h i s equation reduces t o Poincard‘s equation (7.5) f o r iner-
t i a l waves. e Wave S o l u t i m We consider a plane wave s o l u t i o n , i n an unbounded f l u i d ,
for equation (13.9).
4.;
= K1x
+
KZy
+
Writing
# = # 0e i ( b ’ z ) , where
K3z, and s u b s t i t u t i n g t h i s form i n t o equa-
t i o n (13.9) gives
Hence t h e d i s p e r s i o n r e l a t i o n i s
( 13.10)
This, of course, reduces t o expression (7.24) f o r homogeneous i n e r t i a l waves when f l u i d where
N
‘2
f 0
N2
= 0.
We note t h a t for a s t r a t i f i e d
t h e frequency depends not only on t h e
d i r e c t i o n of the wave vector, but a l s o on i t s magnitude. The phase v e l o c i t y
Sp =
fi il
is given by
Again the system i s d i s p e r s i v e with long waves t r a v e l i n g fastest. The group v e l o c i t y that
Cg = v K A .
A l i t t l e manipulation shows
Plane wave s o l u t i o n
164
We remark t h a t f o r a l l
t h e product
N2
= 0.
Thus, t h e introduction of s t r a t i f i c a t i o n , however s t r o n g , does not change a basic property of i n t e r n a l i n e r t i a l waves, namely t h a t energy i s transported a t r i g h t angles t o the phase velocity.
A s Garrett and Munk [24] observe, t h i s r e s u l t implies
t h a t a packet of waves would appear t o s l i d e sideways along the c o a s t s .
This property is i l l u s t r a t e d i n laboratory ex-
periments of Mowbray and Rarity [45]. We a l s o note t h a t s u b s t i t u t i o n of a v e l o c i t y vector of plane wave form
i n t o the divergence equation
Thus the p a r t i c l e v e l o c i t y
Sg
0'9 =
go,
0
gives
a s well a s the group velocity
i s perpendicular t o the wave number vector
1.
The dispersion r e l a t i o n (15.10) can be rewritten i n the form
X2
=
4
sin27
+
N2 cos2Y
Internal waves
\
\
, 2 4 0 /
Illustration of
I
Y
5 , 90
FIGURE 21
and
Eg'
166
Waves i n bounded geometry
where
y
is the angle given by
i s close t o 2 ( t h e i n e r t i a l frequency),
When t h e frequency the angle
y
is almost a r i g h t angle; when A
( t h e buoyancy frequency), the angle
i s close t o
i s almost zero.
y
Figure 21 i l l u s t r a t e s the perpendicular properties of and
jo i n these two cases.
9,
N
sgy
braves i n Bounded Ge one t ry I n t h e previous s e c t i o n we described t h e dispersion r e l a t i o n f o r a plane wave s o l u t i o n t o equation (13.9).
A n y spe-
c i f i c physical problem requires the study of i n t e r n a l raves in a bounded region of f l u i d .
For example, an ocean b a s i n has
h o r i z o n t a l boundaries a t the coast l i n e of the adjacent land
mass:
we could crudely approximate the geometry of the ocean
by a rectangular box, o r a cylinder.
The atmosphere can be
modeled by a region bounded by a s p h e r i c a l annulus.
A labora-
tory experiment t o study i n t e r n a l waves would n e c e s s a r i l y be performed i n a bounded geometry. The mathematical model t h a t we have constructed f o r i n t e r n a l waves i n a r o t a t i n g s t r a t i f i e d f l u i d neglects t h e e f f e c t s of viscous and thermal d i f f u s i o n .
The appropriate boundary
condition f o r equations ( 13. 1)
(13.3) i s t h e r e f o r e the
-.
condition t h a t the normal v e l o c i t y i s zero on t h e boundary, i.e.,
9.;
= 0
on the boundary
C.
I n t e r n a l waves
167
A l i t t l e manipulation of the equations enables
us t o w r i t e
t h i s boundary condition i n terms of the pressure f i e l d
We r e c a l l t h a t when t h e s t r a t i f i c a t i o n parameter zero we proved t h a t t h e frequency
X
satisfied
as
4
N2
is
1x1 < 2 and
hence the equation f o r the pressure was always hyperbolic. We w i l l now o b t a i n the c o n s t r a i n t s on zero. where
when
We construct the energy i n t e g r a l by taking
CJ*
CJ,
i s the complex conjugate of
the volume of the container.
=
-s
2
- $J
s*.v*dv
v - 9*
that
= 0
J
N2
i s non
CJ* - ( 1 3 . 1 ) ¶
and i n t e g r a t e over
T h i s procedure gives
V
Since
JAJ
2
( 13.15 1
I w I dv.
V and
n-$ = 0
$.v#dv
on
Gauss' theorem implies
= 0.
V Thus equation (13.15) becomes 1$I2dv
-A2
+
N's
V We w r i t e
V
V i n component form a s
3
=
* CJ .k
Iwl2dv = i2X
uz
+ v j + wic
x J€ d v .
(13.16)
168
Bounds on t h e frequency
u
where
and
can be w r i t t e n i n r e a l and imaginary p a r t s
v
as
u = u Hence
+
R
-
* .k % 9
Q
v =
iU1y
VR
-2i(uRvI
=
+
iVI.
- vRU I
) y
and e q u a t i o n (13.16) becomes
IQ
A2
'dv
+
4~
J
(uIvR
-
uRvI)dv
-
N2
f
lwI2dv = 0. (13.17)
V
Equation (13.17) g i v e s a q u a d r a t i c e q u a t i o n f o r
A
with d i s -
A
are real
crimlnan
which is never n e g a t i v e .
Hence t h e eigenvalues
and t h e s o l u t i o n s a r e p u r e l y wave l i k e with no e x p o n e n t i a l growth
.
(AI
To o b t a i n bounds on
we r e w r i t e e q u a t i o n (13.17) t o
give (luI2
k2
+
lvI2)dv
+
V
+
(A2
-
N2)
21
s
V
This e q u a t i o n has t h e form
J
2(uIvR
-
V
2
I w I dv
= 0.
uRvI)dv
I n t e r n a l waves
where
P
2
Case a )
and
0
N
<
1Q1
<
169
P.
2:
Clearly (13.19) can not have a s o l u t i o n of the form 2
x 2 4 >
N2, s i n c e i n t h i s case both terms w i l l be p o s i t i v e
and hence the sum can not be zero. 2 ?, < N2 i s a p o s s i b i l i t y . m e b)
N
>
However a s o l u t i o n
2:
Again (13.19) can not have a s o l u t i o n
X
t h i s would imply both terms a r e p o s i t i v e .
x2
<
4
2 N2 > 4 s i n c e
However a s o l u t i o n
is possible.
Thus we observe t h a t
1x1 i s bounded from above
l a r g e r of the two dimensionless frequencies ever
2
N
and
1x1 is & bounded from below by Min(N,2)
by the
How-
2.
and we can
expect t o find s o l u t i o n s t o the eigenvalue problem f o r a l l values of A
such t h a t 0
< x2 <
Max(N2,4).
It i s therefore possible t h a t t h e d e f i n i n g equation (13.9) f o r
the pressure f i e l d can be e i t h e r hyperbolic o r e l l i p t i c .
We
w i l l now show t h a t t h e r e e x i s t two c l a s s e s of wave-like solu-
t i o n s t o equation (13.9) w i t h boundary condition ( 1 3 . 1 4 ) . The f i r s t c l a s s of waves a r e purely o s c i l l a t o r y i n t h e i r s p a t i a l dependence: Max(N,2)
and
hyperbolic.
t h e i r frequencies
Min(N,2)
A
a r e bounded by
and hence the equation f o r
I
Waves of the f i r s t c l a s s a r e analogous t o
is
Waves i n a cylinder
170
i n t e r n a l waves t h a t e x i s t i n the case of pure r o t a t i o n o r pure stratification.
However the second c l a s s of waves, a s we w i l l
show, a r e d i s t i n c t l y d i f f e r e n t i n nature; t h e i r frequencies a r e below
Min(N,2)
and the equation i s e l l i p t i c .
Because
of t h e i r s i m i l a r i t y t o Kelvin waves t h a t a r i s e i n t h e s t u d y of edge waves i n shallow water, waves of the second c l a s s have been c a l l e d by Krauss, I n t e r n a l Kelvin waves. I n h i s book, “Methoden und Ergebnisse d e r Theoretischen Ozeanographie 11, I n t e r n e Wellen” [ 391 , Krauss catalogoues the eigenfunctions f o r both c l a s a e s of i n t e r n a l waves.
He
e x h i b i t s t h e s o l u t i o n s i n rectangular co-ordinates and by a r a t h e r complicated superposition of these solutions he obtains the eigenmnctions
for i n t e r n a l waves i n a rectangular
I
box. We w i l l now o b t a i n the eigenfunctions t i e s of the eigenvalues
X
0
and the proper-
for i n t e r n a l waves i n a cylinder.
We consider a r o t a t i n g s t r a t i f i e d f l u i d bounded by r i g i d walls at
z
= 0,l
and
r
=
a.
I n c y l i n d r i c a l co-ordinates equa-
t i o n (13.9) and boundary condition (13.14) become
(13.20) with
and I A % + : ~ = O
at
r = a .
(13.22)
I n t e r n a l waves When
l i e s between
A2
(31.20) us hyperbolic.
Max(4,N2)
171 and
Min(4,N2)
equation
I n f a c t , the problem c l o s e l y resembles
t h a t given by equation ( 7 . 2 0 ) w i t h boundary conditions (7.21) and ( 7 . 2 2 ) which a r e s a t i s f i e d by an i n t e r n a l wave I n homogeneous r o t a t i n g f l u i d .
Hence we can Immediately w r i t e down
the s o l u t i o n f o r waves of t h e f i r s t c l a s s , namely
B where and
=
i s the
Jlkl
eiK'
cos mz J K ( y m r ) ,
(13.25)
k - t h Bessel function of the f i r s t Kind
(13.24) The boundary condition ( 1 3 . 2 2 ) requires t h a t m-th
I s the
y-
p o s i t i v e s o l u t i o n of the transcendental equation
Clearly these waves of t h e f i r s t c l a s s can e x i s t i f e i t h e r the s t r a t i f i c a t i o n o r r o t a t i o n i s zero
( N ~ o or
N~
m)
and t h e s o l u t i o n s reduce t o those predicted by t h e r e s u l t s obtained i n Chapter 7.
When both r o t a t i o n and s t r a t i f i c a t i o n
a r e p r e s e n t , t h e i n t e r n a l wave of the f i r s t c l a s s can be viewed a s a r o t a t i o n a l wave modified by s t r a t i f i c a t i o n ( o r vice-versa)
.
We now consider the case where Min(2,N).
The parameter
2
1x1
' 2 2 ( A -4)/(X -N )
I s l e s s than
i s then p o s i t i v e
I n t e r n a l Kelvin waves
17 2
We seeK a s o l u t i o n of t h e
and e q u a t i o n (13.20) i s e l l i p t i c . form cp = e l k e cos
where
G( r )
Hence
G ( r ) = Ik(ar) where
mz
G(r)
satisfies
Ik i s t h e
f u n c t i o n of t h e f i r s t k i n d .
k-th
modified Besael
The boundary c o n d i t i o n (13.22)
requires AaaIL(aa)
+
2 k I k ( a a ) = 0.
( k X a -0,
( 1 3- 2 8 )
40)
Since t h e modified Bessel f u n c t i o n has e x p o n e n t i a l r a t h e r t h a n o s c i l l a t o r y form, equations (13.27) and (13.28) w i l l not have a n i n f i n i t y of s o l u t i o n s .
Rather i t can be shown t h a t t h e r e
e x i s t , a t most, one s o l u t i o n t o t h i s coupled s e t of e q u a t i o n s . D e t a i l s of t h e following r e s u l t s a r e g i v e n i n F r i e d l a n d e r and Siegmann [ 2 2 ] .
They show t h a t f o r
a t most, one eigenvalue
Ank
k
positive there exist,
which w i l l be n e g a t i v e .
Hence
t h e wave t r a v e l s around t h e c y l i n d e r i n t h e p o s i t i v e d i r e c t i o n i n t h e sense of t h e p r e s c r i b e d r o t a t i o n .
The v a l u e of
i s obtained by c o n s i d e r i n g t h e i n t e r s e c t i o n of two curves
I n t e r n a l waves
173
It is convenient t o consider s e p a r a t e l y the two cases N2
>4
and
the curves
N2
<
4.
y,(X)
Figure 22 i l l u s t r a t e s t h e behavior of
and
y,(A)
i n these two cases.
An
analysis of the curves leads t o t h e following conclusions, I n t h e f i r s t case we seek s o l u t i o n s
0
can be shown t h a t t h e r e e x i s t s a mode
< 1x1 A
g
2
<
N.
It
t h a t is a
= -2
t r a n s i t i o n mode between the two c l a s s e s of waves, provided there e x i s t integers
For those i n t e g e r s
n
n
and
and
such t h a t
k
such t h a t
k
2 2 2
t h e r e e x i s t s a unique eigenvalue
Ank
(13.31) where
0
<
<
2.
There i s no s o l u t i o n f o r those wave numbers where the ine q u a l i t y (13.31) i s reversed. solutions
0
<
IX
1
N
<
I n t h e second case we seek Figure 2 2 shows t h a t i n t h i s
2.
case t h e r e i s no t r a n s i t i o n mode a unique
with
IAnkl
<
N
X = -N,
however t h e r e e x i s t s
f o r a l l integers
An i n t e r e s t i n g degenerate case i s
N = 2.
n
and
k.
I n t h i s case
a l l the waves of' the f i r s t c l a s s reduce t o a s i n g l e mode with X2 = N
2
= 4
which i s characterized by zero pressure g r a d i e n t .
174
I n t e r n a l Kelvin waves
fi
//
I
I
I I
Case
‘
2
I
I N > 4
I
I
I
I I
The behavior of the curves
yl(X)
FIGURE 2 2
I
I I
and
y2(A).
175
I n t e r n a l waves The frequency
i s a wave of t h e second c l a s s ( a n i n t e r -
Xm
n a l Kelvin wave) is given e x p l i c i t l y a s
xm
= -2
Similar r e s u l t s can be obtained f o r i n t e r n a l waves i n a sphere w i t h s o l u t i o n s t o equation (13.9) i n s p h e r i c a l coordinates being given i n terms of Legendre polynomials. Friedlander and Siegmann [ 221 3 .
[See
Again t h e r e e x i s t a t h r e e
fold i n f i n i t e s e t of eigenvalues
AmK
of the f i r s t c l a s s ,
with 2
Min(N ,4)
< x2-
<
Max N2,4),
t h a t degenerate t o a s i n g l e eigenvalue when
N
2
=
4. These
i n t e r n a l waves a r e analogous t o those t h a t e x i s t i n the case of pure r o t a t i o n o r pure s t r a t i f i c a t i o n . numbers
n
and
k
For c e r t a i n wave
there a l s o e x i s t a doubly i n f i n i t e s e t
of i n t e r n a l Kelvin waves w i t h the azimuthal wave number
K,
am and
negative with respect t o A,
2
2
Min(N ,4).
Internal
Kelvin waves e x i s t only i n the presence of both r o t a t i o n and stratification. I n many oceanographic problems the non-dimensional buoyancy frequency
is s u f f i c i e n t l y much g r e a t e r than
4 that
the dominant waves w i l l be those of the f i r s t c l a s s .
However
N
i n the deep ocean t h e value of
4.
N
decreases and i s c l o s e t o
Hence t h e i n t e r n a l Kelvin waves may be important when
deep ocean phenomena a r e under i n v e s t i g a t i o n .
Variable
176
N( z )
W l e A s we have p r e v i o u s l y mentioned, t h e buoyancy frequency
N
i n t h e ocean ( o r atmosphere) i s not a c o n s t a n t , but r a t h e r , a z , with t h e s h a r p changes i n t h e value
f u n c t i o n of t h e d e p t h of
N
d e f i n i n g t h e p o s i t i o n of t h e thermoclines.
g i v e s a sKetch of t h e curve observational data.
When
N(z) N
Figure 2 5
that is consistent with
i s no longer c o n s t a n t t h e equa-
t i o n f o r t h e p r e s s u r e f i e l d becomes a p a r t i a l d i f f e r e n t i a l e q u a t i o n with non-constant c o e f f i c i e n t s .
Equation (13.9) can
be rederived t o g i v e (13.32)
We w i l l now i n v e s t i g a t e t h i s non-constant c o e f f i c i e n t e q u a t i o n i n a r e c t a n g u l a r box t h a t i s bounded by s i d e w a l l s a t but unbounded i n t h e
y-direction.
x = 0,L
The c o n d i t i o n o f z e r o
no r ma 1 v e loc i t y g i v e s boundary c ond 1t i o n s il),
+
2)
Y
= 0
at
x = 0,L
( 15.33)
(13.34) We seek a s o l u t i o n t o e q u a t i o n (15.32) o f t h e form
2
= (Az
-
NP)A(x,z)eiky.
The e q u a t i o n and boundary c o n d i t i o n s f o r
A(x,z)
become
I n t e r n a l waves
N(z)
177
sec
-1
thermoc ine)
100
200
1000
2000
3000
400C
T
-
1 day
The v a r i a t i o n of N(z) with depth in the ocean. The period T = 2n/N. FIGURE 2 3
Separation of v a r i a b l e s
178 with
AAx
+
2kA = 0
at
x
A = 0
at
z = 0,l.
=
(13.36)
0,L
( 1 3 -37)
The above problem can be solved by separation of v a r i a b l e s by writing A with
=
Fxx
F(x)G(z)
-
K
2
(13.38)
F = -YF
and
where
Y
i s the separation constant.
There e x i s t two c l a s s e s of solutions t o equation (13.38) with boundary condition (13.36), the f i r s t corresponding t o
the i n t e r n a l wave s o l u t i o n and the second t o i n t e r n a l Kelvin waves.
The f i r s t c l a s s of solutions is given by
F(x)
sin
= 2k
with
Y
Hence t h e problem f o r
X
=
- 17
COS
X
( 13.40)
(yy + K2.
G(z)
becomes (13.41)
with
G
= 0
at
z = 0,l.
The second c l a s s of s o l u t i o n s , which a r e non-oscillatory in
x, is given by
I n t e r n a l waves
FK(X)
-
= cash 2k x A 2
with
y =
Hence the problem f o r
with [The s u b s c r i p t
K
(x' -
K -2 A
sinh
yx
(13.42)
4).
becomes
G(z)
GK = 0
-
179
at
z = 0,l.
denotes t h e s o l u t i o n s corresponding t o in-
t e r n a l Kelvin waves .] Both the problem (13.41) f o r
G
and (13.43)
for
GK
can
be w r i t t e n i n the form of a standard Sturm-Liouville problem. For the f i r s t problem we w r i t e
w2
c ome s Gzz
+
- - and A2 - 4
2 [(y) + i21[(N2 - 4)w' - 13G -
(15.41) be-
= 0
( 13 -44)
with G = 0
at
For the second problem we w r i t e
GKzz
with When
+
~'[N'M~
G = 0
N2 ( z )
>
at
z = 0,l.
v2 =
-
-$
and (13.43) becomes
k '
l]GK = 0
( 13.45
z = 0,l.
4, both (13.44) and (13.45) a r e Sturm-Liouville
equations of the form
1
Analogy w i t h t h e Schrodinger e q u a t i o n
180 with
p
>
0
and
r
>
Hence a l l t h e w e l l known r e s u l t s of
0.
Sturm-Liouville t h e o r y [Morse and Feshbach [ 4611 can be a p p l i e d t o o b t a i n information about t h e v e r t i c a l s t r u c t u r e of i n t e r n a l waves.
S i n c e ( 1 3 . 4 4 ) and (13.45) a r e of t h e same
form and d i f f e r only a s t o t h e c o e f f i c i e n t s , i t i s s u f f i c i e n t t o analyze t h e problem f o r for
G(z)
and t h e analogous r e s u l t s
GK(z) follow immediately.
We may f i r t h e r remark t h a t both (13.44) and (13.45) a r e
i n f a c t forms of t h e one-dimensional Schrodinger e q u a t i o n
&2 ?dz2
+
[E
- V(z)]u =
0.
T h i s o b s e r v a t i o n was f i r s t made by Eckart [ 1 6 ] f o r i n t e r n a l
waves i n a n o n - r o t a t i n g f l u i d .
We s e e now t h a t i t a l s o
a p p l i e s t o both c l a s s e s of i n t e r n a l waves i n a f l u i d t h a t i s s t r a t i f i e d and r o t a t i n g .
The known r e s u l t s of c l a s s i c a l
quantum mechanics can t h e r e f o r e b e used t o study our p r e s e n t problem. Consider problem (13.44).
From Sturrn-Liouville t h e o r y we
can conclude t h e following r e s u l t s . 1) There e x i s t s a d i s c r e t e i n f i n i t e spectrum of eigen-
values
where and
wmkn
with the property t h a t
Nmax
=
Max N2(z)
181
I n t e r n a l waves Recalling t h a t the frequencies
2)
-
= 1/(A2
(1j2
'
4)
we conclude t h a t
satisfy
Xmkn
There i s a complete s e t of eigenfunctions
GmKn
which a r e mutually orthogonal w i t h respect t o the weight function
(N2(z)
-
4)
S i m i l a r r e s u l t s hold f o r the problem (13.45) f o r
frequency spectrum of
Nmax
>
X
X2 Kko
'
KKn
>
and the eigenfunctions
KKn
Kkn
>
N2 z )
The frequencies
A-
< 2
4
.... > x 2K k n
-
0,
( 19-47)
form a complete s e t and a r e
orthogonal with weight function The case
The
satisfies
X2
G
(GK,u).
N2(z).
can be t r e a t e d i n the same manner. satisfy
0
The problem f o r N
2
(2)
crosses
(GK,AK)
i s unchanged.
I n the case where
4 ( t h i s may be the case i n the deep ocean) a
s l i g h t l y more s u b t l e treatment i s required s i n c e problem (13.44) i s no longer of the standard Sturm-Liouville form. The frequency spectrum i n t h i s case i s i l l u s t r a t e d i n Figure 24.
Frequency spectrum
182
I
I
N2
4
I
I
Pi*
I
I
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
1
I
1
I
I
I
I I
N2 'pax
I
Frequency spectrum f o r
I
I
2
m,
XniKn, 2
%in
<
f i x e d , when
K
2
Nulax*
The eigenvalues accumulate from above and from below a t
FIGURE 2 4
4.
I n t e r n a l waves
183
It i s possible t o obtain an asymptotic estimate f o r the behavior of t h e eigenmnction f o r problems (13.44) and (13.45) by using
This is a method whereby i t i s
techniques.
W.K.B.
assumed t h a t the o s c i l l a t o r y s o l u t i o n s t o a non-constant coe f f i c i e n t d i f f e r e n t i a l equation vary much more rapidly than the c o e f f i c i e n t s .
The s o l u t i o n
changing with r e s p e c t t o
i s large.
The
f o r large
Y
W.K.B.
G( z)
t o (13.44) i s r a p i d l y
when the wave number
z
techniques seek a s o l u t i o n of t h e form
where
S u b s t i t u t i n g t h i s asymptotic form of s o l u t i o n i n t o equation (13.44) and equating powers of and
$,(z)
$l(z).
G(z)
-
y-l
give the equations f o r
These can be solved t o give
e&iyJ[u2(N2 [m2(N2
-
-
4)
- 4) -
11
13
1/2
dz
(13.49)
1J2
There i s a d i f f i c u l t y t h a t a r i s e s i n using
W.K.B.
methods
t o o b t a i n t h i s asymptotic s o l u t i o n , namely t h e s o l u t i o n t o (13.44) is o s c i l l a t o r y only when the c o e f f i c i e n t
[(N2
-
4)m2
-
13
i s positive. (N2
-
The value of
4)m2
-
z
f o r which
1= 0
i s c a l l e d a turning point of the equation.
I n terms of t h e
184
Behavior a t a turning point
, a turning point e x i s t s when frequency i2
i.e.,
N
2
(2)
= X
2
Hence f o r a wave of given frequency
. A
i n the spectrum
(13.46) the v e r t i c a l s t r u c t u r e ceases t o be o s c i l l a t o r y a t those depths where the l o c a l buoyancy frequency t o the wave frequency N 2 (2)
i s l e s s than
exponential.
The
A.
i s equal
N
For those values of
where
z
1, the depth dependence of the wave i s
W.K.B.
approximation (13.49) i s v a l i d
away from the turning point where
N2(z)
> x.
In the
neighborhood of t h e turning p o i n t , equation (13.44) can be approximated by an equation i n which t h e c o e f f i c i e n t of is l i n e a r i n
G
This has a s o l u t i o n i n terms of A i r y func-
z.
t i o n s which must be matched t o the o s c i l l a t o r y s o l u t i o n (13.49).
Details of these refinements of
(sometimes known as
methods
W.K.B.
methods) can be found i n the
W.K.B.J.
book by Murray [ 4 7 ] . The problem f o r i n t e r n a l Kelvin waves given by (13.45) can be t r e a t e d i n the same manner t o give
GK
Because
\AK\
<
*ik
e
j’(r2N2-
1)1/2dz
-
1)U2
(rZN”
Min(4,Nmin), the function
f o r large (p2N2
k.
-
1) i s
never zero, hence the turning point a n a l y s i s i s unnecessary. The q u a l i t a t i v e behavior of the eigenfunction be examined even when the h o r i z o n t a l wave numbers
G(z) m
can and
K
185
I n t e r n a l waves a r e small and hence the asymptotic estimates given by the methods a r e not v a l i d .
W.K.B.
Equation (13.44) can be
w r i t t e n i n i n t e g r a l form a s
=
dz
s[
-y&
(N2
-
4)w2
-
l]Gdz
where f o r n o t a t i o n a l convenience we have replaced
We w i l l consider t h e lowest modes corresponding t o
k = 0,
m = 1. Equation (13.50) is s a t i s f i e d by a n i n f i n i t e family of eigenvalues eigenvalue being satisfy
GIOn(0)
‘
mlOn u
and e i g e n h n c t i o n s 2
~ The ~ eigenfunction ~ ~ .
= GIOn(l)
i f the coefficient
[(N2
-
= 0.
4)w2
-
G
~ the~ smallest ~ ,
Glen( z)
must
This c l e a r l y can not happen
13
i s always negative s i n c e
equation (13.50) then represents a f u n c t i o n whose d e r i v a t i v e increases as the function increases and hence would never r e t u r n t o i t s i n i t i a l value.
Thus
hence
2 2 In fact, Xloo ] <,,N mst be s u f f i c i e n t l y g r e a t e r t h a n [ 1 / ( N L x 4)] t o
[This is equivalent t o requiring
u’loo
ensure t h a t
dGIOO dz
intersects the
.
-
becomes zero and t h a t t h e curve f o r
z-axis a t
z
= 1.
The next eigenvalue
GIOO
+=
0
rt
z = 1
z =
I
-
The upper curve gives [N2(z) 41 as a function of z . The lower curces show the s t r u c t u r e of the first t h r e e modes. FIGURE 25
187
I n t e r n a l Waves t o allow the curve U’101 i s s u f f i c i e n t l y l a r g e r than wlo0 Or G l O l t o t u r n around twice i n t h e i n t e r v a l ( 0 , l ) and again i n t e r s e c t the
z-axis a t
z = 1.
We can successively
c o n s t r i c t t h e q u a l i t a t i v e behavior of the modes
n = 2,3,.
.. .
This i s i l l u s t r a t e d i n Figure 25.
There have been many developments concerning i n t e r n a l waves
i n the Ocean s i n c e t h e f i r s t reported observation of t h e Norwegian explorer F r i d t j o f Nansen i n 1893.
A considerable
body of more recent r e s u l t s is t o be found i n Vol. 80 of t h e Journal of Geophysical Research [ 19751, which comprises a c o l l e c t i o n of papers on oceanic i n t e r n a l waves.
These include
a h i s t o r i c a l introduction which i s extended by Briscoe [4] and a broad review by Thorpe [66] of t h e t h e o r e t i c a l s t u d i e s of the physical processes a f f e c t i n g t h e e x c i t a t i o n , d i s s i p a t i o n and i n t e r a c t i o n of i n t e r n a l waves i n the deep ocean. This l a t e r paper contains a d e l i g h t f u l a r t i s t i c rendering of the physical processes, including bottom topography, r a i n , f i s h , etc., waves.
t h a t could a f f e c t t h e generation of i n t e r n a l
A paper by Wunsch [741 reviews t h e s t a t e of observa-
t i o n of i n t e r n a l waves and poses a number of important quest i o n s which have stimulated a c t i v i t y i n the f i e l d .
The
current “ s t a t e of t h e a r t ” i s surveyed i n 1979 by t h e review a r t i c l e of Garret and Munk [24].
They discuss experimental
evidence concerning i n t e r n a l oceanic waves and attempt t o construct a compatible model f o r the d i s t r i b u t i o n of energy i n wave-number frequency space.
A broad survey of the theory
188
Review A r t i c l e s
of ocean waves w i t h emphasis on r e c e n t developments i s given
by LeBlond and rvZysaK [ 411.
They c o n s i d e r f i n i t e amplitude
e f f e c t s and n o n - l i n e a r i n t e r a c t i o n s .
Of p a r t i c u l a r i n t e r e s t
i s t h e s e c t i o n concerning unresolved problems which i n c l u d e
a s p e c t s of non-linear s u r f a c e waves; t i d a l d i s s i p a t i o n ; t h e energy sources g e n e r a t i n g long period oceanic waves; and trapped waves. LeBlond and MysaK g i v e a b r i e f review of t h e c l a s s i c a l wave modes i n the ocean.
The i n t e r e s t e d s t u d e n t c a n f i n d
f u r t h e r d e t a i l s i n P h i l l i p s [55] and Krauss [ 591.
I n a recent
t e x t , Kamenkovich [ 571, g i v e s a u n i f i e d treatment of t h e v a r i o u s types of wave8 t h a t e x i s t i n a n unbounded r o t a t i n g , s t r a t i f i e d ocean.
The f r e q u e n c i e s of t h e f r e e o s c i l l a t i o n s
of t h e ocean a r e obtained a s t h e i n t e r s e c t i o n of t h e eigenv a l u e curves of two d i s t i c n t problems which a r e l a b e l e d problem H and problem V .
The e f f e c t s of t h e e a r t h s r o t a t i o n
and s p h e r i c a l geometry appear e x p l i c i t l y only i n problem H and t h e e f f e c t s of s t r a t i f i c a t i o n appear e x p l i c i t l y only i n problem V .
Thus i n t h i s c a s e t h e f o r c e s of r o t a t i o n and
s t r a t i f i c a t i o n a r e e f f e c t i v e l y decoupled i n t h e mathematical d e sc r i p t i o n .
Problems
189
I;haDter 1 3 P r o b l e m 15.1)
Does t h e i n t r o d u c t i o n of s t r a t i f i c a t i o n change t h e r e f l e c t i o n p r o p e r t i e s of i n t e r n a l waves? Note t h a t i n a homogeneous f l u i d t h e i n c i d e n t wave and t h e r e f l e c t e d wave maKe t h e same a n g l e w i t h t h e d i r e c t i o n of t h e a x i s of r o t a t i o n ( s e e problem 7.5)
13.2)
.
From e q u a t i o n s (13.1) and (13.5) show t h a t t h e n
boundary c o n d i t i o n 9 - n = 0 terms of
15.3)
can be w r i t t e n i n
as
0
Determine t h e i n t e r n a l modes i n a r o t a t i n g s t r a t i f i e d f l u i d bounded by r i g i d walls z = O,H
and
x = O,L, and unbounded i n t h e
y-direction.
with
2
and
iA
(treat a)
The problem f o r
N~
=
o at z
+
f
O,H,
=
a =
ay
i s g i v e n by
i
o
at
x
=
O,L.
as a constant).
Obtain t h e eigenvalues and e i g e n f u n c t i o n s f o r t h e two c l a s s e s of waves.
190
Problems b)
Sketch a n eigenfunction of the f i r s t c l a s s and an eigenfunction of the second c l a s s as
a function of c)
x
f o r a fixed value of
z.
Compare your s o l u t i o n s with those obtained i n the t e x t f o r the c y l i n d r i c a l problem.
13.4)
Derive the equation s a t i s f i e d by when the buoyancy frequency a function of the depth
13.5)
I($)
N(2)
is
z.
Consider the equation Gz z
Using
+
-
y2[(N‘(z)
W.K.B.
4)m2
-
1 ] G = 0.
techniques f o r l a r g e
Y
seek a s o l u t i o n of the form
+
q,(z)
By equating powers of
y-l
tions f o r
$,(z).
G =
exp[Yrlo(z)
q0(z)
and
+
t
e,(z)
+...I.
o b t a i n the equaHence show t h a t
(13.49) is an asymptotic s o l u t i o n t o t h e d i f f e r e n t i a l equation.
CHAPTER 1 4 BOUNDARY LAYERS I N A ROTATING STRATIFIED FLUID
Let us consider a r o t a t i n g s t r a t i f i e d viscous f l u i d and
-
assume t h a t the motions a r e steady ( o r almost s t e a d y ) . equations of motion a r e the steady form of (10.6) with vTo = 6 , namely
v-3 2; x
9
The (10.8)
(14.1)
= 0
+
= -VP
w =
Ti;
+
EV 2J
(14.2)
V2T.
(14.3)
N U
Before we analyze the boundary l a y e r s t r u c t u r e supported by these equations, we w i l l observe the importance of t h e
r e l a t i v e s i z e s of the dimensionless parameters Consider the case (1) where if
K
>>
v, i . e . ,
O(N2cr)
<
O(E):
E
and
N
2
0 .
t h i s could occur
thermal d i f f u s i o n strongly dominates viscous
d i f f u s i o n ; i t could a l s o occur i f t h e s t r a t i f i c a t i o n parameter N2
were very small.
T o the f i r s t order equation ( 1 2 . 3 ) then
reduces t o V
2
T
= 0.
Thus the temperature f i e l d i s determined by solving Laplace's equation w i t h appropriate boundary conditions.
9
The v e l o c i t y
can then be determined from ( 1 4 . 1 ) and ( 1 4 . 2 ) which a r e
N2 o = E a
192
equivalent t o the equations f o r a n o n - s t r a t i f i e d r o t a t i n g f l u i d , but with t h e a d d i t i o n of an inhomogeneous term Thus, when
2
O(N a )
<
Ti.
O ( E ) , the problems f o r the temperature
and v e l o c i t y f i e l d s a r e e s s e n t i a l l y uncoupled. We w i l l discuss the behavior of equations (14.1)
0
(14.3) and the r e l a t e d boundary layers when the parameter N 2u
i s l a r g e r than
I n t h i s case, presence of s t r a t l -
O(E).
f i c a t i o n i s s i g n i f i c a n t , however i t ' s exact r o l e depends on
i t ' s s i z e r e l a t i v e t o t h e Ekman number
E.
To understand how
the boundary l a y e r s vary with the r e l a t i v e s t r e n g t h s of E and N 2u we w r i t e N 20 = Ea We w i l l examine the possible
.
boundary layers t h a t e x i s t as
a
decreases from u n i t y .
I n order t o reduce the system of vector equations (14.1), ( 1 4 . 2 ) and (14.3) t o a s i n g l e equation f o r t h e pressure
P
we
carry out the now f a m i l i a r manipulation of the equations. From (14.3) and
ie(14.2) w =
we obtain
+ v2[gN u
Ev2w]
.
(14.4)
vn(14.2) gives
x
-2k.v II
and
E*v x (14.2)
3
+
= -V 2 P h az T
gives (14.6)
Thus combining (14.5) and (14.6) we obtain
4
g
= E 2 ( -v2P
+
5).
( 1 4 -7)
S t r a t i f i e d boundary l a y e r s v 2T
Substituting f o r
193
from (12.3) gives
(4-N2a )
= -Ev
4
(14.8)
P.
Hence ( 1 4 . 4 ) and ( 1 4 . 8 ) combine t o give V
(where
vH
=
v
2
2 6
2
2
[E V P + N oVHP + 4Pzz]
(14.9)
= 0
-
T h i s e i g h t h order p a r t i a l d i f f e r e n t i a l equation describes the
The f i r s t term
steady flow of a viscous, s t r a t i f i e d f l u i d .
represents t h e viscous d i f f i s i v e e f f e c t , the second term t h e buoyancy e f f e c t , and the t h i r d term C o r i o l i s force.
The solu-
t i o n of t h i s equation which s a t i s f i e s prescribed boundary conditions f o r t h e normal and t a n g e n t i a l v e l o c i t y and t h e temperature i s the exact s o l u t i o n t o w e l l posed problem f o r t h e steady l i n e a r i z e d flow.
To solve a n eighth order
P.D.E.
with general boundary conditions i s , of course, very d i f f i cult.
We w i l l seek a n asymptotic s o l u t i o n using boundary
l a y e r techniques. S t r a t i f i e d Ekman I&ygz As we have s t a t e d , we write
N
2
0
= E
a
.
We i n v e s t i g a t e the
boundary l a y e r a t a h o r i z o n t a l s u r f a c e by w r i t i n g z = Ea5
hence
2
= E-a
a5
.
From equation (14.9) we observe t h a t t h e highest order terms i n the boundary l a y e r equation a r e E2'6a
a5
+
E$;P
+
4E'2a
2
a5
= 0.
(14.10)
194
S t r a t i f i e d EKman Layer
Thus we have a balance of terms
6
2
5x6
a5
u + + 0
with
a = 1/2, provided
>
a
(14.11)
Hence t h e boundary l a y e r
-1.
has t h e same dynamics a s the homogeneous Ekman Layer provided
N 2a
the parameter
i s l e s s than 2 N a
t i o n i s so strong t h a t
>
O(E-l).
If the s t r a t i f i c a -
then t h e Ekman l a y e r
O(E’l)
s t r u c t u r e is destroyed. There i s a f u r t h e r f e a t u r e t o note.
We have shown i n
Chapter 5 t h a t t h e Ekman l a y e r , which i s characterized by equation (14.11), induces an i n t e r i o r v e r t i c a l v e l o c i t y w I n the s t r a t i f i e d problem, equation (14.3) w = O(E 1-a ) . Thus t h e r e i s a second c r i t i c a l value
of
0(E1I2).
requires of N2a i n terms of the r o l e of the Ekman layer, namely When
N2a = O ( E U 2 ) .
a
<
i s g r e a t e r than t h i s value
N2a
(i.e.,
1 / 2 ) s t r a t i f i c a t i o n i n h i b i t s t h e important mechanism of
Ekman l a y e r suction. non-divergent
.
I n t h i s case the Ekman l a y e r i s c a l l e d
When N2a
<
O(E112)
t h e Ekman l a y e r plays
the same r o l e i n d r i v i n g the i n t e r i o r flow a s i t does i n the case of a homogeneous f l u i d . To examine the Ekman layer i n a l i t t l e more d e t a i l , l e t us
consider an asymptotic expansion i n powers of
Ell2.
To t h e
highest order the Ekman l a y e r components s a t i s f y the now f a m i l i a r equations n
a
-2v = u
2u = v
55
55
(14.12) (14-13)
S t r a t i f i e d boundary layers
195
(14.14)
Let us take t h e boundary conditions t o be a n imposed horizon-
(&, zero
t a l velocity field.
From (14.12)
-
normal v e l o c i t y , and zero temperature
(14.14) we can derive the Ekman
l a y e r s u c t i o n condition a t
5
= 0,
However, returning t o the i n t e r i o r problem we repeat t h e observation t h a t equation (14.3) implies t h a t w = O ( E 1-a) Thus i f
a
<
1/2,
.
t h e condition of zero normal v e l o c i t y must
be s a t i s f i e d by the Ekman l a y e r alone.
Therefore, t o t h e
f i r s t order, t h e s u c t i o n condition (14.15) degenerates t o
Hence when
0(E1")
<
N20
<
O(E-')
t h e h o r i z o n t a l boundary
l a y e r i n a r o t a t i n g s t r a t i f i e d f l u i d has the form of a n Ekman layer, but i t s r o l e i s l e s s important because s t r a t i f i c a t i o n prevents t h e Ekman l a y e r from inducing an i n t e r i o r v e r t i c a l v e l o c i t y of
o(Ey2).
To consider the case (14.10).
with
N
2
0
>
O(E-')
we r e t u r n t o equation
The dominant terms a r e now
6 9 + VEP = 0 ag a = 9 .
(14.16)
196
S i d e wall layers
Equation (14.16) i s analogous t o equation (9.4) describes the
EU3-boundary
J
which
l a y e r a t t h e s i d e wall of a
homogeneous r o t a t i n g f l u i d , however the r o l e s of the v e r t i c a l and h o r i z o n t a l a r e interchanged.
I n f a c t , when t h e s t r a t i -
N 20
f i c a t i o n is s u f f i c i e n t l y s t r o n g t h a t
>
O(E'l),
the
boundary layer s t r u c t L r e is dominated by s t r a t i f i c a t i o n . The h o r i z o n t a l boundary l a y e r s a r e then analogous t o the v e r t i c a l Stewartson boundary layers a s we mentioned I n Chapter 10.
-3 We examine the boundary l a y e r s on side-walls p a r a l l e l t o
the a x i s of r o t a t i o n by w r i t i n g
From equation (14.9) we observe t h a t the highest order terms i n the boundary l a y e r equation a r e
6
E2-68 bp ax6
+
2 Ea-2B hp 2
ax
+
4Pzz
= 0.
(14-17)
The boundary layer s t r u c t u r e is once again dependent on the s i z e of
a.
L.&e A:
a
>
2/3
The dominant terms a r e
4+ ax
and
4Pzz = 0
8 = l/3.
Hence when the s t r a t i f i c a t i o n is small enough s o t h a t
(14.la)
S t r a t i f i e d boundary l a y e r s
N2a
<
O(E213),
the
E1’3-layer
197
i n a homogeneous f l u i d i s
unchanged t o t h e h i g h e s t o r d e r .
&ae 2:
a
<
2/3
There a r e now two p o s s i b l e boundary l a y e r s .
The
buoyancy l a y e r is c h a r a c t e r i z e d by t h e balance between t h e viscous term and t h e buoyancy term,
This balance r e q u i r e s t h a t
thus t h e boundary l a y e r has thickness
O(+).
(N20
l1
The second l a y e r i s c a l l e d t h e h y d r o s t a t i c l a y e r and i t i s c h a r a c t e r i z e d by t h e balance between t h e buoyancy term and Coriolis force,
a2s + 4Pzz
= 0.
(14.20)
ax
This balance r e q u i r e s t h a t
thus t h e boundary l a y e r has thickness
O( (N2g)l12).
t h e t h i c k n e s s does not depend e x p l i c i t l y on
E.
Note t h a t
198
Metamorphosis of t h e s i d e wall l a y e r
We a l s o observe t h a t e q u a t i o n (14.17) reduces t o t h e equat i o n t h a t c h a r a c t e r i z e s t h e homogeneous
E1/4-layer,
namely
Pzz = 0 , with
p
Thus we expect t h e
=
(14.21)
, provided
1/4
a
<
1/2.
t o play i t s r o l e of matching
E1’4-layer
t h e i n t e r i o r a z i m u t h a l v e l o c i t y w i t h t h e p r e s c r i b e d boundary v e l o c i t y f o r N20 i n t h e range N20 < O ( E 1/2 )
.
We t h e r e f o r e observe t h e f o l l o w i n g p r o g r e s s i o n a s t h e parameter N 2Q i n c r e a s e s from z e r o . The E1/4-layer i s e s s e n t i a l l y unchanged u n t i l
2
However t h e
2
A t t h i s value the layer
N 0 = 0(E1j2).
changes e a r l i e r when
N 0 = O(E2/’).
E1I3-layer
is r e p l a c e d by two new l a y e r s , t h e buoyancy l a y e r of t h i c k -
, and
ness
O(E1’2/(N2~)1’4)
ness
O((N‘U)~/~).
t h e h y d r o s t a t i c l a y e r of t h i c k -
The f i r s t o f t h e s e l a y e r s becomes pro-
g r e s s i v e l y t h i n n e r while t h e second becomes p r o g r e s s i v e l y thicKer a s
N
2
Q
increases.
l a y e r i s of thicKness E1I4-layer.
For l a r g e r
When
O ( E ’I4)
N 2 Q = O(El/’),
t h e second
and c o i n c i d e s w i t h t h e
2
N 0 , t h i s layer continues t o thicken
u n t i l i t becomes p a r t of t h e v i s c o u s - d i f f u s i v e p r o c e s s e s which effect the i n t e r i o r regions as
N2u
i n c r e a s e s t o be
O(1).
Figure 26 g i v e s a schematic diagram i l l u s t r a t i n g t h e behavior of t h e boundary l a y e r s i n d i f f e r e n t regimes of t h e parameter N
2
0.
A d e t a i l e d d i s c u s s i o n of t h e c h a r a c t e r i s t i c s o f t h e be-
h a v i o r of t h e boundary l a y e r s i n d i f f e r e n t parameter ranges
is g i v e n by B a r c i l o n and Pedlosky [ 3 1 . We w i l l now examine i n a l i t t l e more d e t a i l , t h e e q u a t i o n s of motion i n t h e s i d e - w a l l l a y e r s when t h e parameter
N 2u
2
N o side-wall layers
Interior
1 I
horizontal
Ekman
Ilayer
I
I 1
1
I
I
non-divergent
I
I / / I / / / / / /
I
I
S t e w a r t sontype layers
The buoyancy l a y e r
200
l i e s In t h e range
<
O(E2’3)
N2u
<
O(E 1/2 )
.
0(E1l2/(N 2u ) 1/41
( i ) The Buoyancy Layer of
.
To study t h i s l a y e r we w r i t e
where
r
-
a
= [E1/2/(N2~)1’4]x.
The standard s c a l i n g a n a l y s i s shows t h a t I n t h e boundary layer
2
T = (Nu)
We note t h a t we have chosen w
v 4 ij, t o be
O( (N2u)1/4)
t h e v e r t i c a l mass f l u x I n t h e boundary l a y e r I s
so t h a t 0(Eu2).
This must be t h e case because t h e buoyancy l a y e r replaces the
E1I3-layer
return the
(when NZo
0(E1I2)
l a y e r (when N 2Q
<
>
O(E2I3)) whose r o l e I s t o
I n t e r i o r mass f l u x Induced by t h e Ekman 0(E1l2)).
To t h e f i r s t order t h e boundary l a y e r equations a r e =
-$
(14.22)
2ii =
vxx
-
(14-23)
T
(14.24)
-2;
0 =
- + wxx -
S t r a t i f i e d boundary l a y e r s
201
ii+iz=o
(14.25) (14.26)
We note t h a t equations ( 1 4 . 2 4 ) and (14.26) have a s i m i l a r coupled s t r u c t u r e t o t h a t of the EKman l a y e r equations ( 1 4 . 1 2 ) and (14.13) w i t h t h e roles of
fi
and
0
talcen by
?.
and
It can be shown t h a t the r o l e of t h i s side-wall l a y e r is
analogous t o t h a t of the EKman l a y e r i n t h a t i t induces a small r a d i a l v e l o c i t y
6 which i s normal t o the side-wall
boundary. The balance of terms i n equations ( 1 4 . 2 2 )
-
(14.26)
shows t h a t both r o t a t i o n and s t r a t i f i c a t i o n a r e important i n the buoyancy l a y e r .
We note t h a t t h e dimensional thiclvless of
t h i s l a y e r i s given by
[we have s u b s t i t u t e d f o r the values of Chapter 10, and
E
i n Chapter 31.
N2
and
0
given i n
Hence t h e thicKness of the
boundary l a y e r i s independent of the magnitude of r o t a t i o n The dimensionless parameter =
l?&d is KVP
c a l l e d the Rayleigh number.
We w r i t e the thickness of t h e boundary l a y e r
6
as
n.
The h y d r o s t a t i c l a y e r
2 02
( i i ) The Hydrostatic Layer o f TO
.
O( ( N 20 ) 1/2)
study t h i s l a y e r we w r i t e
The s c a l e a n a l y s i s shows t h a t t h e r e l a t i v e orders of the boundary l a y e r q u a n t i t i e s a r e
2 -1/2 v=NoE
where t h e order of
O(E1’2).
w
3
is chosen s o t h a t t h e v e r t i c a l flux i s
The boundary l a y e r equations become
23 =
3YY
(14.28)
S t r a t i f i e d boundary l a y e r s
20 3
The d i f f e r e n c e between t h i s s e t of equations and those f o r t h e buoyancy l a y e r occurs i n the v e r t i c a l component of t h e momentum equation.
Comparing (14.29) with (14.24) we see t h a t t h e
h y d r o s t a t i c l a y e r has a higher degree of v e r t i c a l s t r u c t u r e than t h e buoyancy l a y e r and t h a t t h e equations a r e no longer analogous t o those of t h e EKman l a y e r . c r i t i c a l value c i d e i n an
N
2
= 0(EZi3),
Q
We note t h a t a t t h e
t h e two boundary l a y e r s coin-
l a y e r with a l l t h r e e terms i n t h e
0(Eli3)
v e r t i c a l component of the momentum equation being of t h e same o r d e r , namely (14.32)
(iii) The
Eli4-Layer.
A s we previously remarked, Ekman l a y e r s u c t i o n
plays an important r o l e i n d r i v i n g t h e i n t e r i o r c i r c u l a t i o n when t h e parameter
N20
t h e r e w i l l e x i s t an c i t y component is
i s l e s s than
E1I4-layer
O(1).
O(Eli2).
I n t h i s range
i n which the azimuthal velo-
The dynamics of t h e
E1I4-layer
are
very s i m i l a r t o those t h a t e x i s t i n t h e homogeneous problem. We w r i t e
d-= ar
1
L a
an
The orders of magnitude of t h e boundary l a y e r q u a n t i t i e s a r e
The
204
E1l4-layer
u = E1/2 g N
v = v w
Ell4 I ;
2 -1/2 T = NuE
and
; ,
Thus t h e v e l o c i t y s c a l i n g agrees with t h a t of the homogeneous EV4-layer.
The introduction of s t r a t i f i c a t i o n a f f e c t s t h e O(N2~E-1/2), and determines the
second order terms which a r e
magnitude of the temperature f i e l d ,
The boundary l a y e r equa-
tions a r e m
m
-2v = -p m
T
m
2u = v
vl
N
0 = -P, m
u
rl
m +w z=o
m
and
m
w = T
tlrl
These equations show t h a t t h e
. E1/4-layer
has a weak v e r t i c a l
s t r u c t u r e and t h a t the problem f o r the temperature i s decoupled from the problem f o r t h e v e l o c i t y . . I )
Equations (14.33)
(14.37) w i t h boundary conditions given by the Ekman l a y e r
condition a t the upper and lower boundaries, and the matching condition on the
v-component of v e l o c i t y a t t h e s i d e walls,
can be solved t o determine Once
m
m
u, v
and
G.
i s calculated, the temperature
from (14.37).
(See Chapter 9.)
m
T
i s determined
S t r a t i f i e d boundary l a y e r s
205
We note one f i n a l f e a t u r e concerning boundary l a y e r s i n a rotating stratified fluid.
I n a homogeneous f l u i d the s i d e
wall l a y e r s a r e much t h i c k e r than t h e EKman l a y e r s
and
O(Eu3)
i n comparison with
O(E'")).
(O(E114)
Hence the Ekman
l a y e r boundary condition could be applied t o the s i d e wall flow i n the same manner as t o the i n t e r i o r flow. s t r a t i f i e d problem the h y d r o s t a t i c l a y e r of and t h e layer.
E1'4-layer
I n the
O( (N20)1/2)
a r e a l s o much t h i c k e r than t h e Ekman
However, the buoyancy l a y e r i s of thickness
o ( E ~ ~ / (0N) v4) which i s comparable t o t h e Ekman l a y e r 2 thickness when N 0 = O ( 1 ) . I n t h i s case, t h e corner regions
formed by the i n t e r s e c t i o n of the two boundary l a y e r s must be t r e a t e d more c a r e f u l l y .
I n these corner regions the d i f f u s i v e
term, t h e buoyancy term and the C o r i o l i s term i n equation
(14.9) a r e a l l important. I n t h e next s e c t i o n we w i l l give a n example of a p a r t i c u l a r problem where we uae the preceeding a n a l y s i s of the boundary layers t o o b t a i n the quasi-steady flow i n a r o t a t i n g s t r a t i fied fl ui d.
P r ob lems
z 06
14.1)
Describe t h e boundary l a y e r s i n a r o t a t i n g s t r a t i f i e d f l u i d when t h e parameter
14.2)
N2u = O(1).
Show t h a t i n t h e buoyancy l a y e r
w
-(
+
i T = A(z)e
y 9 X
(Assume a x i a l symmetry). 14.3)
Consider t h e problem given by equations
(14.26) w i t h boundary condi-
(14.22) tions
where 7 ( Z)
i s t h e i n t e r i o r temperature and
TI
is t h e imposed boundary temperature.
I n t h i s problem
ii
Determine and 14.4)
N 20
and
= O(1).
a6 f u n c t i o n s of
T
TI.
With t h e c o n d i t i o n s s t a t e d i n problem 3, t o g e t h e r with t h e boundary c o n d i t i o n
ii+
uI = 0
at
r=a
show t h a t t h e i n t e r i o r v e l o c i t y
uI:
s a t i s f i e s the lhoyancy layer suction c ond it i o n "
Problems
14.5)
207
I n what parameter ranges of of
Ea
N
2
0
i n terms
is the behavior of a r o t a t i n g s t r a t i -
f i e d f l u i d e s s e n t i a l l y equivalent t o
a)
a homogeneous r o t a t i n g f l u i d ?
b)
a s t r a t i f i e d non-rotating f l u i d ? Discuss your answers.
14.6)
Analyze the dynamics of the h o r i z o n t a l boundary l a y e r when N20
>
O(E-l),
What i s the important d r i v i n g mechanism f o r t h e i n t e r i o r flow i n t h i s case?
14.7)
Determine t h e steady flow t o the f i r s t order f o r a rotating s t r a t i f i e d f l u i d i n a cylinder. The walls a r e r i g i d and s t a t i o n a r y , r e l a t i v e t o t h e r o t a t i n g co-ordinate system; t h e s i d e walls a r e thermally i n s u l a t e d ; the p e r t u r b a t i o n temperature a t t h e bottom i s
T = 0
and a t t h e
top, T = 1. Discuss your s o l u t i o n a s the parameter
N20
increases from zero.
See Figure 27.
208
Problems
a
g,= 0 ,
T = 1
z = 1
I
I
I I
I I
I I
I
q = o
-t
-aT =
ar
i I
I
I I
I
I I
I
I
I
I
FIGURE 27
2=0,
T = O
z = o
0
CHAPTER 15 SPIN-DOWN I N A ROTATING STRATIFIED FLUID
I n Chapter 5 we discussed the mechanism of spin-down ( o r up) i n a homogeneous r o t a t i n g f l u i d .
We showed t h a t Ekman l a y e r
suction provided a very e f f i c i e n t way f o r a boundary condition on the v e l o c i t y t o be communicated t o the i n t e r i o r .
This pro-
cess leads t o a homogeneous spin-down (up) time-scale of O(Em112) which i s much f a s t e r than the viscous time-scale of 0(Em1).
However, the problem i s r a t h e r more complicated f o r
a rotating stratified fluid.
I n t h i s case, t o complete t h e
c i r c u l a t i o n driven by the Ekman l a y e r , a f l u i d p a r t i c l e must move across a d e n s i t y gradient and thus the motion is i n h i b i t e d by d e n s i t y f o r c e s .
I n our a n a l y s i s of the s t r a t i f i e d Ekman
l a y e r we have already observed t h a t t h e r e i s no i n t e r i o r v e r t i c a l v e l o c i t y of
O(E
and hence i t i s t o be expected t h a t
t h e r o l e of the Ekman l a y e r i n d r i v i n g the i n t e r i o r c i r c u l a t i o n
is reduced by the e f f e c t s of s t r a t i f i c a t i o n .
I n f a c t , the
d e f i n i t i o n of a s t r a t i f i e d spin-down time is not u n i v e r s a l l y accepted.
For a d e t a i l e d discussion of the meaning of t h i s
term we r e f e r the reader t o Buzyna and Veronis [ 71.
They
observe t h a t f o r a s t r a t i f i e d f l u i d s i g n i f i c a n t cnages i n the angular v e l o c i t y of a p a r t i c l e can taKe place between the homogeneous spin-down time-scale of
2 09
O ( E -'I2) and the viscous
Solar Spin-down
2 10
d i f f u s i v e s c a l e of
O(E-l).
There has been some controversy connected with t h e idea of s t r a t i f i e d spin-down.
It was claimed by Pedlosky [ 5 O ] , t h a t
s t r a t i f i c a t i o n prevented t h e closure, i n the side-walls layer, of the EKman l a y e r c i r c u l a t i o n .
However, walin [ 6 9 ] and
Sakurai [58], showed independently t h a t t h i s was not i n f a c t the case and t h a t although s t r a t i f i c a t i o n i n h i b i t e d the Ekman layer c i r c u l a t i o n , i t was not completely prevented.
A recent
review of the topic i s given by Benton and Clark [6]. One p a r t i c u l a r reason w h y people have been i n t e r e s t e d i n the problem of s t r a t i f i e d spin-down i s t h e controversy concerning s o l a r oblateness.
It was conjectured by Dicke [12]
t h a t t h e s o l a r i n t e r i o r might be r o t a t i n g twenty times more rapidly than the observed r o t a t i o n r a t e of t h e o u t e r s h e l l . I f t h i s were i n f a c t t h e case, then t h e r e s u l t i n g s o l a r oblateness would d i s t o r t the suns) g r a v i t a t i o n a l f i e l d s u f f i c i e n t l y t o account f o r t h e precession of the p e r h i l i o n of Mercury. However, such a theory has been disputed by a number of people, including Howard, Moore and Spiegel [ 3 4 ]
, who
suggested t h a t
some form of spin-down process would provide e f f i c i e n t coupling between the more slowly r o t a t i n g outer convection zone and the radiative i n t e r i o r .
Hence, even i f t h e postulated angular
v e l o c i t y d i s c o n t i n u i t y e x i s t e d i n i t i a l l y , i t would not p e r s i s t over t h e l i f e time of the sun.
This argument was countered
by Dicke [13], who reasoned t h a t the s t r o n g d e n s i t y gradient
i n the core and t h e l a r g e s c a l e s t e l l a r dimensions would negate t h e e f f e c t of the Ekman l a y e r c i r c u l a t i o n and hence permit a d i f f e r e n t i a l r o t a t i o n t o e x i s t on a much longer time-
S t r a t i f i e d spin-down scale.
2 11
This notion was summed-up by Dicke i n t h e words, "the
sun i s no cup of t e a " , i . e . ,
the spin-down e f f e c t described i n
the tea-cup experiment i n Chapter 5 was not relevant t o t h e
sun.
Several mathematical models f o r the s o l a r spin-down prob-
lem have now been presented, including those of Friedlander [20] and [21] and Sakurai, C l a m and Clark [ 5 9 ] .
These i n d i -
c a t e t h a t a d i s c o n t i n u i t y i n angular v e l o c i t y a s postulated by Dicke would be smoothed out on a time s c a l e
O(N20E'l)
i s given the name, Eddington-Sweet time-scale. s o l a r parameters, N2
which
I n t h e case of
i s r a t h e r l a r g e , but t h e s t r o n g radia-
t i v e thermal d i f f u s i v i t y K implies t h a t a ( = V / K ) small. This means t h a t N'0E-l l i e s between E
i s very and E-l
-v2
and hence spin-down occurs on a time-scale t h a t l i e s between t h e homogeneous spin-down s c a l e and t h e d i f f u s i v e s c a l e .
In
f a c t , i n dimensional t e r m , t h i s time-scale is of t h e order of lo9 years which i s j u s t within t h e l i f e - t i m e of t h e sun.
On a time-scale s h o r t e r t h a t
0(1$)
years, the e f f e c t s of
the s u r f a c e s t r e s s would not f u l l y p e n e t r a t e t h e i n t e r i o r and a c e n t r a l p o r t i o n of the core could be r o t a t i n g more r a p i d l y than the surrounding s o l a r m a t e r i a l .
However, on a time-scale
close t o t h e l i f e - t i m e of the sun, the r a p i d l y r o t a t i n g region would be much too small t o induce s u f f i c i e n t oblateness t o account f o r t h e precession of the p e r i h e l i o n of Mercury.
It
i e f u r t h e r remarked by Howard, Moore and Spiegel [ J 4 ] , t h a t i t i s probably more r e a l i s t i c t o consider the boundary l a y e r s
a s turbulent, which considerably shortens t h e spin-down time. Thus t h e a n a l y s i s of spin-down i n a r o t a t i n g s t r a t i f i e d f l u i d i n d i c a t e s t h a t Dicke's hypothesis, a s applied t o a simple
Spin-down i n a cylinder
2 12
s o l a r model, i s highly implausible.
We w i l l now o u t l i n e the techniques t h a t lead t o e x p l i c i t r e s u l t s describing quasi-steady flow i n a r o t a t i n g s t r a t i f i e d cylinder and apply the r e s u l t s t o the s o l a r spin-down a n a l y s i s . Further d e t a i l s a r e given i n Friedlander [ 2 0 ] .
I n t h e context
of t h e s o l a r problem, the viscous coupling of t h e more slowly r o t a t i n g s h e l l on the core i s represented by a steady s t r e s s T
( r ) a c t i n g on t h e h o r i z o n t a l boundaries.
For mathematical
s i m p l i c i t y we take the walls t o be thermally insulated and assume t h a t t h e side-walls a r e r i g i d , massless and f r e e t o
-
move with the f l u i d .
(10.6)
conditions.
We then seek the s o l u t i o n t o equations
(10.8) [with vTo =
k]
with appropriate boundary
For the convenience of the reader, we w i l l re-
write these basic equations :
i
+ N'9-k
=
v2T.
The boundary conditions a r e
z = 0,1,
az
(15.4)
S t r a t i f i e d spin-down and
where
j
=
u^r + v8
+
WE.
Since t h e boundary conditions a r e axisyrnmetric, we assume t h a t t h e long time s o l u t i o n t h a t we a r e seeking also s a t i s f i e s
$=
0.
We note t h a t t h i s assumption w i l l r u l e out t h e possi-
-
b i l i t y of wave-like s o l u t i o n s . Examination of equations (15.1)
(15.3) shows t h a t the
order of the i n t e r i o r flow i n powers of u =
v
= v0
+
+
E112v1
w = T = T~
+
E
Eu2
+
...
Ev2
+
...
Ew2
+
...
+
E ~ / ~ ET T~ ~+
... .
The highest order i n t e r i o r equations a r e
1
'0
av 2
= E(v2
= 2
5 ar
- +)vo r
To
5
= az
E-2u2
i s given a s
Boundary layers
2 14
aT
0=
at
o2T0
a
-
2 E - N w2.
Equations (15.7) and ( 1 5 . 9 ) show t h a t t o the f i r s t order the i n t e r i o r flow i s i n geostrophic and hydrostatic balance. note t h a t equations time-scale
vo
and
We
(15.8) and (15.10) imply t h a t on a s h o r t a r e independent of time.
To
we w i l l observe t h a t t h e r e i s no
O(1)
In fact,
steady flow on a s h o r t
time-scale and hence we w i l l be considering t h e behavior of the f l u i d on a long time-scale. The boundary conditions a t f i e d v i a an Ekman l a y e r .
z
= 0
z
and
=
1
are satis-
The analysis is s i m i l a r t o t h a t
given i n Chapter 1 4 , modified f o r the s t r e s s boundary condition.
The d e r i v a t i o n of the Ekman l a y e r suction condition
i n t h i s problem i s l e f t a s a n exercise f o r the reader. can be shown t h a t
=
O(E)
It
i n the Ekman layer, and the suc-
t i o n condition gives a n o n - t r i v i a l r e l a t i o n between
wz
and
Vo:
T(r))
at
z
(15.11)
= 0,1.
The thermal boundary condition i s unaffected by the Ekman layer t o the f i r s t order, hence
"To = az
o at z
= 0,l.
The analysis of the side-wall layers i s again s i m i l a r t o t h a t of Chapter 1 4 w i t h the necessary modification f o r the insulated boundary condition.
It can be shown t h a t
i
= O(E)
2 15
S t r a t i f i e d spin-down
i n t h e boundary layer and the r e l a t i o n s h i p between
u2
and
becomes
To
aZTo
= Ni30 -araz Lat
r = a.
(15.13)
A n d t h e v e l o c i t y condition remains vo = V
at
r
a.
=
(15.14)
The value of t h e constant wall v e l o c i t y
V
w i l l emerge from
the c a l c u l a t i o n s from t h e requirement t h a t t h e torque due t o t h e imposed surface s t r e s s i s i n balance with t h e r a t e of change of angular momentum of the f l u i d . We wish t o w r i t e t h e problem i n terms of a s i n g l e equation f o r one v a r i a b l e . equations (15.1)
-
We do t h i s by a l i t t l e manipulation of (15.3).
TaKing v x (15.2) and s u b s t i -
t u t i n g (15.3) gives
This is, of course, the p o t e n t i a l v o r t i c i t y equation f o r a viscous f l u i d .
To rewrite t h e i n t e r i o r equation i n terms of
we s u b s t i t u t e
Po
(15.9).
vo
and
To
from equations (15.7) and
Thus the problem f o r t h e
0(1)
i n t e r i o r pressure i s
a t H o + LL N2
-yv2P
10; r
9
denotes t h e horizontal Laplacian]
.
We observe t h a t on a time-scale s h o r t e r than equation (15.16) reduces t o
2
O(N 0E-l)
P o t e n t i a l v o r t i c i t y equation
2 16
= 0.
have shown t h a t t h i s equation with Howard and Siegmann [El, prescribed i n i t i a l condition, and boundary conditions consistant w i t h those t h a t we have considered, has a unique s o l u t i o n . [See problems ( 1 1 . 2 ) and (11.3)].
Hence, i f our i n i t i a l con-
d i t i o n is chosen t o be zero perturbation v e l o c i t y and temperat u r e , the unique s o l u t i o n of the problem on a time-scale s h o r t e r than
is
O(N2uE-l)
P0 = 0, implying vo
= 0, To = 0.
time-scale s h o r t e r than
Thus there is no steady flow on a O(N2aE-l).
We will therefore examine
the problem on t h e long time-scale by w r i t i n g t
2
= NuE
-1
t’.
The p o t e n t i a l v o r t i c i t y equation then becomes
We w r i t e the boundary conditions i n t e r m of
Po.
We
f i r s t observe t h a t on t h i s long time-scale (15.10) gives
Hence the Ekman l a y e r suction condition (15.ll) becomes
S t r a t i f ied spin-down
2 17
The thermal condition (15.12) gives
r
To o b t a i n the expression f o r t h e boundary conditions a t
=
a
we use (15.8) on t h e long time-scale t o give u2 =
r
Thus ( 15.13) becomes
And (15.14) gives (15. a )
-
We have w r i t t e n t h e problem i n a w e l l posed form, namely equat i o n (15.17) with boundary conditions (15.19)
(15.22).
It
is c l e a r from t h e complexity of t h e expression involved t h a t i t w i l l not be simple t o o b t a i n a s o l u t i o n .
-
However, boundary
l a y e r a n a l y s i s has enabled us t o reduce the full viscous d i f f u s i v e system of equations (15.1)
(15.3) with conditions (15.4)
and (15.5) t o a well posed boundary value problem f o r the
O(1)
2 18
Modal representation
i n t e r i o r pressure
Po.
The equation i s time-dependent and
6-th order i n space and t h e boundary conditions involve d e r i v a t i v e s of
Po
i n time and space.
The complexity of the
system i s r a t h e r t y p i c a l of the mathematical formulation of problems i n r o t a t i n g , s t r a t i f i e d , viscous flows.
One method
of t a c k l i n g such an equation and boundary conditions I s t o seek a numerical s o l u t i o n .
A d e s c r i p t i o n of the techniques
involved i n t h i s approach i s given by Williams [ 7 0 , 711. I n t h e p a r t i c u l a r problem t h a t we a r e i n v e s t i g a t i n g , it i s possible t o o b t a i n an e x p l i c i t s o l u t i o n f o r
Po
as a function
? ( r ) provided a n assumption i s made a s t o the
of the s t r e s s
form of the time-dependence of the s o l u t i o n .
We assume t h a t
t h e flow can be resolved i n t o a p a r t t h a t grows l i n e a r l y w i t h t'
,a
steady flow, and a decaying flow represented by a sum
of exponential modes, we therefore w r i t e
This form of s o l u t i o n i s p l a u s i b l e since the steady s t r e s s is
feeding angular momentum i n t o the f l u i d and hence w i l l r e s u l t i n a portion of the v e l o c i t y t h a t increases l i n e a r l y with time.
The assumption i s a l s o supported by good agreement be-
tween the r e m l t i n g s o l u t i o n s and those obtained by numerical methods. We s u b s t i t u t e expression (15.23) f o r (15.17) and the boundary conditions. in
t'
gives the problems f o r
Po
i n t o equation
Equating c o e f f i c i e n t s
Po, P1
and
P.
Each of these
problems can be solved e x p l i c i t l y [ s e e Friedlander [ZO]] problem f o r
Po
involves a homogeneous
P.D.E.
.
The
which leads
S t r a t i f i e d spin-down
2 19
t o the simple s o l u t i o n of r i g i d r o t a t i o n . The problem f o r 1 P , however, i s inhomogeneous and hence r a t h e r more d i f f i c u l t , although standard techniques lead t o a s o l u t i o n a s a s e r i e s of Bessel f’unctions with c o e f f i c i e n t s determined a s the Bessel transform of the s t r e s s boundary condition. F i n a l l y , a n a l y s i s of the eigenvalue problem f o r
P
shows
t h a t the modes a r e purely decaying and a l s o t h a t ( f o r
N 2u
<<
1 ) the smallest eigenvalue i s g r e a t e r than
Thus on a time-scale where 2
O(N 0E-I)
, the
t’
is
0(1), i . e . ,
t
O(1).
is
time dependent modes have decayed, leaving a
r e s i d u a l flow t h a t we c a l l quasi-steady.
I
S e c u l a r G r owth The problem f o r
Po
0 2[PHP 2
becomes 0
+
+
P;,]
= 0
N u
with boundary conditions
We have assumed a s i m i l a r expansion for the time dependent behavior of the wall v e l o c i t y
220
Secular and steady s o l u t i o n s
The s o l u t i o n t o (15.24), (15.25) and (15.26) i s =
vo,2 a
(15.27)
*
From (15.27) combined w i t h (15.7) and (15.9) i t follows t h a t and
TO = 0 .
(15.28)
Thus the portion of the s o l u t i o n t h a t grows l i n e a r l y w i t h time i s represented purely as r i g i d r o t a t i o n .
m e Stegdv s o l u t i o n The problem f o r
P1 i s the forced problem given by
w i t h boundary conditions
and
S t r a t i f i e d spin-down
221
The s o l u t i o n t o t h i s problem i s somewhat messy.
Particular
care must be taken i n applying the boundary conditions i n the corner regions near
r = a
and
or
z = 0
1.
This is done
by matching the flux i n t o and out of the corner Elcman l a y e r s . The s o l u t i o n may be obtained i n terms of a Fourier-Bessel s e r i e s with
z-dependence of the form
problem 15.41.
When the parameter
cosh Y n(z -1/2).
N 2o
[See
i s small, which i s
the case f o r values of the s o l a r parameters, t h i s s o l u t i o n can be expanded i n powers of
(D
+ z
2
N o
t o give
8J,( anr ) Ja Jb( anr ) r T ( r ) d r 2 5 2
n=1
a anJo(ana)
where
Jb(ana) = 0 .
(15.32)
(Vl depends on the i n i t i a l c o n d i t i o n s ) . The
0(1)
steady v e l o c i t y and temperature can be computed
from (15.7) and (15.9). of
Clearly the v e l o c i t y i s independent
z , and t h e temperature is zero.
The v e l o c i t y
Vo
of the r i g i d r o t a t i o n t h a t grows l i n e a r l y
with time i s determined by imposing t h e condition of zero integrated s t r e s s on the side-walls,
r=a
Decaying modes
222
This condition i s automatically s a t i s f i e d by t u t i n g t h e expression f o r
Po.
On s u b s t i -
P1 given by (15.32) we obtain
T h i s i s exactly the value of
Vo
required t o balance the
torque due t o the applied surface s t r e s s with the r a t e of change of angular momentum of the f l u i d . Decay inn Modeg
2h.e
The problem f o r the decaying modes
P
i s given by
with boundary c ond i t ions pzz = O
+(% pz) N o N
+
+ No
z v2pz
+
=
091, (15.35)
-1-hrAp r ar ar z
and
r = a.
(15.36)
S t r a t i f i e d spin-down
22 3
An energy i n t e g r a l can be constructed i n t h e u s u a l fashion by multiplying (15.34) by the complex conjugate of g r a t i n g over the c y l i n d e r .
r
and i n t e -
I n t e g r a t i n g by p a r t s and using the
boundary conditions (15.35) and (15.56) gives
From t h i s we can conclude t h a t l e a s t i n the case where
X
b = 0, X
must be r e a l and t h a t , a t must be p o s i t i v e .
Examina-
t i o n s of the e x p l i c i t s o l u t i o n s t o t h e forced problem where
b
0
shows t h a t t h e eigenvalues a r e i n f a c t p o s i t i v e i n t h i s
case too.
Thus t h e model s o l u t i o n s c o n s i s t of purely decaying
It i s i n t e r e s t i n g t o note t h a t the o s c i l l a t o r y solu-
modes.
t i o n s a r e excluded from our formulation of the problem because we a r e seeking t h e s o l u t i o n on the long-time s c a l e with the dominant balance of terms given by geostrophic balance (15.7) and h y d r o s t a t i c balance (15.9). It can be shown ( s e e Friedlander [20]) t h a t t h e r e e x i s t t h r e e s e t s of s o l u t i o n s t o equation (15.34) with boundary conditions (15.35) and (15.36).
The f i r s t a r e barotropic
modes excited by a n i n i t i a l non-zero wall v e l o c i t y . The 2 elgenvalues a r e O ( N 0 ) and hence t h e modes decay on a time scale
O(E’I).
dent of erature.
r
The second modes have eigenfunctions indepen-
and a r e excited by an i n i t i a l non-zero wall tempThe eigenvalues a r e
O(N2)
and hence t h e modes
Eigenvalue problem
224
decay on a time-scale scale.
which i s the thermal diff’usive
O(0E-l)
The major i n t e r e s t however l i e s i n the modes t h a t e x i s t
when t h e r e i s no i n i t i a l side-wall temperature or v e l o c i t y . The f i r s t two c l a s s e s of modes a r e p e c u l i a r t o the p a r t i c u l a r geometry of t h e cylinder i n which t h e r e e x i s t s i d e walls and a r e not relevant t o the s o l a r spin-down problem although they could have importance i n o t h e r problems. The s o l u t i o n f o r the t h i r d s e t of modes, which a r e the f r e e modes, excited by the stress boundary condition a r e obtained by considering the homogeneous problem w i t h
b = 0.
The s o l u t i o n i s given a s a Fourier-Bessel s e r i e s
P
Q)
=
r An(z)Jo(anr) where n=1
and A,(z)
= 0
a(xn)(z
-
1/2)
F2 cash b(&,)(z
-
1/2
G1 sinh a ( x n ) ( z
-
lh)+ G2 cosh b ( h n ) ( z
-
1/2
= F1 cash
+
Jb(ana)
The c o e f f i c i e n t s
a(An)
and
+
b(Xn)
a r e the non-conjugate
roots of the q u a r t i c equation
The eigenvalues
An
a r e determined by applying t h e boundary
conditions (15.35).
T h i s procedure gives two transcendental
equations f o r
a ( x n ) and
b($)
each of which has an i n f i -
n i t e damily of SOlUtiOnS corresponding t o the odd and even modes excited by t h e surface s t r e s s .
These eigenvalues a r e
S t r a t i f i e d spin-down N 2CJ
i n terms of the parameter
O(1)
225
( s e e equation (15.38)
and hence t h e modes t h a t they represent decay on a time-scale of
O(N2uEe1).
[Recall
t = N2uE-’t’
3.
I n t h e case where t h e r e i s no i n i t i a l side-wall temperat u r e o r v e l o c i t y , the time-dependent modes decay on a time2 s c a l e of O ( N ~JE-’) leaving the r e s i d u a l quasi-steady flow given by a v = E t ’ *
a
where
OD
X n=l
16
0
Jb(anr)m(r)dr 3
a anJo(ana)
1
+IhE z ar
( 15.39 1
i s given by (15.32).
P1
We note t h a t t h e term t h a t grows l i n e a r l y w i t h time does not become of elapsed.
0 ( 1 ) u n t i l t h e viscous time-scale of
has
I n the case of s o l a r parameters
Our r e s u l t s show t h a t on the time-scale between
and
O(E-’)
O(E’l)
c i t y given by
O(N‘UE‘~)
t h e flow i s approximately steady with the velo-
ar
.
This steady flow i s not r i g i d rota-
t i o n , but t h e r e is no sharp d i s c o n t i n u i t y i n v e l o c i t y between t h e core and the s h e l l a s would be required i n Dicke’s hypothesis.
We show t h a t i f an i n i t i a l d i f f e r e n t i a l r o t a t i o n be-
tween the core and the outer s h e l l e x i s t e d , i t would be which i n the case smoothed out on a time-scale of O ( N 2 0 E - l ) of s o l a r parameters i s o(109 ) years. AS we previously remarked, t h i s time-scale is c l o s e t o t h e l i f e - t i m e of t h e sunl however i t i s very l i k e l y t h a t
lo9
years i s i n f a c t an
upper bound f o r t h e s o l a r spin-down time-scale.
F u r t h e r comments
226 &&her
Comments
We have i l l u s t r a t e d t h e method by which a n e x p l i c i t solut i o n can be obtained t o a problem of geophysical ( o r perhaps i n t h i s c a s e we should say a s t r o p h y s i c a l ) o r i g i n s u s i n g mathem a t i c a l techniques f o r s t u d y i n g r o t a t i n g s t r a t i f i e d f l u i d s . We mentioned b r i e f l y t h a t numerical methods were used t o produce a computer s i m u l a t i o n of a r o t a t i n g s t r a t i f i e d f l u i d :
a
very good account of t h i s work i s given i n t h e papers of
Williams, [TO, 71, 72, 731.
The whole f i e l d of numerical
modeling i s extremely important i n t h e s t u d y of geophysical f l u i d dynamics where t h e mathematical d e s c r i p t i o n of a problem i s f r e q u e n t l y f a r t o o complicated t o y i e l d t o nonnumerical t o o l s .
I n f a c t , von Neumann brought Charney t o t h e
I n s t i t u t e f o r Advanced Study a t P r i n c e t o n i n t h e n i n e t e e n f o r t i e s ' t o develop t h e a p p r o p r i a t e mathematical models f o r t h e g e n e r a l c i r c u l a t i o n of t h e atmosphere.
The development
of numerical methods f o r t h e s o l u t i o n of t h e s e models provided one impetus f o r t h e c o n s t r u c t i o n of t h e f o r e r u n n e r t o t h e modern powerful computer.
A seminal paper concerning t h e s e
techniques i s t h a t of Charney and E l i a s s e n [ l l ] .
It i s c l e a r
t h a t even a f t e r many s i m p l i f i c a t i o n s of t h e u n d e r l y i n g physics, t h e mathematical systems d e s c r i b i n g t h e behavior of t h e ocean o r atmosphere a r e of g r e a t complexity.
I n many
cases it i s e s s e n t i a l t o u s e a computer t o o b t a i n even p a r t i a l results.
However, we should observe t h a t a n a n a l y t i c a l t r e a t -
ment of t h e fundamental p r o p e r t i e s of t h e mathematics i s o f t e n of g r e a t value i n s e t t i n g up t h e computer model and i n t h e i n t e l l i g e n t i n t e r p r e t a t i o n of t h e numerical r e s u l t s .
A fuller
S t r a t ifi e d spin-down
227
d i s c u s s i o n of numerical techniques i s , however, beyond t h e scope of t h i s booK. We should a l s o a t l e a s t b r i e f l y mention a t h i r d approach t o t h e problems of geophysical f l u i d dynamics, namely t h a t of t h e experimentalist.
Much of t h e e a r l y worR i n t h e s u b j e c t i s
e n t i r e l y experimental and p h y s i c a l o b s e r v a t i o n s provide a b a s i s on which a l l mathematical work i s b u i l t .
EKman was
himself a n oceanographer whose o b s e r v a t i o n s of t h e b e h a v i o r of t h e s e a El”], provided t h e impetus f o r much of t h e l a t e r mathematical s t u d i e s .
Experimental worK can, of c o u r s e , be
d i r e c t l y concerned with o b s e r v a t i o n and measurements of t h e ocean o r atmosphere, but i t can a l s o i n v o l v e l a b o r a t o r y models of s p e c i f i c p h y s i c a l phenomena.
T h i s work c a n l e a d t o a n
u n d e r s t a n d i n g of problems t h a t would o t h e r w i s e i n t r a c t a b l e , suggest i n t e r e s t i n g d i r e c t i o n s f o r f u t u r e r e s e a r c h , and also provide u s e f u l v e r i f i c a t i o n of t h e o r e t i c a l worK.
A good exam-
p l e of t h e l a t t e r a s p e c t is g i v e n i n t h e r e c e n t work of Linden
[42], concerning flow of a s t r a t i f i e d f l u i d i n a r o t a t i n g annulus.
Problems
228
t e r 15 ProblemE Derive t h e EKman l a y e r s u c t i o n condition appropriate on the h o r i z o n t a l surface
z = 0
for a rotating stratified fluid
described by equations
(15.1)
I.
(15.3)
w i t h boundary condition (15.4).
Discuss the behavior of the side-wall
r = a
boundary l a y e r a t t o equations (15.1)
-t
appropriate
(15.3)
with
boundary condition (15.5). that
N ‘20 =
O(1)
boundary l a y e r .
I n the case analyze the O ( E 1/2 )
Hence derive the r e l a t i o n -
ship (15.13) f o r the i n t e r i o r flow a t
r
Is t h i s r e l a t i o n s h i p v a l i d f o r small
N2u?
=
15.3)a) Compute the value of the constant angular velocity
Vo
t h a t occurs i n the portion
of t h e s o l u t i o n t h a t grows l i n e a r l y with time, by equating t h e torque due t o the applied s t r e s s with the r a t e of change of angular momentum of the f l u i d
.
b ) Show t h a t t h e r e can be no c o n t r i b u t i o n t o
the flow driven by a steady s t r e s s t h a t grows a s
tn, n 2 2 .
a,
Problems 15.4)
a)
229
Prove t h a t the s o l u t i o n
t o equation
P1
(15.29) w i t h boundary conditions (15.30) and (15.31) i s given by p1 =
1
(y- - -) a
0
0 4
+
8N2g
+
A.
+
BO(z-1/2)
co 4Jo(anr) cosh an(z-1/2) +
2 n = l a 2Jo(ana)
Ja
X
ta&
where
>-
cosh
9
- N2 u a2
2
1/2
cosh
an(z-1/2)
( N2u ) 12 '%
Jb( a n r ) r t ( r ) d r
8
( ~~u 'l2an
tanh
Jb(ana) b)
a:
cosh
4
= 0.
Show t h a t t h i s reduces t o (15.32) when
N 20
i s small.
Explain why the
0(1)
temperature i s a constant i n t h i s case. c)
15.5 1 a)
what is the behavior of t h e v e l o c i t y and temperature when
N
Show t h a t the eigenvalue
A
2
Q
i s large?
f o r the
t ime-depend ent modes s a t i s f y the transcendent a 1 e qua t ions
Problems
or
where
a ( k ) and
b(k)
are the nOn-ConJUgate
roots of ( 1 5 . 3 8 ) . b)
In the case when
N
2
Q
<<
1
approximate expression f o r b(X)
from ( 1 5 . 3 8 ) .
obtain an a(k)
and
Hence obtain an
upper bound and a lower bound for the smallest eigenvalue.
Obtain an asymptotic
expression f o r the behavior of large eigenvalues.
CHAPTER 16 BAROC L I N I C INSTABILITY
The i n v e s t i g a t i o n of t h e s t a b i l i t y of a flow i s an importa n t aspect of a l l f l u i d problems:
i n h i s work on hydrodynamic
s t a b i l i t y Chandrasekhar [ 91, provides a n e x c e l l e n t r e f e r e n c e f o r t h i s subject.
We w i l l now d i s c u s s one p a r t i c u l a r , but very
i n t e r e s t i n g , form of i n s t a b i l i t y t h a t can occur i n a r o t a t i n g s t r a t i f i e d f h i d , namely baroc l i n i c i n s t a b i l i t y
.
Inves t i g a -
t i o n of t h i s f i e l d has led t o important c o n t r i b u t i o n s t o our knowledge of t h e behavior of t h e atmosphere.
The mechanism of
b a r o c l i n i c i n s t a b i l i t y merits d i s c u s s i o n both because of i t s s i g n i f i c a n t geophysical a p p l i c a t i o n s and because of i t s r a t h e r curious dynamic and mathematical p r o p e r t i e s .
The o r i g i n a l
treatment of t h e s u b j e c t was given by s e v e r a l people, including Eady [ 151, Charney [ lo], S u t c l i f f e [ 6 4 ] and F j o r t o f t [ 181. We w i l l follow t h e mathematical a n a l y s i s of Eady. I n Chapters 12 and 1 5 we described waves supported by a r o t a t i n g s t r a t i f i e d f l u i d , i n c l u d i n g Rossby waves which a r e observable i n t h e atmosphere and propagate towards t h e west. We w i l l show t h a t t h e atmosphere, which is heated by t h e sun more s t r o n g l y a t t h e equator than t h e poles, i s a system t h a t i s inherently unstable.
The mechanism of b a r o c l i n i c i n s t a -
b i l i t y gives a method whereby a small p e r t u r b a t i o n of t h e b a s i c s t e a d y flow can generate l a r g e s c a l e waves mown i n t h e atmos-
The Eady model
2 32
Three ingredients a r e necessary and s u f f i -
phere as cyclones.
c i e n t f o r b a r o c l i n i c i n s t a b i l i t y , namely, r o t a t i o n , s t r a t i f i c a t i o n and a horizontal temperature gradient
5 .
ay A simple form of i n s t a b i l i t y i n a s t r a t i f i e d f l u i d i s the
obvious one t h a t occurs when heavier p a r t i c l e s l i e above
For example, consider heating a d i s h of
lighter particles. water from below:
the hot l i g h t e r f l u i d a t t h e bottom r i s e s
and t h e cold heavier r l u i d f a l l s , giving the c e l l u l a r flow /
p a t t e r n known a s Benard convection.
However, t h i s I s not the
underlying p r i n c i p l e of b a r o c l i n i c i n s t a b i l i t y s i n c e i n the problem t h a t we w i l l now consider, the i n i t i a l s t a t e i s one
i n which heavier f l u i d always l i e s below l i g h t e r f l u i d .
For
b a r o c l i n i c i n s t a b i l i t y , the a v a i l a b l e p o t e n t i a l energy of the basic flow comes from the mriz o n t a temperature gradient aTWe w i l l now show t h a t f o r the unstable modes t h i s energy 3Y can be converted I n t o waves.
.
We w i l l describe the simplest model t h a t e x h i b i t s the fundamental features of b a r o c l i n i c i n s t a b i l i t y . box with r i g i d walls a t
z = 0, z = 1 and
allow the f l u i d t o be i n f i n i t e i n the
We consider a y = 0, y = 1, and
x-direction.
We model
the s o l a r heating t h a t i s weaker a t the poles than a t t h e equator by considering a basic s t a t e i n which the North-South temperature gradient
i3T0 is 3Y
a constant
C.
The b a s i c steady
flow i s i n geostrophic and hydrostatic balance, hence the steady, inviscid reduction of (10.7) gives
Baroclinic i n s t a b i l i t y
233
(16 .l) and T
o
3 . az
=
(16.2)
Because t h e v a r i a t i o n of C o r i o l i s force w i t h l a t i t u d e is not fundamental t o t h e mechanism of b a r o c l i n i c i n s t a b i l i t y , i n t h i s simple model we w i l l t r e a t
f
a s constant.
From (16.1)
and (16.2) we o b t a i n
thus
uo
=
5 , by the n a t u r e of t h e basic steady s t a t e ,
=
’f
z.
(16.3)
We use t h e standard techniques t o i n v e s t i g a t e t h e s t a b i l i t y of the flow by considering a small p e r t u r b a t i o n about t h e
steady s t a t e .
The l i n e a r i z a t i o n follows the l i n e s of t h a t
given i n Chapter 10, but w i t h t h e modification t h a t t h e basic s t a t e is no longer a t r e s t .
We w r i t e
Potential v o r t i c i t y
234
9
=
s z i + €3'
+ ET'
T = Cy
P = czy
+
(16.4)
EP'.
The p o t e n t i a l v o r t i c i t y f o r an inviscid r o t a t i n g s t r a t i f i e d f l u i d i s derived i n Chapter 11. The appropriate expression f o r the p o t e n t i a l v o r t i c i t y i n t h i s present case i s given by
(11.37).
Hence t h e equation representing conservation of
potential vorticity i s
+
9-[v2P dt
4 9 1 N az 2
2
= 0.
We l i n e a r i z e t h i s equation by s u b s t i t u t i n g (16.4) and r e t a i n ing terms of
O(E).
This procedure gives the equation
[A + 'f
+4 N 2
2
&][v;PI
2
-a1z
The boundary conditions a r e obtained i n terms of the following arguments.
(16.6)
= 0.
P'
by
We have assumed t h a t the upper and
lower boundaries a r e r i g i d , thus
w'=o
at
z = O ,
2 3 1 .
(16.7)
I n f a c t , i t i s possible t o extend the a n a l y s i s without too much d i f f i c u l t y t o include t h e cases of f r e e surfaces and nonh o r i z o n t a l boundaries.
This i s summarized by Hide [31], i n
h i s chapter concerning planetary atmospheres.
Linearization
of the inviscid temperature equation (10.8) about t h e steady s t a t e gives
Baroclinic i n s t a b i l i t y c + ~ ~ + v ' c + N2 w =' O . at f ax
2 35
(16.8)
I n keeping with t h e d e r i v a t i o n i n Chapter 1 2 of the p o t e n t i a l v o r t i c i t y equation, we assume t h a t the
O(E)
perturbed flow
i s quasi-geostrophic, hence
and T' =
=. az
(16.9)
Thus the boundary condition (16.7) combined with (16.8) and (16.9) gives (16.10)
and ( 16.11)
Again f o r s i m p l i c i t y we assume t h a t t h e r e a r e r i g i d sidewalls a t
y = O,L,
thus v' = 0 a t
y = O,L,
which implies
AIL ax
=
o at
y = 0,1.
(16.12)
O f course t h i s boundary condition i s u n r e a l i s t i c i n t h e atmos-
phere where r i g i d l a t i t u d i n a l walls do not e x i s t , but we wish
'L 36
The s t a b i l i t y c r i t e r i o n
t o i l l u s t r a t e t h e fundamental mechanism of b a r o c l i n i c i n s t a b i l i t y without obscuring t h e mathematics by incorporating
o t h e r physical phenomena. T h e S t a b i 1 i t . v C r i t e r i 0g
Following t h e standard methods of s t a b i l i t y analysis we
seek a s o l u t i o n t o equation (16.6) with boundary conditions (16.10), (16.11) and (16.12) of the form
When t h e eigenvalue A like:
i s r e a l , the motion i s purely wave-
however, complex values of
can lead t o exponential
h
growth w i t h time, and we c a l l such modes unstable.
Substitu-
t i o n of (16.13) i n t o equation (16.6) gives i[-k
In general, A
+
k][-(k2
.+ y , thus
2 2 ) F L
F
s a t i s f i e s an equation of the
9-
I orm
a : F
az
+
f
Be
-a z
n
=
0.
(16.14)
= 0,
implying F = Man'
+
2
y2 ]
+9
,
where an
and
A
and
B
=
$ f
(k2
+ =) L2
a r e constants t o be determined from the bound-
Baroclinic i n s t a b i l i t y a r y conditions (16 .lo) and (16.11).
'2 37
Applying t h e s e boundary
conditions t o the expression (16.15) f o r
gives t h e p a i r
F(z)
of equations
A[F + Xun] + B[y - &an]
= 0
T h i s system has a n o n t r i v i a l s o l u t i o n f o r
only i f
A
[(I
A
and
B
i f and
s a t i s f i e s the eigenvalue equation
+
+
ad(?)
A
ck 2 y an -
2 2 'an A an].
(16.16)
-[(I Hence
&
- aJ(y) + x 2
2
an
2 a - A 2 an]e
= 0.
is given by t h e quadratic equation
A2-A$?+(F)
2
which has two roots
A = @[l
1/2 2 2 a, (an - 4an coth an + 4) 1.
(16.17)
Clearly the system is s t a b l e and purely wave-like when 2
an
-
4an coth an
+
4 2 0,
and represents an unstable wave whose amplitude grows exponen-
C r i t i c a l value of
2 38
a
t i a l l y when a:
- 4an coth an + 4 < 0.
T h i s expression defining the s t a b i l i t y c r i t e r i o n can be re-
w r i t t e n using the r e l a t i o n 2 an
-
4an coth an
+
4 = (an
a 2 tanh $)(an
-
- 2 coth 2) .
Because the f i r s t braclcet i s always p o s i t i v e the system i s s t a b l e providing
and could be unstable when 2
Thus the c r i t i c a l value of a 2
<
coth
an
=
3. ac
is
coth
where
2.
From t h i s i t follows t h a t ac er 2.399.
W e have therefore shown t h a t unstable disturbances a r i s e when
Baroclinic i n s t a b i l i t y
2 39
Hence t h e r e e x i s t s a t l e a s t one unstable mode
( k = 0,
n
= 1)
provided t h a t
If
1. nL < t h e parameters a r e such t h a t 1 .
( 16.18)
i s g r e a t e r than t h i s
c r i t i c a l value, a l l i n f i n i t e s i o n a l perturbations of the basic state are stable. Let us examine i n a l i t t l e more d e t a i l the p r o p e r t i e s of
<
an unstable mode t h a t e x i s t s when
ac
.
From expression
(16.17) the phase speed of an unstable mode has the form
where
g(an)
i s a r e a l valued function of
s t a b l e disturbances d r i f t w i t h v e l o c i t y v e l o c i t y of the b a s i c flow.
an.
Thus the un-
which i s t h e mean
The p e r t u r b a t i o n pressure f i e l d
is given a s
which represents an unstable wave propagating i n t h e d i r e c t i o n of the mean flow.
The constant
c
gives the s t r e n g t h
of the mean shear, thus both t h e magnitude of the d r i f t v e l o c i t y and the growth r a t e of the amplitude of t h e unstable mode i n c r e a s e with the mean shear
%. ay
I n f a c t , t h i s hori-
z o n t a l temperature gradient provides t h e source of energy f o r the growth of the i n s t a b i l i t y .
A d e s c r i p t i o n of exactly how,
and i n what regions, the a v a i l a b l e p o t e n t i a l energy is re-
Rossby radius of defomration
2 40
leased from the mean shear and converted i n t o perturbation k i n e t i c energy i s given i n the a r t i c l e of Pedlosky [sl]. We now remarK t h a t the s t a b i l i t y c r i t e r i o n (16.18) can be r e w r i t t e n i n terms of the Rossby radius of deformation.
We
r e c a l l from Chapter 11 t h a t for a given s t r e n g t h of a t r a t i f i cation N
and depth
h, Rossby waves a r e only influenced by
s t r a t i f i c a t i o n i f the dimensional h o r i z o n t a l length s c a l e
L*(= h L )
exceeds t h e value
=
h.
The c r i t e r i o n (16.18)
f o r b a r o c l i n i c i n s t a b i l i t y requires
which can be r e w r i t t e n i n the form
Hence i f the dimensional h o r i z o n t a l length s c a l e the Rossby radius of deformation
%,
L*
exceeds
the conditions a r e
favorable f o r the growth of a n unstable wave, and such Rossby wave8 w i l l be influenced by t h e presence of v e r t i c a l s t r a t i fication.
Our a n a l y s i s of the generation of waves from a
wave-free basic flow by meana of b a r o c l i n i c I n s t a b i l i t y i s therefore consistent w i t h t h e f a c t t h a t modes whose horizont a l length s c a l e s a r e of the order of the Rossby radius of deformation
(1)
1000km)
a r e exactly those which occur most
frequently i n the atmosphere. We w i l l make a f u r t h e r observation about the s t a b i l i t y c r i t e r i o n (16.18).
We r e c a l l t h a t
N/f
i s the r a t i o of the
buoyancy frequency, which measures the s t r e n g t h of the s t a b l e
Baroclinic i n s t a b i l i t y
24 1
g r a v i t a t i o n a l s t r a t i f i c a t i o n , t o t h e angular v e l o c i t y of rotation.
Thus the e f f e c t of a n increase i n the v e r t i c a l
s t r a t i f i c a t i o n is t o s t a b i l i z e the flow.
We r e c a l l , however,
t h a t t h e presence of the h o r i z o n t a l s t r a t i f i c a t i o n is e s s e n t i a l f o r t h e existence of b a r o c l i n i c i n s t a b i l i t y .
The
slope of the surfaces of equal d e n s i t y is given by t h e expression
The i n s t a b i l i t y can e x i s t only i f a t y p i c a l p a r t i c l e t r a j e c t o r y s a t i s f i e s two conditions: (i)
it has slope
e g r e a t e r than zero,
so t h a t
t h e r e e x i s t s a v a i l a b l e p o t e n t i a l energy t o feed t h e i n s t a b i l i t y : (ii) t h e slope
0
is l e s s than
(- %,% ay az )
t h a t t h e s t a b i l i z i n g e f f e c t of t h e v e r t i c a l d e n s i t y gradient can be overcome. i.e.,
f o r s t a b i l i t y we must require
so
4 1
-cc
/
/
l i n e s of constant density temperature trajectory 1 (unstable) trajectory 2 ( s t a b l e )
FIGURE 28
Baroclinic i n s t a b i l i t y Trajectory 1 is unstable s a t i s f y i n g both conditions. associated h o r i z o n t a l length s c a l e Jl f
L1
243
The
i s such t h a t
= L, < 2.399.
Trajectory 2 is s t a b l e and t h e h o r i z o n t a l length s c a l e
L2
is such t h a t Jl f
= > L2
2.399.
We have discussed a simple model t h a t e x h i b i t s t h e main f e a t u r e s of b a r o c l i n i c i n s t a b i l i t y .
m c h work on t h i s s u b j e c t
has been stimulated by a d e s i r e t o understand t h e l a r g e s c a l e motions i n the atmosphere and we have seen how even a simple model can give valuable information.
However, the atmosphere
is a system t h a t i s physically much more complicated than t h e one we described.
It is t h e r e f o r e necessary t o consider ex-
tensions of the simple Eady treatment of b a r o c l i n i c i n s t a b i l i t y and laboratory experiments a r e a n e s s e n t i a l f e a t u r e of t h i s work.
The basic experimental apparatus c o n s i s t s of a
uniformly r o t a t i n g f l u i d contained i n a c y l i n d r i c a l annulus. A h o r i z o n t a l temperature gradient is produced by impOSing a
temperature d i f f e r e n c e between the inner and the o u t e r s i d e walls, with t h e inner wall representing p o l a r l a t i t u d e s and being colder than the o u t e r wall which corresponds t o equat o r i a l l a t i t u d e s [ s e e Figure 291.
The f i r s t experiments of
t h i s type were c a r r i e d out by Hide [ 2 8 ] and F u l t z [ 2 3 ] .
2 44
Laboratory models
I n the experiments It was u s u a l t o vary e i t h e r the angular velocity
n
o r t h e temperature gradient
found t h a t increasing
n
To
(Or
s i o n of d i f f e r e n t s t a t e s .
- T1)
To
-
T1.
It was
lead t o a progres-
For low angular v e l o c i t y , the flow
was a steady s p i r a l ; as i t increased t o a c r i t i c a l value ( s e e expression (16.18)) , t h e r e was onset of i n s t a b i l i t y and the b a r o c l l n i c mode of wave number 2 appeared.
in n
Further increases
gave r i s e t o progressively higher wave numbers with
s h o r t e r horizontal length s c a l e s , u n t i l a t l a r g e enough values the steady p a t t e r n began t o waver o r v a c i l l a t e .
A further
increase i n
then Produced i r r e g u l a r p a t t e r n s with turbu-
l e n t eddies.
This progression is c l e a r l y consistent with the
s t a b i l i t y c r i t e r i o n t h a t b a r o c l i n i c i n s t a b i l i t y can only occur when
The experiments not only give r e s u l t s t h a t agree with t h e theory of baroclinic I n s t a b i l i t y derived from a simple mathematical mode, but they can a l s o be used t o i n v e s t i g a t e nonl i n e a r e f f e c t s which a r e p a r t i c u l a r l y important i n the v a c l l l a t i n g and i r r e g u l a r flows.
A f u r t h e r relevant f e a t u r e
neglected i n the simple model i s v i s c o s i t y .
Barcilon [ 2 ] and
Hide [ 3 0 ] consider the r o l e of boundary l a y e r s in the s t a b i l i t y problem.
Some progress has been made using experimental
techniques i n the understanding of the way the s t a b i l i t y curve is modified by v i s c o s i t y .
A systematic study of the
e f f e c t of v i s c o s i t y on the t r a n s i t i o n from axisymmetric t o
Baroclinic i n s t a b i l i t y
Laboratory model for l a t i t u d i n a l d i f f e r e n t i a l s o l a r heating of t h e atmosphere. FIGURE 29
2 46
Laboratory experiments
non-axisymmetrlc flow can be found i n the paper by Fowlis and Hide [ l g ] .
T h i s work has been continued by Hide and Mason
[ 3 2 ] , who give p a r t i c u l a r a t t e n t i o n t o t h e h y s t e r e s i s pheno-
menon which i s the consequence of t h e e f f e c t s of v i s c o s i t y and p o t e n t i a l v o r t i c i t y gradients on b a r o c l i n i c waves. A summary of laboratory experiments concerning b a r o c l i n i c
I n s t a b i l i t y and i t s a p p l i c a t i o n t o the theory of the general c i r c u l a t i o n of the atmosphere i s given i n the a r t i c l e by Hide [30]. T h i s i s a l s o a most u s e f u l source of references f o r
the seminal work on the s u b j e c t a s a whole.
Problems
247
t e r 16 Problem 16.1)
Consider the e f f e c t of introducing a small v i s c o s i t y i n t o the problem of baroclinic instability.
a)
Assume t h e r e e x i s t s an EKman l a y e r a t t h e upper and lower surfaces are rigid.)
z
= 0,l.
(Which
Obtain the appropriate m o d i f i -
c a t i o n of the boundary conditions (16.10) and (16.11). b)
Obtain a s o l u t i o n of t h e form (16.13) t o equation (16.6) w i t h t h e modified boundary conditions i n ( a ) .
c)
How does the presence of a non-zero Ekman number a f f e c t the s t a b i l i t y c r i t e r i o n .
[This problem i s considered i n d e t a i l by Barcilon [2]. 16.2)
We have given two c r i t e r i a f o r t h e existence of b a r o c l i n i c i n s t a b i l i t y , namely (16 .l8)
and (16.19).
Following t h e o u t l i n e given
below, show t h a t these two c r i t e r i a a r e consistent. a)
Write t h e v e l o c i t y i n terms of t h e d e n s i t y gradient a s
b)
uo = 1.g%. f i aY
z,
Recall t h e dimensional buoyancy frequency N2 =
-
2 aP
(chapter 1 0 ) .
Problems c)
Define the slope
where
d)
of a t r a j e c t o r y as
a r e the root mean square
( W',V')
averages of
8
(w' ,v' )
.
Write t h e p o t e n t i a l v o r t i c i t y equation (16.6) i n terms of the v e l o c i t y components (u' ,v' ,w' )
e)
.
Take the average of the dominant terms i n t h i s equation and hence show t h a t the s t a b i l i t y c r i t e r i a (16.18) and (16.19) a r e equivalent.
APPENDIX BOUNDARY LAYER METHODS
Throughout t h e discussion of geophysical f l u i d dynamics we have made use of boundary l a y e r techniques t o approximate t h e behavior of a viscous f l u i d .
Such methods a r e c h a r a c t e r i s t i c
of the t o o l s used t o study c e r t a i n s i n g u l a r p e r t u r b a t i o n problems i n f l u i d mechanics.
For t h e reader who i s not
f a m i l i a r with these methods we w i l l give a s h o r t i n t r o d u c t i o n t o the t o p i c of boundary l a y e r s .
A much more extensive t r e a t -
ment can be found i n the books by M. S c h l i c h t i n g [60] and M. VanDyKe [671.
The o r i g i n a l idea, t h a t a f l u i d of small v i s c o s i t y could be approximated by a n i n v i s c i d f l u i d i n almost every s p a t i a l region except f o r narrow boundary l a y e r s , was f i r s t presented by Prandtl.
T h i s treatment has been given the name, "the
method of inner and outer expansions'', o r i n more recent l i t e r a t u r e , "the method of matched asymptotic expansions.
I'
Although these methods have not yet been shown t o be completely rigorous i n a l l s i t u a t i o n s , boundary l a y e r techniques have proved t o be extremely important i n the a n a l y s i s of t h e Navier-Stokes equations.
I n general, i t may be s t a t e d ,
boundary l a y e r theory i s asymptotically c o r r e c t .
2 49
Singular perturbations
250
l a r Perturbation Problem& We w i l l f i r s t discuss what we mean by a s i n g u l a r perturbat i o n problem.
I n many physical problems the d e s c r i p t i v e
d i f f e r e n t i a l equation, a f t e r i t has been made non-dimensional, includes small ( o r l a r g e ) dimensionless parameters.
Our pre-
s e n t i n t e r e s t l i e s i n the Navier-Stokes equations f o r the motion of an incompressible f l u i d .
I n a n i n e r t i a l co-ordinate
system we r e c a l l t h a t t h e equations can be w r i t t e n i n nondimensional form a s
The two dimensionless parameters a r e
R
and
E.
i s called
R
the Reynolds number and the r e c i p r o c a l of the Reynolds number measures the r e l a t i v e s t r e n g t h of the viscous f o r c e s . parameter
E
measure the r e l a t i v e s t r e n g t h of the non-linear
advective term.
[ I n a r o t a t i n g co-ordinate system
replaced by the EKman number number]. l/R
and
The
E
and
E
l/R
is
i s c a l l e d t h e Rossby
I n many important physical problems both parameters E
a r e small.
I n a general d i f f e r e n t i a l equation a small parameter is referred t o a s the perturbation quantity o r perturbation parameter.
An asymptotic expansion f o r t h e s o l u t i o n t o the
d i f f e r e n t i a l equation i s a formal power s e r i e s i n t h e perturb a t i o n parameter.
This approximate s o l u t i o n becomes more and
more accurate as t h e perturbation quantity tends t o zero. The power s e r i e s is not necessarily convergent, however i n
Boundary l a y e r methods
25 1
many problems t h e f i r s t couple of terms give a good approximation t o t h e exact s o l u t i o n .
I f t h e truncated s e r i e s gives
a good approximation ( f o r a reasonably small p e r t u r b a t i o n parameter) t h a t is v a l i d wverywhere i n t h e domain of d e f i n i -
-
t i o n of t h e equation, then the problem i s c a l l e d a r e a l = Perturbation uoblem.
I f , however, the truncated series is
not v a l i d everywhere i n t h e domain, and f a i l s t o give a
reasonable approximation t o the s o l u t i o n is some s p a t i a l region, then t h e problem is c a l l e d a g i m l a x problem.
This is exactly what occurs when we seek a s o l u t i o n
t o the Navier-Stokes equations (A.l) and (A.2) i n terms of a n asymptotic expansion i n powers of
(or E).
l/R
I n t h i s case
the p e r t u r b a t i o n of the b a s i c i n v i s c i d flow ( i . e . , t i o n with
t h e solu-
l / R = 0) is v a l i d away from the boundaries but
f a i l s near a bounding surface.
It is t h e r e f o r e necessary t o
supplement t h e f i r s t expansion with a second asymptotic expansion which is v a l i d i n the region c l o s e t o t h e boundary. This region is c a l l e d a
boundar.v ;Laver.
The two asymptotic
expansions, sometimes r e f e r r e d t o as t h e o u t e r and t h e i n n e r s o l u t i o n s , must match together i n t h e region where t h e boundary l a y e r meets t h e i n t e r i o r :
hence the name, t h e method of
matched asymptotic expansions. It is possible t o appreciate t h e n e c e s s i t y f o r a viscous
boundary l a y e r by i n t e r p r e t i n g t h e terms i n equation (A.l) i n l i g h t of the physical forces t h a t they represent. (l/R)
v
2
3
which describes the viscous force is t h e most highly
d i f f e r e n t i a t e d term i n t h e equation.
so
The term
The b a s i c i n v i s c i d flow
s a t i s f i e s t h e reduced equation obtained by
1/R = 0.
A simple example
252
Because the reduced equation is of lower order than equation (A.l),
only a normal boundary condition can be imposed on the
-%.
6 olu t i o n
f i r s t term i s
Thus, i n general, an asymptotic expansion whoee
90
w i l l not s a t i s f y the boundary condition on
the t a n g e n t i a l v e l o c i t y component ( e .g.
,a
no-slip condition).
In
Hence t h i s asymptotic expansion is not uniformly v a l i d .
order t o s a t i s f y both t a n g e n t i a l and normal boundary condit i o n s i t i s necessary t o consider an equation t h a t includes t h e most highly d i f f e r e n t i a t e d term, namely the viscous term
(VR) v
2
-
q.
I n our asymptotic a n a l y s i s of the motion of a
r o t a t i n g f l u i d we have shown t h a t exactly such an equation describes the motion i n a viscous boundary layer; e.g., Ekman l a y e r constructed i n Chapter 5.
the
The asymptotic solu-
t i o n t o the problem t h a t s a t i s f i e s a l l the boundary conditions i s composed of a c o n t r i b u t i o n from t h e i n t e r i o r and a c o n t r i bution from the boundary l a y e r . The Navier-Stokes equations ( A . l ) second small parameter term.
E
and ( A . 2 ) involve a
which multiples the non-linear
I n c e r t a i n problems a s o l u t i o n is sought i n terms of
an asymptotic expansion i n powers of
E.
T h i s problem 1s i n
general a singular perturbation problem and i t i s necessary t o consider a second s e r i e s i n l i n e a r boundary l a y e r .
E
t h a t i s v a l i d i n a non-
However our major i n t e r e s t i n t h i s
present book l i e s i n the a n a l y s i s of viscous boundary l a y e r s . l e Example Rather than consider the complicated system of p a r t i a l d i f f e r e n t i a l equations t h a t describes f l u i d motion, we w i l l look a t a much simpler ordinary d i f f e r e n t i a l equation which
25 3
Boundary l a y e r methods
has some of the e s s e n t i a l f e a t u r e s of a s i n g u l a r p e r t u r b a t i o n problem.
We w i l l examine the following i l l u m i n a t i n g example
of Friedrichs ; euXX+ ux = a with boundary conditions u ( 0 ) = 0, u ( 1 ) = 1. Equation ( A . 3 ) can be integrated t o give ux = a
+
ce -X/E
hence u
=
ax
The constants of i n t e g r a t i o n
+
c 1e -X/E
c1
and
+ c2
c2. a r e determined
from the boundary conditions ( A . 4 ) t o give the exact s o l u t i o n t o the problem
u = ax
+
-X/E
( l - a ) ( W ) . - 1 e
L e t us now consider the problem when
E
(A.5)
<<
1 and 6eeK a
s o l u t i o n t o the problem i n terms of an asymptotic expansion. We w r i t e u = u0 f o r some power
a
>
0
+
EQUl
+
E%2
+
....
which w i l l be determined.
(A.6) Substituting
254
Stretched co-ordinate
t h i s s e r i e s i n t o equation ( A . 3 )
and equating powers of
gives successively t h e equations s a t i s f i e d by The terms of order
E
... .
u0,u1,u2,
give
EO
uOX
= a
hence
uo
=
ax = bo.
Since the reduced d i f f e r e n t i a l equation ( A . 7 )
i s of order 1,
which i s of lower order than t h e P u l l d i f f e r e n t i a l equation
(A.3),
the solution
gration.
uo
contains only one constant of i n t e -
It i s t h e r e f o r e not possible t o s a t i s f y both bound-
a r y conditions
uo(0) = 0
and
u o ( l ) = 1. The question
a r i s e s as t o which boundary condition should be used t o determine the constant
Without f u r t h e r knowledge i t would
bo.
However, i t i s i n f a c t
appear t h a t t h e problem i s symmetric.
necessary t o s a t i s f y the condition u o ( l ) = 1. We w i l l pres e n t l y show why t h i s i s the case. When we s a t i s f y
u o ( l ) = 1 equation ( A . 7 ) becomes
uo = ax
+
1
- a.
( A -8)
We note t h a t t h i s l i n e a r expression i s a good approximation t o the exact s o l u t i o n ( A . 5 ) where the co-ordinate
x
f o r small
is
O(E).
E
except i n the region
T h i s region near
i n which t h e s o l u t i o n t o t h e problem ( A . 3 ) approximately given by ( A . 8 ) ,
and ( A . 4 )
x = 0,
i s not
is c a l l e d a boundary l a y e r .
order t o i n v e s t i g a t e more c l o s e l y what i s happening i n t h i s boundary layer we introduce a s t r e t c h e d co-ordinate writing
q
by
In
255
Boundary l a y e r methods
T h i s co-ordinate transformation s t r e t c h e s t h e i n t e r v a l i n
which
x
is
O(ea)
i n t o a n i n t e r v a l i n which
51
is
O(1).
I n t h i s p a r t i c u l a r problem we can e a s i l y determine t h e exact We have already
s o l u t i o n , namely t h e expression ( A . 5 ) .
observed t h a t the i n t e r i o r s o l u t i o n ( A . 8 )
approximates ( A . 5 )
everywhere except i n a boundary l a y e r of
O(e).
problem we expect t h e number
t o equal
a
1.
Thus i n t h i s I n many prob-
lems, however, i t is not possible t o o b t a i n t h e exact s o l u t i o n and hence deduce t h e power of thickness of t h e boundary l a y e r .
E
which gives t h e appropriate We w i l l t h e r e f o r e determine
a by a l t e r n a t i v e means ( a s an i l l u s t r a t i o n the g e n e r a l techniques )
.
The transformation of co-ordinates ( A . 9 )
changes t h e o r i -
g i n a l problem t o (A.lO)
There e x i s t t h r e e terms labeled ( I ) , (11), and (111) i n equat i o n ( A . l O ) which a r e r e s p e c t i v e l y , O( We wish t o choose
a
SO
O( E ' ~ ) ,
O(.)'E
t h a t term ( I ) , which is t h e most
highly d i f f e r e n t i a t e d term, is a dominant term i n balance with a t l e a s t one of t h e o t h e r terms. and (11) requires,
A balance between ( I )
Inner and outer expansions
256
thus Terms ( I ) and (11) a r e of
O(E*).
O( E-
1)
which dominates term
A balance between (I) and (111) requires 1
-
2a = 0 ,
In t h i s case (I) and (111) a r e
-
but term (11) i s
O(E')
and hence i s the dominant term.
O(E-'")
(111)
Thus we can only
achieve a balance of terms i n which term (I) i s retained as E
0
by choosing
a = 1. The boundary layer equation is
then (A.12)
where
x =
Q€.
We have now determined the s u i t a b l e power of asymptotic expansion.
E
f o r the
We seek an i n t e r i o r ( o r o u t e r ) expan-
s ion
uI
=
ax
+
1-a
+
E U ~
1
+
E
2 uI
2
+
...
(A.13)
and a boundary layer ( o r i n n e r ) expansion
ii
=
ii0 +
Eiil
+
E
2-
u2
We s u b s t i t u t e t h e expansion ( A . 1 4 )
... .
+
( A .14)
i n t o t h e boundary layer
equation ( A . 1 2 ) and equate powers of
E.
The
O(1)
equation
Boundary l a y e r methods
25 7
is
+
iio
rlrl
Go
n
= 0.
To o b t a i n t h e boundary c o n d i t i o n on
(A.16)
-
uo we w i l l seeK a comp o s i t e asymptotic expansion f o r t h e s o l u t i o n t o t h e o r i g i n a l
problem.
We w r i t e
a s t h e a d d i t i v e composition of
U(X,E)
the i n n e r and o u t e r expansion.
We r e q u i r e t h a t t h e sum of
the two expansions s a t i s f y t h e boundary c o n d i t i o n a t q = 0.
Hence
Go
must s a t i s f y
C, +
(1-a) =
The equation (A.16) f o r layer.
x = 0,
Go
o
at
q = 0.
(A.17)
i s only v a l i d i n t h e boundary
We w i l l t h e r e f o r e impose t h e c o n d i t i o n t h a t as
becomes l a r g e ( i . e . ,
11
t h e boundary l a y e r merges with t h e in-
t e r i o r ) , t h e boundary l a y e r c o n t r i b u t i o n t o t h e composite s o l u t i o n decays t o zero. on
ii,
Hence t h e second boundary c o n d i t i o n
is lim
rl-m
-
uo = 0 .
(A.18)
The s o l u t i o n t o equation (A .16) with boundary c o n d i t i o n s
(A.17) and (~.18)is
Go
=
-(l-a)e-q.
Thus t h e f i r s t approximation f o r small
E
of t h e composite
s o l u t i o n is U ( X , E )rr ax
+
( l - a ) ( l - e -X/E ) .
(A - 2 0 )
The composite and exact solutions
258
1
1 - a
\
0
f
O(E)
\
\
\
\ , , -
+
outer solution
X
-
-
inner solution
[UI + (-Go)
-
U(XIE)I
FIGURE 30
1
exact s o l u t i o n
Boundary l a y e r methods We note t h a t f o r small exact s o l u t i o n ( A . 5 ) .
E
259
t h i s i s a good approximation of the
Figure [ 3 0 ] i l l u s t r a t e s t h e inner and
o u t e r s o l u t i o n s and compares the composite approximation with the exact s o l u t i o n . There is an a l t e r n a t i v e convention i n which the asymptotic expansion is not w r i t t e n a s a composite expression, but r a t h e r a s an outer s o l u t i o n which is v a l i d outside the boundary l a y e r and an inner s o l u t i o n which is v a l i d i n s i d e the boundary l a y e r . The matching p r i n c i p l e is used t o ensure t h a t t h e two expansions match t o each order i n merges with t h e i n t e r i o r .
E
where t h e boundary l a y e r
The boundary l a y e r s o l u t i o n s a t i s -
f i e s the appropriate boundary condition a t
q = 0.
Written
i n t h i s convention, the uniform f i r s t approximation f o r our present problem is u(x,e)
LI
ax
+
(1-a)
as
(1-a) (1-e-v)
E-0, x
>
E-0, q =
0
’ E
fixed. fixed.
I n general we w i l l seek a n asymptotic expansion t h a t is w r i t t e n i n terms of the a d d i t i v e composition of t h e inner and outer expansions. Cole gives the following d e f i n i t i o n of a composite expansion:
Any s e r i e s t h a t reduces t o t h e o u t e r expansion when ex-
panded asymptotically f o r
E-0
i n o u t e r v a r i a b l e s , and t o t h e
inner expansion i n inner v a r i a b l e s . I n our use of boundary l a y e r techniques t o o b t a i n a uniform
f i r s t approximation f o r the s o l u t i o n
U(X,E)
(A.3) and (A.4) we made a c e r t a i n choice.
t o the problem
Namely, we imposed
the boundary condition a t x = 1 on t h e outer s o l u t i o n and constructed a boundary l a y e r near x = 0 t o s a t i s f y the
Behavior a t
260
second boundary condition.
x
= 1
Could we reverse t h i s procedure?
Observing t h e form of the exact s o l u t i o n given i n Figure [30], i t becomes apparent t h a t t h e answer t o t h i s question is no.
The exact s o l u t i o n i s almost a s t r a i g h t l i n e from x a region close t o x = 0: zero a t
x = 0.
= 1
to
i t then exponentially decays t o
This is the type of behavior that i n d i c a t e s
a boundary layer a t only one end of the i n t e r v a l , namely near
x = 0.
I f we were unaware of the exact s o l u t i o n and
attempted t o construct a boundary layer a t
x = 1 we would
obtain the following equation: n
u
n
66
- u
where
s
=€a
1-x = € 5 .
Thus the f i r s t term i n a n asymptotic expansion f o r t h e bounda r y l a y e r quantity
3 must have the form
Such a term grows exponentially a s the boundary l a y e r merges w i t h the i n t e r i o r and hence can not be p a r t of a uniform com-
p o s i t e expansion f o r u ( x , E ) . We t h e r e f o r e conclude t h a t t h e r e is no boundary l a y e r a t
x
= 1.
A s a n exercise we
suggest t h a t the reader use boundary l a y e r methods t o cons t r u c t the f i r s t approximation for small of the problem.
-
euXX uX = a u(1)
= 1, u ( 0 ) = 0.
E
t o the s o l u t i o n
Boundary l a y e r methods
26 1
I n the preceeding chapters we have made much use of the techniques of matched asymptotic expansions.
These methods
have enabled us t o o b t a i n approximate s o l u t i o n s f o r the Navier-Stokes equations i n various d i f f e r e n t contexts.
The
boundary l a y e r s t h a t we have considered have been viscous boundary layers t h a t a r e characterized by t h e importance of t h e viscous f o r c e i n the boundary l a y e r region.
One of the
simplest, although perhaps the most important boundary l a y e r t h a t we studied was the EKman l a y e r i n which the viscous force and C o r i o l i s force a r e i n balance.
We sought a solu-
t i o n t o t h e p a r t i a l d i f f e r e n t i a l equation 2 E2 v 6P + 4 ? = 0
(A.21)
az
i n terms of an o u t e r ( o r i n t e r i o r ) expansion and a n inner ( o r boundary l a y e r expansion). pI = p0 and
B
=
+
Po +
E
~
Eagl
We wrote
+P
..~..
( i n t e r i o r expansion),
+
....
(boundary l a y e r expansion),
where t h e boundary layer co-ordinate
5 = E-Oz.
We performed
the matched asymptotic expansion i n t h e manner described i n the preceeding simple example t o o b t a i n the r e s u l t s given i n Chapter 5 .
This Page Intentionally Left Blank
BIBLICGRAPHY
Aldridge, K.D. and Toomre, A . , Axisymmetric i n e r t i a l o s c i l l a t i o n s of a f l u i d i n a r o t a t i n g s p h e r i c a l con(1969), 307-323. t a i n e r , J . Fluid Mech. Barcilon, V., Role of t h e Ekman layers i n t h e s t a b i l i t y of the symmetric region obtained i n a r o t a t i n g annulus, J. Atmospheric S c i . (1964), 291-299.
a
BarCilOn, V . and Pedlosky, J . A u n i f i e d l i n e a r theory of homogeneous and s t r a t i f i e d r o t a t i n g f l u i d s . J. Fluid Mech. (1967), 609-621. Briscoe, M.G., I n t e r n a l waves i n the ocean, Rev. Geophys. Space Phys. JJ (1975), 591-598. Batchelor, G.K.j U.tr oduc t ion t o f l u i d dvnamim, Cambridge University Press, 1967. Benton, E.R. and Clark, A . , Spin-up, Annual Review of Fluid Mech. 6 (1974), 257-280. Euzyna, G. and Veronis, G., Spin-up of a s t r a t i f i e d f l u i d : theory and experiment, J . Fluid Mech. ( 1971) 579-608
.
C a r r i e r , G.F., Phenomena i n r o t a t i n g f l u i d s , Proc. 11th I n t Congress Appl. Mech. (1964).
.
Chandrasekhar, S , -mic U v d rO m B t a b i l i t v . The Clarendon Press, Oxford. ( Charney, J * G . j The dynamics of long waves i n a baroc l i n i c westerly current, J . Meteorology 3 (1947), 135- 162
.
Charney, J . G . and Eliassen, A . , A numerical model f o r predicting t h e perturbations of t h e middle l a t i t u d e w e s t e r l i e s , Tellus 1 (1949), 38-54. DicKe, R.M., The sun's r o t a t i o n and r e l a t i v i t y , Nature U (1964), 432.
263
26 4
Bibliography Dicke, R.M., The s o l a r spin-down problem, Astrophys. J . (1967), L121-Ll27.
-
DicKinson, R., Rossby waves long period o s c i l l a t i o n s of oceans and atmospheres. Annual Review of Fluid Mech. .I& (1978)s 159-195Eady, E.T., Long waves and cyclone waves. (1949) t 33-52
Tellus . I
Eckart, C., I n t e r n a l waves i n the ocean, Physics of Fluids 3 (1961), 791-799. Ekman, V.W., On the influence of the e a r t h ' s r o t a t i o n on ocean c u r r e n t s , Ark. Mat. Astr. Fys 2. (1905), 1-52.
.
F j o r t o f t , R., Application of i n t e g r a l theorems i n der i v i n g c r i t e r i a of s t a b i l i t y f o r laminar flows and f o r the b a r o c l i n i c c i r c u l a r vortex. Geofys Publ. Norske V i d .-Akad. Oslo JJ.(1950), 1-52.
.
Fowlis, W.W. and Hide, R., Thermal convection I n a r o t a t i n g f l u i d annulus: e f f e c t of v i s c o s i t y on the t r a n s i t i o n between axisynunetric and non-axisymmetric flow regions, J. Atmospheric S c i . 2.Z (1965), 541-558. Friedlander, S., Spin-down i n a r o t a t i n g s t r a t i f i e d No. 2 f l u i d : Part 1, Studies i n App. Math. (1974) 9 111-135.
m,
stratiFriedlander, S., Quasi-steady flow of a r o t a t i f i e d f l u i d i n a sphere, J . Fluid Mech. &, (19%), 209-228. Friedlander, S. and Siegmann, w., I n t e r n a l waves I n a contained r o t a t i n g s t r a t i f i e d f l u i d , t o appear. F u l t z , D., Developments i n controlled experiments on l a r g e - s c a l e geophysical problems, Advances i n Geophysics 2 (1961), 1-103.
Garret, C . and Munk, W., I n t e r n a l waves i n t h e ocean, Annual Rev. of Fluid Mech. ll (1974), 339-369. Greenspan, H.P. and Howard, L.N., On time dependent motion of a r o t a t i n g f l u i d , J . Fluid Mech. JJ (1963), 385-404. Greenspan, H.P., On t h e t r a n s i e n t motion of a contained r o t a t i n g f l u i d , J . Fluid Mech. 21 (1964), 673-696. Greenspan, H.P., theory of r o t a t i n a fl Cambridge University Press, New York. (19
265
Bibliography [28] [29]
Hide, R., Some experiments on thermal convection i n a r o t a t i n g f l u i d , Quart. J . R . Met. Soc. 19 (1953), 161. Hide, R.,
Origin of J u p i t e r ' s g r e a t red s p o t , Nature
l9Q (1961), 695-896.
[301
Hide, R . , Some l a b o r a t o r y experiments on f r e e thermal convection i n a r o t a t i n g f l u i d s u b j e c t t o a h o r i z o n t a l temperature g r a d i e n t and t h e i r r e l a t i o n t o t h e theory of t h e g l o b a l atmospheric c i r c u l a t i o n , In: m e G 1obaJ i o n of t h e ,-a Royal Met. SOC., London
[311
Hide, R., Planetary atmospheres and i n t e r i o r s , I n : -tical Droble i c a l s c i e w e s r, l e c t u r e s i n App. Ma 971), 229-353.
[32]
Hide, R. and Mason, P. J . , On t h e t r a n s i t i o n between axisymmetric and non-axisymmetric flow i n a r o t a t i n g l i q u i d annulus s u b j e c t t o a h o r i z o n t a l temperature g r a d i e n t , Geophys Astrophys Fluid Dynamics y) (1978), 1 21-156
.
.
.
[33]
Howard, L.N., Fundamentals of t h e theory of r o t a t i n g f l u i d s , J. Appl. Mech. (1963).
[341
Howard, L.N., Moore, D.W., spin-down problem, Nature
and Spie e l , E.A., S o l a r a (19677, 1297-1299.
and Siegmann, W.L., On t h e i n i t i a l value problem f o r r o t a t i n g s t r a t i f i e d flow, S t u d i e s i n App. (19691, 153. Math.
[ 3 5 ] Howard, L.N. r361 .-
I
-
Howard.- L.N.. ~- R o t a t i m and s t r a t i f i e d flows. In: e m a t m , l e c t u r e s i n App. Math. JJ A.M.S. (1971), 121-137.
--
mentals of ocean , E l s e v i e r oceanography s e r i e s , 16, E l s e v i e % % % i f i c Publishing Company, (1977).
[37] Kamenkovich, V.M., [38]
Kelvin, Lord, Vibrations of a columnar vortex, P h i l . Mag. 242 (ISSO), 155-168.
1391
Krauss, W.,
[40] Lamb, H., (1932)
[41]
.
Xeth oden und W s s e d e r theoreGerbruder Borntraeger, B e r l i n
,-
Cambridge University Press,
LeBlond, P.H. and Mysak, L.A., Ocean waves: a survey (1979), of some recent r e s u l t s , S.I.A.M. Review 289-328.
a
266
Bibliography Linden, P., The flow of a s t r a t i f i e d f l u i d i n a r o t a t i n g f l u i d annulus , J. Fluid Mech. 19 (1977) , 435-477. Longuet-Higgins , M.S. , Planetary waves i n a r o t a t i n g sphere, Proc. Roy. SOC. A 219 (1964) , 446-473. MaXWOrthy, T. and Browand, F.K., Experiments i n r o t a t i n g and s t r a t i f i e d flows, Annual Review of Fluid Mech. 1 (1975) 273-305.
[451
Mowbray, D.E. and R a r i t y , B.S.M., A t h e o r e t i c a l and experimental i n v e s t i g a t i o n of t h e phase c o n f i g u r a t i o n of i n t e r n a l waves of small amplitude i n a d e n s i t y s t r a t i f l e d f l u i d , J. F l u i d Mech. 28 (1967), 1-16.
c 461
Morse and Feshbach, McCfraw-Hill, New Yo
[ 471
Murray, J . D . , Press, London
c 481
Pedlosky, J., A note on t h e western i n t e n s i f i c a t i o n of t h e oceanic c i r c u l a t i o n , J. Mar. Res. (1965) , 207-
209.
C 491
o r e t i c a l , -D
, Oxford
University
a
Pedlosky, 3 . and Greenspan, H., A simple l a b o r a t o r y model f o r t h e oceanic c i r c u l a t i o n . J . Fluid Mech. (1967) 9 291-304
a
Pedlosky, J.1 The spin-up of a s t r a t i f i e d f l u i d , J . Fluid Mech. 28 (1967), 463-480. PedloSky, J.9 Geophysical f l u i d dynamics , I n : a1 s c i L W h e M t i c a l ~roblems i n t h e cxeOD Lectures i n App. Math. .JJ A.M.S. , 1-60Pedlosky, J., -vsical ~ 1 Verlag, New York, (1979).
>
, Springer-
P h i l l i p s , N.A. , Geostrophic motion, Rev. Geophys. (1963) 9 125-176.
A
P h i l l i p s , O.M., Energy t r a n s f e r i n r o t a t i n g f l u i d s by r e f l e c t i o n of i n e r t i a l waves , Phys. Fluids 5 (1963) , 513-520.
1551 P h i l l i p s , O.M.,
m e dynamics Of t h e UDDer o c w , 2nd ed. Cambridge University Press , Cambridge (1977).
[561
Proudman, J . . On t h e motion of s o l i d s i n l i a u i d s possessing v o r t i c i t y , Proc. ROY. SOC. A 9i: (1916), 408-424.
Bibliography
267
C .G. , Relation between v a r i a t i o n s i n t h e i n t e n s i t y of the zonal c i r c u l a t i o n of t h e atmosphere and the displacements of the semi-permanent c e n t e r s of the a c t i o n . J . Mar. Res. 2 (1939), 38-155.
E 571 Rossby,
1581 Sakurai, T., Spin-down of a r o t a t i n g s t r a t i f i e d f l u i d i n thermally i n s u l a t e d c i r c u l a r c y l i n d e r s , J . Fluid Mech. (1969), 689-699. [591
Sakurai, T., ClarK, A . and Clark, P . , Spin-down of a Boussinesq f l u i d of small Prandtl number i n a c i r c u l a r c y l i n d e r , J . Fluid Mech. 3 (1971), 753-773. S c h l i c h t i n g , M. , j3oundar.v l a v e r the orv. New York (1955)
.
McGraw-Hill,
Spiegel, E.A. and Veronis, G., On the Boussinesq approximation f o r a compressible f l u i d , Astrophys. J. (1960) , 442-447. Stewartson, K., J . Fluid Mech. Stommel, M., Press , BerkelT-
On almost r i g i d r o t a t i o n s ; Part 2 ,
6 (1966) , 131-144.
, University
of C a l i f o r n i a
S u t c l i f f e , R . C . , The quasi-geostrophic advective wave i n a b a r o c l i n i c zonal c u r r e n t , Q u a r t . J . R . Met. SOC. 12 (1951), 226-234. Taylor, G . I . , Experiments on t h e motion of s o l i d bodies i n r o t a t i n g f l u i d s . Proc. ROY. Soc. A U (1923), 213-218. [66]
Thorpe, S . A . , The e x c i t a t i o n , d i s s i p a t i o n and i n t e r a c t i o n Of i n t e r n a l waves i n the deep ocean, J. Geophys. Res &2 (1975), 328-338.
[67]
VanDyke, M., J'ertu r b a t i o n methods i n f l u i d m e c h u , Academic Press, New York (1964).
[68]
Veronis, G., The analogy between r o t a t i n g and s t r a t i f i e d f l u i d s , Annual Rev. of Fluid Mech. 2 (1970) , 37-66.
[69]
Walin, G., Some aspects of time dependent motion of a s t r a t i f i e d r o t a t i n g f l u i d , J. Fluid Mech. & (1969), 289-307.
[TO]
Williams, G.P., Thermal convection i n a r o t a t i n g annulus 1: The b a s i c a x i s y m e t r i c flow, J . Atmospheric S c i . (196'0, 144-161.
.
a [ 711
Williams, G.P., Thermal convection i n a r o t a t i n g annulus 2: Classes of a x i s y m e t r i c flow, J . Atmospheric S c i . &j (1967), 162-174.
268
Bibliography
[ 721
Williams, G.P., Thermal convection i n a r o t a t i n g annulus 3: Suppression of the f r i c t i o n a l c o n s t r a i n t on l a t e r a l boundaries , J. Atmospheric S c i . 15 (1968), 1034-1045.
[ 731
Williams, G.P.9 Numerical i n t e g r a t i o n of the threedirnens i o n a l Navie r-St okes equations f o r incompressible flow. J . Fluid Mech. 32 (1969), 727-750.
[ 741
Wunsch, C , Geographical v a r i a b i l i t y of the i n t e r n a l wave f i e l d : a search f o r sources and sinks. J . Phys. Oceanogr. h (1976), 471-485.
.
[751 Y i h , C.S., Unarnics of n o n - h o r n w o u s f l u i u , MacMillan Co., New York (1965). [76]
Yih, C.S.,
S t r a t i f i e d Flows, Annual Rev, of Fluid Mech.
1 (1969)s 73-110.
INDEX
Annulus models
2 43
p -plane approximation Baroclinic i n s t a b i l i t y Bgnard convection Blocking Boussinesq approximation Brunt -Vais a l a frequency Buoyancy l a y e r
28 231 2 32 129 126 12 7 200
Centrifugal force Circulation C o r i o l i s force
125, 7
63 7
Depth averaged v e l o c i t y
71
Eady model Ekman l a y e r mass t r a n s p o r t spiral s u c t i o n condition Ekman number Energy equation Equation of s t a t e Equilibrium s t a t e E r t e l ' s theorem
2 32
F r i e d r i c h ' s example
253
38 47 46 42
18 134 9 125 12
Geostrophic balance Geost rophic contours Geostrophic mode Geostrophically f r e e , guided and blocked
21
61 57 62
269
2 70
Index
Gravitational potential Group v e l o c i t y Gulf stream
9 77 32
Heat equation Helmholtz equation Hydrostatic l a y e r
10
202
I n e r t i a l modes eigenvalues f o r i n a cylinder plane wave s o l u t i o n r e f l e c t i o n of I n i t i a l value problem Inner and outer expansions I n t e r n a l g r a v i t y waves i n a container Kelvin waves v a r i a b l e N( z ) Inviscid modes
68 74 77 79 72, 136 256 162 166 170 176 57
Matching p r i n c i p l e Mean c i r c u l a t i o n theorem Metamorphosis of s ide-wall layers Navier-St okes equations Oceanographic r e s u l t s Orthogonality Phase v e l o c i t y P o i n c a r e " ~equation Potential v o r t i c i t y Prandtl number Pressure equation Regular perturbat ion Rossby number Rossby radius of deformation Ros s by waves p-plane generated by topography plane wave s o l u t i o n s l i c e d cylinder
94
259 71 198 8 187 90 78 67 11
126 35 251
18 156, 240 88 89 90 95 86, 94
Index Rossby waves i n a stratified fluid Rotating co-ordina t e system Rotating s t r a t i f i e d flow geos trophic contours normal mode problem potential vorticity steady mode Schrodingerls equation Singular p e r t u r b a t i o n Solar spin-down Spin-up time s c a l e Stability criterion Stew r t s o n l a y e r s EL7 3-layer E114- l a y e r i n a s l i c e d cylinder i n a stratified fluid Stommel's model S t r a t i f i e d Ekman l a y e r S t r a t i f i e d spin-down Stretched co-ordinate Sverdrup s r e l a t i o n
271 15 3
6 139 139 141, 1 5 1 137 180 25 1 2 10
48 2 36
100 102 110
196 118 193
2 11 25 4
114
Taylor-Proudman theorem Taylor column Tea-cup experiment Thin-shell approximation Trapping of energy
96
Viscous d i f f u s i v e time s c a l e Vortex l i n e s t r e t c h i n g
51 51
Western boundary l a y e r
96, 112
21
23 52 26
2 72 R
-.
K
L i s t of Symbols
Angular v e l o c i t y v e c t o r . Unit v e c t o r i n t h e d i r e c t i o n of t h e a x i s of r o t a t i o n . Position vector Cartes i a n c o-ordinat e s S p h e r i c a l p o l a r co-ordinates Velocity vector V e l o c i t y components Time Pressure Temper a t u r e Gravitational potential Density Length s c a l e C o e f f i c i e n t of v i s c o s i t y C o e f f i c i e n t of Kinematic v i s c o s i t y C o e f f i c i e n t of thermal diff’usion Vorticity vector Potential vortic i t y Ekman number P r a n d t l number C o r i o l i s parameter Brunt-Vaisala frequency Reynolds number Rayleigh number Stress vector Wave number v e c t o r Pressure eigenfunc t i o n Frequency