J. Njrvlt, J. Ulrich
Admixtures in Crystallization
0 VCH Verlagsgesellschaft mbH. D-69451 Weinheim (Federal Republic...
215 downloads
3280 Views
10MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
J. Njrvlt, J. Ulrich
Admixtures in Crystallization
0 VCH Verlagsgesellschaft mbH. D-69451 Weinheim (Federal Republic of Germany), 1995
Distribution: VCH, P. 0.Box 101161, D-69451 Weinheim, Federal Republic of Germany Switzerland: VCH, P. 0.Box, CH-4020 Basel, Switzerland United Kingdom and Ireland: VCH, 8 Wellington Court, Cambridge CBI lHZ, Great Britain USA and Canada: VCH, 220 East 23rd Street, New York, NY 10010-4606, USA
Japan: VCH. Eikow Building, 10-9 Hongo I-chome, Bunkyo-ku, Tokyo 113. Japan ISBN 3-527-28739-6
Jaroslav Nfvlt ,Joachim Ulrich
Admixtures in Crystallization
Weinheim - New York Base1 Cambridge - Tokyo
Dr. Sc. Ing. Jaroslav Syvlt Institute o f Inorganic Chemistry of thc Academy of Scicnces of the Czech Republic I’ellCova 24 16000 Prague 6 Czech Kcpublic
Priv.-Doz. Dr.-Ing. Joachim Ulrich Universitat I3remen Vcrfahrenstechnik/I;B 4 Postfach 330440 D-28334 Bremen Germany
I
1 This book wascarefully produced. Nevcrthelcss, authors and publisher do not warrant the information contained therein to be frec of errors. Readers are advised to kecp in mind that statements. data. illustrations, procedural details or other items may inadvertently be inaccurate.
Published jointly by VCH Verlagsgesellschaft, Weinheim (Fcderal Republic of Germany) VCII Publishers, New York, NY (USA) Editorial Director: D r . Barbara Bock Production Manager: Claudia Gross1
Library of Congress Card No. applied for A catalogue record for this book is available from the British Library
Die Deutsehe Bibliothek - CIP-Einheitsaufnahmc N+vlt, Jaroslav: Admixtures in crystallization I Jaroslav NCvlt ; Joachim Ulrich. Weinhcim : New York : Basel ; Cambridgk : Tokyo : VCH, 1995 ISBN 3-527-28739-6 KE: Ulrich. Joachim:
OVCH Verlagsgesellschaft mbH, D-69451 Weinheim (Federal Republic of Germany), 1995 Printed o n acid-free and low-chlorine paper
All rights reserved (including those of translation intoother languages). No part of this book may be rcproduccd in any form -by photoprinting, microfilm, or any other means -nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Printing: bctz-druck GmbH. 11-64291 I1armstadt 13ookbinding: CJroDbuchbinderei Josef Spinner, D-77833 Ottersweier Printed in the Federal Republic of Germany
Industrial crystallization has been considered for many years to be more a magic than a science. One of the reasons has certainly been the fact that additives or impurities even in the smallest amounts have tremendous effect on nucleation. crystal growth, crystal forms and dissolution rates. In recent years, not only has the level at which impurities are detectable decreased dramatically, but also the understanding of the interaction of substances has increased by the same extent. Although there is still not a complete understanding of the functioning of additives and impurities in crystallization, there are many interesting new approaches in this field which should lead t o helpful models soon. The authors want to contribute by gathering every piece of information together in this book to help to contribute for a better understanding of the whole matter. Data of crystallizing substances are presented here together with the examined admixtures and the found effects, extracted from the literature databases of both of the authors. The authors hope that the use of the tables presented wffl lead to a better design and understanding of crystallization processes, especially of the functioning of additives. and thus facilitate a proper choice of additives in order to obtain the required product properties. The authors would acknowledge the support of the Czech Grant Agency (Grant No. 203/93/0814) and of the Volkswagen Stiftung.
J . Njrvlt. J. Ulrich
December 1994
Contents ........................................
4
...........................
6
1.
Introduction
2.
Classification of Admixtures
3.
Influence of Admixtures on Nucleation . . . . . . . . . . . . . . . . . . .
3.1. Homogeneous Nucleation
4.
10
..............................
12
..................................
14
3.2. Heterogeneous Nucleation
3.3. Secondary Nucleation
...............................
9
Influence of Admixtures on Crystal Growth . . . . . . . . . . . . . . .
4.1. The Role of the Solid Surface
16
............................
16
....................
22
4.2. The Role of the Interphase Solid - Liquid
5.
Influence of Admixtures on Crystal Shape . . . . . . . . . . . . . . . .
6.
Influence of Solvents
.................................
30
7.
Distribution of Admixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
.......................................
34
.................................
37
..............................
41
7.1. Solid Solutions
7.2. Isomorphous Inclusion
7.3. Anomalous Mixed Crystals
..................................
7.4. Adsorption Inclusion
43
.................................
45
7.7. Materials Balance for Crystallization in Presence of Impurities
7.8. Cascade Purification
42
........................
7.5. Mechanism of Internal Adsorption 7.6. Mechanical Inclusions
24
...................................
...
45
51
Contents
. 9. 8
.
10
. 12. 11
3
Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
.........................................
57
.............................................
75
Formula Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
273
References to Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
287
.......................................
389
References Tables
SubjectIndex
Admixtures in crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
1. Introduction Crystallization is one of the oldest separation operations in chemical industries. I t serves not only to separate and purify substances, but also to produce crystals with a required shape. Both of these aspects are closely connected with the presence of
admixtures in the solution. Among the
many factors affecting the process of crystallization
I1 72,2261, [e.g.,
temperature, supersaturation, agitation). admixtures often exhibit the most pronounced effect. Even traces of admixtures can influence the nucleation. crystal growth, shape and size of product crystals, and also other properties (caking. hygroscopicity. etc.). On the other hand, they may be entrained into crystals and lower their purity. A few years ago, a largely empirical approach was used to quantify
the effect of admixtures and solvents. A theoretical description of the effect of admixtures has been developed only rather recently. Nevertheless, a consistent theory of the effect of admixtures on individual aspects of the process of crystallization is still missing. Various admixtures probably operate with different mechanisms. Some of them are selectively adsorbed on crystal faces and
deactivate individual growth centers, others can
change the structural properties of the solution or of the interface; they may be incorporated into the crystal lattice or pushed away by the growing crystal
and sometimes there exists a chemical interaction between the
micro- and macrocomponents. I t is obvious that this situation enables u s to give subsequent explanations of individual effects but the prediction is
1. Introduction
5
still difficult. Computer simulations available in recent years [2.123.124] facilitate the choice of tailor-made admixture but their use is still limited. Although the literature on crystallization in the presence of admixtures is very extensive, most papers exhibit j u s t a n empirical character. Reasonably complete information on the effect of admixtures can be found in monographies on crystallization and in surveys. At this point we have to mention in particular the books by Buckley [32], Khamski [101.102]. Mug [ 1121. Kuznetsov [120], Matusevich [133j. M a t z 11341. Melikhov (1421. Mullin
[152]. Njrvlt [169.171.172] and Ohara and Reid 11791. and papers by Broul [30].Cabrera and Vermilyea (411. Chernov [46]. Davey [SO]. Garrett I711 and
Wirges [2421. The purity of crystals and distribution of impurities is dealt with in many papers, e.g. by Melikhov (1421. Stepin et al. [211] or Slavnova 12061. More detailed information can be found in the literature which exceeds 2000 papers; the aim of this book is to give a survey of the state of
the art of this subject and of a number of these papers i n appended tables. Before we continue we must mentlon the pioneering work of late Dr. Broul who started the work on survey of the effects of admixtures 1291.
Admixtures in crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
2. Classification of Admixtures Crystallization from aqueous solutions can be understood as a physical process where a pure solid A precipitates from its solution in pure solvent B. Systems met in practice are usually more complex and in addition contain several non-crystallizing substances, often in low concentrations. Crystallization itself therefore proceeds in a multicomponent system and the result may be affected by these foreign substances - admixtures. An admixture may be defined I301 a s a substance present in a crys-
tallizing system that itself doesn’t precipitate a s a separated solid under given conditions. Such a broad definition comprises the solvent a s an admixture a s well. This affects the crystallization parameters in many cases encountered in crystallization from various pure or mixed solvents. Besides the general term admixture we shall use a more specific term impurity for substances, unintentionaly present in the solution (e.g.. coming from the raw materials. from dissociation and other reactions, from corrosion of the equipment). and addftlue for substances that we add to the solution in order to modify its crystallization properties. The amount of admixtures is very different in individual cases. Substances whose concentration is comparable to that of the crystallizing macrocomponents are called macroadmixtures. whereas those present in a concentration lower by two orders than that of the macrocomponent are called microadmixtures or microcomponents [ 10 11 .
2. Classification of Admixtures
7
Additives are put into the solution with the purpose of affecting the parameters of the process of crystallization and the product quality. Additives employed for aqueous solutions can be subdivided into several groups:
a) n e e acids and/or bases, adjusting the pH value of the solution. The pH
modifies the nature and the concentration of ions in solution. particularly when the latter contains salts of weak acids or bases 118).This pH value has a dramatic effect on the shape (40,1291 or size I1681 of product crystals and affects also the growth rate [148]. Acids or bases most frequently used usually have a common ion with the crystallizing substance. b) Inorganic additives can be subdivided into highly and less active ones.
High active additives include polyvalent cations such as Fe3+. Cr3+, A13+, Cd2+, Pb2+, a s well a s certain anions like W0,2-.
PO,3-. Very low
concentrations of these additives are sufficient t o exhibit a dramatic effect on crystallization (0.001 to 0.1 wt. %). In order to obtain a similar effect with less active additives we have to use much higher concentrations (1 - 10 wt. 96). Inorganic additives affecting the crystal growth rate often exhibit a similar influence on crystal dissolution 152.68.76.1991. c) The most frequently used organfc addftfues exhibiting high effectiveness are surface active substances and organic dyestuffs. It has been observed I461 that 1 molecule of such a n additive per
lo4 to lo6 molecules
of an or-
ganic macrocomponent decreases its growth rate. The effect of big orga-
8
2. Classifiatlon of Admixtures
nic molecules is usually not specific to that molecule: a substance can modify the growth of several macrocomponents and a similar modification can be obtained using very different organic additives 1411. This property may be ascribed to the fact that big organic molecules can be adsorbed a t any site on the crystal surface s o that their size is a deciding feature. Like in catalysis, the position of
substituents in the molecule should also be
very important [32]. The influence of organic substances on the growth rate of crystals is usually very dramatic but their effect on the dissolution rate can usually be neglected [41.46.240]. In many cases, where the additive is very active on crystal growth, even a 1000 fold concentration has no effect on dissolution 1321.
The effectiveness of a n admixture is closely bound to the given system and cannot be simply generalized. For the activity of additives on the crystal shape, Buckley 1321 defined the measure of the effectiveness of the additive a s the number of weight units of the crystallizing substance per one unit of the additive that causes a certain shape modification. Another way of measurement and evaluation of the effectiveness of admixtures has also been described in the literature I2191. The influence of admixtures drops with increasing temperature and growth rate 1321.
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
3. Influence of Admixtures on Nucleation Several mechanisms of nucleation can be distinguished according to conditions in a supersaturated solution 11781: nucleation
- primary
- homogeneous - heterogeneous
- secondary - originatedfrom solid phase - originatedfrom the interphase solid-liquid
- collision breeding A basic criterion for this distinction I1 781 is the presence or absence of a
solid phase. While primary nucleation occurs in the absence of solid particles of the crystallized substance, secondary nucleation is dependent on the presence of crystals. For homogeneous nucleation. no solid phase is required, while heterogeneous nucleation is catalytically initiated by any foreign surface. Many details on the mechanisms of secondary nucleation can be found in the literature 1152,177,178,214,215,225j. Strong effects of the admixtures can be observed with primary nucleation and with secondary nuclcation due to mechanisms of the interphase. There are several papers dealing with the theory of the effect of admixtures on nucleation: in addition to those mentioned below, i.e. papers
(23.78.1571.
10
3. Influence of Admivtures on Nucleation
3.1. Homogeneous Nucleation
According to the theory of homogeneous nucleation. the nucleation rate increases a s the interfacial surface tension, asl decreases. As the surfactants dramatically lower the surface tension, their presence in solution strongly increases the nucleation rate [44.55.83.176]. We may expect, however, that other admixtures when present in higher concentrations raise the surface tension and thus decrease the nucleation rate. Very active inorganic admixtures characterized by a strong tendency to form coordination complexes decrease the nucleation rate: the stronger their influence, the higher the complex stability. One of the explanations tells that heteroclusters are formed in the bulk solution with the centre formed by the active ion 179.803. The number of these heteroclusters corresponds to the number of ions of the admixture, their size being given by the ratio of the supersaturation and the admixture concentration. The effect then consists in redistributing of the solute forming supersaturation to these heteroclusters s o that the supersaturation is effectively decreased. Clusters can grow only when the supersaturation is increased again. The effect of admixtures can here be explained by the electric field of the admixture affecting the behaviour of the macrocomponent [ 1551. The inhibiting effect of polyphosphates on the nucleation of sparingly soluble carbonates and sulphates is well known 186,1923. It can be explained thus: due to the geometric similarity of the active ion and the surface
3.1.Homogeneous Nucleation
11
structure of the macrocomponent. polyphosphate ions are adsorbed on the surface of undercritical embryi of the macrocomponent s o that these clusters cannot continue to grow (33.55.1891.The static adsorption model assumes that the embryo surface is covered by a monomolecular layer of admixture molecules [62,146.147.180]: the dynamic model of adsorption 1144,160.1611 is based on the probability of collisions of the particles of the macrocomponent with those of the admixture. Calculations of the Me time of embryi and the time elapsed between two collisions of the embryi with
the admixture show that the collision mechanism prevails in the initial periods of the nuclei formation, whereas later the adsorption mechanism with adsorption of the admixture on active centres of the macrocomponent prevails. The endothermic adsorption of the admixture decreases the stability of the surface and raises the energetic barrier of critical nucleus formation. For thts reason, the complex formed by adsorption dissociates before it could form a critical nucleus. This leads to increased stability of the system. Incorporation of admixture particles in the first period of precipitation is not expected by thts model. Nevertheless, experiments have shown 11801 that the first fractions of precipitated crystals contain much of the admixture. so that the assumptions of thts model are not completely
realistic. Admixtures belonging to the group of water-soluble wUoids (dextrin. gelatlne) raise the solution viscosity: the diffusion and mobility of particles are then decreased s o that their growth to a critical size is more difficult [ 133,1691.
12
3. Influence of Admixtures on Nucleation
There are also examples described in the literature 1167,1691 where the admixture accelerates the nucleation. This may be encountered in cases where the admixture reacts with the macrocomponent to form less soluble substances. Admixtures that have a common ion with the macrocomponent can decrease its solubility, this leading to a rise in supersaturation and thus to a decrease of induction periods of nucleation [ 10 1,102.2441. Another reason can be given in the case of admixtures with a significant hydration ability: they remove water from the hydration spheres of the macrocomponent [82.170,1741 and in this way decrease the solution stability 11331.
3.2. Heterogeneous Nucleation Using a droplet technique for investigations of the induction time of nucleation, Wen (2391 was able to differentiate between homogeneous and heterogeneous nucleation mechanisms. With pure NaCl solutions he found both the mechanisms but in the presence of Pb2+ ions the induction time measurements indicated no effect on the homogeneous nucleation. H e therefore concluded that impurities affected nucleation by working on the substrate rather than the nucleating crystal. Nevertheless, measurements carried out on only one system does not allow such a generalization. The additive may adsorb onto the heteroparticles making them either more or less active as catalysts [55].This would either
increase or decrease the
nucleation rate. Alternatively, the additive molecule may itself act
3.2.Heterogeneous Nucleation
13
as a heteroparticle providing a template 11961 for the precipitating substance. This would lead to an increase in nucleation rate proportional to the additive concentration. The heterogeneous nucleation can be treated as secondary nucleation with the mechanism of interphase layer. At the solid surface there are more or less oriented clusters that may be removed by fluid shear back into the bulk of solution 120.43.97.188.2161. These clusters, if they are of the critical size, can survive and form new nuclei. S@me mtlve substances deactivate heterogeneous particles and thus
increase the width of the metastable region 1165,1831. The extent of this action is given by the amount and catalytic activity of foreign particles. An opposite influence [203.204] can be explained by the fact that surface active substances decrease the surface energy so that the nucleation rate can increase. The shape of the curve of nucleation rate vs. the admixture concentration resembles the adsorption isotherms of surface active substances on solid surfaces so that there may be expected a direct link of the nucleation rate rise with the adsorption of the admixture on the surface.
14
3. Infruence of Adrnivtures on Nucleation
3.3. Secondary Nucleation One of the mechanisms of secondary nucleation is the mechanism of interphase layer. At the solid surface there are a more or less oriented clusters that may be removed b y w d shear back into the bulk of solution 143,188,2161. These clusters, if they are of the critical size, can survive and form new nuclei. Some admixtures call forth formation of rough surfaces or even
dendrltes
[loo]. Due
to fluid dynamic forces or due to partial dissolution
these dendrites can be removed back to the bulk of solution, where they serve a s new nuclei [61.1401. Active inorganic admixtures dilate the metastable zone in supersaturated solutions. In absence of admixtures, the probability of formation of stable aggregates at the solid surface is higher than that in the bulk of solution [177]. This is due to the physical adsorption of the particles of the macrocomponent and thus due to higher local supersaturation. In analogy with heterogeneous chemical reactions, adsorption occurs preferentially a t energetically advantageous active sites on the surface. If these advantageous sites are blocked by the admixture, however, then the probability of formation of a critical cluster diminishes and the nucleation rate decreases 1203,2041. In addition, adsorption of ions of an admixture that possesses higher charge than those of the macrocomponent damages the balance of electric charges o n the surface [156]and this leads also to a decrease in the nucleation rate 1203,2041.
3.3. Secondary Nucleation
15
In systems where the admixture can easily be incorporated into the growing crystals' lattice. the so-called impurity concentration gradient can be effective I22.611. Nucleation in the bulk of solution is hindered due to presence of the admixture a t high concentration. Incorporation of the admixture into the crystal lattice leads to a decrease of its concentration close to the surface so that spontaneous nucleation In the intermediate layer becomes possible again. Presence of growth-restrainers also exhibits an effect on nucleation I1261 (they enlarge the metastable zone width [ZlO]).
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
4. Influence of Admixtures on Crystal Growth There exist a number of books and papers dealing with the theory of crystal growth [ 100,112.130.152.178,179,184.185.202.243]. Quantities, necessary for the application of these theories, are often not known s o several simplifications have to be adopted. Fundamental physical quantities then lose their physical meaning and become adjustable parameters. I n addition, experimental methods 172,1781 provide data of limited accuracy s o that the fit of experiments and theory often becomes a matter of statistics.
This must be kept in mind when discussing the effect of admixtures on the growth rate of crystals. Due to the different structures and energetical situations growth rate of individual crystal faces is also different. This also holds for the effect of admixtures on the growth rate of crystals and this is why individual crystal faces must be considered separately. The effect of growth rate dispersion can lead to different values on individual crystals, however, and this may be one of the reasons why the literature data are scattered and differ from those obtained by measurements in suspension [ 116. 2261.
4.1. The Role of the Solid Surface Kossel 1114.1 151 and Stranski 1212.2131 recognized the importance of atomic inhomogeneities of crystalline surfaces and its relevance to growth processes.
They
distinguished
three
different regions
on
a
crystal
4.1. The Role of Solid Surface
surface: a) frcct surfaces. which are atomically smooth: b)
17
steps, which
separate flat terraces: c) kinks. which are formed in incomplete steps. Kinks present the most probable position for solute integration because the highest bonding energy associated with integration occurs here. Flat surfaces are the least energetically probable sites for incorporation. Nevertheless. admixtures. according to their nature, can adsorb on different sites on the surface: they can affect the relative interfacial energy of individual faces or block the active growth centres [30,38J.The effect of admixtures is different if they are adsorbed o n different sites 1531.
Fig. 4.1: Surface growth sites
According to growth rate equations and considering that adsorption lowers the edge or surface energies and the size of the critical two-dimen-
18
4. Infruence of Admixtures on Crystal Growth
sional nucleus, we see I181 that the expected result of adsorption is a n increase in the crystal growth rate. Other parameters must then act in the opposite direction in order to explain the decrease of the growth rates generally observed in habit change phenomena: the slow down of the flux towards to the steps 1371, the decrease of the lateral advancement velocity of growth layers due to step pinning [41.66.186.187.1981. a decrease of number of kinks available for the growth [48,491. In general, admixtures can be subdivided into strongly adsorbed and weekly adsorbed ones. One can suppose that physical adsorption is characteristic for weekly adsorbed admixtures whereas chemical bonds are typical for strongly adsorbed substances 1491. Mechanism of strongly adsorbed admixtures [41.158.179,234]
assumes that immobile particles of
the admixture are spread over the crystal surface. When a moving growth step hits such a particle, its edge becomes deformed. In the case where the distance of two neighbourlng adsorbed particles is smaller than the size of two-dimensional critical nucleus, the movement of the step will cease [67], otherwise the step will be deformed and pushed through the slot between adsorbed particles and continue in its movement but with a reduced rate l'i [9.41,186,187].
(4.1)
where l', represents the growth rate in absence of a n admixture and n is
4.1. The Role of the Solid Surface
19
assumed to be the average density of admixtures on the ledge ahead of the step 1411. This equation indicates that the velocity of steps is reduced by a n amount proportional to the concentration of adsorbed admixtures on the terrace. If such a foreign particle is incorporated into the crystal lattice, it causes some deformation of the lattice. Joining of another particle of the macrocomponent to such a deformed lattice may be difficult (1691. The retardation of growth takes place only if the height of the adsorbed particle can be compared with that of the moving step 1461. Some inorganic admixtures can form complex substances (double salts) in combination with the macrocomponent: such complex nuclei are formed at the sites with strongly adsorbed admixture. These complex nuclei are not stable, they may redissolve b u t the admixture remains adsorbed on the surface [34]. Another mechanism is encountered with weakly adsorbed admixtures. Here, the retarding action is due to blocking of the active growth centres. The strength of bonds between the lattice particles and the admixture determines the mobility of the admixture. Weakly adsorbed admixture can diffuse two-dimensionally on the surface and can be expelled by the movlng step, b u t at the cost of growth rate reduction. If the growth is sufficiently slow and the amount of admixture is not too high, adsorption equilibrium
can be attained at the surface. The relationshlp between the linear growth rate of the face
r'
and the concentration of admixture wi can be described
I12.151 by
1'
=
Wl
1 6 - ( 1 6 -1'- ) . -
B +w,
(4.2)
20
4. Infruence of Admixtures on Crystal Growth
where lv0 and l',
represent respectively the growth rates in absence of
admixture and in presence of admixture when all of active growth centres are occupied 12341. The surface fraction covered by the admixture can be determined using, for example, the Langmuir adsorption isotherm with the constant B. The linearized form of this equation I531 allows us to obtain the value of free enthalpy of adsorption [ 13.16.171. The Langmuir isotherm has been used also by other authors I581 considering surface diffusion to be the rate-determining step. The equation above holds even here if we take l'=- 0 130.1121.
Another model is based on a n estimate of the probability of occurrence of free growth active sites and uses the Freundlich adsorption isotherm to predict the movement rate of a growth step 14,661. All of the models mentioned above have been experlmentally verified with a satisfactory result [53].A survey of adsorption models is given in several papers 153.55.58.1121.
When the growth of a crystal face is governed by the mechanism of two-dimensional nucleatton, then the effects of admixtures on nucleation that
are mentioned in the preceding chapter may come into consideration. The
size of a two-dimensional nucleus is [10.411
2a Q 21, =-
kTS
(4.3)
4.1. The Role of Solid S@me
21
where a is the lattice constant, o the surface energy and S relative supersaturation. Since the size Zc , which can be compared with the admixture spacing on the surface, determines whether the step can advance or not, this equation indicates a critical supersaturation that must be exceeded in order to allow growth. According to Glasner I79.801 the crystal growth is executed by deposltlon of heteronuckl on the crystalline surface. The effective supersatu-
ration is then given by the product of the number of heteronuclei (i.e. of the amount of molecules of the admixture) and of the average size of a heteronucleus as expressed by the number of molecules of the macrocomponent forming a n average heteronucleus. Su.@atants and organic d y e s b g s usually exhibit a very sensitive effect
on the crystal growth rate; their big molecules are attached to the crystal surface through their polar I301 or hydrocarbon Ill21 portions and prevent the access of the macrocomponent molecules to the surface 1361. Complexlng agents, e.g. EDTA. remove certain ionic admixtures from the solution and
therefore act in a n opposite direction I116.2101. Certain admixtures. when present in low concentrations. can accek-
rate the growth of crystals [121.148]. First, this are admixtures lowering the surtace energy; one can expect those crystal faces possessing higher specific surface energy adsorb more admixtures and thus grow faster (141. In some cases, when the admixture has a similar structure parameters or forms complexes with a structure close to the lattice of the macrocompo
22
4. Infieme of Admixtures on Crystal Growth
nent. adsorbed admixture molecules can form new active growth sites on the surface that are energetically more advantageous for further growth
I 12,1691. Available data thus clearly substantiates the necessity for geometric simflarlties between the additive and the crystal surface 1551. Whether adsorption occurs due to surface interaction between ionizable groups on the additive molecule and ions in the crystal surface or due to a surface replacement mechanism is unresolved 1551 and will probably be different in different cases. In the case of crystal growth such adsorption mechanisms are easily visualized to involve the blocking of key sites on the surface and hence reduction in growth rates. The effect of admixtures can be combined with other factors, like pH (acid or base can be considered a s a second admixture) or, if a higher amount of admixture affects the solubility of macrocomponent. we can speak of the combined effect of admixture and supersaturation I10 1,1341.
4.2. The Role of the Interphase Solid - Liquid The growth of a crystal can be represented as three successive steps: a) Transport of the substance from the bulk of solution to the crystal; b) transport of the substance through the layer close to the crystal surface: c) incorporation of the substance into the crystal lattice, either by surface diffusion a t the kink or by formation of a two-dimensional nucleus. The first step
is
largely
affected
by
the
fluid
dynamics
of
the
system
4.2. The Role of the Interphase Solid - Liquid
23
and its role is usually not too important. The last step has been discussed in detail in the preceding chapter; we shall thus pay attention to the second step. The interphase or the "interface phase" 1511 is understood to be the region between the "perfect" solid phase and the "perfect" liquid phase. It can be diffuse (1.e. there are layers a t the phase interface and it is impossible to say clearly whether they belong to the solid or to the liquid; the changes of physical quantities occur within the distance of several lattice constants) or it can consist of a quasi-liquid layer, which usually has
a higher concentration of the solute in the bulk of solution 128,1751. The structure of the interphase has been studied using the theory of fractals [42.127.128.194] with the result that different growth models led to the
formation of clusters in the interphase with different fractal dimensions. These characterize the shape of clusters or the roughness of the interphase. Transport of molecules through the layer adsorbed o n the crystal surface is reallzed through diffusion. The admixture can play different roles in this step. It can affect the viscosity of the solution. in particular a t higher concentrations. It has been shown 11131 that even small amounts of surface active substances can dramatically raise I1 13.1181 or decrease I1191 the viscosity.
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
5. Influence of Admixtures on Crystal Shape Under conditions of extremely slow growth, the shape of a crystal is determined by thermodynamics: the crystal tends to grow to a shape of a polyhedron having rnfnirnum surface energy 1751: for i faces holds
a,A, = min.
(5.1)
Such equilibrium shape can be affected by admixtures in the case that they change the specific surface energy of individual faces in a different way.
This condition is. however, met only exceptionally, as crystals usually grow under highly non-equilibrium conditions. Crystal shape is usually determined by the growth rates of individual crystal faces. According to the principle ofouerlapplngfaces [ 1691 the faces
that grow more slowly remain in the final crystal shape whereas the
I
Fig. 5.1: Principle of overlapping faces
5. Influence of Admixtures on Crystal Shape
25
rapidly growing faces disappear 165,701. The condition necessary for changing the crystal shape is thus to change the relation in growth rates of individual faces. As was pointed out earller. additives may influence the crystal growth rate. If they
are preferentially adsorbed
on certain
crystallographic faces, the mode of growth is altered 1501. Parameters influencing the occurrence of adsorption include the steric arrangement of molecules in the additive and their charge and dipole moment, a s well a s the electric field on the crystal surface [l69]. The rather pronounced effect of oxygen anions on the crystallization of oxy-salts shows that not only dimensional similarities but also similarities of the fields of force are of importance here. The Hartman-Perdok I89.90.9 11 technique based on calculations of the attachment energy reduces crystal structures to chains of strong bonds: the slowest growing faces are those lying parallel to a t least two bond chains. The faces most likely to be influenced by a n additive are those for which the change of bond energy due to additive is minimized. Some assumptions have to be made for the conformation of the additive molecule in the lattice. s o best results can be obtained with tallormade addltlues [63.123.124.228,235] or lf crystallographic data is known for the
substance with additive [232]. Such organic additives are active in relatively large concentralons > 1% 12421.
As the interatomic spacings and electric fields are different for different crystal surfaces [82], selectlue adsorption of individual admixtures occurs on the most favoured ones [ 11.31.35.163.195]. It is therefore often
26
5. I n t n c e of Admixtures on Crystal Shape
possible to predict the effect of individual additives on the shape of crystals [ 18,168,2231 if relevant structural parameters are available. As calcu-lation
of the fields of force is generally possible only in the simplest cases, and even then a s a rule only with difficulty, it is advisable to base calculations of structural analogies not on the absolute sizes of the ions but on epitaxial considerations. i.e. on the crystallographic parameters of the lattices of the crystallizing and the admixed substances [55.168,193.217]. Whetstone 12411 suggested that the charge centres of the polar groups should coincide accurately with sites for similarly charged ions in the crystal surface and any such group should not cause a disturbance of the lattice about the sites in question. One may here consider both substances as having a common ion 1162,1681 or as forming a complex compound [120.168], The closer the lattice dimensions of the crystallizing and the admixed substances are the more effective will the admixture be. As a condition for the incorporation of the admixture into the lattice it is generally considered that the lattice dimensions of the two substances should not differ by more than 5 to 15 % [32.73,74.94,111.149.150.193.220].
Example: How would the addition of A13+ affect the habit of ammonlum sulphatc crystals? The lattice dlmensions of ammonium sulphate are 1.056 nm, c
-
a
=
0.595 nm. b
0.773 nm. and that of aluminium ammonium sulphate is a
=
-
1.22
nm. Each basal surface of arnmonlum sulphate cells contains two molecules. Their mean distances are as follows:
5.Influence of Admixtures on Crystal Shape
(100) corresponds to (a+c)/2
-
molecule (001) corresponds to
(0.77 + 0.59)/2
- 0.68 nm
or
27
0.34 nm per
(a+b)/2
-
(1.06+0.59)/2
-
0.82 nm
or 0.41 nm per
@+c)/2
-
(1.06 + 0.77) / 2
-
0.91 nm
or 0.46 nm per
molecule (010) corresponds to
molecule The mean for (110)planes is (h2 + k2 + l2)-li2 and is proportional to the particle density. Its value I s thus given by its relation to (001)
One thus obtains for the dimensions in nm Alum
Ammonium sulphate
0.611
Difference %
(110)
0.58
4.9
(100)
0.68
9.3
(001)
0.82
34.0
(0101
0.91
49.0
The results show that one should expect (110) and (100)faces to be retarded in growth
so
that flatter needle-like habits should result. This has been confirmed
experimentally I168l.
A more quantitative way I1221 consists in determination of atoms in the
upper layer of each crystal face from the crystallographic data of the s u b -
stance. These layers are then plotted in the scale of Stuart-Brlgleb mole-
28
5. Infruence of Admixtures on Crystal Shape
cule models. The additive molecules are also modelled with these models. I n this way, we get a two-dimensional model of the upper layers of the crystal and a three-dimensional model of the additives. Assuming, that the growth of a face may be influenced by a n adsorbed additive, we try to find a well fitting position of the admixture on the surface. A well fitting position is characterized a s a position, where the additive has a s much ease to build attractive interactions to the surface a s possible. One possibility is to make these fits with a computer program. If we find a n additive. which has a well fitting position on one specific face of the crystal. we may expect it will be a n effective habit modifier. Another mechanism described in literature 12221 assumes that the effectivity of the admixture depends only on its properties. The electric field of the admixture 11561. given by the ionic charge, diameter [191 and deformation ability of its electron envelope are responsible for the effectiveness of the admixture. Ions present In the interphase accelerate the orientation of nuclei or clusters, prevent their agglomeration and thus contribute to a regular crystal growth. There exists also a possibility of formation of complexes I1201 of various stability, contributing to a change in properties of the interphase as well a s of the bulk solution. Another factor that can play a role is the hydratron of ions 11531: hydrated ions come into the adsorbed layer, "dilute" the interphase. slow down the diffusion and s o retard the crystal growth. The reverse flow of the hydration water also acts against the growth.
5. Infzuence of Admixtures on Crystal Shape
29
Another theory 12011 supposes that admixtures can affect the shape of crystals only when they are incorporated into the crystalline body. An admixture particle adhering to a crystal face acts on the deposition of the macrocomponent independently of its position; if it is incorporated into the lattice, it can affect just particles lying very close to it. A s the admixtures are adsorbed on different faces in a different amount, they affect the growth of these faces in a different degree.
An important class of additives are the so-called "tallor-made"addltiues 1112.2361, which are designed to interact In very specific ways with
selected faces of the crystals. These compounds contain groups that are similar to the crystallizing substance and are thus readily adsorbed at growth sites of the crystal surface. These additives then expose the opposite side, which chemically or structurally differs from the macrocomponent molecule, thereby disrupting or retarding the growth of the affected face [ 11. The design of these molecules can be achieved (45,601with knowledge of the stereochemisb$
and structure of the substrate crystal. In particular.
existing studies have relied on hydrogen bonding and chirality a s powerful recognition factors.
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
6. Influence of Solvents Close to the interface, transport is restricted to diffusion through the diffusion boundary layer. The width of the boundary layer is a function of the fluid dynamics, viscosity and other mass transport-related properties. After the solute molecules diffuse from the bulk liquid phase to the interfacial region, they adsorb onto the surface and/or diffuse two-dimensionally on the surface before being integrated into the crystal lattice I 1121. During the surface diffusion step, bonds between the solute and solvent molecules are broken. Depending on the ease in which desolvation occurs, this step can be rate-determining to crystal growth. A more quantitative approach is to analyze the solvent effect on the
molecular level 11591 . The solvent molecule can be divided into segments, where its group similar to the solute is adsorbed and becomes part of one of the crystal surfaces, while its other part emerges from that surface. Then, the energy calculated as a sum of van der Waals
and electrostatic
interactions and these calculations are then repeated for a number of lowindex faces. Besides the structural conditions imposed by the crystal, it. is known 1181 that the affinity of solvents for a given face may vary considerably 1125,2371. The higher
the number of PBC vectors piercing a face, the
stronger is the adsorption of the solvent [109.110].Like admixtures, strongly adsorbed solvents may cause noticeable changes in the crystalli-
6.ZnJuence of Solvents
31
zation behaviour of the macrocomponent 12301. Hydrogen bonding frequently plays a dominant role in the action of solvents on the growth of both inorganic and organic crystals. Especially illustrative is the importance of these interactions in the action of polar and nonpolar solvents on crystallization of many substances 12381. One may expect that polar solvents that form a hydrogen bond with polar faces of the crystal reduce growth rate of that face, thus increasing its relative area: conversely, nonpolar solvents do not exhibit such effects. Thus, large solvent effects are expected in crystalline systems having faces of significantly different pola-
rlty 18.1 121.This general rule may be one of the best indicators of the abllity to change crystal habit by the use of a n alternative solvent. An example of a solvent enabling laboratory investigation of the polarity effect is a n acetone/toluene mixture [ 1121. The knowledge of dielectric constants of various solvents can be extremely helpful 12241. It follows from the preceding paragraph that solvents which modify
the hterJbce structure can also alter the growth kinetics of the particular crystal face. One of the most important results of growth theories has been the quantification of the effect of solvents on crystal interface structure. A parameter, called the surface enb-opy a-factor. now allows identtfication of likely growth mechanisms based only on solute and solution properties [ 112.1781. Precise values
of a cannot be determined, b u t estimates may be
made from enthalpies or entropies of solution or of surface and edge energies 154,1511.Increasing deviations from solution ideallty tend to de-
32
6.Infruence of Soluents
press the a value. Such calculations have been made for the growth of hexamethylene tetramine from the vapour and from water, water/ethanol and water/acetone solutions by Bourne and Davey 125.261 who were able to postulate the appropriate growth mechanisms for various experimental conditions, e.g. the BCF dislocation growth from the vapour. surface nucleation limited growth from aqueous solution and surface integration controlled growth from mixed solvents [ 1511. Interfacial structures of crystals were first related to thermodynamics by Jackson [95].Bourne 1241. Bennema 15.61. Temkin
12181 and Davey 154.56.591. If s-s designates the
bond between solid species, f-fbonds between liquid specles and s-f bond between solid and liquid species, then in formation of an s-f bond. a n s-s and an frf bond must be broken. The energy contribution is given by [ 1781
The surface entropy factor is then
a=4 ~ / k T
(6.2)
or
a = Y(AH'+AW)/RT
(6.3)
where F is the ratio of numbers of nearest neighbours on the surface and
6.Infuence of Solvents
33
in the bulk 196,1121 and AHf and A k P are the enthalpies of fusion and of mixing. respectively. Another equation relates the a factor to the solubility xs 171 and communal entropyfsf:
2
a = ( l - x s ) .(q,-tnxs)
(6.41
Results obtained from simulations permit determination of the mechanism that will occur during growth [27.77,2051: For a 2 4. the growth occurs by the dislocation mechanism alone and the surface is very smooth. For 3.25 a < 4.0,growth follows the nucleation mechanism (Nuclei Above Nuclei or Birth and Spread) and the surface is somewhat rougher. For a < 3.2,growth occurs through the mechanism of direct species incorporation and the surface is very rough. This approach can eventually lead to methods of choosing optimal solvents.
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
7. Distribution of Admixtures Increasing demands on the purity of product crystals, in particular in the production of ultra-pure chemicals and in the separation of radioisotopes, led in recent years t o an intensive study of the distribution of impurities between the liquid and the solid phases. Nevertheless, first studies on this subject have been published already at the end of the last century. During this time. various mechanisms of impurity incorporation have been described [30.85.166.202.211.221.2451: 1. Zsornorphous LncZusion
- true isomorphism (solid solutions) - isodimorphisrn - isomorphism of second type - anomalous mixed crystals
2. adsorption mechanisms - external adsorption - internal adsorption
3.mechanical inclusions - of coUoids - of liquid phase
7.1. Solid Solutions Let us consider a three-component system: the macrocomponent A, the admixture B and the solvent S . There exist three fundamental limiting cases [171]:a) the macrocomponent and the admixture are completely immiscible. b) the macrocomponent and the admixture are miscible in a
7.I , Solid Solutions
35
limited range of concentrations. c) the macrocomponent and the admixture
are completely miscible. As the admixture concentration is usually low, cases b) and c) can be discussed altogether, but if the solubility of the admixture is below 1 %, the substances cannot usually be considered isomorphous. The condition for isomorphous incorporation is the fit of ionic or molecular diameters within 10 to 15 940 [30]. These cases are schematically shown in Fig. 7.1.
I \ \
II \I \ \ solid S
I immiscible in s.lid B solution
-B
Fig. 7.1: Schematic representation of a ternary system with components a) immiscible in solid phase
b) miscible in solid phase
In the system of immiscible components (right) the diagram indicates that for any composition of the ternary system only pure component A can precipitate. If both the components are miscible (on the left) then they form
36
7. Distribution of Admixtures
solid solution. The relative amount of the impurity incorporated in the crystalline phase is related to the energy change upon binding the admixture relative to that upon binding the macrocomponent 181. 7Yu.e solid sohtions, t e .
true isomorphous incorporation. are expected where the macrocom-
ponent and the admixture are similar in size and shape i93.1121: they form a common lattice in a large interval of concentrations by mutual substitution in lattice centres - so they must have a n identical lattice type and very close lattlce dimensions. Isodimorphism is characterized by the ability of two substances, having different modifications under given conditions, to form a common crystal lattice identical with that of the macrocomponent: their structures must be similar, however. I t is interesting to note that when small mismatches in size occur, the solubility of small molecules in a host lattice of larger ones is more probable than the solubility of large molecules in a lattice of smaller ones [88,93,207]. The incorporation of ionic species was
directly
related
to
the
charge
and
molecular
size
and,
for
isodimorphous substances, also to the distance from the transition temperature of structures. There exist a number of studies quantitatively describing the distribution of the admixture in the formation of solid solutions 139.87.1 12,1901:the most frequent equations are
InK, =in[:]=>(---)
AH' R
1 1 T TB
(7.1)
7.2.Isomorphous Inclusion
37
where KB is the distribution constant, x ~ and , xBf ~ are mole fractions of the impurity in crystals and in the solution, AHH$ is the heat of fusion (or crystallization) of the admixture and TB is its melting point. The product purity can be improved from solvents in which the admixture has a high solubility. This also explains the effect of temperature on some separations through its direct effect on component solubilities I 1 121. There exists a close simllarity between the criteria for habit modification and solid solution formation 12,601.
7.2. Isomorphous Inclusion According to Hahn’s 1851 precipitation rule, coprecipitation of microimpurities in crystals of the macrocomponent always occurs when the microcomponent is included isomorphously into the crystal lattice of the macrocomponent or if it contributes to normal lattice formation. Two basic distribution laws have been formulated for isomorphous impurity incorporation I138.14 1,166,1711: Doerner and Hoskins I641 assume that a n exchange reaction between macrocomponent particles in the lattice and microcomponent particles in the solution occurs on the surface of each newly formed layer. Assuming that crystallization is very slow s o that equilibrium is established. they derived the so-called logmtthrnic disMbution law
log-
XO
xo -x
=
R log-
YO
Yo-Y
(7.2)
38
7.Distribution of Admixtures
where xo and yo are the initial concentrations of the microcomponent and the macrocomponent, respectively, x and y are the precipitated parts of both components and il is the logarithmic distribution coefficient. If h > 1. the solid phase is enriched in the microcomponent during
the crystallization. otherwise, it is depleted in the microcomponent. In addition, the logarithmic distribution law assumes that diffusion in solid phase is negligible. Therefore, the admixture distribution in the solid phase is inhomogeneous: for h > 1, the highest impurity concentration is in the
centre of the crystal and it decreases towards the surface, while for h < 1 this distribution is inversed.
The Nernst distribution assumes that the ions of the two components are in equilibrium with the ions inside the crystal. The microcomponent distribution is then homogeneous throughout the crystal and the homogeneous dIsMbution law holds [92.103,106.117.190~in the form
- Xxo -x
-
D- Y
(7.31
Yo-Y
where D is the homogeneous distribution coefficient. The homogeneous distribution law states that, when two substances separate in the form of isomorphous mixed crystals. the micro- and macrocomponents are dis-
7.2. Isornorphous Inclusion
39
tributed between the solid and liquid phases in a constant ratio. For D > 1. the solid phase is enriched in the microcomponent. while for D <
1 it is
depleted, compared with the microcomponent contained in the solution. A general solution of the distribution law [99.138.141.154.1911
originates from a general form of the equation
dx = R ( x , y) .f ( a ) dY
(7.4)
where x and y are amounts of the micro- and macrocomponent in crystals, 12 k y ) is the differential distribution coefficient
in time t andflcJ is the ad-
mixture concentration in the interphase. The shape of the function above is determined by the relation between the rates of three subsequent steps: a) transport of the microcomponent from the bulk of solution to the crystal
(uR),b) passage of the admixture through the interphase (up) and c) transport of the admixture through the solid phase (vT). For very different rates simple solutions can be found: 1) Kinetic reglme where uR s up s uT -0: intensive stirring and diifusion
guarantee a regular distribution of the admixture in solution so that NcA
-
c
. If the concentrations of the admixture and of the macrocomponent remain constant, statlonary copreclpltation is described by the equation X -
Y
= js4.c
(7.5)
40
7. Distribution of Admixtures
If the concentration of the macrocomponent remains constant whereas the
concentration of the admixture decreases (semistatbnary copreclpitatfon), a n exponential equation 12311 is obtained X = 1 - expCf(n,y)] xo
Finally, if both the concentrations of components change during the crystallization (non-statbnury precipitation). one obtains the logarithmic distribution law derived by Doerner and Hoskins (641. 2) Di_oirsional regime is characterized by the condition up >> uR >> uT -0. Detailed analysis of this case 1391 confirmed that a homogeneous distribution of the admixture in the solid phase is not necessarily contingent on a multiple recrystallization. 3 ) Migration regime with vR >> up >> uT >> 0 assumes very slow crystal growth.
If the diffusion proceeds quicker than the growth, solution of these stationary conditions leads 147.1411 to the logarithmic distribution law.
This general solution led to the following conclusions: a) Homogeneous distribution holds for constant concentrations of the macro- and microcomponent in solution. b) Logarithmic distribution is obtained for constant concentration of the macrocomponent and a variable concentration of the microcomponent in solution. c) If neither the concentration of the macrocomponent nor that of the microcomponent is constant, complicated ex-
7.3.Anomalous Mived Crystals
41
pressions are obtained that can be solved for the condition of a very slow crystallization; applying several simplifications. both equations for homogeneous and logarithmic distribution can be obtained: this explains, why the logarithmic distribution has been found in several cases where the experimental conditions differed from those applied for the derivation of the law. A number of authors investigated the effect of temperature 1108.1451,
agitation I131.1321. and acidity of the solution 1841 on the isomorphous distribution of impurities.
7.3.Anomalous Mixed Crystals Sometimes (e.g.. in syncrystallization of heavy metal chlorides with ammonium chloride 1971). true mixed crystals cannot be formed a s the micro- and macrocomponent are not isomorphous owing t o their chemical nature and crystal structure parameters. The ions must have a similar diameter but their charges must be different (e.g., B a s 0 4 and KMnO, or CaCO, and NaNO,). True solid solution is not expected here. Adsorption is also not involved,
as the admixture is distributed
homogeneously
throughout the crystals and the distribution coefficient is Independent of external crystallization conditions and of the specific surface area of crystals. With this type of system, like PbSO, - RaS04 , a so-called lower Umff
42
7 . Distribution of Admtvhues
of miscibiilty can often be observed [104.105.107.164]: on decreasing the
concentration of admixture in the solution below a certain limit, syncrystallization of the two components suddenly stops. This phenomenon can be explained thus: while in isomorphous inclusion the crystallizing units of the macrocomponent are replaced with particles of the admixture in the lattice being formed, here whole sections of the lattice are replaced. At very low concentrations of the admixture, the formation of such lattice sections on the crystal surface is improbable and hence a lower miscibility limit appears.
7.4. Adsorption Inclusion
Coprecipitation of admixtures was first investigated by Paneth [ 1821 who formulated the following rule: The cation of a n admixture is the more strongly adsorbed on the precipitate, the less soluble the component formed together with the anion of the macrocomponent is. This rule was been later modified by Hahn [55].It is thus required that the charge of the adsorbed ion should be opposite to that of the adsorbing surface and that the solubility of the component combined from the ions of both admixture and macrocomponent should be low. In addition, the charge and the size of the adsorbed ion are also of importance [19,70.81]: the polarisation of the ion proportional to lonix charge / (bnic dlameter)2
7.5. Mechanism of Internal Adsorption
is decisive. Adsorption
43
of positively charged ions of the admixture can oc-
cur on a neutral or even on a n also positively charged surface [155]. however. In any event, a direct dependence between the amount of admixture adsorbed and the specific surface of crystals has been found.
7.5. Mechanism of Internal Adsorption Internal adsorption is intermediate between isomorphous inclusion and adsorption inclusion. In a similar manner to adsorption. it is characterized by the variability of the distribution coefficient with changes in the crystallization conditions. These anomalous mixed crystals exhibit a regular but discontinuous distribution of the admixture, owing to Selective adsorption on certain faces of the growing crystal I209). When the distribution of impurity in the crystal is monitored (e.g.. visually with coloured admixtures, or by autoradiographic methods I1671). the crystal is found to be subdivided into individual sectors, identical with bipyramids of faces that exhibit selective adsorption. This phenomenon is therefore also called sectorial crystalgrowth [11,166,171,195.2311. The existence of such selective
adsorption is also reflected in the change of crystal shapes. The term internal adsorption is also used for the adsorption occurring on the internal crystal surface, closely connected with various defects in crystal structure like breaches or microcavities formed in the block
44
7.Distribution of Admixtures
structure of real crystals. Admixtures trapped at such sites I2001 are covered by new crystal layers so that they cannot be removed by washing without substantial dissolution 1301.They can move, however, if a temperature gradient is present across the crystal body 1197.2291.
Fig. 7.2: Sectorial crystal growth
7.6. Mechanical Inclusions
45
7.6. Mechanical Inclusions
Under certain conditions. trace amounts of admixtures in solutions can form colloids, the centres of which can contain various impurities like dust particles. During crystallization of the macrocomponent. these substances can be deposited on crystal faces and covered by subsequent layers of the growing crystal. Another extreme case is inclusion of the other liquor inside the growing crystals which usually occurs when crys-tallization proceeds
rapidly
in unstirred
solutions
[30]. This
sort of
crystal
contamination can be avoided by slower crystallization, removal of colloidal particles from the solution and better stirring.
7.7. Materials Balance for Crystallizationin Presence of
Impurities Recycling of mother liquors is a frequently used method in crystalli-
zation that serves a] for minimalization of the amount of discharged mother liquors, b) for adjustment of a n optimal suspension concentration. As the feed usually contains impurities. these impurities may accumulate in the crystallizer and it would be advantageous to know the maximum recycling ratio, a t which the product would still contain impurities within allowed limits.
An
answer
can
give a
complex materials
balance
of
the
46
7.Distribution of Admixtures
crystallization and separation unit 11731. A simple block diagram of the unit is shown in Fig. 7.3. Material balances of individual blocks can be calculated in a usual way; the crystallizing macrocomponent and the solvent are considered. The impurity is incorporated into crystals according to the Nernst law
mcr Wor = D1fmcl
(7.8)
WOl
where ma and m,., represent the mass of i-th impurity and that of the macrocomponent in crystals, respectlvely. and
war:
and wOl are corres-
ponding concentrations in the solution. Another part of the impurity is trapped on the surface of crystals with adhering mother liquor, proportional to the liquid content withdrawn with the crystals of product crystals
(7.91
where the subscrlpt c represents crystals and f represents the mother liquor. Percentage of the impurity in crystals is then
7.7 Materials Balance
I
47
vapour recycIe
si product
Fig. 7.3: Block diagram of the crystallization / separation unit with recycle of mother liquor
(7.10)
Mother liquor is divided into recycled part and withdrawn part in a ratio given by the recycling ratio R:
R=
recycled mother liquor total mother liquor
(7.11)
7.DLstributionof admixtures
48
An example of typical results 11731 is shown in Figs 7.4 and 7.5.
The following conclusions can be drawn from the simulations 11 731:
a) The time necessary to reach the steady state depends on the recycling ratio. b) The effect of the distribution coefficient of the admixture prevails in the
region D,, > 0.1, whereas the effect of adhering mother liquors becomes very important a t D,, < 0.5. c] The impurity content in the product from a cooling crystallizer is almost independent of the mass of precipitated crystals and of the recycling ratio R.
In the products from evaporative crystallizers. the impurities increase with the recycling ratio, in particular for admixtures with D,, c 0.5. whereas for
D,,
-
1 the purity slightly increases.
Another paper 11431 deals with the optimization of conditions for improving the purity of crystals.
7.7. Materials Balance
49
1.0
0.8
0.6
0.4
0.2
0
0
1
2
3
4
log D, Fig. 7.4:Dependence of the impurity contents in a product from a cooling crystallizer as function of the distribution coefficient D,i and the humidity of product crystals. The curves correspond t o the liquid content withdrawn with the crystals wco(from the top) 0.20, 0.10, 0.05 and 0.01, respectively
50
7.Distribution of Admixtures
2.5
4
2.0
15 1.0
0.5 0
0.5
0.6
0.7
0.8
0.9
10
R Fig. 7.5: Impurity contents in a product from an evaporative crystallizer as a function of the recycling ratio R and the distribution coefficient D,, (with a constant liquid content withdrawn with the crystals).
Values ofDI1: 1 6
... 1.0
... 0.005,2 ... 0.01,3 ... 0.05,4 ... 0.1,5 ... 0.5,
7.8. Cascade M i a t i o n
51
7.8. Cascade Purification Crystal contamination can arise from a number of causes. This is a n undesirable phenomenon when high-purity products are required. In spite of the different mechanisms, the distribution of a microcomponent a t
equilibrium
can
frequently
be
approximated
by
the
homogeneous
distribution law 11381 that can be written as
Y=k,X
(7.12)
where X and Y are the relative masses of the microcomponent related to unit mass of the macrocomponent in the liquid and solid phases respectively. If the initial mass fraction of the microcomponent in crystals is yo and its final value is yf then [ 1371 Y and X are:
(7.13)
-
Wf - (Wf - weq)YO
X=
1-yo
Y'
1- yi
From the point of view of economy in discharge of solutions, the multistage
counter-current recrystallization seems t o be most advantageous (Fig. 7.61.
52
7.Distribution of Admixtures
t ,,k-I l c
Q
mktl sol xk+l
Fig. 7.6: Definition of streams in the k-th stage of a cascade with counter-current recrystallization
The balance of the microcomponent in the k-th stage can be written in the form [ 135) :
m, Y k-l
+ mL x”-’ + m,,
xk+l =
m, Y
+ (mL+ mso,)xk
(7.14)
where the subscripts c, L and sol represent the crystals, liquid adhering on crystals and solutlon respectively, and the superscripts express the serial number of the stage. The mass balance for the microcomponent over the whoIe n-stage recrystalhation system can be written as:
7.8.Cascade Puriatron
m, Yo + mL X o +mso,Xn+' = m, Y n + m, X"
+mso,X'
53
(7.15)
The aim in solving this equation is to find the microcomponent contents in the product, Y". and in the exit mother liquor. X1.For the condition
and after introduction of the dimensionless concentration parameters
zk
=
Yk/ Y o
(7.17)
and the recrystallization factor
~Ww K = mdmc -WL-W~ kH +mL I me kH+----
WL-
WW
1 - w ~ ~ ~
WLWeq
(7.18)
1- WLWeq
the equations above can be solved 1137.1393 with the result
z;
=(l+K-k,K)-l
l / Z , "= ( l + K - k , , K ) ( l + K )
(7.19)
-K
(7.20)
(7.21)
7 . Distribution of Admixtures
54
Example: A saturated solution of KAl(SO4)z at 6OoC has been cooled down to 2OoC.
The original salt contained yo dropped to 2
. lo-*
- 1.3
Na. After crystallization the Na content
Na. The respective solubilities are w1
-
- w (60)- 0.5585
, weq
-
w (20) 0.1127. The distribution coefficient found in independent experiments was
kH WL
-
0.035. Liquid content withdrawn with the crystals of separated crystals was
- 0.03.I t follows that the recrystallization coefflclent K - 6.50. We shall calculate
the number of stages necessary to obtain crystals with a Na content 100 tlmes lower. We obtain:
-
Zf! 0.1375
- 0.0208 9.” - 0.0032 Zy
< 0.01
The required purification can thus be achieved in three stages.
A n analogous solution has been found 11361 also for a cross-current
flow model with the result that this model requires higher solvent consumptlon and is thus less advantageous. In melt crystallization. additional purification steps like sweating and washing can reduce the number of stages. Sweating is a temperature induced process step which leads to a liquidizing of impurities in crystals due to the temperature increase to the melting point of the major component. Washing is a stripping of the crystals of the adhering residual mother liquid by rinsing with pure product or by a so-called diffusion washing.
Dzfusion washing is a purification due to a liquid - liquid diffusion of impurities out of the crystal (pores or cracks) into the surrounding purer melt [181.197.227,228.2331.
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
8. Notations A
surface area
a
lattice constant
B
constant
C
concentration
D
homogeneous distribution coefficient enthalpy of fusion enthalpy of mixing
K
recrystallization factor
KB
distribution coefficient
k
k-th stage
k
Planck constant homogeneous distribution coefficient growth rate of a face in presence of admixture growth rate of a face in absence of admixture growth rate of a face in full coverage by admixture
mass of crystals n
total number of stages
n
average density of the admlxture on a surface
P
concentration (wt. %)
R
gas constant
R
recycling ratio
S
relative supersaturation
56
8.Notatlons
-T
temperature
TB
melting point of the impurity
UR
mass transport rate in the bulk of solution
UP
mass transport rate through the interface
UT
mass transport rate in the solid phase
W
concentration (mass fraction)
X
relative mass of microcomponent in liquid phase
X
mole fraction of microcomponent
Y
relative mass of microcomponent in solid phase
Y
mole fraction of the macrocomponent
z
dimensionless concentration parameter
a
surface entropy factor
6
energy
R
logarithmic distribution coefficient
PC
crystal density
0
surface energy
a
ratio of number of nearest neighbours
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
9. References 111 Addadi. L.. Berkovitch-Yellin. 2.. Weissbach. I.: Angew. Chem.
Int. 24 (1985) 466 121 Addadi. L.. Berkovitch-Yellin, 2.. Welssbach. I.. Lahav. M.. Leiserowitz, L.: Topics in Stereochem. 16 (1986) 1
[3l Addadi. L., Berkovitch-Yellin. 2.. Weissbach, I., van Mil. J.. Shimon. L.J.V.. Lahav. M.. Leiserowitz, L.: Angew. Chem. 97 (6)(1985) 476 141 Albon, N., Dunnlng. W.J.: Acta Cryst. 15 (1962) 474
151 Bennema. P.: Progress in crystal growth from solutions: Implications for lndustrlal crystallization. in: IndusMal Crystallization ‘78(eds. de Jong. E.J.. JaneiC, S.J.),p. 115. North-Holland, Amsterdam 1979 I61 Bennema. P.. Gllmer, G.H.,in: Crystal Growth - anIntroductlon (ed.
Hartman, P.), p. 263. North-Holland, Amsterdam 1973 I71 Bennema, P..van der Eerden, J.P.: J. Crystal Growth 42 (1977) 201
I81 Berkovitch-Yellln. 2.: J. Am. Chem. SOC.107 (1985) 8239 [9] Black, S.N.. Davey. R.J.: J. Crystal Growth 90 (1988) 136 1101 Black, S.N., Davey. R.J.. Halcrow. M.: J. Crystal Growth 79 (1-3, Pt.
21(1986) 765 [ 111 Blank. A.B.. Komishan. N.I.: Stsintill. mater. 1 osobo chist. khim.
veshch. 3 (1979) 124 1121 Bliznakov, G.:Izv. Bulg. Acad. Nauk. Ser. Fiz. 4 (1954) 135 1131 Bliznakov, G.: 2.physik. Chem. 209. 5/6 (1958) 372
1141 Bliznakov, G.:Kristallografiya 4 (1959) 150
1151 Bliznakov. G.. Kirkova, E.: 2. physik. Chem. 206. 3 / 4 (1957) 271
58
9.References
1161 Bliznakov. G.. Kirkova. E.. Nikolaeva. R.: Z. physik. Chem. 228.
1 / 2 (1965) 2 3 I171 Bliznakov. G.. Nikolaeva. R.: Krist. Technlk 2 (1967) 161
1181 Boistelle. R.: Survey of crystal habit modification in solution. in:
Industrial Crystallization (ed. Mullin. J.W.). p. 203, Plenum Press, New York 1976 1191 Bollmann. W.:Crystal Res. Technol. 16 (4)(1981) 521
I201 Botsaris. G.D.: Secondary nucleation - A Review, in: Industrial Crystallization (ed. Mullin. J.W.), p.3, Plenum Press, New York
1976
I211 Botsarls, G.D.:Effects of impurities in crystallization processes, in:
Industrial Crystallization '81(eds. JanCiC. S.J.. d e Jong, E.J.). p. 109. North-Holland, Amsterdam 1982 [221 Botsarls, G.D.. Denk, E.G., Chua. J.O.: AICHE Symp. Ser. 68 (121) (1972) 21 1231 Botsaris, G.D., Pagounes, J.O.: AICHE Symp. Ser. 83.1253) (1987) 19 1241 Bourne, J.R.: AIChE Symp. Ser. 76,193 (1980) 59 I251 Bourne, J . R . , Davey, R.J.: J. Crystal Growth 36 (1976)278. 2 8 7 1261 Bourne, J.R.. Davey. R.J.: J. Crystal Growth 39 (1977) 267 [271 Bourne, J.R.. Davey. R.J..McCulloch. J.: Chem. Eng. Sci. 33 (1978) 99
I281 Brice, J.C.: M e Growth ofCrystalsfrom U q d d s . North-Holland, Amsterdam 1973
9.References
59
1291 Broul. M.:Res. Report Res.Inst.1norg.Chcm. o s t i n.L.. VUAnCh VZ-E612 (1972) 1301 Broul. M..N p l t . J.: Chem. Listy 74 (1980) 362
1311 Buckley H.E.: 2. Krist. 85 (1933)58 (32) Buckley, H.E.: Crystalgrowth, Wiley. New York 1951
1331 Buehrer. T.F., Reitmeier. R.F.: J. Phys. Chem. 44 (1940) 552 1341 Bunn. C.W.: Proc. Royal SOC.London A 141 (1933) 567
I351 Bunn, C.W.: Disc. Faraday SOC. 5 (1949) 287 (36)Bunn, C.W., Emmett, H.: Disc. Faraday SOC.5 (1949) 119
I371 Burrill. K.A.: J. Crystal Growth 12 (1972) 239
1381 Burton, W.K.. Cabrera. N.. Frank, F.C.: Phil. Trans. Roy. SOC. A243 (1951) 299 1391 Burton, J.A.. Prim. R.C.. Slichter. W.P.: J. Chem. Phys. 21 (1953) 1987 (401 Byteva, I.M.: Rost kristallov 3 (1961) 296 [41] Cabrera. N.. Vermilyea, D.A.: in: Growth and Perfection of Crystals, (eds. Doremus. R.H.. Roberts, B.W.. Turnbull, D.), p. 393, Wiley. New York 958 [42] Cannel. D.S., Aubert. C.: Fractal Patterns in Physics, in: Growth and
Form (eds Stanly. H.E.. Ostrowski, N.), Nijhoff. Dordrecht 1986 1431 Cayey. N.W.. Estrin. J.: Ind. Eng. Chem. Fundam. 6 (1967) 13 (441 Chatterji. A.C.. Rastogi, R.P.: J . Indian Chem. SOC. 29 (1952) 458
60
9.References
1451 Chen. B.D., Polts. G.. Davey. R.J., Garside. J., Bergmann, D..
Nieh6rster. S . . Ulrich. J.: J. Crystal Growth (in press) 1461 Chernov. A.A.: Uspekhi fiz. n a u k 73 (1961) 277 147) Chernov. A.A.: Rost kristallov 3 (1961) 52 I481 Chernov. A.A.: in: Growth of Crystals (Shubnikov. A.V.. Sheftal. N.N.). 3 (1962) 31. Consultants Bureau, New York 1962
I491 Chernov, A.A.: in: Adsorption et croissance CristaZline. p. 265. C.N.R.S.
Paris 1965 I501 Chernov. A.A.: Krlst. Tech. 6 (5)(1971) 577 I511 Chvoj 2.:J. Non-Equilib. Thermodyn. 18 (1993) 201 1521 v a n Damme - van Weele. M.A.: in: Adsorption et croissance
cristaZUne. p. 433, C.N.R.S.. Paris 1965 I531 Davey, R.J.: J. Crystal Growth 34 (1976) 109 1541 Davey. R.J.: The control of crystal habit, in: Industrial CrystalUzation
'78 (eds. de Jong. E.J.. JanCiC, S.J.). p. 169. North-Holland,
Amsterdam 1979 1551 Davey, R.J.: The role of additives in precipitation processes, in:
Industrial Crystallization 81 (eds. Janeie. S.J.. de Jong. E.J.). p. 123. North-Holland,, Amsterdam 1982 1561 Davey R.J.: in: Current Topics InMateriaZs Science, vol. 8 (ed.
Kaldis. E 1, p. 431, North-Holland, Amsterdam 1982 1571 Davey. R.J., Mllosavljevic, B.. Bourne, J.R.: J. Phys. Chem. 92 (1988) 2032
9.References
61
1581 Davey. R.J.. Mullin. J.W.: J. Crystal Growth 26 (1974) 45 (591 Davey. R.J.. Mullin, J.W.. Whlting. M.J.L.: J. Crystal Growth 58 (1982) 304 1601 Davey. R.J.. Polywka. L.A.. Maginn. S.J.: The control of morphology by additives, in: Advances in Industrial Crystallization. (eds. Garside, J., Davey, R.J., Jones, A.G.). p. 150, Butterworth-Heinemann.
Oxford 1991 I611 Denk. E.G.. Botsaris. G.D.: J. Crystal Growth 13/14 (1972) 493
1621 Dhanasekaran, R.. Ramasamy. P.: Crystal Res. Technol. 16 (1981) 299 1631 Docherty, R., Roberts, K.J.: ModelUng the Morphology of Molecular
Crystals, Thesis, Univ. Strathclyde 1989 I641 Doerner. H.A., Hosklns, W.M.: J. Am. Chem. SOC.47 (1925) 662
1651 Donnay. J.D.H.. Harker. D.: Am. Mineral. 22 (1937) 446 (661 Dunning, W.J., Jackson, R.W.. Mead, D.G.: in: Adsorption et croissance cristalline. p. 303, C.N.R.S. Paris 1965
1671 van der Eerden. J.P.. Muller-Krumbhaar. H.: Electrochim. Acta 31 (1986) 1007 1681 Fabian. J.. Ulrich. J . : Dissolution like crystal growth - a two-step process, presentation of experimental evldence, in: Industrial
CrystaUization '93 (ed. Rojkowski. 2.). p. 4-041, Warszaw 1993 1691 Fajans, K.. Erdey. Gruz. T.: 2. physik. Chem. 158 (1931) 97 (701 Frledel. G.: Bull. SOC.Franc. Miner. 30 (1907) 326
62
9. References
I711 Garrett, D.E.:Brit. Chem. Eng. 4 (1959)637
I721 Garside. J., Mersmann. A.. Nfilt, J. (eds.): Measurement of Crystal Growth Rates, WPC-EFCE. Munich 1990
[73]Gaubert. P.: Bull. SOC.Franc. Mineral. 17 (1894)121 [74]Gaubert, P.: Compt. Rend. 155 (1912)649
I751 Gibbs. J.W.: On equilibrium of Heterogeneous Substances, in: Collected works of J.W. Gibbs. Longman. New York 1878
1761 Gilman, J.J., Johnston, W.G., Sears, G.W.: J. Appl. Phys. 29 (1958) 747 1771 Gilmer. G.H.. Bennema, P.: J . Crystal Growth 13/14 (1972)148 1781 Ginde. R.M..Myerson. A.S.: J. Crystal Growth 126 (2-3) (1993)216 1791 Glasner. A.: Israel J. Chem. 7 (1969)633 1801 Glasner. A.. Skurnik. S.: J. Chem. Phys. 47 (1967)3687
1811 Goldschmidt. V.M.: GeochernischeVerteilungsgesetze WI, Oslo 1926 1821 Goldschmidt. V.M.: Kristallokhirniya, ONTI, Leningrad 1937 I831 Gopal, R..Rastogi, R.P.: J. Indian Chem. SOC. 2 7 (1950)401 I841 Grebenshchikova, V.I.: Zhur. Neorg. Khim. 3 (1958)20 I851 Hahn, 0.: Applied Radfochernistry. Cornell Univ. Press, Ithaca. New York 1936
I861 Hall, R.E.:USP 1 956 515 (1934) I871 Hall, R.N.: J. Phys. Chem. 57 (1953)836
9.References
(881 Harano. Y., Yamamoto. H.: Impurity effect of some amino acids on
formation and growth of L-glutamic acid nuclei by secondary nucleation in agitated solution, in: Industrial Crystallization 81 (eds. JanCid. S.J.. de Jong. E.J.). p. 137. North-Holland, Amsterdam 1982
1891 Hartman, P.:2. Krist. 119 (1963) 65 1901 Hartman. P.. Kern, R.: Compt. Rend. 258 (19641 4591 1911 Hartman. P..Perdok, W.G.: Acta Cryst. 9 (19551 49, 521, 525 (921 Henderson, L.M.. Kracek. F.C.: J. Am. Chem. SOC.49 (1927) 738 [93] Hildebrand, J.H.. Scott, R.L.: The Solubility of NoneZectroZytes, 3rd ed.. p. 300. Reinhold, New York 1950 1941 Hocart, R.. Vincent, E.: Bull. SOC.Franc. Mineral. Crist. 82 (1959) 398
1951 Jackson, K.A.: Liquid Metals and Solidi$cation, p. 174. Am. SOC. Metals, Cleveland 1958 1961 Jetten. L.A.M.J.. Human, H.J., Bennema. P., van der Eerden. J.P.: J. Crystal Growth 68 (1984) 503
[971 Johnsen, J.: Neues Jahrb. Miner. ZZ (1903) 93 1981 de Jong. E.J.: Nucleation - a Review. in: Industrial Crystallization 78
(ed. de Jong. E.J.. Janeic. S.J.).p. 3. North-Holland, Amsterdam 1979 1991 Kliding. H.. Mumbrauer. R., Riehl, N.: 2. Physlk. Chem. 161 (1932) 362
63
64
9.References
I1001 Karma, A.. Kotliar. B.G.: Phys. Rev. A 31 (5)(1985)3266 11011 Khamski. E.V.: KrlstaULzatslya iz Rastvorou, Nauka. Leningrad 1967 11021 Khamski. E.V.. Podozerskaya. E.A.. Freidin, B.M., Bykova. A.N.. Sedelnikova. N.D. : KristaUizatsiya IMb-Khirnicheskie Suoystua KristaUicheskich Veschestv. Nauka, Leningrad 1969
11031 Khlopin. V.G.: Z.anorg. Chern. 143 (1925)97
I 1041 Khlopin. V.G.: Izbrannye W y , Izd. AN SSSR, Moscow 1957 I1051 Khlopin. V.G., Merkulova. M.S.: Dokl. Akad. Nauk S S S R 65
(1949)6 [lo61Khlopin. V.G.. Nikitin. B.A.: Z . anorg. Chem. 166 (1927)311 I1071 Khlopin. V.G.. Nikitin, B.A.: 2.physik. Chem. A 145 (1929)137 11081 Khlopin. V.G.. Polessitski. A.E.. Tolrnachev. P.: 2. physik. Chem. A145 (1929)57
11091 Kleber. W.:2. physik. Chem. 206 (1957)327 Ill01 Kleber. W.:2. Krist. 109 (1957)115 I1111 Kleber. W.:2. Krist. 1 1 1 (1959)213 11 121 Klug. D.L.: The Influence of Impurities a n d Solvents on Crystal-
lization. in: Handbook of Industrial Crystallization, (ed. Myerson. A.S.), p.65. Butterworth - Heinemann, Stoneham 1992
11131 Kiinig. A.. Emons. H.H.: Crystal Res. Technol. 23 (1988)319 11141 Kossel. W.:Nachr. Ges. W i s s . Giittingen. Math. Phys. Kl. K1 (1927)
135 1115)Kossel. W.:Ann. Physik 21 (1934)457
9. References
65
[ 1161 Kruse. M.: Zur Modellierung der Wachstumskinetik in der Lcisungs-
kristalllsatlon. Thesis, Univ. Bremen 1992. VDI Verlag. Dfisseldorf 1993
11171 Kurganetskii. N.V., Bzovyi. M.G., Savulyak. V.V.. Popov. M.M.. Lopushanskaya, A.I.: Zhur. Fiz. Khim. 57 (1) (1983) 38 [ 1181 Kuschel. F.. Kbnig. A.. Herold. S.: Crystal Res. Technol. 18 (1983)
427 [ 1191 Kuszlik. A.-K.: Efnt,4
der Pulsation auf die Stomennung in Apparaten
zur statIschengerichteten KristaULsation, Thesis, Univ. Bremen 1990 [ 1201 Kuznetsov. V.D.:
KristaUy 1 Kristallizatsiya, Gostekhizdat, Moscow
1953 [ 1211 Lacmann. R.: Crystallization with two components, in:
Industrial
C y s t d h t i o n '90 (ed. Mersmann, A.), p. 627. Munich 1990 [ 1221 Lacmann, R., Herden. A.. Rolfs, J., SchrBder. W.: O n the influence of
impurities on crystallization. in: Indusbial Cystallizatlon '90 (ed. Mersmann. A.), p. 671, Munich 1990 [ 1231 Lahav. M.. Leiserowitz. L.: Tailor-made auxiliaries for the control of
nucleation, growth and dissolution of crystals, in: Industrial
Crystallization '90 (ed. Mersmann, A.), p. 609. Munich 1990 11241 Lahav. M.. Leiserowitz, L.: J . Phys. D: Appl. Phys. 26 (8B) (1993) B22 [ 1251 Ledesert, M.. Monier. J.C.: in: Adsorption et croissance cristalllne, Coll.
Int. CNRS No. 152. p. 537. CNRS. Paris 1965 I1261 Leubner. I.H.: J. Crystal Growth 84 (3)(1987) 496
66
9.References
[ 1271 Lin. S.M.:Fractals
and their Applications in Condensed Matter
Physics, in: Solid State Physics, VoL 39. p. 207. Springer, Berlin 1986 [ 1281 Mandelbrot,
B.B.:The Ractal Geometry of Nature. Freeman. San
Francisco 1982 I1291 MareEek. V.. Dobi&GovA.L.. NovBk. J.: Krist. Tech. 4 (1969) 39 (1301 Matuchov6, M., N p l t , J.: Chem. Listy 69 (1975) 1 11311 Matusevich. L.N.: Zhur. Prom. Khim. 32 (1959) 536
I1321 Matusevich. L.N.: Zhur. Prom. Khim. 33 (1960) 316 11331 Matusevich, L.N.: Kristallizatsiya i z Rastuorou u Khimicheskoi
Promyshlennosti, Khimiya, Moscow 1968 [ 1341 Matz,
G.:Kristallisation, Grundlagen und Technik. Springer,
Heidelberg 1969 [ 1351 Mayrhofer.
B..Mayrhoferov5. J.. NeuZfl. L.. N p l t , J.: Collect.
Czech. Chem. Commun. 51 (1986) 2481 I1361 Mayrhofer. B..MayrhoferovA. J.. NeuZil. L.. N p l t . J.: Collect.
Czech. Chem. Comrnun. 51 (1986) 2486 (1371 Mayrhofer. B..Neuifl, L., N p l t , J.. Mayrhoferovii. J.: Chem. prdmysl36 (1986) 232 11381 Mayrhofer. B.. Nplt. J.: Collect. Czech. Chem. Commun. 52
(1987) 1198 I1391 Mayrhofer, B.. N p l t , J.: Mathematical modelling of salt purification by recrystallization, in: Industrial Crystallization '87 (eds. Nyvlt, J., ZaCek, S . ) , p. 567. Academia Prague and Elsevier Amsterdam 1989
9.References
67
11401 Melia, T.P., Moffltt, W.P.: Ind. Eng. Chem. Fundam. 3 (1964) 313 11411 Melikhov. I.V.: Radiokhimiya 2 (1960) 509 I1421 Melikhov. I.N.. Merkulova. N.S.: Sokrlstallizatsiya, Khimiya, Moscow 1975 I1431 Melikhov, I.V., Mikhin. E.V.. Pekler, A.M.: Some aspects of optimi-
zing purification by crystallization, in: Industrial Crystallization '78 (eds. de Jong. E.J., JanEid, S.J.).p. 573. North-Holland, Amsterdam 1979 11441 Mel'nikov, B.I.. Tsygankov. G.T.. Krutov. V.N.: Zhur. Prikl. Khim. 61
(1) (1988) 79 [1451 Merkulova, M.S.: Trudy gos. rad. inst. III (1937) 141 I1461 Miura. M.. Otani, S., Kodama. M., Shinagawa, K.: J. Phys. Chem. 66 (1962) 252 11471 Miura, M.. Otani. S., Abe.
Y..Fukumura. C.: Bull. Chem. SOC.J a p a n
36 (1963) 1091 11481 Mohameed. H.A.. Ulrich. J.: Influence of the pH value on the growth
rate of potassium chloride, in: BIWIC '94 (ed. J. Ulrich), p. 112. Verlag M a i m , Aachen 1994 I1491 Monier. J.: Compt. Rend. 236 (1953) 2089 11501 Monier. J., Raymond, H.: Bull. SOC.Franc. Mineral. Crist. 77 (1954) 1029 11511 Mullin, J.W.: Crystal growth in pure and impure systems, in:
Industrial Crystallization '78 (eds de Jong. E.J.. JanEiC, S.J.),p. 93, North-Holland. Amsterdam 1979
68
9. References
11521 Mullln. J.W.: Crystallization. 3rd. ed.. Butterworth - Heinemann, London 1993
11531 Mullln. J.W.. Amatavivadhana A.. Chakraborty M.: J. Appl. Chem. 20 (5) (1970) 153 11541 Mumbrauer, R.:2. Physik. Chem. A 156 (1931) 113
11551 Mumbrauer, R.:2. Physik. Chem. A 163 (1933) 142 11561 Murat. M., El HaJjouji. A.: J . Chim. Phys. - Chim. Biol. 84 (2) (1987) 209 [ 1571 Murat,
M.. Sadok el Habib: Compt. rend. Acad. Sci. Ser. 2, 310 (12)
(1990) 615
11581 Mutaftschiev. B.:Chem. Phys. Solid Surf. (1977) 73 (1591 Myerson. A.S.. Weisinger. Y..Ginde. R.: Crystal shape, the role of solvents and impurities. in: Industrial Crystallization '93, VoL I (ed. Rojkowskl. 2.). p. 3- 135. Warsaw 1993 11601 Naono, H..Mlura. M.: Bull. Chem. SOC. J a p a n 38 (1965) 80 [I611 Naono, H.: Bull. Chem. SOC. J a p a n 40 (1967) 1104 11621 Neuhaus, A.: 2. Krist. 103 (1941) 297 11631 Neuhaus, A.: Angew. Chem. 64 (1952) 158
11641 Nikitln. B.A.:Izbrannye tnrdy, Izd. AN SSSR. Moscow 1956
11651 Novlkov, A.N., Panov. V.I., Prisyazhniuk, V.A.: Prornyshlennaya
KristalUzatsfya,Trudy NIOKHIM 20 (1969) 89 [ l 6 6 ] Novobilsky. V.. N@lt. J., Jager. L.: Chem. prfimysl 18 (1968) 14 [ 1671 Novobilsky. V.. N@lt. J,..JBger. L.: Chem. prfimysl 18 (1968) 180;
ibid. 459
9. References
69
I1681 N j v l t , J.: Chem. prhmysl 12 (1962) 170 [ 1691 Njvlt,
J.: IndusLTLal Crystallizationfromsolutions. Butterworth. London
1971 11701 Njvlt. J.: Chem. p r h m y s l 2 9 (1979) 238 [ 1711 Nyvlt, J.: Solid - Lquid Phase Equilibria, Elsevier Amsterdam a n d
Academia Prague 1977 [ 1721 Njvlt.
J.: Industrial Crystallization- M e Present State of the Art.
2nd. ed.. Verlag Chemie, Weinheim 1982 l (1977) 597 I1731 N j v l t . J.. Broul, M.: Chem. p r ~ m y s 27 I1741 Njvlt. J.. Eysseltovh, J.: Collect. Czech Chem. Commun. 59 (1994) 1911 [175] Njvlt. J.. Gotffried, J.: Collect. Czech. Chem. Commun. 3 2 (1967) 3459 [ 1761 N j v l t , J., Gotffried. J., KilCkova. J.:Chem. prhmysl 1 4 (1964) 242
I1771 N j v l t . J.. Gottfried. J., KflEkova.,J . : Collect. Czech. Chem.
Commun. 29 (1964) 2283 [ 1781 Njvlt. J., Sdhnel. 0.. MatuchovB. M.. Broul, M.: The Kinetics of
Industrial Crystallization, Elsevier Amsterdam a n d Academia Prague 1985 [ 1791 Ohara,
M., Reid, R.C.: Modeling Crystal GrowthRatesfrom Solution.
Prentice Hall,Englewood Cliffs, N.J. 1973 I1801 Otant, S.: Bull. Chem. SOC. J a p a n 33 (1960) 1549 [ 18 11 ozoguz,
Y:Zur Schichtkristalllsatn als SchmeIzkristalllsatio~ve~a~en,
Thesis. Unlv. Bremen 1991, VDI Verlag. Diisseldorf 1992
70
9.References
[ 1821
Paneth. F.:Radio-Elements as Indicators. New York 1928
[ 1831
Panov, V.I., Novikov. A.N., Prisyazhniuk, V.A.: Promyshlennaya KristalUzatsia, Rudy MOKHLM 20 (1969)72
11841 Potapenko. S.Yu.: Poverkhnost 8 (1988)28 [185]Potapenko, S.Yu.: Rost Krist. 18 (1990)31 [I861Potapenko. S.Yu.: J. Crystal Growth 133 (1-2)(1993)141
(1871Potapenko. S.Yu.: J. Crystal Growth 133 (1-2)(1993) 147 11881 Powers, H.E.C.: Ind. Chemist 39 (1963)351 [ 1891 Raistrick.
B.: Disc. Faraday SOC. 5 (1949)234
(1901Ratner, A.P.: J. Chem. Phys. 1 (1933)789 (1911Riehl. N.. Kading. H.: 2. Physik. Chem. A 149 (1930)180 11921 Rosenstein. L.: USP 2 038 316 (1936)
Franc. Mineral. 51 (1928)7 [193]Royer. L.: Bull. SOC. 11941 Sander, L.M.: in:Kinetics ofAggregatlon and Gelation, (eds. Landau, D.P.. Family, F.).p.13. North-Holland, Amsterdam 1984
11951 Sangwal. K.. Owczarek. I.: J. Crystal Growth 129 13-41(1993)640 11961 Sarig. S.,Ginio, 0.: J. Phys. Chem. 80 (1976)256 I1 971 Scholz. R.:Die Schichtkristallisationals thermisches Trennuerfahren,
Thesis, Univ. Bremen 1993.VDI Verlag, Dfisseldorf 1993 [ 1981 Sears, G.W.: J. Chem. Phys. 29 (1958)1045
(1991Sears, G.W.: J. Chem. Phys. 33 (1960)1068 (2001Senol. D.. Myerson, A.S.: AICHE Symp. Ser. 78 (215) (1982)37 12011 Sheftal. N.N.: Rost kristallov 1 (1957)5
9. References
[202]Sheftal, N.N.:Protsessy Realnogo Kristalloobraz. 101 (1977);CA 91 047479 I2031 Shor. S.M.: Thesis. Iowa State Univ., Ames. Iowa 1970 I2041 Shor, S.M.. Larson. M.A.: Chem. Eng. Progr., Symp. Ser. 67 (110)(1971)32
12051 Simon. B., Boistelle. R.: Crystal Growth from Low-Temperature Solutions, ZCCG-6, Moscow 1980
12061 Slavnova, E.N.: Rost kristallov 2 (1959)223 12071 van der Sluls. S . . Witkamp, G.J., van Rosmalen, G.M.: J. Crystal Growth 70 (1986)620 12081 Spangenberg, K.: Z Krist. 59 (1924)383
12091 Stelnike. U.: Krlstall u. Technik 6 (1971)7 12101 Stepanski. M.: Zur Wachstumskinetik in der LlfsungskristaUisation. Thesis, Univ. Bremen 1990
I21 11 Stepin, B.D..Gorshtein. I.G.. Blyum, G.Z., Kudryumov, G.M.. Ogloblina. V.P.: Metody poluchenia osobo chistykh neorganicheskikh
ueshchesiu. Khlmia, Leningrad 1969
I2121 Stranski. I.N.: 2. Physik. Chem. B11 (1931)342 I2131 Stranski. I.N.: Naturwiss. 19 (1931)689 (2141 Strickland-Constable, R.F.: Ktnetics and mechanism of crystafiation, Acad. Press, London 1968
I2151 Strickland-Constable, R.P.: AIChE, Symp. Ser. 121 (1972)1 12161 Sung, C.Y.. Estrin. J.. Youngquist. G.R.: AIChE J. 19 (1973)957
71
72
9. References
12171 Tadros,
M.E..Mayes. I.: J. Colloid Interface Sci. 72 (19791 245
[2 181 Temkin. D.E.: in: CystalUzatIon Processes. p. 15. Consultants Bureau,
New York 1964 12191 Terkhin. S . N . . Zherebovich. A.S.. Volkova. N.A.: Vysokochlst.
Veshchestva 1 (1989) 20 12201 Thomson. G.: Proc. Phys. Soc. 61 (19481403 I2211 Tiller, W.A.: J. Crystal Growth 75 (1) (1986) 132 [222] Tilmans. Yu. Ya.: KristaUizatsiya Solei iz Vodnykh Rastoorov v Prisutstvii
PrimeseiRaznykhZonov, Izd. AN Kirg. SSR. Frunze 1957 [223] Titiloye, J.O.,Parker, S.C., Dsuguthorpe,
D.J..et al.: J. Chem. Soc..
Chem. Commun. 20 (1991) 1494 12241 Treivus. E.B.: Kristallografiya 27 (1) (1982) 165 12251 Ulrich. J.:Zur Kristallkeimbildung durch mechanischen Abrieb, Thesis,
RWTH Aachen 1981 (2261 Ulrich, J.: Kristallwachsturnsgeschwfndigkeiten bei der KomkristaUisa-
tion. E i n f i h r l i k n und Mepechniken. Reihe Verfahrenstechnik,
Shaker, Aachen 1993 (2271 Ulrich, J., Kallies. B.: Developments in crystallization processes from
the melt, in: Current Topics in Crystal Growth Research, Research Trends, Trivandrum (India) (1994) 12281 Ulrich. J.: Chem.-1ng.-Tech. 66 (1994) 1341 [229] Ulrich. J., Scholz. R.. Wangnick. K.: J. Phys. D: Appl. Phys. 26 (1993) B168
9.References
73
12301van der Voort. E.. Hartman. P.: J. Crystal Growth 104 (1990) 450
50 (1927) 3266 12311Walter, L.. Schlundt, N.: J. Am. Chem. SOC. 1232) Wang. J.L., Berkovltch-Yellin, 2.. Leiserowitz. L.: Acta Cryst. B41 (1985) 34 1
12331 Wangnlck, K. : Das Waschen als Nachbehandlungsprozesse der Schicht-
kristallisation, Thesis, Univ. Bremen 1994, VDI Verlag, Dnsseldorf 1994 12341Weijnen. M.P.C.. van Rosmalen. G.M.. Bennema, P.: J. Crystal
Growth 82 (3)(1987) 528 [235] Weissbuch. I.. Shlmon. L.J.W.. Addadi. L.. Berkovitch-Yellin, 2..
Weinstein. S.. Lahav. M., Leiserowitz. L.: Israel J. Chem. 25 (1985) 353 12361 Weissbuch. I., Shimon, L.J.W., Landau, E.M., Popovitz-Biro. R..
Berkovitch-Yellin, 2.. Addadi. L.. Lahav. M.. Leiserowitz. L.: Pure Appl. Chem. 58 (61 (1986) 947 12371 Wells, A.F.: Phil. Mag. 37 (1946) 184 12381 Wells, A.F.: Disc. Faraday SOC. 5 (19491 197 (2391Wen, Fu-Chu: Kinetic study of crystal growthfrom supersaturated
droplets, PhD Thesis, Georgia Inst. Technol. 1975 I2401 Westwood. A.R.C.. Rubln. H.: J. Appl. Phys. 33 (1962) 2001 (2411Whetstone, J . : Nature 168 (1951) 663 12421 Wirges. H.P.. Scharschmldt. J.. Karbach. A., Reichel, F.: The lnfluen-
ce of addltives on crystallization processes, in: B M C ’ 94 (ed. J.Ulrlch1, p. 82, Verlag Mainz, Aachen 1994
74
9.References
[2431Yanson, Yu. A., Stekol'nikov. A.V.: Teplofiz. Krist. Veshch.1 mater., Novosibirsk (1987) 6 6 [2441 Yuan, J.J.. Stepanski, M., Ulrich. J.: Chem.-1ng.-Tech. 62 (8)(1990) 645 [2451 Zharikov. E.V.. Zavartsev. Yu.D.. Laptev. V.V., Samoilova. S.A.: Crystal Res. Technol. 24 (1989) 751
TABLES
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
10. Tables It is almost impossible to record all the papers dealing with the effect of admixtures on the crystallization of substances from aqueous solutions. The aim of this compilation is to give a qualitative survey of literature, providing the
possibility of finding references dealing with individual systems. In order to give a uniform presentation,
every table is divided into two parts: the first part gives
fundamental crystallographic information that might be useful for structural considerations. The data include the molecular weight (g/mol), density (kg/m31, crystal system with lattice parameters a, b, c (pm). a, b. y, number of particles per unit cell of the crystal 2. The crystallographic characterization is limited to the crystal system; more detailed information can be found in specialized literature or
in solubility tables I1931.
Crystal system cubic
Characteristics a - b - c . a-B-t.-90°
tetragonal
a - b s c , a-/j-=y-90°
hexagonal
al-a2=a3sc,a-?-900
trigonal
a - b - c , a-b-yt:9O0
rhombic
asbgc, a-,6-r-90°
monoclinic
a s b s c , a-y-90°
triclinic
a L b s c , a ,/1 ,y s 90°
/is90°
1O.Tables
77
In the lower part of the tables are listed admixtures with a qualitative description
of their effect: N - nucleation, G
- crystal growth. H - crystal habit,
S - crystal size. D - distri-
bution of admixture and corresponding reference number. In addition. there exists a number of reviews and survey papers I7.58.59. 137,139,147.153.156.222.234.250,284,285,286,346,377.414.626,682,777.779, 799.8 16.856.9 19,920.925.932.948.1 123.1 129,1158.1 166.1223.1224,1257,1302. 1305,14051. Those dealing with the effect of various solvents are [136,154.155,
158.287.758,932.953.1216,1310,1338].
10. Tables
78
t
MBr
SILVER BROMIDE Molecular weight: 187.80
Density: 0470
System: cubic
a
-
Z=4
0.5755
Admixture
Effect
3D-, 4D-element complexes
Reference I8911
Cd2+
D
1712,13131
K+
coagulation
15651
H
I11191
NH,OH 10Y0.pyridine
favourable
14721
Pb2+
lower S and recryst. rate
[109,110.111]
NH,
. KBr
Pb2+. Cd2+
I2581
solvation
G
12581
I- and gelatine
H
12561
pH
H
(257,2591
p H . I-
G . H
12581
dyestuffs Methylene blue
[ 10921
H
I4391
S-containing agent
[ 13831
surfactants
18491
urea, tetraalkylammonium salts,
I2581
gelatine, Methylene blue
10. Tables
4m SILVER CHLORIDE Molecular weight: 143.34
Density: 5660
System: cubic a
-
2- 4
0.5545
Admixture
Effect
Reference
Ac/Cl ratio
G
12931
3D-. 4D-element complexes
G
I8911
HgCI, 0.005-0.25%
favourable
18 11
NH,OH, pyridlne
favourable
14723
C1-. CH,COOH. pH
benzvlalcohol
I6661 G
dyestuffs
12631 I10921
Methylene blue
H
I4391
Na-dodecylsulphonate. benzylal-
G
16041
Na-dodecylsulphonate, eosfne
G
I2941
polyvinylalcohol
G
19933
S-containic agent
I13831
surfactants
18491
79
10. Tables
80
&2cr04
SILVER CHROMATE Molecular weinht:
331.77
Admixture
Effect
Reference
Ag+/ Cr0,2- ratio
G
15633
glutamate, cltrate, tartrate,
N
I10151
&I
SILVER IODIDE Density: 6670
Molecular weight: 234.79
2-4
System: cubic a
-
0.647
Admixture
Effect
Mg2+
Reference
I6091
Na'. I-
recryst.
I1 2791
3 D - . 4D-element complexes
G
I89 11 I1 3321
Methylene blue, sodium dodecylsulphate surfactants
H
1303.369.3701
surfactants
N
13021
surfactants
S
I30 1.13151
surfactants
18491
AgNOS
SILVER NITRATE Molecular weight: 153.874 System: rhombic E
-
0.697
b
-
Density: 4350 2-8
0.734
Admixture
ethylene glycol
c
-
1.014
Effect
Reference
I I12371
IN
AlC~(S0412* 12 H2O
ALUMINIUM CESIUM SULPHATE dodecahydrate Molecular weight: 668.185
I-
System: cubic a
-
Density: 1870 2-4
1.2363
Admixture
Effect
Bismarck brown, dyestuffs
H - cube
Reference
117871
10.Tables
82
AlCl,
6 HZO
ALUMINIUM CHLORIDE hexahydrate Molecular weight: 241.432 System: hexagonal
a
-
1.1827
c
-
Density: 1664 216
1.1895
Admixture
Effect
Reference
I 1551.5521 I I 15531
IG
electrolytes
I electrolytes
ID
Ale, 3 HZO ALUMINIUM FLUORIDE trihydrate Molecular weight: 138.022 System: tetragonal a
-
0.7734
c
-
212 0.3665
Admixture
Effect
Reference
HF
N
16451
~ 0 ~ 3 -
1759,8261
surfactants
1120.1211
10. Tables
I
AlK(SO&
12 HZO
ALUMINIUM POTASSIUM SULPHATE dodecahydrate Density: 1760
Molecular weight: 474.377 System: cubic a
-
2- 4
1.2130 Reference
Admixture
Ag', Cd2+,Au3+. Cu2+
retard N. not G
12991
N3+.Fe3+
salting out, purification
14531
cationic admixtures
G
16221
Cr3+
19231
Cr3+
[1500.1502]
G. dissolution
16231
G
17251
Na,B,O,
H, G reduces growth
192.14891
Na,CO,
H
Fe2+ KC1. KBr, KI. (NH,),SO,.
NaC1,
NaBr. NaNO,
Na,SO,.
CuSO,, H2S04, KOH,
- cubeloctahedron
I891
G
I10511
D
1581
Na,B,O,, NaOH NH4+,T1' rare earth elements
16141
D
admixtures
(1187,14111 139,684,685, 725.951
83
84
1O.Tables
UK(S04)2. 12 HZ0
continued)
Admixture
Reference
+---
admixtures
H
[ 10521
I
admixtures admixtures HCl
H
Bismarck brown
- face /210/
110511 1921 11141
1198.7873
Bismarck brown
[4731
Bismarck brown
I13071
Diamine sky blue
18961
Direct blue 3B
[ 10521
Metanil yellow, Brilliant Congo
[213.2 151
red. Bordeaux blue, Orange 1 and other dyestuffs methanol, ethanol
[1510.15111
methanol, ethanol, propanol
I 14001
polyvinylalcohol Qulnollne yellow saccharides, dyestuffs
,,I
11041 [ 11331
10. Tables
AlNH,(SO,),
85
. 12 HZO
ALUMINIUM AMMONIUM SULPHATE dodecahydrate Molecular weight: 463.317
Density: 1640
System: cubic
Z=4
a - 1.2220
Admixture
Effect
Reference
Cr3+, Fe3+, K+.TI+
D
1581
Fe3+, Fez+, Mn2+, Zn2+
D
I4931
K+
D
[ 1500,15021
Na,CO,
H - cube/octahedron
I891
NaCl
D - C1-
18571
NH,Fe(SO,l,
D - Fe3+
(8571
D - Fe3+
[4873
admixtures
D
I 1 187.74.10541
admixtures
S
I13931
Oxamine blue B. Diamine sky blue
H - face
NH,Fe(SO,),.
NaC1. H,SO,
/loo/
1215,7873
86
10. Tables
Al(N03),
- 9 H20
ALUMINIUM NITRATE nonahydrate Molecular weight: 375.133 System: monoclinic
*
Admixture
Effect
alkali metals + HNO,
I
Also3 M,O
n SiO,
Reference 12831
m H20
ZEOLITES Admixture
Effect
Reference
NaOH
N. G
19961
propyl-substttuted amines
N, G
18981
surfactant
11011
triethanolamine
111931
1O.Tables
87
Density: 2420 2-8
I3
-
c
-
0.9699
85O26’ ~~~~
~~~~~~~
Admixture
Effect
Reference
co,2-
N inhibition
1681
cu2+
I1961
Li+
H - pseudoboehmite
I4091
I,1C1
S. defects
I5741
D. solub.
I 11851
G
[ 14491
G
[360.1390,353]
admixtures admixtures
11441
admixtures
G,NS
111781
pH
modif.
[ 14071
citrate
N
I 12761
oils
;
- recryst.
I
I151 I8281
88
10. Tables
Admixture
Effect
Reference
admixtures
H
12261
KF, NaOH
[ 10491
AlRb(S04),
1 [ 10491
I
HC1. HNO,
12 H 2 0
ALUMINIUM RUBIDIUM SULPHATE dodecahydrate Molecular weight: 520.747
Density: 1867
System: cubic B
2-4
= 1.2246
Admixture
Effect
Diamine Sky blue FF
H-
/loo/
Reference
12151
10. Tables
AlTl(S04)2
12 H 2 0
ALUMINIUM THALLIUM SULPHATE dodecahydrate Molecular weight: 483.19 294
System: cubic a = 1.221
Admixture
Al2(SO&
Effect
Reference
. 10 H2O
ALUMINIUM SULPHATE hexadecahydrate Molecular weight: 630.379 System: rhombic
Admixture
Effect
Reference
K,SO,
N, H
[ 14931
89
10. Tables
90
Ba(BO2l2
BARIUM BORATE
Admixture
Effect
Reference
NaCl
G
I1451
BaBr,
- 2 H20
BARIUM BROMIDE dihydrate Molecular weight: 333.178 Syetem: monoclinic
a
-
1.0449
b
-
Density: 3872 2=4
0.7204
c
-
0.8385
113O29' ~
Admixture
Effect
~~~
~
~~
Reference
10.Tables
BaCO,
BARIUM CARBONATE Molecular weight: 197.37
Density: 4350
System: rhombic
a
-
0.529
2=4
b * 0.888
c
-
0.641
Admixture
pH polyglutamic acid, polyvinylsul-
G
[ 11651
phonate polyglutamlc acid. polyvinylsul-
11 1671
phonate
BaC20,
BARIUM OXALATE Molecular weight: 225.382 Admixture
Effect
Reference
Ce4+,Th4+
D
12251
Ra(COO),
I [lo651
91
1O.Tables
92
BaC12 2 H 2 0
B A R I U M CHLORIDE dihydrate Molecular weight: 244.276 System: monoclinic L
3
-
0.6738
b
-
Density: 3106 2-4
1.0860
c
-
0.7136
90°67'
Admixture
Effect
Reference
Mn2+. Co2+, N@+,c$+
G
13743
Mn2+, Co2+, N12+, Cu2+, Na+
G. N. H
[1254]
RaC1,
D
I509.6651
admixtures
N
I5281
(C$35)$JI
TETRAETHYLAMMONIUM IODIDE Molecular weight: 267.166 Admixture
Effect
Reference I
solvents
H, G
D321
10.Tables
BaCrO,
BARIUM CHROMATE Molecular weight: 253.33
Density: 4498
System: rhombic
IAdmixture Ce3+. Sr2+,pH, EDTA
I
RaCrO,
Effect
Reference
D - Ce3+. Sr2+
1971 .-.
D decreases with tempera-
I8821
ture rise
RaCrO,
D - mixed crystals
[ 10651
RaCrO, + HNO,
D - Ra2+
16651
Sr2+
D - Sr2+
1951
pH
G. H. S
1961
pH
N
[lo141
CH2COONH4
1951
EDTA
G.H. S
1961
gluconate, tartrate, citrate.
N
[lo151
glutamate. EDTA
93
10. Tables
94
BaF2
BARIUM FLUORIDE Molecular weight: 175.36
Density: 4830
System: cubic a
-
2-4
0.6184
Admixttlre
Effect
Reference
Fe2". Fe3+
D
111801
dissol.
I5171
Admixture
Effect
Reference
Ra(IO&
D - mixed crystals
[lo651
polyphosphonates
10. Tables
Ba(NO&
BARIUM NITRATE Molecular weight: 261. S O
Density: 3222
Syetern: cubic a
-
2-4
0.8110
Effect
AdmiXilWe
Reference
inorg. a d d i t i v e s MnO;, Ni(NO,I,.
[ 10421
Fe(CNIe4-. Fe(CN),3Fe(NO,),,
NP+
HNO,. LiNO,
H - /loo/ + /lOl/ + /210/ 12001 N. G
16571
N
I6431
N12+. Fe3+. Li+
[lo411 18611 D
1663,665, 10841
pH
[ 13391
amine
16431
M e t h y l e n e blue
G,H-
M e t h y l e n e blue
D
/loo/
+/810/
12001
95
96
10. Tables
1 Admixture
Effect
Reference
D. H - cube
[431.432.437. 438.44 1.442, 961,1402, 14221
Methylene blue
G. H. D
11238.12391
Methylene blue
H
I6421
Methylene blue, Malachite green
N
16431
New blue
H
- /loo/
I2 151
quinine nitrate
H
- tetraeder
12001
Ba(OH),
8 H20
BARIUM HYDROXIDE octahydrate Molecular weight: 315.476 Syetem: monoclinic
n
-
0.9350
b
-
Density: 2180 2-4
c
0.9280
-
Admixture
Effect
C1- 0.5 Yo
S
1.1870
Reference
10.Tables ~
~~
~~
~
~~
BaSO,
BARIUM SULPHATE Molecular weight: 233.40 System: rhombic a
-
0.885
b
-
Density: 4600 2-4
c
0.644
Admixture
-
0.713
IEffect
additives, Ba2+/S0,2- ratio
IReference
N, G
[ 11051
KMnO,
D - mixed crystals
1504,14231
N a citrate
H - spheric crystals
19021
K+ K+.C1-
N a + . K+
18151
S I
I
Pb2+
D
17031
Pb2+.Sr2+
D
111761
RaSO
D
A
- logar. distr.
13101
RaSO, + H N 0 3
D
[6651
Sr2+
D
194,7763
Th4+
D
[ 12921
admixtures
H
admixtures
G. dissol.
18131
admixtures
D
18681
admixtures
S. H
13441
admixtures
N. G
1794.7951
- regular rounded cryst.
18461
97
98
10.Tables
BaSO,
I
Effect
Reference
G accel.
[ 11051
HQSO,
H. S
I14241
pH
S
[7601
G - maximum growth rate
18631
Admixture
pH
- 12.3
gelatine + p H
I14651
inhibitor
G, scales
11127,11281
nitrilomethylenephosphonate
G
14201
DhosDhonate
N
[ 10641
agglomeration. S
17971
G
[ 186.796.1 1261
G retard.
[ 11051
G ,N
[805]
polycarboxylic acids. polyphos-
17981 19731 N
I3271
1O.Tables
99
CaCO,
CALCIUM CARBONATE - calcite Molecular weight: 100.09
Density: 2710
System: trigonal
a
9
2-2
0.6361
Density: 2930
Molecular weight: 100.09
z=4
System: rhombic a
-
0.494
b
c ~0.572
= 0.794
CALCIUM CARBONATE - vaterite Molecular weight: 100.09 System: hexagonal a
-
0.4120
c
-
2-2 0.8556 -
~~
Admixture
Effect
Reference
(NaPO,),
S
110301
(NH4),S04
N. G
[ 14293
BaCI,
H
[ 14341
Ca2+. OH-
I8511
Ca2+/ c0 ?2- ratio
H
1668,6901
Fe2+.Fe3+
G
15291
~
100
I
10.Tables
I
CaCO,
(continued)
IAdmixture
Reference
KHVPO,
G
1560.5611
Mg2+
lnhibition
[ 10881
Mg2+
polymorph.
[998.13301
Mg2+
D. N
Ill811
G
131 1.348.562, 1088l
Mg2+
transformation
[611,630,6941
Mg2+
N.G
110311
Mg2+
Mg2+. Mn2+. Cr3+, Ni2+
I10681
G. H
Mg2+. Ni2', Co2+, Fe2+. Zn2+, Cu2+, modlf.
[ 12591
11 1301
Mn2+, Cd2+. Ca2+, Sr2+, Pb2+. Ba2+ Mg2+, Sr2+, Ba2+, Pb2+
G
17491
N - inhibited nucleation ol
[ 119,5051
calcite G, H
I12591
H
[ 14341
113851
1O.Tables
I
CaCO,
(continued)
I
Admixture
Effect
Reference
N - stabilized supersatura- I4231
tlon modif.
[2181
NH4+
G
I12581
NH,C1
N - low scale formation
I2461
NH4NOq
N
13661
Pb2+, Mn2", Mg2+,Co2+, NOq-
H
[6891
Sr2+
D
Sr2+
D
[1503]
Sr2+,Ba2+, Pb2+
modif.
[ 14661
uo,2+
modif.
11 164.13111
Zn2+
D
I13481
Zn2+
N. D
I4791
admixtures
D, H - aragonite
16731
admixtures
H, G
- aragonite/calcite
- aragonite
1674.7101
[ 11481
admixtures
I6101
admixtures
[ 14261
admixtures
(503,8841 [ 10301
101
102
10. Tables
I
CaCO, (continued)
I
Admixture
Effect
Reference
hexametaphosphate. pyro-
modif.
“2181
phosphate hexametaphosphate.
110931
pyrophosphate. dihydrogenphosphate. borate, tetraborate, vanadate inhibitor
G
I63 11
inhibitor
scale
[ 13331
lanthanides, Cd2+
G. D
114151
metaphosphates N a
N - stabilized supersat.
[lo721
oxalate
G inhib.
[4701
aH
[ 11861
pH
N. G
[682]
DhosDhates
H
1903.9761
G inhib.
15601
modif.
11 2361
Pod3-
[ 140 11
S042-
tripolyphosphate, surfactants
N
13 11,3481
acetate, gluconate. EDTA. tripoly-
G. N
110171
phosphate
10. Tables
c CaCOs
(continued)
Effect
Reference
albumine
G
[ 12461
benzenepolycarboxylic acid
G
1251 I10681
citrate, stearic acid Congo red, other dyestuffs
G - retardation
fatty acid
I7141 I491
G
I14141
glycerophosphate. PO,3-
inhibition G
[ 10861
organic colloids
G
[lo121
gluconate. borogluconate. tartrate, polyacrylate
organic polymers
[1406]
organophosphonic acid
[ 10481
- low scale formation
phenol. resorcinol, hydroquinone
N
phosphonates
G
1187,10871
phosphonates
G
I10871
12461
polyethylene oxide
I3941
polyglutamic acid, polyvinylsul-
[ 11651
Dhonate polyglutamic acid, DolwinvlsulDhonate
[ 11671
103
10. Tables
104
CaCO, (continued) Admixture
Effect
Reference
polymers
S
114061
stearic acid
N
[829,8301
surface active substances
H
[ 14341
surfactants
modif.
[ 1280l
tetrakis(phosphonomethy1)tetra-
G
114301
Admixture
Effect
Reference
KF
H
[ 1416,14171
azacyclododecane
Ba'NO,
BARIUM TITANATE Molecular weight: 233.26 System: cubic R
0.397 ~~
Nb,O,. Ta,O,,
~~
Sb,O,, Bi,O,
~
~~
114211
10.Tables
105
CaC20,. H 2 0
CALCIUM OXALATE monohydrate Molecular weight: 146.12 Effect
Reference
[SO1,802,12833 G
I4251
H
I551 11 171
G. N
[72.8851
G, aggreg.
111421 [841.994.1142, 12831
I
N a citrate
173,513.841.964. 10991
Na pyrophosphate
N
14191
Na,P20,. trlpolyphosphate.
N. G
19651
admixtures
inhibition
[ 11731
admixtures
H
1511
admixtures
G
[499.12343
admixtures
N
1413,12961
phosphonates. EDTA,KH2P0,. K,P,O,
admixtures
106
10.Tables
1
I
CaC204 H 2 0 (continued)
IAdmixture
Effect
phosphorus derivatives
G
pop
G inhibition
% G
pyrophosphate
N, G
pyrophosphate, citrate
G. aggreg.
pyrophosphate, phosphonate
transformation
I4181
amino acids
G , transform.
I 1681
amino acids
S. G. N
amino acids
transformation
carboxyglutamic acid
G
chondroitin sulphate, macro-
G
molecules chondroitinsulphate.
[73.419,512,1108,
I I1 1101
I161.365.4981
jentosansulphate citrate
G, N
citrate, pyrophosphate
G
dodecylammonium chloride
G
d u t a m i c acid
modif., G. aggreg.
hcparinc, polyglutamic acid
N
I
I
L!aC,04
H,O
'continuedl Admixture
mect
heparine inhibitors in urine
IReference [364.1107,11081
N. G
18181
Methylene blue
181
pH
15001
+
adenosine phosphates
phosphonate
G
I12331
phosphonates Dolvacrvlate polyacrylic acid polyacrylic acid, heparin, organic copolymers
1269,12831
I N. G
111721 12691
polyhydroxycarboxylic acids pyrophosphate, Methylene blue
N, G, S
13141
pyrophosphate, Methylene blue
N
I3 141
sodium dodecyl sulphate
inhob.
[ 12981
urea
N
[6591
uric acld
108
10. Tables _
ZaCl,
_
~
~
~
- 2 H20
ZALCIUM CHLORIDE dihydrate Molecular weight: 147.016 3ystem: rhombic L
-
0.7190
b
-
Density: 835
0.585 ~~
7
~
~~
Admixture
Effect
Reference
CaS04
N - unfavourable. scaling
19761
admixtures
G
16711
nucl. catalysts
N
1764,14351
polyethylene oxide
N
110701
Admixture
Effect
Reference
Nd3+
G
1461
CaC4H406
CALCIUM TARTRATE
1O.Tables
CaF,
CALCIUM FLUORIDE Molecular weight: 78.08
Density: 3180
system: cubic i
-
2-4
0.5451 Effect
Admixture
Reference
Fe2+,Fe3+
D
11 1801
NaCl + additives
dissolution
I5161
S
I1 0451
polyelectrolytes
G
I351
~ 0 ~ 3 -
G
I [ 12261
I polycarboxyllc acids.
G
I641
G
I34.9421
polyphosphates polyphosphonate
Admixture
glucose. arabonate
Effect
Reference
I7551
109
1 10
10.Tables
CaHP04 2 H,O
CALCIUM HYDROGEN PHOSPHATE dihydrate lYoleeular weight: 172.09
Density: 2306
System: trigonal Admixture
Effect
Reference
M @2+
N, G
I3621
Mg2'
1946.11501
Mg2'
N
121
Mg2+
G
I1 1501
Na'. NH.+
I8171
SnF,, SnCl,, NaF
19471
F-
N
I5411
I?-
S
111691
P,O,
N - retardation
12481
pH
modif.
I3991
pyrophosphate
G
1844.9411
U0,2+. SiF,2-. polyphosphates. F-.
S
11 1751
H
I12021
G, aggregation
11 1101
sio
1 carboxvlic acids
I
chondroitin sulphate. urinary
macromolecules ~~
citrate
[ 10041
di- and trlcarboxylic acids
11671
~~
10. Tables
I
ICaHPO,
111
2 H,O
(continued)
1 Admixture organic acid
I
P containing complexons
I3291
I
I6921
I
Effect
Reference
polycarboxylic acids surfactants
I J I tricarbo
Uc acid
H
I1671 I4861
urine inhibitors
CaHPO,
N. G
3/2 H,O
CALCIUM HYDROGEN PHOSPHATE sesquihydrate, BRUSHITE Molecular weiaht: 163.09 Admixture
casein
Effect
I
Reference II6361
112
10. Tables
Admixture
Effect
Reference
A13+,Fe3+, Mg2+
19151
Mg(N0Jp
I4561
NH,NO,
lower hygroscopicity
I9761
Admixture
Effect
Reference
Feso,. Ca Salt
H
15911
NaC1. NaC10,. KCl
G
I13311
ethyleneglycol. glycerol
H
I5911
10. Tables
Ca8H2(P0&
113
- 5 H,O
OCTACALCIUMPHOSPHATE Molecular weight: 982.581 I
Admixture
Effect
Reference
Mg2+
G
11 1501
Effect
Reference
Ca,(PO,),
TRICALCIUM PHOSPHATE Molecular weight: 310.20 Admixture
Be2+
112101
Mg2+
transform.
16671
citrate. pyrophosphate
transform.
11651
gelatine
transform.
I1661
polyacrylic acid
114
10.Tables
Effect di- and tricarboxylic acids
Reference 1261 1321
1301
Ca,(P04),
CaFz
FLUORAPATITE
Admixture
Effect
Mg2+
Reference I361
CaS03
CALCIUM SULPHITE
I
Molecular weieht: 120.15 Admixture
Effect
Reference
organic admixtures
S
18641
10.Tables
115
Molecular weight: 384.30 Reference
Admixture
12781 I7461 1361
G
1946.11501
Zn2+
G
12791
NaC1. LiCl. NH,Cl. CsCl. HCl
G
19451
c1-
H
I7451
F
precip. rate
I5411
F-
fluorapatite
17441
G
19101
DH
G
1542.8861
polyphosphates, polycarbaxylic acids
G
I271
biophosphonic acids
G
19431
I
glucose
, hydrolryhydroxyphosphonyl-ethane
12771 I2791
F
116
10. Tables
Ca3(PO4I2 Ca(OW2
Admixture
Effect
Reference
mellitic acid
G
I241
proteins
G
I9101
Casios
CALCIUM SILICATE Molecular weight: 116.17 System: monoclinic a = 1.531
b = 0.735
c = 0.708
p = 950 25'
1
Admixture
Effect
Reference
sr2+
D
I15031
BaSO,. BaF,. BaCl,
N. G
19241
10.Tables ~~
ZaSO,
~
~
~~
- 2 H20
XLCIUM SULPHATE dihydrate dolecular weight: 172.168
Density: 2310
jystem: monoclinic
2=4
L
= 1.047
c =0.659
b= 1.515
L = 151° 3 3 Admixture
Effect
Reference
M3+, Cr3+
H
114721
~ 1 3 +F .
NS
I1 1711
M3+,Fe3+.Mg2+
solubility
112811
A13+. Fe*, SPG2-
G
I1 5041
A13+, Na maleate
S, G. aggregation
12161
AlF,
N. D
I1 1711
AIF,
G. H
18451
Ca2+/so42-ratio
N
1635,8471
Cd2+
D
[ 13291
Cd2+
G
[ 1 1021
Cd2+
S
I1 1021
CdF,. AlF,
D
114611
Cu2+.Zn2+
G
[ 14401
F-modifiers, N3+
14151
Fe3+.Fe2+
[7351
117
118
10.Tables
CaSO,
- 2 H,O
[continued) Effect
Reference
H
13411
NaCl
G
11641
NaNO,
G
114601
Admixture
H+. Sr2+, Ag+. HSO;.
NO3-. N a + .
OH-
NH,, C G + , PO,^-.
co,2-, ~
0 0 ~ 2 -G
16081
10. Tables
119
I CaSO,
2 H,O
(continued)
I
Admixture
Effect
admixtures
G
admixtures
hvdration. G
admixtures
H
admixtures
G.
admixtures
N. hydration
I5101
admixtures
scaling
11851
Cd2++I-.Br-, S1032-
D
[ 14621
S
I12291
H
I
I [ 11981
F-.A13+
1 HPSOA
Reference
18 141
I4801 N, S . G
B24.98 11
HaSO, + H,P04
hydration
I5081
HQSO,. H,PO,
G. H
[ 15041
HqPOA
affects hydration
H3P04
pH
N
DH
G
pH
S. H
pH
G
[ 12491
p H , impurities
H. D
17181
[ 11841
120
10. Tables
CaS04 2 H,O [continued) Admixture
polyelectrolytes
Effect
Reference
D
15761
D. S
I5821
G
1371
surfactants + HNO, + H,PO,
114581
tripolyphosphate
G
1441
acrylates
H
I1 1151
acrylates
caking
112551
alkylbenzenesulfonic acid
G
Ill20l
aminomethylene phosphonic acid
N
111511
anionic organic polymers, tri-
precipitation
I12481
N. G -accelerate
1675)
polyphosphate calcium acetate and formiate, pentaerythritol carboxylic acids, phosphonates
H,
s
113031
carboxylic acids, phosphonic acids
G. H
113031
citrate
S. H
110791
citric acid, tartaric acid, gelatine
G
- retarding
12381
citric, succlnic. tartaric, polyacry-
precipitati on
12381
lic. polymethacrylic acid, gelatine
1O.Tables
-
CaS04 2
H,O
(continued) Admixture
Reference
gelatine. saponlne
H. S
gelatine. sulphite liquor
N. G
gelatinc. waste liquor of cellulose
N - retarding
1255,7371
gluconate. borogluconate. tartrate
precipitation
I14141
hydroxyethylidenbiphosphonic
G
[ 11251
[ 1204)
- retardation
I6751
sulphate
acid ~
hydroxyethylidene. diphosphonic
G
[ 1122.14401
N,G
[ 11521
acid. polycarbonates hydroxypropylene diamine impurities, alcohols naphtenate
I7191
H
organic phosphonates organophosphonic acid
I13971 I326.3281
N
[ 1155.1 156,
11571
phosphonates
G
[14391
phosphonates, phosphates, orga-
G
1311
N
I1153,11541
nic polymers phosphonic acid, acetate polyacrylamide
19601
121
122
1O.Tables
CaSO,
2 H,O
(continued)
IAdmixture polyacrylic acid
Effect
Reference
N
I285.12481
I 14401
polycarboxylates. hydroxyethylene bisphosphonic acid
~~
~
N. S
[1168]
polymers
G
1291
polyvinylsulphonate. polyglutamic
H. S
Ill681
S. H
11121
H - short Drlsms
I423.790.9761
N
13501
succinic acid. polyacrylic acid
H
12851
sulfonate
fflterabilitv
I13861
acid
surfactant
I10051 ~
~~
~
surfactants
N. G
I6371
surfactants
G
I11911
surfactants
precipitation
I11911
xylenediamintetraphosphonic acid
N
I3271
10. Tables
Ca(C5H3N4031,
CALCIUM URATE Molecular weight: 374.27
I
I Effect
Admixture
I Mg2+.K+
I
I Reference I
I [1308]
IN
CaWO,
CALCIUM TUNGSTATE Molecular weight: 288.00 System: tetragonal a
-
0.524
c
-
214
1.128
Admixture
Effect
Reference
pH
modif.
I471
123
124
10. Tables
I CdCO,
CADMIUM CARBONATE Density: 4250
Molecular weight: 172.42
z=2
System: trigonal a
-
0.6112
a = 470 24'
Admixture
Effect
Reference
Fe2+, Cu2+, Co2', Ni2+. Cr3+,
D
14911
WOd2-. Mn2+
Cd(HCOO),
2 HZO
CADMIUM FORMATE dihydrate
Admixture
Effect
Reference
Mn2+
D
158,601
10. Tables
CdS
CADMIUM SULPHIDE Density: 4820
Uolecular weight: 144.48 System: cubic L
-
2-4
0.582
Admixture
Effect
Reference
anionic polymers
coagulation
[ 10291
polymer, pH
N. G,S
[ 10321
proteins
G
I6031
Admixture
Effect
Reference
LlCl
anhydr.
I1391
COCl,
hydrate
I1391
125
126
10.Tables
Admixture
Effect
Reference
Mg2+. Mn2+
D
158.601
Co(CH,COO),
4 H2O
COBALT ACETATE tetrahydrate Density: 1705
Molecular weight: 249.09
IReference
Admixture
I Mg2'
I I1581
10.Tables
Co(NH,&(SO&
6 H2O
AMMONIUM COBALT SULPHATE hexahydrate Molecular weight: 395.216 System: monoclinic
a
-
0.923
b
-
Density: 1901 2-2
1.249
c
-
0.623
B = 106O 56' Admixture
Effect
Reference
Fe2+. Cu2+
D
[488,4891
Ni2+. Fe2+,Zn2+. Cu2+
D
(581
COSO,. 7 H,O
COBALT SULPHATE heptahydrate Molecular weight: 281.097 System: monoclinic
a
-
1.545
b
-
Density: 1948
2
1.308
c
-
-
16
2.004
B = 104O 42' Admixture
Effect
Reference
inorganic ions
H. adsorption potential
12751
Fe2+
D
(488,4891
127
128
10. Tables
CrK(SO,),
12 H,O
POTASSIUM CHROMIUM SULPHATE dodecahydrate Molecular weight: 499.43
Density: 1830
System: cubic a
rl
-
2-4
1.214
Admixture
Effect
Reference
Cr(V1)
N. G
19581
admixtures
D
1581
CrNH,(SO,),
12 H 2 0
AMMONIUM CHROMIUM SULPHATE dodecahydrate Molecular weight: 478.362
ISvstem: cubic Admixture
Effect
Reference
Cr3+
D. G
I15071
K+
D
1581
A13+. Fe3+
D
[581
10. Tables L
CsH&O,
CESIUM DIHYDROGEN ARSENATE Molecular weieht: 273.836 Admixture
Effect
Reference
CSI
CESIUM IODIDE Molecular weight: 259.810
Density: 4510
System: cubic a
-
Z=1
0.4562
Admixture
Effect
Reference
Cu2+,Co2+, Mn2+, Ni2+
H
[ 12531
129
130
10. Tables
CSNO,
CESIUM NITRATE Molecular weight: 194.910
Density: 3685
System: hexagonal a
-
1.074
CUCl,
c
-
2-9
0.768
2 HZO
CUPRIC CHLORIDE dihydrate Molecular weight: 170.482 System: rhombic a
-
0.744
b
-
Density: 2514 202
c = 0.3764
0.8126
~~
Admixture
Effect
admixtures polyethylene oxide
~
Reference
16971 N
I10711
1O.Tables
Admixture
Effect
Reference
gluconates. citrate. tartrate, EDTA
N
[ 10 151
Cu(HC0O)Z 2 HSO
CUPRIC FORMATE dihydrate
Admixture
Effect
Reference
Co2+, Cd2+
D, structure
I12751
Admixture
Effect
Reference
sulfanilic acid, metanilic acid
H
I3901
131
132
10. Tables
CUPRIC HYDROXIDE
CU~(OH)~CO,
BASIC CUPRIC CARBONATE
I
Molecular welght: 221.107 Admixture
Effect
Reference
H,O,
filtrability
[1399]
I
Molecular weight: 399.829
Density: 1926
System: monoclinic Admixture
Effect
Reference
Zn2+
D
I488.4891
Ni2+, Zn2+. Fe2+, Co2+, Mg2+
D
1581
.
10.Tables
CuSO,
133
5 H,O
CUPRIC SULPHATE pentahydrate
I-
Molecular weight: 249.680
syetem: Mclinic
a
b 82O 16'
j3
-
Density: 2286 2-2
-
1.070
c
0.597
107O 26'
y 11020 40'
Reference
[487,852.854] [8571 112121
19851 I9861 I621 I7161 [8531 [ 12871
19881 1423,9761 16321 [ l066]
I13411
134
10.Tables
Admixture
Effect
Reference
M3+. Cr3+
D
I581
rare earth elements
D
16141
Zn2+
D
[ 488,4891
Zn2+. C o 2 + ,Mg2+. Cu2+. Ni2+
D
1581
admixtures
D
1741
Admixture
Effect
Reference
I
c1-
1265.3121
I
I17111
1O.Tables
Fe(OH13
FERRIC HYDROXIDE
-
Density: 3400 3900
Molecular weight: 106.87
ISystem: hexagonal
2-1
Admixture
Effect
Reference
Cu2+, Ag+. Au3+. Ge4+.Sn4+.Pt4+,
D
I1971
intermediates
I701
Mn2+.Ca2+ EDTA. diaminocyclohexanetetra-
Fe203
FERRIC OXIDE (GOETHITE) Molecular weight: 159.70
Density: 5250
System: cubic a
-
0.830
Admixture
Effect
Reference
Ni2+
conversion of hydroxide
I2661
oxidizing agent
N. S
[ 11401
HC1
L9671
dioxyethylglycine, urea
I9671
organic anions
12671
135
1O.Tables
136
Fe304
FERROUS-FERRIC OXIDE (MAGNETITE)
-
Molecular weight: 231.55
Density: 5100 5200
System: cubic a
-
Z=8
0.837
Admixture
Effect
Reference
I
admixtures
I
FeSO, - 7 H20
FERROUS SULPHATE heptahydrate Molecular weight: 278.011 Syetem: monoclinic
a
fi
-
1.4020
b
-
Density: 1899 2=4
0.6600
c
-
1.1010
105O 34' Reference
ICd2+,Cu2+ I TiOSO, admixtures
S
I6501
10.Tables
137
I H2O
ICE Molecular weight: 18.016
Density: 917
System: hexagonal a
-
2-4
c = 0.734
0.462
I
Admixture
Effect
Reference
Ag halogenides
N
17431
AgI
N
I342.12511
impurities
N - retardina
[lo241
LiCl
N. H
13761
I LiI. CsF. K F
G
11 1431
G
15211
D
I14781
NaCl
G, D
I11901
NaCl, Agl. CuS
N
1355.41 11
admixtures
H
admixtures
N
110911
a-fenazine, floroglucine
N
13541
alcohols, org. acids
N
[4473
aliphatic alcohols
N
[lo501
amino acids
N
[4481
CXHROX.
G. D
I1 1901
l i
I6401
CliHgq011
glycoproteins
- dendrites
I1 1 13.11141
138
10.Tables
H2O [continued) Admixture
Effect
Reference
organic substances
N
[355,411]
starch
N
[396.397.9921
sucrose
H
[822l
sucrose
G
18231
ternene
N
111211
HSPO4
PHOSPHORIC ACID Molecular weight: 98.00
Density: 1870
I
Admixture
organic impurities
Effect
Reference 16911
10. Tables
H3BO3
BORIC ACID Density: 1435
Molecular weight: 61.832 System: triclinic
a a
-
0.704
b
9 2 O 30'
0
Admixture
-
-
2-4
0.704
c
1010 10'
Y
-
-
0.658
1200 00'
Effect
Reference
D
(13141
191
H,SiO,
G
KMnO,
H. S - favourable
sop
S.
N. G
flaking agents
I2151 16161 111821
gelatine. caseine
H - flakes
1423.9763
polyacrylamide.
S
[ 13881
polymethacrylamlde polyelectrolytes
I2201
139
140
10.Tables
HgBr2
MERCURIC BROMIDE Molecular weight: 360.398 System: rhombic a
-
0.4624
b
-
Density: 6053 2-4
0.6978
Admixture
c
-
1.2445
Effect
Reference
H€!(CN),
MERCURIC CYANIDE Molecular weight: 252.625 System: tetragonal
a
-
0.9670
Admixture
c
-
Density: 3996
I
Z = 8 0.8920
Effect
Reference
.
10. Tables
KBSO,
4
141
Ha0
POTASSIUM PENTABORATE tetrahydrate Molecular weight: 293.26 Syetem: rhombic a
-
1.108
b
-
2=4
1.114
Admixture
c
-
0.897
Effect
Reference I
pH
N
Molecular weight: 166.228
19401
Density: 2155
Syetem: monoclinic
I
Admixtare
Effect
Reference
admixtures
G
112871
polyethylene oxide
N
[ 10701
142
10. Tables
KBr
POTASSIUM BROMIDE Density: 2750
Molecular weight: 119.002 System: cubic a
-
2-4
0.0660
-~
Admixture
Effect G
- decrease
D
Reference I3401 12611
~
D
I3 181
G
t3223
' inorganic anions
1274,3191
,
- cube/octahedron
Pb2+
H
Dh2t
D
[1161]
D
I391
admixtures c1-
I2 15.4723
I3231
N
I10231
OH-
"7041
- retard growth of / l o o /
alifatic carbon acids
G
Brilliant Cro cein 9B
H
14101
G
[126.127,128.
I
phenol
I1311
1O.Tables
KBrO,
POTASSIUM BROMATE Density: 3270
Molecular weight: 167.000 System: trigonal L
3
-
Z=1
0.4403 8 6 O 00'
Admixture
Effect
Reference
NaNO,. Pb2+,Th4+.Te(1V). V
favourable
I4721
Pb(NO,),. NaNO,
G
[669l
Cr3+, Pb2+. Ca2+. Na+. K+,
N
[628l
admixtures
N
El91
KCN
POTASSIUM CYANIDE Density: 1520
Molecular weight: 65.1 1
2-4
System: cubic R
-
0.656
I
Admixture K,Fe(CN),
N(CH,CONH,),
Effect
H.caking
I
Reference
143
144
10. Tables
K2C2O4 * H a 0
POTASSIUM OXALATE monohydrate Molecular weight: 184.231 System: monoclinic a
-
0.9320
b
-
Density: 2145 2-4
0.6170
c
-
1.0650
Admixture
Effect
Reference
admixtures
G
I7821
Admixture
Effect
Reference
KC1
D - C1-
I8571
10. Tables
KCl
POTASSIUM CHLORIDE Molecular weight: 74.551
Density: 1989
System: cubic
2-4
a = 0.0293
.
Admixture
Effect
Reference
A13+,Ba2+,Cd2+. Cu+. Cu2+, Fe2+,
N. H. D
I7801
Fe3+,Hg2+. KCN. K3Fe(CN)6. K,Fe(CN)6, Mg2', M n 2 + , NH,+. Ni2+, Pb2+,Sn2+,Sr2+, Zn2+ ~
Ba2+
N, G. H
I7341
Ca2+,Sr2+,Ba2+
D
13 181
Cd2+
D, G. hardness, el. c o n d u -
[ 12671
I
2uvity
I
Cd2+
d n
[32 11
C02+
D
113201
hardness
I12681
D
11264.12651
D
[ 1265,1269,
12701
D. melt
12711
145
146
10.Tabbs
Effect
Reference
G,H
1956,9571
G
- retarding effect
H, caking K,Fe(CN),
13401 [ 1036,10551
G
K,Fe(CNIR. Pb2+. Co2+,Cu2+ K,Fe(CN)6. PbCl,, BeCl,, MgCl,,
I 1881
H
LiC1, ZnCl,.. CdCl,. NiC1,. SnC1, K,Fe(CNl,.
K,Fe(CN),
G,D
112631
D
12963
- strong retardation
KNO,
G
KPbCl,
H
18661
N
11 2881
G
113531
D
I13211
H
I12201
H - favourable
19261
H - favourable
19273
G
I1481
N. G
I 14571
18031
1O.Tables
147
KCl (continued)
Admixture
Effect
Reference
NaCl
G
I73 11
NaC1. MgC1,
I11831
NaC1. NH,Cl. MgC1,. AlCl,
17301
NaCl
I727.7293 ~
NH4Cl
D
I7321
NH,Cl + KBr [+K$X),)
D for creep crystallization
17201
N@+, C O ~ +C. U ~ +29'. , Mn2+.
D
I 1269,1270)
Sn2+,Cr3+, Fe3+, Cl-, NO,.,
sod2-
0-containing i o n s
[1461
Pb2+, Fe3+
Ipb2+
D
I11611
G. D
I149.150.151.
1521
D. G. N - retards nuclea-
i474.475.476,
tion
4781 ~~
~~
G.H - change growth rates 16071 of faces
N
1638,9831 I4771
148
10.Tables
Admixture
Effect
IPb2+
Ipb2+
Reference [917.1260, 12321
G. H
[149,1408. 1474.3203 1541
S - favourable
19761
S - favourable
[4231
D
14771
favourable
14723
N - retarding
19551
N. H
19541
I PbC12
H, caking
[ 1036,1055.
1095l
- retards /loo/
PbC12
G
PbC1,
H, D
I1 1961
PbCl,,, BaC1,. K,Fe(CN),
N. D
I7811
PbCl,. K,Fe(CN),, Cu2+,Cd2+.
N
[7781
Zn2+,Hg2+
111951
1O.Tables
149
Admixture
Effect
Reference
phosphate
caking
[ 10471
ZnC1,
G
17801
Rb+
D
1102.488.4891
RbCl
D. recrvstallization
18791
Sr2+
D
11 1 1 1,7681
admixtures
N
1528.771
admixtures
I705.7171
admixtures
11287,12741
admixtures
H
admixtures
I11701 13231
admixtures
agglomeration
114121
admixtures
D
1868.5141
admixtures
N, G
[11.121
admixtures
11 1121
Br-
[lo231
HC1
Lf. H
15641
HC1. KOH
La n
[go51
irn p urities
s
[50.5921
r7
J
17041
D
[695.721]
150
10. Tables
KCl (continued) AdmiXtUre
Effect
Reference
aliphatic amines (2OC)
caking
13851
aliphatic amines
N. G. S
I14941
amaranth
N. H. D
17801
amines
caking
I13951
bromobenzole, phenole. aniline
H - cube + octahedron
17401
G
I
- retardation
dyes
H
14101
ethyl-hexanoic acid, octanoic acid.
N, D, yield
17811
ethylenglycol. diethylenglycol
caking
113801
laurylaminoacetate
H
N(CH2CONH2)3,octadecylamine
H. caking
monochloracetic acid
acetate
I I3871 I
I
110361
octadecylamine
caking
I10551
octadecylamine hydrochloride, pH
H.G
110671
I
I
I I caking
I I10471 I
organic substances with free
caking
D
I451 I
I16811
I
1O.Tabks
151
KC1 (continued) ~~
~
~~~~~
Admixture
Effect
Reference
surfactants
Ostwald ripening
[ 14561
I123,1021,
surfactants
1022,14551
t
KC103
POTASSIUM CHLORATE Density: 2320
Molecular weight: 122.549 System: monoclinic a R
-
-
b
0.4647
-
2-2
0.5585
c
-
0.7086
10QO 38'
IAdmixture
Effect
Reference
H - /Oll/ + /001/
DO41
H
[205.2121
H
[2151
H
12141
Biebrich scarlet
H - /011/
14391
organic dyestuffs
H
[207.210,214.
s,o,~-, CrO,2-,
Cr,0,2-
2151 Ponceau red
D. H
13 15.8351
152
10.Tables
KCIO,
POTASSIUM PERCHLORATE Density: 2520
Holecular weight: 138.549 System: rhombic a
-
0.8834
b
-
2-4
0.6660
c
-
0.7240
Effect
Reference
D
I8921
H - /001/
I211.2151
sop
H
Bordeaux B. Chromotrope 8B.
H - /Oll/
- /llO/
I2141 I2 11,2151
Wool scarlet, Solochrome black.
Fast red extra ~
Brilliant Congo red, Chlorazol fast
H - /102/
1211.2151
orange, Brilliant &urine. Trypan red, Bordeaux B ~~
~
Chromotrope 2B
H -
/loo/
1211.2 151
Chromotrope 2R. Chromotrope 2B.
H-
/loo/
I2141
Acid magenta, Alizarin Delphinol, Alizarin cyanine ~~
Erio fast fuchsin. Cr,0,2-
H - /001/
Ponceau red sulphonated dyestuffs
12141 11281
H - /Oil/, /102/
12141
1O.Tables
153
K,CrO,
POTASSIUM CHROMATE Density: 2732
Molecular weight: 194.190 System: rhombic
a
-
0.6920
b
-
294
1.0400
c
7
Admixture +
KC1.
(NH4),Cr04+ K,S04 + KC1
s,o,2Trypan red, Acid green DD extra Water blue, Methyl blue, Wool green, Naphthol red S, Scarlet GR. Past acid magenta, Tartrazine
azo acld red. Acid yellow, and other dyestuffs
0.7610
+ Reference
1
(NH,J2Cr04 + K 2 S 0 4 . %SO4
-
H - /001/
[ 2 13.2 14.2151
H - /010/ - /Oll/
I213.214.2 15)
154
10. Tables
qCr2O7
POTASSIUM DICHROMATE Molecular weight: 294.184 System: triclinic a
a
0
0.7340
b
82O 00'
I3
-
Density: 2690
z=4 0.7490
c 11.3390
97" 56'
y
I
=90° 30'
Admixture
Effect
KMnO,
H
Scarlet 2R. Naphthol black B.
H - /010/. /111/
- /010/
Reference 1213.214.2 151 213.2 14.2 15
Bordeaux S, Ponceau S extra, and other dyestuffs Methyl orange, Chloramlne yellow
19761
KH2As04
POTASSIUM DIHYDROGEN ARSENATE Molecular weight: 180.033
Density: 2867
Syetem: tetragonal a
A
-
0.7610
c
-
Z=4
0.7150
Admixture
Effect
Reference
pH
G. H
I1221
10.Tables
155
I
POTASSIUM DIHYDROGEN PHOSPHATE Density: 2338 System: tetragonal
a
-
0.7430
c
-
2-4
0.6940 -~ ~
Admixture
Effect
Reference
AlWO,):,
dissolution
1911
G
[lo531
Al3 +
G
[931
Al3+
H. D
15371
Al(NO,),,
KOH
~~
1535,5393
Fe3+
N, G
[ 1344.13451
G
I1691
1171 12801
~ r 3 +
-
Cr3+
G . H, N. D
15401
Fe3+
H - dendrites
12151 18391
Fe3+
16211 optical properties
17751 I12711
156
10.Tables
IAdmixture
Effect
Reference
I8401
H
FeCl,, pH KAI(SO,),. A3+
18393
13951 G. H
15381
1 12081
KCIO, KOH. Ni2+, Fe3+
optical properties
1449,7751
Na,B407
favourable
14721
Na,B,07
G. H
Pb2+,KNO, pH > 4,Cr3+, Fe3+.A3+< 50 ppm
H - prisms without pyramids I 1207.12151
I
admixtures
admixtures
G
[281.989.1206, 14821
G. H
[536.1081]
D
12981 13431
IO.Tables
KIOS
POTASSIUM IODATE Density: 3930
Molecular weight: 214.001 System: cubic a
-
Z=1
0.8920
Admixture
Effect
Reference
pH
N
I9401
157
158
10. Tables
POTASSIUM HYDROGEN TARTRATE Molecular weight: 188.184 System: rhombic
-
a 0.7614
b
-
Density: 1956 2-4
1.070
c
-
0.780
I
Admixture
Effect
Reference
cu2+
H - /111/
1213,2141
KgS04
G
[ 10851
admixtures
G
17131
dyes
H - /010/
12 13.2 141
tannin, red polyphenol. pectin
G
[ 10851
~~
KHC8H404
POTASSIUM HYDROGEN PHTHALATE Kolecular weight: 204.23
Density: 1630
Admixtove
I Effect 1 Reference
Fe3+, Ce3+
D
admixtures
15591 14541
admixtures
G
[557.5581
glycerine, polyethylene glycol
G. H
19951
10.Tables
KI
POTASSIUM IODIDE Molecular weight: 166.002
Density: 3123
System: cubic
2-4
D = 0.7062
Admixture
Effect
KBr
D
N a + , Rb', Cs'. Cl-, Br-. NOR-
D
Pb2+
H
Pb2+.Ti4+,Sn4+. Bi3+, Pe3+
favourable
- mixed crystals
Reference 1421 1401
- octaeders
admixtures
D151 14723 I3231
OH-
G
17041
Fast acid magenta, Brilliant yellow
H
I4 101
surfactants
G-retard
17401
LiNH,C,H,O,
AMMONIUM LITHIUM TARTRATE Molecular weight: 173.056 Admixture
Effect
Reference
A3+,Mg2+. Ca2'. Pb2+, Si. pH
H
I8401
159
10. Tables
160
mo2 POTASSIUM NITRITE Molecular weight: 85.104 Syatem: monoclinic R
0
= 0.4450
-
b
-
Density: 1915 2=2
0.4990
c = 0.7310
114O 50'
_____~ ~
~~
Admixture
Effect
Reference
Fe2+
favourable
14721
KMnO,
POTASSIUM PERMANGANATE Molecular weight: 158.034
Density: 2738
System: rhombic
a
-
0.9099
2=4
b = 0.5707
c
-
0.7411
Admixture
Effect
Reference
Cr,O,2-
H - /001/
I20 1,2021
CrO,2-. Se0,2-. CO,~-
H-
/loo/
12151
H3.P04-
H-
/loo/ + /011/
I2 151
HP042-.HA SO,^-,
As0,3-
H - /011/+
/loo/
12151
HQAsOd-
pH, CO,
H,S
I979.9841
10. Tables
161
KNO,
POTASSIUM NITRATE Molecular weight: 101.103 System: rhombic a
I
-
0.5430
b
-
Density: 2110 2-4
0.9170
c
-
0.6450
Effect
Reference
D
16791
N. G . S
11222.12241
Cr3+
clusters
18251
Cr3.’, Na+
N
[12141
cs+
D
[ 12951
Fe3+, Ni2+. Li+
diel. permeability
[6431
isomorphous admixtures
G, D
[6781
K2Cr,0,. Cu(N0219
D
(6491
KC1
D-
Pb2+
H
(6421
Pb2”,Th4+. Bi3+
favourable
[4721
Sr2+
D
[6831
admixtures
H
16981
admixtures
G
I163.1116.
Admixture
c1-
18571
11171
I CH,NH,Cl, C , ?,H,f;NH,.HCl
N. G
r 12221
162
10. Tables
mo3 continued) Admixture
Effect
110981
dyestufs Fast red extra, Bordeaux S.
Reference
H - /001/ platelets
12241
H, caking
I14481
N. G. S
[ 12241
N
I8601
Tartrazine. and other dyestuff's Fast red extra, Naphthol red S, Tartrazine. 1.4-diaminoanthraquinon-2-sulphonate methylamine hydrochloride, dodecylamine hydrochloride, fluorocarbon surfactant surfactant
11231
KTiOPO,
POTASSIUM TITANYL PHOSPHATE Molecular weight: 197.975 Admixture
Effect
Reference
C9+
D
I1431
10. Tables
CNaC,H,O,
SODIUM POTASSIUM TARTRATE Nolecular weight: 210.167 Admixture
Effect
Reference
A P . cuco,
H
[ 12931
Cu2+. H,BO,
H - /210/
1213.2151
cuco,
H - retards /001/,shortening.
I901
decreases with decreasing pH cuso,
H
- retards /001/,effect rises
1901
with raising pH
H - retards /210/,stronger
I901
effect with decreasing pH MnCI,
H -retards / 1 1 1 / and /Oil/,
I901
alkalis - stronger effect (NH&M004. Na2Mo04. NH4Cl.
H
13473
H2B01, CuSO,, Cu acetate, MgSO&
- /LOO/
Na+
H
Na3B4O7
G - retards, H - /210/
NH4+
I213.2151 I891 I213.2151
163
164
10. Tables
OJaC4H,0, continued) Admixture
effect
ref.
admixtures
H
11334.13351
Crocein scarlet 3B. Diamine sky blue
H, D
18961
Admixture
Effect
Reference
C103-,B,0,2-
H
12151
10.Tables
165
K2S04
POTASSIUM SULPHATE Molecular weight: 174.254
Density: 2662
System: rhombic
2=4
a = 0.5731
c = 0.7424
b = 1.0008
Zeference
Admixture N3+
2, dissol.
11791
Ca2+,Sr2+.Ba2+.&+, Pb2+, C s + .
v
12131
Ni2+
Ce3+
.
D retards reaystalliza-tion
52,874,875,876l
N
762)
G
767.918.14971
dissol.
13571
G
I 13561
D
[5201
D
12401
H. caking
[182,1036]
N.G
I1 1311
D
[680,1499.1500. 15021
K,Cr04 + KC1
D - creep cryst.
17201
166
10. Tables
I
Admixture
Effect
K,Cr04. Pb2+
Reference 16 171
K,Fe( CN)
G. dissol.
114.95)
KCIO,, K9Cr0,
H, I)
12211
KCr(S04)?
G
[ 14951 ~
Li
N
[ 14331
Mn2+. U 0 2 2 + . V 0 2 2 + . Cd2+.
favourable
14721
(NH,),SO,
D
I2961
Ni2+, Cu2+, Co2+, Mn2+
D
I3 171
NiSO,, MnSO,
D
12391
PbCl,
N, H
19541
D
15721
+
Fez+, CS+. Cu2+,A13+,Mg2+, sio,2-
[11001
admixtures
N
1424.14321
G
1757,766,906. 1273,1274,1355, 1357.14981
2 D
inor anic anions
18731
10.Tables
167
I K2s04
(continued) Admixture
Effect
Reference
s,o,2-. s,o,2-
H - platelets /001/
1203.214.2153
Alizarin yellow
H-
Amaranth
H, caking
[182.1036]
Crystal Ponceau
D
[6001
dyestuffs
H
1209,210,214, 215.
/loo/
12081
391.14471 [ 12731
18341 solvents
19301
surfactants
G
[237,7721
LiCl H2O
LITHIUM CHLORIDE monohydrate Molecular weight: 60.409 System: tetragonal a
-
0.7669
Density: 1762 2-8
c = 0.7742
Admixture
Effect
Reference
Mn2’. Cd2+. Sn2+,Sn4+,Co2+,
favourable
14723
Ni2+, Fe3+.Ti4+.Cr3+.Th4+
168
10. Tables
Molecular weight: 26.94
Density: 2300
System: cubic
a
-
2=4
0.401
Admixture
Effect
Reference
M gF2
D
I8081
FeF,
G, N
111971
LiI 3 HzO
LITHIUM IODIDE trihydrate Molecular weight: 187.891
Density: 2290
System: hexagonal
a
-
0.7460
2x2
c
-
0.6460
Admixture
Effect
Reference
admixtures
D. H
[ 11371
10.Tables
169
LiIO,
LITHIUM IODATE Molecular weight: 181.85 System: hexagonal a
-
0.5469
c
-
Density: 2=2
0.5155 ~
~~
Admixture
Effect
Reference
MnO;
H
I9901
admixtures
D, G
I3631
pH
G
I2471
Mg(CH,C00)2
. 4 H2O
MAGNESIUM ACETATE tetrahydrate Molecular weight: 214.47
Density: 1450 ~
Admixture
Effect
~~
-
~
Reference
10. Tables
170
LizSO,
HZO
LITHIUM SULPHATE monohydrate Molecular weight: 127.955 Syetem: monoclinic a
B
-
0.5430
b
-
Density: 2051 212
0.4830
c
-
0.8140
107O 35'
Admixture
Effect
Reference
D
[ 13501
H
[ 10801
H,SO,
H
I11091
pH
lower pH - better crystals
[959]
pH
- 5.0
H
- shorter crystals
pH 6.0 - 6.5
H - longer crystals
DH 6.5 - 6.7
favourab le
M@,&SO&
[ 10571
110571
1 I4721
6 HzO
POTASSIUM MAGNESIUM SULPHATE hexahydrate
IMolecular weiaht: 402.742
I
Admixture
Effect D
I
Reference [1189]
10.Tables
171
Mgcos
MAGNESIUM CARBONATE ldolecular weight: 84.33
Deneity: 2980
System: trigonal L L
-
2-2
0.561
48O 12'
pH
Effect
Reference
S
[1035.1167]
complexons
IlO2Ol
H. precipitation
I6531
DhosDhonates
G
I8121
polyglutamic acid, polyvinylsul-
N
[ 11671
hydroxyethylenediphosphonic acid, EDTA
I Mgc204
MAGNESIUM OXALATE
Admixture
Effect
Reference
surfactants
G
19441
172
10. Tables
MgF2
MAGNESIUM FLUORIDE Molecular weight: 62.32 System: tetragonal a
-
0.466
c
-
2-2 0.308
7
Admixture
Effect
Reference
Ni2+. Co2+
D
I14961
admixtures
G
131
Molecular weight: 160.388
1
I
I
Admixture
Effect
Reference
Mn2+. Zn2+, Co2+, N12+
D
158,603
10.Tables
Molecular weight: 360.688 System: monoclinic
a
-
p-
0.9324
b
-
Deneity: 1723 2-2
1.2597
c
-
0.6211
107O 08'
Admixture
Effect
Reference
Ni(N134)2(S04)2
D
[9281
Ni2"-,Fe2+,Cu2+
D
1581
Effect
Reference
D
1621
173
174
10. Tables
Molecular weight: 58.34 System: hexagonal a
-
0.311
c
-
Density: 2400
z=1 0.474
Admixture
Effect
Reference
admixtures
periodic crystallization
1201
pH
S
17881
saccharides. glycerine
G - retarding
113091
MnCOS
MANGANOUS CARBONATE Molecular weight: 114.95
Density: 3400
System: trigonal a
a
-
252
0.584 470 45'
Admixture
Sod2-.Se0,2-.
Ni2+, Cu2+, c02+,
Effect
Reference
D
18381
1O.Table.s
I
MgSO,
7
HzO
MAGNESIUM SULPHATE heptahydrate
Molecular weight: 246.469
System: rhombic a
-
1.1940
b
-
Density: 1680 2-4
1.2030
c
-
0.6870
Admisture
Effect
Reference
cationic admixtures
G
16221
Co2+, Fe2+, Cu2+
H. D
1571
D
1621 191
H - shortening, H2S0,
I90.524.9761
decreases this effect
I
G
Na2B407
[907.908]
shortening
Ni2+, Zn2+ H,BO,
- retarding, H -
+ NaOH
H - needles
12331
D
1488,4891
G
19293
D
1581
H
pH
G
methanol, ethanol
N
- shortening
1901
p- phenylendiamine
tensides
G
1728.7331
175
176
1O.Tables
M n S 0 4 H,O
MANGANOUS SULPHATE monohydrate Molecular weight: 169.011
Density: 2950
System: monoclinic (rhombic)
a
-
b
0.6740
-
c
0.8100
Admixture
-
1.3300
IEffect
I Reference
I
I
-
Mn(HC00)2 2 H 2 0
MANGANOUS FORlMATE dihydrate Molecular wefPht: 181.007
Admixture
Effect
1O.Tables
177
UH,Br
WMONIUM BROMIDE dolecular weight: 97.942
Density: 2429
bystem: cubic L
2-1
= 0.4047
Admixture Cr3", Fe3+, Cu2+, Nl2+, Co2+,Fe2+.
Reference
H
11322.1323,
Zn2+.Mn2+. Cd2+.Be2+
13241
Cu2+ + Fe3+
I6021
Cu2+, Cd2+
D
I6011
Fe2+,N a +
caking
110431
admixtures
H
[ 11701
aliphatic monoamines
caking
I5901
hydrazlne and guanidine
caking
I4021
caking
110431
caking
[13721
derivatives lactame oil 0-
and p-vinylphenylmethan
sulfoaclds 1221.10971
10. Tables
178
NH,Cl
AMMONIUM CHLORIDE Molecular weight: 53.491
Density: 1527
System: cubic B
-
Z=1
0.3866
Admixture
Effect
Reference
Be2+
H
[ 1322.1323.
13261 Cd2+, Fe3+,A13+
16021
Cd2+
[5991
Cd2+
D. H
[ 1324.13261
CdCl,. K4Fe(CN)6. pectine.
H. caking
I10361
G, N
[1427j
Co2+, N12+, Mn2+, Cu2+
D
112691
Cu2+, Co2+, Ni2+
D
15811
N(CH,CONHY)? Co2+,Mn2+.Fe2+,Cr3+, NaSCN, CH3COONH4, (NaPO,),
cU2+,
Co2+, Ni2+, Zn2+, Mn2+, Sn2+ D
[ 1264,1269,
12701 CUCI,
D
13 161
cuso,
H - cube
I1131
D Fe3+,Cr3+, C u 2 + , Mn2+, ~ p + c02+, ,
I600.1322,
Cd2+
1323.13263
I
I
NHaC1
(continued)
I
Admixture
Effect
Reference
Fe3+.Cu2+
H
16421
Fe3+.Ni2+, Co2+,CuSO,
H - dendrites/cubes
1773,7741
FeCl,, CuSO,. CuC1,
H - transparent cubes
16601
KC1 + KqSO,
D for creep cryst.
17201
Mn2+,Mg2+,phosphatcs
H - favourable
19261
Mn2+. Zr4+,Cd2+. Fez+.Cuz+,
favourable
14721
H , anomalous mixed
12601
Co2+,Ni2+, Fe3+.Cr3+
Mn2+, Fe2+,Co2+,Ni2+. Cu2+
crystals Cd2+. Mn2+.Co2+,Cu2+,
H
14401
Ni2+, Fe3+. Sod2-. NO3-.
ammonium acetate a n d formate NaCl
I12911
NiCl,
H
18201
Pb2+
S - favourable
[4231
H - dendrites/cube
14231
I
C032-. SO,2-.
F-. I-.
favourable
180
10.Tables
m,c1 (continued)
I
Admixture
Effect
Reference
ZnC1,. AICl,, NiC1,. CoC1,. MnC1,.
H
[ 10961
FeCl,. CdC1,. (NH4),S0,. CuC1,. (NH,),MoO,. HgCl, admixtures
N
C0,2-. HCOR-.Na+.NH,
H
HC1
caking
inorganic anions
H ~~
~
phosphates
G
phosphates. CO,,-. SO,,-
H - dendrites/cube
alkylarninoacetate and -chloride
caklna
dyes
I12181 ~
~
extract of peanuts
favourable
I8041
laurylaminoacetate
H
13871
murexide
H ~~
I440.6421 ~~
octadecylamine hydrochloride
caking
I3391
pectine. pectinlc acid
H - prolongated trans-
13451
parent crystals pectine
N. S
18811
phenolsulphonic acid
S. caklna
15871
I solvents
I12051
10. Tables
NH,CI [continued) Admixture
Effect
Reference
urea
H
1221 I
urea
H - cube aggregates
1773.7743
urea
H
urea
H - cubes
I 1096.10971
urea, lactose
G
112191
urea, pectin
G. N
114271
Admixture
Effect
Reference
Cu2+,Ca2+,Fe2+,Th4+
favourable
14721
Zn2', Cd2+.Mn2+. Ca2+.Mg2+, Sc3+,Co2+, Ni2+
- dendrites/octahedron
19761
"7231
181
182
10.Tables
NH4ClOs
AMMONIUM CHLORATE Molecular weight: 101.50 Admixture
admixtures
H
surfactants
inclusions
Admixture
Effect
Reference
Ca,(PO,),
caking
114131
so,2-
H
dyes
H - /Oil/, /102/
surfactants
[ 11701
- /llO/
[2 14.2151
1214,2151 15323
10.Tables
System: rhombic a
-
0.7290
218
b = 1.0790
c = 0.8760
Admixture
Effect
Reference
dehydrating substances
stabilization
14631
NaHSO,. MgCl,, CaSO,
caking
14573
admixtures
I781
hydrocarbons
stabilization
14631
oil, sugar
13. favourable
14591
Admixture
Effect
Reference
dyes
I-I
[214.21 51
glycerine. Na,B40,. sucrose
favourable
14721
183
184
10. Tables
I
NH4HC4H40,
AMMONIUM HYDROGEN TARTRATE
1lKolecdar weinht: 167.124 Admixture
I
Effect
Reference
(NH,),HPO4
AMMONIUM HYDROGEN PHOSPHATE
I
Molecular weight: 132.056
I
Density: 1619
Svetem: monoclinic
lAd*ture
Imeet I H - platelets/cubes
IReference
I I
10. Tables
185
NH4H2P04
AMMONIUM DIHYDROGEN PHOSPHATE Density: 1803
Molecular weight: 116.026 System: tetragod
a
-
0.7610
Admixture
c
-
z=4 0.7630
Effect
Al3+
Reference
I5351
AlCI,, FeC1,. Cr3+
G.H
[289.2901
Ba2+,Sod2-
higher electric conduct.
14231
Co(NO2)q
G. D
[ 14431
cr3+
green prismatic faces
14233
H
1176,13361
H
15783
I Cr3+,N 3 + .Fe3+
I
Cr3', Fe3+
CrCI,
G
- retarding, N - wider
P763
metastable zone N. G
G
"2893
H. G - lower growth rate of
I5791
prismatic faces
H
13751
If - wedges
14231 ll6l 19743
186
10.Tables
NH,H,PO, (continued) lAd*e
Effect
Reference
G. H
12641 12951
G. H
17711
H, G
I15141
G fluctuations
I15141
D. H - wedges
1161
H
- thicker crystals
I161 I12943
pH. FeC13. CrPO,
D. H - rhombic shape
1161
H - prisms
I9211
G. H
1227,228,229,
I 2301
pH-3.9. Fe3+, Cr3+,A3+.Sn2+.
favourable
I4721
H - wedges
I7221
admixtures
D - purity
19341
admixtures
ti
1249,14823
admixtures
G. H
ll08ll
admixtures
H -platelets
NH,
Sn4+.Cr3+,Fe3+,Ti4+,Au3+. H 3 + , Be2+
10.Tables
(continuedl Admixture
Effect
Reference
H,P04
N - slowning
17221
PH
H - a t higher p H regular
11 1091
growth pH
G
19521
pH
S, H
I14181
p H > 3.6
H
pH. gel
G
PH. NH,OH. H 3 P 0 4
- shortening
H
EDTA
H
surfactant
N
surfactants
G
- lower rate
16061
187
Density: 1652
Molecular weight: 80.043 system: rhombic b
-
Z=4
c
0.7660
-
0.5800
Reference I
'D S. decreases
caking
'1
16521
'
[?I861
' [ 13 16.13 171
safety
16701
H. caking
(10361
lower hygroscopiclty. tight
13521
hygroscopicity
16481
coarsening of dendrites
13241
caking
[2971
stability
10.Tables
I
NH4NO3 (continued1 ~~
~
~~
Admixture
Effect
Reference
admixtures
N
I 13641
admixtures
H. stability
13251
Acid magenta, Bordeaux S.
caking
[ 14481
H. caking
[ 10361
H
I13471
Azofuchsine. Chromaeol yellow Acid magenta, N(CH2COONa)3. Bordeaux S alkylamines, Sod2-.sulphonates amine
16431
aminoalcane salts
I3881
dyes
H - /010/platelets
[224.1098]
dyes
noncaking platelets
W63
glycole. glycerine
caking
14621
laurylaminoacetates
H
13871
S
I6611
hosphate solids
I
salts of p-rosaniline disulphonic
I4001
acid
w
sodium ethylsiliconate
caking
I13941
sulphonates
caking
[ 1 376.13771
toluidine, azobenzole, anthranilic
hygroscopicity
if3581
acid
189
190
10. Tables
NH4NOs
[continued)
Admixture
Effect
Reference
toluidine. resorcin. azobenzene.
hygroscopicity
16431
malelc acid urea
[1391] cakina
wax. dves
I2971
“H412BeF4
AMMONIUM BERYLLIUM FLUORIDE Molecular weight: 121.263 System: rhombic
m
-
0.58
Admixture (NH4)&rO4
b
-
c
1.020
-
IEffect D
0.75
IReference
10. Tables
dolecular weight: 132.134
Density 1769
System: rhombic L
= 0.5951
191
2=4
b = 1.0560
c = 0.771 b I
Admixture
Effect
1 Reference
M,(SO,),
H
1114633
M 2 ( S 0 4 ) 3 150-200 ppm
H, decreasing mois-
I
18831
ture M3+
caking
15831
A13+. Cr3+,Fe3+
S. H. N
(1365,13661
A13+. Fe3+
S decreasing
I79 11
M3+.Fe3+,Cd2+,K+
H. S
13041
M3+.Mg2+. Fe2+,pH, urea
H - rice corn
1977,9821
A13+. Mn2+. Cu2+
N. G . S . H
11881
A13+, p H
H, noncaking flakes
14641
As5+
H
- needles
I48 11
As5+ 0.03 %
yellow crystals
15731
15271
Ca2+. Fe2+
cakin
1481
S. H. favourable
14811
192
10. Tables
I
Admixture
Effect
Reference
I181
caking
14031
cr3+
H
I7151
Cr3+
G
I6931
Cr3+
N. G. S
17861
cr3+
N
17631
Cr3+ + H,SO,
H - prisms
I661
Cr3+ >50 ppm
H - longer,
I661
decolorUed
Cr3+. Fe3+
G
[ 14731
Cr3+, H,PO,
S. colouring
15881
cu2+
N. G. S , H
I1951
Cu2+,A13+. Mn2+
192
Fe2+
113181
Fez+. A13’
1378,379,3801
Cu2+, Na+. pH
D
972
N. H. S
[ 977,9821
10.Tables
Effect
Reference
H. S. caking
12761
favourable
14821
at high conc. unfa-
I830al
193
vourable
H - prisms
[ 170.1711
D
19711 ~
- needles
(84,4291
H. S - needles
I482.5431
H
G. H
- needles
I14711
Fe3+,A13+. Cr3+,H,S04. P,O,
H. S
[105.106.107]
Fe3+,As+,Cr3+,Mn2+
S. caking
[ 13611
Fe3+,A3+,Mg2+.CaC,04
H
I14381
Fe3+.C1-
[ 13961
Fe3+,Co2+,Cr3+,Cu2+
D
14901
Fe3+.Fe2+
D
[969.970.9711
Fe3+.Fe2+.Na,S,03
S
13001
Fe3++, Fe2+.pH
D. H. N
19721
Fe3+,organic admixtures
H. colourlng
1706.7071
194
10. Tables
Admixture H,C,04.
Na3S,03. Mg2+
I Effect
Reference
H - shortening
13511
H - hexagonal rice
i3511
corn HqSO, 2g/L1A 1 9 0 3 8g/L
H - rice corn
1651
H,S04. A13+. Fe3+,Mg2+. Na,S,O,
H - rice corn
13821
H,S04, Fe3+.Cu2+,Mn2+,Na,S,03
H - rice corn
13811
isomorphous sulphates
H
14551
K 3 S 0 4 . K2Cr04
H. D
12211
Mg2+
H, S
Mg2+, Mn2+.Zn2+. Cr3+, NaC1.
N, H, S
sulphonlc acids
Mg2+. Mn2+,Zn2+,organic
H. S
14651
MgS04 + HqC,04
H - shortening
151
Mn2+
G,S
19751
Mn2+
N. G , S
11941
Mn2+, Cu2+, Al3+
H. S
11911
sulphonic acids
1O.Tables
I
(NH4)2s04
fcontinuedl Effect
Reference
N. 13. S . D
[189,1901
caking G
D H - rice corn
I977.9821
G.H
(13041
H
_____
pH, urea, A13+,Fe3+.Mg2+, Cu2+,
r9771 ~~
H - rice corn
[1200]
H. S
[ 10271
H. S
19761
D
15201
G. I3
[ 14701
admixtures
[307.1211, 14281 S
[7651 I40 11
195
196
1O.Tables
I
“H,),SO,
[continued]
I
Admixture
Effect
Reference
CN-.SCN-
unfavourable
17911
H,S04
minimum
[2701
H9S04
[ 172.5851
HSPOI
[ 9 7 7.98 2,1951
P,05 + 0.5 Yo H,SO,
H - favourable
PnOc. HnSO,
€1.
pH
S
I10341
G. H
[ 12873
s
I2331 I13591
113631 pH6-7
H. S
I3041
pH. C1-
G. S
[ 10691
cakinr!
14231
amines
caking
I2411
Bordeaux S
II - noncaking long
[2241
alkylarylsulphonates
’
brittle crystals Bordeaux S, Azofuchsine.
H. caking
[ 14481
Tartrazine. Diamine sky blue cyclohexanone oxime. hydroqli
amine sulphate. caprolactame
18331
10. Tables
I Admixture
I
Effect
Reference
dyes I I
I
dyes
1 caking
glucose, molasses
‘H.S
glycerine. urea, pectine
H. S
glycol, glycerine
caking
imidazoline salts
caking
I13671 I
impurities from caprolactam
I I
15061
nonionic surfactants
N
organic admixtures
H
1706,7071
organic dyes
H
13911
organic substances
G
organic sulphonic acid
H. S
14651
pectine. wood extract
S. H
14601
phenol, pyridine
G.H
15271
phenol, pyridine
H
[ 14381
polyacrylamide
S
I14041
- higher
polyvinylalcohol surfactant. dye
748
1661
I13961
caking
[ 13601
197
198
10.Tables
~~
Admixture
Effect
Reference
surfactants
caking
[789,1289]
tar
H
(4811
urea
S - favourable
1461.1 1921 [977.9 821
urea, phenol, glycerine, starch, glue
I
-
Admixture
Effect
H,S04. (NH4),S04
N. G
[6541
H 2 S 0 4 . (NH4)2S04. Nb205, Ta205
N. G Nb retards, Ta
1655,6561
I accelerates
Reference
10. Tables
Admixture
Effect
Reference
UO,Fq, F-
S , N. G
I2541
“H,),W04
AMMONIUM TUNGSTATE Molecular weight: 283.998
pods-,~
~ 0 , 3 sio,2- .
Iyield
I I3561
199
200
10.Tables
Na,AlF6
SODIUM HEXAFLUOROALUMINATE (CRYOLITE) Molecular weight: 209.941 Syetem: monoclinic
IBa
b
0.5460
Density: 2900
-
c
0.6610
-
2-2 0.7800
900 12'
Admixture
Effect
I
Reference
I 114831
I
YaBOs 4
H,O
SODIUM PERBORATE tetrahydrate blolecular weight: 153.87 ~~~~~~
~
~
Admixture
Effect
Reference
surfactants
G
133 1,3331
surfactants
1184,236,251. 253.330.3921
10. Tables
NaBO,
H202 3 H,O
SODIUM PEROXOBORATE trihydrate Molecular weight: 153.875 Admixture
Effect
ionic impurities, surfactants admixtures
Reference I3931
G
admixtures
I7821 13941
admixtures
N
I12501
surfactant
N
I3321
surfactant
G
I3331
surfactant
N, G. H
I2521
Admixture
Effect
Reference
201
10. Tables
202
Na2B407 10 H 2 0
SODIUM TETRABORATE decahydrate Molecular weight: 381 367 System: monoclinic
a
B
-
-
1.1820
b
Density: 1692
-
2-4
1.0610
c = 1.2300
106O 35'
I
Admixture
Effect
CUCI,, c u s o ,
H
admixtures
N. H
142 I, 10771
H,BO,
caking
113701
pH
H - cubes
[423,976]
H
[213,214.2151
oleic acid
S, H - favourable
1422,423,9761
sodium oleate, dodecylbenzene
N. G , S
[ 10771
H. N
[123, 10781
=
9.7
Azoflavine RS, Chrome fast yellow.
- /010/
Reference [213,214,2151
Ponceau 4. Acid brown R. Alizarin yellow, Orange 1, Naphtol black, Ponceau S extra, and other dyes
sulphonate surfactant
10. Tables
-
NaBr 2 H,O
SODIUM BROMIDE dihydrate Molecular weight: 138.924 System: monoclinic
a = 0.6590
b
Density: 2176
-
c = 0.6510
1.0200
p = 1120 05' Admixture
Effect
Reference
Na,Fe(CN16, CdBr2, PbBr2,
H, caking
110361
NaBrO,
SODIUM BROMATE Molecular weight: 150.892
Density: 3325
System: cubic
a
-
3-4
0.6705
Admixture
pH
I
Effect G
I
Reference
203
204
10. Tables
NaCHsCOO
3 H20
SODIUM ACETATE trihydrate Molecular weight: 136.080 Admixture
Effect
Reference
N a pyrophosphate
N
[ 14191
Na2HP04
N
[1420,1436]
Na2PO,
N
(14371
admixtures
G
[ 11381
cyclohexane
H
I3091
Admixture
Effect
Reference
CaO, pH
H - prisms. cubes
I13751
admixtures
H
[1159]
lysine
H - prisms
[ 13741
10. Tables
olecular weight: 286.141
b
Density: 1460
= 0.9009
c = 1.2597
Admixture
Effect
Reference
admixtures
N
[3051
205
206
10. Tables
NaCl
SODIUM CHLORIDE Molecular weight: 88.443
Density: 2163
System: cubic a
-
3-4
0.5627
Admixture
Effect
Reference
admixtures forming double salt
H
IlOOll
AgCl
D - ultrasound
I7411
A@C1
D, Ostwald ripening
I877.8781
caking
14061
H
[ 10391
Al3+
Ba2+
[ 14101
Ca2+, Sr2+.Ba2+. Cd2+
D
1381
Ca2+. Sr2+,Ba2+, Mg2+. pH
D
[ 10741
Ca2+, Sr2+,Cu2+, Ba2+,Zn2+, Fe2+ H - fibers
I5221
+ polyvinylalcohol
CaC1,
H - octahedrons
I8001
CaC1,
dissolution
[ 12251
CaCl,, Fe(CNIe4-
caking
15471
H
1141.1421
Cd2+,Pb2+,Mn2+, Mg2+, Hg2+,
H
10.Tables
207
: INaCl
(continued)
1 Admixture
Effect
[ 11361
Cd2+. Zn2+, Mn2+ CH2NH2CH2COOH, Cd2+,Mn2+,
Reference
G,H
I53 I1
cu2+
D
I13201
CllC1,
G , H, D
[699.700.70 11
Fe2+,Mg2+. alkaline carbonates
caking
14041
Hg2+
a n d hydroxides
- favourable
19761
Fe3+,A13+,Zn2+
S
HgC1,
H
25 inorganic cations
G
1n3+
D
18721
K,Ti0(C904),
caking
I5891
K,Fe(CN),
N, S
I7831
K,Fe(CN),
H
12821
K4Fe(CNI6 5 ppm
caking
11751
1138,10901
- decrease
K4Fe(CNI6, K,Fe(CN),
I3401
11401
K4Fe(CN)6,Mg2+
caking
[I 15,6721
KCaCl,
n
1411
208
10. Tables
I
NaCl (continued1 Reference
i2731
1391 [ 13531
[1481] [5481
I13811 (569,13211
14051
161 [ 10371
I423.9761
[1362]
11 1601 dendrites Na,Fe(CNj6, Na3Fe(CNjG
H. noncaking
11741
10. Tables
NaCl I continuedl
Admixture
Effect
209
Reference [lo101
NaOH NaOH
H
111941
NaOH. Na2C03
H. electrical
[ 11391
properties caking S
- favourable
113731 (423,9761
N, G. D
I4771
D
I9361 18271 Ill611
Pb2+. Cd2+,Ca2+,Mg2+
D
[1349]
Pb2+, H , S 0 4 Pb2+, K,Fe(CNIG
14771
N, G , H, solubility
Pb2+, Mn2+, Bi3+,Sn2+,Ti3+,Cd2+. favourable
"2601 14721
Fe2+, Hg2+
I
Pb2+. urea
I
Pb2+,urea, Cd2+
D on / 1 1 1 / and
16201
/loo/ H
[ 141,142,190.
530.53 11
2 10
10. Tables
NaCl
Admixture
Effect
PbC1,
D
PbC1,
G
PbCl,, CdClQ
D
1869,8711
PbC1, , K,Fe( CN),
G
[ 14951
ZrOC1,
caking
(13711
Rb+. Cs+
D
(12471
small ion admixture
G - rise
12731
sop
H
I1771
Ti K oxalate
caking
I8481
T1+
D
[870,87 11
water-containing substances
decrease caking
(3711
admixtures
H, low attrition
I1801
admixtures
H
11170,1221, 14801
admixtures
N
admixtures
D
10.Tables
21 1
I
NaCl
I(continued) Admixture
Effect
Reference
CH,COO-. CdCl,, CaCl,+MgCl,
H
I7363
complex cyanides, sfloxanes
caking
I5451
complex cyanides, urea
caking
I5461
OH-
G
I7041
pH
H
I13361
D
I7211
26 admixtures
H. caking
110361
alanine , glycine , CH,CO 0H
G. H. lower attrition
I12621
aliphatic amines
N. G. S
I14941
brornobenzene. phenol, aniline
H - cube +
I7401
octahedron citric acid. tartaric acid
caking
14061
cysteine. creatinine. pepsine, sodium glutamate, sodium phosphate glycine laurylaminoacetate
I116,138.10891
212
10.Tables
(continued) Admixture Methylene blue, Erythrosine N a salt of carboxymethyl-cellulose
organic acids phenol golysaccharides polyvinylalcohol golyvinylalcohol sodium dodecylsulphate sodium sulphonaphtalate surfactants surfactants surfactants surfactants surfactants synth. polyelectrolyte urea
10.Tables
213
~
Effect
Reference
H
IlOOO.1002. 1 1 18.1244. 1261,1487.
urea, aliphatic acids
caking
urea, CrCIR
H
urea, formamide, glycine
H
urea, pyridine. formamide
H - octahedrons
I
14711
NaC,H,O,N,
SODIUM PICRATE Molecular weight: 251.096 ~
~~~
~
~~
~
Admixture
Effect
Reference
Na,SO,
N - accelerates
13721
NO,-. Cl-, Br-. COS2-.
G
- accelerate
I3721
214
10.TabZes
NaClO,
SODIUM CHLORATE Molecular weight: 106.441 System: cubic a
-
0.6570
Admixture
Effect
Reference
cu2+
H - /llO/ - / 1 1 1 /
113361
N a dithionate
H. G
[1103,1104]
Na,B,07
H. G
I4851
Na2B,0,
N
11531
Na2Cr0,
D
16871
Na,S, 0
H - /loo/ - / 1 1 1 /
[ 1991
Na,SO,
G. H
[124.125.132]
Na,SO,
N. H
18621
H - /111/
15231
NaBO,
H,G
17261
NaBO,
N
I14091
S2062-,B4072-, S2032-. SO,^-,
H - /111/
12151
Na,SO,.
NaClO,
Cr,.0,2-. CrO,2-, C10,2-
admixtures
114901
admlxtures
I12821 19761
10. Tables
Admixture
Effect
Reference
Na,S04
G
11281
~~~~
SODIUM FLUORIDE Molecular weight: 41.988
Density: 2790
Z=4
System: cubic
Admixture
Effect
Ponceau 4GB. Solochrome black, H - cube/octahedron
Reference [4101
Alizarin red S polyacrylic acid
[4521
2 15
2 16
10. Tables
NaHCO,
SODIUM HYDROGEN CARBONATE Density: 221 1
Molecular weight: 84.007 System: monoclinic
a
B
-
-
0.7510
2-4
b
= 0.9700
c = 0.3530
930 19'
I Admixture Na,SO,
+ hexamethylenimine
Effect N. G
1
Reference
17501 [ 181.3841
NaCl NaCl
N
18421
NaC1, NaNO,, Na,SOd
N. G - accelerate
1861
admixtures
N
18421
admixtures
S
19761
admixtures
H
[ 13691
admixtures
[1217]
benzenesulp honates
[4071
carbamate surfactants
G
I3671
I I13921
10.Tables
2 17
NaCsH3N,0S
MONOSODIUM URATE
I
Molecular weight: 190.11 Admixture
Effect
Reference I
Mg2+. K+
N
[ 13081
Admixture
Effect
Reference
organic substances
S
_1
Na3H(CO3I2
TRONA Molecular weight: 190.448
- favourable
benzenesulphonates surfactants
I4211 I4071
G. H, S
I1368.13791
,
2 18
10. Tables
NaI 2 H,O
SODIUM IODIDE dihydrate Molecular weight: 185.925 System: triclinic
a a
-
Density: 2448 2-4
0.6850
b
-
98000'
0
= 119000'
0.5760
c = 0.7160 y
Admixture
Effect
Cu2+,Fe2+.Pb2+,SO,2-
D
~68~30'
NaNO,
SODIUM NITRITE Molecular weight: 68.995
Density: 2144
System: rhombic a
-
0.3550
b
-
292
c = 0.5380
0.6660
Admixture
Effect
Reference
Pb(NO,),. Hg(NO,),
H
[3731
Ca2+
favourable
I4721
surfactants
hydrophobization
[ 1464)
10. Tables
NaNO,
SODIUM NITRATE Molecular weight: 84.995
Density: 2257
System: trigonal
a a
-
3-2
0.6320 4 7 O 14'
Admixture
Effect
Reference
Ostwald riDenina
[ 14531
N
14121
n
I57 11
S. H
[ 10271
Pb2+,Ca2
N. G
[2721
solid impurities
unfavourable
19761
aniline sulphonate, Wool scarlet,
H - /001/faces on a
[2241
Chloramine sky blue FF, Acid
rhombohedron
Fe3+
I HN03, Na2C03,NaC1. NaN02, Fe,O,
green GG extra, Soluble blue, Induline, Gallophenine D Congo red, Oxamine blue B.
H
Magenta, Fuchsine. Methylene bllie caking hydrophobization
[ 1442)
219
220
10.Tables
-
NaOH H20
SODIUM HYDROXIDE monohydrate Molecular weight: 58.012
Density: 1750
System: rhombic B
-
0.6210
b
-
1.1720
c
-
Z=8
0.6050
NaOH
SODIUM HYDROXIDE Molecular weight: 39.997
Density: 2020
System: rhombic B
-
b
0.3397
-
0.3397
I
I
Effect
Admixture
Na,PO,
c = 1.1320 Reference
12 H 2 0
SODIUM PHOSPHATE dodecahydrate Molecular weight: 380.123
Density: 1589
System: hexagonal
a = 1.2020
2=2 c = 1.2660
Admixture
Effect
Reference
CH,COOH
N
I8871
s10,2-, VO;
16341
10. Tables
22 1
Admixture
Effect
Reference
surfactants
G
1549, 13461
~
Na2S20,
5 H20
SODIUM THIOSULPHATE pentahydrate Molecular weight: 248.174
Density: 1756
System: monoclinic a = 0.5944
2-4
b = 2.1570
c = 0.7525
Admixture
Effect
Reference
Na,S, p H > 8
D
1101
222
10. Tables
Na,S04
10 H,O
SODIUM SULPHATE decahydrate Density: 1468
Molecular weight: 322.189 System: monoclinic
a
-
1.1430
2=4
b = 1.0340
c = 1.2900
SODIUM SULPHATE Molecular weight: 142.037
Density: 2665
System: rhombic a = 0.5860
2-8
b = 1.2300
Admixture
Na9B,O7
c = 0,9820
I Effect N
admixtures
IReference I56.13121 I9141
admixtures
N, G
I5071
NOn-. sulphamate
H. G
I4831
impurities from caprolactam surfactants surfactants
I5061
H - rounded crystals
1423,9761 I8581
10.Tables
Na2SiF6
SODIUM HEXAFLUOROSILICATE Molecular weight: 188.056 System: hexagonal a
-
0.8860
c
Density: 2679
-
2=3 0.5020
Admixture
Mg2+, Ca2+, Pod3-
Effect N3+,H,PO,
Reference 18991
G
[lo591
Na2Si03 - 9 H 2 0
SODIUM SILICATE nonahydrate
Admixture
Effect
Reference
Ca2+. M3+
D
[531
223
224
10.Tables
Ni(HC0O)Z
2 H2O
NICKEL FORMATE dihydrate Molecular weight: 172.747 Admixture
Mg2+. Mn2+
Effect ID
Reference I[58.601
Ni(CH3COO)Z 4 H2O
NICKEL ACETATE tetrahydrate Molecular weight: 236.831 Admixture
Effect
Reference
Mg2+
D
I581
I
10. Tables
Ni(NO&
225
6 H2O
NICKEL NITRATE hexahydrate Molecular weight: 290.81 1 System: triclinic
a cc
-
-
0.5790
b
106" 38'
B
Density: 2050
=
z=2 0.7690
c = 1.1890
SOo 32'
y
=lolo27'
Admixture
Effect
Reference
Mg2+, Zn2+
D, H
IS21
I
Ni[OH),
NICKEL HYDROXIDE Molecular weight: 92,706
System: hexagonal
a
-
0.307
c
-
Z=1 0.4605
Admixture
Effect
Reference
H,O,
filterability
113991
226
10. Tables
Ni(OH),CO,
BASIC NICKEL CARBONATE Molecular weight: 152.717 Admixture
Effect
Reference
H,O,
filterability
[ 13991
NiSO,
7 H2O
NICKEL SULPHATE heptahydrate Molecular weight: 280.874 System: rhombic
a
-
1.1800
b
Density: 1948
-
2-4
1.2000
c = 0.6800
Admixture
Effect
Reference
Fe2+
D
[488,489]
inorganic ions
H. adsorption poten-
[2751
tial
Zn2+, Mg2+ gelatin
,
D
1581
H. dissolution
[2231
10.Tables
PbBr2
LEAD BROMIDE Molecular weight: 367.008
Density: 6667
System: rhombic
b = 0.8040
a = 0.4720 ~~~~~
~~
~~
Admixture
~
c
-
z=4 0.9520
~
Effect
Reference
[1235]
Ag+
gum arabic
I I2151
H
PbCOs
LEAD CARBONATE Molecular weight: 267.221 System: rhombic
2=4
Admixture
Effect
Reference
uo,2+
transform.
11 1641
polyglutamic acid, polyvinyl-
N
[1167]
sulphonate
227
228
10. Tables
I
Pb(CH3COO)z 3 H2O
LEAD ACETATE trihydrate
Admixture
Effect
Reference
pH
G.H
I8071
PbC1,
LEAD CHLORIDE Molecular weight: 278.106
Density: 5850
Syetem: rhombic a
-
0.4520
Z=4
b = 0.7610
IAdmixture
c = 0.9030 Effect
Reference
KC1, NH,C1, CdCl,, HC1
H
110191
Mn2+, Co2+, Ni2+, Cu2+
e .
I3741
Mn2+. Co2+, Ni2+, Cu2+,Na+
H, N. G
I 12541
PbFQ
D
16761
admixtures
N
I4131
dextrine
N,
large
metastable
zone
H - rounded crvstals
1894,8951
10.Tables
PbCrO,
LEAD CHROMATE Molecular weight: 323.22
Density: 6100
System: monoclinic x
-
0.682
b
-
0.748
c
-
2-4
0.716
3 = 1020 33’ Admixture
Effect
Reference
glutamate, gluconate,
N
I10151
N
I10171
citrate. tartrate, EDTA acetate, gluconate. EDTA, citrate. tripolyphosphate
Admixture
Effect
Reference
pH
G
[ 12773
pH
modif.
[1278]
229
230
10.Tables
Pb"O,),
LEAD NITRATE Molecular weight: 331.210
Density: 4535
System: cubic R
2=4
0.7810
Admixture
Effect
Reference
Ba(NO,),
D
(928.10461
Ba(NO,), + NaCl
D
I8571
RalNO,I,
D
[ 10841
Capri blue
H
I8671
Methylene blue
G ,H
I1241
Methylene blue
D
- pleochroism
[130.391,43 1, 597,598,664,
Methylene blue
H - cubes
[200,430,432, 437.44 1,442. 443,96 1,14021
Methylene blue
G
I1331
Methylene blue
G , D, H
[ 1238.1239,
1240.12431
10.Tables
231
Pb(N03)2 (continued) Admixture
Effect
Reference
Methylene blue
N
113411
Methylene blue, Bismarck brown
D
I3891
Methylene blue, Thionine blue
S
18571
Thionine blue
H. D
[ 1241.12421
i
Pb,(P04)2, PbHPO4, Pb2P20, LEAD PHOSPHATES Admixture
uo,2+
1 Effect
Reference [1164,13111
232
10.Tables
I
PbS
LEAD SULPHIDE Molecular weight: 239.28
Density: 7500
System: cubic a = 0.597
Admixture
Effect
Reference
EDTA
equilibrium, G
113511
I
_I
PbSO,
LEAD SULPHATE Density: 6200
Molecular weight: 303.28 System: rhombic a
-
0.845
b
-
0.538
c = 0.693
Admixture
Effect
Reference
RaSO, + HNO,
D
I6651
admixtures
G. H
[lOOSl
pyrophosphate, tetrameta-
precipitation
I8 101
acetate, gluconate, EDTA, citrate.
[lo171
tripolyphosphate alcohols
I10131
surfactants
I8101
10.Tables
RbCl
RUBIDIUM CHLORIDE Molecular weight: 120.921
Density: 2760
System: cubic
a
-
3=4
0.6540
Admixture
Effect
Reference
Pb2+.Sn2+,Zr4+, Ti4+
favourable
I4721
OH-
I G
I I7041
RUBIDIUM DIHYDROGEN PHOSPHATE
Admixture
Effect
I
Fe3+,Mg2+, SiOS2-, Ca2+,Ag+, BiS+, H
Fe3+,pH
H
Reference 118401
233
234
10.Tables
SrCO,
STRONTIUM CARBONATE Molecular weight: 147.64
Density: 3700
System: rhombic
a
-
0.513
2=4
0.842
b
c = 0.610
Admixture
Effect
Reference
p olyglutamic acid, polyvinyl-
N
[1165,1167]
sulphonate
Sr(HCOO),
2 H20
STRONTIUM FORMATE dihydrate Molecular weight: 213.686 ~
System: rhombic
a
-
0.7300
Admixture
cations
Density: 2255
b
-
1.1990
I
2-4
c = 0.7130 Effect G
I
Reference
10.Tables
235
~
3rF,
STRONTIUM FLUORIDE Holecular weight: 125.63 System: cubic L
-
0.586
Admixture
Effect
Reference
Fe2+,Fe3+
D
I11801
inhibitors, Mg2+, Zn2+
G. dissolution
13.41
Mg2+
G
I5151
phosphonates
G
I1351
SrHPO,, Sr,P,O,,
Sr,(PO,),
Admixture
Effect
Reference
F-
G
I36 11
I uo,2+
I transform.
I II1164.13111 1 164,131 11
I
236
10.Tables
Sr"O&
STRONTIUM NITRATE Molecular weight: 211.630
Density: 2930
System: cubic
a
-
364
0.7763
Admixture
Effect
Reference
Ba2+
D
[ 11451
r
I saphranine, wood extract
1H.D
[12011
-
ZnC204 2 H 2 0
ZINC OXALATE dihydrate Molecular weight: - 189.432 L
/
Admixture
Effect
Reference
Mn2+
D
(1031
cu2+
D
1277,10261
10.Tables
237
3rS0,
STRONTIUM SULPHATE Kolecular weight: 183.70 System: rhombic I
-
0.836
b
-
z=4 c = 0.684
0.536
Admixture
Effect
Reference
N a phosphates
H. G
[900,9011
N a phosphates
N - retarding
[950.951,10061
N a triphosphate
N
[ 12481
pH, phosphates, Fe3+, Cr3+
H
[g041
pH
S
18061
G - maximum
18631
pyrophosphate
G
13081
tripolyphosphate
H, aggregation
110071
tripolyphosphate
N. G
1904.949.950
pH
=
4.6
1007.10171 CVHSOH CH,OH
[ 12451
S
phosphonate
13411 (10631
polyvinylsulphonate
N
[1163.11681
polyvinylsulphonate
H. S
11162,11731
238
10. Tables
SrSO, (continued) Admixture
Effect
Reference
sodium cltrate. EDTA
H
(1006, 10091
surfactants. citrate. EDTA water soluble polymers
110061 H. inhibition N
11162, 11741
lmo2
TITANIUM DIOXIDE (anatase)
Admixture
Effect
Fe2+ alcohol + surfactant
Reference W301
N, G
I5931
10.Tables
Zn(HCOO),
239
2 H20
ZINC FORMATE dihydrate Molecular weight: 191.447 Admixture
Effect
Reference
Mg2+, Mn2+
D
[58,601
ZnC4H604
ZINC ACETATE Molecular weight: 183.48
I
IEffect
Admixture
Admixture
D
Effect
gluconate. tartrate, EDTA. N
I Reference I
I Co2+, Cd2+
I
I [63l
Reference I10151
II
240
10.Tables
I
ZnK2(S04),
6 H20
ZINC POTASSIUM SULPHATE hexahydrate
Admixture
Effect
Reference
Ni2+
D
[ 150 1,I5021
I
Zn(NH4)2(S04)2 6 H20
ZINC AMMONIUM SULPHATE hexahydrate
Molecular weight: 401.687 System: monoclinic a
-
0.920
b
= 1.247
c = 0.623
3! = 106O 52'
Admixture
Effect
Reference
D
11499,1500, 15021
Fe2+,Ni2+, Co2+,Cu2+
n
10. Tables
Zn(NO&
- 6 H,O
ZINC NITRATE hexahydrate Molecular weight: 297.481 System: rhombfc a = 1.2240
Admixture
ZINC SULPHIDE Molecular weight: 97.45 System: hexagonal
b
Density: 2067
-
z=4 c = 0.6290
1.2850 Effect
Reference
241
242
10.Tables
ZnSO, 7 H,O
ZINC SULPHATE heptahydrate Molecular weight: 287.544 System: rhombic
a
-
1.1850
b ~
~~
~~
Density: 1957
-
1.2090
c
-
2=4
0.6830
~
Admixture
Effect
Reference
co2+
D
[ 13431
CU2+
ID I
+ 162,9851
I9861
Cu2+, Fe2+,Co2+
[57,611
f488.4891
~
ZnWO,
ZINC TUNGSTATE Molecular weisht: 313.3 Admixture
Effect
Reference
11831
10. Tables
ORGANIC SUBSTANCES
I
Molecular weight: 60.06
Density: 1335
System: tetragonal
332
Effect
IReference
H
I991
caking
I9781
H
I991
H
- prisms
[2211
H
I4161
H
[ 11411
N
I6291
H
I4171
admixtures, solvents
H
113481
alkylamines, HCOOH
caking
[ 12891
biuret
H
I1001
biuret
G
12921
-biuret 3-5YO biuret, cyanuric acid biuret, formamide
13831 G. H - cubes
[ 10821
243
244
10.Tables
Admixture
Effect
Reference
dyes
I1781
solvents
capping growth
I5661
solvents
G
113421
surfactants
caking
19781
CH4NZS
THIOUREA Molecular weight: 76.12
Density: 1405
System: rhombic a = 0.550
Admixture
2-4
b
c = 0.857
= 0.708
Effect
I6273
NH,SCN I
CH,OH
Reference
N
I5191
10. Tables
Molecular weight: 123.075 Admixture
Effect
Reference
Methylene blue
D. H - prisms
1434.43 51
C2H204 2 HZO
OXALIC ACID dihydrate Molecular weight: 126.04
Density: 1653
System: monoclinic
a I3
-
-
0.612
b
-
c
0.361
-
3=2
1.203
106O 12'
Admixture
Effect
Reference
Ca2+
D
13591
Fe2+,Cu2+,Pb2+
D
14941
245
246
10.Tables
Z,HBO,N
WINOACETIC ACID aolecular weight: 75.07 Admixture
Effect
Trypan Red, Chloramine Sky Blue H - long needles FF. Chromotrooe 2B
/(Ill/
Methyl Blue MBJ
H - suppresses
Reference 12 151
[2151
needles aminoacids
N
1784,1444, 14461
CSH4O4N4
UREA OXALATE Molecular weight: 160.097
IAdmixture
Effect
Reference
H - /010/
14441
Neutral red
H - needIes
(4441
Victoria blue, Brilliant green,
H - /201/
I4441
Magenta, Fuchsine , Tartrazine , Eosine
Malachite green, Gentiana blue
10. Tables
247
C3H702N
AMINOPROPIONIC ACID (L-ALANINE)
Admixture
Effect
Brilliant yellow
Reference
I I7781 I I I7921
I G
I
IG, H
admixtures
C4H604
SUCCINIC ACID Molecular weight: 118.092 System: monoclinic
a = 0.506
b
-
2-2 0.881
c = 0.757
B = 133O 37'
Admixture
Effect
Reference
solvents
H
129 11
isopropanol
G, solubility
[ 14501
II
248
10. Tables
C ~ H ~ O HSO B
TARTARIC ACID monohydrate Molecular weight: 168.09
Density: 1697
System: triclinic
a a
-
0.809
b
8 2 O 20'
B
-
-
2=2
1.003
c
0.481
1180 0'
y =72O
58'
Admixture
Effect
Reference
Fe2+. Cu2+, Sb3+.S d + ,Co2+,
D
I4921
cuso,
H
I6051
admixtures
n
I 1 1471
so42-.c1-
C4H808N8
OCTOGENE (TETRANITRO-TETRAZA OCTANE)
Admixture
solvents
Effect
Reference I3381
1O.Tables
C4HQOSN
L-THREONINE Molecular weight: 119.124 Admixture
Effect
Reference
1-glutamlc acid
D
"7691
C4HeO4N
y-AMINOBUTYRIC ACID Molecular weirtht: 136.124
surfactants
I I8091
IN,H
I
CsH4OsN4
URIC ACID
Molecular weight: 168.11
Density: 1893 I
Admixture
Effect
Reference
Magenta, Fuchsine
H - width prolonga-
I4461
tion Bismarck brown. Neutral red.
H - length prolonga-
Safranlne, Methylene blue
tlon
I4461
249
250
10. Tables
C6H904N
L-GLUTAMIC ACID Molecular weight: 147.14 Admixture
Effect
Reference
amino acids
111141
1-aspartic acid, 1-valine, 1-leucine, N, G
I5181
I-phenylalanine 1- aspartic acid
N. G
[ 14751
CSH1006
XYLOSE Molecular weight: 150.13
Density: 1530
System: rhombic
a
-
0.921
b
-
Z=4 1.248
c
=
0.556
Admixture
Effect
Reference
Ca formiate and acetate
G - acceleration
19381
10.Tables
Admixture
Effect
admixtures
Reference 113891
Admixture
Effect
Reference
Ca[HCOO),
N. G
[ 15121
dipentaerythritol
N. S
115131
dipentaerythritol
N
I6181
dipentaerythritol
G. N. S
16191
251
252
10.Tables
CBH,OZNCl
m-CHLORONITROBENZENE Molecular weight: 157.663 Admixture
Effect
Reference
admixtures structurally similar additives
I2441
H
I2451
COHO
BENZENE
I
Molecular weight: 78.12
System: rhombic
Admixture
2=4
Effect
Reference
10.Tables
253
C6H602
RESORCINOL Density: 1285
Molecular weight: 110.12 System: rhombic a
-
0.966
2-4
b = 1.05
Admixture
c = 0.568 Effect
Reference
I
C6H603
PHLOROGLUCINE (1,3,5-TRIHYDROXYBENZENE)
1
IMolecular weight: 126.114 Admixture
Effect
Reference
Magenta, Fuchsine, Toluidine blue
H
14451
254
10. Tables
Molecular weight: 134.146 Admixture
IIEffect
surfactant
I
I
I
I Reference I
I [9161
C6HS06
ASCORBIC ACID Molecular weight: 176.13 Admixture
Effect
methanol
Reference
I8591
CITRIC ACID Molecular weight: 192.13
Density: 1542
Admixture
Effect
Reference
H,SO,
G
I9871
t
I
I
10. Tables
Admixture
Effect
Reference
amino acids
H
I6251
C6H 10°4N2
ETHYLENEDIAMINE TARTRATE Molecular weight: 174.162 I
Effect
Reference
Ca2+. Mg2+.Cu2+, A13+
H
18401
Fe3+.A13+, Ca2+, Mg2'
H - wedge
17091
pH
H
18401
Admixture r
9H
=
6.0
H, S favourable
pH
=
6.0
H - needles
pH
=
7.5
low sensibility to
255
256
10. Tables
C6H1004
ADIPIC ACID Molecular weight: 146.15
Density: 1366
System: monoclinic
a
0
-
1.027
b
-
z=2 0.516
c = 1.002
137O 5'
IAdmixture trimethyldodecylammonium
I Effect G - decreasing
I Reference [888,889,
chloride
8901
sodium dodecylbenzenesulphonate H - needles, thin
[888,889.
plates
8901
n-alkanoic acids
physical properties
I4961
n-alkanoic acids
G Inhibition
12881
related compounds
N, G
19661
succlnic acid, solvents, formic acid H
I9331
10.Tables
C6H110N
CAPROLACTAM Molecular weight: 113.162 Admixture
Effect
Reference
' cyclohexanone
D
I13521
cyclohexanone
G
I9621
H
I981
N, S . D
[ 13021
Admixture
Effect
Reference
Fe3+,Pb2+, As3+, SiOS2-, T1+.Cu2+
H
[8401
Ni2+. Cu2+, Fe3+
H. D
I9091
Tl+.Li+. Na', K+.Rb+.Cs+
H
[ 13821
HqSO,
H, G - retards
17241
pH
H
18401
1-alanine
G
I5961
' solvents trichlorethylene
C6H1104N3
' H2S04
FRIGLYCINE SULPHATE Yolecular weight: 287.26
257
258
10.Tables
c6H1206
GLUCOSE Molecular weight: 180.17
Density: 1544
System: rhombic
a
-
1.040
b
-
2=4
1.489
c = 0.499
Admixture
Effect
Reference
fructose
mutarotation
1751.7531
fructose
N
[980.7531
fructose
H, G
[752.753]
L
c6H1206
SORBITOL Molecular weight: 182.13 I
Admixture
_i
soap
Effect
Reference [7701
10.Tables
1
259
C6H12N4
HEXAMETHYLENETETMINE, (UROTROPIN) Molecular weight: 140.20
z=2
System: cubic
Admixture
Effect
Reference
benzylalcohol + Si02
caking
1831
Ca and Mg stearates
caking
[831
solvents
G
[ 159.1SO]
Admixture
Effect
Reference
surfactants
H
[ 1134,1508,
L-ISOLEUCINE Molecular weight: 131.178
15091
260
10. Tables
Admixture
Effect
Reference
admixtures
D
I6961
C7H602
BENZOIC ACID Molecular weight: 122.13
Density: 1266
System: monoclinic a
D
-
0.544
2=4
b
= 0.518
c = 2.16
970 5'
.
Admixture
Effect
Reference
ethylalcohol
G
I7381
admixtures
G
I10581
I
10. Tables
Ip-HYDROXYBENZOIC
26 1
ACID
Admixture
Effect
Reference
derivates of benzoic acid
N
[ 14451
Admixture
Effect
tailor-made additive
H
Reference
1
262
10. Tables
%*6O4
PHTHALIC ACID Molecular weight: 166.14
Density: 1593
System: monoclinic
a
B
-
0.933 94O
2-2
b = 0.713
c = 0.510
36'
~
Admixture
Effect
Li, Na. K, C s halides
a-naphtylamine sulphonate,
Reference I7391
H - thin plates /010/
I2151
H
14333
Effect
Reference
Bismarck brown, Fuchsine diphenylamine. Methylene blue, Malachite Preen
Admixture I
admixtures
193 11
10.Tables
Admixture
Effect
dyes
H-
/loo/
Reference
>> /llO/
[215]
C1oHs
NAPHTHALENE Molecular weight: 128.17
Density: 1145
System: monoclinic a
-
0.834
Z=2
b
= 0.598
c = 0.868
D * 122044' Admixture
Effect
Reference
fenantrene, anthracene
G. H
I10401
biphenyl
G
I9633
263
264
1O.TabZes
C12HlO
ACENAPHTHENE Molecular weight: 154.21
Density: 1024
System: rhombic
a
-
0.892
3=4
b
= 1.415
c = 0.726 =
~~~
Admixture
Effect
Reference
solvents
N
I8361
solvents
IG
I I8371
ClZHlO
BIPHENYL Density: 1180
Molecular weight: 154.21 System: monoclinic
m
-
0.811
b
-
2=2 0.567
c = 0.957
Admixture
Effect
Reference
solvents
G. H
I5671
10.Tables
C12H1,OTNdP2S
265
HCl
COCARBOXYLASE HYDROCHLORIDE
I
Molecular weight: 460.789 Admixture
Effect
Reference
acetone
S
D171
Admixture
Effect
Reference
C a C I , , AlCl,, FeCI,
G
I3131
Cl2H22Oll
H2O
LACTOSE monohydrate Molecular weight: 360.31
L
266
10. Tables
C12H22O11
SUCROSE Molecular weight: 342.31
Density: 1588
System: monoclinic a
-
1.065
2=2
b
0.870
c
= 0.800
p = 105O 44' Admixture
Effect
Reference
Ca2+, Na+, K+
I14841
CaCl,, Na,C03
[ 14861
inorganic salts KC1, CaCl,, MnSO,. NH,NO,.
H CdI?
[6 131 13371
I [1284.1285,
MnSO,
12861
Na+. K+, Ca2+, Fe2+.Cu2+
N. G, H. S
NaCl, KCI, CaCl,, CaSO,, CaHPO,
W41 19971
admixtures
G
11 188,13401
admixtures
G.H
1451
admixtures
H
13061
10. Tables
C,2€€2,0,,
267
(SUCROSE)
(continued) ~
Admixture
Effect
Reference
amino acids
c,
12191
betaine
I83 11
colouring impurities
I14921
dextrose
I131
dextrose
G, H
[3361
impurities
D
(525.5261
impurities, colouring substances
G
11485,149 11
G
I14.334.335.
I
raffinose
33 7,554. 12521 ~
H
I337.568. 8321
raffinose. glucose
Isaccharides starch, dextrine
G. H
[555,556]
G. H
I3371
c,
[ 14861
268
10.Tables
C14H14
DIBENZYL Molecular weight: 182.266 System: monoclinic a
-
1.282
b
-
Z=2 c = 0.774
0.618
0 = llSO 0'
i
Admixture
Effect
Reference
tolan
D periodicity
I7541
Effect
Reference
I
C15H1202N2
PHENYTOIN Molecular weight: 252.277 Admixture
I
p o p , ci-
G
115061
.
10. Tables
C16H3202
PALMITIC ACID Molecular weight: 256.432 2=4
System: monoclinic
-
a
-
B
0.941
c = 4.59
b = 0.500
50° 50'
Admixture
~~
Effect
~
~~~~~
C18H3602
STEARIC ACID Density: 941
Molecular weight: 284.49 System: monocIinic a
-
0.5546
2=4
b = 0.7381
c = 4.884
3 = 63O 38'
I
Admixture
Effect
solvents
H. polymorphs
14271
surfactants
H
[4281
butanone + emulsifier
G. H
[761
unsaturated homologues solvents, sorbitone monostearate
Reference
[lo611 G. H
I I751
269
270
10. Tables
CnH2n+2
PARAFFIN Admixture
Effect
admixtures inhibltors
G
polymers
N, G
solvents
H. G
Admixture
Effect
Reference
hydrocarbon solvents
N
I2431
15501
10. Tables
271
I
C27H460
CHOLESTEROL
Admixture
Effect
Reference
solvents
H
[4261
Effect
Reference
C32H60
N-DOTRIACONTANE Molecular weight: 450.88 Admixture
polymers
I
I [801
I
272
10.Tables
%*74
HEXATRIACONTANE Molecular weirrht: 506.988 Admixture
Effect
Reference
G, H
I12311
I
PROTEINS I
Admixture phospholipids
EXfect
Reference 18651
L
FORMULA INDEX
Inorganic substances
AgBr
silver bromide
78
AgCl
silver chloride
79
silver chromate
80
4 1
silver iodide
80
AgN0,
silver nitrate
81
AlCs(S04)2 * 12 H2O
aluminium cesium sulphate
81
aluminium chloride
82
AlF3 . 3 H2O
aluminium fluoride
82
AlK(SO4)2. 12 H 2 0
aluminium potassium sulphate
83
AlNH,(SO4)2
aluminium ammonium sulphate
85
aluminium nitrate
86
aluminium hydroxide
87
AlCl,
. 6 H20
Al(NO,),
*
*
12 H2O
9 H2O
Al(OH),
A1203.M20.n SiO,
m H20 zeolites
86
aluminium phosphate
88
aluminium rubidium suIphate
88
aluminium thallium sulphate
89
Alz(SO4)3 . 16 H20
aluminium sulphate
89
Ba(B0&
barium borate
90
BaBr2 2 H 2 0
barium bromide
90
BaC0,
barium carbonate
91
BaC204
barium oxalate
91
AlPO,
AlRb(SO,), AITl(SO,),
-
*
12 H2O
. 12 H 2 0
274
10.Tables
BaC12 - 2 H20
barium chloride
92
BaCr04
barium chromate
93
BaF,
barium fluoride
94
Ba(I0312 H20
.
barium iodate
94
Ba(N0312
barium nitrate
95
barium hydroxide
96
BaS04
barium sulphate
97
BaTiOQ
barium titanate
104
Be(NH412F4
ammonium beryllium fluoride
190
(C2H,I4NI
tetraethylammonium iodide
92
CaC03
calcium carbonate
99
. 8 H,O
Ba(OH),
CaCz04 H20
-
calcium oxalate
105
CaC4H,0,
calcium tartrate
108
Ca(C&,
calcium gluconate
109
CaC12. 2 H20
calcium chloride
108
CaFz
calcium fluoride
109
CaHP04. 2 H20
calclum hydrogen phosphate
110
CaHPOq. 3/2 H 2 0
calcium hydrogen phosphate
111
Ca(N0312 4 H20
calcium nitrate
112
Ca(OH12
calcium hydroxide
112
Ca3(P04)2
tricalcium phosphate
113
dicalcium phosphate
114
ffuorapatite
114
10712
.
Ca2P20,
- 2 H20
Ca3(PO4l2 CaF2
10. Tables
-
275
Ca3(PO4I2 Ca(OHI2
hydroxyapatite
115
CaSO,
calcium sulphite
114
CaS04 2 H20
calcium sulphate
117
CaSi03
calcium silicate
116
Ca(C5H3N403),
calcium urate
123
CaWO,
calcium tungstate
123
octacalcium phosphate
113
CdCOs
cadmium carbonate
124
Cd(CHO2)2* 2 H,O
cadmium formate
124
CdS
cadmium sulphide
125
C0C03
cobalt carbonate
125
Co(CH02)Z 2 H2O
cobalt formate
126
Co(CH,C02)2
cobalt acetate
126
ammonium cobalt sulphate
127
cobalt sulphate
127
potassium chromium sulphate
128
ammonium chromium sulphate
128
-
Ca,H2(P04),
- 5 H20
*
4 H2O
* 6 H2O CO(NH~)~(SO&
-
C0S04 7 H 2 0
- 12 H20 CrNH4(S04)2. 12 H20
CrK(S04),
C~Al(SO4)121* 12 H2O
aluminium cesium sulphate
81
CSH~ASO,
cesium dihydrogen arsenate
129
CSI
cesium iodide
129
CsN0,
cesium nitrate
130
CUClz * 2 H2O
cupric chloride
130
Cu(CH02)2 * 2 HZO
cupric formate
131
276
10. Tables
cupric acetate
13 1
cupric chromate
131
ammonium cupric sulphate
132
cupric hydroxide
132
basic cupric carbonate
132
cupric sulphate
133
ammonium ferrous sulphate
134
ferric oxide hydroxide
134
ferric hydroxide
135
ferric oxide
135
magnetite
136
ferrous sulphate
136
ice
137
boric acid
137
phosphoric acid
138
mercuric bromide
140
mercuric cyanide
140
aluminiumpotassium sulphate
83
potassium pentaborate
141
potassium bromide
142
potassium bromate
143
potassium cyanide
143
potassium carbonate
141
1O.TabZes
277
potassium oxalate
144
KC1
potassium chloride
145
KClO,
potassium chlorate
151
KCIO,
potassium perchlorate
152
K2Cr04
potassium chromate
153
%,cr207
potassium dichromate
154
KCr(S0412 12 H,O
potassium chromium sulphate
128
K4Fe(CN16 * 3 H,O
potassium ferrocyanide
144
KH2As04
potassium dihydrogen arsenate
154
KH2PO4
potassium dihydrogen phosphate
155
KHC,H,O6
potassium hydrogen tartrate
158
KHCSH404
potassium hydrogen phthalate
158
KI
potassium iodide
159
uo3
potassium iodate
157
potassium magnesium sulphate
170
KMn0,
potassium permanganate
160
KNO2
potassium nitrite
160
KNo3
potassium nitrate
161
KNaC4H40,
sodium potassium tartrate
163
K2s04
potassium sulphate
165
K2s206
potassium dithionate
164
KTiOPO4
potassium titanyl phosphate
162
K2Zn(S04)2 6 H,O
zinc potassium sulphate
240
QcZ04
'
H2°
-
K2Mg(SO,l2
*
6 H2O
278
10. Tables
lithium chloride
167
lithium fluoride
168
lithium iodide
168
lithium iodate
169
ammonium lithium tartrate
159
lithium sulphate
170
magnesium carbonate
171
magnesium acetate
169
magnesium fluoride
172
magnesium formate
172
magnesium oxalate
171
potassium magnesium sulphate
170
ammonium magnesium sulphate
173
magnesium nitrate
173
magnesium hydroxide
174
magneslum sulphate
175
manganous carbonate
174
manganous formate
176
manganous sulphate
176
aluminium ammonium sulphate
85
ammonium beryllium fluoride
190
ammonium bromide
177
ammonium oxalate
181
10. Tables
279
ammonium chloride
178
ammonium chlorate
182
ammonium perchlorate
182
ammonium cobalt sulphate
127
ammonium chromium sulphate
128
ammonium cupric sulphate
132
ammonium ferrous sulphate
134
ammonium hydrogen carbonate
183
ammonium hydrogen oxalate
183
ammonium hydrogen tartrate
184
ammonium dihydrogen phosphate
185
ammonium hydrogen phosphate
184
ammonium lithium tartrate
159
ammonium magnesium sulphate
173
ammonium nitrate
188
ammonium nickel sulphate
190
ammonium sulphate
191
ammonium titanyl sulphate
198
ammonium uranate
199
ammonium tungstate
199
zinc ammonium sulphate
240
sodium hexafluoroaluminate
200
sodium perborate
200
280
10. Tables
N a B 0 2 . H20,
- 3 H20
sodium peroxoborate
20 1
sodium tetraborate
202
NaB508. 5 H20
sodium pentaborate
20 1
NaBr . 2 H20
sodium bromide
203
NaBr03
sodium bromate
203
NaC2H302 3 H 2 0
sodium acetate
204
Na2C03 10 H 2 0
sodium carbonate
205
NaC5H804N H 2 0
sodium glutamate
204
NaC6H20,N3
sodium picrate
2 13
NaCl
sodium chloride
206
NaClO,
sodium chlorate
2 14
NaC10,. H20
sodium perchlorate
215
NaHCO,
sodium hydrogen carbonate
216
NaC5H3N403
sodium urate
217
NaF
sodium fluoride
215
Na3H(CO3I2
trona
217
NaI 2 H20
sodium iodide
218
NaKC4H406
potassium sodium tartrate
163
NaN02
sodium nitrite
218
NaN0,
sodium nitrate
219
NaOH
sodium hydroxide
220
sodium phosphate
220
sodium triphosphate
22 1
Na2B40,
- 10 H,O
-
-
.
Na3PO4
I
12 H20
Na5P3OI0 6 H 2 0 a
10. Tables
281
sodium sulphate
222
sodium thiosulphate
22 1
sodium hexafluorosilicate
223
sodium silicate
223
sodium zincate
205
nickel formate
224
nickel acetate
224
ammonium nickel sulphate
190
nickel nitrate
225
nickel hydroxide
225
basic nickel carbonate
226
nickel sulphate
226
lead bromide
227
lead carbonate
227
lead acetate
228
lead chloride
228
lead chromate
229
lead fluoride
229
lead nitrate
230
lead phosphates
23 1
lead sulphide
232
lead sulphate
232
aluminium rubidium sulphate
88
282
10.Tables
RbCl
rubidium chloride
233
RbH2P04
rubidium dihydrogen phosphate
233
SrC03
strontium carbonate
234
Sr(CHO2I2. 2 H,O
strontium formate
234
SrFz
strontium fluoride
235
Sr(N0312
strontium nitrate
236
SrHP04
strontium phosphates
235
SrS04
strontium sulphate
237
7302
titanium dioxide
238
TlAl(S04)2. 12 H2O
aluminium thallium sulphate
Tio(NH&(S0412
ammonium titanyl sulphate
198
ZnC204 2 H20
zinc oxalate
236
Zn(CHO2I2 2 H20
zinc formate
238
ZnC4H604
zinc acetate
238
ZnCrO,
zinc chromate
238
zinc potassium sulphate
240
Zn(NH412(S0412. 6 H20
zinc ammonium sulphate
240
Zn(N0312. 6 H20
zinc nitrate
241
ZnS
zinc sulphide
24 1
ZnS04. 7 H20
zinc sulphate
242
ZnWO,
zinc tungstate
242
-
ZnK2(S0,),
a
6 H20
89
10. Tables
Organic substances
urea
243
thiourea
244
urea nitrate
245
oxalic acid
245
aminoacetic acid
246
urea oxalate
246
L-alanine
247
succinic acid
247
tartaric acid
248
octogene
248
L-threonine
249
y-aminobutyric acid
249
uric acid
249
L-glutamic acid
250
xylose
250
trimethylolethane
25 1
pentaerythritol
25 1
m-chloronitrobenzene
252
benzene
252
allopurinol
254
resorcinol
253
phloroglucine
253
283
10. Tubks
284
C6H806
ascorbic acid
254
C6H807
citric acid
254
C6H902N3
L- histidine
255
C6H 10'4
adipic acid
256
C6H 10°4N2
ethylenediamine tartrate
255
caprolactam
257
C6H1104N3 ' HzS04
triglycine sulphate
257
C6H1206
glucose
258
C6H1206
sorbitol
258
C6H12N4
hexamethylenetetramine
259
C6H 1 3°2N
L-isoleucine
259
C6H16N2
hexamethylenediamine
260
C7H602
benzoic acid
260
C7H603
p-hydroxybenzoic acid
26 1
C7H7ON
benzamide
26 1
C8H604
phthalic acid
262
C8H604
terephthalic acid
262
C9H9'3N
hippuric acid
263
'loH,
naphthalene
263
C12HlO
acenaphthene
264
C12H10
biphenyl
264
loN
C1,Hl,O,N4P,S
*
HCl
cocarboxylase hydrochloride
265
10. Tables
lactose
265
c 12H22O 1 1
sucrose
266
C14H14
dibenzyl
268
C15H1202N2
phenytoin
268
C16H3202
palmitic acid
269
C18H3602
stearic acid
269
CnH2n+2
paraffin
270
C24H50
tetracosane
270
C27H460
cholesterol
271
C32H66
N-dotriacontane
271
C36H74
hexatriacontane
272
proteins
272
C12H22Oll
*
H2O
285
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
11. References t o Tables [ 11 Abakumov.
V.I., Diarov. M.D., Kardashina. L.F., Kalacheva. V.G.: Izv.
Akad. Nauk Kaz. SSR. Ser. Khim. 4 (1988) 3 [2] Abbona. F.. Madsen. H.E.L., Boistelle. R.: J. Crystal Growth 74 (1986)581
[31Abdul-Rahman, A.: Unlv. Microfilms No. DA8824030 :CA 110 (26) 40426 [4]Abdul-Rahman, A.. Hamza. S.M.. Nancollas. G.H.: AICHE Symp. Ser.
83,253 F u n d a m . Aspects Cryst. Precip. Processes (1987)36
[51Abram, T.: G a s World 136,No. 3559 (1952) 71 [6] Acharya. C.S., Tandon. S.P.: J. Sci. Ind. Res. (India) 200 (1961)464 [7] Addadi. L.. Berkovitch-Yellln, 2.. Weissbuch. I., Lahav. M.. Leiserowitz, L.: Mol. Cryst. Liq. Cryst. 96 (1-4) (1983) 1 [81Ahmed, K.. Tawashi. R.: Urol. Res. 6 (1978) 77 [9] Akakumov, V.I.. Kardashina. L.F.. NedopeMna. V.A.: Obogashch.
Rud (Leningrad) 5 (1989) 16
[lo] Akhmetov. T.G.,
Kuznetsov-Fetisov. L.I.: Tr. Kazan. Khim.-Tekhnol.
Inst. 34 (1965)25 1111 Akl. M.M.. Nassar. M.M.. Sayed. S.A.: Chem.-1ng.-Tech. 63 (1991) 935
I121 Akl. M.M.. Nassar. M.M.. Sayed. S.A.: Chem.-1ng.-Tech. 63 (1991) 939 [13]Albon, N., Dunning. W.J.: Proc. Int. Conf. Growth and Perfection of
Crystals, p. 450. New York 1958
288
11. References to Tables
[14] Albon. N.. Dunning, W.J.: Acta Cryst. 15 (1962) 474 I151 Aldcroft. D.. Bye, G.G., Hughes, C.A.: J. Appl. Chem. 19 (1969) 167 [16] Alemaikin. F.M.: Uch. Zapiski Mordovsk. Gos. Univ., Saransk 16 (1962) 20 I171 Alfimova. L.D.. Velikhov. Yu.N.. Demirskaya. O.V.: Vysokochist.
Veshch. 5 (1991) 153 I181 Alkashi, H., Kagaku. N.R.: J. Japan Chem. Soc. 2.(1948) 212 [ 191 Alybakov. A.A.. Umurzakov, B.S.: Tezisy Dokl. Vses. Soveshch.
Rostu Krist. 5th 1 (1977) 206 1201Ambrose. S., Kanniah. N.. G n a n a m , F.D., Ramasamy. P.: Crystal Res.
Technol. 17 (1982) 299 I2 11Amelina. E.A., Vaganov. V.P., Shchukin. E.D.: Kolloidn. Zhur. 42 (4) (1980) 611 1221Ameneiro Perez, S.: Rev. C u b a n a Fis. 4 (1) (1984) 129 1231Amin, A.B., Larson. M.A.: Ind. Eng. Chem., Process Des. Devel. 7 (1) (1968) 133 1241Amjad, 2.: Roc. Symp. Adsorpt. Surface Chem Hydroxyapatite (1984) 1-11; CA 100 18347.7
I251 Amjad. 2.: Langmuir 3 (2) (1987) 224 [26] Amjad, 2.:J. Colloid Interface Sci. 117 (1) (1987) 959 I271 Amjad, 2.: Langmuir 3 (6)(1987) 1063 I281 Amjad, 2.: J. Colloid Interface Sci. 11 7 (1987) 98 I291 Amjad, 2.: Can. J. Chem. 66 (6)(1988) 1529 1301 Amjad. 2.: Can. J. Chem. 66 (9) (1988) 2181
11. References to Tables
I311 Amjad. 2.:J. Colloid Interface Sci. 123 (1988)523 I321 Amjad. 2.:Langmuir 5 (5)(1989)1222 1331 Amjad. 2.:Colloids and Surfaces 48 (1990)95 I341 Amjad. 2.:Langmuir 7 (3)(1991)600 1351 Amjad. 2.:Langmuir 7 (10)(1991)2405 I361 Amjad. 2.. Koutsoukos, P.G.. Nancollas. G.H.: J. Colloid. Interface Sci. 101 (1) (1984)250
I371 Amjad, Z., Mooley. J.: J. Colloid Interface Sci. 111 (2) (1986)496 I381 Andreev, G.A.: Rz. Tverd. Tela 7 (1965)1653 I391 Andreev, G.A.: Kristallografiya 12 (1967)104 I401 Andreev. G.A.: Kristallografiya 13 (1968)872 l411 Andreev, G.A.. Buritskova. L.G., Hartmanova. M.: Krist. Tech. 13 (1978)805 I421 Annede Cugnac. H.J.. Pouradier. J.: Compt. rend. 264 (1967)1149 I431 Antinozzi, P.A.. Brown, C.M.. Purlch. D.L.: J. Crystal Growth 125 (1-2)(1992)215 I441 Aoki. S..Yoshida. M.. Aral, Y.: Gypsum Lime 178 (1982)129 I451 Aquilano, D.. Rubbo. M.. Vaccari, S.. Mantovani, G.. Squaldino, G.: Growth mechanisms of sucrose from face-by-face kinetics and crystal habit modifications from impurities effect, in: Industrial Crystallization '84 (eds. JanW, S.J.. de Jong. E.J.),p. 91,Elsevier,
Amstardam 1984
I461 Armington, A.F., et al.: U S Govt Res. Dev. Rept 68 (1968)100
289
290
11. References to Tables
1471 Atademir. M.R.. Kitchener, J.A., Shergold, H.L.: J. Colloid Interface
Sci. 71 (1979) 466 (481Austrian Pat. 248 479 (1963)
1491 Austrian Pat. 343 597 (1978) 1501 Autenrieth. H., et al.: Chem. Ing. Tech. 29 (1957) 709
1511 Azoury. R.. Garside. J.. Robertson. W.G.: J. Crystal Growth 76 (2) (1986) 259 1521 Babayan. S.G.. et al.: Radiokhimiya 4 (1962) 521
(531Babayan. S.G.. Isakhanyan. S.S.: Armen. Khim. Zhur. 22(2) (1969) 119 1541 Babich. S.A.. Soifer, L.M., Chubenko, A.I., Shakhnovich, M.I.: Sb. Nauch. Tr. VNII Monokr., Otd. Mater. i Osobo Chist. Khim. Veshch.
1, 80 1551 BabiC- IvanEiC, Ftiredi-Milhofer. H.. PurgariC, B.. BrniceviC, N.. Despotovie. 2.:J. Crystal Growth 71 (1985) 655 I561 Babin. L., Clausse, D., Sifrini. I., Broto. F.. Clausse, M.: J. Phys. Lett. (Paris) 39 (201 (1978) 359 1571 Balarew, Khr.: Effect of isodimorphously included Co(II), Fe(I1) and Cu(I1) on the crystal structures of ZnSO4 and M g S 0 4 , in: Industrial Crystallization (ed. Mullin, J.W.), p. 239, Plenum Press, New York
1976
I581 Balarew. Khr.: Inclusion of isomorphous admixtures in crystal hydrate salts, in: Industrial Crystallization '81 (eds. S.J. JanEiC. E.J. de Jong), p. 117, North-Holland, Amsterdam 1982
1 1 . References to Tables
29 1
I591 Balarew. Khr.: Zukonornernosti nu ruvnovinogo polucuvune nu srneseni
kristuli u dvojku soli iz trikornponentni vodno-solevi sisterni, Thesis, Univ. Sofia 1983 I601 Balarew, Khr.. Stoilova, D.. Vassileva. V.: Inclusion of isomorphic
admixtures in co-crystallization of metal formiates. in: Industrial CrystnllizutSon '81 (eds. Jan&, S.J.. de Jong. E.J.), p. 331, North-
Holland, Amsterdam 1982 I611 Balarew, Khr.. Karaivanova V.: Krist. Tech. 10 (1975) 1101 [62l Balarew. Khr.. Karaivanova. V., Stefanov. I.: Effect of isodimorphic
guest component on the host crystal structures and habits, in: ZndustrialCrystuZlizution '84 (eds. JanEiC, S.J., de Jong. E.J.), p. 335,
Elsevier. Amsterdam 1984 I631 Balarew, Khr.. et al.: Izv. Inst. Obsch. Neorg. Khim. Bulgar. AN, 4 (1966) 3 1 [641 Balarew. Khr., Karaivanova, V.G.: Dokl. Bulgar. Akad. Nauk 28 (1975) 1497 [651 Bamforth, A.W.: Chem. Proc. Eng. 33 (1952) 367 I661 Bamforth. A.W.: Chem. Proc. Eng. 46 (1965) 8 1 1671 Barbarin. B.V., Koshchurnikov. I.N.: Sbor. Nauch. Tr., Kat. Mat. 31 (1960) 159 I681 Bardossy. G . . White, J.L.: Hung. Alum. Corp. Budapest, Hung. Sci.
(Washington, D.C.) 203 (4378)(1979) 355 I691 Barsukova. M.L.. Kuznetsov, V.A.. Okhrimenko. T.M.. Naumov. V.S.,
Kachalov, O.V.. Klimova. A.Yu.. Kolybaeva, M.I.. Salo. V.I.: Kristallografiya 37 (4)(1992) 1003
292
11. References to Tables
[70] Barton, T.F., Price, T., Dillard. J.G.: J. Colloid Interface Sci. 141 (2)
(1991) 553 I711 Basak. B.. Glasson, D.R., Jayaweera. S.A.A.: in: Particle Growth in
Suspensions (ed. A.L. Smith), p. 143, Acad. Press, New. York 1973 I721 Baumann. J.M., Ackermann. D.: Urol. Res. 17 (1989) 153 I731 Baumann. J.M., Wacker. M.: Urol. Res. 7 (1979) 183 [74] Bazhal, I.G., Dzyubenko. E.P.. Mikhalik, V.A.. Trebin. L.I., Shtangeeva. N.I.: Radiokhimiya 20 (4) (1978) 481 I751 Beckmann, W.: Growth mechanism of the B and C modifications of stearic acid from pure and impure solutions, in: IndusMal CrystalUzation '87 (eds. Nfilt, J.. ZriEek, S . ) , p. 481, Academia
Prague and Elsevier Amsterdam 1979 I761 Beckmann, W., Boistelle, R.: J. Crystal Growth 72 (3) (1985) 621
I771 Beckmann, W.. et al.: Zur Fremdstoffbeeinflussung von Kristallisationsvorgiingen. in: Int. Arbeitssitz. Kristallisatlon, GVC-VDI. Luneburg 1988 [78] Beglov. B.M.. et al.: Uzbek. Khim. Zhur. 8(6) (1964) 5 I791 Behrens. M.. Schriider. W., Lacmann. R.: Growth of potassium chloride in batch cooling crystallization experiments and influence of potassium hexacyanoferrate(I1). in: Arbeitssitz. Kristallisation GVC-VDI. Delft 1992 [80] Beiny, D.H.M., Mullin. J.W., Lewtas. K.: J. Crystal Growth 102 (4) (1990) 801 [Sll Belg. Pat. 639 180 (1964)
11. References to Tables
293
I821 Belg. Pat. 657 346 (1965)
1831 Belg. Pat. 658 160 (1965) I841 Bell, J.: Gas World, Cok. See. 15 (1938) 2838 I851 Belopolskii. A.P.: Gips i Fosfogips 1933,45 1861 Belopolskii. A.P.. Margolis. F.G.: Zhur. Prikl. Khim. 20 (1947) 331 1871 Belov, V.N., SokolSkii. Yu. M., Khor’kova. N.Ya.: Tr. Leningr. Gos.-
Nauchno-Issled. Proekt. Inst. Osnov. Khim. Prom-sti 25, 33 I881 Belyshev. M.A.. Baranov. G.P.: Investigation of crystal rounding-off in
salt m a s s crystallization, in: Industrial Crystallization ’87 (eds. Njvlt. J.. ZBEek, S.),p. 291. Elsevier Amsterdam a n d Academia
Prague, 1989 [891 Belyustin. A.V.. Dvoryankin. V.F.: Rost Krist. 1 (1957) 174 [901 Belyustin. A.V.: Rost Krist. 4 (1964) 10 1911 Belyustin. A.V., Levina, I.M.. Stepanova, N.S., Kolina. A.V.. Maslova,
T.M.: Tezisy Dokl. Vses. Soveshch. Rostu Krist. 5th,2 (1977) 73 I921 Belyustin. A.V.. Portnov, V.N.: Rost Krist. 4 (1964) 36 I931 Belyustin. A.V.. Portnov, V.N.: Acta Cryst. 21 (1966) 266 1941 BeneS. J.. Vobecky. M.: Collect. Czech. Chem. Commun. 31 (1966) 4398 1951 BeneS, J.. KyrS. M.: Collect. Czech. Chem. Commun. 33 (1968) 2822 [96l BeneS. J.: Collect. Czech. Chem. Commun. 34 (1969) 1514
I971 BeneS. J.. Vobecky, M., BBrta, K.: Collect. Czech. Chem. Commun. 34 (1969) 1523 I981 Bennema. P.: J. Phys. D: Appl. Phys. 24 (2) (1991) 123 1991 Bennett, A.E.. et al.: Chem. Proc. Eng. 48 (1967) 43
294
11. References to Tables
[loo]Bennett,
R.C., v a n Buren. M.: Chem. Eng. Progr. 95,Vol.65 (1969)44
[lollBerak, J.M.. Borowiak. M.A., Sznajder, J.: Chem. Stosow. 23 (2) (1979)129 I1021 Berdonosova. D.G., et al.:Radiokhimiya l O ( 2 ) (1968)145 [ 1031 Berdonosova, D.G., Pencheva. Zh., Melikhov. I.V.: Radiokhimiya 26
(2)(1984)153 [ 1041 Berezhkova. G.V.. Rozhenskil, V.N.: Kristallografiya 8 (1963)420
[lo51Berkhoff, G.: Chem. Weekbl. 32 (1935)186. 190. 195 I1061 Berkhoff. G.: Chem. Apparatur 23 (1936)104. 118,125 I1071 Berkhoff, G.: Chem. Met. Eng. 44 (1937)366 [ 1081 Berkovich-Yellin, 2. Addadi, 2.. Idelson, M.. Lahav. M.. Leiserowitz,
L.: Angew. Chem. 94 (8)(1982)640
I1091 Berry, C.R., Sklllman, D.C.: J. Phys. Chem. 68 (51 (1964)1138 (1101Berry, C.R.. Skillman. D.C.: J. Phys. Chem. 70 (1966)1871 11111 Berry, C.R.. Skillman. D.C.: Photogr. Sci. Eng. 11 (1967)411
I1 121 Bertoldi. G.A.. 2em.-Kalk-Gips (Austria) B 31 U Z ) (1978)626 [113]Beudant, F.S.:Ann. M i n e s 3 (1818)259 11 141 Beudant. F.S.:Ann. M i n e s 3 (1818)293
[115]Bhatt, M.P., Datar. D.S.: Salt Res. Ind. 5 (3-4) (1968)57 [116]Bienfait. M.. Boistelle. R.. Kern, R.: in: Adsorptionet Croissance Cristalline, Colloq. Int. Centre Nat. Rech. Sci. 152 (1965)577
11 171 Bijvoet. O.L.M.. Blomen. J.M.J.. Will, E.J., v a n der Linden, H.: J. Crystal Growth 64 (1983)316
I1181 Birchall. J.D., Davey. R.J.: J. Crystal Growth 54 (2) (1981)323
11. References to Tables
295
(1191Bischoff. J.L.: J. Geophys. Res. 73 (lo) (1968)3315 [ 120)Blaszczak.
J.. Krysztafkiewlcz. A.. Maik, M.: Wplyw zwiazkow
powierzchniowo czinnych na krystalizacje fluorku glinowego, In: 11. Symp. Industr. C r y s t , Jaszowiec 1986. p. 71 [ 1211 Blaszczak, J.. Krysztafkiewicz, A., Maik.
M.,Rager. B.: Przem.
Chem. 67 (7) (1988)345
I1221 Blaszkiewlcz. B.: Poznan. Tow. Przyj. Nauk, Wydz. Mat. - Przyr. Pr.. Kom. Mat. Przyr 4 (1968)165
11231 Blinova, N.P., Matusevich. L.N.. Postnlkov. V.A.: Teor. Osn. Khim. Tekhnol. 6 (21 (1972)169
[124]Bliznakov. G.,Kirkova, E.: 2 physik. Chem. 206 (1957)271 [ 1251 Bliznakov, G.: 2.physik. Chem. 209 (1958)372
(1261Bliznakov, G., et al.: Dokl. Bulgar. AN 12 (2)(1959)121 (1271Bliznakov. G..et al.: Godish. Soffl. Univ.. Khim. Fak. 47 (19621963)63 [l28]Bliznakov. G.: Colloq. Int. Centre Nat. Rech. Sci. 152 (1965)291 11291 Bliznakov. G.. et al.: 2.physik. Chem. 228 (1965)32 (1301Bliznakov. G.,e t al.: Krist. Tech. 1 (1966)503 11311 Bliznakov, G.,Nikolaeva, R.: Krist. Tech. 2 (1967)161 11321 Bliznakov. G.. Kirkova. E.: Krist. Tech. 4 (1969)331 (1331Bliznakov, G.. Kirkova. E.: 2. physik. Chem. 206 (1957)271 [ 1341 Blomen,
L.. Bijvoet,
0.. Blomen-Kuneken, W.: Fortschr. Urol.
Nephrol. 22 (1984)354
(1351Bochner, R.A., Abdul-Rahman. A.. Nancollas, G.H.: J. Chem. SOC.. Faraday Trans. 1 80 (1)(1984)217
296
11. References to Tables
[ 1361 Boistelle, R.: NATO Adv. Study Inst. Ser., Ser. C 87, 531; CA 97
227660 [ 1371 Boistelle. R.: Impurity effects in crystal growth from solution, in:
NATO Adv. Study Inst. Ser.. Ser. C 87. 621 I1381 Boistelle, R.: Thesis, University Nancy 1966 I1391 Boistelle. R.: Survey of crystal habit modification in solution, in:
Industrial CrystalZizatbn (ed. Mullin. J.W.). p. 203, Plenum Press,
NewYork 1976 I1401 Boistelle. R.. et al.: Bull. SOC.Lovraine Sci. 2 (3) (1962) 62 I1411 Boistelle. R., Mathieu. M.. Simon, B.: Surface Sci. 42 (1974) 373 I1421 Boistelle. R.. Simon, B.: J. Crystal Growth 26 (1974) 140
I1431 Bolt, R.J.:J. Crystal Growth 126 (2-3)(1993) 175 I1441 Bongiovanni, R.. Castellano, M., Borgarello, E., Minero. C . , Maurino,
V., Pelizzetti. E.: J. Dispers. Sci. Technol. 11 (2) (1990) 169 11451 Bordui, P.F.. Calvert, G.D., Blachman, R.: J. Crystal Growth 129
(1-2)(1993) 371 [ 1461 Borodulln, E.E., Erofeev. V.N.: Izv. Akad. Nauk SSSR. Neorg. Mater.
19 (6)(1983) 1030 [ 1471 Botsaris, G.D.: Effects of impurities in crystallization processes, in:
Industrial Crystallization '81 (eds. JanB6. S.J.. de Jong. E.J.). p. 109,
North-Holland, Amsterdam 1982 (1481Botsarls, G.D.. et al.: U S Atomic Energy Comm. MIT-2909-4 (1965) 462
11.References to Tables
297
I1491 Botsaris, G.D.. Mason, E.A., Reid, R.C.: J. Chem. Phys. 45 (1966)
1893
I1501 Botsaris. G.D.. et al.: Brit. Chem. Eng. 12 (1967) 331 [151] Botsaris, G.D., et al.: AICHE J. 13 (1967) 764
I1521 Botsaris, G.D.. Reid, R.C.: J. Chem. Phys. 47 (1967) 3689
I1531 Botsaris, G.D.. Sutwala. G.: AICHE Symp. Ser. 72 (153)(1976) 7 I1541 Bourne, J.R.: AICHE Symp. Ser. 76 (193)(1980) 59
I1551 Bourne, J.R.: Chimia 32 (21 (1978)47 I1561 Bourne, J.R., Davey. R.J.: J. Crystal Growth 36 (1976)287
11571 Bourne, J.R., Davey, R.J.: J. Crystal Growth 43 (1978)2 2 4
I1581 Bourne, J.R., Davey, R.J.: J. Crystal Growth 44 (5) (1978)613 [159]Bourne, J.R.. Davey, R.J.: Solvent effects in the growth of hexamethylenetetramine crystals. in: Industrial CrystaZZizatIon (ed.
Mullin, J.W.). p. 223. Plenum Press, New York 1976 I1601 Bourne, J.R., Davey, R.J.. McCullach, J.: Chem. Eng. Sci. 33 (1978)
199 I16 11 Bowyer, R.C.. Brockis. J.G.. McCulloch, R.K.: Clin. C u m . Acta 95
(1979)23
I1621 von Brachel. G., Offermann, H., Farelo, F.: Zur Beeinflussung der
Kristallwachstumsgeschwindigkeitvon NaCl Kristallen durch die Anwesenheit von KCI in hohen Konzentrationen, in: fnt. Arbeitssitz.
Kristallisation GVC-VDI. Aachen 1989 I1631 von Brachel, G.. Offermann. H.. Farelo. F.: Beeinflussung der
Kristallwachstumskinetik von NaCl und KNO, Kristallen durch
298
1 1 . References to Tables
weitere gelBste Fremdsalze in hohen Konzentratlonen. In: Int
Arbeftssltz.KrlstaZUsatlon GVC-VDI. Delft 1992 I1641 Brandse. W.P.. van Rosmalen, G.M.. Brouwer. G . : J. Inorg. Nucl.
Chem. 39 (197712007
11651 BreCevId, L.. Ffiredi-Milhofer, H.: The transformation of amorphous calcium phosphate into crystalline hydroxyapatite. in: Industrial Crystallization (ed. J.W. Mullin). p. 277, Plenum Press, New York 1976 [ 1661 BreEevie, L.. Hlady. V., Fiiredi-Mflhofer. H.: Colloids and Surfaces 28
(1987) 301 I1671 BreEevle. L.. Sendijarevie. A., Fiiredl-Milhofer, H.: Collolds Surf. 11
(1-2)(1984) 55
Pt. 1) (19861 178 [I681 BreCevid. L.. Kralf. D.: J. Crystal Growth 79 (1-3, 11691 Bredikhin, V.I.. Ershov, V.P.. Korolikhin. V.V.. Lizyakina, V.N.:
Kristallografiya 32 (1) (1987) 214 I1701 Brit. Pat. 330 945 (1929) I1711 Brit. Pat. 330 947 (1929) 11721 Brit. Pat. 569 918 (19431 11731 Brit. Pat. 649 240 (1951) 11741 Brit. Pat. 667 101 (1951) 11751 Brit. Pat. 752 582 (19541 I1761 Brit. Pat. 765 946 (1954) I1771 Brit. Pat. 811 468 (1959) 11781 Brit. Pat. 812 476 (19591
11. References to Tables
299
I1791 Brlt. Pat. 822 893 (1959) 11801 Brlt. Pat. 848 328 (1960) 11811 Brit. Pat. 895 690 (1960) [182] Brit. Pat. 917 567 (1963) (1831Brit. Pat. 1 126 615 (1968) 11841 Brit. Pat. 1 383 655 (1975) [1851 Brit. Pat. 1 412 938 (1975) [1861 Bromley, L.A., Cottier. D.. Davey, R.J.. Dobbs. B., Smith. S..
Heywood, B.R.: Langmuir 9 (12) (1993) 3594 I1871 Brooks, R.. Clark, L.M., Thurston,
E.F.:Phil. Trans. Roy. SOC.
(London)A243 (1950/51) 145 I1881 Broul, M.: Kinetics ofcrystallization of ammonium sulphate in presence
of admiutures, PhD Thesis, Univ. Chem. Technol. Prague 1979 11891 Broul. M.. et al.: Rept. Res. Inst. Inorg. Chem.. Usti n.L., No. 575 (1971) I1901 Broul, M.: Influence of impurities on the (NH,),SO,
crystallization, in:
Conf. on Industrial Crystallization. Proc. p. 41, U s t i n. L. 1971 I1911 Broul. M.: Influence of Mn(II), Cu(I1) and Al(II1) on the size and habit
of ammonium sulphate crystals, in: Industrial Crystallization (ed. Mullin, J.W.), p. 253. Plenum Press, New York 1976 (1921Broul M.: Kinetics of crystalllsatlon In the presence of lmpurltles.
in: IndustrialCystallization’Bl (eds. JanEle. S.J.. de Jong. E.J.), p. 325, North-Holland, Amsterdam 1982
300
11. References to Tables
(1931 Broul. M., N*lt,
J.. Sdhnel. 0.: Solubility in Inorganic Two-
Component Systems, Elsevier. Amsterdam 1981 1194) Broul, M., Provaznik, L.. Nfilt, J.: Chem. prhmysl23 (1973) 605 (1951Broul, M., Provaznik. L.. Nfilt. J.: Chem. prhmysl25 (1975) 587 (1961 Brown, N.: J. Crystal Growth 87 (2-3) (1988) 281 (1971 Bruninx. E.: Phflips J. Res. 33 (1978) 264 I1981 Buckley. H.E.: 2. Krist. 73 (1930) 443 11991 Buckley, H.E.: 2. Krist. 75 (1930) 15 (2001 Buckley. H.E.. 2. Krist. 76 (1930) 147 1201) Buckley, H.E.: 2. Krist. 78 (1931) 412 I202l Buckley. H.E.: 2. Krist. 80 (1931) 238 12031 Buckley. H.E.: 2. Krist. 81 (1932) 157 I2041 Buckley, H.E.: 2. Krist. 82 (1932) 37 12051 BucMey. H.E.: 2. Krist. 82 (19321 46 I2061 Buckley. H.E.: 2. Krist. 82 (19321 285 12071 Buckley. H.E.. Cocker,
J.M.:2. Krist. 85 (1933) 58
12081 Buckley, H.E.: 2. Krist. 88 (19341 122 12091 Buckley. H.E.: 2. Krist. 88 (1934) 248 12101 Buckley. H.E.: 2. Krist. 88 (1934) 381 12111 Buckley, H.E.: 2. Krist. 91 (1935) 375 12121 Buckley, H.E.: 2. Krist. 97 (1937) 370 [2131 Buckley. H.E.: Mem. Proc. Manchester Lit. Phil. SOC. 83 (1939) 3 1 [214] Buckley, H.E.: Disc. Faraday SOC. 5 11949) 243 12151 Buckley, H.E.: Crystal Growth, Wiley, New York 1951
1 1. References to Tables
30 1
I2161 Budz, J., Jones, A.G., Mullin, J.W.: J. Chem. Technol. Biotechnol. 36 (1986) 153 I2 171 Budz. J.. Karpinski, P., Mydlarz. J . , N*lt,
J.: Ind. Eng. Chem..
Product Res. Devel. 25 (1986) 657 I2181 Buehrer, T.F.. Reitemeier. R.F.: J. Phys. Chem. 44 (1940) 551 I2191 Buket. F., Akyav. O.C., Cakaloz, T.: Construction of a crystallizer
and measurement of crystallization rate of sucrose in the presence of some amino acids, in: Process TechnoL Roc. 2, Ind. Cryst., (1984) 32 1 I2201 Bulutcu. N., Sayan, P., Yavasoglu. N.. UIrich, J.: The effect of
additives on growth and dissolution rates of boric acid, in: Industrial Crystulllzation '93 (ed. Rojkowski. Z . ) , 1-3-129, Warsaw 1993 I2211 Bunn. C.W.: Proc. Roy. SOC.LondonA141 (1933) 567 [2221 Bunn. C.W.. Emmett, H.: Disc. Faraday SOC. 5 (1949) 119 I2231 Burt, H.M.. Mitchell, A.G.: Int. J. Pharm. 5 (3) (1980) 239 I2241 Butchart. A., Whetstone, J.: Disc. Faraday SOC. 5 (1949) 254 I2251 Bykhovskii. D.N., Petrova, I.K.: Radiokhimiya 10 (1968) 520 I2261 Byrappa, K.. Srikantaswamy, S . . Gopalakrishna. G . S . . Venkatachala-
pathy. V.: J. Mater. Sci 21 (€9 (1986) 2202 [2271 Byteva. I.M.: Rost Kristallov 3 (1961) 296 [2281 Byteva, I.M.: Rost Kristallov 4 (1964) 22 I2291 Byteva. I.M.: Rost Kristallov 5 (1965) 219 I2301 Byteva. I.M.: Kristallografiya 10 (1965) 130 I2311 Byteva. I.M.: in: Crystallization Processes (eds Sirota, N.N.. Gorskii.
F.K.. Varikash. V.M.) , p. 199, Consultants Bureau, New York 1966
302
1 1 . References to Tables
12321 Cadoret. R., Monier, J.C.: in: Adsorption et Croissance CristaUine, ColL
Int. CNRSNo. 152 (1965) 559 I2331 Caldwell. H.B.: Ind. Eng. Chem. 53 (1961) 115 [234] Canselier. J.P.: Comun. Jorn. Com. Esp. Deterg. 22 (1991) L I2351 Canselier. J.P.: Dispers. Sci. Technol. 14 (6)(1993) 625 I2361 Canselier. J.P., Chianese. A.: Jorn. Com. Esp. Deterg. 23. p. 261.
CED. Barcelona 1992 12371 Canselier. J.P.. Frances, C.: ref. 39 in: Canselier. J.P.: Dispers. Sci.
Technol. 14 (6) (1993) 625 I2381 McCartney. E.R.. Alexander, A.E.: J. Colloid Sci. 13 (1958) 383 I2391 Caven, R.M.. Johnston, W.J.: J. Chem. SOC.129 (1926) 2628
131 (1928) 2506 I2401 Caven, R.M.. Johnston, W.J.: J. Chem. SOC. I2411 Chem. Eng. News 37 (1959) 52 l2423 Chem. prbmysl9 (19591 258 12431 Chen. B.D., BreCeviC. L., Garside. J.: Nucleation of tetracosane in
hydrocarbon solvents, in: Industrial Crystallization '93, VoL II (ed. Rojkowski. 2.).p. 4-059. Warsaw 1993 I2441 Chen. B.D.. Garside. J.: Morphology control in melt crystallization:
a study of m-chloronltrobenzene, in: D+BIWIC 1993, p.100. Delft + Bremen 1993 I2451 Chen, B.D., Garside. J.. Davey. R.J.. Maginn, S.J.: m-chloronitro-
benzene: the description and prediction of polar morphologies, in: Industrial Crystallhation '93, VoL I (ed. Rojkowski. 2.).p. 3-069,
Warsaw 1993
11. References to Tables
303
I2461 Chen. N.G.. Kurando. N.N.: Zhur. Prikl. Khim. 39 (1966)2417 12471 Chen. W.C.. Ma, W.Y., Liu, D.D., Xie. A.Y.: J. Crystal Growth 84 (1987)303 I2481 Chepelovski, M.L.:Zhur. Fiz. Khim. 13 (1939)561 I2491 Chernov, A.A.. Malkin. A.I.: Kristallografiya 33 (6)(1988)1487 I2501 Chernov, A.A.. Parvov, V.F.. Kliya. M.O.. Kostomarov. D.V.. Kuznetsov. Yu.G.: Krlstallografiya 26 (5)(1981)1125 I2511 Chianese. A.. Di Cave, S., Mazzarotta. B.: Encrustation throughout sodium perborate crystallization, in: Industrial Crystallization '80 (ed. Mersmann. A.), p. 453,Munich 1990 I2521 Chianese. A.. Condo, A.. Di Bernardino. F.. Mazzarotta. B.: Effect of
a surfactant on the crystallization of sodium perborate from aqueous solutions. in: Industrial Crystallization '87 (eds. NFlt. J..
Zrieek. S.1, p. 261,Academia Prague and Elsevier Amsterdam 1979 I2531 Chianese. A.. Mazzarotta. B.. Biscans. B.: Ink Colloid and Surface Chem Symp., Roc. Symp. B1 , p. 55. Compiegne 1991
I2541 Chiang, P.T.: AICHE Symp. Ser. No. 240. 80 (1984)123 I2551 Chudakov, M.I.. et al.: Gidroliz lesokhim. prom. 4 (1955)20 I2561 Claes. F.H.. Peelaers. W.: Photogr. Korresp. 103 (1967)161 12571 Claes. F.H., Peelaers. W.: Compt. rend. 265 B (1967)323 I2581 Claes. F.H.. Peelaers, W.: Photog. Sci. Eng. 12 (1968)207 I2591 Claes, F.H.. Peelaers. W.: Photogr. Korresp. 104 (1968)12 I2601 Clendinnen. Rivett: J. Chem. SOC. 119 (1921)1329: ibid. 121 (1922) 801: ibid. 123 (1923)1344,1634
304
11. References to Tables
12611 Collins, P.R.. Fredericks, W.J.: J. Crystal Growth 71 (1985)739 I2621 Cooke. E.G.: Krist. Tech. 1 (1966)119 [263]Cooper, W.D., Jones, P.. Parfitt, G.D.: Kolloid-2. u. 2. Polymere 246 (1971)704 I2641 Comer, J.J.: J. Colloid Sci. 14 (1959)175 12651 Cornell. R.N., GiovanoIi, R.. Schneider. W.: J. Chem. Technol. Biotechnol. 46 (1989)115
12661 Cornell, R.N., Giovanoli. R., Schneider. W.: J. Chem. Technol. Biotechnol. 53 (1) (1992)73
I2671 Cornell. R.M.. Schwertmann, U.: Clays Clay Miner. 27 (6)(1979)402 I2681 Couling. S.B.. Mann. S.: J.Chem.Soc., Chem. Commun. 23 (1985) 1713;CA 104 (16)139464 12691 Crawford. J.E., Crematy. E.P.. Alexander, A.E.: Aust. J. Chem. 21 (1968)1067 [2701Cunnings: Gas J. 172 (1925)358 I2711 Czapelski. M.: Crystal Res. Technol. 27 (1992)K83 [2721Czech Pat. 109 611 (1964)
,
12731 Czerwinski, 2.. Rynski, B.: Przemysl Chem. 12 (1956)678 [2741Czerwinski, 2.. et al.: Studia SOC.Sci. Torun B2 (4)(1960)1 I2751 Czerwinski. 2.. et al.: Studia SOC. Sci. Torun B6 (1) (1966)1 12761 Dal. V.I.. e t al.: Koks i khim. 1957 (3)38 12773 Dalas. E.. Koutsoukos. P.G.: J. Chem. SOC..Faraday Trans. 1 85 (8) (1989)2465 [2781Dalas. E.. Koutsoukos. P.G.: J. Chem. SOC., Faraday Trans. 1 85 (10) (1989)3159
1 1 . References to Tables
305
12791 Dalpi, M.. Karayianni, E., Koutsoukos. P.G.: J. Chem. SOC.. Faraday
Trans. 89 (6)(1993) 965 [280] Dam, B.. van Enckevort, W.J.P.: J. Crystal Growth 69 (2-3) (1984) 306 [281] Dam, B.. Polman. E., van Enckevort. W.J.P.: In situ observation of surface phenomena on / 100/ KDP related to growth kinetics and impurity action, in: Industrial Crystallization '84 (eds. J a n W S.J.. de Jong, E.J.), p. 97. Elsevler. Amstardam 1984 12821 van Damme-van Weele, M.A.: PhD Thesis, Technical Univ. of Twente. Netherlands. 1965 I2831 Danilova. A.G.. Abdullaeva, A.B.. Ismatov. Kh. R.: Deposited doc. VINITI 3311-81 (198 1) 12841 Davey, R.J.: The control of crystal habit, in: Industrial Crystallization '78 (eds. de Jong. E.J., JanW, S.J.). p. 169, North-Holland, Amsterdam 1979 12851 Davey. R.J.: The role of additives in precipitation processes, in: Industrial CrystaUizQtion '81 (eds. JanCie, S.J.. de Jong, E.J.). p. 123.
North-Holland, Amsterdam 1982 12861 Davey. R.J.: Curr. Top. Mater. Sci. 8 (1982) 429 I2871 Davey. R.J.: J. Crystal Growth 76 131 (1986) 637 [288] Davey. R.J.. Black, S.N.. Logan, D., Maginn, S.J.. Fairbrother J.E.. Grant, D.J.W.: Chem. SOC.,Faraday Trans. 88 (23)(1992) 3461 I2891 Davey. R.J.. Mullin. J.W.: J. Crystal Growth 26 (1974) 45
306
11. References to Tables
I2901 Davey. R.J.. Mullin, J.W.: The effect of ionic impurities o n the
growth of a m m o n i u m dihydrogen p h o s p h a t e crystals, in: Industrial
CrystaZUzation (ed. Mullin, J.W.). p. 245, Plenum Press, New York 1976 12911 Davey, R.J., Mullin, J.W.. Whiting, M.J.L.: J. Crystal Growth 58 (2) (1982) 304
[2921 Davey, R.J., Fila. W.. Garside, J.: J. Crystal Growth 79 (1-3, Pt. 2) (1986) 607.
12931 Davies. C.W., Nancollas. G.H.: Trans. Faraday SOC. 51 (1955)818
[294] Davies. C.W.. Nancollas. G.H.: Trans. Faraday SOC.51 (19551 823 I2951 Debskci-HoreckB, A.. Wagler, H.. Flachovslj. J.: Radiochem.
Radioanal. Lett. 44 (61(1980) 369 12961 Dejewska, B.: Crystal Res. Technol. 27 (1992) 385 12971 Delfosse. P.: Fertiliz. Feed. Stuffs J. 45 (1956)333 I2981 Demirskaya, O.V.. Kislomed. A.N., Velikhov, Yu.N.. Glushkova, L.V..
Vlasova. I.D.: Vysokochist. Vestch. 1 (1989) 14 12991 Denk, E.G.: Growth of aluminiumpotassium crystalsfrom aqueous
solutions. M.S. Thesis. Tufts University 1 9 6 8 [300] Deshalit. G.I., et al.: Koks i Khim. 1958 (8)33 [301] DespotoviC, R.: Croat. Chem. Acta 45 (1973) 163 [302] Despotovie, R., Filipovi&Vincekovik. N.. Mayer, I).: Heterogeneous
nucleation in s u r f a c t a n t solutions, in: Industrial Crystallization’78
(eds. de Jong. E.J., JaneiC. S.J.),p. 509. North-Holland. Amsterdam 1979
12. References to Tables
307
I3031 Despotovie, R.. Filipovie-VincekoviC. N., Subotie, B.: in Roc. 50th Int.
Con3 on Cottoid Inte@zce Sci. fed. Kerker, M.), vol. 4. p. 293. Academic Press, New York 1976 13041 Desvignes. J.M., et al.: Krist. Tech. 6 (i971) 203 I3051 Dmitrenko. V.E.. Zubov. M.S.. Baulov. V.I.: Zhur. Prikl. Khim. 58 (2) (1985) 408 I3061 Doehl. B.. Follner. H.: Crystal Res. Technol. 27 (1992) 3 [3071 Dombalov. I., Pelovski. I., Bozhinova. D.: Godish. Vissh. Khim.-
Tekhnol. Inst. , Sofia 29 (1) (1984) 177 [3081 Doremus. R.H.: Croat. Chem. Acta 42 (1970) 293 13091 Doxsee, K.M.. Stevens, R.C.: J. Inclusion Phenom. Mol. Recognit.
Chem. 9 14) (1990) 327 47 (1925) 662 I3101 Dijrner. H.A.. Hoskins, W.M.: J. Am. Chem. SOC. I3111 Douglas, H.W.: CEPAS 78 Abstract Book (ed. A.E. Nielsen). p. 128,
Univ. Copenhagen 1978 I3121 Dousma, J.. de Bruyn, P.L.: J. Colloid Interface Sci. 64 (1978) 154 13 131 Drabent, 2.. Piotrowski. S . : Zeszyty Nauk Wyszej Szkoly Rolniczej w
Olstynie 21 (1966) 2 13 I3141 Drach. G.W.. Randolph, A.D., Mffler, J.D.: J. Urol. 119 (1978) 99 I3151 Draganova. D.: Godish. Sofii Univ., Khim. Fak. 59 (1966) 171 13161 Draganova, D.: Godish. Sofii. Univ.. Khim. Fak. 60 (1968) 169 13171 Draganova. D., Kovacheva. P.: Godish. Sofii. Univ., Khim. Fak. 60 (1968) 169 [318] Draganova. D.: Godish. Sofii. Univ.. Khim. Fak. 69 (1974-1975) 22 13
308
11. References to Tables
13191 Draganova, D.: Godish. Sofii. Univ.. Khim. Fak. 73 (1983)157 I3201 Draganova. D.: Izv. Khim. 14 (2)(1981)229 I3211 Draganova. D., Koleva. R.: Izv. Khim. 13 (4)(1981)631 13221 Draganova. D., Koleva. R.: Godish. Sofii. Univ.. Khim. Fak. 74 (1984) 300 I3231 Draganova. D. Koleva. R.: ICCG-A. Sendai (1989)21A C 0 8 (3241v a n Driel. C.A., v a n der Heijden. A.E.D.M.. v a n Rosmalen. G.M.: Granule structure formation by isothermal coarsening of dendritic
ammonium nitrate phase 11, in: Industria2 Crystallization '93,Vol. f (ed. Rojkowski, 2.1, p. 3-117,Warsaw 1993 I3251 v a n Driel. C.A.. v a n der Heijden, A.E.D.M.. Tjioe, T.T.: Polymorphism a n d mechanical stability of a m m o n i u m nitrate
granules: the influence of additives, in: D+BIWIC 1993. p. 51. Delft + Bremen 1993
(3261Driker. B.N., Protsakov. S.M.. Rempel. S.I.,Vakulenko. V.A.. Samborskii, I.V.: Zhur. Prikl. Khim. 54 (1981)1006
13271 Driker, B.N., Belyaeva. N.A., Vakulenko. V.A., Prostakov, S.M.: VINITI Depos. Doc. 2991 (1983);CA 101 046479
13281 Driker. B.N.. Prostakov. S.M..Rempel. S.I.. Vakulenko. V.A.. Samborskii. I.V.: Kompleksn. Ispol'zov. Miner. Syr'ya 12 (1981)22
I3291 Druker. B.N.. Belyaeva. N.A.: Zhur. Prikl. Khim. 61 (1988)610 I3301 Dugua, J.: Thesis, Univ. Aix-Marseille 1977 13311 Dugua, J.. Simon, B.: CEPAS 78, Abstract book (ed. A.E. Nielsen).
p.5. Univ. Copenhagen 1978
1 1 . References to Tables
I3321 Dugua. J.. Simon, B.: J. Crystal Growth 44 (3)(1978)265 13331 Dugua, J.. Simon, B.: J. Crystal Growth 44 (3)(1978)280 I3343 Dunning. W.J.: Acta Cryst. 15 (1962)474 [335]Dunning, W.J.: Ind. Saccar. Ital. 60 (1967)225 I3361 Dunning, W.J.. Albon. N.: in: Growth and Perfection ofcrystals (eds. Doremus. R.H.. Roberts, B.W.. Turnbull. D.), p.446,Wiley. New York 1958 I3371 Dunning, W.J., Jackson, R.W., Mead, D.G.: Colloq. Int CentreNat. Rech Sct 152 (1965)303
I3381 Duverneuil. P.. et al.: Solvent effect on the crystallization of HMX (octogene). in: Japan-French Working Party on Industr. C r y s t , Toulouse 1988 I3391 Dvornichenko, K.I.. Zubkova, E.M.: Khim. Prom. 43 (1967)51 13401 Dybwad, J.P., Engelhardt. W.V.: 2. Krist. 124 (1967)161 I3411 Edinger. S.E.: J. Crystal Growth 18 (1973)217 [342]Edwards, G.R., Evans, L.P.: Trans. Faraday SOC.58 (1962)1649 I3431 Efremova, E.P.. Zaitseva, N.P.. Klimova. A.Yu., et al.: Neorg. Mater. 27 (12)(1991)2600 I3441 Egel. Hess: Fremdstoffeinflfisse auf Grbsse und Form gefwter Bariumsulfat- Partikeln, Ink Arbeitssitz. Kristallisation GVC-VDL Heidelberg/Ludwigshafen 1990 I3451 Ehrlich, F.: 2. anorg. allg. Chem. 203 (1931)26 (3461Eldelman. N., Azoury, R.. Sarig, S.: J Crystal Growth 74 (1986)1
309
3 10
1 1. References to Tables
I3471 Eisner, Ya.: Mineral. Sb. Lvov. Geol. Obshch. 11 (1957)329 I3481 Elliot. M.N.: Desalination 6 (1969)87 I3491 Enfistfin. B.V.. Turkevich, J.: J. Am. Chem. SOC. 82 (1960)4502 I3501 Estefan. S.F.. Awadalla. F.T.. Felix. N.S.. Yousef, A.A.: Aufbere1t.Tech. 21 (9)(1980)463 I3511 Ettle. G.W.: Proc. Fertilizer SOC. 5 (1949)47 I3521 Europ. Chem. News 8 (1965)33 I3531 Eur. Pat. Appl. 465 055 I3541 Evans, L.F.: J. Appl. Phys. 38 (1967)4930 I3551 Evans, L.F.: Trans. Faraday SOC.63 (12((1967)1 I3561 Evstlgneev. E.D., Makarov, A.N., Shapiro, K.Ya.. Rumyantsev, V.K.: Tsvet. Met. (12)(1979)59 I3571 Fabian, J.. Ulrich. J.: Dissolution - a two step process - Presentation of experimental evidence, in: Industrial Crystallfzation'93 (ed. 2. Rojkowski). vol. 2,p. 4-041,Warszawa 1993
I3581 McFadyen. P., Matijevie, E.: J. Inorg. Nucl. Chem. 35 (1973)1883 I3591 Falin, V.A.. Tatarenko. N.P.. Serebrennikova. G.M.: Massov. Krist. 3 (1977)121 [360]Fedorova. L.L.. Volokhov, Yu.: Depos. Doc. VINITI 3995 (1984) I3611 Feenstra, T.P.. van Straten, H.A.. de Bruyn, P.L.: J. Colloid Interface Sci. 80 (1981)255 I3621 Feenstra. T.P.. Hop, J., de Bruyn. P.L.: J. Colloid Interface Sci. 83 (2) (1981) 583 13631 Feliksinski, T..Szewczyk. J.: Mater. Res. Bull. 16 (1981)1505
11. References to Tables
31 1
13641 Felix. R., Monod, A.. Broge. L., Hansen, N.M.. Fleisch, H.: Urol. Res.
5 (1977)21 I3651 Fellstroem. B., Danielson, B.G.. Linsjoe, G. et al.:Fortschr. Urol. Nephrol. 23 (1985)24 I3661 Fillpescu, L.. Cretu. M.. Mocioi. M.. Zaharia. A.: Rev. Chim. [Bucharest) 32 (4)(1981) 347 I3671 Fillpescu, L., Meghea. A., Mociol. M.: Rev. Chim. (Bucharest) 34 (1983)1000 I3681 Filipescu, L.. Meghea. A., Zaharia. A.: Rev. Roum; Chim. 37 (8) (1992)927 13691 FilipoviC-VincekoviC. N.: Tensides, Surfact., Deterg. 26 (6)(1989) 417 I3701 Filipovie-VincekovlC, N.. Despotovie. R.: h-oc. 34th Meeting SOC.Chim. Phys., p. 197,Paris 1981
I3711 Finch, G.I.: J. Sci. Ind. Res. A 15 (1956)539 I3721 Fisher, V.M.: Issledovania nad peresyshchennymi rastvorami solei. Riga 1913 I3731 Fock. A.: 2. Krist. 17 (1890)177 I3741 Font-Altaba. M.. Solans-Huguet, J.: Acta Cryst. 21 (1966)267 13751 Fontcuberta. J., Rodriguez. R.. Tejada. J.: Mossbauer studies of the Fe(II1) effect o n the morphology of ADP, in: Industrial CystaZlization’78 (eds. de Jong. E.J.. Janeiie, S.J.),p. 523,North-Holland,
Amsterdam 1979 I3761 Fornazero. J.. El Hachadi. A.. Dupuy-Phflon. J.: J. Non-Cryst. Solids 150 (1-3)(1992)413
312
1 1 . References to Tables
13771 Fox, D.K., Mazelsky. R.: J. Crystal Growth 106 (1) (1990)1. I3781 Fr. Pat. 637 977 [3791Fr. Pat. 638 997 I3801 Fr. Pat. 663 105 I3811 Fr. Pat. 917 528 (1945) [3821Fr. Pat. 918 146 (1947) I3831 Fr. Pat. 1 127 788 (1955) I3841 Fr. Pat. 1 188 512 (1956) [385]Fr. Pat. 1 344 890 (1965) I3861 Fr. Pat. 1 466 070 (1966) 13871 Fr. Pat. 1 475 959 (1967) 13881 Fr. Pat. 1 540 860 I3891 France, W.:Coll. Symp. Ann. 60 (1930) 13901 France, W..Wolfe. K.M.:J. Am. Chem. Soc. 63 (1941)1505 I3911 France, W.:Coll. Chem. 5 (1944)443 [3921Frances, C.:Thesis, Polytechnique Toulouse 1991 [3931Frances, C.. Blscans. B.. Laguerle. C.: Effect of ionic impurities and surfactants on the crystallization of tetrahydrate sodium perborate,
IV. Congr. Chem Eng., Karlsruhe 1991 13941 Frances, C., Blscans, B.. Gabas. N.. Laguerle, C.: J. Crystal Growth
128 (1-4) (1993)1268 13951 Franke. V.D.. Bubnova. R.S., Artamonova. 0.1.: Tezlsy Dokl. Vses. Soveshch. Rostu Krist. 5th 2 (1977)305
1 1. References to Tables
313
13963 Franks, F.. Mathias. S.F., Parsonage, P.. Tang, T.B.: Thermochim. Acta 61 (1-2)(1983)195
(1984) (3971Franks, F.. Mathias. S.F.. Trafford. K.: Colloids Surf. 11 (3-4) 275 (3981Franses. E.I.. Davis. H.T.. Miller, W.G.. Seriven, L.E.: J. Phys. Chem. 84 (1980)2413
(3991FrCche, M., Heughebaert, J.G.: J. Crystal Growth 94 (1989)947 I4001 FRG Pat. 838 286 (1948) 14011 FRG Pat. 877 297 (1953) 14021 FRG Pat. 1 155 100 (1963) I4031 FRG Pat. 1 197 858 (1965) (4041FRG Pat. 1 198 662 (1965) I4051 FRG Pat. 1 216 858 (1966) [406]FRG Pat. 1 217 936 (1966) [4071FRG Pat. 1 237 550 (1966) I4081 FRG Pat. 1 265 151 [409]Frenkel, M.. Glasner. A.. Sarig. S.: J. Phys. Chem. 84 (1980)507 14101 Frondel, C.: Amer. Mineral. 25 (1940)91
I41 11 Fukuta, N.:J. Atmos. Sci. 23 (1966)191 [4121Fumes. W.T.. Larson, M.A.: Inst. Chem. Eng. Symp. Ser. 58, Sol. Separ. Proc. 7/5/1-7/5/18 (1980) [413]FQredi-Milhofer. H..Babie-Ivan&?. V.. BreEevie. Lj., Fflipovi& Vincekovie, N., Kralj. D., Komunjer. L.. MarkovfC. M., Skrtie:. D.: Colloids Surf. 48 (1-3)(1990)219
3 14
1 1. References to Tables
I4141 Ftiredi-Mflhofer, H.. SkrtiC, D.. Markovie, M.: Croat. Chem. Acta 60 (3) (1987) 587
I4151 Gabryel, H.: Effect of fluorine modifiers on phosphogypsum
crystallization in wet process of phosphoric acid manufacture, in:
Mater. OgoZnopoL Syrnp. Zwiazki Fluorowe (1981) 65 [4161 Gaedeke, R.. Wolf, F.. Bernhardt, G.: Crystal Res. Technol. 14 (1979) 913 I4171 Gaedeke. R., Wolf, F.. Bernhardt, G.: Crystal Res. Technol. 15 (1980) 557 I4181 Gardner. G.L.: J. Crystal Growth 30 (1975) 158 14191 Gardner. G.L.: J. Phys. Chem. 82 (1978) 864 I4201 Gardner. G.L.. Nancollas. G.H.: J. Phys. Chem. 87 (1983) 4699 [4211 Garrett, D.E., Rosenbaum, G.P.: Chem Eng. 65 (11) (1958) 127 I4221 Garrett, D.E.. Rosenbaum, G.P.: Ind. Eng. Chem. 50 (1958) 1681 [4231 Garrett, D.E.: Brit. Chem. Eng. 4 (1959) 673 [4241 Garside. J., Komarov, V.F.: Krist. Tech. 11 (1976) 699 I4251 Garside. J.. Nishio, S., Kavanagh, J.P., et al.: Brit. J. Urology 66 (1990) 351 I4261 Garti, N.. Karpuj. L.. Sarig, S.: Crystal Res. Technol. 16 (1981) 1111 I4271 Garti, N., Wellner. E., Sarig, S.: Krlst. Tech. 15 (1980) 1303 [4281 Garti. N.. Wellner, E., Sarig, S.: J. Crystal Growth 57 (3) (1982) 577 [4291 G a s World, Cok. Sec. 1939 7. 12 [4301 Gaubert. P.: Bull. SOC.Franc. Mineral. Crlst. 17 (1894) 107 I4311 Gaubert, P.: Bull. SOC.Franc. Mineral. Crist. 17 (1894) 121
1 1 . References to Tables
Franc. Mineral. Crist. 23 (1900) 211 (4321Gaubert, P.: Bull. SOC. [433] Gaubert, P.: Compt. rend. 142 (1906) 219 I4341 Gaubert. P.: Compt. rend. 143 (1906) 936 14351 Gaubert. P.: Compt. rend. 145 (1907) 378 (4361 Gaubert, P.: Compt. rend. 151 (1910) 1134 14371 Gaubert, P.: Rev. Sci. 48 (1910) 74 [438] Gaubert, P.: Compt. rend. 155 (1912) 649 14391 Gaubert. P.: Compt. rend. 157 (1913) 1531
Franc. Mineral. Crist. 38 (1915) 149 I4401 Gaubert, P.: Bull. SOC. I4411 Gaubert, P.: Compt. rend. 167 (1918) 491 14421 Gaubert. P.: Compt. rend. 180 (1925) 378 14431 Gaubert. P.: Bull. SOC. Franc. Mineral. Crist. 53 (1930) 157 I4441 Gaubert, P.: Compt. rend. 192 (1931) 965 I4451 Gaubert. P.: Compt. rend. 200 (1935) 1120 (4461 Gaubert. P.: Compt. rend. 202 (1936) 1192 14471 Gavish. M., Popovitz, R., Lahav. M.. Leiserowitz, L.: Science 250 (1990) 973 (4481Gavish, M., Wang, J.L.. Eisenstein, M.. Lahav. M.. Leiserowitz. L.:
Science 256 (50581(1992) 815 I4491 Gavrilova, I.V.. Kuznetsova, L.I.: Rost Krlstallov 4 (1964) 85 I4501 GDR Pat. 39 660 (1964) (4511 GDR Pat. 55 969 (1966) [4521 GDR Pat. 211 103; CA 102 027521 (4531Gee, E.A.. et al.: Ind. Eng. Chem. 39 (1947) 1178
3 15
3 16
1 1. References to Tables
14541 Gerasimov, Y.M., Distler. G.I., Kanevskii, V.M.. Kortukova. E.I., Suvorova, E.I., Okhrimenko, T.M.. Belikova, G.S.: Crystal Res. Technol. 18 (1983)1283
(4551Gerhart. H.:Tschermaks Min. Petr. Mitt. 24 (1906)359;ibid. 28 (1910)347 I4561 Ger. Pat. 56 713 (1914) 14571 Ger. Pat. 336 100 (1918) 14581 Ger. Pat. 425 335 14591 Ger. Pat. 485 054 (1925) 14601 Ger. Pat. 519 597 (1927) (4611Ger. Pat. 612 744 (1935) (4621Ger. Pat. 621 739 (1935) 14631 Ger. Pat. 622 876 (1935) 14641 Ger. Pat. 636 057 (1936) (4651Ger. Pat. 648 539 (1937) [4661Ger. Pat. 651 311 (1937) (4671Ger. Pat. 666 546 (1938) 14fj81 Ger. Pat. 693 986 (1940) 14691 Getsinger: J. Agr. Food Chem. 5 (1955)433 14701 Giannimaras, E.K..Koutsoukos, P.G.: Langmuir 4 (1988)855 14711 Gille, F.,Spangenberg. K.: 2. Krist. Miner. Petrograd A 65 (1927)204 1
(4721Gilman, J.J.:The Art and Science ofGrowing Crystals:”Wiley, New York 1963
14731 Girolami, M.W.. Rousseau, R.W.: J. Crystal Growth 71 (1985)220
1 1. References to Tables
3 17
(4741Glasner, A.,Skurnik. S.: J. Chem. Phys. 47 (1967)3687 (4751Glasner, A.,Skurnik, S.: Israel J. Chem. 6 (1968)69 (4761Glasner, A..Kenat, J.: J. Crystal Growth 2 (1968)119 (4771Glasner. A.. Skurnik, S., Zidon. N.: Israel J. Chem. 7 (1969)649 (4781Glasner, A.. Kenat, J.: J. Crystal Growth 6 (1970)135 (4791Glasner, A.,Weiss, D.: J. Inorg. Nucl. Chem. 42 (5) (1980)655 (4801Glazyrina, L.N., Savinkova. E.I., Desyatnik, V.N.. Cherepanova, I.S. Zhur. Prikl. Khim. 56 (2) (1983)241
[481]Gluud, W.,Ritter, H.: Ber. Ges. Kohlentech. 3 (1931)208 (4821Gluud, W.,et al.: Ber. Ges. Kohlemtech. 3 (1931)371 1483)Goatln, C.: ICP 16 (11) (1988)140 [484]Gomez, R.A.: Effect of some metallic impurities on sugar crystal formation a n d growth, in: Industrial CrystaZlization'78 (eds. de Jong, E.J., JanEiC S.J.). p. 519. North-Holland, Amsterdam 1979
(4851Gonzales, M.A., de Andres. A., Balcazar, J.L.: Estud. Geol. (Madrid) 38 (3-4)(1982)27
I4861 Gorecki, H.,Hoffmann, J., Schroder, J.: Pr. Nauk. Akad. Ekon. Wroclaw 200 (1982)141
14871 Gorshtein, G.I.: Tr. Vsesoy. Nauch.-Issl. Inst. Khim. Reaktivov 20 (1951)3, 44 (4881Gorshtein, G.I.: Zhur. Neorg. Khim. 3 (1958)51 14891 Gorshtein, G.I.: Radiokhimiya 1 (1959)497 (4901Gorshtein, G.I., Tyutyueva, N.N.: Radiokhimiya 5 ( l ( (1963)1 1 14911 Gorshtein, G.I., Tyutyueva, N.N., Puzyreva, A.I.: Kristallizatsiya 2 (1976)55
3 18
1 1. References to Tables
14921 Gorshtein, G.I., Dmitrieva. N.S.: Zhur. Prikl. Khim. 36 (1963)1725 I4931 Gorshtein, G.I.: Tr. Vsesoy. Nauch.- Issl. Inst. Khim. Reaktivov 25 (1963)123 I4941 Gorshtein. G.I.. Bashkina. N.F.: Tr. Vsesoy. Nauch.-Issl. Inst. Khim. Reaktivov 26 (1964)369
I4951 Gracheva, R.A., Syzdykbaeva. M.B.. Kozhakova, A.A.: Depos. Doc. SPSTL 865 KHP-D81 (1981)
I4961 Grant, D.J.W., Chow, K.Y., Chan. H.K.: AICHE Symp. Ser. 87 (284). Part. Des. Cryst., 38
I4971 Grases. F., Genestar. C.. Palou, J.: Colloids Surf. 44 (1990)29 I4981 Grases. F.,Gil, J.J.. Conte. A.: Colloids Surf. 36 (1989)29 14991 Grases. F.,March, J.G.. Bibfloni, F., Amat. E.: J. Crystal Growth 87 (2-3)(1988)299
[500]Grases. F.,March, J.G.. Costa-Bauza, A.: J. Colloid Interface Sci. 128 (2)(1989)382
15011 Grases. F., March. P.: J. Crystal Growth 96 (41(1989)993 15021 Grases. F., Millan. A., Garcia-Raso. A.: J. Crystal Growth 89 (1988) 496 [503]Gratz, A.J., Hfllner. P.E.: J. Crystal Growth 129 (3-4)(1993)789 15041 Grimm, Wagner.: 2. physik. Chem. 132 (1928)131 15051 de Groot, K.. Dyuvis, E.M.: Nature 12 (5058) (1966)183 15061 Gufaro, G.. Goatin. G., Zanetti. R.: Process Technol. Proc. 2, Ind. Cryst. (1984)333
1 1. References to Tables
3 19
I5071 Gufaro. G., Goatln, C.. Petrone, A., Talamini. G.: J. Crystal Growth 66 (1984) 621
I5081 Haas. K.. Jager, L., N@lt. J.: Collect. Czech. Chem. Commun. 37 (1972) 744 Sltzung Preuss. Akad. 30 (1930) 3 15091 Hahn, 0.: I5101 el Hagouji, A., Murat. M.: Compt. rend. Acad. Sci.. ser. 2. 303 (8) (1986)657
I5111 Haley. V.. Mattloll, T.A., Wiles, D.R.: Can. J. Chem. 63 (1985)2290 15121 Hallson. P.I.. Rose, G.A., Sulalman, S . : Urol. Res. 11 (1983) 151
I5131 Hallson. P.I.. Rose, G.A.. Sulaiman. S . : Urol. Int. 38 (1983) i 7 9 I5141 Hamidanl, A.U.. et al.: Res. Ind. 36 (4)(1991) 283
15151 Hamza, S.M., Abdul-Rahman, A., Nancollas, G.H.: J. Crystal Growth 73 (2)(1985) 245
I5161 Hamza. S.M.. Hamdona. S.K.: J. Phys. Chem. 95 (81 (1991) 3149 I5171 Hamza. S.M..EIHamouly: J. Chem. SOC..Faraday Trans. 1 85 (1989) 3725
I5181 Harano. Y.. Yamamoto. H.: Impurity effect of some amino acids on formation and growth of L-glutamlc acid nuclei by secondary nucleation in agitated solution, in: Industrial Crystallization '81(eds. J a n W S.J., de Jong. E.J.). p. 137, North-Holland, Amsterdam 1982 [519] Harano. Y.. Matsul. T.: Metastable zone width and nucleation rate effects of agitation and impurity for KBr0,/H20 and (H,N),CS/ MeOH, in: Industrial Crystallization '84 (eds. JanEie, S.J., de Jong. E.J.), p. 249, Elsevier, Amsterdam 1984
320
11. References to Tables
[5201 Hariharan. S.,Murthy, A.S.A.. Mahadevappa, D.S.: Curr. Sci. 49 (141 (1980) 547; CA 93 123747 [5211 Harriott, P.: AICHE J. 13 (1967) 755 15221 Hartmann, E.:Kristallografiya 14 (1969) 1120 15231 von Hauer. C.: Verhandl. Geol. Reichsanstalt Wien 4 (1877) 57 [524]von Hauer, C.: Verhandl. Geol. Reichsanstalt Wien 17 (1880) 296 15251 Havighorst, C.R.:Chem. Eng. 71 [7((1964) 72 [526] Havighorst, C.R.: Chem. Eng. 71 (7)(1964) 162 [5271 HavrBnek, P.: Thesis, Techn Univ. Chem. Pardubice 1971 15281 Herden, A.. Lacmann, R., Mayer, C., Schriider. W.: J. Crystal Growth 130 (1-2)(1993) 245
[5291 Herzog, R.E.. Shi. 9..Patil. J.N..Katz. J.L.: Langmuir 5 (1989) 861 15301 Hille, M., Jentsch. Ch.: 2. Krist.118 (1963) 283 I5311 Hflle, M.. Jentsch. Ch.: 2. Krist. 120 (1964) 323 I5321 Hiquily, N.,Canselier, J.P.: ref. 31 in: Canselier, J.P.: Dispers. Sci. Technol. 14 (6) (1993) 625 [533] Hiquily, N.,Couderc, J.P., LaguCrie, C.: Chem. Eng. J. 30 (1985) 1 I5341 Hiquily, N.,Laguerie,,,C,: Inclusion formation in the ammonium perchlorate crystals - influence of surfactants. in: Industrial
crystallization '84(eds. J a n & %S.J., de Jong. E.J.). p. 79, Elsevier, Amsterdam 1984 I5351 Hirota, S.:Effect of aluminium ion on KDP, ADP crystallization. ICCG-A, Sendai (1989) 21A C06
1 1. References to Tables
321
I5361 Hirota, S.,Nakajima, M.: Chem. Eng. J a p a n Symp. Ser. 18 (1988) 151 [5371Hirota, S.:Inclusion of aluminium ion a n d I t s effect on crystal growth of KDP. Intern. Syrnp. o n Repar. of F'unct. Mat. and Crystall.. , Osaka 1988
[5381Hirota. S.,Fukui. K., Nakajima, M.: The effect of the additive on potassium dihydrogen phosphate growth, in: Industrial Crystallization '87 (eds. N@lt, J.. TaEek, S . ] , p. 257,Elsevier Amsterdam and
Academia Prague, 1989
15391 Hirota, S.:Kagaku Kogaku Ronbunshu 15 (6)(1989)1195 15401 Hirota. S.,Setoguchl, K.: Effect and incorporation of chromic ion when KDP crystallizes. in: Industrial Crystallization '93, VoL I, (ed. Rojkowski, 2.). p. 3-087.Warsaw 1993
I5411 van der Hoek. W.G.M.. Feenstra, T.P.. de Bruyn. P.L.: J. Phys. Chem.
84 (1980)3312 15421 Hohl. H.. Koutsoukos, P.G., Nancollas, G.H.: J. Crystal Growth 57 (1982)325 I5431 Hol. Pat. 43 094 (1938) [5441Hol. Pat. 88 978 (1956) I5451 Hol. Pat. 296 567 (1965) [5461Hol. Pat. 6 414 181 (1966) I5471 Hol. Pat. 6 502 043 (1966) I5481 Hol. Pat. 6 515 934 (19661 I5491 Hol. Pat. 6 709 044 (19681
322
11. References to Tables
15501 Holder, G.A., Thorne. J.: Polymer Prepar., Am. Chem. SOC.,Div.
Polymer Chem. 20 (1)(1979) 766 [5511 Holldorf. H.. Menzel, N.: Freiberger Forschungsh. A 671 (1983) 120 15521 Holldorf, H., Menzel, N.. Neubauer, R., Schleicher, V.: Freiberger
Forschungsh. A 671 (1983) 130 I5531 Holldorf. H., Trapp, R., Petzold. D.. Schure. W.: Freiberger
Forschungsh. A 671 (1983) 103 15541v a n Hook, A.: Ind. Eng. Chem. 38 (1946) 50 15551 v a n Hook, A.: Acta Cryst. 21 A (1966) 272 15561v a n Hook, A.: Rost Kristallov 8 (2)(19681 45 [557] Hottenhuis, M.H.J., Lucasius, C.B.: J. Crystal Growth 78 (2)(1986) 379 [558] Hottenhuis, M.H.J.. Lucasius, C.B.: J. Crystal Growth 91 (4) (1988) 23 1559) Hottenhuis, M.H.J., Oudehampsek, A.: J. Crystal growth 92 (3-4) (1988) 513 [560] House, W.A.: J. Colloid Interface Sci. 119 (2)(1987) 505 15611 House, W.A.. Donaldson, L.: J. Colloiod Interface Sci. 112 (1986) 309 (5621 House, W.A., Howson, M.R., Pethybridge, A.D.: J. Chem. SOC..
F a r a d a y Trans. 84 (8)(1988) 2723 53 (1957) 1449 15631 Howard, J.R.. Nancollas, G.H.: Trans. Faraday SOC. 15641 Howe, P.M.: Crystal Growth and Habit Mod@ation, Thesis, J o h n
Hopkins Univ. 1968
11. References to Tables
323
15651 Hrust. V., Teiak. B.: Croat. Chem. Acta 49 (1977) 15 [566] Huang, B.. Su, G.. Pan, F.: Crystal Res. Technol. 26 (6) (1991) K147 [5671 Human, H.J.. v a n der Eerden. J.P.. Jetten. L.A.M.J., Odekerken,
J.G.M.: J. Crystal Growth 51 (1981) 589 [5681 Hungerford. E.H.. Nees. A.R.: Ind. Eng. Chem. 26 (1934) 462; ibid. 28 (1936) 893 [569] Ikeno, S.. et al.: J. Crystal Growth 3-4(1968) 683 [570] Ikornlkova. N. Yu.: in: Crystal Growth (Shubnikov, A.V.. Sheftal.
N.N.). 3 (1962) 297, Consultants Bureau, New York 1962 15711 Iskhakova. L.D.. Korotkevlch. I.B., Sorokina, R.I.. Bolotina. 1.1..
Bomshtein. V.E.: Issled. v Obl. Khimii i Tekhnol. Osobo Chist. Veshch. M (1979) 38 15721 Ismailov, F.Kh., Osichkina, R.G.:Uzbek. Khim. Zhur. 35/60 (5) (1985) 252 I5731 Isobe, T.: Coal Tar (Japan] 7 (19551269 15741 Isupov. V.P., Chupakhina, L.E., Kotsupalo, N.P., et al.: Dokl. Akad.
Nauk SSSR 316 (5) Phys. Chem. (1991) 1144 [5751 Ivanchenko, L.G.. Guller. B.D., Zinyuk, R.Y., Balykov. A.G.: Mezhvuz.
Sb. Nauch. Tr. Leningrad. Tekhnol. Inst. 4 (1980) 3 t5761 Ivanchenko, L.G.. Guller, B.D., Zinyuk. R.Y., Vashkevich, N.G.:
Zhur. Prikl. Khim. 54 (1981) 1001 I5771 Iwata. H.. Suzuki, S.. Sasaki, Y.: J. Crystal Growth 125 (3-41 (1992) 425
5 (1949) 319 [5781 Jaffe. H., Kjellgren, B.R.F.: Disc. Faraday SOC.
324
11. References to Tables
15791 Jaffe, H.. Kjellgren. B.R.F.: Sb. Nouye Issled. PO Kristalbgrafii i Kristalbkhim. II, p. 82.Izd. Inostr. Lit., Moskva 1950
[580]Jalava, J.P.: Ind. Eng. Chem. Res. 31 (1992)608 I5811 Jancke, K.. Steinlke, U.: Krist. Tech. 3 [1( (1968)K 9 15821 Jansen, M., Waller, A., Verbiest, J.. van Landschoot. R.C.. van
Rosmalen. G.M.: Incorporation of phosphoric acid in calcium sulfate hemihydrate from a phosphoric acid process, in: Industrial Crystallization '84 (eds. JanCie. S.J., de Jong. E.J.). p. 171, Elsevier.
Amsterdam 1984 I5831 Japan. Pat. 177 414 (1949) 15841 Japan. Pat. 1 258 (1951) 15851 Japan. Pat. 1 3 6 3 (1953) I5861 Japan. Pat. 9 965 (1955) I5871 Japan. Pat. 4 965 (1958) I5881 Japan. Pat. 18 459 (1962) I5891 Japan. Pat. 11 934 (1963) I5901 Japan. Pat. 25 351 (1963) I5911 Japan Kokai Tokkyo Koho 85 86 066 15921Jaschkel. R.: 2. Naturforsch. A 15 (1960) 171 I5931 Jean, J.H.. Ring, T.A.: Br. Ceram. Proc. 38 (1986) 11 I5941 Jesczensky, B., Hartmann. E.: Magyar Fiz. Folyoirat 10 (3) (1962) 183 15951Jian J u n Yuan, Stepanski. M., Ulrich. J.: Chem.-1ng.-Tech. 62 (1990)645
11. References to Tables
325
[596]Jimenez. F.. del Cerro, J.: An Quim. 87 (4) (1991)535 15971Joffe. E.M.. Nikitin, B.A.: Izv. AN SSSR. otd. khlm. nauk 1 (1943) 15 [598]Joffe, E.M., Nikitln. B.A.: Izv. AN SSSR. otd. khim. nauk 1 (1943) 191 [599]Joffe, E.M.: Izv. AN SSSR, otd. khim. nauk 12 (1956) 1429 [SO01Joffe. E.M.: Zhur. Neorg. Khlm. 3 (1958)29 [601]Joffe, E.M.: Radiokhimiya 2 (1960)381 16021Joffe, E.M.: Radiokhimiya 4 (1962)249 [603]Johnson, J.E., Matijevlc’. E.: J. Coll. Interface Sci. 138 (1) (1990) 255 [604]Jones, P., Parfitt. G.D.: Kolloid-2. u. 2. Polymere 250 (1972) 239 (6051Joshi. N.D.. Shah, B.S.: J. Maharaja Sayajirao Univ. Baroda 19761977. 25-26 (1978) 17 I6061 Jozefowicz, E., Sobierajska. K.: Rocz. Chem. 42 (1968) 761 I6071 KBding. H.: 2. physik. Chem. A 162 (1932) 174 [6081 Kagawa, M.. Sheeman, M.E., Nancollas. G.H.: J. Inorg. Nucl. Chem.
43 (1981) 917 (6091 Kallay, N., TeZak, B.: Croat. Chem. Acta 45 (1973) 169 [SlOl Kameyama. K.. Ueno. S . : Okayama-ken Kogyo Gijutsu Senta
Hokoku 17 (1991)37 [ S l l ]Kamiya. K.. Sakka. S.. Terada, K.: Mater. Res. Bull. 12 (1977) 1095 I6121 Kamkha. M.A.. Sibiryakov, P.B.. Bizyaev. V.L.: Kinet. Katal. 30 (1) 1989) 78 I6131 Kamoda, M.: Proc. Res. SOC.J a p a n Sugar Ref. Tech. 1957 660
326
11. References to Tables
(6141 Kanno, H.,Wakita, H., Hamaguchi, H.: Bull. Chem. SOC.Japan 51 (1978) 1557 (6151 Kapralis, I.P.. Krukle, H.: Eur. Pat. Appl. , CA96 191177 (6161 Karakaya. C.. Bulutcu, A.: Effect of sulphate ions on the crystallization of boric acid, in: BIWIC 91. p. 12, Bremen 1991 (6171 Karel, M.. Njrvlt, J.: Collect. Czech Chem. Commun. 58 (1993) 1997 I6181 Karel, M., Njrvlt, J., Chianese, A.: Collect. Czech Chem. Commun. 59 (1994) 1261 (6191 Karel, M., N@lt, J., Chianese, A.: Collect. Czech Chem. Cornmun. 59 (1994) 1278 (6201 Karge, H.: Krist. Tech. 3 (1968) 537 (6211 Karniewicz, J., Posmykiewicz, P.. Wojciechowski, B.: The effect of Fe(II1)ions upon the growth of potassium dihydrogen phosphate monocrystals. in: Industrial Crystallization (ed. Mullin, J.W.). p. 285. Plenum Press, New York 1976 [6221 Karpinski, P.H.. Budz, J., Larson, M.A.:Influence of cationic admixtures on kinetics of crystal growth from aqueous solution, in: Industrial Crystallization '84 (eds. J a n W S,J., de Jong, E.J.). p. 85.
Elsevier. Amsterdam 1984 (6231 Karpinski. P.H.. Larson, M.A.: Crystal Res. Technol. 20 (1985) 951 (6241 Karpinski. P.H.. Njrvlt, J.: Crystal Res. Technol. 18 (1983) 959 (6251 Kasatini, R., Miyazawa, T., et al.: Effect of amino acids on polymorphism of L-histidine. Intern Symp. on Prepar. ofFunct. Mat. and CrystalL., Osaka 1988
11. References to Tables
327
[626] Kashihara, 0.: Kemikaru Enjiniyaringu 30 (3)(1985) 170 16271 Kashlhara, 0..Hibi, T., Harano, Y . : Kagaku Kogaku Ronbunshu 13 (5) 11987) 581 I6281 Kashihara. 0.. Nakata, T., Harano, Y . : Kagaku Kogaku Ronbunshu 12 (5) (1986) 513 I6293 Kashihara, 0,Yamaguchi, Ch., Harano, Y . : Kagaku Kogaku Ronbunshu 14 14) (1988) 504 [630] Katz. A.: Geochim. Cosmochim. Acta 37 (1973) 1563 [6311 Kavanagh, A.M., Rayment. T.. Price, T.J.: J. Chern. Soc., Faraday Trans. 86 (6)(1990) 965 [6321 Kawakami, T., et al.: Nagoya Kogyo Gijuku Shikensho Hokoku 4 (1965) 97 [6331 Kazakov, A.P.: Tr. 2. soveshch.
PO
eksper. miner. i petrogr. 1937
137 [6341 Kazov. M.N.. Trebukhova. T.A., Kazova. R.A.: Depos. Doc. VINITI 523 (1979) I6351 Keller. D.M., Massey, R.E., Hlleman, O.E.: Can. J. Chem. 56 (1978) 83 1 16361 van Kemenade, M.J.J.M., de Bruyn, P.L.: Colloids Surf. 36 (3)(1989) 359 16371 Kempe, G., Netimann, H., Winzer, A.: Mezhvuz. Sb. Nauch. Tr. Leningrad. Teknol. Inst. 6 (1982) 146 16381 Kenat, J.: The crystallizationofKC2 in solutions containing small amounts of lead, Thesis, The Hebrew Univ. Jerusalem 1962
328
11. References to Tables
16391 Kern, R.,Dassonvflle, R.: J. Crystal Growth 116 (1-2)(1992) 191 16401 Kerr. W.L., Osuga, D.T..Feeney. R.E.. Yeh, Y.: J. Crystal Growth 85 (3)(1987) 449
16411 Khamskii, E.V.: Zhur. Prikl. Khim. 32 (1959) 948 (6421 Khamskii, E.V.: Some problems of crystal habit modification, in: Industrial CrystalUzation fed. Mullin. J.W.), p. 215, Plenum Press. New York 1976 16431 Khamskii, E.V.: The role of impurities in crystallization, in: Industrial Crystallization '78 (eds. de Jong, E.J.. JanEie. S.J.). p. 105, NorthHolland, Amsterdam 1979 16441 Khamskii. E.V.: Kristallizatsia t 2 rastuorou, Nauka. Leningrad 1967. I6451 Khamskii. E.V., Bogatyrenko. A.S.: Zhur. Prikl. Khlm. 54(21 (1981) 392 16461 Khamskii. E.V..Bondarenko, S.I., Smirnova, O.M., Shkarupa. L.N.: Ukr. Khim. Zhur. 51 (91 (1985) 920 16471 Khamskii. E.V., Bykova, A.N.: Zssledouania u oblasti khimii i tekhrwlogii mineralnykh solei i okislou, p. 79, Nauka. Moscow 1965 16481 Khamskii, E.V., Kondrashenko. T.A.: Zhur. Prikl. Khim. 36 (1963) 263 1 16491 Khamskii, E.V., Kozina. Z.A.: Dokl. AN SSSR 149 (1963) 915 I6501 Khamskii, E.V., Maidurova. O.E.: Zhur. Prikl. Khim. 65 (8) (1992) 1681 16511 Khamskii, E.V., Marcenko, L.I.: Ukr. Khim. Zhur. 49 (3)(1983) 236 16521 Khamskii, E.V., Nazarova, E.G.: Zhur. Prikl. Khim. 35 (1962) 1206
1 1 . References to Tables
329
(6531Khamskii. E.V., Panfilov, V.V., Shakitskaya, N.A.: Ukr. Khim. Zhur.
50 (1) (1984) 2 6 [654] Khamskii, E.V., Podozerskaya, E.A.: Zhur. Prikl. Khim. 41 (1968)
245
I6551 Khamskii. E.V.. Podozerskaya. E.A.: Zhur. Prikl. Khim. 41 (1968) 252
16561 Khamskii. E.V., Podozerskaya. E.A.: Krist. Tech. 3 (1968) 6 0 5 [657]Khamskii. E.V., et al.: KristaZUzatsfyaf_fiziko-khirnicheskiesuofstua laistallichesklkh ueshchestu. Nauka. Leningrad 1969 (6581Khamskii. E.V.. Yagodkina. G.N.: Zhur. Prikl. Khim. 36 (1963)2620
16593 Khamskii. E.V., Zelenkova, L.V., Novikova, E.P.: Zhur. Prikl. Khim. 63 (9)(1990) 1976
(6601 Khartanovich, A.Z.: Kristallizatsiya i fazouye perekhody. p. 118, AN SSSR, Minsk 1962 [661]Khausankhodzhaev. M.G., Khairullaev. Ch.K.. Tadzhiev. S.M.:
Uzbek. Khi. Zhur. 3 (1984) 2 3 [662] Khlopin. V.G., NiMtin. B. A.: 2.anorg. allg. Chem. 166 (1927) 311 (6631 Khlopin, V.G., et al.: 2. physik. Chem. A145 (1929) 57 [664] Khlopin. V.G.. Tolstaya, M.A.: Zhur. Fiz. Khim. 14 (1940) 941
(6651 Khlopin. V.G.: Izbrannye Trudy I, Izd. AN SSSR. MOSCOW1957 I6661 Kholakova, I.: God. Vissh. Khim.-Tekhnol. Inst., Sofia, 23 (1) (1977) 297 16671 Klbalczyc, W.. Bondarczuk, K.: J. Crystal Growth 71 (1985)751 [668] Klbov, V.K., Veselinov, I., Cherneva, 2.: Krist. Tech. 7 (1972) 497
330
21. References to Tables
I6691 Kidyarov. B.I.. Nevyantseva, R.R., Dandaron. N.D., Zaitseva. L.F.:
Izv.
Sibir. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 5 (1984) 51 I6701 Kil’man. Ya.1.. Usachev. V.A.. Vakhrushev. Yu.A.: Zhur. Prikl. Khim. 58 (1985) 7
[6711 Kimura. H.: J. Crystal Growth 73 (1985) 53 16723 McKinnon, C.E.: 2nd Symp. Salt, Cleveland 1965. 1 (1966) 365 I6731 Kinsman, D.J.J., Holland, H.D.: Geochim. Cosmochim. Acta 33 (1969) 1 16741 Kinsman. D.J.J.: Sediment. Petrology 39 (1969) 486 I6751 Kinzhalov. A.A.. et al.: Zhur. Prikl. Khim. 42 (1969) 2700 I6761 Kirgintsev. A.N.. et al.: Zhur. Neorg. Khim. 9 (1964) 1025 I6771 Kirgintsev, A.N., Nikashina. T.A.: Zhur. Neorg. Khim. 9 (1964) 1450 I6781 Kirgintsev. A.N.. Avyakumov, E.G.: Fiz. Tverdogo Tela 6 (1964) 1167 16791 Kirgintsev, A.N.. Avyakumov, E.G.: Zhur. Neorg. Khim. 10 (1965) 2187
[680lKirkova, E., et al.: Godish. Sofii. Univ.. Fiz. Mat. Fak. 53 (3)(1958/59) 37 I6811 Kirkova, E.. et al.: Godish. Sofii. Univ., Fiz. Mat. Fak.. 53 (3) (1958/59) 43 [682] Kirkova, E., Bllznakov. G.. Nikolaeva, R.: Godish. Sofii. Univ., Khim.
Fak. 75 (1981) 193 I6831 Kirkova. E.: Krlst. Tech. 1 (1966) 155 I6841 Kirkova, E.. Nikolaeva, R.: God. Sofii. Univ., Khim. Fak. 65 (1973)
533
11. References to Tables
33 1
I6851 Kirkova. E.. Nikolaeva, R.: Kristall u. Tech. 8 (1973) 463 (6861 Kirkova. E.. Pencheva. J.: On the mechanism of incorporation of
Cu(I1) in ZnC20,.2 H,O, in: Industrial Crystallizaffon‘87 (eds. N p l t . J., ZBEek, S.),p. 299. Academia Prague and Elsaevier Amsterdam
1989 I6871 Kirkova, E.. Yaneva. S.B.: Krist. Tech. 2 (1967) 21 I6881 Kirov. G.: Geokhlm. Mineral. Petrol. 12 (1980) 18 I6891 Kirov, G.K.. Filizova. L.: Krist. Tech. 5 (1970) 387 I6901 Kirov, G.K., Vesselinov. I.. Chernova. 2.: Krist. Tech. 7 (5) (1972) 497 I6911 Kir’yanova. E.V.: Neorg. Mater. 28 (6)(1992) 1236 I6921 Kir’yanova, E.V., Franke. V.D., Kopyleva, B.B.: Zhur. Prikl. Khim. 64 (11) (1991) 2233 L6931 Kitamura. M.. Ikemoto, K.. Kawamura, Y., Nakai. T.: Kagaku
Kogaku Ronbunshu 16 (2) (1990) 232 I6941 Kitano. Y., Hood, D.W.: 0ceanogr.Soc. Japan 18 (1962) 35 I6951 Kiyoshi, S.: Rev. Phys. Chem. Japan 29 (1) (1959) 18 I6961 Klapshin. Yu. P.. Korshunov, I.A.: Vysokochist. Veshch. 1 (1987) 43 [6971 Kleber, W.. Steinike, U.: 2. Krist. 111 (1959) 213 I6981 Kleber, W., Verwoner. 0.: 2. Krist. 111 (1959) 435 I6991 Kleber. W., et al.: Naturwiss. 50 (1963) 222 I7001 Kleber. W.: 2. physik. Chem. 227 (5-6)(19651 289 [7011 Kleber, W., Schlemann. S.: Ber. Deutsch. Ges. Geol. Wiss. B 1 1 (1966) 187 (7021 Kleber. W., Schlemann. S.: Krist. Tech. 1 (1966) 553
332
11. References to Tables
[7031KIein, D.R., Fontal, B.: Talanta 12 (11 (1965)35 17041 Klein. M.V., et al.: Mater. Res. Bull. 3 (1968)677 17051 Kleinert. P.: Freiberger Foreschungsh. A 267 (1961)281 I7061 Klempt. W.:Ber. Ges. Kohlentech. 4 (1933)191 17071 Klempt. W.: Brennstoff-Ch. 33 (1952)114 17081 Klepetsanis. P.,Koutsoukos, P.G.: Crystal growth and inhibition of calcium sulfate in aqueous solutions, in: Industrial Crystallization '90 (ed. A. Mersmann). p. 261,Munich 1990
17091 Klier, E..Shaki. M.: eeskosl. Easop. fyz . 4 (6)(1954) 17101 Kloatzer, D.,Levi. H.W.: Radiochim. Acta 6 (2) (1966)81 I7111 Knight, R.J.. Sylva. R.N.: J. Inorg. Nucl. Chem. 36 (1974)591 17121 Koch, E., Wagner, C.: 2. physik. Chem. 381 (1937)295 17131 Koch, J., Schiller. H.: 2. Lebensmittel- Unters. Forsch. 124 (1964) 180 I7141 Kohlschfitter, V.,Egg, C.: Helv. Chim. Acta 8 (1925)697 17151 Kokubo. R., Sasaki. S.: Chem. Eng. J a p a n 28 (5((1964)386 17161 Kolarov. N.: Compt. rend. Acad. Sci. Bulgar. 3 (1950)21 17171 Kolarov. N., Boncheva, 2.: Monatsh. 93 (1962)1254 17181 Kolarov. N..et al.: Zhur. Neorg. Khim. 9 (1964)760 17191 Kolarov, N., Kolarova, M.: Godish. Khim.-Tekhnol. Inst. Sofia 13 (2) (1966)217 17201 Kolarov. N.. Dobreva. R.: Monatsh. 99 (1968)409 [7211Kolarov. N., Shopova, R.: Godlsh. Vissh. Khim. Tekhnol. Inst.. Sofia, 24 (1) (1981)147
11. References to Tables
333
17221 Kolb. H.J., Comer. J.J.: J. Am. Chem. SOC.67 (1945) 894 I7231 Kolb, H.J., Comer, J.J.: J. Am. Chem. SOC.68 (1946) 719 I7241 Koldobskaya. M.F.. Gavrilova, I.V.: Rost Kristallov 3 (1961) 278 I7251 Komarova. T.A.: Issledovanie kinetiki kristallizatsii solei iz rastvorov.
Thesis, Mosk. Gos. Univ.. Moscow 1953 [7263 Komatsu, H.. Shigematsu, K.: Koen Yoshibu-Jinko Kobutsu Koronkai
24th. (1979) 5-6 I7271 Konag, A., Emons, H.H.: Freiberger Forschungsh. A 683 (1983) 46 17281 Konig, A., Emons. H.H.: The influence of tensides on crystallization
kinetics and crystal habit of magnesium sulfate, in: Industrial Crystallization '87 (eds. N p l t , J., ZaCek, S . ) , p. 281, Elsevier
Amsterdam and Academia Prague, 1989 (7291Konig, A., Emons, H.H.. Njvlt. J.: The effect of electrolyte
-
admixtures on the crystallization of potassium chloride, Internat. Con!. on Industrial Crystallization. Liberec 1983 (7301Konig, A.. Emons. H.H.. N@lt. J.: The effect of electrolyte
admixtures in high concentration on the crystal growth of highly soluble salts, in: Industrial Crystallization '87 (eds. N p l t , J., ZaCek, S.), p. 285, Elsevier Amsterdam and Academia Prague. 1989 I7311 Konig. A., Ernons, H.H.. Nyvlt. J.: Crystal Res. Tcchnol. 22 (1987)
13
[732] Konig, A., Emons, H.H., Troschitz, B.: Freiberger Forschungsh. A 690 (1984) 60 I7331 Konig, An.,Emons, H.H.: Crystal Res. Technol. 23 (3)(1988) 319 I7341 Kononenko. V.G.. Heichler,
W.:Ukr. Fiz. Zhur. 23 (8)(1978)
1261
334
11. References to TabZes
17351 Kopylev, B.A., et al.: Zhur. Prikl. Khim. 42 (1969) 2429 17361 Korbe, A.: Beobachtungen iiber Variation der Kristalltracht des
Chlomatriurns, Leipzig 190 7 17371 Korolkov, I.I., Q g u n o v a . Z.A.: Gidroliz. Lesokhim. Prom. 8 (1956) 8 (7381 Korovkina, E.K.. Komarova, T.A.: Vest. Moskov. Univ.. ser. I1 - khlm. 20 (5) (1965) 34
17391 Korovkina. E.K.. Komarova. T.A.: Vest. Moskov. Univ.. ser. 11 - kNm. 21 (2) (1966) 39
17401 Korshunov, G.S.. Mokievskii. V.A.: Zhur. Obsch. Khim. 18 (19481 569 17411 Korshunov, I.A., Polikarpov, J.S.: Radiokhimiya 3 (196 1) 50 1 I7421 Kosevich, V.M.. et al.: Dokl. AN SSSR 180 (1968) 341 17431 Koutsky, J.A., et al.: Surface Sci. 3 (2) (1965) 165 17441 Koutsoukos, P.G., Amjad. Z., Tomson, M.B., Nancollas, G.H.: J. Am.
Chem. SOC.102 (1980) 1553 17451 Koutsoukos. P.G., Nancollas. G.H.: J. Crystal Growth 55 (2)(1981) 369 17461 Koutsoukos. P.G., Nancollas. G.H.: Colloids Surf. 17 (41 (1986) 361 I7471 Kozhevnikov. A.F., Maidanik. V.F., Ekimova, V.I.: Probl. Khimii i
Khim. Tekhnol. Dvuokisi Titana i Zhelezosoder. Pigmentov. M 69 (7481 Koziol. K.. Pujanek, M.: The dependence of nonionic s u r f a c t a n t s o n
the metastable zone, in: Industrial Crystallization '81 (eds. Janeii., S.J., d e Jong. E.J.). p. 319, North-Holland, Amsterdam 1982 17491 Kranz, M., Domka, L.: Cem.-Wapno-Gips 32 (3) (1978) 89
11. References to Tables
335
[7501 Krashennikov. S.A.. Liyanage, N.. Hausman. A.. Hausman. R.:
Deposited Doc. VINITI 2103 (1978) [7511 Kraus, J.. N j W t , J.: Zuckerind. 119 (1) (1994) 24 17521 Kraus. J.. N p l t . J.: Zuckerind. 119 (4) (1994) 298 17531 Kraus, J., NJivlt, J.: Zuckerind. 119 (1994) 407 (7541 Krivandina. E.A.. Khaimov-Mal'kov, V. Yu.: Kristallografiya 25 (1980) 889 I7551 Krol. B.W.: Process Technol. Proc. 2. Ind. Cryst. (1984) 425 I7561 Kroupa, M.: PrecipftationStudy of calcium oxalate by thermometric
methods, Thesis. Univ. Pardubice 1994 17571 Kruse. M.. Stepanski, M.. Ulrich. J.: On the growth of small single crystals with and without additives. B M C 1990, Bremen 1990 17581 Kruse, M.. Ulrich, J.: Chem.-1ng.-Tech. 65 (1) (1993) 60 I7591 Krysztafkiewicz, A., Maik. M., Miedzinski. M., Blaszczak. J.. Rager.
B.: Przem. Chem. 65 (4) (1986) 207 [760] Kubol. R., Harada. M., Winterbottom. J.M.. Anderson, A.J.S..
Nienow, A.W.: Roc. World Corgr. 111 Chem. Eng., p. 1040, Tokyo 1986 [761] Kubota.
N.,Akazawa, K., Shimizu, K.: Kinetics of BaCO,
precipitation in an MSMPR crystallizer, in: Industrial Crystallization '90 (ed.A. Mersmann). p. 199. Munich 1990 [7621 Kubota, N.. Shimizu. K., Uchiyama, I., Nakai, T., Mullin. J.W.: The
effect of small amount of chromium (111) ion on the solubility of potassium sulfate in water, World Congress UI. Chem. Erg., Tokyo 1986
336
11. References to Tables
I7631 Kubota, N., Ito, K.. Shimizu, K.: J. Crystal Growth 76 (1986) 272 I7641 Kubota. N.. Oikawa, A.. Shimizu. K.: Chem. SOC. J a p a n Symp. Ser. 18 (1988) 14
17651 Kubota, N., Takahashi, H.: Ind. Eng. Chem. Res. 26 (9) (1987) 1936 17661 Kubota, N.. Uchiyama, I., Nakal, K., Shimizu. K.: Ind. Eng. Chem. Research 27 (1988) 930 [767] Kubota, N.. Uchiyama, I., Shimizu, K., Mullin. J.W.: Anomalous
effects on the solubility of potassium sulfate, in: lndusfrial Crystallization '87 (eds. N3fvlt. J.. ZkEek. S . , ) , p. 249, Elsevier
Amsterdam and Academia Prague 1989 I7681 Kullgina. V.P..Ptitsyn, G.V., Rozenberg, G.Kh., Shakhnovich, M.I.,
Krasovitskaya, I.M.: Fiz. Tverd. Tela (Lenlngrad) 31 (6)(1989) 209 17693 Kumon, S.,Tanegawa, T., Kawabata. Y.,Kawakita. T.: Incorporation of L-glutamlc acid to L-threonine crystals prepared from solution, in: D+BIWIC 1993, p. 154, Delft + Bremen 1993
17701 Kunimi. Y.A.,Tabata, A.. Fujita, Y.: Europ. Pat. EP 330352 (1989) [771] Kunisakl: Nature 183 (4654)(1959) 105 17721 Kuschel, F.,Kijnig, A., Herold, S.: Crystal Res. Technol. 18 (1983) 427 17731 Kuznetsov, V.D.: Zhur. Fiz. Khim. 6 (1935)817 I7741 Kuznetsov. V.D.: Kristally i Kristallizatsiya. Gostekhizdat. Moscow 1953 I7751 Kvapfl. J.. et al.: Chem. prfimysl 18 (1968) 6 7
17761 KyrtS, M., et al.: Collect. Czech. Chem. Commun. 31 (1966) 3 4
11. References to Tables
337
17771 Lacmann. R., Behrens, M.. Herden. A.. et al.: Experimentelle Untersuchungen. strukturelle Betrachtungen und Literaturauswertung zur Fremdstoffbeeinflussung der Kristallisation, in: GVC JahrestreJ der Verjhhrensing., Wien (1992) G3/105
I7781 Lacmann, R., Behrens. M.. Herden, A.. Mayer. C.. Schroder. W.: The influence of additives on crystallization - experiments, structural considerations and evaluation of literature, in: Industrial Crystallization '93, VoL I. (ed. Rojkowski. 2.). p. 3-045. Warsaw 1993
[779] Lacmann, R., Behrens, M., Schroder. W.: Additive in der Losungskristallisation, in: Ink Arbeitssitz. Kristallisation GVC-VDI, Heidelberg/ Ludwigshafen I7801 Lacmann. R.. Herden, A.. Rolfs. J.. Schroder,W.: O n the influence of impurities on crystallization. in: Industrial Crystallization '90 (ed. Mersmann. A.), p. 671, Munich 1990 17811 Lacmann. R., Mittmann, M.. Walter, M.. Shaper, A.. Bozkurt. H.: Influence of impurities on the crystallization of potassium chloride, in: Industrial Crystallization '87(eds. N*lt,
J.. Z9Eek. S . ) , p. 239.
Elsevier Amsterdam and Academia Prague, 1989 [782] Laguerie, C..Ratsimba, B., Frances, C.: Effect of impurities on crystal growth, BIWIC 1990. Bremen 1990 I7831 van't Land, C.M.. Wienk. B.G.: Control of particle size in Industrial NaCl crystallization, in: Industrial CrystaZZizaffon(ed. Mullin, J.W.), p.
51, Plenum Press, New York 1976
338
11. References to Tables
I7841 Landau, E.M.. Levanon. M.. Leiserowitz. L.. Lahav. M.. Sagiv. J.:
Nature 318 (1985) 353 I7851 Landau, E.M.. Popovitz-Biro. R.. Levanon. M.. Leiserowitz. L.. Lahav,
M., Sagiv. J.: Mol. Cryst. Liquid Cryst. 134 (1986)323 I7861 Larson. M.A., Mullln. J.W.: J. Crystal Growth 20 (1973) 183 I7871 Lash. M.E.. France, W.G.: J. Phys. Chem. 34 (1930) 724
I7881 LBska, M.. Valtyni, J., Fellner, P.: Crystal Res. Technol. 28 (1993) 93 1
I7891 de Launoit. J.: Proc. Int. Congr. Surface Activity. London 4 (1957) 83 17901 Lea, F.M., Nurse, R.W.: Disc. Faraday SOC. 5 (1949) 345
17911 Lebedeva. G.N., e t al.: Koks i Khim. 1965 (10) 39
17921 Lechuga-Ballesteros, D.. Rodriguez-Hornedo, N.: Part. Sci. Technol. 10 (1-2)(1992) 49 [7931Ledesert. M.. Monier, J.C.: Colloq. Int. Centre Nat. Rech. Sci. 152
(1965)537
I7941 v a n der Leeden. M.C., Kashchlev, D.. v a n Rosmalen, G.M.: J. Colloid Interface Sci. 152 (2)(1992) 338 I7951 v a n der Leeden, M.C., Kashchiev, D., van Rosmalen, G.M.: J. Crystal Growth 130 (1-2) (1993) 221 [7961van der Leeden. M.C., Reedijk. E.E.. van Rosmalen, G.M.: Estudios
Geol. 38 (1982) 279 I7971 van der Leeden. M.C.. van Rosmalen, G.M.: The role of additives in the agglomeration of barium sulfate, in: Industrial Crystallization '84 (eds. S.J. JanCie, E.J. de Jong), p. 325, Elsevier, Amsterdam 1984
11. References to Tables
339
I7981 v a n der Leeden, M.C., van Rosmalen, G.M.: Effect of the molecular weight of polyphosphinoacrylates o n their performance in BaSO, crystallization. ICCG-A,Sendai (1989)21A C 0 5
17991 v a n der Leeden. M.C.. van Rosmalen, G.M., Devreugo. K.. Witkamp, G.J.: Chem.- 1ng.-Tech. 61 (5) (1989)385
I8001 Lehmann. 0.:Molekularphys. 1 (1888)305 [8011Leskovar. P., Harting, R.: Fortschr. Urol. Nephrol. 9 (1977)30 18021 Leskovar. P.. Kratzer. M., Baustaedter. R.: Therapiewoche 30 (1980) 4291 [803]Lessieux. J.C.. Svoronos. D.R.: Compt. rend. 263 (19)(1966)1146 I8041 Leszczynski, S.:Krystalizaqja w przemysle chemicznym, PWT, Warszawa 1956 18051 Leung. W.H.. Nancollas. G.H.: J. Inorg. Nucl. Chem. 40 (1978)1871 I8061 Lewin, S.Z.. Vance, J.E.: J. Am. Chem. SOC.74 (1952)1433 [8071Liaw, H.M., Faust. J.W. Jr.: J. Crystal Growth 13/14 (1972)471 (8081Lilley, E.,Newkirk. J.B.: J. Mater. Sci. 2 (1967)567 [SO91Lin, C.H., Gabas. N., Canselier, J.P.. Pepe, G., LaguCrie. C.: Surfactant effects o n y-aminobutyric acid crystallization, in:
Industrial Crystallization '93,VoZ. I (ed. Rojkowski, 2.). p. 3-051, Warsaw 1993
[810]Little, D.M.S.. Nancollas, G.H.: Trans. Faraday SOC.66 (1970)3103 I8111 Lin, J., Cai, Zh.: Rengong Jingtl Xuebao 20 (2) (1991)179 f8121Liu, S.T., Nancollas, G.H.: Desalination 12 (1973)75 [8131Liu. S.T., Nancollas. G.H.: J. Colloid Interface Sci. 52 (3)(1975)582 I8141 Liu. S.T.. Nancollas, G.H.: J. Colloid Interface Sci. 52 (3)(1975)593
340
11. References to Tables
I8151 Liu. S.T.. Nancollas. G.H.. Gasiecki, E.A.: J. Crystal Growth 33 (1976) 11 18161 Liu. Y.A., Botsaris. G.D.: Impurity effects in a continuous-flow mixed-suspension crystallizer. in: 63-rdAICHE Ann. Meeting. Chicago 1970 18171 Lopez-Valero. I.. Gomez-Lorente, C.. Boistelle. R.: J. Crystal Growth 1 2 1 (3) (1992) 297 18181 Luptak. J.. Bekjensen. H.. Fornander, A.M. et al.: Scanning Microsc.
8 (1994) 47 I8 191 Lux, H.:Anorganisch-chemiseheExperimentierkunst. p. 227, Leipzig
1959 I8201 Lyubchenko, A.P.. Sherman. D.G.: Fiz. metal. metalloved. 16 (1963) 636
[821] Lyubchenko. T.V., et al.: Zhur. Prikl. Khim. 40 (1967) 2225 18223 Macklin. W.C., Ryan, B.F.: Phil. Mag. 14 (130)(1966) 847 18231 Macklin. W.C., Ryan, B.F.: Phil. Mag. 27 (1968) 83 [8241 MaCek, J.. ZakrajBek, S . . N-lt,
J.: Crystal Res. Technol. 28 (1993)
847 18251 McMahon, P.M.. Berglund. K.A., Larson. M.A.: Raman spectroscopic studies of the structure of supersaturated KNO, solutions, in:
Industrial Crystallization '84 (eds. JanEiC. S.J.. de Jong, E.J.), p. 229, Elsevier, Amsterdam 1984 I8261 Maik. M., Krysztafkiewicz. A.. Blaszcak, J.: Wplyw fosforanow na krystalizacji fluorku glinowego, in: II. Symp. Industr. Krfst.. Jaszowiec 1986, p.65
11. References to Tables
34 I
[8271 Malitsko. L.. Jeszenski, L.: J. Crystal Growth 15 (1972) 243 I8281 Mal'tsev. G.Z.. Dyachenko. M.G.. Alekseev. A.I.: J. Appl. Chem.
USSR 50 (1977) 1851 I8291 Mann, S., Heywood, B.R., Rajan, S.. Birchall. J.D.: Nature 334
(6184)(1988) 692 (8301 Mann. S.. Heywood. B.R.. Rajan, S., Birchall. J.D.: Proc. Roy. SOC.
London A 423 (1865) (1989) 457 [830a] Mantel, W., Hansen. H.: Brenstoff-Chem. 33 (1952) 80 I8311 Mantovanl, G.: Zuckerind. 13 (1963) 559 I8321 Mantovanl, G.. Fagioli. F.: Zuckerind. 14 (1964) 202 [833] Maranidze, M.V.. et al.: Soobch. AN Gruzin. SSR 47 (1967) 581 I8341 Marc, R.: 2. physik. Chem. 68 (1910) 112 I8351 Marc, R.: 2. physik. Chem. 79 (1912) 71 I8361 Marciniak. B.: Characterization of acenaphtene nucleation in
organic solutions, in: Kryszt. MoL '91 OgolnopoL KO@ , Lodz 1992, 92 (8371 Marciniak, B.: Growth of acenaphtene crystals from organtc solution,
in: Kryszt. Mol '91 OgolnopoL KO$
, Lodz 1992, 89
I8381 Marcy, J.. et al.: Chem. Tech. 21 (1969) 627 [839] MareCek. V.. et al.: Krist. Tech. 4 (1969) 39 [8401 MareCek, V.. NovBk. J.: Krist. Tech. 5 (1970) 109 I8411 Marimeto. S.: Nippon Hyniokita Gakkai Zasshi 76 (1985) 998 I8421 Markalous, F.. N p l t , J.: Chem. prdmysl 15 (1965) 618 18431 MarkoviC. M., Komunjer. L.. Fiiredi-Milhofer. H., SkrtlC, D.. Sarig. S.:
J. Crystal Growth 88 (1) (1988) 118
342
1 1 . References to Tables
18441 Marshall, R.W.. Nancollas. G.H.: J. Phys. Chem. 73 (1969) 3838 18451 Martynowicz. E.T.M.J.. Witkamp, G.J.. van Rosmalen. G.M.: Control
of phosphogypsum crystallization in the presence of impurities, in: Industrial CrystaUization '93, VoL 1 (ed. Rojkowski. Z.), p. 3-123,
Warsaw 1993 I8461 Masaji, et al.: J. Sci. Hiroshima Univ. A 19 (1956) 513 18471 Massey. R.E.. Hileman, O.E.: Can. J. Chem. 55 (1977) 1285 I8481 Masuzawa, T.: Nippon Senbai Kosha Chuo Kenkyusho Hokoku 106 (1964) 209 18491 Matijevie, E., Ottewill, R.H.: J. Colloid Sci. 13 (1958) 242 I8501 Matsuda. K.. Sumida. M.. Fujita. K.. Mitsuzawa. Sh.: Bull. Chem.
SOC.Japan 60 (1987) 4441 18511 Matsushita. T.. Sekita, T., Suzuki, T.. Moriga, T.. Ashida, T.,
Nakabayashi. I.: Zairyo 42 (473)(1993) 195 18521 Matusevich, L.N.: Tsvetnye metally 32 (11) (1959) 37 18531 Matusevich. L.N.: Tsvetnye metally 33 (9) (1960) 48 I8541 Matusevich. L.N.: Zhur. Prikl. Khim. 33 (1960) 316 18551 Matusevich, L.N., Blinova, N.P.: Zhur. Prikl. Khim. 38 (1965) 721 I8561 Matusevich, L.N., Blinova. N.P.. Postnikov, V.A.: Teor. Osn. Khim.
Tekhnol. 6 (2)(1972) 169 I8571 Matusevich, L.N.: Krist. Tech. 1 (1966) 127 I8581 Matynia, A.: Wlokna Chem. 10 (3) (1984) 257 I8591 Matynia. A.. Wierzkowska, B.. Kot, J.: Wplyw metanolu na
11. References to Tables
krystalizacju kwasu I-askorbinowego, in: II. Symp. Industr. Cryst., Jaszowiec 1986.p. 56
I8601 Matynia. A.. Wonvag, W.: Inz. Chem. 9 (4)(1979)739 I8611 Matz, G.: Symp. ZonenschmelzenKolonenkrist... Karlsruhe 1963,p. 345 18621 Matz. G.:Colloq. Int. Centre Nat. Rech. Sci. 152 (1965)451 I8631 Matz, G.: Kristallisation - Grundlagen und Technik, Springer, Berlin 1969 [864]McCall. M.T., Tadros, M.E.: Colloids and Surfaces 1 (1980)161 I8651 McPherson. A.. Koszelak. S.. Axelrod. H., Day, J. et al.: J. Biol. Chem. 261 (4) (1986)1969
[866]Mehmel. Nespital: 2. Krist. 88 (1934)345 [867]Melankholin. N.M.. Slavnova. E.N.: Kristallografiya 4 (1959)563 I8681 Melikhov. I.V.: Protsessy v Dispers. Sredakh. Mezhvuz. Sb. Nauch. Tr. , p. 6
18691 Melikhov, I.V., et al.: Radiokhimiya 1 (1959)3 [870]Melikhov, I.V., et al.: Radiokhimiya 2 (1960)144 18711 Melikhov. I.V.: Radiokhimiya 2 (1960)509 I8721 Melikhov. I.V.. et al.: Dokl. AN SSSR 133 (1960)401 [8731Melikhov. I.V., et al.: Radiokhimiya 3 (1961)520 [8741Melikhov, I.V., Kirkova, E.: Radiokhimiya 6 (1964)5 [875]Mellkhov, I.V.. et al.: Radiokhimiya 6 (1964)165 [876]Melikhov, I.V., Babayan, S.G.: Radiokhimiya 6 (1964)153 I8771 Melikhov. I.V., et al.: Radiokhimiya 7 (1965)377
343
344
11. References to Tables
18781 Melikhov. I.V., Evald. G.: Radiokhimiya 10 (1968) 129
18791 Mellkhov. I.V.. Berdonosova, D.G.: Radlokhimiya 10 (1968) 137 I8801 Melikhov. I.V., Vukovich, Zh.. Nebylitsin. B.D.: Zhur. fiz. khim. 46
(1972) 1952 I88 11 Melik-Gaikazyan. V.I., Melik-Gaikazyan. I. Ya.: Krlstallografiya 4 (1959) 435 I8821 Merkulova, M.S.: Trudy Gos. Rad. Inst. 3 (1937) 141 18831 Messing, T.: Chem.-1ng.-Tech. 42 (1970) 1141
18841 Meyer, H.J.: J. Crystal Growth 66 (3) (1984) 639 [885]Meyer. J.L.. Bergert, J.H., Smith, L.H.: Colloq. Renal Ltthiasis, Proc.
Int. Colloq. (1975)66 18861 Meyer, J.L.. Nancollas. G.H.: Archs. oral. Biol. 17 (1972) 1 6 2 3
18871 Mezhidov, B.Kh., Guzhov. A.I.. Krasnobryzhev, V.G.: Zhur. Prikl. Khim. 52 (1979)2342 I8881 Michaels, A.S.. Colville. A.R.: J. Phys. Chem. 64 (1960) 13 18891 Michaels, A.S., Tausch. F.W.: Int Kongr. GrenzfliichenaktiueStone,
Koln 1960, p. 221 18901 Michaels, A.S.. Tausch. F.W.: J. Phys. Chem. 65 (1961) 1730 18911 Mikhailov, O.V.. Polovnyak. V.K.: Izv. Akad. Nauk SSSR, Neorg.
Mater. 27 (21 (1991) 370 [8921 Mikheeva, L.M., et al.: 2. physik. Chem. 228 (1965) 246 18931 Mile, B.. Vincent, A.T., Wilding. C.R.: J. Chem. Technol. Biotechnol. 32 (1982) 975
I8941 Miles. F.D.: Proc. Royal SOC.London A 32 (1931) 266
11. References to Tables
345
18951 Miles, F.D.:Phil. Trans. Roy. SOC. LondonA 235 (748)(1935) 125 18961 Milligan, A.E.: J. Phys. Chem. 33 (1929) 363 18971 Milone. M.,Ferrero. F.: Gazz. chim. ital. 77 (1947) 348
I8981 Mintova, S..Vulchev. V.. Vulcheva, E.. Veleva, S.: Mater. Res. Bull.
27 (4) (1992) 515 18991 Mirkina. L.T., Gulyeva, T.Yu., Nikiforova, A.M.: Deposited Doc. SPSTL 11 61 KHP-D82 (19821 I9001 Miura. M., et al.: J. Phys. Chem. 66 (1962) 252 I9011 Miura, M., et al.: Bull. Chem. SOC. Japan 36 (1963) 1091 19021 Miura. M.. et al.: J. Sci. Hiroshima Unlv. A-I1 26 (2) (1963) 151 19031 Miura. M., et al.: Kogyo Kagaku Zasshi 66 (1963) 597 I9041 Miura. M.. Naono, H., Hara, M.: Bull. Chem. SOC.J a p a n 39 (1966) 344 I9051 Mohameed, H., Ulrich, J.: Effect of the pH-value on the growth rate of potassium chloride. in BIWIC 1994 (ed. J. Ulrich). p. 112, Univ.
Bremen 1994 19061 Mohamed-Kheir. A.K.M.. Tavare, N.S.. Garside. J.: Cryst. Preclpitation, Proc. Int. Symp. (1987) 61
19071 Mokievskii. V.A.. Mokievskaya, LA.: Zap. vsesoyuz. mineral. obsch. 79 (1950) 15 19081 Moklevskil. V.A.: Kristallografiya 1 (4) (1955) 3 I9091 Moravec, F.,Novotnjr, J.: Krist. Tech. 6 (1971) 335 I9101 Moreno. E.C., Varughese, K.: J. Crystal Growth 53 (1981) 20 19111 Moreno, E.C., Varughese, K.. Hay, D.I.: Calif. Tiss. Int. 28 (1979) 7
346
11. References to Tables
19121 Moriyama, T.: Asahi Garasu Kenkyu Hokoku 9 (1959) 66 19131 Moriyama. T., Sakayori. T.: Asahi Garasu Kenkyu Hokoku 11 (1961) 38 1914) Morond. C.: Thesis, Tech. Ecole Polytechn. Ziirich 1959 19151 Morozova, G.A., Kopylev, B.A., Dmitrievskii. B.A.: Zhur. Prikl. Khim. 51 (1978) 2420
I9161 Mortada, S.A.M., Boraie, A..: Alexandria J. Pharm. Sci. 3 (1989) 45 [917] Mukhopadhyay, S.Ch.: Univ. Microfilms No. DA8523209 (1985); CA 104
(20)177897 19181 Mullin, J.W.:Impurity effects and crystallization phenomena, in: Int.
Symp. on Separ. Process Eng. (1986) 67 19191 Mullin. J.W.: Crystal growth in pure and impure systems, in:
Industrial Crystallization ‘78(eds. de Jong, E.J.. JanEie, S.J.). p. 93,
North-Holland, Amsterdam 1979 I9201 Mullin, J.W.: Chem.-1ng.-Tech. 47 (21)(1975) 882 19211 Mullin. J.W., Amatavivadhana, A., Chakraborty. M.: J. Appl. Chem.
20 (5)(1970) 153 19221 Mullin, J.W.. Ang. H.M.: Faraday Disc. Chem. Sac. 61 (1976) 141 19231 Mullin. J.W., JanCic’. S.J.: Trans. Inst. Chem. Eng. 57 (3)(1979) 188 19241 Muminov, AS.. Akhmedov, M.A., Ishakov, Kh.Sh.. Manapova. R.A.:
Izv. Akad. Nauk SSSR,Neorg. Mater. 21 (1) (1985) 155 (9251 Murata. Yo.: Kagaku Kogaku 41 (9)(1977) 478 19261 Murotani. H., et al.: Nippon Shio Gakkaishi 10 (1956) 278 19273 Murotani. H.: Bull. Tokyo Inst. Technol. 1963 141
1 1 . References to Tables
347
I9281 Murthy, A.S.A., Mahadevappa. D.S.: Austral. J. Chem. 22 (1969) 2017 [9291 Mydlarz J.:The effect of Ni(I1) on the growth of magnesium sulphate from aqueous solution. in: Industrial Crystallization '90 (ed. Mersmann. A.), p. 615, Munich 1990 19301 Mydlarz, J.. Jones, A.G.: Chem. Eng. Commun. 111 (1992) 29 I93 11 Myerson, A.S.. Brown: Crystal aging and precipitation of terephthalic acid. Intern Symp. on Prepar. of Funct. Mat. and CrystalL..Osaka 1988 [9321 Myerson, A.S., Decker, S.E., Fan, W.: Ind. Eng. Chem. Process Des. Dev. 25 (4)(1986) 925 19331 Myerson, A.S.. Weisinger, Y., Ginde, R.: Crystal shape, the role of solvents and impurities, in: Industrial Crystallization '93, VoL I (ed. Rojkowski. Z.), p. 3-135, Warsaw 1993 I9341 Myl, J., Kvapil, J.: Chem. prfimysl9 (1959) 28 19351 Nagalingam, S.,Vasudevan. S . . Ramasamy. P.: Crystal Res. Technol.
16 (6) (1981) 647 I9361 Nagornyi, A.A.: Elektron. Protsessy Defekty Ionnykh Krist. (1985)34 [9371 Nakai. T.. Miyake, K.: Kagaku Kogaku Rombunshu 4 (1978) 100;CA 90 40676 [9381 Nakhmanovich. M.I., et al.: Zhur. PriM. Khim. 23 (1950) 1331 19391 Nalbandyan, A.G., Grigoryan. S . Yu.. Kazaryan. A.B.: Neorg. Materialy 21 (11) (1985) 1945 [9401 Nalbandyan, A.G., Nalbandyan. H.S.: The effect of additives on nucleation in aqueous solutions, in: Industrial Crystallization '87
348
11. References to Tables
(eds. N p l t , J., ZBCek, S . ) , p. 245, Academia Prague and Elsevier
Amsterdam 1979 (9411 Nancollas, G.H.: Croat. Chem. Acta 43 (1971) 261 (9421Nancollas. G.H., Bochner, R.A., Liolios, E.. Shyu, L.J., Yoshlkawa. Y..
Barone, J.P., Svrjcek, D.: AICHE Symp. Ser. 78 (215) (1982) 26 (9431Nancollas. G.H., Koutsoukos. P.G.: Prog. Crystal Growth Charact. 3 (1980) 77 (9441 Nancollas. G.H., Purdie, N.: Trans. Faraday SOC. 57 (1961) 2272 19451 Nancollas. G.H., TomaiiC, B.: J. Phys. Chem. 78 (1974) 2218 (9461 Nancollas. G.H.. TomaZiC, B.. Tomson, M.: Croat. Chem. Acta 48 (4) (1976) 431 (9471 Nancollas, G.H.. Wefel, J.S.: J. Crystal Growth 23 (1974) 169 [948] Nancollas. G.H.. Zawecki. S.J.: Inhibitors of crystallization and
dissolution, in: Industrial Crystallization '84 (eds. JanEiie. S.J., de Jong, E.J.). p. 51. Elsevier, Amsterdam 1984 19491 Naono, H.: Bull. Chem. SOC.J a p a n 40 (1967) 1104 I9501 Naono, H., Miura, M.: Bull. Chem. SOC. J a p a n 38 (1965) 80 (9511Naono, H.: Bull. Chem. SOC. J a p a n 40 (1967) 1104 19521 Napijalo. M.I.. ZlZiC, B., Zegarac. S., DojEiloviC, J.: Fizika (Zagreb) 10
(Suppl. 2) (1978) 502 (9531N a s s . K.K.: Ind. Eng. Chem. Res. 33 (1994) 1580, 2020 [954] Neels, H.: Fortschr. Mlner. 35 (7-8) (1957) 8 (9551Neels, H.: Freiberger Forschungsh. A 123 (1959) 405 (9561Neels, H.. Steinike, U.: Freiberger Forschungsh. A 267 (1961) 433
11. References to Tables
349
19571 Neels. H.. Steinike, U.: J. Appl. Phys. 34 (1963) 433 I9581 NEmec, J.. HloZny. L., Broul, M., Veverka, F.:Chem. prfimysl 42 (5-6) (1992) 114 [959]Nepomnyashtchaya, V.N.. et al.: Rost Kristallov 3 (1961)290
I9601 Nestor, L.I.: Khirn. Prom., Ser. KaLtinaya Prom. 2 (1980) 4 [9611 Neuhaus, A.: 2. Krist.103 (5) (1941) 297 I9621 Neumann, M.,Ulrich, J.: Progressive freezing process - static / dynamic - a comparison, in: Industrial Crystallization '93(ed. 2. Rojkowski), vol. 1, p. 1-061. Warszawa 1993 19631 Neumann, M.. Ulrich, J.: The washing procedure in solid layer melt crystallization. in: BIwlC 1994 (ed. J. Ulrich), p. 19. Univ. Brernen 1994 I9641 Nicar, M.J.. Hill, K., Pak. C.Y.L.: J. Bone Miner. Res. 2 (1987) 215 I9651 Nielsen, A.E.: J. Colloid Sci. 10 (1955) 576 I9661 Nielsen, A.E.: Faraday Disc. Chem. SOC. 61 (1976) 153 19671 Nightingale, E.R..Benik. R.F.:Anal. Chem. 32 (1960) 566 I9681 Nitrogen 46 (1967) 33 I9691 Novobilsky, V.: PhD Thesis, Tech. Univ. Chem. Technol., Prague 1965 I9701 Novobilsky, V.: In. Symposium on Industrial Crystallization, Usti n.L. 1965 19711 Novobilsky. V.,Jgger. L., N*lt,
J.: Chem prfimysl 18 (1968) 123
I9721 Novobilsky, V., N@lt, J.. Jager. L.: Chem. prfimysl 18 (1968) 180 I9731 Novosel. B.: Colloid Polymer Sci. 254 (1976) 650
350
11. References to Tables
I9741 Nowakowski. R.. Czenvinski. 2.: Nieorg. Zwiazki Fosforowe 7th (1976) 177 19751 Nozhkina. I.N.. Vityugin. V.M.: Izv. Tomsk. Politekh. Inst. 258 (1976) 71 I9761 N w l t , J.: Conference onIndustrial Crystallization. asti n.L. 1960 (9771N j v l t , J.: Chem. prfimysl 12 (1962) 170 I9781 N@lt, J.. Gotffrled. J.. KiiEkovB. J.: Chem. prhmysl 14 (1964) 242 I9791 N j v l t , J.. Gottfrled, J.. Sucharda, J.: Chem prfimysl28 (1978) 132 I9801 N p l t , J., Kraus, J.: Zuckerind. 119 (3) (1994) 219 I9811 Njvlt. J., MaCek, J.. ZakrajSek, S.: Crystal Res. Technol. 28 (1993) 479 I9821 Nyvlt, J., Netuka, V., VBclavh, V., MiCek, F.: Sci. Rept Res. Inst.
Inorg. Chem. 259 (1960) I9831 Nyvlt. J., SittovB. 2.: Collect. Czech. Chem. Commun. 57 (1992) 1798 19841N p l t , J.. Sucharda, J., HufikovB, A.: Czech Pat. 133 701 (1969) I9851 Njklt, J.. Snoblova. V.: Chem. prfimysl36 (1986) 297 I9861 N j v l t . J.. SnoblovB. V., Karel, M.: Collect. Czech. Chem. Commun. 51 (1986) 2473 19871 Njklt, J.. VBclavh, V.: Collect. Czech. Chem. Commun. 37 (1972) 3664 I9881 Njklt, J., ZBEek. S.: Chem. prfimysl38 (1988) 402 I9891 Obukhova, N.F.. Chirva, L.A.: Sb. Nauch. Tr. VNII Monokrist..
Stslntil. Mater. i Osobo Chist. Khim. Veshch. 18 66
11. References to Tables
351
[9901Oganesyan. A.A., Atanesyan, A.K., Babadzhanyan. K.P., Gukasyan, A.V.:Armen. Khim. Zhur. 36 (12)(1983)759
I9911 Ogawa: J. Appl. Phys. J a p a n 26 (10) (1957)526 [992]Oguni, M., Angell, C.A.: J. Phys. Chem. 87 (1983)1848 19931 Ohyama, Y.,Futaki, K.: Bull. Chem. SOC. Japan 28 (1956)243 19941 Oka. T.. Yoshioka, T., Koide. T. et al.: Urol. Int. 42 (1987)89 I9951 Okhrimenko. T.M.. Kozhoeva. S.T.. Kuznetsov. V.A.. Klimova. A.Yu., Barsukova, M.L.: Kristallografiya 37 (5) (1992)1309
[996]Olgun, Ozden. Atalay, Suheyda: J. Fac. Sci. Ege Univ., Ser. A 14 (2) (1991)39 [997]Onna, K., Goya, S.: Hawaiian Sugar Technol. Rept. 22 (1963)9 [998]Oomori, T., Kitano, Y.:Bull. Coll. Sci. Univ. Ryukyus 39 (1985)57 [999]Orekhov. M.A.. Timokhova, L.B.: Zhur. Prikl. Khim. 42 (1969)1926
[lOOOI Orlov, P.P.: Zhur. Rossii. Fiz.- Khim. Obsch. 28 (18961714 [ 100 11 Orlov. P.P.: Izv. AN SSSR. otd. fiz.-mat. nauk 6-7 (1929)
[lo021Orlova. M.P.: Uch. Zap. Tomsk. Univ. 29 (1959)46 [lo031Osichkina. R.G., Ismailov. F.Kh.: Dokl. Akad. Nauk UzSSR 6 (1989) 35 [lo041Osther, P.J.. Bollerslev. J.. Norgard. J.R.. et al.: Scanning Microsc. 8 (1994)63 [lo051Ostrowski. C.: Cem.-Wapno-Gips 7 (1980)179 (10061Otani. S.:Bull. Chem. SOC. Japan 33 (1960)1543 [lo071Otani. S.:Bull. Chem. S O C .J a p a n 33 (1960)1549 [lo081Otani, S.,Miura. M.: J. Sci. Hiroshima Univ. A - 11, 25 (2-3) (1963) 145
352
1 1 . References to Tables
[lo091Otani, S.,Miura, M.: J. Sci. Hiroshima Univ. A-I127 (1963)1 1
[lolo]Otterson. D.:J. Chem. Phys. 33 (1960)227 [loll]Owczarek, I.. Sangwal. K.: J. Crystal Growth 99 (1-4,pt.2) (1990)
827 [ 10 121 Pach.
L.. Hrabe. 2..Komarneni. S.. Roy, R.: J. Mater. Res. 5 (12)
(1990)2928 [lo131 Packter. A..Alleem, A.: Krist. Tech. 15 (1980)1249 I10141 Packter. A.. Alleem, A.: Crystal Res. Technol. 16 (1981)33 [lo151Packter, A.. Jakubowski, J.: Crystal Res. Technol. 20 (1985)1063 [lo161Packter. A.. Panesar. K.S.: Crystal Res. Technol. 20 (1985)749 A (1970)725 [lo171Packter. A., Saunders, D.F.: J. Chem. SOC.
[lo181Pakhomov, V.I., Medvedev. A.V., Linde, S.A.. Sil'nitskaya, G.B.. Churbakov, V.F.: Izv. Akad. Nauk SSSR, Neorg. Mater. 20 (10) (1984)
1715 [ 10191 van Panhuys-Sigler.
S..Hartman, P., Woensdrest, C.F.: J. Crystal
Growth 87 (4) (1988)554
[lo201Panfilov, V.V., Khamskii. E.V.: Khim. Tekhnol. (Kiev) 6 (1984)51 [lo211Panov. V.I.. Novikov, A.N.. Prisyazhnyuk: Tr. NII Osn. Khim. 20 (1969)50 [lo221Panov. V.I., Novikov. A.N., Prisyazhnyuk: Tr. NII Osn. Khim. 20 (1969)58 [lo231Papazova-Dencheva, K., Njrvlt. J . , PekBrek, V., Sipek, M.: Collect. Czech. Chem. Commun. 55 (1990)1175
1 1 . References to Tables
353
I10241 Papoff, I.G., Sherp, G.W.: J. Meteorol. 1 6 (1959) 288 I10251 Pawlowska-Kozinska. D .: Ziemie Rzadkie Fosfogipsach Pochodz. Apatytowego, Politech. Krakow (1990) 33
I10261 Pencheva. J.. Kirkova, E.. Djarova. M.: Kinetic approach of investigation of inclusion into the system ZnC20,
. 2 H 2 0 - Cu(I1)-
C20,2- - H 2 0 . in: Industrial Crystallization '90 (ed. Mersmann. A.), p. 677. Munich 1990 I10271 Perelman. S..Strakhova, J.: Zhur. Khim. Prom. 15 (1938)26 [lo281 Perez B.C.L.. Carrazana. R.. Gonzalez, 0.: Cent. Azucar 11 (1) (1984) 121 [lo291 Peters, R.W.. Ku, Y.,Bhattacharyya, D.. Chen, L.F.: Crystal size distribution of sulfide precipitation of heavy metals, in: Industrial Crystallization '84 (eds. S.J. Janeiie. E.J. de Jong). p. 111. Elsevier.
Amsterdam 1984 [ 10301 Peters, R.W.. Chang. T.K.: Effect of sodium hexametaphosphate on
the particle size distribution of calcium carbonate under constant pH precipitation conditions. in: Industrial Crystullization '84 (eds. JanEiie. S.J., de Jong. E.J.), p. 67, Elsevier. Amsterdam 1984 [lo311 Peters, R.W.. Chen. P.H.. Chang. T.K.: CaC03 precipitation under
MSMPR conditions, in: Industrial Crystallization '84 (eds. S.J. Janeiie, E.J. de Jong). p. 309, Elsevier. Amsterdam 1984 110321 Peters, R.W., Young, K.. Dibakar. B.. Lih-Fen Chen: Crystal size distribution of sulfide precipitation of heavy metals, in: Industrial Crystalllzation '84 (eds. JanEi:iC. S.J.. de Jong, E.J.). p. 111. Elsevier.
Amsterdam 1984
354
11. References to Tables
110331 Petinelli, J.C.: Rev. Inst. Fr. Petrol. 34 (5) (1979)771 110341 Petrenko. D.S.. Arabova, L.M.:Koks i Khim. 1967 (2) 22 110351 Phillips, V.A.. Kolbe. J.L.. Opperhauser. H.J.: J. Crystal Growth 41 (1977)228 110361 Phoenix, L.: Brit. Chem. Eng. 1 1 (1) (1966)34 110371 Phoenix, L.: Sch. Sci Rev. 48 (1966)173 110381 Pinaev, V.A.: Zhur. Prikl. Khim. 37 (1964)898 110391 Ploss, R.S.: Science 144 (3615)(1964)169 [lo401Podolinskii, V.V., Drykin, V.G.: Zhur. Fiz. Khim. 53 (1979)2092 110411 Podozerskaya, E.A., Khamskii, E.V.: Zhur. Prikl. Khim. 43 (1970) 736 110421 Podozerskaya, E.A.. Khamskii. E.V.: J. Appl. Chem. USSR 48 (3) (1975)512 110431 Pol. Pat. 46 248 (1962) I10441 Pol. Pat. 50 990 (1966) 110451 Pol. Pat. 120 673 (1976);CA 90 057434 [lo461Polesitskii, A.E.: Tr.Gos. Rad. Inst. 2 (1933)86 [ 10471 Polikarpov, V.A., Laryutina. E.A.: Khim. Prom-st (Moscow) (1978)
687: C A 8 9 199837 110481 Pompe. S.,Lehmann, H.A.: 2. anorg. allg. Chem. 505 (1983)201 [lo491Popolitov, V.I.: Neorg. Mater. 29 (5) (1993)663 [lo501Popovitz-Biro. R.. Gavish, M.,Lahav, M..Leiserowitz. L.: Ice nucleation by monolayers of aliphatic alcohols, in: MakromoL Chem, MacromoL Symp. 46,3rdEurop. Con, Organ Org. Thin Films. 19
11. References to Tables
355
[lo511Portnov, V.N., Belyustin, A.V.: Kristallografiya 10 (1965)362 110521 Portnov, V.N.: Kristallografiya 11 (1966)916 [lo531Portnov, V.N.: Kristallografiya 12 (1967)530 110541 Postnikov. V.A.. Obukhov. A.V.: Teor. Osn. Khim. Tekhnol. 10 (5) (1976)778 110551 Potop. P., et al.: Rev. Chim. (Bucharest) 12 (1961)3 [ 1056)Pozdnyakov. P.G.: Kristallografiya 1 (2) (1956)
110571 Pozdnyakov. P.G.: Kristallografiya 1 (3) (1956)356 [lo581Poznyak, V.S.. Chesnokov, L.I.: Vestsi Akad. Nauk. BSSR, Ser. Fiz.M a t . Nauk 1 (1980)116 110591 Pradhan, R.M..Ganguli, P.: Indian J. Technol. 27 (5) (1989)237 110601 Prasad, P.B.V.: Crystal Res. Technol. 20 (11) (1985)1527 110611 Prasad. P.B.V., Sato, K.: Crystal Res. Technol. 21 (1986)835 110621 Prasad. P.B.V.: Crystal Res. Technol. 25 (12) (1990)K301 110631 Prisekina, T.N.. Driker, B.N.. Prostakov. S.M.. Morgunova. S.A.: Deposited doc. SPSTL 618 KHP-D81 (1981)
110641 Prostakov, S.M.. Driker, B.N., Rempel, S.I.. Belyaeva. N.A.: Deposited doc. SPSTL 339 KHP-D8 1 (1981)
110651 Przytycka, R.:Nukleonika 12 (1967)747 [lo661Punin, Yu.0.: Uch. Zap. Leningr. Gos. Univ. 409 (1982)143 110671 Punin, Yu.0.. Petrov, T.G.: Kristallografiya 13 (1968)922 [lo681Pytkowicz. R.M.: h e r . J. Sci. 273 (1973)515 ll0691 Rabkin, M.A.. et al.: Zhur. Prfkl. Khim. 24 (1951)1257
356
11. References to Tables
I10701 Radhakrishnan, S..Saini. D.R.: J. Crystal Growth 129 (1-2) (1993)
19 1 [ 107 11 Radhakrishnan,
S.,Schultz. J.M.: J. Crystal Growth 116 (3-4)
1992
I10721 Raistrick, B.:Disc. Faraday SOC. 5 (1949) 234 I10731 Rakityanskaya. O.F.: Praci Odess. Univ.. prir. nauki 152 (8) (1962) 22
I10741 RaksBnyi, K., Voszka. R.: Krist. Tech. 4 (1969)227 [ 10751 Ramanaiah.
K.V., Varma, K.B.R.: Indian J. P u r e Appl. Phys. 21 (7)
(1983)388
[lo761 Randolph, A.D., Drach, G.W.: J. Crystal Growth 53 (1981) 195 I10771 Randolph, A.D.. Koonitz, S . : Effect of habit and nucleation modifiers
in crystallization of borax, in: 69th A n n Meet, NCHE. Chicago 1 9 7 6 [lo781 Randolph, A.D., Puri,A.D.: AICHE J. 27 (1) (1981)92 [lo791 Randolph, A.D.. Vaden. D.E., Stewart. D.: AICHE Symp. Ser. No.
240.80 (1984) 110 (10801Rao. C., R a m a Rohan, Mehrotra, P. Narain: J. Appl. Chem.
Bfotechnol. 28 (9) (1978) 608 [ l O 8 l ] Rashkovich, L.N..Shekunov. B.Yu.: Rost Krist. 18 11990) 124 [ 10821 Raskol,
W.:Thesis, Techn Hochschule D a r m s t a d t 1959
I10831 Ratinov, V.B.,Todes. O.M.: Sb. tr. Nauch.-Issl. Inst. zhelezobeton.
izdel stroit. i nerud. mater. 4 (1961) 154 I10841 Ratner. A.P.: J. Chem. Phys. 1 (1933)789
1 1 . References to Tables
357
110851 Ratsimba, B.: Cristallisation du bitartrate de potassium aparttr de solutions hydroalcoolques - extension des rbsultats , Thesis. Toulouse
1990 I10861 Reddy, M.M.: J. Crystal Growth 41 (2) (1977)287 I10871 Reddy, M.M.. Nancollas. G.H.: Desalination 12 (1973)61 I10881 Reddy. M.M.. Wang, K.K.: J. Crystal Growth 50 (2) (1980)470 110891 Redoute. M., Boistelle. R.. Kern, R.: Compt. rend. 260 (1965)2167 I10901 Redoute, M.. Boistelle. R.. Kern, R.: Compt. rend. 262 (1966)1081 I10911 Reid. D.S.. Foin. A.T., Lem. C.A.: Cryo-Lett. 6 (3) (1985)189 I10921 Reinders. W.: 2. physik. Chem. 77 (1911)677 I10931 Reitemeier. R.F.. Buehrer, T.F.: J. Phys. Chem. 44 (1940)535 110941 Remoissenet. M.. et al.: Krist. Tech. 5 (1970)535 I10951 Retgers. J.W.: 2.physik. Chem. 9 (1892)267 110961 Retgers, J.W.: 2. physik. Chem. 9 (1892)304 I10971 Retgers, J.W.: 2.physik. Chem. 12 (1893)582 I10981 Retgers. J.W.: 2. physik. Chem. 12 (1893)614 I10991 Richardson, C.F., Johnson, M.. Sharma. V.K.. Sallis. J.D.. Nancollas, G.H.: Mater. Res. SOC.Symp. Proc. 174 (1990)87
Ill001 Rigterink. France: J. Phys. Chem. 42 (1938)1079 I11011 Rinaudo. C.. Franchlni-Angela. M.: Rend. SOC. Ital. Mineral. Petrol. 40 (2) (1985)285 111021 Rinaudo. C., Franchini-Angela, M., Boistelle. R.: J. Crystal Growth
89 (1988)257
358
11. References to Tables
111031 Ristie, R., Shekunov. B.Yu.. Sherwood. J.N.. Wojciechowski, K.: Studies of the relationship between morphological changes and growth rate dispersion of small crystals of sodium chlorate grown from pure and sodium dithionate doped solutions, in: Industrial Crystallization '93,VoL II (ed. Rojkowski. 2.). p. 4-021,Warsaw 1993 [ 11041 l3istie.R.. Sherwood. J.N.. Wojciechowski. K.: J. Phys. Chem. 97 (41)
(1993)10774 I11051 Rtzkalla. E.N.: J. Chem. Soc.. Faraday Trans. 1 79 (1983)1657 (11061Roberts, K.J., Sherwood. J.N., Taggart. A.M.: Influence of solvent o n crystallization of normal alkanes C18H38 t o C,,H,,
from model
hydrocarbon solvents. in: Industrial Crystallization '93,VoZ. I (ed. Rojkowski. 2.).p. 3-063.Warsaw 1993
(11071Robertson, W.G., Peacock, M.,Marshall, W.R., Knowles. F.: Clin. S c i . Mol. Med. 47 (1974)13 [ 1 1081 Robertson, W.G., Peacock,
M.,Nordin. B.E.C.: Clin. Chim. Acta 43
(1973)31 11 1091 Robinson, A.: Sb. Novye Issled. PO Krfstallogr. i Kristallokhim. fl
(1950)80
Illlo] Rodgers. A.L.,Ball, D., Harper, W.: Scanning Microsc. 8 (1994)71 [ 1 1 111 Rogalla, W., Schmalzried, H.: Ber. Bunsenges. Phys. Chem. 72
(1968)615 Ill121 Rohani. S..Ng. B.: Chem. Eng. Sci. 47 (2)(1992)367 11 1131 Rohatgi. P.K.:Bull. Inst. Int. Froid, Ann. 3 (1966)69 11 1141 Rohatgi. P.K.. et al.: Ind. Eng. Chem.. Fundam. 7 (1968)72
111151 Rolfe, P.F.: Desalination 1 (1966)359
1 1 . References to Tables
359
I1 1161 Rolfs. J., Lacmann, R.: Kristallwachstum von KNO, mit und ohne
Fremdstoff. Int. Arbeitssitz. Kristallisation GVC-VDI,Aachen 1989 11171 Rolfs. J.. Lacmann. R.: The influence of additives on the growth of
KNO, in aqueous solution. in: Arbeitssitz. KristaZZisationGVC-VDI. Delft 1992 [1118]Rome de Lisle, J.B.: Cristallographie 1 (1783) 379 [ 11191 Romer, W., Sidorowicz, A.: Rocznikl Chem. 39 (1965) 1145
(11201 Rosca, B., Simon, Z . , Policec, S . , Roth, G., Sayti, L.: Rev. Chim.
(Bucharest) 29 (10)(1978) 941 [1121] Rosinski. J., Lecinski. A.: J. Phys. Chem. 85 (1981) 2993 111221 van Rosmalen, G.M.: Scale prevention. PhD Thesis, Delft Univ. 1981 ill231 van Rosmalen. G.M., Bennema. P.: Characterization of additive performance on crystallization. in: ICCG-A Sendai (1989) 2 1A CO 1 [1124] van Rosmalen, G.M.. Bennema, P.: J. Crystal Growth 99 91-4, (Pt.2) (1990) 1053 [1125] van Rosmalen. G.M., Daudey, P.J., Marchee, W.G.J.: in: Industrial Crystallization '81 (eds. JanCie, S.J.. de Jong. E.J.). p. 147, North-
Holland, Amsterdam 1982 [11261 van Rosmalen, G.M., van der Leeden. M.C.: Crystal Res. Technol. 17 (1982) 627 111271 van Rosmalen, G.M., van der Leeden, M.C.. Gouman. J.: Kristall u. Tech. 15 ( 1980) 1269 111281 van Rosmalen, G.M., van der Leeden. M.C.: Crystal Res. Technol. 17 (1982) 627
360
1 1 . References to Tables
[ I 1291 v a n Rosmalen, G.M., Witkamp, G.J.. d e Vreugd, C.H.: Process Technol. Proc. 6. Ind. Cryst. (1989) 15 [1130] Roquez,
H.,Girou. A.: Water Res. 8 (1974)9 0 7
El1311 Rousseau. R.W.. Yin, M.S.: Inhibition of contact nucleation and
growth of secondary nuclei in solutions of mixed solutes, in:
IndusMal Crystallization '81 (eds. JanW, S.J., de J o n g , E.J.). p. 71, North-Holland, Amsterdam 1982 [ 11321 Rousseau, R.W.: Agglomeration in well-mixed
crystallizers. Intern.
Symp. on Prepar. of Funct. Mat. and CrystaZL. O s a k a 1988 [1133]Rousseau, R.W., Woo, R.: Effects of operating variables on
p o t a s s i u m alum crystal size distributions, 84th Natl. AICHE
Meeting, Atlanta 1978 [ 11341 Rousseau, R.W.. Zumstein. R.S..
Turchi. C.: Effects of surface-
active agents o n the b a t c h crystallization of L-isoleucine. in:
Industrial Crystallization '87 (eds. N p l t , J., ZBEek. S . ) , p. 507. Academia Prague and Elsevier Amsterdam 1979 [1135]Rowe: ColourIndex, 1 9 2 4 [1136]Royer,
L.: Compt. rend. 198 (1934) 185. 585
[ 11371 Rozin. K.M., Vasil'eva. L.V. Portnov. O.G., Morozov, V.I., Kozlova,
N.S.: Izv. Akad. Nauk SSSR, Neorg. Mater. 24 (51 (1988) 843 [ 11381 Ruan.
D..Zhang. D.. Zhang. T.. Hu, 9.: Huazhong Shifan Daxue
Xuebao, Ziran Kexueban 23 (1) (1989)57 [1139] RubinovB. E.: Fyz. Easopis Slov. AV 17 (1967) 174
111401 Rudenko, M.I., Egorycheva, G.V.: Khimiya i Khim. Tekhnol.. Sintez i
Issled. Plenkoobraz. Veshch. i Pigm. 81
11. References to Tables
36 1
I11411 Runova. E.N., Neupokoev, G.I.: Depos. Doc. SPSTL 227 KHP-D81 (1981) [ 1 1421
Ryall. R.L.. Harnett. R.M., Marshall, V.R.: Clinica Chim. Acta 112 (1981) 349
I11431 Ryan, B.F.. Macklin, W.C.: J. Crystal Growth 2 (1968) 337 (11441 Rychljr, R.: Chem. listy 66 (1972) 853 11 1451 Sadokhina. L.A.. Zimina, G.V., Poletaev, I.F.: Zhur. Prikl. Khim. 59 (1986) 2679 11 1461 Safiullln. N.S.. Solyanik, S.K.: Khlm. Prom. Ukr. 1966 (6)8 [ 11471 Saidov. M.S.. Avezmuratov, A., Koshchanov. E.A., Atakhanov.
Sh.S.: Uzbek. Fiz. Zhur. 4 (1991) 79 (11481 Sakagudi, W.: Kogyo Kyokai Sci. 66 (8)(1958) 165 (11491 Sakata. Y.. Takenouchi, K.: Agr. Biol. Chem. 27 (1963) 610 ill501 Salimi. M.H., Heughebaert. J.C., Nancollas. G.H.: Langmuir 1 (1) (1985) 119
(11511 Samakaev. R.Kh., Akhmetov. V.N.. Dytyuk, L.T., Dyatlova, N.M.:
Zhur. Neorg. Khim. 34 (2) (1989) 513 11 1521 Samakaev. R. Kh.. Dyatlova. N.M.: Zhur. Vses. Obsch. Mendeleeva 3 0 U ) (1985) 118
[11531 Samakaev, R.Kh., Dyatlova, N.M., Driker. B.N., Dyutyuk. L.T.:
Kompleksony i Khelatoobraz. Sorbenty, M (1982) 98 111541 Samakaev. R.Kh.. Dyatlova, N.M., Driker. B.N., Dyutyuk. L.T.:
Kompleksn. Ispol'z. Miner. Syr'ya 10 (1983) 76
362
1 1 . References to Tables
[ 1 1551
Samakaev. R.Kh., Dyatlova, N.M.. Driker. B.N., Dyutyuk. L.T., Tsirul'nikova. M.V.: Zhur. Neorg. Khim. 29 (1984)2146
I1 1561 Samakaev. R.Kh., Dyatlova, N.M., Driker. B.N., Dyutyuk, L.T.,
Yaroshenko, G.F.: Zhur. Neorg. Khim. 28 (1983)1607
111571 Samakaev. R.Kh., Nikolaeva, L.S.. Dyatlova. N.M., Evseev, A.M.: Zhur. PriM. Khlm. 57 (1984)2237
I11581 Sangwal, K.: J. Crystal Growth 128 (1-4) (1993)1236 ill591 Sano. C., Nagashima. N.. et al.: The effect of additives on the crystal habit of monosodium L-glutamate monohydrate. ICCG - A Sendai
(1989)21A C 0 2 [I1601Sapre, R.K.: Indian J. Technol. 6 (1968)219 11 16 11 Sarig, S.:in: 5th Symposium on Industrial Crystallization, CHISA,
Prague 1972 11 1621 Sarig, S.:J. Crystal Growth 24/25 (1974)338
I11631 Sarig, S.,Ben-Yosef, N., Ginio, 0.. Maklab. D.. Weitz. A,: J. Phys. Chem. 80 (1976)253 11 1641 Sarig, S..Glasner. A., Tandy. S.: CEPAS '78, Abstract Book (ed. A.E.
Nielsen). p. 57, University Copenhagen
I11651 Sarig, S..Kahana, F.: J. Crystal Growth 35 (1976)145 I1 1661 Sarig, S.. Kahana, F., Fuchs, J., Karasikov. W., Azoury. R.: J.
Crystal Growth 8 7 (4) (1988)43 1
I11671 Sarig, S..Kahana. F.: J. Crystal Growth 35 (1976)145 I11681 Sarig, S..Kahana. F., Leshem. R.: Desalinatlon 17 (1975)215 11 1691 Sarig, S.,Leshem, R.. Ben-Yosef, N.: Chem. Eng. Sci. 3 1 (1976)
1061
11. References to TQbZes
363
[1170]Sarig. S..Mullin. J.W.: Ind. Eng. Chem.. Proc. Des. Devel. 19 (3) (1980)490 I11711 Sarig. S.. Mullin. J.W.: J. Chem. Technol. Biotechnol. 32 (4)(1982) 525 111721 Sarig, S.. Raphael, M.: J. Crystal Growth 16 (1972)203 111731 Sarlg. S.. Raphael, M.. Ron, A.: Israel J. Chem. 11 (5) (1973)635 [1174]Sarig, S.,Tartakovsky, F.: Israel J. Chem. 12 (1974)905 (11751Sarig. S.. Zalcman. H., Greidinger, D.: Chem. Eng. Sci. 32 (1977) 643 111761 Sasaki, N.,Minato. H.: Mineral. J. 11 (8)(1983)365 111771 Sasaki. T., Yokotani, A., Fujioka. K.. Nishida. Y.. Yamanaka, T., Yamanaka. Ch.: J a p a n J. Appl. Phys.. Part 2. 26 (11) (1987)1769
[1178]Satapathy. B.K.,Vidyasagar. P.: Light Met. (Warrendale) 105 - 13; CA 113 (24)214695
(11791Sat0.A.. Umetsu, Y., Kubota. N.: Iwate Daigaku Kogakubu Kenkyu Hokoku 41 (1988)119
111801 Sattarov, S.A.,Yuldashev, U.Y., Reiterov. V.M.. Trofimova, L.M.: Fiz. Tverdogo Tela 32 (4)(1990)1256
11181)Sawada. K., Ogino. T..Suzuki, T.: J. Crystal Growth 106 (2-3) (1990)393
I1 1821 Sayan, P.. Kruse. M., Ulrich. J.: Die Wirkung von Flockungsmitteln auf die Kristallisatlon von BorsSure a u s wassriger LGsung. in: Arbeltssitz. KristaZUsationGVC-VDI. Delft 1992
364
11. References to Tables
[ 11831 Sayed. S.A.,
Larson. M.A.: Univ. Microfilms No. DA8221224; CA 98
0 18669
[1184] Schierholtz, O.J.:Canad. J. Chem. 36 (1958) 1057 [1185]Schiller. E.L.: Light Met. (Warrendale, USA) 185 111861 Schimmel. G.: Chem.-1ng.-Tech. 38 (1966) 1101 111871 Schlain. D.. Proter. J.D., Ravitz, J.F.: Ind. Eng. Chem. 41 (1949) 834 111881 Schliephake. D.. Ekelhot, B.: Beitrag zur vollstandigen Berechnung
der Kristallisationsgeschwindigkeit der Saccharose in reinen und unreinen Lijsungen, in: Meeting GVC - Krtstallisation, Natternberg 1984 111891 Schneider, H.: Vest. Moskov. Univ.. Ser. 4:Geol. 2 (1987) 78
111901 Scholz, R.: Die SchichtkristaEZisationals thermisches Trennuerfahren, Fortschr.-Ber. VDI, Reihe 3,347. VDI-Verlag Dfisseldorf 1993 111911 Schroeder, J.. Skudlarska. W.. Szczepanik, A., et al.: The influence
of surface-active agents on gypsum crystallization in phosphoric acid solutions. in: Industrial Crystallization (ed. Mullin, J.W.). p. 263. Plenum Press, New York 1976 111921 Schulte, Mattler: Brennstoff-Chem. 23 (1942) 103, 115 111931 Scott, G., Thompson, R.W.. Dixon, A.G., Sacco, A. Jr.: Zeolites 10
(1) (1990) 44 111941 Scrutton. A.: J. Separ. Proc. Technol. 6 (1985)26 I1 1951 Sears, G.W.:J. Chem. Phys. 29 (19581 979 111961 Sears, G.W.: Proc. Int. Con$ Growth and Perfectionof Crystals, New
York 1958. p. 441
11. References to Tables
365
111971 Sears, G.W.: U S Dept. Corn.. Office Tech. Serv.. AD 255 093 (1961) 111981 Segalova. J.. et al.: Dokl. AN SSSR 114 (1957) 594
111991 Segalova, F.E.: Dokl. AN SSSR 133 (1960) 630 [1200] Seifert, H.: Chem.-1ng.-Tech. 27 (1955) 135 112011 Senarmont, H.: Ann. Chim. 41 (1854) 319 [ 12021 Sendfjarevie, A., BreEevie. L., Fiiredi-Milhofer. H.: The influence of
organic acid ions on the crystallization of calcium hydrogen phosphate dihydrate, in: Industrial Crystallization’81 (eds. JanEiC. S.J.. de Jong, E.J.). p. 321. North-Holland, Amsterdam 1982 I12031 Sengupta, S. Kar, T.. Gupta, S.P.S.: J. Mater. Sci. Lett. 9 (3) (1990) 334 I12041 Serbina, N.N.. Dubinskii. V.G.: Zhur. Fiz. Khim. 5 (1934) 190 112051 Shadman. F.. Randolph, A.D.: AICHE Journal 24 (5)(1978) 782 [lZOS] Shanmugham. M., Gnanam. F.D., Ramasamy, P.: Proc. Nucl. Phys.
Solid State Phys. Symp. 24 C (19821355 112071 Shanmugham, M.. Gnanam, F.D.. Ramasamy. P.: J. Mater. Sci. 19
(9)(1984) 2837 112081 Shanmugham, M..Gnanam. F.D., Ramasamy. P.: J. Mater. Sci. Lett.
4 (6)(1985) 746 112091 Sheeham, M.E., Nancollas, G.H.: J. Urol. (Baltimore] 132 (1) (19841 158 112101 Sherman, B.S.. Sobel. A.E.: J. Dental Res. 44 (1965) 454 [12111 Shestakov. V.A.: Koks i Khim. 5 (1986) 33
366
11. References to T a b l e s
[1212] Shimizu, K., Kubota, N., Kawasaki, T.: Kagaku Kogaku Rombunshu 5 (2) (1979) 143 112131 Shimlzu, K., Kubota, N., Kawakami. T.: Kagaku Kogaku Ronbunshu 5 (4) (1979) 433
112141 Shimfzu, K., Kubota. N.: Kagaku Kogaku Ronbunshu 12 (6) (1986) 737 112151 Shimomura, 0..Suzuki, M.: J. Crystal Growth 98 14) (1989) 850 I12161 Shimon. L.J.W.. Valda, M.. Addadi. L., Lahav. M., Leiserowitz, L.:
J. Am. Chem. SOC. 112 (17)(1990) 6215 (12171 Shinohara, T., Saito. H.: J a p a n Kokai Tokkyo Koho 90233518 I12181 Shirotsuka, T., et al.: Waseda Appl. Chem SOC. Bull. 29 (1962) 74 [12191 Shirotsuka, T., et al.: Kagaku Kogaku 28 (1964) 221; Chem. Eng.
Japan 2 (1964) 182 Salt Sci. J a p a n 13 (1959) 261 I12201 Shissaki. T., Murotani, H.: Bull. SOC. 112211 Shitov. G.G.. Dovzhenko. N.P.: Khim. Tekhnol. (Kiev) 2 (1984) 20 [ 12221 Shor. S.M.:
Effects of Surjiactants and Inorganic Additiues onNucleation
Kinetics In Mixed Suspension Crystallization, PhD Thesis, Iowa State
Univ.. Ames 1970 (12231 Shor. S.M., Larson. M.A.: Effect of additives on crystallization
kinetics, in: 62-nd Ann. AICHE Meeting, Washington 1969 112243 Shor. S.M., Larson, M.A.: Chem. Eng. Progr. Symp. Ser. 67 (1 10) (1971) 32 112251 Shrivastava. A.K.. Bansigir. K.G.: J. Mater. Sci. Lett. 3 (1984) 349 112261 Shyu, L.J.. Nancollas, G.H.: Croat. Chem. Acta 53 (2) (1980) 281
11. References to Tables
367
112271 Sidhu. H., Gupta. R., Thind. S.K.. N a t h , R.: Urol. Res. 14 (1986) 299 I12281 Sikdar, S.K.. Ore, F., Moore, J.H.: AICHE Symp. Ser. 76 (193) (1980) 82 112291 Sikdar, S.K.. Ore, F.. Moore, J.H.: 84th Natl. AICHE Meeting,
Atlanta, Georgia 1978; AICHE Symp. Ser. No. 193, 76 (1979) 82 [12301 Simon, B.. Grassi, A., Boistelle. R.: J. Crystal Growth 26 (1974) 77
[1231] Simon, B.. Grassi, A., Boistelle, R.: J. Crystal Growth 26 (1974)90 [ 12321 Singewald. A.: Kristallisation. VDI 1969
I12331 Singh. R.P.. Gaur, S.S., White, D.J.. Nancollas, G.H.: J. Colloid Interface Sci. 118(2) (1987) 3 7 9 (12341 Singh. R.P..Gaur. S.S.. White, D.J.. Nancollas. G.H.: J. Colloid Interface Sci. 118(2) (1987)965
112351 Singh. N.B., Gottlleb, M.. Henningsen. T., Hopkins. R.H., Mazelsky, R.. Glicksman, M.E., Coriell. S.R.,Santoro. G.J.. Duval, W.M.B.: J. Crystal Growth 123 (1-2)(1992) 2 2 1 [1236] Slack, J.G.: Water Res. 14 (1980) 799
112371 SlBma. I.: Collect. Czech. Chem. Commun. 56 (1991) 2142
[12381 Slavnova. E.N.: Thesis, Moscow Univ. 1956 [12391 Slavnova, E.N.: Dokl. AN SSSR 106 (1956) 1007 112401 Slavnova. E.N.: Rost Kristallov 1 (1957) 149 112411 Slavnova. E.N.: Rost Kristallov 2 (1959) 44 I12421 Slavnova. E.N.: Kristallografiya 5 (1960) 89 112431 Slavnova. E.N., et al.: Kristallografiya 13 (1968)497
368
1 1 . References to Tables
I12441 Sloat, Menzies: J. Phys. Chem. 35 (1931) 2005 [1245] Slovenc. M.. TeZak. B.: Croat. Chem. Acta 41 (1969) 15 [1246] Smallwood, P.V.: Colloid and Polymer Scl. 255 (1977) 994 112471 Smirnova, E.P., Kravchuk. I.F.. Tikhomirova, E.I.: Crystal Res.
Technol. 20 (1985) 1189 [12481 Smith, B.R.. Alexander, A.E.: J. Colloid Int. Sci. 34 (1970) 81 112491 Smith, B.R., Sweett. F.: J. Colloid Interface Sci. 37 (1971) 612 I12501 Smodis, M.. Livk. I., Pohar. C.: Measurements of solubility, meta-
stable zone width and conductivity of aqueous SPB solutions for the precipitation design purpose, in: CHISA 93, F2.46 , 3196, Praha 1993 I12511 Smorodin, V.Y.:Aerosol Sci. 25 (1994) 1 [12521 Smythe, B.M.: Austral. J. Chem. 20 (1967) 1097 112531 Solans-Huguet. J.. Recker. K.: Ann. Rep. SOC.Esp. de Fis. y Quim.
56A (1965) 24 1 I12541 Solans-Huguet. J.. Font-Altaba. M.: Rost Kristallov 8 (1968) 81 f12551 Solomon, D.H., Rolfe. P.F.: Desalination 1 (1966) 260 112561 Sohnel, 0.. Costa-Bauza. A.. Velich, V.: J. Crystal Growth 126 (2-3) (1993) 493 11257) Sbhnel. 0..Garside. J.: Precipitation: Basic principles and industrial
applications, Butterworth-Heinemann. Oxford 1992 I12581 Sbhnel. 0.. HandliiovB. M., Macenauer, J.: Crystal Res. Technol. 25
(12) (1990) 1367 112591 Sohnel, 0.. Mullin. J.W.: J . Crystal Growth 60 (21 (1982) 239
1 1 . References to Tables
369
[1260] S6hnel. 0.. sole, Z., solc. M.: Chem. Listy 66 (19721 984 [I2611 Spangenberg. K.: 2. Krist. 59 (1924) 383 [I2621 Speidel. R.: Neues Jahrb. Miner., Monatsh. (1961) 81 I12631 Steinike. U.: 2.anorg. allg. Chem. 317 (19621 186 [ 12641 Steinike. U.:
ID.Symposium on Industrial Crystallization. Osti n.L.
1965 I12651 Steinike. U.: Krist. Tech. 1 (1966) 113 I12661 Steinike, U.: Krist. Tech. 1 (1966) 285 I12671 Steinike, U.: Krist. Tech. 3 (1968) K 5 I12681 Steinike, U.: Krist. Tech. 5 (1970) K19 [12691 Steinike. U.: Krist. Tech. 6 (1971) 7 I12701 Steinike. U.: Krist. Tech. 6 (19711 17 112711 Stepanova. N.S.. Belyustin, A.V.: Fiz. Krist. (19791 107 I12721 Stepanova. N.S.. Portnov, V.N.. Fridman. S . S . . Fishman. Yu.M..
Belyustin. A.V.: Rost Krist. 12 (1977) 129 [ 12731 Stepanski, M.: Zur Wachstumskinetik in der Uisungskristallisation,
Thesis, Univ. Bremen 1990 [ 12741 Stepanski.
M.. Yuan. J.J.. Zhang. S.B.: Das Wachstumsverhalten
von Kristallen unterschiedlicher Oberfl&henqualit2ten bei wiissriger Losung unter dem Einfluss von Fremdstoffen. in: Int. Arbeitssitz.
Kristallisatlon GVC-VDI,Aachen 1989 112751 Stoilova. D.. Aslanian, S.: Influence of the Jahn-Teller effect on the
cocrystallization of metall(I1)formates and Cu(HC00I2.2 H 2 0 , in:
Industrial Crystallization '87 (eds. N*lt,
J.. ZhEek, S.),p. 271.
Academia Prague and Elsevier Amsterdam 1979
370
11. References to Tables
(12761van Straten, H.A., Schoonen, M.A.A., Verheul, R.C.S.. de Bruyn. P.L.: J. Colloid Interface Sci. 106 (1) (1985)175
[1277]StubiCar. N.. Markovic’,B., Tonejc, A., StubiEar. M.: J. 3rystal Growth 130 (1-2) (1993)300
(12781StubiEar. N., SCerbak. M., StubiCar. M.: J. Crystal Growth 100 (1990)261 112791 SubotiC. B.: Croat. Chem. Acta. 53 (3)(1980)425 I12801 Suhara. T.. Esumi. K.. Meguro. K.: Bull. Chem. SOC.J a p a n 56 (1983)2932 (12811Sullivan, J.M., Kohler. J.J.. Grinstead, J.H.Jr.: J. Chem. Eng. Data 36 (1) (1991)77
[1282]Surender, V.,Rao K.: Bull. Mater. Sci. 16 (2) (1993)155 (12831Sutor. D.J.: Brit. J. Urol. 41 (1969)171 ( 12841 Suzuki, Kakuo: J. SOC. Chem. Ind. J a p a n 44 (1941)1081
(12851Suzuki, Kakuo: J. Soc. Chem. Ind. J a p a n 46 (1943)32 I12861 Suzuki, Kakuo: J. Soc. Chem. Ind. J a p a n 48 (1945)39 (12871Svanoe, H.:Chem. Eng. Progr. 55 (5) (1959)47 I12881 Svoronos. D.R.: Compt. rend. 269 (2) (1969)133 (12893Swillens. E.:Chem. Techn. 20 (1968)677 112901 Synowiec, J.: Przem. Chem. 58 (4)(1979)180 [1291]Synowiec, J., Pabis-Machej, J.: Przemysl Chem. 39 (3)(1960)161 [ 12921 Syromyatnikov, N.G.. Trofimova. L.A.: Radiokhimiya 9 (1967)251
I12931 Sheftal, N.N.: Rost Kristallov 1 (1957)5
1 1 . References to Tables
37 1
I12941 Shterberg, A.A.. Pozdnyakov, P.G.: Avtor. svid. 101 179 (1952) I12951 Shvarcvald. A.I.: Zhur. Prikl. Khim. 40 (1967) 2452 I12961 Skrtie. D.. FSlredi-Milhofer. H., Markovie. M.: J. Crystal Growth 80
(1) (1987) 113 112971 Skrtid, D., Fiiredi-Milhofer, H.. MarkovlC. M.: The effect of some
aminoacids on the crystallization of calcium oxalate trihydrate. in:
Industrial Crystallization '87 (eds. N p l t , J . , ZgEek. S.), p. 627. Academia Prague and Elsevier Amsterdam 1979 [12981 Skrtie. D., Filipovie-Vincekovle. N.: J. Crystal Growth 88 (1988) 3 13 [ 12991 Skrtib. D.. Filipovib-Vincekovid. N., Fiiredi-Mflhofer, H.: J. Crystal
Growth 114 (1-2)(1991) 118 I13001 SkrUC, D.. Fillpovid-Vencekovie. N., Babie-IvanEle, V.: J. Crystal
Growth 121 (1-2)(1992) 197 (1993) I13011 Skrtie, D.. Fiiredi-Mflhofer, H.: J. Crystal Growth 129 (3-4) 449 113021 Stempel,
S . , JelenEik, V., Kalkb, V., Njvlt. J.: Chem. prfimysl 19
(1969) 467 113031 Tadros. M.E.. Mayes. I.: J. Colloid Interface Sci. 72 (2) (1979) 245 I13041 Taganovich. D.D.: Koks i khfm. (71 (1957) 3 1 I13051 Tai, C.Y.: J. Chin Inst. Chem. Eng. 16 (2) (1985) 179 I13061 Tai, C.Y.. Pan, R.K.: J. Chin. Inst. Chem. Eng. 16 (4) (1985) 379 I13071Tai. C.Y.. Wu. J.F.. Leu, L.P.: J. Chem. Eng. J a p a n 25 (6) (1992) 74 1
372
11. References to Tables
I13081 Tak Hyon-Ki, Wilcox, W.R.. Cooper, S.M.: J. Colloid Interface Sci. 77 (1) (1980) 195 I13091 Tamaki. Y.: Kogyo Kagaku Zashi 68 (1965) 416 I13101 Tanaka. Y., Matsuoka. M.: J. Crystal Growth 99 (1990) 1130 I13111 Tandy. S..Glasner. A., Sarig, S . : J. Phys. Chem. 85 (1981) 1841
113121 Telkes. M.:Ind. Eng. Chem. 44 (1952) 1308 I13131 Teltow, J.: 2. physik. Chem. 195 (1950) 197
I13141 Teodossiev. N., Kirkova. E.: On the preparation of high-purity boric acid by crystallization, in: Industrial Crystallization '81 9eds. JaneiC, S.J., d e Jong, E.J.), p. 155. North-Holland, Amsterdam 1982 [ 13151 Teiak.
D..Hrust. V.. Heimer, S . . TeZak. B., Wrischer, M.: Croat.
Chem. Acta 53 (1980) 397 I13161 Than, A.: Coal Carbon. 1937111) 173
I13171 Than, A.: Coal Carbon. 1938(2) 27 I13181 Thau: Gas- u. Wasserfach 68 (1925) 824 (13191 Tikhonov. V.A.. Borlnskaya. E.P.: Nauch. Zap. Lvovsk. Politekh.
Inst. 2 3 (1955)4 7 I13201 Tilliakodzhaev. Kh.N.. Osichkina, R.G.: Depos. Doc. VINITI 4239-80 (1980)
I132 11 Tffliakodzhaev. Kh.N.. Osichkina, R.G.: Depos. Doc. VINITI 4241-80 (1980) I13221 Tilmans. Yu.Ya: Zhur. Obsch. Khim. 10 (1940) 1631 I13231 Tilmans, Yu.Ya.: Zhur. Obsch. Khim. 11 (1941) 869 I13241 Tilmans, Yu. Ya.: Zhur. Obsch. Khim. 16 (1946) 3
11. References to Tables
[1325] Tilmans.
373
Yu. Ya.: Zhur. Obsch. Khim. 18 (1948) 1752
[ 13261Tilmans, Yu.Ya.:
Kz-lstaZZizatsiya sofei iz uodnykh rastuorou u prisutstuii
primesei raznykh ionou, Izd. AN Kirgiz. SSR. Frunze 1957 (13271Timan. B.L.. Smirnova, O.M.. Velikhov, Yu.N.. Kislomed. A.N..
Ivkova. T.I.: Zhur. Fiz. Khim. 63 (1989) 2092 I13281Tlselius. H.G.: Brit. J. Urol. 53 (1981) 470 [13291Tjioe. T.T., van der Woude, H.. Verbiest, J.. Durville, P.F.M.. van
Rosmalen. G.M.: Crystal Res. Technol. 21 (1986) 1287 [1330] Togari. K.. Togari, S.: J. Sci. Fac. Hokkaido Univ. 9 (1959) 55 [13311Tomasid, B., Mohanty. R.. Tadros. M.. Estrin. J.: J. Crystal Growth
75 (1986) 329 [ 13321 TomaSie, V.. Popovie, S . . Kallay. N.: Colloid Polymer Sci. 266 (5)
(1988) 449 [1333] Tomson, M.B.: J. Crystal Growth 62 (1983) 106 [13341Topie. M.: Croat. Chem. Acta 37 (1965) 125 [1335] Topie, M.: Croat. Chem. Acta 37 (1965) 133 113361Torgesen, J.L.. et al.: Res. Nat. Bur. Stand. 236 (1963) [1337] Torgesen. J.L., Strassburger, J.: Science 146 (3640) (1964) 53 [13381Treivus, E.B.: Usp. Khim. 61 (7)(1992) 1224 I13391Treivus. E.B., Lysyuk, G.N.: Mineral. Zhur. 6 (2)(1984) 79; CA 101 063807 [1340] Treivus. E.B.: Kristallografiya 29 (1984) 1037 [13411Treivus. E.B.: Kristallografiya 30 (2) (1985) 365 113421Treivus, E.B., Kim Su Cher: Kristallografiya 37 (3) (1992) 801
374
11. References to Tables
113431Trendafelov. D., Balarev, C.: Commun. Dept. Chem. Bulg. Acad. Sci. I/2 (1968) 73
I13441 Triboulet. P., Cournll. M.: Mater. Chem. Phys. 24(3) (1990) 221 I13451Triboulet. P.. Cournil. M.: J. Crystal Growth 118(1-2) (1992) 231 113461 Troost, S.: J. Crystal Growth 3-4 (1968) 340 I13471 Tsuchiya. Y.N.: Kogyo Kagaku Kyokaishi 22 (1961) 138 I13481 Tsusue, A.. Holland, H.D.: Geochim. et Cosmochim. Acta 30 (1966) 439 [13491Tyutyunnikova. T.V.: Kristallogafiya 11 (1966) 338 113501Tyutyueva. N.N.. Serebrennikova. G.M., Ermolina, N.S.: Khimiya i
Tekhnol. Osobo Chistykh Veshch. dlya Volokon. Optikl. M (1980) 83 113511 Uhler, A.D.: Univ Microfilms No. DA8421276 : CA 102 12-101332 I13521 Ulrich. J.: Purification by crystallization of organic compounds, in:
Industrial CrystalUzatIon '87 (eds. N p l t , J.. ZgEek, S . ) , p. 585, Academia Prague and Elsevier Amsterdam 1979 I13531 Ulrich, J., K6nig. A.: Chem.-1ng.-Tech. 63 (1) (1991) 55
113541 Ulrich, J., Kruse, M., Stepanski, M.: On the growth behaviour of NaCl crystals with and without additives, in: 7th Intemat. Symp. on
Salt,Kyoto 1992, Proc. II , p. 209, Elsevler. Amsterdam 1993
I 13551 Ulrich, J., Stepanski. M.: Auswirkung von Fremdstoffzusatzen auf d a s Wachstumsverhalten von K,SO, Kristallen unterschiedlicher
Oberfllchenbeschaffenheit. Int. GVC-VDIMeeting Kristallisation, Burghausen
11. References to Tables
375
(13561 Ulrich. J., Stepanski, M.: The effect of additives o n the growth
behavior of reaction diffusion controlled growing crystals, in: Industrial Crystallization '87 (eds. NJivlt, J.. ZBCek, S..),253, Elsevier. Amsterdam and Academia, Prague 1989 I13571 Ulrich, J., Stepanski. M.: Crystal growth of potassium sulphate
with and without additives, in: Intern Mineral Proc. Congr., Dresden 1991. p. 187 [1358] U S Pat. 1 919 707 (1933) I13591 U S Pat. 2 516 420 (1950) [13601 U S Pat. 2 616 788 (1952) [1361J U S Pat. 2 631 084 (1953) [13621 U S Pat. 2 642 335 (1953) I13631 U S Pat. 2 656 248 (19531 I13641 U S Pat. 2 723 183 (1955) I13651 U S Pat. 2 732 334 (1956) I13661 U S Pat. 2 782 097 (1957) I13671 U S Pat. 2 920 937 (1960) I13681 U S Pat. 2 954 282 (1960) 113691 U S Pat. 2 959 465 (1960) I13701 U S Pat. 3 109 705 (1963) I13711 U S Pat. 3 112 175 (1963) I13721 U S Pat. 3 123 439 (1964) I13731 U S Pat. 3 152 863 (1964) I13741 U S Pat. 3 183 263 (1965) 113751 U S Pat. 3 187 039 (1965)
376
11. References to Tables
I13761 US Pat. 3 223 478 (1965) I13771 U S Pat. 3 230 038 (1966) (13783U S Pat. 3 240 558 (1966) 113793 US Pat. 3 248 182 (1966) (13801U S Pat. 3 272 593 (1966) (13811US Pat. 3 290 158 (1966) (13821U S Pat. 3 352 906 (1967) I13831 US Pat. 4 046 576 (1979) I13841 US Pat. 4 183 901 (1980) I13851 US Pat. 4 183 908 (1980) 113861 U S Pat. 4 220 630 (1980) I13871 US Pat. 4 374 102 (19831 I13881 US Pat. 4 578 086 (1986) I13891 U S Pat. 4 709 104: CA 108 (141 115017 I13901 US Pat. 4 737 352: CA 108 (241 207154 113911 USSR Pat. 117 370 (1959) (13921USSR Pat. 208 699 (1968) [13931USSR Pat. 305 135 I13941 USSR Pat. 618 363 (1978) I13951 USSR Pat. 632 651 (1979) I13961 USSR Pat. 633 807 (1978) I13971 USSR Pat. 969 667 (1982) 113981 Vaganov. V.P., Amelina. E.A.,Shchukin. E.D.: Kolloid. Zhur. 42 (41 (1980)736
11. References to Tables
[ 13991 Valyuskaya,
377
E.A.,Makin, V.I.: Precipitation of hydroxides and
hydroxocarbonates of copper and nickel in the presence of hydrogen peroxide, in: Industrial ClystaUization '90 (ed. A. Mersmann). p. 305. Munich 1990 [1400] VanEura, J.. Sipek. M.. Njvlt. J.: Chem. prPlmysl35 (1985) 190. 368
I14011 Vater, H.:2. Krlst. 30 (1899) 485 114021 Vedenaeva. N.E.. Slavnova. E.N.: Tr. Inst. Kristallogr. AN SSSR 7 (1952) 135 [ 14031 Velikhov. Yu.N., Demirskaya. O.V., Pulyaeva. I.V.: Kristallografiya
37 (2) (1992) 509
[1404] Venzhega, A.G., Gorokhov, N.N.: Koks i Khim. (10)(1978) 28 [ 14051 Verdoes,
D..Landschoot. R.C.: Crystallization and detergents, in:
ICCG-A, Sendai (1989) 21A C07
[1406] Verdoes, D., Landschoot. R.C.. van Rosmalen. G.M.: The influence
of additives on the crystal size distribution of CaCO, in batch precipitation experiments. in: Industrial Crystallization '90(ed. Mersmann, A.), p. 621, Munich 1990 I14071 Vermeulen, A.C.. Geus. J.W.. Stol. R.J..de Bruyn, P.L.: Colloid Interface Sci. 51 (1975) 449 [14081Viola, M.S.. Botsaris. G.D.. Gold, D.: The paradoxical behavior of the
crystallization of KC1 in the presence of PbC1,. 68th Ann. AlCHE
Meeting. Los Angeles 1975
378
1 1 . References to Tables
I14091 Viola, M.S., Botsaris, G.D.. Szeto. K.K.: Effect of impurities o n
c o n t a c t nucleation, 2nd World Congress Chem. Eng., Montreal 198 1 114101VlasBk, G., SiSoviEovB. M.: Czech. J. Phys. B 19 (1969) 1418 [ 14111 Vlasova. G.M.: Tsvet. Met. (9) (1972) 30
I14121 Voigt. H., Emons, H.H.: Freiberger Forschungsh. A 600 (1979) 99 I14131Voyzelle, R.: NASA Acces. No. N66-14172.Rept. No. CARDE-TN-
1674/65 I14141 d e Vreugd, C.H., Stajcer. D., Verdoes. D., v a n Rosmalen, G.M.: The
effect of small biodegradable additives o n growth and batch recrystallization of calcium sulfate, in: Industrial Crystallization '90 (ed. Mersmann. A.), p. 643. Munich 1990 I14151 d e Vreugd. C.H., Witkamp. G.J.. v a n Rosmalen, G.M.: The influence
of lanthanide i o n s o n the growth kinetics of gypsum a n d the u p t a k e of cadmium, in: Industrial CrystaZZization '90 (ed. Mersmann. A.), p. 649, Munich 1990 42 (1959) 547 114161 de Vries. R.C.: J. Am. Ceram. SOC. (14171 de Vrles, R.C., Sears, G.W.: J. Chem. Phys. 34 (1961) 616 114181Wachi, Y.: Kogyo Kagaku Zashi 59 (1956) 403
Japan 57 114191 Wada. T., Matsunaga, K.. Matsuo, Yo.: Bull. Chem. SOC. (2) (1984) 557
I14201 Wada. T., Matsuo. Yo.: Bull. Chem. SOC. Japan 57 (2)(1984) 561 114211 Waku, S.: Kogyo Kagaku Zashi 64 (1961) 272 I14221 Walcott. A.J.: Amer. Mineral. 2 (1926) 221. 259
1 1 . References to Tables
379
[ 14231 Waldeck. H.,Baier. E.: Krist. Tech. 4 (1969)57
[14241Waldeck. H.:Krist. Tech. 4 (1969)K 1 [14251Walker, A.C.: J. Franklin Inst. 250 (6)(1950)481 114261 Walker, J.B.A., Heywood. B.R., Mann, S.: J. Mater. Chem. 1 (5) (1991) 889 114271Wang. J.K.. Ouyang, S.L.. Zhang. Y.M.: Research on assessment of addition agent of crystallization with dynamic method, in: Industrial CrystaZZfzation'90 led. Mersmann, A.), p. 683, Munich 1990 [14281Wang, M.L.. Chou, Ch.K.: J. Chin. Inst. Chem. Eng. 18(2)(1987) 103 [14293Wang, L.. Wan, X., Liao, H.. Wu, S.: Kinetics of calcium carbonate crystallization in ammonium sulfate solution. Intern. Symp. on Prepar. of Funct. Mat. and CrystaZL., Osaka 1988 [14301Wang. W., Yang, Z., Zhang. L.. Gu, M.: Shuichuli Jishu 15 (6) (1989) 370 114311 Wang,Y.S.. Zheng. M.N.. Bennema. P.. Liu.Y.S.. Zhu. R.. Ye, G.F.. Bian. J., van Enckevort, W.J.P.: J. Phys. D: Appl. Phys. 25 (11) (1992) 1616 I14321 Wang, 2.. Zhao, 9..Zhang. L.. et al.: Gaodeng Xuexiao Huaxue Xuebao 1 1 (11) (1990) 1232 I14331 Wang, Z.,Guo. X.. Zhang, L., Xu, B., Zhao, M.: Gaodeng Xuexiao Huaxue Xuebao 13 (12)(1992) 1564 [14341Wasabro, J.. Teizo, W.: J. Chem. SOC.Japan, Ind. Chem. Sect. 60 (1957) 515
380
11. References to Tables
I14351 Watanabe. Y.,Saito. T.: Effect of nucleation agent for solidification
of CaC12 . 2 H 2 0 , Intern Symp. on Prepar. ofFunct. Mat and CystaZL. Osaka 1988 I14361 Watanabe. Y..Saito, T.: Kagaku Kogaku Ronbunshu 17 (1) (1991) 48 I14371 Watanabe. Y.,Saito. T., Nakai, T.: Acceleration effect of a nucleation agent on the crystallization of salt hydrate as a heat storage material, in: Industrial CrystaZZizaffon'87 (eds. N p l t , J., ZriEek. S . ) , p. 141, Academia Prague and Elsevier Amsterdam 1979 I14381 Weber. Th.: Gldckauf 75 (1939) 890 I14391 Weijnen, M.P.C.. Marchee. W.G.J.. van Rosmalen. G.M.: Desalination 47 (1983) 8 1 114401 Weijnen. M.P.C., van Rosmalen, G.M.: The role of additives and Impurities in the crystallization of gypsum, in: Indusbial Cystallization '84 (eds. JanEie, S.J., de Jong, E.J.). p. 61, Elsevier,
Amsterdam 1984 I14411 Weijnen. M.P.C.. van Rosmalen. G.M., Bennema. P.: J. Crystal Growth 82 (3) (1987) 528 I14421 Weinland. L.A.. France, W.G.: J. Phys. Chem. 36 (1932) 2832 (14431Weis, J.: Krist. Tech. 6 (1971) 69 I14441 Weissbuch, I.. Addadi, L., Leiserowitz. L.. Lahav, M.: J. Am. Chem. SOC.110 (1988) 56 1 I14451 Weissbuch. I., Berkovic. G.. Leiserowitz, L., Lahav. M.: J. Am. Chem. SOC.112 (1990) 5874
11. References to Tables
38 1
[14463 Weissbuch, I., Frolow, F.. Addadi. L.. Leiserowitz, L. Lahav, M.: to
be published [14471Wenk, W.: 2. Krist. 47 (1910) 124 114481 Whetstone, J.: Disc. Faraday Soc. 5 (1949) 261 [1449] White. E.T., Bateman, S.H.: Light Met. (Warrendale. Pa.) (1988) 157 [ 14501 Whiting, M.J.L.:
PhD Thesis, University of London 1976
114511Wied, J.I.. Syrojezkina. J.W.: Cement Wapno Gips 20/32 (7) (1965) 181 [ 14521 Williams. R.J.E.: Erde 13/M/67
I14531 Winzer. A.: Freiberger Forschungsh. A 600 1979) 121 [ 14541 Winzer, A.: Freiberger Forschungsh.
A 600 1979) 137
I14551Winzer. A.. Emons, H.H.: Freiberger Forschungsh. A600 (1979) 73 [ 14561 Winzer, A., Emons, H.H.. Jugel, B.: Freiberger Forschungsh. A600
(1979) 3 1 [ 14571 Winzer. A., Emons, H.H.. Burger, V.: Freiberger Forschungsh.
A 600
(1979) 6 1 I14581 Winzer. A., Quasdorf. G.. Kemp. G.: Mezhvuz. Sb. Nauch. Tr.
Leningrad. Tekhnol. Inst. 6 (1982) 140 I14591 Wireco. F.C.. Shimon, L.J.W.. Frolow. F., Berkovitch-Yellin, Z . ,
Lahav. M.. Leiserowitz, L.: J. Phys. Chem. 91 (2) (1987) 472 [ 14601Witkamp, G.J., van der Eerden. J.P.. van Rosmalen. G.M.: J.
Crystal Growth 102 (1990) 28 1 [ 14611 Witkamp, G.J., van Rosmalen, G.M.: Incorporation of cadmium and
aluminium fluoride in calcium sulphate, in: Industrial Crystallization
382
1 1 . References to Tables
'87 (eds. Nfrvlt, J., ZaEek. S . ) . p. 265. Academia Prague and Elsevier
Amsterdam 1979 [ 14621 Witkamp, G.J.,
van Rosmalen, G.M.: Reduction of cadmium uptake
in calcium sulfate hydrates by complexing agents, in: Industrial Crystallization '90 (ed. Mersmann, A.), p. 689, Munich 1990 [ 14631 Wohlk, W.: Beispiele technischer Kristallisation 1970, leaflet
Standard-Messo-Duisburg 114641Wolf, F.. Holzweissig, J.: Chem. Techn. 20 (1968) 477 [14651 Wolf, R.H.H., TomaZie, V.. sipalo-Zuljevie, L.: Croat. Chem. Acta 50 (1977) 155 I14661Wray, J.L.. Daniels, F.: J. Am. Chem. SOC.79 (1957) 2031 I14671Xu, Zh.. Wang. S . , Shi, Ya.. Yang, B.: Huadong Huadong Ueyuan
Xuebao 17 (2) (1991) 129 114681Xyla. A.G.. Koutsoukos, P.G.: J. Chem. SOC.,Faraday Trans. I, 83 (1987) 1477
114691 Xyla, A.G., Koutsoukos, P.G.: J. Chem. SOC..Faraday Trans. I, 85 (1989) 3165 [14701 Yamada, T., et al.: Nagoya Kogyo Daigaku Gakuho 10 (1958) 176 I14711Yamada. T., Hiyama. E.: Nagoya Kogyo Daigaku Gakuho 13 (1961) 295 I14721 Yamada, T., et al.: Sekko To Sekkai 78 (1965) 440 [ 14731 Yamakami, T.: Tohoku Daigaku Kagaku Keisoku Kenkyusho
HOkOkU 26 (2-3) (1977) 173 114741Yamamoto. T.: Sci. Pap. Inst. Chem. Res. 35 (1939) 263
1 1 . References to Tables
383
114751 Yamamoto. H.,Hasegawa. H.. Harano. Y.: J. Chem. Eng. J a p a n 14
(1) (1981) 59 114761Yamamoto. H.. Takeda. Y.,Harano. Y.: Kagaku Kogaku Rombunshu 8 (4) (1982) 423
[1477] Yamazaki, Y., Enomoto. Y.. Nakano. T., Toyokura, K.: Design method of purification process in a stirred vessel crystallizer, in: Industrial CrystaZUzation '87(eds. N@lt, J., ZBEek. S.), p. 561,
Academia Prague and Elsevier Amsterdam 1989 [1478] Yamazaki. Y.. Kashima. K.. Toyokura. K.: Behaviour of ice crystal layer and trapped impurities in small pores, in: Industrial Crystallization '84 (eds. N@lt, J., ZBCek, S.),p. 375, Academia
Prague and Elsevier Amstardam 1989 114791 Yavorovskli. I.G.: Kristallografiya 12 (1967) 1104 [1480] Yoshl-Yama. T., et al.: J. Phys. SOC.Japan 24 (1968) 1019 [ 14811 Yuan, J.J., Stepanski, M.. Ulrich, J.: Chem.-1ng.-Tech. 62 (8)(1990)
645 [ 14821 Yudina, T.B.: Elektr. Svoi. Tverd. Tela i Faz. Prevrashch. (1978)
111
[14831 Zagidullin, S.Kh.: Tr. LENNIIIGIPROKHIMa 27 (1977) 126 [14841 Zagrodzki, S.,Marczynski. J.: Gaz. Cukrown. 71 (1963) 158 [14851 Zagrodzki. S.:Gaz. Cukrown. 77 (1969) 265 [1486] Zagrodzki, S.,Niedzielski. 2.: Krist. Tech. 4 (1969) 407 [14871Zamyatchenskii. P.A.: Zap. Imper. Akad. Nauk, fiz.-mat- otd. 24 (8)
(1909) 1
384
11. References to Tables
[ 14881 Zamyatchenskii, P.A.: Zap. Imper. Akad. Nauk, fizz.-mat- otd. 30 (3)
(1911) 1 [ 14891 Zamyatchenskii, P.A.: Zap. Imper. Akad. Nauk, fiz.-mat- otd. 33 (4)
(1914)
I 14901 Zamyatchenskli. P.A.: Zap. Imper. Akad. Nauk. flz.-mat- otd. 33 (5) (1914) I14911 Zaorska. H.:Int. Sugar J. 70 (1968) 99 [ 14923 Zaorska.
H.: Influence of non-sugar and colouring substance
quantity o n the sucrose crystallization rate in impure solutions, in: Industrial Crysiallization'78 (eds. de Jong. E.J.. JanEie. S.J.), p. 517,
North-Holland, Amsterdam 1979 114933 Zapolskii. A.K.: Ukr. Khim. Zhur. 33 (1967) 805 114941 Zel'manov. V.G.. Cherkez, G.S., Tubolkin. A.F.: Zhur. Prikl. Khim.
52 (1979) 2247 [ 14951 Zhang. S.B.. Stepanski. M., Yuan, J.J., Ulrich, J.: Investigations of
crystal growth rates in presence of different additives. in: lndustrlal CrystaUizatlon '90 (ed. Mersmann. A.), p. 695, Munich 1990
114961 Zhang. S..Xie, Ya.. Shi. 2.: Guisuanyan Xuebao 12 (3) (1984) 264 [ 14971 Zheng. D.H.. Budz, J . , Jones, A.: J. Crystal Growth 79 (1986) 658
[1498] Zheng. D.H., Budz. J.. Jones, A.G.. Mullin. J.W.: J. Crystal Growth 79 (1-3.Pt.2) (1986) 658
114991 Zhmurova. 2.1.. et al.: Krlstallografiya 8 (1963) 936 [ 15001 Zhmurova, 2.1.. et al.: Colloq. Int. Centre Nat. Rech. Sci. 152 (1965)
329
1 1 . References to Tables
385
1 15011 Zhmurova, 2.1.. Khaimov-Malkov, V. Ya.:Kristallografiya 15 (1970) 136 [1502] Zhmurova. 2.1.. Khaimov-Malkov. V. Ya.: Kristallografiya 15 (1970) 142 115031 Zhukova. L.A., Chikov. V.S.: Dokl. TSKHA 223 (1977) 155 115041 Zielinski S.: The effect of phosphoric acid composition o n the
growth of gypsum crystals, in: Industrial Crystallization '81,(eds.
JanEie, S.J., de Jong, E.J.), p. 329. North-Holland, Amsterdam 1982 [1505] Ziller, K.H.,Ruprecht, H.: Drug Dev. Ind. Pharm. 14 f15-17)(1988) 2341 115061 Zipp. G.L., Rodriguez-Hornedo. N.: J. Crystal Growth 123 (1-2) (1992) 247 115071 Zosimovich, D.P., et al.: Zhur. Prikl. Khim. 38 (1965) 979 [1508] Zumstein, R.C., Rousseau, R.W.: Ind. Eng. Chem. Res. 28 (1989) 334 [ 15091 Zumstein. R.C., Rousseau. R.W.. Turchi, C.: Process Technol. Proc.
6 (1989) 507 I15101 ZBCek. S.. N p l t , J.: Chem. prPlmysl36 (1986) 410 115111 ZBEek, S., N p l t . J.. Mullin. J.W.: Collect. Czech. Chem. Commun.
52 (1987) 72 115121 Ziak. J.: Chem. prPlmysl35 (1985) 252 I15131 Ziak. J., N p l t , J.: Chem. prPlmysl32 (1982) 582 I15141 Ziiie, B.. Davey. R.J., Zegarac. S . , Pastor. T., Ristie. R., Napijalo,
M.M.: J. Crystal Growth 49 (4) (1980) 675
Admixtures in Crystallization
Jaroslav Njlvlt, Joachim Ulrich 0 VCH Verlagsgesellschaft mbH, 1995
12. Subject Index 6,7.10,13,15,19.2 1,
concentration
A
active site 11.14.17.19.20,21
23.25.35.35.36.38,
activity 8.13
39.40.41.42.45
additive 6.7.8.12.13.22.25.27.28
coordination complexes 10
adhering mother liquor 45.46.49.53
counter-current recrystallization 50
adsorption
critical nucleus 11.13,14,17.18
11,13.17,18,19,20.22,25. 30.34,41.42,43
adsorption isotherm 13.20
cross-current flow 53 crystalgrowth 4.8.11.16,18,19.20,
agglomeration 20
21.22.23.24.28.29,
agitation 4.41
30.3 1,32.33.40
anomalous mixed crystals 34.43
crystal lattice 4.15.19.20.2 1.22.23,
attachment energy 25
25.26.29.30.36.37.
B
4 1.42
bond 19.25.29.30.32
crystal surface 8.11,13,14,15.16,17.
- chain 25
18,19.20.2 1.22.25,
- energy 17.25
26.28.29.30.32.33,
boundary layer 30
37.38.41.42.43.46
C
D
chirality 29
dielectric constant 3 1
collision 9.1 1
diffusion 11.19.20,22,23.28,30,38.
collision breeding 9
39.40
colloids 11.34,44,45
diffusional regime 40
computer simulation 5.28.33.48
diffusion washing 54
12. SuQJectIndex
388
dislocation 32
growth rate 7.8,16,17,18,20.21.22,
- mechanism 32.33
24.3 1
- restrainer 15.19
dissolution 7.8,14,19.43
- rate
- site 17.20.21.29
8
distribution 5,10.34.36,37,38,39,40. 41,43
H habit 18.28.3 1,37
- coefficient see d. constant
heteroclusters 10
- constant 37.38.39.43.47.48,
heterogeneous nucleation 9.12,13
49
heteronucleus 2 1
dust particles 44
heteroparticles 13
dyestuffs 7.2 1
homogeneous dfstribution 38.40.41
E
- coefficient 38,41
effectiveness 7.8.28
-law 38.49
electric
homogeneous nucleation 9,10,11
- charge 14
hydration 12,28
- field 10.25.28
hydrogen bonding 30.31
embryo 1 1
I
equilibrium 19,24,37.38.49
impurities 5,6,12.34.37.38.4 1,43.44.
F
45.48.47.48.49.53.54
fractals 23
impurity concentration gradient 15
G
induction period 12
geometric similarity 10.22
inhibiting effect 10
growth center 4,17,19,20, see also
inorganic additives 7.10,14,19
growth site
interface 4.23,30,31
12. SubjectIndex
389
interphase 9,13,14.22.23.28,39
miscibility 34,35.36,41.42
isodimorphism 34.36
mother liquors 44.45,46.49,52,53
Isomorphous inclusion 34.35.36.37.
N
38,41,43
Nernst distribution 38.45
K
non-stationary precipitation 40
Kinetic regime 39
nucleatton 4.9.10.12.13,14,15,19.
L
20.28,32
lattice 4.15.19.20.21.22,23,25,26,
- mechanism 12.13.14.33 - rate 10.12,13.14
29.30.36.37.41.42
- dimensions 21,23,26,36
nucleus
logarithmic distribution 37.38.40
- critical 11.13.17.18
M
- two-dimensional 18,20,22
macroadmixture 6
0
macrocomponent 5.6.7.8.10.1 1.12.
organic additives 7.8.21.25
14,19.21,22.29.
overlapping faces 24
3 1.34.35.36.37.38.
P
39.40.41.42,44.45.
pHvalue 7.22
49
polarity 31
materials balance 45
polyvalent cations 7
mechanical inclusions 34.44
primary nucleation 9
melt crystallization 54
purification 4.4953
melting point 37
purity 4,5,34.37.49
microcomponent 5.6.37,38,39.40,
R
41.49.52 migration regime 40
recycling 45.46
- ratio 45,46,48,49
390
12. Subject Index
roughness 14.23.33
surface 8,9.11,13,14.15,16.17,18.
S
19.20.22.25.26.28.29.30.32,
secondary nucleation 9.13,14
33.37.38.42.46
- active substances 7.13,22
sectorial crystal growth 43.44 semistationary coprecipitation 39
surface - diffusion 19,20,22,30
separation 4.6.34.37.38.45.48
- energy 13.17,20.21,24.31
shape 4,7,8.23.25.29,36.43,31,37
- entropy factor
size 4.7,8.10.11,13.14.17,18,20,21,
- integration 22.32
3 1.32
- nucleation 32
26.36.42
- tension 10
solid phase 9.23,34,35,38,39,40,49 solid solution 34,36.37.41
sweating 53
solubility 12.22.32.35.3 6.37.42 solvent 4.6.30.3 1,32,33.34.37,45.
T
tailor-made admixtures 5.25,29
53 -mixed 31.32 stationary coprecipitation 39 steric arrangement 25
temperature 4.8.36,37,41.43,53
V
viscosity 11,23.30
structure 11,16,21,23.25,29,31,32, 36.41.43 supersaturation 4,9,10,12,14,20,2 1, 22
W
washing 43,53.54 well fitting position 28