A SEA WITHOUT FISH LIFE IN THE ORDOVICIAN SEA OF THE CINCINNATI REGION
David L. Meyer and Richard Arnold Davis With a ...
54 downloads
908 Views
33MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
A SEA WITHOUT FISH LIFE IN THE ORDOVICIAN SEA OF THE CINCINNATI REGION
David L. Meyer and Richard Arnold Davis With a chapter by Steven M. Holland
Indiana
University
Bloomington
C?
Press Indianapolis
This book is a publication of Indiana 601
University Press
North
Morton
Street
IN
47404-3797
Bloomington,
USA
http. //iupress. indiana. edu Telephone Fax
orders:
orders:
Orders
by
800-842-6796
812-855-7931 e-mail:
iuporder@indiana. edu
© 2009 by Richard Arnold Davis and David Lachlan Except chapter All
rights
15 © 2008 by Steven M.
Meyer
Holland
reserved
No part of this book may be reproduced or utilized in any form or by any means,
electronic
or mechanical,
including photocopying
by any information storage and retrieval system, writing
from
Resolution
the publisher.
on
The Association
Permissions constitutes
The paper used in
this publication
American
Standard
National
for
for Printed Library Materials, Manufactured in Library
the
meets
the minimum
or
in
University Presses' to
this prohibition.
requirements of
Sciences—Permanence
of
Paper
ANSI Z39. 48-1984.
United States
of Congress
of American
the only exception
Information
and recording,
without permission
of America
Cataloging-in-Publication
Data
Meyer, David L. A sea without fish: life in the Ordovician sea of the Cincinnati region / David L.
Meyer and Richard Arnold Davis; with a chapter by Steven M.
p. cm. — Includes ISBN 2.
bibliographical
978-0-253-35198-2
references (cloth:
and
alk.
Fossils—Ohio—Cincinnati Region.
index.
paper) I.
Davis,
1. R. A.
II. Title. QE726. 2. M49 560'.
2008
17310977178—dc22 2008020036
1
2 3 4 5
14
Holland.
(Life of the past)
13
12
11
10 09
Paleontology—Ordovician. (Richard Arnold),
date-
The w o r l d w i d e f a m e o f t h e fossils a n d r o c k s o f t h e C i n c i n n a t i , O h i o , reg i o n g r e w o u t o f the labors o f m y r i a d a m a t e u r fossil c o l l e c t o r s . T h e c u r r e n t e m b o d i m e n t of those folk is t h e " D r y D r e d g e r s , " a g r o u p f o u n d e d in C i n c i n n a t i in 1942 a n d , to this day, d e d i c a t e d to c o l l e c t i n g a n d u n d e r s t a n d i n g t h o s e fossils.
W e d e d i c a t e this v o l u m e t o t h e " D r y D r e d g e r s " a n d t o t h e h o s t o f fossil collectors they represent.
Vos salukimus!
CONTENTS
ix xiil
PREFACE ACKNOWLEDGMENTS
xv REPOSITORIES OF FOSSILS ILLUSTRATED IN THIS BOOK
1 Introduction 1
<
2
Science in the Hinterland
15
THE C I N C I N N A T I S C H O O L OF P A L E O N T O L O G Y
3
Naming and Classifying Organisms
37
<
4
Rocks, Fossils, and Time
45
<
5
Algae
67
THE BASE OF THE F O O D C H A I N
6
Poriferans and Cnidarians
71
S P O N G E S , C O R A L S , A N D JELLYFISH
7
Bryozoans
85
"TWIGS" AND "BONES"
8
Brachiopods
99
VII
THE OTHER BIVALVES
9 117
10 143
11 147
12 167
13 195
14 203
15 215
16 229
Molluscs HARD, BUT WITH A SOFT CENTER
Annelids and Worm-Like Fossils <
Arthropods TRILOBITES AND OTHER LEGGED CREATURES
Echinoderms A WORLD UNTO THEMSELVES
Graptolites and Conodonts OUR CLOSEST RELATIVES?
Type-Cincinnatian Trace Fossils TRACKS, TRAILS, AND BURROWS
Paleogeography and Paleoenvironment BY STEVEN M HOLLAND
Life in the Cincinnatian Sea <
Epilogue 249
DIVING IN THE CINCINNATIAN SEA
255
APPENDIX 1. RESOURCES: WHERE TO GO FOR MORE INFORMATION
259
APPENDIX 2. INDIVIDUALS AND INSTITUTIONS ASSOCIATED WITH THE TYPE-CINCINNATIAN
279
GLOSSARY
295
REFERENCES CITED
323
INDEX
viii
Contents
PREFACE
Two principal goals motivated us to write this b o o k . First, k n o w l e d g e of the E a r t h ' s a n c i e n t history from g e o l o g y p r o v i d e s a p o w e r f u l lesson a b o u t t h e e v e r - c h a n g i n g n a t u r e o f the p l a n e t , a n d t h e a n c i e n t history o f one's h o m e region c a n b e particularly m e a n i n g f u l .
The p r e s e n t n a t u r e o f t h e l a n d s c a p e
i n the C i n c i n n a t i region (southwestern O h i o , n o r t h e r n K e n t u c k y , a n d s o u t h eastern Indiana) is t h e p r o d u c t of its m o s t r e c e n t g e o l o g i c history, the Pleistoc e n e i c e A g e , w h e n c o n t i n e n t a l ice s h e e t s r e p e a t e d l y forced their w a y a s far south a s the O h i o River. A s r e c e n t l y a s 20, 000 years a g o , m u c h o f southwestern O h i o was c o v e r e d with an ice sheet m u c h as Greenland is today. As the glaciers r e c e d e d , m e l t waters c a r v e d the present valleys a n d left a m a n t l e of debris that d e t e r m i n e d the t o p o g r a p h y , d r a i n a g e , soils, a n d v e g e t a t i o n o f the region. A m a g n i f i c e n t lee A g e exhibit a t the C i n c i n n a t i M u s e u m C e n t e r e n h a n c e s p u b l i c a w a r e n e s s o f the p r o f o u n d e n v i r o n m e n t a l c h a n g e s that took p l a c e across the region in t h e short t i m e span in w h i c h h u m a n s i n h a b i t e d t h e ice-free land. Three works also provide a c o n c i s e history of t h e e n v i r o n m e n t a l c h a n g e s d u r i n g the Ice A g e :
Richard
H.
D u r r e l l ' s A Recycled Landscape
(1977), R i c h a r d A r n o l d Davis's " L a n d Fit for a Q u e e n : T h e G e o l o g y o f C i n c i n n a t i " (1981), a n d the r e c e n t l y p u b l i s h e d Natural History of the Cincinnati Region, by S t a n l e y H e d e e n (2006). As impressive as the Ice A g e history of t h e r e g i o n is as e v i d e n c e of g e o logic a n d c l i m a t i c c h a n g e , t h e story that c a n b e told from the a n c i e n t b e d rock u n d e r l y i n g the P l e i s t o c e n e c o v e r e x t e n d s the record o f g l o b a l c h a n g e into d e e p t i m e .
The b e d r o c k e x p o s e d a t t h e s u r f a c e across s o u t h w e s t e r n
O h i o , n o r t h e r n K e n t u c k y , a n d s o u t h e a s t e r n I n d i a n a i s the r e c o r d o f t h e O r d o v i c i a n sea o f s o m e 450, 0 0 0 , 000 years a g o , o n e o f t h e m o s t e x t e n s i v e m a r i n e f l o o d i n g intervals o f t h e N o r t h A m e r i c a n c o n t i n e n t d u r i n g E a r t h history. In stark contrast to the barren ice sheet of the P l e i s t o c e n e , t h e C i n cinnati s e a s c a p e o f t h e O r d o v i c i a n w a s water from h o r i z o n t o h o r i z o n — n o t a d e e p o c e a n blue, but p e r h a p s s h a d e s of a q u a m a r i n e like the waters over t h e present-day s h a l l o w G r e a t B a h a m a B a n k . N o l a n d m a s s e s b r o k e t h e h o r i z o n , and no birds crossed the skies. All the a c t i o n was b e n e a t h t h e sea s u r f a c e , w h e r e life thrived in a b u n d a n c e .
This profusion of life left a fossil record in
the rocks that f o r m e d from the b o t t o m s e d i m e n t s o f t h e C i n c i n n a t i a n sea that is a m o n g the world's richest treasure troves of the past. For present-day C i n c i n n a t i a n s , fossils in their b a c k y a r d s are a c o m m o n p l a c e , a n d m a n y n a tives grow up not r e a l i z i n g that m o s t of the rest of the world has n o t h i n g to rival the fossil riches of their h o m e ! We seek to r e c o u n t the history of the C i n c i n n a t i region in d e e p t i m e , its vastly different e n v i r o n m e n t a n d m a r i n e life, for the general p u b l i c a n d for a m a t e u r g e o l o g i s t s .
M a n y l o c a l residents w h o h a v e b e e n fascinated b y the fossils u n d e r f o o t c o l l e c t e d a n d s t u d i e d t h e m a l m o s t s i n c e the earliest s e t t l e m e n t s o f the e i g h t e e n t h a n d n i n e t e e n t h c e n t u r i e s . G e n e r a t i o n s o f geologists and p a l e o n t o l o gists from abroad h a v e visited the r e g i o n a n d written of the a b u n d a n t fossils a n d t h e strata, i n c l u d i n g the p i o n e e r i n g British g e o l o g i s t C h a r l e s Lyell i n 1842. B e c a u s e t h e C i n c i n n a t i r e g i o n has b e e n a f o c u s for g e o l o g i c a l research by so many scientists over so m a i n years, there exists today a vast a m o u n t of i n f o r m a t i o n a b o u t the fossils and rocks of the region.
This information is
scattered in m a n y s o u r c e s , i n c l u d i n g the latest issues of s o m e of the world's l e a d i n g i n t e r n a t i o n a l g e o l o g i c a l j o u r n a l s , Internet websites, a n d n u m e r o u s t y p e s o f p u b l i c a t i o n s , s o m e w i d e l y available, s o m e o b s c u r e . M u c h o f the early w o r k d e s c r i b i n g n e w s p e c i e s o f C i n c i n n a t i fossils dates t o the s e c o n d half o f the n i n e t e e n t h c e n t u r y , and is found in p e r i o d i c a l s no longer published, such as
the
Cincinnati
Quarterly
journal of
Science,
The
Journal of the Cincinnati Society of Natural History.
Paleontologist,
No single
and
library
the
houses
all o f t h e g e o l o g i c a l i n f o r m a t i o n p u b l i s h e d a b o u t t h e C i n c i n n a t i r e g i o n . M o r e o v e r , m o s t studies d e a l w i t h o n l y a s m a l l fraction of the total fossil richness of t h e r e g i o n , a n d , m o s t i m p o r t a n t l y for u s , there has never b e e n a synthesis of the vast r a n g e of fossil diversity a n d its g e o l o g i c a l context. In this b o o k we p r e s e n t a synthesis that will r e c o n s t r u c t t h e life of the O r d o v i c i a n sea i n order t o s h o w n o t o n l y w h a t o r g a n i s m s i n h a b i t e d this sea b u t also h o w t h e y lived a n d interacted w i t h e a c h o t h e r to c o n s t i t u t e the variety of ecosystems of t h e O r d o v i c i a n sea in the C i n c i n n a t i r e g i o n .
The b o o k is not in-
t e n d e d as a t e x t b o o k of g e o l o g y or p a l e o n t o l o g y , but we present sufficient b a c k g r o u n d i n f o r m a t i o n o n e a c h fossil g r o u p a n d the g e o l o g i c a l c o n t e x t for readers u n f a m i l i a r w i t h fossils a n d g e o l o g y . W e e x p l a i n w h a t kind o f a n i m a l e a c h fossil represents a n d h o w it lived a n d interacted with other o r g a n i s m s , t h e r e b y d e f i n i n g t h e role of e a c h g r o u p of a n i m a l s in its a n c i e n t e c o s y s t e m . We h o p e that this a p p r o a c h will b e n e f i t readers with a b a c k g r o u n d in geolo g y as w e l l as t h o s e s e e k i n g an i n t r o d u c t i o n to t h e fossils a n d rocks of the C i n c i n n a t i region.
Conventions
I n s c i e n t i f i c p u b l i c a t i o n s , c e r t a i n c o n v e n t i o n s are u s e d t o save t i m e a n d t r o u b l e . T h e s e are u n d e r s t o o d by the scientists w h o generally write and read such publications. B e c a u s e this is a scientific work, we h a v e used s o m e of these c o n v e n t i o n s . H o w e v e r , this b o o k is also i n t e n d e d for the general reader w h o m i g h t not be familiar with s u c h c o n v e n t i o n s . I Here arc s o m e explanations:
Literature Citations in the Text F o o t n o t e s o r e n d n o t e s are n o t o r d i n a r i l y u s e d i n scientific p u b l i c a t i o n s . I n s t e a d , literature c i t a t i o n s arc inserted in t h e text. This c o m m o n l y is d o n e w h e r e it is a p p r o p r i a t e in t h e c o n t e x t . At o t h e r t i m e s , e s p e c i a l l y in i n s t a n c e s in w h i c h t h e r e a d e r is b e i n g referred to a n u m b e r of p u b l i c a t i o n s , the literature citation m a y be at the end of the appropriate sentence or paragraph. T h o s e e n a m o r e d o f f o o t n o t e s o r e n d n o t e s m i g h t f i n d this p e c u l i a r , but the idea is for t h e r e a d e r to be referred to o t h e r p u b l i c a t i o n s i m m e d i a t e l y , and
Preface
not h a v e t o s e a r c h a t t h e b o t t o m o f t h e p a g e o r t h e e n d o f t h e c h a p t e r , or, e v e n , v o l u m e , for t h e p e r t i n e n t r e f e r e n c e . T h u s , w h e n w e refer y o u t o a p u b l i c a t i o n , t h e literature c i t a t i o n w i l l b e i n t h e f o l l o w i n g f o r m a t : " ( S . A . M i l l e r 1875). " T h i s m e a n s that y o u are b e i n g referred to a p u b l i c a t i o n a u t h o r e d by S. A. M i l l e r a n d p u b l i s h e d in 1875; h e n c e , y o u know w h o said w h a t i s b e i n g cited a n d w h e n . I f y o u n e e d the c o m p l e t e b i b l i o g r a p h i c i n f o r m a t i o n a b o u t that p u b l i c a t i o n , it is p r o v i d e d in t h e b i b l i o g r a p h y toward the e n d of the v o l u m e . In c a s e s in w h i c h it is i m p o r t a n t for y o u to know t h e p a g e n u m b e r w i t h i n that p u b l i c a t i o n w h e r e the i n f o r m a t i o n o r q u o t a t i o n i s f o u n d , t h e literature c i t a t i o n w i l l b e in t h e form "(S. A. M i l l e r 1875, 87). "
Names of Organisms and By
international
logical Nomenclature
Groups
of Organisms
a g r e e m e n t of z o o l o g i s t s , is
the
International Code of Zoo-
t h e d o c u m e n t that s p e c i f i e s
h o w the
n a m e s of
s p e c i e s , g e n e r a , a n d o t h e r g r o u p s o f a n i m a l s are stated a n d u s e d i n s c i e n tific works ( I n t e r n a t i o n a l C o m m i s s i o n o n Z o o l o g i c a l N o m e n c l a t u r e 1999). G e n e r a l r e c o m m e n d a t i o n B i o o f the C o d e e n c o u r a g e s that t h e a u t h o r a n d date o f every taxon i n the s p e c i e s g r o u p , g e n u s g r o u p , o r f a m i l y g r o u p m e n t i o n e d in a p u b l i c a t i o n be cited at least o n c e in that p u b l i c a t i o n , a n d r e c o m m e n d a t i o n 5 1 G e n c o u r a g e s the f u l l c i t a t i o n o f o r i g i n a l a u t h o r s a n d dates as w e l l as revisers a n d their dates. H o w e v e r , s u c h c i t a t i o n of a u t h o r s , dates, revisers, and dates o f revisions d o e s d e t r a c t f r o m t h e f l o w o f t h e words. B e c a u s e o f t h e i n t e n d e d a u d i e n c e o f this v o l u m e , w e h a v e d e c i d e d not to do s u c h d e t a i l e d c i t a t i o n s on a r o u t i n e basis, b u t , rather, o n l y w h e n clarity d e m a n d s it. If you want to k n o w t h e n o m e n c l a t o r i a l history of a p a r t i c u l a r g r o u p o f o r g a n i s m s , w e r e c o m m e n d that y o u c o n s u l t t h e s c i e n tific literature a b o u t the larger g r o u p o f o r g a n i s m s t o w h i c h t h o s e o r g a n isms b e l o n g . T h e b i b l i o g r a p h y of this v o l u m e is a g o o d p l a c e to start. We d e b a t e d at s o m e l e n g t h as to w h e t h e r to g i v e a c o m p l e t e list of all t h e s u b d i v i s i o n s for e a c h m a j o r g r o u p o f o r g a n i s m s d i s c u s s e d . W e r e c o g n i z e that s u c h listings m i g h t b e g e n u i n e l y u s e f u l for t h e r e a l l y s e r i o u s fossil-collector. H o w e v e r , w e d e c i d e d that, f o r t h e i n t e n d e d a u d i e n c e o f this v o l u m e , the n u m b e r o f p a g e s n e c e s s a r y w o u l d h a v e m a d e t h e b o o k too long, and, h e n c e , inordinately expensive. Up-to-date classifications c a n be f o u n d in t h e f o l l o w i n g r e f e r e n c e s : the m a n y v o l u m e s of t h e Treatise on Invertebrate Paleontology (a m u l t i - a u t h o r e d , m u l t i - e d i t e d series of v o l u m e s p u b l i s h e d b y the G e o l o g i c a l S o c i e t y o f A m e r i c a a n d t h e U n i v e r s i t y Press of Kansas), the t e x t b o o k Fossil Invertebrates ( B o a r d m a n et al. 1987), or Fossils of Ohio ( F e l d m a n n a n d H a c k a t h o r n 1996).
M a n v of the illustrations in this v o l u m e w e r e m a d e specifically for this work:
Photographs,
however, s o m e w e r e m a d e by others a n d are used here w i t h p e r m i s s i o n , in
Drawings, Maps
s o m e instances, after modification (for e x a m p l e , to r e m o v e labels not pertinent to the present context). Unless o t h e r w i s e i n d i c a t e d , a given p h o t o g r a p h in this v o l u m e was prepared e s p e c i a l l y for this work, primarily by o n e of us ( D L M ) .
Preface
xi
Technical Terms a n d the Glossary
S c i e n c e is r e p l e t e w i t h t e c h n i c a l t e r m s that d o n o t a p p e a r c o m m o n l y in n o n - s c i e n t i f i c c o n t e x t s . T o m a k e m a t t e r s w o r s e , scientists often u s e c o m m o n , e v e r y d a y t e r m s i n w a y s t h a t are n o t their c o m m o n , e v e r y d a y u s a g e s . T h u s , we felt it i m p o r t a n t to i n c l u d e a glossary; this is f o u n d n e a r t h e e n d o f t h e v o l u m e . I n t h e interests o f s p a c e , h o w e v e r , w e h a v e not i n c l u d e d e v e r y t e c h n i c a l t e r m in this b o o k in t h e glossary. For its first u s e , e a c h t e c h n i c a l term is defined and is in b o l d f a c e t y p e .
Those technical terms
that are u s e d in m o r e t h a n o n e c h a p t e r are listed in t h e glossary. A t e c h n i cal term that is used in only o n e chapter, such as the n a m e of an anatomic a l f e a t u r e t h a t o c c u r s i n o n l y o n e m a j o r g r o u p o f o r g a n i s m s , i s d e f i n e d the f i r s t t i m e i t i s u s e d i n t h e v o l u m e ; h o w e v e r , w e h a v e n o t listed s u c h terms in t h e g l o s s a r y — a g a i n , in t h e interests of s p a c e . S u c h w o r d s are listed in the index to the v o l u m e . S o w h a t d o y o u d o i f y o u f i n d a t e c h n i c a l t e r m that i s u n f a m i l i a r t o y o u and the definition is not right there w h e r e you e n c o u n t e r the word? First, go to t h e glossary. If t h e t e c h n i c a l t e r m is n o t in t h e glossary, or if, G o d forbid!, t h e c o v e r a g e o f that t e r m i n t h e g l o s s a r y i s i n s u f f i c i e n t , t h e n g o t o t h e i n d e x a n d t h e n t o t h e text o f t h e b o o k t o w h i c h y o u are referred. ( C o l l e g e professors, l i k e u s , s o m e t i m e s are a c c u s e d o f s t a t i n g t h e o b v i o u s . G e n e r a l l y , t h i s i s d o n e i n a n a t t e m p t t o a n s w e r t h e q u e s t i o n s o f s o m e stud e n t s in a g i v e n class b e f o r e t h e y are a s k e d .
T h e r e is, of c o u r s e , a d a n g e r
o f o f f e n d i n g o t h e r s t u d e n t s i n t h e s a m e class w h o are m o r e a d e p t a t r e c o g n i z i n g t h e o b v i o u s . A n d so it is w i t h r e a d e r s as well!) I n t h e glossary, a n d e l s e w h e r e , w e h a v e i n c l u d e d a d v i c e o n h o w t o p r o n o u n c e terms. As you know, lexicographers have developed a scheme o f s y m b o l s t o i n d i c a t e h o w t h e y feel p a r t i c u l a r letters, syllables, a n d w o r d s s h o u l d b e p r o n o u n c e d . W e h a v e tried t o k e e p t h e u s e o f s u c h s y m b o l s t o a m i n i m u m . W e h o p e t h a t , i n s o d o i n g , w e still h a v e m a n a g e d t o h e l p y o u p r o n o u n c e words in a way useful to y o u .
XII
Preface
ACKNOWLEDGMENTS
W e are v e r y g r a t e f u l t o t h e f o l l o w i n g c o l l e a g u e s w h o r e a d p r e l i m i n a r y drafts o f v a r i o u s c h a p t e r s : L o r e n E . B a b c o c k ( T h e O h i o S t a t e U n i v e r s i t y ) , R i c h a r d B a m b a c h ( V i r g i n i a P o l y t e c h n i c Institute a n d S t a t e U n i v e r s i t y ) , S t e v e n H. Felton ( C i n c i n n a t i ) , R o b e r t J. E l i a s ( U n i v e r s i t y of M a n i t o b a ) , J. M a r k E r i c k s o n (St. L a w r e n c e U n i v e r s i t y ) , S t e v e n M . H o l l a n d ( U n i v e r s i t y of Georgia), Steven Leslie (University of Arkansas, Little Rock), James S p r i n k l e (University o f T e x a s ) , a n d C o l i n S u m r a l l ( U n i v e r s i t y o f T e n n e s see). I n p a r t i c u l a r , w e t h a n k Professor H o l l a n d for c o n t r i b u t i n g t h e c h a p t e r o n the C i n c i n n a t i a n p a l e o e n v i r o n m e n t . W e t h a n k the f o l l o w i n g c o l l e a g u e s w h o k i n d l y p r o v i d e d illustrations for our use or p e r m i t t e d us to r e p r o d u c e their illustrations: L o r e n E. B a b c o c k ( T h e O h i o State University), Stig B e r g s t r o m ( T h e O h i o State University), Jon W . Branstrator ( E a r l h a m C o l l e g e ) , D e v i n B u i c k (University o f C i n c i n n a t i ) , G . K e n t C o l b a t h (Cerritos C o l l e g e ) , R o g e r J . C u f f e y ( P e n n s y l v a n i a State University), Robert J. Elias (University of M a n i t o b a ) , J. M a r k E r i c k s o n (St. L a w r e n c e University), D a n i e l G o l d m a n (University o f D a y t o n ) , K e v i n G r a c e (Archives a n d Rare B o o k s Library, University o f C i n c i n n a t i ) , K e n d a l l H a u e r ( M i a m i University), S t e v e n M . H o l l a n d (University o f G e o r g i a ) , W o l f g a n g Kiessling (Natural History M u s e u m , Berlin), W a y n e M a r t i n ( M i a m i U n i v e r sity), C h a r l e s G . M e s s i n g ( N o v a S o u t h e a s t e r n University), M e r r e l l M i l l e r ( B P A m e r i c a ) , Robert A . P o h o w s k y ( M o r r o w , O h i o ) , John Pojeta, Jr. (U. S . G e o l o g i c a l Survey), Paul E . Potter (University o f C i n c i n n a t i ) , W i l l i a m K . S a c c o (Vale P e a b o d y M u s e u m ) , J o A n n S a n n e r ( S m i t h s o n i a n Institution), C h r i s S c o t e s e (University o f T e x a s , A r l i n g t o n ) , D o u g l a s L . S h r a k e ( O h i o D i v i s i o n o f G e o l o g i c a l Survey), James S p r i n k l e (University o f T e x a s , A u s t i n ) , C o l i n S u m r a l l (University o f T e n n e s s e e ) , R i c k C . T o b i n ( B P A m e r i c a ) , G r e g o r y P . W a h l m a n ( B P A m e r i c a ) , S t e v e n M . W a r s h a u e r ( D o m i n i o n E x p l o r a t i o n and P r o d u c t i o n ) , and D a v i d A . W a u g h (Kent State University). W e t h a n k the f o l l o w i n g publishers and o r g a n i z a t i o n s w h o k i n d l y granted us p e r m i s s i o n to r e p r o d u c e illustrations from their p u b l i c a t i o n s : American Midland Naturalist, Annual Reviews,
Blackwell
Publishing, Cincinnati
His-
torical Society, C o l u m b i a University Press, C o n n e c t i c u t A c a d e m y o f A r t s and S c i e n c e s , E . S c h w e i z e r b a r t ' s c h e S c i e n c e Publishers, G e o l o g i c a l S o c i e t y of A m e r i c a , journal of Geology,
Kentucky G e o l o g i c a l Survey, M c G r a w - H i l l
C o m p a n i e s , M i d - A m e r i c a P a l e o n t o l o g y S o c i e t y , N e w York State M u s e u m , O h i o Division o f G e o l o g i c a l Survey, P a l e o n t o l o g i c a l R e s e a r c h Institution, Paleontological S o c i e t y P e n n s y l v a n i a A c a d e m y o f S c i e n c e , President a n d Fellows o f Harvard C o l l e g e , S i g m a G a m m a E p s i l o n , S o c i e t y for S e d i m e n tary G e o l o g y ( S E P M ) , University o f C h i c a g o Press, University o f C i n c i n n a t i , and University o f M i c h i g a n M u s e u m o f P a l e o n t o l o g y .
W e arc p a r t i c u l a r l y grateful t o John A g n e w o f C i n c i n n a t i w h o painted " T h e C i n c i n n a t i a n " for t h e c o v e r a n d c o l o r plate, and w h o also did new d r a w i n g s of a s p o n g e , a s t r o m a t o p o r o i d , a c r i n o i d , a n d an edrioasteroid. T h e illustrations c o u l d n o t h a v e b e e n c o m p l e t e d w i t h o u t the t e c h n i c a l and artistic skills o f T i m o t h y Phillips ( D e p a r t m e n t o f G e o l o g y , University o f C i n c i n nati), E v e l y n M o h a l s k i (formerly o f t h e D e p a r t m e n t o f G e o l o g y , University o f C i n c i n n a t i ) , a n d Jay Y o c i s ( P h o t o g r a p h i c S e r v i c e s , Universitv o f C i n c i n nati). Professor K e v i n a V u l i n e c ( D e p a r t m e n t o f A g r i c u l t u r e and Natural R e s o u r c e s , D e l a w a r e State University, D o v e r ) kindly p e r m i t t e d us to reprod u c e h e r d r a w i n g s that w e r e o r i g i n a l l y m a d e for a n e x h i b i t a t the C i n c i n n a t i M u s e u m o f N a t u r a l History. M a n y c o l l e a g u e s and friends a l l o w e d u s t o p h o t o g r a p h s p e c i m e n s i n their c o l l e c t i o n s : S t e v e B r o w n ( Z a n e s v i l l e , O h i o ) , Fred C o l l i e r (formerly o f t h e M u s e u m o f C o m p a r a t i v e Z o o l o g y , H a r v a r d University), D a n C o o p e r (Cincinnati), Steven H. Felton (Cincinnati), Ron Fine (Cincinnati), Bruce and Charlotte G i b s o n (Cincinnati), Brenda Hunda (Cincinnati M u s e u m Center), Kendall
Haucr
( L i m p e r M u s e u m . M i a m i University), W i l l i a m
H e i m b r o c k ( C i n c i n n a t i ) , M a r k Peter ( C o l u m b u s , O h i o ) , and Janice T h o m p son ( N a t i o n a l M u s e u m o f N a t u r a l History, S m i t h s o n i a n Institution). W i l l i a m B u t c h e r a n d D e n n i s Kytasaari o f t h e N o r t h A m e r i c a n Jules V e r n e Society provided the accurate translation of and information about t h e q u o t a t i o n f r o m Jules V e r n e ' s 1864 n o v e l , Voyage au centre de la terre. A n g e l a G o o d e n ( G e o l o g y - M a t h - P h y s i c s Library, U n i v e r s i t y o f C i n c i n n a t i ) and M a g g i e Heran ( T h e Lloyd Library and M u s e u m , C i n c i n n a t i ) provided help in finding references. For m a n y s t i m u l a t i n g d i s c u s s i o n s a n d s u g g e s t i o n s , w e t h a n k Stig Bergstrom ( T h e O h i o State U n i v e r s i t y ) , D a n i e l B . B l a k e ( U n i v e r s i t y o f Illinois), Lael Bradshaw (Sinclair C o m m u n i t y C o l l e g e , Dayton, Ohio), Carlton Brett ( U n i v e r s i t y o f C i n c i n n a t i ) , Billie B r o a d d u s (former h e a d o f the History o f t h e H e a l t h S c i e n c e s L i b r a r y a n d M u s e u m , U n i v e r s i t y o f C i n c i n nati), S t e v e B r o w n ( Z a n e s v i l l e , O h i o ) , t h e late K e n n e t h E. C a s t e r , J. M a r k E r i c k s o n (St. L a w r e n c e U n i v e r s i t y ) , R o g e r J .
Cuffey
P e n n s y l v a n i a State-
University), S t e p h e n H. Felton ( C i n c i n n a t i , O h i o ) , Kevin G r a c e (Archives a n d R a r e B o o k s L i b r a r y , U n i v e r s i t y o f C i n c i n n a t i ) , G r e g Hand ( O f f i c e o f Public Information, University of C i n c i n n a t i ) , S i m o n J. Knell (University o f L e i c e s t e r , E n g l a n d ) , G e n e Kritsky ( C o l l e g e o f M o u n t St. Joseph, C i n c i n n a t i , O h i o ) , F r a n k K . M c K i n n e y ( A p p a l a c h i a n State University), A r n o l d M i l l e r ( U n i v e r s i t y o f C i n c i n n a t i ) , T i m M o o r e (University o f H o n g K o n g ) , P a u l F . Potter ( U n i v e r s i t y o f C i n c i n n a t i ) , D o l f S e i l a c h e r (Vale University), a n d t h e late E l l i s Y o c h e l s o n ( U n i t e d States G e o l o g i c a l S u r v e y ) . f o r their c o n t i n u i n g e n t h u s i a s m f o r this project, and m a n y helpful disc u s s i o n s , we t h a n k R o b e r t J. S l o a n , Editorial D i r e c t o r at I n d i a n a University Press a n d James O. Farlow, I n d i a n a U n i v e r s i t y - P u r d u e University at Fort Wayne, a n d editor of t h e L i f e of t h e Past series for I n d i a n a University Press. For moral support we thank M a r y L. Davis, Kani Meyer, and University o f C i n c i n n a t i g r a d u a t e s t u d e n t s D e v i n Bradley D e l i n e , and Austin Hendy.
xiv
Acknowledgments
Buick, Katherine Bulinski,
REPOSITORIES OF FOSSILS ILLUSTRATED IN THIS BOOK
BMNH C M C IP FMNH
N a t u r a l History M u s e u m , L o n d o n C i n c i n n a t i M u s e u m C e n t e r , Invertebrate Paleontology C o l l e c t i o n s F i e l d M u s e u m o f N a t u r a l History, C h i c a g o , Illinois
M C Z Harvard MUGM OSU USNM
University,
of Comparative Z o o l o g y
M i a m i University, C a r l F . L i m p e r G e o l o g i c a l M u s e u m , O x f o r d , O h i o O r i o n G e o l o g i c a l M u s e u m , T h e O h i o State U n i v e r s i t y , C o l u m b u s , O h i o N a t i o n a l M u s e u m o f N a t u r a l History, S m i t h s o n i a n I n s t i t u t i o n , Washington, D. C.
XV
Museum
A SEA WITHOUT FISH
Figure
1. 1.
7999 Geologic Time Scale.
Reprinted by permission of the Geological Society of America.
order to read this chart in stratigraphic order, of the Precambrian column, umn,
adding
the bottom of the Paleozoic column
the bottom of the Mesozoic column
zoic column
to
the
read the columns from bottom
to
to
In
starting at the bottom
the top of the Precambrian
the top of the Paleozoic column,
top of the Mesozoic column.
to top,
col-
and the bottom of the Ceno-
INTRODUCTION
The vicinity o f C i n c i n n a t i , i n the O h i o River V a l l e y o f s o u t h w e s t e r n O h i o ,
Of the many prolific col-
i n c l u d i n g adjacent n o r t h e r n K e n t u c k y a n d s o u t h e a s t e r n I n d i a n a , i s a m o n g
lecting grounds in
the m o s t fossil-rich r e g i o n s i n N o r t h A m e r i c a , i f not t h e entire w o r l d . T h e
continental
profusion of fossils in t h e local l i m e s t o n e a n d s h a l e attracted m a n y p i o n e e r -
excels the Ohio river
i n g geologists and p a l e o n t o l o g i s t s o f the n i n e t e e n t h c e n t u r y , a n d m u c h f u n d a m e n t a l work i n A m e r i c a n p a l e o n t o l o g y a n d s t r a t i g r a p h y w a s a c c o m plished here. H u n d r e d s of fossil species w e r e first d i s c o v e r e d and n a m e d from
the
interior,
none
bluffs at Cincinnati, Here
the
cian
Ohio.
Upper Ordovi-
rocks are almost
literally made of fossils;
these rocks. Early geologists g a v e the entire series of strata e x p o s e d h e r e t h e
many are
n a m e " C i n c i n n a t i a n , " a n d this n a m e w a s a p p l i e d t o strata o f s i m i l a r a g e
preserved as
t h r o u g h o u t N o r t h A m e r i c a . C i n c i n n a t i a n fossils are d i s p l a y e d i n m u s e u m s
be.
as perfectly fossils
can
The river banks,
all over the world. R e s e a r c h e r s , s t u d e n t s , a n d a m a t e u r fossil c o l l e c t o r s r e g u -
road cuts,
larly visit the C i n c i n n a t i r e g i o n t o c o l l e c t fossils. M a n y o f t h o s e w h o h a v e
soil in
the gardens are
g r o w n up in the region are a w a r e of the a b u n d a n c e of fossils, yet few a p p r e c i -
replete
with
ate the u n i q u e n e s s of this r i c h n e s s a n d its b r o a d e r s i g n i f i c a n c e to o u r u n d e r s t a n d i n g of the Earth's past. The p u r p o s e of this b o o k is to e x p l o r e t h e richness of C i n c i n n a t i a n fossils a n d t h e stories t h e y tell a b o u t life over 450 m i l l i o n years a g o , w h e n s h a l l o w seas i n u n d a t e d N o r t h A m e r i c a a n d the site o f C i n -
and even
common Almost in
the
fossils more
than every
pebbles. museum
the world has speci-
mens from
this locality.
W i l l i a m Lee S t o k e s
cinnati was in the S o u t h e r n H e m i s p h e r e . W h y are fossils so a b u n d a n t in the rocks of C i n c i n n a t i ' s hills? B e y o n d
1960, 1 8 8 - 1 8 9
sheer a b u n d a n c e , w h a t is their s i g n i f i c a n c e for o u r k n o w l e d g e of the history of life, evolution, and a n c i e n t e n v i r o n m e n t s ? T h e r e is no single a n s w e r to these questions, but rather several answers c a n be given w h i c h collectively reveal the significance o f C i n c i n n a t i a n fossils. T h e s e answers c a n b e f o u n d u n d e r four categories: organic evolution, environment,
preservation,
and
history.
Fossils f o u n d i n C i n c i n n a t i ' s l i m e s t o n e s a n d s h a l e s are t h e r e m a i n s o f a n i -
Organic Evolution
m a l s that lived d u r i n g a n interval o f E a r t h history c a l l e d t h e O r d o v i c i a n P e r i o d . T h e O r d o v i c i a n i s the s e c o n d oldest p e r i o d o f the larger t i m e interval k n o w n a s the P a l e o z o i c E r a ( F i g u r e 1 . 1). The b e g i n n i n g o f t h e P a l e o z o i c E r a ( m e a n i n g " t i m e of a n c i e n t a n i m a l s " ) is m a r k e d by the oldest rocks c o n t a i n i n g
[The
Ordovician
represents largest
one
major
radiation] of the turnovers
a b u n d a n t fossils o f m u l t i - c e l l e d a n i m a l s ( m e t a z o a n s ) . R a d i o m e t r i c d a t i n g
in the history of life and
o f v o l c a n i c ash b e d s i n t e r b e d d e d with t h e s e fossiliferous r o c k s p l a c e s t h e
marks
b e g i n n i n g o f the P a l e o z o i c a t a b o u t 543 m i l l i o n years a g o . S i m i l a r m e t h o d s
of groups
that came
date the b e g i n n i n g o f the O r d o v i c i a n Period a t a b o u t 4 9 0 m i l l i o n years a g o
dominate
marine
and its end at about 443 m i l l i o n years a g o . T h e s p a n of O r d o v i c i a n t i m e rep-
systems
the
appearance
for the
to
econext
resented by the C i n c i n n a t i a n strata a m o u n t e d to less t h a n 10 m i l l i o n y e a r s ,
250
million years.
and tell a p p r o x i m a t e l y d u r i n g the latter part of the O r d o v i c i a n , t e r m e d t h e
D r o s e r , Fortey, a n d
1, ate O r d o v i c i a n . In the C i n c i n n a t i r e g i o n , a total t h i c k n e s s of o v e r 250 m e -
Li 1996, 122
Figure 1. 2.
Diversity of
marine
fossil
families
through
Phanerozoic.
the
The
uppermost the sum
metazoan heavy
curve of the
"evolutionary
depicts three
faunas, "
each
shaded
while
the stippled por-
tion
below the
curve
total
represents
diversity
not
for by the each
residual
accounted
three compo-
nent faunas. for
differently,
Taxa listed
evolutionary
fauna are those taxa that contribute
most
heavily
to the diversity of that fauna. I = Cambrian Fauna,
II = Paleozoic
Fauna, and III = Modern Fauna.
From
Sepkoski
ters (820 feet) of i n t e r b e d d e d l i m e s t o n e a n d s h a l e w a s d e p o s i t e d d u r i n g the
(1981) and reprinted by
L a t e O r d o v i c i a n , c o n s t i t u t i n g t h e C i n c i n n a t i a n a n d c o n t a i n i n g fossils
permission
t h r o u g h o u t . F u r t h e r d i s c u s s i o n o f the n a t u r e a n d subdivisions o f C i n c i n n a -
ontological
of The
Pale-
Society.
tian r o c k s , a n d e s t i m a t e s o f their a g e , are t h e s u b j e c t o f c h a p t e r 4 . Professor S t i g M . B e r g s t r o m o f t h e O h i o State University i s a m o n g the world's m o s t k n o w l e d g e a b l e a n d w i d e l y - t r a v e l e d specialists o n O r d o v i c i a n fossils a n d stratigraphy. He i n d i c a t e d to us that " t h e r e is n o t h i n g that c a n be c o m p a r e d e l s e w h e r e in the w o r l d " to t h e d i v e r s i t y of shelly fossils in the C i n c i n n a t i a n ( B e r g s t r o m , pers. c o m m . ). Metazoan m a r i n e life first b e g a n to diversify d u r i n g the s o - c a l l e d C a m b r i a n e x p l o s i o n that m a r k e d the onset o f the P a l e o z o i c , but a c c e l e r a t e d d u r i n g the Cambrian and Ordovician Periods to r e a c h a p e a k late in t h e O r d o v i c i a n w h e n t h e C i n c i n n a t i a n strata w e r e d e p o s i t e d . In fact t h e O r d o v i c i a n Period is r e c o g n i z e d as a u n i q u e t i m e of e v o l u t i o n a r y diversification, t e r m e d t h e O r d o v i c i a n R a d i a t i o n ( D r o s e r e t al. 1996) o r t h e O r d o v i c i a n B i o d i v e r s i f i c a t i o n E v e n t ( W e b b y , Paris, D r o s e r , a n d Percival 2004). T h e O r d o v i c i a n m a r k e d a c o n v e r g e n c e o f w h a t Sepkoski (1981) c a l l e d t h r e e " e v o l u t i o n a r y faunas": metazoan g r o u p s that first a p p e a r e d d u r i n g t h e C a m b r i a n b u t persisted into the O r d o v i c i a n ( " C a m b r i a n F a u n a " ) , g r o u p s that b e g a n t o diversify d u r i n g t h e O r d o v i c i a n ( " P a l e o z o i c F a u n a " ) , a n d g r o u p s that first a p p e a r e d in t h e O r d o v i c i a n that diversified after the e n d of t h e P a l e o z o i c ( " M o d e r n F a u n a " ) ( F i g u r e 1. 2). At t h e e n d of the O r d o v i c i a n there o c c u r r e d a g l o b a l m a s s e x t i n c t i o n that e l i m i n a t e d s p e c i e s on a large scale. T h u s t h e C i n c i n n a t i a n t i m e was significant in the history of life as a G o l d e n A g e of e v o l u t i o n a r y diversification just before a major crisis of mass e x t i n c t i o n . In m a n y w a y s t h e F a t e O r d o v i c i a n is c o m p a r a b l e to t h e L a t e C r e t a c e o u s P e r i o d , a n o t h e r G o l d e n A g e p r e c e d i n g a crisis ( F i g u r e 1. 2; Seil a c h e r 1998). F e w if a n y fossil s p e c i e s f o u n d in t h e C i n c i n n a t i a n strata surv i v e d into t h e s u c c e e d i n g S i l u r i a n P e r i o d . C h a p t e r s 5-14 i n t r o d u c e e a c h o f t h e m a j o r g r o u p s of o r g a n i s m s f o u n d as fossils in t h e C i n c i n n a t i a n .
A Sea without Fish
The e n v i r o n m e n t o f L a t e O r d o v i c i a n t i m e i n the C i n c i n n a t i r e g i o n c o n t r i b -
Environment
uted to the a b u n d a n c e a n d r i c h n e s s of fossils in several f u n d a m e n t a l ways. C i n c i n n a t i a n fossils a n d rocks b e a r p r o f o u n d t e s t i m o n y t o t h e e x i s t e n c e o f widespread s h a l l o w seas (called e p i c o n t i n e n t a l o r e p e i r i c seas) o v e r m o s t o f the N o r t h A m e r i c a n c o n t i n e n t at this t i m e (Plate 1). U s i n g m a n y s o u r c e s of
We
e v i d e n c e , g e o l o g i s t s h a v e c o m p i l e d a record of t h e rise a n d fall of sea level
thinking
d u r i n g the past h a l f billion years of Earth history ( f i g u r e 1. 3). The L a t e O r -
ica as terra
d o v i c i a n w a s o n e o f the t i m e s o f m a x i m u m rise o f sea level o v e r t h e entire
of the large high and dry
g l o b e , rivaled o n l y by the L a t e C r e t a c e o u s ( a c c o r d i n g to t h e r e c o n s t r u c t i o n
segments
by H a l l a m [1984]). The c a u s e of this f l o o d i n g has b e e n attributed to h i g h rates o f s e a floor s p r e a d i n g w h i c h s w e l l e d the m i d - o c e a n r i d g e s , d i s p l a c i n g i m m e n s e v o l u m e s o f seawater from the d e e p o c e a n basins o n t o t h e c o n t i n e n t a l
are
crust,
accustomed of North
of
the past when nent
was
so
beneath
could have
plates later to c o n s t i t u t e E u r o p e a n d A f r i c a (Plate 1). T h e nearest l a n d m a s s e s
from
300 m i l e s to the east, a n d the l o w - l y i n g C a n a d i a n S h i e l d to t h e n o r t h . Just b u i l d i n g ) activity, the T a c o n i c O r o g e n y , resulted i n severe crustal d e f o r m a tion and uplift a l o n g t h e r e g i o n b o r d e r i n g N e w York a n d N e w E n g l a n d . Is-
the
one
earth's
us to imagine a time in
plates. The Atlantic O c e a n as we k n o w it did not exist, but instead, a n a r r o w e r
before and d u r i n g the Late Ordovician, a p h a s e of m a j o r t e c t o n i c ( m o u n t a i n -
firma,
and it is difficult for
o c e a n c a l l e d the I a p e t u s O c e a n separated N o r t h A m e r i c a f r o m c o n t i n e n t a l t o the C i n c i n n a t i region w e r e the rising A p p a l a c h i a n m o u n t a i n c h a i n , a b o u t
to Amer-
to
our contisubmerged
the sea
that fish
swum
directly
the Atlantic
Ocean
the Pacific Ocean,
from Hudson Bay to the
Gulf of Mexico.
such a
million years ago the
Yet
time did exist 450
epeiric sea
when
spread
lands w e r e raised h i g h a b o v e sea level as lofty a n d j a g g e d m o u n t a i n c h a i n s
from Arctic to Gulf,
r e s e m b l i n g the m o d e r n A l p s o r H i m a l a y a s . W e a t h e r i n g a n d erosion a t t a c k e d
Atlantic
to
from
Pacific*
these r a n g e s , a n d rivers c a r r i e d h u g e l o a d s o f fresh water, s e d i m e n t s , a n d Clark a n d Stearn
nutrients into the s h a l l o w sea. G r e a t v o l u m e s o f s e d i m e n t , c o n s i s t i n g o f c o a r s e g r a v e l s , s a n d s , silts,
1960, 6 8
a n d m u d s ( t e r m e d s i l i c i c l a s t i c s ) w e r e d e p o s i t e d a s river deltas a n d redistributed b y o c e a n i c c u r r e n t s n e a r t h e c o a s t l i n e i n t h e A p p a l a c h i a n B a s i n . T h e total t h i c k n e s s o f t h e Late O r d o v i c i a n strata i n t h e A p p a l a c h i a n B a s i n i n V i r g i n i a r e a c h e s a b o u t 1000 m e t e r s (over 3000 feet) w h e r e a s t h e s a m e t i m e interval is r e p r e s e n t e d in the C i n c i n n a t i r e g i o n by strata less t h a n 300 m e t e r s (less t h a n 1000 feet) t h i c k ( F i g u r e 1. 4; Kay 1951). O f f s h o r e , o n l y t h e m u d d y c o m p o n e n t s o f this h e a v y s e d i m e n t i n p u t r e m a i n e d s u s p e n d e d a s clay p a r t i c l e s , a n d w e r e c a r r i e d b y c u r r e n t s t o r e a c h t h e C i n c i n n a t i a r e a . These m u d s were thus imports to the region that e v e n t u a l l y lithified (turned to stone) to form shales. In the C i n c i n n a t i a r e a , s h a l e s are i n t e r b e d ded w i t h l i m e s t o n e s , w h i c h are c o m p o s e d o f c a l c a r e o u s shells a n d skeletons o f " n a t i v e " m a r i n e i n v e r t e b r a t e s . I n t h e w e s t e r n U n i t e d States a n d C a n a d a , the Late O r d o v i c i a n c o n t a i n s m o s t l y l i m e s t o n e s s e c o n d a r i l y c o n verted t o d o l o m i t e s . T h u s , t h e C i n c i n n a t i r e g i o n r e p r e s e n t s a n i n t e r m e d i ate z o n e o f m i x e d s h a l e s a n d l i m e s t o n e s b e t w e e n t h e g r e a t t h i c k n e s s o f siliciclastics t o t h e east a n d p u r e l i m e s t o n e s f a r t h e r west. B o t h s e d i m e n t s
"Of course, true bony fish
i n t e r m i n g l e d i n t h e C i n c i n n a t i r e g i o n , p r o d u c i n g a v a r i e d a n d p a t c h y sea
had not yet evolved in Late
floor that was m u d d y in p l a c e s a n d s h e l l y in o t h e r s . S u c h a v a r i e g a t e d bot-
Ordovician time, and as we
t o m e n v i r o n m e n t offered m o r e p o t e n t i a l t y p e s o f l i v i n g s p a c e s for b o t t o m d w e l l i n g o r g a n i s m s (the b e n t h o s ) , a n d p r o v i d e s a f u r t h e r r e a s o n w h y h i g h diversity d e v e l o p e d i n t h e r e g i o n . B e c a u s e t h e r e w a s v e r y little v e g e t a t i o n
will see,
dence of the early, jawless fish that are known from
o n l a n d d u r i n g the L a t e O r d o v i c i a n , e r o s i o n m a y h a v e c a r r i e d a h e a v i e r
the
load o f dissolved i n o r g a n i c n u t r i e n t s into t h e sea.
elsewhere.
These nutrients m a y have
Introduction
Cincinnatian
rocks contain no fossil evi-
3
Late Ordovician
Figure 1. 3.
Global sea
level curves
for the
Phanerozoic.
A.
curve, B. (1977).
Hallam
Vall et al. curve
From Hallam
(1984) and reprinted by permission Reviews. more
of Annual According
recent
to
studies
(Miller et al. 2006),
maxi-
mum rise of sea level in the
Cretaceous
lower than mates, 50 m level,
was
these
reaching
esti100 m ±
above present sea but this does not
contradict
the
evidence
that Ordovician sea
level
was also very high and extensive
over
North
America.
a c t e d as a f e r t i l i z e r to s t i m u l a t e t h e p r o d u c t i o n of b e n t h i c b i o m a s s . In add i t i o n , c l i m a t e , o c e a n o g r a p h i c c o n d i t i o n s , a n d a v a i l a b l e food supply m u s t h a v e b e e n c r u c i a l t o s u p p o r t prolific m a r i n e life i n t h e C i n c i n n a t i a n sea; t h e s e factors are e x p l o r e d in d e t a i l in c h a p t e r 15.
Preservation
W h e n w e l o o k at r o c k layers as c r o w d e d w i t h w e l l - p r e s e r v e d fossils as t h o s e o f t h e C i n c i n n a t i a n , w e t e n d t o t h i n k w e arc l o o k i n g a t a c o m p l e t e p i c t u r e o f life o n t h e O r d o v i c i a n sea f l o o r — a s n a p s h o t — i n t e r m s o f b o t h the diversity o f s p e c i e s p r e s e n t a n d t h e i r a b u n d a n c e . U n f o r t u n a t e l y , t h e c o r r e s p o n d e n c e b e t w e e n t h i s fossil a s s e m b l a g e a n d t h e o r i g i n a l l i v i n g c o m m u n i t y f r o m w h i c h i t w a s d e r i v e d i s rarely that s i m p l e a n d d i r e c t . T h e fossil r e c o r d p r o v i d e s a m e r e g l i m p s e of a n c i e n t life, o n e that is h e a v i l y b i a s e d by many factors. I n o r d e r t o assess t h e i m p a c t o f t h e s e factors o n t h e q u a l i t y o f t h e fossil s a m p l e , p a l e o n t o l o g i s t s h a v e d e v o t e d a n e n t i r e s u b d i s c i p l i n e , c a l l e d t a p h o n o m y , to the investigation of processes affecting organic remains
4
A Sea without Fish
Figure 1. 4. Upper
Thickness of
Ordovician
strata
in relation to the ancestral
Appalachian
Moun-
tains (tectonic land)
that
was
uplifted during
the
Late
Ordovician
Orogeny.
Taconic
Contours
lines of equal rock ness (isopachs). (1951,
are thick-
From Kay
figure 4) and re-
printed by permission the
of
Geological Society
of
America.
The
organic
remarkably
preserved
for so
a
rock,
argillaceous stone,
significance of variable preservation can be gained by c o n s i d e r i n g aspects o f life, d e a t h , a n d p o s t - m o r t e m history that e n t e r e d into t h e c o m p l e x e q u a tion that d e t e r m i n e d the u l t i m a t e fossil r e c o r d o f t h e O r d o v i c i a n sea.
appears
B i o l o g i c a l factors a f f e c t i n g p r e s e r v a t i o n p o t e n t i a l
compact lime-
Its
deposition
to have gone on
very tranquilly, as the Lingula
has been met with
in its natural and erect position,
as if enclosed in
mud when alive, standing
Nature of the laving O r g a n i s m
a blue
not unlike the lias
of Europe.
variation i n t h e p r e s e r v a t i o n p o t e n t i a l o f o r g a n i s m s . A n a p p r e c i a t i o n o f t h e
well
ancient
especially those
occurring in
from death to ultimate fossilization. T a p h o n o m y e m p h a s i z e s the w i d e
remains
here are
on
or still
its peduncle.
C h a r l e s Lyell 1845, 49 include presence of
" h a r d parts, " their chemistry, m i n e r a l o g y , and c o n s t r u c t i o n , and the m o d e of life of the o r g a n i s m . By far t h e m o s t i m p o r t a n t r e q u i r e m e n t for fossilization is possession of m i n e r a l i z e d hard parts s u c h as shells or s k e l e t o n s . S o f t b o d y parts i n c l u d i n g s k i n , m u s c l e , hair, a n d i n t e r n a l o r g a n s a l m o s t a l w a y s d e c a y rapidly f o l l o w i n g d e a t h . M a n y c o m m o n m a r i n e i n v e r t e b r a t e s like w o r m s lack hard parts a l t o g e t h e r o r h a v e o n l y h a r d e n e d j a w s t r u c t u r e s . I n s o m e m a r i n e e n v i r o n m e n t s , a n i m a l c o m m u n i t i e s are d o m i n a t e d i n n u m bers of s p e c i e s or i n d i v i d u a l s by s u c h s o f t - b o d i e d s p e c i e s w i t h little or no fossilization p o t e n t i a l . O n e o f t h e b e s t - k n o w n e x c e p t i o n s t o t h e d o m i n a n t
Introduction
5
p r e s e r v a t i o n o f hard parts i s t h e C a m b r i a n B u r g e s s S h a l e o f B r i t i s h C o l u m b i a , w i t h its a m a z i n g w e a l t h o f s o f t - b o d i e d w o r m s , a r t h r o p o d s , a n d o t h e r i n v e r t e b r a t e s , a l o n g w i t h s h e l l - b e a r i n g f o r m s ( C o u l d 1989). I n t h e C i n c i n n a t i a n , t h e r e i s v i r t u a l l y n o p r e s e r v a t i o n o f s o f t - b o d i e d s p e c i e s o r soft parts o f s h e l l - o r s k e l e t o n - b e a r i n g s p e c i e s . T h e o n l y r e c o r d s k n o w n t o u s o f softb o d y p r e s e r v a t i o n i n t h e C i n c i n n a t i a n are a w o r m d e s c r i b e d b y U l r i c h (1878) a n d t h e r e c e n t d i s c o v e r y of f o s s i l i z e d " t u b e f e e t " in a brittle star ( G l a s s 2006). O u r k n o w l e d g e o f t h e C i n c i n n a t i a n biota i s thus h e a v i l y bia s e d i n favor o f s p e c i e s w i t h h a r d p a r t s , the shells a n d s k e l e t o n s , c o m p l e t e or p a r t i a l , k n o w n as b o d y f o s s i l s . F o r t u n a t e l y , this is offset to s o m e d e g r e e b y e v i d e n c e o f t h e a c t i v i t y o f s o f t - b o d i e d s p e c i e s f r o m t r a c e fossils (burr o w s , tracks, a n d t r a i l s — t h e subject of c h a p t e r 14). H o w e v e r , it m u s t be kept i n m i n d that p o t e n t i a l l y g r e a t n u m b e r s o f s p e c i e s i n t h e biota w i l l n e v e r b e k n o w n b e c a u s e t h e y left n o fossil r e c o r d w h a t s o e v e r . S h e l l s a n d s k e l e t o n s p r e s e r v e d i n C i n c i n n a t i a n strata are p r e d o m i n a n t l y c o m p o s e d o f c a l c i u m c a r b o n a t e ( C a C O 3 ) i n t h e m i n e r a l form c a l c i t e . S o m e shells o f b r a c h i o p o d s (see c h a p t e r 8 ) a n d the microfossils k n o w n as c o n o d o n t s (see c h a p t e r 13) are p r e s e r v e d as c a l c i u m p h o s p h a t e . D e s p i t e t h e a b u n d a n c e o f c a l c i u m c a r b o n a t e i n C i n c i n n a t i a n fossils, not all shells h a v i n g this c h e m i c a l c o m p o s i t i o n are e q u a l l y well p r e s e r v e d . T h e reason for this i s t h a t s o m e o r g a n i s m s f o r m c a l c i u m c a r b o n a t e shells o r s k e l e t o n s n o t as c a l c i t e b u t as a d i f f e r e n t m i n e r a l c a l l e d a r a g o n i t e . A r a g o n i t e , w i t h a d i f f e r e n t c r y s t a l l o g r a p h i c s t r u c t u r e t h a n c a l c i t e , b e c o m e s u n s t a b l e i n seaw a t e r after d e a t h of t h e o r g a n i s m a n d r e c r y s t a l l i z e s as calcite. In s o m e c a s e s this t r a n s f o r m a t i o n o c c u r s as a solid-state r e p l a c e m e n t of a r a g o n i t e by calcite, a l t e r i n g t h e m i c r o s t r u c t u r e b u t r e t a i n i n g t h e m a c r o s c o p i c s t r u c t u r e o f a s h e l l . A r a g o n i t i c shells c a n a l s o b e lost e n t i r e l y b y d i s s o l u t i o n e v e n b e f o r e b u r i a l i n s e d i m e n t . I n o t h e r c a s e s , a shell m a y b e c o m e b u r i e d , a n d a s t h e i n t e r n a l soft parts d e c a y , s e d i m e n t s e e p s into t h e shells, r e p l a c i n g the soft parts a n d f o r m i n g a p e r f e c t m o l d of t h e interior. A f t e r the a r a g o n i t i c shell d i s s o l v e s , t h e s e d i m e n t i n f i l l i n g r e m a i n s a n d c a n b e lithified b y c a l cific c e m e n t . I n t h i s m a n n e r a n i n t e r n a l m o l d o r s t e i n k e r n i s f o r m e d w h i c h p e r f e c t l y p r e s e r v e s t h e i n t e r n a l s p a c e s o f a s h e l l , often m o l d i n g feat u r e s o f t h e i n n e r shell s u r f a c e l i k e m u s c l e scars, e v e n t h o u g h t h e a c t u a l o r i g i n a l a r a g o n i t i c shell d i s a p p e a r s . I n o t h e r c a s e s t h e shell m a y n o t b e i n f i l l e d , a n d o n c e t h e shell d i s s o l v e s , a void r e m a i n s a s a n e x t e r n a l m o l d o f t h e o u t e r s u r f a c e o f t h e s h e l l , o r t h e e x t e r n a l m o l d c a n b e infilled w i t h s e d i m e n t to form a c a s t .
T h e s e arc o f t e n t h e o n l y w a y s a record of an ara-
g o n i t i c s h e l l i s p r e s e r v e d , a n d w e h a v e n o w a y o f g a u g i n g how m a n y arag o n i t i c s h e l l s d i s s o l v e d l e a v i n g no t r a c e w h a t s o e v e r . T h u s it is very difficult t o e s t i m a t e t h e o r i g i n a l a b u n d a n c e o f s p e c i e s f o r m i n g a r a g o n i t i c shells. E v e n a m o n g s p e c i e s f o r m i n g c a l c i t i c shells, p r e s e r v a t i o n c a n b e h i g h l y selective.
T h i n n e r , m o r e d e l i c a t e shells are m o r e likely t o b e d e s t r o y e d
b e f o r e t h e y c a n b e b u r i e d . I n g r o u p s like trilobites (see c h a p t e r 11), t h e exoskeleton is c o m p o s e d of the protein chitin, with varying a m o u n t s of c a l c i u m c a r b o n a t e . J u v e n i l e , o r n e w l y m o l t e d , trilobites h a d w e a k l y c a l c i f i e d e x o s k e l e t o n s , a n d w e r e t h u s less p r e s e r v a b l e t h a n m o r e h e a v i l y c a l c i fied individuals. T h u s , w i t h i n a single species, preservational potential is
6
A Sea without Fish
u n e q u a l . S p e c i e s h a v i n g shells f o r m e d o f o n e o r t w o v a l v e s (snails, c l a m s , or brachiopods) have a h i g h e r preservation potential than species with m u l t i - p a r t e d s k e l e t o n s s u c h as c r i n o i d s or trilobites. M u l t i - p a r t e d s k e l e t o n s are held t o g e t h e r with c o n n e c t i v e tissue, w h i c h is s u s c e p t i b l e to s c a v e n g i n g and d e c a y , c a u s i n g t h e s k e l e t o n t o b e c o m e d i s a r t i c u l a t e d a n d s c a t t e r e d b y currents.
The c o n s e q u e n c e o f all t h e s e v a r i a b l e factors o f shell c o m p o s i t i o n
a n d s t r u c t u r e is that all o r g a n i s m s p r o d u c i n g a c a l c i t i c shell c a p a b l e of p r e s e r v a t i o n d o n o t h a v e a n e q u a l p o t e n t i a l for a c t u a l p r e s e r v a t i o n . Prese r v a t i o n i s h i g h l y s e l e c t i v e e v e n a m o n g shells c h e m i c a l l y a n d m i n e r a l o g i c a l l y stable e n o u g h t o survive post m o r t e m . T h e m o d e o f life o f o r g a n i s m s d e t e r m i n e s p r e s e r v a t i o n p o t e n t i a l e v e n before a n i m a l s die. For a q u a t i c s p e c i e s , b o t t o m - d w e l l e r s ( b e n t h o s ) h a v e a higher likelihood of preservation than s w i m m i n g (nektonic) or floating ( p l a n k t o n i c ) s p e c i e s . A m o n g t h e b e n t h o s , s p e c i e s that burrow
into t h e
s e d i m e n t for a l i v i n g ( i n f a u n a ) o b v i o u s l y h a v e a m u c h h i g h e r p o t e n t i a l for preservation than do surface dwellers (epifauna). A m o n g the epifauna, species living p e r m a n e n t l y attached to the b o t t o m often have a h i g h e r p o t e n t i a l for p r e s e r v a t i o n t h a n f r e e - l i v i n g , m o b i l e s p e c i e s , s i m p l y b e c a u s e t h e y are u n a b l e t o e s c a p e s u d d e n burial b y s e d i m e n t .
Processes of Mortality F o s s i l i z a t i o n is a rare e v e n t , n o t a p r o c e s s h a p p e n i n g e v e n day. M o s t a n i -
The
m a l s that survive t h r o u g h old a g e a n d d i e o f " n a t u r a l c a u s e s " s u c h a s p r e d a -
never forget that he is
tion o r d i s e a s e will n o t b e c o m e f o s s i l i z e d . U n b u r i e d c a r c a s s e s are torn
studying not
apart b y predators a n d s c a v e n g e r s o r d e s t r o y e d b y d e c a y a n d e x p o s u r e t o
inhabitants of the
the e l e m e n t s . F o s s i l i z a t i o n very often d e p e n d s on a rare, c a t a s t r o p h i c e v e n t that b u r i e s a n e n t i r e a s s e m b l a g e o f l i v i n g o r g a n i s m s , m u c h i n w a y the e r u p t i o n of Mt. V e s u v i u s b u r i e d P o m p e i i in AD 7 9 , p r e s e r v i n g i n c r e d i b l e details o f R o m a n life.
paleoecologist
the living
fossil, t h e first q u e s t i o n s h o u l d b e : " W h a t h a p p e n e d ? " T h e a n s w e r m a y tell
in
the churchyard,
then
Derek V. A g e r 1963, 184
volcanic eruptions than about day-to-day processes. I n t h e C i n c i n n a t i a n , t h e b e s t - p r e s e r v e d fossils, s u c h a s c o m p l e t e trilobites or c r i n o i d s , p r o b a b l y resulted from s u d d e n b u r i a l of a sea floor p o p u l a tion b y m u d d y s e d i m e n t . G r e a t s t o r m s are c a p a b l e o f s h i f t i n g m a s s e s o f s e d i m e n t a r o u n d on the sea floor or s t i r r i n g it into s u s p e n s i o n , o n l y to settleout as a b l a n k e t over the b o t t o m w h e n t h e s t o r m s u b s i d e s (see c h a p t e r 4). Organisms were smothered by these events and protected from the n o r m a l T h e s e c a s e s offer t h e b e s t o p -
p o r t u n i t y t o s e e a s n a p s h o t o f O r d o v i c i a n m a r i n e life. B u t e v e n h e r e w e should b e c a u t i o u s , b e c a u s e s u c h s m o t h e r i n g e v e n t s c a n p r e s e r v e n o t o n l y o r g a n i s m s l i v i n g a t the t u n c , but also r e m a i n s l o n g d e a d a n d a c c u m u l a t e d over t i m e . I n d e e d , m a n y h i g h l y fossiliferous l i m e s t o n e b e d s i n t h e C i n c i n n a t i a n represent l o n g - t e r m ( t i m e - a v e r a g e d ) a c c u m u l a t i o n s o f s h e l l y m a t e rial a l o n g w i t h better-preserved s p e c i m e n s that w e r e b u r i e d a l i v e i n a n instantaneous event. W i t h care, these c o m p o n e n t s can be r e c o g n i z e d , so
Introduction
and
only after many
visits by grave robbers.
u s m o r e a b o u t the n a t u r e o f rare e v e n t s , s u c h a s s t o r m s , e a r t h q u a k e s , o r
cycle of scavenging, decay, and destruction.
vil-
lage but only the bodies
Thus, processes of mortality are of f u n d a m e n t a l
i m p o r t a n c e i n d e t e r m i n i n g how o r g a n i s m s are p r e s e r v e d . W h e n w e see a
must
7
t h a t w e c a n assess w h a t s p e c i e s m a d e u p the l i f e a s s e m b l a g e . T h e d e a t h a s s e m b l a g e o f r e m a i n s a l r e a d y d e a d a t t h e t i m e o f b u r i a l i s also i n f o r m a tive, b e c a u s e , like a g r a v e y a r d , it c a n record m u l t i p l e g e n e r a t i o n s a n d o c c u r r e n c e of rare s p e c i e s . T a b l e 1 lists s o m e of the most useful c h a r a c t e r i s t i c s to look for in d i s t i n g u i s h i n g fossils b u r i e d w h i l e l i v i n g from those a c c u m u lated g r a d u a l l y a s d e a d r e m a i n s . Table Life
1.
Life a s s e m b l a g e
Death assemblage
Articulation
good
disarticulated
Breakage
rare
common
Abrasion
rare
common
Preserved in life position
maybe
not
Size-sorting
uncommon
possible
Characteristics of
Assemblages
Death
and
Assemblages
History
often
If, in light of t h e f o r e g o i n g d i s c u s s i o n , t h e reader is not fully c o n v i n c e d of the e x t r e m e rarity o f f o s s i l i z a t i o n and t h e u n i q u e n e s s o f the f o s s i l r i c h n e s s o f t h e C i n c i n n a t i a n strata, t h e f o l l o w i n g s e c t i o n s h o u l d p r o v i d e a d d i t i o n a l
. . . our search for a mechanism range
forces us
far beyond
Cincinnati consider
region the
the ...
P e r i o d , 450 m i l l i o n years a g o , the r e m a i n s o f m a r i n e a n i m a l s w e r e b u r i e d
the and
geologic
tory of much North
f o o d for t h o u g h t . S u b s e q u e n t t o life a n d d e a t h d u r i n g the L a t e O r d o v i c i a n
to
in s e d i m e n t . W o r l d w i d e , a great many fossils from very a n c i e n t P a l e o z o i c his-
of eastern
America,
especially
continental
collisions
referred to as the
Taconic,
Acadian,
Alleghenian
strata are p o o r l y p r e s e r v e d b e c a u s e t h e y h a v e suffered g r e a t l y f r o m t h e ravages of t i m e — c h e m i c a l and physical modifications o c c u r r i n g d u r i n g and alter burial. T h e s e c h a n g e s , technically k n o w n as d i a g e n e s i s , include d i s s o l u t i o n o f o r i g i n a l shell m a t e r i a l , w i t h o r w i t h o u t r e p l a c e m e n t b y o t h e r m i n e r a l s , p e r v a s i v e r e c r y s t a l l i z a t i o n of the r o c k , w i t h partial or c o m p l e t e
and
obliteration of fossil contents, or c r u s h i n g and deformation of fossils during
orogenies.
c o m p a c t i o n o f t h e e n c l o s i n g s e d i m e n t s , f o s s i l s that s u r v i v e d i a g e n e t i c Paul E. P o t t e r 1996, 71
d a m a g e a t low t e m p e r a t u r e s m a y b e later d e s t r o y e d b y a c t u a l m e t a m o r p h i s m , i n w h i c h d e e p l y b u r i e d strata are h e a t e d , r e c r y s t a l l i z e d , a n d d e formed to varying degrees.
M e t a m o r p h i c processes transform primary
s e d i m e n t a r y r o c k s s u c h as s h a l e s into slates, l i m e s t o n e s into m a r b l e , and s a n d s t o n e s into q u a r t z i t e , a c c o m p a n i e d b y n e a r l y total obliteration o f fossils a n d o t h e r p r i m a r y f e a t u r e s of t h e s e d i m e n t . M e t a m o r p h i s m is associated with d e e p b u r i a l by o v e r l y i n g strata, or m o u n t a i n - b u i l d i n g p r o c e s s e s o f t e c t o n i c s , i n c l u d i n g f o l d i n g , f a u l t i n g , s h e a r i n g , a n d v o l c a n i c activity. T h e pristine quality of m a n y C i n c i n n a t i a n fossils is clear e v i d e n c e that they h a v e u n d e r g o n e very little d i a g e n e t i c alteration and no m e t a m o r p h i c c h a n g e over their l o n g burial since the O r d o v i c i a n . How c o u l d these fossils have survived with so little alteration over s u c h a vast span of time? T h e a n swer is " l o c a t i o n - l o c a t i o n - l o c a t i o n " and the history of the C i n c i n n a t i A r c h . B e c a u s e t h e C i n c i n n a t i region is located inland from the c o n t i n e n t a l m a r g i n s , it is far distant from regions that h a v e u n d e r g o n e intense d e f o r m a tion and m e t a m o r p h i s m over the c o u r s e of t i m e . The closest d e f o r m e d strata of the A p p a l a c h i a n t e c t o n i c z o n e lie a b o u t 200 m i l e s to the southeast (Pine M o u n t a i n , T e n n e s s e e ) , a n d m e t a m o r p h o s e d rocks are e v e n farther (the
8
A Sea without Fish
Figure 1. 5.
Axis of the
Cincinnati Arch branches, Arch
(through
the
Kankakee
(through
and its
the Findlay Ohio) and Arch
Indiana).
Shaded areas
depict
of Ordovician
bed-
rock;
heavy lines
indicate
Silurian-Devonian that defines and
G r e a t S m o k i e s and Blue R i d g e o f T e n n e s s e e ) . F u r t h e r m o r e , the U p p e r O r d o v i c i a n strata o f the C i n c i n n a t i r e g i o n w e r e n e v e r b u r i e d d e e p l y b e n e a t h y o u n g e r s e d i m e n t a r y strata. A t t h e close o f O r d o v i c i a n t i m e i n t h e r e g i o n , there is e v i d e n c e that the seas b e c a m e very shallow, the sea floor p e r h a p s e x p o s e d subacrially (above sea level), p r o d u c i n g a g a p in t h e stratal record k n o w n a s a n u n c o n f o r m i t y . S u b s e q u e n t s e d i m e n t a t i o n from the S i l u r i a n through P e n n s v l v a n i a n Periods (a span of 150 m i l l i o n years) was again subm a r i n e , but mostly of very shallow water o r i g i n s . A f t e r t h e P e n n s y l v a n i a n Period (about 290 m i l l i o n years ago), there is no record of f u r t h e r m a r i n e s e d i m e n t a t i o n in all of O h i o . A l t o g e t h e r , the total t h i c k n e s s of strata d e p o s ited over the O r d o v i c i a n m a y h a v e b e e n 3 0 0 - 6 0 0 m e t e r s (1000-2000 feet) a t m o s t (Potter 2007). I n d i c a t i o n s of s h a l l o w i n g , retreating seas s u g g e s t that the C i n c i n n a t i region was u n d e r g o i n g r e g i o n a l uplift, b e c a u s e m a r i n e deposits are thicker t o the east and west t h a n those closer t o C i n c i n n a t i . O n t h e c o n tinental scale as w e l l , e p i c o n t i n e n t a l seas retreated by the e n d of t h e P a l e o zoic, o n l y t o return d u r i n g the M e s o z o i c , but farther west t h a n O h i o . T h e r e g i o n a l uplilt that a f f e c t e d the C i n c i n n a t i r e g i o n w a s p a r t o f a broad z o n e c a l l e d the C i n c i n n a t i A r c h , t r e n d i n g n o r t h - s o u t h a n d s p l i t t i n g just n o r t h of C i n c i n n a t i into the n o r t h e a s t e r l y - t r e n d i n g F i n d l a y A r c h a n d t h e n o r t h w e s t e r l y - t r e n d i n g K a n k a k e e A r c h ( F i g u r e 1. 5).
The term " a r c h "
i m p l i e s a n u p w a r p i n g o f the E a r t h ' s c r u s t , b u t a n y o n e w h o h a s n o t i c e d t h e
Introduction
out-
crop
9
contact
the Findlay
Kankakee
branches.
Figure 1. 6. east-west from
Diagrammatic
cross
across Ohio.
the to
w e s t w a r d f r o m C i n c i n n a t i that w e e n c o u n t e r g e o l o g i c a l l y y o u n g e r strata
Indiana
o v e r l y i n g t h e O r d o v i c i a n strata a l o n g t h e a x i s o f t h e A r c h , a n d t h e c h a r a c -
Cincinnati
near Portsmouth,
From Potter (1996)
and
reprinted
sion
of the
Geological
strata o f l i m e s t o n e a n d s h a l e e x p o s e d i n r o a d c u t s a r o u n d C i n c i n n a t i has s e e n e s s e n t i a l l y h o r i z o n t a l layers. It is o n l y w h e n we travel e a s t w a r d or
near Bedford in
south-central Arch
section
by permis-
ter o f t h e A r c h a s a v e r y g e n t l e , b r o a d u p w a r p i n g b e c o m e s a p p a r e n t . T h e tilt or d i p of the strata across the A r c h is u s u a l l y less t h a n o n e d e g r e e , or f o u r to s e v e n feet p e r m i l e , in H a m i l t o n C o u n t y (Potter 1996). O v e r a dist a n c e o f a b o u t 8 0 k m (50 m i l e s ) cast a n d w e s t o f C i n c i n n a t i , a cross-section
Kentucky
t h r o u g h t h e b e d r o c k s h o w s t h e s t r u c t u r e o f t h e A r c h clearly ( f i g u r e 1 . 6).
Survey.
E v e n t h o u g h t h e C i n c i n n a t i r e g i o n i s distant f r o m t h e d e f o r m e d rocks o f the A p p a l a c h i a n m o u n t a i n b e l t , t h e C i n c i n n a t i A r c h m a y h a v e resulted f r o m t h e s a m e l a r g e - s c a l e t e c t o n i c p r o c e s s e s that u p l i f t e d t h e A p p a l a c h i a n s , b e g i n n i n g i n O r d o v i c i a n t i m e . T h e r e a d e r i s referred t o Potter (2007) for f u r t h e r d i s c u s s i o n o f t h e o r i g i n o f t h e C i n c i n n a t i A r c h . B e c a u s e uplift c o n t i n u e d a l o n g the axis of the C i n c i n n a t i A r c h , it was c o n t i n u a l l y e r o d e d , stripping a w a y strata l y i n g a b o v e the O r d o v i c i a n , prev e n t i n g their d e e p b u r i a l . D u r i n g t h e past t w o m i l l i o n years, the glaciers o f the P l e i s t o c e n e E p o c h c o v e r e d m o s t o f O h i o a n d t h e ice sheet scraped a w a y r e m a i n i n g o v e r b u r d e n or w a s h e d it away- as the ice m e l t e d , c o m p l e t i n g the e x p o s u r e of O r d o v i c i a n strata at the surface. By these processes, b e g u n virtually a t the s a m e t i m e t h e O r d o v i c i a n seas c o v e r e d the C i n c i n n a t i r e g i o n , s e d i m e n t s a n d fossils deposited t h e n w e r e n e v e r d e e p l y b u r i e d and d e f o r m e d , a n d b e c a m e e x p o s e d over a broad belt t h r o u g h the region.
The significant
c o n s e q u e n c e is that the entire C i n c i n n a t i A r c h region has o n e of the most e x t e n s i v e s u r f a c e e x p o s u r e s o f U p p e r O r d o v i c i a n strata i n N o r t h A m e r i c a , i f n o t t h e entire world. N a t u r a l e x p o s u r e s ( o u t c r o p s ) in s t r e a m b e d s and the sides of valleys ( F i g u r e 1. 7 A ) and h u m a n - m a d e e x p o s u r e s , m a i n l y as roadcuts
10
A Sea without Fish
Figure
1. 7.
Streambed
A.
Natural exposure of Cincinnatian strata in the bed of Stonelick Creek,
outcrops
have
wide surfaces
about fossil distribution and orientation. by participants in a
1981
Here,
the
beds
(bedding
fossil-rich
Limestone (Maysvillian Stage).
B.
Clermont County,
that provide
west of Maysville,
Mason County,
(Edenian Stage) Kope Formation,
Photo by Paul E.
Ohio.
information
exposed and examined
One of the most extensive roadcut
1. 3 km (0. 8 miles) in length and about 75 m (250 ft) high,
leading to the Ohio River,
posed are the lower Cincinnatian
planes)
Bellevue Limestone is
Geological Society of America field trip.
exposures of Cincinnatian strata, Route 3071,
of fossiliferous
Kentucky.
and the highest strata are
Potter.
Introduction
11
along Kentucky
The lowest strata exthe Bellevue
Figure 1. 8.
Trammel Fos-
( F i g u r e s 1. 7 B , 1. 8) a n d q u a r r i e s , p r o v i d e a c c e s s to the O r d o v i c i a n b e d r o c k
sil Park,
Sharonville,
t h r o u g h o u t the r e g i o n . In the C i n c i n n a t i A r c h region we have a truly u n i q u e
Hamilton
County,
w i n d o w to t h e p a s t — e a s y a c c e s s to a n c i e n t strata a n d fossils that e l s e w h e r e
Ohio.
This is a ten acre hillslope where
construction
posed
four
formations:
the
stone,
Fairview
Miamitown
Bellevue
s h o w s that t h e a b u n d a n c e o f fossils i n the
O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i r e g i o n i s t h e result o f m a n y i n t e r a c t i n g factors. B e c a u s e o f t h i s u n i q u e a n d f o r t u n a t e c o m b i n a t i o n o f factors, t h e C i n c i n n a t i r e g i o n b e c a m e o n e o f t h e earliest c e n t e r s o f intense interest and
Lime-
and Corryville For-
s t u d y o f fossils i n N o r t h A m e r i c a . S c o r e s o f O r d o v i c i a n fossils w e r e first
developer
d i s c o v e r e d a n d d e s c r i b e d f r o m this r e g i o n , a n d m a i n p r a c t i c e s and c o n -
Trammel donated
cepts of paleontology and geology originated from research on C i n c i n n a -
mation. R. L.
lie b u r i e d u n d e r t h o u s a n d s o f m e t e r s o f rock. T h e foregoing overview
fossiliferous
Formation, Shale,
ex-
The
the site to the City of
tian fossils a n d r o c k s . B e c a u s e t h e C i n c i n n a t i r e g i o n w a s o n e o f t h e b i r t h -
Sharonville as an
p l a c e s o f m o d e r n g e o l o g i c a l s c i e n c e , w e w i l l e x p l o r e the early history o f
tional,
educa-
geological park
s t u d y o f t h e fossils a n d r o c k s h e r e i n t h e f o l l o w i n g c h a p t e r .
where visitors can learn about
the
geology ogy.
paleontol-
The park has easy
access, and
Ordovician
and parking
includes
space,
interpretive
signage
and
in situ
fossil shell pave-
ment.
Because
abundance face
a
of the
of fossils,
collecting
specimens
protected,
is
sur-
of small permitted.
12
A Sea without Fish
Figure 2. 1.
Members of the Cincinnati School of Paleontology who were amateur paleontologists: B.
James, publisher and owner of the James Book Store. for. D. ing.
C.
B.
Dyer;
who,
after he retired as a maker of soap and candles,
Photograph of Dyer from an old album in
Davis); all others
from
A Sea without Fish
C.
A.
U.
University of Cincinnati.
P.
Charles Faber, real-
devoted himself to fossil collect-
the possession of Richard Arnold Davis (© Richard Arnold
the Department of Geology,
14
S. A. Miller, attorney.
SCIENCE IN THE HINTERLAND: THE CINCINNATI SCHOOL OF PALEONTOLOGY
T h e rocks b e n e a t h and a r o u n d C i n c i n n a t i w e r e d e p o s i t e d i n a n interval o f t i m e universally c a l l e d the O r d o v i c i a n Period. This t i m e u n i t w a s p r o p o s e d f o r m a l l y in 1879. In the s e c o n d h a l f of the n i n e t e e n t h c e n t u r y , b e g i n n i n g e v e n before the O r d o v i c i a n Period w a s n a m e d , t h e r e w a s i n the r e g i o n o f C i n c i n n a t i , Ohio, a g r o u p o f p a l e o n t o l o g i s t s w h o h a v e b e e n c a l l e d t h e " C i n cinnati S c h o o l of P a l e o n t o l o g y . " T h e r e is no s i n g l e , definitive list of the m e m bers o f the C i n c i n n a t i S c h o o l , a n d different authors h a v e i n c l u d e d different p e o p l e as m e m b e r s , d e p e n d i n g on the p u r p o s e s of their c o m p i l a t i o n s . N o r is there a definitive list of iron-clad criteria as to w h o s h o u l d be c o n s i d e r e d a m e m b e r a n d w h o should not. N o n e t h e l e s s , the i n d i v i d u a l s i n c l u d e d i n the bod) of this chapter have a n u m b e r of characteristics in c o m m o n . First, t h e y w e r e all s e r i o u s c o l l e c t o r s o f l o c a l fossils. B u t t h e y w e n t b e y o n d that. T h e y did n o t just a m a s s h o r d e s o f fossils. T h e y also assiduously s t u d i e d their f i n d s a n d w h e r e they f o u n d t h e m . But t h e y w e n t b e y o n d that, too. T h e y s h a r e d their finds w i t h o n e a n o t h e r , a n d t h e y s h a r e d their i n f o r m a t i o n a b o u t fossils a n d their t h i n k i n g a b o u t fossils n o t o n l y w i t h i n the l o c a l f o s s i l - c o l l e c t i n g c o m m u n i t y , b u t w i t h t h e w o r l d a s a w h o l e , through publication. A significant n u m b e r o f the m e m b e r s o f the C i n c i n n a t i S c h o o l p r o d u c e d lists o f fossils, i n d i c e s , b i b l i o g r a p h i e s , a n d o t h e r c o m p i l a t o r y w o r k s . But these are just o n e a s p e c t of an e s s e n t i a l c r i t e r i o n for i n c l u s i o n in t h e Cincinnati School, namely, publication. S e c o n d , there is a g e o g r a p h i c c o m p o n e n t . W h e t h e r b o r n in C i n c i n n a t i or not, individuals spent a significant p o r t i o n of their lives, e s p e c i a l l y their formative years, in the t y p e - C i n c i n n a t i a n o u t c r o p area. M o r e o v e r , all or m o s t of their p u b l i s h e d work was p u b l i s h e d l o c a l l y — i n scientific j o u r n a l s or in books or other p u b l i c a t i o n s that w e r e printed in the C i n c i n n a t i area. T h i r d , they all w e r e a m a t e u r s , i n t h e s e n s e that f i n d i n g a n d p u b l i s h i n g a b o u t fossils w a s not how t h e y m a d e their l i v i n g s . T h i s c r i t e r i o n is a bit difficult t o a p p l y c o n s i s t e n t l y , h o w e v e r , b e c a u s e s o m e d i d sell fossils a n d s o m e did sell b o o k s a n d o t h e r p u b l i s h e d m a t t e r . M o r e o v e r , a l u c k y f e w w e n t from h u m b l e , a m a t e u r b e g i n n i n g s i n the C i n c i n n a t i area t o b e c o m e respected m e m b e r s of t h e g e o l o g i c a n d p a l e o n t o l o g i c profession as a w h o l e . B u t e v e n they b e g a n as l o c a l a m a t e u r s . F o u r t h , there i s a t i m e - a n d - p l a c e c o m p o n e n t . T h e C i n c i n n a t i S c h o o l o f Paleontology w a s e s s e n t i a l l y a p h e n o m e n o n o f t h e p e r i o d b e t w e e n the A m e r i c a n C i v i l W a r a n d shortly after t h e s u c c e e d i n g t u r n o f t h e c e n t u r y . All o f the m e m b e r s w e r e a s s o c i a t e d w i t h t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History d u r i n g that p e r i o d (and s o m e , w i t h t h e W e s t e r n A c a d e m y o f N a t u -
15
ral S c i e n c e s that p r e c e d e d t h e s o c i e t y ) . I n p r e s e n t - d a y " b u z z - w o r d " t e r m i nology, they comprised a " l e a r n i n g c o m m u n i t y . " They worked together; t h e y s h a r e d r e s o u r c e s ; t h e y c o m m u n i c a t e d with o n e a n o t h e r ; t h e y e n c o u r a g e d o n e a n o t h e r ; t h e y c o m p e t e d a g a i n s t o n e a n o t h e r . A b o v e all, t h e y s t i m u l a t e d o n e a n o t h e r to p e r f o r i n at a h i g h e r level t h a n t h e y o t h e r w i s e m i g h t h a v e d o n e . T h e w h o l e w a s m o r e t h a n t h e s u m o f its parts. T h e r e w a s true synergism in the C i n c i n n a t i S c h o o l of Paleontology. A l t h o u g h c a l l e d a s c h o o l , t h e C i n c i n n a t i S c h o o l w a s n o t o n e , nor did i t h a v e a n y f o r m a l r e l a t i o n s h i p w i t h a n y c o l l e g e o r university. ( T h e U n i v e r sity o f C i n c i n n a t i , a s s u c h , w a s n o t f o u n d e d u n t i l 1870, a n d t h e r e w a s n o D e p a r t m e n t o f G e o l o g y t h e r e u n t i l t h e first d e c a d e o f t h e t w e n t i e t h c e n tury, w h e n t h e D e p a r t m e n t o f G e o l o g y a n d G e o g r a p h y w a s initiated. ) But w e n e e d t o p u t the C i n c i n n a t i S c h o o l into m o r e o f a n historical p e r s p e c t i v e . I n the s e c o n d d e c a d e o f t h e n i n e t e e n t h c e n t u r y , C i n c i n n a t i was t h e largest city w e s t of t h e A l l e g h e n i e s , a n d a l o c a l p h y s i c i a n , D a n i e l D r a k e , figured that the city n e e d e d a f i r s t - c l a s s m u s e u m . H e n c e , h e s p e a r h e a d e d t h e e s t a b l i s h m e n t o f t h e W e s t e r n M u s e u m . A s part o f t h e preparations for t h e o p e n i n g o f t h e n e w m u s e u m , a t a x i d e r m i s t a n d artist n a m e d John James A u d u b o n w a s h i r e d a n d w o r k e d for t h e o r g a n i z a t i o n for a b o u t a year, before m o v i n g o n e v e n t u a l l y t o b e c o m e t h e m o s t f a m o u s bird artist the U n i t e d States has p r o d u c e d . In a n y c a s e , t h e W e s t e r n M u s e u m o p e n e d in 1820. U n f o r t u n a t e l y , t h e r e w a s a d e p r e s s i o n in t h e 1820s, a n d t h e W e s t e r n M u s e u m fell u p o n h a r d t i m e s . T o m a k e m a t t e r s w o r s e , D r . D r a k e h a d left t h e a r e a . A l t h o u g h a b l e t o c o n t i n u e its o p e r a t i o n s , t h e W e s t e r n M u s e u m s a n k t o b e i n g little m o r e t h a n a c h a m b e r o f horrors. D a n i e l D r a k e r e t u r n e d t o t h e a r e a i n t h e 1830s. H e still f i g u r e d that t h e city n e e d e d a f i r s t - c l a s s m u s e u m , s o h e s p e a r h e a d e d t h e e s t a b l i s h m e n t o f t h e W e s t e r n A c a d e m y o f N a t u r a l S c i e n c e s . B y the t i m e the ink w a s dry o n t h e d o c u m e n t s i g n e d a t A p p o m a t t o x C o u r t H o u s e that e n d e d t h e A m e r ican C i v i l War, the W e s t e r n A c a d e m y of Natural S c i e n c e s was m o r i b u n d , a n d t h e W e s t e r n M u s e u m w a s little m o r e t h a n a c o l l e c t i o n o f c u r i o s i t i e s a n d a c h a m b e r of horrors. In the late 1860s the c u l t u r a l a n d civic leaders of C i n c i n n a t i figured that the city n e e d e d a f i r s t - c l a s s m u s e u m , a n d t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History w a s established in 1870. A b o u t a year after the f o u n d i n g of the C i n c i n nati S o c i e t y o f N a t u r a l History, the h a n d f u l o f r e m a i n i n g m e m b e r s o f the old W e s t e r n A c a d e m y of N a t u r a l S c i e n c e s d e c i d e d to transfer all the assets of the a c a d e m y to t h e n e w society, i n c l u d i n g its m o n e y , s p e c i m e n s , and library. In r e t u r n , t h e m e m b e r s o f the a c a d e m y w e r e t o b e m e m b e r s o f t h e society for life. T h u s c a m e into b e i n g the C i n c i n n a t i S o c i e t y o f N a t u r a l History that was a part of t h e lives of all t h e m e m b e r s of the C i n c i n n a t i S c h o o l . H e r e f o l l o w s a n a c c o u n t o f e a c h o f t h o s e m e m b e r s . (In a p p e n d i x 2 are briefer e n t r i e s for o t h e r i n d i v i d u a l s w h o h a d c o n n e c t i o n s w i t h t h e t y p e C i n c i n n a t i a n a r e a , w i t h its r o c k s a n d fossils, o r w i t h b o t h . S o m e o f t h e s e p e o p l e o c c a s i o n a l l y h a v e b e e n referred t o a s m e m b e r s o f t h e C i n c i n n a t i School.)
16
A Sea without Fish
Figure 2. 2 an
A.
C o v e r of
7 8 4 9 publication of
the
Western
Natural
Academy of
Sciences
pub-
lished by U. P. James, a member
of the
School
of
Cincinnati
Paleontology, B.
and his brother. Cover
of
the
Quarterly Science,
Journal volume
num-
1874, by S. A. Miller,
member of the
nati
School
ogy.
C.
Journal nati
Cincin-
of PaleontolCover of the
of
the
Society
of
History,
volume
ber 7.
D.
CincinNatural 1,
num-
Cover of The
Paleontologist, 4,
of 1,
7, published in Janu-
ber ary, a
Cincinnati
Number
published in July
1879
by U. P. James, a member of the of
U r i a h Pierson James ( F i g u r e 2.1 A) w a s born in t h e state o f N e w Y o r k in 1811,
U. P. James
the son of a c a r p e n t e r . In 1831 he a n d his b r o t h e r , J o s e p h , t r a v e l e d to C i n c i n n a t i , w h e r e U. P. w o r k e d as a printer. By t h e e n d of t h e 1840s he w a s a publisher and the proprietor of t h e J a m e s B o o k Store. In the s h o p he always stocked the latest i n g e o l o g i c a l b o o k s , a n d h e d i s p l a y e d fossils i n t h e windows. U. P. James was very a c t i v e in the i n t e l l e c t u a l life of C i n c i n n a t i . He served a t e r m as p r e s i d e n t a n d w a s l o n g - t i m e t r e a s u r e r of t h e W e s t e r n A c a d e m y o f N a t u r a l S c i e n c e s . W h e n C h a r l e s L y e l l , p r o b a b l y t h e foremost
Science in the Hinterland
Cincinnati School
Paleontology.
17
Figure 2.3.
A.
Albert Gallatin
Wetherby was professor of natural history at the University of Cincinnati be-
fore he relocated to Harvard University and malacology. Woodward High School, M. Nickles. Ulrich, Bassler).
C.
where he
George W.
Harper,
"Friendly enemies": left to right, August F. Foerste, Amadeus W.
during the International Geological Congress in Photograph
B.
Washington,
of Wetherby courtesy of the Museum
President and Fellows of Harvard College); University of Cincinnati;
"Friendly enemies,"
78
long-time principal of
facilitated the start of the careers of students Ray S.
that of Harper, from
A Sea without Fish
the
D.C,
Bassler and John
Grabau, and Edward O.
1934 (picture taken by Ray S.
of Comparative Zoology,
Harvard University (©
courtesy of the Archives and Rare Books Library,
Department of Geology,
University of Cincinnati.
Figure 2.4.
Field work in the early days.
exposure of the Kope Formation,
Cincinnati,
and Point Pleasant Formations on exposures are now underwater. seum of Natural History,
A.
John M. Nickles (left) and Ray S. Bassler, collecting from an
Ohio,
1900.
B.
E.
O.
Ulrich at the contact between the Kope
the banks of the Ohio River below Covington,
(A and B
Smithsonian
from Bassler Archive,
Institution,
Washington,
Kentucky,
Department of Paleobiology,
D.C,
1901.
courtesy of JoAnn Sanner.)
Science in the Hinterland
19
These
National Mu-
Figure
2.5.
Four Cincinnatians
Professor, Yale University. National Museum. ology,
D.
who became leading professional paleontologists.
B. John M. Nickles, U. S. Geological Survey, E.
O.
Ulrich,
U. S.
University of Cincinnati.)
20
A Sea without Fish
Geological Survey.
1942.
A. C.
Charles Schuchert,
Ray S. Bassler, U. S.
(All photographs from the Department of Ge-
Figure 2.6. crops in where
Urban out-
Cincinnati,
members
Cincinnati
of the
School
found
their inspiration.
A.
Bellevue House, site
on
The the
of the present Belle-
vue Hill Park, ca.
1895.
The
section
stratigraphic
exposed the
below
Kope
spans
begins
in
Formation,
the entire Fairview
Formation
and
Miam-
itown Shale (a small "step" below crest), is
and
topped by the Bellevue
Limestone.
Clifton
Av-
enue runs below the posure,
was desig-
the
type section
nated as of the
ex-
which
Fairview Formation
by Ford (1967).
(Image
courtesy
Cincinnati
of
the
Historical Society
Library,
Cincinnati
Museum
ter.)
Exposure of
B.
Maysvillian
Cen-
strata
(prob-
ably Corryville and Mt. Auburn
Formations)
corner and
of
Clifton
Calhoun
(right),
at
Avenue
Street
Cincinnati,
1900.
Note, at left,
trolley car
and McMicken
Hall of
the
University of Cincin-
nati.
This exposure has
been
leveled and is pres-
ently the site of the University of Cincinnati lege of Law.
Bassler Archive, ment
of
National
hosts. A b o u t the s a m e t i m e , U . P . J a m e s b e c a m e o n e o f t h e c h a r t e r m e m -
ural History,
bers of t h e C i n c i n n a t i A s t r o n o m i c a l S o c i e t y ( a c c o r d i n g to a list at t h e
Institution,
C i n c i n n a t i O b s e r v a t o r y , F e b r u a r y 11, 2007). H e w a s o n e o f t h e s u r v i v i n g
D.C,
m e m b e r s o f the W e s t e r n A c a d e m y w h e n i t w a s d i s s o l v e d a n d its assets w e r e d o n a t e d t o the C i n c i n n a t i Society- o f N a t u r a l History i n 1872, w h e r e u p o n he b e c a m e a lite m e m b e r in the society. U. P. James's fossil c o l l e c t i o n w a s widely r e n o w n e d . L o u i s A g a s s i z , o n e o f the foremost p a l e o n t o l o g i s t s i n this c o u n t r y , visited C i n c i n n a t i , a n d , after s e e i n g James's c o l l e c t i o n , p r o c l a i m e d it o n e of the finest he had ever s e e n . James's favorite f o s s i l s s e e m t o h a v e b e e n b r y o z o a n s , w h i c h h e c o n -
Science in the Hinterland
21
Depart-
Paleobiology,
g e o l o g i s t in the w o r l d , visited C i n c i n n a t i in t h e 1840s, J a m e s w a s o n e of his
Museum
of Nat-
Smithsonian Washington,
courtesy
Sanner.)
Col-
(From the
of JoAnn
sidered t o b e c o r a l s . M a n y o f t h e t y p e - s p e c i m e n s i n his c o l l e c t i o n e n d e d u p a t t h e U n i t e d States N a t i o n a l M u s e u m ; o t h e r m a t e r i a l w e n t t o t h e U n i versity o f C h i c a g o a n d t o t h e U n i v e r s i t y o f C i n c i n n a t i . N o t o n l y w a s J a m e s t h e a u t h o r o f m a n y p a p e r s a b o u t l o c a l fossils, b u t h e w a s t h e p u b l i s h e r o f m a n y o t h e r s . I n d e e d , J a m e s w a s the p u b l i s h e r o f t h e j o u r n a l The Paleontologist ( F i g u r e 2.2), w h i c h ran for s e v e n n u m b e r s , b e g i n n i n g i n 1879. H e a l s o p u b l i s h e d a c a t a l o g u e o f C i n c i n n a t i freshwater mussels and another of local plants. U. P. J a m e s retired f r o m t h e b o o k s t o r e b u s i n e s s in 1886. He d i e d in 1889 a n d w a s b u r i e d i n C i n c i n n a t i ' s b e a u t i f u l S p r i n g G r o v e C e m e t e r y . ( B e c k e r 1938; B r a d s h a w , p e r s . c o m m . ; C a s t e r 1 9 5 1 , 1 9 8 1 , 1 9 8 2 ; C r o n e i s 1963; C u f f e y , D a v i s , a n d U t g a a r d 2002; H e n d r i c k s o n 1947; H o w e , Fisher, a n d K e e k e l e r 1889; J. F. J a m e s 1889; S h i d e l e r [1952] 2002; A n o n . 1849,1878.)
Joseph F. James
Joseph F r a n c i s J a m e s a l m o s t c e r t a i n l y w a s i n d u c t e d into the w o n d e r s o f fossil c o l l e c t i n g by his father, U. P. J a m e s (above). However, Joseph's interests i n n a t u r a l history w e r e b r o a d e r t h a n w e r e his father's; t h e son p u b l i s h e d n o t o n l y a b o u t fossils, b u t a b o u t p h y s i c a l g e o l o g y , b o t a n y , a n d o t h e r subjects. Joseph F. J a m e s b e g a n as a clerk in h i s father's b o o k s t o r e , but he bec a m e t h e f i r s t o f t h e C i n c i n n a t i S c h o o l t o g a i n professional status. H e w a s e l e c t e d to m e m b e r s h i p in t h e C i n c i n n a t i S o c i e t y of N a t u r a l History in 1876 ( C i n c i n n a t i S o c i e t y o f N a t u r a l History, 94), a n d h e l o n g was associated w i t h that i n s t i t u t i o n a s a m e m b e r , officer, staff m e m b e r , a n d a u t h o r o f p a p e r s in its j o u r n a l . A f t e r a t w o - y e a r stint in b u s i n e s s pursuits in C a l i f o r n i a a n d a d j a c e n t states, h e w a s e l e c t e d c u s t o d i a n o f t h e society i n 1881 a n d held that p o s i t i o n for six y e a r s . T h e p o s i t i o n o f c u s t o d i a n i n v o l v e d a g o o d d e a l m o r e t h a n janitorial w o r k ; i t w o u l d a p p e a r that h e w a s i n c h a r g e o f day-tod a y o p e r a t i o n s o f t h e s o c i e t y ' s b u i l d i n g . M e a n w h i l e , h e was also professor o f m e d i c a l botany a t t h e C i n c i n n a t i C o l l e g e o f P h a r m a c y . I n 1886 J a m e s w a s e l e c t e d t o t h e c h a i r o f B o t a n y a n d G e o l o g y a t M i a m i U n i v e r s i t y i n O x f o r d , O h i o , " b u t this p o s i t i o n w a s lost t w o years later t h r o u g h t h e d i s r u p t i o n o f t h e f a c u l t y a r i s i n g from r e l i g i o u s p r e j u d i c e s " ( G i l b e r t 1898, 2). " W h e n r e l i g i o u s b e l i e f s w e r e u n d e r f i r e a t O x f o r d , professor J a m e s w a s a c c u s e d o f b e i n g a n a g n o s t i c a n d d e f e n d e d a s b e i n g e s s e n tially a U n i t a r i a n . So far as I k n e w it, his r e l i g i o n w a s an u n s w e r v i n g d e v o tion to s c i e n c e " ( G i l b e r t 1898, 3). F o r o n e y e a r , h e w a s professor o f n a t u r a l history a t t h e A g r i c u l t u r a l C o l l e g e o f M a r y l a n d , d u r i n g w h i c h t i m e h e also did w o r k for the U n i t e d States G e o l o g i c a l S u r v e y .
T h e n , i n 1889 J a m e s w a s a p p o i n t e d assistant
p a l e o n t o l o g i s t w i t h t h e U n i t e d States G e o l o g i c a l S u r v e y i n t h e D i v i s i o n o f P a l e o z o i c P a l e o n t o l o g y , i n W a s h i n g t o n , D . C . T w o years later, h e b e c a m e assistant v e g e t a b l e p a t h o l o g i s t w i t h t h e U . S . D e p a r t m e n t o f A g r i c u l t u r e , a l s o i n W a s h i n g t o n , D . C , a n d served i n that p o s i t i o n for four years. D u r i n g t h o s e four y e a r s , J a m e s d e v o t e d his e v e n i n g s t o the study o f m e d i c i n e a n d graduated with a m e d i c a l d e g r e e from C o l u m b i a n University (now G e o r g e W a s h i n g t o n U n i v e r s i t y ) i n 1895. H e s p e n t t h e w i n t e r o f 1895-1896 i n N e w
22
A Sea without Fish
York and L o n d o n d o i n g hospital w o r k a n d b a c t e r i o l o g i c a l study, after w h i c h h e set u p i n m e d i c a l p r a c t i c e i n H i n g h a m , M a s s a c h u s e t t s . Joseph K James w a s a prolific a u t h o r , n o t o n l y in p a l e o n t o l o g y , b u t a l s o i n g e o l o g y a n d botany. N o t c o u n t i n g m a n y items i n n e w s p a p e r s a n d m a g a z i n e s , his o u t p u t a m o u n t e d t o w e l l o v e r o n e h u n d r e d s c i e n t i f i c p a p e r s a b o u t e q u a l l y spread a m o n g t h o s e t h r e e a r e a s , a l o n g w i t h a n u m b e r o f others o n m i s c e l l a n e o u s s u b j e c t s . S o m e o f his p a l e o n t o l o g i c p a p e r s w e r e c o - a u t h o r e d with his lather, U.P. James. The y o u n g e r J a m e s w a s t h e a u t h o r or c o - a u t h o r of a n u m b e r of taxa in the t y p e - C i n c i n n a t i a n , a n d at least o n e was n a m e d after h i m . Joseph F . James died o n M a r c h 2 9 , 1 8 9 7 , i n H i n g h a m , M a s s a c h u s e t t s , and his ashes w e r e b u r i e d i n C i n c i n n a t i ' s S p r i n g G r o v e C e m e t e r y . ( B e c k e r 1938; Caster 19S2; C r o n e i s 1963; C u f f e y , D a v i s , a n d U t g a a r d 2002; G i l b e r t 1898; S h i d e l e r [1952] 2002; A n o n . 1 8 7 9 , 1 8 8 2 , 1 8 8 5 b , 1886a.)
C h a r l e s Brian D y e r ( F i g u r e 2.1D) w a s b o r n on April 1, 1806, n e a r D u d l e y Castle, Worcestershire,
England.
C. B. Dyer
H a v i n g h a d t o s u p p o r t h i m s e l f a n d his
m o t h e r , h e h a d little f o r m a l e d u c a t i o n , i f any. H e c a m e t o C i n c i n n a t i i n 1828 and set up as a m a n u f a c t u r e r of s o a p a n d c a n d l e s . A r o u n d 1850, h a v i n g m a d e w h a t h e c o n s i d e r e d t o b e a s u f f i c i e n t s u m , h e retired a n d d e v o t e d h i m s e l f t o fossil c o l l e t i n g . D y e r was one of the original m e m b e r s of the C i n c i n n a t i Society of N a t u r a l History, and he c o - a u t h o r e d p a p e r s w i t h S. A. M i l l e r (see b e l o w ) . O n e o f t h e s e w a s t h e r e p o r t o f a c o m m i t t e e o n the g e o l o g i c a l n o m e n c l a ture o f the t y p e - C i n c i n n a t i a n a p p o i n t e d b y t h e s o c i e t y (S. A . M i l l e r e t al. 1879); o f t h e ten m e m b e r s o f that c o m m i t t e e , six o f t h e i n d i v i d u a l s are g e n e r a l l y r e c o g n i z e d a s m e m b e r s o f t h e C i n c i n n a t i S c h o o l , a n d all o f t h e m have b e e n listed in o n e p l a c e or a n o t h e r as c o l l e c t o r s of l o c a l fossils. However, it is for his a v i d c o l l e c t i n g of fossils that C. B. D y e r is best remembered. As a young m a n , he enjoyed hunting, but upon retirement h e a b a n d o n e d the g u n i n favor o f t h e h a m m e r — a n d live g a m e i n favor o f l o n g - d e a d fossils. He was a w e l l - k n o w n c o l l e c t o r of fossils d u r i n g his lifet i m e , to the extent that, in the 1870s, fossils from his c o l l e c t i o n w e r e figured i n p u b l i c a t i o n s o f the O h i o a n d N e w York G e o l o g i c a l S u r v e y s a n d e l s e w h e r e (Hall 1872a, b; M e e k 1872a, b, 1873). In 1880 his p e r s o n a l c o l l e c t i o n , w h i c h w e i g h e d m o r e t h a n 17,000 p o u n d s (!), w a s sold to Harvard U n i v e r s i t y for its M u s e u m o f C o m p a r a t i v e Z o o l o g y . " T h e a r r a n g e m e n t s for this fortunate d i s p o s i t i o n o f i m p o r t a n t s c i e n t i f i c m a t e r i a l a p p a r e n t l y w e r e m a d e possible by N a t h a n i a l S o u t h g a t e S h a l e r " ( C r o n e i s 1963, 82). However, C. B. D y e r is not o n l y k n o w n for his c o l l e c t i n g a c t i v i t i e s in the local area. A r o u n d 1857 he b e c a m e interested in t h e b e d s at C r a w f o r d s ville, I n d i a n a , f a m o u s for C a r b o n i f e r o u s c r i n o i d s , a n d h e m a d e e x t e n s i v e e x c a v a t i o n s there. H e also t r a d e d O r d o v i c i a n fossils f r o m t h e C i n c i n n a t i region to the Hovey M u s e u m at W a b a s h C o l l e g e , in Crawfordsville. T h e c r i n o i d c o l l e c t i o n t h e r e b y a s s e m b l e d b y D y e r w a s sold b y h i m t o t h e British M u s e u m o f N a t u r a l History, a n d i t w a s t h e first large g r o u p o f s p e c i m e n s f r o m C r a w f o r d s v i l l e t o b e sent a b r o a d ( V a n S a n t a n d L a n e 1964).
Science in the Hinterland
23
T h r o u g h his w o r k w i t h S . A . M i l l e r , C . B . D y e r was i n v o l v e d i n the n a m i n g o f m a n y taxa o f l o c a l fossils, i n c l u d i n g a n n e l i d w o r m s , b r y o z o a n s , s n a i l s , s p o n g e s , starfish a n d o t h e r e c h i n o d e r m s , trace fossils, a n d o t h e r s . M o r e o v e r , at least o n e g e n u s and t w e l v e s p e c i e s of fossils w e r e n a m e d after h i m , including the w e l l - k n o w n species of crinoids originally designated Glyptocrinus
dyeri
M e e k , 1872, now a s s i g n e d to Pycnocrinus.
A c c o r d i n g to records at C i n c i n n a t i ' s Spring G r o v e C e m e t e r y , C. B. D y e r d i e d o n July 11, 1883, i n H a r r i s o n , O h i o , n e a r C i n c i n n a t i . ( B e c k e r 1938; B y r n e s et al. 1883; C a s t e r 1982; C r o n e i s 1963; S. A. M i l l e r and D y e r 1878a, 1878b; R a y m o n d 1936; S h e r b o r n 1940; S h i d e l e r [1952] 2002.)
S. A. Miller
S a m u e l A l m o n d M i l l e r ( F i g u r e 2.1B) i s c e r t a i n l y the most i m p o r t a n t o f the " a m a t e u r s " o f t h e C i n c i n n a t i S c h o o l . H e was b o r n n e a r A t h e n s , O h i o , i n 1837. By profession he w a s a l a w y e r ; he h a d s t u d i e d at the C i n c i n n a t i L a w C o l l e g e a n d w a s a d m i t t e d to t h e bar in 1860. S . A . M i l l e r w a s a l s o i n v o l v e d i n p u b l i s h i n g . I n 1861-1862 h e p u b l i s h e d t h e M a r i e t t a , O h i o , Republican, w h i c h , i n t e r e s t i n g l y e n o u g h , w a s a D e m o c r a t i c n e w s p a p e r . In 1874 a n d 1875, he w a s t h e p r o p r i e t o r of the Cincinnati Quarterly journal of Science; many important papers on Cincinnatian fossils were published in that journal. After two years or so, Miller (and L. M. Hosea, w h o had b e c o m e co-proprietor) ceased production of the journal alter eight n u m b e r s had a p p e a r e d . W h e n the C i n c i n n a t i Society o f N a t u ral History c o m m e n c e d its o w n j o u r n a l in 1878, it was rather s i m i l a r to M i l l e r ' s d e f u n c t o n e . T h i s i s hardly s u r p r i s i n g g i v e n that M i l l e r had b e e n a f o u n d i n g m e m b e r o f the society a n d had b e e n c a m p a i g n i n g f o r the society t o p u b l i s h its o w n j o u r n a l ( A n o n . 1875). A s a n a c t i v e m e m b e r o f the society, he s e r v e d at v a r i o u s t i m e s as v i c e p r e s i d e n t , p r e s i d e n t , c u r a t o r of p a l e o n t o l o g y , a n d an e d i t o r of their j o u r n a l , in a d d i t i o n to p r e s e n t i n g pap e r s a t t h e i r m e e t i n g s . S . A . M i l l e r w a s o n e o f a c o m m i t t e e o f ten e s t a b l i s h e d b y the society t o c o n s i d e r t h e g e o l o g i c a l n o m e n c l a t u r e o f the t y p e C i n c i n n a t i a n , a n d he w a s t h e first a u t h o r of their report (S. A. M i l l e r et al. 1879). A s i n d i c a t e d i n t h e s e c t i o n a b o u t C . B . D y e r a b o v e , six o f the indiv i d u a l s o n that c o m m i t t e e are g e n e r a l l y r e c o g n i z e d a s m e m b e r s o f t h e C i n c i n n a t i S c h o o l , a n d all of t h e m h a v e b e e n listed in o n e p l a c e or a n o t h e r as c o l l e c t o r s of l o c a l fossils. M i l l e r was a c t i v e e l s e w h e r e i n t h e c o m m u n i t y , too. H e s e r v e d o n t h e l o c a l s c h o o l b o a r d , ran for t h e U. S. S e n a t e , a n d also for c i r c u i t c o u r t j u d g e . He did not w i n his e l e c t i o n s , h o w e v e r ; it s e e m s that he refused to take a n y contributions. In 1882 M i l l e r w a s c o n s i d e r e d for t h e p o s i t i o n of O h i o state g e o l o g i s t , to s u c c e e d John S t r o n g N e w b e r r y .
Edward
O r i o n actually got the job.)
M i l l e r w a s a w a r d e d a n honorary d o c t o r a t e b y O h i o U n i v e r s i t y , w h e r e , years b e f o r e , he h a d b e e n a s t u d e n t for o n e year. M i l l e r p r o d u c e d a great many p u b l i c a t i o n s d e v o t e d to fossils, often co-authored with other Cincinnati-area collectors, such as C. B. Dyer and C h a r l e s Faber. L a e l Bradshaw c o n c l u d e d that M i l l e r n a m e d oyer 1000 taxa ( B r a d s h a w , pers. c o m m . ) . But M i l l e r is p e r h a p s best k n o w n for his c o m p i l a -
24
A Sea without Fish
tions of k n o w l e d g e : The American can
Mesozoic
American Scientists
and
Cenozoic
Geology and
(1889,
Palaeozoic Fossils
Geology
and
Palaeontology for the
with s u p p l e m e n t s in
1892
(1877),
Palaeontology
Use of Amateurs,
and
1897).
North Ameriand
(1881),
Students,
North and
' T h e last v o l u m e listed,
according to K e n n e t h Caster, is probably the most used v o l u m e about A m e r i c a n p a l e o n t o l o g y e v e r c o m p i l e d a n d c e r t a i n l y w a s the m o s t a m b i tious private p u b l i c a t i o n in p a l e o n t o l o g y ever. M i l l e r ' s c o m p i l a t o r y works w e r e l o o k e d d o w n u p o n b y m o s t professionals, b u t w e r e used by t h e m n o n e t h e l e s s . C a s t e r r e c o u n t e d a story a b o u t his professor, G . D . H a r r i s , t o t h e e f f e c t that Harris's o w n professor, H e n r y S h a l e r W i l l i a m s , was d i s d a i n f u l o f M i l l e r ' s w o r k s . I n C a s t e r ' s w o r d s : " ' Y e t , ' said
Harris,
' M i l l e r ' s g r e a t North American
Geology and Paleontology w a s
a l w a y s o n W i l l i a m s ' desk, a n d o n t h e desk o f e v e r y o t h e r p a l e o n t o l o g i s t o f the l a n d ! ' " ( C a s t e r 1982, 24). N o r did S . A . M i l l e r c o n f i n e his w o r k t o fossils f r o m t h e C i n c i n n a t i region. H e also w o r k e d o n t h o s e o f Illinois, M i s s o u r i , a n d W i s c o n s i n . M i l l er's fossil c o l l e c t i o n m u s t h a v e b e e n fantastic: o n e n e w s p a p e r a c c o u n t reported that it c o n t a i n e d o v e r a m i l l i o n s p e c i m e n s ! A c c o r d i n g to B r a d s h a w , he rose early a n d w o r k e d on fossils u n t i l 10 AM, t h e n w e n t to his law office until s u p p e r ; after s u p p e r he w o r k e d a c o u p l e m o r e h o u r s on fossils. T h i s s c h e d u l e must have taken its toll, for C a s t e r r e c o r d e d that M i l l e r was addicted to drink. A c c o r d i n g to the late W a l t e r B u c h e r , o n e - t i m e professor in the D e p a r t m e n t of G e o l o g y at the University of C i n c i n n a t i : " M i l l e r often c a d g e d a quarter from an a d v o c a t e across the hall to b u y a shot of b o u r b o n " (Caster 1982, 25). C a s t e r u s e d to give an e x p a n d e d version of t h e story: w h e n thirsty for a d r i n k . M i l l e r used to go to t h e lawyer's office to borrow a quarter.
The lawyer w o u l d take a t y p e - s p e c i m e n as collateral. T h e
lawyer w a s s u p p l i e d with m o n e y from t h e W a l k e r M u s e u m i n C h i c a g o . Miller lived l o n g e n o u g h that every s p e c i m e n m a r k e d " t y p e " w e n t t o C h i c a g o . M i c h a e l S . C h a p p a r s , c u r a t o r a t the U n i v e r s i t y o f C i n c i n n a t i G e o l o g y M u s e u m in 1936, discovered that M i l l e r had not m a r k e d all his types as s u c h . H e n c e , t h e University o f C i n c i n n a t i got a b o u t h a l f o f Miller's t y p e s b y a c c i dent (Caster 1982, pers. c o m m . ) . On the o t h e r h a n d , a 1912 letter from Ray S. Bassler to C. D. W a l c o t t said that M i l l e r "sold w h e n e v e r i m p e c u n i o u s to G u r l e y " ( S h e r b o r n 1940, 97); a n d S h e r b o r n i n d i c a t e d that m o s t of M i l l e r s types were at the University of C h i c a g o in t h e c o l l e c t i o n of W. K E. G u r l e y (with w h o m M i l l e r had p u b l i s h e d a n u m b e r of scientific papers). S . A . M i l l e r w i l l e d b o t h his c o l l e c t i o n a n d his library t o t h e U n i v e r s i t y of C i n c i n n a t i . T h e library is intact, b u t is n o t e a s y to use b e c a u s e ". . . M i l l e r had b o u n d i t into v o l u m e s , the o n l y c r i t e r i o n o f o r g a n i z a t i o n b e i n g e n o u g h papers o f the s a m e p a g e - d i m e n s i o n s t o m a k e a c o n v e n i e n t l y s i z e d v o l u m e . His interests r a n g e d w i d e l y , a n d m o s t v o l u m e s are h i g h l y e c l e c t i c " (Caster 1982, 26). A c c o r d i n g t o r e c o r d 61331 a t C i n c i n n a t i ' s S p r i n g G r o v e C e m e t e r y , w h e r e he is b u r i e d , S. A. M i l l e r d i e d on D e c e m b e r 18, 1897, of " c a n c e r of liver and u r a e m i c p o i s o n i n g . " ( B r a d s h a w , pers. c o m m . ; B r a n d t a n d D a v i s
2007;
1951,1981,1982, 2002; M e r r i l l 1924;
Caster
Utgaard
pers. c o m m . ; C r o n e i s Sherborn
1940;
Anon.
1963; C u f f e y , 1875,1878.)
Davis, and
Science in the Hinterland
25
By now it has b e c o m e o b v i o u s that a n u m b e r of t h r e a d s of o u r story arc i n t r i c a t e l y i n t e r t w i n e d . V a r i o u s m e m b e r s o f t h e C i n c i n n a t i S c h o o l h a v e tie-ins w i t h t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y , with the U n i versity of C i n c i n n a t i , or w i t h b o t h . A n o t h e r t h r e a d in the skein is W o o d w a r d H i g h S c h o o l , a s w e shall see. B u t let u s follow the U n i v e r s i t y o f C i n c i n n a t i t h r e a d for a bit.
A. G. W e t h e r b y
Albert G a l l a t i n W e t h e r b y ( f i g u r e 2.3A) w a s b o r n in Pittsburgh, Pennsylvan i a , in 1833, b u t his family later m o v e d to the C l e v e l a n d , O h i o , area. Alter g r a d u a t i n g from c o l l e g e , he spent several years t e a c h i n g in a c o u n t r y s c h o o l , w i t h s u m m e r s spent f a r m i n g . In 1861 he m o v e d to C i n c i n n a t i and was app o i n t e d p r i n c i p a l o f W o o d b u r n S c h o o l , o n e o f the p u b l i c s c h o o l s i n the city, a n d spent s o m e n i n e years there. In a e u l o g y written by G e o r g e W. Harper, a n o t h e r m e m b e r of the C i n c i n n a t i S c h o o l , it is reported that Wetherby was a p p o i n t e d professor of n a t u r a l history at the t h e n n e w University of C i n c i n nati in 1870 a n d stayed there six years. However, a c c o r d i n g to the University of C i n c i n n a t i R e c o r d of M i n u t e s N o . 2, a v o l u m e in the archives of the University of C i n c i n n a t i , W e t h e r b y ' s t i m e at the university b e g a n in the a u t u m n of 1877, a n d he is listed as "Ass't. P r o f A. C. W e t h e r b y of N a t u r a l History." In January o f 1878 h e was a p p o i n t e d " C u r a t o r o f t h e M u s e u m i n the U n i v e r s i t y , " a n d in M a r c h of that year, his title w a s c h a n g e d to professor of natural history (Board o f D i r e c t o r s , University o f C i n c i n n a t i , 46, 65, 77, 8 0 , 1 0 0 , 1 1 7 ) . W e t h erby listed h i m s e l f a s " A . M . , Professor o f G e o l o g y and Z o o l o g y , U n i v e r s i t y o f C i n c i n n a t i " ( W e t h e r b y 1880, 1881). His last entry in the c a t a l o g u e s of the University of C i n c i n n a t i is for 1884-1885: "Albert G a l l a t i n W e t h e r b y , A . M . , Professor of N a t u r a l History." W e t h e r b y left the U n i v e r s i t y of C i n c i n n a t i to p u r s u e a c a r e e r in b u s i ness, f i r s t w i t h the A m e r i c a n a n d E u r o p e a n I n v e s t m e n t C o m p a n y a n d , later, a s a m a n a g e r o f s o m e t i m b e r a n d m i n i n g lands o f the Roan M l . Steel a n d Iron C o . in N o r t h C a r o l i n a . He d i e d on F e b r u a r y 15, 1902, in MagneticCity, North Carolina. Wetherby's
interests w e r e m a n y a n d v a r i e d . In a d d i t i o n to b e i n g a
s t u d e n t o f fossils, h e w a s , a t v a r i o u s t i m e s , c u r a t o r o f e n t o m o l o g y a n d c u r a for of c o n c h o l o g y at the C i n c i n n a t i Society of Natural History. He co-aut h o r e d w i t h a n o t h e r m e m b e r o f the C i n c i n n a t i S c h o o l , John M i c k l e b o r o u g h , a list o f t y p e - C i n c i n n a t i a n fossils ( M i c k l e b o r o u g h a n d W e t h e r b y 1878a, b). He a u t h o r e d a n u m b e r of o t h e r p a p e r s on fossils, e s p e c i a l l y , but n o t e x c l u s i v e l y , e c h i n o d e r m s ( W e t h e r b y 1879a, 1879b, 1880, 1881). In the first-cited of t h o s e , he n a m e d the g e n u s Enoploura, and interpreted the a n i m a l s o f that g e n u s t o b e c r u s t a c e a n s . W e t h e r b y ' s failure t o r e c o g n i z e that h e w a s d e a l i n g not w i t h c r u s t a c e a n s , but w i t h e c h i n o d e r m s , b r o u g h t d o w n o n h i m t h e w r a t h o f H e n r y W o o d w a r d o f the British M u s e u m o f Natural History. His contributions as a m e m b e r of the C i n c i n n a t i School o f P a l e o n t o l o g y n o t w i t h s t a n d i n g , m o s t o f W e t h e r b y ' s p u b l i c a t i o n s are not a b o u t p a l e o n t o l o g y , b u t rather a b o u t p r e s e n t - d a y m o l l u s c s . W e t h e r b y i s o n e o f m a n y e x a m p l e s o f the f a c t that the lives a n d careers of the m e m b e r s of the C i n c i n n a t i School were intertwined, f o r example,
26
A Sea without Fish
John M . N i c k l e s s t u d i e d u n d e r W e t h e r b y a t t h e U n i v e r s i t y o f C i n c i n n a t i , and G e o r g e W . H a r p e r w r o t e a e u l o g y a b o u t W e t h e r b y . W e t h e r b y w a s o n e o f a c o m m i t t e e o f ten w h o w r o t e a r e p o r t o n t h e g e o l o g i c a l n o m e n c l a t u r e o f the t y p e - C i n c i n n a t i a n (S. A . M i l l e r et al.
1879);
six o f t h e i n d i v i d u a l s o n
that c o m m i t t e e are g e n e r a l l y r e c o g n i z e d a s m e m b e r s o f t h e C i n c i n n a t i S c h o o l , a n d all o f t h e m h a v e b e e n listed i n o n e p l a c e o r a n o t h e r a s c o l l e c tors o f l o c a l fossils. ( B r a n d t and D a v i s 2007; C a s t e r 1982; H a r p e r 1902; Johnson B;
2002; S. A . M i l l e r et al. 1879; M i c k l e b o r o u g h a n d W e t h e r b y 1878a, 1956; W e t h e r b y 1879a, 1879b, 1880, 1881; A n o n . 1876, 1878,
Nickles
1879.)
John M i c k l e b o r o u g h , P h . D . , w a s t h e p r i n c i p a l o f t h e C i n c i n n a t i N o r m a l
John
S c h o o l from 1878 until 1885. T h i s s c h o o l w a s a part of t h e C i n c i n n a t i p u b -
Mickleborough
lie school system that w a s d e d i c a t e d t o t r a i n i n g t e a c h e r s . T h e C i n c i n n a t i Board of Education suspended the operation of the N o r m a l S c h o o l in 1900, but that w a s a d e c a d e a n d a h a l f after D r . M i c k l e b o r o u g h h a d d e parted C i n c i n n a t i for N e w York, w h e r e h e b e c a m e t h e p r i n c i p a l o f t h e Boys High School in Brooklyn. M i c k l e b o r o u g h h a d b e e n n o m i n a t e d for m e m b e r s h i p i n t h e C i n c i n nati S o c i e t y of N a t u r a l History in July of 1876 ( C i n c i n n a t i S o c i e t y of N a t u ral History, 90), and he b e c a m e an a c t i v e m e m b e r of t h e s o c i e t y ; for exa m p l e , he served on t h e P u b l i c a t i o n s C o m m i t t e e a n d as a m e m b e r of a c o m m i t t e e 011 the n o m e n c l a t u r e of t h e r o c k s of t h e t y p e - C i n c i n n a t i a n that i n c l u d e d five o t h e r i n d i v i d u a l s g e n e r a l l y r e c o g n i z e d a s m e m b e r s o f t h e C i n c i n n a t i S c h o o l (S. A . M i l l e r et a l .
1879).
A n d as n o t e d a b o v e , in t h e
section a b o u t A . G . W e t h e r b y , M i c k l e b o r o u g h a n d W e t h e r b y c o - a u t h o r e d a n important list o f t y p e - C i n c i n n a t i a n fossils ( M i c k l e b o r o u g h a n d W e t h erbv
1878a,
b). B u t his m o s t s i g n i f i c a n t p u b l i c a t i o n is h i s
1883
paper on
trilobites, w h i c h i n c l u d e s a d e s c r i p t i o n of a s p e c i m e n of Isotelus f r o m the t y p e - C i n c i n n a t i a n w i t h p r e s e r v e d a p p e n d a g e s . M i c k l e b o r o u g h w a s rather a h e a d of his t i m e s in his r e a l i z a t i o n that t h e a p p e n d a g e s of trilobites are s i m i l a r to those of present-day c h e l i c e r a t e a r t h r o p o d s . In addition to a u t h o r i n g p u b l i c a t i o n s on fossils, D r . M i c k l e b o r o u g h , as a professional educator, also wrote in the field of e d u c a t i o n , for e x a m p l e , on a m e t h o d of t e a c h i n g addition and subtraction in the p r i m a r y grades that was p r o m o t e d by John B. Peaslee, s u p e r i n t e n d e n t of s c h o o l s in C i n c i n n a t i , a n d c a l l e d b y Peaslee " T h e l e n s M e t h o d " and b y M i c k l e b o r o u g h " T h e Peaslee M e t h o d . " (Bassler 1947; Brandt a n d D a v i s 2007; C a s t e r 1982; Lathrop 1900, 1902; M i c k l e b o r o u g h 1883; N i c k l e s 1936; S h o t w e l l 1902; V e n a b l e 1894; A n o n .
1886.)
A l t h o u g h the c a p t i o n o f his p h o t o g r a p h i n the D e p a r t m e n t o f G e o l o g y a t
Charles Faber
the University o f C i n c i n n a t i i n d i c a t e s that C h a r l e s F a b e r ( F i g u r e 2.1C) w a s a realtor, K e n n e t h C a s t e r
(1982)
c l a i m e d that he w a s a m a n u f a c t u r e r o f
l e a t h e r b e l t i n g . But b o t h s o u r c e s r e c o g n i z e d h i m as a fossil c o l l e c t o r . In the 1880s a n d 1890s his n a m e a p p e a r e d as a n a u t h o r o f r e c o r d , b o t h a l o n e
Science in the Hinterland
27
and as a co-author with S. A. Miller. As s u c h , he was involved in the n a m i n g o f a n u m b e r o f taxa o f fossils f r o m t h e t y p e - C i n c i n n a t i a n . A c c o r d i n g t o t h e s a m e p h o t o g r a p h c a p t i o n , F a b e r lived until 1930, late e n o u g h that Shideler w e n t c o l l e c t i n g with h i m . A c c o r d i n g to Shideler ([1952] 2002, 3), F a b e r w a s , ". . . like t h e t y p i c a l old t i m e r he was[,] very sec r e t i v e a n d s u s p i c i o u s . H e w a s n ' t t e l l i n g a n y b o d y a n y t h i n g . I t took m e t w o years t o g e t h i m s o f t e n e d u p a n d e d u c a t e d s o that h e w a s w i l l i n g t o c o m e o u t w i t h his i n f o r m a t i o n . S o w e started g o i n g a r o u n d t o a n u m b e r o f t h e old s e c r e t l o c a l i t i e s w h e r e S . A . M i l l e r got his t y p e s . " Like most of the other m e m b e r s of the C i n c i n n a t i S c h o o l , Faber was a s s o c i a t e d w i t h t h e C i n c i n n a t i Society o f N a t u r a l H i s t o r y . I n fact, h e was p r o p o s e d for m e m b e r s h i p in the society- in 1885, at the s a m e t i m e as C h a r l e s S c h u c h e r t and Ernst Vaupel, and he was duly elected. F a b e r sold his o r i g i n a l c o l l e c t i o n t o t h e U n i v e r s i t y o f C h i c a g o for $5000, a c c o r d i n g to S h i d e l e r , a n d it i n c l u d e d s p e c i m e n s d e s c r i b e d by S. A. M i l l e r . B e i n g a n inveterate f o s s i l c o l l e c t o r , h o w e v e r , h e p r o c e e d e d t o a m a s s a second collection.
This o n e w a s b e q u e a t h e d t o t h e U n i v e r s i t y o f C i n c i n -
nati. T h e c o l l e c t i o n c a m e w i t h s o m e m o n e y to p r o v i d e for a curatorial posit i o n a n d for p a l e o n t o l o g i c a l p u b l i c a t i o n s .
The first holder of the curatorial
p o s i t i o n w a s C a r r o l l L a n e F e n t o n , w h o w e n t o n t o write, a l o n g w i t h his w i f e , w h a t is arguably t h e b e s t b o o k of its t i m e for a m a t e u r fossil c o l l e c t o r s ( F e n t o n a n d F e n t o n 1958).
T h e late K e n n e t h E. C a s t e r w a s also a w e l l -
k n o w n F a b e r c u r a t o r . (Bassler 1947; B e c k e r 1938; C a s t e r 1982; Faber 1886, 1929; S. A. M i l l e r a n d F a b e r 1892a, b, 1894a, b; S h i d e l e r [1952I 2002; A n o n . 1885a, b.)
D. T. D. Dyche
D r . D y c h e , o f L e b a n o n , O h i o , i s o n e o f t h e less w e l l - k n o w n m e m b e r s o f t h e C i n c i n n a t i S c h o o l . H e a u t h o r e d several p a p e r s o n fossil c r i n o i d s o f the t y p e - C i n c i n n a t i a n . In n a m i n g a s p e c i e s of c o n o d o n t , Prioniodus dychei, U. P . J a m e s h o n o r e d D r . D y c h e a s o n e " w h o has d o n e s o m u c h i n c o l l e c t i n g a n d d e v e l o p i n g s o many o f t h e finest C r i n o i d s , etc., f o u n d i n the C i n c i n nati G r o u p . . . " (1884c, 1 4 7 - 1 4 8 ) . T h e r e is, i n t h e W a r r e n C o u n t y Historical M u s e u m , in L e b a n o n , O h i o , what is labeled as the dental cabinet of David T u l l i s D u r b i n D y c h e . W e h a v e n o t b e e n a b l e t o verify w h e t h e r D . T . D . D y c h e , the m e m b e r of the C i n c i n n a t i S c h o o l , is the same person as David Tullis D u r b i n D y c h e , t h e dentist. ( B e c k e r 1938; D y c h e 1892a, b, c; U. P. J a m e s 1884c.)
E. O. Ulrich
E d w a r d O . U l r i c h ( F i g u r e s 2 . 3 C , 2.4B, 2.5D) w a s b o r n F e b r u a r y 1,1857, i n C i n c i n n a t i , b u t shortly t h e r e a f t e r t h e family m o v e d t o C o v i n g t o n , K e n t u c k y , just across t h e O h i o River. T h e "O" stands for " O s c a r ,
but it was not
a n a m e g i v e n t o h i m b y his p a r e n t s ; E d w a r d U l r i c h g a v e h i m s e l f that n a m e after a h e r o in o n e of t h e stories he read as a boy. He s e e m s to h a v e b e e n a sickly- c h i l d , a n d w a s f r e q u e n t l y absent from s c h o o l . He w a s i n t r o d u c e d to fossils b y h i s m i n i s t e r , t h e R e v e r e n d H e n r y H e r z e r , w h e n h e w a s s e v e n years old.
28
A Sea without Fish
After q u i t t i n g s c h o o l , he w a s a s u r v e y o r for a c o u p l e of y e a r s a n d worked o n t h e E d e n Park R e s e r v o i r , w h i c h , t o this d a y , s u p p l i e s d r i n k i n g water t o d o w n t o w n C i n c i n n a t i . H e w a s a s t u d e n t a t B a l d w i n - W a l l a c e C o l lege for t w o years, hut he did not finish c o l l e g e . D u r i n g t h e 1876—1877 school year, he was a student in the M e d i c a l C o l l e g e of O h i o in C i n c i n nati, an i n d e p e n d e n t institution at that t i m e , b u t a b s o r b e d into t h e U n i v e r sity o f C i n c i n n a t i i n 1915 ( B r o a d d u s , pers. c o m m . ) . A g a i n , h e did n o t f i n i s h work f o r a d e g r e e . F o r m a l e d u c a t i o n a n d h e did n o t g e t o n t o o w e l l , b e c a u s e " h e insisted h e was t a u g h t too m u c h h e d i d n ' t w a n t a n d too little that he d i d " (Bassler 1945, 333). In 1876, U l r i c h w a s e l e c t e d to m e m b e r s h i p in t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y . The f o l l o w i n g y e a r h e w a s e l e c t e d c u r a t o r o f p a l e o n t o l ogy, a n u n p a i d position. A b o u t that t i m e t h e s o c i e t y a c q u i r e d its o w n b u i l d i n g , a n d , in the m i n u t e s of t h e society- for t h e first m e e t i n g h e l d in t h e new b u i l d i n g on N o v e m b e r 6, 1877 ( C i n c i n n a t i S o c i e t y of N a t u r a l H i s t o r y ) , it is r e c o r d e d : " T h e matter of a p p o i n t i n g a janitor for the B u i l d i n g c o m i n g u p , propositions w e r e r e c e i v e d from Messrs. F. O. Ulrich, Talbot, a n d J. C. S h o r t e n . "Professor Wetherby m o v e d that the Society p r o c e e d to b a l l o t for a janifor, the person e l e c t e d to be subject to s u c h rules as the S o c i e t y m a y a d o p t , a g r e e d to. The ballot resulted as follows: Mr. U l r i c h r e c e i v e d 28 votes. M r . S h o r t e n r e c e i v e d 7 votes. M r .
Talbot r e c e i v e d 3 votes a n d t h e r e u p o n Mr.
E. O. U l r i c h was d e c l a r e d e l e c t e d . M r . U l r i c h ' s proposition is as follows, Cincinnati Nov. 6th 1877 To the Cincinnati Society of Natural History T h e undersigned is an applicant for the position of Janitor or Custodian of the Society's building; am willing to devote my entire time to the interests of the Society, for the consideration of $300.00 per a n n u m , and the Society to allow me one room for a sleeping apartment. Respectfully yours, E. O. Ulrich Ulrich's association w i t h the C i n c i n n a t i Society
o f N a t u r a l History-
brought h i m into c o n t a c t with U.P. James, Joseph F. James, C h a r l e s B. Dyer, S . A . Miller, and o t h e r m e m b e r s o f t h e C i n c i n n a t i S c h o o l . For e x a m p l e , U l r i c h w a s o n e o f six m e m b e r s o f the C i n c i n n a t i S c h o o l w h o served o n a c o m m i t t e e o n the n o m e n c l a t u r e o f the rocks o f t h e t y p e - C i n c i n n a t i a n (S. A . Miller e t a l . 1 8 7 9 ) . N o r did his c o n t a c t s c o m e o n l y w i t h C i n c i n n a t i folk. For e x a m p l e , as early as 1886, Ulrich w e n t c o l l e c t i n g with A u g u s t F Foerste, w h o went on to b e c o m e o n e of the foremost workers on fossil c e p h a l o p o d s in t h e United States. A l t h o u g h the position at the s o c i e t y w a s c a l l e d " c u s t o d i a n , " U l r i c h apparently was in c h a r g e of day-to-day o p e r a t i o n s at their facility. In addition to the labors a s s o c i a t e d w i t h that j o b , a n d later o n , U l r i c h w o r k e d at various t i m e s as a c a r p e n t e r , for v a r i o u s state g e o l o g i c a l s u r v e y s , a n d p a r t - t i m e for the U n i t e d States G e o l o g i c a l S u r v e y i n T e n n e s s e e . O n e o f his m a i n s o u r c e s o f i n c o m e , h o w e v e r , was the p r o d u c t i o n o f t h i n - s e e -
Science in the Hinterland
29
t i o n s of b r y o z o a n s , w h i c h he sold to b u y e r s b o t h in the U n i t e d States and E u r o p e . I n o r d e r t o c o l l e c t sufficient s p e c i m e n s and m a k e t h i n - s e c t i o n s f r o m t h e m , U l r i c h e m p l o y e d o t h e r l o c a l a f i c i o n a d o s o f fossils, i n c l u d i n g Bassler, N i c k l e s , a n d S e h u c h e r t . ( K e n n e t h C a s t e r
[1982]
has c r e d i t e d U l -
rich w i t h the trait o f e n l i s t i n g the a s s i s t a n c e o f l o c a l y o u t h s , t h e r e i n c h a n g i n g their lives.
This c a l l s u p t h e i m a g e o f t h e k i n d l y old m a n h e l p i n g t h e
l o c a l kids; i t h a p p e n s , t h o u g h , that t w o o f U l r i c h ' s t h r e e b e s t - k n o w n proteg e s , S e h u c h e r t a n d N i c k l e s , w e r e o n l y o n e a n d t w o years y o u n g e r t h a n U l r i c h , respectively.) In 1897, U l r i c h w a s h i r e d p e r m a n e n t l y by the United States G e o l o g i c a l S u r v e y a n d stayed t h e r e for t h e rest o f his c a r e e r , e v e n t u a l l y b e c o m i n g the h e a d of t h e s t r a t i g r a p h i c s e c t i o n , a n d in effect the arbiter of stratigraphic decisions in the country. A l t h o u g h s p e c i m e n s and thin-sections provided by Ulrich are p r e s e n t in many i n s t i t u t i o n s all a c r o s s t h e l a n d , his p e r s o n a l c o l l e c t i o n w e n t m a i n l y t o the U n i t e d States G e o l o g i c a l S u r v e y a n d t h e n c e the U n i t e d States N a t i o n a l M u s e u m . U l r i c h officially retired in 1932, but c o n t i n u e d s c h o l a r l y work as an honorary a s s o c i a t e in p a l e o n t o l o g y at the S m i t h s o n i a n Institution. U l r i c h a u t h o r e d or c o - a u t h o r e d many taxa of a n i m a l s of all kinds. Onco l t h e s e w a s a s p e c i e s o f o s t r a c o d c r u s t a c e a n n a m e d alter the m a n o f the c l o t h w h o h a d i n t r o d u c e d h i m to fossils. U l r i c h w r o t e : "I n a m e it after Rev. H . H e r z e r , n o w o f B e r e a , O . , w h o w a s the f i r s t t o a w a k e n i n m e t h e latent love for n a t u r e that has s i n c e g r o w n a l m o s t to a p a s s i o n , a n d b e c o m e an i n e x h a u s t i b l e s o u r c e o f k e e n e s t e n j o y m e n t " ( U l r i c h 1891, 209). Ulrich received main
honors.
Baldwin-Wallace College, which he
h a d a t t e n d e d for a t i m e , a w a r d e d h i m b o t h a n h o n o r a r y master's d e g r e e a n d an honorary d o c t o r a l d e g r e e in 1886 a n d 1892, respectively. He w a s a m e m b e r o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s a n d was a w a r d e d their MaryC l a r k T h o m p s o n M e d a l . He was elected president of the Paleontological S o c i e t y for t h e y e a r 1915; this society w a s t h e n a n d is n o w the p r e m i e r p r o fessional p a l e o n t o l o g i c a l o r g a n i z a t i o n in t h e U n i t e d States. In 1932, U l r i c h w a s a w a r d e d t h e P e n r o s e M e d a l o f t h e G e o l o g i c a l Society o f A m e r i c a , the h i g h e s t h o n o r to w h i c h a g e o l o g i s t may aspire. O n t h e o t h e r h a n d , U l r i c h s e e m s t o h a v e b e e n i n v o l v e d i n s o m e lessi h a n - h o n o r a b l e activities. T h e m o s t s u r p r i s i n g i s that h e b a c k e d a n attempt t o p r e v e n t t h e e l e c t i o n o f C h a r l e s S e h u c h e r t t o t h e presidency o f the G e o l o g i c a l S o c i e t y o f A m e r i c a , d e s p i t e t h e fact that S e h u c h e r t h a d b e e n a p r o t e g e a n d c o l l e a g u e o f U l r i c h f r o m the old C i n c i n n a t i days. T h e proxim a t e c a u s e f o r this w a s that U l r i c h h a d p r o p o s e d r e c o g n i t i o n o f t w o major c h u n k s of rock b e t w e e n the C a m b r i a n and the O r d o v i c i a n Systems, the Ozarkian
and C a n a d i a n .
H o w e v e r , S e h u c h e r t did n o t e n t h u s i a s t i c a l l y
a d o p t the O z a r k i a n a n d the C a n a d i a n S y s t e m s i n t h e p r e s t i g i o u s t e x t b o o k o n h i s t o r i c a l g e o l o g y o f w h i c h h e w a s c o - a u t h o r . T h e r e also w a s a disputeas to w h e t h e r U l r i c h or S e h u c h e r t had " i n v e n t e d " the p a l e o g e o g r a p h i c map
(neither had,
but
it certainly
was
Sehuchert
who
made
them
famous). T h e u l t i m a t e c a u s e , h o w e v e r , w a s t h e fact that U l r i c h w a s extraordinarily k n o w l e d g e a b l e o n all t h i n g s s t r a t i g r a p h i c a n d p a l e o n t o l o g i c . F r o m
30
A Sea without Fish
c h i l d h o o d , h e had had a n u n c a n n y m e m o r y . K e n n e t h C a s t e r (pers. c o m m . ) c l a i m e d that, d e c a d e s after v i s i t i n g a l o c a l i t y , U l r i c h c o u l d r e c a l l t h e stratig r a p h i c s e c t i o n t h e r e i n c h b y i n c h , w i t h great a c c u r a c y a n d p r e c i s i o n , a l o n g with its fossil c o n t e n t s .
Thus, Ulrich was supremely self-confident.
I n d i s c u s s i o n s , h e " t o p u t i t m i l d l y , m a d e his p o s i t i o n c l e a r . " H e " w a s i n c o n g e n i t a l d i s a g r e e m e n t u n t i l t h e day o f his d e a t h o n W a s h i n g t o n ' s B i r t h day, 1944" ( C r o n e i s 1963,85). H o w e v e r , o n e s h o u l d n o t c o n j u r e u p a p i c t u r e o f a g r u m p y old m a n . U l r i c h w a s k n o w n for his g e n i a l d i s p o s i t i o n , a n d , i n d e e d , w a s k n o w n a s " U n c l e H a p p y . " (As i t t u r n e d o u t , U l r i c h ' s " n e w " s y s t e m s n e v e r did g a i n w i d e s p r e a d a c c e p t a n c e , b u t i n t h e m e a n t i m e , S c h u c h e r t did get elected.) U l r i c h was a n early worker o n P a l e o z o i c o s t r a c o d e s a n d c o n o d o n t s . H e i s e s p e c i a l l y well k n o w n for his w o r k w i t h b r y o z o a n s , h a v i n g b e e n o n e o f t h e pioneers i n the use o f t h i n - s e c t i o n s t o u n d e r s t a n d t h e a n i m a l s . H o w ever, his e x t e n s i v e record o f p u b l i c a t i o n s i n c l u d e s s c i e n t i f i c p a p e r s o n r e p resentatives o f a l m o s t e v e r y m a j o r g r o u p o f i n v e r t e b r a t e s ; n o t o n l y t h e o n e s m e n t i o n e d a b o v e , but also, a n n e l i d w o r m s , b r a c h i o p o d s , m o l l u s c s , s p o n g e s , a n d trilobites. (Bassler 1945; B e c k e r 1938; B r a d s h a w 1989; B r a n d t a n d D a v i s 2007; Byers 2001; C a s t e r 1951,1981, 1982; C r o n e i s 1963; C u f f e y , D a v i s , a n d U t g a a r d 2002; M e r r i l l 1924; S h e r b o r n 1940; S h i d e l e r [1952] 2002; U l r i c h 1891. U l r i c h ' s p e r s o n a l b i b l i o g r a p h y is i m m e n s e ; a g o o d p l a c e to start a s e a r c h for his works is Bassler 1945.)
C h a r l e s S c h u c h e r t ( F i g u r e 2.5A) w a s b o r n in 1858, t h e s o n o f a c a b i n e t
Charles Schuchert Charles
m a k e r ; the f a m i l y was p o o r , a n d Karl (as he w a s c h r i s t e n e d ) s p e n t his life well into his t w e n t i e s t r y i n g t o k e e p b o d y a n d s o u l t o g e t h e r . H e a t t e n d e d s c h o o l t h r o u g h t h e sixth g r a d e , t h e n , a t a g e t w e l v e , w e n t t o a m e r c a n t i l e s c h o o l to learn b o o k k e e p i n g , at w h i c h p o i n t he b e g a n to w o r k at his father's f u r n i t u r e factory. H o w e v e r , t h e factory b u r n e d d o w n i n 1877; C h a r l e s rev i v e d the enterprise, b u t i t b u r n e d a g a i n i n 1884. M e a n w h i l e , S c h u c h e r t did take s o m e d r a w i n g c o u r s e s a t t h e O h i o M e c h a n i c s Institute i n C i n c i n nati, and he mastered lithography. S c h u c h e r t ' s i n t r o d u c t i o n to fossils c a m e in 1866, w h e n a l a b o r e r w o r k i n g n e a r t h e S c h u c h e r t h o m e tossed t h e e i g h t - y e a r - o l d lad a fossil that h a d c o m e o u t o f t h e e x c a v a t i o n . S o m e t i m e t h e r e a f t e r , S c h u c h e r t ' s father took h i m t o see t h e r o o m f u l o f fossils o w n e d b y o n e W i l l i a m F o s t e r — " w h i c h o p e n e d t o m e a n u n k n o w n w o r l d " ( B e c k e r 1938, 193). T h e b o y w a s c o m pletely h o o k e d . T h e n , at a b o u t a g e s e v e n t e e n , S c h u c h e r t saw t h e fossils in the w i n d o w s of t h e e s t a b l i s h m e n t of U. P. James. They m e t , a n d t h e e l d e r James used s o m e of the y o u n g man's fossils in his p u b l i s h e d work. S c h u c h e r t also heard a b o u t C B. D y e r ' s c o l l e c t i o n a n d s o u g h t o u t his a c q u a i n t a n c e . In 1877, he m e t U l r i c h , " w h o w a s to t u r n me f r o m an a m a t e u r into a professional p a l e o n t o l o g i s t " ( B e c k e r 1938,193). As a serious a m a t e u r fossil c o l l e c t o r , a n d as o n e t r a i n e d in l i t h o g r a p h y , S c h u c h e r t w a s h i r e d b y U l r i c h a s t h e ideal assistant for p r e p a r i n g l i t h o g r a p h s for t h e Illinois a n d M i n n e s o t a g e o l o g i c a l s u r v e y s . T h i s w a s 1885 t h r o u g h 1888.
Science in the Hinterland
31
I n that last year, J a m e s H a l l , t h e clean o f A m e r i c a n p a l e o n t o l o g i s t s , visited C i n c i n n a t i a n d w a s s o i m p r e s s e d b y S e h u c h e r t ' s c o l l e c t i o n that h e h i r e d h i m t o b e c o m e a n assistant for t h e N e w York G e o l o g i c a l S u r v e y (and, i n c i d e n t a l l y , o b t a i n e d his c o l l e c t i o n o f fossils). I n 1893, S e h u c h e r t j o i n e d t h e U n i t e d S t a t e s G e o l o g i c a l S u r v e y , a n d , a y e a r later, h e w e n t t o the U n i t e d States N a t i o n a l M u s e u m , also i n W a s h i n g t o n , D . C . E v e n t u a l l y , h e c a m e t o o c c u p y t h e m o s t p r e s t i g i o u s g e o l o g i c a l professorship i n N o r t h A m e r i c a , that a t Y a l e U n i v e r s i t y . S e h u c h e r t b e g a n a t t e n d i n g m e e t i n g s of the C i n c i n n a t i Society of N a t u r a l History- in 1878. H o w e v e r , it w a s not u n t i l 1885, after he had left the f u r n i t u r e b u s i n e s s for g o o d , that he f o r m a l l y w a s p r o p o s e d as a m e m b e r . A s i t h a p p e n s , C h a r l e s F a b e r , E r n s t V a u p e l , a n d S e h u c h e r t all w e r e n o m i nated at the same time. S e h u c h e r t w a s b o r n in C i n c i n n a t i , but in s o m e respects it is not fair to c a l l h i m a m e m b e r o f t h e C i n c i n n a t i S c h o o l , b e c a u s e h e did not really p u b lish a n y t h i n g locally. H e h a d 234 scientific p u b l i c a t i o n s , b u t n o n e a p p e a r e d in the local journals. A l t h o u g h he did not invent the p a l e o g c o g r a p h i c m a p , he b r o u g h t it to its m a t u r e state. A n d , up until the t i m e of his d e a t h , in 1942, h e w a s also the f o r e m o s t authority o n fossil b r a c h i o p o d s o f N o r t h A m e r i c a . L i k e s o m e o t h e r m e m b e r s o f the C i n c i n n a t i S c h o o l , S e h u c h e r t w a s h o n o r e d d u r i n g his l i f e t i m e . H e w a s a w a r d e d a n h o n o r a r y master's d e g r e e by Y a l e U n i v e r s i t y in 1904, a n d honorary- d o c t o r a t e s w e r e a w a r d e d h i m byN e w York, Harvard, and Yale Universities. He was a m e m b e r of the National A c a d e m y of S c i e n c e s , and was elected president both of the Paleontological Society and of the G e o l o g i c a l Society of A m e r i c a , l a k e Ulrich b e f o r e h i m , S e h u c h e r t w a s a w a r d e d t h e p r e s t i g i o u s P e n r o s e M e d a l o f the G e o l o g i c a l S o c i e t y o f A m e r i c a i n 1934.
Moreover, one of the medals
a w a r d e d b y t h e P a l e o n t o l o g i c a l S o c i e t y b e a r s h i s n a m e . N o t bad for a kid w h o n e v e r m a d e i t t o h i g h s c h o o l ! (Bassler 1945; B e c k e r 1938; B r a n d t a n d D a v i s 2007; Byers 2001; C a s t e r 1951, 1981, 1982; C l a r k 1943; C r o n e i s 1963; C u f f e y , D a v i s , a n d U t g a a r d 2002; D u n b a r 1943; K a e s l e r 1987; K n o p f 1952; S h i d e l e r [1952] 2002; T w e n h o f e l 1942; Y o c h e l s o n 1973, 1975; A n o n . 1885a.)
John M. Nickles
John M i l t o n N i c k l e s ( F i g u r e s 2.4A,
2.5B),
on the o t h e r h a n d , clearly was a
m e m b e r o f t h e C i n c i n n a t i S c h o o l . I n d e e d , h e w a s t h e first o f the C i n c i n nati S c h o o l actually a s s o c i a t e d w i t h t h e University o f C i n c i n n a t i ; h e rec e i v e d a b a c h e l o r ' s d e g r e e in 1882 a n d a master's d e g r e e in 1891. W h i l e at the university, he studied g e o l o g y u n d e r A. G. Wetherby. He had attended W o o d w a r d High S c h o o l , in C i n c i n n a t i , and had b e e n e n c o u r a g e d i n his g e o l o g i c a l interests b y G e o r g e W . H a r p e r , t h e principal, and by a fellow student. " M y b o y h o o d c o m p a n i o n , Ernst H. V a u p e l , i n d u c t e d m e into c o l l e c t i n g fossils d u r i n g m y s e c o n d y e a r a t W o o d w a r d H i g h S c h o o l . P r e v i o u s l y w e h a d t o g e t h e r c o l l e c t e d snail shells a n d fresh w a t e r m u s s e l s f r o m t h e O h i o R i v e r a t low water a n d t h e n ' d e e r h o r n s ' (worn c y a t h o p h y l l o i d corals) f r o m t h e drift m a t e r i a l f i l l o f t h e M a r i e t t a a n d C i n c i n n a t i Railroad (now B & O) m a d e t h r o u g h M i l l C r e e k valley" (Nickles 1936).
32
A Sea without Fish
By t h e t i m e he g r a d u a t e d f r o m h i g h s c h o o l in 1878, he h a d started a b i b l i o g r a p h i c work o n t h e l o c a l b r y o z o a n s , a n d h e a l r e a d y w a s a c q u a i n t e d p e r s o n a l l y w i t h U l r i c h a n d S c h u c h e r t . A f t e r stints o f t e a c h i n g i n A r k a n s a s and then Illinois, w h e r e h e w a s a h i g h s c h o o l p r i n c i p a l , h e r e t u r n e d t o C i n c i n n a t i , a l t h o u g h for a n u m b e r o f s u m m e r s h e h a d s p e n t v a c a t i o n s w i t h U l r i c h c o l l e c t i n g b r y o z o a n s all o v e r c e n t r a l a n d e a s t e r n N o r t h A m e r i c a . I n 1899 N i c k l e s m e t R a y S . Bassler a t t h e r e s i d e n c e o f E . O . U l r i c h i n N e w p o r t , K e n t u c k y . N i c k l e s a n d Bassler c o l l a b o r a t e d t o p r o d u c e U n i t e d States G e o l o g i c a l S u r v e y B u l l e t i n 1 7 3 — S y n o p s i s of American Fossil Bryozoa ( N i c k l e s a n d Bassler 1900). A b o u t t h e s a m e t i m e , Josua L i n d a h l , t h e d i r e c t o r o f the C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y a n d f o r m e r state g e ologist o f Illinois, asked N i c k l e s t o p r e p a r e a p a p e r o n t h e g e o l o g y o f C i n c i n n a t i ; this was p u b l i s h e d in t h e s o c i e t y ' s j o u r n a l in 1902 a n d is u s e d to this day. In the s u m m e r of 1909, N i c k l e s p r e p a r e d a m a n u s c r i p t g e o l o g i c m a p o f the W e s t C i n c i n n a t i Q u a d r a n g l e for t h e p r o p o s e d C i n c i n n a t i F o l i o o f the U n i t e d States G e o l o g i c a l S u r v e y ; this h a s y e t t o b e p u b l i s h e d . I n 1903 N i c k l e s w a s a p p o i n t e d t o t h e U n i t e d States G e o l o g i c a l S u r v e y in W a s h i n g t o n , D.C., apparently on the strength of the bryozoan bibliography that h a d a p p e a r e d i n 1900; o f c o u r s e , h i s f r i e n d s h i p w i t h U l r i c h did not hurt. Until his d e a t h in 1945, he d e v o t e d h i m s e l f to c o m p i l i n g b i b l i o g raphies,
including
the
Bibliography
notated Bibliography of Economic
of
Geology,
North and
American the
Geology,
t h e An-
Bibliography and Index
of Geology Exclusive of North America, w h i c h w e r e p u b l i s h e d o v e r a
num-
ber of years. In all, his c o n t r i b u t i o n to t h e s e a m o u n t e d to t h i r t y - e i g h t v o l u m e s , c o m p r i s i n g a total o f 14,361 p a g e s — a f a n t a s t i c a c c o m p l i s h m e n t ! (And i t all w a s d o n e " t h e o l d - f a s h i o n e d w a y " — t h e r e w e r e n o c o m p u t e r s i n that far-distant day a n d age!) Nickles authored a respectable pile of publications on b r y o z o a n s , but h e deliberately s a c r i f i c e d t h e p a l e o n t o l o g i c a l r e p u t a t i o n that w o u l d h a v e b e e n his in order to serve t h e s c i e n c e of g e o l o g y in t h e t h a n k l e s s task of c o m p i l i n g the b i b l i o g r a p h i e s , a n d it is for his b i b l i o g r a p h i e s that t h e g e o l o g i c a l c o m m u n i t y forever w i l l b e i n d e b t e d t o h i m . (Bassler 1947; B r a n d t a n d D a v i s 2007; C a s t e r 1951, 1981, 1982; C r o n e i s 1963; C u f f e y , D a v i s , a n d U t g a a r d 2002; N i c k l e s 1902,1936.)
G e o r g e W . H a r p e r ( F i g u r e 2.3B) w a s a b r i l l i a n t p e d a g o g u e a n d a m a t e u r
G e o r g e W. Harper
g e o l o g i s t . A c t u a l l y , c a l l i n g h i m a g e o l o g i s t is t o o n a r r o w an a s s e s s m e n t , for he was, at one time, the curator of e n t o m o l o g y at the C i n c i n n a t i Society o f N a t u r a l History a n d , a l a n o t h e r , c u r a t o r o f m e t e o r o l o g y , a n d his n a m e i s associated w i t h t h e s t u d y o f f r e s h w a t e r m u s s e l s i n t h e C i n c i n n a t i a r e a . H a r p e r w a s b o r n in F r a n k l i n , O h i o , in 1832, b u t s p e n t t h e vast m a j o r i t y o f his life i n C i n c i n n a t i . H e g r a d u a t e d f r o m W o o d w a r d C o l l e g e , i n C i n c i n nati, i n 1853, v a l e d i c t o r i a n o f his c l a s s , a n d b e g a n t e a c h i n g a t W o o d w a r d . H e w a s p r i n c i p a l o f W o o d w a r d H i g h S c h o o l f r o m 1865 t h r o u g h 1900. S o m e w h e r e a l o n g the line he w a s a w a r d e d a master's d e g r e e f r o m D e n i s o n C o l l e g e (now, D e n i s o n U n i v e r s i t y ) a n d a d o c t o r a t e f r o m P r i n c e t o n U n i v e r sity. In 1873, w h e n t h e U n i v e r s i t y of C i n c i n n a t i w a s still n e w , he assisted in
Science in the Hinterland
33
o r g a n i z i n g classes a n d in p u t t i n g t h e i n s t i t u t i o n in order; in fact, he is c o u n t e d a s a n i n t e r i m p r e s i d e n t o f the u n i v e r s i t y ( G r a c e a n d H a n d 1995, 139). M o r e o v e r , h e s e r v e d o n t h e b o a r d a n d a s p r e s i d e n t o f the C o l l e g e o f M e d i c i n e a n d S u r g e r y o f t h e u n i v e r s i t y for a n u m b e r o f years. H a r p e r w a s e l e c t e d t o m e m b e r s h i p o f the C i n c i n n a t i S o c i e t y o f Natural History in 1871 ( C i n c i n n a t i S o c i e t y of N a t u r a l History, 20). His association w i t h the s o c i e t y w a s l o n g a n d extensive. At various t i m e s he served as curator, librarian, m e m b e r o f the p u b l i s h i n g c o m m i t t e e , v i c e president, a n d presid e n t . M o r e o v e r , h e served a s a m e m b e r o f the c o m m i t t e e o n the n o m e n c l a ture o f t h e rocks o f t h e t y p e - C i n c i n n a t i a n c h a i r e d b y a n o t h e r m e m b e r o f the C i n c i n n a t i S c h o o l a n d i n c l u d i n g four o t h e r s (S. A . M i l l e r e t al. 1879). W o o d w a r d High S c h o o l , in C i n c i n n a t i , was h e a d e d by " k i n d l y principal G e o r g e W. H a r p e r , a g e o l o g i s t in his o w n right, w h o s e p a r t i c u l a r desire in life w a s to train s t u d e n t s of geology" (Bassler 1947, iv). For e x a m p l e , he facilitated the progress of John M. N i c k l e s a n d Ray S. Bassler by a l l o w i n g t h e m to re-arrange their s c h e d u l e s at t h e s c h o o l so as to be able to work with U l r i c h in p a l e o n t o l o g i c e n d e a v o r s . M o r e o v e r , in 1896, he c o - a u t h o r e d a p a l e o n t o l o g i c a l p a p e r w i t h Bassler, t h e n a h i g h s c h o o l senior ( H a r p e r and Bassler 1896). G e o r g e W. H a r p e r died in 1918. (Bassler 1947; C a s t e r 1965,1982; C u f f e y , D a v i s , a n d U t g a a r d 2002; D u r y 1910; H a r p e r 1886, 1902; J o h n s o n 2002; K r a m e r 1918; M a r t i n 1900; A n o n . 1 8 7 6 , 1 8 7 8 , 1 8 8 5 b , 1886a, b.)
Ray S. Bassler
R a y m o n d Bassler ( F i g u r e s 2.4A, 2 . 5 C ) , a s h e w a s c h r i s t e n e d , w a s b o r n i n P h i l a d e l p h i a i n 1878. A t t h e a g e o f t w o h e m o v e d t o C i n c i n n a t i w i t h his family. H i s father, S i m o n Stein Bassler (that is, S g t . S. S. Bassler, of t h e U . S . A r m y S i g n a l C o r p s ) , w a s o n e o f t h e f o u n d e r s o f t h e U n i t e d States W e a t h e r Bureau. A l t h o u g h a handwritten card in the archives of the University of C i n c i n n a t i g i v e s his full n a m e a s " R a y m o n d S m i t h Bassler," h e a s s u m e d the p r o f e s s i o n a l f o r m o f his n a m e after h a v i n g m a d e a c q u a i n t a n c e w i t h the scientific works of John Ray and F. R a y Lankester, a n d , thereafter, he s i g n e d h i m s e l f a s " R a y S . B a s s l e r " ( C a s t e r 1965, P167). Bassler a t t e n d e d W o o d w a r d H i g h S c h o o l , w h e r e G e o r g e W . H a r p e r w a s p r i n c i p a l . D u r i n g his f r e s h m a n year, h e m e t U l r i c h a n d b e c a m e his t e c h n i c a l assistant. Bassler w a s free to w o r k for U l r i c h in t h e a f t e r n o o n s , b e c a u s e H a r p e r a l l o w e d h i m t o c o m p r e s s his classes into t h e m o r n i n g s . A s p r e v i o u s l y n o t e d , w h i l e o n l y a h i g h s c h o o l s e n i o r , Bassler c o - a u t h o r e d a p a l e o n t o l o g i c a l p a p e r w i t h H a r p e r i n 1896. I n 1896 Bassler e n t e r e d t h e U n i v e r s i t y o f C i n c i n n a t i , w h i c h h a d n o g e o l o g y d e p a r t m e n t a t t h e t i m e . Bassler c o n t i n u e d w o r k i n g w i t h U l r i c h , h o w e v e r . T h i s w o r k w a s i n v a l u a b l e e x p e r i e n c e ; a s Bassler said, " T h e t h i n s e c t i o n s o f P a l e o z o i c B r y o z o a p r e p a r e d t h e h a r d w a y d u r i n g o u r e i g h t years a s s o c i a t i o n w e r e e q u i v a l e n t t o several c o l l e g e c o u r s e s a t least, a n d t h e t i m e w a s n o t o t h e r w i s e lost, for o v e r a t h o u s a n d slides w e r e lett for f u t u r e p u b l i c a t i o n s " ( C a s t e r 1965, P168). Bassler s p e n t c o n s i d e r a b l e t i m e a t t h e facilities o f the C i n c i n n a t i S o c i e t y of N a t u r a l History. T h e late E l l i s Y o c h e l s o n related a story told to h i m
34
A Sea without Fish
b y Bassler that t h e y o u n g m a n w a s a l o n e i n t h e b u i l d i n g o n e d a y w h e n a g e n t l e m a n with a brilliant w h i t e b e a r d s h o w e d u p a n d asked t o b e s h o w n a r o u n d the p l a c e . Bassler d i d so, a n d , a f t e r w a r d s , t h e b e a r d e d visitor d e parted on his w a y b a c k to A l b a n y , N e w York. T h u s , Bassler m e t J a m e s Hall (1811-1898), p e r h a p s t h e f o r e m o s t p a l e o n t o l o g i s t i n t h e c o u n t r y ( Y o c h e l s o n , pers. c o m m . ) . U l r i c h left t h e C i n c i n n a t i area for W a s h i n g t o n , D . C , i n 1900, a n d Bassler f o l l o w e d in M a r c h of 1901, w i t h d r a w i n g f r o m t h e U n i v e r s i t y of C i n c i n n a t i , b e f o r e c o m p l e t i n g his s e n i o r year. Bassler w o r k e d privately for U l r i c h a n d w e n t t o s c h o o l p a r t - t i m e a t C o l u m b i a n University (now G e o r g e W a s h i n g t o n U n i v e r s i t y ) ; h e w a s a b l e to transfer credits back to t h e U n i v e r s i t y of C i n c i n n a t i a n d w a s a w a r d e d a bachelor's d e g r e e i n June o f 1902. A b o u t that s a m e t i m e , Bassler b e g a n w o r k i n g for the U n i t e d States N a t i o n a l M u s e u m ( w h e r e C h a r l e s S e h u c h e r t was his i m m e d i a t e s u p e r v i s o r ) . T h i s a s s o c i a t i o n w i t h t h e N a t i o n a l M u s e u m lasted for nearly six d e c a d e s , as Bassler rose t h r o u g h the r a n k s to b e c o m e h e a d c u r a t o r of g e o l o g y
in 1929. A f t e r his r e t i r e m e n t , in 1948, he
c o n t i n u e d as an honorary r e s e a r c h a s s o c i a t e u n t i l his d e a t h in 1961. M e a n w h i l e , h e e a r n e d his master's a n d d o c t o r a l d e g r e e s a t G e o r g e W a s h i n g t o n University, in 1903 and 1905, r e s p e c t i v e l y ; t h e r e a f t e r he was a s s o c i a t e d w i t h t h e university for the next thirty-eight y e a r s , i n c l u d i n g scry ice as professor and h e a d o f the G e o l o g y D e p a r t m e n t . Bassler m u s t h a v e had a s e n s e of h u m o r . K e n n e t h C a s t e r p a s s e d on a story h e h a d h e a r d f r o m Bassler: A s a professor i n W a s h i n g t o n , D . C , Bassler u s e d t o take classes t o t h e z o o . O n e d a y h e w a s l e a d i n g s u c h a g r o u p , and h e n o t i c e d that a n elderly lady, w h o s e e m e d slightly f a m i l i a r , was trailing a l o n g alter the g r o u p . In any e a s e , he s t o p p e d by a b o u l d e r of P r e - C a m b r i a n rock o n the z o o g r o u n d s a n d i n f o r m e d his s t u d e n t s that t h e rock was o n e billion years old. At this p o i n t , the elderly lady i n t e r r u p t e d : " B u t , Professor Bassler, I b e l i e v e that y o u h a v e m a d e a m i s t a k e . It h a p p e n s that I was here last y e a r w h e n y o u b r o u g h t y o u r s t u d e n t s . A t t h a t t i m e y o u said that the rock w a s a b i l l i o n years old. S o , this year, it m u s t be a b i l l i o n a n d o n e " (Caster, pers. c o m m . ) . D u r i n g the s u m m e r o f 1909 Bassler d i d a m a n u s c r i p t g e o l o g i c a l m a p o f t h e East C i n c i n n a t i Q u a d r a n g l e for t h e p r o p o s e d C i n c i n n a t i F o l i o o f the U n i t e d States G e o l o g i c a l Survey.
This m a p w a s n e v e r p u b l i s h e d .
D u r i n g his life, Bassler was an a u t h o r of o v e r 200 p a p e r s , many of w h i c h w e r e lengthy- w o r k s . H e w a s t h e f o r e m o s t e x p e r t o n P a l e o z o i c b r y o z o a n s and w a s o n e o f the p i o n e e r s i n P a l e o z o i c o s t r a c o d e s a n d i n c o n o clonts. thereby e n c o u r a g i n g the d e v e l o p m e n t of m i c r o p a l e o n t o l o g v . It was Bassler's timely c o m p l e t i o n of t h e b r y o z o a n v o l u m e of t h e Treatise on Invertebrate Paleontology
that a l l o w e d
that p r o j e c t to g e t off t h e g r o u n d ,
w h i c h m i g h t not h a v e h a p p e n e d w i t h o u t t h e a p p e a r a n c e o f Bassler's v o l u m e (Bassler
1953).
A m o n g his most v a l u a b l e w o r k s is a b i b l i o g r a p h y a n d
i n d e x of A m e r i c a n fossils f r o m t h e O r d o v i c i a n a n d S i l u r i a n (Bassler
1915).
K e n n e t h C a s t e r used to call a 10X h a n d - l e n s a " B a s s l e r o s c o p e " ( C a s t e r , pers. c o m m . ) . A c c o r d i n g t o C a s t e r , Bassler r e f u s e d t o u s e a c o m p o u n d m i c r o s c o p e ; h e n c e , his u n d e r s t a n d i n g o f f o s s i l s w a s a r r i v e d a t w i t h o u t t h e
Science in the Hinterland
35
b e n e f i t o f h i g h e r m a g n i f i c a t i o n ( C a s t e r 1965,1981). I f that w e r e true a t o n e t i m e , Bassler m u s t h a v e s e e n t h e l i g h t , at least w i t h respect to b r y o z o a n s : ". . . we c a n not be sure of t h e p o s i t i o n of any form in the s c h e m e of classification u n t i l w e h a v e l e a r n e d its i n t e r n a l s t r u c t u r e b y m e a n s o f t h i n s e c t i o n s e x a m i n e d m i c r o s c o p i c a l l y " ( N i c k l e s a n d Bassler 1900, 9). M o r e over, a c c o r d i n g to Ellis Y o c h e l s o n , Bassler had a c o m p o u n d m i c r o s c o p e on his d e s k , a n d it a p p e a r s in p h o t o g r a p h s Y o c h e l s o n h a d seen ( Y o c h e l s o n , pers. c o m m . ) . B a s s l e r w a s r e c o g n i z e d for his g r e a t a c c o m p l i s h m e n t s d u r i n g his lifet i m e . H e w a s e l e c t e d s e c r e t a r y o f t h e P a l e o n t o l o g i c a l S o c i e t y a n d served i n that p o s i t i o n f r o m 1910 to 1931, a n d t h e n he b e c a m e president of t h e society. I n 1933, h e w a s p r e s i d e n t o f t h e G e o l o g i c a l S o c i e t y o f A m e r i c a . W h e n R a y S . Bassler d i e d i n 1961, t h e C i n c i n n a t i S c h o o l o f P a l e o n t o l o g y w a s n o m o r e — e x c e p t i n t h e i r vast n u m b e r s o f fossils i n m u s e u m s a r o u n d t h e w o r l d a n d in their p u b l i c a t i o n s in libraries. He w a s t h e last survivor. (Bassler 1933; B e c k e r 1938; Brandt and D a v i s 2007; C a s t e r 1965, 1981; C r o n e i s 1963; H a r p e r a n d Bassler 1896; N i c k l e s 1936; N i c k l e s and Bassler 1900; S h i d e l e r [1952] 2002.)
The Cincinnati
A l t h o u g h a n u m b e r o f t h e m e m b e r s o f the C i n c i n n a t i S c h o o l o f P a l e o n t o l -
School in
o g y did serve stints as s c h o o l p r i n c i p a l s in real life, t h e C i n c i n n a t i S c h o o l
Retrospect
h a d no c l a s s r o o m s , n o r did it offer c o u r s e s . It did not e v e n h a v e a football t e a m ! N o n e t h e l e s s , its m e m b e r s d e f i n i t e l y m a d e t h e g r a d e . T h i s i s s o d e spite the fact t h a t , t o t h e m a j o r i t y o f t h e C i n c i n n a t i S c h o o l , p a l e o n t o l o g y w a s n o t a p r o f e s s i o n , b u t r a t h e r a n a v o c a t i o n . T o call t h e s e i n d i v i d u a l s " a m a t e u r s " i s a t o n c e true a n d u n f a i r . A l t h o u g h t h e y did not m a k e their l i v i n g s a s p a l e o n t o l o g i s t s , their p u b l i s h e d w o r k s h a v e held u p a s w e l l a s m u c h o f w h a t was a u t h o r e d b y t h e a c t u a l " p r o f e s s i o n a l s " o f the day. M o r e o v e r , s o m e o f t h e m e m b e r s o f t h e C i n c i n n a t i S c h o o l d i d , i n fact, g o o n t o b e c o m e a m o n g s t t h e l e a d i n g " p r o f e s s i o n a l s " o f their t i m e . It is primarily t h r o u g h t h e efforts of t h e C i n c i n n a t i S c h o o l of P a l e o n tology that the C i n c i n n a t i area is truly w o r l d f a m o u s for its fossils. It was d u e t o their work that t h e C i n c i n n a t i r e g i o n i s t h e N o r t h A m e r i c a n standard for t h e s p a n o f g e o l o g i c t i m e d u r i n g w h i c h its rocks w e r e d e p o s i t e d a n d t h e o r g a n i s m s that w e r e t o b e c o m e its fossils lived. However, it was not only the m e m b e r s of the C i n c i n n a t i School w h o h a v e w o r k e d o n t h e r o c k s a n d fossils o f t h e t y p e - C i n c i n n a t i a n . There w e r e , a n d c o n t i n u e to b e , a g r e a t m a n y o t h e r s i n v o l v e d . In a p p e n d i x 2 of this b o o k , we have c o m p i l e d brief biographies of s o m e of these other individuals a n d o f i n s t i t u t i o n s a s s o c i a t e d w i t h the study o f t h e g e o l o g y a n d p a l e o n tology of the C i n c i n n a t i region.
36
A Sea without Fish
3
NAMING AND CLASSIFYING ORGANISMS
W h e n p e o p l e from a n u m b e r o f d i f f e r e n t c o u n t r i e s e n d e a v o r t o c o m m u n i cate w i t h o n e a n o t h e r , e v e n t u a l l y t h e r e i s a p r o b l e m , n a m e l y , l a n g u a g e . D i f f e r e n t p e o p l e s have different n a m e s for t h e s a m e a n i m a l ; for e x a m p l e , " c h a t , " "felix," "gato," "gatto," a n d " K a t z e " all refer t o t h e a n i m a l w e c a l l "cat." M o r e o v e r , the s a m e w o r d m a y b e u s e d t o d e s i g n a t e m o r e t h a n o n e kind o f a n i m a l ; lor i n s t a n c e , w e use the w o r d " c a t " w h e n t a l k i n g a b o u t a h o u s e eat, or a l i o n , or a tiger, or a b o b c a t , or a m o u n t a i n l i o n , or. . . . B e g i n n i n g well over two centuries ago, it gradually was r e c o g n i z e d that, i f scientists a r o u n d t h e w o r l d w e r e t o c o m m u n i c a t e w i t h o n e a n o t h e r s u c c e s s f u l l y , e a c h kind o f p l a n t a n d a n i m a l m u s t h a v e its o w n u n i q u e n a m e , and that e a c h n a m e m u s t refer t o o n e , a n d o n l y o n e , k i n d o f p l a n t o r a n i m a l . A t that t i m e , all e d u c a t e d E u r o p e a n s k n e w G r e e k a n d , e s p e cially, L a t i n , so it was s u g g e s t e d that t h e s e plant n a m e s a n d a n i m a l n a m e s b e i n o n e o f t h e s e classical l a n g u a g e s ; t h a t w a y , n o o n e m o d e r n l a n g u a g e w o u l d b e favored. Lor s i m p l i c i t y , h o w e v e r , i t w a s d e c i d e d that G r e e k letters w o u l d not b e u s e d ; h e n c e , o n l y R o m a n letters w e r e e m p l o y e d i n t h e s e scientific n a m e s . T h e n a m e for e a c h basic k i n d o f p l a n t o r a n i m a l c o n s i s t s o f t w o w o r d s . T o illustrate this s c i e n t i f i c n a m i n g , c o n s i d e r t h e c o m m o n h o u s e c a t , Felis catus. Felis catus is c a l l e d a s p e c i e s n a m e b e c a u s e e a c h basic k i n d of org a n i s m is c a l l e d a s p e c i e s . The last w o r d , in this e a s e Felis, is t h e g e n e r i c n a m e ; the s e c o n d w o r d i s c a l l e d t h e s p e c i f i c n a m e o r t r i v i a l n a m e .
The
s p e c i e s n a m e , c o n s i s t i n g o f b o t h the g e n e r i c a n d t h e s p e c i f i c (or trivial) n a m e s , i s c a l l e d a b i n o m e n , literally " t w o n a m e s . " T h e s p e c i e s n a m e o f a n o r g a n i s m c o m m o n l y i s c a l l e d its s c i e n t i f i c n a m e . N o t e that t h e s p e c i e s n a m e is in italics. T h i s w a s a g r e e d to by s c i e n tists: e a c h b i n o m e n is to be put in a form that s t a n d s o u t f r o m the w r i t i n g a r o u n d it. G e n e r a l l y this is d o n e w i t h italics, a l t h o u g h s o m e t i m e s w i t h u n d e r l i n i n g . R e m e m b e r , t h e s p e c i e s n a m e m u s t b e i n R o m a n letters, s o that e v e n in a Russian or C h i n e s e scientific w o r k , Felis catus w i l l l e a p o u t of the p a g e at y o u . T h e initial letter of the g e n e r i c n a m e always is c a p i t a l i z e d . If the s p e c i e s n a m e of an a n i m a l is printed u s i n g b o t h upper-case and lower-case letters, then the trivial n a m e always is in lower-case t h r o u g h o u t , e v e n the initial letter. ( T h i s latter c o n v e n t i o n was not universally followed in former t i m e s , especially if a species was n a m e d after s o m e o n e . For e x a m p l e , in 1872, F. B. M e e k n a m e d the species Glyptocrinus Dyeri after C. B. D y e r , a w e l l - k n o w n fossil collector in C i n c i n n a t i about w h o m we wrote in the previous chapter.)
37
In s o m e scientific w o r k s , y o u m a y see a scientific n a m e followed by a person's n a m e , a c o m m a , a n d a date, for e x a m p l e , Felis catus L i n n a e u s , 1758. This m e a n s that it w a s C a r o l u s (or C a r l ) L i n n a e u s w h o n a m e d the species in t h e tenth e d i t i o n of his b o o k Systema Naturae, p u b l i s h e d in 1758. L i n n a e u s i n v e n t e d t h e b i n o m i a l system of n a m i n g o r g a n i s m s , and he did so in that b o o k . B e c a u s e of the great s c o p e a n d i m p o r t a n c e of that work, it is c o m m o n to abbreviate " L i n n a e u s , 1758" to " L . " H e n c e , y o u m i g h t see Felis catus L. ( T h e r e has b e e n s o m e c o n f u s i o n a s t o L i n n a e u s ' s real n a m e ; see D a v i s [1992]. As w a s the c u s t o m in S w e d e n at the t i m e , C a r l Linnaeus's father, Nils, o r i g i n a l l y was c a l l e d N i l s I n g e r m a r s s o n , after his father, Ingermar. As a y o u n g m a n , N i l s i n t e n d e d to b e c o m e a pastor, a n d , w h e n he registered as a student, he w a s r e q u i r e d to give a f a m i l y n a m e , rather than just the p a t r o n y m i c . He c h o s e " L i n n a e u s , " a L a t i n word referring to a l i m e t r e e — t h e r e was o n e growi n g i n the f a m i l y g a r d e n . After C a r l w a s f a m o u s a n d e n n o b l e d b y the k i n g , he a d o p t e d the honorific form "von L i n n e . " It is for this reason that the n a m e " L i n n a e u s " s o m e t i m e s is written " L i n n e " | M o o r e , pers. comm.].) A c t u a l l y , t h e r e g u l a r i z a t i o n o f b i o l o g i c a l n o m e n c l a t u r e (the s c i e n c e o f n a m i n g t h e g r o u p s into w h i c h o r g a n i s m s arc classified) w a s o n l y o n e o f the contributions of L i n n a e u s . He also was the inventor of the system we u s e for that c l a s s i f i c a t i o n . It w o r k s like this: e a c h basic k i n d of o r g a n i s m is c a l l e d a s p e c i e s . R e l a t e d s p e c i e s are j o i n e d t o g e t h e r in a larger u n i t , a g e n u s (the plural is " g e n e r a " ) . R e l a t e d g e n e r a are g r o u p e d into an e v e n larger u n i t , a f a m i l y . A n d so o n . In s h o r t , L i n n a e u s i n v e n t e d w h a t now is c a l l e d the L i n n a e a n h i e r a r c h y , a s y s t e m o f c a t e g o r i e s i n w h i c h s m a l l e r g r o u p s o f related o r g a n i s m s a r e j o i n e d t o f o r m larger, m o r e i n c l u s i v e g r o u p s . Take t h e h o u s e eat, for e x a m p l e . Felis catus i s t h e n a m e o f t h e s p e c i e s . T h e s p e c i e s F. catus a n d o t h e r , related cats b e l o n g in t h e g e n u s Felis.
T h e g e n u s Felis
a n d o t h e r g e n e r a o f cats a r c a s s i g n e d t o t h e F e l i d a e , t h e cat family. C a t s , d o g s , b e a r s , s k u n k s , a n d s o o n , m a k e u p the order C a r n i v o r a . T h e orders C a r n i v o r a , I n s e c t i v o r a ( s h r e w s , m o l e s , h e d g e h o g s , a n d their kin), P r i m a t e s ( m o n k e y s , a p e s , h u m a n s , a n d their r e l a t i v e s ! , a n d all the other orders o f h a i r y c r e a t u r e s c o m p r i s e t h e class M a m m a l i a . M a m m a l s , birds, reptiles, a m p h i b i a n s , f i s h e s , a n d s o o n , c o m p r i s e t h e p h y l u m C h o r d a t a . The chord a t e s , c n i d a r i a n s (corals, a n d s o o n ) , s p o n g e s , a n d m o r e t h a n t w e n t y o t h e r p h y l a — p l u r a l of " p h y l u m " — c o m p r i s e the k i n g d o m A n i m a l i a . L e t u s s u m m a r i z e this i n t a b u l a r f o r m , u s i n g t h e c o m m o n h o u s e c a t as an e x a m p l e : Kingdom
Animalia
Phylum
Chordata
Class
Mammalia
Order
Carnivora
Family
Felidae
Genus Species
Felis Felis
catus
The entities listed in the left c o l u m n are levels in the L i n n a e a n hierarchy. Each word in t h e right c o l u m n is t h e n a m e of o n e g r o u p at that level in the hierarchy. Each of t h e s e g r o u p s is a t a x o n (the plural is taxa). S o , for
38
A Sea without Fish
e x a m p l e , " f a m i l y " is the level in t h e L i n n a e a n h i e r a r c h y b e t w e e n " o r d e r " and "genus," and the " F e l i d a e " is t h e taxon at t h e family-level to w h i c h Felis catus b e l o n g s . All o f this i s w i t h i n t h e r e a l m o f t a x o n o m y — t h e s c i e n c e o f a s s i g n i n g organisms t o their p r o p e r b i o l o g i c a l g r o u p s .
The w o r d " t a x o n o m y " c o m e s
from t w o G r e e k w o r d s , taxis, m e a n i n g " a r r a n g e m e n t , " a n d
norms,
meaning
" l a w " o r " s c i e n c e of" ( B r o w n 1956); thus " t a x o n o m y " literally m e a n s the " l a w o f a r r a n g e m e n t " o r t h e " s c i e n c e o f a r r a n g e m e n t " ; alternative n a m e s are c l a s s i f i c a t i o n a n d s y s t e m a t i c s . The real c h a l l e n g e o f t a x o n o m y is, o f c o u r s e , f i g u r i n g out the biological relationships o f the o r g a n i s m s b e i n g s t u d i e d . A f t e r that has b e e n d o n e , and o n l y after that has b e e n d o n e , c a n t h e g r o u p s b e n a m e d in a truly m e a n i n g f u l fashion, at least, f r o m a b i o l o g i c a l p o i n t of view. A l t h o u g h s o m e scientists m i g h t separate " n o m e n c l a t u r e , " t h e n a m i n g o f the groups, from f i g u r i n g o u t the b i o l o g i c a l relationships, t h e t w o activities are irrevocably i n t e r t w i n e d . O n e purpose for the L i n n a e a n hierarchy is to simplify the d e s c r i b i n g of kinds of organisms. I m a g i n e if y o u had to describe a h o u s e cat COMPLETELY; it w o u l d take reams of paper and m a n y m o n t h s of time. B e c a u s e of the Linnaean hierarchy, by saying "Felis catus," you c o n v e y to your listener all the characteristics of the species, g e n u s , family, and so o n , w i t h o u t h a v i n g to use up p a p e r and time in vast quantities. (Note that the n a m e of the species is Felis catus, not just catus, w h i c h is only the specific n a m e part of the species name.) However, the L i n n a e a n hierarchy is not m e r e l y a c o n v e n i e n t w a y to save words and hours. T h e real s i g n i f i c a n c e is that it g r o u p s together o r g a n i s m s that are evolutionarily related to o n e another. T h u s , t h e o r g a n i s m s joined together in a given taxon are m o r e closely related to o n e a n o t h e r than they are to organisms of any other taxon at the s a m e level in the hierarchy. Put a n o t h e r way, all m e m b e r s of a given taxon evolved from a c o m m o n ancestor. T h e r e are s e v e n basic levels i n the L i n n a e a n h i e r a r c h y . W h e n d o i n g d e t a i l e d work w i t h a g r o u p of o r g a n i s m s , o n e c o m m o n l y finds a n e e d for m o r e levels. A s a result, extra levels h a v e b e e n i n v e n t e d . F o r e x a m p l e , several related f a m i l i e s m a y b e g r o u p e d into a s u p e r f a m i l y . O r , g o i n g i n t h e o t h e r d i r e c t i o n , a f a m i l y m a y c o n s i s t o f several related s u b f a m i l i e s , a n d a s u b f a m i l y m a y be c o m p o s e d of several i n f r a f a m i l i e s . A n a l o g o u s l y , a b o v e t h e class-level, there c a n b e s u p e r c l a s s e s , a n d b e l o w i t c a n b e s u b c l a s s e s a n d infraclasses. A n d s o o n for t h e o t h e r l e v e l s o f t h e h i e r a r c h y . O n e d o e s not h a v e t o u s e all t h e levels o f t h e e x p a n d e d h i e r a r c h y , h o w e v e r , just t h e o n e s n e c e s s a r y best t o classify t h e c r e a t u r e s b e i n g s t u d i e d . O n e o f the m o r e c o m m o n l y u s e d levels o f the e x p a n d e d L i n n a e a n h i erarchy is t h e s u b s p e c i e s . Platystrophia ponderosa auburnensis is a s u b s p e cies of P. ponderosa, a l o n g with P. ponderosa ponderosa. N o t e that the s u b specific n a m e a p p e a r s in print in exactly the s a m e style as d o c s the specific name.
The word " v a r i e t y " s o m e t i m e s is u s e d as an alternative for " s u b s p e -
cies." ( N o t e that " s u b s p e c i e s " is s i m p l y a level in t h e L i n n a e a n h i e r a r c h y ; there is no c o n n o t a t i o n that a " s u b s p e c i e s " is inferior in " q u a l i t y " to a " s p e cies." Thus, if an o r g a n i s m is assigned to a p a r t i c u l a r s u b s p e c i e s , this m e a n s that the o r g a n i s m m e r e l y has b e e n a s s i g n e d to a p a r t i c u l a r s u b d i v i s i o n of the s p e c i e s , not that the o r g a n i s m s o m e h o w is qualitatively inferior.)
Naming and Classifying Organisms
39
W h a t Funny Names!
I f y o u h a v e tried t o w r a p y o u r t o n g u e a r o u n d the scientific n a m e s o f fossils, y o u c a n identify w i t h Jules V e r n e ' s o n e - l i n e r a b o u t scientific t e r m s (alt h o u g h h e w a s r e f e r r i n g s p e c i f i c a l l y t o m i n e r a l o g i c a l ones). Part o f t h e p r o b l e m i s that t h e n a m e s o f fossils d o n o t s e e m t o m a k e s e n s e — t h e y a p -
. . . many learned words,
p e a r t o b e r a n d o m c o m b i n a t i o n s o f letters. Y e s , t h e y h a v e a u t i l i t a r i a n
half-Greek,
significance in d e n o t i n g taxa, but the n a m e s generally have "real" m e a n -
half-Latin,
and always
difficult
pronounce,
many
ished scorch
terms
to
i n g s , t o o . H o w e v e r , t h o s e m e a n i n g s g e n e r a l l y h a v e their roots i n a n c i e n t
unpol-
that would
L a t i n or G r e e k or b o t h , w h i c h is u n f o r t u n a t e for the vast majority of us, w h o are n o t s c h o o l e d i n t h e s e c l a s s i c a l l a n g u a g e s .
a poet's lips.
S o m e n a m e s are e p o n y m o u s , that is, t h e y arc d e r i v e d from t h e n a m e s
Jules V e r n e , [1864] 1992,
Journey to
Centre
of the
o f p e o p l e . T h e r e i s a g e n u s o f c o m m o n a r t i c u l a t e - b r a c h i o p o d s f o u n d i n the
the
Earth,
type-Cincinnatian called 4
Rafinesquina
after C. S. R a f i n e s q u e (1783-1840),
a naturalist w h o taught at Transylvania C o l l e g e in L e x i n g t o n , Kentucky. T h e c r i n o i d Pycnocrinus dyeri w a s n a m e d in h o n o r of l o c a l fossil c o l l e c t o r C . B . D y e r (1806-1883). A n d s o o n . O t h e r n a m e s d e r i v e f r o m p l a c e s . F o r e x a m p l e , the e d r i o a s t e r o i d s Cincinnatidiscus a n d
Isorophus
cincinnatiensis
were
named
after a
city that,
o n c e u p o n a t i m e , w a s t h e c a p i t a l o f t h e old N o r t h w e s t Territory. ( T h e L a t i n suffix " - e n s i s " o r " - e n s e " d e n o t e s p l a c e o r locality.) E a c h g e n u s has w h a t i s k n o w n a s a t y p e - s p e c i e s ; this w a s d e s i g n a t e d to r e p r e s e n t t h e g e n u s . In s o m e c a s e s , t h e trivial n a m e indicates this special status, for e x a m p l e , t h e p e l e c y p o d Cymatonota typicalis.
(Note, however,
that n o t all g e n e r a h a v e t y p e - s p e c i e s that are n a m e d in s u c h a w a y as to s i g n a l that status.) In s o m e instances, a n a m e m a y derive from the rock-unit in w h i c h a t a x o n o c c u r s . S o , for e x a m p l e , t h e a r t i c u l a t e b r a c h i o p o d Leptaena richmondensis o c c u r s i n r o c k s o f t h e R i c h m o n d i a n S t a g e . O c c a s i o n a l l y , a n a m e is t a k e n d i r e c t l y f r o m t h e L a t i n or G r e e k . Rana is a c o m m o n g e n u s of f r o g s , a n d " r a n a " is L a t i n for " f r o g . " The h e a d of a s p e c i m e n of t h e trilobite Phacops rana, " p e e p i n g " out of a rock, is strongly r e m i n i s c e n t of t h a t of a frog. Q u i t e c o m m o n l y a g e n e r i c o r trivial n a m e i s d e s c r i p t i v e . T h e b r y o zoan
Constellaria
b e a r s b u m p s that are d i s p o s e d in star-shaped patterns
("stella," L a t i n for "star").
T h e shell of t h e i n a r t i c u l a t e b r a c h i o p o d Trematis
millepunctata b e a r s m a n y h o l e s ( " t r e m a " = " h o l e " [ G r e e k ] ; " m i l l e " = 1000 [ G r e e k ] ; " p u n c t u m " = " s m a l l h o l e " [Latin]), T h a e r o d o n t a rugosa has w r i n k l e s ( " r u g a " = " w r i n k l e " [Latin]). A n d s o o n . O r t h e n a m e m a y reflect t h e h a b i t s o r h a b i t a t o f a n a n i m a l . T h e trilobite Flexicalymene c o m m o n l y is f o u n d flexed into a b a l l . b r a c h i o p o d Petrocrania
scabiosa
The i n a r t i c u l a t e
lived a t t a c h e d to o t h e r shells, rather like
t h e s c a b a t t a c h e d t o t h e shin y o u b a r k e d last w e e k . The m e s s a g e h e r e is that g e n e r i c a n d trivial n a m e s are n o t just c a b a listic c o m b i n a t i o n s o f letters u s e d t o refer t o taxa. T h e y a l m o s t a l w a y s h a v e m e a n i n g s b e y o n d t h a t — m e a n i n g s that m a k e sense! (For m o r e i n f o r m a t i o n o n t h e m e a n i n g s o f s c i e n t i f i c n a m e s , s e e B r o w n [1956].)
40
A Sea without Fish
If y o u hear s o m e o n e t r y i n g to talk a b o u t a s u b j e c t , b u t that p e r s o n r o u t i n e l y
Pronouncing
s t u m b l e s over t e c h n i c a l t e r m s o r m i s p r o n o u n c e s t h e m , y o u are b o u n d t o
Those Lip-
suspect that h e o r she d o e s n o t k n o w t h e s u b j e c t very w e l l . S o how s h o u l d
Blistering Names
one pronounce the n a m e s of t a x a — s o as not oneself to be labeled an ignoramus? Proper p r o n u n c i a t i o n of w o r d s that are L a t i n or G r e e k d e p e n d s on a k n o w l e d g e o f those classical l a n g u a g e s . A l a s ! V e r y few p e o p l e t o d a y h a v e the requisite k n o w l e d g e . T o m a k e matters w o r s e , e v e n a m o n g those w h o m i g h t lay a c l a i m to b e i n g well-versed in L a t i n or G r e e k , not e v e r y o n e a g r e e s as to w h a t constitutes correct p r o n u n c i a t i o n . For e x a m p l e , d e v o t e e s o f " C h u r c h L a t i n " and those o f " C l a s s i c a l L a t i n " d o n o t sing the s a m e C h r i s t m a s carols the s a m e w a y . There arc, h o w e v e r , s o m e rules o f t h u m b : 1. Unless you k n o w otherwise, put the emphasis on the antepenultim a t e syllable (that is, t h e s y l l a b l e b e f o r e t h e s y l l a b l e b e f o r e t h e last). T h u s , Brachiopoda is B r a c h i O p o d a . 2. C ' s a n d G ' s are o r d i n a r i l y hard (as in " c a t " a n d " g u n , " r e s p e c t i v e l y ) . 3. V ' s are p r o n o u n c e d as W ' s . 4. J's s h o u l d s o u n d like the Y in "your." 5. A " l o n g i" in Latin is p r o n o u n c e d like a " l o n g e" in E n g l i s h . 6.
The d i p h t h o n g " a e " in L a t i n is p r o n o u n c e d l i k e a " l o n g i" in E n g lish, viz., " e y e . "
7. Y is p r o n o u n c e d rather like t h e " o o " in t h e w o r d " l o o k . " B u t t h e a b o v e " r u l e s " c a n result in s o m e s t r a n g e - s o u n d i n g n a m e s , for e x a m p l e , the n a m e o f t h e e d r i o a s t e r o i d Cincinnatidiscus w o u l d s o u n d like " k i n k i n n a t i d i s k u s , " a n d t h e s n a k e Virginia w o u l d b e g i n w i t h t h e syllable "we're," f o l l o w e d by a hard G. (As an a s i d e , a b u n c h of m a l e g r a d u a t e s of a c o l l e g e o r university are c a l l e d " a l u m n i , " w i t h the last s y l l a b i c b e i n g p r o n o u n c e d " n e e , " w h e r e a s their f e m a l e c l a s s m a t e s are " a l u m n a e , " w i t h t h e last syllable r h y m i n g w i t h the E n g l i s h w o r d " n i g h . " ) N a m e s derived from the n a m e s of p e o p l e c a n be a real c o m p l i c a t i o n . The w e l l - k n o w n C i n c i n n a t i " h o r n - c o r a l " Grewingkia w a s n a m e d for t h e Russian paleontologist C o n s t a n t i n C a s p a r A n d r e a s G r e w i n g k (1819-1887), w h o p r o n o u n c e d his n a m e "gray-vink." P r e s u m a b l y , t h e n , t h e g e n e r i c n a m e should be said " G r a y - v i n k - e e - a h . " H o w e v e r , most A m e r i c a n s w o u l d call it "Grew-wink'-ee-ah." This raises the most-important c o n c e p t in this s e c t i o n : t h e o v e r a r c h i n g goal of p r o n u n c i a t i o n is c o m m u n i c a t i o n . It is i m p o r t a n t to p r o n o u n c e t h e n a m e s s o that those with w h o m y o u w i s h t o c o m m u n i c a t e will u n d e r s t a n d what y o u m e a n . L i s t e n i n g to the e x p e r t s in the field is g e n e r a l l y a g o o d way t o learn h o w t o p r o n o u n c e the n a m e s , b u t the g o a l i s c o m m u n i c a t i o n . S o , for e x a m p l e , i f those with w h o m y o u are s p e a k i n g refer t o the c o m m o n C i n c i n n a t i a n b r a c h i o p o d Zygospira w i t h t h e " y " a n d t h e " i " e a c h s o u n d i n g like "eve," it is okay to do the s a m e (even it your h i g h s c h o o l L a t i n t e a c h e r taught you that the "y" s h o u l d s o u n d like the "00" in " l o o k , " a n d that t h e " i " should sound like " e e " ) . W h e n i n C i n c i n n a t i , d o like the C i n c i n n a t i a n s ! Speaking of c o m m u n i c a t i o n , sometimes one encounters words or phrases that look a bit like s p e c i e s n a m e s , b u t are n o t . F o r e x a m p l e , t h e
Naming and Classifying Organisms
41
term
nomen
dubium refers to t h e n a m e of a t a x o n that w a s so p o o r l y d e -
s c r i b e d a n d o t h e r w i s e d o c u m e n t e d that it is n o t c e r t a i n just w h a t c o n s t i tutes t h e t a x o n a n d h o w t o r e c o g n i z e it. A d u b i o u s n a m e , i n d e e d . Another such phrase
is nomen nudum.
With
a
term
that literally
m e a n s " n a k e d n a m e , " a bit of b a c k g r o u n d is n e c e s s a r y . W h e n a s p e c i e s is n a m e d , t h e a u t h o r i s e x p e c t e d t o follow c e r t a i n c o n v e n t i o n s that h a v e b e e n a g r e e d t o b y t h e c o m m u n i t y o f t h e world's biologists. T h e a u t h o r m u s t i n d i c a t e t h a t he or she is n a m i n g t h e s p e c i e s for t h e first t i m e ( G e n e s i s 2:19-20, n o t w i t h s t a n d i n g ) . T h e s p e c i e s m u s t h a v e a d i a g n o s i s ; this is a s p e c i a l k i n d o f d e s c r i p t i o n that tells h o w i n d i v i d u a l s o f t h e " n e w " s p e c i e s differ f r o m all o t h e r m e m b e r s o f t h e g e n u s . A n d o n e o r m o r e t y p e - s p e c i mens must be indicated. T y p e - s p e c i m e n s serve as the material on w h i c h the species is based. T h e y s h o u l d be d e p o s i t e d in a bona fide m u s e u m so that scientists of future generations c a n study the exact s p e c i m e n s on w h i c h a given species is b a s e d . It u s e d to be c o m m o n to b a s e a " n e w " s p e c i e s on a s i n g l e s p e c i m e n . N o w , g i v e n t h e i n t r a s p e c i f i c v a r i a t i o n that has b e e n f o u n d t o exist w i t h i n all s p e c i e s , it is m o r e c o m m o n to d e s i g n a t e a suite of t y p e - s p e c i m e n s w h e n a s p e c i e s is n a m e d . If all t h e t y p e - s p e c i m e n s arc c o n s i d e r e d to be of e q u a l v a l u e a s r e p r e s e n t i n g t h e s p e c i e s , t h e y arc said t o b e c o t y p e s . O n the o t h e r h a n d , if t h e r e is s i n g l e t y p e - s p e c i m e n , or o n l y o n e of a suite is c o n s i d e r e d t o b e t h e " n a m e b e a r e r " for t h e s p e c i e s , i t i s d e s i g n a t e d the h o l o t y p e , a n d the o t h e r s o f t h e suite are p a r a t y p e s . B a c k to nomen nudum: It is a n a m e of a taxon that d o e s n o t have the associated v e r b i a g e , illustrations, d e s i g n a t e d s p e c i m e n s , and s o o n . W i t h o u t s u c h m a t e r i a l , there is no w a y to k n o w w h a t constitutes the taxon, either c o n c e p t u a l l y or s p e c i m e n - w i s e . P r o b a b l y the m o s t c o m m o n w a y that a nomen nudum c o m e s into e x i s t e n c e is t h r o u g h the vagaries of the p u b l i c a t i o n p r o c e s s . S u p p o s e that a p a l e o n t o l o g i s t is p r e p a r i n g t w o scientific papers for p u b l i c a t i o n ; o n e is to c o n t a i n c o m p r e h e n s i v e d e s c r i p t i o n s and illustrations of " n e w " taxa. T h e o t h e r is just a t a b u l a t i o n of the fossils in a g i v e n rock-unit in a given area; it consists of just t h e n a m e s of t h e taxa formally d e s c r i b e d in t h e former. A l a s ! By a quirk of fate (or b a d p l a n n i n g ? ) , the list is p u b l i s h e d q u i c k l y , b u t the p a p e r with the f o r m a l d e s c r i p t i o n s a p p e a r s later, or, even w o r s e , not at all. A n d a spate of nomina nuda are b o r n .
The G a m e of
A m a t e u r fossil c o l l e c t o r s c o m m o n l y g e t m o r e t h a n a little a g g r a v a t e d a t p a l e o n t o l o g i s t s for c h a n g i n g t h e n a m e s o f fossils. I n d e e d , o n e o f t h e b u g a -
"Musical N a m e s "
b o o s o f all folks w h o s t u d y fossils i s that t h e n a m e s s o m e t i m e s c h a n g e w h e n y o u least e x p e c t it. Take, for e x a m p l e , the c a s e of a w e l l - k n o w n l o c a l c r i n o i d . In 1872, F. B . M e e k r e c o g n i z e d a s p e c i e s h e n a m e d Glyptocrinus dyeri.
T h e genus
Glyptocrinus h a d b e e n n a m e d by J a m e s H a l l in 1847, a n d t h e t y p e - s p e c i e s , t h e s p e c i e s that e x e m p l i f i e s t h e g e n u s ,
is Glyptocrinus decadactylus H a l l ,
1847. M e e k t h o u g h t that Glyptocrinus dyeri b e l o n g s in the s a m e g e n u s as G . decadactylus, a n d so, q u i t e properly, h e u s e d t h e s a m e g e n e r i c n a m e . A b o u t t h e s a m e t i m e (1883, a c t u a l l y ) , S . A . M i l l e r r e c o g n i z e d w h a t h e
42
A Sea without Fish
c o n s i d e r e d to be a separate g e n u s , a n d be c a l l e d it Pycnocrinus. In s u b s e q u e n t years, e x p e r t s on fossil c r i n o i d s d e c i d e d that G. dyeri a c t u a l l y is m o r e closely related to the t y p e - s p e c i e s of Pycnocrinus t h a n to that of Glyptocrinus, so t h e s p e c i e s n a m e d by M e e k w a s r e - a s s i g n e d — f r o m t h e latter to t h e f o r m e r g e n u s . H e n c e , its n a m e w a s c h a n g e d to Pycnocrinus dyeri ( M e e k , 1872)—the p a r e n t h e s e s are s h o r t h a n d to tell us that t h e s p e c i e s n a m e d by M e e k in 1872, w i t h the s p e c i f i c n a m e " d y e r i , " w a s later t r a n s f e r r e d to t h e g e n u s Pycnocrinus. ( A l t h o u g h p a r e n t h e s e s u s e d i n that w a y m a y not a p p e a r i n s o m e g u i d e b o o k s for a m a t e u r fossil c o l l e c t o r s , t h e y c a n p r o v i d e a v a l u able h i n t t o t h e p a l e o n t o l o g i s t t r y i n g t o track d o w n t h e n o m e n c l a t o r i a l history of a p a r t i c u l a r species.) O n the o t h e r h a n d , s o m e t i m e s the s i t u a t i o n i s t h e o t h e r w a y r o u n d . I n 1935, S a b u r o S h i m i z u a n d T a d a h i r o O b a t a r e c o g n i z e d a " n e w " g e n u s o f fossil
cephalopods
and
named
it
Orthonybyoceras.
In
1942,
Rousseau
F l o w e r , a n e m i n e n t e x p e r t o n fossil c e p h a l o p o d s , r e c o g n i z e d a " n e w " g e n u s and c a l l e d it Treptoceras.
L a t e r w o r k e r s , for e x a m p l e , C u r t T e i c h e r t ,
o n e o f the m o s t f a m o u s p a l e o n t o l o g i s t s o f his clay a n d , i t h a p p e n s , a n e x p e r t o n fossil c e p h a l o p o d s , c o n c l u d e d that a n i m a l s f o r m e r l y r e c o g n i z e d a s b e l o n g i n g in the t w o separate g e n e r a c o m p r i s e d a s i n g l e t a x o n . In s u c h c a s e s , biologists apply a c o n v e n t i o n c a l l e d p r i o r i t y , viz., w h e n t h e r e is an o l d e r n a m e a n d a y o u n g e r n a m e that b o t h h a v e b e e n u s e d t o d e s i g n a t e t h e s a m e taxon. the o l d e r n a m e b e c o m e s the official n a m e o f the t a x o n . S o , b e c a u s e it is older, t h e n a m e Orthonybyoceras S h i m i z u a n d O b a t a , 1935 w a s a p p l i e d to the g e n u s ( T e i c h e r t 1964, K214). N o t e that t h e g u i d i n g p r i n c i p l e i n b o t h o f t h e s e e x a m p l e s — a n d i n all similar c a s e s — i s for a g i v e n t a x o n to h a v e a s i n g l e , u n i q u e n a m e a n d that a g i v e n n a m e s h o u l d refer to a s i n g l e , u n i q u e t a x o n . If t w o g r o u p s of o r g a n isms b e l o n g i n separate taxa, t h e n t h o s e taxa n e e d t o h a v e s e p a r a t e n a m e s — in the a b o v e e x a m p l e , Glyptocrinus a n d Pycnocrinus.
If t w o p u t a t i v e l y s e p a -
rate g r o u p s o f a n i m a l s a c t u a l l y c o m p r i s e a s i n g l e t a x o n , t h e n all s h o u l d parade under a single
name—in
the a b o v e e x a m p l e , Orthonybyoceras.
N a m e s are not c h a n g e d for frivolous reasons. All creatures with the s a m e species n a m e b e l o n g in the s a m e s p e c i e s . All c r e a t u r e s w i t h the s a m e genericn a m e b e l o n g in the s a m e g e n u s . That way, w h e n a particular g e n u s or s p e c i e s is m e n t i o n e d by n a m e , e v e r y o n e e v e r y w h e r e k n o w s e x a c t l y w h a t is b e i n g discussed. The goal of z o o l o g i c a l n o m e n c l a t u r e is c o m m u n i c a t i o n !
Naming and Classifying Organisms
43
Figure 4 . 1 .
Cincinnatian stratigraphic nomenclature from
From Schumacher (1984, logical Survey.
figure 2),
1955 through
This chart shows stratigraphic subdivisions
researchers for different parts of the Cincinnati Arch region. were based largely on differences in Lineback (1966),
Hatfield (1968),
fossil content.
Gray (1972),
from his study.
In
the Hatfield column,
of the
Cincinnatian
Subdivisions in
A Sea without Fish
Series proposed by different
the Caster et al.
(1955) column
and Lee (1974) columns were based on general
Hay (1981) and Tobin the
(1986) used both lithologic as well
vertical lines indicate parts of the section
Units separated by jagged lines indicate lateral changes in
44
From Davis and Cuffey (1998).
Broader subdivisions such as those of the Brown and
Peck (1966),
characteristics of the rocks (lithology) and bedding. as paleontologic aspects.
1986.
courtesy of the Ohio Department of Natural Resources Division of Geo-
rock
characteristics
excluded (faces)
ROCKS, FOSSILS, AND TIME
Fossils i n m a n y c o l l e c t i o n s a n d m u s e u m e x h i b i t s are o f t e n i m p r e s s i v e for f i n e l y p r e s e r v e d detail a n d e v e n b e a u t y , b e c a u s e t h e y h a v e u n d e r g o n e p a i n s t a k i n g p r e p a r a t i o n b y w h i c h e v e r y t r a c e o f t h e stony m a t r i x h a s b e e n r e m o v e d . H o w e v e r , a fossil so isolated f r o m its e m b e d d i n g m a t r i x a l s o loses m u c h of its s i g n i f i c a n c e as a m e a n s by w h i c h to u n d e r s t a n d w h e n a n d howit lived. Only t h r o u g h i n v e s t i g a t i o n of the fossil in the rock c a n we a t t a i n a c l e a r u n d e r s t a n d i n g o f t h e s i g n i f i c a n c e o f t h e a b u n d a n t O r d o v i c i a n fossils of the C i n c i n n a t i A r c h r e g i o n , or a n y fossils for that m a t t e r . In this c h a p t e r w e will e x p l o r e the n a t u r e o f t h e r o c k s i n w h i c h C i n c i n n a t i a n fossils are f o u n d , t h e m e a n s b y w h i c h t h e y are s u b d i v i d e d , a n d t h e a p p l i c a t i o n s o f this study t o u n d e r s t a n d i n g t h e e n v i r o n m e n t s i n w h i c h t h e y w e r e f o r m e d and t o d e t e r m i n i n g their g e o l o g i c a g e . T w o words effectively d e s c r i b e t h e b e d r o c k o f the C i n c i n n a t i A r c h reg i o n for e v e n first-time observer: monotonous a n d layered. C i n c i n n a t i rocks are i n d e e d m o n o t o n o u s as their entire t h i c k n e s s of o v e r 250 m (820 feet) consists o f a p p a r e n t l y s i m i l a r b l u e - g r e y l i m e s t o n e s a n d shales.
These two
c o m m o n s e d i m e n t a r y rocks form t h i n , a l t e r n a t i n g layers ( b e d s or strata) that appear to be h o r i z o n t a l and c o n t i n u o u s across an e x p o s u r e s u c h as a roadcut. The overall impression is that of a layer c a k e , a n d in fact C i n c i n n a t i a n b e d rock has l o n g b e e n k n o w n as a classic of " l a y e r c a k e g e o l o g y . " C l o s e r e x a m i nation by scores of geologists over m o r e t h a n 150 years r e v e a l e d that like m o s t first impressions, the a c t u a l c h a r a c t e r of C i n c i n n a t i a n strata is q u i t e different. G e o l o g i s t s vigorously p u r s u e d the d e t a i l e d d e s c r i p t i o n , s u b d i v i s i o n , a n d classification of these s e e m i n g l y u n i f o r m strata for a variety of p u r p o s e s , resulting in a l o n g and c o m p l e x history of study. G e o l o g i s t s e m p l o y different m e t h o d s to d e s c r i b e a n d s u b d i v i d e rocks. For layered s e d i m e n t a r y rocks, t h e c h i e f m e t h o d s arc relative age, rock type, a n d fossils.
A l t h o u g h the history o f t h e
Earth
is part o f a c o n t i n u o u s flow o f t i m e , t h e
Geeoollooggiicc Time Units G
e v i d e n c e we h a v e for that past history, the rocks a n d fossils, r e p r e s e n t s o n l y f r a g m e n t s of that history. For this r e a s o n , g e o l o g i s t s u s e a d u a l set of t e r m s for divisions of c o n t i n u o u s t i m e a n d t h e r o c k s that r e p r e s e n t p r e s e r v e d intervals of t i m e (see F i g u r e 1.1).
T h e c o n t i n u o u s flow of g e o l o g i c t i m e is
d i v i d e d into m a j o r d i v i s i o n s c a l l e d e o n s , w h i c h are i n t u r n d i v i d e d into eras and p e r i o d s , the f u n d a m e n t a l u n i t s o f E a r t h history. P e r i o d s are s u b divided into e p o c h s (Early, M i d d l e , Late), a n d a g e s . I n g e o l o g i c t i m e t e r m s , the C i n c i n n a t i a n i s part o f t h e L a t e O r d o v i c i a n E p o c h o f t h e O r d o v i c i a n Period. T h e O r d o v i c i a n Period i s t h e n e x t - t o - o l d e s t p e r i o d o f t h e P a l e o z o i c
45
E r a , a n d the P a l e o z o i c Era i s the earliest era o f t h e P h a n e r o z o i c E o n ( m e a n i n g " t i m e o f r e v e a l e d life," for t h e a b u n d a n c e o f fossils i n those strata). T h e o t h e r set of t e r m s , time-stratigraphic units, applies to the a c t u a l rocks that g e o l o g i s t s assign to p a r t i c u l a r intervals of t h e g e o l o g i c t i m e s c a l e , and are r o u g h l y e q u i v a l e n t t o t h e divisions o f c o n t i n u o u s t i m e , e x c e p t that there are m a n y g a p s i n t h e record o f t i m e that result from i n c o m p l e t e preservation.
Relative A g e
A c c o r d i n g t o a f u n d a m e n t a l p r i n c i p l e o f g e o l o g y , s u p e r p o s i t i o n , the l o w e s t r o c k layers i n a n u n d i s t u r b e d v e r t i c a l s e q u e n c e w e r e d e p o s i t e d b e f o r e layers l y i n g a b o v e t h e m . T h u s , for t h e C i n c i n n a t i " l a y e r c a k e , " w e k n o w that layers e x p o s e d i n t h e b e d o f t h e O h i o R i v e r f o r m e d b e f o r e layers e x p o s e d h i g h e r a l o n g t h e h i l l s i d e s , b u t w e d o n o t k n o w e x a c t l y how old t h e layers a r e , or how much older are l o w e r layers t h a n h i g h e r layers. We k n o w o n l y that l o w e r layers are relatively older t h a n h i g h e r layers. G e o l o g i s t s e s t a b l i s h e d t h e r e l a t i v e a g e s e q u e n c e o f t h e m a j o r s e d i m e n t a r y layers o f the E a r t h ' s c r u s t l o n g b e f o r e a n a l y t i c a l m e t h o d s (chiefly r a d i o m e t r i c d a t i n g ) were d e v e l o p e d to d e t e r m i n e the a b s o l u t e a g e of rocks.
Time-Stratigraphic
R o c k s that f o r m e d d u r i n g a p a r t i c u l a r interval o f g e o l o g i c t i m e are c a l l e d
Units
t i m e - s t r a t i g r a p h i c u n i t s . T h u s , rocks d e p o s i t e d d u r i n g t h e O r d o v i c i a n Period c o n s t i t u t e the O r d o v i c i a n S y s t e m , w h i c h is s u b d i v i d e d into S e r i e s (usually L o w e r , M i d d l e , and U p p e r , but s o m e t i m e s n a m e d , as in the C i n c i n n a t i a n Series). S t a g e s are t h e f u n d a m e n t a l subdivisions of series u s e d for correlation on a c o n t i n e n t a l a n d i n t e r c o n t i n e n t a l scale. C i n c i n n a t i a n stages are the E d e n i a n , M a y s v i l l i a n , and R i c h m o n d i a n , i n order from oldest t o y o u n g e s t .
Rock-
R o c k s c a n also b e s u b d i v i d e d o r classified b y r o c k t y p e o r l i t h o l o g y . L i t h o l -
stratigraphic or
o g y u s u a l l y i n c l u d e s t h e c o m p o s i t i o n o f t h e r o c k , its c o n s t i t u e n t p a r t i c l e s ,
Lithostratigraphic
their size, shape, and a r r a n g e m e n t .
The fundamental lithostratigraphic
u n i t is t h e f o r m a t i o n , d e f i n e d by a d i s t i n c t i v e l i t h o l o g i c c h a r a c t e r as w e l l
Units
as a t h i c k n e s s s u f f i c i e n t to be s h o w n at a c o n v e n i e n t s c a l e of g e o l o g i c m a p p i n g . F o r m a t i o n s c a n b e c o m b i n e d a s g r o u p s , o r s u b d i v i d e d into m e m b e r s . F o r m a t i o n s d o n o t n e c e s s a r i l y c o i n c i d e w i t h a s p e c i f i c interval o f t i m e , a n d i n d e e d are o f t e n t i m e - t r a n s g r e s s i v e , that is, their l o w e r o r u p p e r b o u n d a r i e s are n o t t i m e - e q u i v a l e n t o r i s o c h r o n o u s s u r f a c e s .
Biostratigraphic
R o c k s c a n b e s u b d i v i d e d o n t h e basis o f fossil c o n t e n t . T h e t h i c k n e s s o f strata in w h i c h a p a r t i c u l a r k i n d of fossil o c c u r s d e f i n e s the fossil z o n e (or
Units
b i o z o n e ) , w h i c h is the f u n d a m e n t a l biostratigraphic unit. T h e lower and u p p e r l i m i t s o f a p a r t i c u l a r fossil d o n o t n e c e s s a r i l y represent t h e s a m e t i m e horizons in different stratigraphic sections. However, t h r o u g h the use of t h e o v e r l a p p i n g r a n g e z o n e s o f m a n y s p e c i e s , b i o s t r a t i g r a p h e r s establish t h e b o u n d a r i e s o f t i m e - s t r a t i g r a p h i c u n i t s s u c h a s stages.
46
A Sea without Fish
T h e earliest s t u d i e s o f the r o c k s a n d fossils o f t h e C i n c i n n a t i r e g i o n d a t e
Early Studies
to the early 1800s ( D r a k e 1825; R i d d e l l 1837; L o c k e 1838; L y e l l 1845) a n d c o i n c i d e w i t h t h e very b e g i n n i n g s o f g e o l o g y a s a s c i e n c e .
T h e s e early
workers m a d e n o a t t e m p t t o s u b d i v i d e t h e strata a r o u n d C i n c i n n a t i , a n d referred t o t h e m s i m p l y a s t h e " B l u e M i a m i L i m e s t o n e " ( R i d d e l l 1837), " B l u e L i m e s t o n e " ( L o c k e 1838), o r " G r e a t L i m e s t o n e D e p o s i t e " ( B r i g g s 1838). F . B . M e e k a n d A . H . W o r t h e n (1865), b o t h p i o n e e r s o f A m e r i c a n p a l e o n t o l o g y , first u s e d t h e t e r m C i n c i n n a t i G r o u p for t h e O h i o strata. E d w a r d O r t o n ( O r t o n 1873), O h i o ' s third state g e o l o g i s t , p r o p o s e d a fourfold s u b d i v i s i o n o f w h a t h e t e r m e d t h e C i n c i n n a t i b e d s p r o p e r : R i v e r Q u a r r y B e d s ( l o w e r m o s t ) , M i d d l e ( E d e n ) S h a l e s , Hill Q u a r r y B e d s , a n d L e b a n o n Beds ( u p p e r m o s t ) .
T h e a b u n d a n t and w e l l - p r e s e r v e d fossils o f t h e C i n c i n n a t i r e g i o n a t t r a c t e d
Subdivision Based
m o r e and m o r e a t t e n t i o n d u r i n g t h e latter p a r t o f t h e n i n e t e e n t h c e n t u r y ,
on Fossils
and as a result, d e t a i l e d k n o w l e d g e of t h e d i s t r i b u t i o n of p a r t i c u l a r fossil s p e c i e s i n t h e strata w a s a c c u m u l a t e d t h r o u g h t h e efforts o f t h e C i n c i n n a t i s c h o o l of early p a l e o n t o l o g i s t s (see c h a p t e r 2). In 1902 John M. N i c k l e s published a comprehensive report on the g e o l o g y of C i n c i n n a t i , an excellent r e v i e w a n d c o m p i l a t i o n o f e a r l i e r s t u d i e s ( N i c k l e s 1902). B y the t i m e o f Niekles's report, the C i n c i n n a t i G r o u p h a d c o m e t o b e r e c o g n i z e d as " o n e of the major divisions of the O r d o v i c i a n or L o w e r Silurian Era, with the title of C i n c i n n a t i P e r i o d " ( N i c k l e s 1902, 64). N i c k l e s s u b d i vided the Cincinnati Period into three major div I S I O N S . e a c h t e r m e d a g r o u p : Utica g r o u p ( l o w e r m o s t , 260 feet thick), L o r r a i n e g r o u p (310 feet thick), and R i c h m o n d g r o u p ( u p p e r m o s t , 2 0 0 - 3 0 0 feet thick). The t e r m s U t i c a a n d Lorraine were both derived from c o m p a r i s o n s w i t h the O r d o v i c i a n of New York. W i n c h e l l and U l r i c h (1897) h a d p r o p o s e d the t e r m R i c h m o n d (from e x c e l lent exposures at R i c h m o n d , Indiana) for the u p p e r m o s t C i n c i n n a t i strata b e c a u s e L e b a n o n had previously b e e n used for older O r d o v i c i a n strata in Tennessee. The f o l l o w i n g s e c t i o n from Niekles's report c o n t a i n s f u n d a m e n tal statements that w e r e the basis for subdivision of the s e c t i o n : There is considerable variation in the different groups in the proportions of limestone and shale. Shale greatly predominates in the Utica, but from the lower beds of the Lorraine on, the proportion of limestone gradually increases. This shows that there was a gradual change from more or less turbulent conditions prevailing at the close of the Trenton to the time of the Lower Richmond, when quiet seas permitted the a c c u m u l a t i o n of the materials for closely succeeding beds of limestone. As the period c a m e to a close, there came anew turbulent conditions. The fauna of the different groups indicates the same succession of changes. (Nickles 1902, 65) B o t h the c h a r a c t e r o f t h e rock ( l i t h o l o g y ) a n d t h e fossil c o n t e n t differentiate subdivisions. N i c k l e s listed s p e c i e s that c o u l d b e f o u n d t h r o u g h o u t t h e entire s e c t i o n , but t h e s e w e r e o n l y 4 p e r c e n t o f all f o r m s k n o w n f r o m t h e C i n c i n n a t i p e r i o d , a n d " t h e great b u l k o f forms u s u a l l y h a v e a l i m i t e d vertic a l r a n g e " ( N i c k l e s 1902, 65). His f u r t h e r s u b d i v i s i o n o f the g r o u p s w a s b a s e d o n a c o m b i n a t i o n o f l i t h o l o g i c a n d p a l e o n t o l o g i c criteria. T h e U t i c a
Rocks, Fossils, and Time
47
g r o u p ". . . m a y be d i v i d e d into t h r e e s u b d i v i s i o n s , m o r e easily r e c o g n i z e d faunally
t h a n l i t h o l o g i c a l l y , t h o u g h c l o s e s t u d y s h o w s l i t h o l o g i c a l differ-
e n c e s , w h i c h s o o n c o m e t o b e felt, b u t are n o t easily d e s c r i b e d " ( N i c k l e s 1902, 69) T h e s e w e r e n a m e d
the L o w e r
Utica
or Aspidopora newberryi
B e d s , t h e M i d d l e U t i c a or Batostoma jamesi B e d s , a n d the U p p e r U t i c a or Dekayella ulrichi B e d s .
T h e L o r r a i n e w a s l i k e w i s e s u b d i v i d e d into six
" b e d s , " e a c h g i v e n a l o c a l g e o g r a p h i c n a m e as w e l l as a c h a r a c t e r i s t i c fossil s p e c i e s , a n d he i n d i c a t e d t h a t t h e g r o u p ". . . is easily s e p a r a b l e on f a u n a l g r o u n d s , w i t h c o r r e s p o n d i n g m o r e o r less w e l l - m a r k e d l i t h o l o g i c a l c h a r a c ters" ( N i c k l e s 1902, 75) H e d i v i d e d t h e R i c h m o n d into l o w e r , m i d d l e , a n d u p p e r d i v i s i o n s b a s e d o n t h e i r f a u n a s , b u t i n d i c a t e d that study has b e e n i n s u f f i c i e n t t o establish their b o u n d a r i e s o r l i t h o l o g i c a l c h a r a c t e r s . In 1903 A u g u s t F. Foerste i n t r o d u c e d for t h e first t i m e t h e t e r m C i n c i n n a t i a n S e r i e s for t h e e n t i r e s e c t i o n , and referred t o t h e U t i c a , L o r r a i n e , a n d R i c h m o n d a s stages ( F o e r s t e 1903). F o e r s t e (1906) t e r m e d t h e s a m e t h r e e g r o u p s f o r m a t i o n s , w i t h their s u b d i v i s i o n s a s m e m b e r s . H e also d i s c a r d e d t h e New York t e r m L o r r a i n e a n d r e p l a c e d it w i t h M a y s v i l l e . In t h e s a m e y e a r R a y S. Bassler (1906) e l e v a t e d t h e n a r r o w e r s u b d i v i s i o n s to f o r m a t i o n s a n d d e f i n e d t h e C o v i n g t o n C r o u p t o i n c l u d e t h e U t i c a , E d e n , Fairview, and M c M i l l a n Formations, overlain by the R i c h m o n d C r o u p , including the A r n h e i m , Waynesville, Liberty, Whitewater, and Saluda Formations. In time, further subdivisions of these formations were designated as m e m b e r s , a l t h o u g h d i f f e r e n t w o r k e r s c o n t i n u e d t o u t i l i z e different stratigraphic c l a s s i f i c a t i o n s ( W e i s s a n d N o r m a n 1960b). A g u i d e b o o k to the fossils a n d strata of the C i n c i n n a t i area p r e p a r e d i n 1939 b y Prof. W a l t e r H . B u c h e r , w i t h illustrations b y K e n n e t h F . C a s t e r , assisted b y S t e w a r t Jones, w a s f i r s t p r i n t e d i n f o r m a l l y b y t h e D e p a r t m e n t o f G e o l o g y o f t h e University o f C i n c i n n a t i ( B u c h e r e t al. 1939). The b o o k l e t w a s p u b l i s h e d i n 1945 b y t h e C i n c i n n a t i M u s e u m o f N a t u r a l H i s t o r y u n d e r the
title
Elementary Guide to
the Fossils and Strata
in
the Vicinity of Cin-
cinnati, Ohio ( B u c h e r et al. 1945); later r e v i s e d by C a s t e r , D a l v e , a n d P o p e (1955, 1961), it b e c a m e t h e s t a n d a r d for w h a t has b e c o m e k n o w n as t h e " t r a d i t i o n a l " o r " b i o s t r a t i g r a p h i c " c l a s s i f i c a t i o n o f t h e C i n c i n n a t i a n (Figure 4.1). T h e s e e d i t i o n s of t h e Elementary Guide i n c l u d e the s t a t e m e n t that " T h e l i t h o l o g y , i.e., r o c k c h a r a c t e r i s t i c s , o f the b e d s a s i n d i c a t e d o n t h e charts varies considerably w h e n traced away from the Tri-Statc Area. T h e r e f o r e , l i t h o l o g i c i d e n t i f i c a t i o n o f t h e C i n c i n n a t i a n f o r m a t i o n s and b e d s i s u n r e l i a b l e . H o w e v e r , t h e s e q u e n c e o f fossils persists t h r o u g h o u t the a r e a a n d f u r n i s h e s a r e l i a b l e basis for i d e n t i f y i n g e q u i v a l e n t b e d s , a n d thus t h e p o s i t i o n i n t h e s t r a t i g r a p h i c s e q u e n c e " ( C a s t e r , D a l v e , a n d P o p e 1955, 15; C a s t e r , D a l v e , a n d P o p e 1961, 15). S u b s e q u e n t revisions of this b o o k by R. A.
D a v i s (1985,
1992), u n d e r t h e title Cincinnati Fossils r e t a i n e d t h e
t i m e - h o n o r e d C i n c i n n a t i a n stratigraphic chart of the older work, but p o i n t e d o u t h o w i t differs f r o m m o d e r n s t r a t i g r a p h i c u s a g e . M o d e r n p r a c t i c e s i n t h e f i e l d o f stratigraphy e m e r g e d d u r i n g t h e postW o r l d W a r I I era a s efforts w e r e m a d e t o e l i m i n a t e c o n f u s i o n r e s u l t i n g f r o m n o n - u n i f o r m u s a g e a n d t o s t a n d a r d i z e s t r a t i g r a p h i c classification a n d t e r m i n o l o g y . T h e history o f C i n c i n n a t i a n stratigraphy ( W e i s s a n d N o r m a n
48
A Sea without Fish
Figure 4 . 2 . Average percent
composition
allochem
of
fraction
nal
groups and algae in
the
upper (Saluda
Whitewater and lower tion
and
Formations) (Kope
Forma-
to Saluda Formation)
parts Series.
of the
Cincinnatian
(Allochems
fragments
are
of fossils
other discrete grains limestones.) from Martin
1960b) p r o v i d e s a s t r o n g c a s e d e m o n s t r a t i n g this n e e d ! G u t s t a d t (1958) a n d W e i s s (1961) p o i n t e d o u t that t r a d i t i o n a l C i n c i n n a t i a n s t r a t i g r a p h i c classif i c a t i o n w a s e s s e n t i a l l y a b i o s t r a t i g r a p h i c z o n a t i o n , sorely i n n e e d o f revision i n k e e p i n g w i t h n e w c o n c e p t s a n d p r a c t i c e s . P u b l i c a t i o n o f t h e C o d e of Stratigraphic N o m e n c l a t u r e ( A m e r i c a n C o m m i s s i o n on Stratigraphic N o m e n c l a t u r e 1961) a n d the I n t e r n a t i o n a l S t r a t i g r a p h i c G u i d e ( S a l v a d o r 1994) c u l m i n a t e d many years of c o l l a b o r a t i v e work b e t w e e n e a r t h scientists in the United States a n d w o r l d w i d e . C i n c i n n a t i a n l i t h o s t r a t i g r a p h i c u n i t s are d e f i n e d b y data o n t h e following characteristics obtained from measured sections: limestone types p r e s e n t , clastic ratio, a n d b e d d i n g f e a t u r e s . L i m e s t o n e s i n t h e C i n c i n n a tian display w i d e v a r i a t i o n , r a n g i n g f r o m f i n e - g r a i n e d t o c o a r s e - g r a i n e d and c o m p o s e d o f v a r y i n g m i x e s o f fossils ( F i g u r e s 4.2, 4.3). A c c e l e r a t e d research i n l i m e s t o n e ( c a r b o n a t e ) p e t r o g r a p h y e n a b l e d g r e a t l y r e f i n e d d e scription o f C i n c i n n a t i a n l i m e s t o n e s ( W e i s s a n d N o r m a n 1960a; M a r t i n The elastic ratio is t h e p r o p o r t i o n of s h a l e t h i c k n e s s in
relation to l i m e s t o n e t h i c k n e s s in a s e c t i o n . B e d d i n g f e a t u r e s i n c l u d e the b e d d i n g i n d e x , c a l c u l a t e d as the n u m b e r of b e d s (x 100) in a g i v e n interval divided b y the t h i c k n e s s o f the i n t e r v a l , a n d b e d f o r m , s u c h a s p l a n a r o r wavy. T h e s e l i t h o l o g i c c h a r a c t e r i s t i c s c a n b e q u a n t i f i e d a n d p l o t t e d o n vertical s e c t i o n s o r m a p s . T h e n e w clarification and codification of stratigraphic usage m e a n t that C i n c i n n a t i a n f o r m a t i o n s that h a d b e e n d e f i n e d l a r g e l y o n t h e r a n g e s o f c h a r a c t e r i s t i c fossils w e r e i n v a l i d .
The d i s t i n c t i o n w a s m u c h m o r e t h a n
a semantic problem: attempts to r e c o g n i z e the traditional C i n c i n n a t i a n stratigraphic f o r m a t i o n s b e y o n d t h e i m m e d i a t e vicinity o f C i n c i n n a t i w e r e Rocks, Fossils, and Time
49
or in
Adapted (1975),
tesy of Wayne D.
1975; T o b i n 1982).
the
of fau-
cour-
Martin.
Figure 4 . 3 . semblages. as seen
Variation in limestone deposition in relation to benthic fossil asSmaller circles
not the same. tive
depict
the
in petrographic thin section
bonate sediment
of skeletal grains (mud),
has skeletal grains in between grains.
A
tergranular spaces.
and
and calcium
the
In
produce a
est level of water motion,
50
of organisms,
A Sea without Fish
(spar).
mud filling
A
types
the relapackstone
the spaces
cement filling "floating" in a
the inmud ma-
and a mudstone has less
causing
resulting in
A grainstone
water movement is
fine-grained sediment either packstones or
water movement at margins
wider variety of limestones.
Martin.
10% grains,
with skeletal grains,
variable
grains to be cemented. D.
limestone
All limestones are fine-grained car-
the interior of a benthic assemblage,
dense growth
More
cement with
wackestone has skeletal grains
to be deposited along wackestones.
carbonate
grainstone is grain-supported with A
10% grains.
other allochems,
contact (grain-supported)
trix (mud-supported) with more than retarded by
of different
Different types of limestone will form depending on
contributions
than
character
under the microscope.
of assemblages
usually reflects
by which mud is winnowed,
From Martin and Hauer (2006),
will
the high-
leaving only skeletal courtesy of Wayne
fraught w i t h difficulties. E v e n the i n t e r n a t i o n a l l y r e c o g n i z e d C i n c i n n a t i a n stages ( E d e n i a n , M a y s v i l l i a n , a n d
Richmondian)
c o u l d he called into
q u e s t i o n a s valid t i m e - s t r a t i g r a p h i c u n i t s b e c a u s e t h e y w e r e e q u i v a l e n t t o the E d e n , M a y s v i l l e , a n d R i c h m o n d " C r o u p s " w h i c h c o m p r i s e d " f o r m a tions" that l a c k e d t i m e - s t r a t i g r a p h i c s i g n i f i c a n c e . C o n s e q u e n t l y , geologicresearch o n the C i n c i n n a t i a n d u r i n g t h e 1960s resulted in m a j o r revisions of the stratigraphic classification and n o m e n c l a t u r e .
T h r e e m a j o r r e s e a r c h p r o g r a m s o f t h e 1960s m a r k e d a n e w p h a s e i n t h e
Lithostratigraphy
d e v e l o p m e n t a n d u n d e r s t a n d i n g o f C i n c i n n a t i a n s t r a t i g r a p h y ; all w e r e ini-
and "Stateline
tiated o u t s i d e o f C i n c i n n a t i . S e v e r a l g e o l o g i s t s a t T h e O h i o S t a t e U n i v e r -
Boundaries"
sity (notably S t i g M . B e r g s t r o m , W a l t e r C . S w e e t , M a l c o l m P . W e i s s , a n d their students) p u b l i s h e d a series o f p a p e r s a i m e d a t r e v i s i n g t h e A m e r i c a n Upper Ordovician Standard in both lithostratigraphic and biostratigraphy terms. I n t h e 1960s t h e K e n t u c k y G e o l o g i c a l S u r v e y a n d t h e U n i t e d States G e o l o g i c a l S u r v e y initiated a m a j o r p r o j e c t t o p r o v i d e n e w g e o l o g i c m a p s o f t h e e n t i r e state o f K e n t u c k y a t s c a l e o f t h e 7.5 m i n u t e q u a d r a n g l e (1:24,000 scale). In order to a c c o m p l i s h this e n o r m o u s task, it w a s n e c e s s a r y to p r o v i d e a u n i f o r m s t r a t i g r a p h i c c l a s s i f i c a t i o n of m a p p a b l e lithostratig r a p h i c units. I n k e e p i n g w i t h t h e n e w S t r a t i g r a p h i c C o d e , g e o l o g i s t s ass o c i a t e d w i t h the m a p p i n g p r o g r a m d e v e l o p e d a n e w s t r a t i g r a p h i c classification
for
the
Ordovician
rocks
of
Kentucky
based
on
mappable,
lithologically defined formations. N e w formational n a m e s were proposed, such as the K o p e Formation, based on type sections in O h i o and Kentucky, w h i c h r e p l a c e d t h e old Latonia o r E d e n F o r m a t i o n ( W e i s s a n d S w e e t 1964). S o m e traditional n a m e s , s u c h a s t h e F a i r v i e w (Ford 1967), w e r e r e t a i n e d a n d given f o r m a l d e f i n i t i o n a s f o r m a t i o n s . I n K e n t u c k y m o s t o f t h e n e w formations w e r e thick p a c k a g e s o f strata c o m p r i s i n g e q u i v a l e n t s o f older, t h i n n e r units that either c o u l d n o t b e t r a c e d into K e n t u c k y o r e l s e h a d b e e n b a s e d o n fossil c o n t e n t ( F i g u r e 4.1). A l s o i n t h e 1960s t h e I n d i a n a G e o l o g i c a l Survey undertook restudy of the U p p e r O r d o v i c i a n in southeastern I n d i a n a . This work p r o d u c e d a revised l i t h o s t r a t i g r a p h i c classification in w h i c h a s i n g l e f o r m a t i o n , the D i l l s b o r o , s p a n n e d the M a y s v i l l i a n a n d R i c h m o n d i a n S t a g e s ( F i g u r e 4.1; B r o w n a n d L i n e b a c k 1966). A l t h o u g h the n e w research programs yielded stratigraphic units in k e e p i n g w i t h m o d e r n l i t h o s t r a t i g r a p h i c p r a c t i c e , t h e status o f C i n c i n n a tian stratigraphy in t h e late 1960s p r e s e n t e d new c h a l l e n g e s to a n o v e r a l l u n d e r s t a n d i n g o f C i n c i n n a t i a n g e o l o g i c history. C r e a t i o n o f s u c h t h i c k , broadly defined formations tended to obscure m a n y c h a n g e s o c c u r r i n g at smaller scales of s t r a t i g r a p h i c r e s o l u t i o n , a n d t h e a b u n d a n t fossil c o n t e n t o f these rocks w a s largely i g n o r e d . A n y a t t e m p t t o m a p t h e C i n c i n n a t i a n over the entire tri-state r e g i o n r e v e a l e d that f o r m a t i o n s e n d e d a b r u p t l y a t state lines, r e s u l t i n g in c o n f u s i o n not u n l i k e that of a visitor to t h e city of C i n c i n n a t i w h o f i n d s that m a n y street n a m e s c h a n g e across m a j o r i n t e r s e c tions! O n e m i g h t also b e led t o c o n c l u d e that m a j o r faults f o l l o w e d t h e state b o u n d a r i e s o r t h e c o u r s e o f t h e O h i o River! S t r a t i g r a p h i c c o l u m n s e s t a b -
Rocks, Fossils, and Time
51
l i s h e d for t h e C i n c i n n a t i a n s e c t i o n i n e a c h state o f t h e tri-state r e g i o n h a d to be correlated.
N e w A d v a n c e s in
A l t h o u g h t h e early z o n a t i o n o f t h e C i n c i n n a t i a n b a s e d o n s u c h g r o u p s a s
Biostratigraphy
b r y o z o a n s a n d b r a c h i o p o d s h a d p r o v e n i n a d e q u a t e for c o r r e l a t i o n very far o u t s i d e t h e l o c a l C i n c i n n a t i a r e a , b e g i n n i n g in t h e late
1950s,
n e w research
into t h e b i o s t r a t i g r a p h y o f t h e C i n c i n n a t i a n e n a b l e d a s i n g l e time-stratig r a p h i c f r a m e w o r k t o b e a p p l i e d across t h e e n t i r e r e g i o n . I n order t o u n d e r s t a n d h o w this n e w a d v a n c e c a m e a b o u t , w e m u s t c o n s i d e r w h a t chara c t e r i s t i c s are r e q u i r e d for a fossil to be a reliable tool for l o n g d i s t a n c e c o r r e l a t i o n o f strata. Fossils that are m o s t u s e f u l for c o r r e l a t i o n of strata over great d i s t a n c e s i d e a l l y m u s t h a v e t w o c h a r a c t e r i s t i c s : a short v e r t i c a l (time) r a n g e and a w i d e lateral d i s t r i b u t i o n . Fossils h a v i n g a short vertical r a n g e w i l l be g r o u p s w h o s e p r e s e r v a b l e m o r p h o l o g y e v o l v e s relatively rapidly o v e r t i m e . Fossils w i t h a w i d e lateral d i s t r i b u t i o n w i l l be g r o u p s that either tolerate a broad r a n g e o f e n v i r o n m e n t s o r else are c a p a b l e o f w i d e dispersal t h r o u g h a frees w i m m i n g larval stage o r a d u l t m o d e o f life. T h e short v e r t i c a l r a n g e o f m a n y C i n c i n n a t i a n fossils p r o d u c e d a d e t a i l e d b i o s t r a t i g r a p h i c s u b d i v i s i o n o f t h e strata. H o w e v e r , a s a l r e a d y m e n t i o n e d , m a n y o f t h e fossil z o n e s est a b l i s h e d i n t h e i m m e d i a t e C i n c i n n a t i a r e a c o u l d n o t b e t r a c e d very far. B e c a u s e l i t h o l o g i e s also c h a n g e d laterally, it is very likely that the fossils (chiefly b o t t o m - d w e l l i n g b r y o z o a n s a n d b r a c h i o p o d s ) are s t r o n g l y c o n trolled by e n v i r o n m e n t a l c h a n g e . M o d e r n t e c h n i q u e s in biostratigraphy s h o w e d that g r o u p s s u c h a s m i c r o p l a n k t o n i c a l g a e ( c h i t i n o z o a n s a n d acritarchs), c o n o d o n t s ( S w e e t a n d B e r g s t r o m
1971),
a n d graptolites ( M i t c h e l l
a n d B e r g s t r o m 1977; G o l d m a n a n d B e r g s t r o m 1997) are better suited for l o n g d i s t a n c e c o r r e l a t i o n (even i n t e r c o n t i n e n t a l ) o f O r d o v i c i a n strata b e c a u s e t h e y h a v e v e r y w i d e d i s p e r s a l . ( M o s t o f t h e s e g r o u p s lived i n the w a t e r c o l u m n a b o v e t h e sea floor, e i t h e r d r i f t i n g a s p l a n k t o n o r activelys w i m m i n g . ) T h e vertical ranges of these groups through the O r d o v i c i a n t e n d t o b e rather l o n g , s o t h a t t h e y c a n n o t b e u s e d t o s u b d i v i d e t h e C i n c i n n a t i a n v e r y e f f e c t i v e l y b e l o w t h e stage l e v e l , b u t t h e y d o form t h e basis o f m o d e r n t i m e - s t r a t i g r a p h i c c o r r e l a t i o n o f t h e C i n c i n n a t i a n i n relation t o o t h e r r e g i o n s o f N o r t h A m e r i c a a n d w o r l d w i d e ( W e b b y et al.
Cycles and
2004).
D e s p i t e t h e a p p a r e n t m o n o t o n y o f C i n c i n n a t i a n l i m e s t o n e s and shales, m a -
Depositional
jor r e p e a t e d patterns in the l i t h o l o g i e s had b e e n r e c o g n i z e d s i n c e the earliest
Sequences
w o r k of O r t o n ( O r t o n
1873).
Nickles
(1902)
related these l i t h o l o g i c patterns to
c h a n g e s in t u r b u l e n c e . In 1969 A n s t e y a n d F o w l e r r e c o g n i z e d that a transition f r o m t h e l i m e s t o n e - r i c h L e x i n g t o n L i m e s t o n e u n d e r l y i n g the C i n c i n n a t i a n t o t h e s h a l e - d o m i n a t e d E d e n S h a l e (now the K o p e F o r m a t i o n ) traceable
throughout
the
tri-state
area
of O h i o ,
Indiana,
and
Kentucky,
c o r r e s p o n d e d to a transition from s h a l l o w water, m o r e t u r b u l e n t c o n d i t i o n s to d e e p e r water, m o r e q u i e s c e n t c o n d i t i o n s . In s h a l l o w water, greater w a v e g e n e r a t e d t u r b u l e n c e was e x p e c t e d to p r e v e n t s e t t l e m e n t of fine-grained sedi-
52
A Sea without Fish
Figure 4.4.
Cincinnatian
shoaling-upward
cycles.
From Tobin (1982, 74).
figure
The base of the Cin-
cinnatian is at the base of the Kope Formation the
in
left-hand column;
Corryville tinues
Formation
above
Limestone,
the
and
the con-
Bellevue the
Waynesville
Formation
overlies
Oregonia
the
Formation
and
continues
to the top of the Cincinnatian tion).
(Saluda
Forma-
Arrows
thickness
indicate
of each
cycle in meters.
major Note that
in each cycle, shale is replaced
by
limestone
toward the top,
indicat-
ing a shallowing transition.
upward
Rock
symbols
are: brick pattern = limestone,
dashed pattern
shale,
wavy pattern =
wavy-bedded
limestone,
rhombic pattern mite,
=
=
dolo-
small circles = nod-
ular limestone.
More re-
cent work by Holland has recognized
six
major
shoaling-upward or sequences same
over
stratigraphic
cycles the inter-
merits, l e a v i n g coarser, shelly s e d i m e n t , w h i l e in d e e p e r water, fine-grained
val in which Tobin delin-
s e d i m e n t s , chiefly clay particles, are m o r e likely to settle to t h e b o t t o m . A
eated
return to s h a l l o w e r water w a s m a r k e d by i n c r e a s i n g l i m e s t o n e in t h e overly-
Figure
i n g F a i r v i e w to B e l l e v u e , f o l l o w e d by a d e e p e n i n g in t h e s h a l e - r i c h C o r ryville a n d a s h a l l o w i n g i n the l i m e s t o n e o f t h e M t . A u b u r n . D e e p e n i n g again o c c u r r e d in the shales A r n h e i m to Waynesville, followed by a shallowi n g with i n c r e a s i n g l i m e s t o n e in the Liberty to S a l u d a , and a slight d e e p e n ing in t h e u p p e r m o s t W h i t e w a t e r interval. Hay (1981) a n d T o b i n (1982) r e c o g n i z e d b a s i c a l l y t h e s a m e c y c l i c p a t t e r n s ( F i g u r e s 4 . 4 , 4.5).
Thus, major
c h a n g e s in sea level c o u l d a c c o u n t for t h e l a r g e - s c a l e p a t t e r n s of r e p e a t e d lithologies o f the C i n c i n n a t i a n S e r i e s . T h e r e are several possible c a u s e s for these major c h a n g e s in sea level, i n c l u d i n g t e c t o n i c e v e n t s in t h e A p p a l a c h i a n o r o g e n i c belt to t h e cast, fluctuations in s e d i m e n t supply, a n d g r o w t h o f ice sheets i n t h e s o u t h e r n p o l a r r e g i o n s d u r i n g the L a t e O r d o v i c i a n . The m o d e r n c o n c e p t s o f s e q u e n c e s t r a t i g r a p h y u s e t h e i m p o r t a n c e o f sea level c h a n g e s t o e x p l a i n t h e p a t t e r n s o f r e p e a t e d d e p o s i t i o n i n t h e
Rocks, Fossils, and Time
53
three 15.1).
cycles
(see
Figure 4 . 5 . Society
Geological
of America
Trip, 1981.
A.
Field
Left to
right: leader Rick C. Tobin, Carr, den, Dill.
participants
Tim
Thomas W. Amsand Robert F. B.
Professor
Wayne A. Pry or with poster natian cycles
illustrating
Cincin-
shoaling-upward and
fades
relationships.
54
A Sea without Fish
Figure 4.6. scales
A.
of
Three
Cincinnatian
stratigraphic
cyclicity.
From Tobin (1982,
figure
30). In storm cycle, basal bed with oblique
wavy and lines
indicates
cross-stratification duced
by
currents
pro-
storm-induced
and
waves.
B.
of three
concepts
cinnatian cles.
of Cin-
meter-scale
cy-
From Holland et al.
(1997, of
Comparison
figure 1), courtesy
the Journal
ogy.
of Geol-
In each column,
width
of bed pattern
dicates
lithology
in-
as
shown in scale (pack = packstone, stone).
grain
Arrows
= grainindicate
thickness of cycle in ters.
Tapering
beside cate ing
(wider = shallower). facies
transported
contain ma-
from
place
than
proximal
frustrated earlier efforts to a c h i e v e a s i n g l e s t r a t i g r a p h i c f r a m e w o r k for t h e that g e n e r a l l y b e c a m e d e e p e r from s o u t h t o n o r t h , p r e s u m a b l y e u s t a t i c (global) c h a n g e s i n sea level b r o u g h t a b o u t d i f f e r e n t d e p o s i t i o n a l c o n d i tions over different parts of the r e g i o n at the s a m e t i m e . T h e a b r u p t transitions from shallow t o d e e p e r w a t e r m a r k s e q u e n c e b o u n d a r i e s that c a n b e used t o c o r r e l a t e s e c t i o n s l o c a t e d o n different r e g i o n s o f t h e p a l e o s l o p e . H o l l a n d (1993, 1997, 1998) r e c o g n i z e d six m a j o r d e p o s i t i o n a l s e q u e n c e s w i t h i n the C i n c i n n a t i a n that c u t across l i t h o s t r a t i g r a p h i c c o n t a c t s (see F i g u r e 15.1). T h e C i n c i n n a t i a n c o m p r i s e s mainly the l o w e r four s e q u e n c e s . T h e C1 sequence (Edenian) comprises the K o p e Formation in the C i n c i n nati area. T h e C2 s e q u e n c e ( M a y s v i l l i a n ) c o m p r i s e s t h e F a i r v i e w - B e l l e v u e The R i c h m o n -
55
indi-
of shallow-
terial
entire o u t c r o p r e g i o n . B e c a u s e t h e O r d o v i c i a n sea floor w a s a g e n t l e r a m p
Rocks, Fossils, and Time
column
Distal
C i n c i n n a t i a n , a s w e l l a s t h e m a r k e d lateral c h a n g e s that h a d s o g r e a t l y
s e q u e n c e , and the C3, C o r r y v i l l e - M t . A u b u r n s e q u e n c e .
each
direction
me-
wedges
farther
of formation fades.
Figure 4.7. deposition across
A.
Storm
and
the
erosion
Cincinnatian
sea floor. From Tobin (1982,
figure 37).
Note
that hurricane rotation correct
for
the
Hemisphere. tions in
B. From
Tobin
figure 36).
indicate ment
Varia-
Cincinnatian
storm cycles. (1982,
is
Southern
layers
of sedi-
deposited
storm events.
Arrows
by
single
Sh = shale,
L = laminated unit, W = whole
fossil limestone,
= siltstone,
S
F = fragmen-
tal limestone, FL = finegrained limestone,
SL
=
storm layer, Ls = any limestone.
Chondrites
is
a trace fossil. A = abundant, C = common, R = rare.
dian consists o f three s e q u e n c e s : C 4 , S u n s e t - O r e g o n i a , C 5 , WaynesvilleLiberty-Whitewater, and C 6 , U p p e r W h i t e w a t e r - E l k h o r n , truncated by the e r o s i o n a l u n c o n f o r m i t y w i t h the S i l u r i a n . W i t h i n t h e s e six m a j o r C i n c i n n a t i a n s e q u e n c e s , c y c l i c p a t t e r n s o f stratification a l s o o c c u r o n s m a l l e r s c a l e s ( f i g u r e 4.6A). C o u p l e t s o f l i m e s t o n e a n d s h a l e b e d s on a s c a l e less t h a n o n e m e t e r t h i c k are very c h a r a c teristic of m u c h of t h e C i n c i n n a t i a n . 1 lay (1981) a n d T o b i n (1982) first reco g n i z e d that a t least s o m e o f t h e s e c o u p l e t s w e r e t h e p r o d u c t o f storm p r o c e s s e s ( F i g u r e s 4 . 6 A , 4.7). T h e s h a l l o w , s u b t r o p i c a l C i n c i n n a t i a n sea floor m u s t h a v e b e e n s w e p t f r e q u e n t l y b y large s t o r m s , e v e n h u r r i c a n e s . D u r i n g t h e s e s t o r m s , w a v e s a n d s t r o n g b o t t o m c u r r e n t s d i s r u p t e d sea floor c o m m u n i t i e s o f o r g a n i s m s , s w e e p i n g f i n e - g r a i n e d s e d i m e n t s into s u s p e n sion w h i l e l e a v i n g shells a n d o t h e r skeletal d e b r i s a s c o a r s e c a l c a r e o u s l a g d e p o s i t s . A s the s t o r m s u b s i d e d , f i n e - g r a i n e d s e d i m e n t s settled o n t o t h e sea floor, s m o t h e r i n g c o m m u n i t i e s a n d f o r m i n g what w o u l d b e c o m e a s h a l e b e d o v e r l y i n g a fossiliferous l i m e s t o n e (see F i g u r e 15.2). T o b i n (1982) r e c o g n i z e d that t h e C i n c i n n a t i a n c o n t a i n s a w i d e variety o f t h e s e s t o r m c y c l e s , s o m e c o n s i s t i n g of s i m p l y a s h a l e b e d o v e r h a n g a l i m e s t o n e , in a d d i t i o n to o t h e r m o r e c o m p l e x p a t t e r n s ( F i g u r e 4.7B). S o m e p a l e o e c o l o g i s t s like Harris and M a r t i n (1979) e n v i s i o n e d an e c o l o g i c a l s u c c e s s i o n f o l l o w i n g such storm e v e n t s , i n w h i c h s h e l l y o r g a n i s m s r e p o p u l a t e d the m u d d y b o t t o m and were in turn colonized by encrusting and attached epifauna (Figure 4.8). M a n y c a s e s o f c o m p l e t e l y p r e s e r v e d fossils s u c h a s c r i n o i d s , edrioaste r o i d s , a n d trilobites i n t h e C i n c i n n a t i a n are u n d o u b t e d l y the p r o d u c t o f
56
A Sea without Fish
Figure 4 . 8 . of a by
soft
Colonization
mud substratum
Dalmanella
(low di-
versity) is followed by the development pavement of
of a and
erect
shell succession
bryozoans.
Higher diversity is achieved in community
the by
mature crinoids
growing on a firm substratum. Martin
printed by permission
MATURE COMMUNITY
the tary
SUCCESSION
COLONIZATION rapid b u r i a l b y f i n e - g r a i n e d s e d i m e n t s d u r i n g s t o r m e v e n t s ( B r a n d t 1985; M e y e r 1990; S c h u m a c h e r a n d S h r a k e 1997; H u g h e s a n d C o o p e r 1999). I n m a n y parts o f t h e C i n c i n n a t i a n s e c t i o n , p a r t i c u l a r l y t h e K o p e Form a t i o n , c y c l i c i t y at a s c a l e of a b o u t o n e to t h r e e m e t e r s is v e r y a p p a r e n t as o n e passes l o n g h i g h w a y r o a d c u t s . D i f f e r e n t w o r k e r s h a v e i n t e r p r e t e d this cyclicity in d i f f e r e n t w a y s .
From Harris and (1979) and re-
H a y (1981) r e c o g n i z e d a r e g u l a r s p a c i n g of
c o a r s e - g r a i n e d l i m e s t o n e b u n d l e s ( F i g u r e 4.6B). T o b i n (1982) t e r m e d t h i s
Rocks, Fossils, and Time
57
Society
for
Geology.
of
Sedimen-
58
A Sea without Fish
s c a l e of cyclicity t h e m e g a c y c l e , a n d d e s c r i b e d it as a " f i n i n g - u p w a r d "
Figure 4.9. Kope cyclicity
p a c k e t h a v i n g a basal c o m p o n e n t o f c o a r s e - g r a i n e d l i m e s t o n e ( g r a i n s t o n e ) ,
and
a middle c o m p o n e n t with thin interbedded limestones (packstones) and
mational
shales, a n d a n u p p e r s h a l e - r i c h c o m p o n e n t ( F i g u r e s 4 . 6 A , B). J e n n e t t e a n d Pryor (1993) felt that t h e c y c l e w a s " c o a r s e n i n g - u p w a r d , " b e g i n n i n g w i t h shale, o v e r l a i n b y i n t e r b e d d e d t h i n l i m e s t o n e a n d s h a l e , a n d c a p p e d b y
Kope-Fairview contact
fortrace-
able over broad area of Cincinnati A.
Arch.
Geological Society of
America Field Trip,
1981.
c o a r s e - g r a i n e d l i m e s t o n e ( F i g u r e 4.6B). I n their i n t e r p r e t a t i o n t h e c y c l e
Participants
w a s of a regressive n a t u r e , c o r r e s p o n d i n g to s h o r t - t e r m fluctuations of sea
meter-scale
cyclicity
level. M o r e recent s t u d i e s b y H o l l a n d a n d o t h e r s (1997) h a v e c o n t i n u e d t o
the
Formation
r e c o g n i z e storm-related f e a t u r e s w i t h i n t h e s e m e t e r - s c a l e c y c l e s , b u t n o t e that n o single pattern o f c o a r s e n i n g o r f i n i n g u p w a r d i s d o m i n a n t . T h e h i g h variability in c y c l e c h a r a c t e r p r o b a b l y reflects a c o m p l e x i n t e r p l a y of sea level c h a n g e and fluctuations in s t o r m intensity a n d f r e q u e n c y . A r e m a r k able result of all t h e s e s t u d i e s is that d e s p i t e t h e l o n g - h e l d v i e w that i n d i -
Kope
along
examining
Kentucky
in
Route
445 near the Ohio River, Campbell tucky. Kope
County, B.
Formation
overlying
Ken-
Contact of with
Fairview
Forma-
vidual strata w i t h i n the C i n c i n n a t i a n are n o t laterally persistent, m e t e r - s c a l e
tion (arrow) along Rad-
cycles w i t h i n the K o p e F o r m a t i o n c a n i n d e e d b e c o r r e l a t e d o v e r v i r t u a l l y
cliff Drive,
the entire o u t c r o p area for tens of k i l o m e t e r s (Brett a n d A l g e o 2001b; H o l -
Ohio. Photo by Paul E.
l a n d , M i l l e r , and M e y e r 2001; W e b b e r 2002). V a r i a t i o n s i n p r o p o r t i o n s o f
Potter.
Cincinnati,
limestone to shale within the K o p e and Fairview Formations define e v e n larger-scale c y c l e s , on t h e order of 1 0 - 2 0 m t h i c k ( " d e c a m e t e r - s c a l e c y c l e s " ) that e n a b l e lateral c o r r e l a t i o n o v e r l o n g d i s t a n c e s ( F i g u r e 4.9; J e n n e t t e a n d Pryor 1993; D a t t i l o 1996; Holland et al. 1997; Brett a n d A l g e o 2001b).
T h e m o s t r e c e n t s t u d i e s o f t h e C i n c i n n a t i a n h a v e , i n a s e n s e , c o m e full
Tracing Biofacies
circle in r e t u r n i n g to its a b u n d a n t fossil c o n t e n t as a k e y to u n d e r s t a n d i n g
and Event Beds
h o w C i n c i n n a t i a n strata w e r e d e p o s i t e d . I n c o n t r a s t t o earlier lithostratig r a p h i c studies i n w h i c h t h i c k u n i t s w e r e d e f i n e d o n t h e basis o f l i m e s t o n e to-shale ratios with few internal s u b d i v i s i o n s , t h e latest s t u d i e s arc b a s e d on h i g h r e s o l u t i o n , b e d - b y - b e d l o g g i n g of s t r a t i g r a p h i c s e c t i o n s in t e r m s of lithologic as well as paleontologic features. In the K o p e F o r m a t i o n , l o n g regarded as a s i n g l e , t h i c k a n d m o n o t o n o u s s h a l e - r i c h u n i t , h i g h r e s o l u t i o n c e n s u s e s o f fossil a s s e m b l a g e s ( b i o f a c i e s ) r e v e a l e d t r e n d s that are n o t i m mediately obvious from lithologic features (lithofacies) (Holland, Miller, M e y e r , and D a t t i l o 2001).
T h e s e b i o f a c i e s t r e n d s a p p e a r t o reflect d e p t h -
related f a u n a l p r e f e r e n c e s a n d c a n b e t r a c e d w i t h i n t h e C i n c i n n a t i a r e a a n d also e a s t w a r d t o M a y s v i l l e , K e n t u c k y ( H o l l a n d e t al. 2001; W e b b e r 2002). W i t h i n a n o t h e r shale-rich u n i t , the M i a m i t o w n S h a l e , D a t t i l o (1996) also d e m o n s t r a t e d t h e utility o f fossil a s s e m b l a g e s , t o g e t h e r w i t h l i t h o f a c i e s analysis, in c o r r e l a t i o n of m e t e r - s c a l e c y c l i c i t y w i t h i n a 30 km radius. Earlier C i n c i n n a t i a n workers r e c o g n i z e d m a n y t h i n b e d s c h a r a c t e r i z e d by an a b u n d a n c e of a p a r t i c u l a r fossil s p e c i e s a n d restricted in stratigraphic o c c u r r e n c e . T h e s e are m a r k e d i n the traditional b i o s t r a t i g r a p h y section ( D a vis 1992) and are well k n o w n a m o n g local c o l l e c t o r s , yet f o u n d little use during the phase of C i n c i n n a t i a n Lithostratigraphy. Exceptions were the "shingled Rafinesquina" beds in the M i a m i t o w n S h a l e a n d a thin z o n e of a b u n d a n t Platystrophia ponderosa o c c u r r i n g at the base of t h e M t . A u b u r n that w e r e used by Ford (1967) as m a r k e r b e d s that w e r e useful for correlation.
Rocks, Fossils, and Time
59
I n r e c e n t years several p a l e o e c o l o g i c a n d t a p h o n o m i c s t u d i e s b r o u g h t r e n e w e d a t t e n t i o n to t h i n , fossil-rich h o r i z o n s that are t r a c e a b l e over a w i d e a r e a . Frey (1987b) t r a c e d t h e n a u t i l o i d - r i c h Treptoceras duseri s h a l e w i t h i n the W a y n e s v i l l e Formation in Warren and C l i n t o n C o u n t i e s , O h i o , and c o r r e l a t e d it w i t h a lithologically e q u i v a l e n t trilobite-rich s h a l e to the west in I n d i a n a . A s t r o p h o m e n i d b r a c h i o p o d shell p a v e m e n t e n c r u s t e d by the s a m e t h r e e e d r i o a s t e r o i d s p e c i e s o c c u r s i n the u p p e r C o r r y v i l l e f o r m a t i o n at F l o r e n c e , K e n t u c k y , a n d a g a i n 22 km to t h e n o r t h n e a r the I-275 b e l t w a y n o r t h w e s t o f C i n c i n n a t i ( M e y e r 1990). I n t h e u p p e r K o p e f o r m a t i o n , a persistent b e d o f c a l c a r e o u s siltstone r e p l e t e w i t h t h e U - s h a p e d trace fossil Diplocraterion p r o v i d e d a k e y m a r k e r h o r i z o n for c o r r e l a t i o n from n o r t h e r n K e n t u c k y t o s o u t h w e s t e r n O h i o ( J e n n e t t e a n d Pryor 1993). S e v e r a l e x a m p l e s o f p a l e o n t o l o g i c a l e v e n t h o r i z o n s i n t h e C i n c i n n a t i a n are disc u s s e d i n Brett a n d B a i r d (1997). T h e s e i n c l u d e : a t r a c e a b l e storm h o r i z o n ( M i l l e r 1997); a o n e - m e t e r t h i c k interval c h a r a c t e r i z e d by the b r a c h i o p o d Onniella meeki t r a c e a b l e 135 km f r o m O h i o into I n d i a n a (Frey 1997b); the R i c h m o n d i a n f a u n a l " i n v a s i o n " ( H o l l a n d 1 9 9 7 ) ; a n d Isotelus-bearing s h a l e s in the W a y n e s v i l l e f o r m a t i o n that c a n be t r a c e d for at least 40 km across s o u t h w e s t e r n O h i o ( S c h u m a c h e r a n d S h r a k e 1997). D a t t i l o (1996) u s e d the restricted o c c u r r e n c e of t h e b r a c h i o p o d Heterorthina fairmountensis as a d a t u m for c o r r e l a t i o n o f t h e M i a m i t o w n S h a l e f r o m s o u t h w e s t e r n O h i o t o n o r t h e r n K e n t u c k y . Brett a n d A l g e o (2001b) d i s c u s s e d several o t h e r k e y f o s s i l b e d s o r e p i b o l e s i n t h e K o p e a n d f a i r v i e w f o r m a t i o n s that facilitate c o r r e l a t i o n o v e r a w i d e area i n O h i o a n d K e n t u c k y . A l l o f t h e s e m a r k e r b e d s are e x c e p t i o n a l for their w i d e g e o g r a p h i c d i s t r i b u t i o n , b u t h a v e a variety o f c a u s e s . S o m e r e s u l t e d f r o m c o n d i t i o n s favorable t o a p a r t i c u l a r s p e c i e s for a short t i m e . O t h e r s reflect a w i d e s p r e a d event s u c h as a storm that s m o t h e r e d the sea floor o v e r a w i d e area. The w i d e e x t e n t of these b e d s is also related to t h e v e r y g r a d u a l c h a n g e in d e p t h o v e r t h e e n t i r e r e g i o n , c r e a t i n g vast a r e a s o f s i m i l a r d e p t h a n d b o t t o m type. O t h e r t y p e s of e v e n t h o r i z o n s in addition to z o n e s of restricted fossil o c c u r r e n c e are also w i d e l y t r a c e a b l e across the C i n c i n n a t i A r c h region. I n p a r t i c u l a r , Jennette a n d Pryor (1993) u s e d a b e d with w e l l - d e v e l o p e d basal g u t t e r casts as a d a t u m for c y c l e c o r r e l a t i o n n e a r the top of the K o p e f o r m a tion i n t h e v i c i n i t y o f C i n c i n n a t i a n d n o r t h e r n K e n t u c k y . C u t t e r casts are s e d i m e n t f i l l i n g s o f t r o u g h s e r o d e d into t h e sea floor. M o r e recently Brett a n d A l g e o (2001b) d e m o n s t r a t e d the utility of several l\ pes of event h o r i z o n s in the C i n c i n n a t i a n . T e m p e s t i t e s or storm b e d s i n c l u d e a variety of s e d i m e n tary features s u c h as s h i n g l e d b r a c h i o p o d b e d s , rippled b e d s , g r a d e d b e d s , g u t t e r casts, a n d s m o t h e r e d b o t t o m o r o b r u t i o n d e p o s i t s — a l l p r o d u c t s o f short-term b u t w i d e s p r e a d e p i s o d e s o f intense d i s t u r b a n c e o f the sea f l o o r . O t h e r e v e n t h o r i z o n s i n c l u d e distinctive trace fossil h o r i z o n s (the a f o r e m e n tioned
Diplocraterion),
b r a c h i o p o d shell
p a v e m e n t s , c o n c r e t i o n a r y layers,
h a r d g r o u n d s ( b e d s f o r m e d by early c e m e n t a t i o n on the sea floor), and beds indicative of s e i s m i c e v e n t s . F e a t u r e s possibly c a u s e d by seismic d e f o r m a t i o n o f t h e sea floor i n c l u d i n g b e d s w i t h i n t e n s e internal d e f o r m a t i o n and soc a l l e d b a l l a n d p i l l o w s t r u c t u r e s o c c u r over a w i d e area i n s o u t h e r n O h i o and n o r t h e r n K e n t u c k y ( S c h u m a c h e r 1992; P o p e et al. 1997). T h e s e s e i s m i t e s
60
A Sea without Fish
m a y have resulted from e a r t h q u a k e s c a u s e d by t e c t o n i c activity in the rising A p p a l a c h i a n m o u n t a i n s far to t h e east. U s i n g all of t h e s e e v e n t h o r i z o n s , Brett and A l g e o (2001a) w e r e able to correlate d e c a m e t e r a n d m e t e r - s c a l e cycles w i t h i n the K o p e a n d F a i r v i e w F o r m a t i o n s for d i s t a n c e s up to 80 km a l o n g the AA Highway ( K e n t u c k y R o u t e 9) in n o r t h e r n K e n t u c k y . To a certain d e g r e e , the m o s t r e c e n t studies of C i n c i n n a t i a n stratigraphy c o n f i r m and v i n d i c a t e the heavy e m p h a s i s that was p l a c e d on fossil c o n t e n t by g e n e r a t i o n s of earlier workers in the C i n c i n n a t i a n . C l e a r l y , no study of C i n c i n n a t i a n stratigraphy c a n afford to ignore the p l e t h o r a of i n f o r m a t i o n offered by the a b u n d a n c e and diversity of fossils t h r o u g h o u t t h e r e g i o n . At the t i m e of this w r i t i n g , efforts to d e v e l o p a h i g h l y d e t a i l e d r e g i o n a l stratig r a p h i c framework for the C i n c i n n a t i a n rely on a synthesis of all e v i d e n c e available, i n c l u d i n g l i t h o l o g y , s e d i m e n t o l o g y , a n d p a l e o n t o l o g y . S t u d i e s inc o r p o r a t i n g this "total e v i d e n c e " a p p r o a c h i n c l u d e those o f D a t t i l o (1996), Holland (1993
Holland
(1997) Holland. M i l l e r , a n d M e y e r (2001), Brett a n d
A l g e o (2001b), W e b b e r (2002), a n d M c L a u g h l i n a n d Brett (2007). T h r o u g h these studies, t h e r e c o g n i t i o n that the C i n c i n n a t i a n i s c o n structed of a series of stratal " p a c k a g e s " d e l i m i t e d by relatively short-term sea level c h a n g e s that m a r k s e q u e n c e b o u n d a r i e s also to s o m e extent revives t h e old c o n c e p t of the stratigraphic " l a y e r c a k e " that typified m u c h of the original work on the C i n c i n n a t i a n ( A l g e o and Brett 2001). C l e a r l y the C i n c i n natian is not m e r e l y a j u m b l e d mosaic- of c a r b o n a t e and shale f a c i e s with poor lateral continuity. A l t h o u g h lateral facies variations do exist, they c a n b e u n d e r s t o o d i n the c o n t e x t o f r e g i o n a l p a l e o b a t h y m e t r y a n d s e q u e n c e architecture. S e q u e n c e , c y c l i c , and e v e n t stratigraphy offer great p r o m i s e for d e v e l o p m e n t of a h i g h resolution t i m e - s t r a t i g r a p h i c f r a m e w o r k for t h e C i n c i n n a t i a n in w h i c h many interesting q u e s t i o n s of e v o l u t i o n a r y p a l e o n t o l o g y , p a l e o e c o l o g y , and s e d i m e n t o l o g y c a n b e addressed.
How old arc the fossils of the C i n c i n n a t i a n ? H o w l o n g a g o did the C i n c i n -
A g e of t h e
natian A g e b e g i n , and w h e n did i t e n d ? H o w m u c h t i m e d o e s a n y part o f t h e
Cincinnatian
C i n c i n n a t i a n S e r i e s — a f o r m a t i o n , a s e q u e n c e , or a s i n g l e b e d — r e p r e s e n t ? T h e s e are questions of the absolute a g e of C i n c i n n a t i a n fossils a n d strata. To say that the C i n c i n n a t i a n is L a t e O r d o v i c i a n in a g e is to m a k e a statement a b o u t its relative a g e . The g e o l o g i c t i m e scale of e o n s , eras, a n d periods was c o n s t r u c t e d d u r i n g the n i n e t e e n t h c e n t u r y o n t h e basis o f superposition and fossil s u c c e s s i o n . Initially, p i o n e e r i n g g e o l o g i s t s like the E n g l i s h m a n W i l l i a m S m i t h r e c o g n i z e d that fossils c o u l d b e used t o c h a r a c t e r i z e strata and correlate t h e m from o n e region to a n o t h e r . T h r o u g h the w o r k of Smith and other pioneers like C u v i e r and B r o g n i a r t in F r a n c e t h e geologicsuccession of strata was established by r e c o g n i z i n g that strata with characteristic sets of fossils always o c c u r r e d in the s a m e vertical s e q u e n c e f r o m o l d e s t to y o u n g e s t . T h e p r i n c i p l e of o r g a n i c e v o l u t i o n as later put forth by C h a r l e s D a r w i n and others was u n k n o w n t o t h e s e f o u n d e r s o f g e o l o g y , b u t t h e y w e r e able to use the c h a n g i n g m a k e u p of lite on E a r t h as a relative g a u g e of a n cient history. O r g a n i c e v o l u t i o n is the u n d e r l y i n g m e c h a n i s m that provides a directional c o m p o n e n t , a sort of c l o c k , by w h i c h to p l a c e fossils a n d their
Rocks, Fossils, and Time
61
e n c a s i n g rocks o n the g e o l o g i c t i m e scale. H o w e v e r , the rate o f e v o l u t i o n a r y c h a n g e varies greatly a m o n g l i v i n g o r g a n i s m s , and s o m e groups show marked c h a n g e t h r o u g h a vertical s u c c e s s i o n of strata w h i l e others do not; c o n s e q u e n t l y , different g r o u p s h a v e different c l o c k s . E v o l u t i o n a r y c h a n g e thus c a n n o t p r o v i d e a u n i f o r m m e a s u r e of t i m e by w h i c h to e s t i m a t e the absolute a g e of fossils (despite t h e m o d e r n use of " m o l e c u l a r c l o c k s " to set the a g e for c o m m o n a n c e s t o r s o f different l i v i n g groups). A b s o l u t e a g e d a t i n g o f a n c i e n t r o c k s relies o n t h e c o n s t a n t rate o f radioactive decay of unstable isotopes of certain e l e m e n t s contained in m i n erals f o u n d i n v o l c a n i c a n d o t h e r t y p e s o f i g n e o u s rocks. B e c a u s e t h e s e m i n e r a l s d o n o t u s u a l l y f o r m i n t h e shells a n d s k e l e t o n s o f o r g a n i s m s o r i n t h e s e d i m e n t s , d i r e c t d a t i n g of fossils a n d most s e d i m e n t a r y rocks is very difficult. A t b e s t , w e c a n h o p e t o f i n d d a t a b l e layers s u c h a s v o l c a n i c ash b e d s or lava flows interbedded w i t h fossiliferous strata. It m a y t h e n be possible to state that a f o s s i l - b e a r i n g layer lies e i t h e r a b o v e or b e l o w a dated h o r i z o n , m a k i n g t h e fossil e i t h e r relatively y o u n g e r o r older. I n t h e m a r i n e s e d i m e n t a r y r e c o r d t h e b e s t o p p o r t u n i t i e s for this m e t h o d o f a g e d e t e r m i nation c o m e from u n i q u e potassium-rich clay beds k n o w n as K-bentonites, f o r m e d t h r o u g h c h e m i c a l a l t e r a t i o n o f v o l c a n i c ash falls into t h e sea. K - b e n t o n i t e s c o n t a i n biotites a n d z i r c o n s that are d a t a b l e u s i n g u r a n i u m lead and potassium-argon dating techniques. I n N o r t h A m e r i c a , ash b e d s p r e s e r v e d a s K - b e n t o n i t e s are f o u n d t h r o u g h o u t t h e O r d o v i c i a n b u t are p a r t i c u l a r l y well k n o w n from t h e M i d d l e O r d o v i c i a n ( H u f f e t al. 1992).
The closest dated K-bentonite to the
C i n c i n n a t i a n is a remarkable bed k n o w n as the Millbrig K-bentonite occurring at the base of the M i d d l e Ordovician Lexington Limestone of K e n t u c k y O r d o v i c i a n ( H u f f e t al. 1992). T h e M i l l b r i g i s f o u n d t h r o u g h o u t m u c h of the eastern m i d - c o n t i n e n t of North A m e r i c a and is equivalent to a n ash b e d f o u n d w i d e l y i n w e s t e r n E u r o p e . R a d i o m e t r i c a g e d a t e s ( U - P b and
4 0
A r - A r m e t h o d s ) o f a b o u t 4 5 4 m i l l i o n y e a r s for this b e d i n N o r t h 3 9
A m e r i c a a n d E u r o p e i n d i c a t e that i t r e p r e s e n t s o n e o f t h e largest ash-prod u c i n g volcanic eruptions k n o w n in the Phanerozoic record. The eruption took p l a c e d u r i n g t h e T a c o n i a n o r o g e n i c e v e n t a s the a n c i e n t c o n t i n e n t s Baltica and Laurentia collided, closing the ancient Iapetus Sea. On the basis o f this d a t e d h o r i z o n , t h e C i n c i n n a t i a n A g e b e g a n s o m e t i m e m o r e r e c e n t l y t h a n 454 m i l l i o n y e a r s a g o . U n f o r t u n a t e l y for a c l o s e r d a t i n g of t h e C i n c i n n a t i a n , K-bentonites are scarce in the U p p e r O r d o v i c i a n in both N o r t h A m e r i c a and E u r o p e (Bergs t r o m , pers. c o m m . ) , p r o b a b l y r e f l e c t i n g a lull i n t e c t o n i c activity b e t w e e n the T a c o n i a n and A c a d i a n (Middle Devonian) orogenic (mountain building) pulses. H o w e v e r , a z o n e of two or three impure K-bentonites, k n o w n a s t h e B e a r C r e e k K - b e n t o n i t e z o n e , o c c u r s w i t h i n t h e Point P l e a s a n t Form a t i o n f r o m 12.5 m to 13.7 m a b o v e t h e L e x i n g t o n / P o i n t Pleasant c o n t a c t , a n d just below 1991).
the b a s e o f t h e C i n c i n n a t i a n ( S c h u m a c h e r a n d C a r l t o n
This z o n e has b e e n i d e n t i f i e d i n c o r e s i n O h i o and n o r t h e r n K e n -
t u c k y , a n d i n t h e B e a r C r e e k Q u a r r y , C l e r m o n t C o u n t y , O h i o , b u t has n o t b e e n dated, as it contains no zircons.
The only bentonite k n o w n to o c c u r
w i t h i n t h e C i n c i n n a t i a n itself w a s r e c o r d e d i n the l o w e r R i c h m o n d i a n
62
A Sea without Fish
from a d r i l l c o r e i n S e n e c a C o u n t y , O h i o ( B e r g s t r o m a n d M i t c h e l l 1992), but it, t o o , has not b e e n d a t e d . B y u s i n g r a d i o m e t r i c dates f r o m o t h e r r e g i o n s t o c a l i b r a t e t h e t i m e stratigraphic record b a s e d on r a n g e s of c o n o d o n t s a n d graptolites, it is p o s sible to p l a c e further constraints on the C i n c i n n a t i a n t i m e interval.
The
b e g i n n i n g of the O r d o v i c i a n is now dated at a b o u t 488.3 +/-1.7 m i l l i o n years a g o and its e n d at 443.7 +/-1.5 m i l l i o n years a g o (International C o m m i s s i o n o n Stratigraphy 2004). The t i m e scale p r o d u c e d b y t h e U N E S C O - s p o n s o r e d International G e o l o g i c a l C o r r e l a t i o n P r o g r a m m e ( W e b b y , C o o p e r , B e r g strom, and Paris 2004) places the b e g i n n i n g of t h e C i n c i n n a t i a n at a b o u t 452.5 m i l l i o n years ago. H o w e v e r , the top of the section in the C i n c i n n a t i A r c h region d o e s not i n c l u d e the u p p e r m o s t O r d o v i c i a n record b e c a u s e o f pre-Silurian erosion, and an entire stage, k n o w n as the H i r n a n t i a n , is missing. A c c o r d i n g t o the t i m e s c a l e p r o v i d e d b y W e b b y , C o o p e r , B e r g s t r o m , a n d Paris (2004) the base of t h e H i r n a n t i a n is at a b o u t 445 m i l l i o n years a g o . These c o n s i d e r a t i o n s yield
an
approximate duration
for t h e
Edenian,
M a y s v i l l i a n , and R i c h m o n d i a n of a b o u t 7.5 m i l l i o n years (452.5 my—445 my). The fact that dates for n e i t h e r the lower or u p p e r b o u n d a r i e s of the C i n c i n natian c o m e from s a m p l e s in the local r e g i o n s h o u l d alert t h e reader for future refinements! H o w e v e r , t h e dates a n d 7.5 m i l l i o n year e s t i m a t e s e e m to be the best i n f o r m a t i o n c u r r e n t l y available. H o l l a n d a n d P a t z k o w s k y (1996) c a l i b r a t e d b i o s t r a t i g r a p h i c z o n a t i o n o f the C i n c i n n a t i a n b a s e d on c o n o d o n t s ( S w e e t 1984) w i t h a r a d i o m e t r i c a l l y dated K - b e n t o n i t e t o d e r i v e e s t i m a t e s o f t h e d u r a t i o n o f t h e six C i n c i n n a tian stratigraphic s e q u e n c e s . B y their e s t i m a t e s , t h e d u r a t i o n o f t h e C 1 seq u e n c e ( E d e n i a n ) w a s a b o u t 2.5 m i l l i o n y e a r s , t h a t o f t h e C 2 s e q u e n c e ( F a i r v i e w - B e l l e v u e ) a b o u t 1.7 m i l l i o n y e a r s , t h a t o f t h e C 3 s e q u e n c e ( C o r r y v i l l e - M t A u b u r n ) a b o u t 0.6 m i l l i o n y e a r s , that o f t h e C 4 ( S u n s e t O r e g o n i a ) s e q u e n c e a b o u t 0.8 m i l l i o n y e a r s , t h a t o f t h e C 5 s e q u e n c e ( W a y n e s v i l l e - L i b e r t y - W h i t e w a t e r ) a b o u t 1.5 m i l l i o n y e a r s , a n d that o f t h e C 6 s e q u e n c e ( U p p e r W h i t e w a t e r - E l k h o r n ) a b o u t 0.7 m i l l i o n y e a r s . T h e i r total duration for the six s e q u e n c e s is 7.8 m i l l i o n y e a r s — v e r y c l o s e to t h e m o r e r e c e n t e s t i m a t e of 7.5 m i l l i o n y e a r s . If the C i n c i n n a t i a n c a n be b r a c k e t e d in t i m e b e t w e e n 452 a n d 445 m i l lion years a g o , is it possible to assign dates to s u b d i v i s i o n s of t h e C i n c i n n a tian, and to d e t e r m i n e the a m o u n t of t i m e represented by i n d i v i d u a l c y c l e s or beds? Unless any directy datable c o m p o n e n t s , s u c h as ash b e d s , are f o u n d w i t h i n the C i n c i n n a t i a n , n o absolute a g e s c a n b e d e t e r m i n e d . Instead, w e arc forced to rely on a p r o c e s s of i n t e r p o l a t i o n , w o r k i n g up f r o m t h e earliest r a d i o m e t r i c a l l y d e t e r m i n e d c a l i b r a t i o n p o i n t o r d o w n from t h e t e r m i n a l calibration point. A s s u m i n g that s e d i m e n t a t i o n rates w e r e c o n s t a n t d u r i n g the C i n c i n n a t i a n , o n e c o u l d assign i n t e r m e d i a t e dates b a s e d o n stratal thickness. However, there is a b u n d a n t e v i d e n c e from studies of m o d e r n s e d i m e n tation rates that the a s s u m p t i o n of u n i f o r m s e d i m e n t a t i o n rate c a n n o t be m a d e . A single b e d of C i n c i n n a t i a n l i m e s t o n e m i g h t well represent the product of a single major storm e v e n t , or it c o u l d represent a l o n g - t e r m a c c u m u l a tion of shell material. Likewise, a shale bed c o u l d he the p r o d u c t of a single depositional event, or alternatively represent very slow a c c u m u l a t i o n . E a c h
Rocks, Fossils, and Time
63
b e d d i n g c o n t a c t itself p o t e n t i a l l y represents a break in s e d i m e n t a t i o n or Hiatus o f i n d e t e r m i n a t e d u r a t i o n — d a y s , m o n t h s , years, o r m o r e . M a n y C i n c i n n a t i a n l i m e s t o n e s h a v e irregular, pitted u p p e r surfaces, s o m e t i m e s b e a r i n g e n c r u s t i n g o r g a n i s m s , w h i c h strongly suggest formation of a h a r d g r o u n d on t h e sea floor o v e r a l o n g t i m e interval d u r i n g w h i c h very little s e d i m e n t acc u m u l a t e d . I n g e n e r a l , g i v e n t h e a b u n d a n c e o f e v i d e n c e f o r storm-related d e p o s i t i o n in the C i n c i n n a t i a n ( T o b i n 1982; Jennette and Pryor 1993). m o s t l i m e s t o n e s p r o b a b l y represent m o r e t i m e t h a n t h e i n t e r b e d d e d shales, b u t d e t e r m i n a t i o n of absolute d u r a t i o n s is very u n c e r t a i n . W h e r e v e r s e d i m e n t a r y strata display a strongly c y c l i c pattern of repeated sets of b e d s h a v i n g u n i f o r m t h i c k n e s s or variation in lithologies, geologists h a v e s o u g h t a possible link to c y c l i c or e p i s o d i c c a u s e s reflecting s e a s o n a l , a n n u a l , or l o n g e r t i m e s c a l e s of periodicity. M o s t i n t r i g u i n g is the possibility that variations in the E a r t h ' s orbital p a r a m e t e r s c o u l d exert i n f l u e n c e on c l i m a t e c h a n g e s that in t u r n c a u s e c y c l i c or p e r i o d i c s e d i m e n t a t i o n processes ( G r o t z i n g e r et al. 2007). If s e d i m e n t a t i o n c o u l d be s h o w n to respond t o this k i n d o f a s t r o n o m i c a l m e t r o n o m e , interpolation b e t w e e n calibration points o n the t i m e s c a l e c o u l d b e m a d e accurately, and the a m o u n t o f t i m e represented by p a r t i c u l a r sets of strata c o u l d be d e t e r m i n e d . However, cycles o f this t y p e , k n o w n a s M i l a n k o v i t c h c y c l e s , h a v e not a s yet b e e n d e m o n strated to exist w i t h i n the cyclic C i n c i n n a t i a n strata
64
A Sea without Fish
66
A Sea without Fish
5
ALGAE: THE BASE OF THE FOOD CHAIN
A l g a e are u n c o m m o n fossils i n t h e C i n c i n n a t i a n , b u t are p o t e n t i a l l y sig-
Figure 5.1. A - C . Cincin-
nificant a s p r i m a r y p r o d u c e r s o f t h e O r d o v i c i a n e c o s y s t e m a n d a s i n d i c a -
natian acritarchs,
tors o f i m p o r t a n t e n v i r o n m e n t a l c o n d i t i o n s s u c h a s w a t e r d e p t h . A l g a e
nian,
i n c l u d e s i n g l e - c e l l e d as well as m u l t i - c e l l e d p l a n t s that are c o n f i n e d to a q u a t i c or moist habitats b e c a u s e t h e y lack internal c a n a l s for w a t e r storage and transport. T h e y arc therefore t e r m e d n o n v a s c u l a r . B e c a u s e t h e y o b t a i n
Kope
Wayne County, ana.
A.
edenense 569
all Ede-
Formation, Indi-
Veryhachium
Colbath,
(from
x
Colbath
[1979,
their e n e r g y t h r o u g h p h o t o s y n t h e s i s , a l g a e r e q u i r e a d e q u a t e e x p o s u r e t o
plate 13, figure 1]).
sunlight.
B. Ordovicium
This essential r e q u i r e m e n t g e n e r a l l y restricts t h e m t o very shal-
gracile
l o w water. A l g a e i n c l u d e t h e b l u e - g r e e n a l g a e (division C y a n o p h y t a ) , g r e e n
Colbath,
a l g a e (division C h l o r o p h y t a , s i n g l e - a n d m u l t i - c e l l e d ) , red a l g a e (division
bath [1979, plate 8,
R h o d o p h y t a ) , and the b r o w n a l g a e (division P h a e o p h y t a ) .
ure
Blue-green a l g a e are u b i q u i t o u s in m o d e r n m a r i n e e n v i r o n m e n t s , w h e r e they form a " t u r f " or m a t of very fine filaments less t h a n 1 mm in l e n g t h . These mats are an i m p o r t a n t food s o u r c e for m a n y g r a z i n g a n i m a l s s u c h as gastropods. A l t h o u g h algal filaments arc not often fossilized, the p r e s e n c e of
x 507 (from Col-
4]).
C.
cisphaeridium micraulaxum 1038 A-C
reprinted by permis-
m o u n d s or sheets c a l l e d s t r o m a t o l i t e s . A l g a l m a t s h a v e sticky, velcro-like
bart'sche.
SchweizerNote: in all
surfaces that trap very fine s e d i m e n t . As e a c h thin layer of s e d i m e n t a c c u -
figures,
m u l a t e s , the algal filaments grow t h r o u g h it to form a new m a t , a n d the
magnification
Stromatolites are a m o n g the oldest k n o w n e v i d e n c e of life, d a t i n g to o v e r 3.5 billion years old, and arc e s p e c i a l l y c h a r a c t e r i s t i c o f P r e c a m b r i a n s e d i m e n tary rocks. At the end of the P r e c a m b r i a n , stromatolites d e c l i n e d drastically in a b u n d a n c e and variety of g r o w t h forms, possibly as a c o n s e q u e n c e of the
D-F.
x indicates the
zoans, D.
factor.
Cincinnatian
Cyathochitina sp.
OSU 32534,
x
747 (from
Miller [1976, plate 5, ure
6]).
E.
tina
shallow water e n v i r o n m e n t s , such as tidal flats, w h e r e a l g a l m a t s w e r e less
Miller [1976, plate
susceptible to g r a z i n g . Interestingly, stromatolites are v i r t u a l l y absent f r o m
figure 2a]).
Girvanella, o c c u r s in t h e W h i t e w a t e r F o r m a t i o n in t h e u p p e r m o s t C i n c i n -
tina
turnbulli
hirsuta
ure 1]). tian
to a l g a e ( B l a c k w e l l et al. 1984).
dickhauti
and m i n u t e n e e d l e s p r o d u c e d b y t h e s e a l g a e are responsible for h u g e a c c u m u l a t i o n s o f c a l c a r e o u s s e d i m e n t s i n m o d e r n shallow tropical seas. O n e
Laufeld, x 287 (from
G-l. G.
Edenian, tion,
William
collection, Kope Forma-
Kenton
County,
Kentucky, x 3.8.
67
al-
Lepidolites
Ulrich,
Heimbrock
fig-
Cincinna-
dasycladacean
gae.
precipitating c a l c i u m c a r b o n a t e w i t h i n their p l a n t tissues. S a n d - s i z e d f l a k e s
13, Conochi-
Miller [1976, plate 8,
natian in a z o n e c o n t a i n i n g biscuit-like l a m i n a t e d o n c o l i t e s also attributed
A m o n g the m a n y s p e c i e s o f g r e e n a l g a e are s o m e s p e c i e s c a p a b l e o f
Jenkins,
x 516 (from F.
OSU 32542,
fig-
Hercochi-
OSU 32568,
N o g e r 1976). O n e b l u e - g r e e n alga that is preserved as c a l c a r e o u s filaments,
cf.
campanulaeformis,
C.
stromatolites b e c a m e e v e n less c o m m o n a n d w e r e u s u a l l y restricted t o very
O r d o v i c i a n H i g h B r i d g e G r o u p n e a r L e x i n g t o n , K e n t u c k y ( C r e s s i n a n and
chitino-
all Maysvillian.
evolution o f large g r a z i n g a n i m a l s . After t h e b e g i n n i n g o f the P a l e o z o i c ,
C i n c i n n a t i a n strata, a l t h o u g h t h e y o c c u r i n t h e tidal f l a t facies o f t h e M i d d l e
x
Colbath
[1979, plate 7, figure 10]). sion of E.
c e m e n t e d , s o m e t i m e s w i t h t h e h e l p of the a l g a e , to form a stromatolite.
Colbath,
(from
algal mats is c o m m o n l y r e c o r d e d in the g e o l o g i c record as finely l a m i n a t e d
process c a n b e repeated indefinitely. O v e r t i m e the layers ( l a m i n a e ) c a n b e
fig-
Multipli-
H.
Cy-
clocrinites (Miller), collection, Mt.
darwinii
Stephen
Auburn I.
cies (Cross e t a l . 1996). M o d e r n d a s y c l a d s o c c u r n o d e e p e r than a b o u t 3 0 m ,
Maysvillian,
Butler County, 1.3.
g r o u p , t h e D a s y c l a d a c e a e , is represented in t h e C i n c i n n a t i a n by several spe-
Felton
a n d f r e q u e n t l y less t h a n 5 m ( W r a y 1 9 7 7 ) . Cyclocrinites is the largest and
Formation, Ohio,
most c o m m o n dasyclad, found in the Bellevue Limestone and throughout
x
C. darwinii, sur-
face detail of H,
polygo-
nal facet diameter ~0.4
t h e R i c h m o n d C r o u p ( F i g u r e s 5 . 1 H , I).
This alga r e s e m b l e s a g o l f ball in
size, s h a p e , a n d its d i m p l e d s u r f a c e . In w e l l - p r e s e r v e d s p e c i m e n s the d i m pled s u r f a c e reveals a pattern of r h o m b o i d a l plates. T h e s e plates arc a c t u a l l y e x p a n d e d e n d s of b r a n c h e s that radiate from a central axis. Several species
mm.
w e r e o r i g i n a l l y d e s c r i b e d u n d e r the n a m e
Pasceolus,
but Nitecki (1970) re-
ferred m o s t of t h e s e to a s i n g l e s p e c i e s , Cyclocrinites darwini (Miller). T h r e e o t h e r g e n e r a o f d a s y c l a d a l g a e o c c u r i n the C i n c i n n a t i a n (Cross et al.
1996). Lepidolites dickhautii U l r i c h has a s a u s a g e - l i k e s h a p e , a b o u t 2
cm l o n g , b u t is u s u a l l y flattened ( F i g u r e 5 . 1 G ) . Its s u r f a c e has a scaly a p p e a r a n c e , a n d it o c c u r s in t h e K o p e F o r m a t i o n .
Anomaloides
reticulatus
U l r i c h is r e p o r t e d f r o m t h e l o w e r F a i r v i e w F o r m a t i o n a n d has a s i m i l a r s c a l y s u r f a c e . H o w e v e r , it is c l u b - s h a p e d , a n d c a n r e a c h several c e n t i m e t e r s in
length.
Ischadites circularis
(Emmons)
has b e e n
reported from
the
F a i r v i e w , C o r r y v i l l e , a n d M t . A u b u r n F o r m a t i o n s ( H a l v e 1948) but its taxon o m i c status h a s n o t b e e n r e c e n t l y r e v i e w e d . O n e red a l g a , Solenopora richmondensis ( M i l l e r ) , o c c u r s in t h e W h i t e -
w a t e r a n d E l k h o r n F o r m a t i o n s o f t h e u p p e r m o s t R i c h m o n d G r o u p ( B l a c k - w e l l e t al. 1982 cerium richmondense). T h e skeletal
microstructure
of this a l g a , with parallel
l a m i n a e a n d v e r t i c a l pillars, c o u l d easily b e m i s t a k e n for a s t r o m a t o p o r o i d (see c h a p t e r 6). T w o o t h e r a l g a e o f u n c e r t a i n affinities are reported from t h e C i n c i n n a t i a n : Cyclindrocoelia covingtonensis m a t i o n , a n d Faheria anomala
Ulrich
from
the
u p p e r F a i r v i e w For-
M i l l e r from t h e u p p e r Fairview, B e l l e v u e ,
C o r r y v i l l e , M t . A u b u r n , A r n h e i m , Liberty, W h i t e w a t e r , and Elkhorn F o r m a tions ( D a l v e 1948). A l t h o u g h a l g a e are n o t c o m m o n i n the C i n c i n n a t i a n , the fact that a l g a e h a v e b e e n reported t h r o u g h o u t the s e c t i o n , from facies r e g a r d e d as d e e p e r water as well as s h a l l o w e r , suggests that the entire section represents s h a l l o w d e p t h s w i t h i n t h e p h o t i c z o n e . Notably, a l g a e are m o s t c o m m o n i n facies o c c u r r i n g a t the top o f the m a j o r s h a l l o w - u p w a r d cycles: the Bellevue, Mt. A u b u r n , and
Whitewater-Elkhorn
Formations, where
s h o a l i n g d e p t h s h a v e b e e n p o s t u l a t e d o n t h e basis o f o t h e r s e d i m e n t a r y evidence. S i n g l e - c e l l e d a l g a e o c c u r a s m i c r o f o s s i l s i n t h e C i n c i n n a t i a n a n d prov i d e t h e o n l y fossil e v i d e n c e for t h e p h y t o p l a n k t o n that m u s t h a v e b e e n t h e basis for t h e m a r i n e food c h a i n . T h e s e microfossils fall into t w o g r o u p s : t h e a c r i t a r c h s a n d t h e c h i t i n o z o a n s . B o t h g r o u p s are r e c o v e r e d from acid-resistant r e s i d u e s o f rock s a m p l e s . B e c a u s e t h e s e p l a n k t o n i c microfossils were w i d e l y d i s t r i b u t e d b y o c e a n c u r r e n t s , t h e y a r c very u s e f u l for biostratigraphic correlation. A c r i t a r c h s ( m e a n i n g " u n c e r t a i n o r i g i n " ) i n c l u d e a w i d e variety of m i c r o s c o p i c fossil cysts w i t h o r g a n i c ( n o n - m i n e r a l i z e d ) walls; t h e y m a y represent several different g r o u p s of a l g a e ; c o n s e q u e n t l y acritarchs are not a formal t a x o n o m i c g r o u p ( W i l l i a m s 1978; C r o s s et al. 1996). A c r i t a r c h s are g e n e r a l l y
68
A Sea without Fish
spherical in s h a p e , less than 100 m i c r o n s in d i a m e t e r ( m i c r o n = m i l l i o n t h of a meter), and h a v e p r o j e c t i n g spines that often b r a n c h ( F i g u r e s 5 . 1 A - C ) . A l t h o u g h acritarchs are s i m i l a r to the resting stages of t h e d i n o f l a g e l l a t e s (division Pyrrophyta), o n e o f the major c o m p o n e n t s o f t h e m o d e r n m a r i n e phytoplankton, they c a n n o t be d i a g n o s t i c a l l y related to any p a r t i c u l a r phytoplankton g r o u p . A c r i t a r c h s o c c u r t h r o u g h o u t t h e C i n c i n n a t i a n a n d their diversity is c o n s i d e r a b l e : fifty-two s p e c i e s w e r e r e c o r d e d by C o l b a t h (1979) in a c o r e from the K o p e F o r m a t i o n of I n d i a n a ; J a c o b s o n (1978) reported forty-four s p e c i e s from the C i n c i n n a t i r e g i o n ; a n d L o e b l i c h a n d T a p p a n (1978) d e s c r i b e d forty n e w s p e c i e s f r o m the C i n c i n n a t i a n o f O h i o , I n d i a n a , and K e n t u c k y . Jacobson (1979) f o u n d that fluctuations in a b u n d a n c e of different acritarch species c o r r e s p o n d e d to p a l e o e n v i r o n m e n t a l variations in relative water d e p t h . D e s p i t e the n a m e , c h i t i n o z o a n s are n e i t h e r c o m p o s e d o f t h e p r o t e i n c h i t i n , nor d o they d e f i n i t e l y r e p r e s e n t a n a n i m a l g r o u p . T h e a c t u a l c o m position of the m i n u t e ( 5 0 - 2 0 0 0 m i c r o n s ) , b o t t l e - s h a p e d test is s i m i l a r to c h i t i n but is t e r m e d a p s e u d o c h i t i n . C h i t i n o z o a n s are t h o u g h t m o s t likely t o b e s o m e t y p e o f p h y t o p l a n k t o n , b u t t h e i r e x a c t b i o l o g i c a l affinities are u n r e s o l v e d (Jansonius a n d J e n k i n s 1978; C r o s s e t al. 1996). L i k e a c r i t a r c h s , c h i t i n o z o a n s are f o u n d t h r o u g h o u t t h e C i n c i n n a t i a n ( M i l l e r 1 9 7 6 ; J a c o b son 1979) a n d p r o v i d e u s e f u l i n f o r m a t i o n for w o r l d w i d e b i o s t r a t i g r a p h i c correlation (Figures 5 . 1 D - F ) .
Algae
69
70
A Sea without Fish
PORIFERANS AND CNIDARIANS: SPONGES, CORALS, AND JELLYFISH
A l t h o u g h s p o n g e s are r e g a r d e d a s t h e least s p e c i a l i z e d , h e n c e m o s t p r i m i -
Sponges
tive o f m u l t i c e l l e d a n i m a l s , t h e y p l a y a n e s s e n t i a l role a s " s a n i t a r y e n g i n e e r s " i n a q u a t i c e n v i r o n m e n t s , l i v i n g a s a c t i v e s u s p e n s i o n f e e d e r s o r filter f e e d e r s (Plate 3A). B y r e m o v i n g m i n u t e o r g a n i c p a r t i c l e s f r o m t h e w a t e r , sponges prevent decay products from p o i s o n i n g the e n v i r o n m e n t .
This i s
a l o n g - r u n n i n g role, as s p o n g e s first a p p e a r in the fossil record d u r i n g t h e late P r e c a m b r i a n , o v e r 540 m i l l i o n years a g o . T h e b o d y o f a s p o n g e lacks d i s t i n c t c e l l layers, b u t i s c o m p o s e d o f different s p e c i a l i z e d t y p e s o f c e l l s that p e r f o r m d i f f e r e n t life f u n c t i o n s . T h e f u n d a m e n t a l s p o n g e c e l l i s t h e c o l l a r c e l l , e q u i p p e d w i t h a w a v i n g flagell u m that draws w a t e r into a c o n e f o r m e d o f m i c r o v i l l i ( F i g u r e 6.1). T h e simplest sponge is a hollow tube, o p e n at o n e e n d . C o l l a r cells line the interior o f the t u b e a n d c r e a t e a f e e d i n g c u r r e n t t h a t passes t h r o u g h t h e b o d y w a l l via o p e n i n g s c a l l e d ostia a n d t u b u l a r c e l l s c a l l e d p o r o c y t e s . T h e c o l l a r c e l l s r e m o v e f o o d p a r t i c l e s that are d i g e s t e d b y a m e b o c y t e s . T h e feeding current carries wastewater, depleted of nutrients, out of the sponge cavity t h r o u g h o n e o r m o r e c h i m n e y - l i k e o p e n i n g s c a l l e d o s c u l a . B e c a u s e s p o n g e s are f i x e d t o t h e s u b s t r a t u m a n d d o n o t m o v e a b o u t , t h e y are often
Figure 6 . 1 . A simple sponge,
showing a
r e g a r d e d as inert or n o n l i v i n g . In fact t h e y are a c t i v e l y c i r c u l a t i n g w a t e r
section
and p r o c e s s i n g it for n u t r i e n t s (Plate 3A).
Inset shows
T h e body of a s p o n g e is m o s t l y c o m p o s e d of a fibrous p r o t e i n c a l l e d s p o n g i n , w h i c h i s also s e c r e t e d b y s p e c i a l i z e d c e l l s . ( T h i s i s w h a t m a k e s u p
(ostia),
a natural b a t h s p o n g e . ) A f t e r d e a t h , s p o n g i n r e a d i l y d e c a y s , s o t h a t m a n y
collar-cell
s p o n g e s h a v e little c h a n c e o f b e c o m i n g f o s s i l i z e d . M o s t s p o n g e s a l s o se-
a
magnified
view of incurrent
Drawing
crete m i n u t e , m i n e r a l i z e d s p i c u l e s that are e m b e d d e d w i t h i n t h e s p o n g i n n e t w o r k . S p i c u l e s c a n be as s i m p l e in form as a s i n g l e n e e d l e , b u t c a n also be very c o m p l e x , burr-like, a n d e v e n f u s e d to f o r m a basket-like l a t t i c e ; their c o m p o s i t i o n i s e i t h e r c a l c i u m c a r b o n a t e o r s i l i c o n d i o x i d e . O n c e a s p o n g e d e c a y s , t h e s p i c u l e s are r e l e a s e d into t h e s e d i m e n t w h e r e t h e y c a n b e preserved a s m i c r o f o s s i l s . S p o n g e s that h a v e d e n s e o r f u s e d n e t w o r k s o f spicules are m o r e likely to be p r e s e r v e d i n t a c t , a n d it is t h e s e t y p e s t h a t m a k e u p m o s t o f the fossil record o f s p o n g e s . In the late 1960s biologists d i v i n g on t h e coral reefs of J a m a i c a discovered a n e w g r o u p of l i v i n g s p o n g e s that c o m p l e t e l y defied t h e c o n c e p t of a typical s p o n g e (Plate 3B). M o r e o v e r , t h e s e n e w s p o n g e s p r o v i d e d a n i m p o r tant link to s o m e fossils that had l o n g b e e n misclassified. A m o n g t h e s e fossils are s o m e found i n the C i n c i n n a t i a n . T h e n e w s p o n g e s are c a l l e d sclcrosponges or coralline s p o n g e s b e c a u s e they form a massive c a l c a r e o u s skeleton like that of coral. T h e s p o n g e b o d y is restricted to a t h i n s u r f a c e layer in
71
cross-
of the body wall. canals
collar cells and chambers. by John
Agnew.
Figure 6.2.
Reconstruc-
tion of a living stromatoporoid,
modeled on
living
a
sclerosponge.
section
A
is removed to
show internal laminae the skeleton. occupies
Living
only
most layer,
the
of
tissue upper-
with excur-
rent canals radiating oscula.
Magnified
shows
surface
tissue
microstructure nae.
from
inset
of
and
lami-
Compare to Figure
6.3D,
below.
John
Agnew.
Drawing by
w h i c h typical s p o n g e cells carry out f i l t e r f e e d i n g ( f i g u r e 6.2). Wastewater c a n a l s that c o n v e r g e on the o s c u l a leave starburst patterns of g r o o v e s in t h e c a l c a r e o u s skeleton that m a t c h w i t h structures c a l l e d astrorhizae in t h e fossil g r o u p k n o w n a s s t r o m a t o p o r o i d s ( f i g u r e s 6.2, 6.3A, D ) .
These and other
similarities e n a b l e d the s t r o m a t o p o r o i d s to be r e c o g n i z e d c o r r e c t l y as a new g r o u p o f s p o n g e s , after t h e y h a d b e e n classified with c n i d a r i a n s , b r y o z o a n s , a n d e v e n p r o t o z o a n s . S t r o m a t o p o r o i d s f i r s t a p p e a r i n strata o f O r d o v i c i a n a g e , a n d w e r e t h o u g h t t o h a v e b e c o m e e x t i n c t i n the C r e t a c e o u s , until the Figure 6.3.
l i v i n g s c l e r o s p o n g e s w e r e f o u n d . D u r i n g the S i l u r i a n and D e v o n i a n periods,
Cincinnatian
s t r o m a t o p o r o i d s w e r e m a j o r reef b u i l d e r s a l o n g w i t h c o r a l s , but the m o d e r n
sponges
and
stromato-
poroids.
A.
A cylindri-
cal
stromatoporoid,
acera
Aul-
S p o n g e s are n o t c o m m o n f o s s i l s i n the C i n c i n n a t i a n , a l t h o u g h t h e y
undulata
(Billings),
MUGM 29618,
Richmondian,
horizon
B.
culata
tuber-
James,
holotype,
CMC IP 209, dian,
Richmon-
Clinton County, C.
Ohio,
tuberosa
(Beecher),
MUGM,
Maysvillian, County, section poroid,
(Billings),
634A2t, Ohio,
x
huron-
MUGM
S t r o m a t o p o r o i d s are n o t c o m m o n i n t h e C i n c i n n a t i a n a n d m a y super-
o f blister-like skeletal d e p o s i t s c a l l e d v e s i c l e s , w h e r e a s b r y o z o a n s h a v e a t u b u l a r s t r u c t u r e ( F i g u r e 6.2). Aulacera is a very d i s t i n c t i v e , large C i n c i n n a t i a n s t r o m a t o p o r o i d w i t h a c y l i n d r i c a l s h a p e ( f i g u r e 6.3A). In life, Aulacera grew u p r i g h t on the sea floor like a tree or a s t a l a g m i t e , but they are p r e s e r v e d l y i n g h o r i z o n t a l l y like fallen logs. Aulacera f o u n d in O r d o v i c i a n
Richmondian,
Montgomery
in). O t h e r C i n c i n n a t i a n s p o n g e s arc d e s c r i b e d i n
( F i g u r e 6 . 3 D ) . T h e y differ f r o m b r y o z o a n s i n b e i n g d e n s e l y c o v e r e d w i t h
stromato-
Labechia
w h i c h radiate 6 - 1 2 straight o r c u r v e d , f i n g e r - l i k e p r o j e c t i o n s ; its d i a m e t e r
t u b e r c l e s . C r o s s - s e c t i o n s o f C i n c i n n a t i a n s t r o m a t o p o r o i d s are c o m p o s e d
Polished cross-
of a
s t r i k i n g s p o n g e ( f i g u r e 6.3B). This s p o n g e has a hollow c e n t r a l c a v i t y from
ficially r e s e m b l e b r y o z o a n s in h a v i n g a m o u n d - l i k e or e n c r u s t i n g form
Fleming
Kentucky, D.
0.3.
c i n n a t i a n ( D a l v e 1 9 4 8 ; R i g b y 1996). Brachiospongia is t h e largest a n d m o s t
d e t a i l a n d illustrated b y R i g b y ( 1 9 9 6 ) .
x
A sponge, Pat-
tersonia
o f s p o n g e s a n d t h r e e g e n e r a o f s t r o m a t o p o r o i d s are r e c o g n i z e d i n the C i n -
c a n r e a c h 2 8 c m (11
Liberty Formation,
0.3.
ensis
x
A large sponge,
Brachiospongia
often m a y be overlooked b e c a u s e they can resemble bryozoans or corals, a n d a l s o h a v e a rather n o n d e s c r i p t a p p e a r a n c e ( f i g u r e 6 . 3 C ) . Five g e n e r a
and locality unknown, 0.3.
s c l e r o s p o n g e s ( m o r e distantly related to t h e P a l e o z o i c forms) are restricted to d e e p reef e n v i r o n m e n t s a n d play a s m a l l e r role in reef b u i l d i n g .
strata slightly y o u n g e r t h a n t h e y o u n g e s t C i n c i n n a t i a n b e d s o n A n t i c o s t i
County,
Island in the Gulf of St. L a w r e n c e r e a c h e d g i g a n t i c s i z e s , up to 28 cm in
x 0.3.
72
A Sea without Fish
d i a m e t e r a n d 1 - 2 m i n l e n g t h ( C a m e r o n a n d C o p p e r 1994). I n t h e C i n c i n nati region they arc restricted to the R i c h i n o n d i a n f o r m a t i o n s , the Elkhorn f o r m a t i o n i n p a r t i c u l a r , a n d d i a m e t e r s u p t o 5 - 1 0 c m arc k n o w n .
T h e stony c o r a l s are the best k n o w n m e m b e r s o f the p h y l u m C n i d a r i a ,
Cnidarians
w h i c h also i n c l u d e s jellyfish, sea a n e m o n e s , a n d m a n y g r o u p s like I n -
Poriferans and Cnidarians
73
d r o i d s , sea f a n s , sea w h i p s , a n d soft c o r a l s that are often m i s t a k e n l y t h o u g h t mouth
to be s e a w e e d s . D e s p i t e s u c h a b e w i l d e r i n g array of f o r m s , c n i d a r i a n s share several features that i n d i c a t e their c o m m o n r e l a t i o n s h i p a s m e m b e r s o f o n e o f t h e s i m p l e s t m u l t i - c e l l e d a n i m a l ( m e t a z o a n ) p h y l a . C n i d a r i a n s stand a p a r t f r o m o t h e r a n i m a l s i n h a v i n g t w o b o d y f o r m s , the p o l y p a n d the
corallum
medusa.
T h e p o l y p , as typified by a sea a n e m o n e or stony c o r a l (Plate 3C;
F i g u r e 6.4), is c y l i n d r i c a l in s h a p e a n d a t t a c h e d at t h e b a s e to a hard s u b stratum.
T h e body w a l l c o n s i s t s o f o n l y t w o c e l l layers ( u n l i k e the t h r e e
layers f o u n d in all o t h e r m e t a z o a n s ) , s e p a r a t e d by a n o n - c e l l u l a r jelly layer c a l l e d t h e m e s o g l e a . T h e r e is a s i n g l e o p e n i n g ( m o u t h ) into the b o d y cavity t h r o u g h w h i c h f o o d is i n g e s t e d a n d w a s t e is e x p e l l e d . A r i n g of t e n t a c l e s s u r r o u n d i n g t h e m o u t h serves for f o o d c a p t u r e a n d d e f e n s e . T h e m e d u s a or jellyfish has t h e s a m e s t r u c t u r e as the p o l y p (with t h i c k e r m e s o g l e a ) but Figure 6.4.
Reconstruc-
tion
Cincinnatian
of the
solitary rugose
coral,
Grewingkia
canaden-
sis,
showing
with
d o w n w a r d s . B o t h p o l y p a n d m e d u s a f o r m s arc p r e s e n t a t different stages d u r i n g t h e life c y c l e o f s o m e c n i d a r i a n s p e c i e s . T h e t h r e e m a j o r c l a s s e s o f c n i d a r i a n s differ i n their expression o f t h e
the polyp
extended
Drawing
i s f r e e - l i v i n g , s w i m m i n g b y m u s c u l a r p u l s a t i o n s w i t h the m o u t h o r i e n t e d
tentacles.
p o l y p and m e d u s a stages. H y d r o z o a n s (including hydroids, Portuguese Man-of-War, a (true jellyfish) restrict t h e p o l y p to a larval s t a g e a n d live m o s t l y as m e d u -
by Kevina
sae. A n t h o z o a n s ( a n e m o n e s , c o r a l s , "soft c o r a l s " ) live e x c l u s i v e l y a s p o l y p s ,
Vulinec.
a n d often a s c o l o n i e s o f m u l t i p l e p o l y p s that are g e n e t i c c l o n e s o f a s i n g l e initial p o l y p . O n e o t h e r f e a t u r e c o m m o n t o all c n i d a r i a n s p r o v i d e s a c l u e t o t h e i r m o d e o f life. M i c r o s c o p i c s t i n g i n g c e l l s (cnidoblasts) are c o n c e n trated in t h e t e n t a c l e s of all c n i d a r i a n s . U p o n c o n t a c t w i t h a foreign o b j e c t t h e s t i n g i n g c e l l r e l e a s e s a h a r p o o n - l i k e h o l l o w t h r e a d that p i e r c e s soft tissue a n d injects a t o x i n . S m a l l o r g a n i s m s are s t u n n e d o r k i l l e d b y t h e s t i n g i n g c e l l s , t h e n g r a s p e d b y t h e t e n t a c l e s a n d stuffed into t h e m o u t h . T h u s c n i d a r i a n s live a s p r e d a c e o u s c a r n i v o r e s , a l t h o u g h p o l y p s a n d w e a k l y s w i m m i n g jellyfish m u s t rely o n w a t e r m o t i o n t o s u p p l y their prey. B e c a u s e t h e prey o f m o s t c n i d a r i a n s i s m a i n l y m i n u t e z o o p l a n k t o n , t h e y are also c o n s i d e r e d t o b e passive s u s p e n s i o n f e e d e r s .
I n t h e C i n c i n n a t i a n strata, t w o m a j o r g r o u p s o f c n i d a r i a n s arc repres e n t e d : t h e a n t h o z o a n c o r a l s a n d the s c y p h o z o a n c o n u l a r i i d s .
The corals
i n c l u d e b o t h solitary a n d c o l o n i a l s p e c i e s .
Solitary Corals
C i n c i n n a t i a n solitary corals, c o m m o n l y c a l l e d horn corals o r c u p corals, a n d o n e c o l o n i a l coral b e l o n g to the order R u g o s a . R u g o s a n s first a p p e a r e d in the L a t e O r d o v i c i a n a n d b e c a m e extinct b y the e n d o f the P e r m i a n . The c o m m o n n a m e " h o r n c o r a l " r e f e r s t o the c o n i c a l o r c y l i n d r i c a l s h a p e o f the calcitic skeleton ( c o r a l l u m ) ; these corals are c o m m o n l y m i s t a k e n for a fossilized cow's h o r n ( F i g u r e s 6.4, 6.5). T h e p o l y p o c c u p i e d a depression (calice) at the widee n d o f the c o r a l l u m . A s the coral grew, the p o l y p deposited successive l a y e r s of skeletal material b e n e a t h it, thereby i n c r e a s i n g the l e n g t h of the c o r a l l u m . O l d e r parts of the c o r a l l u m did not c o n t a i n living tissue and thus were subject to physical abrasion or e n c r u s t a t i o n a n d b o r i n g by other o r g a n i s m s .
74
A Sea without Fish
Figure 6.5.
Cincinnatian rugose corals.
alla attached to bryozoan, [1982, plate 3, Rafinesquina, 3,
figure 5]). Richmondian,
figure 9[).
mondian,
C.
canadensis
dian, Adams County, CMC IP 45413, 10]).
B.
A.
S. divaricans,
divaricans,
x 0.6,
Ohio,
CMC IP 50667,
Clinton County,
135767,
USNM Ohio,
70211,
several cor-
x 2.0 (from Elias
three coralla attached to margin of brachiopod Indiana,
x
1.3 (from Elias [1982,
two coralla attached to brachiopod Lepidocyclus, x 2.2 (from Elias [1982, plate 3, Weaver
Collection,
inset showing epithecal growth-lines,
typical abraded corallum
reprinted by permission
divaricans (Nicholson),
Wayne County,
USNM 40086,
Whitewater-Elkhorn Formations,
A-C
USNM
Whitewater Formation,
(Billings), Ohio,
Streptelasma
Waynesville Formation,
Whitewater Formation, Butler County,
Grewingkia
mondian,
S.
Richmondian,
with broken rim, Wayne County,
figure 8[).
well-preserved corallum, scale in mm.
E.
G.
D. Richmon-
canadensis,
showing circular borings of Trypanites,
Indiana,
of the Paleontological Research
x
1.0 (from Elias [1982, plate 9, Institution.
Poriferans and Cnidarians
75
plate
Rich-
Richfigure
76
A Sea without Fish
A l t h o u g h the soft p o l y p o f r u g o s a n s i s n e v e r p r e s e r v e d , r u g o s a n s are k n o w n t o b e c o r a l s b e c a u s e t h e c a l i c e has m u l t i p l e r a d i a t i n g p a r t i t i o n s c a l l e d septa that are f o u n d in l i v i n g c o r a l s . S e p t a are s e c r e t e d by soft tissue partitions o f t h e internal b o d y c a v i t y c a l l e d m e s e n t e r i e s . I n l i v i n g a n t h o z o a n s , m e s e n t e r i e s serve i m p o r t a n t f u n c t i o n s i n d i g e s t i o n a n d r e p r o d u c t i o n . The n u m b e r a n d a r r a n g e m e n t o f t h e septa are traits u s e d i n t h e classifica-
Figure 6.6. Cincinnatian A-E.
colonial corals.
Corallites as seen on external surface or in cross sections of corallum, from Elias (1998).
tion of c o r a l s . In r u g o s a n s t h e septa h a v e a r o u g h l y four-fold s y m m e t r y ,
Cyathophylloides,
c o m p a r e d t o l i v i n g c o r a l s that h a v e six-fold s y m m e t r y .
lonial rugosan, dian.
B.
lum,
a tabulate,
6 . 5 D , E). C o r a l l a reach l e n g t h s o v e r 13 cm (5 in) b u t are g e n e r a l l y in the r a n g e 1 0 - 6 0 m m ( 0 . 5 - 2 in); t h e d i a m e t e r r a n g e s f r o m 2 2 t o 4 0 m m ( 0 . 9 - 1 , 6
Foerstephyl-
Richmondian. a
C.
Cala-
tabulate,
Rich-
D.
mondian. pora,
a
Nycto-
tabulate,
in). S p e c i m e n s are a l m o s t a l w a y s f o u n d l y i n g o n t h e i r sides a n d a p p e a r
Richmondian.
highly abraded, encrusted, and bored (Figure 6.5E). External c o n c e n t r i c
dium, a tabulate,
g r o w t h lines are rarely p r e s e r v e d ( F i g u r e 6 . 5 D , inset). Like s o m e l i v i n g
mondian.
solitary c o r a l s , Grewingkia p r o b a b l y lived
Richmondian,
upright, partly buried
in soft
sediment with the polyp exposed. S o m e encrustation and b o r i n g took p l a c e d u r i n g life but c o n t i n u e d after t h e c o r a l w a s e x h u m e d b y s t o r m activity a n d d e p o s i t e d o n its side. B r y o z o a n s are t h e m o s t c o m m o n e n c r u s t e r s a n d a w o r m p r o b a b l y f o r m e d t h e b o r i n g s (trace fossil n a m e Trypanites, s e e
County,
length (from
Elias [1998, figure 5]). G.
Protaraea
densis
richmon-
Foerste,
ing
from a l i g n m e n t o f c o r a l s d u r i n g s t o r m s .
Richmondian,
s u r f a c e s o f l i m e s t o n e s . T h e c o r a l l a are u s u a l l y 6 - 1 3 m m ( 0 . 2 5 - 0 . 5 in) i n
Coral bed, Madison
Kentucky,
b e d d i n g s u r f a c e s are o r i e n t e d i n preferred d i r e c t i o n s t h a t p r o b a b l y resulted
U n l i k e Grewingkia, Streptelasma is f o u n d in g r o w t h p o s i t i o n , on the u p p e r
TetraRich-
of hammer 25 cm
5435,
f o u n d i n t h e R i c h m o n d i a n s e c t i o n ( F i g u r e s 6 . 5 A - C ; E l i a s 1982, 1998).
E. F.
Elias 1986). Field studies d e m o n s t r a t e that Grewingkia s p e c i m e n s on s i n g l e
Streptelasma divaricans ( N i c h o l s o n ) is t h e o t h e r solitary r u g o s e c o r a l
co-
Richmon-
T w o s p e c i e s o f solitary r u g o s a n s o c c u r c o m m o n l y i n t h e C i n c i n n a t i a n ,
poecia,
A. a
b o t h in t h e R i c h m o n d i a n strata ( F i g u r e 6.5; E l i a s 1982, 1998). Grewingkia canadensis (Billings) i s t h e largest a n d m o s t c o m m o n r u g o s a n ( F i g u r e s
at
same scale x 3.7. A - E
a
MUGM
tabulate encrust-
brachiopod shell,
mation,
Liberty For-
Preble County,
Ohio, x 1.7.
H. Octago-
nal tool house built ca. 1900 in John Paul Park, Madison,
Indiana,
con-
l e n g t h , rarely e x c e e d i n g 2 5 m m ( 1 in), w i t h a d i a m e t e r o f 1 3 m m (0.5 in).
structed
C o r a l l a o c c u r i n d i v i d u a l l y and i n c l u s t e r s , often a t t a c h e d t o b r a c h i o p o d s ,
nial corals from the Rich-
b r y o z o a n s , or e v e n c o r a l l a of Grewingkia. In m a n y c a s e s t h e b r a c h i o p o d or
mondian
host w a s l i v i n g a t t h e t i m e t h e c o r a l s a t t a c h e d . T h e o u t e r layer o f t h e c o r a l -
exposed in
l u m (epitheca) s h o w s septal g r o o v e s a n d interseptal ridges i n c o n t r a s t t o t h e
A - F reprinted by permis-
smooth, worn
sion
e p i t h e c a of Grewingkia.
of the
b e c a u s e o f their m u l t i p l e , p o l y g o n a l c o r a l l i t e s (skeletal t u b e s s e c r e t e d b y Tabulates o r i g i n a t e d i n t h e E a r l y
O r d o v i c i a n a n d b e c a m e e x t i n c t b y t h e e n d o f the P e r m i a n . C o r a l l a o f t a b u lates vary in s h a p e f r o m sheet-like to h e m i s p h e r i c a l to s p h e r i c a l , r e a c h i n g d i a m e t e r s of a b o u t 4 m e t e r s (13 ft). I n d i v i d u a l t a b u l a t e p o l y p s b u i l t tall, n a r r o w corallites. P o l y p s p e r i o d i c a l l y d e p o s i t e d a t r a n s v e r s e basal plate (tabula) a s t h e y g r e w ; t h u s , b r o k e n c o r a l l a o r l o n g i t u d i n a l p o l i s h e d s e c t i o n s h a v e a c h a r a c t e r i s t i c l a d d e r - l i k e a p p e a r a n c e ( F i g u r e 6.7B). In life, t a b u l a t e p o l y p s w e r e truly c o l o n i a l b e c a u s e c o r a l l i t e w a l l s are s h a r e d a n d h a v e int e r c o n n e c t i n g pores. S e p t a are not well d e v e l o p e d , l e a d i n g s o m e s p e c i a l i s t s
Poriferans and Cnidarians
the vicinity. Mid-America Society.
Colonial Corals
Tabulates are c o m m o n l y c a l l e d h o n e y - c o m b c o r a l s
individual polyps) ( F i g u r e s 6.6, 6 . 7 B ) .
of colo-
coral beds
Paleontology
Most C i n c i n n a t i a n colonial corals b e l o n g to another extinct coral group c a l l e d the T a b u l a t a .
entirely
77
Figure 6.7. rugosan, (Foerste),
Cincinnatian colonial corals.
Richmondian,
Liberty Formation,
MUGM 5301,
Nelson County,
a
Kentucky, 78
tabulate in
A. Nelson
Cyathophylloides stellata County,
vertical section,
x 0.8. A Sea without Fish
Kentucky,
(Hall),
x 3.
showing tabulae,
MUGM 5285, B.
a colonial
Foerstephyllum vacuum
Richmondian,
Liberty Formation,
t o q u e s t i o n w h e t h e r t a b u l a t e s w e r e i n fact c o r a l s . A n e x t r a o r d i n a r y d i s c o v ery of soft tissue p o l y p s p r e s e r v e d in a S i l u r i a n t a b u l a t e ( C o p p e r 1985) settled the d e b a t e for m o s t t a b u l a t e s , a l t h o u g h s o m e , like t h e C i n c i n n a t i a n Tetradium, are very s i m i l a r to s o m e l i v i n g s p o n g e s that b u i l d a c a l c a r e o u s skeleton w i t h a t a b u l a t e s t r u c t u r e . C o l o n i a l corals o c c u r exclusively i n the R i c h m o n d i a n W a y n e s v i l l e , Libertv, W h i t e w a t e r , S a l u d a , and Elkhorn F o r m a t i o n s . W i t h i n these f o r m a t i o n s , there are as m a n y as tour distinct h o r i z o n s w h e r e c o l o n i a l corals are c o n c e n trated into "coral b e d s " up to a b o u t 4 m (12 ft) thick, t r a c e a b l e for great distances a l o n g the o u t c r o p belt o f the R i c h m o n d i a n a r o u n d the C i n c i n n a t i A r c h ( F i g u r e 6.6F; B r o w n e 1964, 1965; genera of massive c o l o n i a l
tabulates
Hatfield
and Tetradium) and o n e c o l o n i a l r u g o s a n these b e d s ( F i g u r e s 6 . 6 A - F ) .
1968; E l i a s 1998). F o u r
(Foerstephyllum,
Calapoecia,
(Cyathophylloides)
Nyctopora,
are f o u n d in
A n o t h e r t a b u l a t e , Protaraea, o c c u r s in the
R i c h m o n d i a n but did not form m a s s i v e c o l o n i e s . Instead, Protaraea e x c l u sively e n c r u s t s t h e shells o f b r a c h i o p o d s a n d o t h e r objects ( F i g u r e 6 . 6 G ) . I n John Paul Park, in M a d i s o n , I n d i a n a , there is a u n i q u e , o c t a g o n a l tool h o u s e built entirely of c o l o n i a l corals g a t h e r e d from the c o r a l b e d e x p o s e d north of the town ( F i g u r e 6.6H). C o l o n i a l corals are also i n c o r p o r a t e d into stonewalls beside s o m e o f the e l e g a n t h o u s e s i n M a d i s o n .
A l t h o u g h the coral beds of the R i c h m o n d i a n have s o m e characteristics of
A r e Reefs Present in
reefs, t h e y are not c o n s i d e r e d to be true reefs. W h y is t h i s s o , a n d are t h e r e
t h e Cincinnatian?
o t h e r reef-like c o n c e n t r a t i o n s o f fossils e l s e w h e r e i n t h e C i n c i n n a t i a n ? T o a n s w e r t h e s e c o n d q u e s t i o n f i r s t , t h e o n l y o t h e r reef-like s t r u c t u r e s rep o r t e d in t h e C i n c i n n a t i a n arc s m a l l m o u n d s , o n l y 0.3 m h i g h by 3 in across, w h i c h w e r e
c o m p o s e d
T h e s e m o u n d s o c c u r in the
of t r e p o s t o m e b r y o z o a n s Maysvillian
Grant
Lake
(Cuffey
1998).
Limestone near
M a y s v i l l e , K e n t u c k y , b u t u n f o r t u n a t e l y the o u t c r o p h a s b e e n d e s t r o y e d . T h e r e are t h r e e r e a s o n s w h y t r u e reefs m i g h t b e e x p e c t e d i n t h e C i n c i n n a t i a n . First, o r g a n i s m s w i t h r e e f b u i l d i n g p o t e n t i a l c e r t a i n l y e x i s t e d i n a b u n d a n c e throughout the C i n c i n n a t i a n , i n c l u d i n g corals, sponges, and b r y o z o a n s . S e c o n d , t h e s e s a m e o r g a n i s m s w e r e c o n s t r u c t i n g t r u e reefs b y Early O r d o v i c i a n t i m e i n o t h e r r e g i o n s w o r l d w i d e (Plate 2 ; C o p p e r 1 9 9 7 ) . B y M i d d l e O r d o v i c i a n t i m e , b r y o z o a n s a s s u m e d a m a j o r role i n r e e f b u i l d ing in regions as close to the C i n c i n n a t i A r c h as T e n n e s s e e (Alberstadt et al. 1974). By C i n c i n n a t i a n t i m e , a d i v e r s e east of r e e f - b u i l d i n g o r g a n i s m s h a d a s s e m b l e d that w o u l d d o m i n a t e r e e f b u i l d i n g w o r l d w i d e d u r i n g t h e ensuing Silurian and D e v o n i a n ( C o p p e r 1997). T h i r d , the tropical to subtropical p a l e o l a t i t u d e o f the C i n c i n n a t i r e g i o n d u r i n g the L a t e O r d o v i c i a n was well w i t h i n t h e c l i m a t i c r a n g e w h e r e r e e f b u i l d i n g m i g h t b e e x p e c t e d and i n d e e d w a s o c c u r r i n g e l s e w h e r e w o r l d w i d e (Plate 2 ; C o p p e r 2 0 0 1 ; W e b b y 2002). The coral b e d s o f t h e R i c h m o n d i a n , a s w e l l a s t h e M a y s v i l l i a n b r y o z o a n m o u n d s , h a v e not b e e n r e g a r d e d a s t r u e reefs b e c a u s e t h e y did n o t g r o w into a n i n t e r c o n n e c t e d f r a m e w o r k that d e v e l o p e d s i g n i f i c a n t relief i n relation to the s u r r o u n d i n g sea floor. R a t h e r , t h e y w e r e r e s t r i c t e d to l o w -
Poriferans and Cnidarians
79
Figure 6.8. Conulariid, Conularia
formosa
Miller and Dyer, sity of Cincinnati tions,
Maysvillian,
ryville Formation, County, Ohio, x
UnivercollecCorButler 7.2.
relief c o l o n i e s l i v i n g very c l o s e t o sea level (Hatfield 1968). W i t h i n the c o r a l b e d s , c o n c e n t r a t i o n s o f c o r a l s are n o m o r e t h a n a few m e t e r s w i d e ( F i g u r e 6.6F). T h e r e is no differentiation of the coral cluster as a reef "core" from t h e b e d s l y i n g a d j a c e n t to it. A r e e f c o r e u s u a l l y i n d i c a t e s the c o r a l s c o n s t r u c t e d a m o u n d h a v i n g relief greater than that of a s i n g l e c o l o n y , less than o n e m e t e r . C o r a l clusters p r o b a b l y existed as s m a l l p a t c h e s on a level sea floor, s i m i l a r t o s m a l l l i v i n g p a t c h reefs. T h e s i z e o f s o m e t a b u l a t e c o l o n i c s
80
A Sea without Fish
is c o m p a r a b l e to that of m a n y l i v i n g c o r a l s in p a t c h reefs. H a t f i e l d (1968) s h o w e d that the c o r a l z o n e w i t h i n t h e S a l u d a F o r m a t i o n a c t e d as a low, coral barrier s u r r o u n d i n g a c e n t r a l l a g o o n w h e r e f i n e - g r a i n e d c a r b o n a t e s e d i m e n t s a c c u m u l a t e d . I n this w a y t h e c o r a l z o n e a c t e d a s d o p r e s e n t - d a y reefs t o i n f l u e n c e w a t e r m o v e m e n t a n d s e d i m e n t d e p o s i t i o n . A p p l i c a t i o n of the t e r m s p a t c h reefs a n d b i o s t r o m e s to t h e R i c h m o n d i a n c o r a l b e d s is therefore q u i t e r e a s o n a b l e . The inability o f C i n c i n n a t i a n c o r a l s a n d o t h e r p o t e n t i a l r e e f b u i l d e r s to c o n s t r u c t m a j o r reefs has several p o s s i b l e e x p l a n a t i o n s . First, c o r a l s w e r e present i n t h e region o n l y d u r i n g R i c h m o n d i a n t i m e ( W e b b y 2002). T h e a b s e n c e o f corals d u r i n g E d e n i a n a n d M a y s v i l l i a n t i m e i s p u z z l i n g , b e c a u s e o f t h e similarity o f t h e rest o f t h e f a u n a t h r o u g h o u t t h e C i n c i n n a t i a n . E n v i r o n m e n t a l c o n d i t i o n s i n the C i n c i n n a t i A r c h r e g i o n m a y h a v e b e e n u n s u i t a b l e for solitary a n d c o l o n i a l c o r a l s d u r i n g t h e E d e n i a n a n d M a v s v i l lian, b u t it is d i f f i c u l t to identify t h e factors r e s p o n s i b l e . A b u n d a n c e of f i n e - g r a i n e d s e d i m e n t s a n d f r e q u e n t d i s t u r b a n c e o f t h e sea floor b y s t o r m s are t w o factors that m i g h t h a v e restricted t h e p r e s e n c e o f c o r a l s . H o w e v e r , b o t h factors are p e r v a s i v e t h r o u g h o u t t h e C i n c i n n a t i a n , a n d it is n o t certain that either d e c r e a s e d s i g n i f i c a n t l y d u r i n g t h e R i c h m o n d i a n . A c c o r d i n g t o E l i a s (1982) solitary c o r a l s w e r e i n t r o d u c e d d u r i n g a n e a r l y R i c h m o n d i a n invasion from s o u r c e s t o t h e west. S o l i t a r y c o r a l s are p r e s e n t i n the E d e n i a n - M a y s v i l l i a n strata o f the M a q u o k e t a G r o u p t o t h e w e s t . T h e introduction of corals to the C i n c i n n a t i region d u r i n g R i c h m o n dian t i m e possible w a s related t o p r o g r e s s i v e s h a l l o w i n g o f t h e r e g i o n duri n g the C i n c i n n a t i a n that c u l m i n a t e d i n t h e R i c h m o n d i a n ( A n s t e y a n d F o w l e r 1969; H a y 1998). C o r a l b e d s d e v e l o p e d o n a shallow p l a t f o r m that was f l a n k e d b y d e e p e r water toward t h e w e s t a n d n o r t h ( E l i a s 1982). Present-day c o r a l reefs d e v e l o p a l o n g s i m i l a r p l a t f o r m m a r g i n s w h e r e a b r e a k i n s l o p e separates shallow from d e e p e r water. Prior t o t h e R i c h m o n d i a n , the C i n c i n n a t i a n p l a t f o r m m a y h a v e b e e n d e e p e r a n d w i t h o u t a b r e a k i n slope toward t h e west that h a v e favored c o r a l d e v e l o p m e n t .
T h e c o n u l a r i i d s arc a m i n o r g r o u p y e t are a m o n g t h e m o s t p r o b l e m a t i c
Conulariids
fossils t o b e f o u n d i n t h e C i n c i n n a t i a n . T h e y are u s u a l l y f o u n d i n a c o m pressed c o n d i t i o n i n s h a l e s a n d siltstones o f M a v s v i l l i a n a n d R i c h m o n d i a n formations. As compressed s p e c i m e n s , conulariids appear to have a high t r i a n g u l a r s h a p e , w i t h f i n e l y striated m a r k i n g s i n a c h e v r o n - l i k e p a t t e r n o n a very thin i n t e g u m e n t , b r o w n o r b l a c k i n c o l o r ( F i g u r e 6.8). T h e i n t e g u m e n t i s c a l c i u m - p h o s p h a t i c i n c o m p o s i t i o n . U n c o m p r e s s e d s p e c i m e n s are found e l s e w h e r e that s h o w t h e o r i g i n a l s h a p e t o b e p y r a m i d a l a n d foursided, and s o m e h a v e t r i a n g u l a r f l a p s e x t e n d i n g f r o m t h e sides a t t h e w i d e end, suggesting a means of closure. Cross-sections of uncompressed specim e n s reveal a b i f u r c a t i n g s e p t u m o r i g i n a t i n g f r o m e a c h o f t h e f o u r sides. E v i d e n c e for a t t a c h m e n t at t h e a p i c a l end is o c c a s i o n a l l y f o u n d , b u t is often l a c k i n g . Possibly c o n u l a r i i d s lived p a r t of their lives a t t a c h e d a n d later b e c a m e free-living.
Poriferans and Cnidarians
81
T h e z o o l o g i c a l affinities o f c o n u l a r i i d s h a v e b e e n d e b a t e d for a l o n g t i m e . C h i e f l y o n t h e basis o f their four-part s t r u c t u r e , c o n u l a r i i d s h a v e b e e n classified w i t h t h e s c y p h o z o a n c n i d a r i a n s , w h i c h h a v e a t e t r a m e r a l (four-fold) b o d y p l a n . T h e r e are l i v i n g s c y p h o z o a n s w i t h a c h i t i n o u s t h e c a a n d s o m e t h a t live a t t a c h e d b y m e a n s o f a stalk. S o m e h a v e a r g u e d that conulariids should be r e c o g n i z e d as a distinct p h y l u m ( B a b c o c k 1996b; Babcock and Feldmann
1986), b u t r e c e n t w o r k b y V a n Iten a n d others
( 1 9 9 6 ) , a n d H u g h e s a n d o t h e r s (2000), c o n f i r m s that the similarities b e t w e e n c o n u l a r i i d s a n d s c y p h o z o a n s are i n d i c a t i v e o f a c l o s e e v o l u t i o n a r y r e l a t i o n s h i p . C o n u l a r i i d s arc f o u n d i n m a r i n e strata o f C a m b r i a n t h r o u g h Triassic
a g e . A s i n g l e s p e c i e s , Conularia formosa M i l l e r a n d D y e r , is re-
corded from the C i n c i n n a t i a n of the C i n c i n n a t i A r c h region.
82
A Sea without Fish
84
A Sea without Fish
7
BRYOZOANS: "TWIGS" AND "BONES"
The rocks in the C i n c i n n a t i region are l o a d e d with fossils. Visitors to the area c o m m o n l y are struck by all the " t i l i n g s " in the rock that look like s m a l l t w i g s , or, with a stretch of the i m a g i n a t i o n , small p i e c e s of b o n e s ( F i g u r e 7.1A). T h e y are the most c o m m o n fossils in the b e d r o c k of the area. I n d e e d , if y o u were to pick up a fossil in the C i n c i n n a t i region at r a n d o m , c h a n c e s are that it would be one of these objects. But they are neither twigs nor b o n e s . T h e y are, in fact, the r e m a i n s of a g r o u p of o r g a n i s m s c a l l e d b r y o z o a n s (Plates 3 D , E ) . I f y o u l o o k a t a n u n b r o k e n s u r f a c e o f y o u r b r y o z o a n fossil w i t h y o u r
Figure 7.1. ments
A. Frag-
of bryozoan
trust} h a n d - l e n s , y o u see that it is r e p l e t e w i t h tiny h o l e s ( f i g u r e 7.1 B). If
nies are
y o u shift y o u r field of v i e w to a b r o k e n s u r f a c e , t h e tiny h o l e s are r e v e a l e d
dant fossils in the
to be minute tubes. E a c h o n e of those m i n u t e tubes was o n c e h o m e to an
type-Cincinnatian.
e q u a l l y m i n u t e a n i m a l . T h u s , t h e fossil i n y o u r h a n d w a s c o n s t r u c t e d b y a
vohallopora
c o l o n y of tiny c r e a t u r e s . A b r y o z o a n c o l o n y is r e m i n i s c e n t of a p i e c e of coral found on a present-day b e a c h in that c o r a l reefs a l s o arc m a d e by myriads o f i n d i v i d u a l a n i m a l s . D e s p i t e t h e s u p e r f i c i a l r e s e m b l a n c e o f b r y o z o a n c o l o n i e s a n d coral c o l o n i e s t o o n e a n o t h e r , t h e a n i m a l s i n v o l v e d arc very different, i n d e e d . C o r a l s are m e m b e r s o f p h y l u m C n i d a r i a , c o m m o n l y
Parramosa
(d'Orbigny),
CMC IP
27957,
Bellevue
stone,
Cincinnati,
LimeOhio.
Scale in mm.
B.
of bryozoan
colony
showing
minute
ings (zooecia) on
aperture serving as both m o u t h and anus.
and
a
Surface open-
called coelenterates. E a c h coral a n i m a l is basically s a c - s h a p e d with a single
A b r y o z o a n a n i m a l i s m o r e c o m p l e x l y o r g a n i z e d ( F i g u r e 7.2). T h e r e
colo-
the most abun-
the left
cross-section
through
a
broken
surface
is an a l i m e n t a r y c a n a l , w i t h a d i s t i n c t m o u t h on o n e e n d a n d a d i s t i n c t
on the right.
a n u s on the other. S u r r o u n d i n g t h e m o u t h is a r i n g of t e n t a c l e s c a l l e d a
openings leads
l o p h o p h o r e . T h e l o p h o p h o r e serves as a f o o d - g a t h e r i n g s t r u c t u r e a n d for
that was home to a tiny,
gas e x c h a n g e b e t w e e n the a n i m a l a n d t h e s u r r o u n d i n g w a t e r (in o t h e r w o r d s , it is also a respiratory s t r u c t u r e ) . T h e a n u s is l o c a t e d o u t s i d e of t h e lophophore.
This i s w h a t gives t h e t a x o n o f t h e b r y o z o a n s its t e c h n i c a l
n a m e — p h y l u m Ectoprocta.
The " p r o c t a " part o f t h e w o r d m e a n s " o p e n -
i n g , " a n d t h e " e c t o " m e a n s " o u t s i d e of." Frankly, most p e o p l e d o not call t h e s e a n i m a l s e c t o p r o c t s . I n f o r m e r years, w h e n the c r e a t u r e s w e r e less well u n d e r s t o o d t h a n t h e y are t o d a y ,
Each of the to a
individual animal. tome
bryozoan,
ticulipora
CMC IP 51107,
Bellevue
Limestone.
cinnati,
Ohio.
individual
(zooecia)
p e o p l e spoke o f p h y l u m B r y o z o a . E v e n t u a l l y i t w a s r e c o g n i z e d that soc a l l e d p h y l u m B r y o z o a l u m p e d t o g e t h e r a n i m a l s that are not-at-all c l o s e l y related t o o n e a n o t h e r . H e n c e , t h e n a m e " B r y o z o a " s h o u l d b e a b a n d o n e d , in the t e c h n i c a l s e n s e . H o w e v e r , like t h e u s e of t h e t e r m " g l a s s e s " to refer t o items m a d e o f plastic, the t e r m " b r y o z o a n s " persists i n c o m m o n parl a n c e . B r y o z o a n s s o m e t i m e s are said t o c o m p r i s e p h y l u m P o l y z o a , e s p e cially i n G r e a t Britain. I n s o m e r e s p e c t s , " P o l y z o a " i s a n a p p r o p r i a t e n a m e f o r the g r o u p . " P o l y " m e a n s " m a n y , " a n d " z o a , " " a n i m a l s . " T h e w o r d " B r y o z o a " literally m e a n s " m o s s a n i m a l s , " p r e s u m a b l y b e c a u s e a l i v i n g b r y o z o a n
85
TreposMon-
mammulata
d'Orbigny,
of
tube
Cin-
Diameter openings
about 0.2
mm.
Figure 7.2. Living b r y o -
c o l o n y , w i t h its s u r f a c e o f m a n y m i n u t e a n i m a l s , m i g h t b e t h o u g h t t o re-
zoan,
showing
one zooid
s e m b l e a r o c k c o a t e d w i t h m a n y o f t h e tiny plants w e c a l l m o s s . Potential
with
tentacles
extended
in
feeding position
(left)
and the other partly retracted (right). by Kevina
Drawing
Vulinec.
c o n f u s i o n c a n e n s u e , h o w e v e r , i f o n e forgets the fact that b r y o z o a n s are d e c i d e d l y a n i m a l s , w h e r e a s m o s s e s are just a s d e c i d e d l y plants. R e g a r d l e s s o f t h e t e c h n i c a l t e r m s a n d t h e r e a s o n i n g b e h i n d t h e m , m o s t p e o p l e refer to fossil e c t o p r o c t s c o l l o q u i a l l y as b r y o z o a n s , a n d t h e y h a v e d o n e so for g e n e r a t i o n s . W e will f o l l o w that h o a r y tradition h e r e . B r y o z o a n s are a n i m a l s . A l l a n i m a l s d e r i v e the e n e r g y t h e y n e e d t o g r o w , r e p r o d u c e , a n d , i n d e e d , t o l i v e , b y c o n s u m i n g o t h e r o r g a n i s m s , or, at least, o r g a n i c m a t t e r p r o d u c e d by l i v i n g o r g a n i s m s . A parasite, for exa m p l e , a tape-worm living within the alimentary canal of another animal, m a y a b s o r b o r g a n i c - r i c h fluids f r o m w i t h i n its host. A m o s q u i t o eats its v i c t i m o n e tiny d r o p of b l o o d at a t i m e . But b r y o z o a n s arc n e i t h e r parasites nor m o s q u i t o - l i k e . S o w h a t d o b r y o z o a n s c a t , a n d h o w d o t h e y eat it?
86
A Sea without Fish
B r y o z o a n s arc a q u a t i c . D e p e n d i n g o n t h e k i n d , s o m e b r y o z o a n s live i n
Figure 7.3.
fresh water, but most live in salt water. In either c a s e , the b r y o z o a n subsists
bryozoans.
o n m i n u t e o r g a n i s m s ( p r o t o z o a n s a n d s o on) a n d tiny bits o f o r g a n i c m a t t e r
of the
s u s p e n d e d in the water.
T h e b r y o z o a n d o e s n o t just wait passively for s u c h
food to fall into its m o u t h ; it literally filters the food f r o m the water. B r y o z o ans are active filter feeders.
The i n d i v i d u a l a n i m a l spreads the tentacles of
Cincinnatian A.
Colonies
bryozoan
Spatiopora
genus
characteristi-
cally form a thin coating on
shells
of orthoconic
cephalopods,
MUGM
its l o p h o p h o r e into a f u n n e l - , b o w l - , or vase-like c o n f i g u r a t i o n (Plate 3 E ;
uncatalogued,
F i g u r e 7.2), a n d cilia that line t h e tentacles m o v e in s u c h a w a y that f o o d
tian, scale in mm. Note
Cincinna-
particles are carried d o w n t o t h e m o u t h . N o t o n l y d o e s t h e i n d i v i d u a l p o l y p -
that raised lumps on col-
ide generate f e e d i n g currents for itself, but the c o l o n i e s of at least s o m e kinds
ony
surface
are
elongated
of b r y o z o a n s generate currents that e n h a n c e f e e d i n g in the c o l o n y as a w h o l e . In at least s o m e kinds of b r y o z o a n s there are p a r t i c u l a r areas on the c o l o n y that have polypides that direct c u r r e n t s a w a y from the colony. T h e s e excur-
(monticules)
aligned with
and
the axis of B,
host nautiloid shell. C.
Ctenostome bryo-
rent chimney's (Plate 3 F ) carry water that a l r e a d y has b e e n filtered by t h e
zoan,
lophophores a w a y from t h e z o a r i u m , a n d t h e r e b y d r a w u n f i l t e r e d , nutrient-
venosa Ulrich.
laden water across p o l y p i d e s e l s e w h e r e in the c o l o n y ( M c K i n n e y a n d Jackson
ony on
1989). M o r e o v e r , the very topology of the c o l o n y may facilitate t h e passage
pod
of nutrient-filled water t h r o u g h t h e colony and across its p o l y p i d e - l i n e d , a n d ,
IP 40061,
Waynesville
Formation,
Butler Co.,
h e n c e , l o p h o p h o r e - l i n e d , a n d , h e n c e , f o o d - g a t h e r i n g surfaces. Fossil b r y o z o a n c o l o n i c s c o m e i n a w i d e variety o f sizes a n d s h a p e s ( F i g u r e s 7.3, 7.4). some are l u m p s the size a n d s h a p e of a g u m - d r o p . S o m e are stony masses larger t h a n y o u r fist. S o m e g r o w up from a shell or shell
Ropalonaria B.
Rafinesquina,
Ohio,
cates sac zooid. Scanning graph
C.
electron
cavities zooids
excavated into
BMNH D.52264,
twig shaped f r a g m e n t s . M a n y b r y o z o a n s g r o w as thin crusts on b r a c h i o p o d
and C
parts of a bryozoan colony c o m p r i s e w h a t is c a l l e d a z o a r i u m . So zoaria e x h i b i t a t r e m e n d o u s variety in overall s h a p e . T h e y a l s o offer
by
host shell,
nies c a n e x c e e d the size o f a b a s k e t b a l l , a l t h o u g h w h a t w e m o s t l y see are
a n a s t o m o s i n g c a n a l s ( F i g u r e s 7.3B, C ) . W h a t e v e r its size a n d s h a p e , t h e hard
micro-
of polyester cast of
r e s e m b l i n g a m i n i a t u r e version of a present-day "stag-horn coral." S u c h c o l o -
the shell matter of the b r a c h i o p o d or m o l l u s c , f o r m i n g tiny d e n d r i t i c or
CMC
x 9. Arrow indi-
f r a g m e n t on the sea floor as a s m a l l b l a d e or d e l i c a t e l y b r a n c h e d s t r u c t u r e
shells or m o l l u s c shells (see F i g u r e 9 . 2 D ) . A s m a l l n u m b e r e v e n grow w i t h i n
Col-
shell of brachio-
from
(1978, plate
x 22.
1,
figures 5,
7) and reprinted by permission
of the
Paleonto-
logical
Research
Institu-
tion.
D.
Cystoporid
bryozoan,
Constellaria
The surface of the c o l o n y m a y be s m o o t h .
florida
Ulrich,
Many, however, bear regularly spaced b u m p s , termed monticules, or regu-
51108,
Fairview Forma-
a t r e m e n d o u s variety i n details.
larly s p a c e d d e p r e s s i o n s , c a l l e d m a c u l a e . M o n t i c u l e s m a y b e e q u i d i m e n sional i n m a p - v i e w , o r t h e y m a y b e e l o n g a t e d , e v e n r i d g e - l i k e . T h e y m a y be d i s p o s e d in a s e e m i n g l y r a n d o m array, or they m a y h a v e a d i s t i n c t pattern.
For e x a m p l e , s p e c i m e n s o f t h e aptly n a m e d g e n u s Constellaria are
tion,
Inset,
showing
monticules,
scale in mm.
S o m e s t u d e n t s o f b r y o z o a n s h a v e c o n c l u d e d that m o n t i c u l e s a n d m a c u l a e
aropora sp.,
are simply m a n i f e s t a t i o n s o f t h e s a m e p h e n o m e n o n , s o d o n o t d i f f e r e n t i a t e
51110,
the t w o f r o m o n e a n o t h e r ; t h e y t h e r e f o r e c a l l all o f t h e m , w h e t h e r b u m p s
tion,
o n the c o l o n y w h e r e t h e e x c u r r e n t c h i m n e y s w e r e g e n e r a t e d .
CrypEsch-
CMC IP
Fairview FormaKen-
tucky.
Escharopora
zooecia
on both sides of
the
thin,
enlargement
showing zooecia, mm.
genera and species have b e e n r e c o g n i z e d by a whole slew of paleontolo-
trepostome
gists. B u t there is a p r o b l e m . S o m e t i m e s , in a s i n g l e c o l o n y , t h e c h a r a c t e r -
87
F.
has
bladelike zo-
Inset,
new n a m e for e a c h m o r p h o l o g i c v a r i a n t . I n d e e d , a w h o l e slew o f b r y o z o a n
Bryozoans
E.
bryozoan,
Boone Co.,
arium.
All this variety w o u l d s e e m to offer a fertile field for t h e t a x o n o m i s t — a
Ken-
enlargement
characteristic
star-shaped tostome
o n e calls t h e s e e l e v a t i o n s a n d d e p r e s s i o n s , t h e y a p p a r e n t l y w e r e t h e p l a c e s
CMC IP
Kenton Co.,
tucky.
veritable c o n s t e l l a t i o n s o f star-shaped b u n c h e s o f m o n t i c u l e s ( F i g u r e 7.3D).
o r depressions, m a c u l a e ( M c K i n n e y a n d Jackson 1989). R e g a r d l e s s o f w h a t
B
Pohowsky
scale
in
Basal surface of bryozoan
88
A Sea without Fish
istics o f o n e " s p e c i e s , " o r e v e n " g e n u s , " g i v e w a y t o t h o s e o f a n o t h e r — a l l i n
that has grown on the
the s p a c e of a c e n t i m e t e r or two. P r e s u m a b l y , e v e r y o n e in a s i n g l e c o l o n y
pedicle valve of the bra-
is of the s a m e s p e c i e s .
T h u s , t h e c o n c l u s i o n is i n e v i t a b l e : o v e r a l l c o l o n y
s h a p e and details on its s u r f a c e m a y not a l w a y s be reliable i n d i c a t o r s as to w h o is related to w h o m . I n d e e d , t h e r e is a m p l e e v i d e n c e p r o v i d e d by present-day b r y o z o a n s that e n v i r o n m e n t c a n play a s i g n i f i c a n t role in c o l o n y s h a p e , at least in s o m e taxa.
chiopod
Rafinesquina
and overgrown it,
Rich-
ard Arnold Davis
collec-
tion,
Bellevue
Cincinnati, mm.
W e l l , if t h e s h a p e of the z o a r i u m is n o t an i n c o n t r o v e r t i b l e taxonomic
G.
bryozoan
indicator, w h a t , it a n y t h i n g , is? Is t h e r e an " i n n e r t r u t h " in b r y o z o a n tax-
grown
o n o m y ? It t u r n s o u t that t h e r e is just that, n a m e l y , t h e i n t e r n a l s t r u c t u r e of
pod
the colony. E a c h z o a r i u m consists o f t h e hard parts o f all o f t h e a n i m a l s that c o m p r i s e the c o l o n y . A n i n d i v i d u a l b r y o z o a n a n i m a l i s c a l l e d a z o o i d , and the h a u l parts o f that i n d i v i d u a l a n i m a l c o n s t i t u t e a z o o e c i u m ( F i g u r e
Limestone,
Ohio,
scale in
Trepostome
colony
on
that has
shell of pelecy-
Ambonychia
overgrown it, Arnold
Davis
Cincinnatian, locality
and
Richard collection, horizon
unknown,
and
scale
7.2). If o n e e x a m i n e s t h e h o l e s in a z o a r i u m w i t h a h a n d - l e n s or l o w - p o w e r
in mm.
m i c r o s c o p e , o n e c o m m o n l y sees that t h e h o l e s are not i d e n t i c a l ( F i g u r e
bryozoan
7.1B). T h e r e m a y b e size classes o f larger h o l e s a n d s m a l l e r h o l e s ; there m a y
ichold
e v e n be spine-like p r o j e c t i o n s in a d d i t i o n to h o l e s . It w o u l d a p p e a r t h a t , in
ably
encrusting
nautiloid,
a t least s o m e c o l o n i e s , n o t all t h e z o o i d s w e r e i d e n t i c a l . I n s o m e p r e s e n t -
CMC IP 51109,
Richmon-
day c o l o n i a l a n i m a l s , t h e r e i s p o l y m o r p h i s m , w i t h d i f f e r e n t - s h a p e d o r different-sized i n d i v i d u a l s p e r f o r m i n g different tasks, for t h e g o o d of the colony, the s p e c i e s , o r b o t h . T h a t s e e m s t o h a v e b e e n t h e c a s e a m o n g a t least s o m e n o w - e x t i n c t b r y o z o a n s . A s m e n t i o n e d p r e v i o u s l y , t h e s u r f a c e o f
dian,
donut")
I.
encrusting
tiloid,
ures 7.3A, D). In g e n e r a l , t h e s e m o n t i c u l e s and m a c u l a e , respectively, c o n -
Davis collection,
sist o f z o o e c i a o f sizes a n d n a t u r e s different f r o m t h o s e b e t w e e n t h e m , a n d ,
Maysvillian-Lower
h e n c e , s e e m t o represent areas o f the
mondian,
i n w h i c h the z o o i d s p e r f o r m e d
bryozoan
("Weichold
a zoarium m a y be m a r k e d by r e g u l a r l y s p a c e d b u m p s or d e p r e s s i o n s ( Fig-
colon
Ohio,
Cross-section
ring-shaped
zoarium nut")
("We-
presum-
Hamilton Co.,
x 0.7. of
Ring-shaped
H.
zoarium
do-
nau-
Richard Arnold Upper Rich-
Butler Co.,
Ohio, scale in mm. Dark,
p a r t i c u l a r f u n c t i o n s for t h e colony as a w h o l e . As we noted previously, s o m e bryozoan c o l o n i e s e x c e e d the size of bas-
elliptical zone on
ketballs. How do we know that? The a n s w e r is p a i n s t a k i n g l y s i m p l e , with the
calcitic
emphasis on the word " p a i n s t a k i n g . " In g e n e r a l , b r y o z o a n s are f o u n d o n l y as
nautiloid
small fragments scattered t h r o u g h o u t the rock. V e r y o c c a s i o n a l l y , h o w e v e r , o n e finds that all the f r a g m e n t s of a c o l o n y are l y i n g together, as part of a single layer of rock. T h a t ' s the g o o d news: the c o m p l e t e colony is there! The bad n e w s , however: a l t h o u g h the colony m a y be c o m p l e t e , it is not w h o l e . T h a t ' s w h e r e t h e " p a i n s t a k i n g " c o m e s into the p i c t u r e . O n e m u s t oh-socarefully c o l l e c t e a c h f r a g m e n t , p a y i n g m e t i c u l o u s attention t o just w h e r e the fragment was in the rock and adjacent to what o t h e r f r a g m e n t s . T h e n o n e m u s t play t h r e e - d i m e n s i o n a l b r y o z o a n jigsaw p u z z l e a n d g l u e t h e tens, or h u n d r e d s , or t h o u s a n d s of p i e c e s e a c h in its p r o p e r p l a c e . A c c o r d i n g to the old nursery rhyme, "All the King's horses and all the King's m e n c o u l d n ' t put H u m p t y together a g a i n " ( O p i e and O p i e 1955). A s it h a p p e n s , s o m e of the local fossil c o l l e c t o r s a n d o t h e r p a l e o n t o l o g i s t s h a v e b e e n m o r e clever, or at least m o r e persistent. For e x a m p l e , a m a t e u r p a l e o n tologists Jerry Rush a n d , m o r e recently, R o n F i n e h a v e spent c o u n t l e s s h o u r s c o l l e c t i n g and r e c o n s t r u c t i n g b r y o z o a n c o l o n i e s from t h e t y p e - C i n c i n n a t i a n rocks. It is to the p e r s e v e r a n c e of s u c h folk that we know that local bryozoan c o l o n i e s did, in fact, s o m e t i m e s e x c e e d the size of basketballs. I n d e e d , o n e colony re-assembled by Mr. F i n e is s o m e 66 cm by 35 cm by 15 cm ( F i g u r e
Bryozoans
right
and left sides of ring are
89
replacement shell.
of
Figure 7.4. Large bryozoan colonies from the type-Cincinnatian. tome
bryozoan,
Parvohallopora
ber of Grant Lake Limestone,
Hamilton Co.,
branching
trepostome bryozoan.
mm.
C.
logued,
nati collections, d'Orbigny,
into bryozoan.
disappeared, E.
A. B.
Cincinnatian,
Scale in mm. Monticulipora
Intact colony of a branching trepos-
of Cincinnati
Monticulipora
Corryville Member of Grant Lake Limestone,
CMC IP,
cm in width.
CMC IP uncatalogued,
that has
University
Ohio. Scale in mm.
no horizon or locality data.
nautiloid shell
Note borings
d'Orbigny,
Intact colony of trepostome bryozoan,
Cincinnatian,
probable
ramosa
no horizon D.
d'Orbigny,
d'Orbigny,
Co.,
Ohio.
Intact colony of trepostome bryozoan,
A Sea without Fish
Mem-
Scale in
CMC IP uncata-
Trepostome bryozoan encrusted on
mammulata
Kenton
This colony was excavated and reassembled by Ron Fine.
90
Corryville
or locality data.
mammulata
Hamilton
Corryville Member of Grant Lake Limestone,
collections,
Intact colony of an unidentified
Co.,
University
of Cincin-
Scale 2 cm in length.
Heterotrypa Kentucky.
frondosa Colony about 65
See Cuffey and Fine (2005).
Figure 7.5.
Reconstruc-
tion of the lower part of the zoarium erotrypa
of Het-
sp.,
diameter
about 28 cm.
From
Waugh et al.
(2004).
open
structure
zoarium
would
exposure
of interior
ing surfaces flow,
to
tion
provide
provide
fronds stabiliza-
and attachment
the substratum. Gamma
7 4 1 , ) . a w h o p p i n g 26 i n c h e s by 14 i n c h e s by 6 i n c h e s ( C u f f e y a n d F i n e 2005). S i m i l a r efforts b y E r i c k s o n a n d W a u g h (2002), W a u g h a n d E r i c k s o n (2002), and by W a u g h et al. (2004) p r o v i d e d new i n f o r m a t i o n a b o u t t h e f o r m a n d patterns o f water f l o w t h r o u g h c o m p l e t e c o l o n i e s ( F i g u r e 7.5). A n o t h e r s p e c t a c u l a r g r o w t h o f b r y o z o a n s w a s f o u n d i n a r o a d c u t several m i l e s s o u t h o f M a y s v i l l e , K e n t u c k y . H e r e w e r e d i s c o v e r e d t w o b r o a d mounds of bryozoans, each b e t w e e n three and three and a half meters w i d e by a b o u t o n e - t h i r d m e t e r tall (10 feet by 1 foot). L i k e M r . F i n e ' s s p e c i m e n , t h e s e m o u n d s grew o n t h e sea floor, b u t , u n l i k e h i s , e a c h o f t h e M a y s v i l l e m o u n d s consists o f n u m e r o u s i n d i v i d u a l c o l o n i e s a n d m a y h a v e taken a t h o u s a n d years to g r o w to that s i z e ( C u f f e y 1998). W h e n o r g a n i s m s p r o d u c e e l e v a t i o n s o n t h e sea f l o o r , s u c h c o n s t r u c t s are technically t e r m e d b i o h e r m s ( " b i o " m e a n s "life," a n d " h e r m " m e a n s " m o u n d " ) . T h e G r e a t Barrier R e e f i s t h e m o s t s p e c t a c u l a r e x a m p l e o f this p h e n o m e n o n in today's o c e a n s . It must be a d m i t t e d that in c o m p a r i s o n to the string of coral reefs that stretch m o r e t h a n 2000 km (1260 statute miles) parallel to the east coast of A u s t r a l i a , t h e m o u n d s in N o r t h e r n K e n t u c k y are less than miniscule. However, to the fossil c o l l e c t o r u s e d to b r y o z o a n fragm e n t s m u c h s m a l l e r than p i e c e s o f b l a c k b o a r d c h a l k , the b r y o z o a n m o u n d s are g a r g a n t u a n . O n a j o c u l a r note, R o g e r C u f f e y , o n e o f t h e m o s t p r o d u c t i v e b r y o z o a n workers alive today, l o n g has referred to t h e M a y s v i l l e m o u n d s a n d such as " b r y o h e r m s . " A l a s ! T h i s p a r a g r a p h m u s t c l o s e on a sad note: s o m e t i m e d u r i n g the 1990s, road w i d e n i n g d e s t r o y e d the M a y s v i l l e m o u n d s . There is, of c o u r s e , s o m e s o l a c e in the possibility that e v e n b i g g e r b r y o h e r m s still may be buried s o m e w h e r e in t h e local rocks, a w a i t i n g discovery.
I n m o s t l o c a l i t i e s a n d i n most strata, b r y o z o a n s are t h e m o s t c o m m o n fos-
Associations
sils o n e e n c o u n t e r s . I n s h e e r a b u n d a n c e a l o n e , t h e y m u s t b e r e c k o n e d t o
Bryozoans
91
to
Re-
printed by permission Sigma
feed-
water
while the down-
ward-arching would
The
of the
of
Epsilon.
h a v e b e e n t r u l y i m p o r t a n t d e n i z e n s o f t h e C i n c i n n a t i a n sea floor. T h i s i m p r e s s i o n i s n o t h i n g b u t e n h a n c e d w h e n o n e f o c u s e s i n o n t h e details o f just w h e r e a n d w i t h w h o m t h e y o c c u r . A t m a n y t i m e s a n d i n m a n y p l a c e s , the C i n c i n n a t i a n sea b o t t o m a p p e a r s t o h a v e b e e n soft m u d . M o s t o f t h e k i n d s o f a n i m a l s that w e g e n e r a l l y f i n d p r e s e r v e d a s fossils d o n o t s e e m t o h a v e " l i k e d " soft, m u d d y b o t t o m s , p r e s u m a b l y b e c a u s e t h e m u d did n o t p r o v i d e solid f o o t i n g s u p o n w h i c h t o b u i l d a stable life. It w a s all too e a s y to be e n g u l f e d by the o o z e . M o r e o v e r , t h e f i n e s e d i m e n t w a s t o o easily s w i r l e d u p into t h e w a t e r and c l o g g e d respiratory a n d f o o d - g a t h e r i n g a p p a r a t i . l i v e n a c e n t i m e t e r or t w o a b o v e the m u d w a s m o r e h o s p i t a b l e . B r y o z o a n s o r d i n a r i l y did n o t g r o w their c o l o n i e s d i r e c t l y on t h e s u r f a c e of t h e m u d . B u t let a storm d r o p a few shells or fragm e n t s o f shells o n t o t h e g o o , a n d t h e sea floor w a s o p e n for c o l o n i z a t i o n . So often, w h e n o n e is able to e x a m i n e the actual base of a colony — w h e r e g r o w t h c o m m e n c e d — o n e d i s c o v e r s that the c o l o n y was f o u n d e d o n a fragm e n t of a shell of a b r a c h i o p o d or p e l e c y p o d , if n o t a c o m p l e t e or n e a r l y c o m p l e t e shell ( F i g u r e s 7.3F, G , 7.4D). O n c e t h e sea floor w a s a bit stabil i z e d , the b r y o z o a n s c o l o n i z e d a n d g r e w i n e a r n e s t . O n c e e s t a b l i s h e d , t h e b r y o z o a n s t h e m s e l v e s a d d e d t o t h e stability o f t h e sea floor in t h e i r i m m e d i a t e vicinity. First, as c o l o n i e s g r e w , a c e r t a i n p r o p o r t i o n o f t h e m t o p p l e d over, a n d t h e i r skeletal m a t e r i a l b e c a m e incorp o r a t e d a s p a r t o f t h e sea f l o o r , t h u s i n c r e a s i n g t h e stability o f the b o t t o m a n d m a k i n g i t m o r e h o s p i t a b l e for o t h e r c r e a t u r e s . M o r e o v e r , the little " t h i c k e t s " o f b r y o z o a n c o l o n i e s p r o v i d e d p l a c e s for o t h e r o r g a n i s m s t o h i d e f r o m p o t e n t i a l p r e d a t o r s or, i n t h e c a s e o f t h e p r e d a t o r s , p l a c e s f r o m w h i c h t o o r c h e s t r a t e a m b u s h e s o f p o t e n t i a l prey. I n a d d i t i o n , s o m e a n i m a l s s c r a m b l e d u p t h e stalks a n d b r a n c h e s o f b r y o z o a n c o l o n i e s t o avoid t h e m u d d y w a t e r i m m e d i a t e l y a d j a c e n t t o t h e sea floor. A n d l a r v a e that h a p p e n e d t o a t t a c h u p i n a b r y o z o a n " t h i c k e t " w o u l d n o t o n l y h a v e e s c a p e d the worst of the turbid water, but also m i g h t have had a better c h a n c e of latching o n t o m i n u t e p a r t i c l e s o f f o o d s u s p e n d e d i n the water. M o r e o v e r , e v e n a s trees a m e l i o r a t e t h e effects o f w i n d o n t h e l a n d , b r y o z o a n c o l o n i e s m u s t h a v e m o d e r a t e d t h e c u r r e n t s o n t h e sea f l o o r . This w o u l d n o t o n l y h a v e m a d e life easier for s o m e o r g a n i s m s , b u t w o u l d h a v e resulted i n e n t r a p p i n g s e d i m e n t , t h e r e b y f u r t h e r h e l p i n g t o s t a b i l i z e t h e sea f l o o r . O n e p a r t i c u l a r l y i n t r i g u i n g e x a m p l e o f how b r y o z o a n c o l o n i e s w e r e used b y o t h e r c r e a t u r e s w a s d o c u m e n t e d b y D o u g l a s Shrake o f the O h i o D i v i s i o n of G e o l o g i c a l S u r v e y in his master's thesis.
Trilobites, like other
a r t h r o p o d s , are e n c l o s e d w i t h i n a hard exoskeleton. B e c a u s e this "suit of a r m o r " c a n n o t e x p a n d a s the a n i m a l g r o w s , the trilobite p e r i o d i c a l l y m u s t s h e d its e x o s k e l e t o n , e x p a n d in size, a n d h a r d e n up a n e w protective shield. This is an e s p e c i a l l y t r y i n g t i m e for the trilobite, first b e c a u s e it c a n be diff i c u l t t o w r i g g l e a n d s q u i r m o u t o f the old a r m o r , a n d , s e c o n d , b e c a u s e until the n e w suit h a r d e n s , the a n i m a l is " n a k e d " — a soft, t e m p t i n g morsel for any p a s s i n g predator. S h r a k e f o u n d e v i d e n c e that i n d i v i d u a l s of the trilobite genus Primaspis resorted to l o w l y b r y o z o a n s to m a k e the t i m e of trial a bit less t r y i n g ( S h r a k e 1987, 1989).
92
A Sea without Fish
W h e n t h e t i m e for s h e d d i n g w a s a t h a n d , t h e t r i l o b i t e a p p a r e n t l y c l i m b e d its w a y up into a s u i t a b l e part of a b r y o z o a n c o l o n y a n d w e d g e d t h e p r o j e c t i o n s o f its e x o s k e l e t o n into t h e b r y o z o a n (see F i g u r e s 1 1 . 6 E , F ) T h i s e n a b l e d the trilobite t o pull itself o u t o f t h e old e x o s k e l e t o n a n d c o m m e n c e t h e h a r d e n i n g o f t h e n e w o n e , all t h e w h i l e b e i n g h i d d e n a m o n g s t the b r y o z o a n fronds f r o m t h e e y e s o f w o u l d - b e p r e d a t o r s . A l t h o u g h this m u s t h a v e b e e n a c o n v e n i e n t a r r a n g e m e n t for t h e trilobite, it may h a v e b e e n less so for t h e b r y o z o a n s . S h r a k e f o u n d t h a t , in s o m e i n s t a n c e s , therew a s p a t h o l o g i c g r o w t h i n the c o l o n y a s t h e b r y o z o a n s grew u p a n d a r o u n d the trilobite e x o s k e l e t o n t h e y h a d n o w a y t o d i s l o d g e . T h e t r i l o b i t e / b r y o z o a n association d e s c r i b e d b y D o u g S h r a k e i s just o n e of a host of e x a m p l e s of the interactions of b r y o z o a n s and m y r i a d o t h e r creatures. O n the o n e h a n d , a b r y o z o a n larva w o u l d attach t o a l m o s t a n y o n e , given suitable c i r c u m s t a n c e s , and a c o l o n y w o u l d sprout. Bryozoan c o l o n i e s have b e e n d o c u m e n t e d as a t t a c h e d to, e n c r u s t i n g , o v e r g r o w i n g , or e t c h e d into articulate b r a c h i o p o d s , inarticulate b r a c h i o p o d s , c e p h a l o p o d s , c o r a l s , cornulitids, c r i n o i d s , foraminifers, h y d r o z o a n s , m o n o p l a c o p h o r a n m o l l u s c s , p e l e c y p o d s , trilobites, a n d , o f c o u r s e , o t h e r b r y o z o a n s , b o t h o f the s a m e a n d of different species (see chapter 16, T a b l e 3). On the o t h e r h a n d , a n u m b e r of other organisms have b e e n found a t t a c h e d to or b o r e d into b r y o z o a n s : c o r a l s , articulate brachiopods, inarticulate b r a c h i o p o d s , c o r n u l i t i d s , and p e l e c y p o d s , a l o n g with a n u m b e r of o r g a n i s m s of u n c e r t a i n affinities, i n c l u d i n g Catellocaula. Sanctum, Sphenothallus, a n d Trypanites (see c h a p t e r 16, Table 3). In s o m e c a s e s , it is o b v i o u s that b o t h t h e " g u e s t " a n d t h e " h o s t " w e r e alive a t t h e t i m e o f the a s s o c i a t i o n . I n o t h e r c a s e s , t h e " g u e s t " w a s merely u s i n g a d e a d s h e l l , e x o s k e l e t o n , or w h a t e v e r as a h a n d y site for a t t a c h m e n t on the sea floor. In o t h e r w o r d s , it c o m m o n l y is a t o u g h task to u n r a v e l in-life a s s o c i a t i o n f r o m p o s t - m o r t e m h a p p e n s t a n c e . N o n e t h e l e s s , it is a b u n d a n t l y o b v i o u s that the C i n c i n n a t i a n sea floor o f t h e a n c i e n t past, a n d , h e n c e , the C i n c i n n a t i a n rocks a n d fossils w e find today w o u l d h a v e b e e n drastically
different w i t h o u t the bryozoans.
O c c a s i o n a l l y a lucky c o l l e c t o r will find in the rocks of t h e C i n c i n n a t i a r e a
Ordovician
a stone o b j e c t that looks rather like a d o u g h n u t ( F i g u r e s 7 . 3 H , I). C l o s e r
Doughnuts
e x a m i n a t i o n reveals that this toroid fossil consists o f b r y o z o a n z o o e c i a ; i n d e e d , it is a r i n g - s h a p e d z o a r i u m . The b r y o z o a n rings have b e e n k n o w n for a l o n g time. Years a g o , w h e n K e n n e t h F. Caster, the e m i n e n t paleontologist at the University of C i n c i n nati, was s h o w n o n e of t h e m by a local fossil collector, he q u i p p e d , " A h ! Yes! A W e i c h o l d D o u g h n u t . " He then went on to e x p l a i n that W e i c h o l d was o n e of the old-time collectors in the C i n c i n n a t i r e g i o n , a n d that these u n u s u a l fossils had b e e n d u b b e d " W e i c h o l d d o u g h n u t s " or " W e i c h o l d rings," a l t h o u g h h e did not know the specific c o n n e c t i o n b e t w e e n W e i c h o l d a n d t h e rings. So why w o u l d a bryozoan z o a r i u m g r o w in the s h a p e of a ring? W e i c h old d o u g h n u t s tend to be s o m e 5 or 6 cm in d i a m e t e r (2—2 1/2 in). As it h a p p e n s , that d i a m e t e r is c o m p a r a b l e to that of the shells of s o m e of t h e o r t h o c o n i c c e p h a l o p o d s i n t h e l o c a l rocks. C o u l d there b e a c o n n e c t i o n ? W i t h i n
Bryozoans
93
s o m e of the W e i c h o l d d o u g h n u t s , there is a r i n g of w h a t m i g h t be recrystall i z e d c e p h a l o p o d shell ( F i g u r e 7.31). Perhaps the apertural part of the t u b e that c o m p r i s e s the shell of an o r t h o c o n i c nautiloid c e p h a l o p o d broke off and c a m e t o rest o n t h e sea floor. T h e n , o n e o r m o r e b r y o z o a n larvae settled o n this hard o b j e c t p r o t r u d i n g a b o v e t h e o o z e . A s the z o a r i u m grew, i t a s s u m e d t h e r i n g - s h a p e o f the " s e g m e n t " o f c e p h a l o p o d shell. S u c h rings of cephalopod shells h a v e b e e n d e s c r i b e d and figured in the scientific literature ( T e e t e r 1978), a n d s i m i l a r t h i n g s h a v e b e e n found in the l o c a l rocks. H o w e v e r , t h e story m a y n o t b e q u i t e s o straightforward. T h e p r o b l e m is that s o m e of the W e i c h o l d d o u g h n u t s s e e m to be b r y o z o a n hard parts all the w a y t h r o u g h — w i t h n o o b v i o u s r e m n a n t s o f c e p h a l o p o d shell. F r a n k M c K i n n e y , the w e l l - k n o w n b r y o z o a n worker, has seen a rings h a p e d c o l o n y of t h e b r y o z o a n g e n u s Constellaria, w i t h m u d in the center. His interpretation was that t h e c o l o n y h a d slowed the water a n d c a u s e d m u d to precipitate to s u c h an e x t e n t that g r o w t h of the c o l o n y was able to p r o c e e d o n l y a t t h e p e r i p h e r y ( M c K i n n e y , pers. c o m m . ) . H o w e v e r , this c o l o n y was s o m e 8 to 10 i n c h e s across ( 2 0 - 2 5 c m ) — m o r e than t w i c e as b i g as t h e largest W e i c h o l d rings. O b v i o u s l y , the p h e n o m e n o n n e e d s s o m e serious scientific study.
Ordovician
As m e n t i o n e d above, m a n y b r y o z o a n c o l o n i c s in the rocks of the C i n c i n -
Hitch-Hikers
nati r e g i o n o r i g i n a l l y g r e w o n shells o n t h e sea floor. I n s o m e c a s e s , t h e shell no l o n g e r s h e l t e r e d its m a k e r , b u t w a s m e r e l y a lifeless, h a r d o b j e c t l y i n g o n t h e m u d . I n o t h e r c a s e s , b o t h the b r y o z o a n s a n d the o r g a n i s m s o n w h i c h t h e z o a r i u m g r e w w e r e a l i v e . I n t h e s e i n s t a n c e s , t h e a t t a c h e r s are c a l l e d e p i z o a , a n d t h e a t t a c h e e i s t h e h o s t ( D a v i s e t al. 1999). S o m e b r y o z o a n s carried e p i z o i s m to a h i g h e r level. N o t t o o u n c o m m o n l y , an o b s e r v a n t fossil c o l l e c t o r will find a fossil that has t h e s i z e a n d s h a p e o f a n o r t h o c o n i c c e p h a l o p o d . H o w e v e r , u n l i k e t h e c a s e o f a n o r d i n a r y n a u t i l o i d , t h e s u r f a c e b e a r s t h e tell-tale a p e r t u r e s o f z o o e c i a ( F i g u r e 7 . 3 A ) — a n d l o o k s are n o t d e c e i v i n g . T h e s p e c i m e n i s a n o r t h o c o n i c n a u t i l o i d , b u t o n e that b e a r s a t h i n c o a t i n g that consists of a b r y o z o a n colony. It is o b v i o u s t h a t t h e cephalopod shell w a s n o t just l y i n g a r o u n d on t h e sea floor d e a d a n d e m p t y , b e c a u s e its entire exterior is cove r e d b y t h e e n c r u s t e r — w i t h n e i t h e r g a p s nor s e a m s . M o r e o v e r , t h e p i c t u r e i s e n h a n c e d b y t h e s u r f a c e f e a t u r e s o f t h e z o a r i u m . Instead o f b e i n g e q u i d i m e n s i o n a l b u m p s , t h e m o n t i c u l e s are d e c i d e d l y e l o n g a t e , and their longest d i m e n s i o n is a l i g n e d w i t h the l e n g t h of t h e o r t h o c o n i c s h e l l . It is alm o s t a s t h o u g h the b r y o z o a n c o l o n y w a s c a r r i e d t h r o u g h t h e C i n c i n n a t i a n sea o n t h e s w i m m i n g
cephalopod.
The w h o l e c e p h a l o p o d / b r y o z o a n as-
s e m b l a g e l o o k s s o s t r e a m l i n e d that e v e n the m o n t i c u l e s are d i s p o s e d s o a s t o m i n i m i z e t h e f r i c t i o n o f s l i p p i n g t h r o u g h the water. This b r y o z o a n / c e p h a l o p o d a s s o c i a t i o n h a s b e e n k n o w n for w e l l over a c e n t u r y ( U l r i c h 1883). In fact, at least o n e taxon of b r y o z o a n s , Spatiopora, s e e m s t o b e k n o w n o n l y a s e n c r u s t a t i o n s o n c e p h a l o p o d s (Baird e t al. 1989). E a r l y o n , t h e a s s o c i a t i o n w a s i n t e r p r e t e d as a parasite/host relations h i p . H o w e v e r , in p a r a s i t i s m , t h e parasite c o n s u m e s part of the host. In the
94
A Sea without Fish
Figure 7.6. studies
A.
Detailed
of bryozoans
quire
carefully
thin-sections peels.
or
acetate-
Diagram
orientation and
shows
of sections
terminology
nal
skeletal
used
to
of inter-
structures
identify species.
From Arens (1989,
re-
oriented
and
Cuffey
figure 5),
repro-
duced by courtesy of Roger J. mission
Cuffey, of the
with perPennsylva-
nia Academy of Science.
B.
longitudinal of
Left, thin
Heterotrypa
dosa
(d'Orbigny),
40336,
Bellevue
stone,
Cincinnati,
section fronCMC IP LimeOhio,
R. J. Singh Collection. Right,
tangential thin
section
of same.
approx. x 10.
b r y o z o a n / c e p h a l o p o d a s s o c i a t i o n , it is n o t likely that t h e b r y o z o a n s w e r e " e a t i n g " the c e p h a l o p o d . It is possible that t h e y w e r e d e r i v i n g n u t r i t i o n from leftovers a n d o r g a n i c d e b r i s g e n e r a t e d w h e n the c e p h a l o p o d , itself, fed. It c o u l d be that the b r y o z o a n s p i c k e d up s u s p e n d e d m a t t e r from the sea water a s the c e p h a l o p o d s w a m f r o m p l a c e t o p l a c e . At first g l a n c e , o n e might worry that the weight of a "stony b r y o z o a n " would have i m p e d e d significantly the s w i m m i n g of the c e p h a l o p o d . However, the b r y o z o a n c o l o n y is just o n e z o o e c i u m thick and w o u l d have b e e n mostly soft parts. Moreover, like present-day Nautilus, the O r d o v i c i a n c e p h a l o p o d may have been able to c o m p e n s a t e for the extra weight of the bryozoans by
Bryozoans
95
Both
m e a n s of the gas in its c a m e r a e (see chapter 9). In addition, the b r y o z o a n coati n g m i g h t have increased the hydrodynamic drag on the c e p h a l o p o d . T h e r e even may have been sonic advantages to h a v n i n g a coating of b r y o z o a n s . P r e s e n t - d a y " d e c o r a t o r c r a b s " arc c a m o u f l a g e d by the load of a n e m o n e s a n d s u c h like that t h e y carry. I n d e e d , t h e c r a b s d e l i b e r a t e l y " p l a n t " o t h e r c r e a t u r e s o n their dorsal s u r f a c e s . Perhaps the b r y o z o a n epiz o a h e l p e d c o n c e a l t h e C i n c i n n a t i a n c e p h a l o p o d s that b o r e t h e m . (Of c o u r s e , t h e z o a r i u m w o u l d h a v e c o v e r e d , a n d t h e r e b y m a d e visually useless, a n y c o l o r p a t t e r n s that t h e c e p h a l o p o d s h a d ; but that is a story that d o e s n o t b e l o n g i n t h e c h a p t e r a b o u t p h y l u m Bryozoa.)
Studying Bryozoans
Most b r y o z o a n s p e c i m e n s c a n be identified o n l y on the basis of internal s t r u c t u r e s , at least d e f i n i t i v e l y so.
This m e a n s that, e x c e p t for S u p e r m a n ,
it is n e c e s s a r y to c u t t h e m o p e n — n o s m a l l feat for t h e o r d i n a r y fossil c o l lector. It is n e c e s s a r y to u s e a r o c k saw to m a k e p r e c i s e l y o r i e n t e d c u t s t h r o u g h a n i n d i v i d u a l s p e c i m e n . B e c a u s e the b r y o z o a n c o l o n y i s preserved as p a r t of t h e r o c k , it w i l l n o t let e n o u g h light t h r o u g h to sec internal d e tails.
This c a n b e o v e r c o m e i n t w o w a y s . T h e z e a l o u s a n d w e l l - e q u i p p e d
p a l e o n t o l o g i s t c a n c u t a n d g r i n d t h e s p e c i m e n into slices s o t h i n that t h e y b e c o m e transparent.
T h e s e are c a l l e d t h i n - s e c t i o n s , a n d t h e y arc w h a t
g e n e r a l l y arc u s e d i n s t u d y i n g b r y o z o a n s . D e p e n d i n g on the n a t u r e of t h e s p e c i m e n , alternatively, it may be p o s s i b l e to u s e w h a t are c a l l e d a c e t a t e p e e l s . Like a t h i n - s e c t i o n , a p e e l starts w i t h a c a r e f u l l y o r i e n t e d c u t t h r o u g h the s p e c i m e n . T h e cut s u r f a c e is t h e n c a r e f u l l y g r o u n d flat a n d t h e n e t c h e d in an a p p r o p r i a t e acid of app r o p r i a t e " s t r e n g t h . " II the s p e c i m e n is suitably p r e s e r v e d , c e r t a i n of its features will be a bit m o r e resistant to d i s s o l u t i o n by the a c i d . H e n c e , t h e y w i l l s t a n d o u t slightly from t h e s u r f a c e . If o n e takes a t h i n sheet of plastic (the acetate) a n d uses a c e t o n e to allow the a c e t a t e to a d h e r e to the e t c h e d s u r f a c e , it m a y be p o s s i b l e to p u l l a w a y the s h e e t , a l o n g w i t h e n o u g h of the s p e c i m e n , t o reveal i n t e r n a l d e t a i l s . T h e u s e o f t h i n - s e c t i o n s i s g e n e r a l l y c o n s i d e r e d t o b e " i n d u s t r y stand a r d , " b u t , r e g a r d l e s s of w h i c h s t u d y t e c h n i q u e is u s e d , b o t h r e q u i r e e q u i p m e n t that m a y b e b e y o n d t h e b u d g e t , o r d e s i r e , o f the o r d i n a r y fossil c o l lector.
Moreover,
both
require definite
safety
p r e c a u t i o n s a n d safety
e q u i p m e n t ; for e x a m p l e , a c i d s c a n e t c h m o r e t h a n just rock, a n d a c e t o n e not only is flammable, but its v a p o r is u n h e a l t h y to b r e a t h e . As indicated, both thin-sections and peels must be carefully oriented within the zoarium.
This i s t o m a x i m i z e t h e i n f o r m a t i o n that m a y b e d e -
rived a b o u t the internal s t r u c t u r e o f the c o l o n y . B e c a u s e there are different k i n d s of z o o i d s in a c o l o n y , it is i m p o r t a n t to be a b l e to study t h e different sizes, s h a p e s , a n d n a t u r e s of t h e z o o e c i a as v i e w e d in a p l a n e p e r p e n d i c u l a r to t h e i n d i v i d u a l t u b e s . This is best d o n e in a t a n g e n t i a l s e c t i o n , w h i c h is c u t p a r a l l e l to the s u r f a c e of the c o l o n y a n d n e a r its s u r f a c e (as o p p o s e d to n e a r its c e n t e r , o r axis) ( f i g u r e 7.6). O n t h e o t h e r h a n d , a l o n g i t u d i n a l set lion is cut p a r a l l e l to t h e l e n g t h of t h e i n d i v i d u a l t u b e s a n d c a n p r o v i d e i m p o r t a n t i n f o r m a t i o n o n b o t h t h e g r o w t h o f the z o a r i u m a n d o f t h e z o o e -
96
A Sea without Fish
cia of w h i c h it consists. A t r a n s v e r s e s e c t i o n is o r i e n t e d at right a n g l e s to the o t h e r t w o , for e x a m p l e , across a b r a n c h of a g i v e n c o l o n y . In s h o r t , o n e n e e d s l o n g i t u d i n a l , t a n g e n t i a l , a n d transverse s e c t i o n s of a c o l o n y to g e t a c o m p l e t e p i c t u r e o f its i n t e r n a l s t r u c t u r e , a n d this c o m p l e t e p i c t u r e i s essential t o a n u n d e r s t a n d i n g o f just w h a t k i n d o f b r y o z o a n i s a t h a n d a n d h o w it grew and was c o n s t i t u t e d . After t h e p r o p e r l y o r i e n t e d t h i n - s e c t i o n s o r p e e l s are m a d e , t h e o n l y way they can be studied adequately is under the m i c r o s c o p e . T h i s , again, is a p i e c e of e q u i p m e n t that m a y c h a l l e n g e one's b u d g e t .
Bryozoans
97
98
A Sea without Fish
BRACHIOPODS: THE OTHER BIVALVES
B r a c h i o p o d s a r e a m o n g the m o s t c o m m o n fossils i n the O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i area. O n l y fossils o f b r y o z o a n s are m o r e n u m e r o u s t o t h e n a k e d eye. In a s t u d y of t y p e - C i n c i n n a t i a n l i m e s t o n e s , M a r t i n ( 1 9 7 5 ) reported that b r a c h i o p o d s a n d b r y o z o a n s t o g e t h e r c o n s t i t u t e a b o u t 6 0 p e r c e n t of the fossil fragments c o m p r i s i n g the l i m e s t o n e s .
There e v e n are s o m e lay-
ers, for e x a m p l e , in the B e l l e v u e Limestone, in w h i c h the rock is a veritable c o q u i n a , i n this c a s e c o n s i s t i n g o f c o m p l e t e a n d n e a r l y c o m p l e t e shells o f large, f l a t b r a c h i o p o d s o f a s i n g l e g e n u s . T h e s e aptly n a m e d " s h i n g l e d
Rafinesquina
b e d s " c o m m o n l y are t h o u g h t of as r e m a i n s o f v e r y shallow-
water deposits r e m i n i s c e n t o f the s h i n g l e d b e a c h e s o f today. A l t h o u g h t h e y have b e e n living o n E a r t h s i n c e the C a m b r i a n Period, b r a c h i o p o d s are n o t w e l l - k n o w n a n i m a l s to m o s t of us. In fact, many folks c o n f u s e t h e m w i t h that g r o u p o f m o l l u s c s that i n c l u d e s t h e c l a m s . M e m b e r s o f t h e p h y l u m B r a c h i o p o d a and those o f the m o l l u s c a n class P e l e c y p o d a are bivalved a n i m a l s , that
Figure 8 . 1 . Comparison of
is, e a c h has a shell that consists of t w o valves. B u t there the r e s e m b l a n c e e n d s .
a brachiopod with a
The b r a c h i o p o d s and p e l e c y p o d s are o t h e r w i s e strikingly different a n i m a l s .
pelecypod.
A and B,
First, t h e o r i e n t a t i o n s o f p e l e c y p o d s a n d b r a c h i o p o d s a r c d i f f e r e n t
pelecypod.
C
( F i g u r e 8.1).
The t w o valves of a c l a m are a n a t o m i c a l l y left a n d r i g h t in
p o s i t i o n , w i t h the h i n g e c o n n e c t i n g the v a l v e s l o c a t e d a t t h e top o f t h e a n i m a l ( t e c h n i c a l l y c a l l e d d o r s a l ) . H o w e v e r , the t w o v a l v e s o f a b r a c h i o p o d are dorsal a n d v e n t r a l , r e s p e c t i v e l y , a n d t h e h i n g e is at t h e rear of t h e a n i mal (posterior).
T h u s , a l t h o u g h b o t h p e l e c y p o d s a n d b r a c h i o p o d s are bi-
and D,
Platystrophia
ponde-
rosa
showing
fold.
Drawings from
Meek the
(1873), Ohio
Natural
laterally s y m m e t r i c a l a n i m a l s , the p l a n e s of s y m m e t r y of t h e t w o are at a
sion
right a n g l e t o o n e a n o t h e r ( F i g u r e 8.1). W e c a n c o n c l u d e f r o m t h i s t h a t ,
Survey.
although animals of both groups each have two valves, "bivalvedness" in e a c h g r o u p e v o l v e d i n d e p e n d e n t l y ; t h e t w o g r o u p s are n o t a t all closely related, and n e i t h e r e v o l v e d from t h e o t h e r . F r o m a p r a c t i c a l point of view, h o w e v e r , it h a p p e n s that t h e d i f f e r e n c e in o r i e n t a t i o n g e n e r a l l y p r o v i d e s a c o n v e n i e n t w a y to tell fossil b r a c h i o p o d s from fossil p e l e c y p o d s . E a c h v a l v e o f m o s t b r a c h i o p o d s c a n b e d i v i d e d into two h a l v e s that are m i r r o r i m a g e s o f o n e a n o t h e r ( F i g u r e 8 . 1 C ) . O n t h e other h a n d , it is t h e t w o v a l v e s of m o s t fossil p e l e c y p o d s t h a t are t h e m i r r o r i m a g e s o f o n e a n o t h e r ( F i g u r e 8.1 B). I n o t h e r w o r d s , the p l a n e o f s y m m e t r y of an ordinary p e l e c y p o d is b e t w e e n the valves; in an ordinary b r a c h i o p o d , it is d o w n the m i d d l e of e a c h v a l v e . M o r e o v e r , i n g e n e r a l , the t w o v a l v e s o f a b r a c h i o p o d shell are N O T mirror i m a g e s o f o n e a n o t h e r ( f i g u r e 8 . 1 D ) . For e x a m p l e , o n e v a l v e maybe decidedly d e e p e r than its o p p o s i t e . In a d d i t i o n (or i n s t e a d ) , o n e v a l v e may h a v e a p o r t i o n a l o n g t h e m i d l i n e that is d i s t i n c t l y c o n v e x t o w a r d the
99
of
sulcus
and
courtesy of
Department of
Resources Geological
Divi-
Figure 8.2. section
Cross-
o u t s i d e of t h e a n i m a l (this s t r u c t u r e is c a l l e d a fold), a n d the o t h e r valve
articulate B.
brachiopod. views
A.
of an
of pedicle
Interior valve
(left) and brachial valve (right)
of the
orthid
brachiopod
bertella. Kevina
Cincinnatian
Drawings
He-
m a y h a v e a d i s t i n c t c o n c a v i t y in t h e s a m e p o s i t i o n (called a sulcus). A s the overall s y m m e t r y o f p e l e c y p o d s and b r a c h i o p o d s differs, s o too d o e s the o p e r a t i o n of the shells. In a p e l e c y p o d , the two valves arc joined at the h i n g e by an elastic pad or l i g a m e n t . W h e n the shell is held c l o s e d , the l i g a m e n t is s t r e t c h e d , so that w h e n t h e a n i m a l relaxes the t w o valves g a p e apart from o n e a n o t h e r . T o close t h e shell, the p e l e c y p o d a n i m a l m u s t c o n -
by
tract o n e o r t w o a d d u c t o r m u s c l e s (the n u m b e r d e p e n d s o n the t y p e o f
Vulinec.
clam). I n b r a c h i o p o d s , h o w e v e r , t h e r e i s n o l i g a m e n t . The a n i m a l m u s t c o n tract w h a t are c a l l e d d i d u c t o r m u s c l e s t o o p e n t h e shell ( F i g u r e 8.2A). I t uses a d d u c t o r m u s c l e s t o c l o s e t h e s h e l l ; t h e s e a d d u c t o r s arc s t r e t c h e d w h e n t h e shell is o p e n .
700
A Sea without Fish
T h u s , w h e n a p e l e c y p o d r e l a x e s , its shell o p e n s . b y w a y o f c o n t r a s t , w h e n a b r a c h i o p o d r e l a x e s , its shell t e n d s to c l o s e .
This has i m p o r t a n t
i m p l i c a t i o n s for how o n e finds p e l e c y p o d s a n d b r a c h i o p o d s as fossils. U p o n d e a t h (the u l t i m a t e r e l a x a t i o n ) , t h e i n d i v i d u a l v a l v e s of a p e l e c y p o d tend t o get separated f r o m o n e a n o t h e r , b e c a u s e t h e y g a p e a p a r t , a l l o w i n g c m rents, for e x a m p l e , t o tear t h e m a s u n d e r . O n t h e o t h e r h a n d , t h e t w o v a l v e s o f a b r a c h i o p o d shell m o r e c o m m o n l y r e m a i n t o g e t h e r , a n d are f o u n d that w a y by the intrepid fossil c o l l e c t o r . B r a c h i o p o d shells t e n d t o b e better p r e s e r v e d t h a n are p e l e c y p o d shells for a n o t h e r r e a s o n , too. M o s t b r a c h i o p o d shells c o n s i s t o f c a l c i u m c a r b o n ate, b u t s o d o p e l e c y p o d shells. H o w ever, c a l c i u m c a r b o n a t e exists i n m o r e than o n e f o r m . M o s t b r a c h i o p o d shells arc o f t h e m i n e r a l c a l c i t e , w h e r e a s p e l e c y p o d s consist o f o r i n c l u d e a r a g o n i t e .
The atoms of c a l c i u m , c a r b o n ,
and o x y g e n are a r r a n g e d differently i n a r a g o n i t e a n d c a l c i t e , a n d the t w o s u b s t a n c e s have different p r o p e r t i e s . B e c a u s e o f this, p e l e c y p o d s t e n d n o t to be p r e s e r v e d as w e l l as b r a c h i o p o d s . The p r a c t i c a l result is that you may f i n d m a i n w e l l - p r e s e r v e d b r a c h i o p o d s I n the r o c k s o f t h e C i n c i n n a t i a r e a , b u t p e l e c y p o d s , w i t h few e x c e p t i o n s , are p r e s e r v e d a s i n t e r n a l m o l d s . B r a c h i o p o d s are f i l t e r feeders. T h e y e x t r a c t s m a l l p a r t i c l e s o f o r g a n i c matter from t h e sea water. T h e s e p a r t i c l e s are c a p t u r e d by a c i l i a t e d s t r u c ture c a l l e d the l o p h o p h o r e (Plate 3F; F i g u r e 8.2A). ' T h e l o p h o p h o r e o c c u p i e s m u c h o f the s p a c e b e t w e e n the v a l v e s , f o r m i n g a p a i r o f t u b u l a r " a r m s " that e x t e n d on e a c h side of t h e p l a n e of s y m m e t r y . A gutter-like food g r o o v e runs a l o n g t h e a r m s from w h i c h c i l i a t e d t e n t a c l e s e x t e n d to f o r m a filter (Plate 3F; F i g u r e 8.2A). T h e b e a t i n g of t h e c i l i a c a u s e s w a t e r to flow into the shell, a l o n g o r t h r o u g h t h e t e n t a c l e s , a n d t h e n o u t o f t h e shell a g a i n . The food p a r t i c l e s stick to t h e c i l i a a n d are t r a n s p o r t e d by t h e m to the food g r o o v e a n d m o u t h , w h i c h i s l o c a t e d o n t h e c e n t e r l i n e o f t h e a n i m a l . As with all a n i m a l s , food is m e t a b o l i z e d , a n d w a s t e is e x p e l l e d . In at least s o m e b r a c h i o p o d s , the l o p h o p h o r e s arc s u p p o r t e d by projections from the interior s u r f a c e of o n e valve. This s o - c a l l e d brachial valve is the o n e that is a n a t o m i c a l l y dorsal in p o s i t i o n . In s o m e i n s t a n c e s , e a c h branch of the l o p h o p h o r e is c o m p l e x l y c o i l e d ; in s u c h c a s e s , the l o p h o p h o r e support m a y be c o i l e d , too. It is t h e t w o " a r m s " of t h e l o p h o p h o r e that give the b r a c h i o p o d s their n a m e ; t h e a n c i e n t C r e e k w o r d " b r a c h i o n " m e a n s "arm." The " p o d " part o f the n a m e c o m e s from " p o d o s , " o n e o f the parts o f s p e e c h of the ancient Greek word
"pous."
w h i c h m e a n s "toot"; it recalls a
time w h e n b r a c h i o p o d s w e r e t h o u g h t t o b e c l o s e relatives o f t h e m o l l u s c s , w h i c h i n c l u d e the gastropods, p e l e c y p o d s , a n d c e p h a l o p o d s , a m o n g others.
Before p r o c e e d i n g further, it m u s t be a d m i t t e d that the p i c t u r e of b r a c h i o -
Inarticulates vs.
pods painted a b o v e is a bit over-simplified. The b r a c h i o p o d s do n o t c o m p r i s e
Articulates
a single, h o m o g e n e o u s l i n e a g e of a n i m a l s . The b r a c h i o p o d s portrayed a b o v e mostly fall into a g r o u p c a l l e d a r t i c u l a t e b r a c h i o p o d s . T h e y are c a l l e d a r t i c u lates, b e c a u s e the t w o valves o f t h e shell are a r t i c u l a t e d — t h e y are c o n n e c t e d together by way of a w e l l - d e v e l o p e d h i n g e ( F i g u r e S.2B). A l o n g the h i n g e of o n e valve arc projections, c a l l e d t e e t h , that fit into sockets in the h i n g e area
Brachiopods
101
o f the o p p o s i n g valve. B e c a u s e o f the i n t e r l o c k i n g teeth and sockets, the soc a l l e d d e n t i t i o n , it w o u l d be difficult for a w o u l d - b e d e v o u r e r of b r a c h i o p o d flesh to twist the valves apart to get at supper. A n i m a l s o f t h e o t h e r m a j o r g r o u p o f b r a c h i o p o d s , not surprisingly, are t e r m e d i n a r t i c u l a t e s . I n t h e s e a n i m a l s , t h e r e are n e i t h e r teeth nor sockets. N o t having a real h i n g e , t h e task of k e e p i n g t h e valves t o g e t h e r is a greater c h a l l e n g e for a n i n a r t i c u l a t e . T h e m u s c u l a t u r e i s a g o o d d e a l m o r e c o m p l i c a t e d in i n a r t i c u l a t e s t h a n in a r t i c u l a t e s — t o k e e p the t w o valves from b e i n g twisted apart from o n e another. In an a r t i c u l a t e , t h e r e is a h i n g e , w h i c h serves as a f u l c r u m . The d i d u c f o r m u s c l e s a n d t h e a d d u c t o r m u s c l e s , i n order t o o p e n a n d c l o s e the shell, o p e r a t e a g a i n s t o n e a n o t h e r a b o u t t h e f u l c r u m ( F i g u r e 8.2A). B u t a n inart i c u l a t e has n o s u c h f u l c r u m . T h e a n i m a l o p e n s its shell, n o t b y c o n t r a c t i n g d i d u c t o r s , b u t b y p u l l i n g t h e b o d y b a c k toward the rear o f t h e shell, thereby c a u s i n g the v a l v e s t o g a p e s u f f i c i e n t l y f o r the a n i m a l t o f e e d , respire, a n d p e r f o r m o t h e r n e c e s s a r y a c t i v i t i e s . A n o t h e r c o m m o n d i f f e r e n c e b e t w e e n articulates and inarticulates involves the c o m p o s i t i o n of t h e shell. In m o s t inarticulates the shell consists, not o f c a l c i u m c a r b o n a t e , b u t , rather, o f c a l c i u m p h o s p h a t e . ( N o t e , h o w e v e r , that this is n o t a universal r u l e , for the shells of s o m e of the a n i m a l s traditionalh c a l l e d inarticulates are- c a l c i u m c a r b o n a t e , like those of the articulates.) S t u d i e s of p r e s e n t - d a y forms h a v e b e e n taken to s u g g e s t that t h e articulate and inarticulate b r a c h i o p o d s may, in fact, not be particularly c l o s e l y related. A n i n a r t i c u l a t e b r a c h i o p o d h a s b o t h m o u t h a n d a n u s , w h e r e a s a n a r t i c u l a t e has n o a n u s .
T h e early life histories o f the a n i m a l s
o f the t w o g r o u p s a r e d i f f e r e n t , t o o ; for e x a m p l e , t h e p e d i c l e o f a n i n a r t i c u late has a d i f f e r e n t o r i g i n t h a n d o e s t h e p e d i c l e o f a n a r t i c u l a t e . D e t a i l e d s t u d i e s o f t h e g e n e t i c s o f present-clay a n i m a l s are b e g i n n i n g t o t h r o w light o n the issue o f t h e r e l a t i o n s h i p s o f t h e v a r i o u s g r o u p s o f b r a c h i o p o d s ( C o h e n a n d G a w t h r o p 1 9 9 7 ) . H o w e v e r , p e n d i n g t h e a m a s s i n g o f f u r t h e r inf o r m a t i o n , w e w i l l follow t h e u s u a l tradition o f c o n s i d e r i n g t h e A r t i c u l a t a and the Inarticulata to be two subphyla of the phylum Brachiopoda. O n e a l t e r n a t i v e s c h e m e w o u l d b e t o r e c o g n i z e t h o s e t w o g r o u p s a s separate p h y l a . O n t h e third h a n d , s o m e e x p e r t s o n b r a c h i o p o d s prefer t o d o a w a y w i t h the f o r m a l taxa A r t i c u l a t a a n d I n a r t i c u l a t a a l t o g e t h e r a n d r e c o g n i z e instead t h r e e s u b p h y l a ( W i l l i a m s e t al. 2000); f o l l o w e r s o f that s c h e m e retain t h e c o n c e p t s o f a r t i c u l a t e d b r a c h i o p o d s a n d i n a r t i c u l a t e d b r a c h i o p o d s , but only as descriptive terms.
Brachiopod
R e g a r d l e s s of s u c h t a x o n o m i c issues, t h e b r a c h i o p o d s as a w h o l e are b e n -
Life Habits
t h i c c r e a t u r e s . S o m e o f t h e m s i m p l y lie o n t h e sea floor, w h e r e a s o t h e r s e a c h are p h y s i c a l l y a t t a c h e d to t h e sea floor by m e a n s of a fleshy stalk c a l l e d a p e d i c l e . In 1972 Peter R i c h a r d s p u b l i s h e d a s t u d y that e x p l o r e d t h e relat i o n s h i p b e t w e e n shell f o r m a n d life habits o f m a n y c h a r a c t e r i s t i c C i n c i n n a t i a n b r a c h i o p o d s . His r e s e a r c h d e m o n s t r a t e d that C i n c i n n a t i a n b r a c h i o p o d s h a v e a variety of life habits a n d that c a r e f u l a t t e n t i o n to m o r p h o l o g i c a l features of the shell as w e l l as p r e s e r v a l i o n a l e v i d e n c e helps to e x p l a i n the
102
A Sea without Fish
diversity s e e n in this i m p o r t a n t g r o u p . His work has g u i d e d a n d inspired m u c h s u b s e q u e n t r e s e a r c h a n d t h e d i s c u s s i o n that f o l l o w s
Inarticulates S o m e p r e s e n t - d a y i n a r t i c u l a t e s ( g e n u s L i n g u l a a n d its relatives) s p e n d m u c h o f their t i m e i n a b u r r o w . W h e n i t c o m e s t i m e t o f e e d , t h e p e d i c l e e x t e n d s so that at least the a n t e r i o r part of t h e shell p r o j e c t s up into t h e water. In some b r a c h i o p o d s , t h e r e is an o p e n i n g in t h e shell t h r o u g h w h i c h the p e d i c l e e x t e n d s . In g e n e r a l , this p e d i c l e f o r a m e n is in t h e a n a t o m i c a l l y l o w e r valve, w h i c h , h e n c e , i s c a l l e d t h e p e d i c l e v a l v e . T h e p e d i c l e o f s o m e b r a c h i o p o d s may be a t t a c h e d to a n o t h e r shell on the sea floor; this m a y result i n p e d i c l e a t t a c h m e n t scars w h i c h c o n s i s t o f t i n y , c h a r a c t e r i s t i c pits in the other shell. In an i n a r t i c u l a t e b r a c h i o p o d , as in you, there is a m o u t h , esophagus, stomach, intestine, and anus. In an articulate b r a c h i o p o d , however, there i s n o a n u s ( f i g u r e 8.2A). W h a t m i g h t h a v e b e e n a c o m p l e t e digestive tract is, in fact, a c u l de sac. T h u s , t h e o n l y e g r e s s for w a s t e m a t e rial i s b a c k o u t t h e m o u t h . I n p r e s e n t - d a y a n i m a l s that h a v e b e e n s t u d i e d , solid waste is r e g u r g i t a t e d as s m a l l p e l l e t s ; t h e s e are t h e n e x p e l l e d from t h e shell by rapid s n a p p i n g of the v a l v e s . A l t h o u g h the a r t i c u l a t e s are m o r e readily n o t i c e d , i n a r t i c u l a t e s are n o t rare. M o s t o f t h e m , h o w e v e r , grew o n the shells o f o t h e r a n i m a l s a n d , h e n c e , are relatively s m a l l a n d easily o v e r l o o k e d ( F i g u r e 8 . 3 ) . P r e s u m a b l y , the other shells p r o v i d e d a solid substrate to w h i c h to a t t a c h ; it c o u l d w e l l b e that the little " h a n g e r s - o n " ( t e c h n i c a l l y c a l l e d e p i z o a ) m a d e their l i v i n g b y c o n s u m i n g the waste m a t t e r e x p e l l e d b y their " h o s t s . " I n a n y c a s e , t h e shells of t h e s e i n a r t i c u l a t e s c o m m o n l y l o o k a bit like s c a b s , blisters, or little v o l c a n o e s o n the shells o f a r t i c u l a t e b r a c h i o p o d s . S o m e o f t h e m g r e w s o tightly affixed to their larger c o u s i n s that t h e r i b b i n g of t h e shells of t h e latter d e f o r m or show t h r o u g h t h e shells of t h e i n a r t i c u l a t e s . A n o t h e r kind of inarticulate may be f o u n d in the rocks of the C i n c i n n a t i region by the s h a r p - e y e d c o l l e c t o r . G i v e n the m o n i k e r " i n a r t i c u l a t e , " it is ironic that this o t h e r g r o u p c o m p r i s e s a n i m a l s that h a v e t o n g u e - s h a p e d shells. Luckily for paleontologists, t h e s e s o - c a l l e d l i n g u l i d e s are represented i n present-day o c e a n s , s o that w e readily c a n see t h e m . A n i n d i v i d u a l m e m ber of g e n u s
Lingula
(Latin for " t o n g u e " ) , f r o m w h i c h t h e g r o u p gets its
n a m e , has a way o f life r e m i n i s c e n t o f that o f s o m e b u r r o w i n g w o r m s . T h e a n i m a l a n c h o r s the distal e n d of its l o n g p e d i c l e to the sea floor a n d uses its shell to d i g vertically d o w n into the s e d i m e n t front e n d foremost. In d u e course, the burrower veers to the h o r i z o n t a l a n d then b a c k up to the sea floor. M o s t o f the U - s h a p e d burrow c o l l a p s e s from b e h i n d , s o that o n l y t h e o n e vertical tube r e m a i n s , with the o p e n i n g of the shell at or n e a r the sea floor and the p e d i c l e p o i n t i n g d o w n into the s e d i m e n t . W h e n n e c e s s a r y (or d e sired?), the g a p e b e t w e e n the valves c a n be raised a b o v e t h e sea floor by extension of the p e d i c l e , and the a n i m a l c a n f e e d , or whatever. In t i m e s of danger, the a n i m a l c a n retreat into its burrow by c o n t r a c t i n g t h e p e d i c l e . L i n g u l i d e s a r e not p a r t i c u l a r l y c o m m o n i n t h e t y p e - C i n c i n n a t i a n . Very o c c a s i o n a l l y a s p e c i m e n is f o u n d w i t h its shell o r i e n t e d p e r p e n d i c u l a r
Brachiopods
103
104
A Sea without Fish
to the stratification, in w h a t a p p e a r s to be its life p o s i t i o n , t h a t is, t h e a n i -
Figure 8.3.
mal's o r i e n t a t i o n in s p a c e d u r i n g its life. T h e i n d i v i d u a l in F i g u r e 8.3A is
lingula sp., 51994,
a case in p o i n t . It is o n l y by great g o o d f o r t u n e that that p a r t i c u l a r i n d i v i d u a l m a d e it into a m u s e u m . R a l p h D u r y was a C i n c i n n a t i e n t o m o l o g i s t o f s o m e c o n siderable repute. However, his a c t u a l l i v e l i h o o d w a s in real estate. A c c o r d i n g t o C h a r l e s D u r y , C h a r l e s ' s son a n d d i r e c t o r o f t h e C i n c i n n a t i M u s e u m
A.
Pseudo-
CMC IP
Cincinnatian,
ho-
rizon and locality unknown,
x
1.9.
Specimen
oriented
perpendicular
bedding,
presumably
life position
with
to in
beak
o f N a t u r a l History for m o r e t h a n f i v e d e c a d e s , the s p e c i m e n i n f i g u r e 8.3A
downward.
started its m u s e u m c a r e e r i n a real estate p r o j e c t . C h a r l e s D u r y w a s h a v i n g
tis
a stone w a l l built. B e i n g a m e t i c u l o u s fellow, he visited his sites on a r e g u l a r
CMC PT 585,
brachial
and f r e q u e n t basis. H e h a p p e n e d t o m a k e o n e o f t h e s e visits t o t h e b u i l d i n g
valve interior,
Cincinna-
site shortly after a load of s t o n e h a d b e e n d e l i v e r e d . In t h e c o u r s e of e x a m -
tian,
i n i n g the stone to be c e r t a i n that it w a s up to his s t a n d a r d s , he saw t h e
unknown, x 3.
c h u n k with the l i n g u l i d e i n its life p o s i t i o n . S o , instead o f e n d i n g u p a s part o f a w a l l , t h e p i e c e o f rock e n d e d u p a s p a r t o f t h e c o l l e c t i o n s o f t h e C i n c i n n a t i M u s e u m o f N a t u r a l H i s t o r y , a l o n g w i t h Charles D u r y ' s i n s e c t c o l l e c t i o n — b u t that i s a n o t h e r s t o r y ( V u l i n e c a n d D a v i s 1984).
B.
Trema-
millepunctata
Hall,
horizon and locality
rocrania
C.
scabiosa
encrusting
on
Pet(Hall)
Heber-
tellasp.,
MUGM
29461,
Arnheim,
Oxford,
Ohio,
x
D.
1.3.
scabiosa
Petrocrania
(Hall)
encrust-
ing on brachial valve of
Articulates
Rafinesquina
T h e vast majority o f the b r a c h i o p o d s that o n e sees i n the O r d o v i c i a n rocks
and
of the C i n c i n n a t i area are a r t i c u l a t e s . T h e r e is a t r e m e n d o u s variety of t h e m
Collection,
( f i g u r e s 8.4-8.9). S o m e h a v e a n external s h a p e that m a k e s t h e m easy t o
Richmondian,
identify t o g e n u s or, e v e n , s p e c i e s . O n t h e o t h e r h a n d , there are s o m e that are beastly difficult to tell apart. T h e p r o b l e m is that brachiopods that are only distantly related may look alike externally ( F i g u r e 8.6). It is o n l y w h e n o n e c a r e f u l l y studies the various features o n t h e i n n e r s u r f a c e o f e a c h valve
sp.,
Charlotte
Bruce
Gibson
no.
1042, Franklin
Co., Indiana, approx. 1.5. lia two on
x
E.
Philhedra lae-
(Hall),
MUGM 26219,
specimens
encrusted
Rafinesquina
bra-
that their true relationships may b e c o m e a p p a r e n t . U s e f u l features i n c l u d e
chial valve exterior,
the scars w h e r e m u s c l e s a t t a c h e d to t h e v a l v e s , t h e s t r u c t u r e s that s u p p o r t e d
erty Formation,
Preble F.
Lib-
the l o p h o p h o r e s , and s o o n . O n e e v e n m a y n e e d t o e x a m i n e the internal
Co., Ohio, x 3.
structure of the shell material that m a k e s up t h e valves. It s e e m s that t h e
Schizocrania
filosa
e n v i r o n m e n t in w h i c h the brachiopods lived led different l i n e a g e s to e v o l v e
CMC IP 36,
encrusted on
similar external shapes.
Rafinesquina
The p h e n o m e n o n is c a l l e d c o n v e r g e n t e v o l u t i o n ,
and the result i s h o m e o m o r p h y — t h e e x i s t e n c e o f t w o o r m o r e k i n d s o f a n i mals that are not closely related b u t that n o n e t h e l e s s look alike. T h i s is a c o m m o n e n o u g h o c c u r r e n c e that it is an old saving:
"Homeomorphy
is rife
Ohio, x 1.8.
a m o n g s t the brachiopods." This, of c o u r s e , presents a p r o b l e m to t h e c o l l e c for of fossil brachiopods. It m e a n s that he or she m u s t m a k e a real effort to obtain loose valves that have b e e n naturally c l e a n e d over t i m e so as to reveal their internal features, h a i l i n g that, the c o l l e c t o r m u s t b r e a k , c u t , or g r i n d s p e c i m e n s o p e n and c l e a n t h e m m e t i c u l o u s l y t o reveal t h e i n n e r truth. S o m e o f the a r t i c u l a t e b r a c h i o p o d s m u s t h a v e s p e n t m u c h o f t h e i r lives a n c h o r e d b y their p e d i c l e s t o s h e l l s , h a r d g r o u n d s , o r o t h e r solid o b jects o n t h e sea floor ( F i g u r e 8.9E). They w e r e n o t f r o z e n i n p o s i t i o n , t h o u g h , b e c a u s e t h e y a p p a r e n t l y had adjustor m u s c l e s that a l l o w e d t h e individual a n i m a l t o m o v e its shell w i t h r e s p e c t t o t h e p e d i c l e . W e k n o w this b e c a u s e present-day a r t i c u l a t e s h a v e s u c h adjustor m u s c l e s , a n d w h e r e t h e s e adjusters a t t a c h to the insides of t h e v a l v e s , t h e r e are m u s c l e scars
Brachiopods
pedicle
valve exterior, Formation,
105
Hall,
Corryville
Warren
Co.,
Figure 8.4.
A,
B.
Plectorthis neglecta
Co., Ohio.
A.
Brachial valve exterior.
erata (Hall),
MUGM 24362,
Kope Formation,
valve exterior, both x 2.4.
E,
F.
nati, Ohio. E.
Pedicle valve exterior.
byella
Kope Formation.
rugosa,
106
(James),
B.
MUGM uncatalogued.
Pedicle valve exterior, both x Hamilton Co.,
Ohio.
Sowerbyella rugosa (Meek), F.
Fairview Formation, 1.8. C, D.
C. Pedicle valve exterior. D. MUGM 24564,
Brachial valve exterior, both x 2.2. G.
Courtesy of Paul E.
A Sea without Fish
Potter.
Hamilton
Dalmanella emac-
Kope Formation,
Brachial Cincin-
Slab covered with Sower-
Figure 8.5.
A-D. A.
Indiana.
Hebertella occidentalis (Hall),
scars and triangular pedicle opening. ing, all x tion,
1.2.
E.
Ohio.
E-H.
Brachial valve exterior.
Butler Co.,
Ohio.
x
D.
MUGM
G.
F.
11205,
Pedicle valve exterior.
Waynesville Formation, C.
MUGM 22450,
Pedicle valve exterior, H.
Liberty Formation,
Preble Co.,
x 2.8. G - H , MUGM 29458, Arnheim Forma-
Pedicle valve interior, showing muscle scars, x 2.2.
Franklin Co.,
Pedicle valve interior, showing muscle
Posterior view of articulated valves and triangular pedicle open-
Glyptorthis insculpta (Hall); E-F,
encrusting cyclostome bryozoans, processes,
B.
Brachial valve exterior.
Brachial valve interior,
triangular pedicle opening,
and
showing muscle scars and cardinal
1.8.
Brachiopods
107
Figure 8.6. Ohio.
A-C.
A.
valve exterior, (Hall),
x.2.1.
C.
F.
(Hall),
MUGM 22933 Liberty Formation,
Pedicle valve interior, showing muscle scars,
MUGM 23037, Arnheim Formation,
Brachial valve exterior. area.
Plaesiomys subquadrata
Brachial valve exterior, inarticulate brachiopod Philhedra laelia on beak,
E.
Butler Co.,
Pedicle valve exterior,
Ohio.
A Sea without Fish
D-F.
B.
Pedicle
Retrorsirostra carleyi
D.
note triangular pedicle opening and flanking inter-
Pedicle valve interior, showing muscle scars,
108
x 2.4.
Preble Co.,
x 2.1.
x 2.
Figure
8.7.
Three
of the
many described species
of Platystrophia.
ste, MUGM 24060, Maysvillian, Campbell Co., Kentucky valve exterior, 1.0.
D.
x
7.5.
C.
A.
robust brachiopod as
the
both x
7.5.
G,
rior.,
H.
Brachial valve exterior,
x
1.3.
x
ponderosa
7.5.
B.
E.
Foer-
Brachial x
Early collectors of Cincinnatian fossils referred
"double-headed Dutchman." E,
(Meek), MUGM 11315, Maysvillian, Cincinnati, Ohio. H
Platystrophia
Pedicle valve interior, showing pedicle opening and deep muscle scar,
Brachial valve interior, showing muscle scars,
to this large,
A-D.
Pedicle valve exterior,
F.
Platystrophia
Brachial valve exterior.
Platystrophia acutilirata (Conrad), MUGM 23360. Whitewater Formation, Preble Co.,
G.
F.
Pedicle valve exte-
Ohio, both x
Brachiopods
laticosta
Pedicle valve exterior,
1.4.
109
Figure 8.8.
The many faces of Rafinesquina:
nati collections, chial
valve
left,
up,
pedicle valve up,
with
encrusting
wedged beneath lower left edge, valve interior,
up,
showing
Boone Co.,
Fairview Formation,
to bedding,
alternata
edrioasteroid
Streptaster
Corryville Formation,
A.
University of Cincin-
Boone Co.,
Kentucky, C.
and
crinoid
Kenton
Fairview Formation,
size about same as in B. Co.,
Kentucky.
Kenton
Co.,
E. Kentucky.
A Sea without Fish
D.
scale in mm.
Rafinesquina pavement, with
top,
bra-
subcrassus
B.
Brachial valve interior,
Shingled Rafinesquina bed,
right,
locrinus
muscle scars and pair of cardinal processes along hinge at
Kentucky,
110
(Conrad).
vorticellatus
CMC IP 51111, showing muscle scars, scale in mm.
Cincinnati collections, Formation,
Rafinesquina
with encrusting edriasteroids and cyclostome bryozoans,
Pedicle
University of Corryville
with pedicle valves valves perpendicular
Figure 8.9. A, Ohio.
A.
x 2.2. C, Ohio. 3.4.
D. C.
E.
life position
B.
Hiscobeccus capax (Conrad),
Brachial valve exterior. Rhynchotrema
B.
Zygospira modesta (Say), to bryozoan
D.
Preble Co.,
Whitewater Formation,
Preble Co.,
Anterior view of articulated valves showing pronounced sulcus,
CMC IP 51112,
Parvohallopora sp.,
Jefferson Co.,
Liberty Formation,
dentatum (Hall), MUGM 25933,
Pedicle valve exterior.
Waynesville Formation,
MUGM 25490,
Posterior view of articulated valves showing small pedicle opening,
Indiana,
x
1.9.
Corryville Formation, F.
Boone Co.,
Catazyga schuchertana
brachial valve exterior,
x 3.4.
Brachiopods in
x
Kentucky, attached in
(Ulrich),
MUGM 7614,
Figure 8.10.
Environmen-
tal distribution chiopods in natian
of bra-
the
Series.
environments lent to
CincinShoreface
are
equiva-
the shallow sub-
tidal (1-2 m or 3-6 ft); transition ments
zone
are
environ-
deeper sub-
tidal (3-6 m or and
offshore
ments
are
with a
10-20 ft),
environ-
deeper
water,
maximum
depth
of about 30 m (100 ft). The heavy lines indicate the
environments
each
genus
where
is most abun-
dant and thin lines indicate
environments
where
a genus is present at lower abundance. Holland (1997), ontological Copyright
Events. 1997
University Press. printed of
From in Pale-
with
Columbia Re-
permission
that o c c u r i n p a r t i c u l a r p o s i t i o n s . M a n y fossil b r a c h i o p o d s h a v e c o m p a rable m u s c l e scars.
the publisher.
O n t h e o t h e r h a n d , s o m e k i n d s o f fossil a r t i c u l a t e s h a v e n o p e d i c l e f o r a m e n , t h e o p e n i n g t h r o u g h w h i c h the p e d i c l e e x t e n d s b e y o n d the h i n g e a r e a o f t h e s h e l l . T h e r e has b e e n a g r e a t d e a l o f d i s c u s s i o n a s t o h o w t h e s e c r e a t u r e s s u r v i v e d i n a r e a s w h e r e t h e sea floor w a s soft m u d . B r a c h i o p o d s of g e n u s Rafinesquina ( f i g u r e 8.8) are, p e r h a p s , the m o s t c o m m o n o f the larger a r t i c u l a t e s i n t h e rocks o f t h e C i n c i n n a t i area. T h e overall s h a p e of t h e shell is d e s c r i b e d as " c o n c a v o - c o n v e x " ; the brachial valve ( a n a t o m i c a l l y dorsal) is c o n c a v e to the exterior, and the other valve (anatomically ventral) is c o n v e x to the outside. T h e w h o l e shell, t h e n , is saucer- or b o w l - s h a p e d . T h e adult a n i m a l d o e s not s e e m t o h a v e h a d a p e d i c l e — n o p e d i c l e f o r a m e n . Hence, it m u s t h a v e b e e n free on the sea floor. But i m a g i n e a s a u c e r - s h a p e d shell in a c u r r e n t ; all too easily, it w o u l d h a v e b e e n flipped so that the c o n v e x side w a s u p p e r m o s t . The result w o u l d have b e e n that the c o m m i s s u r e , the o p e n i n g b e t w e e n the valves, w o u l d have b e e n against the sea floor. If that sea floor w e r e soft m u d , the a n i m a l w o u l d have had considerable difficulty g e n e r a t i n g sufficient c u r r e n t s with the cilia of its l o p h o p h o r e so as to b r i n g l i f e - g i v i n g nutrients and oxygen b e t w e e n the valves. T h u s , t h e r e s e e m s to be a c o n f l i c t b e t w e e n h y d r o d y n a m i c s a n d biology. The bleak p i c t u r e of the b r a c h i o p o d . u p s i d e d o w n with its o p e n i n g in t h e m u d , may be m i s l e a d i n g . It portrays t h e a n i m a l as an i m m o b i l e l u m p u n a b l e t o r i g h t itself. T r u e , t h e r e w a s n o p e d i c l e o n w h i c h the a n i m a l , usi n g a d j u s t e r m u s c l e s , c o u l d twist a n d t u r n itself b a c k into a v i a b l e p o s i t i o n . B u t , w h a t if the a n i m a l w e r e less like an i n a n i m a t e s a u c e r a n d m o r e like a l i v i n g s c a l l o p of t o d a y ? A s c a l l o p is a k i n d of b i v a l v e d m o l l u s c . T h e "scal-
112
A Sea without Fish
l o p " y o u enjoy in y o u r favorite s e a f o o d r e s t a u r a n t is an a d d u c t o r m u s c l e of one of those p e l e c y p o d s . The adductor of a scallop is powerful e n o u g h , in life, to s n a p the a n i m a l ' s valves t o g e t h e r so swiftly that t h e c r e a t u r e c a n be lifted a b o v e the sea floor. S o m e s c a l l o p s c a n e v e n s w i m for s o m e d i s t a n c e , a l t h o u g h rather jerkily a n d i n d e c i d e d l y i r r e g u l a r trajectories. D a t t i l o (2004) has f o u n d e v i d e n c e that o n e C i n c i n n a t i a n b r a c h i o p o d with a c o n c a v o - c o n v e x shell, Sowerbyella, w a s c a p a b l e of e s c a p i n g f r o m burial b e n e a t h s e d i m e n t s stirred up by storms, p r e s u m a b l e by s n a p p i n g its valves. Individuals of Rafinesquina m a y h a v e h a d s i m i l a r c a p a b i l i t i e s , b e c a u s e c o n v e x - u p s p e c i m e n s are f o u n d w i t h a moat-like furrow a r o u n d the c o m m i s s u r e that f o r m e d w h i l e the b r a c h i o p o d w a s alive ( M e y e r 2006). T h e s e recent findings suggest that these b r a c h i o p o d s w i t h o u t p e d i c l e a t t a c h m e n t m i g h t have led m u c h m o r e a c t i v e lives than previously r e a l i z e d .
D e s p i t e the h i g h diversity o f t y p e - C i n c i n n a t i a n b r a c h i o p o d s , t h e d i s t r i b u -
Distribution of
tion o f s p e c i e s i s not u n i f o r m t h r o u g h o u t t h e s t r a t i g r a p h i c s u c c e s s i o n .
Type — Cincinnatian
There are distinct a s s o c i a t i o n s o f s p e c i e s a n d shell t y p e s t h a t c h a r a c t e r i z e different stratigraphic intervals a n d e v e n i n d i v i d u a l b e d s . R e c e n t r e s e a r c h In Steven Holland, in c o l l a b o r a t i o n with A r n o l d M i l l e r , D a v i d M e y e r , a n d
Brachiopods
in
Time and Space
B e n j a m i n D a t t i l o ( H o l l a n d e t al. 2 0 0 1 ) s h o w e d that t h e relative a b u n d a n c e o f b r a c h i o p o d s and o t h e r fossils c h a n g e s w i t h i n t h e K o p e F o r m a t i o n , a unit g e n e r a l l y regarded as having a u n i f o r m shaley lithology. In the l o w e r K o p e , fossil a s s e m b l a g e s a s f o u n d o n c h a r a c t e r i s t i c l i m e s t o n e b e d d i n g s u r f a c e s are d o m i n a t e d by the s m a l l , t h i n - s h e l l e d Sowerbyella, a l o n g w i t h b r a n c h ing b r y o z o a n s , s m a l l , s l e n d e r c r i n o i d s like Cincinnaticrinus a n d Ectenocrimis, a n d t h e trilobite Cryptolithus.
H i g h e r in t h e K o p e , a n o t h e r t h i n -
shelled b u t larger b r a c h i o p o d , Dalmanella, b e c o m e s m o r e a b u n d a n t . I n the
highest
sections
of the
Kope,
the
large
thin-shelled brachiopods
Rafinesquina and Strophomena a n d t h e l a r g e , rather t h i c k - s h e l l e d Platystrophia b e c o m e the d o m i n a n t b r a c h i o p o d s . I n c o n j u n c t i o n w i t h c h a n g e s in the lithology, b e d d i n g , a n d o t h e r c h a r a c t e r i s t i c fossils, Holland. M i l l e r , M e y e r , a n d D a t t i l o (2001) i n t e r p r e t e d the c h a n g e s i n t h e K o p e F o r m a t i o n as a p a l e o b a t h y m e t r i c g r a d i e n t r e f l e c t i n g t r a n s i t i o n f r o m d e e p e r to s h a l l o w e r water. T h r o u g h o u t all t y p e - C i n c i n n a t i a n d e p o s i t i o n a l s e q u e n c e s t h e n a t u r e o f the b r a c h i o p o d a s s e m b l a g e s provides o n e o f t h e m o s t reliable a n d a b u n d a n t indicators of p a l e o e n v i r o n m e n t a l c o n d i t i o n s s u c h as d e p t h a n d level of water m o v e m e n t e n e r g y (see c h a p t e r 15). The relationship b e t w e e n b r a c h i o p o d m o r p h o l o g y and d e p t h reflects b o t h t h e t y p e o f s u b s t r a t u m a n d t h e level o f
water m o v e m e n t energy. In the d e e p e r water, m u d d y e n v i r o n m e n t s , brachiopods with s m a l l , t h i n , flat shells a c t e d like s n o w s h o e s In shallower water, larger, c o n c a v o - c o n v e x
brachiopods
like Rafinesquina
and Hebertella were better a d a p t e d to stronger w a v e energy. O t h e r larger brachiopods like Platystrophia, with thicker shells a n d w e l l - d e v e l o p e d plications (ribs radiating from the b e a k ) , c h a r a c t e r i z e s o m e o f t h e s h a l l o w e s t , highest w a v e - d i s t u r b e d e n v i r o n m e n t s . F i g u r e 8.10 s h o w s the e n v i r o n m e n t a l distribution o f other b r a c h i o p o d s w i t h i n the t y p e - C i n c i n n a t i a n .
Brachiopods
113
E v e n on a s m a l l e r s c a l e , b r a c h i o p o d s reveal s o m e very basic a s p e c t s of life o n t h e L a t e O r d o v i c i a n sea f l o o r . V e r y d e n s e l y p o p u l a t e d l i m e s t o n e beds,
featuring
brachiopods
like
Rafinesquina,
Strophomena,
and
Dal-
manella, are v e r y c o m m o n t h r o u g h o u t t h e t y p e - C i n c i n n a t i a n a n d are c a l l e d s h e l l p a v e m e n t s (also c a l l e d s h i n g l e d b e d s a s n o t e d above). I n s u c h shell p a v e m e n t s , t h e b r a c h i o p o d s a r e u s u a l l y p r e s e r v e d w i t h c o n v e x valves upward, s o m e t i m e s covering the entire bed surface (Figures 8.4G, 8.8D, 8.8E). S h e l l p a v e m e n t s c a n be as t h i n as a s i n g l e layer of shells, or t h i c k e r , w i t h t h e e n t i r e t h i c k n e s s u p t o a f e w tens o f c e n t i m e t e r s c o n s i s t i n g o f s t a c k e d b r a c h i o p o d s . In s o m e c a s e s , t h e valves are vertical or tilted at vario u s a n g l e s a n d p a c k e d c l o s e l y t o g e t h e r i n a n e d g e w i s e shell b e d . T h e e d g e w i s e shell p a v e m e n t s are g o o d e v i d e n c e o f w a t e r m o v e m e n t i n the form o f w a v e o s c i l l a t i o n s b e c a u s e t h e r e a r e p r e s e n t - d a y e x a m p l e s o f e d g e w i s e shell b e d s a n d s h a l e f r a g m e n t s f o r m e d i n very shallow water b y w a v e oscillations. II the hingelines or b e a k s of the b r a c h i o p o d s w e r e a l w a y s d i r e c t e d d o w n ward in an e d g e w i s e b e d , it m i g h t be possible that t h e d e n s e l y p a c k e d shells a c t u a l l y h a d lived in a m a n n e r s i m i l a r to an oyster b e d . However, analysis o f v a l v e o r i e n t a t i o n w i t h i n e d g e w i s e shell b e d s s h o w s that valves d o not show such a pattern and even can be predominantly hingeline-upward ( S e i l a c h e r 1 9 7 3 , pers. c o m m . ) . T h e r e has b e e n c o n s i d e r a b l e d e b a t e as to how shell p a v e m e n t s c o u l d h a v e f o r m e d . M a n y w o r k e r s felt that the t h i n , c o n c a v o - c o n v e x shells o f the characteristic
brachiopods
like
Rafinesquina
and
Strophomena
initially
l i v e d o n a soft, m u d d y sea f l o o r , w i t h t h e c o n v e x v a l v e d o w n w a r d . D u r i n g a storm, the
fine-grained
m u d s c o u l d h a v e b e e n s w e p t away, l e a v i n g a
c o n c e n t r a t i o n of shells ( c a l l e d a l a g d e p o s i t ) to form the shell p a v e m e n t . Possibly t h e shells w e r e e v e n c a r r i e d s o m e d i s t a n c e b y storm c u r r e n t s t o b e d e p o s i t e d later. I n c a s e s w h e r e p a v e m e n t s f o r m e d g e w i s e b e d s , storms c o u l d v e r y w e l l h a v e b e e n i n v o l v e d , b u t n o t all p a v e m e n t s are e d g e w i s e . It is also p o s s i b l e that shell p a v e m e n t s a c c u m u l a t e d by a b u n d a n t prod u c t i o n of shells of a s i n g l e s p e c i e s over s o m e t i m e span in o n e p l a c e . In o n e shell p a v e m e n t f r o m t h e C o r r y v i l l e M e m b e r o f the G r a n t L a k e F o r m a tion in n o r t h e r n K e n t u c k y , m o s t l y c o n v e x - u p w a r d shells of Rafinesquina form a k i n d of i m b r i c a t e d or s h i n g l e d b e d , but the s p a c e s b e t w e e n the shells a r e m u d - f i l l e d , f o r m i n g a t y p e o f l i m e s t o n e k n o w n a s p a c k s t o n e ( M e y e r 1990). I f t h e m u d h a d b e e n r e m o v e d b y a s t o r m , t h e r e m a i n i n g shell b e d c o u l d h a v e f o r m e d a g r a i n s t o n e . S h e l l s i n t h e u p p e r s u r f a c e o f the b e d a r e a m i x t u r e o f a r t i c u l a t e d shells w i t h g o o d p r e s e r v a t i o n o f f i n e s u r f a c e features a n d d i s a r t i c u l a t e d shells that are a b r a d e d a n d b r o k e n . B o t h a b r a d e d a n d u n a b r a d e d shells are e n c r u s t e d w i t h b r y o z o a n s a n d edrioasteroid e c h i n o d e r m s . S o m e a r t i c u l a t e d b r a c h i o p o d s h a v e the m o a t - l i k e feature m e n t i o n e d a b o v e that s u g g e s t s a c t i v i t y o f the l i v i n g b r a c h i o p o d . A l l t h e s e f e a t u r e s a r e e v i d e n c e that t h e shell b e d a c c u m u l a t e d g r a d u a l l y w i t h out significant transportation. Ultimately the entire bed was smothered by an influx of m u d , probably p r o d u c e d by a s t o r m . C h a r a c t e r i s t i c a l l y , a stratigraphic s e c t i o n w i t h the t y p e of shell pavem e n t d e s c r i b e d a b o v e will c o n t a i n repetitions o f thin s h e l l - p a v e m e n t s s m o t h e r e d b y s h a l e s . Harris a n d M a r t i n (1979) d e s c r i b e d this pattern i n t h e
114
A Sea without Fish
W a y n e s v i l l e F o r m a t i o n as a form of p a l e o e c o l o g i c s u c c e s s i o n (see F i g u r e 4.S). In present-day settings, e c o l o g i c s u c c e s s i o n o c c u r s w h e n o n e a s s e m blage of a n i m a l s or plants alters the habitat IN s u c h a way that o t h e r species c a n replace the s o - c a l l e d p i o n e e r s p e c i e s . Harris a n d M a r t i n (1979) suggested that thin-shelled brachiopods w e r e p i o n e e r s p e c i e s that first c o l o n i z e d soft m u d d y p a t c h e s of the sea floor a n d provided a p a v e m e n t on w h i c h e n c r u s t i n g a n i m a l s like b r y o z o a n s and i n a r t i c u l a t e b r a c h i o p o d s c o u l d settle. E v e n t u a l l y other species c o u l d take a d v a n t a g e o f the shell p a v e m e n t a n d thickets of b r y o z o a n s , so that the diversity of the a s s e m b l a g e i n c r e a s e d u p ward from the b o t t o m of a p a v e m e n t b e d . S t o r m s frequently s m o t h e r e d t h e shelly patches with m u d , thus i n t e r r u p t i n g the s u c c e s s i o n until b r a c h i o p o d larvae o n c e again c o u l d c o l o n i z e the barren m u d s . s o m e p a l e o e c o l o g i s t s have questioned w h e t h e r p a l e o e c o l o g i c s u c c e s s i o n c o m p a r a b l e t o presentday succession c a n be d e t e c t e d in the fossil record b e c a u s e m o s t stratigraphic c h a n g e s in fossil a s s e m b l a g e s represent a m u c h l o n g e r t i m e scale t h a n the scale of years to d e c a d e s over w h i c h present-day s u c c e s s i o n o c c u r s . A l t h o u g h we still do not know how m u c h t i m e was r e q u i r e d for the f o r m a t i o n of characteristic, thin t y p e - C i n c i n n a t i a n shell p a v e m e n t s , it is possible that they formed over a short t i m e scale. It also s e e m s c o r r e c t to v i e w the brachiopods as h a v i n g a pivotal role in p r o v i d i n g a hard s u b s t r a t u m o n t o w h i c h e n c r u s t ing a n i m a l s c o u l d settle, thus altering the habitat in the m a n n e r of s u c c e s sional pioneers. C l e a r l y , s u c c e s s i o n at the scale of i n d i v i d u a l shell p a v e m e n t s was an important act on the stage of the C i n c i n n a t i a n sea floor, a n d brachiopods played a major role in that e v o l u t i o n a r y play.
Brachiopods
115
116
A Sea without Fish
9
MOLLUSCS: HARD, BUT WITH A SOFT CENTER
Everyone k n o w s m o l l u s c s — t h e o h - s o - f a m i l i a r snails a n d s l u g s , t h e c l a m s , m u s s e l s , s c a l l o p s , a n d oysters, t h e o c t o p u s , a n d t h e s q u i d . B u t the m o l l u s c story is not a s i m p l e o n e .
T h e r e are m o r e k i n d s of m o l l u s c s t h a n of a n y
other g r o u p o f a n i m a l s , save t h e a r t h r o p o d s . S o w h a t l i n k s all the m o l l u s c s together? T h e word " m o l l u s c " is derived from the Latin word " m o l l u s c u s , " m e a n i n g "soft." This refers to t h e fact that e v e r y m o l l u s c h a s a soft, fleshy b o d y . But that, o f c o u r s e , i s not t h e i m a g e c o n j u r e d u p i n t h e m i n d ' s e y e a t the m e n t i o n o f snails, c l a m s , a n d oysters. I n m o s t o f t h e m o l l u s c s , the soft parts are e n c l o s e d w i t h i n a h a r d s h e l l . A n d it is on t h e basis of differe n c e s i n the shells that t h e m o l l u s c s o f t h e t y p e - C i n c i n n a t i a n are d i f f e r e n tiated from o n e a n o t h e r . O n e m i g h t b e t e m p t e d t o sort t h e s h e l l e d m o l l u s c s into t h r e e g r o u p s , a t least with respect t o their s h e l l s . T h e a n i m a l s o f o n e g r o u p h a v e b a s i c a l l y a single shell; take, for e x a m p l e , t h e c o i l e d c o n e of m o s t snails or that of the pearly n a u t i l u s . In c o n t r a s t to t h e s e u n i v a l v e d m o l l u s c s are t h o s e in w h i c h the soft parts a r e e n c l o s e d b e t w e e n t w o " s h e l l s " (strictly s p e a k i n g , e a c h of the t w o is c a l l e d a " v a l v e " ) .
The b i v a l v e d m o l l u s c s that l e a p m o s t
readily to m i n d are the c l a m s , m u s s e l s , oysters, a n d t h e i r k i n . In a third g r o u p , and a relatively s m a l l o n e at that, t h e shell c o n s i s t s of a n u m b e r of plates a r r a n g e d so that the a n i m a l , at first g l a n c e , a p p e a r s to be s e g m e n t e d .
Figure 9.1.
Gastropod
mollusc,
showing
features.
Drawing by
Kevina
(In this c a s e , l o o k s a r e d e c e i v i n g , b e c a u s e , u n l i k e t h e a n n e l i d w o r m s a n d the a r t h r o p o d s , m o l l u s c s a r e not truly s e g m e n t e d . ) The p r e s e n t - d a y c h i t o n s e x e m p l i f y the p o l y p l a c o p h o r a n g r o u p (literally, " m a n y plate b e a r i n g " ) . Regardless of w h e t h e r the a n i m a l h a s a shell t h a t is a s i n g l e v a l v e or o n e c o n s i s t i n g o f t w o valves o r m a n y p l a t e s , t h e m a t e r i a l o f t h e shell i s p r i m a r i l y c a l c i u m c a r b o n a t e i n the m i n e r a l f o r m o f e i t h e r c a l c i t e o r a r a g o nite. B e c a u s e a r a g o n i t e is less stable t h a n c a l c i t e , a r a g o n i t i c shells u s u a l l y dissolve after d e a t h , l e a v i n g just e x t e r n a l a n d i n t e r n a l m o l d s t o r e c o r d w h e r e the shell o n c e h a d b e e n (see c h a p t e r 5). This, of c o u r s e , c a n g r e a t l y affect w h a t we find as fossils. As a m o l l u s c progresses t h r o u g h its life, it g e n e r a l l y a d d s shell m a t e r i a l at the periphery of its shell or of e a c h valve of its shell. Thus, the life history of that shell or valve is r e c o r d e d in a series of c o n c e n t r i c g r o w t h - l i n e s visible on the exterior of the shell. This a l l o w s us to d e c i p h e r the c h a n g e s in t h e size and shape that the shell or valve went t h r o u g h d u r i n g the life of t h e individual a n i m a l . ( T h i s stands in s t r o n g contrast to a n i m a l s that s h e d their exoskeletons as they grow. An individual adult trilobite, for e x a m p l e , d o e s n o t present to e v e n the careful o b s e r v e r its life history in its hard parts.)
117
Vulinec.
internal
O f c o u r s e , e v e n i n m o l l u s c s that h a v e shells, the hard parts are m e r e l y a part of the w h o l e a n i m a l . In g e n e r a l , t h e b o d y of a m o l l u s c i n c o r p o r a t e s f i v e o f w h a t c o m m o n l y are c a l l e d b o d y r e g i o n s : t h e h e a d , the foot, the visceral
mass, the m a n t l e - c o m p l e x , and the gills (technically termed
c t e n i d i a , f r o m their c o m b - l i k e shape). The m a n t l e , the s h e l l , a n d t h e m a n tle-cavity together c o m p r i s e the m a n t l e - c o m p l e x .
The m a n t l e is a sheet of
tissue that h a n g s d o w n o n e a c h side o f t h e b u l k o f the a n i m a l o r o t h e r w i s e e n c l o s e s it.
The s h e l l , if p r e s e n t , is a t t a c h e d to the o u t s i d e of the m a n t l e
and is s e c r e t e d by it. To the inside of the m a n t l e is the m a n t l e - c a v i t y , in w h i c h a r e l o c a t e d t h e g i l l s , i f t h e y are p r e s e n t . T h e last p h r a s e o f t h e p r e v i o u s p a r a g r a p h i s a n i m p o r t a n t tip-off. N o t all k i n d s o f m o l l u s c s h a v e all f i v e b o d y r e g i o n s d e v e l o p e d t o t h e s a m e extent. S n a i l s , for e x a m p l e , e a c h h a v e a n o b v i o u s h e a d , w h e r e a s c l a m s d o not. S q u i d s h a v e w e l l - d e v e l o p e d gills; h o w e v e r , in terrestrial snails, there are no c t e n i d i a , a n d t h e m a n t l e - c a v i t y serves, in e f f e c t , as a l u n g . It is o n l y fair to a d m i t that t h e r e is so m u c h m o r p h o l o g i c a n d a n a t o m i cal v a r i a t i o n a m o n g t h e m o l l u s c s as a w h o l e that it is difficult to p o i n t to a n y trait that o c c u r s in all m o l l u s c s . S o m e h a v e shells, a n d s o m e do not. In m o s t , the shell is e x t e r n a l , but in some it is i n t e r n a l . S o m e h a v e g i l l s , a n d s o m e d o not. S o m e h a v e h e a d s , a n d s o m e d o not. A n d s o o n . R e g a r d l e s s o f w h e t h e r o n e i s c o n v i n c e d that form follows f u n c t i o n , o r v i c e versa, the t r e m e n d o u s m o r p h o l o g i c a l s p e c t r u m e x h i b i t e d b y t h e m o l luscs as a w h o l e is c o i n c i d e n t w i t h t r e m e n d o u s e c o l o g i c a l and b e h a v i o r a l s p e c t r a . S a v e for the fact that m o l l u s c s h a v e not m a s t e r e d in-air flight, v i r t u a l l y a n y terrestrial or a q u a t i c e n v i r o n m e n t on E a r t h will h a v e a representative suite o f m o l l u s c s . This t r e m e n d o u s array of s i z e s , s h a p e s , b e h a v i o r s , and w a y s of life a m o n g t h e m o l l u s c s i s t h e result o f m i l l i o n s o f c e n t u r i e s o f o r g a n i c e v o l u tion. I n c l u d e d in this a l m o s t i n c r e d i b l e diversity of a n i m a l s are, to b r a g a bit, n o t o n l y t h e largest o f all i n v e r t e b r a t e s , but a l s o t h e m o s t i n t e l l i g e n t o f all invertebrates ( b o t h , it h a p p e n s , b e i n g c e p h a l o p o d s ) . M o r e o v e r , t h e largest i n d i v i d u a l n e r v e c e l l s are said to o c c u r in m o l l u s c s ( a g a i n , c e p h a l o p o d s are t h e c h a m p i o n s ) .
Who's W Whhoo aammoonngg tt h h ee Molluscs Molluscs
In t h e i n t r o d u c t i o n to this chapter, m o l l u s c s w e r e separated into u n i v a l v e d m o l l u s c s , bivalved m o l l u s c s , a n d
polyplacophoran
m o l l u s c s . A l t h o u g h per-
haps c o n v e n i e n t t o i n t r o d u c e the n o t i o n o f m o r p h o l o g i c a l variation a m o n g the m o l l u s c s as a phylum, those three " g r o u p s " are a gross over-simplification. M a l a c o l o g i s t s , t h o s e w h o study m o l l u s c s , use the s h a p e of the shell to sort m o l l u s c s into true b i o l o g i c a l g r o u p s — i n t o g r o u p s w h o s e m e m b e r s are e v o l u t i o n a r y related t o o n e a n o t h e r . H o w e v e r , u n l i k e c o n c h o l o g i s t s , those w h o study shells, m a l a c o l o g i s t s u s e all sorts of traits. In a d d i t i o n to t h o s e of the shell. Of c o u r s e , in most fossils, o n l y the hard parts are preserved. N o n e t h e less, it is the goal of the p a l e o n t o l o g i s t to p u t the l i v i n g a n i m a l b a c k into its shell a n d to r e c o g n i z e the real, b i o l o g i c a l g r o u p s of fossils. I n the O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i r e g i o n , f o s s i l s o f the followi n g b i o l o g i c a l g r o u p s of phylum M o l l u s c a are f o u n d (recall that a p h y l u m
118
A Sea without Fish
consists o f a n u m b e r o f s m a l l e r g r o u p s o f o r g a n i s m s c a l l e d classes): class C e p h a l o p o d a , class G a s t r o p o d a , class M o n o p l a c o p h o r a , class P e l e c y p o d a , class R o s t r o c o n c h i a , class P o l y p l a c o p h o r a , a n d class S c a p h o p o d a . T h e r e are s o m e g r o u p s o f m o l l u s c s o f w h i c h n o s p e c i m e n s are k n o w n f r o m t h e local rocks. For e x a m p l e , t h e class A p l a c o p h o r a i n c l u d e s c e r t a i n p r e s e n t day a n i m a l s that a r e d e v o i d o f p r e s e r v a b l e h a r d parts; h e n c e , their n a m e , w h i c h m e a n s " n o plate b e a r i n g . "
S n a i l s , w i t h their c h a r a c t e r i s t i c c o i l e d s h e l l s , are p r o b a b l y t h e e a s i e s t to r e c o g n i z e o f the m o l l u s c s in t h e r o c k s o f t h e C i n c i n n a t i r e g i o n . S n a i l s are
Class G a s t r o p o d a — Class T T hhee Snails Snails
very c o m m o n i n m a i n e n v i r o n m e n t s o f today's w o r l d , a l o n g w i t h their relatives, t h e s o - c a l l e d slugs a n d sea-slugs. ( A n i m a l s o f t h e latter t w o g r o u p s either h a v e no shell at all, or a s m a l l , i n t e r n a l o n e ; t h u s , they are u n l i k e l y to he p r e s e r v e d as fossils.) Snails are the q u i n t e s s e n t i a l u n i v a l v e d m o l l u s c ( F i g u r e 9.1). Each snail has a single p r o m i n e n t v a l v e . In m o s t s n a i l s , this is a l o n g , n a r r o w , c o n i c a l t u b e that is c o i l e d off to o n e side, so that it r e s e m b l e s a screw. Of c o u r s e , b y n o w , y o u h a v e c o m e t o e x p e c t that t h e story i s b o u n d t o b e far m o r e complicated. First, in s o m e snails, the shell is so flared o p e n t h a t it r e s e m b l e s a c a p or a s h i e l d , rather than a screw; take, for e x a m p l e , t h e l i m p e t s a n d t h e a b a lones of today. T h e n , there are the snails in w h i c h t h e c o i l i n g is n o t to t h e side; rather, e a c h w h o r l lies d i r e c t l y in l i n e w i t h t h e o n e n e x t to it, so t h a t the c o i l is m o r e like a g a r d e n h o s e c o i l e d flat on t h e g r o u n d (this is c a l l e d planispiral c o i l i n g ) . A l t h o u g h basically u n i v a l v e d , s o m e snails h a v e a h a r d s t r u c t u r e that serves t o b l o c k t h e a p e r t u r e o f t h e shell w h e n t h e a n i m a l w i t h d r a w s for protection. D e p e n d i n g on the kind of snail, this o p e r c u l u m , as it is called, m a y b e m a d e o f c a l c i u m c a r b o n a t e , like t h e s h e l l , o r o f a s u b s t a n c e c a l l e d c o n c h i o l i n , w h i c h i s rather like t h e c h i t i n o f a n insect's e x o s k e l e t o n . N o t all snails h a v e o p e r c u l a , a n d n o o p e r c u l a t e g a s t r o p o d s h a v e b e e n r e p o r t e d from the rocks o f t h e C i n c i n n a t i r e g i o n . The n a m e " g a s t r o p o d " literally m e a n s " s t o m a c h foot," a n d t h e b o d y region of a g a s t r o p o d c a l l e d t h e " f o o t " g e n e r a l l y is a b r o a d , flat, c r e e p i n g o r g a n ( F i g u r e 9.1). T h e l i v i n g a n i m a l has a p r o m i n e n t h e a d , g e n e r a l l y c o m p l e t e with o n e o r t w o pairs o f stalks o r t e n t a c l e s . Y o u may well have e n c o u n t e r e d a snail or a slug in y o u r g a r d e n , but m o s t gastropods are aquatic. The snail or s l u g in y o u r g a r d e n probably was (or h a d b e e n ) d e v o u r i n g y o u r plants; many g a s t r o p o d s are herbivores. G a s t r o p o d s have a structure associated with the m o u t h that looks rather like a carpenter's rasp. T h e radula, as it is c a l l e d , works like a rasp, too; t h e a n i m a l p r o t r u d e s the radula from its m o u t h and scrapes bits of plant matter into the m o u t h . But not all snails are h e r b i v o r e s . I n d e e d , s o m e subsist on t h e flesh of others. An e s p e c i a l l y s t r i k i n g e x a m p l e f r o m t h e l o c a l r o c k s is p r o v i d e d by b r a c h i o p o d shells or o t h e r shells that e a c h h a v e a tidy, c i r c u l a r h o l e . In s u c h c a s e s , a snail u s e d its r a d u l a to drill a h o l e in t h e shell of a n o t h e r a n i m a l object: dinner.
Molluscs
119
Figure 9.2. Cincinnatian monoplacophorans bellerophontid pod.
a
oran,
of m o l d s .
T h e a c t u a l shell m a t t e r has b e e n dissolved away, a n d all that is
left is t h e s e d i m e n t that o r i g i n a l l y filled or that s u r r o u n d e d t h e b u r i e d
Archinacella
Wahlman,
40615,
M o s t o f t h e snail fossils i n t h e r o c k s o f the C i n c i n n a t i r e g i o n consist a
gastro-
A.
area
and
USNM
monoplacoph-
s h e l l , or b o t h . E x c e p t i o n s to this g e n e r a l i t y are t h e snails of the g e n u s Cyclonema; h e r e , shell m a t t e r , n o t u n c o m m o n l y , is present.
Waynesville
Formation,
Waynesville,
Gastropods of the type-Cincinnatian
Ohio, a, dorsal, b, lateral, c, anterior, all x 1.6. From
S n a i l s ( F i g u r e s 9.2, 9.3) are very c o m m o n fossils t h r o u g h o u t t h e C i n c i n -
Wahlman (1992,
n a t i a n Series in its t y p e a r e a , b u t , b e c a u s e t h e y g e n e r a l l y are p r e s e r v e d o n l y
plate 3,
figures 7, 9, 10).
B. Hel-
cionopsis
Ulrich
striata
and Scofield, 45827,
USNM
a
oran,
be difficult. N e v e r t h e l e s s , s n a i l s u n d o u b t e d l y p l a c e d an i m p o r t a n t role in the e c o l o g y of the C i n c i n n a t i a n sea, especially in some e n v i r o n m e n t s
monoplacoph-
Richmondian,
a s i n t e r n a l m o l d s , then- c a n b e o v e r l o o k e d , a n d p r e c i s e i d e n t i f i c a t i o n c a n
Mar-
ion Co., Kentucky, a, dorsal, b, oblique-lateral, c, lateral, all x 1.7. From
w h e r e t h e y w e r e very a b u n d a n t . H o l l a n d ' s c o m p i l a t i o n o f C i n c i n n a t i a n fossils lists sixty-three s p e c i e s of snails in t w e n t y - t h r e e g e n e r a as o c c u r r i n g a b o v e t h e b a s e o f t h e K o p e F o r m a t i o n ( H o l l a n d 2005). O f t h e s e , s i x t e e n s p e c i e s i n n i n e g e n e r a b e l o n g t o the p l a n i s p i r a l l y c o i l e d b e l l e r o p h o n t i d s
plate 2,
that w e r e revised t a x o n o m i c a l l y b y W a h l m a n (1992). o f the o t h e r f o u r t e e n
figures 1, 2, 3).
C. Cyr-
g e n e r a a n d f o r t y - s e v e n s p e c i e s , the g e n u s Cyclonema a c c o u n t s for e l e v e n
tolites
Conrad,
s p e c i e s , b a s e d o n t h e 1970 s t u d y b y T h o m p s o n (1970). S p e c i m e n s o f a n
compos-
a d d i t i o n a l p l a t y c e r a t i d , w h i c h b e l o n g in Naticonema, o c c u r in the t y p e -
Wahlman (1992, ornatus
USNM 265906, ite mold of a cophoran, mation,
monopla-
C i n c i n n a t i a n , but t h e s e h a v e not b e e n d e s c r i b e d in the scientific literature
Corryville ForCincinnati,
Ohio,
a, lateral, b, dorsal, x 1.7. From
Wahlman
(1992,
D.
Cyrtolites orna-
tus,
MUGM
18120,
individuals served by
two
with
bryozoan
encrusted
are f o u n d i n e v e r y f o r m a t i o n o f t h e t y p e - C i n c i n n a t i a n . S o m e s p e c i e s , s u c h
Cincinna-
tian. x 1.7. cancellatus
t h a n a r a g o n i t i c in c o m p o s i t i o n ( F i g u r e s 9 . 3 A - F ) . I n d i v i d u a l s of Cyclonema
Leptotrypa
clavacoidea.
E.
Sinuites
(Hall),
CMC
IP 44304, a calcitic specimen
of a
oran.
S p e c i m e n s of Cyclonema are by far the best-preserved a n d m o s t easily r e c o g n i z e d C i n c i n n a t i a n s n a i l s b e c a u s e t h e i r shells w e r e c a l c i t i c rather
opposing each
m o s t c o m m o n g a s t r o p o d s are illustrated i n F i g u r e 9.3.
pre-
somehow
apertures,
y e a r s , a n d , c o n s e q u e n t l y , a c o n c l u s i v e s t a t e m e n t a b o u t the total t a x o n o m i c diversity o f C i n c i n n a t i a n g a s t r o p o d s w o u l d b e p r e m a t u r e . S o m e o f the
plate 6, figures 6, 7).
( F e l t o n , pers. c o m m . ; B o w s h e r 1955, plate 1). T h e r e m a i n i n g t h i r t e e n g e n era, i n c l u d i n g thirty-six s p e c i e s , h a v e not b e e n t h o r o u g h l y revised i n r e c e n t
monoplacoph-
Cincinnatian,
Cincin-
as C. humerosum, r a n g e f r o m t h e F a i r v i e w t h r o u g h the W a y n e s v i l l e Form a t i o n s ( T h o m p s o n 1970), b u t o t h e r s are m o r e restricted w i t h i n that r a n g e (Felton, pers. c o m m . )
T h o m p s o n d i f f e r e n t i a t e d s p e c i e s o f Cyclonema o n
t h e basis o f shell s h a p e , n a t u r e o f t h e a p e r t u r e , a n d o r n a m e n t (for e x a m p l e , up to t h r e e sets of spiral ridges). G r o w t h - l i n e s p a r a l l e l to t h e a p e r t u r a l m a r g i n c u t across t h e spiral o r n a m e n t to c r e a t e a r e t i c u l a t e p a t t e r n . A
nati, Ohio, a, anterior, b,
q u a n t i t a t i v e s t u d y o f v a r i a t i o n i n shell form a n d o r n a m e n t w i t h i n and
anterolateral,
a m o n g t h e m a n y s p e c i e s a n d f o r m s o f Cyclonema w o u l d h e l p t o clarify the
x
1.5. From
Wahlman (1992, plate figures 7, 9). gostoma Ulrich,
F.
richmondensis USNM 45983, an
internal mold of a phontid
bellero-
gastropod.
Whitewater
From Wahlman,
x
r e c o g n i t i o n of s p e c i e s a n d to d e t e r m i n e how v a r i a t i o n is related to d e p o s i tional e n v i r o n m e n t . S p e c i m e n s of Cyclonema are s o m e t i m e s f o u n d a t t a c h e d to the u p p e r s u r f a c e o r t e g m e n o f c r i n o i d c a l y c e s . This a s s o c i a t i o n b e t w e e n g a s t r o p o d s and crinoids is o n e of the best-known cases of interaction between species in t h e fossil r e c o r d . In t h e t y p e - C i n c i n n a t i a n , s p e c i m e n s of b o t h Cy-
Formation,
Richmond, Indiana, plate 26,
11,
Salpin-
1.4.
clonema a n d
Naticonema are f o u n d a t t a c h e d
u s u a l l y of Glyptocrinus a n d Pycnocrinus
1992,
(see
to the t e g m e n s of c r i n o i d s , c h a p t e r 12). B e c a u s e , in m o s t
s p e c i m e n s , t h e snail i s p o s i t i o n e d d i r e c t l y o v e r the a n a l o p e n i n g o f the
figure 2.
120
A Sea without Fish
c r i n o i d , m o s t workers h a v e c o n c l u d e d that the snail led u p o n the partly digested feces of the c r i n o i d . B o w s h e r i n t e r p r e t e d this a s s o c i a t i o n as o n e of c o p r o p h a g y a n d illustrated e x a m p l e s from t h e C i n c i n n a t i a n ( B o w s h e r 1955). S i m i l a r a s s o c i a t i o n s b e t w e e n related snails a n d c r i n o i d s are f o u n d from y o u n g e r P a l e o z o i c strata t h r o u g h t h e P e r m i a n , b u t t h o s e f r o m t h e Molluscs
121
722
A Sea without Fish
C i n c i n n a t i a n a r e a m o n g the o l d e s t - k n o w n c a s e s . S p e c i m e n s o f Cyclonema
Figure 9.3.
varicosum a t t a c h e d to Pycnocrinus are k n o w n
gastropods.
from
the L e x i n g t o n L i m e -
stone, just below t h e C i n c i n n a t i a n ( F e l t o n , p e r s . c o m m . ) . W h e t h e r all cases o f snails a t t a c h e d t o P a l e o z o i c c r i n o i d s are i n s t a n c e s o f c o p r o p h a g y has b e e n d e b a t e d ; o t h e r possibilities i n c l u d e p a r a s i t i s m , p r e d a t i o n , a n d commensalism
( B a u m i l l e r 1990; M o r r i s a n d F e l t o n 1993). (In c o m m e n s a l -
A.
clonema Hall,
Cyn-
Formation,
Lexing-
ton, Kentucky, x 1.7. Cyclonema
ism, individuals of the associated species gain s o m e advantage w h i l e the
sum, lection,
Steven
ture.
Formation,
of
Ohio, x 1.2.
b y e n c r u s t i n g the snails that lived o n the e l e v a t e d c r o w n s o f t h e c r i n o i d s , either by s h a r i n g in the fecal feast or simply by v i r t u e of t h e e l e v a t e d p o s i tion provided by the c r i n o i d .
Felton
showing
c o m p l e x association b e t w e e n C i n c i n n a t i a n g a s t r o p o d s , c r i n o i d s , a n d t u b e s e n c r u s t i n g t h e snails w a s i n v e s t i g a t e d by M o r r i s a n d F e l t o n
B.
humero-
h o s t , it is difficult to see how the host c o u l d r e m a i n u n a f f e c t e d . ) A m o r e Cornulites
Cy-
varicosum
CMC IP 51118,
thiana
host i s u n a f f e c t e d . G i v e n the size a n d l o c a t i o n o f t h e s n a i l s o n t h e c r i n o i d
(1993, 2003). These a u t h o r s s u g g e s t e d that Cornulites g a i n e d an a d v a n t a g e
Cincinnatian
col-
aper-
Grant Lake Brown C.
clonema Ulrich,
Co., Cy-
humerosum CMC IP 51117,
Maysvillian,
Cincinnati,
Ohio, x 1.6. clonema
D.
bilix
Cy-
lata
(Con-
Most i n d i v i d u a l s of Cyclonema that are f o u n d are n o t a t t a c h e d to cri-
rad),
noids, s u g g e s t i n g that t h e a s s o c i a t i o n w i t h c r i n o i d s w a s not o b l i g a t e , a n d
heim
that s p e c i m e n s of Cyclonema w e r e a b l e to m a k e their l i v i n g in o t h e r ways.
Cincinnati,
Ohio,
1.7.
Cyclonema
W e lack direct e v i d e n c e for t h e f e e d i n g habits o f f r e e - l i v i n g s p e c i m e n s o f Cyclonema, b u t the f e e d i n g habits o f p r e s e n t - d a y g a s t r o p o d s m a y p r o v i d e s o m e c l u e s . Cyclonema. a l o n g with
the m a j o r i t y o f taxa o f C i n c i n n a t i a n
CMC IP 51116, ArnFormation, E.
sublaeve 51114, 2.1.
Ulrich,
Cincinnati, F.
t r o p o d s i n c l u d e m a n y f a m i l i a r f o r m s , for e x a m p l e , l i m p e t s , a b a l o n e s , a n d
gracile
p e r i w i n k l e s . M o s t p r e s e n t - d a y a r c h a e o g a s t r o p o d s are h e r b i v o r e s t h a t live
rich,
b y g r a z i n g o n a l g a l o r b a c t e r i a l c o a t i n g s o n t h e s u b s t r a t u m , b u t s o m e are
Formation,
predatory- o n s p o n g e s o r o n m i c r o o r g a n i s m s a n d o r g a n i c d e t r i t u s e i t h e r b y d e p o s i t f e e d i n g o r s u s p e n s i o n f e e d i n g ( W a h l m a n 1992).
T h e r e i s n o rea-
son t o s u p p o s e that t y p e - C i n c i n n a t i a n a r c h a e o g a s t r o p o d s c o u l d not h a v e had a s i m i l a r r a n g e of f e e d i n g habits.
striatulum
CMC IP 51115,
1.3. moorei MUGM
i n c l u d e m a n y f a m i l i a r m a r i n e s n a i l s , for e x a m p l e , the w h e l k s , t h e s p i n y
by
A d d i t i o n a l e v i d e n c e that s o m e t y p e - C i n c i n n a t i a n snails w e r e p r e d a -
Kentucky,
encrusted
tabulate coral Prorichmondensis, Formation, x
Note slit in aperture.
T h e d r i l l i n g is a c o m b i n a t i o n of d i s s o l u -
tion of the shell by a c i d i c s e c r e t i o n s a n d r a s p i n g by t h e r a d u l a . T h e resulting holes generally are p e r f e c t l y c i r c u l a r , c o m m o n l y w i t h a b e v e l e d e d g e s l o p i n g i n w a r d , but t h e r e i s m u c h v a r i a t i o n i n size a n d f o r m o f t h e h o l e s . C i r c u l a r h o l e s in t y p e - C i n c i n n a t i a n shells, c h i e f l y brachiopods, h a v e attracted the a t t e n t i o n o f m a n y w o r k e r s o v e r the y e a r s , F e n t o n a n d F e n t o n (1931) first favored the i n t e r p r e t a t i o n that p r e d a t o r y snails w e r e r e s p o n s i b l e for the b o r i n g s . B u c h e r (1938) p o i n t e d o u t that b o r e d brachiopods a n d p e l e c y p o d s are very rare in the t y p e - C i n c i n n a t i a n , b u t d e s c r i b e d a t h i n b e d
123
x
(Safford),
Preble Co., Ohio,
M a n y present-day predatory snails attack their prey by " d r i l l i n g "
Molluscs
internal Formation,
23292,
Whitewater
t h r o u g h the shell of the prey (usually a c l a m ) a n d t h e n i n s e r t i n g a p r o b o s c i s that secretes d i g e s t i v e e n z y m e s .
Subu-
Ulrich,
Paupospira
taraea
tory c o m e s from c i r c u l a r h o l e s f o u n d in brachiopods, as w e l l as o t h e r fossils.
Kope H.
h a v i n g a h i g h spire and large size ( f i g u r e 9.3G). P r e s e n t - d a y n e o g a s t r o p o d s
tory, it is possible that the snails of Subulites (Fusispira) w e r e p r e d a t o r s .
G.
(Fusispira)
mold,
Kope
Cincinnati,
Ohio, x 3.2. lites
x
Ul-
CMC IP 51113,
the order N e o g a s t r o p o d a ; i n d i v i d u a l s o f this t a x o n are n o t a b l e e a c h for
m u r e x e s , and the v e n o m o u s c o n e s . B e c a u s e m o s t n e o g a s t r o p o d s are p r e d a -
Ohio,
Cyclonema
Kenton Co.,
O n e s u b g e n u s o f C i n c i n n a t i a n s n a i l s , Subulites (Fusispira), b e l o n g s t o
CMC IP
Fairview Forma-
tion,
gastropods, is placed in the order A r c h a e o g a s t r o p o d a . L i v i n g archaeogas-
x
1.5.
Figure 9.4.
Gastropod-
rich beds. itown
A.
Shale,
Fossil Park, Ohio.
Sharonville,
Note shells
geopetal part
MiamTrammel
cavities
filled
with
upper part
filled
calcite crystals). ble Hill Bed, Formation, Kentucky.
with (lower sediment, with B.
Mar-
Waynesville Trimble Co.,
Scale in mm.
rich in i n d i v i d u a l s of t h e b r a c h i o p o d Onniella from t h e R i c h m o n d i a n in w h i c h t h e f r e q u e n c y o f b o r e d shells i s c l o s e r t o t h e f r e q u e n c i e s o f b o r e d s h e l l s i n p r e s e n t - d a y s e t t i n g s . C a r r i k e r a n d Y o c h e l s o n (1968) c o m p a r e d b o r i n g s i n M i d d l e a n d U p p e r O r d o v i c i a n b r a c h i o p o d s from K e n t u c k y with present-day borings m a d e by gastropods. A l t h o u g h they found m a n y similarities b e t w e e n O r d o v i c i a n a n d p r e s e n t - d a y b o r i n g s , t h e y c o n c l u d e d that g a s t r o p o d s w e r e not n e c e s s a r i l y r e s p o n s i b l e for the O r d o v i c i a n b o r i n g s . K a p l a n a n d B a u m i l l e r (2000) s u g g e s t e d that t h e v a r i a t i o n s i n b o r i n g s f o u n d in O r d o v i c i a n shells c o u l d result f r o m many different borers. Their analysis of the Onniella shell b e d r e v e a l e d a p r e f e r e n c e in b o r i n g for t h e c o n v e x p e d i c l e v a l v e . H o w e v e r , c o n t r o v e r s y c o n t i n u e s t o rage o v e r t h e interpretat i o n o f t h e s e b o r i n g s . W i l s o n a n d P a l m e r (2001) p o i n t e d o u t that, i n the s a m e Onniella shell b e d , s o m e b o r i n g s w e r e d r i l l e d o u t w a r d f r o m t h e interior o f d i s a r t i c u l a t e d v a l v e s , a n d o t h e r s p e n e t r a t e not o n l y t h e m a r g i n s o f v a l v e s b u t a l s o t h e a d j a c e n t s u b s t r a t u m . Their i n t e r p r e t a t i o n was that t h e s e b o r i n g s are n o t p r e d a t o r y b o r i n g s at a l l , but rather w e r e drilled into the shells c e m e n t e d into a h a r d g r o u n d s u r f a c e a s d w e l l i n g s o f u n k n o w n o r g a n -
124
A Sea without Fish
9.5.
isms. In a reply, K a p l a n a n d B a u m i l l e r (2001) stated that their s a m p l e s are
Figure
not from h a r d g r o u n d s , a n d t h e y c o n t i n u e d t o r e g a r d b o r i n g s a s predatory
mollusc,
showing
i n n a t u r e . T h e o n g o i n g a r g u m e n t s s h o w that b o r i n g s i n t h e t y p e - C i n c i n -
features.
Drawing by
natian are p r o b a b l y the result o f m a n y t y p e s o f b e h a v i o r b y d i f f e r e n t o r g a n -
Kevina
isms, a n d , a l t h o u g h not all c a n b e a s s u m e d t o b e predatory, n e v e r t h e l e s s s o m e w e r e very likely p r o d u c e d by d r i l l i n g predation very s i m i l a r to g a s t r o p o d d r i l l i n g i n present-day e n v i r o n m e n t s . C i n c i n n a t i a n g a s t r o p o d s s o m e t i m e s are f o u n d i n g r e a t a b u n d a n c e i n t h i n b e d s — a l m o s t t o t h e e x c l u s i o n o f o t h e r fossils. A l t h o u g h s u c h b e d s o c c u r in many units in the section, two o c c u r r e n c e s deserve special note. O n e is within the M i a m i t o w n Shale, w h i c h is Maysvillian in age, and the other i s the M a r b l e Hill B e d ( R i c h m o n d i a n ) ( F i g u r e 9.4). T h e M i a m i t o w n S h a l e is a t h i n , s h a l e - d o m i n a t e d f o r m a t i o n that a t t a i n s a m a x i m u m thickness o f f i v e m e t e r s a t M i a m i t o w n , n e a r t h e G r e a t M i a m i River, a n d t h i n s t o less than o n e m e t e r n e a r C i n c i n n a t i ( D a t t i l o 1996). W i t h i n t h e M i a n i itown is a layer, n i c k n a m e d the " g a s t r o p o d s h a l e , " a b o u t 1.5-2 m e t e r s t h i c k , characterized by abundant molluscs, i n c l u d i n g p e l e c y p o d s , the m o n o p l a cophoran
Cyrtolites,
and g a s t r o p o d s ( F i g u r e 9.4A). N e a r t h e top of this
interval is a t h i n l i m e s t o n e that is p a c k e d w i t h g a s t r o p o d s , m o s t l y of Paupospira bowdeni (referred to Loxoplocus in o l d e r literature), p r e s e r v e d a s internal m o l d s . T h e s o - c a l l e d " g a s t r o p o d s h a l e , " a l o n g w i t h t h e t h i n l i m e s t o n e , c a n b e traced from M i a m i t o w n , i n O h i o , t o n o r t h e r n K e n t u c k y , a distance of 20 km. T h e p a l e o e n v i r o n m e n t a l significance of the snail-rich M i a m i t o w n b e d i s not entirely clear. T h e o v e r l y i n g B e l l e v u e L i m e s t o n e , w i t h its t h i n , w a v y b e d s c o n t a i n i n g large b r a c h i o p o d s a n d b r y o z o a n s , i n d i cates very shallow water, s h o a l i n g c o n d i t i o n s . T h u s t h e M i a m i t o w n c o u l d represent a slightly d e e p e r e n v i r o n m e n t , p e r h a p s l a g o o n s s h e l t e r e d b e t w e e n shell-rich shoals o f t h e B e l l e v u e . O r g a n i c - r i c h m u d s t h a t a c c u n i u -
Molluscs
125
Pelecypod
Vulinec.
internal
Figure 9.6.
Cincinnatian pelecypods.
locality information,
x 0.6.
mation, Butler Co., Ohio, mation,
Clermont Co.,
right valve, MUGM
right valve, 15066,
A.
x
Ambonychia sp.,
C. 1.1.
right valve,
MUGM 29546,
Cincinnatian,
right valve,
Carotidens demissa (Conrad), MUGM 29431, left valve, D.
Anomalodonta gigantea Miller,
Warren Co.,
Whitewater Formation,
internal mold of right valve,
126
MUGM De549A,
Ambonychia cultrata (Ulrich),
x 0.8.
Ohio,
Waynesville Formation,
MUGM 23392, rich,
B.
A Sea without Fish
Ohio,
x 0.8.
E.
Preble Co.,
Ohio,
CMC IP 35898,
no
Waynesville ForCorryville Forinternal mold of
Opisthoptera casei (Meek and Worthen), x 0.9.
Whitewater Formation,
F.
Butler Co.,
Ischyrodonta truncata UlOhio,
x
1.1.
Figure 9.7.
Cincinnatian pelecypods and rostroconchs.
USNM 46230, tion,
"butterflied" specimen
Covington,
(Conrad),
Kentucky,
USNM 46719,
Fairview Formation, rus faberi Miller, right-lateral view,
black
A.
Modiolopsis sp.
organic film
x 0.85. From Pojeta (1971, plate
USNM 07219, 11,
Ohio,
cf.
15,
figure 6). to
B.
figure 3).
Whitewater Formation,
Kope Formation,
D. Butler Co.,
Covington,
figure5).
Kentucky,
C. x 3.
Technophorus milleri Pojeta and Runnegar, Ohio,
x 5.1.
TechnophoFrom Pojeta
MUGM 6848,
From Pojeta and Runnegar (1976,
lated in the l a g o o n s c o u l d h a v e p r o v i d e d a h a b i t a t f a v o r a b l e for s n a i l s , b u t hostile to filter-feeding b r a c h i o p o d s a n d b r y o z o a n s . The M a r b l e Hill Bed is a n o t h e r r e m a r k a b l e o c c u r r e n c e of g a s t r o p o d s , in w h i c h l i m e s t o n e lenses up to about o n e m e t e r thick are p a c k e d with s p e c i Paupospira
Fairview Forma-
Modiolopsis modiolaris
14, figure 7).
m e n s of three s p e c i e s of g a s t r o p o d s ,
modiolaris (Conrad),
bedding and highly foreshortened,
x 2.4. From Pojeta et al. (1986, plate 17,
left-lateral view,
M.
and remnants of ligament,
internal mold preserved at right angles
Cincinnati,
and Runnegar (1976, plate
with
bowdeni, P. tropidophora
( M e e k ) , and P. moorei ( U l r i c h ) ( F e l t o n , pers. c o m m . ; f i g u r e 9.4B). This b e d o c c u r s near the top o f the C i n c i n n a t i a n i n the R o w l a n d M e m b e r o f the D r a k e s f o r m a t i o n (following stratigraphic n o m e n c l a t u r e a d o p t e d i n K e n -
Molluscs
127
plate
Figure 9.8. pied by
A.
Basal side of stromatoporoid with borings made by pelecypods,
the pelecypod
Brown Co.,
Ohio,
x 0.6.
inarticulate brachiopod, Clinton Co.,
Corallidomus scobina,
Ohio,
B.
OSU 8420,
Corallidomus scobina,
Trematis sp.,
in
life position
x 0.7. From Pojeta (1971, plate
16,
probably
USNM 70458,
among
valve
with
Clermont Co.,
edrioasteroid
Ohio,
x
Isorophus
cincinnatiensis
1.4. From Pojeta (1971, plate 10,
128
A Sea without Fish
bryozoan
figure 5).
left valve of specimen attached to bryozoan colony shown in B, left
from
and
C.
x 2.8. encrusting
the
some of which are occu-
Waynesville
Formation,
bryozoan colony with pelecypods and branches,
Waynesville
Formation,
Corallidomus scobina, USNM 70458, D.
Carotidens sp.,
bryozoans,
Corryville
USNM
162734,
Formation,
figure 15). A and C, courtesy of John Pojeta, Jr.
tucky; this is a p p r o x i m a t e l y e q u i v a l e n t to the top of the Waynesville F o r m a -
Figure 9.9. Life habits of
tion as used in other literature). T h e M a r b l e Hill B e d is e x p o s e d n e a r B e d -
Late
Ordovician
ford, i n
pods.
From Pojeta
Trimble C o u n t y , K e n t u c k y , a n d a d j a c e n t s o u t h e a s t e r n I n d i a n a
(Hattin et al. 1961; S w a d l e y 1979). L i k e the M i a m i t o w n snail b e d , the M a r b l e
pelecy(1971,
figure 9).
Hill B e d lies in close stratigraphic p r o x i m i t y to rocks of very shallow water d e p o s i t i o n a l e n v i r o n m e n t s . S w a d l e y (1979) interpreted the M a r b l e Hill B e d as a c o m p l e x of offshore shoals a n d t i d a l - c h a n n e l deposits a l o n g the m a r g i n of a s h a l l o w l a g o o n a l area a d j a c e n t to intertidal mudflats.
This is the g r o u p that, today, is r e p r e s e n t e d by c l a m s , m u s s e l s , s c a l l o p s ,
Pelecypods: a.k.a.,
c o c k l e s , oysters, a n d their relatives ( F i g u r e s 9.5,9.6). T h e s e are all b i v a l v e d
The Bivalves
m o l l u s c s — e a c h shell consists o f t w o v a l v e s . (For t h a t r e a s o n , s o m e folks use a different n a m e for t h e c l a s s , viz., B i v a l v i a . A l t h o u g h s u c h u s a g e m a y be l o g i c a l , it b e l i e s t h e fact that t h e r e are o t h e r b i v a l v e d a n i m a l s that arenot a t all c l o s e l y related t o t h e m o l l u s c s . E x a m p l e s i n c l u d e t h e m e m b e r s of p h y l u m Brachiopod a and the ostracods, of phylum Arthropoda.) This, o f c o u r s e , b r i n g s u p t h e q u e s t i o n : h o w d o e s o n e tell the r e m a i n s o f the several m a j o r g r o u p s o f b i v a l v e d o r g a n i s m s f r o m o n e a n o t h e r ? F r o m our p e r s p e c t i v e , in t h e t y p e - C i n c i n n a t i a n , it is i m p o r t a n t to be a b l e to differentiate p e l e c y p o d s from b r a c h i o p o d s .
T h e s e latter are v e r y c o m m o n i n
the local r o c k s , a n d their shells fall into the s a m e s i z e r a n g e a s d o t h o s e o f p e l e c y p o d s . O n e c l u e c o m m o n l y i s p r o v i d e d b y t h e state o f p r e s e r v a t i o n . G e n e r a l l y , i n the C i n c i n n a t i r e g i o n , p e l e c y p o d s are m o r e p o o r l y p r e s e r v e d t h a n are b r a c h i o p o d s (see c h a p t e r 8 ) a n d o c c u r a s m o l d s . O n e o f t h e notu n c o m m o n modes of preservation is o n e called a composite mold. Here, the a r a g o n i t e shell i s g o n e , a n d t h e e x t e r n a l a n d i n t e r n a l m o l d s are super-
Molluscs
129
i m p o s e d o n t o o n e a n o t h e r , so that t h e features of the exterior of a valve and t h o s e of t h e interior are visible in e s s e n t i a l l y a s i n g l e s u r f a c e .
The shell
m a t t e r o f t h e l i v i n g p e l e c y p o d s o r e p r e s e n t e d m u s t h a v e b e e n fairly h i g h in organic material, b e c a u s e the composite mold c o m m o n l y includes a c a r b o n f i l m w h e r e t h e shell s u b s t a n c e o n c e w a s ( F i g u r e 9.7A). A l t h o u g h p r e s e r v a t i o n may provide a c l u e , the real way to identify the p e l e c y p o d s is by r e f e r e n c e to t h e m o r p h o l o g y of t h e shell.
The p l a n e of
s y m m e t r y in a t y p e - C i n c i n n a t i a n pelecypod is b e t w e e n t h e valves, w h e r e a s , i n a n o r d i n a r y a r t i c u l a t e b r a c h i o p o d , t h e p l a n e o f s y m m e t r y r u n s across e a c h v a l v e p e r p e n d i c u l a r t o the h i n g e (see F i g u r e 8 . 1 ) . O f c o u r s e , t h e fossils i n t h e r o c k s i n a n d n e a r C i n c i n n a t i h a v e b e e n t h e r e for h u n d r e d s o f m i l l i o n s o f years. M a n y t h i n g s m i g h t h a v e h a p p e n e d d u r i n g that span o f t i m e . S o m e t i m e s , for e x a m p l e , the d e a d shell w a s buried i n o t h e r t h a n a l i v i n g p o s i t i o n . A s soft s e d i m e n t s b u i l t u p ever d e e p e r o n t h e sea floor, t h e y b e c a m e c o m p r e s s e d into rock. I n s o m e i n s t a n c e s , the o r i g i n a l bilateral s y m m e t r y o f t h e o n c e - l i v i n g a n i m a l (and, h e n c e , o f the shell) w a s distorted by t h e p r e s s u r e , so that the shell a p p e a r s s k e w e d . In s u c h i n s t a n c e s , the o r i g i n a l s y m m e t r y m a y not b e i m m e d i a t e l y o b v i o u s .
P e l e c y p o d s of t h e Type — Cincinnatian B e c a u s e p e l e c y p o d s are c o m m o n l y p r e s e r v e d a s m o l d s i n the t y p e - C i n c i n n a t i a n , they are easily o v e r l o o k e d a n d c a n be difficult to identify. I n d e e d , m a n y s p e c i m e n s are n o t h i n g m o r e t h a n c l a m - s h a p e d blobs. O n e e x c e p t i o n is i n d i v i d u a l s of t h e pterioid g e n u s Carotidens that are p r e s e r v e d as calcitic shells t h r o u g h o u t t h e t y p e - C i n c i n n a t i a n ( F i g u r e 9 . 6 C ) . F o r m s preserved a s m o l d s that are very c o m m o n are o f t h e g e n u s
Ambonychia
( F i g u r e s 9.6A,
B) a n d t h e g e n u s Modiolopsis ( F i g u r e s 9.7A, B). O c c a s i o n a l l y , pelecypods are p r e s e r v e d in life p o s i t i o n , as in t h e c a s e of t h e b u r r o w i n g Modiolopsis ( F i g u r e 9.7B), or Corallidomus, t h e e a r l i e s t - k n o w n c a s e
of
pelecypod
bor-
i n g into a h a r d s u b s t r a t u m ( F i g u r e s 9.8A, B; Pojeta a n d P a l m e r 1976). Epizoa a t t a c h e d to o n e valve of an a r t i c u l a t e d pelecypod may also i n d i c a t e t h e p r e f e r r e d life o r i e n t a t i o n o f t h e p e l e c y p o d ( F i g u r e 9.8D). I n c l u d i n g t h e c o m m o n l y e n c o u n t e r e d f o r m s , a c o n s i d e r a b l e diversity o f p e l e c y p o d s has b e e n d o c u m e n t e d i n the t y p e - C i n c i n n a t i a n . H o l l a n d (2005) listed 164 s p e c i e s of p e l e c y p o d s , in t h i r t y - e i g h t g e n e r a , for t h e O r d o vician rocks of the C i n c i n n a t i region. However, the originally described s p e c i m e n s o f several g e n e r a a n d n u m e r o u s s p e c i e s are either poorly pies e r v e d , o f u n c e r t a i n t a x o n o m i c status, o r b o t h , s o that the a c t u a l diversity is surely l o w e r . R o b e r t Frey (1987a) traced the diversity a n d a b u n d a n c e of pelecypods in t h e f o r m a t i o n s of t h e C i n c i n n a t i r e g i o n . In t h e s h a l e s , siltstones, and thin limestones of the Edenian ( K o p e Formation), he recorded fourteen genera. In
Maysvillian
t h r o u g h early R i c h m o n d i a n shales and
l i m e s t o n e s , he f o u n d s i x t e e n g e n e r a . In o n e s h a l e b e d of the W a y n e s v i l l e Formation he found twenty-two species of pelecypods. In Mavsvillian l i m e s t o n e s , p e l e c y p o d s are g e n e r a l l y less a b u n d a n t t h a n b r a c h i o p o d s and b r y o z o a n s , b u t i n t h e R i c h m o n d i a n r o c k s , t h e y o c c u r i n h i g h e r diversity. I n R i c h m o n d i a n l i m e s t o n e s , Frey r e c o r d e d t w e n t y g e n e r a o f p e l e c y p o d s .
130
A Sea without Fish
Thus. F r e y ' s work d o c u m e n t e d the spread o f p e l e c y p o d s f r o m m a i n l y c l a s tic (shale-rich) s e d i m e n t a r y e n v i r o n m e n t s i n early a n d m i d d l e C i n c i n n a tian t i m e into c a r b o n a t e e n v i r o n m e n t s in the late C i n c i n n a t i a n . The a b u n d a n c e and diversity o f p e l e c y p o d s i n t h e t y p e - C i n c i n n a t i a n d e m o n s t r a t e that, e v e n e a r l y i n their e v o l u t i o n a r y history, p e l e c y p o d s o c c u p i e d m a r i n e e n v i r o n m e n t s in a variety of offshore s e t t i n g s , h e r a l d i n g t h e i r s u b s e q u e n t diversification a n d i n c r e a s i n g a b u n d a n c e i n t h e late P a l e o z o i c a n d M e s o z o i c (A. I. M i l l e r 1989). B y Late O r d o v i c i a n t i m e , p e l e c y p o d s had e x p l o i t e d a l m o s t the full range of living habits found in present-day forms ( F i g u r e 9.9). M o s t c o m monly, Late O r d o v i c i a n p e l e c y p o d s used byssal threads for a t t a c h m e n t to objects on or w i t h i n the s e d i m e n t — s i m i l a r to present-day mytilids (mussels). Epibyssate forms, such as A m b o n y c h i a , a t t a c h e d at the s e d i m e n t surface or nestled w i t h i n the b r a n c h e s of b r y o z o a n s . Endobyssate forms, s u c h as Modiolopsis and Pseudocolpomya, a t t a c h e d to shell f r a g m e n t s or s e d i m e n t gr ai n s just b e l o w the s e d i m e n t surface a n d e x t e n d e d the shell for filter f e e d i n g . F r e e - b u r r o w i n g forms i n c l u d e d deposit feeders (who fed on o r g a n i c particles with in the sediment), such as Ctenodonta, and shallow infaunal filter feeders, such as Ischyrodonta. As m e n t i o n e d a b o v e , the ability to b o r e into hard substrata was first seen in the Late O r d o v i c i a n C o r a l l i d o m u s ( F i g u r e s 9 . 8 A - C ) . O r d o v i c i a n p e l e c y p o d s had not yet d e v e l o p e d the e l o n g a t e siphons a n d m o r e m u s c u l a r foot that e n a b l e d m e m b e r s of the class to exploit d e e p e r and m o r e rapid b u r r o w i n g after the e n d of the P a l e o z o i c . Likewise, O r d o v i c i a n p e l e c y p o d s had not a c q u i r e d the habit of c e m e n t i n g t h e shell to a hard substrate, as seen in present-day oysters a n d o t h e r p e l e c y p o d s that inhabit coral reels. It is also interesting to note that O r d o v i c i a n p e l e c y p o d s l a c k e d the d e v e l o p m e n t of thick, c o r r u g a t e d shells and p r o j e c t i n g spines f o u n d in present-da) forms such as the "giant c l a m " (of g e n u s Tridaena) or "spiny oysters" (of g e n u s Spondylus). S e l e c t i v e pressure for t h e e v o l u t i o n of these k i n d s of protective m o r p h o l o g i e s possibly was absent in the Ordov ician sea b e c a u s e s hell- cr us hing ( d u r o p h a g o u s ) predators had not yet evolved.
T h e s q u i d s , c u t t l e f i s h , a n d o c t o p i are t h e m o s t f a m i l i a r c e p h a l o p o d s i n
Cephalopods
today's w o r l d , a n d t h e y c e r t a i n l y are not h e a v i l y a r m o r e d . For e x a m p l e , m e m b e r s of g e n u s Octopus h a v e no shells at a l l , a n d those of t h e squid a n d cuttlefish are internal. This is in s t r o n g c o n t r a s t to t h e fossil c e p h a l o p o d s o f the C i n c i n n a t i r e g i o n — a l l k n o w n k i n d s h a d their soft parts p r o t e c t e d b y an e x t e r n a l shell. (It h a p p e n s that t h e r e is a s i n g l e g e n u s of p r e s e n t - d a y c e p h a l o p o d s that e a c h has an e x t e r n a l s h e l l , n a m e l y , Nautilus, s h o w n in Plate 4.
This is t h e sole r e m n a n t of t h e vast h o r d e s of e x t e r n a l l y s h e l l e d
c e p h a l o p o d s that o n c e c o u r s e d t h r o u g h the seas o f o u r planet.) T h e w o r d " c e p h a l o p o d " literally m e a n s " h e a d - f o o t , " w h i c h s e e m s singularly appropriate for a c r e a t u r e that is c h a r a c t e r i z e d by a p r o m i n e n t h e a d and a n u m b e r of h i g h l y flexible t e n t a c l e s . A l t h o u g h s u c h soft parts h a v e not b e e n f o u n d p r e s e r v e d i n t h e rocks o f t h e C i n c i n n a t i r e g i o n , t h e c e p h a l o p o d s probably had p r o m i n e n t h e a d s a n d t e n t a c l e s d u r i n g life. W h a t r e m a i n of the local fossil c e p h a l o p o d s are their e x t e r n a l shells.
Molluscs
131
In t h e majority, t h e shell is a l o n g , s t r a i g h t , c o n i c a l t u b e c l o s e d at the narrow e n d . ( S t r a i g h t shells are said to be o r t h o c o n i c . ) There are, h o w e v e r , s o m e i n w h i c h t h e shell i s c u r v e d o r e v e n c o i l e d . I n m o s t o f t h e k i n d s o f c e p h a l o p o d s p r e s e n t , t h e r e are p a r t i t i o n s that g o across the t u b e for part o f its l e n g t h ; t h e s e are c a l l e d septa ( s i n g u l a r , s e p t u m ) . The c h a m b e r s that are s e p a r a t e d b y t h e septa are c a l l e d c a m e r a e (singular, c a m e r a ) . A t t h e larger e n d of t h e c o n i c a l t u b e t h a t c o m p r i s e s t h e shell is a p o r t i o n in w h i c h t h e r e are n o septa. T h i s i s c a l l e d t h e b o d y c h a m b e r . The c a m e r a e are c o n n e c t e d to o n e a n o t h e r by a t u b e t h a t r u n s t h r o u g h all the septa from the b o d y c h a m b e r to t h e first c a m e r a at t h e tip of t h e c o n e ; this i n n e r t u b e is c a l l e d the siphuncle.
T h e l i n e a l o n g w h i c h a p a r t i c u l a r s e p t u m m e e t s t h e outer
w a l l of t h e shell is c a l l e d a s u t u r e . A l l p r e s e n t - d a y c e p h a l o p o d s live i n t h e o c e a n s , a n d t h e r e i s e v e r y r e a s o n t o c o n c l u d e that t h e fossil f o r m s w e r e m a r i n e c r e a t u r e s , too. D u r i n g life, t h e a p t l y - n a m e d b o d y c h a m b e r was o c c u p i e d b y the b u l k o f the soft parts o f t h e c e p h a l o p o d a n i m a l , a n d t h e o t h e r c a m e r a e a p p a r e n t l y c o n t a i n e d gas. (In p r e s e n t - d a y Nautilus, the gas is s i m i l a r in c o m p o s i t i o n to air, b u t w i t h o u t t h e o x y g e n . ) S u c h a gas-filled shell w o u l d h a v e served as a float, b u o y i n g the a n i m a l up in the water and, d e p e n d i n g on h o w m u c h gas w a s in t h e c a m e r a e , a l l o w i n g the a n i m a l to stay at a p a r t i c u l a r water d e p t h w i t h o u t t h e effort o f s w i m m i n g u p w a r d s o r d o w n w a r d s . A t great d e p t h s , o f c o u r s e , t h e r e i s t r e m e n d o u s w a t e r p r e s s u r e — s o m u c h pressure, in f a c t , that s u c h a gas-filled shell w o u l d h a v e b e e n c r u s h e d . T h u s , e x t i n c t c e p h a l o p o d s w i t h e x t e r n a l shells a l m o s t c e r t a i n l y lived i n w a t e r n o d e e p e r t h a n a few h u n d r e d m e t e r s , a n d m o s t of t h e m p r o b a b l y s w a m in water a g o o d d e a l s h a l l o w e r t h a n that. M o s t p r e s e n t - d a y c e p h a l o p o d s are a c t i v e s w i m m e r s .
T h e y take water
into t h e m a n t l e - c a v i t y , a n d t h e y e x p e l it t h r o u g h a s p o u t c a l l e d t h e h y p o n o i n e w h i c h i s l o c a t e d b e l o w t h e t e n t a c l e s a n d m o u t h (Plate 4 A ) .
This
c a u s e s t h e a n i m a l t o m o v e i n t h e o p p o s i t e d i r e c t i o n ; the h y p o n o m e , h o w ever, is very flexible, so t h a t t h e a n i m a l c a n s w i m in a l m o s t any d i r e c t i o n . W e a s s u m e that e x t i n c t c e p h a l o p o d s s w a m the s a m e way. A l l c e p h a l o p o d s t o d a y are predators.
There
is no reason to s u p p o s e
that e x t i n c t o n e s w e r e a n y d i f f e r e n t . In fact, t h e r e are a few s p e c i m e n s k n o w n i n w h i c h g u t c o n t e n t s are p r e s e r v e d ; t h e s e c o n f i r m that a t least s o m e e x t i n c t c e p h a l o p o d s ate o t h e r o r g a n i s m s . (Alas! N o s u c h s p e c i m e n s are k n o w n f r o m t h e r o c k s o f t h e C i n c i n n a t i region.) A l l o f t h e c e p h a l o p o d s k n o w n from t h e r o c k s o f t h e area a r o u n d C i n c i n n a t i c o m m o n l y are l u m p e d t o g e t h e r a s " n a u t i l o i d s . " I n this s e n s e , the a s s e m b l a g e of a n i m a l s so d e n o t e d is a " w a s t e b a s k e t " in that it i n c l u d e s a n i m a l s f r o m a n u m b e r of d i f f e r e n t taxa that do n o t s e e m to be c l o s e l y related b i o l o g i c a l l y . (It is rather like l u m p i n g t o g e t h e r h o r s e s , c a t t l e , p i g s , deer, r h i n o c e r o s e s , tapirs, a n d s o o n , into " h o o f e d m a m m a l s . " ) W h a t i s w o r s e , t h e r e is a f o r m a l t a x o n of c e p h a l o p o d s c a l l e d s u b c l a s s N a u t i l o i d e a . Part of t h e p r o b l e m i s that t h e " n a u t i l o i d s , " i n t h e g e n e r a l s e n s e ( w h i c h i n c l u d e s t h o s e t h a t a c t u a l l y b e l o n g i n t h e N a u t i l o i d e a ) , c a n l o o k rather s i m i l a r externally. H o w e v e r , w h e n w e l l - p r e s e r v e d s p e c i m e n s are c a r e f u l l y b r o k e n o r c u t o p e n , m e t i c u l o u s s t u d y r e v e a l s that a n u m b e r o f s t r i k i n g l y different
132
A Sea without Fish
Figure 9.10. How nautiloids
attained
happi-
ness. In the top diagram, the center of gravity,
G,
is inferred to lie in the body
chamber
nautiloid,
of
and
the
the center
of buoyancy, 6, to lie in the
gas-filled
phragmo-
forcing
the animal
cone,
into a vertical,
head-
down position.
In this
position
it could not
swim efficiently.
In the
middle diagram, mation
the for-
of calcareous
cameral deposits in the apical part of the phragmocone the
should
result
in
center of gravity and
center ing
of
buoyancy
toward
the
shift-
midpoint
of the animal's length B ), a
(G
2
permitting stability in
2
horizontal
orientation.
In the lower diagram,
the
nautiloid has grown, additional posits
cameral
centers
(G ,B ) 3
tain
the fossil c o l l e c t o r . To c u t a s p e c i m e n o p e n a n d s t u d y it c a r e f u l l y n o t o n l y
orientation.
requires s p e c i a l i z e d e q u i p m e n t ( w h i c h i s e x p e n s i v e ) , b u t a l s o t r a i n i n g a n d
further discussion.
experience. Moreover, one needs well-preserved m a t e r i a l — a n d not m a n y
Flower (1957,
is k i n d , h o w e v e r , a n d a s p e c i m e n is f o u n d that just h a p p e n s to h a v e b e e n
logical
M a n y o f t h e internal d e t a i l s o f t h e " n a u t i l o i d s " s e e m t o h e related t o hydrostatics, that is, t o t h e p o s i t i o n a n d o r i e n t a t i o n o f t h e l i v i n g a n i m a l i n the water. R e c a l l that t h e shell o f m o s t " n a u t i l o i d s " i n t h e r o c k s o f t h e C i n c i n n a t i r e g i o n is a l o n g , s t r a i g h t c o n e . T h e b u l k of t h e soft parts of t h e a n i m a l o c c u p i e d t h e b o d y c h a m b e r , w h e r e a s t h e part o f t h e a n i m a l s u b d i vided into c a m e r a e ( t e c h n i c a l l y c a l l e d t h e p h r a g m o c o n e ) s e e m s m o s t l y t o h a v e b e e n f i l l e d w i t h gas. T h u s , t h e part o f t h e shell t o w a r d t h e a p e x o f t h e c o n e would have b e e n lighter than the other e n d , w h i c h c o n t a i n e d the w e i g h t o f the b o d y . T h e result w o u l d h a v e b e e n t h a t t h e c o n e w o u l d h a v e t e n d e d t o b e o r i e n t e d i n the water w i t h its b l u n t e n d , a n d , h e n c e , a p e r t u r e , d o w n — a n d , potentially, the a n i m a l ' s f a c e i n t h e m u d o f t h e sea floor.
133
See
text for
of the
Society
From
figures
and reprinted
America.
h i g h e r taxon w i t h o u t d a m a g i n g it.
Molluscs
a stable horizontal
permission
M u c h of t h e t i m e , h o w e v e r , it is t o u g h to a s s i g n a g i v e n s p e c i m e n to a
main-
3
kinds o f " n a u t i l o i d s " a r e r e c o g n i z a b l e . T h i s p r e s e n t s a d o u b l e d i l e m m a t o
broken or b e e n e r o d e d in s u c h a way that the i n n e r s e c r e t s are r e v e a l e d .
to
so that the
of gravity and
buoyancy
4-6)
de-
formed closer
the head,
folk w a n t t o c u t u p that p r i z e d , " p e r f e c t " s p e c i m e n . S o m e t i m e s t a p h o n o m y
with
of
by Geo-
Figure 9 . 1 1 .
Cincinnatian
orthoconic A-C
nautiloids.
from Davis and
Mapes
(1996),
of the
Ohio
courtesy Department
of Natural Resources sion
B.
Treptoceras
duseri (Hall and field),
bars = 1 cm. 47422,
of
A.
OSU
phragmocone
and living
with dark lines
which
are remains of what, life,
in
aequabile
nal mold of portion siphuncle,
of
imply that o r g a n i s m s p e r c e i v e d a p r o b l e m and willfully evolved to solve it.
OSU 47420,
1 cm.
Endoceras
D.
MUGM 29579,
inter-
nal mold of part of phragmocone tion,
and
sip-
scale in mm. byoceras
L e t u s r e t u r n t o t h e t y p e - C i n c i n n a t i a n . O n e w a y t o b r i n g t h e shell o f an o r t h o c o n i c
v a r i o u s l i n e a g e s ; t h e r e are t w o m a i n c a t e g o r i e s i n t h e " n a u t i l o i d s " :
c u l a r deposits).
CMC IP 31393, fine
longitudinal lines, water Formation,
Whitex
into a h o r i z o n t a l o r i e n t a t i o n w o u l d be to add
2 . d e p o s i t i o n o f c a l c i u m c a r b o n a t e w i t h i n t h e s i p h u n c l e (result: s i p h u n -
Gor-
with
cephalopod
w e i g h t to the p h r a g m o c o n e ( f i g u r e 9.10). This w a s d o n e in v a r i o u s w a y s in
duncanae
external shell
definitely do not
deposits);
Ohio,
E.
they
1 . d e p o s i t i o n o f c a l c i u m c a r b o n a t e w i t h i n the c a m e r a e (result: c a m e r a l
Liberty Forma-
Butler Co.,
Flower,
tion, for short. S o m e paleontologists and other biologists speak of evolutionary
are seen in t h e fossil record of the p a r t i c u l a r l i n e a g e .
scale bar =
huncle,
m e c h a n i s m is c a l l e d o r g a n i c e v o l u t i o n by natural s e l e c t i o n , or natural selec-
inter-
Cincinnatian, sp.,
tions, t h e n t h e o r g a n i c e v o l u t i o n of a l i n e a g e w ill tend in that direction. This
figures of s p e e c h . They are, in tact, g e n e r a l i z a t i o n of what c h a n g e s actually
in-
(Miller),
d e s c e n d e n t s to go into a n y p a r t i c u l a r d i r e c t i o n , no matter how beneficial (or
"strategics" w h e r e b y a l i n e a g e "solves" s o m e p a r t i c u l a r " p r o b l e m . " These are
were color bands.
C. Cameroceras
As far as is k n o w n , the volition of o r g a n i s m s has no effect on the organic e v o l u t i o n of a l i n e a g e . T h u s , no c r e a t u r e c a n will the o r g a n i c evolution of its
m e a n s that m o r e creatures will survive to pass their g e n e s on to future genera-
part of
external shell, longitudinal
l i v i n g cephalopod did n o t " l i k e " its f a c e in the m u d , it d e l i b e r a t e l y e v o l v e d
enjoyable?) that direction m i g h t prove to be. Rather, it a particular direction
chamber.
B. OSU 47417,
o r g a n i c e v o l u t i o n , per s e — l e s t w e g o astray into t h i n k i n g that, b e c a u s e the
scale
internal mold of
part
B e f o r e p r o c e e d i n g f u r t h e r on this t a c k , we n e e d to talk a bit a b o u t
its shell m o r p h o l o g y a n d s t r u c t u r e to avoid that c o n d i t i o n .
Whit-
Cincinnatian,
in t h e shell o c c u r r e d that solved this p r o b l e m in o n e w a y or a n o t h e r , to a g r e a t e r or less e x t e n t .
Divi-
of Geological Sur-
vey. A,
A p p a r e n t l y , f r o m t h e p o i n t o f v i e w o f o r g a n i c e v o l u t i o n , this w a s not a b e n e f i c i a l s i t u a t i o n . At least in a n u m b e r of e v o l u t i o n a r y l i n e a g e s , c h a n g e s
1.4.
Whether
t h e s e d e p o s i t s are p r e s e n t , a n d , if so. w h e r e in the shell they
o c c u r a n d w h a t f o r m t h e y take a r e very i m p o r t a n t i n d e t e r m i n i n g t h e p r o p e r t a x o n o m i c p o s i t i o n of a g i v e n fossil. S i p h u n c u l a r deposits o c c u r in a n e s p e c i a l l y g r e a t v a r i e t y o f c o n f i g u r a t i o n s . I n the s u b c l a s s E n d o c e r a t o i d e a , for e x a m p l e , t h e s i p h u n c u l a r d e p o s i t s c o m p r i s e a S e r i e s o f c o n e s s t a c k e d e a c h i n s i d e t h e n e x t , w i t h t h e larger e n d toward the a p e r t u r e o f the s h e l l ; t h e s e are c a l l e d e n d o c o n e s . A n o t h e r way to "solve" the orientation "problem" would be to bring t h e c e n t e r o f b u o y a n c y ( r e s u l t i n g f r o m t h e gas i n the c a m e r a e ) a b o v e the c e n t e r o f gravity ( r e s u l t i n g e s p e c i a l l y f r o m t h e m a s s o f the a n i m a l i n the b o d y c h a m b e r ) . The m o s t o b v i o u s w a y t o d o this w o u l d b e t o c o i l the shell s o that t h e b o d y c h a m b e r h a n g s b e n e a t h the gas-filled p h r a g m o c o n e ; t h e p r e s e n t - d a y Nautilus is t h e p r o d u c t of s u c h an e v o l u t i o n a r y l i n e a g e .
C e p h a l o p o d s of the Type — Cincinnatian N a u t i l o i d c e p h a l o p o d s are c o m m o n fossils t h r o u g h o u t the t y p e - C i n c i n n a tian.
they
g e n e r a l l y o c c u r a s i n t e r n a l m o l d s o f partial p h r a g m o c o n e s .
B e c a u s e the o r i g i n a l a r a g o n i t i c shell m a t e r i a l w a s not p r e s e r v e d , the q u a l -
134
A Sea without Fish
Molluscs
135
ity of n a u t i l o i d p r e s e r v a t i o n is often p o o r , m a k i n g i d e n t i f i c a t i o n difficult. However, e x c e p t i o n a l p r e s e r v a t i o n of n a u t i l o i d s in a 1.5-meter-thick s h a l e or c l a y s t o n e w i t h i n the W a y n e s v i l l e f o r m a t i o n f o r m e d the basis for a d e tailed s t u d y o f t y p e - C i n c i n n a t i a n n a u t i l o i d s b y R o b e r t C . Frey (1988,1989) that p r o v i d e d u n i q u e insight into t h e p a l e o e c o l o g y o f C i n c i n n a t i a n n a u tiloids.
This s h a l e , i n f o r m a l l y c a l l e d t h e "Treptoceras duseri s h a l e " for the
s p e c i e s o f the m o s t a b u n d a n t n a u t i l o i d s , o c c u r s i n W a r r e n a n d C l i n t o n c o u n t i e s of O h i o . F r e y r e p o r t e d a total of t w e l v e s p e c i e s of n a u t i l o i d s , in e i g h t g e n e r a , from this u n i t , of w h i c h t h r e e s p e c i e s of Treptoceras a c c o u n t e d
136
A Sea without Fish
for 7 6 p e r c e n t o f t h e 302 s p e c i m e n s f o u n d . S p e c i m e n s o f o t h e r s p e c i e s are
Figure 9.12. Upper Cin-
m u c h less a b u n d a n t ; i n c l u d e d h e r e are t h e c y r t o c o n i c f o r m s ( h a v i n g
cinnatian
c u r v e d shells) Manitoulinoceras tenuiseptum a n d M.
nautiloids.
Oncoceras delicatum
(4 p e r c e n t ) , Zittelloceras russelli,
williamsae (8 p e r c e n t ) , and
Z.
williamsae (<1
p e r c e n t ) , l o n g i c o n i c f o r m s ( h a v i n g l o n g , t a p e r i n g , s t r a i g h t shells) tentatively a s s i g n e d to g e n u s Isorthoceras (6 p e r c e n t ) , t h e e n d o c e r i d Camero-
(Richmondian)
toceras
A.
Charac-
baeri
Worthen),
(Meek
MUGM
and
29591,
Whitewater
Formation
Preble Co.,
Ohio, scale
ceras inaequabile (6 p e r c e n t , h a v i n g a w i d e s i p h u n c l e i n f i l l e d w i t h c o n i c a l
bar = 2 cm. Compare to
deposits), the o r t h o c e r i d Gorbyoceras curvatum (<1 p e r c e n t , an o r t h o c o n i c
present-day
form), a n d the a s c o c e r i d Schuchertoceras obscurum (<1 p e r c e n t , a f o r m that
Plate 4.
lost part o f t h e p h r a g m o c o n e d u r i n g g r o w t h t o m a i n t a i n stability). T h e
ceras
m a t e r i a l o f t h e outer w a l l o f e a c h shell w a s p r e s e r v e d o n l y w h e n e n c r u s t e d b y b r y o z o a n s , b u t the septa a n d s i p h u n c u l a r s t r u c t u r e s o f t h e shell interiors w e r e r e p l a c e d b y c a l c i t e . B o d y c h a m b e r s a n d p h r a g m o c o n e s w e r e infilled with c l a y s t o n e , b u t , i n s o m e cases, t h e c a m e r a e r e m a i n e d e m p t y o r w e r e infilled w i t h c a l c i t e crystals.
These preservational features led Frey to c o n -
Nautilus, B.
CMC IP 24415, mold
of phragmocone
water Formation, Co., Ohio, x 1. estoceras
eos
Whitfield),
shells. R e m o v a l o f e n c r u s t i n g b r y o z o a n s r e v e a l e d t h e r e m a r k a b l e p r e s e r v a -
internal
tion o f r e m n a n t s o f c o l o r p a t t e r n s o n t h e e x t e r i o r o f t h e s h e l l . I n c o n t r a s t
phragmocone
drift with c u r r e n t s , the t h i n n e r shells a n d septal m o r p h o l o g y o f t h e s e O r d o v i c i a n n a u t i l o i d s suggest that d e a d a n i m a l s sank t o the b o t t o m .
Di-
(Hall and 382,
of partial and
body
Whitewater
Formation,
Preble
Ohio, scale in mm.
The a s s e m b l a g e p r o b a b l y is a g o o d r e p r e s e n t a t i o n of t h e l i v i n g n a u s p e c i a l i z e d m o d e s o f life. L o n g i c o n i c f o r m s p r o b a b l y w e r e a c t i v e s w i m mers c l o s e t o t h e sea floor, w h e r e a s c y r t o c o n i c f o r m s m a y h a v e lived c l o s e r t o the s u b s t r a t u m , p e r h a p s c r a w l i n g o r s w i m m i n g i n short bursts. W i t h n o f i s h o n the s c e n e d u r i n g t h e C i n c i n n a t i a n , n a u t i l o i d s w e r e u n d o u b t e d l y The a s s o c i a t i o n in t h e s o - c a l l e d Treptoceras duseri s h a l e
o f n a u t i l o i d s w i t h m a n y c o m p l e t e trilobites, s i m i l a r t o o t h e r t r i l o b i t e - n a u tiloid a s s e m b l a g e s in the O r d o v i c i a n of N o r t h A m e r i c a , s u g g e s t s a b i o t i c relationship b e t w e e n t h e t w o g r o u p s ( F r e y 1989). I n d i v i d u a l s o f p r e s e n t - d a y Nautilus e a c h possess jaws that c o n s i s t b o t h o f o r g a n i c a n d m i n e r a l i z e d c o m p o n e n t s ; o n t h e o t h e r h a n d , t h e jaws o f t h e s q u i d s o f today's o c e a n s consist e x c l u s i v e l y o f o r g a n i c m a t e r i a l , a n d , h e n c e , w o u l d not b e p r e s e r v e d ordinarily. A l t h o u g h jaw s t r u c t u r e s i n t h e O r d o v i c i a n n a u t i l o i d s h a v e n o t b e e n f o u n d , it is p o s s i b l e that t h e y p o s s e s s e d o r g a n i c jaws by w h i c h t h e y c o u l d h a v e a t t a c k e d prey s u c h a s trilobites. I n t e r e s t i n g l y , a p p a r e n t w o u n d s h a v e b e e n f o u n d i n trilobites, for e x a m p l e , o f g e n u s Isotelus, f r o m t h e " 7 . duseri s h a l e " that c o u l d h a v e r e s u l t e d f r o m a t t a c k s by n a u t i l o i d p r e d a t o r s (Frey 1989; B a b c o c k 2003). O t h e r i n s t a n c e s o f injuries possibly c a u s e d b y bites o f n a u t i l o i d s o c c u r i n b r a c h i o p o d s ( A l e x a n d e r 1986), g a s t r o p o d s (Felton, pers. c o m m . ) , a n d c r i n o i d s ( D o n o v a n a n d S c h m i d t 2001). T h e association of s p e c i m e n s of Treptoceras, of t h e e n d o c e r i d Cameroceras, and of Oncoceras is characteristic of M a v s v i l l l i a n - t o - e a r l y - R i c h m o n dian shales in the C i n c i n n a t i region and e l s e w h e r e in eastern N o r t h A m e r i c a ( F i g u r e 9.11; Frey 1989,1995). A nautiloid f a u n a of m u c h greater diversity is well k n o w n from Late O r d o v i c i a n strata of the s a m e a g e f r o m a w i d e area of N o r t h A m e r i c a to the west and n o r t h , closer to t h e p a l e o e q u a t o r , in an e n v i -
Molluscs
Butler C.
MUGM
mold
of
White-
chamber,
tiloid c o m m u n i t y , i n w h i c h i n d i v i d u a l s o f d i f f e r e n t s p e c i e s h a d d i s t i n c t i v e ,
the top predators.
(Miller), internal
a cyrtoconic form,
c l u d e that the n a u t i l o i d a s s e m b l a g e w a s b u r i e d i n situ a s c o m p l e t e , e m p t y
to shells of t h e present-day Nautilus that are k n o w n to float after d e a t h a n d
Beloito-
amoenum
137
Co.,
r o n m e n t of p r e d o m i n a n t l y l i m e s t o n e d e p o s i t i o n (Frey 1989,1995).
There are
t w o i n c u r s i o n s o f this "tropical f a u n a " into the C i n c i n n a t i A r c h region: the first d u r i n g the Edenian, a n d the s e c o n d , a l o n g with a host of o t h e r species o f invertebrates, d u r i n g middle-to-late R i c h m o n d i a n t i m e (Frey 1989). T h e oldest R i c h m o n d i a n e l e m e n t s of this " t r o p i c a l " nautiloid a s s e m b l a g e are seen in the W a y n e s v i l l e "Treptoceras duseri s h a l e " in the form of s p e c i m e n s of Sehuehertoceras ohscurum
a n d Gorbyoceras curvatum
(Frey 1985,1995).
Rich-
m o n d i a n l i m e s t o n e - r i c h u n i t s , s u c h a s the D r a k e s , S a l u d a , and W h i t e w a t e r F o r m a t i o n s c o n t a i n a diverse nautiloid fauna that represents the peak of this " R i c h m o n d i a n invasion." A c c o r d i n g to F l o w e r (1946) and Frey (1995), this fauna totals sixty-five s p e c i e s in twenty-four g e n e r a , of w h i c h twenty species are c o m m o n . S o m e characteristic forms are Narthecoceras dunni (Frey, 1981) and Gharactoceras, Diestoceras, a n d Gorbyoceras, s h o w n in F i g u r e 9.12.
N a u t i l o i d T r a c e Fossils? T h e late R o u s s e a u H. F l o w e r , o n e of t h e m o s t prolific researchers on P a l e o z o i c n a u t i l o i d c e p h a l o p o d s , was inspired b y t y p e - C i n c i n n a t i a n c e p h a l o p o d s as the first d o c t o r a l s t u d e n t ( P h . D . , 1939) of K e n n e t h E. C a s t e r at the U n i versity of C i n c i n n a t i . In a 1955 p a p e r , F l o w e r drew attention to the tact that, despite t h e a b u n d a n c e o f c e p h a l o p o d s i n the P a l e o z o i c fossil r e c o r d , there w e r e v i r t u a l l y no reports of trace fossils attributed to activities of nautiloid c e p h a l o p o d s . H e w e n t o n t o illustrate t w o t y p e - C i n c i n n a t i a n trace fossils that h e c o n c l u d e d r e p r e s e n t e d i n t e r a c t i o n s o f n e k t o n i c n a u t i l o i d s w i t h the s e d i m e n t s o f the sea floor. F l o w e r interpreted the c o m m o n " t u r k e y track," a t r o u g h - l i k e i m p r e s s i o n now
c a l l e d Trichophycus (see c h a p t e r 14, F i g u r e
14.1E) to result f r o m a n a u t i l o i d p l o u g h i n g into t h e b o t t o m . In a rare c a s e , a n a u t i l o i d rested at t h e e n d of o n e s u c h t r o u g h . He s h o w e d a sketch of a b e d d i n g s u r f a c e , t w o t o t h r e e m e t e r s across, o n w h i c h m a i n t r o u g h s were o r i e n t e d radially a r o u n d a c o n c e n t r a t i o n of fossil debris, w h i c h s u g g e s t e d to h i m a f e e d i n g p a t t e r n . F l o w e r illustrated a n o t h e r trace that consisted of a h o r s e s h o e - s h a p e d pattern of shallow, c u r v e d g r o o v e s on the surface of a b e d . T h e s e he i n t e r p r e t e d to represent i m p r e s s i o n s of tentacles m a d e as a n a u tiloid d u g into the b o t t o m for stability in h i g h c u r r e n t flow. S u b s e q u e n t l y , w h e n R i c h a r d G . O s g o o d (1970) c o n d u c t e d his analysis o f all k n o w n C i n c i n n a t i a n trace fossils. F l o w e r s n a u t i l o i d traces c a m e u n d e r r e n e w e d scrutiny. O s g o o d c o n c l u d e d that t h o s e traces c o u l d not b e attributed t o nautiloid activity. T h e s u p p o s e d n a u t i l o i d i m p r e s s i o n s w e r e s h o w n t o b e basal portions of burrow systems that e x t e n d e d u p w a r d into softer, u s u a l l y e r o d e d shales. In d e b u n k i n g the n a u t i l o i d i n t e r p r e t a t i o n , O s g o o d (1970) displayed n o t a b l e g o o d g r a c e i n n a m i n g t h e " t e n t a c u l a r i m p r e s s i o n " i n Flower's h o n o r : Vascifodina floweri. The p o t e n t i a l for C i n c i n n a t i a n n a u t i l o i d traces r e m a i n s ; in fact, O s g o o d (1970, plate 83, figure 3) illustrated o n e impression w i t h raised e d g e s that he c o n s i d e r e d a possible n a u t i l o i d t o u c h d o w n .
The So-Called
A l t h o u g h representatives of seven classes of the phylum M o l l u s c a o c c u r in
"Minor Molluscs
t h e O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i r e g i o n o r nearby, o n l y t h r e e are
138
A Sea without Fish
c o m m o n . T h e s e a r e the g a s t r o p o d s (snails), t h e p e l e c y p o d s ( c l a m s ) , a n d the c e p h a l o p o d s (relatives of p r e s e n t - d a y Nautilus, s q u i d , a n d o c t o p u s ) . Type —
Cincinnatian
representatives o f e a c h o f t h e s e " m a j o r g r o u p s " a r e c o n -
sidered in s o m e d e t a i l a b o v e . In a d d i t i o n to t h e s e b e t t e r - k n o w n c l a s s e s , s p e c i m e n s of four less w e l l - k n o w n classes often referred to as t h e " m i n o r m o l l u s c s " also o c c u r i n the O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i a r e a . T h e s e are t h e m o n o p l a c o p h o r a n s , t h e r o s t r o c o n c h s , t h e p o l y p l a c o p h o r a n s (chitons), and the s c a p h o p o d s ("tusk shells").
Monoplacophorans M o n o p l a c o p h o r a n s (there i s n o o t h e r " c o m m o n n a m e " ) are a c t u a l l y f a i r l y diverse in the t y p e - C i n c i n n a t i a n , w i t h twenty-three s p e c i e s in e i g h t g e n e r a ( F i g u r e 9.2; W a h l m a n 1992; H o l l a n d 2005). M o n o p l a c o p h o r a n s are s i m i l a r to the present-day g a s t r o p o d s c a l l e d l i m p e t s in that e a c h h a s a s i n g l e , c a p s h a p e d or p l a n i s p i r a l l y c o i l e d shell a n d a m u s c u l a r foot for l o c o m o t i o n . Present-day forms like Neopilina g r a z e on m i c r o b i a l m a t s t h r o u g h u s e of the r a d u l a . Cyrtolites i s the m o s t c o m m o n t y p e - C i n c i n n a t i a n f o r m ( f i g ures 9 . 2 C , D) p r e s e r v e d e i t h e r as a calcitic shell or as an i n t e r n a l m o l d , b u t c o m m o n l y it is e n c r u s t e d w i t h b r y o z o a n s .
The k e e l e d , p l a n i s p i r a l shell
with a d i a m o n d - s h a p e d a p e r t u r e is d i s t i n c t i v e .
Rostroconchs R o s t r o c o n c h s h a v e a p s e u d o b i v a l v e d shell that is sharply folded a l o n g the dorsal axis t o g i v e the a p p e a r a n c e o f b e i n g b i v a l v e d , a l t h o u g h c a l c i f i c a t i o n is c o n t i n u o u s across t h e axis (Pojeta 1987). R o s t r o c o n c h s are restricted to rocks o f the P a l e o z o i c Era a n d are t h o u g h t t o r e p r e s e n t a n i n t e r m e d i a t e stage in the e v o l u t i o n from u n i v a l v e d to b i v a l v e d m o l l u s c s (Pojeta a n d R u n n e g a r 1976). O n l y s p e c i m e n s o f Technophorus o c c u r i n t h e t y p e - C i n c i n n a t i a n , w i t h t w o s p e c i e s in the E d e n i a n a n d M a y s v i l l i a n , a n d a third s p e c i e s i n the R i c h m o n d i a n ( f i g u r e s 9 . 7 C , D ) . R o s t r o c o n c h s p r o b a b l y lived i n f a u n a l l y as deposit or s u s p e n s i o n f e e d e r s .
Polyplacophorans Polyplacophorans, c o m m o n l y called "chitons," are familiar to those w h o h a v e e x p l o r e d the r o c k y intertidal z o n e o f t o d a y s o c e a n s . C h i t o n s differ from all o t h e r m o l l u s c s in h a v i n g a shell c o m p o s e d of e i g h t s e p a r a t e plates (called valves) that o v e r l a p like s h i n g l e s to p r o v i d e a p r o t e c t i v e c o v e r i n g that p e r m i t s f l e x i b i l i t y . P r e s e n t - d a y c h i t o n s c r e e p o v e r h a r d substrata a n d g r a z e a l g a e with the radula. T h e earliest fossil c h i t o n s a r e f r o m the U p p e r C a m b r i a n , but t h e y o c c u r m o r e c o m m o n l y i n the O r d o v i c i a n o f N o r t h A m e r i c a ( H o a r e and Pojeta 2006). A l t h o u g h n o c h i t o n fossils h a v e b e e n reported a s h a v i n g b e e n f o u n d i n t h e t y p e - C i n c i n n a t i a n , d i s a r t i c u l a t e d valves o c c u r i n o l d e r U p p e r O r d o v i c i a n strata o f t h e K r o n e L i m e s t o n e o f the H i g h B r i d g e G r o u p i n c e n t r a l K e n t u c k y .
Molluscs
139
Scaphopods S c a p h o p o d s s o m e t i m e s g o b y t h e c o m m o n n a m e " t u s k shells."
T h e y are
another group of molluscs of w h i c h s p e c i m e n s potentially could o c c u r in t h e t y p e - C i n c i n n a t i a n , b u t , a s y e t , n o n e h a v e b e e n d o c u m e n t e d i n the s c i e n t i f i c literature a s h a v i n g c o n i c f r o m t h e local rocks. Present-day scap h o p o d s e a c h h a v e a s m a l l , c u r v e d c o n i c a l shell o p e n a t b o t h e n d s , a n d live p a r t l y b u r i e d i n t h e s e d i m e n t a s d e p o s i t feeders. T h e o l d e s t - k n o w n fossil s c a p h o p o d , Rhytiodentalium kentuckyensis, w a s d e s c r i b e d from t h e L e x i n g t o n L i m e s t o n e o f K e n t u c k y , the f o r m a t i o n just below the base o f the C i n c i n n a t i a n (Pojeta a n d R u n n e g a r 1979). Possible s c a p h o p o d s p e c i m e n s h a v e b e e n f o u n d i n t h e t y p e - C i n c i n n a t i a n ( F e l t o n , pers. c o m m . ) .
140
A Sea without Fish
Figure
10.1.
Cincinnatian worms and worm-like fossils.
richmondensis (Miller),
CMC IP
17551,
A.
Waynesville Formation,
Ohio. Slab showing parallel alignment of shells. Scale in mm. worm,
Protoscolex ornatus
ington,
Kentucky.
vation,
x 7.5.
crinoid
locrinus
142
CMC IP 37990,
C.
Co.,
Annelid
Kope Formation,
Cov-
Tubes of Cornulites sp. attached to the column of the
subcrassus,
Hamilton Co.,
coleus sp.
cf.
University
of Cincinnati collections,
Ohio. Scale in mm.
L. jamesi (Hall and Whitfield),
Corryville Formation,
A Sea without Fish
Clinton B.
This is a rare case in the Cincinnatian of soft-body preser-
Formation, tions,
Ulrich,
Tentaculites
Boone Co.,
D.
Corryville
The machaeridian Lepido-
University of Cincinnati collec-
Kentucky.
Scale in mm.
10
ANNELIDS AND WORM-LIKE FOSSILS
B e c a u s e w o r m s are largely s o f t - b o d i e d , their fossil r e c o r d is rather l i m i t e d .
...
N o n e t h e l e s s , n u m e r o u s fossils o c c u r i n t h e C i n c i n n a t i a n that c a n b e at-
that
tributed t o the P h y l u m A n n e l i d a o r related w o r m s . A n n e l i d s , t h e s e g m e n t e d
which
the
w o r m s , i n c l u d e p r e d o m i n a n t l y freshwater a n d terrestrial l e e c h e s a n d e a r t h -
group
was
w o r m s , and the p r e d o m i n a n t l y m a r i n e p o l y c h a e t e s . I n t h e m o d e r n o c e a n s p o l y c h a e t e s are h i g h l y d i v e r s e a n d a b u n d a n t a n d p l a y m a n y i m p o r t a n t e c o l o g i c a l roles.
T h r o u g h o u t the C i n c i n n a t i a n c o m m o n tooth-like m i c r o -
at
we can easily imagine the
ocean
beneath
Cincinnati deposited,
times swarmed with
innumerable
worms,
which have, so far as we at present know,
fossils c a l l e d s c o l e c o d o n t s i n d i c a t e that p o l y c h a e t e s w e r e also c o m p o n e n t s
left no
o f the O r d o v i c i a n m a r i n e e c o s y s t e m ( E r i k s s o n a n d B e r g m a n 2003). A l -
selves
t h o u g h t h e y r e s e m b l e c o n o d o n t s , a n o t h e r c a t e g o r y o f t o o t h - l i k e fossils, i n
jaws,
size and form s c o l e c o d o n t s are distinct in h a v i n g a jet b l a c k a p p e a r a n c e in
sibly a
contrast t o t h e a m b e r c o l o r t y p i c a l o f c o n o d o n t s ( P l a t e 5). T h e d e f i n i t e
sions
p o l y c h a e t e affinity of s c o l e c o d o n t s is e s t a b l i s h e d by rare c a s e s (not C i n c i n -
E. O. Ulrich 1878, 88
natian) of s c o l e c o d o n t s f o u n d w i t h t h e b o d y fossil of a p o l y c h a e t e w o r m as a s s e m b l a g e s of paired tooth-like e l e m e n t s f o r m i n g a jaw a p p a r a t u s . In m o d ern p o l y c h a e t e s a n entire a p p a r a t u s consists o f t h r e e pairs o f d i f f e r e n t individual e l e m e n t s . B e c a u s e s c o l e c o d o n t s u s u a l l y o c c u r a s d i s s o c i a t e d e l e m e n t s , their t a x o n o m y
has b e e n c o m p l i c a t e d b y a s s i g n m e n t o f s e p a r a t e
n a m e s for e a c h e l e m e n t . I n r e c e n t w o r k t h e r e c o g n i t i o n o f l i k e l y a s s o c i a tions o f e l e m e n t s has b e g u n t o a l l e v i a t e this p r o b l e m . The C i n c i n n a t i a n w a s the s o u r c e o f t h e earliest r e p o r t o f s c o l e c o d o n t s as w o r m jaws ( G r i n n e l l 1 8 7 7 ) . In a r e c e n t study, s c o l e c o d o n t s c o l l e c t e d from d i s a g g r e g a t e d s h a l e s o r a c i d - i n s o l u b l e r e s i d u e s f r o m l i m e s t o n e s w e r e found t o b e c o m m o n t h r o u g h o u t t h e C i n c i n n a t i a n s e c t i o n w i t h a m a x i m u m a b u n d a n c e o f 1545 e l e m e n t s p e r k i l o g r a m o f r o c k ( E r i k s s o n a n d B e r g m a n 2003). E r i k s s o n a n d B e r g m a n e s t i m a t e d that forty t o f i f t y m u l t i element species b e l o n g i n g to twelve families o c c u r in the C i n c i n n a t i a n . A l t h o u g h s o m e s c o l e c o d o n t s r e s e m b l e jaws o f c e r t a i n m o d e r n p o l y c h a e t e f a m i l i e s , n o n e o f t h e C i n c i n n a t i a n taxa r e p r e s e n t l i v i n g g r o u p s . B e c a u s e m o d e r n j a w - b e a r i n g p o l y c h a e t e s are p r e d a t o r y , it is likely that C i n c i n n a tian s c o l e c o d o n t - b e a r i n g f o r m s w e r e also p r e d a t o r s , p r e s u m a b l y o n softb o d i e d prey. Eriksson a n d B e r g m a n r e c o g n i z e d five s t r a t i g r a p h i c a s s o c i a tions o f s c o l e c o d o n t s w i t h i n t h e C i n c i n n a t i a n ; a l s o , m a n y C i n c i n n a t i a n f a m i l i e s and g e n e r a o c c u r i n t h e U p p e r O r d o v i c i a n o f t h e B a l t i c r e g i o n o f Europe, indicating an intercontinental distribution. Further refinement of s c o l e c o d o n t t a x o n o m y w i l l u n d o u b t e d l y fulfill a g r e a t p o t e n t i a l for t h e u s e of scolecodonts in biostratigraphic zonation and correlation. In an e x t r e m e l y rare i n s t a n c e of soft-bodied p r e s e r v a t i o n , U l r i c h (1878) described a c t u a l b o d y f o s s i l s o f w o r m s from a h o r i z o n i n the E d e n i a n . T h e
143
traces of themexcepting tracks,
their
and pos-
few rude impres-
of their bodies.
s p e c i m e n s are very s m a l l , a n d have a distinctly s e g m e n t e d a p p e a r a n c e (Figure 10.1 B; R o b i s o n 1987, figure 12.41F). Ulrich n a m e d this w o r m Protoscolex and d e s c r i b e d four s p e c i e s , all o c c u r r i n g i n t h e E c o n o m y b e d s o f t h e E d e n i a n (now t h e K o p e f o r m a t i o n ) . M i l l e r and Faber (1892b) d e s c r i b e d a fifth s p e c i e s also from the E d e n i a n , from " n e a r the l o w water m a r k " o f the O h i o River, e q u i v a l e n t to the F u l t o n M e m b e r of the K o p e F o r m a t i o n . A s p e c i m e n i n the c o l l e c t i o n s o f t h e C i n c i n n a t i M u s e u m C e n t e r i s l a b e l e d from the 400-foot e l e v a t i o n , w h i c h w o u l d p l a c e it in the M a v s v i l l i a n C o r r y v i l l e Form a t i o n . A l t h o u g h t h e s e fossils h a v e not b e e n r e s t u d i e d , their identification as w o r m s has not b e e n c h a l l e n g e d . In the Treatise on Invertebrate Paleontology. Protoscolex is listed with w o r m s for w h i c h the phylum is u n c e r t a i n (Howell 1962). H o w e v e r . Robison (1987) illustrated a s p e c i m e n from the U p p e r O r d o v i c i a n of K e n t u c k y as a fossil a n n e l i d .
Cornulites
and
The c o n i c a l e n c r u s t i n g fossil Gornulites is a c o m m o n C i n c i n n a t i a n m a c r o -
O t h e r Small,
fossil of u n c e r t a i n z o o l o g i c a l position but with possible w o r m affinities. C o r nulites o c c u r s t h r o u g h o u t t h e C i n c i n n a t i a n and several s p e c i e s h a v e b e e n
Conical Fossils
d e s c r i b e d . In t h e Treatise on Invertebrate Paleontology, Fisher (1962) described Cornulites as s m a l l t u b e s of c a l c i u m c a r b o n a t e , with a c i r c u l a r cross-section of 2 to 20 mm d i a m e t e r and a l e n g t h of 5 to 80 m m . S m a l l e r Gornulites are s m o o t h , b u t larger t u b e s h a v e c i r c u m f e r e n t i a l rings and l o n g i t u d i n a l striations. B e c a u s e t h e p o r o u s or v e s i c u l a r internal w a l l s t r u c t u r e differs from the m i c r o s t r u c t u r e of t u b e - f o r m i n g a n n e l i d s , Fisher did not assign Gornulites to a definite p h y l u m . A l t h o u g h t h e n a t u r e o f t h e a n i m a l r e m a i n s u n c e r t a i n , Gornulites is s i m i l a r to m o d e r n p o l y c h a e t e s (like serpulids or spirorbids) that f o r m e n c r u s t i n g t u b e s a n d live as filter feeders. In the C i n c i n n a t i a n , Gornulites u s u a l l y o c c u r s as clusters of t u b e s e n c r u s t i n g a w i d e variety of shelly substrata s u c h a s b r a c h i o p o d s , b r y o z o a n s , m o l l u s c s , trilobites, and e c h i n o d e r m s ( F i g u r e K M C ; see F i g u r e 12.9B), but c a n also o c c u r a s solitary, unatt a c h e d t u b e s ( M o r r i s a n d R o l l i n s 1 9 7 1 ; M o r r i s a n d Felton 1993, 2003). T h e o r i e n t a t i o n of Gornulites w i t h the a p e r t u r e toward the m a r g i n s of b r a c h i o p o d s a n d p e l e c y p o d s s u g g e s t s a possible c o m m e n s a l relationship b y w h i c h the t u b e - d w e l l i n g f i l t e r f e e d e r took a d v a n t a g e o f the f e e d i n g c u r r e n t s o f the host ( M o r r i s a n d Felton 1993, 2003). M o r e o v e r , c o r n u l i t i d s often e n c r u s t e d c r i n o i d c o l u m n s a n d shells o f t h e g a s t r o p o d C y c l o n e m a that f r e q u e n t l y att a c h e d to t h e c a l y x of l i v i n g c r i n o i d s (see F i g u r e 12.9B). In this m a i m e r , c o r n u l i t i d s g a i n e d a p o t e n t i a l l y a d v a n t a g e o u s f e e d i n g position a b o v e the s e d i m e n t - w a t e r interlace ( M o r r i s a n d Felton 2003). T e n t a c u l i t o i d s are s m a l l , c a l c a r e o u s c o n i c a l fossils w i t h c i r c u m f e r e n tial rings.
T e n t a c u l i t o i d s are s i m i l a r in s i z e a n d form to t h e p r o b a b l e a n -
n e l i d t u b e s c a l l e d Gornulites, r a n g i n g from
1
to 40 mm in l e n g t h (rarely
u p t o 8 0 m m ) . U n l i k e m o s t Gornulites, t e n t a c u l i t o i d s are n o n - e n c r u s t i n g a n d h a v e a t h i n k l a y e r e d o r l a m e l l a r shell s t r u c t u r e a n d internal i m p e r f o rated septa ( B e r g s t r o m 1996b). There is e v i d e n c e of soft part a n a t o m y from x - r a d i o g r a p h s of a D e v o n i a n t e n t a c u l i t o i d from G e r m a n y that tentacles a n d a s i p h o n w e r e p r e s e n t ( B l i n d a n d S t u e r m e r 1 9 7 7 ) . This s u g g e s t s a possible affiliation of t e n t a c u l i t o i d s w i t h c e p h a l o p o d s . In t h e Treatise on Inverte-
144
A Sea without Fish
brate Paleontology,
Fisher (1962) p r o p o s e d
that
tentaculitoids and s o m e
o t h e r s m a l l c o n i c a l shells b e i n c l u d e d i n a n e x t i n c t class C r i c o c o n a r i d a (meaning "small, ringed cones") b e l o n g i n g to the M o l l u s c a . M o r e recently, tentaculitoids have b e e n treated as a class u n t o t h e m s e l v e s , T e n t a c u l i toidea, and not i n c l u d e d w i t h a n y k n o w n g r o u p ( B e r g s t r o m 1996b). C l u s ters of t e n t a c u l i t o i d s are s o m e t i m e s f o u n d on a b e d d i n g p l a n e in p a r a l l e l a l i g n m e n t probably c a u s e d b y water m o v e m e n t ( F i g u r e 10.1A). T w o s p e c i e s are k n o w n
from
richmondensis,
the
type-Cincinnatian,
both from the
Tentaculites sterlingensis a n d T.
Richmondian.
A n o t h e r g r o u p of s m a l l , c a l c a r e o u s , c o n i c a l fossils that c a n be f o u n d in the C i n c i n n a t i a n section are the hyolithids. Hyolithids are m u c h smaller than either C o r n u l i t e s o r tentaculitids; t h o s e o c c u r r i n g i n t h e C i n c i n n a t i a n are a b o u t 2 to 3 mm long. U n l i k e Cornulites or t e n t a c u l i t i d s , hyolithids h a v e a s m o o t h shell with a r o u g h l y t r i a n g u l a r cross-section a n d an o p e r c u l u m or c a p c l o s i n g the a p e r t u r e . In the Treatise on Invertebrate Paleontology, Fisher (1962) p l a c e d the hyolithids in the C a l y p t o m a t i d a , r e g a r d e d as an e x t i n c t class of the P h y l u m M o l l u s c a . A l t h o u g h there is u n c e r t a i n t y as to t h e c o r r e c t t a x o n o m i c classification of hyolithids, m o s t workers c o n t i n u e to favor affinity with the m o l l u s c s ( M a l i n k y e t al. 2004). S o m e h y o l i t h i d s m a y h a v e b e e n similar t o the p r e s e n t - d a y p l a n k t o n i c p t e r o p o d m o l l u s c s , b u t o t h e r s w e r e probably b e n t h o n i c a n d c a p a b l e o f m o v e m e n t a l o n g t h e sea f l o o r (Fisher 1962). Well-preserved s p e c i m e n s retain the o p e r c u l u m a n d a pair of c u r v e d spines e m e r g i n g from the a p e r t u r e that c o u l d h a v e b e e n u s e d i n l o c o m o t i o n . C i n c i n n a t i a n h y o l i t h i d s are k n o w n from t h e M a y s v i l l i a n a n d R i c h m o n d i a n and i n c l u d e t w o g e n e r a , Hyolithes a n d Coleolus (see D a l v e 1948).
M a c h a e r i d i a n s are a v e r y s m a l l a n d p r o b l e m a t i c g r o u p o f fossils k n o w n
Mysterious
from r o c k s o f O r d o v i c i a n t h r o u g h P e r m i a n a g e , a n d are r e p r e s e n t e d i n t h e
Machaeridians
Cincinnatian.
T h e s e p e c u l i a r fossils are c o m p o s e d o f a series o f o v e r l a p -
p i n g , c a l c a r e o u s s e g m e n t s that a r e e a c h f o r m e d b y a p a i r o f plates ( c a l l e d sclerites).
The p a i r e d plates f o r m a h e a r t - s h a p e d t u b e in c r o s s - s e c t i o n .
M a c h a e r i d i a n s o c c u r e i t h e r a s a r t i c u l a t e d series o f m a n y s e g m e n t s , taperi n g at o n e e n d , or as d i s a r t i c u l a t e d sclerites. It is p o s s i b l e that t h e series of sclerites is not a c o m p l e t e o r g a n i s m , b u t rather is a d i s s o c i a t e d body part. In a d e t a i l e d study of C i n c i n n a t i a n s p e c i m e n s , John K. P o p e ( 1 9 7 5 ) a r g u e d that Lepidocoleus is a s h e a t h of plates that c o v e r e d s p i n e s t h a t w e r e att a c h e d to the t h e c a of the c a r p o i d e c h i n o d e r m Enoploura (see c h a p t e r 1 2 , F i g u r e 1 2 . 1 7 B ) . Pope's a r g u m e n t w a s b a s e d largely o n t h e f i n d i n g o f a b u n dant d i s a r t i c u l a t e d c a r p o i d plates a n d a r t i c u l a t e d series o f m a c h a e r i d i a n sclerites a t t w o C i n c i n n a t i a n l o c a l i t i e s . M a c h a e r i d i a n s h a d b e e n interpreted p r e v i o u s l y a s b e l o n g i n g t o t h e c h i t o n s , b a r n a c l e s , a n n e l i d s , trilobites, or e c h i n o d e r m s . In 2 0 0 4 H i n t s et al. treated m a c h a e r i d i a n s as plates o f a n u n k n o w n , bilaterally s y m m e t r i c a l w o r m - l i k e o r g a n i s m , b u t i g n o r e d Pope's c a r p o i d e c h i n o d e r m
interpretation.
Lepidocoleus jamesi
(flail
and
W h i t f i e l d ) o c c u r s t h r o u g h o u t t h e C i n c i n n a t i a n ( D a l v e 1948). M a c h a e r i d ians are u s u a l l y r e g a r d e d as rare fossils, b u t t h e o c c u r r e n c e s r e p o r t e d by Pope show that t h e y c a n b e very a b u n d a n t i n s o m e b e d s .
Annelids and Worm-Like Fossils
145
746
A Sea without Fish
11
ARTHROPODS: TRILOBITES AND OTHER LEGGED CREATURES
I n t e r m s o f s h e e r a b u n d a n c e , s p e c i e s diversity, a n d e x p l o i t a t i o n o f h a b i t a t s , a r t h r o p o d s rank a s t h e m o s t s u c c e s s f u l o f all l i v i n g a n i m a l s . M o r e t h a n 750,000 s p e c i e s (mostly insects) i n h a b i t a cast r a n g e of e n v i r o n m e n t s on l a n d , i n the sea, a n d i n fresh water. L i v i n g a r t h r o p o d s i n c l u d e t h e i n s e c t s , crustaceans, horseshoe crabs, arachnids, centipedes, and millipedes. Duri n g the O r d o v i c i a n , a r t h r o p o d s h a d n o t yet i n v a d e d t h e l a n d , b u t trilobites w e r e a b u n d a n t a n d d i v e r s e i n the sea, a l o n g w i t h t h e e u r y p t e r i d s , ostrac o d e s , a n d a few o t h e r m i n o r g r o u p s . D e s p i t e their b e w i l d e r i n g variety o f f o r m , all a r t h r o p o d s s h a r e c e r t a i n basic features. L i k e their c l o s e relatives, t h e a n n e l i d w o r m s , a r t h r o p o d s have a s e g m e n t e d body. Unlike the a n n e l i d s , t h e b o d y a n d its a p p e n d a g e s are e n c a s e d in an e x o s k e l e t o n c o m p o s e d of t h e p r o t e i n c h i t i n . The e x o s k e l eton is m u c h like a suit of a r m o r in h a v i n g rigid c o m p o n e n t s a r t i c u l a t e d b y f l e x i b l e joints. ( T h e n a m e a r t h r o p o d m e a n s " j o i n t e d legs.") N o t o n l y
Figure 11.1. The Ordovician
trilobite
d o e s the e x o s k e l e t o n shield t h e internal o r g a n s f r o m p r e d a t i o n a n d s o m e
Left,
dorsal view, right,
e n v i r o n m e n t a l h a z a r d s , b u t it also p r o v i d e s rigid p o i n t s for m u s c l e a t t a c h -
ventral view.
m e n t . C o n s e q u e n t l y , a r t h r o p o d s are c a p a b l e o f rapid l o c o m o t i o n b y w a l k -
Kevina
ing, s w i m m i n g , o r f l y i n g . T h e n a t u r e o f t h e e x o s k e l e t o n has t w o i m p o r t a n t c h i t i n o u s e x o s k e l e t o n d e c o m p o s e s after d e a t h , m a i n a r t h r o p o d s are p o o r c a n d i d a t e s for fossil p r e s e r v a t i o n . H o w e v e r , a r t h r o p o d s that h a v e t h i c k e r e x o s k e l e t o n s o r i n c o r p o r a t i o n o f c a l c i u m c a r b o n a t e into t h e i r s k e l e t o n s (such a s s o m e c r u s t a c e a n s a n d trilobites) w i l l h a v e e n h a n c e d p o t e n t i a l for p r e s e r v a t i o n . S e c o n d , all a r t h r o p o d s grow b y p e r i o d i c a l l y s h e d d i n g t h e e x o s k e l e t o n a n d f o r m i n g a new skin that a c c o m m o d a t e s g r o w t h . E a c h ind i v i d u a l a r t h r o p o d c a n c o n t r i b u t e n u m e r o u s s h e d e x o s k e l e t o n s (molts) a s potential fossils d u r i n g its l i f e t i m e . M o l t i n g may thus e x p l a i n in part t h e a b u n d a n c e o f s o m e a r t h r o p o d fossils.
Trilobites
brian. T h e y r e m a i n e d diverse and a b u n d a n t d u r i n g the O r d o v i c i a n . A m o n g the plethora of C i n c i n n a t i a n fossils, trilobites are a r g u a b l e the best k n o w n for their preservation and a b u n d a n c e . Trilobites are u n i q u e a m o n g the a r t h r o p o d s in h a v i n g a characteristic l e n g t h w i s e s u b d i v i s i o n of the dorsal exoskeleton into three l o b e s , an axial l o b e flanked by t w o pleural l o b e s ( F i g u r e 11.1). There is a distinct h e a d shield or c e p h a l o n , a flexibly s e g m e n t e d thorax, a n d a tail shield or p y g i d i u m . The c e p h a l o n u s u a l l y has a c e n t r a l , s w o l l e n r e g i o n c a l l e d the g l a b e l l a . A l t h o u g h it r e s e m b l e s a n o s e or f o r e h e a d , the g l a b e l l a 147
Drawings by
Vulinec.
i m p l i c a t i o n s for t h e fossilization p o t e n t i a l o f a r t h r o p o d s . First, b e c a u s e t h e
A l t h o u g h trilobites a c h i e v e d their m a x i m u m diversity d u r i n g t h e L a t e C a m -
Triarthrus.
a c t u a l l y p r o t e c t e d the trilobite's s t o m a c h . T r a n s v e r s e glabellar lobes and furrows i n d i c a t e fused s e g m e n t a t i o n of the h e a d r e g i o n . A p r o m i n e n t pair of c o m p o u n d eyes u s u a l l y flanks the g l a b e l l a . A s i n u o u s facial suture crosses the cephalon a l o n g s i d e the e y e s , s e p a r a t i n g the lateral free c h e e k s from the fixed cheeks.
The facial s u t u r e p r o v i d e d a l i n e o f b r e a k a g e across t h e c e p h a l o n
d u r i n g m o l t i n g . For this r e a s o n , isolated free c h e c k s are c o m m o n l y f o u n d as well as the c r a n i d i u m . a single unit c o m p r i s i n g the g l a b e l l a and fixed c h e e k s . A pair of g e n a l spines is often d e v e l o p e d at the posterior c o r n e r s of the c e p h a l o n , as seen in Flexicalymene meeki, Isotelus maximus, and Cryptolithus tessellatus from the C i n c i n n a t i a n . T h e s e g m e n t s o f t h e t h o r a x w e r e c o n n e c t e d b y a t h i n i n t e g u m e n t that a l l o w e d t h e trilobite to flex its body a n d in many cases to a c h i e v e c o m p l e t e e n r o l l m e n t l i k e a m o d e r n p i l l b u g (an i s o p o d c r u s t a c e a n ) . After d e a t h , d e c a y o f the a r t i c u l a t i n g i n t e g u m e n t often r e l e a s e d i n d i v i d u a l t h o r a c i c segm e n t s that r e s e m b l e b r a c k e t s ({) w h e n p r e s e r v e d .
The p y g i d i u m is c o m -
n i o n l v p r e s e r v e d as a s i n g l e unit b e c a u s e its s e g m e n t s w e r e fused. As a c o n s e q u e n c e o f m o l t i n g a n d p o s t - m o r t e m d e c a y , t r i l o b i t e f r a g m e n t s are a b u n d a n t , b u t c o m p l e t e , a r t i c u l a t e d s p e c i m e n s are u n c o m m o n .
There i s
c o n s i d e r a b l e d e b a t e a b o u t w h e t h e r c o m p l e t e s p e c i m e n s represent trilobites buried intact, b e c a u s e s o m e may have molted without the exoskeleton b r e a k i n g apart. U s u a l l y , h o w e v e r , a r t i c u l a t e d s p e c i m e n s , p a r t i c u l a r l y e n rolled o n e s , r e p r e s e n t trilobites b u r i e d alive or very s o o n after d e a t h . O n t h e v e n t r a l side o f t h e c e p h a l o n , a plate c a l l e d the l a b r u m o r hyp o s t o m c w a s p o s i t i o n e d b e n e a t h the m o u t h a n d c o n n e c t e d t o t h e anterior m a r g i n o f t h e c e p h a l o n ( F i g u r e s 1 1 . 1 , 1 1 . 2 , 11.4B). T h e l a b r u m i s often f o u n d as an isolated fossil, b u t it rarely will be f o u n d in p l a c e . U n l i k e that of a c r a b or lobster, t h e ventral e x o s k e l e t o n of trilobites was a t h i n , c h i t i n o u s m e m b r a n e to w h i c h the appendages were attached. Trilobite appendages were also weakly constructed and thus were preserved only under exceptional c o n d i t i o n s ( F i g u r e 1 1 . 4 D ) . A pair of jointed a n t e n n a e w a s a t t a c h e d to the ventral side of the c e p h a l o n , f o l l o w e d by a series of p a i r e d , jointed a p p e n d a g e s u n d e r l y i n g e a c h s e g m e n t o f the c e p h a l o n , thorax and pygidi u m . A l t h o u g h a p p e n d a g e s are k n o w n from v e r y few s p e c i e s o f trilobites, t h e a p p e n d a g e s are s i m i l a r i n h a v i n g t w o b r a n c h e s : t h e w a l k i n g l e g o r e n d o p o d i t e a n d a b r a n c h c a l l e d t h e e x o p o d i t e e x t e n d i n g from t h e basal s e g m e n t o f t h e e n d o p o d i t e ( F i g u r e s 1 1 . 1 , 11.2). T h e e x o p o d i t e c a r r i e d n u m e r o u s filaments g i v i n g it a c o m b - l i k e a p p e a r a n c e . A l t h o u g h at least sixteen g e n e r a of trilobites are k n o w n from the C i n c i n n a t i a n , o n l y a few are c o m m o n . Flexicalymene and Isotelus are the m o s t c o m m o n and are distributed t h r o u g h o u t the C i n c i n n a t i a n Series. The w i d e spread distribution of t h e s e t w o s i g n a t u r e trilobites, in shales a n d l i m e s t o n e s r e p r e s e n t i n g t h e full r a n g e o f C i n c i n n a t i a n d e p o s i t i o n a l e n v i r o n m e n t s , clearly s u g g e s t s that b o t h h a d very g e n e r a l i z e d habitat p r e f e r e n c e s . In c o n trast, m o s t o t h e r C i n c i n n a t i a n trilobites h a v e m u c h m o r e restricted stratig r a p h i c distributions, s u g g e s t i n g m o r e l i m i t e d e n v i r o n m e n t a l tolerances. Flexicalymene is o n e of the world's b e s t - k n o w n trilobites, in large m e a sure d u e to its a b u n d a n c e in C i n c i n n a t i a n strata ( F i g u r e 11.3). A l t h o u g h a m o d e r n systematic review has not b e e n d o n e , as m a n y as three species may
148
A Sea without Fish
Figure 1 1 . 2 . Ventral views of three bites,
Ordovician
showing
structions ages.
of
the
mene
A. B.
Isotelus
(Con-
Composite of
maximus
latus,
ted because
tessellatus Raymond
figures 9,
16, 20) and by
permission
Connecticut Acad-
emy of Arts and
be present: F. meeki (Foerste), by far t h e m o s t a b u n d a n t a n d w i d e l y distributed species, F. granulosa (Foerste), a small form restricted to t h e l o w e r C i n c i n n a t i a n K o p e F o r m a t i o n , a n d F. retrorsa (Foerste), f o u n d o n l y in t h e u p p e r F o r m a t i o n . In the first v o l u m e of the Geological
Survey of Ohio (1873), F. B. M e e k i n c l u d e d t h e C i n c i n n a t i a n c a l y m e n i d Calymene senaria,
originally described from
N e w York by
C o n r a d in 1841. Foerste (1910) p r o p o s e d t h e n a m e Calymene meeki for the
Arthropods
Green. (1920,
reprinted
Sciences.
149
un-
Cryptoli-
thus
the
I.
omit-
they are C.
From
of
trilobites with
and
(exopodites
known).
top
Flexicaly-
senaria
rad).
Waynesville
append-
Anterior at the
in each.
Cincinnatian
trilo-
recon-
s p e c i e s so well d e s c r i b e d by M e e k from the C i n c i n n a t i a n rocks of O h i o , but p r o v i d e d o n l y a five-line description and a single illustration of an e n r o l l e d s p e c i m e n . In the s a m e p a p e r Foerste n a m e d C. meeki-retrorsa, a form of C a l y m e n e meeki from the Waynesville, w h i c h differs chiefly in t h e n a r r o w e r posterior w i d t h o f the c e p h a l o n , r e s u l t i n g i n m o r e o b t u s e genal a n g l e s . T h e anterior border of the c e p h a l o n is m o r e strongly reflexed, b r i n g i n g it closer to the anterior m a r g i n of the g l a b e l l a . T h e British worker Shirley (1936) p l a c e d t h e C i n c i n n a t i a n s p e c i e s in Flexicalymene. Ross (1967) provided a m o r e c o m p l e t e d e s c r i p t i o n of F. meeki a n d also r e v i e w e d the status of Foerste's C. meeki-retrorsa. Ross c o n s i d e r e d F. retrorsa to be a valid species alt h o u g h it has little to d i s t i n g u i s h it
750
A Sea without Fish
from
meeki except the size, s h a p e , and
inclination of the anterior c r a n i d i a l border. Ross was u n a b l e to verify t h e
Figure 11.3. A, B. Flexicalymene meeki
other differences asserted by Foerste. A m o r p h o m e t r i c analysis c o n d u c t e d by D a n i t a Brandt (1980) in her u n p u b l i s h e d master's thesis led h e r to c o n c l u d e that only a single species, F. meeki, is valid, a n d that b o t h F. granulosa and F. retrorsa s h o u l d be s y n o n y m i z e d w i t h F. meeki as intraspecific variants. M o r e recent work b y B r e n d a H u n d a (pers. c o m m . ) supports t h e r e c o g n i t i o n of F. meeki, F. retrorsa, and F. granulosa as valid s p e c i e s .
(Foerste),
collections,
Maysvillian,
Corryville
Formation, Ohio, C.
Hamilton
enrolled
cephalic
Flexicalymene is c o m m o n l y f o u n d as isolated p a r t i a l e x o s k e l e t o n s (cc-
University of
Cincinnati
width
rorsa (Foerste),
l i m e s t o n e s ; c o m p l e t e s p e c i m e n s are less c o m m o n a n d a r e u s u a l l y f o u n d i n
Ferree
shales a s either e n r o l l e d o r e x t e n d e d i n d i v i d u a l s . O n rare o c c a s i o n s , t h e s e trilobites c a n be f o u n d in g r e a t n u m b e r s in yellowish s h a l e s k n o w n as butter shales. O n e o f the m o s t prolific trilobite d i s c o v e r i e s e v e r m a d e i n t h e
mation,
Arnheim
Mark Peter col-
Formation,
Avenue and W e s t w o o d Northern Boulevard in northwest C i n c i n n a t i in the
Ohio,
1950s. Literally t h o u s a n d s o f F l e x i c a l y m e n e w e r e c o l l e c t e d f r o m t w o shaleb e d s 2.5 a n d 3 feet t h i c k , a n d as t h e e x p o s u r e w e a t h e r e d , trilobites b e c a m e p e r c h e d on pedestals of cla\ for eas\ p i c k i n g ( C a s t e r , pers, c o m m . ; S c h w e i n 1958). T a p h o n o m i c s t u d i e s o f o c c u r r e n c e s o f a b u n d a n t , c o m p l e t e
trilobites i n C i n c i n n a t i a n s h a l e s i n d i c a t e that t h e s e a r e t h e result o f m a s s m o r t a l i t i e s o f l i v i n g trilobite p o p u l a t i o n s s m o t h e r e d d u r i n g s t o r m s o r m a s s 1985; S c h u m a c h e r
a n d S h r a k e 1997; H u g h e s a n d C o o p e r 1999).
Life Habits of Flexicalymene O u r u n d e r s t a n d i n g o f t h e life habits o f trilobites has b e e n h a m p e r e d b y t h e fact that trilobites are e x t i n c t a n d h a v e n o c l o s e l i v i n g relatives, a l t h o u g h h o r s e s h o e crabs a n d s o m e c r u s t a c e a n s are often r e g a r d e d a s p o s s i b l e m o d els (Plate 3 G ) . T h e f o r m o f t h e a p p e n d a g e s i s c l o s e l y related t o life habits in l i v i n g a r t h r o p o d s , but in trilobites t h e a p p e n d a g e s are so rarely p r e s e r v e d that little i n f o r m a t i o n c a n be g a i n e d from t h e m . A r e c e n t r e v i e w by Fortey and O w e n s (1999) d e m o n s t r a t e d that o t h e r p r e s e r v e d m o r p h o l o g i c a l features o f trilobites c a n b e u s e d t o d e t e r m i n e their f e e d i n g habits. Fortey a n d O w e n s regard t h e
calymenid
trilobites like F l e x i c a l y m e n e t o h a v e b e e n
predators or s c a v e n g e r s b e c a u s e the h y p o s t o m e is rigidly a t t a c h e d to t h e underturned edge of the c e p h a l o n (doublure). T h e hypostome may have acted as a g r i n d i n g or m a n i p u l a t i n g s u r f a c e for s m a l l prey i t e m s h e l d b e t w e e n t h e basal s e g m e n t s o f t h e a p p e n d a g e s . F u r t h e r e v i d e n c e for the predator)
behavior of Flexicalymene c o m e s
from characteristic b u r r o w s (trace fossils n a m e d Rusophycus) f o r m e d by this trilobite. Rusophycus trace fossils are well k n o w n in strata of late P r e c a m brian t h r o u g h D e v o n i a n a g e s , and m o s t are t h o u g h t t o h a v e b e e n p r o d u c e d by trilobites d i g g i n g into the s e d i m e n t u s i n g the paired a p p e n d a g e s ( H a n t z schcl 1975). A l t h o u g h the d i g g i n g activity c o u l d reflect different possiblebehaviors i n c l u d i n g sheltering, resting, e g g l a y i n g , o r f e e d i n g , r e c e n t discoveries suggest that trilobites w e r e actively h u n t i n g prey b u r i e d w i t h i n the sedi-
Arthropods
For-
Ohio, x 1.4. D. Flexicalymene granulosa (Foerste),
ville F o r m a t i o n d u r i n g c o n s t r u c t i o n o f a n a p a r t m e n t c o m p l e x a t B o u d i n o t
1980,
Rich-
Highland Co.,
lection,
m o v e m e n t s of hue-grained sediments (Brandt
ret-
CMC IP,
Collection,
mondian,
C i n c i n n a t i a n was in such a shale within the lower R i c h m o n d i a n W a y n e s -
furth
28 mm.
Flexicalymene
p h a l a , c r a n i d i a , free c h e e k s , t h o r a c i c s e g m e n t s , p y g i d i a ) i n C i n c i n n a t i a n
Co.,
specimen,
151
Edenian, Brown
x 2.5.
Kope Co.,
ment. A l t h o u g h by no m e a n s c o m m o n , several r e m a r k a b l e cases of Rusophycus i n t e r s e c t i n g w o r m b u r r o w s a r e k n o w n from the C a m b r i a n (Jensen 1990) a n d C i n c i n n a t i a n ( B r a n d t et al.
1995). In t h e C i n c i n n a t i a n , Flexicalymene
is u n e q u i v o c a l l y identified as the p r o d u c e r of o n e t y p e of Rusophycus (R. puclicum) on the basis of a few
e x c e e d i n g l y rare s p e c i m e n s that have the
characteristic bilobate burrow preserved in p l a c e b e n e a t h the c o m p l e t e cara-
152
A Sea without Fish
p a c e o f the trilobite (see F i g u r e 14.2B; O s g o o d 1970). A l t h o u g h n o s p e c i -
Figure 1 1 . 4 . I s o t e l u s
m e n s of Rusophycus p u d i c u m from the C i n c i n n a t i a n h a v e b e e n f o u n d inter-
maximus Locke.
s e c t i n g w o r m b u r r o w s , the d i g g i n g activity i s c o n s i s t e n t w i t h p r e d a t i o n o n
rolled specimen,
small, infaunal o r g a n i s m s (Fortey a n d O w e n s 1999). D e s p i t e the e x c e l l e n t state of preservation f o u n d in C i n c i n n a t i a n Flexicalymene, r e m n a n t s o f the a p p e n d a g e s h a v e n e v e r b e e n f o u n d . S t u r m e r a n d
2250,
Riehmondian,
heim
Formation,
land Co., Ohio, B.
B e r g s t r o m (1973) carried out x-radiographic studies that r e v e a l e d p r e s e r v e d
CMC IP 33067, lian,
H u g h e s and C o o p e r (1999) d e t e c t e d n o e v i d e n c e o f a p p e n d a g e s i n Flexica-
x
lymene.
Robert
centrated w i t h i n the b o d y cavity of Flexicalymene that m a y h a v e o r i g i n a t e d as d e c a y i n g soft parts. An a p p r o x i m a t e idea of the n a t u r e of the a p p e n d a g e s in C i n c i n n a t i a n Flexicalymene s p e c i e s c a n be g a i n e d f r o m t h e restoration of the closely related F. senaria ( f i g u r e 1 1 . 2 A ; R a y m o n d 1920).
x
1.3.
Maysvil-
Clermont Co.,
7.
Ohio,
CMC IP 51,
C.
Nestor
Maysvillian,
collection,
Corryville
Formation,
Clermont
Co.,
Ohio, x 1.8.
D.
pendages
ventral side
of a
Isotelus i s t h e o t h e r h i g h l y c h a r a c t e r i s t i c a n d w i d e l y d i s t r i b u t e d t r i l o -
Arn-
High-
Large hypostome,
a p p e n d a g e s in s o m e trilobites, b u t s i m i l a r studies by B r a n d t (1980) a n d by The study by H u g h e s and C o o p e r revealed pyritized material c o n -
En-
A.
CMC IP
on
complete
USNM
Ap-
specimen,
33458,
Riehmon-
bite of t h e C i n c i n n a t i a n (Plate 7; f i g u r e 11.4). F r a g m e n t s of this large tri-
dian,
Oxford,
Butler Co.,
lobite are f o u n d i n every C i n c i n n a t i a n f o r m a t i o n , i n b o t h l i m e s t o n e s a n d
Ohio,
x 0.75.
This excep-
shales. C o m p l e t e s p e c i m e n s are q u i t e rare, b u t i n c e r t a i n s h a l e h o r i z o n s ,
tional specimen
p a r t i c u l a r l y i n the W a y n e s v i l l e F o r m a t i o n , n u m e r o u s c o m p l e t e s p e c i m e n s have b e e n f o u n d ( S c h u m a c h e r a n d S h r a k e 1 9 9 7 ) . S p e c i m e n s o f Isotelus from the C i n c i n n a t i a n arc a m o n g t h e l a r g e s t - k n o w n trilobites. A s p e c i m e n
leborough courtesy Babcock.
of Isotelus on e x h i b i t at t h e S m i t h s o n i a n I n s t i t u t i o n c o l l e c t e d in 1919 duri n g c o n s t r u c t i o n o f the H u f f m a n D a m n e a r D a y t o n m e a s u r e s 3 7 c m l o n g (14.5 in) b y 2 6 c m w i d e (10.25 in). T h e c o m p l e t e s p e c i m e n a t C i n c i n n a t i M u s e u m C e n t e r m e a s u r e s 37.5 c m i n l e n g t h (Plate 7 ) . O n t h e basis o f partial s p e c i m e n s , Isotelus p r o b a b l y r e a c h e d l e n g t h s o f 8 0 - 9 0 c m ( B a b c o c k , pers. c o m m . ) . R e c e n t l y , a s p e c i m e n o f Isotelus w a s f o u n d i n U p p e r O r d o v i c i a n strata i n n o r t h e r n M a n i t o b a that h o l d s t h e c u r r e n t w o r l d r e c o r d as the largest trilobite, at a l e n g t h of o v e r 70 cm ( R u d k i n et al. 2003). C u r r e n t l y , t w o s p e c i e s o f Isotelus a r e r e c o g n i z e d i n t h e C i n c i n n a t i a n : I. maximus and I. gigas. I. maximus has w e l l - d e v e l o p e d g e n a l s p i n e s . I. gigas has g e n a l s p i n e s that are e i t h e r shorter t h a n t h o s e of I. maximus or l a c k i n g . W i t h o u t a m o d e r n , critical a n a l y s i s o f t h e r a n g e o f v a r i a t i o n w i t h i n these s p e c i e s , it is not c l e a r h o w to s e p a r a t e I. maximus f r o m I. gigas on t h e basis of g e n a l s p i n e l e n g t h . C i n c i n n a t i a n Isotelus h a v i n g a very b r o a d , flattened c a r a p a c e w e r e g i v e n the n a m e
I.
brachycephalus
by F o e r s t e (1919),
but this s p e c i e s w a s r e g a r d e d as a v a r i a n t of I. maximus by B a b c o c k ( 1 9 9 6 ) , and h e n c e a j u n i o r s y n o n y m of I. maximus. (If t w o d i f f e r e n t n a m e s h a v e b e e n g i v e n t o the s a m e s p e c i e s b y d i f f e r e n t w o r k e r s , o n e n a m e c a n b e s u b o r d i n a t e d as a j u n i o r
anonym
if it w a s d e s c r i b e d after t h e o r i g i n a l
n a m e a n d if it is d e t e r m i n e d to be e q u i v a l e n t to t h e o r i g i n a l l y d e s c r i b e d taxon.) B e c a u s e I. maximus a n d his
I.
brachycephalus
o c c u r t o g e t h e r in t h e
R i e h m o n d i a n strata o f t h e C i n c i n n a t i a n , Foerste s u g g e s t e d t h e possibility that the b r o a d e r I. B r a c h y c e p h a l u s m i g h t r e p r e s e n t f e m a l e s a n d t h e narrower I . m a x i m u s the m a l e s o f a s i n g l e s p e c i e s . This r e m a i n s a n i n t r i g u i n g possibility that has n e v e r b e e n fully e x p l o r e d .
Anhropods
was
orig-
inally illustrated by Mick-
153
(1883). of Loren
Photo
Life
Habits
o f Isotelus
Isotelus w a s o n e of t h e l a r g e s t - k n o w n a n i m a l s in the C i n c i n n a t i a n sea, riv a l e d o n l y by t h e less c o m m o n
Megulograptus and a l o n e , Isotelus m i g h t b e
euryptcrid
c e p h a l o p o d s . By v i r t u e o f its l a r g e s i z e
endocerid suspected
to h a v e b e e n a predator, b u t a d d i t i o n a l e v i d e n c e also p o i n t s clearly toward this i n t e r p r e t a t i o n of its e c o l o g i c a l role. L i k e Flexicalymene,
Isotelus
has a
h y p o s t o m e rigidly a t t a c h e d t o the c e p h a l i c d o u b l u r e ( F i g u r e s 1 1 . 2 B , 11.4B); i n a d d i t i o n t h e a n t e r i o r c e p h a l i c m a r g i n i s s t r e n g t h e n e d ( F o r t e y and O w -
154
A Sea without Fish
e n s 1999). Fortey a n d O w e n s m e n t i o n e d several o t h e r u n i q u e features o f
Figure 11.5.
the Isotelus h y p o s t o m e that s u g g e s t its f u n c t i o n as a rigid p l a t f o r m like an
roproetus
anvil for the m a n i p u l a t i o n of b u l k y f o o d : its forked s h a p e , a n d d e v e l o p m e n t of anterior w i n g s p r o v i d e a larger s u r f a c e a r e a , a n d the fine raised ridges on the i n n e r s u r f a c e s of t h e fork c o u l d m a k e it easier to h o l d t h e prey rigidly u s i n g t h e a p p e n d a g e s . This h y p o s t o m e i s t h e m o s t h e a v i l y c a l c i f i e d part o f the
Isotelus
exoskeleton
and
is o f t e n
found
as a n
isolated c o m p o n e n t
( F i g u r e 11.4B).
(Hall),
A.
CMC IP 46429,
Edenian
(figured in Davis
[1992, plate 2, as
Proetus
B.
eatoni
In the C i n c i n n a t i a n , large Rusophycus b u r r o w s h a v e b e e n a t t r i b u t e d
collector,
Steve
m e n s often show
Ohio, x 4.6.
not o n l y f u r r o w s c r e a t e d b y t h e a p p e n d a g e s , b u t a l s o
impressions o f the c e p h a l i c a n d p y g i d i a l m a r g i n s a n d p l e u r a e . A r e m a r k able s p e c i m e n s h o w s a h o r i z o n t a l w o r m burrow a p p a r e n t l y t r u n c a t e d i n the a p p r o x i m a t e l o c a t i o n o f t r i l o b i t e s m o u t h (see F i g u r e 14.2A; Brandt e t
C.
tessellatus
Green,
University of Cin-
cinnati nian,
collections,
Hamilton Co.,
so as to impress the m a r g i n s of its c a r a p a c e l i k e a c o o k i e cutter. T h e t r a c e s h o w s i m p r e s s i o n s o f t h e basal s e g m e n t s (coxae) o f the a p p e n d a g e s that probably s e i z e d the prey a l o n g the v e n t r a l m i d l i n e a n d w o r k e d it toward t h e m o u t h . A s i n g l e e x c e p t i o n a l s p e c i m e n p r e s e r v i n g the a p p e n d a g e s o f was f o u n d in t h e C i n c i n n a t i a n n e a r O x f o r d , O h i o , a n d w a s first
r e p o r t e d b y M i c k l e b o r o u g h (1883) ( F i g u r e 11.41D). O n l y t h e w a l k i n g l e g s are p o o r l y p r e s e r v e d , but the large s i z e of the c o x a e is e v i d e n t .
O t h e r Trilobites Cryptolithus, the l a c e - c o l l a r e d trilobite, is a n o t h e r c o m m o n C i n c i n n a t i a n trilobite in the Edenian a n d M a v s v i l l i a n f o r m a t i o n s ; a s i n g l e s p e c i e s , C. tessellatus, is present ( F i g u r e 1 1 . 5 C ) . Its c o m m o n n a m e refers to the b r o a d , perforated c e p h a l o n that bears g e n a l spines. The t h o r a x a n d p y g i d i u m form a s m a l l , short unit that is rarely f o u n d a t t a c h e d to the c e p h a l o n . E x c e p t i o n ally w e l l - p r e s e r v e d s p e c i m e n s from t h e O r d o v i c i a n o f N e w York r e v e a l e d R e c o n s t r u c t i o n of t h e a p p e n d a g e s s h o w s
that e a c h w a l k i n g leg was a c c o m p a n i e d by a b r a n c h (exopodite) that c a r r i e d The e x o p o d i t e s p r o b a b l y w a v e d
in u n i s o n to stir up the s e d i m e n t and create a respiratory a n d f e e d i n g curTrace fossils attributable to Cryptolithus (Rusophycus cryptolithi) s u g -
gest that this trilobite e x c a v a t e d a pit that c r e a t e d a filter-feeding c h a m b e r b e n e a t h the broad c e p h a l o n ( O s g o o d 1970; F o r t e y and O w e n s 1999). Different workers a g r e e that Cryptolithus u s e d the a p p e n d a g e s to e x t r a c t food particles from the s e d i m e n t stirred up in d i g g i n g the pit, b u t t h e r e are varyi n g interpretations of the f u n c t i o n of the p e r f o r a t i o n s of the c e p h a l i c fringe. The tunnel-like perforations c o u l d h a v e a c t e d as a sieve to s e p a r a t e fine particles from a f e e d i n g c u r r e n t p a s s i n g from the exterior of t h e c e p h a l o n to the interior ( C i s n e 1970; S c i l a c h e r 1970). A c c o r d i n g to Fortey a n d O w e n s (1999), it is m o r e r e a s o n a b l e to s u p p o s e that a f e e d i n g c u r r e n t c r e a t e d by the e x o p o d i t e s (gills) stirred up food p a r t i c l e s b e n e a t h t h e trilobite, t h e n exited t h r o u g h the perforations from t h e interior t o t h e exterior. C a m p b e l l ( 1 9 7 5 ) ,
155
Ede-
Kope Formation,
3.7.
Arthropods
Co.,
Cryp-
tolithus
e v i d e n t l y d u g a n d drew itself d o w n into a s e m i - c o h e s i v e m u d s u b s t r a t u m
long, comb-like filaments (Figure 11.2C).
Kope
Hamilton
al. 1 9 9 5 ) — a trace fossil r e c o r d i n g the v e r y act o f p r e d a t i o n . T h e trilobite
the a p p e n d a g e s of Cryptolithus.
Rush
Edenian,
Formation,
rent.
Triar-
(Hall),
Brown collection, J.
to Isotelus on the basis of their s i z e (R. carleyi, see O s g o o d 1970). S p e c i -
Isotelus
figure 23] parviuscu-
lus), x 7.7. thrus
Deco-
parviusculus
Ohio,
x
Figure
11.6.
B,
D.
Ohio,
x 4.0.
A. D,
Steve Brown collection, J.
Undetermined.
B.
Steve Brown collection, J. Rush collector,
of Cincinnati collections, bryozoan
Acidaspis cincinnatiensis Meek,
Odontopleurid, gen. and sp. Kope Formation,
Peronopora sp.,
Hamilton Co.,
MUGM 4001-A,
x
2.8,
A Sea without Fish
C.
x 6.
F.
Rush collector,
x 2.6.
Richmondian, Oxford, Butler Co.,
Primaspis crosotus (Locke), E.
from Shrake (1989,
ventral side of trilobite showing hypostome in place, 156
x 2.6.
Ohio,
lata bioclaustrations in upper right part of bryozoan. 4010,
MUGM 29056,
University
Primaspis crosotus (Locke) on
plate 3C).
Note
Catellocaula
Primaspis crosotus (Locke) on bryozoan, x 5.2,
from Shrake (1989,
plate 4B).
valMUGM
Figure
11.7.
mondian, 29057,
Riehmondian,
and Gurley, D.
Cincinnatian phacopid trilobites.
Waynesville Formation,
Waynesville Formation,
CMC IP 5199,
A.
Montgomery Co.,
Platycoryphe christyi (Hall), Ohio,
Franklin Co.,
x 2.6. Indiana,
B.
Mark Peter collection,
Tricopelta breviceps (Hall),
x 5.5.
C.
Ceraurus milleranus Miller
enrolled, no unit or locality (figured in Davis [1992, plate 3,
Ceraurinus icarus (Billings),
Steve Brown collection, J.
Rush collector,
Riehmondian,
Arthropods
RiehMUGM
157
figure 28]), x 2.
x 2.5.
Figure 11.8. A,
C
printed by permission sis
from Caster and Kjellesvig-Waering (1964, plate 45, of the
Caster and Kjellesvig-Waering,
abdomen
of Megalograptus ohioensis. strabops
martini
Ohio,
Society
Richmondian,
and last (sixth) pair of legs
to right near top), holotype,
Co.,
Paleontological Research
for
x
Elkhorn
(darker segments),
CMC IP 24119A, C.
x 0.14.
holotype,
158
Geology.
A Sea without Fish
Adams
Co.,
Ohio;
Professor Kenneth E. CMC IP 24117A,
109,
Maysvillian,
figure 2),
figure 4) and re-
Eurypterid Megalograptus
dorsal imprint of prosoma B.
CMC IP 25569,
1.4. From Caster and Macke (1952, plate
figure 1, plate 46, A.
Formation,
First walking leg, paratype,
Caster and Macke,
Sedimentary
Institution.
ohioen-
ventral side of post-
(grey segments
turned
Caster with type specimens
x 0.9.
D. Aglaspid Neo-
Corryville Formation,
Clermont
and reprinted by permission of the
GALLERY
Plate 1. Ordovician continents and oceans. The reconstruction shown is for the Middle Ordovician, about 4 5 8 million years a g o , about 5.5 million years older than the beginning of the Cincinnatian. Compare to Plate 2. The position of Cincinnati (*) on the paleo-continent Laurentia w a s south of the equator. Map courtesy of C. R. Scotese, PALEOMAP Project (www.scotese.com).
Plate 2. Late Ordovician continents and oceans. This reconstruction is for the youngest t w o stages of the Ordovician, the Ashgillian and Hirnantian. This timeslice includes the Cincinnatian interval. Dots indicate sites where reefs and related deposits are known for these stages, and colors indicate the dominant groups contributing to these deposits. Tan = land areas, light blue = epicontinental seas, and darker blue = d e e p oceans. Map from Kiessling et al. (2003), and courtesy of Wolfgang Kiessling.
Plate 3. Living invertebrates related to type-Cincinnatian fossil groups. All photos by D. L. Meyer except as noted.
A. Sponge, Pericharax sp., Lizard Island,
Great Barrier Reef, Australia. Green fluorescent dye w a s released at base of sponge, taken into sponge's filtration system, and ejected as stream from osculum at top, as a demonstration of the sponge's filter-feeding capability. B. Coralline sponge, Acanthochaetetes wellsi Hartman and Goreau, submarine cave at 18 m depth, Palau Islands. Diameter 8 cm. Sponge tissue is a thin veneer over a calcareous skeleton. Coralline sponges are similar to Ordovician stromatoporoids. C. Scleractinian coral, Tubastrea coccinea Lesson, showing tentaclebearing polyps, Curacao, Netherlands Antilles. Photo by William K. Sacco.
D.
Bryozoan, Heteropora pacifica Borg, San Juan Islands, Washington, depth 24 m. Colony form very similar to some Ordovician bryozoans. E. Bryozoan, unidentified cheilostome, Lizard Island, Great Barrier Reef. Australia, depth about 18 m. Note extended tentacles along funnel-shaped section at center. Funnel-shaped section will act as a "chimney" to direct water away from the colony after it has been filtered by the tentacles. F. Brachiopod, Thecidellina, Curacao, Netherlands Antilles. These brachiopods are cemented by the pedicle valve to the undersides of coral colonies. Note 90 degree g a p e of valves and extended tentacles of the lophophore. Width about 4 mm. Photo by William K. Sacco. G. Horseshoe crab, Family Limulidae, Subfamily Tachypleinae, Mersing, Malaysia.
Plate 4. Nautilus, the only living cephalopod with an external shell. Photographs by Richard Arnold Davis.
A.,
B. Nautilus macromphalus, specimen trapped at Lifou and photographed
in aquarium at Noumea, New Caledonia. A. Note the hyponome, the circular opening below the head. B. Note countershading pattern in which stripes are confined to upper side of shell. C. Nautilus pompilius, cross-section of shell, showing chambers and siphuncular tube.
Plate 5. A. Scolecodont, one element of an annelid worm jaw apparatus, Nereigenys alata Eller, CMC IP 1952, Fairview Formation, Dearborn Co., Indiana, x 70. B. C o n o dont, one element of an apparatus,
Phragmodus
undatus Branson and Mehl, CMC IP 50705, Kope Formation, Campbell Co., Kentucky, x 227.
Plate 6. Allolichas halli (Foerste), Dan Cooper collection, Richmondian, Waynesville Formation, Franklin Co., Indiana. This exceptionally rare, complete specimen shows a darker coloration around the margin of the carapace that may be a remnant of original coloration. This species w a s assigned to Amphilichas until 2002 w h e n Holloway and Thomas placed it in Allolichas. Scale in mm.
Plate 7.
Isotelus maximus Locke,
Plate 8.
A. Flexicalymene retrorsa on internal mold
CMC IP 50168, Richmondian,
of nautiloid, CMC IP 50844, Arnheim Formation,
Adams Co., Ohio. This exceptional
Thomas Weaver Collection. Trilobite is located
complete specimen is 37.5 cm
on phragmocone (chambered) section of the
in length and w a s collected
nautiloid mold, with head toward body chamber.
and prepared by Thomas T.
Scale in mm. B. Parallel alignment of orthoconic
Johnson. Isotelus is the State
nautiloids, C M C IP, Cincinnatian. Scale in mm. Note
Invertebrate Fossil of Ohio.
that not all specimens on the slab are aligned.
Plate 9. Living echinoderms. A. Stalked crinoids (sea lilies), Neocrinus decorus Thomson, northeastern Straits of Florida, height about 1 m, 420 m depth. B. Unstalked crinoid (feather star), Pontiometra andersoni (P. H. Carpenter), Palau Islands, 4 m depth, arm length about 12 cm. C. Ophiuroid (brittle star), Ophiothrix sp., Caribbean Panama, disk diameter 5 - 1 0 mm. D. Echinoid, Strongylocentrotus franciscanus, San Juan Islands, Washington, diameter about 15 cm. E. Asteroid (sea star), Fromia nodosa Clark, Seychelles, Indian Ocean, arm length about 40 mm. F. Holothuroid (sea cucumber), Cucumaria miniata (Brandt), San Juan Islands, Washington, height about 15 cm. A. by Charles G. Messing, all others by D. L. Meyer.
Plate 10. Cincinnatian disparid crinoids. A. locrinus subcrassus (Meek and Worthen), C M C IP 46012, Waynesville Formation, Franklin Co., Indiana; note large crown size and dense packing of crinoidal material. B. "Logjam" of Ectenocrinus simplex (Hall), C M C IP, Fairview Formation, Hamilton Co., Ohio; note parallel alignment of crinoids.
Plate 11.
Cincinnatian cladid crinoids.
A. Cupulocrinus polydactylus (Shumard), MUGM 28344,
Oxford area, Butler Co., Ohio, six crowns, XI. B. Plicodendrocrinus casei(Meek), M U G M 28353, Liberty Formation, southwestern Ohio, t w o crowns, one overlaps the cup of the other, X1.3.
Plate 12. Late Ordovician paleogeography of the eastern United States. Light blue = shallowest water over Lexington Platform, medium blue = shallow subtidal depths, dark blue = deeper subtidal depths, buff = Queenston Delta, brown = Taconic highlands, the eventual location of the Appalachian Mountains. Courtesy of Steven M. Holland.
Plate 1 3 . Dioramas of the Cincinnatian sea. A. Cincinnati Museum of Natural History, by Paul Marchand, about 1959, under direction of Kenneth E. Caster. B. Museum of Comparative Zoology, Harvard University.
Plate 14. The Cincinnatian, by John A g n e w , 2007.
Figure
11.9.
Eurypterid Megalograptus ohioensis Caster and Kjellesvig-Waering.
Kjellesvig-Waering (1964, plate 49,
figure 2, plate 48,
adult female (from Caster and Kjellesvig-Waering [1964,
figure
1).
plate 43]),
A. x 0.14.
surface of adult female (from Caster and Kjellesvig-Waering [1964, plate 44]), second walking leg, 0.7. x
D. 0.4.
note bulbous expansion
Third paired appendage, A-D
C, B.
(sensory?) at end of longest spine,
of the Paleontological Research
From Caster and
Reconstruction of ventral
x 0.14.
C.
paratype,
showing large coxa and part of first four joints,
reprinted by permission
D.
Reconstruction of dorsal surface of
paratype,
Institution.
Arthropods
Distal end of CMC IP 24115,
159
x
CMC IP 24103A.
h o w e v e r , p o i n t e d o u t that very little f l o w c o u l d h a v e passed t h r o u g h the m i n u t e p o r e s a n d t h u s it is m o r e likely that t h e pores h a d a sensory f u n c t i o n to orient the a n i m a l into the c u r r e n t . It this is true, the pores may h a v e b e e n the sites of s e n s o r y hairs that w e r e not p r e s e r v e d . Triarthrus is restricted to the l o w e r m o s t K o p e f o r m a t i o n b u t is signific a n t for several r e a s o n s ( f i g u r e 11.5B). Triarthrus is t h e last of the o l e n i d trilobites t h a t w e r e p r o m i n e n t d u r i n g t h e C a m b r i a n . P y r i t i z e d s p e c i m e n s f r o m t h e U p p e r O r d o v i c i a n U t i c a S h a l e o f N e w York a r e a m o n g t h e m o s t w e l l - p r e s e r v e d trilobites, f r o m w h i c h d e t a i l e d r e c o n s t r u c t i o n s o f the app e n d a g e s a n d i n t e r n a l soft a n a t o m y h a v e b e e n m a d e ( C i s n e 1970; W l i i t t i n g t o n a n d A l m o n d 1987). In t h e C i n c i n n a t i a n , t w o s p e c i e s , T. eatoni a n d T. spinosus, are r e c o g n i z e d ( B a b c o c k
1996a) but p r e s e r v e d a p p e n d a g e s
h a v e n o t b e e n f o u n d . T h e s t r u c t u r e o f t h e a p p e n d a g e s i n Triarthrus suggests t h a t it w a s a p a r t i c l e f e e d e r , s o r t i n g food p a r t i c l e s w i t h the t h o r a c i c a p p e n d a g e s , w h i c h t h e n p a s s e d t h e m t o w a r d the m o u t h a l o n g the ventral axis ( F o r t e y a n d O w e n s 1999). E n l a r g e d , s p i n e - b e a r i n g basal l i m b segm e n t s ( g n a t h o b a s e s ) b e n e a t h t h e c e p h a l o n a c t e d like jaws t o p r o c e s s t h e f o o d a n d transfer it to the m o u t h . T h e restriction of Triarthrus to the dark s h a l e s o f t h e l o w e r K o p e f o r m a t i o n , a n d its d o m i n a n c e i n s o m e t h i n b e d s , b o t h s u g g e s t that this trilobite w a s u n i q u e l y a d a p t e d t o d e e p e r water e n v i r o n m e n t s low i n o x y g e n , a s w e r e o t h e r o l e n i d trilobites (Fortey and O w e n s 1999). A m o n g C i n c i n n a t i a n trilobites, t w o g e n e r a b e l o n g i n g t o the O r d e r O d o n t o p l e u r i d a are u n i q u e in b e i n g f e s t o o n e d with spines and tubercles; these are Acidaspis and Primaspis ( F i g u r e
11.6). Acidaspis is d i s t i n g u i s h e d by hav-
i n g a l o n g spine o r i g i n a t i n g on the occipital l o b e of the c e p h a l o n and e x t e n d i n g o v e r t h e axial l o b e of the t h o r a x , as well as l o n g g e n a l spines and a fringe of short spines a l o n g the m a r g i n of the free c h e c k s ( F i g u r e 11.6A). A c o m plete d e s c r i p t i o n of A. cincinnatiensis M e e k is given by W h i t t i n g t o n (1956). Primaspis lacks t h e o c c i p i t a l spine a n d has t h e c e p h a l i c spines l y i n g in a c u r v e ( F i g u r e s 1 1 . 6 C , E , F). B o t h g e n e r a h a v e spines d e v e l o p e d from the p l e u r a l l o b e s o f t h e thorax a n d the p y g i d i u m . Ross (1979) provided e x c e l l e n t illustrations of t h e s e very s m a l l trilobites that are u s u a l l y less than 1 cm in 11.10. Cincinnatian
Figure
ostracodes. atopsis
F o r m a t i o n t h r o u g h the top o f the M a v s v i l l i a n M l . A u b u r n F o r m a t i o n , and
Cer-
r e a p p e a r s i n t h e R i c h m o n d i a n W a y n e s v i l l e F o r m a t i o n . W h i t t i n g t o n (1956)
chambersi
(Miller), Kope
A.
s u g g e s t e d that a s i n g l e s p e c i e s , A. cincinnatiensis, is present. Primaspis cro-
CMC IP 40171,
Formation,
Cincin-
nati, Ohio. From Warshauer (1972, plate 5), 30.
B.
33085,
Cincinnati, 33. regularis
CMC IP
Kope C.
Formation,
Ohio,
sotus ( L o c k e ) o c c u r s in t h e K o p e F o r m a t i o n w h e r e it was found in association w i t h a cluster of Flexicalymene ( H u g h e s a n d C o o p e r 1999).
x
Ctenobolbina
alata Ulrich,
l e n g t h a n d rarely f o u n d c o m p l e t e . Acidaspis o c c u r s from the basal K o p e
x
Quadrijugator
T h e e x t r e m e s p i n o s i t y o f o d o n t o p l e u r i d s has p r o m p t e d m u c h debatea b o u t t h e i r m o d e o f life. T h e f r i n g e o f v e r t i c a l c e p h a l i c s p i n e s i n Acidaspis e n a b l e d t h e c e p h a l o n t o b e rested a g a i n s t t h e s u b s t r a t u m w i t h the thorax a n d p y g i d i u m o u t s t r e t c h e d a n d e l e v a t e d slightly, in a p r o b a b l e f e e d i n g posit i o n ( W h i t t i n g t o n 1956). I n this p o s i t i o n t h e h y p o s t o m e a n d m o u t h w e r e situated c l o s e t o t h e s u b s t r a t u m . C l a r k s o n (1969) p o i n t e d out that w h e r e a s
(Emmons),
CMC IP 28245,
Waynes-
Acidaspis h a d a s i n g l e , fixed life p o s i t i o n , Primaspis c o u l d a s s u m e t h e s a m e
ville Formation,
Butler
f e e d i n g p o s i t i o n a n d also a r e s t i n g a t t i t u d e by t i l t i n g the c e p h a l o n back-
Co., Ohio, x 90.
w a r d s s o that t h e e n t i r e b o d y w a s s u p p o r t e d a g a i n s t the s u b s t r a t u m . O d o n -
760
A Sea without Fish
t o p l e u r i d s arc c o n s i d e r e d t o h a v e b e e n p o t e n t i a l p r e d a t o r s b y F o r t e y a n d O w e n s 11999), b u t their prey m u s t h a v e b e e n very s m a l l . Plate 6 a n d F i g u r e
11.7 illustrate e x c e p t i o n a l l y w e l l - p r e s e r v e d s p e c i -
m e n s of s o m e of the rarest of C i n c i n n a t i a n trilobite s p e c i e s .
O n e o f the most i n t r i g u i n g fossils k n o w n from the C i n c i n n a t i a n i s the e u r y p -
Eurypterids
terid Megalograptus ( F i g u r e s 11.8, 11.9). E u r y p t e r i d s are c h e l i c e r a t e a r t h r o p o d s , d i s t i n g u i s h e d b y h a v i n g t h e f i r s t pair o f a p p e n d a g e s ( c h e l i c e r a e ) e q u i p p e d w i t h small p i n c e r s . M o d e r n c h e l i c e r a t e s are t h e h o r s e s h o e crabs (Plate 3 G ) , and a r a c h n i d s (scorpions, spiders, m i t e s , a n d ticks). The b o d y of the eurypterid is u n i q u e , w i t h a distinct h e a d ( p r o s o m a ) b e a r i n g c o m p o u n d eyes followed b y a n e l o n g a t e d , s e g m e n t e d s e c t i o n c a l l e d the o p i s t h o s o m a , divided into a w i d e r p r e a b d o m e n a n d a narrower, tail-like p o s t a b d o m e n (Figures 11.9A, B). Six pairs of a p p e n d a g e s w e r e a t t a c h e d to the u n d e r s i d e of t h e head and served f u n c t i o n s of f e e d i n g a n d l o c o m o t i o n . B e c a u s e t h e exoskeleton was not c a l c i f i e d , preservation of the c h i t i n o u s r e m a i n s of e u r y p t e r i d s was unlikely, a n d therefore they are u s u a l l y very rare fossils. E u r y p t e r i d s first a p p e a r e d in the Early O r d o v i c i a n a n d a t t a i n e d t h e i r m a x i m u m diversity in
the
S i l u r i a n , b u t Megalograptus is s i g n i f i c a n t for
b e i n g o n e o f the oldest a n d most u n u s u a l . W h e n f r a g m e n t s o f t h e a n i m a l w e r e first d e s c r i b e d in 1874 by S. A. M i l l e r , they w e r e t h o u g h t to be parts o f a graptolite, h e n c e the n a m e . L a t e r w o r k e r s c o r r e c t e d t h e e r r o r o n t h e
Arthropods
161
basis o f a d d i t i o n a l , a l b e i t f r a g m e n t a r y d i s c o v e r i e s . A t r u l y p h e n o m e n a l d i s c o v e r y m a d e i n 1938 o f e x c e p t i o n a l l y w e l l - p r e s e r v e d and nearly c o m plete s p e c i m e n s from a single bed in the uppermost C i n c i n n a t i a n Elkhorn F o r m a t i o n o f t h e R i c h m o n d G r o u p i n A d a m s C o u n t y , O h i o , led t o a better u n d e r s t a n d i n g o f the a n i m a l ( F i g u r e 11.8B).
This m a t e r i a l , w h i c h i n c l u d e d
m a l e a n d f e m a l e s p e c i m e n s , b e c a m e t h e basis for a n e w s p e c i e s , M. ohioensis, d e s c r i b e d by K e n n e t h F. C a s t e r a n d F r i k K j e l l e s v i g - W a e r i n g in 1964. One
additional
eurypterid
species,
Eocarcinosoma
batrachophthalmus,
was
d e s c r i b e d f r o m this b e d o n the basis o f a n isolated p r o s o m a . Megalograptus ohioensis w a s o n e of the largest creatures in the C i n c i n natian sea floor c o m m u n i t y , r e a c h i n g a l e n g t h of over 50 c m .
The first pair
o f a p p e n d a g e s , t h e c h e l i c e r a e , i s s m a l l a n d l o c a t e d b e n e a t h the h e a d . T h e n e x t t h r e e pairs o f a p p e n d a g e s b e a r w e l l - d e v e l o p e d spines ( F i g u r e 11.9). The third a p p e n d a g e s are m o s t striking for their l e n g t h and l o n g spines directed toward t h e m i d l i n e ( F i g u r e s 1 1 . 9 C , D ) . E x a c t l y how the eurypterid used t h e s e spiny a p p e n d a g e s is u n c e r t a i n . C a s t e r a n d K j e l l e s v i g - W a e r i n g considered Megalograptus to h a v e b e e n a predator, a n d thus the a p p e n d a g e s likely h a d s o m e f u n c t i o n i n g r a s p i n g prey. T h e basket-like structure o f the l o n g spines o f t h e third a p p e n d a g e s s u g g e s t s that the a n i m a l m i g h t have raked t h e m t h r o u g h the s e d i m e n t in order to extract prey in a s i e v i n g fashion. Only a few o t h e r e u r y p t e r i d s h a v e similar l o n g spiny a p p e n d a g e s . Tubular castings f i l l e d w i t h f r a g m e n t s o f e u r y p t e r i d i n t e g u m e n t associated w i t h the e u r y p terid m a t e r i a l c o u l d represent feces o f t h e a n i m a l , i n d i c a t i n g c a n n i b a l i s t i c b e h a v i o r like that f o u n d in l i v i n g e u r y p t e r i d relatives a m o n g the scorpions and spiders. The fourth pair of a p p e n d a g e s lacks spines, and the fifth pair has e x p a n d e d , flattened segments giving them a paddle-like appearance ( F i g u r e s 11.9A, B). T h e s e w e r e m o s t l i k e l y e m p l o y e d i n s w i m m i n g . O n e o f t h e m o s t p e c u l i a r features o f Megalograptus i s t h e d e v e l o p m e n t at t h e e n d of the p o s t a b d o m e n of a pair of e x p a n d e d , h o o k - l i k e c e r e a l b l a d e s flanking a s p i n e - l i k e telson ( F i g u r e s 11.9A, B). C a s t e r a n d KjellesvigW a e r i n g t h o u g h t that the c e r e a l b l a d e s c o u l d m o v e laterally in a scissor-like m o t i o n , possibly serving to grasp either in defense or copulation. The p a i r e d , i n c u r v e d p o s t e r i o r s p i n e s o f e a r w i g s a r e s i m i l a r , b u t n o t h i n g like this structure appears in any other eurypterid. In a d d i t i o n to t h e A d a m s C o u n t y o c c u r r e n c e of Megalograptus ohioensis in t h e Elkhorn b e d s . C a s t e r and K j e l l e s v i g - W a e r i n g d e s c r i b e d two other s p e c i e s from the C i n c i n n a t i a n . M. shideleri is k n o w n from f r a g m e n t s o c c u r r i n g in the S a l u d a F o r m a t i o n of the R i c h m o n d C r o u p and M. williamsae from the W a y n e s v i l l e F o r m a t i o n o f the R i c h m o n d G r o u p . F r a g m e n t s o f M . shideleri s u g g e s t that it m a y h a v e r e a c h e d t w o meters in l e n g t h .
The t y p e
s p e c i e s , M . welchi, w a s o r i g i n a l l y d e s c r i b e d from the Liberty F o r m a t i o n , t h e r e b y i n d i c a t i n g that t h e g e n u s r a n g e s t h r o u g h virtually the entire u p p e r C i n c i n n a t i a n . Megalograptus w a s not restricted to the C i n c i n n a t i A r c h reg i o n , as M. alveolatus is k n o w n from the Upper O r d o v i c i a n of V i r g i n i a . In t h e L i b e r t y o c c u r r e n c e , d e s c r i b e d by Foerste (1912), Megalograptus w a s f o u n d in a p o c k e t t o g e t h e r w i t h c r i n o i d s . In t h e Elkhorn, Megalograptus w a s a s s o c i a t e d w i t h a diverse m a r i n e fauna i n c l u d i n g trilobites, b r a c h i o p o d s , b r y o z o a n s , a n d m o l l u s c s . D e s p i t e the c o m m o n n o t i o n that e u r y p -
A Sea without Fish
terids lived in s o m e w h a t restricted or a t y p i c a l m a r i n e e n v i r o n m e n t s , t h e C i n c i n n a t i a n o c c u r r e n c e s a r g u e s t r o n g l y for a s s o c i a t i o n w i t h t h e n o r m a l m a r i n e biota.
Their c h i t i n o u s i n t e g u m e n t m a y a c c o u n t largely f o r t h e i r
rarity i n the C i n c i n n a t i a n . T h e e x t r a o r d i n a r y q u a l i t y a n d q u a n t i t y o f e u rypterid p r e s e r v a t i o n a t the A d a m s C o u n t y site m a y h a v e resulted f r o m s m o t h e r i n g o f the m a r i n e f a u n a b y v o l c a n i c a s h f a l l , b e c a u s e the 1 5 c m thick s h a l e w i t h i n w h i c h t h e fossils w e r e c o n c e n t r a t e d w a s f o u n d t o c o n t a i n b e n t o n i t i c clays ( C a s t e r and K j e l l e s v i g - W a e r i n g 1964).
Neostrabops In 1952 C a s t e r and M a c k e described w h a t they t e r m e d a m a v e r i c k m e r o s t o m e , Neostnibops martini, from a single s p e c i m e n found in the M a y s v i l l i a n C o r r y ville f o r m a t i o n i n C l e r m o n t C o u n t y , O h i o ( f i g u r e 11.8D). This fossil c o u l d be taken to be a trilobite, but lacks the characteristic l e n g t h w i s e division into three distinct lobes. It also resembles the a f o r e m e n t i o n e d eurypterids in having n u m e r o u s narrow s e g m e n t s , a l t h o u g h it lacks a n y d e m a r c a t i o n of p r e - a n d p o s t a b d o m e n . Neostrabops d o e s resemble other arthropods k n o w n as aglaspids from the C a m b r i a n . Aglaspids are regarded as early offshoots of the evolutionary lineage of m o d e r n horseshoe crabs, the w e l l - k n o w n Limulus.
C r u s t a c e a n s are o n e o f the most a b u n d a n t and diverse g r o u p s o f l i v i n g a r t h r o -
Ostracodes
p o d s , yet t h e y are represented in the C i n c i n n a t i a n by o n l y o n e g r o u p , the o s t r a c o d e s (major l i v i n g c r u s t a c e a n s s u c h a s s h r i m p s , lobsters, a n d crabs evolved m u c h later than the O r d o v i c i a n , a n d thus are not f o u n d in the C i n c i n n a t i a n ) . O s t r a c o d e s are g e n e r a l l y very s m a l l , less t h a n 1 mm in l e n g t h , but c a n e x c e e d 1 cm in forms like the O r d o v i c i a n Eoleperditia. T h e y are disting u i s h e d by a calcitic, bivalved shell or c a r a p a c e that c a n be s m o o t h or have various s u r f a c e features such a s k n o b s , ridges, o r spines ( f i g u r e 11.10). W h e n t h e h i n g e d valves o f the c a r a p a c e o p e n , the a p p e n d a g e s c a n b e e x t e n d e d for f e e d i n g and l o c o m o t i o n . M o d e r n o s t r a c o d e s have a w i d e r a n g e o f f e e d i n g habits, but m a n y live as b e n t h i c s u s p e n s i o n feeders a n d deposit feeders. It is very difficult t o d e t e r m i n e the s p e c i f i c habits o f C i n c i n n a t i a n s p e c i e s , b e c a u s e the a p p e n d a g e s and o t h e r internal a n a t o m y are not preserved O s t r a c o d e s are diverse and a b u n d a n t t h r o u g h o u t t h e C i n c i n n a t i a n S e r i e s , a l t h o u g h this is g e n e r a l l y u n a p p r e c i a t e d b e c a u s e few c o l l e c t o r s or researchers e n c o u n t e r t h e s e m i c r o f o s s i l s .
Two m a j o r s t u d i e s o n C i n c i n -
natian o s t r a c o d e s p r o v i d e a m o d e r n analysis of their diversity a n d classification, but there is no s i n g l e c o m p r e h e n s i v e s t u d y that gives an o v e r v i e w of total C i n c i n n a t i a n o s t r a c o d e diversity. W a r s h a u e r a n d B e r d a n (1982) reported f i f t y - t h r e e s p e c i e s a n d t h i r t y - n i n e g e n e r a o f o s t r a c o d e s b e l o n g i n g t o t w o m a j o r orders, the P a l a e o c o p i d a a n d t h e P o d o c o p i d a , f r o m t h e M i d d l e O r d o v i c i a n L e x i n g t o n L i m e s t o n e a n d the U p p e r O r d o v i c i a n (basal C i n c i n n a t i a n ) C l a y s Kerry f o r m a t i o n o f K e n t u c k y . S p e c i e s i n t h e s e g r o u p s are all very s m a l l , a n d w e r e e x t r a c t e d f r o m d i s a g g r e g a t e d s h a l e s or by a c i d dissolution o f t h e L e x i n g t o n L i m e s t o n e i n
which
t h e f o s s i l s are silicified.
f o u r t e e n g e n e r a o c c u r i n t h e C l a y s Ferry f o r m a t i o n , b u t d i s t r i b u t i o n
Arthropods
163
w i t h i n t h e rest o f t h e C i n c i n n a t i a n was not s t u d i e d . B e r d a n (1984) reported on ostracodes of the order Leperditicopida from the M i d d l e and Upper O r d o v i c i a n o f K e n t u c k y a n d v i c i n i t y . T h e s e o s t r a c o d e s are n o t e w o r t h y for their size (sometimes > 1 cm long) and high a b u n d a n c e in single beds of f i n e - g r a i n e d l i m e s t o n e . T h e o c c u r r e n c e o f l e p e r d i t i c o p i d s i s restricted t o f i n e - g r a i n e d l i m e s t o n e f a d e s d e p o s i t e d i n e x t r e m e l y s h a l l o w subtidal t o intertidal e n v i r o n m e n t s p a r t i c u l a r l y w e l l k n o w n f r o m t h e M i d d l e O r d o v i c i a n H i g h B r i d g e G r o u p o f K e n t u c k y ( C r e s s m a n a n d N o g e r 1976). T h i s u n i q u e f a c i e s i s a b s e n t f r o m t h e d e e p e r w a t e r f a d e s o f t h e l o w e r and m i d d l e C i n c i n n a t i a n but recurs in the R i e h m o n d i a n Sunset M e m b e r of the Arnh e i m F o r m a t i o n , i n w h i c h four s p e c i e s are f o u n d .
164
A Sea without Fish
Figure 12.1.
One skeletal
element
of a
modern
crinoid,
showing
the
porous
microstructure
(stereom)
typical of all
echinoderms. a
The arm of
crinoid is composed of
a series of these elements,
connected
muscles
and
Comactinia bean.
sp.,
Carib-
Scanning
micrograph,
by
ligaments.
x
electron
79.
Figure 1 2 . 2 . Arm of modern with
crinoid
pinnules
branches) tube
bearing
feet in
ture.
Pinnule
about
1
photo,
(dark) (light fine
feeding poslength
cm. Aquarium comasterid
noid,
Curacao,
lands
Antilles
cri-
Nether-
166
A Sea without Fish
12
ECHINODERMS: A WORLD UNTO THEMSELVES
E c h i n o d e r m s are a m o n g the rarest and m o s t sought-after fossils in t h e C i n -
I .
c i n n a t i a n rocks. N o t o n l y are they c o m p l e x in form a n d s t r u c t u r e , but they
noble
also possess a c e r t a i n b e a u t y a n d mystery that n e v e r fail to attract interest.
as a noble group es-
A n y o n e w h o has visited the seashore is f a m i l i a r w i t h l i v i n g e c h i n o d e r m s s u c h
pecially
designed
puzzle
the
as sea stars or starfish (asteroids), sea u r c h i n s , a n d s a n d d o l l a r s ( b o t h e c h i noids) (Plate 9), O t h e r l i v i n g e c h i n o d e r m s found in d e e p e r m a r i n e waters are
. here salute the echinoderms to
zoologist.
L. H. H y m a n 1955, vi
the sea lilies and feather stars (crinoids), brittle stars (ophiuroids), and sea c u c u m b e r s ( h o l o t h u r o i d s ) (Plate 9). T h e r e are a b o u t 6650 l i v i n g s p e c i e s of e c h i n o d e r m s , a n d over 3500 g e n e r a a n d 13,000 d e s c r i b e d fossil s p e c i e s . The O r d o v i c i a n Period m a r k e d a very significant t i m e in the e v o l u t i o n o f e c h i n o d e r m s , b e c a u s e m a n y different m a j o r g r o u p s ( u s u a l l y r e g a r d e d a s classes) o f e c h i n o d e r m s c o e x i s t e d . L i k e o t h e r i n v e r t e b r a t e p h y l a , t h e oldest fossil e c h i n o d e r m s are found in Early C a m b r i a n r o c k s o v e r 500 m i l l i o n years o l d , but it was not until O r d o v i c i a n t i m e that e c h i n o d e r m s b e g a n to leave a significant fossil r e c o r d . Early in t h e O r d o v i c i a n , e c h i n o d e r m s diversified a l o n g w i t h m a n y o t h e r m a r i n e i n v e r t e b r a t e s , a n d b y L a t e O r d o v i c i a n t i m e a b e w i l d e r i n g variety of e c h i n o d e r m s h a d a p p e a r e d in shallow m a r i n e e n v i r o n m e n t s w o r l d w i d e . A l t h o u g h the f i v e classes o f m o d e r n e c h i n o d e r m s ( c r i n o i d s , asteroids, o p h i u r o i d s , e c h i n o i d s , a n d h o l o t h u r o i d s ) existed t h e n , m a n y o t h e r classes w e r e also p r e s e n t . In s o m e strata of Late Ordovician | M o h a w k i a n ) age, as m a n y as fourteen classes of e c h i n o d e r m s are f o u n d t o g e t h e r ( S p r i n k l e a n d C u e n s b u r g 1997). B e c a u s e s o m e o f t h e s e classes soon b e c a m e e x t i n c t , e c h i n o d e r m d i v e r s i t y h a d d e c l i n e d b y C i n c i n natian t i m e , but still e x c e e d e d p r e s e n t levels, w i t h s e v e n classes f o u n d in the C i n c i n n a t i A r c h r e g i o n . M o r e t h a n o n e o b s e r v e r has n o t e d ( t o n g u e i n c h e e k ) that i f e v e r a n y a n i m a l g r o u p c o u l d h a v e o r i g i n a t e d a s " a l i e n b e i n g s " that l a n d e d o n E a r t h from outer s p a c e , i t w o u l d b e the e c h i n o d e r m s — s o b i z a r r e a r e their b o d y f o r m s , p a r t i c u l a r l y a m o n g t h e w i d e variety w e s e e a m o n g O r d o v i c i a n fossils. T h e features that identify all t h e s e s t r a n g e fossils as e c h i n o d e r m s are not the traits w e u s u a l l y c o n s i d e r c h a r a c t e r i s t i c o f e c h i n o d e r m s , t h e "spiny skin" that gives the g r o u p its n a m e , a n d the f i v e - f o l d ( p e n t a m e r a l ) s y m metry o f the body. T h e s i n g l e m o s t c h a r a c t e r i s t i c trait o f e c h i n o d e r m s i s the n a t u r e of their skeleton. All e c h i n o d e r m s h a v e a m i n e r a l i z e d s k e l e t o n c o m p o s e d o f c a l c i u m c a r b o n a t e a s the m i n e r a l c a l c i t e . U n l i k e o t h e r invertebrates that have calcitic shells, the e c h i n o d e r m skeleton is f o r m e d w i t h i n the m i d d l e cell layer of the body ( m e s o d e r m ) , a n d has a t h i n o u t e r layer of c e l l s c o v e r i n g it ( e c t o d e r m ) , t h u s m a k i n g it an i n t e r n a l s k e l e t o n . B e c a u s e the outer cell layer is so t h i n , we often t h i n k of e c h i n o d e r m s k e l e t o n s s u c h
767
a s sea u r c h i n shells a s e x t e r n a l , b u t i n o t h e r c a s e s , s u c h a s t h e a r m s o f m a n y sea stars, t h e skeletal c o m p o n e n t s , c a l l e d o s s i c l e s , are clearly i n t e r n a l , b e n e a t h a l e a t h e r y " s k i n . " In a d d i t i o n , b e c a u s e it is truly m e s o d e r m a l , the e c h i n o d e r m s k e l e t o n has a u n i q u e m i c r o s t r u c t u r e not f o u n d i n a n y o t h e r a n i m a l g r o u p . T h e c a l c i t e i s f o r m e d a r o u n d m e s o d e r m a l c e l l s into a n intricate t h r e e - d i m e n s i o n a l l a t t i c e w o r k c a l l e d the s t e r e o m ( F i g u r e 12.1). Skele t a l p l a t e s , s p i n e s , o r ossicles t h u s h a v e a h i g h l y p o r o u s s t r u c t u r e i n w h i c h o v e r 50 p e r c e n t of t h e v o l u m e c a n be t a k e n up by p o r e s . In life t h e nurturi n g c e l l s o c c u p y t h e s e p o r e s , b u t after d e a t h , the c e l l u l a r m a t e r i a l d e c a y s , l e a v i n g t h e p o r o u s s k e l e t o n . B u r i e d i n s e d i m e n t , t h e s e p o r e s are u s u a l l y i n f i l l e d w i t h s e c o n d a r y c a l c i t e , a n d the entire skeletal plate displays t h e t y p i c a l r h o m b i c c l e a v a g e o f c a l c i t e . O f t e n t h e m i c r o s t r u c t u r e i s still visible i n t h i n o r p o l i s h e d s e c t i o n s . T h e s e f e a t u r e s h a v e e n a b l e d m a n y fossil e c h i n o d e r m s t o b e c o r r e c t l y i d e n t i f i e d , e v e n t h o u g h their b o d y form m a y b e considerably different from any of the five familiar living groups. Echinoderms are a l s o p e c u l i a r in l a c k i n g s t r u c t u r e s like a d i s t i n c t h e a d , e y e s , or i n t e r n a l s y s t e m s s u c h as a b l o o d c i r c u l a t o r y system or respiratory s y s t e m . I n s t e a d , t h e y are u n i q u e i n h a v i n g a n i n t e r n a l system o f b r a n c h i n g vessels that c o n t a i n n o t b l o o d , b u t a w a t e r y fluid that c i r c u l a t e s d i s s o l v e d o x y g e n a n d d i s s o l v e d w a s t e s a n d p r e s s u r i z e s t h e vessels t h e m selves. T h e vessels t e r m i n a t e i n c h a r a c t e r i s t i c s t r u c t u r e s c a l l e d t u b e f e e t , w h i c h s e r v e i m p o r t a n t f u n c t i o n s for all e c h i n o d e r m s ( F i g u r e 12.2). D i s s o l v e d o x y g e n i s e x c h a n g e d across the t h i n m e m b r a n e o f the t u b e feet a n d d i s s o l v e d w a s t e s are e x p e l l e d . In g r o u p s like c r i n o i d s a n d o p h i u r o i d s , tubefeet are l i k e m i n u t e bristles that c a p t u r e f o o d p a r t i c l e s s u s p e n d e d i n t h e water. S e a stars a n d sea u r c h i n s h a v e t u b e feet w i t h s u c t i o n disks b y w h i c h t h e y c l i n g t o r o c k s , a n d w h i c h aid i n p u l l i n g c l a m s h e l l s apart, i n the c a s e of sea stars, a n d in " w a l k i n g " a c r o s s t h e sea floor. Tube feet are p r a c t i c a l l y n e v e r p r e s e r v e d in fossils, b u t traces of t h e c a n a l s are r e v e a l e d in t h e skele t o n , p r o v i d i n g y e t a n o t h e r i n d i c a t i o n o f e c h i n o d e r m affinity. R e c e n t l y p y r i t i z e d t u b e feet w e r e d i s c o v e r e d i n a C i n c i n n a t i a n o p h i u r o i d , p r o v i d i n g o n e o f t h e f e w c a s e s i n t h e e n t i r e fossil r e c o r d a n d rare e v i d e n c e for pres e r v e d soft tissues a m o n g C i n c i n n a t i a n fossils ( C l a s s 2006). The five-fold or pentameral
body plan seen
in living e c h i n o d e r m s
a p p e a r s i n m a n y o f t h e C i n c i n n a t i a n fossil e c h i n o d e r m s ( F i g u r e s 12.5, 12.10-12.16), b u t this is by no m e a n s a u n i v e r s a l f e a t u r e .
The enigmatic
" c a r p o i d s " l a c k a n y t r a c e o f p e n t a m e r a l form ( F i g u r e 12.17). T h e l a r v a e o f l i v i n g e c h i n o d e r m s are a c t u a l l y b i l a t e r a l l y s y m m e t r i c a l , a n d p e n t a m e r y a p p e a r s o n l y in a d u l t s t a g e s . The five-part s t r u c t u r e is v i r t u a l l y u n i q u e to e c h i n o d e r m s i n t h e A n i m a l K i n g d o m , a n d z o o l o g i s t s h a v e d e b a t e d its sign i f i c a n c e a n d o r i g i n s . S p r i n k l e (1973) f o u n d that p e n t a m e r a l s y m m e t r y f i r s t a p p e a r e d in the food-gathering system of Early and M i d d l e C a m b r i a n e o c r i n o i d s , a n d later d e v e l o p e d i n t h e c a l y x plates a n d respiratory struct u r e s . T h i s s u g g e s t s that p e n t a m e r a l s y m m e t r y p r o v i d e d a n a d v a n t a g e for t h e sessile, f i l t e r - f e e d i n g h a b i t s o f t h e s e early e c h i n o d e r m s . Initially, s o m e e o c r i n o i d s a c t u a l l y h a v e a three-fold radial a r r a n g e m e n t o f t h e f o o d - g a t h e r i n g s t r u c t u r e s that later b e c a m e five-fold b y the b r a n c h i n g o f o n l y two f o o d g r o o v e s o r a m b u l a c r a . B r a n c h i n g b e y o n d the f i v e - f o l d pattern m a y
168
A Sea without Fish
h a v e b e e n l i m i t e d b y the a v a i l a b l e s p a c e a r o u n d t h e m o u t h , a n d t h u s t h e p e n t a m e r a l pattern m a y h a v e b e e n the most efficient s o l u t i o n . O n c e p e n t a m e r a l s t r u c t u r e b e c a m e g e n e t i c a l l y p r o g r a m m e d in Echinoderms, it persisted e v e n i n g r o u p s that g a v e u p t h e a n c e s t r a l m o d e o f life t o b e c o m e m o b i l e sea stars or sea u r c h i n s . D e s p i t e their m a n y " a l i e n " features, E c h i n o d e r m s a r e s i g n i f i c a n t a s o n e of the invertebrate phyla m o s t closely related to o u r o w n , the c h o r d a t e s . For a l o n g t i m e zoologists s t u d y i n g the e m b r y o n i c d e v e l o p m e n t of echinoderms have r e c o g n i z e d close similarities in the early d e v e l o p m e n t of echinoderms and chordates. B o t h g r o u p s have s y m m e t r i c a l cell division in the fertilized e g g , i n d e t e r m i n a t e d e v e l o p m e n t ( e m b r y o n i c cells are not p r e p r o g r a m m e d to form a specific adult tissue), a n d the internal b o d y cavity, t h e c o e l o m , forms in the s a m e way in the e m b r y o . R e c e n t studies of m o l e c u l a r c o m p o s i tion o f a n i m a l phyla d e m o n s t r a t e that e c h i n o d e r m s are m u c h m o r e closely allied to h e m i c h o r d a t e s and c h o r d a t e s than to any o t h e r g r o u p (Raff C o m p l e t e fossil
echinoderms
are
1996).
i n d e e d rare fossils in C i n c i n n a t i a n
strata, but the a b u n d a n c e of their isolated skeletal c o m p o n e n t s suggests that t h e y w e r e very c o m m o n m e m b e r s o f sea floor c o m m u n i t i e s d u r i n g the O r d o v i c i a n . The reason for their rarity as c o m p l e t e fossils is f o u n d in the n a t u r e of the e c h i n o d e r m skeleton, c o m p o s e d of m y r i a d tiny plates or ossicles, all held together in life by fibers of c o n n e c t i v e tissue that p e n e t r a t e pores of the s t e r e o m i c skeleton. U p o n d e a t h , these f i b e r s rapidly d e c a y ; the skeletal c o m p o n e n t s separate, a n d are u s u a l l y dispersed b y w a t e r m o v e m e n t ( F i g u r e 12.3A). A m o n g t h e m o s t c o m m o n fossils f o u n d a r o u n d C i n c i n n a t i are t h e disk-like or ring-like s e g m e n t s of the c r i n o i d stem ( c o l u m n a l s ; F i g u r e s 12.3A, 12.5). T h e s e are often isolated like
tiny
LifeSavers
or still c o n n e c t e d in vary-
ing l e n g t h s like strings of b e a d s . Entire l i m e s t o n e layers often consist of n o t h i n g but dissociated crinoid c o l u m n a l s , o r i g i n a l l y c r i n o i d a l sands, s o m e times sorted b y c u r r e n t s into z o n e s o f c o m m o n size, a n d f o r m e d into rippled surfaces. B e c a u s e echinoderms are so s u s c e p t i b l e to b r e a k u p of t h e skeleton after d e a t h , the o c c u r r e n c e of c o m p l e t e , a r t i c u l a t e d skeletons u s u a l l y requires rapid burial in s e d i m e n t .
Thus, c o m p l e t e c r i n o i d s are f o u n d w i t h i n
shales or on the u p p e r s u r f a c e of l i m e s t o n e s c o v e r e d by shales, or m o r e rarely at the base of c a l c a r e o u s siltstones. T h e very n a t u r e of this c o m p l e t e preservation provides a v a l u a b l e c l u e that the e n c l o s i n g s e d i m e n t w a s in fact d e p o s ited rapidly, probably t i m i n g storms, either as stirred up b o t t o m s e d i m e n t s or underwater mudslides.
T h e seven classes o f e c h i n o d e r m s f o u n d i n C i n c i n n a t i a n strata are t h e
Echinoderms of
Crinoidea, Rhomhifera, Kdrioasteroidca, Asteroidea, Ophiuroidea, C y c l o -
t h e Cincinnatian
c y s t o i d e a , a n d S t y l o p h o r a . o f t h e s e , the c r i n o i d s a r e t h e m o s t a b u n d a n t i n the f i e l d a n d the m o s t d i v e r s e i n n u m b e r o f s p e c i e s .
Crinoids S t e m m e d crinoids (sea lilies) are a t t a c h e d to the sea floor by m e a n s of a holdfast or root, and elevated a b o v e the b o t t o m by a stem c o m p o s e d of m a n y c o -
Echinoderms
169
Figure 12.3.
Variable
preservation
of
locrinus
crinoids.
subcrassus
(Meek
and
Worthen).
A. Articulated
individual
with
partially disarticu-
lated
sections
and matrix lated
of stalk,
of disarticu-
skeletal
nents.
compo-
Upper
Ordovician,
Corryville Formation, cinnati, of
Cin-
Ohio.
University
Cincinnati
collections.
B. Two
articulated
crowns,
detached
stalk, but in
opposite
preserved on bed.
from
oriented parallel direction,
base
of
Upper Ordovician,
Corryville
Formation,
Clermont Co.,
Ohio.
CMC
IP 44362. Scale in mm. B in
upper right denotes
basal plate; radial
R denotes
plate.
l u m n a l s ( F i g u r e s 12.3-12.5). T h e b o d y is e n c l o s e d w i t h i n a plated c a l y x c o m p o s e d of t h e l o w e r c u p a n d a roof-like
tegmen.
T h e c u p has a regular
a r r a n g e m e n t of plates: a circlet of five radials, a n d either o n e circlet ( m o n o There were also s o m e beautiful noidea,
forms
cyclic) of basals or t w o circlets (dicyclic) of basals a n d infrabasals o c c u r r i n g
of Cri-
or stone-lilies .
.
C h a r l e s Lyell 1845, 50
a b o v e t h e stem ( F i g u r e s 12.3B, 12.10A). T h e a r m s arise from the radials of the c u p a n d usually b r a n c h a n d m a y support finer b r a n c h e s , the p i n n u l e s , g i v i n g the a r m a feathery a p p e a r a n c e ( F i g u r e 12.4). T h e a r m s and p i n n u l e s carry the food g r o o v e s (ambulacra) w h i c h c o n v e y tiny food particles to the m o u t h situated on the u p p e r surface of t h e c a l y x . I .iving crinoids are passive suspension feeders, d e p e n d e n t on currents to supply food particles to the a w a i t i n g feedi n g apparatus. H i e a n i m a l c o n s t r u c t s a filtration fan of the ar m s and pinnules
770
A Sea without Fish
Figure tion
12.4. of
Reconstruc-
Glyptocrinus
decadactylus
in
life
po-
sition. Calyx is in a horizontal position,
with
the
arms splayed into a filtration fan.
By analogy with
living crinoids,
current
flow was from left to right. Agnew.
Echinoderms
171
Drawing by John
Figure 12.5. Cincinnatian crinoid columnals and holdfasts. A,
H.
naticrinus
Cincin-
varibrachialus
Warn and Strimple;
A.
Articular surface x 9.6; H. Lateral view of mature section x 5.9. B, enocrinus
I. Ect-
simplex
(Hall).
B. Articular surface
y.9.6;
I.
Lateral view*
12.6. C,
J.
locrinus sub-
crassus (Meek and Worthen).
C. Articular
surface x 5.2;
J. iafera/
view x 4.4. D, G, Glyptocrinus lus Hall; D, surfaces
K. decadacty-
G. Articular
of internodal,
nodal respectively, 4.4;
x
K. Lateral view x 6;
note three cycles ofinternodals.
E.
Merocrinus
curtus Ulrich, articular surface x 5.2. alocrinus
F.
Anom-
incurvus
(Meek
and Worthen), lateral view of
compressed
with
section
fracture separating
meres, x 1. A - K , from Meyer et al. (2002, figure 2) and reprinted by permission of The Paleontological Society. nus
I,
M. Lichenocri-
crateriformis
Hall,
Two speci-
arrayed p e r p e n d i c u l a r to c u r r e n t Flow, thus a c t i n g as a " f l o w - t h r o u g h " filter
mens attached to brachio-
(Plates 9A, B). T i n y t u b e feet l i n i n g the p i n n u l a r food grooves snare food
FMNH8810. L.
pod, x 1.6. M. Enlarge-
particles s u c h as o r g a n i c detritus a n d p l a n k t o n and stuff t h e m into the food
ment of larger specimen in
g r o o v e for transport to the m o u t h . The close similarity of O r d o v i c i a n crinoids
I, y.3.7, Waynesville For-
to m o d e r n forms suggests that a n c i e n t crinoids used similar f e e d i n g postures
mation, Warren Co., Ohio. From Faber (1929, plate 32, figures 5, 6) and reprinted by permission of the American uralist.
Midland N.
milleri Faber,
Nat-
Lichenocrinus
a n d m o d e s o f c a p t u r i n g food, and w e c a n i m a g i n e that they looked quite like s t e m m e d c r i n o i d s that today exist o n l y in the d e e p sea (Plate qA). C r i n o i d c o l u m n a l s a r e a m o n g t h e m o s t c o m m o n l y e n c o u n t e r e d fossils i n t h e C i n c i n n a t i a n . T h e y are Found e i t h e r a s s i n g l e c o l u m n a l s o r a r t i c u lated s e c t i o n s o F t h e s t e m ( f i g u r e s 12.3, 12.5). A l t h o u g h s u p e r f i c i a l l y very s i m i l a r i n a p p e a r a n c e , c o l u m n a l s c a n u s u a l l y b e identified t o g e n u s . C r i -
CMC IP
10047, Elkhorn Formation,
n o i d s p e c i e s are u s u a l l y d e s c r i b e d from s p e c i m e n s o f the c a l y x o r c r o w n
cross-section
that are less c o m m o n .
showing
floor
plate with central node,
T w e n t y - o n e g e n e r a o f c r i n o i d s a r e k n o w n From the C i n c i n n a t i region.
crater plates, and base of column, y.3.7, from Faber (1929, plate 33, figure 9).
172
S o m e g e n e r a are m o n o s p e c i f i c ( h a v i n g o n l y o n e species) and others have m o r e t h a n o n e s p e c i e s , b r i n g i n g to t w e n t y - e i g h t the total n u m b e r oF species in the local area. C i n c i n n a t i a n c r i n o i d s represent all three oF the subclasses A Sea without Fish
Figure A,
12.6. B.
(Ulrich),
Cincinnatian disparid crinoids.
YPM 24801,
Fairview Formation,
showing regeneration of arms, crinus geniculatus (Ulrich), E. simplex (Hall) plate 3, the
A,
Holotype, CMC IP 3871, Kope Formation,
figures
F. CMC IP, x 7.5. 1, 2, plate 6,
Paleontological
Research
Cincinnati,
USNM 93223,
CMC IP 36313, figure
B.
Ohio,
Ohio, x
Fairview Formation,
Kope Formation, G.
Cincinnaticrinus varibrachialus
Cincinnati,
x
1.3.
1.0 and x 3.1. D. Ohio,
C. pentagonus
C.
Dystactocrinus constrictus (Hall),
Hamilton Co.,
Cincinnati,
Warn andStrimple.
x
Ohio, 7.4.
x 2.0. F,
E.
Ecteno-
G.
CMC IP 42679, x 0.3. A - C , E, G from Warn and Strimple (1977,
1, plate 13,
figure 3, plate!4,
figure 8) and reprinted by permission of
Institution.
Echinoderms
173
Figure
12.7.
Cincinnatian disparid crinoids.
horizon and locality unknown, Formation,
Cold Spring,
logued, Cincinnati, OH,
x
1.4.
Kentucky, x
174
1.4.
x D.
B-D. 1.8.
A.
locrinus subcrassus (Meek and Worthen),
Anomalocrinus. C.
B.
A. sp,
Arms of A. incurvus Meek and Worthen,
A. sp, CMC IP 7341, Cincinnati, Ohio.
A Sea without Fish
CMC IP 170,
MUGM 28048,
Bellevue-Corryville CMC IP,
uncata-
Figure 12.8. monobathrid
camerate
crinoids. nus
Cincinnatian
A.
Glyptocri-
decadactylus
MUGM
28046,
Formation
(?),
locality
unknown, x 1.5. Pycnocrinus (Meek), Corryville Morrow,
175
B.
dyeri
USNM 40762, Formation, Warren
Ohio, x 1.2.
Echinoderms
Hall, Fairview
Co.,
Figure 28121,
12.9.
Cincinnatian
Liberty Formation,
Cyclonema sp.,
monobathrid camerate crinoids. Butler Co.,
MUGM uncatalogued,
Wayne State University Collection, eter.
Note
Figure tion,
12.10.
Formation, S9I,
A.
A.
B.
Arnheim Formation,
Dent,
Dent,
of articulated crowns,
x
7.2.
C.
east of Lebanon,
Warren Co.,
A Sea without Fish
Ohio, Ohio,
No. 366,
MUGM
Ohio,
x
1.3.
x 2.0.
C.
P.
dyeri,
lens cap 55 mm diamdown.
Bruce and Charlotte Gibson Collec-
Xenocrinus baeri (Meek),
Diplobathrid camerate crinoid,
figure 3a).
176
Co.,
some splayed oralside
Merocrinus curtus Ulrich, B.
Hamilton Co.,
Hamilton
Ohio,
x 4.2.
Glyptocrinus fornshelli Miller,
Pycnocrinus dyeri (Meek) with attached gastropod,
Cladid crinoid,
southwestern Ohio, plate 2,
7.7.
Hamilton Co.,
Waynesville Formation,
Meek (1873,
x
Arnheim Formation,
remarkable preservation
Kope Formation,
Ohio,
MUGM 28347,
Liberty
Gaurocrinus nealli (Hall) USNM
This specimen was illustrated by
Echinoderms
177
Figure 12.11. Cincinnatian
of c r i n o i d s , the disparids, the c l a d i d s , a n d tlic c a m c r a t c s . Disparids have a
rhombiferans.
s m a l l , m o n o c y c l i c c u p - o r h o w l - s h a p e d c a l y x w i t h b r a n c h i n g a r m s that d o
A, B.
padocystis
Le-
moorei
(Meek),
CMC IP 24680,
Elkhorn
Formation,
ble Co.,
Ohio,
C.
fulton-
Sumrall and Schu-
macher,
holotype,
IP 50402, tion,
x 4.3.
Cheirocystis
ensis
Pre-
CMC
n o t b e a r p i n n u l e s . An e l o n g a t e , plated t u b e , the a n a l sac. is often present b e t w e e n the a r m s a n d has the a n a l o p e n i n g a t its e n d . T h e m o s t c o m m o n Cincinnatian
c r i n o i d s , Cincinnaticrinus,
Ectenocrimts,
and
locrinus are dis-
parids ( F i g u r e s 12.6,12.7; Plate 10). Cincinnaticrinus a n d probably Ectenocrimis h a d a u n i q u e , button-like holdfast c o m p o s e d of m a i n tiny plates, often f o u n d a t t a c h e d to b r a c h i o p o d shells a n d o t h e r hard substrata. Before it was
Kope Forma-
r e c o g n i z e d that this holdfast b e l o n g s to these types of crinoids, if was given
Bracken Co., Ken-
t h e n a m e Lichenocrinus w i t h n u m e r o u s s p e c i e s ( F i g u r e s 1 2 . 5 L - N ; Faber
tucky, x 3.5. struction
D.
Recon-
of late
Riehmondian
sea
southeastern
Indiana
southwestern showing moorei
(A)
attached
(B),
to
brachiomod-
and an edrioast-
Carneyella sp.
(D).
A, B, D from Kesling and Mintz (1961, plate 6, ures 8, reprinted
of the Museum ontology,
fig-
10, plate 7) and by
served fossils are f o u n d that reveal the entire a n i m a l . Cincinnaticrinus
Ohio,
Zygospira
esta (C), eroid,
and
Lepadocystis
bryozoans pods,
floor of
1929; W a r n a n d S t r i m p l e 1977). Q u i t e often in p a l e o n t o l o g y isolated parts of o n e o r g a n i s m are d e s c r i b e d as distinct s p e c i e s before sufficiently well preand
Ectenocrinus
are
frequently
found
together
in
t h e K o p e F o r m a t i o n , w h e r e their d i s a r t i c u l a t e d c o l u n m a l s c a n form entire l i m e s t o n e b e d s . S o m e t i m e s t h e a r t i c u l a t e d stalks a r e p a c k e d tightlv tog e t h e r like l o g j a m s w h e r e t h e c o l l e c t o r s h o u l d l o o k c l o s e l y for t h e s m a l l , d e l i c a t e c r o w n s ( Plate 10B). T h e s e " l o g j a m s " w e r e p r o b a h l v f o r m e d d u r i n g a n c i e n t s t o r m s that d i s r u p t e d t h e sea floor. locrinus is a n o t h e r c o m m o n disparid c r i n o i d in t h e C i n c i n n a t i a n , but is larger a n d m o r e robust in s t r u c t u r e than (lincinnaticrinus and Ectenocrinus ( F i g u r e 12.7A; Plate 10A). locrinus has a low, c o n i c a l c u p with dec]) in-
permission
d e n t a t i o n s m a r k i n g the j u n c t i o n of e a c h basal plate with the two radials
of Pale-
a b o v e . T h e c o l u n m a l s are p e n t a g o n a l or star-shaped ( F i g u r e s 12.5C, J). A d u l t
University of
locrinus a t t a c h e d to b r y o z o a n s by c o i l i n g t h e stalk tightly a r o u n d the
Michigan.
b r a n c h e s . Slabs c o v e r e d w i t h locrinus c r o w n s h a v e b e e n f o u n d in the u p p e r C o r r y v i l l e F o r m a t i o n . In o n e e a s e , t h e c r o w n s are c o n c e n t r a t e d at the base of t h e fine-grained l i m e s t o n e b e d a n d are a l i g n e d parallel to a narrow gutter e r o d e d into the sea floor ( F i g u r e s 12.^B; M e y e r el al. 19(81). C u r v e d l e n g t h s of the locrinus stalks c o v e r the u p p e r surface of the bed in a r a n d o m fashion. These preservational features s u g g e s t that the c r o w n s were s n a p p e d off the stalks by a violent d i s t u r b a n c e (possibly storm-related) and swept d o w n s l o p e , to he f o l l o w e d by their stalks that settled on top of t h e m . Anomalocrinus w a s t h e g i a n t a m o n g t h e c r i n o i d s o f t h e C i n c i n n a t i a n ( F i g u r e s 1 2 . 7 B - D ) . Its s t e m r e a c h e d a l e n g t h o f a b o u t o n e m e t e r , with c o l u n m a l s o v e r a c e n t i m e t e r in d i a m e t e r ( F i g u r e 12.5F). least 10 cm h i g h a n d had up to 500 b r a n c h e s .
The c r o w n was at
The s t e m w a s a t t a c h e d by
m e a n s o f a s t u m p - l i k e holdfast c e m e n t e d d i r e c t l y t o hard substrata. T h e holdfasts are f o u n d a s w o r n , crater-like l u m p s e n c r u s t i n g l i m e s t o n e n o d u l e s , h a r d g r o u n d s , b r y o z o a n s , o r shells. C l a d i d s h a v e a c o n i c a l , d i e v c l i c c u p . Mcrocrinus is restricted to t h e l o w e r m o s t K o p e F o r m a t i o n w h e r e its s t e m s are easily r e c o g n i z e d b y their t h i n , wafer-like c o l u n m a l s ( F i g u r e s 12.5E,
12.10A).
Cupulocrinusand Plico-
dendrocrinus are c l a d i d s f o u n d in t h e R i e h m o n d i a n f o r m a t i o n s (Plate 11). C a m e r a t e c r i n o i d s h a v e a rigid c o n i c a l calyx that i n c l u d e s m a i n ' fixed b r a c h i a l s , that is, a r m plates a b o v e the radials that are incorporated into the c a l y x . T h e r e is a plated t c g i n e n c o v e r i n g the m o u t h .
The p i n n u l e - b e a r i n g
free a r m s h a v e a feathery a p p e a r a n c e . ('dyptocrinus and Pycnocrinus, 1110110-
178
A Sea without Fish
Echinoderms
179
Figure 12.12. Edrioasteroid
Isorophus
tiensis
cincinna-
(Roemer),
recon-
structed as in life, food grooves feeding.
with
open
for
Drawing by John
Agnew.
Figure
12.13. Cincinnatian
edrioasteroids
A,
B.
cincinna-
Isorophus
tiensis A.
(Roemer).
Corryville Formation,
Hamilton Co., versity
Ohio,
lection, x 2.2. individual against
B.
smaller
individual,
of
Carneyella
C-E.
E. At-
crinoid column,
CMC IP 26324, F.
Streptaster
vorticel-
CMC IP
24700, x3.2.
G.
stellatus
CMC IP 40481, Photos C - G
(Hall),
13,
10,
figure
figure14, plate
figure 7) and re-
printed by permission Albany,
very d i s t i n c t f r o m G. decadactylus in h a v i n g finer ridges on the calyx plates a n d u n i q u e t h i n , p e n t a g o n a l c o l u m n a l s ( F i g u r e 12.9A). Xenocrinus is a n o t h e r m o n o b a t h r i d c a m e r a t e crinoid f o u n d in the L i b erty F o r m a t i o n of t h e R i c h m o n d i a n S t a g e ( F i g u r e 12.10B). T h i s crinoid is
of
the New York State Museum,
of Glyptocrinus, p r e s e r v e d c o m p l e t e w i t h a r m s , p i n n u l e s , and attached stalks preparation at t h e C i n c i n n a t i M u s e u m C e n t e r ) . Glyptocrinus fornshelli is
10, plate 17, figures 1, 3, plate
type was found in the A r n h e i m Formation at D e n t , Hamilton C o u n t y ,
w a s r e c o v e r e d f r o m t h e F a i r v i e w F o r m a t i o n n e a r M a y s v i l l e , K e n t u c k y (in
x 6.2. 16,
( F i g u r e 12.4). O c c a s i o n a l l y , m u d s stirred u p d u r i n g storms s m o t h e r e d dense
a r o u n d i 9 6 0 ( F i g u r e 1 2 . 9 C ) , a n d recently a d e n s e a g g r e g a t i o n of h u n d r e d s Cys-
from Bell
(1976a, plate
nocrinus c o i l e d t h e s t e m a r o u n d o b j e c t s s u c h as b r y o z o a n s for a t t a c h m e n t a g g r e g a t i o n s of these c r i n o i d s . A s p e c t a c u l a r Pycnocrinus a g g r e g a t i o n of this
x 2.1.
latus (Hall), taster
n e a r t h e base, p r o d u c i n g a total of t w e n t y a r m s . B o t h Glyptocrinus and Pyc-
C. CMC IP to
a r m s . Pycnocrinus o c c u r s in t h e C o r r y v i l l e , A r n h e i m , and W a y n e s v i l l e Form a t i o n s a n d has several s e e u n d i b r a c h s and ten free a r m s that b r a n c h o n c e
pilea
34537, x 3.2. D, tached
braehs (calyx plates f o l l o w i n g the first b r a n c h i n g of a rav) and twenty free
Cincinnati
collection, x 3.
pattern of ridges on t h e c a l y x plates. Glyptocrinus decadactylus o c c u r s in the l o w e r C i n c i n n a t i a n K o p e a n d F a i r v i e w F o r m a t i o n s and has t w o s e c u n d i -
Kentucky,
University
bathrid c a m e r a t e s ( m o n o c y c l i c calyx), are very similar a n d are the m o s t c o m m o n C i n c i n n a t i a n c a m e r a t e s ( F i g u r e 12.8). B o t h h a v e a distinct g e o d e s i c
Formation,
Co.,
(Hall).
Large
crowding
Corryville Boone
Uni-
of Cincinnati col-
N.Y.,
n o t e w o r t h y for h a v i n g four-sided c o l u m n a l s and also h a v i n g the ability to coil a r o u n d o t h e r objects ( D o n o v a n et al. 1995). D i p l o b a t h r i d camerates have an additional circlet of plates, the infrabasals, at the base of the calyx and are quite
12230.
rare in the C i n c i n n a t i a n . Gaurocrinus nealli is s h o w n in F i g u r e 12.10C.
180
A Sea without Fish
Echinoderms
181
Figure
12.14. Cincinnatian
asteroids. A,
B.
mopalaeaster
Prospecio-
sus (Meek).
A.
Associations of Crinoids with O t h e r Species Interesting i n f o r m a t i o n a b o u t the e c o l o g y o f C i n c i n n a t i a n crinoids c a n b e g a i n e d b y o b s e r v i n g c l o s e associations b e t w e e n crinoids a n d other o r g a n -
Oral
Aboral side,
isms. A s m e n t i o n e d a b o v e , s o m e C i n c i n n a t i a n crinoids used other o r g a n i s m s
holotype,
Maysvillian,
o n t h e sea f l o o r , u s u a l l y b r y o z o a n s , for a t t a c h m e n t . T h i s habit a l l o w e d the
Cincinnati,
Ohio,
c r i n o i d s to g a i n e l e v a t i o n a b o v e t h e sea floor that e x p o s e d t h e m to u n r e -
side.
B.
108059, x 2. mopalaeaster e s (Miller) side. holotype,
magnifiC.
D.
MCI
C, D. ProOral
Richmondian,
40883,
Waynes-
ville, Warren Co., Ohio, x 0.8.
o f a v o i d i n g c o m p e t i t o r s . C r i n o i d s w e r e thus m e m b e r s o f s o m e o f the earliestk n o w n " t i e r e d " m a r i n e b o t t o m c o m m u n i t i e s , i n w h i c h p a r t i c u l a r species,
Aboral side, USNM
stricted c u r r e n t flow, an a d v a n t a g e in passive suspension f e e d i n g a n d a m e a n s
Photos courtesy of
Jon W. Branstrator.
e s p e c i a l l y s u s p e n s i o n feeders, o c c u p y preferred levels or tiers a b o v e the subs t r a t u m . C r i n o i d s h a v e b e e n " u p p e r story" o c c u p a n t s o f tiered c o m m u n i t i e s from O r d o v i c i a n t i m e up t h r o u g h the present (Ausich and Bottjer 1982). Man\- C i n c i n n a t i a n s p e c i e s i n t u r n u s e d c r i n o i d s a s a t t a c h m e n t sites. C r i n o i d s t e m s are f r e q u e n t l y e n c r u s t e d w i t h b r v o z o a n s , c o r a l s , c o r n u l i t i d w o r m t u b e s , b r a c h i o p o d s , e d r i o a s t e r o i d e c h i n o d e r m s ( F i g u r e s 12.13D, F ) , a n d e v e n o t h e r c r i n o i d holdfasts. B e c a u s e t h e s e e n c r u s t e r s often e n c i r c l e t h e stalk, it is likelv s o m e w e r e a t t a c h e d d u r i n g t h e life of t h e c r i n o i d , p r o v i d i n g t h e e n c r u s t e r s t h e a d v a n t a g e o f a h i g h e r t i e r i n g level. Pits, b o r i n g s , a n d gall-like s w e l l i n g s in c r i n o i d stems indicate that other o r g a n i s m s u s e d t h e s t e m s as d w e l l i n g sites or e v e n parasitized t h e crinoid host. S t e m s of Cincinnaticrinus s o m e t i m e s h a v e gall-like s w e l l i n g s p e n e trated by a pit. C a l c i u m p h o s p h a t i c rings found either w i t h i n the pit or on the surfaces o f u n p i t t e d c o l u m n a l s ( W a r n 1974)
w
c
r
c
probably f o r m e d b y the
o r g a n i s m m a k i n g t h e pits, a l t h o u g h its identification is disputed. W a r n (1974) c o n c l u d e d that t h e O r d o v i c i a n d e f o r m i t i e s a n d rings w e r e c a u s e d b y m y z o s t o m i d a n n e l i d w o r m s that also form galls in living crinoids. W e l c h (1976) p o i n t e d o u t that n o m o d e r n m y z o s t o m i d s form p h o s p h a t i c l i n i n g s w i t h i n their pits. H e r e c o g n i z e d that t h e O r d o v i c i a n s t r u c t u r e s r e s e m b l e others f o u n d i n y o u n g e r P a l e o z o i c c r i n o i d s t e m s a n d thus c o u l d b e assigned t o the g e n u s Phosphannulus.
B i s c h o f f (1989) c o n s i d e r e d Phosphannulus to be a
junior s y n o n y m of Byronia, w h i c h b e l o n g s to a g r o u p of p h o s p h a t i c and/or o r g a n i c t u b e - s h a p e d fossils (byroniids) f o u n d i n C a m b r i a n t h r o u g h P e r m i a n strata. A l t h o u g h s o m e w o r k e r s interpret b y r o n i i d s as t u b e s of tiny s u s p e n s i o n f e e d i n g w o r m s , B i s c h o f f a r g u e d that the}' are s h e a t h s of the p o l y p o i d larval stage o f s c y p h o z o a n jellyfish. ( W e discussed the association b e t w e e n crinoids a n d g a s t r o p o d s [ F i g u r e 12.9I in c h a p t e r 9.) T h a n k s to m o d e r n o c e a n o g r a p h y , m a r i n e biologists c a n e x a m i n e m a n y l i v i n g d e e p sea a n i m a l s s u c h a s stalked c r i n o i d s that w e r e p r e v i o u s l y i n a c c e s s i b l e e x c e p t b y d r e d g i n g . O n e o f t h e m o s t s u r p r i s i n g r e c e n t discoveries a b o u t l i v i n g c r i n o i d s w a s o c c a s i o n a l c o l u m n s l a c k i n g c r o w n s s t a n d i n g in t h e m i d s t of d e e p sea c r i n o i d " g a r d e n s " ( C o n a n et al. 1981). A f u r t h e r s u r p r i s e c a m e w h e n J a p a n e s e w o r k e r s d i s c o v e r e d that " h e a d l e s s " c o l u m n s o f R e c e n t Metacrinus c a n live i n d e f i n i t e l y i n a q u a r i a a n d e v e n r e g e n e r a t e t h e c r o w n i f r e g e n e r a t i o n o c c u r s a b o v e t h e basal circlet o f plates ( A m e m i y a a n d O j i 1992). T h i s s u r v i v a l a n d r e g e n e r a t i o n i s p r e s u m a b l y e n a b l e d b y d i r e c t a b s o r p t i o n o f d i s s o l v e d n u t r i e n t s . F o s s o f the c r o w n s a m o n g wild p o p u l a t i o n s of c r i n o i d s is m o s t likelv the result of p r e d a t i o n .
\82
A Sea without Fish
C i n c i n n a t i a n fossil c r i n o i d s p r o v i d e s o m e o f t h e earliest e v i d e n c e t h a t predators inflicted s i m i l a r d a m a g e o n O r d o v i c i a n c r i n o i d s a n d t h a t r e g e n eration w a s a survival m e c h a n i s m . In a s t u d y of t h e i m p a c t of p r e d a t i o n on P a l e o z o i c c r i n o i d s , B a u m i l l e r a n d C a l m (2004) illustrated a r e m a r k a b l e s p e c i m e n of the disparid Dystactocrinus comtrictus ( H a l l ) f r o m t h e C i n -
Echinoderms
183
Figure
12.15.
side.
B.
Cincinnatian asteroids.
Oral side,
(Miller and Dyer),
holotype,
(Meek),
MUGM 29664,
mation,
Brookville,
Waynesville,
A,
B.
Lanthanaster intermedius (Schuchert).
holotype, FMNH 9575, Maysvillian, MCZ 108063,
with arms
Franklin
Warrern Co.,
184
Co.,
Ohio,
Maysvillian,
Cincinnati,
Preble Co.,
wrapped around bivalve
Indiana.
E.
x 3. Photos A,
A Sea without Fish
Ohio, Ohio,
A.
Aboral
x 3.
C.
Petraster speciosus
7.
D.
Promopalaeaster dyeri
x
in presumed feeding posture,
Salteraster grandis (Meek),
USNM 40885,
B courtesy of Jon W. Branstrator.
Waynesville ForRichmondian,
Figure
12.16.
Waynesville,
A.
Asteroid,
Warren Co.,
Ohio,
cian, southern Pennsylvania, Boardman
et
Publishing;
C,
al.
(1987,
x
figure
Hudsonaster simplex (Miller and Dyer), x 3.1. 1.4.
B. C.
18.45B),
USNM 40882,
Taeniaster spinosus (Billings),
Cyclocystoid,
USNM,
Richmondian,
Zygocycloides magnus (Miller and Dyer).
courtesy of James Sprinkle,
near
Middle or Upper OrdoviB,
from
and reprinted by permission of Blackwell
courtesy of Colin Sumrall. Echinoderms
185
Figure
12.17.
stylophoran A.
1-6.
1 -3.
sal view.
3.
view, x 2.3. type,
2.
CMC IP 25257,
ryville Formation, ton Co., Ohio. view. 6. 1-6
5.
Dor-
c o l u m n a l s ) o f Cincinnaticrinus s h o w i n g r o u n d e d o v e r g r o w t h s o f o n e e n d . T h e y s u g g e s t e d t h a t t h e o v e r g r o w t h s f o r m e d after d e c a p i t a t i o n o f t h e
Lateral 4-6.
r e p o r t e d r e g e n e r a t i o n of a c o l u m n a t t a c h e d to t h e holdfast Lichenocrinus D o n o v a n a n d S c h m i d t (2001) illustrated p l u r i c o l u m n a l s (sections o f several
Ohio.
Ventral view.
a r m s t o a n a t t a c k b y a n u n k n o w n predator. A u s i c h a n d B a u m i l l e r (1993) dubius ( k n o w n to be t h e h o l d f a s t of Cincinnaticrinus or o t h e r disparids).
Formation,
Clermont Co., 1.
Holo-
CMC IP 25993,
Corryville
c i n n a t i a n i n w h i c h all o f t h e a r m s a r e i n t h e p r o c e s s o f r e g e n e r a t i o n ( F i g u r e 12.6D). T h e y c o n c l u d e d that t h e r e g e n e r a t i o n f o l l o w e d t h e loss o f t h e
Enoploura p o -
p e / Caster. type,
Cincinnatian carpoids.
Para-
c r o w n s b y p r e d a t i o n , l e a v i n g a " h e a d l e s s " c o l u m n . I n light o f t h e n e w
Cor-
k n o w l e d g e of p r e d a t i o n d a m a g e in l i v i n g c r i n o i d s , it is m o s t likely that
Hamil4. Dorsal
Lateral view.
p r e d a t o r s a l s o c a u s e d loss o f c r o w n s a n d a r m s i n O r d o v i c i a n c r i n o i d s , alt h o u g h the identity of the culprits remains uncertain.
Ventral view, x 2.3. from
plate 1).
Caster (1952, B.
tion of E. popei, Parsley
Rhombiferan "cystoids"
Reconstruc-
(1991,
R h o m b i f e r a n s are stalked e c h i n o d e r m s that a p p e a r e d i n the Early O r d o v i -
from
text-figure
cian and b e c a m e extinct by the Late D e v o n i a n .
T h e term " c y s t o i d " (sac-
1). All reprinted by per-
like) refers to t h e plated t h e c a that has four to five circlets of large plates
mission
of the
a r r a n g e d in a p e n t a m e r a l p a t t e r n . R h o m b i f e r a n s w e r e o r i g i n a l l y a s u b -
logical
Research
Paleonto-
g r o u p o f t h e cystoids b u t h a v e b e e n e l e v a t e d t o a separate class. T h e y lived
Institution.
as suspension feeders, but unlike crinoids, the feeding appendages of r h o m b i f e r a n s are t h i n p l a t e d b r a c h i o l c s a r i s i n g f r o m a m b u l a c r a that are e i t h e r i n c o r p o r a t e d into t h e t h e c a o r less c o m m o n l y stand e r e c t ( F i g u r e 12.11C). R h o m b i f e r a n s are n a m e d for a u n i q u e r h o m b i c s t r u c t u r e f o u n d on t h e t h e c a l plates. A set of n a r r o w slits in a r h o m b i c o u t l i n e crosses b o u n d a r i e s o f a d j a c e n t p l a t e s ; t h e s e slits led t o i n t e r c o n n e c t i n g i n t e r n a l c a n a l s . T h e p u r p o s e o f t h e s e d i s t i n c t i v e c a n a l s w a s t o p r o v i d e w a t e r flow t h r o u g h t h e interior o f t h e t h e c a for respiratory p u r p o s e s . T h e relatively short b r a c h i o l e s o f r h o m b i f e r a n s m a y h a v e c a r r i e d f e w e r t u b e feet t h a n t h o s e u s e d for r e s p i r a t i o n i n c r i n o i d s , o r m a y h a v e l a c k e d t h e m entirely. T h e r e f o r e t h e h e a v i l y p l a t e d r h o m b i f e r a n s m a y h a v e n e e d e d a different m e a n s t o s u p p l y o x y g e n a t e d w a t e r a n d t o r e m o v e dissolved c a r b o n d i o x i d e f r o m t h e t h e c a l interior. T w o s p e c i e s o f r h o m b i f e r a n s are f o u n d i n t h e C i n c i n n a t i a n . Cheirocystis fultonensis is restricted to t h e l o w e r m o s t K o p e
Formation (Fulton
S h a l e ) ( S u m r a l l a n d S c h u m a c h e r 2002). T h i s s p e c i e s has a n e l o n g a t e t h e c a a n d a l o n g , t a p e r i n g , a t t a c h e d stalk ( F i g u r e 12.11C). Lepadocystis moorei ( M e e k ) is found only in the
Elkhorn
Formation (Richmondian).
This
r h o m b i f e r a n h a s a r o u n d e d t h e c a a n d a shorter, t a p e r i n g u n a t t a c h e d stalk ( S u m r a l l a n d S p r i n k l e 1999; F i g u r e s 12.11A, B , D ) . S o m e c o m p l e t e s p e c i m e n s are still a t t a c h e d by a h o l d f a s t c e m e n t e d to v a r i o u s o b j e c t s .
E-drioasteroids N e x t t o t h e c r i n o i d s , e d r i o a s t e r o i d s a r e t h e m o s t c o m m o n e c h i n o d e r m fossils in C i n c i n n a t i a n strata. E d r i o a s t e r o i d s c o n s t i t u t e a class of e c h i n o d e r m s that o r i g i n a t e d d u r i n g t h e C a m b r i a n a n d b e c a m e e x t i n c t i n the P e r m i a n . At first g l a n c e , an e d r i o a s t e r o i d r e s e m b l e s a sea star w i t h a r i n g a r o u n d it
786
A Sea without Fish
Echinoderms
187
(the n a m e m e a n s "seated-star"). T h e sea star r e s e m b l a n c e derives from the five u s u a l l y c u r v i n g food g r o o v e s o r a m b u l a c r a ! tracts that c o n v e r g e o n the c e n t r a l m o u t h ( F i g u r e 12.12). T h i n , o v e r l a p p i n g c a l c i t i c plates c a l l e d intera m b u l a c r a l s take u p t h e s p a c e b e t w e e n t h e a m b u l a c r a . A m o r e rigid series o f m a r g i n a l plates f o r m s t h e ring. U s u a l l y t h e a m b u l a c r a l a n d i n t e r a m b u lacral plates a p p e a r to h a v e c o l l a p s e d inside t h e m a r g i n a l r i n g ; thus it is a s s u m e d that t h e m u l t i p l a t e d t h e c a was flexible in life. Rarely, u n c o l l a p s e d o r " i n f l a t e d " s p e c i m e n s are f o u n d that reveal h o w the a n i m a l probably a p p e a r e d i n life. M o s t C i n c i n n a t i a n e d r i o a s t e r o i d s h a d a l o w d o m e s h a p e , b u t s o m e w e r e m o r e c y l i n d r i c a l ( S u m r a l l 1994). A total of six g e n e r a a n d e l e v e n s p e c i e s are k n o w n f r o m C i n c i n n a t i a n strata ( F i g u r e 12.13). B e c a u s e e d r i o a s t e r o i d s are e x t i n c t , their m o d e o f life m u s t b e inferred b y a n a l o g v t o l i v i n g e c h i n o d e r m s . F d r i o a s t e r o i d s are a l w a y s f o u n d a t t a c h e d to a hard surface s u c h as a b r a c h i o p o d shell, b r y o z o a n , or hardground. T h e lower surface was plated in s o m e species, but in C i n c i n n a t i a n species app a r e n t l y o n l y a soft tissue m e m b r a n e s e r v e d to a d h e r e to the s u b s t r a t u m , possibly i n t h e w a y sea a n e m o n e s a t t a c h b y their p e d a l disk. S o m e s p e c i e s a c t u a l l y c e m e n t e d t o t h e s u b s t r a t u m like a b a r n a c l e , but those a d h e r i n g b y a basal m e m b r a n e m a y have b e e n capable of limited m o v e m e n t . B e c a u s e t h e m o u t h a n d a m b u l a c r a l tracts are d i r e c t e d u p w a r d s i n e d r i o a s t e r o i d s , t h e y a p p a r e n t l y l i v e d a s passive filter f e e d e r s . T h e a m b u l a c r a l g r o o v e s are l i n e d w i t h tinv, z i p p e r - l i k e e o v e r p l a t e s c a p a b l e o f o p e n i n g a n d c l o s i n g (Figu r e 12.12). O p e n i n g t h e e o v e r p l a t e s e x p o s e d t h e food g r o o v e l i n e d w i t h t u b e feet and/or c i l i a that s e r v e d t o c o l l e c t s u s p e n d e d food p a r t i c l e s a n d c o n v e y t h e m t o t h e m o u t h i n a m a n n e r s i m i l a r t o that o f l i v i n g c r i n o i d s . Fecal waste was expelled t h r o u g h a valve-like anal o p e n i n g on the thecal s u r f a c e . T w o o t h e r o p e n i n g s l o c a t e d n e a r t h e m o u t h are a s s u m e d t o b e a g o n o p o r e (for r e l e a s e o f g a m e t e s ) a n d a h y d r o p o r e .
The hydropore allowed
for w a t e r i n t a k e t o t h e w a t e r v a s c u l a r s y s t e m a n d for c o n t r o l o f t h e a m o u n t o f t h e c a l i n f l a t i o n . C y l i n d r i c a l f o r m s s u c h a s t h e C i n c i n n a t i a n Streptaster w e r e c a p a b l e o f t e l e s c o p i n g t h e t h e c a l plates d u r i n g inflation s o a s t o a c h i e v e a n e l e v a t e d f e e d i n g p o s i t i o n a n d d u r i n g d e f l a t i o n a s s u m i n g a lowprofile, p r o t e c t i v e p o s i t i o n ( S u m r a l l 1994). A l t h o u g h e d r i o a s t e r o i d s a r e u s u a l l y c o n s i d e r e d t o b e rare fossils, t h e y c a n occasionally be found by the h u n d r e d s or thousands in C i n c i n n a t i a n strata w h e n t h e a p p r o p r i a t e p r e s e r v a t i o n a l c o n d i t i o n s are p r e s e n t ( M e y e r 1990). T h i n l i m e s t o n e s c o v e r e d w i t h s t r o p h o m e n i d b r a c h i o p o d s (shell p a v e m e n t s ) o r h a r d g r o u n d s ( c a l c a r e o u s s e d i m e n t s l i t h i h e d o n t h e sea f l o o r ) are t h e ideal substrata for e d r i o a s t e r o i d s ( W i l s o n 1985). D e s p i t e the a b u n d a n c e of these types of beds in the C i n c i n n a t i a n , edrioasteroid-bearing p a v e m e n t s are rare. P r e s e r v a t i o n of e d r i o a s t e r o i d s in their life p o s i t i o n on p a v e m e n t s r e q u i r e d a rapid, c a t a s t r o p h i c b u r i a l w i t h f i n e m u d . W i t h o u t s u c h a rapid s m o t h e r i n g , t h e d e l i c a t e , m u l t i p l a t e d e d r i o a s t c r o i d t h e c a disa r t i c u l a t e d s o o n after d e a t h , l e a v i n g little o r n o trace. The d i s c o v e r y of p a v e m e n t s b e a r i n g a b u n d a n t edrioasteroids in the C i n c i n n a t i a n led to p i o n e e r i n g s t u d i e s of t h e life history of edrioasteroids and their p o p u l a t i o n p a l e o e c o l o g v .
Because pavements contained specimens
r a n g i n g in size from a few m i l l i m e t e r s in d i a m e t e r to the largest individuals
188
A Sea without Fish
over thirty m i l l i m e t e r s in d i a m e t e r , Bell (1976) was able to d e t e r m i n e how several s p e c i e s c h a n g e d i n m o r p h o l o g y d u r i n g g r o w t h . T h i s i n f o r m a t i o n w a s used by M e y e r (1990) to study t h e p o p u l a t i o n p a l c o e c o l o g y of t h r e e different species f o u n d o n a s i n g l e p a v e m e n t . S m a l l i n d i v i d u a l s o f the c o m m o n species Isorophus cincinnatiensis ( F i g u r e s 12.13A, B) clustered n e a r t h e m a r g i n s of articulated (likely living) shells of t h e host b r a c h i o p o d Rafinesquina. T h e small edrioasteroids m a y h a v e lived in a c o m m e n s a l r e l a t i o n s h i p w i t h the living b r a c h i o p o d , t a k i n g a d v a n t a g e o f t h e f e e d i n g c u r r e n t s g e n e r a t e d b y t h e b r a c h i o p o d and protection a l o n g the o v e r h a n g i n g m a r g i n o f the host shell. B e c a u s e a single large Isorophus o c c u p i e s a l m o s t an entire b r a c h i o p o d shell, it is likely that either m o r t a l i t y or r e l o c a t i o n to avoid o v e r c r o w d i n g d e p l e t e d the juvenile clusters. In t i m e , t h e edrioasteroids m a y h a v e o u t l i v e d t h e brac h i o p o d host, b e c a u s e t h e larger i n d i v i d u a l s are f o u n d o n d i s a r t i c u l a t e d , abraded ( h e n c e d e a d ) host shells. P a v e m e n t s f o u n d at different stratigraphic h o r i z o n s i n t h e C i n c i n n a t i a n h a v e different edrioasteroid s p e c i e s p o p u l a tions ( S u m r a l l et al. 2001).
Asteroids S e a stars are e x c e p t i o n a l l y rare fossils in t h e C i n c i n n a t i a n ; o f t e n , s p e c i m e n s are hard to r e c o g n i z e b e c a u s e they are f r a g m e n t a r y or distorted. N e v e r t h e less, six g e n e r a a n d ten s p e c i e s are valid f r o m the C i n c i n n a t i a n ( F i g u r e s 12.14-12.16). S e a stars are t h e m o s t r e c o g n i z a b l e e c h i n o d e n n s , h a v i n g the stereotypical pentaradial s y m m e t r y . they differ from brittle stars (ophiuroids) in h a v i n g a r m s that are not sharply differentiated f r o m t h e c e n t r a l disk. C i n c i n n a t i a n sea stars, like m o d e r n f o r m s (Plate 9 E ) , h a d a w i d e r a n g e o f b o d y f o r m s that c a n b e related t o a diversity o f f e e d i n g habits. T h e bestk n o w n C i n c i n n a t i a n sea star, Promopalaeaster, stratigraphic
section.
An
extraordinary
is f o u n d t h r o u g h o u t t h e
specimen
of a
Promopalaeaster
w r a p p e d a r o u n d a b i v a l v e m o l l u s c p r o v i d e s a rare e x a m p l e of a sea star c a u g h t i n a n a n c i e n t act o f p r e d a t i o n ( F i g u r e 12.15D; B l a k e a n d G u e n s b u r g 1994). This c a s e d e m o n s t r a t e s that s o m e sea stars o f t h e O r d o v i c i a n h a d t h e ability t o prey o n p e l e c y p o d s b y p r y i n g t h e i r v a l v e s a p a r t just a s d o m o d e r n sea stars.
T h e s t o m a c h is e v e r t e d t h r o u g h t h e m o u t h a n d t h e p r e v is d i -
g e s t e d w i t h i n its o w n s h e l l .
B r a n s t r a t o r (1975) c o n c l u d e d that Mesopa-
laeaster w a s a l s o a s t o m a c h - e v e r t i n g sea star. Hudsonaster is a s m a l l sea star with large, b l o c k y plates, at least s u p e r f i c i a l l y s i m i l a r to c e r t a i n p r e s e n t - d a y m e m b e r s o f t h e G o n i a s t e r i d a e o r O p h i d i a s t e r i d a e , w h i c h f e e d o n passive, c o l o n i a l o r g a n i s m s , s m a l l prey, a n d d e t r i t u s ( F i g u r e 12.16A; J a n g o u x 1982). Another
Cincinnatian
asteroid,
Petraster speciosus
(Richmondian),
has
short, broad a r m s a n d a flattened profile ( F i g u r e 12.15C). It is v e r y s i m i l a r t o m o d e r n sea stars that live b y i n g e s t i n g s e d i m e n t a n d d i g e s t i n g o r g a n i c materials ( B l a k e a n d G u e n s b u r g 1988). In c o n t r a s t , Salteraster h a d v e r y l o n g , n a r r o w a r m s , w ith s m a l l ossicles ( F i g u r e 12.15E). S p e c i m e n s are often p r e s e r v e d in a c o n t o r t e d m a n n e r s u g g e s t i n g great flexibility a n d ability to handle small
or large
prey.
Both
Salteraster a n d
Lanthanaster ( F i g u r e s
12.15A, B) are t h o u g h t to h a v e b u r r o w e d into fine s e d i m e n t in s e a r c h of
Echinoderms
prey, a n d b o t h m a y h a v e p r o d u c e d the rare star-shaped b u r r o w s i n the C i n c i n n a t i a n c a l l e d Asteriacites (see F i g u r e 14.3D; Branstrator 1975).
Ophiuroids T h e o p h i u r o i d s (brittle stars o r s e r p e n t stars) a r e d i s t i n g u i s h e d from the asteroids b y h a v i n g t h e f i v e a r m s sharply differentiated from t h e c e n t r a l disk (Plate 9 C ) . T h e a r m s are q u i t e flexible b e c a u s e t h e y a r e c o m p o s e d o f a series of vertebra-like ossicles c o n n e c t e d by m u s c l e s a n d l i g a m e n t s . O p h i uroids c a n m o v e q u i t e rapidly o n t h e sea floor b y l a s h i n g t h e a r m s and s o m e c a n flex t h e a r m s v e r t i c a l l y a s w e l l . T h e a r m s are e q u i p p e d w i t h t u b e feet that are u s e d to g a t h e r o r g a n i c p a r t i c l e s either d i r e c t l y from t h e sedim e n t o r a s s u s p e n d e d p a r t i c l e s . O p h i u r o i d s a r e usually c o n s i d e r e d t o b e d e p o s i t f e e d e r s , b u t s o m e are also c a p a b l e o f s u s p e n s i o n f e e d i n g a n d e v e n predation.
Taeniaster spinosus
(Billings)
occurs
in
the
Cincinnatian
( I l o t c h k i s s 1970; F i g u r e 12.16B), a n d like asteroids, it is very rare. M o d e r n o p h i u r o i d s c a n live in v e r y d e n s e a g g r e g a t i o n s on the sea floor. Rarely slabs h a v e b e e n f o u n d in t h e C i n c i n n a t i a n b e a r i n g d e n s e a s s e m b l a g e s of Taeniaster, s u g g e s t i n g that a g g r e g a t i o n b e h a v i o r w a s a c h i e v e d in this very early m e m b e r of the group. In the only other k n o w n C i n c i n n a t i a n ophiuroid, Protasterina flexuosa, p y r i t i z e d t u b e feet h a v e b e e n reported in a s p e c i m e n f r o m t h e K o p e F o r m a t i o n ( G l a s s 2006).
Cyclocystoids T h e c y c l o c y s t o i d s are a m o n g the rarest a n d m o s t e n i g m a t i c o f C i n c i n n a tian e c h i n o d e r m s . T h e y c a n b e easily m i s t a k e n for a n edrioasteroid b e c a u s e t h e y h a d a c i r c l e t o f s q u a r i s h , m a r g i n a l plates, 7 - 2 0 m m i n d i a m e t e r , but lack t h e c h a r a c t e r i s t i c f i v e c u r v i n g a m b u l a c r a o f edrioasteroids ( F i g u r e 12.16C). A c o m p r e h e n s i v e study of c y c l o c y s t o i d s by S m i t h a n d Paul (1982) p r o v i d e s t h e m o s t u p t o date u n d e r s t a n d i n g o f their c o m p l e x m o r p h o l o g y . T h e skeleton of a c y c l o c y s t o i d c o n s i s t s of t h r e e parts: a c e n t r a l disk, a m a r g i n a l r i n g , a n d a p e r i p h e r a l skirt. U s u a l l y o n l y t h e m a r g i n a l r i n g is f o u n d , c o n s i s t i n g o f e i g h t e e n t o sixty s q u a r i s h o r b l o c k v ossicles. N u m e r o u s s m a l l plates c o v e r o n e s u r f a c e o f t h e disk: g r o o v e d radial plates, u n g r o o v e d interradial plates, a n d c o v e r plates c o v e r i n g t h e g r o o v e d radial plates. T h e r e is a c e n t r a l o p e n i n g o n this s u r f a c e , p r e s u m a b l y the m o u t h . S m a l l p o l y g o n a l plates c o v e r t h e o p p o s i t e s u r f a c e , w i t h a s m a l l c o n e at the c e n t e r , p r e s u m ably s u r r o u n d i n g t h e a n a l o p e n i n g . A l t h o u g h s o m e c y c l o c y s t o i d s h a v e f i v e fold s y m m e t r y o f t h e p l a t i n g , o t h e r s h a v e four-fold o r six-fold s y m m e t r y , b r e a k i n g the s t e r e o t y p i c a l e c h i n o d e r m p a t t e r n .
The n a t u r e o f t h e p l a t i n g
s u g g e s t s t h a t i n life, t h e r e w a s v e r y little b o d y s p a c e b e t w e e n the t w o plated s u r f a c e s . The m a r g i n a l ossicles h a v e a d i s t i n c t i v e f o r m a n d are perforated b y tiny c a n a l s . E a c h m a r g i n a l has o n e t o seven c u p u l c s , w h i c h a r e s p o o n s h a p e d d e p r e s s i o n s . E a c h c u p u l e l e a d s to a radial d u c t l y i n g w i t h i n a circ u m f e r e n t i a l g r o o v e . T h e p e r i p h e r a l skirt consists o f s m a l l , i m b r i c a t e plates that c o v e r e d t h e r i n g o f c u p u l e s i n life.
190
A Sea without Fish
B e c a u s e t h e r e a p p e a r s t o h a v e b e e n very little s p a c e b e t w e e n t h e plated s u r f a c e s o f the l i v i n g c v c l o e y s t o i d , t h e a n i m a l s o m e w h a t r e s e m b l e d a t a m b o u r i n e rather t h a n a d r u m . L a c k i n g internal s p a c e for o r g a n s , c y c l o cystoids w e r e restricted t o f e e d i n g o n m i n u t e o r g a n i c p a r t i c l e s . S m i t h a n d Paul c o n c l u d e that the p a r t i c l e s w e r e c o l l e c t e d a t t h e c u p u l e s b y c i l i a r y a c t i o n a n d c o n v e y e d via the d u c t s t o t h e radial g r o o v e s that c o n v e r g e d o n t h e c e n t r a l m o u t h . A l t h o u g h t u b e feet are n o t p r e s e r v e d , S m i t h a n d P a u l suggest that t u b e feet c o u l d h a v e e m e r g e d f r o m p o r e s b e t w e e n plates o n the ventral s u r f a c e a n d p r o v i d e d a m e a n s o f l o c o m o t i o n . T h e e y c l o c v s t o i d thus m o v e d over the substrate a n d g a t h e r e d o r g a n i c p a r t i c l e s u s i n g c i l i a t e d c u p u l e s . O t h e r s p e c i a l i s t s , h o w e v e r , d o not a c c e p t t h e life o r i e n t a t i o n favored by S m i t h a n d Paul, a n d instead regard the o p p o s i t e side as l o w e r m o s t ( S p r i n k l e , pers. c o m m . ) C y c l o c y s t o i d s f i r s t a p p e a r e d i n t h e Farlv O r d o v i c i a n a n d last in the Late D e v o n i a n or Karlv C a r b o n i f e r o u s ( S m i t h a n d Paul 1982). A total of n i n e g e n e r a a n d f o r t y - o n e s p e c i e s h a v e b e e n d e s c r i b e d . In the C i n c i n n a t i a n , three g e n e r a a n d f i v e s p e c i e s a r e k n o w n .
Stvlophorans f o r m a n y p a l e o n t o l o g i s t s , s t v l o p h o r a n s surpass e v e n the c y c l o c y s t o i d s a s s o m e o f t h e m o s t b i z a r r e fossil e c h i n o d e r m s . For a m i n o r i t y o f s p e c i a l i s t s , s t v l o p h o r a n s are c o n s i d e r e d not e v e n t o h e e c h i n o d e r m s , b u t rather a n c e s tors of t h e vertebrates b e l o n g i n g to a g r o u p c a l l e d c a l c i c h o r d a t e s . ( T h e interested reader is referred to G e e 119961 for a b l o w - b y - b l o w a c c o u n t of this debate.)
This c o n t r o v e r s y , c o u p l e d w i t h their e x c e e d i n g rarity i n C i n -
c i n n a t i a n strata, m a k e the s t v l o p h o r a n s o n e o f the m o s t i n t r i g u i n g fossils ever to be f o u n d in the C i n c i n n a t i r e g i o n . A s i n g l e g e n u s , Enoploura, is f o u n d in the C i n c i n n a t i a n , w i t h M a v s v i l l i a n ( F i g u r e 12.17)
a n c
'
t w o s p e c i e s , E. popei C a s t e r in
the
balanoides 1 M e e k ) in the Mavsv illian a n d
R i c h m o n d i a n ( C a s t e r 19S2; Parsley 1991). Enoploura is t y p i c a l of the s t v l o p h o r a n s , an e x t i n c t e c h i n o d e r m class that r a n g e s from t h e M i d d l e C a m b r i a n t h r o u g h t h e E a r l y P e n n s v l v a n i a n , with a b o u t e i g h t y g e n e r a in all. Enoploura has a flattened, p l a t e d t h e c a that i s r o u g h l y r e c t a n g u l a r ; the p l a t i n g has n o radial o r p e n t a m e r a l s y m m e t r y w h a t s o e v e r , hut rather is bilaterally s y m m e t r i c a l . A p a i r of s p i n e s is attached at one end, and at the opposite end, a single, s e g m e n t e d a p p e n d a g e is a t t a c h e d . This a p p e n d a g e has a very c o m p l e x s t r u c t u r e a n d its f u n c t i o n has b e e n v i g o r o u s l y d e b a t e d . Il was o n c e t h o u g h t to be a stalk-like h o l d f a s t , but those f a v o r i n g the e c h i n o d e r m affinity of (he s t v l o p h o r a n s c o n s i d e r it to be a feeding a p p e n d a g e , called the a u l a c o p h o r e .
T h e basal p a r t o f t h e
a u l a c o p h o r e i s m a d e u p o f a series o f t h i n e l e m e n t s e a c h c o n s i s t i n g o f four c o m p o n e n t s ; il was p r o b a b l y flexible. F o l l o w i n g this flexible r e g i o n is t h e s o - c a l l e d styloid, b e a r i n g a pair of b l a d e l i k e flanges that p r e s u m a b l y d u g into the s e d i m e n t .
The t e r m i n a l p a r t o f t h e a u l a c o p h o r e has a t a p e r i n g
series o f sharply k e e l e d ossicles b e a r i n g a g r o o v e w i t h c o v e r i n g plates. T w o possible f e e d i n g positions h a v e b e e n p o s t u l a t e d for t h e a u l a c o p h o r e : h e l d up into the water or a r c h e d slightly a b o v e t h e s u b s t r a t u m . In a n y c a s e t h e food consisted of very tine o r g a n i c p a r t i c l e s . Particles taken in a l o n g a food
Echinoderms
191
groove entered an internal m o u t h , and wastes were emitted through an a n a l o p e n i n g b e t w e e n t h e s p i n e s . P r o p o n e n t s o f t h e e a l c i c h o r d a t e interp r e t a t i o n of s t v l o p h o r a n s regard t h e a p p e n d a g e to be a t r u e , w r i g g l i n g tail, with the m o u t h located at the opposite end of the theca. Study of wellp r e s e r v e d skeletal m i c r o s t r u c t u r e in C i n c i n n a t i a n V.noploura by C a r l s o n a n d f i s h e r (1981) r e v e a l e d c l o s e s i m i l a r i t y t o t y p i c a l e c h i n o d e r m s t c r e o m , further supporting the classification of stvlophorans with e c h i n o d e r m s . S o m e e n i g m a t i c fossils c a l l e d m a e h a e r i d i a n s m i g h t also b e related t o stvl o p h o r a n s (see c h a p t e r 10).
192
A Sea without Fish
194
A Sea without Fish
GRAPTOLITES AND CONODONTS: OUR CLOSEST RELATIVES?
G r a p t o l i t e s are a m o n g t h e m o s t d i s t i n c t i v e fossils f o u n d i n C i n c i n n a t i a n
Graptolites
strata a n d are also u n i q u e l y s i g n i f i c a n t . C r a p t o l i t e s are c o m m o n l y preserved in shales in a h i g h l y flattened c o n d i t i o n , a p p e a r i n g like b l a c k p e n c i l m a r k i n g s w i t h a s a w - t o o t h e d m a r g i n (the n a m e g r a p t o l i t e i n fact m e a n s " w r i t t e n stone"; F i g u r e 1 3 . l C ) . I n s o m e C i n c i n n a t i a n l i m e s t o n e s g r a p t o l i t e s can be preserved in an u n c o m p a c t e d , three-dimensional condition. B e c a u s e their skeletal s t r u c t u r e ( p e r i d e r m ) i s o r g a n i c t h e s e " i n f l a t e d " g r a p t o lites c a n b e e t c h e d free o f t h e m a t r i x u s i n g a c i d t o r e v e a l e x c e p t i o n a l s t r u c tural details ( F i g u r e 13.1B). G r a p t o l i t e s r e p r e s e n t t h e skeletal s h e a t h of a c o l o n i a l , soft-bodied m a r i n e invertebrate w h o s e soft parts are n o t p r e s e r v e d . G r a p t o l i t e c o l o n i e s existed a s f r e e - f l o a t i n g p l a n k t o n (order G r a p t o l o i d e a ) o r a s b r a n c h i n g , b e n t h i c c o l o n i e s (order D e n d r o i d e a ) . T h e c o l o n i a l skeleton ( r h a b d o s o m e ) h o u s e d m a n y s o f t - b o d i e d z o o i d s e a c h w i t h i n a c u p - l i k e t h e c a ( F i g u r e 13.1A). T h e w a l l s o f t h e t h e c a e are c o n s t r u c t e d i n a u n i q u e w a y that i s o f g r e a t i m p o r t a n c e i n e s t a b l i s h i n g t h e n a t u r e o f t h e g r a p t o l i t e
Figure 13.1.
o r g a n i s m : narrow
lite
h a l f - r i n g s (fusellae) a l t e r n a t e t o f o r m a z i g z a g s u t u r e
A.
morphology.
a l o n g the t h e c a l t u b e . A n o u t e r c o r t i c a l layer o f c o l l a g e n fibrils r e i n f o r c e s
by Kevina Vulinec.
the fusellar layer b y c r i s s - c r o s s i n g t h e s u r f a c e ; h e n c e t h e s e are c a l l e d c o r t i -
C.
typicalis (Hall).
stipes either in a s i n g l e l i n e a r series ( m o n o s e r i a l ) , a d o u b l e Series (biserial),
gle
by t h e t h r e a d - l i k e n e m a to v a n e - l i k e s t r u c t u r e s or p o s s i b l y to gas-filled bulbs that p r o v i d e d flotation. A l t h o u g h i t w a s o n c e t h o u g h t that g r a p t o l o i d s attached by m e a n s of the n e m a to other floating material like s e a w e e d , it i s n o w g e n e r a l l y a c c e p t e d that p l a n k t i c g r a p t o l o i d s u s e d t h e i r o w n m e a n s
Sin-
courtesy
Goldman.
Cluster of partly paral-
lel-oriented MUGM 29469,
rhabdosomes, Cincinna-
tian, Butler Co., Ohio, scale in mm.
of flotation, b u t t h e r e is d e b a t e as to w h e t h e r flotation w a s a c t i v e l y or p a s sively m a i n t a i n e d ( R i g b y a n d Fortey 1991). T h e f l o a t i n g ability o f g r a p t o l o i d s c a u s e d t h e m t o b e c a r r i e d g r e a t distances by o c e a n currents. C o n s e q u e n t l y a single graptolite species c a n b e f o u n d o v e r a vast g e o g r a p h i c a r e a , e v e n o n s e p a r a t e c o n t i n e n t s . T h i s w i d e d i s t r i b u t i o n , c o u p l e d w i t h t h e i r relatively rapid e v o l u t i o n a r y c h a n g e over t i m e , m a k e graptolites s o m e o f t h e m o s t ideal i n d e x fossils for biostratig r a p h i c z o n a t i o n a n d c o r r e l a t i o n o f strata. G r a p t o l i t e s f i r s t a p p e a r e d i n t h e Middle C a m b r i a n and b e c a m e extinct as a group in the Pennsylvanian, b u t for O r d o v i c i a n a n d S i l u r i a n strata in p a r t i c u l a r , g r a p t o l i t e s ( a l o n g w i t h c o n o d o n t s ) p r o v i d e t h e e s s e n t i a l basis for relative a g e d a t i n g a n d c o r r e l a tion w o r l d w i d e .
B.
rhabdosome,
of Daniel C.
B,
Geniculograptus
cal b a n d a g e s . I n p l a n k t i c g r a p t o l o i d s , t h e c a e are a r r a n g e d a s b r a n c h e s o r or e v e n triserial or q u a d r i s e r i a l . S t i p e s w e r e a t t a c h e d s i n g l y or in m u l t i p l e s
GraptoDrawing
The U p p e r O r d o v i c i a n o f N o r t h A m e r i c a i s d i v i d e d into
four graptolite b i o z o n e s o n t h e basis o f o v e r l a p p i n g r a n g e s o f several s p e c i e s ( G o l d m a n a n d B e r g s t r o m 1997).
195
Figure
1 3 . 2 . Cincinnatian
conodonts.
Those
are among common from
the most
forms.
the
dian
shown
m o s t c o m m o n a n d c h a r a c t e r i s t i c C i n c i n n a t i a n graptolite i s Geniculogrcip-
All are
lower Riehmon-
Stage near
Brookville,
Franklin
Indiana.
Co.,
A, G, H.
todina
tenuis
\ l t h o u g h several s p e c i e s of graptolites o c c u r in the C i n c i n n a t i a n of t h e C i n c i n n a t i A r c h r e g i o n , o n l y a few are c o m m o n ( B e r g s t r o m 1997). The
Plec-
tus (identified as Climacograptus in o l d e r literature; f i g u r e s 13.1B, C ) . T h i s g r a p t o l i t e has a hiserial r h a b d o s o m e a n d is very c h a r a c t e r i s t i c of t h e K o p e f o r m a t i o n , w h e r e a g g r e g a t i o n s o f stipes often o c c u r i n p a r a l l e l a l i g n m e n t o n b e d d i n g s u r f a c e s ( f i g u r e 13.1C). T w o s p e c i e s r a n g e from t h e K o p e
(Branson
t h r o u g h F a i r v i e w f o r m a t i o n s ( B e r g s t r o m 1996a). ' I w o hiserial graptolites
and Mehl).
A.
Pb ele-
o c c u r in t h e A r n h e i m f o r m a t i o n ( R i e h m o n d i a n ) : Orthogrciptus qucidrimu-
ment.
M element.
cronatus a n d Arnheimograptus anacanthus (see B e r g s t r o m 1996a). S e v e r a l
G.
H.
Sc element.
s p e c i e s of Mastigograptus, a d e l i c a t e , b u s h - l i k e d e n d r o i d graptolite, o c c u r
B. Oulodus
oregonia
(Branson,
Mehl,
Branson),
Pb
C,
D.
thus
and
Amorphogna-
son and Mehl. element.
BranC.
D.
ment. dus
E.
and Mehl). modus
g r o u p ( B u l i n a n 1970). R e s e a r c h b y t h e Polish p a l e o n t o l o g i s t R o m a n K o z l o w s k i (1966) n o t e d several s i m i l a r i t i e s b e t w e e n graptolites a n d the l i v i n g
(Branson
h e m i c h o r d a t e s c a l l e d p t e r o b r a n c h s that a r g u e stronglv for a c l o s e e v o l u -
Phrag-
undatus
Branson
S element.
I
Rhodesognathus
egans
(Rhodes),
ment.
J.
Pb
tron
Scanning
micrographs
tesy of Stig M. strom, 130.
apparatus, S
M
elements
series
are
elements,
ing position in
sellar h a l f - r i n g a n d c o r t i c a l s t r u c t u r e f o u n d i n graptolites ( B u l i n a n 1970).
pterobranchs that interconnects zooids within the colony.
The identifica-
tion of the protein c o l l a g e n in the tubes of both graptolites and pterox
the
elements
medial elements,
c o n s t r u c t e d by t h e l i v i n g p t e r o b r a n c h Rhabdopleura has the u n i q u e fu-
elec-
a and b in
P h y l u m 1 l e m i c h o r d a t a o n t h e basis o f e m b r y o l o g i c a l s i m i l a r i t i e s ; there are o n l y t h r e e liv i n g g e n e r a o f p t e r o b r a n c h s ( B a r n e s 19S7). T h e c r e e p i n g t u b e
In a d d i t i o n , some e n c r u s t i n g t y p e s of g r a p t o l i t e s h a v e a b l a c k stolon pre-
Berg-
denoting position
i n g i n v e r t e b r a t e s t h a t are c l a s s e d t o g e t h e r w i t h t h e a c o r n w o r m s i n t h e
s e r v e d w i t h i n t h e t u b e s that is verv s i m i l a r to t h e s t r u c t u r e of the stolon in
cour-
approximately
t i o n a r y r e l a t i o n s h i p . P t e r o b r a n c h s are a g r o u p o f s m a l l , m a r i n e , t u b e - d w e l l -
Pb
P elements are prin-
cipal elements,
are
ele-
Branson,
Mehl and Branson, element.
el-
Aphelogna-
grandis
w i t h several d i f f e r e n t g r o u p s , i n c l u d i n g c e p h a l o p o d s , c n i d a r i a n s , b r y o z o ans, and hemichordates, or were considered to be unrelated to any living
DrepanoistoF.
and Mehl,
Sc
most c h a l l e n g i n g p r o b l e m s i n p a l e o n t o l o g y . G r a p t o l i t e s w e r e classified
Pa ele-
suberectus
thus
The z o o l o g i c a l affinities o f g r a p t o l i t e s w e r e for m a n y years a m o n g t h e
element.
ordovicicus
i n the K o p e , A r n h e i m , a n d W a y n e s v i l l e f o r m a t i o n s .
and
symmetry c denot-
b r a n c h s i n d i c a t e s not o n l y their c l o s e r e l a t i o n s h i p , b u t also affinity to chord a t e s , i n w h i c h c o l l a g e n f o r m s t h e c o n n e c t i v e tissue ( A r m s t r o n g e t al. 19S4). T h e e x t i n c t g r a p t o l i t e s a r e t h u s g e n e r a l l y treated a s a n e x t i n c t class w i t h i n the 1 l e m i c h o r d a t a . A l t h o u g h t h e soft part s t r u c t u r e of t h e graptolite z o o i d s r e m a i n s u n k n o w n , h y p o t h e t i c a l r e c o n s t r u c t i o n s s u g g e s t that the z o o i d s p r o b a b l y h a d p a i r e d t e n t a c l e - b e a r i n g a r m s that w e r e e x t e n d e d for purposes of suspension feeding and deposition of the outer cortical band a g e s o f the t h e c a l w a l l .
the
apparatus.
Conodonts
It is i r o n i c that p e r h a p s t h e m o s t s i g n i f i c a n t C i n c i n n a t i a n fossils, in a g e o l o g i c a l s e n s e , a r e a l s o a m o n g t h e least c o n s p i c u o u s t o m o s t o b s e r v e r s . T h e s e are t h e c o n o d o n t s , t o o t h - l i k e m i c r o f o s s i l s ( < 1 m m ) , s o u n l i k e a n y o t h e r fossil or l i v i n g o r g a n i s m s that they w e r e r e g a r d e d until r e c e n t l y as r e p r e s e n t i n g a d i s t i n c t p h y l u m . C o n o d o n t s c a n b e f o u n d t h r o u g h o u t the C i n c i n n a t i a n by dissolving blocks of limestone in acetic acid, although they c a n also be found in disaggregated shales. B e c a u s e conodonts have a c a l c i u m p h o s p h a t e c o m p o s i t i o n , t h e y a r e i n s o l u b l e i n a c e t i c acid. C o n o d o n t s are c o n s p i c u o u s in t h e a c i d - i n s o l u b l e r e s i d u e s c a n n e d u n d e r a dis-
196
A Sea without Fish
Graptolites and Conodonts
197
secting m i c r o s c o p e b e c a u s e of their u n i q u e forms and a beautiful a m b e r c o l o r (Plate 5B). C o n o d o n t s h a v e a w i d e r a n g e o f s h a p e s , i n c l u d i n g single c o n e s , m u l t i p r o n g e d " t e e t h , " serrated b l a d e - l i k e s h a p e s , a n d s o - c a l l e d p l a t f o r m - t y p e f o r m s ( F i g u r e 13.2). M o s t c o n o d o n t s h a v e a tooth-like a p p e a r a n c e , l e a d i n g to t h e a s s u m p t i o n that t h e y w e r e u s e d a s t e e t h . H o w e v e r , c o n o d o n t s also s h o w r e g e n e r a t i o n . This s u g g e s t s that at least s o m e c o n o d o n t s w e r e e m b e d d e d in soft tissue b y w h i c h t h e y w e r e s e c r e t e d . I n d i v i d u a l c o n o d o n t s , c a l l e d elem e n t s , w e r e g i v e n s p e c i e s n a m e s b y earlier workers. H o w e v e r , the discovery of rarely p r e s e r v e d a s s e m b l a g e s of different e l e m e n t s in rock matrix or fused t o g e t h e r led to t h e r e c o g n i t i o n that e l e m e n t s w e r e a r r a n g e d in bilaterally s y m m e t r i c a l a s s e m b l a g e s o f pairs o f e l e m e n t s , e a c h o f w h i c h i s c a l l e d a n a p p a r a t u s . A l t h o u g h few a p p a r a t u s e s are preserved intact, it has b e e n possible to d e t e r m i n e w h i c h e l e m e n t s f o u n d in a s a m p l e likely f o r m e d an apparatus o n t h e basis o f statistical analysis o f the ratios o f c o m m o n l y associated e l e m e n t s . M o d e r n t a x o n o m i s t s o f c o n o d o n t s a t t e m p t t o i n c l u d e t h e six o r s e v e n different e l e m e n t s of a g i v e n a p p a r a t u s u n d e r a single species n a m e . B e c a u s e the tooth-like elements apparently were the only mineralized parts o f t h e o r g a n i s m , t h e i d e n t i t y o f t h e c o n o d o n t - b e a r i n g o r g a n i s m a n d t h e n a t u r e o f its soft p a r t a n a t o m y h a v e b e e n a m o n g t h e great m y s t e r i e s o f p a l e o n t o l o g y . A m a j o r b r e a k t h r o u g h c a m e in 1983 w h e n a fossil of an e e l like, s o f t - b o d i e d o r g a n i s m f r o m t h e L o w e r C a r b o n i f e r o u s o f S c o t l a n d w a s s h o w n t o h a v e a c o n o d o n t a p p a r a t u s a t o n e e n d a n d fin-like s t r u c t u r e s a t t h e o p p o s i t e ( B r i g g s e t al. 11)83). T h i s " c o n o d o n t a n i m a l " i s o n l y 4 c m l o n g a n d s h o w s little of its i n t e r n a l a n a t o m y , save for a m i d l i n e s u g g e s t i n g bilateral s y m m e t r y . A l t h o u g h i t b e a r s s i m i l a r i t i e s t o b o t h c h a e t o g n a t h s a n d c h o r d a t e s , t h e a u t h o r s c o n c l u d e d that t h e c o n o d o n t a n i m a l b e l o n g s t o a distinct p h y l u m . M o r e recent phylogenetic studies based on more extensive data p l a c e t h e c o n o d o n t s w i t h i n t h e c h o r d a t e s , c l o s e t o t h e l i v i n g l a m p r e y s ( D o n o g h u e e t al. 2000). B e c a u s e c o n o d o n t a n i m a l s h a d m i n e r a l i z e d c a l c i u m p h o s p h a t e e l e m e n t s , a m o n g o t h e r c h a r a c t e r i s t i c s , t h e y are c o n s i d e r e d to be vertebrates, even t h o u g h they lacked internal skeletons. T h e c o n o dont a n i m a l c o u l d be considered to have b e e n the fish of the C i n c i n n a t i a n sea. H o w e v e r , g i v e n t h e i r s m a l l s i z e a n d g r e a t d i f f e r e n c e s from a n y t h i n g like p r e s e n t - d a y b o n y fish, t h e title of this b o o k , A Sea without Fish, rem a i n s v a l i d . T h e f o r e g o i n g i n t r o d u c t i o n i s l a r g e l y b a s e d o n C l a r k (1987). F o r m o r e i n f o r m a t i o n a b o u t t h e m o r p h o l o g y a n d affinities o f c o n o d o n t s t h e r e a d e r s h o u l d c o n s u l t A l d r i d g e e t al. (1993), A l d r i d g e a n d P u r n e l l (1996), a n d D o n o g h u e e t al. (2000). C o n o d o n t s of p a r t i c u l a r t y p e s are f o u n d in m a r i n e rocks over a very w i d e g e o g r a p h i c r a n g e , e v e n i n t e r c o n t i n e n t a l i n extent. T h i s w i d e distribution s u g g e s t e d that t h e c o n o d o n t o r g a n i s m was p e l a g i c l o n g before the f i n b e a r i n g c o n o d o n t a n i m a l w a s d i s c o v e r e d ( C l a r k 1987). C o n o d o n t s apparently lived a s s w i m m i n g m e m b e r s o f t h e m a r i n e n e k t o n r a n g i n g from close t o the sea f l o o r t o v a r i o u s positions i n the w a t e r c o l u m n . T h e tooth-like apparatus m i g h t h a v e b e e n u s e d to s e i z e or strain food items from the water. I n a d d i t i o n t o their w i d e g e o g r a p h i c r a n g e , g e n e r a o f c o n o d o n t s are r e s t r i c t e d i n t h e i r v e r t i c a l (stratigraphic) r a n g e s t h r o u g h o u t their M i d d l e
798
A Sea without Fish
Figure tion
13.3.
of the
ReconstrucOrdovician
jawless fish, As t rasp is desiderata from stone
Walcott,
the Harding Sandof
Colorado.
Length about
13 cm.
From Cowen (2005, figure
7.4).
86,
Reprinted
with
permission
well
Publishing.
of Black-
C a m b r i a n t h r o u g h Triassic g e o l o g i c r e c o r d . T h e s e attributes, t o g e t h e r w i t h a b u n d a n c e i n m a r i n e strata a s m i c r o t o s s i l s , m a k e c o n o d o n t s e x c e p t i o n a l l y useful for b i o s t r a t i g r a p h i c s u b d i v i s i o n o f t h e P a l e o z o i c s e d i m e n t a r y r o c k record. For the entire U p p e r O r d o v i c i a n (above t h e b a s e o f t h e L e x i n g t o n L i m e s t o n e ) in t h e C i n c i n n a t i r e g i o n . S w e e t
(1979)
conodont species representing twenty genera (Figure
r e c o r d e d thirtv-live
13.2).
Most genera
o c c u r also i n E u r o p e , A s i a , A u s t r a l i a , o r A f r i c a , b u t s p e c i e s a r e m o r e g e o g r a p h i c a l l y restricted. Most C i n c i n n a t i a n c o n o d o n t s represent the N o r t h A m e r i c a n M i d c o n t i n c n t P r o v i n c e , b u t s o m e are c o m p o n e n t s o f t h e N o r t h A t l a n t i c P r o v i n c e that is also r e p r e s e n t e d in E u r o p e .
The t y p e - C i n c i n n a -
tian s e c t i o n s p a n s all or parts of six c o n o d o n t - d e f i n e d b i o s t r a t i g r a p h y z o n e s ( W e b b y , C o o p e r , B e r g s t r o m , a n d Paris
2004).
Although many cono-
d o n t taxa h a v e l o n g s t r a t i g r a p h i c r a n g e s w i t h i n t h e C i n c i n n a t i a n , variations in relative a b u n d a n c e are p r o b a b l y related to d i f f e r i n g d e p t h prefere n c e s a m o n g s p e c i e s (Sweet
1979, 1996).
C o n o d o n t s m a y have b e e n the o n l y representatives of the vertebrates in the
Ordovician "fish"
C i n c i n n a t i a n sea, but fossil e v i d e n c e from m a n y localities e l s e w h e r e s h o w s that s o m e of the earliest tish did i n d e e d exist d u r i n g the O r d o v i c i a n Period. T h e O r d o v i c i a n H a r d i n g S a n d s t o n e o f C o l o r a d o c o n t a i n s a b u n d a n t , tiny plates c o m p o s e d of an e n a m e l - c o a t e d d e n t i n e , n a m e d Astnispis desiderata by W a l c o t t in 1892. In 1997 S a n s o n ) and others illustrated an e x t r a o r d i n a r y fossil from the H a r d i n g w i t h a c o m p r e s s e d , n e a r l y c o m p l e t e , fish-like b o d y t h a t proved the l o n g - h e l d a s s u m p t i o n that the tiny plates f o r m e d a h e a d shield (Figure
13.3).
Lyes and a series of o p e n i n g s p r o b a b l y related to respiration are
Qraptolites and Conodonts
199
p r e s e r v e d . A s i m i l a r fossil fish f r o m O r d o v i c i a n rocks in Bolivia shows that t h e s e early fish h a d b l u n t , r o u n d e d h e a d s , an e l o n g a t e d fish-like s h a p e w i t h a tail fin, b u t l a c k e d b o n y jaws a n d separate fins. T h e s e jawless fish are c a l l e d a g n a t h a n s , b u t o t h e r O r d o v i c i a n fossils r e p r e s e n t t h e earliest jawed fish or g n a t h o s t o m e s ( S a n s o m et al. 2001). T h u s , a variety of early fish had already e v o l v e d b y C i n c i n n a t i a n t i m e , b u t t h e y are u n k n o w n from t h e C i n c i n n a t i r e g i o n . H a d t h e s e early fish b e e n present in t h e C i n c i n n a t i a n sea, it w o u l d s e e m r e a s o n a b l e t o e x p e c t their m i n e r a l i z e d plates t o b e p r e s e r v e d i n the l i m e s t o n e s or shales. A l t h o u g h their a b s e n c e m a y indicate that then preferred -
an e n v i r o n m e n t n o t represented in t h e t y p e - C i n c i n n a t i a n , the potential for their e v e n t u a l d i s c o v e r ) s h o u l d not b e o v e r l o o k e d .
200
A Sea without Fish
202
A Sea without Fish
TYPE-CINCINNATI ANTRACE FOSSILS: TRACKS, TRAILS, AND BURROWS
The C i n c i n n a t i a n is r e n o w n e d for its a b u n d a n c e of w e l l - p r e s e r v e d shells and skeletons o f Orclo\ ician m a r i n e invertebrates, a n d b e c a u s e t h e s e fossils represent the r e m a i n s o f l o n g - d e a d o r g a n i s m s , a t first g l a n c e o n e w o u l d n o t e x p e c t t h e m t o yield m u c h i n f o r m a t i o n a b o u t t h e a c t i v i t y a n d b e h a v i o r o f these a n i m a l s d u r i n g life. O f c o u r s e , w e c a n d e d u c e a g r e a t d e a l a b o u t t h e
Figure 14.1.
life habits o f O r d o v i c i a n a n i m a l s d i r e c t l y from the m o r p h o l o g y o f shells
nia of the trilobite Isote-
a n d skeletons ( b o d y fossils) by c o m p a r i s o n s to their l i v i n g relatives, b u t a
lus,
Asaphoidichnus
vast r a n g e o f e v i d e n c e a b o u t a n c i e n t b e h a v i o r also c o m e s f r o m a c o m -
trifidum
Miller,
CMC IP
pletely different s o u r c e , n a m e l y the trace fossils that are b o t h a b u n d a n t a n d
37569,
Edenian,
Kope
diverse in C i n c i n n a t i a n strata. Trace fossils are e v i d e n c e o f t h e activities o f a n c i e n t o r g a n i s m s preserved in s e d i m e n t a r y rocks in t h e form of tracks, trails, b u r r o w s , b o r i n g s , a n d o t h e r fossils s u c h as
coprolites (fossil feces). M o s t t r a c e fossils w e r e
f o r m e d a s o r g a n i s m s d i s r u p t e d l o o s e s e d i m e n t s b e f o r e l i t h i f i c a t i o n , al-
A.
Formation,
Cincinnati,
Ohio, x 7.
B.
Repichnia
trilobite
Cryptoli-
of the thus,
similar to
ana,
CMC IP 37622,
zon
t h o u g h b o r i n g s are the results of d r i l l i n g , r a s p i n g , or e t c h i n g into h a r d
unknown, x 7. bite
Lebensspuren) has b e c o m e a s p e c i a l -
ized held o! g e o l o g y k n o w n as i e h n o l o g v . C i n c i n n a t i a n trace fossils with their exquisite preservation h a v e l o n g f a s c i n a t e d s t u d e n t s o f t h e s e r o c k s . A m o n g them were S. A. Miller, w h o described m a n y C i n c i n n a t i a n trace fossils b u t regarded t h e m t o b e the r e m a i n s o f m a r i n e p l a n t s ( s o - c a l l e d
trail,
lian,
Rusophycus Maysvil-
Clermont Co.,
Ohio
(from
Osgood [1970,
plate
66,
figure 3[), x 0.8. D.
O s g o o d , jr., w h o c o m p l e t e d his d o c t o r a l dissertation at t h e U n i v e r s i t y of
Edenian,
'Trace fossils greatly e n h a n c e the ability of the p a l e o n t o l o g i s t to r e c o n -
Trilo-
Corryville Formation,
ictyon,
m e n t of m o d e r n i e h n o l o g v .
C.
Cruziana,
c o r r e c t o r g a n i c i n t e r p r e t a t i o n o f trace fossils ( O s g o o d 1975a). R i c h a r d C .
o f C i n c i n n a t i a n trace fossils a n d t h e r e b y c o n t r i b u t e d m u c h t o t h e d e v e l o p -
hori-
intermediate
between and
f u c o i d s ) , and J. F. James, w h o w a s o n e of t h e earliest p r o p o n e n t s of t h e
C i n c i n n a t i in 1905 ( O s g o o d 1970), c o n d u c t e d a t h o r o u g h s y s t e m a t i c r e v i e w
Cruzi-
and locality
substrata such as shells or a l r c a d v - l i t h i f i e d h a r d g r o u n d s . The study of trace fossils (also k n o w n as i c b n o f o s s i l s or
Repich-
Paschichnia, CMC IP
?Paleod17431,
Kope Forma-
tion, Cincinnati, Ohio, 3.
E.
x
Fodinichnia or
domichnia, track,"
the
"turkey
Trichophycus
venosum
Miller,
CMC IP
struct the life of the past i( )sgood 1975). In rare eases a trace fossil c a n be
37575,
preserved in close association with the b o d y fossil of the a c t u a l t r a c e i n a k e r
Kentucky,
( f i g u r e 14.2). U s u a l l y the identity of the t r a c e i n a k e r is u n k n o w n , often b e -
Osgood (1970,
c a u s e the traceinaker was soft-bodied and u n p r e s c r v a b l c . Different o r g a n -
figure 7). C, E reprinted
isms and different prcscrvational processes c a n s o m e t i m e s p r o d u c e a similar type of trace fossil. C o n s e q u e n t l y , trace fossils are not identified by a g e n u s and species n a m e of a b o d y fossil, but instead are g i v e n g e n u s and s p e c i e s
Campbell
Co.,
x 0.4. From plate
60,
by permission of the Paleontological Institution.
n a m e s of their o w n . The n e e d for this a p p r o a c h is further i n d i c a t e d b e c a u s e a single o r g a n i s m c a n p r o d u c e several different t y p e s of traces, d e p e n d i n g on its behavior. 'Thus, a one-for-onc c o r r e s p o n d e n c e b e t w e e n a t r a c e m a k i n g biological species a n d a given t y p e of trace fossil c a n n o t be establi s hed. T h e
203
Research
L i n n a e a n b i n o m i a l system w a s d e v e l o p e d for trace fossils b e c a u s e they were o n c e t h o u g h t t o b e b o d y fossils, and this p r o c e d u r e has persisted ( S i m p s o n 1975). Ideally, t h e i c h n o g e n u s m i g h t be d e f i n e d to represent a p a r t i c u l a r b e h a v i o r a l pattern w h i l e t h e i c h n o s p e c i e s represents variations on this patt e r n , a l t h o u g h this p r o c e d u r e has n o t b e e n u n i f o r m l y applied (Bromley 1990). T r a c e fossils p r o v i d e i n f o r m a t i o n a b o u t u n p r e s e r v a b l e soft part structures of a n i m a l s that are k n o w n as skeletal fossils. In the C i n c i n n a t i a n , g o o d e x a m p l e s of this are t h e varieties of Rusophycus, the resting trace of trilobites, w i t h i m p r e s s i o n s f o r m e d by t h e d i g g i n g activities of the legs ( F i g u r e 14.2A). T r a c e fossils also a u g m e n t o u r record of diversity by p r e s e r v i n g activities of entirely soft-bodied s p e c i e s that are o t h e r w i s e u n k n o w n in the record. T h e g r e a t e s t s i g n i f i c a n c e o f t r a c e fossils is, h o w e v e r , the i n f o r m a t i o n they yield about the behavior of long-dead animals.
The G e r m a n paleon-
tologist R u d o l f R i c h t e r p i o n e e r e d t h e a n a l y s i s o f a n c i e n t b e h a v i o r from t r a c e fossils b y s t u d y i n g t r a c e s m a d e b y shallow m a r i n e o r g a n i s m s i n R e c e n t s e d i m e n t s o f t h e N o r t h S e a . I n m a n y c a s e s m o d e r n tracks a n d trails c o u l d be c o m p a r e d to fossilized traces. A remarkable book by W i l h e l m S c h a f e r (1972) s u m m a r i z e s t h e w o r k o f R i c h t e r a n d m a n y s u b s e q u e n t G e r m a n s t u d e n t s o f t h e N o r t h S e a traces i n E n g l i s h . A d o l f S e i l a c h e r (1964) classified t r a c e fossils into b e h a v i o r a l c a t e g o r i e s that facilitated the interp r e t a t i o n o f a n c i e n t e n v i r o n m e n t s o n t h e basis o f trace fossil a s s e m b l a g e s .
Behavioral
R e p i c h n i a are t r a c e s m a d e b y t h e d i r e c t e d l o c o m o t i o n o f b e n t h i c o r g a n -
Categories of
i s m s . T h e s e are t h e m o s t c o m m o n t r a c e s i n t h e C i n c i n n a t i a n , w i t h s e v e n t e e n i c h n o s p e c i e s r e c o r d e d b y H o l l a n d (2005). T h e a p p e n d a g e s o f trilobites
Trace Fossils
o r o t h e r a r t h r o p o d s d i g g i n g into t h e s u b s t r a t u m d u r i n g c r a w l i n g f o r m e d several
repichnial
a n d Allocotkhnus trace
of t h e
t r a c e s . Asaphoidichnus
dyeri
trilobite
trifidum
M i l l e r r e p r e s e n t different lsotelus
(Osgood
1970).
(Miller) forms
(Figure
of the
Trachomatichnus
M i l l e r is t h e c r a w l i n g t r a c e of t h e trilobite Cryptolithus,
and
14.1A)
crawling numerosum Petaliclmus
multipartitum M i l l e r is t h e c r a w l i n g t r a c e of a m e d i u m - s i z e d , u n i d e n t i f i e d trilobite ( O s g o o d
1970). O t h e r c o m m o n r e p i c h n i a l
traces (Palaeophycus)
are t u b u l a r , u s u a l l y u n b r a n c h e d b u r r o w s that r u n slightly o b l i q u e t o b e d ding, preserved either as convex hyporeliefs or trough-like c o n c a v e epireliefs. (A h y p o r c l i c f is p r e s e r v e d on t h e b a s e or sole of a s e d i m e n t a r y b e d ; e p i r c l i e f s are p r e s e r v e d o n t h e u p p e r s u r f a c e o f a bed.) O s g o o d d e s c r i b e d t h r e e f o r m s o f Palaeophycus a n d i n d i c a t e d that m o d e r n c o u n t e r p a r t s are produced by infaunal burrowing of polychaete worms or molluscs. P a s c i c h n i a are m e a n d e r i n g traces m a d e b y the g r a z i n g activities o f d e posit feeders ( a n i m a l s that feed on p a r t i c u l a t e o r g a n i c matter either on or w i t h i n the b o t t o m s e d i m e n t ) . A l t h o u g h n o a c t u a l m e a n d e r i n g traces a r e f o u n d in t h e C i n c i n n a t i a n , o n e vcrv p e c u l i a r trace q u e s t i o n a b l y referred to Paleodictyon, is classified by O s g o o d as a p a s c i c h n i a ] trace ( F i g u r e 14.1D). T h i s trace is a r e m a r k a b l y r e g i d a r n e t w o r k of ridges as a c o n v e x hyporelief. It r e s e m b l e s the impression of a h o n e y c o m b or c h i c k e n wire. O s g o o d des c r i b e d o n l v t w o k n o w n s p e c i m e n s from t h e C i n c i n n a t i a n , and discussed the m a n y v a r y i n g interpretations that workers h a v e p r o p o s e d for the origin
204
A Sea without Fish
of Paleodictyon from o t h e r localities. A l t h o u g h it m a y be t h e i m p r e s s i o n of a patterned object b e i n g rolled a l o n g the s u b s t r a t u m , O s g o o d c o n c l u d e d that the C i n c i n n a t i a n Paleodictyon is a trace fossil. S e i l a c h e r (1977) interpreted patterned traces of this t y p e to represent c o m p l e x burrow systems rather than g r a z i n g patterns.
T h e s e b u r r o w n e t w o r k s are u s e d b y s o m e i n f a u n a l o r g a n -
isms for the " f a n n i n g " of m i c r o b e s b e n e a t h the sea floor. F o d i n i c l m i a are ( c e d i n g t r a c e s o f d e p o s i t f e e d e r s o p e r a t i n g f r o m a fixed b u r r o w . ies of the
The m o s t c o m m o n C i n c i n n a t i a n f o d i n i c h n i a are t h e variet-
b r a n c h i n g b u r r o w Chondrites as d e s c r i b e d
by O s g o o d .
Chon-
drites, t y p e - A a p p e a r i n g o n t h e v e r t i c a l e d g e s o f b e d s o f f i n e - g r a i n e d carb o n a t e s , r e s e m b l e s n a r r o w rootlets (0.8 m m a v e r a g e d i a m e t e r ) , s o m e t i m e s p e n e t r a t i n g t h e e n t i r e t h i c k n e s s o f a b e d (P'igure 14.3A). O n b e d d i n g p l a n e s , this form o c c u r s as a c i r c u l a r p a t t e r n of c l o s e l y s p a c e d h o l e s . Chondrites, t y p e - B c a n b e s e e n o n b o t h b e d d i n g p l a n e s a n d v e r t i c a l s e c t i o n s . C o m p a r e d t o Chondrites, t y p e - A , t y p e - B h a s t u b e s o f g r e a t e r d i a m e t e r ( 1 - 4 m m ) , a n d b r a n c h e s that p r o p a g a t e t o a g r e a t e r e x t e n t h o r i z o n t a l l y t h a n vertically ( F i g u r e 14.3B). Chondrites, t y p e - C o c c u r s a s d e n s e l y i n t e r w o v e n radiating branches, either parallel or oblique to b e d d i n g (Figure 14.3C). A n o t h e r c o m m o n a n d i n t e r e s t i n g C i n c i n n a t i a n t r a c e classified b y O s g o o d as f o d i n i c l m i a , or possibly d o m i c h n i a , is Trichophycus venosum M i l l e r ( F i g u r e 14.1F). The m o s t c o m m o n e x p r e s s i o n o f this t r a c e , f o u n d t h r o u g h out the C i n c i n n a t i a n , is a shallow elongate depression with r o u n d e d ends o n the u p p e r s u r f a c e o f calcisiltite b e d s . B e d s c o v e r e d w i t h t h e s e s c o o p - l i k e depressions, oriented in r a n d o m fashion, give the a p p e a r a n c e of overlapp i n g tracks o f large birds; h e n c e l o c a l c o l l e c t o r s refer t o t h e s e f e a t u r e s a s "turkey tracks." O s g o o d ' s c a r e f u l s t u d v o f " t u r k e v t r a c k s " r e v e a l e d that t h e y represent o n l y a part of a U - s h a p e d b u r r o w s t r u c t u r e w i t h b r a n c h e s in t h e vertical p l a n e . T h e d e p r e s s i o n s are often f i l l e d w i t h t h i n l a m e l l a e o f f i n e r g r a i n e d s e d i m e n t that i n d i c a t e t h e b u r r o w i n g o r g a n i s m d u g t h r o u g h a m u d layer until it r e a c h e d c o a r s e r silt, w h e r e u p o n it t u r n e d b a c k toward the s u r f a c e . A f t e r c o m p l e t i n g its d e e p e s t p e n e t r a t i o n t h e b u r r o w i n g o r g a n ism r e p o s i t i o n e d itself b y w o r k i n g u p w a r d , f o r m i n g t h e s t a c k e d l a m e l l a e and d i g g i n g new t u n n e l s u p w a r d , possibly r e a c h i n g t h e s u r f a c e . I n m o s t c a s e s s u b s e q u e n t e r o s i o n r e m o v e d t h e softer m u d , l e a v i n g t h e m o r e resistant silt w i t h o n l y the basal floor of the b u r r o w as t h e " t u r k e y track." by this i n t e r p r e t a t i o n , O s g o o d r e j e c t e d t h e f a s c i n a t i n g earlier idea p u t forth b y R o u s s e a u H . F l o w e r (1955) that " t u r k e y t r a c k s " r e p r e s e n t e d " t o u c h d o w n " i m p r e s s i o n s left b y n a u t i l o i d c e p h a l o p o d s . tracks" (width 2.5-3.5
c
m
The large size of the "turkey
) i n d i c a t e s t h e a c t i v i t y o f a l a r g e o r g a n i s m , b u t its
e x a c t identity r e m a i n s c o n j e c t u r a l . F i n e striations p a r a l l e l t o t h e l e n g t h o f the d e p r e s s i o n s w e r e f o r m e d b y a p p e n d a g e s o f a n a r t h r o p o d o r e h a e t a e o f a p o l y c h a e t e w o r m ( e h a e t a e are bristles e x t e n d i n g f r o m t h e b o d y s e g m e n t s o f a w o r m ) . B e c a u s e t h e b u r r o w s are n o t b i l o b e d , t h e y w e r e m o s t likelv n o t p r o d u c e d b y a trilobite w i t h p a i r e d a p p e n d a g e s . " T u r k e y t r a c k s " m a y w e l l represent the onlv e v i d e n c e we h a v e of a rather l a r g e , s o f t - b o d i e d i n f a u n a l o r g a n i s m that was q u i t e c o m m o n o n t h e C i n c i n n a t i a n sea f l o o r . D o m i c h n i a are p e r m a n e n t d w e l l i n g t r a c e s f o r m e d b y b e n t h i c a n i m a l s feeding by predation, scavenging, or suspension feeding.
The
"U-tube"
Type-Cincinnatian Trace Fossils
205
Diplocraterion i s t h e m o s t c o m m o n d o m i c h n i a l trace f o s s i l o f the C i n c i n n a t i a n . O s g o o d (1970) r e c o g n i z e d t h r e e i e l m o s p c c i e s o f Diplocraterion. A s s e e n on v e r t i c a l joint s u r f a c e s , / ) . cf. luniformis ( B l a n c k e n h o r n ) has a p l a i n I l-shape w i t h a r o u n d e d b a s e . N a r r o w , e l o n g a t e d slots on the u p p e r s u r f a c e of a b e d r e p r e s e n t t h e b a s e of t h e 11. In t h e m o r e c o m m o n / ) . cincinnatiensis ( O s g o o d ) t h e U e x p a n d s w i t h d e p t h in different w a y s ( f i g u r e s 14.3A, 14.4 \i. f a i n t dow n w a r d - c u r v i n g striations (Spreiten) c o n n e c t the a r m s of t h e U . T h e s e s o - c a l l e d p r o t r u s i v e Spreiten m a y represent the d o w n w a r d propagation of the burrow as the organism grew. Alternatively, the organism ma}' h a v e b u r r o w e d d e e p e r i n o r d e r t o m a i n t a i n a c o n s t a n t d e p t h b e low a constantly e r o d i n g sediment-water interface.
T h e reason for the basal
e x p a n s i o n i s u n c l e a r . S o m e e x p a n s i o n s o c c u r a t a n i n t e r f a c e with c o a r s e r m a t e r i a l , yet o t h e r s e x p a n d w i t h i n t h e silt-sized layer ( f i g u r e 14.4A). T h i s led O s g o o d (1970) to suggest that t h e o r g a n i s m may h a v e s e n s e d a c h e m i c a l c h a n g e i n t h e s e d i m e n t b e f o r e e n c o u n t e r i n g a c h a n g e i n g r a i n size. W e s p e c u l a t e that t h e e x p a n s i o n o f t h e U m i g h t h a v e d e v e l o p e d after t h e w o r m - l i k e o r g a n i s m b u r r o w e d t o its preferred d e p t h . Lateral e x p a n s i o n o f t h e U e n a b l e d t h e w o r m t o g r o w i n l e n g t h w h i l e m a i n t a i n i n g its d e p t h . T h e third Diplocraterion i c h n o s p e c i e s , D. biclavata ( M i l l e r ) , has a pair o f short e x t e n s i o n s d e v e l o p e d a t t h e b a s e o f t h e U a s b l i n d p o u c h e s . T h i s f o r m also o c c u r s a s c o n c a v e e p i r c l i e f s i n w h a t a r e c o m m o n l y c a l l e d " d u m b b e l l s " ( f i g u r e s 1 4 . 4 B , C ) . O s g o o d s h o w e d that d u m b b e l l s r e p r e s e n t the basal p e n e t r a t i o n o f t h e D - t u b e w i t h p a i r e d e x t e n s i o n s into a c o a r s e r s u b s t r a t u m t h a t u s u a l l y r e m a i n s after e r o s i o n s t r i p p e d off t h e u p p e r parts o f t h e U . A l l t h r e e i c h n o s p e c i e s o f Diplocraterion c a n b e f o u n d i n t h e s a m e b e d , s u g g e s t i n g t h a t a s i n g l e t y p e o f o r g a n i s m c o u l d h a v e p r o d u c e d all three expressions. T h e t r a c c m a k i n g organism was probablv some type of w o r m that u s e d t h e U - t u b e as its d w e l l i n g s t r u c t u r e , w h i l e s u s p e n s i o n feeding near the sediment-water interface. M a n y b o r i n g s found i n C i n c i n n a t i a n stromatoporoids, corals, b r y o z o a n s , b r a c h i o p o d s , m o l l u s c s , a n d h a r d g r o u n d s represent d o m i c h n i a . Pits on the u n d e r s i d e of a R i e h m o n d i a n stromatoporoid c o n t a i n the t r a c c m a k i n g bivalve Corallidomus scobina
Pojeta and
P a l m e r as t h e oldest-known c a s e of hard
substrate b o r i n g by a p e l e c y p o d (see F i g u r e 9.8A; Pojeta and P a l m e r 1976). T h e s a m e e l o n g a t e pits, now referred to the i c h n o s p e c i e s Petroxestes pera, are also f o u n d in c a l c a r e o u s n o d u l e s a n d the bases of b r y o z o a n s ( W i l s o n and P a l m e r 1988). C i n c i n n a t i a n r u g o s e corals of the g e n u s Grewiugkia c o m m o n l y show b o r i n g s c a l l e d Trypanites (see f i g u r e 6.5K; f l i a s 1986). A l t h o u g h it is usually impossible to d e t e r m i n e w h e t h e r the b o r i n g s o c c u r r e d d u r i n g the life of the c o r a l , Klias f o u n d s o m e b o r i n g s e n c a s e d w i t h i n swellings of the coral septa. F l i a s inferred that a b o r i n g w o r m penetrated the septa of a living coral, resulting in the secretion of the septal s w e l l i n g . In other eases borings did not c o m e into c o n t a c t with the living coral polyps, hut were probablv located on corals in life position so as to e x p o s e the w o r m s to a m b i e n t c u r r e n t flow. A distinctive t y p e of b o r i n g c a l l e d Sanctum laurentiensis
f rickson and
B o u c h a r d o c c u r s a s isolated, r o u n d t u n n e l s o n t h e interior o f b r a n c h i n g C i n c i n n a t i a n b r y o z o a n s ( K r i c k s o n and B o u c h a r d 2003). T h e interior o f the excavation is e l o n g a t e or sack-shaped and 1 m i m e d . T h e trace-maker was likely
206
A Sea without Fish
Figure 1 4 . 2 . nia
A.
and sderite
sions
of
trilobite
Rusophycus James),
Isotelus,
carleyi (J.
F.
CMC IP 46411,
Maysvillian,
Corryville
Formation,
Clermont
Ohio,
x 0.6.
sions
of cephalic
margin,
pleurae,
pygidial margin, coxae
Co.,
Note impres-
genal spines, as
Cubich-
impres-
as well
(medial paired
lobes,
flanked by cres-
centic
impressions
made
by legs. Also, at top, note Paleophycus terminating mate
burrow at
approxi-
position
of trilobite
mouth,
with
posed
scratchmarks.
superim-
B.
Flexicalymene
meeki
(Foerste),
37574,
CMC IP
Maysvillian,
ryville Formation, mont Co., 1.4.
Ohio,
Right:
x
Reverse side
of specimen shown cubichnia
CorCler-
in
pudicum
Hall,
convex
hyporelief,
identifying
trilobite
tracemaker.
This
as
exceptional
speci-
men is one of the very few known
with
trace
tracemaker
and
preserved
Type-Cinannatian Trace Fossils
207
B,
Rusophycus
both
together.
Figure
14.3.
Diplocraterion
A.
Kope Formation,
Osgood;
Cincinnati, Ohio,
Corryville Formation, mondian,
Vertical joint surface showing two commonly associated trace fossils: at left,
cincinnatiensis
x
at right, 1.3.
Clermont Co., Ohio,
Whitewater Formation,
forme (Miller and Dyer),
B. x 0.9.
Wayne Co.,
CMC IP uncatalogued,
208
fodinichnia, Fodinichnia, C.
Indiana,
1.2.
type-A,
Chondrites, type-B,
Fodinichnia, x
Maysvillian,
A Sea without Fish
Chondrites,
D.
domichnia,
CMC IP 37607,
Edenian,
CMC IP 37623, Maysvillian,
Chondrites, type-C,
CMC IP 37678, Rich-
Cubichnia of sea star, Asteriacites stelli-
PCorryville Formation,
Cincinnati,
Ohio,
x
7.
Figure
14.4.
A.
uncatalogued, rion
Vertical joint surface showing domichnia,
Edenian,
biclavata
Kope Formation,
(Miller),
showing
Campbell Co.,
U-tube and spreiten
Diplocraterion
Kentucky,
x 0.8.
constructed in
from Osgood (1970). IP 37657, Maysvillian, 0.4.
D.
C.
the upper surface of the calcisiltite,
Domichnia Diplocraterion biclavata
Corryville Formation, Clermont Co., Ohio,
bioimmuration structure in bryozoan,
Catellocaula vallata Palmer and Wilson, x.2.3.
E.
cypods, Lockeia siliquaria U. P. James, CMC IP 37597, Edenian, Kenton Co., Kentucky, holotype,
originally interpreted as (1970) to be either a tube,
x 0.6.
B,
CMC IP 24079, the impression
Maysvillian,
Corryville Formation,
of a porpitid jellyfish,
this impression
base a
Modified
"dumbbell" on upper surface,
(from Osgood [1970, plate 61,
nati collection, Edenian, Point Pleasant Formation, Bracken Co., Kentucky, floweri Caster,
with
When shale is eroded away,
as shown in lower diagram.
(Miller),
CMC IP,
Reconstruction of Diplocrate-
upper shale (dashed pattern)
of U and paired lateral extensions in underlying calcisiltite (stippled pattern). "dumbbell" impression remains on
cincinnatiensis Osgood, B.
figure 3]),
CMC x
University of Cincin-
Cubichnia of pelex 0.5.
Clermont Co.,
F.
Palaeoscia
Ohio. Although
was considered by Osgood
feeding trace or of inorganic origin as a result of rotatory sweeping of an agglutinated
C reprinted by permission of the Paleontological Research Institution.
Type-Cincinnatian Trace Fossils
209
a c r u s t a c e a n that took a d v a n t a g e of the b r y o z o a n host for protection as well as for an elevated f e e d i n g position. E x c a v a t i o n of the interior of the b r v o z o a n b r a n c h e s probably r e d u c e d the structural integrity of the colonv and rendered it m o r e susceptible to b r e a k a g e d u r i n g storms. Trypanites borings on b r y o z o ans u s u a l l y o c c u r in clusters and w e r e probably f o r m e d w h e n d e a d , broken c o l o n i e s w e r e e x p o s e d on the sea floor ( E r i c k s o n and B o u c h a r d 2003). A n o t h e r type of trace found in C i n c i n n a t i a n brvozoan colonies is not a c t u a l l y a b o r i n g b u t rather r e c o r d s t h e p r e s e n c e of a s o f t - b o d i e d o r g a n i s m that lived a s a n e n d o s y m b i o n t w i t h i n t h e b r v o z o a n s k e l e t o n , t e r m e d b i o c l a u s t r a t i o n b y P a l m e r a n d W i l s o n (lcjHS) ( f i g u r e 1 4 . 4 0 ; s e e F i g u r e 11.6E). A f t e r s e t t l e m e n t by a larva of t h e e n d o s y m b i o n t o n t o the l i v i n g colonv, b r v o z o a n z o o e c i a grew a r o u n d the o r g a n i s m In c o n f o r m a t i o n to its s h a p e , r e s u l t i n g in d i s t i n c t i v e pits a r r a n g e d in r o w s , n a m e d Catellocaula vallata by P a l m e r a n d W i l s o n (19S8). t i n l i k e b o r i n g s , the m a r g i n of t h e s e pits is l i n e d b y z o o e c i a l w a l l s . T h e m o r p h o l o g y o f the pits and their a r r a n g e m e n t in rows s u g g e s t e d a c o l o n i a l , s t o l o n i f e r o u s o r g a n i s m , m o s t likely a t u n i c a t e . T a p a n i l a (2005) has p r o p o s e d that a new b e h a v i o r a l c a t e g o r y , I m p e d i c h n i a , b e u s e d for s u c h c a v i t i e s that l o c a l l y i n h i b i t the n o r m a l skeletal g r o w t h o f t h e host. Catellocaula vallata r e p r e s e n t s o n e of the oldest k n o w n e x a m p l e s o f this e n d o s y m b i o t i c b e h a v i o r . C u b i c h n i a are t e m p o r a r y traces m a d e b y m o b i l e a n i m a l s . A l t h o u g h they are often regarded as " r e s t i n g " traces, there is also the possibly that s o m e c u b i c h n i a represent f e e d i n g or predation b u r r o w s . Trilobite "resting" traces, represented by three i c h n o s p e c i e s of Rusophycus, are a m o n g the m o s t c o m m o n c u b i e h n i a l traces in the C i n c i n n a t i a n . O s g o o d (1970) r e c o g n i z e d R. pudicum I lall as the trace of Flexicalymene on the basis of its size and a few e x c e p t i o n a l o c c u r r e n c e s of the t r a c c n i a k e r preserved with the trace directly b e n e a t h it ( f i g u r e 14.2B). O c c a s i o n a l l y clusters of R. pudicum are found that suggest the activity of several trilobites, a l t h o u g h a single individual c o u l d also p r o d u c e m u l t i p l e b u r r o w s in close proximity. R. carleyi O. f. James) is a large b u r r o w attributable to the largest C i n c i n n a t i a n trilobite Isotelus. In a few exc e p t i o n a l s p e c i m e n s , casts of the c e p h a l i c and pvgidial m a r g i n , genal spines, and p l e u r a e are present a l o n g with impressions formed by the w a l k i n g legs ( f i g u r e 14.2A; O s g o o d 1970; Brandt et al. 1995). hi e v e n rarer s p e c i m e n s , intersection by the trilobite trace of a w o r m burrow suggests that the burrow was f o r m e d for the p u r p o s e s of predation ( F i g u r e 14.2A; Brandt et al. 1995; Fortey a n d O w e n s 1999). S m a l l , ovoid Rusophycus (R. cryptolithi) are consistent with formation by the trilobite Cryptolithus ( O s g o o d 1970). O t h e r c u b i e h n i a l traces for w h i c h the t r a c c n i a k e r is identifiable are Lockeia siliquaria U. P. James, f o r m e d by shallow-burrow i n g p e l e c v p o d s ( f i g u r e 14.4F) and Asteriacites stelliforme ( M i l l e r a n d O v e r ) f o r m e d by sea stars ( F i g u r e 14.3D; O s g o o d 1970).
Ichnofacies and
S e i l a c h e r (1964) p r o p o s e d that t h e relative a b u n d a n c e of trace fossils b e l o n g -
Paleoenvironmental
i n g to the b e h a v i o r a l c a t e g o r i e s varied a c c o r d i n g to the s u b m a r i n e e n v i r o n m e n t , c h i e f l y in relation to d e p t h .
Interpretation
Trace fossil a s s e m b l a g e s ( i c h n o f a c i e s )
d o m i n a t e d b y d o m i c h n i a ] and c u b i e h n i a l traces c h a r a c t e r i z e shallow, nearshore m a r i n e e n v i r o n m e n t s b e c a u s e c o n d i t i o n s o f h i g h t u r b u l e n c e c a u s e
210
A Sea without Fish
vagile o r g a n i s m s and s u s p e n s i o n feeders to seek shelter in b u r r o w s . As d e p t h increases w i t h i n the shallow n e a i shore / o n e , c o n d i t i o n s of l o w e r water m o v e m e n t p e r m i t food p a r t i c l e s to settle, a n d thus deposit f e e d i n g activity increases, resulting in f o d i n i e h n i a l traces. In d e e p sea e n v i r o n m e n t s t h e r e is little n e e d for p e r m a n e n t shelter, and so d w e l l i n g a n d resting traces are n o t f o r m e d ; instead, o r g a n i s m s tend to g r a z e the s e d i m e n t s u r f a c e for f o o d , creating the m e a n d e r i n g p a s c i c h n i a l traces. K e p i c l m i a l traces are f o u n d in all s u b m a r i n e e n v i r o n m e n t s , b e c a u s e o r g a n i s m s are a l w a y s g o i n g s o m e w h e r e a n d l e a v i n g trails, n o matter w h a t the setting! S e i l a c h e r ' s o r i g i n a l c o n c e p t o f trace fossil facics distribution has b e e n w i d e l y tested, s u b s t a n t i a t e d , and expanded to include assemblages characterizing non-marine environments and p a r t i c u l a r substrata s u c h a s h a r d g r o u n d s a n d w o o d ( B r o m l e y 1990). C a n t h e i c h n o f a c i e s c o n c e p t b e a p p l i e d t o C i n c i n n a t i a n trace f o s s i l s , a n d what c a n this tell us a b o u t the Late O r d o v i c i a n m a r i n e e n v i r o n m e n t ? O s g o o d (1970) listed thirty i c h n o g e n e r a a n d forty-four i c h n o s p e c i e s from t h e C i n c i n n a t i a n . R e c e n t a d d i t i o n s a n d revisions b r i n g t h e total t o thirty-four i c h n o g e n e r a and fortv-seven i c h n o s p e c i e s ( H o l l a n d 2005; T a p a nila 200^). The f o l l o w i n g list s h o w s the distribution of t h e s e i c h n o s p e c i e s . Cubichnia Domichnia Repichnia
5 6 17
Kodinichnia
9
Pascichnia
1
[mpedichnia
2
Borings
2
incertae sedis
5
T h e h i g h diversity i n the c a t e g o r i e s d o m i c h n i a , c u b i c h n i a , a n d fod i n i c h n i a , c o m p a r e d t o the s i n g l e (and rare) o c c u r r e n c e o f p a s c i c h n i a , led S e i l a c h e r (1964) a n d O s g o o d (1970) to c o n c l u d e that the C i n c i n n a t i a n as a w h o l e c o i n c i d e s w ith the Cruziana i c h n o f a c i e s , r e f l e c t i n g a s h a l l o w , o p e n m a r i n e e n v i r o n m e n t . O s g o o d s u g g e s t e d that the C i n c i n n a t i a n m a r i n e e n v i r o n m e n t w a s m i d e e p e r M i a n about 35 i n . V e r y little work has b e e n d o n e t o refine p a l e o e n v i r o n m e n t a l a n a l y s i s o f the C i n c i n n a t i a n u s i n g trace f o s s i l s . O s g o o d n o t e d that a " s u b a s s o c i a t i o n " of three trace
fossils,
Diplocraterion,
Chondrites,
a n d Trichophycus is
found in s i n g l e b e d s n e a r the top of t h e K o p c F o r m a t i o n a n d r e c u r s in the C o r r y v i l l e a n d a g a i n in the Liberty F o r m a t i o n s , s u g g e s t i n g a r e c u r r e n c e of s i m i l a r c o n d i t i o n s . I l i g h r e s o l u t i o n s t r a t i g r a p h i c w o r k has d e m o n s t r a t e d that t h e s e Diplocraterion b e d s in t h e u p p e r K o p c are w i d e l v t r a c e a b l e o v e r the G r e a t e r C i n c i n n a t i r e g i o n ( J e n n e t t e a n d P r y o r 1993; Brett e t a l . 2001b), but there has b e e n no d e t a i l e d study of t h e trace fossil a s s o c i a t i o n .
"Traces" of Inorganic or Indeterminate Origin S e v e r a l s e d i m e n t a r y s t r u c t u r e s i n C i n c i n n a t i a n strata w e r e n a m e d a s " f u c o i d s " but are likely t o h a v e a n i n o r g a n i c o r i g i n o r r e m a i n p r o b l e m a t i c .
Type-Cincinnatian Trace Fossils
211
T h e s e are u s u a l l y p r e s e r v e d a s h y p o r e l i e f s . O n e s u c h s t r u c t u r e , "Blastophycus," p r o b a b l y r e p r e s e n t s c a s t i n g s of i m p r e s s i o n s left by e n r o l l e d trilobites a n d c u r r e n t s c o u r a r o u n d t h e m ( O s g o o d 1970). A n o t h e r , "Dystactophycus," i s a f a n - s h a p e d p a t t e r n o f f i n e c o n c e n t r i c ridges a n d g r o o v e s , a n d w a s o n c e t h o u g h t t o b e a n a l g a l f r o n d . O s g o o d c o n c l u d e d that i t f o r m e d b y rotation of a c r i n o i d s t e m as it w a s b u r i e d . At several C i n c i n n a t i a n l o c a l i t i e s , perfectly circular impressions of c o n c e n t r i c rings o c c u r on the upper surface o f a b e d ( F i g u r e 1 4 . 4 F ) . C a s t e r i n t e r p r e t e d t h e s e t o b e b o d y fossil m o l d s o f a p o r p i t i d jellyfish a n d d e s c r i b e d t h e m as Palaeoscia floweri (see C a s t e r 1942). H o w e v e r , O s g o o d e x a m i n e d a d d i t i o n a l s p e c i m e n s a n d c o n s i d e r e d t h a t t h e s e c o n c e n t r i c r i n g s c o u l d h a v e f o r m e d u n d e r t h e i n f l u e n c e o f currents b y r o t a t i o n a l s w e e p i n g o f s o m e k i n d o f o r g a n i c d w e l l i n g t u b e e m b e d d e d i n t h e s e d i m e n t . A l t e r n a t i v e l y , s o m e l i v i n g p o l y c h a e t e s create a f e e d i n g t r a c e t h a t r e s e m b l e s Palaeoscia, a n d t h u s O s g o o d
relegated
these most
p e c u l i a r C i n c i n n a t i a n " t r a c e s " to incertae sedis. S t a n l e y (1986) s u p p o r t e d O s g o o d ' s a s s e s s m e n t t h a t Palaeoscia is a t r a c e fossil, b u t c o n t r o v e r s y c o n t i n u e s o v e r i n t e r p r e t a t i o n of Palaeoscia a n d s i m i l a r c o n c e n t r i c ring-like s t r u c t u r e s i n t h e g e o l o g i c a l r e c o r d ( E w i n g a n d D a v i s 1967, 274-275). B e l l et al. (2001) listed C i n c i n n a t i a n Palaeoscia as a jellyfish, a n d asserted that O s g o o d w a s i n c o r r e c t in r e g a r d i n g it as a t r a c e fossil, b u t g a v e no basis for this e v a l u a t i o n .
212
A Sea without Fish
Figure 15.1. Divisions of type-Cincinnatian Geologists tionally
strata.
have
tradi-
defined
sedimen-
tary rocks on the basis of time,
usually inferred
from
fossil
and on type.
assemblages,
the basis of rock The
has
Cincinnatian
been
traditionally
divided into
three stages,
shown at the far left,
and
there is currently disagreement tive
over
the
durations
three stages. stage,
rela-
of these A
fourth
indicated by
and called the chian Stage, ent in
"G"
Gama-
is not pres-
the Cincinnati area.
The divisions based on rock type are shown at the right.
Most of those
in modern shown, different have
usage are
but dozens of named
been
divisions
proposed
over
the years and are not shown.
The names cur-
rently used by the and
Kentucky
surveys differ, dashed cate
Ohio
geological and
vertical lines
these
indi-
"stateline
stratigraphic
divisions."
The
Geological
Indiana
Survey
recognizes
Kope,
Whitewater,
Saluda
Formations,
assigns
all strata
the
Kope and
the and and between
Whitewa-
ter to the Bull Fork Formation
(not shown).
Type-Cincinnatian have also
been
strata divided
into six units that reflect cycles
of
sedimentation
produced by
the rise and
fall of sea level. depositional numbered bounded
These sequences,
C1-C6, by
reflect falls in sea level that drained the seas from the Cincinnati area, ing in
no deposition
ties is poorly known.
are
unconformi-
ties shown in gray that
214
A Sea without Fish
of sediments.
The actual duration
of these
result-
unconformi-
15
PALEOGEOGRAPHY AND PALEOENVIRONMENT Steven M. Holland
E a r t h scientists r e c o n s t r u c l c o n d i t i o n s d u r i n g t h e a n c i e n t past f r o m a w i d e variety o f c h i c s from m i n e r a l s , r o c k s , a n d f o s s i l s . A l t h o u g h n o p l a c e o n E a r t h today i s e x a c t l y like t h e C i n c i n n a t i area d u r i n g t h e L a t e O r d o v i c i a n , c o m p a r i s o n s w i t h m o d e r n e n v i r o n m e n t s offer v a l u a b l e i n s i g h t s into t h e interpretation o f t h e s e c l u e s . O f m o d e r n e n v i r o n m e n t s , t h e Persian G u l f is perhaps the most similar to the Late O r d o v i c i a n of the eastern United States in t e r m s of its c l i m a t e , t h e s i z e of the s e d i m e n t a r y b a s i n , the gcntlv d i p p i n g sea floor, t h e m i x o f c a r b o n a t e s e d i m e n t a n d clay, a n d t h e o c c u r r e n c e o f storms that rework a n d d e p o s i t s e d i m e n t .
" W h e n Cincinnati Was in the Southern H e m i s p h e r e "
Geography
( T i t l e of a p r e s e n t a t i o n by K e n n e t h E, C a s t e r for t h e C i n c i n n a t i Historical S o c i e t y , 1974) G l o b a l g e o g r a p h y d u r i n g the O r d o v ician has b e e n r e c o n s t r u c t e d primarily t h r o u g h s t u d i e s o f the m a g n e t i c p r o p e r t i e s o f O r d o v i c i a n r o c k s . \ \ h e n s e d i m e n t s a r e d e p o s i t e d , i r o n - b e a r i n g m i n e r a l s t e n d t o a l i g n w i t h the Earth's m a g n e t i c f i e l d . A s the s e d i m e n t s b e c o m e c e m e n t e d t o g e t h e r a n d u n d e r g o lithifieation t o b e c o m e r o c k s , t h e s e m i n i a t u r e m a g n e t s are l o c k e d in place. By careful m e a s u r e m e n t of the orientations of these iron-bearing m i n e r a l s , g e o p h y s i c i s t s r e c o n s t r u c t the l a t i t u d e a t w h i c h t h e s e d i m e n t s were originally deposited. Four large continents d o m i n a t e d the globe d u r i n g the O r d o v i c i a n (Plate 1). S t r e t c h i n g from the S o u t h Pole into t h e n o r t h e r n h e m i s p h e r e , Gondvv ana w a s t h e largest o f t h e s e c o n t i n e n t s a n d c o n s i s t e d o f m o d e r n dav S o u t h A m e r i c a , A f r i c a , A r a b i a , A n t a r c t i c a , A u s t r a l i a , India, s o u t h e a s t Asia, a n d parts o f C h i n a . L a u r e n t i a i n c l u d e d m o s t o f p r e s e n t - d a y N o r t h A m e r ica, e x c e p t for New E n g l a n d a n d M a r i t i m e ( ' a n a d a , parts o f t h e s o u t h e a s t ern U n i t e d States, a n d t h e west c o a s t o f t h e U n i t e d States a n d C a n a d a , all of which were added to Laurentia d u r i n g subsequent tectonic collisions. L a u r e n t i a straddled t h e e q u a t o r d u r i n g the O r d o v i c i a n a n d w a s rotated 45" c l o c k w i s e from its present-day o r i e n t a t i o n . As a result, C i n c i n n a t i w a s situated a t 20-25° s o u t h o f t h e e q u a t o r for t h e e n t i r e L a t e O r d o v i c i a n . T o t h e east o f L a u r e n t i a a l o n g the e q u a t o r sat t h e c o n t i n e n t o f S i b e r i a - K a z a k h s t a n , w h i c h consisted o f present-day p o r t i o n s o f c e n t r a l A s i a . T h e f o u r t h c o n t i n e n t , B a l t i c a , lav to the s o u t h at r o u g h l y 60° a n d w a s c o m p o s e d of n o r t h e r n Europe and Scandinavia.
215
T h r e e major o c e a n s separated these continents. T h e I a p e t u s O c e a n separated L a u r e n t i a and S i b e r i a - K a z a k h s t a n from B a l t i c a t o the s o u t h . T h e P a l e o t e t h y s O c e a n lay b e t w e e n G o n d w a n a a n d t h e c o n t i n e n t s o f B a l t i c a a n d S i b e r i a - K a z a k h s t a n t o t h e w e s t . T h e m a s s i v e P a n t h a l a s s i c O c e a n cove r e d a l m o s t all o f t h e N o r t h e r n H e m i s p h e r e a n d w o u l d have d w a r f e d today's Pacific O c e a n . G l o b a l sea level w a s h i g h d u r i n g the O r d o v i c i a n , and a l t h o u g h its p o s i t i o n is d i f f i c u l t to c o n s t r a i n , t h e c u r r e n t c o n s e n s u s is that it was 100 to 200 m e t e r s h i g h e r t h a n p r e s e n t - d a y sea level (see F i g u r e 1.3). S e v e r a l factors c o n t r i b u t e d to s u c h a h i g h p o s i t i o n of sea l e v e l . Rates of sea floor s p r e a d i n g w e r e h i g h f o l l o w i n g t h e b r e a k u p o f a n older, L a t e P r o t e r o z o i c s u p e r c o n t i n e n t c a l l e d R o d i n i a , c a u s i n g t h e a v e r a g e e l e v a t i o n o f the sea floor t o b e higher than normal.
This r a i s i n g o f t h e " b o t t o m o f the b u c k e t " forced
o c e a n waters to spill o n t o t h e c o n t i n e n t s . In a d d i t i o n , the lack of p o l a r ice c a p s in m o s t of t h e O r d o v i c i a n a l s o w o u l d h a v e raised sea level relative to t o d a y b e c a u s e w a t e r i n m o d e r n g l a c i a l ice c a p s s u c h a s A n t a r c t i c a a n d G r e e n l a n d is p r o d u c e d from snow generated by evaporation from the o c e a n . B e c a u s e o f this h i g h sea l e v e l , l o w - l y i n g areas o n the c o n t i n e n t s w e r e f l o o d e d w i t h o c e a n w a t e r s , m u c h like the f l o o d i n g o f the present-day c o n t i n e n t a l s h e l v e s , b u t t o a m u c h greater e x t e n t . D u r i n g m u c h o f the O r d o v i c i a n , most o f L a m e n t i a w a s s u b m e r g e d , w i t h the e x c e p t i o n o f parts o f t h e C a n a d i a n S h i e l d , a low m o u n t a i n r a n g e r u n n i n g from M i n n e s o t a toward C o l o r a d o , t h e O z a r k r e g i o n o f M i s s o u r i , a n d the u p l i f t i n g l a c o n i c M o u n t a i n s a l o n g t h e s o u t h e a s t e r n e d g e o f L a u r e n t i a (Plate 1). The eastern U n i t e d States was d i v i d e d into several g e o g r a p h i c regions d u r i n g t h e L a t e O r d o v i c i a n (Plate 12). E x t e n d i n g from central K e n t u c k y n o r t h w a r d into O h i o a n d I n d i a n a w a s a shallow
m a r i n e c a r b o n a t e area
k n o w n a s the L e x i n g t o n Platform. W a t e r d e p t h s o n the L e x i n g t o n Platform d e e p e n e d t o the n o r t h . T h e L e x i n g t o n Platform was b o u n d e d o n the west by a d e e p e r water t r o u g h k n o w n as the S e b r e e T r o u g h . Far to the east rose t h e T a c o n i c M o u n t a i n s , p r o d u c e d by the collision of Laurentia with a small plate or island are, s u c h as the m o d e r n - d a y islands of Japan and the A l e u tians. This c o l l i s i o n w a r p e d t h e s o u t h e a s t e r n m a r g i n of L a u r e n t i a to form a d e e p water trough c a l l e d the A p p a l a c h i a n Basin that separated the l a c o n i c M o u n t a i n s from the L e x i n g t o n Platform. Into this t r o u g h , s e d i m e n t s shed from the e r o d i n g T a c o n i c M o u n t a i n s built a Series of northwest ward-advanci n g deltas c a l l e d the Q u e e n s t o n D e l t a . " R e d - b e d " tidal f l a t s e d i m e n t s typical of the Q u e e n s t o n c a n be seen in the latest O r d o v i c i a n strata on the eastern side o f t h e C i n c i n n a t i A r c h i n A d a m s C o u n t y , O h i o .
Climate
The c l i m a t e o f t h e L a t e O r d o v i c i a n was w a r m , with m u c h m o r e e v e n t e m peratures from the p o l e to the e q u a t o r than seen today. H i g h c o n c e n t r a t i o n s of c a r b o n d i o x i d e in t h e a t m o s p h e r e (referred to as the partial pressure of carbon dioxide, or pCO2,) caused these w a r m conditions. C o m p u t e r models and l i m i t e d g e o c h e m i c a l data from O r d o v i c i a n soil deposits suggest that levels of a t m o s p h e r i c pCO2, w e r e nearly sixteen times greater than today, c o m pared to the 20 p e r c e n t i n c r e a s e in pCO2,witnessed in the past half-century.
216
A Sea without Fish
W a r m t e m p e r a t u r e s a t the p o l e s i n h i b i t e d t h e f o r m a t i o n o f i c e c a p s , s u c h a s today's c o n t i n e n t a l g l a c i e r s o n A n t a r c t i c a a n d G r e e n l a n d a n d the sea ice o v e r the A r c t i c O c e a n . I n t h e last m i l l i o n years o f the O r d o v i c i a n , a t m o s p h e r i c p C O , levels d r o p p e d precipitously, t r i g g e r i n g t h e rapid g r o w t h 2
of p o l a r g l a c i e r s a n d a g e o l o g i c a l l y brief 160 m e t e r g l o b a l sea level fall. T h i s fall in sea level d r a i n e d t h e seas f r o m t h e C i n c i n n a t i a r e a , p r o d u c i n g an e r o s i o n a l division b e t w e e n t h e O r d o v i c i a n a n d S i l u r i a n strata c a l l e d a n unconformity. In a d d i t i o n to this e n d - O r d o v i c i a n fall in sea l e v e l , e v i d e n c e for six c y c l e s o f g l o b a l sea level c h a n g e i s p r e s e r v e d i n the O r d o v i c i a n n e a r C i n c i n n a t i ( f i g u r e 15.1). T h e e v i d e n c e for t h e s e c y c l e s c o m e s f r o m p a c k a g e s o f rock k n o w n a s d e p o s i t i o n a l s e q u e n c e s , w h i c h are b o u n d e d b y u n c o n f o r m i t i e s , o r s u r f a c e s that record t h e e r o s i o n a n d w e a t h e r i n g o f s e d i m e n t s . E a c h d e p o s i t i o n a l s e q u e n c e b e g i n s w i t h a relatively t h i n interval o f r o c k that records l o c a l d e e p e n i n g o f t h e o c e a n s a n d e n d s w i t h a m u c h t h i c k e r interval o f rock that r e c o r d s p r o g r e s s i v e s h a l l o w i n g o f t h e o c e a n s . T h e s e s a m e s e q u e n c e s c a n b e r e c o g n i z e d across the U n i t e d States a n d i n E s t o n i a . The fact that t h e s e s e q u e n c e s are n o t just l o c a l f e a t u r e s is s t r o n g e v i d e n c e that they reflect g l o b a l sea level c h a n g e s rather t h a n l o c a l t e c t o n i c c h a n g e s . I n t h e C i n c i n n a t i a r e a , t h e s e si\ d e p o s i t i o n a l s e q u e n c e s a l s o c o n t a i n e v i d e n c e of shorter-term v a r i a t i o n s in sea l e v e l , but it is c u r r e n t l y u n c l e a r w h e t h e r t h e s e represent g l o b a l o r r e g i o n a l c h a n g e s i n sea l e v e l . f r o m s t u d i e s o f t o d a y s g e o g r a p h y a n d c l i m a t e , a s well a s d i r e c t e v i d e n c e from O r d o v i c i a n strata, g e o l o g i s t s h a v e r e c o n s t r u c t e d t h e O r d o v i c i a n c l i m a t e o f the C i n c i n n a t i area.
Today, r e g i o n s n e a r 30° n o r t h a n d
south of the e q u a t o r are c h a r a c t e r i z e d by d e s e r t s , w h i c h f o r m as air r i s i n g n e a r the e q u a t o r d e s c e n d s a n d f o r m s a series of h i g h p r e s s u r e c e l l s that inhibit rainfall. I n O r d o v i c i a n rocks o f the C i n c i n n a t i a r e a , d i r e c t e v i d e n c e of such a semi-arid climate can be seen in the finely l a m i n a t e d d o l o m i t i c tidal flat deposits of c e n t r a l K e n t u c k y . S i m i l a r d e p o s i t s o c c u r in s e m i - a r i d regions today, w h e r e h i g h tides d e p o s i t t h i n l a m i n a e o f s e d i m e n t , b u t h i g h salinity a n d t e m p e r a t u r e e x c l u d e a n i m a l s that m i g h t burrow a n d d i s r u p t the s e d i m e n t . D o l o m i t e itself c a n h a v e a variety of o r i g i n s , b u t the t e x t u r e and o c c u r r e n c e o f d o l o m i t e i n C i n c i n n a t i a n r o c k s m a t c h e s that f o u n d i n m o d e r n s e m i - a r i d s e t t i n g s w i t h h i g h rates o f e v a p o r a t i o n .
Trade w i n d s
c h a r a c t e r i s t i c o f s u b t r o p i c a l l a t i t u d e s w o u l d h a v e b l o w n w e s t w a r d across the C i n c i n n a t i area d u r i n g t h e O r d o v i c i a n . The C i n c i n n a t i area w a s s u b j e c t e d t o f r e q u e n t h u r r i c a n e s , w h i c h p r o d u c e d the d i s t i n c t i v e a l t e r n a t i o n s o f l i m e s t o n e a n d m u d s t o n e , often c a l l e d s h a l e , a l t h o u g h few true s h a l e s exist in t h e C i n c i n n a t i area ( F i g u r e 15.2; see f i g u r e 4.6). A l t h o u g h there is c o n s i d e r a b l e v a r i a t i o n in i n d i v i d u a l s t o r m deposits as a result of d i f f e r e n c e s in s e d i m e n t supply, w a t e r d e p t h , p r o x i m ity t o t h e h u r r i c a n e , a n d the s t r e n g t h o f t h e h u r r i c a n e , m o s t o f t h e s e d e posits c o n t a i n a t least s o m e o f t h e c h a r a c t e r i s t i c f e a t u r e s p r o d u c e d b y storms. S t o r m - g e n e r a t e d
deposits
are well k n o w n not o n l y from s e d i m e n t
cores on m o d e r n continental shelves, but also t h r o u g h o u t the geologic record. S t o r m b e d s t y p i c a l l y h a v e a n e r o s i o n a l b a s e , w h i c h reflects p r o g r e s sively i n t e n s i f y i n g c u r r e n t s a n d w a v e s as the storm a p p r o a c h e s .
This e r o -
Paleogeography and Paleoenvironment
217
Figure of
15.2.
benthic
by
Destruction communities
storm-generated
waves and currents.
Dur-
ing calm,
con-
pre-storm
ditions,
benthic
nities
commu-
of organisms
develop on Under
the sea
storm
high
winds
floor.
conditions, generate
large waves that stir up fine-grained iments
bottom
into
sed-
S T A G E III. C A L M C O N D I T I O N S , P O S T - S T O R M
suspension.
Stronger wave and current forces can benthic
suspended clog
displace
organisms,
and
sediment
feeding
can
and respira-
tory mechanisms
of or-
ganisms,
and even
smother
entire
benthic
communities.
Mobile
ganisms can
escape if
or-
burial is not too severe, but storms can be lethal for many thic
a storm, can until
immobile
organisms. cover
the
bottom communi-
develop
larval settlement migration. Hinterlong
S T A G E II. S T O R M C O N D I T I O N S
barren sediment
benthic
ties again
ben-
Following
from
or im-
Modified (1981).
tesy of Wayne D.
after
CourMartin.
S T A G E I. C A L M C O N D I T I O N S , P R E - S T O R M sional b a s e is often o v e r l a i n by a s h e l l - r i c h l i m e s t o n e , in w h i c h the size of shell f r a g m e n t s d e c r e a s e s u p w a r d s , w h i c h m a y i n turn b e o v e r l a i n b y l a m i n a t e d siltstone a n d b u r r o w e d m u d s t o n e . S u c h a n u p w a r d d e c r e a s e i n shell a n d s e d i m e n t g r a i n size i s c a l l e d n o r m a l g r a d i n g b y s e d i m e n t o l o g i s t s a n d reflects d e p o s i t i o n d u r i n g t h e w a n i n g p h a s e o f a s t o r m w h e n s t o r m - g e n e r ated w a v e s and c u r r e n t s w e a k e n e d a n d d e p o s i t e d the s e d i m e n t t h e y carried. L a m i n a t e d siltstone m a y d i s p l a y h o r i z o n t a l p l a n a r l a m i n a t i o n s , h u m m o c k y c r o s s - l a m i n a t i o n , o r w a v e - r i p p l e l a m i n a t i o n , all o f w h i c h c a n b e produced by strong storm-generated waves and currents.
218
A Sea without Fish
C y c l i c a l c h a n g e s in the c h a r a c t e r of storm b e d s are well d e v e l o p e d in s o m e C i n c i n n a t i a n deposits, such as the K o p e f o r m a t i o n . At a broad s c a l e , these roughly meter-thick c y c l e s consist of a m u d s t o n e - r i c h unit a n d a l i m e stone-rich unit (see F i g u r e 4.6). T h e m u d s t o n e - r i c h unit consists of 3—5 cm beds o f n o r m a l l y graded m u d s t o n e , with u n c o m m o n thin l a m i n a t e d siltstone b e d s . L i m e s t o n e - r i c h units consist of shelly l i m e s t o n e b e d s , with a lesser a m o u n t o f thin m u d s t o n e and siltstone b e d s . T h e alternation b e t w e e n these t w o units w a s originally t h o u g h t to reflect c h a n g e s in sea level, b u t r e c e n t studies suggest that these c y c l e s m a y instead reflect c h a n g e s in the a v e r a g e f r e q u e n c y and intensity of h u r r i c a n e s over tens of t h o u s a n d s of years.
C o m p a r e d to man) modern carbonate settings, O r d o v i c i a n limestone of
Oceanography
the C i n c i n n a t i area i s u n u s u a l i n several r e g a r d s . M o s t m o d e r n a n d a n cient w a r m water c a r b o n a t e d e p o s i t s c o n t a i n a w i d e v a r i e t y o f g r a i n t y p e s , i n c l u d i n g skeletal g r a i n s (the shells o f o r g a n i s m s ) , o o i d s ( s m a l l , s p h e r o i d a l , c o n c e n t r i c a l l y l a m i n a t e d grains), p e l o i d s (ovoid g r a i n s p r o d u c e d p r i m a r i l y as fecal pellets), a n d intraclasts ( p i e c e s of s e m i - c e m e n t e d c a r b o n a t e sedim e n t that h a v e b e e n e r o d e d and r e d e p o s i t e d ) . I n the t y p e - C i n c i n n a t i a n , o o i d s are a b s e n t , p e l o i d s are u n c o m m o n , a n d intraclasts o c c u r s p a r i n g l y and o n l y in p a r t i c u l a r h o r i z o n s . In c o n t r a s t , skeletal g r a i n s of b r a c h i o p o d s , b r y o z o a n s , e c h i n o d e r m s , m o l l u s c s , and trilobites d o m i n a t e m o s t l i m e s t o n e i n the C i n c i n n a t i a n (see f i g u r e 4.2). M o s t m o d e r n w a r m w a t e r c a r b o n a t e deposits c o n t a i n a b u n d a n t l i m e m u d , c a l l e d m i c r i t e , p r o d u c e d p r i m a r i l y by the p h o t o s y n t h c t i c a c t i v i t i e s of a l g a e . In c o m p a r i s o n , most l i m e s t o n e in the C i n c i n n a t i area c o n t a i n s o n l y m i n o r a m o u n t s o f m i c r i t e . S e d i m e n t s i n m o d e r n w a r m water c a r b o n a t e e n v i r o n m e n t s are p r o n e t o u n d e r g o c e m e n tation w i t h i n a few c e n t i m e t e r s below the s e d i m e n t s u r f a c e , a n d if c u r r e n t s or w a v e s strip a w a y the o v e r l y i n g u n c e m e n t e d s e d i m e n t , this e x p o s e s a hard c o n c r e t e - l i k e s u r f a c e on the sea floor, k n o w n as a h a r d g r o u n d . I lardg r o u n d s c a n b e i m p o r t a n t substrata u p o n w h i c h e n c r u s t i n g o r g a n i s m s such as bryozoans and corals may attach. A l t h o u g h hardgrounds do o c c u r i n the t y p e - C i n c i n n a t i a n , t h e y are relatively u n c o m m o n c o m p a r e d t o w a r m water settings b o t h today a n d i n t h e past. T h e f e a t u r e s that t y p i f y l i m e s t o n e o f the C i n c i n n a t i a r e a — a b u n d a n t skeletal g r a i n s , a lack o f o o i d s and p e l o i d s , m i n i m a l m i c r i t e , a n d u n c o m m o n h a r d g r o u n d s — a r e t y p i c a l of c a r b o n a t e s d e p o s i t e d t o d a y in c o o l t e m p e r a t e to p o l a r waters. The presence of cool water carbonates at tropical latitudes at first s e e m s like a p a r a d o x , but s u c h c o n d i t i o n s o c c u r today w h e r e c o a s t a l u p w e l l i n g b r i n g s c o o l water up to the s u r f a c e f r o m d e p t h s of less t h a n 200 meters. T h e s e c o o l e r waters also c o n t a i n a b u n d a n t n u t r i e n t s , w h i c h g e n e r ate p h o s p h a t e deposits. I n d e e d , the t y p e - C i n c i n n a t i a n is rich in p h o s p h a t e , p a r t i c u l a r l y in strata of M a y s v i l l i a n a g e . P h o s p h a t e is also f o u n d in a b u n d a n c e i n U p p e r O r d o v i c i a n strata n e a r N a s h v i l l e , T e n n e s s e e , s u g g e s t i n g that the entire c a r b o n a t e p l a t f o r m f r o m C i n c i n n a t i to N a s h v i l l e w a s a site of u p w e l l i n g of cool, nutrient-rich water d u r i n g m u c h of the Late O r d o v i c i a n . U p p e r O r d o v i c i a n r o c k s o f t h e C i n c i n n a t i area c o n t a i n a g r e a t e r a m o u n t o f l i m e m u d , m o r e h a r d g r o u n d s , a n d less p h o s p h a t e , w h i c h c o l -
Paleogeography and Paleoenvironment
219
l e c t i v e l y s u g g e s t a d e c r e a s e in t h e i n t e n s i t y of u p w e l l i n g in t h e latest Ordovician. A d d i t i o n a l e v i d e n c e f r o m the rich fossil f a u n a s supports the interpretation of c o o l waters, f o l l o w e d by a return to w a r m water in the latest O r d o v i c i a n . D u r i n g t h e L a t e O r d o v i c i a n , t h e western U n i t e d States and C a n a d a straddled t h e e q u a t o r . T h e i r c a r b o n a t e s e d i m e n t s are typical o f m o d e r n w a r m w a t e r settings, so their f a u n a s are interpreted to reflect w a r m water c o n d i t i o n s . T h e s e areas c o n t a i n a b u n d a n t corals a n d stromatoporoids, with a diverse array of b r a c h i o p o d s a n d trilobites. In particular, c o l o n i a l r u g o s a n and
t a b u l a t e corals (for e x a m p l e , Tetradium), solitary corals (Grewingkia,
Streptelasma), Hiscobeccus,
several
brachiopods
Lepidocyclus,
(Glyptorthis,
Holtedahlina,
Plaesiomys,
Rhynchotrema,
and Leptaena, for e x a m p l e ) , trilo-
bites (Ceraurinus), a n d diverse c e p h a l o p o d s are characteristic of this w a r m water f a u n a . T h e s e o r g a n i s m s are a b s e n t from E d e n i a n a n d M a y s v i l l i a n strata in t h e C i n c i n n a t i a r e a , b u t a p p e a r in the R i c h m o n d i a n as the l i m e stones b e g i n to reflect a return to w a r m water, low-nutrient c o n d i t i o n s . T y p e - C i n c i n n a t i a n rocks differ from typical c a r b o n a t e platform deposits in a n o t h e r s i g n i f i c a n t a s p e c t : t h e a b u n d a n c e of t e r r i g e n o u s m u d , that is, clay p r o d u c e d b y t h e w e a t h e r i n g o f silica-rich m i n e r a l s s u c h a s feldspar. T h e earliest influx o f this m u d closely c o i n c i d e s w i t h t h e b e g i n n i n g o f nutrientr i c h , c o o l water deposits a t t h e b a s e o f t h e L e x i n g t o n L i m e s t o n e , w h i c h u n d e r l i e s t y p e - C i n c i n n a t i a n strata. T h e arrival o f c o o l water, nutrients, and siliciclastic m u d a p p e a r s to h a v e b e e n triggered by the uplift of the Laconic M o u n t a i n s to t h e east. F i n e - g r a i n e d t e r r i g e n o u s clay and silt w e r e supplied b y the Q u e e n s t o n D e l t a , a s s u c h s e d i m e n t s c o u l d easily have stayed susp e n d e d in t h e water across t h e A p p a l a c h i a n Basin until d e p o s i t i o n in the C i n c i n n a t i area. T h e s e m u d s w e r e best able t o a c c u m u l a t e i n relatively c a l m e r d e e p water e n v i r o n m e n t s that w e r e less d i s t u r b e d b y storms. T h e Persian G u l f is similar in many respects to eastern L a u r e n t i a d u r i n g the O r d o v i c i a n . B o t h w e r e d e v e l o p e d as foreland basins, that is, d e e p water t r o u g h s adjacent to uplifting m o u n t a i n s . B o t h possess a c a r b o n a t e platform that dips gradually into d e e p water. T h e s e d i m e n t a r y basins are similar in size a n d c l i m a t e , and b o t h sit at subtropical latitudes p r o n e to storms. L a r g e deltas supplied b y a b u n d a n t terrigenous s e d i m e n t a d v a n c e d into both basins. T h e Persian G u l f is notably different in that it lacks u p w e l l i n g of c o o l , nutrient-rich water, w h i c h u n d e r s c o r e s that no m o d e r n setting is exactly a n a l o g o u s to C i n c i n n a t i d u r i n g the O r d o v i c i a n . S o m e have s u g g e s t e d the m o d e r n B a h a m a platform was similar to the C i n c i n n a t i area d u r i n g the O r d o v i c i a n , but the B a h a m a platform is flat-topped rather t h a n gently d i p p i n g , is not a foreland basin adjacent to uplifting m o u n t a i n s that feed a b u n d a n t terrigenous sedim e n t to a d v a n c i n g deltas, a n d lacks u p w e l l i n g of c o o l , nutrient-rich waters.
Marine
F o u r m a j o r s e d i m e n t a r y e n v i r o n m e n t s w e r e p r e s e n t d u r i n g the L a t e O r d o -
Environments of
v i c i a n o f t h e C i n c i n n a t i A r c h ( F i g u r e 15.3). T o d a y , d i s t i n c t i v e features o f
t h e Cincinnati Arch
t h e r o c k s a n d fossils c h a r a c t e r i z e t h e s e e n v i r o n m e n t s . E a c h o f t h e s e e n v i ronments is interpreted based on distinctive rock types and sedimentary s t r u c t u r e s that are f o u n d in s i m i l a r s e t t i n g s today.
220
A Sea without Fish
T i d a l flat e n v i r o n m e n t s t o d a y are flat, n e a r l y f e a t u r e l e s s a r e a s t h a t form b e t w e e n the low tide l i n e a n d the h i g h tide l i n e .
T h e s e a r e a s are
c o v e r e d daily by tides, b u t are s u b j e c t e d to e x t r e m e v a r i a t i o n s in salinity
Figure 1 5 . 3 . The four principal
sedimentary
environments
of
the
type-Cincinnatian.
and t e m p e r a t u r e on a d a i l y basis. I n U p p e r O r d o v i c i a n r o c k s o f the C i n c i n n a t i A r c h , tidal flat e n v i r o n m e n t s are p r e s e r v e d a s l a m i n a t e d t o b u r r o w e d d o l o m i t e a n d d o l o m i t i c l i m e s t o n e c o n t a i n i n g s m a l l a m o u n t s o f c l a y ( F i g u r e 15.4A). T h e p r e s e n c e
cinnatian
seas
deepened from
northward
shallow
tucky
m a g n e s i u m - r i c h brines t h r o u g h fine-grained limestone and converted it to
environments
d o l o m i t e . A l t h o u g h s u c h c o n d i t i o n s form t o d a y i n relatively arid s e t t i n g s ,
and Indiana.
the lack of o t h e r e v a p o r i t e m i n e r a l s s u c h as h a l i t e or g y p s u m in t h e s e tidal
aries
flat facies a r g u e s m o r e for a s e m i - a r i d e n v i r o n m e n t . W a v e - f o r m e d ripple-
environments
d e p o s i t e d , and d e s i c c a t i o n c r a c k s ( " m u d c r a c k s " ) i n d i c a t e the d r y i n g a n d s h r i n k i n g o f the m u d w h e n i t w a s e x p o s e d d u r i n g p r o l o n g e d low tides. S o m e o f t h e s e strata c o n t a i n n u m e r o u s c l o s e l y s p a c e d p l a n a r l a m i n a e that
water envi-
ronments in
o f d o l o m i t e s u g g e s t s s t r o n g levels o f e v a p o r a t i o n , w h i c h w o u l d h a v e d r a w n
m a r k s attest to the shallow w a t e r e n v i r o n m e n t in w h i c h t h e s e r o c k s w e r e
Cingenerally
to
central Ken-
deeper in
water Ohio
The bound-
between
these
four
correspond
to sea level,
fairweather
wave base,
and storm
wave base.
Wave base
reflects
the depth at
which
waves can move
record t h e d e p o s i t i o n o f i n d i v i d u a l layers o f c a r b o n a t e m u d d u r i n g i n c o m -
sediment on
i n g tides a n d storms o n the h i g h e s t part o f t h e tidal flat, w h i c h r e m a i n e d
and this
the sea
depth
floor
increases
a b o v e a v e r a g e h i g h tide. I n p l a c e s , t h e s e l a m i n a e are p e n e t r a t e d b y s h o r t ,
with
vertical b u r r o w s , w h i c h s u g g e s t a r e a s s o m e w h a t l o w e r o n t h e tidal flat
riod of waves,
w h e r e b u r r o w i n g o r g a n i s m s w o u l d not h a v e b e e n k i l l e d b y d r y i n g o u t a n d
which
o v e r h e a t i n g d u r i n g low tides. Elsewhere in t h e C i n c i n n a t i r e g i o n , tidal flat
storms.
The locations of
these
environments
deposits lack p l a n a r l a m i n a t i o n a n d are t h o r o u g h l y b u r r o w e d b y soft-bodied o r g a n i s m s s u c h a s p o l y c h a e t e w o r m s a n d a r t h r o p o d s . S u c h extensiveb u r r o w i n g w o u l d r e q u i r e m o r e f r e q u e n t a n d p e r s i s t e n t s u b m e r g e n c e duri n g a tidal c y c l e , as on t h e l o w e s t p o r t i o n s of t h e tidal flat. M a n y of t h e s e
the height and peincrease
changed
over
both of during
thousands
to millions of years, environments
with
shifting
northward (as shown
in
b u r r o w s are filled with the d i s t i n c t i v e g r e e n iron m i n e r a l g l a u c o n i t e . Tidal
figure) during times of
flat deposits are m o s t c o m m o n i n c e n t r a l K e n t u c k y , b u t s o m e tidal f l a t s
slowly rising sea level and
a d v a n c e d as far n o r t h w a r d as s o u t h e r n I n d i a n a , as c a n be s e e n in e x p o s u r e s
retreating
o f the S a l u d a D o l o m i t e n e a r M a d i s o n , I n d i a n a .
during
M o s t tidal flat d e p o s i t s in the C i n c i n n a t i r e g i o n are u n f o s s i l i f e r o u s , b u t l o c a l l y t h e b u r r o w e d d e p o s i t s c o n t a i n a sparse f a u n a o f b r y o z o a n s , a n d m o r e rarely o s t r a c o d s , b r a c h i o p o d s , s t r o m a t o p o r o i d s , a n d r u g o s a n a n d tabulate c o r a l s .
This restricted g r o u p o f o r g a n i s m s p r e s u m a b l y w o u l d h a v e
rising sea level. Falls in sea level resulted in
and
Paleoenvironment
the
draining of the seas from the
b e e n c a p a b l e of t o l e r a t i n g fluctuations in salinity a n d t e m p e r a t u r e . Preser-
Paleogeography
southward
times of rapidly
221
Cincinnati area.
Figure 1 5 . 4 . crop
A. Out-
photograph
laminated
of finely
dolomite
de-
posited in a tidal flat environment.
B.
photograph
of
weathering,
Outcrop rubbly
nodular
limestone
and
deposited in
mudstone
a
shallow
subtidal
environ-
ment.
C.
Outcrop pho-
tograph
of
limestone
and
interbedded mudstone
deposited in a
deep sub-
tidal environment, the
limestone
cording
re-
deposition
ing hurricanes. crop
with
beds D.
photograph
mudstone
with
of limestone stone,
durOut-
of thin
beds
and silt-
all deposited in an
offshore
environment.
v a t i o n of t h e s e fossils is t y p i c a l l y p o o r , as a result of d o l o m i t i z a t i o n , w h i c h tends to d e s t r o y fine d e t a i l s . S h a l l o w s u b t i d a l e n v i r o n m e n t s t o d a y a r e shallow
marine environ-
m e n t s below the l o w tide l i n e , b u t a b o v e fair w e a t h e r w a v e base, the d e p t h t o w h i c h w a x e s c a n stir the s e d i m e n t d u r i n g c a l m w e a t h e r . Fair w e a t h e r Behind every
the
history of
sedimentary
there lurks an tem,
rock
ecosys-
of
o c e a n i c w a v e s . I n m o d e r n c a r b o n a t e s e t t i n g s , s h a l l o w subtidal e n v i r o n m e n t s are a d j a c e n t to tidal flats a n d are c h a r a c t e r i z e d by intense b u r r o w i n g
but what one
first sees is an environment
w a v e b a s e is t y p i c a l l y o n l y a f e w m e t e r s on coasts p r o t e c t e d from large
by soft-bodied organisms such as w o r m s and arthropods. Shallow subtidal deposits are f o u n d in the
deposition.
type-Cincinnatian
l i k e w i s e c h a r a c t e r i z e d b y h i g h l y b u r r o w e d shallow
E d w a r d S. D e e v e y
a n d are
m a r i n e deposits that
g r a d e u p w a r d s into tidal flat deposits, i n d i c a t i n g that the t w o w e r e deposited
1965, 592
in laterally a d j a c e n t e n v i r o n m e n t s . In the t y p e - C i n c i n n a t i a n , shallow subtidal deposits consist of n o d u l a r to very thin w a v y - b e d d e d shelly l i m e s t o n e a n d fossiliferous m u d s t o n e ( F i g u r e 1 5 . 4 B ) . B e c a u s e o f the t h i n n e s s and w a v i ness of the l i m e s t o n e b e d s , t h e s e rocks w e a t h e r to a characteristic rubble of fist-sized l i m e s t o n e n o d u l e s .
222
A Sea without Fish
This distinctive b e d d i n g results from the per-
vasive b u r r o w i n g of the s e d i m e n t by soft-bodied o r g a n i s m s . A l t h o u g h storms c e r t a i n l y reworked the s e d i m e n t and d e p o s i t e d the c h a r a c t e r i s t i c well-sorted layers of shells overlain by layers of m u d that are preserved in s o m e p l a c e s , s u b s e q u e n t b u r r o w i n g m i x e d these l a y e r s , p r o d u c i n g p o d s o f shell-rich a n d shell-poor material. Preferential c e m e n t a t i o n o f these c h u r n e d s e d i m e n t s p r o d u c e d p o c k e t s of w e l l - c e m e n t e d shells material s u r r o u n d e d by n o n - c e m e n t e d z o n e s rich in clay. S h a l l o w subtidal l i m e s t o n e in t h e C i n c i n n a t i a r e a is l o c a l l y r i c h in p h o s p h a t e , p a r t i c u l a r l y i n t h e M a y s v i l l i a n . M u c h o f this p h o s p h a t e o c c u r s a s infillings o f b r y o z o a n z o o e c i a , the p o r o u s s k e l e t o n s o f e c h i n o d e r m s , a n d the larval shells of pelecypods, g a s t r o p o d s (such as Cyclora), a n d m o n o p l a cophorans.
The p r e s e n c e o f this p h o s p h a t e i n d i c a t e s large a m o u n t s o f d e -
c a y i n g o r g a n i c matter w i t h i n t h e s e d i m e n t . B y d i s s o l v i n g p i e c e s o f s h a l l o w subtidal l i m e s t o n e i n v i n e g a r o r d i l u t e h y d r o c h l o r i c a c i d , o n e c a n see t h e rich f a u n a p r e s e r v e d b y this p h o s p h a t i z a t i o n . S h a l l o w s u b t i d a l r o c k s are broadly d i s t r i b u t e d o v e r t h e C i n c i n n a t i A r c h a n d o c c u r f r o m t h e s o u t h e r n e d g e o f the O r d o v i c i a n o u t c r o p belt i n s o u t h e r n K e n t u c k y t o the n o r t h e r n l i m i t o f O r d o v i c i a n rocks i n c e n t r a l O h i o a n d I n d i a n a . T h e B e l l e v u e , M t . A u b u r n , O r e g o n i a , a n d W h i t e w a t e r F o r m a t i o n s all a c c u m u l a t e d within shallow subtidal e n v i r o n m e n t s . Shallow s u b t i d a l rocks a r e e x c e e d i n g l y fossiliferous i n m o s t p l a c e s , r e f l e c t i n g the a b u n d a n c e o f life i n this shallow m a r i n e habitat. M o s t c o m m o n l y , shallow s u b t i d a l r o c k s are p a c k e d with large brachiopods, s u c h as Platystrophia, Hebertella, a n d Rafinesquina. M a n y of t h e s e have t h i c k or c o a r s e l y r i b b e d s h e l l s , p r e s u m a b l y for p r o t e c t i o n a g a i n s t w a v e s a n d c u r rents. Platystrophia,
in p a r t i c u l a r , has a g r e a t l y t h i c k e n e d p e d i c l e v a l v e
n e a r the h i n g e , w h i c h w o u l d h a v e i n c r e a s e d t h e stability o f t h e shell o n t h e sea floor. D i s a r t i c u l a t i o n , b r e a k a g e , a n d a b r a s i o n o f t h e s e shells a r e w i d e spread a n d attest t o the d a m a g i n g effects o f w a v e s a n d c u r r e n t s . L a r g e b r y o z o a n s a r e often a b u n d a n t a n d i n c l u d e b r a n c h i n g , e n c r u s t i n g , sheetlike, a n d m a s s i v e f o r m s . As is t r u e for the brachiopods, t h e s e r o b u s t b r y o z o a n skeletons reflect the intensity o f w a v e s a n d c u r r e n t s i n this shallow water e n v i r o n m e n t . M o l l u s c s are p r e s e n t in shallow s u b t i d a l r o c k s , p a r t i c u larly t h e
byssally
carnivorous
attached pelecypods
cephalopod
Treptoceras,
Ambonychia
a n d Caritodens, t h e
a n d the g a s t r o p o d s Lophospira a n d
Cyclonema. Cyclonema is c o m m o n l y a s s o c i a t e d
with
c r i n o i d s , on w h i c h it
m a y have b e e n a parasite. Lophospira has b e e n i n t e r p r e t e d as a s c a v e n g e r . C r i n o i d s and trilobites o c c u r , but m o s t s p e c i m e n s a r e d i s a r t i c u l a t e d rather t h a n w h o l e , p r e s u m a b l y o w i n g not o n l y t o w a v e s a n d c u r r e n t s , b u t also burrowing organisms. Deep
s u b t i d a l e n v i r o n m e n t s t o d a y are t h o s e that lie b e l o w fair
w e a t h e r w a v e base, but a b o v e the w a v e b a s e o f all b u t t h e most p o w e r f u l storms or h u r r i c a n e s , w h i c h w o u l d have e x t e n d e d to d e p t h s of a several tens of meters. In t h e s e s e t t i n g s , t h e s e d i m e n t a r y d e p o s i t s are c h a r a c t e r i z e d b y the a l t e r n a t i o n o f s a n d y a n d shelly b e d s d e p o s i t e d d u r i n g s t o r m s and muddy b e d s that reflect quiet water d e p o s i t i o n d u r i n g w e a k s t o r m s or duri n g p e r i o d s b e t w e e n s t o r m s . D e e p s u b t i d a l e n v i r o n m e n t s are a d j a c e n t t o a n d slightly d e e p e r t h a n s h a l l o w s u b t i d a l e n v i r o n m e n t s .
Paleogeography and Paleoenvironment
223
A s o n m o d e r n s h e l v e s , storm d e p o s i t s are the m o s t c o n s p i c u o u s feature of the d e e p subtidal e n v i r o n m e n t in the t y p e - C i n c i n n a t i a n , with roughly e q u a l p r o p o r t i o n s o f t h i n t o m e d i u m - b e d d e d shelly l i m e s t o n e , l a m i n a t e d siltstones, a n d m u d s t o n e ( F i g u r e
15.4C).
B u r r o w i n g is m u c h less i n t e n s e
here than in d e e p subtidal environments, resulting in thicker and more laterally c o n t i n u o u s l i m e s t o n e b e d s . B e d s o f siltstone are c o m m o n l y rippled or display internal planar or h u m m o c k y lamination generated by s t r o n g storm c u r r e n t s a n d w a v e s . A t t i m e s , s t o r m s o c c u r r e d w i t h sufficient f r e q u e n c y that t h e y c o m m o n l y e r o d e d t h r o u g h t h e m u d s t o n e layer c a p p i n g t h e d e p o s i t f r o m t h e p r e v i o u s s t o r m , s u c h that the shelly layer f r o m o n e s t o r m w a s d e p o s i t e d d i r e c t l y o n t h e s h e l l y b e d o f t h e p r e v i o u s storm. T h i s p h e n o m e n o n , k n o w n a s a m a l g a m a t i o n , p r o d u c e s thick layers o f l i m e s t o n e w i t h s u b t l e i n t e r n a l e r o s i o n s u r f a c e s t h a t s e p a r a t e i n d i v i d u a l storm b e d s , t h e r e b y p r o d u c i n g w h a t are k n o w n a s m u l t i - e v e n t b e d s . I n s o m e c a s e s , a o n e - f o o t t h i c k b e d o f l i m e s t o n e m a y r e c o r d h a l f a d o z e n storm e v e n t s . D e e p s u b t i d a l r o c k s are a s b r o a d l y d i s t r i b u t e d o v e r t h e C i n c i n n a t i A r c h as shallow subtidal rocks.
The F a i r v i e w , C o r r y v i l l e , S u n s e t , a n d L i b -
erty F o r m a t i o n s a c c u m u l a t e d i n d e e p s u b t i d a l e n v i r o n m e n t s . D e e p subtidal rocks of the t y p e - C i n c i n n a t i a n contain an abundant and diverse fauna. Preservation is c o m m o n l y better than in shallow subtidal r o c k s , w i t h less o v e r a l l d i s a r t i c u l a t i o n , b r e a k a g e , a n d a b r a s i o n , sugg e s t i n g less e x p o s u r e t o t h e d a m a g i n g effects o f w a v e s a n d c u r r e n t s . M a n y brachiopod genera Leptaena,
m a y be p r e s e n t ,
Hiscobeccus,
Platystrophia,
i n c l u d i n g Rafinesquina, Plectorthis,
Glyptorthis,
Strophomena, and
Plaesio-
mys. A l l h a v e shells t h a t are t h i n n e r a n d finer-ribbed t h a n t h o s e in t h e s h a l l o w s u b t i d a l . B r y o z o a n s c a n b e a b u n d a n t a n d also t e n d t o b e t h i n n e r a n d less m a s s i v e t h a n i n t h e s h a l l o w s u b t i d a l . M o l l u s c s are c o m m o n , w i t h s i m i l a r f o r m s as in t h e s h a l l o w s u b t i d a l , as w e l l as t h e byssally a t t a c h e d pelecypod
Modiolopsis.
Crinoids
(Glyptocrinus,
Pycnocrinus,
and
Iocrinus)
a n d e d r i o a s t e r o i d s (Carneyella, Isorophus, a n d Streptaster) are l o c a l l y a b u n d a n t , a n d b e d s a n d p o c k e t s c o n t a i n i n g f u l l y a r t i c u l a t e d s p e c i m e n s are n o t u n u s u a l . T r i l o b i t e s (Isotelus a n d Flexicalymene) are c o m m o n b o t h as indiv i d u a l sclerites a n d a s a r t i c u l a t e d s p e c i m e n s .
The frequency of articulated
c r i n o i d s a n d trilobites s u g g e s t s early b u r i a l a n d less f r e q u e n t d i s t u r b a n c e by waves, currents, and b u r r o w i n g organisms. In the uppermost C i n c i n n a t i a n , solitary c o r a l s (Grewingkia a n d Streptelasina), a n d
the encrusting
t a b u l a t e c o r a l , Protaraea, are c o n s p i c u o u s a d d i t i o n s to t h e d e e p s u b t i d a l f a u n a . T r a c e fossils are c o m m o n Trichophycus
i n t h e siltstone b e d s . Chondrites a n d
were the burrows of deposit feeding worms or arthropods.
T h e U - s h a p e d b u r r o w s o f Diplocraterion w e r e t h e h o m e s o f a p o l y c h a e t e w o r m , b u t w h e t h e r it w a s a s u s p e n s i o n f e e d e r , a s t a t i o n a r y d e p o s i t f e e d e r , o r a n a m b u s h c a r n i v o r e i s u n c e r t a i n , a s m o d e r n e x a m p l e s o f all s u c h U t u b e b u i l d e r s are k n o w n . Paleophycus r e c o r d s t h e h o r i z o n t a l b u r r o w i n g o f another scavenging or deposit feeding w o r m . T h e t h i c k , t a b u l a r l i m e s t o n e b e d s o f t h e d e e p s u b t i d a l are well suited a s b u i l d i n g s t o n e s . M a n y old q u a r r i e s w e r e e s t a b l i s h e d i n d e e p subtidal r o c k s a n d m a n y o f t h o s e s t o n e s c a n n o w b e f o u n d i n old b u i l d i n g f o u n d a t i o n s a n d r o c k w a l l s . T w o i n t e r v a l s o f d e e p s u b t i d a l rocks f r e q u e n t e d b y
224
A Sea without Fish
q u a r r y m e n w e r e the River Q u a r r y B e d s ( n o w c a l l e d t h e Point Pleasant F o r m a t i o n ) and the Hill Q u a r r y B e d s (now c a l l e d the F a i r v i e w F o r m a t i o n ) . A l t h o u g h the River Q u a r r y B e d s n e a r C i n c i n n a t i a r e n o w largely u n d e r the O h i o River, w h o s e level w a s raised d u r i n g t h e c o n s t r u c t i o n o f d a m s , they c a n still b e s e e n n e a r Point P l e a s a n t , O h i o , a l o n g t h e crest o f the C i n c i n n a t i A r c h . M a n y o f t h e H i l l Q u a r r i e s c a n still b e s e e n i n t h e bluffs south o f the U n i v e r s i t y o f C i n c i n n a t i a n d f l a n k i n g t h e M i l l C r e e k V a l l e y . O f f s h o r e e n v i r o n m e n t s o n m o d e r n c o a s t s lie below t h e w a v e base o f m o s t s t o r m s , but a r e s o m e t i m e s a f f e c t e d b y the most severe s t o r m s a n d extend to d e p t h s of several t e n s of m e t e r s . In t h e s e m o d e r n s e t t i n g s , d e p o s i tion i s d o m i n a t e d b y m u d s , w h i c h c a n a c c u m u l a t e w h e n c u r r e n t s a n d waves are w e a k . Rare, e x c e p t i o n a l l y s t r o n g s t o r m s a r e c a p a b l e o f m o v i n g shells and s e d i m e n t s e v e n a t t h e s e d e p t h s a n d p r o d u c e t h i n storm b e d s , a l t h o u g h these m a k e u p a m i n o r i t y o f the d e p o s i t s . O f f s h o r e e n v i r o n m e n t s are adjacent t o a n d s o m e w h a t d e e p e r t h a n d e e p s u b t i d a l s e t t i n g s . In the t y p e - C i n c i n n a t i a n , o f f s h o r e r o c k s c o n t a i n a greater p r o p o r t i o n o f m u d s t o n e ( c o m m o n l y n e a r two-thirds), but i n o t h e r regards are q u i t e s i m i l a r to the deep s u b t i d a l ( F i g u r e 15.4D).
The less f r e q u e n t o c c u r r e n c e
of storm b e d s in offshore d e p o s i t s i n d i c a t e s less f r e q u e n t d i s t u r b a n c e by s t o r m - g e n e r a t e d w a v e s a n d c u r r e n t s . As a result, a m a l g a m a t i o n is m u c h less c o m m o n in t h e o f f s h o r e , and m o s t l i m e s t o n e b e d s are s i n g l e - e v e n t beds and record the passage of a single h u r r i c a n e . Many of the thick mudstone layers f o u n d in t h e offshore are also the result of storm d e p o s i t i o n , as i n d i c a t e d by the p r e s e n c e of m u l t i p l e 2-3 cm f i n i n g - u p w a r d m u d s t o n e b e d s , e a c h with a slightly silty interval at its b a s e . E a c h of t h e s e t h i n layers r e c o r d s the m i n o r d i s t u r b a n c e of the sea floor by a h u r r i c a n e , w i t h s e t t l i n g o f silt and t h e n c l a y f o l l o w i n g the s t o r m . F r e q u e n t l y , s u c h m u d layers w o u l d b l a n k e t the b o t t o m , s m o t h e r t h e f a u n a l i v i n g o n the sea floor, a n d p r e s e r v e a r t i c u l a t e d c r i n o i d s a n d trilobites. O f f s h o r e r o c k s o c c u r a s tar s o u t h a s n o r t h - c e n t r a l K e n t u c k y but e x t e n d b e y o n d the n o r t h e r n l i m i t o f O r d o v i cian exposures in central O h i o and Indiana.
The K o p e a n d W a y n e s v i l l e
F o r m a t i o n s largely reflect offshore s e t t i n g s . O f f s h o r e strata c o n t a i n a n a b u n d a n t a n d diverse f a u n a , c h a r a c t e r i z e d b y s m a l l , t h i n , a n d d e l i c a t e fossils, s u g g e s t i n g g e n e r a l l y q u i e t w a t e r c o n d i tions, e x c e p t d u r i n g rare, severe s t o r m s . C o m m o n b r a c h i o p o d s i n c l u d e t h e highly
Dalmanella a n d Sowerbyella, Pseudolingula a n d Leptobolus, w h i c h
gregarious
ticulates
and are
the
burrowing
sometimes
found
inarpre-
served inside their vertical b u r r o w s . A l t h o u g h sheet-like b r y o z o a n s d o o c c u r , t h i n b r a n c h i n g f o r m s a n d flat d i s c - s h a p e d f o r m s are m o r e c o m m o n . M o l l u s c s are d i v e r s e a n d a b u n d a n t in a few w i d e l y t r a c e a b l e h o r i z o n s , which are conspicuously poor in brachiopods and bryozoans. C o m m o n pelecypods Ambonychia Deceptrix and Rhytimya, t h e
m o l l u s c s i n c l u d e the byssally a t t a c h e d
olopsis,
the b u r r o w i n g p e l e c y p o d s
a n d Modiscavenging
Lophospira a n d Liospira, the m o n o p l a c o p h o r a n Sinuites, a n d Treptoceras a n d Cameroceras. T r i l o b i t e s are n u m e r o u s and f r e q u e n t l y fully a r t i c u l a t e d . T h e b u r r o w e r s Flexicalymene, Gravicalymene, Cryptolithus, a n d Isotelus are the m o s t c o m m o n , b u t the spiny s w i m gastropods the
cephalopods
m i n g Acidaspis c a n b e a b u n d a n t in s o m e c r i n o i d - r i c h layers. S u g g e s t i v e of
Paleogeography and Paleoenvironment
225
d e e p w a t e r s e t t i n g s is t h e p r e s e n c e of t h e blind trilobites Cryptolithus and Triarthrus in offshore strata. C r i n o i d s are also n u m e r o u s and are f r e q u e n t l y articulated.
The
most c o m m o n
genera
are
Cincinnaticrinus a n d
Fxteno-
crinus, w h o s e ossicles m a y c o m p r i s e e n t i r e b e d s o f l i m e s t o n e . G i v e n t h e t e n s o f k i l o m e t e r s o v e r w h i c h s u c h b e d s c a n b e t r a c e d , the n u m b e r o f crinoid individuals must have b e e n astronomical. As in the d e e p subtidal, t r a c e fossils are n u m e r o u s in b e d s of siltstone. Chondrites, Trichophycus a n d Paleophycus are all
Diplocraterion,
c o m m o n . T h e trilobite b u r r o w Ruso-
phycus is a l s o c o m m o n , a n d e x a m p l e s of Rusophycus m a d e by Isotelus and Cryptolithus h a v e b e e n r e p o r t e d , but o n e s p r o d u c e d b y the c a l y m e n i d s Gravicalymene
226
A Sea without Fish
a n d F l e x i c a l y m e n e are m u c h m o r e c o m m o n .
228
A Sea without Fish
16
LIFE IN THE CINCINNATIAN SEA
The Ecological Theater and the Evolutionary Play is a b o o k of f a s c i n a t i n g es-
The
says a b o u t the c o m p l e x interactions b e t w e e n the e n v i r o n m e n t and the o r g a n -
and the Evolutionary Play
isms i n h a b i t i n g it. It was written by the e c o l o g i s t G. E. H u t c h i n s o n in 1965.
G. E. H u t c h i n s o n 1965
Ecological
Theater
Hutchinson's title, an extrapolation of the S h a k e s p e a r e a n m e t a p h o r , provides a useful a n a l o g y by w h i c h to v i e w the C i n c i n n a t i a n as a Series of acts in t h e e v o l u t i o n a r y play. In c h a p t e r s 5-14 of o u r b o o k we i n t r o d u c e d t h e cast of characters, the players on the stage, of the L a t e O r d o v i c i a n sea that c o v e r e d the C i n c i n n a t i A r c h region. H a v i n g read these chapters, the reader s h o u l d be able to r e c o g n i z e the c h a r a c t e r s and know s o m e t h i n g of their r o l e s — i n particular their m o d e s of life and f e e d i n g habits. In scientific t e r m s , this is the r e a l m of a u t e c o l o g y , the r e l a t i o n s h i p of organisms of a single species with the e n v i r o n m e n t , assessing the influence o f c h e m i c a l , p h y s i c a l , a s w e l l a s b i o l o g i c a l factors. G i v e n that w e are d e a l ing w i t h o r g a n i s m s l o n g s i n c e e x t i n c t , p e r h a p s w e s h o u l d add the prefix for "ancient" and enter the a n c i e n t realm of paleoautecology. For m a r i n e o r g a n i s m s , m a j o r i n o r g a n i c factors i n c l u d e t e m p e r a t u r e ,
Figure 16.1. toceras
duseri
Whitfield), (Meek) body
Trepcrinoid
baeri
preserved
Arnold
within Richard
Davis
Waynesville
collection, Formation,
Adams Co.,
Ohio,
col-
lected by Thomas Johnson. Taeniaster
B.
m e n t c o n t e n t o f t h e water). C h a n g e s i n hydrostatic pressure a s s o c i a t e d w i t h
(Billings),
water d e p t h do not exert a m a j o r i n f l u e n c e e x c e p t in o r g a n i s m s l i k e fish
preserved
h e n c e , d e p t h itself o f t e n is c o r r e l a t e d w i t h c h a n g e s in t h e d i s t r i b u t i o n of
with
chamber.
m e n t ( b o t h c u r r e n t s and w a v e - i n d u c e d t u r b u l e n c e ) , a n d t u r b i d i t y (sedi-
o f t h e o t h e r factors listed c a n vary s i g n i f i c a n t l y w i t h w a t e r d e p t h , a n d ,
Internal
(Hall and
Xenocrinus
salinity, o x y g e n c o n t e n t o f the water, n a t u r e o f t h e sea b o t t o m , w a t e r m o v e -
with air b l a d d e r s or a i r - b r e a t h i n g , d i v i n g m a r i n e vertebrates. However, all
A.
mold of nautiloid,
mold
T.
Ophiuroid, spinosus
MUGM 28187, on
internal
of nautiloid,
Waynesville
Formation,
Butler Co.,
Ohio, scale in
mm.
C.
Trilobites, Aci-
s p e c i e s . B i o l o g i c a l factors i n c l u d e t h e m o d e o f f e e d i n g , food availability,
daspis
sp.,
preserved on
and a host of potential i n t e r a c t i o n s w i t h o r g a n i s m s of o t h e r s p e c i e s s u c h as
internal mold
predator-prey i n t e r a c t i o n s , c o m m e n s a l i s m , a n d p a r a s i t i s m .
tiloid,
In c h a p t e r 15, S t e v e n M. H o l l a n d d e s c r i b e d t h e s t a g e s e t t i n g s for t h e C i n c i n n a t i a n play, the p a l e o g e o g r a p h y a n d e n v i r o n m e n t s o f t h e L a t e O r d o v i c i a n sea in w h i c h the o r g a n i s m s lived. In order to u n d e r s t a n d t h e e n tire play, we n o w m u s t c o n s i d e r t h e ( C i n c i n n a t i a n players as an a s s e m b l e d cast o n that stage. How did the cast c h a n g e w i t h e a c h a c t , a n d how did t h e players interact with o n e a n o t h e r a s t h e plot u n f o l d e d ? R e a s s e m b l y o f the cast o f c h a r a c t e r s and the interplay b e t w e e n t h e m
CMC IP 2257, tian, bites, meeki
(Foerste),
served on
Trilopre-
internal mold
of nautiloid,
?Trepto-
ceras sp.,
OSU 50329,
Cincinnatian, Cincinnati,
their e n v i r o n m e n t , a p a l e o e c o l o g i s t m u s t first g r a p p l e w i t h a very difficult
D.
Flexicalymene
brings us to the s u b d i s c i p l i n e of s y n e c o l o g y (or, in this c a s e , p a l e o s y n e c o l -
order to d e t e r m i n e how extinct s p e c i e s w e r e i n f l u e n c e d by o t h e r s p e c i e s and
sp.,
Cincinna-
vicinity of Cincinnati,
Ohio, x 0.9.
ogy), t h e relationships o f the a n i m a l s o f the m a n y C i n c i n n a t i a n s p e c i e s that lived together w i t h their c h e m i c a l , p h y s i c a l , and b i o l o g i c a l e n v i r o n m e n t . I n
of nau-
?Treptoceras
vicinity of
Ohio,
x 2.6.
C, D from Davis et al. (2001,
figures 2, 5), and
reprinted of
question: what species a c t u a l l y lived t o g e t h e r at a g i v e n t i m e in t h e past?
229
by
Blackwell
permission Publishing.
W h a t cast w a s o n stage for a g i v e n act? A n e c o l o g i s t c a n observe a n d s a m p l e l i v i n g o r g a n i s m s i n the f i e l d , b u t t h e p a l e o e c o l o g i s t m u s t d e a l w i t h assemb l a g e s of d e a d r e m a i n s preserved in s e d i m e n t a r y rock. Factors a f f e c t i n g fossil p r e s e r v a t i o n d i s c u s s e d in c h a p t e r 1 are of t h e u t m o s t i m p o r t a n c e here. A r e t h e s e a s s e m b l a g e s representative of a c t u a l life a s s e m b l a g e s or are t h e y d e a t h a s s e m b l a g e s r e p r e s e n t i n g m i x t u r e s of o r g a n i s m s that lived at different t i m e s o r p l a c e s a n d a c c u m u l a t e d g r a d u a l l y o v e r t i m e (time-averaged assemblages) o r s u d d e n l y i n s o m e q u i c k event? H o w m u c h i n f o r m a t i o n i s m i s s i n g from the fossil record b e c a u s e of preservational bias? Fossil a s s e m b l a g e s are biased in favor of o r g a n i s m s w i t h preservable r e m a i n s w i t h hard parts like shells, skeletons, and e x o s k e l e t o n s , a n d t h e y are biased a g a i n s t o r g a n i s m s l a c k i n g h a r d parts. C r i t e r i a s u c h as t h o s e p r e s e n t e d in T a b l e 1 in chapter 1 c a n be a p p l i e d t o a n s w e r t h e s e q u e s t i o n s . T h r o u g h o u t this b o o k , e x a m p l e s o f C i n c i n n a t i a n fossils p r e s e r v e d in life position or in d i r e c t association with o r g a n isms o f o t h e r s p e c i e s p r o v i d e e v i d e n c e b y w h i c h t o d i s t i n g u i s h life assemb l a g e s f r o m d e a t h a s s e m b l a g e s . K e e p i n g t h e s e issues i n m i n d , w e c a n p r o c e e d t o e x a m i n e h o w fossil a s s e m b l a g e s vary t h r o u g h t h e C i n c i n n a t i a n a n d w h a t this reveals a b o u t C i n c i n n a t i a n p a l e o s y n e c o l o g y .
E v e r s i n c e s o m e o f t h e e a r l i e s t s t u d i e s o f C i n c i n n a t i a n fossils a n d strata, p a l e o n t o l o g i s t s h a v e r e c o g n i z e d that a s s e m b l a g e s o f o r g a n i s m s o f e x t i n c t species c h a n g e markedly through the section and show a close relationship t o t h e c h a r a c t e r o f t h e r o c k (see c h a p t e r 5). T h e q u o t a t i o n f r o m N i c k l e s (1902) in c h a p t e r 4 d e m o n s t r a t e s that he r e c o g n i z e d the p a l e o e n v i r o n m e n tal s i g n i f i c a n c e o f t h e l i t h o l o g i e s a n d their a s s o c i a t e d fossil f a u n a s . P a l e o n tologists c o m p i l e d lists o f fossils c h a r a c t e r i s t i c o f e a c h f o r m a t i o n . Fossils o f o r g a n i s m s o f s o m e s p e c i e s o c c u r i n m a n y f o r m a t i o n s and thus h a v e l o n g s t r a t i g r a p h i c r a n g e s ; fossils of o t h e r s p e c i e s are restricted to s i n g l e f o r m a t i o n s o r t h i n n e r i n t e r v a l s w i t h i n a f o r m a t i o n . E l i z a b e t h D a l v e (1948) c o m p i l e d f a u n a l lists for e a c h C i n c i n n a t i a n r o c k - u n i t b a s e d o n m a n y p r e v i o u s s t u d i e s , b u t h e r p a p e r i s n o t w i d e l y a v a i l a b l e . T h e w e l l - k n o w n biostratig r a p h i c z o n a t i o n o f t h e C i n c i n n a t i a n that i s still w i d e l y u s e d ( C a s t e r e t al. 1955; D a v i s 1985, 1992) e x p r e s s e s t h e s e f a u n a l c h a n g e s . U s i n g this k i n d o f i n f o r m a t i o n o n fossil d i s t r i b u t i o n o n e c o u l d p r e d i c t w h a t s p e c i e s m i g h t b e f o u n d in a g i v e n f o r m a t i o n , b u t t h e a s s e m b l a g e s of s p e c i e s in a f o r m a t i o n a n d their relative a b u n d a n c e w e r e less w e l l k n o w n . B e g i n n i n g i n t h e late 1960s, t h e b u r g e o n i n g s u b d i s c i p l i n e o f p a l e o e c o l o g y f o c u s e d t h e a t t e n t i o n o f p a l e o n t o l o g i s t s o n a s s e m b l a g e s o f fossils o c c u r r i n g together and their relationship to the e n c l o s i n g sedimentary m a t r i x . T o w h a t e x t e n t d i d fossil a s s e m b l a g e s r e p r e s e n t e c o l o g i c a l c o m munities c o m p a r a b l e to present-day m a r i n e b e n t h i c c o m m u n i t i e s ? M a r i n e ecologists r e c o g n i z e d c o m m u n i t i e s as recurrent assemblages of species inhabiting particular environments characterized
by particular water
d e p t h , b o t t o m t y p e , t e m p e r a t u r e , salinity, o r o t h e r c h e m i c a l o r p h y s i c a l a t t r i b u t e s . T h e y d e l i m i t e d a s s e m b l a g e s o n t h e basis o f statistical analysis o f s a m p l e s r e c o v e r e d f r o m t h e sea floor. C o m m u n i t i e s w e r e n a m e d for d o m i nant or characteristic species.
230
A Sea without Fish
T h e e x i s t i n g f a u n a l lists o f C i n c i n n a t i a n fossils w e r e i n a d e q u a t e for this t y p e o f a n a l y s i s , s o p a l e o e c o l o g i s t s c o l l e c t e d n e w s a m p l e s i n w h i c h t h e a b u n d a n c e a s well a s s i m p l e o c c u r r e n c e o f fossil s p e c i e s w a s r e c o r d e d f r o m censuses of bed surfaces or bulk samples of rock. O n e of the p i o n e e r i n g s t u d i e s of this t y p e w a s that of Peter Bretsky (1970), w h o r e c o g n i z e d a series o f fossil c o m m u n i t i e s o f C i n c i n n a t i a n a g e
in
the A p p a l a c h i a n
Basin.
Bretsky's c o m m u n i t i e s w e r e c h a r a c t e r i z e d b y b r a c h i o p o d s , m o l l u s c s , a n d a n i m a l s o f o t h e r taxa a n d w e r e d i s t r i b u t e d a c c o r d i n g t o d e p t h i n p a r a l l e l b a n d s c l o s e t o t h e s h o r e l i n e o f t h e s a m e e p i c o n t i n e n t a l sea t h a t e x t e n d e d w e s t w a r d t o the C i n c i n n a t i A r c h r e g i o n . O t h e r s t u d i e s f o c u s e d o n c o m munity p a l e o e c o l o g y of the C i n c i n n a t i A r c h region, such as the work of F o x (1962, 1968), L o r e n z (1973), O l d r o y d (1978), a n d H a r r i s a n d M a r t i n (1979) (see c h a p t e r 8). S u b s e q u e n t l y , u s e o f t h e t e r m fossil c o m m u n i t y b e c a m e less f r e q u e n t , b e c a u s e i n c r e a s e d u n d e r s t a n d i n g o f t a p h o n o m i c p r o c e s s e s s h o w e d that m o s t o f t h e t i m e - a v e r a g e d a s s e m b l a g e s o f fossils are n o t directly comparable to present-day c o m m u n i t i e s . In recent q u a n t i t a t i v e studies of C i n c i n n a t i a n fossil a s s e m b l a g e s , fossil s p e c i m e n s o f i n d i v i d u a l s f r o m e x t i n c t taxa (either s p e c i e s o r g e n e r a ) are treated as v a r i a b l e s t a k e n from s a m p l e s restricted to a s i n g l e b e d s u r f a c e or d i s a g g r e g a t e d from a t h i n b e d of l i m e s t o n e or s h a l e . In e a c h s a m p l e , the a b u n d a n c e o f fossil s p e c i m e n s o f e a c h t a x o n i s c o u n t e d a n d t a b u l a t e d . In t h e study of fossil a s s e m b l a g e s in t h e C1 ( K o p e F o r m a t i o n ) d e p o s i tional s e q u e n c e , H o l l a n d , M i l l e r , M e y e r , a n d D a t t i l o (2001) c o l l e c t e d s a m ples from every fossiliferous b e d t h r o u g h a s e v e n t y m e t e r s t r a t i g r a p h i c s e c t i o n — 1 9 4 9 s a m p l e s in all. In e a c h s a m p l e , the relative a b u n d a n c e of fossils was r e c o r d e d in the field as rare (1-2 s p e c i m e n s per 1000 cm
2
of b e d d i n g
surface), c o m m o n (3-10 s p e c i m e n s p e r 1000 c m ) , or a b u n d a n t (>10 s p e c i 2
m e n s per 1000 c m ) . Fossils w e r e identified to g e n u s , a n d i n c l u d e d b r a c h i o 2
pods, c r i n o i d s , trilobites, p e l e c y p o d s , c e p h a l o p o d s , a n d g a s t r o p o d s . S o m e distinctive b r y o z o a n s w e r e identified to g e n u s , w h e r e a s others w e r e classified on the basis of c o l o n y m o r p h o l o g y as t h i n bifoliate (<5 m m ) , thick bifoliate (>5 m m ) , t h i n r a m o s e or b r a n c h i n g (<5 m m ) , t h i c k r a m o s e (>5 m m ) , or e n crusting. Fifty-seven taxa w e r e t a b u l a t e d f r o m t h e 1949 s a m p l e s . A f t e r rem o v a l of all taxa o c c u r r i n g in just a single s a m p l e , as well as the r e m o v a l of all s a m p l e s c o n t a i n i n g s p e c i m e n s of just a s i n g l e t a x o n , the final dataset formed a matrix of forty-six taxa or c o l o n y forms a n d 1337 s a m p l e s . Large datasets of this type c a n be a n a l y z e d u s i n g several kinds of c o m puter-driven, m u l t i v a r i a t e statistical t e c h n i q u e s . I n t h e w o r k o f H o l l a n d , Miller, M e y e r , and D a t t i l o (2001), a t e c h n i q u e c a l l e d d e t r e n d e d c o r r e s p o n d e n c e analysis ( D C A ) w a s u s e d , a l t h o u g h o t h e r t e c h n i q u e s , for e x a m p l e , cluster analysis, factor analysis, a n d p o l a r o r d i n a t i o n , p r o d u c e s i m i l a r results. D C A c a l c u l a t e s a n u m e r i c a l s c o r e for e a c h t a x o n a n d e a c h s a m p l e a n d plots t h e m a l o n g g r a p h i c a l axes that reflect similarity of taxa as g r o u p e d in s a m p l e s or similarity of s a m p l e s based on their taxa. Ecologists h a v e f o u n d that t e c h niques like D C A are very useful t o e x a m i n e h o w taxa are arrayed a l o n g these axes, w h i c h c o m m o n l y c o r r e s p o n d t o s o m e e n v i r o n m e n t a l p a r a m e t e r o r gradient. I n the analysis o f the K o p e F o r m a t i o n , n u m e r i c a l v a l u e s o f taxa a l o n g o n e DCA axis displayed a shift from l o w e r v a l u e s in the l o w e r parts of
Life in the Cincinnatian Sea
231
t h e s e c t i o n , toward h i g h e r v a l u e s m o v i n g u p - s e c t i o n . As noted in chapters 4 and 15, analyses of l i t h o l o g i c features s u c h as the shale-to-limestone ratio and b e d d i n g t h i c k n e s s d e m o n s t r a t e s that water d e p t h d e c r e a s e d from the base to t h e top o f the f o r m a t i o n .
The D C A s h o w e d that t h e c o m p o s i t i o n o f fossil
a s s e m b l a g e s also reflects this trend a n d may e v e n provide a m o r e sensitive m e a s u r e o f d e p t h c h a n g e s t h a n the c h a r a c t e r o f the rock reveals. In fossil a s s e m b l a g e s from the l o w e r K o p e ( d e e p e r water), the m o s t a b u n d a n t fossils nus,
are
the slender crinoids
the small, thin-shelled
Cryptolithus a n d
Acidaspis
larger b r a c h i o p o d
Ectenocrinus and
b r a c h i o p o d Sowerhyella, a n d
Cincinnaticri-
t h e trilobites
(see F i g u r e s 11.5,11.6). Higher in the K o p e , the
Dalmanella,
branching
bryozoans,
and
t h e trilobites
Flexicalymene a n d Isotelus b e c o m e t h e m o s t a b u n d a n t taxa. The brachiopods Zygospira a n Dalmanella a s s e m b l a g e at h i g h e r levels. At the lop of the K o p e , the larger concavo-convex abundant
brachiopods
brachiopods,
Rafinesquina a n d Strophomena are t h e m o s t
a n d t h e larger c r i n o i d Glyptocrinus r e p l a c e s t h e
s m a l l e r c r i n o i d s . I n a n earlier s t u d y o f t h e K o p e t o F a i r v i e w t o B e l l e v u e Formations,
D i e k m e y e r (1998) f o u n d s i m i l a r t r a n s i t i o n s f r o m taxa o f
s m a l l e r , m o r e d e l i c a t e a n i m a l s i n t h e K o p e t o larger, m o r e t h i c k - s h e l l e d a n d r o b u s t a n i m a l s (Platystrophia, m o r e m a s s i v e bryozoans) in the overlyi n g F a i r v i e w . S h e i n t e r p r e t e d this to be a result of a c o n t i n u a t i o n of the s h a l l o w i n g initiated d u r i n g t h e d e p o s i t i o n o f t h e K o p e s e q u e n c e .
R e c e n t research by H o l l a n d a n d P a t z k o w s k y (2007) provided similar faunal analyses for e a c h o f the C i n c i n n a t i a n d e p o s i t i o n a l s e q u e n c e s , C 1 - C 6 . I n F i g u r e 16.3 we present a t i m e e n v i r o n m e n t d i a g r a m for the entire C i n c i n n a tian based on the work by Holland and Patzkowsky. In this d i a g r a m we show the major taxa of depth-related a s s e m b l a g e s in e a c h s e q u e n c e . T h e transition from taxa of smaller, m o r e delicate a n i m a l s in d e e p e r parts of a s e q u e n c e to taxa of larger, m o r e robust o r g a n i s m s in the s h a l l o w e r parts that was found in the C1 s e q u e n c e by Holland, Miller, Meyer, and Dattilo (2001) was c o n f i r m e d a n d f o u n d to be repeated in the s u c c e e d i n g C2 and C3 s e q u e n c e s . In other w o r d s , in e a c h of these s e q u e n c e s the fossil a s s e m b l a g e s reflect a depth gradient from d e e p e r to s h a l l o w e r water.
they
also identified a s e c o n d e n v i r o n -
m e n t a l g r a d i e n t c o r r e s p o n d i n g to the n a t u r e of the substratum. A n i m a l s of taxa a l o n g o n e e n d of this g r a d i e n t c h a r a c t e r i z e soft substrata and tend to be smaller and thinner-shelled, w h e r e a s a n i m a l s of taxa arrayed toward the other e n d of the g r a d i e n t c h a r a c t e r i z e firm substrata, tend to be larger and m o r e robust, and c o m m o n l y are attached or e n c r u s t i n g in g r o w t h habit.
The R i c h m o n d i a n Invasion W i t h i n t h e u p p e r d i v i s i o n o f t h e C i n c i n n a t i a n , the R i c h m o n d i a n S t a g e , the stable p a t t e r n s of d i s t r i b u t i o n of fossil a s s e m b l a g e s f o u n d in the lower C i n c i n n a t i a n a r e d i s r u p t e d a n d r e o r g a n i z e d b y t h e influx o f o r g a n i s m s o f many new taxa, i n c l u d i n g s p e c i e s , g e n e r a , a n d classes. This influx is t e r m e d the R i c h m o n d i a n Invasion.
T h e s e i n v a d e r s did not r e p l a c e p r e - e x i s t i n g
taxa b u t instead i n c r e a s e d C i n c i n n a t i a n diversity to its h i g h e s t level. There i s a n initial p h a s e o f t h e R i c h m o n d i a n Invasion w i t h i n t h e C 4 s e q u e n c e ,
232
A Sea without Fish
hut the influx c u l m i n a t e s w i t h i n t h e C 5 s e q u e n c e w h e r e fossils o f o v e r f i f t y
The invasion was not
new g e n e r a o f c o r a l s ,
limited to particular fa-
brachiopods,
b r y o z o a n s , m o l l u s c s , trilobites, and
e c h i n o d e r m s a p p e a r ( H o l l a n d 1997; H o l l a n d a n d P a t z k o w s k y 2007; f i g u r e 16.3; see c h a p t e r s S and 9). many of the new taxa w e r e n o t p r e s e n t d u r i n g the Edenian and Maysvillian Stages of the C i n c i n n a t i a n , a l t h o u g h s o m e n e w c o m e r s represent s p e c i a t i o n w i t h i n l o n g - r a n g i n g C i n c i n n a t i a n taxa s u c h as the
brachiopods
Platystrophia a n d Strophomena
(Holland
1997).
N e w taxa a p p e a r e d i n all d e p o s i t i o n a l e n v i r o n m e n t s across the s p e c t r u m of the C i n c i n n a t i a n depth gradient, and the a n i m a l s o c c u p y the entire r a n g e o f f e e d i n g t y p e s a n d life habits ( H o l l a n d 1997). In the C4 s e q u e n c e , s o m e e l e m e n t s of the older, depth-related assemb l a g e s , s u c h as Hebertella a n d
Platystrophia,
are p r e s e n t in
cies, or
trophic groups, life-habit
rather
the
groups; Riehmondian
Invasion was a major ecological affecting the
revolution all aspects
Cincinnatian
of
seas.
Steven M. Holland 1997, 320
the shallow
subtidal z o n e , a n d Rafinesquina and Zygospira in t h e d e e p e r s u b t i d a l z o n e ( f i g u r e 16.3). In t h e C5 s e q u e n c e , a Dalmanella b r a c h i o p o d a s s e m b l a g e is a g a i n p r e s e n t in the offshore e n v i r o n m e n t s , h u t s p e c i m e n s of Zygospira also are present.
S p e c i m e n s of Rafinesquina,
b r y o z o a n s o c c u p y the d e e p e r s u b t i d a l
Platystrophia, a n d b r a n c h i n g
z o n e , b u t t h e Hebertella-Platystro-
phia a s s e m b l a g e i s g o n e f r o m t h e s h a l l o w s u b t i d a l z o n e , w h e r e a n a s s e m b l a g e of c o l o n i a l c o r a l s a p p e a r s for the first t i m e .
The d e p t h g r a d i e n t is
re-established in t h e C5 s e q u e n c e , but it is m u c h m o r e c r o w d e d w i t h taxa and has a different c h a r a c t e r t h a n in o l d e r s e q u e n c e s ( H o l l a n d a n d P a t z k o w s k y 2007). T h e C 6 s e q u e n c e i s r e p r e s e n t e d o n l y b y s h a l l o w w a t e r a s s e m b l a g e s i n c l u d i n g c o r a l s a n d robust b r a c h i o p o d s a n d b r y o z o a n s . T h e r e has b e e n considerable debate a b o u t the causes of the R i e h m o n d i a n Invasion. B e c a u s e m a i n o f the invasive taxa o c c u r i n the M i d d l e a n d U p p e r O r d o v i c i a n of the western United States a n d C a n a d a as far north as the present-day A r c t i c , it is most likely that the invasion originated from the west and northwest, tropical, w a r m water latitudes d u r i n g the L a t e O r d o v i c i a n (see chapter 15). T h e invasion was a large-scale i m m i g r a t i o n e v e n t rather t h a n an evolutionary hurst w i t h i n the C i n c i n n a t i A r c h region itself ( H o l l a n d 1997). R e t u r n i n g to the theater analogy, we find that many players (species) i n the R i e h m o n d i a n f i n a l a c t o f the C i n c i n n a t i a n a p p e a r e d i n earlier acts r e c o r d e d b y p r e - C i n c i n n a t i a n f o r m a t i o n s o f the A p p a l a c h i a n r e g i o n . T h e s e include
brachiopods
like Leptaena,
Glyptorthis, a n d
Plaesiomys ( H o l l a n d
1997), as w e l l as s t r o m a t o p o r o i d s a n d c o r a l s l i k e Tetradium. L i k e w i s e t h e s c e n e d u r i n g p r e - C i n c i n n a t i a n t i m e featured w i d e s p r e a d l i m e s t o n e d e p o s i tion in K e n t u c k y s u g g e s t i n g a w a r m e r w a t e r e n v i r o n m e n t c o n d u c i v e to carbonate deposition. A s the E d e n i a n act o f the C i n c i n n a t i a n play o p e n e d , t h e s c e n e c h a n g e d with the influx of m u d s derived from t e c t o n i c activity offstage in t h e T a c o n i c region of the A p p a l a c h i a n o r o g e n i c belt, a n d c o o l e r waters s w e p t in as c i r c u lation patterns c h a n g e d ( H o l l a n d 1997). Many players m a d e their exits, to return o n l y w h e n the s c e n e a g a i n altered i n R i e h m o n d i a n t i m e
F u r t h e r u n d e r s t a n d i n g of the
Cincinnatian
e v o l u t i o n a r y play also d e p e n d s
The Cincinnatian
o n the interplay b e t w e e n c h a r a c t e r s . H o w t h e m e m b e r s o f t h e cast inter-
Ecosystems: A Sea
acted with o n e a n o t h e r w a s o f f u n d a m e n t a l i m p o r t a n c e i n d e t e r m i n i n g t h e
w i t h o u t Fish!
Life in the Cincinnatian Sea
233
plot a n d o u t c o m e o f t h e play. I n t e r a c t i o n s b e t w e e n o r g a n i s m s are o f m a j o r i m p o r t a n c e i n e c o l o g y a n d lead t o t h e c o n c e p t o f a n e c o s y s t e m . For a n e c o l o g i s t , a n e c o s y s t e m e n c o m p a s s e s all t h e c h e m i c a l , physical, a n d b i o l o g i c a l a s p e c t s o f t h e e n v i r o n m e n t , i n c l u d i n g the s o u r c e s o f e n e r g y a n d n u t r i e n t s e n t e r i n g t h e e n v i r o n m e n t a n d the w a y living o r g a n i s m s u s e this e n e r g y to survive a n d r e p r o d u c e . The S u n is the p r i m a r y e n e r g y s o u r c e for t h e vast majority o f e c o s y s t e m s o n E a r t h , t h e o n l y k n o w n e x c e p t i o n s b e i n g the r e c e n t l y d i s c o v e r e d d e e p sea vents, w h e r e h y d r o t h e r m a l fluids rich in n u t r i e n t s sustain m i c r o b i a l life that is, in t u r n , the basis for u n i q u e e c o systems. In shallow seas like that of the C i n c i n n a t i a n , we c a n a s s u m e that p l a n k t o n i c a s w e l l a s b e n t h i c a l g a e h a r n e s s e d solar e n e r g y a s t h e p r i m a r y p r o d u c e r s . I n d i v i d u a l s o f all o f the a n i m a l g r o u p s c o n s t i t u t e d c o n s u m e r s , f e e d i n g either directly on t h e p r i m a r y p r o d u c e r s or on other c o n s u m e r s . In order t o u n d e r s t a n d t h e n a t u r e o f C i n c i n n a t i a n e c o s y s t e m s , w e must understand how t h e c o n s u m e r s w e r e interrelated in w h a t ecologists call a f o o d c h a i n or, m o r e realistically, a f o o d w e b . H o w did O r d o v i c i a n m a r i n e ecosyst e m s c o m p a r e t o t h o s e o f t h e present-day s h a l l o w sea? D i d the n a t u r e o f the interrelationships a m o n g o r g a n i s m s a n d the form of the food w e b play a role i n d e t e r m i n i n g t h e diversity a n d a b u n d a n c e o f o r g a n i s m s i n the C i n c i n n a tian sea? In o u r a n a l o g y , did t h e interplay a m o n g c h a r a c t e r s a c t u a l l y determ i n e the cast o n stage d u r i n g a n y p a r t i c u l a r act? For a n e c o l o g i s t , i n t e r p r e t a t i o n o f a food w e b r e q u i r e s d e t a i l e d k n o w l e d g e o f t h e f e e d i n g habits a n d diets o f o r g a n i s m s o f s p e c i e s l i v i n g t o g e t h e r a t a g i v e n t i m e . A n e c o l o g i s t c a n d i r e c t l y o b s e r v e predator-prey interactions a n d c a n s a m p l e g u t c o n t e n t s o f a n i m a l s a n d their d r o p p i n g s . A n e c o l o g i s t c a n g a u g e t h e flow o f e n e r g y t h r o u g h a n e c o s y s t e m b y m e a s u r i n g t h e c a loric c o n t e n t of organisms at different levels in the food c h a i n . However, a p a l e o e c o l o g i s t w o r k i n g w i t h fossils p r e s e r v e d i n r o c k c a n n o t o b s e r v e o r s a m p l e t h e l i v i n g e c o s y s t e m d i r e c t l y a n d thus faces s o m e severe l i m i t a t i o n s in r e c o n s t r u c t i n g a " f o s s i l " e c o s y s t e m . It often is hard to d e t e r m i n e w i t h certainty w h e t h e r all fossils p r e s e r v e d in a s i n g l e b e d w e r e alive at the s a m e t i m e , b e c a u s e m a n y fossil a s s e m b l a g e s are t i m e - a v e r a g e d a m a l g a m a t i o n s of organisms of many generations. Moreover, organic remains can be m o v e d into a n a r e a o r o u t o f a n a r e a , for e x a m p l e , b y c u r r e n t s . D e s p i t e t h e s e l i m i t a t i o n s , it is rather s u r p r i s i n g to find h o w m u c h i n f o r m a t i o n the fossil r e c o r d o f t h e C i n c i n n a t i a n sea d o e s p r o v i d e , i n f o r m a t i o n that c a n b e used to answer many questions about the nature of the ecosystems. T h e m o s t d i r e c t e v i d e n c e for i n t e r a c t i o n s b e t w e e n o r g a n i s m s o f C i n cinnatian species c o m e s from a compilation of close associations a m o n g d i f f e r e n t t y p e s o f o r g a n i s m s . A s s o c i a t i o n s are essential b e c a u s e the\ c a n p r o v i d e e v i d e n c e for predator-prey r e l a t i o n s h i p s as w e l l as e v i d e n c e that t w o d i f f e r e n t s p e c i e s lived a t t h e s a m e t i m e a n d possibly a f f e c t e d o n e a n other in various ways. Besides predator-prey relationships, other c o m m o n i n t e r s p e c i f i c i n t e r a c t i o n s i n c l u d e host-parasite a s s o c i a t i o n s , c o m p e t i t i v e i n t e r a c t i o n s , m u t u a l i s m s , or c o m m e n s a l i s m s . In competitive interactions, i n d i v i d u a l s o f b o t h a s s o c i a t e d s p e c i e s are i n s o m e w a y i n h i b i t e d o r h a r m e d by t h e a s s o c i a t i o n ; in a m u t u a l i s t i c i n t e r a c t i o n , b o t h i n d i v i d u a l s derive s o m e benefit from the association; in a c o m m e n s a l i s t i c interaction, one
234
A Sea without Fish
s p e c i e s derives s o m e b e n e f i t , w h e r e a s t h e " h o s t " i s u n a f f e c t e d b y t h e prese n c e of the
symbiont.
In s o m e cases a l i v i n g a n i m a l o f o n e s p e c i e s m i g h t
b e associated w i t h n o n - l i v i n g r e m a i n s o f a n o t h e r s p e c i e s , a s i n t h e c a s e o f h e r m i t crabs o c c u p y i n g shells o f d e a d snails ( D a v i s , M a p e s , a n d K l o f a k 1999; D a v i s , F r a a y e , a n d H o l l a n d 2001). W e c o m p i l e d a v a i l a b l e i n f o r m a t i o n o n a s s o c i a t i o n s o f fossils o f C i n c i n n a t i a n s p e c i e s into t w o s u m m a r y tables. Table 2 s h o w s p o t e n t i a l predatorprey a s s o c i a t i o n s d e r i v e d from d i r e c t fossil e v i d e n c e , a n d Table 3 s h o w s all other associations reported a m o n g individuals of C i n c i n n a t i a n species or other groups.
Predator-Prey Interactions The list of potential predator-prey associations in t h e C i n c i n n a t i a n is quite short (Table 2), and the n a t u r e of the e v i d e n c e is variable.
T h r o u g h o u t the
fossil record there are rare but n o t a b l e eases of fossilized s t o m a c h c o n t e n t s that are the strongest e v i d e n c e for the diet of an e x t i n c t a n i m a l .
The only
possible instance of this in the C i n c i n n a t i a n is the o c c u r r e n c e of o s t r a c o d e s preserved w i t h i n the coralla of the r u g o s e corals asma (Elias 1984).
Grewingkia
and
Streptel-
The o s t r a c o d e s are m o s t l y articulated a n d located n e a r or
w i t h i n the alar and c a r d i n a l fossulae o f t h e coral's c a l i c e . T h e fossulae are e x p a n d e d regions b e t w e e n the septa that probably f u n c t i o n e d in water c i r c u lation w i t h i n the p o l y p a n d thus w e r e related to i n g e s t i o n of food and/or ejection of waste. A l t h o u g h it is possible that the coral ingested t h e o s t r a c o d e s as prey, Elias favored an alternative h y p o t h e s i s that the o s t r a c o d e s entered the c a l i c e w h e n the p o l y p b e c a m e d e t a c h e d from t h e side o f t h e c a l i c e and e v e n t u a l l y b e c a m e trapped b e n e a t h n e w l y secreted t a b u l a e . In this s c e n a r i o , the ostracodes m i g h t have lived s y m b i o t i c a l l y w i t h i n the coral c a l i c e . The most direct e v i d e n c e of a predator-prey relationship is the remarkable s p e c i m e n of a sea star Promopalaeaster preserved with its a r m s w r a p p e d a r o u n d a s p e c i m e n of p e l e c y p o d tentatively assigned to g e n u s Cumeamya (see F i g u r e 12.15E; Blake and C u e n s b u r g 1994). This s p e c i m e n is probably o n e of the most extraordinary fossils ever to be found in the C i n c i n n a t i a n . It provides strong e v i d e n c e that s o m e C i n c i n n a t i a n sea stars had a c q u i r e d the ability to o p e n p e l e c y p o d s seen in living asteriid sea stars, e v e n t h o u g h the present-day forms are not direct d e s c e n d a n t s of
Promopalaeaster
(Blake a n d C u e n s b u r g 1994).
T h e predatory b e h a v i o r o f s o m e i n d i v i d u a l s o f C i n c i n n a t i a n trilobite s p e c i e s was d i s c u s s e d in c h a p t e r 11.
Rusophycus
t r a c e fossils that intersect
b u r r o w s s u g g e s t that i n d i v i d u a l s o f t h e trilobite
Isotelus
preyed on some
b u r r o w i n g , p r o b a b l y s o f t - b o d i e d o r g a n i s m s . B a b c o c k (2003) i n f e r r e d that both eurypterids and
cephalopods
w e r e p o t e n t i a l p r e d a t o r s o n trilobites
d u r i n g the O r d o v i c i a n , a l t h o u g h t h e r e i s n o d i r e c t e v i d e n c e a v a i l a b l e . Specimens
of C i n c i n n a t i a n
brachiopods such
as
Rafinesquina
and
several o t h e r g e n e r a p r o v i d e e v i d e n c e for p r e d a t i o n i n t h e f o r m o f c h a r a c teristic b r e a k a g e a n d shell repair ( A l e x a n d e r 1986). A l e x a n d e r c o n s i d e r e d possible predators a m o n g sea stars, e u r y p t e r i d s , g a s t r o p o d s , a n d n a u t i l o i d c e p h a l o p o d s . H e c o n c l u d e d that t h e b e a k s o f n a u t i l o i d s w e r e m o s t likely t o h a v e inflicted the t y p e o f d a m a g e f o u n d i n t h e b r a c h i o p o d s .
Life in the Cincinnatian Sea
235
C i n c i n n a t i a n crinoids also show e v i d e n c e o f d a m a g e and regeneration of the c a l y x , a r m s , a n d c o l u m n that is very likely the result of predation (Ausich a n d B a u m i l l e r 1993; D o n o v a n and S c h m i d t 2001; B a u m i l l e r and Gahm 2004). However there is no e v i d e n c e as to the specific predator responsible. W e s p e c u l a t e that n a u t i l o i d s m i g h t b e the m o s t likely culprits, i n v i e w o f their a b u n d a n c e a n d potential b e h a v i o r .
O t h e r Interspecific Interactions Table 3 s h o w s that v i r t u a l l y all the m a j o r i n v e r t e b r a t e g r o u p s f o u n d in the C i n c i n n a t i a n h a v e r e c o r d e d a s s o c i a t i o n s o f i n d i v i d u a l s o f taxa b e l o n g i n g t o a w i d e v a r i e t y o f g r o u p s . T h e t y p e o r n a t u r e o f the a s s o c i a t i o n s r a n g e s f r o m t h e u s e of e i t h e r a l i v i n g h o s t or d e a d r e m a i n s as a s u b s t r a t u m for e n c r u s t a t i o n , b o r i n g , o r h a b i t a t i o n ( F i g u r e 16.1), t o possible c o m m e n s a l i s m or p a r a s i t i s m . To t h e e x t e n t that a host w a s , by d e f i n i t i o n , l i v i n g at the t i m e o f t h e a s s o c i a t i o n , i t a p p e a r s that i n t e r a c t i o n s b e t w e e n i n d i v i d u a l s o f C i n cinnatian species were very c o m m o n . Detailed discussion of the nature of t h e a s s o c i a t i o n s listed c a n b e f o u n d i n t h e c h a p t e r s c o n c e r n i n g t h e t a x o n o m i c g r o u p o f e a c h host. We p r e s e n t Table 3 w i t h a s i g n i f i c a n t c a v e a t . In c a s e s in w h i c h a fossil s p e c i m e n includes an organism of o n e species attached to an individual of a n o t h e r s p e c i e s , it is n o t a l w a y s c l e a r w h e t h e r b o t h a n i m a l s w e r e alive at t h e t i m e of a t t a c h m e n t . It is p o s s i b l e that the a t t a c h e d o r g a n i s m fastened o n t o t h e o t h e r after t h e hitter's d e a t h a n d , for e x a m p l e , was u s i n g the e m p t y shell as a hard s u b s t r a t u m . An a d d e d c o m p l i c a t i o n is that v a r i o u s biologists a n d p a l e o n t o l o g i s t s h a v e n o t b e e n c o n s i s t e n t a s t o w h i c h t e r m s are u s e d for w h i c h associations.
Take t h e t e r m " e p i z o a , " for e x a m p l e . For a n association
p r o p e r l y t o b e t e r m e d " e p i z o i s m , " b o t h p a r t i e s m u s t h a v e b e e n alive a t t h e t i m e o f t h e a s s o c i a t i o n — b o t h host a n d g u e s t . H o w e v e r , the term " e p i z o a " n o t u n c o m m o n l y has b e e n u s e d i n c a s e s i n w h i c h the " h o s t " clearly was d e a d at t h e t i m e of a t t a c h m e n t a n d in c a s e s in w h i c h it is u n c l e a r w h e t h e r t h e " h o s t " w a s alive o r d e a d a t t h e t i m e o f t h e a s s o c i a t i o n . ( D a v i s , M a p e s , a n d K l o f a k 1999; D a v i s , F r a a y e , a n d H o l l a n d 2001.) M o s t of t h e c a s e s cited in Table 3 h a v e b e e n g a t h e r e d from p u b l i s h e d reports. The a u t h o r s of those reports h a v e not a l w a y s b e e n able to d e t e r m i n e or state w h e t h e r b o t h " h o s t " a n d " g u e s t " w e r e alive at the t i m e of a given association. In cases w h e r e the t y p e of association is r e c o r d e d in Table 3 as e p i z o i c , e n d o z o i c , o r o n e i n v o l v i n g b o r i n g , the putative host o r g a n i s m m a y or may n o t h a v e b e e n l i v i n g at t h e t i m e of the a s s o c i a t i o n ; the entry in the table d e p e n d s on the i n f o r m a t i o n a n d interpretations presented in the original p u b l i c a t i o n s . O n the o t h e r h a n d , i n c a s e s entered a s c o m m e n s a l o r parasitic, there is e v i d e n c e that t h e host w a s , in fact, l i v i n g at the t i m e of the ass o c i a t i o n . B i o i m m u r a t i o n is also i n d i c a t i v e of interaction b e t w e e n a living host a n d o r g a n i s m s o f a n associated s p e c i e s , b e c a u s e the associate m o d i f i e d the g r o w t h of the host in s o m e w a y as to leave e v i d e n c e that the associate was present. T h e r e are n o k n o w n d o c u m e n t e d c a s e s i n the C i n c i n n a t i a n o f either c o m p e t i t i v e or m u t u a l i s t i c interactions, L i d d e l l and Brett (19S2) reported
236
A Sea without Fish
e v i d e n c e for c o m p e t i t i o n b e t w e e n associated s p e c i e s o f e n c r u s t i n g b r y o z o ans from the M i d d l e S i l u r i a n o f I n d i a n a . C o l o n i e s o f different s p e c i e s o f b r y o z o a n s e n c r u s t i n g c r i n o i d c a l y c e s s o m e t i m e s f o r m e d raised m a r g i n s w h e r e t h e y g r e w into c o n t a c t w h e n e n crusting crinoid calyces.
The raised m a r g i n s i n d i c a t e s o m e k i n d o f "stand-
off" i n w h i c h c o l o n i e s o f e a c h s p e c i e s w e r e u n a b l e t o overgrow t h e o t h e r a n d both w e r e thus inhibited. B r y o z o a n s e n c r u s t i n g b r a c h i o p o d s i n the C i n c i n natian m i g h t also b e e x p e c t e d t o p r o v i d e this k i n d o f e v i d e n c e a l t h o u g h n o i n s t a n c e s h a v e yet b e e n reported. E v i d e n c e for m u t u a l b e n e f i t to t w o associated species is e v e n m o r e difficult to establish from fossil material.
Cincinnatian Guilds As a m e a n s of characterizing the complexity of an ecosystem, ecologists d e v e l o p e d the c o n c e p t of a g u i l d . As a p p l i e d to n a t u r a l e c o s y s t e m s , a g u i l d is d e f i n e d as "a g r o u p of s p e c i e s that exploit the s a m e class of e n v i r o n m e n t a l resources in a similar way T h i s term g r o u p s t o g e t h e r s p e c i e s , w i t h o u t regard t o t a x o n o m i c p o s i t i o n , that o v e r l a p s i g n i f i c a n t l y i n t h e i r n i c h e r e q u i r e m e n t s " ( R o o t 1967, 335). T h e p a l e o e c o l o g i s t R i c h a r d B a m b a c h a p p l i e d t h e g u i l d c o n c e p t to fossil c o m m u n i t i e s a n d e c o s y s t e m s in order to e x p l a i n h o w the e c o l o g i c a l s t r u c t u r e a n d c o m p l e x i t y o f e c o s y s t e m s has c h a n g e d o v e r e v o l u t i o n a r y t i m e ( B a m b a c h 1 9 8 3 , 1 9 9 3 ; B u s h a n d B a m b a c h 2004). B a m b a c h (19S3) first c o m p a r e d the major a d a p t i v e strategies of o r g a n isms c o m p r i s i n g the three m a r i n e " E v o l u t i o n a r y f a u n a s " : C a m b r i a n , P a l e o zoic, and M e s o z o i c - C e n o z o i c (Sepkoski 1981). B a m b a c h classified adaptive strategies a c c o r d i n g t o the m o d e o f s p a c e u t i l i z a t i o n a n d f e e d i n g habit. S u b s e q u e n t l y D r o s e r and S h e e h a n (1997) c a l l e d these broad c a t e g o r i e s " m e g a g u i l d s " and assigned b e n t h i c taxa to m e g a g u i l d s for t h e entire O r d o v i c i a n . they found that the patterns established for e p i f a u n a a n d i n f a u n a d u r i n g the O r d o v i c i a n r e m a i n e d stable for the rest o f the P a l e o z o i c Era. W e c o n s t r u c t e d m e g a g u i l d d i a g r a m s for major g r o u p s f o u n d i n the C i n c i n n a t i a n , m o d i f i e d s o m e w h a t from those o f D r o s e r a n d S h e e h a n a n d i n c l u d i n g p e l a g i c g r o u p s (Table 4a). M o s t of the g r o u p s are at t h e class level, b u t s o m e are orders. It should be r e c o g n i z e d that this c o m p i l a t i o n is c u m u l a t i v e for the entire C i n c i n n a t i a n ; thus the total n u m b e r o f g u i l d s e x c e e d s t h e total that w o u l d b e e x p e c t e d in a single c o n t e m p o r a n e o u s a s s e m b l a g e . C o m p a r i s o n o f m e g a g u i l d s t r u c t u r e o f t h e C i n c i n n a t i a n w i t h that o f t h e M e s o z o i c - C e n o z o i c reveals major contrasts ( T a b l e 4b). A m o n g the e p i f a u n a , the M e s o z o i c - C e n o z o i c i n c l u d e s m a n y s u s p e n s i o n f e e d i n g taxa a s d o e s the C i n c i n n a t i a n , but present-day g r o u p s have r e p l a c e d m a n y o f those that w e r e present d u r i n g the C i n c i n n a t i a n . P e l e c y p o d s b e c a m e d o m i n a n t , w h e r e a s brachiopods a s s u m e d a m i n o r role.
The b r y o z o a n s d o m i n a n t in the P a l e o -
zoic, the t r e p o s t o m e s , b e c a m e e x t i n c t a n d t h e c h e i l o s t o m e s b e c a m e d o m i nant. Stalked echinoderms (crinoids, blastoids, a n d cystoids) suffered major e x t i n c t i o n s at t h e e n d of the P a l e o z o i c , a n d stalked c r i n o i d s s u r v i v e d o n l y in d e e p water. The n u m b e r o f taxa o f m o b i l e e p i f a u n a l a n i m a l s , s u c h a s gastrop o d s , c r u s t a c e a n s , a n d sea u r c h i n s i n c r e a s e d m a r k e d l y . Exploitation of living space and food resources within the s e d i m e n t by
Life in the Cincinnatian Sea
237
Figure
16.2.
Reconstruc-
tion of life on the Cincinnatian sea floor. by Anneliese Elizabeth A.
Drawing
Caster and Dalve.
From
von Engeln and Caster, Geology, 347,
1952,
of
the
by
O r d o v i c i a n g u i l d s t r u c t u r e a n d that o f the p o s t - P a l e o z o i c .
The diversifica-
tion o f b u r r o w i n g p e l e c y p o d s , g a s t r o p o d s , p o l y c h a e t e s , c r u s t a c e a n s , a n d e c h i n o i d s p o p u l a t e d b l o c k s o f t h e i n f a u n a l m e g a g u i l d s t r u c t u r e that w e r e relatively e m p t y d u r i n g t h e P a l e o z o i c ( T a b l e 4a).
figure
P e r h a p s t h e m o s t s t r i k i n g c o n t r a s t s b e t w e e n t h e O r d o v i c i a n and post-
and
P a l e o z o i c w e r e i n t h e p e l a g i c r e a l m , t h e o p e n w a t e r a b o v e t h e sea floor.
McGraw-Hill,
reprinted
i n f a u n a l o r g a n i s m s s t a n d s o u t a s o n e o f the m a j o r c o n t r a s t s b e t w e e n the
permission
McGraw-Hill
D u r i n g C i n c i n n a t i a n t i m e few g r o u p s o c c u p i e d the w a t e r c o l u m n , and a n i m a l s o f t h o s e g r o u p s differed g r e a t l v from t h o s e o f the p o s t - P a l e o z o i c
Companies.
( T a b l e 4b). It is a s t o u n d i n g to r e a l i z e that d u r i n g the C i n c i n n a t i a n there really w a s , i n t h e r e g i o n o f C i n c i n n a t i , a sea w i t h o u t f i s h , w h e r e n a u t i l o i d c e p h a l o p o d s a n d s o m e trilobites a n d e u r y p t e r i d s w e r e t h e o n l y large, actively s w i m m i n g o r g a n i s m s (Plates
13, 14;
figure
16.2).
O n l y later in t h e
P a l e o z o i c did fish b e g a n to proliferate, but m o d e r n b o n y fish did not diversify a s h e r b i v o r e s a n d c a r n i v o r e s u n t i l t h e late M e s o z o i c a n d C e n o z o i c . D u r i n g the C i n c i n n a t i a n a n d i n d e e d for m o s t o f t h e P a l e o z o i c , t h e shallow m a r i n e e c o s y s t e m was vastly different from a n y t h i n g r e s e m b l i n g a presentdav s e l l i n g . H o w c a n w e e x p l a i n t h e s e s t r i k i n g d i f f e r e n c e s ?
Was the Cincinnatian Sea a "Beggar's B a n q u e t " ? Bambach
(1993)
a r g u e d that m a j o r c h a n g e s in t h e s t r u c t u r e of m a r i n e
e c o s y s t e m s , as seen in the fossil r e c o r d , are a r e f l e c t i o n of an i n c r e a s e in 238
A Sea without Fish
T H E p r i m a r y p r o d u c t i v i t y o f the world's o c e a n s d u r i n g t h e P h a n e r o z o i c E o n . A s m e n t i o n e d earlier, w e a s s u m e that p r i m a r y p r o d u c t i o n i n t h e C i n c i n n a t i a n sea was b a s e d o n m i c r o p h y t o p l a n k t o n a s w e l l a s s o m e b e n thic m a c r o a l g a e . It is a p a r a d o x that d e s p i t e t h e h i g h a b u n d a n c e of b e n t h i c suspension feeding invertebrates in the C i n c i n n a t i a n fauna the only preserved m i c r o p h y t o p l a n k t o n i c o r g a n i s m s are t h e a c r i t a r c h s . W e r e a c r i t a r c h s t h e o n l y s u s p e n d e d food s o u r c e for a b o t t o m f a u n a d o m i n a t e d by a b u n d a n t and diverse s u s p e n s i o n feeders? W e c a n s p e c u l a t e that p e r h a p s o t h e r m i c r o p l a n k t o n i c a l g a e e x i s t e d — o n e s that l a c k e d p r e s e r v a b l e o r g a n i c c e l l w a l l s o r m i n e r a l i z e d tests. O r , p e r h a p s c l a y p a r t i c l e s s u s p e n d e d i n t h e water c o l u m n served as substrata for b a c t e r i a that f o r m e d a " m a r i n e s n o w " that n o u r i s h e d b e n t h i c s u s p e n s i o n feeders. B u t , s p e c u l a t i o n a s i d e , t h e fossil record o f m a r i n e p l a n k t o n d e f i n i t e l y i n d i c a t e s that t h e diversity o f taxa o f planktonic organisms in the C i n c i n n a t i region d u r i n g the C i n c i n n a t i a n was a b o u t fifty s p e c i e s ( C o l b a t h 1979), r e a c h e d a P a l e o z o i c m a x i m u m of t h r e e - t o four h u n d r e d s p e c i e s o f a e r i t a r c h s , t h e n suffered a d e c l i n e d u r i n g the late P a l e o z o i c a n d early M e s o z o i c . It t h e n b e g a n to i n c r e a s e d u r i n g t h e Jurassic a n d C r e t a c e o u s , w i t h t h e a p p e a r a n c e o f p r e s e n t - d a y g r o u p s s u c h as dinoflagellates, calcareous n a n n o p l a n k t o n , and diatoms (Tappan and L o e b l i c h 1973). If t h e diversity of p l a n k t o n i c o r g a n i s m s is c o r r e l a t e d in s o m e w a y w i t h a b u n d a n c e a n d p r o d u c t i v i t y , t h e n t h e fossil r e c o r d o f m a rine p l a n k t o n
indicates a m a r k e d increase in productivity d u r i n g the
P h a n e r o z o i c ( B a m h a e h 1993).
The C i n c i n n a t i a n s e a , d e s p i t e its s e e m i n g
organic a b u n d a n c e , may, in fact, have b e e n poor in food resources c o m pared to present-day s e t t i n g s . A l t h o u g h the earliest spores of land plants date from the O r d o v i c i a n , terrestrial regions of the Earth r e m a i n e d essentially d e v o i d of w i d e s p r e a d plant cover until the late D e v o n i a n ( B a m h a e h 1993). B a m h a e h s u g g e s t e d that the rise of land plants had a p r o f o u n d effect on m a r i n e e c o s y s t e m s , b e c a u s e rivers b e g a n to carry vast a m o u n t s of o r g a n i c matter a n d nutrients into the sea. T h i s o r g a n i c matter provided a major new food r e s o u r c e for b e n t h i c m a r i n e o r g a n i s m s and c o n t r i b u t e d to the great diversification of i n f a u n a l guilds in the post-Paleozoic. ( T h e s e had b e e n poorly d e v e l o p e d in the C i n cinnatian.) Increased o r g a n i c input from the land also increased the supply of nutrients to coastal m a r i n e e n v i r o n m e n t s , in turn e n h a n c i n g overall m a rine productivity. B a m h a e h a r g u e d that i n c r e a s i n g levels of m a r i n e productivity enabled an increase in m a r i n e biomass, diversity, and f u n c t i o n a l versatility that is reflected in the fossil record of p o s t - P a l e o z o i c m a r i n e e c o s y s t e m s . The vastly different, s e e m i n g l y a l i e n w o r l d o f t h e C i n c i n n a t i a n sea c a n thus h e u n d e r s t o o d a s t h e p r o d u c t o f a p e r i o d i n E a r t h history w h e n the c a p a c i t y of t h e sea to s u p p o r t lite was a m e r e f r a c t i o n of w h a t it b e c a m e through subsequent Phanerozoic time.
The m o d e s o f life, b o d y s i z e , a n d
overall a b u n d a n c e o f m a r i n e life i n t h e C i n c i n n a t i a n o f t h e C i n c i n n a t i r e g i o n w e r e all l i m i t e d b y t h e a m o u n t a n d q u a l i t y o f food r e s o u r c e s available.
The " b e g g a r ' s b a n q u e t " m a y h a v e d e f i n e d t h e r u n n i n g plot o f t h e
C i n c i n n a t i a n play. T h e u l t i m a t e o u t c o m e o f this plot i s h i d d e n f r o m v i e w i n t h e C i n c i n nati region b e c a u s e the e v i d e n c e o f t h e c l o s i n g a c t s o f t h e O r d o v i c i a n r e -
Life in the Cincinnatian Sea
239
Figure 1 6 . 3 . Time-environment diagram
for the
Cincinnatian Series.
The
vertical axis shows
the
timescale and six major shallowing-upward quences
of the
seCincinna-
tian (see chapters 4 and 15).
G = Gamachian Stage
(not preserved in nati region).
Cincin-
The horizon-
tal axis shows the major environments
of the
Cin-
cinnatian (see chapter Offshore
15).
environments
are located
towards
the
present north in Ohio and westward in Indiana, shoal and lagoon ments are
and
environ-
located
toward
the present south in
Ken-
tucky (see Plate 12). FWB =
fairweather wave base,
SWB = storm wave base. Letter-codes
indicate
ma-
jor fossils characteristic of assemblages each
found
sequence
ronment,
in
and
envi-
defined as
fos-
sils occurring in >20% of samples ting.
from each set-
Letter-codes as fol-
lows: corals: Gr = Gewingkia,
Sp =
Streptelasma, radium,
Te =
Pr -
Tet-
Protaraea;
bryozoans: bf = bifoliate forms,
en = encrusting
forms, nr = thin ramose forms, ra = ramose forms; brachiopods: Da = Dalmanella, tella.
He
Hi =
=
Heber-
Hiscobeccus,
Ht = Holtedahlina,
Lp =
c o r d w a s o b l i t e r a t e d b y s u b s e q u e n t e r o s i o n . T h e m i s s i n g script, a s read e l s e w h e r e , tells u s that s w e e p i n g e n v i r o n m e n t a l c h a n g e s b r o u g h t a b o u t
Leptaena,
PI = Plat-
m a s s e x t i n c t i o n s o f m a n y O r d o v i c i a n players w o r l d w i d e .
ystrophia,
Pp = Plat-
these extinctions are debated. T h e y apparently were c o m p l e x and seem to
ystrophia
ponderosa,
= Plectorthis,
Ra
=
Rafinesquina,
Re
=
rorsirostra, chotrema, byella,
Pt Ret-
Rn = RhynSo
=
Sower-
St =
The causes of
h a v e i n v o l v e d a g l o b a l ice a g e , a l o n g w i t h c h a n g e s i n sea level a n d o c e a n c h e m i s t r y ( H a l l a m a n d W i g n a l l 1997). T h e shallow seas that a g a i n c o v e r e d t h e r e g i o n o f t h e C i n c i n n a t i A r c h d u r i n g t h e e n s u i n g S i l u r i a n act w e r e p o p u l a t e d w i t h m a n y f a m i l i a r players a n d roles, yet t h e cast o f c h a r a c t e r s r e p r e s e n t s a c l e a r l y d i f f e r e n t t r o o p of players on a new stage setting. W h e n w e s e a r c h t h e seas o f t h e p r e s e n t day for a n y t h i n g r e s e m b l i n g
Strophomena,
Zy
=
Zy-
240
the C i n c i n n a t i a n e c o s y s t e m s , a revival o f t h e C i n c i n n a t i a n play, w e are
A Sea without Fish
hard pressed t o f i n d m a i n g o o d a n a l o g u e s . O f c o u r s e , e x t i n c t i o n has s w e p t
gospira; trilobites; ca =
a w a y v i r t u a l l y all t h e taxa o f t h e o r g a n i s m s that i n h a b i t e d t h e C i n c i n n a t i a n
calymenid,
sea, i n c l u d i n g e n t i r e m a j o r g r o u p s s u c h a s g r a p t o l i t e s , c o n u l a r i i d s , trilo-
thus, Is = Isotelus; ostra-
bites, e u r y p t e r i d s , a n d e d r i o a s t e r o i d s . H o w e v e r , t o d a y w e c a n f i n d rather restricted r e g i o n s w h e r e t h e sea f l o o r i s c o v e r e d w i t h b r y o z o a n s , s u c h a s t h e s h e l f off S o u t h A u s t r a l i a ( B r a d s t o c k a n d C o r d o n 1983; H a g e m a n e t al.
Ct =
Cryptoli-
c o d e s = os; g a s t r o p o d s = ga; p e l e c y p o d s ; Am = Ambonychia,
by
= inde-
terminate pelecypod,
2000). N e w Z e a l a n d , isolated i n t h e s o u t h w e s t e r n P a c i f i c , h a r b o r s t h e
= Carotidens,
greatest diversity o f l i v i n g b r a c h i o p o d s ; e l s e w h e r e t h e s e a n i m a l s are b u t
omorphid pelecypod;
m i n o r c o m p o n e n t s of shallow water c o m m u n i t i e s . C l o s e r to the area of the
noids.
C i n c i n n a t i a n , t h e S a n Juan Islands in t h e P a c i f i c N o r t h w e s t s u p p o r t a di-
nus,
verse a n d a b u n d a n t fauna that i n c l u d e s m a n y P a l e o z o i c e l e m e n t s s u c h a s
Gl = Glyptocrinus,
e c h i n o d e r m s , b r y o z o a n s , b r a c h i o p o d s , solitary c o r a l s , a n d s p o n g e s . H o w ever, t h e s e relicts are a m e r e f r a c t i o n of a m o r e d i v e r s e f a u n a rich in m o l l u s c s , c r u s t a c e a n s , a n d f i s h — a l l g r o u p s that proliferated i n t h e p o s t - P a l e o -
cri-
Ci = CincinnaticriEc
=
Xenocrinus; gra.
Ca
mo = modi-
Ectenocrinus, Xe =
graptolites
those
invading
during
the
region
Richmondian
z o i c . P r e s e n t - d a y t r o p i c a l reefs far s u r p a s s t h o s e o f t h e O r d o v i c i a n i n
invasion.
diversity a n d a b u n d a n c e , a n d yet t h e r e are c e r t a i n reef-related habitats t h a t
rived from
Holland and
mirror, t o s o m e e x t e n t , t h e P a l e o z o i c . I n A u s t r a l i a ' s G r e a t B a r r i e r Reef,
Patzkowsky
(2007);
d e e p e r , soft s e d i m e n t b o t t o m s l o c a t e d b e l o w t h e c o r a l - d o m i n a t e d shallow
this publication
reefs h a v e a P a l e o z o i c a s p e c t , rich in a l g a e , s p o n g e s , solitary c o r a l s , b r y o z o a n s , a n d c r i n o i d s ( M e s s i n g e t al. 2006). I n d i v i d u a l s o f t h e c h a m b e r e d
=
Italicized fossils are
bution
Information
desee
for distri-
of additional
fossils.
Nautilus, the o n l y l i v i n g d e s c e n d a n t s o f the n a u t i l o i d c e p h a l o p o d s o f t h e P a l e o z o i c , also s u r v i v e at d e p t h s of 100 m b e l o w t h e tops of t h e reefs of t h e Pacific. L i k e w i s e , the o n l y l i v i n g s t a l k e d c r i n o i d s are restricted t o d e p t h s greater t h a n 100 i n ( M e y e r 1997). C o l l e c t i v e l y , t h e s e e x a m p l e s o f p r e s e n t day survivors f r o m t h e past a n d P a l e o z o i c - l i k e c o m m u n i t i e s s h a r e t h e c h a r acteristics o f e x i s t e n c e i n s o m e isolated o r restricted s e t t i n g s w h e r e d o m i n a n c e b y the m o r e typical shallow m a r i n e f a u n a is, t o s o m e d e g r e e , r e l a x e d . I t i s o n l y u n d e r s u c h a n o m a l o u s c o n d i t i o n s that o r g a n i s m s o f m a n y a n c i e n t g r o u p s c a n f l o u r i s h a n d p r o v i d e u s w i t h a f l e e t i n g g l i m p s e o f the a n c i e n t O r d o v i c i a n sea that o n c e c o v e r e d t h e C i n c i n n a t i r e g i o n . Predator
Prey
References
ostracodes?
Elias 1 9 8 4
Nautiloids
brachiopods
Alexander 1 9 8 6
trilobites
Babcock 2003
crinoids
Prey among Taxa
Rugose corals
Unspecified
Table 2. Predators and
Ausich and Baumiller 1993; D o n o van and Schmidt 2001; Baumiller and Gahn 2004
Trilobites
worms
Babcock 2003; Brandt et al. 1995
Eurypterids
trilobites
Babcock 2003
Asteroids
pelecypods
Blake and Guensburg 1 9 9 4
Life in the Cincinnatian Sea
241
Cincinnatian
Table among
3.
Associations
Individuals
cinnatian
ARRANGED BY "HOST"
of Cin-
Taxa
Host
Associate
Type of Association
References /
bioimmuration; epizoism
Wilson, Palmer,
pelecypods
boring
Pojeta and Palmer (1976); Wilson and Palmer (1988)
bryozoan
encrustation (post-
Wilson, Palmer,
mortem);
and Taylor (1994)
[Annotations]
PROTISTA foraminifers
bryozoan
and Taylor (1994)
PORIFERA stromatoporoids
CNIDARIA hydrozoan
dwelling inside empty shell corals
algae, fungi
boring
Elias and Lee (1993)
corals
epizoism
Elias (1983)
bryozoans
encrustation:
Bassler(1953)
epizoism bryozoans
encrustation:
Elias (1983)
epizoism worms
boring
Elias (1983)
(at least s o m e
[Trypanites in
during life of host)
Grewingkia]
worms
boring
Elias (1986)
algae
boring
Kobluk and Risk (1977)
corals
epizoism
Elias (1983)
post-mortem
Shrake(1989)
BRACHIOPODA brachiopods
brachiopods
attachment
bryozoans
encrustation; epizoism
Nicholson (1875)
bryozoans
bioimmuration; epizoism
Wilson, Palmer, and Taylor (1994)
"boring";
Anstey and Wil-
presumably post-
son (1996)
bryozoans
mortem bryozoans
"boring"
Pohowsky (1974, 1978)
bryozoans
post-mortem attachment
242
A Sea without Fish
Shrake(1989)
ARRANGED BY "HOST" Host
Associate
Type of Association
References /
bryozoans
encrustation; ? epizoism
Anstey and Wilson (1996) [Corynotrypa on interior of brachiopod shell]
bryozoans
encrustation; ?
Anstey and Wilson (1996) [Cuffeyella on interior of brachiopod shell]
[Annotations]
post-mortem
bryozoans
encrustation
Ulrich (1879)
bryozoans
encrustation
Ulrich (1883)
brachiopods
epizoism
Alexander and
Cornulites
? commensalism
Morris and Rollins (1971)
post-mortem
Shrake (1989)
Scharpf (1990)
crinoids
attachment edrioasteroids
epizoism
Richards (1972)
epizoism or
Meyer (1990)
commensalism gastropods
Sphenothallus
borings
Fenton and Fenton (1931)
borings
Bucher (1938)
epizoism
Neal and Hannibal (2000)
stromatopor-
epizoism
Richards (1972);
oids
Alexander and Scharpf (1990)
ECTOPROCTA bryozoans
corals
epizoism
Elias (1983)
brachiopods
epizoism
Richards (1972)
brachiopods
aegism; epizoism
Shrake (1989)
bryozoans
encrustation; epizoism
Nicholson (1875)
bryozoans
encrustation
Ulrich (1879a)
bryozoans
encrustation
Ulrich (1883)
bryozoans
aegism; epizoism
Shrake (1989)
bryozoans
bioimmuration;
Wilson, Palmer,
epizoism
and Taylor (1994)
bioclaustration; parasitism;
son (1988)
Catellocaula
Palmer and Wil-
epizoism
Life in the Cincinnatian Sea
243
A R R A N G E D BY "HOST Host
Associate
Type of Association
Cornulites
References / [Annotations]
epizoism; ?
Morris and Rollins
commensalism
(1971)
encrustation and
Baird, Brett, and
intergrowth
Frey(1989)
pelecypods
boring
Wilson and
Sanctum
boring
Erickson and
Sphenothallus
epizoism
cornulitids
Palmer (1988) Bouchard (2003) Bodenbender et al. (1989) trilobites "worms"
aegism —
borings
Trypanites
Shrake(1989) Palmer and Wilson (1988)
CORNUUTIDS cornulitids
bryozoans
encrustation and intergrowth
cornulitids
bryozoans
bioimmuration; epizoism
Baird, Brett, and Frey (1989) Wilson, Palmer, and Taylor (1994)
MOLLUSCA Mollusca —
brachiopods
epizoism
gastropods Mollusca —
Cornulites
gastropods Mollusca —
Morris and Felton (1993)
Cornulites
encrustation;
S. A. Miller
? commensalism
(1874c)
commensalism
Morris and Rollins (1971);
gastropods
Morris and Felton (1993) Mollusca —
Cornulites
gastropods Mollusca —
? epizoism: ?
Richards (1974)
commensalism trilobites
? endozoism ?
Brandt (1993)
bryozoans
encrustation
Ulrich (1883)
Cornulites
epizoism or
Morris and Rollins (1971)
gastropods Mollusca — monoplacophorans Mollusca — nautiloids
brachiopods — (inartic.)
encrustation
Mollusca —
bryozoans
encrustation;
nautiloids
244
commensalism
A Sea without Fish
Davis and M a p e s (1996)
epizoism
Nicholson (1875)
ARRANGED BY "HOST" Host
Mollusca
Associate
bryozoans
"nautiloids" — actinoceroids endoceroids
bryozoans
Type of Association
References/ [Annotations]
epizoism; ?
Frey (1988, 1989);
commensalism
Baird et al. (1989)
encrustation
Davis and M a p e s (1996)
presumably epizoism;
nautiloids
? commensalism bryozoans
encrustation
bryozoans
encrustation
Ulrich (1879a) U. P. James (1884b)
bryozoans
encrustation
Ulrich (1883); Bassler (1953)
bryozoans
encrustation (post-
Wilson, Palmer, and Taylor (1994)
mortem); dwelling inside empty shell Cornulites
? epizoism ? commensalism
Richards (1974)
hydrozoan
encrustation (postmortem); dwelling inside empty shell
Wilson, Palmer, and Taylor (1994)
stromatoporoid
encrustation
J. F. James (1886)
stromatoporoid
encrustation
Baird, Brett, and
trilobites
? incolenism
Davis et al. (2001)
epizoism or
Morris and Rollins (1971);
Frey (1989)
Mollusca —
Cornulites
pelecypods
commensalism
Morris and Felton (2003) ARTHROPODA trilobites
bryozoans
epizoism
Brandt (1996)
trilobites
Cornulites
epizoism
Morris and Rollins (1971); Brandt (1996)
Echinodermata — crinoids
brachiopods
aegism; epizoism
Shrake (1989)
Echinodermata —
brachiopods —
commensal
Sandy (1996)
bryozoans
encrustation
Ulrich (1883)
bryozoans
encrustation: epizoism
Bassler (1953)
ECHINODERMATA
crinoids Echinodermata —
Zygospira
crinoids Echinodermata — crinoids
Life in the Cincinnatian Sea
245
ARRANGED BY "HOST" Host
Echinodermata
—
Associate
Type of Association
References/ [Annotations]
byroniids
parasitism
Warn (1974); Welch (1976);
crinoids
Malinky et al. (2004) Echinodermata
—
Cornulites
commensalism
crinoids
Morris and Rollins (1971); Morris and Felton (1993, 2003); Richards (1974)
Echinodermata —
gastropods
commensalism
gastropods
? parasitism ?
crinoids Echinodermata crinoids "WORMS" (see also: cornulitids)
246
A Sea without Fish
—
Bowsher (1955); Morris and Felton (1993) Baumiller and Gahn (2002)
SUSPENSION
HERBIVORE
chitinozoans (?) conodonts graptolites trilobites (pt)
SUSPENSION trilobites (pt)
EPIFAUNA
MOBILE
ATTACHED LOW
ATTACHED ERECT
RECLINING
stromatoporoids (pt) tab., rugose corals (pt) bryozoans craniate brachs rhynch. brachs bivalves cornulitids edrioasteroids cyclocystoids sponges conulariids stromatoporoids (pt) tabulate corals (pt) bryozoans rhombiferans crinoids
rugose corals (pt) strophomenate brachs tentaculitids hyolithids stylophorans
DEPOSIT
PRIMARY PRODUCERS
CARNIVORE cephalopods eurypterids
acritarchs
HERBIVORE
monoplacophorans monoplacophorans gastropods gastropods ostracods trilobites ostracods ophiuroids, asteroids (pt)
CARNIVORE trilobites (pt) asteroids
SUSPENSION
DEPOSIT
CARNIVORE
rostroconchs SHALLOW PASSIVE
SHALLOW ACTIVE
Ungulate brachs bivalves Diplocraterion
bivalves polychaetes
polychaetes
DEEP PASSIVE
DEEP ACTIVE
Table 4 A . tian
Marine
Modified and
Life in the Cincinnatian Sea
247
Type-CincinnaGuilds
after
Sheehan
Droser (1997).
PELAGIC
SUSPENSION gastropods malacostracans mammals
SUSPENSION
ATTACHED LOW
ATTACHED ERECT
RECLINING
bony fish mammals
DEPOSIT
cephalopods dinoflagellates chondrichthyans coccolithophores bony fish diatoms reptiles mammals
chitons gastropods ostracods malacostracans echinoids
sponges corals bryozoans brachiopods polychaetes bivalves barnacles sponges corals bryozoans crinoids corals (pt) bivalves
SHALLOW PASSIVE
<
Mesozoic and
Cenozoic
Marine
Modeled
after
Guilds Bambach
(1983).
248
CARNIVORE gastropods cephalopods malacostracans asteroids
SUSPENSION
SHALLOW ACTIVE
DEEP PASSIVE
DEEP ACTIVE
Table 4B.
PRIMARY PRODUCERS
CARNIVORE
HERBIVORE
gastropods ostracods malacostracans ophiuroids asteroids (pt) echinoids holothuroids
INFAUNA
EPIFAUNA
MOBILE
bivalves crinoids ophiuroids (pt) asteroids (pt) holothuroids
HERBIVORE
A Sea without Fish
gastropods bivalves echinoids lingulate brachs bivalves polychaetes echinoids
DEPOSIT bivalves
bivalves polychaetes echinoids holothuroids
CARNIVORE bivalves
gastropods malacostracans polychaetes
bivalves
bivalves bivalves polychaetes polychaetes malacostracans
polychaetes
EPILOGUE: DIVING IN THE CINCINNATIAN SEA
m a n y p a l e o n t o l o g i s t s , o u r s e l v e s i n c l u d e d , b e c a m e f a s c i n a t e d w i t h fossils a n d e m b a r k e d o n scientific c a r e e r s l o n g b e f o r e w e e v e r e n c o u n t e r e d l i v i n g m a r i n e a n i m a l s . For m a n y o f u s , t h e greatest thrill has b e e n o u r f i r s t e n c o u n t e r s w i t h l i v i n g representatives o f t h e a n i m a l g r o u p s w e k n e w f i r s t o n l y as grey, lifeless f o r m s e n c a s e d in rock. B o t h of us h a v e b e e n p r i v i l e g e d to e x a m i n e f i r s t h a n d l i v i n g relatives o f a n i m a l s o f o u r favorite g r o u p s o f foss i l s — c r i n o i d s for M e y e r a n d n a u t i l o i d c e p h a l o p o d s for D a v i s . O u r e x p e r i e n c e s h a v e f u e l e d a c u r i o s i t y that affects p r a c t i c a l l y a n y o n e w h o c o n t e m plates
the
fossil
richness
of the
Cincinnatian
or
other
comparable
fossiliferous strata. M a n y t i m e s , in the field, we stand on a C i n c i n n a t i a n o u t c r o p w h e r e fossils a r e a b u n d a n t i n a l m o s t e v e r y r o c k , a n d w e w o n d e r : w h a t did t h e C i n c i n n a t i a n sea a c t u a l l y l o o k like? H o w did t h e s e c r e a t u r e s b e h a v e w h e n alive? It we c o u l d travel h a c k in t i m e to d i v e into t h e C i n c i n n a t i a n sea, what w o u l d w e see? In his b o o k The Crucible of Creation, t h e p a l e o n t o l o g i s t S i m o n C o n w a y M o r r i s (1998) takes t h e r e a d e r on a j o u r n e y t h r o u g h t i m e in an i m a g i nary t i m e m a c h i n e that l a n d s o n t h e shores o f t h e C a m b r i a n sea i n w e s t e r n C a n a d a o f 520 m i l l i o n years a g o . T h e t i m e m a c h i n e t h e n d e s c e n d s into the sea and e n a b l e s t i m e t r a v e l i n g scientists to view t h e varied a n d b i z a r r e a n i m a l s f o u n d a s f o s s i l s i n t h e f a m o u s B u r g e s s S h a l e . C o n w a y M o r r i s recreated the e n v i r o n m e n t of the C a m b r i a n sea a n d t h e life w i t h i n it f r o m t h e e v i d e n c e of the fossils and r o c k s , but he e m b e l l i s h e d the s c e n a r i o w i t h a m e a s u r e o f s p e c u l a t i o n and fantasy. W e r e we to travel b a c k to the Late O r d o v i c i a n , w o u l d we n e e d a d e e p d i v i n g s u b m e r s i b l e to e x p l o r e t h e C i n c i n n a t i a n w o r l d in a s i m i l a r , i m a g i nary journey? Based o n t h e e v i d e n c e f r o m t h e rocks a n d fossils (see c h a p t e r 15), t h e t i m e traveler t o C i n c i n n a t i i n t h e L a t e O r d o v i c i a n w o u l d h a v e t o land o n t h e sea s u r f a c e , b e c a u s e n o dry l a n d w o u l d b e f o u n d . W i t h n o f a m i l i a r l a n d m a r k s — t h e O h i o R i v e r valley, t h e S u s p e n s i o n B r i d g e , o r C a r e w T o w e r — b r e a k i n g the h o r i z o n , w e w o u l d h e a t t r a c t e d t o t h e area o n l y b y vast s h a l l o w s a p p e a r i n g a s v a r y i n g s h a d e s o f a q u a m a r i n e , w i t h o c c a s i o n a l shoals m a r k e d b y breakers. O u r t i m e m a c h i n e t r a n s f o r m s into a s m a l l b o a t a s w e l a n d , a n d w e c h e c k o u r position. T h e r e i s n o G l o b a l P o s i t i o n i n g S y s t e m o f satellites, s o we use a sensitive d i p - n e e d l e that i n d i c a t e s that we are at 2 5 s o u t h l a t i t u d e , 0
but w e h a v e n o reliable i n d i c a t o r o f l o n g i t u d e . T h e w a t e r feels c o o l , a b o u t 65°F, so we n e e d wet suits for t h e dive. Breakers off to t h e s o u t h l o o k m e n acing, so we keep our distance and drop anchor where we can see the b o t t o m . Let's s e e what's d o w n there!
249
We d o n m a s k s and snorkels for a q u i c k r e c o n n o i t e r , a n d slip over the side. We have a n c h o r e d over very shallow water, and the b o t t o m appears only a m e t e r or so b e n e a t h us. As we take a closer look at the b o t t o m , we n o t i c e that it is irregular, with low m o u n d s separated by p a t c h e s that are m o r e level. T h e m o u n d s are a c t u a l l y c l u m p s o f large, ribbed b r a c h i o p o d s , Platystrophia ponderosa. L i v i n g a n i m a l s with articulated shells are i n t e r m i n g l e d with separated v a l v e s , s o m e b r o k e n a n d w o r n s m o o t h . It is the e n v i r o n m e n t that, m i l l i o n s o f w a r s i n t h e f u t u r e , will b e preserved a s the M t . A u b u r n M e m b e r o f the G r a n t L a k e L i m e s t o n e . W e e a s i l y s c o o p u p a s a m p l e o f s p e c i m e n s o f Platystrophia b e c a u s e they h a v e no p e d i c l e a t t a c h m e n t s . C l e a r l y t h e r e is m u c h of interest to see h e r e , but we return to the boat b e c a u s e snorkel d i v i n g i s not a d e q u a t e for p r o l o n g e d e x p l o r a t i o n . W e h a v e n o t b e e n a b l e t o h o l d o u r b r e a t h d u r i n g o u r dives a s l o n g a s w e n o r m a l l y d o — w e h a d t o c o m e u p q u i c k l y , g a s p i n g for air. A c h e e k o f o u r air q u a l i t y m o n i t o r r e v e a l s t h e r e a s o n : t h e L a t e O r d o v i c i a n a t m o s p h e r e has o n l y a f r a c t i o n of t h e o x y g e n c o n t e n t of p r e s e n t - d a y air, p e r h a p s as little as 1 percent. Fortunately we have brought a l o n g s o m e sophisticated diving gear that w i l l let us fill o u r d i v i n g c y l i n d e r s w i t h c o m p r e s s e d air in w h i c h we h a v e b o o s t e d t h e o x y g e n c o n t e n t to its p r e s e n t - d a y l e v e l , 21 p e r c e n t . B e c a u s e the rest of o u r c o m p r e s s e d g a s m i x t u r e is p r e d o m i n a n t l y n i t r o g e n , we still h a v e to f o l l o w t h e d i v e tables that tell us how l o n g we c a n d i v e at a g i v e n d e p t h a n d r e s u r f a c e w i t h o u t s u f f e r i n g d e c o m p r e s s i o n sickness. W e n e e d to be really c a r e f u l : we c o u l d not be farther a w a y from a r e c o m p r e s sion c h a m b e r ! E q u i p p e d with c o l l e c t i n g gear and cameras, we resume our dive using s c u b a gear. T h e w a t e r clarity a c t u a l l y i s q u i t e g o o d : w e c a n see p e r h a p s 1 5 m e t e r s (50 feet) h o r i z o n t a l l y . H o w e v e r , t h e r e are p a t c h e s o f t h e m u d and silt c o v e r i n g w i d e areas of t h e b o t t o m that c o u l d be easily stirred up if s u r f a c e w a v e s p i c k e d u p . V i s i b i l i t y c o u l d d r o p sharply. A s w e settle t o the b o t t o m right b e n e a t h t h e b o a t , w e c a n feel s o m e w a v e m o t i o n . A l t h o u g h t h e sea floor a p p e a r s very flat, we c a n see that there is a g e n t l e slope t a i l i n g off toward t h e n o r t h , s o w e s w i m slowly toward d e e p e r water. W e c o v e r a lot o f d i s t a n c e , b u t t h e d e p t h c h a n g e s very little. W e see vast areas o f the sea floor c o v e r e d w i t h b r y o z o a n s in d e n s e t h i c k e t s or folded s h e e t s like a r u m p l e d c a r p e t . A s w e g o d e e p e r , m o r e b u s h - l i k e b r y o z o a n c o l o n i e s app e a r , s o m e very d e l i c a t e . It is a m a z i n g to see how s i m i l a r the c o l o n y forms are to t h o s e of present-day b r y o z o a n s . But we know that, in the O r d o v i c i a n , we are l o o k i n g at t r e p o s t o m e s , n o t at a n i m a l s of the g r o u p s that thrive in t h e seas of today. In p l a c e s t h e sea floor is a h a r d , l i m e s t o n e p a v e m e n t with a c o n v o l u t e d s u r f a c e ; d e p r e s s i o n s are Idled w i t h fine silt or shelly s a n d . B r y o z o a n s a n d b r a c h i o p o d s a r e a t t a c h e d t o the hard s u r f a c e s . T h e heart skips a b e a t as we s p o t for t h e first t i m e a l i v i n g e d r i o a s t e r o i d e c h i n o d e r m , a l s o a t t a c h e d like a p r e s e n t - d a y b a r n a c l e to the h a r d g r o u n d . B e c a u s e e d r i o asteroids b e c a m e e x t i n c t i n the L a t e P a l e o z o i c , w e h a v e n e v e r b e e n able t o e n v i s i o n t h e l i v i n g a n i m a l w i t h c o n f i d e n c e until now. A c l u m p o f tall, pillar-like s p e c i m e n s o f
Streptaster
s h o w s that C o l i n S u m r a l l had the right
idea i n s u g g e s t i n g t h a t s o m e e d r i o a s t e r o i d s c o u l d inflate their t h e c a e a n d t e l e s c o p e u p o r d o w n f r o m t h e s u b s t r a t u m . Fine l u b e f e e t e x t e n d i n g from
250
A Sea without Fish
the a m b u l a c r a ] g r o o v e s recall t h e r e c o n s t r u c t i o n s m a d e b y B r u c e B e l l . W i t h a rock pick w e easily b r e a k off a p i e c e o f t h e h a r d g r o u n d w i t h e d r i o asteroids a t t a c h e d , a n d we b a g it for s t u d y in t h e l a b . T h e h a r d g r o u n d g i v e s w a y to an area c o v e r e d w i t h t h i n - s h e l l e d Rafinesquina b a c h i o p o d s , f o r m i n g shell p a v e m e n t s like t h o s e w e f o u n d i n r o c k u n i t s w i t h n a m e s l i k e C o r ryville, B e l l e v u e , a n d f a i r v i e w i n t h e distant f u t u r e f r o m w h i c h w e c a m e . T h e c o n c a v o - c o n v e x b r a c h i o p o d s rest w i t h t h e c o n v e x v a l v e e i t h e r d o w n o r u p , a n d m a i n are e n c r u s t e d w i t h s m a l l b r y o z o a n s o r e d r i o a s t e r o i d s . Brachiopods of taxa
l i k e Zygospira
and
pelecypods
of g e n e r a
like
Cari-
todens are a t t a c h e d . O t h e r c l a m s , of taxa like Modiolopsis, p o k e up t h r o u g h t h e s e d i m e n t b e t w e e n shells.
S m a l l Flexicalymene a n d Acidaspis trilobites
g l i d e over the s u r f a c e , a n d h e r e a n d t h e r e a c r i n o i d has t h e s t e m c o i l e d a r o u n d a b r y o z o a n . T h i s is a d i v e r s e habitat. But the w a t e r m a s s a b o v e the sea f l o o r i s s u r p r i s i n g l y e m p t y c o m p a r e d to the s c e n e in p r e s e n t - d a y shallow seas. Today, fish are e v e r y w h e r e in t h e sea, f i l l i n g a w i d e variety o f e c o l o g i c a l roles. W h e r e are t h e f i s h i n this Ordovician
sea?
O n l y small
n a u t i l o i d c e p h a l o p o d s are j e t t i n g a b o u t ,
a g a i n s t a b a c k d r o p o f p u l s a t i n g jellyfish. A t c l o s e r a n g e , w e c a n p i c k o u t very s m a l l strings s u s p e n d e d i n t h e w a t e r w i t h c l u m p s o f m i n u t e t e n t a c l e s a r r a n g e d in vertical series. These are graptolites. C l o s e r to t h e b o t t o m s o m e s m a l l , spiny trilobites, p r o b a b l y o d o n t o p l e u r i d s , s w i m a b o v e t h e b o t t o m for short d i s t a n c e s . A l t h o u g h early, jawless f i s h i n h a b i t s o m e L a t e O r d o v i c i a n seas e l s e w h e r e , t h e y h a d n o t y e t spread to t h e C i n c i n n a t i r e g i o n . It t r u l y is a sea w i t h o u t f i s h ! W e d o not h a v e t o w o r r y a b o u t sharks e i t h e r , b e c a u s e t h e y w i l l n o t e v o l v e u n t i l t h e D e v o n i a n — m i l l i o n s o f years i n t h e f u t u r e . O u r depth gauge shows that, as we s w i m farther away from the boat, the b o t t o m g r a d u a l l y rises, a n d i t b e c o m e s littered w i t h b r a c h i o p o d s a n d b r y o z o a n s . H e r e a n d t h e r e m o u n d s rise u p a s tall a s a m e t e r f r o m t h e bott o m . A l t h o u g h t h e m o u n d s l o o k s o m e w h a t like c o r a l c o l o n i e s , c l o s e r ins p e c t i o n reveals that t h e y are h e a v i l y c a l c i f i e d c o l o n i c s o f b r y o z o a n s , w h o s e f u z z y - l o o k i n g s u r f a c e s a r e m i l l i o n s o f o h - s o - t i n y t e n t a c l e s e x t e n d e d into the water.
They retract w h e n w e b r u s h a g a i n s t t h e s u r f a c e , a n d w e c a n see
t h e m i n u t e h o n e y c o m b - l i k e s k e l e t o n b e n e a t h . S o m e c o l o n i e s are r o u n d e d and b o u l d e r - l i k e ; o t h e r s are b r a n c h i n g o r c o m p o s e d o f c o m p l e x l y f o l d e d sheets. T h e p a t c h e s b e t w e e n b r y o z o a n s are littered w i t h b r o k e n f r a g m e n t s of b r y o z o a n s a n d
brachiopods
of g e n e r a like Hebertella a n d Platystrophia,
including both living a n i m a l s and dead, disarticulated shells. H e r e a n d there w e see b r y o z o a n c o l o n i e s a p p a r e n t l y t u r n e d u p s i d e d o w n ; w e k n o w that b e c a u s e t h e r o u n d e d side o f e a c h i s o n t h e b o t t o m , o r t h e b r a n c h e s d o not radiate u p w a r d f r o m a basal plate. T h e s e hefty, o v e r t u r n e d c o l o n i e s s u g g e s t that c o n d i t i o n s c a n b e far m o r e t u r b u l e n t t h a n t h e p l a c i d c a l m i n w h i c h , w i t h great g o o d l u c k , w e l a n d e d . T h e s e w a t e r s s o m e t i m e s m u s t b e raked b y great storms. W e feel s t r o n g e r w a v e m o t i o n a n d s o o n w e are b r e a k i n g t h e s u r f a c e on this s h o a l .
P a t c h e s of d e a d , t h i n - s h e l l e d Rafinesquina
b r a c h i o p o d s are t u r n e d o n their e d g e s a n d p a c k e d t i g h t l y t o g e t h e r b y w a v e a c t i o n — w h a t will be c a l l e d " s h i n g l e d Rafinesquina" b e d s in t h e far-distant f u t u r e . B r y o z o a n b r a n c h e s a n d s h e e t s are s t a c k e d into p a t c h e s o f c o a r s e rubble. This is the e n v i r o n m e n t of the B e l l e v u e L i m e s t o n e to be.
Epilogue
251
A g u l l y leads us b a c k into d e e p e r water. H e r e we find vast areas c o v e r e d w i t h b r a c h i o p o d s of taxa l i k e Rafinesquina a n d
Strophomena or b r a n c h i n g
b r y o z o a n s . T h e r e are i n t e r v e n i n g p a t c h e s o f m u d a b o u t e q u a l i n a r e a t o t h e s h e l l y p a t c h e s ; this m u s t b e t h e e n v i r o n m e n t o f t h e F a i r v i e w , w i t h c o n t i n u o u s , e v e n b e d s that w i l l p r o d u c e a b o u t 5 0 p e r c e n t l i m e s t o n e a n d 50 p e r c e n t s h a l e . In t h e d i s t a n c e we spot a ridge of b r y o z o a n s s t a n d i n g a l m o s t a m e t e r a b o v e the s u r r o u n d i n g s , a n d w e h e a d toward it. C o u l d w e h e a p p r o a c h i n g a s h a r p d r o p - o f f l e a d i n g to d e e p e r water? A p p r o a c h i n g closer, we c a n see a r i c h n e s s of life a r o u n d this ridge, a n d we sense a g e n t l e c u r r e n t flowing a l o n g the b o t t o m , parallel to the g r a d u a l slope, w h i c h intensifies as we reach the ridge. T h e d e p t h g a u g e reads 15 meters (50 feet), a n d we h a v e d e s c e n d e d b e l o w the d e p t h w h e r e t h e s m a l l s u r f a c e w a v e s stirred the b o t t o m . H e r e , c u r r e n t flow takes o v e r a n d follows t h e c o n t o u r s o f the slope. T h e ridge i s a c t u a l l y a m o u n d b u i l t entirely o f the b r a n c h i n g b r y o z o a n c o l o n i e s o f g e n u s Parvohallopora; it projects o u t w a r d from the slope, The c u r r e n t is diverted a n d g a i n s v e l o c i t y as it flows over t h e ridge. C r i n o i d s f o r m i n g a d e n s e c l u m p are of g e n u s Glyptocrinus;
their stalks are
coiled
around
the
bryozoan
b r a n c h e s , a n d t h e c r i n o i d s stand a b o v e t h e m like a forest c a n o p y .
Their
c r o w n s are splayed o u t in feathery filtration fans that are all a l i g n e d p e r p e n d i c u l a r to t h e c u r r e n t . S t a n d i n g a b o v e t h e m are a few g i g a n t i c crinoids of g e n u s Anomalocrinus, w i t h thick s t e m s a m e t e r or m o r e in l e n g t h a n d broad, d e n s e filtration fans s o m e 30 c e n t i m e t e r s in d i a m e t e r , also oriented by the c u r r e n t . M a n y o t h e r invertebrates m a k e their h o m e s i n this intricate thicket. Gyclonema
snails are a t t a c h e d to the c a l y c e s of practically every s p e c i m e n of
Glyptocrinus a n d c l u m p s of s m a l l
Zygospira
b r a c h i o p o d s attach to the cri-
n o i d stems. O t h e r b r a c h i o p o d s o f g e n u s Platystrophia and p e l e c y p o d s o f Ambonychia are n e s t l e d in a m o n g the b r y o z o a n b r a n c h e s . S u d d e n l y w e are s t a r t l e d b y streaky s h a d o w s p a s s i n g o v e r us, a n d look u p t o see l a r g e , c o n i c a l n a u t i l o i d c e p h a l o p o d s g l i d i n g a b o v e u s , a l i g n e d l i k e a i r p l a n e s i n f o r m a t i o n . T h e y b e h a v e m u c h like s c h o o l i n g s q u i d , b u t e a c h has a n o u t e r s h e l l , w i t h a p a t t e r n o f c o l o r b a n d i n g . O n e i s h o l d i n g a l a r g e , w r i g g l i n g trilobite i n its t e n t a c l e s . T h e s e c e p h a l o p o d s are the largest creatures we have seen, and s o m e of these reach a meter or more in length, a n d their l a r g e e y e s a n d n u m e r o u s t e n t a c l e s are m o r e t h a n a little m e n a c ing. We h u n k e r d o w n next to the ridge and point the camera upward as t h e y s h o o t b y o v e r h e a d . I f this p i c t u r e d o e s not m a k e t h e c o v e r o f Science, i t w i l l a t least b e t h e hit o f t h e n e x t m e e t i n g o f t h e P a l e o n t o l o g i c a l S o c i e t y ! In a flash t h e y are g o n e , a n d o u r b r e a t h i n g rate settles d o w n . In a h o l l o w of t h e r i d g e we find a l a r g e Isotelus trilobite, its p y g i d i u m (tail s h i e l d ) f o l d e d n e a t l y u n d e r its c e p h a l o n ( h e a d s h i e l d ) — i t m u s t h a v e s e e n us c o m i n g a n d r o l l e d up for p r o t e c t i o n . It is a g i a n t , a b o u t 25 c e n t i m e t e r s b e t w e e n t h e s h a r p tips o f t h e g e n a l s p i n e s . T h e t e m p t a t i o n t o grasp a l i v i n g trilobite is t o o g r e a t , a n d as we r e a c h o u t for this p r i z e , t h e a n i m a l s u d d e n l y u n f o l d s w i t h a s n a p a n d g l i d e s a w a y , v e n t r a l side u p , o u t o f r e a c h . I t t h e n f l i p s b a c k o v e r a n d c l i n g s tightly t o t h e b o t t o m , p r e s s i n g t h e dorsal c a r a p a c e d o w n into t h e s e d i m e n t . H a d this o n e n o t g o t t e n away, i t m i g h t h a v e s u r p a s s e d t h e w o r l d r e c o r d s p e c i m e n o f Isotelus f r o m t h e O r d o v i c i a n
252
A Sea without Fish
o f n o r t h e r n C a n a d a ! N e v e r t h e l e s s , w e h a v e m a n a g e d t o g a t h e r u p several s m a l l e r trilobites, a n d m a y b e their D N A f i n a l l y will resolve the q u e s t i o n o f h o w trilobites are related to o t h e r a r t h r o p o d s . We v e n t u r e out beyond the bryozoan ridge o n t o a seemingly level plain with patches o f b r a c h i o p o d p a v e m e n t and b r y o z o a n s .
The b r a c h i o p o d s are
n o t i c e a b l y s m a l l e r forms like Dalmanella a n d Sowerhyella. B r y o z o a n s are delicate, twig-like c o l o n i e s with fewer sheet-like or m a s s i v e forms. Flexicalymene trilobites are here, hut are s m a l l e r t h a n t h o s e we f o u n d in s h a l l o w e r water; s o m e n e w trilobites of g e n e r a like Cryptolithus and Triarthrus c r u i s e o n the m u d d y p a t c h e s , l e a v i n g g r o o v e d trails. E x t e n d i n g u p w a r d from s o m e b r y o z o a n thickets are very slender yet l o n g - s t e m m e d c r i n o i d s of the taxa Ectenocrinus and Cincinnaticrinus. A l t h o u g h they h a v e fewer a r m s t h a n the other crinoids we have seen today, they splay t h e m into c o n i c a l filtration fans in a l i g n m e n t with the g e n t l e c u r r e n t (not o p e n into the flow b u t w i t h the c o n c a v e side b e a r i n g the food g r o o v e s d o w n c u r r e n t ) . S o m e s e d i m e n t p a t c h e s are sands entirely c o m p o s e d o f f r a g m e n t s o f disarticulated c r i n o i d s , w i t h o d d b u n d l e s o f l o n g , still-articulated steins. T h e sands h a v e b r o a d , s i n u o u s ripple marks like those a l o n g a b e a c h . H o w c o u l d s u c h ripples form at o u r present d e p t h of 30 meters (100 feet)? We sense no w a v e m o t i o n a n d o n l y slight current; however, as e x p e r i e n c e d divers, we k n o w that severe storm c o n d i t i o n s a t the surface, i n c l u d i n g h u r r i c a n e s , c a n p r o d u c e o c c a s i o n a l , s t r o n g w a v e oscillation or currents a l o n g the d e e p e r sea floor w h e r e n o r m a l , fair w e a t h e r wave m o t i o n s d o not penetrate. W e have a n u n e a s y f e e l i n g that w e h a v e v e n t u r e d into a n e n v i r o n m e n t that c a n t u r n v i o l e n t v e r y q u i c k l y , a s w e see a r o u n d u s the r e m n a n t s o f shattered b r y o z o a n s a n d c u r r e n t - w i n n o w e d shells. Areas o f p u r e m u d h a v e now b e c o m e w i d e r t h a n areas o f shelly s e d i m e n t , and w e r e c o g n i z e the characteristics o f what will c o n i c t o b e k n o w n a s the Kope Formation. A g l a n c e at the dive c o m p u t e r s h o w s we h a v e a l m o s t e x c e e d e d o u r allowable b o t t o m t i m e at t h e m a x i m u m d e p t h of 30 m e t e r s , so it is t i m e to return to the shallows. We turn b a c k on a reverse c o m p a s s c o u r s e , h o p i n g we we will surface close to the boat. As we a g a i n a p p r o a c h t h e b r y o z o a n ridge, w e n o t i c e a n o v e r h a n g w e h a d o v e r l o o k e d . S o m e k i n d o f m o v e m e n t i s appare n t i n t h e s h a d o w s b e n e a t h this l e d g e . W h i p - l i k e , spiny a p p e n d a g e s are w a v i n g at us; this is s o m e t h i n g n e w — w e m u s t investigate! U s i n g a l o n g , slender pole with a hook at o n e e n d , we reach b a c k u n d e r the l e d g e . After a few u n s u c c e s s f u l tries, we h a v e s n a g g e d a large a n d b i z a r r e c r e a t u r e . We r e c o g n i z e the flailing a p p e n d a g e s of a e u r y p t e r i d of g e n u s Megalograptus. It is the size of a M a i n e lobster but has very strange a n d spiny, non-lobster-like a p p e n d a g e s . The e l o n g a t e , s e g m e n t e d tail s e c t i o n is flexible like a lobster tail. We do not h a v e t i m e to o b s e r v e t h e e u r y p t e r i d s n o w , so we p o p a few into a m e s h h a g for later study. T h e m y s t e r y o f h o w t h e y u s e their a p p e n d a g e s will r e m a i n until t h e n . Perhaps we will see w h e t h e r o n e tastes like lobster! A f t e r m o r e f i n n i n g toward t h e s h a l l o w s , o u r d i v e c o m p u t e r b e e p s , a n d w e m u s t a s c e n d . W e b r e a k t h e s u r f a c e a n d s w i t c h t o snorkel b e c a u s e w e are l o w o n air. W e spot the b o a t i n t h e d i s t a n c e , p e r h a p s 200 m e t e r s away. It is a l o n g s w i m on t h e s u r f a c e . We are l a d e n w i t h s p e c i m e n b a g s a n d g e a r , a n d , b y t h e t i m e w e reach the b o a t , w e are e x h a u s t e d f r o m g u l p i n g t h e
Epilogue
253
o x y g e n - p o o r air. W e h a u l o u r s e l v e s o v e r t h e g u n w a l e , peel off o u r w e t s u i t s , a n d just lie i n t h e b o a t , c a t c h i n g o u r b r e a t h , o u r m i n d s r a c i n g w i t h the sights w e h a v e s e e n . W h a t a d i v e ! S u d d e n l y , w e s e n s e t h e w a r m t h o f t h e a f t e r n o o n s u n , a m i d the c o o l ness o f a c r i s p a u t u m n day. W e are s t a r i n g a t t h e fossil-covered s u r f a c e o f a b e d o f O r d o v i c i a n l i m e s t o n e littered w i t h rusty a u t u m n leaves. W e are sitting o n t h e b a n k s o f S t o n e l i c k C r e e k , i n C l e r m o n t C o u n t y , O h i o , h a v i n g l u n c h o n a field trip w i t h o u r s t u d e n t s — a n d m a y b e y o u !
254
A Sea without Fish
APPENDIX 1. RESOURCES: WHERE TO GO FOR MORE INFORMATION
T h e r e are m a n y t e x t b o o k s in p a l e o n t o l o g y , but we restrict t h e f o l l o w i n g list
Paleontology
to some of the most r e c e n t as w e l l as o n e older, classic w o r k .
textbooks
Fossil Invertebrates ( B o a r d m a n et al. 1987) Principles of Paleontology, 3rd e d . ( F o o t e a n d M i l l e r 2007) Invertebrate Fossils ( M o o r e et al. 1952) Invertebrate Palaeontology and Evolution,
4th
ed.
(Clarkson
1998)
Publications of
Ohio Fossils ( L a R o c q u e a n d M a r p l e 1955) Fossils of Ohio
(Feldmann
Exploring
Geology
the
of
Geological Surveys
a n d H a c k a t h o r n 1996) the
Cincinnati/Northern
Kentucky
Region,
2nd
e d . (Potter 2007)
Cincinnati Fossils ( D a v i s 1985,1992) and its p r e d e c e s s o r s ( C a s t e r et al. 1955, 1961)
books
Encyclopedic w o r k s
Index Fossils of North America ( S h i n i e r a n d S h r o c k 1944) Treatise
R. A.
Locally published
on
Invertebrate
Paleontology
Davis's " T h e T y p e - C i n c i n n a t i a n , "
http://inside.nisj.edu/acadeinics/
Internet w e b s i t e s
f a c u l t v / d a v i s r / c i n t i a n / i n d e x . h t m . T h e C o l l e g e o f M o u n t St. J o s e p h , C i n c i n n a t i , O h i o (accessed F e b r u a r y 18, 2008). The D r y D r e d g e r s , http://drydredgers.org/, D r y D r e d g e r s , Inc., C i n c i n n a t i , O h i o (accessed F e b r u a r y 18, 2008). E a r t h T i m e , h t t p : / / w w w . e a r t h - t i i u e . o r g / a b o u t . h t m l ( a c c e s s e d F e b r u a r y 18, 2008). "History of Life through T i m e , " http://www.ucmp.berkeley.edu/exhibits/ historyoflite.php. University of C a l i f o r n i a M u s e u m of Paleontology
(ac-
c e s s e d February 18, 2008). Steven H o l l a n d ' s " T h e Stratigraphy and fossils o f the U p p e r O r d o v i c i a n near C i n c i n n a t i , O h i o , " http://www.uga.edu/~strata/cincy/index.html,The University of G e o r g i a Stratigraphy L a b (accessed F e b r u a r y 18,2008). I n d i a n a G e o l o g i c a l S u r v e y ; http://igs.indiana.edu/, I n d i a n a U n i v e r s i t y (acc e s s e d F e b r u a r y 18, 2008). International G e o l o g i c a l Correlation P r o g r a m m e , I G C P 4 1 0 , " T h e Great O r d o v i c i a n B i o d i v e r s i f i c a t i o n E v e n t . I m p l i c a t i o n s for G l o b a l C o r -
255
relation a n d R e s o u r c e s , " h t t p : / / w w w . e s . m q . e d u . a u / M U C E P / i g c p 4 1 0 / , Macquarie
University,
Sydney, Australia
(accessed
F e b r u a r y 18,
2008). K e n t u c k y G e o l o g i c a l S u r v e y , http://wwvv.uky.edu/KGS/, University o f K e n t u c k y ( a c c e s s e d F e b r u a r y 18, 2008). K e n t u c k y P a l e o n t o l o g y S o c i e t y , h t t p : / / w w w . u k y . e d u / O t h e r o r g s / K P S / (acc e s s e d F e b r u a r y 18, 2008). O h i o G e o l o g i c a l Survey,
http://www.ohiodnr.com/geosurvey
Division of
G e o l o g i c a l S u r v e y , O h i o D e p a r t m e n t o f N a t u r a l R e s o u r c e s (acc e s s e d F e b r u a r y 18, 2008). University
of Cincinnati
Department
of Geology,
http://www.uc.edu/
g e o l o g y / ( a c c e s s e d F e b r u a r y 18, 2008).
Field g u i d e s
T h e s e are g u i d e b o o k s t o f i e l d trips p e r t a i n i n g t o the O r d o v i c i a n g e o l o g y o f t h e O h i o , I n d i a n a , a n d K e n t u c k y r e g i o n s . Most c o n t a i n d e t a i l e d roadlogs a n d d i r e c t i o n s to g e o l o g i c a l l o c a l i t i e s , as w e l l as d e t a i l e d d e s c r i p t i o n s o f e x p o s e d s t r a t i g r a p h i c s e c t i o n s . L o c a l i t i e s listed i n o l d e r g u i d e b o o k s m a y no longer be accessible. C a s t e r 1961b; Hattin et al. 1961; P o p e a n d M a r t i n 1977; Hay et al. 1981; M e y e r et al. 1981; M e y e r et a l . 1985; D a v i s 1986; H a n e b e r g et al. 1992; S h r a k e 1992; D a v i s a n d C u f f e y 1998; A l g e o a n d Brett 2001; M c L a u g h l i n e t al. f o r t h c o m i n g .
Museums
Behringer-Crawford
Museum,
Covington,
Kentucky
http://www
. b c m u s e u m . o r g / b c m u s e u m / d e f a u l t . a s p x (accessed February 18, 2008) C i n c i n n a t i M u s e u m C e n t e r h t t p : / / w w w . c i n c y m u s e u m . o r g / (accessed F e b r u a r y 18, 2008) L i m p e r G e o l o g i c a l M u s e u m , M i a m i University, O x f o r d , O h i o http://www . c a s . m u o h i o . e d u / l i m p e r m u s e u m / (accessed F e b r u a r y 18, 2008) O r t o n G e o l o g i c a l M u s e u m , O h i o State University, C o l u m b u s , O h i o http:// w w w . g e o l o g y . o h i o - s t a t e . e d u / f a c i l i t i e s . p h p ( a c c e s s e d F e b r u a r y 18, 2008)
Outdoor
C a e s a r C r e e k S t a t e Park, n e a r W a y n e s v i l l e , O h i o http://www.dnr.state
e d u c a t i o n areas
.oh.us/tabid/72o/default.aspx/ ( a c c e s s e d F e b r u a r y 18, 2008) A t t h e V i s i t o r s ' C e n t e r , t h e r e i s a n e x h i b i t a b o u t t h e g e o l o g y a n d fossils to be f o u n d at t h e o v e r f l o w spillway, w h e r e fossil c o l l e c t i n g is p e r m i t t e d i n a c c o r d a n c e w i t h c e r t a i n r e g u l a t i o n s a v a i l a b l e a t the Visitors' C e n t e r . Hueston
Woods
State
Park,
near
Oxford,
Ohio
http://www.dnr.state
.oh.us/parks/tabid/745/Default.aspx ( a c c e s s e d F e b r u a r y 18, 2008) Fossil c o l l e c t i n g is p e r m i t t e d in c e r t a i n areas of t h e park. C i n c i n n a t i Nature C e n t e r , near Milford, O h i o http://www.cincynature .org/index2.asp/ ( a c c e s s e d F e b r u a r y 18, 2008) A l t h o u g h fossil c o l l e c t i n g i s not p e r m i t t e d , t h e r e are g o o d e x p o s u r e s o f C i n c i n n a t i a n strata a t several sites o n t h e N a t u r e C e n t e r p r o p e r t i e s .
256
Appendix 1
Sawyer
Point
Geological
Timeline,
Cincinnati,
Ohio
http://www
.cincinnati-oh.gov/crc/pages/-5708-/ ( a c c e s s e d F e b r u a r y 18, 2008) T h i s timeline begins with the Late Ordovician and continues through the f o u n d i n g o f C i n c i n n a t i w i t h e a c h p a v e m e n t b l o c k r e p r e s e n t i n g o n e m i l l i o n years. I m p o r t a n t g e o l o g i c a l e v e n t s are e n g r a v e d o n b l o c k s a t a p propriate intervals. Trammel
Fossil
Park,
Sharonville,
Ohio
http://www.sharonville.org/
fossilpark.aspx ( a c c e s s e d F e b r u a r y 18, 2008) T h i s park i s d e d i c a t e d t o e d u c a t i o n a b o u t O r d o v i c i a n g e o l o g y a n d p a l e o n t o l o g y (see F i g u r e 1.8).
P a l e o n t o l o g i c a l S o c i e t y . T h e P a l e o n t o l o g i c a l S o c i e t y i s t h e largest p a l e o n t o l o g i c a l o r g a n i z a t i o n in t h e U n i t e d States. It p u b l i s h e s b o t h t h e J o u r n a l
Scientific societies and institutions
of Paleontology a n d Paleobiology. A series of e d u c a t i o n a l b r o c h u r e s a b o u t fossils c a n b e d o w n l o a d e d f r o m their w e b s i t e http://paleosoc.org/ (acc e s s e d F e b r u a r y 18, 2008). P a l e o n t o l o g i c a l R e s e a r c h Institution, Ithaca, N e w York. P R I p u b l i s h e s b o t h the
Bulletins
of American
Paleontology
and
Palaeontographica
Americana,
as well as a p o p u l a r m a g a z i n e , American Paleontologist. T h e i r website is http://www.priweb.org/ (accessed F e b r u a r y 18, 2008). G e o l o g i c a l Society of A m e r i c a . T h e G S A is the l e a d i n g geological organiz a t i o n in N o r t h A m e r i c a a n d it p u b l i s h e s b o t h t h e Geological Society of America
Bulletin a n d Geology.
It sponsors m a n y r e g i o n a l a n d
national
scientific m e e t i n g s and field trips. T h e i r website is http://www.geosociety .org/ ( a c c e s s e d F e b r u a r y 18, 2008).
Appendix 1
257
APPENDIX 2. INDIVIDUALS AND INSTITUTIONS ASSOCIATED WITH THE TYPE-CINCINNATIAN
T h e f o l l o w i n g i s a list o f t h e n a m e s o f i n d i v i d u a l s a n d i n s t i t u t i o n s a s s o c i ated w i t h t h e C i n c i n n a t i r e g i o n , a n d , e s p e c i a l l y , its g e o l o g y a n d p a l e o n t o l ogy. S o m e o f the i n d i v i d u a l s listed w e r e m e m b e r s o f t h e C i n c i n n a t i S c h o o l ; most were not. T h e r e are s o m e potential p r o b l e m s w i t h this list. I n s o m e i n s t a n c e s , there are t w o p e o p l e w i t h similar, b u t different n a m e s , b u t w h o m a y n o t b e different p e o p l e . For e x a m p l e , different s o u r c e s refer to a J. H. H a l l a n d a John W . H a l l associated w i t h t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History, a n d there is I. Harris, I. H. Harris, a n d I. M. H a r r i s , all of W a y n e s v i l l e , O h i o . G e o r g e V a l l a n d i n g h a m a n d G e o r g e V a l l a n d i g h a m are a l m o s t c e r t a i n l y t h e s a m e p e r s o n , a n d the latter p r o b a b l y i s t h e c o r r e c t s p e l l i n g , b u t m a y b e not. I n this v o l u m e , w e present p h o t o g r a p h s o f s o m e o f t h e p e o p l e d i s c u s s e d . M a n y o f the i n d i v i d u a l s p o r t r a y e d are sufficiently w e l l k n o w n that t h e r e i s little q u e s t i o n of identification. In s o m e i n s t a n c e s , h o w e v e r , a p h o t o g r a p h is the o n l y o n e of w h i c h we are a w a r e that is s u p p o s e d to r e p r e s e n t t h e p e r s o n i n q u e s t i o n . T h e identification m a y b e b a s e d o n a h a n d w r i t t e n n o t a t i o n o n t h e p h o t o g r a p h o r o n t h e a l b u m p a g e that b e a r s t h e p h o t o g r a p h , w i t h n o i n d e p e n d e n t verification. W e h o p e that s u c h identifications are c o r r e c t .
Albers, H. E.
L i s t e d as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
Publications by T r u m a n H e m i n w a y Aldrich on
Tertiary a n d present-day
m o l l u s c s a p p e a r e d in early n u m b e r s of the Journal of the Cincinnati Society
Aldrich, T. H. (1848-1932)
of Natural History ( C o a n , K a b a t , a n d Petit 2007; J o h n s o n 2002; t h e g i v e n n a m e " T h o m a s " in C a s t e r [1982] a p p a r e n t l y w a s a t y p o g r a p h i c a l error).
D . R . A n d e r s o n c o l l e c t e d o n e o f t h e o r i g i n a l s p e c i m e n s o f t h e starfish,
A n d e r s o n , D. R.
Palaeasterina approximata S. A. M i l l e r , 1878.
A n t h o n y was elected recording secretary of the Western A c a d e m y of N a t u ral S c i e n c e s o n M a y 1,1838. I n 1840, h e w a s e l e c t e d s e c r e t a r y o f t h e N a t u r a l
A n t h o n y , John Gould (1804-1877)
S c i e n c e S e c t i o n o f t h e C i n c i n n a t i S o c i e t y for t h e P r o m o t i o n o f U s e f u l K n o w l e d g e , w h i c h m e r g e d w i t h t h e a c a d e m y later that year. H e i s r e c o r d e d a s h a v i n g g i v e n s o m e fossils t o t h e a c a d e m y , a n d h e p u b l i s h e d o n t y p e -
259
C i n c i n n a t i a n a n d o t h e r t r i l o b i t e s . A n t h o n y w a s o n e o f t h e hosts w h e n C h a r l e s L y e l l , p r o b a b l y t h e f o r e m o s t g e o l o g i s t o n E a r t h , visited t h e C i n c i n nati a r e a in t h e 1840s. A n t h o n y w a s a u t h o r , a l o n g w i t h U. P. J a m e s , of a paper on e c h i n o d e r m s in the local rocks, and he described an unusual s p e c i m e n o f a fossil c e p h a l o p o d f r o m t h e t y p e - C i n c i n n a t i a n . I n 1854, h e r e s i g n e d f r o m t h e a c a d e m y , a n d , i n 1863, h e b e c a m e c u r a t o r o f c o n c h o l o g y a t H a r v a r d University, u n d e r L o u i s A g a s s i z . A c c o r d i n g t o C l e n c h (1936,69), A n t h o n y ' s ". . . c h i e f interest w a s in f r e s h w a t e r m o l l u s k s , a n d he b u i l t up a series o f A m e r i c a n f r e s h w a t e r f o r m s t h a t for its t i m e w a s s u p e r i o r t o a n y c o l l e c t i o n i n t h i s c o u n t r y " ( A n t h o n y 1838,1839a, 1839b, 1847,1848; A n t h o n y a n d J a m e s 1846; B r a n d t a n d D a v i s 2007; C o a n , K a b a t , a n d Petit 2007; H e n d r i c k s o n 1947; J o h n s o n 2002; L y e l l 1845).
Austin, G e o r g e M.
D r . A u s t i n , a p h y s i c i a n f r o m W i l m i n g t o n , O h i o , w a s listed a s a l o c a l c o l l e c t o r b y N i c k l e s (1936). H i s c o l l e c t i o n w e n t t o t h e U n i t e d States N a t i o n a l M u s e u m , w h i c h p u b l i s h e d a p a p e r b y h i m o n fossil z o n e s i n t h e R i c h m o n d i a n r o c k s o f t h e t y p e - C i n c i n n a t i a n a r e a ( A u s t i n 1927; B e c k e r 1938; N i c k l e s 1936; S h i d e l e r [1952] 2002).
Barnhart, W. C.
W . C . B a r n h a r t c o l l e c t e d t h e t y p e - s p e c i m e n o f t h e starfish, Palaeasterina speciosa S. A. M i l l e r a n d D y e r , 1878. He sold it to J. W. H a r v e y , w h o , in t u r n , sold i t t o C . B . D y e r ( M i l l e r a n d D y e r 1878a).
Bassler, Ray S. (1878-1961)
( S e e c h a p t e r 2)
Bean, W. H.
T h e b r y o z o a n s p e c i e s , Ceramopora ? beam, w a s n a m e d after W . H . B e a n , o f L e b a n o n , W a r r e n C o u n t y , O h i o ( U . R J a m e s 1884a).
Best, Robert
Dr. Best was the principal curator of the Western M u s e u m at the time of its o p e n i n g in 1820 ( D r a k e a n d M a n s f i e l d 1827).
Braun, E. Lucy (1889-1971)
E m m a L u c y B r a u n g a i n e d world f a m e a s a b o t a n i s t a n d plant e c o l o g i s t , b u t prior to that s h e a u t h o r e d t h e first p a l e o n t o l o g y thesis at t h e University of C i n c i n n a t i , a master's thesis on C i n c i n n a t i a n b r a c h i o p o d s that later was p u b lished by t h e C i n c i n n a t i S o c i e t y of N a t u r a l History ( B r a u n 1916; C a s t e r 1981}.
Braun, Fred
F r e d e r i c k B r a u n w a s listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936), a n d a c o l l e c t i o n of his fossils w e n t to Y a l e ( S h i d e l e r [1952] 2002). B r a u n sold fossils a s " F r e d B r a u n a n d C o . " a n d " t h e W e s t e r n Naturalist's A g e n c y " ( C a s t e r 1982,
260
Appendix 2
25), a n d , i n c o n j u n c t i o n w i t h Paul M o h r , a n o t h e r C i n c i n n a t i c o l l e c t o r , u n dertook l o n g - t e r m a n d e x t e n s i v e e x c a v a t i o n s for c r i n o i d s f r o m C a r b o n i f e r o u s rocks a t C r a w f o r d s v i l l e , I n d i a n a ( V a n S a n t a n d L a n e 1964).
Dr. Bridge was born in N o r w o o d , O h i o , adjacent to C i n c i n n a t i , and he r e c e i v e d his b a c h e l o r ' s d e g r e e f r o m t h e U n i v e r s i t y o f C i n c i n n a t i i n 1913.
Bridge, Josiah (1890-1953)
His h i g h e r e d u c a t i o n w a s e l s e w h e r e , a n d p r o f e s s i o n a l l y h e w a s a s s o c i a t e d with the United States ( G e o l o g i c a l Survey a n d the
United
States N a t i o n a l
M u s e u m in W a s h i n g t o n , D . C . He was a long-time associate of Ulrich ( B e c k e r 1938; C r o n e i s 1963).
Dr. Richard M a h a n Byrnes was a f o u n d i n g m e m b e r <>l the C i n c i n n a t i S o c i ety of N a t u r a l History, a n d he served as its c u r a t o r of m i n e r a l o g y f r o m 1871
Byrnes, Richard M. (1835-1892)
until 1880, w h e n h e w a s t h r i c e e l e c t e d president a n d , t h u s , served t h r e e years i n that position. H e w a s a m e m b e r o f the society's C o m m i t t e e o n G e o l o g i c a l N o m e n c l a t u r e (S. A. M i l l e r et al. 1879) a n d w a s a c o - a u t h o r of t h e e u l o g y of C. B. D y e r . He w a s listed as a local fossil c o l l e c t o r by N i c k l e s (1936), a n d he h a d a large c o l l e c t i o n of fossils, b u t w a s interested in m i n e r a l s , in terrestrial and freshwater m o l l u s c s , i n plants, a n d m u c h m o r e ( A n o n . 1 8 7 6 , 1 8 7 8 , 1 8 9 2 ; B y r n e s , C o t t o n , a n d L a n g d o n 1883; J o h n s o n 2002).
S. T. Carley, of B a n t a m , C l e r m o n t C o u n t y , O h i o , was an active m e m b e r
Carley, S. T.
o f t h e W e s t e r n A c a d e m y o f N a t u r a l S c i e n c e s , b e g i n n i n g i n t h e 1830s, a n d h e w a s o n e o f t h e s e v e n s u r v i v i n g m e m b e r s - o f t h e a c a d e m y w h e n its assets w e r e d o n a t e d t o t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y i n 1871 a n d t h e a c a d e m y c e a s e d t o exist. I n a b o u t 1846 D a v i d D a l e O w e n e n l i s t e d t h e h e l p o f t h e a c a d e m y t o i m p r o v e t h e t a x o n o m i c n o m e n c l a t u r e o f t h e region's fossils; C a r l e y a n d U. P. J a m e s " w e r e a p p o i n t e d a c o m m i t t e e to p r e p a r e a report o n t h e n a m i n g o f t h e Strophomena o f t h e C i n c i n n a t i b l u e l i m e stone. I n this t h e y said that t h e y h a d ' c a r e f u l l y e x a m i n e d a n d c o m p a r e d a great n u m b e r o f s p e c i m e n s ' a n d w e r e 'satisfied t h a t , b y far, t o o m a n y s p e cies h a v e b e e n m a d e , ' t h u s a f f i r m i n g O w e n ' s c o n t e n t i o n . " " T h i s r e p o r t w a s p u b l i s h e d in t h e Cincinnati Gazette, S e p t e m b e r 5, 1846" ( H e n d r i c k s o n 1947, 143). In 1849 t h e r e w a s p u b l i s h e d a c a t a l o g u e of f r e s h w a t e r m u s s e l s , as recognized by the a c a d e m y ; the p a m p h l e t was published anonymously, b u t a c c o r d i n g t o H e n d r i c k s o n (1947), i t w a s l a r g e l y t h e w o r k o f C a r l e y , John G o u l d A n t h o n y , U . P . J a m e s , a n d Joseph C l a r k ( b u t see J o h n s o n 2002). Carley was one of the collectors whose s p e c i m e n s were used in the o r i g i n a l d e s c r i p t i o n of t h e s p e c i e s of t r a c e fossils, Licrophycus flabellum S. A . M i l l e r a n d D y e r , 1878a. T h e w e l l - k n o w n s p e c i e s o f a r t i c u l a t e b r a c h i o p o d s , Retrorsirostra carleyi, w a s n a m e d after S. T. C a r l e y ( A n o n . 1878; H e n d r i c k s o n 1947).
Appendix 2
261
Christy, David
D a v i d C h r i s t y w a s a C i n c i n n a t i - a r e a g e o l o g i s t , anti-slavery writer, printer, a n d n e w s p a p e r m a n . H i s g e o l o g i c a l letters w e r e p u b l i s h e d i n 1848, origin a l l y in a n e w s p a p e r , t h e Cincinnati Gazette, b u t t h e n separately. In a r o u n d 1858 h i s c o l l e c t i o n w a s sold t o M i a m i University, O x f o r d , O h i o , for $2,200 ( B e c k e r 1938) or, a c c o r d i n g to S h i d e l e r ([1952] 2002, 2), for $5000, " a n alm o s t u n h e a r d o f s u m for s u c h a p u r p o s e , i n t h o s e d a y s . " T h e s a m e c o l l e c tion m u s t h a v e b e e n a financial b e n e f i t to at least o n e o t h e r party, t o o ; a g a i n a c c o r d i n g t o S h i d e l e r ([1952] 2 0 0 2 , 4 ) : " I h a v e m e n t i o n e d t h e C h r i s t y c o l l e c t i o n , a c q u i r e d b y M i a m i University. S o m e years a g o w h e n t h e U n i versity o f C h i c a g o w a s c l e a n i n g h o u s e w e w e r e g i v e n s o m e o f their u n w a n t e d m a t e r i a l . I n c l u d e d w e r e fossils d i s t i n c t l y m a r k e d ' C h r i s t y C o l l e c t i o n . ' T h e C h r i s t y c o l l e c t i o n h a d d i s a p p e a r e d f r o m M i a m i w h e n that i n s t i t u t i o n w a s c l o s e d b e t w e e n 1873 a n d 1885. C h i c a g o h a d b o u g h t the c o l l e c t i o n f r o m J a m e s H a l l w h o o p e r a t e d o u t o f A l b a n y , N.Y. Just w h o s w i p e d t h e c o l l e c t i o n a n d sold i t t o H a l l h a s n ' t b e e n d e t e r m i n e d . O t h e r material from the C h r i s t y collection has c o m e back in similar ways" ( B e c k e r 1938; C h r i s t y 1848; M e r r i l l [1924] 1964; S h i d e l e r [1952] 2002).
The Cincinnati M u s e u m of Natural History
( S e e T h e C i n c i n n a t i S o c i e t y o f N a t u r a l History)
T h e Cincinnati Normal School
" N o r m a l s c h o o l s " were institutions that trained teachers and would-be teachers. T h e C i n c i n n a t i N o r m a l S c h o o l was established by the C i n c i n nati B o a r d o f E d u c a t i o n i n 1868 a n d h o u s e d i n o n e o f its s c h o o l b u i l d i n g s ; i t w a s s u s p e n d e d shortly after t h e start o f t h e t w e n t i e t h c e n t u r y . John M i c k l e b o r o u g h (q.v.) w a s p r i n c i p a l o f t h e C i n c i n n a t i N o r m a l S c h o o l for s e v e n y e a r s , f r o m 1878 u n t i l 1885 ( L a t h r o p 1900,1902).
The Cincinnati Society for t h e Promotion of Useful K n o w l e d g e
(See A n t h o n y , John G o u l d ; T h e Western A c a d e m y o f Natural Sciences)
The Cincinnati Society of Natural History
T h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y w a s f o u n d e d i n 1870 ( A n o n . 1878, 1902). I n 1871 t h e r e m a i n i n g m e m b e r s o f t h e W e s t e r n A c a d e m y o f N a t u r a l S c i e n c e s d o n a t e d all t h e assets o f t h e a c a d e m y , i n c l u d i n g m o n e y , b o o k s , a n d t h e i r c o l l e c t i o n , t o t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History. Initially, t h e s o c i e t y r e n t e d r o o m s i n t h e b u i l d i n g o f t h e C i n c i n n a t i C o l l e g e . I n 1877 t h e s o c i e t y , u s i n g p a r t o f a b e q u e s t r e c e i v e d f r o m m e m b e r C h a r l e s B o d m a n , a c q u i r e d its o w n b u i l d i n g a t t h e s o u t h e a s t c o r n e r o f A r c h a n d B r o a d w a y . I n 1934 t h e s o c i e t y m o v e d t o n e w p r e m i s e s i n t h e b u i l d i n g o f t h e O h i o M e c h a n i c s Institute o n C e n t r a l P a r k w a y , a n d i n 1957 r e l o c a t e d
262
Appendix 2
t o its o w n b u i l d i n g o n G i l b e r t A v e n u e , i n t h e s o u t h w e s t c o r n e r o f E d e n Park ( A n o n . 1978). A t t h e s a m e t i m e , t h e n a m e o f t h e o r g a n i z a t i o n w a s c h a n g e d t o t h e C i n c i n n a t i M u s e u m o f N a t u r a l H i s t o r y a n d , w i t h t h e addition of a p l a n e t a r i u m , the C i n c i n n a t i M u s e u m of N a t u r a l History a n d P l a n e t a r i u m . W i t h t h e a b a n d o n m e n t o f t h e G i l b e r t A v e n u e facilities a n d a b s o r p t i o n into t h e C i n c i n n a t i M u s e u m C e n t e r a t U n i o n T e r m i n a l i n t h e 1990s, w h a t w a s o r i g i n a l l y t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y c e a s e d to exist as a s e p a r a t e entity.
L i s t e d as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
C o o k , W. E.
E l e c t e d a m e m b e r o f t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y i n 1878 a n d
Cooper, Edward M.
served a s c u r a t o r o f p a l e o n t o l o g y o f t h e s o c i e t y ( A n o n . 1 8 7 9 , 1 8 8 5 a ) .
E l i z a b e t h A . D a l v e , k n o w n t o h e r friends a s B e t t i n a , w a s a n illustrator a n d
Dalve, Elizabeth A.
part-time m u s e u m assistant i n t h e D e p a r t m e n t o f G e o l o g y a t t h e U n i v e r s i t y of C i n c i n n a t i . S h e p r e p a r e d a list of t h e stratigraphic o c c u r r e n c e s of t h e fossils i n t h e t y p e - C i n c i n n a t i a n ( B r a n d t a n d D a v i s 2007; D a l v e 1948,1951).
Deiss was born in C o v i n g t o n , Kentucky, and graduated from M i a m i University, O x f o r d , O h i o , w h e r e h e w a s a s t u d e n t o f S h i d e l e r . H e w a s t h e h e a d o f t h e I n d i a n a G e o l o g i c a l S u r v e y f r o m 1945 u n t i l t h e t i m e o f his d e a t h
Deiss, Charles Frederick (1903-1959)
( B e c k e r 1938; C r o n e i s 1963).
L i s t e d as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936); he is p r e s u m a b l y t h e s a m e
Dickhaut, Henry E.
p e r s o n a s H . E . D i c k h a u t , listed b y U l r i c h (1879b, 30).
T h e p r o p r i e t o r o f t h e W e s t e r n M u s e u m f r o m 1823 u n t i l s o m e t i m e i n t h e
Dorfeuille, Joseph
late 1830s ( D r a k e a n d M a n s f i e l d 1827; T r o l l o p e 1832; K e l l o g g 1945).
Dr. D r a k e w a s t h e o n e o f t h e m o s t s i g n i f i c a n t f o r c e s i n t h e i n t e l l e c t u a l life o f C i n c i n n a t i i n t h e first h a l f o f t h e n i n e t e e n t h c e n t u r y . H e w a s t h e m o t i -
Drake, Daniel (1785-1852)
v a t i n g force b e h i n d b o t h t h e W e s t e r n M u s e u m a n d t h e W e s t e r n A c a d e m y of Natural Sciences, and he was one of the "managers" of the Western M u s e u m a t t h e t i m e o f its f o u n d i n g ( C a s t e r 1982; H e n d r i c k s o n 1947; J o h n son 2002; S. A. M i l l e r 1882a; [ S i l l i m a n ] 1819).
T h e D r y D r e d g e r s are a g r o u p o f a m a t e u r fossil c o l l e c t o r s f o u n d e d i n 1942
Dry D r e d g e r s
in t h e w a k e of a d i s c u s s i o n a n d field trip series s p o n s o r e d by t h e D e p a r t -
Appendix 2
263
m e n t o f G e o l o g y a t t h e U n i v e r s i t y o f C i n c i n n a t i . T h e y are still g o i n g s t r o n g (Brandt and Davis
2007;
Dalve
1951).
Dyche, D. T. D.
( S e e c h a p t e r 2)
Dyer, Charles Brian (1806-1883)
( S e e c h a p t e r 2)
Embree, Jesse
O n e o f t h e " m a n a g e r s " o f t h e W e s t e r n M u s e u m a t t h e t i m e o f its f o u n d i n g , about
1820
([Silliman]
1819).
Faber, Charles (died 1930)
( S e e c h a p t e r 2)
Fales, J. C.
Professor J. C. Kales, of C e n t r e C o l l e g e . D a n v i l l e , K e n t u c k y , was the person w h o p r o v i d e d t h e s p e c i m e n s on w h i c h Monticulipora falesi U. P. James, 1884 w a s b a s e d a n d after w h o m t h e s p e c i e s w a s n a m e d (U. P. James 1884b).
Fenton, Carroll Lane
W a s t h e first F a b e r C u r a t o r i n t h e D e p a r t m e n t o f G e o l o g y a t t h e University o f C i n c i n n a t i ( C a s t e r 1982).
Findlay, James
O n e o f t h e " m a n a g e r s " o f t h e W e s t e r n M u s e u m a t the t i m e o f its f o u n d i n g ( [ S i l l i m a n ] 1819).
Foerste, A u g u s t F. (1862-1936)
A u g u s t Frederick Foerste was a long-time h i g h school teacher in D a y t o n , O h i o . H e w a s o n e o f f o r e m o s t w o r k e r s o n fossil n a u t i l o i d c e p h a l o p o d s . I n a d d i t i o n , h e w o r k e d e x t e n s i v e l y o n t h e fossils a n d stratigraphy o f t h e t y p e C i n c i n n a t i a n . His collection w e n t to the U.S. National M u s e u m in Washi n g t o n , D . C . I t w a s F o e r s t e w h o n a m e d t h e s p e c i e s o f trilobite n o w k n o w n as Flexicalymene meeki. T h e r e is e x t e n s i v e b i o g r a p h i c a l m a t e r i a l on Foerste a v a i l a b l e (Bassler 1937, 1947; B e c k e r 1938; B r a n d t a n d D a v i s 2007; C a s t e r 1 9 5 1 , 1 9 8 1 , 1 9 8 2 ; H o l l a n d 2000; S a n d y 1994; S h i d e l e r [1952] 2002).
Foster, W. B.
D o n a t e d a " v a l u a b l e c o l l e c t i o n o f fossils a n d m i n e r a l s " t o t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y i n S e p t e m b e r o f 1878. I n a b o u t 1869 S c h u c h e r t ' s father t o o k t h e y o u n g lad t o v i s i t " . . . W i l l i a m Foster's g e o l o g i c a l m u s e u m which opened to me an u n k n o w n world" (Schuchert, quoted by Becker 1938,193); this c o u l d h a v e b e e n W . B . Foster ( A n o n . 1879; B e c k e r 1938).
264
Appendix 2
T o w a r d t h e e n d o f its e x i s t e n c e , t h e W e s t e r n M u s e u m i n C i n c i n n a t i w a s
Franks' M u s e u m
best k n o w n as a c h a m b e r of horrors; in that b u s i n e s s it h a d a rival in t h e form o f F r a n k s ' M u s e u m ( T u c k e r 1965, 32).
L a w y e r ; listed as a l o c a l c o l l e c t o r by S h i d e l e r ([1952] 2002).
Fulton, Robert
L i s t e d as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
Gault, W m .
G e o r g e G r a h a m was one of the original m e m b e r s of the Western A c a d e m y
Graham, G e o r g e
o f N a t u r a l S c i e n c e s i n 1835, a n d h e w a s o n e o f t h e s e v e n s u r v i v i n g m e m b e r s o f the a c a d e m y w h e n its assets w e r e d o n a t e d t o t h e C i n c i n n a t i S o c i e t y o f
(1798-1881)
N a t u r a l History i n 1871. H i s c o l l e c t i o n o f fossils, s h e l l s , a n d p l a n t s , u n f o r tunately, w a s d e s t r o y e d in a fire ( A n o n . 1878; H e n d r i c k s o n 1947; J a m e s , H o w e , a n d N o r t o n 1881).
A u t h o r of the s p e c i e s Nereidavus varians G r i n n e l l , 1877, w h i c h w a s b a s e d on s c o l e c o d o n t s ; A l b e r t G a l l a t i n W e t h e r b y h a d sent G r i n n e l l s p e c i m e n s o f t h e s e
Grinnell, G e o r g e Bird
jaws o f a n n e l i d w o r m s from t h e t y p e - C i n c i n n a t i a n ( K n e l l , pers. c o m m . ) .
H e n r i M i l n e - E d w a r d s a n d Jules H a i m e d e s c r i b e d t h e t y p e - C i n c i n n a t i a n bryozoans
now
known
as
Parvohallopora
rugosa
and
Dekayia
Haime, Jules
aspera
( C u f f e y , D a v i s , a n d U t g a a r d 2002).
Mrs. M. P. Haines, of R i c h m o n d , Indiana, collected one of the specimens
Haines, M. P.
of t h e s p e c i e s of starfish, Palaeasterina approximate S. A. M i l l e r a n d D y e r , 1878a.
Listed a s curator o f p a l e o n t o l o g y o f t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History
Hall, J. H.
( A n o n . 1876); a l m o s t c e r t a i n l y t h e s a m e p e r s o n a s John W . H a l l , Jr., listed below.
James H a l l p r o p o s e d t h e r e s o l u t i o n for t h e e s t a b l i s h m e n t o f t h e W e s t e r n
Hall, James
A c a d e m y o f N a t u r a l S c i e n c e s o n A p r i l 25, 1835 ( H e n d r i c k s o n 1947, 140). T h i s i s a l m o s t c e r t a i n l y n o t t h e s a m e p e r s o n a s t h e J a m e s H a l l (1811-1898) w h o w a s o n e o f t h e m o s t e m i n e n t p a l e o n t o l o g i s t s o f t h e U n i t e d States i n t h e n i n e t e e n t h c e n t u r y . T h e latter h a i l e d f r o m N e w Y o r k , b u t d i d p a l e o n t o l o g i c a l w o r k all o v e r t h e c o u n t r y , i n c l u d i n g t h e C i n c i n n a t i r e g i o n , a n d he had c o n n e c t i o n s with various m e m b e r s of the C i n c i n n a t i S c h o o l (Hall 1845,1861,1872a, 1872b, 1883a, 1883b; H a l l a n d W h i t f i e l d 1875). B i o g r a p h i c a l
Appendix 2
265
i n f o r m a t i o n a b o u t J a m e s H a l l o f N e w Y o r k i s v o l u m i n o u s a n d far f l u n g ( B e c k e r 1938; C a s t e r 1951, 1982, 1985; C r o n e i s 1963; M e r r i l l [1924] 1964; S h e r b o r n 1940; S h i d e l e r [1952] 2002).
Hall, John W., Jr.
J. W. H a l l , Jr., is listed as c u r a t o r of p a l e o n t o l o g y of the C i n c i n n a t i S o c i e t y of N a t u r a l History from 1874 to 1877, a n d as c o r r e s p o n d i n g secretary of t h e society in 1877 a n d 1878 ( A n o n . 1878). L a t e r that year, he d o n a t e d s o m e fossils to t h e s o c i e t y ( A n o n . 1879). H e also served t h e s o c i e t y a s curator o f m i n e r a l o g y ( A n o n . 1885b). H e c o - a u t h o r e d a p a p e r w i t h a n u m b e r o f m e m b e r s o f t h e C i n c i n n a t i S c h o o l a n d o t h e r l o c a l fossil c o l l e c t o r s (S. A . M i l l e r e t al. 1879). J. W. H a l l , of C o v i n g t o n , is listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
H a m m o n d , W. E.
O f M a d i s o n , s o listed a s a l o c a l fossil c o l l e c t o r b y N i c k l e s (1936).
Harper, G e o r g e W. (1832-1918)
( S e e c h a p t e r 2)
Harris, I. H.
The collection of I. H. Harris, of Waynesville, O h i o , provided specimens u p o n w h i c h a n u m b e r of species originally were based, including some n a m e d after h i m (S. A . M i l l e r 1 8 7 8 , 1 8 8 0 , 1 8 8 1 , 1 8 8 2 b , 1882d, 1883b, 1884. A t least p a r t o f his c o l l e c t i o n e n d e d u p i n t h e N a t i o n a l M u s e u m o f N a t u r a l History, i n W a s h i n g t o n , D . C . ( S a n d y 1996; S h i d e l e r [1952] 2002). T h e " I . M . H a r r i s " listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936) is probably the s a m e p e r s o n a s " I . H . H a r r i s , " a s i s t h e " I . H a r r i s " o f B e c k e r (1938).
Harvey, J. W.
J. W. H a r v e y b o u g h t t h e t y p e - s p e c i m e n of t h e starfish, Palaeasterina speciosa S . A . M i l l e r a n d D y e r , 1878 f r o m W . C . B a r n h a r t a n d , i n t u r n , sold i t t o C . B . D y e r ( M i l l e r a n d D y e r 1878a).
Hayden, F. V.
F e r d i n a n d V a n d e v e e r H a y d e n i s m o s t f a m o u s for his h a v i n g b e e n t h e leader o f t h e U n i t e d States G e o l o g i c a l a n d G e o g r a p h i c a l S u r v e y o f the Territories, one o f t h e g r e a t surveys o f t h e A m e r i c a n W e s t , w h i c h e m p l o y e d L e s q u e r e u x (q.v.), a m o n g m a n y o t h e r n o t a b l e g e o l o g i s t s o f t h e day. I n 1879 t h e H a y d e n S u r v e y w a s o n e o f t h r e e federal surveys c o n s o l i d a t e d t o b e c o m e the t h e n - n e w U n i t e d States G e o l o g i c a l Survey. M e e k a n d W o r t h e n , a l o n g w i t h F . B . M e e k (q.v.), p r o p o s e d t h e u s e o f t h e t e r m " C i n c i n n a t i G r o u p " for t h e b o d y o f rocks in the C i n c i n n a t i r e g i o n that h i t h e r t o h a d b e e n referred to as the " H u d s o n River G r o u p " ; t h e y thus p r o p o s e d t h e c o n c e p t o f t h e C i n c i n n a t i a n (Bartlett 1962; M e r r i l l [1924] 1964; M e e k a n d W o r t h e n 1865a; W i l m a r t h 1925).
266
Appendix 2
" A n d r e w H e r r l i n g e r , later an a t t o r n e y in C i n c i n n a t i " is listed as a l o c a l
Herrlinger, A n d r e w
fossil c o l l e c t o r by N i c k l e s (1936).
It was Reverend Herzer w h o introduced E. O. U l r i c h , then seven years old,
Herzer, Henry
t o t h e w o n d e r s o f fossil c o l l e c t i n g ( C r o n e i s 1963; U l r i c h 1891).
Dr. Hill was associated with the C i n c i n n a t i Society of Natural History in
Hill, H. H.
t h e 1870s, i n c l u d i n g v a r i o u s t e r m s a s c u r a t o r o f a r c h a e o l o g y , c u r a t o r o f c o n c h o l o g y , a n d l i b r a r i a n ( A n o n . 1876, 1878). He a l s o is listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
Professor R . H . H o l b r o o k , o f t h e N a t i o n a l N o r m a l U n i v e r s i t y , L e b a n o n ,
Holbrook, R. H.
W a r r e n C o u n t y , O h i o , l e n t t h e m a t e r i a l u p o n w h i c h Stromatopora subcylindrica o r i g i n a l l y w a s b a s e d (U. P. J a m e s 1884a).
L . M . H o s e a w a s c o - p r o p r i e t o r a n d c o - e d i t o r o f t h e Cincinnati Quarterly
Hosea, L. M.
Journal of Science, a l o n g w i t h S. A. M i l l e r , d u r i n g its s e c o n d y e a r of p u b l i c a t i o n , 1875, a c c o r d i n g t o t h e c o v e r s o f t h e j o u r n a l .
Curator of comparative a n a t o m y in the C i n c i n n a t i S o c i e t y of Natural His-
Howe, A. J.
tory ( A n o n . 1876).
D r . H u n t e r c o l l e c t e d o n e o f t h e s p e c i m e n s o n w h i c h t h e s p e c i e s Conularia
Hunter, W. H. H.
formosa w a s b a s e d ( M i l l e r a n d D y e r 1878a).
T h o m a s H e n r y H u x l e y was o n e of the foremost naturalists in G r e a t Britain
Huxley, T. H.
during the second half of the nineteenth century, and he was a vigorous p r o p o n e n t o f t h e idea o f o r g a n i c e v o l u t i o n . H u x l e y visited C i n c i n n a t i o n a t least t w o o c c a s i o n s , b u t h e o n l y s t a y e d o v e r n i g h t e a c h t i m e , a n d h e d i d n o t give a n y s p e e c h e s n o r m a k e a n y f i e l d trips (Kritsky, p e r s . c o m m . ) .
( S e e c h a p t e r 2)
James, Joseph Francis (1857-1897)
( S e e c h a p t e r 2)
James, Uriah Pierson (1811-1889)
Appendix 2
267
Kemper, Willis
L a w y e r ; listed as a l o c a l c o l l e c t o r by S h i d e l e r ([1952] 2002).
Lathrop, J. P.
D o n a t e d a c o l l e c t i o n o f fossils t o t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History ( A n o n . 1882).
Lesquereux, Leo (1806-1889)
( C h a r l e s ) L e o L e s q u e r e u x w a s b o r n i n S w i t z e r l a n d i n 1806 b u t m o v e d t o t h e U n i t e d States i n 1848. H e b e c a m e , p e r h a p s , t h e f o r e m o s t p a l e o b o t a n i s t o f his d a y i n t h e U n i t e d States. H e w o r k e d for a n u m b e r o f t h e state g e o l o g i c a l s u r v e y s , i n c l u d i n g t h e Illinois s u r v e y o f A . H . W o r t h e n (q.v.), a n d also w o r k e d for t h e g r e a t s u r v e y o f t h e A m e r i c a n W e s t h e a d e d b y F . V . H a y d e n (q.v.). L e s q u e r e u x a u t h o r e d t w o p a p e r s o n w h a t w e r e t h e n c o n s i d e r e d t o b e l a n d p l a n t s i n t h e r o c k s o f t h e t y p e - C i n c i n n a t i a n . H e d i e d i n 1889, a n d E d w a r d O r t o n (q.v.) w a s o n e o f h i s p a l l b e a r e r s ( B a r t l e t t 1962; M e r r i l l [1924] 1964; L e s q u e r e u x 1 8 7 4 , 1 8 7 8 , 2006; T r i t t 2006).
Letton's M u s e u m
M e s s r s . L e t t o n a n d W i l l e t f o u n d e d a m u s e u m i n C i n c i n n a t i i n 1818—just a b o u t t h e s a m e t i m e t h a t t h e W e s t e r n M u s e u m w a s initiated b y D r . D a n i e l D r a k e a n d his c o l l e a g u e s . I n 1826 R a l p h L e t t o n w a s t h e proprietor, a n d the m u s e u m o c c u p i e d t w o storeys o f a b u i l d i n g a t t h e c o r n e r o f M a i n a n d F o u r t h Streets. E x h i b i t e d there w e r e birds, m a m m a l s , minerals, shells, fossils ( i n c l u d i n g f i f t y m a m m o t h b o n e s ) , a n t i q u i t i e s , a n d , a s w a s c o m m o n i n t h o s e d a y s , w a x f i g u r e s . ( D r a k e a n d M a n s f i e l d 1827).
Lindahl, Josua (1844-1912)
D r . ( J o h a n H a r a l d ) Josua L i n d a h l w a s b o r n a n d e d u c a t e d i n S w e d e n . H e w a s c u r a t o r o f t h e Illinois State M u s e u m o f N a t u r a l History a n d state g e o l o gist o f I l l i n o i s , a n d t h e n w a s d i r e c t o r o f t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History, 1 8 9 5 - 1 9 0 6 ( A n o n . 1912; L i n d a h l 1906; U l r i c h 1891).
Locke, John (1792-1856)
Dr. L o c k e was a c h e m i s t , educator, geologist, paleontologist, inventor of s c i e n t i f i c i n s t r u m e n t s , a n d m o r e ; for e x a m p l e , h e w a s o n e o f t h e earliest p h o t o g r a p h e r s i n C i n c i n n a t i ( G a g e l 1998). A s a n assistant g e o l o g i s t i n t h e M a t h e r Survey, the first geological survey of O h i o , he was the author of the 1838 r e p o r t o n t h e g e o l o g y o f s o u t h w e s t e r n O h i o ( L o c k e 1838). H e has b e e n credited as the first local a m a t e u r to b e c o m e a professional geologist, and he was the first person to r e c o g n i z e what is n o w called the C i n c i n n a t i A r c h . He was o n e of the hosts w h e n C h a r l e s Lyell, probably the foremost g e o l o g i s t o n E a r t h , visited t h e C i n c i n n a t i a r e a ( L y e l l 1845). T h e majority o f D r . L o c k e ' s p a l e o n t o l o g i c a l c o n t r i b u t i o n s d e a l t w i t h l o c a l trilobites. B i o g r a p h i c a l m a t e r i a l s o n D r . L o c k e are v o l u m i n o u s a n d far f l u n g ( B a r t k y 2000; B e c k e r 1938; B r a n d t a n d D a v i s 2007; D e x t e r 1979; D r a k e a n d M a n s f i e l d 1827; H a n s e n a n d C o l l i n s 1 9 7 9 ; H e n d r i c k s o n 1947; M e r r i l l [1924] 1964; S . A . M i l l e r 1882a; S h o t w e l l 1902; T r o l l o p e 1832; W i n c h e l l 1894).
268
Appendix 2
T h e E n g l i s h m a n , C h a r l e s Lyell, was o n e of the founders of the science of
Lyell, Charles
g e o l o g y as we k n o w it today. In 1842 he a c c e p t e d an invitation f r o m t h e W e s t ern A c a d e m y o f N a t u r a l S c i e n c e s t o c o m e t o C i n c i n n a t i . His hosts w e r e John L o c k e , R o b e r t B u c h a n a n , J . G . A n t h o n y , a n d Joseph C l a r k , a n d t h e y visited localities i n t h e area, i n c l u d i n g B i g B o n e L i c k , K e n t u c k y , w o r l d f a m o u s for its r e m a i n s of Ice A g e m a m m a l s ( H e n d r i c k s o n 1947; L y e l l 1845).
S i d n e y S m i t h L y o n w a s b o r n i n C i n c i n n a t i . H e w a s o n e o f t h e assistant g e o l o g i s t s i n t h e g e o l o g i c a l s u r v e y o f K e n t u c k y b y D a v i d D a l e O w e n (q.v.),
Lyon, Sidney S. (1808-1872)
a n d h e a u t h o r e d o r c o - a u t h o r e d a n u m b e r o f s c i e n t i f i c p a p e r s o f fossil e c h i n o d e r m s o f I n d i a n a , K e n t u c k y , a n d O h i o (S. A . M i l l e r 1882a).
W. W. M a t h e r was c h i e f geologist of the first geological survey of O h i o (1836-1838). Assistant g e o l o g i s t s i n c l u d e d John L o c k e a n d C h a r l e s W h i t -
Mather, William W. (1804-1859)
tlesey ( M e r r i l l [1924] 1964; S. A. M i l l e r 1882a).
Of O x f o r d , so listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
McCord, D. A.
Fielding Bradford M e e k , a l t h o u g h born in M a d i s o n , Indiana, was mostly
M e e k , F. B. (1817-1876)
associated with the S m i t h s o n i a n Institution in W a s h i n g t o n , D . C . He is w e l l k n o w n for his i n v o l v e m e n t w i t h t h e g r e a t g e o l o g i c a l s u r v e y s o f t h e A m e r i c a n W e s t ( B a r t l e t t 1962), a n d h e a u t h o r e d m a n y p a l e o n t o l o g i c a l c o n t r i b u t i o n s . O f m o s t interest t o r e a d e r s o f this v o l u m e i s t h e fact t h a t h e w a s t h e a u t h o r o f t h e 1873 O h i o G e o l o g i c a l S u r v e y r e p o r t o n fossils o f t h e t y p e C i n c i n n a t i a n ( M e e k 1873), a n d a c o l l e c t i o n o f h i s O h i o s p e c i m e n s w e n t t o C o l u m b i a University (Sherborn
1940).
Moreover, M e e k and Worthen
(1865a) p r o p o s e d t h e u s e o f t h e t e r m " C i n c i n n a t i G r o u p " for t h e b o d y o f rocks i n t h e C i n c i n n a t i r e g i o n t h a t h i t h e r t o h a d b e e n referred t o t h e " H u d son River G r o u p " ; t h e y t h u s p r o p o s e d t h e c o n c e p t o f t h e C i n c i n n a t i a n . B i o g r a p h i c a l m a t e r i a l s o n F . B . M e e k are e x t e n s i v e ( B e c k e r i 9 3 8 ; B r a n d t a n d D a v i s 2007; C a s t e r 1981,1982; C r o n e i s 1963; M e r r i l l [1924] 1964; S . A . M i l l e r 1882a; W h i t e 1 8 7 7 , 1 8 9 6 , 1 9 0 2 ) .
( S e e c h a p t e r 2)
Mickleborough, John
D r . M i l l e r c o l l e c t e d o n e o f t h e s p e c i m e n s o n w h i c h t h e s p e c i e s Conularia
Miller, C. A.
formosa w a s b a s e d ( M i l l e r a n d D y e r 1878a). T h e l o c a l t r i l o b i t e , Ceraurus milleranus, w a s n a m e d after h i m (S. A . M i l l e r a n d G u r l e y 1893). D r . M i l l e r also w a s t h e a u t h o r o f a s h o r t p a p e r o n p r e s e n t - d a y u n i o n i d c l a m s ( C . A . M i l l e r 1874; J o h n s o n 2002).
Appendix 2
269
Miller, Samuel A l m o n d (1837-1897)
Milne-Edwards, Henri
( S e e c h a p t e r 2)
H e n r i M i l n e - E d w a r d s a n d Jules H a i m e d e s c r i b e d t h e C i n c i n n a t i a n b r y o z o a n s n o w k n o w n as Parvohallopora rugosa a n d Dekayia aspera ( C u f f e y , D a v i s , a n d U t g a a r d 2002).
Misener, John
L i s t e d as a c o l l e c t o r of fossils at R i c h m o n d , I n d i a n a , by Foerste (1917), w h o n a m e d Conchopeltis miseneri a n d Conularia miseneri after h i m .
Misener, S. R.
Of R i c h m o n d , I n d i a n a , so listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
Mohr, Paul
M o h r w a s associated w i t h t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History i n the 1870s (S. A. M i l l e r et al. 1879), a n d t h e c e p h a l o p o d Orthoceras mohri w a s n a m e d after h i m (S. A . M i l l e r 1875b). M o h r also w a s involved w i t h F r e d e r i c k B r a u n , a n o t h e r C i n c i n n a t i c o l l e c t o r , i n e x c a v a t i o n s for c r i n o i d s f r o m C a r b o n i f e r o u s rocks a t C r a w f o r d s v i l l e , I n d i a n a ( V a n S a n t a n d L a n e 1964).
M o o r e , Richard B. (1815-1885)
L i s t e d a s a l o c a l fossil c o l l e c t o r b y N i c k l e s (1936). H e w a s a n o r i g i n a l m e m b e r o f t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History, c u s t o d i a n 1873-1877, t r u s t e e 1 8 7 6 - 1 8 7 8 , a n d p r e s i d e n t 1 8 7 7 - 1 8 7 8 ( A n o n . 1876, 1878; C o t t o n , B y r n e s , a n d H e i g h w a y 1885).
Newberry, J. S. (1822-1892)
John S t r o n g N e w b e r r y w a s b o r n i n C o n n e c t i c u t , b u t m o v e d t o O h i o a t the a g e o f t w o ; h e r e c e i v e d h i s m e d i c a l d e g r e e i n t h e C l e v e l a n d area i n 1848. H i s c o n n e c t i o n t o t h e t y p e - C i n c i n n a t i a n lies i n t h e fact that h e h e a d e d t h e S e c o n d G e o l o g i c a l S u r v e y o f O h i o (1869-1878); h e e m p l o y e d F . B . M e e k (q.v.), a n d t h e O h i o S u r v e y p u b l i s h e d o n e o f t h e i m p o r t a n t c o n t r i b u t i o n s t o t h e p a l e o n t o l o g y o f t h e t y p e - C i n c i n n a t i a n ( M e e k 1873). N e w b e r r y ' s 1874 paper, " O n the So-called L a n d Plants from the L o w e r Silurian of O h i o , " w a s r e p u b l i s h e d t h e s a m e year, b u t w i t h o u t t h e f i g u r e s , in t h e Cincinnati Quarterly Journal of Science, w h i c h w a s , of c o u r s e , e d i t e d by S. A. M i l l e r ( M e e k 1873; M e r r i l l [1924] 1964; N e w b e r r y 1874).
N e w t o n , A. J.
Dr. N e w t o n , of R i c h m o n d , Indiana, collected one of the specimens of Enoploura d e s c r i b e d by W e t h e r b y (1879a).
Nicholson, H. Alleyn (1844-1899) 270
A l t h o u g h h e did study C i n c i n n a t i a n b r y o z o a n s i n t h e 1870s a n d 1880s, N i c h o l s o n , a professor at t h e U n i v e r s i t y of A b e r d e e n , S c o t l a n d , was n o t a m e m b e r
Appendix 2
o f the C i n c i n n a t i S c h o o l . I t w a s N i c h o l s o n w h o i n t r o d u c e d the study o f t h i n sections t o t h e study o f b r y o z o a n s ( C u f f e y , D a v i s , a n d U t g a a r d 2002). T h e n a m e Ceramopora nicholsoni w a s p r o p o s e d for a s p e c i e s of b r y o z o a n by U. P. James (1875).
( S e e c h a p t e r 2)
Nickles, John M. (1859-1945)
(See C i n c i n n a t i N o r m a l S c h o o l )
Normal School
G e o r g e O e h h a d a c o l l e c t i o n o f fossils that i n c l u d e d m a n y fine C i n c i n n a t i
Oeh, George
crinoids, a n d Heterocrinus (locrinus) oehanus w a s n a m e d after h i m ( U l r i c h 1882).
O ' N e a l l w a s a fossil c o l l e c t o r f r o m L e b a n o n , O h i o ; t h e trilobite, Acidaspis
O'Neall, J. Kelly
onealli, w a s n a m e d after h i m (S. A . M i l l e r 1875a). T h e s p e c i e s o f b r y o z o a n n o w c a l l e d Parvohallopora onealli w a s n a m e d by U.
P. J a m e s , w h o spelt
O ' N e a l l ' s m i d d l e n a m e " K e l l e y " ( U . P . J a m e s 1875).
T h e French paleontologist, Alcide d'Orbigny, described the C i n c i n n a t i a n bryozoans
Monticulipora
mammulata,
Parvohallopora
ramosa,
and
d'Orbigny, Alcide
Het-
erotrypa frondosa ( C u f f e y , D a v i s , a n d U t g a a r d 2002; d ' O r b i g n y 1850).
E d w a r d O r t o n was b o r n i n D e l a w a r e C o u n t y , N e w York, a n d his initial e d u c a tion was in that state. He also w e n t to seminary, i n c l u d i n g a stint at t h e L a n e
O r t o n , Edward (1829-1899)
T h e o l o g i c a l S e m i n a r y in C i n c i n n a t i , a n d he was o r d a i n e d as a Presbyterian minister. S o m e w h a t later, he b e c a m e professor of natural s c i e n c e at A n t i o c h C o l l e g e , and then its president. In 1873, he was a p p o i n t e d president of a n e w institution, the O h i o A g r i c u l t u r a l a n d M e c h a n i c a l C o l l e g e , and also professor of g e o l o g y there; u n d e r his leadership, the c o l l e g e prospered and w a s r e n a m e d t o b e c o m e T h e O h i o State University. I n 1869, O r t o n w a s o n e o f t w o principal assistants t o John Strong N e w b e r r y a n d t h e S e c o n d G e o l o g i c a l S u r v e y o f O h i o . In 1882, he s u c c e e d e d N e w b e r r y as state geologist of O h i o , a n d , as s u c h , he gave e m p l o y m e n t to U l r i c h a n d to Foerste. O r t o n b e c a m e a nationally r e c o g n i z e d scientific figure, a n d , in 1897, he was e l e c t e d president of the G e o l o g i c a l S o c i ety of A m e r i c a ( C r o n e i s 1963; H a n s e n a n d C o l l i n s 1979; M e r r i l l [1924] 1964).
E d w a r d O r t o n , Jr., w a s a p p o i n t e d state g e o l o g i s t o f O h i o u p o n t h e d e a t h
O r t o n , Edward, Jr.
of his father in 1899 a n d s e r v e d in t h a t p o s i t i o n u n t i l h i s r e s i g n a t i o n in 1906 ( H a n s e n a n d C o l l i n s 1979).
Appendix 2
271
O w e n , David Dale (1807-1860)
D a v i d D a l e O w e n , a l t h o u g h n o t a m e m b e r o f t h e C i n c i n n a t i S c h o o l , did m u c h work in the region, a n d , indeed, in m u c h of the A m e r i c a n Midwest. He had c o n n e c t i o n s with the Western A c a d e m y of Natural S c i e n c e s , and the C i n c i n n a t i a n
bryozoan,
Fistulipora oweni,
was n a m e d
after h i m
( B e c k e r 1938; C r o n e i s 1963; H e n d r i c k s o n 1947; U. P. J a m e s 1879c, 1884a; M e r r i l l [1924] 1964; S. A. M i l l e r 1882a).
Patterson, W. J.
W i l l i a m J. Patterson w a s listed as a l o c a l fossil c o l l e c t o r by W e t h e r b y (1879a) a n d b y N i c k l e s (1936). T h e C i n c i n n a t i a n c r i n o i d , Glyptocrinus pattersoni, w a s n a m e d after h i m (S. A . M i l l e r 1882b).
Plummer, John T.
D r . P l u m m e r w a s t h e a u t h o r o f a n early p a p e r o n t h e g e o l o g y o f t h e area a b o u t R i c h m o n d , I n d i a n a , i n w h i c h fossils are d i s c u s s e d a n d illustrated ( P l u m m e r 1843).
Probasco, Henry (1820-1902)
Henry Probasco was in the hardware business in C i n c i n n a t i . He was an o r i g i n a l m e m b e r o f t h e C i n c i n n a t i S o c i e t y o f N a t u r a l History, a n d his c o l l e c t i o n o f fossils c a m e t o t h e U n i v e r s i t y o f C i n c i n n a t i . I t w a s h e w h o c o m missioned the Tyler D a v i d s o n Fountain, w h i c h gives the n a m e to Fountain S q u a r e i n d o w n t o w n C i n c i n n a t i . I n a r o u n d 1875 P r o b a s c o a p p a r e n t l y p r o posed the establishment of a " C i n c i n n a t i M u s e u m of Science and Art" a l o n g t h e l i n e s o f t h e British M u s e u m ( A n o n . 1 8 7 5 , 1 8 7 8 ; C a s t e r 1951,1982; C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y ; W r i t e r s ' P r o g r a m o f t h e W o r k Proje c t s A d m i n i s t r a t i o n i n t h e S t a t e o f O h i o 1943).
Rafinesque, C. S. (1783-1840)
C o n s t a n t i n e S a m u e l R a f i n e s q u e - S c h m a l t z i s b e s t k n o w n t o fossil c o l l e c tors b e c a u s e o f t h e c o m m o n C i n c i n n a t i a n b r a c h i o p o d , Rafinesquina H a l l a n d C l a r k e , 1892. R a f i n e s q u e w a s b o r n i n T u r k e y , i n w h a t w a s t h e n C o n s t a n t i n o p l e , b u t h e t r a v e l e d w i d e l y , i n c l u d i n g t h e U n i t e d States, w h e r e h e e v e n t u a l l y s e t t l e d . R a f i n e s q u e t a u g h t for a t i m e at T r a n s y l v a n i a C o l l e g e in L e x i n g t o n , Kentucky, and he gave public lectures at the C i n c i n n a t i m u s e u m o f Joseph D o r f e u i l l e ((/.v.). H e s e e m s t o h a v e b e e n p r i m a r i l y a b o t a nist, b u t his interests w e r e v e r y far r e a c h i n g , a n d h e n a m e d m a n y g e n e r a a n d s p e c i e s in a m u l t i t u d e of d i f f e r e n t t a x o n o m i c g r o u p s . He w a s a prolific a u t h o r , b u t m a n y o f his w o r k s w e r e i n o b s c u r e p u b l i c a t i o n s o r e v e n selfp u b l i s h e d , a n d m a n y are q u i t e rare. T h i s m a y b e p a r t o f t h e r e a s o n that his s c i e n t i f i c w o r k i s n o t h i g h l y r e g a r d e d today. T h e r e i s e x t e n s i v e b i o g r a p h i c a l m a t e r i a l on R a f i n e s q u e a v a i l a b l e ( C a s t e r 1982; J o h n s o n 2002; M e r r i l l [1924] 1964; S. A. M i l l e r 1882a; R a f i n e s q u e 1836).
Reinhardt, E.
E . R e i n h a r d t c o l l e c t e d t h e t y p e - s p e c i m e n o f t h e c r i n o i d s p e c i e s Glyptocrinus angularis S. A. M i l l e r a n d D y e r , 1878a.
272
Appendix 2
J. M. Richardson, of W i l m i n g t o n , C l i n t o n C o u n t y , O h i o , found the original
Richardson, J. M.
s p e c i m e n s of the c r i n o i d s p e c i e s Glyptocrinus richardsoni W e t h e r b y , 1880.
Dr. R i d d e l l , a f a m o u s botanist, w a s part of the f a c u l t y of the M e d i c a l D e p a r t -
Riddell, John L.
m e n t o f C i n c i n n a t i C o l l e g e , a short-lived m e d i c a l c o l l e g e f o u n d e d b y D a n i e l D r a k e (Writers' P r o g r a m o f t h e W o r k Projects A d m i n i s t r a t i o n i n t h e State o f O h i o 1943). A b o u t t h e s a m e t i m e , Dr. R i d d e l l w a s a c u r a t o r o f t h e W e s t e r n A c a d e m y of N a t u r a l S c i e n c e s , b e g i n n i n g in A p r i l of 1835 ( H e n d r i c k s o n 1947).
Carl L u d w i g R o e m i n g e r was born in G e r m a n y and earned a m e d i c a l degree
Roeminger, Carl
(but w i t h a g e o l o g i c a l thesis!) at T u b i n g e n . At t h e t i m e of t h e 1848 r e v o l u tions, h e m o v e d t o C i n c i n n a t i , w h i c h , a t that t i m e , h a d a large G e r m a n s p e a k i n g p o p u l a t i o n , a n d h e p r a c t i c e d m e d i c i n e t h e r e for s o m e twenty-five years. H e studied w h a t are n o w k n o w n t o b e fossil b r y o z o a n s — a s spare t i m e f r o m h i s m e d i c a l d u t i e s w o u l d allow. I t w a s h e w h o n a m e d Rhombotrypa quadrata ( R o e m i n g e r , 1866). A b o u t that s a m e t i m e , h e m o v e d t o M i c h i g a n , w h e r e he s i m u l t a n e o u s l y c o n d u c t e d a m e d i c a l p r a c t i c e , w a s a professor of g e o l o g y a t t h e University o f M i c h i g a n , a n d w a s M i c h i g a n ' s state g e o l o g i s t . Roeminger's n a m e appears both with and without the u m l a u t over the " o " or the " e " after t h e " o " ( C u f f e y , D a v i s , a n d U t g a a r d 2002; M e r r i l l [1924] 1964).
A p l u m b e r by trade, C h a r l e s S c h l e m m e r was an associate of E. O. Ulrich a n d C h a r l e s S c h u c h e r t i n t h e i r e a r l y c o l l e c t i n g d a y s . S c h l e m m e r ' s interest
Schlemmer, Charh (died 1933)
in fossils is said to h a v e b e e n a w a k e n e d l a r g e l y by C h a r l e s F a b e r , as w a s that o f A s h e r m a n n , T w i t c h e l l , V a u p e l , a n d o t h e r s ( S h i d e l e r [1952] 2002).
( S e e c h a p t e r 2)
Schuchert, Charle (1858-1942)
Scott, w h o b e c a m e an e m i n e n t vertebrate paleontologist, was b o r n in C i n -
Scott, William Berryman (1858-1947)
c i n n a t i o n F e b . 12,1858. I n a r o u n d 1861 h i s f a m i l y d e p a r t e d C i n c i n n a t i for g o o d a n d m o v e d t o C h i c a g o , a n d t h e n t o P r i n c e t o n , N e w Jersey. S c o t t ' s b i r t h p l a c e p r o b a b l y h a d little o r n o t h i n g t o d o w i t h his p a l e o n t o l o g i c c a r e e r ( C r o n e i s 1963; S i m p s o n 1984).
Dr.
Scoville collected
n e a r L e b a n o n , O h i o ; Orthis scovillei w a s n a m e d
Scoville, S. S.
after h i m (S. A . M i l l e r 1882c).
S h a l e r was b o r n a n d reared i n n o r t h e r n K e n t u c k y . H e s t u d i e d u n d e r L o u i s A g a s s i z a n d spent t h e b u l k o f his c a r e e r a t H a r v a r d University. S h a l e r m u s t
Appendix 2
Shaler, Nathaniel Southgate (1841-1906) 273
h a v e b e e n a n e x t r a o r d i n a r y i n d i v i d u a l ; for e x a m p l e , f r o m 1874 t o 1880, h e t a u g h t at H a r v a r d , w a s state g e o l o g i s t of K e n t u c k y , a n d w a s p r e s i d e n t of a m i n i n g c o m p a n y i n M o n t a n a , all a t t h e s a m e t i m e . I n t h e u p p e r e c h e l o n o f his profession, h e served a s p r e s i d e n t o f t h e G e o l o g i c a l S o c i e t y o f A m e r i c a i n 1895 a n d w a s a m e m b e r o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s , b u t h e also was a c o n t r i b u t o r to t h e Atlantic Monthly a n d to Scrihner's m a g a z i n e and w r o t e five r o m a n t i c d r a m a s in b l a n k verse. A l t h o u g h S h a l e r did a u t h o r a p a p e r that i n v o l v e d b r a c h i o p o d s o f t h e C i n c i n n a t i r e g i o n , h e w a s n o t really a m e m b e r o f the C i n c i n n a t i S c h o o l ( B e c k e r 1938; C a s t e r 1951,1982; C r o n e i s 1963; H o b b s 1907; L i v i n g s t o n e 1987; S h a l e r 1876; S h i d e l e r [1952] 2002).
Shideler, W. H. (1886-1958)
W i l l i a m Henry Shideler was born in West M i d d l e t o w n , O h i o , and graduated i n 1907 f r o m M i a m i University, O x f o r d , O h i o . I m m e d i a t e l y u p o n receipt o f his d o c t o r a t e a t C o r n e l l U n i v e r s i t y i n 1910, h e r e t u r n e d t o his a l m a mater, w h e r e h e s p e n t t h e rest o f h i s life o n t h e faculty. H e w a s r e c o g n i z e d a s a n e x c e p t i o n a l t e a c h e r , a n d , e v e n t h o u g h his p u b l i c a t i o n record w a s not e x t e n sive ( S h i d e l e r 1914,1916,1918,1939), his k n o w l e d g e of the l o c a l rocks a n d fossils w a s extraordinary, a n d his i n f l u e n c e o n c o h o r t s o f students and c o l l e a g u e s w a s p r o f o u n d . A l t h o u g h n o t really a m e m b e r o f t h e C i n c i n n a t i S c h o o l , h e did k n o w s o m e o f t h e m p e r s o n a l l y a n d e v e n spent t i m e i n t h e f i e l d w i t h a t least U l r i c h a n d F a b e r ( B e c k e r 1938; C a s t e r 1951,1961a, 1985; C r o n e i s 1963; S h i d e l e r [1952] 2002).
Stevens, W. J.
W . J . S t e v e n s , o f L e b a n o n , O h i o , c o l l e c t e d t h e t y p e - s p e c i m e n o f t h e starfish s p e c i e s Palaeaster simplex S. A. M i l l e r a n d D y e r , 1878a.
Trollope, Frances
T h e m o t h e r o f British n o v e l i s t A n t h o n y T r o l l o p e . D u r i n g h e r stay i n C i n cinnati, she had s o m e association with the Western M u s e u m and with Joseph D o r f e u i l l e . H e r r e f e r e n c e t o a " D r . L o c k " a p p a r e n t l y w a s t o John L o c k e ( T r o l l o p e 1832).
T w e n h o f e l , William Henry (1875-1957)
T w e n h o f e l w a s b o r n n e a r C o v i n g t o n , K e n t u c k y , just across t h e O h i o River from C i n c i n n a t i , a n d reared in the area. He taught in K e n t u c k y public s c h o o l s for six years a n d e a r n e d a b a c h e l o r ' s d e g r e e from the N a t i o n a l Norm a l University i n L e b a n o n , O h i o , i n 1904. H i s g e o l o g i c a l t r a i n i n g was a t Y a l e University, w h e r e S c h u c h e r t t a u g h t . The b u l k o f T w e n h o f e l ' s c a r e e r w a s s p e n t a t t h e U n i v e r s i t y o f W i s c o n s i n . H e served a s president o f t h e P a l e o n t o l o g i c a l S o c i e t y in 1931, b u t he is b e s t r e m e m b e r e d as o n e of the f o u n d e r s of t h e f i e l d o f s e d i m e n t o l o g y ( B e c k e r 1938; C r o n e i s 1963; D o t t 2000).
Twitchell, G e o r g e B. (died 1933)
G e o r g e T w i t c h e l l w a s a p h y s i c i a n a n d a m a t e u r fossil c o l l e c t o r w h o s e interest in fossils is said to h a v e b e e n a w a k e n e d largely by C h a r l e s Faber, as w a s that
274
Appendix 2
of A s h e r m a n n , S c h l e m m e r , Vaupel, and others. He was elected to m e m b e r ship in the C i n c i n n a t i S o c i e t y of N a t u r a l History in 1885. H i s large c o l l e c t i o n of type-Cincinnatian bryozoans, including thin-sections, was bequeathed to the University o f C i n c i n n a t i . H e served a s c u r a t o r o f m i c r o s c o p y a t t h e s o c i e t y and a u t h o r e d several scientific p a p e r s , a l t h o u g h n o t on fossils ( A n o n . 1885a; C a s t e r 1982; S h i d e l e r [1952] 2002; T w i t c h e l l 1885,1887,1934).
( S e e c h a p t e r 2)
Ulrich, E. O. (1857-1944)
G e o r g e V a l l a n d i g h a m , o f C i n c i n n a t i , w a s a n a c t i v e c o l l e c t o r after w h o m
Vallandigham, G e o r g e L.
Cyrtoceras vallandighami S. A. M i l l e r , 1874 w a s n a m e d . He a l s o c o l l e c t e d o n e o f t h e s p e c i m e n s o n w h i c h t h e g e n u s o f c a r p o i d e c h i n o d e r m s , Enoploura, w a s b a s e d ( W e t h e r b y 1879a). T h i s i s c e r t a i n l y t h e G e o r g e L . V a l l a n d i n g h a m listed as a l o c a l fossil c o l l e c t o r by N i c k l e s (1936).
D e s c r i b e d t h e first-named t y p e - C i n c i n n a t i a n b r y o z o a n , Constellaria con-
Van Cleve, J. W.
stellata, w h i c h w a s p u b l i s h e d f o r m a l l y b y D a n a (1846, 1849), V a n C l e v e h a v i n g d i e d ( C u f f e y , D a v i s , a n d U t g a a r d 2002).
E r n s t V a u p e l w a s a c h i l d h o o d friend o f C h a r l e s S c h u c h e r t a n d o f John M . N i c k l e s . I n 1885 V a u p e l , a l o n g w i t h S c h u c h e r t a n d C h a r l e s Faber, w a s p r o -
Vaupel, Ernst H. (died 1942)
p o s e d for m e m b e r s h i p in t h e C i n c i n n a t i S o c i e t y of N a t u r a l History. A shirt m a k e r by profession, V a u p e l a c c u m u l a t e d a large c o l l e c t i o n of l o c a l fossils and d o n a t e d i t t o Y a l e University, w h e r e S c h u c h e r t t a u g h t ; h e t h e n a m a s s e d a s e c o n d c o l l e c t i o n a n d g a v e it to t h e U n i v e r s i t y of C i n c i n n a t i ( A n o n . 1885a; C a s t e r 1981,1982; N i c k l e s 1936; S h i d e l e r [1952] 2002; W e t h e r b y 1881).
John W a r d e r is r e c o r d e d as h a v i n g g i v e n s o m e fossils to the W e s t e r n A c a d e m y of N a t u r a l S c i e n c e s on M a y 1, 1838, a n d he a u t h o r e d a p a p e r on trilobites
Warder, John A s t o n (1812-1883)
(although not t y p e - C i n c i n n a t i a n ) p u b l i s h e d t h e s a m e year. H e w a s president of the C i n c i n n a t i S o c i e t y of N a t u r a l History f r o m its f o u n d i n g in 1870 u n t i l April 1875 ( M o o r e , H e i g h w a y , a n d H o w e 1883; H e n d r i c k s o n 1947).
O n e o f t h e o r i g i n a l m e m b e r s o f t h e D r y D r e d g e r s i n 1942 ( F e l t o n , pers.
Weichold, Charles
c o m m . ) . K e n n e t h C a s t e r u s e d t o refer t o c e r t a i n r i n g - s h a p e d b r y o z o a n colonies in the t y p e - C i n c i n n a t i a n as " W e i c h o l d R i n g s " or " W e i c h o l d D o u g h n u t s , " after C h a r l e s W e i c h o l d .
Appendix 2
275
Welch, L. B.
Dr. W e l c h practiced m e d i c i n e i n W i l m i n g t o n , C l i n t o n C o u n t y , O h i o . T h e original
specimens
of Glyptocrinus
richardsoni
Wetherby,
1880,
were
in
W e l c h ' s c o l l e c t i o n ( W e t h e r b y 1880, 246; F o e r s t e 1893a, 1893b).
Wessels, Charles
C h a r l e s W e s s e l s f o u n d t h e s p e c i m e n of Lepidocoleus jamesi d e s c r i b e d by F a b e r , w h e n h e n a m e d t h e g e n u s Lepidocoleus ( F a b e r 1886,17).
The W e s t e r n Academy of Natural Sciences (1835-1871)
T h e Western A c a d e m y of Natural Sciences was founded by Dr. Daniel D r a k e i n 1835. I n 1840 t h e N a t u r a l S c i e n c e S e c t i o n o f t h e C i n c i n n a t i S o c i e t y f o r the P r o m o t i o n o f U s e f u l K n o w l e d g e , o f w h i c h John G o u l d A n t h o n y w a s s e c r e t a r y , m e r g e d w i t h t h e a c a d e m y . I n 1871 t h e r e m a i n i n g m e m b e r s o f the W e s t e r n A c a d e m y
o f N a t u r a l S c i e n c e s d o n a t e d all the
assets o f t h e a c a d e m y , i n c l u d i n g m o n e y , b o o k s , a n d their c o l l e c t i o n , t o the C i n c i n n a t i S o c i e t y o f N a t u r a l History, w h i c h h a d b e e n f o u n d e d t h e previo u s y e a r ( A n o n . 1 8 7 8 , 5 ; H e n d r i c k s o n 1947).
The W e s t e r n Museum (1820-1867)
A s o c i e t y w a s f o r m e d in 1819 or shortly b e f o r e by a g r o u p , i n c l u d i n g D a n i e l D r a k e (q.v.), t o e s t a b l i s h a m u s e u m i n C i n c i n n a t i . T h e W e s t e r n M u s e u m o p e n e d o n J u n e 10,1820, w i t h D r . R o b e r t B e s t a s t h e p r i n c i p a l curator. John J a m e s A u d u b o n w a s a n e a r l y e m p l o y e e . I n 1823 t h e W e s t e r n M u s e u m S o c i e t y t r a n s f e r r e d o w n e r s h i p to Joseph D o r f e u i l l e (q.v.). In 1839 he sold t h e m u s e u m a n d m o s t o f its e x h i b i t s a n d c o l l e c t i o n s t o a l o c a l g r o u p a n d took t h e rest w i t h h i m t o N e w Y o r k a n d o p e n e d a n e w e s t a b l i s h m e n t . I n 1867 t h e e x h i b i t s a n d c o l l e c t i o n s i n C i n c i n n a t i w e r e p u t u p for p u b l i c a u c t i o n ; their w h e r e a b o u t s are u n k n o w n today. ( C o n t r a r y t o t h e t y p o g r a p h i c error i n C a s t e r [1982, 23], i t w a s n o t t h e c o l l e c t i o n s o f t h e W e s t e r n M u s e u m , b u t , rather, t h o s e o f t h e W e s t e r n A c a d e m y o f N a t u r a l S c i e n c e s that w e r e t a k e n o v e r b y t h e C i n c i n n a t i S o c i e t y o f N a t u r a l H i s t o r y i n 1871.) ( A n o n . 1878, 5 ; D r a k e a n d M a n s f i e l d 1 8 2 7 , 4 4 - 4 6 ; H a r t - D a v i s 2004, 39; J o h n s o n 2002; K e l l o g g 1945; [ S i l l i m a n ] 1819; T u c k e r 1 9 6 5 , 1 9 6 7 ) .
Wetherby, Albert Gallatin (1833-1902)
Whitfield, R. P.
( S e e c h a p t e r 2)
R. P. W h i t f i e l d s e r v e d as a p a l e o n t o l o g i s t w i t h a n u m b e r of t h e federal a n d state g e o l o g i c a l s u r v e y s i n t h e s e c o n d h a l f o f t h e n i n e t e e n t h c e n t u r y , c o m m o n l y associated with James Hall. W i t h respect to the t y p e - C i n c i n n a t i a n , h e w a s o n e o f t h e assistants t o t h e O h i o G e o l o g i c a l S u r v e y d u r i n g t h e N e w b e r r y y e a r s a n d e x t e n d i n g o n into t h e E d w a r d O r t o n y e a r s , a n d s o m e of his w o r k e v e n w a s p u b l i s h e d in t h e Journal of the Cincinnati Society of Natural History, i n c l u d i n g d e s c r i p t i o n s of fossil p e l e c y p o d s o b t a i n e d f r o m John M i c k l e b o r o u g h ( H a l l a n d W h i t f i e l d 1875; H a n s e n a n d C o l l i n s 1 9 7 9 ;
276
Appendix 2
M e r r i l l [1924] 1964; W h i t f i e l d 1878). T h e " R . P . W h i t e f i e l d " i n N i c k l e s (1936) m u s t b e t h e s a m e p e r s o n .
A l t h o u g h p r i m a r i l y associated w i t h t h e C l e v e l a n d a r e a , C o l o n e l W h i t t l e s e y
Whittlesey, Charles
m a d e a n a g r i c u l t u r a l survey o f H a m i l t o n C o u n t y , O h i o , i n 1844. Prior t o that, h e h a d b e e n i n c h a r g e o f the t o p o g r a p h i c w o r k for W . W . M a t h e r ' s 1836-1838 g e o l o g i c a l survey o f O h i o . L a t e r h e w a s p a r t y t o a n a p p a r e n t l y v i c i o u s d i s p u t e a s t o w h e t h e r N e w b e r r y o r W h i t t l e s e y s h o u l d h a v e b e c o m e state g e o l o g i s t o f O h i o i n 1869; N e w b e r r y w a s s o a p p o i n t e d ( H a n s e n a n d C o l l i n s 1979; M e r r i l l [1924] 1964).
Willet
(See Letton's M u s e u m )
Judge W i l l i a m W i l s o n , o f L e b a n o n , W a r r e n C o u n t y , O h i o , f o u n d t h e t y p e s p e c i m e n of Prioniodus dychei U. P. J a m e s , 1884, a n d t h e t h r e e s p e c i m e n s on w h i c h Polygnathus wilsoni U. P. J a m e s , 1884 w a s b a s e d . H e , D y c h e , a n d James w e r e f r i e n d s ( U . P. J a m e s 1884c, 1 4 7 - 1 4 8 ) .
Wilson, W m . W.
A m o s Henry W o r t h e n w a s b o r n in V e r m o n t in 1813, b u t , b e g i n n i n g in 1834, t a u g h t s c h o o l i n C u m m i n s v i l l e , O h i o , n o w part o f C i n c i n n a t i . H e m o v e d t o Warsaw, Illinois, in 1836, a n d d e v o t e d h i m s e l f to b u s i n e s s v e n t u r e s for a l i v i n g a n d rocks and fossils in his spare t i m e . In 1855-1857 W o r t h e n w a s assistant in James Hall's g e o l o g i c a l survey of Iowa a n d , in 1858, w a s a p p o i n t e d t h e state
W o r t h e n , A. H.
geologist o f Illinois. I n the latter post, h e hired M e e k a n d U l r i c h t o d o c u m e n t the P a l e o z o i c fossils of that state. M e e k a n d W o r t h e n (1865a) p r o p o s e d the use o f the term " C i n c i n n a t i G r o u p " for the b o d y o f rocks i n t h e C i n c i n n a t i r e g i o n that h i t h e r t o h a d b e e n referred t o t h e " H u d s o n R i v e r G r o u p " ; t h e y t h u s p r o p o s e d t h e c o n c e p t o f t h e C i n c i n n a t i a n ( C r o n e i s 1963; M e e k a n d W o r t h e n 1865; M e r r i l l [1924] 1964; W i l m a r t h 1925).
Appendix 2
277
GLOSSARY
H o w t o p r o n o u n c e scientific t e r m s c a n b e a real b u g a b o o . I n t h e f o l l o w i n g glossary, a n d e l s e w h e r e i n this v o l u m e , w e h a v e i n c l u d e d o c c a s i o n a l a d v i c e on how to p r o n o u n c e terms. As you know, lexicographers have developed a s c h e m e o f s y m b o l s t o i n d i c a t e h o w t h e y feel p a r t i c u l a r letters, s y l l a b l e s , and w o r d s s h o u l d b e p r o n o u n c e d . W e h a v e tried t o k e e p t h e u s e o f s u c h s y m b o l s t o a m i n i m u m . W e h o p e t h a t , i n s o d o i n g , w e still h a v e m a n a g e d to h e l p y o u p r o n o u n c e w o r d s in a w a y u s e f u l to y o u . Unfortunately, n o t all scientific t e r m s are i n c l u d e d in d i c t i o n a r i e s , n o t e v e n in the p r e m i e r d i c t i o n a r y of t h e E n g l i s h l a n g u a g e , The Oxford English Dictionary ( S i m p s o n a n d W e i n e r 1989). T h e n a m e s of g e n e r a a n d s p e c i e s are very rarely i n c l u d e d , e x c e p t i n s o m e s p e c i a l i z e d works. O n e that w e h a v e found helpful is The Biologist's Handbook of Pronunciations (Jaeger 1960), a n d there o t h e r similar works. A l a s ! S p a c e h e r e d o e s n o t p e r m i t us to list all s u c h w o r k s , b u t t h e friendly professional librarians at t h e library of y o u r c h o i c e c a n b e o f t r e m e n d o u s h e l p here.
symbols
absolute age
(n.) g e o l o g i c a g e i n y e a r s , u s u a l l y d e t e r m i n e d b y r a d i o m e t r i c
A
dating. acritarch
(n.) m i c r o f o s s i l o f o r g a n i c c o m p o s i t i o n r e p r e s e n t i n g u n k n o w n
b u t possibly a l g a l , s i n g l e - c e l l e d o r g a n i s m , p a r t i c u l a r l y a b u n d a n t i n Paleozoic m a r i n e rocks.
279
adapertural
(adj.) i n c e p h a l o p o d s , t h e d i r e c t i o n t o w a r d t h e o p e n i n g o f the
shell (and, h e n c e , a w a y f r o m t h e a p e x o f the shell); s o m e w o r k e r s prefer t o u s e t h e s y n o n y m o u s t e r m " a d o r a l " (cf.: a d a p i c a l ) . adapical
(adj.) i n c e p h a l o p o d s , t h e d i r e c t i o n t o w a r d t h e a p e x o f t h e shell
( a n d , h e n c e , a w a y f r o m t h e o p e n i n g o f t h e shell) (cf.: a d a p e r t u r a l ) . adductor muscle
(n.) o n e o f t h e m u s c l e s o f a b r a c h i o p o d o r a p e l e c y p o d
w h e r e b y t h e a n i m a l c l o s e s its s h e l l (cf: d i d u c t o r m u s c l e ; adjustor muscle). adjustor m u s c l e
(n.) o n e o f t h e m u s c l e s o f a b r a c h i o p o d w h e r e b y t h e a n i -
m a l m o v e s its shell w i t h r e s p e c t t o t h e p e d i c l e (cf: a d d u c t o r m u s c l e ; diductor muscle). adoral
(adj.) a d a p e r t u r a l (q.v.).
aegism
(n.) "Associations for p r o t e c t i o n , either t h r o u g h c a m o u f l a g e of sur-
rounding vegetation, residence upon or within another animal, or even transport w i t h i n the protective u m b r e l l a or aegis of a larger partner are very c o m m o n i n the a n i m a l k i n g d o m . " " . . . this term collects u n d e r its b a n n e r all those associations w h i c h are not principally c o n c e r n e d with food acquisition. . . " ( M o r t o n 1989,10) (cf: c o m m e n s a l i s m ; m u t u a l i s m ; parasitism). age
(n.) g e o l o g i c t i m e u n i t , e q u i v a l e n t to stage in the time-stratigraphic classification; t h e h i e r a r c h y o f g e o l o g i c t i m e units, f r o m largest t o smallest is: e o n , era, p e r i o d , e p o c h , a n d a g e (cf.: e o n , e p o c h , era, period).
aglaspids
(n.) a r t h r o p o d s w i t h a h e a d s h i e l d a n d s e g m e n t e d b o d y , possibly
related t o h o r s e s h o e c r a b s a n d e u r y p t e r i d s ("sea s c o r p i o n s " ) , restricted to C a m b r i a n and Ordovician. anterior
(adj., n.) o n o r t o w a r d t h e f r o n t o f t h e a n i m a l . ( N o t e that w h a t i s
functionally anterior in a given a n i m a l may not correspond to the anat o m i c a l anterior. F o r e x a m p l e , i n h u m a n s , t h e h e a d i s a n a t o m i c a l l y a n t e r i o r , b u t , a s y o u w a l k a r o u n d , y o u r h e a d i s a t t h e top o f y o u r b o d y a n d , h e n c e , is f u n c t i o n a l l y " d o r s a l " ; cf: distal; d o r s a l ; lateral; m e d i a l ; p o s t e r i o r ; p r o x i m a l ; ventral.) Aplacophora
(n.) a class o f p h y l u m M o l l u s c a ; p r e s e n t - d a y a p l a c o p h o r a n s
that l a c k h a r d parts (from t h e G r e e k " a " + " p l a x , p l a k o s " + " p h o r e u s , " m e a n i n g " n o plate b e a r e r " ) . aragonitic
(adj.)
composed
of the
mineral
aragonite
(cf:
calcareous,
calcific). autoecology
(n.) e c o l o g y of a s i n g l e s p e c i e s of o r g a n i s m s in a g i v e n t i m e
a n d p l a c e (cf.: s y n e c o l o g y ) .
B
ball and pillow structure
(n.) s e d i m e n t a r y s t r u c t u r e c h a r a c t e r i z e d b y b a i l -
o r p i l l o w - s h a p e d m a s s e s o f s a n d s t o n e o r l i m e s t o n e , often e m b e d d e d in m a t r i x of a d i f f e r e n t l i t h o l o g y . benthic, benthonic
(adj.) l i v i n g i n , o n , o r a s s o c i a t e d w i t h t h e b o t t o m o f a
b o d y o f w a t e r (cf: n e k t o n i c ; p l a n k t o n i c ) . benthos
(n.) c o l l e c t i v e t e r m for b e n t h i c o r g a n i s m s .
bilaterally symmetrical
(adj.) said o f a n a n i m a l i n w h i c h t h e left a n d right
sides o f t h e a n i m a l are m i r r o r i m a g e s o f o n e a n o t h e r ; h u m a n s are bilaterally s y m m e t r i c a l (cf: p l a n e o f s y m m e t r y , s y m m e t r y ) .
280
Glossary
binomen
(see: s p e c i e s n a m e ) .
bioclaustration
(n.) t h e p r o c e s s w h e r e b y a s o f t - b o d i e d o r g a n i s m t h a t in-
fests a n o t h e r o r g a n i s m o r c o l o n y i s e m b e d d e d b y t h e skeletal g r o w t h o f that o t h e r o r g a n i s m o r c o l o n y . T h e w o r d w a s c o i n e d for i n s t a n c e s in w h i c h a p a r t i c u l a r parasitic o r g a n i s m , s u g g e s t e d to be a h y d r o i d or a colonial ascidiacian tunicate, was engulfed by the bryozoan colony on w h i c h it w a s g r o w i n g ; t h e result is a p a t t e r n of h o l e s c a l l e d Catellocaula vallata P a l m e r a n d W i l s o n , 1988. biofacies
(n.) c h a r a c t e r i s t i c s of a s e d i m e n t a r y rock b a s e d on fossil c o n t e n t
(cf.: facies, lithofacies). bioherm
(n.) a f e a t u r e that is e l e v a t e d a b o v e t h e sea floor a n d w a s p r o -
d u c e d by o r g a n i s m s ( D a v i s 2004, 283); a fine, u p s t a n d i n g e x a m p l e is a c o r a l reef, (cf.: b i o s t r o m e ) . bioimmuration
(n.) u s u a l l y a n e x t e r n a l m o l d o f a s o f t - b o d i e d o r g a n i s m
that was o v e r g r o w n b y a c a l c a r e o u s o r g a n i s m , f o l l o w e d b y d e c a y o f t h e soft-bodied organism. biostratigraphic unit
(n.) a b o d y of r o c k c h a r a c t e r i z e d by fossils of a par-
t i c u l a r s p e c i e s or g r o u p of s p e c i e s ; at a g i v e n l o c a l i t y , t h i s is r e p r e sented b y t h e t h i c k n e s s o f strata s o c h a r a c t e r i z e d , ( c f : b i o z o n e , litho s t r a t i g r a p h i c u n i t , t i m e - s t r a t i g r a p h i c unit). biostratigraphy biostrome
(n.) study of d i s t r i b u t i o n of fossils in s e d i m e n t a r y r o c k s .
(n.) s h e e t - l i k e , n o n - m o u n d e d , a c c u m u l a t i o n o f d e n s e l y p a c k e d
or intergrown calcareous organisms such as corals or bryozoans. biotal succession
(n.) t h e P r i n c i p l e o f B i o t a l S u c c e s s i o n w a s d e v e l o p e d b y
the E n g l i s h g e o l o g i s t W i l l i a m S m i t h in the years shortly prior to 1800. H e r e a l i z e d t h a t , a s o n e g o e s u p w a r d i n t h e r o c k r e c o r d , o n e suite o f fossils is s u c c e e d e d by a n o t h e r , w h i c h is, in t u r n , s u c c e e d e d by a t h i r d , a n d so o n , in a p a r t i c u l a r order. T h i s p r i n c i p l e is t h e basis for b i o stratigraphy a n d , h e n c e , for relative d a t i n g o f r o c k s b y t h e u s e o f fossils (cf: e c o l o g i c s u c c e s s i o n ; fossil s u c c e s s i o n ) . biozone
(n.) a b i o s t r a t i g r a p h i c u n i t c h a r a c t e r i z e d by fossils of a p a r t i c u l a r
s p e c i e s o r g r o u p o f s p e c i e s ; s o m e t i m e s c a l l e d a "fossil z o n e " . C o m m o n l y t h e w o r d " z o n e " i s u s e d for this c o n c e p t , b u t , b e c a u s e that w o r d is u s e d in m o r e t h a n o n e s e n s e in g e o l o g y , it is p r e f e r a b l e n o t to u s e the term "zone", except with a modifier to indicate w h i c h kind of z o n e is i n t e n d e d , (cf: e p i b o l e ) . bivalved
(adj.) said of a shell that c o n s i s t s of t w o s i m i l a r l y s i z e d p i e c e s ,
e a c h o f w h i c h i s c a l l e d a v a l v e ; b r a c h i o p o d s a n d p e l e c y p o d s are biv a l v e d (cf: u n i v a l v e d ; p s e u d o b i v a l v e d ) . bivalve
(n.) a l t e r n a t i v e n a m e for a p e l e c y p o d .
b o d y fossil
(n.) o n e that i n v o l v e s t h e r e m a i n s o f a n o r g a n i s m o r r e p l i c a o f
t h o s e r e m a i n s (cf: t r a c e fossil; i c h n o f o s s i l ; Lebensspur).
calcareous
(adj.) c o m p o s e d o f c a l c i u m c a r b o n a t e , w h e t h e r t h e m i n e r a l
c
c a l c i t e or t h e m i n e r a l a r a g o n i t e , or b o t h (cf: a r a g o n i t i c ; c a l c i f i c ) , calcite
(n.) a c a l c i u m c a r b o n a t e m i n e r a l
calcific
(adj.) c o m p o s e d of the m i n e r a l c a l c i t e (cf: a r a g o n i t i c , c a l c a r e o u s ) .
Glossary
281
cast
(n.) a r e p l i c a of an o r g a n i s m m a d e f r o m a m o l d of that o r g a n i s m (cf: mold).
Chaetognatha
(n.) a s m a l l p h y l u m o f m a r i n e invertebrates l i v i n g m o s t l y
a s p l a n k t o n , c o m m o n l y c a l l e d " a r r o w w o r m s " ; fossils are k n o w n f r o m t h e P e n n s y l v a n i a n , a n d p o s s i b l y t h e C a m b r i a n ( V a l e n t i n e 2004). chitin
(n.) a c o m p l e x o r g a n i c m a t e r i a l p r o d u c e d by a r t h r o p o d s , for ex-
ample, by insects; the comparable material produced by molluscs is termed c o n c h i o l i n , although some people use the term "chitin" to refer n o t o n l y t o c h i t i n , i n t h e strict s e n s e , b u t t o c o n c h i o l i n a n d other such organic materials. chitinozoans
(n.) a g r o u p o f m a r i n e p l a n k t o n i c microfossils w i t h g e n e r a l l y
f l a s k - s h a p e d o r g a n i c w a l l s ; o f u n c e r t a i n affinities, b u t p r e s u m a b l y a n i m a l s ( J a n s o n i u s a n d J e n k i n s 1978). Chordata
(n.) a n i m a l p h y l u m c h a r a c t e r i z e d b y t h e n o t o c h o r d , i n c l u d e s
the vertebrates. Cincinnati Arch
(n.) a b r o a d u p w a r p i n g o f strata e x t e n d i n g f r o m K e n -
tucky through O h i o . Cincinnatian
(n.) g e o l o g i c a g e t e r m for t h e L a t e O r d o v i c i a n E p o c h i n
North America. C i n c i n n a t i a n Series
(n.) t i m e - s t r a t i g r a p h i c t e r m for t h e U p p e r O r d o v i -
cian in North America. class
(n.) t h e l e v e l i n t h e L i n n a e a n h i e r a r c h y b e l o w p h y l u m a n d a b o v e
order. classification coelom
(see: t a x o n o m y ) .
(n.) b o d y c a v i t y i n c e r t a i n k i n d s o f a n i m a l s f o r m e d b y o r w i t h i n
m e s o d e r m a l tissue; a l s o c a l l e d a e u c o e l o m . A c o e l o m is l i n e d w i t h a tissue c a l l e d t h e p e r i t o n e u m . commensalism
(n.) a r e l a t i o n s h i p in w h i c h an a n i m a l lives a t t a c h e d to or
a s a t e n a n t o f a n o t h e r , a n d o r d i n a r i l y s h a r e s its f o o d , b u t d o e s n o t c o n s u m e its h o s t ( d i s t i n g u i s h e d f r o m a parasite, w h i c h f e e d s o n t h e b o d y o f its host) (cf: a e g i s m ; m u t u a l i s m ; p a r a s i t i s m ; p r e d a t i o n ; host; symbiosis). competition, competitive interaction
(n.) interaction(s) b e t w e e n t w o o r
m o r e s p e c i e s i n w h i c h all s p e c i e s are i n h i b i t e d o r h a r m e d , u s u a l l y b e c a u s e they seek the s a m e resource, such as food, w h i c h is in limited supply. compression
(n.) a k i n d of p r e s e r v a t i o n in w h i c h t h e fossil s p e c i m e n is
flattened; a fossil p r o d u c e d by s u c h a p r o c e s s . conchiolin
(n.) a c o m p l e x o r g a n i c m a t e r i a l p r o d u c e d b y m o l l u s c s ; t h e
o u t e r m o s t layer o f t h e m o l l u s c a n shell c o n s i s t s o f c o n c h i o l i n , a s d o t h e o p e r c u l a of s o m e snails; the c o m p a r a b l e material p r o d u c e d by arthropods is t e r m e d chitin. consumer
(n.) a n i m a l i n t h e f o o d c h a i n a b o v e t h e level o f p r i m a r y p r o d u c -
tion; it feeds on other organisms or organic matter. convergent evolution
(n.) o r g a n i c e v o l u t i o n i n w h i c h c h a n g e s i n t w o o r
m o r e e v o l u t i o n a r y l i n e a g e s result i n o r g a n i s m s that l o o k a l i k e . For e x a m p l e , p o r p o i s e s , w h i c h are m a m m a l s , l o o k like f i s h . coprophagous
282
Glossary
(adj.) f e e d i n g u p o n d u n g .
coprolite
(n.) a s p e c i m e n of fossil e x c r e m e n t (from t h e G r e e k " k o p r o s " +
"lithos," m e a n i n g " d u n g " + "rock"). correlation
(n.) p r o c e s s o f d e t e r m i n i n g t h e c o r r e s p o n d e n c e o f strata i n
different s e c t i o n s o r l o c a t i o n s . coquina
(n.) a k i n d o f s e d i m e n t a r y r o c k t h a t c o n s i s t s a l m o s t e x c l u s i v e l y o f
s h e l l s , s h e l l - f r a g m e n t s , o r b o t h (from t h e S p a n i s h for " l i t t l e s h e l l " ; p r o n o u n c e d : ko-keen-uh). c o t y p e s (n.) i n t a x o n o m y , w h e n t w o o r m o r e t y p e - s p e c i m e n s are d e s i g n a t e d for a s p e c i e s , a n d all o f t h e m are c o n s i d e r e d t o b e e q u a l l y r e p r e sentative o f t h e s p e c i e s , t h e y are c a l l e d c o t y p e s . S o m e t i m e s , i n f o r m e r y e a r s , t h e t e r m " s y n t y p e " w a s u s e d (cf.: h o l o t y p e ; p a r a t y p e ) . cyclicity
(n.) in stratigraphy, t h e r e g u l a r r e p e t i t i o n of a p a t t e r n or o r d e r i n g
in s e d i m e n t a r y strata.
death assemblage
(n.) fossils i n a s t r a t u m t h a t r e p r e s e n t r e m a i n s o f o r g a n -
D
isms that d i e d a t s o m e t i m e b e f o r e final b u r i a l , a n d u s u a l l y a c c u m u lated f r o m v a r i o u s o r i g i n a l l o c a t i o n s [cf.: life a s s e m b l a g e ) . dentition
(n.) c o l l e c t i v e n a m e g i v e n t o t h e t e e t h a n d s o c k e t s a l o n g t h e
hingeline of an articulate brachiopod or p e l e c y p o d ; the teeth and s o c k e t s s e r v e t o p r e v e n t t h e v a l v e s f r o m b e i n g t w i s t e d a p a r t by, for e x a m p l e , a p r e d a t o r ; n o t e that t h e t e r m " d e n t i t i o n , " in this s e n s e , has n o t h i n g to do with the "dentition" of a jawed vertebrate such as yourself (cf.: s o c k e t ; t o o t h ) . deposit feeding
(n., adj.) i n g e s t i o n o f f o o d m a t e r i a l s l o c a t e d o n o r w i t h i n
t h e s e d i m e n t (cf: s u s p e n s i o n f e e d i n g ; filter f e e d e r ) . diagenesis
(n.) c h e m i c a l , p h y s i c a l , o r b i o l o g i c a l c h a n g e s o c c u r r i n g i n
s e d i m e n t s a n d r o c k s s u b s e q u e n t t o initial f o r m a t i o n a t relatively l o w t e m p e r a t u r e s a n d p r e s s u r e s (cf: m e t a m o r p h i s m ) . diagnosis
(n.) a s p e c i a l k i n d of d e s c r i p t i o n t h a t tells h o w i n d i v i d u a l s of a
g i v e n t a x o n differ f r o m all o t h e r m e m b e r s o f taxa a t t h e s a m e level i n t h e L i n n a e a n h i e r a r c h y . F o r e x a m p l e , t h e d i a g n o s i s o f a s p e c i e s tells h o w t o differentiate i t f r o m all o t h e r s p e c i e s i n t h e s a m e g e n u s . dimorphism term
(n.) t h e e x i s t e n c e i n a t a x o n o f t w o p h e n o t y p i c f o r m s ; t h e
is u s e d e s p e c i a l l y in
r e f e r e n c e to s e x u a l
dimorphism
(cf:
polymorphism). dinoflagellates
(n.) a g r o u p o f m a r i n e p h y t o p l a n k t o n o r g a n i s m s , e a c h o f
w h i c h has o r g a n i c w a l l s , t w o f l a g e l l a , a n d c h l o r o p l a s t s . distal
(adj.) a w a y f r o m t h e c e n t e r o f t h e a n i m a l ; for e x a m p l e , y o u r f i n g e r
tips are d i s t a l , w h e r e a s y o u r s h o u l d e r is p r o x i m a l (cf: a n t e r i o r ; d o r s a l ; lateral; m e d i a l ; posterior; p r o x i m a l ; v e n t r a l ) . d i v e r s i t y (n.) t h e n u m b e r of taxa of a p a r t i c u l a r level that o c c u r in a g i v e n t i m e a n d p l a c e ; the t e r m , u n m o d i f i e d , g e n e r a l l y refers t o t h e n u m b e r o f species, with the m e a n i n g s o f " g e n e r i c diversity," " f a m i l i a l diversity," a n d s o o n , d e n o t i n g diversity a t p a r t i c u l a r h i g h e r t a x o n o m i c levels. d o l o m i t e (n.) 1. a m i n e r a l c o m p o s e d of c a l c i u m m a g n e s i u m c a r b o n a t e ; 2. a sedimentary rock that consists of the m i n e r a l dolomite, s o m e t i m e s c a l l e d rock d o l o m i t e or d o l o s t o n e (cf: a r a g o n i t e , c a l c i t e ) .
Glossary
283
dorsal
(adj.) o n o r t o w a r d t h e top o f t h e a n i m a l ; t h e n o u n f o r m o f t h e
c o n c e p t is " d o r s u m . " ( N o t e t h a t w h a t is f u n c t i o n a l l y dorsal in a g i v e n a n i m a l m a y n o t c o r r e s p o n d t o t h e a n a t o m i c a l dorsal. For e x a m p l e , i n h u m a n s , the head is a n a t o m i c a l l y anterior, but, as you walk around, your h e a d is at the top of your body and, h e n c e , is functionally "dorsal"; cf: anterior; distal; lateral; m e d i a l ; posterior; p r o x i m a l ; ventral.) durophagous
E
(adj.) said o f p r e d a t o r s t h a t c r u s h t h e shells o f their prey.
e c o l o g y (n.) 1 . t h e s t u d y o f t h e e n v i r o n m e n t ; 2 . t h e e n v i r o n m e n t a l n e e d s of o r g a n i s m s of a
given
taxon
or g r o u p of taxa
(cf:
autecology;
synecology). ecosystem
(n.) all t h e o r g a n i s m s i n a g i v e n t i m e a n d p l a c e , a l o n g w i t h t h e
c h e m i c a l a n d p h y s i c a l a s p e c t s o f t h e e n v i r o n m e n t i n w h i c h t h e y live in that t i m e and place. Edenian
(n.) t e r m for t h e l o w e r m o s t stage o f t h e C i n c i n n a t i a n S e r i e s , also
the earliest age of C i n c i n n a t i a n E p o c h , e n d o s y m b i o n t (n.) o r g a n i s m l i v i n g w i t h i n t h e b o d y o f a n o t h e r l i v i n g organism. eon
(n.) l a r g e s t g e o l o g i c t i m e u n i t , a s i n P h a n e r o z o i c E o n , w h i c h c o m prises t h e P a l e o z o i c , M e s o z o i c , a n d C e n o z o i c E r a s ; t h e h i e r a r c h y o f g e o l o g i c t i m e u n i t s , f r o m largest t o s m a l l e s t is: e o n , era, p e r i o d , e p o c h , a n d a g e (cf.: a g e , e p o c h , era, p e r i o d ) .
epibole
(11.) a s t r a t i g r a p h i c interval c h a r a c t e r i z e d by a b u n d a n c e of a par-
t i c u l a r k i n d o f fossil; s o m e t i m e s c a l l e d a n a c m e z o n e (cf.: b i o z o n e ) . epibyssate
(adj.) said of p e l e c y p o d s in w h i c h t h e byssus is a t t a c h e d to objects
that are b e n e a t h t h e a c t u a l s e d i m e n t - w a t e r interface of the sea floor. epicole
(n.) a f o s s i l i z e d a n i m a l f o u n d a t t a c h e d t o t h e exterior o f a n o t h e r
f o s s i l i z e d a n i m a l , a n d i t i s n o t c l e a r w h e t h e r t h e latter w a s alive w h e n t h e f o r m e r w a s a t t a c h e d (cf: e p i z o o n ; e p i f a u n a ) . e p i c o n t i n e n t a l seas
(n.) m o s t l y s h a l l o w w a t e r m a r i n e b o d i e s o f w a t e r ex-
t e n d i n g o v e r c o n t i n e n t a l c r u s t (syn., e p e i r i c seas). epifauna
(n.) a n i m a l s l i v i n g on a s u b s t r a t u m s u c h as t h e sea floor (cf: in-
fauna; e p i z o o n ; epicole). epireliefs
(n.) t r a c e fossils on t h e u p p e r s u r f a c e of a s t r a t u m , o c c u r r i n g as
depressions or raised structures. e p i z o o n (pl., e p i z o a ; n.) an a n i m a l t h a t s p e n d s its life on or a t t a c h e d to t h e e x t e r i o r o f a n o t h e r l i v i n g a n i m a l ( D a v i s e t al. 1 9 9 9 , 33; p r o n o u n c e d : ep-pi-zo-un). In former years, the word w o u l d have b e e n written "epiz o o n " ; t h e t w o dots o v e r t h e s e c o n d " o " i s c a l l e d a d i a e r e s i s , a n d i t i n d i c a t e s that t h e s e c o n d " o " i s i n a d i f f e r e n t syllable f r o m t h e f i r s t " o . " S o m e people incorrectly use the words "epizoan" and "epizoans" as t h e s i n g u l a r a n d p l u r a l , r e s p e c t i v e l y (cf: e p i c o l e ; e p i f a u n a ) . epoch
(n.) a s u b d i v i s i o n of a g e o l o g i c p e r i o d , e q u i v a l e n t to series in the t i m e -
stratigraphic c l a s s i f i c a t i o n ; t h e h i e r a r c h y o f g e o l o g i c t i m e u n i t s , f r o m largest t o s m a l l e s t is: e o n , era, p e r i o d , e p o c h , a n d a g e (cf: a g e , e o n , era, period).
284
Glossary
era (n.) a g e o l o g i c t i m e u n i t , as in t h e P a l e o z o i c E r a , w h i c h i n c l u d e s , a m o n g others, t h e O r d o v i c i a n P e r i o d ; t h e h i e r a r c h y o f g e o l o g i c t i m e u n i t s , f r o m largest t o s m a l l e s t is: e o n , era, p e r i o d , e p o c h , a n d a g e (cf.: a g e , e p o c h , e o n , period). eustatic
(adj.) g l o b a l , r e f e r r i n g t o c h a n g e s o f sea l e v e l .
e v e n t h o r i z o n or e v e n t b e d
(n.) a s e d i m e n t a r y layer f o r m e d b y a short-
t e r m d e p o s i t i o n a l p r o c e s s or d i s t u r b a n c e , s u c h as a layer of volcanica s h , or a s t o r m b e d . exoskeleton
(n.) shell o r c a r a p a c e t h a t e n c l o s e s t h e b o d y o f a n a n i m a l .
external mold
(n.) a m o l d o f t h e e x t e r i o r o f a n o b j e c t (cf: i n t e r n a l m o l d ;
steinkern).
facies
(n.) a n y c h a r a c t e r i s t i c s o f r o c k s u s e d for r e c o g n i t i o n o f lateral o r
F
vertical variations, and usually reflecting the processes f o r m i n g the r o c k (cf: b i o f a c i e s ; lithofacies). facultative
(adj.) refers to an i n s t a n c e of an o r g a n i s m t h a t is a p a r t y to an
a s s o c i a t i o n that m a y b e c o n v e n i e n t , b u t i s n o t r e q u i r e d for t h e s u r v i v a l of t h e o r g a n i s m ; if, on t h e o t h e r h a n d , a g i v e n parasite is u n a b l e to exist o u t s i d e of its p a r t i c u l a r a s s o c i a t i o n w i t h its h o s t , t h e a s s o c i a t i o n is an o b l i g a t e o n e (q.v.). f a m i l y (n.) t h e level i n t h e L i n n a e a n h i e r a r c h y b e l o w o r d e r a n d a b o v e genus. filter f e e d e r
(n.) a n o r g a n i s m that gets its s u s t e n a n c e b y r e m o v i n g m i c r o -
o r g a n i s m s o r o t h e r s m a l l p a r t i c l e s o f o r g a n i c m a t t e r f r o m t h e water. E x a m p l e s i n c l u d e b r a c h i o p o d s , b r y o z o a n s , c o r a l s , a n d c r i n o i d s (cf: deposit feeding; suspension feeding). food chain, food w e b
(n.) a series o f o r g a n i s m s c o n n e c t e d b y f e e d i n g rela-
tionships s u c h as predators a n d prey, or g r a z e r s a n d v e g e t a t i o n , r e f l e c t i n g t h e transfer o f e n e r g y f r o m p r i m a r y p r o d u c e r s t h r o u g h c o n s u m e r s . formation
(n.) a r o c k - u n i t h a v i n g d i s t i n c t i v e l i t h o l o g i c f e a t u r e s a n d m a p -
p a b l e o n a r e g i o n a l s c a l e o f g e o l o g i c m a p p i n g ( g e n e r a l l y , 1:24,000 scale) (cf: g r o u p ; m e m b e r ) . forms
(n., p l . ) a g e n e r a l t e r m u s e d for g r o u p s o f m o r p h o l o g i c a l l y d i s t i n c t
o r g a n i s m s that h a v e n o t b e e n s u f f i c i e n t l y s t u d i e d t o w a r r a n t t h e i r b e ing called "subspecies" or "varieties," both of w h i c h terms m a y have formal taxonomic implications. fossil r e c o r d
(n.) t h e e v i d e n c e o f a n c i e n t life a s p r e s e r v e d i n t h e r o c k s o f
the Earth's crust. fossil s u c c e s s i o n
(n.) a series of fossil a s s e m b l a g e s o c c u r r i n g in a v e r t i c a l
stratigraphic s e q u e n c e , fossil z o n e fucoid
see b i o z o n e ) .
(n.) an a r c h a i c n a m e for c e r t a i n k i n d s of Lebensspuren (= trace fos-
sils); it s t e m s f r o m t h e fact that it o n c e w a s t h o u g h t t h a t t h e y w e r e t h e r e m a i n s o f a n c i e n t s e a w e e d s related t o t h e w e l l - k n o w n g r o u p o f presentday s e a w e e d s , Fucus.
Glossary
285
generic n a m e
(n.) t h e n a m e o f t h e g e n u s t o w h i c h a n o r g a n i s m b e l o n g s ;
it is t h e first w o r d of t h e s p e c i e s n a m e [cf.: s p e c i e s n a m e ; specific n a m e ; trivial n a m e ) . g e n u s (pl., g e n e r a ; n.) t h e l e v e l i n t h e L i n n a e a n h i e r a r c h y b e l o w f a m i l y and above species. grainstone
(n.) a l i m e s t o n e c h a r a c t e r i z e d by f r a g m e n t s in g r a i n - t o - g r a i n
c o n t a c t , a n d less t h a n 1 p e r c e n t of interstitial m u d (cf.: p a c k s t o n e ) . group
(n.) a r o c k - s t r a t i g r a p h i c u n i t c o m p o s e d o f t w o o r m o r e f o r m a t i o n s .
growth-lines
(n.) c o n c e n t r i c r i d g e s , g r o o v e s , or striations on a shell that
m a r k t h e s u c c e s s i v e p o s i t i o n s o f f o r m e r m a r g i n s o f t h e shell o r v a l v e . guild
(n.) a g r o u p of s p e c i e s i n d i v i d u a l s of w h i c h u s e food r e s o u r c e s in a
similar manner.
hardground
(n.) a s e d i m e n t a r y b e d s u r f a c e t h a t w a s c e m e n t e d o r lithified
b e f o r e final b u r i a l ; it c o m m o n l y is e n c r u s t e d or b o r e d by o r g a n i s m s . holotype
(n.) in t a x o n o m y , a s i n g l e t y p e - s p e c i m e n d e s i g n a t e d as r e p r e s e n -
tative of a s p e c i e s (cf: c o t y p e ; p a r a t y p e ) . homeomorph
(n.) t h e result o f c o n v e r g e n t e v o l u t i o n i n w h i c h t w o o r m o r e
e v o l u t i o n a r y l i n e a g e s h a v e e v o l v e d s o that t h e o r g a n i s m s a t t h e e n d s of these lineages look alike. h o s t (n.) " a n a n i m a l o r p l a n t h a v i n g a parasite o r c o m m e n s a l h a b i t u a l l y l i v i n g i n o r u p o n it" ( S i m p s o n a n d W e i n e r 1989,1336). hyporeliefs
(n.) t r a c e fossils o n t h e l o w e r s u r f a c e o f a s t r a t u m , o c c u r r i n g
as d e p r e s s i o n s or raised s t r u c t u r e s .
Iapetus Sea
(n.) a n c i e n t o c e a n that o c c u p i e d t h e a p p r o x i m a t e p o s i t i o n o f
t h e p r e s e n t - d a y A t l a n t i c d u r i n g early P a l e o z o i c t i m e . ichnofacies
(n.) a s e d i m e n t a r y r o c k c h a r a c t e r i z e d b y p a r t i c u l a r t r a c e
fossils. i c h n o f o s s i l (n.) a t r a c e fossil (q.v.); p r o n o u n c e d : Ik-no-fossil, ichnology
(n.) t h e s t u d y o f t r a c e fossils.
impression
(n.) o u t l i n e o r i m p r i n t i n s e d i m e n t o r s e d i m e n t a r y r o c k o f a n
o r g a n i s m o r part o f a n o r g a n i s m . incertae sedis
(n.) o f u n k n o w n b i o l o g i c a l a f f i n i t i e s ( L a t i n , " i n c e r t u s " ,
" d o u b t f u l , u n s e t t l e d , u n c e r t a i n " , + " s e d e s , sedis", " p l a c e " ) . incolent
(n.) a n a n i m a l t h a t lives i n o r o c c u p i e s t h e shell o f a n o t h e r a n i -
m a l after that o t h e r a n i m a l h a s d i e d ; for e x a m p l e , a trilobite that has f o u n d shelter i n a n e m p t y c e p h a l o p o d shell o n t h e sea f l o o r . ( A c c o r d i n g t o t h e O x f o r d E n g l i s h D i c t i o n a r y [ S i m p s o n a n d W e i n e r 1989], " i n c o l e n t " is an o b s o l e t e a n d rare w o r d that d a t e s f r o m 1597, w h e n it m e a n t s i m p l y "an i n h a b i t a n t , " f r o m t h e L a t i n " i n c o l o , i n c o l e r e , " m e a n i n g " t o i n h a b i t . " ) (cf.: i n q u i l i n e ) . infauna
(n.) t h e o r g a n i s m s that live b e n e a t h t h e s e d i m e n t - w a t e r i n t e r f a c e ;
t h e a d j e c t i v a l f o r m is " i n f a u n a l " (cf: e p i f a u n a ) . i n q u i l i n e (n.) a n a n i m a l t h a t lives i n t h e n e s t o r a b o d e o f a n o t h e r (cf: incolent).
Glossary
internal m o l d
(n.) a m o l d o f t h e interior o f a n o b j e c t ; t h e i n t e r n a l m o l d o f
a shell s o m e t i m e s is c a l l e d a s t e i n k e r n (q.v.) (cf.: e x t e r n a l m o l d ) , isochronous
(adj.) e q u i v a l e n t i n a g e .
K-bentonite
(n.) a p o t a s s i u m - r i c h c l a y m i n e r a l f o r m e d by c h e m i c a l altera-
K
tion of v o l c a n i c ash d e p o s i t e d in salt water, kingdom
(n.) t h e l e v e l i n t h e L i n n a e a n h i e r a r c h y a b o v e p h y l u m .
l a g d e p o s i t (n.) s e d i m e n t a r y a c c u m u l a t i o n r e m a i n i n g after e r o s i o n o f
L
finer-grained size fractions or types of s e d i m e n t . lateral
(adj.) on or toward t h e side of t h e a n i m a l (cf: anterior; distal; d o r s a l ;
m e d i a l ; posterior; p r o x i m a l ; v e n t r a l ) . Lebensspur
(pl., Lebensspuren; n.) a t r a c e fossil (= i c h n o f o s s i l ) . ("Lebens-
spur" is a G e r m a n w o r d that literally m e a n s " t r a c e of life"; t h e G e r m a n w o r d " S p u r " i s related t o t h e a r c h a i c E n g l i s h w o r d "spoor.") life a s s e m b l a g e
(n.) fossils in a s t r a t u m t h a t r e p r e s e n t r e m a i n s of o r g a n -
isms that w e r e l i v i n g a t t h e t i m e o f f i n a l b u r i a l , u s u a l l y a t o r n e a r t h e site of b u r i a l (cf: d e a t h a s s e m b l a g e ) . lithofacies
(n.) c h a r a c t e r i s t i c s of a s e d i m e n t a r y r o c k b a s e d on r o c k - t y p e
c o n t e n t (cf: b i o f a c i e s , facies). lithology
(n.) t h e n a t u r e o f a p a r t i c u l a r k i n d o f r o c k , i n c l u d i n g s u c h p r o p -
erties a s m i n e r a l l i c c o m p o s i t i o n a n d t h e s i z e o f t h e p a r t i c l e s o r crystals o f w h i c h t h e r o c k c o n s i s t s ; t h e w o r d s o m e t i m e s i s u s e d for t h e d e s c r i p tion and systematic classification of rocks, a s c i e n c e m o r e properly designated "petrography." lithostratigraphic unit
(n.) a r o c k - u n i t c h a r a c t e r i z e d by a p a r t i c u l a r rock-
t y p e or suite of r o c k - t y p e s (cf: b i o s t r a t i g r a p h i c u n i t ; t i m e - s t r a t i g r a p h i c unit). longitudinal
(adj.) w i t h r e s p e c t to b r y o z o a n s , r e f e r r i n g to a s e c t i o n c u t
p a r a l l e l t o t h e l e n g t h o f z o o e c i a l t u b e s (Bassler 1953, G 1 1 , G 1 8 ) (cf: t a n g e n t i a l ; transverse). lophophore
(n.) a c i l i a t e d , f o o d - g a t h e r i n g s t r u c t u r e f o u n d in b r a c h i o p o d s ,
e c t o p r o c t s , a n d s o m e o t h e r a n i m a l s ; a l t h o u g h t h e s e s t r u c t u r e s are similar in a p p e a r a n c e and function in various groups of a n i m a l s , they may not have a c o m m o n evolutionary origin.
mantle
(n.) t h e tissue of a b r a c h i o p o d or m o l l u s c that s e c r e t e s t h e m a t e r i a l
M
that c o m p r i s e s the s h e l l ; it is p a r t of t h e m a n t l e - c o m p l e x , a n d it g e n e r ally e n c l o s e s o r lies o n b o t h sides o f t h e m a n t l e - c a v i t y . marker bed
(n.) a s t r a t u m w i t h u n i q u e r o c k - t y p e , fossil c o n t e n t , o r o t h e r
f e a t u r e m a k i n g it u s e f u l for c o r r e l a t i o n or r e c o g n i t i o n of strata. mass extinction
(n.) g l o b a l d i s a p p e a r a n c e o f m a n y g r o u p s o f o r g a n i s m s
o v e r a relatively short t i m e i n t e r v a l . Maysvillian
(n.) t e r m for t h e m i d d l e s t a g e o f t h e G i n c i n n a t i a n S e r i e s , also
the middle age of C i n c i n n a t i a n E p o c h . Glossary
287
medial
(adj.) o n o r t o w a r d t h e m i d d l e o f t h e a n i m a l , that is, toward t h e
plane of s y m m e t r y of the a n i m a l . S o m e p e o p l e , to avoid potential c o n f u s i o n w i t h t h e statistical t e r m " m e d i a n , " u s e t h e t e r m " m e s i a l " (cf.: a n t e r i o r ; d i s t a l ; d o r s a l ; l a t e r a l ; p o s t e r i o r ; p r o x i m a l ; ventral). megacycle
(n.) r e p e a t e d set o f s e d i m e n t a r y strata o f a b o u t o n e t o t w o m e -
ters in t h i c k n e s s . member
(n.) l i t h o s t r a t i g r a p h i c s u b d i v i s i o n o f a f o r m a t i o n .
mesodermal
(adj.) p e r t a i n i n g t o t h e m i d d l e layer o f tissue i n t h e b o d y plan
o f t r i p l o b l a s t i c a n i m a l s (those h a v i n g t h r e e e m b r y o n i c tissue layers: ectoderm, mesoderm, and endoderm). metamorphism
(n.) p r o c e s s e s o f c h e m i c a l o r p h y s i c a l alteration o f rocks
u n d e r t h e i n f l u e n c e o f h e a t , p r e s s u r e , o r b o t h (cf: d i a g e n e s i s ) . metazoans
(n.) a l t e r n a t i v e t e r m for " a n i m a l s . "
Milankovitch cycle
(n.) r e p e a t e d p a t t e r n o f e v e n t s o r strata o n a f r e q u e n c y
s i m i l a r t o p e r i o d i c i t y o f o n e o r m o r e v a r i a t i o n s o f t h e E a r t h ' s orbit, s u c h a s o b l i q u i t y o r e c c e n t r i c i t y . N a m e d after t h e Y u g o s l a v m a t h e m a t i c i a n M i l u t i n M i l a n k o v i t c h (1879-1958). m i n e r a l i z a t i o n (= r e p l a c e m e n t )
(n.) a n a l t e r n a t i v e for " r e p l a c e m e n t "
(q.v.). mold
(n.) a n i m p r e s s i o n o r o t h e r n e g a t i v e r e p l i c a o f t h e internal o r exter-
n a l parts o f a n o r g a n i s m f o r m e d b y s e d i m e n t e n c l o s i n g t h e o r g a n i s m (specifically, an e x t e r n a l m o l d ) or e n c l o s e d in a c a v i t y w i t h i n t h e org a n i s m (specifically, an i n t e r n a l m o l d or steinkern) (cf: cast). mutualism
(n.) a n a s s o c i a t i o n b e t w e e n o r g a n i s m s o f t w o s p e c i e s i n w h i c h
e a c h r e c e i v e s s o m e b e n e f i t f r o m t h e a s s o c i a t i o n (cf: a e g i s m ; c o m m e n salism; parasitism; symbiosis).
N
nektonic
(adj.)
swimming
within
a
body
of
water
(cf:
benthic;
planktonic). nomenclature
(n.) t h e s c i e n c e o f n a m i n g t h e g r o u p s into w h i c h o r g a n i s m s
are classified (cf: t a x o n o m y ) .
nomen dubium
(pl., nomina dubia; n.) in t a x o n o m y , a n a m e o f a t a x o n
t h a t i s s o p o o r l y u n d e r s t o o d a s t o b e o f d o u b t f u l status. T h e p h r a s e literally m e a n s " d u b i o u s n a m e . " nomen nudum (n.) in t a x o n o m y , a n a m e o f a t a x o n t h a t w a s m e n t i o n e d , b u t for w h i c h n o d e s c r i p t i o n , d e s i g n a t i o n o f a t y p e , illustration, a n d s o o n , w a s g i v e n . T h e p h r a s e literally m e a n s " n a k e d n a m e . " A nomen nudum is n o t t h e v a l i d n a m e of a g e n u s or s p e c i e s ; h o w e v e r , it m a y be o f h i s t o r i c a l interest.
O
o b l i g a t e (adj.) refers to an i n s t a n c e of an o r g a n i s m t h a t is a p a r t y to an a s s o c i a t i o n t h a t is r e q u i r e d for t h e s u r v i v a l of t h e o r g a n i s m ; t h u s , if a g i v e n parasite is u n a b l e to exist o u t s i d e of its p a r t i c u l a r a s s o c i a t i o n w i t h its h o s t , t h e a s s o c i a t i o n is an o b l i g a t e o n e (cf: facultative). obrution deposits
(n.) s e d i m e n t a r y layers f o r m e d b y rapid d e p o s i t i o n , u s u -
ally of fine-grained particles so as to s m o t h e r any organisms.
288
Glossary
ontogeny
(n.) e v e r y t h i n g that h a p p e n s t o a n o r g a n i s m f r o m t h e b e g i n n i n g
o f its life t o d e a t h . I n c l u d e d w i t h i n " o n t o g e n y " are e m b r y o l o g y , d e v e l o p m e n t , g r o w t h , m a t u r a t i o n , a n d s o o n (cf.: t a p h o n o m y ) . o r d e r (n.) t h e l e v e l i n t h e L i n n a e a n h i e r a r c h y b e l o w c l a s s a n d a b o v e family. Ordovician Biodiversification Event
(n.) a p p e a r a n c e o f n u m e r o u s m a j o r
groups of skeletonized m a r i n e invertebrate organisms d u r i n g the Ord o v i c i a n Period (syn., O r d o v i c i a n R a d i a t i o n ) . Ordovician Period
(n.) g e o l o g i c t i m e u n i t f o l l o w i n g t h e C a m b r i a n P e r i o d
and preceding the Silurian Period. outcrops
(n.) s u r f a c e e x p o s u r e s o f b e d r o c k f o r m e d b y n a t u r a l p r o c e s s e s .
packstone
(n.) a l i m e s t o n e c h a r a c t e r i z e d by f r a g m e n t s in g r a i n - t o - g r a i n
p
c o n t a c t , w i t h interstitial c a l c a r e o u s m u d (cf: g r a i n s t o n e ) . paleobathymetry paleontology
(n.) d e p t h o f a n a n c i e n t b o d y o f water.
(n.) t h e s t u d y o f a n c i e n t life b a s e d o n e v i d e n c e p r o v i d e d b y
fossils (from t h e G r e e k " p a l a i o s , " m e a n i n g " a n c i e n t , " + " o n , o n t o s , " m e a n i n g " b e i n g , " " t h i n g , " o r " t h a t w h i c h has e x i s t e n c e , " + " l o g o s , " m e a n i n g "discourse," and, by extension, "study of"); the word also c o m m o n l y is spelled "palaeontology." paleoslope
(n.) a c h a n g e i n e l e v a t i o n o f a n a n c i e n t t o p o g r a p h i c a l s u r f a c e
s u c h as t h e sea floor. Paleozoic Era
(n.) o l d e s t m a j o r d i v i s i o n o f t h e P h a n e r o z o i c E o n (from t h e
G r e e k "palaios," m e a n i n g "ancient," + " z o o n , " m e a n i n g "animal"). parasitism
(n.) a k i n d o f p r e d a t i o n i n w h i c h o n e a n i m a l lives w i t h i n , at-
t a c h e d to, or as a t e n a n t of a n o t h e r of a d i f f e r e n t s p e c i e s a n d f e e d s on t h e h o s t , w h i c h g e n e r a l l y is a d v e r s e l y a f f e c t e d , b u t rarely k i l l e d (cf: a e g i s m , c o m m e n s a l i s m ; predation; host; symbiosis). paratype
(n.) i n t a x o n o m y , w h e n t w o o r m o r e t y p e - s p e c i m e n s are d e s i g -
n a t e d for a s p e c i e s , a n d o n e of t h e m , t h e h o l o t y p e , is i d e n t i f i e d as b e i n g m o s t r e p r e s e n t a t i v e o f t h e s p e c i e s , t h e o t h e r s are p a r a t y p e s (cf.: cotype; holotype). pelagic
(adj.) l i v i n g w i t h i n t h e w a t e r c o l u m n , e i t h e r b y s w i m m i n g , drift-
ing, or floating. period
(n.) a g e o l o g i c t i m e u n i t , a s i n t h e O r d o v i c i a n P e r i o d , d u r i n g w h i c h
time the rocks in the C i n c i n n a t i area w e r e deposited; e q u i v a l e n t to system i n t h e t i m e - s t r a t i g r a p h i c c l a s s i f i c a t i o n ; t h e h i e r a r c h y o f g e o l o g i c t i m e u n i t s , f r o m l a r g e s t t o s m a l l e s t is: e o n , era, p e r i o d , e p o c h , a n d a g e (cf.: a g e , e p o c h , e o n , era). Phanerozoic Eon
(n.) m a j o r s u b d i v i s i o n o f g e o l o g i c t i m e m a r k e d b y o c -
c u r r e n c e o f a b u n d a n t fossils o f m e t a z o a n s . phylum
(pl., p h y l a ; n.) t h e level i n t h e L i n n a e a n h i e r a r c h y b e l o w k i n g d o m
a n d a b o v e class. plane of s y m m e t r y
(n.) t h e p l a n e o f s y m m e t r y c o m m o n l y i s c a l l e d t h e
" m i d l i n e " o f t h e a n i m a l (see: b i l a t e r a l l y s y m m e t r i c a l ) , planispiral
(adj.) said of a shell c o i l e d in a s i n g l e p l a n e .
Glossary
289
planktonic
(adj.) s u s p e n d e d w i t h i n o r f l o a t i n g u p o n a b o d y o f water, w i t h
transportation exclusively or primarily by currents and other movem e n t s o f t h e w a t e r itself (cf.: b e n t h i c ; n e k t o n i c ) . polymorphism
(n.) t h e e x i s t e n c e i n o n e s p e c i e s o f i n d i v i d u a l s o f m o r e
t h a n o n e s i z e , s h a p e , o r n a t u r e ; i n b r y o z o a n s , for e x a m p l e , t h e r e m a y b e several different p o l y m o r p h s i n a g i v e n c o l o n y , e a c h o f w h i c h , pres u m a b l y , p e r f o r m e d a different f u n c t i o n (cf.: d i m o r p h i s m ) . p o s t e r i o r (adj., n.) on or t o w a r d t h e rear of t h e a n i m a l . ( N o t e that w h a t is f u n c t i o n a l l y p o s t e r i o r i n a g i v e n a n i m a l m a y n o t c o r r e s p o n d t o the a n a t o m i c a l posterior. For e x a m p l e , i n h u m a n s , t h e b a c k i s a n a t o m i c a l l y d o r s a l , b u t , a s y o u w a l k a r o u n d , y o u r b a c k i s a t t h e rear o f y o u r bod\ a n d . h e n c e ,
is
f u n c t i o n a l l y "posterior"; cf.:
.interior;
distal; dorsal;
lateral; m e d i a l ; p r o x i m a l ; ventral.) predation
(n.) a r e l a t i o n s h i p in w h i c h o n e a n i m a l c o n s u m e s a n o t h e r organ-
i s m ; t h e c o n s u m e r is c a l l e d a predator, a n d that c o n s u m e d is called the prey (cf: a e g i s m ; c o m m e n s a l i s m ; m u t u a l i s m ; parasitism; symbiosis). primary producers
(n.) o r g a n i s m s at t h e b a s e of a f o o d c h a i n that form
organic c o m p o u n d s such as carbohydrates from simple components such as carbon dioxide and water by the process of photosynthesis. p r i o r i t y (n.) i n t a x o n o m y , t h e c o n v e n t i o n t h a t , w h e n t h e r e i s a n o l d e r n a m e a n d a y o u n g e r n a m e t h a t b o t h h a v e b e e n u s e d t o d e s i g n a t e the s a m e t a x o n , t h e o l d e r n a m e b e c o m e s t h e official n a m e o f the t a x o n . proximal
(adj.) o n o r t o w a r d t h e c e n t e r o f t h e a n i m a l ; for e x a m p l e , y o u r
finger tips are distal, w h e r e a s y o u r s h o u l d e r is p r o x i m a l (cf: anterior; distal; dorsal; lateral; m e d i a l ; posterior; v e n t r a l ) . pseudobivalved
(adj.) said of a shell that is s h a r p l y folded a l o n g t h e dorsal
axis s o a s t o g i v e t h e a p p e a r a n c e o f b e i n g b i v a l v e d , a l t h o u g h c a l c i f i c a t i o n is c o n t i n u o u s across t h e a x i s ; t h u s , t h e r e is no t r u e h i n g e ; rostroc o n c h m o l l u s c s are p s e u d o b i v a l v e d (cf: b i v a l v e d ; u n i v a l v e d ) .
R
radiometric dating
(n.) d e t e r m i n a t i o n o f g e o l o g i c a g e t h r o u g h m e a s u r e -
m e n t o f t h e d e c a y o f r a d i o a c t i v e isotopes c o n t a i n e d i n c e r t a i n m i n e r als; c o m m o n m e t h o d s are u r a n i u m - l e a d , p o t a s s i u m - a r g o n , a n d carbon-14 a n a l y s i s . recrystallization
(n.) t h e process w h e r e b y t h e o r i g i n a l s u b s t a n c e of a shell,
for i n s t a n c e , is r e c o n s t i t u t e d or c o n v e r t e d to crystals or to crystals of a different n a t u r e ; for e x a m p l e , s o m e m o l l u s c shells consist of the m i n e r a l a r a g o n i t e , w h i c h , u n d e r c e r t a i n t a p h o n o m i c c o n d i t i o n s , may, over t i m e , convert to the mineral calcite. Aragonite and calcite have the same c h e m i c a l c o m p o s i t i o n ( C a C O J , b u t h a v e a different t h r e e - d i m e n s i o n a l crystal s t r u c t u r e . relative age
(n.) t i m e o f o c c u r r e n c e o f a n e v e n t i n g e o l o g i c t i m e relative
to a n o t h e r , in t h e s e n s e of o l d e r or y o u n g e r (cf: a b s o l u t e age). r e p l a c e m e n t (= m i n e r a l i z a t i o n )
(n.) a t a p h o n o m i c p r o c e s s in w h i c h t h e
a c t u a l s u b s t a n c e o f a n o r g a n i s m i s r e m o v e d bit-by-bit, a n d m i n e r a l m a t t e r is left in its p l a c e ; a fossil p r o d u c e d by s u c h a p r o c e s s .
290
Glossary
Richmondian
(n.) t h e y o u n g e s t s t a g e o f t h e C i n c i n n a t i a n S e r i e s ; a l s o t h e
youngest age of the C i n c i n n a t i a n E p o c h , rock-stratigraphic unit
scientific n a m e
(see l i t h o s t r a t i g r a p h i c u n i t ) .
s
(see: s p e c i e s n a m e ) .
sea floor s p r e a d i n g
(n.) p r o c e s s b y w h i c h n e w o c e a n i c c r u s t i s f o r m e d b y
u p w e l l i n g o f m o l t e n m a t e r i a l a l o n g a f i s s u r e o r rift. seismite
(n.) r o c k layer f o r m e d o r a l t e r e d b y e a r t h q u a k e s h o c k .
s e r i a l s e c t i o n i n g (n.) c u t t i n g a fossil, for e x a m p l e , a b r a c h i o p o d , i n t o a n u m b e r of thin, e q u a l l y spaced slices of k n o w n orientation. F r o m t h e s e s l i c e s , it is p o s s i b l e to r e c o n s t r u c t t h e interior of t h e s h e l l ; in effect, o n e i s d o i n g a p a l e o n t o l o g i c a l C A T s c a n . I n s p e c i m e n s i n w h i c h t h e interior o f t h e shell i s f i l l e d w i t h r o c k m a t r i x , t h i s m a y b e t h e o n l y practical way to see w h a t is inside the shell. series
(n.) a t i m e - s t r a t i g r a p h i c s u b d i v i s i o n of a s y s t e m , s u c h as C i n c i n n a -
tian S e r i e s o r U p p e r O r d o v i c i a n S e r i e s (cf.: s t a g e ; s y s t e m ) . sequence boundary
(n.) s t r a t i g r a p h i c h o r i z o n m a r k i n g t h e b e g i n n i n g o r
t e r m i n a t i o n o f strata d e p o s i t e d d u r i n g a n i n t e r v a l o f sea l e v e l rise o r fall, u s u a l l y i n d i c a t i n g a c e s s a t i o n of s e d i m e n t a t i o n or i n t e r v a l of e r o sion (cf: u n c o n f o r m i t y ) . s e q u e n c e s t r a t i g r a p h y (n.) t h e s t u d y o f s e q u e n c e s o f s e d i m e n t a r y r o c k s b o u n d e d b y s u r f a c e s o f n o n - d e p o s i t i o n o r e r o s i o n , u s u a l l y related t o m a j o r c h a n g e s i n sea l e v e l . shell
pavement
(n.)
dense
accumulation
of shells
of
molluscs
or
brachiopods. siliciclastics
(n.) s e d i m e n t s c o n s i s t i n g o f p a r t i c l e s o f clay, m u d , silt, s a n d ,
or coarser material c o m p o s e d of silica-rich materials. socket
(n.) o n e o f t h e d e p r e s s i o n s a l o n g t h e h i n g e l i n e o f a n a r t i c u l a t e
b r a c h i o p o d o r p e l e c y p o d into w h i c h f i t s into a t o o t h o f t h e o p p o s i t e valve; the teeth and sockets, collectively t e r m e d the dentition, serve to p r e v e n t t h e v a l v e s f r o m b e i n g t w i s t e d a p a r t by, for e x a m p l e , a p r e d a t o r (cf: d e n t i t i o n ; t o o t h ) . s p e c i e s (pl., s p e c i e s ; n.) t h e level i n t h e L i n n a e a n h i e r a r c h y b e l o w g e n u s ; a s p e c i e s is t h e basic k i n d of o r g a n i s m r e c o g n i z e d by scientists. species n a m e
(n.) t h e f o r m a l n a m e o f a s p e c i e s , c o n s i s t i n g o f b o t h t h e
g e n e r i c n a m e a n d t h e s p e c i f i c (or trivial) n a m e ; c o m m o n l y c a l l e d a b i n o m e n , b e c a u s e it consists of two n a m e s ; c o m m o n l y called the scie n t i f i c n a m e o f t h e s p e c i e s (cf: g e n e r i c n a m e ; s p e c i f i c n a m e ) . specific epithet specific n a m e
(see: s p e c i f i c n a m e ) . (n.) t h e s e c o n d w o r d o f a s p e c i e s n a m e ; c o m m o n l y c a l l e d
t h e t r i v i a l n a m e ; s o m e t i m e s c a l l e d t h e " t r i v i a l e p i t h e t " (cf: g e n e r i c name; species name). stage
(n.) a t i m e - s t r a t i g r a p h i c s u b d i v i s i o n of a series, s u c h as t h e E d e n i a n
S t a g e ; often u s e d for i n t e r c o n t i n e n t a l o r r e g i o n a l c o r r e l a t i o n . T h e r e i s an e q u i v a l e n c e b e t w e e n a given stage and the time span d u r i n g w h i c h t h a t b o d y o f r o c k w a s d e p o s i t e d ; for e x a m p l e , t h e r o c k s o f t h e E d e n i a n S t a g e w e r e laid d o w n d u r i n g t h e E d e n i a n A g e (cf: series; s y s t e m ) .
Glossary
291
steinkern
(n.) p e t r i f i e d s e d i m e n t i n f i l l i n g of a shell or b o d y cavity, an in-
t e r n a l m o l d (from t h e G e r m a n " S t e i n , " m e a n i n g " s t o n e , " + " K e r n , " m e a n i n g "kernel"); although a G e r m a n n o u n , it c o m m o n l y appears n e i t h e r c a p i t a l i z e d n o r in italics (cf.: c a s t ; m o l d ) . storm cycles
(n.) a layer of s e d i m e n t a r y r o c k p r o d u c e d d u r i n g a s i n g l e
s t o r m , c o m m o n l y i t c o n s i s t s o f a n interval r e p r e s e n t i n g i n t e n s e disturb a n c e o f t h e sea floor f o l l o w e d b y a n interval r e p r e s e n t i n g w a n i n g o f s t o r m activity. stratigraphy
(n.) the study of layered or stratified rocks (cf: biostratigraphy),
stromatolites
(n.) h n e K l a m i n a t e d s e d i m e n t a r y a c c u m u l a t i o n s r e s u l t i n g
from trapping and b i n d i n g of sedimentary particles by cyanobacteria; usually sheet-like, d o m e - s h a p e d or c o l u m n a r in form; sometimes called "algal stromatolites," b e c a u s e cyanobacteria o n c e were thought to be algae. stromatoporoids
(n.) d o m e - s h a p e d , c o l u m n a r , or b r a n c h i n g c a l c a r e o u s skel-
etons, usually with finely laminated mierostructure, formed by calcareo u s s p o n g e s , o c c u r r i n g i n O r d o v i c i a n t h r o u g h C r e t a c e o u s rocks. subspecies
(n.) a level i n t h e L i n n a e a n h i e r a r c h y just b e l o w s p e c i e s ; s o m e -
times called variety. substratum
(n.) a s u r f a c e o n w h i c h a n o r g a n i s m m i g h t b e a t t a c h e d ; i t
m i g h t be the surface of a stratum, rock, shell, or other hard object. ( N o t t o b e c o n f u s e d w i t h " s u b s t r a t e , " w h i c h has a p r e c i s e b i o l o g i c a l m e a n i n g a n d s h o u l d n o t b e u s e d i n this c o n t e x t . ) succession
(n.) i n e c o l o g y , t h e r e p l a c e m e n t o f o n e a s s e m b l a g e o f o r g a n -
isms b y a n o t h e r , o f t e n i n w h i c h t h e a c t i v i t i e s o f t h e initial a s s e m b l a g e of o r g a n i s m s altered t h e e n v i r o n m e n t in s u c h a w a y that a different assemblage of organisms can occupy the environment; c o m m o n l y c a l l e d " e c o l o g i c s u c c e s s i o n " (cf: b i o t a l s u c c e s s i o n ; fossil s u c c e s s i o n ) . s u s p e n s i o n f e e d i n g (n., adj.) (cf: d e p o s i t f e e d i n g ; filter feeder). symbiont
(n.) e a c h o f t h e o r g a n i s m s i n v o l v e d i n a s y m b i o t i c r e l a t i o n s h i p .
symbiosis
(n.) a c l o s e a s s o c i a t i o n b e t w e e n o r g a n i s m s o f t w o s p e c i e s ; c o m -
m o n l y a s y m b i o t i c r e l a t i o n s h i p is b e n e f i c i a l to b o t h o r g a n i s m s involved, but parasitism also c a n be considered a symbiotic relationship (cf: c o m m e n s a l i s m ; m u t u a l i s m ; parasitism). symmetrical,
s y m m e t r y (see:
bilaterally
symmetrical;
plane
of
symmetry). synecology
(n.) e c o l o g y o f several o r m a n y s p e c i e s o f o r g a n i s m s t o g e t h e r
in a g i v e n t i m e a n d p l a c e (cf: a u t o e e o l o g y ) . syntypes system
(see: c o t y p e s ) .
(n.) a m a j o r t i m e - s t r a t i g r a p h i c s u b d i v i s i o n , t h e rock record of a p e -
riod of g e o l o g i c t i m e , s u c h as t h e O r d o v i c i a n S y s t e m (cf: series; stage), s y s t e m a t i c s (see: t a x o n o m y ) .
T
'laconic Orogeny
(n.) e p i s o d e o f i n t e n s e c r u s t a l d e f o r m a t i o n that o c -
c u r r e d d u r i n g t h e L a t e O r d o v i c i a n w h e n t h e plate o f o c e a n i c c r u s t b e n e a t h the Iapetus Sea was subducted b e n e a t h the continental Lau-
292
Glossary
r e n t i a n plate; n a m e d for t h e ' l a c o n i c M o u n t a i n r e g i o n o f e a s t e r n N e w York w h e r e this d e f o r m a t i o n first w a s r e c o g n i z e d . tangential
(adj.) w i t h r e s p e c t to b r y o z o a n s , r e f e r r i n g to a s e c t i o n c u t p a r a l -
lel t o t h e s u r f a c e o f t h e z o a r i u m a n d c l o s e e n o u g h t o t h e s u r f a c e o f t h e colony to show the mature features of the z o o e c i a in cross-section; s u c h a t a n g e n t i a l s e c t i o n is p e r p e n d i c u l a r to a l o n g i t u d i n a l s e c t i o n (Bassler 1953, G 1 5 , G18) (cf.: l o n g i t u d i n a l ; transverse). t a p h o n o m y (n.) 1. e v e r y t h i n g t h a t h a p p e n s to an o r g a n i s m after it d i e s ; 2. t h e study o f t h o s e p h e n o m e n a that t e n d t o d e s t r o y t h e r e m a i n s a n d traces of a l i v i n g t h i n g as w e l l as of t h o s e that t e n d to p r e s e r v e t h o s e r e m a i n s a n d t r a c e s (from t h e G r e e k " t a p h o s , " m e a n i n g " g r a v e " o r "tomb," + "nomos," meaning "law"). taxobases
(sing., taxobasis; n.) c h a r a c t e r i s t i c s o n w h i c h t h e t a x o n o m i c p o -
sition o f a g r o u p o f o r g a n i s m s i s b a s e d ( p r o n o u n c e d : t a x - u h - b a s e ease). taxon
(pl., taxa; n.) a f o r m a l b i o l o g i c a l g r o u p to w h i c h an o r g a n i s m is as-
s i g n e d ; h u m a n s , for e x a m p l e , b e l o n g i n a t a x o n a t t h e f a m i l y - l e v e l o f the L i n n a e a n hierarchy called Hominidae. taxonomy
(n.) t h e s c i e n c e o f a s s i g n i n g o r g a n i s m s t o their p r o p e r b i o l o g i c a l
g r o u p s (alternative n a m e s are c l a s s i f i c a t i o n a n d s y s t e m a t i c s ) . tempestites
(n.) s e d i m e n t a r y r o c k s f o r m e d b y s t o r m p r o c e s s e s , o f t e n ex-
h i b i t i n g features s u c h a s p a r t i c l e - s i z e s o r t i n g , fossil b r e a k a g e , a b r a s i o n , and orientation resulting from violent water m o v e m e n t . time-averaged
(adj.) p e r t a i n i n g to s e d i m e n t a r y d e p o s i t s or fossil a s s e m -
b l a g e s that r e p r e s e n t a c c u m u l a t i o n o v e r a relatively l o n g t i m e i n t e r v a l , often c o n s i s t i n g o f m i x t u r e s o f fossils f r o m s u c c e s s i v e g e n e r a t i o n s . time-stratigraphic unit
(n.) a b o d y o f r o c k f o r m e d d u r i n g a p a r t i c u l a r
interval of g e o l o g i c t i m e , s u c h as a s y s t e m or series (cf: b i o s t r a t i g r a p h i c u n i t ; l i t h o s t r a t i g r a p h i c unit). tooth
(n.) o n e o f t h e p r o j e c t i o n s a l o n g the h i n g e l i n e o f a n articulate b r a c h i o -
p o d or p e l e c y p o d that fits into a socket in the opposite valve; the teeth a n d sockets, collectively t e r m e d t h e d e n t i t i o n , serve to p r e v e n t the valves from b e i n g twisted apart by, for e x a m p l e , a predator (cf: d e n t i t i o n ; socket). t r a c e fossil
(n.) a fossil that s h o w s t h a t an a n i m a l or p l a n t e x i s t e d , b u t
w h i c h lacks actual remains or replicas of remains; it was m a d e by or is t h e result o f g e n u i n e a c t i v i t y o f t h e l i v i n g o r g a n i s m , rather t h a n i n v o l u n t a r y m o v e m e n t , s u c h a s a shell's b e i n g d r a g g e d across t h e sea f l o o r b y c u r r e n t s o r w a v e a c t i o n ; i n c l u d e d h e r e are f o o t p r i n t s , trails, burrows, b o r i n g s , t o o t h m a r k s , a n d so on (= i c h n o f o s s i l = Lebensspur) (cf: b o d y fossil). t r a n s v e r s e (adj.) w i t h r e s p e c t to b r y o z o a n s , r e f e r r i n g to a s e c t i o n c u t at right a n g l e s t o t h e d i r e c t i o n o f g r o w t h o f t h e z o a r i u m (Bassler 1953, G 1 5 , G18) (cf: l o n g i t u d i n a l ; t a n g e n t i a l ) . trivial n a m e
unconformity
(see: s p e c i f i c n a m e ) .
(n.) a s u r f a c e s e p a r a t i n g layers or o t h e r b o d i e s of r o c k that
u
represents e i t h e r a c e s s a t i o n o f d e p o s i t i o n o r a n interval o f e r o s i o n .
Glossary
293
univalved
(adj.) said of a shell t h a t c o n s i s t s of a s i n g l e v a l v e (cf.: b i v a l v e d ;
pseudobivalved).
V
variety
(n.) i n f o r m e r t i m e s , e q u i v a l e n t t o t h e t a x o n o m i c r a n k o f s u b s p e -
c i e s , b u t n o l o n g e r r e c o g n i z e d w i t h i n t h e z o o l o g i c a l c o m m u n i t y (Int e r n a t i o n a l C o m m i s s i o n o n Z o o l o g i c a l N o m e n c l a t u r e 1999,19); n o w a d a y s c o m m o n l y u s e d s p e c i f i c a l l y for k i n d s o f p l a n t s bred deliberately by horticulturists. ventral
(adj.) o n o r toward t h e b o t t o m o f t h e a n i m a l ; the n o u n form o f the
c o n c e p t is "venter." ( N o t e that w h a t is f u n c t i o n a l l y ventral in a g i v e n a n i m a l m a y n o t c o r r e s p o n d t o the a n a t o m i c a l ventral. For e x a m p l e , i n h u m a n s , the belly is anatomically ventral, but, as you walk around, your b e l l y is at t h e front of y o u r b o d y a n d , h e n c e , is f u n c t i o n a l l y "anterior"; cf: anterior; distal; dorsal; lateral; m e d i a l ; posterior; proximal.)
z
zone
(see b i o z o n e ) .
REFERENCES CITED
1963. Principles of Paleoecology.
Ager, Derek V.
N e w York: M c G r a w - H i l l .
Alberstadt, Leonard P., Kenneth. R. Walker, and Ronald P. Zurawski. 1974. Patch Reefs in the Carters Limestone (Middle Ordovician) in Tennessee, and Vertical
Zonation
in
Ordovician
Reefs.
Geological Society of America Bulletin
85(7): 1171-118. Aldridge, Richard ]., and Mark A. Purnell. 1996. T h e C o n o d o n t Controversies.
Trends in Ecology and Evolution 11(11): 463-468. Aldridge, Richard J., Derek E. G. Briggs, M. P. Smith, et al. 1993. T h e Anatomy of Conodonts.
Philosophical Transactions: Biological Sciences 340: 405-421.
Alexander, Richard R. 1986. Resistance to and repair of shell breakage induced by durophages in Late Ordovician brachiopods.
Journal of Paleontology 60(2):
273-285. , and Carl D. Scharpf. 1990. Epizoans on Late Ordovician Brachiopods from
Historical Biology 4(3): 179-202. 2001. Sequence, Cycle and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Southeastern Indiana.
Algeo, T h o m a s . J., and Carlton E. Brett, eds. Region.
Guidebook
Series
No.
1794.
Lexington:
Kentucky G e o l o g i c a l
Survey. A m e m i y a , Shonan, and Tatsuo Oji. 54 -5476
1992.
Regeneration in Sea Lilies.
Nature 357:
.
American C o m m i s s i o n on Stratigraphic N o m e n c l a t u r e . 1961. C o d e of Stratigraphic Nomenclature. American Association of Petroleum Geologists Bulletin 45: 645-665. Anonymous. 1849. Catalogue of the Vnios, Alasmodontas, and Anodontas of the Ohio River and its Northern Tributaries, Adopted by the Western Academy of Natural Sciences, of Cincinnati, January, 1849. Cincinnati: ]. A. James and U. P. James. . 1875. Editorial Miscellany. T h e C i n c i n n a t i M u s e u m of S c i e n c e and Art.
Cincinnati Quarterly journal of Science 2(1): 87-90. . 1876. [list of officers, and so on]. Proceedings of the Cincinnati Society of Natural History 1: inside front cover. . 1878. [series of three entries on the C i n c i n n a t i Society of Natural History,
Journal of the Cincinnati Society of Natural History 1(1): 1-12. . 1879. Proceedings of the Society. Journal of the Cincinnati Society of Natural History 1(4): 159-160. . 1882. Proceedings of the Society. Journal of the Cincinnati Society of Natural History 5(1): 1-4. . 1885a. Proceedings of the Society. Journal of the Cincinnati Society of Natural History 8(1): 58-62. . 1885b. Proceedings of the Society. Journal of the Cincinnati Society of Natural History 8(2): 74-90. . 1886a. Proceedings C i n c i n n a t i Society of Natural History. Journal of the Cincinnati Society of Natural History 9(3): 129-135. . 1886b. Proceedings of the Society. Journal of the Cincinnati Society of Natural History 9(1): 8-9. its history, and its journal].
295
. i8g2. M e m o i r of Dr. Richard M . Bvrnes. Journal of the Cincinnati Society of Natural History 15(2): 71-74. . 1902. The Cincinnati Society of Natural History: An Account of its Organization and a Description of its Collections for the Use of Visitors and Members. Cincinnati: C i n c i n n a t i Society of Natural History.
. 1912. Josua Lindahl, A . M . , Ph.D. Journal of the Cincinnati Society of Natural History 21(3): 81-83. . 1978. S o m e History. Cincinnati Museum of Natural History Quarterly, January, 3. Anstey, Robert L., and Michael L. Fowler. 1969. Lithostratigraphy and depositional environment of the Eden Shale (Ordovician) in the Tri-state Area of Indiana,
journal of Geology 77(6): 668-682. 1996. Phylum Bryozoa, 196-209. In Rodand Mcrrianne I lackathorn. cds. Fossils of Ohio. O h i o
Kentucky, and O h i o ,
Anstey, Robert L., and Mark A. Wilson. ney M . Feldmann
Division o f C e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of G e o logical Survey.
1838. N e w Trilohite, Ceratocephala ceralepta. American Journal of Science and Arts 34(2): 379-380. . 1839a. Fossil Encrinite. American Journal of Science and Arts 35(2): 359-360. . 1839b. Description of a N e w Fossil (Calymene hucklandii). American Journal of Science and Arts 36(1): 106-107.
Anthony, John G .
. 1847. On an Impression of the Soft Parts of an Orthoceras [Cincinnati,
Quarterly Journal of the Geological Society of London 3: 255-209. . 1848. O n an Impression of the Soft Parts oi an Orthoceras. American Journal of Science and Arts, 2nd ser., 6(16): 132-133. Ohio].
, and U. P. James. 1846. T w o Species of Asterias in the Blue Limestone of Cincinnati.
American Journal of Science and Arts 51: 441-442.
Arens, Nan Crystal, and Roger J. Cuffey. 1989. Bryozoan Fauna of the C o b u r n and Salona Limestones (Middle Ordovician) o f Central Pennsylvania.
Journal of
the Pennsylvania Academy of Sciences 63(2): 1131-1121. Armstrong, W i l l i a m G., P. N o e l Dilly, and A d a m Urbanek. 1984. C o l l a g e n in the Pterobranch C o e n e c i u m and the Problem of Craptolite Affinities.
Lethaia
17(2): 145-152. Aronoff, Steven M . 1979. Ortlioconic Nautiloid Morphology and the C a s e ofTrep-
toceras vs. Orthonybyoceras. Neues jahrbuch fiir Geologie und Palaontologie-Abhandlungen 158(1): 100-122. Ausich, W i l l i a m I., and T o m a s z K. Baumiller. 1993. C o l u m n Regeneration in an Ordovician Crinoid (Echinodermata): Paleobiologic Implications.
Journal of
Paleontology 67(6): 1068-1070. Ausich, W i l l i a m I., and David J. Bottjer. 1982. T i e r i n g in Suspension-Feeding C o m m u n i t i e s on Soft Substrata throughout the Phanerozoic. Science 216: Austin, G e o r g e M. 1927. R i c h m o n d Fossil Z o n e s in Warren and Clinton Counties,
Proceedings of the U.S. National Museum 70(2671): 3-18. 1996a. Phylum Arthropoda, Class Trilobita, 90-113. In Rodney Feldmann and Merrianne Hackathom, eds. Fossils of Ohio. O h i o Division
Ohio.
Babcock, Loren E. M.
of G e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of Geological Survey.
. 1996b.
66-67. Fossils of Ohio.
Phylum Conulariida,
anne H a c k a t h o m , eds.
hi Rodney M . Feldmann and MerriO h i o Division of Geological Survey
Bulletin 70. C o l u m b u s : O h i o Division of G e o l o g i c a l Survey. . 2003. Trilobites in Paleozoic Predator-Prey Systems, and T h e i r Role in Reorganization of Early Paleozoic Ecosystems,
55-92. In Patricia H. Kelley, Predator-Prey Interactions in
M i c h a l Kowalewski, and T b o r A. Hansen, eds.
the Fossil Record. 296
References Cited
N e w York: Kluwer/Plenum.
, and Rodney M . Feldmann. 1986. T h e Phylum C o n u l a r i i d a , 135-147. In Antoni Hoffman and Matthew H. Nitecki, eds.
Problematic Fossil Taxa.
New
York: Oxford University Press. Baird, Gordon C, Carlton E. Brett, and Robert C. Frey. 1989. "Hitchhiking" Epizoans on O r t h o c o n i c C e p h a l o p o d s : Preliminary Review of the Evidence and its Implications.
Senckenbergiana Lethaea 69(5/6): 439-465.
Bambach, Richard K. 1983. Ecospace Utilization and G u i l d s in Marine C o m m u -
719-746. In M i c h a e l J. S. Tevesz and Peter Biotic Interactions in Recent and Fossil Benthic Communities.
nities through the Phanerozoic, L. M c C a l l , eds.
New York: Plenum. . 1993. Seafood through T i m e : C h a n g e s in Biomass, Energetics, and Produc-
Paleobiology 19(3): 372-397. 1987. Invertebrate Zoology. Philadelphia: Saunders. 2000. Selling the True Time: Nineteenth-Century Timekeeping in
tivity in the Marine Ecosystem. Barnes, Robert D. Bartky, Ian R.
America.
Stanford: Stanford University Press.
1962. Great Surveys of the American West.
Bartlett, Richard A.
N o r m a n : University
of O k l a h o m a Press. Bassler, Ray S. 1906. A Study of the James Types of Ordovician and Silurian Bryo-
zoa. Proceedings of the U.S. National Museum 30(1442): 1-66. . 1915. Bibliographic Index of American Ordovician and Silurian Fossils. U.S. National M u s e u m Bulletin 92.
. 1933. Development of Invertebrate Paleontology in A m e r i c a . Geological Society of America Bulletin 44: 265-286. . 1937. Memorial of August F. Foerste. Proceedings of the Geological Society of America for 1936: 143-158. . 1945. Memorial to Edward Oscar Ulrich. Proceedings Volume of the Geological Society of America, Annual Report for 1944: 331-352. . 1947. In M e m o r i a m [John Milton Nickles], ii-v. Bibliography and Index of Geology Exclusive of North America, Volume 11-1945-1946. N e w York: G e o logical Society of America.
. 1953. Treatise on Invertebrate Paleontology.
Part G . Bryozoa. Boulder: G e o -
logical Society of America; Lawrence: University Press of Kansas. Baumiller, Tomasz K. 1990. Non-predatory Drilling of Mississippian Crinoids by Platyceratid Gastropods.
Palaeontology 33(3): 743-748.
, and Forest J. G a h n . 2002. Fossil Record o f Parasitism on M a r i n e Invertebrates with Special Emphasis on the P l a t y c e r a t i d - C r i n o i d Interaction,
195-209. In M i c h a l Kowalewski and Patricia of Predation. Paleontological Society Papers 8.
H. Kelley, eds.
The Fossil Record
Lancaster, Penn.: Paleontologi-
cal Society. , and Forest J. G a h n . 2004. Testing Predator-Driven Evolution with Paleozoic Crinoid A r m Regeneration.
1938.
Becker, Karl.
Science 305:1453-1455.
C i n c i n n a t i Area: T h e Mother of Geologists.
Compass 19(1):
188-196. Bell, Bruce M . Museum
1976a. and
A
Study of North American Edrioasteroidea.
Science
Service
Memoir
21.
Albany:
N e w York State
N e w York
State
Museum.
. 1976b.
Phylogenetic Implications of Ontogenetic Development in the Class
Edrioasteroidea (Echinodermata).
Journal of Paleontology 50(6): 1001-1019.
Bell, C. M . , J. P. A. Angseesing, and M. J. Townsend. 2001. A C h o n d r o p h o r i n e (Medusoid Hydrozoan) from the Lower Cretaceous o f C h i l e .
Palaeontology
44(5): 1011-1023. Berdan, Jean M. 1984. Leperditicopid Ostracodes from Ordovician Rocks of Kentucky and Nearby States and Characteristic Features of the Order Leperditicopida. U.S. G e o l o g i c a l Survey Professional Paper 1066-J. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. Bergstrbm, Stig M .
1996a.
Phylum Hemichordata, Class Graptolithina,
270-281.
References Cited
297
Ill Rodney M . Feldniann and Merrianne Hackathorn, eds. Fossils of Ohio. O h i o Division of G e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of G e o l o g i c a l Survey.
. 1996b.
282-287. hi Rodney M . Fossils of Ohio. O h i o Division of
Tentaculitoids,
Hackathorn, eds.
Feldniann and Merrianne Geological Survey Bulletin
70. C o l u m b u s : O h i o Division of Geological Survey. , and Charles E. Mitchell. 1992. T h e Ordovician Utica Shale in the Eastern Midcontinent Region: A g e , Lithofacies, and Regional Relationships.
Okla-
homa Geological Survey Bulletin 145: 67-89. Bischoff, G. C. O. 1989. Byroniida, N e w Order, from Early Palaeozoic Strata of Eastern Australia (Cnidaria, T h e c a t e Scyphopolyps).
Senckenbergiana Le-
thaea 61: 467-521. Blackwell, Will H., Joe H. Marak, and Martha J. Powell. 1982. T h e Identity and Reproductive Structures of a Misplaced
Solenopora
(Rhodophycophyta) from
the Ordovician of Southwestern O h i o and Eastern Indiana. °gy
l 8 :
Journal of Phycol-
477"4 8 2
Blackwell, W i l l H., Joe H. Marak, Martha J. Powell, and W a y n e D. Martin. 1984.
Girvanella
(Cyanochloronta) in an Ordovician O n c o l i t e Z o n e in Eastern
Indiana.
Bulletin of the Torrey Botanical Club 111(2): 165-170.
Blake, Daniel B., and T h o m a s E. Guensburg. 1988. T h e Water Vascular System
Lethaia 21(3): 189-206. . 1994. Predation by the Ordovician Asteroid Promopalaeaster on a Pelecypod. Lethaia 27(3): 235-239. Blind, Wolfram, and W i l h e l m Stuermer. 1977. Viriatellina fuchsi Kutscher (Tentaculoidea) mit Sipho unci Fangarmen. Neues Jahrbuch fiir Geologic und Palaontologie-Monatshejte 9: 513-522. Board of Directors, University of Cincinnati, [various dates]. University of Cincinnati Record of Minutes No. 2. Cincinnati: Archives and Rare Books Library, and Functional Morphology of Paleozoic Asteroids.
University of C i n c i n n a t i . Boardman, Richard S., Alan H. C h e e t h a m , and A l b e r t ) . Rowell, eds.
Invertebrates.
Oxford:
1987. Fossil
Blackwell.
Bodenbender, Brian E., Mark A. W i l s o n , and T i m o t h y J. Palmer. 1989. Paleoecology of
Sphenothallus
on an Upper Ordovician Hardground.
Lethaia 22(2):
217-225. Bowsher, Arthur L. 1955. Origin and Adaptation of Platyceratid Gastropods. Uni-
versity of Kansas,
Paleontological Contributions,
Mollusca
5:
1-11.
Bradshaw, Lael E. 1989. E. O. Ulrich and the Development of American Stratigraphy. P h . D . diss., University of C i n c i n n a t i . Bradstock, M i k e , and D e n n i s P. G o r d o n . 1983. Coral-Like Bryozoan Growths in Tasinan Bay, and T h e i r Protection to C o n s e r v e C o m m e r c i a l Fish Stocks.
New Zealand Journal of Marine and Freshwater Research 17:159-163. 1980. Phenotypic Variation and Paleoecology of Flexicalymene
Brandt, Danita S.
[Arthropoda: Trilobita] in the C i n c i n n a t i a n Series (Upper Ordovician) Near C i n c i n n a t i , O h i o . Master's thesis, University of Cincinnati. . 1985. Ichnologic, T a p h o n o m i c , and Sedimentologic Clues to the Deposition
299-307. In H. Biogenic Structures: Their Use in Interpreting Depositional
of C i n c i n n a t i a n Shales (Upper Ordovician), O h i o , U.S.A., Allen C u r r a n , ed.
Environment.
Society of E c o n o m i c Paleontologists and Mineralogists Special
Publication
35.
Tulsa:
Society
of
Economic
Paleontologists
and
Mineralogists.
. 1993. Ecdysis in Flexicalymene meeki (Trilobita). journal of Paleontology 67(6): 999-1005. . 1996. Epizoans on Flexicalymene (Trilobita) and Implications for Trilobite Paleoecology. Journal of Paleontology 70 (3): 442-449. , and Richard Arnold Davis. 2007. Trilobites, C i n c i n n a t i , and " T h e C i n c i n nati School of Paleontology," 298
References Cited
29-50.
In Donald G . Mikulic, Ed Landing, and
Joanne
Fabulous Fossils-300 Years of Worldwide Research 507. Albany: N e w York State
Kluessendorf, eds.
on Trilobites.
N e w York State M u s e u m Bulletin
Museum.
1995. lsotelus
[Trilobita] Hunting Burrow
from Upper Ordovician Strata, O h i o , U.S.A.
Journal of Paleontology 69(6):
, David L. Meyer, and Peter B. Lask.
1079-1083. Branstrator, Jon W. 1975. Paleobiology and Revision of the Ordovician Asteriadina [Echinoderniata: Asteroidea] of the C i n c i n n a t i Area. P h . D . diss., University of Cincinnati. Braun, E. Lucy. 1916. T h e Cincinnatian Series and Its Brachiopods in the Vicinity of C i n c i n n a t i .
Journal of the Cincinnati Society of Natural History 22(1):
18-42. Bretsky, Peter.
New York.
1970. Late Ordovician Benthic Marine Communities in North-central 414. Albany:
New York State M u s e u m and Science Service Bulletin
N e w York State M u s e u m . Brett, Carlton E., and T h o m a s J. Algeo.
2001a.
S e q u e n c e Stratigraphy of Upper
34-46. Sequence, Cycle and Event Strata of the Cincinnati Arch
Ordovician and Lower Silurian Strata of the C i n c i n n a t i A r c h Region, In T h o m a s J. Algeo and Carlton E. Brett, eds.
Stratigraphy of Upper Ordovician and Silurian Guidebook
Region.
Series
No.
1794.
Lexington:
Kentucky
Geological
Survey.
. 2001b.
Stratigraphy of Upper Kope Formation in its Type Area (Northern
47-64. In T h o m a s J A l g e o Sequence, Cycle and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Region. G u i d e b o o k Kentucky), Including a Revised Nomenclature,
and Carlton
E.
Brett, eds.
Series No. 1794. Lexington: Kentucky G e o l o g i c a l Survey.
1997. Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. N e w York: C o l u m b i a Uni-
Brett, Carlton E., and G o r d o n C . Baird, eds. versity Press.
Briggs, C, Jr. 1838. Report of Mr. Briggs: Second A n n u a l Report on the G e o l o g i c a l Survey of the State of O h i o ,
109-154.
Briggs, Derek E. G., E u a n N. K. Clarkson, and Richard J. Aldridge. 1983. T h e
Lethaia 16(1): 1-14. 1990. Trace Fossils. L o n d o n ,
Conodont Animal. Bromley, Richard G .
UK: Unwin H y m a n .
Brown, G e o r g e D., Jr., and Jerry A. Lineback. 1966. Lithostratigraphy of the C i n cinnatian Series (Upper Ordovician) in Southeastern Indiana. Bulletin of the American Association of Petroleum Geologists 50(5): 1018-1023. Brown, Roland Wilbur. 1956. Composition of Scientific Words: A Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics. Washington, D.C.: Smithsonian Institution Press. Browne, Ruth G. 1964. T h e C o r a l Horizons and Stratigraphy of the Upper Richmond G r o u p in Kentucky Fast of the Cincinnati Arch.
Journal of Paleontol-
ogy 3 ( ) 385-392. 8
2
:
. 1965. Some Upper C i n c i n n a t i a n (Ordovician) C o l o n i a l Corals of Northcentral
Kentucky.
Journal of Paleontology 39(6): 1177-1191.
Bucher, Walter H. 1938. A Shell-boring Gastropod in a Dalmanella Bed of Upper
American Journal of Science, 5th ser., 36(211): 1-7. 1939. Elementary Description of Cincinnatian Fossils and Strata and Plates of Commoner Fossils in the Vicinity of Cincinnati, Ohio. Cincinnati: University of C i n c i n n a t i ["Text by Walter H. Cincinnatian Age.
, Kenneth E. Caster, and Stewart Jones.
Bucher. Plates by Kenneth E. Caster Assisted by Stewart Jones"]. , Kenneth K. Caster, and Stewart M . Jones.
Fossils and Strata in the Vicinity of Cincinnati.
1945. Elementary Guide to the
Cincinnati: C i n c i n n a t i M u -
seum of Natural History ["Text by Walter H. Bucher. Plates by Kenneth E. Caster and Stewart M. Jones"]. B u l m a n , O. M. B. 1970. Graptolithina with Sections on Enteropneusta and PteroReferences Cited
branchia,
V1-V163.
In C u r t Teichert, ed.
Treatise on Invertebrate Paleontology.
Part V, Revised. Graptolithina. Boulder: G e o l o g i c a l Society of America; Lawrence: University Press of Kansas. Bush, Andrew M . , and Richard K. Bambach. 2004. Phanerozoic Increases in Alpha Diversity and Evenness: Linked C o n s e q u e n c e s of Increased Ecospace Use.
Geological Society of America, Abstracts with Programs 36(5): 457. Byers, Charles W. 2001. S e q u e n c e Stratigraphy at the Turn of the Century: E.O. Ulrich's Ozarkian System in Wisconsin.
Geoscience Wisconsin 18: 43-47.
Byrnes, R. M . , L. S. C o t t o n , and F. W. L a n g d o n . 1883. In M e m o r i a m . Charles B. Dyer.
Journal of the Cincinnati Society of Natural History 6(3): 207-210.
C a m e r o n , D., and Paul C o p p e r . 1994. Paleoecology of Giant Late Ordovician Cylindrical Sponges from Anticosti Island, E. C a n a d a ,
13-21.
In Rob W. M .
van Soest, T h e o M. G. van K e m p e n , and Jean-Claude Braekman, eds.
Sponges in Time and Space. 1975. and Strata 4: 65-86.
C a m p b e l l , Kenton S. W.
Rotterdam: A. A. Balkema. T h e Functional Morphology of
Cryptolithus. Fossils
Carlson, Sandra J., and Daniel C. Fisher. 1981. Microstructural and Morphologic Analysis of a C a r p o i d Aulacophore.
Geological Society of America, Abstracts
with Programs 13(7): 422. Carriker, M e l b o u r n e R., and Ellis L. Yochelson. 1968. Recent Gastropod Boreholes and Ordovician Cylindrical Borings. U.S. Geological Survey Professional Paper 593-B. Washington, D.C.: U.S. G o v e r n m e n t Printing Office.
1942. two Siplionophores from the Paleozoic. Pataeontographica Americana 3(14): 1-34. 1951. C i n c i n n a t i , Spawning G r o u n d of Geologists. The Compass of Sigma Gamma Epsilon 28(2): 103-105.
Caster. Kenneth K.
. 1952. C o n c e r n i n g Enoploura of the Upper Ordovician and its Relation to E c h i n o d e r m s . Bulletins of American Paleontology 34(141): 1-56. . 1961a. William H. Shideler. 1886-1958. Ithaca, N.Y.: Paleontological Research Other Carpoid
Institution.
. 1961b. Sunday All-Day Field Excursion in the Cincinnati Region, Field Trip 7, 253-257. In G e o l o g i c a l Society of America. Guidebook for Field Trips. Cincinnati Meeting. N e w York: G e o l o g i c a l Society of America. . 1965. M e m o r i a l to Ray S. Bassler (1878-1961). Geological Society of America Bulletin 76(11): P167-P174. . 1981. Cincinnatian Contributions to Knowledge of the Lophophora, 237-251. In J. T. D u t r o , Jr. and Richard S. Boardman, eds. Eophophorates: Notes for a Short Course. University of Tennessee, Department of Geological Sciences, Studies in G e o l o g y 5.
. 1982. 23-28.
T h e C i n c i n n a t i " S c h o o l " of Paleontology.
Earth Sciences History 1(1):
. 1985. Part II. T h e Dry Dredgers. Paper read before the Dry Dredgers, C i n cinnati, O h i o . , Elizabeth A. Dalve, and John K. Pope. 1955. Elementary Guide to the Fossils and Strata of the Ordovician in the Vicinity of Cincinnati, Ohio. Cincinnati: C i n c i n n a t i M u s e u m of Natural History. , Elizabeth A. Dalve, and John K. Pope. 1961. Elementary Guide to the Fossils and Strata of the Ordovician in the Vicinity of Cincinnati, Ohio. Cincinnati: C i n c i n n a t i M u s e u m of Natural History. , and Erik N. Kjellesvig-Waering. 1964. Upper Ordovician Eurypterids of Ohio.
Palaeontographica Americana 4(32): 301-358.
, and W i l l i a m B. Macke. 1952. An Aglaspid Merostome from the Upper Or-
Journal of Paleontology 26(5): 753-757. 1848. Letters on Geology: Being a Series of Communications Originally Addressed to Dr. John Locke, of Cincinnati, Giving an Outline of the Geoldovician of O h i o .
Christy, David.
300
References Cited
ogy of the West and South West, Together with an Essay on the Erratic Rocks of North America, Addressed to M. de Verneuil. Illustrated by Geological Sections and Engravings of Some Rare Fossils. Rossville, Ohio: J. M . Christy, Printer. Cincinnati Society of Natural History, [various dates]. Minutes Book I. Cincinnati: Cincinnati M u s e u m Center. Cisne, John L. 1970. Beecher's Trilohite Bed Revisited: Ecology of an Ordovician D e e p Water Fauna. Clark, David L. H.
1987.
Postilla 160:1-25. 636-662.
Phylum Conodonta,
C h e e t h a m and Albert J.
Rowell,
In Richard S. Boardman, Alan
eds.
Fossil Invertebrates.
Oxford:
Blackwell. T h o m a s 11. 194^. uralist 57: 47-48.
Clark,
Charles
, and C o l i n W. Steam,
Schiicliert-iSsS-ic^z.
The Canadian Field-Nat-
i960. The Geological Evolution of North America.
New
York: Ronald Press. Clarkson, Euan N. K. 1969. A Functional Study of the Silurian Odontopleurid
Leonaspis deflexa (Lake). Lethaia 2(4): 329-344. . 1998. Invertebrate Palaeontology and Evolution, 4th ed. Oxford: Blackwell. C l e n c h , W. J. 1936. T h e C o l l e c t i o n of Mollusks, 69-72. In T h o m a s Barbour, et al., and Members of the Staff. Notes Concerning the History and Contents of the Museum of Comparative Zoology. C a m b r i d g e , Mass.: M u s e u m of C o m p a r a Trilobite
tive Zoology, Harvard University. C o a n , Eugene V., Alan R. Kabat, and Richard E. Petit.
cology, 4th
2007. 2,400
Years
of Mala-
ed. A m e r i c a n Malacological Society. Available online at http://
www.malacogical.org/publications/2400_malacology.html
(accessed
Febru-
ary 26, 2008). C o h e n , Bernard L., and Angela B. C a w t h r o p . 1997. T h e Brachiopod G e n o m e ,
189-211.
Treatise on Invertebrate Paleontology.
In Roger L. Kaesler, ed.
Part H,
Revised. Vol. 1 (Introduction). Boulder: G e o l o g i c a l Society of A m e r i c a ; Lawrence: University Press of Kansas. Colbath, G. Kent. 1979. Organic-walled Microphytoplankton from the Eden Shale (Upper
Ordovician),
Indiana,
U.S.A.
Palaeontographica-Abteilung B 171:
1-38. C o n a n , Gerard, Michel Roux, and Myriam Sibuet. 1981. A Photographic Survey Stalked Crinoid Diplocrinus (Annacrinus) WyvilleThomsoni (Echinodermata) from the Bathyal Slope of the Bay of Biscay. Deep-sea Research 28(5): 441-453. Conrad, T i m o t h y A. 1841. Fifth Annual Report on the Palaeontology of the State of New York. Albany: N e w York State G e o l o g i c a l Survey. C o n w a y Morris, Simon. 1998. The Crucible of Creation. Oxford: Oxford University of a Population of the
Press. Copper, Paul.
1985.
Fossilized Polyps in 430-myr-old
Favosites
Corals.
Nature 316:
142-144. . 1997. Reefs and Carbonate Productivity: C a m b r i a n through D e v o n i a n ,
1623-1630. In Harilaos G . Lessios and Ian G . Macintyre, eds. Proceedings of the 8th International Coral Reef Symposium. Panama: Smithsonian Tropical Research Institute. . 2001. Reefs during the Multiple Crises Towards the Ordovician-Silurian Boundary; Anticosti Island, Eastern C a n a d a , and Worldwide.
Canadian jour-
nal of Earth Sciences 38(2): 153-171. C o t t o n , L. S., R. M. Byrnes, and A. E. Heighway. 1885. In M e m o r i a m (R. B. Moore.).
Journal of the Cincinnati Society of Natural History 8(1): 67-69. 2005. History of Life, 4th ed. Oxford: Blackwell.
C o w e n , Richard.
Cressman, E. R. and M. C. Noger. 1976. Tidal-Flat Carbonate Environments in the
High Bridge Group (Middle Ordovician) of Central Kentucky.
Series
10,
Re-
port of Investigations 18. Lexington: Kentucky G e o l o g i c a l Survey.
References Cited
301
Croneis, Carey. 1963. G e o g r a p h i c Environment and Geological Leadership: T h e
journal of Geological Education
C i n c i n n a t i Arch Area,
11(3): 81-90.
Cross, Aureal T., Ralph E. Taggart, and W i l l i a m H. Gillespie. 1996. T h e Fossil Plants of O h i o : Introduction, Overview, and Nonvascular Plants, 370-395. In Rodney M . Feldmann and Merrianne I lackathorn, eds.
Fossils of Ohio.
Ohio
Division of G e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of G e o logical Survey. Cuffey, Roger J. 1998. T h e Maysville Bryozoan Reef M o u n d s in the Grant Lake Limestone (Upper Ordovician) of North-Central Kentucky, 38-44. In Richard
Sampling the Layer Cake that Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. O h i o Division of G e o -
Arnold Davis and Roger J. Cuffey, eds.
logical Survey Guidebook 13. C o l u m b u s : O h i o Division of Geological Survey. , Richard Arnold Davis, and John E. Utgaard. 2002. T h e Cincinnati Paleobryozoologists, 5 9 - 7 9 . In Patrick N. Wyse Jackson and Mary E. Spencer Jones, eds.
zoans.
Annals of Bryozoology: Aspects of the History of Research on
Brvo-
Dublin: International Bryozoology Association, Department of G e o l -
ogy, Trinity C o l l e g e . , and Ronny L. Fine. 2005. T h e Largest Known Fossil Bryozoan Reassembled
from Near Cincinnati. Ohio Geology 2005(1): 1, 3-4. Dalve, Elizabeth. 1948. T h e Fossil Fauna of the Ordovician in the Cincinnati Region. Cincinnati: University M u s e u m , Department of G e o l o g y and G e o g raphy, University of C i n c i n n a t i . .
1951. " T h e D r y Dredgers."
The Compass of Sigma Gamma Epsilon
28(2):io5-io6. D a n a , James D. 1846.
United States Exploring Expedition. During the Years 1838, Under the Command of Charles Wilkes, U.S.N. Vol. VII.
1839,1840,1841,1842.
Zoophytes: C. Philadelphia: Sherman. . 1849. United States Exploring Expedition. During the years 1838,1839,1840, 1841, 1842. Under the command of Charles Wilkes, U.S.N. Vol. VII. Atlas. Zoophytes: C. Philadelphia: Sherman. Dattilo, Benjamin F. 1996. A Quantitative Paleoecological Approach to HighResolution C y c l i c and Event Stratigraphy: T h e Upper Ordovician M i a m itown Shale in the Type C i n c i n n a t i a n . Lethaia 29(1): 21-37. . 2004. A N e w A n g l e on Strophomenid Paleoecology; Trace-Fossil Evidence o f an Escape Response for the Plectambonitoid Brachiopod
Sowerhyella Ru-
gosa from a Tempestite in the Upper Ordovician Kope Formation (Edenian) of Northern Kentucky. Palaios 19(4): 332-348. Davis, Richard Arnold. 1981. Land Fit for a Q u e e n : T h e G e o l o g y of Cincinnati,
The Ohio River Book: Cincinnati and the Ohio. Cincinnati: T h e Program for Cincinnati. , ed. 1985. Cincinnati Fossils: An Elementary Guide to the Ordovician Rocks and Fossils of the Cincinnati, Ohio, Region. Cincinnati: Cincinnati M u s e u m 130-137. In Joyce V. B. Cauffield and C a r o l y n Banfield, eds.
of Natural History. . 1986. C i n c i n n a t i Region: Ordovician Stratigraphy Near the Southwest CorT h o r n t o n L. Neathery, ed. Centennial Field Guide, Southeastern Section of the Geological Society of America. Boulder:
ner of O h i o , 21-24. '
Volume
6:
n
G e o l o g i c a l Society of America.
, ed. 1992. Cincinnati Fossils: An Elementary Guide to the Ordovician Rocks and Fossils of the Cincinnati, Ohio, Region. Cincinnati: Cincinnati M u s e u m of Natural History. , and Roger J. Cuffey, eds. 1998. Sampling the Layer Cake that Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. O h i o Division of Geological Survey Guidebook 13. C o l u m b u s : O h i o Division of Geological Survey. , R. H. B. Fraaye, and Charles Hepworth Holland. 2001. Trilobites within Nautiloid C e p h a l o p o d s . Lethaia 34(1): 37-45. , and Royal H. Mapes. 1996. Phylum Mollusca, Class C e p h a l o p o d a , 166-195. 302
References Cited
In Rodnev M . Feldmann and Merrianne Hackathorn, eds.
Fossils of Ohio.
O h i o Division of G e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of Geological Survey. , Royal 11. Mapes, and Susan M. Klofak. 1999. Epizoa on Externally Shelled Cephalopods, 32 51. In A. Yu Rozancn and A. A. Shevyrev, e d s . phalopoda:
Recent Advances in Their Study.
Fossil Ce-
Moscow: Russian A c a d e m y o f
Sciences, Paleontological Institute.
1965. Environments of the G e o l o g i c Past. Science 147: 592-594. 1979. T h e Naturalists, 294-303. In M i c h a e l B. Lafferty, ed. Ohio's Natural Heritage. C o l u m b u s : O h i o A c a d e m y of Science.
Deevey, Edward S.
Dexter, Ralph W.
Diekmeyer, Sharon St. Louis. 1998. Kope to Bellevue Formations: T h e Riedliu
10-35. Sampling the Layer Cake that Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. O h i o Road/Mason Road Site (Upper Ordovician, Cincinnati, O h i o , Region), In Richard Arnold Davis and Roger J. Cuffey, eds.
Division of Geological Survey G u i d e b o o k 13. C o l u m b u s : O h i o Division of Geological Survey. D o n o g h u e , Philip C . J., Peter L. Forey, and Richard J. Aldridge. 2000. C o n o d o n t Affinity and Chordate Phylogeny.
Biological Reviews 75(2): 191-251.
Donovan, Stephen K.. and David A. Schmidt. 2001. Survival of Crinoid Stems Following Decapitation: Evidence from the Ordovician and Palaeobiological Implications.
Lethaia 34(4): 263-270.
Donovan, Stephen M . , )ack W. Kallmeyer, and Cornelis J. Veltcamp. 1995. Functional Morphologies of the C o l u m n s of Upper Ordovician
Xenocrinus
and
Dendrocrinus. Lethaia 28(4): 309-315. Dott, Robert H., Jr. 2000. W. H. Twenhofel—Patriarch of Sedimentary Geology.
The
Outcrop.
Drake, Benjamin, and E. D. Mansfield.
1827. Cincinnati in 1826.
Cincinnati: Mor-
gan, Lodge, and Fisher.
1825. Geological Account ol the Valley of of the American Philosophical Society, n.s., 2: 124-139.
Drake, Daniel.
the O h i o .
Transactions
Droser, Mary L., Richard. A. Fortey, and X i n g Li. 1996. T h e Ordovician Radiation. American
Scientist,
March-April.
Droser, Mary L., and Peter M. Sheehan. 1997. Palaeoecology of the Ordovician Radiation: Resolution of Large-scale Patterns with Individual C l a d e Histories, Palaeogeography and Environments.
Ceobios Memoire Special 20: 221-229. Geological Society of Amer-
Dunbar, C . 0.1943. Memorial to Charles Schuchert.
ica, Proceedings for 1942: 217-240. 1977. "A Recycled Landscape." Quarterly of the Cincinnati Museum of Natural History i4(2):i-g. Reprinted in Cincinnati Museum of Natural History Popular Publication Series N o . 9, 1982. C i n c i n n a t i : C i n c i n -
Durrell, Richard H.
nati M u s e u m of Natural History. Dury, Charles. 1910. Proceedings [of the Cincinnati Society of Natural History].
Journal of the Cincinnati Society of Natural History 21(2): 50-51. 1892a. T h e Crinoid Heterocrinus subcrassus. Science 20(459): 66. . 1892b. O n Termination of C o l u m n s of Crinoids from the Cincinnati Group. American Geologist 10(2): 130. . 1892c. Remarks on the Steins and Roots o f Crinoids from near L e b a n o n , Ohio. Journal of the Cincinnati Society of Natural History 15(2): 101.
D y c h e , D. T. D.
Elias, Robert J. 1979. Late Upper Ordovician Solitary Rugose Corals of Eastern North America. Ph.D. diss., University of Cincinnati. . 1982. Latest Ordovician Solitary Rugose Corals of Eastern North America.
Bulletins of American Paleontology 81(314):
1-116.
. 1983. Middle and Late Ordovician solitary rugose corals of the Cincinnati Arch region. U.S. Geological Survey Professional Paper 1066-N. Washington, D.C.: U.S. G o v e r n m e n t Printing Office.
References Cited
303
. 1984- Paleobiologic Significance of Fossulae in North American Late Ordovician Solitary Rugose Corals.
Paleobiology 10(1): 102-114.
. 1986. Symbiotic Relationships Between Worms and Solitary Rugose Corals in the Late Ordovician.
Paleobiology 12(1): 32-45.
. 1998. Corals in the C i n c i n n a t i a n (Upper Ordovician) of the Cincinnati Region ( O h i o - I n d i a n a - K e n t u c k y ) . M A P S
Digest 21(4): 41-50.
, and Dong-Jin Lee. 1993. Microborings and G r o w t h in Late Ordovician Halysitids and O t h e r Corals.
Journal of Paleontology 67(6): 922-934.
Erickson, J. Mark, and David A. W a u g h . 2002. C o l o n y Morphologies and Missed Opportunities during the Cincinnatian (Late Ordovician) Bryozoan Radiation:
Heterotrypa frondosa
Examples from
and
Monticulipora mammulata, 101-107.
In Patrick N. Wyse Jackson, Caroline J. Bottler, and Mary El. Spencer Jones, eds.
Bryozoan Studies 2001: Proceedings of the Twelfth International Bryozoology Association Conference. Lisse, T h e Netherlands: Swets and Zeitlinger. Erickson, J. Mark, and T i m o t h y D. Bouchard. 2003. Description and Interpretation of
Sanctum laurentiensis,
N e w Ichnogenus and Ichnospecies, a D o m i c h -
nium M i n e d into Late Ordovician (Cincinnatian) Ramose Brvozoan C o l o nies.
Journal of Paleontology 77(5): 1002-1010.
Eriksson, Mats, and C l a e s F. Bergman. 2003. Late Ordovician Jawed Polychaete Faunas o f the T y p e C i n c i n n a t i a n Region, U.S.A.
Journal of Paleontology
77(3): 5°9"5 32
Ewing, Maurice, and Richard Arnold Davis. 1967. Lebensspuren Photographed on the O c e a n Floor.
259-294.
In J. B. Hersey, ed.
Deep-Sea Photography.
Balti-
more, Maryland: T h e Johns Hopkins Press.
1886. Remarks on Some Fossils of the Cincinnati Group. Journal of the Cincinnati Society of Natural History 9(1): 14-20. . 1929. A Review of the G e n u s Lichenocrinus and Descriptions of Two New G e n e r a . American Midland Naturalist 11: 453-490. Feldmann, Rodney M . , and Merrianne H a c k a t h o m , eds. 1996. Fossils of Ohio. Faber, Charles L.
O h i o Division of G e o l o g i c a l Survey Bulletin 70. C o l u m b u s : O h i o Division of G e o l o g i c a l Survey. Fenton, Carroll Lane, and Mildred A d a m s Fenton. 1931. S o m e Snail Borings of Paleozoic Age.
American Midland Naturalist 12(12): 522-528. The Fossil Book: A Record of Prehistoric
, and Mildred Adams Fenton. 195S.
Life.
G a r d e n City: Doubleday.
Fisher, Donald W.
1962.
W98-W143. Treatise on Invertebrate Paleontology. Part W.
Small Conoidal Shells of Uncertain Affinities,
In Raymond C . M o o r e , ed.
Miscellanea (Conodonts, C o n o i d a l Shells of Uncertain Affinities, Worms, Trace Fossils, Problematica). Boulder: G e o l o g i c a l Society of America; Lawrence: University Press of Kansas. Flower, Rousseau H. 1942. An Arctic C e p b a l o p o d Faunule from the Cynthiana of Kentucky.
Bulletins of American Paleontology 27(103): 1-51.
. 1946. Ordovician C e p h a l o p o d a o f the C i n c i n n a t i Region. Part I. Bulletins
of American Paleontology 29(116): 83-738. . 1955. Trails and Tentacular Impressions of O r t h o c o n i c Cephalopods. Journal of Paleontology 29(5): 857-867. . 1957. Nautiloids o f the Paleozoic, 829-852. In Harry S. Ladd, ed. Treatise on Marine Ecology and Paleoecology, Vol. 2, Paleoecology. G e o l o g i c a l Society of America M e m o i r 67. N e w York: G e o l o g i c a l Society of America.
1893a. T h e Reproduction of Arms in Crinoids. American Geologist 12: 270-271. . 1893b. T h e Reproduction of Arms in Crinoids. American Geologist 12: 340.
Foerste, August F.
. 1903. T h e R i c h m o n d G r o u p along the Western Side of the Cincinnati Anticline in Indiana and Kentucky.
American Geologist 31(6): 333-361.
. 1906. T h e Silurian, D e v o n i a n , and Irvine Formations of East-central Ken-
References Cited
tucky, with an A c c o u n t of their Clays and Limestones.
Kentucky Geological
Survey Bulletin 7: 369. . 1910. Preliminary Notes on C i n c i n n a t i a n and Lexington Fossils of O h i o ,
Bulletin of the Scientific Laboratories of Denison University 16:17-100. . 1912. Megalograptus welchi S. A. Miller, 325-328. In John M . Clarke and Rudolf Ruedemann. Eurypterida of New York, vol. 1. Albany: N e w York State Indiana, Kentucky, and Tennessee.
Education Department.
. 1917. Notes on Richmond and Related Fossils. Journal of the Cincinnati Society of Natural History 22(2): 42-55. . 1919. Notes on lsotelus, Arcolichas, Calymene, and Encrinurus. Bulletin of the Scientific Laboratories of Denison University 19: 65-82. Foote, Michael, and Arnold I. Miller. 2007. Principles of Paleontology, 3rd ed. N e w York: Freeman. Ford, John P. 1967. Cincinnatian G e o l o g y in Southwest Hamilton C o u n t y , O h i o .
American Association of Petroleum Geologists Bulletin 51(6): 918-936. 1999. Feeding Habits in Trilobites. Palaeontology 42(3): 429-65.
Fortey, Richard A., and R. M . O w e n s .
Fox, W i l l i a m T. 1962 Stratigraphy and Paleoecology of the R i c h m o n d G r o u p in Southeastern Indiana:
Geological Society of America Bulletin 73(5): 621-641.
. 1968. Quantitative Paleoeeologic Analysis of Fossil C o m m u n i t i e s in the
Journal of Geology 76(6): 613-640. 1980. Vanuxemia waynesvillensis, a N e w Species
Richmond Group: Frey, Robert C .
o f Cyrtodontid
Pelecypod from the Upper Ordovician of Southwest O h i o . Journal of Paleon-
tology 54(4): 74°-744. 1981. Narthecoceras (Cephalopoda) from the Upper Ordovician (Richmondian) of southwest O h i o . Journal of Paleontology 55(6): 1217-1224. . 1985. A Well-preserved S p e c i m e n of Schuchertoceras (Cephalopoda, Ascocerida) from the Upper Ordovician (Basal Richmondian) of Southwest O h i o .
Journal of Paleontology 59(6): 1506-1511. . 1987a. T h e O c c u r r e n c e of Pelecypods
in Early Paleozoic Epeiric-Sea Envi-
ronments, Late Ordovician of the C i n c i n n a t i , O h i o Area. Palaios 2(1): 3-23.
. 1987b.
The Paleoecology of a Late Ordovician Shale Unit from Southwest
Journal of Paleontology 61(2): 242-267. Treptoceras duseri (Micbelinoceratida, Proteoceratidae) from Late Ordovician of Southwestern O h i o . New Mexico Bureau of Mines and Mineral Resources Memoir 44: 79-101. O h i o and Southeastern Indiana.
. 1988.
Paleoecology of
. 1989. Paleoecology of a Well-preserved Nautiloid Assemblage from a Late Ordovician Shale
Unit, Southwestern O h i o .
Journal of Paleontology 63(5):
604-620. . 1995. Middle and Upper Ordovician Nautiloid Cephalopods of the Cincinnati Arch Region of Kentucky, Indiana, and Ohio. U.S. Geological Survey Professional Paper 1066-P. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. . 1997. T h e Utility of Flpiboles in the Regional Correlation of Paleozoic Epeiric Sea Strata: an Example from the Upper Ordovician of O h i o and In-
335-368. In Carlton E. Brett and G o r d o n C . Baird (eds.), Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. N e w diana,
York: C o l u m b i a University Press. Fiirsich, Franz T. 1974. O n Diplocraterion Torell 1870 and the Significance o f Morphological Features in Vertical Spreiten-Bearing U-Shaped Trace Fossils.
Journal of Paleontology 48(5): 952-962. G a g e l , Diane VanSkiver. 1998. Ohio Photographers, 1839-1900. Nevada City, C a lif.: Carl M a u t z Publishing. G e e , Henry.
1996. Before the Backbone. London, UK: C h a p m a n and Hall. 1961. Guidebook for Field Trips. Cincinnati Meet-
Geological Society of America.
ing. New York: Geological Society of America. References Cited
305
. ig99- '999 Geologic Time Scale. Boulder: Geological Society of America. 1898. Joseph Francis James. 1857-1897. American Geologist 21(1): 1-11.
Gilbert, G. K.
Glass, Alexander. 2006. Pyritized T u b e Feet in a Protasterid Ophiuroid from the Upper Ordovician of Kentucky, U.S.A.
Acta Palaeontologica Polonica 51(1):
171-184. G o l d m a n , Daniel, and Stig M. Bergstrom. 1997. Late Ordovician Graptolites from
Palaeontology 40(4): 965-1010. 1989. Wonderful Life. N e w York: Norton. G r e g Hand. 1995. The University of Cincinnati. Montgomery:
the North A m e r i c a n Midcontinent. G o u l d , Stephen J. G r a c e , Kevin, and
Community Communications. G r a h a m , G., John G. Anthony, and W. P. James. 1846. Two Species of Fossil Asterias in the Blue Limestone of C i n c i n n a t i . American Journal of Science and Arts, 2nd sen, 1(3): 441-442. Gray, Henry H. 1972. Lithostratigraphy of the Maquoketa Group (Ordovician) in Indiana. Indiana G e o l o g i c a l Survey Special Report 7. Bloomington: Indiana G e o l o g i c a l Survey. G r i n n e l l , G e o r g e Bird. 1877. Notice of a N e w G e n u s of Annelids from the Lower
American Journal of Science and Arts, 3rd
Silurian.
ser.,
14(81): 229-230.
Grotzinger, John, T h o m a s H. Jordan, Frank Press, and Raymond Siever. 2007.
Understanding Earth, 5th
ed. New York: Freeman.
Gutstadt, Allan M. 1958. Upper Ordovician Stratigraphy in Eastern Interior Region.
American Association of Petroleum Geologists Bulletin 42(3): 513-547.
Hageinan, Steven J.. Noel P. James, and Yvonne Bone. 2000. Cool-Water Carbonate Production from Epizoic Bryozoans on Ephemeral Substrates.
Palaios
15(1): 33-48. Hall, James. 1845. Description of Some Microscopic Shells from the Decomposing Marl Slate of C i n c i n n a t i . American Journal of Science and Arts 48(2): 292-295. . 1847. Palaeontology of New-York. Vol. I, C o n t a i n i n g Descriptions of the Organic Remains of the Lower Division of the New-York System, (Equivalent to the Lower Silurian Rocks of Europe). Albany: Charles Van Benthuysen. . 1861. Contributions to Palaeontology. Being the Results of Investigations
1859 and i860, 89-92. Fourteenth Annual Report of the Regents of the University of the State of New York. Albany: Charles van M a d e during the Years Benthuysen.
. 1872a.
Descriptions of N e w Species of Crinoidea and O t h e r Fossils from
Strata of the A g e of the Hudson River G r o u p and Trenton Limestone,
New York State Museum,
24th
Annual Report.
205-232.
Albany: N e w York State
Museum.
. 1872b.
Descriptions of New Species of Fossils from the Hudson River G r o u p
225-232. New York State Museum, 24th Annual Report. Albany: N e w York State Museum. . 1883a. Paleontology, 239-400. Indiana Department of Geology and Natural History, Twelfth Annual Report. 1882. Indianapolis: Indiana Department of in the Vicinity of C i n c i n n a t i , O h i o ,
G e o l o g y and Natural History.
. 1883b. Van Cleve's Fossil Corals, 239-318. Indiana Department of Geology and Natural History, Twelfth Annual Report. 1882. Indianapolis: Indiana D e partment of G e o l o g y and Natural History. , and John M . Clarke.
Palaeozoic Brachiopoda.
1892.
An
Introduction to the Study of the Genera of
Part I: G e o l o g i c a l Survey of the State of New York.
Palaeontology: V o l u m e VIII. Albany: Charles van Benthuysen and Sons. , and R. P. Whitfield. 1875. Descriptions of Invertebrate Fossils, Mainly from
Report of the Geological Survey of Ohio 2(2): 65-180. 1984. Pre-Quaternary Sea-level C h a n g e s . Annual Review of Earth and Planetary Sciences 12: 205-243. the Silurian System.
Hallam, Anthony.
306
References Cited
Hallam, A., and P. B. W i g n a l l .
1997. Mass Extinctions and Their Aftermath.
Ox-
ford: Oxford University Press. Haneberg, W i l l i a m O , Mary M . Riestenberg, Richard E . Pohana, and Sharon C . Diekmeyer. 1992. Cincinnati's Geologic Environment: A Trip for SecondarySchool Teachers. O h i o Division of G e o l o g i c a l Survey G u i d e b o o k 9. C o l u m bus: O h i o Division of G e o l o g i c a l Survey.
1975. Trace Fossils and Problematica. In C u r t Teichert, ed. Treatise on Invertebrate Paleontology. Part W, Revised. Supplement 1 (Trace Fossils
Hantzschel, W.
and Problematica). Boulder: G e o l o g i c a l Society of A m e r i c a ; Lawrence: University Press of Kansas. Hansen, Michael O, and Horace R. Collins. 1979. A Brief History of the O h i o Geological Survey.
Ohio Journal of Science 79(1): 3-14.
Harper, G e o r g e W. 1886. C a t a l o g u e of the Unionidae of the Mississippi Valley.
journal of the Cincinnati Society of Natural History 9(1): 10-14. . 1902. Albert G . Wetherby. The Nautilus 16(1): 10-12. , and Ray S. Bassler. 1896. C a t a l o g u e of the Fossils of the Trenton and C i n c i n nati Periods, O c c u r r i n g in the Vicinity of C i n c i n n a t i , O. Cincinnati: W. B. Carpenter C o . Harris, Frank W., and W a y n e D. Martin. 1979. Benthic C o m m u n i t y Development in Limestone Beds of the Waynesville (Upper Dillsboro) Formation (Cincin-
Journal of Sedimentary Petrology 49(4): 1295-1306. Hart-Davis, Duff. 2004. Audubon's Elephant: America's Greatest Naturalist and the Making of "The Birds of America." New York: Henry Holt. Haskell, Daniel C . 1942. The United States Exploring Expedition, 1838-1842 and natian Series, Upper Ordovician) of Southeastern Indiana.
Its Publications 1844-1874. N e w York: N e w York Public Library.
1968. Stratigraphy and Paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio, and Kentucky. G e o l o g i c a l Society of Amer-
Hatfield, C r a i g B.
ica Special Paper 95. Boulder: G e o l o g i c a l Society of America. Hattin, Donald E., E d m u n d Nosow, Ronald D. Perkins, et al. Field Excursion to the Falls of the O h i o , Field Trip 9, 295-350. In Geological Guidebook for Field Trips. Cincinnati Meeting. New York:
Society of America. Geological Society
of America. Hay, Helen B. 1981. Lithofacies and Formations of the Cincinnatian Scries 1I Ipper Ordovician), Southeastern Indiana and Southwestern O h i o . Ph.D. diss., Miami University. . 1998. Paleogeography and Paleoenvironments, Fairview through Whitewater Formations (Upper Ordovician, Southeastern Indiana and Southwestern
120-134. I' Richard Arnold Davis and Roger J. Cuffey, eds. Sampling the Layer Cake that Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. O h i o Division of G e o l o g i c a l Survey G u i d e b o o k 13. C o l u m b u s : Ohio),
1
O h i o Division of G e o l o g i c a l Survey. , John K. Pope, and Robert C. Frey. 1981. Lithostratigraphy, Cyclic Sedimentation, and Paleoecologv of the Cincinnatian Series in Southwestern O h i o and Southeastern Indiana, 73-86. In T h o m a s G . Roberts, ed. GSA Cincinnati '81 Field Trip Guidebooks 1. Falls C h u r c h , Va.: American Geological Institute. Hedeen, Stanley. 2006. Natural History of the Cincinnati Region. Cincinnati Museum Center Scientific Contributions No. 1. Cincinnati: Cincinnati Museum Center. Hendrickson, Walter B. 1947. T h e Western A c a d e m y of Natural Sciences of C i n -
cinnati. Isis 37(3/4): 138-145. Hinterlong, Gregory. 1981. Paleoecologic Succession in the Corrvville M e m b e r (McMillan
Formation), Upper O r d o v i c i a n , Stonelick C r e e k , C l e r m o n t
County, O h i o . Master's thesis, M i a m i University. Hints, O l l e , Mats Eriksson, Anette E. S. Hogstrom, et al. 2004. W o r m s , Worinlike and Sclerite-bearingTaxa,
223-230.
In Barry D. Webby, Florentin Paris, Mary References Cited
307
L. Droser, and Ian G . Percival, eds.
Event.
The Great Ordovician Biodiversification
N e w York: C o l u m b i a University Press.
Hoare, Richard D., and John Pojeta, Jr. 2006. Ordovician Polyplacophora (Mollusca) from North America.
Journal of Paleontology 80
(Suppl.
64): 1-27.
Hobbs, W i l l i a m Herbert. 1907. Memorial Address: Nathaniel Southgate Shaler.
Transactions of the Wisconsin Academy of Sciences, Arts, and Letters XV(II): 925-928. Holland, C h a r l e s Hepworth. 2000. A Quartet of Cephalopodologists. Geology Today, November-December. Holland, Steven M. 1993. S e q u e n c e Stratigraphy of a Carbonate-clastic Ramp: the C i n c i n n a t i a n Series (Upper Ordovician) in its Type Area.
Geological Society
of America Bulletin 105(3): 306-322. . 1997. Using Time/Environment Analysis to R e c o g n i z e Faunal Events in the
309-334. In Carlton E. Brett and Paleontological Events: Stratigraphic, Ecological, and
Upper Ordovician of the C i n c i n n a t i Arch, Gordon C .
Baird, eds.
Evolutionary Implications.
N e w York: C o l u m b i a University Press.
. 1998. Sequence Stratigraphy' of the Cincinnatian Series (Upper Ordovician,
135-151. In Richard Arnold Davis and Roger J. Sampling the Layer Cake that Isn't: The Stratigraphy and Paleontology of the Type-Cincinnatian. O h i o Division of Geological Survey G u i d e C i n c i n n a t i , O h i o , Region), Cuffey, eds.
book 13. C o l u m b u s : O h i o Division of G e o l o g i c a l Survey. . 2005. T h e Stratigraphy and Fossils of the Upper Ordovician near C i n c i n nati, O h i o . Available online at http://www.uga.edu/~strata/cincy/index.html (accessed February
26, 2008).
, Arnold I. Miller, B. F. Dattilo, et al. 1997. C y c l e Anatomy and Variability in the Storm-Dominated Type C i n c i n n a t i a n (Upper Ordovician): C o m i n g to Grips with C y c l e Delineation and Genesis.
Journal of Geology 105:135-152.
, Arnold I. Miller, and David L. Meyer. 2001. Sequence Stratigraphy of the
11 Ipper ()nl<>\ ician, Cincinnati, ()hiO Area), 93-102. In Sequence, Cycle and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Region. Kope-Fairview Interval
T h o m a s . J. Algeo and Carlton E. Brett, eds.
Guidebook Series No. 1794. Lexington: Kentucky Geological Survey. , Arnold I. Miller, David L. Meyer, and Benjamin F. Dattilo. 2001. T h e D e tection and Importance of Subtle Biofacies within a Single Lithofacies: T h e Upper Ordovician Kope Formation of the C i n c i n n a t i , O h i o Region.
Palaios
16(3): 205-217. , and Mark E. Patzkowsky. 1996. S e q u e n c e Stratigraphy and Long-term Paleoceanographic C h a n g e in the Middle and Upper Ordovician of the Eastern United States, 117-129. In Brian J. W i t z k e , G r e g A. Ludvigson, and Jed Day, eds. Paleozoic Sequence Stratigraphy: Views from the North American Craton. G e o l o g i c a l Society of America Special Paper 306. Boulder: Geological Society of America. , and Mark E. Patzkowsky. 2007. Gradient Ecology of a Biotic Invasion: Biofacies of the Type C i n c i n n a t i a n Series (Upper Ordovician), Cincinnati, O h i o Region, USA.
Palaios 22(4): 392-407.
Hotchkiss, Frederick H. C. 1970. North A m e r i c a n Ordovician Ophiuroidea. T h e
Taeniaster Billings, 1858 (Protasteridae). Proceedings of the Biological Society of Washington 83(5): 59-76. Genus
Howe, A. J., W m . Hubbell Fisher, and A. T. Keckeler. 1889. In M e m o r i a m - U . P.
Journal of the Cincinnati Society of Natural History 12(1): 5-7. 1962. W o r m s , W144-W177. In Raymond C . Moore, ed. Treatise on Invertebrate Paleontology. Part W. Miscellanea (Conodonts, Conoidal Shells
James.
Howell, B. F.
of Uncertain Affinities, W o r m s , Trace Fossils, Problematica). Boulder: G e o logical Society of America; Lawrence: University Press of Kansas. Huff, Warren D., Stig M. Bergstrom, and Dennis R. Kolata. 1992. Gigantic Ordovician Volcanic Ash Fall in North A m e r i c a and Europe: Biological, Tec308
References Cited
tononiagniatic,
and
Event-stratigraphic
Significance.
Geology
20(10):
875-878. Hughes, Nigel C, and D a n L. Cooper. 1999. Paleobiologic and Taphonoinic Aspects of the "granulosa" Trilobite Cluster, Kope Formation (Upper Ordovician. Cincinnati
Region),
journal of Paleontology 75(2): 306-319.
Hughes, Nigel O , G . O . Gunderson, and M . J. W e e d o n . 2000. Late C a m b r i a n Conulariids from Wisconsin and Minnesota, journal of Paleontology 74(5):
828-838. Hutchinson, G . Evelyn.
1965. The Ecological Theater and the Evolutionary Play.
N e w Haven: Yale University Press.
Hyman, L. II. 1955. The Invertebrates, vol. 4: Echinodermata. The Coelomate Bilateria. New York: M c G r a w - H i l l . International Commission on Stratigraphy. 2004. Stratigraphic Information System. Available online al http://www.stratigraphy.org (accessed February 26,2008). International Commission on Zoological Nomenclature. 1999. International Code
of Zoological Nomenclature. London, UK: International Trust for Zoological Nomenclature. International Geological Correlation Programme. IGCP410, " T h e Great Ordovician Biodiversification Event. Implications for Global Correlation and Resources." Available online at http://www.es.mq.edu.au/MUCEP/igcp410/ (accessed February 26, 2008). Jacobson, Stephen R. 1978. Acritarchs from Middle and Upper Ordovician Rocks in New York State and the Cincinnati Region in O h i o and Kentucky. Ph.D. d i s s . . The ()lii«i State I 'niversitv. . 1979. Acritarchs as Paleoenvironmental Indicators in Middle and Upper Ordovician Rocks from Kentucky, O h i o , and N e w York,
ogy 53(5)
:
H 9 7 -
1
2
1
2
journal of Paleontol-
-
Jaeger, Edmund C . i960. The Biologist's Handbook of Pronunciations. Springfield: Charles C . T h o m a s . James, Joseph F. 1886. Note on a Recent Synonym in the Palaeontology of the Cincin-
nati Group, journal of the Cincinnati Society of Natural History 9(2): 39. . 1889. Uriah Pierson James. American Geologist 3(5): 281-287. ]anies, 11. P. 1S75. Paleontology. (Catalogue of Loner Silurian Fossils of the Cincinnati Group. Found at Cincinnati and Vicinity-Within a Circuit of 40 or 50 Miles. N e w Edition, M u c h Enlarged. W i t h Descriptions of some N e w Species of Corals and Polyzoa. Cincinnati: U. P. James. . 1878a. Review of "A Classified List of Lower Silurian Fossils, Cincinnati Group," by John Mickleborough and A . G . Wetherby. The Paleontologist 2:
15-16. . 1879. Review of " C a t a l o g u e of Geological Specimens," by D. D. O w e n . The
Paleontologist 3: 24. . 1884a. Descriptions of Four N e w Species of Fossils from the Cincinnati Group, journal of the Cincinnati Society of Natural History 7(3): 137-140. . 1884b. Description of T h r e e Species of Fossils, journal of the Cincinnati Society of Natural History 7(1): 20-24. . 1884c. O n Conodonts and Fossil Annelid Jaws, journal of the Cincinnati Society of Natural History 7(3): 143-149. , A. J. Howe, and O. D. Norton. 1881. Report of the C o m m i t t e e on the Life and Character of G e o r g e G r a h a m . Journal of the Cincinnati Society of Natu-
ral History 4(1): 85-90. Jangoux, Michel. 1982. Food and Feeding Mechanisms: Asteroidea, 117-159. In Michel Jangoux and John M . Lawrence, eds. Echinoderm Nutrition. Rotterdam: A. A. Balkema. Jansonius, J., and W. A. M . Jenkins. 1978. Chitinozoa, 341-357. In Bilal U. Haq and A n n e Boersma, eds. Introduction to Marine Micropalaeontology. N e w York: Elsevier. References Cited
309
Jennette, David C, and W a y n e A. Pryor. 1993. C y c l i c Alternation of Proximal and Distal Storm F a d e s : Kope and Fairview Formations (Upper Ordovician), O h i o and Kentucky.
Journal of Sedimentary Petrology 63(2): 183-203.
Jensen, Soren. 1990. Predation by Early C a m b r i a n Trilobites on Infaunal Worms-Evidence from the Swedish Mickwitzia Sandstone.
Lethaia 23(1): 29-42.
Johnson, Richard I. 2002. Albert Gallatin Wetherby: Malacology at the Cincinnati Society of Natural History and in O h i o (1843-1896). Occasional Papers on Mollusks, Department of Molluscs, Museum of Comparative Zoology, Harvard University 6(79): 109-133. Kaesler, Roger L. 1987. C a r l O . D u n b a r o n C h a r l e s Schuchert. Palaios 2(4): 406-410. Kaplan, Peter, and Tomasz K. Baumiller. 2000. T a p h o n o m i c Inferences of Boring Habit in the Richmondian
Onniella meeki
Epibole.
Palaios 15(6): 499-510.
. 2001. A Misuse of O c c a m ' s Razor T h a t Trims More Than Just the Fat.
Palaios 16(5): 525-527. 1951. North American Geosynclines.
Kay, G . Marshall.
Geological Society of Amer-
ica M e m o i r 48. N e w York: G e o l o g i c a l Society of America.
1945. Joseph Dorfeuille and the Western M u s e u m . Journal of the Cincinnati Society of Natural History 22(4): 1-29. Kesling, Robert V., and Leigh W. M i n t z . 1961. Notes on Lepadocystis moorei (Meek) an Upper Ordovician Callocystitid Cystoid. Contributions from the Museum of Paleontology, The University of Michigan 17(4): 123-148. Kellogg, Elizabeth R.
Knopf, Adolf. 1952. Biographical M e m o i r of Charles Schuchert 1858-1942. Na-
tional Academy of Sciences Biographical Memoirs 27:
363-389.
Kobluk, David R., and Michael J. Risk. 1977. Algal Borings and Framboidal Pyrite
Lethaia 10(2): 135-143. 1966. O n the Structure and Relationships of Graptolites. Journal of Paleontology 40(3): 489-501. Kramer, Virginia. 1918. Professor G e o r g e W. Harper. The Oracle 19(1): 12. La R o c q u e , Aurele, and Mildred Fisher Marple. 1955. Ohio Fossils. O h i o Division in Upper Ordovician Brachiopods.
Kozlowski, Roman.
of G e o l o g i c a l Survey Bulletin 54. C o l u m b u s : O h i o Division of Geological Survey.
1900. T h e C i n c i n n a t i Normal School, 108-111. In Isaac History of the Schools of Cincinnati and Other Educational Institutions, Public and Private. Under Official Endorsement of Board of Education and Superintendent of Schools. Cincinnati: Cincinnati Board of
Lathrop, Carrie Newhall.
M . Martin, compiler.
Education.
. 1902. T h e Normal Schools of Cincinnati.
School,
356-361.
In John B. Shotwell, ed. A
History of the
C i n c i n n a t i : T h e School Life Company.
L e e , Gerald Bernard. 1974. "Lithostratigraphy of the Cincinnatian Series (Upper Ordovician) from Maysville, Kentucky to Dayton, O h i o . " M . S . thesis, Miami University, Oxford, O h i o . Lesquereux, L e o . 1874. On the Remains of Land Pants in the Lower Silurian.
American Journal of Science and Arts, 3rd ser., 7(37): 31-34. 1878. Land Plants, Recently Discovered in the Silurian rocks of the United
American Philosophical Society Proceedings 17:163-173. . 2006. Letters Written from America, 1849-1853. Trans. H. D w i g h t
States.
Page. Ed.
Wendy Everham. Rockland, Maine: Picton Press. Liddell, W. David, and Carlton E. Brett. 1982. Skeletal Overgrowths a m o n g Epizoans from the Silurian (Wenlockian) Waldron Shale.
Paleobiology 8(1):
67-78. Lindahl, Josua. 1906. Orthography o f Names of the Naiades. Journal of the Cincin-
nati Society of Natural History 20(5): 235-243. 1758 [1956]. Systema Naturae. Per Regno Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characterihus, Differentiis, Sy-
Linnaeus, Carolus.
310
References Cited
nonymis, Locis. Tomus I. Editio Decima, Reformata: Laurentii Salvii, Holmiae. London, UK: British M u s e u m of Natural History. Livingstone, David N. 1987. Nathaniel Southgate Shalerand the Culture of American Science. Tuscaloosa: University of Alabama Press. Locke, John. 1838. Prof. Locke's G e o l o g i c a l Report, C o m m u n i c a t e d by the G o v ernor to the G e n e r a l Assembly of O h i o . D e c e m b e r ,
1838. Second Annual
Report on the Geological Survey of Ohio: 201-286. Loeblich, Alfred R., Jr., and Helen Tappan. 1978. S o m e M i d d l e and Late Ordovician Microphytoplankton from Central North America,
journal of Paleontol-
ogy 52: 1233-1287. Lorenz, D. M. 1973. Edenian (Upper Ordovician) Benthic C o m m u n i t y Ecology in North-central Kentucky. Ph.D. diss., Northwestern University.
1845. Travels in North America; with Geological Observations on the United States, Canada, and Nova Scotia, Volume I. L o n d o n , U K : John
Lyell, Charles. Murray.
Malinky, John M . , Mark A . W i l s o n , Lars E.Holmer, and H. Lardeux. 2004. T u b e shaped Incertae Sedis, Droser, and Ian G .
Event.
214-222.
In Barry D. Webby, Florentin Paris, Mary L.
Percival, eds.
The Great Ordovician Biodiversification
N e w York: C o l u m b i a University Press.
1900. History of the Schools of Cincinnati and Other Educational Institutions, Public and Private. Under the Official Endorsement of Board of Education and Superintendent of Schools. Cincinnati: Board of Education.
Martin, Isaac M .
Martin, Wayne D. 1975. T h e Petrology of a C o m p o s i t e Vertical Section of C i n c i n natian Series Limestones (Upper Ordovician) of Southwestern O h i o , Southeastern Indiana, and
Northern Kentucky,
journal of Sedimentology Petrology
45(4) 907-9 5:
2
, and K. L. Hauer. 2006. A Brief Description of the Cincinnatian Series (Upper Ordovician) of Ohio, Indiana, and Northern Kentucky. Oxford, O h i o : Karl E. Limper
Geology
Museum
and
the
Department of Geology,
Miami
University. McKinney, F. K., and J. B. C . Jackson.
1989. Bryozoan Evolution.
Boston: Unwin
Hyman. M c L a u g h l i n , Patrick I., and Carlton E. Brett. 2007. Signatures of Sea-level Rise on the Carbonate Margin of a Late Ordovician Foreland Basin: A C a s e Study from the Cincinnati A r c h , U S A .
Palaios 22(3): 245-267.
Stratigraphic Renaissance in the Cincinnati Arch: Implications for Upper Ordovician Paleontology and Paleoecology. C i n c i n n a t i M u s e u m C e n t e r Scientific Contributions N o .
M c L a u g h l i n , Patrick I., Carlton E. Brett, et al. Forthcoming.
2. Cincinnati: Cincinnati M u s e u m Center. Meek, Fielding B.
1872a.
Descriptions of N e w Western Paleozoic Fossils, Mainly
Proceedings of the Academy of Natural Sciences of Philadelphia 21(3): 308-336. . 1872b. Descriptions of T w o N e w Star-fishes, and a Crinoid, from the C i n c i n nati G r o u p of O h i o and Indiana. American journal of Science and Arts, 3rd ser., 3(16): 257-262. from the Cincinnati G r o u p of the Lower Silurian Series of O h i o .
. 1873. Descriptions of Invertebrate Fossils of the Silurian and D e v o n i a n Systems.
Report of the Geological Survey of Ohio 1(2): 1-246.
, and Alfred II. Worthen. 1865. Contributions to the Paleontology of Illinois States. Proceedings of the Academy of Natural Sciences of Philadelphia 17: 245-273. Merrill, G e o r g e P. [1924] 1964. The First One Hundred Years of American Geology. and O t h e r Western
New York: Hafner. Messing, C . G . , D . L. Meyer, U. E. Siebeck, et al. 2006. A modern soft-bottom, shallow-water crinoid fauna (Echinodermata) from the Great Barrier Reef, Australia.
Coral Reefs 25(1): 164-168.
Meyer, Da\ icl I,. 1990. Population Paleoecology and (Comparative 'laphonoiny of References Cited
T w o Edrioasteroid (Echinodermata) Pavements: Upper Ordovician of Kentucky and O h i o . Historical Biology 4(3): 155-178. . 1997. Implications of Research on Living Stalked Crinoids for Paleobiology,
31-44. In Johnny A. Waters and Christopher G . Maples, eds. Geobiology of Echinoderms. Paleontological Society Papers 3. Lancaster, Penn.: Paleontological Society.
. 2006. Rings around the Raftnesquina: N e w Evidence for Life Position and Activity of an Ordovician Strophomenid Brachiopod. Geological Society of America, Abstracts with Programs 38(3): 22. , Rick C. Tobin, Wayne A. Pryor, et al. 1981. Stratigraphy, Sedimentology, and Paleoecology of the Cincinnatian Series (Upper Ordovician) in the Vicinity of C i n c i n n a t i , O h i o , 31-72. In T h o m a s G . Roberts, ed. G S A Cincinnati '81
Field Trip Guidebooks 1. Falls C h u r c h , Va.: American Geological Institute. , Gregory A. Schumacher, E. M a c Swinford, et al. 1985. Upper Ordovician Stratigraphy, Sedimentology, and Paleontology along Backbone Creek, Clermont County, Ohio. Field Trip Guidebook for the Annual Meeting of the O h i o A c a d e m y of Science, G e o l o g y Section. Cincinnati: O h i o Academy of Science, G e o l o g y Section. , Arnold I. Miller, Steven M . Holland, and Benjamin F. Dattilo. 2002. Crinoid Distribution and Feeding Morphology during a Depositional Sequence: Kope and Fairview Formations, Upper Ordovician, Cincinnati Arch Region.
journal of Paleontology 76(4):
725-732.
Mickleborough, John. 1883. Locomotory Appendages of Trilobites. journal of the
Cincinnati Society of Natural History 6(3): 200-206. , and A . G . Wetherby. 1878a. A Classified List of Lower Silurian Fossils, Cincinnati Group, journal of the Cincinnati Societv of Natural History 1(2): 61-86. , and A. G . Wetherby. 1878b. A Classified List of Lower Silurian Fossils, Cincinnati Group. Cincinnati: James Barclay. Miller, Arnold I. 1989. Spatio-temporal Transitions in Paleozoic Bivalvia: A Field Comparison of Upper Ordovician and Upper Paleozoic Bivalve-dominated
Fossil Assemblages. Historical Biology 2(3): 227-260. . 1997. C o u n t i n g Fossils in a C i n c i n n a t i a n Storm Bed: Spatial Resolution in the Fossil Record,
leontological Events:
57-72. In Carlton E. Brett and G o r d o n C . Baird, eds. PaStratigraphic, Ecological, and Evolutionary Implications.
N e w York: C o l u m b i a University Press. Miller, C . A. 1874. Remarks on Unio Sayii and Unio Camptodon, before the C i n cinnati Society of Natural History at the M e e t i n g in May. Cincinnati Quar-
terly Journal of Science 1(3): 244-247. Miller, Kenneth G . , Michelle A . K o m i n z , James V. Browning, et al. 2006. T h e Phanerozoic Record of Global Sea-Level C h a n g e . Science 310:1293-1298. Miller, Merrell A. 1976. Maysvillian (Upper Ordovician) Chitinozoans from the Cincinnati Region in O h i o , Kentucky, and Indiana. Ph.D. diss., T h e O h i o State University. Samuel A . 1874a. Cyrtoceras Vallandighami-{S. A . Miller). Cincinnati Quarterly Journal of Science 1(3): 232. . 1874b. G e n u s Megalograptus. Cincinnati Quarterly Journal of Science 1: 343-346. . 1874c. Remarks on the G e n u s Conchicolites of Nicholson. Cincinnati Quarterly Journal of Science i(i):7-n. . 1875a. Acidaspis O'Nealli. Cincinnati Quarterly Journal of Science 2(1): 86-87. . 1875b. Class C e p h a l o p o d a (Cuvier), as Represented in the Cincinnati G r o u p . Cincinnati Quarterly Journal of Science 2(2): 121-134. . 1877. The American Palaeozoic Fossils: A Catalogue of the Genera and Species. C i n c i n n a t i : Cincinnati T i m e s C o m p a n y .
Miller,
312
References Cited
. 1878. Description of a N e w G e n u s and Eleven N e w Species of Fossils, W i t h Remarks upon Others Well K n o w n , from the C i n c i n n a t i G r o u p .
Journal of
the Cincinnati Society of Natural History 1(2): 100-108. . 1880. Description of Two N e w Species from the Niagara G r o u p , and Five
from the Keokuk Group. Journal of the Cincinnati Society of Natural History
2( ):25 -259, pl. 15. . 1881. North American Mesozoic and Ccenozoic Geology and Palaeontology; or, An Abridged History of Our Knowledge of the Triassic, Jurassic, Cretaceous and Tertiary Formations of this Continent. Cincinnati: J. Barclay. . 1882a. Brief Mention of Some of the M e n W h o Aided In Developing T h e 4
4
Science Of Geology In America, But W h o Are Known No Longer, Except By
Journal of the Cincinnati Society of Natural History 5(3): 101-115. . 1882b. Description of Ten New Species of Fossils. Journal of the Cincinnati Society of Natural History 5(2): 79-88. . 1882c. Description of Two New Genera and Eight New Species of Fossils from the Hudson River Group, With Remarks upon Others. Journal of the Cincinnati Society of Natural History 5(i):34-44, pis. 1-2. . 1883. Glyptocrinus Redefined and Restricted, Gaurocrinus, Pycnocrinus and Compsocrinus Established, and Two N e w Species Described. Journal of the Cincinnati Society of Natural History 6(4): 217-234. Their Works.
. 1884. Description of a Beautiful Star Fish and O t h e r Fossils. Journal of the
Cincinnati Society of Natural History 7(i):i6-2o, pl. . 1889. North American Geology and Palaeontology for the Use of Amateurs, Students, and Scientists. Cincinnati: Western Methodist Book C o n c e r n . . 1892. First Appendix, 1892, 665-718 [no further publication information]. . 1897. Second Appendix to North American Geology arid Palaeontology, 719-793. Cincinnati: S. A. Miller. , Frederick Braun, John Mickleborough, et al. 1879. Report of C o m m i t t e e on Geological
Nomenclature.
Journal of the Cincinnati Society of Natural His-
tory 1(4): 193-194. , and C . B. Dyer. 1878a. Contributions to Palaeontology. Journal of the Cincinnati Society of Natural History 1(1): 24-39. , and C . B. Dyer. 1878b. Contributions to Palaeontology. No. 2, 1-11. C i n c i n nati: Privately published by the authors. , and Charles L. Faber.
1892a.
Description of S o m e Subcarboniferous and
journal of the Cincinnati Society of Natural History 14(3 and 4): 164-168. , and Charles L. Faber. 1892b. Some N e w Species and N e w Structural Parts of Fossils. Journal of the Cincinnati Society of Natural History 15(2): 79-87. , and Charles L. Faber. 1894a. Description of S o m e Cincinnati fossils. Journal of the Cincinnati Society of Natural History 17(3): 137-158. , and Charles L. Faber. 1894b. N e w Species of Fossils from the Hudson River G r o u p , and Remarks upon Others. Journal of the Cincinnati Society of Natural History 17(1): 22-33. Carboniferous
Cephalopoda,
, and W m . F. E. Gurley. 1893. Descriptions of S o m e N e w Species of Invertebrates from the Palaeozoic Rocks of Illinois and Adjacent States.
Bulletin of
the Illinois State Museum of Natural History 3:1-81. Milne-Edwards, H., and Jules Haime. 1851. Monographic des polypiers fossiles des Terrains Palaeozoiques, Precedee d'un tableau general de la classification des Polypes.
Archives du Museum d'Histoire naturelle, Paris 5: 1-504.
Mitchell, Charles E., and Stig M. Bergstrom. 1977. T h r e e - D i m e n s i o n a l l y Preserved Richmoudian Graptolites from Southwestern O h i o and the Graptolite Correlation of the North A m e r i c a n Upper Ordovician Standard.
Bollettino
delta Societd Paleontologica ltaliana 16(2): 257-270. Moore, R. B., A. E. Heighway, and A. J. Howe. 1883. In M e m o r i a m - J o h n A. Warder.
Journal of the Cincinnati Society of Natural History 6(3): 211-212. References Cited
313
Moore, Raymond C , C e c i l G . Lalicker, and Alfred G . Fischer.
1952. Invertebrate
Fossils. N e w York: M c G r a w - H i l l . Morris, Robert W., and Stephen H. Felton. 1993. Symbiotic Association of Crinoids, Platyceratid Gastropods, and Cornulites in the Upper Ordovician (Cincinnatian) of the C i n c i n n a t i , O h i o Region.
Palaios 8(5): 465-476.
Morris, Robert W., and Steven H. Felton. 2003. Paleoecologic Associations and Secondary T i e r i n g of Cornulites on Crinoids and Bivalves in the Upper Ordovician (Cincinnatian) of Southwestern O h i o , Southeastern Indiana, and Northern Kentucky. Palaios 18(6): 546-558. Morris, Robert W., and Harold B. Rollins. 1971. T h e Distribution and Paleoecological Interpretation o f Cornulites in the Waynesville Formation (Upper Ordovician) of Southwestern O h i o .
Ohio journal of Science 71(3): 159-170.
Morton, Brian. 1989. Partnerships in the Sea: Hong Kong's Marine Symbioses. Hong Kong: Hong Kong University Press; Leiden, T h e Netherlands: E. J. Brill. N e a l , Maxwell Lewis, and Joseph T. Hannibal. 2000. Paleoecologic and Taxonomic Implications of Sphenothallus and SphenothallusAike Specimens from O h i o and Areas Adjacent to O h i o , journal of Paleontology 74(3): 369-380. Newberry, J. S. 1874. On the So-called Land Plants from the Lower Silurian of O h i o . American journal of Science and Arts, 3rd ser., 8(44[given as 64]):
110-113. Nicholson, H. Alleyne. 1875. Descriptions of Polyzoa from the Silurian Formation.
Report of the Geological Survey of Ohio 2(2): 257-268. 1902. T h e G e o l o g y of Cincinnati, journal of the Cincinnati Society of Natural History 20(2): 49-100. . [1936] 1989. Letter to Walter Bucher, 19 D e c e m b e r 1936. Quoted in the
Nickles, John M .
University of Cincinnati G e o l o g y A l u m n i Newsletter, January 1989. , and Ray S. Bassler. 1900. A Synopsis of American Fossil Bryozoa,
Including Bibliography and Synonymy. U.S. Geological Survey Bulletin 173. Washington, D.C.: U.S. G e o l o g i c a l Survey. Nitecki, M a t t h e w H.
1970. North A m e r i c a n Cyclocrinitid Algae. Fieldiana Geol-
ogy 21:1-182. Oldroyd, John David. 1978. Paleocommunities and Environments of the Dillsboro and Saluda Formations (Upper Ordovician), Madison, Indiana. Ph.D. diss., University of M i c h i g a n . O p i e , Iona, and Peter Opie. Oxford University Press.
1955. The Oxford Nursery Rhyme Book. New York:
1850. Prodrome de paleontologie stratigraphique universelle des animaux mollusques & rayonnes faisant suite au cours elementaire de paleontologie et de geologie stratigraphiques, vol. 1. Paris, France: Victor Masson.
d'Orbigny, Alcide.
O r t o n , Edward. 1873. Report on the T h i r d Geological District, G e o l o g y of the Cincinnati G r o u p . Hamilton, C l e r m o n t , Warren and Butler Counties, vol. 1, G e o l o g y and Paleontology, Part 1, Geology, 365-480. Geological Survey of Ohio. C o l u m b u s : G e o l o g i c a l Survey o f O h i o .
1970. Trace Fossils of the Cincinnati Area. Palaeontographica Americana 6(41): 280-444. . 1975a. T h e History o f Invertebrate Ichnology, 3-12. In Robert W. Frey, ed. The Study of Trace Fossils. N e w York: Springer-Verlag. . 1975b. T h e Paleontological Significance o f Trace Fossils, 87-108. In Robert W. Frey, ed. The Study of Trace Fossils. N e w York: Springer-Verlag.
O s g o o d , Richard G . , Jr.
. 1977. Selected Cincinnatian Trace Fossils, III-1-III-24. In John K. Pope and
Field Guidebook to the Biostratigraphy and Paleoenvironmentsofthe Cincinnatian Series of Southeastern Indiana. Seventh Annual Field Wayne D. Martin, eds.
Conference of the Great Lakes Section-Society of Economic Paleontologists and Mineralogists. October
1-2,1977, M i a m i University, Oxford, Ohio.
, and E u g e n e J. S z m u c . 1972. A Trace Fossil Z o o p h y c o s as an Indicator of Water D e p t h . 314
References Cited
Bulletins of American Paleontology 62: 1-22.
Palmer, Timothy J. and Mark A. Wilson. 1988. Parasitism of Ordovician Bryozoans and the Origin of Pseudoborings.
Palaeontology 31(4): 939-949.
Parsley, Ronald L. 1991. Review of Selected North A m e r i c a n Mitrate Stylophorans (Homalozoa: Ecliinodermata).
Bulletins of American Paleontology 100: 1-57.
Peck, J. H. 1966. Upper Ordovician Formations in the Maysville Area, Kentucky. U.S. G e o l o g i c a l Survey Bulletin 1244-B. Washington, D . C . : U.S. G o v e r n ment Printing Office. Plummer, John T. 1843. Suburban G e o l o g v , or Rocks, Soil, and Water, about Richmond, W a y n e Countv,
Indiana.
American Journal of Science and Arts 44:
281-313. 10.74. Notes 011 the Study and zoa. Journal of Paleontology 48(3): 556-564.
Pohowsky, Robert A.
Nomenclature of Boring Bryo-
. 1978. T h e Boring Ctenostomate Bryozoa: T a x o n o m y and Paleobiology Based on Cavities in Calcareous Substrata. ogy 7 3 ( 3 ) 01
Bulletins of American Paleontol-
i->9 -
;
2
Pojeta, John, Jr. 1971. Review of Ordovician Pelecvpods. U.S. Geological Survey Professional Paper 695. Washington, D.C.: U.S. G o v e r n m e n t Printing Office.
. 1987.
Class Rostroconchia,
Cheetham,
and
Albert
358-380.
J.
In Richard S., B o a r d m a n , A l a n H.
Rowell,
eds.
Fossil Invertebrates.
Oxford:
Blackwell. , and T i m o t h y J. Palmer. 1976. T h e O r i g i n of Rock Boring in Mytilacean
Pelecvpods. Alcheringa 1: 167-179. , and Bruce Runnegar. 1976. T h e Paleontology of the Rostroconch Mollusks and the Early History of the Phylum Mollusca. U.S. G e o l o g i c a l Survey Professional Paper 9 6 8 . Washington, D.C.: U.S. G o v e r n m e n t Printing Office. , and Bruce Runnegar.
1979. Rhytiodentalium
kentuckyensis, a N e w G e n u s
and New Species of Ordovician Scaphopod, and the Early History of Scapho-
pod Mollusks. Journal of Paleontology 53(3): 530-541. , Z h a n g Renjie, and Yang Zunyi. 1986. Systematic Paleontology of the D e v o nian Pelecvpods of G u a n g x i and M i c h i g a n . U.S. G e o l o g i c a l Survey Professional Paper 1394-G. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. Pope, John K. 1975. Evidence for Relating the I.epidocoleidae, Machaeridian Echinoderms, to the Mitrate Carpoids.
Bulletins of American Paleontology 67(287):
385-406. 1977. Field Guidebook to the Biostratigraphy and Cincinnatian Series of Southeastern Indiana. Sev-
, and Wayne D. Martin, eds.
Paleoenvironments of the
enth Annual Field C o n f e r e n c e of the Great Lakes S e c t i o n - S o c i e t y of E c o nomic Paleontologists and Mineralogists. O c t o b e r
1-2,1977,
M i a m i Univer-
sity, Oxford, O h i o . Pope, Michael C, J. Fred Read. Richard K. Bambach, and I lans). I lofmann. 1997. Late Middle to Late Ordovician Seismites of Kentucky, Southwestern O h i o and Virginia: Sedimentary Recorders of Earthquakes in the Appalachian
Geological Society of America Bulletin 109(4): 489-503. 1996. Exploring the Geology of the Cincinnati/Northern Kentuckv Region. Kentucky Geological Survey, Series 11, Special Publication N o . Basin.
Potter, Paul Edwin.
22. Lexington: Kentucky G e o l o g i c a l Survey.
. 2007. Exploring the Geology of the Cincinnati/Northern Kentucky Region, 2nd ed. Kentucky G e o l o g i c a l Survey, Series 12, Special Publication No. 8. Lexington: Kentucky Geological Survey. Raff, Rudolf A.
1996. The Shape of Life. C h i c a g o : University of C h i c a g o Press. [1836] 1944. A Life of Travels. Chronica Botanica 8(2):
Rafinesque, Constantine S.
291-360. Raymond, Percy E. 1920. T h e Appendages, Anatomy, and Relationships of Trilo-
Connecticut Academy of Arts and Sciences Memoirs 7: 1-169. . 1936. T h e Invertebrate Fossil C o l l e c t i o n , 84-87. In T h o m a s Barbour, e t a l . , and Members of the Staff. Notes Concerning the History and Contents of the bites.
References Cited
315
Museum of Comparative Zoology.
C a m b r i d g e , Mass.: M u s e u m of Compara-
tive Zoology, Harvard University. Richards, R. Peter. 1972. Autecology of Richmondian Brachiopods (Late Ordovi-
Journal of Paleontology 46(3): 386-405. Journal of Paleontology 48(3): 514-523.
cian of Indiana and Ohio).
. 1974.
Ecology of the Cornulitidae.
Riddell, J. L. 1837. Remarks on the G e o l o g i c a l Features of O h i o , and Some of the Desiderata which Might be Supplied by a G e o l o g i c a l Survey of this State. Columbus, Rigby, J. Keith.
35th 1996.
G e n e r a l Assembly of O h i o .
52-63. In Rodney M . Feldmann Fossils of Ohio. O h i o Division of Geological
Phylum Porifera, Sponges,
and Merrianne Hackathorn, eds.
Survey Bulletin 70. C o l u m b u s : O h i o Division of Geological Survey. Rigby, Sue, and Richard A . Fortey.
1991.
Palmer and Barrie Rickards, eds.
23-32. In Douglas Graptolites: Writing in the Rocks. Wood-
How Did T h e y Live?,
bridge, U K : Boydell Press. Robison, Richard A .
1987.
Annelida,
194-204. In Richard S. Boardman, Alan H. Fossil Invertebrates. Oxford: Blackwell.
C h e e t h a m , and Albert J. Rowell, eds.
Roeminger, Carl. 1866. Observations on Chaetetes and S o m e Related G e n e r a , in Regard to T h e i r Systematic Position, with an Appended Description of Some New
Proceedings of the Academy of Natural Sciences of Philadelphia,
Species.
1866:113-123. Root, Richard B. 1967. T h e N i c h e Exploitation Pattern of the Blue-grey Gnatcatcher.
Ecological Monographs 37(4): 317-350.
Ross, Reuben J., Jr. 1967. C a l y m e n i d and O t h e r Ordovician Trilobites from Kentucky and O h i o : U.S. G e o l o g i c a l Survey Professional Paper 583-B. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. . 1979. Additional Trilobites from the Ordovician of Kentucky. U.S. Geological Survey Professional Paper 1066-D. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. Rudkin, David M . , G r a h a m A. Young, Robert J. Elias, and Edward P. Dobrzanski. 2003. T h e World's Biggest Trilobite—isote/us rex N e w Species from the Upper
Journal of Paleontology 77(1): 99-112. 1994. International Stratigraphic Guide, 2nd ed. Boulder: G e o -
Ordovician of Northern Manitoba. Salvador, A m o s , ed.
logical Society of A m e r i c a ; T r o n d h e i m , Norway: T h e International Union of G e o l o g i c a l Sciences.
1994. August F. Foerste: Paleontologist Society of Natural History Notes, January-February.
Sandy, Michael R.
and Educator.
Dayton
Sandy, M i c h a e l R. 1996. Oldest Record of Peduncular Attachment of Brachiopods to Crinoid Stems, Upper Ordovician, O h i o , U.S.A. (Brachiopoda; Atrypida:
Journal of Paleontology 70(3): 532-534. 1997. Astraspis— Histology of an Ordovician Fish. Palaeontology 40(3):
Echinodermata; Crinoidea).
Sansom, Ivan J., M . Paul Smith, Moya M . Smith, and Peter Turner. T h e A n a t o m y and
625-643. Sansom, Ivan J., Moya M. Smith, and M. Paul Smith. 2001. T h e Ordovician Radiation of Vertebrates,
brate Evolution.
156-171.
In Per Erik Ahlberg, ed.
Major Events in Verte61. London,
Systematics Association Special Volume Series
UK: Taylor and Francis. Schafer, W i l h e l m .
1972. Ecology and Palaeoecology of Marine Environments.
Chi-
cago: University of C h i c a g o Press. Schumacher, Gregory A. 1984. Sedimentology, Biostratinomy, and Paleoecology of C i n c i n n a t i a n (Upper Ordovician)
locrinus subcrassus
Crinoid (Echinoder-
mata) Assemblages. Master's thesis, University of Cincinnati. . 1992. Lithostratigraphy, C y c l i c Sedimentation, and Event Stratigraphy of
165-172. In Frank R. Ettensohn, ed. Changing Interpretations of Kentucky Geology: Layer Cake, Fades, Flexure, and Eustasy the Maysville, Kentucky Area,
(Miscellaneous Report 5). C o l u m b u s : O h i o Division of Geological Survey. , and Richard W. Carlton. 1991. Impure K-Bentonite Beds from the Lexington References Cited
Limestone and the Point Pleasant Formation (Middle Ordovician) of Northern Kentucky and Southwestern O h i o .
Southeastern Geology 32(2): 83-105.
, and Douglas L. Shrake. 1997. Paleoecology and Comparative Taphonomy of an
Isotelus
(Trilobita) Fossil Lagerstatten from the Waynesville Formation (Up-
131-161. In Carlton Paleontological Events: Stratigraphic, Ecological,
per Ordovician, Cincinnatian Series) of Southwestern O h i o , E. Brett and G . C . Baird, eds.
and Evolutionary Implications.
N e w York: C o l u m b i a University Press.
Schweinfurth, Mark F'. 1958. Stratigraphy and Palecology of the Highest Strata Exposed at C i n c i n n a t i , O h i o . W i t h an Appendix on
Flexicalymene meeki
(Foerste). Master's thesis, University of C i n c i n n a t i . Seilacher, Adolf.
1964.
. 1970. Gruziana 447-476. In T. P.
296-316. In John Imbrie Approaches to Paleoecology. N e w York: Wiley.
Biogenic Sedimentary Structures,
and Norman D. Newell, eds.
Stratigraphy of Non-fossiliferous Paleozoic Sandstones, C r i m e s and J. C . Harper, eds.
Trace Fossils.
Liverpool: Seel
House Press. . 1973. Biostratinomy: T h e Sedimentology of Biologically Standardized Particles,
159-177.
In Robert N. Ginsburg, ed.
Evolving Concepts in Sedimentol-
ogy. Baltimore: T h e Johns Hopkins University Press.
. 1977.
Pattern Analysis of
Paleodictyon
and Related Trace Fossils,
In T. P. C r i m e s and J. C . Harper, eds.
Trace Fossils.
289-334.
Liverpool: Seel House
Press. . 1998. Patterns of Macroevolution: How to Be Prepared for Extinction.
Comptes rendus de TAcademie des Sciences, Sciences de la terre et des planetes 327: 431-440. Sepkoski, John. J., Jr. 1981. A Factor Analytic Description of the Phanerozoic M a -
Paleobiology 7(1): 36-53. 1876. On the Fossil Brachiopods of the Ohio Valley.
rine Fossil Record. Shaler, N. S.
Memoirs of the
Geological Survey of Kentucky, vol. 1, part 3. Lexington: G e o l o g i c a l Survey of Kentucky.
1940. Where is the-Collection? An Account of the Various Natural History Collections which have Come Under the Notice of the Compiler Charles Davies Sherborn between 1880 and 1939. C a m b r i d g e , UK:
Sherborn, Charles Davies.
C a m b r i d g e University Press. Shideler, W i l l i a m H. 1914. T h e Upper R i c h m o n d Beds of the C i n c i n n a t i Group:
Ohio Naturalist 14(3): 229-235. . 1916. T h e Ordovician-Silurian
Boundary.
Ohio journal of Science 16(8):
. 1918. A Primitive Type of Agelacrinites from the Richmond. Ohio journal of
Science 19(1): 58. . 1939. Paleogeography of the 201-211. . [1952] 2002. T h e Cincinnati Arch: ers Newsletter, October.
C i n c i n n a t i a n Province.
Compass 19(3):
A Creator of Early Geologists.
Dry Dredg-
1944. Index Fossils of North America: A New Work Based on the Complete Revision and Reillustration of Grabau and Shimer's "North American Index Fossils." N e w York: Wiley.
Shinier, Hervey W., and Robert R. Shrock.
Shimizu, Saburo, and Tadahiro Obata. 1935. N e w G e n e r a of Gotlandian and Ordovician Nautiloids.
Journal of the Shanghai Science Institute,
section II,
2:
1-10. Shirley, J. 1936. S o m e British Trilobites of the Family C a l y m e n i d a e [ O r d o v i c i a n Silurian]
(with
Discussion).
Geological Society of London Quarterly Journal
92: 384-422. Shotwell, John B.
1902.
A
History of the Schools of Cincinnati.
Cincinnati: T h e
School Life Company. Shrake, Douglas L. 1987. Paleoecology of a C i n c i n n a t i a n (Upper Ordovician) Bryozoan-trilobite Association [abstract].
Ohio Journal of Science 87(2): 10. References Cited
. 1989- Paleoecology of a C i n c i n n a t i a n (Upper Ordovician) Bryozoan-trilobite Association. Master's thesis, Wright State University.
. 1992. Excursion to Caesar Creek State Park in Warren County, Ohio: A Classic Upper Ordovician Fossil-Collecting Locality. O h i o Division of Geological Survey G u i d e b o o k 12. C o l u m b u s : O h i o Division of Geological Survey. [Silliman, Benjamin]. 1819. A R T . XXIII. An Address to the People of the Western Country.
American Journal of Science and Arts II: 203-207. Discoverers of the Lost World. New
Simpson, G e o r g e Gaylord. 1984.
Haven, Conn.:
Yale University Press. Simpson, J. A., and E. S. C . Weiner. 1989. 20
vols.
The Oxford English Dictionary.
2nd
ed.,
Oxford: Clarendon.
Simpson, S. 1975. Classification of trace fossils, 39-54. In Robert W. Frey, ed. The
Study of Trace Fossils.
N e w York: Springer-Verlag.
Smith, Andrew B., and Christopher R. C. Paul. 1982. Revision of the Class C y c l o (Echinodermata). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 296: 5 7 7 - 6 7 9 . Sprinkle, James. 1973. Morphology and Evolution of Blastozoan Echinoderms. cystoidea
C a m b r i d g e , Mass.: Special Publication, M u s e u m of Comparative Zoology, Harvard University. , and T h o m a s E. Guensburg. 1997. Early Radiation of Echinoderms, 205-224. In Johnny A Waters and Christopher G . Maples, eds.
derms.
Geobiology of Echino-
Paleontological Society Papers 3. Lancaster, Penn.: Paleontological
Society. Stanley, G e r o g e D., Jr. 1986. C h o n d r o p h o r i n e Hydrozoans as Problematic Fossils, 6 8 - 8 6 . In Antoni Hoffman and Matthew H. Nitecki, eds.
Taxa.
Problematic Fossil
N e w York: Oxford University Press.
Stokes, W i l l i a m Lee. i960.
Essentials of Earth History.
Englewood Cliffs, N.J.:
Prentice Hall. Stunner, W i l h e l m , and Jan Bergstrom. 1973. New Discoveries on Trilobites by xrays.
Palaontologische Zeitschrift
47(112):
104-141.
Sumrall, C o l i n D. 1994. T h e c a l Designs in Isorophinid Edrioasteroids.
Lethaia
26(4): 289-302. , Carlton E. Brett, Paula T. Work, and David L. Meyer. 2001. Taphonomy and Paleoecology of an Edrioasteroid Encrusted Hardground in the Lower Bellevue Formation at Maysville, Kentucky, 123-131. In Thomas. J. Algeo and Carlton E. Brett, eds. Sequence, Cycle and Event Stratigraphy of Upper Ordovician and Silurian Strata of the Cincinnati Arch Region. Guidebook Series N o . 1794. Lexington: Kentucky G e o l o g i c a l Survey. , and Gregory A. Schumacher. 2002.
Cheirocystis fultonensis,
a New Glyptocys-
titid Rhombiferan from the Upper Ordovician of the Cincinnati A r c h - C o m ments on Cheirocrinid Phylogeny.
Journal of Paleontology
76(5): 843-851.
, and James Sprinkle. 1999. Early ontogeny of the glyptocystitid rhombiferan
Lepadocystis moorei,
4 0 9 - 4 1 4 . In Maria Daniela C a n d i a Carnevali and Fran-
cesco Bonasoro, eds.
Echinoderm Research
1998. Rotterdam: A. A. Balkema.
Swadley, W C. 1979. T h e Marble Hill Bed: An Offshore Bar-Tidal C h a n n e l C o m plex in the Upper Ordovician Drakes Formation of Kentucky. U.S. G e o l o g i cal Survey Professional Paper 1126-D. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. Sweet, Walter C. 1979. C o n o d o n t s and C o n o d o n t Biostratigraphy of Post Tyrone Ordovician Rocks of the C i n c i n n a t i Region. U.S. Geological Survey Professional Paper 1066-G. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. . 1984. Graphic Correlation of Upper Middle and Upper Ordovician Rocks, North A m e r i c a n Midcontinent Province, U.S.A., 23-35. In David L. Bruton, ed.
Aspects of the Ordovician System.
Oslo: Scandinavian University Press.
. 1996. Phylum C o n o d o n t a , 262-269. ' Rodney M. Feldmann and Merrin
References Cited
anne Hackatliorn, eds.
Fossils of Ohio.
O h i o Division of G e o l o g i c a l Survey
Bulletin 70. C o l u m b u s : O h i o Division of G e o l o g i c a l Survey. , and Stig M. Bergstrom. 1971. T h e A m e r i c a n Upper Ordovician Standard. XIII. A Revised Time-Stratigraphic Classification of North A m e r i c a n Upper Middle and Upper Ordovician Rocks.
Geological Society of America Bulletin
82(3): 613-628. Tapanila, Leif. 2005. Palaeoecology and Diversity of Endosymbionts in Palaeozoic Marine Invertebrates: Trace Fossil Evidence.
Lethaia 38(2): 89-99.
Tappan, Helen, and Alfred R. Loeblich, Jr. 1973. Evolution of the O c e a n i c Plank-
ton. Earth Science Reviews 9: 207-240. Teeter, J. W. 1978. C e p h a l o p o d Touch Marks from the Craigleith Member, Whitby Formation (Ordovician) of Central Ontario.
Journal of Paleontology 52(1):
178-181. Teichert, C u r t . 1964. Actinoceratoidea, K190-K216. In Raymond C . Moore, ed.
Treatise on Invertebrate Paleontology.
Part K. Mollusca
3
(Cephalopoda G e n -
eral Features, Endoceratoidea, Actinoceratoidea, Nautiloidea, Bactritoidea). Boulder: G e o l o g i c a l Society of A m e r i c a ; L a w r e n c e : University Press of Kansas. T h o m p s o n , Esther H. 1970. Morphology and Taxonomy of Cyclonema Hall (Gastropoda), Upper Ordovician, Cincinnatian
Province.
Bulletins of American
Paleontology 58(261): 215-284. Tobin, Rick C. 1982. A M o d e l for C y c l i c Deposition in the C i n c i n n a t i a n Series of Southwestern O h i o , Northern Kentucky, and Southeastern Indiana. P h . D . diss., University of Cincinnati. . 1986. An Assessment of the Lithostratigraphic and Interpretive Value of the Traditional "Biostratigraphy" of the Type Upper Ordovician of North Amer-
ica. American Journal of Science 286(9): 673-701. Tritt, Donald G . 2006. L e o Lesquereux: T h e Arduous Path o f a Nineteenth C e n tury Natural Scientist,
1-122.
In L e o Lesquereux,
Letters Written from Amer-
ica, 1849-1853. Trans. 11. Dwight Page. Ed. Wendy Everham. Rockland, Maine: Picton Press. Trollope, Frances.
[1832] 1949. Domestic Manners of the Americans.
Ed. D o n a l d
Smalley. N e w York: Alfred A. Knopf. Tucker, Louis Leonard. 1965. T h e Western M u s e u m of C i n c i n n a t i , 1820-1867.
Curator 8(1): 17-35. . 1967. " O h i o Show-Shop." T h e Western M u s e u m of C i n c i n n a t i , 1820-1867,
73-105. In Whitfield J. Bell, Jr., et al., A Cabinet of Curiosities. Charlottesville: University Press of Virginia.
1(^42. trology 12(3): 137.
Twenhofel, W. H.
Professor Charles Schuchert.
Journal of Sedimentary Pe-
Twitchell, G e o r g e B. 1885. T h e life in the Tyler-Davidson Fountain. Journal of the
Cincinnati Society of Natural History 8(3): 166-168. . 1887. Remarks on a variety of Nostoc pruniforme. Journal of the Cincinnati Society of Natural History 9(4): 253-255. . 1934. Urnatella gracilis Leidy, a l a v i n g Trepostomatous Bryozoan. American Midland Naturalist 15: 529-662. Ulrich, Edward O. 1878. Observations on fossil Annelids, and Descriptions of
Some N e w Forms. Journal of the Cincinnati Society of Natural History 1(2): 87-91. . 1879a. Description of a N e w G e n u s and S o m e N e w Species of Bryozoans from the Cincinnati Group. Journal of the Cincinnati Society of Natural History 2(3): 119-131. . 1879b. Descriptions of N e w G e n e r a and Species of Fossils from the Lower Silurian about Cincinnati. Journal of the Cincinnati Society of Natural History 2(i):8-30, pl. 7.
References Cited
319
. 1882. Descriptions of Two N e w Species of Crinoids. Journal of the Cincinnati Society Natural History 5(3): 175-177. . 1883. A m e r i c a n Palaeozoic Bryozoa. Journal of the Cincinnati Society of Natural History 6(2): 148-168. . 1891. N e w and Little K n o w n A m e r i c a n Paleozoic Ostracoda (concluded
from page 137). Journal of the Cincinnati Society of Natural History 13(4): 173-211. Vail, Peter R., R. M. M i t c h u m , Jr., R. G. Todd, et al. 1977. Seismic Stratigraphy and Global C h a n g e s of Sea Level. American Association of Petroleum Geologists Memoir 26: 49-212. Valentine, James W. 2004. On the Origin of Phyla. C h i c a g o : University of C h i c a g o Press. Van Iten, Heyo, Julie A n n Fitzke, and Robt S. C o x . 1996. Problematical Fossil Cnidarians from the Upper Ordovician of the North-Central USA.
Palaeon-
tology 39(4): 1037-1064. Van Sant, Jan F., and N. G a r y Lane. 1964. Crawfordsville (Indiana) Crinoid Stud-
ies. University of Kansas, 1-136.
Paleontological
Contributions,
Echinodermata
7:
Venable, W. H. 1894. Education in C i n c i n n a t i , p. 96-155. In S. B. Nelson and J. M . Runk. History of Cincinnati and Hamilton County, Ohio; Their Past and Present, including . . . . Cincinnati: S. B. Nelson & C o . V e r n e , Jules. [1864] 1992. Journey to the Centre of the Earth. Trans. W i l l i a m Butcher. N e w York: Oxford University Press. von E n g e l n , O . D., and Kenneth E. Caster.
1952. Geology.
N e w York: M c G r a w -
Hill. Vulinec, Kevina, and Richard Arnold Davis. 1984. Coleoptera Types in the Charles D u r y C o l l e c t i o n of the C i n c i n n a t i M u s e u m of Natural History.
Coleopterists
Bulletin 38(3): 232-239. W a h l m a n , Gregory P. 1992. Middle and Upper Ordovician Symmetrical Univalved Mollusks (Monoplacophora and Bellerophontina) of the C i n c i n n a t i Arch Region. U.S. G e o l o g i c a l Survey Professional Paper 1066-O. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. Walcott, C h a r l e s D. 1892. Preliminary Notes on the Discovery of a Vertebrate Fauna in Silurian (Ordovician) Strata.
Geological Society of America Bulletin
3:153-172. Warn, John M. 1974. Presumed Myzostomid Infestation of an Ordovician Crinoid.
Journal of Paleontology 48(3):
506-513.
, and Harrel L. Strimple. 1977. T h e Disparid Inadunate Superfamilies Homcrinacea and Cincinnaticrinacea (Echinodermata Crinoidea), OrdovicianSilurian, North America.
Bulletins of American Paleontology 72(296): 1-138.
Warshauer, Steven M. 1972. T h e Taxonomy, Ontogeny, Biostratigraphy and Paleoecology of the Edenian (Upper Ordovician) Ostracods of the O h i o Valley. Ph.D. diss., University of C i n c i n n a t i . Warshauer, Steven M . , and Jean M. Berdan. 1982. Palaeocopid and Podocopid Ostracoda from the Lexington Limestone and Clays Ferry Formation (Middle and Upper Ordovician) of Central Kentucky. U.S. Geological Survey Professional Paper 1066-H. Washington, D.C.: U.S. G o v e r n m e n t Printing Office. W a u g h , David A . , and J. Mark Erickson. 2002. Functional Morphology of the Anastomosing Frondose G r o w t h Form
Reported in
Heterotrypa frondosa
(d'Orbigny) (Bryozoa: Trepostomata) from the Cincinnatian (Late Ordovician) of O h i o ,
331-338.
In Patrick N. Wyse Jackson, Caroline J. Buttler, and
Bryozoan Studies International Bryozoology Association Conference. Mary E. Spencer Jones, eds.
2001:
Proceedings of the Twelfth
Lisse,
The
Netherlands:
Swets and Zeitlinger. , J. Mark Erickson, and Robert S. Crawford. 2004. T w o Growth Forms of
Heterotrypa 320
References Cited
Nicholson,
1879
(Bryozoa: Trepostomata) from the Type-Cincin-
natian: Putting the Pieces Back Together.
The Compass of Sigma Gamma
Epsilon 78(3): 07-111. Webber, Andrew J. 2002. High-Resolution Faunal Gradient Analysis and an Assessment of the Causes of Meter-Scale Cyclicity in the Iype C i n c i n n a t i a n Series (Upper Ordovician): Webby, Barry D .
2002.
Palaios 17(6): 545-555. 129-179. In Phanerozoic Reef
Patterns o f Ordovician Reef D e v e l o p m e n t ,
Wolfgang Kiessling, Erik Fliigel, and Jan G o l o n k a , eds.
Patterns. S E P M (Society for Sedimentary Geology) Special Publication 72. , Klorentin Paris, Mary L. Droser, and Ian G . Percival, eds.
Ordovician Biodiversification Event.
2004. The Great
N e w York: C o l u m b i a University Press.
. Roger A. C o o p e r , Stig M . Bcrgstrom, and Florentin Paris. 2004. Stratigraphic Framework and T i m e Slices,
41-47.
In Barry D. Webby, Florentin
Paris, Mary L. Droser, and Ian G . Percival, eds.
versification Event.
The Great Ordovician Biodi-
N e w York: C o l u m b i a University Press.
, Robert J. Elias, G r a h a m A. Young, et al.
2004.
Corals,
124-146.
In Barry D.
Webby, Florentin Paris, Mary L. Droser, and Ian G . Percival, eds.
Ordovician Biodiversification Event.
The Great
N e w York: C o l u m b i a University Press.
Weiss, M a l c o l m P. 1961. T h e A m e r i c a n Upper Ordovician Standard. V. A Critical Appraisal of the Classification of the Typical C i n c i n n a t i a n Beds.
Society of America Bulletin 72(4): 645-648. , and Carl E. Norman. 1960a. The A m e r i c a n
Geological
Upper Ordovician Standard V I .
Journal of Sedimentary Petrology 30(2): 283-296. , and Carl E. Norman. 1960b. The American Upper Ordovician Standard. II. Development ofStratigraphic Classification of Ordovician Rocks in the CincinClassification of the Limestones of the type C i n c i n n a t i a n .
nati Region. O h i o Division of G e o l o g i c a l Survey Information C i r c u l a r 26. C o l u m b u s : O h i o G e o l o g i c a l Survey. , and Walter C. Sweet. 1964. Kope Formation (Upper Ordovician): O h i o and
Kentucky. Science 145(3638): 1296-1302. W e l c h , James R. 1976. Phosphannulus on Paleozoic Crinoid Stems. Journal of Paleontology 50(2): 218-225. Wetherby, A. G . 1879a. Description of a N e w Family and G e n u s of Lower Silurian Crustacea. Journal of the Cincinnati Society of Natural History 1(4): 162-166. . 1879b. Remarks on the G e n u s Pterotocrinus, Lyon and Casseday. Journal of the Cincinnati Society of Natural History 2(1): 3-8. . 1880. Descriptions of New Crinoids from the C i n c i n n a t i G r o u p of the
I ,ower Silurian and the Subcarbonifcrous of Kentucky. Journal of the Cincin-
nati Society of Natural History 2(4): 245-253. . 1881. Description of N e w Fossils from the Lower Silurian and Subcarboniferous Rocks of O h i o and Kentucky.
Journal of the Cincinnati Society of Natu-
ral History 4(1): 77-85. 1877. Fielding Bradford Meek. American Journal of Science and Arts, 3rd ser., 13:169-171. . 1896. Biographical Sketch of Fielding Bradford Meek. American Geologist 18: 337-350. . 1902. Memoir of Fielding Bradford Meek, 1817-1876. National Academy of Sciences Biographical Memoir 4: 75-91.
White, Charles Abiathar.
Whitfield, R. P. 1878. Remarks on Some Lamellibranchiate Shells of the Hudson River G r o u p , with Descriptions of Four N e w Species. Journal of the Cincin-
nati Society of Natural History 1(3): 137-141. Whittington, Harry B. 1956. Type and O t h e r Species of Odontopleuridae (Trilobita).
Journal of Paleontology 30(3): 504-520.
, and J. E. Almond. 1987. Appendages and Habits of the Upper Ordovician
Trilobite Triarthrus eatoni. Philosophical Transactions of the Royal Society of London. Series B, Biological Science 317:1-46. Williams, Alwyn, S. J. Carlson, C . H. C . Brunton. 2000. Brachiopod classification, References Cited
1-29.
In Roger L Kaesler, ed.
Treatise on Invertebrate Paleontology.
Part H,
Revised. Brachiopoda, Vols. 2 and 3 (Linguliformea, Craniiformea, Rhynchonelliformea [part]). Boulder: G e o l o g i c a l Society of America; Lawrence: University Press of Kansas. W i l l i a m s , A l w y n , C . H. C . Brunton, S. J. Carlson, et al.
brate Paleontology.
Part H, Revised. Brachiopoda, Vol.
2007. Treatise on Inverte6 (Supplement). Boul-
der: G e o l o g i c a l Society of A m e r i c a ; Lawrence: University Press of Kansas. W i l l i a m s , G r a h a m L.
1978.
293-326. Introduction to Marine Micropalae-
Dinoflagellates, Acritarchs and Tasmanitids,
In Bilal U. Haq and A n n e Boersma, eds.
ontology. N e w York: Elsevier.
1925. The Geologic Time Classification of the United States Geological Survey Compared with other Classifications. Accompanied by The Original Definitions of Era, Period, and Epoch Terms. U.S. Geological Survey
Wilmarth, M . Grace.
Bulletin 769. Washington, D C . : U.S. G o v e r n m e n t Printing Office. W i l s o n , Mark A. 1985. Disturbance and Ecologic Succession in an Upper Ordovician C o b b l e - d w e l l i n g Hardground Fauna.
Science 228: 575-577.
, and T i m o t h y J. Palmer. 1988. Nomenclature of a Bivalve Boring from the Upper Ordovician of the Midwestern United States,
journal of Paleontology
62(2): 306-308. , and T i m o t h y J. Palmer. 2001. D o m i c i l e s , Not Predatory Borings: A Simpler Explanation of the Holes in Ordovician Shells Analyzed by Kaplan and Baumiller,
2000. Palaios 16(5): 524-525.
, T i m o t h y J. Palmer, and Paul D. Taylor. 1994. Earliest Preservation of Softbodied Fossils by Epibiont Bioimmuration: Upper Ordovician of Kentucky.
Lethaia 27(3): 269-270. 1894. Sketch 340-356.
W i n c h e l l , N. H.
of Dr. John Locke.
American Geologist 14(6):
, and Edward O. Ulrich. 1897. T h e Lower Silurian Deposits of the Upper Mississippi Province: A Correlation of the Strata with T h o s e in the C i n c i n nati, Tennessee, N e w York and C a n a d i a n Provinces, and the Stratigraphic and G e o g r a p h i c Distribution of the Fossils, Ixxxiii—cxxviii. In The Geology of
Minnesota,
vol.
3,
part
2
(Paleontology). G e o l o g i c a l and Natural History Sur-
vey of Minnesota. Minnesota: Regents of the University of Minnesota. Wray, John L.
1977. Calcareous Algae.
Oxford: Elsevier.
Writers' Program of the Work Projects Administration in the State of O h i o . 1943.
Cincinnati: A Guide to the Queen City and Its Neighbors.
Cincinnati: W i -
esen-Hart Press.
1973. Schuchert, Charles. Dictionary of America Biography Supplement three: 695-696. . 1975. Schuchert, Charles. Dictionary of Scientific Biography 12: 229-230.
Yochelson, Ellis L.
INDEX
Page numbers in italics indicate illustrations. I .ike most indexes, this one is nowhere near as thorough as it might have been; the tremendous number of items that might have been included would have made the index completely unwieldy. Certain words and concepts are not separately listed in the index, because they appear far too many times in the book. Examples include Cincinnatian, Ordovician, and Ohio River. Although places in the states of Indiana, Kentucky, and Ohio are included in the index, every appearance of the name of the whole state is not. This volume is not intended as a comprehensive taxonomic work. Hence, we have not endeavored to put every genus, species, and so on, in its complete Linnaean Hierarchy in the index. Rather, we have used the names of upper-level taxa that appear in the text. However, we have departed from this policy in some cases, with the hope of greater clarity and usefulness for the reader. Although so-called "common names"—things like "brittle star" and "spiny oyster"— probably should he sandwiched between quotation marks, we chose not to do this so as not to clutter the index more than absolutely necessary.
Chlorophyta ("green algae"), 67, 68 Dasyeladaceae, 67, 68
Anomaloides: A. reticulatus, 68 Cyclocrinites: C. darwini, 66, 6 7 - 6 8 Ischadites: I. circularis, 68 Lepidolites: L. dickhauti, 66, 67, 68 Cyanophyta (called "blue-green algae," but not actually algae). See Cyanobacteria
Cylindrocoelia: C. covingtonensis, 68 Faberia: F. anomala, 68 Girvanella. See Cyanobacteria oncolites, 67 Phaeophyta ("brown algae"), 67 Pyrrophyta: dinoflagellates, 69, 239, 248, 283 Rhodophyta ("red algae"), 67, 68
Solenopora: S. richmondensis, 68 stromatolites. See Cyanobacteria a l i g n m e n t of fossils. See taphonomy a l l o c h e m , 49, 50
Allocotichnus: A. dyeri. See taphonomy: trace fossils Allolichas. See Arthropoda: Trilobita: Lichida Alps, 3
alternata, Rafinesquina. See Brachiopoda: Articulata alveolatus, Megalograptus. See Arthropoda: C h e l i c e r a t a : abalones. See Mollusca: Gastropoda: Archaeogastropoda absolute age, absolute dating. See time Acadian Orogeny, M o u n t a i n s , 8, 62 Acanthochaetetes. See Porifera: sclerosponges, coralline sponges acetate peels. See techniques acid dissolution, acid etching. See techniques Acidaspis. See Arthropoda: Trilobita: Odontopleurida acme zone. See biostratigraphic units: zone: epibole acritarchs, 5 2 , 6 7 , 6 8 - 6 9 , 239, 247, 279, 309
Multiplicisphaeridium: M. micraulaxum, 6 6 , 67 Ordovicium: O. gracile, 66, 67 Veryhachium: V. edenense, 66, 67 Actinoceratoidea. See Mollusca: C e p h a l o p o d a
acutilirata, Platvstrophia. See Brachiopoda Adams County, Ohio, 75, 158, 162, 163, 216, 229, pl. 7 aegism. See ecologic associations Agassiz, Louis, 21, 260, 273 age, dating. See time Ager, Derek V., 7 Aglaspida. See Arthropoda Agnew, ]ohn. 7 1 , 72, 171, 180, pl. 14 alata, Ctenobolbina. See Arthropoda: Crustacea: Ostracoda alata, Nereigenys. See Annelida: scolecodonts Albers, H. E., 259 Aldrich, T. H., 259 Algae, 49, 5 2 , 6 7 - 6 9 , 123, 139, 212, 219, 234, 239, 241, 242,
279, 292. See also acritarchs; chitinozoans
Eurypterida
Amhonychia. See Mollusca: Pelecypoda American Midland Naturalist, 172 American Midcontinent Province. See faunal provinces American Upper Ordovician Standard, 51 amoenum, Beloitoceras. See Mollusca: C e p h a l o p o d a
Amorphognathus. See conodonts
Amphilichas.
See Arthropoda: Trilobita: Lichida Amsden, T h o m a s W., 54
anacanthus, Arnheimograptus. See
Hemichordata:
Graptoloidea Anderson, D. R„ 259
andersoni, Pontiometra. See Echinodermata: Crinoidea a n e m o n e s . See C n i d a r i a : Anthozoa Angseesing, J. P. A., 212, 297 angularis, Glyptocrinus. See Echinodermata: C r i n o i d e a : Camerata An n elida, 24, 31, 117, 142-145, 147, 182, 265, 306, 309, 316,
319. See also worms
Cornulites, 93, 123, 142, 144, 145, 182, 243, 244, 245, 246, 247, 314, 316 myzostomid annelid worms, 182 Polychaeta, 143, 144, 204, 205, 212, 221, 224, 238, 247, 248 serpulids, 144 spirorbids, 144
Protoscolex, 144 P. omatus, 142 scolecodonts, 143, 265
323
Nereigenys: N. alata, PL 5 Annual Reviews, 4 anomala, Faberia. See Algae Anomalocrinus. See Echinodermata: Crinoidea: Anomalodonta. See Mollusca: Pelecypoda
Eoleperditia, 163 Disparida
Anomaloides. See Algae: Chlorophyta: Dasycladaceae Anthony, John G o u l d , 2 5 9 - 2 6 0 , 261, 269, 276 Anthozoa, anthozoans. See C n i d a r i a Anticosti Island, C a n a d a , 7 2 - 7 3
Aphelognathus. See conodonts Aplaeopliora. See Mollusca Appalachian M o u n t a i n s , basin, 3, 5, 8, 10, 53, 6 1 , 216, 220, 231, 233, pl. 12 approximate, Palaeasterina. See Echinodermata: Asteroidea Arachnida. See Arthropoda: Chelicerata aragonite, aragonitic. See c a l c i u m carbonate area, Archinacetla. See Mollusca: Monoplacophora Archaeogastropoda. See Mollusca: Gastropoda Archinacella. See Mollusca: Monoplacophora A r n h e i m Formation, 44, 4 8 , 5 3 , 6 8 , 105, 107, 108, 123, 151, 153, 164, 176, 180, 196, pl. 8 Oregonia M e m b e r , 44, 53, 56, 63, 223. See also Oregonia Formarion Sunset M e m b e r , 4 4 , 53, 56, 63, 164, 224. See also Sunset Formation Arnheimograptus. See Hemichordata: Graptoloidea Arthropoda, 6, 92, 117, 129, 146-164, 204, 205, 221, 222,
224, 245, 253, 280, 282. See also Chelicerata: Arachnida Aglaspida, aglaspids, 158, 163, 280, 300
Neostrabops, 158, 163; N. martini, 158, 163 C h e l i c e r a t a , 27, 161 Arachnida, 147, 161 mites, 161 scorpions, 161, 162 spiders, 161, 162 ticks, 161
Quadrijugator: Q. regularis, 160, 161 Diplopoda: millipedes, 147 Insecta, 105, 119, 147, 162, 282 scorpions. See Chelicerata: Arachnida spiders. See Chelicerata ticks. See Chelicerata: Arachnida Trilobita, 6, 7, 27, 3 1 , 4 0 , 56, 6 0 , 9 2 , 9 3 , 117, 137, 144,145, 147-157, 1 6 0 - 1 6 1 , 1 6 2 , 1 6 3 , 2 0 2 , 203, 204, 205, 207, 210, 212, 219, 220, 223, 224, 225, 2 2 6 , 2 2 8 ,
229, 231, 232, 233, 235, 238,240, 241, 244, 245, 247, 251, 252, 253, 260, 268, 275, 286
Acidaspis. See Odontoplcurida
Calymene, 149, 150, 296, 305 C. meeki. See Flexicalymene meeki C. meeki-retrorsa. See Flexicalymene retrorsa C. senaria. See Flexicalymene senaria C a l y m e n i d a , c a l y m e n i d s , 149, 151, 226, 241
Flexicalymene, 40, 148, 150, 151, 152, 153, 154, 160, 207, 210, 224, 225, 226, 229, 232, 251, 253, 264, 298, 317 F. granulosa, 149, 150, 151,309 F. meeki, 148, 149,150, 151,207, 228, 229, 264, 298, 317 F. retrorsa, 149, 150, 151, pl. 8
F. senaria, 149, 153 Gravicalymene, 225, 226 Cryptolithus, 113, 155, 203, 204, 210, 225, 226, 232, 240, 241, 253
C. tessellatus, 148, 149, 154, 155 Decoroproetus: D. parviusculus, 154, 155 Flexicalymene. See C a l y m e n i d a Gravicalymene. See C a l y m e n i d a lsotelus, 2 7 , 6 0 , 137, 148, 153, 154, 155,203, 2 0 4 , 2 0 7 ,
Eurypterida, 147, 154, 158, 159, 161-163, 235, 238, 241, 247, 253, 280, 300, 305
Eocarcinosoma: E. batrachophthalmus, 162 Megalograptus, 154, 158, 159, 161, 162, 253, 305, 312 M. aheolatus, 162 M. ohioensis, 158, 159, 162 M. shideleri, 162 M. welchi, 162 M. williamsae, 162 Xiphosurida: horseshoe crabs, Limulus, 147, 151, 161, 163, 280, pl. 3 C h i l o p o d a : centipedes, 147 C r u s t a c e a , 26, 30, 147, 148, 151, 163, 210, 237, 238, 241 barnacles, 145, 188, 248, 250 Isopoda, 148 pillbug, 148 Malacostraca, 248 crabs, 9 6 , 148, 163, 235 lobsters, 148, 163, 253 shrimps, 163 Ostracoda, 30, 31, 35, 129, 147, 160, 163-164, 221, 235, 241, 247, 248, 297, 320
Ceratopsis: C. chambers!, 160, 16J Ctenobolhina: C. alata, 160, 161 324
Lepcrditicopida, 164 Palaeocopida, 163 Podocopida, 163
Index
210, 224, 225, 226, 232, 235,240, 241, 252, 299, 305, 316, 317
J. brachycephalus, 153 /. gigas, 153 /. latus, 149 1. maximus, 148, 149, 152, 153, pl. 7 1. rex, 153, 316 I j c h i d a , lichids
Mlolichas: A. halli, pl. 6 Amphilichas: A. halli. See Allolichas halli Odontoplcurida, odontopleurids, 156, 160,251
Acidaspis, 228, 229, 232, 251 A. cincinnatiensis, 156, 160 A. onealli, 271 Primaspis, 92, 160 P. crosotus, 156, 160 Olenida, olenids
Triarthrus, 146, 147, 160, 226, 253 T. eatoni, 154, 155, 160 T. spinosus, 160 Phacopida, phacopids
Ceraurinus, 220 C. icarus, 157 Ceraurus: C. milleranus, 157, 269
Platycoryphe: P. christyi, 157 Tricopelta: T. breviceps, 157
Bellevue Limestone, J l , 12, 53, 55, 56, 63, 68, 85, 89, 95, 99,
Platycoryphe. See Phacopida Primaspis. See Odontopleurida
Eormation Beloitoceras. See Mollusca: C e p h a l o p o d a benthic, benthonic, benthos, 3, 4, 7, 50, 102, 145, 163, 195, 204, 205, 218, 230, 234, 237, 239, 280, 288, 290 bentonite. See K-bentonite Berdan, Jean, 163, 164, 320 B e r g m a n , C l a e s F., 143, 304 Bergstrom, Jan, 153, 318 Bergstrom, Stig M., 2 , 5 1 , 62, 196, 306, 308, 319, 321, 331 Best, Robert, 260, 276 bibliographies, compilation of, 15, 33, 35 biclavata, Diplocraterion. See taphonomy: trace fossils bilix lata, Cyclonema. See Mollusca: Gastropoda bilix, Cyclonema. See Mollusca: Gastropoda binomen. See taxonomy: nomenclature: species n a m e Binomial System of Nomenclature. See taxonomy: nomenclature
125, 174,214, 223, 232, 251. See also M c M i l l a n
Proetus parviusculus. See Decoroproetus parviusculus trace fossils, 151-153. See also taphonomy: trace fossils
Rusophycus. See taphonomy: Triarthrus. See Olenida
trace fossils
Articulata. See Brachiopoda taphonomy: trace fossils Ascocerida. See Mollusca: C e p h a l o p o d a : Nautiloidea Ashermann, George (?), 273, 275 Ashgillian Stage, pl. 2 associations. See chapters on individual groups of a n i m a l s ; ecologic associations Asteriacites. See taphonomy: trace fossils Asteroidea. See Echinodermata Astraspis. See Chordata: Vertebrata: Agnatha
Asaphoidichnus. See
auhurnensis, Platystrophia ponderosa. See Brachiopoda: Platystrophia ponderosa Audubon, John James, 16, 277
Aulacera. See Porifera: Stromatoporoidea Ausich, W i l l i a m I„ 186 Austin, George M., 260 Austinella. See Brachiopoda: Articulata Australia, 199, 215, 241, 251. See also Great Barrier Reef auteeology. See ecology Babcock, Loren E. 153
bacteria, 123, 239. See also cyanobacteria
baeri, Charactoceras. See Mollusca: C e p h a l o p o d a baeri, Xenocrinus. See Echinodermata: Crinoidea:
Camerata
Bahama Platform, ix, 220
balanoides, Enoploura. See
Echinodermata: Stylophora Baldwin-Wallace College, 29, 30 ball-and-pillow structures, 60, 280 Baltica. See paleogeography Bambach, Richard K„ 237, 238, 239, 300, 315 Bardstown Eormation, 2H barnacles. See Arthropoda: Crustacea Barnhart, W . C , 260, 266 Bassler, Ray S., 18, J9, 20, 21, 25, 30, 33, 3 4 - 3 6 , 48 Bassler, Simon Stein, 34 "Bassleroscope," 35
batrachophthalmus, Eocarcinosoma. See
Arthropoda: C h e l i c -
erata: Eurypterida Baumiller, Tomasz K., 124, 125, 183, 186 Bean, W. H„ 260 beani, Ceramopora. See Ectoprocta: Cystoporata Bear Creek K-bentonite "zone." See K-bentonite, K-bentonite beds, K-bentonite "zones" Bear Creek Quarry. See Ohio: Clermont C o u n t y bedding index, 49 Bedford, Indiana, 10 behavior (of animals). See chapters on individual groups of a n i m a l s ; taphonomy: trace fossils Bell, Bruce M., 180, 189,251 Bell, C M . , 212 bellerophontids. See Mollusca: Gastropoda Bellevue Hill Park, C i n c i n n a t i , Ohio, 21 Bellevue House, C i n c i n n a t i , Ohio, 21
bioclaustration, 156, 210, 243, 281. See also taphonomy: bioimmuration biocoenose, biocoenosis. See life assemblage biofacies. See facies bioherm, 7 1 , 72, 7 8 - 8 1 , 85, 9 1 , 131, 242, 281 "bryoherm," 91 Great Barrier Reef, Australia, 9 1 , 241 patch reef, 80, 81 bioimmuration. See taphonomy: bioimmuration biostratigraphic units, 4 6 , 281 zone, 46 b i o z o n e , 4 6 , 195, 2 8 1 , 2 8 4 epibole, a c m e zone, 60, 281, 284 biostratigraphy, 52 biostrome, 81, 281 biota! succession, 4 7 - 4 9 , 6 1 , 281, 292 biozone. See biostratigraphic units: zone Bischoff, G. C. O., 182 bivalved a n i m a l s , 281, 290. See also Arthropoda: C r u s t a c e a : Ostracoda; Brachiopoda: Mollusca: Pelecypoda Bivalvia. See Mollusca: Pelecypoda Blackwell Publishing, 185, 199, 229, Blanchester Member. See Waynesville Formation
Blastophycus, 212 Blue Limestone, 47 Blue M i a m i Limestone, 47 B M H N . See Natural History M u s e u m , London Boardman, Richard S., 185 body fossils, 6, 143, 203, 204, 212, 281, 293. See also taphonomy, preservation Bolivia, 200 bony fish. See Chordata: Vertebrata: Osteichthyes Boone County, Kentucky, 87, 110, 111, 142, 180 boring, borings, 74, 7 5 , 7 7 , 9 0 , 9 3 , 119, 123-125, 130, 182, 203, 206, 210, 211, 236, 242, 243, 244, 293. See also taphonomy: trace fossils Bouchard, Timothy D., 206,'304 bowdeni, Loxoplocus. See Mollusca: Gastropoda: Paupospira bowdeni, Paupospira. See Mollusca: Gastropoda Bowsher, Arthur L., 121 Brachiopoda, 6, 7, 31, 3 2 , 4 0 , 4 1 , 52, 60, 75, 77, 79, 8 7 , 8 8 , 89,
Index
325
9 2 , 9 3 , 9 8 - 1 1 5 , 119, 123, 124, 125, 127, 128, 129, 130, 137, 144, 162, 172, 178, 179, 182, 188, 189, 206, 219, 220, 221, 223, 224, 225, 231, 232, 233, 235, 237, 240, 241, 242, 243, 244, 245, 248, 250, 251, 252, 253, 260, 261, 272, 274, 280, 281, 283, 285, 287, 291, 293 Articulata, 40, 93, 100, 101, 102, 103, 105, 112, 130, 261, 283,291,293
Austinella, 112 A. scovillei, 273
Ungulate brachiopods, lingulides, 103, 105, 247, 248
Petrocrania: P. scahiosa, 40, 104, 105 Philhedra: P. laelia, 104, 105, 108 Pseudolingula, 104, 105, 225. See also Lingula Schizomania: S. filosa, 104, 105 Trematis, 128 T. millepunctata, 4 0 , 104, 105 Brachiospongia. See Porifera brachycephalus, lsotelus. See Arthropoda: Trilobita
Catazyga, 112
C. schuchertana, 111 Dalmanella, 57, 113, 114, 225, 232, 233, 240, 253 D. emacerata, 106 Glyptorthis, 112, 220, 224, 233 G. insculpta, 107 Hebertella, 100, 104, 105, 113, 223, 233, 240, 251 H. occidentalis, 107 Hiscobeccus, 112, 220, 224, 240 H. capax, 111 Holtedahlina, 1 1 2 , 2 2 0 , 2 4 0 Lepidocyclus, 75, 220 Leptaena, 40, 112, 220, 224, 233, 240 L. richmondensis, 40 Onniella, 112, 124 O. meeki, 60 Orthis: O. scovillei (See Austinella scovillei) Orthorhynchula, 112 Plaesiomys, 108, 112, 220, 224, 233 P. subquadrata, 108 Platystrophia, 109, 112, 113, 223, 224, 232, 233,240, 250,251,252
P. acutilirata, 109 P. laticosta, 109 P. ponderosa, 39, 59, 98. 99, 109, 240, 250 P. ponderosa auburnensis, 39 P. ponderosa ponderosa, 39 Plectorthis, 1 1 2 , 2 2 4 , 2 4 0
P. neglecta, 106 Rafinesquina, 4 0 , 59, 75, 8 7 , 8 8 , 8 9 , 9 9 , 104, 105,110, 112, 113, 114, 189, 223, 224, 232, 233, 235, 240, 251,252,272
R. alternata, 110 "shingled Rafinesquina beds," 59, 9 9 , 110, 114, 251
Retrorsirostra, 112, 240 R. carleyi, 108, 261 Rhynchotrema, 112, 220 R. dentatum, 111 Sowerbyella, 112, 113, 225, 232, 240, 253 S. rugosa, 106 Strophomena, 112, 113, 114, 224, 232, 233, 240, 247, 252, 261
Tetraphalerella, 112 Thaerodonta, 112 7'. rugosa, 40 Thecidellina, pl. 3 Zygospira, 41, 112, 232, 233, 245, 251, 252 Z. modesta, 111, 178, 179 I n a r t i c u l a t a , 4 0 , 9 3 , 101, 102, 103, 108, 115, 128, 225
Leptoholus, 225 Lingula, 5, 103. See also Pseudolingula 326
Index
Bracken County, Kentucky, 178, 209 Bradshaw, Lael E., 22, 24, 25 Brandt, Danita S., 151, 153 Branson, C . C , 196 Branson, E. B., 196, pl. 5 Branstrator, Jon W., 182, 184, 189 Braun, E. Lucy, 260 Braun, Frederick, 2 6 0 - 2 6 1 , 270 Bretsky, Peter, 231 Brett, Carlton E., 60, 6 1 , 236, 295, 297, 310, 311, 318 Trilobita: Phacopida Bridge, Josiah, 261
breviceps, Tricopelta. See Arthropoda:
British M u s e u m (Natural History). See Natural History Muse um, London brittle stars. See Echinodermata: Ophiuroidea Broaddus, Billie, 29 Brongniart, Alexandre, 61 Brookville Formation, 44 Excello M e m b e r , 44 Liberty Member. See Liberty Formation, M e m b e r Station Hollow M e m b e r , 44 Waynesville M e m b e r . See Waynesville Formation Brookville, Franklin County, Indiana, 184,196 Brown County, Ohio, 123, 128, 151 Brown, Roland Wilbur, 40 Brown, Steve, 155, 156, 157 "bryoherm." See bioherm; Ectoprocta bryozoan. See Ectoprocta Bucher, Walter H., 24, 4 8 , 123 Bull Fork Formation, 44, 214 Burgess S h a l e , 6, 249 burrows, burrowing. See taphonomy: trace fossils, ichnofossils, Lebensspuren Butcher, W i l l i a m , 320 Butler County, Ohio, 6 8 , 75, 80, 87, 89,107, 108, 126, 127, 134, 137, 153, 156, 160, 176, 195,229 Byrnes, Richard M., 261 Byronia. See Byroniida, byroniids Byroniida, byroniids, 182, 246. See also Phosphannulus
Byronia, 182 byssus, byssal threads. See Mollusca: Pelecypoda C I , C 2 , C 3 , C 4 , C 5 , C 6 sequence, 55-56, 63, 214, 231, 232-233, 240. See also sequence stratigraphy Calapoecia. See C n i d a r i a : Anthozoa: Tabulata calcareous. See c a l c i u m carbonate calcite, calcific. See c a l c i u m carbonate c a l c i u m carbonate, 6, 50, 67, 71, 101, 102, 117, 119, 134, 144, 147, 167, 281 aragonite, aragonitic, 6, 101, 117, 120, 129, 134, 280, 281, 283, 290 calcareous, calcareous shell, calcareous skeleton, 3, 56,
6 0 , 6 7 , 7 1 , 72, 79, 13?, 144, 145, 169, 188, 206, 239, 280, 2 8 1 , 2 8 9 , 2 9 2 calcite, calcitic, 6, 7,74, 89, 101, 117, 120, J24, 130, 137, 139, 163, 167, 168, 188, 280, 281, 283, 290 calcium phosphate, 6, 81, 102, 182, 196, 198, 219, 223 Calloway Creek Formation, 214
Calymene meeki. See meeki
Arthropoda: Trilobita:
Flexicalymene
C a l y m e n i d a , calymenids. Sec Arthropoda: Trilobita Calvptomatida. See hyolithids; Mollusca C a m b r i a n , xix, 2 , 4 , 6 , 30, 8 2 , 9 9 , 139, 147, 152, 160, 163, 167, 168, 182, 186, 191, 195, 199, 237, 249, 280, 282, 289 " C a m b r i a n Explosion," 2 "Cambrian Fauna," 2, 237 Camerata. See Echinodermata: Crinoidea Cameroceras. See Mollusca: C e p h a l o p o d a : Endoceratoidea camouflage, 9 6 , 280
campanulaeformis, Cyathochitina. See chitinozoans C a m p b e l l County, Kentucky, 59, 109, 203, 209 C a m p b e l l , Kenton S. W., 155, 160 Canada, 3,215,220, 233,249,253 Anticosti Island, 7 2 - 7 3 British C o l u m b i a , 6 C a n a d i a n Shield, 3, 216 Manitoba, 153
canadensis, Crewingkia. See
also eonchiolin; pseudochitin chitinozoans, 52, 68, 69, 247, 282. See also Algae
Conochitina: C. hirsuta, 66, 67 Cyathochitina, 66, 67; C. campanulaeformis, 66, 67 Hercochitina: H. turnbulli, 6 6 , 67 chitons. See Mollusca: Polyplacophora Chlorophyta. See Algae Chondrites. See taphonomy: trace fossils
Chordata, 38, 169, 196, 198, 282. See also conodonts Urochordata: tunicates, 210, 281. Vertebrata
See also Catellocaula
Agnat ha ("jawless fish"), 199, 200
Astraspis: A. desiderata, 199 gnathostome fish ("jawed fish"), 200 Osteichthyes ("bony fish"), 198
Reptilia: Virginia, 41
christyi, Platycoryphe. See C n i d a r i a : Anthozoa: Rugosa
C a n a d i a n System, 30, 31
capax, Hiscobeccus. See
Brachiopoda: Articulata Carboniferous, xix, 4, 23, 191, 198, 261, 270 Caritodens. See Mollusca: Pelecypoda Carley, S. T., 261
carfeyi, Retrorsirostra. See Brachiopoda: Articidata cadeyi, Rusophycus. See taphonomy: trace fossils Carlson, Sandra J . , 192, 321,322 Carneyella. See Echinodermata: Edrioasteroidea carpoids. See Echinodermata Carr, T i m , 54 Carriker, Melbourne R., 124 casei, Opisthoptera. See Mollusca: Pelecypoda casei, Plicodendrocrinus. See Echinodermata: Crinoidea: Cladida Caster, Kenneth E., 25, 27, 28, 30, 31, 3 5 , 4 8 , 9 3 , 138, 151, 158, 159, 162, 163, 186, 191, 209, 212, 215, 259, 275, 276, 299, 320, pl. 13
Catazyga. See Brachiopoda: Articulata 9 3 , 1 5 6 , 209, 210, 243, 281. See also bioclaustration; bioimmuration; Chordata: Urochordata: tunicates
C. vallata, 156, 209, 210, 281 Cenozoic Era, xix, 25, 237, 238, 248, 284 centipedes. See Arthropoda: Chilopoda Cephalopoda. See Mollusca Ceramopora. See Ectoprocta: Cystoporata Ceratopsis. See Arthropoda: C r u s t a c e a : Ostracoda Ceraurinus. See Arthropoda: Trilobita: Phacopida Ceraurus. See Arthropoda: Trilobita: Phacopida Chaetognatha, 198, 282
chambersi, Ceratopsis. See Arthropoda: Chappars, Michael S., 25
C h e e t h a m . A l a n H . , 185,298 Cheilostomata. See Ectoprocta Cheirocystis. See Echinodermata: Rhombifera Chelicerata. See Arthropoda C h i c a g o , University of. See University of C h i c a g o Chilopoda. See Arthropoda chitin, chitinous, 6 , 6 9 , 82, 119, 147, 148, 161, 181, 282. See
Christy, David, 262
cancellatus, Sinuites. See Mollusca: Monoplacophora
Catellocaula,
Charactoceras. See Mollusca: Cephalopoda
Crustacea: Ostracoda
Arthropoda: 'Trilobita: Phacopida chronostratigraphic units. See time-stratigraphic units C i n c i n n a t i Arch, 8, 9, 10, 12, 59, 79, 216, 2 2 0 - 2 2 6 , 268, 282. See also Findlav Arch; Kankakee Arch C i n c i n n a t i Group, 28, 47, 143, 266, 269, 277 C i n c i n n a t i Quarterly Journal of S c i e n c e , x, 17, 24, 267, 270 C i n c i n n a t i School of Paleontology, 15-36 C i n c i n n a t i , Ohio Boudinot Avenue and Westwood Northern Boulevard, 151 C i n c i n n a t i Astronomical Society, 21 C i n c i n n a t i C o l l e g e of Pharmacy, 22 C i n c i n n a t i Historical Society, 21, 215 C i n c i n n a t i Taw C o l l e g e , 24 C i n c i n n a t i M u s e u m C e n t e r ( C M C ) , ix, xv, 21, 72, 75, 85, 87, 89, 9 0 , 9 5 , 105, 110, 111, 120, 123, 126, 134, 137, 142, 144, 151, 153, 155, 157, 158, 159, 160, 170, 172, 173, 174, 178, 180, 186, 203, 207, 208, 209, 229, 256, 263, pl. 8 C i n c i n n a t i M u s e u m of Natural History. See C i n c i n n a t i Society of Natural History C i n c i n n a t i Normal School, 27, 262 C i n c i n n a t i Observatory, 21 C i n c i n n a t i Society for the Promotion of Useful Knowledge, 259, 261, 276 C i n c i n n a t i Society of Natural History, 15, 16, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 259, 260, 261, 2 6 2 - 2 6 3 , 264, 265, 2 6 6 , 267, 268, 270, 272, 275, 276, pl. 13
Journal of the Cincinnati Society of Natural History, x, 17, 259, 276
Eden Park Reservoir, 29 M e d i c a l C o l l e g e of Ohio, 29 Ohio M e c h a n i c s Institute, 31, 262 Spring Grove Cemetery, 22, 23, 24, 25 Woodward High School, 18, 26, 32, 33, 34 C i n c i n n a t i , University of. See University of C i n c i n n a t i
Index
327
Gincinnaticrinus. See
Cincinnatidiscus. See Echinodermata: Edrioasteroidea
polyps, 74, 7 7 , 7 9 , 182, 206, 235 reefs. See biohcrms
cincinnatiensis, Acidaspis. See
Scyphozoa, 74, 82, 182. See also Byroniida
Echinodermata: C r i n o i d e a : Disparida Arthropoda: Trilobita:
Odontoplcurida
cincinnatiensis, Diplocraterion. See taphonomy: cincinnatiensis, Isorophus. See Echinodermata:
trace fossils
Edrioasteroidea circular is, Ischadites. See Algae: Chlorophvta: Dasvcladaceae C l a d i d a . See Echinodermata: C r in o idea c h i l l i s . See Mollusca: Pclccvpoda Clark, T h o m a s H., 3 Clarkson, Euan N. K., 160, 299 Clarksville M e m b e r . See Waynesville Formation class. See taxonomy: l . i n n a e a n Hierarchy c l . i s s i h i ation. Sec lavonoim clastic ratio, 49. See also shale-to-limestone ratio clavacoidea: Leptotrypa. See Ectoprocta: Trepostomata C l a y s Ferry Formation, 163, 214 C l e r m o n t C o u n t y , Ohio, 111, 126, 128, 153, 158, 163, 170, 186, 203, 207, 208, 209, 261 Stonelick C r e e k , 11,254 Climacograptus. See Hcmichordata: Graptoloidea Clinton County, Ohio, 60, 72, 75, 128, 136, 142 W i l m i n g t o n , 260, 273, 276 cluster analysis. See techniques C M C . See C i n c i n n a t i , Ohio: C i n c i n n a t i M u s e u m C e n t e r C M C IP, See C i n c i n n a t i , Ohio: C i n c i n n a t i M u s e u m C e n t e r C n i d a r i a , 22, 32, 3 8 , 4 1 , 7 1 , 72, 7 3 - 8 2 , 8 5 , 9 1 , 9 3 , 122, 123, 131, 182, 196, 206, 219, 220, 221, 224, 233, 235,
240, 241, 242, 243, 247, 248, 281, 285. See also Byron iida a n e m o n e s . See Anthozoa Anthozoa, 74, 77 a n e m o n e s , sea a n e m o n e s , 73, 9 6 , 188 Rugosa, 74, 75, 7 7 , 7 8 , 7 9 , 2 0 6 , 220, 221, 235, 241, 247
Gvathophvlbides, '<>. ~~. 79 C. stellata, 78 Grewingkia, 41, 77, 206, 220, 224, 235, 242 G. canadensis, 74, 75, 77 Streptelasma, 11, 220, 224, 235, 240 S. divaricans, 75, 77
Foerstephyllum, 76,11, 79 F. vacuum, 78 Nyctopora, 76, 77, 79 Protaraea: P. richmondensis, 76,11, 79, 122, 123, 224, 240
hydroids. See Hvdrozoa Hydrozoa, 74, 93, 242, 245 fire coral, 74 hydroids, 74, 281 Siphonophorida
Index
Goleolus. See hyolitbids collagen, 195, 196 colonial organisms, colonies, 189, 281, 290. See C n i d a r i a , Ectoprocta, graplolites color patterns, 9 6 , 134, 135, 137, 252, pl. 6 Colorado, 199, 216 C o l u m b i a University Press, 112 C o l u m b i a n University See George Washington University Gomactinia. See Echinodermata: Crinoidea Comasterida. See Echinodermata: Crinoidea c o m m e n s a l i s m . See ecologic associations c o m m u n i t i e s . See ecology, ecologic needs: ecosystems competition, competitive interactions. See ecologic associations composite molds. See taphonomy: molds
Amorphognathus: A. ordovicicus, 196, 197 Aphebgnathus: A. grandis, 196, 197 Drepanoistodus: D. suherectus, 196, 197 Oulodus: O. oregonia, 196, 197 Phragmodus: P. undatus, 196, 197, pl. 5 Plectodina: P. tenuis, 196, 197 Prioniodus: P. dychei, 28, 277 Rhodesognathus: R. elegans, 196, 197 C o n r a d , T i m o t h y A., 109, 110, 111, 120, 123, 126, 127, 149 Gonstellaria. See Ectoprocta: Cystoporata constellata, Gonstellaria. See Ectoprocta: Cystoporata constrictus, Dystactocrinus. See Echinodermata: Crinoidea:
Tetradium, 76,11, 79, 220, 233, 240
328
planispiral coiling, 119, 120, 139, 289 C o l b a t h , G. Kent, 67, 69 C o l d Spring, Kentucky, 174
See also Cbordata
luhastraea: T. coccinea, pl. 3
m e d u s a , jellyfish, 7 1 , 74, 182, 209, 212, 251
sea anemones. See Anthozoa sea fans, 74 sea whips, 74 coarsening-upward cycle. See cycles, cyclicity coccinea, luhastraea. See C n i d a r i a : Anthozoa: Scleractinia cockles. See Mollusca: Pelecypoda C o d e of Stratigraphic Nomenclature. See stratigraphy (loclenterata. Sec I Inidaria coiling of shell, 117, 119, 120, 132, 134, 139
cones (the snails). See Mollusca: Gastropoda: Neogastropoda C o n n e c t i c u t A c a d e m y of Arts and Sciences, 149 Conochitin. See chitinozoans conodonts, 6, 28, 31, 35, 5 2 , 6 3 , 143, 183, 195, 196-199, 247.
Tabulate, 77, 79, 8 0 , 1 2 3 , 220, 221, 224, 247 Galapoecia, 76, 7 7 , 7 9
209,
Conularia C. formosa, 80, 82, 267, 269 C. miseneri, 270
conchiolin, 119, 282. See also chitin
Scleractinia
Portuguese Man-of-War, 74 Porpitidae: Palaeoscia: P. ftoweri, taphonomy: trace fossils jellyfish. See medusa
C o n u l a r i i d a , 74, 8 1 - 8 2 , 241, 247; but may not be cnidarians, 74, 8 1 - 8 2 , 241, 247
212.
See also
Disparida consumers. See ecology: ecosystems Gonularia. See C n i d a r i a : Scyphozoa: C o n u l a r i i d a C o n u l a r i i d a , conulariids. See C n i d a r i a : Scyphozoa convergent evolution. See organic evolution (lomvav Morris, S i m o n . 249 Cook, W. E., 263 Cooper, Dan L., 153, 309, pl. 6
Cooper, Edward M , 263 coprolites. See feces coprophagy. See food copulation, 162 coquina, 99, 283. See also shell pavements; shingled beds; Waynesville Formation: Marble Hill bed coral. See Cnidaria coral reef. See bioherm Corallidomus. See Mollusca: Pelecypoda coralline sponges. See Porifera: sclerosponges Cornulites, Sec: Annelida
correlation, 52. See also time Corryville Formation, M e m b e r , 12, 21, 53, 55, 60, 63, 68, 80, 90, 105, 110, 111, 114, 120, 126, 128, 142, 144, 151, 153, 158, 163, 170, 174, 175, 178, 180, 186, 203, 207, 208, 209, 211,214, 224, 251. See also: Grant Lake Limestone; also: M c M i l l a n Formation cotypes. See taxonomy: type specimens Covington Croup, 48 Covington, Kentucky, 19, 28, 127, 142, 256, 263, 266, 274 covmgroiiensis, Cylindrocoelia. See Algae C o w e n . Richard, 199 crabs. See Arthropoda: Crustacea: Malacostraca crateriformis, Lichenocrinus. See Echinodermata: Crinoidea: Disparida Crawfordsville, Indiana, 23, 261, 270 Hovey M u s e u m , Wabash College, 23 Cretaceous, xix, 2, 3,4, 72, 239, 292 Cricoconarida. See also Mollusca; Tentaculitoidea Crinoidea. See Echinodermata crosotus, Primaspis. See Arthropoda: Trilobita: Odontopleurida Crustacea. See Arthropoda Cruziana. See taphonomy: trace fossils cryptolithi, Rusophycus. See taphonomy: trace fossils Cryptolithus. See Arthropoda: 'Trilobita Cryptostomata. See Ectoprocta
Ctenobolbina. See Arthropoda: Crustacea: Ctenodonta. See Mollusca: Pelecypoda
Ostracoda
Ctenostomata. See Ectoprocta cubichnia. See taphonomy: trace fossils: behavior categories Cucumaria. See Echinodermata: Holothuroidea Cuffey, Roger J . , 9 1 , 95, 296, 302 cultrata, Ambonychia. See Mollusca: Pelecypoda Cupulocrinus. See Echinodermata: Crinoidea: C l a d i d a Curacao, Netherlands Antilles, pl. 3
curtus, Merocrinus. See
Echinodermata: Crinoidea: C l a d i d a
curvatum, Gorbyoceras. See Mollusca: Cephalopoda cuttlefish. See Mollusca: Cephalopoda Cuvier, Ceorges, 61 Cyanobacteria ("blue-green 'algae'"), 67
Cirvanella, 67 stromatolites, 67, 292 Cyanoplryta. See Algae
Cyathochitina, See: chitinozoans Cyathophylloides. See C n i d a r i a : Anthozoa: Rugosa cycles, cyclicity, 52-53, 55-57, 5 8 - 5 9 coarsening-upward cycle, 59 decameter-scale cycles, 59
eustatic sea-level c h a n g e , 55, 285 fining-upward cycle, fining-upward packet, 59 m e g a c y c l e , 55, 59, 288 meter-scale cycles, 55, 59, 61 Milankovitch Cycles, 64, 288 shoaling-upward cycles, 53 storm cycles, 55, 56, 292 Cycloconcha. See Mollusca: Pelecypoda Cyclocrinites, See: Algae: Chlorophyta: Dasycladaceae Cyclocystoidea. See Echinodermata Cyclonema. See Mollusca: Gastropoda Cyclora. See Mollusca: Gastropoda Cyclostomata. See Ectoprocta Cylindrocoelia. See Algae Cymaronora. See Mollusca: Pelecypoda C y n t l u a n a Formation, 123 Cyrroceras. See Mollusca: C e p h a l o p o d a Cyrtodontula. See Mollusca: Pelecypoda Cyrtolites. See Mollusca: Monoplacophora
Cystaster. See Echinodermata: Edrioasteroidea ( A s t o i d c a . Sec
Echinodermata
cystoids. See Echinodermata
Dalmanella. See
Brachiopoda: Articulata Dalve, Elizabeth A., 48, 230, 238, 263 d a m a g e (in life). See injuries Dana, James Dwight, 275 Darwin, C h a r l e s , 61
darwini, Cyclocrinites.
See Algae: Chlorophyta: Dasycladaceae
darwini, Pasceolus. See Algae: Cyclocrinites
Chlorophyta: Dasycladaceae:
Dasycladaceae. See Algae: Chlorophyta dating. See time Dattilo, B e n j a m i n E, 59, 60, 6 1 , 113, 231, 232, 308, 312 Davis, Richard Arnold, ix, 14, 89, 212, 229, 249, 255, 298, 304,320 D C A . See techniques: detrended correspondence analysis ( D C A) Dearborn County, Indiana, pl. 3, pl. 5 death assemblage, 7, 8, 230, 283, 287. See also life assemblage; taphonomy decadactylus, Glyptocrinus. See Echinodermata: C r i n o i d e a : Camerata decameter-scale cycles. See cycles, cyclicity Deceptrix. See Mollusca: Pelecypoda
Decoroproetus. See Arthropoda: Trilobita
decorus, Neocrinus. See
Echinodermata: Crinoidea deformation (in life), deformities. See pathology deformation (post-mortem). See taphonomy Deiss, C h a r l e s Frederick, 263
delicatum, Oncoceras. See Mollusca: Cephalopoda
demissa, Caritodens. See Mollusca: Pelecypoda demissa, Pterinea. See Mollusca: Pelecypoda: Caritodens demissa Dendroidea. See Hemichordata Dent, Ohio. See Ohio: Hamilton C o u n t y dentatum, Rhynchotrema. See Brachiopoda: Articulata dentition. See Brachiopoda deposit feeding. See food depositional sequences, 52-53, 55-57, 5 8 - 5 9
Index
329
desiderata, Astraspis. See
Chordata: Vertebrata: Ag n ath a detrended correspondence analysis (DCA). See techniques Devonian, xix, 4, 9, 62, 72, 79, 144, 151, 186, 191, 239, 251 diagnosis. See taxonomy: L i n n a e a n Hierarchy Dickhaut, H. E., 263
dickhauti, Lepidolites. See Algae: Chloropbyta: Dasycladaceae Diekmeyer, Sharon C. St. Louis, 232, 307
Diestoceras. See Mollusca: Cephalopoda Dill Robert F, 54 Dillsboro Formation, 44, 51 d i m o r p h i s m , sexual, 153, 283, 290 dinoflagellates. See Algae: Pyrrophyta "dioramas," pl. 13
Dystactophycus. See incertae sedis earthquakes, 7, 61, 291. See also seismites earwigs. See Arthropoda: Insecta
eatoni, Triarthrus. See Arthropoda:
Trilobita eccentricity (in Earth's orbit). See cycles: Milankovitch Cycles ecdysis, 6 , 9 2 , 9 3 , 117, 147, 148 Echinodermata, 24, 26, 144, 145, 1 6 6 - 1 9 2 , 2 1 9 , 2 2 3 , 233, 237,241,245,246,260,269 Asteroidea, 24, 167, 168, 169, 182,183, 184, 185, 186, 188, 189-190, 208, 210, 235, 241, 247, 248, 259, 260, 265, 266, 274 Asteriacites (See taphonomy: trace fossils)
Fromia: F. nodosa, pl. 9
diplobathrid camerates. See Echinodermata: Crinoidea: Camerata Diplocraterion. See taphonomy: trace fossils Diplopoda. See Arthropoda disarticulation of hard parts. See taphonomy Disparida. See Echinodermata: C r in o idea divaricans, Streptelasma. See C n i d a r i a : Anthozoa: Rugosa diversity, species diversity, taxonomic diversity, 2, 3, 4, 57, 6 1 , 69, 103, 113, 115, 118, 120, 130, 131, 137, 147, 1 6 1 , 1 6 3 , 1 6 7 , 204, 232, 234, 239, 241, 283 d'Orbigny, Alcide, 85, 9 0 , 9 5 , 271 dolomite, 3, 53, 217, 221, 222, 283 d o m i c h n i a . See taphonomy: trace fossils: behavior categories Donovan, Stephen K., 186 Dorfeuille, Joseph, 263, 272, 274, 276 "doughnuts." Sec "W'cichold doughnuts" Drake, Daniel, 16, 2 6 3 - 2 6 4 , 268, 273, 276 Drakes Formation, 44, 138 Preachersville M e m b e r , 214 Rowland M e m b e r , 127, 214
Goniasteridae, 189
Hudsonaster, 189; H. simp/ex, 185, 274
Lanthanaster, 189; L. intermedius, 184
Ophidiasteridae, 189
Palaeaster: P. simplex (See Hudsonaster simplex) Palaeasterina: P. approximata, 259, 265; P. speciosa, 260,266
Petraster: P. speciosus, 184, 189 Promopalaeaster, 189, 235 P. dyeri, 184 P. magnificus, 182, 183 P. speciosus, 182, 183 Salteraster, 189; S. grandis, 184 carpoids, 145, 168, 186, 275. See Stylophora C r i n o i d e a , 7, 23, 24, 2 8 , 4 3 , 56, 57, 93, 120, 121, 123, 137, 144, 1 6 2 , 1 6 6 , 167, 168, 169-178, 180, 181-183, 186, 188, 212, 223, 224, 225, 226, 231, 232, 236, 237, 241, 243, 245, 246, 247, 248, 249, 251, 252, 253, 261, 270, 271, 285 C a m e r a t a , 178, 180
Drepanoistodus. See conodonts
diplobathrid camerates, 176, 177, 180
drilling. See borings Droser, M a r y L., 1,237, 321 Dry Dredgers, 255, 263, 275, 300, 302, 317 dubius, hichenocrinus. See Echinodermata: Crinoidea: Disparida
monobathrid camerates, 175, 176, 180 Clyptocrinus, 4 2 , 4 3 , 120, 178, 224, 2 3 2 , 2 4 0 , 241, 252
d u m b e l l s . See taphonomy: trace fossils:
Diplocraterion
duncanae, Gorbyoceras. See Mollusca: Cephalopoda
dunni, Narthecoceras. See
Mollusca: C e p h a l o p o d a durophagy. See ecologic associations: predation: Durrell, Richard H., ix Dury, C h a r l e s , 105 Dury, Ralph, 105
duseri, Treptoceras. See Mollusca: Cephalopoda: Actinoceratoidea Dyche, D. T. D., 28, 277 dychei, Prioniodus. See conodonts Dyer, C. B., 14, 2 3 - 2 4 , 29, 31, 3 7 , 4 0 , 80, 82, 184, 185, 208, 210, 260, 261, 265, 266, 272, 274 dyeri, Allocotkhnus. See taphonomy, preservation: trace fossils dyeri, Clyptocrinus. See Echinodermata: C r i n o i d e a : C a m erata: Pycnocrinus dyeri, Promopalaeaster. See Echinodermata: Asteroidea dyeri, Pycnocrinus. See Echinodermata: C r i n o i d e a : Camerata Dysracrocr/nus. See Echinodermata: Crinoidea: Disparida
330
Index
Caurocrinus: G. nealli, 176, 177, 180
G. annularis, 272 G. decadactylus, 42, 171, 172, 175, 180 G. dyeri. See Pycnocrinus dyeri G. fornshelli, 176, 180 G. pattersoni, 272 G. richardsoni, 273, 276 Pycnocrinus, 2 4 , 4 3 , 120, 123, 178, 180,224 P. dyeri, 24, 3 7 , 4 0 , 4 2 , 4 3 , 1 7 5 , 176 Xenocrinus, 180, 240, 241 X. baeri, 176, 177, 228, 229 C l a d i d a , 178
Cupulocrinus, 178 C. polydactylus, pl. 11 Merocrinus, 178 M . curtus, 172, 176,177 Plicodendrocrinus, 178 P. casei, pl. 11 Comactinia, 166 Comasterida, 166 Disparida, 173, 174, 178, 186
Anomalocrinus, 178, 252 A. incurvus, 172, 174
Cincinnaticrinus,
113, 178, 182, 186, 226, 2 3 2 , 2 4 0 ,
241,253
C. pentagonus, 173 C. varihrachialus, 172, 173 Dystactocrinus: D. constrictus, 173, 183 Ectenocrinus, 113, 178, 226, 2 3 2 , 2 4 0 , 241, 253 E. geniculatus, 173 E. simplex, 172, 173, PL 10 locrinus, 178, 224 /. oehanus, 271 /. subcrassus, 110, 142, 170, 172, 174, PL 10 Lichenocrinus, 178 L. crateriformis, 172 L. dubius, 186 L. milleri, 172 Metacrinus, 182 Neocrinus: N. decorus, pl. 9 Pontiometra: P. andersoni, PL 9 Cyclocystoidea, 169, 190-191, 247
7.ygocycloides: Z. magnus, 185 cystoids, 237. See Rhombifera Echinoidea, 167, 238, 248 sand dollars, 167 sea urchins, 167, 168, 169, 237
Strongylocentrotus: S. franciscanus, PL 9 Edrioasteroidea, 5 6 , 6 0 , 114, 169, 182, 186, 188-189, 190, 241,243,247,250,251
Carneyella, 178, 179, 224 C. pilea, 180, 18J Cincinnatidiscus, 40, 41 Cysfasfer: C . stellatus, 180,181 lsorophus, 189, 224 J. cincinnatiensis, 40, J28, 180, 181, 189 Streptaster, 110, 188, 2 2 4 , 2 5 0 S.vorticellatus, 110, 180,181 Eocrinoidea, 168 Holothuroidea, 167, 248
Cucumaria: C. miniata, PL 9 Ophiuroidea, 6, 167, 168, 169, 189, 1 9 0 , 2 2 8 , 229, 247, 248
Ophiothrix, PL 9 Protasterina: P. flexuosa, 190 Taeniaster, 190 T. spinosus, 185, 190,228, 229 Rhombifera, rhombiferan "cystoids," 169, 186, 247
Cheirocystis: C. fultonensis, 178, 179, 186 Lepadocystis: L. moorei, 178, 179, 186 Stylophora, 169, 186, 191-192, 247. See also "carpoids"
Enoploura, 26, 145, 191, 192, 270, 275 {See also machaeridians)
E. balanoides, 191 E. popei, 186, 187, 191 Echinoidea. See Echinodermata ecologic associations. See chapters on individual groups of animals aegism, 243, 244, 245, 280, 282, 288, 289, 290 c o m m e n s a l i s m , 95, 123, 144, 189, 229, 234, 236, 243, 244, 245, 246, 280, 282, 286, 288, 289, 290, 292 competition, competitive interactions, 182, 234, 236, 237, 282 epizoa, epizoism, 9 3 , 9 4 , 9 6 , 103, 130, 182, 236, 242, 243,
244, 245, 284. See also encrustation
facultative, 285, 288 inquiline, i n q u i l i n i s m , 286. See also incolent m u t u a l i s m , 234, 236, 288, 290, 292 obligate, 123, 285, 288 parasite, parasitism, 8 6 , 94, 123, 182, 223, 229, 234, 236, 243, 246, 280, 281, 282, 285, 286, 288, 289, 290, 292 predation, 7 , 9 2 , 9 3 , 95, 123, 124, 125, 131, 132, 137, 143, 147, 151, 153, 154, 155, 161, 162, 182, 183, 186, 189,190, 205, 210, 229, 234, 2 3 5 - 2 3 6 , 241, 282,
283, 284, 285, 289, 290, 291, 293. See also boring durophagy, 131, 284 symbiosis, 210, 235, 282, 284, 288, 289, 290, 292 endosymbiont, 210, 284 ecologic succession, 56, 57, 115, 281, 292 ecology, ecologic needs. See also chapters on individual groups of a n i m a l s ; ecologic associations; environment autecology, 229, 280, 284, 292 ecosystems, x, 1, 67, 143, 222, 2 3 3 - 2 4 8 , 284 c o m m u n i t i e s , 4, 5 , 5 6 , 57, 169, 182,218, 230, 231, 237, 241 consumers, 234, 282, 285, 290 food c h a i n , food web, 67, 6 8 , 234, 282, 285, 290 guilds, 237-239, 247, 248, 286 m e g a g u i l d s , 237, 238 populations, 188, 189 primary producers, 67, 234, 247, 248, 285, 290 tiering, 182 paleoecology, 6 1 , 136, 188, 189, 230, 231 Economy M e m b e r . See Latonia Formation ecosystems. See ecology
Ectenocrinus. See
Echinodermata: Crinoidea: Disparida Ectoprocta, 2 1 , 24, 30, 31, 33, 34, 35, 3 6 , 4 0 , 52, 57, 72, 75, 7 7 , 7 9 , 8 5 - 9 7 , 9 9 , 107, 110, 111, 113, 114, 115, 120, 125, 127, 128, 130, 131, 137, 139, 1 4 4 , 1 5 6 , 162, 178, 180, 182, 188, 196, 2 0 6 , 2 0 9 , 210, 219, 221, 223, 224, 225, 231, 232, 233, 237, 240, 241, 242, 243, 244, 245, 247, 248, 250, 251, 252, 253, 260, 265, 270, 271, 272, 273, 275, 281, 285, 287, 290,293 "bryoherms," 91 "Weichold doughnut," 88, 89, 9 3 - 9 4 , 275 Cheilostomata, 237, PL 3
Cryptostomata: Escharopora, 87, 88
Ctenostomata: Ropalonaria: R. venosa, 87, 88 Cyclostomata, 107, 110 Cystoporata
Ceramopora; C. (?) beani, 260; C. nicholsoni, 271 Constellaria, 40, 87, 94 C. constellata, 275 C. florida, 87, 88 Fistulipora: F. oweni, 272 Heteropora: H. pacifica, PL 3 Trepostomata, 79, 87, 88, 8 9 , 9 0 , 237, 250
Heterotrypa, 91 H.frondosa, 9 0 , 9 5 , 271 Eeptotrypa: L. clavacoidea, 120, 121 Monticulipora M. falesi, 264 Index
331
M. mammulata, 84, 85, 90, 271 Parvohallopora, 111, 252, 265, 270 P. onealli, 271 P. ramosa, 84, 85, 90, 271 P. rugosa (now included in P. ramosa), Spatiopora, 87, 88, 94
265, 270
Eden Park, C i n c i n n a t i , Ohio, 29, 263 Eden Park Reservoir, 29 Eden S h a l e , Eden Formation, Eden Group, 47, 4 8 , 51, 52, 296, 301. See also Kope Formation; M i d d l e (Eden) Shales edenense, Veryhachium. See acritarchs Edenian Age, Edenian Stage, 11, 44, 4 6 , 47, 51, 55, 63, 67, 81, 130, 138, 139, 143, 144, 151, 155, 203, 208, 209, 220, 233, 284, 291, 302, 311, 320 Edrioasteroidea. See Echinodermata elegans, Rhodesognathus. See conodonts Elias, Robert J., 81, 2 0 6 , 235, 316, 321 Elkhorn Formation, 44, 56, 63, 68, 73, 75, 79, 158, 162, 172, 178, 186,214
emacerata, Dalmanella. See
Brachiopoda: Articulata Embree, Jesse, 264 encrustation, 56, 60, 64, 72, 74, 77, 79, 87, 88, 89, 90, 93, 94, 105, 107, 110, 114, 115, 1 2 0 , 1 2 2 , 123, 128,137, 139, 144, 178, 182, 196, 219, 223, 224, 231, 232, 236, 237, 240, 242, 243, 244, 245, 251, 286. See
also epicoles endobyssate a n i m a l s . See Mollusca: Pelecypoda F.ndoceras. See Mollusca: C e p h a l o p o d a : Endoceratoidea Endoceratoidea, endocerids, endoceroids. See Mollusca: Cephalopoda endosymbiont. See ecologic associations: symbiosis Enoploura. See Echinodermata: Stvlophora environment, 3 - 4 , 5, 45, 52, 67, 69, 7 1 , 81, 189, 204, 2 1 0 - 2 1 1 , 2 1 5 - 2 2 6 , 2 2 8 - 2 4 8 , 284, 292. See also chapters on individual groups of a n i m a l s ; ecology, ecologic needs; facies; taphonomy: trace fossils: ichnofacies oxygen content, 160, 229, 250, 254 salinity, 217, 221, 229, 230 synecology, 229, 230, 280, 284, 292 temperature, 216, 217, 221, 229, 230 turbidity, 92, 229 water movement, 50, 81, 113, 114, 145, 169, 211, 229, 293 Eocarcinosoma. See Arthropoda: Chelicerata: Eurypterida Eocene, xix, 4 Eocrinoidea. See E c h i n o d e r m a t a Arthropoda: Crustacea: Ostracoda
Eoleperditia. See
eos, Diestoceras. See Mollusca: Cephalopoda epeiric sea. See epicontinental sea epibole. See biostratigraphic units: zone epibyssate a n i m a l s . See Mollusca: Pelecypoda epicoles, 93, 284. See also encrustation; epizoa epicontinental sea, 3, 9, 231, 284 epifauna, epifaunal, 7, 56, 237, 247, 248, 284, 286 epireliefs. See taphonomy: trace fossils epizoa, epizoism. See ecologic associations E r i c k s o n . J . Mark, 9 1 , 2 0 6 , 320 Eriksson, M a t s , 143, 145, 307 F.scharopora. See Ectoprocta: Cryptostomata Eurypterida. See Arthropoda: Chelicerata
332
Index
eustatic sea-level change. See cycles, cyclicity event beds, event horizons. 5 9 - 6 1 . 224. 225, 285 evolution. See organic evolution evolutionary faunas, sens!/ Sepkoski, 2, 237; "Modern Fauna," 2. See also C a m b r i a n , "Cambrian Fauna"; Paleozoic, "Paleozoic Fauna" Excello Member. See Brookville Formation excrement. See feces exoskeleton, 6, 92, 93, 117, 119, 147, 148, 151, 155, 161,230, 285 extinction: mass extinction, 2, 240, 287 Faber, C h a r l e s , 14, 24, 2 7 - 2 8 , 32, 144, 172, 264, 273, 274, 275, 276 faberi, Technophorus. See Mollusca: Rostroconchia Faberia. See Algae
facies. See also environment biofacies, 5 9 - 6 1 , 2 8 1 , 285, 287 lithofacies, 5 9 , 2 8 1 , 2 8 5 , 287 factor analysis. See techniques facultative association. See ecologic associations fair-weather wave-base. See wave base: normal wave-base Fairmount Member. See Fairview Formation Fairview Formation, 12, 21, 48, 51, 53, 55, 56, 58, 59, 60, 61, 63, 68, 87, 106, 110, 120, 123, 127, 173, 175, 180, 196,214, 224, 225, 232, 251, 252, pl. 5, pl. 10. See also Hill Quarry Beds la in i it mi it Member, 44 M o u n t Hope M e m b e r , Mt. Hope Member, 44 North Bend Tongue, 44 Fales, J . C , 264
falesi, Monticulipora. See Ectoprocta: Trepostomata family. See taxonomy: L i n n a e a n Hierarchy Fascifodina. See taphonomy: trace fossils faunal provinces: American Midcontinent Province, 199; North Atlantic Province, 199 feather stars. See Echinodermata: Crinoidea feces, fecal, 121, 123, 162, 188, 219; coprolites, 203, 283 feeding. See food Felton, Steven M„ 68, 120, 123, 127, 137, 140, 275, 314 Fenton, Carroll L a n e , 28, 123, 264 Fenton, Mildred A d a m s , 28, 123, 304 Field M u s e u m of Natural History ( F M N H ) , xv, 172, 184
filosa, Schizocrania. See Brachiopoda: Inarticulata filter feeder, filter feeding. See food Findlay Arch, Findlay Branch of Cincinnati Arch, 9. See also C i n c i n n a t i Arch Findlay, James, 264 Fine, Ronny L., 89, 9 0 , 9 1 , 3 0 2 fining-upward cycle, fining-upward packet. See cycles, cyclicity fire coral. See C n i d a r i a : Hydrozoa fish. See Chordata: Vertebrata Fisher, Daniel C, 192, 300 Fisher, Donald W., 144, 145
Fistulipora. See Ectoprocta: Cystoporata
flabellum, Licrophycus. See
taphonomy: trace fossils F l e m i n g County, Kentucky, 72
Flexicalymene. See Arthropoda: Trilobita
flexuosa, Protasterina. See Florida, pl. 9
Echinodermata: Ophiuroidea
florida, Constellaria. See
Ectoprocta: Cvstoporata Flower, Rousseau H., 43, 133, 134, 138, 295 floweri, Fascifodina. See taphonomy: trace fossils floweri, Palaeoscia. See C n i d a r i a : Hydrozoa: Siphonophorida: Porpitidae; taphonomy: trace fossils F M N H . See Field M u s e u m of Natural History fodiniclmia. See taphonomy: trace fossils: behavior categories Foerste, August F., 18, 2 9 , 4 8 , 7 7 , 7 8 , 109, 149, 150, 151,153, 162, 207, 229, 264, 270, 271 Foerstephyllum. See C n i d a r i a : Anthozoa: Tabulata food supply. See food food chain, food web. See ecology: ecosystems food, 4 , 6 7 , 6 8 , 7 1 , 74, 85, 8 7 , 9 2 , 101, 123, 151, 155, 160, 168, 170, 172, 180, 188, 191-192, 198, 211, 229, 234, 235, 237-238, 239, 253, 280, 282, 283, 285, 286,
287, 290. See also chapters on individual groups of a n i m a l s ; ecologic associations: commensalism; ecologic associations: predation; ecology: ecosystems coprophagy, 121, 123,282 deposit feeding, 123, 131, 140, 163, 190, 204, 2 0 5 , 2 1 1 , 2 2 4 , 283, 285, 292 filter feeder, filter feeding, 7 1 , 72, 87, 101, 127, 131, 144, 155, 168, 172, 1 8 8 , 2 8 3 , 2 8 5 , 2 9 2 scavenging, 7, 151, 205, 223, 224, 225 suspension feeding, 21, 74, 123, 139, 163, 170, 182, 186, 190, 196, 205, 206, 211, 224, 237, 239, 283, 285, 292 Ford, John P., 21, 59 formation. See lithostratigraphic units formosa, Conularia. See C n i d a r i a : Scyphozoa: C o n u l a r i i d a fornshelli, Clyptocrinus. See Echinodermata: C r i n o i d e a : Camerata Fort Ancient M e m b e r See Waynesville Formation Fortey, Richard A., 1, 151, 155, 161, 303, 316 fossil succession. See biotal succession Foster, W i l l i a m , 3 1 , 2 6 4 Fox, W i l l i a m T., 231
franciscanus, Strongylocentrotus. See
Echinodermata: Echinoidea Franklin County, Indiana, 105, 107, 157, 184, 196, pl. 6, pl. 10 Franks' M u s e u m , 265 Frey, Robert C, 60, 130, 131, 136, 137, 138, 297, 307 Fromia. See Echinodermata: Asteroidea
frondosa, Heterotrypa. See Ectoprocta: Trepostomata fucoids. See taphonomy: trace fossils Fulton Beds, Fulton Shale, 144, 186. See also Kope Formation Fulton, Robert, 265 fultonensis, Cheirocystis. See Echinodermata: Rhombifera fungi, 242 Fusispira. See Mollusca: Gastropoda: Neogastropoda:
Subulites G a h n , Forest J . , 183, 297 G a m a c h i a n Stage, 214, 240 Garrard Formation, 214 Gastropoda. See Mollusca Gault, W i l l i a m , 265
Caurocrinus. See
Echinodermata: C r i n o i d e a : C a m e r a t a G e e , Henry, 191 generic n a m e . See taxonomy: nomenclature: Binomial System of Nomenclature genkulatus, Ectenocrinus. See Echinodermata: C r i n o i d e a : Disparida Ceniculograptus. See Hemichordata: Graptoloidea genus, genera. See taxonomy: I.innaean Hierarchy geologic time-scale, xix geologic time-units, 4 5 - 4 6 Geological Society of A m e r i c a , 5, 11, 30, 32, 36, 54, 59, 133, 257, 2 7 1 , 2 7 4 Penrose M e d a l , 30, 32 geopetal structures, 124 George Washington University (formerly C o l u m b i a n University), 22, 35 Gibson, Bruce, 105, 176 Gibson, Charlotte, 105, 176
gigantea, Anomalodonta. See
Mollusca: Pelecypoda gigas, Isotelus. See Arthropoda: Trilobita Gilbert Formation, 214 Girvanella. See Cyanobacteria
Clyptocrinus. See Echinodermata: Crinoidea: Glyptorthis. See Brachiopoda: Articulata
Camerata
G o l d m a n , Daniel, 195 G o n d w a n a . See paleogeography Goniasteridae. See Echinodermata: Asteroidea
Gorbyoceras. See Mollusca: Cephalopoda Grabau, A m a d e u s W., 18
gracile striatulum, Cyclonema. See Mollusca: Gastropoda gracile, Cyclonema. See Mollusca: Gastropoda gracile, Ordovicium. See acritarchs graded beds, 60 G r a h a m , George, 265 grainstone, 50, 55, 59, 114, 2 8 6 , 289 Grand Avenue Member. See Kope Formation grandis, Aphelognathus. See conodonts grandis, Salteraster. See Echinodermata: Asteroidea Grant Lake Formation, Limestone, 44, 79, 9 0 , 114, 123, 250 Corryville Member. See Corrvvillc Formation, M e m b e r
granulosa, Flexicalymene. See Arthropoda: Trilobita Graptoloidea, graptolites. See Hemichordata Arthropoda: Trilobita: C a l y m e n i d a Great B a h a m a Bank. See B a h a m a Platform Great Barrier Reef, Australia, 9 1 , 241, pl. 3. See also bioherm Great Limestone Deposite, 47 Grewingk, C. C. A., 41 Grewingkia. See C n i d a r i a : Anthozoa: Rugosa Grinndl, George Bird, 265 group. See lithostratigraphic units growth lines, 75, 77, 117, 120, 2 8 6 guilds. See ecology: ecosystems Gunderson, G. O., 82, 309 Gurley, W. F. E., 25, 157,313 gutter casts, 60
Gravicalymene. See
H a i m e , Jules, 265, 270 Haines, M. P., Mrs., 265 Hall, J . H . , 2 5 9 , 265 Hall, James (of C i n c i n n a t i ) , 265 Hall, James (of New York), 32, 3 5 , 4 2 , 78, 105, 106, 107, 108,
Index
333
111. 120, 12", 134, 137, 142, 145, 155, 157, 172, 173, 175, 176, 180, 183, 195, 207, 210, 229, 262, 265-266,272,276,277 Hall, John W., Jr., 2 5 9 , 2 6 5 , 2 6 6 11.ill.mi. Anthony 3, 4 halli, Alloliehas. See Arthropoda: Trilobita: Lichida halli, Amphilichas. See Arthropoda: Trilobita: Lichida:
chas halli
12 Alloli-
Hallopora.
See Ectoprocta: Trepostomata: Parvohallopora 1 lamilton Comity, Ohio, 10, 8 9 , 9 0 , 106, 142, 151, 155, 156, 173, 180, 186, 277, pl. 10 'Trammel Eossil Park, Sharonville, 12, 124, 257 I l a m m o n d , W. E., 266 Hand, Greg, 306 hardgrounds, 6 0 , 6 4 , 105, 124, 125, 178, 188, 203, 2 0 6 , 211, 219,250, 2 5 1 , 2 8 6 I larding Sandstone, 199 Harper, George W., 17, 18, 26, 27, 32, 3 3 - 3 4 Harris, Frank W., 5 6 , 5 7 , 114, 115, 231 Harris, G. D., 25 Harris, I., 259, 266 I larvard University, xv, 18, 23, 32, 260, 273, 274 M u s e u m of Comparative /oology ( M C Z ) , xv, 18, 23, 32, 2 6 0 , 2 7 3 , 2 7 4 , pl. 13 Harvey, J . W „ 260, 266 Haucr, Kendall, 311 Hay, Helen B„ 44, 53, 55, 56, 57 Hayden, F. V., 266, 268 Uebertella, S e e : Brachiopoda: Articulata I ledcen, Stanley. i\ I [eimbrock, W i l l i a m , 67 Helcionopsis. See Mollusca: Monoplacophora Hemichordata, 169, 196 Dendroidea, 195
Muslivograptus, 196 graptolites, Craptoloidea, 52, 63, 161, J94, 195-196, 240, 241,247,251
Amheimograptus: A. anacanlhus. 196 Climacograptus. See Geniculograptw V.enkuhgmptus, 196; C. typicalis. 194, 195 Orthograptus: (). quadrimucronatus, 196 Pterobranchia, 196; Rhahdopleura, 196 I lendy, Austin, xiv I leran, M a g g i e , xiv
Hercochitina. See chitinozoans I Icrrlinger, Andrew, 267 Herzer, Henry, 28, 30, 267 Heteropora. See Ectoprocta
I lolothuroidca. See Echinodermata holotype. See taxonomy: type specimens I loltedahlina. See Brachiopoda: Articulata homeomorphy. See organic evolution: convergent evolution horseshoe crabs. See Arthropoda: Chelicerata: Xiphosurida Hosea, L. M., 24, 267 host, 77, 86, 87, 88, 9 3 , 9 4 , 103, 123, 144, 182, 189, 210, 234, 235, 236, 242, 243, 244, 245, 246, 282, 285, 286, 288, 289 Hovey M u s e u m , Wabash College. See Crawfordsville, Indiana Howe, A. J . , 267 I [udson River C r o u p , 266, 269, 277 I ludsonaster. See Echinodermata: Asteroidea I luffman D a m . near Davton, ()hio, 153 Hughes, Nigel C , 82, 153
humerosum. See Mollusca: Gastropoda: Cyclonema
humerosum, Cyclonema. See
Mollusca: Gastropoda
Hunda, Brenda, 151 Hunter, W. H. H., 267
huronensis, Labechia. See
Porifera hurricanes. See storms I lutchinson, G. Evelyn, 229 Huxley, T. H., 267 hydroids. See C n i d a r i a : Hydrozoa I Ivdrozoa. hvdrozoans. See C Inidaria I lyinan, L. H., 167 Hyolithes. See hyolithids hyolithids, 145, 247. See also Mollusca: Calyptomatida
Coleolus, 145 Hyolithes. 145 hyporeliefs. See taphonomy: trace fossils lapetus O c e a n , Sea. See paleogeography See Arthropoda: Trilobita: Phacopida Ice Age, ice cap, ice sheet, ix, 10, 53, 216, 217, 240, 269 ichnofossils. See taphonomy, preservation: trace fossils ichnogenus, ichnogenera. See taphonomy: trace fossils ichnospeeies. See taphonomy: trace fossils ICZN. See International C o d e of Zoological Nomenclature Illinois Geological Survey, 31 impedichnia. See taphonomy: trace fossils: behavior categories
icarus, Ceraurinus.
inaequahile, Cameroceras. See Mollusca: Cephalopoda:
Heterotrypa. See Ectoprocta: Trepostomata High Bridge C r o u p (middle Ordovician], 67. 139, 164 Tyrone I .iinestone. 139 Highland County. Ohio, 151, 153 1 Mil Quarry Beds, 47, 225. See also Fairview Formation Hill, H. H., 267 Himalayas, 3 Hints, Olle, 145 Hirnantian Stage, 63, pl. 2
lunula, Conochitina. See chitinozoans Hiscoheccus. See Brachiopoda: Articulata Hitz bed, 214 Hogstrom, Anette E. S., 145, 307
334
Holbrook, R. H., 267 boles (in shells). See taphonomy: trace fossils: borings Holland, Steven M., 53, 55, 5 9 , 6 3 , 113, 120, 130, 204, 2 1 5 - 2 2 6 , 229, 231, 232, 233, 241, 255, 312, pl.
Index
Endoceratoidea Inarticulata. See Brachiopoda incertae sedis, 211-212, 286. See
Blastophycus, 212 Dystactophycus, 212
also Palaeoscia
incolent, 286. See also ecologic associations Echinodermata: Crinoidea:
incurvus, Anomalocrinus. See Disparida index fossils, 195, 255 Indiana
Bedford, 10 Crawfordsville, 23, 2 6 1 , 2 7 0 Hovey M u s e u m , Wabash College, 23
Dearborn County, pl. 3, pl. 5 Franklin County, 105, 107, 157, 184, 196, pl. 6, pl. 10 Brookville, 184, 196 Indiana Geological Survey, 51, 214, 255, 263 Jefferson County, 111 Madison, 7 7 , 7 9 , 2 2 1 , 2 6 6 , 2 6 9 Richmond, 47, 120, 265, 270, 272 W a y n e County, 67, 75, 228 infauna, infaunal, 7, 131, 139, 153, 204, 205, 237, 238, 239, 247, 248, 284, 286 injuries, d a m a g e (in life), 137, 183, 186, 235, 236. See also ecologic associations: predation inquiline, inquilinism. See ecologic associations insculpta, Glyptorthis. See Brachiopoda: Articulata Insecta. See Arthropoda intermedins, Lanthanaster. See Echinodermata: Asteroidea International C o d e of Zoological Nomenclature ( I C Z N ) , xi International Geological Correlation Programme, 63, 255 International Stratigraphic C o d e . See stratigraphy interspecific interactions. See ecologic associations locrinus. See Echinodermata: Crinoidea: Disparida Ischadites. See Algae: Chlorophyta: Dasycladaceae Ischyrodonta. See Mollusca: Pelecypoda isochronous surfaces. See time Isopoda. See Arthropoda: Crustacea
Isorophus. See Echinodermata: Edrioasteroidea
Isorthoceras. See
Mollusca: Cephalopoda isotopes, 62, 290. See also time: absolute age: radiometric dating Jacobson, Stephen R., 69 James Book Store, 14, 17, 22, 31 James, Joseph A., 17 James, Joseph R, 2 2 - 2 3 , 29, 203, 207, 210 James, U. P., 14, 17-22, 2 3 , 2 8 , 29, 31, 209, 210, 260, 261, 264, 2 7 1 , 2 7 7 jamesi, Lepidocoleus. See Machaeridia Jefferson County, Indiana, 111 jellyfish. See C n i d a r i a : medusa Jennette, David C, 55, 59, 60 Johnson, T h o m a s T., 229, pl. 7
Journal of Geology, 55 journal of the Cincinnati Society of Natural History. See C i n cinnati Society of Natural History junior synonym. See taxonomy: nomenclature: synonym; taxonomy: nomenclature: synonymy Jurassic, xix, 4, 239 K-bentonite, K-bentonite beds, K-bentonite "zones," 62, 63, 163, 287 Bear Creek K-bentonite "zone," 62 Millbrig K-bentonite bed, 62 Seneca County, Ohio, 6 2 - 6 3 Kankakee Arch, Kankakee Branch of the C i n c i n n a t i Arch, 9.
See also Cincinnati Arch Kaplan, Peter, 124, 125 Kemper, Willis, 268 Kenton County, Kentucky, 67, 87, 90, 110, 123, 209 Kentucky Boone County, 87, 110, 111, 142, 180 Bracken County, 178, 209
C a m p b e l l County, 59, 109, 203, 209, pl. 5 Cold Spring, 174 Covington, 19, 28, 127, 142, 256, 263, 266, 274 F l e m i n g County, 72 Kenton County, 67, 87, 9 0 , 110, 123, 209 Kentucky Geological Survey, 10, 51, 214, 256 Lexington, 40, 67, 123, 272 Transylvania C o l l e g e , University, 40, 272 Madison County, 77 Marion County, 120 Maysville, 11, 5 9 , 7 9 , 9 1 , 180 Nelson County, 78 Trimble County, 124, 129 Bedford, 129
kentuckyensis, Rhytiodentalium. See
Mollusca: Scaphopoda Kesling, Robert V., 178 Kiessling, Wolfgang, pl. 2 kingdom. See taxonomy: L i n n a e a n Hierarchy Kjellesvig-Waering, Erik N., 158, 159, 162, 300 Knell, Simon J . , 265 Kope Formation, II, 19, 21, 44, 49, 51, 52, 53, 55, 56, 57, 59, 6 0 , 6 1 , 6 7 , 6 8 , 6 9 , 106, 113, 120, 123, 127, 130, 142, 144, 149, 151, 155, 156, 160, 173, 176, 178, 180, 186, 190, 196, 203, 208, 209, 211,214, 219,
225, 231, 232, 253, pl. 5. See also Eden Shale; Latonia Formation Fulton M e m b e r , 144, 186 Grand Avenue M e m b e r , 44 W e s s e l m a n Tongue, 4 4 Kozlowski, Roman, 196 Kritsky, G e n e , 267
Lahechia. See Porifera laelia, Philhedra. See Brachiopoda: Inarticulata lag deposit, 56, 114,287 land plants. See Plantae, plants Lanthanaster. See Echinodermata: Asteroidea lata, Cyclonema hilix. See Mollusca: Gastropoda:
hilix
Cyclonema
Lathrop, J. P., 268
laticosta, Platystrophia. See Brachiopoda Latonia Formation, 4 4 , 51. See also Eden Formation; Kope Formation Economy M e m b e r , Economy beds, 44, 144 McMicken Member, 44 Southgate M e m b e r , 4 4 latus, Isotelus. See Arthropoda: Trilobita Laurentia. See paleogeography laurentiensis, Sanctum. See taphonomy: trace fossils: borings layer-cake geology, 45 Lebanon Beds, 47; renamed Richmond, 47 L e b a n o n , Warren County, Ohio, 28, 176, 260, 267, 271, 273, 274, 277 Lebensspuren. See taphonomy, preservation: trace fossils Lepadocystis. See Echinodermata: Rhombifcra I.eperditicopida. See Arthropoda: C r u s t a c e a : Ostracoda Lepidocoleus. See M a c h a e r i d i a Lepidocyclus. See Brachiopoda: Articulata Lepidolites. See Algae: Chlorophyta: Dasycladaceae
Leptaena. See Brachiopoda: Articulata
Leptoholus. See
Brachiopoda: Inarticulata
Index
335
Leptotrypa. See
Ectoprocta: Trepostomata l.esquerenx, Leo, 266, 268 Letton, Ralph. See Letton's M u s e u m I.etton's M u s e u m , 268 Lexington Limestone, 52, 62, 123, 140, 163, 199, 214, 220 Lexington Platform, 216, pl. 12 Lexington, Kentucky, 4 0 , 67, 123, 272 Liberty Eormation, M e m b e r , 44, 4 8 , 53, 56, 63, 68, 72, 77, 7 8 , 79, 105, 107, 108, 111, 134, 162, 176, 180,
211, 214, 224, Pi 11. See also Brookville Eormation
Lichenocrinus. See Echinodermata: C r i n o i d e a : Licrophycus. See taphonomy: trace fossils
Disparida
life assemblage, 8, 230, 283, 287. See also ecology: ecosystems: c o m m u n i t i e s life habits. See chapters on individual groups of a n i m a l s limestone grainstone, 50, 55, 59, 114, 286, 289 packstone, 50, 55, 59, 114, 286, 289 wackestone, 50 Limper Geological M u s e u m See: M i a m i University limpets. See Mollusca: Gastropoda: Archaeogastropoda Limulus. See Arthropoda: Chelicerata: Xiphosurida L i n d a h l , Josua, 33, 268 Lingula. See Brachiopoda: Lingula I .innaean I licrarchy. See taxonomj L i n n a e u s , Karl. See taxonomy Linne, Karl von. See taxonomy: L i n n a e u s
Liospira. See Mollusca: Gastropoda lithofacies. See facies lithology, 46 lithostratigraphic units, 46. See also names of particular units formation, 46 group, 4 6 member, 4 6 Li Xing, 1, 303 lobsters. See Arthropoda: C r u s t a c e a : Malacostraca Locke, John, 153, 156, 160, 268, 269, 274 Lockeia. See Mollusca: Pelecypoda; taphonomy: trace fossils Loeblich, Alfred R„ Jr., 69 longitudinal thin-sections. See techniques: thin-sections Lophophora, lophophorates. See Brachiopoda, Ectoprocta Lophospira. See Mollusca: Gastropoda Lorenz, D. M., 231 Lorraine Group, 47, 48. See also Maysvillian Stage
Loxoplocus bowdeni. See Mollusca: Gastropoda: Paupospira luniformis, Diplocraterion. See taphonomy: trace fossils Lyell, C h a r l e s , x, 5, 17, 170, 260, 268, 269 Lyon, Sidney S., 269 Lyrodesma. See Mollusca: Pelecypoda m a c h a e r i d i a n s , 142, 192. See also Echinodermata: Stylo-
phora: Enoploura
Lepidocoleus, 145 L. jamesi, 142, 145, 276
M a c k e , W i l l i a m B., 158, 163, 300 Madison County, Kentucky, 77 Madison, Indiana, 77, 79, 221, 2 6 6 , 269 magnificus, Promopalaeaster. See Echinodermata: Asteroidea
magnus, Zygocycloides. See Echinodermata: Cyclocystoidea Malacostraca. See Arthropoda: Crustacea
336
Index
M a l a y s i a , pl. 3
mammulata, Monticulipora. See Ectoprocta: Trepostomata Manitoba, C a n a d a , 153
Manitoulinoceras. See Mollusca: Cephalopoda Maquoketa Group, 81 Marble Hill bed. See Waynesville Eormation M a r c h a n d , Paul, pl. 13 Marion County, Kentucky, 120 marker beds, 59, 60, 287 M a r t i n , W a y n e D., 49, 50, 5 6 , 9 9 , 114, 115, 218, 256, 298, 307, 315 martini, Neostrabops. See Arthropoda, Aglaspida Mason County, Kentucky: Maysville, 11, 59, 79, 9 1 , 180 mass extinction. See extinction: mass extinction Mastigograptus. See Hemichordata: Dendroidea Mather, W i l l i a m W., 268, 269, 277 Maysville, Mason County, Kentucky, 11, 59, 79, 91, 180 Maysvillian Stage, 11, 2 1 , 4 4 , 4 6 , 51, 5 5 , 6 3 , 6 7 , 6 8 , 7 2 , 79, 80, 81, 89, 109, 123, 125, 130, 139, 144, 145, 151, 153, 155, 158, 160, 163, 182, 184, 191, 203,
207, 208, 209, 219, 220, 223, 233, 287. See also Lorraine Group McGraw-Hill C o m p a n i e s , 238 McKinney, Frank K., 94 M c M i c k e n 1 hill, 21. See also University of Cincinnati M c M i c k e n Member. See Latonia Formation M c M i l l a n Formation, 44, 48 Bellevue Limestone Member, Bellevue Tongue. See Bellevue Limestone Corryville Member. See Corryville Formation M o u n t Auburn M e m b e r , 21, 44, 53, 55, 59, 63, 68, 160, 214, 2 2 3 , 2 5 0 M C Z . See Harvard University M e d i c a l College of Ohio, C i n c i n n a t i , Ohio, 29 medusa. See C n i d a r i a M e e k , F. B., 24, 3 7 , 4 2 , 4 3 , 4 7 , 9 9 , 106, 109, 126, 127, 137, 149, 150, 156, 160, 170, 172, 174, 175, 176, 178, 182, 184, 186, 191, 229, 266, 269, 270, 277 meeki, Calymene. See Arthropoda: Trilobita: Vlexicalymene
meeki meeki, Flexicalymene. See Arthropoda: Trilobita meeki, Onniella. See Brachiopoda meeki-retrorsa, Calymene. See Arthropoda: Trilobita: Flexicalymene retrorsa megacycle. See cycles, cyclicity m e g a g u i l d s . See ecology: ecosystems: guilds Megalograptus. See Arthropoda: Chelicerata: Eurvptcrida M e h l , M. G., 196, pl. 5 member. See lithostratigraphic units Merocn'nus. See Echinodermata: Crinoidea: Cladida Mesozoic Era, xix, 9, 25, 131, 237, 238, 239, 248, 284 Messing, C h a r l e s G., pl. 9 Metacrinus. See Echinodermata: Crinoidea M e t a z o a , m e t a z o a n , 1, 2, 74, 288, 289 meter-scale cycles. See cycles, cyclicity Meyer, David L., 113, 249, 299, 308, 311, 318 M i a m i University, Oxford, Ohio, xv, 22, 256, 262, 263, 274 Carl E. Limper Geological M u s e u m ( M U G M ) , xv, 72, 77, 7 8 , 87, 105, 106, 107, 108, 109, 111, 120, 123, 126, 127, 134, 137, 156, 157, 174, 175, 176, 184, 195, 229, 256
Miamitown Shale, 1 2 , 2 1 , 53, 60, 124, 125, 129 Michigan, University of. See University of M i c h i g a n Mickleborough, John, 26, 27, 153, 155, 262, 276, 313 micraulaxum, Multiplicisphaeridium, S e e : acritarchs microscopy. See techniques: microscopy i n f r a s t r u c t u r e , 6, 6 8 , 7 2 , 144, 166, 168, 192, 292 Middle (Eden) Shales, 47 Milankov itch Cycles. See cycles, cyclicity Millbrig K-bentonite bed. See K-bentonite, K-bentonite beds, K-bentonite "zones"
millepunctata, Trematis. See Brachiopoda: Inarticulata Miller, Arnold I., 113, 231, 232, 305, 308, 312 Miller, C. A., 269 Miller, S. A., 14, 17, 23, 2 4 - 2 5 , 28, 2 9 , 4 2 , 6 8 , 80, 82, 126, 127, 134, 137, 142, 144, 157, 160, 161, 176, 182, 184, 185, 203, 204, 205, 2 0 6 , 208, 209, 210, 259, 260, 261, 265, 266, 267, 270, 272, 274, 275 milleranus, Ceraurus. See Arthropoda: Trilobita: Phacopida milleri, Eichenocrinus. See Echinodermata: C r i n o i d e a : Disparida
milleri, Technophorus. See
Mollusca: Rostroconchia millipedes. See Arthropoda: Diplopoda Milne-Edwards, Henri, 265, 270
miniata, Cucumaria. See
Echinodermata: Holothuroidea Minnesota Geological Survey, 31 M i n t z , Leigh W., 178, 310 Miocene, xix, 4 Misener, John, 270 Misener, S. R., 270 miseneri, Conularia. See C n i d a r i a : Scyphozoa: C o n u l a r i i d a mode of life, 5,7, 52, 74, 160, 169, 188. See also chapters on individual groups of a n i m a l s modesta, Isygospira. See Brachiopoda: Articulata modiolaris, Modiolopsis. See Mollusca: Pelecypoda Modiolopsis. See Mollusca: Pelecypoda Mohawkian Stage, 167 Mohr.Paul, 261,270 molds, composite. See taphonomy: molds molecular clocks, 62. See also organic evolution Mollusca, 26, 3 1 , 8 7 , 9 3 , 9 9 , 101, 116-140, 144, 145, 162, 204, 206, 219, 223, 224, 225, 231, 233, 241, 244, 245, 259, 260, 2 6 1 , 2 8 2 , 2 8 8 , 2 9 0 , 2 9 1 anatomy and morphology: tentacles, 119, 131, 132, 138, 252 Aplacophora, 119,280 Calyptomatida, 145. See hyolithids Cephalopoda, 29, 43, 8 7 , 8 8 , 9 3 , 9 4 , 9 5 , 9 6 , 101, 118, 119, 131-138, 139, 144, 154, 196, 205, 220, 223, 225, 231,235, 238, 241, 247, 248, 249, 251, 252, 260, 264, 270, 280, 286 Actinoceratoidea, actinocerids, actinoceroids, 245
Beloitoceras: B. amoenum, 136, 137 Charactoceras, 138 C. haeri, 136, 137 cuttlefish, 131
Cyrtoceras: C. vallandighami, 275 Diestoceras, 138 D. eos, 136, 137 Endoceratoidca, endocerids, endoceroids, 134, 137, 154,245
Cameroceras, 137, 225 C. inaequabile, 134, 135, 137
Endoceras, 134 Corbyoceras, 138 G. curvatum, 137, 138 G. duncanae, 134, 135 lsorthoceras, 137 Manitoulinoceras M. tenuiseptum, 137 M. williamsae, 137 Narthecoceras: N. dunni, 138 nautiloid cephalopods, 60, 87, 88, 8 9 , 9 0 , 94, 132-139, 2 0 5 , 2 2 8 , 229, 235, 236, 238, 241, 244, 245, 249, 2 5 1 , 2 5 2 , 264, pl. 8 (includes Actinoceratoidea, Endoceratoidea, and Nautiloidea) Nautiloidea, 245 Ascocerida, 137
Nautilus, 95, 117, 131, 132, 134, 137, 139, 241. pl. 4 Orthocerida, 137 octopus, 117, 131, 139
Oncoceras, 137 O. delicatum, 137 Orthonyhyoceras, 43. See also Treptoceras Schuchertoceras O.obscurum, 137, 138 squid, 117, 118, 131, 137, 139,252 trace fossils, 138. See also taphonomy: trace fossils
Treptoceras, 43, 136, 137, 223,228, 229. See also Orthonyhyoceras T. duseri, 60, 134, 135, 136, 137, 138,228, 229
Zittelloceras: Z. russelli, 137; Z. williamsae, 137
chitons. See Polyplacophora C r i c o c o n a r i d a , 145. See Tentaculitoidea Gastropoda, 7, 24, 32, 101, 116, 117, 118, 119-125, 127, 129, 137, 139, 182, 223, 225, 231, 235, 237, 238, 240, 241, 243, 244, 246, 247, 248, 282
Archaeogastropoda, 123 (See also Cyclonema; Naticonema) abalones, 119, 123 limpets, 119, 123, 139 periwinkles, 123 bellerophontids, 120
Cyclonema, 120, 123, 144, 176, 223, 252 C. bilixlata, 122, 123 C. gracile striatulum, 122, 123 C. humerosum, 120, 122, 123 C. sublaeve, 122, 123 C. varicosum, 122, 123 Cyclora, 223 Liospira, 225 Lophospira, 223, 225 Loxoplocus: L. bowdeni. See Paupospira Naticonema, 120 Neogastropoda, 123 cones, 123 murexes, m u r i c e s , 123
Subulites (Fusispira), 122, 123 whelks, 123
Paupospira P. bowdeni, 125, 127 P. moorei, 122, 123, 127 P. tropidophora, 127 Index
337
platyceratids, 120 Ptcropoda, 145
Salpingostoma: S. richmondensh, 120, 12 J slugs, sea slugs, 117, 119 Monoplacophora, 93, 119, 120, 125, 139, 223, 244, 247 Archinacella: A. area, 120, 121
Cyrtolites, 125, 139 C. ornatus, 120, 121 Helcionopsis: H. striata, 120, 121 Neopilina, 139 Sinuites, 225 S. cancellatus, 120, 121
Pelecypoda, 7, 92, 93, 98, 99, 100, 101, 112, 113,117, 118, 119, 123,125, 128-131, 139, 144, 157, 168, 189, 206, 210, 223, 225, 231, 235, 237, 238, 240, 241, 242, 244, 245, 251, 269, 276, 280, 281, 283, 284, 291,293
Ambonychia, 88, 89, 126, 129, 130, 131, 223, 225, 240, 241, 252
A. cultrata, 126 Anomalodonta: A. gigantea, 126 Caritodens, 128, 130, 223, 241, 251 C. demissa, 126 cockles, 129
Corallidomus: C. scobina, 128, 206 Ctenodonta, 129, 131 Cycloconcha, 129 Cymatonota, 129 C. typicalis, 40 Cyrtodontula, 129 Deceptrix, 129, 225 giant c l a m . See Tridacna Ischyrodonta: 1. truncata, 126, 131 l.ockeia: 1,. siliquaria, 209, 210 l.yrodesma, 129 Modiolopsis, 129, 130, 131, 224, 225, 251 M. modiolaris, 127 mussels, 22, 32, 33, 117, 129, 131, 261 mvtilids, 131
Opisthoptera, 129 O. casei, 126 oysters, 114, 117, 129, 131
Pseudocolpomya, 131 Pterinea, 129 P. demissa. See Caritodens demissa Rhytimya, 225
monobathrid camcratcs. Sec Echinodennata: Crinoidea: Camerata Monoplacophora. See Mollusca Montgomery County, Ohio, 72, 157 monticule. See Ectoprocta: anatomy and morphology
Monticulipora. See Ectoprocta: Trepostomata Moore, Richard B., 17, 270, 279 Moore, T i m , 38
moorei, Lepadocystis. See Echinodermata: Rhombifera moorei, Paupospira. See Mollusca: Castropoda Morris, Robert W., 123 Morrow, Warren C o u n t y . Ohio, 175 Mount Auburn M e m b e r , Formation, 21, 44, 53, 55, 59, 63,
68, 160,214, 223, 250. See also M c M i l l a n formation Mount I lope Member. See Fairview Formation mountain building, orogeny. See tectonic activity mudstone, 50, 217, 218, 219, 222, 224, 225 M l ' C M . Sec Miami I University, ()hio, ( h l n r d multipartitum, Petalichnus. See taphonomy: trace Multiplicisphaeridium. See acritarchs murexes, murices. See Mollusca: Castropoda: Neogastropoda mussels. See Mollusca: Pelecypoda m u t u a l i s m . See ecologic associations mvtilids. See Mollusca: Pelecypoda myzostomids. See Annelida nannoplankton, 239
Narthecoceras. See Mollusca: Cephalopoda
Naticonema. See
Mollusca: Gastropoda National Academy of Sciences, 30, 32, 274 National M u s e u m of Natural History ( U S N M ) , xv, 19, 21, 75, 120, 127, 128, 153, 173, 175, 176, 182, 184,
185, 266. See also Smithsonian Institution; United States National M u s e u m Natural History M u s e u m , London, xv, 23, 26 natural selection. See organic evolution nautiloid ccphalopod. See Mollusca: C e p h a l o p o d a Nautiloidea. See Mollusca: C e p h a l o p o d a Nautilus. See Mollusca: Cephalopoda: Nautiloidea nealli, Caurocrinus. See Echinodermata: Crinoidea: Camerata
neglecta, Plectorthis. See
Brachiopoda: Articulata nekton, nektonic, 7, 138, 198, 280, 288, 290 Nelson County, Kentucky, 78
Neocrinus. See Echinodermata: Crinoidea
scallops, 112, 113, 117, 129
spiny oysters. See Spondylus
Neogastropoda. See Mollusca: Castropoda
Spondylus, 131 Tridacna, 131 Vanuxemia: V. waynesvillensis, 305
Neopilina. See Mollusca: Monoplacophora Neostrabops. See Arthropoda: Aglaspida
Polyplacophora, 117, 118, 119, 139 chitons, 117, 139, 145, 248 Rostroconchia, 119, 127, 139, 247, 290
Technophorus, 139 T. faberi, 127 T. milleri, 127 Scaphopoda, 119, 139, 140
Rhytiodentalium: R. kentuckyensis, 140 tusk shells. See Scaphopoda molting. See ecdysis
338
fossils
Nereigenys. See
Annelida: scolecodonts Nestor, Robert, 153 New C a l e d o n i a , pl. 4 New England, 3, 215 New York, 3, 17, 23, 27, 35,47, 4 8 , 149, 155, 160, 257, 265, 2 6 6 , 2 7 1 , 2 7 6 , 293 New York Geological Survey, 23, 32 New York State M u s e u m , 180 Newberry, John Strong, 24, 270, 271, 276, 277 Newton, A . J . , 270 Nicholson, H. Alleyn, 75, 77, 270-271
Index
nicholsoni, Ceramopora. See Ectoprocta: Cystoporata Nickles, John M., 1 8 , 1 9 , 2 0 , 27, 30, 32-33, 3 4 , 4 7 , 52, 230, 259, 260, 261, 263, 265, 266, 267, 269, 270, 272, 275, 277 Nitecki, Matthew H„ 68 nodosa, Fromia. See Echinodermata: Asteroidea nomen duhium (pl., nomina dubia), 42, 288. See taxonomy: nomenclature nomen nudum (pl., nomina nuda), 42, 288. See taxonomy: nomenclature nomenclature. See taxonomy normal wave-base, fair-weather wave-base. See wave base North Atlantic Province. See faunal provinces North Bend Tongue. See Fairview Formation numerosum, Trachomatichnus. See taphonomy: trace fossils nutrition. See food
Nyctopora. See
C n i d a r i a : Anthozoa: Tabulata
O ' N e a l l J . K., 271 Obata, Tadahiro, 43,317 obligate association. See ecologic associations obrution deposits, 60, 288 obscurum, Schuchertoceras. See Mollusca: C e p h a l o p o d a occidentalis, Hebertella. See Brachiopoda: Articulata octopus. See Mollusca: Cephalopoda Odontopleurida, odontopleurids. See Arthropoda: Trilobita Oeh, George, 271
oehanus, locrinus. See
Echinodermata: Crinoidea: Disparida
Ohio Adams County, 75, 158, 162, 163, 216, 229, pl. 7 Brown County, 123, 128, 151 Butler County; 68, 75, 80, 87, 89, 107, 108, 126, 127,134, 137, 153, 156, 160, 176, 195, 2 2 9 Clermont County, 111, 126, 128, 153, 158, 163, 170, 186, 203, 207, 208, 209, 261 Bear Creek Quarry, 62 Stonelick Creek, 11, 254 Clinton County, 6 0 , 7 2 , 75, 128, 136, 142 Dent, 176,180 Hamilton County, 10, 8 9 , 9 0 , 106, 142, 151, 155, 156, 173, 1 8 0 , 1 8 6 , 277, PL 10 Highland County, 151, 153 Huffman Dam (near Dayton), 153 Lebanon, 28, 176, 260, 267, 271, 273, 274, 277 Montgomery County, 72, 157 Morrow, 175 Oxford, 105, 153, 155, 156, 256, 269, pl. 11 Point Pleasant, 225 Portsmouth, 10 Preble County, 77, 105, 107, 108, 109, 111, 123, 126, 137, 178, 184 Trammel Fossil Park, Sharonville, 12, 124, 257 Seneca County, 63 Warren County, 60, 105, 126, 136, 172 Waynesville, 120, 182, 184, 185, 256, 259, 266 W i l m i n g t o n , 260, 273, 276 Ohio Division of Geological Survey, 92, 256. See also Ohio Geological Survey Ohio Geological Survey, 23, 269, 276. See also Ohio Division of Geological Survey Ohio M e c h a n i c s Institute, C i n c i n n a t i , Ohio, 31, 262
Ohio State University, C o l u m b u s , Ohio, xv, 2, 51, 256, 271 Orton G e o l o g i c a l M u s e u m ( O S U ) , xv, 67, 128, 134, 229
ohioensis, Megalograptus. See Arthropoda: Chelicerata: Eurypterida Oldroyd, John David, 231 Oligocene, xix, 4
Oncoceras. See Mollusca: Cephalopoda oncolites. See Algae
onealli, Acidaspis. See
Arthropoda: Trilobita: Odontopleurida onealli, Parvohallopora. See Ectoprocta: Trepostomata Ophidiasteridae. See Echinodermata: Asteroidea Ophiothrix. See Echinodermata: Ophiuroidea Opisthoptera. See Mollusca: Pelecypoda Orbigny, Alcide d', 85, 90, 95, 271 orbital parameters. See cycles: Milankovitch C y c l e s order. See taxonomy: L i n n a e a n Hierarchy Ordovician: "Ordovician Biodiversification Event," 2, 289; "Ordovician Radiation," 1, 2, 289
ordovicicus, Amorphognathus. See conodonts Ordovicium. See acritarchs Oregonia Formation, M e m b e r , 44, 53, 56, 63,214, 223. See
also Arnheim Formation
oregonia, Oulodus. See
conodonts organic evolution, 1, 2, 39, 6 1 , 62, 67, 82, 105, 115, 118, 131, 134, 139, 163, 167, 195, 196, 229, 233, 237, 267,
282, 286, 287. See also durophagy; molecular clocks convergent evolution, 105, 282, 286 evolutionary relationships. See chapters on individual groups of a n i m a l s homeomorphy, 105, 282, 286 organic evolution by natural selection, 134 ornatus, Cyrtolites. See Mollusca: Monoplacophora ornatus, Protoscolex. See Annelida orogeny (mountain building). See tectonic activity Orthocerida. See Mollusca: C e p h a l o p o d a : Nautiloidea Orthograptus. See Hemichordata: Graptoloidea Orthonybyoceras. See Mollusca: C e p h a l o p o d a : Actinoceratoidea Brachiopoda: Articulata Orton Geological M u s e u m . See Ohio State Universitv Orton, Edward, 2 4 , 4 7 , 52, 268, 271, 276 Orton, Edward, Jr., 271
Orthorhynchula. See
Osgood, Richard G., Jr., 138, 203, 204, 205, 206, 208, 209, 210,211,212 Osteichthyes ("bony fish"). See Chordata: Vertebrata Ostracoda. See Arthropoda: Crustacea O S U . See Ohio State University: Orton Geological M u s e u m Oulodus. See conodonts Owen, David Dale, 261, 269, 272 oweni, Fistulipora. See Ectoprocta: Cystoporata O w e n s , R. M., 151, 155, 161, 305 Oxford, Butler County, Ohio, 105, 153, 155, 156, 256, 269,
pl. 11 oxygen content. See environment oysters. See Mollusca: Pelecypoda ()zarkian System. 30, 31
pacifica, Heteropora. See
Ectoprocta packstone, 50, 55, 59, 114, 2 8 6 , 289
Index
339
Palaeasterina. See
Echinodermata: Asteroidea Palacocopida. See Arthropoda: C r u s t a c e a : Ostracoda Palaeophycus. See taphonomy: trace fossils Palaeoscia. See C n i d a r i a : Hydrozoa: Siphonophorida: Por-
pentagonus, Cincinnaticrinus. See
pitidae; laphonomv: trace lossils Palau, I'alau islands, pl. 3, pl. 9 ' p a l e o b a t h y m e t r y , 6 1 , 113, 289 Palcoccne, Palaeocene, xix, 4 Paleodictyon. See taphonomy: trace fossils paleoecology. See ecology
periwinkles. See Mollusca: Gastropoda: Archaeogastropoda Permian, xix, 4, 74, 77, 121, 145, 182, 186 Petalichnus. See taphonomy: trace fossils Peter, M a r k , 151, 157 Petraster. See Echinodermata: Asteroidea
paleoenvironmental interpretation. See environment paleogcographv Baltica, 6 2 , 2 1 5 , 2 1 6 G o n d w a n a , 215, 216 Iapetus O c e a n , S e a , 3, 62, 216. 286, 292 Laurentia, 62, 215, 216, 238, /'/. J paleogeographic maps, 30, 32, pl. 1, pl. 2, pl. 12 Paleotcthys O c e a n . 216 Panthalassic O c e a n , 216 Queenston Delta, 216, 220, PL 12 Rodinia, 216 Paleontological Research Institution, 75, 87, 158, 159, 173, 186, 203, 209, 257 Paleontological Society, 2, 30, 32, 36, 172, 252, 257, 274 Schuchcrt M e d a l , 32
Perroxesfes. See taphonomv: trace fossils: borings Phacopida, phacopids. See Arthropoda: Trilobita Phaeophyta. See Algae Phanerozoic Eon, 2 , 4 , 4 6 , 62, 239, 284, 289
The Paleontologist, 17, 22 paleoslope, 55, 289 paleosynecology. See ecology: synecology P a l e o l e t l n s ( ) c c a n . See p a l c n g c o g r a p l n
Paleozoic Era, xix, 1, 2, 8, 9, 31, 34, 35, 45, 4 6 , 67, 72, 121, 123, 131, 138, 139, 182, 183, 199, 237, 238, 239, 241, 250, 277, 279, 284, 285, 286, 289 "Paleozoic Fauna," 2, 237 Palmer, T i m o t h y ) . , 124, 2 0 6 , 209, 210, 281, 298, 322 P a n a m a , /'/. 9 Panthalassic O c e a n . See paleogeography parasite, parasitism. See ecologic associations paratype. See taxonomy: tvpe specimens Parsley, Ronald L., 186 parviusculus, Decoroproetus. See Arthropoda: trilobita parviusculus, Proetus. See Arthropoda: Trilobita:
Decoroproetus Parvohallopora. See Ectoprocta: Trepostomata Pasceolus. See Algae: Chlorophvta: Dasvcladaeeae:
Cyclocrinites pascichnia. See taphonomy: trace fossils: behavior categories patch reef. See bioherin pathology, 93, 182 deformation (in life), deformities, 103, 182 Patterson, W i l l i a m ) . , 272 pattersoni, CAyptocrinus. See Echinodermata: Crinoidea: Camcrata
Pattersonia. See Porifera Patzkowsky, Mark E., 63, 232, 233, 241, 308 Paul, Christopher R. C. 190. 191 Paupospira. See Mollusca: Gastropoda Peaslee, John B., 27 pedicle. See Brachiopoda: anatomy Pelecypoda. See Mollusca Pennsylvania A c a d e m y of S c i e n c e , 95 Penrose M e d a l . See Geological Society of America
340
Index
Echinodermata: Crinoidea: Disparida pera, Petroxestes. See taphonomy: trace fossils: borings Pericharax. See Porifera
Petrocrania. See Brachiopoda: luarticulata
Philhedra. See Brachiopoda: luarticulata
Pholadomorpha. See Mollusca: Pelecypoda Phosphannulus, 182. See also byroniids phosphatization. See taphonomv: phosphatization Phragmodus. See conodonts phytogeny, phylogenetic, 198. See also organic evolution phvlum, phvla. See taxouomv: l.innacan Hierarchy pilea, Carneyella. See Echinodermata: Edrioasteroidea pillbug. See Arthropoda: Crustacea: Isopoda Plaesiomys. See Brachiopoda: Articulata planispiral coiling. See coiling of shell plankton, planktonic, 7, 52, 6 8 , 69, 74, 145, 172, 195, 234, 239, 280, 282, 288, 290 microplankton, 52, 239 nannoplankton, 239 phytoplankton, 6 8 , 6 9 , 239, 283 zooplankton, 74 Plantae, plants: land plants, 239, 268, 270 ' platyceratids. See Mollusca: Gastropoda Platycoryphe. See Arthropoda: Trilobita Platystrophia. See Brachiopoda: Articulata Plectodina. See conodonts Plectorthis. See Brachiopoda: Articulata Pleistocene, ix, xix, 4, 10
Plicodendrocrinus. See
Echinodermata: Crinoidea: Cladida Pliocene, xix, 4 Plummer, John T , 272 Podocopida. See Arthropoda: Crustacea: Ostracoda Point Pleasant Formation, 19, 62, 209, 214, 225. See also River Quarry Beds Pojeta, John, Jr., 127, 128, 206, 308 polar ordination. See techniques Polychaeta, polychaete worms. See Annelida polvdactvlus, Cupulocrinus. See Echinodermata: Crinoidea: Cladida
polymorphism, 89, 283, 290. See also dimorphism polyp. See C n i d a r i a polypide. See Ectoprocta: anatomy and morphology: zooid PoKplacophora. See Mollusca Polyzoa. See Ectoprocta
ponderosa auhurnensis, Platystrophia. See Brachiopoda ponderosa, Platystrophia. See Brachiopoda Pontiometra. See Echinodermata: Crinoidea Pope, John K . , 4 8 , 145
popei, Enoploura. See
Echinodermata: Stylophora populations. See ecology: ecosystems Porifera, 24, 31, 38, 6 8 , 7 1 - 7 3 , 79, 123, 241, 242, 247, 248, 292
Brachiospongia: B. tuberculata, 72, 73 Labechia: L. huronensis, 72, 73 Pattersonia: P. tuberosa, 72, 73 Pericharax, pl. 3
reef. See bioherm regeneration, 173, 182, 183, 186, 198, 236 regularis, Quadrijugator. See Arthropoda: C r u s t a c e a : Ostracoda Reinhardt, E., 272 relative age, relative dating, 46
sclerosponges, coralline sponges, 7 1 , 72
Acanthochaetetes: A. wellsi, pl. 3 Stromatoporoidea, 6 8 , 72, 128, 2 0 6 , 220, 221, 233, 242, 243, 245, 247, 292
Aulacera, 72 A. undulata, 72, 73
Dasycladaceae
Portsmouth, Ohio, 10 Portuguese Man-of-War. See C n i d a r i a : Hydrozoa: Siphonophorida post-mortem transportation, 114, 137 Potter, Paul Edwin, 8, 11, 59, 106 Preachersville Member. See Drakes Formation Preble County, Ohio, 77, 105, 107, 108, 109, 111, 123, 126, 137, 178, 184 Precambrian, xix, 67, 7 1 , 151 predation. See ecologic associations predator-prey interactions. See ecologic associations preservation. See taphonomy primary producers. See ecology: ecosystems primary productivity, primary production, 2 3 8 - 2 3 9 , 282. See
also ecology: ecosystems
Primaspis. See Arthropoda: Trilobita: Prioniodus: P. dychei. See conodonts
Odontopleurida
priority. See taxonomy: nomenclature Probasco, Henry, 272
Proetus parviusculus. See Arthropoda: etus parviusculus Promopalaeaster. -See Echinodermata:
Trilobita:
Decoropro-
Asteroidea pronunciation of scientific n a m e s . See taxonomy: nomenclature
Protaraea. See C n i d a r i a : Anthozoa: Tabulata Protasterina. See Echinodermata: Ophiuroidea Protoscolex. See Annelida pseudochitin, 69
Pseudocolpomya. See
Mollusca: Pelecypoda
Pseudolingula. See Brachiopoda: Inarticulata
Pterinea demissa. See demissa
repichnia. See taphonomy: trace fossils: behavior categories
reticularis, Anomaloides. See Algae: Chlorophyta:
Mollusca: Pelecypoda:
Caritodens
Pterobrancbia. See Hemichordata Pteropoda. See Mollusca: Gastropoda pudicum, Rusophycus. See taphonomy: trace fossils Pycnocrinus. See Echinodermata: Crinoidea: C a m e r a t a pyritization. See taphonomy Pyrrophyta. See Algae
retrorsa, Calymene. See Arthropoda: Trilobita: Flexicalymene retrorsa Retrorsirostra. See Brachiopoda: Articulata rex, lsotelus. See Arthropoda: Trilobita
Rbahdopleura. See
Hemichordata: Pterobrancbia Rhodes, F. H. T, 196
Rhodesognathus. See conodonts Rhodophyta. See Algae Rhombifera, rhombiferan "cystoids." See Echinodermata Brachiopoda: Articulata
Rhynchotrema. See
Rhytimya. See Mollusca: Pelecypoda
Rhytiodentalium. See
Mollusca: Scaphopoda Richards, R. Peter, 102 Richardson, J . M . , 273
richardsoni, Clyptocrinus. See
Echinodermata: C r i n o i d e a : Camerata Richmond Group, R i c h m o n d i a n Stage, 4 0 , 4 4 , 4 6 , 47, 4 8 , 51, 6 2 , 6 3 , 6 8 , 72, 73, 75, 77, 78, 79, 81, 89, 105, 120, 124, 125, 130, 137, 138, 139, 145, 151, 153, 156, 157, 158, 160, 162, 164, 178, 180, 182, 184, 185, 186, 189, 191, 196, 2 0 6 , 208, 220, 232, 233, 260, 291, pl. 7
richmondense, Stromatocerium. See Algae: Rhodophyta: Solenopora richmondensis richmondensis, Peptaena. See Brachiopoda: Articulata richmondensis, Protaraea. See Cnidaria: Anthozoa: 'Tabulata
richmondensis. Salpingostoma. See Mollusca: Gastropoda richmondensis, Solenopora. See Algae: Rhodophyta richmondensis, lentaculites. See Tentaculitoidea R i c h m o n d i a n Invasion, 60, 81, 138, 232-233, 240, 241 Richter, Rudolf, 204 Riddell, John L., 273 rippled beds, 60 River Quarry Beds, 47, 225. See also Point Pleasant Formation Robison, Richard A., 144 rock-stratigraphic units. See lithostratigraphic units Rodinia. See paleogeography Roeininger, C a r l , 273
Ropalonaria. See Ectoprocta: Ctenostomata
Quadrijugator. See Arthropoda: Crustacea: Ostracoda quadrimucronatus, Orthograptus. See Hemichordata: Graptoloidea Queenston Delta. See paleogeography
Ross, Reuben J . , Jr., 150, 151, 160 Rostroconchia. See Mollusca Rowell, Albert J . , 185, 298 Rowland M e m b e r . See Drakes Formation
rugosa, Parvohallopora. See Ectoprocta: Trepostomata radiometric dating. See time: absolute age Rafinesque, C. S., 40, 272 Rafinesquina. See Brachiopoda: Articulata
ramosa, Parvohallopora. See Ectoprocta: Trepostomata Reba Formation, 214
recrystallization, 6, 8, 94, 290. See also taphonomy: recrystallization
Rugosa, rugosans. See C n i d a r i a : Anthozoa
rugosa, Sowerbyella. See Brachiopoda: Articulata rugosa, Thaerodonta. See Brachiopoda: Articulata Runncgar, Bruce, 127 Rush, Jerry, 89, 155, 156, 157 Rusophycus. See Arthropoda: Trilobita: trace fossils; taphonomy: trace fossils
Index
341
russelli, 7,itteIloceras. See Mollusca: Cephalopoda Sacco, W i l l i a m K., pl. 3 salinity. See environment Salpingostoma. See Mollusca: Gastropoda Salteraster. See Echinodermata: Asteroidea Saluda Formation, M e m b e r , 44, 48, 49, 53, 79, 81, 138, 162,
214, 221. See also Whitewater Formation
Sanctum. See
serpulid worms. See Annelida: Polychaeta sexual dimorphism. See dimorphism, sexual Seychelles, Indian O c e a n , pl. 9 shalc-to-lhnestone ratio, 232. See also elastic ratio Shaler, Nathaniel Southgate, 23, 2 7 3 - 2 7 4 shedding. See ecdysis shell coiling. See coiling of shell shell pavements, shingled beds, 59, 60, 99, 110, 114, 251. See
also Brachiopoda: Articulata: Rafinesquina
taphonomy: trace fossils: borings sand dollars. See F c h i n o d e r m a t a : Echinoidea Sanner, JoAnn, 19, 21 Sansom, Ivan ) . , 199
Shideler, W i l l i a m Henry, 28, 262, 263, 265, 268, 274
shideleri, Megalograptus. See Arthropoda: Chelicerata:
scabiosa, Petrocrania. See Brachiopoda: Inarticulata Scaphopoda. See Mollusca scavenging. See food Schafer, W i l h e l m , 2 0 4
Schizomania. See Brachiopoda: Inarticulata
Fury pterida S h i m i z u , Saburo, 43 shingled beds. See shell pavements Shirley, J . , 150 Shrake, Douglas L., 9 2 , 9 3 , 317 shrimps. See Arthropoda: Crustacea: Malacostraca S i g m a G a m m a Fpsilon, 91 siliciclastics, 3, 220, 291 silicification. See taphonomy siliquaria, Lockeia. See Mollusca: Pelecypoda Silurian, xix, 2 , 4 , 9 , 35, 5 6 , 7 2 , 7 9 , 1 6 1 , 1 9 5 , 217, 237, 2 4 0 , 2 8 9 simplex, Ectenocrinus. See Echinodermata: Crinoidea: Disparida
S c h l e m m e r , C h a r l e s , 273, 275 S c h m i d t , David A., 186, 303 Schuchert, C h a r l e s , 20, 28, 30, 31-32, 33, 35, 184, 264, 273, 274, 275 schuchertana, Catazyga. See Brachiopoda: Articulata Schuchertoceras. See Mollusca: C e p h a l o p o d a S c h u m a c h e r , Gregory A., 44, 178, 312, 318 Schweizcrbarfschc Science Publishers, 67 scientific n a m e . See taxonomy: nomenclature: species n a m e Scleractinia. See C n i d a r i a : Anthozoa sclerosponges. See Porifera scobina, Corallidomus. See Mollusca: Pelecypoda scolecodonts. See Annelida scorpions. See Arthropoda: Chelicerata: Arachnida Scotese, C h r i s , pl. 1 Scott, W i l l i a m B e r r y m a n , 273 Scoville, S. S., 273
simplex, Hudsonaster. See Echinodermata: Asteroidea simplex, Palaeaster. See Echinodermata: Asteroidea: Hudsonaster simplex
scovillei, Orthis. See Brachiopoda: Articulata: Austinella
Smithsonian Institution, xv, 19, 21, 30, 153, 269
Scyphozoa, scyphozoan. See C n i d a r i a sea a n e m o n e s . See C n i d a r i a : Anthozoa sea c u c u m b e r s . See Echinodermata: Holothuroidea sea fans. See C n i d a r i a sea level, sea-level c h a n g e , sea-level curves, 3, 4, 9, 53, 55, 56, 59, 6 1 , 80, 214, 216, 217, 219, 221, 240, 285, 291 sea lilies. See Echinodermata: Crinoidea "sea scorpion." See Arthropoda: Chelicerata: Eurypterida sea slugs. See Mollusca: Gastropoda s c i s i , i i Sec Echinodermata: Asteroidea sea urchins. See Echinodermata: Echinoidea sea whips. See C n i d a r i a sea-floor spreading, 3, 216, 291 Seilacher, Adolf, 114, 204, 205, 210, 211 seismites, 6 0 - 6 1 , 291
soft-tissue preservation, 79, 142, 143, 168, 190. See also
scovillei
senaria, Calymene. See senaria
Singh, R a m a n J . , 9 5
Sinuites. See Mollusca: Monoplacophora slugs. See Mollusca: Gastropoda Smith, Andrew B., 190, 191 S m i t h , M. Paul, 199, 316 S m i t h , M o y a M., 199, 316 S m i t h , W i l l i a m , 6 1 , 281 snails. See M o l l u s c a : (Gastropoda
Arthropoda: Trilobita:
Flexicalymene
taphonomy Algae: Rhodophyta Southgate Member. See Latonia Formation Sowerbyella. See Brachiopoda: Articulata Spatiopora. See Ectoprocta: Trepostomata species. See taxonomy: L i n n a e a n Hierarchy species diversity. See diversity species n a m e . See taxonomy: nomenclature specific n a m e . See taxonomy: nomenclature speciosa, Palaeasterina. See Echinodermata: Asteroidea speciosus, Petraster. See Echinodermata: Asteroidea speciosus, Promopalaeaster. See Echinodermata: Asteroidea
Solenopora. See
Sphenothallus, 93, 243, 244
spiders. See Arthropoda: Chelicerata: Arachnida spinosity, 69, 89, 123, 131, 145,148, 153, 155, 160, 162, 163, 167
S e n e c a County, Ohio, 63 Sepkoski, John J . , Jr., 2 S E P M . T h e Society for S e d i m e n t a r y Geology (originally the Society of Economic Geologists and M i n e r a l o gists), 57, 158 sequence stratigraphy, 53, 54-57, 59. See also C I , C 2 , C 3 , C4, C5, C6 sequence sequence boundaries, 55, 6 1 , 291
342
Index
spinosus, Taeniaster. See Echinodermata: Ophiuroidea spinosus, Triarthrus. See Arthropoda: Trilobita: Olenida spiny oyster. S e c M o l l u s c a : P e l e c y p o d a : Spondvlus spirorbid worms. See Annelida: Polychaeta Spondylus. See Mollusca: Pelecypoda sponges. See Porifera Spreiten. See taphonomy: trace fossils Spring Grove Cemetery, C i n c i n n a t i , Ohio, 22, 23, 24, 25
Sprinkle, James, 1 6 8 , 1 8 5 , 1 9 1 , 318 squid. See Mollusca: Cephalopoda Stanley, George D., 212 starfish. See Echinodermata: Asteroidea "stateline boundaries," "stateline stratigraphic divisions," 51, 214
synecology. See ecology synonym, synonymy. See taxonomy: nomenclature syntypes. See taxonomy: type specimens: cotypes Systema Naturae. See taxonomy: L i n n a e u s systematics. See taxonomy
Station Hollow Member. See Brookville Formation Stearn, Colin W., 3, 301 Steinkern. See taphonomy: molds: internal molds
Tabulata. See C n i d a r i a : Anthozoa Taconian. See Taconic Orogeny l a c o n i c Orogeny, M o u n t a i n s , 3, 5, 8, 62, 216, 220, 233, 2 9 2 - 2 9 3 , pl. 12 Taeniaster. See Echinodermata: Ophiuroidea tangential thin-sections. See techniques: thin-sections Tanners Creek Formation, 44 T a p a n i l a , Leif, 210
stellata, Cyathophylloides. See Cnidaria: Anthozoa: Rugosa stellatus, Cystaster. See Echinodermata: Edrioasteroidea
stelliforme, Asteriacites. See taphonomy: trace fossils sterlingensis, Tentaculites. See Tentaculitoidea Stevens, W. J . , 274 Stingy Creek Formation, 214 Stokes, W i l l i a m Fee, 1
Stonelick Creek, Clermont County, Ohio, II, 254 storm wave-base. See wave base storms, 7, 56,57, 5 9 , 6 0 , 6 3 , 6 4 , 77, 8 1 , 9 2 , 113, 114, 115, 151, 169, 178, 180, 210, 215, 217, 218, 219, 220, 221, 223, 224, 225, 251, 253, 285, 292, 293 hurricanes, 56, 217, 219, 222, 223, 225, 253 storm cycle. See cycles, cyclicity storm wave-base, 56, 221, 240. See also wave base stratigraphic code. See stratigraphy: C o d e of Stratigraphic Nomenclature stratigraphy. See also sequence stratigraphy C o d e of Stratigraphic Nomenclature, 49, 51 International Stratigraphic C o d e , 49
Cyclonema gracile Strimple, Harrell L., 172, 173, 320
Sole-
Stromatoporoidea. See Porifera
Strongylocentrotus. See Echinodermata: Echinoidea Strophomena. See Brachiopoda: Articulata Stunner, W i l h e l m , 153 Stylophora. See Echinodermata: carpoids suhcrassus, locrinus. See Echinodermata: Crinoidea: Disparida
suherectus, Drepanoistodus. See conodonts suhlaeve, Cyclonema. See Mollusca: Gastropoda subquadrata, Plaesiomys. See Brachiopoda: Articulata subspecies. See taxonomy: L i n n a e a n Hierarchy
Subulites [Fusispira). See Mollusca: Gastropoda: Neogastropoda succession. See ecologic succession Sumrall, Colin D., 178, 185, 250 Sunset Formation, Member, 44, 53, 56, 63, 164,214, 224. See
also Arnheim Formation superposition. See time: relative age, relative dating suspension feeding. See food S w a d l e v , W C , 129 Sweet, Walter C, 51, 199, 321 symbiosis, symbiont. See ecologic associations symmetry, 77, 98, 99, 100, 101, 130, 145, 167, 168, 169, 189, 190, 191, 196, 198, 280, 288, 289, 292
a l i g n m e n t , 77, 142, 145, 178, 196, pl. 8, pl. 10
bioimmuration, 209, 236, 242, 243, 244, 281, 322. See also
Catellocaula body fossils, 6, 143, 203, 204, 212, 281, 293 casts, 6, 210, 282, 288, 292 deformation (post-mortem), 8, 130 disarticulation, 7, 8, 114, 188, 223, 224 molds
external molds, 6, 117, 129, 281, 285, 287, 288. See also
Streptelasma. See C n i d a r i a : Anthozoa: Rugosa striata, Helcionopsis. See Mollusca: Monoplacophora striatulum, Cyclonema gracile. See Mollusca: Gastropoda:
Rhodophyta:
188, 224, 231, 282, 289, 290, 293. See also chapters on individual groups of a n i m a l s ; death assemblage
composite molds, 120, 121, 129, 130
Streptaster. See Echinodermata: Edrioasteroidea
Stromatocerium richmondense. See Algae: nopora riclunondensis
taphonomy, 1 , 4 - 8 , 2 7 , 4 6 , 52, 56-57, 60, 7 9 , 9 2 , 101, 102, 118, 119, 120, 125, 127, 129-130, 132, 133, 134-135, 137, 147, 148, 151, 153, 155, 163, 169,
bioimmuration internal molds, 6, 101, 117, 120, 121, 122, 123, 125, 126, 127, 129, 134, 135, 136, 137, 139,228, 229, 285, 287, 288, 292 Steinkern. See internal mold phosphatization, 223. See also c a l c i u m phosphate pyritization, 153, 160, 168, 190 silicification, 163 soft-tissue preservation, 79, 142, 143, 168, 190 trace fossils, ichnofossils, Lebensspuren, 6, 24, 56, 60,77, 138, 143,151,155, 202-212, 2 2 4 , 2 2 6 , 2 3 5 , 2 6 1 , 2 8 1 , 284,285, 286,287,293. See also incertae sedis
Allocotichnus: A. dyeri, 204 Asaphoidichnus: A. trifidum, 202, 203, 204 Asteriacites: A. stelliforme, 2 0 8 , 210 behavior categories, 2 0 4 - 2 1 1
c u b i c h n i a , 207, 2 0 8 , 209, 210, 211 d o m i c h n i a , 202, 203, 205, 206, 2 0 8 , 209, 210, 211 fodinichnia, 202, 2 0 3 , 2 0 5 , 2 0 8 , 211 i m p e d i c h n i a , 210, 211 pascichnia, 202, 2 0 3 , 2 0 4 , 211 repichnia, 202, 203, 2 0 4 , 2 1 1
Blastophycus. See incertae sedis borings, 74, 7 5 , 7 7 , 9 0 , 9 3 , 123-125, 130, 182, 203, 206, 2 1 0 , 2 1 1 , 2 3 6 , 2 4 2 , 2 4 3 , 2 4 4 , 293 Corallidomus. See Mollusca: Pelecypoda
Petroxestes: P. pera, 206 Sanctum, 93, 244 S. laurentiensis, 206, 210 Trypanites, 75, 7 7 , 9 3 , 2 0 6 , 210,
242, 244 burrows, burrowing, 6, 7, 103, 130, 131, 138, 151, 152,
Index
343
153, 155, 189, 190, 2 0 3 - 2 1 2 , 217, 218, 221, 222, 223, 224, 225, 226, 235, 238, 293
Chondrites, 56, 205, 211, 224, 226 Chondrites type-A, 205, 2 0 8 Chondrites type-B, 205, 2 0 8 Chondrites t y p e - C , 205, 2 0 8 Cruziana, 202, 203,211
subspecies, 39, 285, 292, 294 taxon (pl., taxa), xi, 38, 39, 42, 43, 293 type-species, 40, 42, 43 variety. See subspecies Linnaeus, Karl, 38; Systema Naturae, 38 nomenclature
epircliefs, 204, 284
Binomial System of Nomenclature, 38, 204 binomen. See species n a m e generic n a m e , 37, 41, 42, 43, 286, 291 scientific n a m e . See species n a m e species n a m e , xi, 37, 4 1 , 4 3 , 198, 203, 281, 286, 291 specific n a m e , 37, 39, 43, 286, 291, 293 trivial n a m e . See specific n a m e
Fascifodina: F. floweri, 138
derivation ol n a n u s , 40
fucoids, 203, 211, 285 holes (in shells). See borings hyporeliefs, 2 0 4 , 2 0 7 , 2 1 2 , 286 ichnofacies, 2 1 0 - 2 1 1 , 2 8 6 ichnogenus, ichnogenera, 204, 211 ichnospecies, 204, 2 0 6 , 2 1 0 , 2 1 1
International C o d e of Zoological Nomenclature (ICZN),xi priority, 43, 290 pronunciation of scientific n a m e s , 41 synonym, synonymy, 151; junior synonym, 153, 182.
Diplocraterion, 60, 206, 211, 224, 226, 247 D. biclavata, 2 0 6 , 2 0 9 D. cincinnatiensis, 2 0 6 , 2 0 8 , 2 0 9 D. luniformis, 206 Dystactophycus. See incertae sedis
Licrophycus: L. flahellum, 261 l.ockeia: L. siliquaria, 209, 210. See also
See also priority Mollusca:
Pelecypoda
Palaeophycus, 204, 207, 224, 226 Palaeoscia: P. floweri, 209, 212. See also
Cnidaria:
Hydrozoa: Siphonophorida: Porpitidae
Paleodictyon, 202, 203, 204, 205 Petalichnus: P. multipart Hum, 204 Petroxestes. See borings Rusophycus, 151, 152, 155,202, 203,
204, 210, 226, 235.
See also Arthropoda: Trilobita R.carleyi, 155,207,210
R. cryptolithi, 155, 210 R. pudicum, 152, 1 5 3 , 2 0 7 , 2 1 0 Sanctum. See borings Spreiten, 206, 209. See also Diplocraterion Trachomatichnus: T. numerosum, 204 Trichophycus ("turkey tracks"), 138, 211, 224, 226
T. venosum, 202, 203, 205 Trypanites. See borings
type specimens, 22, 2 5 , 4 2 , 158, 260, 266, 272, 274, 286 cotypes, 42, 283, 286, 289, 292 holotype, 42, 72, 158, 173, 178, 182, 184, 186, 209, 283, 286, 289 paratype, 42, 158, 159, 186, 283, 286, 289 syntypes. See cotypes techniques. See also chapters on individual groups of animals acetate peels, 95, 96 acid dissolution, acid etching, 68, 9 6 , 143, 163, 195, 196, 223 cluster analysis, 231 detrended correspondence analysis (DCA), 231 factor analysis, 231 health, safety, 96 microscopy, 35, 36, 50, 89, 97, 187, 198, 275 polar ordination, 231 thin-sections, 2 9 - 2 0 , 31, 95, 9 6 - 9 7 , 275 longitudinal, 77, 95, 9 6 - 9 7 , 287, 293 tangential, 95, 9 6 - 9 7 , 287, 293 transverse, 95, 9 6 , 97, 287, 293
'Vechnophorus. See Mollusca: Rostroconchia
I appan, I lelen, 69 Tate Formation, 214 taxon, taxa. See taxonomy: L i n n a e a n Hierarchy taxonomic diversity. See diversity taxonomy, 3 7 - 4 3 , 89, 198, 2 0 3 - 2 0 4 , 282, 283, 286, 288, 289,
290, 292, 293. See also chapters on individual groups of a n i m a l s based on evolutionary relationships, 39 Linnaean Hierarchy, 3 8 - 3 9 class, 38, 39, 282, 289 diagnosis, 42, 283 family, xi, 38, 39, 285, 286, 289 genus, genera, xi, 38, 3 9 , 4 0 , 4 2 , 4 3 , 283, 285, 286, 288,
291. See also ichnogenus, ichnogenera ichnogenus, ichnogenera. See taphonomy: trace fossils ichnospecies. See taphonomy: trace fossils k i n g d o m , 38, 287, 289 order, 38, 39, 282, 285, 289 phylum, phyla, 38, 118-119, 282, 287, 289 species, xi, 37, 38, 3 9 , 4 2 , 4 3 , 283, 286, 291, 292. See
also ichnospecies
344
Index
tectonic activity, 3, 5, 8, 1 0 , 5 3 , 6 1 , 6 2 , 215, 217, 233, 292 Teichert, C u r t , 43 temperature. See environment tempestite, 60, 293
Tentaculites. See Tentaculitoidea Tentaculitoidea, tentacuhtoids, 144-145, 247
Tentaculites T. richmondensis, 142, 145 T. sterlingensis, 145 tenuis, Plectodina. See conodonts tenuiseptum, Manitoulinoceras. See Mollusca: Cephalopoda Terrill Formation, 214
tessellatus, Cryptolithus. See Arthropoda: Trilobita Tetradium. See C n i d a r i a : Anthozoa: Tabulata Tetraphalerella. See Brachiopoda: Articulata Thaerodonta. See Brachiopoda: Articulata thanatocoenose, thanatocoenosis. See death assemblage T h e Society for S e d i m e n t a r y Geology. See S E P M Thecidellina. See Brachiopoda: Articulata thin-sections. See techniques: thin-sections
Thompson, Esther H., 120 ticks. See Arthropoda: Chelicerata: Arachnida tiering. See ecology: ecosystems time. See also geologic time-units absolute age, absolute dating, 4 6 , 6 1 , 62, 63, 279, 290 radiometric dating, 1 , 4 6 , 6 2 , 6 3 , 279, 290 isochronous surfaces, 46 relative age, relative dating, 45, 4 6 , 6 1 , 62, 195, 281, 290.
See also biotal succession superposition, 46 time-averaged accumulations, 7, 230, 231, 234, 293 time-environment d i a g r a m , 240 time-scale, geologic. See geologic time-scale time-stratigraphic units, 46 Tobin, Rick C, 4 4 , 5 3 , 54, 55, 56, 57, 312 Townsend, M . ) . , 212, 297 trace fossils. See taphonomy Trachomatichnus. See taphonomy: trace fossils Trammel, R. L., 12 transverse thin-sections. See techniques: thin-sections Transylvania College, University. See Kentucky: Lexington
Treatise on Invertebrate Paleontology, xi, 35, 144, 145, 255, 297, 300, 301, 304, 307, 308, 319, 322
Trematis. See Brachiopoda: luarticulata Trepostomata. See Ectoprocta Treptoceras. See Mollusca: Cephalopoda: Actinoceratoidea Treptoceras duseri shale. See Waynesvillc Formation Triarthrus. See Arthropoda: Trilobita: Olenida Triassic, xix, 4, 82, 199 Trichophycus. See taphonomy: trace fossils Tricopelta. See Arthropoda: 'Trilobita: Phacopida
Tridacna. See Mcrllusca: Pelecypoda
trifidum, Asaphoidichnus. See taphonomy: trace fossils Trilobita. See Arthropoda Trimble County, Kentucky, 124, 129 Bedford, 129 trivial n a m e . See taxonomy: nomenclature: specific n a m e Trollope, Frances, 274 tropidophora, Paupospira. See Mollusca: Gastropoda truncata, Ischyrodonta. See Mollusca: Pelecypoda Trypanites. See taphonomy: trace fossils: borings Tubastraea. See C n i d a r i a : Anthozoa: Scleractinia tuberculata, Brachiospongia. See Porifera
tuberosa, Pattersonia. See Porifera
tunicates. See Chordata: Urochordata turbidity. See environment "turkey tracks." See taphonomy: trace fossils:
turnhulli, Hercochitina. See chitinozoans
Trichophycus
Turner, Peter, 199, 316 tusk shells. See Mollusca: Scaphopoda Twenhofel, W. H., 274 Twitchell, George B., 273, 274-275 type specimen. See taxonomy type-species. See taxonomy: L i n n a e a n Hierarchy typicalis, Cymatonota. See Mollusca: Pelecypoda typicalis, Geniculograptus. See Hemichordata: Graptoloidea Tyrone Limestone. See High Bridge Group Ulrich, E. O, 6, 18, 19, 20, 2 8 - 3 1 , 32, 33, 34, 3 5 , 4 7 , 6 7 , 6 8 , 87, 111, 120, 123, 126, 127, 142, 143, 144, 160, 172,173, 176, 261, 263, 267, 271, 273, 274, 277
undatus, Phragmodus. See
conodonts
undulata, Aulaeera. See Porifera: Stromatoporoidea United States Department of Agriculture, 22 United States Geological Survey, 20, 22, 29, 30, 32, 33, 35, 51, 2 6 1 , 2 6 6 United States National M u s e u m , 22, 30, 32, 35, 260, 261. See also National M u s e u m of National History; Smithsonian Institution University of C h i c a g o , 22, 25, 28, 262 Walker M u s e u m , 2^ University of C i n c i n n a t i , 14, 16, 18, 20, 21, 22, 25, 26, 27, 28, 29, 32, 33, 34, 3 5 , 4 8 , 8 0 , 9 0 , 9 3 , 110, 138, 142, 151, 155, 156, 170, 180, 203, 209, 225, 256, 260,
261, 263, 264, 272, 275, 298. See also M c Micken Hall University of M i c h i g a n , xiii, 178, 273 Utica Group, Utica S h a l e , 4 7 , 4 8 , 160
vacuum, Foerstephyllum. See
C n i d a r i a : Anthozoa: Tabulata Vail, Peter R., 4, 320 V a l l a n d i g h a m , George L., 259, 275 vallandighami, Cyrtoceras. See Mollusca: C e p h a l o p o d a
vallata, Catellocaula. See Catellocaula Van Cleve, J. W., 275 Vanuxemia. See Mollusca, Pelecypoda
varihrachialus, Cincinnaticrinus. See Echinodermata: Crinoidea: Disparida Mollusca: Gastropoda variety. See taxonomy: L i n n a e a n 1 Iierarchy: subspecies Vaupel, Ernst H., 28, 32, 273, 275 venosa, Ropalonaria. See Ectoprocta: Ctenostomata venosum, Trichophycus. See taphonomy: trace fossils Verne, Jules, 40 Veryhachium. See acritarchs Virginia, 3, 162, 315
varicosum, Cyclonema. See
Virginia. See Chordata: Vertebrata: Reptilia volcanic ash beds, 1, 7,62, 63, 163, 285, 287. See also K-bentonite volcanic eruptions, 7, 62
vorticellatus, Streptaster. See Echinodermata: Edrioasteroidea V u l i n e c , Kevina, 7 4 , 8 6 , 100, 117, 125, 147, 195 Wabash C o l l e g e . See Crawfordsville, Indiana wackestone. See limestone W a h l m a n , Gregory P, 120 Walcott, C h a r l e s D., 25, 199 Walker M u s e u m . See University of C h i c a g o Warder, John Aston, 275 Warn. John M . , 172, 173, 182 Warren County, Ohio, 60, 105, 126, 136, 172 Warshauer, Steven M., 163 Washington, pl. 3, pl. 9 Washington, George, 106 water movement. See environment W a u g h , David A , 9 1 , 304 wave base, 221. 223. 22> normal wave-base, fair-weather wave-base, 56, 2 2 1 , 222, 223, 240 storm wave-base, 56, 221, 240. See also storms W a y n e County, Indiana, 67, 75, 228 W a y n e State University, 176
Index
345
Wavncsvillc Formation, 48, 53, 56, 60, 63, 75, 79, 87, 107, 111, 115. 120, 124, 126, 128, 129, 130, 136, 138, 142, 149, 150, 151, 153, 157, 160, 162, 172, 176, 180, 184, 196,2J4, 225, 229, 307, 314, 317, pl. 6,
pl. 10. See also Brookville Formation: W a j nesx ilk- Member Blanchester M e m b e r , 44 Clarksville M e m b e r , 4 4 Fort Ancient M e m b e r , 44 Marble Hill bed, 124, 125, 127, 129 "Treptoceras duseri shale," 60, 136, 137, 138 Waynesville, Ohio, 120, 182, 184, 185, 256, 259, 266. See Warren County, Ohio waynesvillensis. Vanuxemia. See Mollusca. Pelecypoda Weaver, T h o m a s , 75, PI S W e e d o n , M . J . , 82, 309 Weichold, C h a r l e s , 93, 275 "Weichold doughnut." See Ectoprocta "Weichold ring." See Ectoprocta: "Weichold d o u g h n u t " W e l c h , James R., 182 Welch. I. B . 276
welchi, Megalograptus. See Arthropoda: Chelicerata: Furypterida
"Lower Member," 44, 2/4 "Upper Member," 44, 214 Saluda Member. See Saluda Formation, Member Whitfield, R. P., 134, 137, 142, 145, 229, 2 7 6 - 2 7 7 W h i t t i n g t o n , Harry B., 160 Whittlesey, C h a r l e s , 269, 277 Willet, 268, 277 \\ illiains. I Icnn Shaler. 23
williamsae, Manitoulinoceras. See Mollusca: williamsae, Megalograptus. See Arthropoda:
Cephalopoda Chelicerata:
Furypterida
williamsae, Zittelloceras. See
Mollusca: Cephalopoda W i l m i n g t o n , Ohio, 260, 273, 276 Wilson, Mark A., 124, 209, 210, 281, 296, 298, 311, 315 W i l s o n , W i l l i a m W., 277
wilsoni. Polygnathus, 277 Woodward High School, C i n c i n n a t i , Ohio, 18, 26, 32, 33, 34 Woodward, Henry, 26 worms and "worms," 5, 6, 77, 86, 103,142-145, 152, 153, 155, 182, 196, 206, 210, 222, 224, 241, 242, 244, 246,
282. See also Annelida Worthen, A. H., 47, 126, 137, 170, 172, 174, 266, 268, 269, 277,311
wellsi, Acanthochaetetes. See Porifcra: sclcrosponges, coralline sponges Wcsschnan Tongue. See Kope Formation Wessels, C h a r l e s , 276 Western Academy of Natural Sciences, 15, 16, 17, 21, 259, 260, 261, 262, 263, 265, 269, 272, 273, 275, 276 Western M u s e u m , 16, 260, 263, 264, 265, 268, 274, 276 Wetherby, A. G., 17,18, 26-27, 29, 3 2 , 2 6 5 , 2 7 0 , 272,273, 276 whelks. Sec Mollusca: Castropoda: Neogastropoda Whitewater Formation, 44, 48, 49, 53, 56, 63, 67, 68, 75, 79, 109. I l l , 120, 123, 126, 127, 134, 137, 1 3 8 , 2 0 8 , 214, 223
346
Index
Xenocrinus. See
F c h i n o d c r m a t a : Crinoidea: C a m e r a t a Xiphosurida. See Arthropoda: Chelicerata Yale University, 20, 32, 260, 274, 275 Yochelson, Ellis L. 34, 35, 36, 124, 300
/.itk'lloceras. See Mollusca: Cephalopoda /.one. See biostratigraphic units zooid. See Ectoprocta, graptolites
Zygocycloides. See Echinodermata: Cyclocystoidea
Zygospira. See
Brachiopoda: Articulata
ABOUT THE AUTHORS
DAVID L . M E Y E R i s Professor o f G e o l o g y a t t h e U n i v e r s i t y o f C i n c i n n a t i . H i s r e s e a r c h interests are c h i e f l y i n t h e f i e l d o f i n v e r t e b r a t e p a l e o n t o l o g y , a n d they extend
to studies
of living and
fossil
reefs,
paleoecology, and
taphonomy.
R I C H A R D A R N O L D DAVIS i s Professor o f B i o l o g y a n d G e o l o g y a t t h e C o l l e g e of M o u n t St. Joseph in C i n c i n n a t i . His r e s e a r c h interests f o c u s on fossil a n d l i v i n g c e p h a l o p o d s , s y m b i o s e s a n d s i m i l a r r e l a t i o n s h i p s i n t h e fossil r e c o r d , a n d t h e history o f t h e g e o l o g i c a l s c i e n c e s .
S T E V E N M . H O L L A N D i s Professor o f G e o l o g y a t t h e U n i v e r s i t y o f G e o r g i a , Athens.
His research
paleoecology.
interests are i n s t r a t i g r a p h y , p a l e o n t o l o g y , a n d