A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE Volume IV
7835 tp.indd 1
3/3/11 8:59 AM
WORLD SCIENTIFIC SERIES ON
NONLINEAR SCIENCE
Series A
Vol. 76
Series Editor: Leon O. Chua
A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE Volume IV
Leon O Chua University of California at Berkeley, USA
World Scientific NEW JERSEY
7835 tp.indd 2
•
LONDON
•
SINGAPORE
•
BEIJING
•
SHANGHAI
•
HONG KONG
•
TA I P E I
•
CHENNAI
3/3/11 8:59 AM
WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Editor: Leon O. Chua
University of California, Berkeley
Series A.
MONOGRAPHS AND TREATISES'
Volume 60:
Smooth and I\lonsmooth High Dimensional Chaos and the Melnikov-Type Methods J Awrejcewicz & M. M. h'olicke
Volume 61:
A Gallery of Chua Attractors (with CD-ROM) E Bilotta & F Pantano
Volume 62:
Numerical Simulation of Waves and Fronts in Inhomogeneous Solids A BerezQvski, J. Engefbrecf?t & G. A Maugin
Volume 63:
Advanced Topics on Cellular Self-Organizing Nets and Chaotic Nonlinear Dynamics to Model and Control Complex Systems R. Caponetlo, L Fortuna & M. Frasca
Volume 64:
Control of Chaos in Nonlinear Circuits and Systems B. W -K. Ling, H. H. -C Lu & H K. Lam
Volume 65'
Chua's Circuit Implementations: Yesterday, Today and Tomorrow L. Fortuna, M. Frasca & M. G. Xibi/ia
Volume 66:
Differential Geometry Applied to Dynamical Systems
J.-M. Ginoux Volume 67:
Determining Thresholds of Complete Synchronization, and Application A Stefanski
Volume 68:
A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science (Volume III) L O. Chua
Volume 69:
Modeling by Nonlinear Differential Equations p. E Phi/Jipson & P Schuster
Volume 70:
Bifurcations in Piecewise-Smooth Continuous Systems D. J \I\!arvvick Simpson
Volume 71:
A Practical Guide for Studying Chua's Circuits R. K.iliq
Volume 72:
Fractional Order Systems: Modeling and Control Applications
R. Caponetto, G. Dongola, L. Fortuna & I. Petras Volume 73:
2-D Quadratic Maps and 3-D ODE Systems: A Rigorous Approach E. Zeraou/ia & J. C. Sprott
Volume 74:
Physarum Machines: Computers from Slime Mould A Adamatzky
Volume 75:
Discrete Systems with Memory R. Alonso-Sanz
Volume 76:
A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science (Volume IV) L 0 Chua
¥To vlevv tile complete list of' the pulJHshed volumes :in the series, please visit: http://Vi'VvVi',worldscibo (I ks, co mls eries/wss nsa series, sh trnl
Published by
World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, N] 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.
A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE Volume IV Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.
ISBN-13 978-981-4317-30-6 ISBN-lO 981-4317-30-6
Typeset by Stallion Press Email:
[email protected]
Printed in Singapore.
February 26, 2011
10:47
contents
To
CYNTHIA
who thrives on games, from ergodic to quasi-ergodic
This page is intentionally left blank
February 26, 2011
10:47
contents
♦
CONTENTS ♦
Ë An Ode to the Unknowable
xi
Volume IV Chapter 1. Quasi-Ergodicity
1
1. Remembrance of Things Past
2
1.1. Boolean cube representation
3
1.2. Index of complexity
3
1.3. One formula specifies all 256 rules
11
1.4. Space-time pattern and time-τ return maps
12
1.5. We only need to study 88 rules!
29
1.6. The “Magic” rule spaces
29
1.7. Symmetries among Boolean cubes
32
1.7.1. Local complementation T c 1.7.2. Three equivalence transformations
32 T†
, T , and T
∗
32
1.7.3. Perfect complementary rules
36
1.7.4. Permutive rules
36
1.7.5. Superposition of local rules
37
1.7.6. Rules with explicit period-1 and/or period-2 orbits
37
1.7.7. Most rules harbor at least one Isle of Eden
38
2. Quasi-Ergodicity
59
2.1. Only complex and hyper Bernoulli- shift rules are quasi-ergodic
59
2.2. Quasi-ergodicity and Gardens of Eden
76
vii
February 26, 2011
viii
10:47
contents
D D Automata Fractals in 1D Cellular
79
3.1. All time-1 characteristic functions are fractals
79
3.2. Fractals in CA additive rules
83
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
3.
o
o
3.2.1. Rule 60
84
3.2.2. Rule 90
86
3.2.3. Rule 105
88
3.2.4. Rule 150
90
D function 0 to the rule number 3.3. From the time-1 characteristic
93
3.4. Number of fractal patterns
95
4. New Results about Isles of Eden
97
4.1. Definitions and basic lemmas
98
4.2. Alternate proof that rules 45 and 154 are conservative for odd lengths
98
4.3. There are exactly 28 strictly-dissipative local rules
99
4.4. Isles of Eden for rules of group 1 5. How to Find Analytically the Basin-Tree Diagrams for Bernoulli Attractors
105 106
5.1. Bernoulli-στ basin-tree generation formula
106
5.2. A practical application of the Bernoulli στ -shift basin tree generation formula
109
6. Old Theorems and New Results for Additive Cellular Automata
111
6.1. Theorems on the maximum period of attractors and Isles of Eden
113
6.2. Scale-free property for additive rules
116
7. Concluding Remarks
152
Appendix A
152
Appendix B
153
Appendix C
154
Chapter 2. Period-1 Rules 1. The Second Time Around 1.1. Recap of Period-1 Rules 2. Basin Tree Diagrams
157 157 163 163
2.1. Each bit string has a decimal and a fractional code
285
2.2. Attractor, basin of attraction, and basin tree
285
2.3. Explicit formula for generating isomorphic basin trees
302
2.4. Robustness coefficient ρ
303
2.5. Genotype and phenotype
303
3. Omega-Limit Orbits 3.1. General observations on ω-limit orbits from Table 6
304 304
February 26, 2011
10:47
contents
Contents
ix
3.2. Portraits of ω-limit orbits from the basin tree diagrams exhibited in Table 6
304
3.3. Concatenated ω-limit orbit generation algorithm
367
4. Rules of Group 1 have Robust Period-1 ω-Limit Orbits
371
5. Concluding Remarks
385
References
387
Index
389
This page is intentionally left blank
February 26, 2011
10:47
contents
♦
AN ODE TO THE UNKNOWABLE ♦
Ë Mirroring Dicken’s A Tale of Two Cities, this volume depicts the extreme contrast between the simplest, and the unknowable, local rules of one-dimensional cellular automata. The simplest class (Group 1) consists of 67, out of 256, local rules where almost all initial configurations tend to period-1 attractors. The unknowable class (Group 5 and Group 6) embodies 40 local rules where almost all initial configurations tend to unpredictable, dubbed quasi-ergodic, attractors bearing the telltale fingerprints of G¨ odel’s incompleteness theorem. While despairing over the human frailty to decipher God’s forbidden secrets, CA affecionados can rejoice at the prospect of never running out of challenges of teasing out partial truths, however meager, hidden within the 18 globally-equivalent unknowable local rules, including rule 137, the prototypic universal Turing machine.
xi
February 14, 2011
15:12
ch01
♦
Chapter 1 QUASI-ERGODICITY ♦
Ë
Our scientific odyssey through the theory of 1-D cellular automata is enriched by the definition of quasi-ergodicity, a new empirical property discovered by analyzing the time-1 return maps of local rules. Quasi-ergodicity plays a key role in the classification of rules into six groups: in fact, it is an exclusive characteristic of complex and hyper Bernoulli-shift rules. Besides introducing quasi-ergodicity, this paper answers several questions posed in the previous chapters of our quest. To start with, we offer a rigorous explanation of the fractal behavior of the time-1 characteristic functions, finding the equations that describe this phenomenon. Then, we propose a classification of rules according to the presence of Isles of Eden, and prove that only 28 local rules out of 256 do not have any of them; this result sheds light on the importance of Isles of Eden. A section of this paper is devoted to the characterization of Bernoulli basin-tree diagrams through modular arithmetic; the formulas obtained allow us to shorten drastically the number of cases to take into consideration during numerical simulations. Last but not least, we present some theorems about additive rules, including an analytical explanation of their scale-free property. Keywords: Cellular automata; quasi-ergodicity; ergodicity; nonlinear dynamics; attractors; Isles of Eden; Bernoulli shift; shift maps; basin tree diagram; Bernoulli velocity; Bernoulli return time; complex Bernoulli shifts; hyper Bernoulli shifts; Binomial series; scale-free phenomena; Rule 45; Rule 60; Rule 90; Rule 105; Rule 150; Rule 154; additive rules; permutive rules; dissipative rules; conservative rules; fractals; basin-tree generation formula.
Contents 1. Remembrance of Things Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1. Boolean cube representation . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Index of complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 3 3
February 14, 2011
2
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
1.3. 1.4. 1.5. 1.6. 1.7.
One formula specifies all 256 rules . . . . . . . . . . . . . . . . . . . . . Space-time pattern and time-τ return maps . . . . . . . . . . . . . . . . We only need to study 88 rules! . . . . . . . . . . . . . . . . . . . . . . The “Magic” rule spaces . . . . . . . . . . . . . . . . . . . . . . . . . Symmetries among Boolean cubes . . . . . . . . . . . . . . . . . . . . . 1.7.1. Local complementation T c . . . . . . . . . . . . . . . . . . . . . 1.7.2. Three equivalence transformations T † , T , and T ∗ . . . . . . . . . . 1.7.3. Perfect complementary rules . . . . . . . . . . . . . . . . . . . . 1.7.4. Permutive rules . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.5. Superposition of local rules . . . . . . . . . . . . . . . . . . . . . 1.7.6. Rules with explicit period-1 and/or period-2 orbits . . . . . . . . . 1.7.7. Most rules harbor at least one Isle of Eden . . . . . . . . . . . . . 2. Quasi-Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D 2.1. Only complex and hyper Bernoulli- shift rules are quasi-ergodic . . . . . . D 2.2. Quasi-ergodicity and Gardens of Eden . . . . . . . . . . . . . . . . . . . D 3. Fractals in 1D Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . D 3.1. All time-1 characteristic functions are fractals . . . . . . . . . . . . . . . 3.2. Fractals in CA additive rules . . . . . . . . . . . . . . . . . . . . . . . 3.2.1. Rule 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2. Rule 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3. Rule 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D D 3.2.4. Rule 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3. From the time-1 characteristic function to the rule number . . . . . . . . . 3.4. Number of fractal patterns . . . . . . . . . . . . . . . . . . . . . . . . 4. New Results about Isles of Eden . . . . . . . . . . . . . . . . . . . . . . . . 4.1. Definitions and basic lemmas . . . . . . . . . . . . . . . . . . . . . . . 4.2. Alternate proof that rules 45 and 154 are conservative for odd lengths . . 4.3. There are exactly 28 strictly-dissipative local rules . . . . . . . . . . . . . 4.4. Isles of Eden for rules of group 1 . . . . . . . . . . . . . . . . . . . . . 5. How to Find Analytically the Basin-Tree Diagrams for Bernoulli Attractors . . . 5.1. Bernoulli-στ basin-tree generation formula . . . . . . . . . . . . . . . . . 5.2. A practical application of the Bernoulli στ -shift basin tree generation formula 6. Old Theorems and New Results for Additive Cellular Automata . . . . . . . . . 6.1. Theorems on the maximum period of attractors and Isles of Eden . . . . . 6.2. Scale-free property for additive rules . . . . . . . . . . . . . . . . . . . . 7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Remembrance of Things Past This exposition continues our saga on a nonlinear dynamics perspective of the 256 elementary cellular automata rules, as featured in eight tutorial-review papers: Part I [Chua et al., 2002], Part II [Chua et al., 2003], Part III [Chua et al., 2004], Part IV 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 12 29 29 32 32 32 36 36 37 37 38 59 59 76 79 79 83 84 86 88 90 93 95 97 98 98 99 105 106 106 109 111 113 116 152 152 153 154
DDD
[Chua et al., 2005a], Part V [Chua et al., 2005b], Part VI [Chua et al., 2006], Part VII [Chua et al., 2007a], and Part VIII [Chua et al., 2007b].1 In this paper, we examine the 18 yet untamed rules listed in Tables 11 and 12 of [Chua et al., 2007a]; namely, the ten complex Bernoulli-shift rules 18 , 22 , 54 ,
Parts I to VI have been collected into two recent edited volumes [Chua, 2006] and [Chua, 2007], respectively. Part VII and VIII will appear in a future edited volume III.
February 14, 2011
15:12
ch01
0000000 DOD 00000 Chapter 1: Quasi-Ergodicity
73 , 90 , 105 , 122 , 126 , 146 , 150 and the eight hyper Bernoulli-shift rules 26 , 30 , 41 , 45 , 60 , 106 , 110 , 154 . Remarkably, we have observed empirically that all complex and hyper Bernoulli-shift rules exhibit an Ergodic-like dynamics, which we christened quasi-ergodicity. Our main goal of this paper is to describe and characterize this unifying empirical phenomenon. We will revisit our fabled Isles of Eden from Parts VII and VIII and offer an alternate perspective of such rare gems. We will show that all local rules harbored a few precious Isles of Eden, except for 28 rules, which we will prove analytically to be devoid of Isles of Eden; these are the God forsaken rules! DOD 0 We will also revisit the scale-free phenomenon reported in Parts VII and VIII for additive rules, and prove these empirical observations are in fact fundamental properties possessed by such rules. In particular, we will present and prove several analytical theorems for rules 60 , 90 , 105 and 150 . For the reader’s convenience, let us briefly review some highlights from our earlier adventures, henceforth referred to collectively as Age-1 Episodes, a la Tolkien’s “The Lord of the Rings”. We are concerned exclusively with our tiny universe of 256 one-dimensional binary cellular automata, with a periodic boundary condition, as depicted in Fig. 1(a). Each “ring” has L I + 1 cells, labeled consecutively from i = 0 to i = I. Each cell “i” has two states xi ∈ {0, 1}, where we usually code the states “0” and “1” by the color “blue” and “red ”, respectively. A clock sets the pace in discrete times, dubbed “iterations” by the mathematical community, or “generations” by the life science of all “i” at time t + 1 community. The state xt+1 i (i.e. the next generation) is determined by the state of its nearest neighbors xti−1 , and xti+1 , and itself xti , at time t [Fig. 1(c)], in accordance with a prescribed Boolean truth table of eight distinct 3-input patterns [Fig. 1(d)].2
1.1. Boolean cube representation We have found it extremely useful to map these eight 3-input patterns into the eight vertices of 2
3
the “cube” shown in Fig. 1(b), henceforth called a Boolean cube. The rationale for identifying which vertex corresponds to which pattern was presented in [Chua et al., 2002], in order to provide the genesis of the truth tables from a nonlinear physical system perspective, namely, cellular neural networks (CNN) [Chua, 1996], thereby providing a bridge between nonlinear dynamics and cellular automata. For readers who have not been exposed to the age1 episodes alluded to above, it is not necessary to read the cited literature. Simply map the output of each prescribed Boolean function (i.e. the 8-bit, yet unspecified, binary string in Fig. 1(d)) onto the corresponding colors (red for 1, blue for 0) at the vertices of the Boolean cube. Since there are 28 = 256 distinct combinations of eight bits, there are exactly 256 Boolean cubes with distinct vertex color combinations, one for each Boolean function, as displayed in Table 1.
1.2. Index of complexity DO 0
D
A careful examination of these 256 Boolean cubes shows that it is possible to separate, and segregate, all red vertices of each Boolean cube from the blue vertices by κ = 1, 2, or 3 parallel planes. An example illustrating this separation is shown in Fig. 2 for rules 170 , 110 and 184 , respectively. The integer κ is called the index of complexity of rule N . We will always use the color red for κ = 1, blue for κ = 2, and green for κ = 3 to code the rule number N of each of the 256 Boolean cubes, as printed at the bottom of each Boolean cube in Table 1. It is natural to associate the 8-bit pattern of each Boolean function with a decimal number N representing the corresponding 8-bit word; namely,
D
N = β7 • 27 + β6 • 26 + β5 • 25 + β4 • 24 + β3 • 23 + β2 • 22 + β1 • 21 + β0 • 20 ,
β ∈ {0, 1}.
Observe that since βi = 0 for each blue vertex in Fig. 1(b), N is simply obtained by adding the weights (indicated next to each pattern in Fig. 1(b)) associated with all red vertices. For example, for the Boolean cube shown in Fig. 3(b), we have N = 0 • 27 + 1 • 26 + 1 • 25 + 0 • 24 + 1 • 23 + 1 • 22 + 1 • 21 + 1 • 20 = 26 + 25 + 23 + 22 + 21 = 110
Throughout the paper we intentionally use both t and n to indicate the time (or iterations) to stress the equivalence between a discrete Cellular Automaton and a continuous nonlinear system.
t
(
Final
bit~
Cell Cell Cell 0 1 2
L
X~1
...,.
t
... ,.
X i+I Cell Cell C~II (i+1) (i-I)
(c)
I
Local Rule
•••
~
t+I X.1
=
N(
t t X Xi-I' i'
INPUT at time
~23=8
INPUT CODE
I
X~
1+1
)
Xi_I
I
(b) ••• ~24 =16 (d)
g
Fig. 1.
7
Xl
Xi
..... '"
0 '"·0 ..... '" 0 ..... '"' 0 ..... '"..... 0 '"·0 ..... '"..... 0 '"·0 .....
(f) Heaviside "step" Function
[C6 + Csl (C + c3x1-1 + C x1 + C, x1+, ) 4
1+1
X i +1
1
mmm IT] m m D rn m D m rn m D D rn D m m rn D m D WD n m rn D D D
(e) Universal Formula for all 256 Rules
{c + C
t
OUTPUT at time t+ 1
I
[ill
4
!J
x1+ = 4
~
[KJ
{a, I} HI X.1
E
Initial bit
••• ~22=4
1
output
2
Notations, symbols, and universal formula for local rule N .
4(W)
I]I}
_~11 D
~w
ch01
a)
Cell (1-2) Cell Cell (I-I) 1
,.
15:12
.1111
X'1-I
February 14, 2011
{a, I}
input E
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity codes for a 3-bit input pattern. Boolean cubes defining 256 CA rules. Each vertex km
Table 1.
2 6
1
0
4
1
1
1
7
4
1
1
4
1 5
4
1 5
1
4
3 1 5
4
4
1
57
6
1
0 4
5
58
4
1 5
6
6 4
7 1 5
59
2
1
6 4
7 1
0 5
60
1 5
2
1
0 4
5
61
1
2
4
1 5
62
3 7
6
1
0 5
2
3
0
5
55
7
6
1
0
4
5
2
7
6
54 3
3
47
7
4
7
6
2
3
0
5
4
5
6
53 3
1
2
1
0
46 3
0 4
5
2
4
7
6
52 3
0
7
4
5
7
6
3
0
3
39
7
6
5
4
5
2
45 3
0
1
0
1
38 3
1
2
3
0
7
31
7
6
3
0 4
5
4
7
6 4
5
2
5
2
44
7
2
3
1
0
3
0
7
6
1
1 5
6
30
37 3
1
2
7 0
2
3
0
3
23
7
6
3
0
6 4
5
4
7
6 4
5
2
51
7
6
5
4
5
50
7 5
1
2
1
2
3
0
3
0
1
36
43
7
6
0
5
2
1
2
29 3
7
6 4
7
6 4
5
2
3
0
1
42
7
6
7
1
5
2
4
5
1
0
2
22 3
5
15
7
4
7
6
28
35 3
0
7
1
2
5
1
0
3
0
3 7
6 4
5
6
5
2
14 1
2
1
2
1
0
3
0
3
0
6
7
7
6
21
7
4
2
3 7
4
5
4
7
6
3
0
5
4
5
6
3
0 4
5
6
5
6
34
7
2
1
2
1
2
1
20
7
1
2
1
6
13
7
2
0
3
0
3
0
4
3
0
3
0
6
6
2
3 7
4
7
6 4
5
2
27
7
6
1 5
6
1
12
7 0
4
5
2
3
0
1
26 3
4
5
2
3
0
1
2
5
7
6
3
2
3
0
2
19
7
6
49
7
56
2
5
4
5
4
7
6
3
5
5
2
6
18 1
0
1
0 4
7
6
7
6
1
2
0 4
5
3 7
6
4
11 3
1
0
3
0
2
3 7
6 4
7
6 4
5
2
3
2
48
0
1 5
4
5
6
3
0
1
10
7
6
3
2
4
2
3
0
5
2
3
7
6
1
0 4
5
2
41
7
4
1
2
40
0
3
0
1
3 7
6
2
5
4
5
6
0
33
1
2
6
2
3 7
4
7
4
7
4
5
6
3
0
1
2
32 6
7
2
25
5
2
3
0
3
0
1 1 1
6
24 6
7
4
5
2
1 1 0
17
7
4
6
2
3
0
1 0 1
0
16 6
5
4
5
2
1 0 0
9
7
4
4
6
3
0
0 1 1
2
8 6
3
4
5
2
0 1 0
1
7
4
2
0
3
0
0 0 1
6
0 6
1
4
5
2
0 0 0
2
3 7
0
6 4
3 7 1
0 5
63
5
February 14, 2011
6
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 1. 2 7
6
1
0 4
2
3
4
2
3 1
0
6
1
0 4
1
0 4
6
7
6
1
0 4
4
2
3 1
4
1
4
2
3 7 1
0 5
120
5
4
1 5
121
6
7
6
1
0 4
5
122
1 5
2
4
3 1
0 4
5
123
1
6
4
1
124
5
2
3
5
1
0 4
6
3 1
0 4
5
125
1
2
1
4
126
1
0 4
5
119
1 5
3 7
6
2
3
0
5
111
7
6
1
0 4
5
2
3 7
6
118
7
5
2
3 7
6
1
0
103
5
2
3 7
6
110
117
7 0
0
3
0
2
3 7
6
5
4
5
4
7
4
5
6
5
2
3
2
1
0
116
7
6
6
1
2
1
0
102 3
7
6
3
0
3
95
7
6
109
7 0
2
1 5
4
5
4
7
4
5
6
5
2
108
115 3
1
2
1
0
1
94 3
7 0
2
3
0
3
87
7
6 4
7
6
3
0
3
0
2
6 4
5
2
101
7
6
1 5
4
5
4
7
4
5
2
5
2
114 3
0
1
0 4
7
6
7
6
113
112 6
1
1
107 3
1
2
3
0
1
86
7
6
100 3
0
2
3
0
4
5
2
3
0
1
0
79
7
6
3 7
6 4
5
2
93
7
6
1 5
4
5
4
7
4
5
2
5
6
106 3
0
1
0
1
2
3
1
2
3
0
1
78
7
6
92 3
0
2
3
0
4
2
3
0
5
71
7
6
85
7
6
5
4
5
4
7
6
1
2
99
7
6 4
7
6 4
5
2
5
2
3
0
1
5
4
5
2
105
7
1
98 3
0
104 6
4
7
6 4
5
2
5
1
2
7 0
1
2
1
0 4
5
3 7
6
70
77 3
1
0
3
0
84 3
0
3
0
6 4
7
6
6
2
3 7
6 4
7
4
5
2
91
7
6
1 5
4
5
2
97
7 0
1
0
1
90 3
7 0
1
76 3
2
3
0
4
2
3
0
5
2
69
7
6
83
7
6 4
7
6
96 6
5
4
5
2
1
2
3
6 4
5
2
5
2
82
89
88
1
0
3
0
7
6 4
7
4
5
2
5
2
3 7
6
1
1
2
1
0 4
5
3 7
6
68
75 3
1
0
3
0
2
3 7
6 4
7
6 4
5
2
81
80
1
74 3
0
2
3
0
5
2
67
7
6 4
7
6 4
5
2
5
2
3 7
6`
1
2
1
0 4
5
3 7
6
66
73
72
1
0
3
0
2
3 7
6 4
7
4
5
2
5
2
65
7
6
1
0
64 2
7
6 4
5
3
(Continued )
3 7
6
1
0 4
5
127
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 1. 2 7
6
1
0 4
2
3
4
2
3 1
0
6
1
0 4
1
0 4
6
7
6
1
0 4
4
2
3 1
4
1
4
2
3 7 1
0 5
184
5
4
1 5
185
6
7
6
1
0 4
5
186
1 5
2
4
3 1
0 4
5
187
1
6
4
1
188
5
2
3
5
1
0 4
6
3 1
0 4
5
189
1
2
1
4
190
1
0 4
5
183
1 5
3 7
6
2
3
0
5
175
7
6
1
0 4
5
2
3 7
6
182
7
5
2
3 7
6
1
0
167
5
2
3 7
6
174
181
7 0
0
3
0
2
3 7
6
5
4
5
4
7
4
5
6
5
2
3
2
1
0
180
7
6
6
1
2
1
0
166 3
7
6
3
0
3
159
7
6
173
7 0
2
1 5
4
5
4
7
4
5
6
5
2
172
179 3
1
2
1
0
1
158 3
7 0
2
3
0
3
151
7
6 4
7
6
3
0
3
0
2
6 4
5
2
165
7
6
1 5
4
5
4
7
4
5
2
5
2
178 3
0
1
0 4
7
6
7
6
177
176 6
1
1
171 3
1
2
3
0
1
150
7
6
164 3
0
2
3
0
4
5
2
3
0
1
0
143
7
6
3 7
6 4
5
2
157
7
6
1 5
4
5
4
7
4
5
2
5
6
170 3
0
1
0
1
2
3
1
2
3
0
1
142
7
6
156 3
0
2
3
0
4
2
3
0
5
135
7
6
149
7
6
5
4
5
4
7
6
1
2
163
7
6 4
7
6 4
5
2
5
2
3
0
1
5
4
5
2
169
7
1
162 3
0
168 6
4
7
6 4
5
2
5
1
2
7 0
1
2
1
0 4
5
3 7
6
134
141 3
1
0
3
0
148 3
0
3
0
6 4
7
6
6
2
3 7
6 4
7
4
5
2
155
7
6
1 5
4
5
2
161
7 0
1
0
1
154 3
7 0
1
140 3
2
3
0
4
2
3
0
5
2
133
7
6
147
7
6 4
7
6
160 6
5
4
5
2
1
2
3
6 4
5
2
5
2
146
153
152
1
0
3
0
7
6 4
7
4
5
2
5
2
3 7
6
1
1
2
1
0 4
5
3 7
6
132
139 3
1
0
3
0
2
3 7
6 4
7
6 4
5
2
145
144
1
138 3
0
2
3
0
5
2
131
7
6 4
7
6 4
5
2
5
2
3 7
6
1
2
1
0 4
5
3 7
6
130
137
136
1
0
3
0
2
3 7
6 4
7
4
5
2
5
2
129
7
6
1
0
128 2
7
6 4
5
3
(Continued )
3 7
6
1
0 4
5
191
7
February 14, 2011
8
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 1. 2 7
6
1
0 4
2
3
4
2
3 1
0
6
1
0 4
1
0 4
6
7
6
1
0 4
4
2
3 1
4
1
4
2
3 7 1
0 5
248
5
4
1 5
249
6
7
6
1
0 4
5
250
1 5
2
4
3 1
0 4
5
251
1
6
4
1
252
5
2
3
5
1
0 4
6
3 1
0 4
5
253
1
2
1
4
254
1
0 4
5
247
1 5
3 7
6
2
3
0
5
239
7
6
1
0 4
5
2
3 7
6
246
7
5
2
3 7
6
1
0
231
5
2
3 7
6
238
245
7 0
0
3
0
2
3 7
6
5
4
5
4
7
4
5
6
5
2
3
2
1
0
244
7
6
6
1
2
1
0
230 3
7
6
3
0
3
223
7
6
237
7 0
2
1 5
4
5
4
7
4
5
6
5
2
236
243 3
1
2
1
0
1
222 3
7 0
2
3
0
3
215
7
6 4
7
6
3
0
3
0
2
6 4
5
2
229
7
6
1 5
4
5
4
7
4
5
2
5
2
242 3
0
1
0 4
7
6
7
6
241
240 6
1
1
235 3
1
2
3
0
1
214
7
6
228 3
0
2
3
0
4
5
2
3
0
1
0
207
7
6
3 7
6 4
5
2
221
7
6
1 5
4
5
4
7
4
5
2
5
6
234 3
0
1
0
1
2
3
1
2
3
0
1
206
7
6
220 3
0
2
3
0
4
2
3
0
5
199
7
6
213
7
6
5
4
5
4
7
6
1
2
227
7
6 4
7
6 4
5
2
5
2
3
0
1
5
4
5
2
233
7
1
226 3
0
232 6
4
7
6 4
5
2
5
1
2
7 0
1
2
1
0 4
5
3 7
6
198
205 3
1
0
3
0
212 3
0
3
0
6 4
7
6
6
2
3 7
6 4
7
4
5
2
219
7
6
1 5
4
5
2
225
7 0
1
0
1
218 3
7 0
1
204 3
2
3
0
4
2
3
0
5
2
197
7
6
211
7
6 4
7
6
224 6
5
4
5
2
1
2
3
6 4
5
2
5
2
210
217
216
1
0
3
0
7
6 4
7
4
5
2
5
2
3 7
6
1
1
2
1
0 4
5
3 7
6
196
203 3
1
0
3
0
2
3 7
6 4
7
6 4
5
2
209
208
1
202 3
0
2
3
0
5
2
195
7
6 4
7
6 4
5
2
5
2
3 7
6
1
2
1
0 4
5
3 7
6
194
201
200
1
0
3
0
2
3 7
6 4
7
4
5
2
5
2
193
7
6
1
0
192 2
7
6 4
5
3
(Continued )
3 7
6
1
0 4
5
255
February 14, 2011
15:12
ch01
Boolean Cube Chapter 1: Quasi-Ergodicity
9
170 Boolean Cube
110 Boolean Cube
184 K~3 D
Fig. 2. The number κ of parallel planes which separate all vertices having one color from those having a different color on the other side is called the index of complexity of rule N .
February 14, 2011
t= 0
15:12
t= 1 (
Cell (/-2) Cell Cell (/-1) /
Final bit-.J
L
(i-I)
I
Initial bit
• • • --.+2
2
=4
t= 2
~I
3
• • • --.+2 =8
E
.~
t= 3 t=4
ch01
a)
Cell Cell C~II (i+1)
Cell Cell Cell 0 1 2
I t= 5 t= 6
10
(b)
N
bit string length L = 30
Sum of weights of red vertices:
=
{O,8,e,O,(t} (d) Formula for Rule
=2+4 +8+32+64=110
III
X:+ I = 4[-1+ I(X:-1 + 2x: -3x:+1 Fig. 3.
(e) Heaviside "step" Function 4(W)
~) I]
` ´ Dnotations, symbols and universal formula from Fig. 1. An example Rule 110 illustrating the
___I}
~w
February 14, 2011
15:12
ch01
o
o Chapter 1: Quasi-Ergodicity
Consequently, the Boolean function defined by the Boolean cube in Fig. 3(b) is identified as N = 110 .
1.3. One formula specifies all 256 rules While the usual procedure for specifying a Boolean function is to give the truth table, as God-given laws, we have discovered the following nonlinear difference equation, with eight parameters {c1 , c2 , . . . , c8 }, which is capable of generating any of the 256 Boolean cubes in Table 1, by merely assigning eight real numbers to these eight parameters: = xt+1 i
{c8 + c7 |[c6 + c5 |(c4 + c3 xti−1
+ c2 xti
+
c1 xti+1 )|]|}
(1)
The difference equation (1) is extremely robust in the sense that a very large set of real numbers can be chosen to generate each Boolean cube, as depicted in the parameter space R8 in Fig. 4. One such set of numbers is given for each of the 256 rules in Table A-3 of [Chua et al., 2006]. All points inside give the same rule
~
(
11
For example, for rule 110 , we read off the following values from page 1363 of [Chua et al., 2006]:
oc
c1 = −3,
c2 = 2,
3
c5 = 1,
c6 = −1,
c7 = 0,
= 1,
1 c4 = − , 2
(2)
c8 = 0
Substituting the eight real numbers from Eq. (2) into Eq. (1), we obtain the following difference equation for executing rule 110 : t x + 2xt − 3xt − 1 −1 + xt+1 = (3) i i+1 i i−1 2
o
To verify that Eq. (3) can indeed generate the truth table for rule 110 , let us substitute the eight input patterns listed on the left side of Fig. 1(d): Input code 0m: (xti−1 , xti , xti+1 ) = (0, 0, 0) 1 t+1 −1 + 0 + 2 • 0 − 3 • 0 − xi = 2 =
[−1 + 0.5]
=0
(4a)
Input code 1m: (xti−1 , xti , xti+1 ) = (0, 0, 1) 1 t+1 −1 + 0 + 2 • 0 − 3 • 1 − xi = 2 =
[−1 + 3.5]
=1
(4b)
Input code 2m: (xti−1 , xti , xti+1 ) = (0, 1, 0) 1 t+1 xi = −1 + 0 + 2 • 1 − 3 • 0 − 2 =
[−1 + 1.5]
=1
(4c)
Input code 3m: (xti−1 , xti , xti+1 ) = (0, 1, 1) 1 t+1 xi = −1 + 0 + 2 • 1 − 3 • 1 − 2 =
[−1 + 1.5]
=1
Fig. 4. An abstraction showing a curve meandering through 8-dimensional parameter space, showing all 256 local rules, not necessary in consecutive order. The robustness of the uni`versal formula is depicted by an open set of parameter´points surrounding a typical parameter vector for rule N2 all of which would generate the same truth table as N2 .
(4d)
Input code 4m: (xti−1 , xti , xti+1 ) = (1, 0, 0) 1 t+1 −1 + 1 + 2 • 0 − 3 • 0 − xi = 2 = =0
[−1 + 0.5] (4e)
February 14, 2011
12
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Input code 5m: (xti−1 , xti , xti+1 ) = (1, 0, 1) 1 t+1 −1 + 1 + 2 • 0 − 3 • 1 − xi = 2
o
[−1 + 4.5]
= =1
(4f)
Input code 6m: (xti−1 , xti , xti+1 ) = (1, 1, 0) 1 t+1 xi = −1 + 1 + 2 • 1 − 3 • 0 − 2
D
[−1 + 2.5]
= =1
(4g)
Input code 7m: (xti−1 , xti , xti+1 ) = (1, 1, 1) 1 t+1 xi = −1 + 1 + 2 • 1 − 3 • 1 − 2 =
DO =0
[−1 + 0.5] (4h)
Mapping each vertex kmred if xt+1 = 1, and i t+1 = 0, onto the “blank ” vertices in the blue if xi Boolean cube in Fig. 1(b), we obtain the Boolean cube for 110 in Fig. 3(b), which indeed defines rule 110 , as expected. For ease of future reference, we have enshrined the “shot-gun” Eq. (1) in Fig. 1(e). Observe that in the most general case, this universal formula has eight non-zero parameters and two “nested ” absolute value functions. The analytical derivation of this formula in [Chua et al., 2002] shows that the number of absolute value functions required for D each rule N is precisely equal to κ − 1, where κ is the index of complexity of N , which in turn is defined to be the number of parallel planes needed to separate the “red” vertices from the “blue” vertices. In the case of rule 110 , we recall from Fig. 3 that κ 110 = 2 because we only need two parallel planes. Consequently, we expect the two parameters c7 = c8 = 0 so that only one absolute value function is needed for 110 .3 For the readers convenience, Table 2 gives the explicit formula for each of the 256 local rules defined by the Boolean cubes displayed in Table 1.
D
D
We end this subsection by emphasizing that the significance of the universal D difference O Dequation D enshrined in Fig. 1(e) should not be construed merely as an elegant mathematical formula, but rather as a mathematical bridge essential for deriving and proving analytical results and theorems, as demonstrated in the rigorous derivation of the Bernoulli shift formulas for rules 170 , 240 , 15 , 85 , and 184 for finite L in [Chua et al., 2005a]. Such a feat would not have been possible without exploiting this universal formula in an essential way.
1.4. Space-time pattern and time-τ return maps Given any initial binary bit-string configuration at time t = 0, the local rule N is used to update the of each cell “i” at time t + 1, using the state xt+1 i states xti−1 , xti , and xti+1 of the three neighboring cells i − 1, i, and i + 1, centered at location “i”, respectively. The space-time pattern for the initial state shown in Fig. 3(a) is shown in Fig. 3(c) for t = 0, 1, 2, . . . , 11. For simplicity, space-time patterns are generally plotted by displaying a line of L cells, with the implicit understanding that the leftmost bit is “glued ” to the rightmost bit. Such space-time patterns are useful if they are T-periodic with a small period T and a relatively short transient regime. For large period T , such as the spacetime patterns generated from the 18 complex and hyper Bernoulli rules to be studied in this paper, it is much more revealing to recast space-time patterns into a time-τ return map [Chua et al., 2005a] ρτ [N ]: φn−τ → φn
o
o
3
(5)
where φ
I
2−(i+1) xi
(6)
i=0
is the decimal equivalent of the binary bit string xn = (xn0
xn1
xn2
···
xnL−1 )
(7)
and τ is an integer. In most cases, such as the quasi-ergodic space-time patterns to be presented in Sec. 2, we choose τ = 1 and will be concerned usually with the time-1 map ρ[N ] ρ1 [N ], where we drop the subscript “1” to avoid clutter. Observe
We caution the reader that to avoid ambiguity, Eq. (1) should actually be written as three separate “telescoping” equations, as in Eq. (A.3) of [Chua et al., 2006]. Hence, c6 = c7 = 0 in Eq. (1) should be interpreted to mean the deletion of the outer absolute value function associated with c6 and c7 .
Formula for Local Rule X;+1 =
1+1
Xi
neurons => I All quenched
.l[-Xi- 1 -
=
Q,
=
d-
I
[
I
-Xi - 1
_
I
I
Xi - X i+1
I
Xi
+ X iI+1 _ _21]
13
+.!.] 2
I XIHI = d-[-XI~ -Xl I
HI
Xi
H1
Xi
=
=
X;+I =
HI
Xi
=
+ 21 ]
+x.II -x.HI I _.!.] 2
.l[-X~
-
I
I-I
Q,
X~
HI
d-[.!.-I 2 (2x;.l[
Q,
-
2X I-
I
I
-X; - X;+I
I
X;+I
=
H1
=
Xi
X
+.!.] 2
i 1 -Xi -Xi+1
XiHI =
XiHI =
d-[-x.
I-I
Formula for Local Rule
+1) I]
+ 23 ]
H1 I
d-[
1
.l [
Q,
23 ]
X;+I)
I]
I 1- ] -x.1-1 +X.HI 1 -2
d-[- 2
X iI- I -XiI
+ X iI+1 + 21 ]
I = d-[-XI~ +Xl _.!.] 2 I
1]
.l[
-
2X iI- I + XiI -XiI+1 + 2
.l[
-
2X iI- I + XiI + X iI+1 - 21 ]
Q,
XiHI =
Q,
HI
+ XiI + X iI+1 -
d-[.!.-I 2 (2x;- +xI -
XiHI =
Xi
-XiI- 1
ch01
HI
Xi
[ 1] = 0
d- - 2
N
=d-[-x +.!.] 2 =""7" ~ ICO~Pleme~ted t
1-1
15:12
N
February 14, 2011
Formula defining the truth table of all 256 local rules.
Table 2.
1-1 ----T
RIght shIft
N
Formula for Local Rule = 4[X'
I-I
-~] 2
ID
Formula for Local Rule Xt+1 = I
111----I
4[-X' I
-x'
HI
+~] 2
I
III III
x:+
1
=
4[-1+1 (x'
I-I
-Xl_X' I HI
+~)I] 2
~[~ -1(xf-I- 2xf +4x:+, -l)l]
11----1-------------
Xf+l
=
~[~ -I (X:_ + 2xJ + Xf+l -1) I] 1
x: +1
=
~[~ -I (2xJ-l -X: +4x:+ -3)!] 1
14
Xit+l =
4[ ,
2' 3] +1 2" Xi -Xi'+
~+1 = 4[1-1 (-~+I (-2xf-l -4~ +~+1 +1)I) I]
Xit+1 =
4['
+ 23 ]
~+l = 4[1-1(32 -1(-2~- +~ -4~+1 +1)1)1]
Xf+l =
4[~ -I (Xf-l +xf +Xf+l- 1)1]
-Xi _1 -
-Xi _1 -Xi'-2X'i+1
~[, Xit+l = g, -Xi _1 -Xi, -Xi+1
'+ 2"3 ]
1
,
~[3' '+ 2"7 ] Xi-I-Xi-Xi+l
Xi,+1 =g, -
ch01
I Xt+l =
1
-x'I -x'H 1
N
15:12
X i'+1
1
(Continued )
February 14, 2011
Table 2.
N
Formula for Local Rule
-l[Xi-II - XiI + XiI+1--3 ]
Xi1+1 =
g,
x:+1 = 4.[~ -I (-2x:_ 1 +x: +2x:+.) 1]
__ I IIIIiiIIIII •
15
• • •
x:+'
=
4.[-1+ 1(x:_. -x: +x:+,- ~)I]
x:+!
=
4.[~ -I (2X:-l - x: -4x:+. + 1) I]
XJ+I = I X:+ =
4[2-1 (-xJ- + 2xJ +4xJ+I - 3) I] 2 I
4[1-1(-~+I(-4X: 1-2x; +X:+I +1)1)1] 2
-
Xt+1 = I
4[~-I(-x' 2
I-I
I-I
-2x'I +X't+ I
I -XlI +Xt+1
+1)1]
)1]
1]
-l[-Xi-II - 2' 1] Xi + XiI+1+ 2
g,
4[~-I(-2xI 2
I - XiI + 2' Xit+1 = g,-l[-Xi-I Xi+1-2
Xi'+I -- g-1, [ -x·II +xt+I 1 -2-1 ] Xit+1 =
Xt+1 = I
Xit+1 =
m r.t
III
-1 g,
[-Xi-I I - Xi'+' 1] Xi+1+ 2
XJ+I =
4[2-1 2 (-4xJ- [-2xJ +XJ+I +2)1]
X:+!
4.[H(-2X:-I-X: +x:+. + ~)I]
=
x:+ 1 = 4[1-1(~ -1(x:_ 1 -2x: -3x:+ 1 +4)1)1] Xit+1 =
4[- 3Xi-II -XiI + Xi'+1+ 25 ]
ch01
2
Formula for Local Rule
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
N
Formula for Local Rule 1
I
1
Xit+1
=
4[Xi-It - 2Xit- Xti+1+2" l ]
Xit+1
=
g,
11-----1-------------
•
,l[Xi-It - 2Xit + Xit+1-2"1]
16
Xf+1 = 4 [ -xf +2"1] = tXi =>
IComplement Self
Xf+1 = 4[~ -I (-2xf_1 -4xf - Xf+1 + 3) I] xf+1 =4[1-1 (-~+I (4xf_1 +xf - 3xf+1 -2) I) Xf+1
=
4[1-1 (-xf_1 - 2xf -xf+1 + ~) I]
Xt+1
=
4[-Xt -3xt -xt +2] 2
I
I-I
I
HI
x:+1=4[~ -I (2x:_1+4x, -x,+1-2)1]
•
I]
• •
x:+1=4[1-!(-x:_1-2x: +x:+1+ ~)I] xf+1
=4[1-1(~-I(-xf_1 +2xf -4xf+1 +3)1)1]
Xit+1
=g,
X:+
I
,l[-Xi-It - 3Xit+1+ Xit+1+ -5 ] 2
=4[~ -I (X:_1+X: -1)1]
X:+ I
=4[~ -I (-2X,_1 -2x, +X:+1+1)1]
Xf+1
=4[~ -I (-2xJ_I - 2xJ - Xf+l + 2) 1]
Xt+1 =4[-Xt -xt +~] 2 1
I-I
1
ch01
I
1-
15:12
III
Xt+1= 4[Xt [-xt +-~] 2
Formula for Local Rule
February 14, 2011
Table 2.
N
Formula for Local Rule Xl+l I
=
4[XI
+XII -Xl1+1
1-1
-~] 2
Xi1+1
= g,-l[ XiI -XiI+1 -2"1 ]
Xi1+1 -_
-l[-Xi-
g,
I
I 1 +Xi
-
1]
2X iI+1 +2"
2xI 4[!-IC2
I
l -2x1+1 +1)1]
•
Xl+l I
=
•
Xf+1
=ti[~-I(Xf-1-Xf+Xf+1)1]
•
x,+1 = ti[~ -I (2xf-l +xf +4x,+1- 4)1]
•
xt1=ti[H(2xf-1-xf+xf+1-~)I]
I. ' II_I
Xi1+1
1-1
+XI
= g,-l[-XiI- 1 + 2XiI -XiI+I -2"1 ]
Xi1+1 -_
-l[-Xi-
g,
I
I 1 +Xi
1]
-XiI+1 +2"
x,+1 = tiH-1 (-Xf-1 +4xf +2xf+1- 3)1]
III :<+1 =4[I-1(-~+1(3:<-1-:< +2:<+1)1)1]
:<+1 =ti[l-1 (~ -I (-4:<-1 +:< - 2xf+1 +1) DI]
•
Xf+l = ti[-3xf-l +xf - X,+1 + ~ ]
ch01
17
III x,+1 =ti[~-1(2x,_1-2xf+xf+l)l] III Xf+1 =ti[-l+I(-x,-l- xf+Xf+1 +~)I] &I x,+1 =ti[~-1(2x,_1-4xf-xf+l+1)1]
Formula for Local Rule
15:12
N
(Continued )
February 14, 2011
Table 2.
N
N
Formula for Local Rule X,-1 -
xi+
1
4['
1-
Xi _1 -Xi'-2X'i+1
+ 21 ]
= 4[~ -I (-2xi_1 -xi -4xi+1 +3) I]
I
•
x:+! = .i[%-I(-4x:_ -x, -2x:+! +4)1]
IIIIIIftII 11IM
Xt+1 =
1%1I
1
I
4 [1-1 (x'
I-I
- x' I
+ 2x' -.!.) ] 2 1
x:+ = .i[~ -I (x:_ + x:+
HI
1
1
1
-1)
I]
1If-----
18
xJ+I = 4[1-1 (~-I 2 (-3xJ- I +4xJ - 2x1+1 + 1) I) I] Xit+1
= g,-l[' X i _1 + Xi' - 2' X i+I -
XJ+I =
xi+
1
Xit+1
4
[
-XJ+I
1]
2
I Complemented +21] = ---r X i+1::::::> Left shift
= 4[1-1 (-xi_I-xi -2xi+1 + ~)I]
7]
= g,-l[' -Xi _1 - Xi'3 - X it+1 + 2
•
1 xi+ =
4[~ -I (-2xi_1 + xi -
XJ+l
J,[1-1(~ -1(XJ-1-2xJ +4xJ+I) I) I]
=
Xit+1 =
4[
+ 1) 1]
'+ Xit - 3' 5 ] X i+1 + 2
-Xi_I
xi+ =
4[~ -I (-2xi_1 - xi -
Xit+1 =
g,
1
2xi+1
-l[-Xit
1-
X it+1
+ 23 ]
2xi+1
+ 2) 1]
ch01
Xit+1 =
x:+ ~]
Formula for Local Rule
15:12
x,+! = .i[
I
(Continued )
February 14, 2011
Table 2.
Formula for Local Rule
t![~ -I (-2x:_1+x! +x:+1+1) I]
x!+!
=
t![~ -I (-x:_1+x: + x:+1) 1]
X!+I
=
t![~ -I (-x!-1 -2x! -4x!+1 +4)1]
I!ID DID DID
X~+I = 4[1-I(x~
Xf+1 = 4[1-1 (-xf_1 +2xf +xf+1 -
x!+l
I
=
~) I]
t![~ -I (-x:_ 1-4x: -2x:+1+4)1] I-I
-XlI -2xHI +~)I] 2 l
x:+1 = 4[~ -I(x: +x:+1-1)1] x:+1= 4[~ -I (-x:_1+2x: +2x:+1-1) 1]
DID 1m
Formula for Local Rule XII +1= 41~-1 (-x~I-I -XlI -XlHI +2) 2 Xf+l
=
I]
ti[~ -I (1-1 (-xf_1 + xf - xf+1 + 1) DI]
am
x:+1=
IrII
Xf+1 = 4[-~+I(-xf 2 - I-xf +xf+1 +1)1]
• •am
Xf+1 = 4[1-1(-x:_1-2x: -x:+1+ ~)I] x:+1= 4[- ~+I(-x:-I +x: -x:+1+1)1]
aD
x:+1=
t![J-I (x:_1+ x! +2X!+1 - ~) I]
Xf+1 = 4[-1+ 1(xf- I +2x: -3x:+I-~)I] 2
4[- ~+I(x:_1-2x: +2x:+1-1)1]
ch01
19
• •III •ImIJ
xt 1=
N
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
Formula for Local Rule
[
I
_
I _
1]
I
IfttI' IIaII x:+ =4[1-1 (2x:- +X: +x:+l-~)I] 1
__
Xi+1 2
I-I
I
x:+ = 4[1-1 (%-1 C-4x:_ +2x: -x:+ +3)1)1] 1
1
I
I
1
20
1[
X:+1=4[1-1 (%-1(-4X:-1 - x: +2xf+, +3) DI]
4[Xi_ -Xi - 3Xi+ + 2"5 ] I
1
I
I
1
X:+ 1 = 4[~ -I (-x:_ 1 - 2x: - 2x:+1 + 2) I] XI +I = 4[-XI -Xl1+1 I
2
Xf+l
=4[- ~ +1 (-xf-, +xf +xf+, -1)1]
Xf+'
=4[~ -I (-2xf_, - xf - 2xf+, + 3) 1]
X:+ 1
=4[- ~ + I(2x:_ + x: - 2x:+ -1) I]
1If-----
Xi1+1 = a XiI_1 - 3XiI -XiI+1 + 2"5 ]
Xi1+1 =
lID lID III
1
I
+2] 2
1
1
111m Xf+l =4[~ -I (2xf_, +2xf +xf+, - 3) 1]
1m 1m
x,+1
=4[- ~ +1 (-Xf-l +xf +2xf+,-2)1]
X:+ 1
=4[1-1 (-x:- I-X: -x:+ +2)1] 2
Xi1+1
=a
1
1[-Xi- -Xi -Xi+ +2"5 ] I
I
1
I
1
ch01
Xl+l = 4[X I -Xl -Xl1+1 +~] 2 I
Formula for Local Rule
15:12
1+1
Xi = 4 2xi_1 Xi
N
February 14, 2011
Table 2.
am
N
Formula for Local Rule t _~] 4[Xt +xHI 2
21
Xit+1 =
g,
-l[ Xit-1 + Xit + Xit+1--5 ]
Xt+l
Xf+l =
4[-1+1 (xf- +xf +xf+1 -~)2 I]
xi+1=
4[~ -I (-Xi-1 -2r, +4x:+1-1) I]
Xf+l =
4[~ -I (-xf_1 +xf -2xf+1 +2)1]
Xit+l
g,
4[~ -1(4xf-I- 2xf -Xf+l)
X:+1= J,[l-I(-%+1 (-Xf-I- 2X: +3X:+1- 2)1)1]
III lID III lID r,+1 lilt
Xf+1 =
2
I
Xf+1 = 4[~
1]
-I (2xf_1 - xf - 2xf+1 + 1) 1]
Xf+l = 4[~-I(-2xf 2 - l-xf +4xf+l) =
Xf+l =
=
I
I]
I
=
Xit+l =
-l[-Xit-1 + Xit + 2Xit+1 -2"3 ]
-l[-Xit_1+ 2Xit + Xit+1 -2"3 ]
g,
X:+1 = J,[1-1(%-I(-2x:_1 -4x: +3x:+ 1 +2)1)1]
4[~ -I (r,-1- xi - Xi+1 + 1)1]
Xit+l
4[1-1 (2xf- l- xf -Xf+l +~)I] 2
Xf+l =
=
-l[-Xit-1 + Xit + Xit+1-2"1 ]
g,
4[-3xf_l +Xf +Xf+l + ~]
ch01
1m
Formula for Local Rule
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
Formula for Local Rule
N
Formula for Local Rule
=
xi+'
22
1
X!+l
-
=
-I(x!_,-x!
=
1
=
=
1
1
2
=
(X!_l +4x! - 2X!+1 - 2)
X!+l
=
(-x!
x!+'
=
=
2
1
=
(-X!_l- x! 2xi+l
=
1
+
=
x!+'
1
-xi +2xi+l-
1
2
2
-1
1
=
=
1
1
ch01
1m x:+1 4[~-I(-x: 1-2x: +4x:+1) I] III +r,+l -1)1] 1m ~[~ x:+1 4[1-I(x:_ -2x: +x:+1-!)I] III
15:12
1] III ~[~ -I lID ~[~ -I +r,+l) 1] ~)I] lID ~[H(r,-l x:+1 4[~-I(-x:_l +2x: -2x:+ +1)1] III x:+1 4[1-1 (x:_1+2x: - x:+1- ~) I] x:+ 4[~ -I (-x:_ -x: +x:+ +1)I] am III ~[H + + ~) I] x:+1 4[~-I(x: +2x: -2x:+ -l)l] 1m lID 11m X:+ =4[%-I (~-I (--4X:-l - 2X: 4X:+l -~) D[ lID x:+ 4[- ~+ I(x:_1-x: -x:+1)I] x:+1 4[- ~+I (-2x:_ +X: +x:+ +1)I] x:+ 4[- ~+I(X:-l +X: +x:+1-2)1] lID lID x:+1= 4[!-I(-2x: 2 - 1 +X: -x:+1+2)1]
February 14, 2011
Table 2.
Formula for Local Rule t
t+l _
Xi
t+l
=
23
Xf+l =
__ 3
2
]
~[t X i- 1 -
t+ 2Xit+ -23 ]
Xi
4[1-1 (~ -I (3xf-l -4xf - 2xf+l + 1) I) I]
1m xf+! =~[~-I(-xf-l+xf+!)I] Xf+' = ~[H(xf-l -xf -2xf+, + ~)I] =
2
4[1-lex:_l +X: -2x:+1 + ~)I]
1 X:+ =
1
1)
1m xf+]
IJ;
4
x:+ =
1
l1li xf+l =~[-%+ I(-2xf-1 +xf - 2xf+1 + I] •
~[t 5] X i- 1 + Xit+ 2X it+1 - -
Xi(+1 =
4[~-le2x:_l +X: -4x:+1 +1)1] 2 IJ;
Formula for Local Rule
~[~ -I (-2xf_, +xf +2xf+,- 1)I]
t+l
Xi
Xf+l
X:+
1
x:+1
-21] =
t
Xi +1
=> I
Left Shift
(+2 t + 1 ]
= a~[t -Xi- 1 - Xi
X i+1
-
2
=4[1-1 (~ -I (-3xf-l -4xf +2xJ+l +3)1)1]
=4[~-le-2x:-l-X: +2x:+1) 1] 2
t+l =
Xi
t+l =
Xi
[
4[
4[
(+ Xi(+ 2X i(+1-21 ]
-Xi- 1
-Xit- 1
+ X it+1 +21 ]
ch01
1 X:+ =
Xi
t
-4 [ Xi-1+Xi+1
N
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
Formula for Local Rule I
=
&'[2x'1-1 -x' +x'HI -~] 2 I
1
1
24
ImiJ 11II 1m III
1
Xi-1- Xi'+' Xi+1-2"1 ]
Xi'+1
=
-1 [ , U-
XiHI
=
&.['Xi-1- 3'Xi + Xi'++ 2"3 ] 1
tL[l-1 (-2+ 2 I(x:-
X:+1 =
4[~ -I (-x:- 2x: + 2x:+ 1]
Xi'+1
=
&.['Xi-1-Xi,+ 2'Xi+ -2"1 ]
XHI
=
&.[-x' +x'HI +~] 2
r,+l
=
4[% -I (2r,_1 + 2x: - x:+
HI
=
&'[1-1 (x'
I
X:+1 = 4[H(-2x:_1 -x: +X:+1 + ~)I] X:+ 1= &.[~-1(2X: 2 - 1 +X: -2x:+1-1)1]
X:+1 =
4[- ~+ 1(-r,-I +X: - X:+ I]
X:+ I
&.[- ~ + 1(x:_ 1- 2x: + x:+ + 1) I]
=
x:+1 =
1)
1
1m
1-
2x: +3x:+ 1 - 3)
1-
DI]
1)
I
I
1-
2) 1]
+ x' - x'HI -~) 2 I]
III!ftI
XI
IfIII'III I.Ii6II
XHI = &.[-~+ (-2x'1-1 + 2x' +x'HI ) I] 2 1
. .
1-1
I
XiHI
I
I
-1[' -Xi-1 - Xi'+' Xi+1 + 2"3 ]
= u-
ch01
x:+ = tL[l-1 (-%+1(4x:_ -2X: -x:+ -2)DI]
Formula for Local Rule
15:12
X'+1
N
February 14, 2011
Table 2.
Formula for Local Rule
=
0-
=
4[~-1(4xf 2 -
Xf+l
=
4[1-I(xf_I-2xf +Xf+l + ~)I]
=
4[~ -I (-2xf_1 +4xf +xf+1 - 2) 1]
=
4[1-1(~ -1(3xf_I- 4x: + 2xf+l)DI]
Xf+l
=
4[~ -I (-2xf_l +2xf -Xf+l) 1]
Xf+1
=4[xf - ~]= x;
Xit+l
=
4[-Xi- + 2Xi - Xi+ +'21 ]
Xit+l
=
0-
Xt+1
=
xt l
I
1-1
I
1-
25
Xf+1 = 4[~ -I (-xLI =
2xf -Xf+l-1)1]
+xf)l]
-l[X.t I + 2X·t -x·t I - -23 ]
0-
1-
I
H
Xf+l = 4[1-1(~-I(-3x: 2 - 1 +4x: +2x:+1 -2)DI] - 2x' - XlHI +~) I] 2
II1I"I I.MI
XI+1 =
4[1-1 (Xl
l1l':I I.rM
Xt+l
4[~2 -I (2x t
I
=
1-1
I
I-I
-
2xt - XlHI. + 1) I] I
x:+
I
1
I
I
I
I
I
1
=> I
IIdentity I
1
-l[-Xi-I + 2Xit + Xi+1 -'21 ] I
I
4[-X' +XI +~] 2 I-I
I
ch01
Xf+l
I
-l[Xi_1+2Xi + Xi+1 -'25]
Xit+l
=
X·It+l
Formula for Local Rule
4[X' +X _~] 2
Xt+1 I
1m 1m III
N
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
Formula for Local Rule
N I Formula for Local Rule
4[
= 2Xi-II + XiI -XiI+1 (2xf_J
26
Xf+1
1m
1+1
Xi
+ xf -4xf+l -1)
2
- I +2xf -Xf+l
2
4[
X i _1
4[
X i- l
=
23 ]
I
1]
+ XiI -XiI+1 - 2
I
mJ
•
1m III Xt+l =ti[-.!.+I(x' +x'-x' )1] mJ l1li Xf+l =ti[- ~ +1 (2xf_, +2.x, +.x,+1-3)1] 11m 1+1
Xi
I
=
I
2
+ XiI - 3X iI+1 + 23 ] I-I
I
1+1
-
I-I
4[
+ 2XiI -
Xi1+1
=
X iI_1
X I +I
=4[
Xl -Xl I 1+1
I
Xf+1
1+1
Xi
=4[- ~ + I + =4[
I
X iI+1
1+1
-21]
+!2 ]
(-Xf-l - 2xf
I
-Xi-I
2
I
I
Xi -Xi+1
+ Xf+l) I]
+ 23 ]
ch01
Xf+J
15:12
.1 x,+1 =4[1-1(-%+I(-3X,-1 +x, -4x,+1 +4) 01] Ell I) I] III .x,+l =4~-I(-Xf ,+2xf -2xf+,) 1] III =4[1-1 (%-1 mIJ Xf+' =ti[1-1(-2xf_l +xf -Xf+l +~)I] 1m xf+' =ti[~ -I (2xf-l - xf +2.x,+1 - 2) 1] +1)1] 11m x'+l =ti[l-I(-x' +x'-x' +~)I] 1m =4[~-I(-2xf 1+1 Xi
February 14, 2011
Table 2.
Formula for Local Rule
t+l I + I Xi =Q; X i- 1 Xi
+ XiI+1-23 ]
xt
Xf+1 =~[I-I(%-I(-2X:_l-Xf -4xf+l +5)1)1]
x.It+l
11 =Q; X.1-
Xf+l
=ti[- ~ + I
x.1+1
1l =Q; X.1-
=4[- ~ + I(2xf_1 - xl +2xl+
27
Xf+l
1
=ti[~-I (2xf -2xf -Xf+l) I] 21
Xf+l =~[
1-1 (~ -I(2xf_1 +4xf +xf+1 - 5) I) I]
1
I
1
.1[
.1[
I =ti[~-I (-2x1-1 +X~ + 2x ) I] 2
xl+1
Xf+l
=ti[~-I(-xf 2 -
I 1 .1 [XI X i + = Q; I
Xf+l
=ti[1-1
t+l
I
1 +2xf
+ 2xf+I- 2
(Xf-l - xf - Xf+l
+ ~)
I]
)1]
I
1+
(2xLl
Xt+l I
l
+ X.1+ 2X·I 1 - -23 ]
.1[
+ 2xf + Xf+l - 2) I]
+ 2X.I + X.I I - -3 ] I
t+
2
+ Xlt+ 1 -~] 2
1] Xit+l =Q; -Xi1- 1 + Xi1 + X i1+1 + 2
1-
2) I]
ch01
=4[- ~ + I(Xf-l +X: +x:+ -1) I]
=4[1-1 (-2xl_l +xl +x:+ + ~)I]
xl+1
• •1m
Formula for Local Rule .1[
.1[2XiI- 1+ XiI + X iI+1-25 ]
t+l Xi =Q;
ft'!I ~
N
15:12
N
(Continued )
February 14, 2011
Table 2.
N
(Continued )
Formula for Local Rule
x t+l
=0,
1+1 Xi
=
0,
-1[2 X i- 1 -
Xi
Xt+l
=
4[X
I
I
28
I
I
1-1
-1[2X
I I X i + --
-1
0, [
I
I
1-
I
I
~I
I 2x1-1
= 0,-1[ X iI- 1 -
Xf+l
=
1+1
I
-Xl
t+l Xi
Xi
I
1 -X-X' 1 l+ 1
2
I
I
+2 3]
=
l
1-1
2xf+l)
I]
-1[X iI
0,
1-
XiI
3] 2
-Xl I
2
+ Xl -~] 2
t+l Xi
=
4[
t+l Xi
=
4 [X iI- 1 + XiI + X iI+1 _ _21]
I
I
X i- 1
1
+ XiI -
I
X i+1
x:+ =o[~] =1 => 1
HI
+ X iI+1 + -1 ]
4[X
I-I
X~ +1) I]
]
I 1 X + = I
+ 21 ]
Xi - X i+1
+ XiI + X iI+1 (2x
Xi1+1
+ 2xf -
I
X i- 1
1-
I
(-Xf-l
4[2
x:+1= 0,[X:-l + x:+ ~
+XI -xl+I 1 -21- ] I
=
I
+~] 2
X i+1
1+1 Xi
II!tft' aM X~+1 = 4[-~+ 2 I
+ -1 ]
+ X iI+1 -21 ]
4[- ~ + I
= 0,-1[ X iI_1 -
Right Shift
+ 21 ]
All neurons Firing
ch01
=4[X
Formula for Local Rule
15:12
-~]= X~1-1 ~ 2
Xt+l I
N
February 14, 2011
Table 2.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
that 0 ≤ φ < 1 for finite I, and when I → ∞, we have a time-1 map over the unit interval ρ: [0, 1) → [0, 1)
(8)
It is important to remember that each time-1 map is uniquely associated with one space-time pattern, or “orbit ”, from one initial bit-string configuration.
1.5. We only need to study 88 rules! Although there are 256 local rules, only 88 rules are globally independent [Chua et al., 2004] from each other. All other rules are equivalent to one of the 88 rules listed in Table 4 of [Chua et al., 2007a]. These 88 rules are listed4 in Table 3 along with an integer code M ∈ {1, 2, 3, 4, 5, 6}, where M denotes one of the following six distinct qualitative dynamics exhibited by a particular local rule N [Chua et al., 2007a], corresponding to random initial configurations:
D
Group 1 Rules Almost all space-time patterns converge to a period-1 orbit. The time-1 map corresponding to each period-1 orbit would consist of a single point attractor, or an Isle of Eden,5 on the main diagonal line, after deleting points belonging to the transient regime. Group 2 Rules Almost all space-time patterns converge to a period-2 orbit. The time-1 map of each period-2 attractor, or Isle of Eden, consists of two points, symmetrical with respect to the main diagonal line. Group 3 Rules Almost all space-time patterns converge to a period-3 orbit. The time-1 map of the period-3 attractor, or Isle of Eden, consists of three points. Group 4 Rules Almost all space-time patterns converge to a Bernoulli στ -shift attractor, or Isle of Eden, where |σ| ∈ {1, 2, 3} and |τ | ∈ {1, 2, 3, 4, 5}. We stress that the above qualitative behaviors do not depend on the length L of the bit strings, and do not depend on the initial configurations,
D
4
D
29
even though there may exist several Bernoulli attractors with different σ and τ , each with its basin of attraction. Group 5 and Group 6 Rules The space-time patterns typically have very long transients and converge to a period-T attractor with a very large period T . Moreover, the asymptotic behavior depends not only on the initial configuration, but also on the length L of the bit string. One difference between a group 5 rule and a group 6 rule is that the former is bilateral (and hence has only one globally-equivalent rule), whereas the latter is non-bilateral (and hence has three other globallyequivalent rules). The classification of each of the 256 local rules is given in Tables 7–9, 11, and 12 in [Chua et al., 2007a]. Given any rule not among those listed in the 88 globally-equivalence classes in Table 3, one can easily look up Table 4 from [Chua et al., 2007a], or Table 3 from [Chua et al., 2007b], to identify its equivalent rule, and then look up its complexity index κ (red, blue or green), and group M (1, 2, . . . or 6) from Table 3. For future reference, the complexity index κ and class M of all 256 rules are listed in Table 4. Counting the number of globally equivalent rules from each class from Tables 3 and 4, respectively, we summarize their distributions in Figs. 5 and 6, respectively.
1.6. The “Magic” rule spaces In [Cattaneo & Quaranta Vogliotti, 1997], a subset of 104, among 256, local rules have been derived and shown to exhibit “neural-like” behaviors. The authors’ approach is based on an exhaustive mathematical analysis on a bi-infinite sequence space, consuming more than 20 printed pages. The authors were so perplexed by their discovery that they dubbed these rules “magic ”. A cursory inspection of the 256 Boolean cubes listed in Table 1 would extract, in a few minutes, 104 local rules with a complexity index κ = 1, namely, those Boolean cubes whose red vertices can be separated from the blue vertices by no more than
This list is not unique in the sense that one can pick many other groups containing 88 independent rules. Our choice is obtained by scanning the 256 rules from N = 0 to N = 255 , and deleting any rule that is equivalent to a previously listed rule. 5 Robust Isles of Eden can be observed only for those rules endowed with dense Isles of Eden orbits [Chua et al., 2007a, 2007b].
February 14, 2011
30
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Table 3. List of 88 globally independent rules. Color surrounding rule number N corresponds to complexity index κ = 1 (red), 2 (blue) or 3 (green). The integer on the lower right corner identifies the characteristic property of the rule, as specified in the color legend.
0
1 1
2 2
8
10 4
18
2
37 2
4
46
51 2
62
2
72 3
73 1
94
104 1
150 5
1
134
152
170
6
136
154
156
4
172 4
6
178
184
1
2
142
162
200
5
1
1
4
126
140
160
5
5
4
2
90
122
138
6
1
6
1
60
78
110
6
4
1
2
4
1
4
1
1
45
58
77
108
1
5
168
4
106
132
4
76
5
4
146
74
105
130 1
5
36
44
57
4
4
4
56
5
1
128
54
4
27
35
43
4
6
4
42
15
26
34
4
4
4
2
6
4
14
25
33
41
7
1
4
1
1
50 4
32
40
13 1
2
6 2
24
6
38
1
4
23
30
5
12
5
29 2
11
22 2
28
4
4
19 5
4
4
9 1
3
4
164 4
204 1
1
232 1
1
Color Legend N
1
Period-1
N
2
Period-2
N
3
Period-3
N
4
N
5
Bernoulli Complex
N
6
Hyper
31
4
1
4
1
4
1
4
1
4
1
4
1
241
225
209
193
177
161
145
129
113
97
81
65
49
33
17
1
4
6
4
6
4
5
3
5
4
6
4
4
4
2
4
2
242
226
210
194
178
162
146
130
114
98
82
66
50
34
18
2
4
4
6
4
2
4
5
4
4
4
6
4
2
4
5
4
243
227
211
195
179
163
147
131
115
99
83
67
51
35
19
3
4
4
4
6
2
4
5
3
4
4
4
4
2
4
2
4
244
228
212
196
180
164
148
132
116
100
84
68
52
36
20
4
4
1
4
1
6
1
4
1
4
1
4
1
4
1
4
1
245
229
213
197
181
165
149
133
117
101
85
69
53
37
21
5
4
4
4
1
6
5
6
1
4
6
4
1
4
2
4
2
246
230
214
198
182
166
150
134
118
102
86
70
54
38
22
6
4
4
4
2
5
6
5
4
3
6
6
2
5
4
5
4
247
231
215
199
183
167
151
135
119
103
87
71
55
39
23
7
4
4
4
2
5
6
5
6
4
4
4
2
2
4
2
4
248
232
216
200
184
168
152
136
120
104
88
72
56
40
24
8
1
1
1
1
4
1
4
1
6
1
4
1
4
1
4
1
249
233
217
201
185
169
153
137
121
105
89
73
57
41
25
9
1
1
1
2
4
6
6
6
6
5
6
5
4
6
4
4
250
234
218
202
186
170
154
138
122
106
90
74
58
42
26
10
1
1
1
1
4
4
6
4
5
6
5
4
4
4
6
4
κ = 1 (Red) 104 rules, κ = 2 (Blue) 126 rules, κ = 3 (Green) 26 rules
240
224
208
192
176
160
144
128
112
96
80
64
4
1
4
1
251
235
219
203
187
171
155
139
123
107
91
75
59
43
27
11
1
1
1
1
4
4
4
4
5
6
2
6
4
4
4
4
252
236
220
204
188
172
156
140
124
108
92
76
60
44
28
12
1
1
1
1
4
1
2
1
4
2
1
1
6
1
2
1
253
237
221
205
189
173
157
141
125
109
93
77
61
45
29
13
1
1
1
1
4
4
2
1
4
5
1
1
4
6
2
1
254
238
222
206
190
174
158
142
126
110
94
78
62
46
30
14
1
1
1
1
4
4
4
4
5
6
1
1
3
4
6
4
255
239
223
207
191
175
159
143
127
111
95
79
63
47
31
15
1
1
1
1
4
4
4
4
2
4
2
1
4
4
4
4
15:12
48
32
16
0
Table 4. List of 256 local rules. Color surrounding each rule number N corresponds to the complexity index κ = 1 (red), 2 (blue) or 3 (green) of N . The integer in the lower right corner identifies the characteristic property of the rule, as specified in Table 3.
February 14, 2011 ch01
D
February 14, 2011
15:12
ch01
88 Equivalence Classes of Local Rules 32
I
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
1.7. Symmetries among Boolean cubes
..........
Many of the 256 Boolean cubes in Table 1 share interesting symmetrical features which give rise to important predictable dynamics and applications. We will briefly recall some of these symmetries and present new interpretations.
30
Bernoulli (J"t-shift Rules
D
1.7.1. Local complementation
D
D
D
D
Tc
D
We define the local complementation Tc
N −→ N c
D
256 Local Rules
Fig. 5. Partitioning of the 88 globally-independent rules into 6 classes.
67 Period-l
25 Period-2
..........
Rules
ff~ '$'
~~~
,,-"v r;:,~ ':o.'l.J"
,) :l.~~.::i Rules ~'l.J t======~~~-_ 18 Complex
108 Bernoulli
D
(9)
of a Boolean cube N to be the Boolean cube N c obtained by complementing the color of each vertex, i.e. 0 → 1 and 1 → 0 . Table 6 shows ten Boolean cubes and their local complements. This transformation is called local to emphasize that the D of NDand N c , with the same space-time patterns initial configuration, are not the complement of each D because the complementation is valid only for Dother one iteration. This observation is demonstrated in Fig. 5 of [Chua et al., 2004], where
ernou/Ii-sbift ules
Tc
110 −→ 145
(10)
Observe that the space-time patterns of 110 and 145 (for the same initial configuration) are not the complement of each other, except for the first iteration.8
a.-shift Rules
1.7.2. Three equivalence transformations T † , T , and T ∗
Fig. 6.
Partitioning of the 256 local rules into 6 classes.
one plane.6 These 104 rules are listed in Table 5 along with their classification number M , extracted from Table 4. A comparison of the 104 κ = 1 rules in Table 5 with those derived in [Cattaneo & Quaranta Vogliotti, 1997] shows that they are identical.7 From our Boolean cube perspective, the “magic” connotation is perhaps a bit of an anti-climax.
D D
D
6
There are exactly three global transformations that hold for all iterations, and for all initial configurations. They are the Left-Right Transformation T , and the LeftT † , the Global Complementation D Right Complementation T ∗ [Chua et al., 2004]. These three transformations, along with the identity transformation, have been shown in [Chua et al., 2004] to form an Abelian group known as Klein’s Vierergruppe. Given any local rule N , the transformed rules N † T † (N ), N T (N ), and N ∗ T ∗ (N ) can be derived by inspection via the simple geometrical operations illustrated in Fig. 7.
D
Since no plane is needed for rules 0 and 255 , these two rules may be reclassified with a complexity index κ = 0. Except for rule “36” listed in Tables 4 and 8 of [Cattaneo & Quaranta Vogliotti, 1997], which we believe is a typo that should be rectified to rule 136, as correctly reported in Fig. 12 of the same paper. 8 There are some rules, however, where the local complementation T c (N ) coincides with the global complementation T (N ) to be defined below. In such cases, the space-time patterns of N and N c are also complements of each other for all t. 7
February 14, 2011
15:12
ch01
D
Chapter 1: Quasi-Ergodicity
33
Table 5. A gallery of 104 linearly-separable local rules. The red color engulfing each rule number N implies a complexity index κ = 1 for all 104 rules.
: List of 104 Linearly-Separable Boolean Function Rules. 0
2
1 1
15
17
16 4
48
80
84
81 4
128
138
136 1
176 4
213
4
241
243
4
Color Legend
4
221 1
244 4
245 4
Period-1 N Rule
224
223
4
4
1
To derive the left-right transformation N † (N ) of any local rule N , simply obtain the 0 mirror0image of the 0 Boolean0cube N about the main diagonal plane (shown shaded in Fig. 7(a)) pass. Note that this operaing through the vertex 0m tion can be implemented by identifying each pair of symmetrically located vertices with opposite colors, and Hence 124 = then complementing the colors. T † 110 , and 110 = T † 124 0. To derive the global complementation 0 N T (N ) of any local rule N , simply identify each pair of diagonally opposite vertices that have the same color (either both red or both blue), and then change the color. For the example illustrated in Fig. 7(b), we have N = 110 . Among the four pairs of diagonally opposite vertices of 110 , we find 0m , only three that pairs of vertices m m m m m 7 , 2 , 5 , and 1, 6 have the same colors. Changing only the color of these three T†
232
248
247
200 1
234 1
250 1
1
251 1
Period-2 N Rule
1
2
1
207
239
253
252
4
1
1
1
175
206
238
236
2
4
1
1
127
174
205
204
1
4
4
4
79
119
171
170
4
1
4
4
1
1
1
1
168
196
117
115 4
4
1
4
1
162
192
191
113 4
1
4
4
220 4
4
242
4
160
143
187
112
47
77 1
1
4
4
76
69 1
43 4
4
14 1
42
35
68
13 1
4
4
1
2
1
4
186 2
2
142 1
95
93
34
64
12
11 4
1
4
4
4
140
179
212
4
4
1
178
208
4
4
87
32
63
59
10 1
4
2
2
85
31
23
55 2
8 4
2
4
51 2
4
21 2
7
5 1
19
50
49
4 4
4
4
4
3 4
2
1
240 1
254 1
4
255 1
1
Bernoulli N Rule
4
pairs, respectively, we obtain its global complement 137 = T 110 , and conversely, 110 = T 137 . To derive the left-right complementation N ∗ ∗ T (N ) of any local rule N , simply take the global 0 complementation0 first, followed 0by the left-right transformation, or vice-versa, i.e.
0
∗ N0 T ∗ (N ) = 0 T † (T (N )) = T (T †(N ))
(11)
0
For example, consider taking first the global com- plementation of 110 to obtain 137 = T 110 0 by applyin Fig.07(b). If we 0 follow this-operation ing the left-right transformation to 137 , we would obtain 193 = T † 137 by reflecting the Boolean cube 137 in Fig. 7(b) about the main diagonal, as shown in Fig. 7(c), to obtain 193 = T † 137 = T † T 110
(12)
February 14, 2011
34
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 6.
N 2
N 3
7
6
1
0 4
5
1 5
4
7 1 5
5
4
3 7 1
0 5
2 7
6
1
0 4
90 3
5
7 1
0 5
105
2
1
4
5
150
1
2
4
5
85
1
184
1
0 4
7 5
3 7
6
3
0
5
101
5
6
1
0 4
7
2
3 7
6
170 3
0
2
3
0 4
7
6
5
6
165
2
1
2
5
105
154 3
1
0
3
0
3 7
6 4
7
6
195
2
5
2
150
1
5
145
1
2
1
0
3
0
3 7
6 4
7
6 4
7
4
5
2
3
0
60
4
5
6
1
c
2
110
1
2
3
0
3
0
N
7
6 4
7
6
3
0
6
2
210
2
4
5
2
45
6
1
0 4
7
4
3 7
6
3
0
6
N
225
2
4
c
2
30
6
Some Boolean cubes and their local complements.
2
3 7
6
1
0 4
5
71
February 14, 2011
15:12
ch01
copy the color of vertex of the left cube
Chapter 1: Quasi-Ergodicity
0
L_~
copy the color of vertex of the left cube
e
~
) (
Tt (a) Left-Right transformation Tt
T
)
(
T
III
(b) Global complementation T
T* ) (
T* (c) Left-Right complementation T*
Fig. 7.
Geometrical constructions for deriving (a) N † T † (N ), (b) N T (N ), and (c) N ∗ T ∗ (N ).
35
February 14, 2011
36
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7. 2
3 7
6
1
0 4
A gallery of 16 centrally-symmetric local rules.
5
2
3 7
6
5 1• • • • +--..
4
2 7
1
0 5
2
4
1
2
4
195
7 1
5
5
4
219
We will henceforth call such perfectly symmetrical transformations (relative to the complementation transformation) perfect complementations. The set of all perfect complementary rules are listed in
3 7
6
1
0 4
5
189
7 1 5
231
(13)
5
2
3
0
1
0
126
1
2
3 7
6
3
0
6
5
4
7
6
1
2
165
It follows from the geometrical construction of the global complementary transformation T (N ) → N in Fig. 7(b) that pairs of diagonally oppo if all four m m m m m m 0 , 7 , 2 , 5 , 3 , 4 , 1m , sitevertices 6m of N have identical colors, respectively, then
9
5
4
1.7.3. Perfect complementary rules
N T (N ) = T C (N ) N C
1
2
3
0
3
0
3
7 0
4
7
6
3
6
102
5
6
2
60
2
153
1
5
4
7
4
7 5
5
0
3
0
1
2
129
6
4
7
6
1
0
90 3
7
6
3
0
••• II1...--t~ 66
3
36
2
•••• 1
0
4
5
2
24
~t---t~
6
1
0 4
2
4
7
6
0
6
3
2
3 7
6
1
0 4
5
255
Table 7. Since these Boolean cubes exhibit perfect symmetry in color with respect to the origin located at the center of the cube, we will henceforth call them centrally-symmetric local rules. Clearly, the local complementary space-time patterns of all centrally-symmetric local rules hold for all times.
1.7.4. Permutive rules9 There are 28 local rules whose Boolean cubes exhibit an anti-symmetry with respect to some vertical plane through the center of the cube, as illustrated in Fig. 8.
Permutive rules are originally defined by [Hedlund, 1969] on a formal topological setting. We have opted for an equivalent but geometrical definition via the Boolean cubes for pedagogical reasons. These two representations are equivalent, as shown in Appendix C.
February 14, 2011
15:12
•••
ch01
•••
•••
•••
Chapter 1: Quasi-Ergodicity
III:
III:
Left-Permutive
lEa:
Right-Permutive
37
Bi-Permutive
D D
D (a)
(b)
D
(c)
Fig. 8. Geometrical illustrations of permutive rules. (a) Rule 30 is Left-Permutive because the colors of the vertices ˘ ¯ ˘ ¯ 0m , 1m , 2m , 3m in the back face are the complement of the colors of the vertices 4m , 5m , 6m , 7m in the front ˘ ¯ m m m m in the right face are the comface. (b) Rule 154 is Right-Permutive ˘ because the colors ¯ of the vertices 1 , 3 , 5 , 7 plement of the colors of the vertices 0m , 2m , 4m , 6m on the left face. (c) Rule 150 is Bi-Permutive because it is both Left and Right Permutive.
D
A local rule N is said to be Left-Permutive, iff the vertical symmetry plane is parallel to the paper, as depicted by the “green” plane in Fig. 8(a). It is said to be Right-Permutive, iff the vertical symmetry plane is perpendicular to the paper, as depicted by the “pink ” plane in Fig. 8(b). It is said to be Bi-Permutive, iff it is both Left- and RightPermutive as depicted by the “green” and “pink ” vertical symmetry planes, respectively. A local rule N is said to be Permutive iff N is Left and/or Right-Permutive. An examination of the 256 Boolean cubes in Table 1 shows that there are only 16 Left-Permutive rules, 16 Right-Permutive rules, and 4 Bi-Permutive rules, as displayed in Tables 8–10, respectively. The union of all these local rules gives only 28 distinct Permutive rules, as exhibited in Table 11. We will show in the following sections that Permutive rules possess some remarkable properties.
D
depicted in Table 13. It is easy to prove that each rule N in Table 13 has a unique decomposition via the eight Boolean cubes basis functions in Table 12.
D
1.7.5. Superposition of local rules The eight Boolean cubes exhibited in Table 12 are independent in the sense that it is impossible to decompose any of them into the “union” of two or more simpler Boolean cubes by taking the logic “OR” operation between the colors of corresponding vertices, where “red ” is coded “1” and “blue” is coded “0”, respectively. Since each of these eight Boolean cubes contains one, and only one, red vertex, together they constitute a basis function where the “union” of two or more such rules can generate any of the remaining 256 − 8 = 248 local rules, as
1.7.6. Rules with explicit period-1 and/or period-2 orbits Recall from Fig. 6 that among the 256 local rules, 69 are endowed with robust period-1 (attractor or Isleof-Eden) orbits, and another 25 rules are endowed with period-2 orbits. It is generally impossible to predict the bit-string pattern of such period-1 or period-2 orbits without actually evolving the rule from some initial state. The purpose of this subsection is to prove a surprising and quite remarkable result asserting that the period-1 and period-2 bit strings of a large number of local rules can be predicted without carrying out any simulations. Such period-k bit string (k = 1 or k = 2) patterns are endowed upon those Boolean m m m cubes whose main-diagonal vertices 0 , 2 , 5 , m 7 exhibit certain color combinations. Explicit period-(1, 2) pattern theorem There are ten distinct color combinations among the four vertices 0m , 2m , 5m , 7m on the maindiagonal plane of the Boolean cubes, labeled Type A, B, . . . , J in Tables 14(A), (B), . . . ,(J) for which the corresponding local rules have an explicit period-1 and/or period-2 bit-string pattern, regardless of the colors of the remaining nondiagonal verm m m m tices 1 , 3 , 4 , 6 .
February 14, 2011
15:12
ch01
•••
•••
•••
•••
•••A Nonlinear Dynamics•••Perspective ••• of Wolfram’s New Kind of Science ••• • •• ••• Table 8. Sixteen left-permutive rules. ••• ••• •••
38
III •••
Ell
•••
•••
•••
•••
•••
•••
•••
•••
•••
•
&I •••
m
III
•••
•••
IBJ
11m
•••
•••
•••
•••
•••
•••
••• •••
1m
1m3
mtJ
1m
lIm
•••
•••
•••
••• ••• •••
••• ••• •••
•••
om
•
••• •••
•••
•••
1m
Proof.
It follows directly from the evolution of the Boolean cube inset on top of each table. Here, the “white” vertices denote irrelevant vertices.
3. The Boolean cube inset in Tables 14(G)–14(J) has four color vertices on the main diagonal.
Remarks
1.7.7. Most rules harbor at least one Isle of Eden
1. The Boolean cube inset in Tables 14(A) and 14(B) have only one color vertex along the main diagonal. 2. The Boolean cube inset in Tables 14(C)–14(F) has two color vertices (with opposite colors) on the main diagonal.
Among the 256 local rules, 228 harbored at least one Isle of Eden. In particular, there are 79 (out of 88) topologically distinct rules with at least one Isle of Eden, and Table 15 displays the initial and final bit-string configurations of a typical Isle of Eden
February 14, 2011
15:12
ch01
••• ••• •••
m •••
•••
••• ••• •••
•••
•••
••• ••• •••
•••
•••
•••
Table 9.
Sixteen right-permutive rules.
•••
•••
••• ••• •••
•••
• ••• •••
•••
•••
•••
•••
•••
•••
m1
11m
1m
•••
•••
•••
•••
•••
•••
39
•••
DIm •••
•••
•••
•
••• ••• •••
IItI
IIID •••
••• Chapter 1: Quasi-Ergodicity
III
1m •••
•••
•••
•••
•••
•••
1m
11m
11m
••• ••• •••
•••
1m •••
•••
••• ••• •••
•••
11m
D D
orbit for each of them, so that readers can verify that it is indeed periodic. We end this recap section by exhibiting in Fig. 9 a period-3240 Isle of Eden of rule 30 with L = 27, a real gem that should trigger a rush to uncover Isles of Eden with even longer periods. The φn — versus — φn−1 return map of this period-3240 Isle of Eden is shown in Fig. 10(a). Note the very messy plot gives very little information. However, if we plot this Isle of Eden orbit as a
τ = 480 return map in Fig. 10(b), we see the φn — versus — φn−τ time-τ map is virtually identical to the Bernoulli mapD φn = 2φn−τ
mod 1
(14)
associated with the time-1 return map of rule 170 . Since it is well known that the Bernoulli map Eq. (14) is ergodic, Fig. 10(b) strongly suggests empirically that rule 30 is quasi-ergodic in the sense of Definition 2.1 of Sec. 2.1.
Fig. 9. Orbit of a period-3240 (with σ = 1, τ = 480) Isle of Eden of 30 with L = 27. The number inscribed inside each “capsule” is the decimal representation of a 27-bit string.
D Mwr'l.vr~
-- -- --
.l'MI_I'V~ KreIN!""I!! }--<j.l','t(J~l!v
[I'IMI,OI/,-
>--i rH,YMJf!
}o-{,WIV'f>.
~
1
---
~
{r,ctflrhl }+(f!nv~'Jt
-- --
,rffl(M06,
(S''''''U,! J-+{!lIN,I/(,f),)
t'JIMr;fI/
r;:(1,-'),-6\
Ilf,ilSi:V
/)/)WY/()i:!
f,O;'-Vf~',
~'It'OI}-UI
_,-r,-y,fll
_cYlllhdi
U61.'MM
LLlrM
~''''\,IK!
\"~,CBI
I~"tln'\
MlI,Ylfi_
_:IIX9c fJ!
nW!l11/J1
1I,\'~YVIr>
!!
YlMiI~(h
!~\~_N"
\'t)SI.VYi:{
Ifi>//'If6
'h.fH,-rl{
U,'fVIOU()!
u{v/r/.V'I
_~'~'Vt,~'f
f'I.I'I.,'
>11.1/111},'
thM!Vh
rll/()
cINJ.\'I/(HJ!
wlrt."JI
Irt6WI~
r~'t!/OOIl ~1~,-,-'1.'1>--(YIVt!.OIIl]
~ Ilctorwo
ItI"rro_1"
6c(J0I}!r
wtl},n,
,\'!HWfWJI
I!\n,_hc
r,,(,"~,,1
Uf~'_,-,O/'
1-~V{.WI.:.
6,~'Hfi
fl.lfi>lll
t.lfO/61
,~,6~i'j,(J_
rVfMIi'Y1
o<'JJlILlh
1'11'-1-1)/
(Jfl/,r>I~
-1~"AlJ1r"
(:::::~:;:J~
h'-f()~'1!
~;"'I,I!"'.fU~U;-If~Y.r::_/'WflfV~
~
,V\l~'MI,1
BW'f)\ 'IIMII.~1
Irhlilyn
~
.I'IIM
~~tllfh.CV(C.::-:~:~~:-~1 rM,-0,6~
6()(1!T~O}'
t!1f6}-ru
1,-_01,',-,11/
1I,,-,f6,1';;
'61.1I.~I!I
6tOl't_1'
6,',"10If,1
60_IIfU,
6,-'111_1,1'1
1',n,lojJl
II'MLwtll
6r.-n,'e'Y
(,_MWll!
,S_,I~!l
lr'Jou"JII
~,c\lo~1
/'\'r,IJ'!iY
IWHOSII
i:1I>!l1~'1
,Yll'i:IWI
O,reMM
II~_/(',I'I{
Wi:IiI!ro
i%~tno
tl!/OW,YI{
6ts,-v~.r
r}'If';I~U
fl'I/ylf6wt
liM,60f';
t61/1fOI/,
,',vr;:rll
,';001/_111
,V61/1J01fr
I~W\'Ot,-,
ItN,In
,Wa6,Y
6NIW/H
I~VSt6I/,
~I"-'VWI
Ifl';6tOOI
WO.llf9!/
r'IJUI.~6
,-'i6a'gWI
o{o;;Y9lrYfHn';;s6(ri:I).~1'ltlllr')l
Oi:i';;f!'<-~
_fi:r.tS!i
","1',,-6(,-
(l/WI9i:ti:l
Ilft"t,.
rt'.YUII
M!lI>~..
Wi'tll%I')
l'/fi:lfl'lll
')i:IlIrJ,
IM.!'f"
IJr,,-!','lt
UO!iti://U
Iilrt/"'lM
,llsILt,-,
,10r,-'Il'
'1.,,11,-6
!lM/(J.(I~~ III"""M!
~ '-.'W/lO~!
~:;~:::: ' ) ,-Wf,'IH)+-{_,y6WMV)+-{,,-W;'-\'M)
>(.\'V60~t!"f )+-{16i<-Y._' )+-{r6~,-\'I/_,)
~:"(:::I;::.Ir-.J
{WI'Y.\'I)!<\')-(tlll!IS0I6)--(S6"IOH'W)--{WAW>l6)-(I!!ThW6
~
('~,-i:I).l'1) }-(otMlr.!' }-{llf\'Y!I\'f,1
.(._Ii'M!'.}--{MWi'/,lr}--{i:.Wfl/l't)
16t>o,on ' )
M,_fO,Y, -(W!·'~I0~'-)+-('Hllo;,\').--{rll9,-II',\'~)~
S"-,l/!WI
i:~c,~,lc
1),'9'1·,,'-1
Iri.\'cOIl'l'-
f,f(lOWn'
,'!
o,YtWtv9
Jr'd,he
Mm,'1l'6.
_11,Y.OII)
fl)!'rMI.!'
.ff"(,I)'
i'fr'!."IIM
,WIj'IIKJ
fWlj',r,"1I1
lIII.i'.I""
,YI'MrIXJI)
f~.'(,111I1
j'tll),WI
_,'(,lfI6,1
~i:.-tW~Gf
r.-rf~'nJ
.-t9ff9'"
,head
,'/lfflfll"
!,I!lU/().
,"M)!'rUIi
O'l.c9t'lt
,'M11IfL
Leller,
Inll(lf~"
S''-fl
IS'yOI'Io,'\'
WMd'WlnJ
rO_f!·!.t\J
f(1619fOI'
f6ei:~'9r,.
W.'1LiMt
'1f.-rtftll
,'MOltfL
c,'Mdt
IZII,9()f1
O,f'l,L(!1'
M,'c9\,I',
~6.6111Ilm}.{,"II"IIj'r,
,ti:9friJ,
t;I"91-111
1'91'1''-'11',
.-/f69M,
'1n".-It'l,)
trllll,f,YI
--
o{l)tI,lllff)--(MIfi:ly/l >-~tl~Jllf}-(Mf\l>!'I!'}-(r\'fr,NXJt 'l9S,OLr
,·MIMi:.
,-~",\'Mtn
,6S,tofi:
~"tc~'HM
9/11'.i:tIII
IIlftllS\"! ~
tn'l,-t
:.t.-fi:L'I:--:tWtWM.-O ~
"\OON,'I19i:r
II(,/IMlll)
f.IIW!\lWlI 6cM!fI9ffl
h,,'W,'Wf
HIL,,'d'
Srm.69i:
(6f\l\'j't,!i.}-("'!1I9;'1,Yf) rntr,t~'
i:U:Iii/lOI
M,'ff>i:.'1
t>.~',-Mfl
M9INfM
~
o{fII.fIl.~r}-(k'~'!'h~'t\fr)--(rf~,,"i:11I>--<,'t~/lIt,;:. )--(M,j'lJt"'~'tl).
'.JMi:
,-,',"",1'.
f,IMI'"
\1=.1'(,"%
i:I@~IW
IlJfll'/illll/
1I,,'Vi~1 rJII9~'\i
_w,~"lnl ~;tfr,
,'I'M",',.
f!J60_11 )+(lIrHlfOi:. )+-(tli:IMti:1 )+(thtrtW )+-(,'Itftril'l )+-(1I.6_t_SI)+-( 1/(IIM6,'~ )+-(liOfi:riO;OI )+(tl,'fl,'S!' )+-(9ff'lI,Ii:)+-(rWI,"'116 )+-(t,J-HMOI )+(9tllf>trillY )+-{LttH'9)+--( 11'1',-16.-0 )+(lIe'l'-!'i:Sf)+-( .W'ri'l'-~'; )+-(t!_.I~i:S\'~' , ) 11!\lII),t, ~'--ti:rM(I/
t'-/~fl'!~'9
J,r.\lfi'1J
_,-.f.tf!
~_/fL'I ~',..,r.'fi'
IIiN/llhl
crt,'-Oll,
ri,1I6tttl'!
.,·MIWt!
1),'l/il'l!\IlI
i'lJr_~I\I.
fWf.f-,"~1
ttNit.rf
'1t9'1/'!'" M~,~'Hi:I
'fn!·.-.-n
109JMi:
e'lMtW"
tW6IM,'/ri
~'ri:t()M"1'!
IS'ge',''111
tri.tof'l ~
,Y.~-,""I"
W,,'rfI<M
.11t!o-'Ml.
M,1)."'lJr
~1'lIfl).tt
INii'~'6,"1I
lMwll)lI1
IJrl,-,'I'!'fJ
,,,'~r,I'i:I),1
/IIIIJIVVII/JI
~ lV'fJ,-.'_" /~OIWO~I:~ ,r,Llld
-r,I'i:IIM.
-- -- -- -- -- -- -- -1J"I',~fl)
flJfr~,'U
tlN)!',"tfJ
1)~,!iI\'W~
V#!\"Uf,
f'l/il'IJfJlfJ
----
.I)/L.,tM/9()flt~")-(9!"f60111M
fJ;'VlI/,,'f }--( ~lIt""!Ifl) )-( IIt,-,-i/ rr
KJ~t,i:I,"
-- --
rl'~IJ,I!~>
-%lllJ,'1;:
(,MO,!'!il}--(k"HttO,V)
-- ----
,",Ot,..nl ...~·(J',"'I-'"
in~'HIIXJ}-(("I'Hl/lflt}--(;;'\'\III"tflJ
("MllfW,-t}-(I,~I(-fH)
.r~,·f,r;~
}--(f"I>Ii;",-t)
S~::_::,CI::l ' )
,tM'ri9;',) 1f()/('~1W
;"'\"\"'(,~'9)+-(t'M,.,trl'
,/(I!iIlWml)+(\,rfclfI9MIJt'ifJfMWe (,-VIJ'l/Jt"I, }-(O/V,,!liWI }-(f,-!il.''''t~)
"J\'.-lItf}--(';;'OU'\I')
-- --
-nMlWif
(fMHff!i}-(I\IIIi.W''''f)
f"Lt'i,f\','1
)
.;;.w~M,Yf
Of//l(il'\:~ ~II()J,'/V\I!
~ ,,,,,-,()/Ot
-- -- -- -- -- -1)!'
/<,IO;;""f(l
fd\l,~;,
,tll'lll1l,Y
'f.'dlXJ
~ roWf,-.t
,¥'l/J,I'tnr
l
--. ) Hn'tl,rt
"YrHi/ftf}--(MfM,,'\I,)
-- --
-- --
[.rNl;'9/r}-(II'~Mfrt
\'\III"cllJt}-(1II9,1/<,I')
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science fVIt'lttt!")
40
--
9'lt'l"HfMMt6,'r9v
~ '9,~/LII'~
~ Y,~tnrL~
Mlltllir
}--(rrMV'!<-r
}-(1J~~frr;'t
r'lJc,-11.
-- -- --
(/lII9frtll,Y >--<1,~frW~,-1 }--o{r.Y,Ylf,·
~ ~
ch01
(rW_~rrtr
tot,\",MY,
-'1%1'1.1111;(
15:12
rl.Ll.MI~,-
,vfhtIl!1MMIN,vtt'MI,I/IJIi<J~1
).
February 14, 2011
~
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
~G"o;m:;;;II!();;;:"e:>'--C;'CiI~--GB':@->(ij'!!2D..cz~~-8~;D--c§~·C:~CB--G~D--G:~B--G~B--G:~ry@~~-8~9--G~~>CZ'~"i)-<-G!'!E">--. 0-(
~.fl(..nH)
Fig. 9.
(Continued )
41
February 14, 2011
15:12
ch01
•• •
•• •
•• •
•• •
••
•• •
10
•• • •• •
•• •
•• •
Table 10.
Four bi-permutive rules.
•• • •• •
••
••
•• •
••
III
•• •
42
10
February 14, 2011
15:12
ch01
. .......
.......
......-•••11111-+---1....
.... .--
•••lIltt-+---H
;~~~....
•••
III :L-Permutive
•••
Table 11.
•
: L-Permutive
..:.... •••
~-+~I....
...
III :L-Permutive ....
m: •••
~~.....
...
...
•••permutive rules. Twenty-eight
...
•••
..-~........
••
··11111-+---1....
ILl: L-Permutive
•••
.~t--
•••
...
... ...
•••
.... .--
...
Chapter 1: Quasi-Ergodicity
• •• ~t--~.
•
: L-Permutive
•••
•••
...
•••
R-Permutive
. .......
• .oIt--......
..1r.1~~
...
• ••I..--"'--e.
. : R-Permutive
...
•••
• ••
...
•••
ED: R-Permutive ..IIIIt-+-.,.::.H
... ...
• •••I..--"'--e.
1.%11: B-Permutive 1mI: R-Permutive 1m: R-Permutive 1m: B-Permutive
...
.~~~......
•••
. . . ---t.....
•••
•••
...
•••
...
...
•••
111m: R-Permutive
. : L-Permutive
1m: L-Permutive
...
...
...
..:....
.~t-~
~~.....
...
•••
...
•••
...
...
···IIII~~
•••
~I.-~~.
IIP): R-Permutive
•••
...
•••
... •••
...w~~~
...
• •••I..--"'--e.
IIIJ: B-Permutive 1m: R-Permutive 1m: R-Permutive 1m: B-Permutive
..
.~~,-
...
~....
...
••• ~---t.....
...
•
•••
: R-Permutive . . .- .
...
+--+-4.....
•••
...
•••
...
. .• •rlt-+---H
...
• •••I..---e•
1m: R-Permutive 1iZJJ: R-Permutive I£DJ: L-Permutive •••
.~t--
•••
...
...
•••
...
...
1m: L-Permutive Bm: L-Permutive
... ...
...
... . : L-Permutive
• •• • •• II"t-+---1~.
...DDJ:
...
~.--~.
L-Permutive
43
44
4
6
4
6
5
16
0
7 1 4
6 5
7
5
7
32
0
2
3
0
2
4
6
2
5
1
2
1
0
7
3
1
3
1
3
4
6
4
6
5
7
5
7
64
0
2
4
0
2
Eight Boolean cube basis functions.
1
3
1
3
4
6
4
6
5
7
5
7
128
0
2
8
0
2
1
3
1
3
15:12
2
Table 12.
February 14, 2011 ch01
45
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
4
4
4
4
4
4
4
2
2
4
4
4
2
2
2
4
18 18 18 18 18 18 18 18
8
2
31
16
16
2
43
1
2
42
8
8
8
41
16
1
8
40
4
16
2
1
39
16
4
4
37
1
4
36
2
35
1
2
34
32
32
32
32
32
32
32
32
32
32
32
53
16
65
64
63
62
61
60
59
58
57
56
55
54
52
51
16
33
8
8
32
4
4
16
50
8
49
16
4
48
16
16
47
16
8
46
16
4
8
8
45
16
64 128 44
32
16
16
32 1
2 1
1
30
29
28
2
27
1
2
26
8
1
25
8
8
4
4
4
24
2
23
1
2
2
22
1
2
64 128
38
32
16
16
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
into superposition of eight basis characteristic functions.
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
8
8
8
8
8
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
64
64
64 128
15:12
3
2
1
0
2
N
Decomposition of χ1
D
1
Table 13.
February 14, 2011 ch01
46
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
64
8 8
4 4
64 64 64 64
16 16 16 16
4 4 4 64
64
16
16
64
16
4
64
16
64
64
8
64
8
4
64
8
64
64
8
8
4
64
8
64
4
4
109
2
2
2
4 1
1
1
1
4
108
107
106
105
104
103
102
4
4
101 2
2
2
2
4 1
1
1
1
4
100
99
98
97
96
95
94
4
93 1
4
92
2
64
4 4
2
1
91
64
4
64 64
16 16
32 32
8
32
32
32
32
32
32
32
32
32
32
32
64
16
32
64
16
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
16
16
64
16
64 128 64
32
16
16
8
8
8
8
8
8
8
8
8
8
8
2
8
90
4
64
2
4
64 1
1
8
64 128
89
32
64
16 8
8 88
4
(Continued )
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
8
8
8
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
128
128
128
128
64 128
15:12
70
69
68
67
66
1
Table 13.
February 14, 2011 ch01
128 128
4
128
8
137
128
8
2
139
47
128
16
128
16
4
8
153
1
8
152
2
1
151
16
128
128
128
16
4
2
150
16
128
16
4
149
1
128
16
4
148
2
1
147
128
16
2
146
128
16
1
145
128 128
8
4
128
16
8
144
2
143
1
2
142
4
128
8
4
141
1
128
8
4
140
1
128
8
2
138
1
128
8
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
16
16
16
16
16
16
16
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
(Continued )
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64 128
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
1
1
1
1
1
1
1
1
1
1
1
1
32 32
16 16
2
2
2
2
2
4
4
8
8
4 4
16
8 4
16
16
16
16
8 8
16
16 8
8
16
16
4
4
2
2
4
2
4
8
32
16
2
32
32
32
32
32
32
32
32
32
32
32
16
2
16
32
16
4
32
16
8
32
4
16
2
64
64
64
64
64
64
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64 128
15:12
136
2
135
1
2
134
1 4
64 128
128
32
4
16
133
8 128
4 4
2
132
1
Table 13.
February 14, 2011 ch01
48
219
218
217
216
215
214
213
212
211
210
209
208
207
206
205
204
203
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
8
4
64 64 64 64 64 64 64 64 64 64
16 16 16 16 16 16 16 16 16 16
4 4
8
8
8
64
16
4
64
64 16
8
8
4
4
64
8
4 64
64
8
64
64
8 8
64
8
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64
64
64 128
8
32
128
16
64
8
4
4
4
2 2
4
2
241
240
239
238
237
236
235
234
233
232
231
230
229
228
227
226
225
224
223
222
221
220
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
8 16 16
32
32
32
32
32
8 8
32
32
32
32
32
32
32
32
32
32
32
32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
16 16
64
16
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64 128 64
32
32
16
16
8
8
8
8
8
8
8
8
8
8
(Continued )
255
254
253
252
251
250
249
248
247
246
245
244
243
242
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
4
4
4
4
4
8
8
8
8
8
8
8
16
16
16
16
16
16
16
16
16
16
4
16
16
16
16
16
8
8
4
4
4
32
32
32
32
32
32
32
32
32
32
32
32
32
32
32
64
64
64
64
64
64
64
64
64
64
64
64
64
64
128
128
128
128
128
128
128
128
128
128
128
128
128
128
64 128
15:12
202
201
200
199
198
1
Table 13.
February 14, 2011 ch01
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
49
Table 14(A). There are 128 local rules endowed with a period-1 spatially-homogeneous blue orbit · · · for all L = 3, 4, 5, . . . , n.
Type A 2 6
0
4
3 7
1
5
2
3
2
7
6
4
7
22
4
4
66 3 7 1
0 5
7 1 5
2 0 5
2 6
2 0
6
1
1
5
6
1
0 4
5
1
0 4
5
7
6
1
0 4
5
242
1
1
4
5
244
1
4
1 5
246
5
2
2 7
6
1
0 4
5
248
1 5
2
1
4
5
250
4
1
1 5
1
0 4
5
254
1
0 5
2
5
236
1
5
2
238
1
0 4
5
218 1
5
3 7
6
3
0 4
1
0
196
7
6
3 7
216 1
0 4
2
4
5
2
5
6
3
0
3 7
6
1
7
4
5
1
0
174
5
6
3 7
4
7
2
214
7
6
1
0
1
194 3
1
5
2 6
3
0
0
152
5
6
3 7
4
3
0
4
7
4
3
234 3
7
6
2
4
232 1
5
2
212
7
2
1
0 4
1 5
6
5
2
192 3
2 6
1
172 3
0
5
130
0
7
1
0
4
7
4
7
6 4
7
6
3
0
1
5
2
5
2
190
5
6
0
6
3 7
6
3
2
1
0
2
150
170 3
7
4
7
4
7
252
2
3
2
3
5
1
7
1
5
4
3
4
168
5
0
6
5
6
5
2
1
0
4
210 1
0
0
4
5
6
7
6
3
2
1
0
5
108
2
148 3
0
6
1
0
128 1
3 7
6
3 7
3
4
2
4
2
4
7
6
5
7
6
5
2
1
1 5
126
146
3
2
230 3
0
6
0
2
188 1
0 4
7
6
2
7
5
106 1
0
1
0
86
7
6
3 7
6 4
0 4
7
4
2
3
6
3
6
3
4
5
4
7
6
228 3
1
5
2
6
166
208 3
0 4
0 4
3
0 4
7
6
226 3
0
1
0
1 5
206 3
1
7
6
1
3 7
6
5
2
5
2
5
2
124
5
2
186 3
0
0
0
1
0
144
3 7
4
7
6 4
7
6 4
7
6
2
204
5
2
1 5
2
1
5
6
7
4
5
104 3
6
3 7
4
5
2
184 3
0
0
6
164 3
7
4
7
6
224 3
0
2
3
0
1
5
4
7
6 4
7
6
1 5
2
0
0 4
1
2
5
64 1
2
1
0 4
7 0
3 7
6
84 1
4
2
3
4
7 0
1 5
6
3
6
102
5
2
3 7
6
5
2
1
5
2
162 6
0
5
122 3
1
0
3
0 4
5
2
7
2
82
7
6
1
4
5
62
7
1
0
42
0 4
3 7
6
3
6
3
0
3
4
7
6
142
1
0 4
1
7
4
3 7
6
182 3
0
2
3 7
4
202
5
2
6
1
7
4
1
5
2
5
140
160
5
6
222 3
0
2
3
0 4
220 2
1
7
6
0 4
180
5
2
1
0
6
5
2
120 1
1
5
6
80 2
100
5
2
5
3
0
3
0
1
0
1
2
2
4
2
60
7
6 4
7
6 4
7
4
3 7
4
3 7
6
3 7
4
200 3
7
6
1
6
6
5
2
1
118 1
5
6
5
2
98
5
2
1
2
1
7
4
5
40
0
3
78 3
0
5
2
5
3
6
1
0
1
0
20
7
6
3 7
4
3
4
2
58 3
0
1
4
7
6 4
7
6
3
0
138
5
2
3
0 4
0
0
2
4
7
4
3 7
4
158
7
6
6
3 7
4
5
2
198 2
1
6
178 3
7
6
0
4
5
2
3 7
1
136
5
2
176 2
0
0
5
2
1 5
6
5
2
76
7
2
116 3
7
4
156 3
0
6
3 7
4
154 7
5
2
5
2
1
1
0 4
4
96 3
1
0
7 0
5
2
38 3
6
56 3
5
36 2
1
0
5
2 6
18
1
4
1
0 4
7 0
3 7
3
6
5
3
5
2 6
16
1
4
1
0
2
7 0
3 7
4
3
6
7
6 4
7
6
3
0 4
7
6
114
134 3
7
0
4
1
2
5
2
5
6
94
5
3 7
4
7
4
1
0
3
0
5
7
6
1
2
3
5
2
74
2
92
112 1
5
6
4
1
2
54 3
0
7
4
7
6
72 1
2
1
0 4
5
3
0
1
2
3
0
52 3
0
5
1
2
34
2 6
5
2 6
14
5
32 1
0
4
1
0
3
0
3 7
4
7
6
5
3
5
2 6
12
1
0
1
0
2
7
6
3 7
4
3
4
7
6 4
7
6 4
7
6 4
7
3 7
4
2
3
6
132
6
5
2
110
4
1
4
2
70
7 0
3
0
6
5
90
2
4
4
5
2
50 1
0
1
0
3
5
2
30 3
7
6 4
7
6
3
6
88
6
5
2
5
2
68
2
4
1
0
5
6
7
6
1
1
1
0 4
2
48 3
5
5
2 6
10 3 7
6
1
4
2
28 3
0
1
3 7
0
5
8 3
0
2 6
1
0 4
7
6 4
7
6 4
2
7 0
4
1 5
3
5
2
46
2
6
7
4
44
5
2
26
0
5
1
0
3
6
1
3 7
6 4
2
7 0
4
5
3
4
3 7
6
6
2
24
2 6
1
0 4
5
6
7
6 1
0
3
1
0
5
2
3 7
4
2
3
2 6
1
4
2
2
3 7
0
5
0
4
2 6
1
0
5
6
3 7
6
1
0 4
There are 128 Local Rules with a type A boolean cube defined by a blue color at vertex 0 ( ).
2
3 7
6
1
0 4
5
240
February 14, 2011
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
50
Table 14(B). There are 128 local rules endowed with a period-1 spatially-homogeneous red orbit · · · for all L = 3, 4, 5, . . . , n.
Type B 2 6
0
4
1
3 7 1
0 4
7
5
2
2
1 5
2
7
6
1
0 4
5
2
7
6
1
0 4
5
1
0 4
5
2
4
1
2
183 7
6
1
0 4
5
7 1
0 4
5
7
6
1
0 4
5
2
7
6
1
0 4
5
2
1
0 4
5
249
5
2
2
1
0 4
5
250
5
2
4
5
251
1
2
1
0 4
5
252
5
2
2 7
6
1
0 4
5
253
1 5
2
2 7
6
1
0 4
5
254
1 5
2
1
0 4
5
255
1
0 5
2
1
0 4
5
246
2
1
2
5
237 1
247
1
0 4
7 5
3 7
6
3
0 4
5
226
5
6
1
0 4
3
2
3 7
6
236 3
7
6
1
0 4
235
7
6
1 5
5
215
7
6
1
0 4
5
2
3 7
6
225 3
0 4
2
3
0 4
7
6
3
245 3
7
6
2
4
244 3
5
2
234 3
0 4
1
0
5
224
7
6
1
0 4
3
4
7
6
243 3
5
2
233 3
0 4
1
0
1 5
1
7
6
5
204
5
2
1
0 4
214 3
3 7
6
3
0 4
7
6
223 3
5
2
1
7
6
213 3
0
1
0
193
5
2
5
2
203 3
1
0
3
0
3 7
4
7
6 4
7
6 4
7
6 4
7
6 4
7
6
242 3
7
6
1
0 4
1 5
2
232 3
5
2
222 3
0 4
7
6
241 1
5
5
2
212 1
0
1
0
3 7
6 4
7
6
231
5
2
1
0
1 5
2
7
4
5
2
202 3
6
211
221 3
7
6
3
0
3
0
2
4
7
6 4
7
6
1 5
2
240 3
7
6
1
0 4
220
230 3
4
1
2
1
0
5
2 6
192 3
7
4
201
5
2
1 5
1
0
191
5
182
7
4
1
0
3
6
3 7
6 4
2
1
2
2
181
5
6
5
3
0
3
0
4
7
6 4
7
6
3
0
3
0
5
3
0
1
0
2
4
7
6 4
7
6
5
2
210
7
6
5
2
5
200 1
0 4
3
4
7
6 4
7
6
239 3
7
6
1
0 4
1 5
2
229 3
5
2
219 3
0
1
0 4
7
6 4
7
6
238 2
1 5
2
228 3
5
1 5
1
0
3 7
6
7
4
199
209 3
1
1
2
190 3
5
1
0
5
171 3
7
6
180 3
0 4
2
5
2
5
6
4
7
6
189 3
0
3
0
4
7
6 4
7
6 4
7
6
218 3
0 4
1
0 4
7
6
227 2
1 5
1 5
2
2
198
208 3
1 5
2
5
1
0
2
170 1
0
4
2
1
0
5
3
3 7
6
1
4
7
6
179 3
7
6
188 3
0
3
0
4
7
6 4
7
6 4
7
6
217 3
5
2
1 5
2
207 3
0 4
216 2
4
7
6
1
0
5
2
7
6
206 3
3
5
5
178 1
1
2
2
7
169 3
0
5
5
160 3
0
1
0
159 6
3 7
6 4
2
1
0
149
5
3
5
2
1
0
1
0 4
7
6
3 7
6
3
4
7
6 4
7
6 4
2
2
168
5
3
0
5
2
1
4
7
6
187
197
2
1
0 4
205 6
196
1
2
5
2
4
7 0
1
0
5
2
158 3
5
2
148 1
0 4
7
6
3
6
177 3
0
3
0 4
4
7
6 4
7
6
5
7
5
2
186 1
0
1
2
7
6
3
6
4
5
2
1
0
5
2
167 3
7
6
176 3
0
1
0
5
1
0
3
5
138
7
4
7
6
157 1
4
1
0
1
1
0
3
6
3 7
4
2
5
2
2 6
137
147 3
7
6 4
7 0
5
2
2
3
6
1
166 3
5
2
4
5
3
0
5
156 3
0
1
0
1
0
1
4
7
6
146
7
4
7
6 4
7
6 4
7
6
3
4
2
5
2
1
2
195 1
0 4
5
2
185
5
3
1
0
5
2
175
7
6
3
0 4
4
3
4
7
6
7
6
5
2
194 2
1
2
184 3
5
1
0
5
2
165 3
7
6
174 3
0
1
0
4
164
7
6
5
2
1
0
1 5
2
3 7
0
5
136
7
4
2 6
1
4
3
6
3 7
0
5
2
3
6
155 3
5
2
1
0
145 3
0
1
0
2 6
135
7
6
3 7
4
3
4
7
6 4
7
6
1
4
3
4
7
6 4
5
2
5
2
173 3
0
1
0
5
2
7 0
163 3
7
6 4
7
6
4
3
6
1
5
2
154
2
7
1
0 4
1 5
2
144 3
7
6
153
0
5
5
3
6
1
0 4
2
1
2
172
5
2
5
2 6
134 3
0 4
1
4
7
6
143 3
7
6
152
162 3
1
0
2
1 5
2
3 7
0
5
133 3
0 4
2 6
1
4
7
6
142
7
4
1 5
2
3 7
0
5
132 3
0 4
3
6
7 0
4
7
6
2
3
6
161 2
1 5
2
1 5
2 6
1
4
7
6
141
151 3
7 0
3
0 4
2
3 7
0
5
131 3
4
7
6
150 2
1 5
2 6
1
4
2 6
3 7
0
5
130
140 3
2 6
1
0
3
0 4
3 7
4
7
6
139 2
5
2 6
129 3
0
1
0 4
7
4
3 7
6
128 6
There are 128 Local Rules with a type B boolean cube defined by a red color at vertex 7 ( ).
5
2 6
3
2
3 7
6
1
0 4
5
248
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
51
Table 14(C). There are 64 local rules endowed with two period-1 spatially-homogeneous orbits · · · and · · · for all L = 3, 4, 5, . . . , n.
Type C 2 7
6
1
0 4
5
2
3 7
6
2
5
4
2
5
4
144 2
3
5
2
4
3 1 5
2
4
2
3
4
2
5
4
7
6 4
5
2
2
1
0 5
7
6
2
5
240
5
242
1 5
2
244
2
246
2
5
248
5
250
2
5
238
7
2
3 7
6 1
252
1
0 4
3
5
3 7
6 1
0 4
5
222
5
6 1
0 4
4
3
2
1
0
236 3
3 7
6
7 0
5
2
1 5
4
7
6 1
0 4
1 5
1
206 3
2
234 3
4
7
6
3 7
0
220 3
0
1
0 4
7
4
7
6 1
5
5
232 3
0 4
2
1
0
5
6
2 6
5
6 1
5
190
204
7
1
0
3
2
3 7
4
7
4
218 3
2 6
1
0
3
0 4
7
4
7
6 1
5
2
1 5
2
5
6
5
6 1
3
2
5
174
5
6 1
2
216
230 3
0 4
4
3
1
0
188
202 3
0
3
0
4
7
6
7
4
7
6 1
0 4
2
5
2
1 5
6
228 3
3
4
7 0
200
214 3
2 6
1
0
5
3 7
4
7 0
186 3
1
2
1
0
2 6
5
6
5
158
172 3
1
0
3
0
3 7
4
7
4
7
4
7
4
7
4
7 0
2
1
0
1 5
6
5
6 1
5
4
7
6 1
0 4
1 5
3
2
2 6
184
198 3
2
226 3
4
7
6
4
7 0
212 3
0
1
0 4
7
4
224 2
5
6
2 6
5
6 1
210 3
3
2
5
3
0
182
196
7
4
7
4
4
1
5
170
7
1
2
1
0
2 6
5
6
5
142
156 3
1
0
3
0
3 7
4
7
4
7
4
168 2
1
2
1 5
6
2 6
5
6
5
140
154 3
2 6
1
0
3
0
3 7
4
7
4
7 0
3
0
1
2
4
7
4
7 0
3
0
208 6
5
6 1
0
2
1
2
1 5
6
194 3
2
180 3
5
6
2 6
5
6 1
0
3
0
3 7
5
138
152
166
7
4
7 0
192 2
1 5
6 1
0
2
4
2 6
1
0
3
0
3 7
4
7
6
5
4
164
178
7
1 5
6
2
1
2
5
136
150 6
2 6
1
0
3
0
3 7
4
7
6
3
0
3
0
2
4
7
4
7
6
176 6
5
162
7 0
2
1
0
1 5
6
5
134
148 3
2 6
1
0
3
0
3 7
4
7
4
7
4
160 6
1
2
1
0 4
2 6
5
6
5
132
146
7
6
2 6
1
0
3
0
3 7
4
7
6 1
0
5
130 3
7
6
2 6
1
0 4
128 2
3 7
6 1
0 4
There are 64 Local Rules whose Boolean Cube has a type C color combination at vertex ( ) and vertex ( )
3
1
0 4
5
254
February 14, 2011
52
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Table 14(D). There are 64 local rules endowed with two period-1 spatially-alternating orbits · · · and · · · for all even L = 4, 6, 8, . . . , 2n.
Type D 2 7
6
1
0 4
5 2
3 7
6
2
5
2
5
20 2
3
4
2
1
0 5
4
2
3
4
2
1
0 5
4
7
6 4
5
4
5
148 2 7
6 4
2
5
4
7
6
5
212
5
4
5
213
5
214
5
2
5
215
4
2
5
220
1 5
221
2
5
5
207
7
2
3 7
6 1
222
1
0 4
3
5
3 7
6 1
0 4
1 5
159
7
6
7
4
3
2
3
0
206 3
0 4
2 6
5
4
7
6 1
0 4
5
5
143 1
0
205 3
7
6 1
0 4
5
4
7
6 1
0
1
0
3
2
3 7
6
158 3
5
2
1 5
4
7
6 1
204 3
5
2
3
0
157 3
0 4
7
6
4
7
6 1
2
1
0 4
2
199 3
5
4
7
6
1
95
2
1
3 7
0
142 3
0
2
1
0 4
7
6
156 3
0 4
7
6 1
0 4
5
2
4
7
6
198 3
7
6
2
1
0
5
2
1
0
5
5
6
5
6
141 3
3
2
1
1
0
94
7
4
7
6 1
151 3
5
2
4
3 7
4
7 0
3
0
140
7
4
7
6 1
2
1
0
2
197 3
5
150 3
0
196 2
4
7
6 1
0
5
4
5
6 1
0
1
2
2
79
2
93 3
5
6
5
6 1
0
3
0
3
78
7
4
7
6
3
0
5
2
1 5
6 1
1
92
135
7
2
1
0 4
7
4
3 7
31
2
1 5
6
2
1 5
6
5
6
30
77 3
0
3
2
4
7
4
7
4
3
0
149 3
5
6
1
0
134 1
2 6
5
6 1
2
3
2
5
3
0
3
1
0 4
7
4
7 0
76
87
7
4
7
4
4
2
1
0
1
3 7
15
2 6
5
6
5
14
29 3
2 6
1
0
3
0
3 7
4
7
4
7
4
7 0
3
0
3
0
5
6
5
6 1
0
1
2
1
2
2
86 3
1 5
6
1
2
71 3
0
133 3
4
7
4
7
4
7
6
1
0
132 2
2 6
5
6 1
0
3
2
5
2 6
5
6
5
13
28 3
2 6
1
0
3
0
3 7
4
7
4
7 0
70
85 3
1
0
2
1
2
1 5
6
5
6
2 6
12
23 3
3 7
0
3
0 4
7
4
7 0
84 2
5
6
1
2
1
2 6 4
7
6
5
6
5
2
22
69
7
3
0
3
1
0 4
7
4
7 0
68 6
1
3 7
7
2 6
5
6
5
6
21
7
6
2 6
1
0
3
0 4
3 7
4
7
6 1
0 4
5
5 3
7
6
2 6
1
0 4
4 2
3 7
6 1
0 4
4
There are 64 Local Rules whose Boolean Cube has a type D color combination at vertex ( ) and vertex ( )
3
1
0 4
5
223
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
53
Table 14(E). There are 64 local rules endowed with a period-2 spatially-homogeneous orbit · · · ↔ · · · for all L = 3, 4, 5, . . . , n.
Type E 2
There are 64 Local Rules whose Boolean Cube has a type E color combination at vertex ( ) and vertex ( )
3 7
6
1
0 4
5 2
3 7
6
1
0 4
2
5
5
5
17 2
3
4
2
5
4
33 2
3
4
2
5
4
7
6 4
5
4
5
4
5
4
97 2 7
6
2
5
113
4
2
5
115
4
5
117
2
5
119
4
2
5
121
5
123
2
3 7
6 1
125
5
111
7
5
1
0 4
3
0 4
3 7
6
5
6 1
0 4
2
1
2
5
95
109 3
1
0 4
7
4
7
6 1
0 4
5
3 7
6
3
0
107 3
7
6 1
0 4
5
2
1 5
6 1
0
5
79 3
2
1
0
93 3
3 7
4
7
4
7
6 1
105 3
5
2
2
1
0
5
6
5
6 1
91 3
0 4
7
6 1
0 4
5
2
4
7
6
103 3
7
6 1
0 4
5
2
1
0
5
89 3
7
1
63 3
2
3 7
0
77 3
0
2
4
7
4
5
6 1
0
1
47 3
2
1 5
6 1
4
5
6
3 7
0
61 3
2
1
0
75 3
0 4
7
6 1
101 3
7
6 1
0 4
5
5
2
4
7
6
87 3
0
99 3
4
7
6 1
0
5
5
2 6
7
4
7 0
73 1
1
2
3
2
5
31
5
6
5
6 1
2
3
1
0
45
59 3
0
3
0
4
7
4
7
6 1
2
5
2
71
7
5
6
4
7 0
57 1
2
2 6
1
0
5
3 7
4
7 0
43 3
1
2
1
0
2 6
5
6
5
15
29 3
1
0
3
0
3 7
4
7
4
7
4
7
4
7
4
85 3
2
3
0
3
0 4
7
6 1
0
5
2
5
6 1
83 3
1
2
5
6
1 5
6 1
2
69
7
4
7
6
4
3
1
2
41
55 3
0
3
0
81 2
5
6 1
0
1
2
4
7
6
67 3
5
2
4
7 0
53 3
0
2 6
1
0
5
2 6
5
6
5
13
27 3
2 6
1
0
3
0
3 7
4
7
4
7 0
39 3
1
2
1
0
2 6
5
6
5
11
25 3
2 6
1
0
3
0 4
7
4
7
4
7
4
7
6
5
6
65 2
1
2
1
0
2
51 3
2
1 5
6
1
3 7
4
7
6
5
6
37 3
0
49 2
4
7
6 1
0
5
2
23 3
5
9
0 4
7 0
35
7
6
2 6
1
0
5
2 6
1
0
3 7
6
3 7
4
7
21 3
5
2
1
0 4
7
6 1
0
5
2 6
1
0
3 7
6
3 7
4
5
19
7
6
5
2
1
0 4
2 6
1
0
3 7
6 1
0 4
2
3 7
4
3 3
7
6
2 6
1
0 4
1 2
3 7
6
1
0 4
5
127
February 14, 2011
54
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Table 14(F). There are 64 local rules endowed with a period-2 spatially alternating orbit · · · ↔ · · · for all even L = 4, 6, 8, . . . , 2n.
Type F 2 7
6
1
0 4
5 2
3 7
6 4
2
5
4
2
4
3
2
5
4
7
4
5
4
5
4
112 2 7
6 4
2
5
4
160 2
5
176 2 7
6
5
224 2
3
2
5
240
2
1 5
241
3 1
0 4
5
242
2
1
2
2
2
5
248
5
249
1
2
1
0 4
2
2
3 7
6 1
250
5
235 3
5
1
0 4
7 0
4
3 7
6
5
6
5
187
234 3
1
0
3
0 4
7
6 1
0 4
5
3 7
4
7
6
233 3
1 5
2
1
0 4
7
6 1
243
5
2 6
186 3
5
171 3
0
1
0 4
7
4
7
6
232 3
5
2
1
0
1 5
3 7
6
5
6
185 3
2
1
2
5
123
170 3
0 4
7
4
7 0
4
1
4
7
4
7
6
5
6
5
6
2
184 3
5
169 3
0 4
227
7
6
1
0 4
226 3
0 4
1 5
4
7
6
7
6
5
1
0
3
0
3 7
6
5
6 1
0
2
1
2
5
107
122 3
1
0 4
7
4
7
6
168
5
2
2
1
2
5
3 7
6
3
0
121 3
0
179 3
0 4
7
6 1
0
5
6
3
0 4
7
6
225
7
6
1
4
7
4
7
6
5
2
1
0 4
2
178 3
5
2
163 3
0 4
7
6 1
0 4
5
2
4
7
6
177 3
5
1
0
5
2
1 5
6 1
0
5
59 3
2
1
0
106 3
3 7
4
7
4
7
6 1
1
0
105
120 3
5
2
2 6
5
6 1
5
43 3
2
1
0
58
7
4
7
4
7
6 1
2
1
0 4
2
162 3
5
4
3 7
4
7 0
3
0
3
0
115 3
0 4
7
6 1
0 4
5
2
4
7
6
161 3
7
6
2
1
0
5
5
6 1
0
5
6 1
2
2
1
2
1 5
6
57 3
2 6
42 3
0
104 3
4
7
4
7
4
7
6 1
1
0
99
114 3
5
2
2 6
5
6 1
5
3 7
0
41 3
2
2 6
1
0
56
7
4
7
4
7
6 1
0
5
4
3 7
4
7 0
3
0
3
0
113 3
5
6 1
0
5
6 1
2
2
1
2
1 5
6
51 3
2 6
40 3
0
98 3
4
7
4
7
4
7
6 1
0
5
2
1
0
97 3
2 6
5
6 1
5
3 7
0
35 3
2
2 6
1
0
50
7
4
7
6
4
3 7
4
7 0
3
0
96 2
5
6 1
0
2
1
2
1 5
6
49 3
2 6
34 3
0
48 6
4
7
6 1
2
5
3 7
0
33
7 0
2 6
1
0
32 6
3 7
6 1
0
4
There are 64 Local Rules whose Boolean Cube has a type F color combination at vertex ( ) and ) vertex (
3
1
0 4
5
251
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
55
Table 14(G). There are 16 local rules endowed with two period-1 spatially-homogeneous orbits · · · and · · · for all L = 3, 4, 5, . . . , n, as well as two period-1 spatially-alternating orbits · · · and · · · for all even L = 4, 6, 8, . . . , 2n.
Type G 2
There are 16 Local Rules whose Boolean Cube has a type G color combination at vertex ( ), vertex ( ), vertex ( ), and vertex ( )
3 7
6
1
0 4
5
2
3
2
7
6
6 1
0 4
4
132
5
3
2
7
5
4
196
5
2
5
4
198
5
2
5
4
204
5
1 5
2
4
206
5
2
5
4
212
5
2
5
4
214
5
158 3
2
5
3 7
6 1
0
1
0 4
7
6 1
3 7
6
156 3
0
2
1
0 4
7
6 1
3 7
6
150 3
0
2
1
0 4
7
6
3 7
6
148 3
0
2
1
0 4
7
6 1
3 7
6
142 3
0
2
1
0 4
7
6 1
3 7
6
140 3
0
2
1
0 4
7
6 1
0
3 7
6
134
2
4
2
1
0
5
6
3 7
1
0 4
220
5
222
Table 14(H). There are 16 local rules endowed with two period-2 spatially-homogeneous orbits · · · and · · · for all L = 3, 4, 5, . . . , n, as well as two period-2 spatially-alternating orbits · · · and · · · for all even L = 4, 6, 8, . . . , 2n.
Type H 2 7
6
1
0 4
5
2
3 7
6
2
5
2
5
97
99
5
2
5
105
5
2
5
107
5
2
5
113
5
2
5
115
5
2
5
121
5
59 2
3 7
6 1
0 4
1
0
3 7
6
3 7
4
57 1
0 4
2 6
1
0
3 7
6
3 7
4
51 1
0 4
2 6
1
0
3 7
6
3 7
4
49 1
0 4
2 6
1
0
3 7
6
3 7
4
43 1
0 4
2 6
1
0
3 7
6
3 7
4
41 1
5
2 6
1
0
3
0 4
3 7
4
7
6 1
0
5
35 3
7
6
2 6
1
0 4
33 2
3 7
6 1
0 4
4
There are 16 Local Rules whose Boolean Cube has a type H color combination at vertex ( ), vertex ( ), vertex ( ), and vertex ( )
3
1
0 4
5
123
February 14, 2011
56
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Table 14(I). There are 16 local rules endowed with two period-1 spatially-homogeneous orbits · · · and · · · for all L = 3, 4, 5, . . . , n, as well as a period-2 spatially-alternating orbit · · · ↔ · · · for all even L = 4, 6, 8, . . . , 2n.
Type I 2
There are 16 Local Rules whose Boolean Cube has a type I color combination at vertex ( ), vertex ( ), vertex ( ), and vertex ( )
3 7
6
1
0 4
5
2
3
2
7
6 4
5
4
5
2
3 7 1
0 5
2
4
2
3 1
0 4
226
170
5
2
4
232
2
4
234
2
5
4
240
5
2
5
4
242
5
186 3
2
5
3 7
6 1
0
1
0 4
7
6 1
3 7
6
184 3
0
2
1
0 4
7
6 1
4
5
5
3 7
6
178
7 0
2
1
0
3
6 1
0
5
3 7
6
176 3
7
6
2
1
0 4
5
3 7
6 1
0 4
7
6 1
5
224
5
2
3 7
6
168 3
0
2
1
0 4
7
6
3 7
6
162
2
4
1
0
160 6
7
6 1
0
3
1
0 4
248
5
250
Table 14(J). There are 16 local rules endowed with two period-1 spatially-alternating orbits · · · and · · · for all even L = 4, 6, 8, . . . , 2n, as well as a period-2 spatially-homogeneous orbit · · · ↔ · · · for all L = 3, 4, 5, . . . , n.
Type J 2 7
6
1
0 4
5
2
3 7
6
2
5
5
69
4
5
71
5
2
4
5
77
5
2
4
5
79
5
2
4
5
85
5
2
4
5
87
5
2
4
5
93
5
31 2
3 7
6 1
0
1
0
3 7
6
3 7
4
29 1
0
2 6
1
0
3 7
6
3 7
4
23 1
0
2 6
1
0
3 7
6
3 7
4
21 1
0
2 6
1
0
3 7
6
3 7
4
15 1
0
2 6
1
0
3 7
6
3 7
4
13 1
0
2 6
1
0
3 7
6
3 7
4
7 1
0
5
2
3 7
6
2 6
1
0 4
5 2
3 7
6 1
0 4
4
There are 16 Local Rules whose Boolean Cube has a type J color combination at vertex ( ), vertex ( ), vertex ( ), and vertex ( )
3
1
0 4
5
95
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 15. Gallery exhibiting the initial (t = 0) and final bit string (t = T − 1) for an Isle of Eden of the 79 topologically-independent rules having at least one of them.
N
L
T
1
9
2
2
9
3
3
9
18
4
9
1
5
9
2
6
8
8
7
8
1
9
9
3
10
8
4
11
9
2
12
8
1
13
9
2
14
9
18
15
9
18
18
8
2
19
8
2
22
8
2
23
9
2
25
9
2
26
8
16
Initial bit string x0 and final bit string xT-1
x0 x1 x0 x2 x0 x17 x0 x0 x0 x1 x0 x7 x0 x0 x0 x2 x0 x3 x0 x1 x0 x0 x0 x1 x0 x17 x0 x17 x0 x1 x0 x1 x0 x1 x0 x1 x0 x1 x0 x15
N
L
27
9 18
28
6
2
29
9
2
30
8
1
32
8
2
33
8
2
34
8
2
35
9 18
37
7
38
9 18
40
9
9
41
9
9
42
9
9
43
9 18
44
9
45
9 504
50
8
2
51
9
2
54
8
8
56
9
9
Initial bit string x0 and final bit string xT-1
T
7
3
x0 x17 x0 x1 x0 x1 x0 x0 x0 x1 x0 x1 x0 x1 x0 x17 x0 x6 x0 x17 x0 x8 x0 x8 x0 x8 x0 x17 x0 x2 x0 x503 x0 x1 x0 x1 x0 x7 x0 x8
57
February 14, 2011
58
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 15.
N
L
T
57
9
3
58
9 18
62
9
3
72
9
1
73
9
2
74
9
1
76
9
1
77
9
2
94
8
2
104 9
1
105 8
4
106 9
9
108 9
2
110 8
8
122 4
2
128 9
1
130 9
3
132 9
1
134 9
1
136 9
1
Initial bit string x0 and final bit string xT-1
x0 x2 x0 x17 x0 x2 x0 x0 x0 x1 x0 x0 x0 x0 x0 x1 x0 x1 x0 x0 x0 x3 x0 x8 x0 x1 x0 x7 x0 x1 x0 x0 x0 x2 x0 x0 x0 x0 x0 x0
(Continued )
N
L
T
138 9
9
140 9
1
142 9 18 146 9
2
150 8
4
152 9
1
154 9 72 156 9
2
160 9
1
162 9
1
164 9
1
168 9
9
170 9
9
172 9
3
178 9
1
184 9
9
200 9
1
204 9
1
232 9
1
Initial bit string x0 and final bit string xT-1
x0 x8 x0 x0 x0 x17 x0 x1 x0 x3 x0 x0 x0 x71 x0 x1 x0 x0 x0 x0 x0 x0 x0 x8 x0 x8 x0 x2 x0 x0 x0 x8 x0 x0 x0 x0 x0 x0
February 14, 2011
15:12
ch01
m
¢n-480
~
¢n
I -,----..----------,.
epn Chapter 1: Quasi-Ergodicity
59
0.5
0.5
O~""""'---'-"""""+--'--'-"""T"""~
o
0.5
ep n-l
(a)
o~..........---.--.--.f--,---.---.-.,........j o
(b)
Fig. 10. (a) Time-1 return map of period-3240 Isle of Eden. (b) Time-τ return map of the same orbit with τ = 480 resembles the left-shift Bernoulli-map.
2. Quasi-Ergodicity In the previous parts of our saga about Cellular Automata we introduced two kinds of graphical representations for the local rules: the time-1 return map and the time-1 characteristic function [Chua et al., 2005a]. The first one illustrates the evolution from a specific initial bit string as a Lamerey (cobweb) diagram for all times; the second one shows the output bit string corresponding to any possible input for one iteration. In general, a local rule has a unique time-1 characteristic function but many time-1 return maps, one for each initial condition. Therefore, a question arises: Can the time-1 return map and the time-1 characteristic function coincide? In other words, is it possible to extract information about the temporal behavior from the time-1 return map of a Cellular Automaton by looking at the spatial representation from its time-1 characteristic function? The correspondence between the temporal and the spatial behaviors of an important class of dynamical systems is a well-known concept dubbed “ergodicity”, and it is fundamental for a number of branches of mathematics and physics. Since a thorough treatment of ergodicity would go beyond the purpose of this introductory section, we will opt for a pedagogically more transparent approach by introducing the empirical concept “quasi-ergodicity”10 to stress its difference with “ergodicity”, which would require an in-depth measure-theoretic analysis. 10
Remarkably, “quasi-ergodicity” captures a peculiarity unique among the complex and hyper Bernoulli rules, thereby adding a further raison d’ˆetre for the classification summarized in Sec. 1.5, besides those based on the period, or the Bernoulli στ -shift, of the attractors defined in [Chua et al., 2007a], which differ from the complex (group 5) and hyper (group 6) Bernoulli-shift rules in the fact that they are independent from the initial configuration and the length L of the bit strings.
2.1. Only complex and hyper Bernoullishift rules are quasi-ergodic By visual inspection, we noticed that for certain rules the time-1 return maps corresponding to different initial conditions are indistinguishable, and they tend to be very similar to the time-1 characteristic function too. As we mentioned before, this behavior is somehow related to “ergodicity” but, in order to emphasize that this phenomenon has been observed empirically, we preferred to introduce the property of “quasi-ergodicity” via the following definition. Definition 2.1. Quasi-ergodicity. A rule is said to
be quasi-ergodic iff given an arbitrary point P belonging to an attractor ΛP , it is possible to find a point Q arbitrarily close to it which belongs to another attractor ΛQ which is visually indistinguishable from ΛP .
D
A graphical illustration of the quasi-ergodic property is given in Fig. 11, for a generic rule N .
“Quasi-ergodicity” is an expression widely used also in statistical physics; however, in this context we employ it in a different, albeit related, way.
February 14, 2011
60
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
1
Φn
I
0.75
lIE lIE I point P belonging to attractor ΛP through P
Q
0.5
-ε
ε
point Q arbitrarily arbitrarly close close (|P-Q ε) to P belongs to (|P-Q|< another attractor ΛQ
0.25 0
P
0
0.25
0.5
0.75 Φ n-1 1
Fig. 11. For a quasi-ergodic rule, given an arbitrary point P (in red) belonging to the attractor ΛP in the time-1 return map, there is a nearby point Q (in blue) belonging to another attractor ΛQ which is empirically indistinguishable from ΛP .
D
Figure 12 shows one of the consequences of quasiergodicity of rule 110 : Since the time-1 return maps corresponding to three different initial conditions cling arbitrarily close to each other, the Lamerey (cobweb) diagrams (Figs. 12(a)–12(c)) obtained from their superposition in Fig. 12(d) are visually indistinguishable. We cannot overemphasize that Definition 2.1 is only an empirical definition for the new phenomenon to be described in this section. In particular, we have found that only the complex and hyper Bernoulli-shift rules, corresponding to the fifth and sixth group in Sec. 1, are quasiergodic. This observation is remarkable because it introduces a particular feature possessed by only rules belonging to these two groups, within the more general class of Bernoulli-shift rules. So far, our distinction between the Bernoulli στ -shift rules from group 4 and the complex and hyper Bernoulli-shift rules from groups 5 and 6 is that the two Bernoulli parameters σ and τ from group 4 do not depend on the initial configuration, or the length L. Table 16 shows the Lamerey (cobweb) diagrams for the 18 complex and hyper Bernoulli-shift rules. Observe that the map (starting from a random initial condition) tends to cover the whole horizontal axis — except for some gaps formed by
sub-intervals madeD of Gardens of Eden, and isolated Isles of Eden which are not visible due to printing resolution. D Furthermore, the vignettes in Table 17 show that for these 18 rules the time-1 return map for an arbitrary initial condition tends to be very simiDlar (except for rule 73 ) to the time-1 characteristic function, as required by quasi-ergodicity. An accurate analysis reveals that rule 73 is an exception to this general behavior, because different initial conditions generate different time-1 return maps. Nevertheless, we noticed that rule 73 has only two kinds of possible time-1 return maps corresponding to two sets of mutually exclusive initial conditions (except for, as usual, a D Isles finite number of isolated periodic points or of Eden) exhibited in Table 17. Moreover, all initial conditions belonging to the same set give indistinguishable time-1 return maps. Hence, instead of having quasi-ergodicity all over the axis φn−1 , there are two regions, each exhibiting quasiergodicity. Therefore, we say that rule 73 is weakly quasi-ergodic, according to the following D definition.
D
Definition 2.2. Weak quasi-ergodicity. A rule is
said to be weakly quasi-ergodic iff it is quasi-ergodic D in a finite number of disjoint regions, whose union gives the whole axis φn−1 . Among the 256 local rules, 73 and its global topologically-equivalent rule 109 are the only D ones to exhibit weak quasi-ergodicity. The property of weak quasi-ergodicity of rule 73 is evident from Fig. 13, in which the two different time-1 return maps are depicted in Figs. 13(a) and 13(b) and then their union in Fig. 13(c) is compared with the time-1 characteristic function χ173 in Fig. 13(d). Finally, we can identify a further type D of rules within the quasi-ergodic ones thanks to the following observation. While it is true that the time-1 return map of most quasi-ergodic rules tends to cover almost everywhere the unit interval φn−1 ∈ [0, 1], sometimes relatively large compact regions are excluded (notice the gapD for D rule D 18 D in TaDbigD ble 16 when φ > 0.8); in general, this behavior is observable by increasing the length L of the bit strings. Nonetheless, for some rules we cannot see any gap in a generic time-1 return map independently from the length L of the bit strings. These rules — namely 30 , 45 , 60 , 90 , 105 , 106 ,
February 14, 2011
15:12
ch01
l ,
L = 601 Chapter 1: Quasi-Ergodicity
61
0.7;,
0.5
0.2:>
0.25
l ,
L = 601
l , L
4>"nlil (a)
0.5
0.75
= 601
(b)
0.7;,
0.7;,
0.5
0.5
0.2;,
0.2;,
0.75
4>,,-1
0.25
0.75
D
(c)
(d)
Fig. 12. Lamerey (cobweb) diagrams corresponding to three different initial conditions for rule 110 : Because of quasiergodicity, when the diagrams are superimposed they are practically indistinguishable.
February 14, 2011
62
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Table 16. Lamerey (cobweb) diagrams for 18 complex and hyper Bernoulli-shift rules: Since these rules are quasi-ergodic, the qualitative features of their Lamerey (cobweb) diagrams do not depend on the initial condition.
1 <1>/1
0.75
18
22
L=203
L=101
0.5
0.25
0.25
0.5
0.75 ffi
'+' /1-1
1
0.25
1
_
0.75
30
1 _ - - - -..........- - - - _
26
L=201
<1>/1
0.5
0.75 ffi
'+'1'1-1
1
L=101
0.5
0.25
0.5
0.75 ffi
'+'1'1-1
1
0.25
0.5
0.75 ffi
'+' /1-1
1
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 16.
l~~~ 41 L=601 0.75
(Continued )
1== 45
0.5
0.5
0.25
0.25
0.25
0.5
0.75 th
'+' /1-1
L=101
0.75
1
0.25
lr---_
0.5
0.75 th
'+' /1-1
1
lr------r----:
54
L=201
0.75
60
L=101
0.5
0.25
0.5
0.75 th
'+' /1-1
1
0.25
0.5
0.75 th
'+'/1-1
1
63
February 14, 2011
64
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 16.
(Continued )
-
1
1 ./
./
,///
<1>/1
0.75
73
<1>/1
L=80 /
//
73
0.75
./
/
,"
/
L=94 /
/' ./
/
/ "
1/
//'
0.5
/
/
0.5
1///
/11
,,/
/
0.25
/
./
./
./
/
0.25
./
"
./
./
00
0.25
0.5
0.75
/1-1
0.25
1
lr--<1>/1
0.75
0.5
0.75 It.
'V /1-1
1
1
90
105
L=101
L=201
0.5
0.5
0.25
0.5
0.75 It.
'V /1-1
1
0.25
0.5
0.75 It.
'V /1-1
1
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 16.
(Continued )
1__----.--
0.75
106
110
L=101
0.5
0.5
0'25~
0.25
0.25
0.5
0.75 th
'V 1'1-1
1
0.25
0.75
0.5
0.75 th
'V 11-1
1
l r -......._
1 r----.=:::;
L=601
122
L=201
0.75
126
L=201
0.5
0.5W1E
0.25
0.25
0.25
0.5
0.75 th
'V 11-1
1
0.25
0.5
0.75 th
'V 11-1
1
65
February 14, 2011
66
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 16.
(Continued )
Jr------"""'T"'""--------,.
146 0.5
L=301
1
<j)n 0.75
150
L=201
E=
0.25
lr----
154
L=601
0.5
0.75 th
't' n-1
1
February 14, 2011
15:12
ch01
("")
a
--
on
r-
6
""II
-e-c
t-
on
Table 17. Quasi-ergodic vignettes of 18 complex and hyper Bernoulli-shift rules. For each rule it is depicted: (a) the time-1 characteristic function, where χ(φ) is in red (resp. blue) if the last bit of the string is 0 (resp. 1), and purple when both points coincide due to printer resolution; (b) the time-1 return map corresponding to the initial condition indicated in (c); (c) the space-time pattern corresponding to a fixed initial condition.
N
II
6
0
.r;
f0
N
6
II
....J
(".~
:c-
IIr
-e-
6
0
0
-.:t -.:t 0\ -.:t
0
("") V")
-e-
r("") N 0\ 00 V") ("")
r-
'0>
~
r("")
0
-e-
'<:;
("")
"J
II
f::
0
0
on
V)
0
~
rr-
o on
e: r--;
~
~
0\
0\
'-
s:: ":- ..e;, ~
0
~
0 II
~
0\ 00 00
~
-
~
~
':0:::.
'('oJ
II
-e
~
§]~'
<:;;
~
~ "" - I~
1.0 N 0 V)
r-
II
t-
'"'I
II
.
f-
..
g
' ~
""
~
'.
--C)
\...l
'"
-~c::,;
':>
..
'
.
"
.'
0
,,~'.J
.
-e-~ V)
6
~
"
",
.'
co
.
0\ N V")
co 0
.
' V)
N
I~
..,...... ~
-.:t -.:t
00
0
("") ("") ("")
0
0
....'.l
"'~ ~4
..j
...~
-N II
-e
-
')
..-- .•",
.
l
~.. '4
..
,
~
~ .....<1
......01
..."1
~.. 'J
..-I/. ,
.
I ..
~
"'~
..
.... .....
r,
67
(Continued )
(tJ ~¢J = 2- 11 y,.(q,) printed red (bl/le) ~ (b) L=27' 4 = 108 T=3239
b) L=IOO, T=2 17 =lJI,072 I
1ft
X~
'i'
0.7 )
l
,~
.,.-:
f
0..,
0I 0
t.. ' ~,.
,
I'~
1,,1. l ( ....
0.25
I 0.5
!
0.75
. •
~
J
0.5
:'
•
. [7 '"
If'," .. t..J#~
'
"' 0.25
J....
0.75 ~ 1
'1/ -
o
7
X~,. ~'....... •
'.
.
• / __I
....
...
"
0.5
0.5
r
..
7r 7-.
I Iii:
I
,
t
~'
0.2
,,\
0.25
; ; ' "..
"
"
.--,
o
/
.'
.
,
.'
0.5
0.25
':r 0 0.75
0
0.25
0.5
0.75
¢
-+--7,
'"
I
0,"::
o
X
~
""l'
1
I_
t...; : 025
•
I::, ?II
,'I 0.5
¢
075
n-I
n-I
't'T
........ .. .... ...... ...
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
,+"
't'T
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••_1
ch01
'I!' f~ , l ....
1/ oj
.... t..
'"
0.2 )
I"...
15:12
] ,.j!laJ'~·~D~Cf.,.,~~I'~ kl
,
February 14, 2011
Table 17.
-
-/I
(a) t.<j> - 2
X(¢!) printed red (blue) iflast bit of ¢ = 0 (I)
I
~ r~ -t
XIm 0.7~<
./
f,
t
~
'i
~
0.2
{
o
0.5
~t
..',!
Il' ,/' 'i
0.25
\
..
+&
~
~
. 'tt.
,,-
t
.t
..
0.75
0.5
0.25
t '' i .. .t.. 0.75
,
I
o
- ..
...
/ .-
o
/ \
1/ .. 0.5
/ '
.
...
G>
. ,, .
(b) L=lOO, T=2'7=131,072
rlI
0.5
L.
V
&
0.25 -1-"" Y
0.2
A
'''I
•
....,
..- I ~
00
0.75
0.25
0.5
0.75 G> I
oV o
"
I
0.25
0.5
G>
I~i~~"
0.75
n-I
n-I
(c)
iflastbitof¢!=O(l)
0.)
. •
0.25
I
(c)
<1>0
<1>0
69
.......................
T 1••--••••••••__•••__••••••••__•••__••••••••__•••__••••••••__•••_ ••••••••••__•••••
T
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
ch01
O. ,.
'" t ..
c'
n
ILl ~hr~,~J ,":U ;;JS]4~l3Z1 (a) tHjJ = 2-1/ x(q») printed red (blue)
T=2'7 =1 31,072
15:12
I~
~
1
IIIE.m (b) L=l 00,
(Continued )
February 14, 2011
Table 17.
(a) Li<jJ = 2~tt 1
a
X(4l) printed red (bIUe)m iflastbitof4l=O(l) ~ (b) L=IOO, T=z!7=13J,072
IT]
f,~? r"."4." ~
,.
I <1> 0
0.75
I-t;
... ..
.,
. .", . .. . ~
'
0.5
...
0.25
......
~
.."
"
•....no
......
~~
••
Or 0
0.25
0.25
0.5
0.75
•
1
0
.
.
1.
o
0.25
0.7
J/
1/ 1/ ~
[7 x~Cf\~ ,..
'"
......
' f
" ..
~"'"
"
~~ lI-"'"
• .:!
.
0.2
~
"'f
1 "
o
0.5 <1> 0.75 0-1
,.",., IA"
0./5
~
~
0.25
0.5
0.5
r
0.25
I
~J.~
'1-"
,.""jo
0.75
o
1
70
iEE! EI
EI
iUl I
I(
'1"',
-
,.
X
..
I
,
I 0.25
"
,''\'
iIEEiiil·.'EI I,EEEII IIIII IBiEiBil!llllil
..
..
iI Ii -
iii
ii
-
IE
, I
0.395283707836447
Ii
,
I
0.5 > 0.75 n-l
,
0
I...
..,...
!ill. iiii i Ei -
1l1li
OJ
fti
IEIIIIIIIE.IIIIIEIEIC_II"I':IIIEIIIII_III IIIII IEIIIEI!I!llliill, .liiliil-EliiI-IIII!I!I!II· 1!IEliil!lc IIIIIII!II
:111
or
1;&11
o
00
iEI ii EEl . iE !iii
, 7
~
,. I'jo
'-\
m OJ
,
1'...
,.~
#'"
1 \'..
(c)
,.~
,
I $~ID.~"\J/"0
x
O. -l
~ (0) L=IOO 1'=2 17=131072
x(
iflastbitofifl=O(l)~'
ch01
"'o,
r..
0.5
.. $o .. t
(a) M = 2~11
15:12
'I
X~~ lEI
(Continued )
February 14, 2011
Table 17.
ti
III : iii iEi .
-
,.
ti
il
III III - II . i!i
. . ._. ._. . . . . . _._ . . . . . . _._._ . ...............
.
(a)
L1~ 1
= 2- 11
(b) L= 100, T=i 7 = 131,072
bit of <jl- 0 (1)
I
1
-
I
I
..
I
I
I ¥~
•
0.75
I
...
~
.
•
..
"X
I
.
...
0.75
.1
/...
0.5;
'oJ
~
\"
01 0
..
!
,-..
...
I
eM
0.2$
'II
Va-
0.$
I
0.7$
'\ I
0.25 ...
o-v:
., 1
0
A
~
.•
I
i
0.25
OJ
.1
~.' J~
.,..
0.2j;
.
0.75
u
\l' .~
\. ~_\a\ 00
..
0.25
\1'
"lJ~
\., '\
O.bl x
~,
v~
'r \.
I
XIZIl .
'II,
...;
0.5
~'"~
-~
0.5
\.'
0.75
0.25
\" \'
-~
o
1
(c) 71
/
1/ /r"l\ ~.
.' •
.....
o
0.25
0.5
...
0.75
n-I
n-I
(C)
1/
..
\'
\
\l'
\.
0.75
\.,
'
. • \ -.,\...
~
ch01
0.5
I
1r>'
1
I
~
XIZll 0.751 11'
red (blue) . 17 (a) L1<jl = 2- 11 ifx<4»lastprinted bit of If = 0 (1 ) (b) L = 100, T = 2 = I3 I ,072
(c)
15:12
K
I
X<'I» printed red (blue)
if last
(Continued )
February 14, 2011
Table 17.
(a) M = 2- 11 ~(ij))printed red (blue) ~ 1
iflast bit ofij)= 0 (1)
'[IJ '~.v' I.,
0~5
•
t
r
0.25
I
;;
&.. ,
I
co
Y.
'i
,i;
0.25
A
Y
1"
I
I
.... I ,
• I ....
,'i,
I
I
1
ch01
0.5
J2J
\'
15:12
(c)
17
T=2 =131,072
I
I.
o r, o
~o
(Continued )
,
- ' ( b ) L=100,
~ X~~ ~
1
February 14, 2011
Table 17.
I
l
o
0.5 . 0.75 n-l
0.459111017087255
0.25
0.5
0.75
n-I
(c) ~o
0.210557453751221
72
.......................
•••••_ ••••••••••••••••••••••••••••••••••••••••••••••••-_._._-_._••••_•••
.......................
T
I••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
a ~ =2- 11 x(¢)prinledred (blue)
(V
I
I
XlmI
.rIT"(b) L= 100, I
I
-.
•
0.75
i
i
(a) M = 2- 11 xJ~)prif1ted
T=2 17 = 131,072
&MIiM n
I"
0.751
(Continued )
..
>.
i
7
7l
XrriijIIL~j;~·J3: '" '" I
1
I
;
'1
J
I
W
II
..
I
red (blue)
A
~ a~
I
A
.--
P\
r
r
.1.'
0.5
I
0.25 -f----:J'
0.25
0.5
,. r
Y
I,'
~
.. I
05
0.75
0.5
I~
.-A
0.2:J;
0 025
'I' n
.' •
~5
'I.
0.5
,.1;'
f
....... , t •
0.25
0
0.25
0.5
0.75
I
o
------:."'1, ,
7
o
JI.
t/ '/
<1>0
0.454963695923757;
~.. .
'l,
it'"
•"
(c)
0.25
¢T
••••••••••••_
0.5
0.75
0.993892907368291
.................... • • • • • • • • • •_ . _ • • _
•••••••••••••••_
•••••_
II
';.
73
<1>T
,,-
11-1
¢o
\
#1.
.. ....
~
,
n-I
(c)
,'i. .'
• • • • • • • • • •_
••••••••_
•••••_
• • • • •1
ch01
•
'.
L=23'4 = 92 T=1057
I"
A
0.51
r
I'WII' (b)
15:12
I
ifZast bit of ~ = 0 (I) i . Ji i 11"
February 14, 2011
Table 17.
(Continued )
(a) t. = 2- 11 x(t!Jlprinted red (hltre) I'I:ft (b) L = 100 T = 2 18 = 262/44
I.
I
"1 ~I
~ ~, ,.~
ft.' If'
,.
~' .if,
l 0
"
"". If ,.\
~'
_. 0.2:'
. 0.'
"\
~
I
,....
0.25 ~
0.75 I
.~;/ o
1/ '/
0.25
0.7)
,,
"
,.
. '\
o. •
II:IP.I
I
0.75
"
" 0.5
0.25
,.
:f'
. -0.2:,
-0.5
0.75 I
o
262,/44
. "JV / . I
/
.-
;/
f
I· I I
a
0.25
0.5
0.75
n-l
n-l
(c)
.
=
.
,"
\
o
I
n 0.75
"
'y- ,
l .
1
~.
~ 4 j
-' j
l'
,"",-1
18
l.a!.I(b) L = 100, T = 2
r - - ....~
...
0.2 \
/
0.5
_
~
fi
I
a
if last bit old;! = 0 (I)
I
["""-;f" I f/ XIillJO-:....~"U ,-
Il
It
.
, ,"
0.5
I'
,. ..
n
~,.-
Ii'
,.j.
0.75 ~
,,\
1
(aJ t.<jl = 2- 11 X(d;!) printed red (hllle)
,
ch01
0
I
fIo-
If""
0.5I~"
,
fl.'
"I~
,~
.\ .1
0.2
,..
,
<1>0 = 0.587057386127713; T= 0.952197075820593
(c)
74
<1>0 = 0.700012154501655;
15:12
XIilll 0,7 ,
~
iI/astbitold;!=O(I) .I> I .... Mil.'",
February 14, 2011
Table 17.
0.809338561752269
a' L'l. = 2- 11 X(<j» printed red (hlue)
0')
iflaslbitof<j>=O(l)
0.7.5
•
W
I
...
' "1· ~
:
n_
.
0.7)
It
~.
J••
I"
J
0.5
• l.
0.2..
0
0.25
0
0.25
0.5
T = 2 18 = 262,144
0.75 <1> 1
o
l/ o
/ ~.
~
0.25
7
7
ch01
0.5f
(Continued )
15:12
'1 0
xlillJ ---d:. , 1I
I...E.fiI (b) L = 100,
February 14, 2011
Table 17.
,
i>~
0.2.51
I
. to
.
~-~
/.
.
11
I
'I
T
...
I..
«I
o ar
I
05 ~
i
075
<1>0=
0.4285713689631575;
<1>T=
Ii 0.25
I
;a , i ~i
« II '
I
05 ~
0.75 n-t
n-t
(c)
,
0.172138288850949
(c)
<1>0 = 0.25169916877883; <1>T=
0.210557453751221
¢o
¢o 75
¢ T , ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
1
th
'l'T
I
.......................
.
r
February 14, 2011
15:12
ch01
(aJ 76
,:1,.<1> =
J
2-1/ x(¢!) printed red (blue) if fa:>t bit oj = 0 (l)
~ (b)
I.Di.I I
L = 100 T = 2 17 = 131 072
'
,
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science ,
Xl[ill]
I,'"
O.7:>-rI,
III,
I
'..
Table 17.
~n
,
• (
)'
0.5 I'
o <1> J
(c)
<1>0 =
0.250062064340869;
1/
--p I I
0.25
o
<1>1'=
~
0.25
J'
1/
/
.
(Continued ) 075
.
;.
i ,: 0.5 ~ 0.75 n-1
0.154807393439345
T
....... .......... .. ....
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
DD
150 , 154 — will henceforth be called strongly quasi-ergodic.11 Definition 2.3. Strong quasi-ergodicity. A quasiergodic rule is said to be strongly quasi-ergodic iff its time-1 return maps tend to cover the whole unit interval φ ∈ [0, 1], except for isolated points, independently from the bit string length L. The gaps are created by three different mechanisms: First, the transients, because we do not display them in the Lamerey (cobweb) diagrams; 11
second, the Isles of Eden; and third, the Gardens of Eden.
2.2. Quasi-ergodicity and Gardens of Eden From Definition D D2.3, it is clear that a necessary condition for strong quasi-ergodicity is the absence of non-isolated compact sets of Gardens of Eden since, as we mentioned previously, they generate gaps on the horizontal axis. As an illustration, Table 18
It is also possible to prove that strongly quasi-ergodic rules, along with 15 and 170 , are actually ergodic, according to a formal mathematical definition [Shirvani et al., 1991; Shereshevsky, 1992].
February 14, 2011
15:12
ch01
III 1
.."
0.75
. 0.5
0.25
o
III
L=100
V
""
4"....
V VI
•. '" • ......
V
L=100 Chapter 1: Quasi-Ergodicity
77
-I-....:.<..---+---+---------:,f-------I
0.5
-1:----+----,1£----+-------1
~
~
..
0.25
-1_-'---_+-_ _+--_ _+--
----1
~
~
~
..
\
I
o
0.25
0.5
o
0.75
0.25
0.5
0-1
III .."
r@]
(a)
.."
0.75
III
L=100 1
....
•,..
""
..
0.5
--\.,
0.25 ~
~ ..
0
...,
\"
. ....
~
"',
0.25
~
-~
,
~
\:~
\1,
0.25
0.5
\,'\
-,
~
~~\ ~, \'\
"\.':\.,
\., ~\.:\ o
.
~ ~,
~':\.\
~
0 0.75
.,
~
\.\
• "-
'\.
0.5
,
(b)
\t, ~
....
0.25
..."
0.75
*...
0
1',
~
0.5
0.75
0-1
-,
~
0.75
D
(c)
(d)
Fig. 13. Rule 73 exhibits a weaker form of quasi-ergodicity with 2 distinct time-1 maps (a) and (b), whose union in (c) resembles the time-1 characteristic function in (d). Points in (d) not present in (c) are transient points.
February 14, 2011
15:12
ch01
lEI Strings starting with (111 ... ) are GoE => 0.875 S 9< 1 78
Xl A Nonlinear Dynamics Perspective of Wolfram’s New I Kind ofI Science I I I I I
HI
I
III
0
Table 18.
O.125 0.25 0.375
0.5
0.625 0.75
I
0.875
lei>
1
Non-strongly quasi-ergodic rules have compact sets of Gardens of Eden.
Strings starting with (010101001 ... ) are GoE =>0.33 < ¢ < 0.332 Xl
I
'III 0
I
I
0.125 0.25 0.375
0.5
0.625 0.75
0.875
lei>
0.625 0.75
0.875
1
III Strings starting with (1111 ... ) are GoE => 0.93 < ¢ < 1 Xl
m
I
'm 0
I
I
I
0.125 0.25 0.375
0.5
lei>
Strings starting with (10111 ... ) are GoE=>0.719s¢<0.75 Xl
I
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
lei>
III Strings starting with (10101 ... ) are GoE::::} 0.656 ~ 9< 0.687 Xl
m
•
I
I
I
0
I
I
I
0.125 0.25 0.375
I
0.5
I
I
0.625 0.75
0.875
14>
1
Strings starting with (100111 ... ) are GoE=> 0.609 s Xl
'ID
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
.4>
11m Strings starting with (01010... ) are GoE=> 0.3125 ~ X}
¢ < 0.625
¢< 0.344
I
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
lei>
1m Strings starting with (00100... ) are GoE => 0.125 S ¢ < 0.156
11m Strings• starting with (010... ) are GoE => 0.25 < ¢ < 0.375 Xl
I
I
0
Xl
1m
I
I
I
0.125 0.25 0,375
I
0.5
I
I
0.625 0.75
I
0.875
I
I
0
I
I
I
0.125 0.25 0.375
I
0.5
I
I
0.625 0.75
I
0.875
lei>
1
14>
1
I!rd Strings starting with (111001 ... ) are GoE => 0.89 < ¢ < 0.906 Xl
1m
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
lei>
February 14, 2011
15:12
Ell III
ch01
X. Xl
Table 19.
ImI]
0
X• Xim
lID
XII X. Xl
0.125 0.25 0.375
0.5
0.625 0.75
0.875
l1li
I
0.125 0.25 0.375 I
I
I
0.5 I
1
Chapter 1: Quasi-Ergodicity
Strongly rules sets Iof Gardens I quasi-ergodic I do not Ihave compact I I of Eden.I I
• •ImJ t. 111m
0
0.625 0.75 I
I
I
0.875
1
I
I
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
1
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
1
I
0 I
I
I
I
0.125 0.25 0.375 I
I
I
0.5
I
I
I
I
0.875
1
I
I
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
1
0
0.125 0.25 0.375
0.5
0.625 0.75
0.875
1
I
0
I
I
I
I
0.125 0.25 0.375
gives examples of non-isolated compact set of Gardens of Eden for those quasi-ergodic rules that are not strongly quasi-ergodic. In contrast, Table 19 shows that strongly quasi-ergodic rules can have only isolated Gardens of Eden. Finally, we note that all strongly quasi-ergodic rules are also permutive (see Tables 8 and 9). This follows from [Hedlund, 1969], who proved that in one-dimensional CA only permutive rules are surjective, in the sense that they have no Gardens of Eden when L → ∞.12 Hence, only permutive rules can satisfy our necessary condition for strong quasi-ergodicity.
I
I
0.625 0.75
I
0.5
I
I
I
0.625 0.75
79
I
I
0.875
I
functions of one-dimensional Cellular Automata, and some partial explanations for this phenomenon were given. In this section we prove a general theorem that gives more thorough results and provides an analytical formula for finding the fractal patterns.
3.1. All time-1 characteristic functions are fractals
3. Fractals in 1D Cellular Automata
In order to specify explicitly the number of bits contained in a generic string x, we introduce the notation . . (15) xI+1 = (x0 . . . xk−1 .. ..xI )
In [Chua et al., 2005b] it was shown that fractals arise naturally in the time-1 characteristic
to indicate the set of bit strings composed of I + 1 elements in which the first k elements and the last
12
When L is finite, injectivity implies surjectivity and vice versa, as proved in [Moore, 1962] and [Myhill, 1963].
February 14, 2011
80
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
. . one are known. For example, x6 = (01.. ..1) is equivalent to the set {(010001), (010011), (010101), (010111), (011001), (011011), (011101), (011111)}. Since any bit string x can be uniquely associated with a real number φ(x) ∈ [0, 1), the set of bit strings defined by Eq. (15) corresponds to a subset of points of the unit interval [0, 1], with the formula
D (xI+1 ) = φI+1 (x0 . . . xk−1... ...xI ) φI+1 =
D
I
D i=0
xi 2−(i+1)
(16)
Similarly, the time-1 characteristic function for the local rule N corresponding D to the set of bit strings φI+1 (xI+1 ) is defined by χ1N
,I+1
D
(xI+1 ) = χ1N
D =
I i=0
,I+1
(a)
. . (x0 . . . xk−1 .. ..xI )
T N (xi−1 xi xi+1 )2−(i+1)
D
(17)
where T N (xi−1 xi xi+1 ) denotes the application of the local rule DN to the triplet pattern (xi−1 xi xi+1 ). To avoid clutter, we will usually delete the commas (xI+1 ) by separating bits, and abbreviate χ1
D
D
N ,I+1
χI+1 (xI+1 ).
Theorem 3.1. Fractality of the time-1 characteris-
tic function χ1 .
(b)
N
The time-1 characteristic function
χ1 N
of any
rule N exhibits a fractal behavior in any subinterval of φ ∈ [0, 1). Given an arbitrary natural number I > 1, .. .. we define the two bit strings xα I+1 = (0. .0) and .. .. xβ I+1 = (1. .0). According to the notation introduced previously, xα I+1 is the set of all bit strings composed by I + 1 elements with x0 = 0 and xI = 0, whereas xβ I+1 is the set of all bit strings composed by I + 1 elements with x0 = 1 and xI = 0. Their equivalent decimal representations . . . . are φα = φI+1 (0.. ..0) and φβ = φI+1 (1.. ..0), and it is easy to prove that 0 ≤ φα < 1/2 and 1/2 ≤ φβ < 1. Since φα ∪ φβ = [0, 1) as I → ∞, we can divide the time-1 characteristic function χ1 Proof.
D
D
N
for a generic rule N into two parts, one for each . . interval: χα = χI+1 (0.. ..0) in correspondence to φα
Fig. 14. The four fractal patterns χα , χβ , χγ and χδ and their position in the time-1 characteristic function.
. . and χβ = χI+1 (1.. ..0) in correspondence to φβ [see Fig. 14(a)]. An analogous procedure can be followed when xI = 1, leading to the definition of the two . . . . strings xγI+1 = (0.. ..1) and xδI+1 = (1.. ..1), and their equivalent decimal representations φγ = . . . . φI+1 (0.. ..1) and φδ = φI+1 (1.. ..1), where 0 < φγ < 1/2 and 1/2 ≤ φδ < 1. Also in this case the time-1 characteristic function can be divided into . . two parts: χγ = χI+1 (0.. ..1) in correspondence to . . φγ and χδ = χI+1 (1.. ..1) in correspondence to φδ [see Fig. 14(b)]. Let us consider a generic set of bit strings xk+I+1 , each composed of k +I +1 elements, having
February 14, 2011
15:12
ch01
D
D in common the first k + 1 and the last element k bits
xk+I+1 = (x0 x1 . . . xk−1
I+1 bits
.. .. xk . .xk+I )
i=0
(18)
According to the formula (16), we can associate to the set xk+I+1 a unique interval of values in [0, 1) called φk+I+1 , in which a certain χk+I+1 can be defined. Our purpose is to explore the behavior of the function χk+I+1 in subintervals of φk+I+1 , thereby showing the emergence of fractal patterns. In general, splitting φk+I+1 into n parts corresponds to introducing log 2 n bits after xk in the set of bit strings xk+I+1 . For example, we can subdivide φk+I+1 into four regions just by adding two extra bits — called xleft and xright — after xk in (18), and creating the new set of bit strings xk+I+3 xk+I+3
k+2 bits
= (x0 x1 . . . xk xleft =
k+I+3 bits
.. .. xright . .xk+I )
i=0
i=k+2
T N (xi−1 xi xi+1 )2−(i+1)
T N (xi−1 xi xi+1 )2−(i+1)
(21)
Let us analyze D separately the two terms of this last equation. By using the formula (20), we find that the first Dto term is equivalent k+1 i=0
T N (xi−1D xi xi+1 )2−(i+1) 1 = T N (xDk+I−1 x0 x1 ) 2 k−1
D
T N (xi−1 xi xi+1 )2−(i+1)
1
o
T (xk−1 xk xleft ) 2k+1 N D 1 + k+2 T N (xk xleft xright ) 2
D
+
χk+I+3 (xk+I+3 )
k+I+2
i=1
(19)
The first of the four subregions corresponds to the case (xleft xright ) = (00), the second subregion to (xleft xright ) = (01), the third subregion to (xleft xright ) = (10), and finally the fourth subregion to (xleft xright ) = (11). The expression for the D function χk+I+3 (x time-1 characteristic k+I+3 ) can be found by using the formula (17)
81
T N (xi−1 xi xi+1 )2−(i+1)
+
The correspondence between xk+I+1 and xk+I+3 can be obtained by comparing (18) and (19) x0 = x0 .. . x k = xk x k+1 = xleft (20) x = x right k+2 xk+3 = xk+1 .. . xk+I+2 = xk+I
=
+
I+1 bits
(x0 x1 . . . xk+I+2 )
k+I+2
k+1
=
Chapter 1: Quasi-Ergodicity
(22)
Since for any local rule N the value D T N (xi−1 xi xi+1 ) is either 1 or −1, from Eq. (22)
k+1 −(i+1) is a it follows that i=0 T N (xi−1 xi xi+1 )2 rational number, with 0≤
k+1 i=0
T N (xi−1 xi xi+1 )2−(i+1) ≤
D
k+2
2−j < 1
j=1
(23)
The second term of the formula (21) can be written as D k+I+2 i=k+2
T N (xi−1 xi xi+1 )2−(i+1)
=
D
I j=0
=
=
T N (xj+k+1 xj+k+2 xj+k+3 )2−(j+k+3)
1 2k+2 1 2k+2
D
I j=0
T N (xj+k+1 xj+k+2 xj+k+3 )2−(j+1)
1 T (xleft xright xk+1 ) 2 N
March 12, 2011
10:18
ch01
-0 82
o
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
1 +-T0 (xright xk+1xk+2 ) 4 N I−1
+
1 +o 2
I+1
1 2k+2
D
T N (xj+k−1 xj+k xj+k+1 )2−(j+1)
j=2
TN
(xk+I−1 xk+I x0 )
. . χI+1 (xright .. ..xleft )
(24)
because the actual outcome of the term (1/2I+1 )T N (xk+I−1 xk+I x0 ) is negligible for I 1, and (xk+1 . . . xk+I ) are arbitrary bits, as stated in (18). Therefore, using (22) and (24), we can rewrite the expression (21) as follows:
o
χk+I+3 =
k+1 i=0
T N (xi−1 xi xi+1 )2−(i+1)
+
vertical shift
1
. χI+1 (xright ..
2k+2
.. .xleft )
(25)
scale factor
This means that in each subregion there is a . . scaled and shifted copy of χI+1 (xright .. ..xleft ).
χ 1
In particular, in the first subregion χI+1 . . . . (xright .. ..xleft ) = χI+1 (0.. ..0) = χα , in the second .. .. . . subregion χI+1 (xright . .xleft ) = χI+1 (1.. ..0) = . . χβ , in the third subregion χI+1 (xright .. ..xleft ) = . . χI+1 (0.. ..1) = χγ , and in the fourth subregion . . . . χI+1 (xright .. ..xleft ) = χI+1 (1.. ..1) = χδ . Since k and I are arbitrary, it follows that D the time1 characteristic function of a generic rule N is composed of the four fractal patterns χα , χβ , χγ and χδ (in this order) in any subinterval of φ ∈ [0, 1).
χ
xI = 0
110
As an example, let us consider rule 110 : Its fractal patterns for the case xI = 0 are shown in . . Fig. 15(a), where χα = χI+1 (0.. ..0) is plotted in . . red and χβ = χI+1 (1.. ..0) is in purple; the fractal patterns for the case xI = 1 are in Fig. 15(b), . . where χγ = χI+1 (0.. ..1) is plotted in blue and . . χδ = χI+1 (1.. ..1) is in cyan. According to Theorem 3.1, these four patterns appear naturally in any subinterval of φ ∈ [0, 1). For instance, let us consider φ ∈ [0.25, 0.5), which corresponds to the set of bit strings xI+2 = . . (01.. ..0); the restriction of χ to φ ∈ [0.25, 0.5) is depicted in Fig. 15(a). Let us divide this interval into four parts by adding two additional bits: the first subregion corresponds to the case . . xI+4 = (0100.. ..0) and 0.25 ≤ φI+4 (xk+I+4 ) <
1
0.75
0.75
0.5
0.5
0.25
0.25
xI = 1
110
D 0 0
0.25
0.5 (a)
0.75
1
φ
0 0
0.25
0.5
0.75
1
φ
(b)
Fig. 15. Time-1 characteristic function of rule 110 : (a) case xI = 0, (b) case xI = 1. The fractal pattern χα , χβ , χγ and χδ are red, purple, blue, and cyan, respectively.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
χ 1
χ
x I = 0 and 1
110
0.875
0.9375
0.84375
0.875
0.8125
0.8125
0.78125
83
x I = 0 and 1
110
o 0.75 0.25
0.3125
0.375
0.4375
0.5
φ
0.75 0.375
0.40625
(a) Fig. 16.
. χI+4 (0101..
. χI+4 (0110..
0.46875
0.5 φ
(b)
Fractality of χ1
110
: The four fractal patterns appear in two arbitrary subintervals of φ ∈ [0, 1).
. . 0.3125, the second subregion to xI+4 = (0101.. ..0) and 0.3125 ≤ φI+4 (xI+4 ) < 0.375, the third . . subregion to xI+4 = (0110.. ..0) and 0.375 ≤ φI+4 (xI+4 ) < 0.4375, and the fourth subregion to . . xI+4 = (0111.. ..0) and 0.4375 ≤ φI+4 (xI+4 ) < 0.5. The analytical expressions for χI+4 (xI+4 ) in the four subregions can be derived from the formulas (22) and (25), and the results are illustrated in Fig. 16(a). In particular, . χI+4 (0100..
0.4375
1 1 .. .0) = T 110 (001) + T 110 (010) 2 4 -0 -0 1 1 . . + T 110 (100) + χI+1 (0.. ..0) 8 8 -0 3 1 1 1 1 = + + χα = + χα 4 8 2 4 8 1 1 .. .0) = T 110 (001) + T 110 (010) 2 4 -0 -0 1 1 . . + T 110 (101) + χI+1 (1.. ..0) 8 8 -0 1 1 1 1 7 1 = + + + χβ = + χβ 2 4 8 8 8 8 1 1 .. .0) T 110 (001) + T 110 (011) 2 4 1 1 . . + T 110 (110) + χI+1 (0.. ..1) 8 8
1 1 1 1 γ + + + χ 2 4 8 8 7 1 = + χγ 8 8 1 1 .. .0) T 110 (001) + T 110 (011) 2 4 1 1 . . + T 110 (111) + χI+1 (1.. ..1) 8 8 1 1 1 = + + χδ 2 4 8 3 1 = + χδ 4 8 =
. χI+4 (0111..
As expected, the time-1 characteristic function χI+4 in the four subregions is a scaled and shifted version of χα , χβ , χγ and χδ , respectively. In Fig. 16(b) a further subdivision of the horizontal axis 0.4375 ≤ φI+6 (xk+I+6 ) < 0.5 is depicted, and also in this case the four fractal patterns emerge naturally.
DOD
D
3.2. Fractals in CA additive rules Further analytical results can be given for nontrivial additive rules — namely 60 , 90 , 105 and 150 — which will be extensively analyzed in Sec. 6. These rules can be either described in terms of Boolean operations (see Sec. 6), or by using absolute values and standard arithmetic operations. The relationship between these two kinds of representations can
February 14, 2011
84
15:12
ch01
D D D Dynamics Perspective of Wolfram’s D New Kind of Science A Nonlinear D D
D
be derived straightforwardly; for example
Dxi xi+1 ) = |xi−1 − xi | 60 : xn+1 = xni−1 ⊕ xni → T 60 (xi−1 i
(26)
= xni−1 ⊕ xni+1 → T 90 (xi−1 xi xi+1 ) = |xi−1 − xi+1 | 90 : xn+1 i
(27)
105 :
= xni−1 ⊕ xni ⊕ xni+1 → T 105 (xi−1 xi xi+1 ) = 1 − ||xi−1 + xi + xi+1 − 1| − 1| xn+1 i
(28)
150 :
= xni−1 ⊕ xni ⊕ xni+1 → T 150 (xi−1 xi xi+1 ) = ||xi−1 +Dxi + xi+1 − 1| − 1| xn+1 i
(29)
D D these four In the following we consider individually rules, finding for each of them an analytical formula for the lines delimiting their fractal patterns. D
D
3.2.1. Rule 60
The time-1 characteristic function χ 60 can be obtained from Eq. (26): χ 60 =
D
I
patterns are presented in red, purple, blue and cyan, respectively. The function χ 60 can be bounded by using the following D formula, whose proof is given in Appendix A
I
I
−(i+1) −(i+1) 1− xi−1 2 + xi 2 − 1
i=0
T 60 (xi−1 xi xi+1 )2
−(i+1)
=
D
|xi−1 − xi |2−(i+1)
(30)
i=0
i=0
χ 60 is plotted in Fig. 17(a) for xI = 0, and in Fig. 18(a) for xI = 1. The four fractal
χ 1
i=0
D
i=0
⇒ sup 60 ≥ χ 60 ≥ inf where sup 60 (inf of χ 60 .
χ
xI = 0
60
D
≥ χ 60 D
I D
I
≥ xi−1 2−(i+1) − xi 2−(i+1)
i=0 I
D
1
0.75
0.75
0.5
0.5
0.25
0.25
60
(31)
60
) is the supremum (infimum)
xI = 0
60
D 0
0
0.25
0.5 (a)
0.75
1
φ
0
0
0.25
0.5
0.75
1
φ
(b)
Fig. 17. Time-1 characteristic function of rule 60 , case xI = 0: The fractal pattern χα is in red and the fractal pattern χβ is in purple.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
χ 1
χ
xI = 1
60
1
0.75
0.75
0.5
0.5
0.25
0.25
85
xI = 1
60
D 0
0
0.25
0.5
0.75
1
φ
0
0
0.25
(a)
0.5
0.75
1
φ
(b)
Fig. 18. Time-1 characteristic function of rule 60 , case xI = 1: The fractal pattern χγ is in blue and the fractal pattern χδ is in cyan.
Moreover, the term I i=0
I
−(i+1) i=0 xi−1 2
D
xi−1 2−(i+1) =
D
I−1
j=−1
appearing in (31) can be simplified as follows
D
I−1
1 1 1 1 xj 2−(j+2) = xI + xj 2−(j+1) xI + φ 2 2 2 2
(32)
j=0
D
In the last step we have discarded a term proportional to 2−(I+1) , which is extremely small for I 1. The analytical expression for sup 60 and inf 60 can be found by combining (31) and (32)
D
60
I
I
1
−(i+1) −(i+1) : 1 − x 2 + x 2 − 1 sup
= 1 − |3φ + xI − 2|, i−1 i 60
2 i=0 i=0
I
1
DI
−(i+1) −(i+1) : x 2 − x 2 inf
= |φ − xI |.
i−1 i 60
2
i=0
i=0 D -
Therefore, the equations for the upper and lower bounds are
3
D
(a): sup 60 = 1 − 2 φ − 1
, φ ∈ (0, 1) for xI = 0, (b): infD = 1 φ, φ ∈ (0, 1) 60 2
3 1
(c): sup 60 = 1 − 2 φ − 2 , φ ∈ (0, 1) DxI = 1, for 1 1 (d): inf φ ∈ (0, 1) 60 = 2 − 2 φ, and the letters correspond to the lines in Figs. 17(b) and 18(b), respectively. Furthermore, in Fig. 19 we show the emergence of the fractal behavior since the four subpatterns appear when the function χ 60 is restricted to arbitrary subintervals of the axis φ.
February 14, 2011
86
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
χ 1
χ
xI = 0
60
0.9375
0.984375
0.875
0.96875
0.8125
0.953125
D 0.75 0.5
D0.5625
0.625
φ 0.6875
(a) Fractality of χ1
Fig. 19.
60
0.75
xI = 0
60
1
φ
0.9375 0.625
0.640625 0.65625 0.671875 0.6875 (b)
D
: The four fractal patterns appear in two arbitrary subintervals of φ ∈ [0, 1).
D
D
3.2.2. Rule 90 The time-1 characteristic function χ 90 can be obtained from Eq. (27): χ 90 =
I
T 90 (xi−1 xi xi+1 )2−(i+1) =
i=0
I
|xi−1 − xi+1 |2−(i+1)
(33)
i=0
It is plotted in Fig. 20(a) for xI = 0, and in Fig. 21(a) for xI = 1. As usual, the four fractal patterns are depicted in different colors.
χ 1
χ
xI = 0
90
1
0.75
0.75
0.5
0.5
0.25
0.25
xI = 0
90
D 0 0
0.25
0.5 (a)
0.75
1
φ
0 0
0.25
0.5
0.75
1
φ
(b)
Fig. 20. Time-1 characteristic function of rule 90 , case xI = 0: The fractal pattern χα is in red and the fractal pattern χβ is in purple.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
χ 1
χ
xI = 1
90
1
0.75
0.75
0.5
0.5
0.25
0.25
87
xI = 1
90
D 0
0
0.25
D
D
0.5
0.75
1
φ
0
0
0.25
0.5
(a)
0.75
1
φ
(b)
Fig. 21. Time-1 characteristic function of rule 90 , case xI = 1: The fractal pattern χγ is in blue and the fractal pattern χδ is in cyan.
Similarly as for rule 60 , the time-1 characterisD for rule 90 can be bounded as follows: tic function
I I
−(i+1) −(i+1) 1− xi−1 2 + x 2 − 1
D D Di+1
i=0
≥ χ 90
i=0
I I
≥ xi−1 2−(i+1) − xi+1 2−(i+1)
D
i=0
⇒D sup 90 ≥ χ 90 ≥ inf
D
90
i=0
90
(34)
The term Ii=0 xi+1 2−(i+1) appearing in (34) can be simplified as follows: I i=0
xi+1 2−(i+1) =
I+1
xj 2−j + x0 − x D0 2φ − xD0
j=1
(35) Here, we have discarded a term proportional to 2−I , which is extremely small for I 1. The analytical expression for sup 90 and inf 90 can be found by combining (34), (32) and (35)
I I
1
−(i+1) −(i+1) : 1 − x 2 + x 2 − 1 = 1 − |5φ − 2x0 + xI − 2|, sup
i−1 i+1 90
2 i=0 i=0
D I I
1
−(i+1) −(i+1) inf 90 : xi−1 2 − xi+1 2
= |3φ − 2x0 − xI |.
i=0 i=0 D - 2
Therefore, the equations for the upper and lower bounds when xI = 0 are
5
D
(a): sup 90 = 1 − 2 φ − 1 , for (x0 , xI ) = (0, 0) D -3 (b): inf 90 = φ, 2
5
, (c): sup = 1 − φ − 2 90
2 for (x0 , xI ) = (1, 0)
3
(d): inf 90 = φ − 1
, 2
1 φ ∈ 0, 2 1 φ ∈ 0, 2 1 φ∈ ,1 2 1 φ∈ ,1 2
February 14, 2011
15:12
ch01
D 88
--
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
D
-
-
where the letters correspond to the lines in Fig. 20(b), whereas when xI and lower bounds are
D
5 -1
(e): sup 90 = 1 − 2 φ − 2 , for (x0 , xI ) = (0, 1)
D
31-
(f): inf 90 = φ − , 2 2
5 3
D (g): sup 90 = 1 − 2 φ − 2 , for (x0 , xI ) = (1, 1) 3 3 (h): inf 90 = − φ + , 2 2
= 1 the equations for the upper
D
1 φ ∈ 0, 2 1 φ ∈ 0, 2 1 φ∈ ,1 2 1 φ∈ ,1 2
lines in Fig. 21(b). where the letters correspond to the D The fractality of χ 90 is evident from Fig. 22, in which we show that the four subpatterns appear in two arbitrary subintervals of the axis φ.
D
D
3.2.3. Rule 105 The time-1 characteristic function χ 105 can be obtained from Eq. (28): χ 105 =
I
D T 105 (xi−1 xi xi+1D )2−(i+1) =
i=0
I
(1 −D||xi−1 + xi + xi+1 − 1| − 1|)2−(i+1)
(36)
i=0
It is shown in Fig. 23(a) for xI = 0, Dand in Fig. 24(a) for xI = 1. Also in this case, the four fractalDpatterns are plotted in different colors. As usual, the time-1 characteristic function can be bounded; namely, sup 105 ≥ χ 105 ≥ inf
(37)
105
The analytical calculation of the upper and lower bounds for the four patterns is tedious due to the complicated expression for χ 105 . Therefore, here we give the explicit formulas for sup 105 and
χ 0.5
xI = 1
90
χ 0.125
0.375
0.09375
0.25
0.0625
0.125
0.03125
xI = 1
90
D 0 0
0.125
0.25
0.375
(a) Fig. 22.
0.5 φ
0 0.25
0.28125
0.3125
0.34375
0.375φ
(b)
Fractality of χ1
90
: The four fractal patterns appear in two arbitrary subintervals of φ ∈ [0, 1).
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
χ 1
χ
xI = 0
105
1
0.75
0.75
0.5
0.5
0.25
0.25
89
xI = 0
105
D 0 0
0.25
0.5
0.75
1
φ
0 0
0.25
(a)
0.5
0.75
1
φ
(b)
Fig. 23. Time-1 characteristic function of rule 105 , case xI = 0: The fractal pattern χα is in red and the fractal pattern χβ is in purple.
χ 1
χ
xI = 1
105
1
0.75
0.75
0.5
0.5
0.25
0.25
xI = 1
105
D 0 0
0.25
0.5 (a)
0.75
1
φ
0 0
0.25
0.5
0.75
1
φ
(b)
Fig. 24. Time-1 characteristic function of rule 105 , case xI = 1: The fractal pattern χγ is in blue and the fractal pattern χδ is in cyan.
February 14, 2011
15:12
ch01
D D 90
inf
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science 105
: When xI = 0 they are
for (x0 , xI ) = (0, 0)
for (x0 , xI ) = (1, 0)
D D - 7 = − φ + 1, (a): sup 105 6 D -7 (b): inf 105 = − φ + 1, 2 7 1 D (c): inf 105 = 6 φ − 3 , (d): (e): (f): (g):
1 φ ∈ 0, 2 2 φ ∈ 0, 7 2 1 φ∈ , 7 2 D 7 1 6 φ∈ , sup 105 = φ, 6 2 7 D - 7 6 sup 105 = − φ + 4, φ ∈ ,1 2 7 7 1 4 , inf 105 = −- φ + 2, φ ∈ 2 2 7 D 7 2 4 inf 105 = φ − , φ∈ ,1 6 3 7 D
where the letters correspond to the lines in Fig. 23(b); when xI = 1 the D 105 = 7 φ + 1 , (h): sup 6 2 D105 = − 7 φ + 5 , (i): sup 2 2 for (x0 , xI ) = (0, 1) D 7 1 (j): inf 105 = − 2 φ + 2 , D 7 1 (k): inf 105 = φ − , 6 6 7 1 (l): supD105 = φ + , 6 6 7 7 = − φ +D , for (x0 , xI ) = (1, 1) (m): sup 105 D 2 2 D D 0 7 7 (n): inf 105 = − φ + , 6 6 where the letters correspond to the lines in Fig. 24(b). As we did for 60 and 90 , we show that also the time-1 characteristic function for 105 is a fractal, showing in Fig. 25 that the D four subpatterns appear in two arbitrary subintervals of the axis φ.
o
3.2.4. Rule 150 The time-1 characteristic function χ 150 can be obtained from Eq. (29):
χ 150 =
I i=0 I
o
=
i=0
formulas are 3 φ ∈ 0, 7 3 1 φ∈ , 7 2 1 φ ∈ 0, 7 1 1 φ∈ , 7 2 1 5 φ∈ , 2 7 5 φ∈ ,1 7 1 φ∈ ,1 2
T 150 (xi−1 xi xi+1 ) 2−(i+1)
0
||xi−1 + xi + xi+1 − 1| − 1| 2−(i+1)
D(38)
It is plotted in Fig. 26(a) for xI = 0, and in Fig. 27(a) for xI = 1. We can easily draw analogies between 150 and 105 because of the alternating symmetry duality between the two rules. Following the analogy with Eq. (37), we found that χ 150
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
χ 1
χ
xI = 1
105
0.625
0.875
0.59375
0.75
0.5625
0.625
0.53125
91
xI = 1
105
o 0.5 0
0.125
0.25
0.375
0.5
φ
0.5 0.25
0.28125
(a)
χ 1
0.34375
0.375φ
(b)
Fractality of χ1
Fig. 25.
0.3125
105
: The four fractal patterns appear in two arbitrary subintervals of φ ∈ [0, 1).
χ
xI = 0
150
1
0.75
0.75
0.5
0.5
0.25
0.25
xI = 0
150
D 0 0
0.25
0.5 (a)
0.75
1
φ
0 0
0.25
0.5
0.75
1
φ
(b)
Fig. 26. Time-1 characteristic function of rule 150 , case xI = 0: The fractal pattern χα is in red and the fractal pattern χβ is in purple.
February 14, 2011
92
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
χ 1
χ
xI = 1
150
1
0.75
0.75
0.5
0.5
0.25
0.25
xI = 1
150
D 0 0
0.25
0.5
0.75
0
φ
1
0
0.25
0.5
(a)
0.75
1
φ
(b)
Fig. 27. Time-1 characteristic function of rule 150 , case xI = 1: The fractal pattern χγ is in blue and the fractal pattern χδ is in cyan.
D
is bounded; namely,
D
D
D
D sup 150 ≥ χ 150 D ≥ inf- 150
The explicit formulas for sup 150 and inf
for (x0 , xI ) = (0, 0)
for (x0 , xI ) = (1, 0)
150
(39)
for theD case xI = - 0 are-
(a): (b): (c): (d): (e): (f): (g):
D sup
150
supD 150
-7 = φ,
φ∈
2
7 4 = -− φ + ,
inf D 150 =
6
3
7φ, 6
-
2 0, 7
2 1 φ∈ , 7 2 1 φ ∈ 0, 2
1 4 φ∈ , 150 2 2 7 D - 7 5 4 ,1 sup 150 = − φ + , φ ∈ 6 3 7 7 1 inf 150 = − φ + 1, φ∈ ,1 6 2 7 6 φ∈ ,1 inf 150 = φ − 3, 2 7
D sup
-7 = φ − 1,
February 14, 2011
15:12
ch01
D
-
D
Chapter 1: Quasi-Ergodicity
-
where the letters correspond to the lines in Fig. 26(b); when xI = 1 the D -7 1 (h): sup = φ+ , 150 2 2 D - 7 7 = − φ+ , (i): sup 150 6 6 for (x0 , xI ) = (0, 1) 7 1 = -− φ + , (j): infD 150 6 2 7- 3 (k): infD 150 = 2 φ − 2 , D -7 1 = φ− , (l): sup 150 6 6 7 5 (m): inf 150 = − φ + , for (x0 , xI ) = (1, 1) 6 6 7 5 (n): inf 150 = φ − , 2 2
formulas are 1 φ ∈ 0, 7 1 1 φ∈ , 7 2 3 φ ∈ 0, 7 3 1 φ∈ , 7 2
o
o and the letters correspond to the lines in Fig. 27(b). o Finally, also for 150 the four subpatterns appear D in two arbitrary subintervals of the axis φ, as shown in Fig. 28. Note that the time-1 characteristic function for 150 (and consequently, the four fractal patterns and their bounds) can be obtained from that of 105 by means of a reflection through the axis χ 105 = 1/2.
χ 0.5
D
φ∈
1 ,1 2
1 5 φ∈ , 2 7 5 φ∈ ,1 7
D
3.3. From the time-1 characteristic function to the rule number The analytical characterization of the fractality of χ1 for a generic rule N makes it possible to N
obtain the rule number directly from the time1 characteristic function diagram. Here we consider strings composed by I + 1 bits, and their decimal representation φI+1 defined as in (16). Let
χ
xI = 0
150
0.125
0.375
0.09375
0.25
0.0625
0.125
0.03125
xI = 0
150
o 0
0
0.125
0.25
0.375
(a) Fig. 28.
0.5
φ
0
0
0.03125
0.0625
0.09375
0.125
(b)
Fractality of χ1
150
93
: The four fractal patterns appear in two arbitrary subintervals of φ ∈ [0, 1).
φ
February 14, 2011
94
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
us differentiate between xI = 0 and xI = 1: For the first case, we divide the axis φ into four intervals: φ0,I = φI+1 (00 . . . 0) corresponding to 0 ≤ φ0,I < 1/4, φ0,II = φI+1 (01 . . . 0) corresponding to 1/4 ≤ φ0,II < 1/2, φ0,III = φI+1 (10 . . . 0) corresponding to 1/2 ≤ φ0,III < 3/4, and φ0,IV = φI+1 (11 . . . 0) corresponding to 3/4 < φ0,IV-<0 1. In each of these intervals, the time-1 characteristic function for a generic rule N and its representation through fractal patterns can be defined by means of the formula (25). For example, in the first subregion
D
. . and φ1,IV = φI+1 (11.. ..1) corresponding to 3/4 < φ1,IV ≤ 1. - 0 for the time-1 characteristic The expression function in the first interval can be found through Eq. (25) -0 . χ1,I = χI (00..
1 . (T N (100) + χI−1 (0.. 2 1 1 = T N (100) + χα 2 2
χ0,I
o
therefore χ0,I >
o
1 ⇔ T N (000) = 1 2
o
This means that the value of T N (000) is completely determined by the position of the characteristic function in the first quarter of the diagram for xI = 0: If-the 0 function χ0,I is below 1/2 then T N (000) = 0; if it is above 1/2 then T N (000) = 1. Following an analogous procedure we find that
o
. χ0,II = χI (01..
.. .0)
o
therefore
o
. χ1,II = χI (01..
⇔ T N (101) = 1
o
.. .0)
. χ1,III = χI (10..
1 1 1 - 0 T N (010) + χγ → χ0,III > 2 2 2
o
o
χ
. = χI (11..
.. .0)
o
⇔ T N (110) = 1
o
o
1 1 1 T N (011) + χδ → χ0,IV > 2 2 2 ⇔ T N (011) = 1
and then the values for T N (001), T N (010) and T N (011) depend on the position of the time-1 characteristic function in the second, third and fourth regions, respectively. As for the case xI = 1, we can also divide the . . axis φ into four intervals: φ1,I = φI+1 (00.. ..1) cor. . responding to 0 < φ1,I < 1/4, φ1,II = φI+1 (01.. ..1) corresponding to 1/4 < φ1,II < 1/2, φ1,III = . . φI+1 (10.. ..1) corresponding to 1/2 < φ1,III < 3/4,
.. .1)
1 1 1 =- 0 T N (110) + χγ → χ1,III > 2 2 2
⇔ T N (010) = 1 0,IV
.. .1)
1 1 1 - 0 T N (101) + χγ → χ1,II > 2 2 2
o
χ
o
1 ⇔ T N (100) = 1 2
o
⇔ T N (001) = 1 . = χI (10..
χ1,I >
In this case the value of T N (100) is completely determined by the position of the characteristic function in the first quarter of the diagram for xI = 1: If the points of χ1,I are below 1/2 then T N (100) = 0; if the points of χ1,I are above 1/2 then T N (100) -=01. We can extend the same result to the other three subregions obtaining
1 1 1 =- 0 T (001) + χβ → χ0,II > 2 N 2 2
0,III
.. .0))
o
o
1 1 = χI+1 (00 . . . 0) = T N (000) + χα 2 2
.. .1)
o
. χ1,IV = χI (11.. =
.. .1)
o
o
1 1 1 T (111) + χδ → χ1,IV > 2 N 2 2
⇔ T N (111) = 1 and then the values for T N (101), T N (110) and T N (111) depend on the position of the time-1 characteristic function in the second, third and fourth regions, respectively. In conclusion, the number of the local rule can be found straightforwardly by visual inspection of the time-1 characteristic function diagrams, as summarized in Fig. 29. Observe that this procedure
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
1
0
χ
xI = 0
0
1
000
001
010
011
1
1
0
0
φ
0
0
100
(a) Fig. 29.
110
111
D
3.4. Number of fractal patterns Often a rule does not exhibit four distinct fractal 0 patterns because some of them can coincide. For example, in rule 110 , whose time-1 characteristic function is drawn in Fig. 15, χα and χγ are exactly 0
χγ :
101
φ
Correspondence between time-1 characteristic function and local rule number.
D
χβ :
1
(b)
generalizes the concept of Stratification of characteristic functions illustrated in [Chua et al., 2005b].
χα :
xI = 1
1
{
χ
95
.. α,I χ = χI+1 (00. χα,II = χI+1 (01... .. β,I χ = χI+1 (10. χβ,II = χI+1 (11... .. γ,I χ = χI+1 (00. χγ,II = χI+1 (01...
the same; in fact, this rule has only three distinct patterns. In order to identify the number of different fractal patterns for each local rule, we divide χα , χβ , χγ and χδ for a generic rule N into two subpatterns, indicating the first one with the superscript I and the second -one with the superscript II: For 0 by χα,I and χα,II , χβ by example, χα is composed χβ,I and χβ,II etc. The analytical -expressions for the subdivisions can be found by using 0 Eq. (25):
- 1 1 .. . .0) = T0 N (000) + χI (0.. 2 2
- 1 .. α .0) = (T0 N (000) + χ ) 2
(40) - 1 1 .. . .0) = T0 N (001) + χI (1.. 2 2
1 1 .. . T (010) + χI (0.. .0) =- 0 2 N 2
- 1 .. β .0) = (T0 N (001) + χ ) 2 - 1 .. γ .1) = (T0 N (010) + χ ) 2
(41) - 1 1 .. . .0) = T0 N (011) + χI (1.. 2 2
1 1 .. . .1) = T N (100) + χI (0.. 2 2
- 1 .. δ .1) = (T0 N (011) + χ ) 2
1 .. α .0) = (T N (100) + χ ) 2 (42)
1 1 .. . .1) = T N (101) + χI (1.. 2 2
1 .. β .0) = (T N (101) + χ ) 2
February 14, 2011
96
15:12
ch01
-0
- 0
-0
- 0
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
o
o
χδ :
o.
o
o
. χδ,I = χI+1 (10.. δ,II χ
o
Therefore, if T N (000) = T N (100) and T N (001) = T N (101) it follows that χα = χγ . This kind of representation allows us to find easily all the cases in which two (or more patterns) coincide. For instance, from the formulas (40) and (42) we can see that χα = χγ when T N (000) = T N (100) and T N (001) = T N (101). Moreover, one of the two patterns can be a shifted copy of another one: This happens when T N (000) = T N (100) = 0 and T N (001) = T N (101) = 1, for which χγ = χα − (1/2), or when
o
o
o
o
o
o
..1) = 1 T (110) + 1 χI (0... ...1) = 1 (T (110) + χγ ) 2 N 2 2 N 1 1 1 . . . . = χI+1 (11.. ..1) = T N (111) + χI (1.. ..1) = (T N (111) + χδ ) 2 2 2
o
o
o
o (43)
D
T N (000) = T N (100) = 1 and T N (001) = T N (101) = 0, for which χα = χγ − (1/2). Thanks to this procedure, it is possible to classify all the rules according to the number of fractal patterns they exhibit. Representing each rule via an 8-bit code N ↔ (β7 β6 β5 β4 β3 β2 β1 β0 ), βj ∈ {0, 1}, D namely,
D
o
o
N = β7 · 27 + β6 · 26 + β5 · 25 + β4 · 24 + β3 · 23 + β2 · 22 + β1 · 21 + β0 · 20 , where β0 ≡ T N (000) . . . β7 ≡ T N (111), it is possible to prove that rule N contains:
(β7 β6 β3 β2 ) = (0011) (β7 β6 β3 β2 ) = (1100) (β5 β4 β1 β0 ) = (0011) 4 patterns ⇔ (β5 β4 β1 β0 ) = (1100) (β3 β2 ) = (β7 β6 ) (β β ) = (β β ) 1 0 5 4 (β5 β4 β1 β0 ) = (0011) (β5 β4 β1 β0 ) = (1100) 3 patterns ⇔ (β3 β2 ) = (β7 β6 ) (β β ) = (β β ) 1 0 5 4
or
(β7 β6 β3 β2 ) = (0011) (β7 β6 β3 β2 ) = (1100) (β3 β2 ) = (β7 β6 ) (β β ) = (β β ) 1 0 5 4
(β7 β6 β5 β4 ) = (0011) (β7 β6 β5 β4 ) = (1100) 2 patterns ⇔ (β5 β4 ) = (β7 β6 ) (β3 β2 ) = (β7 β6 ) (β1 β0 ) = (β5 β4 )
or
or
or
(β7 β6 ) = (00) β4 = β5 (β3 β2 ) = (00) (β β ) = |1 − (β β )| 1 0 5 4
(β7 β6 β3 β2 ) = (0011) (β5 β4 β1 β0 ) = (0011) (β5 β4 β1 β0 ) = (1100) (β β ) = (β β ) 1 0 5 4
or
(β7 β6 β3 β2 ) = (0011) (β7 β6 β3 β2 ) = (1100) (β5 β4 β1 β0 ) = (0011) (β β ) = (β β ) 3 2 7 6
β6 = β7 (β5 β4 ) = (β7 β6 ) β3 = |1 − β7 | β2 = β3 (β1 β0 ) = (β5 β4 )
or
or
or
(β7 β6 β3 β2 ) = (1100) (β5 β4 β1 β0 ) = (0011) (β5 β4 β1 β0 ) = (1100) (β β ) = (β β ) 1 0 5 4
or
(β7 β6 β3 β2 ) = (0011) (β7 β6 β3 β2 ) = (1100) (β5 β4 β1 β0 ) = (1100) (β β ) = (β β ) 3 2 7 6
(β5 β4 ) = (β7 β6 ) β4 = β5 (β3 β2 ) = (β7 β6 ) β1 = |1 − β5 | β1 = β0
β7 = β6 (β5 β4 ) = |1 − (β7 β6 )| (β3 β2 ) = (β5 β4 ) (β β ) = (β β ) 1 0 7 6
or
β7 = β6 (β5 β4 ) = (β7 β6 ) (β3 β2 ) = |1 − (β7 β6 )| (β β ) = (β β ) 1 0 7 6
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
(β5 β4 ) = (β7 β6 ) 1 pattern ⇔ (β3 β2 ) = (β7 β6 ) (β β ) = (β β ) 1 0 3 2
or
β6 = β7 (β5 β4 ) = (β7 β6 ) (β3 β2 ) = |1 − (β7 β6 )| (β β ) = (β β ) 1 0 3 2
The 39 globally independent rules (equivalent to 100 local rules) with four distinct fractal patterns are listed in Table 20; the 36 globally independent rules (equivalent to 120 local rules) with three distinct fractal patterns are listed in Table 21; the eight globally independent rules (listed equivalent to 28 local rules) with two distinct fractal patterns are listed in Table 22; the five globally independent rules (listed equivalent to eight local rules) with only one fractal pattern are listed in Table 23. Note that this last class coincides with the trivial additive rules.
or
97
β6 = β7 (β5 β4 ) = |1 − (β7 β6 )| (β3 β2 ) = (β7 β6 ) (β β ) = |1 − (β β )| 3 2 1 0
Table 22. List of eight globally independent local rules with two distinct one fractal patterns.
3 46
12 60
29 34 136 184
Table 23. List of five globally independent local rules with only one fractal pattern.
0
15
51
170 204
Table 20. List of 39 globally independent local rules with four distinct fractal patterns.
5 6 9 10 22 23 24 26 27 36 37 40 41 43 54 57 58 73 74 77 78 90 94 104 105 108 122 126 130 134 142 146 150 156 160 164 172 178 232 Table 21. List of 36 globally independent local rules with three distinct fractal patterns.
1 2 13 14 30 32 44 45 DOD 76 106 140 152 13
4 7 8 11 18 19 25 28 33 35 38 42 50 56 62 72 110 128 132 138 154 162 168 200
4. New Results about Isles of Eden The notion of “Isle of Eden” was first introduced in [Chua et al., 2007a], and it was clear D fromDthe beginning that it is of crucial importance in the analysis of one-dimensional Cellular Automata. In this section we give some new definitions that allow us to classify the local rules according to the presence of Isles of Eden. Moreover, we also prove that 45 and 154 have Isles of Eden if, and only if, L is odd.13 This result is not totally new, since it was presented in [Chua et al., 2007b]. However, the proof was based on a graph-theoretical tool called Isles of Eden digraph, which is powerful but complex, because it requires the knowledge of further concepts like the De Bruijn graphs. Here we give an alternate proof for this theorem, based exclusively on induction, and simpler than the one known so far. Finally, we collect all the rules with no Isle of Eden for any length L, giving a rigorous proof of this property for all of 0 them. This result is remarkable, because for the first time we find all the rules that have no everywhere invertible orbit in the state transition graph.
o
DOD
Obviously, this result holds also for the local rules that are global equivalent to 45 and 154 , which are 75 , 89 , 101 and 210 , 180 , 166 , respectively.
February 14, 2011
98
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
4.1. Definitions and basic lemmas
D definitions allows us to make a disThe following tinction among rules based on the presence of Isles of Eden. These names are chosen via an analogy with the harmonic oscillator.
D
Definition 4.1. Strictly-Dissipative local rules. A
local rule N is said to be strictly-Dissipative iff it has no Isle of Eden for any L.
D
Definition 4.2. Conservative local rules. A local rule N is said to be Conservative or nonDissipative iff every orbit is an Isle of Eden. Definition 4.3. Semi-Dissipative Local Rules. A local rule N is said to be Semi-Dissipative iff it has at least one Isle of Eden for some length L.
D
D
Let us recall next two basic lemmas, whose formal proofs can be found in [Chua et al., 2007b].
D
Lemma 4.1. A bit string D x = (x0 x1 . . . xL−1 ) is a
period-n Isle of Eden of local rule N if, and only if, x has a unique preimage under T n . N
D
D
Lemma 4.2. A local rule N is conservative if, and only if, every bit string x = (x0 x1 . . . xL−1 ) has a unique preimage under T N , for any L ∈ N.
D
D
4.2. Alternate proof that rules 45 and D 154 are conservative for odd lengths
D
Proof.
can be used to determine, step by step, all remaining unknown bits xti .
D
DNow, we are ready to enunciate the following theorem, equivalent to Theorem 4.1 in [Chua et al., 2007b], giving an alternate proof based exclusively D on mathematical induction.
D
Theorem 4.1. Every orbit of local rules 45 and
154 is an Isle of Eden, if, and only if, L is an odd integer. Necessity: If L is even then all orbits of 45 or 154 are not Isles of Eden. From Lemma 4.2, it follows that we can prove this statement by showing that there are at least two bit strings having D different D D the same output. We can find a counterexample intuitively, since any string containing k times the pattern (01) has the same output as a string containing k times the pattern (00): In fact, in both cases the output is a string containing k times the pattern (11), because T 45 (010) = T 45 (101) = T 45 (000) = 1. However, the same result can be used through an inductive procedure, introducing the notation (x)L to indicate that a string x is composed by L elements, (x)L = (x0 x1 . . . xL−1 ). Let us consider the two following strings with length L = 2k: Proof.
(xα)tL = (xα0 xα1 . . . xαL−1 ), with 0, if i = 2n − 1 α xi = 1, if i = 2n
From Table 11, we can see that both 45 and 154 belong to the class of permutive rules. We recall that for left-permutive rules
D
T N ( xti−1 xti xti+1 ) = xt+1 i
D
⇒ T N ( x ti−1 xti xti+1 ) = x t+1 i and for right-permutive rules
and (xβ )tL = (xβ0 xβ1 . . . xβL ), with xβi = 0, ∀ i ∈ {0, L − 1}.
D
T N ( xti−1 xti xti+1 ) = xt+1 i ⇒ T N ( xti−1 xtix ti+1 ) = x t+1 i
D
It is easy to notice that for a permutive rule, given and the local rule N , we can unixti , xti+1 , xt+1 i vocally identify xti−1 . This result was generalized in [Wuensche et al., 1992] through the following lemma. Lemma 4.3. If N is permutive, then knowing xt+1
and any two adjacent bits xti and xti+1 of xt , the bit string xt is unambiguously determined.
If the local rule N is left-permutive, then
t At+1 n−1 defines xn−2 ; if N is right-permutive then t+1 t An defines x0 . In both cases, the same procedure
For k = 1, L = 2 we have (xα)t2 = (01) and = (xβ )t+1 = (11). (xβ )t2 = (00), and (xα)t+1 2 2 Let us assume that for L = 2n we have β t+1 α t (xα)t+1 2n = (x )2n with (x )2n = (0101 . . . 01) and β t (x )2n = (0000 . . . 00) (induction hypothesis), and let us analyze the case L = 2(n + 1) = 2n + 2. The strings (xα)t2n+2 and (xβ )t2n+2 are (xα)t2n+2 = (0101 . . . 01) = ((xα)t2n 0 1) and (xβ )t2n+2 = (0000 . . . 00) = ((xβ )t2n 0 0)
February 14, 2011
15:12
ch01
D
D
D
0
0 D
Noticing D
T 45 (000)
that =
T 45 (010)
0
D
=
1, it follows that
T 45 (101)
=
(xα)t+1 2n+2
=
(xβ )t+1 2n+2 . The proof for rule 154 is very similar, except for the fact that T 154 (010) = T 154 (101) =
0
T 154 (111) = 1, and where the string xβ should be defined as follows
D
(xβ )L = (xβ0 xβ1 . . . xβL ), with xβi = 1, ∀ i ∈ {0, L − 1}. Sufficiency: When L is odd, all orbits of rules 45 and 154 are Isles of Eden. According to Lemma 4.2, it is sufficient to prove that in this case there is no Garden of Eden. We apply the mathematical induction as follows: Let L = 2n + 1 be the length of the string: Our assumption holds for n = 1 ⇒ L = 3; we assume it is true for a generic n = k ⇒ L = 2k + 1 (induction hypothesis), and then, we will confirm that it is true for n = k + 1 ⇒ L = 2k + 3 too. Then, for all L = 2k + 1 (xα)t2k+1 = (xα0 xα1 . . . xα2k ) and (xβ )t2k+1 = (xβ0 xβ1 . . . xβ2k ) such that β t+1 α t β t (xα)t+1 2k+1 = (x )2k+1 ⇔ (x )2k+1 = (x )2k+1 . Now, we analyze the case L = 2k +3, supposing that there is a Garden of Eden. This implies that there are two different strings with the same image: (xα)t2k+3 = (xα0 xα1 . . . xα2k+2 ) and (xβ )t2k+3 = (xβ0 xβ1 . . . xβ2k+2 ), with (xα)t2k+3 = (xβ )t2k+3 and β t+1 (xα)t+1 2k+3 = (x )2k+3 . The two strings can be decomposed into = ((xα)t2l+1 xα2l+1 . . . xα2k+2 ) and (xα)t2k+3 (xβ )t2k+3 = ((xβ )t2l+1 xβ2l+1 . . . xβ2k+2 ). If (xα)t2l+1 and (xα)t2l+1 have periodic boundaries, that is xα2l = xα2k+2 , xα0 = xα2l+1 and xβ2l = xβ2k+2 , xβ0 = xβ2l+1 , then according to the induction hypotheses, (xα)t2l+1 = (xβ )t2l+1 . But for Lemma 4.3, since we know the string (xα)t+1 2k+3 and two α t adjacent pixels of (x )2k+3 , the remaining pixels xα2l+1 . . . xα2k+2 are fixed; the same happens with (xβ )2k+3 , xβ2l+1 . . . xβ2k+2 . Since (xα)t+1 2k+3 = β t+1 α t β t (x )2k+3 and (x )2k+1 = (x )2k+1 , it follows that j = l . . . k : xα2j+1 = xβ2j+1 , xα2j+2 = xβ2j+2 . But this means that (xα)t2k+3 = (xβ )t2k+3 , contrary to the hypothesis.14 14
0 Chapter 1: Quasi-Ergodicity
0
99
Note that this method cannot be used find 0to0 0Isles of Eden, 0 but only to confirm that all orbits are actually Isles of Eden. This result about 45 and 154 is similar to that obtained0in [Chua0et al., 2007a] for 105 and 150 , which are conservative for any L0that is not0divisible by 3. There are also some rules that are conservative tout court, like 15 , 170 , 204 and 51 (and their global equivalent rules). This follows directly from the nature of these rules, since they consist in a mere shift 15 and 170 or in transformation depending only on the central pixel 204 and 51 .
o
4.3. There are exactly 28 0 strictly-dissipative local rules
o
While some rules — like 45 and 154 — are conservative, others – like 60 [ChuaDO et al., 2007b]0and 90 [Chua et al., 2007a] — are strictly-dissipative, which means that they have no Isle of Eden. In addition to the already mentioned 60 and 90 , we found that all the centrally-symmetric (also called perfectlycomplementary) local rules are strictly-dissipative (see Table 24) as well as rules 8 , 46 , and 78 and their equivalent rules (see Table 25). These results are proved in Theorems 4.2 and 4.3, respectively, and all the 28 strictly-dissipative rules (nine topologically independent) are listed in Table 26. Theorem 4.2. All centrally-symmetric local rules
are strictly-dissipative. By definition, any triplet of a centrallysymmetric rule produces the same output as its complement; therefore, any bit string xt has the same output as its complement x t . Then, the proof follows from Lemma 4.1. Proof.
o
For example, we can show how this theorem applies to rule 24 , which is centrally-symmetric. Its firing patterns are and , and they are the complement of the other; as for the quenching patterns, they are also complement pairs: and , and , and . Therefore, any bit string has the same output as its complement, and hence rule 24 has no Isles of Eden.
o
DO
0
Rules 8 , 46 and 78 are the only non centrally-symmetric rules to be strictlydissipative. Theorem 4.3.
To be precise, we can always choose a (xα )t2k+1 according to the previous conditions when L > 17; for the values of L ≤ 17 we checked the theorem experimentally.
February 14, 2011
100
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 24.
T †[ N ]
N 0
2
4
4
4
4
1
0 4
5
2
5
4
219
2
3
195
7
6
4
2 7
6
2
129
5
7 1 5
2
3 7
6
1
0 4
5
153
5
2
3 7
6
1
0 4
3
0
1
0
1 5
4
3
3 7
6
5
4
5
4
1
0
1
1
2
165
7 0
3
0
5
3
7
6
1
0
7
6
2
2 6
1
0
102
189
5
6
4
3
3 7
4
7
6
2 0
5
3
1 5
6
1
1
2
4
7
3
0
126
231
7
6
90
3
0
5
2
2 6
1
0
60
66
7
6
7
4
3
3
0
5
2
2 6
1
0
36
255
3
T *[ N ]
T [N ]
7
6
24
Sixteen centrally-symmetric strictly-dissipative local rules.
5
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 25.
Twelve non-centrally-symmetric strictly-dissipative local rules.
T †[ N ]
N 8
2 7
6 4
3 7
6 4
3 7
6
1
0 4
5
ODD
92
3 7
6
5
o
o
Lemma 4.4. Rule 8 has no Isle of Eden.
We recall that the only firing pattern of rule 8 is . Then, from Fig. 30 we see that all the strings containing more than one consecutive red pixel — pattern — are Gardens of Eden. Moreover, strings D belonging to anDIsle of Eden cannot contain an isolated red pixel — pattern — because, for the uniqueness of the firing pattern, their predecessor would necessarily have the pattern . Consequently, the only possible Isle of Eden would include exclusively the pattern ; but since T 8 (000) = T 8 (111) = 0, the string (00 . . . 0) has two predecessors, which are (00 . . . 0) and (11 . . . 1), and this would contradict Lemma 4.1. Proof.
D
Lemma 4.5. Rule 46 has no Isle of Eden.
2 7
1
0
D
4
2
5
3 7 1
0 4
3
1 5
6
1 5
6
1
0
We found, through computer simulations, at least one Isle of Eden for each non centrallysymmetric rule, as shown in Table 15. The only exceptions are rules 8 , 46 , 78 , for which we provide an analytical proof of their strict dissipativity in the next three lemmas, respectively.
Proof.
141
209
7
4
7
4
3
3
0
5
2
2 6
1
0
5
253
7
6
1
2
4
139
7
4
3
0 4
3
0
5
2
2
2 6
1 5
6
1
0
78
116
239
7
4
T *[ N ]
T [N ] 3
0
5
2
2 6
1
0
46
64
3
101
197
5
2
3 7
6
1
0 4
5
D D
We recall that the firing patterns of rule 46 are , , , and . First of all, we notice that strings with only either red or blue pixels have the same successor, which is a string containing only blue pixels, because T 46 (000) = T 46 (111) = 0. From Lemma 4.1, it follows that a necessary condition for a string to belong to an Isle of Eden contains the pattern . Nevertheless, strings including the pattern are Gardens of Eden, as proved in Fig. 31, and this implies that any string belonging to an Isle of Eden has to include at least two consecutive red pixels. However, not even the pattern can be part of an Isle of Eden, because it has the same successor as a different string, as shown in Fig. 32. Therefore, the last case to analyze is the case whose predecessors either give rise to contradictory conditions or are Gardens of Eden, as detailed is Fig. 33. Proof.
D
Lemma 4.6. Rule 78 has no Isles of Eden.
February 14, 2011
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
102
Table 26.
0
2
3 7
6 4
7
6 4
3 7
6 4
3 7
6 4
3 7
6 4
4
7
6
1
0 4
5
7
4
3
239
3 1
0 5
253
7 1
0 4
5
1 5
2
3 7 1
0 4
3
3 7
6
5
6
2
219
1
2
5
4
3
1
0
7
4
7
6
2
3 7
6
1
0
5
189
5
6
1
2
4
209
2 0
7 0
1 5
4
3
3 7
6
1
2
4
3
0
5
2
2
139
5
6
1 5
6
1
0
231
197
7
6
7
4
3
165
2 0
7 0
1 5
4
3
3 7
6
5
4
3
0
5
2
2
102
1
2
2 0
7
6
1 5
6
1
0
195
153
129
1 5
4
3
0
7
4
2
7
6
1 5
4
3
0
5
2
2
66
7
6
1 5
6
1
0
141
126
92
3
0 4
3
0
7
4
2
2 6
1 5
4
3
0
5
2
2
36
7
6
1 5
6
1
0
116
90
64
7
4
3
0 4
3
0
5
2
2
2 6
1 5
6
1
0
78
60
24
7
4
3
3
0
5
2
2 6
1
0
46
8
Twenty-eight no Isle of Eden rules.
255
5
2
3 7
6
1
0 4
5
February 14, 2011
15:12
ch01
---~ Chapter 1: Quasi-Ergodicity
0 __ 0 D
D Fig. 30. Rule 8 : Strings containing the pattern are Gardens of Eden, because their predecessor would give rise to contradictory conditions on the pixel .
We recall that the firing patterns of 78 are , , , and .
Proof.
103
We start proving that strings containing more than three consecutive red pixels are Gardens of Eden (see Fig. 34). The following step consists in showing that strings containing exactly three adjacent red pixels — pattern — do not belong to an Isle of Eden because there is always another string with the same successor, as evident from Fig. 35; a similar situation happens for strings containing exactly two adjacent red pixels because their predecessor is not unique, as implied by Fig. 36. Finally, we need to see what happens for strings including an isolated red pixel, which is the pattern . In order to perform a thorough analysis, we divide this case into four subcases, according to what the neighbors for the pattern are: the case , analyzed in Fig. 37; the case
D
D
Fig. 31. Rule 46 : Strings containing the pattern are Gardens of Eden, because all the possible predecessors would give rise to contradictory conditions on the pixel .
D
Fig. 32.
Rule 46 : The pattern has the same successor as a different string, hence it cannot belong to an Isle of Eden.
D
Fig. 33. Rule 46 : Strings with more than two consecutive red pixels (pattern ) cannot belong to an Isle of Eden because their predecessor either gives rise to contradictory conditions (cases (a)–(d)), or contains an isolated red pixel (cases (e) and (f)) and then it is a Garden of Eden (see Fig. 31).
February 14, 2011
104
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
D
Fig. 34. Rule 78 : Strings containing more than three consecutive red pixels are Gardens of Eden, because all of their possible predecessors would give rise to contradictory conditions.
D
11Fig. 35. Rule 78 : Strings containing exactly three consecutive red pixels cannot belong to an Isle of Eden, because it is always possible to find another bit string with the same successor.
D
DD DO
leg]
(rl)
(r:)
(b)
(a)
~
~eg]
DD
/
Fig. 36. Rule 78 : Strings containing exactly two consecutive red pixels have at least two different predecessors, and hence they cannot belong to an Isle of Eden.
0111111
D
D
Fig. 37. Rule 78 : The pattern cannot belong to an Isle of Eden because its predecessor either gives rise to contradictory conditions (cases (a)–(c)), or contains more than three consecutive red pixels (case (d)) and then it is a Garden of D Eden (see Fig. 34).
D , analyzed in Fig. 38; the case , analyzed in Fig. 39; and finally the case , analyzed in Fig. 40. As shown in the respective figures, none of these patterns can be in a string that is part of an Isle of Eden.
The last possibility would of Eden composed by a single be either (00 . . . 0) or (11 . . . 1); sibility is excluded by the fact
D
D
be having an Isle string, which can however, this posthat T 78 (000) =
T 78 (111) = 0, as it happened for 8 and 46 .
February 14, 2011
15:12
ch01 (b)
(1'\)
~....
~..
(c)
.DD DD••~~
~ D
/
•
DD Chapter 1: Quasi-Ergodicity
105
D
D
Fig. 38. Rule 78 : The pattern cannot belong to an Isle of Eden because its predecessor either gives rise to contradictory conditions (cases (a)–(c)), or contains more than three consecutive red pixels (case (d)) and then it is a Garden of Eden (see Fig. 34).
4.4. Isles of Eden for rules of group 1
0••••••0 0.....0
We mentioned in Sec. 1 that our classification of local rules into six groups is based mainly on the properties of attractors (number, period etc.), although it is also supported by other features, like quasi-ergodicity. According to our classification
~/
• • •
D
Fig. 39. Rule 78 : The pattern cannot belong to an Isle of Eden because it has at least two different predecessors.
principle, rules of group 1 have a robust period-1 global attractor, which means that most D of the 2L bit strings belong to a unique basin of attraction. Here we want to show that, at least for some rules of group 1, the only possible attractor is the robust one, and all strings not belonging to it form Isles of Eden. Let us take into consideration rule 40 , whose firing patterns are and . Rule 40 has a robust attractor in 0; in other words, for any L most of bit strings will fall into the basin of attraction of L elements
x = ( 00 . . . 0 ). Which strings do not belong to this attractor, and what happens with them? In [Ohi, 2007] the following theorem is proved.15
D
D
Theorem 4.4. For rule 40 , x = (00 . . . 0) is a global attractor, except for the strings with at most one consecutive 0 and at most two consecutive 1 s, which form a Bernoulli Isle of Eden with σ = 1 and τ = 1.
The following proof is far simpler than the one in [Ohi, 2007], mainly because the original paper also includes other results requiring a more complex notation and treatment. The first part of the proof consists in showing that any string containing more than one consecutive 0 or more than two consecutive 1’s is in the basin of attractor of x = (00 . . . 0). As for the first case, we consider, without loss of generality, the string (. . . 100 . . .), which is the “border” between a “1” and the run of 0’s; from Fig. 41, it is evident that the “border” tends to move towards the left, and then all the 1’s will be substituted, step by step, by 0’s. As for the second case, we consider, without loss of generality, the string (. . . 0111 . . .), which is the “border” between a “0” and the run of 1’s; from Proof.
D
Fig. 40. Rule 78 : The pattern cannot belong to an Isle of Eden because, after a finite number of steps, it evolves into the pattern which cannot belong to an Isle of Eden, as shown in Fig. 39. 15
This theorem is a summary of the results presented in several lemmas terminology and notation.
and theorems in [Ohi, 2007] using a different
February 14, 2011
106
15:12
ch01
o
!
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Theorem 4.5. For rule 168 , x = (00 . . . 0) is a
D
global attractor, except for the strings with more than one consecutive 0, which form a Bernoulli Isle of Eden with σ = 1 and τ = 1.16
••!
The first part of the proof is very similar to thatDof Theorem 4.4, but to refer only D we need D to Fig. 41, discarding the results in Fig. 42. Also D D D the second part is very similar, but in this case D D D the hypothesis excludes the triplets (000), (001) D (100), and then we need to analyze only the and triplets (010), (011), (101), (110) and (111), for which T 168 (010) = 0 = T 170 (010), T 168 (011) = 1 = T 170 (011), T 168 (101) = 1 = T 170 (101), T 168 (110) = 0 = T 170 (110) and T 168 (111) = 1 = T 170 (111). The rest of the proof is identical to the one for the previous theorem. Proof.
Fig. 41. Rule 40 : All strings containing the pattern are in the basin of attraction of · · · .
D
D
Fig. 42. Rule 40 : The pattern evolves into the pattern after one iteration, and then it is in the basin of attraction of · · · (see Fig. 41).
Fig. 42, we can see that after one step we always obtain a string with a run of at least two 0’s which, as proved previously, will eventually evolve into the string x = (00 . . . 0). The second part of the theorem states that strings containing no more than one consecutive 0 and at most two D consecutive 1’s belong 0 to a Bernoulli attractor. By hypothesis, the D D D triplets (000), (001), (100), (111) will never be present in D D D these kinds of strings, and hence we need to ana0 (110). D only the tripletsD(010), (011), (101) and lyze It is straightforward to notice that with such kind of restriction rule 40 is equivalent to rule 170D be0 = cause T 40 (010) = 0 = T 170 (010), T 40 (011) 1 = T 170 (011), T 40 (101) = 1 = T 170 (101) and T 40 (110) = 0 = T 170 (110). Since rule 170 is a right-copycat rule (or equivalently, a left shift), for these initial conditions the dynamics of rule 40 corresponds exactly to the dynamics of rule 170 , which is a Bernoulli orbit with σ = 1 and τ = 1. Moreover, the basin of attraction of this orbit is empty, because either a string fulfills the conditions of the Theorem, and then it belongs to the orbit, or D it does not, and then it converges to 0. A very similar theorem holds for rule 168 , belonging to group 1 too. In this case the firing patterns are , , and .
o
5. How to Find Analytically the Basin-Tree Diagrams for Bernoulli Attractors Our previous papers [Chua et al., 2007a] and [Chua et al., 2007b] were in large part devoted to showing the basin-tree diagrams, all of them found by brute force, of the complex and hyper Bernoulli-shift rules. In general, these kinds of rules have many Bernoulli orbits, either attractors or Isles of Eden, whose number increases with the length L of the bit strings. Therefore, it is particularly important to characterize them analytically, in order to avoid long and tedious simulations, which make it practically impossible to find the basins of attraction when L is greater than 30. Here we present a method that allows us to reconstruct the whole basin-tree diagram of a Bernoulli-shift attractor by analyzing only a fraction of all bit strings with a fixed L.
5.1. Bernoulli-στ basin-tree generation formula
o
By definition, given any string belonging to a Bernoulli στ -shift orbit, after τ iterations we find the same string shifted σ positions towards left, if σ is positive.17 For example, Fig. 43 depicts a period T = 14 Bernoulli στ -shift orbit for rule 110 , in which σ = 1 and τ = 4.
16 Note that this statement is very similar to the one for 40 , but the limitation on the number of consecutive 1’s has been removed. 17 In the following we consider only the case σ > 0, because any attractor with σ < 0 is equivalent to another one with σ = L − |σ| > 0 and same τ .
February 14, 2011
15:12
ch01
D
0 1 ••••••• 2 ••••••• 3 •••••••
Chapter 1: Quasi-Ergodicity
iterations, nτ = T τ (n0 ), it follows that
4 •••••••
N
5 ••••••• ~
6 •••
II
7 •••
h
8 •••
.........
nτ = n0 · 2σ
(J=
+1
(mod 2L − 1)
""'pII"
•••• •• •••• ••
np·τ (mod T ) = n0 · 2p·σ
D
0≤p<
0
(mod2L − 1),
T , lcm(τ, T )
p∈N
In general, a left shift by σ positions in the binary representation x = (x0 x1 . . . xL−1 ) is equivalent to a multiplication by 2σ in the decimal reprei sentation n, where n = L−1 i=0 xL−1−i 2 . Therefore, if n0 is a (decimal) element of a Bernoulli-στ orbit, and nτ the result after τ p = 1:
n1·4(mod 14) = n0 · 21·1
p = 2:
2·1
n2·4(mod 14) = n0 · 2
mod (2 − 1) ⇒ n8 = 31 · 4
p = 3:
n3·4(mod 14) = n0 · 23·1
mod (27 − 1) ⇒ n12 = 31 · 8 (mod127) = 121
p = 4:
n4·4(mod 14) = n0 · 24·1
mod (27 − 1) ⇒ n2 = 31 · 16
p = 5:
5·1
mod (2 − 1) ⇒ n6 = 31 · 32
6·1
mod (2 − 1) ⇒ n10 = 31D · 64 (mod127) = 79
p = 6:
n6·4(mod 14) = n0 · 2
(45)
where the parameter p indicates the current iteration. Obviously, iteration T /lcm(τ, T ) would give n0 itself. For example, this procedure can be applied to the Bernoulli στ -shift attractor (with τ = 2 and T = 14) of rule 110 when L = 7, as depicted in Fig. 44. From what was explained previously, there will be lcm(τ, T ) = 2 different subgroups, each with length T /lcm(τ, T ) = 7. Starting from an arbitrary element of a period-14 Bernoulli στ -shift orbit (cyan circles in Fig. 44), like n0 = 31, and using the formula (45), we obtain the values:
Fig. 43. Example of Bernoulli στ -shift attractor with σ = 1, τ = 4, for rule 110 and L = 7.
n5·4(mod 14) = n0 · 2
(44)
Furthermore, this formula can be modified to find not only nτ , but also all other elements of the orbit generated by n0 . A Bernoulli στ -shift orbit with period T harbors exactly lcm(τ, T ) different subgroups, where lcm indicates the least common multiple, each with length T /lcm(τ, T ), henceforth called order of the subgroup. This means that formula (44) can be iterated (T /lcm(τ, T )) − 1 times to obtain a corresponding number of strings, using at each iteration the result nτ as new value for n0 . As a consequence, Eq. (44) can be generalized as follows
9 ••• 10 • • 11 • • 12 • • 13 • • 14 • •
107
mod (27 − 1) ⇒ n4 = 31 · 2 7
(mod127) = 62 (mod127) = 124
7
(mod127) = 115 (mod127) = 103
7
Finally, for p = T /lcm(τ, T ) = 7, n7·4( mod 14) = n0 = 31, as expected. p = 7:
n7·4( mod 14) = n0 · 27·1
mod (27 − 1) ⇒ n0 = 31 · 128
(mod127) = 31
The seven elements belonging to the second subgroup, which can be identified in the period-14 Bernoulli orbit in Fig. 44, can be found by using a different starting point. Since T 110 (31) = 49, n0 = 49 is a natural candidate; then, it follows that p = 1:
n1·4( mod 14) = n0 · 21·1
mod (27 − 1) ⇒ n4 = 49 · 2
(mod127) = 98
p = 2:
n2·4( mod 14) = n0 · 22·1
mod (27 − 1) ⇒ n8 = 49 · 4
(mod127) = 69
February 14, 2011
108
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
L=7
Bernoulli (σ=1,τ=4) Period-14 Attractor
110
D
Fig. 44.
Basin-tree diagram of the Bernoulli στ -shift attractor with σ = 1, τ = 4, for rule 110 and L = 7.
p = 3:
n3·4( mod 14) = n0 · 23·1
mod (27 − 1) ⇒ n12 = 49 · 8
(mod127) = 11
p = 4:
n4·4( mod 14) = n0 · 24·1
mod (27 − 1) ⇒ n2 = 49 · 16
(mod127) = 22
p = 5:
n5·4( mod 14) = n0 · 25·1
mod (27 − 1) ⇒ n6 = 49 · 32
(mod127) = 44
p = 6:
n6·4( mod 14) = n0 · 26·1
mod (27 − 1) ⇒ n10 = 49 · 64
(mod127) = 88
p = 7:
n7·4( mod 14) = n0 · 27·1
mod (27 − 1) ⇒ n0 = 49 · 128
(mod127) = 49
D
Also in this case, when p = T /lcm(τ, T ) = 7 we find the initial value n0 = 49, as expected. Thanks to the formula (45), which generalizes the analogue presented in [Chua et al., 2006] about the στ -Bernoulli rules of group four, all 14 elements of the Bernoulli στ -shift orbit were found starting just from n0 = 31 and n0 = 49. Remarkably, this formula can be also used to find elements that do not belong to the orbit but to
D
the D basin tree. This is because in general T
N
T
D
N
xn −−−→ xn+1 ⇒ σ(xn ) −−−→ σ(xn+1 )
(46)
where σ(xn ) is the string obtained by shifting σ times the bit string xn . For example, since T 110 (13) = 31, we can expect that a shifted version of the bit string representing 31 is obtained by transforming under the rule N the shifted bit
February 14, 2011
15:12
ch01
o
o
Chapter 1: Quasi-Ergodicity
109
string representing 13. p = 1: n1·4( mod 14) = n0 · 21·1
mod (27 − 1) ⇒ n4 = 13 · 2
(mod127) = 26
and indeed T
T
110
110
13 −−−−→ 31 ⇒ σ(13) = 26 −−−−→ σ(31) = 62 The values for n0 = 13 are p = 2:
n2·4( mod 14) = n0 · 22·1
mod (27 − 1) ⇒ n8 = 13 · 4
p = 3:
n3·4( mod 14) = n0 · 23·1
mod (27 − 1) ⇒ n12 = 13 · 8 (mod127) = 104
p = 4:
n4·4( mod 14) = n0 · 24·1
mod (27 − 1) ⇒ n2 = 13 · 16
(mod127) = 81
p = 5:
n5·4( mod 14) = n0 · 25·1
mod (27 − 1) ⇒ n6 = 13 · 32
(mod127) = 35
p = 6:
n6·4( mod 14) = n0 · 26·1
mod (27 − 1) ⇒ n10 = 13 · 64 (mod127) = 70
(mod127) = 52
and, as usual, for p = T /lcm(τ, T ) = 7 we obtain the initial value n0 = 13, as expected. p = 7:
n7·4( mod 14) = n0 · 27·1
mod (27 − 1) ⇒ n0 = 13 · 128
To sum up, all the information about a Bernoulli attractor can be retrieved from only one element of each subgroup of the orbit, like 31 and 49, and their basins of attraction (in this example the basins are formed by 15 bit strings altogether, as depicted in Fig. 45). Then, using only these 17 elements we are able to draw the whole basin-tree diagram, which is composed of 119 bit strings! For obvious reasons, we christen Eq. (45) as the “Bernoulli στ -shift basin-tree generation formula”, and it can be applied to any rule having Bernoullishift attractors.18
(mod127) = 13
[Chua et al., 2007b]), and suppose that no information about the form of the basin-tree diagrams is known. We can use x0 = (0000001) = 1 as the
Detail of Bernoulli (σ=1, τ=4) Period-14 Attractor, L=7
110
5.2. A practical application of the Bernoulli στ -shift basin tree generation formula The procedure described previously allows us to find all elements of a Bernoulli basin tree starting from a limited subset of them. In fact, in some cases, this method is even more powerful, because it allows us to obtain a basin tree without knowing any of its elements! This happens when all of the possible shifts of a bit string x do not belong to the same basin tree as x, but form a different, though topologically equivalent, basin tree. Let us illustrate this case through an example, considering rule 110 with L = 6 (see Table 11 in
D
o
18
Fig. 45. Detail of the basin-tree diagram of the Bernoulli στ -shift attractor with σ = 1, τ = 4, for rule 110 and L = 7. These 17-bit strings allow us to reconstruct the whole basintree diagram, thanks to formula (45).
Rules belonging to groups 4–6 have robust Bernoulli στ -shift attractors. In addition, rules belonging to groups 1–3 may also harbor isolated Bernoulli στ -shift Isles of Eden and attractors.
February 14, 2011
15:12
ch01
D 110
D
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
D
Since x5 is a shifted version of x2 — in particular x5 = σ 4 (x2 ) — both strings belong to a Bernoulli στ -shift orbit with τ = 5−2 = 3 and σ = 4. By using the formula (45) with n0 = 7, it is possible to notice that n9 = n0 = 7, which means that the period of the attractor is the minimum T ≡ 0 (mod 9) ⇒ T = 9. Therefore, in the Bernoulli στ -shift orbit there are lcm(τ, T ) = 3 different subgroups, each with length (order) T /lcm(τ, T ) = 3. The elements of the first subgroup, found using n0 = 7, are as follow:
starting point and find its successors iteratively:
D
x1 = T 110 (x0 ) = (000011) = 3,
D
x2 = T 110 (x1 ) = (000111) = 7, x3 = T 110 (x2 ) = (001101) = 13, x4 = T 110 (x3 ) = (111111) = 31, x5 = T 110 (x4 ) = (110001) = 49.
D
p = 1:
n1·3( mod 9) = n0 · 21·4
mod (26 − 1) ⇒ n3 = 7 · 16
p = 2:
n2·3( mod 9) = n0 · 22·4
mod (26 − 1) ⇒ n6 = 7 · 256
(mod 63) = 28
p = 3:
n3·3( mod 9) = n0 · 23·4
mod (26 − 1) ⇒ n0 = 7 · 4096
(mod 63) = 7
(mod 63) = 49
As for the second subgroup, we use n0 = 13 because T 110 (7) = 13, and obtain 1·4
D
p = 1:
n1·3( mod 9) = n0 · 2
mod (26 − 1) ⇒ n3 = 13 · 16
p = 2:
n2·3( mod 9) = n0 · 22·4
mod (26 − 1) ⇒ n6 = 13 · 256
p = 3:
n3·3( mod 9) = n0 · 23·4
mod (26 − 1) ⇒ n0 = 13 · 4096
(mod 63) = 19 (mod 63) = 52 (mod 63) = 13
Finally, for the third subgroup n0 = 31 because T 110 (13) = 31, and obtain p = 1: n1·3( mod 9) = n0 · 21·4
mod (26 − 1) ⇒ n3 = 31 · 16 (mod 63) = 55
p = 2: n2·3( mod 9) = n0 · 22·4
mod (26 − 1) ⇒ n6 = 31 · 256
(mod 63) = 61
p = 2: n2·3( mod 9) = n0 · 22·4
mod (26 − 1) ⇒ n6 = 31 · 256
(mod 63) = 31
Therefore, the basin tree corresponding to strings 7, 13 and 31 is sufficient to reconstruct the whole basin-tree diagram exhibited in Table 11 of [Chua et al., 2007b]. The binary representation of 7, which we used as the “seed” for the first subgroup of bit strings in the orbit, is , and it has six possible shifts: ↔ 14, ↔ 28, ↔ 56, ↔ 49, ↔ 35, and ↔ 7 itself. Surprisingly, only three of them form part of the orbit, namely 7, 28 and 49. What about the others? Obviously, they are included in a different attractor, which, for the formula (46), must be strictly related to the one we already know. In particular, the “missing” strings are 14, 56 and 35, and observe that 14 = σ 1 (7), 56 = σ1 (28), and 35 = σ 1 (49). Therefore, this “twin” basin tree can be found by applying the operator σ 1 (one position left shift) to every string of the first basin tree, and keeping the same topology, as evident from Table 11 of [Chua et al., 2007b].
For instance, the Bernoulli στ -shift orbit of the first basin tree is 7 → 13 → 31 → 49 → 19 → 55 → 28 → 52 → 61 → 7, or equivalently → → → → → → → → → Applying the operator σ1 , we are able to find the Bernoulli στ -shift orbit of the “twin” basin tree → → → → → → → → → or, using the decimal representation, 14 → 26 → 62 → 35 → 38 → 47 → 56 → 41 → 59 → 14.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
x has only two possible shifts, because σ 2 (x) = x. But the string x obtained by changing only the last pixel from 1 to 0, x = (0101 . . . 00), will have clearly s = L shifts, where L can be very large. However, the parameter s for a string x can be obtained experimentally as s = mint≤L {σ t (x) = x}.
Through a similar procedure, we can draw the whole D “twin” basin tree starting from the first one. In general, let us consider a string x with length L which can be shifted s times, corresponding to s different bit strings, with s ≤ L. If x belongs to D a subgroup with order o under the transformation T N (x), then o must divide s and there will be s/o “twin” orbits. In the example just presented, the string x = (000111) corresponding to n = 7 could be shifted six times, s = 6, and the order of the subgroup, under the transformation T 110 (x), is o = 3; therefore, there will be s/o = 6/3 = 2 “twin” orbits, which we actually found. Unfortunately, calculating a priori the number of shifts s of a string x may not be easy, since it involves certain deep concepts from coding theory. Sometimes, modifying only one bit in a string can change dramatically the number of possible shifts s. For example, let us consider a bit string x with length L made of L/2 repetitions of the pattern 01; namely, string x = (0101 . . . 01). It is evident that (abc) = (000):
xn+1 i
(abc) = (001):
xn+1 i
(abc) = (010):
xn+1 i
(abc) = (011):
xn+1 i
(abc) = (100):
xn+1 i
=0
(mod 2) ⇒
=
xni+1
=
xni
=
xni
=
xni−1
xn+1 i
(mod 2) ⇒ (mod 2) ⇒
+ xni+1
DO 0= xni−1 + xni+1 (abc) = (101): xn+1 i
The behavior of additive cellular automata can be described through the expression xn+1 = T N (xni−1 xni xni+1 ) i
= axni−1 + bxni + cxni+1
(mod 2)
(47)
where a,D b, c ∈ {0, 1}. Since Eq. (47) contains three free parameters, there are 23 = 8 distinct additive rules, which can be represented through simple Boolean expressions as follows
o
= 0 ↔ Rule 0
xn+1 i
=
=
(mod 2) ⇒ xn+1 i
xni+1
xni
o
o
↔ Rule 170
↔ Rule 204
xn+1 i =
o
=
xni−1
xni
⊕
xni+1
D D
↔ Rule 102
o
↔ Rule 240
(mod 2) ⇒ xn+1 = xni−1 ⊕ xni+1 ↔ Rule 90 i
(abc) = (110):
= xni−1 + xni xn+1 i
(abc) = (111):
xn+1 = xni−1 + xni + xni+1 i
D
0
(mod 2) ⇒ xn+1 = xni−1 ⊕ xni ↔ Rule 60 i (mod 2) ⇒ xn+1 = xni−1 ⊕ xni ⊕ xni+1 ↔ Rule 150 i
Each additive rule N has a complementary antiadditive rule N c = 255 − N . The eight additive and the eight anti-additive rules are represented in Table 27, along with their Boolean cubes and Boolean expressions. Table 28 shows that four additive rules are globally equivalent to their corresponding anti-additive rules, whereas in the remaining four cases additive and anti-additive rules exhibit the so-called alternating symmetry duality [Chua et al., 2007a] described in Sec. 6.2. Additive rules can be displayed on the vertices of a cube19 as illustrated in Fig. 46(a). Drawing the 19
D 6. Old Theorems and New Results for Additive Cellular Automata
xn+1 i
(mod 2) ⇒
111
D
axis a passing through the vertices containing rules 0 and 150D , all the other rules O 0 are included into two planes, A and B, perpendicular to a. Thanks toDthis it is possible to separate the rules Drepresentation, 0 into four different subsets, according to the plane they belong to: The first subset contains rule 0 ; the second subset contains rules belonging to plane A, namely 170 , 204 and 240 ; the third subset contains rules belonging to plane B, namely 60 , 90 and 102 ; finally, the fourth subset contains rule 150 . Rules belonging to the same subset have the same complexity index κ (κ = 1, κ = 2, and κ = 3, respectively) and the same number of inputs
o
This cube shows the connection among additive rules, and it should not be confused with the 256 Boolean cubes in Table 1.
February 14, 2011
112
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 27. Eight additive and eight anti-additive rules, their Boolean cubes, and their analytical formulas.
8 Additive Rules N 2
x
1
0
4 n +1 i
3 7
6
0
x 7
1
= x ⊕x
n +1 i
x
2
1
0
4
4
6
n +1 i
x
7
4
x
1
2
2 6
x
7
6
x
6
x
7
x
1
5
=x
6
51
5
n +1 i
x 3 7
0
1
7
6
15
5
=x
x
3 7
0
4 n +1 i
1
n i
2
5 n i −1
3
0
4
=x
1
n i +1
2
n i
=x
0
4 n +1 i
3 7
6
85
3
0
4 n +1 i
= x ⊕ x ⊕ xin+1 n i
2
=x
2
240
1
1
5
n i −1
5
4 n +1 i
x
n i +1
2
204
n +1 i
3
0
4 n +1 i
0
4 n i +1
3 7
6
105
=x ⊕x ⊕x
170
5
= x ⊕ xin+1
5 n i
1
n i
3
0
n i −1
0
4
n i +1
3 7
6
153
5
2
n +1 i
2
=x ⊕x
150
5
= x ⊕ xin+1
x
1
1
n i −1
3
n i
x
0
4
0
3 7
6
165 n +1 i
7
6
n +1 i
= x ⊕ xin
5 2
102
5
2
xin +1 = xin−1 ⊕ xin+1
1
n i −1
3 7
6
90
0
4 n i
3 7
6
5 n i −1
x
=1 2
195
1
5
3
0
4
0
4 n +1 i
3 7
6
255
=0
6
n +1 i
2
5
2
60
c
8 Anti-Additive Rules N
5
=x
n i −1
1
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity Table 28. rules.
Relationship between additive and anti-additive
Additive Rule
Anti-additive Relationship between the two rules rule
0
255
Global equivalence
60
195
Global equivalence
90
165
Global equivalence
102
153
Global equivalence
150
105
Alternating symmetry
170
85
Alternating symmetry
204
51
Alternating symmetry
240
15
Alternating symmetry
D
0
n (n = 0, n = 1, n = 2, and n = 3, respectively); moreover, the Boolean cube corresponding to one element of a subset can be transformed into that corresponding to another element of the same subset through a rotation. A similar procedure can DDDDDOOO be followed for anti-additiveDDDO rules, as illustrated in Fig. 46(b). Remarkably, except for rule 0 and 255 , the number of inputs of any additive or anti-additive rule coincides with its complexity index.20 There are only nine globally-independent addiDDO tive rules: 0 , 15 , 51 , 60 , 90 , 105 , 150 , 170 , 204 . Five of them — namely 0 , 15 , 510, 170 and 204 — have complexity index κ = 1, and their behavior can be easily Danalyzed; for this reason, we dubbed them “trivial additive DO rules”. In contrast, 0 the remaining four local rules — 60 , 90 , 105 and 150 — have complexity index κ = 2 rules 60 and 90 or κ = 3 rules 105 and 150 . According to the classification introduced in [Chua et al., 2007a], rule 60 belongs to group 6 (hyper Bernoulli-shift rules), and rules 90 , 105 and 150 belong to group 5 (complex Bernoulli-shift rules); therefore, they exhibit complex behaviors, and we dubbed them “nontrivial additive rules”. In the following, we will take into consideration only these four nontrivial additive rules, for
o o
D
o
D
o
D
20
D
113
which it has been possible to find several remarkable results.
6.1. Theorems on the maximum period of attractors and Isles of Eden
D
Some partial results about additive rules were given in [Chua et al., 2007a] and [Chua et al., 2007b]. For example, the periods of the attractors of rule 90 found by brute force for 1 ≤ L ≤ 100 were listed in Table 25 of [Chua et al., 2007a]. Unfortunately, this table is incomplete, because the period of the attractors corresponding to certain L is so large that it exceeds the simulation time. Nevertheless, [Martin et al., 1984] contains several valuable results about additive rules, which allow us to find all of the missing values of the table under consideration. For the reader’s convenience, we summarized such results in two theorems using a plain style, our notation and our nomenclature. First of all, we need to introduce three concepts from number theory that will be extensively used in the following. Definition 6.1 (Euler totient function). Given a positive integer n, the Euler totient φ(n) is the number of positive integers less than n that are coprime to n. Definition 6.2 (Multiplicative order function). Given a positive integer n, the multiplicative order of 2 (mod n) is the minimum positive integer o(n) for which 2o(n) = 1 (mod n) Definition 6.3 (Multiplicative suborder function). Given a positive integer n, the multiplicative suborder of 2 (mod n) is the minimum positive integer s(n) for which 2s(n) = ±1 (mod n) Remark 6.1. It is possible to prove that φ(n) ≤ n−1, s(n) ≤ (n − 1)/2, and s(n)|o(n)|φ(n), where the bar “|” denotes “divides”. The values of φ(n), o(n) and s(n) for n odd and n < 100 are listed in Table 29.21 Now, we are ready to present the two aforementioned theorems, whose proofs can be found in [Martin et al., 1984].
We could assign complexity index κ = 0 to 0 and 255 , but this would mean introducing a fourth value for κ exclusive to only two rules, and not being consistent with the notation used in our previous works. 21 Note that the multiplicative order and suborder functions of 2 (mod n) are not defined for n even.
February 14, 2011
114
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
A
(a)
A
III
(b) Fig. 46.
Geometrical interpretation of additive (a) and anti-additive (b) rules.
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
115
Table 29. Values of the Euler’s totient function φ(n), multiplicative order function o(n), and multiplicative suborder function s(n), for n < 100, n odd. n
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
φ (n) : Euler's o(n) : Multiplicative s(n) : Multiplicative totient function order function suborder function
D
1 2 4 6 6 10 12 8 16 18 12 22 20 18 28 30 20 24 36 24 40 42 24 46 42
0
1 2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 12 20 14 12 23 21
D
1 1 2 3 3 5 6 4 4 9 6 11 10 9 14 5 5 12 18 12 10 7 12 23 21
0
Theorem 6.1. (Maximum period of the orbits of
rules 90 and 150 ). Let L be the length of the bit strings and let TL be the maximum period of the orbit (attractor or Isle of Eden) of rules 90 and 150 , then
(a) If L is odd, then TL divides the quantity T ∗ = 2s(L) − 1, where s(L) is the multiplicative suborder of 2 (mod n); (b) If D L = 2n , then x = (00 . . . 0) is a global attractor ; (c) If D L is even but not of the form L = 2n , then TL = 2 · TL/2 . Theorem 6.2. (Maximum period of the attractors
of rule 60 ). Let L be the length of the bit strings and let TL be the maximum period of the attractor of rule 60 , then
(a) If L is odd, then TL divides the quantity T ∗ = 2o(L) − 1, where o(L) is the multiplicative order of 2 (mod n); (b) If L = 2n , then x = (00 . . . 0) is a global attractor; (c) If L is even but not of the form L = 2n , then
n
51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
φ (n) : Euler's o(n) : Multiplicative s(n) : Multiplicative totient function order function suborder function
32 52 40 36 58 60 36 48 66 44 70 72 40 60 78 54 82 64 56 88 72 60 72 96 60
n
8 52 20 18 58 60 6 12 66 22 35 9 20 30 39 54 82 8 28 11 12 10 36 48 30
0
8 26 20 9 29 30 6 6 33 22 35 9 20 30 39 27 41 8 28 11 12 10 36 24 15
TL = 2 · TL/2 . Although these theorems do not include any statement about rule 105 , in [Chua et al., 2007a] it was proved that rules 105 and 150 exhibit an alternating symmetry duality, which is a kind of relationship weaker than the topologically conjugated transformations from the Vierergruppe0defined in [Chua et al., 2004] but still sufficient to relate the orbits of the two rules. The alternating symmetry duality can be described as follows: Given two bit strings xn = n n (xn0 xn1 . . . xnL−1 ) and xn = (xn 0 x1 . . . xL−1 ), generated respectively by rules 105 and 150 from the same initial state, x and x obey the following relations
o
1 n n ] + (−1)n xD xn i = [1 − (−1)D i 2
(48)
1 xni = [1 − (−1)n ] + (−1)n xn i 2
(49)
xn Therefore, xn = xn for n even and xn = for n odd; in other words, χ2105 = χ2150 , where
February 14, 2011
D
15:12
ch01
o
D
o
116
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
χ2
is the time-2 characteristic function of the local
N
o
o
o
rule N . For L odd, Theorem 6.1 states that TL is also odd for rule 150 . By applying the alternating symmetry duality, it is straightforward to see that TL has to be even for 105 , otherwise we would obtain a contradiction. In particular, when L is odd then TL for 105 has to be twice as that of TL for 150 . For L even, Theorem 6.1 states that TL is also even for rule 150 . Therefore, starting from any element of the orbit and going through the whole orbit and taking every other element, we will eventually go back to the first element after TL /2 steps. As a consequence of the alternating symmetry duality, the orbit for rule 105 contains all these TL /2 elements of the orbit for rule 150 , replacing the remaining TL /2 with new ones. In conclusion, for L even TL for rule 105 is equal to TL for rule 150 . We summarize these results in the following theorem:
o
o
o
o
o
o
o
Theorem 6.3. (Maximum period of the orbits of rule 105 ). Let L be the length of the bit strings and let TL be the maximum period of the orbit (attractor or Isle of Eden) of rule 105 , then
(a) If L is odd, then TL divides the quantity TL∗ = 2 · (2s(L) − 1), where s(L) is the multiplicative suborder of 2 (mod n); (b) If L is even, then TL divides the quantity TL∗ = 2 · (2s(L/2) − 1). It is important to notice that the parameter TL∗ does not give necessarily the maximum period TL of the orbits, because in general TL |TL∗ ; however, we found experimentally that TL = TL∗ for most L. The practical implications of Theorems 6.1–6.3, and Remark 6.1 are noteworthy. First D of all,0they state that TLD can assume very few values0because it has to divide TL∗ , and then resort to brute force, and numerical simulations is extremely minimal; second, we discover that the maximum period of the orbits for additive rules is not 2L as hypothesized in our L−1 previous papers, but 2 2 −1 for rules 90 and 150 , L+1 2L−1 for rule 60 , and 2 2 − 2 for rule 105 . The values of TL∗ for the nontrivial additive rules for L odd and L < 100 are listed in Table 30. In addition to this, we also give four tables — Table 31 refers to rule 60 , Table 32 refers to rule 90 , Table 33 refers to rule 105 , and Table 34 refers to rule
D
22
o
D
150 — containing the actual value of TL along with a bit string belonging to the orbit and its result after TL − 1 iterations, so that the reader can check the correctness of our simulations. In some cases the value of TL is so large that no simulation was possible. However, in these cases the orbits are so robust that practically every bit string has the indicated TL . Finally, a graphical representation of the relationship between the length L of the bit string and the maximum period TL of the orbit for nontrivial additive rules is depicted in Figs. 47–50.
6.2. Scale-free property for additive rules All nontrivial additive rules are either complex or hyper Bernoulli-shift rules; hence, their Bernoulli parameters σ and τ , and consequently the periods of their orbits, depend crucially on L. In principle, given L and theDO corresponding0 maximum period TL of the orbits of a nontrivial additive rule, it is not possible to extract any information about the maximum period TL of the orbits for L = L; in other words, TL /L is unrelated to TL /L . Nevertheless, in [Chua et al., 2007a] it was empirically noticed that for rules 90 , 105 and 150 there exist certain values of L and L for which D (log(TL )−log(TL ))/(log(L )−log(L)) = 1, or equivalently TL /L = TL /L . This means that such rules exhibit a scale-free property as L → ∞, and hence there are some L = L for which it is possible to know TL using only the information about TL ; the presence of a scale-free property also for rule 60 is confirmed in [Chua et al., 2007b]. The scale-free property can be easily noticed looking at Figs. 51–54 and noticing that most of the points lie on diagonal lines with slope 1 (here we draw just a few of them). A question naturally arises: For what values of L and L does the scale-free property hold? In order to characterize quantitatively this phenomenon, we give the following definition: Definition 6.4 (Scale-free order). Let L be the length of the bit strings and let TL∗ be the maximum period of the orbits (attractors or Isles of Eden) of a nontrivial additive rule, then its scale-free order ξL is defined as22 ξL =
TL∗ 2s(L) − 1 = L L
We have chosen the symbol ξL to denote the scale-free order to recall the parallel straight lines visually representing the scale-free property.
D
D
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
D
1 1 3 7 7 31 63 15 15 511 63 2,047 1,023 511 16,383 31 31 4,095 262,143 4,095 1,023 127 4,095 8,388,607 2,097,151
1 2 6 14 14 62 126 30 30 1,022 126 4,094 2,046 1,022 32,766 62 62 8,190 524,286 8,190 2,046 254 8,190 16,777,214 4,194,302
Rule 105: Rules 90 and 150: * * s( L) TL = 2 · (2s ( L ) − 1) TL = 2 − 1 o( L)
51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
−1 L
1 3 15 7 63 1,023 4,095 15 255 262,143 63 2,047 1,048,575 262,143 268,435,455 31 1,023 4,095 36 2 -1 4,095 1,048,575 16,383 4,095 8,388,607 2,097,151
T =2 * L
Rule 60: 510 134,217,726 2,097,150 1,022 1,073,741,822 2,147,483,646 126 126 17,179,869,182 8,388,606 35 2·(2 -1) 1,022 2,097,150 2,147,483,646 39 2·(2 -1) 268,435,454 41 2·(2 -1) 510 536,870,910 4,094 8,190 2,046 36 2·(2 -1) 33,554,430 65,534
255 67,108,863 1,048,575 511 536,870,911 1,073,741,823 63 63 8,589,934,591 4,194,303 235-1 511 1,048,575 1,073,741,823 39 2 -1 134,217,727 241-1 255 268,435,455 2,047 4,095 1,023 236-1 16,777,215 32,767
Rule 105: Rules 90 and 150: * * s( L) TL = 2 · (2s ( L ) − 1) TL = 2 − 1 255 52 2 -1 1,048,575 262,143 258-1 60 2 -1 63 4,095 266-1 4,194,303 35 2 -1 511 1,048,575 1,073,741,823 39 2 -1 54 2 -1 82 2 -1 255 268,435,455 2,047 4,095 1,023 36 2 -1 48 2 -1 1,073,741,823
T = 2o ( L ) − 1 * L
Rule 60:
Maximum period-T of attractors and/or Isles of Eden of local rules 60 , 90 , 105 and 150 , for L < 100, L odd.
D
L
Table 30.
February 14, 2011 15:12 ch01
117
L lIsle ofEden
...
Data for generating and verifying the period of period-T orbits of 60 .
(x 0 ,.x T-l ) ~ (initiaIJinal) bit strinK on Period- T orbit
Attractor T*
=
3
4 5
T*
=
1
T*
15
=
~
I
X2
I·iii·iii·iii···············································
Xo
I ••••
.
---~Q_--j-~-~-~-~-~--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------XI4
•••••
I•••••• Xs I • • • • • • Xo
T*
=
6
7 8 9
T*
=
7
T*
=
1
T*
=
63
10
T*
=
30
11
T= T*/3
---~Q_--j-~-~-~-~-~-~~-~-~-~-~----------------------------------------------------------------------------------------------------------------------------------------------------------
12
T*
12
13
T= T*/5
--i;~--+=-=-=-=-=-=I=-=-=-=-=------------------------------------------------------------------------------------------------------------------------------------------------------
14
T*
=
14
15 16 17
T*
=
15
T*
=
255
·~~·+=·=·=·=·=·=I=·=·=·=·=·=;I=·=·····················
18
T*
=
126
19
T= T*/27
-~~~-+=-=-=-=-=-=I=-=-=-=-=-=;I=-=-=-------------------------------------------------------------------------------------------------------------------------------x~;~J=-=-=-=-=-=I=-=-=-=-=-=;I=-=-=-=---------------------------------------------------------------------------------------------------------------------------
T*
=
1
20
T*
=
60
21
T*
=
63
22
T=T*/3
23 I
I T*
=
2047
···i~··+=·=·=·=·=·=I·································· Xo
__
.
I ••••••••
~o~ __j-=-=-=-=-=-=I=-=------------------------------------------------------------------------------------------------------------------------------------------------------------------
---~Q_--j-~-~-~-~-~-~~-~-~-~-------------------------------------------------------------------------------------------------------------------------------------------------------------X29
X340
••••••••••
•••••••••••
·~~~·+=·=·=·=·=·=I=·=·=·=·=·=························· ··i;~·+=·=·=·=·=·=I=·=·=·=·=·=I·······················
. .
--i;~-+=-=-=-=-=-=I=-=-=-=-=-=;I-----------------------------------------------------------------------------------------------------------------------------------------Xo
I ••••••••••••••••
··i~~·+=·=·=·=·=·=I=·=·=·=·=·=;I=·=·=·=·=·············
.
.
--i~o~-+=-=-=-=-=-=I=-=-=-=-=-=;I=-=-=-=-=-=-------------------------------------------------------------------------------------------------------------------~;~--j-=-=-=-=-=-=I=-=-=-=-=-=II=-=-=-=-=-=-=---------------------------------------------------------------------------------------------------------------x;~~-J=-=-=-=-=-=I=-=-=-=-=-=;I=-=-=-=-=-=-=I-----------------------------------------------------------------------------------------------------------
ch01
118
6
=
15:12
3
D
February 14, 2011
Table 31.
24
T*
24
=
T
26
T= T*/5
27
T
28
T*/41
=
T*/19
=
T*
T= T*/565
119
30
T*
=
30
31 32 33
T*
=
31
T*
34
T*
35
T*
36
T*
T* = = = =
=
1
1023 510 4095
252
37
T= T*/21255
38
T= T*/27
39
T*
40
T*
41
T= T*/25
42
T*
43
T= T*/3
44
T
=
T*/3
T*
=
4095
T*
=
4094
4H 46
I
= =
=
4095 120
126
i~~~;~I-IIZ-I-I;-=ll=-IIZ-ll;-I-IZ-=-ll=-ll---------------------------------------------------------------------------------------x~:;JIIZ-I-I;-=-ll=-llZ-llZ-I-IZ-=-IZ-=-IZ-I-------------------------------------------------------------------------------------i;~~~~I-IIZ-I-I;-=lll-IIZ-ll;-I-IZ-=-I=-=-IZ-I-I----------------------------------------------------------------------------------
-i;;---I-IIZ-I-I;-=ll=-IIZ-ll;-I-IZ-=-I=-=-lll-I-I-------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -t~~+IIZ-I-I;-=-ll=-llZ-llZ-I-IZ-=-I=-=-IZ-I-I-I=---------------------------------------------------------------------------i;~---I-IIZ-I-I;-=lll-ll=-ll;-I-IZ-=-ll=-lll_=_lll------------------------------------------------------------------------i:~---I-IIZ-I-I;-=ll=-Il=-Il;-I-IZ-=-Il=-IZ-I-I-I=-I-1-------------------------------------------------------------------~
I ••••••••••••••••••••••••••••••••
x~:;JIIZ-I-I;-=-ll=-llZ-llZ-I-IZ-=-I=-=-IZ-Z-I-I=-I-IZ-1-------------------------------------------------------------x~~~+IIZ-I-I;-=-III-ll=-ll;-I-IZ-=-ll=-IZ-I-I-III-IZ-1-1---------------------------------------------------------x~:~JIIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-------------------------------------------------------x;~~--I-IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-I---------------------------------------------------x~~+IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-I-I-----------------------------------------------t~~+IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-I-Il-------------------------------------------x~:~JIIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-I-IIZ-----------------------------------------x;~~--I-IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ-I-IIZ-I-------------------------------------x~~+IIZ-=-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-IZ-Z-I-IZ-I-IZ-I-IZ_=_IIZ-=Z----------------------------------i;~~+IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-=-=Z-Z-I-IZ-=-IZ-I-IZ-I-IIZ-IZ-l-----------------------------x~:~~+IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-Z-=Z-Z-I-IZ-=-1Z-I-IZ-I-IIZ-IZ-ll--------------------------x~:~;-I-IIZ-I-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-Z-IZ-Z-I-IZ-=-IZ-I-IZ-I-IIZ-IZ-lll-----------------------
x~:~JIIZ·I·I;·=·IIZ·IIZ·IIZ·I·IZ·=·I=·=·=Z·Z·I·IZ·=·IZ·I·IZ·I·IIZ·IZ·IIIZ···_·············_·· x~:~JIIZ-=-I;-=-IIZ-IIZ-IIZ-I-IZ-=-I=-I-IZ-Z-I-IZ-=-IZ-1-IZ-I-IIZ-=Z-lllZ-:-----------------
ch01
29
28
=
-i;;----lz--;--l-lz-l;--z--l=---------------------------------------------------------------------------------------------
15:12
25
(Continued )
February 14, 2011
Table 31.
47
T*
8388607
=
T*
48
2097151
50
T
51
T*
52
T
= =
T*/41
X
=
255
=
T*/5
o
x~
I;·················································
; •••••••••••••••••••••••••••••••••••••••••••••••••
I•• x·················································· o
X3275
;;••••••••••••••••••••••••••••••••••••••••••••••••
120
53
T
=
T*/1266205
54
T
=
T*/19
X·················································· ---~~-+i-ii-i-i.-.-i-ii.-.-ii.-.-ii.-.-i.-.-i.-.-i-ii-.-iii.-.-i.-.-i.-.-i.-.-i_.-.-ii.-.-i.-.-i---
55
T*
1048575
X·················································· --~L-Iliili.-.-i-ii.-i-ii.-i-ii.-.-i.-.-i.-.-i-ii-.-.-i.-. -i.-.-i.-.-i.-.-i_.-i-ii.-.-i.-.-i---
56
X·················································· ---~~:-+i-ii-i-ii-.-i-ii.-.-ii.-.-i.-.-i.-.-i.-.-.-ii-.-. -i.-.-i.-.-i.-.-i.-.-i_.-i-ii.-.-i.-.-i--X·················································· ---~>Iliiliili-ii-.-.-ii.-.-ii.-.-i.-.-i.-.-.-ii-.-.-i.-.i.-.-i.-.-i.-.-i_.-i-ii.-.-i.-.-i---
=
T*
56
=
57
T*
=
262143
58
T
=
T*/565
59
T*
=
288230376151711743
60 61
T*
T*
=
=
60
X·················································· ---~-~:-+i-ii-i-ii-i-i-ii-.-ii.-.-ii.-.-i.-.-i.-.-.-ii-..-i.-.-i.-.-i.-.-i.-.-i_.-i-ii.-.-i.-.-i---
1152921504606846975
ch01
T*
48
--x~~d-;;Z-;-I;-;-I-I;-;-Il;-;l=-IZ-l:-:-;-I-:-=-I-IZI-z-;;z-;-;-;-;;-;-;;-;-----------------i~;---llIZ-;-IZ-;-I-:-;-;-;Z-;-;Z-;-IZ-;-IZ-;-:-:-;-:-;Z-:-IZ-:-IZ-:-IZ-;-:;;-:-;;-:-;Z------------x~~~+;-IZ-;-IZ-:-I-:-Z-:-;Zl;Z-;-IZ-;-IZ-;-:Z-;-:-IZ-:-IZ-:-IZ-;-IZ-;-:;Z-:-;Z-;-IZ-;---------i~---I-;-IZ-;-IZ-;-I-;;-:-;Z-:-;Z-;-IZ-;-IZ-;-:-:-Z-:-IZ-:-IZ-:-IZ-;-IZ-;-:;;-:-;Z-;-;Z-;-I---
15:12
49
=
(Continued )
February 14, 2011
Table 31.
February 14, 2011
Table 31.
(Continued )
•• •• •• •• •• •• •• •• ••• •• •• •• •• •• •• •• •• •• •
•• •• •• •• •• •• •• ••• •• ••• •• •• ••• •• •• •• •••
15:12
ch01
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••••• •• ••• •• •••• •••• ••••
•••• •••• •• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •• •••• •••• •••• •••• •••• •••• •• •••• •••• •• •••• •••• •••• •••• •• •••• •••• •••• •• •••• •••• •••• :c
0
><
..:
N 'C
0
><
..:
~
0
0 ".
..:
..: V)
~
~
II -x-
II -x-
N
('1
'-D
N
M
'-D
.. on
".
0
..:
-., II
*N
"1"
'-D
0-
0
0 N
..:
>< \Q
0 "t-
"t0 <"l
II
II
*h
*h
or.
'-D
'-D '-D
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• •• •• •• ••••• • • •••• •••• •••• •••• ••••
~
"t-
\Q
0 <"l
00
"t0-
~ l'--..
0\Q
OO l'--..
~ II -le-
h
t'-D
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ~
::
0
><
..:
~
0
..:
><
~
:!: ..:'"
0
..:
0
0
~ -.,
"t0-
0
O-
-.,
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• ••••• • •••• •••• ••••
l'--.. \Q
V)
II
"t-
II
*h
II -x-
*h
II -x-
01
0
......
oo
121
'-D
t-
0
><
~
0-
00
'-D
'"on
0
..:
00
-.,
h
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• ••• •••• •••• ••• •••• •••• •• ••• •••• •••• ••• •••• •••• •• ••• •••• •••• ••• •••• •••• ••••• ••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
"t-
::on
0
..:
><
"t0
-., -.,
V)
lr)
II -x-
II -x-
h
h
h
t-
~
0
><
..:
or, or, <"'l
-.,
~ -x-
N II
h
N t-
M t-
"1" t-
February 14, 2011
15:12
ch01
Table 31.
(Continued )
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• • • • • •••••• • • ••• •••• •• ••••••••• ••••••••••••••••• ••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• •••••••••••••••• ••••••••••••••••
•• •• •• •• •• •• •• •• ••
••• ••• •• •• •• •• •• •• ••••
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••
•• ••••••• ••••••• •• ••••••• ••••••• •• ••••••• •• ••••••• ••••••• ••••••• •• ••••••• ••••••• •• ••••••• •• ••••••• ••••••• ••••• •• •••• •• ••••••••• ••••••••••••• •••••••••••••••• • ••••••••••••••• •••••••••••••••• • ••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• • ••••••••••••••• •••••••••••••••• • ••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• •••••••••••••••• •• ••••••••••••••• ••••••••••••••• •••••••••••••••• • ••••••••••••••• •••••••••••••••• • ••••••••••••••• ••••••••••••••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• •••• •••• •••• •••• •••• ••••
<;;::,
~ -x-
0\ ......., 00
*h
<-
h
h
II
II
*h
h
00
r-
o
N
00
00
122
M
00
-.::I"
00
r-
OO
February 14, 2011
Table 31.
(Continued )
•• •• •• ••• •• •
15:12
ch01
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••••••••• ••••• •••••••• ••••••••• •••••• ••••••••••••• •••• ••••••••••••••••• •• ••••••••••••••••••••• •••••••••••••••••••••••••
•••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• ••••••••••••••••••••••••••••
•••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• •••••••••••••••••••••••••••• 00 00
~ -xh II h
00 00
•• ••
•••• ••••• ••• ••••• ••• •• ••• ••• ••••• ••• ••••• ••• •• ••• ••• ••••• ••• ••••• ••• •• ••• ••• •••• •••• ••••• ••• ••••• ••• •••• •• ••• ••• •••• ••••• ••• •• ••• ••• ••••• ••• ••••• ••• •• ••• ••• ••••• ••• ••••• ••• ••••• ••• •••• •••• ••••• ••• • •••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• \0 0\
.......
00
II
II -xh
0\ 00
•• ••
-*
h
o
00 0\
0\
123
0\ 0\
0\ 0\
o o......
L
[sLeofEden
Data for generating and verifying the period of period-T orbits of 90 .
Attraetor
D
(x o,x T-l) g, (initial1tinal) bit strinf( on Period-T orbit
T* = 1 T* = 1
6
T* =2
7
T* = 7
8 9
T* = 1 T* = 7
--i~---f~-I;-I-Z-Z-I;-I--------------------------------------------------------------------------------------------------------------------------------------
10
T* = 6
11
T* = 31
12
T* = 4
13
T* = 63
14
T* = 14
15
T* = 15
--i:---f-Z-I;-I-Z-Z-I;-I-Z------------------------------------------------------------------------------------------------------------------------------------i;~+Z-I;-I-Z-Z-I;-I-Z-Z---------------------------------------------------------------------------------------------------------------------------------i;---f-Z-I;-I-Z-Z-I;-I-Z-Z-I-----------------------------------------------------------------------------------------------------------------------------i;,;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;--------------------------------------------------------------------------------------------------------------------------i;;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-----------------------------------------------------------------------------------------------------------------------i;~+Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-------------------------------------------------------------------------------------------------------------------
16 17
T* = 1 T* = 15
--i;~+Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I------------------------------------------------------------------------------------------------------------
18
T* = 14
19
T* = 511
20
T* = 12
21
T* = 63
--i;;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;---------------------------------------------------------------------------------------------------------~~-~-f-Z-I;-I-Z-Z-I;-I-Z-Z-I;_=_Z-Z-I;-I-------------------------------------------------------------------------------------------------------i;;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z----------------------------------------------------------------------------------------------------i;,;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-------------------------------------------------------------------------------------------------i;,;--f-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I--------------------------------------------------------------------------------------------x~:~JZ-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;-I-Z-Z-I;-----------------------------------------------------------------------------------------
T* = 3
--
22 I 23 I
I
T* = 62
-I T* = 2047
Xo I • • • •
--i;---f-z-;--z--------------------------------------------------------------------------------------------------------------------------------------------------Xo Xl
I •••••• I ••••••
--i~---f-Z-I;-I-Z-Z-I-------------------------------------------------------------------------------------------------------------------------------------------Xo I • • • • • • • •
Xo I • • • • • • • • • • • • • • • •
ch01
--
Xo I • • •
15:12
124
3 4 5
February 14, 2011
Table 32.
February 14, 2011
15:12
ch01
Table 32.
(Continued )
•• •••• •••••• •••••••• ••••••••••
•••••••••••• •••••••••••••• •••••••••••••••• •••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••••• •••••••••••••••••••••••• •••••••••••••••••••••••••• •••••••••••••••••••••••••••• ••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••• C"'l
-., -.,
\Q
00
II
*E-,
<;;::,
<;;::,
or,
00 C"'l
<'f)
<'f)
00 C"'l
II
II
II
II
II
*E-,
*E-,
-.,
*E-,
*E-,
00
o
N
*E-,
or,
~ -x-
0\
II
E-,
*E-,
II
II
<;;::, ~
*E-,
E-,
00 M
M
125
~
C"'l
II
*E-,
~
C"'l
-.,
'"
C"'l -.,
0\
II
II
II
*E-,
*E-,
*E-,
II
C"'l
or, C"'l
~
<;;::, ~
*E-,
47 I 4H 49
I T*
I
= 2
23
_1
T* = 16 T* = 2 21 _1
(Continued )
50
T* = 2046
51
T* = 255
52
T* = 252
53
T* = 2 26 _1
54
T* = 1022
x·················································· -~~-:-Ji-ii-i-i.-.-i-ii.-.-ii.-.-ii.-.-i.-.-i.-.-i-ii-.-iii.-.-i.-.-i.-.-i.-.-i_.-.-ii.-.-i.-.-i---
55
T* = 2 20 _1
X·················································· --~L-Iliili.-.-i-ii.-i-ii.-i-ii.-.-i.-.-i.-.-i-ii-.-i-i.-. -i.-.-i.-.-i.-.-._.-.-ii.-.-i.-.-i---
56
T* = 56
x·················································· ---~~:---I-i-ii-i-ii-.-i-ii.-.-i.-.-ii.-.-i.-.-i.-.-.-ii.-.-i.-.-i.-.-i.-.-i.-.-._.-.-ii.-.-i.-.-i---
57
T* = 511
X·················································· --~L-Iliiliil.-ii-.-.-ii.-.-ii.-.-i.-.-i.-.-.-ii-.-.-i.-.i.-.-i.-.-i.-.-._.-.-ii.-.-i.-.-i---
58
T* = 32766
59
T* = 2 29 _1
1=················································· = . I•• x·················································· == .
15:12
--x~~d-;;;-;-I=-;-I-I;-;-II;-I;-l=;-l:-:-;-;-:-=-;-I;I-;-;;;-;-:1;-;;--;-;-----------------i;~---I-;-:;-;-:;-;-:-:-;-;-I;ll;l:;-;-:;-;-:-:-;-;-1;-;-:;-;-:;-;-:;-;-;;;-;-1;-;-:;------------x~~;--I-;-:;-;-:;-;-:-:-;-;-I;ll;-;-:;-;-:;-;-;;-;-;-I;-;-:;-;-:;-;-:;-;-I;;-I-I;ll;l------x~~~-J;-:;-;-:;-;-:-I;-;-I;-;-I;-;-:;-;-:;-;-I-:-;-;-1;-;-:;-;-:;-;-:;-;-:;;-;-1;-;-:;-;-1---
February 14, 2011
Table 32.
X
T'
~ 60
T* = 2 30 _1
o
Xw
x
o
XT_l
I••• •••••••••••••••••••••••••••••••••••••••••••••••••• === .
x·················································· --~L-I-i-ii-i-ii-i-i-!-.-.-i.-.-i.-.-i.-.-i.-.••-.-.-i.-.-i.-.-i.-.-i.-.-._.-.-ii.-.-i.-.-i---
x·················································· ---~-~:---I-i-ii-i-ii-i-i-ii-.-ii.-.-ii.-.-i.-.-i.-.-.-ii -."lfi.-.-i.-.-i.-.-i.-.-._.-.-ii.-.-i.-.-i--x·················································· ··~~~:+i·ii·i·ii·i·i·ii·i·i.·.·i.·.·i.·.·i.·.·.·ii·.·.· i.·.·i.·.·i.·.·i.·.·i_.·.·ii.·.·i.·.·i···
ch01
126
j
61
I
o
x~
Table 32.
(Continued )
February 14, 2011
15:12
ch01
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• • •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••••• •• ••••• •••• •••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• • •••• •• •• •• •• •• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• ••••• • •• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••.... •• ••••.... •••• •••• •••• •••• ••••'" •••• •••• ••••=: •••• ~
0 ~
'"
lo
0
'"
lo
~
0
~
0
'"
lo
~
:c
0 ~
~
~
0 ~
lo
'"on
0 ~
lo
~
~
II
II
*h
*h
II -xh
('l
M
\.0
\.0
-.::t \.0
I
a
I
~
~
II
II
*h
*h
II -xh
*h
Ir)
\.0 \.0
t\.0
oo
\.0
'"'"C"'l
~
lo
........,
........,
........,
~
0
lo
\Q
II
\.0
127
"1
'"C"'l
:'!:
0
lo
QO ~
a
0\ ........,
~
0 ~
lo
'n
lo
........, I
~
0
on
lo
lo
........,
~
0 ~
lo
*h
II -xh
~ -xh II h
.......
('l
t-
t-
M
-.::t
or,
co
'"C"'l
II -xh
II -xh
II -xh
0\ \.0
0
t-
or,
0
~
\Q
I.r)
II
........,
I.r)
t-
t-
Table 32.
(Continued )
February 14, 2011
15:12
ch01
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• -..,
-..,
<;;::,
I
00 "1-
0\
-..,
~ C""l
C""l
00
C""l
II
II
II
II
*h
*h
*h
*h
eo
r-
II
*h
I
"'"
\Q
"1-
o
-.., I
-.,
-,.
C""l
C""l
C""l
II
II
II
*h
*h
*h
N
M
o
00
00
128
eo
"1-
-.., "1-
o Ir)
Ir) Ir)
Ir)
C""l
C""l
II
II
II
*h
*h
*h
-.::I"
00
V)
eo
I
~ C""l
II
*h
r-
eo
February 14, 2011
15:12
ch01
Table 32.
(Continued )
•• •••••••••••••••••••••• ••••• ••••••••• •• •••••••••••••••••••• •••••••••••••••••• ••••••••••••• ••••••••••••••••• •• •••••••••••••••• •••••••••••••• ••••••••••••••••••••• ••••••••••••••••••••••••• •• •••••••••••• •••••••••• ••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••• •• •••••••• •••••• ••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••• •• •••• •• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• .,. .,. .,. '" ....
Q
..:
..<
00 ""t~
II
*h
co co
'<>
Q
Q
..:
..:'" l'-.-
""t-
e;::, <"'l
II
~
Q
..:
00
..: 0 0\
'".,.
Q
Q
..:
..:
or,
00
0\ 0 ""t-
II
II
-..,
*h
*h
0\ 00
o
*h
.... ~
Q
..:
00
..:
00 00
-..,
'" '"
Q
..:
Q
~ C")
<"'l e;::,
OO
-..,
II
II
*h
*h
~
Q
..:
..:
~
Q
..:
><
;;; ..:
Q
..:
~ I
'"""'~ <"'l
II
*h
~
~
><
-..,
~ -x-
h
II
h
<"'l
CV)
II
*h
...
I
'"<"'l II
*h
~ ..:
Q
..:
~ I
;::; ~ <"'l
II .;:-
h
co
0'1
0'1
129
~
Q
..:
><
-..,
.,.~
Q
Q
..:
..:
<"'l
<"'l 0\ 0 ""t-
II
II
*h
*h
I
~
o o,......,
L I Isle ofEden
Attraetor
3
T* = 2 T* =2
5
T* = 6
(x 0 ,x T-J ) ~ (initialJi,nal) bit string on Period- T orbit
I~ Xl rii-jj------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
---i~--t-==-;-=----------------------------------------------------------------------------------------------------------------------------------------------------------------------------i~--t-==-;-==-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
I
I
6
D
T* = 2
Xo I • • • • • • Xl
I ••••••
T* = 14
--~~--t-==l==l;---------------------------------------------------------------------------------------------------------------------------------------------------------------
8
T* = 4
---i;---t-==-;-==-;-;=-----------------------------------------------------------------------------------------------------------------------------------------------------------T* = 14
--~~--t-==-;-==-;-==-;--------------------------------------------------------------------------------------------------------------------------------------------------------
10
T* = 6
---i~---t-==l==l;=l;----------------------------------------------------------------------------------------------------------------------------------------------------
11
T* = 62
--;:~+==-;-==-;-;=-;-;;------------------------------------------------------------------------------------------------------------------------------------------------
130
12
T* = 2
---i~+==-;-==-;-==-;-=;;---------------------------------------------------------------------------------------------------------------------------------------------
13
T = T*/3
--;~~+==l==-;-;=-;-;;;-;-----------------------------------------------------------------------------------------------------------------------------------------
14
T* = 14
--~~--t-==-;-==-;-==-;-==-;-;-=--------------------------------------------------------------------------------------------------------------------------------------;~;--t-==-;-==-;-;=-;-;;;-;-=;----------------------------------------------------------------------------------------------------------------------------------
15
T* = 30
16
T* =8
---i;---t-==-;-==-;-;=-;-;;;-;-=;-;-------------------------------------------------------------------------------------------------------------------------------
17
T* = 30
--i~;--t-==-;-==l;=l;;;-;-=;-;-=---------------------------------------------------------------------------------------------------------------------------
18
T* = 14
19
T* = 1022
20
T* = 12
21
T* = 126
22
T* = 62
23
T* = 4094
--:-I~--t-==-;-==-;-;=-;-=;;-;-=;-;-==------------------------------------------------------------------------------------------------------------------------x~~;;-t-==-;-==-;-;=-;-;;;-;-=;-;-==-;---------------------------------------------------------------------------------------------------------------------~~~--t-==-;-==-;-;=-;-;;;-;-=;-;-==-;-=----------------------------------------------------------------------------------------------------------------~;-;-t-==-;-==-;-;=-;-;;;-;-=;-;-==-;-==--------------------------------------------------------------------------------------------------------------i:~+==-;-==-;-;=-;-;;;-;-=;-;-==-;-==-;--------------------------------------------------------------------------------------------------------i~~;J==-;-==-;-;=-;-;;;-;-=;-;-==-;-==-;-=------------------------------------------------------------------------------------------------------
ch01
7
9
15:12
4
...
Data for generating and verifying the period of period-T orbits of 105 .
February 14, 2011
Table 33.
24 I T* = 2046
26
T= T*/6
27 28
T* = 1022 T* = 28 T* = 2(2
14
-1)
30
T* = 30
31
T* = 62
32
T* = 16
33 131
T* = 30
35
T* = 8190
36 T= T*/9
38
T* = 1022
39
T* = 8190
40
T* = 24
41
T* = 2046
42 I 43
T* = 254
44
T* = 124
45 46
I T* ~ /26 T* = 8190
T* = 4094
.
··i~~;+IZ·I·I=·;·==·;·==·;·I=·;·I·=;·I·=;·I·==·;·==·;·1=·;·11···············································
.
--i;~~+IZ-I-I=-;-I=-;-==-;-I=-;-I-=;-I-=;-I-==-;-==-;-I=-;-IIZ--------------------------------------------------------------x~~;;+-IZ-I-I=-;-I=-;-==-;-I=-;-I-=;-I-=;-I-==-;-==-;-I=-;-IIZ-;---------------------------------------------------------T* = 28
37
··i;~~+IZ·ll;·;·=;·;·==·;·I=·;·I·=;·I·=;·I·==·;·==·;·1=
--i~~;+IZ-I-I=-;-==-;-I=-;-I=-;-I-=;-I-=;-I-==-;-==-;-1=-;--------------------------------------------------------------------------i~~~+IZ-I-I=-;-I=-;-I=-;-I=-;-I-=;-I-=;-I-==-;-==-;-1=-;-1---------------------------------------------------------------------
I
T* = 62
34
--i;-+z--z--z--==-;-=-;--=;--=;--==---------------------------------------------------------------------------------------------------x;~~~JIZ-I-I=-I-I=-I-==-;-I=-;-I-=;-I-=;-I-==-I------------------------------------------------------------------------------------------------i~~;+IZ-I-I=-I-==-I-==-;-I=-;-I-=;-I-=;-I-==-I-=-------------------------------------------------------------------------------------------x~~~;JIZ-I-I=-I-==-I-==-;-I=-;-I-=;-I-=;-I-==-I-==-----------------------------------------------------------------------------------------i;~;+IZ-I-I=-I-I=-I-I=-;-I=-;-I-=;-I-=;-I-==-I-==-I------------------------------------------------------------------------------------~~-;+IZ-I-I=-I-==-I-==-;-I=-;-I-=;-I-=;-I-==-I-==-;-I--------------------------------------------------------------------------------
··i;~;+IZ·I·I=·;·==·;·==·;·I=·;·I·=;·I·=;·I·==·;·==·;·I=·;·IIZ·;·=·········································· . -~~-;+IZ-Il=-;-I=-;-I=-;-I=-;-I-=;-I-=;-I-==-;-==-;-I=-;-IIZ-;-=Z--------------------------------------------------l~~;JIZ-I-I=-;-==-;-==-;-I=-;-I-=;-I-=;-I-==-;-==-;-I=-;-IIZ-;-=Z-;-----------------------------------------------x~~;JIZ·I·I=·;·I=·;·I=·;·I=·;·I·=;·I·=;·I·==·;·==·;·I=111Z·;·=Z·;·=··········································· --i;~~--tlZ-I-I=-;-==-;-I=-;-I=-;-I-Z-;-I-=;-I-==-;-==-;-I=-;-IIZ-;-=Z-;-==----------------------------------------x;~~~JIZ-I-I=-;-I=-;-I=-;-I=-;-I-=;-I-=;-I-==-;-==-;-1=-;-IIZ-;-=Z-;-==-;-----------------------------------·t;~+IZ·I·I=·;·==·;·==·;·I=·;·I·=;·I·=;·I·==·;·==·;·I=·;·IIZ·;·==·;·==·;·I································ -i:~-tlZ-ll=-;-==-;-I=-;-I=-;-I-=;-I-I;-I-==-;-==-;-I=-;-IIZ-;-=Z-;-==-;-I=-----------------------------t;~+IZ-I-I=-;-I=-;-I=-;-I=-;-I-=;-I-=;-I-==-;-==-;-I=-;-IIZ-;-IZ-;-==-;-I=-;-------------------------x~~;;+IZ·I·I=·;·==·;·==·;·I=·;·I·=;·I·=;·I·==·;·==·;·1=·;·IIZ·;·I=·;·==·;·I=·;·I····················· -x~~~JIZ-I-I=-;-I=-;-==-;-I=-;-I-Z-;-I-=;-I-==-;-==-;-1=-;-IIZ-;-=Z-;-==-;-I=-;-I-Z------------------
ch01
29
T* = 4
15:12
25
I
(Continued )
February 14, 2011
Table 33.
47
T* = 2(2
23
49
T* T* = 2(2
21
8
---i;---t-==-;-==-;-==-;-;l;-;-I;-;-=;-I-=;-;-==-;-;=-;-1-1-;-1-=;-;-==-;-==-;-==-;-;-1;-;----------i~~-J=;-;-==-;-==-;-;=-;-;-I-;-;-=;-I-=;-;-==-;-;=-;- 1=-;-1-=;-;-==-;-==-;-==-;-;-1;-;-1------
-1)
T* = 2046
-x;14s-t-I;-;-=;-;-I;-=-ll;-;-I;-;-=;-;-=;-;-==-;-;=-;-1-1-;-1-1;-;-;;-;-;;-;-;;-;-;-1;-;-1;--x.o t=················································· = . X
T*
51
=
510
ch01
52
=
T = T*/6 :
53
x
T* = 2(2 26 -1)
o
XT_I
T* = 1022
54
t••• ===
.
••••••••••••••••••••••••••••••••••••••••••••••••••
X·················································· ·~::~+ii·i·ii·.·ii·.·i ••·i·i.·i·ii·.·ii·.·iii·.·ii·.·i.·i·.·ii·.·ii·.·ii·.·i.·.·i·ii·.·ii···
132
55
T* = 2(2 20 -1)
X·················································· -~~~-+ii-i-ii-.-ii-i-i.i-i-ii-i-ii-.-i.-.-ii.-i-i.-i-ii-i-i-ii-.-ii-.-ii-i-i.-i-i-ii-i-ii---
56
T* = 56
X·················································· --~:~+ii-=-ii-=-ii-i-ii-i-i-i-i-i-ii-.-i.-.-iii-i-ii-i-i.-i -i-ii-.-ii-.-ii-.-i.-i-i-ii-i-ii--T* = 1022
57
58
x·················································· -~::~+ii-i-ii-i-ii-i-i.i-i-ii-i-ii-.-i.-.-iii-i-i.-.-ii-i-.-ii-.-ii-.-ii-i-i.-i-i-ii-i-ii--x·················································· --~-~~-:+ii-i-ii-i-ii-i-i.i-i-ii-i-ii-.-i.-.-iii-i-i.-i -i-i-i-i-ii-.-ii-.-ii-.-i.-i-i-ii-i-ii---
T* = 2 15 _2
59 I T* = 2(2 29 -1)
T* = 60
60
61
15:12
~
-i~~-;-tl=-Il;-I-I;-;-Il;-I-I;-I-I;-I-=;-;-==-;-==-;-I-1-;--=;1-==-;11;-==-1;-1;--------------
-1)
48
(Continued )
February 14, 2011
Table 33.
T
=
T*/63
x·················································· --~:~+ii-i-ii-=-ii-=-i.i-i-ii-i-ii-.-i.-.-ii.-i-i.-i-i-i-ii-ii-.-ii-.-ii-i-i.-i-i-ii-i-ii--X·················································· ·~~~·:+ii·i·ii·i·ii·i·ii·i·i·ii·i·ii·.·i.·.·ii.·i·i.·i· i·i·i·i·ii·.·ii·.·ii·.·i.·i·i·ii·i·ii···
February 14, 2011
15:12
ch01
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• • •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••••• •• ••••• •••• •••• • •••• •••• •••• •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••••• •• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• • •••• •••• •••• •••• •••• •••• •••• ••• •••••• •• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
Table 33.
(Continued )
•• •• •• ••• •• •• •• •• ••• •• •• ••• •• •• •• •• •• •
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••"' •••• •••• •••• •••• :;;
Q
~
~
'n
'"
Q
~
~
;;;
Q
~
~
on
'"
Q
~
~
\Q
:;;
Q
~
~
~
~
~
"'on
Q
~
~
~
Q
~
~
.......
'"
II -x-
II -x-
'"II
~
~
\Q
II -x-
II -x-
h
h
\Q
~
II
*h
~
a
h II h
II -x-
Q
~
~
Q
~
~
h
0\
....... 00
II
h
'"
Q
~
II -x-
c::::,
\Q
~
lr)
-.h r---
on 'n
Q
~
\Q
~
:r;--
.......
~
Q
~
~,
h
h
~
::>,
~
~
~ co
Q
~
*h
~ I
~ ~
~
....... II
II -x-
II
*h
h
M
"T
,'")
c::::,
"> ~
~ -xh
h
N \0
M
\0
"T \0
V)
\0
\0 \0
r---
\0
eo \0
133
0\
\0
0
r---
..-
r---
N
r---
r---
r---
February 14, 2011
15:12
ch01
•• I• •••••••••••••••••••••••• i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
··i·················································· ··i·················································· ··i·················································· • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Table 33.
(Continued )
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
::1:::::::::::::::::::::::::::::::::::::::::::::::::: • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
l""l
V")
"-
'"~
l""l
II -x-
""II
h
*h ~ ,
~ ,
co
'"~
a......,
V")
V")
l""l
"t-
l""l
II
II
II
*h
*h
-x-
h eo
r-
o
N
00
00
134
M
eo
r-
eo
February 14, 2011
15:12
ch01
·· .. ·.............................................. .. .............................................. . .............................................. . ··············································i······ .............................................. . ··············································i······ .............................................. . .............................................. . ··············································i······ .............................................. . ··············································i······ .............................................. . ··············································i······ .............................................. . .............................................. . .............................................. .
Table 33.
(Continued )
•• • • • • • • • • • • • • • • • • • • • • • • I••••• • • • • • • • • • • • • • • • • • • • • • • •i• • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • : • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • •
::::::::::::::::::::::::::::::::::::::::::::::1:::::: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i• • • • • •
135
D
Data for generating and verifying the period of period-T orbits of 150 .
IAttractor
(x o,x T-l) ~ (initiaIJjnal) bit string on Period-T orbit
I
Xo I • • •
Isle ofEden
5 6
T* = 3
7
T* = 7
---i~---I-=-=-=:lZ-Z-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
8
T* = 4
···i~··+=·=·=IIZ·Z·Z··································
T* = 1
---i~----I-=-=-=:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
T* =2
---i~---I-=-=-=::--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
I
I
T* = 1
Xo I • • • • • •
_
.
---i~---I-=-=IIIZ-Z-Z-=-----------------------------------------------------------------------------------------------------------------------------------------------------------------
10
T* = 6
---i~---I-=-=-=IIZ-Z-Z-=-=-------------------------------------------------------------------------------------------------------------------------------------------------------------
11
T* = 31
--i;~---I-=-=-=IIZ-Z-Z-=-=-;---------------------------------------------------------------------------------------------------------------------------------------------------------
12
T* = 2
---i~--+=-;-;::Z-Z-Z-=-;-;I-----------------------------------------------------------------------------------------------------------------------------------------------------
136
13
T= T*/3 = 21
--i;~---I-=-;-=:lZ-Z-Z-=-;-=-=:-------------------------------------------------------------------------------------------------------------------------------------------------
14
T* = 14
--i;;---I-=-;-=IIZ-Z-Z-=-;-;-=:Z----------------------------------------------------------------------------------------------------------------------------------------------
15
T* = 15
--i;~-+=-;-;::Z-Z-Z-=-;-;I:Z-Z------------------------------------------------------------------------------------------------------------------------------------------
16
T* =8
---i~---I-=-;-=IIZ-Z-Z-=-;-;-=:Z-Z-Z--------------------------------------------------------------------------------------------------------------------------------------
17
T* = 15
··i;~···I·=·=·=:lZ·Z·Z·=·;·=·=:Z·Z·Z·=················ T* = 14
18
_
.
--i;;-+=-;-;IIZ-Z-Z-=-;-;-;lZ-Z-Z-Z-;------------------------------------------------------------------------------------------------------------------------------
19
T* = 511
-x~~-~--I-=-;-=IIZ-Z-Z-=-;-=-=lZ-=-Z-Z-=-;--------------------------------------------------------------------------------------------------------------------------
20
T* = 12
··i;~·+=·;·=IIZ·Z·Z·=·;·=·=lZ·Z·Z·=·=·;I··············
_
.
22
T* = 62
--i~;---I-=-=-=:lZ-Z-Z-=-;-=-=:Z-=-Z-=-=-;::-------------------------------------------------------------------------------------------------------------------i~~---I-=-;-=IIZ-=-Z-=-;-;-=lZ-Z-Z-Z-;-;::;--------------------------------------------------------------------------------------------------------------
23
T* = 2047
X";~~J=-=-;ll=-=-Z-=-=-;-=;=-=-Z-Z-=-=ll;Z-----------------------------------------------------------------------------------------------------------
21
T* = 63
ch01
T* = 7
9
15:12
L 3 4
February 14, 2011
Table 34.
24 I T* = 1023
26
T= T*/3 = 42
27
T* = 4
-x~~~;JIZ-I-IZ-I-IZ-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;------------------------------------------------------------------------------------------------i~~;+IZ-I-IZ-I-=Z-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=------------------------------------------------------------------------------------------T* = 511
T* = 28
29
T* = 2 14 _1
30
--i;~;+IZ-I-IZ-I-IZ-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;------------------------------------------------------------------------------------~~-;+IZ-I-IZ-I-=Z-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-I-------------------------------------------------------------------------------T* = 30
31
T* = 31
32
T* = 16
33
T* = 31
137
34
T* = 30
35
T* = 4095
36
T* = 28
37 T=T*/9=29127 38
T* = 1022
39
T* = 4095
40
T* = 24
41
T* = 1023
42 I 43
T* = 127
44
T* = 124
45 46
··i;~~+IZ·I·IZ·I·=Z·I·=Z·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·IZ···················································· . --i;~~+IZ-I-IZ-I-=Z-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;--------------------------------------------------------------------------i~~~+IZ-I-IZ-I-IZ-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-I--------------------------------------------------------------------··i;~~+IZ·I·IZ·I·=Z·I·=Z·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·IZ·;·ll··············································· . --i;~~+IZ-I-IZ-I-IZ-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-IIZ--------------------------------------------------------------x~~;~+IZ-I-IZ-I-IZ-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-1Z-;-IIZ-I---------------------------------------------------------··i;~;+IZ·I·IZ·I·=Z·I·=Z·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·IZ·;·IIZ·I·=·········································· . -x;~-;-tlZ-llZ-I-=Z-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-IIZ-I-=Z--------------------------------------------------l~~;;+IZ-I-IZ-I-=Z-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-IIZ-I-=Z-I-----------------------------------------------
-x~~;JIZ·IIZ·I·IZ·I·IZ·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·IZ·;·IIZ·I·=Z·;·=········································ ... --i;~~+IZ-IIZ-I-IZ-I-=Z-;-IZ-;-I-Z-;-I-I;-I-=Z-;-=Z-;-IZ-;-IIZ-I-=Z-;-=Z---------------------------------------l~~;JIZ-I-IZ-I-IZ-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-IIZ-I-IZ-I-=Z-I------------------------------------
I T* ~ /26 ·t;~+IZ·I·IZ·I·=Z·I·=Z·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·IZ·;·IIZ·I·IZ·I·=Z·I·I································ -t;3-IZ-I-IZ-I-IZ-I-=Z-;-IZ-;-I-Z-;-I-=;-I-=Z-;-=Z-;-1Z-;-IIZ-I-=Z-;-=Z-;-IZ-----------------------------t;;+IZ-I-IZ-I-IZ-I-IZ-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z-;-IZ-;-IIZ-I-IZ-I-=Z-;-IZ-;------------------------T* = 4095
T* = 4094
-t;;+IZ-I-IZ-I-=Z-I-=Z-;-IZ-;-I-=;-I-=;-I-=Z-;-=Z----------------------------------------------------------------------------------------
-x~~;~+IZ·I·IZ·I·=Z·I·=Z·;·IZ·;·I·=;·I·=;·I·=Z·;·=Z·;·1 Z·;·IIZ·I·IZ·I·=Z·I·IZ·I·I····················· -x~~~dlZ-llZ-I-IZ-I-IZ-;-IZ-;-I-=;-I-I;-I-=Z-;-=Z-;-IZ-;-IIZ-I-=Z-;-=Z-;-IZ-;-I-Z------------------
ch01
28
--i;-+z--z-z-z-z-=z-;-z-;-;-=;-;-=;--=z---------------------------------------------------------------------------------------------------
15:12
25
I
(Continued )
February 14, 2011
Table 34.
47
T* T*=2
~ 51
T*
=
21
=
8
---i;---t-I;-;-IZ-;-IZ-;-;;;-;-I;-;-IZ-I-IZ-;-IZ-I-;Z-;-I-I-;-I-I;-;-IZ-;-IZ-;-IZ-;-;-I;-;----------i~~-JI;-=-IZ-;-IZ-;-;Z-;-;-I-;-;-IZ-I-IZ-;-IZ-=-;Z-;-II-; -I-I;-;-IZ-;-IZ-;-IZ-;-;-I;-;-I------
_1
2046
-X;14S+IZ-;-IZ-;-IZ-;-IZ-I-;-IZ-;-IZ-;-IZ-;-II-I-;I-;-;I-Z-I-IZ-;-;Z-;-;;-;-;Z-Z-;-IZ-;-IZ--o t=················································· = . X
T*
=
255
x~
ch01
T = T*/3 = 84 :
53
x
T* = 2 26 _1
54
o
XT_I
T* = 1022
t••• ===
.
••••••••••••••••••••••••••••••••••••••••••••••••••
X·················································· ·~::~+ii·i·ii·.·ii·.·i ••·i·i.·ii·ii·.·ii·.·iii·.·ii·.·ii·i·i·.·ii·i·ii·i·ii·.·i.·.·i·ii·.·ii···
138
55
T* = 2 20 _1
X·················································· -~~~-+ii-i-ii-.-ii-.-i ••-i-i.-ii-ii-.-ii-.-iii-.-i.-.-.-i-i-.-ii-.-ii-.-ii-.-i.-.-i-ii-.-ii---
56
T* = 56
X·················································· --~:~+ii-=-ii-=-ii-ii-ii-.-i-i-.-ii-ii-.-iii-.-ii.-.-ii-.••-i-.-ii-i-ii-i-ii-i-i.-i-i-ii-.-ii---
57 58
T* = 511
x·················································· -~-L-t-ii-i-ii-i-ii-.-i ••-i-i.-ii-ii-.-ii-.-iii-.-i.-.-i-i-i-.-ii-.-ii-.-ii-.-i.-.-i-ii-i-ii--x·················································· --~-~~-:-t-i!-i-i!-i-i!-.-i ••-i-i.-ii-ii-.-.i-.-iii-.-••-.-i-i-i-.-.i-.-.i-.-.i-.-••-.-i-••-.-••---
T* = 2 15 _2
59 I T* = 2 29 _1 60 61
15:12
49
52
-i~~-;-t;=-I;;-I-I;-;-I;;-I-III-IZ-I-IZ-;-II-I-II-Z-I-I-z--z-;;I-;-;;-z-I;-;--------------
T*=2 23 _1
48
(Continued )
February 14, 2011
Table 34.
T* = 60 T
=
T*/63
x·················································· --~:~+ii-i-ii-=-ii-=-i ••-i-i.-ii-ii-.-ii-.-iii-.-i.-.-i-i-i-.-ii-.-.i-.-ii-.-i.-.-i-ii-i-ii--X·················································· ·~~~·:-t-ii·i·ii·i·ii·i·ii·.·i·i.·ii·ii·.·.i·.·iii·.·i.·.· i·i·i·.·ii·.·.i·i·.i·.·i.·i·i·ii·.·ii···
February 14, 2011
15:12
ch01
••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• • •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••••• •• ••••• •••• •••• • •••• •••• •••• •••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •••••• •• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •• •• •• •• •• •• •• ••••• • •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• • •••• •••• •••• •••• •••• •••• •••• ••• •••••• •• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
Table 34.
(Continued )
•• •• •• ••• •• •• •• •• ••• •• •• ••• •• •• •• •• •• •
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••
•••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• ••••"' •••• •••• ••••:=: •••• :;;
Q
~
~
'"'<>
Q
~
~
;;;
Q
~
~
'"
Q
'<> ~
~
:;;
Q
~
~
~
~
~
"'on
Q
~
~
~
Q
~
~
~ co
Q
~
~
~
Q
~
~
on on
Q
~
~
Q
on
~
~
~
Q
~
~
-... \Q
~
II -x-
II -x-
C")
h
C"l
II -x-
II -x-
N \0
h
M
\0
"T \0
*'
\Q
h
II -x-
II
h
V)
\0
h
\0 \0
lr)
II -x-
h
h
~
C")
\Q
II -x-
h
C"l \Q
h
I
'"'"<""1
r---
\0
c::::,
a
0\
-..,
\Q
II -x-
h
eo \0
139
0\
\0
I
C"l
II
II -x-
0
r---
-.., -..,
,'")
00
*h
"t-
lr)
-..,
lr)
II
*h
h
..-
r---
C"l
00
lr)
II
S2;
*h
~
N
r---
M
r---
"T
r---
February 14, 2011
15:12
ch01
Table 34.
(Continued )
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •••••••••••••••••••••• ••••• •••••••••••••••••••• ••••••••• •• •••••••••••••••••• ••••••••••••• •••••••••••••••• ••••••••••••••••• •• •••••••••••••• ••••••••••••••••••••• •••••••••••• ••••••••••••••••••••••••• •• •••••••••• ••••••••••••••••••••••••••••• •••••••• ••••••••••••••••••••••••••••••••• •• •••••• ••••••••••••••••••••••••••••••••••••• •••• ••••••••••••••••••••••••••••••••••••••••• •• •• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• -...,
-...,
I
I
~
?'l
~
~
II -x-
II -x-
h
h
-...,
-...,
I
I
'"
~
~
II
II -x-
-x-
h
h
eo
r-
o
N
00
00
140
M
eo
lr) lr) ~
"t-
lr) ~
II
II
*h
*h r-
eo
Table 34.
(Continued )
February 14, 2011
15:12
ch01
•• ••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••• •• ••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••
141
February 14, 2011
15:12
ch01
* T 142
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
*
~.
"*
*
*
-/1.
--A~
* * * **
*
1
D
**
ll--~-~*:-------!r~--:*~*~~-- * **
10 ----*--~--------'*i----'---------.-------T-t~'-.--'
*
10
2
*
) for Fig. 47. Relationship between the length L of the bit strings and the maximum period T of the attractors (symbol rule 60 . In some cases (symbol ) the maximum theoretical value is too large to be verified experimentally, and we hypnotize that it is a multiple of the actual maximum period T .
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
143
*-
12
10 ----------------------~*_---,
T *-
10
10
***-
10
~
"
8
**
*-
*-
~
"
10
*-
6
**:
*-
~
"
10
4
*~
"
10
*-1.
*:
*-
~
"
**-
1
1
10
*:
* * ****
*-**
~
iI:t
~*-
*k
*-*- ***
*- *-
**-
** *-* *- *
**-
2
*-
D
*-
*-
*~*
*
*
L
10
2
"*
Fig. 48. Relationship between the length L of the bit strings and the maximum period T of the attractors (symbol rule 90 .
) for
February 14, 2011
15:12
ch01
* 10 144
12
TA Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science 1011
*
1010
10 9
*
*
*
*: *:
*
10 8
* \. * *: *
10 7
10 6
* * * * **"*" * * * ** *11k * *" * * *"* **" "**. * *"* ***~* *~ *"* 10 * *" * *** * * * ** * * * 1+-------......----------....................--~---------........------ .............. 1
]0
*
D
L
]02
*
Fig. 49. Relationship between the length L of the bit strings and the maximum period T of the attractors (symbol Isles of Eden (symbol ) for rule 105 .
) or
February 14, 2011
15:12
ch01
* *
10 12
T
Chapter 1: Quasi-Ergodicity
10 11
* *
1010
10 9
* 10
145
** *" *"
8
* *
10 7
* * *
10 6
*:
*"
* * * * * *** ** * * *** * ** * * * --M:- * * *"~* ~ ***'* *"* ~*:* * *-*** * *** *
*-
10
* * **
**
*" *: * * ........--.""'"T""""""*"--........------------......... 1+----------'llll'------~
__1
1
10
*
D
L
10
2
"*
Fig. 50. Relationship between the length L of the bit strings and the maximum period T of the attractors (symbol Isles of Eden (symbol ) for rule 150 .
) or
February 14, 2011
15:12
ch01
"* T 146
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
1m
10 22
10 20
*
10 18
"* -.A~
10 16
~
10 14
10 12
"fl'
4.
"* . *
10 10
-.A:
*
10 8
--' R
10 6
*-1- ,
....:r
~:
1-
~.
" 10 4
" ...L
10 2
*
~
1--! 1
"
...
.
*
"'"
*
*
~
,
~t~r~:' ~I'-
}>.:.
*.. '7'
,
"pk
~~ ~ ;r".'
'f-I:
)'~!' -,;::
""R ~
>of>'
10
____---rftL_____ L
D
Fig. 51.
**~:-\'l:
**
---*--~---
....
'* *
*
-~r -
Scale-free property for rule 60 .
,---------.-----_._,1'~"-'---'---"
,I
February 14, 2011
15:12
ch01
Chapter 1: Quasi-Ergodicity
10
147
*:
12
*:
T 10
10
*:
*: *:
10
*: *:
8
10
6
*:
*:
1 1
L
10
D
Fig. 52.
Scale-free property for rule 90 .
10
2
February 14, 2011
15:12
ch01
*
1012.--148
--.
TA Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science 10 11
* * *
10 8
* \. * * *
10 7
10 6
*
10
*' *
* *"
1+-------......----------....................--~---------........------ .............. 1
L
]0
D
Fig. 53.
Scale-free property for rule 105 .
]02
February 14, 2011
15:12
ch01
* *
10 12
T
Chapter 1: Quasi-Ergodicity
10 11
*
10 10
10 9
* 10 8
**
*
10 7
* *
10 6
* *
*:
10
l+------~Ill'_------____,lIl~--""'"T""" .....---------........---.........__I 2 1 10 L 10
D
Fig. 54.
Scale-free property for rule 150 .
149
February 14, 2011
15:12
ch01
D D150
0
0
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Therefore, we need to find all L and L , with L = L, for which ξL = ξL . From now on, we will refer exclusively to rules 90 and 150 , for which TL∗ = 2s(L) − 1; however, the conclusions for rules 60 and 105 are very similar and can be achieved through a similar procedure. The following theorem represents an important advance towards our goal.
is TL∗ = 15 (see Table 30); therefore, ξL = TL∗ /L = 1 and o(ξL ) = 1. From Eq. (50) n = (o(L)/o(ξ)) − 1 = (4/1) − 1 = 3, and ((21 − 1)/1)1 + 21·1 + 21·2 + 21·3 ) = 15, as expected. In this case, we consider all values n > 1, i.e. n = 1, 2, 4, etc. to be sure of finding all L = L such that ξL = ξL = 1. For example,
Theorem 6.4 (Scale-free decomposition). Let L be the length of the bit strings, L odd, and let ξL be its scale-free order. If o(L) = s(L),23 then L can be uniquely expressed as
n : 1 L =
21 − 1 (1 + 21 ) = 3 1
n : 2 L =
21 − 1 (1 + 21 + 21·2 ) = 7 1
i
2o(ξL ) − 1 i·o(ξL ) 2 L= ξL i=0
(50)
where n = (o(L)/o(ξL )) − 1. This theorem is extremely powerful, because given any L for which o(L) = s(L) and its scale-free order ξL , we can easily find analytically all the L for which ξL = ξL by just varying the parameter n. Its proof requires only basic concepts from number theory, but we present it in Appendix B in order to illustrate here the application of the theorem through some examples. Example 6.1. For L = 21, the values of the multi-
plicative order and suborder are o(21) = s(21) = 6 (see Table 29), and the maximum period of the orbit is TL∗ = 63 (see Table 30); therefore, ξL = TL∗ /L = 3 and o(ξL ) = 2. From Eq. (50) n = (o(L)/o(ξ))−1 = (6/2) − 1 = 2, and ((22 − 1)/3)(1 + 21·2 + 22·2 ) = 21, as expected. Considering the following values for the parameter n, i.e. n = 3, 4, 5, etc., we can find an infinite number of L = L such that ξL = ξL . For example, n : 3 L =
22 − 1 (1 + 21·2 + 22·2 ) = 21 3
n : 4 L =
22 − 1 (1 + 21·2 + 22·2 + 23·2 ) = 85 3
n : 5 L =
22 − 1 (1 + 21·2 + 22·2 + 23·2 + 24·2 ) = 341 3
.. . Example 6.2. For L = 15, the values of the multi-
plicative order and suborder are o(15) = s(15) = 4 (see Table 29), and the maximum period of the orbit
23
We assume that o(1) = 1, as illustrated in Example 6.2.
21 − 1 (1 + 21 + 21·2 + 21·2 + 21·3 + 21·4 ) 1 = 31 .. . i (m+1) − 1, Note that in this example L = m i=0 2 = 2 ∗ (m+1) − 1, as and since ξL = 1 it follows that TL = 2 already stated in Theorem 4 of [Chua et al., 2007b]. Therefore, the scale-free decomposition gives an alternate proof for such theorem. n : 4 L =
Example 6.3. For L = 73, the values of the multi-
plicative order and D suborder are o(73) = s(73) = 9 (see Table 29), and the maximum period of the orbit is TL∗ = 511 (see Table 30); therefore, ξL = TL∗ /L = 7 and o(ξL ) = 3. Table 35. Values of L < 105 having the same scale-free order ξL ≤ 15 for rule 90 , ξL = (2s(L) − 1)/L.
Scale-free order
ξL
Length L of the bit strings
1
3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535,
3
21, 85, 341, 1365, 5461, 21845, 87381,
5
51, 819, 13107,
7
73, 585, 4681, 37449,
9
455, 29127,
11
93, 95325,
13
315,
15
273, 4369, 69905,
February 14, 2011
l09r
15:12
ch01
- - - - - - - - - - - - - - - - - -__
T ~L =2361.65 151 . Chapter 1: Quasi-Ergodicity ~L =564.93 .
~L=7 ~L =2.818 ...
~L=7
D
/ N (blue lines) include attractors of only one L odd; lines Fig. 55. For rule 90 , lines corresponding to a scale-free order ξL ∈ corresponding to scale-free orders ξL ∈ N (red lines) include attractors of infinitely many different odd values of L.
From Eq. (50) n = (o(L)/o(ξ))−1 = (9/3)−1 = 2, and ((23 − 1)/7)(1 + 21·3 + 22·3 ) = 73, as expected. If we “go backward” using n = 1, as already done as in Example 6.3, we apparently find a contradiction, because n=1:
L =
27 − 1 (1 + 21·3 ) = 9 7
but Table 30 indicates that T9∗ = 31, and then ξ9 = 3.44 = ξ73 . However, this happens because o(9) = 6 and s(9) = 3, and since o(9) = s(9), Theorem 6.4 cannot be applied to L = 9. The values of L corresponding to ξL ≤ 15 are presented in Table 35. The results of this section
February 14, 2011
152
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
can be summarized in the following theorem: Theorem 6.5 (Scale-free property of additive rules). Let L be the length of the bit strings and let TL∗ be the maximum period of the orbit of a nontrivial additive rule, then for any L ∈ N the scale-free property TL∗ /L = TL∗ /L holds iff (a) both L and L satisfy the conditions of Theorem 6.4, if L is odd; (b) L = 2n · L, with n ∈ N, if L is even and L, L = 2i ; Figure 55 gives a graphical interpretation of this theorem: red lines correspond to values of ξL ∈ N, which will include all odd L obtained from Theorem 6.4 (as stated in the first point of Theorem 6.5) plus their even multiples (as stated in the second point of Theorem 6.5); blue lines correspond to values of ξL ∈ / N, and then they include only one odd L (because L does not satisfy the conditions of Theorem 6.4) plus its even multiples (as stated in the second point of Theorem 6.5).
7. Concluding Remarks The first and most important result of this paper is the characterization of the quasi-ergodic phenomenon. Although it has been introduced empirically, quasi-ergodicity is tremendously useful to support our classification of local rules into six groups, since only complex and hyper Bernoulli-shift rules appear to be quasi-ergodic. For the first time, we have found an additional feature distinguishing the Bernoulli στ -shift rules (group 4) from the complex and hyper Bernoulli-shift rules (groups 5 and 6), besides the dependence of the two Bernoulli parameters σ and τ on the initial point and on the length L. We also included numerous figures and tables in order to show the qualitative meaning of quasi-ergodicity, and encourage readers to give a quantitative interpretation of it. In addition to quasi-ergodicity, the paper presents further results about a variety of topics. First of all, a complete explanation for the emergence of fractals in the time-1 characteristic functions was given. These results, which generalize those presented in [Chua et al., 2005b], allow us to classify each rule according to the number of fractal patterns it exhibits, and retrieve the rule number from the time-1 characteristic function. In our opinion, the number and the form of the fractal patterns may give information on the dynamical
behavior of the corresponding local rule; this aspect will be further analyzed in our next papers. A whole section has been devoted to introduce a new nomenclature for rules which harbor, or do not harbor, Isles of Eden. For the first time we were able to find that Isles of Eden are everywhere in 1-D cellular automata: in fact, only 28 rules out of 256 do not have any Isle of Eden! Furthermore, we show that at least for two rules of group 1, a string either belongs to the basin of a global attractor or is an Isle of Eden; hence, we can completely characterize these rules by analyzing their Isles of Eden. The Bernoulli στ -shift basin tree generation formula presented in Sec. 4 has a practical importance, because thanks to it we only need to analyze a fraction of the 2L possible bit strings to draw all of the DOD D forbasin-tree diagrams of a given local rule. This mula will be also used in our next papers, in which we will relate it with the “traveling waves” in cellular automata. Finally, the last section completes the work that began in [Chua et al., 2007a] and [Chua et al., 2007b] about additive rules 60 , 90 , 105 and 150 . Although some of the results were known, they were not easily accessible and we have therefore recast them using our notation for the reader’s convenience. Furthermore, we have included many tables, so that all experiments reported can be accurately reproduced and verified. In our opinion, the results presented in this paper shed new light on a number of phenomena, especially on the role of Isles of Eden and the behavior of Bernoulli στ -orbits. Most of our theorems and conjectures can be easily generalized to bi-infinite bit strings by taking advantage of the analogy between non-spatially periodic finite strings and spatially periodic bi-infinite strings. Furthermore, many rules behave like a left- or right-shift for certain subsets of strings, and this property can be used to define a completely new class of problems still unexplored.
Appendix A Theorem. Inequality (31) is given by
D
I I 1− xi−1 2−(i+1) + xi 2−(i+1) − 1 i=0
≥ χ 60
i=0
I I ≥ xi−1 2−(i+1) − xi 2−(i+1) i=0
i=0
February 14, 2011
15:12
ch01
D Chapter 1: Quasi-Ergodicity
where I
χ 60 =
|xi−1 − xi |2−(i+1)
(A.1)
i=0
The above formula can be split into two parts, one for the upper bound
Proof.
I i=0
|xi−1 − xi |2−(i+1) I I −(i+1) −(i+1) ≥ xi−1 2 − xi 2 i=0
(A.2)
i=0
≥
But xi ∈ {0, 1} and max( Ii=0 xi 2−i ) = 1; this means that (A.7) holds, and consequently the inequality (A.3) holds.
Appendix B In order to prove Theorem 6.4 (scale-free decomposition), presented in Sec. 6 and recalled in the following, we need to introduce two lemmas from number theory, whose proof can be found in any good book on number theory. Lemma B.1. For n ∈ N, n = ab
2n − 1 = 2ab − 1
and one for the lower bound I I 1− xi−1 2−(i+1) + xi 2−(i+1) − 1 i=0
= (2a − 1)(1 + 2a + 22a + · · · + 2(b−1)a ) (B.1)
i=0
I
|xi−1 − xi |2−(i+1)
(A.3)
i=0
which can be analyzed separately. However, in both cases we will make use of the well-known triangle inequality |a1 | + |a2 | ≥ |a1 + a2 | ⇒ |a1 | + |a2 | + · · · + |aN | N ai ≥ (A.4)
Lemma B.2. Let o(n) be the multiplicative order of 2 (mod n), n = ab, then
o(n) = lcm(o(a), o(b))
The proof for inequality (A.2) follows directly from (A.4). As for (A.3), it is equivalent to I I xi−1 2−(i+1) + xi 2−(i+1) − 1 1≥ +
I
i=0
−(i+1)
|xi−1 − xi |2
(A.5)
i=0
Applying (A.4) to the second part of inequality (A.5), we find I I xi−1 2−(i+1) + xi 2−(i+1) − 1 i=0
i=0
+
I
−(i+1)
|xi−1 − xi |2
i=0
I ≥ xi 2−i − 1 i=0
Theorem (Scale-free decomposition). Let L be the
length of the bit strings, L odd, and let ξL be its scale-free order. If o(L) = s(L), then L can be uniquely expressed as n
2o(ξL ) − 1 i·0(ξL ) 2 L= ξL
i=0
(B.3)
i=0
where n = (o(L)/o(ξL )) − 1. Proof.
Since o(L) = s(L), the scale-factor order be-
comes 2o(L) − 1 2s(L) − 1 TL = (B.4) = L L L and, by the definition of multiplicative suborder, it follows that ξL =
o(ξL L) = o(2o(L) − 1) = o(L)
(B.5)
But, from Lemma B.2, o(ξL L) = lcm(o(ξL )o(L)) =
o(ξL )o(L) p
(B.6)
where p|o(L), which means that
(A.6) therefore the inequality (A.5) is equivalent to I 1≥ xi 2−i − 1 (A.7)
(B.2)
Now, we are ready to prove the following theorem.
i=1
i=0
153
o(L) = p · q
(B.7)
Then, combining Eqs. (B.5) and (B.6), we obtain o(L) =
o(ξL )o(L) ⇒ o(ξL ) = p p
(B.8)
February 14, 2011
154
15:12
ch01
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
and then we also find an expression for q, because q=
o(L) o(L) = p o(ξL )
(B.9)
By using Lemma B.1, we can easily find that 2o(L) − 1 = (2p − 1)(1 + 2p + · · · + 2(q−1) · p ) = (2o(ξ) − 1)(1 + 2o(ξ) + · · · + 2(q−1) · o(ξ) ) (B.10)
in Fig. 8(a), has the following firing/quenching patterns
2o(ξL ) − 1 1 = o(L) (1 + 2p + · · · + 2(q−1) · p ) ⇒ 2 −1 o(L) 2o(ξL ) − 1 ( o(ξ) −1) · p p 1 + 2 + ··· + 2 L= ξL
(B.11)
or, in other words, 2o(ξL ) − 1 1 + 2o(ξL ) + · · · + 2n · o(ξL ) L= ξL where n = (o(L)/o(ξL )) − 1.
D
Definition C.1. A local rule N is said to be LeftPermutive, iff for every x ˜0 , x˜1 ∈ {0, 1} the map ˜0 , x ˜1 ) is a permuting map of the alphabet f N (x−1 , x {0, 1} [Hedlund, 1969; Courbage, 1999; Courbage & Yasmineh, 2001; Pivato & Yassami, 2008]. Theorem C.1. The classical definition and defini-
tion based on Boolean cubes of left-permutive rules are equivalent. A left-permutive rule can be written in the form [Wuensche & Lesser, 1992, p. 30]
Proof.
(2) 010 ↓ X2
(3) 011 ↓ X3
(4) 100 ↓ X0
(5) 101 ↓ X1
(6) 110 ↓ X2
(0) 000 30 : ↓ D 0
(1) 001 ↓ 1
(2) 010 ↓ 1
(3) 011 ↓ 1
D(4)
100 ↓ 1
(5) 101 ↓ 0
(6) 110 ↓ 0
(7) 111 ↓ 0
then, according to (C.1), it is a left-permutive rule. (B.12)
Appendix C The D Classical Definitions and Definitions Based on Boolean Cubes of Permutive Rules are Equivalent
(1) 001 ↓ X1
D
Example. Rule 30 , whose Boolean cube is shown
where we used Eq. (B.8)
(0) 000 ↓ X0
X6 = X 2 = 1 − X2 , X7 = X 3 = 1 − X3 , where Xi ∈ {0, 1}. Straightforwardly, we can conclude that the definition of left-permutive rule given in Sec. 1, D based on the opposite colors of the vertex pairs {(0), (4)}, {(1), (5)}, {(2), (6)}, and {(3), (7)} of the Boolean cubes, is equivalent to the classical definition of expression (C.1).
(7) 111 ↓ X3 (C.1)
Numbers within brackets refer to the corresponding vertices of Boolean cubes in Sec. 1. It is evident that it is necessary to define only four outputs — namely X0 , X1 , X2 and X3 — and the remaining four outputs will be automatically defined, since X4 = X 0 = 1 − X0 , X5 = X 1 = 1 − X1 ,
Definition C.2. A local rule N is said to be Right-
Permutive, iff for every x ˜−1 , x ˜0 ∈ {0, 1} the map f N (˜ x−1 , x ˜0 , x1 ) is a permuting map of the alphabet {0, 1} [Hedlund, 1969; Courbage, 1999; Courbage & Yasmineh, 2001; Pivato & Yassami, 2008]. Theorem C.2. The classical definition and definition based on Boolean cubes of right-permutive rules are equivalent.
Following the same steps as in the previous proof, a right-permutive rule can be written in the form [Wuensche & Lesser, 1992, p. 30]
Proof.
(0) 000 ↓ X0
(1) 001 ↓ X0
(2) 010 ↓ X2
(3) 011 ↓ X2
(4) 100 ↓ X4
(5) 101 ↓ X4
(6) 110 ↓ X6
(7) 111 ↓ X6 (C.2)
Numbers within brackets refer to the corresponding vertices of Boolean cubes in Sec. 1. It is evident that it is necessary to define only four outputs — namely X0 , X2 , X4 and X6 — and the remaining four outputs will be automatically defined, since X1 = X 0 = 1 − X0 , X3 = X 2 = 1 − X2 , X5 = X 4 = 1 − X4 , X7 = X 6 = 1 − X6 , where Xi ∈ {0, 1}. Straightforwardly, we can conclude that the definition of left-permutive rule given in Sec. 1, based on the opposite colors of the vertex pairs {(0), (1)}, {(2), (3)}, {(4), (5)}, and {(6), (7)} of the Boolean cubes, is equivalent to the classical definition of expression (C.2).
February 14, 2011
15:12
ch01
D
D
D
Chapter 1: Quasi-Ergodicity
Example. Rule 86 = T † 30 has the following fir-
ing/quenching patterns (0) 000 86 : ↓ D 0
(1) 001 ↓ 1
(2) 010 ↓ 1
(3) 011 ↓ 0
D
(4) 100 D↓ 1
(5) 101 ↓ 0
(6) 110 ↓ 1
(7) 111 ↓ 0
then, according to (C.2), it is a right-permutive rule. Definition C.3. A local rule
N is said to be ˜0 , x ˜1 ) and Bi-Permutive, iff both maps f N (x−1 , x x−1 , x˜0 , x1 ) are permuting maps of the alphaf N (˜ ˜0 ∈ {0, 1} and x ˜0 , x ˜1 ∈ bet {0, 1} for every x ˜−1 , x {0, 1} [Courbage, 1999; Courbage & Yasmineh, 2001; Pivato & Yassami, 2008].
Theorem C.3. The classical definition and the defi-
nition based on Boolean cubes of bi-permutive rules are equivalent. Proof. From expressions (C.1) and (C.2), we find that bi-permutive rules have the form (0) 000 ↓ X0
(1) 001 ↓ X0
(2) 010 ↓ X2
(3) 011 ↓ X2
(4) 100 ↓ X0
(5) 101 ↓ X0
(6) 110 ↓ X2
(7) 111 (C.3) ↓ X2
Numbers within brackets refer to the corresponding vertices of Boolean cubes in Sec. 1. It is evident that it is necessary to define only two outputs — namely X0 and X2 — and the remaining six outputs will
155
be automatically defined, since X1 = X4 = X 0 = 1 − X0 , X3 = X6 = X 2 = 1 − X2 , X5 = X0 , X7 = X2 , where Xi ∈ {0, 1}. Straightforwardly, we can conclude that the definition of bi-permutive rule given in Sec. 1, based D on the fact that vertices of the Boolean cubes can 0 0 0 be divided into two subsets with opposite colors {(0), (3), (5), (6)} and {(1), (2), (4), (7)}, is equivalent to the classical definition of expression (C.3).
D
There are only four bi-permutive rules: 90 , 105 , 150 , and 105 .
o
90 :
(0) 000 ↓ 0
(1) 001 ↓ 1
(2) 010 ↓ 0
(3) 011 ↓ 1
(4) 100 ↓ 1
(5) 101 ↓ 0
(6) 110 ↓ 1
(7) 111 ↓ 0
105 :
(0) 000 ↓ 1
(1) 001 ↓ 0
(2) 010 ↓ 0
(3) 011 ↓ 1
(4) 100 ↓ 0
(5) 101 ↓ 1
(6) 110 ↓ 1
(7) 111 ↓ 0
150 :
(0) 000 ↓ 0
(1) 001 ↓ 1
(2) 010 ↓ 1
(3) 011 ↓ 0
(4) 100 ↓ 1
(5) 101 ↓ 0
(6) 110 ↓ 0
(7) 111 ↓ 1
165 :
(0) 000 ↓ 1
(1) 001 ↓ 0
(2) 010 ↓ 1
(3) 011 ↓ 0
(4) 100 ↓ 0
(5) 101 ↓ 1
(6) 110 ↓ 0
(7) 111 ↓ 1
o o
This page is intentionally left blank
February 14, 2011
14:49
ch02
♦
Chapter 2 PERIOD-1 RULES ♦
Ë D
This stage of our journey through the universe of one-dimensional binary Cellular Automata is devoted to period-1 rules, constituting the first of the six groups in which we systematized the 88 globally-independent CA rules. The first part of this article is mainly dedicated to reviewing the terminology and the empirical results found in the previous papers of our quest. We also introduce the concept of the ω-limit orbit with the purpose of linking our work to the classical theory of nonlinear dynamical systems. Moreover, we present the basin tree diagrams of all period-1 rules — except for rule 0 , which is trivial — along with their Boolean cubes and time-1 characteristic functions. In the second part, we prove a theorem demonstrating that all rules belonging to group 1 have robust period-1 rules for any finite, and infinite, bit-string length L. This is the first time we give analytical results on the behavior of CA local rules for large values of L and, consequently, for bi-infinite bit strings. The theoretical treatment is complemented by two remarkable practical results: an explicit formula for generating isomorphic basin trees, and an algorithm for creating new periodic orbits by concatenation. We also provide several examples of both of them, showing how they help to avoid tedious simulations. Keywords: Cellular automata; nonlinear dynamics; period-1 rules; group 1 rules; ω-limit orbits; attractors; Isles of Eden; orbit concatenation; seamless concatenation conditions; basin tree diagrams; isomorphic basin trees; genotype; phenotype; bi-infinite bit strings; null rules; Wolfram.
1. The Second Time Around
Our quest for an analytical holy grail is propelled by our firm conviction that there must exist an elementary yet rigorous analytical theory of cellular automata that underpins the empirical morass collected in Wolfram’s monumental tome [Wolfram, 2002]. In our current adventure, we return to Part IV [Chua et al., 2005a] armed with a new arsenal of tools, and tempered with three years of insights, to uncover the deeper mysteries that had eluded us on our maiden voyage.
We continue our odyssey on the universe of onedimensional cellular automata, as depicted in Fig. 1, and chronicled over the past nine episodes: Part I [Chua et al., 2002], Part II [Chua et al., 2003], Part III [Chua et al., 2004], Part IV [Chua et al., 2005a], Part V [Chua et al., 2005b], Part VI [Chua et al., 2006], Part VII [Chua et al., 2007a], Part VIII [Chua et al., 2007b], and Part IX [Chua et al., 2008]. 157
t
Cell (/-2) Cell Cell (/-1) /
. Final bIt
-.l
X i +I Cell Cell C~II (i+ 1) (i-I) 1
C II e 2
(c)
-,..
[KJ
I
t X X~ ) = N( Xi-I' i' 1+1 t
t+l
X·I
Llnitialbit
• • • ~22
=4
INPUT at time t
••• ~23 =8
INPUT CODE
l
Xi - 1
l
l
Xi
158
!J
(b) ••• ~24 =16
rn D rn D
( (d)
ImI
D
ImI ImI
iii D W D D ImI rn D D D
(e) Universal Formula for all 256 Rules
l+l
X i +1
[]] ImI ImI ImI IT] ImI ImI D
rn ImI D rn ImI D
OUTPUT at time t+ 1 Xi
,...... ,...... ,......
D D D ,...... D ,...... D ,...... D ,...... D ,...... D
(f) Heaviside "step" Function Ii(w)
X;+l =c!{C +c [C +C I(C +C 8
Fig. 1.
7
6
S
4
3 X;_1
--~J ~w
+C +CjX;+l)IJ } 2 X;
Notations, symbols, and universal formula for local rule N .
D
ch02
(a)
Cell Cell 0 1
-
output E {O,l} t+l ,..... x.
14:49
•• 11
,.
Local Rule
,.
X'I - I t X.I t
February 14, 2011
input E {a, I}
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
Table 1.
159
List of 256 local rules with their complexity index coded in red (κ = 1), blue (κ = 2), and green (κ = 3), respectively.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
252
253
254
255
256 Local Rules 246
247
248
249
250
251
67 ~~ .$'
Period-l 25 Period-2 Rules
Rules
..~~~
I"\~'" §' ",,,,
~v ~~ ~ ~""
~
.........• t=======1=-O--=8~~1~8 -C-om-p-Je-x I
Bernoulli
ernoulli-shift ules
O"1:-shift Rules
Fig. 2.
Partitioning of the 256 local rules into six classes.
February 14, 2011
160
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 2.
There are 67 robust Period-1 rules.
February 14, 2011
Rule Number
N
14:49
Left - Right Transformation
Tt[N]
ch02
Global Complementation
T[N]
Left - Right Complementation
Rule Number
T*[N]
N
Left - Right Transformation
Tt[N]
Global Complementation
Left - Right Complementation
Chapter 2: Period-1 Rules
T[N]
T*[N]
Table 3. There are 67 globally-equivalent robust period-1 local rules. All local rules in each row are globally equiva200denote local rules with a complexity index κ = 1, lentoto each other. Rows with red, blue, or green background colors 2, or 3, respectively. 4 202
8
12 13
32 36 40 44
64 68 69 72 76 77
78 79 92
93 96 100 104 128 132
136 140 141 160 164 168 172 192 196 197
203 204 205 206 207 216 217 218 219 220 221 222 223 224 228 232 233 234 235 236 237 238 239 248 249 250 251 252 253 254 255
161
February 14, 2011
14:49
ch02
••• 162
•••
•••
•••
•••
•••
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
• • •••
•••
... •••
•••
•••
...
.•••
••• •••
•••
D . . . . .t---&.
•••
m
•••
••• •••
••• ,
•••
•••
.-
•••
•••
• •••
III
•••
I
•••
•
•••
lIm
•••
•••
•••
•••
lID
•••
Em]
•
•••
••
,
IDI
... _. .-
•••
•••
,
•
•••
•••
••• •••
•••
•••
•••
••
1m ••• •••
... •••
•••
•••
...
•••
•••
••
am
•••
... ... .-
•••
••
...
,
•••
iii
...
... •••
1m
•••
•••
•••
•••
III
1m
1:1
•••
•••
_.
•••
•••
•••
There are 25 globally-independent period-1 rules.
•••
•••
m
• •••
Table 4.
•••
•••
•••
1m ••• •••
••• •••
mI
.•••
February 14, 2011
14:49
ch02
88 Equivalence Classes of Local Rules Chapter 2: Period-1 Rules
163
25 Period-l 13 Period-2
Rules
Rules
..........
30
Bernoulli O',;-shift Rules
Fig. 3.
Partitioning of the 88 globally-independent rules into six classes.
1.1. Recap of Period-1 Rules Among 256 local rules, which we reproduced in Table 1 for the reader’s convenience, 67 belong1 to Group 1, dubbed Period-1 Rules since most random initial bit strings converge to a period-1 attractor.2 They constitute about 1/4 of the 256 local rules, as depicted in the CA rules subdivision pie in Fig. 2. The 67 Period-1 local rules are exhibited in Table 2 along with their defining Boolean cube and index of complexity (red for κ = 1, blue for κ = 2 and green for κ = 3). Some of these 67 local rules may also have attractors with a larger period T > 1, but with smaller basins of attraction, and hence are not as robust as the dominating period-1 attractors. Consequently, it makes sense to refer to Group 1 as Period-1 rules, mindful of the fact that it is not the only game in town. In view of the global equivalence theorem proved D in [Chua et al., 2005a], only 25 out of the 67 period-1 rules are globally independent in the sense that the dynamics of the remaining 42 rules can be trivially predicted and determined from one of the
D 1
D
corresponding equivalent rules listed in Table 3. For future reference, these 25 globally independent period-1 rules are extracted from Table 2 and exhibited in Table 4. The corresponding CA rules subdivision pie shown in Fig. 3 reveals that almost 1/3 of the 88 globally-independent rules are period-1 rules. The globally-equivalent rules associated with each of these 25 period-1 rules are listed in Table 5.
D
2. Basin Tree Diagrams
D
In Tables 6-1 to 6-24, we present a gallery of the basin tree diagrams3 for each of the 24 globallyindependent period-1 rules listed in Table 4, not including the trivial rule 0 . They are organized into 24 Galleries, each identified by a two digit number “N − m”, where the left digit N Dis identified with the local rule N , and the right digit m pertains to page m of Gallery N, m = 1, 2, . . . , 5, for all N (except 0 ) listed in Table 4. The first page (i.e. Gallery N − 1) of each Gallery N displays the following relevant
D
D
DD
Due to a software error, in our previous articles rules 94 and 133 were erroneously included in this group. The reader is cautioned that except for the 28 local rules listed in [Chua et al., 2008], all other local rules harbor some Isles of Eden. For Group-1 rules, only 4 out of 25 globally-independent local rules are deprived of such gems; namely, rules 0 , 8 , 36 and 78 . 3 The basin tree diagrams for all 256 CA local rules are also available on the webpage http://sztaki.hu/∼gpazienza/cellular automata 2
February 14, 2011
164
14:49
ch02
Rule Number
Left-Right Transformation
N
Tt[N]
Global Complementation
T[N]
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 5.
o 4
8
12 13 32 36 40 44 72 76
77 78 104 128 132 136 140 160 164 168 172 200 204 232
Left- Right Complementation
T*[N]
Local rules which are globally equivalent to the 25 robust period-1 rules listed in Table 4.
Ivertex
23 = 8
I
X:_ 1
xI i
t
X r+i
Ix
t 1 + i
~·I·I·I·
-
I
1;1
Xlj] 14:49
=4
t
February 14, 2011
0.9
0.8
~·I·I·I·
0.5
ch02
- - .... .1.1.1. .... . 1.1.1. - !j·I·I·I· ~w 22
•
Basin Tree Diagrams of Rule 4 .
Table 6-1.
-
2 = 16
xf+1 165
IL
=
31
..
7 ••••
4
¢@ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
PI =3 -=0.375 8
fl)C()
I
L4
1
5 P2=-=0.625 8
I Gallery 4-1 I
I
I
0.5
¢n-l
1
I
e:J8)C()OJ
········..···..···.·······D ..···..: 8:)
1 P2=2- =0.125 16
o. 0I'"
I .
;
,
1
PI=4
16=0.25
10 P3=-=0.625 16
4
L=5
ρ3 =
17 = 0.53125 32
2 = 0.3125 32
1 = 0.15625 32
Gallery 4-2
(Continued )
14:49
ρ2 = 5
ρ1 = 5
Table 6-1.
February 14, 2011 ch02
o.
166
4
ρ1 = 6
ρ4 = 6
ρ5 =
167
Gallery 4-3
29 = 0.453125 64
4 = 0.375 64
(Continued )
14:49
1 = 0.09375 64 1 ρ 2 = 3 = 0.046875 64 1 ρ3 = 2 = 0.03125 64
L=6
Table 6-1.
February 14, 2011 ch02
February 14, 2011
14:49
ch02
ρ2 = 7
I \
ρ5 =
1 = 0.0546875 128
51 = 0.3984375 128
•• a .-a-. •• ii.-i •.~2!. ·0· • G--. jie-it fI - .I. o • • • •-0 .0. o
1 = 0.0546875 128
00
0.:-
••
• • •-0 • • i i t-SJ .-~-. o
0
/ \
i ••~• • •
7 = 0.3828125 128
2 = 0.109375 128
ρ3 = 7
ρ4 = 7
L=7 4
- - - - - ~
168
Gallery 4-4
·/~e.-/·\--
iio-
ρ1 = 7
Table 6-1.
(Continued )
00
4
ρ7 = 8
2 = 0.0625 256
4 = 0.125 256
1 = 0.03125 256
1 = 0.015625 256 1 = 0.03125 256
Gallery 4-5
ρ2 = 8
(Continued )
169
12 = 0.375 256
90 = 0.3515625 256
ρ5 = 8
1 = 0.0078125 256
ρ8 =
ρ4 = 2
14:49
ρ6 = 8
ρ3 = 8
L=8
ρ1 = 4
Table 6-1.
February 14, 2011 ch02
x =
L=3
ρ1 =
[− x
8 =1 8
+x +x
] 0
w
;;
o
~Q
170
0
e-----o-o I e
Gallery 8-1
L=4
~
1
( w)
C"' 01
3 − 2
0-::t
t i +1
V"'I ci
t i
~
t i −1
t': 0
t +1 i
~~~6CO OC! 0
5 25 = 32
0'1 ci
2 = 16
4
N
ci
ci
ρ1 =
φ8 '" ci
.., ":
o
16 =1 16
•
4
14:49
21 = 2
..............
1
χ 18 -
27 = 128
0 1 2 3 4 5 6 7
xit+1 xit +1
-
0
7
3
2
xit−1 xit ~
6 20 = 1
2 =8
vertex
Basin Tree Diagrams of Rule 8 .
-
26 = 64
8 3
22 = 4
Table 6-2.
February 14, 2011 ch02
or,
-
_ ill: ...,
ci
o
'C>
ci
ci
o
J
8
32 =1 32
Gallery 8-2
(Continued )
14:49
ρ1 =
L=5
Table 6-2.
February 14, 2011 ch02
171
8
L=6
ρ1 =
64 =1 64
(Continued )
Gallery 8-3
Table 6-2.
February 14, 2011 14:49 ch02
172
8
L=7
ρ1 =
128 =1 128
(Continued )
Gallery 8-4
Table 6-2.
February 14, 2011 14:49 ch02
173
8
L=8
ρ1 =
256 =1 256
(Continued )
Gallery 8-5
Table 6-2.
February 14, 2011 14:49 ch02
174
=
£-1
-
-
I
=
l
:xlHI
~
ti[-X t +Xt _~] 2 1-1
I
XI!1I
j
.... ••••
'3)1 • • • •
16
Xt+l
.... ••••
eI1ex xt
~ -- • - •• wi •
4
•••• •••• ~w
0.9
q>n
O.B 0.7
0.6
175
2
PI = -=025 8 .
2
PI = 3 =0.75
8
0.4
() 1/-
0.1
I)
P, =4
r/' 't' 11- 1
I
0.5
I
41 ~
t t 3o:J«JC() t:J t t t 16 t =O. 7S
___
I
/ "
/
~
~
/
fl.'l
0.5
IL
1L 31
"
ch02
24
=
1
X t +1
14:49
22
•
Basin Tree Diagrams of Rule 12 . xt
February 14, 2011
Table 6-3.
Gallery 12-1
8).~
I
PI
~ 2 1~ ~O.125
113
2 P3=-=0.125 16
12
2 = 0.3125 32
2 = 0.0625 32
(Continued )
cD. Gallery 12-2
ρ3 = 5
4 = 0.625 32
14:49
ρ2 = 5
L=5
ρ1 =
Table 6-3.
February 14, 2011 ch02
176
12
177
4 = 0.1875 64
5 = 0.46875 64
ρ2 = 3
ρ4 = 6
3 = 0.1875 64
Gallery 12-3
(Continued )
ρ3 =
1 = 0.03125 64
2 = 0.03125 64
ρ1 = 2
14:49
ρ5 = 6
L=6
Table 6-3.
February 14, 2011 ch02
178
2 = 0.109375 128 4 = 0.21875 128
ρ3 = 7
2 = 0.015625 128
ρ1 = ρ2 = 7
6 = 0.328125 128
6 = 0.328125 128
ρ4 = 7
Gallery 12-4
(Continued )
14:49
ρ5 = 7
L=7
12
Table 6-3.
February 14, 2011 ch02
3 = 0.09375 256
ρ7 = 8
ρ6 = 8
5 = 0.15625 256
179
ρ4 = 2
8 = 0.25 256
7 = 0.21875 256
ρ5 = 8
4 = 0.125 256
1 = 0.0078125 256
Gallery 12-5
(Continued )
9 = 0.140625 256
2 = 0.0078125 256
ρ8 = 4
ρ2 =
14:49
ρ3 = 8
12 L=8
ρ1 = 8
Table 6-3.
February 14, 2011 ch02
23 = 8
I I JOI • • • •
vertex I Xl 1 1-
I
Xi
I
X i+!
1
HI
February 14, 2011
XIDJ
Xi
,/
••••• ••••
q)n
3) • • • •
~
t+ 1
Xi
=
2
5
32
••••
rGJ • • • •
+-] 2
ttl i_1 +Xi -Xi+ 1
ci,[-2x
t
=
r6
/ OJ
•
0.2
<W)
-=F. 1
0
(I
0,1
w
o
°
01
0,2 03 0.4 05 0.6 0,7 0,8 09
180
I
•
PI = -=0 8 .25
~ 2
P2 =3 -=0 8 .75
~
I
I I)
5
q)n-l
o
.-~O I
~ ....... .............. 16 .--~·0"/ P2 -2- .2.=0875 1
o it e -~=0.125
Pl- 16
IGaller~ 13-1 I
/•
~
~ ~ ~
l
1
L4
lt
2
I I]
IL 31 ,
ch02
2 4 = 16
••••
•
(1.5
\..4) • • • •
(5
14:49
--
22 = 4
•
Basin Tree Diagrams of Rule 13 .
Table 6-4.
-., '\ I»
0-_
/ 0
13
ρ2 = 5
6 = 0.9375 32
2 = 0.0625 32
.~.
Gallery 13-2
(Continued )
14:49
ρ1 =
L=5
Table 6-4.
February 14, 2011 ch02
181
13
ρ3 = 2
22 = 0.6875 64
6 = 0.28125 64
2 = 0.03125 64
Gallery 13-3
(Continued )
14:49
ρ2 = 3
L=6
ρ1 =
Table 6-4.
February 14, 2011 ch02
182
13
L=7
ρ2 = 7
18 = 0.984375 128
ρ1 =
e-=e
(Continued )
Gallery 13-4
2 = 0.015625 128
Table 6-4.
February 14, 2011 14:49 ch02
183
15 = 0.46875 256
2 = 0.0078125 256
ρ1 =
Gallery 13-5
(Continued )
ρ3 = 2
67 = 0.5234375 256
14:49
ρ2 = 8
L=8
13
Table 6-4.
February 14, 2011 ch02
184
vertex I
x! 1I Xl 1-
Ix! 11x!+1
1
l+
1
X[ll]
l
\WI • • • • -
,
r
5
2 = 32
11.5
5 •••• 6 •••• 7 • • • •
xJ+i = 4i[xJ-i -X: +xJ+i -~2 ] 185
1L 31
(W)
~ 1
•
~A
~
0.1
w
IL
!
•! •
(J ~
i
II
0.5
..
q)n-1
41
•
•t :.."
........•'"
L
~.:Z
8 8
/
0
/-
Pi = -=1
,
ch02
® ••••
~
24 = 16
14:49
23 = 8
•
Basin Tree Diagrams of Rule 32 .
- - ..... •••• ....
22 = 4
February 14, 2011
Table 6-5.
....••.
2 A=-=0.125
16
I
__I \ ..----
."
~
/
-~."Q. •
~:.----.:-
/4 '\ • ••.; - I ... ~
.~
/~
1Gallery 32-1 I·······
14 P2= -=0.875 16
I
32
L=5
ρ1 =
32 =1 32
(Continued )
Gallery 32-2
Table 6-5.
February 14, 2011 14:49 ch02
186
32
L=6
ρ2 =
2 = 0.03125 64
(Continued )
14:49
187
Gallery 32-3
62 = 0.96875 64
ρ1 =
Table 6-5.
February 14, 2011 ch02
32
L=7
ρ1 =
128 =1 128
(Continued )
Gallery 32-4
Table 6-5.
February 14, 2011 14:49 ch02
188
32
L=8
254 = 0.9921875 256
2 = 0.0078125 256
Gallery 32-5
(Continued )
14:49
ρ2 =
ρ1 =
Table 6-5.
February 14, 2011 ch02
189
23 = 8
Yertex
X i +1
X@§]
0.8
5 ~2 =32
\..4
•••• ••••
(5
••••
(6
•••• (W)
-=F. 1
,I'
~
r r ~.
/
~II
0.1
w
... .I
II
~
0.5
I)
q)n-I
0
190
IL 31
1L 41
! Pi = - = 0.25
,J
I G) • • • • 2
8
I
1
0.9
=d,[-l+l(x;_!-X;+X;+!-~)I]
2
X/+ 1
ch02
x;+!
Xi
/
14:49
-
X _ i 1
/
@ •••• ~3
2 4 = 16
/
February 14, 2011
r - •••• ••••
II 2 2 =4
•
Basin Tree Diagrams of Rule 36 .
Table 6-6.
! 2
Pi = 3 - = 0.75 8
!
•• •• ~~ ~ •~ .~ ~ :.--. '\ ~ I • 8J
OJ;.....
•
I,.....G-a-ll-ery~36--1-1 PI ~ 4 l~ ~.~~;
8
P2 = 16=0.5 .
I
36
L=5
22 = 0.6875 32
2 = 0.3125 32
Gallery 36-2
(Continued )
14:49
ρ2 =
ρ1 = 5
Table 6-6.
February 14, 2011 ch02
191
2 = 0.09375 64
2 = 0.1875 64
L=6
ρ3 =
(Continued )
------... ..
o
192
Gallery 36-3
46 = 0.71875 64
14:49
ρ2 = 3
ρ1 = 6
36
Table 6-6.
February 14, 2011 ch02
February 14, 2011
14:49
ch02
.ye
• • o/I·Y· j
Yi
t •
~. j
t
•
•
I-i
0
8-G
2 = 0.109375 128
4 = 0.21875 128
ρ1 = 7
ρ2 = 7
L=7
ρ3 =
86 = 0.671875 128
e~.~' 8-i e-i i t o • • e-i 8-G _ _
193
Gallery 36-4
0
36
(Continued )
./-
•/1 .",0./8. o-
• 0
Table 6-6.
-
2 = 0.03125 256
ρ2 = 4
10 = 0.3125 256
2 = 0.0625 256
ρ1 = 8
Gallery 36-5
(Continued )
ρ4 =
152 = 0.59375 256
14:49
ρ3 = 8
L=8
36
Table 6-6.
February 14, 2011 ch02
194
vertex I X _
i 1
1
Xi
\illi • • • • -
~
00 • • • •
= 16
2 =32
rro • • • • CW)
X:+ = dl!.-I (-2xLI - 2x: + X:+1 + 1) I] 1
2
195
1L 31 3 PI = -=0.375 8
-=F. 1
0
q)n
0.9
,.
•
0.7
•
fl.5
0.6 0.5
J 0.4
0.3 0.2
IJ ~
0.1
w
.
O.B
i
ch02
3)1 • • • •
5
X[1Q]
i 1
-
24
1
1X 1+ 1Xi1+1
14:49
- .... •••• ..
..,.~ " IIiMI Al.--
23 = 8
•
Basin Tree Diagrams of Rule 40 . 1
February 14, 2011
Table 6-7.
o
i
(J.)
I)
o
0.1 0.2 OJ 0.4 0.5 0.6 0.7 0.8 0.9
. 2. •
IL 41
It
PI = -=0.125 16
5 P2 = 8=0.625
•
,t\ 0/ n-l
I
• \
~
l
•
\
•
-.-o-.~.--o--. r o f •
I Gallery 40-1 I
•
f
14 P2 = -=0.875 16
I
40
L=5
ρ1 =
5 = 0.15625 32
ρ2 =
27 = 0.84375 32
(Continued )
14:49
196
Gallery 40-2
Table 6-7.
February 14, 2011 ch02
40
ρ3 =
59 = 0.921875 64
3 = 0.046875 64
2 = 0.03125 64
Gallery 40-3
(Continued )
14:49
ρ2 =
L=6
ρ1 =
Table 6-7.
February 14, 2011 ch02
197
40
e\,
;--..w a /~8
i
G
198
Gallery 40-4
121 = 0.9453125 128
14:49
ρ2 =
o--e~
I
7 = 0.0546875 128
(Continued )
..
ρ1 =
L=7
Table 6-7.
February 14, 2011 ch02
-.
0-"•
~ e~-I 246 = 0.9609375 256
A 8~. I
ρ3 =
fY' I
2 = 0.0078125 256
(Continued )
..
Gallery 40-5
14:49
ρ1 =
L=8
8 = 0.03125 256
I\
40
ρ2 =
Table 6-7.
February 14, 2011 ch02
199
x:+
200
IL
1
5
2 = 32
vertex
~ • • • •••• X i- 1
Xi
I
X i+ 1
X;+l
1
•
X@1l
1Q2 •
•••• ••••
0.9
....4 ) • • • •
0.6
(5
••••
0.5
""6
••••
rC7
•
•
• •
d(Wit-
]4------.
= d.[%-IC-4x:_1- 2x: +x:+ 1 +2) I
q)n
0.8 0.7
11,:"-1
.1
0.4 0.3
#
0.2 II
0.1
w
/
o
ch02
24 = 16
23 = 8
I
14:49
m- 2 2 =4
I
February 14, 2011
Basin Tree Diagrams of Rule 44 .
Table 6-8.
1.. i)
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
31
° 4)n-l
0,:"
1
1L 41
1 PI = 3 8=0.375
2 P2 = 8=0.25
3
I
P3 = 8=0.375
-
Gallery 44-1
I
~
~
~
~
~
~
P2= 1:=025
PI = 4
3
16 =0.75
I
44
L=5
6 = 0.9375 32
2 = 0.0625 32
Gallery 44-2
(Continued )
14:49
ρ2 = 5
ρ1 =
Table 6-8.
February 14, 2011 ch02
201
44
ρ4 =
4 = 0.0625 64
9 = 0.84375 64
202
1 = 0.046875 64
3 = 0.046875 64
Gallery 44-3
ρ2 =
ρ1 = 3
(Continued )
14:49
ρ3 = 6
L=6
Table 6-8.
February 14, 2011 ch02
ρ1 = 7
•
203
A
2 = 0.015625 128
15 = 0.8203125 128
ρ2 = 7
0 _··-G e.•
G-G-.
-w-·. 0
8-i»
.-I-i
.-.-it .-.-it
I-e-i
Gallery 44-4
3 = 0.1640625 128
(Continued )
14:49
ρ3 =
L=7
44
Table 6-8.
February 14, 2011 ch02
4 = 0.015625 256
L=8
ρ4 = 4
Gallery 44-5
7 = 0.109375 256
(Continued )
21 = 0.65625 256
7 = 0.21875 256
ρ3 = 8
ρ2 = 8
14:49
ρ1 =
44
Table 6-8.
February 14, 2011 ch02
204
I
I X IX+ l+l
.....
~l
5 ~2 = 32
1{7J I .
•
• •
i(Wi~
1]4-----. w
205
1 Pl=3-=0375 8 .
XJm
I
i>
0.9 ~.
0.8
~
0.7
0.6
liS
I'jIl
0.5
0.4 0.3
~
0.2
O.I~ oo
0.1
I
[I
02 . OJ Q4 Q5
~6
IL 41
i
0.)-
I)
091
O. 7 0.8
•
.
"x ~ /
'tIt) 11-1
fl)Cl)O)eJ
1 :························0··········· n. = 4 -=0.25 : ~l 16: .........................
I ~lr· 8---:.-J ~
5 P2 = 8 =0.625
ch02
-",
31
1-
•••• •••• 311 •••• •••• •••• • •••
xJ+l = 4[~-1 (-2xJ_l + X: - 2x:+1 +1)
IL
X1I X
14:49
-
24 = 16
vertex I
1
1
February 14, 2011
-
II~ 91--8
23 = 8
•
Basin Tree Diagrams of Rule 72 .
Table 6-9.
~/\
IGallery
e
72-1
I
p, = g=075 16
0
•
!"'o
I I
14:49
----..
----..
ch02
o
\
...
o
_0
"'..
...
I . /'_~I
• i..
.. ~.~ll/
.;!~. -
~
ρ1 = 5
72
L=5
2 = 0.3125 32
ρ2 =
22 = 0.6875 32
Table 6-9.
(Continued )
\
206
Gallery 72-2
February 14, 2011
72
o. o •• _. / 4(:\ ". '" . • w-e . ~/\ 1~~ o •••• . o .0 e£? 0
.-
.-.
207
Gallery 72-3
43 = 0.671875 64
1 = 0.046875 64
ρ1 = 3
ρ2 =
3 = 0.28125 64
(Continued )
14:49
ρ3 = 6
L=6
Table 6-9.
February 14, 2011 ch02
ρ1 = 7
1 = 0.0546875 128
6 = 0.328175 128
L=7
Gallery 72-4
(Continued )
ρ3 =
79 = 0.6171875 128
14:49
ρ2 = 7
72
Table 6-9.
February 14, 2011 ch02
208
2 256 = 0.0625
L=8
ρ1 = 4
1 = 0.015625 256
ρ3 = 8
Gallery 72-5
11 = 0.34375 256
(Continued )
ρ4 =
148 = 0.578125 256
14:49
ρ2 = 8
72
Table 6-9.
February 14, 2011 ch02
209
vertex I X:_ 1
23 = 8
tit Xi X i +1
I
I~I.I.I.I. 7 ••••
5
4
XJ+] =
210
IL
4
31
[
-x l_
11
+2x l -Xl
z+1
I
PI = 3
_.!.] 2
CWl
-=F. I
0
0.8 0.7
0.5
•
0.4 0.3 0.2
() -I
0.1
I)
w
8=0.375
I
fJ)C() P2 = 3
1
8
=0.375
L4 fJJ
I
I
OJ
4)n-l
~4 16 ~0.25
2
2
P3 =16=0.125
P3 = 8=0.25
.
~ 0)
..............
Gallery 76-1
I
~8)OJOJ 05 05 05...•5
11
1 P2=4-=O.25 16
OJ
I
'iii
IJ 5
0.6
1
8)
/
q)n
0.9
ch02
.1.1.1. .1.1.1.
XI2§] I~
14:49
~·I·I·I·
-
u_ u2 = 16 2 =32
]
t+1 Xi
February 14, 2011
- - .... .1.1.1. .1.1.1.
22 =4
•
Basin Tree Diagrams of Rule 76 .
Table 6-10.
~
00:] t
IP4~2 136~0375 •
211
1 = 0.015625 32 1 = 0.015625 32
ρ2 = 5 ρ3 = 5
2 = 0.0625 32
1 = 0.015625 32
ρ5 =
L=5
Gallery 76-2
(Continued )
ρ4 = 5
3 = 0.46875 32
14:49
ρ1 = 5
76
Table 6-10.
February 14, 2011 ch02
76
212
1 = 0.09375 64
3 = 0.28125 64
ρ4 = 6
ρ6 = 6
ρ1 = 6
1 = 0.09375 64 1 ρ 2 = 6 = 0.09375 64 1 ρ3 = 6 = 0.09375 64
2 = 0.03125 64
Gallery 76-3
3 = 0.140625 64
(Continued )
ρ8 = 2
4 = 0.125 64
ρ5 = 3
1 = 0.046875 64
14:49
ρ9 =
L=6
ρ7 = 3
Table 6-10.
February 14, 2011 ch02
ρ3 ρ5
ρ1
L=7
2 ρ10 = = 0.015625 128
213
Gallery 76-4
4 = 0.21875 128
2 = 0.109375 128
ρ11 = 7
ρ9 = 7
ρ8 = 7
3 = 0.1640625 128
ρ2
ρ6
ρ4
14:49
3 ρ7 = 7 = 0.1640625 128
76
1 = 0.0546875 128
(Continued )
ρ1 = ρ 2 = ρ3 = ρ 4 = ρ5 = ρ6 = 7
Table 6-10.
February 14, 2011 ch02
214
ρ18 = 8
ρ7 ρ8
ρ6
Gallery 76-5
1 = 0.03125 256
3 = 0.09375 256
ρ1 = ρ 2 = ρ3 = ρ 4 = ρ5 = ρ6 = ρ 7 = ρ8 = 8
ρ4 ρ5
ρ2 ρ3
ρ1
4 = 0.125 256
2 = 0.0625 ρ 13 256
ρ10 = 8
8
ρ12 = ρ13 = ρ14 =
ρ12
3 = 0.09375 256
L=8
2 = 0.0078125 256
(Continued )
ρ9 = 4
4 = 0.125 256
1 = 0.015625 256
7 = 0.0546875 256
ρ15 = 8
3 = 0.046875 256
ρ11 = 2
ρ14
ρ19 = 4
14:49
ρ16 = 8
76
ρ17 =
Table 6-10.
February 14, 2011 ch02
Table 6-11.
Basin Tree Diagrams of Rule 77 .
February 14, 2011 14:49 ch02
215
77
ρ3 = 5
3 = 0.46875 32
2 = 0.0625 32
3 = 0.46875 32
Gallery 77-2
ρ2 = 5
(Continued )
14:49
ρ1 =
L=5
Table 6-11.
February 14, 2011 ch02
216
1 = 0.09375 64
1 = 0.09375 64
ρ1 = 6
ρ2 = 6
2 = 0.03125 64
L=6 ρ5 = 3
ρ4 = 3
3 = 0.140625 64
Gallery 77-3
3 = 0.140625 64
(Continued )
ρ6 = 2
16 = 0.5 64
14:49
ρ3 =
77
Table 6-11.
February 14, 2011 ch02
217
ρ5 = 7
8 = 0.4375 128
8 = 0.4375 128
L=7
Gallery 77-4
(Continued )
1 = 0.0546875 128
2 = 0.015625 128
ρ1 = ρ 2 = 7
ρ3 =
14:49
ρ4 = 7
77
Table 6-11.
February 14, 2011 ch02
218
ρ8 = 8
4 = 0.125 256
6 = 0.1875 256
3 = 0.09375 256
ρ3 = 8
Gallery 77-5
4 = 0.125 256
(Continued )
45 = 0.3515625 256
3 = 0.09375 256
1 = 0.015625 256
ρ4 = 8
ρ1 = 4
2 = 0.0078125 256
ρ6 = 2
ρ2 =
14:49
ρ7 = 8
L=8
77
ρ5 = 8
Table 6-11.
February 14, 2011 ch02
219
Table 6-12.
Basin Tree Diagrams of Rule 78 .
February 14, 2011 14:49 ch02
220
78
L=5
ρ2 = 5
(Continued )
ρ1 =
2 = 0.0625 32
14:49
221
Gallery 78-2
6 = 0.9375 32
Table 6-12.
February 14, 2011 ch02
6 = 0.28125 64
2 = 0.03125 64
ρ1 =
Gallery 78-3
(Continued )
ρ3 = 2
22 = 0.6875 64
14:49
ρ2 = 3
L=6
78
Table 6-12.
February 14, 2011 ch02
222
2 = 0.015625 128
L=7 18 = 0.984375 128
Gallery 78-4
ρ2 = 7
(Continued )
14:49
ρ1 =
78
Table 6-12.
February 14, 2011 ch02
223
ρ3 = 2
67 = 0.5234375 256
2 = 0.0078125 256
L=8
3
67 =2 = 0.5234375 Gallery 78-5 256
(Continued )
ρ2 = 8
15 = 0.46875 256
14:49
ρ1 =
78
Table 6-12.
February 14, 2011 ch02
224
Table 6-13.
Basin Tree Diagrams of Rule 104 .
February 14, 2011 14:49 ch02
225
104 L=5
ρ2 =
1 = 0.15625 32
(Continued )
14:49
226
Gallery 104-2
27 = 0.84375 32
ρ1 = 5
Table 6-13.
February 14, 2011 ch02
ρ3 =
2 = 0.03125 64
56 = 0.875 64
ρ1 = 6
Gallery 104-3
(Continued )
1 = 0.09375 64
14:49
ρ2 =
104 L=6
Table 6-13.
February 14, 2011 ch02
227
114 = 0.890625 128
Gallery 104-4
(Continued )
ρ1 = 7
2 = 0.109375 128
14:49
ρ2 =
104 L=7
Table 6-13.
February 14, 2011 ch02
228
1 = 0.015625 256 2 = 0.0078125 256 2 = 0.015625 256
ρ1 = 4 ρ2 = ρ3 = 2
7 = 0.21875 256
Gallery 104-5
(Continued )
ρ5 =
190 = 0.7421875 256
14:49
ρ4 = 8
104 L=8
Table 6-13.
February 14, 2011 ch02
229
Table 6-14.
Basin Tree Diagrams of Rule 128 .
February 14, 2011 14:49 ch02
230
128 L=5
231
Gallery 128-2
31 = 0.96875 32
1 = 0.03125 32
(Continued )
14:49
ρ1 =
ρ2 =
Table 6-14.
February 14, 2011 ch02
63 = 0.984375 64
1 = 0.015625 64
Gallery 128-3
(Continued )
14:49
ρ1 =
128 L=6
ρ2 =
Table 6-14.
February 14, 2011 ch02
232
ρ1 =
127 = 0.9921875 128
1 = 0.0078125 128
Gallery 128-4
(Continued )
14:49
ρ2 =
128 L=7
Table 6-14.
February 14, 2011 ch02
233
128 L=8
234
Gallery 128-5
255 = 0.99609375 256
1 = 0.00390625 256
(Continued )
14:49
ρ1 =
ρ2 =
Table 6-14.
February 14, 2011 ch02
Table 6-15.
Basin Tree Diagrams of Rule 132 .
February 14, 2011 14:49 ch02
235
3 = 0.46875 32
1 = 0.03125 32
Gallery 132-2
1 = 0.15625 32
(Continued )
ρ4 =
11 = 0.34375 32
14:49
ρ3 = 5
ρ2 =
132 L=5
ρ1 = 5
Table 6-15.
February 14, 2011 ch02
236
237
ρ2 = 2
1 = 0.03125 64 1 ρ3 = = 0.015625 64
1 = 0.09375 64
3 = 0.140625 64
Gallery 132-3
ρ4 = 3
5 = 0.46875 64
(Continued )
ρ6 =
16 = 0.25 64
14:49
ρ1 = 6
132 L=6
ρ5 = 6
Table 6-15.
February 14, 2011 ch02
132 L=7
ρ4 = 7
238
2 = 0.109375 128
1 = 0.0078125 128
1 = 0.0546875 128
ρ2 =
ρ1 = 7
ρ3 = 7
Gallery 132-4
8 = 0.4375 128
(Continued )
ρ6 =
29 = 0.2265625 128
14:49
3 = 0.1640625 128
ρ5 = 7
Table 6-15.
February 14, 2011 ch02
239
4 = 0.125 256 6 = 0.09375 256 13 = 0.40625 256
ρ6 = 8 ρ7 = 4 ρ8 = 8 45 = 0.17578125 256
3 = 0.09375 256
ρ5 = 8
ρ9 =
2 = 0.0625 256
1 = 0.00390625 256
ρ4 = 8
ρ3 =
ρ1 = 8
ρ6 ρ1
ρ3
ρ4
Gallery 132-5
ρ2
ρ5
ρ8
(Continued )
ρ7
ρ9
14:49
1 = 0.03125 256 1 ρ2 = 2 = 0.0078125 256
132 L=8
Table 6-15.
February 14, 2011 ch02
Table 6-16.
Basin Tree Diagrams of Rule 136 .
February 14, 2011 14:49 ch02
240
136 L=5 ρ2 =
241
Gallery 136-2
31 = 0.96875 32
(Continued )
14:49
ρ1 =
1 = 0.03125 32
Table 6-16.
February 14, 2011 ch02
136 L=6
ρ2 =
ρ1 =
1 = 0.015625 64
(Continued )
14:49
242
Gallery 136-3
63 = 0.984375 64
Table 6-16.
February 14, 2011 ch02
136 L=7
ρ1 =
1 = 0.0078125 128
(Continued )
14:49
243
Gallery 136-4
127 = 0.9921875 128
ρ2 =
Table 6-16.
February 14, 2011 ch02
136 L=8
ρ1 =
ρ2 =
244
Gallery 136-5
(Continued )
14:49
255 = 0.99609375 256
1 = 0.00390625 256
Table 6-16.
February 14, 2011 ch02
Table 6-17.
Basin Tree Diagrams of Rule 140 .
February 14, 2011 14:49 ch02
245
ρ1 =
1 = 0.03125 32
140 L=5
ρ3 = 5
1 = 0.03125 32
(Continued )
ρ4 = 5
4 = 0.625 32
14:49
246
Gallery 140-2
2 = 0.3125 32
ρ2 =
Table 6-17.
February 14, 2011 ch02
3 = 0.28125 64
1 = 0.015625 64
ρ3 =
ρ4 = 6
1 = 0.03125 64
Gallery 140-3
1 = 0.015625 64
(Continued )
ρ5 = 3
ρ6 = 6
5 = 0.46875 64
4 = 0.1875 64
14:49
ρ2 = 2
140 L=6
ρ1 =
Table 6-17.
February 14, 2011 ch02
247
ρ2 =
248
6 = 0.328125 128
2 = 0.109375 128
ρ5 = 7
ρ3 = 7
1 = 0.0078125 128
1 = 0.0078125 128
Gallery 140-4
(Continued )
4 = 0.21875 128
6 = 0.328125 128
ρ4 = 7
ρ6 = 7
14:49
ρ1 =
140 L=7
Table 6-17.
February 14, 2011 ch02
249
5 = 0.15625 256
4 = 0.125 256
ρ5 = 8
ρ6 = 8
3 = 0.09375 256
1 = 0.00390625 256
1 = 0.0078125 256
ρ4 = 8
ρ3 =
ρ2 = 2
1 = 0.00390625 256
ρ1
ρ2
Gallery 140-5
ρ3
ρ5
(Continued )
ρ4
ρ9 = 4
9 = 0.140625 256
ρ8 = 8
ρ7 = 8
7 = 0.21875 256
8 = 0.25 256
14:49
ρ1 =
140 L=8
Table 6-17.
February 14, 2011 ch02
Table 6-18.
Basin Tree Diagrams of Rule 160 .
February 14, 2011 14:49 ch02
250
1 = 0.03125 32
ρ1 =
Gallery 160-2
31 = 0.96875 32
(Continued )
14:49
ρ2 =
160 L=5
Table 6-18.
February 14, 2011 ch02
251
49 = 0.765625 64
14 = 0.21875 64
Gallery 160-3
ρ3 =
(Continued )
ρ2 =
1 = 0.015625 64
14:49
ρ1 =
160 L=6
Table 6-18.
February 14, 2011 ch02
252
160 L=7
1 = 0.0078125 128
127 = 0.9921875 128
Gallery 160-4
(Continued )
14:49
ρ2 =
ρ1 =
Table 6-18.
February 14, 2011 ch02
253
225 = 0.87890625 256
ρ3 =
Gallery 160-5
1 = 0.00390625 256
(Continued )
ρ2 =
30 = 0.1171875 256
14:49
ρ1 =
160 L=8
Table 6-18.
February 14, 2011 ch02
254
Table 6-19.
Basin Tree Diagrams of Rule 164 .
February 14, 2011 14:49 ch02
255
5 = 0.78125 32
ρ1 =
Gallery 164-2
1 = 0.03125 32
(Continued )
ρ3 =
6 = 0.1875 32
14:49
ρ2 = 5
164 L=5
Table 6-19.
February 14, 2011 ch02
256
ρ3 = 3
4 = 0.1875 64
3 = 0.28125 64
Gallery 164-3
(Continued )
ρ1 = 3
ρ4 =
ρ5 =
3 = 0.046875 64
25 = 0.390625 64
2 = 0.09375 64
14:49
ρ2 = 6
164 L=6
Table 6-19.
February 14, 2011 ch02
257
11 = 0.6015625 128
1 = 0.0546875 128 1 = 0.0078125 128
Gallery 164-4
ρ4 =
(Continued )
ρ3 =
43 = 0.3359375 128
14:49
ρ2 = 7
164 L=7
ρ1 = 7
Table 6-19.
February 14, 2011 ch02
258
1 = 0.03125 256
ρ3 = 8
12 = 0.375 256
7 = 0.109375 256
ρ4 =
259
Gallery 164-5
31 = 0.12109375 256
(Continued )
ρ5 =
93 = 0.36328125 256
14:49
ρ2 = 4
164 L=8
ρ1 = 8
Table 6-19.
February 14, 2011 ch02
Table 6-20.
Basin Tree Diagrams of Rule 168 .
February 14, 2011 14:49 ch02
260
1 = 0.03125 32
ρ4 =
261
Gallery 168-2
21 = 0.65625 32
5 = 0.15625 32
(Continued )
ρ3 =
5 = 0.15625 32
14:49
ρ1 =
168 L=5
ρ2 =
Table 6-20.
February 14, 2011 ch02
6 = 0.09375 64
6 = 0.09375 64
ρ6 =
262
ρ2 =
Gallery 168-3
46 = 0.71875 64
1 = 0.015625 64
(Continued )
2 = 0.03125 64
ρ3 =
3 = 0.046875 64
14:49
ρ5 =
ρ4 =
168 L=6
ρ1 =
Table 6-20.
February 14, 2011 ch02
263
7 = 0.0546875 128
7 = 0.0546875 128
ρ3 =
ρ2 =
99 = 0.7734375 128
ρ4 =
7 = 0.0546875 128
Gallery 168-4
1 = 0.0078125 128
(Continued )
ρ5 =
7 = 0.0546875 128
14:49
ρ6 =
168 L=7
ρ1 =
Table 6-20.
February 14, 2011 ch02
1 = 0.00390625 256
8 = 0.03125 256
4 = 0.015625 256
ρ5 =
264
2 = 0.0078125 256
Gallery 168-5
8 = 0.03125 256
ρ2 =
(Continued )
ρ6 =
8 = 0.03125 256
ρ9 =
ρ8 =
8 = 0.03125 256
8 = 0.03125 256
ρ7 =
209 = 0.81640625 256
14:49
ρ4 =
ρ3 =
168 L=8
ρ1 =
Table 6-20.
February 14, 2011 ch02
Table 6-21.
Basin Tree Diagrams of Rule 172 .
February 14, 2011 14:49 ch02
265
4 = 0.625 32
1 = 0.03125 32
ρ4 =
266
ρ3 =
Gallery 172-2
1 = 0.03125 32
(Continued )
10 = 0.3125 32
14:49
ρ2 = 5
172 L=5
ρ1 =
Table 6-21.
February 14, 2011 ch02
ρ5 = 6
7 = 0.65625 64
3 = 0.046875 64
Gallery 172-3
0
3 = 0.046875 64
ρ6 =
12 = 0.1875 64
14:49
ρ4 =
172 L=6
ρ3 =
(Continued )
1 1 ρ = = 0.015625 1 ρ 2 = 3 = 0.046875 64 64
Table 6-21.
February 14, 2011 ch02
267
1 = 0.0078125 128
12 = 0.65625 128
2 = 0.109375 128
ρ1
ρ6
7 = 0.0546875 128
Gallery 172-4
ρ3 =
(Continued )
ρ5 =
21 = 0.1640625 128
14:49
ρ4 = 7
ρ2 = 7
172 L=7
ρ1 = ρ 6 =
Table 6-21.
February 14, 2011 ch02
268
269
24 = 0.09375 256
20 = 0.625 256
ρ8 =
3 = 0.01171875 256
ρ6 = 8
4 = 0.125 256 16 ρ7 = = 0.0625 256
ρ5 =
4 = 0.0625 256
4 = 0.015625 256
ρ4 = 8
ρ3 =
ρ2 = 4
1 = 0.00390625 256
ρ6
ρ4
ρ5
Gallery 172-5
ρ7
ρ3
(Continued )
ρ8
14:49
ρ1 =
172 L=8
ρ1
2
Table 6-21.
February 14, 2011 ch02
Table 6-22.
Basin Tree Diagrams of Rule 200 .
February 14, 2011 14:49 ch02
270
ρ4 = 5
2 = 0.3125 32
1 = 0.03125 32
1 = 0.15625 32
ρ2 = 5 ρ3 =
1 = 0.15625 32
Gallery 200-2
(Continued )
ρ5 =
11 = 0.34375 32
14:49
ρ1 = 5
200 L=5
Table 6-22.
February 14, 2011 ch02
271
200 L=6
ρ7 =
ρ6 = 6
18 = 0.28125 64
Gallery 200-3
(Continued )
14:49
3 = 0.28125 64
1 = 0.09375 64 1 ρ 2 = 3 = 0.046875 64 1 ρ3 = 6 = 0.09375 64 1 ρ 4 = = 0.015625 64 2 ρ5 = 6 = 0.1875 64
ρ1 = 6
Table 6-22.
February 14, 2011 ch02
272
ρ1 = 7
273
5 = 0.2734375 128
Gallery 200-4
(Continued )
ρ6 = 7
ρ9 =
29 = 0.2265625 128
2 = 0.109375 128
14:49
ρ8 = 7
1 = 0.0546875 128 1 ρ2 = 7 = 0.0546875 128 1 ρ3 = 7 = 0.0546875 128 1 ρ4 = 7 = 0.0546875 128 1 ρ5 = = 0.0078125 128 3 ρ7 = 7 = 0.1640625 128
200 L=7
ρ1 ρ2 ρ3 ρ4 ρ5
Table 6-22.
February 14, 2011 ch02
274
ρ11 = 8
3 = 0.09375 256
1 = 0.00390625 256
ρ11
Gallery 200-5
5 = 0.15625 256
2 = 0.0625 256
ρ10 = 8
ρ12 = 8
2 = 0.0625 256
ρ8
ρ9 = 8
(Continued )
ρ14 =
ρ6
ρ2
8 = 0.25 256
47 = 0.18359375 256
ρ13 = 8
ρ4
14:49
ρ8 =
ρ1 = 4
1 = 0.015625 256 1 ρ2 = 8 = 0.03125 256 1 ρ3 = 8 = 0.03125 256 1 ρ4 = 8 = 0.03125 256 1 ρ5 = 8 = 0.03125 256 1 ρ6 = 4 = 0.015625 256 1 ρ7 = 8 = 0.03125 256
200 L=8
ρ1 ρ3 ρ5 ρ7
Table 6-22.
February 14, 2011 ch02
Table 6-23.
Basin Tree Diagrams of Rule 204 .
February 14, 2011 14:49 ch02
275
1 = 0.15625 32 1 = 0.15625 32
ρ6 = 5 ρ7 = 5
1 = 0.15625 32
ρ4 = 5 1 = 0.15625 32
1 = 0.15625 32
ρ3 = 5
ρ5 = 5
1 = 0.15625 32
1 = 0.03125 32
1 = 0.03125 32
Gallery 204-2
ρ8 =
(Continued )
14:49
ρ2 = 5
204 L=5
ρ1 =
Table 6-23.
February 14, 2011 ch02
276
1 = 0.015625 64
1 = 0.09375 64 1 = 0.09375 64 1 = 0.09375 64
ρ4 = 6 ρ5 = 6 ρ7 = 6
277
1 = 0.09375 64
1 = 0.09375 64
1 = 0.046875 64
ρ13 = 6
ρ12 = 3
ρ11 = 6
1 = 0.09375 64 1 ρ9 = 6 = 0.09375 64
ρ8 = 6
1 = 0.09375 64
Gallery 204-3
(Continued )
ρ6
ρ14 =
1 = 0.046875 64
ρ6 = 3
1 = 0.015625 64
1 = 0.09375 64
1 = 0.03125 64
ρ2 = 6
ρ10 = 2
14:49
ρ3 = 6
204 L=6
ρ1 =
Table 6-23.
February 14, 2011 ch02
278
1 = 0.0546875 128 1 = 0.0546875 128 1 = 0.0546875 128 1 = 0.0546875 128
ρ10 = 7 ρ12 = 7 ρ14 = 7 ρ16 = 7 1 = 0.0546875 128
1 = 0.0546875 128
ρ8 = 7
ρ18 = 7
1 = 0.0546875 128
1 = 0.0546875 128
1 = 0.0078125 128
1 = 0.0078125 128
Gallery 204-4
ρ 20 =
(Continued )
1 = 0.0546875 128
1 = 0.0546875 128
ρ19 = 7
ρ17 = 7
1 = 0.0546875 128
1 = 0.0546875 128
ρ13 = 7
ρ15 = 7
1 = 0.0546875 128
1 = 0.0546875 128
1 = 0.0546875 128
1 = 0.0546875 128
ρ11 = 7
ρ9 = 7
ρ7 = 7
ρ5 = 7
1 = 0.0546875 128 1 ρ3 = 7 = 0.0546875 128
ρ2 = 7
14:49
ρ6 = 7
ρ4 = 7
204 L=7
ρ1 =
Table 6-23.
February 14, 2011 ch02
ρ27
ρ10 = ρ 23 = ρ34 ρ10
279
1 =8 = 0.03125 256
ρ 2 = ρ3 = ρ 4 = ρ5 = ρ6 = ρ7 = ρ8 = ρ9 = ρ11 = ρ12 = ρ13 = ρ14 = ρ15 = ρ16 = ρ17 = ρ18
ρ18
ρ17
ρ16
=8
1 = 0.03125 256
ρ 27 = ρ 28 = ρ30 = ρ31 = ρ33 = ρ35
ρ19 = ρ 20 = ρ 21 = ρ 22 = ρ 24 = ρ 25 = ρ 26 =
ρ35
ρ34
ρ33
ρ32
ρ31
ρ14 ρ15
ρ30
1 ρ 29 = 2 = 0.0078125 256
ρ13
ρ12
Gallery 204-5
ρ26 ρ28
ρ25
ρ8 ρ9 ρ11
ρ24
ρ7
1 256 = 0.015625
ρ23
ρ6
14:49
=4
ρ22
ρ5
3
ρ19 ρ20 ρ21
ρ36 ρ1 = ρ36 = 1 = 0.00390625 256
(Continued )
ρ4
204 L=8
ρ2
ρ1
Table 6-23.
February 14, 2011 ch02
Table 6-24.
Basin Tree Diagrams of Rule 232 .
February 14, 2011 14:49 ch02
280
232 L=5
281
Gallery 232-2
11 = 0.34375 32
1 = 0.15625 32
(Continued )
ρ2 = 5
ρ4 =
11 = 0.34375 32
1 = 0.15625 32
14:49
ρ3 =
ρ1 = 5
Table 6-24.
February 14, 2011 ch02
1 = 0.09375 64 2 = 0.03125 64
ρ2 = 6
ρ3 =
Gallery 232-3
3 = 0.28125 64
(Continued )
ρ4 =
16 = 0.25 64
16 = 0.25 64
ρ5 =
14:49
1 ρ1 = 6 = 0.09375 64
232 L=6
ρ6 = 6
Table 6-24.
February 14, 2011 ch02
282
283
ρ3 = 7
2 = 0.109375 128
3 = 0.1640625 128
ρ1 = 7
29 = 0.2265625 128
2 = 0.109375 128
Gallery 232-4
ρ2 = 7
3 = 0.1640625 128
(Continued )
ρ6 =
29 = 0.2265625 128
14:49
ρ5 =
232 L=7
ρ4 = 7
Table 6-24.
February 14, 2011 ch02
284
45 = 0.17578125 256 45 = 0.17578125 256
ρ9 =
6 = 0.1875 256
ρ7 = 8 ρ8 =
4 = 0.125 256
ρ6 = 8
ρ1 = 4
ρ6
ρ4
ρ7
Gallery 232-5
ρ5
(Continued )
ρ8
ρ2
ρ9
ρ1
14:49
1 = 0.015625 256 2 ρ2 = = 0.0078125 256 3 ρ3 = 8 = 0.09375 256 3 ρ4 = 8 = 0.09375 256 4 ρ5 = 8 = 0.125 256
232 L=8
ρ3
Table 6-24.
February 14, 2011 ch02
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
information: 1. Rule number N 2. Boolean cube of rule N 3. Explicit formula for generating the truth table of rule N , where xi−1 , xi , xi+1 ∈ {0, 1} 4. Truth table of rule N 5. Characteristic function χ1N of rule N 6. Sample set of time-1 return maps corresponding to different random bit strings φ0 ∈ [0, 1), where the transient components have been deleted to avoid clutter. These time-1 maps are all extracted from Table 2 of [Chua et al., 2005a]. Observe that each period-1 time-1 return map is represented by one point on the diagonal line, and only a sample subset of such points are shown to avoid clutter. In addition, for certain rules, some of the time-1 maps (printed in different colors) are period-T attractors (T > 1) whose basins of attraction is large enough to include some initial bit string samples belonging to our sample set of at least ten random bit strings (with length L > 500). Each Gallery N − m of rule N is composed of attractors and their basins of attraction, coded in magenta (or transparent pink when they overlap), and Isles of Eden, coded in blue (a mnemonic for Isles surrounded by the blue sea). The basin tree diagrams for each rule N in Table 4 are exhibited in Tables 6-1 to 6-24 for L = 3, 4, 5, 6, 7, 8.
2.1. Each bit string has a decimal and a fractional code To enhance clarity, each binary bit string associated with a basin tree attractor, or with an Isle of Eden, is coded by an integer number equal to the decimal equivalent of an L-bit binary bit string as follow: [x0
x1
x2
···
xI ] → n
I
βi • 2(I−i) xi
i=0
(1) where I L − 1 and βi ∈ {0, 1}. Consequently, for each string length L, there are 2L distinct binary strings labeled from n = 0 to n = 2L−1 . For ease of interpreting the evolution from an initial bit string on the basin tree diagrams, these 2L binary strings are listed in Table 7-1 for L = 3, Table 7-2 for L = 4, Table 7-3 for L = 5, Table 7-4 for L = 6, Table 7-5 for L = 7, and Ta4
285
ble 7-6 for L = 8, respectively, along with the decimal number code “n” shown in the left column, and enclosed by a circle; i.e. nk, n = 0, 1, 2, . . . , 2L − 1. For computational purposes, such as in deriving the time-1 return maps, it is necessary to convert a binary bit string from Table 7 to its associated real number φ ∈ [0, 1) via the formula [Chua et al., 2005a]: φ=
I
2−(i+1) xi
(2)
i=0
where I L − 1. This fractional real number is displayed in the right column for each bit string listed in Table 7.
2.2. Attractor, basin of attraction, and basin tree For each rule N and length L, the basin tree diagrams exhibited in Table 6 give a complete catalog of the evolution from all possible 2L initial binary bit strings of length L. In general, they are organized into several isolated directed graphs. Each of these connected graphs is called a basin tree in [Chua et al., 2006] for conciseness, even though some of these graphs are not trees in the graph-theoretic sense. Example 2.2.1. 172 , L = 6. Gallery 172-3 catalogs the basin tree diagrams of rule 172 for L = 6. Here there are 26 = 64 distinct bit strings, coded by integers 0m , 1m , 2m , . . . , 63m , and listed in Table 7.4. This catalog is organized into 13 isolated connected component graphs. If a connected component graph contains at least a Garden of Eden,4 we will call it a basin tree. Otherwise, it is called an has four Isle of Eden. For L = 6, rule 172 periodm m m m 1 Isles of Eden 0 , 9 , 18 , 36 , and a m period-3 Isle of Eden 27m , 54 , 45m. Each of the remaining eight isolated connected components is a basin tree. Observe that among them, seven basin trees are trees in the graph-theoretic sense (i.e. there are no closed loops). However, the basin tree formed by the union of the six Gardens of Eden m m m and the closed loop 46 , 23m , 43m , 53 , 58m , and 29 m m 62 , 31m , 47m , 55 , 59m , 61m is not a tree because it contains a closed loop. We will henceforth call each closed loop of a basin tree a period-T attractor,
A bit string is said to be a Garden of Eden [Moore, 1962] if it does not have a pre-image (predecessor).
February 14, 2011
286
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-1.
Decimal and fractional code for eight binary bit strings with length L = 3.
Bit-String Code Number n
3-Bit String
Decimal Fraction Representation
x0 x1 x2
φ=
1 1 1 x0 + x1 + x2 2 4 8
x0
x1
x2
0
0
0
0
0
1
0
0
1
0.125
2
0
1
0
0.25
3
0
1
1
0.375
4
1
0
0
0.5
5
1
0
1
0.625
6
1
1
0
0.75
7
1
1
1
0.875
Table 7-2.
Bit-String Code Number n
Decimal and fractional code for 16 binary bit strings with length L = 4.
4-Bit String x0 x1 x2 x3
Decimal Fraction Representation
φ=
1 1 1 1 x0 + x1 + x2 + x3 2 4 8 16
x0
x1
x2
x3
0
0
0
0
0
0
1
0
0
0
1
0.0625
2
0
0
1
0
0.125
3
0
0
1
1
0.1875
4
0
1
0
0
0.25
5
0
1
0
1
0.3125
6
0
1
1
0
0.375
7
0
1
1
1
0.4375
8
1
0
0
0
0.5
9
1
0
0
1
0.5625
10
1
0
1
0
0.625
11
1
0
1
1
0.6875
12
1
1
0
0
0.75
13
1
1
0
1
0.8125
14
1
1
1
0
0.875
15
1
1
1
1
0.9375
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-3.
Bit-String Code Number n
Decimal and fractional code for 32 binary bit strings with length L = 5.
5-Bit String
x0 x1 x2 x3 x4
Decimal Fraction Representation 1 1 1 1 1 φ = x0 + x1 + x2 + x3 + x4 2 4 8 16 32
x0
x1
x2
x3
x4
0
0
0
0
0
0
0
1
0
0
0
0
1
0.03125
2
0
0
0
1
0
0.0625
3
0
0
0
1
1
0.09375
4
0
0
1
0
0
0.125
5
0
0
1
0
1
0.15625
6
0
0
1
1
0
0.1875
7
0
0
1
1
1
0.21875
8
0
1
0
0
0
0.25
9
0
1
0
0
1
0.28125
10
0
1
0
1
0
0.3125
11
0
1
0
1
1
0.34375
12
0
1
1
0
0
0.375
13
0
1
1
0
1
0.40625
14
0
1
1
1
0
0.4375
15
0
1
1
1
1
0.46875
16
1
0
0
0
0
0.5
17
1
0
0
0
1
0.53125
18
1
0
0
1
0
0.5625
19
1
0
0
1
1
0.59375
20
1
0
1
0
0
0.625
21
1
0
1
0
1
0.65625
22
1
0
1
1
0
0.6875
23
1
0
1
1
1
0.71875
24
1
1
0
0
0
0.75
25
1
1
0
0
1
0.78125
26
1
1
0
1
0
0.8125
27
1
1
0
1
1
0.84375
28
1
1
1
0
0
0.875
29
1
1
1
0
1
0.90625
30
1
1
1
1
0
0.9375
31
1
1
1
1
1
0.96875
287
February 14, 2011
288
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-4.
Bit-String Code Number n
Decimal and fractional code for 64 binary bit strings with length L = 6.
6-Bit String
Decimal Fraction Representation
x0 x1 x2 x3 x4 x5
5
φ = Σ 2 −(i +1) xi
x0
x1
x2
x3
x4
x5
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0.015625
2
0
0
0
0
1
0
0.03125
3
0
0
0
0
1
1
0.046875
4
0
0
0
1
0
0
0.0625
5
0
0
0
1
0
1
0.078125
6
0
0
0
1
1
0
0.09375
7
0
0
0
1
1
1
0.109375
8
0
0
1
0
0
0
0.125
9
0
0
1
0
0
1
0.140625
10
0
0
1
0
1
0
0.15625
11
0
0
1
0
1
1
0.171875
12
0
0
1
1
0
0
0.1875
13
0
0
1
1
0
1
0.203125
14
0
0
1
1
1
0
0.21875
15
0
0
1
1
1
1
0.234375
16
0
1
0
0
0
0
0.25
17
0
1
0
0
0
1
0.265625
18
0
1
0
0
1
0
0.28125
19
0
1
0
0
1
1
0.296875
20
0
1
0
1
0
0
0.3125
21
0
1
0
1
0
1
0.328125
22
0
1
0
1
1
0
0.34375
23
0
1
0
1
1
1
0.359375
24
0
1
1
0
0
0
0.375
25
0
1
1
0
0
1
0.390625
26
0
1
1
0
1
0
0.40625
27
0
1
1
0
1
1
0.421875
28
0
1
1
1
0
0
0.4375
29
0
1
1
1
0
1
0.453125
30
0
1
1
1
1
0
0.46875
31
0
1
1
1
1
1
0.484375
i=0
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-4.
Bit-String Code Number n
(Continued )
6-Bit String x0 x1 x2 x3 x4 x5
x0
x1
x2
x3
x4
Decimal Fraction Representation 5
x5
φ = Σ 2− (i +1) xi i =0
32
1
0
0
0
0
0
0.5
33
1
0
0
0
0
1
0.515625
34
1
0
0
0
1
0
0.53125
35
1
0
0
0
1
1
0.546875
36
1
0
0
1
0
0
0.5625
37
1
0
0
1
0
1
0.578125
38
1
0
0
1
1
0
0.59375
39
1
0
0
1
1
1
0.609375
40
1
0
1
0
0
0
0.625
41
1
0
1
0
0
1
0.640625
42
1
0
1
0
1
0
0.65625
43
1
0
1
0
1
1
0.671875
44
1
0
1
1
0
0
0.6875
45
1
0
1
1
0
1
0.703125
46
1
0
1
1
1
0
0.71875
47
1
0
1
1
1
1
0.734375
48
1
1
0
0
0
0
0.75
49
1
1
0
0
0
1
0.765625
50
1
1
0
0
1
0
0.78125
51
1
1
0
0
1
1
0.796875
52
1
1
0
1
0
0
0.8125
53
1
1
0
1
0
1
0.828125
54
1
1
0
1
1
0
0.84375
55
1
1
0
1
1
1
0.859375
56
1
1
1
0
0
0
0.875
57
1
1
1
0
0
1
0.890625
58
1
1
1
0
1
0
0.90625
59
1
1
1
0
1
1
0.921875
60
1
1
1
1
0
0
0.9375
61
1
1
1
1
0
1
0.953125
62
1
1
1
1
1
0
0.96875
63
1
1
1
1
1
1
0.984375
289
February 14, 2011
290
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-5.
Bit-String Code Number n
Decimal and fractional code for 128 binary bit strings with length L = 7.
7-Bit String x0 x1 x2 x3 x4 x5 x6
Decimal Fraction Representation 6
φ = Σ 2 −(i +1) xi
x0
x1
x2
x3
x4
x5
x6
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0.00781
2
0
0
0
0
0
1
0
0.01563
3
0
0
0
0
0
1
1
0.02344
4
0
0
0
0
1
0
0
0.03125
5
0
0
0
0
1
0
1
0.03906
6
0
0
0
0
1
1
0
0.04688
7
0
0
0
0
1
1
1
0.05469
8
0
0
0
1
0
0
0
0.0625
9
0
0
0
1
0
0
1
0.07031
10
0
0
0
1
0
1
0
0.07813
11
0
0
0
1
0
1
1
0.08594
12
0
0
0
1
1
0
0
0.09375
13
0
0
0
1
1
0
1
0.10156
14
0
0
0
1
1
1
0
0.10938
15
0
0
0
1
1
1
1
0.11719
16
0
0
1
0
0
0
0
0.125
17
0
0
1
0
0
0
1
0.13281
18
0
0
1
0
0
1
0
0.14063
19
0
0
1
0
0
1
1
0.14844
20
0
0
1
0
1
0
0
0.15625
21
0
0
1
0
1
0
1
0.16406
22
0
0
1
0
1
1
0
0.17188
23
0
0
1
0
1
1
1
0.17969
24
0
0
1
1
0
0
0
0.1875
25
0
0
1
1
0
0
1
0.19531
26
0
0
1
1
0
1
0
0.20313
27
0
0
1
1
0
1
1
0.21094
28
0
0
1
1
1
0
0
0.21875
29
0
0
1
1
1
0
1
0.22656
30
0
0
1
1
1
1
0
0.23438
31
0
0
1
1
1
1
1
0.24219
i =0
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-5.
Bit-String Code Number n
(Continued )
7-Bit String x0 x1 x2 x3 x4 x5 x6
x0
x1
x2
x3
x4
x5
Decimal Fraction Representation 6
x6
φ = Σ 2 −(i +1) xi i=0
32
0
1
0
0
0
0
0
0.25
33
0
1
0
0
0
0
1
0.25781
34
0
1
0
0
0
1
0
0.26563
35
0
1
0
0
0
1
1
0.27344
36
0
1
0
0
1
0
0
0.28125
37
0
1
0
0
1
0
1
0.28906
38
0
1
0
0
1
1
0
0.29688
39
0
1
0
0
1
1
1
0.30469
40
0
1
0
1
0
0
0
0.3125
41
0
1
0
1
0
0
1
0.32031
42
0
1
0
1
0
1
0
0.32813
43
0
1
0
1
0
1
1
0.33594
44
0
1
0
1
1
0
0
0.34375
45
0
1
0
1
1
0
1
0.35156
46
0
1
0
1
1
1
0
0.35938
47
0
1
0
1
1
1
1
0.36719
48
0
1
1
0
0
0
0
0.375
49
0
1
1
0
0
0
1
0.38281
50
0
1
1
0
0
1
0
0.39063
51
0
1
1
0
0
1
1
0.39844
52
0
1
1
0
1
0
0
0.40625
53
0
1
1
0
1
0
1
0.41406
54
0
1
1
0
1
1
0
0.42188
55
0
1
1
0
1
1
1
0.42969
56
0
1
1
1
0
0
0
0.4375
57
0
1
1
1
0
0
1
0.44531
58
0
1
1
1
0
1
0
0.45313
59
0
1
1
1
0
1
1
0.46094
60
0
1
1
1
1
0
0
0.46875
61
0
1
1
1
1
0
1
0.47656
62
0
1
1
1
1
1
0
0.48438
63
0
1
1
1
1
1
1
0.49219
291
February 14, 2011
292
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-5.
Bit-String Code Number n
(Continued )
7-Bit String x0 x1 x2 x3 x4 x5 x6
x0
x1
x2
x3
x4
x5
Decimal Fraction Representation 6
x6
φ = Σ 2 −(i +1) xi i =0
64
1
0
0
0
0
0
0
0.5
65
1
0
0
0
0
0
1
0.50781
66
1
0
0
0
0
1
0
0.51563
67
1
0
0
0
0
1
1
0.52344
68
1
0
0
0
1
0
0
0.53125
69
1
0
0
0
1
0
1
0.53906
70
1
0
0
0
1
1
0
0.54688
71
1
0
0
0
1
1
1
0.55469
72
1
0
0
1
0
0
0
0.5625
73
1
0
0
1
0
0
1
0.57031
74
1
0
0
1
0
1
0
0.57813
75
1
0
0
1
0
1
1
0.58594
76
1
0
0
1
1
0
0
0.59375
77
1
0
0
1
1
0
1
0.60156
78
1
0
0
1
1
1
0
0.60938
79
1
0
0
1
1
1
1
0.61719
80
1
0
1
0
0
0
0
0.625
81
1
0
1
0
0
0
1
0.63281
82
1
0
1
0
0
1
0
0.64063
83
1
0
1
0
0
1
1
0.64844
84
1
0
1
0
1
0
0
0.65625
85
1
0
1
0
1
0
1
0.66406
86
1
0
1
0
1
1
0
0.67188
87
1
0
1
0
1
1
1
0.67969
88
1
0
1
1
0
0
0
0.6875
89
1
0
1
1
0
0
1
0.69531
90
1
0
1
1
0
1
0
0.70313
91
1
0
1
1
0
1
1
0.71094
92
1
0
1
1
1
0
0
0.71875
93
1
0
1
1
1
0
1
0.72656
94
1
0
1
1
1
1
0
0.73438
95
1
0
1
1
1
1
1
0.74219
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-5.
Bit-String Code Number n
(Continued )
7-Bit String x0 x1 x2 x3 x4 x5 x6
x0
x1
x2
x3
x4
x5
Decimal Fraction Representation 6
x6
φ = Σ 2 −(i +1) xi i=0
96
1
1
0
0
0
0
0
0.75
97
1
1
0
0
0
0
1
0.75781
98
1
1
0
0
0
1
0
0.76563
99
1
1
0
0
0
1
1
0.77344
100
1
1
0
0
1
0
0
0.78125
101
1
1
0
0
1
0
1
0.78906
102
1
1
0
0
1
1
0
0.79688
103
1
1
0
0
1
1
1
0.80469
104
1
1
0
1
0
0
0
0.8125
105
1
1
0
1
0
0
1
0.82031
106
1
1
0
1
0
1
0
0.82813
107
1
1
0
1
0
1
1
0.83594
108
1
1
0
1
1
0
0
0.84375
109
1
1
0
1
1
0
1
0.85156
110
1
1
0
1
1
1
0
0.85938
111
1
1
0
1
1
1
1
0.86719
112
1
1
1
0
0
0
0
0.875
113
1
1
1
0
0
0
1
0.88281
114
1
1
1
0
0
1
0
0.89063
115
1
1
1
0
0
1
1
0.89844
116
1
1
1
0
1
0
0
0.90625
117
1
1
1
0
1
0
1
0.91406
118
1
1
1
0
1
1
0
0.92188
119
1
1
1
0
1
1
1
0.92969
120
1
1
1
1
0
0
0
0.9375
121
1
1
1
1
0
0
1
0.94531
122
1
1
1
1
0
1
0
0.95313
123
1
1
1
1
0
1
1
0.96094
124
1
1
1
1
1
0
0
0.96875
125
1
1
1
1
1
0
1
0.97656
126
1
1
1
1
1
1
0
0.98438
127
1
1
1
1
1
1
1
0.99219
293
February 14, 2011
294
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-6.
Bit-String Code Number n
Decimal and fractional code for 256 binary bit strings with length L = 8.
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
Decimal Fraction Representation 7
φ = Σ 2 −(i +1) xi
x0
x1
x2
x3
x4
x5
x6
x7
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0.00390625
2
0
0
0
0
0
0
1
0
0.0078125
3
0
0
0
0
0
0
1
1
0.01171875
4
0
0
0
0
0
1
0
0
0.015625
5
0
0
0
0
0
1
0
1
0.01953125
6
0
0
0
0
0
1
1
0
0.0234375
7
0
0
0
0
0
1
1
1
0.02734375
8
0
0
0
0
1
0
0
0
0.03125
9
0
0
0
0
1
0
0
1
0.03515625
10
0
0
0
0
1
0
1
0
0.0390625
11
0
0
0
0
1
0
1
1
0.04296875
12
0
0
0
0
1
1
0
0
0.046875
13
0
0
0
0
1
1
0
1
0.05078125
14
0
0
0
0
1
1
1
0
0.0546875
15
0
0
0
0
1
1
1
1
0.05859375
16
0
0
0
1
0
0
0
0
0.0625
17
0
0
0
1
0
0
0
1
0.06640625
18
0
0
0
1
0
0
1
0
0.0703125
19
0
0
0
1
0
0
1
1
0.07421875
20
0
0
0
1
0
1
0
0
0.078125
21
0
0
0
1
0
1
0
1
0.08203125
22
0
0
0
1
0
1
1
0
0.0859375
23
0
0
0
1
0
1
1
1
0.08984375
24
0
0
0
1
1
0
0
0
0.09375
25
0
0
0
1
1
0
0
1
0.09765625
26
0
0
0
1
1
0
1
0
0.1015625
27
0
0
0
1
1
0
1
1
0.10546875
28
0
0
0
1
1
1
0
0
0.109375
29
0
0
0
1
1
1
0
1
0.11328125
30
0
0
0
1
1
1
1
0
0.1171875
31
0
0
0
1
1
1
1
1
0.12109375
i =0
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i=0
32
0
0
1
0
0
0
0
0
0.125
33
0
0
1
0
0
0
0
1
0.12890625
34
0
0
1
0
0
0
1
0
0.1328125
35
0
0
1
0
0
0
1
1
0.13671875
36
0
0
1
0
0
1
0
0
0.140625
37
0
0
1
0
0
1
0
1
0.14453125
38
0
0
1
0
0
1
1
0
0.1484375
39
0
0
1
0
0
1
1
1
0.15234375
40
0
0
1
0
1
0
0
0
0.15625
41
0
0
1
0
1
0
0
1
0.16015625
42
0
0
1
0
1
0
1
0
0.1640625
43
0
0
1
0
1
0
1
1
0.16796875
44
0
0
1
0
1
1
0
0
0.171875
45
0
0
1
0
1
1
0
1
0.17578125
46
0
0
1
0
1
1
1
0
0.1796875
47
0
0
1
0
1
1
1
1
0.18359375
48
0
0
1
1
0
0
0
0
0.1875
49
0
0
1
1
0
0
0
1
0.19140625
50
0
0
1
1
0
0
1
0
0.1953125
51
0
0
1
1
0
0
1
1
0.19921875
52
0
0
1
1
0
1
0
0
0.203125
53
0
0
1
1
0
1
0
1
0.20703125
54
0
0
1
1
0
1
1
0
0.2109375
55
0
0
1
1
0
1
1
1
0.21484375
56
0
0
1
1
1
0
0
0
0.21875
57
0
0
1
1
1
0
0
1
0.22265625
58
0
0
1
1
1
0
1
0
0.2265625
59
0
0
1
1
1
0
1
1
0.23046875
60
0
0
1
1
1
1
0
0
0.234375
61
0
0
1
1
1
1
0
1
0.23828125
62
0
0
1
1
1
1
1
0
0.2421875
63
0
0
1
1
1
1
1
1
0.24609375
295
February 14, 2011
296
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i+1) xi i =0
64
0
1
0
0
0
0
0
0
0.25
65
0
1
0
0
0
0
0
1
0.25390625
66
0
1
0
0
0
0
1
0
0.2578125
67
0
1
0
0
0
0
1
1
0.26171875
68
0
1
0
0
0
1
0
0
0.265625
69
0
1
0
0
0
1
0
1
0.26953125
70
0
1
0
0
0
1
1
0
0.2734375
71
0
1
0
0
0
1
1
1
0.27734375
72
0
1
0
0
1
0
0
0
0.28125
73
0
1
0
0
1
0
0
1
0.28515625
74
0
1
0
0
1
0
1
0
0.2890625
75
0
1
0
0
1
0
1
1
0.29296875
76
0
1
0
0
1
1
0
0
0.296875
77
0
1
0
0
1
1
0
1
0.30078125
78
0
1
0
0
1
1
1
0
0.3046875
79
0
1
0
0
1
1
1
1
0.30859375
80
0
1
0
1
0
0
0
0
0.3125
81
0
1
0
1
0
0
0
1
0.31640625
82
0
1
0
1
0
0
1
0
0.3203125
83
0
1
0
1
0
0
1
1
0.32421875
84
0
1
0
1
0
1
0
0
0.328125
85
0
1
0
1
0
1
0
1
0.33203125
86
0
1
0
1
0
1
1
0
0.3359375
87
0
1
0
1
0
1
1
1
0.33984375
88
0
1
0
1
1
0
0
0
0.34375
89
0
1
0
1
1
0
0
1
0.34765625
90
0
1
0
1
1
0
1
0
0.3515625
91
0
1
0
1
1
0
1
1
0.35546875
92
0
1
0
1
1
1
0
0
0.359375
93
0
1
0
1
1
1
0
1
0.36328125
94
0
1
0
1
1
1
1
0
0.3671875
95
0
1
0
1
1
1
1
1
0.37109375
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i=0
96
0
1
1
0
0
0
0
0
0.375
97
0
1
1
0
0
0
0
1
0.37890625
98
0
1
1
0
0
0
1
0
0.3828125
99
0
1
1
0
0
0
1
1
0.38671875
100
0
1
1
0
0
1
0
0
0.390625
101
0
1
1
0
0
1
0
1
0.39453125
102
0
1
1
0
0
1
1
0
0.3984375
103
0
1
1
0
0
1
1
1
0.40234375
104
0
1
1
0
1
0
0
0
0.40625
105
0
1
1
0
1
0
0
1
0.41015625
106
0
1
1
0
1
0
1
0
0.4140625
107
0
1
1
0
1
0
1
1
0.41796875
108
0
1
1
0
1
1
0
0
0.421875
109
0
1
1
0
1
1
0
1
0.42578125
110
0
1
1
0
1
1
1
0
0.4296875
111
0
1
1
0
1
1
1
1
0.43359375
112
0
1
1
1
0
0
0
0
0.4375
113
0
1
1
1
0
0
0
1
0.44140625
114
0
1
1
1
0
0
1
0
0.4453125
115
0
1
1
1
0
0
1
1
0.44921875
116
0
1
1
1
0
1
0
0
0.453125
117
0
1
1
1
0
1
0
1
0.45703125
118
0
1
1
1
0
1
1
0
0.4609375
119
0
1
1
1
0
1
1
1
0.46484375
120
0
1
1
1
1
0
0
0
0.46875
121
0
1
1
1
1
0
0
1
0.47265625
122
0
1
1
1
1
0
1
0
0.4765625
123
0
1
1
1
1
0
1
1
0.48046875
124
0
1
1
1
1
1
0
0
0.484375
125
0
1
1
1
1
1
0
1
0.48828125
126
0
1
1
1
1
1
1
0
0.4921875
127
0
1
1
1
1
1
1
1
0.49609375
297
February 14, 2011
298
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i =0
128
1
0
0
0
0
0
0
0
0.5
129
1
0
0
0
0
0
0
1
0.50390625
130
1
0
0
0
0
0
1
0
0.5078125
131
1
0
0
0
0
0
1
1
0.51171875
132
1
0
0
0
0
1
0
0
0.515625
133
1
0
0
0
0
1
0
1
0.51953125
134
1
0
0
0
0
1
1
0
0.5234375
135
1
0
0
0
0
1
1
1
0.52734375
136
1
0
0
0
1
0
0
0
0.53125
137
1
0
0
0
1
0
0
1
0.53515625
138
1
0
0
0
1
0
1
0
0.5390625
139
1
0
0
0
1
0
1
1
0.54296875
140
1
0
0
0
1
1
0
0
0.546875
141
1
0
0
0
1
1
0
1
0.55078125
142
1
0
0
0
1
1
1
0
0.5546875
143
1
0
0
0
1
1
1
1
0.55859375
144
1
0
0
1
0
0
0
0
0.5625
145
1
0
0
1
0
0
0
1
0.56640625
146
1
0
0
1
0
0
1
0
0.5703125
147
1
0
0
1
0
0
1
1
0.57421875
148
1
0
0
1
0
1
0
0
0.578125
149
1
0
0
1
0
1
0
1
0.58203125
150
1
0
0
1
0
1
1
0
0.5859375
151
1
0
0
1
0
1
1
1
0.58984375
152
1
0
0
1
1
0
0
0
0.59375
153
1
0
0
1
1
0
0
1
0.59765625
154
1
0
0
1
1
0
1
0
0.6015625
155
1
0
0
1
1
0
1
1
0.60546875
156
1
0
0
1
1
1
0
0
0.609375
157
1
0
0
1
1
1
0
1
0.61328125
158
1
0
0
1
1
1
1
0
0.6171875
159
1
0
0
1
1
1
1
1
0.62109375
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i=0
160
1
0
1
0
0
0
0
0
0.625
161
1
0
1
0
0
0
0
1
0.62890625
162
1
0
1
0
0
0
1
0
0.6328125
163
1
0
1
0
0
0
1
1
0.63671875
164
1
0
1
0
0
1
0
0
0.640625
165
1
0
1
0
0
1
0
1
0.64453125
166
1
0
1
0
0
1
1
0
0.6484375
167
1
0
1
0
0
1
1
1
0.65234375
168
1
0
1
0
1
0
0
0
0.65625
169
1
0
1
0
1
0
0
1
0.66015625
170
1
0
1
0
1
0
1
0
0.6640625
171
1
0
1
0
1
0
1
1
0.66796875
172
1
0
1
0
1
1
0
0
0.671875
173
1
0
1
0
1
1
0
1
0.67578125
174
1
0
1
0
1
1
1
0
0.6796875
175
1
0
1
0
1
1
1
1
0.68359375
176
1
0
1
1
0
0
0
0
0.6875
177
1
0
1
1
0
0
0
1
0.69140625
178
1
0
1
1
0
0
1
0
0.6953125
179
1
0
1
1
0
0
1
1
0.69921875
180
1
0
1
1
0
1
0
0
0.703125
181
1
0
1
1
0
1
0
1
0.70703125
182
1
0
1
1
0
1
1
0
0.7109375
183
1
0
1
1
0
1
1
1
0.71484375
184
1
0
1
1
1
0
0
0
0.71875
185
1
0
1
1
1
0
0
1
0.72265625
186
1
0
1
1
1
0
1
0
0.7265625
187
1
0
1
1
1
0
1
1
0.73046875
188
1
0
1
1
1
1
0
0
0.734375
189
1
0
1
1
1
1
0
1
0.73828125
190
1
0
1
1
1
1
1
0
0.7421875
191
1
0
1
1
1
1
1
1
0.74609375
299
February 14, 2011
300
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i =0
192
1
1
0
0
0
0
0
0
0.75
193
1
1
0
0
0
0
0
1
0.75390625
194
1
1
0
0
0
0
1
0
0.7578125
195
1
1
0
0
0
0
1
1
0.76171875
196
1
1
0
0
0
1
0
0
0.765625
197
1
1
0
0
0
1
0
1
0.76953125
198
1
1
0
0
0
1
1
0
0.7734375
199
1
1
0
0
0
1
1
1
0.77734375
200
1
1
0
0
1
0
0
0
0.78125
201
1
1
0
0
1
0
0
1
0.78515625
202
1
1
0
0
1
0
1
0
0.7890625
203
1
1
0
0
1
0
1
1
0.79296875
204
1
1
0
0
1
1
0
0
0.796875
205
1
1
0
0
1
1
0
1
0.80078125
206
1
1
0
0
1
1
1
0
0.8046875
207
1
1
0
0
1
1
1
1
0.80859375
208
1
1
0
1
0
0
0
0
0.8125
209
1
1
0
1
0
0
0
1
0.81640625
210
1
1
0
1
0
0
1
0
0.8203125
211
1
1
0
1
0
0
1
1
0.82421875
212
1
1
0
1
0
1
0
0
0.828125
213
1
1
0
1
0
1
0
1
0.83203125
214
1
1
0
1
0
1
1
0
0.8359375
215
1
1
0
1
0
1
1
1
0.83984375
216
1
1
0
1
1
0
0
0
0.84375
217
1
1
0
1
1
0
0
1
0.84765625
218
1
1
0
1
1
0
1
0
0.8515625
219
1
1
0
1
1
0
1
1
0.85546875
220
1
1
0
1
1
1
0
0
0.859375
221
1
1
0
1
1
1
0
1
0.86328125
222
1
1
0
1
1
1
1
0
0.8671875
223
1
1
0
1
1
1
1
1
0.87109375
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 7-6.
Bit-String Code Number n
(Continued )
8-Bit String x0 x1 x2 x3 x4 x5 x6 x7
x0
x1
x2
x3
x4
x5
x6
Decimal Fraction Representation 7
x7
φ = Σ 2 −(i +1) xi i=0
224
1
1
1
0
0
0
0
0
0.875
225
1
1
1
0
0
0
0
1
0.87890625
226
1
1
1
0
0
0
1
0
0.8828125
227
1
1
1
0
0
0
1
1
0.88671875
228
1
1
1
0
0
1
0
0
0.890625
229
1
1
1
0
0
1
0
1
0.89453125
230
1
1
1
0
0
1
1
0
0.8984375
231
1
1
1
0
0
1
1
1
0.90234375
232
1
1
1
0
1
0
0
0
0.90625
233
1
1
1
0
1
0
0
1
0.91015625
234
1
1
1
0
1
0
1
0
0.9140625
235
1
1
1
0
1
0
1
1
0.91796875
236
1
1
1
0
1
1
0
0
0.921875
237
1
1
1
0
1
1
0
1
0.92578125
238
1
1
1
0
1
1
1
0
0.9296875
239
1
1
1
0
1
1
1
1
0.93359375
240
1
1
1
1
0
0
0
0
0.9375
241
1
1
1
1
0
0
0
1
0.94140625
242
1
1
1
1
0
0
1
0
0.9453125
243
1
1
1
1
0
0
1
1
0.94921875
244
1
1
1
1
0
1
0
0
0.953125
245
1
1
1
1
0
1
0
1
0.95703125
246
1
1
1
1
0
1
1
0
0.9609375
247
1
1
1
1
0
1
1
1
0.96484375
248
1
1
1
1
1
0
0
0
0.96875
249
1
1
1
1
1
0
0
1
0.97265625
250
1
1
1
1
1
0
1
0
0.9765625
251
1
1
1
1
1
0
1
1
0.98046875
252
1
1
1
1
1
1
0
0
0.984375
253
1
1
1
1
1
1
0
1
0.98828125
254
1
1
1
1
1
1
1
0
0.9921875
255
1
1
1
1
1
1
1
1
0.99609375
301
February 14, 2011
302
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
where T is the number of branches in the loop. The set union of all branches belonging to a basin tree, and all branches belonging to the associated period-T attractor, will henceforth be called the basin of attraction of the attractor.5 Based on the above definitions, a basin tree is just the union of an attractor and its basin of attraction. Observe that an Isle of Eden is any connected component graph in the basin tree diagrams that has an empty set as its basin of attraction. It is often useful to think of an attractor as analogous to the steady state regime of a dissipative system, and to think of any path from a basin of attraction which converges to an attractor as analogous to the associated transient regime. Hence, the union of all possible transient regimes of an attractor is its basin of attraction. Likewise, it is useful to think of an Isle of Eden as analogous to a transientless steady state regime 6 of a conservative (i.e. lossless) system. For rule m 172 , the four period-1 Isles of Eden 0 , 9m, 18m, 36m, and the single period-3 Isle of Eden m 27m , 54 , 45m, are both isolated Isles of Eden. In
bit in the circular architecture in Fig. 1(a) as our reference bit i = 0. Since any one of the remaining L − 1 bits could also have been chosen as the origin, it follows that any generic property of a particular bit string [x0 x1 x2 · · · xI ] that does not depend on the choice of the origin should be exhibited also by the corresponding bit string obtained by shifting it one bit to the left, namely, [x1 x2 · · · xI x0 ]. Likewise, bit strings [x2 x3 · · · xI x0 x1 ], [x3 x4 · · · xI x0 x1 x2 ], . . . , and [xI x0 x1 · · · xI−1 ] would all be isomorphic to each other. Observe, however, that if a bit string exhibits certain symmetry in its patterns, then not all the “L” left-shifted bit strings are distinct. For example, in the case of the alternating pattern [0 1 0 1 · · · 0 1], there are clearly only two distinct patterns. Now, since the left-shift operation on a binary bit string with the decimal code
contrast, all Isles of Eden of rule 204 in Gallery 204-1 to Gallery 204-5 are dense.
is equivalent to multiplying Eq. (3) by 2, the decimal code of the left-shifted bit string is simply given by
2.3. Explicit formula for generating isomorphic basin trees A cursory inspection of the basin tree diagrams in Table 6 reveals that for each string length L, there are many basin trees that are topologically identical from a graph-theoretic perspective. We will henceforth refer to them as isomorphic basin trees and consider them as members of the same generic basin tree family. For example, let us examine the basin tree of 172 for L = 6 (recall Example 2.2.1). we find the three period-1 Isles Here, m, and 36 m to be isomorphic of Eden 9m, 18 and count them as only one distinct Isle of Eden. Similarly, we the find that the basin tree containing m in Gallery bit strings 4m , 5m , 6m , 7m , 37m , 38m , 39 172-3 has six isomorphic copies. Consequently, we would summarize that Gallery 172-3 has only five distinct isomorphic basin trees. The existence of isomorphic copies of basin trees comes from our arbitrary choice of a particular 5
n=
I
βi • 2(I−i) xi
(3)
i=0
n =
I
βi • 2(I+1−i) xi = 2n
mod 2L − 1
(4)
i=0
We will now summarize this general result as follows: Theorem 2.3.1. Explicit Basin Tree Generation Formula. For each bit string nk of length L in a basin tree, there exists an isomorphic basin tree obnk maps to bit string nm where bit string tained by multiplying the decimal number n by 2 mod 2L − 1; namely,
n = 2n
mod 2L − 1
(5)
Let us illustrate this remarkably simple formula Example 2.3.1. 172 , L = 6. Substituting L = 6 into Eq. (5), we obtain n = 2n
mod 63
(6)
Let us choose nk = 9mas our bit string “seed” for generating all other Isles of Eden isomorphic
To avoid introducing yet another name, we will sometimes abuse our terminology by including only the branches in the transient regime as the basin of attraction of an attractor. From the context, it will be clear which definition is applicable. 6 Unlike continuous systems, however, an Isle of Eden can either be isolated, or dense [Garay & Chua, 2008].
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
to 9m :
tor 1. 9 → 2 • 9 2. 18 → 2 • 18 3. 36 → 2 • 36
mod 63 = 18 mod 63 = 36 mod 63 = 9
(7a) (7b) (7c)
, 18m , and It follows that the three bit strings 9m m 36 in Gallery 172-3 are isomorphic period-1 Isles of Eden. , 5m , 6m , 7m , Consider next the basin tree 4m m in Gallery 172-3. Multiplying each of 37m , 38m , 39 these seven bit strings by 2 mod 63, we obtain the m m m m m m m 8 , 10 , 12 , 14 , 11 , 13 , 15 , isomorphic string which can be clearly identified in Gallery 172-3. Iterating this left-shifting operation, we easily obtain the remaining four isomorphic period-1 bit strings. Let us apply next our explicit formula (5) to the basin tree the basin of at formed by the union of m m m m m m traction 46 , 23 , 43 , 53 , 58 , 29 , and the attrac-
ρm
m m 61m , 62 , 31m , 47m , 55 , and 59m : m m 46m , 23m , 43 , 53m , 58m , 29 m m , 46 , 23m , 43m , 53 , 58m → 29m m m 61m , 62m , 31 , 47m , 55m , 59 m m → 59m , 61 , 62m , 31m , 47 , 55m
2.5. Genotype and phenotype Isomorphic basin trees share the same “seed”, and consequently they have the same digraph representation, except for the bit-string numbers. However, also non-isomorphic basin trees can have the same digraph representation, as it happens for all period1 Isles of Eden. This phenomenon can be effectively described by using the concepts of “genotype” and “phenotype”, usually employed in biology, to indicate respectively the intrinsic and the observable characteristics of a basin tree. Therefore, we can say that isomorphic basin trees have the same genotype, and hence the same phenotype, and nonisomorphic basin trees have different genotypes, but they can have the same phenotype.
(8)
(9)
Note that in this case, the bit string seed has generated itself: it follows that this basin tree is unique in the sense that it is not isomorphic to any other bit string. Moreover, Eq. (9) proves that this period-6 attractor executes a Bernoulli shift with σ = 1 and τ = 1.
2.4. Robustness coefficient ρ To estimate the robustness of each distinct attractor and each distinct Isle of Eden, we simply calculate the ratio of the total number of bit strings, for each bit length L, over the total number 2L of bit strings:
No. of bit strings in attractor “m” or Isle of Eden “m” 2L
We will henceforth call the number ρm the robustness coefficient of the attractor “m”, or the Isle of Eden “m” of the local rule N . The reader should verify that the robustness coefficients of the period-1 attractors, or period-1 Isles of Eden, of all 25 period-1 rules are significantly larger than the robustness coefficients of the coexisting period-T attractors and/or period-T Isles of Eden, where T > 1.
303
(10)
For instance, for rule 4 and L = 4 there are six different period-1 Isles of Eden, belonging to two different groups: the first one contains the bit string 1m , and its isomorphic bit strings 2m , 4mand 8m ; the second group contains the bit string 5m , and its iso. Therefore, these six bit strings morphic “twin” 10m present two different genotypes, but they have exactly the same phenotype. In Table 6, we display all basin tree rules grouped by genotype, and hence the robustness shown is a sort of genotypic robustness, which describes the robustness of each genotype. In Table 8, for the sake of brevity, we often grouped basin trees according to their phenotype, and hence we show the phenotypic robustness, which describes the robustness of each phenotype. For this reason, the values of seeds and robustness do not always correspond in these two tables. An emblematic example is given by rule 204 : in Table 6-23, we find that for any bit string length L there are several nonisomorphic basin trees, each with its own genotypic robustness; however, in Table 8-23 we preferred to show the phenotypic robustness, in order to emphasize that all orbits have exactly the same digraph representation, because they are all are period-1 Isles of Eden.
February 14, 2011
304
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
3. Omega-Limit Orbits Given any local rule N , and any initial bit string [x0
x1
x2
···
xL−1 ]0 → φ0 ∈ [0, 1)
(11)
a fundamental problem is determining the timeasymptotic behavior [x0
x1
x2
···
xL−1 ]n → φn ∈ [0, 1)
(12)
as n → ∞. For finite L, the evolution must converge to a period-T orbit, where T < 2L . As is now well known [Chua et al., 2007a], and illustrated extensively in the basin tree diagrams in Tables 6-1 to 6-24, the periodic orbit can either be an attractor or an Isle of Eden. Both correspond to the familiar steady state regimes in continuous systems. In this paper, we will often develop analytical methods that apply to both attractors and Isles of Eden of a rule N and we will henceforth refer to both types of asymptotic orbits as Omega-limit orbits, abbreviated ω-limit orbits.7 We have opted for this classical terminology in anticipation of our forthcoming papers involving bi-infinite bit strings L → ∞ where the time asymptotic steady state orbits (as n → ∞) may not be periodic. For example, the ω-limit orbit of the right-copycat rule 170 [Chua et al., 2005a] for the bi-infinite case is not periodic if we pick a bi-infinite bit string made of a concatenation of any pair of irrational numbers inside the unit interval as the initial bit string. In fact, since all orbits of 170 are Isles of Eden, there are no transient regimes and any initial bit string belongs to its ω-limit orbit.
3.1. General observations on ω -limit orbits from Table 6 The basin tree diagrams exhibited in the 24 Galleries in Tables 6-1 to 6-24 provide numerous concrete examples illustrating the following common observations which apply to all one-dimensional cellular automata with finite string length L: 1. The evolution from any one of the 2L possible initial bit strings must converge to either an 7
attractor, or an Isle of Eden of period8 T < 2L . Each basin tree diagram includes all initial bit strings that converge to an attractor or to an Isle of Eden. In the former case, the basin of attraction would include all bit strings belonging to the transient regime and the attractor. Since we are concerned mostly with time-asymptotic behaviors, the transient points have been deleted from the “time-1 return maps” displayed in the upper right-hand corner of the first page (Gallery N − 1) of each Gallery in Table 6. 2. In the case of an Isle of Eden, there is no transient regime and every initial bit string converges to an ω-limit orbit, which is in fact, an Isle of Eden. 3. Each basin tree, attractor, or Isle of Eden, has in general L isomorphic copies9 in the sense that except for the node labeling integers, they can all be mapped onto the same digraph, as demonstrated in Example 2.3.1, via the explicit formula (5). 4. The robustness of each attractor, or Isle of Eden, in the basin tree Galleries can be measured by the robustness coefficient ρ defined in Eq. (10). This number measures the “size” of the basin of attraction for each attractor, or Isle of Eden, listed in Table 6, regardless of whether it has other isomorphic copies, which we will henceforth identify as a single attractor, or a single Isle of Eden, respectively. Consequently, we will henceforth multiply the robustness coefficient ρ calculated from Eq. (10) by the number of isomorphic copies when referring to the robustness of an isomorphic attractor, or Isle of Eden.
3.2. Portraits of ω-limit orbits from the basin tree diagrams exhibited in Table 6 For ease of future reference, all relevant qualitative properties of the ω-limit orbits of each of the 24 rules (listed in Table 4) belonging to Group 1 (period-1 rules) have been extracted, organized and exhibited in 24 portraits in Tables 8.1, 8.2, . . . , 8.24.
Our terminology is inspired by the deep concepts of α-limited set and ω-limited set, from classical nonlinear dynamical systems [Birkhoff, 1927], where they denote the time asymptotic evolutions of symbolic maps as n → −∞, or n → ∞, respectively. Birkhoff had chosen the symbols “α” and “ω” because they represent the first and the last letters in the Greek alphabet, respectively. We will be concerned only with the latter (n → ∞) because cellular automata are generally time irreversible [Chua et al., 2006]. 8 When the ω-limit orbit is an Isle of Eden, the evolution converges in one iteration because it does not have a transient regime. In the bi-infinite case (n → ∞), an attractor, or an Isle of Eden, may be aperiodic, i.e. (T → ∞). 9 For those attractors and Isles of Eden which exhibit some forms of symmetry in their binary string patterns, some of the L isomorphic copies may coincide with each other.
Table 8-1.
Portraits of ω-Limit Orbits of Rule 4 .
February 14, 2011 14:49 ch02
305
14:49
ch02
Table 8-1.
(Continued )
February 14, 2011
306
14:49
ch02
Table 8-1.
(Continued )
February 14, 2011
307
Table 8-2.
Portraits of ω-Limit Orbits of Rule 8 .
February 14, 2011 14:49 ch02
308
Table 8-3.
Portraits of ω-Limit Orbits of Rule 12 .
February 14, 2011 14:49 ch02
309
14:49
ch02
Table 8-3.
(Continued )
February 14, 2011
310
14:49
ch02
Table 8-3.
(Continued )
February 14, 2011
311
Table 8-4.
Portraits of ω-Limit Orbits of Rule 13 .
February 14, 2011 14:49 ch02
312
ch02
(Continued )
14:49
Table 8-4.
February 14, 2011
313
Table 8-5.
Portraits of ω-Limit Orbits of Rule 32 .
February 14, 2011 14:49 ch02
314
Table 8-6.
Portraits of ω-Limit Orbits of Rule 36 .
February 14, 2011 14:49 ch02
315
ch02
(Continued )
14:49
Table 8-6.
February 14, 2011
316
Table 8-7.
Portraits of ω-Limit Orbits of Rule 40 .
February 14, 2011 14:49 ch02
317
ch02
(Continued )
14:49
Table 8-7.
February 14, 2011
318
Table 8-8.
Portraits of ω-Limit Orbits of Rule 44 .
February 14, 2011 14:49 ch02
319
14:49
ch02
Table 8-8.
(Continued )
February 14, 2011
320
Table 8-9.
Portraits of ω-Limit Orbits of Rule 72 .
February 14, 2011 14:49 ch02
321
ch02
(Continued )
14:49
Table 8-9.
February 14, 2011
322
Table 8-10.
Portraits of ω-Limit Orbits of Rule 76 .
February 14, 2011 14:49 ch02
323
14:49
ch02
Table 8-10.
(Continued )
February 14, 2011
324
14:49
ch02
Table 8-10.
(Continued )
February 14, 2011
325
14:49
ch02
Table 8-10.
(Continued )
February 14, 2011
326
ch02
(Continued )
14:49
Table 8-10.
February 14, 2011
327
Table 8-11.
Portraits of ω-Limit Orbits of Rule 77 .
February 14, 2011 14:49 ch02
328
14:49
ch02
Table 8-11.
(Continued )
February 14, 2011
329
14:49
ch02
Table 8-11.
(Continued )
February 14, 2011
330
ch02
(Continued )
14:49
Table 8-11.
February 14, 2011
331
Table 8-12.
Portraits of ω-Limit Orbits of Rule 78 .
February 14, 2011 14:49 ch02
332
ch02
(Continued )
14:49
Table 8-12.
February 14, 2011
333
Table 8-13.
Portraits of ω-Limit Orbits of Rule 104 .
February 14, 2011 14:49 ch02
334
14:49
ch02
Table 8-13.
(Continued )
February 14, 2011
335
Table 8-14.
Portraits of ω-Limit Orbits of Rule 128 .
February 14, 2011 14:49 ch02
336
Table 8-15.
Portraits of ω-Limit Orbits of Rule 132 .
February 14, 2011 14:49 ch02
337
14:49
ch02
Table 8-15.
(Continued )
February 14, 2011
338
14:49
ch02
Table 8-15.
(Continued )
February 14, 2011
339
ch02
(Continued )
14:49
Table 8-15.
February 14, 2011
340
Table 8-16.
Portraits of ω-Limit Orbits of Rule 136 .
February 14, 2011 14:49 ch02
341
Table 8-17.
Portraits of ω-Limit Orbits of Rule 140 .
February 14, 2011 14:49 ch02
342
14:49
ch02
Table 8-17.
(Continued )
February 14, 2011
343
14:49
ch02
Table 8-17.
(Continued )
February 14, 2011
344
ch02
(Continued )
14:49
Table 8-17.
February 14, 2011
345
Table 8-18.
Portraits of ω-Limit Orbits of Rule 160 .
February 14, 2011 14:49 ch02
346
Table 8-19.
Portraits of ω-Limit Orbits of Rule 164 .
February 14, 2011 14:49 ch02
347
14:49
ch02
Table 8-19.
(Continued )
February 14, 2011
348
ch02
(Continued )
14:49
Table 8-19.
February 14, 2011
349
Table 8-20.
Portraits of ω-Limit Orbits of Rule 168 .
February 14, 2011 14:49 ch02
350
14:49
ch02
Table 8-20.
(Continued )
February 14, 2011
351
ch02
(Continued )
14:49
Table 8-20.
February 14, 2011
352
Table 8-21.
Portraits of ω-Limit Orbits of Rule 172 .
February 14, 2011 14:49 ch02
353
14:49
ch02
Table 8-21.
(Continued )
February 14, 2011
354
14:49
ch02
Table 8-21.
(Continued )
February 14, 2011
355
ch02
(Continued )
14:49
Table 8-21.
February 14, 2011
356
Table 8-22.
Portraits of ω-Limit Orbits of Rule 200 .
February 14, 2011 14:49 ch02
357
14:49
ch02
Table 8-22.
(Continued )
February 14, 2011
358
ch02
(Continued )
14:49
Table 8-22.
February 14, 2011
359
14:49
ch02
Table 8-22.
(Continued )
February 14, 2011
360
ch02
(Continued )
14:49
Table 8-22.
February 14, 2011
361
Table 8-23.
Portraits of ω-Limit Orbits of Rule 204 .
February 14, 2011 14:49 ch02
362
Table 8-24.
Portraits of ω-Limit Orbits of Rule 232 .
February 14, 2011 14:49 ch02
363
14:49
ch02
Table 8-24.
(Continued )
February 14, 2011
364
14:49
ch02
Table 8-24.
(Continued )
February 14, 2011
365
ch02
(Continued )
14:49
Table 8-24.
February 14, 2011
366
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
For each bit string length L, identified in column 1, only distinct isomorphic attractors and Isles of Eden are displayed in Table 8: they are identified in column 2 by a red integer i. For example, for L = 5, rule 4 has three distinct ω-limit orbits, identified as i = 1, 2, 3, respectively, in column 2 (last three rows of the first page of Table 8.1). Among these three ωlimit orbits, there is only one isomorphic (topologically distinct) Isle of Eden, even though the basin tree diagram in Gallery 4-2 shows five period-1 Isles of Eden; namely, { 5 , 9 , 10 , 18 , 20 }. Observe that the four Isles of Eden 9 , 10 , 18 , and 20 can be generated from Isle of Eden 5 via formula (5). Consequently, only the bit string 5 is displayed in Table 8.1 and identified as x0 ( 5 ), where the subscript ‘0’ denotes the initial bit string to generate the Isle of Eden, which in this case corresponds also with the final bit string, because T = 1. Since Eq. (5) is equivalent to a left shift of 1 bit to the left, it follows that we can generate the binary strings for the Isles of Eden 10 , 20 , 9 and 18 by shifting the bit string 5 by one, two, three, and four bits, respectively. The four isomorphic Isles of Eden 9 , 10 , 18 , and 20 are displayed in column 6, connected by arrows generated from 5 . Following the same format, we found from Gallery 4-2 that for L = 5, there are two isomorphically distinct attractors, identified as i = 2, and i = 3 under L = 5 in column 2 of Table 8.1. For attractor i = 2, Gallery 4-2 shows that there are five isomorphic copies, namely, { 1 , 2 , 4 , 8 16 }. Observe that all of them can be generated from attractor 1 via formula (5). Consequently, only the binary bit string 1 is displayed in column 6 of Table 8.1 (identified by x0 ( 1 ). The isomorphic copies 2 , 4 , 8 and 16 are connected by arrows originating from 1 . The remaining attractor 0 , identified as i = 3 in column 2, is found to be a degenerate case possessing the maximum
10
367
symmetry so that all five isomorphic copies are identical to each other, namely, the bit string 0 . It is displayed (identified as x0 ( 0 )) in the last row of the first page of Table 8.1. The information extracted from Gallery 4-2 as described above is collected in columns 1 through 6 in Table 8.1. In addition, column 7 (Bernoulli Parameters) shows the three relevant Bernoulli parameters (β, σ, τ ) [Chua et al., 2005a] for each rule N . For period-1 rules,10 we have σ = 0, τ = 1, and β > 0 (indicated by a + sign). Column 8 of Table 8.1 specifies the integer δmax defined as the distance from the farthest Garden of Eden to the attractor of each basin tree diagram. Clearly, δmax = 0 for all Isles of Eden. For rule 4 , δmax = 1 for all L = 3, 4, . . . , 8 since every bit string in the transient regime of 4 is a Garden of Eden and hence it takes only one iteration to converge from any of these “transient-regime” initial states to an attractor. For many rules, however, δmax > 1. The last column 9 is devoted to the robustness coefficient for each isomorphic attractor, or Isle of Eden. The robustness coefficient ρi for each orbit is in the form ρi = calculated and displayed k × number of bit strings/2L so that the number k of isomorphic copies of attractors, or Isles of Eden, can be identified directly. Note that ρi is equal to the integer listed in the magenta column 3 if the ω-limit orbit is an attractor, or in the blue column 4 if the ω-limit orbit is an Isle of Eden. Following the same format delineated above, the portraits of the ω-limit orbits of all 24 nontrivial period-1 (Group 1) rules from Table 4 are exhibited.
3.3. Concatenated ω -limit orbit generation algorithm A careful analysis of the ω-limit orbits of rule 4 for L = 8 displayed in column 6 of the third page of Table 8.1 shows that each of them can be decomposed into two ω-limit orbits of shorter lengths L and L such that11 L = L + L .
A period-1 rule is a degenerate Bernoulli rule with σ = 0, indicating no shift at all. Alternately, we can also assign σ = L for each period-1 rule. These are trivial cases and are included for consistency. There are some rules in Table 8, however, with nontrivial (β, σ, τ ) parameters. 11 Recall our color code in Table 8: blue for Isles of Eden and magenta for attractors.
February 14, 2011
368
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Example 3.3.1. Isle of Eden 17 . This 8-bit string can be decomposed into a concatenation of two 4-bit strings as follows: 1
Γ′(4)
1
= 17
The symbol denotes concatenation, forming a chain of two shorter 4-bit strings. If we introduce , Γ (4) = 1m , and Γ(8) = 17m the symbols Γ (4) = 1m to mean a bit string with 4, 4, and 8 bits respectively, then we can code the above concatenation as follow:
≡
Γ′′(4) = Γ(8)
′
Γ (4) = (L=4)
′′
Γ(8) = 17 (L=8)
Γ (4) = (L=4)
Example 3.3.2. Isle of Eden 21 . Using the same notations as above, we have
Γ′(4)
Γ′′(4) = Γ(8)
≡
≡ ′
Γ (4) = (L=4)
′′
Γ(8) = 21 (L=8)
Γ (4) = (L=4)
m where Γ (4) = 1m , Γ (4) = 5m , and Γ(8) = 21 .
Example 3.3.3. Isle of Eden 37
Γ′(4)
Γ′′(4) = Γ(8)
≡
≡ Γ′(4) = (L=4)
Γ′′ (4) = (L=4)
Γ(8) = 37 (L=8)
where Γ (4) = 2m , Γ (4) = 5m , and Γ(8) = 37m . Example 3.3.4. Isle of Eden 85
Γ′(4)
≡
Γ′′(4) = Γ(8)
′
Γ (4) = (L=4)
′′
Γ(8) = 85 (L=8)
Γ (4) = (L=4)
where Γ (4) = 5m , Γ (4) = 5m , and Γ(8) = 85m . Example 3.3.5. Attractor 1
Γ′(4)
Γ′′(4) = Γ(8)
≡
≡ ′
Γ (4) = (L=4)
where Γ (4) = 0m , Γ (4) = 1m , and Γ(8) = 1m .
′′
Γ (4) = (L=4)
Γ(8) = 1 (L=8)
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
369
Note that this decomposition is not unique, since we can also concatenate L (5) and L (3)
′
Γ (5)
′′
Γ (3) = Γ(8)
≡
≡ Γ′(5) = (L=5)
Γ′′ (3) = (L=3)
Γ(8) = 1 (L=8)
where L (5) = 0m , L (3) = 1m , and L(8) = 1m . Example 3.3.6. Attractor 5
Γ′(4)
Γ′′(4) = Γ(8)
≡
≡ ′
Γ (4) = (L=4)
′′
Γ(8) = 5 (L=8)
Γ (4) = (L=4)
where Γ (4) = 0m , Γ (4) = 5m , and Γ(8) = 5m . Example 3.3.7. Attractor 9
Γ′(5)
Γ′′(3) = Γ(8)
≡
≡ ′
Γ (5) = (L=5)
′′
Γ(8) = 9 (L=8)
Γ (3) = (L=3)
where Γ (5) = 1m , Γ (3) = 1m , and Γ(8) = 9m . Example 3.3.8. Attractor 0
Γ′(4)
Γ′′(4) = Γ(8)
≡
≡ ′
Γ (4) = (L=4)
where Γ (4) = 0m , Γ (4) = 0m , and Γ(8) = 0m . The above examples illustrate that certain period-T ω-limit orbits of length L when concatenated with another period-T ω-limit orbit of length L result in a new period-T ω-limit orbit of length L = L + L . The following theorem is a rigorous formulation of this result. Theorem 3.3.1. ω-Limit Orbit Generation Algorithm. Given a period-T ω-limit orbit Γ (L ) of rule N with L bits, and a period-T ωlimit orbit Γ (L ) of rule N with L bits, where L and L need not be equal, we can construct another period-T ω-limit orbit Γ(L) of rule N with length L = L + L by the concatenation depicted in Fig. 4, subject to the three Seamless Concatenation Conditions specified in Fig. 4(d).
′′
Γ (4) = (L=4)
Γ(8) = 0 (L=8) 8
Corollary 3.3.1. Boundary Color Matching Condition. Any two period-T ω-limit orbits (of lengths L and L , respectively) with identical left boundary colors, and identical right boundary colors, can be concatenated to obtain a new periodT ω-limit orbit of length L = L + L . Since the colors of corresponding left (resp. right) bits are identical, all three conditions of Theorem 3.3.1 are automatically satisfied.
Proof.
For instance, note that Examples 3.3.1, 3.3.2, 3.3.4, 3.3.7 and 3.3.8 satisfy the hypotheses of Corollary 3.3.1 and can be concatenated without resorting to the more time-consuming verifications required by Theorem 3.3.1.
February 14, 2011
370
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Fig. 4. Illustration of Seamless Concatenation Conditions. (a) Period-T ω-limit orbit Γ (L ) of length = L bits. (b) Period-T ω-limit orbit Γ (L ) of length = L bits. (c) Concatenation between Γ (L ) (on the left) and Γ (L ) (on the right) gives a new ω-limit orbit Γ(L) of the same period T, with length equal to L = L + L bits. (d) Three seamless concatenation conditions: (1) Seamless Interface; (2) Seamless left-boundary; and (3) Seamless right-boundary.
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
For some local rules, Theorem 3.3.1 holds under less restrictive conditions, because the three seamless concatenation conditions specified in Fig. 4(d) are always satisfied. This result is formulated in the following corollary. Corollary 3.3.2. For rules 0 , 51 , 204 , and 255 , any two period-T ω-limit orbits of length L and L , respectively, where L and L need not be equal, can be concatenated to obtain a new period-T ω-limit orbit of length L = L + L . For N = {0, 51, 204, 255}, T N (000) = T N (001) = T N (100) = T N (101), and T N (010) = T N (011) = T N (110) = T N (111); hence, all three conditions of Theorem 3.3.1 are automatically satisfied.
Proof.
This result is not surprising, because rules 0 and 255 have a global attractor, whereas rule 51 and rule 204 have exclusively Isles of Eden. Moreover, there are local rules for which one of the three seamless concatenation conditions is always satisfied, as proven in the following “twin” corollaries. Corollary 3.3.3. For rules 0 , 17 , 34 , 51 , 68 , 85 , 102 , 119 , 136 , 153 , 170 , 187 , 204 , 221 , 238 , and 255 , any two period-T ω-limit orbits of length L and L , respectively, where L and L need not be equal, with identical left boundary colors can be concatenated to obtain a new period-T ω-limit orbit of length L = L + L . Proof. For N = {0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255}, the concatenation conditions 1(a) and 3 are always satisfied, because: T N (000) = T N (100), T N (001) = T N (101), T N (010) = T N (110), T N (011) = T N (111). The restriction on the left boundary of the ω-limit orbits guarantees that also the rest of conditions of Theorem 3.3.1 are satisfied.
Corollary 3.3.4. For rules 0 , 3 , 12 , 15 , 48 , 51 , 60 , 63 , 192 , 195 , 204 , 207 , 240 , 243 , 252 , 255 , any two period-T ω-limit orbits of lengths L and L , respectively, where L and L need not be equal, with identical right boundary colors can be concatenated to obtain a new period-T ω-limit orbit of length L = L + L . For N = {0, 3, 12, 15, 48, 51, 60, 63, 192, 195, 204, 207, 240, 243, 252, 255}, the concatenation Proof.
371
conditions 1(b) and 2 are always satisfied, because: T N (000) = T N (001), T N (010) = T N (011), T N (100) = T N (101), T N (110) = T N (111). The restriction on the right boundary of the ω-limit orbits guarantees that also the rest of conditions of Theorem 3.3.1 are satisfied. Only 10 of the 28 local rules listed in the last three corollaries are globally independent: 0 , 3 , 12 , 15 , 34 , 51 , 60 , 136 , 170 , and 204 . Four of them — 0 , 12 , 136 , and 204 — belong to Group 1 (period-1 rules); rule 51 is a period-2 rule; four rules — 3 , 15 , 34 , 170 — belong to Group 4 (Bernoulli rules); finally, rule 60 is a hyper Bernoulli-shift rule. We close this section by noting that by applying Theorem 3.3.1 and its Corollaries, we can generate an infinite variety of period-1 orbits for all 25 period-1 rules from Table 4, for both finite L and infinite L.
4. Rules of Group 1 have Robust Period-1 ω -Limit Orbits The classification of CA local rules into six groups proposed in [Chua et al., 2007b] was empirical: on the one hand, we analyzed the basin tree diagrams for finite bit strings with lengths up to 8, and on the other hand, we studied the behavior of random bit strings for large L (up to 400 bits) through extensive computer simulations. In this section, we give a formal definition of robust period-1 ω-limit orbits, and prove analytically that all rules belonging to group 1, which are the subject of this article, have robust period-1 ω-limit orbits. It is useful to recall that, in this context, the expression “basin of attraction of a period-1 ωlimit orbit” includes the periodic orbit itself and all bit strings not belonging to the periodic orbit, if any, that converge to the periodic orbit. Note that throughout the paper we sometimes abused our terminology by including only the branches in the transient regime as the basin of attraction of an attractor ; however, the precise definition has always been clear from the context. For finite L, local rules belonging to Group 1 harbor mainly, or exclusively, period-1 ω-limit orbits (attractors or Isles of Eden), as experimentally observed in [Chua et al., 2007b]. We found that these periodic orbits are robust, in the sense that they appear for any L and their basins of attraction include most of the 2L bit strings. Since, by
February 14, 2011
372
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
definition, the union of all basins of attraction coincides with the whole space of 2L orbits, all bit strings, except for a few, are in the basin of attraction of a period-1 ω-limit orbit. These concepts can be easily formalized for biinfinite bit strings as follows: Definition 4.1. Robust period-1 ω-limit orbits: A local rule has robust period-1 ω-limit orbits if all bit strings, except for a finite subset, belong to the basin of attraction of a period-1 ω-limit orbit when L → ∞.
The “finite subset” we mention in the definition includes all period-T ω-limit orbits (attractors or Isles of Eden) with T = 1, which are nonrobust for period-1 rules in the sense that they appear only for some values of L and their basin of attraction includes only bit strings containing prescribed patterns, as will be shown in the following. Restricting Definition 4.1 to finite L, we find that a local rule having robust period-1 ω-limit orbits is characterized by the fact that most of the 2L bit strings belong to the basins of attraction of period-1 ω-limit orbits, which is exactly the behavior described previously. The expression “most of”
Table 9.
Input
4
may seem vague, but in the following it will be evident that period-1 ω-limit orbits are dominant even for low values of L (e.g. L < 9). Moreover, for a period-1 rule, the probability that a random bit string is in the basin of attraction of a period-1 ω-limit orbit tends to 1, when L → ∞. These two elements confirm that the empirical approach we took in [Chua et al., 2007b] was effective in uncovering the intrinsic nature of local rules belonging to Group 1. So far our classification has been based on exhaustive computer simulations; here, we prove rigorously the following theorem: Theorem 4.1. All and only local rules belonging to
Group 1 have robust period-1 ω-limit orbits.
For the reader’s convenience, we divided this theorem into 24 lemmas, one for each rule of Group 1 (except for 0 , which is trivial) providing a detailed and rigorous proof for each of them. Such proofs are based exclusively on the properties of the truth tables, summarized in Tables 9 and 10, and they also include the definition of the maximum transient length δmax . There are two ways to demonstrate that a local rule has robust period-1 ω-limit orbits: either
Period-1 rules harboring exclusively period-1 ω-limit orbits (attractors and Isles of Eden).
8
12
36
72
76
78
128 132 136 140 200 204
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules Table 10.
Period-1 rules harboring non-robust period-T ω-limit orbits, T = 1 (attractors and Isles of Eden).
Input 13
32
40
44
77
we prove that period-T ω-limit orbits, T = 1, can arise only for subsets of bit strings (for example, bit strings containing exclusively particular patterns), or we prove that all bit strings containing a prescribed pattern are in the basin of attraction of a period-1 ω-limit orbit (when L → ∞, all bit strings contain all patterns). The structure of the proof is the same for all 24 lemmas: first, we identify the firing patterns of the rule; second, we find the general form for all period-T ω-limit orbits, which can be directly deduced from the firing pattern; third, we prove that only period-1 ω-limit orbits are robust by showing that only small subsets of bit strings belong to the basin of attraction of period-T attractors with T > 1; and last, we summarize the results. After each lemma, there is an example focusing on the particular properties of the rule just analyzed. Note that the inverse implication of Theorem 4.1 — only Group 1 rules have robust period-1 12
373
104 160 164 168 172 232
ω-limit orbits — will be proved in our forthcoming papers, which will be devoted to rules of Groups12 2–4. Rules belonging to Group 1 can be divided into two classes: those having exclusively period-1 ωlimit orbits, and those harboring also non-robust ω-limit orbits with T > 1. The first class is composed of 13 rules — namely 4 , 8 , 12 , 36 , 72 , 76 , 78 , 128 , 132 , 136 , 140 , 200 , and 204 — and their behavior is analyzed in Lemmas 4.1–4.13; the second class is composed of 11 rules — namely, 13 , 32 , 40 , 44 , 77 , 104 , 160 , 164 , 168 , 172 , and 232 — and their behavior is analyzed in Lemmas 4.14–4.24. In the following, we use the expression “isolated ” (respectively, “isolated ”) to indicate a (resp., ) bit whose both neighbors are (resp., ), and the expression “runs of k ” (respectively, “runs of k ”) to indicate k consecutive (resp., ) bits, which can be also denoted by · · · (resp.,
Rules of Groups 5 and 6 do not have robust period-1 ω-limit orbits even for low values of L, as proved in [Chua et al., 2007a] and [Chua et al., 2007b].
February 14, 2011
374
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
· · · ). The symbol “” means that the value of the bit cannot be determinate a priori, but we need the whole information about its neighbors. Lemma 4.1.
Rule 4 . Rule 4 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 1. The only firing pattern of rule 4 is (see Table 9): consequently, never changes, and remains unchanged if, and only if, it is isolated. Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings not containing runs of k , k > 1, are period1 ω-limit orbits (attractors or Isles of Eden). Runs of k , k > 1, are transformed into runs of k in one iteration; hence, all bit strings containing a run of k , k > 1, are in the basin of attraction of a period-1 attractor, and the maximum transient length is δmax = 1. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors. Proof.
Example 4.2. Rule 8 . For rule 8 and L = 6,
bit strings containing at most runs of k , k = 1, converge to · · · in one iteration — e.g. → → — whereas bit strings containing runs of k , k > 1, converge to the period-1 attractor · · · in two iterations — e.g. → → → . Compare this result with Example 4.1. Lemma 4.3. Rule 12 . Rule 12 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 1.
the bit string is a period-1 ω-limit orbit (attractor), → , because it does not contain runs of k , k > 1. The bit string is not a period-1 ω-limit orbit because it has a run of three , and it belongs to the basin of attraction of : → → .
Proof. The firing patterns of rule 12 are and (see Table 9): consequently, never changes, and remains unchanged if, and only if, its left neighbor is . Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings not containing runs of k , k > 1, are period1 ω-limit orbits. Runs of k , k > 1, are transformed into a followed by a run of k−1 in one iteration, because → ; hence, all bit strings containing a run of k , k > 1, are in the basin of attraction of a period-1 attractor, and the maximum transient length is δmax = 1. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors.
Lemma 4.2. Rule 8 . The bit string · · · is a global attractor for rule 8 ; the maximum transient length for this rule is δmax = 2.
Example 4.3. Rule 12 . For rule 12 and L =
Example 4.1. Rule 4 . For rule 4 and L = 6,
The only firing pattern of rule 8 is (see Table 9): consequently, never changes, and remains unchanged if, and only if, its left and right neighbors are and , respectively. Since → and → , the bit string · · · is a period-1 attractor. All bit strings not containing runs of k , k > 1, converge to the period-1 attractor · · · in one iteration, because → ; all bit strings containing runs of k , k > 1, converge to the period-1 attractor · · · in two iterations, because → → , → , and → . In conclusion, all bit strings converge to the global attractor · · · in at most two iterations.
Proof.
6, the bit string is a period-1 ω-limit orbit (attractor), → → , because it does not contain runs of k , k > 1. The bit string is not a period-1 ω-limit orbit because it has runs of k , k > 1, and it belongs to the basin of attraction of : → → . Compare this result with Example 4.1.
Lemma 4.4. Rule 36 . Rule 36 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 2.
The firing patterns of rule 36 are and (see Table 9): consequently, changes if, and Proof.
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
only if, it is isolated, and remains unchanged if, and only if, it is isolated. Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings containing exclusively runs of k , k > 1, and isolated are period-1 ω-limit orbits. Runs of k , k > 2, are transformed into runs of k in one iteration, because → , → , and → . Runs of k , k arbitrary, are transformed into runs of 2k in two iterations (the left boundary can be either or , the right boundary can be either or ); here, the four possible cases are listed: · · · → · · · → · · · ; · · · → · · · → · · · ; · · · → · · · → · · · ; · · · → · · · → · · · . Hence, all bit strings containing runs of k , k > 1, and/or isolated are in the basin of attraction of a period-1 attractor, and the maximum transient length is δmax = 2. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors. Example 4.4. Rule 36 . For rule 36 and L = 6,
the bit string is a period-1 ω-limit orbit (attractor), → , because it contains exclusively runs of at least k , k > 1, and isolated . The bit string is not a period1 ω-limit orbit because it contains isolated , k > 1, and runs of , k > 1, but it is in the basin of attraction of : → → . Bit strings containing the pattern and/or have δmax = 2, like → → → . Lemma 4.5. Rule 72 . Rule 72 has exclusively
period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 2.
Proof. The firing patterns of rule 72 are and (see Table 9): consequently, never changes, and remains unchanged if, and only if, only one of its neighbors is . Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings containing exclusively runs of k , k arbitrary, and runs of k , k = 2, are period-1 ω-limit orbits.
375
Isolated are transformed into in one iteration, because → ; runs of k , k > 2, are transformed into runs of k in two iterations, because · · · → · · · → · · · . Hence, all bit strings containing runs of k , k = 2, are in the basin of attraction of a period-1 attractor, and the maximum transient length is δmax = 2. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors. Example 4.5. Rule 72 . For rule 72 and L = 6, the bit string is a period-1 ω-limit orbit (attractor), → → , because it contains exclusively runs of k , k arbitrary, and runs of k , k = 2. The bit string is not a period-1 ωlimit orbit and it belongs to the basin of attraction of , → → , because it contains runs of k , k = 2. Lemma 4.6. Rule 76 . Rule 76 has exclusively
period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 1.
The firing patterns of rule 76 are , , and (see Table 9): consequently, never changes, and changes if, and only if, both its neighbors are . Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings containing exclusively runs of k , k arbitrary, and runs of k , k < 3, are period-1 ω-limit orbits. Runs of k , k ≥ 3, are transformed — in one iteration — into a sequence beginning and ending with , and containing a run of k − 2 , because · · · → · · · . Hence, all bit strings containing runs of k , k ≥ 3, are in the basin of attraction of a period-1 attractor, and the maximum transient length is δmax = 1. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors. Proof.
Example 4.6. Rule 76 . For rule 76 and L =
6, the bit string is a period-1 ω-limit orbit (attractor), → , because it contains exclusively runs of k , k arbitrary, and runs of k , k < 3. The bit string
February 14, 2011
376
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
belongs to the basin of attraction of the period-1 ω-limit orbit , → → , because it contains a run of three . Compare this result with Example 4.5.
Lemma 4.8.
Rule 128 . Rule 128 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L/2. The only firing pattern of rule 128 is (see Table 9): consequently, never changes, and remains unchanged if, and only if, both its neighbors are . Since → and → , the bit strings · · · and · · · are period-1 ω-limit orbits: the former is an Isle of Eden, the latter is an attractor. Runs of k , k arbitrary, converge to runs of k in (k + 1)/2 iterations, because · · · → · · · . Hence, all bit strings containing runs of k , except for · · · , converge to · · · ; since kmax = L − 1, where kmax is the longest run of , the maximum transient length is δmax = L/2. In conclusion, all bit strings, except for · · · , are in the basin of attraction · · · . Proof.
Lemma 4.7. Rule 78 . Rule 78 has exclusively
period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 2 • L/2 − 1.
The firing patterns of rule 78 are , , , and (see Table 9): consequently, changes if, and only if, its left and right neighbors are and , respectively, whereas changes if, and only if, both its neighbors are . Since → and → , the bit string · · · is a period-1 attractor; moreover, all bit strings containing exclusively isolated and runs of k , k < 3, are period-1 ω-limit orbits. Runs of k , k ≥ 3, are transformed — in one iteration — into a sequence starting and ending with , and containing a run of k − 2 , because · · · → · · · . Runs of k bits, k > 1, are transformed into a run of k/2 , when k is even, and into a sequence beginning with and followed by a run of (k − 1)/2 , when k is odd. Hence, all bit strings nonisolated and runs of k , k ≥ 3, are in the basin of attraction of a period-1 attractor, and they converge in 2 • (k + 1)/2 − 1 iterations; since kmax = L − 1, where kmax is the longest run of , the maximum transient length is δmax = 2 • L/2 − 1. In conclusion, all bit strings not being period-1 ω-limit orbits are in the basin of attraction of period-1 attractors. Proof.
Example 4.8. Rule 128 . For rule 128 and L = 6, the maximum transient length is δmax = 3, and it occurs for any bit string containing five consecutive , like : → → → → . For L = 5, the maximum transient length is δmax = 2, and it occurs for any bit string containing four consecutive , like : → → → . Lemma 4.9.
Rule 132 . Rule 132 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = (L − 1)/2. The firing patterns of rule 132 are and (see Table 9): consequently, never changes, and remains unchanged if, and only if, both its neighbors are either or . Since → and → , the bit strings · · · and · · · are period-1 ω-limit orbits: the former is an Isle of Eden, the latter is an attractor. Moreover, all bit strings containing exclusively runs of k , k arbitrary, and isolated are period-1 ω-limit orbits. Runs of k , k even, are transformed into runs of k in k/2 iterations, whereas runs of k , k odd and k > 1, are transformed into a sequence Proof.
Example 4.7. Rule 78 . For rule 78 and L = 6, the maximum transient length is δmax = 5, and it is obtained for any bit string containing a run of five , like : → → → → → → . For L = 7, the maximum transient length is also δmax = 5, and it is obtained for any bit string containing a run of six , like : → → → → → → .
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
beginning and ending with (k − 1)/2 , and containing an isolated , in (k −1)/2 iterations. Hence, all bit strings containing nonisolated are in the basin of attraction of a period-1 attractor, and they converge in k/2 iterations; since kmax = L − 1, where kmax is the longest run of , the maximum transient length is δmax = (L − 1)/2. In conclusion, all bit strings not being period1 ω-limit orbits are in the basin of attraction of period-1 attractors. Example 4.9. Rule 132 . For rule 132 and L =
6, the maximum transient length is δmax = 2, and it occurs for any bit string containing runs of five , like : → → → . For L = 5, the maximum transient length is δmax = 2, and it occurs for any bit string containing runs of four , like : → → → . Compare this result with Example 4.8.
Lemma 4.10.
Rule 136 . Rule 136 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 1. The firing patterns of rule 136 are and (see Table 9): consequently, never changes, and remains unchanged if, and only if, its right neighbor is . Since → and → , the bit strings · · · and · · · are period-1 ω-limit orbits: the former is an Isle of Eden, the latter is an attractor. Runs of k , k arbitrary, converge to runs of k in k iterations, because · · · → · · · . Hence, all bit strings containing runs of k , except for · · · , converge to · · · ; since kmax = L − 1, where kmax is the longest run of , the maximum transient length is δmax = L − 1. In conclusion, all bit strings not being period1 ω-limit orbits are in the basin of attraction of period-1 attractors.
Proof.
Example 4.10. Rule 136 . For rule 136 and L = 6, the maximum transient length is δmax = 5, and it occurs for any bit string containing a run of five , like : → → → → → → . For L = 5, the maximum transient length is δmax = 4, and it occurs
377
for any bit string containing a run of four , like : → → → → → . Compare this result with Example 4.8. Lemma 4.11.
Rule 140 . Rule 140 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2. The firing patterns of rule 140 are , , and (see Table 9): consequently, never changes, and changes if, and only if, its left and right neighbors are and , respectively. Since → and → , the bit strings · · · and · · · are period-1 ω-limit orbits (Isles of Eden). Moreover, all bit strings containing exclusively runs of k , k arbitrary, and isolated are period-1 ω-limit orbits. Runs of k , k > 1, are transformed into a sequence beginning with followed by a run of k − 1 in k − 1 iterations, because · · · → · · · . Hence, all bit strings containing runs of k , k > 1, are in the basin of attraction of a period-1 attractor; since kmax = L−1, where kmax is the longest run of , the maximum transient length is δmax = L − 2. In conclusion, all bit strings not being period1 ω-limit orbits are in the basin of attraction of period-1 attractors. Proof.
Example 4.11. Rule 140 . For rule 140 and L = 6, the maximum transient length is δmax = 4, and it occurs for any bit string containing runs of five , like : → → → → → . For L = 5, the maximum transient length is δmax = 3, and it occurs for any bit string containing runs of four , like : → → → → . Compare this result with Examples 4.9 and 4.10. Lemma 4.12.
Rule 200 . Rule 200 has exclusively period-1 ω-limit orbits; the maximum transient length for this rule is δmax = 1. The firing patterns of rule 200 are , , and (see Table 9): consequently, never changes, and changes if, and only if, it is isolated. Proof.
February 14, 2011
378
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Since → and → , the bit strings · · · and · · · are period-1 ω-limit orbits: the former is an Isle of Eden, the latter is an attractor. Moreover, all bit strings containing exclusively runs of k , k arbitrary, and runs of k , k > 1, are period-1 ω-limit orbits. Isolated are transformed into in one iteration, because → ; hence, bit strings containing isolated are in the basin of attraction of a period-1 attractor. In conclusion, all bit strings not being period1 ω-limit orbits are in the basin of attraction of period-1 attractors. Example 4.12. Rule 200 . For rule 200 and L = 6, the maximum transient length is δmax = 1, and it occurs for any bit string containing the pattern , like → → . Lemma 4.13. Rule 204 . Rule 204 has exclusively
period-1 Isles of Eden; hence, the maximum transient length for this rule is δmax = 0. The firing patterns of rule 204 are all, and only, those containing a in the central position (see Table 9): consequently, both and never change, and no evolution is possible for any string. Proof.
Example 4.13.
Rule 204 . The bit string contains all eight 3-bit patterns13 ; since → , we can state that all bit strings of arbitrary length L are period-1 ω-limit orbits (Isles of Eden) and δmax = 0 (see also [Chua et al., 2005]). Lemma 4.14. Rule 13 . Rule 13 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2.
The firing patterns of rule 13 are , , and (see Table 10): consequently, changes if, and only if, both its neighbors are , and remains unchanged if, and only if, its left neighbor is . Since → and → , the bit strings · · · and · · · constitute a period-2 ωlimit orbit (Isle of Eden), · · · → · · · →
Proof.
13
· · · . Moreover, all bit strings containing exclusively runs of k , k < 3, and isolated are period-1 ω-limit orbits. Runs of k , k ≥ 2, are transformed into a sequence beginning and ending with , and containing a run of k − 2 , because · · · → · · · ; runs of k , k > 1, are transformed into a sequence beginning with and followed by k − 1 in one iteration, because · · · → · · · ; eventually, after at most kmax iterations, where kmax is the longest run of followed by one or two , all bit strings not containing exclusive runs of k , k < 3, and isolated converge to a period-1 attractor containing exclusively runs of k , k < 3, and isolated ; since kmax = L − 2, the maximum transient length is δmax = L − 2. In conclusion, all bit strings, except for · · · and · · · , either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.14. Rule 13 . For rule 13 and L = 6, the maximum transient length is δmax = 4, and it occurs for any bit string containing a run of four or five , like — → → → → → — and — → → → → → . For L = 5, the maximum transient length is δmax = 3, and it occurs for any bit string containing a run of three or four consecutive , like — → → → → — and — → → → → . Lemma 4.15.
Rule 32 . Rule 32 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L2 . The only firing pattern of rule 32 is (see Table 10): consequently, changes if, and only if, it is isolated, and always changes. Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period2 ω-limit orbit (Isle of Eden), · · · → · · · → · · · . Moreover, the bit string · · · is a period-1 ω-limit orbit (attractor) because → and → ; there are
Proof.
This is the only bit string with L = 8 having such a property, along with its “twin” .
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
no other period-1 ω-limit orbits besides it. Runs of k , k arbitrary, are transformed into runs of k in one iteration. Runs of k , k arbitrary, are transformed into runs of k − 1 in one or two iterations, depending on the boundaries (the left boundary can be either or , the right boundary can be either or ); here, the four possible cases are listed: · · · → · · · ; · · · → · · · ; · · · → · · · ; · · · → · · · . Eventually, after at most kmax + 1 iterations, where kmax is the largest run of k , all bit strings containing runs of k , k arbitrary, and/or runs of k , converge to · · · ; since kmax = (L − 1)/2, when L is odd, and kmax = (L−2)/2, when L is even, the maximum transient length is δmax = kmax + 1 = L2 . In conclusion, all bit strings, except for · · · and · · · when L is even, are in the basin of attraction of · · · . Example 4.15. Rule 32 . For rule 32 and L = 6,
the maximum transient length is δmax = 3, and it occurs for the bit string (and those obtained by rotating it): → → → → . For L = 7, the maximum transient length is δmax = 4, and it occurs for the bit string (and those obtained by rotating it): → → → → → . Lemma 4.16.
Rule 40 . Rule 40 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 1. Proof. The firing patterns of rule 40 are and (see Table 10): consequently, changes if, and only if, it is isolated, and remains unchanged if, and only if, its left and right neighbors are and , respectively. Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period2 ω-limit orbit (Isle of Eden), · · · → · · · → · · · . All bit strings containing exclusively isolated and runs of k , k < 3, constitute a Bernoulli period-T ωlimit orbit (Isle of Eden) with σ = 1 and τ = 1
379
(left shift), where T = L/n, n ∈ N, because → , → , → , and → . Finally, the bit string · · · is a period-1 attractor, because → and → ; there are no other period-1 ω-limit orbits besides it. Runs of k , k ≥ 3, are transformed into a run of at least k−1 in one iteration; runs of k , k > 1, are transformed into runs of at least k +1 . Hence, all bit strings containing runs of , k > 1, and/or runs of k , k ≥ 3, converge to the period-1 attractor · · · ; the maximum transient length is δmax = L − 1. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, belong to the basin of attraction of the period-1 attractor · · · . Example 4.16. Rule 40 . For rule 40 and L = 4,
the maximum transient length is δmax = 3, and it occurs for the bit string (and those obtained by shifting it): → → → → . For L = 5, we find the following Bernoulli period-5 Isle of Eden: → → → → → , which, as proved previously, contains exclusively isolated and runs of k , k < 3. In contrast, the bit string does not satisfy this condition, and hence it converges to · · · : → → → → . Lemma 4.17.
Rule 44 . Rule 44 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2. The firing patterns of rule 44 are , , and (see Table 10): consequently, changes if, and only if, it is isolated and remains unchanged if, and only if, its left neighbor is . The bit string · · · is a period-1 attractor, because → and → ; moreover, all bit strings containing exclusively runs of k , k > 1, and isolated are period-1 ω-limit orbits. All bit strings containing exclusively isolated and runs of k , k = 2, are Bernoulli period-3 ω-limit orbits (Isles of Eden) with σ = 1 and τ = 1 (left shift), because → , → , and → . Runs of k , k > 2, are transformed into a sequence composed of a followed by a run of k − 1 in one iteration, because · · · → · · · ; all bit strings containing runs of k , k > 1, converge to a period-1 attractor in Proof.
February 14, 2011
380
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
at most L − 1 iterations, because · · · → · · · . Finally, bit strings containing exclusively isolated and converge to · · · in one iteration, because → and → . Hence, all bit strings containing isolated and runs of k , k = 2, or runs of k , k > 1, and nonisolated belong to the basin of attraction of a period-1 attractor. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.17. Rule 44 . For rule 44 and L =
5, the bit string has maximum transient length, δmax = 3: → → → → . For L = 6, the bit string is a Bernoulli period-3 Isle of Eden, → → → .
Lemma 4.18.
Rule 77 . Rule 77 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L/2 − 1. The firing patterns of rule 77 are , , and (see Table 10): consequently, changes if, and only if, both its neighbors are , and changes if, and only if, both its neighbors are . Since → and → , the bit strings · · · and · · · constitute a period-2 ωlimit orbit (Isle of Eden), · · · → · · · → · · · . Moreover, all bit strings containing exclusively runs of k , k < 3, and k , k < 3, are period-1 ω-limit orbits. Runs of k , k > 2, are transformed — in one iteration — into a sequence beginning and ending with and containing a run of k − 2 ; runs of k , k > 2, are transformed — in one iteration — into a sequence beginning and ending with and containing a run of k − 2 . Hence, runs of k identical bits, k ≥ 3, are disrupted in (K + 1)/2 − 1 iterations, and bit strings containing them converge to a period-1 attractor containing exclusively runs of k , k < 3, and k , k < 3; since kmax = L−1, where kmax is the longest run of identical bits, the maximum transient length is δmax = L/2 − 1. In conclusion, all bit strings, except for · · · and · · · , either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Proof.
Example 4.18. Rule 77 . For rule 77 and L = 6,
the maximum transient length is δmax = 2 and it occurs for any bit string containing a run of five or , like → → → and → → → . For L = 5, the maximum transient length is δmax = 1 and it occurs for any bit string containing a run of four or , like → → and → → . Lemma 4.19. Rule 104 . Rule 104 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2.
The firing patterns of rule 104 are , and (see Table 10): consequently, changes if, and only if, it is isolated, and remains unchanged if, and only if, only one of its neighbors is . Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period2 ω-limit orbit (Isle of Eden), · · · → · · · → · · · . Bit strings containing exclusively isolated and runs of k , k = 3, are Bernoulli period-2 ω-limit orbits (Isles of Eden) with σ = 2 and τ = 1, as it can be easily verified. Moreover, the bit string · · · is a period-1 ω-limit orbit (attractor) because → and → . Finally, all bit strings containing exclusively runs of k , k > 1, and runs of k , k = 2, are period-1 ω-limit orbits. Runs of k , k > 1, are stable because → and they tend to expand until they do not find a run of k , k > 1 (list of the possible cases for the right boundary, the cases for the left boundary are symmetrical): · · · → · · · , and · · · → · · · . Runs of k , k = 2, never change when their boundaries are runs of k , k > 1, i.e. → . Runs of k , k > 2, tend to disappear when their boundaries are runs of k , k > 1, because → → , and · · · → · · · → · · · . Hence, all bit strings containing runs of k , k > 1, are in the basin of attraction of a period-1 attractor. Therefore, there remains to analyze only bit strings containing isolated . All bit strings containing runs of k , k > 3, and isolated are in Proof.
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
the basin of attraction of a period-1 attractor, because · · · → · · · , and hence, in one iteration they exist for runs of k , k > 1. Finally, all bit strings containing at least a run of k , k < 3, and isolated , except for · · · and · · · , converge to the attractor · · · , because → → ; the maximum transient length is δmax = L − 2. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.19. Rule 104 . For rule 104 and L = 6, is a period-1 ω-limit orbit (Isle of Eden) because it contains exclusively runs of k , k > 1, and runs of k , k = 2. For L = 8, the bit string and (and the “twin” pair obtained by shifting them) form Bernoulli period-2 ω-limit orbits (Isles of Eden) with σ = 2 and τ = 1, → . Lemma 4.20.
Rule 160 . Rule 160 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 1.
The firing patterns of rule 160 are and (see Table 10): consequently, changes if, and only if, both its neighbors are , and remains unchanged if, and only if, both its neighbors are . Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period-2 ωlimit orbit (attractor). The bit string · · · is a period-1 ω-limit orbit (attractor) because → , and the bit string · · · is a period-1 ω-limit orbit (Isle of Eden) because → ; there are no other period-1 ω-limit orbits besides these two. All bit strings containing exclusively isolated and runs of k , k odd, are in the basin of attraction of the period-2 attractor · · · → · · · → · · · ; note that this behavior is clearly nonrobust, due to the very particular conditions for which it happens, and it can occur only for L even. Runs of k , k even, are transformed into a sequence starting and ending with and containing a run of k − 2 ; hence, after k/2 iterations they form runs of at least two . But runs of k , k > 1, tend to form runs of k + 2 , because · · · → · · · ; therefore, all bit strings containing a run of k , k > 1, converge to
Proof.
381
the attractor · · · at most in L − k iterations. Hence, all bit strings not having exclusively runs of k , k odd, and isolated , except for · · · , belong to the basin of attraction of the period-1 attractor · · · ; the maximum transient length is δmax = L − 1. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, belong to the basin of attraction of the period-1 attractor · · · . Example 4.20. Rule 160 . For rule 160 and L = 5, the maximum transient length δmax = 4 occurs for the string (and those obtained by shifting it): → → → → → . For L = 6, the bit string belongs to the basin of attraction of the period-2 attractor, because it contains exclusively isolated and runs of k , k odd: → → → → . Lemma 4.21.
Rule 164 . Rule 164 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 1.
The firing patterns of rule 164 are , , and (see Table 10): consequently, changes if, and only if, it is isolated, and changes if, and only if, only one of its neighbors is . The bit strings and form a Bernoulli period-2 ω-limit orbit with σ = 3 and τ = 1, → → ; in general, all L multiples of 6 have such orbit. The bit strings · · · and · · · are period-1 ωlimit orbits (attractors) because → and → . Moreover, all bit strings containing exclusively runs of k , k > 1, and isolated are period-1 ω-limit orbits. Runs of k , k > 1, are stable because → and they tend to expand until they do not find an isolated (list of the possible cases for the right boundary and the cases for the left boundary are symmetrical): · · · · · · → · · · · · · and · · · → · · · → · · · , and · · · → · · · . Hence, all bit strings containing runs of k , k > 1, are in the basin of attraction of a period-1 ω-limit orbit. Runs of k , k even, tend to converge to a run of at least two after k/2 steps, because · · · → · · · ; therefore, also bit strings containing runs of k , k even, are in the Proof.
February 14, 2011
382
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
basin of attraction of a period-1 ω-limit orbit. Finally, bit strings containing exclusively isolated and runs of k , k odd, are in the basin of attraction of period-T attractors, T > 1; note that this behavior is clearly nonrobust, due to the very particular conditions for which it happens; the maximum transient length is δmax = L − 1. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.21. Rule 164 . For rule 164 and L = 6,
the bit string is a period-1 ω-limit orbit (attractor) because it contains exclusively runs of k , k > 1, and isolated , → ; the bit string does not satisfy this condition because it also contains isolated , and it belongs to the basin of attraction of : → → → . The bit strings and form a Bernoulli period-2 ω-limit orbit (attractor), → → . One of the bit strings belonging to its basin of attraction is , → , because it contains exclusively isolated and runs of k , k odd. Lemma 4.22. Rule 168 . Rule 168 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2.
The firing patterns of rule 168 are , , and (see Table 10): consequently, changes if, and only if, it is isolated, and remains unchanged if, and only if, its right neighbor is . Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period-2 ω-limit orbit (Isle of Eden). All bit strings containing exclusively isolated and runs of k , k arbitrary, form a Bernoulli period-T ω-limit orbit (Isle of Eden) with σ = 1 and τ = 1 (left shift), where T = L/n, n ∈ N, because → , → , → , → , and → . Moreover, the bit strings · · · and · · · are period-1 ω-limit orbits: the former is an attractor, the latter an Isle of Eden. Besides these two, there are no other period-1 ω-limit orbits. Runs of k , k > 1, tend to form runs of at least k + 1 , because · · · → · · · . Hence, Proof.
all bit strings containing a run of k , k > 1, converge to the period-1 attractor · · · in at most L − k iterations; the maximum transient length is δmax = (L − kmin ) = L − 2, where kmin is the length of the shortest run of . In conclusion, all bit strings — except for · · · and · · · when L is even, and · · · — are in the basin of attraction of · · · . Example 4.22. Rule 168 . For rule 168 and L = 5, the bit string belongs to a Bernoulli period-5 Isle of Eden, because it does not contain runs of k , k > 1: → → → → → . Also the bit string satisfies this condition, and hence it is part of a Bernoulli period-5 Isle of Eden too: → → → → → . The maximum transient length δmax = L − 2 = 3 occurs for bit strings containing runs of two , like : → → → → . Compare this result with Example 4.16. Lemma 4.23. Rule 172 . Rule 172 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L − 2.
The firing patterns of rule 172 are , , , and (see Table 10): changes if, and only if, it is isolated, and changes if, and only if, its left and right neighbors are and , respectively. All bit strings containing exclusively isolated and runs of k , k > 2, form Bernoulli periodT ω-limit orbits with σ = 1 and τ = 1 (left shift), where T = L/n, n ∈ N, because → , → , → , and → . The bit strings · · · and · · · are period-1 ω-limit orbits, because → and → : the former is an Isle of Eden, the latter is an attractor for L even and an Isle of Eden for L odd. All bit strings containing exclusively runs of k , k > 1, and isolated are period-1 ω-limit orbits. All bit strings containing exclusively isolated and , which can occur only for L even, converge to the period-1 attractor · · · in one iteration, because → and → . Proof.
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
Bit strings containing exclusively isolated and runs of k , k arbitrary, belong to the basin of attraction of the Bernoulli period-T attractor; note that this behavior is clearly nonrobust, due to the very particular conditions for which it happens. All bit strings containing at least a run of k , k > 1, are in the basin of attraction of a period-1 attractor having exclusively runs of k , k > 1, and isolated : this is because runs of k , k > 1, are preserved ( · · · → · · · ) and runs of k , k > 1, tend to be disrupted at most in two iterations, because · · · → · · · ; the maximum transient length is δmax = L − 2. In conclusion, all bit strings not belonging to a nonrobust period-T ω-limit orbit, T > 1, either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.23. Rule 172 . For rule 172 and L =
5, we find the following Bernoulli period-5 ωlimit orbit (attractor): → → → → → . The bit string is not part of an ω-limit orbit, because it does not contain exclusively runs of k , k > 2, and isolated , but it is in the basin of attraction of the previous Bernoulli period5 attractor: → → → → → → . The maximum transient length δmax = L − 2 = 5 occurs for the bit string (and those obtained by shifting it): → → → → → . Compare this result with Example 4.24. Lemma 4.24.
Rule 232 . Rule 232 has robust period-1 ω-limit orbits; the maximum transient length for this rule is δmax = L/2 − 1.
Proof. The firing patterns of rule 232 are , , , and (see Table 10): consequently, both and change if, and only if, they are isolated. Since → and → , the bit strings · · · and · · · , which can occur only for even values of L, constitute a period-2 ωlimit orbit (Isle of Eden). Moreover, the bit strings · · · and · · · are period-1 ω-limit orbits (attractors), because → and → . Finally, all bit strings containing no isolated and are period-1 ω-limit orbits.
383
Bit strings containing isolated and must also have at least two adjacent or : if there are adjacent but no adjacent , the bit string converges to the period-1 attractor · · · , because → and → ; if there are adjacent but no adjacent , the bit string converges to the period-1 attractor · · · , because → and → ; if there are both adjacent and , the bit string converges to a period-1 attractor containing no isolated and . In all cases, the bit string converges at most in kmax iterations, where kmax is the longest run of alternate bits present in the bit string; since kmax = (L − 2)/2 for L even, and kmax = (L − 1)/2 for L odd, the maximum transient length is δmax = L/2 − 1. In conclusion, all bit strings, except for · · · and · · · , either are period-1 ω-limit orbits or belong to the basin of attraction of a period-1 attractor. Example 4.24. Rule 232 . For rule 232 and L = 6,
the maximum transient length is δmax = 2, and it occurs for all bit strings containing a run of two alternate bits, like : → → . For L = 7, the maximum transient length is δmax = 3, and it occurs for all bit strings containing a run of two alternate bits, like : → → → → . The results of these 24 lemmas are summarized in Table 11. As already mentioned, period-1 rules can be classified into two groups: those harboring exclusively period-1 ω-limit orbits and those harboring also nonrobust period-T ω-limit orbits, with T = 1. Note that rule 0 and rule 8 are the only ones having a global attractor, which means that all bit strings are in the basin of attraction of · · · for any L. Rules 128 and 136 have a similar property, because all bit strings are in the basin of attraction of · · · , except for · · · which is an Isle of Eden. Therefore, rules 0 , 8 , 128 , and 136 have only one period-1 attractor, whose basin of attraction contains all (for rules 0 and 8 ), and all but one (for rules 128 and 136 ) bit strings, respectively. As for rules harboring also nonrobust period-T ω-limit orbits, with T = 1, we find that only four of them — namely, 32 , 40 , 160 , and 168 — have only one period-1 attractor ( · · · for rules 32 and 40 , and · · · for rules 160 , and 168 ). In addition to it, these rules have also
February 14, 2011
384
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
nonrobust period-T Isles of Eden, and rule 160 has also a nonrobust period-2 attractor, for L even. The eight rules we just listed, which appear in the first two rows of Table 11, are unique in having only one robust period-1 attractor. This means that when L → ∞, the probability for a random bit string to be in the basin of attraction of · · · — for rules 0 , 8 , 32 , 40 , 128 , and 136 — or · · · — for rules 160 , and 168 — tends14 to 1. These rules coincide with Class 1 in Wolfram’s classification [Wolfram, 2002]; moreover, as already noticed by [Li & Packard, 1990], they form a cube in which the distance between adjacent vertices is one bit. Rules 36 and 78 , which are in the third row of Table 11, are the only ones having multiple robust period-1 attractors, but no Isles of Eden. All other rules, listed in the fourth row of Table 11, have multiple robust period-1 attractors and Table 11.
14
at least one period-T Isle of Eden. The only exception is rule 204 , which has exclusively period-1 Isles of Eden. It is important to emphasize that almost one third of the period-1 rules have nonrobust period-T orbits with T > 1, but this feature often passed unperceived in the past. For instance, classical works on the classification of CA local rules, like [Li & Packard, 1990] and [Wolfram, 2002], included rules 32 , 40 , 160 and 168 in the same class as 0 , 8 , 128 and 136 whereas, from our point of view, the first four rules have a richer dynamical behavior, because they harbor nonrobust periodic orbits with T > 1. We can focus on rules 40 and 168 , which have Bernoulli period-T Isles of Eden with σ = 1 and τ = 1, where T divides the bit string length L, as shown in the respective basin tree diagrams in Table 6. In other words, these rules behave like rule
Period-1 rules classified according to the properties of their period-1 ω-limit orbits.
To be precise, for rules 0 and 8 this probability is 1 for any L.
February 14, 2011
14:49
ch02
Chapter 2: Period-1 Rules
170 for certain particular subsets of strings, i.e. strings containing exclusively prescribed patterns. In the following, we will see how easily this phenomenon can be explained. In Table 12, the truth tables of rules 170 , 40 and 168 are compared. It is straightforward to notice that rules 40 and 170 have in common six rows, namely , , , , and . Therefore, if we restrict our analysis to bit strings containing any pattern except for and , we cannot observe any difference between 40 and 170 . It is also easy to find that such subsets are formed by all bit strings containing at most two consecutive bits and one consecutive bits. Rule 168 has a very similar behavior, because all rows of its truth table coincide with those of rule 170 , except for . Similarly as for 40 , we can restrict our analysis to all bit strings not containing the pattern , and in this case rule 168 will be indistinguishable from 170 . This
Table 12.
Input
Truth tables of rules 170, 40 and 168.
170
40
168
385
subset is formed by all bit strings having at most one consecutive (no condition for bits). As proved in [Chua et al., 2005], rule 170 is chaotic in the Devaney sense, and hence, for the aforementioned subsets of bit strings, rules 40 and 168 also have such a property. This is exactly the same result arrived at by other authors [Ohi, 2007] and [Ohi, 2008] who used the classical theory of cellular automata. Finally, we want to draw attention on the fact that this feature is not peculiar to rules 40 and 168 , but it can be verified for other rules on the last column of Table 11 (e.g. rule 172 ).
5. Concluding Remarks This article has been entirely devoted to period1 rules, presenting the basin tree diagrams for all of them and formalizing important concepts, like ω-limit orbits and their robustness. Moreover, we introduced a methodology to prove rigorously that all CA local rules belonging to Group 1 have robust period-1 ω-limit orbits for any finite, and infinite, bit-string length. This novel approach confirms the results obtained empirically in the previous chapters of our quest. By using our technique, we have been able to give more accurate results than those presented in similar works, like [Li & Packard, 1990] and [Wolfram, 2002]. For example, both these works “put in the same box” rules 0 , 8 , 32 , 40 , 128 , 136 , 160 and 168 because they have only one robust period-1 attractor. However, we made a finer classification, summarized in Table 11, proving that 0 and 8 are the only rules having a global attractor, whereas 128 and 136 have a global attractor, except for one bit string that forms a period-1 Isle of Eden. The most important aspect, though, is that we showed that for rules 32 , 40 , 160 and 168 there exist nonrobust periodic orbits, including period-T Bernoulli attractors and Isles of Eden with σ = 1 and τ = 1. This is extremely important, because it means that for certain particular subsets of strings, i.e. strings containing only prescribed patterns, these four rules behave like rule 170 , which is proved to be chaotic in the Devaney sense [Chua et al., 2005]. Rule 204 is unique in having exclusively period-1 Isles of Eden. In our forthcoming paper, we will also observe that 204 has a counterpart in Group 2, since rule 51 has exclusively period-2 Isles of Eden.
February 14, 2011
386
14:49
ch02
A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Finally, all other rules have multiple robust period-1 ω-limit orbits. Nevertheless, for this last class of CA rules, we were able to make a further distinction between those harboring nonrobust period-T , T > 1, ω-limit orbits and those having exclusively period-1 ω-limit orbits. In this last category, we find rules 36 and 78 , whose peculiarity is not having any Isles of Eden, as proved in [Chua et al., 2008]. Note that this article is the first of a series of three: the other two will be dedicated to period-T
rules, T > 2 and Bernoulli rules, respectively. These three works have a common purpose, which is to formalize the results given in the previous parts of our saga on Cellular Automata. At the end of the series, we will provide a classification showing the robust and nonrobust behavior of all rules belonging to the first four groups, which can summarize at a glance the whole universe of period-T and Bernoulli CA local rules.
October 23, 2010
11:3
References
♦
REFERENCES ♦
Ë kind of science. Part V: Fractals everywhere,” Int. J. Bifurcation and Chaos 15, 3701–3849. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2006] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VI: From time-reversible attractors to the arrow of time,” Int. J. Bifurcation and Chaos 16, 1097–1373. Chua, L. O., Guan, J., Sbitnev, V. I. & Jinwook, S. [2007a] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VII: Isles of Eden,” Int. J. Bifurcation and Chaos 17, 2839– 3012. Chua, L. O., Karacs, K., Sbitnev, V. I., Guan, J. & Jinwook, S. [2007b] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VIII: More Isles of Eden,” Int. J. Bifurcation and Chaos 17, 3741–3894. Chua, L. O., Pazienza, G. E., Orzo, L., Sbitnev, V. & Shin, J. [2008] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IX. Quasi-erogodicity,” Int. J. Bifurcation and Chaos 18, 2487–2642. Courbage, M., Mercier, D. & Yasmineh, S. [1999] “Travelling waves and chaotic properties in cellular automata,” Chaos 9, 893–901. Courbage, M. & Yasmineh, S. [2001] “Wavelengths distribution of chaotic travelling waves in some cellular automata,” Physica D 150, 63–83.
Birkhoff, G. D. [1927], Dynamical Systems (Amer. Math. Soc., Providence, RI). Cattaneo, G. & Quaranta Vogliotti, C. [1997] “The ‘magic’ rule spaces of neural-like elementary cellular automata,” Theoret. Comput. Sci. 178, 77–102. Chua, L. O. [1996] CNN: A Paradigm for Complexity (World Scientific, Singapore). Chua, L. O., Yoon, S. & Dogaru, R. [2002] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part I: Threshold of complexity,” Int. J. Bifurcation and Chaos 13, 2377–2491. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2003] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part II: Universal neuron,” Int. J. Bifurcation and Chaos 13, 2377–2491. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2004] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part III: Predicting the unpredictable,” Int. J. Bifurcation and Chaos 14, 3689–3820. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2005a] “A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: From Bernoulli shift to 1/f spectrum,” Int. J. Bifurcation and Chaos 15, 1045–1183. Chua, L. O., Sbitnev, V. I. & Yoon, S. [2005b] “A nonlinear dynamics perspective of Wolfram’s new 387
October 23, 2010
388
11:3
References
References
Garay, B. M. & Chua, L. O. [2008] “Isles of Eden and the ZUK theorem in Rd ,” Int. J. Bifurcation and Chaos 18, 2951–2963. Hedlund, G. A. [1969] “Endomorphisms and automorphisms of the shift dynamical system,” Th. Comput. Syst. 3, 320–375. Ireland, K. & Rosen, M. [1990] A Classical Introduction to Modern Number Theory (SpringerVerlag). Li, W. & Packard, N. [1990] “The structure of the elementary cellular automata rule space,” Compl. Syst. 4, 281–297. Martin, O., Odlyzko, A. M. & Wolfram, S. [1984] “Algebraic properties of cellular automata,” Commun. Math. Phys. 93, 219–258. Moore, E. F. [1962] “Machine models of selfreproduction,” in Mathematical Problems in the Biological Science, Proc. Symp. Applied Mathematics 14 (Providence RI), pp. 17–33. Myhill, J. [1963] “The converse of Moore’s Gardenof-Eden theorem,” Proc. Amer. Math. Soc. 14, 685–686.
Ohi, F. [2007] “Chaotic properties of the elementary cellular automaton rule 40 in Wolfram’s class I,” Compl. Syst. 17, 295–308. Ohi, F. [2008] “Chaotic properties of elementary CA Rule 168,” in Proc. Automata 2008. Pivato, M. & Yassami, R. [2008] “The spatial structure of odometers in certain cellular automata,” Journ’ees Automates Cellulaires 1, 119–126. Shereshevsky, M. A. [1992] “Ergodic properties of certain surjective cellular automata,” Mh. Math. 114, 305–316. Shirvani, M. & Rogers, T. D. [1991] “On ergodic one-dimensional cellular automata,” Commun. Math. Phys. 136, 599–605. Wolfram, S. [2002] A New Kind of Science (Wolfram Media, Inc., Champaign IL, USA). Wuensche, A. & Lesser, M. [1992] The Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata (Addison-Wesley, Reading, MA).
February 12, 2011
12:25
index
♦
INDEX ♦
Ë additive rules, 1, 3, 83, 111–114, 116, 152 all neurons quenched, 13 alternating symmetry duality, 90, 115, 116 analytical theory, 157 anti-additive rules, 111–114 anti-symmetry, 36 attractors, 1, 115, 117, 118, 142–145, 151, 285, 304, 367, 372, 378, 382
30 , 40 45 , 98, 99 60 , 117, 118, 142, 146, 150 90 , 117, 143, 147, 150 105 , 117, 144, 148, 150 110 , 108, 109 137 , 33 150 , 117, 145, 149, 150 154 , 98, 99 Group 1 Rules , 29 Group 2 Rules , 29 Group 3 Rules , 29 Group 4 Rules , 29 8-bit code, 96 8-dimensional parameter space, 11 25 globally-independent period-1 rules, 162 25 robust period-1 rules, 164 67 globally-equivalent robust period-1 local rules, 161 67 robust period-1 rules, 160 88 equivalence classes, 32 88 globally independent rules, 30 104 linearly-separable local rules, 33 256 local rules, 31, 32, 159 ω-Limit Orbit Generation, 369 ω-limit orbits, 304, 367, 370, 371, 372, 380, 385
basin of attraction, 29, 106, 285, 302, 371, 375, 380, 381, 384 basin tree, 285, 304 basin tree diagrams, 1, 157, 163, 304 Basin Tree Diagrams of Rule 4 , 165 Basin Tree Diagrams of Rule 8 , 170 Basin Tree Diagrams of Rule 12 , 175 Basin Tree Diagrams of Rule 13 , 180 Basin Tree Diagrams of Rule 32 , 185 Basin Tree Diagrams of Rule 36 , 190 Basin Tree Diagrams of Rule 40 , 195 Basin Tree Diagrams of Rule 44 , 200 Basin Tree Diagrams of Rule 72 , 205 Basin Tree Diagrams of Rule 76 , 210 Basin Tree Diagrams of Rule 77 , 215 Basin Tree Diagrams of Rule 78 , 220 Basin Tree Diagrams of Rule 104 , 225 Basin Tree Diagrams of Rule 128 , 230 Basin Tree Diagrams of Rule 132 , 235 Basin Tree Diagrams of Rule 136 , 240
Abelian group, 32 additive cellular automata, 111 additive rule N , 111 389
February 12, 2011
390
12:25
index
Index
Basin Tree Diagrams of Rule 140 , 245 Basin Tree Diagrams of Rule 160 , 250 Basin Tree Diagrams of Rule 164 , 255 Basin Tree Diagrams of Rule 168 , 260 Basin Tree Diagrams of Rule 172 , 265 Basin Tree Diagrams of Rule 200 , 270 Basin Tree Diagrams of Rule 204 , 275 Basin Tree Diagrams of Rule 232 , 280 basin-tree diagrams, 106, 108–110 basin-tree generation formula, 1, 106, 109 basins of attraction, 106 basis characteristic functions, 45 Bernoulli στ -orbits, 107, 152 Bernoulli στ -shift, 109 Bernoulli στ -shift attractor, 29, 107, 108 Bernoulli στ -shift orbit, 106, 108, 110 Bernoulli στ -shift rules, 32, 152, 159, 163 Bernoulli basin-tree diagrams, 1 Bernoulli Isle of Eden, 105, 106 Bernoulli map, 39 Bernoulli orbits, 106 Bernoulli parameters, 116, 152, 367 Bernoulli period-T attractor, 383 Bernoulli period-5 Isle of Eden, 382 Bernoulli period-14 attractor, 108 Bernoulli shift, 303 Bernoulli velocity, 1 bi-infinite sequence space, 29 bi-permutive, 37, 155 bi-permutive rules, 42, 155 Boolean cube 137 , 33 Boolean cube basis functions, 44 Boolean cube of rule N , 285 Boolean cube representation, 3 Boolean cubes, 5, 9, 29, 32, 34, 36, 38, 111, 112, 154, 155, 163 Boolean operations, 83 cellular automata, 1, 79, 97, 157, 386 cellular neural networks (CNN), 3 centrally-symmetric, 99 centrally-symmetric local rules, 36 centrally-symmetric strictly-dissipative local rules, 100 chaotic in the Devaney sense, 385 characteristic function, 285 complemented right shift, 13 complex and hyper Bernoulli rules, 12 complex and hyper Bernoulli-shift, 1 complex and hyper Bernoulli-shift rules, 59, 60, 62, 67, 106, 152 complex Bernoulli shifts, 1 complex Bernoulli-shift rules, 2, 32, 159, 163
complex or hyper Bernoulli-shift rules, 116 complexity index, 30–32, 113, 159 complexity index κ, 29 concatenated ω-limit orbit generation algorithm, 367 concatenation, 370 conservative, 99 conservative local rules, 98 conservative rules, 1 conservative tout court, 99 decimal code, 286 degenerate Bernoulli rule, 367 dense Isles of Eden orbits, 29 difference equation, 11 dissipative rules, 1 equivalence transformations, 32 ergodicity, 59 Euler totient function, 113, 115 explicit formula, 302 explicit formula for generating the truth table, 285 firing patterns, 375, 377, 379, 381–383 firing/quenching patterns, 155 formula for local rule, 13 fractal patterns, 80–83, 85–89, 91–93, 95, 97 fractality, 80, 91 fractals, 1, 79, 83 fractional code, 286 Gardens of Eden, 60, 76, 78, 79, 101, 103, 104, 285 genotype, 303 genotypic robustness, 303 geometrical constructions, 35 global attractor, 105, 106, 374 global complementation, 32–33, 35, 161, 164 global equivalence, 113 global equivalence theorem, 163 globally independent rules, 29, 97 globally-equivalence classes, 29 group 1, 105, 106, 163, 304, 371, 372 group 1 rules, 367 group 4, 152 group 5, 152 group 6, 152 group 4 rules, 60 group 5 rules, 29 group 6 rules, 29 group four, 108 groups 5 and 6, 373 Hedlund, 36, 154 hyper Bernoulli shifts, 1, 32, 113, 159, 163 index of complexity, 3, 9, 12, 163 inequality (31), 152
February 12, 2011
12:25
index
Index
Isles of Eden, 1, 29, 38, 39, 57, 97–99, 101, 103–106, 113, 116–118, 152, 285, 302–304, 367, 368, 372, 378, 381, 382, 386 Isles of Eden digraph, 97 isolated Bernoulli Isles of Eden, 109 isolated Isles of Eden, 60 isomorphic attractors, 367 isomorphic basin trees, 302 isomorphic copies, 304 Klein’s Vierergruppe, 32 Lamerey (cobweb) diagrams, 60–62, 76 left — right complementation, 161, 164 left — right transformation, 161, 164 left-permutive, 37, 98 left-permutive rules, 38, 154 left-right complementation, 32, 33, 35 left-right transformation, 32, 33, 35 left-shift Bernoulli-map, 59 local complementation, 32 local complements, 34 local rule, 158 local rule number, 95 magic, 32 magic rule spaces, 29 maximum period, 116, 152 maximum period T , 142–145 maximum period-T , 117 maximum period of attractors, 113 maximum period of orbits, 115, 116 maximum transient length, 374–381, 383 multiplicative order, 150, 153 multiplicative order function, 113, 115 multiplicative suborder, 150, 153 multiplicative suborder function, 113, 115 neural-like behaviors, 29 no Isle of Eden rules, 102 non centrally-symmetric rules, 99, 101 non-bilateral, 29 nonlinear difference equation, 11 nonlinear dynamics, 1 nonrobust period-T Isles of Eden, 384 nonrobust period-T ω-limit orbit, 373, 379, 383 non-spatially periodic finite strings, 152 non-strongly quasi-ergodic rules, 78 nontrivial additive rules, 113, 116, 152 notations, 4, 158 number of fractal patterns, 96
omega-limit orbits, 304 orbit, 29 perfect complementary rules, 36 perfect complementations, 36 perfect symmetry, 36 perfectly-complementary local rules, 99 period-1 attractor, 163, 375, 380 period-1 orbit, 29 period-1 rules, 32, 157, 159, 163, 304 period-1 spatially-alternating orbits, 52, 56 period-1 spatially-homogeneous orbits, 49–51, 55, 56 period-1 ω-limit orbits, 372, 374–378, 382, 384, 386 period-2 attractor, 29, 381 period-2 rules, 32, 159, 163 period-2 spatially alternating orbit, 54 period-2 spatially-homogeneous orbits, 53, 55 period-3 attractor, 29 period-3 rule, 32 period-3240 Isle of Eden, 39, 40, 59 period-n Isle of Eden, 98 period-T attractors, 382 permuting map, 154 permutive, 98, 303 permutive rules, 1, 36, 37, 43, 154 phenotypic robustness, 303 Portraits of ω-Limit Orbits of Rule 4 , 305 Portraits of ω-Limit Orbits of Rule 8 , 308 Portraits of ω-Limit Orbits of Rule 12 , 309 Portraits of ω-Limit Orbits of Rule 13 , 312 Portraits of ω-Limit Orbits of Rule 32 , 314 Portraits of ω-Limit Orbits of Rule 40 , 317 Portraits of ω-Limit Orbits of Rule 44 , 319 Portraits of ω-Limit Orbits of Rule 72 , 321 Portraits of ω-Limit Orbits of Rule 76 , 323 Portraits of ω-Limit Orbits of Rule 77 , 328 Portraits of ω-Limit Orbits of Rule 104 , 334 Portraits of ω-Limit Orbits of Rule 128 , 336 Portraits of ω-Limit Orbits of Rule 132 , 337 Portraits of ω-Limit Orbits of Rule 136 , 341 Portraits of ω-Limit Orbits of Rule 140 , 342 Portraits of ω-Limit Orbits of Rule 164 , 347 Portraits of ω-Limit Orbits of Rule 168 , 350 Portraits of ω-Limit Orbits of Rule 200 , 357 Portraits of ω-Limit Orbits of Rule 204 , 362 preimage, 98 qualitative behaviors, 29 quasi-ergodic, 62, 76 quasi-ergodic phenomenon, 152 quasi-ergodic rule, 60 quasi-ergodic space-time patterns, 12
391
February 12, 2011
392
12:25
index
Index
quasi-ergodic vignettes, 67 quasi-ergodicity, 1, 3, 59, 61, 76, 152 right-copycat rule, 106 right-permutive, 37, 98, 154 right-permutive rules, 39, 155 robust Bernoulli attractors, 109 robust period-1 global attractor, 105 robust period-1 ω-limit orbits, 372 robustness, 11 robustness coefficient, 303, 367 rule 30 , 39, 154 rule 60 , 84, 116, 146 rule 90 , 86, 116, 147, 151 rule 105 , 88, 116, 148 rule 110 , 61, 82 rule 150 , 90, 116, , 149 rule 170 , 106, 385 rule number, 93 rule number N , 285 scale-free decomposition, 150, 153 scale-free order, 116, 150, 151, 153 scale-free order ξL , 150 scale-free phenomena, 1, 3 scale-free property, 116, 146–149, 152 seamless concatenation conditions, 370 seamless interface, 370 seamless left-boundary, 370 seamless right-boundary, 370 semi-dissipative local rules, 98 shift maps, 1 single point attractor, 29 space-time patterns, 12, 29, 67 spatially periodic bi-infinite strings, 152 stratification of characteristic functions, 95 strictly-dissipative, 99 strictly-dissipative local rules, 98 strictly-dissipative rules, 99
strongly quasi-ergodic, 76 strongly quasi-ergodic rules, 79 strong quasi-ergodicity, 76 superposition, 45 superposition of local rules, 37 surjectivity, 79 symbols, 4, 158 symmetries, 32, 302 T , 35 T ∗ , 35 T † , 35 time-1 characteristic functions, 67, 77, 79–82, 84–95 time-1 maps, 29, 285 time-1 return maps, 1, 59, 67 time-τ return map, 12, 59 transient components, 285 transient points, 77 transient-regime, 367 trivial additive rules, 113 truth table, 13 truth table of rule N , 285 type A Boolean cube, 49 type B Boolean cube, 50 type C Boolean cube, 51 type D Boolean cube, 52 type E Boolean cube, 53 type F Boolean cube, 54 type G Boolean cube, 55 type H Boolean cube, 55 type I Boolean cube, 56 type J Boolean cube, 56 universal difference equation, 12 universal formula, 4, 10, 12, 158 Vierergruppe, 115 weak quasi-ergodicity, 60, 77
A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE Volume IV
Volume IV continues the author’s odyssey on l-D cellular automata as chronicled in Volumes I, II and III, by uncovering a novel quasi-ergodicity phenomenon involving orbits meandering among omega-limit orbits of complex (group 5) and hyper (group 6) Bernoulli rules. This discovery is embellished with analytical formulas characterizing the fractal properties of characteristic functions, as well as explicit formulas for generating colorful and pedagogically revealing isomorphic basin tree diagrams. Many new results were derived and proved by uncovering subtle symmetries endowed by various subsets of the 256 Boolean cubes. For the first time, rigorous analyses were used to identify 67, out off 256, local rules whose asymptotic behaviors consist of robust period-l orbits. The highlight of this continuing odyssey is the discovery of an isolated period-3240 Isle of Eden hidden among the dense omega-limit orbits of Wolfram’s remarkable “random number generating” rule 30. This is the largest gem known to-date and readers are challenged to uncover even larger ones. The cover cartoon is drawn by Valery Sbitnev.
about the author Leon Chua is a foreign member of the Academia Europea and a recipient of eight USA patents and 12 Docteur Honoris Causa. He has received numerous international awards, including the first IEEE Kirchhoff Award, the Neural Networks Pioneer Award, and the “Top 15 Cited Authors” Award based on the ISI Citation Index in Engineering from 1991 to 2001. When not immersed in science, he relaxes by searching for Wagner’s leitmotifs, musing over Kandinsky’s chaos, and contemplating Wittgenstein’s inner thoughts.
ISBN-13 978-981-4317-30-6 ISBN-10 981-4317-30-6
www.worldscientific.com 7835 hc
ISSN 1793-1010