A Guide to the Solidilication 01 Steels
Jernkontoret,
Stockholm 1977.
Jern kontoret Box 1721 S-111 87 Stockholm Lju...
230 downloads
1285 Views
71MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
A Guide to the Solidilication 01 Steels
Jernkontoret,
Stockholm 1977.
Jern kontoret Box 1721 S-111 87 Stockholm Ljungberg
Tryckeri AB, S6dertalje ISBN 91-7260-156-6
1977
FOREWORD An investigation
into the solidification
terest was started by Jernkontoret work was the responsibility
structures
in steels of commercial
in 1974. The planning
of a Research Committee,
reference of 408/74. Membership
in-
and supervision
of
having the Jernkontoret
of this Committee comprised:
G. Grunbaum, (Sandvik AB), Chairman, B. Call mer, (Swedish Institute for Metals Research),
Secretary,
b.
Hammar,
(Sandvik
Hellner, (AB Bofors), S. Maim, (Uddeholms AB) and
A.
Nilsson, (Stora Kopparberg
The experimental
programme
Metals Research, Stockholm, Callmer, were responsible
AB), P. Havola, (Ovako Oy), L.
AB), L. Morsing, (Avesta Jernverks
AB).
was carried
out at the Swedish
where initially
for the work, including
lography and photomicrography
were performed
represented
supplied
contributions
on the Committee to the experimental
Institute
for
B. Carlsson and, from 1975, B. evaluation
of results. Metal-
by H. Modin. The companies
samples of steels and made other
programme.
D. Dulieu (BSC, Sheffield
Lab-
oratories, England), assisted with the preparation of the English text. The project was partly financed by the Swedish Board for Technical Development.
CONTENTS Foreword
5
Introduction
9
1. Experimental Techniques
11
2. Carbon and Low Alloy Steels
17
3. Chromium Steels
55
4. Stainless and Heat Resistant Steels
81
5. High Speed Steels
133
6. Conclusions and Comments
142
7. References
151
8. Alloy Index
154
INTRODUCTION The purpose of the present work is to provide a systematic compilation of solidification data, describing the formation of the as-cast microstructures in steels of technical importance. The compositions have been chosen to cover a large part of the spectrum of steels in current production. Where a specific steel is not included, it should be possible to gain an outline of its solidification characteristics from related compositions present. The book is not intended to provide a theoretical treatment of solidification processes in steels. It is hoped rather that the descriptions of the microstructures formed on solidification will assist in solving, or avoiding, some of the problems arising in casting, hot working and welding. However, specific production and materials problems have not been described. A knowledge of solidification processes is also relevant to problems of quality in the final product; for example, in understanding the effects of segregation arising during solidification on the microstructure of wrought material. The work should find use also in metallurgical education as a source of basic information. In the planning stage, the Project Committee hoped to collect data from both the technical literature and unpublished laboratory reports. However, a study of these sources soon showed that most investigations were unique in both their experimental techniques and presentation of results. In addition, thermal analysis at varying cooling rates had been identified in this project as a powerful technique for investigation of solidification. Little systematic experimental work employing this method was found in the literature. It was decided, therefore, to generate the data needed within the study and to use the same reproducible methods for all the steel compositions studied. The Committee gave considerable attention to the problem of relating structures obtained in small, laboratory ingots to those found in large ingots under production conditions. This aspect is discussed in chapter 1, where the experimental techniques are described and the format adopted for diagrams and tables is explained. Chapters 2-5 comprise the main body of the book, with results for each individual steel described. These sections are printed in a standardized form for ease of quick reference. The large number of steels has made it necessary to limit the amount of information given. Wherever possible in these chapters, descriptive passages have been avoided in favour of figures, diagrams and micrographs. The alloys have been brought together into four broad classes: Carbon and Low Alloy Steels (Ch. Chromium Steels (Ch. Stainless and Heat Resistant Steels (Ch. High Speed Steels (Ch.
2) 3) 4) 5)
Although the intention was to arrange the steels in a logical way, this was not always possible. In most cases, however, a steel type will be classified easily within the four groups. Each of chapters 2 to 5 is introduced by a paragraph describing those specific steels which have been studied. The reader can quickly ascertain whether a steel composition is included or not, by examining either the tables accompanying each chapter, or the index tables given in chapter 8. Chapter 6 contains some general conclusions regarding solidification phenomena which are common for the groups of steels. References to the relevant literature have been made throughout and are listed in full in chapter 7. Chapter 8 comprises master tables of chemical compositions and thermal analysis data for all the steels included in the study. In addition, this chapter includes tables of dendrite arm spacings and microsegregation.
11
1. Experimental Techniques The object of the laboratory experiments was to produce microstructures identical to those obtained under production solidification conditions. A suitable experimental technique would allow the following: •
Determination of pertinent temperatures, such as those of the liquid us, solidus and high temperature reactions, together with the relative amounts of the phases formed.
•
The ability to freeze instantaneously reaction by rapid quenching.
the solidification
•
A controlled wide limits.
•
A reproducible relationship between the structures obtained in laboratory samples and those found in full-size ingots.
cooling rate which could be varied within
To fulfill these requirements, the experiments were carried out on small ingots (35 g) solidified in a ceramic crucible at a preset, controlled cooling rate. The development of the solidification microstructure is governed mainly by alloy composition and the rate of heat removal. By using samples of commercial alloys and letting them cool at a rate similar to that found in full scale ingots, good reproduction of microstructural features was obtained. A range of cooling rates in steel ingots, evaluated from published cooling curves, is shown in figure 1.1, [1-4,23, 26, 93, 96] * .The results refer to different ingot sizes; which means that values on the abscissa are only indicative of position within an ingot. The figure shows that the range of cooling rates of practical interest lies between 0,05 and 3°C/s. Accordingly, the specimens in this study were cooled at 0,1, 0,5 and 2°C/s.
According to reported data (for cooling rates [20], solidification rates [4, 21] and local solidification times [22]), ingots produced by the electroslag remelting or vacuum arc remelting processes follow, in general, the pattern shown in figure 1.1. No experimental values of cooling rates in continuous casting were found in the literature. Calculations based on mathematical models of heat transfer show these cooling rates to be slightly higher than for ingots up to 20-30 mm under the surface, as shown in figure 1.1 [5,6]. At larger depths no great difference exists, as cooling rate is governed by heat conduction in the solidified shell. This has been established by comparisons between measured solidification speeds in ingots and continuously cast material, [4, 7, 8]. Solidification of weld metal takes place at high cooling rates. Depending on process parameters, such as the size of the weld pool, rates have been reported to vary between 20 and 200°C/s, [10, 11]. In powder metallurgy very high cooling rates are encountered, Calculations lead to an estimate of 103-104 °C/s for the solidification of argon atomized steel particles [9]. Welding and powder metallurgy are thus not directly covered by the experiments reported in the present work.
('C/s)
\000 E
.3-500
~
~300
u
;t200 l1'I
Cooling rate °C/minoC/s 600 10
300
:::li ~ 100
100
x
1 tonne
0
2,5- 9 tonnes
5 x
200
Ingot weight < 1 tonne
I:!.
Continuous cast, calcul. •
3
>a::
~ z o
u W l1'I
50 30 20 1
2
3
5
10 20 30 50 100 200 AVERAGE COOLING RATE (·C/minl
500 1000
2 Figure 1.2 Dendrite arm spacings in commercial 0,14-0,88% C-steel ingots (After Suzuki A. et ai, J. Japan Inst, of Metals, (1968) 1301 -1305.) [28]
30
0,5
20
0,3 0,2
10 6
0,1
3
0,05
3
5
10
20
30
50
100 200 300 500 Distance from surface. mm
• References appear in chapter 7
Figure 1.1 billets
Cooling
rates in steel ingots and continuously
cast
The cooling rate may be related to the microstructure through its effect on the secondary dendrite arm spacing. This decreases with increasing cooling rate in the manner shown in figure 1.2, [28]. Many diagrams of this type are available in the literature. When extrapolated to cooling rates prevailing in welding and powder solidification, the relationship predicts fairly well the secondary dendrite arm spacings in weld metal and steel powder, [14, 9, 96]. As shown in later sections, the arm spacings found in the small samples are of the same order of magnitude as those reported for ingots of the same composition. Figure 1.3 shows examples of secondary dendrite arm spacing measurements in the columnar zones of ingots of low alloy steel ranging in weight from 1 to 9 tonnes, together with results from a 1,7 tonne stainless ingot, [12, 13,26].
12
Secondary dendrite arm spacing, j.Jm
ARGON INLET •.....---WINDOW
400
--
r
300
TEFLON PLUG
FURNACE THERMOCOUPLE FOR POWER REGULATION THERMOCOUPLE ANALYSIS
FOR
I
CRUCIBLE AND LID
SOOmm
200
WITH SAMPLE
AI 0) FIBRE 2 BRASS
TUBES
REFLECTING
WALL
MOLYBDENUM SUPPORT
100
AI 0) 2
WIRE
ROD
TUBE
ARGON INLET
o
o
Figure 1.3
Thermal
20
40
60
80 100 120 Distance from surface, mm
Dendrite arm spacings in production
scale ingots
Experimental
furnace
analysis
The steel samples of 35 ± 1 g were melted in alumina crucibles in an atmosphere of argon (02 < 5 ppm), Samples inserted in the hot furnace, shown in figure 1.4, melted in five minutes. A tube of alumina was resistance heated by a molybdenum wire element. Argon was flushed through the tube from the top at a rate of approximately 0,1 lis. The outside of the tube with the molybdenum wire was subjected to a non-flowing argon atmosphere. The tubular furnace shell was double-walled and water cooled, with the inside chromium plated to give good heat reflection. No insulation was used so that the furnace had a low thermal inertia, enabling cooling rates of up to 2,0°C/s to be achieved down to 1000°C. The samples were quenched in brine within about three seconds from removal at the bottom of the furnace.
FURNACE
Figure 1.5
Figure 1.4
Control systems
The temperature and cooling rate of the furnace was controlled by the power input. The desired furnace cooling rate was achieved by presetting a programmable temperature-time regulator (Data Trak). An artificial thermoelectric voltage-time function was generated and compared with the actual output of the furnace thermocouple. The system minimized any difference by adjusting the furnace power input. Theaccuracy in cooling rate which was obtained was better than ten percent. Figure 1.5 shows schematically the regulating and measuring system of the furnace. The temperature of the steel sample was measured at its centre by means of a thermocouple (PtlPt-10% Rh). The thermocouple output was registered by a digital microvolt meter. The cold junction was maintained at O°C.One registration of specimen temperature per degree fall in furna-
13
ce temperature was used for all the cooling rates. The result was punched on a paper tape and evaluated in a minicomputer. The thermocouples and the other components used were checked by determining the liquidus temperature of a pure nickel melt. The precision of the temperature measurements was found to be ± 2°C.
a minimum, see figure 1.6. After this point the cooling rate of the sample started to approach the cooling rate of the furnace, since no more latent heat was evolved. The derivative is more useful for evaluation of the cooling curve, showing changes more clearly than the temperature-time curve itself.
Thermal analysis, as used here, is based on an analysis of the temperature versus time curve of a solidifying sample. The furnace and the molten sample are subject to a constant cooling rate, but when the sample starts to solidify the latent heat evolved decreases the cooling rate of the sample. In fact, all reactions or transformations evolving latent heat decrease the cooling rate of the sample. The growth of the solid phase starts at the walls of the crucible and proceeds to the centre. The dendrites grow at an almost constant temperature, shown by the plateau of the temperature-time curve in figure 1.6. When the tips of the dendrites reach the thermocouple the heat transfer from the thermocouple becomes markedly more rapid and the amount of latent heat sensed by the thermocouple is diminished. As a consequence the registered temperature starts to decrease.
The end of solidification, as defined here, is denoted the solidus temperature and is strongly dependent on the cooling rate. It was particularly difficult to determine the solidus temperature by thermal analysis in steels with a high carbon content. This is a result of their wide solidification ranges and very low growth rates near the end of solidification. Furthermore, eutectic reactions occurred at the end of solidification over a large temperatu re range which led to poorly defined minima in the derivative.
TEMPERATURE
T (·C)
COOLING RATE
dT d't"
T
(·C/s)
+
The solidus temperature was also determined as the start of melting in heating tests. The samples cooled at a,1 and a,5°C/s were reheated at a,5°C/s. The start of melting and the end of solidification in cooling trials generally differed only by a few degrees. The lowest of these temperatures was chosen as the solidus temperature and rounded off to within five degrees. Quenching experiments confirmed that this method for determining the solidus temperature was acceptable. In a few cases a small amount of the melt could solidify below the reported solidus temperature, but for practical purposes the reported solidus temperatures are relevant. All temperatures given in the tables are mean values of two to five measurements and thus are not necessarily those which can be evaluated from the cooling curves shown.
o R
t furnace _."
"-..,.
TIME, T (s) Figure 1.6
T
Thermal analysis, temperatures
CD
Start of growth of primary phase
®
Growth temperature rature
®
Dendrite tips reach thermocouple
of dendrites,
~ ...........
used as liquidus tempein centre of sample
Start of secondary phase precipitation Maximum reaction rate for secondary phase precipitation, maximum temperature, used as temperature of formation of the secondary phase
w
End of solidification,
~ w
-R
Preset cooling
rate of furnace
'
,
~ ~T
1 I
I -
0
-1I
-
reached
-
1
='4
1
~ w
I I I
b
Tfurnace : Tsample I I
0
-R
t?
z :i
0 0
u
c
o
'[,
TIME
Figure 1.7
a-c.
_
I I
d't
........•.
I
•....dT
w •....
.
1
w
Cl:: W 0-
••..•.••.•
---,
I I
Cl::
dJ~)
I
Ifurnace
I -
a -
tion point, that is, where the cooling rate
I
I .•.•..•.,
1 I
a
u. u.
The temperature of the plateau was taken as the liquidus temperature in this work. This temperature is slightly lower than that of the true equilibrium liquidus, but the difference is very small and of no practical significance. Supercooling was generally observed before nucleation and growth. The degree of supercooling was generally larger and more varied at the start of the secondary (peritectic) reaction than for primary (ferrite) nucleation in the solidification of a ferritic-austenitic steel. The temperatures given for the secondary phase formation are thus less accurate than those of the primary phase formation (liquidus). The end of solidification was defined as the temperature at which the temperature-time curve had its inflec-
I
-....J
1
@)
used as solidus temperature
-....1...
I' I I
® ®
liquidus
and events:
('r)
Derivation of fraction solid phase.
-
14
The fraction solid phase, f5, as a function of time was calculated using the following principles [90]. When the sample starts to solidify, latent heat, L, is evolved which
g~ as shown
decreases the cooling rate
in figure
1.7 a
and c. The cooling rate of the furnace is not affected and thus the temperature difference,
dO
from the sample to
d. the furnace, and
dO, will vary in the same way as
d.
Assuming 00 = Cp· OT, (where Cp is the specific calculated flux
cooling rate,
to the heat
The dendritic structure etching techniques:
~d.Jc
Etchant
Carbon, low alloy and 5% chromium steels.
Saturated solution of picric acid in water or a mixture of water and alcohol.
13% chromium, stainless and heat resistant steels.
Various etchants according to the etching behaviour of the respective alloy. a) Copper-containing gents (Steads).
d.
The difference
L.QD ~ d.7m
between the measured cooling rate
LQD \d./c
and
the sample. = Cp·
[(
is the evolution
of latent
heat in
::t (::)J
c) Acid ferric chloride, FeCI3, HCI and water in various proportions. (Used cold or warm) High speed steels
Hence the area between the two curves in figure 1.7 c is proportional to ~1' the latent heat evolved in the interval 0 to .1.
.1
.1
~1
J
~d.=
d.
o
The latent
J
c,
[(:a - E:~2Jd'
o
heat evolved
is proportional
solid phase at the time considered.
As
to the fraction dO is not readily
d. . . measured, an approximation
QdT) . _. was 0 b·tame d usmg d. c the cooling rates measured at the start and end of solidification. In an iterative process, the calculated fraction solid phase was used to improve the approximate value of
rea-
b) Mixed acids, HN03, HCI and water in proportion by volume 1:10:10 with the addition of some drops of pickling bath inhibitor.' (Used at 65°C)
~
Cp
was revealed by the following
Steel Type
d.
= _1_.
Examination
Metallographic examination of samples was carried out after mechanical preparation and etching in a range of solutions appropriate to the individual steel composition, [15].
dO can be derived as follows, see figure 1.7 c.
U!TI
:~
~,corresPOnding d. c
heat), a
Metallographic
0f
Table 1.1
Normally 4% nitai solution. For examination at higher magnification alkaline permanganate was used (4 wt% NaOH saturated with KMnO.).
Summary of etchants
• In general, this etching reagent gives only a gentle surface relief and no selective darkening. To reveal the dendrites clearly the following technique has been used: The structure is under- or overfocussed, depending on where the best image is obtained, and simultaneously the aperture diaphragm is stopped down considerably in order to increase the depth of focus. In this way a sharp image with good contrast is obtained, i.e. light with dark boundaries or vice versa depending on whether it is under- or overfocussed.
(dT\ d·lc
This analysis is the basis for computing the fraction solid phase. The calculations were more elaborate than the simplified analysis indicates. Corrections, such as for the different specific heats of the liquid and solid phases and their relative amounts during solidification, were included in the actual computation. The results of these calculations are given graphically on the upper part of each solidification diagram and in the tables of thermal analysis data. Alternative methods of calculating are given in references [16-19].
fraction
solid
phase
Where both y- and o-dendrites are formed the y-dendrites appear white and the area occupied by the o-dendrites dark at low magnification (figure 1.8 a). The reason for this is that, on cooling and quenching, the o-dendrites are partly transformed to y which contains closely spaced networks of residual 0, figure 1.8 b. To reveal dendritic and interdendritic ferrite, carbides, phosphides and intermetallic phases, appropriate etchants for the steels in question were used [15]. In some cases the visual observations were supported by identification of the phases using microprobe analysis, X-ray diffraction and transmission electron microscopy. The magnification~ of the optical photomicrographs have been standardized as far as possible to facilitate comparisons between structures. (Micrographs have been reproduced at actual size, so that magnifications refer directly to the size ratio between objects in the sample and in the illustration).
15
'.
,
·l~
<:t) -; '-:1:..,
t
I /
Figure 1.8 a magnification,
Stainless steel shown at low (steel number 407)
l
y
1J !J
x 150
100
JLm
I·'
<
Figure 1.8 b Detail of figure 1.8 a showing transformed c)-areas
x 600
. (
The secondary dendrite arm spacings have been measured at a low magnification. The measurements were made close to and parallel with the parent primary dendrite stems (figure 1.9). At least four or five secondary arms per primary arm were counted and at least ten such measurements were taken within each steel specimen, where this was possible. The result reported is the arithmetic mean of the individual secondary arm spacings. In most samples a large number of observations was possible and the mean values have good statistical significance. Exceptions are the specimens obtained at the lowest cooling rate, because the large arm spacings in these samples limited the number of observations, together with the ferritic-austenitic stainless steels, in which a very low degree of segregation gave a correspondingly diffuse microstructure. Structures
arising
from the quench
itself, such as fine
transformation products, the figure captions.
are in general not discussed
in
Microsegregation Microsegregation was studied by electron microprobe analysis of samples cooled at O,5°C/s and quenched from just below the solidus temperature. Line scans were performed in selected areas of the specimens. Before analysis the samples were etched and the lines to be traversed were marked with microhardness indentations. Strongly etched specimens were repolished before measuring. Two lines were selected from different areas in each specimen, on the same principle as that for selecting lines for dendrite arm measurement. Consequently, in most cases secondary dendrite arms were crossed at right angles but some primary dendrites were intersected also. A typical example of a traverse for analysis is shown in figure 1.9.
16
are defined below and the appropriate values of segregation ratio, I, or partition ratios, PID or PD' have been reported for each steel. In many stainless steels, ferrite is precipitated from the residual melt in the interdendritic areas together with austenite, (for example in steel 407, figure 10), and a partition ratio PID has been calculated as:
P 10 _-
CX, bID
c
x'
YID
where Cx is the mean value of the concentration of element x in interdendritic band Y . PID is thus a quantity describing the partition of the element x between interdendritic ferrite and austenite. When austenite grew into and consumed dendrites which formed initially as ferrite, thin regions of ferrite remained in the austenite matrix in some stainless steels, (for example in steel 403, figure 7). This solid phase transformation also gives rise to partitioning of alloying elements between austenite and dendritic ferrite, and a partition ratio Po may be calculated:
Po =
Cx' bo Cx, Yo
where Cx is the mean value ment x in band y in dendritic of segregation and partition steels is discussed further in
Presentation x 50
300 fLm
Figure 1.9 Primary and secondary dendrite arms in a typical field showing a traverse followed for the measurement of secondary dendrite arm spacings and electron microprobe analysis, (steel number 410). The total lengths over which analyses were made in each steel and the scanning speeds used were:
Distance Speed
Carbon and low alloy steels
5% and 13% chromium steels
Stainless, heat resistant and high speed steels·
6000 lAm 1,1 IAm/s
3000 lAm 0,7IAm/s
2800 lAm 1,3 ~lm/s
of results
For each type of steel the resu Its are reported on one data page and at least one page with micrographs. The more important contents of these pages are explained in table
1.2: Item
Definition
Designations
The corresponding Swedish, American and German standard steel designations The chemical composition of the actual sample The diagram on a data page represents a furnace cooling rate of R=0,5°C/s; fs indicates fraction solidified phase. The table contains mean values of pertinent temperatures obtained from two to five measurements at three cooling rates. The figures in circles refer to the arrows in the diagram . These relate to specific curves and may differ from mean values, they should be used as an aid to interpretation only. Solidification range defined as Iiquidus - solidus temperature, °C Solidification time defined as the time corresponding to the solidification range, s Sulphides, carbides, nitrides and intermetallic phases found in the solidification structure. . The results refer to samples cooled at O,5°C/sand quenched from 50- 60°C below the reported solidus temperature. Segregation and partition ratios as defined in detail above. Quenching temperature, °C Secondary dendrite arm spacing, lAm Ferrite and austenite Quenched liquid
Composition Thermal analysis
• Microsegregation in high speed steels was also measured by point analysis.
For quantitative calibration, the X-ray intensities were compared with those of homogeneous standard specimens having accurately analyzed compositions close to those of the experimental samples. From the microprobe analyses, mean solute concentration values were evaluated in dendritic and interdendritic areas. The segregation ratio (I) of the alloying element (x) from the centre of the dendrites (D) to the interdendritic areas (ID) was calculated as:
1=
Precipitates
Microsegregation
CX ID Cx. D
where Cx is the mean concentration value. I has been calculated in a straightforward way when the segregation occurred within one phase such as ferrite or austenite. In two-phase steels there is, in addition to this segregation, partitioning of alloying elements between the phases, principally between austenite and ferrite. Partition ratios
of the concentration of eleareas. The specific problem ratios in two-phase stainless chapter 6.
Tq d
band y L
Table 1.2 Key to presentation of experimental results
17
2. Carbon and Low Alloy Steels The steels of this group represent commercial steels. They are produced ings of all sizes. Continuous casting for all except the steels of the highest
the most common as ingots and castis also widely used carbon content.
Carbon steels exist with carbon levels from below 0,1 % to above 1,3%, depending upon the required strength and hardness. The carbon steels chosen are listed in table 2.1: No.
C
Si
Mn
201 202 203 204 205 206 207
0,11 0,12 0,18 0,19 0,36 0,69 1,01
0,12 0,3 0,4 0,4 0,3 0,2 0,3
1,3 1,5 1,2 1,5 0,6 0,8 0,5
Table 2.1
Low alloy steels usually contain modest amounts of chromium, nickel, molybdenum and vanadium for hardenability purposes. One of the elements may be present in concentrations of up to about 4 %. In its effect on solidification carbon is still by far the most important element, so that these steels generally follow the behaviour shown in figure 2.1. The following commercial low alloy steels were studied:
Others%
0,03 Nb
Carbon steels
No.
C
208 209 210 211 212 213 214 215 216
0,10 0,20 0,27 0,29 0,30 0,35 0,52 0,55 1,01
Table 2.2
Steel 202 was treated with rare earth metals to modify the sulphide inclusions. The manganese and silicon concentrations are typical for silicon killed steels. The carbon contents have been selected to represent the main solidification paths expected from the equilibrium diagram of the Fe-C system shown in figure 2.1. The solidification of steels with lower and higher carbon contents can be extrapolated. The types of solidification are: • primary ferrite formation •
primary ferrite formation tion
followed by a peritectic
•
primary austenite formation
reac-
Temperature,OC 1550
1500
1450
1400
1350
1300
1250 0,1
Figure 2.1 275-276)
0,2
0,3
0,4
0,5
0,6
0,7
0,8 0,9 1,0 Weight - % carbon
Fe-C system (After Metals Handbook,
Vol 8, 1973,
Si
Mn
Cr
Ni
Mo
0,3 0,3 0,02 0,2 0,2 0,2 0,2 0,3 0,2
0,6 0,9 0,3 0,6 0,5 0,7 0,9 0,5 0,3
1,2 0,8 1,7 1,1 1,0 0,9 1,1 1,0 1,6
3,2 1,0 3,5 0,1 3,2 0,1 0,1 3,6
0,1 0,1 0,4 0,2 0,3 0,2
V
%
0,1
0,3
Low alloy steels
References The solidification of carbon and low alloy steels has been investigated and described by many authors. Dendritic growth (kinetic aspects, arm spacings etc), has been studied in both laboratory ingots of varying sizes and in commercial ingots, [24-37]. Quantitative aspects of microsegregation have been discussed in references [24, 26, 30,31,32,34,35,38-51]. Finally, references [52-54] are examples of papers which, while not predominantly concerned with dendritic growth or microsegregation, nevertheless contain information relevant to the solidification of carbon and low alloy steels.
18 • Steel 201
STEEL 201.
0,1 % CARBON STEEL
Designations SIS
AISI
Werkstoff
Nr
1413
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,11
0,12
1,25
0,040
0,018
0,06
0,03
0,07
0,07
N
0,038
0,012
Thermal Analysis fs
0,0
T (OCl
0)
0,4
0,6
0,8
1,0
dT d't
fD
(OC/s)
T
1500
1450 +0,5 0
1400
dT d't
-0,5
1350 -1,0 -1,5
R
=
0,5°C/s
1300
Average
2,0 Liquidus temperature, Temperature
ferritic primary phase, °C
of austenite formation,
Solidus temperature,
°C
Solidification
range, °C
Solidification
time, s
CD
°C
CD
CD
Precipitates
Interdendritic
MnS.
Microsegregation Element
Mn
R = 1,3
O,5°C/s
Tq = 1390°C
-r (5)
300
200
100
0
Cooling Rate,R, eC/s) 0,5
0,1
1513
1513
1515
1476
1476
1475
1445
1450
1455
65 85
65 240
60 700
Steel 201 • 19
Partly solidified
Figure 1 R Tq
d
= 0,5°C/s = 1510°C = 65 J.Lm
o-dendrites and quenched liquid (L). x 25
400J.Lm
Completely solidified
Figure 2 R
= 2,0°C/s
Tq
= 1390°C d = 80 J.Lm Figures 2-4: Former o-dendrites, transformed to 'Y by the peritectic reaction. x 25
400 J.Lm
Figure 3 R Tq d
= 0,5°C/s = 1390°C = 130 J.Lm
.y x 25
Figure 4 R Tq d
~,"o '#
= 0,1°C/s
= 1390°C = 300J.Lm x 25
400 J.Lm
20 • Steel 202
STEEL 202.
0,12 % CARBON
STEEL
Designations SIS
AISI
Werkstoff
Nr
1.0566
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Altot
Ce
N
0,12
0,27
1,53
0,010
0,005
0,02
0,03
<0,03
0,05
0,029
0,03
0,011
0,2
0,0
Thermal Analysis
0,4
0,5
0,8
',0
CD f T
'500
'450
Average 2,0
Liquidus
temperature,
Temperature Solidus
ferritic
of austenite
temperature,
QC
Solidification
range, QC
Solidification
time, s
primary
formation,
CD
phase, QC QC
CD
CD
Precipitates
Globular
rare earth inclusions
from addition
of Rare Earth Metals (REM).
Microsegregation Element
Mn
1,4
R = 0,5°C/s Tq = 1390 QC
Cooling Rate,R, (OC/s) 0,5
0,1
1514
1515
1514
1471
1475
1477
1440
1440
1460
75
75
55
105
230
700
Steel 202 • 21
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1510°C d = 70 fLm o-dendrites and quenched
liquid (L).
x 25
400
fLm
,, •
'.f'
Completely solidified
,.
•
•
••• •
~
I
\
r ..#.
.•.. " ••
\
.'.. ..,. .." •
Figure 2 R Tq
\
= 2,0°C/s
= 1390°C = 85 fLm Figures 2-4: Former o-dendrites,
1I[lI
•
d
transformed
to y by the peritectic
'
reaction. x 25
..
(
400
fLm
~
.'
•• ~1
/
•
Figure 3 R Tq d
= 0,5°C/s = 1390°C = 200 fLm
x 25
400 fLm
Figure 4 R Tq d
..1:' '.
r
= 0,1°C/s = 1390°C = 390 fLm x 25
400
fLm
22 • Steel 203
STEEL 203.
0,18 % CARBON STEEL
Designations SIS
AISI
Werkstoff
Nr
2106
Composition
(wt-%)
C
Si
Mn
p
S
Cr
Ni
Mo
Cu
Nb
0,18
0,44
1,26
0,016
0,025
0,01
0,02
0,06
0,02
0,03
0,0 0)
's
Thermal Analysis
0,4
0,8
0,6
N
0,004
0,007
',0
dT dt
T (OC)
(OC/s)
'500
+',5 +',0
'450 +0,5 0
'400
-0,5
dT dt
1350
-',0 -',5
R == 0,5 C/s Q
1300
200
100
0
Average
2,0 Liquidus temperature, Temperature
Solidification
primary phase, QC
of austenite formation,
Solidus temperature, Solidification
lerritic QC
0)
QC
CD
CD
time, s
Precipitates
Interdendritic
MnS.
Microsegregation Element
Mn
1,4
R == 0,5 QC/s Tq == 1370 QC
Cooling Rate,R, eC/s)
0,5
0,1
1507
1506
1507
1467
1470
1473
1415
1430
1460
90 85
range, QC
T(s)
80
50
210
570
Steel
203 • 23
Partly solidified
Figure 1
R = 0,5°C/s Tq = 1500°C d = 65 Mm o-dendrites and quenched liquid (L). x 25
400 Mm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1370°C d = 80 Mm Figures 2-4: Former o-dendrites, transformed to y by the peritectic reaction.
x 25
400 Mm
r
l~' t
Figure 3
R
= 0,5°C/s
Tq d
= 1370°C = 190Mm
.~ f
x 25
Figure 4
R
= 0,1°C/s
Tq d
= 1370°C = 250 Mm
x 25
400 Mm
24 • Steel 204
STEEL 204.
0,2 % CARBON STEEL
Designations SIS
AISI
Werkstoff
2172
Nr
1.0580
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Altot
N
0,19
0,40
1,42
0,012
0,007
0,07
0,13
0,02
0,08
0,006
0,005
fs
Thermal Analysis
0,0
0)
0,6
0,4
0,8
1,0
dT dt
T (DC)
(oC/s)
1500
+1,5 +1,0
1450 +0,5
1400
-------
----
0 -0)5
dT 1350
dt'
-1,0 -1,5
R
= O,soC/s
1300
0
"((5)
200
100
Average Cooling Rate,R, rC/s)
Liquidus temperature, ferritic primary phase, °C Temperature
of austenite formation, °C
Solidus temperature, °C Solidification Solidification
CD
CD
CD
range, °C time, s
MnS.
Microsegregation Element
Mn
1,6
0,5
0,1
1503
1503
1506
1480
1477
1480
1425
1440
1460
85 80
Precipitates
Interdendritic
2,0
R = 0,5 °C/s Tq = 1370 °C
65
45
210
600
Steel
204 • 25
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1498°C d = 85 f.Lm o-dendrites and quenched liquid (L).
x
25
400f.Lm
• Completely solidified
... ..• ..
•••
,
'. \. '.
.
"'\
Figure 2 R = 2,0°C/s Tq = 1370°C d = 75 f.Lm Figures 2 - 4: Former o-dendrites, transformed to y by the peritectic reaction.
.,
"
"'
x 25
400 f.Lm
~ I •.
•.
•
~
J
-"<,
~
.
.•..
:~
r'", -....
."
,
i.
•
~
I
Figure 3 R Tq d
= 0,5°C/s = 1370°C = 120 f.Lm x 25
•
..~ !'
'f
:I
.. Figure 4 R Tq d
= 0,1°C/s = 1370°C = 230f.Lm x 25
f.
;
," .~
.
,.
t.
•
""J
, ••
26 • Steel 205
STEEL 205.
0,4 % CARBON STEEL
Designations SIS
AISI
Werkstoff
1550
1034
1.1181
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,36
0,27
0,58
0,015
0,012
0,08
0,05
0,02
0,12
N
0,004
0,007
1450
1400
1350
R = 0,5°C/s
1300
o
Average
Liquidus
temperature,
Temperature Solidus
of austenite
temperature,
Solidification Solidification
ferritic QC
primary
formation,
CD
phase, QC QC
CD
(3)
range, QC time, s
Precipitates
Interdendritic
MnS.
Microsegregation Element
Mn
1,6
R = 0,5 QC/s Tq = 1370 °c
300
200
100
T( 5)
Cooling Rate,R, (eC/s)
2,0
0,5
1496
1498
1501
1479
1480
1483
1415
1425
1440
85 85
75 230
0,1
60 840
Partly solidified
Figure 1 R Tq
d
= 0,5°C/s = 1480°C = 50 fLm
o-dendrites
and quenched liquid (L). x 25
400 fLm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1370°C d = 85 fLm Figures 2-4: Former o-dendrites, transformed to 'Y by the peritectic reaction. x 25
400 fLm
.•- ...
Figure 3 R Tq d
. .,
•....• .•
= 0,5°C/s
•
= 1370°C
'
.,A ~..,
.,,'
•
".
= 90 fLm
x 25
400 fLm
•
t
-
Figure 4 R Tq d
= 0,1°C/s = 1370°C = 280 fLm x 25
400 fLm
l
,)<
28 • Steel 206
STEEL 206.
0,7 % CARBON STEEL
Designations SIS
AISI
Werkstoff
1770
1070
1.1231
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,69
0,23
0,72
0,022
0,024
0,02
0,02
0,01
0,03
fs
Thermal Analysis
0,0
0,2
0,4
0,6
N
0,006
0,002
0,8
1,0
dT d1:
T (OC)
(OC/s)
+1,5 +',0 1450 +0,5 0
-(])---
1400
~~0
-0,5
Ql
1350
-1,0
d't'
-1,5
R
= 0,5 C/s
1300
Q
0
200
100
Average
2,0 Liquidus
temperature,
Temperature Solidus
of formation
temperature,
Solidification Solification
austenitic QC
primary
of eutectic,
CD
QC
phase, QC
CD
CD
1471 1370-1335 1335
range, QC time, s
'((5)
Cooling Rate,R, eC/s) 0,1
0,5
1474
1466 1370-1355
1420-1370
1355
1370
140
120
105
105
250
1020
Precipitates 1. Interdendritic Fe3P - Fe3C - austenite eutectic. The eutectic remained after cooling but was dissolved after homogenizing for 4 h at 1200 QC. 2. MnS. (Distribution and morphology at different cooling rates shown in figures 5-8.)
Microsegregation Element
Mn
1,7
R = 0,5 QC/s Tq = 1300 QC
to 850 QC, (see figures
9 and 10),
Partly solidified
Figure 1 R Tq
d
= O,5°C/s = 1455°C = 70 fLrn
y-dendrites
and quenched liquid (L), x 25
400 fLrn
.
fir
4
}
l
"•
Completely solidified
•I ~
1,I • " I
•tt'
R = 2,O°C/s Tq = 1300°C d = 75 fLrn Figures 2-4: y-dendrites.
~
.( .
, " t •
Figure 2
.J
,
I
"
)
•
•
••
•
. ,.
-
I
A
..•
"
,
""
""
••
•
,.
,.
',: .....•.
~
,..
•
••
.
'
.
.., 4\
••
'" .. .. • ....... ." I'\. ....
i·'
...
•
,.•
'
•
, 1
'
•• •
..,
..",
••
' • .I
,; , x 25
}
"t .
,
.. ,
• t
,
I
,.... -,'r'
, , .. . , , . - ..... ••
•
.•.~
• 11
I
.,.
'
• I, ,
~ J.j.")...,"~''.~ /"
*••
¥._~_....,,.... ...,.e'
if
"w'
•••.
, ••
_-
~.,f
*
~
;'j',
#> (,
';"I
Figure 3 R Tq d
= O,5°C/s = 1300°C = 130fLrn .•....
x 25
','
\
"
tt' Figure 4 R Tq d
..
= O,1°C/s = 1300°C = 160fLrn
• • •• •
.
t
•
I
"
If
x 25
(\
•
'1
30 • Steel 206
!
Figure 5 R = 0,5°C/s Tq = 1300°C Interdendritic MnS.
~
.. . \
../
100 fLm
x 150
Figure 6 R = 2,0°C/s Tq = 1300°C Figures 6-8 show the influence of cooling on manganese sulphide coarseness.
,
.•...
x 600
{ 7
.\..-
~
,
• I
, Figure 7 R Tq
= 0,5°C/s = 1300°C
x 600
I
Figure 8
= 0,1°C/s = 1300°C
R Tq •••
t
•..•
'lit
25
fLm
x 600
rate
Steel 206 • 31
Figure 9 R = 0,5°C/s Tq = 1300°C Figures 9-10: Interdendritic Fe3P-Fe3C-austenite eutectic (E), approximately 0,05 vol-%. x 1000
10 fLm
Figure 10 R = 2,0°C/s Tq = 800°C Etched to darken and confirm the existence of the Fe3P phase in the eutectic (E). The eutectic contains 2 wt-% P. x 2000
5 fLm
"- E
32 • Steel 207
STEEL 207.
1,0% CARBON STEEL
Designations SIS
AISI
Werkstoff
1870
1095
1.1274
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
1,01
0,25
0,46
0,012
0,009
0,02
0,03
0,02
0,03
fs
Thermal Analysis
T (QC)
0,0
0,2
0,4
0,6
N
.$.0,004
0,002
1,0
0,8
dT dt
CD
t
1450
(QC/s)
T
+1,5 +1,0
1400 +0,5 0
1350
-0,5 1300
-1,0 -1,5
R = O,soC/s
1250 0
100
Average
Liquidus Solidus
temperature, temperature,
Solidification
austenitic °C
CD
primary
phase, cC
CD
range, °C
Solidification
time, s
Precipitates
1. MnS 2. Interdendritic
eutectic
«
0,05 vol. %), as in steel 206
Microsegregation Element
Mn
2,1
R = 0,5 °C/s Tq = 1260 °C
300
200
Cooling
1:(5)
Rate,R, (OC/s)
2,0
0,5
0,1
1457
1457
1459
1310
1320
1340
150
140
120
110
300
1600
Steel 207 • 33
Partly solidified
Figure 1 R 0,5°C/s Tq 1445°C d 50j.Lrn y-dendrites and quenched
liquid (L). x 25
400j.Lrn
..
•~.. t
'. '\
" I
"
"\
.',
,':",.i.. . ... ~
Completely solidified
I
:
"
;'
".
\. . , " \', .Y~
•.. ,
"
'"
. .-
-+,.1
'.
•••
"
".j
Figure 2
.,; "r
,
R 2,0°C/s Tq 1260°C d 70j.Lrn Figures 2-4: y-dendrites.
'-
-,
'\
x 25
400j.Lrn
.'..
,
.,.-~.-
r.'
1-
;
•
"
"
.
--'
..:.)
\.
'
;~, .. .
,..
.. • , " ..,. ,.~.
'" "
l
'-. .
.•.....
\
,
,
.• :.i
. ,;"
f"
". I
,
.' ••
'. .. .•..
1Y
\.
"
""
l;'
,.
.,
R Tq d
0,5°C/s 1260°C BOj.Lrn
"",. x 25
400j.Lrn
x 25
400j.Lrn
Figure 4 R Tq d
~'o.t
•
Figure 3
0,1°C/s 1260°C 210 j.Lrn
."
, .1ft'
,
"
.41' ~
Cl.,
.,-
•• .""
,
'"
f • e,
"
.. ..
•.II "\
•
." •••
I
.*,
'"
t~:~
~~
~
~. ,"
•
34 • Steel 208
STEEL 208.
0,1 % C Cr Ni
LOW ALLOY STEEL
Designations SIS
AISI
Werkstoff
Nr
9310
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,10
0,28
0,57
0,008
0,009
1,14
3,3
0,14
0,11
0,02
fs
Thermal Analysis
0,0
T
0,2
0,4
0,6
1500
0,013
0,009
1,0 dT dT
CD t
(oC)
0,8
N
(oC/s)
fI>
1450
0
1400
dT dt
1350
-1,5 R = 0,5°C/s
1300
0
Average 2,0
Liquidus temperature, Temperature
ferritic primary phase, °C
of austenite formation,
Solidus temperature,
°C
Solidification
range, °C
Solidification
time, s
CD
°C
CD
CD
Microsegregation Element
Cr
Ni
Mo
1,3
1,4
2,5
R = 0,5°C/s Tq = 1400°C
Cooling Rate,R, eC/s)
0,5
0,1
1501
1501
1502
1485
1485
1487
1450
1450
1465
50 85
Precipitates
lIs)
200
100
50
40
210
640
Steel 208 • 35
Partly solidified
Figure 1 R Tq
d
= O,5°C/s = 1495°C = 70 J.Lm
o-dendrites
and quenched liquid (L). x 25
400J.Lm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1400°C d = 75 J.Lm Figures 2-4: Former o-dendrites, transformed to y by the peritectic reaction. x 25
400 J.Lm
x 25
400 J.Lm
Figure 3 R Tq d
=
0,5°C/s
= 1400°C = 110J.Lm
,·.l #
,f
•
,. .•.. ~
'"
-.
..
.. .,
,,.,'
j1r
,
If
Figure 4 R Tq d
..
4f
••
= 0,1°C/s
;.. t
= 1400°C
= 250J.Lm x 25
400 J.Lm
,
,
\
.
e'
36 • Steel 209
STEEL 209.
0,2 % C Cr Ni
lOW AllOY
STEEL
Designations SIS
AISI
Werkstoff
Nr
2512
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,20
0,25
0,90
0,014
0,039
0,81
1,05
0,06
0,07
0,02
fs
Thermal Analysis
0,0
T
0)
0,6
0,"
0,8
N
0,036
0,009
1,0
dT dt
CD
(QC)
(QC/s)
~ T
1500
.1,5 .1,0
1450 .0,5 0
1400
-0,5 1350
R
-1,0 -1,5
1300
= 0,5 C/s Q
0
100
200
Average
Liquidus
temperature,
ferritic
Temperature
of austenite
Temperature
of MnS-formation,
Solidus
temperature,
Solidification
QC
primary
formation,
CD
phase, QC QC
QC
CD
CD
CD
Solidification
Precipitates
MnS. The steel was resulphurized
(see figures
5-7).
Microsegregation Element
Cr
Ni
1,5
1,4
R = 0,5 QC/s Tq = 1370 QC
Cooling Rate,R, (OC/s) 0,5
0,1
1502
1502
1503
1474
1465
1474
time, s
1'(5)
2,0
1460-1420
range, QC
300
1460-1425
1420
1425
85 95
230
80
-1445 1445
60 750
Steel 209 • 37
Partly solidified
Figure 1 R Tq
d
= O,5°C/s = 1495°C = 60 fLm
o-dendrites
and quenched
liquid (L). x 25
400 fLm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1370°C d = 85 fLm Figures 2-4: Former o-dendrites, transformed to"y by the peritectic reaction.
)• -'<' I'~ ,..J
x 25
400 fLm
.
.~-" ....
- ~.
:)"',.-/'
, '"',,-J.
"
•
,.
•
,.,.
,
i
. )
. "
..
,.
.
I.
Figure 3 R Tq d
= O,5°C/s = 1370°C
=
110fLm
x 25
400 fLm
;
,.., Figure 4 R Tq d
= O,1°C/s = 1370°C
=
180fLm
/
x
25
400 fLm
.•.
<{.
.
)
•
38 • Steel 209
"
--
,"
,'.
(
:;
t'
Figure 5
J
-.-
R = 2,0°C/s Tq = 1370°C Figures 5-7: Interdendritic
'"
,
',",:,
.•... "
.'~ , I
100 Mm
•
'-
~
..
"-
..-
•
.I
x 150
,
I
~
Figure 6 R Tq
= 0,1°C/s = 1370°C
x 150
, .'
' •.•. ::'.,'
.' ~. ".'
::',:', •.•
.. , #
••••
Figure 7
't,
~
, ·r· --;'
R Tq
= 2,0°C/s = 1370°C
,,~
, f,' y
x
600
MnS.
Steel 210 • 39
STEEL 210.
0,3 % C Cr Ni Mo
LOW ALLOY STEEL
Designations SIS
AISI
Werkstoff
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,27
0,02
0,32
0,006
0,008
1,66
3,5
0,42
0,04
0,08
Thermal Analysis
fs
0,0
0)
0,4
0,6
0,8
N
0,044
0,007
1,0
T
CD
(OC)
f
dT d't
CD
(OC/s)
~ +1,5
T
+1,0 1450 +0,5 0
1400
-0,5
dT 1350
dt
-1,5
1300
R = O,soC/s
-1,0
100
0
200
300
L(s)
Average Cooling Rate,R, (CC/s)
Liquidus temperature, Temperature
ferritic primary phase, °C
CD
of austenite formation, °C
Solidus temperature, °C Solidification
range, °C
Solidification
time, s
CD
CD
Precipitates
Very small amount of fine interdendritic
carbides containing
Mo and V.
Microsegregation Element
Cr
Ni
Mo
v
1,6
1,3
2,2
2,0
R = 0,5 °C/s
Tq = 1350°C
2,0
0,5
0,1
1487 1471 1395 65 80
1493 1490 1430 60 200
1492 1490 1445 50 640
40 • Steel 210
Partly solidified
.•........ ::a. •. ~.
\
":
'f
I
.~.. '"
.
.:.
.
I '.~ ,"
~-..
<
.• Figure 1 R Tq
= 0,5°C/s
d
=
= 1488°C
60
fLm
o-dendrites and quenched liquid (L), -.'""'!.-
400
........
x 25
fLm
.:
,,'
.
)--
•..
'
Completely solidified
_. ·4 I
~~.
....•..._J"
I'
'-.. .......•
•
:.;-. ~ "\.: ..- f".
,I,. {J
.. .-'
,
.. I
Y
".
.\.....
,
-
','
'"
-~.....• .-,
.•..
Figure 2 R = 2,0°C/s Tq = 1350°C d = 70 fLm Figures 2 - 4: Former o-dendrites, transformed to y by the peritectic reaction.
.
x
~
25
Figure 3
, f
·I
R Tq
= 0,5°C/s
d
=
400
fLm
= 1350°C
90
fLm
x 25
f •
•
Figure 4
.• .r·
R Tq d
= 0,1°C/s =
1350°C 160 fLm x 25
Steel211
STEEL 211.
0,3 % C Cr Mo
• 41
LOW ALLOY STEEL
Designations SIS
AISI
Werkstoff
2225
4130
1.7218
Composition
(wt-%)
Nr
C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,29
0,21
0,62
0,012
0,006
1,11
0,15
0,21
0,04
0,04
Thermal Analysis
0,0
0,2
0,4
0,6
0,8
N
0,011
0,004
1,0
CD t 1500
1450
1400
0 dT d,(
1350
R = a,scC/s
-1,5 1300
0
100
200
Average
Liquidus temperature, ferritic primary phase, cC Temperature of austenite formation, cC Solidus temperature, cC
CD
CD
CD
300
t(s)
Cooling Rate,R, eC/s)
2,0
0,5
0,1
1501
1501
1503
1460
1471
1475
1420
1435
1450
Solidification
range, cC
85
65
55
Solidification
time, s
95
220
630
Precipitates
Small amount of MnS.
Microsegregation Element
Cr
Mo
1,6
2,0
R = 0,5 CC Is Tq = 1360 cC
Partly solidified
Figure 1 R = 0.5°C/s Tq = 1495°C d = 60 fLm 8-dendrites and quenched
400 fLm
•
.
... \
\..
\ \\.:\ "'-
\
'.
,
•
\' \.\. '.
, •..••.. "
••
:.
\'"
••
,
\"
•••.
\.'
."
.. ', -'\ '. '.
.,'-
) ... '-\. •
/.
'.
I"
'....
J'
'.
~
""
"
""
'.: ...
."
••••••-.'
'\. '" .•.
'r'
4.'·"~~'J·,·.(,'j .,-
"
,':~'
, ,.'•.~.
I",,'
,.-'.'
.•
. .... ,. \ T"
\...
"
.......-
.
t..' ~
~I
.,'.
"' •.••. •
I
~
••
-
"..
.•••.• -r::
-.....f..
I
J'
. r.", .""
•
#
:.
-.f:' ""..... ,'\. .••..
••
~
A
~
~
••
_
".
r
.,~-t. ..{ (. ../
~ ".
l r\.) " I
.•.
_....
(., "" '
'\,"
M·.,~
r.
•
\.
Completely solidified
'
"'li
.
, J
".')-.
t
.
..
••••••......'
'
'I,
.•
~
•
r..) ..,.; ~
IAl.
\.. '\" \'. . r 'l. ''.
.
".
..,tJ-
\
,.
t
."
I ••.•
,,'
\.
.
\
\
.•••
••. '. "
....,
•.•••...•
,,':...
•'t~:, "".'" "'. "' . \ '.
". \ ~,'. ~.: .~"
..')
/ .•......•. ~ 1.." ')
\.
\
i'~
~
\.' ..'\ •." >..•.•.
\ .•.• '
~
. .'-,', \.''.
.."..' \.
,
',," '
. ',:)0
'.' .
\
"~"...:-,
•
'.
..•....•. ..). ~.
.:'-..
••••..
'. '.
\-
x 25
>"":'.
.. r~,~'"\'\,.''lo.
'"' \ ~..¥.f \0....., " '. \ \.'\.~. ~ '"\" \ '"
,.
I
,.. ~
Figure 2 R = 2.0°C/s Tq = 1360°C d = 70 fLm Figures 2-4: Former 8-dendri~es. . transformed to y by the peritectlc reaction.
Jo,.~
J
x 25
I
Figure 3 R Tq
= 0.5°C/s = 1360°C
d
=
90
fLm
x 25
Figure 4 ",
liquid (L).
R Tq d
= 0.1°C/s = 1360°C = 150fLm
400 fLm
x 25
Steel 212 • 43
STEEL 212.
0,3 % C Cr Ni Mo
LOW ALLOY STEEL
Designations SIS
Werkstoff
AISI
Nr
2534
Composition
(wt-%)
C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,29
0,22
0,52
0,009
0,010
1,02
3,2
0,25
0,05
0,03
0,0
Thermal Analysis
0,2
0,4
0,6
0,8
N
0,010
0,005
1,0
1450
1400
1350
R = O,5 C/s Q
Liquidus
temperature,
austenitic
Liquidus
temperature,
ferritic
Temperature Solidus
of austenite
temperature,
QC
Solidification
range, QC
Solidification
time, s
primary
primary
formation,
CD
o
phase, QC
phase, QC QC
100
CD
CD
Precipitates
Microsegregation Element
Cr
Ni
Mo
1,7
1,4
2,2
R = 0,5 QC/s
Tq = 1360 QC
200
300 't'(s)
Partly solidified
Figure 1 R = 0.5°C/s Tq = 1480°C d = 70 fLm o·dendrites and quenched
400 fLm
. j
,, ),
<",l
.'>
(
.I
Y
J.
...
r ' I 'f ~,
~ ',':
(
.
;/: .\;
,...-
.A I
,
"
~
•....• ' .. . ) / .
•
, '
1...
..,... ,
\
,. ..
;'
..
,
I
Figure 2
t.. ,c, .'-
R = Tq = d = y-dend (Note:
J
2,O°C/s 1360°C 75 fLm rites. primary y at this cooling rate.)
.. ,,
x 25
r ~
,...-'
•..
".,.
'\
<..
•, \
.
1 A
/,
•
I <
Completely solidified
~Jf'
I
r
..
~
Y
I'
,
,
--
, .
"
~,
\
f
.,\
" ••
25
, I
'r
\
i
,.
.•
.. ..
f
,1,.- , 1&
\
~
)-
~
)
)
"
\
x
liquid (L).
\
. Figure 3
J
'.
I
,-. \
,..,
...I
•..
(
,
•
R = O,5°C/s Tq = 1360°C d =110fLm Figures 3-4: Former o-dendrites, transformed to y by the peritectic reaction.
.J
•• Jo
,
,
}
~ ..,.. I
\'"
.
,
r
x 25
-
Figure 4 R Tq d
"
",
= O,1°C/s = 1360°C =180fLm
400 fLm
x 25
Steel 213 • 45
STEEL 213.
0,35% C Cr Mo
LOW ALLOY STEEL
Designations SIS
AISI
Werkstoff
2234
4135
1.7220
Composition
(wt-%)
Nr
C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,35
0,24
0,67
0,010
0,020
0,92
0,05
0,19
0,07
0,02
fs
Thermal Analysis
0,0
0,2
0,6
0,4
N
0,004
0,008
1,0
0,8
T (oe)
CD
t
1500
.1,5
T .1,0 1450
.0,5
o
1400
-0,5 1350 - 1,0 -1,5
R = O,5°C/s
1300
o
100
200
Average 2,0
Liquidus temperature,
ferritic primary phase, °C
Temperature of austenite formation, °C Solidus temperature, °C Solidification
range, °C
Solidification
time, s
CD
CD
CD
Microsegregation Element
Cr
Mo
1,5
2,4
R = 0,5 °C/s Tq = 1340 °C
Cooling Rate,R, rC/s) 0,5
0,1
1494
1493
1495
1479
1474
1480
1405
1415
1425
80
70 670
90 85
Precipitates
't( 5)
230
46 • Steel 213
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1485°C d = 65 J1.m o-dendrites and quenched liquid (L).
400 J1.m
x
25
Completely solidified
:t
/
.(--
.
.•..'
"
./'
Figure 2 R = 2,0°C/s Tq = 1340°C d = 80 J1.m Figures 2 - 4: Former Il-dendrites, transformed to y by the peritectic reaction.
j
.~ \
\.
\\
...• .1
,. ,.. r
I T.··."
-<
.'"
I
... ),
"
... ..
.
•,; t ,
;
..... ,",
,
-
"
(
~,'
""
·1 ,r
.,.;'
.. ••
l
4.
'
x 25
f :.
-""",,
.••..
.# "
400 J1.m
.. ....,
"'"
S
j
\
'..
~i>
•
.r .•..
",,'
..•••.
--.~
- ..
..
. .. ..
"-
--' .. -
..
"
y
.
-'"
.-
..-
"-
R Tq d
= 0,5°C/s = 1340°C
= 100J1.m
,-
I
.••..
...
Figure 3
,
-" .-
x 25
••
•-.
I ,
••
..
"'.
I
" t 1JIl
I
••
..
•
• • •
I "
Figure 4 R Tq d
= 0,1°C/s
= 1340°C = 190J1.m x 25
Steel 214 • 47
STEEL 214.
0,5% C Cr
LOW ALLOY STEEL
Designations SIS
2230
AISI
Werkstoff
6150
1.8159
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,52
0,22
0,85
0,010
0,006
1,07
0,07
0,07
0,04
fs
Thermal Analysis
0,0
0,2
0,4
0,6
N
0,14
0,008
~0,004
1,0
0,8
dT d"t
T (OC)
(OC/s)
CD t
1500
+1,5
T
+1,0
1450 +0,5 0
1400
dT dt
-0,5
1350 -1,0 -1,5
R = O,soC/s
1300 0
200
100
300
't (5)
Average Cooling Rate,R, eC/s)
2,0 Liquidus Solidus
temperature, temperature,
austenitic °C
Solidification
range, °C
Solidification
time, s
CD
primary
phase, °C
CD
Small amount
carbides.
Microsegregation Element
1482
1482
1483
1385
1400
85
of interdendritic
Cr
V
2,1
1,9
R = 0,5°C/s Tq = 1310 °C
0,1
1380 100
Precipitates
0,5
95 250
80 740
48 • Steel 214 "'," .I
..-,
,
.:. L',:"~"'>
.' ; ,..-..
. '
"
. ~/
.'
",
( •
.
j
.I
,
.
/;
"
f
,f
'.
!A
f -
.!/
f
•..I ~ '<..
, ... J;.~ ;;,
-.
'.
"
f
J
(
•. ' /'!,
...
.f
:' ',', ,I
/:
.'~....
,
'.
,...,
-,
Jr'.
\ \
\
\
'. '\
f
\
.
'.
\ '.
\
,"'. \..-
...••
" I
!
•
/'
I
I
~
,,
'\'
•
),
\'1.
. -,
~
I' , ~
liquid (L).
""
...
.. f
,...
,I
R = 2,0°C/s Tq = 1310°C d = 75 fLm Figures 2-4: y-dendrites.
fLm
x 25
~
" J
(
.
Figure 3 Tq d
= = =
400
fLm
R
•
.•.
-
-.-.
')
..
Figure 2
". ~"
..,/
x 25
.•.
."
,
fLm
Completely solidified
400
~
•
~
....I
""
:
,
•
••
.
I
~
.
,;
,.
.~
"... "
..•
.•
,,
I
and quenched
,
\
,
\
......,
•
1
.,
, I
.r
,
J
•••
}
55 fLm
'.
).. ).
I
I.
\
•
"
.
\
I
\
\ \
,
\
I"-
\
lo
= 1470°C
\ \
\
\
\
I
\
.
,
'\
\
,
t
.~
\
"
..,
=
\ 'I
I
'\
\.
.'
(
d
400
,
~
{ ,
\
t
\
\
\
,,. {
, •
t\ . ~ '-
\
J
= 0,5°C/s
'>.
.,•• ../
"
'.'
R Tq
y-dendrites
-.
;'..~:,~
.
Figure 1
\
.!r
f'
Partly solidified
0,5°C/s 1310°C 90 fLm
...J
,
J f
-
x 25
••
Figure 4 R Tq d
=
400
fLm
0,1°C/s 1310°C = 140 fLm x 25
Steel 215 • 49
STEEL 215.
0,55 % C Cr Ni Mo
LOW ALLOY STEEL
Designations SIS
Werkstoff
AISI
2550
Nr
1.2721
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
0,55
0,27
0,50
0,019
0,012
0,99
3,0
0,31
0,06
0,08
fs
Thermal Analysis
0,0
0,2
0,4
0,6
N
0,8
0,011
0,008
1,0
dT de
T (OCl
(OC/s)
1500 +',5
T 1450
0
1400
dT d't' 1350
-1,5
R
= O,5°C/s
1300
100
0
200
Average
Liquidus
temperature,
Temperature Solidus
austenitic
of formation
temperature,
°C
primary
of eutectic,
CD
phase, °C
CD
°C
300
T(s)
Cooling Rate,R, (OC/s)
2,0
0,5
0,1
1471
1471
1472
1365-1335 1335
-1370 1370
-1375 1375
Solidification
range, °C
140
100
75
Solidification
time, s
100
260
720
Precipitates
Interdendritic
carbide-austenite
eutectic,
Fe3P and MnS, (see figure 5).
Microsegregation Element
Cr
Ni
Mo
v
2,1
1,2
2,5
2,0
R
=
0,5°C/s
Tq = 1290 °C
Partly solidified
Figure 1 R
Tq d
= 0,5°C/s = 1465°C = 65 fLm
y-dendrites
400 fLm
and quenched
x 25
Completely solidified
""
.....•
,
"
l
,,J
Figure 2 R
= 2,0°C/s
Tq
=
1290°C d = 70 fLm Figures 2-4: y-dendrites,
400 fLm
J .../
...., t . 1
x 25
" ...j) :( -\ r
iT- .
f' ('.
·'A.-
\"
'",
"
"\.,.
"
,t.......,
Figure 3
"
".
R
= 0,5°C/s
Tq
= 1290°C = 90 fLm
d
400 fLm 1
x 25
\.
Figure 4 R
Tq '
•
. ;/J ..
liquid (L),
I
.
d
= 0,1°C/s 1290°C
= 130
fLm
x 25
Steel 215 • 51
Figure 5 R
Tq
= O,5°C/s = 1290°C
Interdendritic area with carbide-austenite eutectic (El, Fe3P and MnS. x 1000
52 • Steel 216
STEEL 216.
1,0 % C Cr
LOW ALLOY STEEL
Designations SIS
AISI
Werkstoff
2258
52100
1.3505
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
v
1,01
0,23
0,33
0,021
0,026
1,55
0,02
0,01
0,04
0,04
Thermal Analysis
Is 0,0
0,2
0,4
0,6
N
0,011
1,0
0,9
0,8
0,003
dT d't
T
CD t
(OC)
145O
(OC/s)
+',5
T
+',0 1400 .0,5
°
1350
-0,5 1300
-1,0 - 1,5
R = 0,5 C/s
125O
Average 2,0
Liquidus temperature, Temperature
Solidus temperature, Solidification Solification
austenitic
of formation C
primary phase, DC
of eutectic, QC
CD
CD
300
200
100
° CD
1450 1320-1270
range, C time, s
L(S)
Cooling Rate,R, ("C/s) 0,5
0,1
1450
1451
1340 -1300
-1300 ~1300
1270
1300
180
150
150
170
330
1400
Precipitates
1. Interdendritic Fe3P-carbide-austenite eutectic (14% Cr, 5% P). The eutectic figures 5 and 6), but was dissolved after homogenizing for 4 h at 1200 cC. 2. Interdendritic
MnS.
Microsegregation Element
Cr
2,6
R = 0,5 cCls Tq = 1250 cC
remained
after cooling
to 850 DC (see
Partly solidified
Figure 1 R Tq
= 1440°C
= 0,5°C/s
d
= 60
y-dendrites
JLm
and quenched
liquid (L). x 25
400
JLm
x 25
400
JLm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1250°C d = 75 JLm Figures 2-4: y-dendrites.
Figure 3
R Tq d
= = =
0,5°C/s 1250°C 90 JLm
'-.:a;
.---x 25
400
..• JLm
R..' ,,:' • 1'...,...
"...,.
.'
.
••
•
p
~
• ~.
..•..
,
;'
'
I
~:~
J
y
,0"
".
..•
•
~
,f
1
Figure 4
R Tq d
= = =
'
.•.. ••
x 25
400
JLm
I
•
.•
.-1 .. ,
V ..
~
f . ~~
#': . .)..~
,
IJ
~
0,1°C/s 1250°C 140 JLm
'-
'.1J
-'
4
.}
, .-
?
J.•..
•• :
.!:.'"
Figure 5 R = 2,0°C/s Tq = 1250°C Interdendritic Fe3P-carbide-austenite eutectic (E) (approximately 0,1 vol-%). The eutectic contains 14% Cr and 5% P.
'-E
x 1000 • t
•
Figure 6 R = 2,0°C/s Tq = 850°C After cooling to 850°C, small amounts of the eutectic shown in figure 5 remained. (Annealing for 4 h at 1200°C completely eliminated the eutectic.) x 1000
55
3. Chromium Steels Steels with chromium as the only, or the dominant alloying element are normally called chromium steels. The two common groups included here are steels with 5 and 13% chromium. In the first family the alloying addition is used to increase hardenability and to give the final product a favourable combination of strength and toughness. In the 13% Cr-steels, chromium imparts both corrosion resistance and strength. With reference to the structure of the steel products, the group comprises ferritic stainless (C < 0,08%), hardenable martensitic stainless (C ~ 0,09%), and low carbon hardenable martensitic stainless steels with 4-6% nickel. Because of their constitutional similarity at high temperatures, the 5 and 13% chromium steels are kept together in this work, rather than grouping the 13% Cr- steels with the Cr-Ni stainless materials.
Temperature
1600 I
1400
1300 1200 l+y+Kc
900
Si
301 302 303 304
0,13 0,35 0,50 0,96
0,4 1,0 1,0 0,3
Mn
Cr
0,4 0,5 0,5 0,7
5,0 5,2 5,1 5,2
Ni 0,2 0,2 0,1
Mo 0,6 1,3 1,4 1,2
V
l
a
Chromium steels are produced as castings and ingots of moderate size, continuous casting is unusual.
C
I
1500
1000
No.
5% Cr
I
l+a
Steels containing 17-25% chromium have not been examined. They are similar to the 13 % Cr-group in regard to solidification and structure at high temperatures.
Both the groups of steels investigated are made with a wide range of carbon contents. For a given chromium level the solidification mode is strongly dependent on carbon; this can be seen in the pseudobinary phase diagrams, figures 3.1 and 3.2. Account was taken of this effect of carbon when chosing the production steels for examination; these are given in tables 3.1 and 3.2:
;C
o
1
Weight Figure
3.1
Fe-5Cr-C
5% chromium
-4 -%carbon
system
Temperature~C %
1600 13 % Cr
1,0 1,2 0,2
1500 L
a Table 3.1
3
2
steels
1400 1300
No.
C
Si
Mn
Cr
Ni
305 306 307 308 309
0,04 0,07 0,14 0,32 0,69
0,5 0,5 0,2 0,2 0,4
0,6 0,5 0,7 0,3 0,6
13,4 12,9 12,0 13,9 13,1
5,5 0,2 1,2 0,2 0,2
%
1200
Table 3.2
13% chromium
1100 y+K2
1000
steels (see also table 4.1)
a 900 As indicated in figures 3.1 and 3.2 these grades cover the following solidification processes: •
primary ferrite formation
•
primary ferrite formation tion
•
by a peritectic
reac-
2
1
3 Weight - % carbon
Figure
followed
0 O'+y+K
3.2
Fe-13Cr-C
system
(Figures 3.1 and 3.2 after Bungardt (1958) 3, 193-203, Kc = Fe3 C, K,
=
et al. Arch. EisenhOttenw. M23C6, K2 = M7C3)
29
primary austenite formation
It should be noted that the pseudobinary phase diagrams are strictly valid for ternary Fe-Cr-C-alloys only. The superimposed lines for the commercial steel grades are therefore only indicative.
References The solidification of chromium steels has not been widely studied. General aspects of the process have been reported, [55-59]. Research work on microsegregation is described in references [60-64].
56 • Steel 301
STEEL 301.
0,1 % C
5 % CHROMIUM STEEL
Designations SIS
AISI
Werkstoff
501
1.7362
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,13
0,36
0,37
0,003
0,007
5,0
0,01
0,58
0,02
Thermal Analysis
fs
0)
T
0,4
0,6
0,8 0,9
v
W 0,01
N
0,01
0,009
0,006
1,0
dT d't
CD
(OC)
(OC/s)
~
1500
+1,5 +1,0
1450 +0,5 0
1400
-0,5
dT dt
1350
-1,0 -1,5
R
= 0,5 C/s
1300
Q
'[(5)
200
100
0
Average Cooling Rate,R, eC/s)
2,0 Liquidus
temperature,
Temperature Solidus
ferritic
of austenite
temperature,
QC
Solidification
range, QC
Solidification
time, s
primary
formation,
CD
phase, QC QC
CD
CD
Precipitates
Microsegregation Element
Cr
Mo
1,1
1,4
R = 0,5 QC/s Tq = 1375 QC
0,5
0,1
1508
1501
1506
1443
1426
1444
1405
1415
1440
105
85
65
85
190
790
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1495°C d = 65 j.Lm o-dendrites and quenched liquid (L). x 25
400 j.Lm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1375°C d = 85 j.Lm Figures 2 - 4: Former o-dendrites, transformed to y by the peritectic reaction. x 25
400 j.Lm
x 25
400j.Lm
Figure 3 R Tq d
= O,5°C/s
= 1375°C = 160j.Lm
;. I 't .••••
".
Figure 4 R Tq d
= O,1°C/s = 1375°C = 275 j.Lm
",... ff
". J
x 25
400j.Lm
58 • Steel 302
STEEL 302.
0,35 % C Mo V
5 % CHROMIUM
STEEL
Designations SIS
AISI
Werkstoff
2242
H 13
1.2344
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,35
1,03
0,46
0,020
0,007
5,2
0,23
1,34
0,11
Thermal Analysis
Is
D)
0,0
T
0,4
0,6
W
v
N
0,091,00,013
0,026
1,0
0,8
dT dt
CD
(OC)
f
(OC/s)
1450
+1,5 +1,0
1400 +0,5 0
1350
-0,5 1300
-1,0 -1,5
R
1250
= 0,5 C/s Q
0
100
Average
Liquidus Solidus
0,1
1471
1464
1470
1370
1387
1412
1335
1360
1380
range, QC
135
105
90
time, s
100
250
990
ferritic
of austenite
Solidification
QC
primary
formation,
0)
phase, QC QC
CD
CD
Precipitates
Small amount
of eutectic
carbide.
Microsegregation Element
Cooling Rate,R, rC/s) 0,5
temperature,
Solidification
't (5)
2,0
temperature,
Temperature
300
200
Cr
Ni
Mo
v
1,2
1,0
1,5
1,7
R = 0,5 QCIs Tq = 1300 QC
Steel 302 • 59
Partly solidified
Figure 1 R = 0.5°C/s Tq = 1450°C d = 55fLm o-dendrites and quenched liquid (L). x 25
400 fLm
Completely solidified
Figure 2 R = 2.0°C/s Tq = 1300°C d = 70 fLm Figures 2-4: Former o-dendrites, transformed to y by the peritectic reaction. x 25
400 fLm
x 25
400 fLm
Figure 3 R Tq d
= 0.5°C/s = 1300°C = BOfLm
• ••~
.J '" <
.
.. •. ..•... " '
\
Figure 4 R Tq d
= 0.1°C/s = 1300°C = 120fLm
x 25
400fLm
{
.
\ ,
.'
""-.
'.i'
60 • Steel 303
STEEL 303.
0,5 % C Mo V
5 % CHROMIUM STEEL
Designations SIS
AISI
Werkstoff
Nr
Composition (wt-%) C
Si
0,50
1,00
p
Mn
0,48
S
0,025
0,010
fs
Thermal Analysis
0,0
T
Cr
Ni
Mo
Cu
W
v
5,1
0,18
1,36
0,10
0,02
1,20
0,2
DJ.
0,6
N
0,013
0,036
1,0
0,8 0,9
dT d't
CD
(QC)
(QCls)
t
1450
T 1l.O0
1350
0
1300
1250
-1,5 R
1200
0,5°C/s
=
o
100
300
200
Average
Cooling Rate,R, rC/s)
2,0
Liquidus temperature,
ferritic
primary phase, QC
Temperature
of austenite formation,
Temperature
of formation
Solidus temperature,
QC
QC
CD
of MC-austenite
CD
CD
eutectic,QC
CD
0,5
0,1
1460
1460
1460
1410
1410
1412
1320-1240
1345-1300
-1320
1140
1240
1260
Solidification
range, cC
320
220
200
Solidification
time, s
170
380
1900
Precipitates
1. Interdendritic MC-austenite eutectic, MC was of the VC type, (see figures 6-8). 2. Small amount of interdendritic M23C6-austenite eutectic,(M was Cr, Fe and Mo), precipitated
Microsegregation Element
Cr
Mo
v
1,3
1,5
1,3
R = 0,5 QC/s Tq = 1200 QC
after the MC carbide.
Steel 303 • 61
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1445°C d = 55 j.Lm o-dendrites and quenched liquid (L). x 25
400
j.Lm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1140°C d = 60 j.Lm Figures 2-4: Former o-dendrites, (transformed to y by the peritectic reaction), and interdendritic carbide eutectic. x 25
400
j.Lm
x 25
400
j.Lm
x 25
400
j.Lm
Figure 3 R Tq d
= 0,5°C/s
= 1200°C = 80
j.Lm
Figure 4 R Tq d
= 0,1°C/s = 1200°C =
110j.Lm
62 • Steel 303 it
.•.
\
,
"
'\ ,/"
~.
,'/
~.~" ' •• \ I \";;
Figure 5
"I
t.
t,' ("
i11'~ "
'
R = 2,0°C/s Tq = 1290°C Quenched liquid.
r '
'
' '-.'
,
10
jLm
x 1000
\
"
Figure 6
,
,
R = 2,0°C/s Tq = 1200°C Eutectic formation of MC. (L->MC+y)
",
I
/ /
x 1000 \
.•
.
\
Figure 7 R = 2,O°C/s Tq = 1000°C Morphology of MC. x 1000
.1 I
""';'
'--
, ~.,
"
,. ,/ I.
..•.
"-
..•..
•
l'
'(
•.....
-{
Figure 8 R = 2,O°C/s Tq = 1000°C Interdendritic distribution x 150
of MC .
Steel 304 • 63
STEEL 304.
1,0 % C Mo
5 % CHROMIUM
STEEL
Designations SIS
AISI
Werkstoff
2260
A2
1.2363
Composition
(wt-%)
Nr
C
Si
Mn
p
S
Cr
Ni
Mo
Cu
0,96
0,29
0,67
0,020
0,015
5,2
0,13
1,19
0,09
W 0,05
v 0,21
N
0,014
0,024
Is 0,0
Thermal Analysis
0,2
0,4
0,8
0,6
0,9
1,0
CD W
1400
+1,5 +1,0
1350
+0,5
o
1300
-0,5 1250
-1,0 -1,5
R = 0,5 C/s
1200
Q
o
100
200
300
400
Average
Liquidus
temperature,
Temperature Solidus
austenitic
of formation
temperature,
QC
primary
of eutectic,
CD
QC
phase, QC
CD
CD
L(S)
Cooling Rate,R, (OC/s)
2,0
0,5
0,1
1435
1434
1438
1150-1130
-1200
1130
1200
-1215 1215
Solidification
range, QC
305
235
225
Solidification
time, s
185
440
2700
Precipitates
M7C3 - austenite
Interdendritic
eutectic,
(see figures
5-7).
Microsegregation Element
Cr
Mo
v
1,4
1,9
1,7
R = 0,5 QC/s Tq = 1200 QC
64 • Steel 304
Partly solidified
Figure 1 R = 0,5 C/s Tq = 1420'C d = 55 j.Lm y-dendrites and quenched liquid (L). 400 j.Lm
x 25
Completely solidified
Figure 2 R Tq
= 2,0 C/s =
1130"C
d
=
65 j.Lm
Figures 2-4: y-dendrites carbide eutectic.
Figure 3 R Tq d
= = =
0,5°C/s 1200 C 80 j.Lm
400 j.Lm
,.I
,,'
x 25
" .~ .'~ '"
,..j
.' "
.r
,)
Figure 4 R Tq d
=
=
OYC/s 1200°C 110j.Lm
400 j.Lm
x 25
and
interdendritic
Steel
304 • 65
.•...,. "
Figure 5 R = 2,0°C/s Tq = 1200°C Quenched liquid. x 1000
Figure 6 R = 2,0°C/s Tq = 1000°C Morphology of M7C3. x 1000
Figure 7 R = 2,0°C/s Tq = 1000°C Interdendritic distribution
of M 7 C3. x 150
I
,.
66 • Steel 305
STEEL 305.
0,04 % C
5 % Ni
13 % CHROMIUM
Werkstoff
Nr
STEEL
Designations SIS
AISI
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
W
0,04
0,54
0,61
0,010
0,009
13,4
5,5
0,07
0,07
0,01
fs
Thermal Analysis
0,0
T
0,2
0,6
0,4
0,01
N
0,019
0,032
1,0
0,8 0.9
dT dt (oC/s)
Q)
+CD
(OC)
v
+
T
1450
+1,5 +1,0
1400 +0,5 1350
0
---
dT dt
-0,5
1300
-1,0 -1,5
R
= 0,5°C/s
1250
Average
2,0 Liquidus temperature, Temperature
ferritic primary phase, °C
of austenite formation, °C
Solidus temperature, °C Solidification Solidification
CD
CD
CD
range, °C
Precipitates
Microsegregation Element
Cr
Ni
1,1
1,2
R =
O,5°C/s
Tq = 1350 °C
Cooling Rate,R, (OC/s) 0,5
0,1
1470
1476
1476
1410
1419
1425
1355
1395
1420
115
80
60
230
670
100
time, s
t(s)
300
200
100
0
Steel
Partly solidified
Figure 1 R = O,5°C/s Tq = 1473°C d = 75ILm I)-dendrites and quenched liquid (L). x 25
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1350°C d = 140 ILm Figures 2-4: Formerl)-dendrites (D). White interdendritic areas (ID). Most of the I) transformed to y by the peritectic reaction. x 25
400 ILm
x 25
400 ILm
x 25
400 ILm
Figure 3 R Tq d
= 0,5°C/s = 1350°C = 240 ILm
Figure 4 R Tq d
= 0,1°C/s = 1350°C = 520 ILm
305 • 67
68 • Steel 305
Figure 5 R = 0,5°C/s Tq = 1200°C (d12oo = 260 Mm) Former 8-dendrites (D). White interdendritic areas (ID). Most of the 8 transformed to y by th9 peritectic reaction. 400 Mm
·1
\\
,
'. _."
.\
x 25
•
.
Figure 6
\.
R = 2,0°C/s Tq = 1350°C Residual dendritic in the y-matrix.
.'
ferrite (il)
x 600
~~
.
\ \.
;,\
\ '\
I
.
'~~
/ Figure 7
)
R =0,1°C/s Tq = 1350°C Residual dendritic in the y-matrix. x 600
ferrite (r';)
Steel
STEEL 306.
0,07 % C
306 • 69
13 % CHROMIUM STEEL
Designations SIS
AISI
Werkstoff
2301
410 S
1.4000
Nr
Composition (wt-%) C
Si
Mn
p
5
Cr
Ni
Mo
Cu
W
0,07
0,54
0,48
0,020
0,006
12,9
0,17
0,02
0,10
0,01
Average
Liquidus temperature, Solidus temperature,
ferritic primary phase, QC QC
CD
Temperature
of solid phase transformation
Solidification
range, QC
Solidification
time, s
CD CD
Precipitates
Microsegregation Element
Cr
Ni
1,0
1,0
R = 0,5 QC/s Tq = 1400 QC
::; 0,01
Cooling
N
0,026
0,039
Rate,R, (OC/s)
2,0
0,5
0,1
1497
1500
1500
1440
1455
1435 of ferrite to austenite, QC
v
1325-1270
1330-1290
65
60
45
80
210
610
Partly solidified
Figure 1 R Tq
d
= 0,5°C/s
= 1498°C = 90 Mm
o-dendrites and quenched liquid (L). 400 Mm
x 25
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1400°C d = 205 Mm Figures 2-3: o-dendrites. Light interdendritic areas. (Interference contrast.)
400 Mm
x 25
Figure 3 R Tq d
= 0,5°C/s = 1400°C = 260 Mm
400 Mm
x 25
Figure 4 R = 0,1°C/s Tq = 1400°C d No dendrites visible due to absence of segregation. Austenite (dark) precipitated during quenching. 400 Mm
x 25
Figure 5 R = 0,5°C/s Tq = 1400°C Austenite from 1400 (dark C . ) precipitated
during
quenching .
0
x 25
400
JLm
Figure 6 R = 0,5°C/s Tq = 1200°C Austenite ( ) 12000C (SOli~ st~~:ciPitated during (d12oo= 270 JLm) transformation).
x 25
cooling
400
to
JLm
72 • Steel 307
STEEL 307.
0,1 % C
Ni
12 % CHROMIUM
STEEL
Designations SIS
AISI
Werkstoff
2302
(414)
1.4008
Nr
Composition (wt-%) C
Si
Mn
p
S
Cr
Ni
Mo
Cu
W
V
0,14
0,19
0,68
0,009
0,014
12,0
1,20
0,01
0,03
0,01
0,02
fs 0,0
Thermal Analysis
T
0,2
0,4
0,6
0,8
Altot
N
0,001
0,040
1,0
dT dt
.CD
(OC)
(OC/s)
T 1450
+1,5 +1,0
1400
+0,5 1350
-
0
Ql dt
-0,5
1300 -1, 0 1250
R = O,SQC/s
-1,5 0
100
200
Average
Liquidus
temperature,
Temperature Solidus
ferritic
of austenite
temperature,
C
Solidification
range, QC
Solidification
time, s
primary
formation,
CD
phase, QC QC
CD
CD
Precipitates
Microsegregation Element
Cr
Ni
1,1
1,3
R = 0,5 QCls Tq = 1360 QC
300
'[(5)
Cooling Rate,R, ( C/s)
2,0
0,5
0,1
1490
1495
1494
1416
1425
1401
1390
1400
1400
100
95
95
95
255
1070
Steel 307 • 73
Partly solidified
Figure 1 R = O,5°C/s Tq = 1493°C d = 75/-Lm o-dendrites and quenched liquid (L). x 25
400/-Lm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1360°C d = 150 /-Lm Figures 2 - 4: Former o-dendrites (D). White interdendritic areas (ID). (Most of the 0 transformed to y by the peritectic reaction.)
x 25
400/-Lm
x 25
400/-Lm
x 25
400/-Lm
Figure 3 R Tq d
= 0,5°C/s = 1360°C
= 180
/-Lm
Figure 4 R Tq d
= 0,1°C/s = 1360°C = 470/-Lm
74 • Steel 307
Figure 5 R = 0,5°C/s Tq = 1200°C (d12oo= 250 fLm) Former o-dendrites (D). White interdendritic areas (ID). (Most of the 0 transformed to y by the peritectic reaction.) 400 fLm
x 25
Figure 6 R = 2,0°C/s Tq = 1360°C Residual dendritic
,1
I
ferrite (0) in the y-matrix.
,
x 600 /
Figure 7 /
\'
'j
I
J
--~
R = 0,1°C/s Tq = 1360°C Residual dendritic ferrite (0) in the y-matrix. Figures 6-7: Note the influence of cooling on ferrite coarseness.
I x 600
rate
Steel 308 • 75
STEEL 308.
0,3 % C
14 % CHROMIUM STEEL
Designations SIS
AISI
Werkstoff
2304
(420)
1.4028
Nr
Composition (wt-%) C
Si
0,32
0,15
p
Mn
0,30
S 0,008
0,009
fs
Thermal Analysis
Cr
Ni
Mo
13,9
0,16
0,01
0,0
O,L.
v
Cu
W
0,01
0,22
0,03
0,8
0,6
N
0,003
0,013
1.0 dT dT
T (OC)
(OC/s)
1L.50
+1.5 +1.0
1L.00
+0,5 0 -0,5 1300
-1,0 -1.5
1250
R = 0,5°C/s
0
100
300
200
L
(5)
Average Cooling Rate,R, (OC/s)
2,0 Liquidus temperature, Temperature
ferritic primary phase, °C
of austenite formation,
Solidus temperature,
°C
CD
°C
CD
CD
0,5
0,1
1480
1483
1482
1400
1407
1401
1370
1375
1390
Solidification
range, °C
110
105
90
Solidification
time, s
100
290
1100
Precipitates
Interdendritic
ferrite, (see figures 7 - 8).
Microsegregation Element
Cr
Ni
1,2
1,0
R = 0,5 °C/s Tq = 1345 °C
76 • Steel 308
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1410°C d = 75 fLm 8-dendrites (almost completely transformed to y) and quenched liquid (L), (compare figure 6). x 25
400 fLm
Completely solidified
Figure 2 R = 2,0°C/s Tq = 1345°C d = 75 fLm Figures 2-4: Former 8-dendrites, (transformed to y by the peritectic reaction), and interdendritic ferrite (8).
400 fLm
x 25
Figure 3 R Tq d
= 0,5°C/s = 1345°C = 100 fLm
x 25
Figure 4 R Tq d
= 0,1°C/s = 1345°C =210fLm
400 fLm
x 25
Steel 308 • 77
Figure 5 R Tq
= 0,5°C/s = 1200°C
(d12oo = 110 j.Lm)
Former o-dendrites, (transformed to y by the peritectic reaction), and interdendritic ferrite (0).
x 25
400 j.Lm
Figure 6 R = 0,5°C/s Tq = 1410°C Former o-dendrite, almost completely transformed to y by the peritectic reaction, with residual o in the centre. L = quenched liquid. x 150
Figure 7 R = 2,0°C/s Tq = 1345°C Interdendritic ferrite (0). x 150
Figure 8 R = O,5°C/s Tq = 1200°C Interdendritic ferrite (0). x 150
78 • Steel 309
STEEL 309.
0,7 % C
13 % CHROMIUM STEEL
Designations SIS
AISI
Werkstoff
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
W
V
Altot
0,69
0,43
0,64
0,014
0,005
13,1
0,20
0,07
0,02
0,22
0,03
0,002
Thermal Analysis
fs
0,0
0,2
0.4
0.6
0,025
0.95 1,0
0,9
0,8
N
dT dt (OC/s)
T (OC)
Q)
1450
~
+3.0 +2.5
1400
+2,0 1350
+1,5 +1,0
1300
1250
-t-- --
-dT dT
1200
-0,5 -1,0
1150
100
0
ferritic
Temperature
of austenite
Temperature
of formation
Solidus
Solidification
formation,
phase, QC QC
of eutectic,
CD
CD CD
CD
Cooling
0,5
0,1
1442
1448
1444
1422
1414 1240-1195
QC
Rate,R, (OC/s)
2,0
1250-1240
1415 1260-1245 1245
1195
1240
range, QC
245
210
200
time, s
160
405
2140
temperature,
Solidification
primary
t(s)
400
300
200
Average
temperature,
QC
Precipitates
Interdendritic M7C3-austenite (see figures 5-8).
eutectic.
The amount
of carbide
eutectic
increased
Microsegregation Element
0
-1,5
R = O,SQC/s
Liquidus
+0,5
G)© t 4
Cr
Ni
1,2
1,0
R = 0,5 QC/s Tq = 1240 C Q
with increasing
cooling
rate,
Steel 309 • 79
Partly solidified Figure 1 R = O,5°C/s Tq = 141BoC d = 50 fLm Former 8-dendrites, (completely transformed to y by the peritectic reaction), and quenched liquid (L). x 25
400 fLm
Completely solidified Figure 2 R = 2,O°C/s Tq = 1195°C d = 65 fLm Figures 2-4: Former 8-dendrites, (transformed to y by the peritectic reaction). Interdendritic carbide eutectic (compare figures 5-B). x 25
400 fLm
x 25
400 fLm
x 25
400 fLm
Figure 3 R Tq d
= 0,5°C/s = 1240°C = BOfLm
Figure 4 R Tq d
= O,1°C/s = 1240°C
=
130fLm
80 • Steel 309
, .J--'
"
f
, ..
~" /
.t
\..
">
""'\-;
.".
4
J
•... ~
l~~\
.,
'y "A..
.cv
'"
f
Figure 5 t
-\.
\
•
R = 0,5°C/s Tq = 1240°C Interdendritic M7C3-Y eutectic. 3,5 vol-% carbide . 100 Mm
x 150
il..
Figure 6 R Tq
= 2,0°C/s
= 1195°C M7C3-Y eutectic. 4,5 vol-% carbide. 25 Mm
x 600
.0
Figure 7
R
= 0,5°Cts
= 1245°C M7C3-Y eutectic (E) and small amounts of
Tq
liquid (L).
f .I
I,
25 Mm
x 600
Figure 8 R Tq
= 0,1°C/s =
1240°C
M7C3-Y eutectic. 2,4 vol-% carbide. 25 Mm
x 600
81
4. Stainless and Heat Resistant Steels The main alloying element is chromium in amounts between 12 and 30%. Most common stainless steels also contain considerable quantities of other alloying elements of which molybdenum and nickel are the most important. The main object of these additions is to increase the corrosion resistance of the steel and to control the phase composition of the microstructure in the final product. Most commercial stainless and heat resistant steels are found in the following range of standardized compositions, table 4.1: Structure
of the steel product
Ferritic
Martensitic
Ferritic-austen
itic
Austenitic Table 4.1
Classification
Cr
C
Ni%
-0,08 -0,10 -0,25 -0,08 0,090,15-
12-14 16-19 24-28 12-14 12-14 16-18
1,3-2,5
-0,10
18-30
4,5-14
-0,50
16-26
7-35
3-6
Other common alloying elements are molybdenum up to 5% and copper up to 3%. Nitrogen, which is usually present at residual levels of about 0,03-0,06%, can also be used as an alloying addition of up to 0,2%. Austenitic steels are produced as castings, ingots of all sizes and as continuously cast billets and slabs. The other types of stainless and heat resistant materials mentioned in table 4.1 are cast predominantly as ingots of a moderate size, although martensitic and ferritic-austenitic steels are also commonly used as castings. The solidification behaviour is governed by the proportions of austenite- and ferrite-forming elements present. The first group comprises carbon, nitrogen, nickel, manganese, copper and cobalt. (At high concentrations manganese has been reported to be a ferrite former, [66].) The most important ferrite formers are chromium, silicon, molybdenum, niobium, titanium and aluminium. The ferritic and martensitic grades have already been described in chapter 3. The alloys of the present section, belonging to the ferritic-austenitic and the austenitic groups were chosen to give examples of the different solidification paths. The alloys are listed in table 4.2 in order of increasing tendency to solidify as austenite: No.
C
Si
Mn
Cr
Ni
Mo
401 402 403 404 405 406 407 408 409
0,04 0,01 0,02 0,04 0,07 0,05 0,02 0,05 0,02 0,01 0,06 0,13 0,01 0,41 0,07
0,9 0,3 0,3 0,4 0,6 0,4 0,5 0,6 0,6 0,2 1,2 0,5 0,5 1,0 0,6
0,8 1,8 0,9 1,2 1,4 1,7 1,6 1,7 1,8
25,1 19,8 19,5 18,4 17,2 17,2 17,2 17,7 17,4
4,7 9,9 10,3 9,1 10,3 12,6 13,5 13,4 12,8
1,2
1,8 1,8 1,7 1,7 1,3 0,6
25,1 24,2 24,3 19,2 25,2 21,1
22,2 20,4 20,5 25,1 20,6 31,0
Table 4.2
The types of solidification
are:
•
primary ferrite formation
•
primary ferrite formation followed reaction between liquid, 0 and y.
•
primary ferrite and austenite formation
•
primary austenite formation
by a three-phase
In this work the transition 0 + liquid ~ y is called peritectic reaction as long as the 0- phase is in direct contact with the liquid. When 0 is completely surrounded by y -phase and the reaction rate is governed by solid state diffusion of the alloying elements through y, the process is denoted peritectic transformation. The relative amount of austenite usually increases below the solidus temperature, i.e. the remaining o-ferrite content is dependent on temperature. In alloys with a high carbon content carbides precipitate during solidification.
of stainless and heat resistant steels
The structure of the filial product should not be confused with the structures present during and immediately after solidification. Many austenitic steels for instance contain considerable quantities of ferrite in their solidification structure.
410 411 412 413 414 415
The choice of these alloys was based on the solidification modes indicated by the pseudobinary phase diagrams, such as that shown in figure 4.1.
0,4 0,5 2,8 2,6 2,7 2,8
Others%
0,5 Ti 0,5 Nb
0,19 N
2,3
4,4
Stainless and heat resistant steels
1,5 Cu
Temperature,OC 1500
L+
1400
Y
y
1300
1200
1100
o
5
10
15
20
I
I
I
I
I
30
25
20
15
10
Figure 4.1 Phase diagram Fe-Cr-Ni Handbook, Vol 8, 1973,424-425)
25 30 Weight-% Ni I
I
5 0 Weight-% Cr
at 70% Fe. (After
Metals
References The solidification of stainless and heat resistant alloys has been the subject of many research reports. Papers on general aspects of solidification and phase equilibria include references [65-77]. Quantitative discussions of microsegregation have been presented, [68, 69, 71, 73, 77-82]. Finally, solidification under welding conditions received attention, [72, 79, 83-86].
has also
82 • Steel 401
STEEL 401.
0,04 % C 25 % Cr 5 % Ni Mo
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2324
(329)
(1.4460)
Nr
Composition (wt-%) Si
Mn
0,86
0,76
C
0,042 Creq Nieq
_ -
S
P
0,031
0,010
Cr
Ni
Mo
Cu
25,1
4,7
1,22
0,08
Altot
Co
0,08
N
,:::;0,002
0,077
4,01
fs Thermal Analysis
0.0
T
0.2
0,4
0,6
0.8
1,0
dT dt
.CD
(OCl
(OCls)
T
1450
+1,5 +1.0
1400
+0.5 1350
--
0
dT dt
-0.5
1300
-1.0 -1.5
R
1250
= 0,5°C/s
0
100
200
Average
2,0 Liquidus temperature, Solidus temperature, Solidification
ferritic primary phase, °C °C
CD
CD
range, °C
Solidification
time, s
Fraction solidified
as ferrite, %
300
Cooling Rate,R, (OC/s)
0,5
1465
1471
1469
1410
1420
75 80
60
50
205
770
100
100
100
M23C6particles and austenite in grain boundaries and M23C6particles in the matrix, (see figures 5-8). The carbide and austenite were precipitated during quenching from 1360°C.
Element
Mn
Cr
Ni
Mo
1,3
1,0
1,2
1,3
R = 0,5 °C/s Tq = 1360 °C
0,1
1390
Precipitates
Microsegregation
t (s)
Steel 401 • 83
Partly solidified
Figure 1 R = 0,5°C/s Tq = 1468°C d = 70 JLm a-dendrites and quenched
liquid (L).
x 25
400 JLm
Completely solidified
Figure 2 R 2,0°C/s Tq 1360°C d 115 JLm Figures 2-4: a-dendrites. White interdendritic areas (ID). Grain boundaries (G) also visible.
x 25
Figure 3 R Tq d
0,5°C/s 1360°C 280 JLm x 25
Figure 4 R Tq d
= 0,1°C/s = 1360°C = 550JLm
x 25
84 • Steel 401
Figure 5 R Tq A B C
= O,5°C/s = 1360°C
grain boundary with austenite. grain boundary with carbide particles. ferritic matrix with carbide and austenite precipitates.
100 f-Lm
,
, "
.
x 150
/' \J
' , \1"
Figure 6 R = 0,5°C/s Tq = 1360°C Austenite, formed during boundary as in fig 5 at A.
quenching,
in grain
x 1000
Figure 7 R = 0,5°C/s Tq = 1360°C Carbide particles (M23C6), formed during quenching, in a grain boundary as in fig 5 at B. Electron micrograph of thin foil (TEM).
x 30000
Figure 8 R = 0,5°C/s Tq = 1360°C Carbide particles (M23C6), formed during quenching, in the ferritic matrix as in fig 5 at C. Electron micrograph of thin foil (TEM). x 15000
Steel 402 • 85
STEEL 402.
0,01 % C 20 % Cr 10 % Ni
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
30BL
1.4316
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,012
0,31
1,76
O,OOB
O,OOB
19,B
9,9
0,10
0,04
0,02
0,004
0,031
Creq Nieq
= 1,B2 fs
Thermal Analysis
0,2
0,0
T
0,6
0,4
1,0
0,8
dT dt
CD
(OC)
t 1450
(OC/s)
T
+1,5 +1,0
1400
+0,5 1350
--
0
dT dt
-0,5
1300
-1,0 -1,5
1250
R = 0,5°C/s
0
Average
Liquidus temperature, ferritic primary phase, °C Temperature of austenite formation, °C Solidus temperature, °C Solidification
range, °C
Solidification
time, s
CD
CD
(3)
Fraction solidified as ferrite, %
Precipitates
Microsegregation Element
Si
Mn
Cr
Ni c _ n ~ 0f'./c
300
200
100
Cooling
'('(5)
Rate,R, (OC/s)
2,0
0,5
0,1
1447 1366 1325 120 105 92
1454 1391 1360 95 255 91
1449 1405 1390 60 690 97
86 • Steel 402
Partly solidified
Figure 1 R 0.5°C/s Tq 1450°C d 60 [Lm o-dendrites and quenched liquid (L).
400
[Lm
x 25
Completely solidified
Figure 2 R 2.0°C/s Tq 1325°C d 150[Lm Figures 2-4: Former o-dendrites (D). White interdendritic areas (ID). (Most of the ,) transformed to y by the peritectic reaction and transformation.) x 25
Figure 3 R Tq d 400
0.5°C/s 1325°C 270 [Lm x 25
[Lm
Figure 4 R Tq
O.1°C/s 1325°C
Steel
Figure 5 R Tq
= 0,5°C/s = 1200°C
= 300 JLm) Former o-dendrites (D). White interdendritic areas (ID). (Most of the 0 transformed to 'Y by the peritectic reaction and transformation.) (d1200
x 25
400 JLm
Figure 6 R = 2,0°C/s Tq = 1325°C 13 vol-% dendritic ferrite. Figures 6-9: Note that the residual ferrite only appears in the former o-dendrites.
x 150
Figure 7
Figure 8
R = 0,5°C/s Tq = 1325°C 19 vol-% dendritic ferrite (0).
R = 0,5°C/s Tq = 1200°C 9 vol-% dendritic ferrite (0). x 150
Figure 9 R = 0,1°C/s Tq = 1325°C 20 vol-% dendritic ferrite. x 150
402 • 87
88 • Steel 403
STEEL 403.
0,02 % C 19 % Cr 10 % Ni
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
(2352)
304L
1.4316
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,019
0,31
0,94
0,009
0,010
19,5
10,2
0,11
0,03
0,05
0,002
0,044
Creq Nieq
= 1,74
fs
Thermal Analysis
0,0
T (OCl
0,2
0,4
0,6
0,80,9
1.0 dT dT (OC/s)
CD + T
+1,5 +1,0
1400
+0,5 1350
-
0 dT dT
-0,5
1300
-1.0 -1,5
R = O,soC/s
1250 0
100
200
Average
2,0 Liquidus
temperature,
Temperature Solidus
ferritic
of austenite
cC
temperature,
primary
formation,
CD
phase, °C °C
CD
CD
300
'[(5)
Cooling Rate,R, (CC/s)
0,5
0,1
1447
1455
1453
1404
1415
1418 1405
1365
1390
Solidification
range, °C
80
65
50
Solidification
time, s
90
220
610
91
92
98
Fraction
solidified
as ferrite,
%
Precipitates
Microsegregation Element
Si
Mn
Cr
Ni
I
1,6
1,5
1,1 1,2
1,5 0,7
PD
R = 0,5 °C/s Tq = 1340 °C
Partly solidified
Figure 1 R = 0,5°Cts Tq = 1450°C d = 65 jLm <,)-dendrites and quenched
liquid (L). x 25
400
jLm
Completely solidified
Figure 2 R Tq
= 2,0°Cts
d
= 130jLm
= 1340°C
Figures 2-4: Former <,)-dendrites (D). White interdendritic areas (ID). (Most of the <')transformed to'Y by the peritectic reaction and transformation.) x 25
400
jLm
x 25
400
jLm
x 25
400
jLm
Figure 3 R Tq d
= 0,5°Cts = 1340°C = 160 jLm
Figure 4 R Tq d
= 0,1°Cts
= 1340°C = 500 jLm
90 • Steel 403
Figure 5 R = 0,5°C/s Tq = 1200°C (d12oo = 170Mm) Former o-dendrites (D). White interdendritic areas (ID). (Most of the 0 transformed to y by the peritectic reaction and transformation.)
400 Mm
x 25
Figure 6 R = 2,0°C/s Tq = 1340°C 11 vol-% dendritic ferrite. Figures 6-9: Note that the residual ferrite only appears in the former o-dendrites (D).
100 Mm
x 150
-"
./
.'
/'
./
Figure 7
Figure 8
R = O,5°C/s Tq = 1340°C 13 vol-% dendritic (D) ferrite (0).
R = 0,5°C/s Tq = 1200°C 5,8 vol-% dendritic
100 Mm
x 150
•
I
"
Figure 9 ,
.
.,
,
\,
. '. _.,~
.' .,- ' . \.
"
R = O,1°C/s Tq = 1340°C 9 vol-% dendritic 100 Mm
ferrite .
x 150
ferrite.
Steel 404 • 91
STEEL 404.
0,04 % C 18 % Cr 9 % Ni
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2333
304
1.4301
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,036
0,44
1,25
0,025
0,010
18,4
9,1
0,38
0,20
0,25
0,002
0,081
Creq Nieq
=
1,68
fs
Thermal Analysis
0,0
T
0,2
0,4
0,6
0,8
1.0
dT d't
CD
(OC)
+
14S0
(OC/s)
T
1400 +O,S 13S0
-
0
dT dt
-a,s
1300
-1,0 -1,5
R = 0,5°C/s
12S0 0
100
200
Average
Liquidus temperature, ferritic primary phase, °C Temperature of austenite formation, °C Solidus temperature, °C Solidification
range, °C
Solidification
time, s
Fraction solidified
CD
CD
CD
as ferrite, %
Precipitates
Microsegregation Element
Mn
Cr
Ni
I
1,2
1,1 1,2
1,3 0,7
PD
R = 0,5°C/s Tq = 1340 °C
300
T(s)
Cooling Rate,R, (OC/s)
2,0
0,5
0,1
1452
1451
1452
1423
1409
1424
1365
1385
1405
90
65
50
100
250
720
84
82
86
92 • Steel 404
Partly solidified
Figure 1 R 0,5°C/s Tq 1447°C d 40/Lm I)-dendrites and quenched liquid (L). x 25
400/Lm
<:~~~:iV j-:_~~":.'"--.1$ :~-,
~.~~!~~~'?Y:I.~ -~::'~i.~ :.~ :'":\~"\ :;.~,'t'$:"/~:'.1' '", i:t~~i%~; -.,~ >. li;--,:?J!)t·":;:'-:,d".··;,,,:,?!,·~.1.~y{f.::1; ",I;" .. ,~ .. '\;/ .", -' /p.:'"'''''' ,.1. .' ?;f.~",' •••. ".' ., ,!",-, ,'I :1~~' f·- ~}'r.J: 'Y--\l{•..~'+{.··rJ ~'e;. t".~~ :~;~ ...: ' 'A\'_ ~;~. , -j"':; ;/.t;:~ti',.t.~: }:: '4,< '~Y' t~;.;f: ~,'.'. ·t_'~;\·Sj.4~./oI··it,\"..$) ..:.;..j'.)o\:'·~:" ;~ .• ;' ~~(~
••
:~:\!.:r'ti!lf;ai~~..rtt.~I'·,;,;J)};;~:;;·!;.;'\;Jll,
""";'
::i: •••• ~;.,.
'"vl~"P
?-'1i~~>;:
': "',' \ ' " .,~,~
t,.~.,~~,tli. 'c ••.·., ..•
Completely solidified
:·;~f:;,,;';;):)4,\'. '. <~(~:':.:j>
..
I;
.'\.c: ;-!~,.. ~~
':";:·'.;·":~tt:.:t·
).1.•; •••.:
;"T'
·~~/~,_·
-;'.',.,~:. '~.
·\IJ··;~·,,:~·l.;
';~~\"''-''~~'''/)J·?, .. •
... ~
tv'
._~,~ ~
~.(.
·.i'l-:'l,\~. /".
~,
Figure 2
R 2,0°C/s Tq = 1340°C d = 125/Lm Figures 2-4: Former I)-dendrites (D). White interdendritic areas (ID). (Most of the I) transformed to'Y by the peritectic reaction and transformation.)
"""~<~f~;';: '.~. "
~··!::~~~·;:~?~~itfli~1~:~51:~¥~S:~~:+:·.~~~·i~:,~;-~i'; ~~:lf::~ t\~~ ',l\ .••. '.,,':.,~
~
x 25
Figure 3 R Tq d
O,5°C/s 1340°C 190/Lm x 25
Figure 4 R Tq d
0.1°C/s 1340°C 340/Lm x 25
Steel
404 • 93
Figure 5 R Tq
= 0,5°C/s = 1200°C
(d12oo
=
200fLm)
Former {)-dendrites (D). White interdendritic areas (ID). (Most of the {) transformed to 'Y by the peritectic reaction and transformation.) x 25
400 fLm
"'~ ' ,. ,\ . :\ .. ,"
\'
~,'" \
\ .-'
f
-
If'
Figure 6 R = 2,0°C/s Tq = 1340°C 2,3 vol-% dendritic ferrite. Figures 6-9: Note that the residual ferrite only appears in the former {)-dendrites (D).
\
r(-d'~ •
.
. \
\
1
J
•
.;J
JJ.......
';'.'
\
/
x 150
100 fLm
Figure 7
Figure 8
R = 0,5°C/s Tq = 1340°C 4,7 vol-% dendritic ferrite.
R = 0,5°C/s Tq = 1200°C 2,0 vol-% dendritic ferrite. x 150
100 fLm
x 150
100 fLm
Figure 9 R = 0,1°C/s Tq = 1340°C 10 vol-% dendritic ferrite.
-. I
_
---'"-
.'
'.
•
.
,
.'~
94 • Steel 405
STEEL 405.
0,07 % C 17 % Cr 10 % Ni Ti
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2337
321
1.4541
Nr
Composition (wt-%) C
0,068 Creq Nieq
=
Si
Mn
0,59
1,44
P
S
0,028
0,001
Cr
Ni
Mo
Cu
Co
17,2
10,3
0,47
0,24
0,27
Ti
0,51
Altot
N
0,048
0,005
1,61
fs
Thermal Analysis
0.0
0.2
0.4
0.6
1.0
0.8
T
dT d'(
re)
CD
(OCts)
t
1450
+1.5
T +1.0
1400
+0.5 1350
--
0
dT dt
-0.5
1300
R
=
-1.0 -1.5
1250
0,5°C/s
0
200
100
Average
Liquidus
temperature,
Temperature Solidus
ferritic
of austenite
temperature,
°C
primary
formation,
CD
phase, °C °C
CD
CD
300
'((5)
Cooling Rate,R, eC/s)
2,0
0,5
0,1
1436
1440
1440
1397
1406
1412
1335
1370
1390
Solidification
range, QC
100
70
50
Solidification
time, s
105
235
680
82
82
82
Fraction
solidified
as ferrite,
%
Precipitates
Ti(CN), (see figures
6-8).
Microsegregation Element
Si
Mn
Cr
Ni
1,6
1,6
1,1
1,5
1,2
0,7
R = 0,5 QCIs Tq = 1320 QC
Steel 405 • 95
Partly solidified
Figure 1 R 0.5°C/s Tq 1430°C d 50l-tm o-dendrites and quenched
liquid (L). x 25
400l-tm
Completely solidified
Figure 2 R 2,0°C/s Tq = 1320°C d = 85l-tm Figures 2-4: Former o-dendrites (D). White interdendritic areas (ID). (Most of the 0 transformed to y by the peritectic reaction and transformation.) x
25
x
25
Figure 3 R Tq d
0,5°C/s 1320°C 110 I-tm
Figure 4 R Tq d
0.1°C/s 1320°C 200 I-tm x 25
96 • Steel 405
Figure 5 R Tq
= 0,5°C/s = 1200°C
= 150fLm) Former <,)-dendrites (D). White interdendritic areas (ID). (Most of the <')transformed to y by the peritectic reaction and transformation.) (d1200
400 fLm
x 25
Figure 6 R = 0,5°C/s Tq = 1380°C Ti (C,N)
t7-Tj(~,N)
10 fLm
x 1000
I.
•
,
,
c Figure 7
~~
TiCQ,N)
R = 0,5°C/s Tq = 1200°C Coalesced eutectic
Ti(C,N).
/ 10 fLm
x 1000
Figure 8 R = 0,1°C/s Tq = 1380°C Formation of eutectic (L -'> Ti(C,N) + y)
10 fLm
x 1000
Ti(C,N).
Figure 9 R = 2,O°C/s Tq = 1320°C 6 vol-% dendritic ferrite. . Figures 9 -12: Note that the r~sidual fernte only appears in the former 8-dendntes (D).
x 150
100
JLm
x 150
100
JLm
x 150
100
JLm
Figure 10 R = O,5°C/s Tq = 1320°C . 8 vol-% dendritic fernte.
Figure 11 R = O,5°C/s Tq = 1200°C 4,1 vol-% dendritic ferrite
~ {/- .'
-. ".'
\
l
"
'\)
.
"
~
.
•. J
,/
,
,
\
b
\ \. ".",
Figure 12 R = O,1°C/s Tq = 1320°C 4,8 vol-% dendritic ferrite
..
t
x 150
100
JLm
-
'--: ..
.
?
" 1 l
(/ 'j
, /~
.. ).
//
1 '\
'"
.
98 • Steel 406
STEEL 406.
0,05 % C 17 % Cr 12 % Ni 2,8 %Mo Nb
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
316 Cb
1.4583
Nr
Average
2,0 Liquidus
temperature,
ferritic
and austenitic
Temperature
of maximum
Temperature
of carbide formation,
Solidus
temperature,
Solidification
°C
rate of formation
CD
QC
CD
primary
phases, QC
of austenite,
QC
CD
CD
Solidification time, s Fraction solidified as ferrite,
%
Precipitates
1. Interdendritic ferrite, (see figures 4, 6 -11). 2. Eutectic NbC, (see figures 6,7,9-11).
Microsegregation Element
Si
Mn
Cr
Ni
I Po PlO
1,7
1,5
1,1 1,3 1,1
1,4 0,6 0,8
R = 0,5 QC/s Tq = 1285 QC
0.,5
0,1
1420
1423
1424
1410
1418
1417
1330-1275
range, °C
Cooling Rate,R, (OC/s)
1330-1290
1330-1305 1305
1275
1290
145
130
120
130
300
1240
<60
<45
<42
Partly solidified Figure 1a
Figure 1b
R = O,5°C/s Tq = 1423°C d = 45 p,m o-dendrites and quenched liquid (L).
R = O,5°C/s Tq = 1415°C d = 45p,m o-dendrites, y-dendrites and quenched liquid (L). Peritectic reaction (P). x 25
400p,m
Completely solidified
Figure 2 R Tq
= 2,O°C/s
= 1270°C = 65 p,m Figures 2-3: Former o-dendrites,
d
dendritic and interdendritic gures 8-9).
y-dendrites, ferrite, (compare fi-
x
25
Figure 3 R Tq d
= 0,5°C/s = 1285°C
= 80p,m x 25
Figure 4 R 0,1°C/s Tq = 1300°C d = 135p,m Former o-dendrites, dendritic ferrite, (compare figure 11).
and interdendritic
x
25
100 • Steel 406
Figure 5 R = 0,5°C/s Tq = 1200°C (d12oo = 85fLm) Former o-dendrites, y-dendrites, dendritic interdendritic ferrite, (compare figure 10).
400 fLm
and
x 25
NbC/
-/"' I
"
Figure 6 R = O,5°C/s Tq = 1200°C Eutectic NbC and dendritic
(D) ferrite (0).
x 600
Figure 7 R = 0,5°C/s Tq = 1200°C Solid state precipitation dendritic ferrite (100). 25 fLm \
x 600
of NbC around
inter-
Figure 8 R = 2,O°C/s Tq = 1270°C 4,0 vol-% ferrite, dendritic tic (108).
(08) and interdendri-
x 150
100 JLm
Figure 9 R = 0,5°C/s Tq = 1285°C 4,0 vol-% ferrite, dendritic tic (108).
(08) and interdendri-
x 150
100 JLm
Figure 10 R = 0,5°C/s Tq = 1200°C 2,9 vol-% ferrite, dendritic (08) and interdendritic (108). x 150
100 JLm
7 ;
Figure 11 R = 0,1°C/s Tq = 1300°C 3,9 vol-% ferrite, dendritic tic (108).
(08) and interdendri-
x 150
100 JLm
.'
",17
~ ~
'
102 • Steel 407
STEEL 407.
0,02 % C 17 % Cr 13 % Ni 2,5 % Mo
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2353
316 L
1.4435
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,023
0,53
1,58
0,020
0,006
17,2
13,5
2,63
0,19
0,07
0,004
0,031
Creq = 1,43 Nieq
fs
Thermal Analysis
O,L.
0.2
0.0
T
+CD
(OCl
0.6
1.0
0.8
dT dL'
,'1)
T
(OC/sl
1400
+1.5 +1,0
1350 +0.5 1300
--
0
dT dL'
-0.5
1250
-1.0 -1.5
1200
R = 0,5°C/s
Average
2,0 Liquidus
temperature,
Temperature Solidus
ferritic
of maximum
temperature,
Solidification
°C
and austenitic
rate of formation
CD
primary
phases, °C
of austenite,
°C
CD
CD
range, °C
Solidification time, s Fraction solidified as ferrite,
Precipitates
Interdendritic
ferrite,
(see figures,
5, 8 -12).
Microsegregation Element
Mn
Cr
Ni
Mo
1,5
1,2 1,2
1,2
2,2
0,8
R = 0,5 °C/s Tq = 1320 °C
Cooling
L'(s)
Rate,R, (OC/s)
0,5
0,1
1423
1427
1428
1418
1421
1425
1345
1375
1380
80
50
45
100
210
660
<46
%
300
200
100
0
<50
<34
Steel 407 • 103
Partly solidified
Figure 1 R Tq
d
= O,5°C/s
= 1427"C = 55 fLm
0- and y- dendrites, growing simultaneously quenched liquid (L).
x 25
and
400 fLm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1320°C d = 40 fLm Former o-dendrites, y-dendrites, dendritic interdendritic ferrite, (compare figure 9).
x 25
and
400 fLm
Figure 3 R Tq
= O,5°C/s
d
=
= 1320°C
90 fLm Figures 3-4: Former o-dendrites, y-dendrites and interdendritic ferrite, (compare figures 10 and 12). x 25
Figure 4 R Tq d
= O,1°C/s 1320°C = 100fLm
400 fLm
104 • Steel407
Figure 5 R Tq (d1200
= 0,5°C/s = 1200°C = 100 ILm)
Former I)-dendrites, y-dendrites tic ferrite, (compare figure11).
400 ILm
and interdendri-
x 25
Figure 6 R = 0,5°C/s Tq = 1427°C I)-dendrites and quenched figure 1).
liquid (L), (compare
x 150
Figure 7 R = 0,5°C/s Tq = 1415°C y growing into both I)-dendrites and liquid. x 150
'-. ..-;;.~
..
~.
... ','~
.
'"
y Figure 8
~_r"'-/ ~
""-
..;
R = O,5°C/s Tq = 1320°C Austenite precipitated in interdendritic ferrite during quenching. Dark structure in figure 10.
Steel 407 • 105
Ii.
-,' ':. ". ~> " .... ~
1 ..•.
Figure 9 J
R = 2,0°C/s Tq = 1320°C 5,5 vol-% ferrite, dendritic tic (100).
(i,
. --.
,...,
f.~. ~; .
I
--
"''.
(Do) and interdendriV
;/
x 150
\
100 fLm '"". of"
• I
(
J.
r-"
/'-:
,
'(
" '.J,"4"j. 1'1'
••.
{,
"
Figure 10 R = 0,5°C/s Tq = 1320°C 5,6 vol-% ferrite, mainly interdendritic
• (100). ,~,
x 150
/
I1
j)
~ Figure 11 R = 0,5°C/s Tq = 1200°C 3,5 vol-% ferrite, mainly interdendritic
108-
e,/. 15
(100).
)7 ~ {I
x 150
~
/
•
\ L
{ ()
( 7 Figure 12 R = 0,1°C/s Tq = 1320°C 4,4 vol-% ferrite, mainly interdendritic
(100).
•
o
,
~
-
•
<
1.
106 • Steel 408
STEEL 408.
0,05 % C 18 % Cr 13 % Ni 2,5 % Mo
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2343
316
1.4401
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,048
0,63
1,65
0,018
0,007
17,7
13,4
2,68
0,15
0,07
0,004
0,045
Creq Nieq
= 1,42
fs
Thermal Analysis
0,0
T
0,2
0,4
.CD
(OC)
0,6
0,8
1,0
dT d't
+Q)
(OC/s)
T 1400
+1.5 +1,0
1350 +0,5 1300
--
0
dT d't
-0,5
1250
R = O,soC/s
-1,0 -1.5
1200 100
0
200
Average
2,0 Liquidus
temperature,
Temperature Solidus
temperature,
Solidification
and austenitic
rate of formation
primary
CD
phases, °C
of austenite,
°C
CD
°C
range, °C
Solidification Fraction
ferritic
of maximum
time, s
solidified
as ferrite,
Precipitates
Interdendritic
ferrite,
(see figures,
5, 8 -11).
Microsegregation Element
Mn
Cr
Ni
Mo
I
1,6
1,2 1.2
1,2 07
2,1
R PlO
Tq
= 0,5°C/s = 1305 °C
'[(5)
Cooling Rate,R, (OC/s)
0,5
0,1
1419
1423
1421
1414
1422
1415
1330
1360
1370
85
60
50
100
220
670
<36
%
300
<35
<34
Steel 408 • 107
Partly solidified
Figure 1 R
= O,5°C/s
Tq d
= 1423°C = 50 JLm
0- and y- dendrites, growing simultaneously, quenched liquid (L). x 25
400
and
JLm
Completely solidified
Figure 2 R
= 2,O°C/s
Tq
= 1305°C d = 55 JLm Former o-dendrites, y-dendrites and interdendritic ferrite. Some dendritic ferrite can also be seen, (compare figure 8).
x 25
Figure 3 R = O,5°C/s Tq = 1305°C d = 85 JLm Former o-dendrites, y-dendrites tic ferrite, (compare figure 9).
and interdendri-
x 25
Figure 4 R
= O,1°C/s
Tq
= 1305°C
d = 140 JLm Former o-dendrites and y-dendrites. White interdendritic areas, (compare figure 11). x 25
108 • Steel 408
.....• ,
. '
.
.•.
.~
'- .!...,4
"
_.
.,'
. .•.
/
"-.,.
. '",
"..•.
' • ..J.
-
.
..
f'
•.
'"
~...
• '.
.~
:;>'.
J...••
" •
• '1.
'('
'''4l.
-.
,...'
.
r'.
,/
~
.l' 7'
"
"
~
\..
I
~../
• >' ,-:
'./, ~', \. .~
. T" ')
,,-
\. ~
j f'\',; ('....
;'
••.••••
J
./ '/·r· / ..
',-
, ....
!
~. •••
.
y..
1
'')
,<jl-~
•• r'
~,
/
.
,J:
'.t·~
I ••
'
!--;.
:\,.
'
..
~
-/ (. ,
,. ... , J~
I
~
'-t.' ,
(",..
,; , _ J.
.",
.
~...•.
'
'f
,~
t..
.
,
~. •
1;
. _ .....•.
'(
- " ...•.... . . .~. . / .•...,
~
J
(
..
.
,,'
, , ."
.,I
'.
R Tq
= O,5°C/s
= 1200°C (d1200 = 190 f.Lm)
Former a-dendrites, y-dendrites and interdendritic ferrite, (compare figure 10),
J ....
,"
,
Figure 5
400 f.Lm
x 25
I
Figure 6 R = 0,5°C/s Tq = 1420°C Simultaneous transformation tectic reaction gure 7). L = quenched
200 f.Lm
growth of 15- and y- dendrites. The of into y can also be seen, (periand transformation, compare fi-
a
liquid.
x 50
Figure 7 R = O,5°C/s Tq = 1420°C Transformation of a-dendrites. Detail of figure 6, 100f.Lm
x 150
- .~ :(
'-."..•.
\
"
R = 2,0°C/s Tq = 1305°C 4,0 vol-% ferrite, dendritic tic (100).
"\
x 150
100 Mm
.,
.
)
-
'\}
f
.
--<Jl>,
\
.-
......
'-
.
•..•.
0
-..:
oS
~
<{
'.
.-
• \
"
(l
I~S.~ . " -
~
"\
'"
'--
r
.
\)
.\
--d'
)
&
J
J
(
"'-
=-'1
)
\
,.
/ .'
•
~
P
c
-.;-
.
'-
.;
tJ
. '"
, .t : . "
i
o
J"
/~
Y
it'"OS-,.....
1
-
. IOS.
(Do) and interdendri-
",
..••.
~ "
Figure 8
,
•
<1 Q
I
;-..,
\l
6.....
-.
Figure 9 R = 0,5°C/s Tq = 1305°C 5,0 vol-% ferrite, mainly interdendritic (Dark structure (A), austenite precipitated rite during quenching.)
x 150
., (100). in fer-
100 Mm
".
Figure 10 R = 0,5°C/s Tq = 1200°C 0,1 vol-% ferrite, mainly interdendritic.
x 150
• 100 Mm
~.
~~~ v
Figure 11 R = 0,1°C/s Tq = 1305°C 5,5 vol-% ferrite, mainly interdendritic. x 150
100 Mm
109
~
) C'
.
408
Steel
f.r' _ -.~. ..... '-,
110 • Steel 409
STEEL 409.
0,02 % C 17 % Cr 13 % Ni 2,5 % Mo 0,2 % N
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
2375
316 N
1.4429
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Altot
N
0,024
0,58
1,79
0,009
0,011
17,4
12,8
2,77
0,03
0,03
0,002
0,20
Creq Nieq
=
1,32
fs Thermal Analysis
0,0
T
0,2
0,4
0,6
0,8
1,0
dT
@
(OCl
d'[ (OC/sl
T 1400
+1,5 +1,0
1350 +0,5 1300
-
0 dT d't
-0,5
1250
R
=
-1,0 -1,5
1200
0,5°C/s
0
100
200
Average
Liquidus Solidus
temperature, temperature,
austenitic °C
Solidification
range, °C
Solidification
time, s
CD
primary
phase, °C
CD
Precipitates
Interdendritic
ferrite,
(see figures
5, 8-11).
Microsegregation Element
Mn
Cr
Ni
Mo
1,6
1,2
1,1
2,1
R = 0,5 aCls Tq = 1305 °C
300
Cooling
't(s)
Rate,R, eeC/s)
2,0
0,5
0,1
1411
1421
1422
1310
1350
1370
105
70
50
85
245
640
Steel 409 ° 111
Partly solidified
Figure 1 R Tq
= 0.5°C/s
=
1415°C
d
=
40
J-Lm
y-dendrites
and quenched
liquid (L). x 25
400 J-Lm
Completely solidified
Figure 2 R = 2.0°C/s Tq = 1305°C d = 45 J-Lm Figures 2-4: y-dendrites rite.
and interdendritic
fer-
x 25
400 J-Lm
x 25
400 J-Lm
Figure 3 R Tq d
=
0.5°C/s
= 1305°C = 70 J-Lm
. .0'.#,., '\::..\"·i.
•• •
~ .", '"
•
,"
~
'" ,'~ ••• .r' ,..
•
tI ••
•
e •..•
.
.
•
*
~
•
•••••
.., ,,;. ,.t
R Tq d
1305°C
t
•
.' ;
,.
.
•• __,-
x 25
..
'A"
••
~•• :~
•
e ••.•.•
t
',-
'
•
III
•
•.
••••
•
'.' "
••
•
.•
"..__• •
(I
••
I
•
•
t
'~.'
•
'
;."
,,~..
•• Or-.
,.
.4)•••••• '
4
e.~._"
•
\
~.' A';.
f
.•
·'
. .., ".. ':' .. ;
;
.~
..,
.
'.
f.,.
,
e.•
• ,
./ ••••.
'\0
.•
:..
• 'A
..•• ,"
•• ' ,,0 "e::J. ~
= 105 J-Lm
~
••
.J1
~
~
= 0,1°C/s
=
••
t
IQ."
.'~
f
.
""',.
• ••..,.1
•
•
•
• (, •.,-,
" 0,/ t
,_,
,t .t.' .,•...... ~
"' ••
• "';
~.
•••
~.A~"
•.•
.. ~' ..••.•.. *~.:-
'. I
Figure 4
•
.".,'.
:'J. •
-tOo
.
l) •••4$.
"'*c.":ooo'"
• .'
'..-, '.'
n . cl
9#t'tJa"."
:
0.-
"'. •
'.
~. '
• •.•.•_tll· _...
:......
~ •• '\..
•
•.• .•• ••
~••••••••
r·.
•
\ ..I- •••~ ..•••.•••
Figure 5 R Tq
= 0,5°C/s
= 1200°C (d1200 = 75 p,m)
y-dendrites 400 p,m
and interdendritic x 25
..
Figure 9
~-.
•
•
R = 0,1°C/s Tq = 1305°C 0,8 vol-% interdendritic x 150
ferrite.
ferrite.
Steel
STEEL 410.
0,01 % C 25 % Cr 22 % Ni 2 % Mo
410 • 113
STAINLESS STEEL
Designations SIS
Werkstoff
AISI
Nr
Composition (wt-%) C
0,008 Creq
Nieq
=
P
Si
Mn
0,24
1,77
S
0,009
0,008
Cr
Ni
25,1
22,2
Mo
Cu
2,3
0,02
Co
Ti
Altot
N
0,02
0,08
0,002
0,067
1,21
fs
Thermal Analysis
0.0
T
,
0.2
0.4
0.6
0.8
1.0
dT dT
CD
(OCl
1400
(OC/s)
T
+1.5 +1,0
1350
+0.5 1300
--
0
dT d't'
-0.5
1250
R
1200
= 0,5°C/s
-1.0 -1.5 0
100
200
Average
2,0 Liquidus temperature, Solidus temperature,
austenitic primary phase, °C °C
Solidification
range, °C
Solidification
time, s
CD
CD
Precipitates
1. Interdendritic ferrite, (see figures 8-11). 2. Sigma-phase, (see figures 6 and 7).
Microsegregation Element
Mn
Cr
Ni
Mo
1,6
1,2 1,2
1,1 0,8
2,3
R = 0,5 °C/s Tq = 1310 °C
300
Cooling
'[(5)
Rate,R, eC/s)
0,5
0,1
1401
1402
1401
1335
1345
1355
65 95
60
45
225
700
114 • Steel 410
Partly solidified
Figure 1 R = O,5°C/s Tq = 1398°C d = 60 J.Lm y-dendrites and quenched liquid (L).
400 J.Lm
x 25
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1310°C d = 60J.Lm Figures 2-4: y-dendrites. White interdendritic areas.
400 J.Lm
x 25
Figure 3 R Tq d
= O,5°C/s = 1310°C = 80 J.Lm
400 J.Lm
x 25
Figure 4 R Tq d
= O,1°C/s = 1310°C
= 160J.Lm
400 J.Lm
x 25
Steel 410 • 115
Figure 5
R Tq
= 0,5°C/s = 1200°C
(d1200 = 110 J.Lm) y-dendrites. White interdendritic
areas.
x
25
400 J.Lm
Figure 6
R = O,l°C/s Tq = 1310°C Sigma-phase precipitated ture in figures 9 and 11).
in ferrite,
x 600
Figure 7
R = O,l°C/s Tq = 1310°C Sigma-phase precipitated (Electron micrograph.)
in ferrite.
(dark struc-
25J.Lm
Figure 8
R
= 2,O°C/s Tq = 1310°C 1,0 vol-% interdendritic
,,
..
'.
.f'
100J.Lm
ferrite.
x 150
\ ,'r
),
:>
'\
J
l
•
Figure 9
R = 0,5°C/s Tq = 1310°C 1,0 vol-% interdendritic
ferrite.
x 150
"
•
\ \7-_
Figure 10
o
R = 0,5°C/s Tq = 1200°C 0,7 vol-% interdendritic
ferrite.
o
x 150 ."'C
•
•
v .~
\
Figure 11
./
:J
I
•
, f'.
(-
~
J
R = O,l°C/s Tq = 1310°C 1,0 vol-% interdendritic 100 urn
)( 1<;n
ferrite.
Steel 411 • 117
STEEL 411.
0,07 % C 24 % Cr 20 % Ni
HEAT RESISTANT STEEL
Designations SIS
AISI
Werkstoff
2361
310 S
1.4842
Nr
Composition (wt-%) C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Ti
Altot
N
0,055
1,20
1,75
0,011
0,008
24,2
20,4
0,08
0,02
0,03
0,09
0,015
0,051
Creq
Nieq
=
1,15
fs
Thermal Analysis
0,0
0.4
0.2
0,6
0,8
1,0 dT dT (OC/sl
,
T (OCl
CD
1400
+1.5
T
+1,0 1350 +0.5 1300
-
0 dT dt
-0.5
1250
-1.0 -1.5
R
= a,SOCts
1200 0
200
100
Average
2,0 Liquidus temperature, Solidus temperature,
austenitic QC
Solidification
range, QC
Solidification
time, s
primary phase, °C
CD
(3)
Precipitates
Interdendritic
ferrite, (see figures 6-8).
Microsegregation Element
Si
Mn
Cr
Ni
2,4
1,9
1,2
1,2
R = 0,5 QCts Tq = 1290 QC
300
T(s)
Cooling Rate,R, (eC/s)
0,5
0,1
1399
1401
1399
1315
1330
1350
80
70
105
230
50 750
Partly solidifjed
Figure 1
R = 0,5°C/s Tq = 1395°C d = 65ILm y-dendrites and quenched liquid (L).
400 ILm
x 25
Completely solidified
Figure 2
R
= 2,0°C/s Tq = 1290°C d = 55ILm Figures 2-4: y-dendrites.
x
25
Figure 3
R Tq d
= 0,5°C/s
1290°C 85ILm x 25
.".~'..
,',
1 .'
• I
. . :... , ,
..I',
..
.. .,. ...."-;,( (-)
~
;."''''
.•..
,
"..
-I.
...
t_.
~
-
\
..•., 1'- •~"
... . _. ,-,... ~'
'
!. •
'",..
,
..•.
"., f
''''''- ... _ ..
,
Figure 4
R Tq d
0,1°C/s 1290°C 125ILm
\ ""
x 25
Steel 411 • 119
Figure 5 R Tq (d1200
= O,5°C/s = 1200°C =
90
fLm)
y-dendrites.
x 25
400 fLm
•
'0
Figure 6 R = 2,0°C/s Tq = 1290°C Figures 6-8: Small amounts ferrite.
of interdendritic
.,
p
,
"
x 150
,
/
..;
120 • Steel 412
STEEL 412.
0,1 % C 24 % Cr 20 % Ni
HEAT RESISTANT STEEL
Designations SIS
AISI
Werkstoff
310
Composition
1.4845
(wt-%)
C
Si
Mn
0,13
0,52
1,67
Creq
Nieq
=
Nr
P
0,009
S
Cr
Ni
Mo
Cu
Co
Ti
Altot
N
0,003
24,3
20,5
0,11
0,03
0,04
0,08
0,023
0,053
1,03
fs
Thermal Analysis
0,0
T
0,2
0,4
0,6
0,8
1,0
dT dt
CD
(OC)
+ 1400
ft/s)
T
+1.5 +1,0
1350 +0,5 1300
--
0
dT dt
-0,5
1250
R
=
-1,0 -1.5
1200
O,5°C/s
0
100
200
Average
2,0 Liquidus temperature, Solidus temperature,
austenitic °C
Solidification
range, °C
Solidification
time, s
CD
primary phase, °C
CD
Precipitates
Interdendritic
ferrite, (see figures 6-8).
Microsegregation Element
Si
Mn
Cr
Ni
2,5
1,9
1,2
1,2
R = 0,5 °C/s Tq = 1300 °C
300
Cooling
"((5)
Rate,R, (OCts)
0,5
0,1
1405
1407
1405
1325
1335
1355
80 95
230
70
50 690
Steel 412 • 121
Partly solidified
Figure 1 R = O,5°C/s Tq = 1400°C d = 60/-Lm y-dendrites and quenched liquid (L). x 25
400/-Lm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1300°C d = 65/-Lm Figures 2-4: y-dendrites. x 25
Figure 3 R Tq d
= 0,5°C/s = 1300°C = 90/-Lm
x 25 •
•
I'
~"
',_
J :
. ... ' .. .. .. .•...~.... . ..,.. . . ...
,
•••
:'
'-."
•
,.
f
t
••
,
-•.
•
:'.,
"
..
J
~f,
I
",
1
~4·*,· \. ~~.\
,
--.
.•
#
1···· t....
,-/'.1" , .. ,..
•.
J ..•
t I
....:
.... ,
•
j
....'" ~.'"
,. .,
••••. ..,,'
,.
Figure 4 R Tq d
f
I'
••
= 0,1°C/s
1300°C 125/-Lm x 25
.,
122 • Steel 412 \, ,\
" ..• , 1
\
.'
..
'/
'/
",
. I
,
I.
I
•
Figure 5 R Tq
= 0,5°C/s = 1200°C
(d1200 = 100 ~m) y-dendrites ..
400 ~m
"'",
.. .
x 25
~ l Q
•.!
(
Figure 6 R = 2,0°C/s Tq = 1300°C 0,5 vol-% interdendritic
,
ferrite.
'
x 150
o
••
.~
...
o Figure 8 R = O,1°C/s Tq = 1300°C 0,5 vol-% interdendritic x 150
ferrite.
Steel
STEEL 413.
O,Ol%C
19%Cr
25%Ni
4%Mo
1,5%Cu
413 • 123
STAINLESS STEEL
Designations SIS
AISI
Werkstoff
Nr
1.4539
Composition (wt-%) C
Si
Mn
0,013
0,48
1,74
Creq Nieq
=
P
S
Cr
0,007
0,003
19,2
Ni
Mo
Cu
25,1
4,44
1,51
0,0
0,2
Co
Ti
0,07
0,02
Ce
Altot
N
0,07
0,034
0,035
0,94
f5 Thermal Analysis
T (OCl
0,4
0,6
0,8
1,0 dT dT (OC/s)
,
CD
1400
+1,5
T
+1,0 1350 +0,5 0 dT dT
-0,5
1250
R
=
-1,0 -1,5
1200
O,5°C/s
0
100
Average
2,0 Liquidus temperature, Solidus temperature, Solidification
austenitic °C
CD
primary phase, °C
range, °C
Solidification
time, s
CD
Mn
Cr
Ni
Mo
1,8
1,7
1;2
1,1
2,0
Rate,R, (OC/s)
0,5
0,1
1389
1391
1391
1315
1345
85
75
45
100
230
760
Microsegregation Si
Cooling
'"[(5)
1305
Precipitates
Element
300
200
R = O,5°C/s Tq = 1280 °C
124 • Steel 413
Partly solidified
Figure 1
= 0,5°C/s
R Tq
= 1385°C
d
= 70 JLm
y-dendrites 400 JLm
and quenched
liquid (L).
x 25
Completely solidified
Figure 2
= 2,0°C/s = 1280°C d = 55 JLm Figures 2-4: y-dendrites. R Tq
White interdendritic
400 JLm
x 25
Figure 3 R Tq d
= 0,5°C/s
= 1280°C = 80 JLm
400 JLm
x 25
Figure 4 R Tq d
= O,1°C/s = 1280°C = 120JLm
400 JLm
x 25
areas.
Steel 413 • 12,5
Figure 5 R Tq (d1200
= 0,5°C/s = 12000C =
90 JLm)
y-dendrites. White interdendritic
areas. x 25
400 JLm
126 • Steel 414
STEEL 414.
0,4 % C 25 % Cr 20 % Ni
HEAT RESISTANT STEEL
Designations SIS
Werkstoff
AISI
Nr
310 HC
Composition
(wt-%)
C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Ti
Altot
0,41
1,00
1,34
0,007
0,010
25,2
20,6
0,08
0,02
0,06
0,10
0,016
N
0,022
Creq Nieq
= 0,89
fs
0.2
0.0
0.4
0.8
0.6
0.86
1.0
T
dT dt
(OCl
CD
Thermal Analysis
(OC/s)
t
1400
+1.5
T 1350
R = O,5°C/s
o
100
200
Average
Liquidus
temperature,
Temperature Solidus
austenitic
of formation
temperature,
°C
primary
of eutectic,
CD
phase, °C
°C
CD
CD
300
Cooling
1:'(5)
Rate,R, (OC/s)
2,0
0,5
0,1
1383
1385
1385
1275-1260
1285-1275
1260
1275
1290-1280 1280
Solidification
range, °C
125
110
105
Solidification
time, s
125
290
1140
Precipitates
Interdendritic M23CS - eutectic. (see figures 6-12).
The amount
of carbide
eutectic
increased
with increasing
Microsegregation Element
I PlO
Si
2,1 Carbide/-y
Mn
Cr
Ni
1,6
1,2 1,6
1,1
R = O,5°C/s Tn = 1?~n or.
cooling
rate,
Steel 414 • 127
Partly solidified
Figure 1
R = 0,5°C/s Tq = 1375°C d = 60 ILm y-dendrites and quenched
liquid (L). x 25
400 ILm
Completely solidified
Figure 2
R = 2,0°C/s Tq = 1230°C d = 50 ILm Figures 2-4: y-dendrites and interdendritic bide eutectic, (compare figures 6-10, 12). x 25
Figure 3
R
= 0,5°C/s
Tq d
= 80 ILm
= 1230°C
x 25
Figure 4
R
= O,l°C/s
Tq d
= 1230°C = 105ILm
car-
400 ILm
Figure 5 R Tq
= 0,5°C/s
(dlloo
= 1100°C = 90/-Lm)
y-dendrites and interdendritic (compare figure 11).
400/-Lm
carbide
eutectic,
x 25
Figure 6 R = 2,0°C/s Tq = 1230°C M23C6-Y eutectic Figures 6-8: Note the influence on carbide coarseness. 25/-Lm
x 600
Figure 7 R = 0,5°C/s Tq = 1230°C M23C6-Y eutectic (E) and residual melt (L). 25/-Lm
x 600
Figure 8 R = 0,1°C/s Tq = 1230°C M23C6-y eutectic.
of cooling
rate
Steel 414 • 129 ./
..~-. i
,".j
"
".
Figure 9 = 2,0°C/s q = 1230°C 11,4 vol-o;;° M 23 C6.
~
/"
x 150
100 JLrn
Figure 10 ~
q
= O,5°C/s = 1230°C
8,0 vol-Ol 10 M23 C6. x 150
Figure 11 = 0,5°C/s q = 1100°C 10,7 vol-o;;° M 23 C6.
~
x 150
\
. \
Figure 12 R T q 7,2
- 0 1°C/s -,
= 1230°C vol-Ol 10 M 23 C6. x 150
100 JLrn
\
.'
.-""-\-
.,
130 • 51eel415
STEEL 415.
0,07% C 21 % Cr 31 % Ni
STAINLESS AND HEAT RESISTANT STEEL
Designations SIS
AISI
WerksteH
Alloy 800
Composition
Nr
1.4876
(wt-%)
C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
Ti
0,07
0,62
0,56
0,007
0,003
21,1
30,9
0,06
0,02
0,02
0,40
Creq Nieq
=
N
0,39
0,019
0,71
fs The •••
Altot
0,0
T
Annl,ria
0,2
0,4
0,6
0,8
1,0 dT dT
CD
(OC)
(OC/s)
~ 1400
+1,5
T
+1,0 1350
~.~----
Q) 1300
--
+0,5 0
dT dT
-0,5
1250
R
-1.0 -1,5
=
1200
0,5 C/s Q
0
100
200
Average
2,0 Liquidus
temperature,
Temperature Solidus
austenitic
of formation
temperature,
QC
primary
of titanium
CD
phase, QC
compounds,
CD CD
1399
QC
1305-1280 1280
300
Cooling Rate,R, (OC/s)
0,5 1401 1310-1295 1295
Solidification
range, QC
120
105
Solidification
time, s
125
280
Precipitates
Ti (C,N) and sulphides
containing
titanium,
(see figures
6 and 7).
Microsegregation Element
Si
Mn
Cr
Ni
2,3
1,7
1,2
1,1
R = 0,5 QC/s Tq = 1290 .QC
t(s)
0,1 1400 1350-1330 1330
70 810
Partly solidified
Figure 1 R 0,5°C/s Tq 1390°C d 80 ILm y-dendrites and quenched liquid (L). x 25
400 ILm
Completely solidified
Figure 2 R Tq
2,0°C/s 1280°C d 50 ILm Figures 2 - 4: y-dendrites.
x 25
Figure 3 R Tq d
0,5°C/s 1290°C 95ILm x 25
f' .' '. )': \ .1 • ." 'If
.~.. _. i
\
l..
\. :
.,
\
\
f
\.
\
J...•.• J I,
.*""'( {
\
\
,
\
.~,. "
.. .. .,~ ...;;.~
,.
,.
.-y,.
<#
.
\!
. 1.,;-'
J
/... r, \
.\. '.
<11
.,
,~~"
'!
:
:,'~-
0,1°C/s 1290°C 145ILm
'.
\
,l.,'
/.~..
•
~
J
.",,;.. # •.•• "
,
•••
~•.
:",
f
•
..; • ~
:.
'j •••
~
Y
..
J
t'"
t.
~"
• •••.. ~i
"'" •
"'I
x 25
.-
y
..
~....,
• _
-"
~
I, \
~ I'
Figure 4 R Tq d
I
("~
..
•••
_~
132 • Steel 415
Figure 5 R = O,5°C/s Tq = 1200°C (d12oo = 1051Lm) y-dendrites (dark).
-400 ILm
x 25
- '• /
Figure 6
I
\
R = O,5°C/s Tq = 1290°C TiN, TiC and sulphides
/ A 11
containing
titanium
TiC~25ILm
x 600
(I'
0
A
y~
~
/ c
~
Figure 7 R = 0,5°C/s Tq = 1200°C TiC and sulphides
A
\ o
-
25ILm
x 600
containing
titanium
(A).
(A).
133
5. High Speed Steels High speed steels are highly alloyed tool steels which exhibit enhanced hardness and wear resistance at high temperatures. These steels have a high carbon content and varying amounts of chromium, molybdenum, tungsten and vanadium. The wide solidification ranges and microsegregation of alloying elements in these steels limit their production to small ingots for rolling and forging. Continuous casting is not practised. Considerable use is made of powder metallurgical methods to produce homogeneous, isotropic material. Although the solidification of high speed steels studied in great detail for many years, they were in the present study for the sake of uniformity comparison with other alloys. The two most commercial high speed steels were chosen, with compositions according to table 5.1:
has been included and for common chemical
No.
C
Si
Mn
Cr
Ni
Mo
W
V%
501 502
0,9 1,0
0,3 0,4
0,3 0,4
3,9 3,8
0,4 0,1
4,9 9,2
6,1 1,5
1,9 2,0
Table 5.1
High speed steels
The pseudobinary equilibrium phase diagram in figure 5.1 illustrates schematically the complicated solidification sequence, which is roughly the same for both steels. The following reactions take place in order with falling temperature: •
primary ferrite formation
•
peritectic stenite
•
eutectic reaction producing
reaction and transformation
producing
au-
austenite and carbides
The distinction, used in this work, between peritectic reaction and transformation is defined in chapter 4.
Temperature 1600
:C
L 1500
1400
1300
1200
a+K
y+K
1100
1000
o
0,2
0,4
0,6
0,8
1,0
1,2 1,4 1,6 Weight-% carbon
Figure 5.1 Phase diagram for steel with approx. 4% Cr, 5% Mo, 6% Wand 2% V. (After Horn E. & Brandis H., DEW- Techn. Ber. 11 (1971),147-154)
[89]
References General investigations of the solidification of high speed steels dealing with development of the structure, constitution and reaction mechanisms have been reported, [8795]. Quantitative data on microsegregation may be found in references [90, 91, 94, 98]. Factors controlling dendrite arm spacings and carbide sizes are discussed in references [93, 96, 97].
134 • Steel 501
STEEL 501.
0,9 % C 4 % Cr 5 % Mo 6 % W 2 % V
HIGH SPEED STEEL
Designations SIS
AISI
Werkstoff
2722
M2
1.3343
Composition
(wt-%)
Nr
C
Si
Mn
p
S
0,88
0,30
0,32
0,030
0,017
Thermal Analysis
Cr
3,9
0,2
v
Ni
Mo
Cu
Co
W
0,36
4,9
0,10
0,30
6,1
0,7
0,80.9
0,4
0.5 0,6
1,9
0,022
0,036
1,0
dT d't (OC/s)
+3,0 +2,5 +2,0 +1,5 +1,0 +0,5 0 -0,5 -1,0
R
-1,5
1100
= 0,5°C/s
o
200
100
400
300
1'(5)
Average Cooling Rate,R, rc/s)
2,0 Liquidus
temperature,
ferritic
primary
Temperature
of start of austenite
Temperature
of start of MC-austenite
Temp. of M2C- and M6C-austenite Solidus
temperature,
°C
CD
phase, °C
formation,
°C
eutectic
eutectic
CD CD
formation,
formation,
°C
°C
CD
CD
0,1
0,5
1414
1423
1427
1341
1342
1350
1260
1260
1270
1228
1232
1255
1175
1185
1220
Solidification
range, °C
240
240
210
Solidification
time, s
170
455
2500
Precipitates MC-M2C- and M6C-austenite (see figures 6-9,11-14). MC contained contained
approximately
mainly Fe, Wand
eutectic.
The amount
45% V, 17% Wand
of carbide
eutectic
decreased
11 % Mo, and M2C approximately
Mo.
Microsegregation Element
Cr
Mo
W
v
1,6
1,2
0,8
0,9
with increasing
R = 0,5°C/s Tq = 1155 °C
cooling
rate,
37% W, 28% Mo and 12% V. M6C
Steel 501 • 137
Figure 10
Figure 11
R
R = 0,5°C/s Tq = 1245°C MC" eutectic. The MC carbide is the first carbide to precipitate. 0,1 vol-% MCcarbide.
= 0,5°C/s
Tq = 1335°C Peritectic reaction. WidmanstiHten austenite (Yw) precipitated in 0 during quenching.
x 600
25 p'm
Figure 12
R = 2,0°C/s Tq = 1155°C Figures 12-14:
Carbide morphologies. x 600
25 p'm
•
,
, MC . 6
Figure 13
R
= 0,5°C/s
Tq
= 1155°C
x 600
25 p'm
x 600
25 p'm
Figure 14
R
= 0,1°C/s
Tq
= 1155°C
••
~
138 • Steel 502
STEEL 502.
1,0 % C 4 % Cr 9 % Mo 1,5 % W 2 % V
HIGH SPEED STEEL
Designations SIS
AISI
Werkstoff
2782
M7
1.3348
Composition
(wt-%)
Nr
C
Si
Mn
P
S
Cr
Ni
Mo
Cu
Co
W
1,0
0,38
0,38
0,010
0,037
3,8
0,14
9,2
0,11
0,05
1,5
fs
Thermal Analysis
0.0
0,4
0,2
0,45
N
2,0
0,6 0.8
0.5
0,010
0,036
1,0
dT dt
T (OCl
(OC/s) 1400 +3.0 +2,5
1350
+2,0 1300
+1,5 +1.0
1250 +0,5 0
1200 - - - - - - - - - - - - - - - - - - - - - -
-0.5 1150
R
-1,0 -1.5
1100
= 0,5°C/s
o
100
200
400
300
't" (5)
Average Cooling Rate,R, (OC/s)
2,0 Liquidus
temperature,
Temperature Temperature Solidus
ferritic
primary
phase, °C
of start of austenite formation, °C of MC- and M2C-austenite eutectic
temperature,
°C
CD
CD
formation,
CD
°C
CD
0,5
0,1
1401
1400
1400
1305
1315
1322
1222
1226
1233
1175
1180
1185
Solidification
range, °C
225
220
215
Solidification
time, s
170
410
2100
The second peak on the cooling rate curve is split into two peaks, corresponding to the peritectic reaction, followed by the Iiquid-to-austenite transformation.
Precipitates MC- and M2C-austenite M2C contained
eutectic,
approximately
(see figures
7-9,12-14).
57 % Mo, 11 % V and 9 % W. MC was of the VC type.
Microsegregation Element
Cr
Mo
W
v
1,8
1,1
0,6
0,7
R = 0,5°C/s Tq = 1155 °C
Steel
Partly solidified
Figure 1 R = O,5°C/s Tq = 1310°C d = 35 fLm 8-dendrites, partly transformed to y, and quenched liquid (L), (compare figures 5 and 6).
x 25
400
fLm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1155°C d = 25 fLm Figures 2-4: y-dendrites (compare figure 7).
and carbide
x 25
Figure 3 R = O,5°C/s Tq = 1155°C d = 35 fLm (Compare figure 8.) x 25
Figure 4 R = 0,1°C/s Tq = 1155°C d = 70 fLm (Compare figure 9.)
x 25
eutectics,
502 • 139
140 • Steel 502
Figure 5 R = 0,5°C/s Tq = 1310°C Peritectic reaction and transformation, (compare figure 10.)
lOOl-tm
Figure 6
R = O,5°C/s Tq = 1260°C Growth of austenite, 8 ~ y and L ~ y. Extensive nucleation of y after the peritectic reaction, (see cooling curve and compare steel 501, figure 6).
x 150
Figure 7 R = 2,O°C/s Tq = 1155°C Figures 7-9: Carbide structure. Note the influence of cooling rate on carbide coarseness, (compare figure 12). x 150 \
'~.
Figure 8 R = O,5°C/s Tq = 1155°C 9 vol-% carbides (MC and M2C), (compare figure 13). x 150
•
•
• •
:A.;\ <:p'
J.. ,
•
.- 'j
".
Figure 9 R = O,l°C/s Tq = 1155°C 10 vol-% carbides (MC and M2C), (compare figure 14). x 150
Partly solidified
Figure 1 R 0,5°C/s Tq = 1335°C d = 35/-Lm a-dendrites, partly transformed to y, and quenched liquid (L), (compare figures 5 and 6). x
25
400/-Lm
Completely solidified
Figure 2 R = 2,O°C/s Tq = 1155°C d = 30/-Lm Figures 2-4: y-dendrites (compare figure 7).
and carbide eutectics,
x 25
400/-Lm
x 25
400/-Lm
x 25
400/-Lm
Figure 3 R = 0,5°C/s Tq = 1155°C d = 40/-Lm (Compare figure 8.)
Figure 4 R Tq
= O,1°C/s = 1155°C
d = 85/-Lm (Compare figure 9.)
136 • Steel 501
Figure 5
Figure 6
R = 0,5°C/s Tq = 1335°C Peritectic reaction and transformation, (compare figure
R = 0,5°C/s Tq = 1245°C Growth of austenite, o~y and L~y, and MC-y eutectic. 0,1 vol-% MC carbide, (compare fig 11).
100/-l-m
10).
x 150
Figure 7
;..
.
-=-~ I
•
R = 2,0°C/s Tq = 1155°C Figures 7-9: Carbide structure. Note the influence of cooling rate on carbide coarseness, (compare figure 12).
x 150
Figure 8 R = 0,5°C/s Tq = 1155°C 9 vol-% carbides, (MC, M2C and M6C), (compare figure 13).
x 150 .~-
Figure 9 R = 0,1°C/s Tq = 1155°C 12 vol-% carbides, (MC, M2C and M6C), Melted areas (L) in the centres of the dendrites. (Compare figure 14).
,
x 150
Steel
Figure 10
Figure 11
R = 0,5°C/s Tq = 1310°C a-dendrite, surrounded by y formed by th~ peritectic reaction. Widmanstatten austenite (Yw) precipitated in a during cooling and quenching.
R = 0,5°C/s Tq = 1260°C y, residual a, and liquid (L). (No carbides.)
25J.Lm
Figure 12
Carbide morphologies. x 600
25J.Lm
x 600
25J.Lm
Figure 13 R Tq
1 (
x 600
R = 2,0°C/s Tq = 1155°C Figures 12-14:
502 • 141
= 0,5°C/s
= 1155°C
Figure 14 R = 0,1°C/s Tq = 1155°C Remelted areas (L) in the centres of the dendrites. x 600
25J.Lm
•••
142
Temperature,oC
6. Conclusions and Comments In the preceeding chapters, detailed results have been reported for individual steel compositions. The purpose of this section is to illustrate general relationships for groups of steels. The fact that many of the important solidification parameters follow a general pattern justifies interpolation between the steels the behaviour of which has been described. This allows data to be estimated for many types of steel which have not been included.
1500
Thermal analysis
1400
The results on liquid us, solidus and peritectic temperatures, measured for the three cooling rates, are shown as a function of the carbon content in figures 6.1 - 6.4 for carbon, low alloy and chromium steels. The thermal data for the stainless and heat resistant alloys are plotted as a function of alloy content, expressed as equivalents of chromium and nickel, in figure 6.6.
1300
Temperature,
+ 0,1°C/s • 0,5 02,0
°C
2.0
••
~o~
-~.~
1500
t
Liquidus 1200
.~~T;~~~~----
,i~
"~:
Peritectic
.~.
0,5
0,3
0,7
1,0 Weight-% carbon
.~~.
•.•....•• ~.
o
0,1
~,1
0,5 & 2,0
Figure 6.2 alloy steels
Liquidus, peritectic
and solidus temperatures
for low
0
Temperature,oC
1400
302
301
304
303
1500 Solidus
1300
.0,1
°C/s
·0,5 02,0
1400
1200 0,1
0,3
0,5
0.7
1,0 Weight - % carbon 1300
Figure 6.1 Liquidus, carbon steels
peritectic
and solidus
temperatures
for
The general shape of pseudobinary diagrams of the type Fe-C-M is shown in figures 3.1 and 3.2. It is seen in these diagrams that the peritectic line of the binary Fe-C-diagram (figure 2.1) is substituted by a triangular three-phase area, but this is not equivalent to the area marked "peritectic" in figures 6.1-6.4, The experimental points here indicate the maximum temperature of the peritectic reaction. The scatter in the experimental results depended on the varying degree of supercooling, as discussed in chapter 1, However, the highest temperatures given probably represent the start of the peritectic reaction. in large scale ingots, The reason for the spread in solidus values was partly the experimental problems described in chapter 1, but also the fact that the commercial steels used contained different amounts of alloying and impurity elements.
+ 0,1°C/s • 0,5 o 2,0 iC 0,1 (peritect.)
1200
:~+01 • 0,5
0_ -0
1100 0,1
0,3
0,5
0,7 Weight-
Figure 6.3 Liquidus, peritectic chromium steels
2,0
1,0 % carbon
and solidus temperatures
for 5%
143
As shown in figures 6.3 and 6.4, steels 303, 304 and 309 had very low solidus temperatures explained by eutectic carbide precipitation, The pseudobinary equilibrium phase diagrams for Fe - 5Cr - C and Fe - 13Cr - C, figures 3.1 and 3.2, indicate a eutectic reaction for carbon contents of 1,2 and 0,8 % respectively. The appearance of carbide eutectics at much lower carbon concentrations is a result of microsegregation. In figure 6.4 the solidus lines have been interrupted between steels 308 and 309, as it is certain that eutectic precipitation of carbides will take place in steels with carbon contents lower than that of steel number 309. The solidification range widened with an increasing rate of cooling, see figure 6,5. The constitutional influence of high carbon and chromium contents was very strong,
Temperature,·C 305 306 307
1500
308
309
~+.
~.. ~.~. /
0+--""'"
•
~
••
..-
Perltectlc 0
""""-'..-"""" I
Q
•
.•.•.• N({{Ui!i. .•.•.•.•.•.•.•.•.•""""" _
.
'b-"" If. 0
~
1400 ~
~;'-
o
~ Solidus
1300 + 0,1 ·C/s • 0,5 o 2,0 '" 0,1 (Peritect)
+
•
1200
o
Solidification 0,1
0,3
0,5
0,7 0,9 Weight -%carbon
range,
Tliq - Tsol
·C 1C5Cr
Figure 6.4 Liquidus, 13% chromium steels
peritectic
and solidus
temperatures
o
for
The tendency was for the liquidus and the peritectic temperatures to be independent of cooling rate, whereas the solidus was markedly lower at a higher cooling rate, The reason for this is the higher degree of backdiffusion and homogenization possible at a low cooling rate, The main difference between the carbon and low alloy steels, shown in figures 6,1 and 6,2, was the lowering of the solidus lines by alloying elements, The liquidus temperatures were also decreased somewhat. It has not been possible to calculate the factors for the temperature depression by, for example, nickel and chromium, as the levels of other elements were not held constant in the present work. However, at the low contents present, the influence of minor changes in composition can be estimated from the binary phase diagrams, In figure 6.4, the abnormal behaviour shown by steel number 305, containing 0,04% C, 13% Cr, 5,5% Ni, reflects the depression of both liquidus and solidus temperatures by nickel. At the 13% Cr- level the mean effect was roughly 5 and 10 degrees per weight percent of nickel for the liquidus and solidus respectively, In spite of the very low carbon content, steel number 305 had a peritectic reaction. This is an effect of nickel, as steel number 306 with a higher carbon content solidified completely to ferri-
300
0,7C13Cr
250
0
+~. ____ 200
e
+ 1C1,5Cr 0
150
+
/.
+ 100
0
---~ O,1C5Cr
.--/.-
+
1C
•
•
O,1C13Cr _0
0,2C
+/ 50
+
te.
0,1
0,5
2.0 Cooling rate, °C/s
Figure 6.5 Solidification ranges for carbon, low alloy and chromium steels as function of cooling rate
144
Liquidus and solidus temperatures of the stainless and heat resistant steels are shown in figure 6.6, as a function of alloy content, expressed as equivalents of chromium and nickel as follows, [78,83): Creq = Cr Nieq = Ni
+ 1.37Mo + 1.5Si + 2Nb + 3Ti + 0.31 Mn + 22C + 14.2N + 1Cu
From the thermal analysis data for the stainless and heat resistant steels, the fraction solidified primarily as o-ferrite was evaluated. The results are given in figure 6.7 as a function of the ratio between the chromium and nickel equivalents, as defined above. It may be seen that a drastic change in solidification behaviour takes place between Cr and Ni equivalent ratio values of 1,35 and 1,80; alloys with values below this range solidify as 100 % austenite, above this range as 100% ferrite. Behaviour of this kind may also be seen in figure 4.1. No substantial influence of cooling rate on the fraction of o-ferrite formed was observed.
(The elements are expressed in weight percentages.)
Temperature, °C
~ ~
~Jt5cr5NiMO +
1400
+ +~+
ri~~
•
LiQuidus
---_L&~
0
t;;-
0
&tg ~
o~o·~--o·.__ ===~+~C25c/r21Ni ,...."".
,...
1300
+
a
v~
._
f1 o---~~~
0
0
+
~.I:l
~ 17/12 MoNb sol.
The effect of carbon can be seen in alloy 414, with 25 % Cr, 21 % Ni, 0,4% C. This had a solidification range of 105125°C, and very low solidus temperatures as a result of interdendritic segregation.
The two high speed steels, (numbers 501 and 502), had solidification ranges wider than 200°C, which is in good agreement with their high concentration of carbon and alloying elements. The highest cooling rate corresponded to the lowest solidus temperature and the widest solidification range, as for the other alloy systems in this work, (see figure 6.5).
0
~
1200 + 0,1 ·C/s • 0,5 02,0
1100
L.-
~
-+
-+-
~
~ Alloy content
Figure 6.6 Liquidus heat resistant steels
~
~
Creq + Nieq weight-%
and solidus temperatures
for stainless and
Fraction solidified as primary ferrite, 0/0 ~o
100
90
80
70
60
50
Again, the highest cooling rate led to the lowest solidus temperature and the widest solidification range. These ranges were comparatively narrow for this group of steels, in most cases 100°C or less (compare figure 6.5). Two of the alloys, numbers 401 with 25% Cr, 5% Ni, 1% Mo, and 406 with 17% Cr, 12% Ni, Mo-Nb, did not follow the general trend. The ferritic alloy, 401, exhibited the highest liquidus and solidus temperatures of all the stainless and heat resistant steels examined; a constitutional effect in full agreement with the Fe-Cr-Ni equilibrium phase diagram in figure 4.1. This diagram also indicates a narrow solidification range for this composition. Alloy 406 showed very low solidus temperatures and a wide solidification range, 120-150°C. The reason was the pronounced interdendritic segregation of, mainly, niobium and carbon.
•
40 + 0,1°C/s • 0,5 o 2,0
30
20
10
0 2
3
4 Creq Nieq
Figure 6.7
Fraction solidified
as /I-ferrite
in stainless steels
145
I (er)
Microsegregation The microprobe results were derived from samples cooled at O,5°C/s and quenched from just below the solidus temperature. The dependence on carbon level of the microsegregation of manganese and chromium in carbon, low alloy and chromium steels is shown in figures 6.8 and 6.9. The high values of the segregation ratio I found at high carbon levels were caused by slow backdiffusion in austenite, and by a negative interaction known to exist at least between carbon and chromium, [31, 47]. Primary formation of austenite was noted at a carbon content above some 0,4% in carbon and low alloy steels, (chapter 2), whereas no chromium steel solidified by formation of primary austenite, (chapter 3). As shown in figure 6.9, the chromium steel number 306, with 0,07% C and 13% Cr, which solidified completely as ferrite, had no measurable chromium segregation; emphasizing the importance of diffusion in ferrite during solidification in reducing the observed segregation. In contrast, steel number 305, with 0,04% C, 13% Cr, 5,5% Ni, solidified partly to austenite and showed chromium segregation, despite having a lower carbon content. Molybdenum, which was present in appreciable amounts in all the 5% chromium steels, displayed the same segregation behaviour as chromium in relation to carbon, figure 6.10.
•
2,5
•• 2,0
• •• 1,5
1,0 0,1
0,3
Figure 6.9 Microsegregation chromium steels
0,5
0,7 1,0 Weight- % carbon
of chromium
in low alloy
and
I (Mn)
I (Mo) 2,0
2,0
•
1.5
1,5
1,0
1,0 0,1
Figure 6.8
0,3
Microsegregation
0,5
0,7 1,0 Weight -%carbon
of manganese in carbon steels
0,1
Figure 6.10 steels
0,3
Microsegregation
0,5
0,7 1,0 Weight -% carbon
of molybdenum
in 5% chromium
146
As shown by comparison between figures 6.9 and 6.11, nickel segregated less than chromium in the low alloy steels, the segregation ratio for the element having an inverse relationship with carbon.
The segregation ratio, I, and partition ratios of chromium and nickel in the stainless and heat resistant steels are shown in figures 6.12 and 6.13. These ratios were defined in chapter 1 as follows:
cX,
cx,
I (Ni)
ID D
Cx,OD Cx'YD
2.0
Cx,OID Cx,YID where D and ID represent dendrites and interdendritic areas; Cx is the mean value of the concentration in these regions. The chromium-nickel equivalent ratio decreases from left to right in figures 6.12 and 6.13. The corresponding alloy compositions are given in table 4.2.
1,5
1.0 0,1
Figure 6.11
0,3
0,5
Microsegregation
0,7 Weight-%
1.0 carbon
of nickel in low alloy steels
In a steel solidifying completely as ferrite, number 401, chromium did not segregate at all but nickel did. When both austenite and ferrite were formed, in steels such as numbers 402-406, strong nickel segregation was observed together with slight, hardly measurable segregation of chromium. In the fully austenitic mode of solidification, numbers 409-415, chromium and nickel both segregated moderately. Steels 407 and 408, which formed the smallest amount of primary ferrite, were similar to the fully austenitic steels in regard to microsegregation of chromium and nickel. The interpretation of these results is that, in the austenitic mode of solidification, both chromium and nickel segregate to the interdendritic liquid, whereas only nickel segregates in the ferritic mode. The high I (Ni)-values in the ferritic-austenitic steels are remarkable.
I (C'r) 1,4
1,2
1,0 Steel
401
I (Nj)
1,6
1,4
1,2
1,0 Steel
401
402
403
404
405
Creq
4,01
1,82
1,74
1,68
1,61 1,58
406
407
408
409
410
411
412
413
414
415
1,43
1,42
1,32
1,21
1,15
1,03
0,94
0,89
0,71
Nieq
Figure 6.12 Microsegregation less and heat resistant steels
of chromium
and nickel in stain-
147
The segregation of silicon, manganese and molybdenum in stainless and heat resistant steels is shown in figures 6.14 a and b. The interdendritic areas were enriched by all these elements and the interdendritic segregation of both manganese and silicon was higher in the fully austenitic, as compared to the ferritic-austenitic solidification mode. On changing from a fully ferritic solidification path, as in steel 401 , to one producing a fully austenitic structure, the intensity of molybdenum (and manganese) segregation increased markedly.
Cr
-
1,2
-.
r-
~
ill
1,0
Steel Creq Nieq
402 403 404 405
406
407 408
1,821,74 1,68 1,61
1,58 1,43 1,42
410 1,21
PO' PlO
-
Ni 1,2
~ 1,0
~ 0,8
;;;;
~ 0,6
"-
~
Steel 401
~. ~.
L-
402 403 404 405
406 407 408
410
Titanium in steel number 405 was found both in the interdendritic austenite and in the carbides. Niobium in steel 406 segregated to the interdendritic ferrite and was also present as carbides. In steel 413, the interdendritic areas were enriched with copper. In high speed steels, the segregation measurements on the alloying elements showed that these were present mainly as constituents of carbide phases. It should be noted that the amount of eutectic carbides decreased with increasing cooling rate. The reverse behaviour was found for the austenitic steel number 414, with 0,4 % C, 25 % Cr, 21 % Ni and steel number 309, with 0,7% C, 13% Cr. The eutectic carbide content of these steels rose as the cooling rate was increased. The observed phenomena are in full agreement with earlier reports, [62, 63, 94]. Finally, when following the details of the solidification of the two high speed steels, it will be seen that they differed in regard to the types of carbides precipitated.
Figure 6.13 Partition ratios for chromium and nickel in stainless and heat resistant steels.
Strictly, the segregation ratio I should only be determined in a truly single phase structure, which was not the case for most of the stainless steels studied. The partition ratio Po, between ferrite and austenite due to the peritectic reaction and the solid phase transformation of the dendrites, is shown in figure 6.13 for steels 402-406, which formed the most ferrite on solidification. From number 406 onwards the primary ferrite was gradually substituted by austenite as the primary phase, until from number 409 onwards austenite was the only primary phase, see figure 6.7. However, as chromium and other ferrite-forming elements such as molybdenum, niobium and silicon segregate from the growing austenitic phase, ferrite can form interdendritically. When the fraction of austenite-forming elements in the steel increases, the amount of interdendritic ferrite decreases. The content of interdendritic ferrite, first seen in significant amounts in steel number 406, thus passed through a maximum on going from a ferritic to an austenitic solidification path. The partition ratio PlO, between the interdendritic ferrite and austenite, is shown for steels 406-410. The P-values show the enrichment of chromium in ferrite and that of nickel in austenite.
I (Si) 2,5
2.0
I--
-
1,5
-
1,0 402 403
405 406
411 412 413414 415 Steel
1,82 1,74
1,61 1,58
1,15 1,03 ,94 ,89 ,71 Creq Nieq
148
I (Mn) 2,0
I--
-
1,5
1,0 401
402
403
404
405
406
407 408
-
409
-
f----
f----
-
-
-
410
411
412
413
414 415
411
412
413
414
I (Mo) 3,0
I--
2,0
- 408- 409-
1,0
401
402
4,01
1,82 1,74 1,68 1,61
403
404
405
I--
406
407
410
1,58
1,43 1,42 1,32
1,21 1,15 1,03 0,94
415 Steel 0,89 0,71 Creq Nieq
Figure 6.14 b steels.
Segregation
of manganese and molybdenum
Ferrite in stainless steels As discussed in the preceeding paragraph, the I)-ferrite in the solidification structure of stainless steels may be of either or both dendritic or interdendritic forms. The dendritic ferrite formed as a primary phase is not enriched in solute elements, unlike the interdendritic I)-ferrite, which forms as a result of segregation. The latter type was usually seen to be larger in size than the residual, dendritic I)-ferrite. As a consequence of this difference in size and degree of segregation, the non-equilibrium dendritic ferrite will in most cases disappear more quickly than the interdendritic form during homogenizing heat treatments. Ferrite contents were obtained by both magnetic measurempntc.
~nrf
("'\nti,...~1 ""'" ....• ..-: •..•....•. +: .....-
"T"l-_
-----.--
in stainless and heat resistant
There was some scatter in the ferrite measurements and the data fell into two groups with no steels in the region between the two populations. However, the measurements can be interpreted in terms of the solidification behaviour. Figure 6.15 shows that the ferrite content at the solidus was not influenced by cooling rate, but was governed by the composition. It was shown previously, in figure 6.7, that no primary ferrite is formed when the er-Ni equivalent ratio is less than 1,35. The two populations shown in figures 6.15 and 6.16 therefore represent steels forming predominantly interdendritic and dendritic ferrite respectively. For a given homogenization time the steels with mainly dendritic ferrite, which solidify with a higher
149
These findings can be used to explain the observation that the surface regions of stainless steel ingots, or continuously cast billets and slabs, have a lower ferrite content than the central regions. As described above, there is no effect of cooling rate on ferrite content at the solidus. However, the faster cooling rate at the surface, compared to the centre, produces a finer dendrite arm spacing. The resultant fine structure is more rapidly homogenized on cooling below the solidus.
Ferrite.%
+
20
+ O.l°C/s • 0.5 02.0
Primary
Y
I
10
I
8
I
Primary
Ferrite .% 20
8
•
: JY ~+Y 2 0+_'1'
•
1.0
.0.5'C/s
,solidus
x 0.5 °C/s . 1200'C
•
o
Creq Nieq
/
Primary
P
2.0
8 Figure 6.15
('l-ferrite in stainless steels at the solidus.
tic to dendritic forms of ferrite which explains the higher ferrite contents shown in figures 6.15 and 6.16 for steels of er-Ni equivalent ratio of about 1,4, compared to those at about 1,6. This is further supported by the amount of interdendritic ferrite probably reaching a maximum at equivalent ratios of about 1,4.
Primary
I I I
10
1.5
I
6
I
4
~'. I
15
I
•
Solidus
2 •
•x
•
x-x
x
2.0
1.5
1.0 Figure 6.16 1200°C.
Creq Nieq
1200"C
('l-ferrite
in stainless
steels
Secondary dendrite arm spacing. pm 400
300
0
1 2 3 4 5
0
o 250
@ o
200
150
o
c.
• C!l
o
Carbon steels Low alloy steels 5% Cr-steels Stainless & heat resistant High speed steels Mean value
steels
No.406-415
x.
.: ---~--- i e
80
x
8
~ 100
0
4
0
------.:-....::
60
40
30
20 0.1
0.5
2.0
at the
solidus
and
150
Secondary
dendrite arm spacings
A summary of the results is presented in figures 6.17 and 6.18. In figure 6.17 the effect of cooling rate and alloy content can be seen. It is accepted that the arm spacing decreases when the alloy content increases, although a linear relationship has not been detected. The results for 13% Cr-steels and the stainless steels numbers 401-405 are not presented in figure 6.17 because of the difficulties in measuring arm spacings accurately. The dendrites were poorly defined because of the high degree of homogenization occurring in these steels during solidification. For the 13% Cr-steels it was seen that the dendrite arm
spacings decreased when the carbon content increased, and there was also a tendency in this direction for other groups of steels. This would partly account for the large spread between individual points in figure 6.17. The well known coarsening process which occurs during solidification may be seen by comparing values at 0,5°C/s obtained in samples partly and completely solidified, figure 6.18. The final arm spacings of the dendrites are determined by the local solidification time, which here is roughly the reciprocal of the cooling rate. The results are accordingly in agreement with previously reported data, see for example figure 1.2.
Mean secondary dendrite arm spacing. IIm 150
• •
100
80
0
•
Completely
o
Partly
•
sol idified.
solidified,
0.5"C/s
0,5"(;/s
• 0
0
60
0
0
0
•o
40
30
steel no
Figure 6.18
Carbon
Low alloy
201-207
208-216
5%Cr 301-304
Dendrite arm coarsening
13%Cr
Stainless
Stainless
High speed
401-405
406 -415
501-502
305-309
during solidification
151
7. References Experimental
techniques
and general
1. Jonsson K. 0., Solidification studies with radioactive isotopes and thermocouples. Jernkont. Ann., 153 (1969), 193-199 2. Chuang Y. K. & Schwerdtfeger K., Erstarrungsgeschwindigkeit van Eisen-Kohlenstoff Legierungen mit 0.6 bis 1.85 % C beim Brammenguss. Z. Metallkunde, 64 (1973) 672-677 3. Jacobi H., Einfluss der 6-y-Umwandlung des Eisens auf den Warmeubergang zwischen Block und wassergekuhlter Kupferkokille. Arch. Eisenhuttenwes., 47 (1976),6,345-350 4. Lepie G. & Rellermeyer H., Untersuchungen uber den Erstarrungsverlauf in Gussblocken. Arch. Eisenhuttenwes., 37 (1966) 12,925-934 5. Mizikar E. A., Mathematical heat transfer model for solidification of continuously cast steel slabs. Trans. A/ME, 239 (1967) 1747-1753
22. Eisen W. B. & Campagna A., Computer simulation of consumable melted slabs. Metall. Trans. (1970) 849-856 23. Oeters F. & Sardemann K., Untersuchungen zum zeitlichen Verlauf der Erstarrung in der Randzone erstarrenden Eisens. Arch. Eisenhuttenwes., 45 (1974) 8, 517-524 Carbon and low alloy steels
24. Kattamis T & Flemings M. C., Dendrite Morphology, microsegregation and homogenisation of low alloy steels, Trans. Met. Soc. AIME, 1965,5,992-999
25. Ahearn P. J. & Quigley F. C., Dendritic morphology of high strength steel castings.JISI,
204 (1966) 16-22
26. Doherty R. D. & Melford D. A., Solidification
and microsegregation in killed steel ingots with particular reference to 1% C 1.5% Cr-steel. JIS/, (1966) 11311143
6. Baumann H. G., Temperaturprofile gegossener Stahlstrange. Stah/ u. Eisen, 89 (1969) 26, 1467 -1473
27. Tresh H. et aI., Microsegregation in steel castings, Trans. Met. Soc. AIME, 242 (1968) 853-858
7. Thomas J. D. & Tzavaras A. A., Solidification and solidification rates in continuous casting of steel. Proceedings of the Continuous Casting Symposium of the 102 A/ME annual meeting, Metallurgical Society of AIME, 1973, 125-140
28. Suzuki A. et aI., On secondary dendrite arm spacing in commercial carbon steels with different carbon content. J. Japan Inst. of Metals, (1968) 1301 -1305
8. Holzgruber W. & Tarmann B., Secondary cooling in continuous casting and it's influence on solidification parameters. Steel Times, 195 (1967) 217 - 225 9. Petrov A. K. et ai, Solidification of metal powders during the atomization of a liquid phase. Sov. Powder Metall. Met. Ceram. 12 (1973) 1, 13-16 10. Dorschu K. E., Control of cooling rates in steel weld metal. Weld. J., Res. Suppl., 47 (1968) 49 s-62 s 11. Schulze G. & Krafka H., Untersuchungen uber den Einfluss von Erwarm- und Abkuhlgeschwindigkeit auf das Zahigkeitsverhalten unlegierter und niedriglegierter Stahle. Schweissen u. Schneiden, 29 (1977) 5, 179-183 12. Ericson L. & Fridfeldt C., Thesis Royal Technology, Stockholm, 1970
Institute
of
13. Laren I. & Fredriksson H., Relations between ingot size and microsegregation. Scand. J. Metallurgy. 1 (1972) 59-68 14. Backerud L. & Edvardsson T, Influence of process variables during submerged arc welding on the primary structure, Scand. J. Metallurgy, 4 (1975) 267272 15. Modin H. & Modin S., Metallurgical terworths, London (1973)
microscopy. But-
16. Wlodawer R., Die technologische Schweizer Archiv, 37 (1971), 72-85
Kalorimetrie.
17. Rabus D., Deutung von Erstarrungsvorgangen in beliebigen realen Gussti.icken mittels differenzierter technologischer Kalorimeterkurven. Schweizer Archiv 38 (1972), 79 - 88 18. Hribovsek B. & Marincek B., Einige Bemerkungen zur Erstarrungsgleichung. Material und Technik, (1973) 2, 69-71
29. Rose A. & Boer H. & Hougardy H. P., Einfluss einiger Elemente auf die Kristallisation starrung. Arch. Eisenhuttenwes.
von Eisen bei der Er39 (1968), 793-797
30. Flemings M. C. et aI., Microsegregation alloys. JISI, 208 (1970) 371-381
in iron base
31. Hammar O. & Grunbaum G., Influence of backdiffusion on microsegregation during solidification of low alloy steels. Scand. J. Metallurgy. 3 (1974) 11 - 20 32. Chuang Y. K. & Reinisch R. & Schwerdtfeger K., Kinetics of the diffusion controlled peritectic reaction during solidification of iron-carbon alloys. Metall. Trans. A, 6 (1975) 235-238 33. Steinmetz E. & Kast M., Vorgange bei der schnellen Erstarrung von Eisen mit gelostem Sauerstoff und Schwefel, Arch Eisenhuttenw. 46 (1975) 629 - 634 34. Ohashi T. et aI., A study on solidification, segregation and fluid flow of molten steel in continuously cast slabs. Trans ISIJ, 15 (1975) 571-579
35. Edvardsson T & Fredriksson H. & Svensson I., A study of the solidification process in low carbon manganese steels. Metal Science, 10 (1976) 298-306 36. Choudhury A. & Jauch R. & Lowenkamp H., Primarstruktur und Innenbeschaffenheit herkommlicher und nach dem Elektro-Schlacke-Umschmelzverfahren hergestellter Blocke. Stahl U. Eisen, 96 (1976) 946951 37. Jacobi H. & Schwerdtfeger K., Dendrite morphology of steady state unidirectionally solidified steel. Metall. Trans., A, 7(1976) 811-820
38. Clayton D. B. & Smith T. B. & Brown J. R., Application of electronprobe microanalysis to the study of micro segregation in a low alloy steel. J. Inst. of Metals 90 (1961-62) 224-228 39. SmithT. B., Microsegregation & Steel, 37 (1964) 536-541
in low alloy steels. Iron
19. Hribovsek B. & Marincek B., Bestimmung der gesamten freiwerdenden Warme und des Kristallisationswarmeanteiles aus der Abkuhlungskurve einer Schmelze. Z. Metallkunde, 65 (1974) 242-245
40. Philibert J. & Weinryb E. & Ancey M., A quantitative study of dendritic segregation in iron-base alloys with the electronprobe microanalyzer. Metallurgie, (1965) 203- 211
20. Takada H., An evaluation of the electroslag remelted ingot. Proc. 2nd Int. Symp. on ESR, Mellon Inst, 1969
41. Ward R. G., Effect of annealing on the dendritic se-
21. Grunbaum G. & Gustafsson K., Electroslag remelting
gregation 930-932 ..•.•
_1._1-
--_
of manganese . r
T
0
~
••••.••..•••.•.• "
in steel. JISI, 0
li
194 (1956)
~J1i,...,..nC::::QnrQn;:::lti()n
in
152
43. SchneidhoferA. & Plessing R. & Krainer E., Betriebserfahrungen mit Elektroschlacke-Umschmelzanlagen. Berg- u. Huttenm. Mh, 115, (1970),11,367-373
62. Fredriksson H., The mechanism of the peritectic reaction in iron-base alloys. Metal Science, 10 (1976) 77-86
44. Hoffmeister H., Kristallseigerungen und eutektische Karbidausscheidungen in Eisen-Kohlenstoff-Molybdan-Legierungen. Arch. Eisenhuttenw., 43 (1972) 689-692
63. Fredriksson H., Segregation phenomena in iron-base alloys. Scand. J. Metallurgy, 5 (1976), 27-32
45. Hoffmeister H., Kristallseigerungen und eutektische Karbidausscheidungen in Eisen-Kohlenstoff-Vanadin-Legierungen. Arch. Eisenhuttenw., 44 (1973) 349-355 46. Chuang Y. K. & Wepner W. & Schwerdtfeger K., Berechnung der interdendritischen Anreicherung von Kohlenstoff und Sauerstoff bei der Erstarrung von Stahl. Arch. Eisenhuttenw. 44 (1973) 243-250 47. Fredriksson H. & Hellner L., The influence of carbon on the segregation of chromium in steel. Scand. J. Metallurgy 3 (1974), 61-68 48. Burns D. & Beech J., Blowhole formation during solidification of iron alloys.lronmaking and steelmaking (Quarterly), (1974) 4, 239-250 49. Fuchs E. G. & Roosz A., Homogenization of iron base cast alloys. Metal Science, 9 (1975) 111 -118 50. Fredriksson H. & Stjerndahl J., On the formation of a liquid phase during cooling of steel. Metall. Trans. B, 6 (1975) 661-664 51. Ohide T. & Ohira G., The solidification structures of iron-carbon-phosphorous ternary alloys. Brit. Foundryman, 68 (1975) 4,106-115 52. Bibby P. A. & Beech J., Solidification behaviour low alloy steel castings, JISI 211 (1973),290-292
of
64. Maim S., Influence of Si and Mn on the solidification of 1.5 % C - 11% Cr-steels. Scand. J. Metallurgy, 5 (1976) 137-144
Stainless
and heat resistant steels
65. Mayerhofer S. & Kohl H., Matematisch-statistische Untersuchungen uber den Deltaferritgehalt bei austenitischen Stahlen. Berg- u. huttenm. Mh, 111 (1966) 9, 443 - 453 66. Guiraldenq P., Action alphagene et gammagene des principaux elements d'addition dans les aciers inoxydables nick'el-chrome derives du type 18-10. Mem. Sci. Rev. Met., 64 (1967),907-938 67. Kohl H., Der Delta-Ferritgehalt austenitischer Chrom-Nickel-Stahle im Gleichgewichtsund Ungleichgewichtszustand. Arch. Eisenhuttenw. 40 (1969) 143-146 68. Lefevre I. & Tricot R. & Castro R., Segregation et homogemeisation des aciers inoxydables austenitiques. Mem. Sci. Rev. Met., 66 (1969) 517-529 69. Blanc G. & Tricot R., Solidification, segregation et homogemeisation des aciers inoxydables austenitiques contenant de la ferrite delta. Mem. Sci. Rev. Met., 68 (1971),735-753
53. Jacobi H. & Pitsch W., Untersuchung der Kristallisationsabfolge bei der Erstarrung niedriglegierter Stahle, Arch. Eisenhuttenw. 46 (1975) 417 - 422
70. von Fircks H. J., Gluhtemperaturabhangige Bildung von b-Ferrit in austenitisch-ferritischen Chrom-Nickel-Stahlen. Neue Hutte, 17 (1972) 210-215
54. Schmidt L. & Fredriksson H., Formation of macro segregation and centre-line cracks in continuously cast steel. Iron making and Steelmaking (Quarterly), 2 (1975) 61-67
71. Fredriksson H., The solidification sequence in an 18- 8 stainless steel investigated by directional solidification. Metall. Trans., 3 (1972), 2989 - 2997
Chromium steels
73. Heritier J. & Levy J., On the mechanisms of melting of Fe-Cr-Ni-alloys in the two-phase solid-liquid region. Scripta Met. 10 (1976),107-110 or in Mem. Sci. Rev. Met. 73 (1976), 523 - 535
55. Subramanian S. V. & Haworth C. W. & Kirkwood D. H., Growth morphology and solute segregation in the solidification of some iron alloys. JISI, 206 (1968), 1027 -1 032 56. Staska E. & Bloch R. & Kulmberg A., Untersuchungen an Fe-Cr-C-Legierungen mit Zusatzen von karbidbildenden Elementen. Mikrochimica Acta, (1970), suppl IV, 62-74 57. Barthel A. & Hoffmeister H. & Schurmann E., Einfluss der chemischen Zusammensetzung und der Abkuhlungsbedingungen auf den Gefugezustand von Gusseisen mit rd. 3% C und 14% Cr fUr Walzen. Arch. Eisenhuttenw. 45 (1974) 795-801 58. Staska E. & Bloch R. & Kulmberg A., Untersuchungen an Fe-Cr-C-Legierungen mit Molybdanzusatzen. Mikrochimica Acta, (1974) suppl V, 111-127 59. Fredriksson H. & Brising S. & Remeus B., Studium av karbidutskiljning vid stelning av verktygssUll. Del 11 Kromstal. Jernkontoret, Stockholm, Rep. 0 114, 1975 60. Hoffmeister H., Kristallseigerungen und primare Karbidausscheidungen in chromlegierten gegossenen Werkzeugstahlen. Giessereiforschung, 22 (1970), 3, 121-127 61. Straube H. & Bloch R. & Plockinger E., Die Abhangigkeit der Kohlenstoffverteilung im Dreistoffsystem Eisen-Chrom-Kohlenstoff von der erstarrungsbedingten Kri~t::lII~Ain~nlnn
rioe- f'hrr"· .... ..,... ,,",...,.,..,11
1"'\1'\
I •• n~r\
,....
72. Masumoto J. et aI., Einfluss der Primarkristallisation bei peritektischer Reaktion auf die Heissrissneigung von Stahlschweissgut. Schweissen u. Schneiden, 27 (1975),450-454
74. Dacker C. A. & Fredriksson H., Fororeningars inverkan pa varmsprickbenagenheten i rostfria stal. Styr. f. tekn. utveckl. report, Stockholm, March 1976 75. Schurmann E. & Brauckmann J., Untersuchungen uber die Schmelzgleichgewichte in der Eisenecke des Dreistoffsystems Eisen-Chrom-Nickel. Arch. Eisenhuttenwes. 48 (1977) 3-7 76. Leffler B. & Maim S., Volume changes accompanying solidification of some austenitic stainless steels. Metals Technology 4 (1977), 81-90 77. Schurmann E. & Voss H. J., Seigerungsverhalten der Legierungselemente in Eisen-Chrom-Nickel-Schmelzen und bei Zusatz von Molybdan und Vanadin. Arch. Eisenhuttenwes. 48 (1977) 129-132 78. Hammar O. & Svensson U., The influence of steel composition on segregation and microstructure during solidification of austenitic stainless steels. Solidification Conf., Sheffield, 1977 79. Hoffmeister H., Kristallseigerung und Deltaferritbildung in austenitischem Schweissgut. Schweisen u. Schneiden, 25 (1973) 164-166 80. Siegel U. & Gunzel M., Mikroseigerung in austenitischen Chrom-Nickel-Stahlen, Teil I, Neue Hutte 18
153
81. Moharil D. B. & Jin I. & Purdy G. R., The effect of D-ferrite formation on the post-solidification homogenization of alloy steels. Metall. Trans, 5 (1974), 59-63 82. Spies H. J., Beitrag zur Kennzeichnung erstarrungsbedingter Entmischungen in SHihlen, Neue Hutte, 21 (1976) 344-348 83. Hull F. C., Delta ferrite and martensite formation in stainless steels. Weld. J. Res. Suppl., 52 (1973) 193s-203s 84. Delong W. T., Ferrite in austenitic stainless steel weld metal. Weld. Res. Suppl. 53 (1974), 273s-286s 85. Astr6m H. et aI., Hot cracking and microsegregation in 18-10 stainless steel welds. Metal Science, 10 (1976) 225-234 86. Thier H., Delta-Ferrit und Heissrisse beim Schweissen chemisch bestandiger austenitischer Stahle. Dtsch. Verlag fur Schweisstechnik (DVS) Dusseldorf 1976, 100-104
High speed steels 87. Kunze E. & Horn E., Zusammenhang zwischen Erstarrungsverlauf und Gefugeausbildung von Schnellarbeitsstahlen. DEW-Techn. Ber. 1 (1961),6-15 88. Brandis H. & Wiebking K., Einfluss einer Legierungsanderung beim Stahl S6-5-2 (Mo 20) auf seinen Erstarrungsund Aufschmelzverlauf. DEW- Techn. Ber. 11 (1971),139-146 89. Horn E. & Brandis H., Betrachtung zur Ausbildung der Phasen im Schnellarbeitsstahl S6-5-2 (Mo 20) mit abnehmendem Kohlenstoffgehalt. DEW- Techn. Ber. 11 (1971) 147-154 90. Backerud L. & Pfeifer H. U., Structure development in some tool steels during the solidification process. Scand. J. Metallurgy 1 (1972),159-165 91. Barkalow R. & Kraft R. W. & Goldstein J. I., Solidification of M2 high speed steel. Metall. Trans. 3 (1972), 919-926 92. Galda E. J. & Kraft R. W., The effect of Mo and W on solidification of high speed steels. Metall. Trans., 5 (1974),1727-1733 93. Gunji K. et aI., Solidification structure of high speed tool steel. Trans. ISIJ, 14 (1974),257266 94. Fredriksson H. & Brising S., The formation of carbides during solidification of high speed steels. Scand. J. Metallurgy, 5 (1976), 268-275 95. Kulmburg A. & Wilmes S. & Korntheuer F., Zeit-Temperatur-Aufschmelzschaubilder einiger gebrauchlicher Schnellarbeitstahle. Arch. Eisenhuttenwes. 47 (1976) 319-324 96. Brandis H. & Wiebking K., Einfluss von Giesstemperatur und Erstarrungsverlauf auf die Gefugeausbildung von Schnellarbeitsstahl. DEW-Techn. Ber., 11 (1971) 158-165 97. Mellberg P. O. & Sandberg H., Solidification studied by ESR remelting of high speed steel. Scand. J. Metallurgy, 2 (1973) 83-86 98. Sandberg H., Influence of titanium on micro segregations in high-speed steel ingots. Scand. J. Metallurgy, 2 (1973), 233-241
154
8. Alloy Index Table 8.1
Index to the steels.
Steel Number
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 301 302 303 304 305 306 307 308 309
Page
...........
. . .. .
18
20 22
~
...................
...
26
.
28
..
32 .
. . 34
........
.. .........
36 . 39
...
.. 41 . .... 43
................ ...
.. 45 .......
47 ....
49
52 ............
....
. .. 56
.............
. .....
........
58
60
.......
63 .
...........
.......
.
~ 69 72
75 78
401 . 82 402 85 403 88 404 ... 91 405 94 406 ...................... 98 407 .. ........ . .102 408 . .. . 106 409 ............... .. 110 410 .113 411 ................... 117 412 ..................................................... 120 413 .123 414 ...... ........ .126 415 ..... ......... ...... .130 501 502
..... ..134 .. .. . .. .. .. . .
.. 138
155
Carbon
Table 8.2 a: Steel Number
and Low Alloy Steels, composition
C
Si
Mn
P
0,11 0,12
0,12 0,27
1,25 1,53 1,26 1,42
0,016 0,012
(wt-%).
S
Cr
Ni
0,040
0,018
0,010
0,005
0,06 0,02
0,03 0,03
0,025
0,01
0,02
0,007
0,07
0,13
Mo
Cu
Altot
N
Others
Carbon: 201 202
0,07 ~0,03 0,06 0,02
0,07
0,038
0,05
0,029
0,012 0,011
0,03Ce
0,02
0,004
0,007
0,03Nb
0,08
0,006
0,005
203 204
0,18
0,44
0,19
0,40
205
0,36
0,27
0,58
0,015
0,012
0,08
0,05
0,02
0,12
0,004
0,007
206
0,69
0,23
0,72
0,022
0,024
0,02
0,02
0,01
0,03
0,006
0,002
207
1,01
0,25
0,46
0,012
0,009
0,02
0,03
0,02
0,03
0,002
~0,004
Low Alloy: 208
0,10
0,28
0,57
0,008
0,009
1,14
3,3
0,14
0,11
0,013
0,009
209
0,20
0,25
0,90
0,014
0,039
0,81
1,05
0,06
0,07
0,036
0,009
0,02 V 0,02 V
210
0,27
0,02
0,32
0,006
0,008
1,66
3,5
0,42
0,04
0,044
0,007
0,08 V
211
0,29
0,21
0,62
0,012
0,006
1,11
0,15
0,21
0,04
0,011
0,004
0,04 V
212
0,29
0,22
0,52
0,010
0,25
0,005
0,03 V
0,24
0,67
0,05
0,19
0,05 0,07
0,010
0,35
1,02 0,92
3,2
213
0,009 0,010
~0,004
0,008
0,02 V
214
0,52
0,22
0,85
0,07
0,07
0,27
0,50
3,0
0,31
~0,004 0,011
0,008
0,14 V 0,08 V
0,23
0,33
0,021
0,026
0,99 1,55
0,04 0,06
0,008
0,55 1,01
0,006 0,012
1,07
215
0,010 0,019
0,02
0,01
0,04
0,011
0,003
0,04 V
S
Cr
Ni
Mo
Cu
216
Table 8.2 b:
Chromium
Steels, composition
Steel Number
C
Si
0,020
(wt-%).
P
Mn
W
V
Altot
N
301
0,13
0,36
0,37
0,003
0,007
5,0
0,01
0,58
0,02
0,01
0,01
0,009
0,006
302
0,35
1,03
0,46
0,020
0,007
0,23
1,34
0,11
0,09
1,0
0,013
0,026
303 304
0,50
1,00
0,48
0,025
0,010
5,2 5,1
0,18
1,36
0,10
0,02
1,20
0,013
0,036
0,96
0,29
0,67
0,020
0,015
5,2
0,13
1,19
0,09
0,05
0,21
0,014
0,024
305
0,04
0,54
0,61
0,010
0,009
13,4
5,5
0,07
0,07
0,01
0,01
0,019
0,032
306
0,07
0,54
0,48
0,020
0,006
12,9
0,17
0,02
0,10
0,01
~0,01
0,026
0,039
307
0,14
0,19
0,68
0,009
0,014
12,0
1,20
0,01
0,03
0,01
0,02
0,001
0,040
308
0,32
0,15
0,30
0,009
0,008
13,9
0,16
0,01
0,01
0,22
0,03
0,003
0,013
309
0,69
0,43
0,64
0,014
0,005
13,1
0,20
0,07
0,02
0,22
0,03
0,002
0,025
Table
8.2 c:
Steel Number
Stainless
C
and Heat Resistant
Si
Mn
Steels, composition
P
S
(wt-%)
Cr
and Cr-Ni equivalent
Ni
Mo
Cu
Co
ratios.'
Altot
N
Others
Creq Nleq
401
0,042
0,86
0,76
0,031
0,010
25,1
4,7
1,22
402
0,012
0,31
1,76
0,008
0,008
19,8
9,9
0,08 0,04
0,02
0,004
403 404
0,019
0,94
0,009
0,010
0,03
0,05
0,002
1,25
0,025
0,010
19,5 18,4
10,2
0,036
0,31 0,44
0,10 0,11
9,1
0,38
0,20
0,25
0,002
0,081
405
0,068
0,59
1,44
0,028
0,001
17,2
10,3
0,47
0,24
0,27
0,048
0,005
0,51Ti 0,54Nb
0,08
~0,002
0,077
4,01
0,031 0,044
1,82 1,74 1,68 1,61
406
0,052
0,44
1,71
0,013
0,007
17,2
12,6
2,80
0,03
0,03
0,004
0,010
407 408
0,023 0,048
0,53 0,63
1,58 1,65
0,020 0,018
0,006 0,007
17,2 17,7
13,5 13,4
2,63
0,19
0,004
2,68
0,15
0,07 0,07
0,004
0,031 0,045
1,43 1,42
1,58
409
0,024
0,58
1,79
0,009
0,011
17,4
12,8
2,77
0,03
0,03
0,002
0,20
1,32
410
0,008
0,24
1,77
0,009
0,008
25,1
22,2
2,3
0,02
0,02
0,002
0,067
0,08Ti
1,21
411
0,055 0,13
1,20
1,75 1,67
0,011
0,008 0,003
24,2
20,4
0,02
0,03 0,04
0,015
0,051
1,15 1,03
412 413
24,3
20,5
0,003
19,2
25,1
4,44
0,03 1,51
0,02
0,023 0,034
0,053
1,74
0,009 0,007
0,09Ti 0,08Ti
0,013
0,52 0,48
0,08 0,11
0,035
O,07Ti 0,07Ce
0,94
414
0,41
1,00
1,34
0,007
0,010
25,2
20,6
0,08
0,02
0,06
0,016
0,022
0,10Ti
0,89
415
0,07
0,62
0,56
0,007
0,003
21,1
30,9
0,06
0,02
0,02
0,39
0,019
0,40Ti
0,71
Altot
N
• Equivalents according to [78, 83J see chapter 6.
Table 8.2 d:
High Speed Steels, composition
Steel Number
C
Si
Mn
P
0,88
0,30
0,32
0,030
501
(wt-%).
S
Cr
Ni
Mo
Cu
Co
W
V
0,017
3,9
0,10 011
0,30
0,022
0,036
0.05
6,1 1,5
1,9
'l
0,36 n 14
4,9
n n~"'7
2,0
0,010
0,036
Q
q?
156
Table 8.3 a: Carbon and Low Alloy Steels, liquidus and solidus temperatures and temperatures of formation of austenite and precipitates. Average Cooling Rate °C/s
Temperatures, Liquidus
2,0 0,5 0,1
1513 1513 1515
1476 1476 1475
1445 1450 1455
0,12% C
2,0 0,5 0,1
1514 1515 1514
1471 1475 1477
1440 1440 1460
203
0,18% C
2,0 0,5 0,1
1507 1506 1507
1467 1470 1473
1415 1430 1460
204
0,2%C
2,0 0,5 0,1
1503 1503 1506
1480 1477 1480
1425 1440 1460
205
0,4% C
2,0 0,5 0,1
/)
1496 1498 1501
1479 1480 1483
1415 1425 1440
2,0 0,5 0,1
y
1471 1466 1474
2,0 0,5 0,1
y
1457 1457 1459
Type Analyses
Carbon: 201
0,1 % C
202
206
207
0,7% C
1,0% C
Low Alloy: 0,1 %C 208
Cr
Primary Phase
of
cC, of
Formation Austenite
Steel Number
Formation of Precipitates
1370-1335 Fe3P-Fe3C1370-1355-austenite 1420-1370 eutectic
Solidus
1335 1355 1370 1310 1320 1340
Ni
2,0 0,5 0,1
1501 1501 1502
1485 1485 1487
1450 1450 1465
0,2%C
Cr Ni
2,0 0,5 0,1
1502 1502 1503
1474 1474 1465
210
0,3%C
Cr
Ni Mo
2,0 0,5 0,1
1487 1493 1492
1471 1490 1490
1395 1430 1445
211
0,3% C
Cr
Mo
2,0 0,5 0,1
1501 1501 1503
1460 1471 1475
1420 1435 1450
1486 1487 1486
1478 1477
1415 1425 1435
1479 1474 1480
1405 1415 1425
212
213
214
215
216
0,3%C
0,35% C
0,5% C
0,55% C
1,0%C
Cr Ni Mo
Cr
Mo
Cr
Cr
Cr
Ni Mo
2,0 0,5 0,1
/)
y /) b
1460-1420 1460-1425 MnS -1445
1420 1425 1445
209
2,0 0,5 0,1
/)
1494 1493 1495
2,0 0,5 0,1
y
1482 1482 1483
2,0 0,5 0,1
y
1471 1471 1472
1365-1335 carbide-1370 -austenite -1375 eutectic
1335 1370 1375
2,0 0,5 0,1
y
1450 1450 1451
1320-1270 Fe3P-carbide1340-1300 -austenite -1300 eutectic
1270 1300 1300
1380 1385 1400
157
Table
8.3 b:
Chromium
Steels, liquidus
Steel Number
Type Analyses
301
0,1 %C
302
303
304
and solidus temperatures Average Cooling Rate °C/s
O,5%C
Mo
Mo
Mo
1,0%C
5% Cr
V
V
5% Cr
5% Cr
306
0,04% C
0,07% C
5% Ni
13% Cr
13% Cr
of austenite and precipitates.
of
Liquidus
1508 1501
1443 1426
1405
0,5 0,1
1506
1444
1440
2,0
1471
1370
1335
0,5 0,1
1464 1470
1387 1412
1360 1380
2,0
1460
1410
1320-1240 MC-
1140
0,5 0,1
1460 1460
1410 1412
1345-1300-austenite
1240
-1320 eutecti c
1260
2,0
1435
1150-1130 M7C3-
1434
y
308
309
Table
Ni
14% Cr
0,3%C
0,7% C
8.3 d:
12% Cr
13% Cr
High Speed Steels, liquidus
1438
Type Analyses
501
0,9%C 6%W
502
4% Cr 2%V
1,0% C 4%Cr 1,5%W
2%V
5%Mo
9%Mo
2,0
1215
1470
1410
1355
0,5
1476
1419
1395
0,1
1476
1425
1420
2,0
1497
1435
0,5
1500
1440
0,1
1500
1455 solid phase 6~y
1325-1270 1330-1290
2,0
1490
1416
1390
0,5
1495
1425
1400
0,1
1494
1401
1400
2,0
1480
1400
1370
0,5
1483
1407
1375
0,1
1482
1401
2,0
1442
1414
1240-1195 M7C3-
1195
0,5 0,1
1448 1444
1422 1415
1250-1240-austenite
1240
1260-1245 eutectic
1245
and temperatures
of formation
1390
of austenite and precipitates.
Temperatures,
Steel Number
1200
2,0
and solidus temperatures
Average Cooling Rate, °C/s
1130
-1200-austenite -1215 eutectic
0,5 0,1 %C
Solidus
1415
2,0
307
QC,of
Formation of Precipitates
Formation Austenite
0,5 0,1 305
of formation
Temperatures, Primary Phase
2,0
5% Cr
0,35% C
and temperatures
Primary Phase
Liquidus
Start of Formation of Austenite
QC,of
Start of Formation of MC-Austenite Eutectic
Formation of Carbide -Austenite Eutectic
1260
1175 1228 1232 M2C + MsC 1185 1255 1220
Solidus
0,5 0,1
1414 1423
1341 1342
1427
1350
2,0
1401
1305
1222
1175
0,5
1400
1315
1226 MC+M2C
1180
0,1
1400
1322
1233
1185
1260 1270
158
Table
8.3 c:
Stainless and Heat Resistant Steels, liquidus precipitates.
Steel Number
Type Analyses
401
0,04% C
402
403
404
405
406
25% Cr
0,01 % C 20% Cr
0,02% C
0,04% C
0,07% C
0,05% C
19%Cr
18%Cr
17 % Cr
17% Cr
Average Cooling Rate °C/s
5% Ni
Mo
10% Ni
10%Ni
9% Ni
10% Ni
12% Ni
Ti
2,8% Mo Nb
0,02% C
17% Cr
13% Ni
2,5% Mo
0,05% C
18% Cr
13% Ni
2,5% Mo
Temperatures, Primary Phase
0,01 % C
25% Cr
22% Ni
1410
1469
1420
2,0
1447
1366
1325
0,5 0,1
1454 1449
1391 1405
1360 1390
2,0
1447
1404
1365
0,5
1455
1415
1390
0,1
1453
1418
1405
2,0
1452
1423
1365
0,5
1451
1409
1385
0,1
1452
1424
1405
2,0
1436
1397
1335
0,5
1440
1406
1370
0,1
1440
1412
1390
1420
1410'
1330-1275 NbC-
1275
o+y
1423 1424
1418' 1417*
1330-1290-austenite 1330-1305 eutectic
1290 1305
1423
1418'
1345
o+y
1427
1421'
1375
1428
1425'
1380
1419
1414'
1330
1423 1421
1422' 1415'
1360 1370
2,0
2,0
2,0
o+y
Y
2,0 0,5
411
0,07% C
24% Cr
20% Ni
24% Cr
O,1%C
0,01 % C
19% Cr
25% Ni
1,5%Cu
4% Mo
0,4% C 25% Cr
20% Ni
31 % Ni
refer to the maximum
1345
1401 1399
1330
1405
1325
1407 1405
1335 1355
1389 1391
1305 1315
1391
1345
2,0 0,5
y
Y
Y
2,0
y
2,0 0,5 0,1
, The temperatures
1335
1402
1355
0,1 0,07% C 21 % Cr
1401
1315
0,5
415
1370
1399
0,1 414
1350
1422
2,0
2,0
20% Ni
1310
1421
1401
0,5 0,1 413
y
1411
0,1 0,5 0,1 412
Solidus
0,1
2,0 0,5
2% Mo
°C, of
Formation of Precipitates
1390
0,1
410
of
and
1465
0,1 0,02% C 17 %Cr 13% Ni 2,5% Mo 0,2% N
Liquidus
Formation Austenite
of austenite
1471
0,5 409
of formation
2,0
0,5 0,1 408
and temperatures
0,5
0,5 0,1 407
and solidus temperatures
rate of formation
Y
of austenite.
1350
1383
1275-1260 M23C6-
1260
1385
1275
1385
1285-1275-austenite 1290-1280 eutectic
1399
1305-1280 formation
1401 1400
1310-1295 of titanium 1350-1330 compounds
1280 1295 1330
1280
159
Table 8.4 a:
Carbon and Low Alloy Steels, secondary
dendrite arm spacings (f.lm). Partly Solidified Average Cooling Rate, QC/s
Steel Number
Completely Solidified Average Cooling Rate, QC/s
Type Analyses
0,5
2,0
0,5
0,1
201
0,1 %C
65
80
130
300
202
0,12% C
70
85
200
390
203 204
0,18% C
65
80
190
250
0,2 %C
85
75
120
230
Carbon:
205
0,4 % C
206
0,7 %C
50 70
85 75
90 130
280 160
207
1,0 %C
50
70
80
210
Low Alloy: 208
0,1 %C
Cr
Ni
70
75
110
250
209
0,2 %C
Cr
Ni
60
85
110
180
210 211
0,3 %C
Cr
Ni
Mo
60
70
90
160
Cr Cr
Mo Ni Mo
60 70
70
212
0,3 %C 0,3 %C
75
90 110
150 180
213
0,35% C
Cr
Mo
65
80
100
190
214
0,5 % C
Cr
55
75
90
140
215
0,55% C 1,0 %C
65
70
90
130
Cr
60
75
90
140
216
Table 8.4 b:
Steel Number
Chromium
Cr
Ni
Mo
Steels, secondary
dendrite
arm spacings (f.lm). Partly Solidified Average Cooling Rate, QC/s
Type Analyses
0,5
301
0,1 %C
5 % Cr
302
0,35% C
V
303 304
0,5 %C 1,0 % C
Mo Mo Mo
5 % Cr
V
5 %Cr 5 % Cr
2,0
0,5
0,1
65
85
160
275
55
70
80
120
55
60
80
110
55
65
80
110 520
305
0,04% C
5% Ni
75
140
240
306 307
0,07% C
13%Cr
90
205
260
0,1 %C 0,3 % C
Ni
14% Cr
75 75
150 75
180 100
470
308 309
0,7 % C
13% Cr
50
65
80
130
Table
8.4 c:
13% Cr
Completely Solidified Average Cooling Rate, QC/s
12 % Cr
Stainless and Heat Resistant Steels, secondary
dendrite arm spacings (f.lm). Partly Solidified Average Cooling Rate, QC/s
Steel Number
210
Type Analyses
0,5 Mo
Completely Solidified Average Cooling Rate, QC/s 2,0
0,5
0,1
401
0,04% C
25% Cr
5 %Ni
70
115
280
550
402
0,01 % C
20% Cr
10% Ni
60
150
270
450
403 404
0,02% C
19% Cr
10% Ni
18% Cr
9 %Ni
65 40
130 125
160
0,04% C
190
500 340
405
50
85
110
200
Ti
0,07% C
17% Cr
10% Ni
406
0,05% C
17% Cr
12% Ni
2,8% Mo
407
0,02% C
17%Cr
13% Ni
2,5% Mo
408
0,05% C 0,02% C
18% Cr
13% Ni
2,5% Mo
409
17% Cr
13% Ni
2,5% Mo
410
0,01 % C
25% Cr
22% Ni
2% Mo
411
0,07% C
24% Cr
20% Ni
412
0,1 %C
24% Cr
20% Ni
413
0,01 % C
19%Cr
25% Ni
414
0,4 %C
25% Cr
20% Ni
4%Mo
Nb
0,2% N
1,5% Cu
45
65
80
135
55
40
90
100 140
50
55
40
45
85 70
60
60
80
160
65
55
85
125
60
65
90
125
70
55
80
120
60
105
50
80
105
<;n
Q<;
14<;
160
Table 8.4 d:
High Speed Steels, secondary dendrite arm spacings (J.'m). Partly Solidified Average Cooling Rate,oC/s
Steel Number
Type Analyses
501
0,9%C
4%Cr
5%Mo
6%W
502
1,0%C
4%Cr
9%Mo
1,5%W
Table 8.5 a: Carbon Steels, microsegregation solidified samples, (average cooling rate 0,5°C/s). Steel Number
Type Analyses
Element
201
0,1%C
Mn
0,12%C
Mn
1,4
203
0,18% C
Mn
1,4
204 205
0,2%C 0,4% C
Mn Mn
1,6
206 207
0,7%C 1,0% C
Mn Mn
2,1
Steel Number
Type Analyses
208
0,1 % C
209 210
211 212
213 214 215
216
0,2%C 0,3%C
0,3%C 0,3%C
0,35% C
Cr Cr
Cr
Ni
Ni
Mo
Mo
Cr
Ni
Cr
Mo
Mo
0,5% C Cr 0,55% C
1,0% C
Cr
Ni
Mo
Cr
Type Analyses
501
0,9%C
502
in completely
4%Cr
solidified
1,0% C 4% Cr
9% Mo
30
40
85
25
35
70
Ni
1,3 1,4
Steels, microsegregation
samples, (average cooling
Steel Number
Type Analyses
301
0,1 % C
in completely
rate 0,5°C/s). Element
Cr
5 % Cr
Mo
1,1 1,4
Mo
2,5
Cr
1,2
Cr
1,5
Ni
1,0
Ni
1,4
Mo
1,5
Cr
1,6
V
1,7
Ni
1,3
Cr
1,3
Mo
2,2
Mo
1,5
V
2,0
V
1,3
Cr
1,6
Mo
302
0,35%C
303
Mo
0,5% C
Mo
V 5%Cr
V 5% Cr
Cr
1,4
2,0
Mo
1,9
Cr
1,7
V
1,7
Ni
1,4 Cr
1,1
Ni
1,2
Cr
1,0
Ni
1,0
Cr
1,1
Ni
1,3
Cr
1,2
Mo
2,2
Cr
1,5
Mo
2,4
304
0,07% C
306
2,1
V
1,9
Cr
2,1
Ni
308
Mo
1,2 2,5
V
2,0
309
Cr
2,6
0,1 % C
307
solidified
6%W
1,5% W
2%V
2% V
Cr
Mo
0,04% C
305
Cr
in completely
1% C
0,3%C 0,7% C
5 % Cr
5% Ni
1,6
Mo
1,2
W V
0,8
Cr
1,8
0,9
Mo
1,1
W
0,6
13% Cr
13% Cr Ni
12% Cr
14% Cr 13% Cr
samples, (average cooling
Element 5%Mo
35 35
Table 8.5 c: Chromium
rate 0,5°C/s).
Table 8.5 e: High Speed Steels, microsegregation Steel Number
0,1
1,7
Cr
Ni
0,5
1,6
Element
Cr
2,0
1,3
Table 8.5 b: Low Alloy Steels, microsegregation samples, (average cooling
2%V
0,5
in completely
202
solidified
2%V
Completely Solidified Average Cooling Rate,oC/s
Ni
1,0
Cr
1,2
Ni
1,0
rate 0,5°C/s).
161
Table 8.5 d:
Stainless and Heat Resistant Steels, microsegregation
Type Analyses
401
0,04% C
25% Cr
5% Ni
402
0,01 % C
20% Cr
10% Ni
404
405
406
407
408
0,02%C
0,04% C
O,07%C
0,05%C
O,02%C
0,05% C
19%Cr
18% Cr
17%Cr
17%Cr
17%Cr
18% Cr
Mo
10%Ni
9% Ni
10%Ni
12%Ni
13%Ni
13% Ni
Ti
2,8%Mo
2,5% Mo
O,02%C
17%Cr
13%Ni
2,5%Mo
410
0,01%C
25%Cr
22%Ni
2%Mo
0,07% C 24% Cr
412
0,1 % C
413
0,01 % C
414
0,4% C 25% Cr
415
O,07%C
24% Cr
19% Cr
21%Cr
Nb
2,5%Mo
409
411
solidified
samples, (average cooling
Element
Steel Number
403
in completely
O,2%N
20% Ni
20% Ni
25% Ni
20% Ni
31%Ni
4% Mo
1,5% Cu
Mn Cr Ni Mo Si Mn Cr Ni Si Mn Cr Ni
1,3 1,0 1,2 1,3 1,7 1,4 1,0 1,5
1,2 0,7
1,6 1,5 1,1 1,5
1,2 0,7
Mn Cr Ni
1,2 1,1 1,3
1,2 0,7
Si Mn Cr Ni
1,6 1,6 1,1 1,5
1,2 0,7
Si Mn Cr Ni
1,7 1,5 1,1 1,4
1,3 0,6
Mn Cr Ni Mo Mn Cr Ni Mo
1,5 1,2 1,2 2,2 1,6 1,2 1,2 2,1
Mn Cr Ni Mo
1,6 1,2 1,1 2,1
Mn Cr Ni Mo Si Mn Cr Ni Si Mn Cr Ni
1,6 1,2 1,1 2,3 2,4 1,9 1,2 1,2 2,5 1,9 1,2 1,2
Si Mn Cr Ni Mo
1,8 1,7 1,2 1,1 2,0
Si Mn Cr Ni Si Mn Cr Ni
2,1 1,6 1,2 1,1 2,3 1,7 1,2 1,1
1,1 0,8 1,2 0,8
1,2 0,7
1,2 0,8
rate 0,5°C/s).
162
Table 8.6: Stainless and Heat Resistant Steels, formation solidus temperature and at 1200°C.
Steel Number
Type Analyses
401
0,04% C 25% Cr
402
0,01 % C 20% Cr
5%Ni
of primary <'i-ferrite and ferrite content
Mo
10% Ni
in completely
Average Cooling Rate,OC/s
Solidified as Primary <'i,%
solidified
Ferrite in Completely Solidified Sample, %
2,0
100
0,5
100
0,1
100
2,0
92
13
0,5 0,1
91
19
97
20
2,0
91
11
0,5
92
13
0,1
98
0,5 (1200°C) 403
0,02% C
19% Cr
10% Ni
9
9
0,5 (1200°C) 404
0,04% C
18% Cr
9%Ni
5,8
2,0
84
2,3
0,5 0,1
82
4,7 10
86
0,5 (1200°C) 405
0,07% C
17% Cr
10% Ni
Ti
2,0
2,0
82
6
0,5
82
0,1
82
8 4,8
0,5 (1200°C) 406
0,05% C
17% Cr
12% Ni
2,8% Mo
Nb
4,1
< 60 < 45 < 42
2,0 0,5 0,1
4,0 4,0 3,9
0,5 (1200°C) 407
0,02% C
17% Cr
13% Ni
2,5% Mo
2,9
< 46 < 50 < 34
2,0 0,5 0,1
5,5 5,6 4,4
0,5 (1200°C) 408
0,05% C
18% Cr
13% Ni
2,5% Mo
3,5
< 36 < 35 < 34
2,0 0,5 0,1
4,0 5,0 5,5
0,5 (1200°C) 409
0,02% C
17% Cr
13% Ni
2,5% Mo
0,2% N
0,1
2,0
0
0,8
0,5 0,1
0 0
0,8 0,8
0,5 (1200°C) 410
0,01 % C 25% Cr
22% Ni
2%Mo
0,1
2,0
0
1,0
0,5 0,1
0 0
1,0 1,0
0
0,5
0,5
0
0,5
0,1
0
0,5
0,5 (1200°C) 412
O,1%C
24% Cr
20% Ni
2,0
0,7
0,5 (1200°C)
Table 8.7:
Chromium,
Heat Resistant and High Speed Steels, carbide content
in completely
0,4
solidified
samples (vol-%).
Average Steel Number
Type Analyses
309
O,7%C
414
O,4%C
Chromium
Type of Carbide
samples at the
Cooling
Rate, °C/s
2,0
0,5
0,1
4,5
3,5
2,4
8,0 (1230°C)
7,2
Steel 13%Cr
Heat Resistant Steel 25%C
11,4
20%Ni
10,7 (1100°C) High Speed Steels 501
O,9%C
4%Cr
5%Mo
6%W
502
1,0% C
4% Cr
9% Mo
1,5% W
2%V 2% V
MC+M2C+MsC
9
12
MC + M2C
9
10