A Banach space with basis constant > 1. :PEg ENI~LO University of Stockholm and University of California at Berkeley
n ...
92 downloads
408 Views
292KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
A Banach space with basis constant > 1. :PEg ENI~LO University of Stockholm and University of California at Berkeley
n ~e il IfaBanachspacehasaSchauderbasis fl, t h e n fiK ~-~ SUp~,~ll~i=l i h/HX /[ exists, where x = ~i~=la~d. Inf/?K t a k e n over all fi is called the basis c o n s t a n t of the B a n a c h space. I t is obvious t h a t if the B a n a c h space B has the basis c o n s t a n t p, t h e n e v e r y finite-dimensional snbspace C of B can be a p p r o x i m a t e d b y subspaces D , of B - b y a p p r o x i m a t i n g a set of basis vectors of C w i t h vectors of finite expansions in some basis - such t h a t each Dn can be e m b e d d e d into a finitedimensional subspace E~ of B, onto which there is a p r o j e c t i o n f r o m B of n o r m a r b i t r a r i l y close to p. I n this p a p e r we c o n s t r u c t a separable infinite-dimensionM B a n a e h space B with a two-dimensional subspace C 1 with the following properties: T h e r e is a p > 1 such t h a t , if D is a two-dimensional subspace of B sufficiently close to C 1 a n d E is a finite-dimensional subspaee of B containing D, t h e n t h e r e is no p r o j e c t i o n f r o m B onto E of n o r m ~ p. Thus the basis c o n s t a n t o f this 13anach space is > p. This seems to be b y now the strongest result in negative direction on the well-known basis problem. T h e p r e v i o u s l y strongest result seems to be Gurarii's e x a m p l e of a B a n a c h space where fiK > 1 for e v e r y ft. (See Singer [1] pp. 218--42.) W e now s t a r t b y giving a general and s o m e w h a t u npreeise description o f the ideas b e h i n d the c o n s t r u c t i o n and of the problems we meet. W e consider a twodimensional subspace C 1 of l~(F), where F is the set of pairs of positive integers. W e assume t h a t the p r o j e c t i o n c o n s t a n t of C 1 is > 1. Now our first a m b i t i o n will be to e m b e d C1 in a larger space El, such t h a t t h e r e is no p r o j e c t i o n of n o r m close to 1 f r o m E I onto spaces close to C 1 a n d such t h a t no subspaee C 2 of E1 containing a subspace of E1 sufficiently close to C 1 has a p r o j e c t i o n c o n s t a n t n e a r to 1. H o w e v e r , if we t r y to do this we h a v e to get control of quite m a n y linear spaces. I n order to describe h o w we o b t a i n the necessary simplifications, we give n o w a description o f the w a y we e s t i m a t e n o r m s of projections.
104
PER
ENFLO
L e t us a s s u m e t h a t C 1 is a t w o - d i m e n s i o n a l s u b s p a c e of a B a n a c h space B a n d t h a t 0, al, a2, . . . , a~ are n d- 1 points in C 1 such t h a t Ilajll = 1; j ~ 1, 2 , . . . , n, lla~--ajll <~1; i , j = 1 , 2 , . . . , n . W e s a y t h a t b E B is a central point for t h e I t is obvious t h a t d- 1 points, if Ilbll- -~ a n d lib - - ajll = g, 1. j = 1 , 2 , . . . , n . if b is t h e o n l y c e n t r a l p o i n t in B for t h e n + 1 points 0, a 1,a 2. . . . , a s a n d points f a r a w a y f r o m b are f a r f r o m being central points, t h e n a s u b s p a c e of B which contains a s u b s p a c e close to C 1 a n d o n t o which t h e r e is a p r o j e c t i o n f r o m B of n o r m close t o 1 m u s t c o n t a i n a v e c t o r n e a r to b. F o r otherwise b y such a p r o j e c t i o n b w o u l d be m a p p e d o n t o a p o i n t whose d i s t a n c e to s o m e of the points 0, 61, a 2. . . . , a , w o u l d be essentially larger t h a n }. This d e s c r i p t i o n suggests h o w we can get control of t h e p r o j e c t i o n c o n s t a n t s of s u b s p a c e s of B c o n t a i n i n g a s u b s p a c e close to C 1. I t n a m e l y gives t h a t we can restrict our a t t e n t i o n to s u b s p a c e s of B containing a s u b s p a c e close to C 1 a n d cont a i n i n g a v e c t o r close to b. I n our e x a m p l e we h a v e in C 1 t w o sets 0, all , a12. . . . ,61, , a n d 0, a21, 6 2 2 , . . . , a2, with u n i q u e central points bl a n d b2 a n d so we can restrict our a t t e n t i o n to s u b s p a c e s of B c o n t a i n i n g v e c t o r s close to bI a n d b2. T h e w a y in which we will build u p our B a n a c h space is as follows. W e s t a r t w i t h a s u b s p a c e C 1 of l~(F), g e n e r a t e d b y t w o v e c t o r s e1 a n d e 2. I n C 1 we h a v e t w o p o i n t sets w i t h u n i q u e c e n t r a l p o i n t s 89 a a n d 89 4 in B. T h e c o n s t r u c t i o n is m a d e so t h a t for e v e r y t w o - d i m e n s i o n a l s u b s p a c e D of lop(F) sufficiently close to C 1 t h e r e are p o i n t sets of D such t h a t 89 a a n d le4 are t h e u n i q u e central points in B for these p o i n t sets a n d points far f r o m 89 ~ a n d 89 4 are far f r o m being c e n t r a l points for t h e s e p o i n t sets. This is i m p o r t a n t since it gives t h a t t h e r e will be no a c c u m u l a t i o n of a p p r o x i m a t i o n s in our construction. N o w in e v e r y s u b s p a c e of B s u f f i c i e n t l y close to t h a t g e n e r a t e d b y e a a n d e4 t h e r e are p o i n t sets w i t h the u n i q u e c e n t r a l p o i n t s 89 5 a n d 89 G. T h e f a c t s j u s t described are p a r t o f L e m m a 2 below a n d give a n idea of h o w the discussion goes on. W e will f i n a l l y conclude t h a t if a s u b s p a c e E of B contains a s u b s p a c e close to C 1 a n d t h e r e is a p r o j e c t i o n f r o m B onto E of n o r m close to 1, t h e n E can n o t be f i n i t e - d i m e n s i o n a l . W e n o w define t h e v e c t o r s eY, eJ C l~(I), which g e n e r a t e B. W e let e~,~J d e n o t e the c o m p o n e n t of eJ which c o r r e s p o n d s to t h e p a i r (r, k). W e choose e~,k = 0.611 - - (k - - 1)- 0.0ol, k = 1, 2 , . . . , 12. W e t h e n choose 2 2 e~,l = - - 0.60o a n d choose e~,k, k = 2, 3, . .., 12 i n d u c t i v e l y b y t h e e q u a t i o n s 0.61l - - (k -- 1) 9 0.001 - - ( 0 , 9 9 9 5 ~ - 0 . 0 1 ( ] c - - 1))e~,k = 0 . 6 1 1 - - ( k - - 2 ) * 0.OOl - - ( 0 . 9 9 9 5 -10.Ol. ( / c - 1))e~,k_l. B y this choice we o b t a i n t h a t e~,k k - 1, 2 , . . . , 12 lies b e t w e e n - - 0.6oo a n d - - 0.6~2 a n d t h a t the c o m p o n e n t (1, k) is the largest of t h e 12 c o m p o n e n t s (1, 1), (1,2) . . . . , ( 1 , 1 2 ) of t h e v e c t o r e1 - (1 + 0 . o 1 . ( k - - 1))e 2, /c = 1, 2 . . . . . 12. W e also see t h a t if v~ a n d v 2 are s u f f i c i e n t l y close to e~ a n d e 2 in l~(F) t h e n t h e c o m p o n e n t (1, k) will be t h e largest of t h e 12 c o m p o n e n t s (1,1), ( 1 , 2 ) , . . . , ( 1 , 1 2 ) of v 1 - (1 + 0 . 0 ~ . ( k - - 1))v 2, k = 1 , 2 , . . . , 1 2 . We put el, k = e~.k = 0 if k > 12. C o m p o n e n t s (r, k) w i t h r > i will be d e f i n e d later. W e will h a v e need for such c o m p o n e n t s to s a v e the uniqueness of central points.
A BANACH
SPACE
WITtt
BASIS
CONSTANT
>
105
1
W e will n o w d e f i n e ea a n d e4 so t h a t 89 a is t h e u n i q u e c e n t r a l p o i n t in B for t h e 7 p o i n t s 0, (e 1 - - (1 d- 0.o1(k - - 1))e2)/lle 1 - - (1 q- 0.ol(k - - 1))e211, k = 1, 2 . . . . , 6 a n d so t h a t 89 4 is t h e u n i q u e c e n t r a l p o i n t in B for t h e 7 p o i n t s 0, (ea - - (1 q- 0.o1(k - - 1))e2)/lle 1 - - (1 q- 0.ol(k - - 1))e2][, k = 7, 8 . . . . . 12 a n d so t h a t this h o l d s e v e n if e 1 a n d e 2 are r e p l a c e d b y a p p r o x i m a t i n g v e c t o r s v 1 a n d v a . . = e 1,6 3 = 1 and we choose in B. T o this e n d we p u t e a3 , 1 = e 13, 2 = . e 31,7, e 31,8, 9 ~ 9 , {31,12 a in s u c h a w a y t h a t : (a) t h e d i s t a n c e in / ~ - n o r m b e t w e e n t h e 6 - v e c t o r 89 (%7, a el,8, 3 9 9 -, e 31,12) a n d e a c h o f t h e s e v e n 6 - v e c t o r s w h i c h c o n s i s t o f t h e c o m p o n e n t s (1, 7), (1, 8 ) , . . . , (1, 12) o f t h e v e c t o r s 0, (e1 - - (1 q- 0.01(k - - 1))e2)/l[e 1 - - (1 q- 0.01(k - - 1))e2[I, k = l, 2 . . . . , 6, is s t r i c t l y less t h a n 1. 1 2 2 e3 e3 e3 (b) t h e f o u r 6 - v e c t o r s ( e ~ , 7 , e l1,8, 9 9 " , e1,12), ., s 2 ( 1 , 7, 1 , 8 ~ 9 " 1,12) (s s " a n d (1, 1, 1, 1, 1, 1) are l i n e a r l y i n d e p e n d e n t 9 W e n e e d (a) since 89 shall be a c e n t r a l p o i n t e v e n if w e a p p r o x i m a t e el a n d e2 b y v 1 a n d v 2 a n d (b) since 89 d e f i n e d b e l o w shall be a u n i q u e c e n t r a l p o i n t . 4 e43,2, 9 9 9 el.6 4 in s u c h a w a y t h a t : W e p u t e l4, 7 __ e41,8 ~ 9 9 9 _- -,; e. 4 1,12 a n d c h o o s e e1,i, (al) t h e d i s t a n c e in / ~ - n o r m b e t w e e n t h e 6 - v e c t o r 89 9 (e~,l, e43,2, 9 . . , s 1,6) a n d e a c h o f t h e s e v e n 6 - v e e t o r s w h i c h consist o f t h e c o m p o n e n t s (1, 1), (1, 2), . . . , (1, 6) o f t h e v e c t o r s 0, (s _ (1 q- 0.01(k - - 1))e2)/[[e I - - (1 q- 0.01(k - - 1))e2[[, k = 7, 8 , . . . , 12, is s t r i c t l y less t h a n 89 (51) t h e f o u r 6 - v e c t o r s (e{,3, e{,2. . . . , s j = 1, 2, 4 a n d (1, 1, 1, 1, 1, 1) are linearly independent. A s a b o v e w e n e e d (al) since 1s shall be a c e n t r a l p o i n t e v e n if w e a p p r o x i m a t e e 1 a n d e2 b y v I a n d v e a n d ( b l ) s i n c e 89 shall be a u n i q u e c e n t r a l p o i n t . l~or k > 1 w e n o w c h o o s e s 3 1 a n d e41 , 1 2 ~ - k ~ s 2 W e see t h a t t h i s ~ s does n o t d e s t r o y t h a t ~ea a n d 89 4 a r e c e n t r a l p o i n t s f o r t h e sets d e s c r i b e d a b o v e 9 W e also o b t a i n t h a t t h e c o m p o n e n t s (1, 1), (1, 2 ) , . . . , (1, 12) of e3 - - (1 @ 0.01(k - - 1)) 9 e4, k = 1, 2 . . . . , 12 are all < 0.25 a n d t h a t t h e c o m p o n e n t (1, 12 @ k) is t h e l a r g e s t o f t h e c o m p o n e n t s (1, 13), (1, 1 4 ) , . . . , (1, 24) o f e 3 - - ( 1 - ~ 0 . e l ( k - - 1 ) ) . e ~, k = 1, 2 , . . . , 1 2 , a n d is > 1. T h e last s e n t e n c e is o b v i o u s l y t r u e e v e n if e 3 a n d e4 are r e p l a c e d b y a p p r o x i m a t i n g v e c t o r s v 3 a n d v4 in l ~ ( F ) . W e n o w c h o o s e e51,k,el,k6 k = 1, 2, . . . , 12, t o be all in t h e i n t e r v M (0.0s, 0.10) a n d c h o o s e t h e m in s u c h a w a y t h a t t h e six 6 - v e c t o r s (ei,1, s . . . . , e{,6), j = 1, 2 , . . . , 6, a r e l i n e a r l y i n d e p e n d e n t a n d s u c h t h a t t h e six 6 - v e c t o r s (e{,7, eJ,8 . . . . , e{,~2) are l i n e a r l y i n d e p e n d e n t . This is d o n e in o r d e r t o m a k e ~ea a n d 89 u n i q u e c e n t r a l p o i n t s . :For all k > ] we put s 1 , 1 2 + k ~-- s 1 , k and -"
-
6
",
-
4
s
~
s
k"
N o w for all k <- -1 2 j , j > -l- -, we p u t e 6+(2j-1) 0 a n d for all k >- - 1 a n d 3,k ~ j > 1 we p u t e6+(2i-1) 5 1,12j+k = el,k. F o r all k < 123", j >_ 1, we p u t e ~ 2 j = 0 a n d 6~2j 6 for all k > 1 a n d j > 1 w e p u t s = s k" N o w we h a v e t o i n t r o d u c e c o m p o n e n t s (r, k) w h e r e r > 1. F o r if we d i d n o t _
106
PER
E~FLO
do t h a t , we w o u l d o n l y h a v e o b t a i n e d t h e following: 89 2j+1 a n d 89 2i+2 are b o t h c e n t r a l p o i n t s for sets c o n s i s t i n g o f 0 a n d l i n e a r c o m b i n a t i o n s o f e 2j-1 a n d e 2i. This h o l d s e v e n if e 2j-~ a n d e 2j are a p p r o x i m a t e d b y v e c t o r s v 2J'-I a n d v 2j in B. B u t 89 2j+1 a n d 89 2i+2 will n o t be u n i q u e c e n t r a l p o i n t s . F o r c e r t a i n l i n e a r c o m b i n a t i o n s o f el:s, i ~ 2 j - - 2 or i > 2 j ~ 5 c o u l d be a d d e d t o 89 2j+1 a n d 89 2i+2 w i t h o u t d e s t r o y i n g t h e i r p r o p e r t y o f b e i n g c e n t r a l p o i n t s . 2j- 1 2j F o r all j >_ 1 a n d k > 1, e[(j+3)/2l, k j =- l, %'+2,k = 0.1 a n d e1+2,k ~ - - 0.1. 2j- 1 2j T h e d e f i n i t i o n o f ej+z,k a n d ey+2,k is m a d e so t h a t 89 2j+1 a n d 89 2j+2 are c e n t r a l p o i n t s e v e n if e 2~-1 a n d e2j are a p p r o x i m a t e d b y v e c t o r s v 2j-~ a n d v 2j in B. l % r t h o s e t r i p l e t s (j, r, k) w h e r e e~,k is n o t y e t d e f i n e d , we p u t e]]k ~ 0.1 9 ( - - 1) [(~-1/2)1. This last d e f i n i t i o n will s a v e t h e u n i q u e n e s s o f 89 2y+~ a n d 89 =j+2 w i t h r e s p e c t t o l i n e a r c o m b i n a t i o n s o f el:s, i < 2 j - 2 or i > 2 j ~ - 5 . F o r if we a d d s u c h a linear c o m b i n a t i o n t o 89 2j+~ or 89 2j+2 t h e d i s t a n c e t o 0 will be > 89 W e n o w r e s u m e in t h r e e l e m m a s t h e i m m e d i a t e c o n s e q u e n c e s o f o u r d e f i n i t i o n s o f t h e v e c t o r s e ~', j > 1. LEMMA 1. There exists an s > 0 such that i f I]v2j-1 -- e2j-lll < ~ and ]Iv2j -- e2J[] <_ e holds for two vectors v 2i-1 and v 2j in B, j >_ 1, then v2i i _ (1 ~ - 0 . 0 1 ( k - 1))v ~j has its largest component on the same place as e 2j-~ - - (1 ~- 0.01(k - - 1))e 2j, k : l, 2, . . . , 12, namely some component (r, m) with r = 1, and the distance between 89 2i+1 and each of the elements 0, (v2J 1 _ _ (1 -~- 0.01(]c - - 1))v2J)/Hv2j-1 -- (1 -~- 0.01(k - - 1))v2J[[, k = 1, 2 , . . . , 6, is 89
Obviously a similar result holds for 89 2j+2 for k --~ 7, 8 . . . . .
12.
LEMMA 2. Let v 2j-I and V 2j be as in L e m m a 1. only vector of B such that the distance between the vector and (v 2j-x - - (1 ~-~ O.01(k ]))v2J)/llv2j-1 - (1 -~- O.01(k - 1))v2Jl[, k and there are positive constants K and 81 such that i f g E B then the distance between 89 and some of the __
O, (V 2j 1 - - ( l ~ - 0.01(]~ - - 1))v2J)/]]V - - (1 ~ - 0.01(]~ - - ]))v2J[],
T h e n 89 2j+1 is the each of the vectors 0, : 1, 2 , . . . , 6, is ~2 and []g -- e2/+1]1 z 5, 1
]~ =
1, 2 , . . . ,
6,
is at least 89-~ 1 K m i n (5, el). A similar result holds for 89 2j+2 for k = 7, 8 . . . . , 12. 2j--2A-t
2j--2+t
2j--2+t\
Proof. T h e l e m m a h o l d s since t h e six 6 - v e c t o r s [ e 1 , 1 2 j ~ _ 1 , e l , 1 2 j + 2 , . . . , e1,12j+6) , t = 1, 2, . . . , 6, are l i n e a r l y i n d e p e n d e n t a n d since (j § 2, k), k > 1, are p a i r s w h e r e ej+z.k 2j'~l = 1. T h e last p r o p e r t y gives t h a t lie2j+1 ~- hll >> IleeJ+ll I + 0, 1 9 IIhL[ if h is a linear c o m b i n a t i o n o f v e c t o r s e, i <_2j 2 or i > 2j + 5.
and
We can assume that e 2j~2.
s, s 1 a n d
K
in L e m m a
1 a n d 2 are t h e s a m e for e2i+1
A BA~ACI:[ SPACE
~VITI-I B A S I S
CONSTANT
~
1
107
L]~MMA 3. L e t V 2 j - 1 a n d v 2j be as i n L e m m a 1. I f C is a subspace o f B , v ~j-~ E C a n d v ~j C C, a n d infgec llg - - e2J+llI = ~, then there is no p r o j e c t i o n f r o m the space D generated by C a n d e2j+~ onto C o f n o r m ~ 1 q - K . m i n (0, el) where K a n d e 1 are defined as i n L e m m a 2. A s i m i l a r result holds f o r e 2j+:. P r o o f . T h e l e m m a h o l d s since b y a n y p r o j e c t i o n f r o m D o n t o C t h e v e c t o r 89 2j+l is m a p p e d o n t o a v e c t o r w h o s e d i s t a n c e t o s o m e o f t h e e l e m e n t s O, (v 2j 1 _ (1 q_ 0.01(k - - 1))v"J)/Hv 2i-1 - - (1 q- 0.01(k - - 1))v2.iH, k : 1, 2 , . . . , 6, is 89-~ 89 m i n (~, ex).
prove that B has the basis constant ~p ~ I. We choose p = el) w h e r e e is t h a t o f L e m m a 1 a n d K a n d s 1 are t h e s a m e as in L e m m a 2. L e t D be a t w o - d i m e n s i o n a l s u b s p a c e o f B g e n e r a t e d b y v 1 a n d v ~, v 1 a n d v 2 as in L e m m a 1. I f E i s a s u b s p a c e o f B, D G E , such that there exists a p r o j e c t i o n f r o m B o n t o E o f n o r m ~ p , then by Lemma 3 E must c o n t a i n v e c t o r s w h o s e d i s t a n c e s t o ea a n d e4 are ~ e. T h u s b y L e m m a 1 a n d L e m m a 3 E m u s t c o n t a i n v e c t o r s w h o s e d i s t a n c e s t o e5 a n d e6 are ~ e. B y i n d u c t i o n w e see t h a t E m u s t c o n t a i n v e c t o r s w h o s e d i s t a n c e s t o e2j-~ a n d e 2j are ~ s for e v e r y j ~ 1. T h u s B h a s t h e basis c o n s t a n t ~ / 9 . We
now
1 q- 89
Remark. It has been shown by J. Lindenstrauss that the construction above can be m o d i f i e d so t h a t we g e t a u n i f o r m l y c o n v e x B a n a c h space i s o m o r p h i c t o H i l b e r t space with basis constant > I.
References 1. SIZ~GER, I., Bases in Banach spaces, Springer-Verlag, Berlin 1970.
Received March 27, 1972
Per Enflo Department of Mathematics University of California Berkeley, California U.S.A.