This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
I a p,u,p.})cv of t)vop~,r~i~>> ~f tit(, c~w.gr~c,~t p a i r A[7] is a l s o exap,~incd. 1,1 cor~ctusion, s o m e clztss[fica~i~ms e~f2-fa~>.ilies of t i - c s i> P5 a r e .~iven. St':CTI()N
1.
PSEIJD()I,'()CAL
L('t a 2-!'a?~{~y ,~i ]i'.~cs :\1.\2 !)e r e f e r r e d
2-t:ASlII.
IES
(i!
I. I N E 5
to s o m e f r a m e {:\~.~.} !<~. ~. 5
IN
i, 2 . . . . .
f) a /;), *.vi~,sc (b.q'i,.azi~,,~
dA,, := ~,)./;.1~,
( t. I
~*~({ ~hr f(~l'~ns a2o~ sa~ is[ 3 ~h(, stru~,itlvc e q u a t i o n s
!.(.~ u • be p a v a m o t e r s {bus
.,.~f the 2 - 1 a m i i y .
T h e n the different|'0_| equatiop, s of this 2 - f a m i l y r
o~d" == a~,,Pdu" .ks is knmv,~ [5I, a t a n g e n t 3 - s u b s p a e e
li,~<~s is wvitt(:n
(i, z =: 1, 2: p := 3, i, 5. i;).
(I.:~)
at the point x l A i of the ra-- of a 2 - f a m i l y has ti~e f o r m
To ~ (AI, A2, a.~!xi.lp, a,zvx'Av), ~}~,.:,re ~):x~-:x ~. A tangent 3 - s u b s p a c e of a o n e - p a r e m e t e r G rassm~ product
sul)family du2:du !
Ta == (At, A=, at.vdu*Av, az~vdu*Av).
(I.'i) ?, is (h'fined by a:~othcv (!.5)
In the general c a s e linear spans of s e t s of these two subspaces coincide with I)s for alI p o s s i b l e p and X Let us elucidate the condition of coincidence of the 3 - s u b s p a c c s T o and T x. "I'o do this, let (is write their equations in tangential coordinates X~ = O, a~pz~Xp = 0,
(t.S)
Xf = O, a~rXvdu~'=O,
(i.7)
where X ~ are tangential coordinates of the hyperplane.
The subspaces T o and T~ coincide if and only if
Translated from Sibirskii Matematicheskii Zhurnal, Vol. 9, No. 3, pp. 554-567, May-June, I968. Original article submitted April 2, 1966.
417
t h e r e exist q~anltties cv j ( j , v : 1,2), such that
a,,~'.,'
, . ~,,. ,h,'.
(1.8)
Elimlnallp.g cVJ f r o m (1,~,) and p-~l)l, P2, I);t. mid f,,r P: ['1. P2, P4, w h o r e the Pk {k ~ 1, 2, 3, I) at'(, f,~nl' different s u p e r s c r i p t s f r o m 3, 4, 5, t;, we obtain dr, ~ (..! ~~~ . . r , & : . i . l s: ~',.r: ,tt, * 4 , t : ~ 'z ~du" -{ A~ ' ,.r ~&~') ...... 0. ( 1.'.0 'h*'~{.lid '.r~'du ~- *{ .! l a t ' . d d u ' + A:~ > . r t d u : + Aaf '.r ::: 0, w h e r e AixP~ and AixPa a r e e o f a c t o r s of the e l e m e n t s aixP~' and ai.,,.Pa of different rows of the d e t e r m i n a n t of the m a t r i x []aixPll. Only two of the four equations in (1.9) a r e independent. T h e y will be equivalent for du x ;" 0 if and only if the c o l u m n s [)~ and Pa or the r e c i p r o c a l m a t r i x to the matrLx [lai~.Pl[ a r e p r o p o r t i o n a l . i, e., the r e c i p r o c a l m a t r i x I[Ai~P[[ is d e g e n e r a t e , and t h e r ( f o r e
deti!a,~i] --= 0.
(1.t0)
For d u X = 0 (~.=1, 2) Eqs.(1.9) a r e equivalent if AIxPiAe~,Pa-A2xP4AIxPa =0 (not s'umnmd o v e r y. !) or a u det[lai~.PH =0, w h e r e / X • is the d e t e r m i n a n t of the two s y s t e m s f r o m (1.S) fox" p =PI. P2, du~"=0, is nonz e r o s i n c e it is a s s u m e d that solutions of these s y s t e m s exist. If condition (1.10) is satisfied, then the single r e l a t i o n to which (1.9) r e d u c e s will e s t a b l i s h a o n e - t o - o n e c o r r e s p o n d e n c e between points of a r a y of the 2 - f a m i l y A t + p A 2 aml t h o s e r u l e d s u r f a c e s du = =),du x, for which the 3 - s u b s p a c e s Tp and "I'}, coincide. We call such points pseudofoci of the c o n g r u e n t ruled s u r f a c e s of the 2 - f a m i l y (in c o n t r a s t to [61 w h e r e they a r e called feel of the r u l e d s u r f a c e s ) . Let us mention a~ottmr g e o m e t r i c c h a r a c t e r i s t i c of condition (1.10). xiAi to the r u l e d s u r f a c e du2:du t is (,'It, A:.
The tangent pt.'me at the t,oint
(i, x -~- l, 2; p :-= 3, r~. 5, ~;) ,
a,,d'z,da~Av)
(I.ll)
By v i r t u e of (1.10), the c o o r d i n a t e s of the iyaint ai• a r e l i n e a r l y independenl, and t h e r e f o r e , the l i n e a r span ()f all t h e s e pIanes, which coincides with the l i n e a r spans of s e t s of ~.he 3 - s u h s p a c e s Tp and "I!~,, are four-dimensional. D('fi1~iti~2n!. A 2 - f a m i i y of lines Ps whose first differential neighborhood of each r a y is f o u r - d i m e n sional will be Called p s c t d o f o v a i . F o r a pscudofoeal 2 - f a m i l y of lines in t)5, to each of its rule(1 s u r f a c e s passing through a given r a y t h e r e c o r r e s p o B d s a single point of this ray, its p s e u d o f o c u s . The local s t r u c t u r e of a pseudofo(:al 2f a m i l y of lines is the s a m e ms for a 2 - f a m i l y of lines in P i (see [G, 12l). In o r d e r for a 2 - f a m i l y to be s e m i f o e ~ [10I, i . e . , to p o s s e s s one s u b f a m i l y of t o r s e s , it is n e c e s s a r y m~d sufficient that the r e l a t i o n to which (1.9) r e d u c e s should d e c o m p o s e into two f a c t o r s one of which depends only on p, and the othec only on ~. T h e y define the focus of a r a y and a t e r s e of a 2 - f a m i l y , i . e . , the focus is a pseudofocus for all ruled s u r faces of the s e m i f o e a l 2 - f a m i l y , and all points for the t e r s e of such a f a m i l y a r e pseudofoci [11l. P,y virtue of (1.10), the condition to which (1.9) r e d u c e s for a focal 2 - f a m i l y of lines [10l, and only for this family. will be s a t i s f i e d identically, and the f i r s t differential n e i g h b o r h o o d of the r a y is t h r e e - d i m e n s i o n a l . R e m a r k . It T h e o r e m 2,1 f r o m false. T h e fact is generally assured
follows f r o m the r e s u l t s of this s e c t i o n that, as has a l r e a d y been r e m a r k e d in [11], [51 on the e x i s t e n c e of pseudofoei for s u b m a n i f o l d s of any 2 - f a m i l y of lines in Pn is that the condition det[lainPXp[~ =0 for s o l v a b i l i t y of (1.6) with r e s p e c t to x i cannot be for an)* c h o i c e of Xp.
SECTION
2.
CANONICAL
FRAME
In the s p a c e P5 with the absolute Q42, let us c o n s i d e r the f r a m e {Ac~} relative to which the hyperquadric Q42 is given by the equation #~a + ~ # + # x ' -----0.
(2.t)
Its s t a t i o n a r i t y conditions result in the following additional relations on the structure Eq. (1.2): O)t 2 ~
0.~ I ~
o ! I + or= =
418
r
~ ~
0}~ s ~
o , 3 + ~4 ~ =
{0.~ ~ ~
0},~ S ~
~5 ~ + o d =
O~
0,
*+ +++~ [ r
b+'+
+,+,~, } ++++t
~,+++.}+ <,+++
|
+,%1
+ +~ ++++
++qt
t,+ + + + +
~.+ p +,@
+ + ~+++
{t
+:+::3
+~.
~ h~:'c ! h,., m , r m a t izal ion ~t
{-tb|.+++l~ i~.'t,.l.)
| , _~ ,
~2.::;~
h a s a h ' e - t d y been c a r r i e d (mr. F r o m t h e p a h ' w i s c c o n j u g a c y of the f r a m e s AIA ~, ,A@4 ,anti As:k. it fi i t ( , ~ s (st,(, ~iI~ tha~ t h e i r c o n g r u e n t t h r e e p a i r s of l i n e s P3 f o r m s o m e t e t r a h e d r o n !.SIk~. Its d e r i v a t i o n formul:u~ a r e
d+tta =: c~j'Lff.~
(k, l, m : : 1, 2, 3, t ) ,
(2,~)
w h e r e the f o r m s Vk m s a t i s f y the s t r u c t u r e equations D~,," =
{_+.,~,,-,
[,.~,r+-q.
L e t the e d g e s c+f'the t e t r a h e d r o n in P3
.~, === [v-'l, .~: = l:+~l, t+ = 1231,
"Li '
,+,)
[+q, ,~
==
l + 3 l .4+ .... l , - I
(2.,;)
c o r r e s p o n d to t h e v e r t i c e s A o, w h e r e [ k m l = ( M k M m ) + T h e r e f o r e . the c o n g r u e n t p a i r (MtM,:+-(.Ma?;!.a} c o l rcsp,.mds to o u r 2 - f a m i l y . W r i t i n g (2.4) in l i n e a r c o o r d i n a t c s ( s e e [2i), we ()blain ttw %il,.)wit~g r e l a t i o n s b e t w e e n the f o r m s w o : / 3 ~u~(l Vkm: UI I :-:: l'j
10i ~,
-~;': hi2;.
U2 ~` =
t,~l t,
U2 3 =.~ (1tt5+
U~2 ="~= --(02 ~,
F32 ~
/.'l ~ =.= ~,11~',
. t02g,
Ui ! : -
0~2 ~,
2.7)
.~vn
O.
t2~)
Sei,.+ctin~ rico., f~ r n : n -zl3 and ~.+'.'~as the b a s i s , we w r i t e (1,3) as to.j~ - - a~,q3 -}- a.:o)z~, oq ~ == bimta -~- bzojz~.
I n s e r t i n g (2.7) h e r e , we o b t a i n d i f f e r e n t i a l e q u a t i o n s of c o n g r u e n t p a i r s in P3. I ) i f f c r e n t i a t i n ~ ( ~ ~ Iy, ~ e o b t a i n t h e f o l l o w i n g d e p e n d e n c e of 6a a m~d 5b a on 7rfl'Y for fixed p r i m a r y p a r a m e t e r s
+ .....
6at = 2aina~ -- a z a ~ ~ ~ - ( a s - - atbs)rc~ ~ - - aza'Jt3 ~ -}- (a.. - - a t b z ) : n i l , 6aa == 2a~.'~ ~ - - a2a~:t~ ~ -t- (a~ - - a ~ b e ) a ~ ~ - - a~a~n~ ~ -}- (a~ - , atb;):~c, 6a~ = a~(2.'~,.~ - - a~t + ~s~) - - ( a t + a~a~).'t~ ~ - - a ~ b ~ , s - - a,~a+n~ ~ - - a~b~n; ~, 6a.~ ---- a+(m. ~ --I-as s) - - ( a z + a~a~)a3 s - - (aa ~ n- | ) . ~ s a~Zzf, aj)aa~, 6an ~--- a.. (2nz" ~ ~ * - - Ztss) - - asasa3 s - - a ~ b ~ 5 - - (a~ -}- a z a s ) n ~ ~ - - a~b~:t,;s, ~a+ = a d a , t - - n++) - ~ a r
6b~ ~
-
a~b+n, ~ - - (a,. + a ~ a d n ?
- - (a~b, +
l)aL
--2btm* + (b~ - - a~bz)a~ ~ - - b~b~'r~ ~ J c (b~ - - azb~)nn ~ - - btbzn~ ~,
fib, = b , ( ~ ~ + ~tnt - - 2gt ~)
acb~z ~ -- (bz +
8 b s ---- - - b ~ ( g ~ +' nt" liar) ~ asbo+zs _ - - (b~ +
b~P+rl~s _
babs)nt~--a~b'~za ~ - -
(2+I0)
bJ~;rt~ a,
(anbs nt- t)n~ ~ - - (b~ -+- b z b ~ ) n ; ~,
b~b~) n~ s.
D e m a n d i n g that t h e p l a n e A1A~Ar b e t a n g e n t to the r u l e d s u r f a c e w l ~ = 0 at the point Al, and the p l a n e AIAzA 5 b e t a n g e n t to the r u l e d s u r f a c e w~ ~ = 0 at the point A~, w e o b t a i n
419
T r~ d - l h i s tl is n p(,es~itry t~l put
b,(~,,m ~
z~~) .-:. 0,
bd,,zd :
0,
f r o m which for (212)
a~acbd,~ r 0
we obtain ~I~$ ~
Again n o r m a l i z i n g
/I~, ~ ~
aa --= /,~. ai t -- 2.%~ -- .'t~t :
~3~ ~
(2. t3)
.'It ~ : : : 0 .
0; a; = --G. a,; + z~~ = 0,
as = --ba. al t -- . ~ = 0,
(2. t4)
we t e r m i n a t e fixing the f r a m e of 2 - f m n i l i e s of lines in P5 and its congruent f r a m e of eongrtu,nt line p a i r s in Pa- Equation (2.q) b e c o m e s o~,a =: a.~,)=l
SECTION
3.
~l=s --- _ bat@,
GEOMETRIC
(,@ = #<(,h: -- h:,(@.
CItARACTEIlISTIC
OF
(2.15)
TIlE
FRAMES
The points of i n t e r s e c t i o n A 1 and A 2 of a r a y o f 2-families in Ps uitt~ the h y p e r q u a d r i e Q 2 d e s c r i b e s u r f a c e s (A t) and /A~) on Q 2 As is known [-~1, the tin,gent 2-piane to the s u r f a c e (Al~ at th e point Al int e r s e e t s Q.ff on two g e n e r a t i n g lines which a r e tangents to c u r v e s on the s u r f a c e (Ap congr,~em to the t o r s o s of the c o n g r u e n c e (.MI.'M2). T h e s e g e n e r a t o r s (..l~A~)and(A,, by.|a-,~ b~ba.1. _L bae.l~,
i,~.1~)
(3.1)
t o g e t h e r with the r a y AiA 2 define tangent pi.'mes to the ru!ed s u r f a c e s o:ha :
0.md(bah5 @- bt)(,'ta @ ,b.~!~e(,@ : : O.
(3.2)
at the point A 1. A n a l o g o u s l y , the tmngent plane to the s u r f a c e (A a) at the point A~ i n t e r s e c t s Q e along the g e n e r at Ors (AzA~),mJ(A2. v:ba.,la q- b~,l~ -b a~.i~ ba:Ad. (3.3) which d e t e r m i n e the o s e i l l a t i n g planes at the point A 2 to the linear s u r f a c e s . ~n~ = 0and(bab5 -}- aa)~z~ -- babr ~ = O.
(3.4)
The r a y s A t & anti AtA 5 define a 3 - p l a n e to which the r a y AaA ~ i n t e r s e c t i n g the h y p e r q u a d r i e Q.,~ at the points A 3 and A4, is c o n j u g a t e r e l a t i v e to Q42, By using the conjugacy r e l a t i v e to Q42, all the r e m a i n i n g e l e m e n t s of the f r a m e of 2 - f a m i l y lines in P5 a r e e a s i l y c h a r a c t e r i z e d . F o r the c h a r a c t e r i s t i c s of the congruent f r m n e of the congruent pairs (MIM a) -(M3Ma), we write, r e s p e c t i v e l y , the feel, the t e r s e ,and focal plane equations 1) Fl ~ b~llt + M,, bzb6va' -= (bi + Nbs)v~ a, dFl =-- (M, lh.lll), 2) Fz ~- Mz, vt 3 : O, dFz = (MtJl2, baJla-{- btM4), 3) & ~---M~, v.~' = 0, d & = (Ma,14, 3I, q- baJh), (3.5) 4) Fi ~ az.lh + baMi, (az + bab~)va~ = --bab6v=~, dF~ = (3Iyl[iMl).
It is h e n c e s e e n that M 2 and M 3 a r e p l a c e d at one pair of foci by the r a y s /I=MiM2 and /2 =I~IaM4, and M 1 and l~I4 at the points of i n t e r s e c t i o n of the focal planes at the o t h e r feel with the c o n g r u e n t r a y . F r o m (3.5) w e a l s o o b t a i n t h e g e o m e t r i c c h a r a c t e r i s t i c of the i n v a r i a n t s b 1, b 3 and a 2 in P3. L e t us e l u c i d a t e w h a t h a s b e e n e l i m i n a t e d f r o m the a n a l y s i s by c o n d i t i o n ( 2 . 1 2 ) . 1) It f o l l o w s f r o m (3.1) and (3.3) that t h o s e 2 - f a m i l i e s of l i n e s for w h i c h the t a n g e n t p l a n e to t h e s u r f a c e (Ai) at t h e p o i n t A i i n t e r s e c t s the h y p e r q u a d r i e Q42 a l o n g one l i n e h a v e b e e n e l i m i n a t e d by the c o n d i t i o n b a t - 0 , and the c o r r e s p o n d i n g p a i r s o f p a r a b o l i c c o n g r u e n c e s h a v e t h e r e b y b e e n e ' . i m i n a t e d .
420
x~Ai ,~i
I, : l . :hen lh~ h~,,t :u:::ior,~,~ o [ t l w '2,Ia*:~i', :,I l}i. - ~:',l.,i a ~ , d : e ~
A
i~, Iht,~hqurmi~iant n-tiM in {l,lUt.
t,2-' ( , & q
i,: ,1 I: m :
1)
CI ~;I
and b : I l l U uqua~ions -q (t'~',u ~ + f'~,,: ~) ' .~/,.~,,~" ........O.
"I>~ ca>es are p o s s i b l e here. a} a2h I = 1.
T h e n the 2 - f a m i l y is p s e u d o f i m a l ,
h~s no torses,
:rod the c o r r c s p ~ m d e n c e
(a.7) h:~'~ b e e n (:sta}llished b e t w e e ~ p : , i n t s of a r a y a n d lhe r u l e d s u r f a c e s . p~eu:lofoci of the r u l e d surfaces
The p o i n t s :\! :m:l A 2 a r c . ru~pectivciy,
(:rs} For ( ha -V b~ b:,) ( b~ -,4-tq ha) -~- b~ r
:= 0
(:~.9)
:;:' o b t a i n the s i n g l e t e r s e (b~ . . bJ.,) ,,..a == b~,',~,,: :
(;;.I,i)
(',q-re:pending to the focus b~.l~
(ha "i b,i,:,).I>
(3.1 }}
b) t _ n T h e n the ~.-,a~,,l{~ :' e ,.," .. has two t o F : a e s . ~13=0 a2).(l ;z2~ :-0. RP:.! :}'tt. c , w t c s l } , ~ : : ~ ! [ : ' . g .,~ ~: . \ , :t~i:} .\.. ~',:,~q'u :}w if:\ i dei)en ~s ~mlv ~m (me p a r a m e t e r , i . e . . the focM s m ' f a c c s ~iAi~ de~en~,wa~e, im'~;" cm-v,.,~ ,.,~.. Q~?. '.u',.~: ! I t , i t c~,rrespo:Miu:4 c o ' : , ~ r u , . , , w e s , into r i f l e d s u r f a c e s ~
Thurui(we,
tr,.)t"m'[I }!, 2-[ami[ius h: P5 and their co.m'csp,,ndin:..~c~m~r~:c:-t, p:d:'~ -r, "~..,in :':~}a~" !~c,t,~:
::1i:::inat ed.
In uo::clusbm,
let us note another interesting fact.
TIiEt)I~E:~.! I. in order for points of intersection of rays of a 2 - f a m U y v,Ph flit.,hyl)c,rqu:v:L,'i.rQI:: It) b:' ice': of :his 2-family,. it [s ::ecessarv. and sufficient that their covreqn:.. ,::lit,,~,c':m,.zr::enr h: Ps :]e~:t'ncr:ite. i~.~to a l'tiled.suFface. I n d e e d , if IX2 is a f o c u s of tile 2 - f a a n i i y , t h e n tile f o e M i t y c o n d i t i o n s in the n o n c a n o n i c a : f r a m e ~ A a ~ : a 3 = a S = 0 for 0213>40. T h e n d [:H] d e p e n d s on one b a s i s f:>rm, and the co,ngr::cnce (.MaMa) d v g e n e r a t e s into a r u l e d s u r f a c e . If Ms:xI 1 d e s c r i b e s a r u l e d s t : v f a c e , th(,n the d i f f e r e n t i a l dA 2::-~:22A2 q ?-'~aA 3 . + c~2tA4 + cc25A5 § 0222A~ s h o u l d d e p e n d on o n e btus is for p,: a~2l, fFOW., W[iictl a 1 : a a a 5 :~!, and t h e point A 2 is a f o c u s of a r a y of t h e 2 - f a m i l y . A n a l o g o u s l y for the point A I, the c . r r e s p o n d i v . . g
}~c('ot::o ~.3. = ..2,.~= ~ ' 2 5 = ~ .c. =0, or a I
conditions is b~ =b 4-- b~ -:0. The a r b i t r a r i n e s s of t h e e x i s t e n c e o f t h e c l a s s a i = a a =as=0 (b e =:b~ =be =01 is three [unctions of two a n d of the class a l = a a = a ~ = b 2 = b , ~ = b ~ =0, sLx f u n c t i o n s of one a r g u m e n t .
arguments,
S E C T I O N 4.
R O Z E N F E L ' D FOCAL QUADRIC
Let us consider the focal manifold of congruences (in t h e s e n s e of [ID of 3-planes A3A:As?~ conjugate to the line AIA2 relative to the hyperquadric Q42. From the condition (dNAaA4A5z%) =0, where N =XPAp
(p=3, 4, 5, 6), we obtain xp(~p~ = 0
( i = I , 2).
(4A)
Hence, for each displacement w24=~wl3we obtain a characteristic line, which is the intersection of the given 3-plane and its neighbor for this displacement: x' = a~ = 0, ~3 + ~..
b,~ nt- ~ nu (b5 -I- Xb~)aa ~- b ~ == 0, _ ~.b~ +
(4.2)
(b, - - ~.b~)~ = 0.
421
(,t~ + a:,r~
ha"
h-.rD{%~
i .*+ i ,~'>+~i b~d~
I'~ ~ z'+": |L
(;:I~
v, htch+ f<~lI~)v:ing B.A. l { o : e n f e l ' d [ 1 ], ;~t' call the "focal qtl,+tdr'ic, " L~'t ~!s e•162 lilws colljuga!~, to the ~'tt~:,o|lt 3-~uh~p~l('e~ Tp and "l'~ ~,ith t'r to Q~. Takin~ acre',mr of the du:dity nf the pnlar eonjt,~acy of the points, wv ub~ain that troy family ~f s,~rai~:h~ linv t:enel'ators ,.,f t h e q u a d r t c (.I.3) c o n s i s t s of p o l a r s t o M l of 71'A. A p o l a r to the 3-subspaer T#:is defined by t}v.. equa~ ions .r~ =. :
=
O,
bi~" +f .r ~ -f- b : . r " - k
r,.r-' -i v,~.a-+ + (l,+
O/,:,).r:'
-
( t ~ -,+ td,,): "+ -
O,
!,1,:.: := O,
{~'~
The lines (4.4) a r e g e n e r a t o r s of the q u a d r i c (-t.'3) and ahvays i n t e r s e c t the lines (.1.2). Thus the s e c o n d f a m i l y of s t r a i g h t line g e n e r a t o r s of the q u a d r i c (-1.3) c o n s i s t s of p o l a r s to all of Tp. As is known [1], a pMr of lines d i ( i : l , 2), which a r e the lim.q position of lines i n t e r s e c t i n g the pair of r a y s ~.'2"~*:~,a:t3 mtd then neighbors for a d i s p l a c e m e n t c o r r e s p o n d i n g to t 1-- 12, will c o r r e s p o n d in Pa to a polar" to tt:e 3 - s u b s p a e e T x in Ps. T h e s e lines a r e the d i r e c t r i c e s of a bundle of tal/gt, nt linear c o m p l e x e s to the pair of ruled s u r f a c e s ,,'at+~,vl a = 0 . Points of i n t e r s e c t i o n of t h e s e d i r e e t r i c e s with the r a y s l t a~d I~ a r e quasifleenodal points [-t]. A bundle of linear c o m p l e x e s in P3 c o r r e s p o n d s to the polar to T p . Its taxes a r e a pair of lines : i ( i = 1 , 2~ i n t e r s e c t i n g the pair of r a y s l t, 12. The ~.3 linear c o m p l e x e s c o r r e s p o n d i n g to all p,.~ints of the 3s u b s p a e e Tp in P~ a r e involute to the bundle of l i n e a r c o m p l e x e s defined by the pair gi" The pillars to ~he 3 - s u b s p a c e s Tp:= 0 m~d Tp:.m. at the points A 1 and A 2 are, r e s p e c t i v e l y (l,:A:: -- ~,,.-l,,~,.:t, -- A+),
+i.,-,)
(ha.% + .1~, /,a-l~ i- ":.!:,)
{ ;:;}
and i n t e r s e c t Q{~ at points by which they at'{.' given.
(baM~ -}- .112, .I1.)
T~vo congruent pairs -
-
(o2:13 -[- b:+.!l+a. M r ) - .
(M'~, b>lla --;- :q.II,~),
{1.7)
(,1/,~..1I, -~- b;.Ifa).
(~.S)
c o r r e s p o n d to these points in Pa. It follows from (3.5) that eacit of these r a y s p a s s e s through the focus 1,'k {k = I , 2, 3. 1) of the pair (1~) -(le) , and the point of i n t e r s e c t i o n of the focal plane dF k wifl~ the congma,nt r a y (a p a r t i c u l a r e a s e of G.X. ?,Ia+keev focal p a i r s [131}. t ' o l a r s of the 3 - s u b s p a c e s T ~ = 0 and TA_-.-~ i n t e r s e c t Q, 2 at the points b>.~a - A > b s A a - b l . \ ~ and b/,:\ a + :~., bsA ~,~ a2:~. tlence, g e o m e t r i c c h a r a c t e r i s t i c of the invariants a2bl, b 3 and b 5 in P5 indeed restflt f r o m ~ 1.5), (.1.6). F o r a pseudofocal 2 - f a m i l y of lines and only for it, the focal, q u a d r i c (4.3) degenerates: into a cone K ~ with v e r t e x Aa-blA+,, which is the polar h y p e r p l a n e (AIA2As.-~, A a +blA~) containing the whole first d i f f e r entia] neighborhood of the r a y AIA 2. By v i r t u e of the c o r r e s p o n d e n c e (3.7) the f a m i l i e s of 3 - s u b s p a c e s Tp and T x attd their p o l a r s r e l a t i v e to the h y p e r q u a d r i e Q.t~ coincide in this c a s e . This yields a g e o m e t r i c i n t e r p r e t a t i o n of the c o r r e s p o n d e n c e (3.7) in P3. Since the l i n e a r c o m p l e x c o r r e s p o n d i n g to the v e r t e x of the cone K = belongs to all bundles of tangent l i n e a r c o m p l e x e s for any displacements, then it is tangent to the congruent pair (/1) -(12), f r o m which follows: T t t E O R E M 2. A pair of congruent lines has a c o m m o n tangent l i n e a r c o m p l e x (tlc) for each p a i r of c o r r e s p o n d i n g r a y s if and only if its c o r r e s p o n d i n g 2 - f a m i l y of lines in Ps is pseudofocal. The lines of this tangential line c o m p l e x correspond to the points of intersection of the hyperplane (A1AaAsA~, A 3 + btA~) vdth Q~2.
Such pairs will be examined in the next section. Let us just note that the plane H, defined by the lines (4.5) and (4.6) for a2b 1 = 1 will intersect the hyperquadrie Q(~ in a line to which the d e m i - q u a d r i c containing two pairs of rays (4.7) and (4.8) c o m p l e t e l y defining it will c o r r e s p o n d in Pa. By virtue of (a.9) the foeal quadrie for a sere!focal 2 - f a m i l y will d e c o m p o s e into two i n t e r s e c t i n g planes x ~=
422
O, btx* + x ~ - - b~b~x ~
+ b# "~-----0,
(4.9)
': ~*
. , ~ ' ,,I ~' i>r ~ h'n{~
t:
,[th;ina~ , t Lt,cgul'-(' b e " ( h ,
In thi> t ; c - ~ a[i ~[i,, :,-:,il~c.},,.,
i >, v,.d; { , : a ~ n .~ ,h 'm I ' 1 ~ ' at ,'he p~,~!1 ( : L I I ~ , i o ' . ~ l : i c h ~h,, pIan~, r La:- a {,~,'~{!, ~,f [i*~,'s c,q'jtt~VV, e t . ' r ~ ,
i u ~':',::,i>
x~ili h . ,.,,;, ',:;~ar
*,',,":gv~;{
t ' } : V : ~ g ' ' , ' V {h{,
w i t h t h e c ~ , : n : n m ('~,u{er .\:~.~h|.,\,,
i,~'~, ~h,* D a i r A [71 (,,rr,~sp.~mdini., ti) t h i s 2 - f a n H [ y , v,(, ~,btain tlm! { h v r v is a :-i:~:l~ l i n t . a t c , ; v : i , I c x c ~ , r * ~~ -;, ,,'din;* *;, lht, fi..-t~:~, ( : L I l'i in {ht, h u n ( l i e o f l i n e a r c o m p l ( , x c s w i t h ~c,:es l 1 a i m l.,. 9 ' s u c h ~hat a!l l i m , : t r ~' ,: t~i,.>.~,s in *'. ",~hich c ( , r r , , s p n n d tn w d n t s ,if the r o t ' a t p l a n e a r c i n v o l u t e ,'(, t':l('h {)f ~.h(' ~'? [;il}b~('l~{ t i r , a r ( , : : ~ [ ~ x ( , s ~17~t:,, ,,.I p a h ' s - ~ ) { r~iled s u r f ; l ( ' e s ~ff t h e c o n g r u e n t [),~drs { ~ 0 - ~ L ~ * ,M~,,"v(,',cv. all !it~.('ar '.:t,m~ , ; , x~.5 ~d a i ,.t, , ( X~oi'h th(, ~Lxt.s I! a n d 12 hi i'3. w h i c h c o r r e s i . , o n r | t,,~ t~:e t a n g ( , n t p)~an(. ,ff t h e .',-rst, in t>2., a r e g: v~d:~:~ ~v, ~ ' a ( h ~f ~ h t ~2 [ i q e a r q(:,lllpI(,xl.,s c o n t a i n i n g t h e (l('nliqULtdri(: (]('fi ,,,,(l bY ~h(? l'Ltys (4-)7'), { [,~), }:~)r.'h~' c ~ , . > p ~ e ; , ' i y f* 'a; 2 - f a ) : : i t y ~ f f l i n e s e x c l u d e d !{~':. c ,
here,
tt~e f < , c : d q t ' : v h b : , ! v : ~ , n t ' r a . ' . , . ~
i: ~.~': :e~,~ti:~t,,{', ,~ *l v,> t h a t t h e c < m g r u ( m t p a i r T [2 t a n d , , n l v it h a s
: u * , , : t !ira,.
m ~ !i~,s ,q' * t~ . . . . ~, '"
,,~., >
i':~'>,(.~ ,:~.~' *i.i: "}',,Y ('a('}'~ i);li1" <)f ( ' ( ) r F e s p o i > l i i ~ g r a y s , SFCTI()N
5.
('(}MM()N
C()N(;IIV}.:NT
T:\NGI-:NT
P.\Ii~S
1.IN},:AII
}{.\VING
:\
C()MPi;FX
1., ~ , > v: : :< < : <= ,:,,t, r.,.2~v,.1 s i n - f a c e t i (i , 1, 2* b e l o n g i n g i,, t h e c , , r 't~s ~,, , i.>: :.,,:~:;v'a,ncv t,, v:tvi~ ,,i lh,, :: ~5;:
: ~!'.!.:.2 l ' : : \ S
X:~I =:c)'i~.'~
.1:
t,f L1 (',)}~!'tl,t'I3t
p~.t[l',
["',~1" (Ji ;"cr2 [}'('..
.... :{ ;-a:: .
l, - '~-~ i= :~.. ':!:,., i,.,,,!~i(-~ ,,f fi;Mi}'g su('!i a i)L~i!" ~|' ,..,I
:*~1 . ', ;:k!:c{CT"
r
[{~?~.'.:1.~." U , , r ' n i ~ l t ' x c ' s
,ap]a
. . . . :k:~. . . . ~ : i ,
I
" ~.
~ :-;Vil'i:}A'C5 k .l : ~ r ~
L'<>;~-
,
~L.,:~(.,.,:t,)-:!'~,
,.r~.2r .
w}~Cl'('
_
I~:}}
-,
9
,.i
{ /,i.=',' f;.4 !t,[gV~i, :IS: tl ~ :
--
k:
1~
~)It* L "-~" L~2;t
"~" II::"
:-,.2) ,: ; .:: (). ,r . :~
. ( h , -t- h ~ G : ) t~;~ .4: ~ . ~ . , ~
b,,~:,,: ~
H.
i !:i- >v~:~-~':: ~ .'fi,;~.s a .-:i~eaf ,.~f t:mgent lineal" c o m p l e x e s if
,~ (a:b, . t) = O, b , ( b ~ + b~o2) + bathe ---= O, a:~T:(/,:,
!,;.~) ! f,:(~: :~: ~~.
(5.;r
t : : : i : ~ i n : r i n < ~hv . ' . ~ r s c s 2) anti 3) in (3.5) f r o m the a n a l y s i s , s i n c e t h e r e a r c m, s u c h d ( q n i , luadri(':~ f~n" t h e m I..,. a u s v <,f ~.he f i x i n g ( 2 . 1 1 ) , w e obtain the s i n g l e condition a 2 b l = l for w h i c h t h e d e s i r e d p a i r ~f r'.0.,.'d s,'.~rfa.,:s
is f l m n d : a, =
(btba + b~)/b6, or2 ~- - - b i b 6 / ( b , b5 + ba).
(5.1)
Definition 2. We shall s a y that the pair of ruled s u r f a c e s % , a 2 belonging to a congruent pair and t:)~c~sing through the c o r r e s p o n d i n g r a y s , p o s s e s s the R - p r o p e r t y r e l a t i v e to t h e s e rays if P. has a tang(.nt d c m i q u a d r i c for t h e m . If a I =~2, i . e . , the s u r f a c e s of the pair c o r r e s p o n d to a congruent pair and if they p o s s e s s the t l p r o p e r t y for the g i v e n pair of r a y s . then the pair of ruled s u r f a c e s is s t r a t i f i a b l e , and t h e r e f o r e , p o s s e s s e s the R - p r o p e r t y r e l a t i v e to any c o r r e s p o n d i n g pair of r a y s [11. F r o m d e f i n i t i o n 2 and T h e o r e m 2 t h e r e f o l l o w s : T t t E O R E M 3. A c o n g r u e n t pair having a tangent l i n e a r c o m p l e x , and only that one, has at l e a s t one pair of r u l e d s u r f a c e s p o s s e s s i n g the R - p r o p e r t y for each pair of c o r r e s p o n d i n g r a y s .
40.2.3
The nv~v~.'-ar> an~l sufficien? ('~,nditi~m~. f,,r this i s . : i , | h3 ~' I, II: thi~ va~,, o, '.h,' ,,,nr l~ia!w ~,,~}~. ('u~p ~i ~,m" t,.~r,~.e :d the p,,int I"I pas.'-,':~ thr~,u!.,',h tlw |,wu,-- FI, a,ld v(m~,,r.,.ely, th(' v,,i~ti~:,.~,m> ida~w I,* !h,' v u s p a t the p,,it~! I-"I t',mtains F t. This rata, differs h',,m the ~'u~t,,inary i2} ~;ralifiahility,,ft~,r.,.~.;, m t h a t the vorr~,sp(,nd(,nce is (,stabli.qmd only I,(.twevn two ril)> l I an 4 12. Th,, cla,~s . f c~mgl'm,n~ pair8 - : h I }h~ I e M s t s with an arbitrariness of four ftlmqions of t~.to argttnl(.x~ts, awl has it simp[e~v(m,ctric('haractvristic. The focal plane dF 2 i n t e r s e c t s the r a y l 2 at the f(,cus I"~. m~d tiu, focal plan(' dF 3 intersects the r a y l| a,' the focus F I. It foli~w.~ from definition 2 and T h e o r e m 3 that the qtmsifleew~dat p,;ints l-i! flu' p a i r s of ('~rresp<mding r a y s of pairs of ruled s u r f a c e s p o s s e s s i n g the R - p r o p e r t y a r e undefined. The congru(mt pair A~ is characterized hy this p r o p e r t y in [71, anti it t h e r e f o r e coincides with the pair of E . T . lvlev [a], x~hich has a tangent l i n e a r c o m p l e x . By v i r t u e of (:;.'~/. (.I.5), (-t.6), for the congruent pair A 0 the lines (t.7t (or (-t.'qJ pass through the qua.~iflecnodal points ill of the [)air of ruled s u r f a c e s v3 ! =~-rvt'~. ~ h c r e cr = (Y2 ( ~" ' ~rt) from (5. l). T h e r e f o r e , as has a l r e a d y been r e m a r k e d in [31, the first and see
d i s p t a c e m e n t s in Ps congruent to the fundam(,n~al pairs of (3.s) that for the t)seudofoc:fl 2 - f a m i l y v ~ f i i n e s tim t)oiqt At to the first fundamental pair of r u i c ( l s u r f a c e s in P3, and :\2 to the third fundamentaI pair of ruled s u r f a c e s .
On the other hm~d, we find the focal d i s p l a c e m e n t s of the plane I1 d e s c r i b e d by the point B = ba-la -- b~el~ + x(ba.l~
..l~;) + y(ba:la + ;Is),
i . e . , sttch d i s p l a c e m e n t s wal:a:l 3 for which the p l u m II and that infinitely c i o s e to it i n t e r s e c t . condition that dB belong to the tflane (5.5) we obtain
(~,, + .~) [ (b~ + b,b~)(,,:, t,,~,~,,:q = a Yl(b~ + btba)(,q a + bs(,,2'] = 0, tit 4 a'0: + V0a = 0,
(5.5) F r o m the
(5.*;)
where O, -~- (bab~ + btbj:)oJa:'-{- (b,~; + ba~,)~,~ + (t,t~:i + b.~.,_)(o~;,
(fla is obtained f r o m e x t e r n a l d i f f e r e n t i a t i o n and solution of (2.15) by m e a n s of C a r t a n ' s l c m m a ) , we have t h r e e focal d i s p l a c e m e n t s
t) (b~ + b,ba) c o , ~ + b6o,z ~ -~ O, 2) (ba + b,b~)~o24 - - b,b~(~, ~ ~ O,
tlencc,
(5.7)
3) b,02-- O! = O, Since dB ~ (1 + xo~) [(ba + b,b~)~2 ~ -- b,b6o~,~JA, -- - y [ (b5 + btba) ~, 3 + b~r + -QPAv,
w h e r e f~P is a c o m b i n a t i o n of the f o r m s oaqP, db 1 and db a (p, q = 3 , 4, 5, 6), then t h o s e two focal d i s p l a c e m e n t s 1) and 2) of the plane (ll)-(12) c o r r e s p o n d to two fundamental pairs of ruled s u r f a c e s of the pair A 0 of c o n g r u e n c e s II, for which the h y p e r p l a n e s AiA3A4AsA r are focal ( s e e [10]) for the i-th d i s p l a c e m e n t
( i = l . 2). 424
l+, ~++...... + t h , ++!:!~'~+ "~+r+;+c+ + u,l +~ ~+ }++ ",.irtuv +++ i Z . ; ~ . \natt+~U+~+ +3"+ +h+ +d;~,:r \ | \ \+ i+ :+[ !a,+i++c:+++++ CP+++ ++; ~,,+ >t+++f;~t + +hq}m-d b 3 | l ~d ~:+~.7+ at t h c |+~+it+t F;~ i}% + ++I}'~ +~m~[ + }tl++r ~'~}+i~ }i ~ ~J I>~ :;':~++'+t ~+:" +{ +}t + t't:i{:+ :;;+;+ V ++, t +++ [f+,}~c ~2+fa:~+i:y i-'- +(,tt+if++cal +>(++' +:+.!+D. th, + p+,i+:ts }:i :t:~+: +++, ~,:+<~+}:+ v,+~:: t+~ f~++,'+:++~,ft~+c :+a)+ L e t u s e x : u u i n v s t i l l at+t)th(q" p r + q ~ ' r t y of Th(' pail" .-~;.:.
'l~}'~t !['~L~*:)'{..__.!+. [I~ t h e pair" A+, and o n l y t h i s p a i r ,
f(+r e a c h dispia.c(+:+t('nt v~ ! = 0 v l + in t h e bun~Iic ++f iii~d e f i n ( ' d by t i w p a i r of l i n e s It ;uM l:, t h o r ( + is a l i n e a r c(+mi)lex ",~i:ich is t:~++g~ i~,t t(+ tile p a i r ,,f rub.,+t s u r f a c o s d c s c r i l ) c d |)y l i n e s p a . s s i n g t h r o u g h t+~o foot a+td t w o p o i n t s of i n t e r s e c t i o n of t h e foc:d p:.a+~c... at <+ther f+}ci w i t h t h e c<+p,g r u c n t rab +"
~ +:lL ~
{ ' ( } ~ ~ ~ l+~i ( ' X {~ S
Pr,+of. "F-~mr d i f f ( , r o n t c o m b i n a t i o n s of l o c i a r c p o s s i t i l e . : l , e t us c x a , u i t : c t h e p a i r +,f tit:e,~ 3 ! . M i a+:,.t M I M : . tP, o r d e r f o r a : i n c a v c o m p t ( , x f r o m t h e hun~ttc a l ? p '~:`,a:~`tp 1 2 : 0 d c f i n ( ' ( l b y t h e r a y s 11 a,ud l. it> co:+: a i n t w , ~ n(,igh}~(,rs ~,ft}t(, r a y [2:+ l§ and [l;}+d[I4l, if (2.15i is t : r i~i:o acc,um~ t h e r e shc+ut~i !+c f,~v ~}t(~ disp|a('c~ll(,~l! v3 ! =ffVl"t:" a':
~{fq1{'C,
--
ill t~:.~.+ :.~t+'1(+!:3.1 c ' a s o {I~.,:'FC at'( + ~v
a=~a u
=
O,
b,a t: - +
a,:'" =.- O.
(~:~y ~,v,'t>so[utioi:.q
(r:f!
i~:c:-.
a;hl <7 + :' ~!cfi':i::~ :: s:~':'i:t: :i+:~.,:.~.',(~+,~:'+-
',:ith a>.cs l~ a,M l~. (~:~}3+ it: t h e c.::sc a~b I : 1 is thor'(, :t ta~:~crt : i n c a r ,:ispla:'o.,t:~'la:. .\i! ti~r+ vc~aai::i:~g cases arc pr:+v(,d a:udog:~usly, SECTI(~N T}'v f(/.~,',:i:~g c l a ~ s i f i c a : i , q ,
+;.
c,>~,~:picx h i p ?~ + :;:>q~ = :: f , q a_:tv
('(~NCI+USI(~N
of 2-fa,p~ili(,.< , + f ' . i ~ o s it: I):, "vt~ults fro::: ::'c a},,,~,,. .,
T i u ~':.~.~: K<>(rgd ::+,,qf(,cai 2 - f a : : : i l / , ) f i i ; : c s {,d P5 !:::~ +:,,',>~r.'.cs, :}:c l i:'::i , i : ~ . , ' r ~ : : i a ! "ci:: } .: ~:, ,, ! ,.,: /-: ~a:+ c, ir<'i+ics ,,vii!, T}'u v,i:,,,iu s ~ , : . , - . . T!ics(, 2 - f a t : | l i e s }:av(. !~u,.".: :,,~.'-i,{~ d :i't.i'~" t'>,i~.~(-~.v~+ is s l x {vl:c:i(u:s {d ~.v,L~ :.iI+~.~(:.t,~(?l:.'.s. _\ (+:a-.- , t ~,s(_'t.~!<,',+,~:*~ 2 - J a ~ i!ic.-; ~,~hic}: h a v e ,,,u :,>rsc.-: };,u~ lta~c :~ f,~v:~---i,<:x: fir_.: ~i~,~.:-c::i:E ::~ :g}?{ +,I }:,, .l ~ , i : h c [i~:u is , , x : r a c : c d witi: an ar!.dtrari~:os.< ~! i{\u f'.m(qi at< , t ~v,,, ur:v:{~::,.q:+.. ,\ ',, :.;r :~ ::: i u : ; ' ,!<,sv'ri}~(+i i~% E . ' I ' . I v l c ' , :tr:~i S+ E. K,:~.l'apc'.3a!'a :p.:(] (']'aF:.tc:('v[zcd b~ 'hi. :.xismc: ~ ,, ~d a {:~;?..;+ ::, ii , :~.. c~'~}/.~.... !(,r :u~3 i<:i..'" ;,f :~,I:gruc;#, r a y s c o r r c s p ( u M s :o s u c h a 2 - f a ~ i : y ~,i t h i s v i a s s it. P?,. 5e::~il~.>u:d 2-fap.:i:i'c5 :,vc i s ~ d a t e d wi, h t h e a r b i t r a l ' i ~ c s s t,I' f o u r fu!:cti,,I:s ,.,ft\v,~ ar~gu::c+:::.+ S,.~b~ a 2-',a:~:ily h a s ~mc -~u+ffamily :)ft,+q-ses :rod a fi.,tar-dim.('nsi(.:a.[ f i r s t d i f f ( , v c n ! i a l uci~g!d.>rh,~,+d , t : } : c ra G . F i : c S . E . l'.:arapc',yal} i)aiv A c , r r r c s p o q d s to it it: Pa. C()mt)i(-'.ciy f~cai 2 - f m > . i l i e s a r e e x t r a c t e d w i t h an a r b i t r a r i n e s s Suuh a 2 - f a t } : i l y ha..~ t w o s u b f a m i l i e s of t o r s e s a n d a t h r e e - d i m e n s i o n : d ray. T h e S. P. I : i n i k o v p a i r T c o r r e s p o n d s to it in Pa. LITERATURE
2. ,2.
5. 6.
7.
,>f tw~ ftmt'ti~,ns (ff tw,, argu:.:~t,nts. f i r s t (tif[c{-t,t:t ial ~cighh,q'h~,t,d of t t>.+
CITED
B.A. Rozenfel'd, M e t r i c M e t h o d in P r o j e c t i v e D i f f e r e n t i a l G e o m e t r y and Its ('~mfo;-:~mt and C , r e ! a c t A n a l o g s , M a t e m . Sb,, 22, 4 5 7 - 4 9 2 ( 1 9 4 8 ) . S . C . F i n i k o v , T h e o r y o f Congruent Pairs [in Russian], G I T T L , M o s c o w - L e n i n g r a d ( l ! ~ 3 C ) . E . T . I v l e v , C a n o n i c a l F r a m e o f Congruent Pairs in P3, T r u d y T o m s k U n i v . , G e ( , m c t r i c a t (+oliec-
lion, 160, 1, 15-24 (1962). E . T . Ivl----ev, A Pair of Ruled Surfaces in Pa, Trudy Tomsk Univ., Geometrical Collection, 1(;1, 2, 3-10 (1962). S . E . KarapetymL Projective Differential Geometry of Families of Multidimensional Planes, II, Izv. Akad. Nauk ArmSSR, Se.r. Fiz.-matem., 16, No.5, 2-22 (1963). S . E . Karapetyan, Projective Differentia2 Geometry of Two-Parameter Families of Lines and Planes in Fottr-Dimensional Projective Space, I, Izv. Akad. Nauk ArmSSR, Ser. Fiz.-matem., 15, No. 2, 25-43 (1962). S . E . Karapetyan, The Pair A and Some Properties of the Pair T, Izv. Akad. Nauk ArmSSq2. Ser. Fiz.-rnatem., !2_-- No. 4, 27-34 (1959).
425
'~,
S, I'2. t,i:,r II)~'~y;m. ~lhv Thv,,~", ,~f ('-~,'rm'r~t i'aiv~, | , d , ALa,1. ,",'ai~k .'~rmfi,ql~, f-vr, Vig.~m;,J~,~,,, l,i,
1o. II. 1'2. I:L
I.I.
426
N,,. i .
37-)7
(l')C,l).
R . M . G~,id(,l'man, lh'<>hlvms ~)f Difh,rvntia| (;e~m~etl'y ()f ll,~w,~)~;('m'~,u,~ Si)a(-e.~, Trudy 3I~)s~',)~ It~t. l~,zh. T)'aaSl)~,)'t:~, Qm,sti())~s of Diff(,r(.n),ial G(,om(,~ry, I!;~), 5-2() ('1!~;5). I.. Z. Krt)glvak()v, ('aa(,ni('al I-'ram(, of a N()~ff,,c:fl Tw()-i)a~--~'am(,h,r l:':,miiy ~)f l.i)~(,s i~ | . ' i ~ ( , - I ) i ) ~ w n sic,hal l)r~~)ective Si)a('t', T r u d v. T o m s k Univ.. G(,ometri('aI C'~)I[(,cti()n, I ) I. ( ; . :~(;-17 ,~1 '.~(;7). G . P . B()chill(), On the T w o - l ) a r ~ c t e r Manifold V. ~)f S(,mi-No~euclidczt)~ Si)a('('s i)~ I'~, T~'u(ly T o m s k I'niv.. Geome,~rical Cr~llecti(m, 1!)1. 6, 2:1-31 (I~)(W). G . N . Makccv. Foctd Congruenl P a i r s T ~ d ~ [in Russia)~), Transactiot~s of the i.'irst Scientific C~mference of the Ma~hema~ic."d I'k.pa)-tmcnts <)f the l)<)voIzh'ya lh, d : ~ o g i e h~stiiu~(,s)'l(,~(;l). [)p. 122127. R . M . G e i d e l ' m a n , "I'hc Ttu~gent L i n e a r Complex of a Congruent Dai), of [.i)~es. Izv. Vyssh. t'chebn. ~ ( 1',)66). Zaved.. Matem ., No. 3. .' i .9- . , '.~,