当代数学讲座丛书 Lectures in Contemporary Mathematics
1
现代黎曼几何简明教程 曹建国
王友德 著
北 京
目
vi·
·
内
容
简
介
本书是一本现代 Riemann(黎曼)几何的简明教材, 共分两部分. 第一部分 为一至四章, 介绍 Riemann 几何的基础知识, 内容包括多种形式的比较定理、 Calabi-Yau 体积估计、郑绍远最大直径定理和 Cheeger 有限定理的讨论等. 内 容新颖且简单明了, 尤其是比较定理的证明采用常微不等式的方法, 不同于经 典的变分方法, 新的证明和讨论通俗易懂、简易明畅. 本书的第二部分包括第 五、六和七章, 分别讨论测地流、负曲率流形和正曲率流形这三大现代 Riemann 几何研究领域的最新成果, 许多新的研究结果如 Cheeger-Gromoll 灵魂猜想的新证明都是第一次在中外几何教科书中出现. 本书可供从事 Riemann 几何相关领域研究的学者参考, 也可作为高年级 本科生和研究生的教材和参考书. 图书在版编目(CIP)数据 现代黎曼几何简明教程/曹建国, 王友德著. —北京:科学出版社, 2006 (当代数学讲座丛书; 1) ISBN 7-03-016435-0 Ⅰ.现… Ⅱ.① 曹… ② 王…
Ⅲ.黎曼几何-教材 Ⅳ.O186.12
中国版本图书馆 CIP 数据核字(2005)第 130425 号 责任编辑: 吕
虹/责任校对: 朱光光
责任印制: 钱玉芬/封面设计: 王
浩
出版 北京东黄城根北街 16 号 邮政编码: 100717 http://www.sciencep.com
印刷 科学出版社发行
各地新华书店经销
* 2006 年 1 月第 一 版 2006 年 1 月第一次印刷 印数: 1—3 500
开本: B5(720×1000) 印张: 10 字数: 180 000
定价: 25.00 元 (如有印装质量问题, 我社负责调换〈环伟〉)
录
前
iv·
·
言
《当代数学讲座丛书》序 近二十年来, 中国数学有了引人注目的发展, 国际学术交流活动也大大增加. 许多大学和研究所都举办了不同层次的现代数学系列讲座或暑期学校 (例如自 1998 年开始举办的北京大学特别数学讲座), 聘请国内外著名数学家讲授课程或 研究成果. 这为我国数学工作者和研究生提供了学习数学各学科的基础知识和接 触前沿研究问题的极好机会, 大大促进了我国新一代青年数学家的成长. 《当代数学讲座丛书》是在这些学术交流活动以及系列讲座的基础上形成的, 其宗旨是面向大学数学及其应用专业的高年级学生、研究生以及青年数学工作者, 为他们提供高水平的专门教材. 本丛书通过整理优秀系列讲座、暑期学校中的精 品课程以及其他各种形式的讲义, 着重介绍国际上前沿数学的研究领域, 使相关 学生与年轻数学的工作者能在较短的时间内对数学各个领域的发展有较为深刻的 了解, 尽快地掌握这些领域的基础知识和重大研究问题. 我国数学家的共同心愿是, 使中国在不久的将来成为数学强国. 为此必须造 就越来越多的立足国内, 并具有国际影响的青年数学家. 我们相信此丛书的出版 将为实现这一目标做出项献.
田
刚
2005 年 10 月 16 日
目
vi·
·
《当代数学讲座丛书》编委会名单 主
编:田
刚
编
委:(以姓氏笔画为序) 王立河
许进超
阮勇斌
林晓松
夏志宏
鄂维南
陈秀雄
录
Æ
Æ Æ Æ $#% ! !""# ', &'("$ )% *&+ () - *.*(/+*,- 0 1 ./ 0 2 1 3 ! 0452"6"3' 7 89# :4$5 6; <=0>0?@'+7 08 $ 5 9: ; % <= & Æ A B C B D>E0? @' # AB 00? CDEFGFG )H KL&M ( 'N *HC ' I 1 JI J ) 67 OKC LM%N *+,
6; P-; Q O0PQRSR?. 8 /TUS$5<=0VTUVQRS?W ? . : 0 O0WX PXYYZ 1 [ Z [\YW0\]^ YW 2 _ ]? . :^ 3 *_``
6;aP ab: 8cbcJ 3dAB# e f ;d & ,(: '8 4 ef G ;g & 8gef jjkkb Æ h 2 F Yh6 *ii 5l blG [ ; <=0mm!]noYn a po> YW YW !a 6 q ] 0h r s omm!at 78 p 0h 52 " VT uv 9 YW 7h qrw : ]stxu 6qr^ 3 :yz v 78 p {w ; x' 6B < :y|Sz { I] = m Æ LM 6'Ws| } >?@ ABC ~ DE}~ ,
30
,
.
,
,
.
Yang-Mills
Ricci
Yau
, Calabi-
.
Riemann(
)
.
Gromov
,
. Gromov
Gromov-Witten . Gromov
.
,
1997
.
,
Riemann
Gromov
,
,
,
Riemann
.
Riemann
,
,
,
Riemann
.
,
,
.
1998
.
,
Riemann
,
.
(Walter Wei)
,
.
,
.
10
.
,
2003
Cheeger-Gromoll
.
,
,
Calabi
Cheeger
.
.
,
.
,
,
.
Riemann
.
2004
12
前
iv·
·
目 第一部分
言
录
基础知识和基本定理
第一章 Riemann 流形 ...................................................................................... 3 §1.1 流形、切空间和切丛 ...................................................................... .. 3 §1.2 Riemann 联络和仿射联络.................................................................. 6 §1.3 向量场的平行移动和测地线............................................................ 14 §1.4 第一变分公式 ................................................................................. 18 §1.5 指数映照, 完备性和 Hopf-Rinow 定理............................................ 20 习题一 ..................................................................................................... 26 第二章 曲率和比较定理 ................................................................................ 31 §2.1 曲率张量、截面曲率和 Ricci 曲率 .................................................. 31 §2.2 测地线族的变分向量场 ................................................................... 32 §2.3 Jacobi 方程和 Riccati 方程 ............................................................. 34 §2.4 Gromov 引理和经典比较定理的新证明........................................... 35 §2.5 Gromov-Bishop 比较定理 ............................................................... 40 习题二 ..................................................................................................... 44 第三章 共轭点和最大直径定理 ..................................................................... 47 §3.1 共轭点、第二变分公式 ................................................................... 47 §3.2 Ricci 曲率和 Myers 直径定理 ......................................................... 53 §3.3 郑绍远最大直径定理的简单证明 .................................................... 54 §3.4 Calabi-Yau 体积线性估计............................................................... 55 习题三 ..................................................................................................... 58 第四章 单一半径和有限定理 ......................................................................... 62 §4.1 割点、割迹和单一半径 ................................................................... 62 §4.2 Cheeger 的单一半径估计 ................................................................ 66 §4.3 重心和流形中的离散图 ................................................................... 69 §4.4 Cheeger 有限定理 ........................................................................... 73 习题四 ..................................................................................................... 75
目
vi·
·
第二部分
录
现代理论选讲
第五章 Riemann 流形上的测地流 ................................................................ 79 §5.1 测地流和切丛上的辛结构 .............................................................. 79 §5.2 闭测地线 ....................................................................................... 85 §5.3 无共轭点的流形和 Hopf 猜测 ........................................................ 90 习题五(含未解决的问题)......................................................................... 93 第六章 具有非正曲率的流形 ........................................................................ 96 §6.1 测地线、非正曲率和负曲率........................................................... 96 §6.2 基本群、Preissmann 和丘成桐定理 ............................................... 104 §6.3 Gromoll-Wolf 和 Lawson-Yau 分解定理 ......................................... 109 §6.4 Eberlein 正规交换子群分解定理 .................................................... 111 §6.5 Gromov 图形流形和最小体积流形 ................................................. 116 §6.6 测地流的刚性定理和其他刚性定理简介 ......................................... 119 习题六(含未解决的问题)......................................................................... 121 第七章 具有非负曲率的流形 ........................................................................ 123 §7.1 具有非负曲率流形的例子 .............................................................. 123 §7.2 基本群和陈省身猜测的反例........................................................... 128 §7.3 Cheeger-Gromoll 理论和开流形 .................................................... 129 §7.4 Cheeger-Gromoll 灵魂猜想的证明 ................................................ 134 习题七(含未解决的问题)......................................................................... 143 参考文献 ........................................................................................................ 145
*
*
*
《当代数学讲座丛书》已出版书目 ......................................................................... 148
Æ
,
,
Cheeger
Calabi-Yau
.
,
,
,
.
,
.
Æ Æ Æ ! Riemann
§1.1
.
.
2
.
,
∇f (x) = 0 2
x∈f
2
x +y ,
f
1
−1
−1
(b) , f (b) 2 (1) = (x, y) | x + y 2 = 1 1).
x ∈ f −1 (b) , f −1 (b) f −1 (b) = x ∈ Rn+1 | f (x) = b ,
.
f (x1 , x2 , x3 ) =
R3
+
x22
− x3 ,
f
−1
1
R
.
f (x, y) =
n+1
.
→R
,
Rn+1
.
Rn+1
n
(0) = (x1 , x2 , x3 ) | x3 = x21 + x22
R3
.
,
2
f R
,
x21
f R2 → R
.
−1
(
∇f (x) = 0
1
.
!
!" # " "!"" $ ! Æ # Æ% # $! 1 1
Mn
1.1
M
n
Hausdorff
p
Mn
Up
n
,
.
Up
p,
R
n
,
.
.
.
Mn
H. Whitney
,
.
&Æ%
!# & ''"#() % ($ $ Æ &$ !" Æ % "$ %& Æ *+ Æ& & ' Æ )' " !) *' " "Æ(" !"" + ","! Æ * *( $ Æ ( (( (( ) # *. ," *, 01,() $ +*, ,/ Æ ( Æ) " $ 2) Æ
+3 ) *(( Æ , ,/ ($ $ ) (-$( $ %*4. +") *" *+%& , & " ) "$ ,4. ) * " * "/ ) * " -+3 ) * " / *, ,/ 5 ! " ($" 0 ! - Æ ' ) 6 ' +5,/
Æ. 7 / -
22 ·4·
Riemann
1.2
M n,
n
Φ M n → R2n+1 ,
Mn
n
R2n+1
M n → R2n+1 .
.
1.2,
Mn
.
M n → R2n+1
.
Mn
p,
n
,
Tp M .
Tp M
n
R
Ap
,
R
p
,
F U → M
n
→ R
F∗
O
. ∂(F1 , · · · , Fm ) = ∂(x1 , · · · , xn ) O m = 2n + 1.
,
F
p
n . p ∈ Mn , ∂(F 1 · · · , Fm ) F∗ = ∂(x1 , · · · , xn ) O O
.
Mn
.
O
Mn
Rm
F (O) = p
O
p
,
M n ⊂ Rm
F U →Mn
M
n
Mn
Ap (Rn ) = F∗ |O (Rn ).
1.3
F
W
F (O) = p.
Ap = F∗ |O Rn → Rm , Tp M n
→ R
m
.
2n+1
.
n
.
.
F
Ap R
m
Rn
U
.
.
Image(Ap )
p
2n+1
,
,
R2n+1
p
Tp M n = Image(F∗ |O ) = F∗ |O (Rn ). Tp M n
,
,
.
.
1.4
Tp M
M
n
R
m
(F, U )
U =F F∗ |O
−1
(W )
.
Image(F∗ |O ) ⊂ Image(G∗ |O ).
p
,
n.
F (U )
,
−1
V =G
G∗ |O
p
.
Mn
(G, V )
F (O) = G(O) = p. ∂(F1 , · · · , Fm ) ∂(G1 , · · · , Gm ) ∂(x1 , · · · , xn ) ∂(x1 , · · · , xn ) . W = F (U ) G(V ) Mn .
Mn
,
n
(F, U )
p
(F, U )
Mn
F (U )
G(V )
F (U ) = G(V ) (
(W ). ,
G(V )
F∗ |O (Rn )
.
G∗ |O (Rn )
2).
n
F |U = G ◦ (G−1 ◦ F ),
Image(G∗ |O ) ⊂ Image(F∗ |O ).
./12.// Æ/8/ 0 * 0 §1.1
,
(F, U )
(G, V )
·5·
Tp M n = Image(F∗ |O ) = Image(G∗ |O ) .
.
4. ) *"
2
Æ$ ()Æ& Æ * 1 "1 9
.
(i)
p = (1, 0)
M 1 = S 1 ={(x, y) | x2 + y 2 = 1}.
.
, Tp S 1
p
x
3 2 . + ,
(
3).
3 ( Æ&4 Æ $ + 1,2 &2) Æ&) *(( 2 ! (ii)
f R2 → R
3
.
2
M 2 = {(x, y, f (x, y)) | (x, y) ∈ R2 } ⊂ R3 .
M2
0, f (0, 0)).
3
R3
f
(
4).
p = (0,
&Æ%
·6·
Riemann
4
F R2 → M 2 ,
(x, y) → (x, y, f (x, y)),
0 3-2 : "$ Æ , ;<5$4
$$4 ⎞
⎛
F∗ |O = ⎝
1, 0, fx
⎠.
u = (1, 0, fx(0, 0))
0, 1, fy
F∗ |O (R2 )=Span{u, v},
Span{u, v}
u
v = (0, 1, fy (0, 0)).
v
.
,
1.5
M
n
Tp M 2 =
.
n
,
T Mn =
Tp M n .
603160 Æ )$ # *5 ) $ # *5 <5$4 ( & Æ () Æ% & #**'45 ) -6#*22 )$ p∈M n
§1.2 Riemann ,
.
.
M 1 = S 1 = {(x, y) | x2 + y 2 = 1}, σ [0, 2π] → S 1 , t → (cos t, sin t).
.
σ
.
X(t) = σ (t) = (− sin t, cos t)
.
73.7473 +3%= §1.2
Riemann
t, X(t) ∈ Tσ(t) S 1
(
·7·
5).
5
- # *. +3 )$ # *5 ) $#*5! .% $#*5 /7 80 0& >$ # *5 6, $6 , 7 $ # *5 ( $' )$ # *56 ,7 85$ 6 Æ9 1 & ) # *5 -Æ7 6 +3'$ .!), 98 Æ 24 % ) 9 +3 0# ::;8 Æ () < "##2 6 , 7 # Mn
1.6
n
,
X Mn → T Mn
X(p) ∈ Tp M n ,
M
n
Mn
X
,
Γ (T M n ) = X | X M n → T M n
.
X ∈ Γ (T M n )
,
,
.
X
.
Mn
.
X(t) = σ (t) = (− sin t, cos t),
σ(t) = (cos t, sin t).
X (t) = σ (t) = (− cos t, − sin t) R
,
, X(t)
X (t) ∈ Tσ(t) M .
m
n
M (n < m),
n
m
σ [a, b] → M → R , X(t) = σ (t),
X (t) = σ (t) ∈
Tσ(t) (M n ).
M n → Rn+k
,
Civita
.
Levi-
&Æ% =
() ;:' "# " +- > 1 #* " 2
> Æ &( ' ) 02? % - !/$* #*. Æ -9 # , - )/#*5 #3), ·8·
Riemann
M n → Rn+k
Rn+k
,
p
Tp Rn+k = Rn+k
p ∈ Mn
,
, Rn+k = Tp Rn+k
M n → Rn+k
Rn+k = Tp Rn+k = Tp M n ⊕ Np M n ,
Np M n = v ∈ Rn+k | v
Tp M n
M n → Rn+k
p
.
R
n+k
Tp M n
Np M n ,
Rn+k
Tp M n
,
)T Rn+k → Tp M n ,
(
v → vT ,
vT
v = vT + vN
R
Y
.
n+k
X
X
Y = (Y 1 , · · · , Y n+k ).
,
M n ⊂ Rn+k
1.7
M n ⊂ Rn+k
DX Y = (XY 1 , · · · , XY n+k )
Y,
n
,Y
,
X
Y
X
∇X Y = (DX Y )T ,
-Æ $* )#*5 )3), . ) ?:< ?: Æ () ;:'?: @%= (DX Y )T
DX Y
.
Γ (T M )
M n → Rn+k
M
Levi-Civita
∇
.
Riemann
∇
.
∇ Γ (T M ) × Γ (T M ) → Γ (T M ), (X, Y ) → ∇X Y,
∇f X Y = f ∇X Y,
#, 3- )?:;)
=4 =/= 56; A < 6* /=@ ∇X (f Y ) = (Xf )Y + f ∇X Y,
f ∈ C ∞ (M n )
, Xf = df (X)
Mn
f
, C ∞ (M n )
X
.
Riemann
Riemann
,
.
.
,
.
73.7473 )/$#*5 Æ0 Æ . B> )$4 )?(?: Æ& §1.2
Riemann
Mn
X, Y
·9·
,
[X, Y ]f = XY f − Y Xf,
f ∈ C ∞ (M n ).
M
n
[X, Y ] = XY − Y X
TM
X
Y
.
∇
,
)* #*. @ +3 2)
72 #*.C A 9 @ $ Æ, 6 0+3 τ∇ (X, Y ) = ∇X Y − ∇Y X − [X, Y ].
X
Y
τ∇ Γ (T M ) × Γ (T M ) → Γ (T M ). f ∈ C ∞ (M ), τ∇
,
τ∇ (f X, Y ) = f τ∇ (X, Y ) = τ∇ (X, f Y ).
, τ∇ (X, Y )|p (
X(p)
)
Y (p)
,
.
C ∞ (M n )
α(X1 , X2 , · · · , Xk )
,
α(f X1 , X2 , · · · , Xk ) = α(X1 , f X2 , · · · , Xk ) =···
= α(X1 , X2 , · · · , Xk−1 , f Xk )
?: A+:* +:* Æ Æ& = 0 . # # , Æ( 8 9 3 ), * # *5 B!' = f α(X1 , X2 , · · · , Xk )
f ∈ C ∞ (M n ) ∇
Xi ∈ T M
α
k
.
M n = Rn
n
.
∇X Y = DX Y
Y X .
∂ ∂ ∂ , ,···, Rn . f ∈ C ∞ (Rn ) , ∂x1 ∂x2 ∂xn ∂ ∂ ∂2f ∂2f , − = 0, f= ∂xi ∂xj ∂xj ∂xi ∂xi ∂xj ∂ ∂ , , = 0. ∂xi ∂xj ∂ ∂ ∂ ∂ ∂ ∂ τ∇ , −∇ ∂ − , =∇ ∂ = 0. ∂xi ∂x ∂xj ∂x ∂xi ∂xj ∂xi ∂xj j i
Æ
τ∇
.
.
,
B5< Æ 7
∇
τ∇ .
&Æ% - )6*., Æ 7 2 > Æ
) ) 6* Æ 4 0 ' . Æ Æ $ # $ Æ * B!' ($ C )7 D % · 10 ·
Riemann
Rn
∇=D
,
1.8 (Riemann
Tp M n
Mn
τ∇ ≡ 0.
,
)
M
n
, g(p) = ·, · p ,
Riemann
g = { ·, · p }p∈M n = {g(p)}p∈M n
(M n , g)
.
Riemann
M
n
→ R
Riemann
R
.
Rn+k
,
m
Riemann
m
.
R
.
·, · Rm .
ξ = (ξ1 , ξ2 , · · · , ξm )
p ∈ Mn
,
m
Rm
.
η = (η1 , η2 , · · · , ηm ),
ξ, η Rm = ξ1 η1 + ξ2 η2 + · · · + ξm ηm .
T p M n ⊂ T p Rm = Rm ,
·, · Rm
,
Tp M
g(p) = ·, · p = ·, · Rm Tp M n .
Æ )2"# 1, 6* ÆÆD0 $ - "# ?: $2' => #
) 6* # E"# $B
C @ EFD ; E?ÆF C F )( GG -@A "# 2H Æ ?: , ;+3 % = )B$#*5 .
Mn
g = { ·, · p }p∈M n n
n
(M , g) ⊂ (R , g0 )
R
M
m
Rm
Riemann
? J. Nash
)
Riemann
Riemann
Riemann
M
g0 = ·, · Rm .
,
1957
n
.
n
,
2
m 2n + n
g,
F M n → Rm ,
1
v ∈ Tp M n
F∗ vRm = v, v g2
(Rm , , Rm )
p ∈ Mn
,
Nash
X Y
.
,
.
,
Z
M
n
, (M n , g)
.
Riemann
J. Nash
.
(M n , g)
Riemann
1.9 (Nash
n
M n → Rm
1994
.
Riemann
, (M n , g) ⊂ (Rm , ·, · Rm ),
X Y, Z g = DX Y, Z Rm + Y, DX Z Rm = (DX Y )T , Z Rm + Y, (DX Z)T Rm = ∇X Y, Z g + Y, ∇X Y g .
73.7473 %&H "# H < ! < = . 1% += 6H< $4 )>?(?: +3 §1.2
· 11 ·
Riemann
Nash
,
Riemann
.
1.10 (Levi-Civita
M
n
Levi-Civita
TM
(M n , g)
)
n
Riemann
,
∇
X Y, Z g = ∇X Y, Z g + Y, ∇X Z g ,
(1.1)
- # )$Æ" # *5 ) * "
# ) * " ," $
! : 0 0 ,/ C,/ ># ?(?: # ) * " ) -9 .G %> 2 ) ?:?;+3*8 ?: # # %> %> +3% /*8 τ∇ (X, Y ) = ∇X Y − ∇Y X − [X, Y ] ≡ 0,
X Y
Mn
Z
.
n
p ∈ M ,
{(x1 , · · · , xn )}x∈U .
p
O. M n
p
∂ ∂ ∂ , ,···, ∂x1 ∂x2 ∂xn ∂ . ∂xn
n Tp M ∂ ∂ Tp M n ∼ , ,···, = TO (Rn ) = Span ∂x1 ∂x2
,
gij (x) =
(g ij )
g = {(gij (x))}x∈M n .
p
∂ ∂ , ∂xi ∂xj
, g x
(gij )
.
∇
,
(1.2)
Christoffell
.
,
{(x1 , x 2 , · · · , xn )} ∂ ∂ ,···, ∂x1 ∂xn
,
n
∇
∂ ∂xi
, Γkij (x)
∇
∂ ∂ = Γkij . ∂xj ∂xk k=1
∇
Christoffell
(1.1)∼(1.2)
.
Christoffell
k Γij
Γkij = Γkji ,
(1.3)
n
∂gjk = Γlij glk + Γlik gjl . ∂xi
@
7 # Æ(;H:*IA )Æ6 J2 B> - *8 #
∂ ∂ , ∂xi ∂xj
(1.4)
l=1
,
=0.
,
τ∇
∂ ∂ , ∂xi ∂xj
.
=0 n
0=∇
∂ ∂xi
∂ ∂ ∂ Γkij − Γkji −∇ ∂ = . ∂x j ∂xi ∂xj ∂xk k=1
,
· 12 ·
-
&Æ%
Æ72 # &
∂ ∂ ,···, ∂x1 ∂xn ∂ ∂ X= ,Y = ∂xi ∂xj
,
Z=
∂ ∂ gjk = ∂xi ∂xi = ∇
22 2 (1.4).
=
(1.2)
,
∂ ∂ , ∂xj ∂xk
∂ ∂xi
(1.3).
(1.1)
∂ ∂ , ∂xj ∂xk
+
∂ ∂ , ∇ ∂ ∂xi ∂x ∂xj k
n l Γij glk + Γlik gjl . l=1
(1.3)∼(1.4)
>2 n
Γkij
∂ ∂xk
Riemann
1 kl = g 2
∂gil ∂gjl ∂gij + − ∂xj ∂xi ∂xl
.
(1.5)
- 0 %>2 >I # #>?:+3 ÆÆ ?: # / 7 I Æ$4 7 I' ) # *4 A 6*J?(?:
)B4 l=1
Christoffell
(1.1)∼(1.2).
(1.5)
,
g,
.
Riemann
.
,
.
Mn
1.11
B #*.! #*+3= ) # *4 ) . J 0 C π
Rk −→ E −→ M n
Ex = π −1 (x)
k
,
E
n
σ M →E
E
Mn
.
π(σ(x)) = x,
σ
Mn
.
Γ (E) = σ | σ M n → E,
π(σ(x)) = x
x
.
∇ Γ (T M ) × Γ (E) → Γ (E),
+3
(X, σ) → ∇X σ,
∇f X σ = f ∇X σ,
(1.6)
∇X (f σ) = (Xf )σ + f ∇X σ,
(1.7)
73.7473 ?(?: & . J Æ # *4)?(?: >" Æ& $ ' # *4 ) # *4 0 #*5 #80 D., K> )?: $#*5 -(-9ÆJ2 # * * # ) # *4 5# D K 3 ( = =Æ!EF# # *4 ) ?(?:! G # *4 . KLG 5 ML EF A HN )**) B Æ ?(?:H & )/ ?(?: Æ/86/?(?:CD # *4 :*7 @ Æ0 87 > ) 2 72 ($L1( :* 0 #*4 )M ?(?: - +3 :* 8 §1.2
· 13 ·
Riemann
∇
E
f ∈ C ∞ (M n )
,
, σ ∈ Γ (E)
.
.
n
M → R
n+k
x ∈ M n,
,
Nx M n = v ∈ Rn+k | v ⊥ Tx M n .
NMn =
,
Nx M n
Mn
.
x∈M n n+k
E = N M n, D
R
σ ∈ Γ (E)
X ∈ Γ (T M )
.
,
NM
,
n
∇X σ = (DX σ)⊥ ,
ξ⊥
ξ
.
Mn
E,
,
.
20
80
E
n=4
E
2
.
,
,
Yang-Mills (
-Mills)
Gromov-Witten
.
.
π
E −→ M n
∇
∇
,
.
,
Φ(X, σ) = ∇X σ − ∇X σ.
Mn
,
f ∈ C ∞ (M n ),
(1.6)∼(1.7)
Φ(f X, σ) = f Φ(X, σ) = Φ(X, f σ),
Φ
,
Γ (E) −→ Γ (E)
C ∞ (M n )
Φ(·, ·)
,
∇
π
E −→ M
(1.8)
(1.8)
.
n
,
∇Φ Γ (T M ) × Γ (E) → Γ (E) (X, σ) → ∇X σ + Φ(x, σ)
,
Φ Γ (T M )×
&Æ%
· 14 ·
+3()7-2 ?(?:! # *4 ) G ?: ! +3 DKA; ÆÆ H:* - G # *4 Æ( 3I!E @ H &H?: ?: ?: 0 !E"I ?:!H @H&H H:* 0
5 )* J J)* 5# D K 3I
AE )* # 2F )**) B < 3 K LM&Æ" K NGHM L ONIJ M OÆ # * ) N PK Æ ) * ) # *5 $ $ Æ45,N O Q ∇Φ
(1.6)∼(1.7).
E
Riemann
.
,
M(E) = Φ Γ (T M ) × Γ (E) → Γ (E) | Φ ,
20
.
n
4
E
80
.
(1.8) . 2
,
,
, Donaldson
Yang-Mills
Y M(E, M 4 ) = ∇ | ∇
= ∇|∇
.
Ω∇
.
Y M(E, M 4 )
Donaldson
, E. Witten
.
Yang-Mills
,
.
Seilberg-Witten
20
90
Donaldson
Gromov-Witten
.
Riemann
.
§1.3
.
3
R3
.
σ [a, b] → R3 σ
,
σ(t) = (t, 0, 0),
6.
X(t) = (0, cos t, sin t).
6
>#*5 Æ &$POO* ,
)O*H#*5+3 E(X) =
σ
σ
a
b
∇σ X2 dt.
∇σ X ≡ 0.
X
PLMPRRP.NOS
* ) # *5 0 ) N# * 5 * ) N# *5 ($N#*5 =.#*5 * PE #* #> )N#*5 $ )N#*5 ) *" §1.3
Q
· 15 ·
(M n , g)
1.12
σ
(
, σ [a, b] → M n
Riemann n
X(σ(t)) ∈ Tσ(t) M ),
∇σ X ≡ 0,
X
,X
σ
.
(M n , g) = (Rn , g0 )
X(t) = (x1 (t), · · · , xn (t))
, σ [a, b] → Rn
n
σ
,
,
0 = ∇σ X = Dσ X = (x1 (t) · · · , xn (t)),
X (t) = 0, X = (a1 , · · · , an )
.
.
n
1.13
(M , g)
n
, σ [a, b] → M n
Riemann
,
X0 ∈ Tσ(a) M n ,
(1)
σ
X
X(a) = X0 . (2)
V
W
σ
,
d V, W ≡ 0. dt
(1)
F U → Mn
X(t) =
∇σ X = 0
-C
n
σ(a)
fi (t)
i=1
0 = ∇σ X =
0 # PE-*8
n
∂ , ∂xi
n
fi (t)
i=1
fi (t) +
∇σ
n ∂ ∂ + fi (t)aij (t) , ∂xi i,j=1 ∂xj
n
Q > > ) N# *5 Æ$' fj (t)aji (t) = 0.
j=1
fi (a) = ci , i = 1, · · · , n,
(2)
0
{V (t)}
∂ ∂ = aij (t) . ∂xi ∂x j j=1
{W (t)}
(1.9)
σ
.
,
d V (t), W (t) = ∇σ V, W + V, ∇σ W
dt = 0.
.
(1.9)
&Æ% ),&L( 7 * )# N DQ # *5 DQ ($ 2,& $2#S N#*5 $ +-=+3 0ÆJ2 R $' 0$#*5 S N Q %& 0 3 ), Q)*
RH #* < S-6- -9 R , ÆR Æ(& T RQ & R -C * R · 16 ·
Riemann
σ : [a, b] → M n
1.14
(M n , g)
Riemann
,
{Ei (t)}.
σ
Tσ(a) M n
{e1 , · · · , en }
,
ei , ej g = δij .
1.13
{Ei (t)}
σ
Ei (a) = ei ,
Ei (t), Ej (t) = Ei (a), Ej (a) = δij .
.
σ [a, b] → M n
σ
,
σ
∇σ σ
σ
1.15
∇σ σ
σ [0, 1] → Rn , σ(t) =
.
∇σ σ ≡ Dσ σ = σ (t) = −(cos t, sin t) = 0.
(cos t, sin t),
, ∇σ σ
Riemann
σ [a, b] → M
σ
(
∇σ σ ≡ 0,
.
.
n
Riemann
σ
σ
n
M
(M , g)
),
n
,
σ (t)
σ(t)
.
.
(1)
(Rn , g0 ).
n
Rn
σ(t) = (x1 (t), x2 (t), · · · , xn (t)).
,
0 = ∇σ σ = σ (t) = (x1 (t), x2 (t), · · · , xn (t)).
σ
Rn
σ(t) = (a1 t + b1 , a2 t + b2 , · · · , an t + bn )
Rn
(2)
.
(M 2 , g) = S 2 (1)
& S
R3
(
7)
S 2 (1) = {(x, y, z) | x2 + y 2 + z 2 = 1}.
σ
[0, 2π] → S 2 (1), t → (cos t, sin t, 0).
σ
§1.3
Q
PLMPRRP.NOS
7
8-
-
#*
) *" 0 +3RQ
∇σ σ = (Dσ σ )T = (σ )T = 0,
σ (t) = −(cos t, sin t, 0) {x1 , · · · , xn }
· 17 ·
M
n
S (1) * 2
σ(t)
,
(σ )T = 0.
,
n
∇
∂ ∂xi
∂ ∂ = Γkij . ∂xj ∂xk k=1
∇σ σ = 0, n ∂ 0 = ∇σ σ = ∇σ xi (t) ∂xi i=1 n ∂ ∂ = + xi (t)∇σ xi (t) ∂xi ∂xi i=1 n ∂ ∂ n = + xi (t)∇ xi (t) ∂ xj (t) ∂x ∂xi ∂xi j i=1 j=1 n n ∂ k = Γij (x(t))xi (t)xj (t) , xk (t) + ∂x k i,j=1
σ(t) = (x1 (t), · · · , xn (t))
($) *"
k=1
{(x1 , x2 , · · · , xn )}
RQ
n d2 xk dxi dxj = 0. + Γkij (x(t)) dt2 dt dt i,j=1
(1.10)
# > R $ * R ") * " 0 RQ >>+3 / 1.16
,
(M n , g)
n σv [a, b] → M dσ ≡ . dt {(x1 , · · · , xn )}
, F (O) = p.
Riemann
σv (a) = p
Mn
p
(1.10)
, p ∈ M n . v ∈ Tp M n ,
σv (a) = v.
σ [a, b] → M n
,
F U → Mn
&Æ%
· 18 ·
⎧ ⎨ xk (0) = 0,
Riemann
⎩ x (0) = v k k
*R Æ;:' k = 1, 2, · · · , n
.
σ [a, b] → M n
,
d σ , σ = ∇σ σ , σ + σ , ∇σ σ = 0, dt dσ d 2 = (σ (t) ) ≡ 0, . . dt dt
($ 0 TTURSS ÆRTET -$AT3/"Q U V6 §1.4
.
→ Mn
(M n , g)
Riemann
,
b
L(σ) =
σ [a, b]
σ
dσ dt. dt
0 26* 1,EU >Q = Æ& ) +3 ) $ )) # *5 V ' ) a
,
g
dg (p, q) = inf{L(σ) | σ [0, 1] → M n , σ(0) = p, σ(1) = q}. ,
β
.
[a, b] × (−ε, ε) → M n , (t, s) → β(t, s),
β(t, 0) = σ(t),
βs (·) = β(·, s)
σ
V (t) =
σ
,
∂β (t, 0) ∂s
.
.
1.17
σ, β, V (M n , g) , σ (t) = l. ∂ 1 ∂ ∂β (t, s) σ , V − V, ∇σ σ . = ∂s ∂t l ∂t s=0
(1.11)
&ÆWWXU Æ;:'
§1.4
s=0
,
∇ ∂β ∂s
· 19 ·
∂β ∂β ∂ ∂ , = β∗ , = 0, ∂t ∂s ∂t ∂s
$-
∂β ∂β = ∇ ∂β , ∂t ∂t ∂s
(
s=0
)
1 ∂ ∂ ∂β ∂β 2 ∂β (t, s) , = ∂s ∂t ∂s ∂t ∂t s=0 ∂β ∂β , 2 ∇ ∂β ∂s ∂t ∂β ∂β 1 1 ∂t , = = ∇ ∂β ∂s ∂t 2 ∂β ∂β 12 l ∂t , ∂t ∂t ∂β ∂β 1 , = ∇ ∂β ∂t ∂s l ∂t ∂β ∂β 1 ∂ ∂β ∂β , , ∇ ∂β = − ∂t ∂t l ∂t ∂s ∂t ∂s
=
1 ∂ V, σ − V, ∇σ σ . l ∂t
0)V .)V V 37
T ' Q +3 D R T ' Q Æ&/Y"M ) +3 - #)#*5 +3 .
(1.11)
(M n , g)
1.18
p
.
Riemann
σ ≡ l.
q
.
σ [a, b] → M n
Mn
σ
p
, p, q ∈ M n ,
q
σ [a, b] → M n
.
.
β [a, b] × (−ε, ε) → M n , (t, s) → β(t, s),
β(t, 0) = σ(t)
β(a, s) ≡ p,
β(b, s) ≡ q.
,
V (a) = 0 = V (b).
{V (t)}
· 20 ·
-
σ (t) ≡ l,
&Æ%
#)VÆ72
Riemann
, s=0 b ∂ d ∂β L(βs (·)) (t, s) 0= = dt ds a ∂s ∂t s=0 s=0 b 1 ∂ V, σ − V, ∇σ σ dt = a l ∂t 1 1 b = V, ∇σ σ dt. V (b), σ (b) − V (a), σ (a) − l l a
- )#*5 Æ72 0 * R 0 UUVW VXW YV Æ)O #EU ÆD 0 V * 8 6* X Z6*[ 0& R X Z Æ&J () * R +3 0 , & \ H # * R+3 * +3 R PE * 8 37 0 - $ ) 9 2 , & Æ$'# R X Z
,
a
b
V (t), ∇σ σ dt = 0
V
,
∇σ σ = 0,
Mn
σ
.
.
§1.5
,
Hopf-Rinow
(M n , g),
Riemann
dg .
n
,
(M , dg )
(M n , g)
Riemann
1.19
,
n
(M , g)
→ Mn
.
n
, p ∈ M , v ∈ Tp M n , σv [0, 1]
Riemann
σv (0) = p, σv (0) = v.
Expp v = σv (1).
Expp
1.20
v
σw [0, δ] → M
σw (0) = w,
σw (0) = p
σεw
.
∇σw σw
n
(M , g)
Bε (O) .
Expp
(M n , g)
ε > 0, δ 0, → M n, ε t → σw (εt).
= 0. B1 (O) = {v ∈ Tp M v 1}
ε = ε(p) > 0
=ε
2
.
Riemann
σεw (0) = εw
σεw (0) = p
σ ∇σεw εw
n
(1.12)
.
,
.
.
1.20,
Expp Tp M n → M n
,
XYYZ Z][. ^W
XZ6* %X # # $ ) [" % /"
* QR T3W( #2 ) " &2# 7 2 9\ 6 _ )6* & XZ - 80 L Y X$ %0 !Y 6* ' X Z ($
- \ /"
T - A 4 ÆJ2 J () BZJ () 9[?" +/ +Z ,/ Æ 0 §1.5
,
· 21 ·
Hopf-Rinow
1.21 (Hopf-Rinow)
.
n
(a) (M , dg )
;
n
Expp0 Tp0 M n → M n
(b)
p0 ∈ M ,
(c)
n
n
p ∈ M , Expp Tp M → M
(d) M n
p
(a)
n
.
(d)
(d)
.
g, (M , dg )
,
1}
(a)
,
.
(a)
,
D2 (1)
,
(d)
' ] ,/
⎜ ⎜ ,I=⎜ ⎝
eA = I + A +
ξ
p
Expp
⎛
m
M2
,
.
⎞
1
0
..
.
0
.
(M 2 , dg0 )
, Riemann
A = (aij )
.
M 2 = D2 (1) = {(x, y)|x2 +y 2 <
.
n = m2 − 1.
M
g0 = dx2 + dy 2 ,
.
,
(a)∼(c)
n
(a)
.
g0
q
0
,
n
(d)
,
.
,
,
M
;
q
1.21
,
n
⎟ ⎟ ⎟ ⎠
m
.
1
A3 Ak A2 + + ···+ + ···. 2! 3! k!
$ Æ
M n = SL(m, R) = {A|det(A) = 1},
Mn
I
TI M n = sl(m, R) = {ξ|ξ + ξ T = 0}. , det(eξ ) = etrξ = e0 = 1.
TI M n = sl(m, R),
- ) )6* Z],/ A )PK Æ # Z *R ξ, η I = tr(ξη T ),
ξ, η ∈ sl(m, R)
.
SL(m, R)
g.
SL(m, R) ,
ϕξ (t) = A(t) = etξ
(M n , g)
.
,
Mn =
ξ ∈ sl(m, R) = TI M n
&Æ% < ` < 1 1,"* 0 ]^ & & · 22 ·
Riemann
1.21
1.22 (Gauss
)
n
n
Rn = T p M n
ρ(t) = tv
n
,
w ∈ Tρ(t0 ) (Tp M ) = Tρ(t0 ) R = R , w
ρ (t),
(Expp )∗ |ρ(t0 ) ρ (t0 ), (Expp )∗ |ρ(t0 ) w = 0.
w = 0, (1.13)
(1.13)
w = 1 v coss + wsins , v .
v(s) = v
(1.13)
.
v(0) = v, v (0) = ||v||w.
β(t, s) = Expp [tv(s)] v = Expp t v coss + wsins . v
-
w = 1, v(s) = v ,
2)V$
t0
L(β(·, s)) = 0
∂β (t, s) dt ≡ v t0 . ∂t
∂β (t, 0), σ(t) = β(t, 0) ∂s t0 ∂ ∂ 1 L(β(·, s))|s=0 = V, σ − V, ∇σ σ dt 0= ∂s v 0 ∂t V (t) =
= V (t0 ), σ (t0 ) − V (0), σ (0)
0 </ 37 "# > %
= (Expp )∗ |ρ(t0 ) w, (Expp )∗ |ρ(t0 ) v .
.
Gauss
.
1.23
Bε0 (O) = {v| v ε0 , v ∈ Tp M n }, Expp Bε0 (O) → M n
> +3 % + Y"V6 1 _ )'( # $ .
(1)
Bε0 (p) = Expp (Bε0 (O)).
v ∈ Bε0 (O), σv (t) = Expp (tv), σv [0, 1] → M n
,
L(σv ) = d(p, σv (1)) = v.
,
ψ [0, 1] → M n
σv
,
, ψ = σv .
(2)
q∈ / Bε0 (p),
q ∈ ∂Bε0 (p)
d(p, q) = ε0 + d(q , q) = d(p, q ) + d(q , q).
(1.14)
XYYZ Z][. 0
§1.5
,
Hopf-Rinow
, d(p, q) ε0 .
^W
· 23 ·
+3
r(q) = d(p, q), ψ [0, 1] → M n (1) ∂ ∇r = ∂r = 1,
-C t1 < 1,
ψ (t) ψ (t), ∇r = ψ (t) = λ(t)∇r, λ(t) 0.
ψ(0) = p, ψ(1) = Expp v.
d [r(ψ(t))]. dt
&
t1 = sup{t|ψ([0, t]) ⊂ Expp (Bε0 (O))}.
ψ(t1 ) ∈ ∂Bε0 (p),
t1
ψ (t)dt +
L(ψ) = 0
t1 0
1
t1
ψ , ∇r dt =
ψ (t)dt t1
0
d [r(ψ(t))]dt dt
= r(ψ(t1 )) − r(ψ(0)) = ε0 v.
-C )7, Æ
t1 = 1, ψ (t) = λ(t)∇r = λ(t)
L(ψ) > v.
t1 = 1,
1
L(ψ) = 0
-C 2) 72
T ' 0
ψ (t) = λ(t)∇r = λ(t)
ψ [0, 1] → M n
= ,
,
ψ (t)dt r(ψ(1)) − r(ψ(0))
= d(p, σv (1)) = v.
p
q
1 σ (t). v v ,
(1).
t0 = inf{t|ψ(t) ∈ ∂Bε0 (p)}.
(1)
($
1 σ (t), v = ε0 . v v
,
(2)
-
L(ψ) = 0
t0
ψ (t)dt +
1
t0
ψ (t)dt,
ε0 + d(∂Bε0 (p), q),
d(p, q) ε0 + d(∂Bε0 (p), q).
(1.15)
&Æ%
· 24 ·
L1( 2 B[ $2 ,
Riemann
(1)
d(p, q)
inf
q ε∂Bε0 (p)
{d(p, q ) + d(q , q)} d(q , q).
(1.16)
d(ˆ q , q) = d(∂Bε0 (p), q).
(1.17)
- 9 $ ( $2 0 <A# 1Q7
Æ [ ) ( 7! `I # *QR $ 7 2 7 $2 ' \ H a$ "# # +3 = ε0 +
∂Bε0 (p)
inf
q ∈∂Bε0 (p)
∃ qˆ
,
(1.15)∼(1.17)
d(p, q) = d(ˆ q , q) + ε0 .
.
Gauss
1.21
1.21
1.24.
(c)⇒(d),
(b)⇒(a)⇒(c)⇒(b).
(c)⇒(d).
Expp0 Tp0 M n → M n
1.24
σv [0, l] → M n
q ∈ M n,
,
q = σv (l), L(σv ) = d(p0 , q),
σv (t) =
Expp0 (tv), v = 1.
1.23
Expp0 Bε0 (O) → M n
ε0
q ∈ ∂Bε0 (p0 )
,
0
,
d(p0 , q) = d(p0 , q) + d(q, q).
& % $
v=
Exp−1 p0 q
Exp−1 p0 q
, l = d(p0 , q)
t0 ε0 > 0.
ÆÆ
σv (l) = q.
b'. Æ ,
7 L Æ,2\Æ ' Æ# 7 '2
E = {t|d(σv (t), p0 ) = t,
t0 = sup{t|t ∈ E}.
t0 = l,
t0 < l, q = σv (t0 ) = q.
d(p0 , σv (t)) + d(σv (t), q) = d(p0 , q)}. .
, t0 < l
1.23
d(q , q ) + d(q , q) = d(q , q).
.
q ∈ ∂Bε (σ(t0 )),
XYYZ Z][. ["I §1.5
,
Hopf-Rinow
^W
· 25 ·
E
d(p0 , q) = d(p0 , q ) + d(q , q) = d(p0 , q ) + d(q , q ) + d(q , q)
- EU B[ a0 2 $2 0 ($2R T ' QR D *Q - > Æ72 d(p0 , q ) + d(q , q).
d
(1.18)
,
d(p0 , q) d(p0 , q ) + d(q , q).
(1.19)
d(p0 , q) = d(p0 , q ) + d(q , q)
(1.20)
d(p0 , q ) = d(p0 , q ) + d(q , q ). ψ , σv
(1.21)
(1.18)∼(1.19)
ψ
q
q
[0,t0 ]
8).
(
,
σv (t0 + ε) = q .
2
(1.20)∼(1.21)
8
$2
d(p0 , q) = d(p0 , σv (t0 + ε)) + d(σv (t0 + ε), q),
($7 \Æ 7 ^]$> 0 d(p0 , σ(t0 + ε)) = t0 + ε.
t0 + ε ∈ E,
.
1.24, (b)⇒(a)
1.24
.
.
(1.21))(
&Æ% $ a%a% 27 72 #
· 26 ·
Riemann
Mn
{qi }
S
n−1
(1)
Cauchy
, li = d(p0 , qi ).
1.24
vi ∈
,
{ij },
qi = Expp0 (li vi )
lij → l0 , vij → v0 ∈ S n−1 (1)
2 T1 Æ$2 0 XZ - a% ($ #
0 Æ,2\Æ +3 - #($ # < a8% 7_-2 %XZ ($ !*R \Æ ' 0 \^ c bÆ\]^_M]^_ Y b _MÆ\ `P \ c ^ QPL b ` da]MÆ\^ef b ba_b^ef c Mc` d` b ae Maaeb cdW bba_^efc Mc` ^f cegQPL fhg MÆ\QPL dh cegQPL ib .
Expp0
,
qij = Expp (lij vij ) → Expp0 (l0 v0 ) = q0 , {qi }
lim d(qij , q0 ) = 0.
j→+∞ (M n , dg )
Cauchy
lim d(qi , q0 ) = 0,
i→+∞
.
v ∈ S n−1 ⊂ Tp M n ,
(a)⇒(c),
},
t0 < +∞,
σv (t) = Expp (tv), t0 = sup{t|Expp (tv)
ti → t0 ,
.
qi = Expp (ti v) = σv (ti ),
d(qi , qj ) |ti − tj |.
ti → t0 ,
{qi }
lim σv (ti )
.
Expq0 (tw0 ).
σv
i→+∞
(c)⇒(b),
1.
(gij (x)) (ii)
(iii)
q0
Gauss
,
[0,t0 +ε]
n
p
i=1
w0 = σv (t0 ), ψ = ,
.
ai
Riemann
,
∂f ∂xi
(g ij (x))
?
.
g x
?
X=
df (X) = X, Y g
.
q0 =
.
ij
n ∂f df = dxi ∂x i i=1 n
Mn
, g
∂f ∂ ∇f = g ∂x i ∂xj i,j=1 ! " ∂ ∂ gij (x) = , ∂xi ∂xj
X
,
.
n
df (X) =
q0 = σv (t0 ). σv
.
f Mn → R M
(M n , dq )
.
ψ
.
{(x1 , · · · , xi )} (i)
Cauchy
ai
∂ , ∂xi
Mn
Y
Æ \^cd _e\l b \jb Mk Y b i M`Pc . f . jbbmU ib \^73cf_Y Mb\]^_kY b _MÆ\]^ `P bciM d` k Ml` d gh ee b M]^_Y mhmU bbib f bbkÆ\jP gi^W mhmUbbib gi fkf d` .\^ kc _MghÆc.QPLe_ f d` nhiocpU Mj ee k MÆljk mkf c _MgÆ\]^ QPL ni^focb`P M 73 lb Mj`k `ghÆ\^efc k ee fmp . ee boiM no m n kf gh
· 27 ·
(iv)
c > 1
1
f (x) = x1 . Rn n ∂f ∂ ∇f = g ij ∂x i ∂xj i,j=1
g = dx1 ⊗ dx1 + · · · + dxn ⊗ dxn ∂f ∂ ˆ ˆ = gˆij . ∇f = ∇f ? ∇f ∂x i ∂xj i,j=1 n
f Mn → R
2.
Riemann
M n = Rn = {(x1 , x2 , · · · , xn )|xi ∈ R}
,
.
f
Mn
, g
gˆ = c2 g.
,∇
Riemann
Hessian
Hess(f )(X, Y ) = X, ∇Y (∇f )g ,
∇f
, ∇f =
f
n
g ij
i,j=1
(i)
Mn
h
∂f ∂ ∂xi ∂xj
df (X) = ∇f, X(
1).
,
Hess(f )(hX, Y ) = hHess(f )(X, Y ) = Hess(f )(X, hY )
?
Hess(f )
(ii)
?
1.10,
?
X, ∇Y (∇f ) = Y Xf − (∇Y X)f.
(ii)
(iii)
Hess(f )(X, Y ) = Hess(f )(Y, X),
X
3.
Mn
Y
f M
n
.
→ R, g
X, ∇Y ∇f , trS (i)
∇
S
{e1 , · · · , en }
Tx M n
.
Hess(f )(X, Y ) =
, n (trS) = S(ei , ei ). x
(ii)
∆f = tr[Hess(f )],
.
Mn
i=1
Y,
g
Riemann
∇,
divY = tr(X → ∇X Y ).
{(x1 , · · · , xn )}
(iii)
{Γijk }
,
n i=1
Christoffell
divY =
n i=1
G =det(gij ),
Y =
n
bi
∂ , ∂xi
,
#
i ∂bi + Γki bk ∂xi n
k=1
1 ∂ √ Γiki = √ ( G). G ∂xk i=1
$
.
∇
∂ ∂xk
Y
divY .
Y
&Æ%
· 28 ·
mU bbib n
Riemann
(iv)
∆f = div∇f
?
∇f =
(v)
n
g ij
i,j=1
._Æ
∂f ∂ ∂xi ∂xj
(iii)∼(iv)
kf
n √ 1 ∂ ∂f . ∆f = √ G g jk ∂xk G j,k=1 ∂xj
o bba_b^ef c Mc` \^ c f k _lM]^_nYh hgb _MÆ\]^. `Pp 2Mleec bbgmhmU ib \^ . c k qMeq]^qlS eer`Æ\]^Y4 c dh . mpe q l Si m snee b Mtlcdql S mp kkrsM S12 MÆqltWr f c imbqlS . d` b _MÆ\]^`P \^ b\m f f imb fj cbbr`Æq ql S imb bdh Mu` fv kmnbb o\imnpr`Æ q qql S `ÆuhqlS imb b ee pgkv` f ceg ib j bbriÆ! c m`lwYZ (vi)
fj Laplace p
4.
η M
n
∆
→ R
2
gˆ(X, Y ) = η g(X, Y ),
?
M
n
Mn
, g
2
X, Y gˆ = η X, Y g ,
Riemann
jk
ˆ ∆} ˆ {(ˆ g ), G,
3
,
ik
{(g ), G, ∆}
.
n = 2,
ˆ = 1 ∆f ∆f η2
?
5.
σ0
[0, 1] → M n M
n
,
σ1 S 1 → M n
Mn
H(·, 0) = σ0
H(·, 1) = σ1 ,
σ1
σ0 (t) ≡ p0
.
.
1
(i)
H S1 ×
.
n
C(S , M )
,
Ω[σ0 ] = {σ S 1 → M n |σ
L(σ) =
1 2 dσ = dσ , dσ ,g dt dt dt g g
σ0 }
dσ dt, dt S1 g
Mn
.
l[σ0 ] = inf L(σ) | σ ∈ Ω[σ0 ] , σ,
σ0
σ
σ
Mn
,
σ0 .
Mn
L(σ) = l[σ0 ] ?
?
{σj }+∞ j=1 ,
(ii) dσ j ≡ cj dt
t ∈ S1
,
σj
σ0
L(σj ) → l[σ0 ] .
{σj }+∞ j=1
σj S 1 → M n
?
σj
,
Æ v mn jbbr`Æ\ouh robÆq qlS \^gic c m`_Ye_sW pn&ÆWWXUkfs x lS bÆqqNOS \^ bm b qtqgÆqlkrsMqlS f lkrs d` ^ bnhql S c Mu` . pblrmYp buY vw Y . riMP y ts mlmUp Msu bblt cd u z 12 qM! vs .r {w d` bvcpY4 s c jiMixw mlmU p bbib ` xqvYyqy"fkfrcr {w12 _gh`P pglmU wbmUibnvbsv b_Ætx`Py_Æ\k Y zo g ` xu y"f^W\^|xbyb12\Z]`P g k _lw_YM12 v kmn ^f cdemz{c c d` k _Mvw_Y gh
· 29 ·
(iii)
Ascoli
Mn
,
{σji }+∞ i=1
,
σ∞ S 1 → M n ?
σ∞ S 1 → M n
(iv)
n
6.
(M , g)
,
σ∞
Riemann
M
.
Sys(M n , g) = inf L(σ) | σ
σ S1 → M n
L(σ)
a
(i)
2
}.
a
b
2
(T , ga,b ) = R /aZ ⊕ bZ.
Sys(T , ga,b ).
2
(ii)
,
.
, aZ = {an | n ∈ Z
b
2
.
n
(T , ga,b )
.
(iii)
Area(T 2 , ga,b ) [Sys(T 2 , ga,b )]2
?
7.
S 2 (1) = (x, y, z) | x2 + y 2 + z 2 = 1
R3
3
RP 2 = S 2 (1)/Z2 ,
Z2
φ R3 → R3 , v → −v
.
Sys(RP 2 ).
(i)
(ii)
Area(RP 2 )
?(
2 [Sys(RP 2 )]2 π
RP 2
1962
Area(RP 2 , g)
2 [Sys(RP 2 , g)]2 , π
g
,
,
8.
[Pu]. Gromov
1983
[Gr2].)
n
, C(M n )
(M , g)
Mn
f = maxn |f (x)|. x∈M
Gromov
Φ (M n , g) → C(M n ), x → dx ,
dx (p) = d(x, p)
g
(M n , g)
.
.
Mn
,
&Æ%
· 30 ·
n|xlmU kf zw bf{vwMz{ c k^W zgM z{ yz}fgn z{ lÆ ^b{vwM ~hc|{ qM{S. qMNOS \^ b\Z]M b _{^MÆt | q]^ cfmp b d`MÆquWl}pS fee c fjb\]^b \^_Y}#`Æ\|| bee bbÆq^ MNOb\SZ]M k qM]^o \^ b M 73 c qMoÆt /12 g\ }~W}b d`` qb tM~12 c _Mghe\/ b ` QPL qMlj}12 f .f Riemann
|d(x, z) − d(y, z)| d(x, y)
(i)
Φ(x) − Φ(y) = d(x, y),
Φ
.
Ψ (M n , g) → Rm
(ii)
R
. (
n
9.
(M , g)
f
U
(M , g)
Np M
n
M
, p0
M
n
x ∈ U.
h Mn → R dσ = ∇h|σ(t) , dt
,
,
.
, Mn ⊂ M
Mn
m Np M n = v ∈ Tp M | v ⊥ Tp M M
m
p
.
M
p, n
m
M
Tp M n
1.10.)
.
∇
m
σ
Tp M
m
,
X
g = g|T M n
∇
.
= Tp M n ⊕ Np M n
n
d`hccdin^W bQP M/WP j bbbv~~`P (·)
m
Tp M
∇X Y = (∇X Y )T ,
(·)T
Ψ
, f (x) = d(x, p0 ).
∇h
Riemann
Riemann
n
Nash
?
(M , g)
,
.
.)
∇f (x) ,
,
m
m
M
σ R → Mn
n
(M , g)
Nash
n
Riemann
∇h ≡ 1,
10.
1.9
m
~^M
Y
Riemann
73
? (
~
, , . Jacobi . Jacobi Riemann
. Cheeger Ebin
Riemann Æ( [ChE]). Æ Æ.
Ricci , g) Riemann , ∇ Riemann , §2.1
(M
n
R(X, Y )Z = −∇X ∇Y Z + ∇Y ∇X Z + ∇[X,Y ] Z,
Z M . Riemann R , !. 2.1 M f M → R X Y Z, X, Y
n
n
n
(1) R(f X, Y )Z = f R(X, Y )Z = R(X, f Y )Z = R(X, Y )(f Z), (2) R(X, Y )Z = −R(Y, X)Z, (3) R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0,
(4) R(X, Y )Z, W = R(Z, W )X, Y .
(1), "
R(X, Y )(f Z) = f R(X, Y )Z.
, Riemann #, $ Y Xf −XY f = −[X, Y ]f (∇ (∇ Y )f = −[X, Y ]f,
Y
X
R(X, Y )(f Z) = − ∇X ∇Y (f Z) + ∇Y ∇X (f Z) + ∇[X,Y ] (f Z) = f R(X, Y )Z − (XY f )Z + (Y Xf )Z + [X, Y ]f = f R(X, Y )Z.
X)f −
% !
· 32 ·
"! (2) &'!". (3), ""## $ Bianchi "!() ∇ #%". (3) Æ $, #* +, (3) !% X = ∂x∂ , Y = ∂x∂ Z = ∂x∂ $ &. &-., ' (1)
i
(3)
Æ$ = − ∇
j
k
∂ ∂ +∇ ∂ ∇ ∂ ∂xj ∂xi ∂x ∂xk k ∂ ∂ −∇ ∂ ∇ ∂ +∇ ∂ ∇ ∂ ∂xj ∂xk ∂x ∂xk ∂xj ∂x i i ∂ ∂ −∇ ∂ ∇ ∂ +∇ ∂ ∇ ∂ ∂xk ∂xi ∂x ∂xi ∂xk ∂x j j ∂ ∂xi
∇
∂ ∂xj
$ τ ≡ 0). "! (4) %(/, &' ' ( [ChC] p141∼155). $ )( ) () **) (4), *++ ,- (4) . ,. . X, Y ∈ T M +# , '/& X, Y 0 =0
(
∇
n
p
P = Span{X, Y }.
(M
n
,
P ⊂ Tp M
, g)
R(X, Y )X, Y K(P) = KXY = X, X X, Y X, Y Y, Y
.
) 2.1 % P , K(P) )0-1. {X, Y } 12. Ricci , 2 T M 2/. {e , · · · , e }. p
n
1
Ric(X, X) =
n
n
R(X, ei )X, ei .
i=1
!013 . -.3 /0142 Riemann (M , g) ,
§2.2
2. {β (·)} s
β(t, s),
s∈(−ε,ε)
n
β
[a, b] × (−ε, ε) → M (t, s) → β(t, s).
n
,
βs (t) =
345567638
§2.2
· 33 ·
Æ4 s, β t → β(t, s) (M , g) , $ 9 {β(·, s)} (M , g) . 2.2 . σ [a, b] → M (M ∂β, g) 4 , {β(·, s)}
, β(t, 0) = σ(t) 5 J(t) = ∂s (t, 0), {J(t)} 9 σ Jacobi . !: J 65 6. 2.3 . {J(t)} 7 σ [a, b] → M Jacobi , J 7 !7 Jacobi ; n
s
n
n
n
n
t∈[a,b]
J (t) + R(σ (t), J(t))σ (t) = 0.
∂t
= ∇ ∂β ∂t
!
(2.1)
89< #=#* 0 = ∇ ∂β
s∈(−ε,ε)
∂β ∂β ∂β ∂β − ∇ ∂β − , ∂s ∂t ∂s ∂t ∂s ∂β ∂β − ∇ ∂β , ∂s ∂s ∂t
=
∂β (t, 0) {β(·, s)} β(t, 0) = σ(t), J(t) = ∂s ∂β ∂β ∂ ∂ ∂β ∂β , , = ∇ ∂β . ∇ ∂β = β∗ =0 , ∂s ∂t ∂t ∂s ∂t ∂s ∂t ∂s
)"
% s = 0 $= 8><
∂β ∂β ∂β , R(σ , J)σ = R ∂t ∂s ∂t ∂β ∂β ∂β + ∇ ∂β ∇ ∂β + ∇[ ∂β , ∂β ] = −∇ ∂β ∇ ∂β ∂t ∂s ∂t ∂s ∂t ∂t ∂t ∂s ∂t ∂β = −∇ ∂β ∇ ∂β ∂t ∂s ∂t ∂β = −∇ ∂β ∇ ∂β ∂t ∂t ∂s
= −∇σ ∇σ J = −J (t).
)!7$Æ β(·, s) , #* ∇ !" Jacobi ; (2.1). ,. 9) 89
∂β ∂t
∂β ≡ 0. ∂t
)&"
% !
· 34 ·
?@ Riccati ?@ 0:: Jacobi , ";;!7< . 2. (M , g ) (R , g ) :; §2.3 Jacobi
2
3
1
0
S 2 (1) = {(x, y, z)|x2 + y 2 + z 2 = 1}.
:;* K ≡ 1. ;< σ [0, 2π] → S (1), 2
t → (cost, sint, 0)
4 , J(t) = (0, 0, c cost + c sint) σ Jacobi , c c *. . {J , · · · , J } A' σ <# (n − 1) Jacobi , {E , · · · , E } 7 σ 0=2/.*' E (t) = σ (t). >==!. 1
1
2
1
n−1
1
n
Ji (t) =
n−1
2
aji (t)Ej (t),
n
Rij (t) = R(σ , Ei )σ , Ej .
j=1
$ J
i
+ R(σ , Ji )σ = 0,
7
#*>?@ A(t) = (aij (t)) A (t) + R(t)A(t) = 0,
R(t) = (Rij (t))
>?.
(2.2)
§2.4
Gromov
A ?B ! 5BC>
$ {J , · · · , J D
n−1 }
1
#, @ A
−1
(t)
· 35 ·
C . A II(t) = A (t)A
−1
(t).
) (2.2)
II (t) = [A (t)A−1 (t)] = A A−1 + A (A−1 ) = −RAA−1 − A A−1 A A−1
)
= −R − II2 .
'<
II + II2 + R = 0.
(2.3)
;9 Riccati ;. ! Gromov-Bishop Æ$ () < Riccati ;. D!BÆ$, **)< Riccati ; C Riccati )"!. &D! §2.4 §2.5. DEFEFGGE/EF? 0) H GÆ. H.!. 2.4A (Gromov) f f˜ I7 §2.4 Gromov
⎧ ⎨ f + Kf 0,
⎩ ˜ ˜ f˜ 0, f +K f˜(t) ˜ < K(t) K(t). f (0)f˜(0) f˜ (0)f (0), f˜(t), f (t) 0, % f (t) > 0 $ t f (t) JH. ff˜ = f˜ f f− f f˜, A h(t) = f˜ f − f f˜,
2
h = (f˜ f − f f˜) = f˜ f − f f˜ ˜ f˜f + Kf f˜ −K ˜ f˜ 0. = (K − K)f
&K34I h(0) = f (0)f˜(0) − f˜ (0)f (0) 0, " h(t) 0,
h f˜ = 2 0, f f
(t) $ ff˜(t) JH. ,.
% !
· 36 ·
"J@B (K c) Æ. 2.5(LÆ, Rauch) . (M , g) AMRiemann, σ[0,+∞) → M 4 , {J(t)} σ Jacobi 7 J(0) = 0, J (0), σ (0) = 0,
J (0) = 1 = σ . !7K &. 0, J(t) t; (i) B K e −e ; −1, J(t) sinht = (ii) B K 2 1, t ∈ [0, π], J(t) sint. (iii) B K A f (t) = J(t) , 8>< Mn
n
n
Mn
t
−t
Mn
Mn
1
f (t) = J(t) = [J(t), J(t) 2 ] =
1 2J, J J, J , 1 = 2 J, J 2
J
f (t) = (f (t)) =
J, J
J
J, J J − J, J J
J 2 J, J
J (J , J + J, J ) − J, J
J
=
J 2 J, J 2 −J, R(σ , J)σ J + J J , J −
J
=
J 2 1 = −K(t) J + ( J 2 J 2 − J, J 2 )
J 3
=
−K(t)f (t), , J)σ , J K(t) = R(σ J
, J(t), σ (t) ≡ 0, σ = 1, f (t) = J(t) 7 C)"!
2
f + Kf 0.
$ J(0), σ (0) = 0 = J (0), σ (0), @J(t), σ (t) ≡ 0.) ˜ (i) % K ≡ 0, f˜(t) = t. ) 2.4A ' 0 $, (A K(t)
(
Mn
t f˜(t) = f (t) f (t)
§2.4
Gromov
A ?B ! 5BC>
· 37 ·
JH, 89< lim
t→0+
f (t)
J(t)
= lim+ t t t→0
1 J(t) J(t) 2 , = lim+ t t t→0 = J (0) = 1.
$ f (t) JH, #*' t f (t) 1 t
9 t 0 &, L f (t) t. K (ii)∼(iii) MD, @,-. ,. HI) ÆD. 2.6(LNÆ, Berger) .(M , g)AM Riemann , σ[0, +∞) → M 4 , {J(t)} σ Jacobi 7 J (0) = 0 = J(0), σ (0), J(0)
= 1 = σ . !7K & (i) % K 0 $, J(t) 1; e +e ; −1 $, J(t) cosht = (ii) % K 2 (iii) % K 1 $, J(t) cost. Berger Æ H Rauch Æ OE JK, ) . ,. ! '/!B= (K˜ c). % K˜ c $, Æ )< Riccati ;9>?@Æ. " 89< Riccati ;"N Jacobi ;. $, 2.4 A 5 PQ !!. 2.4B A f, f˜, K K˜ 2.4A. (2. λ = (logf ) λ˜ = (logf˜) < ⎧ n
n
Mn
t
−t
Mn
Mn
Mn
Mn
⎨ λ + λ2 + K 0, ⎩ λ ˜2 + K ˜ + λ ˜ 0,
˜ λ(0), S R. λ(0) ˜ λ(t). λ(t)
2.4B, LN.! II(t) Æ.
% !
· 38 ·
˜ 2. {S(t)} (n − 1) × (n − 1) 9>?@, <
2.7
t>0
S˜ (t) + S˜2 (t) −cI,
I
PF:>?. S
⎧ 1 ⎪ I, ⎪ ⎪ ⎪ ⎨ t ˜ S(t) (cott)I, ⎪ ⎪ ⎪ ⎪ ⎩ (cotht)I,
A {λ˜ (t), · · · , λ˜ λ˜ (t)
n−1
c = 0,
c = 1, t ∈ (0, π),
c = −1. ˜ ˜ (t))} S(t) GL@. S(t) 29,
i
˜ n−1 (t)}. ˜ = max{λ ˜ 1 (t), · · · , λ λ(t)
˜ MH, λ(t) Lipschitz , OTT%C. ˜ + λ˜2 + c 0 λ
OTT &. ˜ ˜ ) GL@GL , E(t ) = ˜ ) * λ(t 2. λ(t) t T%C, E(t ) S(t ˜ ˜ ˜ 1. 2 ϕ(t) = E(t ), S(t)E(t ). ⎧ ϕ(t) λ(t) # t 0 &< ϕ(t ) = λ(t ). ⎨ ϕ(t) λ(t), ˜ $ ϕ λ˜ t T%C, & ⎩ ϕ(t ) = λ(t D ϕ (t ) = λ˜ (t ). ) " ˜ ) 0
0
0
0
0
0
0
0
0
0
0
0
0
0
˜ 2 (t0 ) = ϕ (t0 ) + ϕ2 (t0 ) ˜ (t0 ) + λ λ = E(t0 ), (S˜ (t0 ) + S˜2 (t0 ))E(t0 ) −c
#%CU t &. )NO 2.4B K@4I7, %P) 2.4B '" &. ,. 2.8 (K˜ c Æ) 2. (M , g) !B (K˜ ˜ c) AM Riemann , σ [0, +∞) → M 4:I , {J(t)} σ ˜ = 0, J˜ (0), σ (0) = 0, J˜ (0) = 1. Jacobi <7 J(0) ⎧ ⎪
c = 0, ⎪ ⎨ t, ˜
J(t)
sint,
c = 1, ⎪ ⎪ ⎩ sinht, c = −1. 0
n
Mn
Mn
n
§2.4
Gromov
A ?B ! 5BC>
· 39 ·
;<
˜ = (log J )
˜ J(t) J˜ (t) , ˜ ˜
J(t)
J(t)
.
27 σ 0=:2/. {E˜ (t), · · · , E˜ (t)} *' E (t) = σ (t), E (0) = J˜ (0). A J˜ (t), · · · , J˜ (t) 7 σ Jacobi ,
1
n
n
1
n−1
J˜i (0) = Ei (0),
J˜i (0) = 0,
∀i = 1, 2, · · · , n − 1.
J˜i (t) =
n−1
˜j (t), R ˜ ij = R(σ , E ˜i )σ , E ˜j . a ˜ji (t)E
j=1
˜ = (˜ a R A(t)
˜ ˜ ij (t)), J(t) = (J˜1 (t), · · · , J˜n−1 (t)), = A˜ (t)A˜−1 (t), R(t) = (R ˜ = (E˜1 (t), · · · , En−1 (t)). ˜ E(t), ˜ E(t) J(t) = A(t) ˜
ij (t)), II(t)
S
(log J(t) ) =
$ K˜
Mn
c,
J (t) J(t) ,
J(t) J(t)
=
J(t) J(t) ˜ , II(t)
J(t)
J(t)
S ˜ (t) + II ˜ 2 (t) + cI II ˜ (t) + II ˜ 2 (t) + R(t) ˜ = 0, II
L ˜ (t) + II ˜ 2 (t) −cI. II ˜ = II(t)) ˜ &" 2.7 ' (A S(t) ⎧ 1 ⎪ ⎪ , ⎪ ⎪ ⎪ ⎨ t (log J ) cott, ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ cotht,
$ 2.8 '. ,. !0 Ric
Mn
−(n − 1)c
c = 0,
c = 1, 0 t π,
c = −1. .
.
% !
· 40 ·
§2.5 Gromov-Bishop FGGE Gromov-Bishop mann
, A
ÆPJ$Æ. . (M
n
, g)
AM Rie-
Br (p) = {q ∈ M n |d(p, q) < r}, Sr (p) = {q ∈ M n |d(p, q) = r},
K
Br0 (O) = {x ∈ Rn ||x| < r}.
Bishop
1964
K Ric
M
0,
voln [Br (p)] voln [Br0 (O)]
(2.4)
# r 0 &. Gromov VQ 8><$ Area(∂Br (p)) Area(∂Br0 (O))
(2.5)
JH, R<J$RLÆI&S.. T UWU "#, MOX. (;< Gromov GY)VSÆ Bishop K (2.4), <&WZ). < ) (2.5), N %*" Calabi-Yau [ (M , g) \6AM Riemann 7 Ric 0, p ∈ M , C c = c > 0 *' n
n
M
1
voln (Br (p)) cr
# r 0 &.” L X) Gromov-Bishop Æ O' U. T Gromov-Bishop Æ, ,GS]#. . {(r, Θ)} n OPQY R Z ^, n
r0 Θ∈S n−1 (1)
Expp
Rn → M n , (r, Θ) → Expp (rΘ).
R (M
TJ$RL ∂B (p) $RL, 2 {e , · · · , e } ⊂ T (S (1)) 2/., Θ ∈ S (1). A σ (t) = Exp (tΘ). σ '/ Jacobi n−1
Θ
n
, g)
n−1
Expp (rΘ)
r
n−1
Ji (t, Θ) = (Expp )∗ |tΘ (tei ).
1
Θ
p
Θ
§2.5
!
Gromov-Bishop
· 41 ·
gij (t, Θ) = Ji (t, Θ), Jj (t, Θ), ϕ(t, Θ) = det(gij (t, Θ)),
dA∂Br (p) = ϕ(r, Θ)dΘ, dvol(M n ,g) = ϕ(r, Θ)drdΘ,
:; S MH dΘ
n−1
(1)
:$R.
Area(∂Br (p)) = voln (Br (p)) =
r
ϕ(r, Θ)dΘ,
Θ∈S n−1 (1)
ϕ(t, Θ)dΘdt. 0
Θ∈S n−1 (1)
$=J$R ϕ(t, Θ) U . 2.9 (Gromov-Bishop, Æ) . (M , g) AM Riemann , p ∈ M , {(r, Θ)} M p T Z ^, dvol = ϕ(r, Θ)drdΘ dA = ϕ(r, Θ)dΘ , dΘ S (1) ^ J$RL, !7K & ϕ(t, Θ) (i) Ric 0, JH, "! ϕ(t, Θ) ≡ t # Θ ∈ t S (1), t ∈ [0, t ] %
n
n
∂Br(p)
(M n ,g)
n−1
M
n−1
n−1
n−1
0
0 t0
t0
M
n−1
n
M
n−1
p ∗ tΘ
Θ
i
Ji (t) =
n−1
aji (t)Ej ,
j=1
Rij (t) = R(σ , Ei )σ , Ej . n−1
Ric(σ , σ ) = R
n
n−1
1
i
n−1
n−1
ii (t).
i=1
A A(t) = (aij ), R(t) = (Rij (t)).
n+1
0
% !
· 42 ·
& Jacobi ; Ji + R(σ , Ji )σ = 0,
' A + RA = 0.
(2.6)
&>? A(t) , ϕ(t, Θ) = detA(t). (i)
% tr(R) =Ric(σ , σ ) 0 $, +,
detA(t) tn−1
JH. +, JH. A Ψ(t) = [detA(t)] . _Æ 1
1 n−1
[detA(t)] n−1 t
1 1 [detA(t)] n−1 −1 tr(A A−1 )det(A) n−1 1 1 [detA(t)] n−1 tr(A A−1 ) = n−1 1 = Ψ(t)tr(A A−1 ). n−1
Ψ (t) =
(2.7)
(A II(t) = A A , & (2.6) ' Riccati ;
−1
II + II2 + R = 0.
#*% tr(R) =Ric(σ , σ ) 0 $,
tr(II ) = −tr(II2 ) − tr(R) −tr(II2 ).
(2.7) ::SD'
1 Ψ(t)tr(A A−1 ) n−1 1 [Ψ (t)tr(II) + Ψ(t)tr(II )] = n−1 1 1 2 2 Ψ(t)(tr(II)) − Ψ(t)tr(II ) . n−1 n−1
(2.8)
Ψ (t) =
(2.9)
§2.5
Gromov-Bishop
!
· 43 ·
$ II(t) ∂B (p) L.!>?PF, #* II(t) %*\], R1G L@ t
λ1 (t), · · · , λn−1 (t),
$
1 1 [tr(II(t))]2 = (λ1 + · · · + λn−1 )2 n−1 n−1 λ21 + · · · + λ2n−1 = tr(II2 ),
$ (2.9) D
Ψ (t) 0.
!H
89<
Ψ(t) t
=
Ψ (t)t − Ψ(t) , t2
[Ψ (t)t − Ψ(t)] = Ψ (t)t + Ψ (t) − Ψ (t)
Ψ (0) · 0 − Ψ(0) = 0,
= tΨ (t) 0,
'
Ψ (t)t − Ψ(t) 0,
&
Ψ(t) t
0,
Θ) Ψ(t) JH, IT ϕ(t, JH. t t
"! ϕ(t, Θ) ≡ t # t ∈ [0, t ] Θ ∈ S ⎧ n−1
n−1
0
n−1
(1)
&,
⎨ λ (t) = · · · = λ 1 n−1 (t), ⎩ R(t) ≡ 0,
' II(t) = 1t I, A(t) = tI,
I
^">?. g %
g = dt2 + t2 dΘ2 .
% t ∈ [0, t ] $, g PQ0U, B &. 0
t0 (p)
"[ B
0 t0 (O).
K (i)
% !
· 44 ·
K (ii) (iii) VK (i) D, $++ , V. ,.
" #
_WWX`aX5). `Y {(t, θ)} Z[X R aYX5Zbbc$d. c\ Riemann e3 g = dt + f (t)dθ . (i) d!]e ε = θ , f σ (t) = (t, ε). [ σ fR → M ZgZZ^345?(_`fC > d(σ (t ), σ (t )) = |t − t |.)∂F (t, θ ) ZgZ\345 σ a5 Jacobi 8? (ii) f F (t, θ) = (t, θ). [
∂θ
∂ ∂F ∂F ∂ ∂F ∂F (iii) _W ∂t ∂t , ∂θ , [ ∇ ∂θ∂ Zg638 ∂θ∂ []? , ∂t ∂θ ∂θ ∂ ∂ (iv) `Y ∇ = λ(t) , ^h λ(t). ∂θ ∂θ ∂F (v) _b = J(t) Z σ (·) a5 Jacobi 8, c`d % Jacobi ij J (t) + ∂θ K(t)J(t) = 0, e_W J (t) C> 2
1(
2
2
2
0
ε
1
ε
2
1
ε
2
ε
2
0
θ0
∂ ∂t
∂ ∂t
θ0
(t,θ0 )
K(t) = −
2(
f (t) . f (t)
kafX5). bgc\kafX S (1) a5f$dc 2
⎧ ⎪ ⎪ ⎨ x = sint cosθ, y = sint sinθ, ⎪ ⎪ ⎩ z = cost.
(i)
[ S (1) → R afX?Be3ZgZ 2
3
g = dt2 + (sint)2 dθ2 .
hiZ S (1) ?Be35?(_`fdj 1 5gh.) 3 (_Wkl[X5). mkl[X R 5d &$ d 2
(ii)
2
⎧ ⎨ x = tcosθ, ⎩ y = tsinθ.
e^h?Be3 g = dx + dy = dt + f (t)dθ e5 f (t) l_W R 5. 4 (nij H 5). fgo D = {(x, y)|x + y < 1} 5 Poincar´e e3 g = 4(dr + r dθ ) 4(dx + dy ) = , hk r = x + y . (1 − x − y ) (1 − r ) 1 + r e −1 , C> a t = log (i) f r = e +1 1 − r 2
2
2
2
2
2
2
2
2
2
2
2 2
2
2
2 2
2
2
2
2
2
t t
g = dt2 + (sinht)2 dθ2 ,
2
ij
· 45 ·
hk sinht = e −2e . (ii) dj 1 _W Poincar´e e35. ¯ , g¯) Zbqm5 Riemann pj, M ⊂ M ¯ bM ¯ 5 (Riemann ' pj5). Y (M ¯ ¯ e5lm'pj. `! ∇ Z (M , g¯) 5 Riemann nr. ¯ Y, η = ∇ ¯ X, η (i) n X Y Z M a5s638t η Zbo638u, [Zgk ∇ po? ¯ v∈T M ¯ . bgf v q`63 v 5o73. !l63mr (ii) v p ∈ M ⊂ M jw t
−t
m
n
m
m
m
n
n
X
m
m
p
Y
⊥
¯ X Y )⊥ . II(X, Y ) = (∇
e[sw II(X, Y ) = II(Y, X) `ck M a5s638po? ¯ , g¯) pno X Y pp[X5, K(X, Y ) b (M ¯ Y ) b (M (iii) f K(X, 5qX. sCvt5 Gauss tw. n
m
¯ K(X, Y ) = K(X, Y)+
, g)
qr
II(X, X), II(Y, Y ) − II(X, Y )2 , X, XY, Y − X, Y 2
hk X u[]n Y . 6 (klije5 Riemann ' pj5). `Y M pj, Ff D → M , 2
n
→ Rm
Zklij5 Riemann '
n
(u, v) → F (u, v)
Zbrxuy, X = F Y = F . [ u
n
v
K(X, Y ) =
(Fuu )⊥ , (Fvv )⊥ − (Fuv )⊥ 2 Fu 2 Fv 2 − Fu , Fv 2
Zgvsnrx F 5wm, hk (ξ) vq ξ ∈ T R = T M ⊕ N M 5o73. 7 (tz{xX5). `Y R eX M otz (u, v) → h(u, v) 5{xu!, v ⊥
p
3
⎛
m
p
n
n
p
2
M 2 = {(u, v, h(u, v))|(u, v) ∈ R2 }.
edj 6 _W M 5. ⎝_`fewh 2
⊥
(Fuu ) , (Fvv )
⊥
huu hvv − (huv )2 − (Fuv ) = 1 + h2u + h2v ⊥ 2
⎞ (−hu , −hv , 1) ⎠ N= √ . 1 + h2u + h2v
|yX5). c\nX M = {(u, v, u + v )|(u, v) ∈ R }. _WxXfy p = (u, v, u + v ) z5. (_`fdj 6.) (i) v d(O, p) q`y p zy O f M e5wx, [Zgk 2
8(
2
2
2
2
2
r = d(O, p) = O(u2 + v 2 )
2
% !
· 46 ·
po, hk O(u + v ) q` (u + v ) kq}5{{. (ii) n r → ∞ u, y_ K| . Zgk 2
2
2
2
p
lim K(p) = 0
K 0 po? 9 (k|nX5). f M eC>
r→∞
2
= {(u, v, u2 − v 2 )|(u, v) ∈ R2 }.
vh K = h1 +hh −+ hh uu vv 2 u
uv 2 v
,
K = −4 + O(r 2 )
K < 0, hk r = d((0, 0, 0), (u, v, u − v )). 10 ( ! 5rd). `Y (M , g) Zbkz~qm Riemann X, lt{k|}. c\fZy p z5~zuyf Exp f R → M , 2
2
2
2
2
(r, θ) → Expp (rθ),
hk {(r, θ)} Z R 5|$dq`. (i) d! θ , [5 σ fr → Exp (rθ ) ZgZ345? ∂Exp . e[638 J ZgZ σ a5 Jacobi 8ltd % J(0) = (ii) f J(r) = ∂θ 0, J (0) = 1 J (r), σ (r) = 0? (iii) d Rauch ! C> J(r) r. (iv) f S (r) = {q ∈ M |d(q, p) = r}, L(r) b S (r) 5{e. d (iii) 5ghy_ 2
0
θ0
p
0
p
θ0
(r,θ0 ) θ0
2
p
p
L(r) =
5t}.
2π 0
J(r, θ)dθ
! 5rd). f (M , g) bZb|~qm5 Riemann X, t{k|}. `Y S (p ) = {q ∈ M |d(q, p ) = r}, L(r) b S (p ) 5{e, d Gromov-Bishop ! ~hZ b L(r) 5a}. 2
11 (Bishop r
0
2
0
r
0
,
.
σ [0, +∞) → M (M , g) σ (t) ≡ 1,
§3.1
n
n
d(σ(0), σ(t)) = |t|
(3.1)
?
Æ. (M , g) = S (1) ⊂ R , S (1) = {(x, y, z) ∈ R | x + y + z = 1}. σ(t) = (cos t, sin t, 0). σ (t) ∈ N M , ∇ σ = [σ (t)] = 0, σ . σ (t) ≡ 1, σ(2π) = σ(0), 2
2
3
2
3
2
σ
T
σ(t)
2
2
2
d(σ(2π), σ(0)) = 0 < 2π.
Æ (3.1) t . , Exp B (O) → M , Gauss 1.23 d(σ(t), σ(0)) = |t| t . , t d(σ(t ), σ(0)) < t . a > 0, p
n
ε
0
0
0
d(σ(t0 + a), σ(0)) d(σ(t0 + a), σ(t0 )) + d(σ(t0 ), σ(0)) < t0 + a.
Ev = {t | d(σ(t), σ(0)) = t, σ (0) = v, v = 1}
[0, +∞) [0, t ] t . E σ(0) "#. "# # . 0
0
v
= [0, t0 ],
! σ(t ) 0
$! %& '!
· 48 ·
σ [a, b] → M Riemann , σ(a) = p, σ(b) = q, " {J(t)} σ #($) Jacobi * J(a) = J(b) = 0, b > a. ! p q σ (! q p σ # #). %" #+#. 3.2(Jacobi ) (M , g) Riemann , σ(t) = Exp (tv), v = 1, q = Exp (t v) " q p σ # , , n
3.1
n
p
p
0
d(σ(0), σ(t0 + ε)) < L(σ|[0,t0 +ε] )
ε > 0 . $ ( &'(% ) 3.2 . &' (% & ) σ ϕ '( )-# p q, σ = ϕ = 1() ! 9). *"* ' ϕ(t − ε) σ(t + ε) . ψ. #&
ϕ σ , Æ ϕ (t ) = σ (t ). ,
0
0
0
0
$9 L(ψ) < d(ϕ(t0 − ε), q) + d(q, σ(t0 + ε)) = ε + ε = 2ε,
L(ψ) /+ ψ 01. +, 2, L(ψ
ϕ|[0,t0 −ε] ) < 2ε + (t0 − ε) = t0 + ε.
#
L(σ|[0,t0 +ε] ) = t0 + ε > L(ϕ|[0,t0 −ε]
σ|[0,t0 +ε]
'-# σ(0) σ(t
0
+ ε)
ψ),
.3. -%,
d(σ(t0 + ε), σ(0)) < t0 + ε.
§3.1
%4$567.,
· 49 ·
/0 3.2 ( , &1' 8 {β (·)} s
−1s1
(i) β0 = σ|[0,t0 +ε] ,
s ,
(ii) βs (0) ≡ σ(0) βs (t0 + ε) = σ(t0 + ε), ∂βs (t) , σ (t) ≡ 0, (iii) t , ∂s s=0 d2 L(βs ) (iv) c = < 0, ds2 s=0 n βs [0, t0 + ε] → M , L(βs ) βs .
9/ 01 ) # β = σ , : ∂L(β ∂s (iv) , s
0
s=0
= 0,
(
c L(βs ) = L(σ) + s2 + o(s3 ) < L(σ|[0,t0 +ε] ), 2
c < 0 (iv) 0, |s| s = 0. /( (iv), & ;:<+2. 3 α [a, b] × [−1, 1] × [−1, 1] → M
n
,
(t, v, w) → α(t, v, w) ∂α ∂α 45)-, T = ∂α W = , V = . 6, 01 720 ∂t ∂v ∂w b
L(v, w) = a
*
∂α (t, v, w) dt = ∂t
∂L (v, w) = ∂v
a
b
b
a
T dt.
∇T V, T
dt, T
b ∂ ∂ 2 L(v, w) ∇T V, T
= dt ∂w∂v ∂w a T b ∇W T, T
∇W ∇T V, T + ∇T V, ∇W T
= − ∇T V, T
dt. T T 3 a
T
(0,0)
≡ 1, ∇T T
(0,0)
≡ 0 ≡ T, W
(0,0)
≡ T, V
(0,0)
.
(3.2)
$! %& '!
· 50 ·
+ (3.2) =8, *, 2 ∂ 2 L = ∂v∂w (0,0)
b
{ −R(W, T )V, T + ∇T ∇W V, T
a
+ ∇T V, ∇T W − ∇T V, T ∇T W, T } dt
b
{ ∇T V, ∇T W − R(W, T )V, T +T ∇W V, T −T V, T T W, T } dt b b { ∇T V, ∇T W − R(W, T )V, T } dt. = ∇W V, T + =
a
a
6, <>
a
b
{ ∇T V, ∇T W − R(W, T )V, T } dt
I(V, W ) = a
V W !. &'( , +"/',.45 ϕ| /, -
',".45+. a = t < t < · · · < t = b V , W 45, *+
[0,t0 −ε]
0
1
k+1
ψ.
9
[ti ,ti+1 ]
∇T V, ∇T W = T ∇T V, W − ∇T ∇T V, W
.=8?
b
I(V, W ) = a
=
k
{ ∇T V, ∇T W − R(W, T )V, T } dt ∆ti (∇T V ), W −
i=1
(3.3)
b a
∇T ∇T V + R(T, V )T, W dt,
∆ti (∇T V ) = lim ∇T V − lim ∇T V.
&@, V |
[ti ,ti+1 ]
tti
Jacobi *, I(V, W ) =
tti
∆ti (∇T V ), W .
(3.4)
i
# ,
b b ∂ 2 L = ∇W V, T + { ∇T V, ∇T W − R(T, V )T, W } dt ∂v∂w (0,0) a a b = ∇W V, T + I(V, W ). a
(3.5)
§3.1
%4$567.,
· 51 ·
+ (3.3)∼(3.4), * 3.2 . 3.2 # σ(0) σ(t ) σ , ($) Jacobi * J J(0) = 0 = J(t ) " J(t), σ (t) ≡ 0. ',.45 Jacobi * ⎧ ⎨ J(t), 0 t t , ˆ = J(t) ⎩ t t . 0, σ #.* $/0:* {E(t)} 0
0
0
0
t0
E(t0 ) = −∇σ J t .
(3.6)
0
1* 45 η [0, +∞) → R ⎧ ⎨ 0, t=0t=t η(t) = ⎩ 1, t = t . ; 1' σ #',.450:*
0
+ε
,
0
ˆ + λη(t)E(t). V (t) = W (t) = J(t)
(3.7)
β(t, s) = Expσ(t) {sV (t)}.
(3.8)
3 023 ( (i) β(·, 0) = σ, (ii) β(0, s) ≡ σ(0) (iii)
β(t
+ ε, s) ≡ σ(t0 + ε), L(s) = L(β(·, s) ), 0
[0,t0 +ε]
dL = 0. ds s=0
3, * λ
d2 L < 0. ds2 s=0
< t, β(t, ·) , ∇V W = ∇V V ≡ 0.
(3.9)
$! %& '!
· 52 ·
23 V W (3.2). (3.5) (* a = 0 b = t
0
+ ε)
d2 L = I(V, V ). ds2 s=0
14+ A I(·, ·) 1(= (3.3)∼(3.4) I(V, V ) = I(Jˆ + ληE, Jˆ + ληE) ˆ + 2λI(Jˆ, ηE) + λ2 I(ηE, ηE) = I(Jˆ, J) (3.4)
ˆ ηE(t0 ) > +O(λ2 ) = = = = = 0 + 2λ < ∆t0 J, = −2λ∇σ J2 (t0 ) + O(λ2 ).
2J (t ) * 0 < λ < |I(ηE, , > ηE)|
0
2
d2 L = I(V, V ) < 0, ds2 s=0
(3.9) , 3.2 . B. 230 #?45. 3.3 q = Exp v, σ(t) = Exp (tv). p q σ "@ (Exp ) | !. p q σ , J ($) Jacobi 0:*, J(0) = 0∂β= J(1). # {J(t)} ($), J (0) = 0. 3 β(t, s) = Exp [t(v +sJ (0))], J(t) = ∂s (t, 0), " p
p
p ∗ v
"5?
p
0 = J(1) = (Expp )∗ v J (0).
ker(Exp ) = 0 (Exp ) !. C, ξ = 0 (Exp ) ξ = 0, 3 J (0) = 0,
p ∗ v
p ∗ v
p ∗ v
β(t, s) = Expp [t(v + sξ)].
(t, 0) σ # Jacobi *, J(t) = ∂β ∂t
J(0) = 0, J(1) = (Expp )∗ v ξ = 0.
# ξ = 0, J (0) = ξ = 0, {J(t)} ($). # 6* p q σ . B.
§3.2
Ricci
#$
67 Myers '!
3.4
v ∈ S
M
n
(M p0 M
n
n
· 53 ·
Riemann
, p ∈ M . t > 0 M , (Exp ) ! 0 < t t ,
, g)
⊂ Tp0
n
0
n
p0 ∗ tv v
0
v
0
sup {d(q, p0 )} t0 .
* q ∈ M , *"* ' p ? q .3 σ [0, l] → . σ(0) = p , σ(l) = q, σ (0) = v, v = 1 Exp (tv) = σ(t). q∈M n
n
0
0
p0
d(p0 , q) = l.
(3.10)
l t . l = d(p , q) > t , σ| #Æ p # ( # t , t t < l, (Exp )| !. 23 3.3 σ(t ) σ(0) = p ). 4+ 3.2, ∀ ε > 0, 0
v
v
0
0
0
0
[0,l]
tv v
p0
v
0
d(σ(tv + ε), σ(0)) < tv + ε.
&@
d(p0 , q) = d(σ(0), σ(l)) < tv + ε + (l − tv − ε)
7 (3.10) 8D.
= l,
d(p0 , q) l t0 .
B.
9:A Myers 8BEC D + Gromov-Bishop FE#D 3.4 3 7(. 3.5(Myers) (M , g) Riemann , Ric (n−1), , g) 9F §3.2 Ricci n
(M
n
(M n ,g)
Diam(M n , g) = sup{d(p, q) | p, q ∈ M n } π.
3.4, % &5 v ∈ T M , v = 1, 3 σ(t) = Exp (tv), σ| &; p #. /3 #, p GG ' A {(r, Θ)} Exp R → M , p
p
[0,π]
p
n
n
(r, Θ) → Expp (rΘ),
n
$! %& '!
· 54 ·
Θ ∈ S
n−1
(1).
3 {e , · · · , e 1
n−1 }
T
Θ (S
n−1
(1))
:HI.
gij (t) = gij (t, v) = (Expp )∗ tv (tei ), (Expp )∗ tv (tej ) ,
ϕ(t) = ϕ(t, v) =
# Ric(M
det(gij (t, v)),
dvol(M n ,g) = ϕ(t, Θ)dΘdt.
n
, g) (n − 1),
Gromov-Bishop FE 2.9 ? ϕ(t, Θ) (sin t)n−1
HJ. sin π = 0, * t ∈ [0, π] ϕ(t , v) = 0, 23 3.3 3.4 ; (Exp ) ( !. d(p, q) = l, v
v
p ∗ tv v
d(p, q) = l tv π.
B. ;<< ( I8BECJKK== 1975 >>??+&@ALML/ 7M(, + GromovBishop FEN ) B3@(. 3.6(>??) (M , g) O Riemann Ric (n−1), Diam(M , g) = π. (M , g) Æ S (1) → (R ,g ) . * M p , q §3.3
n
n
(M n ,g)
n
n
n
0
n+1
0
d(p0 , q0 ) = Diam(M n , g) = π.
3 # Ric
Br (p) = {q ∈ M n d(q, p) < r}, ˆ π (0) = {(x1 , · · · , xn+1 ) ∈ S n (1) xn+1 > 0}. B 2 (M n ,g)
(n − 1),
Myers ( 3.5) Diam(M n , g) π.
#
Bπ (p0 ) = Bπ (q0 ) = M n ,
0
§3.4
Calabi-Yau
E# Ric
APCDÆQ
· 55 ·
vol(M n , g) = vol[Bπ (q0 )] = vol[Bπ (p0 )].
M
(n − 1)
Gromov-Bishop FE, vol(B π2 (p0 )) vol(Bπ (p0 )) , ˆ π (0)) vol(S n (1)) vol(B 2
ˆ π (0)) vol(B vol(B π2 (p0 )) 1 2 = . n n vol(M ) vol(S (1)) 2
@ B (p ) S (1). (M +)F, -* π
"5 #
d(p0 , q0 ) = π,
n
0
n
, g)
S
n
(1).
vol(B π2 (q0 )) 1 . vol(M n ) 2
B π2 (p0 ) ∩ B π2 (q0 ) = ∅. , vol(M n , g) vol(B π2 (p0 )) + vol(B π2 (q0 )) 1 1 vol(M n ) + vol(M n ) 2 2 = vol(M n , g).
ˆ π (0)) vol(B vol(B π2 (p0 )) 1 2 = = . n vol(M ) vol(S n (1)) 2
1>4+ Gromov-Bishop , * M
n
= Bπ (0)
S
n
(1).
B.
§3.4 Calabi-Yau BRGHST
D U(N Ricci CD8LM.
Æ. * O8 M = S (1) × R. M #"*PIO81: g = g ⊕ g , g S (1) #V 1 A + 1:. 6 (M , g) U (N Ricci . 3 B (p ) QF r p G, p = (q , 0), q ∈S (1). E3F B (p ) ⊂ S (1) × (−r, r), B (p ) D8 R ( J0 n
1
0
1
0
n
n−1 r
n−1
n−1
r
n
0
0
0
n−1
vol(Br (p0 )) Cn−1 r.
0
r
0
0
(3.11)
$! %& '!
· 56 ·
G#5 Æ HS, Calabi IJSK/ 7D8LM. 3.7(Calabi-Yau) (M , g) (O U(N Ricci Riemann . 3 B (x) QF r x GC, B (x) D8 & ;(J0 n
r
r
vol(Br (x)) c(x)r.
(3.12)
W? Gromov 0 3.7 . KL §2.5 GromovBishop T,. 5; L . , 3.8(Gromov) f , fˆ &:, " ffˆ U X 0 < r < R
r
R
f (t)dt 0
r
fˆ(t)dt
f (t)dt r
r
(t) 3 q(t) = ffˆ(t) U X. YV?
0
R
r
fˆ(t)dt =
f (t)dt
R
fˆ(t)dt q(r) 0 r r R q(t)fˆ(t)dt fˆ(t)dt
r
0 r
fˆ(t)dt
= 0
r
r
fˆ(t)dt
0
n
, g)
fˆ(t)dt r
f (t)dt,
0 r
(M
0
R
R
R
f (t)dt
3.9
fˆ(t)dt
r
. B.
r
fˆ(t)q(t)dt
#,
(3.13)
fˆ(t)dt
0
r
#$
.
R
f (t)dt rR fˆ (t)dt r
U(N Ricci , 3 B (x) r
vol(BR (x)) − vol(Br (x)) vol(Br (x)) , Cn rn Cn [Rn − rn ] vol(Br (x))
rn [vol(BR (x)) − vol(Br (x))]. − rn
Rn
§3.4
Calabi-Yau
APCDÆQ
· 57 ·
/ 3.9, * 3.7 . Calabi-Yau
-./0 (
3.7)
x SQ9 σ [0, ∞) → M
n
# (M , g) (O , σ(0) = x " n
d(σ(t1 ), σ(t2 )) = |t1 − t2 |.
3x
k
= σ(k).
(3.14)
Z[ §2.5 Gromov-Bishop D8FE, vol(Bk−1 (xk ))
(k − 1)n vol(Bk+1 (xk )). (k + 1)n
Z[ 3.9, + (* R = k + 1, r = k − 1) vol(Bk−1 (xk ))
(k − 1)n [vol(Bk+1 (xk )) − vol(Bk−1 (xk ))]. (k + 1)n − (k − 1)n
(3.15)
(3.15) , (8)! 10)
$ 10 B1 (x) = B1 (x0 ) ⊂ [Bk+1 (xk ) − Bk−1 (xk )]
(3.16)
B2k (x) = B2k (x0 ) ⊃ Bk−1 (xk ).
(3.17)
$! %& '!
· 58 ·
;
( (3.16)∼(3.18))
,
vol(B2k (x0 )) vol(Bk−1 (xk )) (3.18)
(k − 1)n [vol(Bk+1 (xk )) − vol(Bk−1 (xk ))] n n (3.16) (k + 1) − (k − 1) (k − 1)n vol(B1 (x0 )) n n (3.17) (k + 1) − (k − 1)
(3.18)
2c(x0 )k = c(x0 )2k,
c(x ) M\ x W. 13 r = 2k, (3.19) 0
0
vol(Br (x)) c(x)r.
B.
(3.19)
3.8 LS/, @%" σ # Riccati X . Gromov F Calabi +M N. IJN) [Y3]. Z[I
O 1 ]L, O [Y3] @^PK 2 QR1LMS#, PT(_ 3, ^P/Q? *BY2, +QX`aQ?R3. Calabi
4
1(
5
STÆZ%). UUVVbcW6 [\STÆ z2 x2 + y 2 + = 1. a2 b2
Wd
⎧ ⎪ x = a sin ϕ sin θ, ⎪ ⎪ ⎪ ⎨ y = a sin ϕ cos θ, ⎪ ⎪ ⎪ ⎪ ⎩ z = b cos ϕ,
XSTÆZ Riemann ]eY {(ϕ, θ)} 7^Z[f\_
g = h21 (ϕ)dϕ2 + h22 (ϕ)dθ2 .
]` h (ϕ) h (ϕ). (ii) 8 6g t = [b cos u + a sin u]
(i)
1
ϕ
2
2
2
2
0
2
1 2
du,
^X
g = dt2 + f 2 (t)dθ2 ,
Y f (0)=0 f (t ) = 0, 0 t t . 0
0
_Z!
· 59 ·
`_Z59ZZ 1, σ (t) = (t, ε) [\abC. ]^Xc θ = ε = 0 ^, 6C σ ˆ dϕ → (0, a cos ϕ, b sin ϕ) Y8he_6g t = b cos u + a sin udu i[a\abC. ˆ ˆ (iv) J(ϕ) = (a sin ϕ, 0, 0) [ σ ˆ `Z Jacobi f. Qa J(0) Jˆ(π). (v) d p = (−b, 0, 0) q = (b, 0, 0). b p q [g ? (1) = {x ∈ R ||x| = 1}. [cj p ∈ S 2(hcbÆ`Z Jacobi f). bc S cakhcid] v ∈ T (S (1)). (i) bdσ(t) = (cos t)p + (sin t)v [ga\abC? (ii) d u ⊥ v u = 1, u ∈ T (S (1)). bc (iii)
ε
ϕ
2
2
2
2
0
0
n−1
p
n
n−1
(1),
n−1
p
b
n−1
β(t, ε) = (cos t)p + (sin t)[(cos ε)v + (sin ε)u], (t, 0) [g[ σ `Zak Jacobi f? b J(t) = ∂β ∂ε (iii) Qa J(0) J(t). (iv) ]` p Z %. 3(jd67le`Z %). mefk Riemann le (M , g) ngjdo67 K 0, Yme σ d[0, +∞) → M [a\nghcd]ZabC. [ σ `Z Jacobi ff: J(0) = 0, J (0), σ (0) = 0 J (0) = 1. (i) me {J(t)} J(t) hlp'!]`g t Z[q. (ii) bih% p = σ(0) [gg %? 4(iiÆ`Z %). d M = {(x, y, z) ∈ R | z = x + y } [ R 9 ZiiÆ. (i) ]`mj%`nZjgabC. (ii) me σ d[0, +∞) → M [a\mj%`nZnghcd]ZabC, b[gg n
Mn
n
t0
2
3
2
2
3
2
d(σ(s), σ(t)) = |s − t|?
bj% O = (0, 0, 0) Y M 9[gg%? 5(kklrsZ ). d S (1) = {x ∈ R | |x| = 1} [ R (i) bc[ ml F dS (1) → S (1), 2
(iii)
n
n+1
n
n+1
9ZhcbÆ
.
n
x → −x,
b F [g[otml? ]` F = F ◦ F . (ii) kklrs[ S (1) Zgrs RP = S (1)/Z , nu Z [` F m_Z ; n. ]` RP Z . 6(pklrsZ ). bc Hopf oÆq 2
n
n
n
2
n
π
S 1 → S 2m+1 (1) → CP m
2
$! %& '!
· 60 ·
a
d
Fθ Cm+1 → Cm+1 , (z1 , · · · , zm+1 ) → (eiθ z1 , · · · , eiθ zm+1 ), √ ,zj = xj + −1yj ,θ ∈ [0, 2π].
nu i = √−1,z ∈ C [p_ (1) `Zakotml? (i) b F [g[ S (ii) ov CP = S (1)/S ,S p {F } m_Z ; n, cp CP 9 cjw% p = [z , · · · , z ] q = [ˆ z , · · · , zˆ ], b[gfq]r S (1) 9 Zw% P ∈ π (p) π Q ∈ π (q) qs d(P, Q) , nu π dS (1) → CP [gml? 2 (iii) rs[ CP Z ? 7(xtn ). e Γ = π (M ) [le M Zxtn. rme M ngak Ricci 6 7 (n − 1) Z]e g. ˜ p M Zsguvrs. tpuv ˜ → M ple M Zsguvml, M (i) d π dM ml π [ywu7tu, jqUUbc M˜ `Zvw]e j
2m+1
θ
m
1
2m+1
m+1
1
1
1
m
θ Cθ2π
2m+1
m+1
−1
2m+1
−1
m
m
n
1
n
n
n
n
n
n
n
n
X, Y g˜ = π∗ X, π∗ Y g .
bov Ric c [gvz Ric c? ˜ , g˜) |Γ | = |π (M )| n! (n − 1), ]` Diam(M , g) 4Diam(M (ii) ov Ric wxsZ{Z. nu Diam(M , g) xx Riemann leZ . 8(Milnor '!). me (M , g) [k|Z Riemann leY Ric 0. (i) ov B (p) = {q ∈ M | d(p, q) < r}, h Gromov-Bishop lp'!]` vol(B (p)) Z `q. ˜ , g˜) p (M , g) Zsguvrs, yg g Zvw]e g˜. ^Xxtn Γ = π (M ) (ii) d (M zng]_p n Zy{7, nu n = dimM . 9(Heisenberg le Milnor '!Zzh). bc Heisenberg n (M n ,g)
˜ n ,ˆ (M g)
n
(M n ,g)
n
1
n
n
n
r
n
(M n ,g)
n
r
n
1
n
n
yZ;n
⎧⎛ ⎪ ⎪ ⎨⎜ 1 3 ˜ M = ⎜ ⎝ 0 ⎪ ⎪ ⎩ 0
⎧⎛ ⎪ ⎪ ⎨⎜ 1 Γ = ⎜ ⎝ 0 ⎪ ⎪ ⎩ 0
⎫ ⎪ ⎪ ⎬ ⎟ 3 ⎟ y ⎠ (x, y, z) ∈ R ⎪ ⎪ ⎭ 1
x
z
1 0
k 1 0
⎞
⎞
⎟ ⎟ n ⎠ k, m, n 1
m
^X}zn Γ ng{Æz|,y{7 (r ). (ii) h Milnor '!|X!Æ Heisenberg le M 67Z]e. (i)
p{_⎪⎪ .
4
3
⎫ ⎪ ⎪ ⎬
˜ 3 /Γ =M
⎭
|~}}cjngj} Ricci
_Z! ov (M , g) [k| Riemann le~Yng}oÆ67 K −1. d (M˜ ZsguvrsY~kvw]e g˜, B (˜p) = {˜q ∈ M˜ | d(˜p, q˜) < r}. p)) g = _y{7. (i) hlp'!^X, vol(B (˜ (ii) bxtn Γ = π (M ) [g~g = _y{7? 10.
Mn
· 61 · n
Mn
r
r
1
n
n
n
, g˜)
[
Æ
§4.1
Cheeger
. Cheeger
,
.
(M n , g)
4.1
, p ∈ M n , v ∈ Tp M n ,
Riemann
v = 1.
cv = sup{t | d(p, Expp (tv)) = t}.
(1) p
C (p) = {cv v | v ∈ Tp M n , v = 1, cv < +∞}. (2) p
Mn
ˆ C(p) = Expp C (p).
Æ !" ,
.
(M n , g) = S n (1) → (Rn+1 , g0 )
(1)
,p
,
p
Mn
.
n
(M , g)
(2)
S
n−1
Riemann
n
p
n
p ∈ H , v ∈ Tp H ,
C (p)
, ˆ C(p)
n
cv = +∞,
ˆ q ∈ C(p).
4.2
(1)
(2)
Tp M n
C (p)
.
(M n , g) = (Hn , g−1 )
(3)
, p ∈ M n.
σ(t0 )
.
q = σ(t0 ) σ
p
p
σ
,
;
σ
ϕ
p
L σ|[0,t0 ] = L(ϕ) = d(p, q).
q
K ≡ −1. .
#Æ!"$ #
§4.1
q = σ(t0 )
σ(t0 + εi )
σ|[0,t0 ]
ϕi (
,
· 63 ·
εi → 0
%!" p
11)
L(ϕi ) < t0 + εi .
q
p σ , $ t
%
0
= d(p, q)
11
d(p, σ(t0 + εi )) < t0 + εi .
(4.1)
, d(p, σ(t0 + εi )) d(p, σ(t0 )) − εi
! p σ(t
0
+ εi )
(4.2)
= t0 − ε i .
# &
σvi [0, li ] → M n , t → Expp (tvi ),
&
vi = 1, σvi (li ) = σ(t0 + εi ),
(4.1)∼(4.3)
'
d(p, σ(t0 + εi )) = li .
(4.3)
t 0 − ε i l i < t0 + ε i .
(4.4)
, lim li = t0 .
, ' v
i→+∞
S n−1
→ vˆ.
σˆ(t) = σ (t) = Exp (tˆv), (4.4) ij
v ˆ
p
L σvˆ [0,t0 ] = L(σ).
(4.5)
( !"$Æ)(
· 64 ·
)!*" ) #$ ) ' Æ ! *+ .
1. σ ˆ = σ.
4.2(2) (Expp )∗
2. σ ˆ = σ.
.
t0 σ (0)
(Expp )∗ |t0 σ (0)
+ Æ ! , .
"#$
Gauss
-, &. ' / "$ -' .
0 % & () & * #$ Æ$/0 . $'' -,& ( ! # ( &
#$ 1 )# & *+ %
d(p, σ(t0 + ε)) = t0 + ε,
ε>0
,
.
σ(t0 ) ˆ C(p)
,
n
4.3
(M , g)
σ(0)
σ
.
p
.
.
, p ∈ M n,
Riemann
Mn
p
Injp (M n ) = inf{cv | v ∈ S n−1 ⊂ Tp M n }
= sup{t | Expp Bt (O) → M n
4.2,
.
n
4.4
(M , g)
p
}.
, p ∈ M n, q
Riemann
Mn
p
,
(1)
p
q
σ,
p
q
σ
;
ψ [0, 2l] → M n
(2)
ψ(0) = ψ(2l) = p, ψ(l) = q
d(p, q) =
1 L(ψ). 2
σ, ϕ [0, l] → M n
4.2,
L(ϕ) = L(σ) = d(p, q).
2 ,4
ϕ (l) = −σ (l).
ϕ (l) = −σ (l),
134 &.
w ∈ Tq M n , w = 0
.
(4.6)
+, $ ϕ (l) = −σ (l) ,
⎧ ⎨ w, −σ (l) > 0,
(4.7)
⎩ w, −ϕ (l) > 0.
α(s) = Exp (sw), p q σ ϕ , (Exp ) | (Exp ) | 5 Æ!-2, 23,, 6 {σ } {ϕ }, σ = σ, ϕ = ϕ, & σ ϕ ! p α(s) ( 12). 4.7 8- (4.7) 4 p ∗ lσ (0)
q
s
0
s
s
p ∗ lϕ (0)
s
0
#Æ!"$
§4.1
· 65 ·
⎧ d ⎪ ⎨ < 0, L(σs ) ds s=0 ⎪ ⎩ d L(ϕ ) < 0, s ds s=0
(4.8)
max{L(σs ), L(ϕs )} < l
(4.9)
9/ -, 1 . s>0
.
12
L(ϕs ) L(σs ),
% + , σs
p
qˆs ,
9/ (M
d(p, qˆs ) max{L(σs ), L(ϕs )} < l.
-, . & . / %
s>0
n
, g)
,
q = α(0)
Riemann
,
p
M
.
.
n
Inj(M n ) = Inj(M n , g) = inf n {Injp (M n )}. p∈M
& ." $
$5&
l(M n , g) = inf{L(ψ) | ψ S 1 → M n , ψ (0) = 0, ∇ψ ψ ≡ 0}.
Klingenberg
4.4
(M n , g)
4.5 (Klingenberg)
. Riemann
n
(M , g)
n
Inj(M , g) min
0 Mn
,
&.6$'+ &
1 π n , l(M , g) . |K0 | 2
p0 ∈ M n
Injp0 (M n ) = Inj(M n ).
&
, Æ K
c SM n → R
{+∞},
Mn
K0 ,
( !"$Æ)(
· 66 ·
SM !13 ,, & SM n
cp,v = sup{t | d(p, Expp (tv)) = t}.
(p, v) → cp,v n
= {(p, v) | p ∈ M n , v ∈ Tp M n , v = 1}, ˆ 0) cp,v , q0 ∈ C(p
!1- 0
d(p0 , q0 ) = Injp0 (M n ).
2."
4 ( %# (78 9:: & {p0 , q0 }
4.4
(i)
p0
q0
(ii)
.
p0
q0
ψ S1 → M n,
$ ) 43 43 (i)
π
|K0 |
,
1 L(ψ) = d(p0 , q0 ). 2
Rauch
;; (
,
'
+
0 t<
π d(p0 , q0 ) . |K0 |
,
n
Inj(M ) d(p0 , q0 ) min
/
KM n K0 )
1 π , L(ψ) . |K0 | 2
.
< =< /04Æ. =4 5> :>?6? ' @ 12 $: @ & §4.2 Cheeger
.
Riemann
,
.
Fermi
.
σ S1 → M n,
9:: Mn
. Mn
4.5
t → σ(t)
0A σ(t)
Nσ(t) M n = {ξ ∈ Tσ(t) M n | ξ, σ (t) = 0},
B!"$CA )2A7BD §4.2
'
· 67 ·
Cheeger
Fermi
Nσ M n =
&
F Nσ M n → M n , (σ(t), ξ) → Expσ(t) ξ.
$ 9/ ξ
Nσ(t) M n .
t∈S 1
-'$'&*
,
, F∗ |(σ(t),ξ)
Æ !-2.
Dε (σ) = (σ(t), ξ) ∈ Nσ M n | t ∈ S 1 , ξ < ε ,
() & *, E σ Fermi @8. Fermi @8FD /3 $' +. 4.6 Σ Riemann (M , g) 99: , q ∈ Σ , ϕ &[0, b] → M !" Σ q #,
& "C
F Dε (σ) → M n
k
k
n
n
w ∈ Tϕ(0) Σk
k
ϕ (0), w ≡ 0
-,
(4.10)
.
&
β [0, b] × (−ε, ε) → M n , (t, s) → β(t, s)
Æ !" # 2.7 8 -
β(0, s) ∈ Σk , β(b, s) ≡ q, β(t, 0) = ϕ(t), V (t) =
,
Σ
k
q
∂β (t, 0), ∂s
,
b ∂ 1 d [L(β(·, s)] V (t), ϕ 0= = (t) − V, ∇ϕ ϕ dt ds s=0 0 ϕ (0) ∂t =
1 ϕ (0)
=−
[ V (b), ϕ (b) − V (0), ϕ (0) ]
V (0), ϕ (0)
, ϕ (0)
ϕ (0), V (0) ≡ 0
V (0) ∈ Tσ(0) Σk
-, / .
.
ϕ
( !"$Æ)( &*
· 68 ·
#$ :4 4.6
,
Æ & *. . Fermi
(M
Riemann
& &* ;; $' :>? Æ
G4H ,
.
n
(M , g)
Riemann
n
KM n −1. Diam(M , g) d0
: 5
, g), Fermi
F Nσ M n → M n
4.7 (Cheeger, Heintze-Karcher) n
n
vol(M , g) C0 ,
M
,
n
σ
& .#$ 4
L(σ)
C0 , an (sin hd0 )n−1
an = voln−2 (S n−2 (1)). Dd0 (σ) = {(σ(t), ξ) | t ∈ S 1 , ξ d0 }.
4.6
Fermi
&*
4
(ii)
J (0) = 0, J(0) = 1
ξ = 1, J
J(0) = 0, J (0) = 1
Jacobi
, K
Mn
−1,
(
4
J(t) sinht.
4
s ∈ S 1 , tξ ∈ Bdn−1 (O) = {x ∈ Rn−1 | |x| < d0 }, 0 n
C0 vol(M , g)
σ(s)∈σ
L(σ)
0
d0
t=0 d0
.
2.6)
(4.12)
(4.13)
ξ∈S n−2 (1)
det(F∗ )dtdsdξ
an (sinht)n−2 coshtdt
L(σ)an (sinhd0 )n−1 .
.
2.8
det(F∗ )|(σ(s),tξ) (cosht) · (sinht)n−2 ,
&
/
ϕ
KM n −1,
,
J(t) cosht.
(4.12)∼(4.13)
2
ϕξ (t) = Expσ(s) (tξ)
1
$
Diam(M n , g) d0 ,
& A7 Æ I 7K;;
Mn
$
F Dd0 (σ) → M n
Æ & *. K −1, Jacobi I $. J s ∈ S , ξ (i)
(4.11)
;Æ5<=BE6
§4.3
· 69 ·
2 F >": & 4.8 (Cheeger) (M n
Diam(M , g) d0 , vol(M
n
9: Riemann , Æ |K , g) C , (M , g) Æ n
, g)
0
Inj(M ) min π, n
&
Æ Inj
∈ Mn
n
) = Inj(M n ).
q
%# ' + n
0
p0 (M
Injp0 (M ). (1)
p0
1,
C0 2an (sinhd0 )n−1
an = voln−2 (S n−2 (1)).
p
Mn |
n
q0
,
,
0
ˆ 0) ∈ C(p
(4.14)
d(p , q ) =
KM n 1,
0
0
Rauch
;;
2.5,
d(p0 , q0 ) π.
(2)
: 7
σ
' 4.7
(
p0
q0
1 L(σ) = d(p0 , q0 ). 2 K −1) L(σ)
/
C0 . an (sinhd0 )n−1
.
!?7@A
§4.3
94 $+C $ H1 C) D7! : I L,
*M 6 ; - - ' <
$ Æ Cheeger
,
.
Γ
,
|Γ | =
4.9
G(k0 ) = {Γ | Γ
Γ
.
, |Γ | k0 },
Riemann
4.10
(1)
,
n
(M , g)
{p1 , · · · , pk } ⊂ M
G(k0 )
Riemann
.
.
, δ > 0,
n
d(pi , pj ) > δ,
i = j,
(4.15)
( !"$Æ)(
· 70 ·
E < < . NJ < 5O
E < 6 < 8 Æ$'KP <
+ Mn
{p1 , · · · , pk }
δ
{p1 , · · · , pk }
(2)
M
{p1 , · · · , pk }, 4.11
&
δ
M
(M n , g)
n
δ
δ
.
,
.
Riemann
, {p1 , · · · , pk }
Mn
vol(M n , g) W0 . k
W0 , bn δ n
L5> n = dimM Q ,. {p , · · · , p } δ <, $ i = j , n
bn
1
k
d(pi , pj ) > δ,
B δ (pi )
2
B δ (pj ) = ∅, 2
W0 vol(M n )
{p1 , · · · , pk }
,
{p1 , · · · , pk }
, δ < Inj(M n )
δ
.
n
Croke
M (
k
vol B δ (pi ) .
[Cr3]),
C 4 * ,
vol[Br (p)] ˆbn rn ,
& *5> Q, ' ˆbn
n
.
kˆbn
(4.16)
2
i=1
(4.16)∼(4.17)
r
1 Inj(M n ) 2
* (4.17)
34
n k δ vol B δ (pi ) W0 . 2 2 i=1
/ $ < M E )2 L
. R)! 3-'
6
< -
.
Inj(M n ) > δ, {p1 , · · · , pk }
(M n , g)
δ
.
Γ = Γ(M n ,g)
(1) Γ (2)
{p1 , · · · , pk };
d(pi , pj ) < 2δ, i = j,
Riemann
n
(M , g)
ˆn
(M , gˆ)
M=
pi
pj
(M , g)
δ
k
i=1
. n ˆ (M , gˆ), {p1 , · · · , pk }
n
Bδ (pi )
.
ˆn = M
k
i=1
Bδ (ˆ pi ).
{ˆ p1 , · · · , pˆk }
;Æ5<=BE6
§4.3
Inj(M n ) > δ
Æ f
· 71 ·
ME NSF & & $T = &
Inj(M n ) > δ,
fi Bδ (pi ) → Bδ (ˆ pi )
i
= Exppˆi ◦ Exp−1 pi ,
G. NSFME H>9:&* & ?I@$ J$ &$ K
6OU PA "C4LVB Q Æ M !" #
E CN . CN Æ {fi }
ˆ n. f Mn → M m p∈ Bδ (pij )
{fi1 (p), · · · , fim (p)}
,
j=1
ˆn M
.
4.12
,
n
(M , g)
Ω⊂M
(1)
δpq ⊂ Ω,
δpq
(2)
Riemann
n
.
.
p, q ∈ Ω
(M n , g)
Ω
{q1 , · · · , qm } ⊂ Ω, Ω
p
.
n
(M , g)
m
q
y∈Ω
,
Exp−1 y qi = 0,
E 4L 4L & #Æ
4L M i=1
y
{q1 , · · · , qm }
M
n
.
.
n σ [0, l] → M n (M , g) l t, q0 = σ(0), q1 = σ(l), y=σ {q0 , q1 ) 2
(i)
13
⎧ l l −1 ⎪ ⎪ ⎨ Expy q0 = − 2 σ 2 , ⎪ l l ⎪ ⎩ Exp−1 . y q1 = σ 2 2
(
13).
d(σ(t), σ(0)) =
· 72 ·
( !"$Æ)( DE4 ORFR L 'ORF 4L M
{q , q , q } R L, y {q , q , q } (ii)
1
2
3
1
2
(R2 , g0 )
,y
(
3
14).
14
$" 6?4L.
C N 5M 4L ,
.
n
4.13 (Whitehead) 1 r < min{π, Inj(M n )}. 2 (1) Br (p) Mn
(M , g)
Riemann
;
{q1 , · · · , qm } ⊂ Br (p),
(2)
m
F M
Æ K
y ∈ Br (p)
M n 1,
Exp−1 y qi = 0.
i=1
F -'!B3, & (1)
[ChE]p103.
(2),
m
E(q) =
1 [d(q, qi )]2 . 2 i=1
@ GT ∇E(q) = −
KM n 1, d(q, qi ) < 2r π
$
m
Exp−1 q qi .
i=1
q ∈ Br (p)
-,, ;;#, B (p) D q r
i
,
q → [d(q, qi )]2
B (p) N3 ,. E(q) O q ∈ B (p) N3 ,. ' E B (p) M
S5 / r
y.
r
.
r
§4.4
Cheeger
)(
· 73 ·
PQWT X46$"I X §4.4 Cheeger
1970
H Cheeger 4.14
.
n, d0 , C0 > 0,
M(n, d0 , C0 ) = {(M n , g) | |KM n | 1, Diam(M n ) d0 , vol(M n ) C0 } .
; *F &@YU $JK RM S $ 7 >V
;; M(n, d0 , C0 )
.
,
[Pe].
n
(M , g) ∈ M(n, d0 , C0 ).
.
.
.
Ric(M n ) −(n − 1),
K −1,
Gromov-Bishop
vol(M n , g) vol(Bd0 (p)) d0 a ˆn (sinhs)n−1 ds = W0 . 0
7K .
.
Inj(M ) min π,
C0 2an (sinhd0 )n−1
n
7F < < .
Mn
δ
δ
k k0 =
Γ
Mn
= δn .
.
(M n , g)
{p1 , · · · , pk }
)2<
TR)!
, 0 < δ < δn .
W0 . bn δ n
.
pi
-'
pj
⇔
⎧ ⎨ (i) i = j, ⎩
(ii) d(pi , pj ) < 2δ.
G(k0 ) = {Γ | |Γ | k0 } .
7L NSFME 2 0 .
.
,
(4.18)
δ < δn ,
*ME &*
M(n, d0 , C0 ) → G(k0 ), M n → ΓM n .
(4.19)
" 4.11
(4.20)
· 74 ·
M
M(n, d0 , C0 )
.
( !"$Æ)(
ME NSF &
Riemann
|ΓM n | = |ΓMˆ n | = k k0 ,
&
(M n , g)
ˆ n , gˆ) (M
ΓM n
ΓMˆ n
{fi }ki=1
fi Bδ (pi ) → Bδ (ˆ pi ), q → (Exppˆi ◦ Exp−1 pi )(q).
7S H>FME $ "
%# .
j=1
#
.
1 δ < min{π, Jn } , 4 m Bδ (pij ), m k0 , {fi }
4.13
B2δ (x)
C N. p ∈
{fi1 (p), · · · , fim (p)} ⊂ B2δ (fi1 (p)).
C N " # M 4L 2=4 %H>9:&* & & 4L 4 UVF & ! #
H6 Æ WM)Z[W/\ 2 %H > 9:& * & & +H>F &2Æ/F$& B2δ (fi1 (p))
,
4.13
{fi1 (p), · · · , fim (p)}
,
y0 .
,
ˆ n, f Mn →M
p → {fi1 (p), · · · , fim (p)}
Pxy
σxy
Peters
1988
,
,
d(x, y) < δ, σxy
Ppi pj
Ppˆi pˆj
.
x
y
. S.
SO(n)
,
ˆn f Mn → M
.
/
#
.
X] L^F Cheeger
Grove, Petersen
YZ[:X$& $
={(M n , g) | KM n −1, Diam(M n , g) d0 , vol(M n , g) C0 }, d0 , C0 )
.
ˆ M(n, d0 , C0 ) ˆ M(n, n5
\N
· 75 ·
!"$OBPYCA SB!"$T&bcU bcUÆ bcU _V[ef
$% ZQ
R_]`B Riemann 5<, aZQ ^ Santalo dU, Berger-Kazdan W, bcU
, Croke 1980). (M n , g) inf n Inj(M n ,g) (x) δ0 . Croke
1(
x∈M
Schwarz
,
0 r δ0
voln−1 (∂Br (p)) [voln (Br (p))]
Cn∗
n−1 n
g\ `] Rab^cÆX BhX di B_e_ `] f di B_e_ )( ZQ R_` 5< Ya Z f = E6 di B_[_ ZQ Æ gZQ Æ h\B E6 ^;Bjkli_\]cbj^ e Cn∗ n = dimM n d , [voln (Br (p))] dr 0 r δ0 , voln (Br (p))
,
(i)
(ii)
Inj(M n , g) δ0
0 r δ0 . .
n
1989).
2(Yamaguchi
(i)
.
(M , g)
Riemann
vol(M n ) v0 , {p1 , · · · , pk }
.
(M n , g)
δ0
,
k
.
Inj(Min , gi ) δ0
(ii)
vol(Min , gi ) v0 ,
(M1n , g1 )
Γ1 ∼ = Γ2 .
(iii)
ϕ M1n → M2n .
_
¯ v¯) = {(M n , g) | Inj(M n , g) δ, ¯ vol(M n , g) v¯}. M(n, δ,
^ Bcami ZQ e (ii)
3.
f
¯ v¯) M(n, δ,
(M1n , g1 )
→
a_\]cbd R_kn\` _j^ B .
(M2n , g2 )
L(f ) = maxn
)le_
δ0 8
(M2n , g2 )
Riemann
v∈T M1 v=0
5
,
f∗ vg2 vg1
f
Lipschitz
hXf
.
d(M1n , g1 ), (M2n , g2 ) = inf {log[L(f )] + log[L(f −1 )]}. (i)
_T
f Æha bif
f
2
1
= S ×S
1
2
,
M(T 2 , A0 ) = {(T 2 , g) | Area(T 2 , g) A0 , Kg ≡ 0}.
jkcV R_o`Bbif ldm_bif M(T 2 , A0 )
.
(ii)
N(T 2 , D0 ) = {(T 2 , g) | Diam(T 2 , g) D0 , Kg ≡ 0},
jkcVbif o` )( meld )nB opf Bia ld N(T 2 , D0 )
.
).
4(Mumford
k
Cheeger
)(BohfgBh< ZQ
,
M Σ2k , l0 =
Σ2k , g | Kg ≡ −1, l(Σ2k , g) l0 ,
,
Σ2k
R `n
( !"$Æ)(
· 76 ·
`]
qj ='rstoBuv Ya Æ di B!"$B_e_ ppee_ 5
.
l(M n , g) l0
(i)
k
(Σ2k , g)
Riemann
(ii)
(Σ2k , g)
M
.
R
v0
D0 ,
,
∂Ωk ,
Ωk
pi =
Cheeger
2
.)
→ −∞
Cheeger
.
2
2
(x, y) ∈ R | x + y 1, (x, y) ∈
k
B( 1 )i (pi ) 16
p Ω =B_)w Ω T& ˆ , (i) = ∂Ω xy Z Σ \` c ∂ Ω ˆ n
Æ
i=1
ˆ 2k × [0, 1], ˆk = Σ Ω Σ2k
,
, 3 Ωk . Σ2k = 2, 1 , 0 ∈ R2 , Dε (p) = (x, y) ∈ R2 | d((x, y), p) < ε . 2i
ˆ 2k = Σ
Kg ≡ −1,
k
K(Min ,gi )
Diam(Min , gi )
3
.
?(
).
vol(Min , gi )
.
3
(Σ2k , l)
5(
p
(M n , g)
Kg 0,
k
k
2 k
k
k
k
k
k
Σ2 k
∂Ωk
2 k
2 k
2 k
2 j
3
2 k
2 k
2 j
√
k
k
2 i
Σ2 i
k1
0
j −1 k 2π
e
ϕλ S 3 (1) → S 3 (1),
Rcgj^. (ii) (iii) (iv) (v)
(z1 , z2 ) → (λz1 , λz2 )
di5< cV wr `(}Æ5<
B~}| Rxg\ RxÆ
Mk3 = S 3 (1)/Zk π Diam(Mk3 ) . 2 lim vol(Mk3 ) = 0 k→+∞ 3 Mk k1
.
?
Cheeger
)(~~
?
Æ
Diam Σ2i → +∞,
Æ Riemann
20
.
,
,
.
.
,
,
.
,
¦ Riemann Æ
Æ Æ
,
Riemann
. Riemann
30
,
Alexandroff
.
Riemann
Riemann
, Morse
.
,
Anosov
Birkhoff
.
.
§5.1
(M n , g)
.
, p ∈ M
mann
σ(0) = p
n
v ∈ Tp M
σ (0) = v φt
,
n
Rie-
σ(t) = Expp (tv)
.
TM → TM d (p, v) → Expp (tv), [Expp (tv)] . dt
{φt }t∈R , ⎧ ⎨ φ (p, v) = (φ ◦ φ )(p, v), s+t s t ⎩ φ−1 = φ−s .
{φt }t∈R
! s
d (σ (t)2 ) = 2σ (t), ∇σ σ ≡ 0, dt
,
SM n = {(p, v) ∈ T M | v = 1, p ∈ M },
{φt }t∈R
SM n
,
φt SM n → SM n . T Mn
(M n , g) .
SM n
Riemann
{φt }t∈R
G.
,
(T M n , G)
.
,
(T M n , G)
T Mn
!!#$! " %
" % "
! " Æ ## $##
#
" &'
$ " $ " ! % $ !% $%" % ! & # $ &! ! ## $ ## ! (" "
· 80 ·
Riemann
5.1.1
Mn
n
Mn
,
n
(M , g)
T Mn
Riemann
,
TM
2n
.
n
g
G.
G
,
π
T M n → M n,
(p, v) → p.
π∗ T (T M n) → T M n
,
T (T M n)
,
(p, v) ∈ T M n, kerπ∗ |(p,v)
.
n
−dim[Tp M ]} = 2n − n = n. ,
kerπ∗
Tp M
{w1 , · · · , wn }
{dim[T(p,
n
n
.
n
T(p,v) (T M )
(M , g)
,
σi ui (0) = v d ξi = (σi (t), ui (t))|t=0 = (wi , ui (0)). dt {ξ1 , · · · , ξn } . T (T M n)
kerπ∗
wv
T(p,v) (T M n ) = kerπ∗
kerπ∗
(p,v)
w
(p,v)
Tp M n ∼ = Rn .
(p,v)
wH
)]
Riemann
.
(p, v)
⊕ H(p,v) .
T(p,v) (T M n )
,
n
σi (t) = Expp (twi )
, {u1 (t), · · · , u1 (t)}
H(p,v)
v) (T M
H(p,v) .
,
Tp M n
T Mn
w,
H(p,v)
w
.
g
G
& # "%
"%' ' ! # #(&
u, wG = uv , wv g + π∗ u, π∗ wg . T(p,v) (T M n ) = kerπ∗ ⊕ H(p,v)
Mn
(p,v)
{(x1 , · · · , xn )}, {Γkij }
p
{(x1 , · · · , xn )}
Christoff
,
(p, v) ∈ T M n
n ∂ ∂ w= + Vi Yi . ∂xi ∂vi i=1
n
T(p,v) (T M )
wH
⎧ n ⎨
⎫ ⎞ ⎛ n n ∂ ⎬ ∂ Yi = −⎝ Γijk vj Yk ⎠ ⎩ ∂xi ∂vi ⎭ i=1 j=1 k=1
(M n , g) ∂ v = vi , ∂xi i=1
Riemann
n
$!$#'#)%)
§5.1
· 81 ·
£
wv = w − wH .
( % )* " & +* +, ' % ##- ## ! ' ' & % ## .(" / , '.( " /('0 '0"" * ,) Æ , ! $ "%'
% ! "% * + "% ' Æ-, ! ' ! "% ' 5.1.2
$ Λ (M 1
1
n
Mn
)
n
π ˆ Λ (M ) → M k
Λ1 (M n )
,
.
n
n
∗
π ˆ .
1
β ∈ Λ (M )
n
ξj ∈ T (Λ (M )),
(ˆ π ∗ ◦ β)(ξ1 , · · · , ξk ) = β(ˆ π∗ ξ1 , · · · , π ˆ∗ ξk ).
5.1
π ˆ Λ1 (M n ) → M n
(1)
ηπˆ
,
Λ1 (M n ) → Λ1 (Λ1 (M n )), α→π ˆ∗ ◦ α
Λ1 (M n )
(contact form).
(2)
(
)ηπˆ
Ω = dηπˆ .
Λ1 (M n )
Ω ∈ Λ2 (Λ1 (M n )).
.
Ω = dηπˆ
p
Λ1 (M n )
.
α=
Mn
{(x1 , · · · , xn )}
.
{(x1 , · · · , xn )}
α
n
yj dxi .
j=1
{(x1 , · · · , xn , y1 , · · · , yn )}
Λ1 (M n )
Λ1 (M n )
,
Ω
Ω = dηπˆ = d(y1 dx1 + · · · + yn dxn )
*
' Æ, ! ))+ * ! ! . !£"¡# /
( . Æ , ! ) ' ) *&! " &! = dy1 ∧ dx1 + · · · + dyn ∧ dxn . Mn
Ω
,
Λ1 (M n )
.
5.1.3
T Mn
TM
n
1
n
Λ (M )
.
.
Mn
Riemann
"
· 82 ·
!!#$!
!1 # *
* &+
, ! , '0 " (, " , ! '0 " $%&¥ ª'()* ,
+! ,* + , 2 - 0, )3 " 4 " & +
- " 5 ©, , '1 ." -/ .."% / "%* *
"% ! "' -/
#
Riemann
g
T M n → Λ1 (M n ), (p, v) → v, ·g ,
Fg
p
X ∈ Tp (M n )
Fg (p, v)(X) = v, X
Ωg =
Fg∗
(
◦Ω
TM
TM
n
n
, ηg =
Liouville
.
Fg∗
Fg
◦ ηπˆ
TM
).
T Mn
Ωg
T Mn
.
n
ηg
,
.
T Mn
5.1.4
(M n , g)
Riemann
T M n → R, 1 (p, v) → v2g . 2 p
Eg
, Ωg
T Mn
,
T Mn
T Mn
,
Zg
Ωg (Zg , ·) = −dEg .
(M n , g)
5.2
Zg
Riemann
{φt }t∈R
,
.
dφt = Zg . dt
(5.1)
(5.1)
,
(5.1)
.
{(x1 , · · · , xn )}
M
n
Z=
n j=1
∂ 2 Eg = gij , ∂vi ∂vj
∂ ∂ +Vj Y ∂xj ∂vj j
∂Eg ∂xi
=
(x,v)
.
n 1 ∂gkj vj vk 2 ∂xi j,k=1
n
∂gik ∂ 2 Eg = vk , ∂xi ∂vj ∂xj k=1
T Mn
,
Eg =
1 gjk vj vk . 2 k,j
(5.2)
$!$#'#)%)
§5.1
&
· 83 ·
,
Ωg (Zg , ·) = −dEg
(5.3)
Ωg = Fg∗ (dv1 ∧ dx1 + · · · + dvn ∧ dxn ),
(5.4)
⎧ ∂ ∂Eg ⎪ ⎪ ⎨ Ωg Zg , ∂x = − ∂x , i i ⎪ ∂ ∂E g ⎪ ⎩ Ωg Z g , . =− ∂vj ∂vj
(5.5)
% 0-0 6 (g ij )
(gij )
. (5.5) ⎧ ⎪ Y j (Zg ) = vj , ⎪ ⎪ ⎨
(5.2)
n 1 ki ∂gjl gil ⎪ k ⎪ g −2 vj vl . ⎪ ⎩ V (Zg ) = 2 ∂xi ∂xj
- '
2
(5.6)
j,i,l=1
Christoff
n
Γijk
1 il = g 2
l=1
(5.6)
(5.7)
∂glk ∂gjl ∂gjk + − ∂xj ∂xk ∂xl
⎧ ⎪ ⎪ Y j (Zg ) = vj , ⎪ ⎨ ⎪ ⎪ V i (Zg ) = − ⎪ ⎩
..& Zg =
Zg
⎧ n ⎨
∂ vi − ⎩ ∂xi i=1
n
.
(5.7)
Γijk vj vk .
j, k=1
n
j, k=1
⎫ ∂ ⎬ , Γijk vj vk ∂vi ⎭
T Mn (p(t), v(t)) ⎧ dxi ⎪ ⎪ = vi , ⎪ ⎨ dt n n d2 xi dxi dxk dvi ⎪ i ⎪ . Γjk vj vk = − Γijk ⎪ ⎩ dt2 = dt = − dt dt
ÆÆ 6 , 7 j,k=1
.
dφt = Zg . dt
.
j,k=1
(5.8)
"
· 84 ·
!!#$!
$%& /0+ / & + , ! % 8, !'0" 5.1.5
Riemann
Liouville
{φt }
5.3 (
)
.
{φt }, Ωg
T Mn
ηg
.
⎧ ⎨ φ∗t Ωg = Ωg , ⎩ φ∗ ηg = η g t n
©,*% " 1 * SM
Riemann
t
(M n , g)
! (5.9)
SM n
.
LZg
Zg
.
⎧ ⎨ LZg Ω = 0, ⎩ LZ ηg = 0. g n
1 (
(5.10)
SM
,
LZg Ωg = d[Ωg (Zg , ·)] + dΩg (Zg , ·, ·) = d[−dEg ] + 0
# (& , !
3 Æ 91 0 21 = −d2 Eg = 0.
Ωg = Fg∗ Ω
(1)
(
),
dΩg = Fg∗ (dΩ) = Fg∗ (ddηπˆ ) =
d(dFg∗ ηπˆ ) = 0;
(2) d2 = 0.
X ∈ T(p,v) (T M n ), ηg (X) = v, π∗ (X)g .
,
(p,v)
,
LZg ηg
7
= {d ◦ i + i ◦ d}η n Z Z g g g SM n SM = dv, π∗ (Zg ) n + Ωg (Zg , ·) n SM SM + dEg = d v2 n n SM
= 0. .
SM
:$3 + , ! '0" &" ! # ; * © ,.. '1 / .."% ! / * ! % # #(( ; 3) 14* #(( 7 12
+ 2 +*+, <4 3 2 5 =0 3 #135 §5.2
· 85 ·
(M n , g)
5.4
TM
n
Ωng
Riemann
.
G
TM
n
T Mn
, Ωg
g
.
(T M , G)
n
= a n Ωg ∧ · · · ∧ Ωg .
, ηg
n
bn ηg ∧ Ωn−1 , g
, (SM , G)
an
n
bn
n
.
dvolG = Ωng .
(5.11)
(5.11)
p ∈ M n,
.
Expp Rn → M n
{(x1 , · · · , xn )},
{Γkij (x)}
Christoff
Γkij (O) = 0,
p = Expp 0.
Ωg
= dv1 ∧ dx1 + · · · + dvn ∧ dxn
(p,v)
dvolG
(p,v)
= dv1 ∧ dx1 ∧ · · · ∧ dvn ∧ dxn ,
(n!)dvolG
dvolG
bn =
(p,v)
= Ωg ∧ · · · ∧ Ω g . n
SM n
= bn ηg ∧ Ωn−1 g
1 . (n − 1)! 5.5 (
,
.
an =
.
)
{φt }t∈R
.
(M n , g)
Riemann
(T M, G)
,
, {φt }
5.3
5.5
Liouville
.
§5.2
.
Synge
.
T Mn
(SM n , G|SM n )
.
.
1 n!
!!#$! +
2 5 - $ 4 3 ,-. ) Æ /0 6 + 2 + -$4 1 6 3 ©, % 1 6 # ( % > % 1 6 3 2&&73 7 3> " 2
.83 4 , 2 4 2 1 93 " 3 0 2 (" 5 3 1 6 3 32 &73 28+ 7 ' 6562 3 4 4 62 6 5 62 4 4 ) 5 6 62 5"
7% 833 + 7 > 3 =0 ? 6 & 7+ 7 > 8* '58
: 7 7 8 . 5 7 8 ..- 7 * $ + 7 9 37 $ > 8' & 3 7 5 > + ) 3 +* 626 # &7 & 7% 3" &7 & +/ 3> &7 , 7 3& #
" "
· 86 ·
Riemann
(M n , g)
5.6 (Lusternik, 1951)
Riemann
,
(M n , g)
.
5.6.
.
n
5.7
(M , g)
(M n , g)
π1 (Mn ) = 0,
.
},
lo = inf{L(σ)|σ
1
σi S → M
1 (i) L(σi ) l0 + , i (ii) σi
L(σ)
Mn
{σij }+∞ j=1
,
1
σ S →M .
[ϕ].
,
σ
,
Min-Max
Birkhoff
Birkhoff
Birkhoff
.
,
1
σ S →M
n
L(σ).
(M n , g)
Inj(M n , g),
L(σ) = l0 .
.
.
Inj(M n , g)
, {σi }
.
(M n , g)
.
Arzela-Ascoli
n
,σ
σ
(= q0 ).
,
N
L(σ) . N
N
qi
qi+1
.
τi
β(σ),
, Birkhoff
15
σ
N
σ [0, 1] → M n
qi+1
p0 , p1 , · · · , pN −1
pi ,
, L(σ) = L(β(σ))
L(σ)/N <
q0 , q1 , · · · , qN
qi
,
.
.
β(σ)
.
L(σ)/N < Inj(M n , g),
, S 1 = [0, 1]/{0, 1}.
β(σ)
{σs }0s1
σ0 = σ, σ1 = β(σ).
s1
L(σs1 ) L(σs2 ).
s2
σ [0, 1] → M n
=σ
.
[ϕ].
.
σ
σ
n
,
(iii) σi
τi
Mn
Riemann
i , N
.
i = 1, 2, · · · , N.
σ
σ 12 1 s ∈ 0, , σs 2
.
,
σ 12
i N
:$3
§5.2
· 87 ·
:
15
⎧ s ⎪ ⎪ ⎨ τi (t), i +t = σs ⎪ i N ⎪ ⎩ σ +t , N i i 2s + σ σ N N N
0 t 2sN , 2sN t N1 ,
# 8
.5 7 $+ 3> .. % 73 8' $+6 ;7 3> 3 ) < &" ! 8 &7 3 & 6 + 1 6 9 6 6 83(+1696 83 5 . &7 . 6 Æ & 7 ." * + ) 3 &4 ' Æ /" 78 8 & % -$ 4 τis 2s 0, N
= σ 12
.
i 1 + ; N 2N
,
σ1
σ1
.
,
τis
t∈ i 1 + σ1 N 2N i 1 i+1 1 + , + N 2N N 2N σ 12 σ1 . ,
Λcg (M n ) = {σ S 1 → M n |Lg (σ) c},
5.8 (Birkhoff
)
β Λcg (M n ) → Λcg (M n ) (i) β
Λcg (M n ), →
Birkhoff
Λcg (M n )
.
L(β(σ))
id Λcg (M n ) → Λcg (M n )
(ii) β
c < Inj(M n , g), N
N
.
σ
,σ
;
β(σ)
;
σ ∈ Λcg (M n ),
(iii)
L(β(σ)) L(σ),
σ
.
5.9 .
5.8
Birkhoff
g
S2
Min-Max
Riemann
5.6
,
(S 2 , g)
.
!!#$! ©, % # ; 3==0 ! 9;
=& Æ + > 2 5 1 9 8& *&+ 9 $4 3* 9 5 = $99 . 6 ! "
· 88 ·
δ0 = min
(S 2 , g)
,
σ
Inj(M n ) π ,√ , 2 K0 Bδ0 (p)
K0 = max2 {Kg (p)}. p∈S
.
δ0
σ S1 → S2
,
β(σ), β 2 (σ), · · · , β k (σ), · · ·
L(σ) < δ0 ,
,
Riemann
.
S 2 (1) S 2 (1) = {(x, y, z)x2 + y 2 + z 2 = 1}. S 2 (1)z = 0, x 0} , F
:
S2
F S 2 (1) → S 2 (
16).
{(x, y, z) ∈
[−1, 1]
16
F ([−1, 1]/{1, −1})→ (Λg (S 2 ), Λ0g (S 2 ))
y → F (·, y, ·).
? & $ : 7 / 164*
4 & &7 < ; * &+ ,5 * $
< 82 & c = max {L(F (·, y, ·))}.
N ,
−1y1
c < lnj(S 2 , g). N
lk = max L(β k ◦ F (·, y, ·)). −1y1
, β k ◦F
k, lk δ0 .
,
, βk ◦ F
5.8
.
F , deg(F ) = deg(β k ◦ F ) = 0,
deg(β k ◦F ) = 0. F
,
l k δ0 > 0
k
.
k,
{lk }k1
,
(5.12)
, lim lk = eˆ δ0 > 0. k→+∞
yk ∈ [−1, 1]
L(β k+1 ◦ F (·, yk+1 , ·)) = lk+1 .
:$3 % -/
, .83 2 & 0 24 5
7 : =
;= + ©, 4 28+ % %>< 9&7 9& > 35 . * 5 / , 28+ * $ + ,2
& % & ( -$4 % &?8 &+.6-% % ! &
4 9 = @A$ & $ * ? ==0 % §5.2
· 89 ·
σk = β k F (·, yk+1 , ·).
{σk }
, {σk }
{σkj }
lim σkj =
j→∞
σ ˆ.
L(β(ˆ σ )) = L(β( lim σkj )) = L( lim β(σkj )) j→∞
j→∞
σ ). = lim lkj +1 = ˆl = L(ˆ j→∞
5.8, σ ˆ
.
5.9
.
,
5.6
5.6
Mn
5.7,
n
πk (M )
M
n
n
, Hk (M , Z)
k
Hi (M ) ∼ = πi (M ) = 0 n
Hk (M n ) .
M
n
Hurewicz
n
.
πi (M ) = 0
1 i k−1
Mn
.
n
k
.
1 i k−1
,
,
n
i = k
πk (M ) =
Hn (M n , Z) = Z = 0.
,
k0 = inf{k 2|Hk (M n , Z) = 0} 2.
Hurewicz
kˆ0 = inf{k 2|πk (M n , Z) = 0} 2. ˆ
F S k0 (1) → M n
B
ˆ k−1
R
ˆ k−1
(x0 , · · · , xkˆ ) ∈ R
B
ˆ k+1
ˆ k−1
πkˆ0 (M n )
F
= {p ∈ R
|x = 1, x0 0, x1 = 0}.
ˆ k−1
Σ
.
|p 1}.
ˆ k−1
Σ
B
ˆ k−1
ˆ k−1
= {x =
.
F
ˆ
ˆ
F (β k−1 , ∂B k−1 ) → (Λg (M n ), Λ0g (M n )).
ˆ ˆ ˆ ˆ p ∈ B k−1 ∼ = Σk−1 ⊂ S k (1) ⊂ Rk+1 ,
{x1 = 0}
p
.
N
,
max{L(F (p, ·))} p
N
(M n , g)
< Inj(M n , g).
δ0 > 0.
j
β ◦ F (p, ·)
, ( F
-> lj = max L(Fj (p, ·)). ˆ p∈Σk−1
πkˆ (M n )
,
l j δ0
ˆ
p ∈ Σk−1 ,
Fj (p, ·) =
"
· 90 ·
!!#$!
$ 4 4
Riemann
* : 3&)=
$4 <; & .83 4 4192
4 & # .
< 8 2/ (& &
j
ˆ
5.8
ˆ
B j ◦ F (B k−1 , ∂B k−1 ) → (Λg (M n ), M n )
.
F
,
5.9
.
,
σk ∈ Image(β k ◦ F )
.
L(β ◦ σj ) = max {L(β j+1 ◦ F (p))}, ˆ p∈Σk−1
{σj }
,
L(ˆ σ) = L
lim σji
i→∞
Ascoli
5.8
= lim L(σji ) lim lji = ˆl, i→∞
.
σji → σ ˆ.
,
{lj }
i→+∞
,
L(σji ) L(σji +1 ) = L(β ◦ σji ),
1
:." & .. ,2
0 24 ? : 5 3 $ + > 7 @@;AA B ;. B < * 1 CB 0 2= . B < * . 6 - 0, (< * , C. .B<* B<* + - > lim L(σji ) lim lji = ˆl.
i→+∞
i→+∞
,
L(ˆ σ ) = lim L(σji ) = ˆl. i→+∞
,
L(β ◦ σ ˆ ) = lim L(β ◦ σji +1 ) = lim lji = ˆl = L(ˆ σ ). i→∞
5.8(iii),
i→∞
L(ˆ σ ) = ˆl δ0 > 0.
σ ˆ
.
§5.3
Hopf
,
Hopf
3.3,
.
.
n
5.10
(M , g)
F = Exp
Riemann
.
T M n → M n × M n,
(p, v) → (p, Expp v)
(
)
(
(M n , g)
detF∗ |(p,v) = 0
(M , g)
),
.
.
n
(p, v) ∈ T M n
.
{J(t)}
(M n , g)
Riemann
σ
Jacobi
DC=D#!!$ D " $+.! B<* *& + + - 5.B<* C ":& % $ + . B<* >$ *5 $E ?E 2& !84 & . B < * E 4* & &+ ":& C
2 +
2 6F - +.B<* ." * + )
$E ©, ,)"% * ! ) $ + ) .=/ §5.3
· 91 ·
Hopf
,
J (0) = 1,
J(0) = 0
σ
σ(0)
, J(t) t.
Rauch
.
.
n
5.11
(M , g)
,
(M n , g)
(T n , g)
,
Riemann
.
1948
, E. Hopf
5.12
g
n
(T , g)
.
R. Gulliver
mann
Tn
n
(M 2 , g)
g
p1 , p2 ∈ M
2
n=2
M2
1975 ,
g
Kg (p1 )Kg (p2 ) < 0.
, Hopf
,
Gulliver
5.12
M
2
.
.
5.13 (E.Hopf, 1949, n = 2, L.Green, 1958) .
Rie-
(M n , g)
(M n , g)
,
Mn
Scalg (p)dvol 0
(M n , g)
.
SM n
II
SM n → ⊗2 (M n ),
(p, v) → II(p,v) .
˜ n, ξ = (p, v) ∈ S M
σ(t) = Expp (tv)
Bξ =
+∞
Bt (σ(t)),
# @A* F ."FG $+ t0
˜ n , g˜) (M
Mn
g
,
=* #
!
><
t 1 < t2
Æ; &?%
Bt1 (σ(t1 )) ⊂ Bt2 (σ(t2 )).
w ∈ Tp M n , w ⊥ v,
,
g˜.
(5.13)
(5.13)
ht (w) = II∂Bt (σ(t)) (w, w)
ht (w) = −∇w w, σ (0), t > 0.
η−ε (w) = II∂Bε (σ(−ε)) (w, w) = −∇w w, σ (0),
!!#$! , ><= < "
· 92 ·
3) )"
, ht (w) < η−ε (w).
Hξ
Riemann
ht (w)
.
∂Bξ =
6 # ,-0
!$%"+ -0 = " = $B 3) G."8& &
& IIξ (w, w) = II∂Bξ (w, w) = lim II∂Bt (σ(t)) (w, w). t→∞
SM n
{φt }
Riccati
,
Gromov-Bishop
,
IIφt (ξ)
,
II φt (ξ) + II2φt (ξ) + R(t) = 0,
IIφt (ξ) (·, ·)
{Ei (t)}
(5.14)
(n − 1) × (n − 1)
.
En (t) = σ (t),
σ(t) = φt (ξ) = Expp (tv)
Rij (t) = R(Ei , σ )Ej , σ = R(σ , Ei )σ , Ej
R(t) = (Rij (t)).
R(t)
tr(R(t)) = Ric(σ (t), σ (t)).
Ricci
sphere)∂Bξ
IIξ
∂Bξ
,
(Horo-
.
(n − 1)(λ21 + λ22 + · · · + λ2n−1 ) (λ1 + · · · + λn−1 )2 ,
(trIIφt (ξ) ) +
§5.1
1
SM n
0
1 (trIIφt (ξ) )2 + Ric(σ (t), σ (t)) 0. n−1
Liouville
,
(trIIφt (ξ) ) dvolSM n dt =
SM
n
= SM n
..&
{trIIφt (ξ) − trIIξ }dvolSM n (trIIφt (ξ) )dvolSM n − (trIIξ )dvolSM n SM n
= 0. (5.16)
Mn
(5.15)
Scalg dvolM n = an = an
SM n 1 0
1 − n−1
Ric(ξ, ξ)dvolSM n
SM n
0
1
Ric(φt (ξ), φt (ξ))dvolSM n
SM n
(trIIφt (ξ) )2 dvolSM n dt 0,
(5.17)
HI #." " &** +) an
· 93 ·
.
(5.17)
(5.15)
⎧ ⎨ (trIIφt (ξ) )2 ≡ 0, a.e., ⎩
(5.18)
* 02 6 ( >##
% ( 83 ( 5 >@G 7 HHJ A, *
83 & . !8IC .> C.B<* 2& 83 ))
??K@C8#LI@ A B I C?JBJM K ND C LO@ KE AA CMC?JBQMK NDM B CLFP# L I AI B CMC C?JLFP#RN !!$A B D C=D LCDDE BQM KNDM GABS TLUCF?HJRN#LFPL #DCMG E? JDC = D#N IM C = D# !! HI F # J D $ L G F@DVOC?JPRN##$3 !! ABL F#HEJD OQ GW?#A$B3XF$ LSJJQCMGHLFPDMAAHPK F IL AADCB=D LL $ C CMFJKEJ@QYGRI J IH J K # ÆJ M AA B $ XK SNX # K D IL LNZRLU[I G:F I C #LTUDVJMA S IIφt (ξ) ≡ 0,
IIφt (ξ) = λ(t)I,
a.e.,
Riccati
Rφt (ξ) = (Rij (t)) = 0
.
(M n , g)
.
Rφt (ξ) (·, ·)
,
ξ
Rφt(ξ) (·, ·)
,
.
ξ
, E. Hopf
1948
.
40
,
IIξ (·, ·)
,
,
Ballmann, Brin
,
1994
, Hopf
, IIξ
5.12
Burago
(
Expp
.
Sn
(ii)
(n 2).
p
p0
q
(M , g)
Ω
˜ Ω
[BI].
x
˜ n , g˜) (M
,
),
Sn
M
p
q,
?
Riemann
R
˜n M
.
n
n
Mn
,
?
3.1(
{p, q} ∈ M ,
n
§3.1)
˜ h 3. (i) h ˜ ˜ h (0) h (0) h(x). (ii)
,
det [F∗ (x)] = 0
¯ n , gˆ) (M
.
)
(
Riemann
n
2. (i) ˜ n , g) (M
.
˜n F R →M
(M , g˜) n ˜ Tp M → M˜n
(iii)
,
n
˜n
(ii)
Ivanov.
Gulliver
)
˜n F Rn → M
1. (i) ˜ Mn
Burns
(M , g)
˜
˜ h(0) = R(0), h (0) = h (0) = 0,
?(
Taylor
2
.
h(x)
.)
˜ Ω ⊂ Ω.
∂Ω
˜ ∂Ω
(
.
k∂Ω (p0 ) k∂ Ω˜ (p0 ),
p0 , ψ [−ε, ε] → ∂Ω k∂Ω (p0 ) = ψ |p0 N p0 = (0, −1)). ( ,N
∂Ω
p0 ψ(0) = p0 , N
"
· 94 ·
Riemann
!!#$!
: H? J MINWOZ? J MI A B CSMOOTX #?J@ HYUDTR ZWOZ?J@ A B I C?V$3 CP #?BQKP\[I[ C G S TX #?J@ S Q IL C TX #O?@MMA OU TX #P@S LN$!#UO@DPSVW S #RCS #CEH $ S\DNS VK GDEF TRL : $3$WPYQ#F AB S? JRN# !!$A B I C?JWPYQ S LFP MDC=Q G I SW? #O P #$3 X ]G H"?YILKVKD NWC #?JQIDSMRS RGN? $3 LY LO@ KE X^ CWPYQ #?JF B SS?JF IL !!S_VI #GYNST C]@Z[DE LY I C # #: $ 3 17
Jacobi
4(
Jacobi
,
0
y2 (t) = c(t)y1 (t)
). (i)
y2 (t) = y1 (t)
σ R→M
(ii)
n
t
a
, {Ei (t)}
1 ds. y12 (s) σ
Rij (t) = R(σ , Ei )σ , Ej , A(t) = (aij (t))
0).
y +ky =
y1 (t)
∇σ E i =
(
Jacobi
A (t) + R(t)A(t) = 0
.
detA(t) = 0
,
Bc (t) = A(t)
Jacobi
(5.19)
˜ = A(t) A(t)
A∗
A
,
c
t
A−1 (s)[A−1 (s)]∗ ds
Bc (c) = 0. t
0
(5.19)
(5.19) −1 −1 ∗ A (s)(A (s)) dsC1 + C2 ,
a∗ij = aji , C1
Jacobi
C2
.(
(5.20)
(5.20)
,
.)
5(
˜ n , g˜) (M
).
˜n M
˜n → ϕ M
Riemann
.
(i)
n
˜ , g˜) (M
,
˜n σp,q [0, d(p, q)] → M
p
q
,
hϕ (p) = d(p, ϕ(p)).
∇hϕ .
(ii)
p
{ϕ−1 (p), p, ϕ(p)}
hϕ
(ϕ ◦ σ)(t) = σ(t + c) ˜ n → Mn Riemann ,π M
(iii) ,
π◦σ
[ϕ]
t
,
σ
, ϕ ∈ π1 (M n ). .
σ
ϕ
,
˜n σ R→M
.
(M n , g) ϕ
HI
· 95 ·
HZK PILK GL X`QG?V #F I $ L A B CTaS #?JF^[ C LO@ K IL EG LS AB C SF^[ Q I @ IU #?F C #?JQID S D C=DQ ILLO@ QBD O@_VbWK (iv)
5.7
6 (O Sullivan
). n
˜ n. σ R→M
ϕ
ϕ
.
n
ϕ ∈ π1 (M )
(i)
).
ϕ ∈ π1 (M n ), ˜ n , g˜) (M n , g), (M
,
π1 (M )
(
ψ eπ1 (M
ϕψ = ψϕ
n)
hϕ (x) = d(x, ϕ(x)).
hϕ (ψ(x)) = hψ−1 ϕψ (x).
ϕ ∈ π1 (M n ) σ
(ii)
˜n → R , hϕ M
, x0 ∈ σ
ϕ
˜ n, k ∈ Z y∈M
?
hϕ
˜ n , g˜) (M
, x0 = σ(t0 ).
,
,
kd(x0 , ϕ(x0 )) = d(σ(t0 ), σ(kc + t0 )) k−1 d(ϕj y, ϕj+1 y) + d(σ k x, σ k y) d(x0 , y) + j=0
LSB DCD=CD=$ADQBHE #QICJD F^[C H#TB W#L%YUH`QIL DU C\D AUL F#X?JDO@?V:$3P\ OU@aT' VPK AB SMDC=D IL c $UHND CIL #X?D O@ JbNT[ 3O]E #FP\ « W%Y G Db#ILFXYÆVW#EH K@C #LI G S TFH C #?JQGN I YL CM@ S?JSQG !! L CMZ D@DZ^ZVbNcJ #:$ 3 LY VbNcJ # : $ 3 K@C #LI G C?J[_ #:[H Z@ `Q[\ L #$ 3!CM`Z@_CMCNd]VTN CCMC@HE?J F# bY#^J C 2d(x0 , y) + kd(y, ϕ(y)).
˜ n , g˜) (M ˜ n , g˜) (M
(iii)
(iv)
hϕ
x0
n
ϕ ∈ π1 (M )
hϕ
(
.
)
?
hϕ (x) ≡
(i)∼(iii)
n
.
C
,
(M , g)
.
S 1 → M n → M n /S 1 .
(v) (Hopf
(M n , g)
).
, π1 (M n ) = Z ⊕ · · · ⊕ Z = Zn .
Mn
n
. (
˜ n , g˜) (M
(v)
7(
).
p
n
(
Hopf S
3
)
.)
.
3
?
, g
S
3
(S 3 , g)
.
(M n , g)
Riemann
(M n , g)
,
?
8(
{φt }
).
Σ2
(ergodic)? ( ?
, (Σ2 , g)
2
SΣ2
{φt }
2
vol (Ω)[vol(SΣ − Ω)] = 0?)
.
Ω(
SΣ2
φt Ω ⊂ Ω)
I¦ J¢K¨LM - 9* & &
C W 4ea\\`b\` * 7 8=* =4c"c" 2 NOPQ+ 8+ - * +
88+ + -
@A=X Æ ] "&+
] "* & + ©, % % # *
@A=> 4 * 30
.
.
§6.1
,
.
.
6.1.1
Rauch
.
n
˜ , g˜) (M
6.1 (Cartan-Hadamard)
Riemann
,
˜n → M ˜n Expp Tp M
,
˜ n , Expp Rn = T p M
, M˜n
.
{(t, Θ)}
Rn
,
Θ ∈ S n−1 (1).
˜ n, F = Expp Rn → M
(t, Θ) → Expp (tΘ)
.
∂ ∂θi
S n−1 (1)
.
Gauss
∂ ∂ F∗ ≡0 , F∗ ∂t ∂θi ∂ ∂ F∗ = = 1, ∂t ∂t
F∗ ∂ ∂ = 1. ∂θi ∂θi
(6.1)
$3f`Q[\$d[\ ! =
$ " 7 , 02 1 & * , * ,
8+ 1 5 @A=X ] "* &+ 7 , 8+ - +*, 1202- e a
d g > b-g> + Y ©, b-g!f* # -f* &
@A=>
) ..2 f* #(( §6.1
· 97 ·
∂ σΘ (t) = Expp (tΘ). J(t) = F∗ |(t,θ) t σ ∂θi ∂ ∂ J(0) = 0, J (0) = ⊥ σ (0) J (0) = ∂θi ≡ 1. ∂θi , ∂ = J(t) t, t F∗ ∂θi
p
Jacobi
.
K 0,
Rauch
(6.1) ,
v(t, θ) ∈ Rn
F∗ |(t,θ) v v
.
F
.
.
6.1,
, abc
Cartan-Hadamard
Cartan-Hadamard
6.2 ( ˜n M
Cosine
(M , g˜)
a
b,
c
c2 a2 + b2 − 2ab cos θ.
abc
x
.
Cartan-Hadamard
abc
.
θ,
Cosine
˜n
)
˜n M
.
˜ n , g˜) (M
6.1,
Rn
.
y.
p
(6.2)
abc
,
6.1
˜ n, Rn → M
F
v → Expp v
x∗ = F −1 (x)
.
R2 √ a2 + b2 − 2ab cos θ.
y ∗ = F −1 (y).
{O, x∗ , y ∗ }
c¯ = d(x∗ , y ∗ ) =
c = d(F (x∗ ), F (y ∗ )) c¯ =
a2 + b2 − 2ab cos θ.
7 c * 5&& ] $E "&? d 12 d % d5;( . d 5& ] $E " .
c2 = a2 + b2 − 2ab cos θ
˜n M
2
.
Cartan-Hadamard
6.3 (
,
)
abc 2
.
abc
π.
.
abc
,
Cartan-Hadamard π
, abc
e Z@`Q[\#!! © , g > 7 d g> E d 9 % $f^$& ,* "
· 98 ·
abc
R
2
{a, b, c},
{a, b, c},
,
R
)
{θ1 , θ2 , θ3 }.
{θ1∗ , θ2∗ , θ3∗ }.
2
θ1∗
+
θ2∗
+
θ3∗
(
18
= π.
: > g d g a& & ,." ** 3) ." * 0 ge 7 RST(UV¤W§XY 7 - @A* 1=) .- +
+ -
$5 " I )
+! ! " ©, ' #(( 5 - 18
θi θi∗ .
c
θ3
.
(6.3)
Cosine
a2 + b2 − 2ab cos θ3 c = a2 + b2 − 2ab cos θ3∗ ,
− cos θ3 − cos θ3∗ .
θ2∗
θ2 θ3∗ ,
, θ3 θ3∗
(6.3)
i = 1, 2, 3
,
.
θ1
.
.
.
6.1.2
.
6.4
n
(i)
σ
(M , g)
Jacobi
, {J(t)}
Riemann
,
d2 J(t) 0. dt2
(ii)
2
,
(6.4)
(M n , g)
d J(t) 0, dt2
σ
n
(M , g)
J, J d J(t) = dt J
.
σ
Jacobi
$3f`Q[\$d[\
§6.1
d2 J = dt2
· 99 ·
[J, J J + J , J J] −
J, J 2 J
J2 −R(σ , J)σ , JJ2 − J, J 2 + J 2 J2 = . J3
- I ) "* ! * " #(& (i)
, −R(σ , J)σ , J 0,
d2 J 0. dt2
,
(ii)
(6.4)
Jacobi
p = σ(0), E ⊥ σ (0),
.
K(σ , E) = R(σ , E)σ , E 0.
{J(t)} J(0) = E, J (0) = 0. d2 J −R(σ , E)σ , E · 1 − 0 + 0 0 = dt2 t=0 1 = −R(σ , E)σ , E.
σ
Jacobi
712 @A* =
# @A* 5 ©=* , *! ." % 8 7 7 &" % 7 9 4 .
6.5 (
˜ M
n
,
)
˜ n , g˜) (M
Cartan-Hadamard
, σi R →
i = 0, 1.
h(t) = hσ0 ,σ1 (t) = d(σ0 (t), σ1 (t))
.
h
˜n ηa [0, 1] → M σ0 (b)
(
σ1 (b)
σ0 (a)
,
a < b, a+b 1 [h(a) + h(b)]. 2 2 σ1 (a)
. ˜ F (s, ·) [a, b] → M
19).
:
19
(6.5)
,
ηa (s)
˜n ηb [0, 1] → M ηb (s)
"
· 100 ·
F
e Z@`Q[\#!!
˜, [0, 1] × [a, b] → M
2 "
$ 7 " 2 &
=*
(s, t) → F (s, t). ∂F ˜n (s0 , t) F (s0 , ·) [a, b] → M ∂s t∈[a,b] ∂F (s0 , t) (6.4) t→ t , ∂s ∂F ∂F 1 ∂F a+b ∂s s, 2 2 ∂s (s, a) + ∂s (s, b) (6.6) dηb 1 dηa = + 2 ds ds
0 , Jacobi . 0
* > ..& .
L(η) η , 1 ∂F a+b a+b a+b ds h L F ·, = s, ∂s 2 2 2 0 1 1 dηa dηb 1 ds + ds ds 2 0 ds 0
7
=
1 [h(a) + h(b)]. 2
@A* = ' 12!* 4 * & 3=& .*##
@A8 _ ©, !* ,
3& 1 ] _ 4 * & 8 I7 - * * -%# # - 7 ! * & # d 9 $ ] _ ( . g a& .
Cartan-Hadamard
.
˜n M
6.6
Ω Cartan-Hadamard n ˜ , x∈M PΩ (x) ∈ Ω
(i)
,
d(x, PΩ (x)) = d(x, Ω);
(ii)
PΩ
˜ n → Ω, M
x → PΩ (x)
.
˜ n, x ∈ M
(i)
d(x, yx ) = d(x, Ω). yx ,
yx∗
yx
,z
σyy∗
l = d(x, z).
zxyx
α + α∗ = π.
Ω
yx∗
∈ Ω, .
σyy∗
zxyx∗ ,
yx ∈ Ω
,
η
d(x, yx∗ )
= d(x, Ω). ˜ η [0, l] → M n z σyy∗
z
π . 2
x
z,
α
π α . 2
σyy∗
α∗ (
20).
Cosine
§6.1
$3f`Q[\$d[\
· 101 ·
:
20
l2 + a2 − 2al cos α > l = d(z, x).
h- A . *
A* . *<; : * ;,
* ." * * E ) ("& 6A . * # da
5(. # d(x, yx )
d(yx , z) = a = 0.
2a = 0, Ω
yx
Ω
x
x
.
, d(yx , yx∗ ) =
.
(ii)
d(x, y) d(PΩ (x), PΩ (y)).
{x, y} ⊂ Ω
. 1)
x ∈ Ω,
y
,
y ∈ Ω.
xyPΩ (y)
Ω
Ω
(6.7)
. 2)
{x, y}
xyPΩ (y) .
PΩ (y)
).
(6.7)
Cosine
θ
π ( 2
PΩ (y)
,
d2 (x, y) d2 (x, PΩ (y)) + d2 (y, PΩ (y)) − 2d(x, PΩ (y))d(yPΩ (y)) cos θ
;06* ..;06 d2 (x, PΩ (y)),
(6.7)
. 3)
:
21
˜ n \Ω. {x, y} ⊂ M
% σ1
PΩ (x)
e Z@`Q[\#!! # d 3 ) 9 ..%2 <= "
· 102 ·
7 7 3) % 0 2 (" - (" & h` =* * 7 Z2 - * * 8 & 2 = 8 & =& i .' & @A8_ Z[\]+ &.<=&) $ & h @A @A* !-& - #- 3> , $%b^ +) - ] & ,- &$% ] & =& + $Ef *
-$% $ + 4 ]-&$% .@a- & 5& ] $Ef - $% ] & 4] .@a- & ©, $ Æ/0 * ] &5 3 =& 0 22
=* E 0 2 < * ˜ n. , σ1 [0, 1] → M
x
.
xPΩ (x)PΩ (y)
θ1
PΩ (·)
,
, h (0) 0.
h
PΩ (y)
y
PΩ (x) , θ2 ( 21). π π θ1 θ2 . h(t) = 2 2 h (0) = − cos θ1 − cos θ2 0. 6.5
,
d(σ1 (t), σ2 (t)).
˜n σ2 [0, 1] → M
,
h (t) 0
.
t 0, h [0, 1] → R
d(PΩ (x), PΩ (y)) = h(0) h(1) = d(x, y).
.
KM n 0
˜ n , g˜), (M
2
2
6.6
6.6
.
2
{(x, y, z)|x + y + z = 1}
Ω
. Ω
,
2
PΩ (q)
,
2
PΩ S (1) → Ω
S (1) =
q = (0, 0, 1)
,
.
6.1.3
.
˜ n , g˜) (M
.
A
B,
Haus-
dorff
Hd(A, B) = inf{r > 0|Ur (A) ⊃ B, Ur (B) ⊃ A},
˜ n |d(x, A) < r} Ur (A) = {x ∈ M
A
r
.
{σ1 , σ2 }
+∞.
Y1
Y2
Hd(σ1 (R), σ2 (R)) <
Hd(Y1 , Y2 ) < +∞,
(
).
6.7 (
(1)
σ1
˜ n , g˜) (M
)
Cartan-Hadamard
˜ n , g˜) (M
σ2
.
.
a = Hd(σ1 , σ2 ),
˜n ϕ R×[0, a] → M
ϕ(R×{0}) = σ1 (R)
σ2 (R).
ϕ(R×{a}) =
.
(2) (Eberlein, 1982)
Y1
Y2
, a = Hd(Y1 , Y2 ).
˜n ϕ Y1 × [0, a] → M
ϕ(Y1 × {0}) = Y1
ϕ(Y1 ×
{a}) = Y2 .
,(1)
(2)
.
.
6.5,
h1 (t) = d(σ1 (t), Y2 )
σi R → Yi
.
(2).
.
Hd(Y1 , Y2 ) = a
,
$3f`Q[\$d[\
< =* 5 ** * 3 ) # ,
3=& 1 2 &##
@A8 _ )* 5. f*! 6? f* d 5(. a §6.1
· 103 ·
h1 R → R
. h1
,
h2 (t) = a,
Yi
.
˜ n → Yi PYi M
6.6
(PY1 ◦ PY2 )
(PY1 ◦ PY2 )(x1 ) = x1 . x1
a
h2 (t) = d(σ2 (t), Y1 ).
,
.
h1 (t) = a
θ
.
x1 ∈ Y1 ,
{x1 , x1 , PY2 (x1 )} π . Cosine , 2
.
Y1
x1 =
h : _ E ." * < ; , &" ,
@A= &."& .@ .. # ( > ! # ,
) * =& ) f* b&g"bcf* g 9d5( -, . dÆd 2 & d5;( . & cf* d + ) & ] - + & - ÆÆ ?
'1 ] . @ a- 7 a2 + d(x1 , x1 )2 − 2ad(x1 , x1 ) cos θ > a.
a = d(x1 , PY2 (x1 ))
x1 = x1 ,
,
PY1 ◦ PY2
.
PY2 ◦ PY1
PY1
= idY1 ,
,
= idY2 .
Y2
PY2
Y1
PY1 |Y2
,
.
˜ n, Y1 × [0, a] → M
ϕ
(y1 , t) → σy1 ,PY2 (y1 ) (t),
˜ σx,y [0, l] → M
y2 = PY2 (y1 )
x
y2 = PY2 (y1 ),
{y1 , y1 , y2 , y2 }
,
Σ
y1
y1 ,
Y1
Y2
PY1 ◦ PY2 |Y1 = π . 2
22),
Σ
( 6.3) π .Σ 2π 2 ϕ(σy1 ,y1 × [0, a])
.
.
{y1 , y1 } ⊂ Y1 . Σ(
PY2 ◦ PY1 |Y2 = idY2 .
idY1
y
2π.
Σ
.
˜n ϕ Y1 × [0, a] → M
.
: . & - > < ! .i5c 22
,
.
e Z@`Q[\#!! [jd e ekgij ! - F F G 5&+f ^ . "&7 7 &+3 7 - Æ/ ^_`abVc /de+
- $ 4 6 & !
* 2 + .@* -4 * & ©, j= < 5 * j 3Æ , 3 < 5 2& ) * -, 1 ]" .; *=*? 3
=* ' .;I* .;* 4 & % 8 7#6 97 *% ac 1 <; .;* "
· 104 ·
§6.2
Preissmann
Cartan-Hadamard
Mn
,
Mn
,
Mn
,
n
π1 (M )
.
M
K(π, 1)
n
.
n
π1 (M )
.
6.2.1
Cartan
(M n , g)
, ϕ ∈ π1 (M n )
Riemann k
k, ϕ = 1.
Cartan
ϕ
ϕ
ϕ = 1.
,
Z.
.
6.8 (Cartan
˜ n , g˜) (M p
,
˜ n , g˜) ) (M ˜ n ). G ⊂ Iso(M ˜n M G
G{p}
A.
Cartan-Hadamard ˜n M p
, G
G
.
A
A
.
˜ n → R, M
rA
x → max{(d(x, a))}. a∈A
˜ n , g˜) (M
x→∞
Cartan-Hadamard
rA (x) → ∞.
,
rA
,
,
rA
x0 .
.
x0
rA
.
rA
σ
x0 x∗ 0
d(ˆ y , a) <
π . 2
, d(·, a)
,
x0
x∗0
˜n x∗0 ∈ M
,
˜n x∈M
yˆ,
max{d(x0 , a), d(x∗0 , a)}
rA (ˆ y ) < rA (x0 ) = rA (x∗0 ),
rA (x∗0 ) = rA (x0 ) = inf rA (x).
23
.
rA
:
23
θa +
Cosine
θa∗
= π, max{θa , θa∗ } x0 .
TaSf $fKhPK , 2
.; * .; * * 7 12
-
.i ! - $ 4 5& ! 6 ©, % F FG $4 % Ag.@? G < *&; 5 5.G * +&E! - $47 .* < fg¬`! +
. @\ % .@ % §6.2
· 105 ·
Preissmann
G(A) = A.
G{x0 } = {x0 },
x0
G
.
.
˜ M
π1 (M n )
M
ϕ
.
.
G
,
G{p} ˜n M G ⊂ π1 (M )
. G
n
Z.
,
6.2.2
g
ϕ ∈ π1 (M n ), ϕ = 1
x0 .
, G = ϕ
n
.
G = ϕ
,
Z.
˜ M
, g˜
˜ n , g˜) (M
˜n M
π1 (M n )
ϕ
n
,
Mn
,
ϕ
n
rA
.
(M n , g)
6.9
.
rA (G(x)) = rA (x). G(x0 )
,
.
Preissmann
˜ n , g˜) (M
Cartan-Hadamard
,
ϕ
˜ n , g˜) (M
,
˜ n |d(x, φ(x)) = inf d(y, φ(y))}. Min(φ) = {x ∈ M ˜n y∈M
G
˜ n , g˜) (M
,
Min(G) =
!
Min(φ).
& 2 - + !\ &!
2 -=&+.@ *
, $%` - + .@ &!©, ! 02 $` 5 9 k< * +) l& ! ,
. @ * ! 6 * =* φ∈G
.
6.10
Z.
ϕ
ψ
π1 (M n )
(M , g)
(1) Min(φ)
,
˜ , g˜) (M
(2) ψ[Min(φ)] = Min(φ), D×R . (1)
x
ψ, ϕ
.
Ω × R; ϕ
.
2
Z⊕
,
n
Min(φ) R
"
2
Min(ψ)
,
Min(φ)
"
R
Min(ψ)
.
x ∈ Min(φ),
d(x, ϕ(x)) = c = inf {d(y, ϕ(y))}. ˜n y∈M −1
{x, ϕ
δϕ (y) = d(y, ϕ(y))
σx R → Min(ϕ).
σx
σx (0) = x
{x, y} ⊂ Min(φ),
{σx , σy }.
(x), ϕ(x)}
ϕ(σx (t)) = σx (t + c). ϕ
,
h(kc) = d(σx (kc), σy (kc)) = d(ϕk (σx (0))),
h(t) = d(σx (t), σy (t))
ϕk (σy (0))) = d(x, y) = b
Ω×R
k
.
h(t)
t
,
e Z@`Q[\#!! ! & - 6 &
= .@a- < 02$Ef &4] & $% c ..& ,
* 5 =& k &
$Ef 2 . @ , !\ -/
"
· 106 ·
{k1 , k2 }
t,
k1 < t < k2 .
h
,
h(t) max{h(k1 ), h(k2 )} = b,
Hd(σx (R), σy (R)) = a b ˜n η R× [0, a] → M
.
6.7
η(R× {0}) = σx (R) η(R× {b}) = σy (R). n ˜ s ∈ [0, a], η(·, s) R → M σx . ϕ
,
η(R × {s})
, η(R × {s}) ⊂ Min(ϕ).
δϕ (x) = d(x, ϕ(x))
= δϕ−1 ({c})
η(R × [0, a]) ⊂ Min(ϕ).
c = inf {δϕ (y1 )}
,
˜n y∈M
, Min(ϕ) = δϕ−1 ([0, c])
x0 ∈ Min(ϕ),
.
Ω = {y ∈ Min(ϕ)|Exp−1 x0 y, σx0 (0) = 0}.
Ω × R.
Min(ϕ)
(2)
ψ
ϕ
,
& =& % @A8_ ! , -/
δϕ (ψ(x)) = d(ψ(x), ϕψ(x)) = d(ψ(x), ψϕ(x)) = d(x, ϕ(x)) = δϕ (x),
ψ(Min(ϕ)) = Min(ϕ). (1)
, Min(ϕ)
Pϕ
˜ n → Min(ϕ) Pϕ M
.
˜ n, x∈M
,
##c 2 & ,
6.6
ψMin(ϕ) = Min(ϕ),
Pϕ (ψ(x)) = ψPϕ (x).
(6.8)
δψ (Pϕ (x)) = d(Pϕ (x), ψPϕ (x)) = d(Pϕ (x), Pϕ (ψ(x)))
(6.9)
& , & -& & - ! *
4 & $ +
$% $E f ]& ] f ^ $&
f ^ $& # % $Ef 5 $% $&] &.@ # d(x, ψ(x)) = δψ (x).
(6.6) (
Min(ϕ)
"
Min(ψ) = ∅,
Min(ψ)
x ∈ Min(ϕ)
σxϕ (0) = x
, "
Pϕ (Min(ψ)(
Min(ψ),
σxψ (0) = x,
,
x ∈Min(ϕ)
"
{ψ ◦
ψ◦
"
σxϕ
σxϕ
σxϕ
, ψ σxϕ
σxψ
.
σxϕ (R)}k∈Z .
Y1 = R2x ,
R2x1 × [0, a],
σxψ ,
.
.
R2x ⊂ Min(ϕ)
R2x
Min(ψ)
)). ,
Min(ψ),
x ∈ R2x , ψ, ϕ
,
(1)
ϕ
ψ(Min(ϕ)) ⊂ Min(ϕ), k
Pϕ (Min(ψ)) = Min(ϕ)
, R2x1
a = Hd(R2x1 , R2x2 ).
"
Min(ψ), R2x2
TaSf $fKhPK * ..% 0 2 & . @ 7 12
2 © 7, , !!\* 5& ! 6 &
.i - $ 4 !\ ! - & 5 : ] f ^ < ; 1 # 7 5 hi¬`!jklmn+ *
- 44 m] a h n" l, - i < 8 2
e i
!\ ,91
!\
o> §6.2
· 107 ·
Preissmann
x0 ∈ Min(ϕ)
"
Min(ψ).
D = {y ∈ Min(ϕ)
,
Min(ϕ)
6.11 (Preissmann
"
!
2 Min(ψ)|Exp−1 x0 y, Rx0 = 0}.
D × R2x0 .
Min(ψ)
.
(M n , g)
)
Riemann
n
,
Z.
π1 (M ) ,
n
H
, π1 (M n )
Cartan
π1 (M )
,
{ϕ, ψ} ⊂ H, {ϕ, ψ}
H
˜ n , g˜) (M
Z,
H = ϕ0 ∼ = Z,
.
R2 ,
lϕ0 = inf {lϕ }
.
lϕ = inf {δϕ (y)}.
.
˜n y∈M
ϕ∈H ϕ=1
6.2.3
.
.
.
G
G = Gk Gk−1 Gk−2
· · · G1 G0 = 1 (i) Gi
Gi+1
,
(ii)
Gi+1 /Gi
G
.
,
,
,
⎧⎛ ⎪ ⎪ ⎨⎜ 1 G= ⎜ ⎝ 0 ⎪ ⎪ ⎩ 0
.
⎞
⎟ m ⎟ ⎠ 1
k,
l
1
⎫ ⎪ ⎪ ⎬ k, l, m ∈ Z ⎪ ⎪ ⎭
o> $ !\ ^ o> // 2 - mn : & ;= C
2 - +
5 $E G5+ ":&5bFG ; &! + C + j j j j & jj
,
0
.
G
.
?
,
6.13.
1968
, J.Wolf ,
M
,
n
(M n , g)
Preissmann
π1 (M n )
(M n , g)
,
n
n
n
Z
, π1 (M )
π1 (M n )
Bieberbach
n
|π1 (M )/Z |
.
1971
, Lawson-
,
n
.
Gromoll-Wolf
(§6.3)
,
[Y1],
e Z@`Q[\#!! & - 12 $E:& 2 - ©,&!$ +) Æ; ] " ]_- _- $E:&"$E:& +!
, ] _ - I9 ] a- , &!4 &! 1& - + . @& ! # , $` F FG &c ! *
] "$E:& 7 j jd + j j
2 - + - +. @& ! *
2$E 5 . G Æ ©, G + Æ & ! &
& ! - , = +
> , !\ 2 $* Ælp '?: -=& +
= .@ - * ?: * ? :
> * "
· 108 ·
[LY]
[GW].
6.10(2)
6.12 (
(M n , g)
)
Zk
Mn
k
f T
k
→ M
.
n
T
f∗ π1 (T k ) → π1 (M n )
˜n f˜ Rk → M
(
π1 (M n )
,
α1 , · · · , αk ,
k
k
f
,
, f
, π1 (M n )
).
π1 (M n )
,
,
Zk .
Zk ∼ = Zα1 ⊕ Zα2 ⊕ · · · ⊕ Zαk = k " Min(G) = Min(αi ) , Min(G)
G
6.10(2)
i=1
D × Rk ,
˜n → M π M
.
π({x0 } × Rk ) = Σk
x0 ∈ D,
.
Rk
G
k
.
.
.
[Y1]
6.13 (
G
M
n
)
n
(M , g)
Riemann
n
π1 (M )
,
,
Min(G)
D × Rk
(1) G({d} × Rk ) = {d} × Rk ,
d∈D
(2) {d} × Rk /G
,
{d} × Rk
(3) Φ = {ϕ ∈ G|Φ ,G
}
G
G
m
m = 1,
Z
.
|G/H| < ∞.
Min(ϕ)
ϕ
G = Gm Gm−1 · · · G0 = {1}
,
G
.
k
H
˜ n , g) → (M ˜ n , g) ϕ (M
.
,
,
.
G
,
6.12(2)
6.12,
(1)∼(3)
.
(6.13.A)
X
Cartan-Hadamard
G
,Ω
X
,
(1)∼(3)
(6.13.A)
m−1
A
X
, G(Ω) = Ω.
.
m=1
.
(6.13.A)
.
G = Gm Gm−1 = A Gm−2 · · · G0 = {1},
Min(G)
"
,
Ω
$ K@PK e 02-/ !\ e, 1 2 + , i ! .@ - & .. 2 +? : * 7 m`ij & ! - k ! & 2 5" - /f
+ 2 - + ( - $ 4 ? . @
©, + '4 4 / d
& % & + =Æ
2 + - G + . - $ 4 ?© ,! I' I4 2 i 2 & , 2 4 & -/
§6.3
Gromoll-Wolf
· 109 ·
Lawson-Yau
Min(A) = DA × RkA
G
,
−1
ϕ∈G
,
ϕ
G/A
.
A
Aϕ = A.
δψ (ϕ(x)) = d(ϕ(x), ψϕ(x)) = d(x, ϕ−1 ψϕ(x)) = δϕ−1 ψϕ (x),
ϕMin(ψ) =Min(ϕ−1 ψϕ).
ϕMin(A) = Min(ϕ−1 Aϕ) = Min(A)
G(Min(A)) = Min(A).
G = G/A
,
DA
G (DA ) = DA .
Min(G ) = D × RkG ,
(6.13.A),
D×R
kG
×R
kA
=D×R
k
(1)∼(3)
§6.3 Gromoll-Wolf
,
.
Min(G) =
.
Lawson-Yau Mn
K(π, 1)
n
π1 (M )
.
.
.
n
6.14 (Gromoll-Wolf, Lawson-Yau)
(M , g)
π1 (M n ) = Γ 1 × Γ2
,
(M1 , g1 ) × (M2 , g2 )
(M n , g)
.
π(Mi ) = Γi
6.14
(i = 1, 2).
,
.
.
A
Cartan-Hadamard
X
X
,
Con(A)
A
.
6.15
˜ n , g˜) (M
˜ n /(Γ1 × Γ2 ) M ,
.
˜ ,Con((Γ1 {x0 })/Γ1 ) x0 ∈ M Mn
,
.
{xi } ⊂ Con(Γ1 {x0 }),
{ϕi } ⊂ Γ1
Mn =
Γ2
n
.
Γ1 {x0 }) → ∞.
, π1 (M n ) = Γ1 × Γ2
Cartan-Hadamard
{ψi } ⊂ Γ2
d.
d(ψi (x0 ), x0 ) = d(ϕi ψi (x0 ), ϕi (x0 )) d(xi , ϕi (x0 )) − d(ϕi ψi (x0 ), xi ) d(xi , Γ1 {x0 }) − d → ∞,
d(xi ,
d(ϕi ψi (x0 ), xi )
e Z@`Q[\#!! g % , !\ c k "
· 110 ·
{ψi } ˆ ˆ {ψ1 , · · · , ψm }
i = j
, ψi = ψj .
Γ2
Γ2
.
sup
y∈Con(Γ1 {x0 })
Γ1
.
d(y, ψˆj (y)) rj = d(x0 , ψˆj (x0 )),
j,
δψ-1 ψˆj ψi (x0 ) = d(ψˆj ψi (x0 ), ψi (x0 )) i d(ψˆj ψi (x0 ), ψˆj ϕ−1 (xi )) + d(ψˆj ϕ−1 (xi ), ϕ−1 (xi )) i
i
i
+d(ϕ−1 i (xi ), ψi (x0 )) = d(ϕi ψi (x0 ), xi ) + δψˆj (ϕ−1 i (xi )) + d(xi , ϕi ψi (x0 ))
, 2 ? a -$4 ? <!\ ! 1 ; 7 + 4
] + .@&! ©, %
=&
2 .; ! .;& ! % .@&! # .@ "%% d + rj + d.
˜ n /(Γ1 × Γ2 ) Mn = M
,
i, k
ψi−1 ψˆj ψi = ψk−1 ψˆj ψk ,
ψi−1 ψk
ψˆj
{ψˆ1 , · · · , ψˆm }
.
,
.
Γ2
˜ n , Con(Γ1 {x0 }) M ˜ 1 , g˜1 ) × (M ˜ 2 , g˜2 ). (M
6.15
Riemann
,
. n ˜ (M , g˜)
F = {Ω|Ω ⊂ Con(Γ1 {x0 }), Γ1 Ω = Ω, Ω = ∅, Ω
Con((Γ1 {x0 })/Γ1 )
,F
[0, ly ],
$%,
Ny
x0 ∈
}.
N0
% Con N0 Ny
Ny = Con(Γ1 {y}).
ly = d(y, N0 ),
Γ1
x ∈ N0 ,
N0 .
Con(Γ1 {x}) = N0 . y ∈ N0 ,
Γ2
.
(M n , g), π1 (M n ) = Γ1 × Γ2
6.16
,
N0 ×
N0 .
&
& * ## / b* & b g d 16b g5
] $E- $ =& .; 5 N0
Γ1 .
Σ0 = {x ∈ N0 |d(x, Ny ) = d(N0 , Ny )}.
Γ →N
Ny
˜n Py M
1
,
Σ0
Γ1
z ∈ Σ0 , ϕ = 1 ∈
.
,
y
d(z, Py (z)) = d(ϕ(z), Py (ϕ(z))) = d(N0 , Ny ) = ly ,
{z, Py (z), ϕ(z), Py (ϕ(z))} .
Σ0
Γ1
,
N0
π . 2
,
N 0 = Σ0 .
QnKQÆSK@PK & . , . @ &
.g I .g * %
= 9 $% $+& * E # 02!8 $Ef * @ * ! .g -f*7# -d<; , + 2+ - .@
+ .-$ 4 ? , $ 4 , A g ©, I -$4 , !\ 4 & - $ 4+
] " < , = 1 5 >* 91 5 54 . @
# 5 $ , 4 2 c -$4 ? <; , % ## , , , A g I 4 $ 4 * &
4 4 2 a 4 * & 5 g+ g f <+k + Ag 7 * E 5 , 4 4 '2 \obcodm`ij .? E
2- + -$4? ^
:.@ # $E §6.4
· 111 ·
Eberlein
% Con N0 Ny
N0
x
,
Ny
,
x ∈ ∂N0
y ∈ N0
y = σ(t0 + ε),
xp ∈ Int(N0 ).
{x0 } × [0, l].
z
z
x0
{x0 , z, y}
,
.
σ
t0 = d(x0 , x). , % ∼ Con N0 Ny = N0 × [0, ly ].
N0 × [0, ly ],
,
Ny
x0
, N0 = Con(Γ1 {x0 })
.
.
6.17 ˜ n , g˜) (M
Γ2 .
N0 × Y .
.
N0
N0
˜ n , g˜) , (M
N0 × [0, ly ].
(M n , g)
Riemann ˜ 1 , g˜1 ) × (M ˜ 2 , g˜2 ), Γ1 (M ˜ 1) = M ˜1 (M
, π1 (M n ) = Γ1 × Γ2
,
(1) Γ1
˜2 M
,
(2) Γ2
˜2 M
.
(1)
Γ1 , ϕ = 1
ϕ
˜2 M
Γ1 ˜2 M
Γ1
.
Γ2
δϕ |M˜ 2
.
˜ 2 , g2 ) , (M
.
˜ n /Γ Mn = M
k 1. ˜2 M
δϕ ˜2 ∼ ˜ , M = Rk × M 2
Γ2
,
ϕ ∈
,
,
Γ1
.
.
˜n → M ˜i Pi M
(2)
,
ρ2 (Γ )
βn → 1.
.
6.16
.
βn = βˆ
βn → 1,
.
˜2 M
Γ1
βn = ρ2 (rn ) rn∗
.
∗ ξn = rn+1 (rn∗ )−1
.
βn+1 βn−1 ≡ 1
˜ 1 /Γ1 M ˜ 1) Iso(M
[ρ1 (rn∗ )]−1 [ρ1 (rn )]
,
.
˜2 M
6.15
rn∗ = (ρ1 (rn∗ ), βn )
˜n M i
, ρi
˜ 1. x1 ∈ M ˜ 1 )× {1}, → 1, ξn ∈Iso(M ˜2 M βn ≡ 1, ,Γ
.
6.14
6.15∼
6.17
.
§6.4 Eberlein
.
π1 (M n )
(M2 , g2 )?
(M1 , g1 )
,
, dim(Mi ) 1.
(M n , g)
(M n , g)
(M1 , g1 ) ×
e Z@`Q[\#!! & - o " ! 8$E g . B'=h% pqrs
- 4-$4 &k % % #
$E ":& $ . @
,$4 l4 $ 4 &0 )4 (% $4 ! "
· 112 ·
g
,
.
Lawson-Yau
6.4.1
Wolf
Calabi
π1 (M2n−k )
Riemann
→ Rk .
g 0 = g10 ⊕ g20 .
Mn = T k ×
˜ n , g˜) (M
Zk × π1 (M2n−k ). ˜ n−k M (i) Zk 2 (ii)
.
Calabi, Lawson-Yau
(M2n−k , g20 )
ρ
Calabi
π1 (M2n−k )
M2n−k ,
(T k , g10 )
k
,
˜ n , g˜) = (Rk , g˜0 ) × (M ˜ 2 , g˜0 ). M n (M 1 2 n−k k n ˜ M Γ = Z × π1 (M2 ) (
6.17),
Rk
,
,
.
π1 (M2n−k )
R
π1 (M2n−k ),
k
(ϕ, ψ) ∈ Zk ×
.
˜ n , g˜) ρt Zk × π1 (M2n−k ) → Iso(M
, i 3 - 2 $ + * &+ E
i o #
- $ 4 &k $
2 ? E & %
#
? E > "& > < mh` (% !-$4 &k 4 &k
-$4 &k ll ti+ & f ^ , ^ f^, d hn n ) -.@\ # ? < f^1$& " -/ e!\ <Æ
ρt (ϕ, ψ)(x, q) = (ϕ(x) + tρ(ψ), ψ(q)),
˜ 2. (x, q) ∈ Rk × M
˜ n , g˜), ρt (Γ ) ⊂ Iso(M ˜ n /ρt (Γ ) Mtn = M
,
˜ n /ρt (Γ ) M
˜ n /Γ , M
Mtn = T k × M2n−k
g t = g˜/ρt (Γ )
,
t > 0, ρ
.
M2n−k
H1 (M2n−k , Z) = Zk ,
,
H1 (M2n−k , Z)
=
M2n−k
k = 2m, m
G
η π1 (M2n ) →
ρˆ Zk → Rk ,
.
.
.
H1 (M2n−k , Z) = Zk . Rk
M2n−k
π1 (M2n−k )/[π1 (M2n−k ), π2 (M2n−k )].
aba−1 b−1
, [G, G]
6.4.2
H1 (M2n−k , Z)
,
ρ = ρˆ ◦ η.
π1 (M n )
[LY].
Eberlein
˜ n , g˜) (M ˜ n , g˜) Cartan-Hadamard (M
.
(Rk , g0 )
π1 (M n )
?
Klein
A(x, y) = (x, y+1) −1
−1
AB = A
.
R2
A, B R2 → R2 ,
B(x, y) = (x+1, 1−y).
B2
π
B
.
B 2 ,
2
B , A
π
A
π = A, B.
B
1.
2.
,
2.
QnKQÆSK@PK : ;= 78 j j
2 - $+ 4 &. e!\?+< G F FG .@ - o 4 + GFG .? & * &+ # ©, 02 &! g ,! e ! & &! , e & &k -/
+) * ! !\ % * $eÆ; ?# , ? ÆÆ % ? ! ,
e $ ?? 1 e !\ ,
. !\ 1 & G % & f ^ h; G 7 6 /A9& ,
G §6.4
· 113 ·
Eberlein
,
.
6.18(Eberlein,
)
(M , g)
Riemann
n
Γ1
,
n
π1 (M )
n
(1) π1 (M )
k 1.
,
Γ1
C(Γ1 )
|π1 (M n )/C(Γ1 )|
C(Γ1 )
;
˜ n , g˜) (M
(2)
(Rk , g0 )×
Riemann
˜ n−k , g˜2 ); (M 2
(3) Mn ˆ ) = Zk ⊕ π1 (M ˆ 2 ), π1 (M
ˆ M
ˆ 2) π1 (M
n
Γ1
π1 (M )
Zk ,
Γ1 = α1 , α2 , · · · , αk .
n
ϕ ∈ π1 (M ),
,
C(Γ1 ) =
.
Γ1
(1)
ˆ 2, Tk × M
ˆ M
Γ1
Γ1 → Γ1 ,
Adϕ
α → ϕ−1 αϕ.
Γ1 = Zk
Aut(Γ1 )
Γ1
.
,
π1 (M n ) → Aut(Zk ),
Ad
ϕ → Adϕ .
ϕ−1 αϕ = α
Adϕ = 1
α ∈ Γ1 = Zk
,
Γ1
ϕ
.
& C(Γ1 ) = ker(Ad) = ϕ ∈ π1 (M n ) | ϕαϕ−1 = α
, Γ1
C(Γ1 )
.
'
α ∈ Γ1
C(Γ1 ) = ker(Ad),
.
π1 (M n )
C(Γ1 )
.
Γ1 .
C(Γ1 )
n
ϕ ∈ π1 (M ),
−1
ϕ
hϕ ∈ C(Γ1 )(
C(Γ1 )
,
,
C(Γ1 )
k
Z
L
,
Γ = π1 (M )
|π1 (M )/C(Γ1 )|
,
Adϕ
π1 (M n ) Ek
.
.
Γ = α1 , · · · , αk =
{β1 , · · · , βm }
Γ1
{β1 , · · · , βm }
m!,
.
).
H = Γ1 .
L = max{αi | i = 1, · · · , k}, " {β1 , · · · , βm } = BL (0) Γ1 . Adϕ
Ad(Γ )
m!,
H
h ∈ H,
.
π1 (M )
n
,
C(Γ1 ) n
C(Γ1 )
ϕ−1 hϕ ∈ H,
Γ1 ⊂ H
H
.
|Γ /Γ1 | = |Ad(Γ )|
* (2)
e Z@`Q[\#!! .@ ,
"
· 114 ·
Min(Γ1 ) = Min(Zk ) = Rk × D
.
,
,2
1 , G G FG 2 , =Æ 5 6 1 & =Æ * , - 0 2 j j - -$4 # 2 ? (& ,$ ?4 4 #% ## $ , e ( . @ 4 $4 '
4 &k& (
A g , 2 i 1
2 % I9 &+ 7 .@
e+!\ 2 + fF ^FG, + ) e! \©, &! e !\ &! 02= & GFG 5 &+
+ 4 e I9
f ^ , GFG *&+ % F FG qc(
: 3 ! α
i
˜ n. Min(Γ1 ) = Min(Zk ) = M
∈ Γ1 , ϕ ∈ C(Γ1 ),
δαi (ϕ(x)) = d(ϕx, αi ϕ(x)) = d(ϕx, ϕαi (x)) = δαi (x),
Min(αi )
C(Γ1 )
,
˜ n, M ˜n Min(αi ) = M ˜ 2 , g˜2 ). (Rk , g0 ) × (M
αi ∈ Γ1
Γ1
⊂ C(Γ1 )Min(αi ) ⊂ Min(αi ), ˜n ˜ n , g˜) = Min(Γ1 ) = Min(Zk ) = M (M
,
, C(Γ1 )/Γ1
C(Γ1 )
).
˜ 1 = Rk , ρ i M ˜ →M ˜i M ϕ ∈ Γ(
,
ρ2 (Γ1 )
Γ
,
ϕ = (ρ1 (ϕ), ρ2 (ϕ)). ˜2 M ρ2 (C(Γ1 )))
, ρ2 (Γ )( ˜ 2 /C(Γ1 ) M ,
˜ n /C(Γ1 ) = M ˆn M
Γ = π1 (M n )
Γ1
˜ n = Rk × M ˜2 M
ϕ ∈ C(Γ1 )
˜ M
˜2 M
.
ϕ ∈ C(Γ1 ))
ρi Γ → Iso(Mi ).
.
˜2 Rk × M
Γ1
6.17
.
C(Γ1 ){x0 }
.
,
(
Γ = π1 (M )
C(Γ1 )
˜ n /C(Γ1 ) M Mn ˜ n = C(Γ1 ){x0 } M
˜ n , g˜) (M
(3)
x0 ∈ Min(αi ).
.
ˆ 2. Tk × M
ˆ2 = M ˜ 2 /C(Γ1 ), M
.
.
˜ , g˜) = (Rk , g˜0 ) × (M ˜ 2 , g˜2 ) (M
,
6.17
π1 (M n )
Zk .
6.19(Eberlein ˜ , Mn Mn ˜ 2 , g˜2 ) (Rk , g0 ) × (M
(M n , g)
)
, g˜
g
.
Riemann n ˜ (M , g˜) deRham
k
R (k 1)
π1 (M n )
Zk .
Γ1
π1 (M n )
˜ n , g˜) (M
ˆ M
,
Rk (k 1), ˜2 → Mn Rk × M Mn
Γ1
˜ n , g˜0 ) = (Rk , g0 ) × (M ˜ 2 , g˜0 ), (M ˆ 2. Tk × M
˜ n , g˜) (M
deRham
Mn
.
.
Zk
,
6.18
M
˜ 2 , g˜2 ) (Rk , g0 ) × (M ˆ ˆ 2. M T k ×M
˜ = π M
π(Rk × {y})
QnKQÆSK@PK % o:& 7 c , op .,
#
! 7 m . ##:&
3& & *
# ,- f ^ , !8 G FG i . ]"$%" G FG !8 ,
! .@ ^, -f^,-f^ , ! f ^,f #
. @ eq.@ -r*]"$%" E n( \ / r r * ] "$%" , ? * ]"$%" ! 8=
3 )% $` ! .@ ! % ! 8
<& % G e % <& G& , G eFG 2 . @\ ! 1 . @\ k ! *
7 # .@*
!\ % n" §6.4
· 115 ·
Eberlein
(M 2 , g) = R2 /Z ⊕ Z = S 1 (1) × S 1 (1)
.
,
R2
2π.
R2 = {Rv1 } × {Rv2 },
v1
v2
(T 2 , g0 )
π({Rvi } × {z})
, vi = (ai , bi ),
deRham
˜ 2 , g˜2 ) (Rk , g0 ) × (M
ˆ M
˜n
k
˜ , g˜) = (M
.
Mn
.
.
n
,
˜ 2 , g˜2 ) (M
ˆn M
ai bi
,
ˆ M
,
k
.
.
˜ 2 , g˜2 ) (M , g˜) = (R , g0 ) × (M ˜n → M ˜n ϕ M n
ϕ ∈ Γ = π1 (M ) ˜ n−k , g˜2 ) , β(ϕ) (M 2
deRham
˜ n , g˜) (M
,
,
.
ϕ = (α(ϕ), β(ϕ)),
α(ϕ)
R
k
.
R2
,
,
.
(M n , g)
,
Klein k
.
ˆ M
n
6.18(1)
.
A = Rk
Rk
ϕ ∈ Γ,
.
ˆ ϕ A → A, Ad
ψ → [α(ϕ)]−1 · ψ · [α(ϕ)].
{α1 , · · · , αk }, L = sup αk . A = α1 , · · · , αk = Zα1 ⊕
A
1ik
ˆ ˆ Zα2 ⊕ · · · ⊕ Zαk . A BL BL , Ad(Γ ) Ad(Γ ) " ˆ ˆ CΓ (A) = ker(Ad) Γ , Γ /CΓ (A) ⊂ Ad(Γ ) , n ˆ =M ˜ /CΓ (A), ˆ M M CΓ (A) Γ .
.
.
M
n
. .
Riemann n
ˆ , gˆ) (M
ϕˆ
ˆn M
x0 , ϕˆ
,
ˆn M
}
ˆ n , gˆ) (M
.
,
x0
ˆ M
ϕˆ
n
.
ϕˆ∗ |x0
ˆ n → T x0 M ˆn ϕˆ∗ |x0 Tx0 M
H = {ϕˆ ∈ G | ϕ(x ˆ 0 ) = x0 },
ˆ n, H →G→M
,
,
x0
ϕˆ
ˆ → G = {ϕˆ | ϕˆ M
e Z@`Q[\#!! #
! 2 ,
21 &#( 1 -/
, $` \ p j r * ] "$%" " 1
.@
7
"
&
, $` 1 .5Æ; @ ":& 1Æ;-, 1 , 21 1 ! " $% ! j ]
Æ; , j Æ;&k ? , e,
$`e 7 oAAupqfA q g ! 4 hv.; / "*% .; "
· 116 ·
H ⊂ O(n)
.
,
G . ˆ n , gˆ) = (M ˜ n , g˜)/CΓ (A) (M
H
ˆ n , gˆ) G = Iso(M
,
.
A
{v1 , · · · , vk }. v˜i
,
,
T k.
k
,
k
ˆ n) π1 (T ) → π1 (M ˜ n , gˆ) (M Rk Γ
vi
R
k
,
A.
ˆ , Tk x0 ∈ M
CΓ (A)
.
G
,G
k
,
k
Z .
k
. Z ⊂ A,
Zk
,
A
x0 ˆ , π1 (M n ) Z
,
G
Tk
k
,
, n ˜ (M , gˆ)
{ϕˆi (t)}t∈R
{ϕˆi (t)} ϕ˜i (t) n k ˜ , g˜) = (R , g0 ) × (M ˜ 2 , g˜2 ) (M
{ϕ˜i (t)} ⊂ A
.
k
vi ˜ (M , g˜)
.
Rk
CΓ (A)
Γ
T
k
CΓ (A)
.
.
§6.5 Gromov
20
80
, Gromov
,
(Minimal Volume).
Mn
6.20
n
.
Mn
MinVol(M n ) = inf {Voln (M n , g) |Kg | 1, (M n , g)
\r7 .;
Mn
,
}.
Riemann
|Kg | 1
.
.
2
,
k
|Kg | 1.
2
.
Σ2k
g
Gauss-Bonnet
( ) Area Σ2k , g
.
Σ2k
Riemann
,
|Kg |dA Kg dA = |2π(2 − 2k)| , Σ2 Σ2k
k
Riemann
§6.5
Gromov
:!!!$H`Qj!!
· 117 ·
( ) MinArea Σ2k = |2π(2 − 2k)|.
, "8& ?E .k * " , 2 & r o - o, :&, !":& .; > &" r 2 s n"
n" &+ ":& ; 0 6 .; + , 2
n" n"! >
e Æ; ? n" p j - i 0 2 5 &" o $ ! 8 X2 s 4 9 39 " &
" - s g "o % $ s & got " g< g?E " d 6 -- $ + &+ t ":& 9 +l& - m k 1 / !\ , & ]" o # Σ2k
,
S2
2
,
k = 0.
,
MinArea(S 2 ) = 4π.
, S2
.
,
n
M =Σ
n−k
Mn
.
k
×T .
T = S1 × ) ( n−k , MinVol Σ × Tk
.
· · ·×S 1 = Rk /(εZ)k ,
Tk
,
k
.
= 0.
T k → M n → Σn−k ,
.
k
.
, Mn
,
T k → M n → Σn−k
.
Zk ∼ = π1 (T k )
π1 (M n )
(
n
M ,
Eberlein-Yau
,M
,
M
π1 (M n )
,
n
).
g, n n−k k ˆ M =Σ ×T .
n
,
n
MinVol(M ) = 0.
n=3
, Gromov
,
,
.
.
Vα =
M
{V1 , · · · , Vm }.
m
Σ2α × S 1 ,
,
Σ2α
Σ2α
2
g
.
,
) Σ22 ,
M
Σ21
Σ22
.
3
α=1
.
Vα
3
3
Σ2α
2
Σ2α
,
=
m %
Vα
Σ2α
,
3
,
∂Σ2α × [0, ε]
1
= S × [0, ε].
)%( 1 ( S × m = 2, M 3 = Σ21 × S 1
,
[T 2 − D2 ] = Σ21 = Σ22 ,
2
24.
,
(
)
S
1
,
V1 = Σ21 × S 1 V2 = S 1 × Σ22 * + * 1 + % M 3 = Σ2 × S 1 S × Σ2 f
.
f
( 2) ) ( ∂Σ × S 1 → S 1 × ∂Σ2 , (t, s) → (s, t)
,
"
· 118 ·
&!+
e Z@`Q[\#!!
f ◦ f = Id.
: 9 on" 2 s & 9 Æ/
2 - $
# e G" FG:& & o -& !& -& :&, , &!\ # :&$+ :& Z , s 9 " - 9 Æk p Æk
9 l "9% xs n( / = d . ; > "9 * I9 ^ $ + p j i& :n 8
s 9u r ;q& ! + rm 8 1 r ;q
2.g - 4 +" * & 5 s 9 2 7 > 1#s 24
,
.
.
k=1
Riemann
Mn =
,
Uk
(1)
T
(M n , g)
6.21
m %
αk
×Σ
Vk → Uk
Uk
n−αk
,
T
(2)
αk
Uk
T αk
,
Vk =
αk 1.
αk
Uj
Vk
,
T βj,k ,
Vj
T αj
Vk " Vj Vk
T βj,k
.
Mn
,
.
M 3,
3
Schroeder
,
Gromov
,
[Bu 1], [Bu 2]
[Sc].
3
,
3
MinVol(M ) = 0
3
M
n
,
MinVol(M ) = 0
,
6.22(
−1 KM n 0
Vol(M n , g) εn
3
.
M
Mn
.
6.22
Buyalo
n
?
Cheeger
Cheeger
Riemann
)
(M , g)
.
,
εn ,
, Mn
[CCR1]
.
n
,
.
MinVol(M n ) = 0. ,
.
$!#uOPK$RtuOPKno voijsuvoijpq w 0 2 - i&
+f ^ FG 3 "&7 > && 2 + - 35+ & &7 . 6 Æk
& - 2 .g
& $ + d "&7 > - / /r&+ & s > < w
+
- 2.g & - & + " + E * &+ ! 8- 2.g & &+ E * &+ *i&
& * i
+ : * "3 * ! 35 CB
&7 " 8 *&+ " 8 " % C
. &+ " 8 & &+ " 8 &/
- *t . l9 3 s t% 3 % * &+ 3) kC
)s3 &7(> < ^
&+(&7 -;06 )w ) 0 6 +
3 + &7 . 6 & 2 i - .@&! .&t*, Æ *&+ §6.6
· 119 ·
[CCR1].
§6.6 ,
M
.
n
R
n
6.1,
.
M
n
.
.
(M1n , g1 )
6.23
,
(M2n , g2 )
M1n
,
Riemann
M2n
.
A.Borel
,
,
M1
M2
M1
M2
M1n
M2n
?
, Farrell
Jones
,
.
6.24 (Farrell-Jones[FJ1∼2] ) ,M1n
,
(M1n , g1 )
(M2n , g2 )
M2n
n 6,
.
[FJ2]
, Farrell
M2n ,
M1n
Jones
,
M1n
,
.
,
n = 3, 4
,
.
M
3
M
4
M1n
.
3
.4
6.24
.
n=3
Poincar´e
3
3
M
Poincar´e
4
M
.
4
6.24
,
Pontryajin
.
.
MinVol(M n )
,
.
n
MinVol(M ) = 0
.
Gallot
,
Besson-Courtois-
.
6.25([BCG])
(M n , g)
,
.
Novikov
Hn
4
,3
,
Mn
Hn /Γ (
(M n , g) ∼ = Hn /Γ ,
MinVol(M n ) = MinVol(Hn /Γ ).
).
,M n
Hn /Γ .
e Z@`Q[\#!! #
* kc " &7E E Æ s9 ) > &7
u;q . + rm 8 1u;q s 9 + " :&, "
2.g pj- +&7&7.6.6 5 s 9 \4 - > 1 1"* ", . w
j j . s # d v
- " , w v"qg> w y w4 &Æk -/
,/ < 5 u zp
" 35 , : xA Au 4 xx{ g(.g 2 u 7 ( u # ) v u > u
2.g - i& >u* # >
&7 3
3
i& 2. g + u > 7 > u u uw "
· 120 ·
MinVol(Hn /Γ ) = vol(Hn /Γ , g−1 ),
Gromov-Thurston K ≡ −1
Riemann
6.25
6.24
Hn /Γ ,
g−1
.
Mn
(n 6)
,
MinVol(M n ) > MinVol(Hn /Γ ).
MinVol(M n ) = 0
0
Mn
,
.
, MinVol(M n ) =
, Cheeger
(
[CGR2])). 6.26(
Cheeger
M1n
)
n − 2, M2n M1n ,
g2
,
Riemann
M2n
MinVol(M2n ) = 0.
,
M1n ∼ M2n
6.26
F M1n → M2n ,
.
n
H /Γ
,
1950∼2000
50
.Mostow,Gromov,Ballmann,Berger,Pansu, Burns-Spatzier, Katok, Eberlein,Besson-
Courtois-Gallot,Corllett,Mok-Siu-Yeung,Jost-
,
.
M1n
.
(
6.24
21
1950
M2n
6.26)
,
.
.
,M.Kac
?(
Can you hear the shape of drum?)
(
)Riemann
(M n , g)
Laplace
.
.
6.27 (
)
(M n , g)
,
l(M n ,g) π1 (M n ) → R,
σ → l(M n ,g) (σ),
Mn
l(M n ,g) (σ) = inf{Lg (ψ)|ψ dψ ds . Lg (ψ) = S 1 ds g
(M n , g)
Riemann
Riemann
M.Kac
ψ S1 →
}, Lg (ψ)
σ
,
g,
(M n , g)
Laplace
.
HIe |8 > uw 2.g i + & & > ( B < :. @
9 +
- i& 2.g "9 + B < 7r . @& ! 6 v .- ??K@C8#LI} `Q G [ H #[ \ A B CJ [ _ S # SDR^ P [ [ H I ? J #w w x Jw w xK w y#`Q G P z NI L F#XJww! yvyq{vP zKsNISyvÆwYL Lr #NIGwwxK #XJzDx^xbQG HI #?JzD yvÆw zD#O@ww!yw$ xS Lr #yw$ b?PC yvPt`Q GNI G x#[\S YIL_V{t VK I LN|?JyzS #`uzS ]vH{#zD} Jy S[HVK #[_ YJIGXJzD x| { zP H #W ~b WK b WK A B I C{ H D M A $ YIL YJIHAB JKCJSMs SRI#QG|w AAB CVTNS #:[ 3 I CLULTUDV J C S #V^SxDQ YIL · 121 ·
6.28 (
(M1n , g1 )
)
(M2n , g2 )
,
(
),
?
n=2
,
Croke-Otal
.
n=3
,
Croke
.
(M13 , g1 )
6.29 (Croke)
3
,
(M23 , g2 )
,
,
.
n3
6.28
.
(
1(
)
Σ2k
).
k
τ.
.
gτ ,
,
.
,
gτ
τ
τ
v
Σ2k
,
aτ (v).
τ
aτ (v)
v,
2π,
v
Kτ (v) = aτ (v) − 2π.
Gauss
Kτ (v1 ) + · · · + Kτ (vm ) = 2π(1 − k),
(Σ2k , τ )
{v1 , v2 , · · · , vm } ε
,
Gauss-Bonnet
).
2 ( l
0
f (s)ds = 0
Fourier
(ii)
.(
.)
(i) (Wirtinger
l
[f (s)]2 ds
f [0, l] → R
).
2π l
2
l
0
[f (s)]2 ds.
.)
Ω ⊂ R2
∂Ω σ
.
σ = ∂Ω
[0, l] → ∂Ω,
s → (x(s), y(s)).
σ
vj
f (0) = f (l),
0
(
Σ2k
,k
[x (s)]2 + [y (s)]2 ≡ 1. ∂Ω = σ , l l 2Area(Ω) = [xdy − ydx] {[x (s)]2 + [y (s)]2 }ds 2π 0 Ω ,
=
l2 . 2π
l
"
· 122 ·
H $ #%Y}W LO@ F#@Iw KE #LII D AB !!K@CÆw_V W~bWKCMKE (iii)
(i)
(ii)
A(Ω)
R2
Ω
mann
.
Gromov
3(
[l(∂Ω)]2 4π
).
(M n , g)
CJ
.
Voln (B n (1))
e Z@`Q[\#!!
LFP#Z@`Q|H[\#RN
Rie-
n
LNC C{z|}#LU { ^ F M QY @ K@C #LIIfKh # ? J D yvyzzILY CJSDR#Z@` Q [\# !! MAB TaS @ JN)K #ÆS X {? T$~}PzUH ~Gyv~\}WLI `Q|H[\# !! #]@Z[|} A{??B JT$#CJ{SDRZ@ JN)K # ÆS O? ÆSP?zÆPHÆS|QAB #TaSCJSDRZ@CM{?? `Q|H[\# !!aS B #?#J]@ÆSZ[Y|}IL {?? J bY#T${zPH LN CT ??JN)K ÆS YJIÆwWP~} I {S~~ CJS !! {#$3C|U# OUQGJJ`\}#D $ LNJF~DE IVJLU#'#P~H D ` \} H W b WK $ ) }? ~~ Voln (Ω)
n
[Voln−1 (S n−1 (1))] n−1
[Voln−1 (Ω)] n−1 ,
S n−1 (1) = ∂B n (1), B n (1)
n 4 (n = 3
,
B.Kleiner
).
(M n , g)
).
4(
Riemann
Mn
,
π1 (M n )
Z⊕Z
(M n , g)
,
.
n
(M , g)
Riemann
g˜)
Mn
.
, (M n , g)
˜ n, (M
π1 (M n )
Z⊕Z
?
Z-
5(
,
). (M n , g) ˜ n , g˜) ˆ (M Z
Z⊕Z
n
(M , g) n
π1 (M )
2
R ,
n
.
Z⊕Z
π1 (M )
Riemann ˆ Z
.(
R2 /Z = S 1 × R → M n ,
ψ
(s, t) → ψ(s, t).
(M n , g)
Riemann
,
,
t1
∂ψ ∂ψ n ∂t (s, t1 ) − ∂t (s, t2 ) n < ε < Inj(M , g), SM
· SM n
,|t1 − t2 |
1
1
ϕ S ×S →M
n
.
ψ|S 1 ×[t1 ,t2 ]
ϕ∗ (Z ⊕ Z) ∼ = Z ⊕ Z ⊂ π1 (M ).) n
t2
Æ
Riemann
.
,
70
.
20
, Cheeger-Gromoll
,
.
. Cheeger-Gromoll .
, . Calabi Æ . . , . . G , G σ, σ G . , L G → G ! L G → G, §7.1
σ
σ
h → σh.
", ! R G → G R (h) = hσ. (L ) L , G g ! gˆ G . gˆ . !" G Harr µ G 1, µ(G) = 1. # e # X Y , σ
X, Y gˆ |e =
σ
σ ∗
(Lσ )∗ (Rσ )∗ X, (Lσ )∗ (Rσ )∗ Y dµ σdµ σ ,
σ
$ d (σ) σ µ !. ", T (G) ! µ
X, Y gˆ |σ =
h∈G
G
G
σ
! ·, ·
σ ∈G
.
(Lh )∗ (Rσ )∗ X, (Lh )∗ (Rσ )∗ Y dµ (h)dµ (σ ).
%" "#$' ($
· 124 ·
{X, Y } G ) !, !% ˆ X Y = 1 [X, Y ], ∇ 2
(7.1)
$ ∇ˆ gˆ %. "& (7.1) !&. !$' "&. G * ' Aut G → G, h
(# ,
z → h−1 zh.
G
(7.2)
# e #++ G g, "& (7.2) z (
Adh Te (G) → Te (G),
(7.3)
X → d(Auth )|e X.
G , Ad g → g "Æ'. % X, Y Z G ) !, h = exp(tZ), &-$#, t % h
) &7.4'
Adexp(tZ ) X, Adexp(tZ ) Y = X, Y .
(7.4)
d (Adexp(tZ ) X)|t=0 = [Z, X]. dt
(7.5)
[Z, X], Y + X, [Z, Y ] = 0
(7.6)
,
t
t = 0 (*&7.5',
!(., $ , Lafontaine * ) 68 + (* (7.6))
.
'
Gallot, Hulin
ˆ X Y, Z = XY, Z + Y Z, X − ZX, Y 2∇ +[X, Y ], Z − [X, Z], Y − [Y, Z], X = 0 + 0 − 0 + [X, Y ], Z − 0 = [X, Y ], Z
(7.7)
!(.. 7.1 % G . G ) ! X, Y Z, % ˆ X Y = 1 [X, Y ], ∇ 2
§7.1
"#$'($ /
+
· 125 ·
, R(X, Y )Z =
*(
,
1 [[X, Y ], Z], 4
R(X, Y )X, Y =
(7.8)
1 [X, Y ]2 . 4
0)+ [X, Y ]f = XY f − Y Xf *+, f (.. -,!. Bianchi "& [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0.
(7.9)
-1"& (7.9) (7.1). 2 R(X, Y )Z
* (7.6)
= −∇X ∇Y Z + ∇Y ∇X Z + ∇[X,Y ] Z 1 1 1 = − [X, [Y, Z]] + [Y, [X, Z]] + [[X, Y ], Z] 4 4 2 1 1 = [Z, [X, Y ]] + [[X, Y ], Z] 4 2 1 = [[X, Y ], Z]. 4
1 [[X, Y ], X], Y 4 1 = − [X, [X, Y ]], Y 4 1 = [X, Y ], [X, Y ]. 4
R(X, Y )X, Y =
-. -13 7.1 !, !! G = G ×R , 4 G !./ . ,- G , + . G/H . ( , $ H G . //. G/H . ( 0% ! /5 O’Neill 1&. O’Neill ! ( #+006 1
1
H → G → G/H
k
%" "#$' ($
· 126 ·
,1 201. 17 201 Riemann Riemann 89 (Riemannian submersion) : ;3. "# 7.2 (Riemann 89) % (M , g) (N , h) ) Æ Riemann , %2 C *+ ψ M → N < $ % (1) ψ < ( C *+89) ψ(M ) = N , M 3 x, ψ ψ | < & =4; (2) N 3 q ∈ N , C *+ < & 20 ψ (q) = F . X p 4. F , ( n
1
k
n
k
1
n
k
n
∗ x
k
k
1
−1
q
q
ψ∗ |p Xh = Xg
X ⊥ F (.. 5 ψ Riemann 89. % ψ M → N C *+ Riemann 89, N ! ξ ∈ T N , p ∈ M , %2 ξ p 23 ξ˜ ξ˜ ⊥ F = ψ (q), $ q = ψ(p), ξ˜ = ξ ψ | ξ˜ = ξ. 25#, M p # T M .! q
n
k
k
2
k
n
q
n
∗ p
−1
n
p
Tp M n = Hp ⊕ Tp Fq ,
(7.10)
$ H 20 F p .6, N p 4>3. O’Neill Riemann 89 5! . "' 7.3 % ψ M → N C *+ Riemann 89 N )#.! ξ η % p
k
q
n
k
2
1 ˜ υ η˜ = (∇ ∇ ˜] , ξ η) + [ξ, η ξ 2 Y = Yh Yυ
$ Y (7.10) .! $, 3 υ
Mn
V 6#
Nk
Fq ,
k
→R
q
(7.11)
6# 20 F !. &- q
˜ η˜]υ 2 = KN k (ξ, η), ˜ η˜) + 3 [ξ, KM n (ξ, 4
$ K K ( . !25# f N
k
(7.12)
*+,,
˜ η˜](f ◦ ψ) − [ξ, [ξ, η](f ◦ ψ) = 0.
(7.13)
˜ V ](f ◦ ψ) = 0. [ξ,
(7.14)
"#$'($ /
§7.1
· 127 ·
$'? 1& 2∇X Y, Z = XY, Z + Y Z, X − ZX, Y
(7.15)
+[X, Y ], Z − [X, Z], Y − [Y, Z], X,
(7.13)∼(7.15) !
⎧ ˜ ˜η˜, Z ˜ = ∇ξ η, Z, ⎪ ∇ ⎪ ξ ⎪ ⎪ ⎨ 1 ˜ ˜ Y ], V , ∇X˜ Y˜ , V = [X, ⎪ 2 ⎪ ⎪ ⎪ ⎩ ˜ Y˜ = −[X, ˜ Y˜ ], V . ∇V X,
(7.16)
6"&0 X Y .#7, ˜ Y˜ ]v 2 . ˜ Y˜ ) + 3 [X, KN k (X, Y ) = KM n (X, 4
,, 7.3 (.. -. 68, 77! Riemann 4 5 879(: 8 )9 ([Y2] p670). 1956 ,Milnor 98::'@ #8!;!'@ #8 . 2 7 068 Σ , + 8 0 ; ;;. (# 7 0< ( 8 8 0<98 ;;, < Σ A;!'@ S , 7 [Mi]. 7 07, ++ 28 '@ S , 4 15 68 ' 2011 7
7
7
7
B ; 7 Grove
.
S 3 → Σ7j → S 4 .
15 Milnor 68%=: , 9 0689 , 7 Hitchin
Ziller[GZ]
*0=> Cheeger.1973 > CP #CP ( (7 [Che1] ). C',30 D9
98. E?, Gromov 2/ C(n), < 0 n ( n 0 M % (
[Hi]).
n
n
n j=0
bj (M n ) C(n),
n
%" "#$' ($
· 128 ·
$ b M ) j Betti , 7 [Gr1]. Cheeger ?@F*#( = 17 CP #CP # · · · #CP .
> §7.2 A??B@@AABC 1965 , 8;! CB6=% M ( Riemann , + π (M ) ./ .> D (7 [Y2] p671). C# Preissmann 9. §6.2 D6 Preissmann % M ! ( M π (M ) ./ . Z '. !DKShankar 1998 ?# (7 [Sh]). ! (#. SO(3) ' Z $ Z = {0, 1} ∼= Z/2Z. ! Z , Z Z >D. , -=(., <@&6 . "' 7.4 ([Sh]) 2 7 0 ( M . Z ) = N SO(3) M E . * M /(Z Riemann ,N ' Z Z . ( ¯ , U (3) 3 0EGE C E.. A 3 × 3 E=4, A A F ),A A * A. n
j
n
n
n
k
n
n
1
n
1
n
n
2
2
2
2
2
7
7
7
7
2
2
7
2
2
3
T
U (3) = {A|AA¯T = Id},
$ Id G"=4.dim (U (3)) = 9. R
,
⎧⎛ ⎪ ⎪ ⎨⎜ z Z = ⎜ ⎝ 0 ⎪ ⎪ ⎩ 0
0 z 0
⎫ ⎪ ⎪ ⎬ ⎟ ⎟ 0 ⎠ |z| = 1 ⎪ ⎪ ⎭ z 0
⎞
U1,1
⎧⎛ ⎪ ⎪ ⎨⎜ z = ⎜ ⎝ 0 ⎪ ⎪ ⎩ 0
"Æ'#B , 0 z 0
⎫ ⎪ ⎪ ⎬ ⎟ ⎟ 0 ⎠ |z| = 1 . ⎪ ⎪ ⎭ 1 0
⎞
- U (2)×Z U (3) E , U ;. U /U (3)/Z , ;8 (cosets) {U
1,1
1,1
⊂ U (2).
1,1 vZ
}v∈U(3) ,
§7.3
Cheeger-Gromoll
HIHJ($
· 129 ·
. M , 6201 7
(U (2) × Z )/(U1,1 × Z ) → M 7 → CP 2 .
=%)F, SO(3) = SU (2) = (U (2) × Z )/(U "Æ , 6201"I
1,1
× Z ),
* SO(3) M 7
SO(3) → M 7 → CP 2
Riemann 89. Eschenburg CK M ( U (3) D) . ( ([Es2]). -. ; Æ M Ricci ;, Ric (n − 1)c > 0, M .LE " πc , 87 ?G. M ( M . MF M = {(x, y, z) ∈ R |x + y = z} ( H+ 9 G Æ;. ( . Cheeger-Gromoll . 7
n
2
Mn
n
n
n
2
3
2
2
§7.3 Cheeger-Gromoll NOBP
! Q Æ . Cheeger-Gromoll " 17J HR S6, 4 ! 98 ".; !'@ G @1. "# 7.5 (GI8totally convex set) Ω Æ M 8. % I3T Ω FJ σ [0, 1] → M %GT Ω , σ([0, 1]) ⊂ Ω, Ω M GI8. 7.5 9 (FJ σ KFJ. !, GI8 .I8. DI8GI8. + " M <(8 S (1). , Ω 38 Ω = {p }, $ p 2 0 #8 U4. ! Ω I8. H"KU4 LF σ, σ MK Ω , Ω GI8. Ω M GI8, " f (x) = d(x, Ω). * Morse !, M 'V"I Ω. Ω MK M ::17GJ. M Æ ( , KL?M; GI S. 5 M; M (soul). n
n
n
n
2
0
n
0
n
n
n
n
%" "#$' ($
· 130 ·
!$ , NF ' M S. !NO?O; GI 8 WX# M Busemann ,. "# 7.6 (1) % σ [0, +∞) → M PF<$ d(σ(t ), σ(t )) = |t − t |, $ t (i = 1, 2) < σ P (4E) F (ray). (2) σ [0, +∞) → M P4EF, , n
n
n
1
2
1
2
i
n
ησ (x) = lim {t − d(x, σ(t))} t→+∞
σ Busemann ,. !2# F%4EF. + - M = S × R = {(cost , sint , z )|t ∈ R, z ∈ R} ⊂ R . ! GY. - M + , 4 S - G ,
M S × {z } P M LF. LFA4EF. ZHF σ(t) = (cos(αt ), sin(αt ), βt ), $ α + β = 1, αβ > 0. -ZHF S R QI[F ZHF σ . - M = S × R F. 0 α = 0 7 5 F σ 4EF. < L.F σ(t) = (x , y , t) M = S × R 4EF. 1 Cheeger-Gromoll \ $ R . 7.7 % M Æ ( % σ [a, +∞] → M P4EF, 6* Busemann , η M → R I,. &- $ η ((−∞, c]) GI8. % ϕ[a, b] → M P#S F ϕ )I3[ T η ([−∞, c]) . sˆ ∈ [a, b], η (ϕ(ˆs)) c. , 2
1
2
3
2
1
1
2
0
2
2
1
2
1
0
2
0
1
n
n
σ
n
−1 σ
n
−1 σ
σ
δt (ˆ s) = d(σ(t), ϕ(ˆ s)).
Q< lim [t − δt (ˆ s)] c.
<8 Q< (a, b) 8 U = {s| η (ϕ(s)) > c}. U 8, 3 7.7 (.. T" U MK sˆ ∈ U =U (s , s ) sˆ ∈ (s , s ) ⊂ U, ! η (ϕ(s )) = c = η (ϕ(s ))( = % ). % ψ X ϕ(ˆs) σ(t) P δ F, t→∞
σ
1
1
2
σ
1
σ
2
t
αt = ϕ(ˆs) (σ(t), ϕ(s1 )), βt = ϕ(ˆs) (σ(t), ϕ(s2 )).
2
t
§7.3
Cheeger-Gromoll
HIHJ($
· 131 ·
- α + β = π, JV α β E " π2 . -( QL d(σ(t), ϕ(s )) d(σ(t), ϕ(s )) JV <$ δ + (s − s ) , t
t
t
t
1
2 t
2
δt min{
2
2
δt2 + (s1 − s2 )2 .
min{d(σ(t), ϕ(s1 )), d(σ(t), ϕ(s2 ))}
"I
1
[d(σ(t), ϕ(s1 ))]2 − (s1 − s2 )2 , [d(σ(t), ϕ(s2 ))]2 − (s1 − s2 )2 }.
0 t → ∞, "4K] ησ (ϕ(ˆ s)) = lim [t − δt (ˆ s)] t→∞
max{ησ (ϕ(s1 )), ησ (ϕ(s2 ))} = c.
,3(.. -. GI8. @ 1 . .' 7.8 % M Æ Riemann , {q , q , · · ·} M; MW06. % σ [0, l ] → M X q # q P KF #S . 06 {σ (0)} X^ # v ∈ T (M ) σ (t) = Exp (tv ) σ [0, +∞) → M P q 9 F. !25# q ##8 S (1) ⊂ T (M ) 8.
MW06 {σ (0)}. X^ 06 {σ (0)}. EY (# {q } M;0 6, d(q , q ) = l → +∞. M r > 0, σ | → σ | LX^. - σ | % KFJ, r > 0, σ | %P K F* σ [0, +∞) → M P q 9 F. -.
66J. "' 7.9 % M Æ ( , {σ }
q 9 4EF 8N. Ω = η ((−∞, 0]) MK q GI 8. $ η σ Busemann , η (x) = lim [t − d(x, σ (t))]. 3 7.7 , G η ((−∞, 0]) GI8. ! q ∈ η ({0}). R Ω = η ((−∞, 0]) . ;8. 5, Ω . M;0 6 q → ∞, *1 7.8, ?#P4EF σˆ , η (q ) → +∞,
Ω 6ON, _S. -,,Ω . ;8. ! Ω L8 .8, L8. M Æ, ;L8.8. GI8 .8 GI8. * Ω GI8. -. n
j
j
ji
∞
q0
0
n
0
j
+∞ i=1
∞
n
∞
n−1 q0
j
j
n
q0
n
q0
ji
j
0
j
ji [0,r0 ]
ji [0,r0 ]
0
n
∞
∞
0
0
0
1
∞ [0,r0 ]
∞ [0,r0 ]
0
n
λ λ∈λ
0
λ∈Λ
σλ
λ
σλ
−1 σλ
λ∈Λ
j
−1 σλ
0
t→∞
0
−1 σλ
∞
n
λ
σ ˆ∞
j
−1 σλ
%" "#$' ($
· 132 ·
-1;!17 )Z, I8O; . % Ω I8+ 0 k, Ω k 0 *, (k − 1) 0 6;;, Cheeger Gromoll & -$ *"Æ8N Ω(−t) = {x ∈ Ω|d(x, ∂Ω) t}.
"' GI 8
% M Æ ( Æ, % GI8, 46;; ∂Ω. Ω = {x ∈ Ω| d(x, ∂Ω) t} . n
7.10
Ω
(−t)
?@ 7.10, ?@C# Calabi IM .
9.
"#
9P
% f M
7.11
n
→R
XN,, - f q 3 X ? 0
Hess(f )|q0 (X, X) C,
([ MK q 8 *+ , h U → R 0
1) h(q0 ) = f (q0 ); 2)
U f (x) h(x);
3)Hess(h)|q0 (X, X) C,
$9P Hessian, Hess(h) Hess(h)(X, Y )
@$' ? . {Σ } /*+"Æ , % T (X, Y ) 6 #? ∂t∂ )9&. / )9 & T < $ ? T + T + R(t) = 0, $ R(t) = R % , R (X, Y ) = R ∂t∂ , Z ∂t∂ , Y . (# Σ = ∂Ω ∂Ω I8, 6 *@ ∂t∂ , T (X, X) 0. 0( R 0 7 T = −T − R 0. )0 t OP7T PDP. 8N Ω *@ )9 &0Q0 Ω I8. = XY h − (∇X Y )h = ∇X ∇h, Y .
Riccati ∂ = ∇X , Y Σt ∂t { t} Riccati
t
t
2 t
t
(t)
t
t
(−t)
(0)
t
t
t
t
(−t)
2 t
t
(−t)
§7.3
Cheeger-Gromoll
HIHJ($
· 133 ·
66*+"Æ / {Σ } A(. . Q \, "Æ / {∂Ω } *+, ]@* 7.11 D`R ab. 7.10 RS. "' 7.10 0 " q ∈ Ω t = d(q , ∂Ω) > 0, , f (q) = d(q, ∂Ω). (# f Ω → R QQXN,, "P ∂Ω # q PKFJ σ [0, t ] → Ω σ (0) ∈ ∂Ω σ (t ) = q . Ω k 0O;, ∂Ω (k − 1) 0. - σ [0, t ] → Ω P KFJ, σ | σ| .KFJ. )!1&, ∂Ω σ (ε) #"Æ k 0GE R , σ (ε)⊥T (∂Ω ) ∂ ∂t . ∂Ω 0 ε < t (.. , Σ = ∂Ω . * Riccati ? , T σ , ∂Ω )9 ∂ & (6*@ ∂ε ) . < Ω σ(ε) I . " ε → t Ω q I . -. GI8 Ω, t
(−t)
0
0
0
0
0
0
0
0
0
0
(−t)
0 [0,ε]
k
0
σ0 (ε)
−t
0
(−ε)
0
(−ε)
(−t0 )
(−ε)
0
(−ε)
t
0
[ε,t0 ]
0
(−ε)
0
0
rmax (Ω) = max{d(x, ∂Ω)|x ∈ Ω}.
0 tˆ = r (Ω) 7, , Ω = {x ∈ Ω | d(x, ∂Ω) tˆ}, dim(Ω ) < dim(Ω). E6$1, U0%SVT, JV UTV 1 0. M 0 n 0, : E n U, '#GI8 Ω , Ω M; . :!, GI8.G8. 5 M;GI W Cheeger Gromoll . , J ! J. "# 7.12 % M Æ ( Riemann , 2GI M; S( ), M ;!'@ S M @ ! N S. &-$ , X Y ) M T S ##, < $ X ⊥ S
Y ∈ T S, (−tˆ)
max
(−tˆ)
n
0
0
n
n
n
n
K(X, Y ) ≡ 0,
$ K(X, Y ) X Y ,( ( . #]<. Ω GE R I8, U (Ω) T Ω U 2 cU, ∂[U (Ω)] . C *+ X , Federer 98 (7 [Fe]). - , $QQ% Ω I ε > 0, 9 ( ∂Ω C *+. n
ε
1
1,1
ε
%" "#$' ($
· 134 ·
0Y R /( M 7 Ω I8 ε Z!E, ε > ε > 0, ∂[U (Ω)] '5 C *+, -,<@ R > 0, 8 N (S) = {(x, v)|x ∈ S, v⊥S, v R} ;!'@ 8 U (Ω ), $ {Ω } Cheeger Gromoll I8 /. 0 R Z!E7 ( R E S GL), ), ;Q Exp N (S) → M d^. , Bootstrap ?@ 3 $PDP= ;!'@. A LGI8, , A GL δ(A) = sup{ε | U (A) 3 x 2 A B3 }, 0 ε < δ(A), 2 U (A) # A KÆeQI. V K = max{K(x) | x ∈ U (Ω )}. GIL 8 A ⊂ Ω¯ , % n
n
0
1,1
ε
R
ε
R−ε
u
R
s
n
ε
ε
0
1
R
R
1 π √ δ(A) δ0 (R) = min InjM n (ΩR ), ,1 , 4 K0
$ δ (R) /5 GIL 8 A V". "& )W*W QL _. 6"& KÆe QI. ! [N (S) − N (S)] ! # U (Ω ) − U2 (Ω ) ;!'@. =f@. %CK N (S) # U (Ω ) ;!'@, 6J! 3 $ [N (S) − N (S)] # [U (Ω ) − U (Ω )] ;!'. ;E `[, )'@W D, * N (S) # U (Ω ) '@, $ R > R + 1. *, # G ;!'@ F N (S) → M . XN( Y , g#, . -. 0
R
ε
ε
R−ε
ε
R1 −ε
ε
R2 −ε
R−ε
R−ε
R1
R2
ε
R2
R1
R1 −ε
ε
R2 −ε
2
1
n
§7.4 Cheeger-Gromoll hYAÆXi
! . 4< n + 1 0GE R YZI X % ( . a\, M = {(x, y, z)|z = x + y } R MF, + . Gauss Qb, M R YZI X , M '@ G8 Z 8, * M .'@ R . n+1
2
2
2
3
n
n
n+1
n
n
§7.4
Cheeger-Gromoll
j[][ \k
· 135 ·
&-$, Gromoll Meyer , M Æ ( , M .'@ R . 636 9,Cheeger Gromoll =. !25#% M Æ ( , M QQ38, M '@ R . 45 7.13 (Cheeger-Gromoll =) % M Æ ( , M 3 p ( [, M .;!' @ GE R . = 1972 . B 30 D, Marenich,Walschap Strake " YZ !, ' Perelman . Perelman ?@, /5]l Sharafudinov m^\ (7 [Shv] [Yim2]). $ , @^Y I, I8 ]lJ. 7_ _]^
`n 6 2003 , 7 [CaS2], G"Æ8^ φ R × [0, l] → M , n
n
n
n
n
n
n
n
n
n
0
n
n
(s, t) → φ(s, t),
φ(R × [0, l]) M P8^>bO. ! Q Cheeger-Gromoll I8 / 6 >bO. "# 7.14 (6= >bO) % {Ω } Cheeger Gromoll GI8 /. P4>F φ(R × {t}) %MKoGI8 Ω ;; ∂Ω , >bO φ(R × [0, l]) 6= Cheeger-Gromoll GI8 / {Ω }. ! Q ?@ !J*+>bO . "' 7.15 ([CaS1]) % M Æ ( , % M R ;!'@, M 3 x, %2XN !J*+ >bO Φ = {φ } X M x. &-$, !J >bO φ %
Cheeger–Gromoll I8 / 6=. * Cheeger–Gromoll =(.. Guijarro Perelman ?@, _]^ `n 6 7.15 EY (7 [CaS2]). <_, 7.15 !J*+ >bO {φ } Cheeger-Gromoll I8 / 2. R` %, !)$ 7.15. ) E! Q , *& Cheeger-Gromoll I8 / % &HR S6. n
u
u(t)
u
n
n
n
n
i 1iN
n
i
i
%" "#$' ($
· 136 ·
7.4.1
Cheeger-Gromoll
789:;<=8 GI8 / aa GI8/ % Æ (
! EJ Cheeger-Gromoll
2! I8 / 6& (. 7.16 (Cheeger-Gromoll
.
Mn
)
a0 = 0 < a1 < a2 < · · · < am < am+1 = ∞
,
G
{Ωu }u0
0 u > a 7, dim(Ω ) = n; 0 u a 7, dim(Ω ) < n. (2) Ω = S M . -, S G MW*+M; . (3) 0 u > 0 7, Ω GIO; . dim[Ω ] = k , + 6; ; ∂Ω (k − 1) 0XN. (4) u ∈ [a , a ] 0 r u − a , / {∂Ω } ("Æ /, (1) M n = ∪ Ωu .
m
u0
u
m
u
n
0
u
u
u
u
u
0
j
j+1
0
j
u−r r∈[0,u0 −aj ]
Ωu0 −r = {x ∈ Ωu0 |d(x, ∂Ωu0 ) r}.
a
(5)
u > a , u − a m
m
= max{d(x, ∂Ωu )|x ∈ Ωu }.
0 0 j m − 1 7,
* dim(Ω ) < dim(Ω ). KÆeQI 2 . Ω M 8, , U (Ω) = {x ∈ M , d(x, Ω) < ε} cd Ω U 2 cU. 8 Ω abGL δ = sup{ε| 2 U (Ω) # Ω KÆeQI}. 0 Ω = {p } 387,δ = Inj (p ) " M p GL. I8 abGL c0! Cheeger-Gromoll . 7.17 % {Ω }, a = 0 < a < · · · < a 3 7.16 6, T > a , K = max{K(x)|x ∈ Ω } M Ω ( ; Ω X/I8 A, + a8GL ;. j+1
− aj = max{d(x, ∂Ωaj+1 )|x ∈ Ωaj+1 },
aj
aj+1
n
n
ε
Ω
ε
0
{p0 }
u
0
Mn
0
1
n
T +1
δA δ0 (T ) =
n
0
0
m
m
T +1
T
1 π min InjM n (ΩT ), √ , 1 , 4 K0
$ δ (T ) /5 A /. @ *WQL 3. 2 ' )3 q = q ∈A U (A) 3 p d(p, q ) = d(p, q ) = l < δ (T ). q # p KFJ σ [0, l] → M . )!1&π (σ (0), A) π2 . -,, )W `3 q q *W[E 2 . E?, ( K 0
1
2
1
δ0 (T )
n
i
pq1 q2
1
2
2
0
qi
i
i
0
§7.4
j[][ \k
Cheeger-Gromoll
· 137 ·
8 P 5 "b)W . (# l < √πK ,
"b)W )*W[E π2 . *WQL q q *W. E π2 , _S. T > a , !" [0, T ] ! u = 0 < u < · · · < u = T, {a } {u } 8, Ω ⊂ U (Ω ). KÆeQI, 6!J*+FJ. "# 7.18 (Cheeger-Gromoll !JF) % {Ω }, T > a , δ (T ) ! 0 = u < u · · · < u = T 6. % P Ω → Ω K ÆeQI, Ω 3 x, x = x, x = P (x), · · · , x = P (x ), $ j = N, N −1, · · · , 1. !JF {σ } X S x CheegerGromoll !JF, $ σ X x # x KFJ. 6$, ( {x } E 36. ∗
pq1 q2
0
pq1 q2
m
m i i=1
1
0
N j j=1
uj
2
1
N
uj−1
δ0 (T )
u
0
1
N
j−1
T
j−1
m
N
uj
N −1
j
0
uj−1
N −1
j−1
j
j
>?
7.4.2
j−1
@AB0CD0EFGH !J*+F % + # KFJ 2 j
Cheeger-Gromoll
% {σ } Cheeger-Gromoll FJ σ [0, l ] → M . x ∈ ∂Ω , j
i
i
j
n
i
,
xi−1
xi
xi−1 = xi . .
wi
wi
ui (t) = ωi − d(σi (t), ∂Ωωi ),
-1 7.16 σ (t) ∈ ∂Ω . # I d. M 8 Ω y ∈ Ω, Ω p #I i
ui (t)
n
Ty− (Ω)
d(Expy (tv), Ω) n =0 , = v ∈ Ty (M ) lim sup t t→0+
$ Exp ;. (##IF . 0 v ∈ T y
7, −v e
# I. Q<&6a . "' 7.19 % P T Cheeger-Gromoll !J*+F >cd[, σ = {σ } u (t) 6. 6 >cd[ P , Cheeger-Gromoll I8 / {Ω } # I a . 0 0 t t l 7, − y (Ω)
σ
j
i
σ
0
1
i
Pσ [Tσ−i (t) (Ωui (t0 ) )] ⊂ Tσ−i (t) (Ωui (t1 ) ).
u
%" "#$' ($
· 138 ·
# I a % "I 6* @ I a %. <1-@ I . "# 7.20 (1) % Ω M I8, σ [0, l] π→ M P σ(0) = p ∈ Ω 9 F, σ (0) # I T (Ω) W 2 , σ (0) Ω p e@. (2) I8 Ω M @ I n
n
− P
n
N + (Ω, M n ) = {(p, v)|p ∈ Ω, d(Expp (tv), Ω) = tv, 0 ||tv|| < δΩ }.
", !6@ I N (Ω , int(Ω )). ) % (p, v) ∈ N (Ω, int(Ω )), v = 0, σ = (3) (4E@ v Exp t X p # ∂Ω KF v Ω p 4E@. v "' 7.19 0 $', "Æ / {∂Ω }, a ua , +
u
u+ε
+
u+ε
u+ε
p
(p,v)
u
u
j−1
j
Ωu = {x ∈ Ωaj d(x, ∂Ωaj ) aj − u},
M
T.
D,Yim Q/5
T
/ C
T,
max{d(x, Ωa ) x ∈ Ωb } CT (b − a),
$ 0 a < b T (7 [Yim 1]∼[Yim 2]) -, u ∈ [a , a ), !" j−1
j
δ0 (T ) 0 = ε = εu = min (aj − u), . CT
\p KÆeQI ,7 6@I " 4E@,( I8 QQ@&6R JK % 4E@ # I _ fWE " R!b"?@& g , P EF V
P Ωu+ε → Ω,
,
∂Ωu+ε ) ε}.
Np+ (Ωu , Ωu+ε )
,
7.21
Ωu = {x ∈ Ωu+ε d(x,
v0
Ωu(t0 )
σ(t0 ) π . 2
− Tσ(t (Ωu(t1 ) ) 1)
.
,
Pσ (v0 )
v0 = σ (t0 ), ψ [u(t0 ), u(t1 )] → " v0 # , ψ(u) = Expσ(t0 ) (u − u(t0 )) p1 = v0 ∆σ(t0 )σ(t1 )p1 . K 0, .
Mn
v0
8 )W -( < )W *W .= " π, 3! QL , * ψ(u(t1 )).
σ(t1 ) (p1 , σ(t0 )) + σ(t0 ) (p1 , σ(t1 )) π − p1 (σ(t1 ), σ(t0 ))
π . 2
§7.4
Cheeger-Gromoll
$# Ω *@). ,
I %
u(t1 )
Q< .
j[][ \k
· 139 ·
p1 (σ(t1 ), σ(t0 ))
- −ψ (t ) ∂Ω
π ( 2
− βv (t) = σ(t) (Pσ (v0 ), Tσ(t) (∂Ωu(t) )). π π βv (t) t t0 . βv (t0 ) = , 2 2 ∂ + β 0 ∂t
(. -
1
u(t1 )
<@
t0
t (.. <_, <@ 0
2
β(t1 ) β(t0 ) + O(|t1 − t0 | ),
(7.17)
$ O(ε ) P 2 fce. 6"&! Fermi L cd[. Fermi L < 6 F R × [t , t ] → M , % $ 2
1
m
1
σ(t0 )
0
)
m
1
m
n
1
(x1 , · · · , xm−1 , xm ) → Expσ(xm )
m−1
xk Ek (s) .
k=1
, Fermi
Y(I G", F F ∗
F∗ (0,···,0,x
m)
= Id
(7.18)
x (.. , R = Span{σ (t ), v } σ (t ) v ,( 2 0F . V φ [0, b(t )] → M σ(t ) # p KF, , R = Span{σ (t ), φ (0)}
σ (t ) φ (0) ,( 2 0F . -1 (7.18) m
2 t0
0
n
1
0
1
0
1
0
t1
2 t1
1
t1
t1
1
σ(t1 ) (R2t1 , Pσ (Rt0 )) = O(|t1 − t0 |2 ),
$ O(l ) l 6'P e. V v(t) = P (v ) , β(t) = (v(t), T 2
2
σ
0
σ(t)
− σ(t) (Ωu(t) ))
,
βv (t1 ) σ(t1 ) (v(t1 ), p1 ) = π − [σ(t1 ) (σ (t1 ), v(t1 )) + σ(t1 ) (p1 − σ (t1 ))] + O(|t1 − t0 |2 ) = π − [σ(t0 ) (σ(t1 ), p1 ) + σ(t1 ) (p1 , σ(t0 ))] + O(|t1 − t0 |2 )
π + O(|t1 − t0 |2 ). 2
= β(t0 ) + O(|t1 − t0 |2 ).
(7.19)
%" "#$' ($
· 140 ·
-, ∂∂tβ 0 a,. R 7.21 (.. 0 σ (t ) = vv 7, σ PX σ(t ) # ∂Ω 4EF. )!1 &, # I T (Ω ) −σ (t ) G. - Ω I, G# I IMKoG*. <,7, R 7.21 (.. 7.19 . -. +
t0
0
0
0
0
− σ(t1 )
u(t1 )
u( t1 )
1
789:MNO"'0 ( "' 0 $'
u
7.4.3
= . 7.15 ,M S G *+ . dim[S] 1, !"P #S F c R → S c (0) = x
c (0) = 1. , {V (s)} F c >c! V (0) = σ (0), $ {σ } P Cheeger-Gromoll !J*+F. φ R × [0, l ] → M , Cheeger-Gromoll n
0
0
1
0
1
0
1
1
0
j
n
1
(s, t) → Expc0 (s) [tV1 (s)].
)Q<&6J. JK 7.22 % M , {Ω }, {p }, {x }, {σ } φ 6. 6J( . (1) 6 F c → S, >cd[ P , @ I N (S, Ω ) ; (2) φ G 8^; * ∂φ (s, t) F t → φ (s, t) >c!; (3) 4>! ∂s ∂φ ∂φ
,( ( (4) ∂s ∂t n
u
j
j
j
0
c0
1
+
ε
1
1
1
1
1
K
∂φ1 ' = ∂s ∂t
& ∂φ
1
,
& ∂φ1 ∂φ1 ' ∂φ1 ∂φ1 R , , ≡ 0. ∂t ∂s ∂t ∂s
V (0) = σ (0) 4E@, FJ σ [0, l ] → M X S
∂Ω KF, )9!1&, Cheeger-Gromoll R 7.22 (., 7 [ChG] 1.10. ?; N (S, Ω ) 4E@,(, -1 [ChG] 1.10, 6 TF c >cd[, 4E@K>cd['4E@. ,R 7.22(1) (.. (M sˆ ∈ R, P6* 4.F σ t → φ (ˆ s, t) 1
1
1
l1
+
ε
0
sˆ
1
1
n
§7.4
Cheeger-Gromoll
j[][ \k
· 141 ·
σ >c! {W (t)}, $( W (0) = c (ˆs) = ∂φ∂s (ˆs, 0). Q< sˆ
j
Wsˆ(t) ≡
1
0
j
∂φ1 (ˆ s, t), ∂s
(7.20) &
sˆ t (., b2R '7.22 "& (7.20) ._. - ∇ W ≡ 0, ( W (.) >c!. "& (7.20) &@!$-c. )$ , a 3 7.16 , u(t) = −d(σ (t), ∂Ω ) + a ! ±W (t) ∈ T (∂Ω ).
7.19 # I a , (# ±W (0) = ±c (ˆs) ∈ T (S), *. ∂φ1 ∂t
sˆ
1
sˆ
sˆ
a1
1
u(t)
0
sˆ
σsˆ(0)
±Wsˆ(t) ∈ Tσ−sˆ(t) (∂Ωu(t) ).
-1 Cheeger-Gromoll ,{Ω } %I8, <. ±W (t) ∈ T (∂Ω ). )$ (. )9$ Calabi df hq (barrier surface method). ->c! ±W (t) 6#X / {∂Ω } ! φ (R × [0, l ]) σ 6# Mr Ψ R × [0, l ] → M , u
sˆ
sˆ
1
u(t)
1,ˆ s
1
− σ(t)
u(t)
sˆ
n
1
(s, t) → Expσsˆ(t) [sWsˆ(t)].
5 Mr Σ = Ψ¯ (R × [0, l ]) + 8 Σˆ J σ G. ! "&2 2 1,ˆ s
1,ˆ s
1
2 1,ˆ s
= Ψ1,ˆs ((−ε, ε) × [0, l1 ])
%
sˆ
∂Ψ1,ˆs ∂Ψ1,ˆs ∂Ψ1,ˆs ∇ ∂Ψ1,ˆs = ∇ ∂Ψ1,ˆs = ∇ ∂Ψ1,ˆs = 0, ∂s s=0 ∂t s=0 ∂s s=0 ∂t ∂t ∂s
+)9& T !D , ,
ˆ 2 (X, Y Σ 1,ˆ s
F / {γ } e,
t t∈[0,l1 ]
)|(0,t) ≡ 0.
ˆ2 γt = Σ 1,ˆ s
(
∂Ωu(t) ,
"Æe F /. C Calabi
[Ca]
h(x) = dM n (x, c0 (R)),
9, g Æ
%" "#$' ($
· 142 ·
h h, (upper barrier function) ˆ h(x) = dΣˆ 2 (x, c0 (R)).
8 F / {ˆγ } "Æ F /. σ (·) ) N -1 e9P , 1,ˆ s
, ,
ˆ −1 (t), ˆ2 h γˆt = Σ 1,ˆ s ˆ h h . Calabi
t
sˆ
ˆ ˆ = Hess ˆ (h)(W λ(t) sˆ(t), Wsˆ(t)) HessM n (h)(Wsˆ(t), Wsˆ(t)) = λ(t). Σ
$', Σˆ σ (·) G, & 2 1,s
sˆ
K(t) = KM n (t) = RM n (σsˆ(t), Wsˆ(t))σsˆ(t), Ws (t) = KΣˆ 2 (t), 1,s
-,, !
(7.21)
?
Riccati ⎧ ˆ ⎪ ⎨ ˆ2 ∂ λ + K(t) ≡ 0, λ + ∂t ⎪ ⎩ λ(0) ˆ = 0,
(7.22)
ˆ ˆ 0. H {Ω } I8 /, λ(t) 0, ∂∂tλˆ = −[λ(t)] − K(t) 0 λ(t) * 2
u
ˆ λ(t) 0. 0 λ(t)
-,, # ˆ ≡ λ(t) ≡ 0. λ(t)
(7.23)
Riccati ? (7.21),
) 9Ui
KM n (t) = K(t) ≡ 0.
(7.24)
. ( , 9UiG , 9Ui G % (7.24) _,W (t) . % X → R(σ (t), X)σ (t) aa, 6* aajY. ))$ Jacobi ! 2 % *. >c! {W (t)} % ,
(X, Y ) → R(σ1,ˆ s (t), X)σ (t), Y
sˆ
sˆ
sˆ
sˆ
X → RM n (σsˆ(t), X)σsˆ(t)
aa6*aajY. {W (t)} < $ Jacobi !? sˆ
J + R(σ , J)σ ≡ 0.
kg%
· 143 ·
(# {W (t)} ! ehPi ⎧
) ∂φ
1
sˆ
∂s
* (ˆ s, t)
t∈[0,l1 ]
) Jacobi ! 6'
⎨ J(0) = c (0) = ∂φ1 (ˆ s, 0), 0 ∂s ⎩ J (0) = 0,
-,)!.6", *"& (7.20) (., R 7.22 . =f@ ( 7.15 . %R0 (j − 1) 7 . JK A.j , c = φ (s, l ) , {V (s)} < V (0) = σ (0) T c >c!, @ I N (Ω , Ω ) 6 >cd[, * φ R × [0, l ] → M , j−1
j−1
+
j−1
uj−1
j
j
j
j−1
uj−1 +ε
j
n
j
(s, t) → Expcj−1 (s) [tVj (s)]
G8^. 2 j = 2. 7, 2# c (R) .MKo Ω $, R 7.22 c (R) ⊂ ∂Ω . *[ChG] 7.10 Yim J, )N (Ω , Ω ) c >cd[. R 7.22 6'?@! φ G 8^. 0 j 2 7?@5, *R A.j j (., -* Cheeger-Gromoll =Æ . -. 1
1
Tˆ
+
u1
uj−1
uj−1 +ε
0
2
jiks jg)
(
u,Z
1. k
tM
PQ
3
= S 3 (1) = {(x1 , x2 , x3 , x4 ) | x21 + x22 + x23 + x24 = 1}
= Z/{kZ}
ol k lmp. \k h g R =C j
olhvmS, ijkl M
3
4
kR
4
R
3
lfmn
→ C2 , √ √ −1 2jπ −1 2jπ k k z1 , e z2 (z1 , z2 ) → e
= S 3 (1)
2
mn. nqrwo S (1)/Zˆ 3
k
ˆ k3 =M
pop, nx Zˆ
k
=
{h1 , · · · , hk }.
s (M , g) o 2n loqu$' Riemann ($,K 1. ps σ gS → M oqtrspqrr, t P gT (M ) → T (M ) os σ u ytus, nx σ(e v e ∈ S ktv. w 2n
2.
Mn
σ
iθ
1
σ(1)
2n
σ(1)
2n
1
2n
iθ
)
%" "#$' ($
· 144 · (i) (ii)
x|y.
\k P ohvotnu. wv dim(M ) = 2n kzvuws M {vx, yw v ⊥ σ (1) xx v k P hz σ
2n
2n
σ
w M {vx, {xnyzy\k π (M ) = 1, { M popky|p. (iv) (Synge vH) z\k π (M ) }ky|}k Z = Z/{2Z}. (v) z{|~|pop ][}zvl}{}~? 3. (Cheeger-Gromoll x||jg) ws (iii)
2n
1
1
2n
2n
2n
2
Rk → M n+k → S n (1)
ol}Tnu S (1) u qlx||. j M oÆ~~ql"#qu$' ~|? 4 (Hopf ][). j S × S oÆ~~qloqu$' Riemann ~|? n
n+k
2
2
[ChC] [WuC] [WSY] [YaS]
, Æ. . : , 1983 , Æ. . : , 1993 , , . !". : , 1989 #$%, &'. . : (, 1988
[An] Anosov D V. Geodesic flow on Riemannian manifolds of negative curvature. Proceedings of the Steklov Institute of Mathematics, No.90. Translated from the Russian by S. Feder. Providence: American Mathematical Society, 1969 [Av] Avez A. Vari´et´ es riemanniennes sans points focaux. C. R. Acad. Sc. Paris, 1970, 270: 188∼191 [BBB] Ballmann W, Brin M, Burns K. On surfaces with no conjugate points. J. Differential Geom., 1987, 25: 249∼273 [BCG] Besson G, Courtois G, Gallot S. Entropier et rigidits des espaces localement symmetriques de curbure strictement negative. Geom. Anal. Functional Anal. (GAFA), 1995, 5: 731∼799 [Beg] Berger M. Riemannian geometry during the second half of the twentieth century. Reprint of the 1998 original. University Lecture Series, vol 17. Providence: American Mathematical Society, 2000 [Be1] Besse A L. Manifolds all of whose geodesics are closed. New York: Springer-Verlag, 1978 [Be2] Besse A L. Einstein Manifolds. New York: Springer-Verlag, 1987 [BGM] Ballmann W, Gromov M, Schroeder V. Manifolds of non-positive curvature. Progress in Math., vol 61. Berlin: Birkh ¨ auser, 1985 [BI] Burago D, Ivanov S. Remannian tori without conjugate points are flat. Geom. Anal. Functional Anal. (GAFA), 1994, 4: 259∼269 [Bu1] Buyalo S. Homotopy invariance of some geometric property of non-positively curved three manifolds. St. Petersburg Math. J., 1992, 3: 791∼808 [Bu2] Buyalo S. Three dimensional manifolds with Cr-structure. In: Some Questions of Geometry in the large. AMS Translations, 1996, 176: 1∼26 [Ca] Calabi E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J., 1957, 18: 45∼56 [CaS1] Cao J, Shaw M. The smoothness of Riemannian submersions with nonnegative sectional curvature. Comm. Contemporary Math., 2005, 7: 137∼144 [CaS2] Cao J, Shaw M. A new proof of the Cheeger-Gromoll soul conjecture and the Takeuchi theorem. Preprint, 2003, sfubmitted [CCR1] Cao J, Cheeger J, Rong X. Splittings and Cr-structure for manifolds with non-positive sectional curvature. Invent. Math., 2001, 144: 139∼167 [CCR2] Cao J, Cheeger J, Rong X. Local splitting structures on nonpositively curved manifolds and semirigidity in dimension 3. In: A special volume in honor of P. Li. Comm. Anal. Geom., 2004, 12: 391∼417 [Cha] Chavel I. Riemannian Geometry—A modern introduction. Cambridge: Cambridge University Press, 1993 [ChE] Cheeger J, Ebin D. Comparison theorems in Riemannian geometry. New York: American Elsevier Publishing Co., 1975
· 146 ·
)*+,
[Che1] Cheeger J. Some examples of manifolds of non-negative curvature. J. Differential Geom., 1973, 8: 623∼628 [Che2] Cheeger J. Critical points of distance functions and applications to geometry. Springer Lecture Notes 1504, 1991, 1∼38 [ChG] Cheeger J, Gromoll D. On the structure of complete manifolds of non-negative curvature. Ann. Math., 1972, 96: 413∼443 [Cr1] Croke C. Rigidity for surfaces of non-positive curvature. Comm. Math. Helv., 1990, 65: 150∼169 [Cr2] Croke C. Conjugacy rigidity for non-positively curved graph-manifolds. Egodic Theory Dynam. Systems, 2004, 24: 723∼733 ´ [Cr3] Croke C. Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ecole Norm. Sup. (4), 1980, 13: 419∼435 [DoC] Do Carmo M. Riemannian Geometry. Berlin: Birkh¨ auser, 1992 [Eb] Eberlein P. Geometry of non-positively curved manifolds. Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 1996 [Eb1] Eberlein P. When is a geodesic flow of Anosov type? I. J. Differential Geom., 1973, 8: 437∼463 [Eb2] Eberlein P. When is a geodesic flow of Anosov type? II. J. Differential Geom., 1973, 8: 565∼577 [Eb3] Eberlein P. Geodesic flow in certain manifolds without conjugate points. Trans. Amer. Math. Soc., 1972, 167: 151∼170 [Eb4] Eberlein P. Isometry groups of simply connected manifolds of non-positive curvature II. Acta Math., 1982, 149: 41∼69 [Es1] Eschenburg J H. Horospheres and the stable part of geodesic flow. Math. Z., 1977, 153: 237∼251 [Es2] Eschenburg J H. Inhomogeneous space of positive curvature. Diff. Geom. Appl., 1992, 2: 123∼132 [FJ1] Farrell T, Jones L. A topological analogue of Mostow’s rigidity theorem. J. Amer. Math. Soc., 1989, 2: 257∼370 [FJ2] Farrell T, Jones L. Negatively curved manifolds with exotic smooth structures. J. Amer. Math. Soc., 1989, 2: 899∼908 [GHL] Gallot S, Hulin D, Lafontaine J. Riemannian Geometry. Berlin: Springer-Verlag, 1987 [Go1] Goto M. Manifolds without focal points. J. Differential Geom., 1978, 13: 341∼359 [Go2] Goto M. The cone topology on a manifolds without focal points. J. Differential Geom., 1979, 14: 595∼598 [Gr] Green L. A theorem of Hopf. Mich. Math. J., 1958, 5: 31∼34 [GW] Gromoll D, Wolf J. Some relations between the metric structure and the algebraic structure of fundamental group in manifolds of non-positive curvature. Bull. Amer. Math. Soc., 1971, 77: 545∼552 [Gr1] Gromov M. Curvature, diameter and Betti numbers. Comm. Math. Helv., 1981, 56: 159∼195 [Gr2] Gromov M. Filling Riemannian Manifolds. J. Differential Geom., 1983, 18: 1∼147 [Gr3] Gromov M. Metric structures for Riemannian and non-Riemannian spaces. Progress in Math., vol 152. Berlin: Birkh¨ auser, 1998 [Gv] Grove K. Riemannian Geometry, A metric entrance. Department of Mathematics, University of Aarhus, Demark, 1999 [GZ] Grove K, Ziller W. Curvature and symmetry of Milnor spheres. Ann. Math., 2000, 152: 331∼367 [Gu] Gulliver R. On the variety of manifolds without conjugate points. Trans. Amer. Math. Soc., 1975, 210: 185∼201 [Hi] Hitchin N. Harmonic spinors. Advances in Math., 1974, 14: 1∼55
)*+,
· 147 ·
[Ho] Hopf E. Closed surfaces without conjugate points. Proc. Nat. Acad. Sci. USA, 1948, 34: 47∼51 [Jo] Jost J. Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag, 1995 [K¨ u] K¨ uhnel W. Differential Geometry, curves-surfaces-manifolds. Student Mathematical Library, vol 16. Providence: American Mathematical Society, 2002 [LY] Lawson B, Yau S T. Compact manifolds of non-positive curvature. J. Differential Geom., 1972, 7: 211∼228 [M1] Milnor J. On manifolds homeomorphic to the 7-sphere. Ann. Math., 1956, 64: 399∼405 [M2] Milnor J. Morse Theory. Ann. Math. Studies, vol 51. Princeton: Princeton University Press, 1963 [O’S1] O’Sullivan J. Manifolds without conjugate points. Math. Ann., 1974, 210: 295∼311 [O’S2] O’Sullivan J. Riemannian manifolds without focal points. J. Differential Geom., 1976, 11: 321∼333 [Ot] Otal J P. Le spectre marque des longuenrs des ´ a courbure n´egative. Ann. Math., 1990, 131: 151∼162 [P] Perelman G. Proof of the soul conjecture of Cheeger and Gromoll. J. Differential Geom., 1994, 40: 209∼212 [Pe] Peters S. Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J. Reine Angew. Math., 1984, 349: 77∼82 [Pt] Petersen P. Riemannian Geometry.
Graduate Texts in Mathematics, vol 171.
New York:
Springer-Verlag, 1998 [Pu] Pu P M. Some inequalities in certain non-orientable Riemannian manifolds. Pacific J. Math., 1962, 11: 55∼71 [R1] Rong X. The almost cyclic of fundamental groups of positively curved manifolds. Invent. Math., 1996, 126: 47∼64 [R2] Rong X. On the fundamental groups of manifolds of positive curvature. Ann. Math., 1996, 143: 397∼411 [Sa] Sakai T. Riemannian Geometry. Translations of Mathematical Monographs, vol 149. Providence: American Mathematical Society, 1996 [Sc] Schroeder V. Rigidity of non-positively curved graph-manifolds. Math. Ann., 1986, 274: 19∼26 [Sh] Shankar K. On the fundamental groups of positively curved manifolds. J. Differential Geom., 1998, 49: 179∼182 [Shv] Sharafutidnov V A. The Pogorelov-Klingenberg theorem for manifolds that are homeomorphic to Rn . Sirbirsuk Math. Z. (Russian), 1977, 18: 915∼925. Siberian Math. J., 1977, 18: 649∼657 [Y1] Yau S T. On the fundamental group of compact manifolds of non-positive curvature. Ann. Math., 1971, 93: 579∼585 [Y2] Yau S T. Problem Section. In: Seminar on differential geometry. Ann. Math. Studies, 1971, 102: 669∼706 [Y3] Yau S T. Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J., 1976, 25: 659∼670 [Yim1] Yim J W. Distance non-increasing retraction on a complete open manifold of non-negative sectional curvature. Ann. Global Anal. Geom., 1988, 6: 191∼206 [Yim2] Yim J W. Spaces of souls in a complete open manifold of non-negative curvature. J. Differential Geom., 1992, 32: 429∼455 [Zh] Zheng F. Complex Differential Geometry. AMS/IP Studies in advanced mathematics, vol 18. Providence: American Mathematical Society, 2000