Fbgbkl_jkl\h h[s_]h b ijhn_kkbhgZevgh]h h[jZah\Zgby Jhkkbckdhc N_^_jZpbb @= 5.5 +- lh`_ qlh 3OXV>5/5@ -, Out[]=4 In[]:=2...
67 downloads
330 Views
216KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Fbgbkl_jkl\h h[s_]h b ijhn_kkbhgZevgh]h h[jZah\Zgby Jhkkbckdhc N_^_jZpbb
;ukljh_ \\_^_gb_ \ kbkl_fm 0DWKHPDWLFD QZklv ,, F_lh^bq_kdb_ mdZaZgby ih ki_pbZevghfm dmjkm ³Kbkl_fu dhfivxl_jghc fZl_fZlbdb´ ^ey lj_lv_]h/ q_l\_jlh]h b iylh]h dmjkh\ ^g_\gh]h b \_q_jg_]h hl^_e_gbc
KhklZ\bl_eb= Y1:1BajZbe_\bq/ :1K1Kdey^g_\
5
Kh^_j`Zgb_ Ihgylby Hkgh\gu_ ijb_fu jZ[hlu >hihegbl_evgu_ k\_^_gby b j_dhf_g^Zpbb ;ehdghlu b yq_cdb DZd bkihevah\Zlv kijZ\dm KlZg^Zjlgu_ iZd_lu KljmdlmjZ ]jZnbdb Ebl_jZlmjZ
6 7 9 < 4; 4< 5; 64
6
Ihgylby I_j\u_ k\_^_gby H[hehqdZ +bgl_jn_ck ihevah\Zl_ey, b Y^jh Kbkl_fZ 0DWKHPDWLFD ihkljh_gZ lZd/ qlh hgZ ih kms_kl\m g_baf_ggZ b \f_kl_ k l_f jZaebqgZ gZ jZaebqguo dhfivxl_jguo kbkl_fZo1 Nmg^Zf_glZevgZy \uqbkebl_evgZy qZklv kbkl_fu 0DWKHPDWLFD/ dhlhjZy gZau\Z_lky Y^jhf +.HUQHO, / y\ey_lky ih kms_kl\m b^_glbqghc gZ jZaebqguo dhfivxl_jZo1 H[hehqdZ +)URQW (QG, 0 bgl_jn_ck ihevah\Zl_ey d Y^jm kbkl_fu 0DWKHPDWLFD hlebqZ_lky kihkh[hf/ dhlhjuf \u \\h^bl_ b ihemqZ_l_ bgnhjfZpbx b dhlhjuc h[uqgh ijbkihkh[e_g d dhgdj_lghfm \b^m dhfivxl_jghc kbkl_fu1 K\yav Y^jZ b H[hehqdb fh`gh ihdZaZlv ]jZnbq_kdb lZd =
Y^jh b H[hehqdZ fh]ml nmgdpbhgbjh\Zlv kh\_jr_ggh hl^_evgh1 Hgb g_ h[yaZl_evgh ^he`gu \uihegylvky gZ h^ghf b lhf `_ dhfivxl_j_/ Z fh]ml jZ[hlZlv gZ hl^_evguo dhfivxl_jZo/ k\yaZgguo dhffmgbdZpbhgguf klZg^Zjlhf \ukhdh]h mjh\gy/ gZau\Z_fuf 0DWK/LQN1 JZ[hqbc ^hdmf_gl kbkl_fu 0DWKHPDWLFD gZ ieZlnhjfZo :LQGRZV b 0DFLQWRVK gZau\Z_lky [ehdghlhf +QRWHERRN,1 Ex[hc ^hdmf_gl/ dhlhjuc \u kha^Z_l_ ijb bkihevah\Zgbb bgl_jn_ckZ [ehdghlZ/ gZau\Zxl [ehdghlhf beb aZibkghc dgb`dhc1
7
fh]ml [ulv h[t_^bg_ggufb \ ]jmiiu> ]jmiiZf khhl\_lkl\mxl ]jmiih\u_ kdh[db/ h[t_fexsb_ ^jm]b_ kdh[db1 < bgl_jn_ck_ [ehdghlZ \\h^ +i_j_^ZqZ bgnhjfZpbb ba H[hehqdb Y^jm, ijhba\h^blky gZ`Zlb_f deZ\brb ?HQWHU! k gZ`Zlhc deZ\br_c ?VKLIW! +wlh h[sbc kihkh[ ^ey ieZlnhjf 0DFLQWRVK b 0LFURVRIW :LQGRZV,1
Hkgh\gu_ ijb_fu jZ[hlu1 DZd aZimklblv iZd_l 0DWKHPDWLFD Q0guc \\h^ \ k_Zgk_ iZd_lZ 0DWKHPDWLFD ihf_q_g ,Q>Q@/ b khhl\_lkl\mxsbc \u\h^ ihf_q_g 2XW>Q@1
5^10 9765625 4+5 9 %+a 9 + a %2 9 4+5 9
8
KhojZg_gb_ b ql_gb_ ^hdmf_glZ AZibkv +khojZg_gb_, ^hdmf_glZ ijh]jZffu 0DWKHPDWLFD +[ehdghlZ, ijhba\h^blky dZd h[uqgh \ kbkl_fZo k ]jZnbq_kdbf bgl_jn_ckhf= \u[_jbl_ 6$9( $6 ba f_gx ),/(/ ^Ze__ gZagZqvl_ ^bkd/ dZlZeh] b bfy nZceZ/ \ dhlhjuc \u ohl_eb [u khojZgblv l_dmsbc ^hdmf_gl ijh]jZffu 0DWKHPDWLFD/ Z aZl_f s_edgbl_ furvx gZ dghid_ 2.1 Ih mfheqZgbx nZce/ kh^_j`Zsbc [ehdghl/ ihemqbl jZkrbj_gb_ 1PD 1 Ql_gb_ ^hdmf_glZ hkms_kl\ey_lky ZgZeh]bqgh= ba f_gx ),/( \u[_jbl_ 23(1/ ^Ze__ mdZ`bl_ ^bkd/ dZlZeh] b bfy nZceZ/ dhlhjuc \u ohl_eb [u aZ]jmablv \ ijh]jZffm 0DWKHPDWLFD/ Z aZl_f s_edgbl_ furvx gZ dghid_ 2.1 DZd \klZ\blv yq_cdm \ [ehdghl kbkl_fu 0DWKHPDWLFD Dh]^Z \u aZimkdZ_l_ ijh]jZffm 0DWKHPDWLFD/ gZ \_jom imklhc aZibkghc dgb`db ihf_sZ_lky lhqdZ \klZ\db yq_cdb +]hjbahglZevgZy ebgby,1 Ijb \\h^_ k deZ\bZlmju ebgby ijhiZ^Z_l/ Z yq_cdZ \\h^Z h[jZam_lky gZ _z f_kl_1
9
ey wlh]h \u[_jbl_ 35,17 ba f_gx ),/(1
>hihegbl_evgu_ k\_^_gby b j_dhf_g^Zpbb Djm]eu_ kdh[db/ nb]mjgu_ kdh[db b d\Z^jZlgu_ kdh[db D\Z^jZlgu_ kdh[db/ nb]mjgu_ kdh[db b djm]eu_ kdh[db \ iZd_l_ 0DWKHPDWLFD bf_xl jZaebqgu_ agZq_gby1 < kbkl_f_ 0DWKHPDWLFD bf__lky q_luj_ lbiZ kdh[hd 1 Djm]eu_ kdh[db Djm]eu_ kdh[db bkihevamxlky ^ey ]jmiibjh\db1 DZd ba\_klgh/ mfgh`_gb_ b ^_e_gb_ bf_xl ijbhjbl_l \ur_/ q_f keh`_gb_ b \uqblZgb_1 Bkihevamy djm]eu_ kdh[db/ fu fh`_f baf_gylv ihjy^hd hi_jZpbc1 < keh`ghf fZl_fZlbq_kdhf \ujZ`_gbb/ ]jmiibjmy b baf_gyy ihjy^hd hi_jZpbc/ fh`gh ihemqblv jZaebqgu_ j_amevlZlu1
D\Z^jZlgu_ kdh[db D\Z^jZlgu_ kdh[db bkihevamxlky/ qlh[u h[hagZqblv Zj]mf_glu nmgdpbc1 ;hevrbgkl\h nmgdpbc/ \kljh_gguo \ iZd_l 0DWKHPDWLFD/ lj_[mxl g_dhlhjh]h Zj]mf_glZ1 G_dhlhju_ nmgdpbb lj_[mxl [hevr_/ q_f h^bg Zj]mf_gl/ b g_dhlhju_ g_ lj_[mxl gbdZdh]h Zj]mf_glZ1 H^gZdh d\Z^jZlgu_ kdh[db lj_[mxlky b \ lZdhc nmgdpbb/ gZijbf_j/ \ nmgdpbb 5DQGRP>@1 Nb]mjgu_ kdh[db Nb]mjgu_ kdh[db bkihevamxlky/ qlh[u hij_^_eblv kibkdb/ \dexqZy \_dlhju b fZljbpu1 We_f_glu \ kibkd_ hl^_eyxlky aZiylufb b aZdexqZxlky \ nb]mjgu_ kdh[db= ^4/5/6`1 < kbkl_f_ 0DWKHPDWLFD fZljbpZ ij_^klZ\ey_lky dZd kibkhd kibkdh\= ^^D44/D45/D46`/^D54/D55/D56`/^D64/D65/D66``1 >\hcgu_ d\Z^jZlgu_ kdh[db
:
>\hcgu_ d\Z^jZlgu_ kdh[db bkihevamxlky ^ey bg^_dkZpbb1 Hgb bkihevamxlky/ qlh[u h[hagZqblv we_f_gl \ kibkd_1 AZibkv Y >>L@@ \ha\jZsZ_l L0uc we_f_gl \ \_dlhj_ beb kbkl_f_/ gZau\Z_fhc Y1 AZibkv P>>L/M@@ \ha\jZsZ_l M0uc we_f_gl \ L0hc kljhd_1
Bf_gZ b hi_jZpbb ijbk\Zb\Zgby Bf_gZ 0DWKHPDWLFD bkihevam_l kbf\heu \_jog_]h b gb`g_]h j_]bkljZ b jZaebqZ_l aZ]eZ\gu_ b kljhqgu_ [md\u1 @/ 0DWKHPDWLFD g_f_^e_ggh aZf_gy_l i_j_f_ggmx gZ mklZgh\e_ggh_ agZq_gb_1 Hleh`_ggh_ gZagZq_gb_ = beb 6HW'HOD\HG \ha\jZsZ_l agZq_gb_/ dh]^Z nmgdpby \uau\Z_lky1 GZijbf_j/ i_j_f_gghc UDQGRP4 gZagZq_gh agZq_gb_ 317;8<:4 g_f_^e_ggh1 In[1]:= random1 = Random[] Out[1] = 0.485971
0.485971,
0.826355,
;
DZd \b^bl_/ dZ`^uc jZa/ dh]^Z \uau\Z_lky UDQGRP5/ 0DWKHPDWLFD \uau\Z_l nmgdpbx 5DQGRP b \ha\jZsZ_l 8 jZaebqguo ijhba\hevguo agZq_gbc1
:ljb[mlu b hipbb Ihqlb dZ`^uc \Zr \\h^ \ 0DWKHPDWLFD y\ey_lky dhfZg^hc1 GZijbf_j= ,Q>@= 5.5 +- lh`_ qlh 3OXV>5/5@ -, Out[]=4 In[]:=2^3 (* lh`_ qlh Power[2,3] *) Out[]=8 ,Q>@= ([SDQG>6LQ>[@A5@ +- jZkdjulv kl_i_gv \ \ujZ`_gbb -, Out[]=Sin[x]^2 DZ`^Zy dhfZg^Z bf__l hij_^_ezgguc gZ[hj Zljb[mlh\/ dhlhju_ bkihevamxlky ijb ijh]jZffbjh\Zgbb/ b fh`_l bf_lv gZ[hj hipbc1 Hipbb \ebyxl gZ j_amevlZl \uiheg_gby dhfZg^u/ jZaebqgu_ mklZgh\db hipbb fh]ml ^Zlv kh\_jr_ggh jZagu_ j_amevlZlu= In[]:=Expand[Sin[x]^2 , Trig->True] (* jZkdjulv kl_i_gv \ \ujZ`_gbb/ bkihevamy nhjfmem Wce_jZ -, Out[]=1/2 - Cos[2*x]/2 In[]:=DSolve[y'[x]==2a x, y[x], x, DSolveConstants -> K] (* hipby DSolveConstants DSolve dhfZg^u hij_^_ey_l h[hagZq_gb_ ^ey dhgklZglu bgl_]jbjh\Zgby *) Out[]={{y[x] -> a*x^2 + K[1]}} Hipby \k_]^Z bf__l agZq_gb_ ih mfheqZgbx/ dhlhjh_ hij_^_ey_l ^_ckl\b_ dhfZg^u ih mfheqZgbx +gZijbf_j/ hipby 7ULJ bf__l agZq_gb_ ih mfheqZgbx )DOVH \ dhfZg^_ ([SDQG/ Z hipby '6ROYH&RQVWDQWV bf__l agZq_gb_ ih mfheqZgbx & \ dhfZg^_ 'VROYH,1
<
< kbglZdkbk_ kbkl_fu 0DWKHPDWLFD _klv ^hklZlhqgh keh`gu_ \oh^gu_ nhjfu1
;ehdghlu b yq_cdb >hdmf_glu \ 0DWKHPDWLFD gZau\Zxlky [ehdghlZfb1 ;ehdghlu fh]ml kh^_j`Zlv h[uqguc l_dkl/ ]jZnbdm/ Z lZd`_ \\h^ b \u\h^ kbkl_fu 0DWKHPDWLFD1
43
BgnhjfZpby \ [ehdghl_ ojZgblky \ yq_cdZo1 OZjZdl_jbklbdZ yq_cdb aZ\bkbl hl _z nmgdpbb b hl \b^Z bgnhjfZpbb/ dhlhjmx hgZ kh^_j`bl1 Kdh[db k ijZ\hc klhjhgu hdgZ [ehdghlZ ihdZau\Zxl jZaf_j dZ`^hc yq_cdb1 0DWKHPDWLFD iha\hey_l \Zf kha^Z\Zlv yq_cdb \ [ehdghl_ b_jZjobq_kdb/ khhl\_lkl\_ggh/ gZijbf_j/ ]eZ\Zf b iZjZ]jZnZf \ dgb]_1 B_jZjobq_kdZy kljmdlmjZ ]jmiiu yq__d ihdZau\Z_lky \ \b^_ i_j_djulby kdh[hd yq__d \ ijZ\hc klhjhg_ hdgZ [ehdghlZ1
Hj]ZgbaZpby yq__d Yq_cdZ 0 hkgh\ghc fh^mev hj]ZgbaZpbb bgnhjfZpbb \ [ehdghl_ kbkl_fu 0DWKHPDWLFD1 Yq_cdZ fh`_l kh^_j`Zlv l_dkl/ ]jZnbdm/ \\h^ beb \u\h^ kbkl_fu 0DWKHPDWLFD b ^jm]b_ yq_cdb1 0DWKHPDWLFD hl^_ey_l l_dkl hl \\h^Z b \u\h^Z/ ZgZebabjmy Zljb[mlu yq_cdb1 JZaf_j dZ`^hc yq_cdb \ [ehdghl_ hij_^_ey_lky kdh[dZfb kijZ\Z hl g_z1 Ih wlbf kdh[dZf fh`gh hij_^_eblv/ dZd hj]Zgbah\Zg ^Zgguc [ehdghl1 Dh]^Z ]jmiiZ yq__d khhl\_lkl\m_l k_dpbb beb ]eZ\_ ^hdmf_glZ/ i_j\mx yq_cdm \ ]jmii_ p_e_khh[jZagh ^_eZlv aZ]heh\dhf wlhc k_dpbb beb ]eZ\u1 Bgl_jn_ck [ehdghlZ iha\hey_l %aZdju\Zlv% ]jmiiu yq__d/ lZd qlh lhevdh i_j\u_ yq_cdb [m^ml hklZ\Zlvky \b^bfufb1 LZdbf h[jZahf [m^ml \b^gu lhevdh gZa\Zgby ]eZ\ beb k_dpbc ^hdmf_glZ1 Dh]^Z ]jmiiZ yq__d aZdjulZ/ _z kdh[dZ bf__l 0 _keb \u szedg_l_ ih kdh[d_ %furvx% \gbam klj_edm ^\Z`^u/ ]jmiiZ jZkdjh_lky1
44
Kha^Zgb_ gh\uo yq__d Dh]^Z \u kha^Zzl_ gh\uc [ehdghl/ hg g_ kh^_j`bl gbq_]h1 Gh dZd lhevdh \u gZqbgZ_l_ gZ[bjZlv l_dkl/ 0DWKHPDWLFD kha^Zzl yq_cdm ^ey \\h^Z1
Klbeb yq__d DZ`^Zy yq_cdZ \ kbkl_f_ 0DWKHPDWLFD bf__l hij_^_e_gguc klbev1 Klbev \dexqZ_l \ kihkh[/ dhlhjuf l_dkl hlh[jZ`Z_lky \ yq_cd_= _]h rjbnl/ jZaf_j/ p\_l/ kihkh[ \ujZ\gb\Zgby b l1^1/ Z lZd`_ Zljb[mlu yq_cdb +l_f g_ f_g__ \u fh`_l_ baf_gblv Zljb[mlu ^ey yq_cdb/ Z _z klbev hklZg_lky l_f `_,1Kms_kl\m_l fgh`_kl\h aZjZg__ hij_^_e_gguo klbe_c ^ey yq_cdb1
45
2XWSXW 0HVVDJH 0DWKHPDWLFD 3ULQW 0 ,QIRUPDWLRQ 1DPH 0 +HDGHU 0 )RRWHU 0 *UDSK /DEHO
0 0
0
0 \u\h^ y^jZ 0DWKHPDWLFD khh[s_gb_/ gZi_qZlZggh_ y^jhf kbkl_fu \u\h^ nmgdpbb 3ULQW bgnhjfZpby/ ihemq_ggZy hl y^jZ 3RVW6FULSW 0 0 l_dkl 3RVW6FULSW ghf_jZ yq__d \\h^Z2\u\h^Z 0DWKHPDWLFD aZ]heh\db \ i_qZlZ_fuo [ehdghlZo kghkdb \ i_qZlZ_fuo [ehdghlZo l_dkl \ ]jZnbd_ kbkl_fu 0DWKHPDWLFD
J_^Zdlbjh\Zgb_ yq__d b bo kh^_j`bfh]h Wlhl jZa^_e hibku\Z_l/ dZd bkihevah\Zlv dhfZg^u ba f_gx %(GLW% ^ey j_^Zdlbjh\Zgby kh^_j`bfh]h [ehdghlZ \ kbkl_f_ 0DWKHPDWLFD1 Hkgh\gu_ ^_ckl\by \u^_e_gby/ \uj_aZgby/ dhibjh\Zgby b \klZ\db fh]ml ijbf_gylvky d l_dklm b ]jZnbd_ \ yq_cdZo/ lZd`_ dZd b d kZfhc yq_cd_ b d ]jmiiZf yq__d1 DhfZg^Z 8QGR WlZ dhfZg^Z hlf_gy_l \Zr_ ihke_^g__ ^_ckl\b_ ih i_qZlb beb j_^Zdlbjh\Zgbx1 DhfZg^Z &XW WlZ dhfZg^Z klbjZ_l \u[jZgguc l_dkl/ ]jZnbdm beb yq_cdb ba [ehdghlZ b i_j_f_sZ_l \ [mn_j h[f_gZ 0DWKHPDWLFD1
46
DhfZg^Z &OHDU WlZ dhfZg^Z klbjZ_l \u[jZggmx bgnhjfZpbx \ [ehdghl_ [_a i_j_ghkZ _z \ [mn_j h[f_gZ 0DWKHPDWLFD1 Ihkdhevdm kh^_j`bfh_ [mn_jZ h[f_gZ 0DWKHPDWLFD f_gy_lky ijb dZ`^hf ^_ckl\bb dhibjh\Zgby beb \uj_aZgby/ wlZ dhfZg^Z hkh[_ggh ihe_agZ/ _keb \u g_ ohlbl_ baf_gylv kh^_j`bfh_ [mn_jZ h[f_gZ 0DWKHPDWLFD1
DhfZg^Z 3DVWH DQG 'LVFDUG WlZ dhfZg^Z jZ[hlZ_l lZd `_/ dZd 3DVWH/ gh hk\h[h`^Z_l [mn_j h[f_gZ 0DWKHPDWLFD ihke_ \klZ\db1 WlZ dhfZg^Z ihe_agZ/ _keb kh^_j`bfh_ [mn_jZ h[f_gZ 0DWKHPDWLFD hq_gv \_ebdh/ Z dhebq_kl\h ^hklmighc iZfylb fZeh1 DhfZg^Z $XWR 3DVWH
:ljb[mlu yq__d ;ehdghl 0DWKHPDWLFD khklhbl ba yq__d1 Yq_cdb fh]ml kh^_j`Zlv \\h^ b \u\h^/ ihykgbl_evguc l_dkl/ gZa\Zgby/ aZ]heh\db/ ]jZnbdm1 Kh^_j`bfh_ yq_cdb hij_^_ey_l jhev/ dhlhjmx hgZ b]jZ_l \ \Zr_f [ehdghl_1 DZ`^Zy yq_cdZ \ [ehdghl_ ij_^gZagZq_gZ ^ey hij_^_e_gghc p_eb= gZijbf_j/ \u \jy^ eb aZohlbl_ \uqbkeylv yq_cdm/ kh^_j`Zsmx aZ]heh\hd beb ihykgbl_evguc l_dkl> b \u/ \_jhylgh/ g_ aZohlbl_ j_^Zdlbjh\Zlv yq_cdm/ kh^_j`Zsmx \u\h^ kbkl_fu 0DWKHPDWLFD1 Yq_cdZf ijbk\Zb\Zxlky jZaebqgu_ Zljb[mlu/ khhl\_lkl\mxsb_ bo p_eyf \ [ehdghl_1 GZijbf_j/ yq_cdZ/ kh^_j`ZsZy aZ]heh\hd [ehdghlZ/ y\ey_lky g_Zdlb\ghc +%LQDFWLYH%,/ ihdZau\Zy/ qlh hgZ g_ fh`_l [ulv \uiheg_gZ dZd h[uqgh_ fZl_fZlbq_kdh_ \ujZ`_gb_1 Yq_cdZ/ kh^_j`ZsZy \u\h^ 0DWKHPDWLFD/ bf__l Zljb[ml %IRUPDWWHG%
47
+%nhjfZlbjh\ZggZy%,/ ihdZau\Zxsbc/ qlh gZibkZgb_ ^jh[_c b kl_i_g_c \ \ujZ`_gbb y\ey_lky ^\mf_jguf +l1_1 hgb ihdZau\Zxlky k \_jogbfb b gb`gbfb bg^_dkZfb, b qlh l_dkl g_ fh`_l j_^Zdlbjh\Zlvky1 K ^jm]hc klhjhgu/ yq_cdb/ kh^_j`Zsb_ \\h^/ bf_xl Zljb[ml %XQIRUPDWWHG% +%g_nhjfZlbjh\Zggu_%,/ b l_dkl \ gbo fh`gh j_^Zdlbjh\Zlv1 JZaf_j yq_cdb hij_^_ey_lky kdh[dhc/ jZkiheh`_gghc k ijZ\hc klhjhgu hdgZ [ehdghlZ1 Fgh]b_ yq_cdb bf_xl oZjZdl_jgu_ \b^u kdh[hd/ ih dhlhjuf \u kfh`_l_ kjZam hij_^_eblv bo Zljb[mlu1 Ijh]jZffZ 0DWKHPDWLFD ijbk\Zb\Z_l g_dhlhju_ Zljb[mlu yq_cdZf Z\lhfZlbq_kdb1 L_f g_ f_g__ \u kZfb fh`_l_ ijbk\hblv yq_cdZf Zljb[mlu +beb hlf_gblv bo,/ bkihevamy dhfZg^u \ f_gx %&HOO%1 >ey \u^_e_gghc yq_cdb \u fh`_l_ \b^_lv \k_ _z Zljb[mlu/ dZd ihf_q_ggu_ ]ZehqdZfb \ f_gx %&HOO%1 ]jZnbdm \ nhjf_ 3RVW6FULSW beb ]jZnbdm/ bfihjlbjh\Zggmx ba ^jm]h]h ijbeh`_gby1 G_nhjfZlbjh\ZggZy yq_cdZ/ k ^jm]hc klhjhgu/ kh^_j`bl h[uqguc l_dkl/ dhlhjuc fh`_l [ulv hlj_^Zdlbjh\Zg gZijyfmx1
48
?keb \u \\_^_l_ \ yq_cdm l_dkl b hlnhjfZlbjm_l_ _z/ lh 0DWKHPDWLFD [m^_l bgl_jij_lbjh\Zlv l_dkl dZd fZl_fZlbq_kdh_ \ujZ`_gb_ b ihdZ`_l kl_i_gb b ^jh[b \ ^\mf_jghc nhjf_1 ?keb \u jZknhjfZlbjm_l_ yq_cdm/ kh^_j`Zsmx \u\h^ 0DWKHPDWLFD/ lh \u m\b^bl_ lm `_ kljhdm \ j_^Zdlbjm_fhc nhjf_1 ?keb \u jZknhjfZlbjm_l_ yq_cdm/ kh^_j`Zsmx ]jZnbdm 3RVW6FULSW/ lh \u m\b^bl_ l_dkl 3RVW6FULSW +lZd`_ j_^Zdlbjm_fuc,1 AZdjulZy yq_cdZ Kh^_j`bfh_ aZdjulhc yq_cdb g_ fh`_l [ulv hlj_^Zdlbjh\Zgh ^h l_o ihj/ ihdZ g_ kgyl Zljb[ml %/RFNHG%1 AZdjulZy yq_cdZ bf__l f_ldm %;% gZ kdh[d_ \\_jom 1
=jmiiu yq__d < kbkl_f_ 0DWKHPDWLFD \u fh`_l_ ]jmiibjh\Zlv g_kdhevdh yq__d \ [ehdghl_ ih^h[gh/ gZijbf_j/ iZjZ]jZnZf b ]eZ\Zf \ dgb]_1 =jmiiu yq__d bf_xl ^hihegbl_evgmx kdh[dm k ijZ\hc klhjhgu hdgZ [ehdghlZ1
49
Qlh[u hlf_gblv ]jmiibjh\Zgb_/ s_edgbl_ %furvx% ih kdh[d_ ]jmiiu b \u[_jbl_ dhfZg^m %8QJURXS &HOOV% \ f_gx %&HOO%1 H^gh ba ij_bfms_kl\ kha^Zgby ]jmiiu \ lhf/ qlh wlbf fh`gh memqrblv eh]bq_kdmx hj]ZgbaZpbx [ehdghlZ1 GZijbf_j/ \u fh`_l_ kha^Zlv ]jmiim yq__d/ kh^_j`Zsmx \k_ \uqbke_gby1 WlZ ]jmiiZ yq__d fh`_l [ulv hldjulhc beb aZdjulhc \ aZ\bkbfhklb hl kl_i_gb ^_lZebaZpbb/ ij_^eZ]Z_fhc \Zfb ^ey qblZl_e_c1 ;ehdghlu/ ihklZ\ey_fu_ gZ ^bkd_ \f_kl_ k kbkl_fhc 0DWKHPDWLFD/ ^Zxl ijbf_j lZdhc hj]ZgbaZpbb1 LZd`_ \ kbkl_f_ 0DWKHPDWLFD \u fh`_l_ kha^Zlv ]jmiim \uqbke_gbc ^ey yq__d/ dhlhju_ ^he`gu [ulv \uqbke_gu kjZam \k_ \f_kl_1
AZdjulu_ ]jmiiu
4:
yq_cd_ \u^_e_gZ ihke_^h\Zl_evghklv kbf\heh\/ lh bgnhjfZpby/ jZkiheh`_ggZy i_j_^ \u^_e_gb_f/ ihf_sZ_lky \ i_j\hc yq_cd_/ kZf \u[hj 0 \h \lhjhc/ b bgnhjfZpby/ jZkiheh`_ggZy ihke_ \u^_e_gby/0 \ lj_lv_c1 ?keb `_ lhqdZ \klZ\db g_ gZoh^blky \ yq_cd_ b kZfZ yq_cdZ \u[jZgZ/ lh ijb \uiheg_gbb dhfZg^u %'LYLGH &HOO% ihy\ey_lky ^bZeh]h\h_ hdgh %6SOLW &HOO%1 Kebygb_ yq__d DhfZg^Z %0HUJH &HOOV% kh_^bgy_l \u^_e_ggu_ yq_cdb \ h^gm1 IhemqZxsZyky yq_cdZ bf__l klbev b Zljb[mlu i_j\hc ba \u^_e_gguo yq__d1 DhfZg^Z %0HUJH &HOOV% g_ kh_^bgy_l ]jmiiu yq__d beb yq_cdb ba jZaguo ]jmii1 =jmiiZ \uqbke_gbc =jmiiZ \uqbke_gbc 0 wlh ]jmiiZ yq__d/ \ dhlhjhc ijb \uqbke_gbb h^ghc yq_cdb ]jmiiu \k_ hklZevgu_ \uqbkeyxlky Z\lhfZlbq_kdb1 =jmiiZ \uqbke_gbc ihf_qZ_lky fZe_gvdbf lj_m]hevgbdhf gZ kdh[d_ ]jmiiu 1 =jmiiu \uqbke_gbc ihe_agu/ dh]^Z m \Zk _klv g_kdhevdh yq__d/ dhlhju_ ^he`gu \uqbkeylvky \f_kl_ 0 gZijbf_j/ dh]^Z j_amevlZlu beb hij_^_e_gby \ ihke_^mxsbo yq_cdZo aZ\bkyl hl j_amevlZlh\ beb hij_^_e_gbc \ ij_^u^msbo1 Qlh[u kha^Zlv ]jmiim \uqbke_gbc= 41
Klbeb [ehdghlh\ DZ`^uc [ehdghl/ dhlhjuc \u kha^Z_l_ beb hldju\Z_l_/ bf__l klbev/ dhlhjuc kdeZ^u\Z_lky ba gZ[hjZ \k_\hafh`guo klbe_c yq__d \ [ehdghl_1
4;
kihkh[Z nhjfZlbjh\Zgby l_dklZ \ yq_cd_1 Dh]^Z \u baf_gy_l_ hij_^_e_gb_ klbey/ \k_ yq_cdb wlh]h klbey \ [ehdghl_ Z\lhfZlbq_kdb baf_gyxlky1 Dh]^Z \u kha^Z_l_ gh\uc [ehdghl/ _]h klbev hij_^_ey_lky mklZgh\dZfb ih mfheqZgbx1 Qlh[u baf_gblv wlb mklZgh\db ih mfheqZgbx b l_f kZfuf baf_gblv klbev \k_o kha^Z\Z_fuo [ehdghlh\/ \u[_jbl_ dhfZg^m %(GLW 'HIDXOW 6W\OHV% \ f_gx %6W\OH%1
DZd bkihevah\Zlv kijZ\dm
In[]:= ?Factor* Out[]= Factor FactorComplete Factorial Factorial2
FactorList FactorSquareFree FactorSquareFreeList FactorTerms
4<
FactorInteger
FactorTermsList
?keb \\_klb ")DFWRU/ lh 0DWKHPDWLFD \u\_^_l hibkZgb_ dhfZg^u )DFWRU1
In[]:= ?Factor Out[]= Factor[poly] factors a polynomial over the integers. Factor[poly, Modulus->p] factors a polynomial modulo a prime p.
>hihegbl_evgZy kijZ\dZ >hihegbl_evgmx bgnhjfZpbx fh`gh ihemqblv/ bkihevamy hi_jZlhj ""1 < ^hiheg_gb_ d kbglZdkbkm dhfZg^u/ wlhl hi_jZlhj i_j_qbkey_l agZq_gby ih mfheqZgbx ^ey \k_o Zljb[mlh\ b hipbc1 GZijbf_j=
In[7]:= ??Factor Out[7]= Factor[poly] factors a polynomial over the integers. Factor[poly, Modulus->p] factors a polynomial modulo a prime p. Attributes[Factor] = {Protected} Options[Factor] = {GaussianIntegers -> False, Modulus -> 0, Trig -> False} >Ze__ fh`gh magZlv agZq_gby wlbo Zljb[mlh\ b hipbc1 KijZ\dZ \ iZd_l_ 0DWKHPDWLFD \_jkbc 613 b 713 kms_kl\_ggh hlebqZ_lky \ emqrmx klhjhgm hl kijZ\db ij_^u^msbo \_jkbc dZd iheghlhc/ lZd b ^hklmiguf baeh`_gb_f1
KlZg^Zjlgu_ iZd_lu
53
>ey fgh]bo \b^h\ \uqbke_gbc \kljh_gguo nmgdpbc klZg^Zjlghc \_jkbb 0DWKHPDWLFD [m^_l \iheg_ ^hklZlhqgh1 L_f g_ f_g__/ _keb \u \uihegy_l_ jZ[hlm \ ki_pbZebabjh\Zgghc h[eZklb/ lh \Zf fh]ml ihgZ^h[blvky nmgdpbb/ dhlhju_ g_ \kljh_gu \ kbkl_fm 0DWKHPDWLFD1 < lZdhf kemqZ_ \Zf fh]ml ijb]h^blvky klZg^Zjlgu_ iZd_lu kbkl_fu 0DWKHPDWLFD1 ?keb \u ohlbl_ bkihevah\Zlv nmgdpbb ba hij_^_e_ggh]h iZd_lZ/ \u ^he`gu kgZqZeZ aZ]jmablv _]h1 Ihke_ wlh]h \u fh`_l_ bkihevah\Zlv nmgdpbb iZd_lZ dZd h[uqgu_ \kljh_ggu_ nmgdpbb1 ?keb \u ihiulZ_l_kv bkihevah\Zlv nmgdpbx ba klZg^Zjlgh]h iZd_lZ ^h _]h aZ]jmadb/ lh 0DWKHPDWLFD \hkijbf_l wlh dZd hij_^_e_gb_ nmgdpbb1 Lh]^Z/ ^Z`_ ihke_ aZ]jmadb iZd_lZ kbkl_fZ 0DWKHPDWLFD [m^_l bkihevah\Zlv \Zr_ hij_^_e_gb_ nmgdpbb/ Z g_ lh/ dhlhjh_ ^Zgh \ iZd_l_1 Qlh[u ba[_`Zlv wlh]h/ bkihevamcl_ dhfZg^m 5HPRYH>bfy nmgdpbb@1 GZijbf_j/ aZ]jmabf iZd_l ^ey \uqbke_gbc \ lj_of_jguo kbkl_fZo dhhj^bgZl In[]:= <
54
Div DotProduct EllipticCylindrical eta Grad JacobianDeterminant JacobianMatrix lambda
Toroidal u v x xi y z
Nmgdpby ]jZ^b_glZ hij_^_e_gZ \ wlhf iZd_l_= In[]:= ?Grad Out[]= Grad[f] gives the gradient of the scalar function f in the default coordinate system. Grad[f, coordsys] gives the gradient of f in the coordinate system coordsys. Ih mfheqZgbx \uqbke_gby ijhba\h^ylky \ ^_dZjlh\hc kbkl_f_ dhhj^bgZl In[]:= Grad[x^2+y^2] Out[]= {2x, 2y, 0}
HibkZgb_ g_dhlhjuo klZg^Zjlguo iZd_lh\ 0DWKHPDWLFD Gb`_ fu bkihevam_f ^ey dhfZg^ b nmgdpbc/ j_Zebamxsbo jZaebqgu_ f_lh^u \ kbkl_f_ 0DWKHPDWLFD/ l_jfbg ³nmgdpby´ bkihevam_lky a^_kv \ h[uqghf kfuke_ b dZd kbghgbf l_jfbgZ ³dhfZg^Z´1 :e]_[jZ $OJHEUDC&RXQW5RRWVC 0 kh^_j`bl nmgdpbx &RXQW5RRWV/ dhlhjZy ^Z_l dhebq_kl\h ghe_c \_s_kl\_ggh]h fgh]hqe_gZ gZ aZ^Zgghf bgl_j\Ze_1 $OJHEUDC5H,PC 0 kh^_j`bl jZkrbj_ggu_ nmgdpbb ^ey jZ[hlu k dhfie_dkgufb qbkeZfb b nmgdpbyfb1 $OJHEUDC6\PEROLF6XPC 0 ^Z_l memqr_ggu_ nmgdpbb 6XP b 3URGXFW ^ey \uqbke_gby rbjhdh]h deZkkZ dhg_qguo b [_kdhg_qguo kmff b ijhba\_^_gbc1
55
:gZeba &DOFXOXVC'LUDF'HOWDC 0 aZ^Z_l nmgdpbx O_\bkZc^Z b ^_evlZ0 nmgdpbx >bjZdZ1 &DOFXOXVC'6ROYHC 0 kh^_j`bl jZkrbj_ggmx nmgdpbx j_r_gby ^bnn_j_gpbZevguo mjZ\g_gbc/ \dexqZy h[udgh\_ggu_ ^bnn_j_gpbZevgu_ mjZ\g_gby ^ey ohjhrh ba\_klguo nmgdpbc/ g_ebg_cgu_ ^bnn_j_gpbZevgu_ mjZ\g_gby i_j\h]h b \lhjh]h ihjy^dZ/ kbkl_fu g_ebg_cguo ^bnn_j_gpbZevguo mjZ\g_gbc jZaf_jghkl_c 5 b 61 &DOFXOXVC)RXULHU7UDQVIRUPC0 ^Z_l gZ[hj nmgdpbc ^ey ZgZeblbq_kdh]h ij_h[jZah\Zgby Nmjv_1 &DOFXOXVC/DSODFH7UDQVIRUPC0 ^Z_l ^\_ nmgdpbb ^ey ijyfh]h b h[jZlgh]h ij_h[jZah\Zgby EZieZkZ1 &DOFXOXVC/LPLWC 0 kh^_j`bl memqr_ggmx nmgdpbx /LPLW ^ey gZoh`^_gby ij_^_eh\ \ujZ`_gbc/ kh^_j`Zsbo rbjhdbc deZkk we_f_glZjguo b ki_pbZevguo nmgdpbc1 &DOFXOXVC3'6ROYH4C 0 iZd_l ij_^gZagZq_g ^ey j_r_gby ^bnn_j_gpbZevguo mjZ\g_gbc k qZklgufb ijhba\h^gufb i_j\h]h ihjy^dZ1 &DOFXOXVC9DULDWLRQDO0HWKRGVC 0 ^Z_l gZ[hj nmgdpbc ^ey \ZjbZpbhggh]h bkqbke_gby1 &DOFXOXVC9HFWRU$QDO\VLVC 0 kh^_j`bl [hevrhc gZ[hj nmgdpbc ^ey \uqbke_gbc \ jZaebqguo lj_of_jguo dhhj^bgZlguo kbkl_fZo1 >bkdj_lgZy fZl_fZlbdZ 'LVFUHWH0DWKC&RPELQDWRULDO6LPSOLILFDWLRQC 0 iZd_l \\h^bl we_f_glZjgu_ ijZ\beZ ^ey mijhs_gby \ujZ`_gbc/ kh^_j`Zsbo nZdlhjbZeu/ ijhba\_^_gby b [bghfbZevgu_ dhwnnbpb_glu k kbf\hevgufb Zj]mf_glZfb1 'LVFUHWH0DWKC&RPELQDWRULFDC 0 iZd_l jZkrbjy_l kbkl_fm 0DWKHPDWLFD [he__ q_f gZ 563 nmgdpbc ih dhf[bgZlhjbd_ b l_hjbb ]jZnh\1 <dexqZ_l nmgdpbb ihkljh_gby ]jZnh\ b ^jm]bo dhf[bgZlhjguo h[t_dlh\/ ih^kq_lZ bg\ZjbZglh\ wlbo h[t_dlh\ b \u\h^Z bo gZ wdjZg1 'LVFUHWH0DWKC3HUPXWDWLRQVC 0 iZd_l ^ey jZ[hlu k i_j_klZgh\dZfb1 'LVFUHWH0DWKC56ROYHC 0 iZd_l ^ey jZ[hlu k ihke_^h\Zl_evghklyfb/ \dexqZ_l jZaghklgu_ mjZ\g_gby/ ijhba\h^ysb_ nmgdpbb ihke_^h\Zl_evghkl_c b l1^1
56
=_hf_ljby *HRPHWU\C3RO\WRSHVC 0 iZd_l ij_^gZagZq_g ^ey jZ[hlu k ijZ\bevgufb fgh]hm]hevgbdZfb b ijZ\bevgufb fgh]h]jZggbdZfb1 *HRPHWU\C5RWDWLRQVC 0 iZd_l hij_^_ey_l nmgdpbb ^ey \jZs_gby \_dlhjh\ \ ^\mo b lj_o 0f_jghf ijhkljZgkl\_1 =jZnbdZ *UDSKLFVC$QLPDWLRQC 0 iZd_l ij_^klZ\ey_l gZ[hj nmgdpbc ^ey ihdZaZ ZgbfZpbb gZ wdjZg_ jZaebqgufb kihkh[Zfb= \jZs_gb_f beb ih\hjhlhf h[t_dlZ \ ^\mof_jghf beb lj_of_jghf ijhkljZgkl\_/ baf_g_gb_f ]jZnbdZ nmgdpbb ijb baf_g_gbb iZjZf_ljZ/ \uah\hf ihke_^h\Zl_evghklb ]jZnbq_kdbo h[t_dlh\1 *UDSKLFVC$UURZC 0 iZd_l \\h^bl ]jZnbq_kdbc ijbfblb\ ± ebgbx kh klj_edhc/ dhlhjuc ihe_a_g ^ey \u\h^Z ]jZnbdh\1 *UDSKLFVC&RORUVC 0 iZd_l \\h^bl ^hihegbl_evgu_ kbkl_fu hij_^_e_gby p\_lZ b kh^_j`bl ki_pbnbdZpbb fgh]bo p\_lh\1 *UDSKLFVC)LOOHG3ORWC 0 iZd_l \\h^bl nmgdpbb jbkh\Zgby ^\mof_jguo ]jZnbdh\ k h[eZklyfb jZaebqguo p\_lh\1 *UDSKLFVC*UDSKLFVC 0 iZd_l ij_^gZagZq_g ^ey jbkh\Zgby ^\mof_jguo ]jZnbdh\ \ jZaebqguo fZkrlZ[Zo/ Z lZd`_ ^ey \u\h^Z ^\mof_jguo ^bZ]jZff1 *UDSKLFVC*UDSKLFV6'C 0 iZd_l ij_^gZagZq_g ^ey jbkh\Zgby lj_of_jguo ]jZnbdh\ b ^bZ]jZff/ Z lZd`_ ki_pbZevguo wnn_dlh\1 *UDSKLFVC,PSOLFLW3ORWC 0 iZd_l ij_^gZagZq_g ^ey jbkh\Zgby ]jZnbdh\ nmgdpbc/ dhlhju_ aZ^Zgu g_y\gh dZd j_r_gby mjZ\g_gbc1 *UDSKLFVC0XOWLSOH/LVW3ORWC 0 iZd_l kh^_j`bl nmgdpbx ^ey \u\h^Z agZq_gbc g_kdhevdbo kibkdh\ gZ h^ghf ]jZnbd_1 *UDSKLFVC3ORW)LHOGC 0 iZd_l kh^_j`bl nmgdpbb jbkh\Zgby ^\mof_jgh]h \_dlhjgh]h ihey b ihey ]jZ^b_glZ ih aZ^Zgghfm ihl_gpbZem1 *UDSKLFVC3ORW)LHOG6'C 0 iZd_l ^ey \u\h^Z bah[jZ`_gbc \_dlhjguo ihe_c \ lj_of_jghf ijhkljZgkl\_1 *UDSKLFVC3RO\KHGUDC 0 iZd_l hij_^_ey_l fgh]b_ ba\_klgu_ fgh]h]jZggbdb1 *UDSKLFVC6KDSHVC 0 iZd_l hij_^_ey_l lj_of_jgu_ h[t_dlu/ lZdb_ dZd pbebg^j/ dhgmk/ lhj/ e_glZ F_[bmkZ b l1^1 *UDSKLFVC6SOLQHC 0 \ iZd_l_ hij_^_e_g ]jZnbq_kdbc ijbfblb\ 0 kieZcg1
57
Ebg_cgZy Ze]_[jZ /LQHDU$OJHEUDC&KROHVN\C 0iZd_l hij_^_ey_l jZaeh`_gb_ Ohe_kdb ^ey kbff_ljbqghc iheh`bl_evgh hij_^_e_gghc fZljbpu1 /LQHDU$OJHEUDC0DWUL[0DQLSXODWLRQC 0 iZd_l \dexqZ_l nmgdpbb ^ey khklZ\e_gby b jZaeh`_gby fZljbp1 /LQHDU$OJHEUDC2UWKRJRQDOL]DWLRQC 0 iZd_l ^ey gZoh`^_gby hjlhghjfbjh\Zggh]h [ZabkZ1 JZagh_ 0LVFHOODQHRXVC8QLWVC 0 iZd_l \\h^bl _^bgbpu baf_j_gby jZaebqguo nbabq_kdbo \_ebqbg1 L_hjby qbk_e 1XPEHU7KHRU\C%LQRPLDOC 0 iZd_l ij_^gZagZq_g ^ey [ukljh]h \uqbke_gby [bghfbZevguo dhwnnbpb_glh\1 1XPEHU7KHRU\C&RQWLQXHG)UDFWLRQVC 0 iZd_l ^ey jZ[hlu k g_ij_ju\gufb ^jh[yfb1 1XPEHU7KHRU\C1XPEHU7KHRU\)XQFWLRQVC 0 iZd_l ^Z_l gZ[hj nmgdpbc/ ihe_aguo ^ey ijbeh`_gbc \ l_hjbb qbk_e1 Qbke_ggu_ f_lh^u 1XPHULFDO0DWKC%HVVHO=HURVC 0 iZd_l ij_^gZagZq_g ^ey gZoh`^_gby gme_c jZaebqguo nmgdpbc ;_kk_ey1 1XPHULFDO0DWKC&DXFK\3ULQFLSDO9DOXHC 0 iZd_l kh^_j`bl nmgdpbx ^ey ih^kq_lZ ]eZ\gh]h agZq_gby Dhrb ^ey bgl_]jZeZ k hkh[_gghklyfb1 1XPHULFDO0DWKC/LVW,QWHJUDWHC 0 iZd_l iha\hey_l jZkkqblZlv ZiijhdkbfZpbx bgl_]jZeZ nmgdpbb/ aZ^Zgghc kibkdhf agZq_gbc1 1XPHULFDO0DWKC1/LPLWC 0 iZd_l kh^_j`bl nmgdpbb ^ey gZoh`^_gby qbke_ggufb f_lh^Zfb ijhba\h^guo/ kmff/ ij_^_eh\1 1XPHULFDO0DWKC3RO\QRPLDO)LWC 0 iZd_l j_Zebam_l f_lh^ ijb[eb`_gby gZbf_gvrbo d\Z^jZlh\ k ihfhsvx ihebghfZ aZ^Zgghc kl_i_gb1
58
1XPHULFDO0DWKC6SOLQH)LWC bgl_jiheypbx1
0
iZd_l
j_Zebam_l
kieZcgh\mx
KlZlbklbdZ 6WDWLVWLFVC&RQILGHQFH,QWHUYDOVC 0 iZd_l kh^_j`bl nmgdpbb ^ey jZkq_lZ ^h\_jbl_evguo bgl_j\Zeh\ jZaebqguo iZjZf_ljh\ klZlbklbq_kdh]h jZkij_^_e_gby1 6WDWLVWLFVC&RQWLQXRXV'LVWULEXWLRQVC 0 iZd_l ^Z_l hij_^_e_gby nmgdpbc hkgh\guo g_ij_ju\guo klZlbklbq_kdbo jZkij_^_e_gbc1 6WDWLVWLFVC'HVFULSWLYH6WDWLVWLFVC 0 iZd_l hij_^_ey_l oZjZdl_jbklbdb jZkij_^_e_gbc/ lZdb_ dZd kj_^g__/ ^bki_jkby/ fh^Z/ f_^bZgZ b ^jm]b_1
KlZg^Zjlgu_ iZd_lu kbkl_fu 0DWKHPDWLFD 613/ 713 $OJHEUDC&RXQW5RRWVC $OJHEUDC5H,PC $OJHEUDC6\PEROLF6XPC $OJHEUDC7ULJRQRPHWU\C &DOFXOXVC'6ROYHC &DOFXOXVC(OOLSWLF,QWHJUDWHC &DOFXOXVC)RXULHU7UDQVIRUPC &DOFXOXVC/DSODFH7UDQVIRUPC &DOFXOXVC/LPLWC &DOFXOXVC3DGHC &DOFXOXVC3'6ROYH4C &DOFXOXVC9DULDWLRQDO0HWKRGVC &DOFXOXVC9HFWRU$QDO\VLVC 'LVFUHWHC&RPELQDWRULDO)XQFWLRQVC
59
'LVFUHWHC&RPELQDWRULDO6LPSOLILFDWLRQC 'LVFUHWHC&RPELQDWRULFDC 'LVFUHWHC3HUPXWDWLRQVC 'LVFUHWHC56ROYHC 'LVFUHWHC7UHHC ([DPSOHV?/LIH1P ([DPSOHVC&ROODW]C ([DPSOHVC,QWHJHU5RRWVC ([DPSOHVC2QH/LQHUVC ([DPSOHVC2SWLRQ8WLOLWLHVC ([DPSOHVC6WULQJ3DWWHUQVC *HRPHWU\C3RO\WRSHVC *HRPHWU\C5RWDWLRQVC *UDSKLFVC$QLPDWLRQC *UDSKLFVC$UJ&RORUVC *UDSKLFVC$UURZC *UDSKLFVC&RORUVC *UDSKLFVC&RPSOH[0DSC *UDSKLFVC&RQWRXU3ORW6'C *UDSKLFVC)LOOHG3ORWC *UDSKLFVC*UDSKLFVC *UDSKLFVC*UDSKLFV6'C *UDSKLFVC,PSOLFLW3ORWC *UDSKLFVC/HJHQGVC *UDSKLFVC0XOWLSOH/LVW3ORWC *UDSKLFVC3DUDPHWULF3ORW6'C *UDSKLFVC3ORW)LHOGC *UDSKLFVC3ORW)LHOG6'C *UDSKLFVC3RO\KHGUDC *UDSKLFVC5RWDWLRQVC *UDSKLFVC6KDSHVC *UDSKLFVC6SOLQHC *UDSKLFVC6XUIDFH2I5HYROXWLRQC *UDSKLFVC7KUHH6FULSWC /LQHDU$OJHEUDC&KROHVN\C /LQHDU$OJHEUDC&URVV3URGXFWC /LQHDU$OJHEUDC*DXVVLDQ(OLPLQDWLRQC /LQHDU$OJHEUDC0DWUL[0DQLSXODWLRQC /LQHDU$OJHEUDC2UWKRJRQDOL]DWLRQC
5:
/LQHDU$OJHEUDC7ULGLDJRQDOC 0LVFHOODQHRXVC$XGLRC 0LVFHOODQHRXVC&DOHQGDUC 0LVFHOODQHRXVC&KHPLFDO(OHPHQWVC 0LVFHOODQHRXVC&LW\'DWDC 0LVFHOODQHRXVC0XVLFC 0LVFHOODQHRXVC3K\VLFDO&RQVWDQWVC 0LVFHOODQHRXVC6,8QLWVC 0LVFHOODQHRXVC8QLWVC 0LVFHOODQHRXVC:RUOG'DWDC 0LVFHOODQHRXVC:RUOG1DPHVC 1XPEHU7KHRU\C%LQRPLDOC 1XPEHU7KHRU\C&RQWLQXHG)UDFWLRQVC 1XPEHU7KHRU\C)DFWRU,QWHJHU(&0C 1XPEHU7KHRU\C1XPEHU7KHRU\)XQFWLRQVC 1XPEHU7KHRU\C3RO\QRPLDO0RGC 1XPEHU7KHRU\C3ULPH4C 1XPEHU7KHRU\C5DPDQXMDQC 1XPEHU7KHRU\C5DWLRQDOL]HC 1XPEHU7KHRU\C5HFRJQL]HC 1XPHULFDO0DWKC$SSUR[LPDWLRQVC 1XPHULFDO0DWKC%XWFKHUC 1XPHULFDO0DWKC&DXFK\3ULQFLSDO9DOXHC 1XPHULFDO0DWKC&RPSXWHU$ULWKPHWLFC 1XPHULFDO0DWKC*DXVVLDQ4XDGUDWXUHC 1XPHULFDO0DWKC,QWHUSRODWH5RRWC 1XPHULFDO0DWKC,QWHUYDO$ULWKPHWLFC 1XPHULFDO0DWKC/LVW,QWHJUDWHC 1XPHULFDO0DWKC1HZWRQ&RWHVC 1XPHULFDO0DWKC1/LPLWC 1XPHULFDO0DWKC3RO\QRPLDO)LWC 1XPHULFDO0DWKC5XQJH.XWWDC 1XPHULFDO0DWKC6SOLQH)LWC 1XPHULFDO0DWKC6WUXYHC 1XPHULFDO0DWKC6ZLQQHUWRQ'\HUC 3URJUDPP?$OJ([S1P 3URJUDPP?6HVVLRQ/1P 3URJUDPP?7UDQVFUL1P
5;
6WDUWXS?,QVWDOO1P 6WDWLVWLFVC&RQILGHQFH,QWHUYDOVC 6WDWLVWLFVC&RQWLQXRXV'LVWULEXWLRQVC 6WDWLVWLFVC'DWD0DQLSXODWLRQC 6WDWLVWLFVC'HVFULSWLYH6WDWLVWLFVC 6WDWLVWLFVC'LVFUHWH'LVWULEXWLRQVC 6WDWLVWLFVC+\SRWKHVLV7HVWVC 6WDWLVWLFVC,QYHUVH6WDWLVWLFDO)XQFWLRQVC 6WDWLVWLFVC/LQHDU5HJUHVVLRQC 6WDWLVWLFVC0RYLQJ$YHUDJHC 6WDWLVWLFVC1RQOLQHDU)LWC 6WDWLVWLFVC1RUPDO'LVWULEXWLRQC 8WLOLWLHVC%LQDU\)LOHVC 8WLOLWLHVC';)C 8WLOLWLHVC)LOWHU2SWLRQVC 8WLOLWLHVC3DFNDJHC 8WLOLWLHVC6KRZ7LPHC
KljmdlmjZ ]jZnbdb < iZd_l_ 0DWKHPDWLFD \ky ]jZnbdZ ij_^klZ\ey_lky \ \b^_ gZ[hjZ ]jZnbq_kdbo ijbfblb\h\1 Ijbfblb\Zfb y\eyxlky ijhklu_ nb]mju lZdb_/ dZd 3RLQW/ &LUFOH/ 3RO\JRQ/ /LQH b l1^1/ ba dhlhjuo khklZ\ey_lky \ky ]jZnbdZ1 GZijbf_j/ dhfZg^Z /LVW3ORW In[]:=ListPlot[Table[n^2,{n, {PointSize[0.02]}] Out[]=
12}],PlotStyle
->
gZ kZfhf ^_e_ \u^Zzl gZ[hj ]jZnbq_kdbo ijbfblb\h\= In[]:=InputForm[%] Out[]=Graphics[{PointSize[0.02], {Point[{1, 1}], Point[{2, 4}], Point[{3, 9}], Point[{4, 16}], Point[{5,25}], Point[{6, 36}], Point[{7,
5<
49}], Point[{8, 64}], Point[{9, 81}], Point[{10, 100}], Point[{11, 121}], Point[{12, 144}]}}, ...] Ihkdhevdm ]jZnbdZ \ 0DWKHPDWLFD ij_^klZ\ey_lky \ \b^_ gZ[hjZ ]jZnbq_kdbo ijbfblb\h\/ lh k g_c hq_gv m^h[gh jZ[hlZlv 0 jZaf_j ihemq_ggh]h bah[jZ`_gby fh`_l [ulv m\_ebq_g [_a ihl_jb dZq_kl\Z1 LZd`_ fh`gh wdkihjlbjh\Zlv bah[jZ`_gb_ \ nhjfZlZo \_dlhjghc ]jZnbdb 36/ (36 b ^jm]bo ^ey _]h h[jZ[hldb \ ^jm]bo ijh]jZffZo1 DZ`^h_ ihegh_ ]jZnbq_kdh_ bah[jZ`_gb_ \ iZd_l_ 0DWKHPDWLFD gZau\Z_lky ]jZnbq_kdbf h[t_dlhf1 Kms_kl\m_l g_kdhevdh \b^h\ ]jZnbq_kdbo h[t_dlh\/ khhl\_lkl\mxsbo jZaebqguf lbiZf ]jZnbdb1 DZ`^uc \b^ ]jZnbq_kdh]h h[t_dlZ bf__l hij_^_ezgguc aZ]heh\hd/ hij_^_eyxsbc _]h lbi= *UDSKLFV>kibkhd@ 0 \ky ^\mf_jgZy ]jZnbdZ +ijhba\h^blky dhfZg^Zfb 3ORW/ /LVW3RW/ 3DUDPHWULF3ORW, 'HQVLW\*UDSKLFV>kibkhd@ 0 ]jZnbd iehlghklb +ijhba\h^blky dhfZg^Zfb 'HQVLW\3ORW/ /LVW'HQVLW\3ORW, &RQWRXU*UDSKLFV>kibkhd@ 0 dhglmjguc ]jZnbd +ijhba\h^blky dhfZg^Zfb &RQWRXU3ORW/ /LVW&RQWRXU3ORW, 6XUIDFH*UDSKLFV>kibkhd@ 0 ljzof_jgZy ih\_joghklv +ijhba\h^blky dhfZg^Zfb 3ORW6'/ /LVW3ORW6', *UDSKLFV6'>kibkhd@ 0 \ky ljzof_jgZy ]jZnbdZ +ijhba\h^blky dhfZg^hc 3DUHPHWULF3ORW6', *UDSKLFV$UUD\>kibkhd@ 0 fZkkb\ jZaguo ]jZnbq_kdbo h[t_dlh\ H[t_dl ex[h]h lbiZ fh`_l [ulv ij_h[jZah\Zg \ ^\mf_jgmx ]jZnbdm k ihfhsvx dhfZg^u *UDSKLFV1 H[t_dl lbiZ 6XUIDFH*UDSKLFV fh`_l [ulv ij_h[jZah\Zg \ h[t_dl lbiZ *UDSKLFV6' k ihfhsvx dhfZg^u *UDSKLFV6'1 Ihkdhevdm h[t_dlu lbih\ 'HQVLW\*UDSKLFV/ &RQWRXU*UDSKLFV b 6XUIDFH*UDSKLFV \k_ \dexqZxl kibkhd agZq_gbc nmgdpbb gZ k_ld_/ lh hgb ij_h[jZamxlky ^jm] \ ^jm]Z1 >jm]b_ ij_h[jZah\Zgby/ ih0\b^bfhfm/ aZij_s_gu1 DhfZg^Z 6KRZ jbkm_l ]jZnbq_kdb_ h[t_dlu gZ wdjZg_1 DhfZg^Z 6KRZ fh`_l jbkh\Zlv g_kdhevdh ]jZnbq_kdbo h[t_dlh\ h^gh\j_f_ggh/ gh wlb h[t_dlu ^he`gu [ulv h^gh]h lbiZ1 K ^Zgguf gZ[hjhf ]jZnbq_kdbo ijbfblb\h\ \u fh`_l_ fh^bnbpbjh\Zlv hdhgqZl_evgh_ ]jZnbq_kdh_ bah[jZ`_gb_ ^\mfy kihkh[Zfb=
63
3/3/4@ ^_ckl\m_l lhevdh gZ ijbfblb\u \ kibkd_ lhqdb SRLQWV6,1 True] Out[]= Ijb wlhf bgl_j_kgh/ qlh kZfZ dhfZg^Z 6KRZ g_ bf__l \kljh_gguo hipbc/ gh hgZ bkihevam_l hipbb lh]h ]jZnbq_kdh]h h[t_dlZ/ dhlhjuc hgZ bah[jZ`Z_l1 GZijbf_j/ \ ij_^u^ms_f ijbf_j_ 6KRZ bkihevam_l hipbx )UDPH ]jZnbdb lbiZ *UDSKLFV1
64
Ebl_jZlmjZ 41 :ROIUDP 61 ³0DWKHPDWLFD´ $ V\VWHP IRU 'RLQJ 0DWKHPDWLFV E\ &RPSXWHU1011<1= $GGLVRQ0:HVOH\ 3XEOLVKLQJ &RPSDQ\/ 4<<<1 51 vydhgh\ <1I1 Kbkl_fu kbf\hevghc fZl_fZlbdb 0DWKHPDWLFD 5 b 0DWKHPDWLFD 610 F1= KD IJ?KK/ 4<<;1 71 DZimklbgZ L1<1 Dhfivxl_jgZy kbkl_fZ 0DWKHPDWLFD 613 ^ey ihevah\Zl_e_c10 F1= KHEHG0J/ 4<<<1 KhklZ\bl_eb= BajZbe_\bq Ydh\ :jhgh\bq Kdey^g_\ :gZlhebc K_j]__\bq J_^Zdlhj ;mgbgZ L1 >1