DZn_^jZ fZl_fZlbq_kdh]h ZgZebaZ
;ukljh_ \\_^_gb_ \ kbkl_fm 0DWKHPDWLFD QZklv , F_lh^bq_kdb_ mdZaZgby ih ki_pbZevghfm dm...
10 downloads
82 Views
1MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
DZn_^jZ fZl_fZlbq_kdh]h ZgZebaZ
;ukljh_ \\_^_gb_ \ kbkl_fm 0DWKHPDWLFD QZklv , F_lh^bq_kdb_ mdZaZgby ih ki_pbZevghfm dmjkm ©Kbkl_fu dhfivxl_jghc fZl_fZlbdbª
KhklZ\bl_eb= Y1:1BajZbe_\bq/ :1K1Kdey^g_\
Kh^_j`Zgb_ Ij_^bkeh\b_ KijZ\hqgbd ih kbkl_f_ 0DWKHPDWLFD ;ukljh_ agZdhfkl\h =jZnbdZ Kibkdb/ \_dlhju/ fZljbpu MjZ\g_gby b aZ^Zqb gZ wdklj_fmf :gZeba Ijh]jZffbjh\Zgb_ :gbfZpby b a\md Ebl_jZlmjZ
5 6 6 9 < 45 47 53 58 59
6
Ij_^bkeh\b_ IZd_lu dhfivxl_jghc fZl_fZlbdb kms_kl\_gguf h[jZahf f_gyxl fbj h[jZah\Zgby b gZmdb1 Hgb ^_eZxl ^hklmiguf ©gZ [ulh\hf mjh\g_ª ijbf_g_gb_ fhsguo fZl_fZlbq_kdbo f_lh^h\ ijb j_r_gbb ijbdeZ^guo aZ^Zq/ kms_kl\_ggh ih\urZxl gZ]ey^ghklv b dhgdj_lghklv Z[kljZdlguo dhgp_ipbc dZd \ ijhp_kk_ h[mq_gby/ lZd b \ bkke_^h\Zgbyo1 GZaj_\Z_l ij_h[jZah\Zgb_ mq_[guo dmjkh\ 0 fZl_fZlbq_kdbo/ _kl_kl\_gghgZmqguo b ijbdeZ^guo gZ hkgh\_ bkihevah\Zgby kh\j_f_gguo iZd_lh\ dhfivxl_jghc fZl_fZlbdb/ lZdbo dZd ©0DWKHPDWLFDª/ ©0DSOH 9ª b ^j1 GZ AZiZ^_ lZdh_ ij_h[jZah\Zgb_ m`_ b^zl k gZqZeZ <30o ]h^h\1 Wlh \Z`g_cr__ ihke_ ,QWHUQHW gh\h\\_^_gb_ ihke_^gbo e_l \ h[jZah\Zl_evguo l_ogheh]byo1 < Jhkkbb fZeh^hklmigu dZd mq_[gu_ ihkh[by ih iZd_lZf/ lZd b kZfb iZd_lu/ qlh aZljm^gy_l ijbf_g_gb_ i_j_^h\uo h[jZah\Zl_evguo l_ogheh]bc1 K 4<<:2<; mq_[gh]h ]h^Z <=M jZkiheZ]Z_l ebp_gabhgguf iZd_lhf ©0DWKHPDWLFD 515ª/ ijbq_f ebp_gaby jZaj_rZ_l mklZgh\dm kbkl_fu gZ \k_ dhfivxl_ju \maZ1 GZklhys__ ihkh[b_ ij_^gZagZq_gh ^ey [ukljh]h agZdhfkl\Z k g_dhlhjufb ba \hafh`ghkl_c iZd_lh\ ©0DWKHPDWLFD 5ª b ©0DWKHPDWLFD 6ª1 QZklv , kh^_j`bl [hevrh_ dhebq_kl\h ijbf_jh\/ \ qZklb ,, [m^_l kh^_j`Zlvky \ hkgh\ghf kijZ\hqguc fZl_jbZe1 QblZl_ex fh`gh ihkh\_lh\Zlv ^Ze__ bkihevah\Zlv dgb]b >4/ 5/ 6@ b/ dhg_qgh/ ih[hevr_ jZ[hlZlv kZfhklhyl_evgh1
7
>ey ih\ur_gby wnn_dlb\ghklb kZfhklhyl_evghc ^_yl_evghklb mqZsboky kha^Zg wdki_jbf_glZevguc \ZjbZgl ]bi_jl_dklh\h]h we_dljhggh]h kijZ\hqgbdZ b mq_[gh]h ihkh[by gZ jmkkdhf yaud_ 0 jmdh\h^kl\Z ih iZd_lm %©0DWKHPDWLFD%ª gZ ieZlnhjf_ :LQGRZV1 KijZ\hqgbd ho\Zlu\Z_l h[sb_ ijbgpbiu jZ[hlu k kbkl_fhc %©0DWKHPDWLFD%ª b ijh]jZffbjh\Zgby \ g_c/ hibkZgb_ nmgdpbc kbkl_fu %©0DWKHPDWLFD%ª/ khijh\h`^Z_fh_ ijbf_jZfb/ ZenZ\blguc bg^_dk b l_fZlbq_kdb_ bg^_dku ih lZdbf l_fZf/ dZd %©:gZeba%ª/ %©:e]_[jZ%ª/ %©>bnn_j_gpbZevgu_ mjZ\g_gby%ª/ %©Qbke_ggu_ f_lh^u%ª b l1i1 =jZnbq_kdbc bgl_jn_ck ^_eZ_l bkihevah\Zgb_ kijZ\hqgbdZ ijhkluf b m^h[guf1 Fgh]hhdhgguc bgl_jn_ck :LQGRZV iha\hey_l mqZsbfky b ij_ih^Z\Zl_eyf bkihevah\Zlv iZjZee_evgh kijZ\hqgbd gZ jmkkdhf yaud_ b Zg]ehyauqguc iZd_l %©0DWKHPDWLFD%ª/ qlh j_adh m\_ebqb\Z_l \hafh`ghklb kZfhklhyl_evghc ^_yl_evghklb klm^_glh\ _kl_kl\_gghgZmqguo nZdmevl_lh\ +\dexqZy fZl_fZlbq_kdbc/ IFF b nbabq_kdbc, ih ijbf_g_gbx iZd_lZ %©0DWKHPDWLFD%ª ijb bamq_gbb dZd h[sbo/ lZd b ki_pbZevguo ^bkpbiebg/ Z lZd`_ \ GBJK1 Ijbf_g_gb_ iZd_lZ ©0DWKHPDWLFDª b ]bi_jl_dklh\h]h we_dljhggh]h kijZ\hqgbdZ [ueh [u ihe_aguf b \ rdheZo/ jZkiheZ]Zxsbo ^hklZlhqgh kh\j_f_ggufb ,%00kh\f_klbfufb dhfivxl_jZfb1 < gZklhys__ \j_fy wdki_jbf_glZevguc \ZjbZgl we_dljhggh]h kijZ\hqgbdZ ijhoh^bl ©h[dZldmª 0 bkihevam_lky \ mq_[ghf ijhp_kk_ gZ fZl_fZlbq_kdhf nZdmevl_l_ <=M ijb \_^_gbb aZgylbc ih ki_pdmjkZf dZn_^ju fZl_fZlbq_kdh]h ZgZebaZ/ ijb \uiheg_gbb dmjkh\uo b ^biehfguo jZ[hl1
;ukljh_ agZdhfkl\h1 AZimklbl_ iZd_l 0DWKHPDWLFD1 GZ[_jbl_ 5.5 b gZ`fbl_ deZ\brb 6KLIW . (QWHU +l1_1 m^_j`b\Zy gZ`Zlhc deZ\brm 6KLIW/ gZ`fbl_ (QWHU,1 < hdg_ kbkl_fu \u m\b^bl_ ke_^mxs__= In[1] : = 2 + 2 Out[1] = 4 G_ h]hjqZcl_kv/ _keb \Zf ijb^_lky ih^h`^Zlv g_kdhevdh k_dmg^/ ihdZ ijhbkoh^bl aZ]jmadZ y^jZ kbkl_fu1 KdZ`_f/ lhqgh_ agZq_gb_ qbkeZ 10 2 [m^_l \uqbke_gh ^hklZlhqgh [ukljh/ _keb \u gZ[_j_l_ 5A43 b gZ`f_l_ 6KLIW . (QWHU/ qlh ^Zkl In[2] : = 2^10 Out[2] = 1024. AgZq_gb_ 100 2 jm]hc kihkh[ \ bkihevah\Zgbb nmgdpbb 1> @/ ^Zxs_c ijb[eb`_ggh_ qbke_ggh_ agZq_gb_ Zj]mf_glZ/ gZijbf_j/ lZd In[6] : = N[22/7]
Out[6]
= 3.14286
Kbkl_fZ 0DWKHPDWLFD iha\hey_l k gm`ghc lhqghklvx \uqbkeylv g_dhlhju_ fZl_fZlbq_kdb_ dhgklZglu b bkihevah\Zlv bo1 GZijbf_j/ In[7] : = N[Pi] Out[7] = 3.14159 3i/ 433@ beb 1 >3i, 1000]. B \u fh`_l_/ gZdhg_p/ magZlv/ gZkdhevdh HA3L [hevr_/ q_f 3LAH/ \uqbkeb\ N [E^Pi-Pi^E,10]. 0DWKHPDWLFD < kbkl_f_ fh`gh bkihevah\Zlv fgh]b_ h[s_mihlj_[bl_evgu_ fZl_fZlbq_kdb_ nmgdpbb/ h[hagZq_gby ^ey gbo \iheg_ _kl_kl\_ggu/ l_f g_ f_g__ bo ke_^m_l kljh]h ijb^_j`b\Zlvky1
In[8]: = Exp[3] 3 Out[8] = E In[9]: = N[%] Out[9] = 20.0855 In[10 ] := Log[%] Out[10] = 3. In[11] := Log[E ] Out[11] = 1 In[12] := Log[10,100] Out[12] = 2 In[13]: = Sin[Pi] Out[13] = 0 In[14]:= Tan[Pi/4] Out[ 14] = 1 In[15]:= ArcTan[-1] Out[ 15] = -Pi/4 In[16]: = Sqrt[0.04] Out[16] = 0.2 In[17]: = Sqrt[-1] Out[17] = I H[jZlbl_ \gbfZgb_= 4, Zj]mf_glu nmgdpbc aZdexqZxlky \ d\Z^jZlgu_ kdh[db> 5, bf_gZ nmgdpbc/ \kljh_gguo \ kbkl_fm 0DWKHPDWLFD/ gZqbgZxlky k aZ]eZ\guo [md\1
Qlh[u g_ aZ^_j`b\Zlvky ijb gZ[hj_ [he__ keh`guo \ujZ`_gbc beb dhibjh\Zgbb bo/ ^Z\Zcl_ l_i_jv \hkihevam_fky \hafh`ghklyfb bgl_jn_ckZ +h[hehqdb, kbkl_fu 0DWKHPDWLFD1 >ey gZqZeZ ba f_gx )LOH \u[_jbl_ imgdl 6DYH $V b aZibrbl_ ijhlhdhe ijh\_^_gguo \Zfb jZkq_lh\ \ nZce P\41PD +`_eZl_evgh \ k\hc dZlZeh],1 ?keb \u aZohlbl_ ih\lhjblv dZdh_0lh \uqbke_gb_/ lh \u fh`_l_ mklZgh\blv dmjkhj \klZ\db \ khhl\_lkl\mxs_c kljhd_ ^\hcguf s_eqdhf b gZ`Zlv 6KLIW . (QWHU1 Wlh `_ fh`gh k^_eZlv bgZq_= mklZgh\bl_ ,0 h[jZaguc dmjkhj gZ d\Z^jZlgmx kdh[dm kijZ\Z hl nhjfmeu +dmjkhj ijb wlhf baf_gbl k\hc \b^, b s_edgbl_ h^bg jZa1 Kdh[dZ ©ihq_jg__lª1 L_f kZfuf \u \u^_ebeb yq_cdm/ kh^_j`Zsmx gm`gmx nhjfmem1 L_i_jv \u[_jbl_ \ f_gx kbkl_fu 0DWKHPDWLFD imgdl $FWLRQ/ Z \ g_f imgdl (YDOXDWH 6HOHFWLRQ1 Gm`gh_ \uqbke_gb_ [m^_l \uiheg_gh1 Ijb `_eZgbb \u^_e_ggu_ yq_cdb fh`gh dhibjh\Zlv b jZafgh`Zlv h[uqgufb ^ey kbkl_f k ]jZnbq_kdbf bgl_jn_ckhf ijb_fZfb +dghidZfb beb f_gx,1
5
[ \ ij_^u^msbc j_amevlZl1
In[22]: = %/.{a->x, b -> x^2} 2XW>55@ +[ 0 [A5,A6
=jZnbdZ Kbkl_fZ 0DWKHPDWLFD [h]ZlZ ]jZnbq_kdbfb \hafh`ghklyfb1 Wlh ± ihkljh_gb_ ]jZnbdZ h^ghc nmgdpbb In[23]:= Plot[Sin[x], {x,0,Pi}] 4 31; 319 317 315 318
4
418
5
518
6
Out[23]=-Graphicsbeb g_kdhevdbo kjZam= In[24]:=Plot[{Sin[x],Sin[2x],Sin[4x]},{x,0,Pi}] 4 318
318
4
418
5
518
6
0318 04
Out[24] = -Graphicsihkljh_gb_ ]jZnbdh\ nmgdpbc ^\mo i_j_f_gguo In[25]:=
Plot3D[Sin[x*y],{x,0,Pi}, {y,0,Pi}]
Out[25] = -SurfaceGraphicsiZjZf_ljbq_kdbo ]jZnbdh\ In[26]:=ParametricPlot[{Sin[t],Cos[3*t]},{t,0,2Pi}] 1 0.5
-1
-0.5
0.5 -0.5 -1
1
Out[26] = --GraphicsIn[27]:= ParametricPlot3D[{(4+Cos[t])Cos[u],(4+Cos[t])Sin[u],Sin[t ]},{t,0,2 Pi}, {u,0,2 Pi}, Ticks->None]
Jbk1519 Out [27 ] = -Graphics3DIn[28]:= ParametricPlot3D[{4+(4+u*Cos[t/2])Cos[t],Sin[t/2]*u, (4+u*Cos[t/2])Sin[t]}, { t,0,2 Pi}, {u,-1,1}, Ticks->None]
Jbk151: - Out [28 ] = Graphics3Db kh\f_klguc ihdZa g_kdhevdbo ]jZnbdh\/ ihkljh_gguo ih hl^_evghklb In [29 ]: =Show[%,%%]
Jbk151; Out [29 ] = Graphics3D
Kibkdb/ \_dlhju/ fZljbpu <_dlhju b fZljbpu ij_^klZ\e_gu \ kbkl_f_ 0DWKHPDWLFD F ihfhsvx kibkdh\/ aZdexqZ_fuo \ nb]mjgu_ kdh[db/ b kibkdh\ kibkdh\1 6
In[ ]:= e1={1, 0, 0} Out[ ] = {1, 0, 0} In[ ]:= e2={0, 1, 0} Out[ ] = {{0, 1, 0} In[ ]:= e3={0, 0, 1} Out[ ] = {{0, 0, 1} Imklv In[ ]:= u={a,b,c} Out[ ] = { a, b, c} ?kl_kl\_gguf h[jZahf \\h^ylky hi_jZpbb gZ^ \_dlhjZfb= In[ ]:= v=a*e1+b*e2+ c*e3 Out[ ] = {a, b, c}
4
>_ckl\by k fZljbpZfb b \_dlhjZfb aZ^Zxlky _kl_kl\_gguf h[jZahf1 ey d\Z^jZlghc fZljbpu 0DWKHPDWLFD iha\hey_l gZclb hij_^_ebl_ev/ h[jZlgmx fZljbpm +ijb g_gme_\hf hij_^_ebl_e_,/ kh[kl\_ggu_ agZq_gby b \_dlhju1 Imklv In[ ]:= m2= {{1, 1, 1}, {2, 3, 4}, {4, 9, 16}} Out[ ] = {{1, 1, 1}, {2, 3, 4}, {4, 9, 16}} In[ ]:= MatrixForm [%] Out[ ] = 1 1 1 2 3 4 4 9 16. GZc^_f hij_^_ebl_ev= In[ ]:= Det [m2] Out[ ] =2 GZc^_f h[jZlgmx fZljbpm= In[ ]:=m3= Inverse [m2] Out[ ] = {{6, -(7/2), 1/2}, {-8, 6, -1}, {3, -(5/2),1/2}} In[ ]:= MatrixForm [%] Out[ ] = 6 -(7/2) 1/2 -8 6 -1 3 -(5/2) 1/2 Ijhba\_^_gb_ fZljbpu gZ h[jZlgmx d g_c ^he`gh ^Zlv _^bgbqgmx fZljbpm:
In[ ]:= m3 . m2 Out[ ] ={{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} In[ ]:= MatrixForm [%] Out[ ] = 1 0 0 0 1 0 0 0 1
5
Ijhba\_^_gb_ P6 - P5 lh`_ bf__l kfuke/ gh wlh ± ihwe_f_glgh_ ijhba\_^_gb_ kibkdh\/ Z g_ ijhba\_^_gb_ fZljbp$
In[ ]:= m3 * m2 Out[ ] = {{6, -(7/2),1/2}, {-16, 18, -4}, {12, -(45/2), 8}} In[ ]:= MatrixForm [%] Out[ ] = 6 -(7/2) 1/2 -16 18 -4 12 -(45/2) 8 Kh[kl\_ggu_ agZq_gby b \_dlhju gZoh^ylky [_a hkh[uo keh`ghkl_c +fu g_ ijb\h^bf ]jhfha^db_ hl\_lu,= In[ ]:= Eigenvalues [m2] In[ ]:= Eigenvectors [m2] Ijb g_h[oh^bfhklb bo fh`gh bkdZlv ijb[eb`_ggh +hl\_l [m^_l ^Zg \ \_s_kl\_gguo qbkeZo k fZrbgghc lhqghklvx,= In[ ]:= Eigenvalues [N[m2]] In[ ]:= Eigenvectors [N[m2]] Ihke_ lh]h dZd \u j_rbeb aZ^Zqm k i_j_f_ggufb [/ \/ W b l1i1/ b i_j_^ i_j_oh^hf d gh\hc aZ^Zq_/ ihe_agh ihqbklblv [u\rb_ \ mihlj_[e_gbb kbf\heu dhfZg^hc &OHDU$OO>[/ \/ W b l1i1@
6
MjZ\g_gby b aZ^Zqb gZ wdklj_fmf Kbkl_fZ 0DWKHPDWLFD mki_rgh j_rZ_l jZaghh[jZagu_ mjZ\g_gby b bo kbkl_fu1 MjZ\g_gby aZibku\Zxlky \ kbkl_f_ 0DWKHPDWLFD ihkj_^kl\hf ^\hcgh]h agZdZ jZ\_gkl\Z 1
6
+ x - 2 = 0
In[ ]:= x ∧ 3 + x - 2 == 0 Out[ ]= - 2 + x + x ∧ 3==0 In[ ]:= Solve [%] Out[ ]= -1 - I Sqrt[7] -1 + I Sqrt[7] {{x -> 1}, {x -> -------------- }, {x -> --------------}} 2 2 beb kjZam In[ ]:= Solve [x ∧ 3 + x - 2 == 0] Out[ ]= -1 - I Sqrt[7] -1 + I Sqrt[7] {{x -> 1}, {x -> -------------- }, {x ->-------------- }} 2 2 H[jZlbl_ \gbfZgb_ gZ fgbfmx _^bgbpm , \ aZibkb ^\mo dhjg_c1 Kbkl_fZ 0DWKHPDWLFD gZoh^bl k ihfhsvx dhfZg^u 6ROYH \k_ +\_s_kl\_ggu_ b dhfie_dkgu_, j_r_gby Ze]_[jZbq_kdbo mjZ\g_gbc kl_i_gb g_ \ur_ 7/ ijblhf b ^ey mjZ\g_gbc k iZjZf_ljhf = In[ ]:= Solve [x ∧ 4 + a∗ ∗ x - 2 == 0, x] Out[ ]= … hl\_l kebrdhf ]jhfha^hd/ \u [_a ljm^Z gZc^_l_ _]h kZfb1 J_r_gby Ze]_[jZbq_kdh]h mjZ\g_gby kl_i_gb 8 beb \ur_ fh]ml [ulv gZc^_gu/ \hh[s_ ]h\hjy/ qbke_ggh1 KdZ`_f/ mjZ\g_gb_ [∧8.[05 3 kbkl_fZ 0DWKHPDWLFD j_rbl lhqgh= In[ ]:= Solve [x ∧ 5 + x - 2 == 0] Out[ ] = … 3 0 hldZ`_lky= Z mjZ\g_gb_ [ ∧ 8 . [ 0 : In[ ]:= Solve [x ∧ 5 + x - 7 == 0] Out[ ]= {ToRules[Roots[x^5 + x == 7, x]]} Ijb^_lky j_rZlv mjZ\g_gb_ qbke_ggh= In[ ]:= NSolve [x^5 + x - 7
== 0]
Out[ ]= {{x -> -1.21388 - 0.924188 I}, {x -> -1.21388 + 0.924188 I}, {x->0.508469 -1.36862 I}, {x->0.508469 +1.36862 I}, {x ->1.41081}} LjZgkp_g^_glgu_ mjZ\g_gby j_rZxl/ aZ^Z\Zy gZqZevgh_ ijb[eb`_gb_ d dhjgx1 In[ ]:= FindRoot [Cos[x] == 2∗ x; {x,0}] Out[ ]= {x -> 0.450184} Fh`gh j_rZlv kbkl_fu mjZ\g_gbc= In[ ]:= Solve [{a*x +b*y == g, c*x + d*y == h} ,{x,y}] Out[ ]=
{{x ->
g a
+
b (c g - a h) c g - a h --------------, y -> -( ------------ ) } a (-(b c) + a d) -(b c) + a d
b In[ ]:= FindRoot [{ x + y == Sin[x], x - y == Cos[x], {x,0}, {y,0}] Out[ ]= {x -> 0.704812, y -> -0.0569214} Kbkl_fZ 0DWKHPDWLFD iha\hey_l j_rZlv ^bnn_j_gpbZevgu_ mjZ\g_gby b bo kbkl_fu= In[ ]:= DSolve [y''[x] - 2y'[x] + 1 == 0, y[x], x] x 2 x Out[ ] = {{y[x] -> - + C[1] + E C[2]}} 2 J_r_gb_ kh^_j`bl ijha\hevgu_ ihklhyggu_ K>4@ b &>5@1 Fh`gh gZclb qbke_ggh_ j_r_gb_ aZ^Zqb Dhrb ^ey ^bnn_j_gpbZevguo mjZ\g_gbc beb bo kbkl_f= In[ ]:= NDSolve[{x'[t]==-y[t]-x[t],y'[t]==2x[t]y[t],x[0]==1,y[0]==-1},{x[t],y[t]},{t,0,10}] Out[ ]={{x[t] -> InterpolatingFunction[{0., 10.},<>][t], y[t] -> InterpolatingFunction[{0., 10.}, <>][t]}} In[ ]:= Plot[Evaluate[{x[t],y[t]}/.%],{t,0,10}, PlotRange->All]
4 318
5
7
9
;
43
0318 04
Out[ ]=-GraphicsFh`gh bkdZlv wdklj_fmfu nmgdpbc h^ghc b g_kdhevdbo i_j_f_gguo1
In[ ]:=FindMinimum[Exp[x]*Cos[x] ,{x,0}] Out[ ]= {-0.0670197, {x -> -2.35619}} In[ ]:=FindMinimum[Sin[x]*Cos[y] ,{x,0},{y,0}] Out[ ]= {-1., {x -> -1.5708, y -> 0.}} AZ^Zqb ebg_cgh]h ijh]jZffbjh\Zgby g_[hevrhc jZaf_jghklb fh`gh j_rZlv/ bkihevamy kbkl_fm 0DWKHPDWLFD In[ ]:= ConstrainedMax [19x - 47y + 28z, {x + y+ z > 0, x + y + z < 1, x > 0, y > 0, z > 0}, {x, y, z}] Out[ ]= {28, {x -> 0, y -> 0, z -> 1}}
:gZeba Ohly kbkl_fm ³0DWKHPDWLFD´ b _c ih^h[gu_ ^h\hevgh qZklh gZau\Zxl kbkl_fZfb dhfivxl_jghc Ze]_[ju/ \ gbo lZd beb bgZq_ ij_^klZ\e_gu \k_ nmg^Zf_glZevgu_ jZa^_eu fZl_fZlbdb1 ^Ze__ ± ^_jaZcl_$ >bnn_j_gpbjh\Zlv \ kbkl_f_ ³0DWKHPDWLFD´ g_ ijhklh/ Z hq_gv ijhklh$ < dZq_kl\_ Zj]mf_glh\ dhfZg^u ^bnn_j_gpbjh\Zgby '>1/1@ gm`gh mdZaZlv lm nmgdpbx/ dhlhjmx fu gZf_j_gu ijh^bnn_j_gpbjh\Zlv/ b lm i_j_f_ggmx +beb i_j_f_ggu_,/ ih dhlhjhc +dhlhjuf, ke_^m_l ^bnn_j_gpbjh\Zlv1
[Q
: \hl lZd \uqbkey_lky qZklgZy ijhba\h^gZy
∂VLQ+[\], ∂]
nmgdpbb VLQ+[\], ih i_j_f_gghc ] = In[ ]:=D[Sin[x y z],z] Out[ ]=x y Cos[x y z] Kf_rZggu_ qZklgu_ ijhba\h^gu_ lZd`_ \uqbkeyxlky [_a ijh[e_f ± \hl ∂ 7VLQ+[\], = ∂[ 5 ∂\∂]
In[ ]:=D[Sin[x y z],z,y,x,x] Out[ ]= -5*x*y^2*z^2*Cos[x*y*z] - 4*y*z*Sin[x*y*z] + x^2*y^3*z^3*Sin[x*y*z] Wlh `_ fh`gh aZibkZlv bgZq_= In[ ]:=D[Sin[x y z],{x,2},y,z] Out[ ]= -5*x*y^2*z^2*Cos[x*y*z] - 4*y*z*Sin[x*y*z] + x^2*y^3*z^3*Sin[x*y*z] Iheguc ^bnn_j_gpbZe \uqbkey_lky ihkj_^kl\hf dhfZg^u 'W= In[ ]:=Dt[Sin[x y z]] Out[ ]= Cos[x y z] (y z Dt[x] + x z Dt[y] + x y Dt[z])
In[ ]:=Dt[f[Sin[x y z]]] Out[ ]= Cos[x y z] (y z Dt[x] + x z Dt[y] + x y Dt[z]) f'[Sin[x y z]] A^_kv 'W>[@/ 'W>\@ b 'W>]@ 0 ^bnn_j_gpbZeu i_j_f_gguo [/ \ b ]1
DhfZg^Z 'W ijbf_gy_lky b ^ey \uqbke_gby iheguo ijhba\h^guo nmgdpbc fgh]bo i_j_f_gguo= In[ ]:=Dt[f[Sin[x y z]],x] Out[ ]= Cos[x y z] (y z + x z Dt[y, x] + x y Dt[z, x]) f'[Sin[x y z]] A^_kv 'W>\/[@ b 'W>]/[@ 0 ihegu_ ijhba\h^gu_ i_j_f_gguo \ b ] ih i_j_f_gghc o1 Gh fh`gh b kbkl_fm ³0DWKHPDWLFD´ ©ihkZ^blv \ dZehrmª1 HgZ ©agZ_lª/ qlh _[_ 0 g_^bnn_j_gpbjm_fZy nmgdpby/ b hldZau\Z_lky \uqbkeylv __ ijhba\h^gmx ^Z`_ \ l_o lhqdZo/ ]^_ nmgdpby ^bnn_j_gpbjm_fZ1 LZd kihdhcg__$ In[ ]:=D[Abs[x],x]/.x->1 Out[ ]= Abs'[1] Bgl_]jbjh\Zgb_ \ kbkl_f_ ³0DWKHPDWLFD´ +dZd b \ `bagb, keh`g__ ^bnn_j_gpbjh\Zgby1 NhjfZevgh \k_ ijhklh= g_hij_^_e_gguc bgl_]jZe \uqbkeyxl ihkj_^kl\hf dhfZg^u ,QWHJUDWH= ^ey ∫ [ Q G[ ihemqZ_f
In[ ]:=Integrate[x^n,x]
Out[ ]=
1 + n x -----1 + n
Gh In[ ]:=Integrate[Sin[Sin[x]],x] ^Zkl Out[ ]= Integrate[Sin[Sin[x]],x] LZdbf h[jZahf/ kbkl_fZ ³0DWKHPDWLFD´ hldZaZeZkv [jZlv g_[_jmsbcky bgl_]jZe1 Gh b g_ \k_ [_jmsb_ky bgl_]jZeu kbkl_fZ ³0DWKHPDWLFD´ ]hlh\Z [jZlv= \ hl\_l gZ aZ^Zgb_ In[ ]:= Integrate[1/(1+x^4+x^9+x^11),x] kbkl_fZ ³0DWKHPDWLFD´ ihdZ`_l \k_/ qlh hgZ fh`_l \ ^Zgghf kemqZ_ +kh\k_f dZd q_eh\_d,= Out[ ]= Integrate[(15/16 - (7*x)/8 + (13*x^2)/16 (3*x^3)/4 + (5*x^4)/8 - x^5/2 + (3*x^6)/8 - x^7/4 + x^8/8 - x^9/16)/ (1 - x + x^2 - x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 2*x^8 - x^9 + x^10) , x] + Log[1 + x]/16 Dhg_qgh/ \ kemqZ_ hij_^_e_gguo bgl_]jZeh\ m^Z_lky k^_eZlv ih[hevr_ 0 dhfZg^Z ,QWHJUDWH iha\hey_l \uqbkeylv b hij_^_e_ggu_ bgl_]jZeu/ Z ^ey l_o/
dhlhju_ g_ [_jmlky k ihfhsvx dhfZg^u ,QWHJUDWH/ bf__lky dhfZg^Z 1,QWHJUDWH/ iha\heyxsZy \uqbkeylv hij_^_e_ggu_ bgl_]jZeu ijb[eb`_ggh1 E
BlZd1 \uqbkebf
∫ OQ[G[ D
In[ ]:=Integrate[Log[x],{x,a,b}] Integrate::gener: Unable to check convergence. Out[ ]= -(a (-1 + Log[a])) + b (-1 + Log[b]) Gh g_[_jmsb_ky bgl_]jZeu kbkl_fZ \havf_l lhevdh qbke_ggh= In[ ]:=Integrate[Sin[Sin[x]],{x,0,Pi}] General::intinit: Loading integration packages -- please wait. Out[ ]= Integrate[Sin[Sin[x]], {x,0,Pi }] In[ ]:=NIntegrate[Sin[Sin[x]], {x,0,Pi }] Out[ ]= 1.78649 Fh`gh \uqbkeylv ih\lhjgu_ bgl_]jZeu/ gZijbf_j/ 4
4− [ 5
∫ G[ ∫ +[ 3
5
+ \ 5 ,G\
− 4− [ 5
In[ ]:=Integrate[x^2+y^2,{x,0,1},{y,-Sqrt[1-x^2],Sqrt[1x^2]}] Pi Out[ ]= — 4 b 4
4− [ 5
∫ G[ ∫ 4 G\
−4
− 4− [ 5
In[ ]:=Integrate[1,{x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}] Out[ ]= Pi Ijb bgl_]jbjh\Zgbb kbkl_fZ ³0DWKHPDWLFD´ fh`_l aZ[em`^Zlvky ± kh\k_f dZd q_eh\_d1 LZd i_j\hh[jZagZy nmgdpby ^ey [_a mdZaZgby ijhf_`mldh\/ gZ dhlhjuo wlh \_jgh1
4
[5
[m^_l gZc^_gZ dZd
: ^ey
4
∫ 7 + VLQ[G[
4 [
fu
ihemqbf ihkj_^kl\hf dhfZg^u ,QWHJUDWH>42+7.6LQ>[@,/[@ j_amevlZl/ g_ y\eyxsbcky i_j\hh[jZaghc ih^ugl_]jZevghc nmgdpbb1 LZdh\Zy i_j\hh[jZagZy h[yaZgZ [ulv g_ij_ju\ghc/ ihemq_ggZy `_ nmgdpby bf__l jZaju\u \ lhqdZo \b^Z 5+N + 4,Œ / \ q_f e_]dh m[_^blvky/ ihkljhb\ ]jZnbd ihkj_^kl\hf dhfZg^u 3ORW>(/^[/053L/53L`@ b ijhZgZebabjh\Z\ ih\_^_gb_ ihemq_gghc nmgdpbb \ mdZaZgguo lhqdZo1
>ey \uqbke_gby kmff \ kbkl_f_ ³0DWKHPDWLFD´ bf__lky dhfZg^Z 6XP= In[ ]:=Sum[x^i/i,{i,1,9}] 2
Out[ ]= x +
x - + 2
3 x - + 3
4 x - + 4
5 x - + 5
6 x - + 6
7 x - + 7
8 9 x x - + 8 9
In[ ]:=Sum[x^i y^j,{i,1,2},{j,1,3}] 2 2 2 2 3 2 3 Out[ ]=x y + x y + x y + x y + x y + x y Kbkl_fZ ³0DWKHPDWLFD´ mki_rgh jZaeZ]Z_l nmgdpbb \ jy^ L_cehjZ= In[ ]:= Series[Sin[x],{x,0,3}] 3 x 4 Out[ ]= x - - + O[x ] 6 Hl[jZku\Zlv hklZlhqguc qe_g iha\hey_l dhfZg^Z 1RUPDO= In[ ]:= Normal[%] 3 x Out[ ]= x - 6 In[ ]:= Normal[Series[Sin[x],{x,0,5}]]
3
5
x x Out[ ]= x - - + 6 120 In[ ]:= Normal[Series[Sin[x],{x,0,7}]] 3 5 x x Out[ ]=x - - + 6 120
-
7 x 5040
7
5
4
5
6
7
8
9
05
07
0*UDSKLFV0
Kbkl_fZ ³0DWKHPDWLFD´ fh`_l \uqbkeylv ij_^_eu 0 aZf_qZl_evgu_ b g_ hq_gv= In[ ]:= Limit[Sin[x]/x,x->0] Out[ ]=1 GZ ihiuldm ih^klZ\blv 3 \ \ujZ`_gb_ kbkl_fZ ³aZjm]Z_lky´= In[ ]:= Sin[x]/x /.x->0 1 Power::infy: Infinite expression - encountered. 0 Infinity::indet: Indeterminate expression 0 ComplexInfinity encountered. Out[ ]=Indeterminate ohly ijb ^jm]bo agZq_gbyo [ agZq_gb_ \ujZ`_gby [m^_l \uqbke_gh= In[ ]:= Sin[x]/x /.x->1 Out[ ]=Sin[1] In[ ]:= Sin[x]/x /.x->2 Pi Out[ ]=0 Infinity] Out[ ]=E In[ ]:= Limit[(1+1/x)^x,x->-Infinity] Out[ ]=E : \hl ijbf_j ihkeh`g__=
H 42+[ − D, gZ ij_^eh`_gb_ \uqbkeblv OLP [→D kbkl_fZ ³0DWKHPDWLFD´ ^Zkl qZklbqgh \_jguc hl\_l= In[ ]:= Limit[E^(1/(x-a)),x->a] Out[ ]=Infinity HgZ mki_rgh \uqbkebl e_\uc b ijZ\uc ij_^_eu/ In[ ]:= Limit[E^(1/(x-a)),x->a,Direction->1]
Out[ ]=0 In[ ]:= Limit[E^(1/(x-a)),x->a,Direction->-1] Out[ ]=Infinity gh lZd b g_ kfh`_l ihgylv/ qlh ^\mklhjhgg_]h ij_^_eZ g_ kms_kl\m_l In[ ]:= Limit[E^(1/(x-a)),x->a] Out[ ]=Infinity Dhg_qgh/ \ dgb]_ K10] Out[ ]=Limit[Abs[x], x -> 0] ohly ³0DWKHPDWLFD 6131´ wlh m`_ agZ_l ´ In[ ]:= Limit[Abs[x],x->0] Out[ ]= 0 b ^Z`_ fh`_l \uqbkeblv ij_^_e In[2]:=Limit[(Abs[a+dx]-Abs[a])/dx,dx->0]/.a->1 Out[2]=1 Gh ^bnn_j_gpbjh\Zlv nmgdpbx $EV k ihfhsvx dhfZg^u ' hldZ`_lky b ³0DWKHPDWLFD 6131´ M\u/ g_l \ `bagb kh\_jr_gkl\Z$ @@D D
/LPLW $EV[ /[ ® 4
4
Ijh]jZffbjh\Zgb_ ³0DWKHPDWLFD´ < kbkl_f_ \hafh`gu g_kdhevdh klbe_c ijh]jZffbjh\Zgby= nmgdpbhgZevgh_ ijh]jZffbjh\Zgb_/ ijh]jZffbjh\Zgb_/ hkgh\Zggh_ gZ ijZ\beZo ij_h[jZah\Zgbc/ ijhp_^mjgh_ ijh]jZffbjh\Zgb_/ ijh]jZffbjh\Zgb_/ hkgh\Zggh_ gZ h[jZ[hld_ kibkdh\/ ijh]jZffbjh\Zgb_/ hkgh\Zggh_ gZ h[jZ[hld_ kljhd/ h[t_dlgh0hjb_glbjh\Zggh_ ijh]jZffbjh\Zgb_ b/ dhg_qgh `_/ \hevguc +kf_rZgguc, klbev1 HklZgh\bfky gZ g_dhlhjuo ba gbo1 Kmlv nmgdpbhgZevgh]h ijh]jZffbjh\Zgby aZdexqZ_lky \ lhf/ qlh[u \uibkZlv nmgdpbx +\ rbjhdhf kfuke_ keh\Z,/ \uiheg_gb_ dhlhjhc b ^Zkl lj_[m_fuc j_amevlZl1 >Zlv hij_^_e_gb_ gh\hc nmgdpbb \_kvfZ ijhklh= In[1]:= dlina[x_,y_,z_]:=Sqrt[x^2+y^2+z^2] H[jZlbl_ \gbfZgb_ gZ ih^q_jdb\Zgby ijb Zj]mf_glZo \ e_\hc qZklb hij_^_e_gby nmgdpbb GOLQD b gZ hlkmlkl\b_ ih^q_jdb\Zgbc \ ijZ\hc qZklb1 >Z\ hij_^_e_gb_/ fh`gh \uqbkeylv agZq_gby nmgdpbb/ In[2]:= dlina[1,3.0,4] Out[2]= 5.09902 In[3]:= dlina[a,b,a-b] 2 2 2 Out[3]= Sqrt[a + (a - b) + b ] ^bnn_j_gpbjh\Zlv __ In[4]:= D[dlina[x,y,z],x] x Out[4]=-----------------2 2 2 Sqrt[x + y + z ] bgl_]jbjh\Zlv __ b l1i1 In[5]:= Integrate[dlina[x,y,z],x] Out>8@ gZc^bl_ kZfb1 Fh`gh lj_[h\Zlv/ qlh[u Zj]mf_glu nmgdpbb [ueb hij_^_e_ggh]h lbiZ= In[6]:=dlinaR[x_Real,y_Real,z_Real]:=Sqrt[x^2+y^2+z^2] Nmgdpby/ ihemq_ggZy \ j_amevlZl_ lZdh]h [he__ kljh]h]h hij_^_e_gby/ khhl\_lkl\_ggh/ [he__ ©dZijbagZª= In[7]:= dlinaR[1,2.,3.] Out[7]= dlinaR[1, 2., 3.] In[8]:= dlinaR[1.,2.,3.] Out[8]= 3.74166
Ke_^mxsZy kljhdZ ij_^klZ\ey_l j_ZebaZpbx f_lh^Z GvxlhgZ qbke_ggh]h hlukdZgby dhjgy mjZ\g_gby/ \uiheg_ggmx \ klbe_ nmgdpbhgZevgh]h ijh]jZffbjh\Zgby= In[9]:=newton[f_,x0_]:=FixedPoint[(#-f[#]/f'[#])&,N[x0]] A^_kv & ij_^klZ\ey_l kh[hc nhjfZevguc Zj]mf_gl \uibkZgghc \ kdh[dZo Zghgbfghc +[_aufygghc, nmgdpbb/ hkms_kl\eyxs_c rZ] bl_jZpbb/ ) hlf_qZ_l dhg_p aZibkb wlhc Zghgbfghc nmgdpbb/ nmgdpby )L[HG3RLQW>K/H[SU@ hkms_kl\ey_l ihke_^h\Zl_evgh_ ijbf_g_gb_ +kmi_jihabpbx, nmgdpbb K/ gZqbgZy k \ujZ`_gby H[SU/ ihdZ ihemqZ_fu_ agZq_gby g_ i_j_klZgml baf_gylvky/ nmgdpby 1 h[_ki_qb\Z_l \uiheg_gb_ qbke_gguo +g_ kbf\hevguo, \uqbke_gbc1 >Zggh_ hij_^_e_gb_ iha\hey_l bkdZlv dhjgb mjZ\g_gbc= In[10]:=g[x_]:=x^3-2x In[11]:= newton[g,{0,2,-2}] Out[11]= {0, 1.41421, -1.41421} Fu \b^bf/ qlh \ klbe_ nmgdpbhgZevgh]h ijh]jZffbjh\Zgby \Z`g_crmx jhev b]jZxl kihkh[u hj]ZgbaZpbb ihke_^h\Zl_evgh]h ijbf_g_gby +kmi_jihabpbc, nmgdpbc/ ^ey q_]h \ kbkl_f_ ³0DWKHPDWLFD´ bf__lky [h]Zluc gZ[hj kj_^kl\1 Hq_gv \Z`gZ jZagbpZ f_`^m g_f_^e_gguf ijbk\Zb\Zgb_f OHIW ULJKW/ dhlhjh_ \uihegy_lky \ fhf_gl \uiheg_gby ijbk\Zb\Zgby/ b hleh`_gguf ijbk\Zb\Zgb_f OHIW= ULJKW/ dhlhjh_ \uihegy_lky dZ`^uc jZa/ dh]^Z bkihevam_lky agZq_gb_ OHIW1 Wlh ohjhrh \b^gh \ ke_^mxs_f ijbf_j_/ ]^_ 5DQGRP>@ ± dhfZg^Z ± ^Zlqbd kemqZcguo qbk_e1 In[12]:= x:=Random[] In[13]:= y=Random[] Out[13]= 0.199496 In[14]:= {x,x,y,y} Out[14]= {0.784326, 0.453175, 0.199496, 0.199496}
;hevrb_ \hafh`ghklb ij_^hklZ\ey_l ijh]jZffbjh\Zgb_/ hkgh\Zggh_ gZ ijZ\beZo ij_h[jZah\Zgbc1 Ijbf_g_gb_ ijZ\beZ ij_h[jZah\Zgby +beb ijZ\be, UXOH d \ujZ`_gbx H[SU h[hagZqZ_lky dZd H[SU21UXOH1 Ijbf_jhf ijZ\beZ ij_h[jZah\Zgby fh`_l kem`blv h[uqgZy ih^klZgh\dZ= In[1]:= x^4-a^4 4 4 Out[1]= -a + x In[2]:= %/.x->a Out[2]= 0 ?s_ h^gh ihe_agh_ kj_^kl\h ± mkeh\b_/ h[hagZqZ_fh_ dZd H[SU2>FRQG In[2]:= delta[i_Integer,j_Integer]:=0/;i!=j delta[i_Integer,j_Integer]:=1/;i==j In[3]:= {delta[2,3], delta[1,1], delta[2.5,3]}
Out[3]= {0,1,delta[2.5, 3]} 1,{_,_}->0}] qlh ^Z_l In[5]:={delta2[2,3], delta2[2,2], delta2[2.5, 3]} Out[5]= {0,1, delta2[2.5, 3]} < hij_^_e_gbb GHOWD5 \Z`gu jZagbpZ f_`^m iZjZfb ^[B/[B` b ^B/B`/ Z lZd`_ ihjy^hd/ \ dhlhjhf aZ^Zgu ijZ\beZ ih^klZgh\db ^^[B/[B`0!4/^B/B`0!3` ± ijhlb\hiheh`guc ihjy^hd ^Zkl ^jm]hc j_amevlZl1 GZdhg_p/ fu fh`_f \hafmlblvky ©g_ohjhrbfª ih\_^_gb_f \kljh_gghc nmgdpbb /RJ/ ih^jZamf_\Zxs_c/ \hh[s_ ]h\hjy/ dhfie_dkguc Zj]mf_gl/ b ihkljhblv kh[kl\_gguc/ [he__ ]b[dbc eh]Zjbnf OQ g_ dhfie_dkgh]h Zj]mf_glZ= In[6]:={Log[E^z] z Out[6]= Log[E ] In[7]:= Log[a b c d E] Out[7]= Log[a b c d E] In[8]:= ClearAll[x,y,ln,f] +- qbkldZ jZg__ \\_^_gguo hij_^_e_gbc b ijZ\be -, In[9]:= ln[E]=1;ln[1]=0;ln[1.0]=0; ln [y_^x_]=x*ln[y]; ln[x_*y_]=ln[x]+ln[y];ln[x_Real]=Log[x] In[10]:= Out[10]= In[11]:= Out[11]= In[12]:= Out[12]= In[13]:= Out[13]= In[14]:=
ln[a b c d E^f] f + ln[a] + ln[b] + ln[c] + ln[d] ln[10.0] 2.30259 Log[10.0] 2.30259 ln[I] ln[I] Log[I] I Out[14]= - Pi 2 >ey wlh]h eh]ZjbnfZ OQ fh`gh lZd`_ aZ^Zlv ijhba\h^gmx b g_hij_^_e_gguc bgl_]jZe= In[15]:= Derivative[1][ln]:=(1/(#))& In[16]:= D[ln[x],x] 1
Out[16]= X In[17]:= Unprotect[Integrate] Out[17]= {Integrate} In[18]:= Integrate[ln[x_],x_]:=x ln[x]-x In[19]:= Protect[Integrate] Out[19]= {Integrate} In[20]:= Integrate[ t+2ln[t],t] 2 t Out[20]=- + 2 (-t + t ln[t]) 2 ohly b ihke_ wlh]h g_dhlhju_ ijh[e_fu hklZgmlky/ gZijbf_j/ bgl_]jbjh\Zgb_f= In[20]:= Integrate[2t*ln[t],t] Out[20]= 2 Integrate[t ln[t], t] +bo fh`gh meZ^blv/ hij_^_eb\ k\hx nmgdpbx bgl_]jbjh\Zgby,1
k
>ey l_o/ dlh ijb\ud d ijhp_^mjghfm ijh]jZffbjh\Zgbx b g_ ohq_l hl g_]h hldZau\Zlvky/ \ kbkl_f_ ³0DWKHPDWLFD´ ij_^hklZ\e_gu rbjhdb_ \hafh`ghklb1 Wlh ± dhfZg^u ,I/ :KLFK/ 'R/ :KLOH/ )RU/ 0RGXOH/ %ORFN b ^jm]b_1
: \hl \uqbke_gb_ nZdlhjbZeZ= In[3]:= fact[n_Integer]:= Module[{s},If[n>=0,s:=1;Do[s=s*i,{i,n}];s, Print["n<0"]]] In[4]:= {fact[3],fact[4],fact[0],fact[3.0],fact[-2]} n<0 Out[5]= {6, 24, 1, fact[3.], Null} Dhg_qgh `_/ \k_ klbeb ijh]jZffbjh\Zgby \aZbfgh ijhgbdZxl b \aZbfh^_ckl\mxl> khhl\_lkl\_ggh/ gZb[he__ wnn_dlb\guf ^ey \Zk y\ey_lky
\hevguc klbev/ dhlhjuc \u kZfb fh`_l_ \ujZ[hlZlv ^ey k_[y/ kf_rZ\ qbklu_ klbeb \ gm`ghc ijhihjpbb1 Gh agZlv ^ey wlh]h gm`gh fgh]h1 @_eZ_f mki_oZ$
:gbfZpby b a\md Djhf_ klZlbq_kdbo ]jZnbq_kdbo bah[jZ`_gbc ³0DWKHPDWLFD´ fh`_l lZd`_ ijhba\h^blv ZgbfZpbx1 :gbfZpby ihemqZ_lky ba ihke_^h\Zl_evghklb dZ^jh\ iml_f bo [ukljhc ijhdjmldb1 DZ`^uc dZ^j ± wlh ]jZnbq_kdh_ bah[jZ`_gb_ / dhlhjh_ fh`_l [ulv ihemq_gh ijb ihfhsb ]jZnbq_kdbo nmgdpbc iZd_lZ ³0DWKHPDWLFD´1 < bgl_jn_ck_ ³0DWKHPDWLFD´ ^ey :LQGRZV ZgbfZpby ^_eZ_lky lZd= jZaf_klbl_ dZ^ju \ ihke_^h\Zl_evghklb yq__d/ aZl_f \u^_ebl_ yq_cdb b aZimklbl_ ZgbfZpbx k ihfhsvx dhf[bgZpbb deZ\br &WUO.<1 Dh]^Z \u \\h^bl_ ihke_^h\Zl_evghklv dZ^jh\ ^ey ZgbfZpbb/ \Z`gh/ qlh[u dZ^ju [ueb kh\f_klbfufb1 >ey wlh]h/ gZijbf_j/ ke_^m_l mdZau\Zlv y\gu_ agZq_gby ^ey hipbb 3ORW5DQJH \f_klh agZq_gby ih mfheqZgbx $XWRPDWLF/ qlh[u fZkrlZ[ \ jZaguo dZ^jZo [ue h^bgZdh\uf1 Ijbf_j ihke_^h\Zl_evghklb dZ^jh\ ^ey ZgbfZpbb In[]:= Do [Plot3D[Sin[c*2Pi+Sqrt[x^2+y^2]], {x,-Pi,Pi},{y,Pi,Pi},PlotPoints->30, PlotRange-> {Automatic,Automatic, {-1,1}}],{c,0,1,0.1}]
i_j\uc dZ^j ihke_^h\Zl_evghklb
Qlh[u ihemqblv \ ³0DWKHPDWLFD´ a\md/ h[uqgh bkihevamxl dhfZg^m 3OD\1 DhfZg^Z 3OD\>I>W@/ ^W/ WPLQ/ WPD[`@ \u^Z_l a\md/ Zfieblm^Z dhlhjh]h hij_^_ey_lky dZd nmgdpby I \j_f_gb W \ k_dmg^Zo hl WPLQ ^h WPD[1 Ijhba\_^_f ]Zjfhgbdm qZklhlu 4333 =p ^ebl_evghklvx \ h^gm k_dmg^m1 In[]:= Play[Sin[2 Pi 1000 t], {t, 0, 1}] Out[]= -Sound-
Ebl_jZlmjZ 41 :ROIUDP 61 ³0DWKHPDWLFD´ $ V\VWHP IRU 'RLQJ 0DWKHPDWLFV E\ &RPSXWHU10 $GGLVRQ0:HVOH\ 3XEOLVKLQJ &RPSDQ\/ 4<<41 51 vydhgh\ <1I1 Kbkl_fu kbf\hevghc fZl_fZlbdb 0DWKHPDWLFD 5 b 0DWKHPDWLFD 610 F1= KD IJ?KK/ 4<<;1
KhklZ\bl_eb= BajZbe_\bq Ydh\ :jhgh\bq Kdey^g_\ :gZlhebc K_j]__\bq J_^Zdlhj ;mgbgZ L1 >1