Fbgbkl_jkl\hh[jZah\Zgby JhkkbckdhcN_^_jZpbb Dl_hjbbg_mklZgh\b\r_ckyiheamq_klb//Ijh[e_fuf_oZgbdb kiehrghckj_^...
32 downloads
132 Views
93KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Fbgbkl_jkl\hh[jZah\Zgby JhkkbckdhcN_^_jZpbb
NZdmevl_lijbdeZ^ghcfZl_fZlbdbbf_oZgbdb DZn_^jZl_hj_lbq_kdhcbijbdeZ^ghcf_oZgbdb Iheamq_klvwe_f_glh\dhgkljmdpbc F_lh^bq_kdb_mdZaZgbybjZ[hqbcieZgihdmjkm L_hjbyiheamq_klb ^eyklm^_glh\-]hdmjkZ^g_\gh]hhl^_e_gbyki_p
KhklZ\bl_ebijhn:GKihjuobg ^hp:<Dh\Zez\ klij_i:KQ_[hlZjz\ ZkkX>S_]eh\Z
F_lh^bq_kdZyjZajZ[hldZij_^gZagZq_gZ^eyklm^_glh\dmjkZ^g_\gh]h hl^_e_gbynZdmevl_lZijbdeZ^ghcfZl_fZlbdbbf_oZgbdb<=Mki_pbZev ghklv-f_oZgbdZ bih^]hlh\e_gZgZhkgh\_^_ckl\mxs_]hmq_[gh]hieZgZ\kh hl\_lkl\bbkdhlhjufjZa^_eIheamq_klvwe_f_glh\dhgkljmdpbcbamqZ_lky\ hk_gg_fk_f_klj_qZkh\e_dpbcbqZkh\ijZdlbdb JZajZ[hldZkh^_j`bl jZ[hqb_ieZgue_dpbcbijZdlbq_kdboaZgylbckibkhdhkgh\ghcb^hihegb l_evghcebl_jZlmjuh[sb_f_lh^bq_kdb_mdZaZgbydhk\h_gbxl_hj_lbq_kdh]h fZl_jbZeZbZgZebalbih\uomijZ`g_gbcihhkgh\gufl_fZfIjh]jZffZe_d pbhggh]hdmjkZ\dexqZ_lhkgh\gu_j_amevlZluwdki_jbf_glZevgh]hbamq_gby iheamq_klbijbh^ghhkghfjZkly`_gbbl_ogbq_kdb_l_hjbbiheamq_klbf_lh ^uj_r_gbyaZ^ZqmklZgh\b\r_ckyiheamq_klbbaeZ]Z_fu_ihke_^h\Zl_evgh Hkgh\gufbaZ^ZqZfbdmjkZy\eyxlkyhagZdhfe_gb_klm^_glh\kijbjh^hcb \Z`g_crbfbaZdhghf_jghklyfbnbabq_kdboy\e_gbc\we_f_glZodhgkljmdpbc ijhy\eyxsboiheamq_klvkf_lh^Zfbbkke_^h\Zgbcbhkgh\gufbfZl_fZlbq_ kdbfbfh^_eyfbbamqZ_fuoijhp_kkh\P_evxf_lh^bq_kdhcjZajZ[hldby\ey _lkykh^_ckl\b_klm^_glZf\jZpbhgZevghchj]ZgbaZpbbkZfhklhyl_evghcjZ[h lubieZgbjh\Zgby\j_f_gb\qZklghklbiml_f\u^_e_gbydexq_\uo\hijhkh\ bbeexkljZpbchkgh\guoiheh`_gbcl_hjbbgZijbf_j_j_r_gbydhgdj_lguo aZ^Zqbal_ojZa^_eh\dhlhju_h[uqgh\uau\Zxlmklm^_glh\ljm^ghklb
2
JZ[hqbcieZge_dpbhggh]hdmjkZ Iheamq_klvwe_f_glh\dhgkljmdpbc qZkh\ Hkgh\gu_j_amevlZluwdki_jbf_glZevgh]hbamq_gbyiheamq_klbijb h^ghhkghfjZkly`_gbbIheamq_klvbj_eZdkZpbygZijy`_gbc-qZkZ k-244. Djb\u_iheamq_klb-qZkZk-256. L_ogbq_kdb_l_hjbbiheamq_klbHkgh\gu_ihgylby-qZkZk-270. L_hjbyklZj_gby-qZkZk-273, /3/. L_hjbyl_q_gby-qZkZk-277, /5/. L_hjbymijhqg_gby-qZkZk-283,/4/. L_hjbyiheamq_klbkZgbahljhigufmijhqg_gb_f-qZkZk288,/6/. Wdki_jbf_glZevgZyijh\_jdZbZgZebal_hjbciheamq_klb-qZkZ k-295. Hkh[_gghklbdjZldh\j_f_gghciheamq_klb-qZkZk-298. G_mklZgh\b\rZykybmklZgh\b\rZykyiheamq_klv-qZkZk-302. Qbklucba]b[[jmkZ-qZkZk-312. 12. Ihi_j_qgucba]b[[jmkZ–qZkZk-316. Djmq_gb_[jmkZdhevp_\h]hihi_j_qgh]hk_q_gby–qZkZk-318. Djmq_gb_[jmkZg_djm]eh]hihi_j_qgh]hk_q_gby–qZkZk-326. Lhgdhkl_ggu_pbebg^jbq_kdb_ljm[u–qZkZk-327. Lheklhkl_ggu_ljm[u–qZkZk-k-636. Ebl_jZlmjZ Hkgh\gZy 1. FZebgbgGGIjbdeZ^gZyl_hjbyieZklbqghklbbiheamq_klb-FFZrbgh kljh_gb_–k 2. JZ[hlgh\XGF_oZgbdZ^_nhjfbjm_fh]hl\zj^h]hl_eZ–FMq_[ihkh[b_ ^ey\mah\-FGZmdZ–k 3. 4. 5. 6.
>hihegbl_evgZy JZ[hlgh\XGJZkqzl^_lZe_cfZrbggZiheamq_klv // –Ba\:GKKKJHl^ l_oggZmd––K-800. JZ[hlgh\XGIheamq_klvwe_f_glh\dhgkljmdpbc–FGZmdZ–k DZqZgh\EFL_hjbyiheamq_klb–FNbafZl]ba–k B\e_\>>Dl_hjbbg_mklZgh\b\r_ckyiheamq_klb//Ijh[e_fuf_oZgbdb kiehrghckj_^u–F–K-160.
3
JZ[hqbcieZgijZdlbq_kdboaZgylbcihdmjkm Iheamq_klvwe_f_glh\dhgkljmdpbc qZk H^ghhkgh_gZijy`_ggh_khklhygb_L_hjbyklZj_gby-qZk 131, 136, 139 – 141. H^ghhkgh_gZijy`_ggh_khklhygb_L_hjbyl_q_gby-qZk– 135. H^ghhkgh_gZijy`_ggh_khklhygb_L_hjbymijhqg_gby-qZk 138. G_h^ghhkgh_ gZijy`_ggh_ khklhygb_ L_hjby klZj_gby- qZk 142- 145, 148, 152, 154. G_h^ghhkgh_ gZijy`_ggh_ khklhygb_ L_hjby l_q_gby- qZk 146, 150, 151, 155, 156. G_h^ghhkgh_ gZijy`_ggh_ khklhygb_ L_hjby mijhqg_gby- qZk
1.
EBL?J:LMJ: GGFZebgbgDBJhfZgh\::Rbjrh\K[hjgbdaZ^Zqih ijbdeZ^ghcl_hjbbieZklbqghklbbiheamq_klb–F
4
H[sb_f_lh^bq_kdb_mdZaZgby L_hj_lbq_kdbcfZl_jbZekhklZ\eyxsbckh^_j`Zgb_dmjkZ\dexqZ_lke_ ^mxsb_l_fuh[sb_\hijhkue_dpbyb l_hj_lbq_kdb_hkgh\ul_ogbq_ kdbo l_hjbc iheamq_klb e_dpby – j_amevlZlu ijh\_jdb b ZgZeba l_hjbc iheamq_klbe_dpby \uy\e_gb_hkh[_gghkl_cj_r_gbyaZ^ZqdjZldh\j_f_g ghcmklZgh\b\r_ckybg_mklZgh\b\r_ckyiheamq_klb^eyjZaebqguolbih\^_ nhjfZpbce_dpby– eymklZgh\e_gbyaZ\bkbfhkl_cf_`^m^_nhjfZpby fb gZijy`_gbyfb kdhjhklyfb bo baf_g_gby b \j_f_g_f g_h[oh^bfh fZdkb fZevghh]jZgbqblvqbkehi_j_f_gguob\ukdZaZlvij_^iheh`_gb_hlhff_` ^m dZdbfb ba gbo kms_kl\m_l nmgdpbhgZevgZy aZ\bkbfhklv Wlh ij_^iheh`_ gb_ b ghkbl gZa\Zgb_ l_ogbq_kdhc l_hjbb iheamq_klb Kms_kl\m_l l_ogbq_ kdb_l_hjbbiheamq_klbklZj_gb_l_q_gb_mijhqg_gb_WlbgZa\Zgby\agZqb l_evghc f_j_ y\eyxlky mkeh\gufb Ke_^m_l ihgbfZlv qlh ihkdhevdm ^_nhj fZpbbiheamq_klby\eyxlky\hkgh\ghfg_h[jZlbfufb^eykemqZyh^ghhkgh]h b g_h^ghhkgh]h gZijy`_ggh]h khklhygby ihklmebjm_lky ijbf_gbfhklv hkgh\ guo]bihl_al_hjbbieZklbqghklb:gZeh]bqghZkkhpbbjh\ZgghfmaZdhgml_q_ gby ijbgbfZ_lky kms_kl\h\Zgb_ ihl_gpbZeZ iheamq_klb f l_ ^himkdZ_lky 5
qlh dhfihg_glu kdhjhkl_c ^_nhjfZpbc iheamq_klb hij_^_eyxlky nhjfmehc : ξ ije = λ
∂f MjZ\g_gb_f ij_^klZ\ey_lkh[hcmjZ\g_gb_]bi_jih\_joghklb\ ∂σ ij
ijhkljZgkl\_ dhfihg_glh\ l_gahjZ gZijy`_gbc σ ij d dhlhjhc hjlh]hgZevgu \_dlhju kdhjhkl_c ^_nhjfZpbc iheamq_klb Nmgdpby f ZgZeh]bqgZ khh\_lkl \mxs_cnmgdpbb\l_hjbbieZklbqghklb ?keb ij_^iheh`blv qlh ihl_gpbZe ^_nhjfZpbc iheamq_klb aZ\bkbl hl \lhjh]hbg\ZjbZglZ^_\bZlhjZgZijy`_gbcbgl_gkb\ghklb^_nhjfZpbcb\j_ f_gb l_ f1 = S ij S ij − [Φ 1 (ε i f )]2 = 0 b dZd b \ l_hjbb fZeuo mijm]h – ieZklbq_ 3 2
kdbo^_nhjfZpbcijbgylvqlh ε ij = λ
∂f 1 lhfuihemqZ_fl_hjbxklZj_gbyX ∂σ ij
GJZ[hlgh\ZHij_^_e_gb_gZijy`_gbcb^_nhjfZpbc^eyg_dhlhjh]hagZq_gby \j_f_gb ih l_hjbb klZj_gby wd\b\Ze_glgh j_r_gbx aZ^Zqb ih l_hjbb fZeuo mijm]h–ieZklbq_kdbo^_nhjfZpbc^eyba\_klghc^bZ]jZffu^_nhjfbjh\Zgby ?kebij_^iheh`blvqlhihl_gpbZeiheamq_klbfaZ\bkblhl\lhjh]hbg\Z jbZglZ^_\bZlhjZgZijy`_gbcbgl_gkb\ghklbkdhjhkl_c^_nhjfZpbbiheamq_ klbb\j_f_gbl_ I = 6 LM 6 LM − [Φ ξ LF I ] = lhfuihemqZ_fl_hjbxl_q_gbyE
FDZqZgh\Z ?kebij_^iheh`blvqlhihl_gpbZekdhjhkl_c^_nhjfZpbciheamq_klbaZ \bkblhl\lhjh]hbg\ZjbZglZ^_\bZlhjZgZijy`_gbcbgl_gkb\ghklbkdhjhkl_c
[
]
^_nhjfZpbciheamq_klbbiZjZf_ljZH^d\bklZl_ I = 6 LM 6 LM − Φ ξ LF ∫ Gε LH = ,
lhihemqZ_fl_hjbxbahljhigh]hmijhqg_gby Ijbbamq_gbbl_fuke_^m_lh[jZlblv\gbfZgb_gZlhqlhgZb[he__ijh klufkihkh[hfwdki_jbf_glZevghcijh\_jdbjZaebqguol_hjbciheamq_klby\ ey_lky khihklZ\e_gb_ wdki_jbf_glZevghc djb\hc j_eZdkZpbb ijb ihklhygghc ^_nhjfZpbbkl_hj_lbq_kdbfbihkljh_ggufbihjZaebqgufl_hjbyfiheamq_ klb ?s_h^bgdjm]\hijhkh\lj_[mxsbom]em[e_ggh]hbamq_gbyk\yaZgk\u y\e_gb_f hkh[_gghkl_c aZ^Zq djZldh\j_f_gghc mklZgh\b\r_cky b g_mklZgh \b\r_ckyiheamq_klbLZdwdki_jbf_glZevgu_bkke_^h\ZgbydjZldh\j_f_gghc iheamq_klbiha\hebebmklZgh\blvqlh\hij_^_e_gghf^bZiZahg_l_fi_jZlmjb gZijy`_gbci_j\ZyklZ^bygZdjb\uoiheamq_klbhlkmlkl\m_lbke_^h\Zl_evgh ^ey j_r_gby aZ^Zq g_h[oh^bfh kgylv h]jZgbq_gby h[ hlkmlkl\bb f]gh\_gguo ieZklbq_kdbo^_nhjfZpbcKdhjhklv^_nhjfZpbb\wlhfkemqZ_ij_^klZ\ey_lky \\b^_kmffukdhjhkl_cmijm]hc^_nhjfZpbb ξ e f]gh\_gghcieZklbq_kdhc ξ p b^_nhjfZpbbiheamq_klb ξ c . DZd ihdZaZeb bkke_^h\Zgby g_mklZgh\b\r_cky iheamq_klb gZijy`_gby g_ij_ju\ghbaf_gyxlky\h\j_f_gbb\k_[he__b[he__ijb[eb`Zxlkyd\_eb qbgZfihemq_gguf\j_r_gbbaZ^ZqmklZgh\b\r_ckyiheamq_klbbjZkij_^_
6
e_gb_ gZijy`_gbc ijb mklZgh\b\r_cky iheamq_klb y\ey_lky dZd [u ij_^_ev guf < j_r_gbb aZ^Zq g_mklZgh\b\r_cky iheamq_klb mkeh\b_f kh\f_klghklb ^_nhjfZpbc ^he`gu m^h\e_l\hjylv dhfihg_glu iheguo ^_nhjfZpbc Z \ j_ r_gbb aZ^Zq mklZgh\b\r_cky iheamq_klb mijm]bfb ^_nhjfZpbyfb ih kjZ\g_ gbxk^_nhjfZpbyfbiheamq_klbfh`ghij_g_[j_qvLh]^Zmkeh\byfkh\f_kl ghklb ^_nhjfZpbc ^he`gu m^h\e_l\hjylv dhfihg_glu ^_nhjfZpbc iheamq_ klb
J_r_gb_lbih\uoaZ^Zq AZ^ZqZ IhemqblvmjZ\g_gb_bah]gmlhchkb[Zedbihklhyggh]hihi_j_qgh]hk_q_ gby\mkeh\byomklZgh\b\r_ckyiheamq_klb Bkihevah\ZlvmjZ\g_gb_khklhygby ε = Ωσ 0n .
z
F
l v
J_r_gb_ IjbfZeuoijh]b[Zo^bnn_j_gpbZevgh_mjZ\g_gb_bah]gmlhchkb[Zedb\ mkeh\byomklZgh\b\r_ckyiheamq_klbijbkl_i_gghcaZ\bkbfhklb^_nhjfZpbb iheamq_klbhlgZijy`_gbybf__l\b^ Q
G ϑ 0 Ω ]^_ ϑ − ijh]b[ V = Fz -ba]b[Zxsbcfhf_gl\l_dms_fk_ = GW - Q[
q_gbbhlaZ^ZgghcgZ]jmadb z –jZkklhygb_^hk_q_gbyhlijZ\h]hdhgpZ[Zedb - Q[ -h[h[s_ggucfh f_gl bg_jpbb ihi_j_qgh]h k_q_gby hlghkbl_evgh hkb kbff_ljbb k_q_gby x, i_ji_g^bdmeyjghciehkdhklbba]b[Z Bgl_]jbjmyihemqbf ) Gϑ = & + G] - Q[
Q
Ω] Q + Q + ;
7
) ϑ = 3 + &] + - Q[
Q
Ω] Q + [Q + Q + ] ,
]^_KbJ–ihklhyggu_hij_^_ey_fu_ba]jZgbqguomkeh\bcijbz=l, v b dv/dz =0. Kmq_lhfgZc^_gguoihklhygguobf__f ) ϑ = - Q[
Q
ΩO Q +
Q+ ] ] − + . Q + O Q + O Q + Q +
Ijh]b[^hklb]Z_lgZb[hevr_c\_ebqbgu\lhqd_ijbeh`_gbykbeuijb ] = ϑ
PD[
) = - Q[
Q
O Q+ Ω . Q +
AZ^ZqZ Klmi_gqZluckl_j`_gvaZdj_ie_gf_`^m^\mfyZ[khexlgh`_kldbfbhih jZfb b gZ]jm`_g ihklhygghc \h\j_f_gbkbehcF>ebgZmqZkldh\– l1bl2Z iehsZ^bihi_j_qguok_q_gbc–:1b:2Hij_^_eblvaZ\bkbfhklvgZijy`_gbc hl \j_f_gb _keb \ gZqZevguc fhf_gl \j_f_gb gZijy`_gby g_ ij_\hkoh^yl ij_^_emijm]hklbBkihevah\Zlvl_hjbxl_q_gby ξ c = Bσ n ]^_ ξ c -kdhjhklv^_ nhjfZpbb iheamq_klb < – nmgdpby \j_f_gb b n – ihklhyggZy fZl_jbZeZ ijb hij_^_e_gghcl_fi_jZlmj_
l1
A1 F
l2
A2
J_r_gb_ MjZ\g_gb_jZ\gh\_kbybf__l\b^ σ 1 + χσ 2 = S ,
(1)
8
A2 F ; S = ; σ 1 b σ 2 -gZijy`_gbyk`ZlbygZi_j\hfbjZkly`_gbygZ A1 A1
]^_ χ =
\lhjhfmqZkldZoKl_j`_gvh^bgjZaklZlbq_kdbg_hij_^_e_gMkeh\b_kh\f_ klghklbkdhjhkl_c^_nhjfZpbc ξ 1 = ξ 2η , (2) ]^_ η =
l2 ; ξ 1 b ξ 2 -kdhjhklb^_nhjfZpbci_j\h]hb\lhjh]hmqZkldh\ l1
Ijbf_fqlhkdhjhklviheghc^_nhjfZpb ξ jZ\gZkmff_kdhjhkl_cmijm ]hc^_nhjfZpbbb^_nhjfZpbbiheamq_klb ξ =ξ e +ξ c. (3) I_j_c^_fhlkdhjhkl_c^_nhjfZpbcdgZijy`_gbyfbkihevam_faZdhg=m dZbmjZ\g_gb_khklhygby ξ c = Bσ n lh]^Zba ihemqbf ξ=
1 dσ + Bσ n E dt
(4)
Ba ke_^m_lqlh
dσ 1 dσ 2 = −χ dt dt
(5)
MjZ\g_gb_ kmq_lhf b ij_h[jZam_fd\b^m dσ 2 , dt f (σ 2 ) = ( s − χσ 2 ) n − ησ 2n .
EBf (σ 2 ) = (η + χ )
(6)
]^_ Ijhbgl_]jbjm_fwlhmjZ\g_gb_mqblu\Zyqlh\gZqZevgucfhf_gl\j_f_ gb σ 2 = σ 2 (0) − gZijy`_gb_ihemqZ_fh_baj_r_gbyaZ^Zqb\ij_^_eZomijm]h klbIjb f (σ 2 ) ≠ 0 bf__f Ω =
σ
η + χ 2 dσ 2 , E σ 2∫( 0) f (σ 2 )
(7)
t
]^_ Ω = ∫ Bdt -fhghlhggh\hajZklZxsZynmgdpby\j_f_gb 0
NhjfmeZ iha\hey_lhij_^_eblvgZijy`_gbygZ\lhjhfmqZkld_\aZ\b kbfhklbhl\j_f_gbGZijy`_gbygZi_j\hfmqZkld_gZoh^ylkybamjZ\g_gby jZ\gh\_kby ihba\_klghcnmgdpbb σ 2 (t ) . Hq_\b^ghqlh bf__lf_klh_keb f (σ 2 ) ≠ 0 Ijb f (σ 2 ) = 0 ba ke_^m_l qlh σ 2 = const l_j_Zebam_lkykhklhygb_mklZgh\b\r_ckyiheamq_klbIjbwlhf ( S − χσ 2 ) n = ησ 2n ,
(8) 1 n
ke_^h\Zl_evgh σ 2 = S (η + χ ) −1 Z σ 1 -hij_^_ey_lkyba AZ^ZqZ Hij_^_eblvaZ\bkbfhklvhl\j_f_gbijh]b[Zk_q_gby:[Zedbihklhyggh]h ihi_j_qgh]hk_q_gby_kebbgl_gkb\ghklvjZ\ghf_jghjZkij_^_e_gghcgZ]jma db q = Ct ]^_ C = const ; t-\j_fyBkihevah\Zlvl_hjbxmijhqg_gby 9
ξ ε β = ασ ν .
(9) t q(t) A
l
J_r_gb_ Bkdhfucijh]b[hij_^_ey_lkykihfhsvxbgl_]jZeZFhjZ W
O
0 ϑ = ∫ ϑ GW ; ϑ = ∫ - Q[
Q
0 .G] F-ba]b[Zxsbcfhf_gl - Q[ -h[h[s_ggucfhf_glbg_jpbbihi_j_qgh]h
k_q_gbyF1-ba]b[Zxsbcfhf_gl\l_dms_fk_q_gbbhl_^bgbqghcgZ]jmadb ijbeh`_gghc\gZijZ\e_gbbbkdhfh]hi_j_f_s_gby\lhclhqd_i_j_f_s_gb_ dhlhjhchij_^_ey_lkybgl_]jbjh\Zgb_ijh\h^blkyih\k_c^ebg_[ZedbD-ih klhyggZyfZl_jbZeZijbhij_^_e_gghcl_fi_jZlmj_<gZr_fkemqZ_ O
ϑ = ∫ χ]G] ,
(10)
]^_ χ -djb\bagZbah]gmlhchkb[Zedbz –dhhj^bgZlZhlkqblu\Z_fZyhl k_q_gby: MklZgh\bfaZ\bkbfhklvdjb\baguhlba]b[Zxs_]hfhf_glZGZhkgh\Zgbb ]bihl_auiehkdbok_q_gbc ε = yχ ; b ξ = y
dχ ]^_y –dhhj^bgZlZhlkqblu\Z_fZy dt
hlhkbxhkvye_`bl\iehkdhklbba]b[Z GZijy`_gb_hij_^_ey_lkyihnhjfme_ 1
dχ χ β ν 1+ β y ν −1 y σ = dt α
(11)
Ba]b[Zxsbcfhf_gl M = ∫ σydA A
kmq_lhf ijbgbfZ_l\b^
Gχ χ - [ , 0 = α GW β
]^_ - [ = ∫ \
ν
+ β +ν ν
(12)
G$ .
$
Ijhbgl_]jbjm_f kmq_lhfgZqZevgh]hmkeh\by ( f = 0 : χ = 0) . 10
W 0 Bf__f χ = α + β ∫ -[
ν
+β
.
<jZkkfZljb\Z_fhcaZ^Zq_ M =
[
χ = α ( + β )(& ′] - [ ) I ν
+ν
+ ν
]
qz 2 = C ′z 2 t ]^_ C ′ = C / 2 ke_^h\Zl_evgh 2
+β
. Ih^klZ\eyyihemq_ggh_\ujZ`_gb_\ bf__f
ν &′ ϑ = α ( + β ) I -[
+ν
+ ν
+β
O
∫]
+β + ν +β
G] ,
hldm^Zihke_bgl_]jbjh\ZgbyhdhgqZl_evghihemqZ_f &′ I ϑ = α + β ν + [ ν
+ν
+β
+ β ⋅ O + β + ν
J_^ZdlhjDmag_ph\ZA?
11
+ β +ν +β
.