ISBN ???
c
'( )* ! +, 2000
???
...
6 downloads
128 Views
644KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
ISBN ???
c
'( )* ! +, 2000
???
,
. ! . #
. $ ! , , % & !.
. . | : !"#, 2000, 100 .
??? ??? ???
( !" ) *+ ! * ! ) , "-, , " ) ,.. / ! " *. . 0 1 , *2 " ) , "-. , "- "
" 1 -* , !2 3 ! 0. 4" *. ", , "- " ,!" 1
. ,. . 5! " " ) 3 ! ! , "- ,
, ** . " ! | ! !!- . 4" *. ", 1 ) * . . " , " , 3 ,. , * ,
) " . ( , "-0 !0 , ) , "- ) 3 * * " 3 " 0 02 ". )! : .22 ) 3 * 3 ) , "- 3 " 210 ) (
3 ,), ! ) " ! 3 ) 3 ! " .- 3 ( 3 -), ." 1
) 3 * " 8" 3 - ( ! 8* ) " ! 9,, ) 3 ! " " ) ) 9 0-. !
*+ !02 ! .0 3 1.
.- 3 1 ! . : , , "- " 8 ! 3 0 ! !. *+ ." ., * . 3 0 0 , "- , " . 4" " " ; , !, 302 8*, "8 410 1 ). ( 9 !0 3-3 ) " 3 93 " EPR (Einstein { Podolski { Rosen). - EPR-Bel .- 3 3 ! 0 .! " ! ) ) ) , "- , ." , " ! ) ) ,. ).
* 18 ) 10 " . 1 ! 3 ! 3 . : 3 " 210 " ! QEC ." " * 3 ) * . 8 . ? " ! 3 ." , 3 1 8 ) , ! " * "310 *! 1 ! " 3 " .. 5*. . 8 ! " 3 " ) " ,. ) , "- 3 3 3 " 3 " ! ! ).
/ !1 )8 " *2 * . 0 ! 3 * ) , "- ): * , "-, ) , ) " . (no cloning property) 3 -. / - " 3 ,. 3 1 "310 , 302 3-3 > { 410 0 " ! 1 ). " 0 " ! ! "310 , , " 3 3 ! ,- 3 .3 3 !
) *. !. ? " 3 .0 , ) "310 , *!02) !
) ), 1 2 0* ! "310 , 3 02 ) , "- ), 3 * ** 1 ") ,-) * ) 3 . ! 1 10. ? . , ! 1 .! * 1 ) "310 . .! 1 "310 *0 ! . 8 !. 5! 3-3 ,. ) , "- " * 1 3 * " ) . / !1 )8 " *! 3 ! *. .!8 3
8 93 " . 5 * " 0 " ! 3" ) ) ) 8, 3 . , " ! ! " . . /8 . ) " ! * 3 0 . 3 1"" " 1* " 3 ( 3 ! " * ")@ ! * 1 3" " * 1 8 ! * " 3 ( 3 ! 0 ! 10 * "). " ! " ( ) ) 3 . 0 3 ! 1 2 " 1 ). ( 1 3 93 " ! 2 ", .
* )
.* ." ! ) 0* ) " 02 ) ! ), ! !
" ." 1 .! ! ) 02 "310 ( 3 02 3" 1000 * ") * 0 . 5!
3 !.! ,. ) , "- 3 ! " ! 3 8* (QEC | quantum error correction) 8 ! ) 3 * ". ( ! . " " ! " 3 8* . ? 0- "310 "" 2 1
* 3 !3 1* " 3 . 58*-
4
D. .! 1 3 1
) ) 3 : 3
" 02) " ), ) 1. , ,!" 1 . ,. * . " 3 " : . ?# (
" ! , ?#. 10 ) * Principia !
1 *2 . 3 . 5 3 ., ! * 3 !" , 3 3 !" " " " " " ! !, , .
) ) " 2 , 3 : ! 3 ! 0 " ) ", ! ) 02" . : ! " . 1,
! 9 ! 3 ! . 9 ! . 4" *. ", ,. 3 . * 1 3 ! 3 ) 9 "31, ! 30 ." " ". F ! 9 " * 1 . " 3 *": 3" , 9 * 18 " 9 -3 . " )! CERN (G ) *! ) ) 9 ), . 1 . " 3 ", " * 1 . " 3 *", , "-. 3" , ! 3 ! ) "310 3 ! # l'ordinateur quantique est trIes intIeressant# "- 3!0 , ! . .
*2 " 1 , "- ! . 5 1 " , ! , "- " * 1 3 ! . " 3 *". 3" , ." * -, !02"
*. ": a ! 97 b ! 98 c ! 99 . !. )) 8 . ! *! ! 1 : 116 104 101 32 113 117 : : : / , 2 ." 1 " . 3 , "- ), 3 1 . 3 * 3 ! ." 0 ! : "310 ! ** * 18 *+ " , "-, 3 ! ) ! " . !,, -1" " 3 ! " ! . ! ),
1
* 81 3 * 1 3 1 " ! 1 3 " ", - . : ) ! 3 ", 2 50 .! " 3 !! 1 3 ! * 3 "
) ** , "- (, "- )). 5! , 3 * 3 ! , "- 3!0 ! ": 3 1. "-* ,. " 4 1 3 ! . *) ! .!, 31 " 1 | . 3 ! 3 " *" , ! " 1) 3 - 3 ! * ) )
(Landauer 1991). ,.: T0* , "- " ,.
3 ! #. * , 3 1 , "- .
! 3 ! " * 1 3 ! . ! ! ! ), ,
! , " ) ! ,!" 1 3 ,., 9 , "31 ! . 5!
) " " ) 33 , 302) , "-0 , , * * , ! ) 3 9 . ( 9 " 1 , "- ! ,. 81 * . 1 " 3 " !", 9 3. : ! 3 ", , "- " .! * 18 . . , * 18 ,!" 1 ,. ." 3 " 9 " - ), 302 ! ." .. : ! 3 0 " - : 3 3 * , 3 ! !2 ( 3 " ") ! 3 ! , " - 3 0. 3" , ! 3 ! , " " ! 1 * , * !" . 1 , "-0 ) 3 *+ . ) "
1 , * ! ( ) * 18 , "-, " " * 1 . ! ) " ). " 3
9 3 ! 0 ""
,-, 0
!1 3 ! . { ?)8 ) D " { , 3 ! ) " !. ! 3 " ,!" 1 ,. )
. , "- 3 1 " ! . 5! 3 3 ! " 9 ) 3 3 ) .! 3 2 !
*. .
" 3 3 , "- , . 3 ! . /" * " " 1 3
0 3" 1. " 9 3 - ! , "- . " 9 3 02 ) ! , * ) .
" !". 9 " . 8 " ,. ) ! " U . *! 9 3! " ) V (1989), ) (1990), V (1990). /8 3) 3" 3 . ( 3
3 ! ), . " " ! . ) .! ). ) 3 !" ( *+ ! !, ." , )8 , 2 ! 0-
) XX : 0 " 0 , "- ( " , " ). /." .1 9 ! 3 . . 2. / ) , "- 3 ! 3 ! , "-. V! 1 " !02 3 !3 ! . 1 3 . " , "-# 1 1 9 ." , ) " 9 3 , * 1 8 " - 1 0 3 9 3 ! " 3 " ! " * 18 , " ,. 9 " - ! 3
#. ( *! " 1 3 , "- * ". W
3 ! *! ! .! 2.1. 1 8 3 ) , "- 1940 ! | " 3 3 02 ) * ; (Slepian 1974 .).
", , "- " * 1 3 *. . ! ) , " !0, . ,- " * 8" ! ; (Shannon's noiseless coding theorem). ? " 3 ! ! , * !" ! 3 ! .! *+ " , "-. ; " ,!" 10 .! . 3 3 " 0 " ; (". .! 2.4), ! " ) , "-. :.1 * . 8* ! 3 3 " 2 3 ! " ! , 302 8* #, . " 3 3 ." ! . ) " " . G IEEE Transactions on Informations Theory 3 3 10 3 2 .* . ! , 302 8* . * 9 ) * * 3 \ ) " (1949 \"" " (1950). 5 3 , " 3 1 3" ", , "- ; . ) ,
1
1871 ! 3! , . " ! " U # (. 1, ". Brillouin, 1956 .). " U | 9 2 , ! * " " ! ( !). 4" *. ", ! ) 3 ! . 0 .- "3 * . 8 )-* * , 8 ) . " !" 3 ! " 3 ). :2 " 3 3 . 1# ! " U ( *+ 1 3! U ) (". Benneti 1987): ! 1, ! " " 3 1 , "-0 * . 8 * , * * . ."2 (, ! 1 , ) 2 . 3 , ! . - 3 !! 8 0 *+ 1
", ) . " !" ! ) 1 " * 1 8 "2" (."") 2 "#. 53 ! ) 3 - " 1 1929 ., ! T :! .! " 02", ! ! " * 1 81 3 ! 1: ! " 3 3 !. ) ! " * 3 0 * 3 3 ! , . " ! " :!. 5! :! 8 .! , 3 1 . *+, *! ." , 3 ! " ! " .
3 " , 3 * 1 0 9 3. ! 1 , 1) ) 3 81 . 3 1! . / 9 3 ! * .* -, "310 , * 2 1 . ,. )
. * ** , "-. /! " !" 3 9 " " *+ "" , "- . T! !" 60- !, ! | ", D ! ", 4 ,, !" 70- !. ." , 3
0* ) 3 - * "", . . ! 2 9 3 ( T!9, 1985 .). 3 ! .1 " ! 9 ) * ) 3! " U , 3 , ! " ! ) 1 " 3 ! 1 3 " ! :!, 8 * * . 9 3 02 ) ! . 4"
*. ", . ! - * ! 3 * 3 . * . 5! , 9 " , "- 3 " ! ! 1 3" ! " (. 1). > " * 18 - * ! 3 , " * 18 , "- 3 3" . . 8 " !" -, ! " !
1
8
* *" ) 3 , " ) ). / " 3 " ! ) ) ! . 8 " "
3 , 410 3!" 3 10 " ) , 02 , " . ) 382 ) "8 ). 5 * "8 410 .0 1 ", ! ) 9 * "8 , 3 !. ! 8 " " .! , ! ) * !
3 " * 1 3 ! 3 ! * " .. 410 3 1. 0 "8 0 -0 ! , * ! . 1, ! 32 2 " ! ! ! . 1 . 8" ! 3 0 (". .! 3.3). " ", . 1 ." ! 1 * ) " " ), 3 " ". 5! , 1 . 3 ! ! ! " " " ! . 1 , ! 3 , 410 . 1 3 * . 0 * * , "- *2 . . ? * ", !, "310 #, 3 !." ."02) " " )#. : " "310 0 "8" 410 "8" 9**!, " 0 " *2 . ] 1 " 2 1 9 ( " " ) " 2 " 8 410. " , 9 * * ." 1 , .! 3 . "310 , 3 1 38 * 3 " 1 !
1 " 0! ). : ! " 1, 3 - . . 81 ." * ! ) , 3-3 * "310 . 5! , " 3 ." 3 ! * . " ). " | 9 " " , 3-3 0 ,.. V! 1 *! 3"0 " 1 -, * 9 " -, 3 9 " .) ) ) " *! !
. / ) ) ) "
3 ) ! , , , 9
3 0 " 3 " ", " "3 ! " " 1* " 3 . " 9 3 * 3 0 ! , "- ). :2 3 1 " ! 3 " \1* " " 3 ", 0 , " 1 3 !
3! ". U ! 1, ] 410 (Alan Turing 1912{ 1954) | - , " , 3 | >1. 9**! (Charles Babbage 1791{1871). 9**! 3 ! * 18 2 9 " " "310 , " 2 2 ) ! 2 ! ). ( 8 410 8 0 "8# 9**!, 3 ! ! 30- ! 10 "8 410. \ ) 410 (". Hodges 1983) .0 ",
3 ! ." 1 ) "8 2 * 18 ) 3 , " 9**! 3 ! 1 3 "" , !" ", 3 "" * 3 . / ! 410 3 * " " 9! \1* \ ! 1. : 1890- 3 1930- ! \1* 3 ! 1 3 ,!" 1 3 3 ! " " . / 3 : :3 ! ! " " ! ?# 3 ! ." 1 3 ": U !" 3 * " 3-3 3 1 ! . 1 0* " " ! ?#. 5 * . , ! \1* , * 18 " " , , " " . ) ) 3 !3 , , 3" , 3 !3 \ 1!* ", 0* " 3 ! 1 "" ! 3 , " * 1 0* ! ., * 3 . F 3 ! 1 1 ! . 1 " * 1 . . \ ! 1 3 9 ! , ! . 2 . 8" " " ! ), . . ! , 1. ! . 1, 3 1. : !02) ) 3 * .
3 . " 3 ! * ! ). ( " " ! . *
* , ! , 3 ! .!" " " " ! . 1 ! " , ! !) 3 !02) 8 .* ! . 3 !!2 . \1* .! 3 ", " ." 1 9 .* 1# " * " " 3 - ". " ", 2 1) " " ) " !, 3 . 02) ! . 1 1 1 0* " " ! ? ( \ ! 3 \1* * 3 , " . 4 3 1 .0 ! . 1 , . 8" , " 9 " 3 " ." 410. ( " 10", " 1 ! 410 .0 1 .-
1
1
10
, , ! ) , ) 3 ! 1 ) ! -, , * (3 ! 1 ) 1 . ! 1 -. ? " !
1 3 . , 3 1 3 ! * ) 3 ! 1 1 " 3 1. 1 3 , ! ! * 3 .22 ) .. / ) * 10 .! 1 , 3-3 ) " * 3 0 ) ) , "-, 3 3 3 * !"
) , "- ", 02" 1 ) !, 9 " * 1 , , "- 3 3 "-* 2 (3" , 83 ). 4" *. ", 3 1. 3 " 2 ( ) 02 ", " .* 1 3 * " 8 - 10 3 !, 83 . / ", 3 . 1 ! " 1
3 ,, ." 3 ) "310 / 3 ! ", ! , .0 " " . (
" ) " ).# | T! , 1995 .) " 9 , * 3 ! 1 -" ) "310 , ) 3 . ! * " ! * "8 410. 5 ! !
3 . 1 -" 0 ", 1 9 0- " " 1 | * !" *
1 . ! . 1 . : ! ) . ,
"310 " " 1 3 ! " ) 9
0-0 0* ) ) ". V! 1 1 ! #: ! ) 3 - 3 . .! 1 .! ", - 3 ! . . 9 !
- EPR-Bell 0 " -" ) " (D )", 1982 .) ( ! " ) -"
. .0 1 3 *. * "8 410 9 " * " " 3 - ! 3 "1 , 3 * 8) ) 9 0- ) " 3 * * "0 "8 410. ? ! 3 1, * ! * (1973 ., ". T - , 1963 .), ) 3 ., 1 1 "8 ( , "8 410) " * 1 * " ), * 3 ) 3 . ,, (1980, 1982) ! 3 ! 3
) , "-. \1* 3 " " * * . ! . 1 ", 0* 3 " 3 .. 5! \1* 3 3 ! 1 *2) ! 3 ., 3 !!02) " " " ! . 1 . ( ! *" *. " * 18 ! ) ) ,. * . . " 9 0- ! 1 ,. ", *
3 ! 1 *2) ! 9 0-, ." ) 3 * " . ( * . ) , "- . 3 " 1964 . . (Bell), 3 ! " 8 3! 1 " 93 " , ) * 3 ! 1935 ! ?)8 ) ", ( ! 1 (Podolski) . " (Rosen) (EPR). *2 " 1 - " ! ! 1" " "", 3 8 " ." ! ) (3" ) " ! * ), * 18 .! ) 0 ! !. / 2 " 3 .0 , 3 ) 1 - 3 ! * " 3 8 ) 1, 3 ! ") 0* . ,., 302 3 - 3 " 210 3 " , ). ]" *
" " (1951 ., " ] (Aharnov), 1957 .), . ", F " ;" (1969), 70- * 3 ! 93 " (". . ;" (1978) " ). \ - 1 9 93 " .0 ." * ." ! ) " ! * * " " "". V 1) 3 * ! 93 " ]3 , 1 *! . (". Aspect, 1991), ! 0* , " 02 " ." ! ) * " 1, 3 8020 0, *
*! !", 3
3! 3 ! *" ) ". : !02 . " ! ) " ) ) , "- . 3 . , , 3 ) ", .* 8 3 ." , " 3 1. 1 3 ) 3 , (Wiesner, 1983, , 1982, ! 1984, 3 ! : ! 3 1996). 3 , *+ ! 1
! ), . ." ) ! 3 3 ! !. ? ) " !, ! 3 ! " 3 1.0 ! 3 8 * ) .! .: 1 ! 2 ! !
3 ! -
1
1
12
! 3 ! ). 5! 1 ! 3 3 3 ) : 3 . ! 1 1 (9,, 1) 2 " 1. / 3 9,, ,!" 1" , " " 3 1 1#. 1" "310 " . ) "310 , ) 1 3 . ! (" ) * 0* ! , ! 9 !
* . V! 1 !
* # 3 ! 3 ! " * " ! 8 : ! . 1 93 -1 . " ! ! (
. *! ! .! 3.1). : 9
. " ) 1". T )! 3 ., " * 1 9,, " 3 " - 8 " (1996). / ) * ) ! 3 ! ) (Deutsch, 1989) ) ( ! " 0 " . , 3 1 3 . 0 3" 1 " . / 1990- ! 1 (Deutsch Jazsa, 1992 Berthianme Brassard, 1992, Berustein Vazirani, 1993) ."1 3
" .! , 1 8 3 " 210 "310 * * * 9,, , " 8 3 ! " 0*
"310 . ( 3 ! -* 3 ), 2
" ) " , 3 ! *) ) " " 1 0 3 020 1, ( 1 * * 81 * 18 . * ( " ): , ! " 3 , 0 " ! ) 0 3 " , " ! 1 3 !
| ) ) "310 " 3 1
1 ) 10. :" (Simon) 1994
! ! , 3 9,, ) ) ! 8 ( " " * )) .! , " 02 9,, 8 ) ! 3 3 1. " ! . ? ! ; (Shor) 3 .
*2 1, ! 1994 ! 3 ", ) * 1 9,, 3 .- " "310 , * ! ! 8 ) .! , " : . 0 " 3 - . ; , 3" " ! D1 -3 *. , ) 33 " " (Coppersmith) ) ", 3 .
! * "1 3 410 80- ! . F ! ,, 3 . 3 3 ) . , 3 ., ( ! ) 9 0- 3 ) ) " *! ) 1 ) " 2 10, ) "310 . 3 ! ! 3! D )" (1982, 1986). 5 " ." 1 .! 1 , 1 ) " - | 3 -1 .! ) ) ", 3 * ) " 1 ,. 3 ! 0* ) ! ) ". 5 ! , " " " " * 1 1) "310 , 3 1 0* ) "310 ,. ) " ). D )" 3 ! !, . ! , 9 0- " * 9,, , " 0* ) ) "310 3 1. 1 ! 8 3 ! 3 .! . ) " * 1 . "310 ", 3 1 " ,- * 3 ! 3 10: 3 !3 , " 3 ! 1 3 ! 0* ." ! ) " ! " " "" !" ", *+, 3 ! 1 9 3 ! . : !02 * ! ) " 1985 !. W
3 ! " " 1 3 0 3* 0 " * "310 . F !02 ! 3 ", ) 3 -, 3 , ! " " 1 " ) ! ) 1 ) , ) * " 3 1 * 1 "310 . ( ) " ) 3 ! * ) ! " !" *." " * 18 3 0 "8, " "8 410 ( * "8 0 1" " 1" "8"). ) ! ., " 3 1 0*0 ! 0 9 0-0, ! 1 , . 1 9 0-0, " 020 . 0* ) ,. ) ", ." 2 1 9 0-0 " !" " 3 ! " 3 ! " " 3 3 -). 531 8 . ! , ) 3 .! " * , ! ,- " "8 410. : ! 3 3 -, 3 ! ) " .0 " ) "#, 3 1 . . 0 ! "3 ) "310 . ." " * 3 ! " 18) ) , !
)
1
1
14
2 9 ) 3 * ". - 1 .0 1 ! . 1 ( 3 ) ,!" 1 . "310 . 531 " ; , 9 ,!" 1 .
" 1 ! ." 3 ! " !02 " : * 3 ! ! 3 2 ) , * 02
10, !
) ! .- " ; ! * 18
(* 18, ", ", 1 (googol) (10100 )), * 2 ,!" 1
! 1 ". 5* ." 3 ! 0 * ) 2 3
! . . 3 !. ! " 9 3 3 ! *+ ! ) , "- ). ( ", " . 1 1 1 "310 8" " 3 " " 3 " 210 " !, 3 3 ! ! *+ ! ) " ) , "-: " ! 3 8* . F 3 8*# 3 1. ! 3" 1 "310 " 18 , 1 1996 ! * ! * " ! * (Calderbank) ; , ." , * : * .! *2 " ! , 3 . * 1 3 " ", .02" ! " *. " 3
) " " 3 - ** ) , " -. V 1) 3 * ! * *2 ! ! (Knill La~amme 1997, Ekert Macchiavello 1996, Bennett !. 1996b Gottesman 1996, Calderbank !. 1997). :2 8 "
! * 3 ! " ; " " (1996). 5 3 .
3 8* 3 ! ! !, ! " 3 - - 0 ! 1". 4 " ! 3 ! 3 0 3 3 8* 3 - #, *+ ! ( " (Preskill, 1997). W, 3
!", 2 " 1 3 3 8* , . " ! ) ) , "- " "310 " " . 1 * ), " " ! ) , "- ; " "310 ". :" 3 * " ! 3
8* * 3
, 3 1 .22 ! 3 " . 5! , , 9 " !
*2 ."
1 ".
" , ! ,". " * 3 \ " (Grover, 1997) " (Kitaev, 1995). " " ) , "-, 3 3 ! ), 302 , . 3 3 3 ! ) , "- | .! , ! * ) ; . : 1 .! 1 " .0 1 " ) 3 )8 ) ) " 3- 12 " " 3 ( " !" "). 3 1 3 , 3 ! " !" 2 " " , 3-3 , 3 * 1 *
) , "-. 5! , ." 3 ! 81 !
, 3 * 3" 1 ! . (3 #, 3 .#) , " *. ", 2 -* 3 * ! 3 " * " *+ " , "-, ) ! 1 !" " ". : ! 1 , *! " ! 1 " ) , "- 3 ! * 3 ! . / 8 . .! ) 3 " ) 9 !" . / " , ) *+ " , "- " 1 " !" "? 5 , 3 ! ) ;" " . (1995) .0 ", , "-, ! 2 " !" " " 3 1. 1 !- ." ! ." ;" . 1 3 ! 9 3 ) , 3 ., " !" " " 0 . ) , "-, * ) , "-. 5 3 ., *+ " ) , "-, ! 2) 0* ) ) " " * 1 ""1" " " !" " | . "" 3 1 " * " * ", * !" ! 3 ! )
10 ". V! 1 1 3 * 2 " . :2 3 , " 02 ,!" 1 . , *0! , .0 02 ", 9,, ) , -, * 3 ,- " , 3 ! * " ; ,
1 3": ) "310
1
3 " 3 93 " 3
.! ) . * " 3 1, 3 .* .
1
1
16
" ! " . , 3 - 3{10 * " ) 0 3 2 "". / . 8 ." " " 1 !02 93 " : Brune !. (1994), Monroe !. (1995) Turchette !. (1995) Mattle !. (1996).
:2 02) 1 *" "310 3 * 3 1 -* 3 . / - - , . 8 1 3 ) 3 , 2 02) ) , " 1 2 " 3 "310 , " * 1 8 81 3 " .! " "310 . 2 " " 1" " * 3 ! ",
302 ! ) , * 3 3 * ,. " 3 (Teich !. 1988, Lloyd 1993, Berman !. 1994, DiVincenco 1995b). ( 3 ) .! ! !
) ", 1 9 0- 1 * ! " ) ( . . )) " ). !
, * " * 81 -" ), ! 1
# (quantum dots#), * * 2 3 !3 1 ! "
! ,
3 !3 ! 1" ) ". (Cirac) V (Zoller) 1995 . 3 ! 3 1. 1 )0 0 8, . 1" 8 " 3 .! "310 , 3 1 !" 0! ), ."02" 3 " ) 8, ! 93 " 1 * !"
1 . "3 . 5 * ! " 1 ! 33 3 ! ! " ! (Winland), 3 ! " " ! ! ) 8 !
(Diedrich !. 1989, Monroe !. 1995). : " ! \ 8 , 1! (Gershenfeld, 1997) (Cory) !. (1996, 1997) 3 .,
* ) " * 1 ! 3 " 210 " ! ! " . (U). ) " ! "
* 202". U 3 1. 1 " !, 3 ! (" " (Privman, 1997) !., T " (Loss) /- . (DiVincenzo, 1997). !8) ! 1 2 .! ! ) "310 , , *! .! 3 . , " 1
. " ; * 1
. " * 18 . 5! , " 8 . * ) ! 3 ! ) ) , "-, ! 9 - ) * !" 81 1 * . 4 ) " * 1 .! *)8 " *!2 ". ( !* 3 - * 2 . ,. 93 " : 3" , 93 " 3 1. "
1
1
18
: ! " 1, ," * 3 0 2, S ! 3 1, 3 1 1 3 . -
x
5 ) .! ) ) , "- .! 3 ! " !" ", , "-. ( !3 ", . . X . : 1 3 9 " 3 , "-? 5 . , . 1 X . 3" , " . . , X 2, . , . . 3 , "-. : ! ) , " . . , . X 3 ! * " 1 ) , .! 1 3 .
0 , "-. / 9 " 3! 1 ) , .0 02 ", , "-
" ) .: , "- ! ( * , "-#) X 3 ! , "-, " * 1 3 3 3 ! . ! ) X . W X ) ) ) 3" . x 10 p(x), , "- ! 3 " ) X
3 ! X S (fp(x)g) = ; p(x) log2 p(x): (2.1)
2.1. ( )
/ 9 ) 3 !02 ) *! " , "- ). U 9 *" (Minsky, 1967, Hamming, 1986), 8 9 , 3 1 ) ! ) , "- ) " * 1 3 . ,." ! . ! " . 1 . ".
2
2
H (p) = ;p log2 p ; (1 ; p) log2 (1 ; p):
(2.2
x 3 ! 0 p(x) 6 1. V! 1 ." 1 (1) ,- ) 3 ! ) . ) 3 " ) X ? * !" .3 " 1, 3 1 !1 )8 " " S (fp(x)g) *! 3 1. 1 S (X ). 5 ! , S (X ) . ,-0 X , , "- ! 3 " ) X . !, 3 3 " 3 ", S (X .0 9 3 ). W . 1 . , X = 2, p(2) = 1, ! " 3 ! . " "" 0 . ? 3 ! ", S = 0 X , " *. ", *! , "- " ! ". W, ! ) , . X 3 ! * " 1 ) , p(x) = 16 ! x 2 f1 2 3 4 5 6g. 4" * . ", S = ; log2 61 ' 2 58. W X " 3" 1 . . ), , "- ! ( 9
3) " ""1 . ! 3 ) ,- 3 ! ) p, ! p(x) = N1 (! * ) S ' 2 58, ) ! ) , ! ) p(6) = 12 p(1 : : : 5) = 101 , S ' 2 16). ? " , ", *+ " , "- ( 0 " 3 1 3
3 ! . X ) * 18), ! 3 ! 1 .
X ""1. 4" *. " ""1) *+ " , "-, ) 3-3 " ! 1 3 " ), 3 * ) 3" 1 . . ), log2 (N ). T ," * 3 0 2 3 8 0. ? * 3 ! !- , "-: S (X ) = 1 X 3" ! . " " 4" *. ", ! 3 " 3 " , 3"02 ! . ! !- , "-. ? !- . * ". 3 . * .3 ! !
: 0 1. / ! ) 3 " ) " 3 ! 1 3 X = 1 p, ! 1 3
X = 0 1 ; p. :" , "- " * 1 ,- 1 p:
2.1. ( )
x y
Y
I Y
Z
I X Y
I X
Y
I X
( 3 ! 0, I (X : Y ) | 1 " , "- ! 2 ) X Y ! 1 !1 . W X Y 0 ."", p(x y) = p(x)p(y) , ! 1 , I (X : Y ) = 0. V" " ! " " " , "- 3 . . 3. > 0 1 ( ) ( : ). , , :! " , # ( : ) = ( : ).
! (4) ! 3 " 210 p(x y) = p(x)p(yjx) (p(x y) 3 ! 1 3 X = x Y = y). 5*21 3 ! 0, " . 1, S (Y jX ) " ) ! , "-, ! 2 Y , . . X . V" ", S (Y jX ) 6 S (Y ) 3 !, S (Y jX ) 6= S (X jY ) * 18 . ( ) 9 3 " *. " * !" ! 3 ! !02 ) : 3 " , "- (mutual information), 3 ! " " : XX (2.5) I (X : Y ) = p(x y) log pp((xx)p(yy)) = x y = S (X ) ; S (X jY ): (2.6)
( ! 1 3 ! *+ " , "- 0 (1), * !" ! . 1, ! ) 1 ! *
" ) , "-. : 3 .! ! 3 ! ! 9 ) .!
!". 5! . ! ) , "- .0 * 3 3 ! !2 " ! " , "-. 3 ! " ! " " 3 -0: 3 !3 ", ( !- 9 ]) . .
X
*2 1 *. V! 1 "
1 3 )8" ", ! X 3" 81 ! ." . : !#, * #. ! " 1, ]
"# , "# . ! " . ] *2 * " 3 " 210 ! -, ( !-). ! " 3 !
*+ " , "-, ! 2 ) X , 3 ! " 3 ! ! * , ] ! 3 ! 1 * ! , * . . X . 5 ! , ! 3 ! . 0, X 3" . !# 1 | 3 " . #. 4" *. ", ! ! 3 ! . X *+ " , "- ! " * . 5! , 3 . )!
2.2.
! .0 ", Y , (, "-
) 3 - ) 3 ! Z * 18 , "- X , " 3 .
(2.7 ! Z I (X : Z ) 6 I (X : Y ): / X ! Y ! Z . , X Y Z * .0 3 ! 1 1 (" 0 - 31), ! Z . Y , . 3"0 X , . . p(x y z ) = p(x)p(yjx)p(z jy). :"
X ! Y
3 3 ! ! . 1, S (X Y ), 3 ! 02 , "- X Y ( . . 9 , "-, 0 " 3 1 3 3 ! X Y 3 1 . . ), ! 0 S (X Y ) = S (X ) + S (Y ) ; I (X : Y ). , "- " . 1, " " 3 . 1 . 1 . !. ? ." 8 " "
:
D- H (p) . 9 3) ) * 1 . ) 0 6 H (p) 6 1. / 3 !02 " . ," *! 32 , . . *! 3 !3 1, ," * 3 0 2, ! . / 1 , Y = y 3 , X = x .3 p(yjx). 9 3 S (Y jX ) 3 ! X X S (Y jX ) = ; p(x) p(yjx) log p(yjx) = (2.3) x y XX =; p(x y) log p(yjx) (2.4)
2
2.2.
2
22
(2.8) pnp (1 ; p)n;np = 2;nH (p): > 1 " * ! 1, * ! ! ) 1 " ! * ), 3 " 3 ) . 3 1 * *2 " . 4 . . \ *
, " 3 ! 1 ) ! 0 2;n(H (p)+") 6 p(3 ! 1 1) 6 2;n(H (p);"): (2.9) V! 1 " 3 . 1, n . ), * ] ), *.0 3 0 3 ! 1 1 10, * 18 ), " 1 ; " 3 !
* 18 . n ." , 1
" ". ? . , ] 3 1 * n * ! , * . n . ) . 5 ! 81
*2 1 ", 0 " . ( ! 1 ! ! 1 * * . 3 3 ! 1 ): 3" , " ! 1 " 1 3 ! . ! ) (! . ). ] 3 ! 1 0 3 ! 1 1, 1 * . . > * 3 1, 1 9,, !) " ! *2 , !
3 . 1, 3 3 3 ! 1 ), 2nH (p), . 5 ! ,
! 3 ! ! ) . 2nH (p) 3 ! 1 ) ] * !"
3 1 nH (p) * . , ] " ! 1 *2
* 9,, " ( . . 3 ! 1 " 18 * ), 3 1 * , . 3 " 3 3 ! 1 ) : !1 )8 3 , "- ) *! 3 ! ". 4" *. ", *+ " , "-, ! 2) !
. X 3 1 ) 3 ! 1 H (p)
0 (1). U " 3 ! * , 3 8 8 . ! , 0 . . * 18 , ) , 3 " " ! !
* 18 n 3
p(jm ; npj < n") > 1 ; (2.10 ! m | !-, ! 2 3 ! 1 n .
). ( * 18 n !- m *! ! np , ! "0 3 0 n. 3" , ! " 3 ! ) !-
* "1 ": (2.11 p(n m) = C (n m)pm (1 ; p)n;m ' ' p12 e;(m;np)2 =22 (2.12 ! "1 ( ) 3 ! 3
! n np ! 1 p ! -! = np(1 ; p) C (n m) n!=m!(n ; m)!. /8 3 " ! 3 ! 3 " .1 , . " " (1): ! 3 ! n . ) X * !" 3 1 3 . nS (X ) 6 n * 4 ) " ! . , " ! 3 ! *
. . " ) * 8" ! ;9 . ! 3 3 ! 1 ) 3 3 0 3
* ." *+ " , "-, " " ! , "- 8", 3 1 ] * !" 3 1 * 18
. ) , 3 ! " 3 ! 1 * * , "-0. ! ) 3 * . .0 3 ] ) 1 . ), 3" , 3 ! !
*2 # * ! *" " ! ". F,,"
3 "1) " !, " ] 3 1. * * ! 3 ! *
*2 )# * ! * ! 3 ! "
*2 ) (". *- 1)
3 ! 1 X )0, * 18 ) 10 3"020 . #, " !#? (/ 3" 3 ! )! 8 , !2 *!02 ) .-.) / 9 " * 9,, 3 ! " * 1 * 3 , ] *! 3! 1 !02 ! ) ). ( 1 p * . 1 , X 1, p ; 1 | 1 , X = 0. ] ! ! 1, 3 !
*2 * n . ) X , 3 " n !
* 1 !
* 18". : ! !- 3 ! 1 . n . ) np , ! 1 , !- 0* ) .! ) 3 ! 1 *. 9 " . 0. ( !3 ",
np - " ". 4 ! 1 3 3 ! 1 , ! 2 ) np !- :
2
2.2.
2
24
2 " " " 1 81 . 3
! 1 " , . . 3 * . 3 " (noise-free channel). 4 * 3 .1 , " 02 3 . : )! " ""1 ." , "- ( " * 8" ! ; ) 3 ) " ! , "- ( ! F,,"). 4 3 1 * !" " 1 ! ) ) 3 : .1 3 " ". 3 !!2 " .! *! " 3 )8) 3" - 10 3 0 1
*2 3-3.
2.3.
( !3 ", " ! ) , . . ) , 3 " ] " 3 ! 1 * !-. ( 3 1 . * . 3 " , 0 !- !
0 1 !- ! (0 ! 0 1 ! 1). 5! , 3 " ", !- " 1 " * . :2 " 3 3 " . 3" , 1 8*
3 * * . . 0 . 1 (0 ! 1) ! 3! 1 10 3 * * # 1 ! 0. / 3 " *! *! ) " -# 3 8 0 0, . . 3 * 1 ! 0 *! " 1 " , 3 * 0 ! 1 . " , 3 ! * 8* "
. 1 ." ! ! * * , * .3
( " ." 02 . * .02 3 * 0 ! 1, 3 * 1 ! 0, 0 * ", 3
1 0 ) " 3 - , 02 1 -. / , ! 8* 0 ! 1 1 ! 0 , 3 " " . ! " "" " ". ) " 81 ! 3 . 1 p, 3 ! 02) 1 8*, 3 !2 ) !) 3 ! ") * . (
*2 , 3 ! " ] ) 3 , 1 X ,
*2 3
" ", 3" " * ", 1 Y . 4" *. ", * .! ) *
!
*2 X .
*2 Y W
*2 X . * , * 3! 3 1. 1 !02" " ": p(x = 0jy = 0) = p(x = 1jy = 1) = 1 ; p p(x = 0jy = 1) = p(x = 1jy = 0) = p , " (2) (3) !0 : S (X jY ) = H (p). 4
*. ", . (6), 3 ! 02 3 0 , "-0, 3
": I (X : Y ) = S (X ) ; H (p): (2.13 5 ! , 3 " , , "-0
* 2 ] X , !20 3 " * "
*2 Y . " , (7) 1 ** , "- * " , 3
*2 " Y , 1 *+ " , "-
*2 X . 5! , (13) 3 . , .1 " ! ] ) * " 8 3 * 18 . S (X ). 5*2
( - - . ! # ! ! # (". . 4). 4 " . ! 1 , "-0 ) . : " * 8" ! ; , 3 p, ) 41 , 3 1. " 8 ) " ! , "- * !" ! " 4H 14 ' 3 245 * ! 3 !
*2 , 2 . . ) X . / ! F,," 3 ! " *- 1, 3 1. ! " 3,273 * . ? , *. ""1 ." ", . * 18I0 9,, 1 " ! , 3 ! * " ! F,,". : , "- | 9 3 , " 02 " 3 . . 5 3 1. ., 3" , 3 , "-, * !" ) ! 3 ! . * 3" 1 "310 . : , "-,
. 3 ., 1" " ". ( !3 ", " , ) " , ! 3 3 3 * 1 !
, ", ! 3 ! ! . * . 43 8 .0 ." ! ), " 02 ) * 0 1 3 ! . 5! " 9
, "- 3 ! 3 1. 1 0, ! 3 ! ** ) , "- (3 ! ) 0 ! "3 . - ). 1 ! , 3 ! 1 * . 1 " , 3 * ** 3 ! " ) , "-.
2
2.3.
2
26
2 " " " 81 3 ", 1 , "- 3 ! . 3 " "
. 5*+ " 3 " ) ] ) * , "- ) C (p) !) 3 ! ") " . 5! , 3 !3 ",
* * . * "*, ] ! "
", ) 3 ! * !" 3 . 1. 5 " ! 1 , * 3 )" 31 , 3 . ,.: 1 ) 3 !# 81 ! .. ] *! 3 1 9 ,. 1 ., * *! ! 1 ! 3 , 3 *! , 31 3 . :.1 * . 8* " * 1 ! ! 3 3 1. 3 " ". / ! " 3" 3 . , " . 1 ! 0 8* 3 " 3 ! " ) , "-.
2.4. , !"# $ % .
? 3 3 S (X ) = 1 ( . . p(x = 0) = p(x = 1) = 21 ).
W" 1 3 ! 8 " * ! ! " " ! . ! ! !
! " ! " !- ). " ! 3 ! , (14) 3 . 1 3 1 , 3 1 * "".- 3 !" ", 1. V! 3 ! " C (p) ! "" ) , "-, ! 8 !
3 . . ) (13) (14) ! , " 3 ! 1 ! : C (p) = 1 ; H (P ): (2.15)
: !02) 8 ! " 3 . 0 , "-, . 0 3 ! * " 2 " ! * 1* 3 " " (Hamming, 1986@ Jones, 1979@ MacWilliams Sloane, 1977). / !1 )8 " 3 ! * !02 3 . U f0 1
3 ! 33 (3 \ GF (2)), ) 3 - + ; 3 0 3 " !0 2 ( " *. ", 1 + 1 = 0) , 2 n * 3 ! ", " 02" n "3 , 3" 001 " * 1 3 ! " (0 0 1). U 3 ! * *.0 !! . " 3 ( *.0 3 3 0), . ., 3" , "" ! : 011+101 ) , " 3 3" 110, 3 1 (0 1 1)+(1 0 1) = (0+1 1+0 1+1) = (1 1 0). ? ! ) 9 3 - 0 02 T# (XOR), 3 " ) 3 .! " ! !" ! " ". / .! ) 3 " u " * 1 !02
*. ": u ! u0 = u + e, ! e * . 8*, . 3 3 * 8 ! 3 " * . 3" , 3 * * u = 1001101 ! u0 = 1101110 " * 1 u0 = u + 0100011. ! C , 302) 8* 3 ! " ,
u + e 6= v + f 8u v 2 C (u 6= v) 8e f 2 E (2.16 ! E | " 8* , " 3 1 3
! " ! C , 0 ) 8*# e = 0 (
0 8*). 3 1. ! ] * ! 1 ", "
*2 0
! u. ( 9 ] *! 3 ! 3 1 ! . ( 1 3 0 3
" , * *! " u 3" 1 u + e. 5! ,
" ! . ! 1 . u + e u, 3 1, 0 (16), " 3 1 u + e, ] *! 3 ! 1 * ! ! v. (" !, 302 8*, 3 ! 3
*- *- 1. ? ! 1 .
! " F"" 7, 4, 3]. * n k d] . , " 2k ! , ! . n *
0 ! ! . " 3 ) ) " d *
! .0 ", 3 ! " ) , "- .
, ) . ( . ! 1
3 ! 1 ) ! , * . 1 3 * 1 3 ! 1 , "-0. 5!" . ." " ) 3 3 3 * 1 ( " 1) 3 ! ""1
." 3 , "- I (X : Y ) " ! ! " ! ", "". 3 " ." "
": " 1 C fmax I (X : Y ): (2.14) p(x)g
2
2.4. , ! "#$ %&.
2
28
2
. . 3 ! ) ! , (16) 3 ! 0* ) 8*, ." 02 ) * ! * . " ", " E 3 " 8* 3 ! f0000000 1000000 0100000 0010000 0001000 0000100 0000010 0000001g. : ! " 1, ""1 " E 2n;k . 5 8 nk . (rate of the code), 3 1 !) 3 ! ") * . n * ! k * , "- , !" ", nk * , "- 3 ! !) 3 ! ") * . / d . ""1" "# ! " . 3 ! , ! 3 " , , 3" , ! " "" " , .! ) 0 ." !) * . ! ""1" ", " d, 3
8*, 3 8 * " d2 * 3 ! " !
. " , ."" 3 " ", ! 8* * . D , 1 ,
u . n * . m 8* , 3 ! * "1" 3 ! " (11). ( 9 ", ! 3 8* * 18 ! np, 2 1 , - " * ! *! 3 8 ). \" ! " ) , "- ,
" 2 !, 302 8*, 2 0 . . nk < C (p),
n , ! " ! . V! 1 1 8* . 1 3 3 " ) 8*, 3 ! 31 " 0 * " 3 . . " ; ! , " 8 ) ! ) .! .! . ." " 3 " , " . 1 1 3 " 3 ! " ! , 302 8*, !" ", 3 ! " ** , "-. : ! . " ; 3 . . 5. 3 . ! * 18" . " 9,,- nk d ) .! ) ! . ( 1 ! ! " ", " ! " * ) )-* "3 ". .! ! ) 1
1
30
H (u + e) = (H u + (H e) = H e: (2.17 . 9 ) ! , * *! 3 ! 1 . H u ! 3 " " 3 u0 = u + e, .1 3 H e ." , u 3 ! " ]. W ! *! 3 1 " , * " . 1 . H e, . " * . 3 ! u! W * " . H e ! . 8* e (" 3 . 1, 9 ." ! 3 " ! ), " 3 1
*2 , ! .
8* e, ! "! ( 3
8* , ! ! ) " *+ " ", " 3 1 8 .
3
" *2 8 . , * . 1 8 .
!", 302" 8*, * !" 3 " 1 !
3 , " , 3 " - " 3 (parity-cheek matrix). !, 302) 8*, . ) ", ." " 3 0, . . u + v 2 C ! 0* u v 2 C . ( ! *) ! 3 10 3 ! " - ) " 3 H , " " (n ; k) ) ." n-* , ! 02 0: H u = ! 0* u 2 C .
" " !02 ) " -
2.4. , ! "#$ %&.
:::
4 3 1 * " ). \" *. " . 3 > 3 ! " " #, ! * !" ! ?#. D!" 1" ! ", * !"" ! , 0 ! " ** " . :2 " 3 " 0 : 1 " ! * 1 " 3 - ! "?#, : 1 " 3 -) * !" ! ?#. 5 ) ! .0 ", " 9,, ", *+ " * !" !
! . 93 -1 ." ." .! , 0 * !" 8 1. ." .! .! " , "-, * !" ) ! 3. *. " . 8 . ! , 1 ) ! " 1 3 1 1 "1 , ! " " ". / 3 " 3" *! 93 -1 . 1 , "-, 0 * !" ** 1. : ! ) , * !" 3 1. 1 ! 0 " (10 " ) 0*0 !0 ", , # ) * , " . ! " , 2 3 2 "310 3 - " 3 " . ( * n ! " " ", * !" 3 1 . " " ". U 3 . 1, 0* 3 *. " 2 1 3 ** ! 3 " . .. ) ) ) # " ! ! * x y ,-0 f (x y). ( 1 ,- " 3" 1 . 0 1, 2 ." ! !, " 3 ! 1 16 ." ! ,- f . U , 1 % &# ' 1. ) * # & , & : 1, 11, 111, 1111
3
3
: 1)# 3 8 0 "310 " 3 * * * ) ". 410 3 ., ." .! 1 "310 , " 02) * 0* ! 1 ) !02" *. ": 3 1 "8 410
** ! . x, 3 302 ! ) , " ! . T (x) (. 7). ( 10 3 ! 1 "8 410 " 3 ! " ." ! . ) 1 ! ) ! ." , -), . :" 3 * 9 3 ! " * 3 ! ! ! dT ]. 410 3 ., 2 "8 U , . " 1 ) "8 ) 410 *! !02" ) ": U (dT ] x) = T (x) (3.1 8 , * !" "8 U ! " - ! 8 " 8 T 3 "1 ) ( 93 -1 )) ,-
! ( . ) dT ]. " ", ! ! "8 U ! 3 "8 T , ! . x, "8 U " 1 * . 93 -1
3.5. ' ( (". $ )(" *
2 . 16 . ) *. . " 1 " #, 3 1, "* ) 3 ! 1 " 2 1 0* 3 *. n * . , ! ) ) " * 1 3 . ! 3 ! " "* ! ) . 4" *. " 3 1. 1 16 ,-), , 3 * 81 ! ) -W (NAND gate) ( ! 9 ) 3 0, 1 * ! . 1). ( " *+ ! ) " ** 1 " , 2 . n * (". . 6). ) 3 ! ! . ) " ! 10 . 5 3 . " " , " 3 ) " ! , !8 ) ! 1 ! 8 3" 93 " . 5 "
02" ! ) " ! 0 " * , " 3 02) 1) ) ) . " ! ) ".
3.5. ' ( !(#. % )(#*
53 ! 1 "310 , " ,- 1 .! , . " 3 !02"
*. ": , !) " ! * 1 3 8 ) .! (3" , 1 ! 237), 8 .! (3" , 3 ! " x 1 ! )@ , "-, 3 ! " ) "310 ! 3 ! .! log x, . . * , * !" ! . x. ( ! )-* .!
3 ! 8 s, * !" "8 410 ! . 8 * * " 3 8 0 ! ) .! . ) " ! 1 3 ! " * " ) . W 2 ", ! -
3.6. ( !
8 s 3 "1 . *+ " , "- (3" , s / L3 + L), ,
02 9 "
" .! 3 !! ** P # W 8 s . 93 -1 3 " , "- L (3" , s / 2L = x), .! )
*! 1 ! " . 5 1 * 3 2 3 1 8 , . . . 1, ", 1 . NP # 0 * " .! 8 " * 1 3 . 3 "1 ". 5 ! , P 2 NP , ! , 2 0 .! , !2 NP !2 P ( . . NP 6= P ). ! 1"
3 ! ! ! * ! . , 3 1 0 1 ." 1 2 " , 2 )! . 5! , " 1, 3! 9 . " ! , . . ,.
3-3 , 3 "310 , 3 1 "8 410 3 * " 1 0* ) ! ) "310 93
-1", 3 "1" ." ! ". /" 3" " 3 !!02 ) 8 0 .! . ! . " : .!81 " ( . . 02" 3 ") " x * !" 3 ! 1 ! . "
). W x ", * " "-* * 1 8 " , " 1 ) . / " 1 -0 ! 3 " x 0 * 18" ". / 9
3 ) " ! 8 .! . . * . " ! 8 3 # (Menezes et. al. 1997). 5 . . 8 s 3 ! s exp(2L1=3(log L)2=3 ), ! L = ln x. ( 3 1. 2 02 !8) ! 1 1 ) 3 ! " ) , 2 . 130 ! . (Crandall, 1977), . . L ' 300 3 * 8 s 101 9 .! 8 ", " 8 * " . (3 * , ) 1012 3 -) ! * 42 !). 5! , 1 *+ " , "- L ! . 8 s,
, 3 ! 1 ! s 1025 , .! . 8" ): 3 " " . 1 ) 8 .)" " , * ! 8 * !" 1 * ! ) "310 " .. / 9 "
3" 3 . , .! #
.
" ** . ,- " *. ",
"8 T ( * * " "8 T ). / .0 " 3 . 1, ! " ! ) (3" , " ! 1) 0 9 " 3 " "8 410: 3 . * 1 " ,-", ) 3 . ! 1 10 ) (". !02) .! ). 4"
*. ", - 3- 1 ) "8 3 . , 3 ! 3 1 ) !
! * 3 " ) *2 ) ** , "-. ? 3 ,!" 1" ! " , " . ) 1 , " 2 1 "8 410 ) 3 ! * "8, 1 , > (1936) 410 (1936) 3 ! . > { 410#, ) , : $ ! !, % !&, ' ". ? . ! .. 5! ! 1 3 3 ) 3" , 3 02), " 3 * " * 18 . . ! 9 " . " ) "310 *2 . 8 " . .! | 3 1 " ,-# 0 0 * .! : ** , 1 3 . ! . !. ) "310 , " .! 6, 3 . 3 " . 1 9 ) ..
3
3.6. ( "
3
34
:2 0 * .! , ." 8 1 3 " 210 "310 . ( * !" 8 .! " 3 1# ", 3 *! 3 1 ".
! 1 " , ! "
*2 2 ? 3 ! * .! .0 . * " " 3" " .! .! * . F 3 "" , "310 .0 ", "
" ! ) 0 ! 1 3 ." " . / 3" " " !020 , "-0: ( x > 2 ! 1 x !-# 3 1 " . x * 18 !. * . 3 ) .- 9 " " ! 1, " . 8 . " " " )
. !02) ": ( x "" ! 3 , ! * 1 x !. / 3 " 3 1 x. 5 # 3 1 " . x = 8. 5 ! , !) " 3 ", 3 1 ! 3 3 , " 1-
3.7. - .
$ T (dT ]) " .
(3.2
TH (dTH ]) " $ TH (dTH ]) " (3.3
3 ". ( ! " ! ! ) 410 3 ., 2 " ! ,
3 ! 0 , " *2 " "8 410 . 8 * : " *. ", .! * . 8" ). ? . , " " ** , "-, *2 " , 0 " ." ", 2" . .
*. ! ),
." *+ ! 1 ! " " 2 " " . /8 . 3"0 . " ) \ ! .
3 . )! , "8 TH 3 1 3 " ) dTH ]? 4 !:
TH (dT ]) "
8 x, " * 1 " )! . " ! ) " . 8 ? W !, 3 3 !3 \ 1!*. : 3 " 210 3 ! * 3 " *8) .! " "
) ,. ) " * 1 ! 3 : :" ) " . 8 3 .3?# W * * . )-* *2) " ! 3 ! !) 3 " " ! *
1 " 2" " " " " ". 5 ! , 3 " 210 " * * . 8 1 3 " " . ( 1 2 ." 1 ! " *2 !, ) 3 ! " "8 410 . 8 1 0 * 3 0* ! !. 4 ) " !
!02) 3 : . x dT ]. :" " 8 410 . 8 1 * , ! 3 ! 1 . x? V! 1 dT ] | 3 "8 T . W ) " 2 , ." 3 ! 1 0 "8 410 TH , *! . 8 1 * ! 1 !, ! "8 T (dT ]) "
1, ! dT ] | 3 "8 T . V! 1 ! "8 TH ! dT ], ! , "-0 "8 410 T , ! !. 5 0! ! :
3 3 ! 8 " ), " ). V! . " " * 18 3 . , 3 1 8 3 3 , ", 3 ! * "" (Rivest), ;" (Shamir) ]! " (Adleman, 1979) (". Hellman, 1979). ( 1, .!81
*2 " M ( ! * 18 ! ), "
3 1 .8, ) : E = M s mod c, ! s c | 2 1 3 ! * * 18 - , " * 1 *2 ! 3. 8,
*2 3 1 3 ! . : E t mod c, 3!02 . " M . ( " t ! 3 " 210 s " ) c (Schroeder, 1984). 3 c = pq .! 3 . ! ! !
3 p q, . 1 " 3 1. 0, ) .! . c. ( 9 " ! 3 , 3 -*!1 " . 1 " c, 9 3 1. 1 *! ! ", *! 3 * 3
1 !
*2 . : ! " 1,
3 ! * ) " * !" 3 8, : 8,# c s, * 3 02 ! , *2 ! 3.
3
3.7. , -
3
36
, * 3 ) ) , "-, * !" !02" *. " 3 ! 1 3-3 ) ) " (Shankar, 1980). 1. : . ) " Q 3 ! " j(t)i 1* " 3 . 2. 4 3 " 3 "31 .0 *0! "" " 3 ! 0 3 ! " 9" 3 . 53 3 "31 X P ! * " *. 3 X !02 " 9 " : hxjX jx0i = x(x ; x0) hxjP jx0i = ;i~0(x ; x0): 3. / 3 ! 0 ; ! i~ dtd j(t)i = H j(t)i (4.1) ! H | ) 3 \"1 ("1 ). 4. ( * ." . > ) 3 , )
! , )-
3 3 ", 3 1 8 . *+02
3 ! ! !0 ! 3 ., " 3 ." # ) " " 1 3 . " (Whuler Zurek, 1983@ Bell, 1987@ Reres, 1993). ( , 3 ! ! * 18 3 .0 ", 3 ! ,. ." ! ) 0 3 . "" ." "#, ji ." !
* jki ." " ) 3 " ). ( " * k )", 10 P / jhkjija .
4
3
( ! j'i ! jki 3 ! " 3 3 (jkihkj)=hkji. * !" " 1,
8 ." ", 9 0- . ) ) " ! . " ", " * 1 j(t)i = U (t)j(0)i, ! U (t) = exp(;ijH dt=~) | ) 3 , UU y = I . 5! 1 .0 ", 2 * 0 . ) " ( . . ) ", . " ! ) !" ""), " , ." ) / ) 4" *. ", 3 1 " ! 3 3* , ! 2 ; ! . 5! . 3 * ! 3* ) | 9 3 " Q ) ! T , ) ! . ? 0- " Q 3 0
!1 3 ! " ; ! , ." ! ) " ! ) T " ." " Q. : ! " 9 ." ! ) ! 02 9 0- " Q, 3 1 3 - . . " . / 8 . 3 * ! !1 )8 . . ) " 3 3 1 *+ ! 1 ,. * * , "-, 3 1
! , * 18 3 ! 3 - " " 1 , " ** , "-, ! ) , " "310 3 * " 1 . ( !. V! 1 .0
! , ) 3
3 : 1. U ( ! 3 ) " 1 , "- ) 3 - ? " . 9 . 1 3 1.? 2. U "310 " 1 3 - ( !? /
. " ) " 3 3 *! !#1 , 3 1 ji, ."02) - 1 3 ) " , 3 "
" " 3 " * , "-: !) 9 * , ! 2 3 0 , "- 1 - # , # & . , # ) . ' & & * ". / # , # "# ! # , , #, # &, # & . (Polhinghorne, 1994).
" . ! .
3 0 ) , "-. : 3! " EPR ! * 1 . " 0* ) 3-,., 3 9 ", .! 1 *! 3 ! * . 1 1. 5! . 3 ) *! 3 . ! 3 ! 3 " ) , "-. ( ) " ) 93 " EPR, " * 1 ! " 0 3 " !" " (Bohm 1951@ Bohm Aharnov, 1957). " " 3 - A B 3 " ; 12 . ! " * . 1 3 # (mz = 12 ) j "i 3 .# (mz = ; 12 ) j #i. . 1 - p ! " (j "ij #i ; j #ij "i) 2, . " . 0 ! 3 3 3 ! 1 Oy ] *, !1 . 1 " ! ! 3 "0 - A B
. ?)8 ), ( ! 1) . 3 3 ", 3 * " ! 1 3 -, * 3 ) , 3" ) 3 " " ! , sA sB , " 3 ! 1 " , 3 . !. ( ! * ) . 1 ) 3 " )#. ]
3! !, 3 1 !) 93 " 3 . ! . 3 !. 1 .1 ." ) 0* ) 02 3 " " ! sB * . 8
- B , 30 . !. 4
*. ", , 02 " " ! sB " 0 3 ! . , ! 8 3 3 .
3 ., * . 8 - B , * !" * 1 1 O , 1 ) *
3 ! 1 " " ! ! ) -, . ", 3
! " ) : { \ (Stern { Gerlach), ! 1 ! ) , ." 1 - B , - A. ( 1 "") " " ! 0, "
. 1,
02 ." - B ! .1 , 3 3 ) .1 , 3 " 3 ." - A. V " 1 * EPR .0 ", ! 2 1 3 ! * ! . 1 )
1 3 *
8*. :2 ! ." ! ! 8*
" Q. 53 ! 3 0# 3 " " 1 ", ji 3 10 3 " Q,
", !) ! 0-* 3 00 , "-0, .0 " ) Q. V 8 . ! ) . D " . * . ! . / ) 3 " * 1
3 " 3 *. . > { 410 ,. ) . : )* *
" , ! , * " . ? . 3 . ) (1985). ! .0 ", * " 1 9 . ! 3 ) ) " , 3 ! * !" . " (3" , . 9 ), ,!" . 53 ! 1 # 8 # " 0 . 3 , " -*
3 ). ) . > { 410 ( ) 3 1 . . > { 410#) " 8 "8" 410. ?
1 , 3 1 " ! " ) 3 ! ) "8 410 . " ) " 2 0 ,!" 1 . . U8 410 3 . ! ) ) " * ", " | . 9 0-) ). ( 9 " 2 1 ,
"8 410, , ! 1 , "310 , " " 1 , 2 02 ( ! . : ! ) , ,. ." , ( . . ) . ( !) . 1 ) ! ), 2 02) ), 3 ! " ) , " ). " 9 - 1 3 ! * ) .
/ 1935 . ?)8 ), ( ! 1) . (EPR) * " ! 0 * 1 ) ) " . : ! , !, . , ! "31
4.8. 0 1$ { 0 ( * { 3 4 (EPR). - 5
4.8. 0% { (* { 2. (EPR). , 3 4
4
40
4.8. 0% { (* { 2. (EPR). , 3 4
31 1 3 ) ) (Clauser Shimony, 1978 Aspect et. al. 1982@ * 3 .! * : ". Aspect (1991), Kwait et. a 1995, ! * ). 93 " 1 . ) 3 ) ) ) " . :" ! . 1 * " 3 " *
". / , ! 3 , p 3 ! " (j "ij "ij "i + j #ij #ij #i)= 2 \* , F V ) (Greenberger, Horne, Zeilinger, 1989) (GHZ) 3 .,
! ." 3 . 1 ) , 3 ! ! 3 !
-, 3 1 ) | ! 1 ) -, 3 ! ! .1 , 3 3 ) ", ) 3 !.
) 3 " ). 3 ! * . " ) \* (Greenberger et. al., 1990) U " (Mermi 1990). - Bell-EPR 3 .0 , " ! 3 3 ) ) " ! .! , 8 ) ! . " ." ) "310 . " , . 0 ) 3 *2 ) , "- (Schumacher Nielsen, 1996). 3 " 9 ! ) * !" .! 1 . 8 0 0
0 , "-.
4
!: * " 1, ." ] 0 - *, * ( ! " * 3 !3
1") 1, ji " ) " ) ", 3 ! *+ " , "-, ! 2 ) ) 3 " ). / " A B . *2 ) , "- ), 3 9 " *+ " , "-, ! 2) B , ." , 1 . * 1 - A. 2 " " 8 3
3 ! ) , "- , 3 9 ",
! . ". 2 1) . 93 " EPR 3 ! 8 !" .1 ". /3 * )! " (1964, 1966). ( !3 ", ] * ." 0 02 3 1 . ) O A O B 3 xOz . .1 " ! ." +# -#. 93 " " ", 1 3 ! ! ." ) ! .1 sin2 ((A ; B )=2), ! A B | " ! 10 Oz " O A O B
. 5! , 2 3 * 3 ! ) , . . ." ! ! ) - A B , 3 ! ) ) -, 3 ) .1 *! 3 ! 3 3 ! !, A = B , 3 ! , A = B + 180. " , 1 3! .1 , 3" , sin2 (60 ) = 43 , A ; B = 120. D )" (1982) 3 3 ! 2 1 ., 3 ., 8 -, * 3 " 1" " 3 " ", 3 A ; B = 120 23 . . 1 Bell-EPR 3 . 3 ! 1 ,. ." 0, . 8"0 3 " 210 "310 .! : ! ! ! ! ! 2 ! !
3 ! 3 !0 . A B , !/ ( " . 1 " 18 " 3 ! " ! !"
") 3 10 0 , A = B + 180@ 3 3 0 , A = B , 0 10 * 18 ) 70%, A ; B = 120. ?3 " 1 3 ! . 1 * 3 ! 1970- 1980- !. / ! 9 3 * 3 ! !
42
? " ) !- ) ) , "- (Schumacher, 1995). 5! * " " 1 " !" " (3" , 3 ; 21 ), * ! ) " (". . 12), ! , 3 3 ! * *+ " ) , "-, 8 * * ! ) : ,
" ! n * , ! 2n -" 1* 3 , " *. ", ! ! 3 2n * " ) (3 "", n * " 3 ! 1 ! 2n . ).
3 ! * *! ! * 3 ! * .! 5.6. ! " .3 1 ! 1 ! * fj0i j1ig. * *2 2n 1 ) " * 1 .3 fjiig, ! i | n-* ! . 3" , " * " 3 ": fj000i j001i j010i j011i j100i, j101i j110i j111ig.
5.9. .%
) ) , "-, 8"
*. " 3 . 1 ! ) , "- " 3 " ." .. .1 " 3 -1 " .! J. Mog. Opt., " 41 (1994)@ *. 1 3 3 , ! " (Bennett et. al. 1992), F " (Hughes et. al. 1995), D " (Phoenix) 4 ! " (Townsend, 1995), ! " (Brassard) 3 (Crepeau, 1996)@ ? " (Ekert, 1997). :3 (Spiller, 1996) ! *. 3 . 3 ".
5
4
H
I j0ih0j + j1ih1j = 9 1 (5.2 X j0ih1j + j1ih0j = W (NOT) (5.3 Z P ( ) (5.4 Y XZ (5.5 1 (5.6 H p (j0i + j1i)h0j + (j0i ; j1i)h1j : 2 / , 1 ! " 3 ", ! ) 0 ! * " * 1 . 3 ! " -* "1 ; ! 1. / ) , "-, 3 !" 02 ) 2 1 ! ) , ! ) 02 ! * : ) 0 02 T-W# 3 - W (NOT)@ ) , "- 2 * ! -* ) . ) ) " 3 *. j0i j1i * . ) . X ) ", 3 1 3 " ( x. : ! " 1, " ) fI X Y Z g 33 ) 3 " 0. . " ." 3 3 ! 3 !" , " ! j0ih0j I + j1ih1j U 1 2 & , & 3 . 4 H .
! = !t. " * 1 .3 ! P () j0ih0j + exp(i)j1ih1j. 3 . ! 9 " ) :
( 3 - ! * " .0
" " ) "# (Deutsch, 1985, 1989). 3" , * 3 ! . ! ! j0i ! j0i j1i ! exp(i!t)j1i , 3 3 8 " t * .! ) ) ": P () = 10 e0i (5.1
5.10. *
5.10. *
5
! I | ! -* 3 - 9 , U | )-*
! -* ) ) . 4 ) ) . controlled U #, 3 1 .! ) ) I U ) * " (j0i j1i) 3 * . 3" , ! ) ) controlled-NOT (CNOT) .3 ! j00i ! j00i j01i ! j01i (5.7) j10i ! j11i j11i ! j10i: V! 1 ) * 3 ! # . 3 -0 W, 1 " , ! 3 ) * ! j1i. ) 3 1 ." ) *- ! ) . 53 - ( !" !") controlled-CNOT ! " jaijbi " * 1 .3 a ! a b ! a b, ! * . 3 -0 0 02 T# (XOR). ( 9 ) 3 !) ) . XOR- ) ". 3 - *0 * 18 * . 3" , 3 - (AND) . 3 ! " -* ) controlled- controlled-CNOT, " ! 1" * " 3 . ! 3 - W, 1 ! ! ! j1i. ) ) . 1 4 ,, (Tooli, 1980), ) 3 ., ) 1" ! * " ). ) ! ) jaijbij0i a ! a b ! b 0 ! a b. " " ) 3 3 -0 (AND) ! !" 3 " * ", ) * ! j0i. V! 1 3 * * !" ! , * 3 - - " * ! , " *. ",
-" ) 9 0-. :" ! 3 ! 1 "*- ) ! .- 9 " ," 3 -) ! " , 1 ) .! ). 18 " * 3 ! - (Barenco et. al., 1995), * * " *2 3 " !
/ ! " (Vedral et. al) " " (Beckman et. al., 1996). 5*2 .! ) 3 ! 1 ) "
46
. 3 3 ji * !" , 3 ! 1 3 " 9 0-, 3 " ) : U (jij0i jiji, ! U | ) 3 9 0-. W 9 3 ! 0* , 3 U ! .
, ! 1 , U (j ij0i) p= j ij i ! j i 6= ji. 5!
! j i = (ji + ji)= 2 3 ": U (j ij0i) = (jiji jiji)=p2 6= j ij i , ! 1 , 3 - 3 . ? ! 3" " 0* " 3 ! " " !
(Wooters, Zurek, 1982). : ! " 1, !) 3 # U 3" " " " ( ji j i 8 3 !
3" ). , 3 1 !) 3 !, ! . " ! * 1 1": hj i = 0 3 , 3 . , 3! " ! " . 8 ., 1. 10 . 1, )-* *) 3 U * 3
/ 9 ! 3 3 ) , "- ) ! ) , 3 ! * , 3", ! 0 3 0*
3 ! " ) , "-. 53 - CNOT XOR .
. + * ! . ? " ", 1. 3 1
3 ! 3 , 3 3 ! ( . . 3 3 , "-, .02 ! .)
5.11. - . ( * ! !
4
* 1 .3 3 ! " 3 : 3" , X1 H2 XOR13 ji ! ji | . * , ! 3 3
3 .0 " * , ) .! ) 0 . 5!
3 ! 1 1 ) , ! *
. " .!" " ! 3
, 3 9 " ." 0 !"" ), . " ) ) 10 (". . 8). 3 !02 " *! 3 1. 1 " 9 !"".
5.11. ,-( * ""
5
( . " !02 ! , * !!! * " 3 1. 1 ! 3 ) , "-. 3" , ! 3 ! * 00101 ] 3 * 3 1 * , !2 j00101i. *, 3
*2 , " . 1 . , "-0 3 ! " ." ! * 3 *. fj0i j1ig ( . . .1 3 " * ." " ) ). .1 ." ! . 3 ! 0 !0 * . ( 3 ! ! * 3 ! , "- * " * ! " " * . 4 3 1 3 !3 ", ] * " 0 .- 3 0 3 * , !2 j00i + j11i ( 9 " " p ! 3 .3 *! " 3 1 9,,- " 2).
9 ] * ! * 1 1 .1 ! ! ": 3 !3 ", 2 " ) , .- 3 3 * 3 !) . * ! ] * (". . 9). / 9 " ] "
*2 1 * , "-0 ! *-
5.12. 0
(28) 0 3 -" 3 ! p ) j0i j1i,p
! ) j+i (j0i + j1i)= 2 j;i (j0i ; j1i)= 2. 4 " " 3! EPR ! ! 1 " !", ) ) " 0 1. ) 1 , * *
." , - EPR * 3 * .1, 1 1 3 8 * 0. ? , 0
!1 ! 3 0 (! ) 3 3 ) 3 1 3"0 . 3 -1 ) 1 . , * 3 1 9 , ." ", *, .! * 18 , , ." 3
. " *.", " ! . 3 ! 1, ! 3 EPR *. " fj0i j1ig *. " fj+i j;ig. ] " * * 3 1 3 " 0 .1 3 ! " 3 ! 3 EPR ) *. ." *
, 3 ) 2 ." .
48
4
- * , !! !
5.13. ! !
3 ! " 3 ! 1 ! * ( . . 3 !
) .- 3 ) 3). : / (Wiesner) !) " ! . 3 " ! "#, 3 1 ! 3 ! ! * ] 81 ! ) * , . . " , 3 - 3 ! , "- .! ) ! * , 3 81 !" . . ) " ! 3 !02) , : ! ." 1
) j00i + j11i j00i ; j11i j01i + j10i j01i ; j10i 3 ! ! ! " " * 1 * 3 3 ! " 3 -)
!" * ". ) * ) . *. " 3 1 3 0 * 10 -0 Bell-EPR ." (Braunstein et. al 1992). j00i+j11i ] " 3 1 0* . ) *. 3 !
.! ) " 02 * !" . 3 fI X Y Z g ( 1 2 1 ." 3 , * .! ) *! 3 ! 1 ! * ) , "- ( 3 ! * * ! 3 ! 1 " . *. ! !) * . ? " ! 1 3 !
.! ) 3 * ) " XOR ." .1 0 2 * (target bit). 4" *. ", * j00ij11
) j01ij10i. 3 ! . 3 3 .- ! 3 1. 1 ! 8 * 3 *. ]!" H , . " 3 . ." .1 . 4" *. " * ! . 3 , "-0 ! * . ( ! 2 " " 3 . , " ! " ! .. 5! , !) " ! * 3 .2 .: 3 1 , "-0, ! 20 ! * " 1 " , -*
*! * ", 3" * 3 " " ] ). / *2 3 !
! 0, 3 " 2
" ! .! . 5 3 . ." .1 " ! ) , "- ), * " " , "- " .- 3 (Barenco, Ekert, 1995). T* ! " -
) 3 Mattle et. al. (1996).
5.13. " ! "
aj000i + bj100i + aj011i + bj111i: (5.8) ( 9 ] ." 3 *. 3 ! * , . .
." . ) * ! * . .- 3 ) 3. 1 ! 9 ) 3 - 3 . . 9b. ( 3" ] ) ) XOR ) ]!", ! ." * , 3 " !02 : j00i(aj0i + bj1i) + j01i(aj1i + bj0i) + (5.9) +j10i(aj0i ; bj1i) + j11i(aj1i ; bj0i): / .1 ." , 3 !" ] ), 2 ." ! ! . ." 3 ! ! ! * . ! * 3 !0 *,
3 " 210 3 ! , ) . 3 fI X Y Z g " * !" 3" 1 " * ! , * 3 " 1 aj0i + bj1i = ji. 4" *. ", * ! * ( . .
(5.10 ! Tr | ) ! 3 , | 3 , 3 ! 02) 3 1 ) ) ". ? * !" 1 " (1), 02" 0 9 30 ; . ( !3 ", ) 3 " X 3 ! . 3 ! ) p(x) W " ! jxi, 3 ! P . " X , " - 3 x p(x)jxihxj, 3 " jxi *. 1 ! *
1". U 3 . 1, 9 3 S (p) ) *2 ) , "- I (X : Y ) !
X .1 ." " Y . 3 ! * " " " , * !" ! 3 ! ) " q, .! " ) " - ) 3 . ! 3 3 ! * " (
S (p) = ; Tr log
( , * ! 3 * , * !" 3 . 1
! * ) " ) ) , "- ! . 1 * 3 . (Jozsa) ;"
(Schumacher, 1994), 31 * (Kholevo 1973) T (Levitin, 1987). ( ! " ! . 1 * !" * 1 , 3 .020, ) *+ " , "- " 3 1 3 3 ! ) " Q. ( " " ) 9 3 , 10" (Vo Neumann)
5.14.
0 , "-0, 10 0 "), ! * 3 ! 1 ]. : ! " 1, , "- 3 ! * 1 " , . ] ( ) " ). " , , "- 3 ), 3
1 ji | 9 3 3 * ]. ] " 3 -# *2 " ! 8 . , . ! 3 - 2 ) 3 " .! . 3 " ".
( !3 ", ]
3 ! 1 * ! * ji. W ) . * , 3" ji = j0i, " 3 ! 1 * 3 " 210 ) , "-: ) *, * ! j0i. : ", ]#. 5! , ji . , "
3 ! 1: 0* ." " . 1 ." @ " , ] " 1 , ! , * 3 ." 3 ! . 5 ! ,
! ) 3 * 3 ! 1 * * ji 9 3 1 " ,. ) * ( . . 9 ", -* 2 ), *
3 ! !0 0 " 3 1 . / 0* " *! 2 3 ! ) ". / ! . 9 ) .0 3 1. " ! ) 3 - (Bennett et. al. 1993, Bennett, 1995). 3 ! , *! " 3 1. 1 .- 3
, "-. ( !3 ", ] * " .- 3 3 * j00i + j11i. ] ! 3 ! 1 * ! * , !2) . " ji. / " " *2 " " 3 1: ji = aj0i + bj1i, ! a b | . 9,,- . : ! 1 , 1 * :
5
5.14.
5
50
5
n 1) 3 ( ! #) " 0-* " * . 3 !. " 3 ! 3 . 3 3 , " ! ! # n " q0 , 3 ! * " q (". . 9c). ! " q0 .! " - ) 3 0, " 3 - 3 ! 3 8 . 8 ", " - 0 !
3 " - . U ) 3 ! * " - 3 3 ! : p f ( 0 ) = (Tr 1=2 01=2): (5.11) " " 1 1 3 ! " - ) 0 3 3! " - ) . / , ! * " - 0 3 ! 0 : jihj j0ih0 j,
1 3 ! " " 8 . " 3 ": f = jhj0 ij2 . / ! " .! .0 3 ! " " 18 3 !
10 3 ! f = 1 ; " 3 " 1. . 1 ! 3 3 ! 1 )#, 3 ! ) .! 2.2. 5 1 ! 3 " " " !" ", )! ", 3 n " 3 " 2n -" " 1* " 3 . 5! , 9 3 , 10" S () < 1, 2 1 ( . . 1 " !- 3 !
* 18 " n) , 3 0* ) .! ) .- , 3 )! 1* 3 . ;" . 3 ., ." 1 ! 3
3 !3 2nS(). : ! 1 , !
3 ! ) , "- * 1 nS () * , " * ( . . ," ." 1* 3 ) ! * ) " ) ) , "-. , 3 - ! ! ! * 3 #: . , "-, . ) 1 3 ! " . .1 , 3 ;" " ., 3 ., 3 1 *2 " 0: * ! ! 32 )
1 3 ! " " ). / , " * 1 1. / , ! 3 ! " ." 1, .! ! " 0 3 ) , "-.
52
5
! *. 3 ) , "- 3 ", " 3 " 3 ,. ) .! * 3* ) * / (Wiesner), 3 ) 3" 1970 ! (Wiesner, 1983). / 9 ) * * . ! 3 3 1. 0 ) " ! 8 .! 3 , .2 ( . . 1 , "- " .. . ! .! " ! 1 !02 3 !.! : (quntum ke distribution) *+ ! ! ) *2 2 .! (bit commitment). / *2 3
3 3 ! 0 *! ! . D-0 * "
-, ! ] ! 3 1 -* 8 3" , 3 1, , * * * , 3 . 3 ! ". ( 9 " * " . 1 8 ] 1 3 .! , ", " 3 ! ), 1 " .!) " ! ! ,- * .0 ", ] ! .3 1 *"
8 , 3 " 1 ),, ) 3 3 ! *. W 3 .! .
, * * . 8 ,
*2 " ! ),. 43 ) ) 3 2 1 .*
5.15. ! * !
! # ! ! #, * !" ! ! 3 ! * ! "3 ) , "-, *0 1 . * 3 . !8) ! 1 . " 2 1 ! 3 - ! 3 1. " ,
. 5! , ""1 ." "
. . ,.. 4
3 * "
3 ! (Cleve) /- . (DiVincenzo, 1996). " 3 " , "-, !
! , , ! F,,", 8
! ) . " ;" 1 (Neilson, 1996) , 0 . ) , "- )# " ) *2 ) , "- ! ". ?
. 1 *2 ) , "- " ! .- 3 " "", " 3 " 3
" 3 1 - Bell-EPR.
5.15. " !* "
3 3 1. * 3 .1 . 5! ) * 10 , " . 1 .1 ." * 3 " *0! . * " " 3 . * 3 !"" 3 * ", 3 1. "" W ) ( ! . 3 ! "" * ") ! 3 ! 0 , 3 , ." * 3 !02 3 ! *. / 3" 3 " . W
3 ! *., 3 1. ") ] ) 3 9 " 8 * . 5! *., 3 1. " W ) 3!0 *." 3" *. 4" *. ", W . 1 3 n * , 3 ! ] *
! ". " , 8 8 ) 3
, 3, 3" , * j+i " j0i
3 ] ). ( * 8 " " *! .1 ." * 3 - * 3 1 , .! ] ). / .1 W 8 n4 * RQT. 4 3 1 ] * " . 1 3 W 3 ! " ) * n2 * RQT 3* 8 . ). W *+ . 3!0 , ]
" * 1 , 3 !8, 3 1 1 , W 3 !8, * n2 * 8 " ", (3=4)n=2 ' 10;125 3 n = 1000. ? 3
* *.0 ) 0 . 3 3 * ", 3 1 W "
3 1. 1 . 3 !8 (3" , 3 1 * )@ " , ! 3 3 8, 3 " .* . . * . /"
. 0 , ! " . 8 * 3 !0 , ] * 3 1. 1 " ! 3 , 3
8* 3 25%. ( !02 ** 0 ! 8 . ( ) 8 .0 * ! 8 * 3 ! " 3* ) 3 3! . ) * ) * 3 ! 1 )@ ! " " .
* - 10 ! 3 1 3 W ) ! 3 1 ) , "-. " 8 . ! 0 ! ! ), " 1 8) 3 ! , ) . 3!02 . ) 3 1
. ! 1 8 3 " ! *. !02 ) ! : ] 3 ! * * , 3 .!
*2 " ", " *. !) * * 3 ! . ( 1 ) 3 , * 3 ! ! @ ! 3 1 " ) *. , 3 " ! .! . 3 , *! ! ) * ) ), .0 02 ) ",
." 93 " 1 ! . 1 .22 1 3 - !: ! . , ! 1 83 " 8 . " 1 ". : ! ) ,! -1 1 3 1. ) ! 3 1 " " ! . 1 .2 ., " 9 ) * * 3 . ! . 1) *+ " * . : 3 . ! . 1 .22 1
2
3 3 ! 0 . 5! , ! * ! . .22 1 . 3 ! " " ! 302 ) ! 0 ,- * (Mayers, 1997, Lo Chau, 1997)@ ! 1 " ! .1 ) 1. ? ! . 1 ! . , . " 3 1. 1 - .- 3 . ) 3 3 ! 0 " ! ", " ! 3 ! ) 0 ! 3 , 3 1. . 3 ! , ] *, !2" . 1 " , * !" * 3 1 .1 ! ! ". ] 3 ! * 2n * , !) . ! "-*!1 ) * " : j0i j1i j+i j;i2 * ." 3 * 3 ) * " *.: fj0i j1ig fj+i j;ig. ( 9 ] * 3* ( . . * . * 9 ")
*20 ! ! *., ) !) . 3 1. ! 3 ! ." * . 5 3 ! 0 , ! " ) * 3 1. ! *.. 0 3 3 0 .1 ,
02 1 !" ". : ) , 3 8* , -, ] * " 0 ! , 2 . n * (3 ! 1 ! 1 1 j0i j+i . 0, j1i j;i . 1). * . (raw quantum transmission RQT). 2 % . 5 & & , # &
* .
5
5.15. " !* "
5
54
5
0 . ( 9 " . W 0 " 180 . 4" *. ", " 3 1 ) 0 , ) 3" . n4 * , 3 9 " * 18 ) 10 . W ! " 8, 0 " 10;6 * (Bennett et. al., 1992). /8 3) 3 ! ." ". ) 3 ! ! (Ekert, 1991) . 3 1. " 3 EPR, ] * ." 0 3 ! ) . ). : - 10 0 3 !8 " * !" , .1 , 3 1 -) Bell-EPR. :2 3 "2 3 3 ! 0 .0 ", 2 " ! " . . / " " 3 " 93 " (Bennett Barssard, 1989) * 3 . 1 " !, 3 * . 1
8 . ! .! F (Hughes et. al, 1995), D (Phoenix) 4 ! (Townsend, 1995) 3 ! 0 ! ! ) * , ! V*! (Zbinden et. al., 1997)
*2 * 3 8 ) 3 ! 0 23 " 3 ! " ""- " , 3 !2 " 3 ! . " G . * 1 3 . . "31 , . . , ! 2 ! " 0,1 , "31. 4 ) .) ) 1 * * !" ! ,
* ""1 . 1 1 3 "31, ! 2 * ! , , 3 1 3 ! * "31 " 3 . ! 1 * , " *. ", 3 . 0 3 !802 "
1 ." ". / ! ) " * ! 1
8* * 1,35%, !
." 3 . "
* 3 .2 3 . : 1 3 ! ! ! 1
.: ." U\- 3 * ! ) . ), ." " \\-. , " 9 , "
1 ! . ( ! * 9,, 93 " 1 " ! 3 ! " !02 .! .
56
( . " " 8 ." 3 " " 3 ) " 0 ) , "- | " "310 (QC). 5. " 1 *. , 3 2 " "310 .! . " * 3 ! W " . (Ekert, Jozsa, 1996) - (Barenco, 1996) :3 (Spiller, 1996) " *. " " 3
3" "310 . 5*. " " ) /- . (1995) ; (Shor, 1996). / 3 0
!1 ) "310 ) " 2 81 , " " 93 " , 1 . ! ! , "1 " . ** ) , " -. / 3 " 210 ! 3 ) " . > { 410, " ) .! 4. 531 * ) (1985, 1989), !0 * 3 !+ " " "310 : ) "310 3 ! " , 2 . * , ! 3 3 ! !02 3 -: 1. !) * " * 1 3 ! "-* .
j0i. 2. !) * " * 1 ." 3 *. fj0i j1ig. 3. 1) ) ) ( " ) ) " .! ) 1 0* 3 !" * . 4. : * ." " 3 ! " 8 . 3 *. ). 3 . 3 ! , *! *! 1 !1 )8 ", ! ! "310 . 4 " ! 1 ) ). / ) 2 3 ! 1 .! ) " ) " " * (.! 1: * ). T )
9 "310 3 " ) 3
6
1) ) ) " 9 " 1 ) , . . ) , ) .! ) . "*- * , " " 1 ! ) 0*
! ) . 5! , . * 3 ! " ." ) ? 9 3 * 1 3-3" ) " ( ; ! ): 3 1 9 0- ! , *! !
.! 1 "310 * ! n * . 3 ) .! 9
" 3 . 1 ! ) .! ), 3 1 " 3 , , ! 1 , * " . 5! , 3 . ) 1985 . ! 1 3 ) " * 1 1". * 1 ) " 3 . 1 !02 " 3 " 3" . " " 3 ) : V ( ) controlled-NOT# ( XOR), ! V ( ) | ) 3 . 1 2 ! * , . . =2) ; ie;i sin(=2) : V ( ) = ;iecos( (6.1) ;i sin(=2) cos(=2) " 3 . 1, 0* ! " - ." n n, " * 1 *. 3 " "* !-* ) XOR ) 2 ) ! * . 4" *. ", ! 3
3 -) " " 1 1. U .. 1, ) V ( ) ! " 1 * " ) , 3 1 3" 0 3 ". 5! , 3 ! " * ! 3 ! - 1 . ) " 3" )
6.16. ' ( *
5. "81 " "310 ", * !" ! . 1 1, . . 3 . 1, ,-
. " > { 410. . 1 . ! 8 " 3 *
1 3 . / -3 , 0* )
) " 1 1* " 3 . 4" *. "
" * 1 3 ! !
, 3 " 210
* . / - , 9 0- 0* ) ) " ! 3 *. , " *. ", " * 1 " " "310 , ) 3 * .! 1
! 3 *. 3 . 1 )
10. (-31) 3 * . U ) " (1997), !
3 ! , 1 .! , ! 3 !
8 ! . 8 , 3 ! 0 3 ! ! / 3 3 1 " "310 , 1. 3 !
"310 . 5! , !1 )8 " *! " 1 * .! , " 3 . 1 8 ! . 8 , * .! , * ) "310
*2 3 " 210 3 -1 3 !. ! 9 * , .! ) (Deutsch, 1985). " 8 . ,
1 8 .! ! " . 1 (Nielsen) > (Chuang, 1997 " 3" " ) 3 ., 3 " 210 " " 3 1 * " 02" ! " , "- ) 3 "" ), ."
6.17. 8 9: { )(" *
!" . ", " 3 1 3 2 ! * . 5! , * !" 3 1. 1 3 ! * ! " " ! 1 ) " | 3 " "* 3 -) 2 XOR, " 3 1 3 -0 " 2 , 020 !
" 1" ) ". 53 3
! * 1 ) " ) (Dentsch et. al. 1995), T )! (Lloyd, 1995), /- . (DiVincenzo, 1995a) (Barenco, 1995). ! " 1, ! * ) !
! 3 ). " 3 9 " ) ) " 2" " 3 ".
! 1 ! !, " "310 ) " 0 ." ! ) * , 3 !2 3 ! ". ( 9 " * , 3 . !"" ) (. 8, 12), ."0 ." 3 . / ." 3 * ! " ! ) ) | 3" , " !
" (Margolus, 1990).
5
6.17. 6 78 { )(#*
6
58
6
3 ! " 9 " 2 1 ! 3 *. , "-. 5! *! " ) , ) "310 3 " ) ", ! ) 02" ) . 4" *. " 3 " 210 ) 3 "" " 3 ! 1# 0* ) " (0*0 3 ! 1 1) ) 3 1 ) "310 . . " ) "310 3 . 1" " " ". ! " " ! 3 * 18 ) . 3 , *02) . " 1 ! 1 10. 53 "310 , . 8 , 0, ! 3 3 ." ) 3" ) " * 1 ! 0*
1. , * ( 9 0- . ) 0 ,. ". 53 "310 *! ", ! " * ) ! * 1 3 1 ! 3 " ) 3
. ) 3 3 !" " !8 ! ), *! " .! 9. ( * !" * 3 ! * . 1 ." 2 1 3 "310 .
60
( " *
!" 3" " "310 " - -* ! ". " - 2n -" " 1* " 3 " "310 * !" 3 1 ", ! 2" 3 ! 2n "3 . ) - " "310 * 81 n * , ! * 9,, "
. * !" *+ " 3" . 5! , *2 ), ) "310 9,, !
7.18. ; ! 4 <
5*2 . , "310 3 * 3 ! ", ! ! 3 * 3 . , ) "310 " * 1 .! ", . 8"" ! "310 . ) 1 , 3 1 ,.
! , " " 3 1,
1 " " , , " * ,. , " 3 1 *!2 ", "
! 3 1 2 1 .! . 8" 3-3 3 " 210 ! 1 * 18 ) ) "8 410 5! , * 3 . .! 3.2, 3 ! ! 1 * 1 8# !
* # 0 0 0 1 , " V! , #
. ), 3 " . 1 3 . 8"". \ * , ! 3 , 3 8 " 8 " .! (3 0 " ") " 1 ." 3 . " ", .! " * 1 ! " "310 3 3
" ! ) * , " * 1 8 3 " 210 "310 .
7
2 " " *. " 1 81 " - 3 - ( !, ! 1 " 3 " . F 1 *, * ) "310 3 1. ! 8 * *2 .! @ * ! . , 3 .! , ) "310 * * 9,, , . ! . 5! , , , 3 ! * .! 3-3 2 0 , . 1" " ,. . 5 * 18 ) 3 3 * 3 " ! ) * . !8) ! 1 " 3 3 ! ,-
!" . " . ( !3 ", ,- f (x) | 3 ! 3 ! " r, . . f (x) = f (x + r). ( !3 " ! ,
,- f (x) " * 1 )! 3 ! " x, " , . 1 . , N=2 < r < N ! -* N . ( !3 , 2 3 * 3 ! 3 ! ,- f (x), ! " ! " 3 ! 3 " 210 "310 . ) f (x) ! 3 ! N=2 . ) x, ! . x, 3 . ,- 0 3 1 (! ,-) * !" ! " p 81 O( N ) . )). ) " ! 9,, ", 3 -
(7.1
x=0
!X ;1
jxif jxi:
(7.2 3 ! " . 11. V! 1 * !"
" 1 !020 10 * 1: . ! 8 * ) ! . ,- f (x) ! ! = 2n . ) x. ? * . * , ! 93 -1
p1!
! ! = 2n. ( 3 ",
!", !
! ) " 3 *. D1 (". . 10). / jxi * . , 3" , j0011010i, ! 0011010 ! .31 - x. / . 9 " *. fj0i j1ig " " 1 1) *.#. ( 3 "310 ! * ( , ." , *. 1 ) 3 1. 1 ! *. ". V ", ! 3 3 *. Uf jxij0i = jxif jxi " x y 3" 1 ) . : ! " 1, ! 3 *. " * 1 ! ", 3 1 ! jxij0i 3 10
! " 0 jxijf (x)i , ! 1 , 3 - 0 * "". 4 3 1 3" 3 *. Uf 0, 3 " " " (34), 3 "
x=0
p1! X jxij0i
!;1
1 3 -) 93 -1 . log (, "-, * !" ) ! 3 ! N ). /8 . .! " * 1 8 " "310 3 ! " " ! (". . 10), 3 ! ;
(1994), 302 " ! :" (1994). 8 .! " "310 * !" 2n * , O(n) * | ! .! *
3 , ! n = 2 log N ] ( n] * . *)8 *I 18 - x ). / * ! ! #, !) . ! 3 n * *! " *2 1 ", x# y#. !) . . 1 .! j0i ( . . n *
! j0i). , ! " . * 3" " 3 -0 H , 3 !
" - 9 0- ". ) "310 ! 3 1 " -", ! 2" 22n 9 " , 3 9 " 3 -) (" , ) 93 -1 . n. / 0
!1 9 " ) 93 -1 . ! 3 -) "310 ,
2 " 2n-" " 1* " 3 . 4" *. " ) "310 " 1 9,, 0 " -0 0* ) ,. ) ". 5! " 3 . 1, ) "310 9,, 3 " - * 18 ", ! " . , 3" ! " " 1" ." ! ) ", 2 9,, " 8 (Lloyd 1996, Zalka 1996, Wiesner 1996, Meyer 1996, Lidar Biam 1996, Abrams Lloyd 1997, Boghosian Taylor 1997).
7.19. =* . . =* > 4 "
7.19. :* ! ! -. :* ; ! .#
7
62
y
5 " ", (34) 3" " ! ) 3 - !, 3" ) 1 " 0 j0i. 5 ) ! ) , * !" ) ! .- 3 *. UFT " * 3 *. D1 (Fast Fourie Transform, "., 3" , Knuth, 1981). / ! ", 3" ") " " * ." .* 33 " " (Coppersmith, 1994) ) " (Deutsch, 1994). W
. " 1 4 &. & . , .
jfe(k)j =
n
1 k !=r (7.6 0 1 . 3 0 . 11b. V0 1
x 3 1 ." " ." 1, 3 . !=r. 5 81 3 ! 1 3
! r. " " x = !=r, ! | . . W " 0 *2 " , 3 x=! "
! * , " *. ", 3 ! 1 r. W r " 0 *2 " 1, " 3 * 18 . r, * !" 2 . 3 1 8 ". U 3 . 1, 1 3 8 8 .! 3 3 ) * 18 ( 3 , .! " 18 ) log r, ! *. 1 (Ekert, Jozsa 1996). ) " ! 3 ! ,-, 3) 8 , " 1 9,, ", 3 *. Uf , 3
" 3 ! 0 . ,- f (x), ". 5*2 * !" ) 3 "1 , 9 3 -1 . n. 3 ! 1 .! 3.2 9
2 5 , # & 6 & , 7 * # , 8. # 7"" ', , 7" " 9 . , &
& 6 & # (Barenco et. al. 1996).
!
(7.5
) W . (1996), - (1996)2. 3 !
(36) 3 *. 0 UFT , * !" ! 1 3 2 02 .! 3 !3 ", ! ! r * . . . M = !=r. , ! , 3 . * !" 1 ! 3 1 ! (Shor 1994, 1995, Ekert Jozsa 1996). ( 1 * 18 * !" *2 1 y *! " 1 1 x, 3 ! " " (36).
." n, 3 ! " 2 )8) 3 .". (/
*. 2 2100 , . . " . * 18 ] ! , 3 - ). F 2n . ) ,- f (x) "- " 3 0 # " , 3 ! " " " (35), 3" ) ! 3 ", 0, ." . ? . ",
!02" 8 " ", ! ." (3 1 " *.) y " 3 1 81 ! . f (x)1 ( !3 ", 3 9 " 3 " . ,- f (x) = u. : y 3 * jui, *2 *! 3 ! 1 M ;1 (7.3) p1M X jdu + jrijui i=0 ! du +jr | . x, ! f (x) = u j = 0 1 2 : : : M ; 1. " ", 3 ! 1 ,- f (x) . , x 3 3 .- ) M ' !=r ) 3 . x, . 3 ! " r. : ! " 1, " 2 du " . ) x . u, 3 ) 3 ." y. 4 3 1 * !" 3 ! 1 3 ! 1 x. 9 * !" 3 ! 1 2 1 3 *. D1 ." . 3 1. " ! 3 *. D1 3 !02 ) ! ) 3 - ! ) !X ;1 ei2 kx=! jki: (7.4) UFT jxi = p1 ! k=0 !=r X;1 Xe UFT p 1 j du + jri = p1 f (k)jki r k !=r j=0
7.19. :* ! ! -. :* ; ! .#
7
64
r
" 0! ), ."02 "
", 3 " 3 3 " "I . 3 1 ! " 3 ! 8 . " 3 3 ! ,-. 3 !. ! 8 8 ) 3 ) .! : 3
.3 3 !
) *. ! (). \ (Grover, 1997 " ! !02 ) .! : ! , ! 2 "
.3 ) fxig. * !" ) .31 xi = t. 3" " " 1 3 " , 3
(3 " * . ). ! ! . 1,
" ! 3 " 3 N .3 *0 ! " N=2 8 . p ] " \ , 0
!1, * 81 N 8 .!
. ), 3 3 " ): 1. " , ! ,
, 1 8 ! ), 3 ) .!, 8 "
7.20. =* ?
, : 3 ! " "310 " 3 ! 3 " , " . 83 | ! - , 9 " ! . ]. . 11 (34){(38), " . 1, * * ! (35) V! 1 1 ! 1 * 3 " " * , 1 * , , " ,
, -. ( ! " .- 3 x y, 3 ! " " (35), ! . ,- f (x) . " " x. D # .0 ", 3 ." y .- 3 3 . .! 1 x j ( (36), ". Jozsa, 1997). V0 1 3 *. D1 " " 1 , - . ), !2 x ( ! ) !,- ) 8 ). ?,, , - " 3 1. 1 ! ) 3 " 210 , ! " , . . ) ) * 10. : ! ) , " 1. 1 93 -1 * 18" " . " ! ) 02 ) .- 3 ".
, 3 !
* 18 n, " ! . 8"" . 8"" .! ". 3 3 * !" " 1, " 02 * 18 . .! . " , * " .! 3.2, " * 1 ! .! ! 3 ! 3 ) ,-. ? , 8 . ! , * 3
*+ ! ; " (1994). 4" *. ", 3 ., .! . " " * 1 . 8 3 " 210 ! 1
"310 . / ! " 3 ! " ,- " ! f (x) = ax mod N , ! N | , * . 1 " . V a * 3 . 1 , 3 " a < N . 531 9 " 0 0 , " 3 . 1, 3 0* " a 3 ! r " ", ar=2 1 " *2) " 1 N . 4 3 1 !) *2) " 1 ( ), ." , 1 " 1 N ) " * 1 )! 3 ! " " ?! ( 300 ! . 9., "., 3" , F! (Hardy) ) (Wright, 1965)). 9,, ,- f (x) 3 1. 3 02 . ! ! (3 " !0 N ): ((a2 )2 )2 : : : V " ! 3 ,
02 ! " . 0 a, 3 " 0 . ( 1 ) , * !" ! .- " ; , 3 U9 " (Miquel et. al., 1996) / ! " (Vedral et. al, 1996) " " (Beckman et. al, 1996) ! 3 ! 300(log N )3 ) . 4" *. ", ! . " 3 ! 10130 3 ! 1 ! " " ! 8 , * !" 3" 2 1010 ) 7 * "310 3 3 0 # 1 U\-3 . (" ! , . .! " "310 , " . 1, !) " *! 3 "2 " 3 ! " ". 5! , 1 ! . ! 260, .! " 1 . 8" ) (". .! 3.2). : ! ) , " "310 ! 8 3 * 81 "1 . * 18 " . :2 " 2 " ! 1 ." 3 . " ) . 3 ) .! " 3 ! 3 ! ,- 3 3 5 ' log 60 . , # &.. '.
6
7.20. :* !
7
66
7
! sin = 2 N ; 1=N . ( 9 " 9,,- 3 3 ! " " 9 " 3" 1 * 18 . , " 9,,- 3 4 <.. # NP!, ',
-& '.
p
! j | " .3 t = x, 0 3 ! ) . 1p j(0 )i, ! sin 0 = 1= N . 8 ) 3 3 .- ). V " * !" 3 ! 1 3" 1 3 S , ) ." . 3 ! " 9 " .3 3 3 ), 3 1. 1 3 *. " D1 , ." 1 . 02, " 02 ) " j0i 1 * 1 * " 3 *. 0 D1 . / .1 !
3 -) " *0! 1 . 1) 9,, , -, ) 3 ! !02 " 3 *. 0 UG ji = j( + )i (7.8)
8 1 ! ) " ; 3 . 0 " ( exp(2(ln N )1=3 ). 5 * 180 1 3 * 18 " (N ' 1016) , 3" , .! ) ! 8,- .8,
*2 ) (Bassard, 1997). / " 1 !02 : ! ., " \ 3 "1", . .p ! ) " " * 1 * , " O( N ). !1 3 ! * , * " \ " 3 1 !02" *. ": ! .31 " " i, * !"
! . 3 ! 1 ! .31 ), 0
) . " ", ! 2 1 ! ) 3 S ), S jii = jii, i 6= j S jj i = ;jj i, ! j | " 3 -1
3 ! " 9 " . 3" , 3 ) * !" 3 ! 1, i 8 " ) ) 1 ) .! 4 " " 3 ! 3 ! ,- ( (34)) !) " ! 3 ! !
! 3 3 .- 1 ). 53 ! " X jii (7.7) j()i sin jj i + pcos N ; 1 i6=j
p .! , " * 1 . 1# N=2 3 -
68
6
1 02. : 1 ! " ! p .0 3 3 *. UG m ., ! m ' ( =4) N . / ! " !
2 . 3* =2 , 3 9 " 3
* 0 " jj i. ( 3 ) .1 " ." ( 1 8* O(1=N )). : ! " 1, . 1 3 ! 1 . m (9 * ! ) " (Boyer, et at., 1996)), 3 1 3 3 ) 8 .! . D (Kristen Fuchs) !) " ! 3 " , : 3 " 2 0 3 1# 31) " ! 3 1#. / ", 8 " 8 " 3 .! 3 1. / 3 " 3 , ! ) 8*
". 3 ! "
1 3 3. : 3 " 210 " 3 0 1 .
*. " ! ). 5! 3 2 ! " !
". (Kitaev, 1996) 3 . 8 .! . " 3 02 ) 3 ! " " !, ,!" 1 02 ) " ! ; . U ! * 0* .
. (1997), ) 3 . *2 1 " , 3 *. D 1 . 4" *. ", " ) 3 "" 3 3 . 5! , 10 " . 1, .! , ! ) "310 3 !3
1 , *! *" , ! 1 , * 18". : !
, 0* .! , 8 ) ) , 3
1, " , 3 ) ) " , * 1 8 3 " " 1 3 ! 8 . / 9 " " \ "
3 ! 1.
7.20. :* !
V 3 ! 50 . ,. 93 " * 3 . * 9 " 3 -. 3" , 3 - W (X ) 1 , ! ) 3 ! " ! !" 9 " " j0i j1i. " 02 3 ! . 3 - XOR " * 1 3 ! 3 ") 3 ! ) " . 5! , ! " * "310 * !" ) " !
3 "0, * ) " " .! ) 1 )-*!1 ) ) ) , !
0, * 1 3 ! * ) , "-. ( "
1 . U ! 1 .! 1 ) ! " ". ? 1 * " ! " . " 3 . ! , 3 3 0 " " 2 "310 . 5! , 30 , - 9,, ) ! 10, ) 3 ! 1 3 .-, 0 3 " . ! " " 1 * 0 . ), ." ! ) 02 ) ! ) ! ! , ! , 8 0 . / ! 9 " 1 02 ) ! 3 ! , ." ! ) )
1 1 . ." ! ) 3 ! 3 ) ! . " 3 ! 3 !. 5 1 3 1, !
" 1 ! . j0i j1i, " 3 * 0 *1" (3" , . 3 ! ). * !" , * 3 ) 3 3 .- j0i + j1i 1 ,. ! ). 5! " 9 " " " ! 3 " 8 " ".
,
8
7
U ! ) 8 3 0 . 12. W 3 ! * 3 " ) : (Steane, 1997). 3
3 " 2 )0 8 (# * 0 ) " (10;8 ( 3 ! " "*- 3 " 9 3
). T . 2 3 3 ! " ! ) - 3 " ! " 3, ! .
* 81 ! . !) . " ! 1
! " . 3 ! 1 ), 3 ! , 3" ! " " ) ( " . 3 ! * ), 3 3 1 3 " 3! "
1 ). 5* . " ! jgi jei 5 1 " 3 ! 0 ! * . ! 3 . ) . ) 3 ! " " ! " "
02 . 3 - 3 .
3" 1 0* ) ! -* ), !-* ) , . . ! .- 3 ! * !" .! 1 ." ! ) " ! ", * 3 " 9 . 5! , ! , 3 1. 1 !
8.21. ; ! .$
!8) ! 1 2 ! 3 3 ", 3
* . 1 ! 10{40 * . ( " * 3 ! " (Cirac) V " (Zoller, 1995) .0 3 1. ! " , 2 ! ) 9 " ) .!, 3 " 2 0 8 ! " . / " * 3 ! \ 8 , 1! " (Gershenfeld > " (Chuang, 1997) ! " (Cory et. al., 1996). W 1 3" " ! *+ " ! " . . 5* 9 3 ! 30 ! ) 2 * 18 33 ! ), .* 93 " 1 " !. 5!, * 3 ! , 02 93 " 1 ) (Lloyd 1993, Berman et. al 1994, Barenco et. al. 1995, DiVincenzo 1995) . ! , " " !, 1 93 " 1 . "" ! (Privman et. al. 1997, Loss, DiVincenzo, 1997) "
2 "" *)8 " *!2 ".
8.21. < " -%
.0 1 " * 3 0 0* 3 *.
*2 ! 3 * ), 3 !+ " " 310 (.! 6) * !" .! 1 1 ." 1 . 8 3 ) .! ." 3 ! " "
! 3 ) . ! . 8 ) | 3 " 210 ." 1 " !: 3 !, * electro shelving. / ! " ! 0 " 2" " ", . * " . 3 ! !!- 1 33" , . 3 * "" " ) ,.. " 9 , ! " 3" " ! * ! 93 " 1 81 ! ! / ! " 93 " * 3 ! " ." , .! 3" ) ! ! ! 2 8 (Monroe et. al., 1995). \ 93 " 1 1 " ! ) 8 . 0 ! - 3
! 8 (! "3 ! ) ) 1), "
" ! ! ! . " ! ) " ! ) - 3
), *!02 ) .! " 3 " 8" 9 ! (Steane 1977, Wineland et. al. 1997). . , 1 " . 1 . U 1 ! , . 1 ." " 3" 1 ! 100 ) 1" " * . 3 U ! 1, . * ! 1) 3 ! * 3 . ( 3 1. " ) .! ) )
3 ! . 5 ! , 3 - , ) " ! ) 8, ! " ! 1 *+ " 3" , * !" ) ! . " .
. 5! , * * 3 . 1 3 1 * " * 1 * ( 4 ! 10) " * . ", ! 1 ! ) 3-3 ** ) , "- / .! 9 *! 3 . " !, 3 . 0 . 1 1 ) 3 -).
." ! ) @ ! *+ V 3 * * 18 3 - 1 1. T . 3 1 9 0, "31, 3 9 " 3 ." ! ) ", 3 ! *" "31". D , ." 9 3 ! ",
3 ! , - 3
! 1 (9,, U * (Mossbauer)). ! ) - 3
" ! , 3 " 2 3 -, .! ") 8 ) (. !
0 . " 3 " .*! (, "#) "1 " ! *) - 3
. / , *! " ! jn = 0i " .*! jn = 1i ) " !. : - 10 3 , 3" ,
3 - controlled Z# ! ! x y " * !" 1 ! jn = 0i. "31 . ), ! ) 02 x, 3 ! !02 " 3 !: jn = 0ijgix ! jn = 0ijgix jn = 0ijeix ! jn = 1ijgix. 4" *. " - 3 ! ! " , ! 3! 1" " : ! ! ) 3 - ) *" #. , "31 . ), .! ) 02 y, 3 ! 3 !": jn = 0ijgiy ! jn = 0ijgiy jn = 0ijeiy ! jn = 0ijeiy jn = 1ijgiy ! jn = 1ijgiy jn = 1ijeiy ! ;jn = 1ijeiy : / .0 .! ) " x 2 !" "31 ". 5*2) 9,, ! ) "31 !02): jn = 0ijgixjgiy ! jn = 0ijgixjgiy jn = 0ijgixjeiy ! jn = 0ijgixjeiy jn = 0ijeixjgiy ! jn = 0ijeixjgiy jn = 0ijeixjeiy ! ;jn = 0ijeixjeiy
3 - controlled-Z# ! x y. !) . ) "31 ! 1 3 3 ! 1 . 53 - controlled-Z# ! -* ) *-
7
8.21. < " -%
8
72
8
( !3 ) " ! ! " . 3 0 . 13. / ! " ) 3 - 3 ! * ) " , # ) . 3 ! ! " . 9 " "" 3 !0 ! , 3" , " ! !, , * .! ) 1 " .. 9 " 3 ! 0 ! " : ! . *! " " " " ", " . 3 !, ) 3 "
3 ) * ". U 3 " 2 *+ " " 3 , 3 " 3 ! 2 3 ! " " 3 3 ! 1 "31 *02 " 3 . 2 " " . 3 3 ). : 1 .0 ", 3 ! " ! ) " " * 1 .! , ." . . 8 8 ) - 3 1. ) *+ " ! , ! 2) 3 ! 1020 " ! 4 3 1 ." " ." 1 ! 3 " 3, 3 1 !) *02) " ) " " ! .! ! " " 3 . V! 1 . 1 1 ). ! " ! " , ! ! " , 1 1 " 3 , 3 9 " 9 0- !
3 - # 1 * 18 . . / ! " .! 1 3 1. ! " " ! U | " ! 3
9, 3 . ) . 1 * ) 9 0- 3 , " 18 9,, .! ) ) . 5! , 9 " , . 1 3" * 18 3 ! 1 ) ) . 4 3 1 * !" 8 1 .! .! 1 . ( ! " ", *+ " ! ! "3 " , ! 1 , 3 . 3 ) 3 ! 0 3 ! 0 1-". / 3 1. " ", , 9 , 3 *. ! ! , 3 9 ", . 1 " 0 3" 3 . U - 3 ! O(1020 ) 3 ! *. 3! ! ) " - ) I . " . 1 = ; I 3 . 1 0 , "-0. " , ! . 1 " - ) 3 )-*
8.22. @ * 4
74
7
8 3 " * 3 0 81 ** ) ) , "-, 0 .1. 5! , 1 ." ! ) " ! " " " !
) " ! ) 9 " 3 " * 1 3 " 3
" . . ." ! ) 3 1. ) ! " ! 3 , " *. ", 3 * 3 ! ) , "- " ! ! " " 8" 3 ! " . 3
(Cirac et. al. 1997). ( ! * 93 " 3 ! . *
!" 1 ." ! ) " ! 3 " . " " * 3 ! " (Brune et. al. 1994) 4 (Turchette et al. 1995). " , 9 " 3 " * 1 3 1. ! * 3 ." ! ) " ! " 8 ,
8.23. A 4
) ", ." 3 *. 1 3 " 2 1 3
! * "31 " 3 " *. ", " 3 . ( 9 " " . 1, 3 ! * ) 9,, ) ) "310 . ( ! * 3 , "
* 1, *. 1 . . 9,, , 3 " 3 ! " 3 ! 1 "31
2 02 ) , "-, ! \ 8 , 1 ! " > " (1997). V 1 93 " 3 1. " " ! U * 3 3 ! ) 1 3 ." 3 , ) * !" ! **
) , "-, 3 ! " ) 1" * ". 4" * . ", 3 ) 3 - , 3 02) 1" * "
) , "- *! 3 ! 1 ", * 02 3 " ! U. 5! , 9,, 1 " ! 3 * : 3" , ." 1 ." " n * 2;n . " , 2 ." , 3 1 ." ! 1 8 ! * 18 3 - . / 8 . ." 1 3 1. " ! 3 8* (.! 9) " " .
8.23. ! .
8
" *. ", * 3 . ! 1 ) 1 ) , " " ! (Pellizzari et. al. 1995).
76
/ .! 7 * " 1 ! ) " " . 5! ! 1 " .! .! , *02 * "! ) , *
! ) 3 " 81 * ! ) " " ! "310 (.! 1 0 " ! 8 .! " - ,. ".) ( . .! 93 " 1 ", " 1, !) " " ." " 1 "310 #, 3 02 81 1 " ! " * , , , 1" " ) 1. 3 " " . 1 "310 "#, 3 1 *!0 !
" " : 8 " ! " " . 1 "" 3 - ", 3 0 2" ) , "- ). " *. " . 9 1 .
" ! "" ! ) 1"? ", ) 3 * ) " " 310 , 3 ! ) .! 6, ,. 2 "". / ! ) 1 2 ! 1
) , . ) ". U ! 1, ! !
3*. 1 1 ) ! 1 ", !) " " 9 2 " ) " ).
) XOR ." ! ) ! . 1 .! * . * ." ! ) 0 ! ! ", .* *! ." ! ) 1 "-* 2 (Plenio Knight, 1996). * !" 3 " 1 ", . ) ) " ) 3 " * "
! . " 3" ) ) XOR. . 9 ! , ! 1 * " 3" 107 . " 18 " . " 130-. ! W2 3 ! . 1 3 . 0 . ,.
1 ) 3 ! !
, ! ) " 10 . 1,
! " #$
9
" (Shor, 1996) * *2 " ! . 5 " 1. . ! ) * 1 18 . ;
(1995) : " (1996). ! . " .- 3 #
3 ! " " (Bennett, et. al. 1996) ." ) (Deutsch et. al. 1996). 4 QEC . (Knill) T," (La~amme 1997), W (Ekert) U (Macchiavello, 1996), (Bennett, et. al. 1996). / 3 ! ) * 3 3 "1) 3 * ) !, ." ) T," " " (1996). \ " (Gottesman, 1996) ! * (1997) 3
*2) ) 33 , . ! 3 *. 3 * 3 ! 0 " ! (Calderbank et. al. 1996, Steane 1996). ! 3 !1 * ) 1 . " ; " T,"" " ! U1" (MacWilliams), 3 " ) ! . ( 1 " ! QEC 0 * 3" ) ." ), . 1 * , ! ! * 1 ! 1" - 10 * 3 ,- " " !. / ! ; (1996) (1994)
3 ., ! 1 3 8* 1 " 8*" ! ). " ", 3 ! * - ) 8* # ) .0 3 " * 18 , " .!0 U ! ; * * *2 /- . ; " (1996) 9, , 1 * : " (1997). T,"" (1996 3 ! ! 0 # ! , 020 " " ! " ! . W 1 .0 * 3 ! ! 1 3 ! 8 3 " 9 " ) 3 - 3 ! . 5! , 9 3 " 2 " ! * 3 . 9,, 3 1. ) 3" ( " *. " ! .- * !" " 2 ) "310 ). 3 . 3 " * 3
1" " (Knill et. al. 1996, aharonov, Ben-Or 1996 Gottesman et. al. 1996). 3 .! " ! - 8* 3 ", \ " " ". 5 " ! QEC 3*. 1 3 3 " . " " !, ) * 3 * !0 3
" 3 ! ) 3 3 " ". 1 !
1 1 ) 106 ., "
1 . . 1 ! 1 " 2 " " "310 . ! . 1 * 3 ! \ 8 (Haroche) )" ! " (Raimond, 1996). * , * T! (Landauer, 1995, 1996) ! " " 1 3 !3 ! . 3 ! * 3 ! "310 ! " (Unruh, 1995), (" (Palma et. al. 1996) > " (Chuang et. al. 1995). : 1 .) ) *. ! ) 3 * " 3 ! U " (Miguel et. al. 1996) -
(Barenco et. al. 1997). "310 ! ! ) ) .* , 3 " 1 3 " ". , * 9 3 1 * !" 3 ! * . 1 * , 3" , * " 3 0 . ) 1 3 ! "*- ) 3 - : * 18 3 0 3 0 # 0 # 3 ! 3 0 * 18 ) .202 ) 3. W " 0 . 5! ,
! ) 81 .202 ) !
: 3 ) , 3 0 1 * 1 ! 3 ! ". " . , 3 0
* 3 3" " , ! , . " 3. / . . . . . 5! ,!" 1 . ) " 0 0 3 ! " ! ) "310 . 4 " 3 . 1 3 ! , !3- " " ! ) 9 0- ). 4 ) ,!" 1) 3 ! ! 3 3 0 8 3 " ", " 0 ." 1 .2 "310 ) 3 " . ( ! 3 - "310 3 ! " 2 1 * ." ) " 3 * !
" (Berthiaume et. al. 1994, Miguel et. al. 1997). 5! 3 " 210
3 1. , "- ) " ) ! . 9
3. ! .0 3" " "" " ! 3 8* ) , "-. U ! 3 8* (QEC) * 3 ! : " (1996) ." ! * " (Calderbank) ; -
7
<! ? %&
9
78
( 9 ." " 3 " 1 3 " 3 . 1) .1 : 3 ! jesi(Ms je ia)j 3 " 3 ! " . s. / 9 " * ! " 1 *2) ! 3 " , 81 ! 3 ! ) 3
s
/ ! " " 2 * : . . ! 3 1 n ; k * , !2 j0ia. . " ! ! 3 1 " 3 " 1"#. 0* ) .! ) 3 - ! 2 3 - ! A, ! ) 02 *20 ", 20 . " qc a ?,, ! ) ! 3 3 ! A(Ms )je ij0ia (Ms jei)jsia ) ! 0* Ms 2 S . " S 3 ! * ) "
3 " 8* . 3 - ! .
* . jsia, s ! " " " 3 ! 3 1 . ") 3 8* Ms . ! , jsia 0 ." 1". 3 . 3 !3 ",
*2 3 " " (". (44)) ! 81 3 Ms 2 S . / 9 " 3 3 - 3 ! ! " " qc a " 3 ! 1 ! : X jesi(Msjei)jsia: (9.4
s
* !" 3 1: X Y Z . ? : 8* 3 * * # (X ), ,. 8* (Z ), ! " 3 ! 8 * (Y = XZ ). ( !3 ", "310 q 3 k * " ) , "-. ( 1 *2 k * 1 ji. ( " ! ) " *! "310 3 ! ! 3 !02 n ; k * j0i. 5* . " 0 " . qc. 52 " 3 -0 ! #: E (jij0i) = jE i ( 1 3 1 3 " ! ) 0 n * " qc. :
*2 1 . , 3 " " * 3 ! * 8 *
3 -)# M , ! ! 3 - . " 3 . ! " n 3 ( ! 3 !) * ), * . " fI X Y Z g. 3" , M = I1 X2 I3 Y4 Z5 X6 I7 3 n = 7 5*2 .8" : X jesiMsjei: (9.3
* .- 3 # (Bennett et. al. 1996, Deutsch et. al. 1996). 5 ! " ! .0 ", ] , " "
.- 3 3 * , . " 3 ! * . ! ) 3 3 3 " " *. ] * 30 * , . " 2 0 3 ." " 3 : 3" , * 2 3 -0 XOR ! 3 !02
. " * , . " ." .1 02) * . ( , ] 8 ! 3 - ! " * ", 0 .1 . W .1 3!0 , " . 1, * 3 ." * )
3!0 * "": j00i+j11i. W .1 3!0 | * *0 . ( ! " 3 ! * 3 . " .- 3 3 * 3 " " ,1 1 3. *! !" .- 3 " " ] * " . 1 3 ! " 3 -. 3 ! * 3 " ) (Bennett et. al 1996). 531 3 ! * ! , . 1 . , ? (van Enk et. al. 1997) 3 ! " 3 * ! ) 3 ! ) , "- " ! "", !2" ! ! ! HQ 3 . 3 ! " ! 1 3 . *2 *! 3 . 3-3 QEC. V38 " !8) . ." ." ), " " * 1 3 ! * : *2) ) * 0 ( . . 3 ) ." ! ) * 02 ) ! ): jeii(aj0i + bj1i) ! a(c00je00ij0i + c01je01ij1i) + (9.1) +b(c10 je10 ij1i + c11 je11 ij0i) ! je:::i * . 02 ) !, c::: | 9,,- , .2 3 " . ( ! " 1, ! *2 ." ! ) " .3 1 !02 " ! : (9.2) jeiiji ! (jeI iI + jeX iX + jeY iY + jeZ iZ )ji ! ji = aj0i + bj1i | 1 * , jeI i = c11 je00 i + c10 je10 i jeX i = c01 je01 i + c11 je11 i . !. V" ", 02 ) ! *. 1 0 ". ". . (43) , 2 3 8* ,
8
<! ? %&
9
80
! He H1 H2 H2 : : : Hn . " ", .! 3 " 3 3 .- ! C , 302 8*, , ! * 2 3 *. ]!", *! 1 81 3 3 .- ) ! ) ! C ? . . 9 ! , 3 3 1 8 3 3 1. ), 3 " " (46), ." " 3 1 8* 3 X 8* 3 Z (, ! 1 , 3 Y ) ! 3 , 3 C C 0 " !", 302" 8*, . . 3
* ! *!0 8" 02" 3 * ". / 3 )8 " QECC, .! " 3 8 3 " "
* 18 * . V! 1 .! .0 ! ! , 302 8* (QECCs), 3 * 8*, ! ) 02 , """, t * . (
! *) QECC *! . 1 !, 302) t 8* # (t-erro correcting code#). ( )80 " ,- ! (3 ! ! * ", ; " : ") " 3 1 !02" *. " 5 " ", -3 , ) ) ! 3 " 8 * , ! ]!", 3 ! ) *- 1, " * 1 3 1. ! 3 8* 3 X . . 1 3 (17), 3 . 3 3 - . ! " 3 ! 1 3 " 1 , *! . 81 3 8* Ms, "310 ji. 9 ! , k * 3 ! " 2k ." 1 n | * ) jii, ! !
" ! C , 302 8* (" .! 2.4). 5! , 8 . 3" " 3
8* 3 Z. V" ", Z = HXH . : ! 1 , 3
8* 3 Z 9 3 H ! * 3 0 8* 3 X * " 2 .
2 . 3 *. " ]!" 3 ! 8 ." *.. * !" " 1 !020 * (Steane, 1996) X X jj i (9.5 He jii = p1 k 2 j2C ? i2C
8* Ms. , 3 ! " ! ." ! s (! " 8*#), 3 " 210 ) " 3 ! 1 " 02) 3 Ms . 531 3 0 , "-0, 3" " 3 Ms;1 " qc 3 ! " 1 ) (X Y Z ), .! " *. ", jesije ijsia . " ", 2 " qc, * ! 3 " ! 02 ) ! " 1", 3 9 " " . .! 1 3 " 1 j0ia - 10 !1 )8 3 1. . /8 * ! ! 3 !3 ", 3 " , 3 ! " " (44), ! 81 3 8* , 3! 2 " 3 " 8* S . 3 , 3 8* " 3! 1 3! 1 " S , 02 1 , ! 3 )! 3 " 3 3 ! ! ", " 2 . . " .! 1 3 ! , 302 8*: .! .0 ! 3 ! 3 ! ! " E A, * " S ! 81 3 " 8*, 0 8*, 1 3
1 . .! . )
. : ! " 1, ! .- 9,, ) *.- 3 3 " , * !" " 1 0 , "-0 3 ! " 8". :""
!", *.
02" ! ) 1 , 3 !3 " *! 3 !3 3 " . " ", .! " .! " " 3 " . * , ! . * , * ! * . ", . " ! * ). 3 !3
" 9 ! "" , 3 .! 2.3. 531 3 !3 3 " " 3 1 ." 3 8* M ) 3 ! 1 ." 3 , . . * 180 1 " 0 , ! ) 0 * 18 * ( . . 81 1 " . " 3 . ! 3 I .) : ! ) , " 180 1 " 0 3 , ! ) 02 ! "
8
<! ? %&
9
82
9
3 1. n = 7 * ! ! (k = 1) * 3 . ) ) , "-. * !" ! , "- ! 1 .!0 ! ]!", . * *- 1. j0E i j0000000i + j1010101i + j0110011i + j1100110i + (9.6) +j0001111i + j1011010i + j0111100i + j1101001i (9.7) j1E i j1111111i + j0101010i + j1001100i + j0011001i + (9.8) +j1110000i + j0100101i + j1000011i + j0010110i: (9.9) ) QECC *! !02" 1" ) ". ( !3 ", *2 ! ( . ), ! 2
! * , .! 3 ! " 3 aj0E i + bj1E i, 2 . " - 3 " ; 21 . V ", ! !" . " 3 8 -* ! ) . " 2 ! ) 3 - " 3 3 " 3 ! 1 3 1 * . 4" *. ", ! 1 . ."2 3 "0 0 , "-0! " 2 ! QEC " * 1 3 . * " 2 ! . ( 9 " 2 * 9,, , " 3 , - ! . ( !3 ", k * 1 3 ! " n * . ( 1 " 8* " * 1 3 : X Y Z , 2 3n 3 8* ! " * . 4. . * ! " n ; k, ( ! 8* ! * ,
8*, *!0 " ! "") * !" , * 3 1 2n;k > 3n + 1. ( k = 1 !
3 ! n = 5. ) 1 , 2 3 ! *) 3 * ) !, 302) 8* ! " * (La~amme et. al. 1996, Bennett et. al. 1996). / * *2 " * !" " 1, 3 , "
8 k=n, 2 0 !, ! 8 t=n
. 3 n ! 1 (Calderbank, Shor 1995, Steane 1996, Calderbank et. al. 1997). . 9 ! ) " ; (". .! 2.4), !
3 ! " " (Schumacher, Nielsen 1996, Barnum et. al. 1996, Lloyd 1997, Bennett et.al. 1996, Kill, La~amme 1997). ( " n 1 , 3 " . 3 8*.
84
8
3 ! 3*. 1 (n")t+1 , ! " 1 | 1 3
) ) 8* ! " * . 3 !
1 " 2 3 ! 3 " . 9,, ) * QE * !" 81 " 18 1 . " ! 3 " " 3 " 21 33 ! . / 3" " " ), ! " ' 0 001. ( n = 23 2 !, 302) 8* t = * (Golay 1999, Steane 1996). / 1 3 3 " 3 " 0 0234 ' 3 10;7. 4" *. " 3 ! 3 " 3 * 3 ! . 2 " " 3 QEC 3 ! 1 3 !3
, 3 3 1. ) , 2 . " ) .! 3 " 1 3 " 0 5 ! , - 10
3 ." -) .02 " "310 , * !" . 1 ! 3 !3 . ; 3 ! " !, 3 1. " 3 - . " *. ", 3 - 3 3 ! 3 " * 18 , " . 3 2 . 5 ! .! 1 .0 3 ) , ! 9 ." @ 3 8* 3
! " 2 1 3 ! 3 !
3 ! ! ": ! ! ) 33 * " qc 3 ! ! " 2 1 ., " " qc 81 3 3 t + 1 ." " " !
" . . 14 . * 1 - ) 8* 3 3 ! ! ", . . 1, 3
8* . 5 " ", " a 3 3 ! 3 1. ", !) * " qc ." ! ) 1 !" *
" a. ( - 8* 3 - ." . ! 8 2 1 -* ) 2 *
3 " " (33). 5! , " * 1 . 2 - 1 . 4" *. ", 3 ! " 3 3 2 , *2 " , 3 ! 0* ) 3 10
. : ! " 1, " 1 ) ! ", 3 ". / 2 " * 3 ! * , * 3 02 ! 1 ) 3 3 1. QEC - ) 8* (Preskill 1997, Steane 1997). 5
1 !
<! ? %&
9
3 " . 3" , ! , 3 802 3 ! ." ) 8 "310 , * !" 1000 * 1010 ) . 3 1. " ! QEC, 3 * 1 * . 1 1 3 " ! 3 ! 10;13 * ) , 2 "". : ! ) , 3 1. " " ! QEC * !" 3 1 1 "310 10 ! 100 . , ! 3 ! 9 " 8 3 *0 ) . 5! 3 9 " ! 3 ") 1 3 " *! 3" 10;5 * ) ( . . ! ) , " , ! ) , * 3 02 3 ) (Steane 1997). ? , 2 " . 4 " ! 3 8* , ) *2 3 ! " .! , ! ." ". ( ! ) 3 " * 3 " !, *02 81 1
* , " . 1 " " 2". 5! . " ! * 3 ! " (Cirac et. al. 1996). 5 3 !. ! 3 !
3 " ) 8 , ) 3 ! * ) ." ! " 3 1. ) . 4 *2 " *! 1 * ." " 3 " 3 , 02 ! . * . 3" , ! j01ij10i 0 * . ." ), .! ) 02 ) ! " ! je0 iI1 I2 + je1 iX1 X2 (Palma et. al. 1996, Chuang, Yamamoto 1997). 4 0 3 " 0 " ! , ) ) , "- ), ! 2 ) , " 3 1 1
* ! . / ." , 1 " "310 *! 3 1. 1 "*- 1 " ! .
86
! )# !
1 " 1 3 ", "
3 !3 ! 1 , " 2 , ,. 3 ! 8 ) 0- ** , "-, 02 ) * " . ?
3 ! . ." 3
3 ) 3 , ,. " ." 1 ,. 0: 3 3 ! " 1 \ ). * (Heisenberg) ! "8 "
" " . W " 2 "310 *! !-* .!, *! 3" " 81 " .! ", 1 8 * 9,,
. 3 ) , "- ). 1 . 3 * 1 " .0 ", 3 * 0 * * " 3 " 0 ,!" 1 . ,.. " , 3 ! ! *0! . 1) 3 ! ) * , , ."02 " " 3 3 " "
! ) , "- ! 3 0 0 " !0 22 * 3 . . ( !. 4 " ; ! " 3 " 3 3 0
" ;" . " ! 3 ! . " * ! * ) " , "-. ? 3 . 1 0 , "-0 * 1 " ", . * ) ", ) . * !" * . 1 ! 3 ), 3 8* # #. 3 8 * 3 3 0 3 8* . 9 ! .- ,. ! ) ), 1 8 1 2 "": *2 " , 9 3
! 1 @ 3 ! 0 ! * " 3 - , - 3 3 ) 9". 3" , " ! 1 3 "
%$&
10
! 3 " # "310 0 ! ". V " . " ! " " " .0 0 ", ! 3 8
.1 3 " " ) , * !" 3 1 "310 , " 3 3 1. -, ) * 81 1 * 3 -). 3" ) 8*" ) "310 " * 18 *2
-, " " ) ". / ! ) . ! " , "-, ; 3 . 0 " " ! ! ) * . 5! " , . " 1 " ; . 0 1 ." " 3 1. ! " * !2 " ! . " * 18 . 5 * 18 3 " " ! !1 )8 3 , 3 1 ! . 2 " 2 3 ), ." ", * ! " ) ) 9 0-, ! , !) " 0 " ! ). / 2) " " * 18 " 02 3 0 - 1 ! ) * ,. ) , "- . ", 3 ! ) !. W2 !!- 1 0* 93 " 1 . ) *!
1 " ) "310 #. 3 1 3 1. . 3 ", 0* ) " 1 . "310 "# ! , !
* . . ! ) *2 . ,
) ) 3 .0 3 1 ) U8 410. , * ! 1 .*! , "
* !" . 1 "310 . 5! 3 - , 3 02 ) , "- ) " 3
3 ! " - ". 3" , 3 , 3 ! " )
) , "-, 3 . 0 3 1 9,, " ! ! ! " . . U * 3 1 3 ! ! * 18 3 1 .22 1 3 ! " * 18 3 !
-)#. - * 3 0 3 1. " ! 3 8* 3 8 3 ! . / 3 !
) -# " 3 1. 1 0 8 " HQ . ", 3 . " ! !
8* 3" " " ! -, !) * " 3 1 " ., ! 1 ) , "- *! 3 . 4 3 , \1* 3 1 ) " " 3 *!0 .! 1 ) 3 . ,.. ( *2 0 ; ! , 3 " 1, ! 3 | 9 3 | * !" 81 3 ! 1 ! 3 " !" " 3 - ! ". . , "- , " 3 . 0 . 1 ! 3 )-* " ) . 3 !
) | 9 ! ) | " 1" * 18 . , 3 1 3 . 2 1 . 1 3 - " ", 3 " " * " 1 . ) 3 . ! , 3 ! * ! ), 3 * 0 .* " , " ; , \ . " 3 .0 , " ! 3 3 , "- ), ! 3 ,.. 5
3 3 ! " " (93 -1 * 18 ) ." ) 1* 3 . .1 8 3 ! " ) , - 3 " " " ). ! 3 . " " 3, 3 3 " * ". (2 " " 1 .0 1 3 "8 * ) , - 3 " "
". > . , .0 02 ",
) "310 ) ", " -, " ) ", , 0
!1, ! " " ". " 8*
. ) 1 , 0* " *! 3 " 3 " ". 5! " " . 1 0* ) ) " , "
- 3 -, "310 . U ! - ) 8* ,
* 3 02 3 8* " "310 , 0 " ) ! " " ". 4" *. ", " -, " "310 ",
8
A&-
10
88
3 1. " 3 8 0 , "- 3 ! 02 *I 18
1 ) " . 4 " ! 3 ! * ! ) " * 3 ! " " *. " 1 -) EPR-Bell-, *
3 ! !" ! " 31 3 1. " ." # .#. ! 01, ,. ) , "- 3 ! .
1 1 ,!" 1 ) ,.. V! *+ ! "8 410, , "-, ) ,. | ! . " " ) , ) " 1 !), | ) ! " , ! 01, ! ! *. . /0 * ! 1 Royal Society St Edmund Hall, Oxford . 3 !! .
. . . , *)8 " *!2 " ." " 2
1 . 02 93 " | 3 - . ! ) * !0. " . " "310 1 .!. 5! , " " . 1, .! "310 ! ) ) 3 3 ! 0 ! " , *! " ! 1, ! " ! ) .! . 5! . 3 ! ) 3 1. 3 - , 3 02
1" " * " | 9 * * 3 " ! ) " . ( ! 93 " 1" ! " *)8 1 !02 .! :
" 1 ! ! ), 3 ! 1 * 18 ) *+ " * . : )
. 2 ! 3 : 3
3 ! " 3 * ! ). : 1 ) ! 3 . 4 3 3 ! *2) 1 .! , ! 3 ! " " ! " ) 9,, 8 . :2 " " , 2 1 3 ! .* 1, 81 " ! 2 " " ? U ! 1 . 1 ) 1 ) " 2 3 " 3 1. " 100 * ? 5 9 3 3 2 , 3 1 ) " 1 ", 20 ! . 20 * . > ! , 9 )
* *0! . 1) 3 , " 10 . 1, 0 ! " ) " ). : ) " 3 ! 1 * , !
! * 3 ! ), 0 , 3" , 3 " 3 ! 10;5 ) .!
"310 . ) , " ! . 5! , " 3 1 0 ! 1 ! 3 ) , 3 3 ! * " 3 ! ? W 1., ." 3 3 " ! " ! 3
8* . : ! ) , " .) 3 " ." " 3 ! . 1 * ) ! * 3 ! ). / .0 1 * 3 ! 1 *10 0 .! : * !" 3 ! 1 1 . , . " 9 " " ,
9
A&-
10
90
. 1. " U . ! " 3 . , ! " .! .- ! ) 3 " 3 ! 1 " , ! ) 3* " * 18 , " 3. ( ! " 3 * 1 3" .1 *0! ) 1 " , ! ! ) 3 10 * ". 5! 3 9 " (3" 1) ! " . * " 1 8 .0 3 * , "-, 3 3
! " " ) 3" . . 2. V" 1 " ! ) " ) ) , "-. !"" 3 ! 1 3 ! , 3 1 3 9 " " ! *+ . 5! . " ., 3 1 . . 3. V" 1 " ! " " ) , "-. . 4. : ! ) . ( * , "- #).
(]) , " , "-0, 3 0 ( ! #) 3 3 . 3 " ( *) 3 ! ! 8,-# 3 . ) . , "-. . 5. 0 - " ; . ], - 10 3 ! 1 * k * , "- 3 3 3 " " n = 100 * . 3 . ." 1 31 3 * " 3 ) , "- 8 k=n 3 8* * : p = 0 25. W" 1 C = 1 ; H (0 25) 0 19. ; : !) 3 ! ") ] ) * 3 n=k .. :3 8 : ] 3 1. 8) ) !, 302 8* 9,,- " k=n. 4
3 ! 9,, 1 ! , 302 8* 3 n ! 0 " ; . . 6. ) "310 " * 1 3 ) . . 7. U8 410. ( ! * ) " . 1 " ) . U 3 . 1, " 9,,
" 1 " ! ). U8 !
9
" ) *! ) " ). V 3 ! ) " " " "8
! ! ) " . 5 ! ) ( -) "8 . 1 ! " s G . 0 .3 " s0 " " " s, 3 ! G0 ! ! 3 .-0 3 d ( 3 ). 4" *. " "8 " 3 ! 1 " 3 " 3 ! (s G ! s0 G0 d). 5 *" " " #@ 3 )! "8 3 2 * . ! 3 ""# 3 *. "8 ) ! ! *0 ! ) . . 8. (" ) #. ! . 1 3 ! 9 0-0 ! * " (! 3 ). :" , 3 ) ! ) 3 ! ! - * ) ) . :" , 3 ! ! 1 ) ) 3 ! 0 ! * ) 3 - !" !" * ". . * 1 3 ! 3 -0 X1 H2 XOR13 ji. " 3 ! ,-0 (NOT), H | ) H@ .8 ) , ! ) " "
3 -0 controlled NOT. . 9. 5 3 ) . ! a) 3 ! , b) 3 - c) , "-. 3
" ! ] ) * " " 1 " 3 , " | 3 . 3 ! 0 ." , 3 | 0 , "-0. . 10. 1 ! " ; 3 ! 0 3
! ,-. V! 1 ! . 1 * . , * . 5 3 ! 0 .! ! j0i. :" FT
3 ! 3 *. D 1 (". ), * , .02) ! 3 ! 1
020 3 Uf . ) " . 8 3 ." x. . 11. ? 0- ,
02
" ; . : " 3 . 3 !
3 ! * ) 3 3 .-. 4" *. " P
*2 cxy jxijyi . * .8 " ! "
! -
! -
! " (x y), ! cxy 6= 0. . a)
0 (35), b) 0 (38). . 12. ( - (! ** ) , "-) ) 8. 3
" , 2 ! ) 9 " ) .! 3 " 2 )0 0 8. / ! ! ) 9 ) " ! " 20". !) ! ) 3 . ), 3 ! " 3 *. " " (Raman) 3 *. " ! - 3
. : 3 1 * !, 3 ! " ! " - 3
, 1 ! -* 3 #, 3 2 0 , "-0 " ! ". : .! -* 2 3 ! " 3 ) .
! @ , "- 3 ! 3 " 210 electron shelving , - -, 3 02 ) 3 . . 3 * * 3 0 ) 1 , 3 3 ." , 3 8 0 0 3 " . . 13. ( - (! ** ) ) , "-, 3 ) " ! *+ " ! " . . G! 1, 2 . 1020 *. # " , 3 " 2 1) " " , ) " 1 3 " " 3 , ! 1 3 - 0 ! "
" " ! . ! 31" 3 1, ! ) - .! ) 1020 ." 3 - , 3 1 1
" " 0, ! ." 81 ! ! . 53 , "- 2 3 ! " 3 ) ! . ? 3 -*
! . ! ! " , 3 . 3 1. 1
3 -0 XOR. / ! " ) " " " !, 9 ) 3 . ! , . . 9 ! 1 " ! 3 .* ) ! ,. 3 - 3 8 0 ! !. :" ! ,. " * 1 0 3 ! " " ! 3 9#. . 14. 53 ! ! " - ) 8* ! QECC,
3 " (47), (48). / "1 * 3 ! 0 " qc, | 3 " 10 " a. ( !3 , " ) ", ." " * " 9 0-" 32 3 " . / ! " 3 1.0 81 ) H !-* -
94
9
) ) XOR. W 1 ) XOR 2 0 !
3 *+ " * ", . * !0 ! ! (NB: ! . * ! "). / 3 ) ! . * " ) H 3 ! .! ! " a j0E i 3 " ) ": ! ) " 3 ! ." ! * . W .1 " -* ." *! 1, .! " . \ ) H 3 *.0 ! 3 " 1 ) " j0E i + j1E i. 5 1 , "1 ) XOR
3 02 * " " qc a, 3 ! 0 ! * 3 . ! " *. fj0E i j1E ig. ! ) 3 8* 3 X . " qc 3 " 10 " a, 8* 3 * " 3 . 58* 3 X , !2 " qc " * 1 3 ! 3 ! " ." " a. 3 ! 8* 3 Z * !" ! 1. ( ! * 3 - 3 !0 3 " " qc, ! 3" " !
3 -" 3 8* ! 3 " " . 4*- 1. :
*2 ! F,," ! F"" 0000 10 0000000 0001 000 1010101 0010 001 0110011 0011 11000 1100110 0100 010 0001111 0101 11001 1011010 1001 11010 0111100 0111 1111000 1101001 1000 011 1111111 1001 11011 0101010 1010 11100 1001100 1011 111111 0011001 1100 11101 1110000 1101 111110 0100101 1110 111101 1000011 1111 1111001 0010110 ! F,," F"". / " *- 3 ! 8
! -
! -
!- 1 ." *
*2 ), ! 8 *- 3 . . !
*2 ). ! F,,"
0 , "-: ! 2 " 18 * !
0 * "
*2 ". !
0, ! 1 3
*2 . * 18 3 !-. ! F,," ! ", 302" 8*: ! ! 0* ! 3 ) ) " " . 4" *. ", ." 3 ! ) 8*. " ! F"" )": 0 )" "*-" 1010101, 0110011, 0001111, 1111111.
96
Abrams D S and Lloyd S 1997 Simulation of many-body Fermi system on a universal quantum computer (preprint quant-ph/9703054) Aharonov D and Ben-Or M 1996 Fault-tolerant quantum computatio with constant error (preprint quant-ph/9611025) Aspect A, Dalibard J and Roger G 1982 Experimental test, of Bell' inequalities using time-varying analysers, Phys. Rev. Lett. 49, 1804-1807 Aspect A 1991 Testing Bell's inequalities, Europhys. News. 22, 73-7 Barenco A 1995 A universal two-bit gate for quantum computatio Proc. R. Soc. Lond. A 449 679{683 Barenco A and Ekert A K 1995 Dense coding based on quantu entanglement, J. Mod. Opt. 42 1253{1259 Barenco A, Deutsch D, Ekert, E and Jozsa R 1995a Conditiona quantum dynamics and quantum gates, Phys. R.ev. Lett. 74 4083{4086 Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Sho P, Sleator T, Smolin J A and Weinfurter H 1995b Elementary gates fo quantum computation, Phys. Rev. A 52, 3457-3467 Barenco A 1996 Quantum physics and computers, Contemp. Phys. 3 375{389 Barenco A, Ekert A, Suominen K A and Torma P 1996 Approximat quantum Fourier transform and decoherence, Phys. Rev. A 54, 139{146 Bareiico A, Brun T A, Schak R and Spiller T P 1997 Eects of nois on quantum error correction algorithms, Phys. Rev. A 56 1177{1188 Barnum H, Fuchs C A, Jozsa R and Schumacher B 1996 A gener delity limit for quantum channels, Phys. Rev. A 54 4707{4711 Beckman D, Chari A, Devabhaktuni S and Preskill J .1996 Ecien networks for quantum factoring, Phys. Rev. A 54, 1034{1063 Bell J S 1964 On the Einstein-Podolsky-Rosen paradox, Physics 1 195 200 Bell J S 1966 On the problem of hidden variables in quantum theor Rev. Mod. Phys. 38 447{52 Bell J S 1987 Speakable and unspeakable in quantum mechanic (Cambridge University Press)
'
Berman G P, Doolen G D. Holm D D, Tsifrinovich V I 1994 Quantu computer on a class of one-dimensional Ising systems, Phys. Lett. 193 444 450 Bernstein E and Vazirani U 1993 Quantum complexity theory, in Proc of the 25th Annual ACM Symposium on Theory of Computing (ACM, Ne York) 11{20 Berthiaume A, Deutsch D and Jozsa R 1994 The stabilisation o quantum computation, in Proceedings of the Workshop on Physics an Computation, PhysComp 94 (60-62 Los Alamitos: IEEE Computer Societ Press Berthiaume A and Brassard G 1992a The quantum challenge t structural complexity theory, in Proc. of the Seventh Annual Structur m Complexity Theory Conference (IEEE Computer Society Press, Lo Alamitos, CA) 132{137 Berthiaume A and Brassard G 1992b Oracle quantum computing, i Proc. of the Workshop on Physics of Computation: PhysComp'92 (IEE Computer Society Press, Los Alamitos, CA) 60{62 Boghosian B M and Taylor W 1997 Simulating quantum mechanics o a quantum computer (preprint quant-ph/9701019) Bohm D 1951 Quantum Theory (Englewood Clis, N. J.) Bohm D and Aharonov Y 1957 Phys. Rev. 108 1070 Boyer M, Brassard G, Hoyer P and Tapp A Tight bounds on quantu searching (preprint quant-ph/9605034) Brassard G 1997 Searching a quantum phone book, Science 275 627 628 Brassard G and Crepeau C 1996 SIC@ ACT News 27 13{24 Braunstein S L, Mann A and Revzen M 1992 Maximal violation o Bell inequalities for mixed states, Phys. Rev. Lett. 68, 3259{3261 Braunstein S L and Mann A 1995 Measurement of the Bell operato and quantum teleportation, Phys. Rev. A 51, R1727{R1730 Brillouin L 1956, Science and information theory (Academic Press New York) Brune M, Nussenzveig P, Schmidt-Kaler F, Bernardot F, Maali Raimond J M and Haroche S 1994 From Lamb shift to light shifts: vacuu and subphoton cavity elds measured by atomic phase sensitive detectio Phys. Rev. Lett. 72, 3339{3342 Calderbank A R and Shor P W 1996 Good quantum error-correctin codes exist, Phys. Rev. A 54 1098{1105
Benio P, 1980 J. Stat. Phys. 22 563 Benio P 1982a Quantum mechanical hamiltonian models of Turing machines, J. Stat. Phys. 29 515{546 Benio P 1982b Quantum mechanical models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48 1581{1585 Bennett C H 1973 Logical reversibility of computation, IBM J. Res. Develop. 17 525{532 Bennett C H 1982 Int. J. Theor. Phys. 21 905 Bennett C H, Brassard G, Briedbart S and Wiesner S 1982 Quantum cryptography, or unforgeable subway tokens, in Advances in Cryptology: Proceedings of Crypto '82 (Plenum, New York) 267{275 Bennett C H and Brassard G 1984 Quantum cryptography: public key distribution and coin tossing, in Proc. IEEE Conf. on Computers, Syst. and Signal Process. 175{179 Bennett C H and Landauer R 1985 The fundamental physical limits of computation, Scientic American, July 38{46 Bennett C H 1987 Demons, engines and the second law, Scientic American vol 257 no. 5 (November) 88{96 Bennett C H and Brassard G 1989, SIGACT News 20, 78{82 Bennett C H and Wiesner S J 1992 Communication via one- and twoparticle operations on Einstein { Podolsky { Rosen states, Phys. Rev. Lett. 69, 2881{2884 Bennett C H, Bessette F, Brassard G, Savail L and Sinolim J 1992 Experimental quantum cryptography, J. Cryptology 5, 3{28 Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Teleporting an unknown quantum state via dual classical and Einstein { Podolsky { Rosen channels, Phys. Rev. Lett. 70 1895{1898 Bennett C H 1995 Quantum information and computation, Phys. Today 48 10 24{30 Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996a Purication of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76 722{725 Bennett, C H, DiVincenzo D P, Smolin J A and Wootters W K 1996b Mixed state entanglement and quantum error correction, Phys. Rev. A 54 3825 Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 Strengths and weaknesses of quantum computing, (preprint quant-ph/9701001)
9
B -
B -
98
B -
Calderbank A R, Rains E M, Shor P W and Sloane N J A 1996 Quantum error correction via codes over GF (4) (preprint quantph/9608006) Calderbank A R, Rains E M, Shor P W and Sloane N J A 1997 Quantum error correction and orthogonal geometry, Phys. Rev. Lett. 78 405{408 Caves C M 1990 Quantitative limits on the ability of a Maxwell Demon to extract work from heat, Phys. Rev. Lett. 64 2111{2114 Caves C M, Unruh W G and Zurek W H 1990 comment, Phys. Rev. Lett. 65 1387 Chuang I L, La~amme R, Slior P W and Zurek W H 1995 Quantum computers, factoring, and decoherence, Science 270 1633{1635 Chuang I L and Yamamoto 1997 Creation of a persistent qubit using error correction Phys. Rev. A 55, 114{127 Church A 1936 An unsolvable problem of elementary number theory, Amer. J. Math. 58 345{363 Cirac J I and Zoller P 1995 Quantum computations with cold trapped ions, Phys. Rev. Lett. 74 4091{4094 Cirac J I, Pellizari T and Zoller P 1996 Enforcing coherent evolution in dissipative quantum dynamics, Science 273, 1207 Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Quantum state transfer and entanglement distribution among distant nodes of a quantum network, Phys. Rev. Lett. 78, 3221 Clauser J F, Holt R A, Home M A and Shimony A 1969 Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 880{ 884 Clauser J F and Shimony A 1978 Bell's theorem: experimental tests and implications, Rep. Prog. Phys. 41 1881{1927 Cleve R and DiVincenzo D P 1996 Schumacher's quantum data compression as a quantum computation, Phys. Rev. A 54 2636 Coppersmith D 1994 An approximate Fourier transform useful in quantum factoring, IBM Research Report RC 19642 Cory D G, Fahmy A F and Havel T F 1996 Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing, in Proc. of the 4th Workshop on Physics and Computation (Complex Systems Institute, Boston, New England) Crandall R E 1997 The challenge of large numbers, Scientic American February 59{62
100
10
Deutsch D 1985 Quantum theory, the Church { Turing principle an the universal quantum computer, Proc. Roy. Soc. Lond. A 400 97{117 Deutsch D 1989 Quantum computational networks, Proc. Roy. Soc Lond. A 425 73{90 Deutsch D and Jozsa R. 1992 Rapid solution of problems by quantu computation, Proc. Roy. Soc. Lond A 439 553{558 Deutsch D, Barenco A & Ekert A 1995 Universality in quantu computation, Proc. R. Soc. Lond. A 449 669{677 Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S, and Sanper A 1996 Quantum privacy amplication and the security of quantu cryptography over noisy channels, Phys. Rev. Lett. 77 2818 Diedrich F, Bergquist J C1, Itano W M and Wineland D J 1989 Lase cooling to the zero-point energy of motion, Phys. Rev. Lett. 62 403 Dieks D 1982 Communication by electron-paramagnetic-resonanc devices, Phys. Lett. A 92 271 DiVincenzo D P 1995a Two-bit gates are universal for quantu computation, Phys. Rev. A 51 1015{1022 DiVincenzo D P 1995b Quantum computation, Science 270 255{261 DiVincenzo D P and Shor P W 1996 Fault-tolerant error correctio with ecient quantum codes, Phys. Rev. Lett. 77 3260{3263 Einstein A, Rosen N and Podolsky B 1935 Phys. Rev. 47, 777 Ekert A 1991 Quantum cryptography based on Bell's theorem Phy Rev. Lett. 67, 661{663 Ekert A and Jozsa R. 1996 Quantum computation and Shor's factorin algorithm, Rev. Mod. Phys. 68 733 Ekert A and Macchiavello C 1996 Quantum error correction fo communication, Phys. Rev. Lett. 77 2585{2588 Ekert A 1997 From quantum code-making to quantum code-breakin (preprint quant-ph/9703035) van Enk S J, Cirac J I and Zoller P 1997 Ideal communication ove noisy channels: a quantum optical implementation, Phys. Rev. Lett. 78 4293{4296 Feynman R P 1982 Simulating physics with computers, Int. J. Theor Phys. 21 467{488 Feynman R P 1986 Quantum mechanical computers, Found. Phys. 1 507{531@ see also Optics News February 1985, 11{20. Fredkin E and Tooli T 1982 Conservative logic, Int. J. Theor. Phys 21 219{253
B -
B -
Gershenfeld N A aiid Chuang I L 1997 Bulk spinresonance quantum computation, Science 275 350{356 Glauber R J 1986, in Frontiers in Quantum Optics, Pike E R and Sarker S, eds (Adam Hilger, Bristol) Golay M J E 1949 Notes on digital coding, Proc. IEEE 37 657 Gottesman D 1996 Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A 54, 1862-1868 Gottesman D 1997 A theory of fault-tolerant quantum computation (preprint quant-ph 9702029) Gottesman D, Evslin J, Kakade S and Preskill J 1996 (to be published) Greenberger D M, Home M A and Zeilinger A 1989 Going beyond Bell's theorem, in Bell's theorem, quantum theory and conceptions of the universe, Kafatos M, eel, (Kluwer Academic, Dordrecht) 73{76 Greenberger D M, Home M A, Shimony A and Zeilinger A 1990 Bell's theorem without inequalities, Am. J. Phys. 58, 1131{1143 Grover L K 1997 Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325{328 Hamming R W 1950 Error detecting and error correcting codes, Bell Syst. Tech. J. 29 147 Hamming R. W 1986 Coding and information theory, 2nd ed, (Prentice-Hall, Englewood Clis) Hardy G H and Wright E M 1979 An introduction to the theory of numbers (Clarendon Press, Oxford) Haroche S and Raimond J-M 1996 Quantum computing: dream or nightmare? Phys. Today August 51{52 Hellman M E 1979 The mathematics of public-key cryptography, Scientic American 241 August 130{139 Hill R 1986 A 5rst course in coding theory (Clarendon Press, Oxford) Hodges A 1983 Alan Turing: the enigma (Vintage, London) Hughes R J, Alde D M, Dyer P, Luther G G, Morgan G L and Schauer M 1995 Quantum cryptography, Contemp. Phys. 36 149{163 J. Mod. Opt. 41, no 12 1994 Special issue: quantum communication Jones D S 1979 Elementary information theory (Clarendon Press, Oxford) Jozsa R and Schumacher B 1994 A new proof of the quantum noiseless coding theorem, J. Mocl. Optics 41 2343 Jozsa R 1997a Entanglement and quantum computation, appearing
102
10
in Geometric issues in the foundations of science. Huggett S et. al., ed (Oxford University Press) Jozsa R 1997b Quantum algorithms and the Fourier transfor submitted to Proc. Santa Barbara conference on quantum coherence an decoherence (preprint. quant-ph/9707033) Keyes R. W and Landauer R 1970 IBM J. Res. Develop. 14, 152 Keyes R W 1970 Science 168, 796 Kholevo A S 1973 Probl. Peredachi Inf 9, 3: Probl. Inf. Trans (USSR) 9, 177 Kitaev A Yu 1995 Quantum measurements and the Abelian stablize problem, (preprint quant-ph/9511026) Kitaev A Yu 1996 Quantum error correction with imperfect gate (preprint) Kitaev A Yu 1997 Fault-tolerant quantum computation by anyon (preprint quant-ph/9707021) Knill E and La~amme R 1996 Concatenated quantum codes (preprint quant-ph/9608012) Knill E, La~amme R and Zurek W H 1996 Accuracy threshold fo quantum computation, (preprint quant-ph/9610011) Knill E and La~amme R. 1997 A theory of quantum error-correctin codes, Phys. Rev. A 55 900{911 Knill E, La~amme R and Zurek W H 1997 Resilient quantu computation: error models and thresholds (preprint quant-ph/9702058) Knuth D E 1981 The Art of Computer Programming, Vol. Seminumerical Algorithms, 2nd ed (Addison { Wesley). Kwiat P G, Mat.tle K, Weinfurter H, Zeilinger A, Sergienko A an Shih Y 1995 New high-intensity source of polarisation-entangled photo pairs Phys. Rev. Lett. 75, 4337{4341 La~amme R, Miquel C, Paz J P and Zurek W H 1996 Perfect quantu error correcting code, Phys. Rev. Lett. 77, 198{201 Landauer R 1961 IBM J. Res. Dev. 5 183 Landauer R 1991 Information is physical, Phys. Today May 1991 23{2 Landauer R 1995 Is quantum mechanics useful? Philos. Trans. R. Soc London Ser. A. 353 367{376 Landauer R 1996 The physical nature of information, Phys. Lett. 217 188 Lecerf Y 1963 Machines de Turing rIeversibles. RIecursive insolubilit
B -
B -
en n 2 N de l'equation u = n u, oIu est un isomorphisme de codes, C. R. Acad. Fran- caise Sci. 257, 2597{2600 Levitin L B 1987 in Information Complexity and Control in Quantum Physics, Blaquieve A, Diner S, Lochak G, eds (Springer, New York) 15{47 Lidar D A and Biham 0 1996 Simulating Ising spin glasses on a quantum computer (preprint quant-ph/9611038) Lloyd S 1993 A potentially realisable quantum computer, Science 261 1569@ see also Science 263 695 (1994). Lloyd S 1995 Almost any quantum logic gate is universal, Phys. Rev. Lett. 75, 346{349. Lloyd S 1996 Universal quantum simulators, Science 273 1073{1078 Lloyd S 1997 The capacity of a noisy quantum channel, Phys. Rev. A 55 1613{1622 Lo H-K and Chau H F 1997 Is quantum bit commitment really possible?, Phys. Rev. Lett. 78 3410{3413 Loss D and DiVincenzo D P 1997 Quantum Computation with Quantum Dots, submitted to Phys. Rev. A (preprint quant-ph/9701055) MacWilliams F J and Sloane N J A 1977 The theory of error correcting codes, (Elsevier Science, Amsterdam) Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Dense coding in experimental quantum communication, Phys. Rev. Lett. 76, 4656{4659. Margolus N 1986 Quantum computation, Ann. New York Acad. Sci. 480 487{497 Margolus N 1990 Parallel Quantum Computation, in Complexity Entropy and the Physics of Information, Santa Fe Institute Studies in the Sciences of Complexity. vol Vlll p. 273 ed Zurek W H (Addison-Wesley) Maxwell J C 1871 Theory of heat (Longmans, Green and Co, London) Mayers D 1997 Unconditionally secure quantum bit commitment is impossible, Phys. Rev. Lett. 78 3414{3417 Menezes A J, van Oorschot P C and Vanstone S A 1997 Handbook of applied cryptography (CRC Press, Boca Raton) Mermin N D 1990 What's wrong with these elements of reality? Phys. Today (June) 9{11 Meyer D A 1996 Quantum mechanics of lattice gas automata I: one particle plane waves and potentials, (preprint quant-ph/9611005) Minsky M L 1967 Computation: Finite and In5nite Machines (Prentice-Hall, Inc., Englewood Clis, N. J.@ also London 1972)
104
10
Miquel C, Paz J P and Perazzo 1996 Factoring in a dissipative quantu computer Phys. Rev. A 54 2605{26 I 3 Miquel C, Paz J P and Zurek W H 1997 Quantum computation wit phase drift errors, Phys. Rev. Lett. 78 3971{3974 Monroe C, Meekhof D M, King B E, Jeerts S R, Itano W M, Winelan D J aiid Gould P 1995a Resolved-sideband Raman cooling of a bound ato to the 3D zero-pointenergy, Phys. Rev. Lett. 75 4011{4014 Monroe C, Meekhof D M. King B E, Itano W M and Wineland D 1995b Demonstration of a universal quantum logic gate, Phys. Rev. Lett 75 1714{4717 Myers J M 1997 Can a universal quantum computer be fully quantum Phys. Rev. Lett. 78, 1823{1824 Nielsen M A and Chuang I L 1997 Programmable quantum gate array Phys. Rev. Lett. 79, 321{324 Palma. G M, Suominen K-A fe Ekert A K 1996 Quantum computer and dissipation, Proc. Roy. Soc. Lond. A 452 567{584 Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Decoherenc continuous observation, and quantum computing: A cavity QED model Phys. Rev. Lett. 75 3788{3791 Peres A 1993 Quantum theory: concepts and methods (Kluwe Academic Press, Dordrecht) Phoenix S J D and Townsend P D 1995 Quantum cryptography: ho to beat the code breakers using quantum mechanics, Contemp. Phys. 36 165{195 Plenio M B and Knight P L 1996 Realisitic lower bounds for th factorisation time of large numbers on a quantum computer, Phys. Re A 53, 2986{2990. Polkinghorne J 1994 Quarks, chaos and christianity (Triangle, London Preskill J 1997 Reliable quantum computers, (preprint quant ph/9705031) Privman V, Vaguer I D and Kventsel G 1997 Quantum computatio in quantum-Hall systems, (preprint, (iuant-pli/9707017) Rivest R, Shamir A and Adieman L 1979 On digital signature and public-key cryptosystems, MIT Laboratory for Computer Scienc Technical Report, MIT/LCS/TR-212 Schroeder M R 1984 Number theory in science and communicatio (Springer { Verlag, Berlin Heidelberg) Schumacher B 1995 Quantum coding, Phys. Rev. A 51 2738{2747
B -
B -
Schumacher B W and Nielsen M A 1996 Quantum data processing and error correction Phys Rev A 54, 2629 Shankar R 1980 Principles of quantum mechanics (Plenum Press, New York) Shannon C E 1948 A mathematical theory of communication Bell Syst. Tech. J. 27 379@ also p. 623 Shor P W 1994 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proc. 35th Annual Symp. on Foundations of Computer Science, Santa Fe, IEEE Computer Society Press@ revised version 1995a preprint quant-ph/9508027 Shor P W 1995b Scheme for reducing docoherence in quantum computer memory, Phys. Rev. A 52 K2493{R2496 Shor P W 1996 Fault, tolerant quantum computation, in Proc. 37th Symp. on Foundations of Com.puter Science, to be published. (Preprint quant-ph/9605011). Shor P W and La~amme R 1997 Quantum analog of the MacWilliams identities for classical coding theory, Phys. Rev. Lett. 78 1600{1602 Simon D 1994 On the power of quantum computation, in Proc. 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos) 124{134 Slepian D 1974 ed, Key papers in the development of information theory (IEEE Press, New York) Spiller T P 1996 Quantum information processing: cryptography, computation and teleportation, Proc. IEEE 84, 1719{1746 Steane A M 1996a Error correcting codes in quantum theory, Phys. Rev. Lett. 77 793{797 Steane A M 1996b Multiple particle interference and quantum error correction, Proc. Roy. Soc. Loncl. A 452 2551{2577 Steane A M 1996c Simple quantum error-correcting codes, Phys. Rev. A 54, 4741{4751 Steane A M 1996d Quantum Reed-Muller codes, submitted to IEEE Trans. Inf. Theory (preprint quant-ph/9608026) Steane A M 1997a Active stabilisation, quantum computation, and quantum state sythesis, Phys. Rev. Lett. 78, 2252{2255 Steane A M 1997b The ion trap quantum information processor, Appl. Phys. B 64 623{642 Steane A M 1997c Space, time, parallelism and noise requirements for reliable quantum computing (preprint quant-ph/9708021)
106
10
Szilard L 1929 Z. Phys. 53 840@ translated in Wheeler and Zure (1983). Teich W G, Obermayer K and Mahler G 1988 Structural basis o multistationary quantum systems II. Eective few-particle dynamics, Phys Rev. B 37 8111{8121 Tooli T 1980 Reversible computing, in Automata, Languages an Programming, Seventh Colloquium, Lecture Notes in Computer Scienc Vol. 84, de Bakker J W and van Leeuwen J, eds, (Springer) 632{644 Turchette Q A, Hood C J, Lange W, Mabushi H and Kimble H J 199 Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett 75 4710{4713 Turing A M 1936 On computable numbers, with an application to th Entschneidungsproblem, Proc. Lond. Math. Soc. Ser. 2 42, 230@ see als Proc. Lond. Math. Soc. Ser. 2 43, 544 Unruh W G 1995 Maintaining coherence in quantum computers, Phys Rev. A 51 992{997 Vedral V, Barenco A and Ekert A 1996 Quantum networks fo elementary arithmetic operations, Phys. Rev. A 54 147{153 Weinfurter H 1994 Experimental Bell-state analysis, Europhys. Let 25 559{564 Wheeler J A and Zurek W H, eds, 1983 Quantum theory an measurement (Princeton Univ. Press, Princeton, NJ) Wiesner S 1983 Conjugate coding, SIGACT News 15 78{88 Wiesner S 1996 Simulation of many-body quantum system by quantum computer (preprint quant-ph/9603028) Wineland D J, Monroe C, Itano W M, Leibfried D, King B and Meekhof D M 1997 Experimental issues in coherent quantum-stat manipulation of trapped atomic ions, preprint, submitted to Rev. Mod Phys. Wooters W K and Zurek W H 1982 A single quantum cannot be cloned Nature 299, 802 Zalka C 1996 Ecient simulation of quantum systems by quantu computers, (preprint quant-ph/9603026) Zbinden H, Gautier J D, Gisin N, Huttner B, Miiller A, Tittle 1997 Interferometry with Faraday mirrors for quantum cryptography, Elec Lett. 33, 586{588 Zurek W H 1989 Thermodynamic cost of computation, algorithmi complexity and the information metric, Nature 341 119{124.
B -
6! 19.02.00. 7 60 841=16 . 6 . 8. . . ??. 8. !. . ??. : Computer Modern Roman. ; <1. # < . = ?? & . -! )* ! + 426057, . ' , . 6 , 13. > ! ! >8 <084 03.04.00. ? ! ' 426057, . ' , . 6 , 13.
8 * ?? ' ?? , ! " : ). -. : ?? , ! " ?? , ??