Shmei¸seic Diaforik¸n Exis¸sewn ... gia MhqanikoÔc
Μανόλης Βάβαλης 1 Ιουνίου 2010
2
To keÐmeno autì morfopoi jhke se...
27 downloads
210 Views
2MB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
Shmei¸seic Diaforik¸n Exis¸sewn ... gia MhqanikoÔc
Μανόλης Βάβαλης 1 Ιουνίου 2010
2
To keÐmeno autì morfopoi jhke se
c 2010 Copyright
LATEX.
Manìlhc Bbalhc
This work is licensed under the Creative Commons To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ You can use, print, duplicate, share these notes as much as you want. You can base your own notes on these and reuse parts if you keep the license the same. If you plan to use these commercially (sell them for more than just duplicating cost) then you need to contact me and we will work something out. If you are printing a course pack for your students, then it is fine if the duplication service is charging a fee for printing and selling the printed copy. I consider that duplicating cost. 'Eqete to dikaÐwma na qrhsimopoi sete, ektup¸sete, antigryete kai na dianèmete tic shmei¸seic autèc ìsec forèc jèlete. MporeÐte na basÐsete tic dikèc sac shmei¸seic se autèc /kai na qrhsimopoi sete olìklhra mèrh touc, arkeÐ na diathr sete thn paroÔsa deia qr shc analloÐwth.
En skopeÔete na tup¸sete tic paroÔsec shmei¸seic gia
didaktikoÔc skopoÔc tìte mporeÐte na qre¸sete ìpou epijumeÐte to posì pou apaiteÐtai gia thn ektÔpwsh, thn dijesh kai thn dianom tou ektupwmènou pakètou.
Perieqìmena Eisagwg
1
2
3
4
4
0.1
ShmeÐwsh sqetik me tic shmei¸seic autèc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
0.2
Eisagwg stic diaforikèc exis¸seic
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SDE pr¸thc txhc
10
1.1
LÔseic se morf oloklhrwmtwn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
PedÐa kateujÔnsewn
1.3
DiaqwrÐsimec Exis¸seic
1.4
Grammikèc exis¸seic kai oloklhrwtikoÐ pargontec
1.5
Antikatastseic
1.6
Autìnomec exis¸seic
10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
Grammikèc SDE uyhlìterhc txhc
35
2.1
Grammikèc SDE uyhlìterhc txhc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Grammikèc SDE deÔterhc txhc me stajeroÔc suntelestèc
. . . . . . . . . . . . . . . . . . . . . . . . .
35 38
2.3
Grammikèc SDE uyhlìterhc txhc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42
2.4
Talant¸seic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46
2.5
Mh-omogeneÐc exis¸seic
2.6
Exanagkasmènec talant¸seic kai suntonismìc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 57
Sust mata SDE
63
3.1
Eisagwg sta sust mata SDE
3.2
Grammik sust mata SDE
3.3
Mèjodoc idiotim¸n
3.4
Sust mata dÔo diastsewn kai ta dianusmatik pedÐa touc
. . . . . . . . . . . . . . . . . . . . . . . . .
74
3.5
Sust mata deÔterhc txhc kai efarmogèc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
3.6
Idiotimèc me pollaplìthta
85
3.7
Ekjetik Pinkwn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88
3.8
Mh-omogen sust mata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
93
Seirèc
F ourier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
kai MDE
102
4.1
Probl mata sunoriak¸n tim¸n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2
Trigwnometrikèc seirèc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
F ourier
4.3
Epiprìsjeta jèmata seir¸n
4.4
Seirèc hmitìnwn kai sunhmitìnwn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5
MDE, qwrismìc metablht¸n, kai h exÐswsh jermìthtac . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
BibliografÐa
123
Euret rio
125
3
Eisagwg 0.1
ShmeÐwsh sqetik me tic shmei¸seic autèc.
Oi shmei¸seic autèc rqisan na grfontai stic arqèc tou 2010 parllhla me tic dialèxeic mou sto eisagwgikì mjhma stic Diaforikèc Exis¸seic. Den filodoxoÔn oÔte na eÐnai pl reic oÔte prwtìtupec. Ousiastik apoteloÔn perÐlhyh
Edwards and Penney, Differential Equations and Boundary Value Problems [EP], kai tou biblÐou Boyce and DiPrima, Elementary Differential Equations [BD], emploutismèno me dikèc mou parembseic me bsh
tou biblÐou twn twn
thn antÐdrash tou akroathrÐou mou.
Sac parakal¸ na epikoinwn sete mazÐ mou gia opoiad pote dik mou ljh, kai
paral yeic dikèc sac protseic.
EpiskefjeÐte thn istoselÐda
http://diaek.wordpress.com/
4
gia perissìterec plhroforÐec.
0.2. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0.2
5
Eisagwg stic diaforikèc exis¸seic
0.2.1
Diaforikèc Exis¸seic
Oi nìmoi thc fusik c genik diatup¸nontai san diaforikèc exis¸seic.
Gia ton lìgo autì ìloi oi epist monec kai oi
mhqanikoÐ qrhsimopoioÔn lloi lÐgo lloi polÔ diaforikèc exis¸seic. H katanìhsh twn diaforik¸n exis¸sewn epomènwc eÐnai aparaÐthth gia thn katanìhsh sqedìn otid pote ja melet sete sta maj mat sac. MporeÐte na jewr sete ta majhmatik san thn gl¸ssa twn episthm¸n kai tic diaforikèc exis¸seic san èna apì ta shmantikìtera sustatik thc. 'Eqete dh sunant sei pollèc diaforikèc exis¸seic, endeqomènwc qwrÐc na to antilhfjeÐte.
'Eqete mlista dh
lÔsei merikèc apì autèc sta maj mata tou LogismoÔ pou èqei prei. Ac epikentrwjoÔme ìmwc t¸ra se mia diaforik exÐswsh pou mllon den thn èqete dei xan.
dx + x = 2 cos t, dt ìpou
x
eÐnai h exarthmènh metablht kai
exÐswsh.
t
h anexrthth metablht .
(1) H exÐswsh (1) eÐnai mia klassik diaforik
Sthn pragmatikìthta eÐnai èna pardeigma miac diaforik c exÐswshc pr¸thc txhc, mia kai emplèkei thn
pr¸th mìnon pargwgo thc exarthmènhc metablht c. H parapnw exÐswsh phgzei apì ton nìmo tou NeÔtwna gia thn yÔxh enìc s¸matoc ìtan h jermokrasÐa tou peribllontoc q¸rou talant¸netai ston qrìno.
0.2.2
EpÐlush diaforik¸n exis¸sewn
EpilÔw thn parapnw diaforik exÐswsh shmaÐnei brÐskw to mia sunrthsh tou
t
thn opoÐa kaloÔme
x
x to opoÐo exarttai apì to t. Jèloume dhlad na broÔme x, t, kai dx sthn exÐswsh (1) aut na dt
tètoia ¸ste en antikatast soume ta
isqÔei. H idèa eÐnai akrib¸c Ðdia me aut pou sunantme stic algebrikèc exis¸seic, dhlad se exis¸seic pou emplèkontai mìno to
x
kai to
t
kai ìqi oi pargwgoi. Sthn prokeÐmenh perÐptwsh to
x = x(t) = cos t + sin t eÐnai lÔsh. P¸c mporoÔme na epibebai¸soume kti tètoio? Apl antikajist¸ntac to sthn exÐswsh! Pr¸ta prèpei na upologÐsoume thn
dx dx . BrÐskoume ìti dt dt
= − sin t + cos t.
Ac upologÐsoume t¸ra to dexiì mèloc thc exÐswshc (1)
dx + x = (− sin t + cos t) + (cos t + sin t) = 2 cos t. dt Prgmati!
Autì eÐnai Ðso me to dexiì thc mèloc.
cos t + sin t + e−t
Den telei¸same ìmwc!
MporoÔme na isqurisjoÔme oti h
x =
eÐnai epÐshc lÔsh. Ac dokimsoume,
dx = − sin t + cos t − e−t . dt 'Opwc kai prin ac thn antikatast soume sto aristerì mèloc thc exÐswshc (1)
dx + x = (− sin t + cos t − e−t ) + (cos t + sin t + e−t ) = 2 cos t. dt Kai prgmati eÐmaste bèbaioi ìti apoteleÐ lÔsh! Sunep¸c mporeÐ na uprqoun perissìterec apì mia lÔseic. Mlista, gia thn sugkekrimènh exÐswsh ìlec oi lÔseic pou uprqoun mporoÔn na sumptuqjoÔn kai na grafoÔn me thn ex c morf
x = cos t + sin t + Ce−t ìpou
C
eÐnai mia kpoia stajer. Sto sq ma 1 sthn epìmenh selÐda mporoÔme na broÔme tic grafikèc parastseic gia
merikèc apì autèc tic lÔseic.
Ja mjoume pwc mporoÔme na broÔme me susthmatikì trìpo ìlec autèc tic lÔseic se
lÐgec mèrec. Mhn nomÐsete ìti h epÐlush twn diaforik¸n exis¸sewn eÐnai eÔkolh upìjesh. TounantÐon, ìpwc ja doÔme sÔntoma, sun jwc eÐnai idiaÐtera dÔskolh. Den uprqoun genikèc mèjodoi ikanèc na lÔsoun opoiad pote diaforik exÐswsh mac endiafèrei.
Ja prèpei na anafèroume ìti ja perioristoÔme sthn eÔresh analutik¸n ekfrsewn gia tic lÔseic kai
den endiaferìmaste gia arijmhtikèc proseggÐseic twn lÔsewn tic opoÐec endeqomènwc na mporoÔme na ektim soume
6
ΕΙΣΑΓΩΓΗ
upologistik. Tètoiec proseggÐseic ja mac apasqol soun se maj mata episthmonik¸n upologism¸n kai arijmhtik c anlushc. 'Ena meglo mèroc tou maj matoc mac ja afierwjeÐ stic legìmenec Sun jeic Diaforikèc Exis¸seic (
ODEs
sta agglik) sunoptik SDE (
sta agglik),
ordinary dif f erential equations
ìpou me ton ìro autì dhl¸noume ìti èqoume mÐa mìnon
anexrthth metablht , en¸ ìlec oi emplekìmenec pargwgoi aforoÔn thn en lìgw metablht .
Sthn perÐptwsh pou
èqoume perissìterec apì mia eleÔjerec metablhtèc, odhgoÔmaste stic sun jwc legìmenec Merikèc Diaforikèc Ex-
partial dif f erential equations
is¸seic (
sta agglik)
∗
sunoptik MDE (
P DEs
sta agglik) me tic opoÐec ja
asqolhjoÔme sto deÔtero mèroc tou maj matoc. Akìma kai gia tic SDE, oi opoÐec ìson afor thn basik touc ènnoia, eÐnai eÔkola katanohtèc se bjoc, den eÐnai apl upìjesh h eÔresh lÔsewn se ìla ta probl ma-
0
1
2
3
4
5
3
3
2
2
1
1
0
0
-1
-1
ta sta opoÐa emplèkontai. EÐnai shmantikì na gnwrÐzoume pìte mporoÔme na lÔsoume eÔkola kpoio tètoio prìblhma kai pwc sthn prxh mporoÔme na to knoume autì. Akìma kai sthn perÐptwsh pou mporoÔme na broÔme thn lÔsh mac me qr sh upologistik¸n susthmtwn, kti pou prgmati sumbaÐnei sthn prxh, eÐnai aparaÐthto na katano soume ti parist aut kai pwc akrib¸c kai ktw apì poiec sunj kec proèkuye. Epiprìsjeta, eÐnai polÔ suqn aparaÐthto na aplopoi soume tic exis¸seic mac na tic metatrèyoume se kpoia llh morf thn opoÐa katanoeÐ to logismikì sÔsthma pou ja qrhsimopoi soume gia na tic lÔsoume. Endeqomènwc na qreizetai na knoume kpoiec shmantikèc upojèseic sto majhmatikì mac montèlo gia na mporèsoume
0
1
2
3
4
5
na pragmatopoi soume kpoiec apì tic aparaÐthtec autèc metatropèc. Gia na gÐnete ènac petuqhmènoc mhqanikìc epist monac, ja anagkasteÐte suqn na lÔsete probl mata pou potè prin den èqete antimetwpÐsei sto pareljìn.
Σχήμα 1: Γραφικές παραστάσεις μερικών από τις λύx σεις της εξίσωσης dx dt + 2 = cos t.
EÐnai
sunep¸c shmantikì na mjete diadikasÐec epÐlushc problhmtwn tic opoÐec ja mporèsete na efarmìsete gia thn epÐlush twn en lìgw problhmtwn. EÐnai sunhjismèno ljoc en gènei na perimènete ìti ja mjete suntagèc kai ètoimouc proc mesh qr sh mhqanismoÔc gia na lÔsete ìla ta sqetik probl mata pou ja sunant sete sthn karièra sac. Kti tètoio sÐgoura den prìkeitai na gÐnei sto mjhma autì.
0.2.3
Diaforikèc exis¸seic sthn prxh
Realistikì Prìblhma
Ac doÔme pwc mporoÔme na qrhsimopoi soume diaforikèc exis¸seic stic epist mec kai thn mhqanik . 'Estw ìti èqete kpoia realistik probl mata ta opoÐa jèlete na katano sete. Gia to katafèrete autì prèpei na knete kpoiec upo-
ex ghsh
afaÐresh
jèseic pou ja aplopoi soun ta prgmata kai ja sac epitrèyoun na dhmiourg sete èna majhmatikì montèlo. Me lla lìgia, prèpei na metafrsete to realistikì sac prìblhma (thn pragmatikìthta en protimte) se èna sÔnolo diaforik¸n exis¸sewn.
AfoÔ to katafèrete autì mporeÐte na efar-
Majhmatikì montèlo
επίλυση
mìsete majhmatik ergaleÐa gia na dhmiourg sete kpoiac morf c majhmatik lÔsh.
Majhmatik lÔsh
'Omwc akìma den telei¸sate.
Prèpei na katano sete autì pou br kate. Prèpei dhlad na diapist¸sete ti mporeÐ h majhmatik lÔsh pou br kate na sac pei sqetik to arqikì realistikì sac prìblhma. Poll apì ta maj mata twn spoud¸n sac ja sac exoplÐsoun me katllhlec gn¸seic pou ja sac epitrèyoun na diatup¸nete majhmatik montèla twn realistik¸n sac problhmtwn kai na katano sete ta apotelèsmat sac. Sto mjhma autì ìmwc ja epikentrwjoÔme sthn majhmatik anlush thc ìlhc diadikasÐac.
Arketèc forèc bèbaia
ja asqolhjoÔme me merik realistik probl mata gia na apokt soume kpoia bajÔterh katanìhsh kai kallÐterh diaÐsjhsh all kai gia na apokt soume kpoio kÐnhtro gia aut pou ja knoume paraktw all kai gia ton trìpo pou ja ta knoume.
∗ Pio katllhloc ìroc kat thn gn¸mh mou eÐnai Diaforikèc Exis¸seic me Merikèc Parag¸gouc, o opoÐoc dustuq¸c den eÐnai idiaÐtera diadedomènoc
0.2. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
7
Ac doÔme èna pardeigma thc parapnw diadikasÐac.
Mia apì tic poio basikèc diaforikèc exis¸seic eÐnai to
exponential growth model).
prìtupo montèlo ekjetik c aÔxhshc ( bakthridÐwn se èna doqeÐo.
'Estw oti me
P
paristnoume ton plhjusmì kpoiwn
An upojèsoume ìti uprqei arket trof kai q¸roc tìte eÐnai eÔkolo na antilhfjoÔme
oti o rujmìc aÔxhshc tou plhjusmoÔ twn bakthridÐwn ja eÐnai anlogoc tou Ðdiou tou plhjusmoÔ. Dhlad , megloi plhjusmoÐ auxnontai taqÔtera. En me
t
sumbolÐzoume ton qrìno (ac poÔme se deuterìlepta) tìte katal goume sto
ex c majhmatikì montèlo
dP = kP dt ìpou
k>0
eÐnai kpoia jetik stajer.
Pardeigma 0.2.1:
'Estw ìti uprqoun 100 bakt ria thn qronik stigm 0 kai 200 bakt ria met apì 10c. Pìsa
bakt ria ja uprqoun 1 leptì met thn arqik stigm 0? (dhlad se 60 deuterìlepta). Pr¸ta prèpei na lÔsoume thn exÐswsh. MporoÔme na isqurisjoÔme ìti h lÔsh dÐnetai apì thn sqèsh
P (t) = Cekt , ìpou
C
eÐnai kpoia stajer. Ac to epibebai¸soume,
dP = Ckekt = kP. dt Prgmati eÐnai lÔsh. Ti katafèrame ìmwc? Den gnwrÐsoume to Xèroume ìti
P (0) = 100
C ìpwc den gnwrÐzoume oÔte to k. Xèroume ìmwc arket lla prgmata. P (10) = 200. Ac antikatast soume aut pou xèroume kai ac doÔme pou
ìpwc xèroume kai ìti
ja katal xoume.
100 = P (0) = Cek0 = C, 200 = P (10) = 100 ek10 . Sunep¸c,
2 = e10k
ln 2 10
= k ≈ 0.069.
'Ara gnwrÐzoume ìti
P (t) = 100 e(ln 2)t/10 ≈ 100 e0.069t . Dhlad xèroume ìti met apì 1 leptì,
t = 60,
o plhjusmìc ja eÐnai
P (60) = 6400.
Ac doÔme kai to Sq ma 2.
Entxei mèqri ed¸, all ac prospaj soume na katano soume ta apotelèsmat mac.
ShmaÐnei prgmati ìti met
apì 60c ja èqoume akrib¸c 6400 bakt ria sto doqeÐo? Pro-
0
10
20
30
40
50
60
6000
6000
5000
5000
4000
4000
3000
3000
2000
2000
1000
1000
fan¸c ìqi! Mhn xeqnte ìti kname paradoqèc pou mporeÐ na mhn eÐnai swstèc. En ìmwc oi paradoqèc mac autèc eÐnai logikèc, tìte prgmati ja uprqoun perÐpou 6400 bakt ria. ShmeÐwste epÐshc ìti sthn pragmatikìthta to
P
eÐnai ènac
akèraioc arijmìc, kai ìqi kpoioc pragmatikìc arijmìc. Gia pardeigma to montèlo mac mporeÐ na mac diabebai¸sei ìti met apì 61c,
P (61) ≈ 6859.35.
Sun jwc sthn prxh, to
k
sthn
P 0 = kP
eÐnai gnwstì,
kai prospajoÔme na lÔsoume thn exÐswsh gia diaforetikèc arqikèc sunj kec.
Ti ennooÔme me autì?
soume thn katstash jètontac dhlad thn exÐswsh
P (0) = 1000
dP dt
=P
k = 1.
Ac aplopoi -
'Ac jewr soume
ktw apì thn proôpìjesh ìti
(h arqik sunj kh).
P (t) = Cet
20
30
40
50
60
genik lÔsh, mia kai h opoiad pote lÔsh thc exÐswshc mporeÐ na grafjeÐ sthn
morf aut gia kpoia katllhlh tim thc stajerc
C
10
Σχήμα 2: Αύξηση του πληθυσμού των βακτηριδίων τα πρώτα 60 δευτερόλεπτα.
P (t) = 1000 et .
sugkekrimènh tim thc
0 0
Tìte eÔkola mporoÔme
na broÔme thn ex c lÔsh
Ja onomsoume thn
0
C.
Qreiazìmaste mia arqik sunj kh gia na prosdiorÐsoume thn
h opoÐa kajorÐzei thn sugkekrimènh lÔsh pou antistoiqeÐ sthn arqik sunj kh. Suqn me
8
ΕΙΣΑΓΩΓΗ
ton ìro sugkekrimènh lÔsh ja ennooÔme apl kpoia lÔsh en¸ me ton ìro genik lÔsh ja ennooÔme mia oikogèneia lÔsewn. Ac proqwr soume t¸ra se autèc pou ja onomsoume oi 4 jemeli¸deic exis¸seic oi opoÐec emfanÐzontai tìso suqn pou kalì ja eÐnai na apomnhmoneÔsoume tic lÔseic touc.
MporoÔme sqetik eÔkola na mantèyoume autèc
tic lÔseic enjumoÔmenoi idiìthtec twn ekjetik¸n, twn hmitonoeid¸n kai twn sunhmitonoeid¸n sunart sewn. epÐshc mporoÔme na epibebai¸soume to ìti eÐnai prgmati lÔseic.
EÔkola
Tètoiec epibebai¸seic apoteloÔn pnta mia kal
genik praktik pou mporeÐ na mac prostateÔsei apotelesmatik apì difora probl mata (p.q.
na mhn jumìmaste
swst thn lÔsh). Prèpei na mporeÐte na lÔnete me eukolÐa tic exis¸seic autèc. H pijanìthta na deÐte mia h dÔo apì autèc se 'OLA ta diagwnÐsmata tou maj matoc eÐnai idiaÐtera meglh. 'Iswc na mhn eÐnai kajìlou sqhmh idèa na apomnhmoneÔsete tic lÔseic touc. Proswpik eg¸ tic jummai sun jwc. Den eÐmai ìmwc potè sÐgouroc gia thn mn mh mou me apotèlesma na elègqw to ti jummai epibebai¸nontac to en h sunrthsh pou jummai eÐnai prgmati lÔsh. Fusik, den eÐnai kai tìso dÔskolo na mantèyei kpoioc tic lÔseic autèc. Se kje perÐptwsh mhn mou peÐte ìti den sac proeidopoÐhsa. H pr¸th jemeli¸dhc exÐswsh eÐnai h ex c,
ìpou
k>0
kpoia stajer.
Ed¸
y
eÐnai h
dy = ky, dx exarthmènh kai x h
anexrthth metablht .
H genik lÔsh thc exÐswshc
aut eÐnai
y(x) = Cekx . 'Eqoume dh diapist¸sei ìti aut eÐnai h lÔsh prohgoumènwc an kai tìte eÐqame qrhsimopoi sei lla onìmata gia tic metablhtèc mac. Parìmoia, h exÐswsh
dy = −ky, dx ìpou
k>0
kpoia stajer, èqei thn ex c genik lÔsh
y(x) = Ce−kx . 0.2.1
Epibebai¸ste to gegonìc ìti h dojeÐsa
y
eÐnai pragmatik h lÔsh thc exÐswshc.
T¸ra jewr ste thn ex c diaforik exÐswsh deÔterhc txhc
d2 y = −k2 y, dx2 gia kpoia stajer
k > 0.
H genik lÔsh thc exÐswshc aut c eÐnai
y(x) = C1 cos(kx) + C2 sin(kx). Shmei¸ste ìti epeid èqoume diaforik exÐswsh deÔterhc txhc èqoume dÔo stajerèc sthn genik thc lÔsh.
0.2.2
Epibebai¸ste to gegonìc ìti h dojeÐsa
y
eÐnai pragmatik h lÔsh thc exÐswshc.
Tèloc, ac doÔme thn ex c diaforik exÐswsh deÔterhc txhc
d2 y = k2 y, dx2 gia kpoia stajer
k > 0.
H genik lÔsh thc exÐswshc aut c eÐnai
y(x) = C1 ekx + C2 e−kx , isodÔnama
y(x) = D1 cosh(kx) + D2 sinh(kx).
0.2. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Gia ìsouc den jumoÔntai, oi
cosh
kai
sinh
9
orÐzontai wc ex c
ex + e−x , 2 x −x e −e sinh x = . 2
cosh x =
Merikèc forèc protimme na qrhsimopoioÔme tic sunart seic autèc par autèc pou perièqoun ekjetik kurÐwc lìgw kpoiwn polÔ elkustik¸n idiot twn touc ìpwc oi
d kpoio ljoc ed¸) kai dx
0.2.3
d dx
cosh x = sinh x
(ìqi, den uprqei
y
pou d¸same parapnw eÐnai prgmati lÔseic thc exÐswshc.
Ask seic
0.2.4
DeÐxte ìti h
x = e4t
0.2.5
DeÐxte ìti h
x = et
0.2.6
EÐnai h
0.2.7
EÐnai h sunrthsh
y = sin t
d¸ste ìlec tic dunatèc
0.2.8
kai
sinh x = cosh x.
Elèxte ìti oi morfèc thc
0.2.4
cosh 0 = 1, sinh 0 = 0,
eÐnai lÔsh thc
den eÐnai lÔsh thc
lÔsh thc
dy 2 dt
y = erx lÔsh timèc thc r .
Epibebai¸ste ìti h
x000 − 12x00 + 48x0 − 64x = 0.
x = Ce−2t
x000 − 12x00 + 48x0 − 64x = 0.
= 1 − y2 ?
Dikaiolog ste thn apnths sac.
thc exÐswshc
y 00 + 2y 0 − 8y = 0
eÐnai lÔsh thc
x0 = −2x.
gia kpoia tim thc paramètrou
BreÐte
C
r?
En nai,
pou antistoiqeÐ sthn arqik sunj kh
x(0) = 100. 0.2.9
sthn arqik sunj kh
0.2.10 2
x = C1 e−t + C2 e2t x(0) = 10.
Epibebai¸ste ìti h
x = 4.
eÐnai lÔsh thc
x00 − x0 − 2x = 0.
BreÐte
C1
kai
C2
pou na antistoiqoÔn
Qrhsimopoi¸ntac idiìthtec twn parag¸gwn gnwst¸n sunart sewn prospaj ste na breÐte mia lÔsh thc
(x0 )2 +
Keflaio 1
SDE pr¸thc txhc 1.1
LÔseic se morf oloklhrwmtwn
SDE pr¸thc txhc eÐnai mia exÐswsh thc morf c
dy = f (x, y), dx h thc morf c
y 0 = f (x, y). Genik, den uprqei aplìc genikìc tÔpoc diadikasÐa pou ja mporoÔse kpoioc na akolouj sei gia na brei tic lÔseic miac SDE ìpwc h parapnw. Stic epìmenec dialèxeic ja exetsoume sugkekrimènec peript¸seic gia tic opoÐec den eÐnai dÔskolo na broÔme tic lÔseic. Sthn pargrafo aut ac upojèsoume ìti h
f
eÐnai mia sunrthsh mìnon miac metablht c, thc
x,
dhlad èqei thn
ex c morf
y 0 = f (x). MporoÔme na oloklhr¸soume wc proc
x
(1.1)
kai ta dÔo mèrh thc exÐswshc.
Z
y 0 (x) dx =
Z f (x) dx + C,
dhlad
Z y(x) = Aut h sunrthsh thc
f (x)
y(x) eÐnai ousiastik h genik lÔsh.
f (x) dx + C. Dhlad gia na lÔsoume thn (1.1) br kame kpoia anti-pargwgo
kai katìpin kataskeusame thn genik lÔsh prosjètontac mia tuqaÐa stajer.
Ed¸ eÐnai katllhlh stigm na suzht soume èna jèma sqetikì me sto sumbolismì kai thn terminologÐa tou majhmatikoÔ logismoÔ.
Poll biblÐa tou MajhmatikoÔ LogismoÔ dhmiourgoÔn sÔgqush ìtan me ton ìro olokl rwma
ennooÔn prwtarqik to apokaloÔmeno orismèno olokl rwma.
To aìristo olokl rwma ìmwc eÐnai sthn ousÐa h an-
tipargwgoc (sthn pragmatikìthta mia mono-parametrik oikogèneia antiparag¸gwn). Sthn pragmatikìthta uprqei mìnon èna olokl rwma kai autì eÐnai to orismèno olokl rwma.
O mìnoc lìgoc pou qreizetai kpoioc na qrhsi-
mopoi sei ton sumbolismì tou aìristou oloklhr¸matoc eÐnai epeid mporoÔme pnta na gryoume thn antipargwgo san èna (orismèno) olokl rwma. Prgmati me bsh to jemeli¸dec je¸rhma tou LogismoÔ mporoÔme na gryoume to
R
f (x) dx + C
wc ex c
Z
x
f (t) dt + C. x0 H olokl rwsh eÐnai apl ènac trìpoc na upologÐsei kpoioc thn antipargwgo (ènac trìpoc pou eÐnai pntote apotelesmatikìc, deÐte to paraktw pardeigma). H olokl rwsh orÐzetai bèbaia san to embadìn tou qwrÐou pou brÐsketai
10
1.1. ΛΥΣΕΙΣ ΣΕ ΜΟΡΦΗ ΟΛΟΚΛΗΡΩΜΑΤΩΝ
11
ktw apì thn grafik parstash thc sunrthshc, apl tuqaÐnei na mac odhgeÐ kai sthn antipargwgo.
Gia lìgouc
sumbatìthtac me difora biblÐa all kai lla maj mata, ja suneqÐsoume na qrhsimopoioÔme ton sumbolismì tou aorÐstou oloklhr¸matoc gia na anaferjoÔme se antiparag¸gouc, pnta ìmwc ja prèpei na skeftìmaste to orismèno olokl rwma.
Pardeigma 1.1.1:
BreÐte thn genik lÔsh thc exÐswshc
y 0 = 3x2 .
EÔkola parathroÔme ìti h genik lÔsh prèpei na eÐnai thc morf c
y = x3 + C .
Ac to epibebai¸soume:
y 0 = 3x2 .
Odhghj kame akrib¸c pÐsw sthn exÐsws mac. Sun jwc mia exÐswsh ìpwc h parapnw, sunodeÔetai apì mia arqik sunj kh san thn arijmoÔc
x0
kai
y0
(to
x0
eÐnai sun jwc 0, all ìqi pnta).
y(x0 ) = y0
gia kpoiouc
MporoÔme na gryoume thn lÔsh se mia polÔ ìmorfh
morf san orismèno olokl rwma. 'Estw ìti to prìblhm mac eÐnai
y 0 = f (x), y(x0 ) = y0 . Tìte h lÔsh Z x f (s) ds + y0 . y(x) =
eÐnai
(1.2)
x0 Ac to epibebai¸soume! H
y 0 = f (x)
(sÔmfwna me to jemeli¸dec je¸rhma tou logismoÔ gia pardeigma), eÐnai sÐgoura x0 0 0 0. x0 Parakal¸ shmei¸ste ìti to orismèno olokl rwma (anti-pargwgoc) eÐnai teleÐwc diaforetik majhmatik ontìthta
mia lÔsh. EÐnai ìmwc aut pou ikanopoieÐ thn arqik sunj kh? Prgmati eÐnai epeid
y(x ) =
R
f (x) dx + y = y
apì to aìristo olokl rwma. To orismèno olokl rwma eÐnai ousiastik ènac arijmìc. Sunep¸c h (1.2) eÐnai ènac tÔpoc ton opoÐo mporeÐ kaneÐc na qrhsimopoi sei endeqomènwc mèsw enìc upologist gia na prei sugkekrimènouc arijmoÔc. MporeÐ sunep¸c kpoioc na knei thn grafik parstash thc lÔshc kai na thn qrhsimopoi sei san na eÐnai mia opoiad pote sunrthsh. Den eÐnai dhlad aparaÐthto na brei kpoioc thn analutik morf thc antiparag¸gou.
Pardeigma 1.1.2:
LÔste thn 2
y 0 = e−x ,
y(0) = 1.
Me bsh thn prohghjeÐsa suz thsh, h lÔsh prèpei na eÐnai h ex c
x
Z y(x) =
2
e−s ds + 1.
0 Den èqei kanèna nìhma na prospaj sete na breÐte thn lÔsh aut se analutik (merikoÐ thn lène kai kleist ) morf . Apì thn mia meri den mporeÐte apì thn llh den qreizetai mia kai to en lìgw orismèno olokl rwma mporeÐ na d¸sei pollèc plhroforÐec. To olokl rwma autì parempiptìntwc eÐnai idiaÐtera shmantikì sthn Statistik kai ìqi mìno. Qrhsimopoi¸ntac thn mèjodo aut mporoÔme na lÔsoume kai exis¸seic thc morf c
y 0 = f (y). Ac gryoume thn exÐswsh se mia llh morf qrhsimopoi¸ntac ton sumbolismì
Leibniz
dy = f (y). dx MporoÔme t¸ra na qrhsimopoi soume to je¸rhma thc antÐstrofhc sunrthshc tou logismoÔ gia na antistrèyoume touc rìlouc twn metablht¸n
x
kai
y
katal gontac sthn exÐswsh
dx 1 = . dy f (y) H parapnw prospjei mac dÐnei thn entÔpwsh ìti knoume aplèc algebrikèc prxeic me ta elkustikì na knei kaneÐc algebrikèc prxeic me ta
dx kai dy jewr¸ntac ta aploÔc arijmoÔc.
dx
kai
dy .
EÐnai sÐgoura
Sthn parapnw perÐptwsh
ìla doÔleyan mia qar. Prosoq ìmwc, tètoiec praktikèc aplopoihmènwn prxewn mporeÐ na mac dhmiourg soun sobaroÔc mpeldec, idiaÐtera ìtan emplèkontai perissìterec apì mia anexrthtec metablhtèc. Sto shmeÐo autì mporoÔme apl na oloklhr¸soume
Z x(y) = Telik, ac prospaj soume na lÔsoume wc proc
y.
1 dy + C. f (y)
12
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
Pardeigma 1.1.3:
Mantèyame ìti h
y 0 = ky
èqei thn ex c lÔsh
upologÐzontac thn lÔsh aut ex' arq c. Shmei¸ste pr¸ta ìti h ìti
y 6= 0.
y=0
Cekx .
Ac epikur¸soume thn manteyi mac aut
eÐnai profan¸c mia lÔsh. Ac upojèsoume ìmwc
'Eqoume loipìn
dx 1 = . dy ky Oloklhr¸nontac paÐrnoume
x(y) = x = T¸ra ac lÔsoume wc proc
1 ln |y| + C 0 . k
y 0
ekC ekx = |y|. En antikatast soume ton ìro
ekC
0
me kpoia tuqaÐa stajer
'Etsi èqoume enswmat¸sei kai thn lÔsh
y = 0,
C
mporoÔme na apallaqtoÔme apì thn apìluth tim .
katal gontac ousiastik sthn Ðdia genik lÔsh pou arqik mantèyame,
y = Cekx . Pardeigma 1.1.4: Xèroume ìti h
BreÐte thn genik lÔsh thc
y=0
y0 = y2 .
eÐnai mia lÔsh. Ac upojèsoume proc stigm ìti
y 6= 0
kai ac gryoume
dx 1 = 2. dy y Oloklhr¸nontac èqoume
x= LÔnoume wc proc
−1 + C. y
1 kai katal goume sthn ex c genik lÔsh C−x
y=
y= Parathr ste tic idiaiterìthtec thc lÔshc.
1 C −x
y = 0.
An gia pardeigma jèsoume
C = 1,
tìte ìso plhsizoume to
x = 1
parathroÔme miac suneq¸c kai me gorgoÔc rujmoÔc, auxanìmenh tim thc lÔshc katal gontac arg h gr gora se #ekrhxh. lÔsh thc.
EÐnai en gènei dÔskolo apl parathr¸ntac thn Ðdia thn exÐswsh na katalboume to pwc sumperifèretai h H exÐswsh
y 0 = y 2 faÐnetai mia qar kai eÐnai orismènh (−∞, C) thc morf c (C, ∞).
pantoÔ, h lÔsh thc ìmwc eÐnai orismènh mìnon se
kpoio disthma thc morf c
Klassik probl mata pou mac odhgoÔn se diaforikèc exis¸seic tic opoÐec mporoÔme na epilÔsoume me apl olokl rwsh eÐnai probl mata pou aforoÔn taqÔthta, epitqunsh kai apìstash.
Tètoia probl mata sÐgoura èqete dh
sunant sei sta maj mata tou LogismoÔ.
Pardeigma 1.1.5:
Jewr ste èna ìqhma pou kineÐtai me taqÔthta
et/2 mètra to deuterìlepto, ìpou me t paristnoume
to qrìno se deuterìlepta. Pìso makri ja èqei fjsei se 2 deuterìlepta kai pìso se 10 deuterìlepta?. 'Estw
x
h apìstash pou dianÔei to ìqhma. IsqÔei h exÐswsh
x0 = et/2 . MporoÔme apl na oloklhr¸soume kai ta dÔo mèlh thc exÐswshc kai na katal xoume sthn ex c exÐswsh
x(t) = 2et/2 + C. Shmei¸ste ìti akìma den èqoume upologÐsei to
C.
GnwrÐzoume ìmwc ìti ìtan to
t=0
tìte
x = 0,
dhlad :
x(0) = 0
opìte
0 = x(0) = 2e0/2 + C = 2 + C. 'Ara
C = −2
kai sunep¸c
x(t) = et/2 − 2. MporoÔme t¸ra na antikatast soume sthn exÐswsh gia na upologÐsoume thn apìstash pou ja dianÔsei to ìqhma met apì 2 kai 10 deuterìlepta
x(2) = 2e2/2 − 2 ≈ 3.44
,
mètra
x(10) = 2e10/2 − 2 ≈ 294
.
mètra
1.1. ΛΥΣΕΙΣ ΣΕ ΜΟΡΦΗ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Pardeigma 1.1.6:
13
Upojèste ìti to ìqhma epitaqÔnei me rujmì
t2 m/s2 .
Thn qronik stigm
t = 0
to ìqhma
brÐsketai se apìstash 1 mètrou apì thn arqik tou jèsh kai kin te me taqÔthta 10 m/c. PoÔ ja brÐsketai to ìqhma thn qronik stigm
t = 10?
Autì eÐnai èna prìblhma deÔterhc txhc. En parast soume me h taqÔtht tou kai
x00
x00 = t2 , Fusik, en jèsoume
x0 = v
x(0) = 1,
to opoÐo mporoÔme na lÔsoume wc proc LÔste wc proc
1.1.1
v
v,
kai katìpin lÔste wc proc
x.
Ask seic
LÔste thn exÐswsh
dy dx
= x2 + x
1.1.3
LÔste thn exÐswsh
dy dx
= sin 5x
1.1.4
LÔste thn exÐswsh
dy dx
=
1.1.5
LÔste thn exÐswsh
y0 = y3
1.1.6
LÔste thn exÐswsh
y 0 = (y − 1)(y + 1)
dy 1.1.7 LÔste thn exÐswsh dx LÔste thn exÐswsh
x0 (0) = 10.
=
gia
gia
1 gia x2 −1 gia
y 00 = sin x
y(1) = 3.
y(0) = 2. y(0) = 0.
y(0) = 1.
1 gia y 2 +1 gia
v(0) = 10,
kai katìpin na oloklhr¸soume gia na broÔme to
1.1.2
1.1.8
thn apìstash pou dianÔei to ìqhma, tìte
eÔkola katal goume sto ex c prìblhma pr¸thc txhc
v 0 = t2 ,
1.1.1
x
h epitquns tou. To prìblhma (h exÐswsh kai oi arqikèc sunj kec) eÐnai tìte to ex c
gia
y(0) = 3.
y(0) = 0. y(0) = 0.
x.
x0
eÐnai
14
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
1.2
PedÐa kateujÔnsewn M AT LAB http://www.math.uiuc.edu/iode/ .
Sto shmeÐo autì den eÐnai sqhmh idèa na egkatast sete sthn mporeÐte na breÐte sthn istoselÐda
sac to logismikì sÔsthma
IODE
to opoÐo
'Opwc eÐdame, oi exis¸seic pr¸thc txhc me tic opoÐec ja asqolhjoÔme èqoun thn ex c genik morf
y 0 = f (x, y). En gènei, den eÐnai dunatìn na lÔsoume ìlec tic exis¸seic autoÔ tou tÔpou analutik. Ja epijumoÔsame na gnwrÐzame toulqiston kpoia stoiqeÐa twn lÔse¸n touc, ìpwc h genik morf touc kai h en gènei sumperifor touc, èstw na mporoÔsame na upologÐsoume proseggÐseic twn lÔsewn twn exis¸sewn aut¸n.
1.2.1
PedÐa kateujÔnsewn
MporoÔme eÔkola na diapist¸soume ìti h exÐswsh shmeÐo tou epipèdou
(x, y).
y 0 = f (x, y)
ousiastik mac dÐnei thn tim thc klÐshc thc
y
se kje
MporoÔme na knoume thn grafik parstash thc en lìgw klÐshc qrhsimopoi¸ntac èna
mikrì eujÔgrammo tm ma se difora shmeÐa, arket ¸ste na sqhmatÐsoume mia kajar eikìna tou ti akrib¸c parist ìpwc autì faÐnetai sto Sq ma 1.1.
-3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 1.1: Πεδίο κατευθύνσεων της εξίσωσης y 0 = xy.
-3 -3
-2
y(x0 ) = y0 ,
0
1
2
3
Σχήμα 1.2: Το πεδίο κατευθύνσεων της εξίσωσης y 0 = xy και η γραφική παράσταση της λύσης που ικανοποιεί τις συνθήκες y(0) = 0.2, y(0) = 0, και y(0) = −0.2.
Thn parapnw eikìna onomzoume pedÐo kateujÔnsewn thc exÐswshc. sunj kh
-1
mporoÔme na xekin soume apì to shmeÐo
(x0 , y0 )
En mac dojeÐ mia sugkekrimènh arqik
sto epÐpedo kai na proqwr soume sthn grafik
parstash thc sugkekrimènhc lÔshc apl akolouj¸ntac katllhla tic klÐseic tou pedÐou. Parathr ste sqetik to Sq ma 1.2. Parathr¸ntac to pedÐo kateujÔnsewn loipìn mporoÔme na proume pollèc plhroforÐec sqetik me thn sumperifor twn lÔsewn. Gia pardeigma, sto Sq ma 1.2 mporoÔme eÔkola na doÔme pwc pne oi lÔseic ìtan h arqik sunj kh eÐnai
y(0) > 0, y(0) = 0
kai
y(0) < 0.
Shmei¸ste ìti mia mikr allag stic arqikèc sunj kec mporeÐ na epifèrei drastikèc
allagèc sthn sumperifor thc lÔshc. Apì thn llh meri, en knoume thn grafik parstash merik¸n lÔsewn thc exÐswshc
y 0 = −y ,
parathroÔme ìti apì ìpou kai na xekin soume, ìlec oi lÔseic teÐnoun sto mhdèn kaj¸c to
sto peiro. DeÐte to Sq ma 1.3 sthn paroÔsa selÐda.
x
teÐnei
1.2. ΠΕΔΙΑ ΚΑΤΕΥΘΥΝΣΕΩΝ
15
-3
-2
-1
0
1
2
3
3
3
2
2
1
1
0
0
-1
-1
-2
-2
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 1.3: Πεδίο κατευθύνσεων της εξίσωσης y 0 = −y μαζί με την γραφική παράσταση μερικών συγκεκριμένων λύσεων.
1.2.2
'Uparxh kai monadikìthta
Duo eÐnai ta jemeli¸dh erwt mata pou mac apasqoloÔn ìson afor to ex c prìblhma
y 0 = f (x, y),
y(x0 ) = y0 .
i
( ) Uprqei lÔsh?
ii
( ) EÐnai h lÔsh monadik (en uprqei)? Mhn biasteÐte na jewr sete ta parapnw erwt mata rhtorik me profan apnthsh kai sta dÔo to nai. Uprqoun peript¸seic pou (anloga me to
f (x, y))
h apnthsh se kpoio apì aut mporeÐ kllista na eÐnai ìqi.
Epeid genik oi exis¸seic mac prokÔptoun apì realistikèc katastseic kai fusik probl mata, faÐnetai logikì na upojèsoume ìti pnta uprqei lÔsh. H en lìgw lÔsh epÐshc eÐnai logikì na upojèsoume ìti eÐnai monadik mia kai ìloi mac pisteÔoume ìti o kìsmoc mac eÐnai nteterministikìc. En den uprqei lÔsh, h lÔsh den eÐnai monadik tìte pijanìn na prospajoÔme na lÔsoume kpoio majhmatikì montèlo pou den antistoiqeÐ swst sto arqikì realistikì mac prìblhma. Se kje perÐptwsh, eÐnai pnta shmantikì na gnwrÐzoume pìte èqoume prìblhma kai an eÐnai dunatìn giatÐ.
Pardeigma 1.2.1:
Prospaj ste na lÔsete thn exÐswsh:
y0 = Oloklhr¸ste gia na breÐte thn lÔsh
1 , x
y(0) = 0.
y = ln |x| + C .
Shmei¸ste ìti h lÔsh aut den uprqei gia
x = 0.
DeÐte
to 1.4 sthn epìmenh selÐda.
Pardeigma 1.2.2:
LÔste thn exÐswsh:
y0 = 2 Shmei¸ste ìti h sunrthsh
y = x
2
p |y|,
y(0) = 0.
eÐnai mia lÔsh kai ìti h
apoteleÐ lÔsh mìno sthn perÐptwsh pou èqoume
x > 0).
y = 0
eÐnai epÐshc lÔsh (shmeÐwste ìmwc ìti h
x2
DeÐte to Sq ma 1.5 sthn epìmenh selÐda.
EÐnai sthn pragmatikìthta dÔskolo na sumpernei kpoioc to en mia diaforik exÐswsh èqei monadik lÔsh ìqi parathr¸ntac apl to pedÐo twn dieujÔnse¸n thc. je¸rhma (gnwstì kai san je¸rhma tou qwrÐc apìdeixh.
∗ Charles
´ Emile Picard (1856 – 1941)
Uprqei ìmwc kpoia elpÐda.
Ac doÔme pr¸ta to paraktw
P icard∗ ) to opoÐo parìlo pou den eÐnai dÔskolo na apodeiqjeÐ ja to deqjoÔme
16
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
-3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 1.4: Πεδίο διευθύνσεων της εξίσωσης y 0 = 1/x.
Je¸rhma 1.2.1
-3 -3
-2
(x0 , y0 ),
0
1
2
3
Σχήμα 1.5: Πεδίο διευθύνσεων της εξίσωσης y 0 = p 2 |y| με δύο λύσεις που ικανοποιούν την συνθήκη y(0) = 0.
P icard).
(Je¸rhma Ôparxhc kai monadikìthtac tou
san sunrthsh dÔo bebaÐwc metablht¸n) kai en h pargwgoc apì to
-1
En h
f (x, y)
eÐnai suneq c (jewr¸ntac thn
∂f uprqei kai eÐnai suneq c se kpoia perioq gÔro ∂y
tìte h lÔsh tou probl matoc
y 0 = f (x, y), uprqei (toulqiston gia kpoia
x)
Shmei¸ste ìti ta probl mata
y(x0 ) = y0 ,
kai eÐnai monadik .
y 0 = 1/x, y(0) = 0
kai
p y 0 = 2 |y|, y(0) = 0
den ikanopoioÔn tic proôpojèseic tou
jewr matoc. Akìma kai sthn perÐptwsh pou mporoÔme na efarmìsoume to parapnw je¸rhma ofeÐloume na eÐmaste prosektikoÐ pnw sto jèma thc Ôparxhc. EÐnai arket pijanìn h lÔsh na uprqei mìnon proswrin. RÐxte mia mati sto ex c prìblhma
Pardeigma 1.2.3:
y0 = y2 , ìpou
A
y(0) = A,
kpoia stajer.
A 6= 0, ìpote h y den eÐnai Ðsh me mhdèn toulqiston 1 . En y(0) = A, tìte C = 1/A ra y = C−x
Xèroume pwc na broÔme thn lÔsh tou. Pr¸ta ac upojèsoume ìti gia kpoio
x
kont sto 0. Opìte
x0 = 1/y2 ,
ra
x = −1/y + C , y=
En
A = 0,
tìte h
y = 0 eÐnai profan¸c mia lÔsh. A = 1 èqoume èkrhxh thc lÔshc
En sugkekrimèna thc
x
sunep¸c
1 . −x
1/A
gia
x = 1.
parìlo pou h exÐswsh fainìtan mia qar gia kje tim tou
Sunep¸c, den èqoume Ôparxh lÔshc gia kpoia tim
x.
H exÐswsh
y0 = y2
den prodÐdei kpoio prìblhma
kai fusik eÐnai orismènh pantoÔ.
Sto mjhma autì ja epikentrwjoÔme se probl mata diaforik¸n exis¸sewn ta opoÐa èqoun monadik lÔsh, sun jwc gia kje tim tou
x.
EÐnai ìmwc aparaÐthto na suneidhtopoi soume ìti to jèma thc Ôparxhc kai thn monadikìthtac thc
lÔshc mporeÐ kllista na prokÔyei, akìma kai apì exis¸seic ìpwc h
y0 = y2
oi opoÐec den prodiajètoun gia kti tètoio.
Prèpei toulqiston na eÐmaste se jèsh na diapist¸soume thn Ôparxh enìc tètoiou probl mata kai na prospaj soume na katano soume ta aÐtia.
1.2. ΠΕΔΙΑ ΚΑΤΕΥΘΥΝΣΕΩΝ 1.2.3
1.2.1 to
x?
17
Ask seic
Sqediste to pedÐo dieujÔnsewn thc exÐswshc
y 0 = ex−y .
Pwc sumperifèrontai oi lÔseic thc ìtan auxnoume
MporeÐte na mantèyete mia sugkekrimènh lÔsh parathr¸ntac apl to pedÐo twn dieujÔnse¸n thc?
1.2.2
Sqediste to pedÐo dieujÔnsewn thc exÐswshc
y 0 = x2 .
1.2.3
Sqediste to pedÐo dieujÔnsewn thc exÐswshc
y0 = y2 .
1.2.4
EÐnai dunatìn na lÔsete thn exÐswsh
1.2.5
'Estw
k, A, B, C
y0 =
xy gia cos x
y(0) = 1?
Dikaiolog ste thn apnths sac.
eÐnai kpoiec stajerèc. AntistoiqÐste tic ex c diaforikèc exis¸seic me ta pedÐa kateujÔnsewn
pou dÐnontai paraktw.
1.
dy dx
= ky ,
ìpou
k>0
2.
dy dx
= ky ,
ìpou
k<0
3.
dy dx
= 2x(A − x)
4.
dy dx
= y(B − y)
5.
dy dx
= x2 + exp(x2 ) cos2 (3y)
6.
dy dx
= −ey − C(1 − cos(x))
2
−1
2
−1.2
1.5
1.5
−1.4 1
1 −1.6 0.5
−1.8 −2
y
0
y
y
0.5
−2.2
−0.5
0
−0.5
−2.4 −1
−1 −2.6
−1.5
−2 −3
−1.5
−2.8
−2
−1
0 x
1
2
3
−3
−8
−6
−4
−2
0 x
2
4
6
8
−2 −3
−2
−1
0 x
1
2
3
18
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
4
2
3
3.5 1.5
2
1
1
0.5
0
3 2.5
y
y
y
2 1.5 1 0
−1
−0.5
−2
0.5 0 −0.5 −1 −1
−0.5
0
0.5
1 x
1.5
2
2.5
3
−1 −1
−3 −0.5
0
0.5 x
1
1.5
2
−1.5
−1
−0.5
0 x
0.5
1
1.5
1.3. ΔΙΑΧΩΡΙΣΙΜΕΣ ΕΞΙΣΩΣΕΙΣ 1.3
19
DiaqwrÐsimec Exis¸seic
y 0 = f (x), tìte mporoÔme na thn lÔsoume apl oloklhr¸nontac: R y = f (x) dx + C . Dustuq¸c o trìpoc autìc den mporeÐ na epektajeÐ eÔkola kai gia exis¸seic thc genik c morf c y 0 = f (x, y). Oloklhr¸nontac kai ta duo mèlh èqoume Z y = f (x, y) dx + C. 'Opwc eÐdame an h exÐsws mac eÐnai sthn morf
Prosèxte ìti to olokl rwma exarttai apì to
1.3.1
y.
DiaqwrÐsimec Exis¸seic
Ac exetsoume thn perÐptwsh pou h exÐswsh eÐnai diaqwrÐsimh, dhlad an èqei thn morf
y 0 = f (x)g(y), ìpou
f (x)
kai
g(y)
kpoiec sunart seic. Ac gryoume thn exÐswsh aut sthn legìmenh morf
Leibniz
dy = f (x)g(y). dx T¸ra ac thn xanagryoume wc ex c
dy = f (x) dx. g(y) 'Eqoume sunep¸c diatup¸sei thn exÐswsh me trìpo pou na mporoÔme na oloklhr¸soume kai ta dÔo mèlh.
Dhlad
èqoume
Z
dy = g(y)
Z f (x) dx + C.
Sunep¸c en mporèsoume na upologÐsoume analutik to olokl rwma èqoume elpÐdec na lÔsoume thn prokÔptousa algebrik exÐswsh wc proc
Pardeigma 1.3.1:
y.
Jewr ste thn exÐswsh
y 0 = xy. Pr¸ta suneidhtopoi ste ìti h Ac gryoume thn exÐswsh san
y = 0 apoteleÐ lÔsh, opìte ac asqolhjoÔme dy = xy , opìte dx Z Z dy = x dx + C. y
apì ed¸ kai pèra me thn perÐptwsh
y 6= 0.
UpologÐzontac thn antipargwgo katal goume sthn
ln |y| =
x2 +C 2
isodÔnama sthn
|y| = e ìpou
D>0
kpoia stajer. Mia kai h
y=0
x2 2
+C
=e
x2 2
eC = De
x2 2
,
eÐnai lÔsh kai lìgw thc apìluthc tim c mporoÔme na katal xoume sthn
lÔsh
y = De gia kje arijmì
D
x2 2
,
(sumperilambanomènou tou mhdèn kai ton arnhtik¸n arijm¸n).
Ac to elègxoume:
y 0 = Dxe Swst!
x2 2
= x(De
x2 2
) = xy.
20
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ OfeÐloume ìmwc na eÐmaste lÐgo pio prosektikoÐ me thn mèjodo aut .
Oloklhr¸noume ousiastik wc proc dÔo
diaforetikèc metablhtèc kai autì den faÐnetai na eÐnai tìso swstì. FaÐnetai ìti den knoume thn Ðdia prxh kai sta dÔo mèrh thc exÐswshc. Ac doulèyoume me perissìterh majhmatik austhrìthta.
dy = f (x)g(y) dx Ac xanagryoume thn exÐswsh, lambnontac up ìyin to ìti h
y = y(x)
eÐnai sunrthsh tou
x
ìpwc eÐnai kai h
dy ! dx
1 dy = f (x) g(y) dx x. Z 1 dy dx = f (x) dx + C. g(y) dx
Ac oloklhr¸soume kai ta dÔo mèrh thc exÐswshc wc proc
Z
Me allag metablht¸n t¸ra katal goume sthn
Z
1 dy = g(y)
Z f (x) dx + C.
Oloklhr¸same.
1.3.2
'Emmesec LÔseic
EÐnai fanerì ìti kpoiec forèc mporeÐ na mhn mporoÔme na proqwr soume sthn diatÔpwsh thc lÔshc se analutik (kleist ) morf akìma kai an mporèsoume na upologÐsoume ìla ta emplekìmena oloklhr¸mata. jewr soume thn ex c diaqwrÐsimh exÐswsh
y0 =
Gia pardeigma, ac
xy . y2 + 1
DiaqwrÐzoume tic metablhtèc
y2 + 1 dy = y
1 y+ dy = x dx y
kai oloklhr¸noume gia na proume
y2 x2 + ln |y| = +C 2 2 kallÐtera
y 2 + 2 ln |y| = x2 + C. Den eÐnai eÔkolo na broÔme thn lÔsh thc diaforik c exÐswshc se analutik (kleist ) morf epeid den eÐnai eÔkolo na lÔsoume thn parapnw algebrik exÐswsh aut wc
y.
Ja kaloÔme loipìn kje sunrthsh
y
pou ikanopoieÐ thn
parapnw algebrik exÐswsh èmmesh lÔsh parìlo pou den mporoÔme na thn diatup¸soume se analutik morf . EÐnai eÔkolo na elègxoume an prgmati mia algebrik exÐswsh emperièqei prgmati èmmesh lÔsh h opoÐa ikanopoieÐ thn diaforik exÐswsh. Gi autì oloklhr¸noume kai èqoume
2 = 2x. y 0 2y + y EÐnai profanèc ìti h diaforik exÐswsh epalhjeÔetai. Ta prgmata mporeÐ na gÐnoun lÐgo pio dÔskola sthn perÐptwsh pou prèpei na upologÐsoume merikèc timèc thc
y
kai na prèpei na qrhsimopoi soume kpoio tèqnasma. Gia pardeigma,
mporoÔme na knoume thn grafik parstash thc
x
san sunrthsh thc
y,
kai met na anapodogurÐsoume to qartÐ. Oi
upologistèc mporoÔn na mac bohj soun ousiastik me tètoia teqnsmata, prèpei ìmwc na eÐmaste prosektikoÐ. Shmei¸ste ìti h parapnw exÐswsh èqei epiprìsjeta san lÔsh thn eÐnai h
y 2 + 2 ln |y| = x2 + C
idizousec lÔseic.
mazÐ me thn
y = 0.
y = 0.
Sthn perÐptwsh aut h genik lÔsh
Autèc tic apìkentrec lÔseic ìpwc h
y = 0 pollèc forèc tic onomzoume
1.3. ΔΙΑΧΩΡΙΣΙΜΕΣ ΕΞΙΣΩΣΕΙΣ 1.3.3
21
ParadeÐgmata
Pardeigma 1.3.2:
LÔste thn exÐswsh
x2 y 0 = 1 − x2 + y 2 − x2 y 2 , y(1) = 0.
ParagontopoioÔme pr¸ta to dexiì mèroc gia na proume thn exÐswsh
x2 y 0 = (1 − x2 )(1 + y 2 ). DiaqwrÐzoume tic metablhtèc, oloklhr¸noume kai lÔnoume wc proc
0
y
2
y 1−x = , 1 + y2 x2 0 y 1 = 2 − 1, 1 + y2 x −1 − x + C, arctan(y) = x −1 y = tan −x+C . x T¸ra lÔnoume thn exÐswsh gia thn arqik sunj kh,
0 = tan(−2 + C)
kai paÐrnoume ìti
C = 2
(
2 + π,
etc. . . ).
Sunep¸c, h lÔsh pou yqnoume eÐnai h
y = tan Pardeigma 1.3.3:
−1 −x+2 . x
Upojèste ìti sto kulikeÐo ftiqnoun ton kafè sac qrhsimopoi¸ntac brastì nerì (100bajm¸n
KelsÐou) kai èstw ìti protimtai na pÐnete ton kafè sac stouc 70 bajmoÔc.
En h jermokrasÐa tou peribllontoc
eÐnai 26 bajmoÔc kai èqete diapist¸sei ìti 1 leptì met thn paraskeu tou o kafèc sac èqei jermokrasÐa 95 bajmoÔ pìte prèpei na pieÐte ton kafè sac? 'Estw
T
h jermokrasÐa tou kafè kai
A
h jermokrasÐa tou peribllontoc (kulikeÐou),
tìte gia kpoio
k
h
jermokrasÐa tou kafè ikanopoieÐ thn exÐswsh:
dT = k(A − T ). dt Gia to prìblhm mac
A = 26, T (0) = 100, T (1) = 95.
C
DiaqwrÐzoume tic metablhtèc kai oloklhr¸noume (
kai
D
paristoÔn tuqaÐec stajerèc) gia na proume ìti
dT 1 = k, A − T dt ln(A − T ) = −kt + C, A − T = D e−kt , T = A − D e−kt . T = 26 − D e−kt . QrhsimopoioÔme thn pr¸th sunj kh 100 = T (0) = 26 − D kai katal goume sto D = −74. −kt −k Opìte èqoume T = 26 + 74 e . QrhsimopoioÔme thn 95 = T (1) = 26 + 74 e . LÔnoume wc proc k kai paÐrnoume 95−26 k = − ln 74 ≈ 0.07. T¸ra lÔnoume wc proc to t gia to opoÐo h jermokrasÐa tou kafè eÐnai 74 bajmoÔc. LÔnoume
Dhlad
dhlad thn exÐswsh
70 = 26 + 74e−0.07t
Pardeigma 1.3.4:
gia na proume
LÔste thn exÐswsh
Shmei¸noume pr¸ta ìti h
y=0
y0 =
t=−
ln 70−26 74 0.07
≈ 7.43
lept.
−xy 2 . 3
eÐnai mia lÔsh (mia idizousa lÔsh). Upojètontac ìti
−3 0 y = x, y2 3 x2 = + C, y 2 3 6 y= 2 = 2 . x /2 + C x + 2C
y 6= 0
èqoume
22
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
1.3.4
Ask seic
1.3.1
LÔste thn exÐswsh
y 0 = x/y.
1.3.2
LÔste thn exÐswsh
y 0 = x2 y .
1.3.3
LÔste thn exÐswsh
dx dt
= (x2 − 1) t,
1.3.4
LÔste thn exÐswsh
dx dt
= x sin(t),
1.3.5
LÔste thn exÐswsh
dy dx
= xy + x + y + 1.
1.3.6
BreÐte mia èmmesh lÔsh thc exÐswshc
dy 1.3.7 LÔste thn exÐswsh x dx
2
gia
gia
− y = 2x y ,
x(0) = 0.
x(0) = 1. Upìdeixh: Paragontopoi ste to dexiì mèroc.
xy 0 = y + 2x2 y ,
gia
y(0) = 10.
ìpou
y(1) = 1.
1.4. ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ 1.4
23
Grammikèc exis¸seic kai oloklhrwtikoÐ pargontec
'Enac apì touc shmantikìterouc tÔpouc diaforik¸n exis¸sewn pou ja melet soume eÐnai oi grammikèc exis¸seic. Sthn pragmatikìthta mìnon se lÐgec peript¸seic ja asqolhjoÔme me mh-grammikèc exis¸seic. Ac epikentrwjoÔme proc to parìn stic grammikèc exis¸seic pr¸thc txhc. Mia pr¸thc txhc diaforik exÐswsh eÐnai grammik en mporoÔme na thn gryoume sthn ex c morf :
y 0 + p(x)y = f (x). H lèxh grammik en prokeimènw shmaÐnei grammik wc proc
y.
(1.3)
H exrthsh wc proc
x
mporeÐ fusik na eÐnai pio
perÐplokh. Oi lÔseic twn grammik¸n exis¸sewn èqoun endiafèrousec idiìthtec. mporoÔn na orÐzontai oi sunart seic thc lÔshc eÐnai h Ðdia me aut twn
Gia pardeigma, h lÔsh uprqei arkeÐ na
p(x) kai f (x) sto disthma pou mac endiafèrei. Sthn perÐptwsh aut o omalìthta p(x) kai f (x), eÐnai dhlad ìso omal ìso kai oi dÔo autèc sunart seic. To
shmantikìtero ìmwc gegonìc, toulqiston gia t¸ra, eÐnai to ìti mporoÔme na diatup¸soume mia saf mèjodo gia thn epÐlush grammik¸n diaforik¸n exis¸sewn pr¸thc txhc. Ac pollaplasisoume kai ta dÔo mèrh thc exÐswshc (1.3) me kpoia sunrthsh
r(x)
tètoia ¸ste
i d h r(x)y 0 + r(x)p(x)y = r(x)y . dx MporoÔme bèbaia na oloklhr¸soume kai ta dÔo mèlh
i d h r(x)y = r(x)f (x). dx y en¸ to aristerì mèroc eÐnai h antipargwgoc miac sunrthshc. y . Fusik ìla ta parapnw ktw apì thn proôpìjesh ìti h sunrthsh r(x) eÐnai r(x) onomzete oloklhrwtikìc pargontac kai kat sunèpeia h prokÔptousa mèjodoc
Parathr ste ìti to dexiì mèroc den exarttai apì to MporoÔme na lÔsoume wc proc gnwst .
H sunrthsh aut
onomzete mèjodoc oloklhrwtikoÔ pargonta. Yqnoume loipìn gia mia sunrthsh pollaplasiasmènh me
p(x).
r(x)
tètoia ¸ste en thn paragwgÐsoume, ja proume thn Ðdia thn sunrthsh
Problèpetai ekjetik sunrthsh!
R
r(x) = e
p(x)dx
Ac knoume ìmwc tic prxeic.
y 0 + p(x)y = f (x), e
R
p(x)dx 0
R
Gia na proume bèbaia thn
y
R
p(x)y = e p(x)dx f (x), R d h R p(x)dx i e y = e p(x)dx f (x), dx Z R R e p(x)dx y = e p(x)dx f (x) dx + C, Z R R y = e− p(x)dx e p(x)dx f (x) dx + C .
y +e
p(x)dx
se kleist morf prèpei na mporoÔme na upologÐsoume kai ta dÔo emplekìmena
oloklhr¸mata se kleist morf .
Pardeigma 1.4.1:
LÔste thn exÐswsh
y 0 + 2xy = ex−x Parathr ste pr¸ta ìti
p(x) = 2x
Pollaplasizoume kai ta dÔo mèrh me
kai
r(x)
f (x) = ex−x
2
y(0) = −1.
2
R
. O oloklhrwtikìc pargontac eÐnai
gia na proume 2
2
2
2
ex y 0 + 2xex y = ex−x ex , d h x2 i e y = ex . dx
r(x) = e
p(x) dx
2
= ex
.
24
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
Oloklhr¸noume 2
ex y = ex + C, 2
2
y = ex−x + Cex . LÔnoume tic arqikèc sunj kec
−1 = y(0) = 1 + C ,
gia na proume ìti 2
C = −2.
H lÔsh loipìn eÐnai
2
y = ex−x − 2ex . R
Parathr ste ìti den endiaferìmaste poia antipargwgo ja proume ìtan upologÐzoume to
e
p(x)dx
.
MporoÔme
dhlad na prosjèsoume mia stajer olokl rwshc all aut den prìkeitai na paÐxei kpoio rìlo mia kai en tèlei ja enswmatwjeÐ sthn stajer olokl rwshc thc epìmenhc antiparag¸gou pou ja upologÐsoume.
1.4.1
Dokimste to.
Prosjèste mia stajer olokl rwshc ìtan ja upologÐsete ton oloklhrwtikì pargonta kai
deÐxte ìti h lÔsh pou ja katal xete tautÐzetai me aut pou br kame parapnw. Mia sumboul :
Mhn prospaj sete na apomnhmoneÔsete ton telikì tÔpo.
EÐnai dÔskolo kallÐtera, eÐnai eu-
kolìtero na jumste thn diadikasÐa kai na thn epanalbete. Epeid den mporoÔme pntote na upologÐzoume ta emplekìmena oloklhr¸mata se kleist morf eÐnai qr simo na xèroume pwc mporoÔme na gryoume thn lÔsh sthn morf orismènou oloklhr¸matoc.
Mhn xeqnte ìti to orismèno
olokl rwma eÐnai kti to opoÐo mporeÐc na upologÐsoume qrhsimopoi¸ntac upologist kompouterki. 'Estw h exÐswsh
y 0 + p(x)y = f (x),
y(x0 ) = y0 .
MporoÔme na d¸soume thn lÔsh grfontac ta oloklhr¸mata san orismèna oloklhr¸mata wc ex c
y(x) = e
R − xx p(s) ds
x
Z
Rt
e
0
x0
p(s) ds
f (t) dt + y0 .
(1.4)
x0 Prèpei na eÐmaste prosektikoÐ sthn qr sh twn metablht¸n olokl rwshc bebaÐwc. Profan¸c mporoÔme na ulopoi soume thn parapnw lÔsh ston upologist ètsi ¸ste autìc na mac d¸sei mesa ìpoia arijmhtik tim thc lÔshc tou zht soume.
1.4.2
Elègxete an h lÔsh (1.4) ikanopoieÐ thn sunj kh
1.4.3
Gryte thn lÔsh tou ex c probl matoc
y 0 + y = ex san orismèno olokl rwma.
2
y(x0 ) = y0 .
−x
,
y(0) = 10.
prospaj ste na aplopoi sete thn lÔsh sac ìso eÐnai dunatìn.
Shmei¸ste ìti den ja
mporèsete na gryete thn lÔsh se kleist morf .
Pardeigma 1.4.2:
Ac doÔme t¸ra mia apl efarmog twn grammik¸n exis¸sewn tupik gia mia kathgorÐa prob-
lhmtwn pou suqn sunantme sthn prxh. Gia pardeigma, qrhsimopoioÔme suqn grammikèc exis¸seic gia na melet soume thn sugkèntrwsh miac ousÐac (qhmik c ousÐac, rÔpou,
. . .)
se èna mèso (nerì).
Sugkekrimèna, mia dexamen 100 lÐtrwn perièqei 10 kil alatioÔ dialumèna se 60 lÐtra neroÔ. Diluma neroÔ kai alatioÔ (lmh) puknìthtac 0.1 kil an lÐtro eisgetai sto doqeÐo me rujmì 5 lÐtra to leptì. To diluma anakateÔetai kal kai exgetai apì to doqeÐo me rujmì 3 lÐtra to leptì. Pìso alti ja perièqei h dexamen ìtan ja èqei gemÐsei? Prèpei na kataskeusoume thn exÐswsh. Ac sumbolÐsoume me
t ∆x)
h dexamen , kai me
to qrìno (se lept).
sumbolÐzoume me
eÐnai perÐpou
∆x ≈ (rujmìc
eisagwg c
PaÐrnoume to ìrio ìtan to
dx = (rujmìc dt
× sugkèntrwsh ∆t → 0
eisagwg c
x
thn posìthta tou alatioÔ (se kil) pou perièqei
Tìte gia mia mikr allag
)∆t − (rujmìc
eisagwg c
∆t
ston qrìno h allag sto
x
(pou thn
exagwg c
× sugkèntrwsh
exagwg c
exagwg c
× sugkèntrwsh
exagwg c
)∆t.
kai parathroÔme ìti
× sugkèntrwsh
) − (rujmìc
eisagwg c
).
1.4. ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ
25
'Eqoume loipìn
rujmìc eisagwg c sugkèntrwsh eisagwg c rujmìc exagwg c sugkèntrwsh exagwg c
= 5, = 0.1, = 3, =
x ìgkoc
=
x . 60 + (5 − 3)t
Katal goume sunep¸c sthn exÐswsh
dx x = (5 × 0.1) − 3 . dt 60 + 2t Thn opoÐa bebaÐwc mporoÔme na gryoume sthn morf (1.3) wc ex c
3 dx + x = 0.5. dt 60 + 2t Ac prospaj soume na thn lÔsoume t¸ra. O oloklhrwtikìc pargontc thc eÐnai
Z r(t) = exp
3 dt 60 + 2t
= exp
3 ln(60 + 2t) = (60 + 2t)3/2 . 2
Pollaplasizontac kai ta duo mèlh èqoume
(60 + 2t)3/2
3 dx + (60 + 2t)3/2 x = 0.5(60 + 2t)3/2 , dt 60 + 2t i d h (60 + 2t)3/2 x = 0.5(60 + 2t)3/2 , dt Z (60 + 2t)3/2 x =
C.
GnwrÐzoume ìti
Z
x = (60 + 2t)−3/2
1 (60 + 2t)5/2 + C(60 + 2t)−3/2 , 10
60 + 2t + C(60 + 2t)−3/2 . 10
t = 0, x = 10.
10 = x(0) =
(60 + 2t)3/2 dt + C(60 + 2t)−3/2 , 2
x = (60 + 2t)−3/2
x= Ac broÔme t¸ra to
0.5(60 + 2t)3/2 dt + C,
'Ara
60 + C(60)−3/2 = 6 + C(60)−3/2 , 10
C = 4(603/2 ) ≈ 1859.03. Jèloume na broÔme to dhlad ìtan
t = 20.
x
ìtan gemÐsei h dexamen . ParathroÔme ìti h dexamen eÐnai gemth ìtan
60 + 2t = 100,
'Ara
x(20) =
60 + 40 + C(60 + 40)−3/2 ≈ 10 + 1859.03(100)−3/2 ≈ 11.86. 10
H sugkèntrwsh loipìn ìtan gemÐsei h dexamen ja eÐnai perÐpou 0.1186 kg/liter en¸ h arqik tim thc tan
0.167 kg/liter.
1/6
26
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
1.4.1
Ask seic
Stic paraktw ask seic prospaj ste na d¸sete thn lÔsh se kleist morf .
En kti tètoio den eÐnai dunatìn,
mporeÐte na thn af sete sthn morf orismènou oloklhr¸matoc.
1.4.4
LÔste thn exÐswsh
y 0 + xy = x.
1.4.5
LÔste thn exÐswsh
y 0 + 6y = ex .
1.4.6
LÔste thn exÐswsh
y 0 + 3x2 y = sin(x) e−x
1.4.7
LÔste thn exÐswsh
y 0 + cos(x)y = cos(x).
1.4.8
LÔste thn exÐswsh
1 x2 +1
1.4.9
'Eqoume dÔo lÐmnec kai apì thn mia rèei nerì sthn llh.
y 0 + xy = 3,
3
ìtan
apì thn kje lÐmnh eÐnai 500 lÐtra thn ¸ra.
, ìtan
y(0) = 1.
y(0) = 0. H rujmìc thc ro eisagwg c kai exagwg c neroÔ
H pr¸th lÐmnh perièqei 100 qilidec lÐtra neroÔ kai h deÔterh 200
qilidec lÐtra. 'Ena butÐo pou metafèrei 500 kil miac toxik c ousÐac anatrèpetai mèsa sthn sthn pr¸th lÐmnh ìpou kai qÔnetai to perieqìmenì tou. Upojètontac ìti h toxik ousÐa dialÔetai amèswc kai omoiìmorfa breÐte 1. Thn sugkèntrwsh thc toxik c ousÐac san sunrthsh tou qrìnou (se deuterìlepta) stic dÔo lÐmnec. 2. Pìte h sugkèntrwsh sthn pr¸th lÐmnh ja eÐnai mikrìterh apì 0.01 kil an lÐtro. 3. Pìte ja eÐnai h sugkèntrwsh sthn deÔterh lÐmnh ìso to dunatìn pio uyhl .
dx dt
= −k(x − A) ìpou x eÐnai h A h jermokrasÐa tou peribllontoc, kai k > 0 mia stajer. Upojèste ìti A = A0 cos ω t gia kpoiec stajerèc A0 kai ω . Upojèste dhlad ìti h jermokrasÐa tou peribllontoc metablletai periodik (pq lìgw metabol c thc jermokrasÐac metaxÔ mèrac kai nÔqtac) kai breÐte thn genik lÔsh x tou probl 1.4.10
O Nìmoc didoshc thc jermìthtac tou NeÔtwna mac diabebai¸nei ìti
jermokrasÐa enìc s¸matoc,
t
eÐnai o qrìnoc,
matoc. Exetste en oi arqikèc sunj kec ephrezoun ousiastik thn lÔsh sto makrinì mèllon. DikaiologeÐste ta sumpersmat sac.
1.5. ΑΝΤΙΚΑΤΑΣΤΑΣΕΙΣ 1.5
27
Antikatastseic
'Opwc akrib¸c kai ìtan prospajoÔme na upologÐsoume oloklhr¸mata, ètsi kai gia thn epÐlush diaforik¸n exis¸sewn mporoÔme na prospaj soume na knoume allagèc metablht¸n gia na katal xoume se aploÔsterec exis¸seic tic opoÐec eÐnai eukolìtero na lÔsoume.
1.5.1
Antikatstash
Mia kai h exÐswsh
y 0 = (x − y + 1)2 . den eÐnai oÔte diaqwrÐsimh oÔte grammik ac prospaj soume na allxoume tic metablhtèc thc ètsi ¸ste h nèa morf thc (wc proc tic nèec metablhtèc) na eÐnai aploÔsterh. Ja qrhsimopoi soume mia nèa metablht thn jewr soume san sunrthsh tou
v,
thn opoÐa ja
x. v = x − y + 1.
Prèpei na broÔme thn
y
0
sunart sei twn
0
v,v
kai
x.
ParagwgÐzontac (wc proc
x)
èqoume
v0 = 1 − y0 .
'Ara
y0 = 1 − v0 .
AntikajistoÔme sthn arqik diaforik exÐswsh gia na proume
1 − v0 = v2 . Dhlad ,
v0 = 1 − v2 .
Thn exÐswsh aut xèroume na thn lÔsoume.
1 dv = dx. 1 − v2 'Ara
v + 1 1 = x + C, ln 2 v − 1 v + 1 2x+2C , v − 1 = e
v+1 v−1
= De2x
gia kpoia stajer
D.
Shmei¸ste ìti h
v=1
kai h
v = −1
eÐnai epÐshc lÔseic.
T¸ra ac antikatast soume proc ta pÐsw gia na proume
x−y+2 = De2x , x−y ìpwc kai tic llec dÔo lÔseic exÐswsh wc proc
x−y+1 = 1
y = x,
kai
x − y + 1 = −1
y = x + 2.
Ac lÔsoume kai thn pr¸th
y. x − y + 2 = (x − y)De2x , x − y + 2 = Dxe2x − yDe2x , −y + yDe2x = Dxe2x − x − 2, y (−1 + De2x ) = Dxe2x − x − 2, y=
Shmei¸ste ìti tim
D=0
mac odhgeÐ sthn lÔsh
y = x + 2,
Dxe2x − x − 2 . De2x − 1 en¸ kami tim tou
D
den mac odhgeÐ sthn
y = x.
H parapnw mèjodoc allag c metablht¸n gia thn epÐlush diaforik¸n exis¸sewn efarmìzetai ìpwc kai h antÐstoiqh mejodologÐa ston Logismì. BasÐzetai dhlad se manteyièc. Gia mia exÐswsh mporeÐ na uprqoun polloÐ trìpoi ( na mhn uprqei kanènac trìpoc) na efarmosjeÐ mia tètoia mèjodoc, mporeÐ ìmwc na eÐnai dÔskolo na broÔme kpoia apì autèc. Prèpei en gènei na basistoÔme sthn majhmatik mac diaÐsjhsh kai koultoÔra. Uprqoun ìmwc kpoiec genikèc arqèc pou anloga me thn exÐswsh ja mporoÔsan na mac bohj soun. Merikèc apì autèc eÐnai oi paraktw.
28
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ 'Otan deic
dokÐmase
yy 0 y2 y0 (cos y)y 0 (sin y)y 0 y 0 ey
y2 y3 sin y cos y ey
Sun jwc prospajoÔme na apallagoÔme apì to pio perÐploko mèroc thc exÐswshc elpÐzontac ìti ètsi ja thn aplopoi soume.
O parapnw pÐnakac eÐnai apl¸c ènac praktikìc genikìc kanìnac.
Uprqei bebaÐwc endeqìmeno na
mhn sac bohj sei kai na qreiasjeÐ na metatrèyete thn manteyi sac. Dhlad , en den doulèyei (den san odhg sei se mia aploÔsterh exÐswsh) kpoia antikatstash ofeÐloume na dokimsoume kpoia llh.
1.5.2
Exis¸seic
Bernoulli
Uprqoun merikoÐ tÔpoi exis¸sewn gia touc opoÐouc uprqoun metasqhmatismoÐ pou efarmìzontai se kje perÐptwsh me epituqÐa. 'Enac tètoioc tÔpoc exis¸sewn eÐnai h exÐswsh
Bernoulli† .
y 0 + p(x)y = q(x)y n . H exÐswsh aut moizei polÔ me grammik exÐswsh, mia kai en den up rqe o ìroc
n=0
n=1
h exÐswsh eÐnai grammik kai mporoÔme na thn lÔsoume.
v = y 1−n
qrhsimopoi soume thn ex c allag metablht¸n exÐswsh. Shmei¸ste ìti den eÐnai aparaÐthto o
Pardeigma 1.5.1:
n
yn
prgmati ja tan grammik . Gia
Se ìlec tic llec peript¸seic mporoÔme na
gia na metatrèyoume thn exÐswsh
Bernoulli
se grammik
na eÐnai akèraioc.
LÔste thn exÐswsh
xy 0 + y(x + 1) + xy 5 = 0, Pr¸ta prèpei na suneidhtopoi soume ìti èqoume mia exÐswsh
y(1) = 1.
Bernoulli (p(x) = (x + 1)/x
and
q(x) = −1).
Antika-
jistoÔme
v = y 1−5 = y −4 , Dhlad èqoume,
−y 5 0 v 4
= y0 .
v 0 = −4y −5 y 0 .
'Ara
xy 0 + y(x + 1) + xy 5 = 0, −xy 5 0 v + y(x + 1) + xy 5 = 0, 4 −x 0 v + y −4 (x + 1) + x = 0, 4 −x 0 v + v(x + 1) + x = 0, 4 kai telik
v0 −
4(x + 1) v = 4. x
Katal xame loipìn se mia grammik exÐswsh thn opoÐa ja lÔsoume me oloklhrwtikì pargonta. Ac upojèsoume ìti
x>0
opìte
|x| = x.
H upìjes mac aut den eÐnai perioristik mia kai h arqik mac sunj kh eÐnai sto shmeÐo
Z r(x) = exp
x = 1.
−4(x + 1) e−4x dx = e−4x−4 ln(x) = e−4x x−4 = . x x4
† Uprqoun pollèc exis¸seic pou lègontai exis¸seic Bernoulli. Oi Bernoullis tan mia olìklhrh oikogèneia shmantik¸n Elbet¸n majhmatik¸n. Oi exis¸seic me tic opoÐec ja asqolhjoÔme sto mjhma sqetÐzontai me ton Jacob Bernoulli (1654 1705).
1.5. ΑΝΤΙΚΑΤΑΣΤΑΣΕΙΣ
29
T¸ra
d e−4x e−4x v = 4 , dx x4 x4 Z x e−4x e−4s v= 4 4 ds + 1, 4 x s 1 Z x −4s e 4x 4 v=e x 4 ds + 1 . s4 1 Prosèxte ìti den mporoÔme na upologÐsoume to olokl rwma se kleist morf . 'Opwc ìmwc èqoume dh tonÐsei, eÐnai pl rwc apodektì na diatup¸soume thn lÔsh me èna orismèno olokl rwma. Ac antikatast soume proc ta pÐsw.'
y
−4
x
Z =e x 4 4x 4
1
y=
1.5.3
e−4s ds + 1 , s4
e−x R x x 4 1
e−4s s4
ds + 1
1/4 .
OmogeneÐc exis¸seic
'Enac lloc tÔpoc exis¸sewn pou mporoÔme na lÔsoume me allagèc metablht¸n eÐnai oi legìmenec omogeneÐc exis¸seic. Upojèste ìti mporoÔme na gryoume thn diaforik mac exÐswsh wc ex c
y0 = F
y x
.
Ed¸ prospajoÔme ton metasqhmatismì
v=
y x
kai
y 0 = v + xv 0 .
sunep¸c
Shmei¸ste ìti h exÐsws mac èqei metasqhmatisjeÐ wc ex c
v + xv 0 = F (v)
xv 0 = F (v) − v
v0 1 = . F (v) − v x
'Ara mia èmmesh lÔsh eÐnai h ex c
Z
Pardeigma 1.5.2:
1 dv = ln |x| + C. F (v) − v
LÔste thn exÐswsh
x2 y 0 = y 2 + xy, Ac thn fèroume pr¸ta sthn ex c morf
v = y/x
y 0 = (y/x)2 + y/x.
y(1) = 1. T¸ra mporoÔme na qrhsimopoi soume ton metasqhmatismì
gia na proume mia diaqwrÐsimh exÐswsh
xv 0 = v 2 + v − v = v 2 , h opoÐa èqei thn ex c lÔsh
Z
1 dv = ln |x| + C, v2 −1 = ln |x| + C, v −1 v= . ln |x| + C
30
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ
Antikajist¸ntac proc ta pÐsw èqoume
−1 , ln |x| + C −x y= . ln |x| + C
y/x =
Jèloume
y(1) = 1,
opìte
1 = y(1) = 'Ara
C = −1
kai h lÔsh mac eÐnai h ex c
y=
1.5.4
−1 −1 = . ln |1| + C C −x . ln |x| − 1
Ask seic
1.5.1
LÔste thn exÐswsh
xy 0 + y(x + 1) + xy 5 = 0,
1.5.2
LÔste thn exÐswsh
2yy 0 + 1 = y 2 + x,
1.5.3
LÔste thn exÐswsh
1.5.4
LÔste thn exÐswsh
y 0 + xy = y 4 , me y(0) = 1. p yy 0 + x = x2 + y 2 .
1.5.5
LÔste thn exÐswsh
y 0 = (x + y − 1)2 .
1.5.6
LÔste thn exÐswsh
x+y y0 = √ 2 y
2
y +1
, me
me
me
y(1) = 1.
y(0) = 1.
y(0) = 1.
1.6. ΑΥΤΟΝΟΜΕΣ ΕΞΙΣΩΣΕΙΣ 1.6
31
Autìnomec exis¸seic
Ac epikentrwjoÔme t¸ra se exis¸seic tou tÔpou
dx = f (x), dt ìpou h pargwgoc twn lÔsewn exarttai mìnon apì thn (exarthmènh metablht )
x.
Oi exis¸seic tou tÔpou autoÔ
lègontai autìnomec exis¸seic. To epÐjeto autìnomh prokÔptei apì to gegonìc ìti en jewr soume thn perÐptwsh pou h metablht
t
parist qrìno, tìte oi exis¸seic autèc eÐnai anexrthtec apì ton qrìno.
Ac epistrèyoume sto prìblhma tou kafè. O nìmoc thc didoshc tou NeÔtwna mac diabebai¸nei ìti
dx = −k(x − A), dt ìpou
x
eÐnai h jermokrasÐa,
t
eÐnai eÐnai o qrìnoc,
k
eÐnai kpoia stajer kai
A
eÐnai h jermokrasÐa tou peribllontoc
q¸rou. DeÐte to Sq ma 1.6 gia èna pardeigma. Shmei¸ste ìti h Ta shmeÐa tou
x
krÐsimo shmeÐo.
x=A
eÐnai lÔsh (sto pardeigma
xona sta opoÐa èqoume
A = 5).
f (x) = 0
x = A
eÐnai eustaj s.
odhgoÔn se ousiastik diaforetikèc lÔseic gia arket meglo
t→∞
To shmeÐo dhlad
Sthn pragmatikìthta, kje krÐsimo shmeÐo antistoiqeÐ se mia lÔsh isorropÐac.
parathr¸ntac thn grafik parstash, ìti h lÔsh
ìtan
AutoÔ tou eÐdouc tic lÔseic tic lème lÔseic isorropÐac.
ta lème krÐsima shmeÐa.
èqoume
t.
x = A
eÐnai èna
Shmei¸ste epÐshc,
Dhlad mikrèc diataraqèc sto
x
den
An loipìn allxoume lÐgo thn arqik sunj kh, tìte
x → A. Tètoia krÐsima shmeÐa ta lème eustaj . Sto tetrimmèno pardeigm mac faÐnetai ìti ìlec A ìtan to t → ∞. An èna krÐsimo shmeÐo den eÐnai eustajèc tìte lème ìti autì eÐnai astajèc.
oi lÔseic teÐnoun sto
0
5
10
15
0
20
10
10
5
5
0
5
10
15
20
10
10
5
5
0
0
0
-5
-5
-10
-5
-10 0
5
10
15
-5 0
20
Σχήμα 1.6: Πεδίο κατευθύνσεων και η γραφική παράσταση μερικών λύσεων της εξίσωσης x0 = −0.3(x − 5).
5
10
15
20
Σχήμα 1.7: Το πεδίο κατευθύνσεων και η γραφική παράσταση μερικών λύσεων της εξίσωσης x0 = −0.1x(5 − x).
Ac jewr soume t¸ra thn logistik exÐswsh
dx = kx(M − x), dt gia kpoiouc jetikoÔc arijmoÔc
k
kai
M.
H exÐswsh aut qrhsimopoieÐtai suqn san plhjusmiakì montèlo en
gnwrÐsoume ìti o o plhjusmìc enìc eÐdouc den mporeÐ na uperbeÐ ton arijmì katastrofikèc problèyeic gia ton pagkìsmio plhjusmì.
M.
To montèlo autì odhgeÐ se ligìterec
Shmei¸ste ìti sthn pragmatikìthta den uprqei arnhtikìc
x gia majhmatikoÔc lìgouc. x = 0 kai x = 5. To krÐsimo shmeÐo
plhjusmìc, ja diathr soume ìmwc thn dunatìthta na èqoume arnhtikèc timèc gia to Ac doÔme to Sq ma 1.7 gia pardeigma. Parathr ste ta dÔo krÐsima shmeÐa, sto
x=5
eÐnai eustajèc en¸ autì sto
x=0
eÐnai astajèc.
32
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ Den eÐnai aparaÐthto na èqoume tic akribeÐc lÔseic miac exÐswshc gia na apofanjoÔme sqetik me thn sumperifor
twn lÔsewn thc gia meglec timèc thc eleÔjerhc metablht c twn. Gia pardeigma apì ta parapnw mporoÔme eÔkola na doÔme ìti
5 lim x(t) = 0 t→∞
DU
an an
−∞
an
x(0) > 0, x(0) = 0, x(0) < 0.
'Opou DU shmaÐnei den uprqei. EÐnai dÔskolo, apl parathr¸ntac to pedÐo twn kateujÔnsewn, na apofanjoÔme gia to ti sumbaÐnei ìtan
x(0) < 0.
MporeÐ h lÔsh na mhn uprqei ìtan to
t
teÐnei sto
∞.
SkefjeÐte ìti h exÐswsh
y0 = y2 ,
ìpwc èqoume dh dei ufÐstatai mìnon gia kpoio peperasmèno qronikì disthma. To Ðdio mporeÐ na sumbaÐnei kai me thn twrin exÐswsh. 'Opwc ja diapist¸soume den uprqei lÔsh thc exÐswshc tou parapnw paradeÐgmatoc gia opoiod pote qronik stigm . Gia na to doÔme ìmwc autì ja prèpei na prospaj soume na thn lÔsoume. Se kje perÐptwsh, h lÔsei teÐnei sto
−∞,
endeqomènwc polÔ gr gora.
Arketèc forèc autì pou ousiastik mac apasqoleÐ eÐnai h sumperifor thc lÔshc se bjoc qrìnou kai sunep¸c se mia tètoia perÐptwsh Ðswc na spatalme skopa enèrgeia prospaj¸ntac na broÔme akrib¸c thn lÔsh. EÐnai eukolìtero apl na parathr soume to digramma fshc eikìna fshc, h opoÐa eÐnai ènac aplìc trìpoc gia na optikopoi soume thn sumperifor twn autìnomwn exis¸sewn. Sunep¸c sqedizoume ton
x
Sthn prokeÐmenh perÐptwsh uprqei mia anexrthth metablht h
x.
xona, shmei¸noume ìla ta krÐsima shmeÐa kai met sqedizoume bèlh metaxÔ touc. Proc
ta epnw bèlh paristoÔn jetikìthta kai proc ta ktw arnhtikèc timèc.
y=5 y=0
Exoplismènoi me to digramma fshc, mporoÔme eÔkola na sqedisoume prìqeira pwc perÐpou ja eÐnai oi lÔseic.
1.6.1
Prospaj ste na sqedisete merikèc lÔseic. Epibebai¸ste to apotèlesma sac qrhsimopoi¸ntac thn parapnw
grafik parstash. Apì thn stigm pou èqoume sthn dijesh mac to digramma fshc, eÔkola mporoÔme na apofanjoÔme poia apì ta krÐsima shmeÐa eÐnai eustaj kai poia astaj .
eustaj c
astaj c
Epeid kje majhmatikì montèlo pou mac apasqoleÐ apoteleÐ mia en dunmei prosèggish kpoiac pragmatik c katstashc, ta astaj shmeÐa shmatodotoÔn sun jwc sobar probl mata. Ac exetsoume t¸ra thn logistik exÐswsh me katanlwsh. gia thn montelopoÐhsh plhjusmiak¸n allag¸n.
Oi logistikèc exis¸seic qrhsimopoioÔntai eurÔtata
Upojèste ìti mia omda anjr¸pwn trèfetai me èna eÐdoc z¸ou sto
opoÐo basÐzesai gia thn epibÐws thc. Ektrèfei loipìn mia agèlh tètoiwn z¸wn kai ta katanal¸nei me rujmì z¸a ton qrìno. 'Estw ìti to se èth). 'Estw epÐshc ìti
M
x
parist to pl joc twn z¸wn (ac poÔme se qilidec) kai to
t
h
tètoia
parist qrìno (ac poÔme
eÐnai eÐnai o elqistoc plhjusmìc ktw apì ton opoÐo den epitrèpetai h katanlwsh twn
1.6. ΑΥΤΟΝΟΜΕΣ ΕΞΙΣΩΣΕΙΣ z¸wn.
k>0
33
eÐnai mia stajer pou exarttai apì to pìso gr gora anapargontai ta z¸a.
H exÐsws mac èqei thn
ex c morf
dx = kx(M − x) − h. dt 'Eqoume ìti
dx = −kx2 + kM x − h. dt 'Ara ta krÐsima shmeÐa
A
B
kai
eÐnai
A= 1.6.2
kM +
p (kM )2 − 4hk 2k
B=
kM −
Sqediste to digramma fshc gia diaforetikèc katastseic.
A > B,
A = B,
A
kai
B
p
(kM )2 − 4hk . 2k
Shmei¸ste ìti autèc oi katastseic eÐnai oi
kai oi dÔo migadikèc (dhlad den uprqei pragmatik lÔsh).
EÔkola diapist¸noume ìti en
h = 1,
tìte ta
A
B eÐnai jetik kai nisa. To sqetikì grfhma dÐnetai sto B to opoÐo eÐnai perÐpou 1,55 qilidec, tìte o plhjusmìc B tìte o plhjusmìc twn z¸wn ja exaleifjeÐ, me apotèlesma
kai
Sq ma 1.8. 'Oso o plhjusmìc paramènei megalÔteroc tou twn z¸wn paramènei en¸ en pèsei ktw apì to ìrio tou
na exaleifjeÐ kai o anjr¸pinoc plhjusmìc lìgw èlleiyhc trof c.
0
5
10
15
20
0
5
10
15
20
10
10
10
10
8
8
8
8
5
5
5
5
2
2
2
2
0
0
0
0
0
5
10
15
20
Σχήμα 1.8: Το πεδίο κατευθύνσεων και μερικές λύσεις της εξίσωσης x0 = −0.1x(8 − x) − 1.
'Otan
h = 1.6,
èqoume ìti
A = B.
0
5
10
15
20
Σχήμα 1.9: Το πεδίο κατευθύνσεων και μερικές λύσεις της εξίσωσης x0 = −0.1x(8 − x) − 1.6.
Uprqei mìnon èna krÐsimo shmeÐo to opoÐo eÐnai astajèc. 'Otan o plhjusmìc
twn z¸wn pèsei ktw apì tic 1,6 qilidec autìc ja teÐnei sto mhdèn en¸ en eÐnai megalÔteroc apì 1,6 qilidec tìte ja teÐnei na gÐnei 1,6 qilidec. 'Eqoume loipìn mia idiaÐtera epikÐndunh katstash ìpou en lìgw kpoiou endeqìmenou mikroÔ ljouc apomakrunjoÔme lÐgo apì to shmeÐo isorropÐac ja epèljei katastrof .
H katstash loipìn den
epidèqetai to paramikrì ljoc. DeÐte to Sq ma 1.9 Tèloc en katanal¸noun 2 qilidec z¸a ton qrìno, o plhjusmìc twn z¸wn ja exaleifjeÐ opwsd pote kai anexrthta apì ton arqikì pl joc twn z¸wn. DeÐte to Sq ma 1.10 sthn epìmenh selÐda.
1.6.1
1.6.3
Ask seic
'Estw
x0 = x2 .
a) Sqediste to digramma fshc, breÐte ta krÐsima shmeÐa kai shmei¸ste poia apì aut eÐnai
eustaj kai poia astaj . b) Sqediste merikèc qarakthristikèc lÔseic thc exÐswshc. c) BreÐte to lÔshc pou antistoiqeÐ sthn arqik sunj kh
x(0) = −1.
limt→∞ x(t)
thc
34
ΚΕΦΑΛΑΙΟ 1. ΣΔΕ ΠΡΩΤΗΣ ΤΑΞΗΣ 0
5
10
15
20
10
10
8
8
5
5
2
2
0
0
0
5
10
15
20
Σχήμα 1.10: Πεδίο κατευθύνσεων και μερικές λύσεις της εξίσωσης x0 = −0.1x(8 − x) − 2.
1.6.4
'Estw
x0 = sin x.
a) Sqediste to digramma fshc gia
−4π ≤ x ≤ 4π .
Sto dishma autì breÐte ta krÐsima
shmeÐa kai shmei¸ste poia apì aut eÐnai eustaj kai poia astaj . b) Sqediste merikèc qarakthristikèc lÔseic thc exÐswshc. c) BreÐte to
1.6.5
'Estw ìti h
x0 = f (x),
limt→∞ x(t)
f (x)
thc lÔshc pou antistoiqeÐ sthn arqik sunj kh
eÐnai jetik gia
0 < x < 1
kai arnhtik eidllwc.
x(0) = 1.
a) Sqediste to digramma fshc gia
breÐte ta krÐsima shmeÐa kai shmei¸ste poia apì aut eÐnai eustaj kai poia astaj . b) Sqediste merikèc
qarakthristikèc lÔseic thc exÐswshc.
c) BreÐte to
limt→∞ x(t)
thc lÔshc pou antistoiqeÐ sthn arqik sunj kh
x(0) = 0.5. 1.6.6
Xekin ste me thn logistik exÐswsh
dx dt
= kx(M − x).
Ac allxoume lÐgo ton trìpo pou katanal¸noume. Sug-
kekrimèna, ac upojèsoume ìti to posì pou katanal¸noume eÐnai anlogo tou uprqontoc plhjusmoÔ. Ja katanal¸noume dhlad
hx
gia kpoio
h > 0.
a) Kataskeuste thn diaforik exÐswsh pou analogeÐ b) ApodeÐxte ìti en
h exÐswsh paramènei logistik . c) Ti sumbaÐnei ìtan
kM < h?
kM > h,
tìte
Keflaio 2
Grammikèc SDE uyhlìterhc txhc 2.1
Grammikèc SDE uyhlìterhc txhc
Ac jewr soume thn ex c genik morf miac grammik c diaforik c exÐswshc deÔterhc txhc
A(x)y 00 + B(x)y 0 + C(x)y = F (x). Suqn diairoÔme kai ta dÔo mèrh me
A
gia na thn proume sthn ex c morf
y 00 + p(x)y 0 + q(x)y = f (x),
(2.1)
p = B/A, q = C/A, kai f = F/A. H lèxh grammik shmaÐnei ìti h exÐswsh y , y , kai y 00 oÔte autèc emfanÐzontai san orÐsmata llwn sunart sewn. Sthn eidik perÐptwsh f (x) = 0 èqoume mia omogen equation
ìpou
den perièqei dunmeic twn sunart sewn
0
y 00 + p(x)y 0 + q(x)y = 0.
(2.2)
'Eqoume dh sunant sei kpoiec omogeneÐc grammikèc diaforikèc exis¸seic deÔterhc txhc.
y 00 + k2 y = 0 00
Duo lÔseic eÐnai:
2
y −k y =0
Duo lÔseic eÐnai:
y1 = cos kx, kx
y1 = e ,
y2 = sin kx.
y2 = e−kx .
En mporèsoume kai broÔme dÔo lÔseic miac grammik c omogenoÔc exÐswshc, tìte èqoume apokt sei kai shmantik epiprìsjeth plhroforÐa.
Je¸rhma 2.1.1
(Upèrjesh). An
y1
kai
y2
eÐnai dÔo lÔseic thc omogenoÔc exÐswshc (2.2) tìte h
y(x) = C1 y1 (x) + C2 y2 (x), eÐnai epÐshc lÔsh thc (2.2) gia kpoiec stajerèc
C1
kai
C2 .
Dhlad , mporoÔme na prosjèsoume lÔseic ( na pollaplasisoume lÔseic me kpoion arijmì) kai to apotèlesma na eÐnai epÐshc lÔsh. Ac apodeÐxoume t¸ra to pr¸to mac je¸rhma.
H apìdeix tou ja mac bohj sei ousiastik na katano soume tic
ènnoiec, ta qarakthristik kai touc mhqanismoÔc pou aforoÔn tic grammikèc diaforikèc exis¸seic. Apìdeixh: 'Estw
y = C1 y1 + C2 y2 . 00
Tìte
0
y + py + qy = (C1 y1 + C2 y2 )00 + p(C1 y1 + C2 y2 )0 + q(C1 y1 + C2 y2 ) = C1 y100 + C2 y200 + C1 py10 + C2 py20 + C1 qy1 + C2 qy2 = C1 (y100 + py10 + qy1 ) + C2 (y200 + py20 + qy2 ) = C1 · 0 + C2 · 0 = 0
35
36
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ H apìdeixh mporeÐ na diatupwjeÐ akìma pio apl an qrhsimopoi soume ton sumbolismì twn telest¸n. Me ìso pio
apl lìgia gÐnetai, ac jewr soume telest kti pou tou dÐnoume kpoiec sunart seic kai autìc mac epistrèfei kpoiec sunart seic (ìpwc akrib¸c dÐnoume arijmoÔc se mia sunrthsh kai mac epistrèfei arijmoÔc). Ac orÐsoume ton diaforikì telest
L
wc ex c
Ly = y 00 + py 0 + qy. To ìti o telest c
L
eÐnai grammikìc shmaÐnei ìti
L(C1 y1 + C2 y2 ) = C1 Ly1 + C2 Ly2
kai h apìdeixh oloklhr¸netai wc
ex c.
Ly = L(C1 y1 + C2 y2 ) = C1 Ly1 + C2 Ly2 = C1 · 0 + C2 · 0 = 0. y 00 − k2 y = 0 eÐnai oi y1 = cosh kx kai y2 = sinh kx. JumhjeÐte ìti sÔmfwna me x −x sinh x = e −e . 'Ara, me bsh to je¸rhma thc upèrjeshc, oi parapnw eÐnai 2
DÔo llec lÔseic thc exÐswshc ex +e−x gnwstì orismì, kai
cosh x =
2
lÔseic mia kai eÐnai grammikoÐ sunduasmoÐ twn dÔo gnwst¸n ekjetik¸n lÔsewn. Arketèc forèc eÐnai polÔ bolikìtero na qrhsimopoi soume tic sunart seic
sinh
kai
cosh
kai ìqi tic ekjetikèc. Ac
jumhjoÔme merikèc apì tic idiìthtèc touc.
2.1.1
cosh 0 = 1
sinh 0 = 0
d cosh x = sinh x dx cosh2 x − sinh2 x = 1
d sinh x = cosh x dx
ApodeÐxte tic parapnw idiìthtec qrhsimopoi¸ntac tic ekfrseic pou sundèoun tic
sinh kai cosh me thn ekjetik
sunrthsh. Ta erwt mata thc Ôparxhc kai tic monadikìthtac thc lÔshc eÐnai, sthn perÐptwsh twn grammik¸n exis¸sewn, eÔkolo na apanthjoÔn.
Je¸rhma 2.1.2
('Uparxh kai monadikìthta). 'Estw ìti oi
p, q, f
eÐnai suneqeÐc sunart seic kai ìti oi
a, b0 , b1
eÐnai
stajerèc. H exÐswsh
y 00 + p(x)y 0 + q(x)y = f (x), èqei akrib¸c mia lÔsh
y(x)
h opoÐa ikanopoieÐ tic ex c arqikèc sunj kec
y(a) = b0 Gia pardeigma, h exÐswsh
y 00 + y = 0
me
y(0) = b0
kai
y 0 (a) = b1 . y 0 (0) = b1
èqei thn ex c lÔsh
y(x) = b0 cos x + b1 sin x. H exÐswsh
y 00 − y = 0
me
y(0) = b0
kai
y 0 (0) = b1
èqei thn ex c lÔsh
y(x) = b0 cosh x + b1 sinh x. Shmei¸ste parakal¸ to gegonìc ìti h qr sh twn
cosh kai sinh mac epitrèpei na lÔsoume wc proc tic arqikèc sunj kec
me polÔ pio xekjaro trìpo sugkritik me to an qrhsimopoioÔsame ekjetikèc sunart seic. 'Hdh ja parathr sate ìti kje SDE deÔterhc txhc sundèetai me dÔo arqikèc sunj kec. Autì eÐnai anamenìmeno mia kai gia na lÔsoume mia tètoia exÐswsh prèpei ousiastik na oloklhr¸soume dÔo forèc me apotèlesma na emplakoÔn dÔo stajerèc olokl rwshc tic timèc twn opoÐwn bebaÐwc prèpei kpote na prosdiorÐsoume. Autì mporeÐ na gÐnei mìnon en èqoume dÔo epiprìsjetec exis¸seic tic opoÐec mac prosfèroun oi arqikèc sunj kec. Er¸thsh:
Upojèste ìti oi
y1
kai
y2
eÐnai dÔo diaforetikèc metaxÔ touc lÔseic thc omogenoÔc exÐswshc (2.2).
MporeÐ kje llh lÔsh na dojeÐ (qrhsimopoi¸ntac upèrjesh) sthn morf H apnthsh eÐnai profan¸c nai! Upojètontac ìmwc ìti oi ex c ènnoia. Ja lème ìti oi
y1
kai
y2
y1
kai
y2
y = C1 y1 + C2 y2 ?
eÐnai arket diaforetikèc metaxÔ touc me thn
eÐnai grammik anexrthtec en den eÐnai mia apì autèc pollaplsia (me stajer)
thc llhc. En breÐte dÔo grammik anexrthtec lÔseic, tìte kje llh lÔsh mporeÐ na grafjeÐ sthn morf
y = C1 y1 + C2 y2 .
2.1. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ y = C1 y1 + C2 y2
Sthn perÐptwsh aut h
37
lègetai genik lÔsh.
y1 = sin x kai y2 = cos x eÐnai lÔseic thc y 00 + y = 0. EÐnai profanèc ìti oi sin kai cos den mporeÐ na eÐnai pollaplsia h mia thc llhc. En sin x = A cos x gia kpoia stajer A, tìte jètontac x = 0 èqoume A = 0 = sin x, prgma topo. 'Ara oi y1 kai y2 eÐnai grammik anexrthtec. Sunep¸c h Gia pardeigma, eÔkola brÐskoume ìti oi
y = C1 cos x + C2 sin x eÐnai h genik lÔsh thc
2.1.1
00
y + y = 0.
Ask seic
y = ex
2.1.2
DeÐxte ìti oi
2.1.3
Mantèyte mia lÔsh thc
2.1.4 kai
y2
y = e2x
eÐnai grammik anexrthtec.
y 00 + 5y = 10x + 5.
ApodeÐxte thn arq thc upèrjeshc gia mh-omogeneÐc exis¸seic. 'Estw ìti h eÐnai mia lÔsh thc
2.1.5
y=x
kai
r
Ly2 = g(x) (kai oi dÔo èqoun to Ðdio telest L). x2 y 00 − xy 0 = 0
BreÐte dÔo grammik anexrthtec lÔshc thc
ax2 y 00 + bxy 0 + cy = 0 Euler. Gia na tic lÔsoume qrhsimopoioÔmai thn manteyi y = xr wc proc r (gia eukolÐa mac ac upojèsoume ìti x ≥ 0). y=x
r
Upojèste ìti
(b − a)2 − 4ac > 0.
kai d¸ste thn genik lÔsh thc. Upìdeixh: Jèste
kai breÐte thn katllhlh tim tou
'Estw ìti
(b − a)2 − 4ac = 0.
Euler
onomzontai Exis¸seic
Exis¸seic
Cauchy −
thn opoÐa antikajistoÔme sthn exÐswsh kai lÔnoume
ax2 y 00 + bxy 0 + cy = 0. Upìdeixh: Jèste (b − a) − 4ac = 0 ìtan (b − a)2 − 4ac < 0?
a) D¸ste thn genik lÔsh thc
r.
b) Ti sumbaÐnei ìtan
Ja epanèljoume argìtera sthn perÐptwsh pou
2.1.7
y1 eÐnai mia lÔsh thc Ly1 = f (x) y eÐnai lÔsh thc Ly = f (x)+g(x).
.
Shmei¸ste ìti oi exis¸seic thc morf c
2.1.6
DeÐxte ìti h
2
(b − a)2 − 4ac < 0.
D¸ste thn genik lÔsh thc
ax2 y 00 + bxy 0 + cy = 0.
Upìdeixh: Jèste
y = xr ln x
gia na breÐte thn deÔterh lÔsh H diadikasÐa eÔreshc miac deÔterhc lÔshc kpoiac grammik c omogenoÔc exÐswshc ìtan dh gnwrÐzeic mia lÔsh lègetai mèjodoc elttwshc thc txhc.
2.1.8
'Estw ìti h
y1
eÐnai lÔsh thc exÐswshc
y 00 + p(x)y 0 + q(x)y = 0. Z
y2 (x) = y1 (x)
DeÐxte ìti kai h
R
e− p(x) dx dx (y1 (x))2
eÐnai lÔsh. Ac lÔsoume t¸ra merikèc fhmismènec exis¸seic.
2.1.9(exÐswsh
Chebychev
1hc txhc) 'Estw
(1 − x2 )y 00 − xy 0 + y = 0.
a) DeÐxte ìti h
y = x
eÐnai lÔsh.
Qrhsimopoi ste thn mèjodo elttwshc thc txhc gia na breÐte mia deÔterh grammik anexrthth lÔsh.
b)
c) D¸ste
thn genik lÔsh.
2.1.10(ExÐswsh
Hermite
2hc txhc) 'Estw
y 00 − 2xy 0 + 4y = 0.
a) DeÐxte ìti h
y = 1 − 2x2
eÐnai lÔsh.
Qrhsimopoi ste thn mèjodo elttwshc thc txhc gia na breÐte mia deÔterh grammik anexrthth lÔsh. thn genik lÔsh.
b)
c) D¸ste
38
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
2.2
Grammikèc SDE deÔterhc txhc me stajeroÔc suntelestèc
Jewr ste to prìblhma
y 00 − 6y 0 + 8y = 0,
y 0 (0) = 6.
y(0) = −2,
H parapnw exÐswsh eÐnai mia grammik kai omogen c exÐswsh deÔterhc txhc me stajeroÔc suntelestèc. Me ton ìro stajeroÐ suntelestèc ennooÔme ìti oi sunart seic pou pollaplasizontai me touc ìrouc den exartiìntai dhlad apì to
y 00 , y 0 ,
kai
y
eÐnai stajerèc,
x.
Mac boleÔei idiaÐtera (ja doÔme se lÐgo giatÐ) na jewr soume thn lÔsh thc parapnw exÐswshc san mia sunrthsh opoÐa den allzei ousiastik en thn paragwgÐsoume me apotèlesma na elpÐzoume ìti ènac katllhloc grammikìc sunduasmìc thc en lìgw sunrthshc kai twn parag¸gwn thc ja mac d¸sei mhdèn. Me autì to skeptikì eÐnai logikì na exetsoume san lÔsh thn ex c sunrthsh kai
00
2 rx
y =r e
y = erx .
BebaÐwc èqoume
y 0 = rerx
kai antikajist¸ntac paÐrnoume
y 00 − 6y 0 + 8y = 0, r2 erx − 6rerx + 8erx = 0, r2 − 6r + 8 = 0
(diairèste kai ta dÔo mèlh me
erx ),
(r − 2)(r − 4) = 0. Sunep¸c gia
2.2.1
r=2
gia
r = 4,
Exetste kat pìso h
Oi sunart seic
e2x
h
y1
erx
eÐnai mia lÔsh. Katal goume loipìn stic
kai h
y2
y1 = e2x
kai
y2 = e4x .
eÐnai lÔseic.
e4x eÐnai grammik anexrthtec. En den tan ja mporoÔsame na gryoume e4x = Ce2x , e = C , prgma adÔnaton na sumbaÐnei. Sunep¸c mporoÔme na gryoume thn genik lÔsh
kai
apì to opoÐo èqoume ìti
2x
sthn ex c morf
y = C1 e2x + C2 e4x . C1
Prèpei na lÔsoume wc proc in
x=0
kai
C2 .
To apply the initial conditionc we first find
y 0 = 2C1 e2x + 4C2 e4x .
We plug
kai solve.
−2 = y(0) = C1 + C2 , 6 = y 0 (0) = 2C1 + 4C2 . Apì to parapnw sÔsthma algebrik¸n exis¸sewn eÔkola paÐrnoune ìti katal xoume ìti
C1 = −7.
3 = C1 + 2C2 ,
kai
5 = C2
me apotèlesma na
H genik loipìn lÔsh eÐnai h ex c
y = −7e2x + 5e4x . Ac genikeÔsoume thn parapnw mejodologÐa gia genikèc peript¸seic. 'Eqoume loipìn thn exÐswsh
ay 00 + by 0 + cy = 0, ìpou
a, b, c
eÐnai kpoiec stajerèc. Dokimzontac thn manteyi
(2.3)
rx
y=e
paÐrnoume
ar2 erx + brerx + cerx = 0, ar2 + br + c = 0. H exÐswsh
ar2 + br + c = 0
onomzetai qarakthristik exÐswsh thc SDE. LÔnontac thn exÐswsh aut wc proc
r
kai
qrhsimopoi¸ntac ton tÔpo tou triwnÔmou.
r1 , r 2 = Opìte katal goume ìti oi
er1 x
kai
er2 x
eÐnai lÔseic.
−b ±
√
b2 − 4ac . 2a
Uprqei bèbaia kai h perÐptwsh pou
eÔkolo na antimetwpisjeÐ..
Je¸rhma 2.2.1.
'Estw ìti
r1
kai
r2
eÐnai oi rÐzec tic qarakthristik c exÐswshc.
r1 = r2 ,
all aut eÐnai
2.2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ i
( ) An
r1
kai
r2
b2 − 4ac > 0),
eÐnai pragmatikèc kai diaforetikèc metaxÔ touc (
39
tìte h genik lÔsh thc (2.3) eÐnai h
ex c
y = C1 er1 x + C2 er2 x . ii)
(
An
r1 = r2 (b2 − 4ac = 0),
tìte h genik lÔsh thc (2.3) eÐnai h ex c
y = (C1 + C2 x) er1 x . y 00 − k2 y = 0 thc opoÐac h −kx kx sunep¸c e kai e eÐnai oi dÔo
Ac doÔme èna akìma pardeigma thc pr¸thc perÐptwshc jewr¸ntac thn exÐswsh qarakthristik exÐswsh eÐnai h ex c
2
2
r −k = 0
dhlad
(r − k)(r + k) = 0
kai
grammik anexrthtec lÔseic.
Pardeigma 2.2.1:
BreÐte thn genik lÔsh thc exÐswshc
y 00 − 8y 0 + 16y = 0. H qarakthristik exÐswsh eÐnai h ex c
r2 − 8r + 16 = (r − 4)2 = 0
h opoÐa èqei dipl rÐza
r1 = r2 = 4 .
'Ara h
genik lÔsh eÐnai
y = (C1 + C2 x) e4x = C1 e4x + C2 xe4x . 2.2.2 H
EÐnai oi
e4x
e4x
kai
xe4x
grammikèc anexrthtec lÔseic?
y = xe4x
eÐnai profan¸c lÔsh. Gia thn
èqoume
y 0 = e4x + 4xe4x
kai
y 00 = 8e4x + 16xe4x .
Antikajist¸ntac
paÐrnoume
y 00 − 8y 0 + 16y = 8e4x + 16xe4x − 8(e4x + 4xe4x ) + 16xe4x = 0. ra eÐnai lÔsh kai mlista epeid h
xe4x = Ce4x
sunepgetai to topo ìti
x = C
oi dÔo lÔseic eÐnai grammik
anexrthtec.
Prèpei na shmei¸soume ìti eÐnai sthn prxh exairetik spnio na èqoume dipl rÐza. Gia na katal xoume se dipl rÐza prèpei ousiastik na èqoume epilèxei ek twn protèrw katllhla tou suntelestèc thc diaforik c exÐswshc. Ac d¸soume tèloc mia sÔntomh apìdeixh tou giatÐ mac boleÔei h lÔsh
xerx
ìtan èqoume dipl rÐza. H en lìgw
perÐptwsh loipìn eÐnai h oriak katstash sthn opoÐa èqoume dÔo rÐzec nai men diafèroun metaxÔ touc all elqista. er2 x −er1 x Parathr ste ìti h eÐnai mia lÔsh ìtan oi rÐzec eÐnai diaforetikèc. 'Otan to 1 teÐnei sto 2 h en lìgw lÔsh r2 −r1 rx rx teÐnei sthn pargwgo thc wc proc dhlad sthn , kai sunep¸c kai aut eÐnai epÐshc lÔsh sthn perÐptwsh
r
e
r
r
xe
dipl c rÐzac.
2.2.1
MigadikoÐ arijmoÐ kai o tÔpoc tou
Euler
Profan¸c oi rÐzec enìc poluwnÔmou mporeÐ na eÐnai migadikèc. Gia pardeigma h exÐswsh
r2 + 1 = 0
èqei dÔo migadikèc
rÐzec kai pragmatik . Ac knoume mia sÔntomh anaskìphsh twn migadik¸n arijm¸n . èna zeugri pragmatik¸n arijm¸n, èna shmeÐo tou epipèdou.
(a, b)
ìpou
i2 = −1.
Ac jumhjoÔme ìti migadikìc arijmìc
(a, b) × (c, d)
orismìc
=
(ac − bd, ad + bc).
BebaiwjeÐte ìti katanoeÐte (kai mporeÐte na dikaiolog sete) tic paraktw tautìthtec:
2
• i = −1, i3 = −i, i4 = 1, 1 • = −i, i • (3 − 7i)(−2 − 9i) = · · · = −69 − 13i, • (3 − 2i)(3 + 2i) = 32 − (2i)2 = 32 + 22 = 13, •
1 3−2i
=
1 3+2i 3−2i 3+2i
=
eÐnai
Prosjètoume dÔo migadikoÔc arijmoÔc me ton profan trìpo en¸ touc pollaplasizoume
wc ex c
2.2.3
a + ib
BoleÔei kpoiec forèc na jewroÔme ènan migadikì arijmì san
3+2i 13
=
3 13
+
2 i. 13
40
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ Paraktw ja qrhsimopoi soume thn ekjetik sunrthsh
eÔkola en antikatast soume sto anptugma
ex = 1 + to
x
me
a + ib
mporoÔme eÔkola na upologÐsoume kai thn
Je¸rhma 2.2.2
(TÔpoc tou
a+ib
e
e
a+ib
a ib
=e e
ex+y = ex ey
isqÔoun kai gia
x
kai
y
migadikoÔc.
kai sunep¸c en mporèsoume na upologÐsoume thn
. Gia autì ja qrhsimopoi soume ton gnwstì tÔpo tou
eib
Euler.
Euler). eiθ = cos θ + i sin θ
kai
e−iθ = cos θ − i sin θ.
Elègxte tic paraktw tautìthtec qrhsimopoi¸ntac ton tÔpo tou
cos θ = 2.2.5
enìc migadikoÔ arijmoÔ h opoÐa mporeÐ na orisjeÐ
x x2 x3 + + + ··· 1! 2! 3!
opìte kai eÔkola blèpoume ìti idiìthtec ìpwc h
H idiìthta aut mac odhgeÐ sthn ex c idiìthta
2.2.4
ea+ib
T aylor
eiθ + e−iθ 2
kai
sin θ =
Tautìthtec diplsiac gwnÐac: Qrhsimopoi ste ton tÔpo tou
Euler: eiθ − e−iθ . 2i
Euler
kai ta dÔo mèrh thc
ei(2θ) = eiθ
2
gia na
sumpernete ìti:
cos 2θ = cos2 θ − sin2 θ
kai
sin 2θ = 2 sin θ cos θ.
Qreizetai na xekajarÐsoume ton sumbolismì mac kai thn orologÐa mac. Se èna migadikì arijmì pragmatikì mèroc kai o
b
Re(a + bi) = a 2.2.2
a+ib o a onomzetai
fantastikì mèroc tou arijmoÔ autoÔ. PolÔ diadedomènoc eÐnai o ex c sumbolismìc kai
Im(a + bi) = b.
Migadikèc rÐzec
Ac upojèsoume t¸ra ìti h qarakthristik exÐswsh migadikèc rÐzec. Dhlad èqoume
2
b − 4ac < 0
'Opwc mporoÔme na doÔme, oi lÔseic ja eÐnai
ar2 + br + c = 0
thc diaforik c exÐswshc
ay 00 + by 0 + cy = 0
èqei
kai kat sunèpeia oi rÐzec eÐnai oi ex c.
√ −b b2 − 4ac r1 , r 2 = ±i . 2a 2a pnta se zeÔgh α ± iβ . Kai
sthn perÐptwsh aut mporoÔme na gryoume
thn lÔsh me ton Ðdio trìpo ìpwc kai prohgoumènwc
y = C1 e(α+iβ)x + C2 e(α−iβ)x . 'Omwc h ekjetik sunrthsh èqei migadik orÐsmata kai ja qreiasjeÐ na epilèxoume katllhlouc migadikoÔc arijmoÔc gia tic stajerèc
C1
kai
C2
ètsi ¸ste h lÔsh na mhn emplèkei migadikoÔc (kti pou profan¸c epijumoÔme). Kti tètoio
eÐnai men efiktì all endeqomènwc na apaiteÐ pollèc (kai Ðswc dÔskolec) prxeic. Se kje perÐptwsh ìmwc, ìpwc ja doÔme, den eÐnai aparaÐthto. MporoÔme na qrhsimopoi soume ton tÔpo tou
Euler.
(α+iβ)x
y1 = e
Pr¸ta ac jèsoume
kai
y2 = e(α−iβ)x .
Ac shmei¸soume ìti
y1 = eαx cos βx + ieαx sin βx, y2 = eαx cos βx − ieαx sin βx. Den xeqnme ìti kje grammikìc sunduasmìc lÔsewn eÐnai kai autìc lÔsh. Sunep¸c oi
y1 + y2 = eαx cos βx, 2 y1 − y2 y4 = = eαx sin βx, 2i y3 =
eÐnai epÐshc lÔseic kai mlista me pragmatikì pedÐo orismoÔ kai tim¸n. Den eÐnai idiaÐtera dÔskolo na apodeÐxoume ìti eÐnai kai grammik anexrthtec (den eÐnai h mia pollaplsio thc llhc). 'Etsi katal goume sto paraktw je¸rhma.
2.2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ Je¸rhma 2.2.3.
41
En oi rÐzec thc qarakthristik c exÐswshc thc diaforik c exÐswshc
ay 00 + by 0 + cy = 0. α ± iβ ,
eÐnai oi
tìte h genik thc lÔsh eÐnai
y = C1 eαx cos βx + C2 eαx sin βx. Pardeigma 2.2.2:
y 00 + k2 y = 0, gia kpoia stajer k > 0. rÐzec thc eÐnai r = ±ik kai me bsh to parapnw
BreÐte thn genik lÔsh thc exÐswshc
H qarakthristik thc exÐswshc eÐnai
2
2
r + k = 0.
Oi
je¸rhma h
genik lÔsh eÐnai
y = C1 cos kx + C2 sin kx. Pardeigma 2.2.3:
y 00 − 6y 0 + 13y = 0, y(0) = 0, y 0 (0) = 10. r − 6r + 13 = 0 oi rÐzec thc opoÐac eÐnai r = 3 ± 2i.
BreÐte thn lÔsh tou probl matoc
2
H qarakthristik thc diaforik c exÐswshc eÐnai
Me bsh to
parapnw je¸rhma h genik lÔsh eÐnai
y = C1 e3x cos 2x + C2 e3x sin 2x. Gia na broÔme thn lÔsh tou sugkekrimènou probl matoc qrhsimopoioÔme thn pr¸th arqik sunj kh gia na proume
0 = y(0) = C1 e0 cos 0 + C2 e0 sin 0 = C1 . 'Ara
C1 = 0
kai sunep¸c
y = C2 e3x sin 2x.
ParagwgÐzontac èqoume
y 0 = 3C2 e3x sin 2x + 2C2 e3x cos 2x. Qrhsimopoi¸ntac thn llh arqik sunj kh èqoume
10 = y 0 (0) = 2C2 ,
C2 = 5 .
'Ara h lÔsh pou yqnoume eÐnai
y = 5e3x sin 2x. 2.2.3
Ask seic
2.2.6
BreÐte thn genik lÔsh thc exÐswshc
2y 00 + 2y 0 − 4y = 0.
2.2.7
BreÐte thn genik lÔsh thc exÐswshc
y 00 + 9y 0 − 10y = 0.
2.2.8
LÔste to prìblhma
y 00 − 8y 0 + 16y = 0
2.2.9
LÔste to prìblhma
y 00 + 9y 0 = 0
gia
gia
y(0) = 2, y 0 (0) = 0.
y(0) = 1, y 0 (0) = 1.
2.2.10
BreÐte thn genik lÔsh thc exÐswshc
2y 00 + 50y = 0.
2.2.11
BreÐte thn genik lÔsh thc exÐswshc
y 00 + 6y 0 + 13y = 0.
2.2.12
BreÐte thn genik lÔsh thc exÐswshc
y 00 = 0
2.2.13
H mèjodo thc paragrfou aut c mporeÐ na efarmosjeÐ kai se exis¸seic txhc megalÔterhc tou dÔo.
qrhsimopoi¸ntac thn mèjodo thc paragrfou aut c. Ja
asqolhjoÔme me tètoiec exis¸seic an¸terhc txhc argìtera. Prospaj ste ìmwc na lÔsete thn ex c exÐswsh pr¸thc txhc
2y 0 + 3y = 0
2.2.14 èqoume
qrhsimopoi¸ntac thn mèjodo thc paragrfou aut c.
Ac epistrèyoume sthn exÐswsh tou
(b − a)2 − 4ac < 0.
xr = er ln x .
Euler
pou sunant same sthn skhsh 2.1.6 sth selÐda 37.
'Estw ìti
ax2 y 00 + bxy 0 + cy = 0.
Upìdeixh:
BreÐte ènan tÔpo gia thn genik lÔsh thc exÐswshc
42
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
2.3
Grammikèc SDE uyhlìterhc txhc
Genik, oi pleioyhfÐa twn diaforik¸n exis¸sewn pou emfanÐzontai sthn prxh se efarmogèc eÐnai deÔterhc txhc. Exis¸seic megalÔterhc txhc den emfanÐzontai suqn kai en gènei èqei epikrat sei h poyh ìti o fusikìc mac kìsmoc eÐnai deÔterhc txhs. H antimet¸pish SDE megalÔterhc txhc eÐnai parìmoia me aut n twn SDE deÔterhc txhc.
Prèpei ìmwc na
diasafhjeÐ h ènnoia thc grammik c anexarthsÐac. Exllou h en lìgw ènnoia qrhsimopoieÐtai se pollèc llec perioqèc twn Majhmatik¸n kai se poll lla shmeÐa akìma kai aut¸n twn shmei¸sewn. Sunep¸c axÐzei na thn katano soume pl rwc. Ac arqÐsoume me thn ex c genik omogen grammik exÐswsh
y (n) + pn−1 (x)y (n−1) + · · · + p1 (x)y 0 + p0 (x)y = 0. Je¸rhma 2.3.1
(Upèrjesh). En
y1 , y2 ,
yn
...,
(2.4)
eÐnai lÔseic thc omogenoÔc exÐswshc (2.4), tìte h
y(x) = C1 y1 (x) + C2 y2 (x) + · · · + Cn yn (x), eÐnai epÐshc lÔsh sthc (2.4) gia opoiesd pote stajerèc
C1 ,
...,
Cn .
IsqÔei to paraktw je¸rhma Ôparxhc kai monadikìthtac gia mh-omogeneÐc grammikèc exis¸seic.
Je¸rhma 2.3.2 sunart seic kai oi
('Uparxhc kai monadikìthtac).
a, b0 , b1 , . . . , bn−1
'Estw ìti oi sunart seic
p0 , p1 , . . . , pn−1 ,
kai
f
eÐnai suneqeÐc
eÐnai stajerèc. H exÐswsh
y (n) + pn−1 (x)y (n−1) + · · · + p1 (x)y 0 + p0 (x)y = f (x), . èqei akrib¸c mia lÔsh
y(x)
oi opoÐa ikanopoieÐ tic paraktw arqikèc sunj kec
y 0 (a) = b1 ,
y(a) = b0 , 2.3.1
'Eqoume dh anafèrei ìti dÔo sunart seic
...,
y (n−1 )(a) = bn−1 .
Grammik anexarthsÐa
laplsio thc llhc.
y2 ,
...,
yn
'Otan èqoume
n
y1
kai
y2
eÐnai grammik anexrthtec an h mimÐa den mporeÐ na eÐnai pol-
sunart seic mporoÔme na doulèyoume parapl sia wc ex c.
Oi sunart seic
y1 ,
eÐnai grammik anexrthtec an h exÐswsh
c1 y1 + c2 y2 + · · · + cn yn = 0, èqei mìnon thn tetrimmènh lÔsh
c1 = c2 = · · · = cn = 0. En mia apì tic stajerèc thc exÐswshc (èstw, qwrÐc periorismì c1 6= 0, tìte mporoÔme na ekfrsoume thn y1 san grammikì sunduasmì
thc genikìthtac, h pr¸th) eÐnai mh-mhdenik
twn upoloÐpwn. En oi sunart seic den eÐnai grammik anexrthtec tìte lème ìti eÐnai grammik exarthmènec.
Pardeigma 2.3.1:
DeÐxte ìti oi
ex , e2x , e3x
eÐnai grammik anexrthtec.
Ac to knoume me diforec mejìdouc. Ta perissìtera didaktik biblÐa (sumperilambanomènwn twn [EP] kai [F]) eisgoun thn Jètontac
W ronskian. Kti tètoio z = ex sthn exÐswsh
den eÐnai aparaÐthto sthn perÐptws mac.
c1 ex + c2 e2x + c3 e3x = 0. kai qrhsimopoi¸ntac jemeli¸deic idiìthtec twn ekjetik¸n sunart sewn èqoume
c1 z + c2 z 2 + c3 z 3 = 0. To aristerì mèroc eÐnai èna polu¸numo bajmoÔ trÐa wc proc
z.
MporeÐ eÐte na eÐnai tautotik Ðso me to mhdèn eÐte na
èqei to polÔ 3 rÐzec. H parapnw exÐswsh profan¸c isqÔei gia ìla ta
c1 = c2 = c3 = 0
z,
kai oi dojeÐsec sunart seic eÐnai grammik anexrthtec.
Ac dokimsoume ènan llo trìpo xekin¸ntac apì thn sqèsh
c1 ex + c2 e2x + c3 e3x = 0.
ra eÐnai tautotik Ðsh me to mhdèn, dhlad
2.3. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ h opoÐa bebaÐwc isqÔei gia kje
x.
43
Ac diairèsoume kai ta dÔo mèlh me
e3x
èqoume thn sqèsh
c1 e−2x + c2 e−x + c3 = 0. h opoÐa epÐshc isqÔei gia kje
x,
ra, mporoÔme na proume to ìrio ìtan
x→∞
kai na katal xoume ìti
c3 = 0 .
opìte
h exÐsws mac paÐrnei thn ex c morf
c1 ex + c2 e2x = 0. Apl mènei na epanalboume thn parapnw diadikasÐa dÔo akìma forèc gia na doÔme ìti
c2 = 0
kai
c1 = 0.
Ac dokimsoume ènan trÐto trìpo xekin¸ntac apì thn sqèsh
c1 ex + c2 e2x + c3 e3x = 0. MporoÔme kataskeusoume ìsec exis¸seic, me agn¸stouc ta
c1 , c2
kai
c3 ,
epijumoÔme tic opoÐec katìpin mporoÔme
na qrhsimopoi soume gia na broÔme touc en lìgw agn¸stouc. Kti tètoio bèbaia apaiteÐ arketèc prxeic. MporoÔme epÐshc pr¸ta na paragwgÐsoume kai ta dÔo mèlh kai met na pargoume me ton parapnw trìpo kai llec exis¸seic. Gia na aplopoi soume thn diadikasÐa ac diairèsoume me
ex .
c1 + c2 ex + c3 e2x = 0. Jètoume
x=0
kai paÐrnoume thn exÐswsh
c1 + c2 + c3 = 0.
ParagwgÐzontac kai ta dÔo mèrh èqoume
c2 ex + 2c3 e2x = 0, x = 0 èqoume ìti c2 + 2c3 = 0. Tèloc diairoÔme xan me ex kai paragwgÐzoume gia na proume 4c3 e2x = 0. èqoume c3 = 0. 'Ara kai c2 = 0 mia kai c2 = −2c3 kai c1 = 0 epeid c1 + c2 + c3 = 0.
kai jètontac Opìte
Pardeigma 2.3.2:
Oi sunart seic
ex , e−x ,
kai
cosh x
eÐnai grammik exarthmènec.
Apl efarmìste ton orismì
tou uperbolikoÔ sunhmitìnou:
cosh x =
2.3.2
ex + e−x . 2
SDE uyhlìterhc txhc me stajeroÔc suntelestèc
H antimet¸pish omogen¸n grammik¸n exis¸sewn an¸terhc txhc me stajeroÔc suntelestèc eÐnai se meglo bajmì parìmoia me thn mejodologÐa pou anaptÔxame parapnw. Apl¸c prèpei na broÔme perissìterec grammik anexrthtec lÔseic. En loipìn h exÐswsh eÐnai
nth
txhc qreizetai na broÔme
n
grammik anexrthtec lÔseic. Ac xekajarÐsoume
ta prgmata me èna pardeigma.
Pardeigma 2.3.3:
UpologÐste thn genik lÔsh thc exÐswshc
y 000 − 3y 00 − y 0 + 3y = 0. Antikajist¸ntac thn manteyi
y = erx
(2.5)
èqoume
r3 erx − 3r2 erx − rerx + 3erx = 0. DiairoÔme me
erx
kai paÐrnoume.
r3 − 3r2 − r + 3 = 0. Den eÐnai tetrimmènh upìjesh na broÔme tic rÐzec enìc poluwnÔmou. Uprqoun tÔpoi gia tic rÐzec enìc poluwnÔmou bajmoÔ 3 kai 4 an kai eÐnai idiaÐtera polÔplokoi. autì den shmaÐnei ìti den uprqoun oi rÐzec.
Gia polu¸numa megalÔterou bajmoÔ den uprqoun tÔpoi.
EÐnai gnwstì ìti èna polu¸numo
nstou
bajmoÔ èqei
apì autèc mporeÐ na eÐnai ìpwc mporeÐ merikèc apì autèc tic rÐzec na eÐnai migadikèc.
n
rÐzec.
Fusik Merikèc
Fusik uprqoun poll kai
exairetik logismik sust mata ta opoÐa mporoÔn na upologÐsoun proseggÐseic twn riz¸n enìc poluwnÔmou kpoiou logikoÔ bajmoÔ. Epiprìsjeta, uprqoun kai majhmatik apotelèsmata thc jewrÐac arijm¸n ta opoÐa mac dÐnoun thn dunatìthta na upologÐsoume akrib¸c tic rÐzec.
Gia pardeigma gnwrÐzoume ìti o stajerìc ìroc kje poluwnÔmou
44
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
isoÔtai me to ginìmeno ìlwn twn riz¸n tou. Gia pardeigma èstw èqoume
r3 − 3r2 − r + 3 = (r − r1 )(r − r2 )(r − r3 )
opìte kai
∗
3 = (−r1 )(−r2 )(−r3 ) = (1)(−1)(−r3 ) = r3 . EÐnai eÔkolo na epibebai¸soume ìti h thc (2.5).
r3 = 3
eÐnai mia rÐza.
Sunep¸c gnwrÐzoume ìti oi
e−x , ex
kai
e3x
eÐnai lÔseic
EpÐshc eÔkola mporoÔme na doÔme ìti eÐnai grammik anexrthtec, kai eÐnai treic, dhlad akrib¸c ìsec
qreiazìmaste. 'Ara h genik lÔsh eÐnai
y = C1 e−x + C2 ex + C3 e3x . Gia na ikanopoi soume tic arqikèc sunj kec
y(0) = 1, y 0 (0) = 2,
kai
y 00 (0) = 3
èqoume
1 = y(0) = C1 + C2 + C3 , 2 = y 0 (0) = −C1 + C2 + 3C3 , 3 = y 00 (0) = C1 + C2 + 9C3 . H lÔsh tou parapnw algebrikoÔ grammikoÔ sust matoc eÐnai
C1 = −1/4, C2 = 1
kai
C3 = 1/4
kai sunep¸c h lÔsh
thc diaforik c exÐswshc pou ikanopoieÐ tic dojeÐsec arqikèc sunj kec eÐnai h
y=
−1 −x 1 e + ex + e3x . 4 4
Ac upojèsoume t¸ra ìti ìlec oi rÐzec eÐnai pragmatikèc all me kpoia pollaplìthta (dhlad merikèc lÔseic epanalambnontai).
Ac perioristoÔme sthn perÐptwsh pou èqoume mia rÐza
r
me pollaplìthta
k.
Sthn perÐptwsh
aut , kai sto pneÔma thc mejodologÐac pou anaptÔxame gia thn anlogh perÐptwsh gia tic exis¸seic deÔterhc txhc, anagnwrÐzoume tic lÔseic
erx , xerx , x2 erx , . . . , xk−1 erx kai h genik lÔsh prokÔptei san ènac grammikìc touc sunduasmìc.
Pardeigma 2.3.4:
LÔste thn exÐswsh
y (4) − 3y 000 + 3y 00 − y 0 = 0. H qarakthristik exÐswsh eÐnai
r4 − 3r3 + 3r2 − r = 0. Shmei¸ste ìti
r4 − 3r3 + 3r2 − r = r(r − 1)3 .
'Ara oi rÐzec, me pollaplìthta, eÐnai oi
r = 0, 1, 1, 1
opìte prokÔptei h
paraktw genik lÔsh
(c0 + c1 x + c2 x2 ) ex | {z }
y=
ìroi proerqìmenoi apì thn r = 1
+
c4 |{z}
.
apì thn r = 0
Entel¸c parìmoia me thn perÐptwsh thc deÔterhc txhc mporoÔme na antimetwpÐsoume to endeqìmeno na prokÔyoun migadikèc rÐzec. Oi migadikèc rÐzec ìpwc gnwrÐzoume èrqontai se zeÔgh
r = α ± iβ .
Oi antÐstoiqec lÔseic eÐnai oi
(c0 + c1 x + · · · + ck−1 xk ) eαx cos βx + (d0 + d1 x + · · · + dk−1 xk ) eαx sin βx. ìpou
c0 ,
...,
ck−1 , d0 ,
Pardeigma 2.3.5:
...,
dk−1
eÐnai tuqaÐec stajerèc.
LÔste thn exÐswsh
y (4) − 4y 000 + 8y 00 − 8y 0 + 4y = 0. H qarakthristik exÐswsh eÐnai
r4 − 4r3 + 8r2 − 8r + 4 = 0, (r2 − 2 + 2)2 = 0, 2 (r − 1)2 + 2 = 0. ∗ Sto mjhma tou EpisthmonikoÔ logismoÔ ja anaptÔxete kai ja analÔsete diforec arijmhtikèc mejìdouc gia ton upologismì proseggÐsewn twn riz¸n akìma kai sthn genik perÐptwsh poluwnÔmwn opoioud pote bajmoÔ.
2.3. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ 'Ara oi rÐzec eÐnai oi
1±i
45
me pollaplìthta 2. Sunep¸c h genik lÔsh eÐnai h ex c
y = (c0 + c1 x) ex cos x + (d0 + d1 x) ex sin x. O trìpoc pou lÔsame thn qarakthristik exÐswsh eÐnai manteÔontac ousiastik thn lÔsh kai dokimzontac tic manteyièc mac. Kti tètoio den eÐnai pnta eÔkolo. Ac mhn xeqnme bèbaia ìti mporoÔme na prospaj soume na qrhsimopoi soume kpoio apì ta uprqonta logismik sust mata eÔreshc riz¸n poluwnÔmwn.
2.3.3
Ask seic
2.3.1
BreÐte thn genik lÔsh thc exÐswshc
y 000 − y 00 + y 0 − y = 0.
2.3.2
BreÐte thn genik lÔsh thc exÐswshc
y (4) − 5y 000 + 6y 00 = 0.
2.3.3
BreÐte thn genik lÔsh thc exÐswshc
y 000 + 2y 00 + 2y 0 = 0.
2.3.4
Upojèste ìti h
(r − 1)2 (r − 2)2 = 0 eÐnai h qarakthristik b) BreÐte thn genik lÔsh thc.
exÐswsh miac diaforik c exÐswshc.
a)
BreÐte mia
tètoia diaforik exÐswsh.
2.3.5
Upojèste ìti mia exÐswsh tètarthc txhc èqei thn paraktw lÔsh
diaforik exÐswsh.
b)
y = 2e4x x cos x. a)
BreÐte mia tètoia
BreÐte tic arqikèc sunj kec tic opoÐec ikanopoieÐ h dojeÐsa lÔsh.
2.3.6
BreÐte thn genik lÔsh thc exÐswshc thc skhshc 2.3.5.
2.3.7
'Estw ìti
f (x) = ex − cos x, g(x) = ex + cos x,
kai
h(x) = cos x.
EÐnai oi
f (x), g(x),
kai
h(x)
grammik
anexrthtec? En nai, apodeÐxte to, en ìqi, breÐte ènan grammikì sunduasmì pou mac boleÔei.
2.3.8
'Estw ìti
f (x) = 0, g(x) = cos x,
kai
h(x) = sin x.
EÐnai oi
f (x), g(x),
kai
h(x)
grammik anexrthtec? En
nai, apodeÐxte to, en ìqi, breÐte ènan grammikì sunduasmì pou mac boleÔei.
2.3.9
EÐnai oi
x, x2 ,
kai
x4
grammik anexrthtec? En nai, apodeÐxte to, en ìqi, breÐte ènan grammikì sunduasmì
pou mac boleÔei.
2.3.10
EÐnai oi
ex , xex ,
kai
sunduasmì pou mac boleÔei.
x2 ex
grammik anexrthtec?
En nai, apodeÐxte to, en ìqi, breÐte ènan grammikì
46
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
2.4
Talant¸seic
Ac rÐxoume mia mati se kpoiec efarmogèc twn grammik¸n exis¸sewn deÔterhc txhc me stajeroÔc suntelestèc.
2.4.1
Merik ParadeÐgmata
k
F (t) m
To pr¸to mac pardeigma eÐnai èna sÔsthma mzas-elathrÐou. soume loipìn èna swmatÐdio mzac
m > 0
eÐnai sundedemèno me èna elat rio me stajer elathrÐou ( alli¸c stajer tou Qouk)
k>0
(ac upojèsoume se
N ewtons
eÐnai sundedemènh se ènan toÐqo.
apìsbesh c
an mètro) h llh krh tou opoÐou
Epiprìsjeta, upojètoume ìti efarmìzoume
sto swmatÐdio mia exwterik dÔnamh
F (t).
Tèloc upojètoume ìti to sÔsthma
upìkeitai se apìsbesh h opoÐa kajorÐzetai apì mia stajer 'Estw
x
Ac jewr -
(ac upojèsoume se kil) to opoÐo
h metatìpish tou swmatidÐou upojètontac ìti thn
x = 0
c ≥ 0. x auxnei
eÐnai h jèsh isorropÐac kai h
ìso
metakineÐte to swmatÐdio proc ta dexi (apomakrunìmeno apì ton toÐqo). H dÔnamh pou askeÐ to elat rio sto swmatÐdio eÐnai sÔmfwna me ton nìmo tou Qouknìmoc tou Qouk anlogo thc metatìpishc. EÐnai dhlad Ðsh me
kx
sthn antÐjeth
kateÔjunsh. Parìmoia, h dÔnamh pou ofeÐletai sthn apìsbesh eÐnai anlogh me thn taqÔthta tou swmatidÐou. SÔmfwna me ton deÔtero nìmo tou NeÔtwnadeÔteroc nìmoc tou NeÔtwna h sunolik dÔnamh isoÔtai me mza epÐ epitqunsh. Dhlad èqoume thn ex c
mx00 + cx0 + kx = F (t) grammik SDE deÔterhc txhc me stajeroÔc suntelestèc. Ac kajorÐsoume thn orologÐa pou afor thn exÐswsh aut . Lème ìti mia kÐnhsh eÐnai
i
( ) exanagkasmènh, an
F 6≡ 0 (F
ii
den eÐnai tautotik mhdèn),
( ) mh-exanagkasmènh eleÔjerh, an
iii)
me apìsbesh, an
iv)
qwrÐc apìsbesh, an
(
(
c > 0,
F ≡ 0,
kai
c = 0.
Parìlh thn aplìtht tou, to parapnw sÔsthma emfanÐzetai ston pur na poll¸n kai shmantik¸n pragmatik¸n
†
efarmog¸n. Pollèc llec efarmogèc mporoÔn an melethjoÔn san aplopoi seic enìc sust matoc mzac elathrÐou . Ac doÔme dÔo paradeÐgmata.
RLC pou faÐnetai sthn R ohms, èna phnÐo me suntelest autepagwg c L henries, kai ènac puknwt c qwrhtikìthtac C f arads. Uprqei epÐshc kai mia hlektrik phg (p.q. mia mpatarÐa) pou mac dÐnei hlektrik tsh E(t) volts thn qronik stigm t (ac upojèsoume deuterìlepta). Ac upojèsoume tèloc ìti Q(t) eÐnai to fortÐo tou puknwt se columbs kai ìti I(t) to reÔma pou diarrèei to kÔklwma. EÐnai gnwstì ìti h sqèsh twn dÔo 0 ex c Q = I . Epiprìsjeta, qrhsimopoi¸ntac jemeli¸deic nìmouc katal goume sthn exÐswsh OrÐste èna pardeigma hlektrologÐac. Jewr ste to kÔklwma
parpleurh eikìna. Uprqei mia antÐstash
C
E
L
R
aut¸n posot twn eÐnai h
LI 0 + RI + Q/C = E .
ParagwgÐzontac thn èqoume
LI 00 (t) + RI 0 (t) +
1 I(t) = E 0 (t). C
Aut eÐnai mia mh-omogen c grammik exÐswsh deÔterhc txhc me stajeroÔc suntelestèc.
L, R,
kai
C
Epiprìsjeta, mia kai ta
eÐnai ìla jetik, to sÔsthma autì sumperifèretai akrib¸c san èna sÔsthma mzac elathrÐou. H jèsh tou
swmatidÐou antikatastjhke me to reÔma, h mza me ???, h apìsbesh me thn antÐstash kai h stajer tou elathrÐou me thn stajer qwrhtikìthtac. H diafor tshc apoteleÐ thn exwterik dÔnamh. 'Ara gia stajer tsh èqoume eleÔjerh kÐnhsh. To epìmeno pardeigm mac sumperifèretai proseggistik mìnon san èna sÔsthma mzac elathrÐou. 'Estw loipìn ìti èqoume mia mza
g
m sthn krh enìc ekkremoÔc m kouc L.
Jèloume na broÔme mia exÐswsh gia thn gwnÐa
h dÔnamh thc barÔthtac. Apl stoiqeÐa fusik c mac dÐnoun thn ex c exÐswsh
θ00 + † Perissìterec
g sin θ = 0. L
plhroforÐec sthn ex c selÐda http : //el.wikipedia.org/wiki/
θ(t).
'Estw
2.4. ΤΑΛΑΝΤΩΣΕΙΣ
47
Prgmati h parapnw exÐswsh prokÔptei apì ton deÔtero nìmo tou NeÔtwna, ìpou h dÔnamh isoÔtai me thn mza epÐ thn epitqunsh.
Profan¸c h epitqunsh eÐnai
Lθ00
efaptìmenh sunist¸sa thc dÔnamhc thc barÔthtac. lìgo exafanÐzetai.
kai h mza eÐnai
m.
To ginìmeno touc ofeÐlei na eÐnai Ðso me
Se autì ofeÐletai o ìroc
Ac proqwr soume t¸ra sthn ex c prosèggish.
sin θ ≈ θ. Autì gÐnetai mesa apodektì apì to sq ma 2.1 ìpou mporoÔme na (se radians) oi grafikèc parastseic twn sin θ kai θ ousiastik tautÐzontai. -1.0
-0.5
0.0
mg sin θ.
To
m
gia kpoion parxeno
θ èqoume ìti −0.5 < θ < 0.5
Gia mikrèc se apìluth tim gwnÐec doÔme ìti gia perÐpou
0.5
1.0
1.0
1.0
0.5
0.5
0.0
0.0
-0.5
-0.5
-1.0
-1.0
-1.0
-0.5
0.0
0.5
1.0
Σχήμα 2.1: Οι γραφικές παραστάσεις των sin θ και θ (σε radians).
Sunep¸c ìtan oi aiwr seic eÐnai mikrèc, mporoÔme na ekmetalleutoÔme to gegonìc ìti oi gwnÐec
θ
eÐnai pnta mikrèc kai na montelopoi soume thn sumperifor tou ekremoÔc me
thn ex c aploÔsterh grammik exÐswsh
L
θ00 +
θ
g θ = 0. L
Shmei¸ste ìti lìgw thc parapnw aploÔsteushc ta sflmata pou endeqomènwc na prokÔyoun eÐnai dunatìn na megejÔnontai suneq¸c ìso parèrqetai o qrìnoc thc ai¸rhshc me apotèlesma to montèlo na mac d¸sei mia ousiastik diaforetik sumperifor apì thn pragmatik sumperifor tou sust matoc. 'Opwc ja doÔme, to montèlo mac odhgeÐ sto sumpèrasma ìti to pltoc thc talntwshc eÐnai anexrthto thc periìdou kti pou bebaÐwc den isqÔei sthn prxh se èna ekkremèc. periìdouc kai mikrèc aiwr seic (p.q.
Parìla aut, gia arket mikrèc qronikèc
gia ekkrem meglou m kouc) to parapnw montèlo proseggÐzei ikanopoihtik
to fusikì fainìmeno. 'Otan antimetwpÐzoume realistik probl mata, polÔ suqn anagkazìmaste na knoume tètoiou eÐdouc paradoqèc kai aplopoi seic. Gia na diapist¸soume oi aplopoi seic mac autèc apodektèc, sto plaÐsio bebaÐwc thc ekstote melèthc mac, eÐnai profan¸c aparaÐthto na katanooÔme to fusikì prìblhma tìso apì thn meri thc fusik c ìso kai apì thn meri twn majhmatik¸n.
2.4.2
EleÔjerh kÐnhsh qwrÐc apìsbesh
Epeid den mporoÔme akìmh na lÔsoume mh-omogeneÐc exis¸seic sthn pargrafo aut ja asqolhjoÔme me eleÔjerh (mh-exanagkasmènh) kÐnhsh. Ac xekin soume me thn perÐptwsh pou den uprqei apìsbesh, dhlad ìtan
c = 0,
opìte
kai èqoume
mx00 + kx = 0. En diairèsoume me
m
kai upojèsoume ìti
ω0
eÐnai ènac arijmìc tètoioc ¸ste
morf
x00 + ω02 x = 0. 'Opwc xèroume h genik lÔsh thc exÐswshc aut c eÐnai
x(t) = A cos ω0 t + B sin ω0 t.
ω02 = k/m
tìte h exÐsws mac paÐrnei thn
48
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
Parathr ste kat' arq n ìti, qrhsimopoi¸ntac gnwst trigwnometrik tautìthta, èqoume thn ex c sqèsh me tic llec dÔo stajerèc
C
kai
γ A cos ω0 t + B sin ω0 t = C cos(ω0 t − γ). √
C = A2 + B 2 kai tan γ = B/A. x(t) = C cos(ω0 t − γ), ìpou C kai γ tuqaÐec stajerèc.
Den eÐnai dÔskolo na doÔme ìti ex c
2.4.1
sunep¸c mporoÔme na gryoume thn genik lÔsh wc
Dikaiolog ste thn tautìthta kai epibebai¸ste tic exis¸seic gia ta
C
kai
γ.
Kajìson eÐnai genik eukolìtero na qrhsimopoi soume thn pr¸th morf thc lÔshc gia na broÔme tic timèc twn stajer¸n
A kai B pou ikanopoioÔn tic arqikèc sunj kec h deÔterh morf eÐnai stenìtera sundedemènh me to pragmatikì C kai γ èqoun poll ìmorfh diermhneÐa. En parathr soume thn lÔsh sthn ex c morf
prìblhma. Oi stajerèc
x(t) = C cos(ω0 t − γ) blèpoume ìti to pltoc thc talntwshc eÐnai san metatìpish fshc.
C , ω0
eÐnai h (gwniak ) suqnìthta, kai
γ
eÐnai mia posìthta gnwst
MetatopÐzei to grfhma thc sunrthshc proc ta dexi proc ta arister.
H posìthta
ω0
onomzetai fusik (gwniak ) suqnìthta. H kÐnhsh pou mìlic perigryame eÐnai gnwst san apl armonik kÐnhsh. Ac knoume mia parat rhsh pou afor thn lèxh gwniak tou ìrou . H
ω0
dÐdetai se
kai ìqi se kÔklouc an monda qrìnou ìpwc sun jwc metrme thn suqnìthta. perifèreia enìc kÔklou eÐnai topojethjeÐ h stajer
2π ,
2π ,
h sun jhc suqnìthta dÐdetai apì thn sqèsh
radians
an monda qrìnou,
Epeid ìmwc ìpwc gnwrÐzoume ìti h
ω0 . EÐnai dhlad apl¸c jèma to pou ja 2π
kti to opoÐo apoteleÐ eleÔjerh epilog tou kajenìc.
H perÐodoc miac kÐnhshc isoÔtai me to antÐstrofo thc suqnìthtac (se kÔklouc an monda qrìnou) kai sunep¸c èqoume
2π . EÐnai dhlad o qrìnoc pou apaiteÐtai gia na oloklhrwjeÐ mia pl rhc talntwsh. ω0
Pardeigma 2.4.1:
'Estw ìti
m = 2 kg
kai
k = 8 N/m.
To sÔsthma mzac elathrÐou brÐsketai se èna ìqhma to
opoÐo kineÐtai me taqÔthta 1 m/s. To ìqhma sugkroÔetai kai stamat. To swmatÐdio to opoÐo mèqri tìte tan se jèsh 0.5 mètra makri apì thn jèsh isorropÐac (ekteÐnontac to elat rio) af netai eleÔjero kai arqÐzei na talant¸netai. Poia eÐnai h suqnìthta kai poio to pltoc thc en lìgw talntwshc? 'Etsi katal goume sto ex c prìblhma
2x00 + 8x = 0,
x(0) = 0.5,
p √ ω0 = k/m = 4 = 2. 2/2π = 1/π ≈ 0.318 Hertz .
MporoÔme mesa na upologÐsoume to (peristrofèc an deuterìlepto) eÐnai
x0 (0) = 1.
Dhlad h gwniak suqnìthta eÐnai 2.
H suqnìthta
H genik lÔsh eÐnai
x(t) = A cos 2t + B sin 2t. Jètontac
x(0) = 0
0
0 A = 0.5. √ Tìte x (t) = −0.5 sin 2t + B cos 2t. Jètontac x (0) = 1 √ 2 2 eÐnai C = A + B = 1.25 ≈ 1.118. H lÔsh eÐnai
shmaÐnei
to pltoc thc talntwshc
èqoume
B = 1.
Sunep¸c,
x(t) = 0.5 cos 2t + sin 2t. H grafik parstash thc lÔshc
x(t)
dÐnetai sto Sq ma 2.2 sthn paroÔsa selÐda.
Gia thn eleÔjerh kÐnhsh qwrÐc apìsbesh, h lÔsh thc morf c
x(t) = A cos ω0 t + B sin ω0 t, antistoiqeÐ stic arqikèc sunj kec
x(0) = A
kai
x0 (0) = B .
EÐnai fanerì ìti h parapnw morf eÐnai polÔ bolikìterh en jèloume na upologÐsoume tic timèc twn sÔgkrish me to en jèlame na upologÐsoume to pltoc kai thn metatìpish thc fshc.
A
kai
B,
se
2.4. ΤΑΛΑΝΤΩΣΕΙΣ
49 0.0
2.5
5.0
7.5
10.0
1.0
1.0
0.5
0.5
0.0
0.0
-0.5
-0.5
-1.0
-1.0
0.0
2.5
5.0
7.5
10.0
Σχήμα 2.2: Απλή ταλάντωση χωρίς απόσβεση.
2.4.3
EleÔjerh kÐnhsh
Ac estisoume t¸ra sthn exanagkasmènh kÐnhsh kai ac xanagryoume thn exÐswsh wc ex c
mx00 + cx0 + kx = 0,
x00 + 2px0 + ω02 x = 0, ìpou
r ω0 =
k , m
p=
c . 2m
H qarakthristik exÐswsh eÐnai
r2 + 2pr + ω02 = 0. Oi rÐzec eÐnai
r = −p ±
q
p2 − ω02 .
H morf thc lÔshc thc diaforik c exÐswshc exarttai apì to en oi rÐzec eÐnai pragmatikèc migadikèc. Pragmatikèc rÐzec èqoume mìnon ìtan o paraktw arijmìc eÐnai mh-arnhtikìc.
p2 − ω02 = To prìshmo tou
p2 − ω02
c 2 k c2 − 4km − = . 2m m 4m2
eÐnai to Ðdio me to prìshma
c2 − 4km.
Sunep¸c èqoume pragmatikèc rÐzec an h
c2 − 4km
eÐnai
mh-arnhtik .
Ισχυρά φθίνουσα ταλάντωση 'Otan
c2 − 4km > 0,
lème ìti to sÔsthma eÐnai isqur fjÐnwn.
metaxÔ touc pragmatikèc rÐzec, mikrìterh apì to
p
r1
r2 . Shmei¸ste p −p ± p2 − ω02
kai
opìte h posìthta
Sthn perÐptwsh aut , uprqoun dÔo diaforetikèc
ìti kai oi dÔo eÐnai arnhtikèc, mia kai h
p
p2 − ω02
eÐnai pnta
eÐnai pnta arnhtik .
'Ara h lÔsh eÐnai
x(t) = C1 er1 t + C2 er2 t . AfoÔ oi
r1 , r 2
eÐnai arnhtikèc,
x(t) → 0
ìtan
t → ∞.
Autì shmaÐnei ìti to swmatÐdio ja teÐnei na akinhtopoihjeÐ ìso
pernei o qrìnoc. To Sq ma 2.3 sthn epìmenh selÐda perièqei merikèc grafikèc parastseic lÔsewn gia diaforetikèc arqikèc timèc.
50
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ Parathr ste ìti ousiastik den èqoume talntwsh. Mlista faÐnetai ìti h grafik parstash thc lÔshc tèmnei
x
ton
xona mìnon mia for gegonìc to opoÐo mporoÔme eÔkola na epibebai¸soume wc ex c.
lÔsoume thn
0 = C1 er1 t + C2 er2 t .
'Ara
C1 er1 t = −C2 er2 t ,
Ac prospaj soume na
kai sunep¸c
−C1 = e(r2 −r1 )t . C2 Uprqei loipìn mia to polÔ lÔsh gia
Pardeigma 2.4.2:
x0 (0) = 0.
t ≥ 0.
Upojèste ìti af noume to swmatÐdio apì thn jèsh isorropÐac. Dhlad èqoume
Tìte èqoume
x(t) =
x(0) = x0
kai
x0 r1 er2 t − r2 er1 t . r1 − r2
EÐnai eÔkolo na dei kaneÐc ìti h parapnw lÔsh ikanopoieÐ tic arqikèc sunj kec.
Κρίσιμα φθίνουσα κίνηση 0
c2 − 4km = 0, lème ìti to sÔsthma eÐnai rÐza, thn −p pollaplìthtac 2. 'Ara h lÔsh
25
50
75
100
'Otan
krÐsima fjÐnonkrÐsima fjÐnon sÔsthma. Sthn perÐptwsh aut èqoume
mia
mac eÐnai
1.5
1.5
x(t) = C1 e−pt + C2 te−pt . 1.0
1.0
H sumperifor enìc krÐsima fjÐnontoc sust matoc eÐnai polÔ parìmoia me aut enìc isqur fjÐnontoc sust matoc. Mlista sthn ousÐa èna krÐsima fjÐnon sÔsthma eÐnai me kpoia ènnoia to ìrio enìc isqur fjÐnontoc sust matoc. Epeid oi diaforikèc exis¸seic apoteloÔn proseggÐseic pragmatik¸n susthmtwn, eÐnai exairetik spnio na sunant 0.5 soume sthn prxh mia krÐsima fjÐnousa kÐnhsh. EÐnai logikì 0.5 mia kÐnhsh na eÐnai eÐte lÐgo isqur fjÐnousa eÐte lÐgo
asjen¸c fjÐnousa. Ac mhn proqwr soume loipìn se leptomèreiec pou aforoÔn krÐsima fjÐnousec kin seic.
Ασθενώς φθίνουσα κίνηση 0
5
10
15
20
0.0
25
c −4km < 0, lème ìti èqoume èna asjen¸c fjÐnon
'Otan
30
1.0
0.0
2
1.0
sÔsthma. Sthn perÐptwsh aut rÐzec 0 25 50 èqoume migadikèc 75 100
q
0.5
Σχήμα 2.3: Ισχυρά για διάφορες αρr = −pφθίνουσα ± p2 −κίνηση ω02 q χικές τιμές. √
0.5
= −p ±
0.0
ω02 − p2
= −p ± iω1 ,
0.0
ìpou
-0.5
−1
ω1 =
p
ω02 − p2 .
H lÔsh mac eÐnai
x(t) = e−pt (A cos ω1 t + B sin ω1 t) ,
-0.5
x(t) = Ce−pt cos(ω1 t − γ). -1.0
-1.0 0
5
10
15
20
25
30
Σχήμα 2.4: Ισχυρά φθίνουσα κίνηση και οι περικλείουσες καμπύλες της.
H grafik parstash miac tètoiac lÔshc dÐnetai sto Sq ma 2.4.
Shmei¸ste kai sthn perÐptwsh aut èqoume ìti
x(t) → 0
ìtan
kampÔlec twn dÔo aut¸n kampÔlwn. stigm .
t → ∞.
To en lìgw sq ma perilambnei kai tic perikleÐousec
Ce−pt
kai
−Ce−pt .
H lÔsh talant¸netai metaxÔ
Oi perikleÐousec kampÔlec dÐnoun to mègisto pltoc thc talntwshc se kje qronik
H metatìpish fshc
γ
apl metatopÐzei to grfhma eÐte proc ta dexi proc ta arister all pnta mèsa
sto q¸ro pou kajorÐzoun oi perikleÐousec kampÔlec (oi opoÐec bebaÐwc den metabllontai en metablhjeÐ to
γ ).
Shmei¸ste tèloc ìti h gwniak yeudo-suqnìthta (den kaloÔme apl¸c suqnìthta epeid h lÔsh den eÐnai sthn ousÐa periodik sunrthsh)
ω1
elatt¸netai ìso o suntelest c
mia kai en suneqÐsoume na metabloume to
c
c
(kai sunep¸c kai o
p)
auxnei.
Kti tètoio eÐnai logikì
se kpoio shmeÐo h lÔsh mac ja arqÐsei na moizei san thn lÔsh pou
antistoiqeÐ sthn isqur fjÐnousa thn krÐsima fjÐnousa perÐptwsh h opoÐa bebaÐwc den talant¸netai kajìlou.
2.4. ΤΑΛΑΝΤΩΣΕΙΣ
51
Apì thn llh meri ìso elatt¸noume to
c
to
ω1
teÐnei sto
ω0
(paramènontac pnta mikrìtero) kai h lÔsh ìlo kai
perissìtera moizei me thn sun jh periodik kÐnhsh qwrÐc apìsbesh. Sthn perÐptwsh aut , ìso to perikleÐousec kampÔlec teÐnoun na ekfulistoÔn se eujeÐec parllhlec me ton xona tou
x
p
teÐnei sto 0, oi
.
Leptomèreiec sqetik me thn optik je¸rhsh thc fusik c sto parapnw jèma all kai gia poll apì aut pou ja akolouj soun sto parìn keflaio mporeÐ kaneÐc na brei stic shmei¸seic tou maj matoc Fusik c tou PanepisthmÐou
‡
Ajhn¸n .
2.4.4
Ask seic
2.4.2
Jewr ste èna sÔsthma mzac elathrÐou me mza
c = 1.
a) Diatup¸ste thn diaforik exÐswsh pou analogeÐ sto parapnw sÔsthma kai breÐte thn lÔsh tou. b) EÐnai
m = 2,
stajer elathrÐou
k = 3,
kai stajer apìsbeshc
to en lìgw sÔsthma asjen¸c, krÐsima oriak fjÐnon? c) En to sÔsthma eÐnai krÐsima fjÐnon, breÐte mia tim tou
c
h opoÐa to knei krÐsima fjÐnon.
2.4.3
LÔste thn 'Askhsh 2.4.2 gia
2.4.4
Ac upojèsoume ìti agnooÔme thn apìsbesh kai ìti qrhsimopoioÔme tic diejneÐc mondec mètrhshc (mètra-kil-
m = 3, k = 12,
kai
c = 12.
deuterìlepta) 'Estw ìti jèloume na qrhsimopoi soume èna elat rio me stajer 4
N/m
gia na zugÐzoume antikeÐmena.
'Estw epÐshc ìti topojetoÔme èna swmatÐdio sto elat rio kai to af noume na talantwjeÐ. metr¸ntac thn suqnìthta talntwshc kai diapist¸soume ìti aut eÐnai 0.8 to swmatÐdio? b) BreÐte ènan tÔpo gia thn mza tou swmatidÐou
2.4.5
m
Hz
a) En diapist¸soume
(kÔkloi to deuterìlepto) ti mza èqei
wc proc thn suqnìthta
ω
se
Hz .
'Estw ìti prosjètoume to endeqìmeno Ôparxhc apìsbeshc sto sÔsthma thc 'Askhshc 2.4.4.
Epiprìsjeta,
upojètoume ìti den gnwrÐzoume thn tim thc stajerc tou elathrÐou, èqoume ìmwc dÔo swmatÐdia anaforc brouc 1 kai 2 kil¸n me ta opoÐa ja diametr soume to sÔsthma wc ex c.
TopojetoÔme to kajèna apì aut sto sÔsthma kai
Hz , en¸ gia to 2 k kai thc stajerc apìsbeshc c. a) En diapist¸soume metr¸ntac thn suqnìthta talntwshc kai diapist¸soume ìti aut eÐnai 0.2 Hz (kÔkloi to deuterìlepto) ti mza èqei to swmatÐdio? b) BreÐte ènan tÔpo gia thn mza tou swmatidÐou m wc proc thn suqnìthta ω se Hz . metrme thn suqnìthta talntwshc. 'Estw ìti gia to swmatÐdio tou 1 kiloÔ h suqnìthta tan 0.8
kil¸n tan 0.39
Hz .
a) BreÐte thn tim thc stajerc elathrÐou
‡ http://web.cc.uoa.gr/
~ctrikali/aplets_web/fysiki_i/pendulum/lroom.htm
52
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
2.5
Mh-omogeneÐc exis¸seic
2.5.1
EpÐlush mh-omogen¸n exis¸sewn
MporoÔme loipìn pwc na lÔsoume (h toulqiston na prospaj soume na lÔsoume) grammikèc omogeneÐc exis¸seic me stajeroÔc suntelestèc.
Ac apallagoÔme t¸ra apì ton periorismì tou na eÐnai h exÐswsh omogen c.
shmaÐnei ìti sto sÔsthm to opoÐo prospajoÔme na montelopoi soume dra mia exwterik dÔnamh.
Kti tètoio
Mia tètoia, mh-
omogen c exÐswsh eÐnai h ex c
y 00 + 5y 0 + 6y = 2x + 1.
(2.6)
Shmei¸ste ìti h exÐswsh paramènei me stajeroÔc suntelestèc. Dhlad oi suntelestèc twn
y 00 , y 0 ,
kai
y
paramènoun
stajerèc. Genik ja grfoume thn exÐswsh sthn morf
L
Ly = 2x + 1
den ephrezei ton sullogismì kai tic enèrgeièc mac.
BrÐskoume thn genik lÔsh
yc
ìtan h sugkekrimènh morf tou diaforikoÔ telest
O trìpoc me ton opoÐo ja lÔsoume thn (2.6) eÐnai o ex c.
thc analogoÔshc omogenoÔc exÐswshsanalogoÔsa omogen c exÐswsh
y 00 + 5y 0 + 6y = 0. EpÐshc brÐskoume, me kpoion trìpo, mia sugkekrimènh lÔsh
yp
(2.7)
thc (2.6) opìte eÔkola diapist¸noume ìti h
y = yc + yp eÐnai h genik lÔsh thc exÐswshc (2.6). H Shmei¸ste ìti h
yp
yc
suqn onomzetai sumplhrwmatik lÔsh.
mporeÐ na eÐnai opoiad pote lÔsh.
w = yp − y˜p
thn sunrthsh thc diaforc touc
'Estw ìti br kate mia diaforetik lÔsh
kai ac antikatast soume thn
w
y˜p .
Ac orÐsoume
kai sta dÔo mèrh thc exÐswshc gia na
proume
w00 + 5w0 + 6w = (yp00 + 5yp0 + 6yp ) − (˜ yp00 + 5˜ yp0 + 6˜ yp ) = (2x + 1) − (2x + 1) = 0. H parapnw diadikasÐa gÐnetai aploÔsterh en qrhsimopoi soume sumbolismì telest¸n. Shmei¸ste ìti
L
eÐnai ènac
grammikìc telest c opìte èqoume
Lw = L(yp − y˜p ) = Lyp − L˜ yp = (2x + 1) − (2x + 1) = 0. 'Ara h
w = yp − y˜p
eÐnai mia lÔsh thc (2.7) kai sunep¸c oi opoiesd pote dÔo lÔseic thc (2.6) diafèroun metaxÔ touc
kat mia lÔsh thc omogenoÔc exÐswshc (2.7). Epeid h
yc
eÐnai h genik thc omogenoÔc exÐswshc, h lÔsh
y = yc + yp
sumperilambnei ìlec tic lÔseic thc (2.6). Ta parapnw mac odhgoÔn sto ex c shmantikì sumpèrasma.
En breÐte mia opoiad pote sugkekrimènh lÔsh me
kpoio trìpo kai mia opoiad pote llh diaforetik lÔsh me opoiond pote trìpo (p.q.
manteyi) tìte mporeÐte na
breÐte thn genikeumènh lÔsh tou exÐswshc. H genik aut lÔsh mporeÐ na diatupwjeÐ me entel¸c diaforetikì trìpo en epilèxoume llec sugkekrimènec lÔseic. Se kje perÐptwsh ìmwc h genik lÔsh parist thn Ðdia klsh lÔsewn, dhlad sunart sewn pou ikanopoioÔn thn diaforik exÐswsh.
Apì thn en lìgw klsh ja epilèxoume thn (monadik
en uprqei) katllhlh lÔsh tou probl matoc pou ikanopoieÐ kai thn exÐswsh kai tic arqikèc sunj kec.
2.5.2
Mèjodoc aprosdiìristwn suntelest¸n
EÐnai profan¸c epijumhtì na mporoÔme na manteÔoume thn lÔsh thc (2.6). Shmei¸ste ìti to kai to aristerì mèroc thc exÐswshc ja eÐnai epÐshc polu¸numo en epilèxoume thn
y
2x+1 eÐnai èna polu¸numo,
na eÐnai èna polu¸numo tou Ðdiou
bajmoÔ. Ac prospaj soume loipìn jètontac
y = Ax + B. Antikajist¸ntac èqoume
y 00 + 5y 0 + 6y = (Ax + B)00 + 5(Ax + B)0 + 6(Ax + B) = 0 + 5A + 6Ax + 6B = 6Ax + (5A + 6B). 'Ara
6Ax + (5A + 6B) = 2x + 1.
Opìte
A = 1/3
kai
B=
−1/9. Autì shmaÐnei ìti
sumplhrwmatikì prìblhma èqoume. ('Askhsh!)
yc = C1 e−2x + C2 e−3x .
yp =
1 3
x−
1 9
=
3x−1 . LÔnontac to 9
2.5. ΜΗ-ΟΜΟΓΕΝΕΙΣ ΕΞΙΣΩΣΕΙΣ
53
'Ara h genik lÔsh thc (2.6) eÐnai
3x − 1 . 9 sunj kec y(0) = 0
y = C1 e−2x + C2 e−3x + Ac upojèsoume ìti epiprìsjeta mac dÐnontai oi arqikèc
y 0 = −2C1 e−2x − 3C2 e−3x + 1/3.
0 = y(0) = C1 + C2 − LÔnontac èqoume
C1 = 1/3
kai
C2 = −2/9.
y(x) = 2.5.1
Elègxte ìti h
y
kai
y 0 (0) = 1/3.
Pr¸ta èqoume ìti
Tìte
1 9
1 1 = y 0 (0) = −2C1 − 3C2 + . 3 3
'Ara h lÔsh eÐnai
1 −2x 2 −3x 3x − 1 3e−2x − 2e−3x + 3x − 1 e − e + = . 3 9 9 9
apoteleÐ lÔsh thc exÐswshc.
ShmeÐwsh: 'Ena sÔnhjec ljoc eÐnai na upologÐsoume tic stajerèc qrhsimopoi¸ntac tic arqikèc sunj kec kai thn
yc
yp .
kai katìpin na prosjèsoume thn sugkekrimènh lÔsh
y = yc + yp
pr¸ta na upologÐsoume thn
Autì den ja mac odhg sei sthn lÔsh pou zhtme. Prèpei
kai katìpin na lÔsoume wc proc tic stajerèc qrhsimopoi¸ntac tic arqikèc
sunj kec. Me parìmoio trìpo mporoÔme na antimetwpÐsoume peript¸seic pou sto dexiì mèloc tic exÐswshc èqoume ekjetik sunrthsh hmÐtona kai sunhmÐtona. Gia pardeigma
y 00 + 2y 0 + 2y = cos 2x Ac upologÐsoume thn
yp •qrhsimopoi¸ntac
thn manteyi
y = A cos 2x + B sin 2x. Antikajist¸ntac thn
y
sthn exÐswsh èqoume
−4A cos 2x − 4B sin 2x − 4A sin 2x + 4B cos 2x + 2A cos 2x + 2B sin 2x = cos 2x. −4A + 4B + 2A = 1 B = 1/5. 'Ara
Gia na eÐnai to dexiì meroc Ðso me to aristerì prèpei na isqÔei
−2A + 4B = 1
kai
2A + B = 0
kai sunep¸c
A = −1/10
kai
yp = A cos 2x + B sin 2x =
dhlad
−4B − 4A + 2B = 0.
'Ara
− cos 2x + 2 sin 2x . 10
Me parìmoio trìpo mporoÔme na antimetwpÐsoume thn perÐptwsh pou to dexiì mèroc perièqei ekjetikèc sunart seic, opìte kai h mantexi mac ja eÐnai epÐshc ekjetik sunrthsh. Gia pardeigma, an
Ly = e3x , L eÐnai ènac opoiosd pote diaforikìc telest c y = Ae3x . EÐnai shmantikì na suneidhtopoi soume ìti (ìpou
me stajeroÔc suntelestèc) tìte h manteyi mac ja eÐnai h basizìmenoi ston kanìna tou ginomènou gia thn parag¸gish
mporoÔme na sundusoume katllhla manteyièc. Gia pardeigma, gia thn exÐswsh
Ly = (1 + 3x2 ) e−x cos πx, ac jewr soume thn manteyi
y = (A + Bx + Cx2 ) e−x cos πx + (D + Ex + F x2 ) e−x sin πx thn opoÐa ja antikatast soume sthn exÐswsh elpÐzontac na proume to sÔsthma twn algebrik¸n exis¸sewn pou eÐnai aparaÐthto gia na upologÐsoume tic timèc twn
A, B, C, D, E, F .
There ic one hiccup in all thic. It could be that our guesc actually solvec the associated homogeneouc equation. That ic, suppose we have Ac xedialÔnoume ton basikì mhqanismì thc mejìdou aut c jewr¸ntac thn exÐswsh
y 00 − 9y = e3x .
54
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
Mia profan c manteyi eÐnai h
y = Ae3x ,
thn opoÐa ìmwc an antikatast soume sto aristerì mèroc ja proume
y 00 − 9y = 9Ae3x − 9Ae3x = 0 6= e3x . A ètsi ¸ste to dexiì mèroc na eÐnai Ðso me e3x .
Den uprqei trìpoc epilog c tou
Gia na apofÔgoume thn pollaplìthta
thc sumplhrwmatik c lÔshc (profan¸c se aut ofeÐletai to prìblhma), mporoÔme na thn pollaplasisoume me UpologÐzoume dhlad pr¸ta thn
yc
(thn lÔsh thc
x.
Ly = 0)
yc = C1 e−3x + C2 e3x kai parathroÔme ìti uprqei se aut n o ìroc
e3x
o opoÐoc sumpÐptei me thn epijumht manteyi mac.
y = Axe3x . y 00 = 4Ae3x + 9Axe3x . 'Ara
apofÔgoume kti tètoio an metatrèyoume thn manteyi mac se sun jwc paÐrnontac
y 0 = Ae3x + 3Axe3x
kai
MporoÔme na
T¸ra mporoÔme na proqwr soume wc
y 00 − 9y = 4Ae3x + 9Axe3x − 9Axe3x = 4Ae3x . Gia na eÐnai to dexiì mèloc Ðso me
e3x
èqoume ìti
4A = 1
kai ra
A = 1/4.
MporoÔme loipìn na gryoume thn genik
lÔsh wc ex c
y = yc + yp = C1 e−3x + C2 e3x + Uprqei perÐptwsh o pollaplasiasmìc thc manteyic me
x
1 3x xe . 4
na mhn mac epitrèyei na apofÔgoume sÔmptwsh lÔsewn.
Gia pardeigma,
y 00 − 6y 0 + 9 = e3x . yc = C1 e3x + C2 xe3x .
Shmei¸ste ìti
Sunep¸c h manteyi
perÐptwsh ac exetsoume thn ex c epilog me
x
2 3x
y = Ax e
.
y = Axe3x
den ja mac odhg sei poujen.
Se aut thn
En gènei mporoÔme na pollaplasisoume thn manteyi mac
ìsec forèc qreizetai gia na apofÔgoume thn sÔmptwsh lÔsewn.
until all duplication ic gone.
'Oqi ìmwc
perissìterec forèc! En pollaplasisoume perissìterec forèc apo ìsec prèpei ja odhghjoÔme kai pli se adièxodo. Tèloc ac exetsoume thn perÐptwsh pou to dexiì mèroc eÐnai jroisma kpoiwn ìrwn, ìpwc gia pardeigma to
Ly = e2x + cos x. Sthn en lìgw perÐptwsh brÐskoume mia sunrthsh
v
u
h opoÐa apoteleÐ lÔsh thc exÐswshc
Lu = e2x
kai mia sunrthsh
Lv = cos x (antimetwpÐzoume kje ìro xeqwrist). Katìpin shmei¸ste ìti an 2x jèsoume y = u+v , èqoume Ly = e +cos x. Autì ofeÐletai sto gegonìc ìti o telest c L eÐnai grammikìc kai mporoÔme 2x na qrhsimopoi soume upèrjesh twn lÔsewn. Me ton trìpo autì èqoume ìti Ly = L(u + v) = Lu + Lv = e + cos x. h opoÐa apoteleÐ lÔsh thc exÐswshc
Analutikèc epiprìsjetec analutikèc teqnikèc leptomèreiec thc parapnw mejìdou mporeÐte na breÐte sto biblÐo twn
Edwards
2.5.3
kai
P enney
[EP] all kai se kje llo biblÐo diaforik¸n exis¸sewn.
Mèjodoc diakÔmanshc twn paramètrwn
H mèjodoc twn aprosdiìristwn suntelest¸n parìlo pou mac bohj na lÔsoume poll basik probl mata diaforik¸n exis¸sewn dustuq¸c den mporeÐ na antimetwpÐsei poll lla. sthn perÐptwsh pou to dexiì mèroc thc exÐswshc
Ly = f (x)
Sthn pragmatikìthta eÐnai apotelesmatik mìnon
èqei mìnon peperasmèno arijmì grammik anexrthtwn
parag¸gwn, opìte kai eÐnai dunatìn na d¸sei kpoioc mia manteyi pou tic perilambnei ìlec touc. Kti tètoio eÐnai idiaÐtera dÔskolo kpoiec forèc. Gia pardeigma, ac jewr soume thn exÐswsh
y 00 + y = tan x. Shmei¸ste ìti oi pargwgoi thc
tan x
deÐqnoun teleÐwc diaforetikèc metaxÔ touc kai eÐnai adÔnaton na grafoÔn san
grammikìc sunduasmìc parag¸gwn kat¸terhc txhc. Prgmati èqoume
sec2 x, 2 sec2 x tan x,
klp . . . .
Gia thn epÐlush thc exÐswshc aut c qreizetai mia nèa mèjodoc. Ac anaptÔxoume loipìn thn mèjodo diakÔmanshc twn paramètrwndiakÔmansh twn paramètrwn, h opoÐamporeÐ na mac bohj sei na antimetwpÐsoume opoiad pote exÐswsh thc morf c
Ly = f (x),
arkeÐ bebaÐwc na eÐnai efiktì na upologÐsoume ta emplekìmena oloklhr¸mata.
Gia na
aplousteÔsoume thn suz thsh, kai fusik qwrÐc periorismì thc genikìthtac, ac perioristoÔme se exis¸seic deÔterhc
2.5. ΜΗ-ΟΜΟΓΕΝΕΙΣ ΕΞΙΣΩΣΕΙΣ
55
txhc, èqontac bebaÐwc upìyin ìti h en lìgw mèjodoc mporeÐ me thn Ðdia eukolÐa na antimetwpÐsei exis¸seic uyhlìterhc txhc (endeqomènwc mèsw eÔkolwn all baret¸n upologism¸n). Ac prospaj soume na lÔsoume thn ex c exÐswsh.
Ly = y 00 + y = tan x. Pr¸ta brÐskoume thn sumplhrwmatik lÔsh thc
y1 = cos x
kai
y2 = sin x.
Ly = 0
brÐskontac sqetik eÔkola ìti
yc = C1 y1 + C2 y2
ìpou
Gia na prospaj soume t¸ra na broÔme mia lÔsh thc mh-omogenoÔc exÐswshc ac jewr soume
thn ex c sunrthsh
yp = y = u1 y1 + u2 y2 , ìpou oi
u1
kai
u2
eÐnai sunart seic kai ìqi stajerèc. An prospaj soume na ikanopoi soume thn exÐswsh
ja katal xoume se mia sunj kh pou sundèei tic
u1
kai
u2 .
Ly = tan x
Pr¸ta bebaÐwc prèpei na upologÐsoume (prosoq , me ton
kanìna tou ginomènou!)
y 0 = (u01 y1 + u02 y2 ) + (u1 y10 + u2 y20 ). Mia kai lìgw thc poluplokìthtac thc eÐnai sugkritik dÔskolo na diaqeiristoÔme thn parapnw sqèsh, ac thn aplopoi soume jètontac thn ex c perioristik sqèsh
(u01 y1 +u02 y2 ) = 0.
Kti tètoio ìqi mìnon eÐnai epitreptì all kai
ousiastik anagkaÐo mia kai prèpei na broÔme dÔo gnwstec sunart seic gegonìc pou apaiteÐ kai mia deÔterh exÐswsh pèra apì thn arqik diaforik exÐswsh. 'Etsi kai o upologismìc thc deÔterhc parag¸gou eÐnai polÔ eukolìteroc.
y 0 = u1 y10 + u2 y20 , y 00 = (u01 y10 + u02 y20 ) + (u1 y100 + u2 y200 ). T¸ra epeid mac tan thc
y2 eÐnai lÔseic thc y 00 + y = 0, gnwrÐzoume ìti y100 = −y1 0 00 0 00 morf c y + ay + by = 0 ja eÐqame yi = −ayi − byi .)
y1
kai
kai
y200 = −y2 .
(ShmeÐwsh: An h exÐswsh
'Ara
y 00 = (u01 y10 + u02 y20 ) − (u1 y1 + u2 y2 ). Shmei¸ste ìti
y 00 = (u01 y10 + u02 y20 ) − y, kai sunep¸c
y 00 + y = Ly = u01 y10 + u02 y20 . Gia na ikanopoieÐ h
y
thn
Ly = f (x)
f (x) = u01 y10 + u02 y20 . pou jèsame gia tic u1
prèpei na èqoume
Prèpei na lÔsoume tic dÔo exis¸seic (sunj kec)
kai
u2
u01 y1 + u02 y2 = 0, u01 y10 + u02 y20 = f (x). MporoÔme t¸ra na lÔsoume wc proc tic
u01
kai
u02
opoiasd pote sugkekrimènh exÐswsh thc morf c
sunart sei twn
Ly = f (x).
f (x), y1
kai
y2 .
Oi parapnw exis¸seic eÐnai Ðdiec gia
Uprqei sunep¸c genikìc tÔpoc upologismoÔ thc lÔshc
ston opoÐo arkeÐ na knei kpoioc tic aparaÐthtec antikatastseic, eÐnai ìmwc kallÐtero na epanalbei thn paraktw diadikasÐa. Sthn perÐptws mac oi dÔi exis¸seic paÐrnoun thn morf
u01 cos x + u02 sin x = 0, −u01 sin x + u02 cos x = tan x. 'Ara
u01 cos x sin x + u02 sin2 x = 0, −u01 sin x cos x + u02 cos2 x = tan x cos x = sin x. kai sunep¸c
u02 (sin2 x + cos2 x) = sin x, u02 = sin x, u01 =
− sin2 x x = − tan x sin x. cos
56
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ u02 gia na upologÐsoume tic u1 kai u2 . Z Z 1 (sin x) − 1 0 u1 = u1 dx = − tan x sin x dx = ln + sin x, 2 (sin x) + 1 Z Z u2 = u02 dx = sin x dx = − cos x.
T¸ra prèpei na oloklhr¸soume tic
u01
kai
'Ara h sugkekrimènh lÔsh mac eÐnai
(sin x) − 1 1 + cos x sin x − cos x sin x = yp = u1 y1 + u2 y2 = cos x ln 2 (sin x) + 1 = H genik lÔsh thc
y 00 + y = tan x
eÐnai loipìn
y = C1 cos x + C2 sin x +
2.5.4
(sin x) − 1 1 . cos x ln 2 (sin x) + 1
(sin x) − 1 1 . cos x ln 2 (sin x) + 1
Ask seic
2.5.2
BreÐte mia sugkekrimènh lÔsh thc exÐswshc
y 00 − y 0 − 6y = e2x .
2.5.3
BreÐte mia sugkekrimènh lÔsh thc exÐswshc
y 00 − 4y 0 + 4y = e2x .
2.5.4
LÔste to ex c prìblhma
2.5.5
Diatup¸ste thn genik morf miac sugkekrimènhc lÔshc thc
y 00 + 9y = cos 3x + sin 3x
gia
y(0) = 2, y 0 (0) = 1. y (4) − 2y 000 + y 00 = ex
qwrÐc na lÔsete wc proc
touc suntelestèc.
2.5.6
Diatup¸ste thn genik morf kai breÐte mia sugkekrimènh lÔsh thc exÐswshc
y (4) − 2y 000 + y 00 = ex + x + sin x
qwrÐc na lÔsete wc proc touc suntelestèc.
2.5.7
a) Qrhsimopoi ste thn mèjodo thc diakÔmanshc twn paramètrwn gia na breÐte mia sugkekrimènh lÔsh thc
exÐswshc
y 00 − 2y 0 + y = ex .
b) BreÐte mia sugkekrimènh lÔsh thc parapnw exÐswshc qrhsimopoi¸ntac thn mèjodo
twn aprosdiìristwn suntelest¸n. c) EÐnai oi dÔo lÔseic pou br kate parapnw Ðdiec? Ti sumbaÐnei?
2.5.8
BreÐte mia sugkekrimènh lÔsh thc exÐswshc
plekìmena orismèna oloklhr¸mata.
y 00 − 2y 0 + y = sin x2 .
Den qreizetai na upologÐzetai ta em-
2.6. ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΥΝΤΟΝΙΣΜΟΣ 2.6
57
Exanagkasmènec talant¸seic kai suntonismìc
Ac epistrèyoume t¸ra sto sÔsthma mzac elathrÐou kai ac exetsoume
k
thn perÐptwsh twn exanagkasmènwn talant¸sewn. Ac exetsoume dhlad thn
F (t) m
exÐswsh
mx00 + cx0 + kx = F (t) gia kpoia mh-mhdenik exÐswsh elathrÐou,
m
F (t).
Ac jumhjoÔme ìti sto sÔsthma mzac
eÐnai h mza tou swmatidÐou,
c
eÐnai h apìsbesh,
k
apìsbeshFc(t) eÐnai kpoia
eÐnai h stajer tou elathrÐou kai
exwterik dÔnamh pou dra pnw sto swmatÐdio. Sun jwc h exwterik dÔnamh eÐnai periodik , ìpwc pq swmatÐdia peristrefìmena ektìc kèntrou brouc, periodikoÔc qouc klp. 'Otan ja anaptÔxoume teqnikèc seir¸n
F ourier
ja doÔme ìti sthn ousÐa mporoÔme na antimetw-
pÐsoume kje periodik sunrthsh, opoioud pote tÔpou, jewr¸ntac sunart seic thc morf c
F (t) = F0 cos ω t
(
sin),
me ousiastik akrib¸c ton Ðdio trìpo.
2.6.1
Exanagkasmènh kÐnhsh qwrÐc apìsbesh kai suntonismìc
Qrin aplìthtac ac exetsoume pr¸ta thn perÐptwsh qwrÐc apìsbesh (
c = 0).
'Eqoume loipìn thn exÐswsh
mx00 + kx = F0 cos ω t. h opoÐa èqei thn ex c sumplhrwmatik lÔsh (lÔsh thc antÐstoiqhc omogenoÔc exÐswshc)
xc = C1 cos ω0 t + C2 sin ω0 t, ìpou
p
ω0 =
k/m. H
ω0
lègetai (gwniak ) fusik suqnìthta.
EÐnai h suqnìthta sthn opoÐa to sÔsthma jèlei na
talantwjeÐ qwrÐc thn ep reia exwterik¸n paragìntwn. Ac upojèsoume ìti
ω0 6= ω ,
ac dokimsoume thn manteyi
xp = A cos ω t
kai ac lÔsoume wc proc
A.
Shmei¸ste ìti
den eÐnai aparaÐthto na èqoume ìro hmitìnou sthn manteyi mac mia kai sto aristerì mèroc ja èqoume oÔtwc llwc sunhmÐtona.
Fusik mporeÐ kpoioc na sumperilbei ìrouc hmitìnou sthn manteyi, oi suntelestèc ìmwc twn ìrwn
aut¸n ja apodeiqjeÐ ìti eÐnai mhdèn. LÔnontac parìmoia (knte to san skhsh) me thn mèjodo twn aprosdiìristwn suntelest¸n kai qrhsimopoi¸ntac thn parapnw manteyi brÐskoume ìti
xp =
F0 cos ω t. m(ω02 − ω 2 )
H genik lÔsh eÐnai
x = C1 cos ω0 t + C2 sin ω0 t +
F0 cos ω t. m(ω02 − ω 2 )
h opoÐa mporeÐ na dojeÐ sthn ex c morf
x = C cos(ω0 t − γ) +
F0 cos ω t. m(ω02 − ω 2 )
EÐnai dhlad upèrjesh dÔo sunhmitonoeid¸n kumtwn diaforetik¸n suqnot twn.
Pardeigma 2.6.1:
kai ìti
x(0) = 0
kai
'Estw ìti
0.5x00 + 8x = 10 cos πt
0
x (0) = 0.
Ac anagnwrÐsoume tic paramètrouc pr¸ta:
ω = π , ω0 =
p
8/0.5
x = C1 cos 4t + C2 sin 4t + Ac lÔsoume t¸ra wc proc
C2 = 0
kai
C1 =
C1
kai
C2
= 4, F0 = 10, m = 1.
'Ara h genik lÔsh eÐnai
20 cos πt. 16 − π 2
qrhsimopoi¸ntac tic arqikèc sunj kec. EÐnai eÔkolo na diapist¸soume ìti
−20 . 'Ara 16−π 2
x=
20 (cos πt − cos 4t). 16 − π 2
58
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ •
Parathr ste thn sumperifor thc lÔshc sto Sq ma 2.5 wc proc to mègisto pltoc thc.
Prgmati en qrhsi-
mopoi soume thn trigwnometrik tautìthta
2 sin
A−B 2
sin
A+B 2
= cos B − cos A
ja doÔme ìti
x= Shmei¸ste ìti to
x
20 16 − π 2
4+π 4−π t sin t . 2 sin 2 2
eÐnai èna uyhl c suqnìthtac kÔma to eÔroc tou opoÐou diamorf¸netai apì èna kÔma qamhl c
suqnìthtac.
ω0 = ω . Profan¸c, den eÐnai dunatìn h A cos ω t se sunduasmì me thn mèjodo twn apros-
'Estw t¸ra manteyi
diìristwn suntelest¸n na mac odhg sei sthn lÔsh. n prokeÐmenh perÐptwsh blèpoume ìti h sunrthsh
0
5
10
15
20
10
10
5
5
0
0
-5
-5
Sth-
cos ω t
apoteleÐ lÔsh thc antÐstoiqhc omogenoÔc exÐswshc.
'Ara,
xp = At cos ω t+ Bt sin ω t mia kai deÔterh pargwgoc thc t cos ω t emperièqei qreizetai na dokimsoume thn sunrthsh
hmÐtona. Grfoume loipìn thn exÐswsh
F0 x +ω x= cos ω t. m 00
2
Antikajist¸ntac sto aristerì mèroc èqoume
2Bω cos ω t − 2Aω sin ω t =
F0 cos ω t. m -10
'Ara
F0 2mω
F0 A = 0 kai B = 2mω . H sugkekrimènh t sin ω t kai h genik lÔsh eÐnai
x = C1 cos ω t + C2 sin ω t +
-10 0
5
10
15
20
lÔsh eÐnai
Σχήμα 2.5: Η γραφική παράσταση της cos 4t).
F0 t sin ω t. 2mω
20 16−π 2 (cos πt−
O shmantikìc ìroc eÐnai o teleutaÐoc (h sugkekrimènh 0
5
10
15
lÔsh pou br kame).
20
5.0
5.0
EÔkola blèpoume ìti o ìroc autìc
auxnetai qwrÐc ìrio ìtan
t → ∞.
talant¸netai metaxÔ tou
−F0 t F0 t kai tou . 2mω 2mωp
Sthn pragmatikìthta,
dÔo talant¸netai mìnon metaxÔ twn tim¸n 2.5
2.5
opoÐec gÐnontai, ìso auxnei to
t,
±
Oi pr¸toi
C12 + C22 ,
oi
ìlo kai mikrìterec se
sÔgkrish me tic me tic antÐstoiqec timèc talntwshc tou teleutaÐou ìrou. 0.0
0.0
Sto Sq ma 2.6 blèpoume thn grafik
parstash thc lÔshc ìtan
C1 = C2 = 0 , F0 = 2 , m = 1 ,
ω = π. -2.5
-2.5
O exanagkasmìc enìc sust matoc se talntwsh se kpoia sugkekrimènh suqnìthta mac odhgeÐ se polÔ parxenec talant¸seic. AutoÔ tou eÐdouc h sumperifor onomze-
-5.0
-5.0
taisuntonismìc fusikìc suntonismìc.
Kpoiec forèc o
suntonismìc bèbaia endeqomènwc na eÐnai epijumhtìc. 0
5
10
15
Σχήμα 2.6: Η γραφική παράσταση της
20
1 π t sin πt.
Gi-
a pardeigma, JumhjeÐte ìti ta paidi xekinn thn koÔnia thc paidik c qarc me talant¸seic mikroÔc pltouc gia na katal xoun, auxnontc to, na suntonistoÔn se talant¸seic me to epijumhtì pltoc kai suqnìthta.
'Allec forèc o suntonismìc mporeÐ na eÐnai katastrofikìc. Met apì èna seismì kpoia ktÐria paramènoun sqedìn anèpafa en¸ lla katarrèoun. Autì ofeÐletai sto gegonìc ìti diaforetik ktÐria èqoun kai diaforetikèc suqnìthtec
2.6. ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΥΝΤΟΝΙΣΜΟΣ
59
suntonismoÔ (jumhjeÐte bebaÐwc kai ton anlogo jrÔlo twn teiq¸n thc IeriqoÔ). Sunep¸c h melèth thc suqnìthtac suntonismoÔc enìc sust matoc mporeÐ na eÐnai zwtik c shmasÐac. Suqn san pardeigma katastrofikoÔ suntonismoÔ suqnìthtac anafèretai kai h katrreush thc gèfurac
T acomaN arrows
stic arqèc tou 20ou ai¸na stic H.P.A.. Kti tètoio eÐnai ìmwc ljoc mia kai kpoio llo fainìmeno eÐnai to kurÐwc
§
upeÔjuno gia thn en lìgw katastrof .
2.6.2
Exanagkasmènh talntwsh me apìsbesh kai suntonismìc sthn prxh
Profan¸c sthn pragmatikìthta ta prgmata den eÐnai tìso apl ìso ta perigryame parapnw.
Gia pardeigma,
uprqei apìsbesh opìte kai h exÐsws mac paÐrnei thn ex c morf
mx00 + cx0 + kx = F0 cos ω t, gia kpoio
c > 0.
(2.8)
'Eqoume dh lÔsei to antÐstoiqo omogenèc prìblhma. Opìte jètoume
c p= 2m
r ω0 =
k . m
AntikajistoÔme thn exÐswsh (2.8) me thn
x00 + 2px0 + ω02 x =
F0 cos ω t. m
EÔkola brÐskoume ìti oi rÐzec tou qarakthristikoÔ poluwnÔmou tou antÐstoiqou omogenoÔc probl matoc eÐnai oi ex c
p r1 , r2 = −p ± p2 − ω02 . H morf thc genik c lÔshc tou omogenoÔc probl matoc exarttai, 2 2 2 prìshmo tou p − ω0 , h isodÔnama apì to prìshmo tou c − 4km. Dhlad r1 t r2 t 2 if c > 4km, C1 e + C2 e −pt −pt 2 xc = C1 e + C2 te if c = 4km, −pt e (C1 cos ω1 t + C2 sin ω1 t) if c2 < 4km , ìpou
ω1 =
p
ω02 − p2 .
Se kje perÐptwsh parathroÔme ìti
xc (t) → 0
ìtan
t → ∞.
ìpwc dh eÐdame, apì to
Epiprìsjeta, tÐpote den
mac empodÐzei na prospaj soume na oloklhr¸soume thn epÐlush tou probl matoc qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n se sunduasmì me thn manteyi
xp = A cos ω t+B sin ω t.
Shmei¸ste ed¸ ìti ta parapnw
anaferjènta katastrofik senria den eÐnai pijanìn na sumboÔn sthn pragmatikìthta ìpou uprqei kpoia, èstw kai polÔ mikr , apìsbesh pou apotrèpei ton suntonismì. Ant' autoÔ èqoume fainìmena suntonismìc kpoiou llou tÔpou me parapl sia ennoiologÐa. Ac antikatast soume loipìn kai ac lÔsoume wc proc
A
kai
B.
Met apì pollèc kai aniarèc prxeic èqoume
F0 cos ω t. (ω02 − ω 2 )B − 2ωpA sin ω t + (ω02 − ω 2 )A + 2ωpB cos ω t = m Telik paÐrnoume
(ω02 − ω 2 )F0 m(2ωp)2 + m(ω02 − ω 2 )2 2ωpF0 B= . m(2ωp)2 + m(ω02 − ω 2 )2 A=
EÔkola brÐskoume ìti mia kai
C=
√
A2 + B 2
èqoume
C=
F0 p . m (2ωp)2 + (ω02 − ω 2 )2
§ K. Billah kai R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, kai Undergraduate Physics Textbooks, American Journal of Physics, 59(2), 1991, 118–124, http://www.ketchum.org/billah/Billah-Scanlan.pdf
60
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ
Sunep¸c h sugkekrimènh mac lÔsh eÐnai
xp =
(ω02 − ω 2 )F0 2ωpF0 cos ω t + sin ω t m(2ωp)2 + m(ω02 − ω 2 )2 m(2ωp)2 + m(ω02 − ω 2 )2
Enallaktik, qrhsimopoi¸ntac ton deÔtero sumbolismì èqoume pltoc talntwshc (ìtan
C
kai metakÐnhshc fshc
γ
ìpou
ω 6= ω0 ) tan γ =
B 2ωp = 2 . A ω0 − ω 2
'Ara èqoume
xp = 'Otan
ω = ω0
blèpoume ìti
F0 p cos(ω t − γ). 2 m (2ωp) + (ω02 − ω 2 )2
A = 0, B = C =
F0 kai 2mωp
γ = π/2.
O akrib c tÔpoc thc lÔshc den èqei ìsh spoudaiìthta èqei h basik idèa apì thn opoÐa proèkuye. Den qreizetai loipìn na apomnhmoneÔsete ton sugkekrimèno tÔpo en¸ eÐnai aparaÐthto na enjumoÔmaste thn emplekìmenec idèec. Shmei¸ste ìti akìma kai sthn perÐptwsh pou allxei èstw kai lÐgo to dexiì mèroc tìso h morf ìso kai h sumperifor
•
thc lÔshc mporeÐ na allxei drastik. Sunep¸c den uprqei ousiastikìc lìgoc apomnhmìneushc tou sugkekrimènou autoÔ tÔpou kai eÐnai saf¸c protimìtero na ton anapargoume kje for pou ja ton qreiastoÔme. Gia lìgouc pou ja exhg soume se lÐgo, ac onomsoume thn lÔsh
xtr .
Ac onomsoume epÐshc thn
xp
xc
metabatik lÔsh kai ac thn sumbolÐsoume me
pou br kame parapnw eustaj periodik lÔsh kai ac thn sumbolÐsoume me
xsp .
H
genik lÔsh tou probl matoc mac eÐnai
x = xc + xp = xtr + xsp . Shmei¸ste ìti h 0
5
10
15
t→∞
20
5.0
5.0
xc = xtr
teÐnei sto mhdèn ìtan to
san ìroc pou perilambnei thn ekjetik sunrthsh
me arnhtikì ìrisma.
'Ara gia megla
t,
o ìroc
amelhtèoc kai ousiastik epikrateÐ mìno h
xsp
xtr
eÐnai
thn ep reia
thc opoÐac eÐnai kai to mìno pou aisjanìmaste. Shmei¸ste 2.5
2.5
epÐshc ìti h
xsp
den emplèkei tuqaÐec stajerèc kai oi ar-
qikèc sunj kec ephrezoun mìnon thn
xtr .
Autì shmaÐnei
ìti h epÐdrash twn arqik¸n sunjhk¸n ja eÐnai amelhtèa 0.0
0.0
sthn arq (gia mikrì
t).
Autìc eÐnai o lìgoc pou onomsame
parapnw thn en lìgw lÔsh metabatik .
Ex aitÐac thc
sumperiforc aut c, mporoÔme na epikentrwjoÔme sthn eu-2.5
-2.5
staj periodik lÔsh kai na agno soume thn metabatik . 'Eqontac kat nou ta parapnw, parathr ste sto Sq -
-5.0
-5.0
ma 2.7 tic grafikèc parastseic twn lÔsewn gia diaforetikèc arqikèc sunj kec.
0
5
10
15
xtr teÐnei c). 'Oso to c), tìso
Parathr ste ìti h taqÔthta me thn opoÐa h
20
sto mhdèn exarttai apì to
Σχήμα 2.7: Γραφικές παραστάσεις των λύσεων με διαφορετικές αρχικές συνθήκες και τις εξής παραμέτρους k = 1, m = 1, F0 = 1, c = 0.7, και ω = 1.1.
p
p ( ìso pio meglo eÐnai xtr gÐnetai amelhtèa. 'Ara ìso
pio meglo eÐnai to poio gr gora h
(kai ra apì to
pio mikr
eÐnai h apìsbesh, tìso megalÔterh eÐnai h the metabatik perÐodos. To sumpèrasma autì eÐnai sÔmfwno me thn parat rhsh ìti ìtan h
c = 0,
oi arqikèc sunj kec ephrezoun thn
sumperifor thc lÔshc pnta (dhlad h metabatik perÐodos eÐnai gia pnta). Ac perigryoume t¸ra ti shmaÐnei suntonismìc ìtan uprqei apìsbesh. Mia kai den uprqoun antifseic kat thn epÐlush me thn mèjodo twn aprosdiìristwn suntelest¸n, den uprqei ìroc o opoÐoc na teÐnei sto peiro. Ac doÔme ìmwc poia eÐnai h mègisth tim tou pltouc thc eustajoÔc periodik c lÔshc. thc
xsp .
En knoume thn grafik parstash tou
stajerèc) mporoÔme na broÔme to mègistì tou. suqnìthta suntonismoÔ.
To mègisto pltoc
C
san sunrthsh tou
H tim tou
C(ω)
ω
ω
'Estw
C
to pltoc thc talntwshc
(jewr¸ntac ìlec tic llec paramètrouc
pou antistoiqeÐ sto mègisto autì onomzetai fusik
eÐnai gnwstì me to ìnoma fusikì pltoc suntonismoÔ.
Sunep¸c
ìtan uprqei apìsbesh milme gia fusikìc suntonismìc antÐ gia aplì suntonismì. Endeiktikèc grafikèc parastseic
2.6. ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΑΙ ΣΥΝΤΟΝΙΣΜΟΣ c
gia treic diaforetikèc timèc tou
61
dÐdontai sto Sq ma 2.8. 'Opwc eÐnai fanerì to fusikì pltoc suntonismoÔ auxnei
ìtan h apìsbesh elatt¸netai kai o fusikìc suntonismìc exafanÐzetai ìtan h apìsbesh eÐnai meglh.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0 0.0
0.5
1.0
1.5
2.0
2.5
3.0
Σχήμα 2.8: Η γραφική παράσταση του C(ω) που αναδεικνύει συντονισμό στην πράξη με παραμέτρους k = 1, m = 1, F0 = 1. Η επάνω καμπύλη είναι για c = 0.4, η μεσαία για c = 0.8, και η κάτω για c = 1.6.
Gia na broÔme to mègisto prèpei pr¸ta na upologÐsoume thn pargwgo
C 0 (ω) =
EÐnai bebaÐwc mhdèn ìtan
ω=0
h ìtan
Den eÐnai dÔskolo na apodeÐxoume ìti h posìthta
timèc tou
ω ).
An to
ω = 0
h opoÐa eÔkola brÐskoume ìti eÐnai
−4ω(2p2 + ω 2 − ω02 )F0 3/2 . m (2ωp)2 + (ω02 − ω 2 )2
2p2 + ω 2 − ω02 = 0. Me lla lìgia q ω = ω02 − 2p2 or 0
suntonismoÔ (eÐnai dhlad to shmeÐo ìpou h
C 0 (ω)
ω02 − 2p2
C(ω) èqei
ìtan
eÐnai jetik ìtan h
p ω02 − 2p2
eÐnai h fusik suqnìthta
to mègistì thc, ìpou sthn perÐptwsh aut
C 0 (ω) > 0 gia
mikrèc
eÐnai to mègisto tìte den uprqei ousiastik fusikìc suntonismìc mia kai upojètoume
ìti gia to sÔsthm mac èqoumc
ω > 0.
Sthn perÐptwsh aut to pltoc auxnei ìtan h exanagkasmènh(??) suqnìthta
elatt¸netai.
ω0 . p) elatt¸nontai, tìso h fusik suqnìthta suntonismoÔ plhsizei thn ω0 . 'Ara h apìsbesh eÐnai polÔ mikr , h ω0 apoteleÐ mia kal prosèggish thc suqnìthtac suntonismoÔ. H sumperifor sumfwneÐ me thn parat rhsh ìti ìtan to c = 0, tìte h ω0 eÐnai h suqnìthta suntonismoÔ.
Parìmoia mporoÔme na doÔme ìti en den sumbaÐnei fusikìc suntonismìc, h suqnìthta eÐnai mikrìterh apì to 'Oso h apìsbesh ìtan aut
c
(kai sunep¸c kai h
H parapnw sumperifor eÐnai poÔ pio perÐplokh en h exwterik dÔnamh den eÐnai kÔma sunhmitìnou, all gia pardeigma eÐnai èna tetrgwno kÔma. seir¸n
Ja exetsoume thn perÐptwsh aut mìlic exoplistoÔme me to ergaleÐo twn
F ourier.
2.6.3
Ask seic
2.6.1
BreÐte ènan tÔpo gia thn
xsp
2.6.2
BreÐte ènan tÔpo gia thn
xsp
en h exÐswsh eÐnai en h exÐswsh eÐnai
mx00 + cx0 + kx = F0 sin ω t.
Upojèste ìti
mx00 + cx0 + kx = F0 cos ω t + F1 cos 3ω t.
c > 0.
Upojèste ìti
c > 0.
mx00 + cx0 + kx = F0 cos ω t kai èstw m > 0 kai k > 0. Jewr ste thn sunrthsh C(ω). Gia poiec timèc tou c (lÔste wc proc m, k , kai F0 ) den ja uprqei fusikìc suntonismìc (gia poiec timèc c den uprqei mègisto tou C(ω) ìtan ω > 0).
2.6.3
'Estw h exÐswsh
62 2.6.4
ΚΕΦΑΛΑΙΟ 2. ΓΡΑΜΜΙΚΕΣ ΣΔΕ ΥΨΗΛΟΤΕΡΗΣ ΤΑΞΗΣ mx00 + cx0 + kx = F0 cos ω t kai èstw c > 0 kai k > 0. Jewr ste thn sunrthsh C(ω). Gia c, k, kai F0 ) den ja uprqei fusikìc suntonismìc (gia poiec timèc m den uprqei ω > 0).
'Estw h exÐswsh
m C(ω)
poiec timèc tou
(lÔste wc proc
mègisto tou
for
Keflaio 3
Sust mata SDE 3.1
Eisagwg sta sust mata SDE
Sun jwc den èqoume mìnon mia exarthmènh metablht kai mìnon mÐa diaforik exÐswsh all èna sÔsthma allhloexart¸menwn diaforik¸n exis¸sewn ìpou emplèkontai pollèc exarthmènec metablhtèc wc proc tic opoÐec prèpei na lÔsoume. Sthn perÐptwsh pou to prìblhma pou meletoÔme emplèkei perissìterec apì mia exarthmènec metablhtèc, èstw tic
y1 , y2 ,
...,
yn
mporeÐ na èqoume diaforikèc exis¸seic pou na emplèkoun tìso ìlec autèc tic metablhtèc ìso kai tic
parag¸gouc twn.
Gia pardeigma,
y100 = f (y10 , y20 , y1 , y2 , x).
Sun jwc ìtan emplèkontai dÔo exarthmènec metablhtèc
èqoume kai dÔo exis¸seic wc ex c
y100 = f1 (y10 , y20 , y1 , y2 , x), y200 = f2 (y10 , y20 , y1 , y2 , x), gia kpoiec sunart seic
f1
kai
f2 .
H parapnw duda exis¸sewn onomzetai sÔsthma diaforik¸n exis¸sewn. Gia thn
akrÐbeia, eÐnai èna sÔsthma deÔterhc txhc. Kpoiec forèc èna sÔsthma eÐnai eÔkolo na epilujeÐ arkeÐ na lÔsoume thn mia exÐswsh wc proc thn mÐa exarthmènh metablht kai met na lÔsoume wc proc thn deÔterh.
Pardeigma 3.1.1:
Jewr ste to paraktw sÔsthma pr¸thc txhc
y10 = y1 , y20 = y1 − y2 , me arqikèc sunj kec thc morf c
y1 (0) = 1, y2 (0) = 2.
Shmei¸ste ìti h genik lÔsh thc pr¸thc exÐswshc eÐnai
0 exÐswsh, aut paÐrnei thn ex c morf y2 eÔkola mporoÔme na lÔsoume wc proc
y2 .
x
= C1 e − y2 ,
y2 =
C1 x e 2
+ C2 e−x .
Antikajist¸ntac aut thn
y1
sthn deÔterh
h opoÐa eÐnai grammik exÐswsh pr¸thc txhc kai sunep¸c
Prgmati me thn mèjodo twn oloklhrwtik¸n paragìntwn èqoume
ex y2 =
y1 = C1 ex .
C1 2x e + C2 , 2
Sunep¸c h genik lÔsh tou sust matoc eÐnai h ex c,
y1 = C1 ex , y2 = MporoÔme t¸ra na prosdiorÐsoume ta brÐskoume ìti
C1 = 1
kai
C1
kai
C2
C1 x e + C2 e−x . 2
qrhsimopoi¸ntac tic arqikèc sunj kec. Antikajist¸ntac to
x=0
C2 = 3/2.
Genik, den ja eÐmaste pnta tìso tuqeroÐ na mporoÔme na lÔsoume èna sÔsthma brÐskontac ènan ènan tou agn¸stouc ìpwc kname parapnw, all ja qreiasteÐ na touc broÔme ìlouc mazÐ.
63
64
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ San pardeigma efarmog c, ac jewr soume kai pli sust mata mzac elathrÐou.
elat rio stajerc
k
kai topojetoÔme sta kra tou dÔo swmatÐdia mzac
swmatÐdia san bagonèta ta opoÐa kinoÔntai ousiastik qwrÐc trib . 'Estw
'Estw loipìn ìti èqoume èna
m1 kai m2 . MporoÔme na jewr soume ta x1 h metatìpish tou enìc bagonètou kai x2
h metatìpish tou deÔterou apì thn jèsh isorropÐac. Me ton ìro jèsh isorropÐac ennooÔme thn jèsh twn swmatidÐwn ìtan den uprqei tsh sto elat rio. Dhlad , topojetoÔme ta dÔo bagonèta kpou ètsi ¸ste na mhn uprqei kajìlou tsh sta elat ria kai shmei¸noume tic jèseic touc san jèseic mhdèn. Dhlad , q¸ro apì thn jèsh pou dhl¸nei to
x2 = 0.
to elat rio ja epimhkunjeÐ (h ja sumpiesteÐ) kat
k(x2 − x1 )
x1 = 0
dhl¸nei diaforetik jèsh sto
En metakin soume ta bagonèta apì thn jèsh isorropÐac tìte, epeid
x2 − x1 ,
h dÔnamh pou ja askhjeÐ sto pr¸to bagonèto ja eÐnai
en¸ h dÔnamh pou ja askhjeÐ sto deÔtero bagonèto ja eÐnai Ðsh kai antÐjethc kateÔjunshc. SÔmfwna me
ton deÔtero nìmo tou NeÔtwna èqoume
m1 x001 = k(x2 − x1 ), m2 x002 = −k(x2 − x1 ). Den eÐnai efiktì na lÔsoume to parapnw sÔsthma wc proc dhlad na lÔsoume tautìqrona wc proc to
x1
kai to
x2
x1 pr¸ta.
Prèpei
k
ìpwc exllou kai eÐnai
anamenìmeno mia kai h kÐnhsh tou enìc bagonètou exarttai apì thn kÐnhsh tou
m2
m2
llou. Prin suzht soume to pwc ja antimetwpÐsoume to parapnw sÔsthma, ac shmei¸soume ìti, kat kpoia ènnoia, arkeÐ na asqolhjoÔme mìnon me sust mata pr¸thc txhc. Ac jewr soume mia diaforik exÐswsh
nsthc
txhc
y (n) = F (y (n−1) , . . . , y 0 , y, x). Ac orÐsoume t¸ra tic ex c metablhtèc
u1 , . . . , u n
kai ac diatup¸soume to sÔsthma wc ex c
u01 = u2 u02 = u3 . . .
u0n−1 = un u0n = F (un , un−1 , . . . , u2 , u1 , x). MporoÔme t¸ra na prospaj soume na lÔsoume wc proc
u3
...
un
kai na jèsoume
y = u1 .
Parathr ste ìti h
y
u1 , u2 ,
...,
un
kai mìlic tic broÔme na gno soume' tic
u2 ,
aut eÐnai lÔsh thc arqik c exÐswshc.
Parìmoia eÐnai h diadikasÐa gia thn epÐlush enìc sust matoc diaforik¸n exis¸sewn uyhlìterhc txhc. MporoÔme gia pardeigma, na metatrèyoume èna sÔsthma
n×k
exis¸sewn pr¸thc txhc me
Pardeigma 3.1.2:
n×k
k
diaforik¸n exis¸sewn me
k
agn¸stouc, ìlec txhc
n,
se èna sÔsthma
agn¸stouc.
Merikèc forèc mporoÔme na qrhsimopoi soume thn parapnw idèa me antÐstrofh for. Jew-
r ste to sÔsthma
x0 = 2y − x, ìpou h anexrthth metablht eÐnai h
t.
y 0 = x,
Jèloume na broÔme thn lÔsh pou ikanopoieÐ tic ex c arqikèc sunj kec
x(0) = 1,
y(0) = 0. ParagwgÐzontac thn pr¸th exÐswsh èqoume
y 00 = x0
00
kai sunep¸c gnwrÐzoume thn
0
x0
san sunrthsh twn
x
kai
y.
0
y = x = 2y − x = 2y − y . 'Ara èqoume t¸ra thn exÐswsh 'Eqontac thn
y
y 00 + y 0 − 2y = 0
thc opoÐac thn lÔsh
y = C1 e−2t + C2 et x wc ex c
mporoÔme na broÔme eÔkola.
mporoÔme na antikatast soume kai na upologÐsoume thn
x = y 0 = −2C1 e−2t + C2 et . Ac qrhsimopoi soume t¸ra tic arqikèc sunj kec kai
1 = 3C2 .
'Ara
C1 = −1/3
kai
C2 = 1/3
1 = x(0) = −2C1 + C2
kai
0 = y(0) = C1 + C2 .
kai h lÔsh eÐnai h ex c
x=
2e−2t + et , 3
y=
−e−2t + et . 3
Sunep¸c,
C1 = −C2
3.1. ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΣΔΕ 3.1.1
65
Epibebai¸ste ìti prgmati aut eÐnai lÔsh.
To parapnw pardeigma eÐnai èna grammikì sÔsthma pr¸thc txhc. Tautìqrona eÐnai kai èna mia kai oi exis¸seic den exart¸ntai apì thn anexrthth metablht
t.
MporoÔme eÔkola knoume thn grafik parstash tou pedÐou dieujÔnsewn dianusmatikì pedÐo kje autìnomou sust matoc.
EÐnai h Ðdia grafik parstash tou pedÐou kateujÔnsewn pou sunant same prohgoumènwc, mìnon pou
t¸ra antÐ na zwgrafÐsoume se kje shmeÐo thn klÐsh thc lÔshc ja zwgrafÐsoume th kateÔjunsh (kai to mègejoc). To prohgoÔmeno pardeigma
x0 = 2y − x, y 0 = x
mac dhl¸nei ìti sto shmeÐo
(x, y)
h kateÔjunsh sthn opoÐa ofeÐloume
na badÐsoume gia na ikanopoi soume tic exis¸seic tou sust matoc eÐnai h kateÔjunsh pou orÐzei to ex c dinusma
(2y − x, x)•.
H taqÔthta me thn opoÐa prèpei na badÐsoume prèpei na eÐnai Ðsh me to mètro tou en lìgw dianÔsmatoc.
ZwgrafÐzoume loipìn to dinusma
(2y − x, x)
sto shmeÐo
(x, y)
kai knoume to Ðdio gia ìpoio shmeÐo tou
xy -epipèdou
epijumoÔme. Endeqomènwc bebaÐwc na qreiasjeÐ na allxoume klÐmata sto grfhm mac en jèloume na prosjèsoume poll shmeÐo sto Ðdio pedÐo kateujÔnsewn. DeÐte sto Sq ma 3.1. MporoÔme t¸ra na zwgrafÐsoume thn diadrom thc lÔshc sto epÐpedo. Sugkekrimèna, upojèste ìti h lÔsh dÐdetai
x = f (t), y = g(t), opìte kai mporoÔme na epilèxoume èna disthma tou t (ac epilèxoume gia pardeigma 0 ≤ t ≤ 2) kai na zwgrafÐsoume ìla ta shmeÐa (f (t), g(t)) gia t mèsa sto disthma pou epilèxoume. H eikìna pou ja
apì tic
proume me ton trìpo autì sun jwc onomzetai parstash fsewn ( parstash fshc epipèdou). Thn sugkekrimènh kampÔlh pou paÐrnoume onomzoume troqi kampÔlh epÐlushc.
MporeÐte na deÐte èna qarakthristikì pardeigma
(1, 0) kai kineÐtai pnw sto pedÐo dieujÔnsewn gia t. Mia kai èqoume dh lÔsei to en lìgw sÔsthma xèroume ta x(2) kai y(2). 'Eqoume loipìn ìti x(2) ≈ 2.475 kai y(2) ≈ 2.457. To shmeÐo autì antistoiqeÐ sto nw dexi kro thc grafik c parstashc thc lÔshc sto Sq ma 3.2. Sto Sq ma autì h kampÔlh xekin apo to shmeÐo
apìstash 2 mondec tou
sto Sq ma. -1
0
1
2
3
-1
0
1
2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1 -1
0
1
2
3
Σχήμα 3.1: Το πεδίο κατευθύνσεων του συστήματος x0 = 2y − x, y 0 = x.
-1 -1
0
1
2
3
Σχήμα 3.2: Το πεδίο κατευθύνσεων του συστήματος x0 = 2y − x, y 0 = x με την τροχιά της λύσης που ξεκινά από το σημείο ωιτη (1, 0) για 0 ≤ t ≤ 2.
Parathr ste thn omoiìthta twn parapnw sqhmtwn me aut pou sunant same gia ta autìnoma sust mata miac distashc. FantasteÐte t¸ra pìso pio perÐploka ja gÐnoun ta prgmata en prosjèsoume akìma mia distash. Shmei¸ste epÐshc ìti mporoÔme na zwgrafÐsoume parastseic fsewn kai troqi¸n sto
xy -epÐpedo akìma kai gia mh
autìnoma sust mata. Sthn perÐptwsh aut ìmwc den mporoÔme na zwgrafÐsoume pedÐa dieujÔnsewn, mia kai ta en lìgw pedÐa allzoun ìtan to
3.1.1
t
allzei. MporoÔme bebaÐwc na èqoume gia kje
t
kai èna diaforetikì pedÐo dieujÔnsewn.
Ask seic
3.1.2
BreÐte thn genik lÔsh tou sust matoc
x01 = x2 − x1 + t, x02 = x2 .
3.1.3
BreÐte thn genik lÔsh tou sust matoc
x01 = 3x1 − x2 + et , x02 = x1 .
66
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.1.4
Gryte thn exÐswsh
3.1.5
Gryte tic exis¸seic
ay 00 + by 0 + cy = f (x)
san èna sÔsthma SDE pr¸thc txhc.
x00 + y 2 y 0 − x3 = sin(t), y 00 + (x0 + y 0 )2 − x = 0
san èna sÔsthma SDE pr¸thc txhc.
3.2. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΔΕ 3.2
67
Grammik sust mata SDE
Prin xekin sete thn melèth thc paragrfou aut c eÐnai anagkaÐo na knete mia sÔntomh epanlhyh thc Grammik c 'Algebrac. Ja qreiasjeÐte kpoia basik stoiqeÐa ìpwc pollaplasiasmìc pinkwn, orÐzousec kai idiotimèc. Ac asqolhjoÔme pr¸ta me sunart seic dianusmtwn kai pinkwn. Autèc den eÐnai tÐpote parapnw par dianÔsmata kai pÐnakec ta stoiqeÐa twn opoÐwn exart¸ntai apì kpoia metablht h opoÐa ac upojèsoume ìti eÐnai h dinusma sunart sewn
~ x(t)
t.
Tìte mia
eÐnai kti pou èqei thn ex c morf
x1 (t) x2 (t) ~ x(t) = . . ..
xn (t) Parìmoia ènac pÐnakac sunart sewn eÐnai kti pou èqei thn ex c morf
H pargwgoc
A0 (t)
a11 (t) a21 (t) A(t) = . ..
a12 (t) a22 (t)
an1 (t)
an2 (t)
. . .
··· ··· .
.
.
···
a1n (t) a2n (t) . . . . ann (t)
dA eÐnai kai aut ènac pÐnakac sunart sewn o opoÐoc sthn dt
ij sth
jèsh èqei thn sunrthsh
a0ij (t).
Gia tic pÐnakec sunart sewn isqÔoun oi Ðdioi kanìnec parag¸gishc me autoÔc twn sumbatik¸n sunart sewn. Dhlad gia kje pÐnakec sunart sewn stajerì pÐnaka
C
A
kai
B,
gia kje stajerì pragmatikì arijmì
c
kai gia kje sumbatikì
isqÔoun (upojètoume ìti oi diastseic twn pinkwn eÐnai sunepeÐc me tic prxeic kai tic isìthtec
bebaÐwc) oi tautìthtec
(A + B)0 = A0 + B 0 (AB)0 = A0 B + AB 0 (cA)0 = cA0 (CA)0 = CA0 (AC)0 = A0 C 'Ena grammikì sÔsthma SDE pr¸thc txhc eÐnai èna sÔsthma to opoÐo mporeÐ na grafjeÐ wc ex c
~ x 0 (t) = P (t)~ x(t) + f~(t). P
~ x ~ x 0 = P~ x + f~.
eÐnai ènac pÐnakac sunart sewn, kai
apì to
t
kai ja grfoume
kai
f~
eÐnai dianÔsmata sunart sewn. Suqn ja apokrÔptoume thn exrthsh
H lÔsh eÐnai profan¸c èna dinusma sunart sewn
~ x
to opoÐo ikanopoieÐ to
sÔsthma. Gia pardeigma oi exis¸seic
x01 = 2tx1 + et x2 + t2 , x1 − x2 + et , x02 = t mporoÔn na grafoÔn sthn morf
~ x0 =
2t 1/t
2 et t ~ x+ t . −1 e
Ja epikentrwjoÔme kurÐwc se exis¸seic oi opoÐec den eÐnai mìnon grammikèc, all kai me stajeroÔc suntelestèc. Dhlad , o pÐnakac 'Otan
f~ = ~0
P
eÐnai ènac sumbatikìc pÐnakac kai stoiqeÐa pragmatikoÔc arijmoÔc kai den exarttai apì to
(to mhdenikì dinusma), tìte lème ìti to sÔsthma eÐnai omogenèc.
t.
H arq thc upèrjeshc isqÔei kai
gia omogen grammik sust mata ìpwc akrib¸c isqÔei kai gia mia mìno omogen exÐswsh.
68
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
Je¸rhma 3.2.1
(Upèrjesh). 'Estw
~ x 0 = P~ x
èna grammikì omogenèc sÔsthma SDE. 'Estw ìti
~ x1 , . . . , ~ xn
eÐnai
n
lÔseic thc exÐswsh, tìte h
~ x = c1 ~ x1 + c2 ~ x2 + · · · + cn ~ xn , eÐnai epÐshc lÔsh. An epiprìsjeta, eÐnai èna sÔsthma
n
exis¸sewn (
P
(3.1)
eÐnai
n × n),
kai ta
~ x1 , . . . , ~xn
eÐnai grammik
anexrthta, tìte kje lÔsh mporeÐ na grafjeÐ sthn morf thc exÐswshc (3.1).
H ènnoia thc grammik anexarthsÐa sunart sewn me dianÔsmata eÐnai ousiastik h Ðdia me aut twn sumbatik¸n dianusmtwn me stoiqeÐa pragmatikoÔc arijmoÔc. Dhlad , ta dianÔsmata
~ x1 , . . . , ~ xn
eÐnai grammik anexrthta an kai
mìnon an h
c1 ~ x1 + c2 ~ x2 + · · · + cn ~ xn = ~0 èqei mìnon mia lÔsh, thn
c1 = c2 = · · · = cn = 0. c1 ~ x1 + c2 ~ x2 + · · · + cn ~ xn
O grammikìc sunduasmìc
mporeÐ pnta na grafjeÐ sthn morf
X(t) ~c, X(t) eÐnai ènac pÐnakac c1 , . . . , cn . O X(t) onomzetai
ìpou
me st lec ta dianÔsmata
~ x1 , . . . , ~ xn ,
kai ìpou
~c
eÐnai to sthlo-dinusma me stoiqeÐa
jemeli¸dhc pÐnakac, jemeli¸dhc pÐnakac epÐlushc.
MporoÔme na lÔsoume èna sÔsthma omogen¸n grammik¸n exis¸sewn pr¸thc txhc me thn Ðdia praktik pou qrhsimopoi same gia mia mình exÐswsh tou Ðdiou tÔpou.
Je¸rhma 3.2.2.
En
~ x 0 = P~ x + f~
eÐnai èna grammikì sÔsthma SDE kai en
~ xp
mia opoiad pote sugkekrimènh
lÔsh tou, tìte kje lÔsh tou mporeÐ na grafjeÐ sthn morf
~ x=~ xc + ~ xp , ìpou
~xc
~ x 0 = P~ x).
eÐnai mia lÔsh thc antÐstoiqhc omogenoÔc exÐswshc (
Sunep¸c h diadikasÐa eÐnai Ðdia me prohgoumènwc. BrÐskoume mia sugkekrimènh lÔsh thc mh-omogenoÔc exÐswshc, met brÐskoume mia genik lÔsh thc antÐstoiqhc omogenoÔc exÐswshc kai tèloc prosjètoume tic dÔo autèc lÔseic. 'Estw ìti èqoume brei thn ex c genik lÔsh arqikèc sunj kec thc morf c
~ x(t0 ) = ~b
ìpou ~ b
~ x 0 = P~ x + f~
kai jèloume na broÔme thn lÔsh pou ikanopoieÐ kpoiec
kpoio stajerì dinusma. 'Estw epÐshc ìti to
pÐnakac epÐlushc thc antÐstoiqhc omogenoÔc exÐswshc (dhlad oi st lec tou
X
X(t)
thn ex c morf
~ x(t) = X(t)~c + xp (t). AkoloÔjwc prèpei na broÔme èna dinusma
~c
tètoio ¸ste
~b = ~ x(t0 ) = X(t0 )~c + xp (t0 ). Me lla lìgia prèpei na lÔsoume to ex c mh-omogenèc sÔsthma grammik¸n algebrik¸n exis¸sewn
X(t0 )~c = ~b − xp (t0 ) wc proc
~c.
Pardeigma 3.2.1:
Sto
§3.1
lÔsame to ex c sÔsthma
x01 = x1 , x02 = x1 − x2 . me arqikèc sunj kec
x1 (0) = 1, x2 (0) = 2.
Mia kai prìkeitai gia èna omogenèc sÔsthma, èqoume
1 ~ x0 = 1
f~ = ~0.
Grfoume to sÔsthm mac wc ex c
0 ~ x, −1
~ x(0) =
1 . 2
eÐnai o jemeli¸dhc
eÐnai lÔseic). Tìte h genik lÔsh èqei
3.2. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΔΕ Br kame ìti h genik lÔsh eÐnai h
x1 = c1 et
69 kai
x2 =
c1 t e 2
+ c2 e−t .
'Ara se morf pinkwn, o jemeli¸dhc pÐnakac
epÐlushc eÐnai o ex c
X(t) =
et 1 t e 2
0 e−t
.
Den eÐnai dÔskolo na doÔme ìti oi st lec tou pÐnaka autoÔ eÐnai grammik anexrthtec. Sunep¸c gia na lÔsoume to prìblhma arqik¸n tim¸n prèpei na lÔsoume thn exÐswsh
X(0)~c = ~b, me lla lìgia,
1 0 ~c = . 1 2 1 twn gramm¸n brÐskoume ìti ~ c = 3/2 . 'Ara h lÔsh t 1 et e 0 ~ x(t) = X(t)~c = 1 t −t 3 = 1 t 3 −t . e e e + 2e 2 2 2
1 1 2
Met apì mia apl prxh metaxÔ
mac eÐnai
EÐnai ìpwc blèpoume Ðdia me thn lÔsh pou dh br kame parapnw.
3.2.1
3.2.1
Ask seic
Gryte to sÔsthma
x01 = 2x1 − 3tx2 + sin t, x02 = et x1 + 3x2 + cos t
sthn morf
~ x 0 = P (t)~ x + f~(t).
1 −2t ~ x 0 = [ 13 31 ] ~ x èqei dÔo lÔseic [ 11 ] e4t kai −1 e . b) D¸ste thn genik lÔsh. c) D¸ste thn genik lÔsh sthn morf x1 =?, x2 =? (dhlad d¸ste thn morf kje stoiqeÐou thc lÔshc). 1 t t 3.2.3 Epibebai¸ste ìti ta [ 1 1 ] e kai −1 e eÐnai grammik anexrthta. Upìdeixh: Antikatast ste to t = 0. h1i h 1 i h 1 i t t 2t 3.2.4 Epibebai¸ste ìti ta 1 e , −1 e kai −1 e eÐnai grammik anexrthta. Upìdeixh: Prèpei profan¸c na
3.2.2
a) epibebai¸ste ìti to sÔsthma
0
1
1
drsete poio èxupna apì ìti sthn prohgoÔmenh skhsh.
3.2.5
Epibebai¸ste ìti ta
t t2
kai
h
t3 t4
i
eÐnai grammik anexrthta.
70
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.3
Mèjodoc idiotim¸n
Sthn pargrafo aut ja mjoume p¸c ja mporoÔme na lÔnoume grammik omogen sust mata SDE me stajeroÔc suntelestèc qrhsimopoi¸ntac thn mèjodo twn idiotim¸n. 'Estw to ex c grammikì omogenèc sÔsthma
~ x 0 = P~ x. Ac prospaj soume na epekteÐnoume thn mèjodo pou dh qrhsimopoi same gia mia exÐswsh stajer¸n suntelest¸n qrhsimopoi¸ntac thn manteyi
~v eλt ,
ìpou
~v
eλt .
Epeid ìmwc to
~ x
eÐnai dinusma, eÐnai logikì na protim soume thn ex c manteyi
eÐnai èna opoiod pote stajerì dinusma. Thn antikajistoÔme loipìn sthn exÐswsh kai èqoume
λ~v eλt = P ~v eλt . eλt
DiairoÔme me
kai parathroÔme ìti prèpei na broÔme èna arijmì
λ
kai èna dinusma
~v
tètoia ¸ste na ikanopoioÔn
thn exÐswsh
λ~v = P ~v . Gia na lÔsoume to parapnw prìblhma ja qreiasjoÔme merik basik stoiqeÐa grammik c lgebra.
3.3.1
Idiotimèc kai idiodianÔsmata pinkwn
'Estw o tetragwnikìc kai stajerìc pÐnakac
~v
A.
'Estw epÐshc ìti uprqei ènac arijmìc
λ
kai èna mh mhdenikì dinusma
tètoia ¸ste
A~v = λ~v . Onomzoume to en lìgw
Pardeigma 3.3.1:
λ
A
idiotim tou pÐnaka
O pÐnakac
[ 20 11 ]
kai to
~v
λ=2
èqei mia idiotim
2 0
1 1
to idiodinusma pou antistoiqeÐ sto
λ.
to opoÐo antistoiqeÐ sto ex c idiodinusma
[ 10 ]
epeid
1 2 1 = =2 . 0 0 0
Ac xanagryoume thn parapnw exÐswsh sthn ex c morf
(A − λI)~v = ~0. ~v mìnon ìtan o pÐnakac A − λI eÐnai mh-antistrèyimoc. En tan antistrèy(A − λI)−1 (A − λI)~v = (A − λI)−1~0 to opoÐo sunepagetai ìti ~v = ~0. 'Ara o A èqei to
ParathroÔme ìti uprqei mh-mhdenik lÔsh imoc ja mporoÔsame na èqoume
λ
idiotim an kai mìnon an to
λ
eÐnai lÔsh thc exÐswshc
det(A − λI) = 0. Shmei¸ste ìti h parapnw exÐswsh shmaÐnei ìti mporoÔme na broÔme mia idiotim qwrÐc na prèpei aparaÐthta na upologÐsoume to antÐstoiqo idiodinusma to opoÐo mporoÔme na upologÐsoume argìtera, afoÔ èqoume dh upologÐsei to
λ
pr¸ta.
Pardeigma 3.3.2:
BreÐte ìlec tic idiotimèc tou pÐnaka
h2 1 1i
1 2 0 . 0 0 2
'Eqoume
2 det 1 0
1 2 0
1 1 0 − λ 0 2 0
0 1 0
0 2−λ 0 = det 1 1 0
1 2−λ 0
1 0 = 2−λ = (2 − λ)2 ((2 − λ)2 − 1) = −(λ − 1)(λ − 2)(λ − 3).
kai sunep¸c oi idiotimèc eÐnai oi
λ = 1, λ = 2,
kai
λ = 3.
3.3. ΜΕΘΟΔΟΣ ΙΔΙΟΤΙΜΩΝ Shmei¸ste ìti gia ènan
n×n
71 det(A − λI)
pÐnaka, to polu¸numo
eÐnai bajmoÔ
n,
kai sunep¸c ja èqoume genik
n
idiotimèc. Gia na broÔme to idiodinusma pou antistoiqeÐ sto
λ,
qrhsimopoioÔme thn exÐswsh
(A − λI)~v = ~0, kai kai lÔnoume gia èna mh-mhdenikì dinusma
Pardeigma 3.3.3:
~v .
An to
λ
eÐnai prgmati idiotim tìte kti tètoio eÐnai pnta efiktì.
BreÐte to idiodinusma pou antistoiqeÐ sthn idiotim
λ=3
tou pÐnaka
h2 1 1i 1 2 0 0 0 2
.
'Eqoume
2 (A − λI)~v = 1 0
1 1 0 − 3 0 0 2
1 2 0
LÔnontac to parapnw sÔsthma brÐskoume ìti na epilèxoume mia opoiad pote tim gia to
v2
0 1 0
−1 v1 0 0 v2 = 1 0 v3 1
1 −1 0
v1 1 0 v2 = ~0. v3 −1
v1 − v2 = 0, v3 = 0, ìpou h v2 eÐnai mia eleÔjerh metablht . MporoÔme h1i v1 = v2 kai fusik v3 = 0. Gia pardeigma, ~v = 1 . Ac
kai na jèsoume
0
dokimsoume:
2 1 0
1 1 3 1 0 1 = 3 = 3 1 . 2 0 0 0
1 2 0
EÐnai loipìn swstì.
3.3.1(eÔkolh)
EÐnai ta idiodianÔsmata monadik? MporeÐte na breÐte èna diaforetikì apì autì pou br kate parapnw
idiodinusma gia thn idiotim
3.3.2
λ = 3?
Uprqei kpoia sqèsh metaxÔ twn dÔo aut¸n dianusmtwn?
H mèjodoc twn idiotim¸n me pragmatikèc idiotimèc qwrÐc pollaplìthta
Jewr ste thn exÐswsh
~ x 0 = P~ x. BrÐskoume tic idiotimèc t¸ra ìti oi sunart seic
· · · + cn~vn eλn t λ1 ,
tou pÐnaka ...,
P,
~vn eλn t
kai ta antÐstoiqa idiodianÔasmata
~v1 , ~v2 , . . . , ~vn . Parathr ste ~ x = c1~v1 eλ1 t + c2~v2 eλ2 t +
eÐnai lÔseic thc exÐswshc kai sunep¸c h
eÐnai mia lÔsh.
Je¸rhma 3.3.1. idiotimèc,
λ1 , λ2 , . . . , λn ~v1 eλ1 t , ~v2 eλ2 t ,
...,
'Estw
λn
~ x 0 = P~ x.
tìte uprqoun
An
n
P
eÐnai ènac
n×n pÐnakac o opoÐoc èqei n diaforetikèc metaxÔ touc pragmatikèc ~v1 , . . . , ~vn , kai h genik lÔsh
grammik anexrthta antÐstoiqa idiodianÔsmata
thc SDE mporeÐ na grafjeÐ wc ex c
~ x = c1~v1 eλ1 t + c2~v2 eλ2 t + · · · + cn~vn eλn t . Pardeigma 3.3.4:
BreÐte thn genik lÔsh tou sust matoc
2 ~ x 0 = 1 0
to
h'Eqoume i 1
dh brei ìti oi idiotimèc eÐnai oi
1, 2, 3.
1 2 0
1 0 ~ x. 2
Br kame ìti to idiodinusma pou antistoiqeÐ sthn idiotim 3 eÐnai
1 . Parìmoia mporoÔme na broÔme ìti to idiodinusma pou antistoiqeÐ sthn idiotim 1 eÐnai to 0 h 0 i 1 antistoiqeÐ sthn idiotim 2 eÐnai to (elègxte to san skhsh). 'Ara h genik lÔsh mac eÐnai −1
1 0 1 et + e3t ~ x = −1 et + 1 e2t + 1 e3t = −et + e2t + e3t . 0 −1 0 −e2t
h
1 −1 0
i
en¸ autì pou
72
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.3.2
Epibebai¸ste ìti h parapnw prgmati apoteleÐ lÔsh tou sust matoc.
ShmeÐwsh: En gryoume mia grammik omogen exÐswsh exis¸sewn pr¸thc txhc (ìpwc dh kname sthn pargrafo
nsthc txhc me stajeroÔc suntelestèc §3.1) tìte h exÐswsh idiotim¸n
san èna sÔsthma
det(P − λI) = 0. §2.2
eÐnai ousiastik to Ðdio me thn qarakthristik exÐswsh pou sunant same stic paragrfouc
3.3.3
kai
§2.3.
Migadikèc idiotimèc
'Enac pÐnakac mporeÐ na èqei migadikèc idiotimèc akìma kai sthn perÐptwsh pou ìla ta stoiqeÐa tou eÐnai pragmatikoÐ arijmoÐ. Gia pardeigma ac jewr soume to sÔsthma
1 ~ x = −1 1 0
1 ~ x. 1
1 P = −1 1 . 1−λ 1 det(P − λI) = det = (1 − λ)2 + 1 = λ2 − 2λ + 2 = 0. −1 1−λ
Ac upologÐsoume tic idiotimèc tou pÐnaka
SumperaÐnoume loipìn ìti
λ = 1 ± i.
Ta antÐstoiqa idiodianÔsmata eÐnai bebaÐwc kai aut migadik
(P − (1 − i)I)~v = ~0, i 1 ~v = ~0. −1 i iv1 + v2 = 0
Profan¸c apì tic dÔo exis¸seic
kai
−v1 + iv2 = 0
ja epilèxoume na lÔsoume mìnon thn mÐa (h llh
eÐnai pollaplsi thc). En epiprìsjeta epilèxoume gia pardeigma, Parìmoia brÐskoume ìti sthn idiotim
1+i
v2 = 1ja
antistoiqeÐ to idiodinusma
katal xoume sto idiodinusma
−i 1 .
~v = [ 1i ].
MporoÔme loipìn na gryoume thn lÔsh wc ex c
~ x = c1
i (1−i)t −i (1+i)t c1 ie(1−i)t − c2 ie(1+i)t . e + c2 e = 1 1 c1 e(1−i)t + c2 e(1+i)t 1
T¸ra ìmwc prèpei na yxoume gia poÐec migadikèc timèc twn
c1
kai
c2
ikanopoioÔntai oi arqikèc sunj kec.
poroÔsame na qrhsimopoi soume thn praktik pou basÐzetai ston tÔpo tou
Ja m-
Euler kai thn opoÐa sunant same parapnw
all ac ergastoÔme kpwc pio èxupna pr¸ta. MporoÔme na isqurisjoÔme ìti den qreizetai na asqolhjoÔme me to deÔtero idiodinusma (oÔte me thn deÔterh idiotim ) mia kai ìlec oi migadikèc idiotimèc (enìc pragmatikoÔ pÐnaka) sunantiìntai se zeÔgh suzug¸n. MporeÐte en Jèlete na apodeÐxete thn endiafèrousa aut idiìthta san skhsh. Pr¸ta ac jumhjoÔme ìti mporoÔme na upologÐsoume to pragmatikì mèroc enìc migadikoÔ arijmoÔ ìpou h gramm pnw apì ton
z
pinkwn. En o
P
a + ib = a − ib. 'Etsi paÐrnoume ton suzug migadikì a ¯ = a. Parìmoia mporoÔme na proume ton x=P~ x = P~ x tìte P = P . Shmei¸ste epÐshc ìti P ~
shmaÐnei
ìti gia kje pragmatikì arijmì
a
èqoume ìti
eÐnai pragmatikìc
z
arijmì tou
wc ex c
z.
z+¯ z , 2
Shmei¸ste
suzug dianusmtwn kai
¯ v. (P − λI)~v = (P − λI)~ Sunep¸c an to
~v
eÐnai èna idiodinusma pou antistoiqeÐ sthn idiotim
a − ib. t¸ra ìti a + ib
a + ib,
tìte to
~v
eÐnai èna idiodinusma pou
antistoiqeÐ sthn idiotim Ac upojèsoume
eÐnai mia migadik idiotim tou
P
h opoÐa antistoiqeÐ sto idiodinusma
~v
opìte kai
èqoume ìti h
~ x1 = ~v e(a+ib)t eÐnai mia lÔsh (me migadikèc timèc) tou
0
~ x = P~ x.
Tìte parathr ste ìti kai h
~ x2 = ~ x1 = ~v e(a−ib)t
ea+ib = ea−ib
kai sunep¸c kai h
3.3. ΜΕΘΟΔΟΣ ΙΔΙΟΤΙΜΩΝ
73
eÐnai epÐshc lÔsh. H sunrthsh
~ x3 = Re ~ x1 = Re ~v e(a+ib)t =
~ x1 + ~ x1 ~ x1 + ~ x2 = 2 2
eÐnai kai aut lÔsh kai mlista me pragmatikèc timèc. Parìmoia mia kai to
~ x4 = Im ~ x1 =
z−¯ z eÐnai to fantastikì mèroc h 2i
Im z =
~ x1 − ~ x2 . 2i
eÐnai mia lÔsh pragmatik¸n tim¸n epÐshc. EÔkola mporoÔme na diapist¸soume ìti oi
~ x3
kai
~ x4
eÐnai grammik anexrtht-
ec. Epistrèfontac t¸ra sto prìblhm mac èqoume
t i (1−i)t i ie cos t − et sin t e = et cos t + iet sin t = t . 1 1 e cos t + iet sin t
~ x1 =
EÐnai eÔkolo na diapist¸soume ìti oi
−et sin t , t e cos t t e cos t Im ~ x1 = t , e sin t
Re ~ x1 =
eÐnai oi lÔseic pou yqnoume. H genik lÔsh eÐnai
~ x = c1 'Otan ta
c1
kai
c2
t −et sin t e cos t −c1 et sin t + c2 et cos t + c = . 2 et cos t et sin t c1 et cos t + c2 et sin t
eÐnai pragmatikoÐ arijmoÐ tìte h lÔsh aut èqei pragmatikèc timèc. MporoÔme t¸ra na lÔsoume wc
proc opoiesd pote arqikèc sunj kec mac dojoÔn wc ex c. 'Otan èqoume migadikèc idiotimèc tìte autèc èrqontai se suzug zeÔgh.
λ = a + ib
kai brÐskoume to antÐstoiqo idiodinusma
~v .
Shmei¸ste ìti ta
Epilègoume mia apì autèc, èstw thn
Re ~v e(a+ib)t
kai
Im ~v e(a+ib)t
eÐnai epÐshc
lÔseic thc exÐswshc kai mlista grammik anexrthta metaxÔ touc kai me pedÐo tim¸n touc pragmatikoÔc. SuneqÐzoume thn diadikasÐa epilègontac to èna apì to epìmeno zeÔgoc twn migadik¸n idiotim¸n thn epìmenh pragmatik idiotim kai upologÐzw ta antÐstoiqa idiodianÔsmata. Me ton trìpo autì oi idiotimèc ja mac odhg soun se
n
n
diaforetikèc metaxÔ touc (pragmatikèc migadikèc)
grammik anexrthtec lÔseic.
MporoÔme loipìn t¸ra na broÔme genikèc lÔseic me pedÐo tim¸n touc pragmatikoÔc kje omogenoÔc sust matoc tou opoÐou o pÐnakac èqei diaforetikèc metaxÔ touc idiotimèc. H perÐptwsh pou uprqoun idiotimèc kpoiac pollaplìthtac eÐnai pio perÐplokh kai me aut n ja asqolhjoÔme sthn pargrafo
3.3.4
§3.6.
Ask seic
3×3
3.3.3
'Estw o
3.3.4
a) BreÐte thn genik lÔsh tou sust matoc
pÐnakac
A
me mia idiotim 3 kai antÐstoiqo idiodinusma
(gryte pr¸ta to sÔsthma sthn morf
0
~ x = A~ x).
x01 = 2x1 , x02 = 3x2
1 −1 . BreÐte to 3
h
~v =
i
A~v .
qrhsimopoi¸ntac thn mèjodo twn idiotim¸n
b) LÔste to sÔsthma lÔnontac thn kje exÐswsh mình thc kai
sugkrÐnatè thn genik lÔsh pou ja breÐte me ton trìpo autì me aut pou br kate parapnw.
3.3.5
BreÐte thn genik lÔsh tou sust matoc
x01 = 3x1 + x2 , x02 = 2x1 + 4x2
qrhsimopoi¸ntac thn mèjodo twn
x01 = x1 − 2x2 , x02 = 2x1 + x2
qrhsimopoi¸ntac thn mèjodo twn
idiotim¸n.
3.3.6
BreÐte thn genik lÔsh tou sust matoc
idiotim¸n. Prospaj ste ètsi ¸ste h lÔsh sac na mhn sumperilambnei migadik ekjetik.
3.3.7
a) BreÐte tic idiotimèc kai ta idiodianÔsmata tou pÐnaka
sust matoc
3.3.8
h
A =
0
~x = A~ x.
BreÐte tic idiotimèc kai ta idiodianÔsmata tou pÐnaka
h −2 −1 −1 i 3 2 1 −3 −1 0
.
9 −2 −6 −8 3 6 . 10 −2 −6
i
b) BreÐte thn genik lÔsh tou
74
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.4
Sust mata dÔo diastsewn kai ta dianusmatik pedÐa touc
Ac epikentrwjoÔme gia lÐgo se omogen sust mata sto epÐpedo. Sugkekrimèna ac exetsoume thn morf twn dianusmatik¸n pedÐwn kai thn exrths touc apì tic idiotimèc. 'Eqoume loipìn ènan
2×2
pÐnaka
P
kai to ex c sÔsthma
0 x x =P . y y
(3.2)
Ac doÔme pwc mporoÔme, me bsh tic idiotimèc kai ta idiodianÔsmata tou pÐnaka, na anakalÔyoume optik pwc moizei to dianusmatikì pedÐo. PerÐptwsh 1. -3
-2
-1
0
1
2
3
3
3
Upojètoume ìti oi idiotimèc eÐnai prag-
matikèc kai jetikèc.
Ac broÔme tic dÔo idiotimèc kai ac
knoume thn grafik touc parstash. Gia pardeigma, ac jewr soume ton ex c pÐnaka 2
2
[ 10 12 ].
Oi idiotimèc eÐnai 1 kai 2
kai ta antÐstoiqa idiodianÔsmata eÐnai ta
[ 10 ]
kai
[ 11 ].
DeÐte
to Sq ma 3.3. 1
1
x kai y eÐnai suneujeiak me ~v kpoiac idiotim c [ xy ] = a~v gia kpoio arijmì a. Tìte
Ac upojèsoume t¸ra ìti ta
thn gramm pou orÐzei èna idiodinusma 0
0
λ.
Dhlad èqoume
èqoume -1
-1
-2
-2
-3
-3
0 x x =P = P (a~v ) = a(P ~v ) = aλ~v . y y H pargwgoc loipìn eÐnai pollaplsio tou
-3
-2
-1
0
1
2
3
kajorÐzetai se meglo bajmì apì to
~v .
~v
kai sunep¸c
'Otan
λ > 0,
h
dieÔjunsh thc parag¸gou tautÐzetai me thn dieÔjunsh tou
~v
Σχήμα 3.3: Τα ιδιοδιανύσματα του P .
ìtan to
a
eÐnai jetikì, en¸ ìtan eÐnai arnhtikì h dieÔ-
junsh eÐnai akrib¸c antÐjeth.
Ac qrhsimopoi soume bèl-
h gia na parast soume tic kateujÔnseic.
DeÐte to Sq -
ma 3.4 sthn paroÔsa selÐda. Sumplhr¸noume to sq ma prosjètontac merik akìma bèlh kai prosjètontac thn grafik parstash merik¸n lÔsewn.
DeÐte to Sq ma 3.5 sthn epìmenh selÐda.
Parathr ste ìti h eikìna faÐnetai san na uprqei mia phg apì
thn opoÐa xephdn bèlh. Gia ton lìgo autì onomzoume to tÔpo autì thc grafik c parstashc phg merikèc forèc astaj kìmboastaj c kìmboc. PerÐptwsh 2.
'Estw t¸ra ìti kai oi dÔo idiotimèc eÐnai arnhtikèc.
thc perÐptwshc 1 me allagmèna ìla tou ta prìshma, idiodianÔsmata eÐnai ta Ðdia, dhlad
[ 10 ]
kai
[ 11 ].
−1 −1
0 −2 .
Gia pardeigma, ac jewr soume ton pÐnaka
Oi idiotimèc tou eÐnai
−1
kai
−2
kai ta antÐstoiqa
Tìso oi upologismoÐ mac ìso kai oi eikìnec eÐnai parìmoiec me thn
perÐptwsh 1. H mình diafor eÐnai to ìti oi idiotimèc eÐnai arnhtikèc kai sunep¸c h for twn bel¸n èqei antistrafeÐ. PaÐrnoume loipìn thn eikìna tou Sq matoc 3.6 sthn paroÔsa selÐda.
Kje tètoiou eÐdouc eikìna thn onomzoume
katabìjra h merikèc forèc eustaj kìmboeustaj c kìmboc. PerÐptwsh 3.
'Estw ìti mia idiotim eÐnai jetik kai h llh arnhtik , ìpwc gia pardeigma o pÐnakac
opoÐoc èqei idiotimèc 1 kai
−2
kai antÐstoiqa idiodianÔsmata ta Ðdia me parapnw, dhlad
[ 10 ]
kai
1 −3 .
1
1 0 −2
Antistrè-
foume loipìn ta bèlh se mia gramm (aut pou antistoiqeÐ sthn arnhtik idiotim ) kai paÐrnoume thn eikìna tou Sq matoc 3.7 sthn epìmenh selÐda. Eikìnec autoÔ tou eÐdouc onomzontai sagmatik shmeÐasagmatikì shmeÐo. Stic epìmenec treic peript¸seic ja upojèsoume ìti oi idiotimèc eÐnai migadikèc. BebaÐwc stic peript¸seic autèc kai ta idiodianÔsmata eÐnai migadik kai sunep¸c den ja mporèsoume na knoume thn grafik touc parstash sto epÐpedo.
PerÐptwsh 4. Upojètoume ìti oi idiotimèc eÐnai fantastikèc, dhlad èqoun thn morf
P =
0 1 −4 0
oi idiotimèc tou opoÐou eÐnai
±2i
kai ta idiodianÔsmata
1 [ 2i ]
kai
±ib.
'Estw loipìn o pÐnakac
1 −2i . Ac jewr soume thn idiotim
2i
kai
3.4. ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΚΑΙ ΤΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΠΕΔΙΑ ΤΟΥΣ -3
-2
-1
0
1
2
3
-3
-2
-1
0
1
75 2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.4: Τα ιδιοδιανύσματα του P με τις κατευθύνσεις. -3
-2
-1
0
1
2
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.5: Παράδειγμα διανυσματικού πεδίου πηγής μαζί με τα ιδιοδιανύσματα και τις λύσεις.
3
-3
-2
-1
0
1
2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.6: Παράδειγμα διανυσματικού πεδίου καταβόθρας μαζί με τα ιδιοδιανύσματα και τις λύσεις.
to idiodinusm thc
1 [ 2i ]
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.7: Παράδειγμα διανυσματικού πεδίου σαγματικού σημείου μαζί με τα ιδιοδιανύσματα και τις λύσεις.
kai shmei¸ste ìti to pragmatikì kai fantastikì mèroc thc
~v ei2t
eÐnai
1 i2t cos 2t Re e = , 2i −2 sin 2t 1 i2t sin 2t Im e = . 2i 2 cos 2t MporoÔme bebaÐwc na proume ìpoio grammikì sunduasmì touc jèloume. epilèxoume ja mac to kajorÐsoun oi arqikèc sunj kec.
Ton poiìn sugkekrimèna apì autoÔc ja
Gia pardeigma, to pragmatikì mèroc eÐnai mia parametrik
exÐswsh èlleiyhc ìpwc kai to fantastikì mèroc kai sunep¸c kje grammikìc sunduasmìc touc.
Den eÐnai dÔskolo
na suneidhtopoi soume ìti ta parapnw isqÔoun genik gia thn perÐptwsh pou èqoume kajar fantastikèc idiotimèc opìte kai lème ìti èqoume lÔseic elleiptik¸n (dianusmatik¸n pedÐwn).
O tÔpoc autìc thc eikìnac suqn lègete
76
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
kèntro. DeÐte to Sq ma 3.8. -3
-2
-1
0
1
2
3
-3
-2
-1
0
1
2
3
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.8: Παράδειγμα διανυσματικού πεδίου κέντρου.
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.9: Παράδειγμα διανυσματικού πεδίου σπειροειδούς πηγής.
PerÐptwsh 5. 'Estw t¸ra ìti oi idiotimèc èqoun jetikì pragmatikì mèroc. 'Estw loipìn ìti oi idiotimèc eÐnai gia kpoio eÐnai
1 [ 2i ]
a > 0. Gia 1
kai
−2i .
fantastik mèrh thc
1 1 P = −4 1 oi idiotimèc tou 1 1 + 2i kai to idiodinusma [ 2i ]
1 ± 2i
a ± ib
pardeigma, èstw o pÐnakac
opoÐou eÐnai
PaÐrnoume thn idiotim
kai shmei¸noume ìti ta pragmatik kai
~v e(1+2i)t
kai ta idiodianÔsmata
eÐnai
1 (1+2i)t cos 2t e = et , 2i −2 sin 2t 1 (1+2i)t sin 2t Im e = et . 2i 2 cos 2t Re
Parathr ste to
et
sthn arq thc lÔshc.
Autì shmaÐnei ìti oi lÔseic auxnoun se mègejoc speiroeid¸c ìso apo-
makrÔnontai apì thn arq twn axìnwn. Sunep¸c èqoume mia speiroeid phg speiroeid c phg . DeÐte to Sq ma 3.9. PerÐptwsh 6. Tèloc ac jewr soume thn perÐptwsh twn migadik¸n idiotim¸n me arnhtikì akèraio mèroc. Dhlad
−a ± ib 1
ja èqoume idiotimèc thc morf c
−1 ± 2i kai ta idiodianÔsmata −2i kai fantastikì mèroc thc ~ v e(1+2i)t
kai
gia kpoio
1 [ 2i ].
a > 0.
Gia pardeigma èstw o pÐnakac
PaÐrnoume thn idiotim
P =
−1 −1 4 −1
oi idiotimèc tou
1 −1 − 2i kai to idiodinusma [ 2i ] kai to pragmatikì
ta opoÐa eÐnai
1 (−1−2i)t cos 2t −t Re e =e , 2i 2 sin 2t 1 (−1−2i)t − sin 2t Im e = e−t . 2i 2 cos 2t Parathr ste to
e−t
sthn arq thc lÔshc. Autì shmaÐnei ìti oi lÔseic elatt¸noun to mègejìc touc ìso apomakrÔnon-
tai speiroeid¸c apì thn arq twn axìnwn.
'Ara èqoume mia speiroeid katabìjraspeiroeid c katabìjra.
DeÐte to
Sq ma 3.10 sthn paroÔsa selÐda. Ac sunoyÐsoume thn sumperifor twn grammik¸n omogen¸n disdistatwn susthmtwn ston ex c PÐnaka 3.1.
3.4.1
3.4.1
k > 0.
Ask seic
jewr ste thn ex c exÐswsh enìc sust matoc mzac elathrÐou
mx00 + cx0 + kx = 0,
a) Metatrèyte thn exÐswsh aut se sÔsthma exis¸sewn pr¸thc txhc.
me
m > 0, c ≥ 0
kai
b) KajorÐste thn sumperifor tou
3.4. ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΚΑΙ ΤΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΠΕΔΙΑ ΤΟΥΣ -3
-2
-1
0
1
2
77
3
3
3
2
2
1
1
0
0
-1
-1
-2
-2
-3
-3 -3
-2
-1
0
1
2
3
Σχήμα 3.10: Παράδειγμα διανυσματικού πεδίου σπειροειδούς καταβόθρας.
Ιδιοτιμές Πραγματικές και αμφότερες θετικές Πραγματικές και αμφότερες αρνητικές Πραγματικές και με αντίθετα πρόσημα Καθαρά φανταστικές Μιγαδικές με θετικό ακέραιο μέρος Μιγαδικές με αρνητικό ακέραιο μέρος
Συμπεριφορά πηγή / ασταθής κόμβος καταβόθρα / ευσταθής κόμβος σαγματικό ςεντερ ποιντ / έλλειψη σπειροειδής πηγή σπειροειδής καταβόθρα
Πίνακας 3.1: Σύνοψη της συμπεριφοράς γραμμικών ομογενών δισδιάστατων συστημάτων.
sust matoc gia diaforetikèc timèc twn
m, c, k.
c) MporeÐte na exhg sete, me bsh thn fusik sac antÐlhyh, giatÐ
emfanÐzontai ìlec ta diaforetik eÐdh twn sumperifor¸n thc lÔshc sto en lìgw sÔsthma?
3.4.2
MporeÐte na anakalÔyete ti sumbaÐnei sthn perÐptwsh pou
P = [ 10 11 ]
ìpou èqoume mia dipl idiotim kai mìnon
èna idiodinusma? Pwc ja moizei h antÐstoiqh eikìna?
3.4.3 toiqeÐ?
MporeÐte na anakalÔyete ti sumbaÐnei sthn perÐptwsh pou
P = [ 11 11 ].
Se poia apì tic gnwstèc eikìnec antis-
78
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.5
Sust mata deÔterhc txhc kai efarmogèc
3.5.1
Sust mata mzac elathrÐou qwrÐc ustèrhsh
Parìlo pou ìpwc èqoume anafèrei, sun jwc exetzoume sust mata pr¸thc txhc mìnon, merikèc forèc eÐnai idiaÐtera apotelesmatikì na meletoÔme fainìmena ìpwc akrib¸c emfanÐzontai sthn prxh kai ta opoÐa endeqomènwc na eÐnai deÔterhc txhc. Gia pardeigma, èstw ìti èqoume 3 swmatÐdia sundedemèna me elat ria metaxÔ dÔo toÐqwn. Profan¸c to pl joc twn swmatidÐwn (kai twn elathrÐwn) na eÐnai polÔ megalÔtero all qrin aplìthtac ac perioristoÔme sta 3.
Ac upojèsoume epÐshc ìti h trib eÐnai amelhtèa, dhlad èqoume èna sÔsthma qwrÐc ustèrhsh.
ta swmatÐdia èqoun mza
m1 , m2 ,
kai
m3
h metatìpish tou pr¸tou swmatidÐou apì thn jèsh isorropÐac en¸ ta kai trÐtou swmatidÐou. metatìpishc (ìso to
x1
'Estw epÐshc ìti
k1 , k2 , k3 , kai k4 . 'Estw tèloc ìti x1 eÐnai x2 kai x3 eÐnai oi metatìpishc tou deÔterou
kai ta elat ria èqoun stajerèc
Ac jewr soume ìpwc sunhjÐzoume, ìti h kÐnhsh proc ta dexi antistoiqeÐ se jetikèc timèc auxnei tìso to pr¸to swmatÐdio metakineÐtai dexi). DeÐte to Sq ma 3.11.
k1
k2
k3
m1
k4
m2
m3
Σχήμα 3.11: Σύστημα σωματιδίων με ελατήρια. To aplì autì sÔsthma emfanÐzetai se aprosdìkhta Ðswc pollèc efarmogèc me parxeno trìpo.
'Iswc autì na
ofeÐletai sto ìti o kìsmoc mac apoteleÐtai ousiastik apì peira to pl joc mikr allhlepidr¸nta swmatÐdia tm mata Ôlhc. Ac epikentrwjoÔme se exis¸seic pou aforoÔn sust mata tri¸n swmatidÐwn. Me bsh ton nìmo tou
Hooke
èqoume
ìti h dÔnamh pou efarmìzei èna elat rio se kpoio swmatÐdio isoÔtai me to ginìmeno thc stajerc tou elathrÐou epÐ thn metatìpis tou. Me bsh ton deÔtero nìmo tou NeÔtwna deÔtero nìmo tou NeÔtwna h dÔnamh isoÔtai me thn mza epÐ thn epitqunsh. Sunep¸c, en ajroÐsoume tic dunmeic pou askoÔntai se kje swmatÐdio, prosèqontac na bloume to swstì prìshmo se kje ìro anloga me thn kateÔjunsh sthn opoÐa dra h dÔnamh, katal goume sto ex c sÔsthma exis¸sewn.
m1 x001 = −k1 x1 + k2 (x2 − x1 )
= −(k1 + k2 )x1 + k2 x2 ,
m2 x002 = −k2 (x2 − x1 ) + k3 (x3 − x2 )
= k2 x1 − (k2 + k3 )x2 + k3 x3 ,
m3 x003
= k3 x2 − (k3 + k4 )x3 .
= −k3 (x3 − x2 ) − k4 x3
Ac orÐsoume touc pÐnakec
m1 M = 0 0
0 m2 0
0 0 m3
kai
−(k1 + k2 ) k2 K= 0
k2 −(k2 + k3 ) k3
0 k3 −(k3 + k4 )
kai ac gryoume tic parapnw exis¸seic sthn ex c morf
M~ x 00 = K~ x. Sto shmeÐo autì ja mporoÔsame na eisaggoume 3 nèec metablhtèc kai na katal xoume se èna sÔsthma 6 exis¸sewn pr¸thc txhc. MporoÔme na isqurisjoÔme ìti to nèo sÔsthma eÐnai pio aplì na epilujeÐ sugkrinìmeno me to arqikì sÔsthma deÔterhc txhc. Ac onomsoume to
3.5.1
~ x
dinusma metatìpishc, to
Epanalbate thn parapnw diadikasÐa (breÐte touc pÐnakec
perigryte thn perÐptwsh twn O antÐstrofoc tou pÐnaka
n M
M
kai
swmatidÐwn? eÐnai o
M
−1
1 m1
= 0 0
0 1 m2
0
0 0 1 m3
M
pÐnaka mzac, kai to
K)
K
pÐnaka akamyÐac.
gia 4 swmatÐdia kai gia 5 swmatÐdia kai
3.5. ΣΥΣΤΗΜΑΤΑ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ opìte jètontac
A = M −1 K
èqoume to sÔsthma sthn ex c morf
79
~ x 00 = M −1 K~ x,
sthn ex c
~ x 00 = A~ x. Poll sust mata tou pragmatikoÔ kìsmou mac mporoÔn na montelopoihjoÔn me aut thn exÐswsh. Gia lìgouc aploÔsteushc, ja asqolhjoÔme mìno me probl mata maz¸n-elathrÐwn. Ac prospajoÔme mia lÔsh thc morf c
~ x = ~v eαt . Gia thn manteyi mac aut n èqoume,
~ x 00 = α2~v eαt .
Antikajist¸ntac èqoume ìti
α2~v eαt = A~v eαt . Diair¸ntac me
eαt
èqoume
α2~v = A~v .
Sunep¸c mia idiotim tou
A
eÐnai
α2
kai to antÐstoiqo idiodinusma eÐnai
~v
kai
ra br kame mia lÔsh. Sto pardeigm mac, ìpwc kai se pollèc llec peript¸seic, o prokÔpton pÐnakac
A
èqei arnhtikèc pragmatikèc
idiotimèc (mazÐ endeqomènwc me mia mhdenik idiotim ). Ac melet soume loipìn mìnon thn perÐptwsh aut ed¸. 'Otan mia idiotim
λ
tètoioc ¸ste
eÐnai arnhtik , shmaÐnei ìti to
2
−ω = λ.
Tìte
α = ±iω .
α2 = λ
eÐnai arnhtikì. Sunep¸c uprqei kpoioc pragmatikìc arijmìc
ω
kai h lÔsh pou mantèyame eÐnai
~ x = ~v (cos ω t + i sin ω t). PaÐrnontac pragmatik kai fantastik mèrh (shmei¸ste ìti to
~v sin ω t
En mia idiotim eÐnai mhdèn, tìte ta
3.5.2
~v
eÐnai pragmatikì), brÐskoume ìti ta
~v cos ω t
kai
eÐnai grammik anexrthtec lÔseic.
DeÐxte ìti an o pÐnakac
lÔsh tou
~x 00 = A~ x
ìpou
a
kai
~v
kai
~v t
eÐnai epÐshc lÔseic en to
A èqei mia mhdenik tim b eÐnai tuqaÐec stajerèc.
me
~v
~v
eÐnai to antÐstoiqo idiodinusma.
to antÐstoiqo idiodinusma, tìte to
~ x = ~v (a + bt)
eÐnai
'Estw o n × n pÐnakac A o opoÐoc èqei n diaforetikèc metaxÔ touc arnhtikèc idiotimèc tic opoÐec −ω12 > −ω22 > · · · > −ωn2 , en¸ ta antÐstoiqa idiodianÔmat touc me ~v1 , ~v2 , . . . , ~vn . An o A eÐnai (opìte kai èqoume ìti ω1 > 0), tìte
Je¸rhma 3.5.1. sumbolÐzoume me antistrèyimoc
~ x(t) =
n X
~vi (ai cos ωi t + bi sin ωi t),
i=1
eÐnai h genik lÔsh tou
~ x 00 = A~ x, gia kpoiec stajerèc
ai
kai
bi .
An o
A
èqei mia mhdenik idiotim , dhlad
ω1 = 0 ,
en¸ ìlec oi llec idiotimèc eÐnai
arnhtikèc kai diaforetikèc metaxÔ touc tìte h genik lÔsh èqei thn ex c morf
~ x(t) = ~v1 (a1 + b1 t) +
n X
~vi (ai cos ωi t + bi sin ωi t).
i=2
Shmei¸ste ìti mporoÔme na qrhsimopoi soume to parapnw je¸rhma gia na broÔme thn genik lÔsh problhmtwn ìpwc aut pou perigryame sthn eisagwg aut c thc paragrfou, akìma kai sthn perÐptwsh pou kpoia apì ta swmatÐdia /kai kpoia apì ta elat ria den uprqoun.
Gia pardeigma, ìtan mac dojeÐ ìti èqoume 2 swmatÐdia me 2
elat ria, apl paÐrnoume mìnon tic exis¸seic pou analogoÔn sta swmatÐdia kai jètoume Ðsec me mhdèn ìlec tic stajerèc twn elathrÐwn pou den uprqoun.
80
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
k1
k2 m1
m2
Σχήμα 3.12: Σύστημα μάζας ελατηρίου.
3.5.2
ParadeÐgmata
Pardeigma 3.5.1: kai ìpou
'Estw ìti èqoume to sÔsthma pou perigrfetai sto Sq ma 3.12, ìpou
m1 = 2, m2 = 1, k1 = 4,
k2 = 2 .
Oi exis¸seic pou dièpoun to sÔsthma eÐnai oi ex c
2 0
0 00 −(4 + 2) ~ x = 1 2
2 ~ x, −2
−3 2
~ x 00 = Oi idiotimèc tou
A
eÐnai
λ = −1, −4
1 ~ x. −2
(skhsh) kai ta idiodianÔsmata
kai
1 −1
antÐstoiqa (llh skhsh).
ω2 = 2. Sunep¸c h genik lÔsh 1 1 ~ x= (a1 cos t + b1 sin t) + (a2 cos 2t + b2 sin 2t) . 2 −1
Me bsh to parapnw je¸rhma èqoume ìti
ω1 = 1
[ 12 ]
kai
eÐnai
Oi dÔo ìroi thc lÔshc paristoÔn tic dÔo fusikoÔc trìpouc talntwshc kai oi dÔo (gwniakèc) suqnìthtec eÐnai oi . H grafik parstash twn dÔo aut¸n ìrwn dÐdetai sto Sq ma 3.13. 0.0
2.5
5.0
7.5
10.0
0.0
2.5
5.0
7.5
10.0
2
2
1.0
1.0
1
1
0.5
0.5
0
0
0.0
0.0
-1
-1
-0.5
-0.5
-2
-1.0
-2 0.0
2.5
5.0
7.5
10.0
-1.0 0.0
2.5
5.0
7.5
10.0
Σχήμα 3.13: Οι δύο τρόποι ταλάντωσης ενός συστήματος μάζας ελατηρίου. Στα αριστερά τα σωματίδια κινούνται στην ίδια κατεύθυνση ενώ στα δεξιά σε αντίθετη κατεύθυνση. Ac diatup¸soume thn exÐswsh wc ex c
~ x=
1 1 c1 cos(t − α2 ) + c cos(2t − α1 ). 2 −1 2
O pr¸toc ìroc,
1 c1 cos(t − α1 ) c1 cos(t − α1 ) = , 2 2c1 cos(t − α1 )
3.5. ΣΥΣΤΗΜΑΤΑ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
81
analogeÐ sthn perÐptwsh pou ta swmatÐdia kinoÔntai sugqronismèna sthn Ðdia kateÔjunsh. O deÔteroc ìroc,
1 c2 cos(2t − α2 ) c2 cos(2t − α2 ) = , −1 −c2 cos(2t − α2 )
analogeÐ sthn perÐptwsh pou ta swmatÐdia kinoÔntai sugqronismèna all se antÐjetec kateujÔnseic. H genik lÔsh eÐnai ènac sunduasmìc twn dÔo aut¸n ìrwn.
Dhlad , h arqikèc sunj kec kajorÐzoun to pltoc
kai thn diafor fshc tou kje ìrou.
Pardeigma 3.5.2:
Ac doÔme t¸ra èna llo pardeigma ìpou èqoume dÔo bagonèta.
To èna èqei mza 2 kg kai
taxideÔei me taqÔthta 3 m/c proc to deÔtero to opoÐo èqei mza 1 kg. Sto deÔtero bagonèto uprqei ènac profulakt rac o opoÐoc aposbaÐnei bebaÐwc thn sÔgkroush kai tautìqrona ta sundèei (en¸nei ta dÔo bagonèta) kai met ta af nei na kinhjoÔn eleÔjera. O profulakt rac mporeÐ na jewrhjeÐ san èna elat rio stajerc
k = 2 N/m.
To deÔtero bagonèto
apèqei apì ènan toÐqo 10 mètra. DeÐte to Sq ma 3.14.
k
m1
m2 10 mètra
Σχήμα 3.14: Σύγκρουση δύο βαγονέτων.
MporoÔme na jèsoume difora erwt mata.
Se pìso qrìno met thn ènws touc ta bagonèta ja sugkroustoÔn
ston toÐqo? Poia ja eÐnai h taqÔthta tou deÔterou bagonètou ìtan ja sugkrousteÐ ston toÐqo? Ac kataskeusoume to sÔsthma pr¸ta.
x1 h sunrthsh pou stigm t = 0, kai èstw x2 h 'Estw
Ac upojèsoume ìti ta bagonèta en¸nontai thn qronik stigm
sunrthsh pou mac dÐnei thn apomkrunsh tou deÔterou swmatidÐou apì thn arqik jèsh
tou. EÐnai safèc ìti h sÔgkroush ja epèljei akrib¸c ìtan taqÔthta bebaÐwc eÐnai
t = 0.
mac dÐnei thn apomkrunsh tou pr¸tou swmatidÐou apì thn jèsh pou eÐqe thn qronik
x02 (t).
paradeÐgmatoc qwrÐc ìmwc to
x2 (t) = 10.
Gia thn qronik stigm
t
thc sÔgkroushc, h
To sÔsthma sumperifèretai akrib¸c ìpwc sumperiferìtan to sÔsthma tou prohgoumènou
k1 .
'Ara h exÐswsh eÐnai
0 00 −2 ~ x = 1 2
2 0
2 ~ x. −2
~ x 00 =
−1 2
1 ~ x. −2 A eÐnai √ 0 kai −3 (skhsh) en¸ ta idiodianÔsmata ω2 = 3 kai qrhsimopoioÔme to deÔtero mèroc tou
Den eÐnai dÔskolo na upologÐsoume ìti oi idiotimèc tou pÐnaka eÐnai
[ 11 ]
kai
1 −2
antÐstoiqa (llh skhsh).
Shmei¸noume ìti
jewr matoc gia na broÔme ìti h genik lÔsh eÐnai
~x =
√ √ 1 1 (a1 + b1 t) + a2 cos 3 t + b2 sin 3 t = 1 −2
√ √ a1 + b1 t + a2 cos √3 t + b2 sin √ 3t a1 + b1 t − 2a2 cos 3 t − 2b2 sin 3 t
=
Ac efarmìsoume t¸ra tic arqikèc sunj kec. Ta bagonèta xekinne apì to shmeÐo 0 dhlad To pr¸to taxideÔei me taqÔthta 3 m/c, ra
x01 (0) = 3
x1 (0) = 0 kai x2 (0) = 0. x02 (0) = 0.
kai to deÔtero xekin qwrÐc arqik taqÔthta, dhlad
Oi pr¸tec sunj kec mac dÐnoun ìti
~0 = ~ x(0) =
a1 + a2 . a1 − 2a2
82
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
Den eÐnai dÔskolo na diapist¸soume ìti to parapnw mac dÐnei kai
a2
a1 = a2 = 0.
AntikajistoÔme tic timèc autèc twn
a1
kai paragwgÐzoume gia na proume ìti
√ √ b1 + √3 b2 cos √3 t ~ x (t) = . b1 − 2 3 b2 cos 3 t
0
'Ara
√ 3 b1 + √3 b2 =~ x0 (0) = . 0 b1 − 2 3 b2
Den eÐnai dÔskolo na broÔme lÔnontac thn parapnw ìti
b1 = 2
na sugkrousjoÔn ston toÐqo)
"
2t + ~ x= 2t −
√1 3 √2 3
kai
b2 =
√1 . 'Ara h jèsh twn bagonètwn eÐnai (mèqri 3
√ # sin 3 t √ . sin 3 t
Shmei¸ste pwc h parousÐa thc mhdenik c idiotim c eÐqe san apotèlesma ènan ìro pou perièqei to
t.
Autì shmaÐnei ìti
ta bagonèta ja taxideÔoun sthn jetik kateÔjunsh ìso o qrìnoc auxnei, prgma to opoÐo anamènoume bebaÐwc. Autì pou pragmatik mac endiafèrei eÐnai h deÔterh èkfrash, aut pou afor to
2 √ 3
sin
√ 3 t.
DeÐte sto Sq ma 3.15 thn grafik parstash tou
0
1
2
3
x2
x2 .
'Eqoume ìti
x2 (t) = 2t −
wc proc ton qrìno.
4
5
6
12.5
12.5
10.0
10.0
7.5
7.5
5.0
5.0
2.5
2.5
0.0
0.0 0
1
2
3
4
5
6
Σχήμα 3.15: Η θέση του δεύτερου βαγονέτου σαν συνάρτηση του χρόνου (αγνοώντας τον τοίχο). Parathr¸ntac to grfhma mporoÔme na doÔme ìti h sÔgkroush ja epèljei se perÐpou 5 deuterìlepta met thn
√ 10 = x2 (t) = 2t− √23 sin 3 t ja broÔme ìti tsÔgkroush ≈ 5.22 √ 0 'Oson afor thn taqÔthta èqoume ìti x2 = 2 − 2 cos 3 t. Thn stigm thc sÔgkroushc (5.22 deuterìlepta apì thn 0 stigm t = 0) brÐskoume ìti x2 (timpact ) ≈ 3.85. √ Epiprìsjeta parathroÔme ìti h mègisth dunat taqÔthta isoÔtai me thn mègisth tim thc parstashc 2−2 cos 3 t, qronik stigm mhdèn. Prgmati en lÔsoume thn exÐswsh
dhlad me 4. Sunep¸c h sÔgkroush gÐnetai me sqedìn thn mègisth taqÔthta. Ac upojèsoume t¸ra ìti èqoume thn dunatìthta na apomakrÔnoume to deÔtero bagonèto apì ton toÐqo ( na plhsisoume ston toÐqo) qwrÐc ìmwc na mporoÔme na apofÔgoume thn epaf me to pr¸to bagonèto. na apofÔgoume thn sÔgkroush me ton toÐqo metakin¸ntac to bagonèto?
MporoÔme
Pìso prèpei na to metakin soume gia na
katafèroume kti tètoio? Parathr¸ntac to Sq ma 3.15, blèpoume èna plat¸ metaxÔ twn qronik¸n stigm¸n
t=3
kai
t = 4.
EkeÐ uprqei
èna shmeÐo sto opoÐo h taqÔthta eÐnai mhdèn. Gia na broÔme autì to shmeÐo prèpei na lÔsoume thn exÐswsh
√ Dhlad cos 3 t = 1 opìte èqoume t =
2π √ √ , 4π3 , . . . . Antikajist¸ntac thn pr¸th tim paÐrnoume 3
x2
2π √ 3
=
x02 (t) = 0. 4π √ 3
≈ 7.26.
'Ara h asfal s apìstash eÐnai perÐpou 7,30 mètra apì ton toÐqo. Aut bebaÐwc eÐnai kai h mikrìterh asfal c apìstash mia kai en antikatast soume tic upìloipèc timèc tou tic opoÐec br kame ìti antistoiqoÔn se
x02 (t) = 0
8π 3
kai llec asfaleÐc apostseic ìpwc h √
≈ 14.51.
t
gia
BebaÐwc kai
3.5. ΣΥΣΤΗΜΑΤΑ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ h
t=0
gia thn opoÐa èqoume
x2 = 0
83
kti pou antistoiqeÐ sthn perÐptwsh pou to deÔtero bagonèto akoumpei ston
toÐqo.
3.5.3
Exanagkasmènec Talant¸seic
Telei¸nontac ac asqolhjoÔme me thn perÐptwsh twn exanagkasmènwn talant¸sewn. 'Estw loipìn ìti to sÔsthm mac eÐnai to ex c
~ cos ω t. ~ x 00 = A~ x+F
(3.3)
Dhlad èqoume prosjèsei sto sÔsthma mia periodik dÔnamh sthn kateÔjunsh tou dianÔsmatoc Profan¸c arkeÐ na broÔme mia sugkekrimènh lÔsh tontac sthn genik lÔsh
~ xc
~ xp
~. F
tou parapnw mh omogenoÔc probl matoc thn opoÐa prosjè-
tou omogenoÔc probl matoc ja proume thn genik lÔsh tou parapnw mh-omogenoÔc
ω
probl matoc (3.3). An upojèsoume ìti to
den eÐnai Ðso me kpoia apì tic fusikèc suqnìthtec tou
~ x 00 = A~ x,
tìte
mporoÔme na mantèyoume ìti
~ xp = ~c cos ω t, ìpou
~c eÐnai kpoio gnwsto stajerì dinusma.
Parathr ste ìti h manteyi mac den perièqei hmÐtono mia kai h exÐsws
mac emplèkei mìnon thn deÔterh pargwgo. En upologÐsoume to
~c èqoume
brei thn
~ xp .
Sthn ousÐa loipìn èqoume thn
mèjodo twn aprosdiìristwn suntelest¸n gia sust mata. ParagwgÐzoume dÔo forèc thn
~ xp
kai èqoume
~ xp 00 = −ω 2~c cos ω t. AntikajistoÔme t¸ra sthn exÐswsh
~ cos ω t −ω 2~c cos ω t = A~c cos ω t + F ApaleÐfontac to sunhmÐtono èqoume
~. (A + ω 2 I)~c = −F Opìte
~ ). ~c = (A + ω 2 I)−1 (−F (A + ω 2 I) = (A − (−ω 2 )I) eÐnai antistrèyimoc. O en lìgw pÐnakac 2 idiotim tou A den eÐnai Ðsh me −ω . Autì sumbaÐnei an kai mìnon an to ω
Profan¸c prèpei na upojèsoume ìti o pÐnakac eÐnai antistrèyimoc an kai mìnon an kami
den eÐnai mia fusik suqnìthta tou sust matoc.
Pardeigma 3.5.3:
Ac jewr soume to pardeigma tou Sq matoc 3.12 sth selÐda 80 me tic Ðdiec ìpwc kai pro-
hgoumènwc paramètrouc, dhlad : mia dÔnamh
2 cos 3t
m1 = 2, m2 = 1, k1 = 4,
kai
k2 = 2.
Upojètoume t¸ra ìti èqoume epiprìsjeta kai
h opoÐa dra sto deÔtero bagonèto.
H exÐswsh loipìn eÐnai h ex c
~ x
00
−3 = 2
1 0 ~ x+ cos 3t. −2 2
'Opwc èqoume dh dei lÔnontac to analogoÔn omogenèc prìblhma h sumplhrwmatik lÔsh eÐnai
~ xc =
1 1 (a1 cos t + b1 sin t) + (a2 cos 2t + b2 sin 2t) . 2 −1
ParathroÔme ìti mia kai oi fusikèc suqnìthtec eÐnai 1 kai 2 kai bebaÐwc den eÐnai Ðsec me thn exwterik suqnìthta h opoÐa isoÔtai me 3, mporoÔme na dokimsoume thn
~c cos 3t.
ParagwgÐzontac kai antikajist¸ntac katal goume sto
ex c grammikì algebrikì sÔsthma
~ (A + ω 2 I)~c = −F Dhlad
"
−3
1
2
−2
#
! 2
+3 I
" ~c =
6
1
2
7
LÔnontac to parapnw sÔsthma paÐrnoume
" ~c =
1 20 −3 10
# .
#
" ~c =
0 −2
# .
84
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ EÔkola t¸ra katal goume sthn paraktw genik lÔsh thc exÐswshc
~ x=~ xc + ~ xp = Oi stajerèc An to
ω
a1 , a2 , b1 ,
kai
b2
" # 1 2
" (a1 cos t + b1 sin t) +
1
−1
#
~ cos ω t ~ x 00 = A~ x+F " #
(a2 cos 2t + b2 sin 2t) +
1 20 −3 10
cos 3t.
ja prosdioristoÔn bebaÐwc qrhsimopoi¸ntac tic arqikèc sunj kec tou sust matoc.
sumpèsei me mia fusik suqnìthta tou sust matoc tìte èqoume to fainìmeno tou suntonismoÔsuntonismìc
epeid ja prèpei na prospaj soume mia sugkekrimènh lÔsh thc morf c (upojètontac ìti ìlec oi idiotimèc tou pÐnaka twn suntelest¸n eÐnai diaforetikèc metaxÔ touc)
~ xp = ~c t sin ω t + d~ cos ω t. Shmei¸ste ìti ìso to
3.5.4
3.5.3
t
auxnei tìso kai to pltoc talntwshc thc lÔshc aut c auxnei, qwrÐc kanèna ìrio.
Ask seic
BreÐte mia sugkekrimènh lÔsh tou sust matoc
~ x 00 = 3.5.4
−3 2
1 0 ~ x+ cos 2t. −2 2
Jewr ste to pardeigma tou Sq matoc 3.12 sth selÐda 80 me tic Ðdiec timèc twn paramètrwn ìpwc kai pro-
hgoumènwc:
cos 5t
m1 = 2, k1 = 4,
kai
k2 = 2 ,
ektìc apì thn
dra sto pr¸to swmatÐdio. BreÐte mia tim thc
m2
m2
thn tim thc opoÐac den gnwrÐzoume. 'Estw ìti h dÔnamh
tètoia ¸ste na uprqei sugkekrimènh lÔsh gia thn opoÐa to
pr¸to swmatÐdio paramènei akÐnhto. ShmeÐwsh: H parapnw idèa eÐnai gnwst me ton ìro dunamik apìsbesh. Sthn prxh bebaÐwc pnta uprqei mia èstw kai mikr apìsbesh h opoÐa ja akinhtopoi sei to pr¸to swmatÐdio se kje perÐptwsh, endeqomènwc met apì arket meglo qronikì disthma.
3.5.5
Ac jewr soume to pardeigma 3.5.2 sth selÐda 81, upojètontac t¸ra ìti thn stigm thc emplok c twn dÔo
bagonètwn to deÔtero bagonèto kineÐtai proc ta arister me taqÔthta 3 met thn emplok .
m/c.
a) BreÐte thn sumperifor tou sust matoc
b) Ja sugkrousjeÐ to deÔtero bagonèto ston toÐqo ìso pern o kairìc ja apomakrÔnetai apì
autìn? g) Me poia taqÔthta prèpei na kineÐtai to pr¸to ìqhma ètsi ¸ste to sÔsthma na parameÐnei akÐnhto met thn emplok twn dÔo oqhmtwn?
3.5.6
Ac jewr soume to pardeigma tou Sq matoc 3.12 sth selÐda 80 me paramètrouc
m1 = m2 = 1, k1 = k2 = 1.
Uprqei sunduasmìc arqik¸n sunjhk¸n gia ton opoÐo to pr¸to ìqhma kineÐtai en¸ to deÔtero paramènei akÐnhto? En uprqei breÐte ton kai en den uprqei exhg ste giatÐ sumbaÐnei autì.
3.6. ΙΔΙΟΤΙΜΕΣ ΜΕ ΠΟΛΛΑΠΛΟΤΗΤΑ 3.6
85
Idiotimèc me pollaplìthta
MporeÐ fusik na tÔqei ì pÐnakc mac na èqei idiotimèc pou epanalambnontai.
det(A − λI) = 0
mporeÐ na èqei epanalambanìmenec rÐzec.
na sumbeÐ gia kpoion tuqaÐo pÐnaka. tou
A)
Dhlad , h qarakthristik exÐswsh
'Opwc dh anafèrame, kti tètoio eÐnai mllon apÐjano
En diatarxoume lÐgo ton pÐnaka
A
(en dhlad allxoume lÐgo ta stoiqeÐa
ja proume ènan pÐnaka me diaforetikèc metaxÔ touc idiotimèc. 'Opwc kai se kje sÔsthma ìmwc, jèloume na
elègxoume ti ja mporoÔse na sumbeÐ se oriakèc katastseic, anexrthta apì to gegonìc ìti stic katastseic autèc bebaÐwc mìnon asumptwtik plhsizoume.
3.6.1
Gewmetrik pollaplìthta
Jewr ste ton ex c diag¸nio pÐnaka
A= o opoÐoc profan¸c èqei idiotim 3 me pollaplìthta 2. qarakthristik c exÐswshc algebrik pollaplìthta. anexrthta idiodianÔsmata, ta
[ 10 ]
[ 01 ].
kai
0 . 3
3 0
Sun jwc onomzoume thn pollaplìthta twn idiotim¸n miac
Sthn perÐptwsh pou exetzoume t¸ra uprqoun dÔo grammik
Autì shmaÐnei ìti h onomazìmenh gewmetrik pollaplìthta tic idiotim c
aut c eÐnai 2. Se ìsa apì ta parapnw jewr mata apaitoÔsame o pÐnakac na èqei jèlame na èqoume
n
n diaforetikèc metaxÔ touc idiotimèc, ousiastik ~ x 0 = A~ x èqei thn ex c genik
grammik anexrthta idiodianÔsmata. Gia pardeigma, to sÔsthma
lÔsh
~ x = c1
1 3t 0 3t e + c2 e . 0 1
Ac epanadiatup¸soume to je¸rhma pou afor pragmatikèc idiotimèc.
Sto paraktw je¸rhma ja epanalambnoume
kje idiotim ìsec forèc eÐnai h (algebrik ) pollaplìtht thc. Dhlad gia ton parapnw pÐnaka
A
ja lème ìti èqei
idiotimèc to 3 kai to 3.
Je¸rhma 3.6.1.
'Estw
~ x 0 = P~ x.
An
P
eÐnai èna
n × n pÐnakac o opoÐoc èqei tic ex c n pragmatikèc idiotimèc (oi λ1 , . . . , λn , kai an se autèc antistoiqoÔn ta ex c n grammik
opoÐec den eÐnai aparaÐthta diaforetikèc metaxÔ touc), anexrthta idiodianÔsmata
~v1 ,
...,
~vn ,
tìte h genik lÔsh tou sust matoc SDE mporeÐ na grafjeÐ wc ex c
~ x = c1~v1 eλ1 t + c2~v2 eλ2 t + · · · + cn~vn eλn t . H gewmetrik pollaplìthta miac idiotim c algebrik c pollaplìthtac
n
isoÔtai me to pl joc twn anexrthtwn
idiodianusmtwn thc pou mporoÔme na broÔme. EÐnai logikì na jewr soume ìti h gewmetrik pollaplìthta eÐnai pnta mikrìterh Ðsh me thn algebrik pollaplìthta. Parapnw antimetwpÐsame thn perÐptwsh ìpou oi dÔo pollaplìthtec eÐnai Ðsec.
Sthn perÐptwsh aut pou h algebrik pollaplìthta isoÔtai me thn gewmetrik pollaplìthta h en lìgw
idiotim eÐnai pl rhc. 'Ara to parapnw je¸rhma mporeÐ na epanadiatupwjeÐ apait¸ntac ìlec oi idiotimèc tou ta
n
P
na eÐnai pl reic opìte kai
idiodianÔsmata ja eÐnai grammik anexrthta kai sunep¸c ja èqoume thn genik lÔsh pou perigrfei to je¸rhma.
Shmei¸ste ìti an h gewmetrik pollaplìthta mia idiotim c eÐnai megalÔterh Ðsh me 2, tìte to sÔnolo twn grammik anexrthtwn idiodianusmtwn den eÐnai monadikì (wc proc kpoia stajer) ìpwc anafèrame prohgoumènwc. Gia pardeigma gia ton diag¸nio pÐnaka
A
ja mporoÔsame na epilèxoume tic idiotimèc
[ 11 ]
kai
1 −1 , sthn pragmatikìthta
opoiad pote dÔo grammik anexrthta dianÔsmata.
3.6.2 En ènac
AteleÐc idiotimèc
n×n
pÐnakac èqei ligìtera apì
n
grammik anexrthta idiodianÔsmata, tìte lègete atel c. Sthn perÐptwsh
aut uprqei toulqiston mia idiotim thc opoÐac h algebrik pollaplìthta eÐnai megalÔterh apì thn gewmetrik . Mia tètoia idiotim lègetai atel c thn de diafor twn pollaplot twn atèleia.
Pardeigma 3.6.1:
O pÐnakac
3 0
1 3
86
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
èqei thn idiotim 3 me algebrik pollaplìthta 2. Ac prospaj soume na upologÐsoume ta idiodianÔsmata.
0 0 Prèpei na èqoume
v2 = 0.
1 0
v1 = ~0. v2
'Ara kje idiodinusma prèpei na eÐnai thc morf c
[ v01 ].
Opoiad pote dÔo tètoia dianÔsmata
eÐnai grammik exarthmèna kai sunep¸c h gewmetrik pollaplìthta eÐnai 1. Sunep¸c, h atèleia eÐnai 1 kai den mporoÔme na efarmìsoume thn parapnw mejodologÐa gia na broÔme thn lÔsh tou sust matoc twn SDE ta opoÐa èqoun pÐnaka suntelest¸n me aut thn idiìthta.
λ eÐnai mia idiotim enìc pÐnaka A algebrik c polm grammik anexrthta idiodianÔsmata lÔnontac thn exÐswsh (A − λI)m~v = ~0.
Mia kaÐria parat rhsh, kombik c spoudaiìthtac, eÐnai ìti en laplìthta
m,
tìte mporoÔme na broÔme
Ta dianÔsmata aut onomzontai genikeumèna idiodianÔsmata.
A = [ 30 13 ]
Ac suneqÐsoume me to pardeigma
~ x 0 = A~ x. 'Eqoume mia idiotim λ = 3 (algebrik c) idiodinusma ~ v1 = [ 10 ] apì thn opoÐa paÐrnoume thn lÔsh
kai thn exÐswsh
pollaplìthtac 2 kai atèleia 1. 'Eqoume dh brei èna
~ x1 = ~v1 e3t . Sthn perÐptwsh aut , ac dokimsoume (sto pneÔma twn epanalambanìmenwn riz¸n thc qarakthristik c exÐswshc mia SDE) mia lÔsh thc ex c morf c
~ x2 = (~v2 + ~v1 t) e3t . ParagwgÐzontac èqoume
~ x2 0 = ~v1 e3t + 3(~v2 + ~v1 t) e3t = (3~v2 + ~v1 ) e3t + 3~v1 te3t . To
~x2 0
prèpei na isoÔtai me
A~ x2 ,
opìte
A~ x2 = A(~v2 + ~v1 t) e3t = A~v2 e3t + A~v1 te3t . Parathr¸ntac touc suntelestèc twn
e3t
kai
te3t
(A − 3I)~v1 = ~0, ~v1
~ x2
3~v1 = A~v1 .
Autì shmaÐnei ìti
eÐnai mÐa lÔsh.
GnwrÐzoume ìti h pr¸th apì tic exis¸seic
eÐnai idiodinusma. Antikajist¸ntac thn deÔterh exÐswsh sthn pr¸th brÐskoume ìti
(A − 3I)(A − 3I)~v2 = ~0, An mporoÔme loipìn na broÔme èna
(A − 3I)~v2 = ~v1 ,
kai
(A − 3I)~v2 = ~v1 .
kai
En autèc oi dÔo exis¸seic ikanopoioÔntai, tìte to ikanopoieÐtai epeid to
3~v2 + ~v1 = A~v2
blèpoume ìti
~v2
tìte telei¸same.
(A − 3I)2~v2 = ~0.
or
to opoÐo na apoteleÐ lÔsh tou
(A − 3I)2~v2 = ~0,
kai na ikanopoieÐ thn sqèsh
Prèpei loipìn na lÔsoume dÔo algebrik grammik sust mata, prgma arket
eÔkolo.
(A − 3I)2
Parathr ste ìti gia thn apl perÐptwsh pou asqoloÔmaste o Sunep¸c, kje dinusma
~v2
eÐnai lÔsh tou
(A − 3I) ~v2 = ~0. 2
eÐnai ènac mhdenikìc pÐnakac (skhsh).
'Ara arkeÐ na sigoureutoÔme ìti
(A − 3I)~v2 = ~v1 .
Ac
gryoume
0 0 a = 0 (to a mporeÐ sust matoc ~ x 0 = A~ x eÐnai
Ac jèsoume tou
1 0
a 1 = . b 0
na prei ìpoia tim jèloume) kai
~ x = c1
~v1
pou antistoiqeÐ sto
Opìte èqoume
~v2 = [ 01 ].
'Ara h genik lÔsh
3t 1 3t 0 1 c1 e + c2 te3t e + c2 + t e3t = . 3t 0 1 0 c2 e
Ac perigryoume t¸ra ton genikì algìrijmo. Pr¸ta gia idiodinusma
b = 1.
λ.
λ
pollaplìthtac 2 kai atèleiac 1. Pr¸ta brÐskoume to
Met prèpei na broÔme èna
~v2
(A − 3I)2~v2 = ~0, (A − 3I)~v2 = ~v1 .
tètoio ¸ste
3.6. ΙΔΙΟΤΙΜΕΣ ΜΕ ΠΟΛΛΑΠΛΟΤΗΤΑ
87
Me ton trìpo autì paÐrnoume dÔo grammik anexrthtec lÔseic
~ x1 = ~v1 eλt , ~ x2 = (~v2 + ~v1 t) eλt . H parapnw mejodologÐa mporeÐ na genikeujeÐ gia megalÔterouc pÐnakec kai megalÔterec atèleiec. Parìlo pou den ja asqolhjoÔme susthmatik me to jèma ac d¸soume thn genik idèa. 'Estw ìti o
m.
A èqei mia idiotim λ pollaplìthtac
BrÐskoume dianÔsmata tètoia ¸ste
(A − λI)k ~v = ~0,
(A − λI)k−1~v 6= ~0.
all
Ta dianÔsmata aut lègontai genikeumèna idiodianÔsmata. Gia kje idiodinusma idiodianusmtwn
~v2 . . . ~vk
~v1
brÐskoume mia seir genikeumènwn
tètoia ¸ste:
(A − λI)~v1 = ~0, (A − λI)~v2 = ~v1 , . . .
(A − λI)~vk = ~vk−1 . Kataskeuzoume tic grammik anexrthtec lÔseic
~ x1 = ~v1 eλt , ~ x2 = (~v2 + ~v1 t) eλt , . . .
~ xk =
tk−2 tk−1 ~vk + ~vk−1 t + · · · + ~v2 + ~v1 eλt . (k − 2)! (k − 1)!
ProqwroÔme sthn eÔresh seir¸n èwc ìtou kataskeusoume
m grammik anexrthtec lÔseic (m eÐnai h pollaplìthta).
Endeqomènwc na qreiasjeÐ na brejoÔn arketèc seirèc gia kje idiotim .
3.6.3
Ask seic
3.6.1
'Estw
A=
3.6.2
'Estw
A =
5 −3
3 −1 . LÔste thn exÐswsh
h
'Estw
A=
i
a) Poiec eÐnai oi idiotimèc?
b) Poia/poièc eÐnai oi atèleiec twn idiodianusmtwn?
c)
~ x = A~ x. h2 1 0i
LÔste thn exÐswsh
3.6.3
5 −4 4 0 3 0 . −2 4 −1 0
~ x 0 = A~ x.
0 2 0 . a) Poiec eÐnai oi idiotimèc? b) Poia/poièc eÐnai oi atèleiec twn idiodianusmtwn? g) LÔste 0 0 2
~x 0 = A~ x me dÔo diaforetikoÔc trìpouc kai epibebai¸ste ìti prgmati br kate swst thn lÔsh. h 0 1 2 i −1 −2 −2 . a) Poiec eÐnai oi idiotimèc? b) Poia/poièc eÐnai oi atèleiec twn idiodianusmtwn? 'Estw A =
thn exÐswsh
3.6.4
−4 4
LÔste thn exÐswsh
3.6.5
'Estw
A =
LÔste thn exÐswsh
3.6.6
'Estw
A =
LÔste thn exÐswsh
3.6.7
'Estw
7
~ x 0 = A~ x. h 0 4 −2 i
g)
−1 −4 1 . 0 0 −2 0
a) Poiec eÐnai oi idiotimèc?
b) Poia/poièc eÐnai oi atèleiec twn idiodianusmtwn?
g)
−1 0 2 −1 −2 4 0
a) Poiec eÐnai oi idiotimèc?
b) Poia/poièc eÐnai oi atèleiec twn idiodianusmtwn?
g)
~ x = A~ x. h 2 1 −1 i
.
~ x = A~ x.
A ènac 2 × 2 pÐnakac me idiotim λ pollaplìthtac 2.
'Estw epÐshc ìti uprqoun dÔo grammik anexrthta
idiodianÔsmata. ApodeÐxte ìti o pÐnakac eÐnai diag¸nioc kai sugkekrimèna
A = λI .
88
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
3.7
Ekjetik Pinkwn
3.7.1
OrismoÐ
Sthn pargrafo aut ja parousisoume ènan enallaktikì trìpo eÔreshc twn jemeliwd¸n lÔsewn enìc sust matoc. Wc sun jwc, jewr ste to ex c sÔsthma stajer¸n suntelest¸n
~ x 0 = P~ x, An to parapnw sÔsthma apoteleÐto apì mÐa mìnon exÐswsh (to
P
1×1
eÐnai ènac
pÐnakac, dhlad ènac arijmìc) tìte
h lÔsh ja eÐqe thn morf
~ x = eP t . Parìmoia mporoÔme na genikeÔsoume orÐzontac katllhla thn èkfrash thc sunrthshc
at
e
gia kpoio arijmì
eP t .
Ac jumhjoÔme o anptugma seirc
T aylor
a. ∞
eat = 1 + at +
X (at)k (at)2 (at)3 (at)4 + + + ··· = . 2 6 24 k! k=0
JumhjeÐte ìti
k! = 1 · 2 · 3 · · · k, a + a2 t +
kai
0! = 1.
ParagogÐzontac èqoume
(at)2 (at)3 a t a t + + · · · = a 1 + at + + + · · · = aeat . 2 6 2 6 3 2
4 3
Ac knoume kti parìmoio gia pÐnakec. Ac orÐsoume pr¸ta gia kje
def
eA = I + A +
n×n
pÐnaka
A
ton ekjetikì pÐnaka wc ex c
1 2 1 3 1 A + A + · · · + Ak + · · · 2 6 k!
Fusik kai prèpei h parapnw seir na sugklÐnei all ac mhn mac apasqol sei to jèma autì t¸ra. Ac upojèsoume dhlad ìti ìlec oi seirèc pou ja akolouj soun sugklÐnoun. Profan¸c gia kje pÐnaka
P
èqoume
P t = tP
opìte kai
paÐrnoume
d tP e = P etP . dt tP O P kai kat sunèpeia kai o e eÐnai ènac pÐnakac n × n. Autì pou mènei na broÔme eÐnai apl¸c èna dinusma. Sugkekrimèna, sthn perÐptwsh pou o pÐnakac eÐnai 1 × 1 ousiastik mac mènei na pollaplasisoume me mia tuqaÐa stajer gia na broÔme thn genik lÔsh. Sthn perÐptwsh twn n × n pinkwn apl pollaplasizoume thn lÔsh pou br kame parapnw me èna stajerì dinusma ~ c. Je¸rhma 3.7.1.
En
P
eÐnai ènac
n×n
pÐnakac, tìte h genik lÔsh tou
~ x 0 = P~ x
eÐnai
~ x = etP ~c, ìpou
~c
eÐnai èna opoiod pote stajerì dinusma. Mlista isqÔei h sqèsh
~ x(0) = ~c.
Ac to epibebai¸soume.
d d tP ~ x= e ~c = P etP ~c = P ~ x. dt dt 'Ara o
etP
eÐnai o jemeli¸dhc pÐnakac lÔsewn tou omogenoÔc sust matoc. En broÔme ènan trìpo upologismoÔ tou
ekjetikoÔ enìc pÐnaka tìte ja èqoume mia llh mèjodo epÐlushc omogen¸n susthmtwn me stajeroÔc suntelestèc. H en lìgw mèjodoc mlista antimetwpÐzei thn diadikasÐa epilog c thc sugkekrimènhc lÔshc pou ikanopoieÐ dojeÐsec arqikèc sunj kec me polÔ pio eÔkolo trìpo. Prgmati, gia na lÔsoume to
~ x 0 = A~ x, ~ x(0) = ~b,
paÐrnoume thn lÔsh
~ x = etA~b. Autì prokÔptei apì to gegonìc ìti
e0A = I ,
opìte
~ x(0) = e0A~b = ~b.
Uprqei èna mikrì prìblhma me ta ekjetik pinkwn.
Genik èqoume ìti
eA+B 6= eA eB .
Autì ofeÐletai sto
gegonìc ìti uprqei sobarì endeqìmeno dÔo pÐnakec na mhn antimetatÐjentai, dhlad na èqoume antimetajetikìthta aut twn pinkwn sunepgetai ìti
eA+B 6= eA eB
AB 6= BA.
H mh-
gegonìc pou mac dhmiourgeÐ sobar probl mata
3.7. ΕΚΘΕΤΙΚΑ ΠΙΝΑΚΩΝ
89 T aylor.
ìtan prospajoÔme na lÔsoume èna sÔsthma qrhsimopoi¸ntac seirèc
A
B
kai
antimetatÐjentai, tìte
eA+B = eA eB
Fusik ìtan
AB = BA,
ìtan dhlad oi
prgma idiaÐtera bolikì ìpwc ja doÔme. Ac diatup¸soume ta parapnw
sumpersmata se morf jewr matoc.
Je¸rhma 3.7.2.
3.7.2
En
AB = BA
tìte
eA+B = eA eB .
Eidllwc èqoume
eA+B 6= eA eB .
Aplèc peript¸seic
Se merikèc peript¸seic arkeÐ na antikatast soume timèc stic metablhtèc twn seir¸n. Mia tètoia perÐptwsh eÐnai kai
D = [ a0 0b ]. Tìte k a 0 Dk = , 0 bk
aut pou o pÐnakac eÐnai diag¸nioc. Gia pardeigma,
kai
e
1 2 1 3 1 = I + D + D + D + ··· = 0 2 6
D
1 a2 0 + b 2 0
0 a + 1 0
a e 0 + ··· = b3 0
1 a3 0 + b2 6 0
0 . eb
Me autì ton trìpo katal goume sto
eI =
e 0
0 e
kai
eaI =
ea 0
0 a . e
Ta parapnw apotelèsmata mac bohjne sto na upologÐsoume eÔkola ta ekjetik llwn pio genik¸n pinkwn.
Gia −3 3 −3 A = 35 −1 mporeÐ na grafjeÐ wc 2I + B ìpou B = . Shmei¸ste ìti oi 3 −3 B 2 = [ 00 00 ]. Opìte B k = 0 gia kje k ≥ 2. Sunep¸c, eB = I + B . 'Estw ìti tB Oi 2tI kai tB antimetatÐjentai (epibebai¸ste to san skhsh) kai e = I + tB ,
pardeigma shmei¸ste ìti o pÐnakac
2I
kai
B
antimetatÐjentai, kai ìti
etA .
jèloume na upologÐsoume ton since
(tB)2 = t2 B 2 = 0.
tA
e
2tI+tB
=e
'Eqoume loipìn
2tI tB
=e
e
e2t = 0
0 (I + tB) = e2t =
e2t 0
0 e2t
1 + 3t 3t
Br kame loipìn ton jemeli¸dh pÐnaka twn lÔsewn tou sust matoc
−3t (1 + 3t) e2t = 3te2t 1 − 3t
~ x 0 = A~ x.
−3te2t 2t . (1 − 3t) e
Shmei¸ste ìti o pÐnakac
A
èqei mia
atel idiotim pollaplìthtac 2, uprqei dhlad mìnon èna idiodinusma gia thn en lìgw idiotim . 'Eqoume loipìn brei mia en dunmei mèjodo antimet¸pishc tètoiwn peript¸sewn. Prgmati, en o pÐnakac
λ
pollaplìthtac 2, tìte eÐte eÐnai diag¸nioc, eÐte
A = λI + B
ìpou
B 2 = 0.
A
eÐnai
2×2
kai èqei mia idiotim
H paraktw eÐnai mia polÔ kal kai
endeqomènwc lÐgo dÔskolh skhsh.
3.7.1
2 × 2 pÐnakac A èqei A = λI + B , ìpou B 2 = 0.
'Estw ìti o
gryete ìti
mìnon mia idiotim , thn
ApodeÐxte ìti
(A − λI)2 = 0.
Tìte mporeÐte na
Upìdeixh: Pr¸ta gryte thn exÐswsh pou prokÔptei apì to gegonìc ìti h
idiotim èqei pollaplìthta 2 kai met upologÐste to
3.7.3
λ.
B2.
GenikoÐ pÐnakec
Genik o upologismìc tou ekjetikoÔ enìc pÐnaka den eÐnai tìso eÔkolo ìso eÐdame parapnw. Den mporoÔme sun jwc na gryoume ènan pÐnaka san jroisma antimetijìmenwn pinkwn ìpote kai mporoÔme na suneqÐsoume thn diadikasÐa epÐlushc eÔkola.
Mhn apogohteÔeste ìmwc eidik an mporoÔme na broÔme arket idiodianÔsmata.
sto ex c ergaleÐo thc grammik c lgebrac. Gia kje tetragwnikoÔc pÐnakec
eBAB
−1
A
kai
B
Ja sthriqjoÔme
èqoume ìti
= BeA B −1 .
MporoÔme na doÔme thn orjìthta thc parapnw sqèshc qrhsimopoiìntac anaptÔgmata
T aylor.
ìti
(BAB −1 )2 = BAB −1 BAB −1 = BAIAB −1 = BA2 B −1 .
Prin ìmwc parathr ste
90
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
Katèpèktash isqÔei ìti
(BAB −1 )k = BAk B −1 . eBAB
−1
T¸ra ac gryoume ton pÐnaka tai diagwnopoÐhsh.
A
'Ara ac gryoume to anptugma
T aylor
gia thn
eBAB
−1
1 1 (BAB −1 )2 + (BAB −1 )3 + · · · 2 6 1 1 = BB −1 + BAB −1 + BA2 B −1 + BA3 B −1 + · · · 2 6 −1 1 2 1 3 = B I + A + A + A + ··· B 2 6 = BeA B −1 . = I + BAB −1 +
san
EDE −1 ,
ìpou
D
eÐnai ènac diag¸nioc pÐnakac. H diadikasÐa aut onomze-
En mporoÔme na thn fèroume eic pèrac tìte o upologismìc tou ekjetikoÔ mac gÐnete eÔkola.
Prosjètontac katllhla to
t
parathroÔme ìti
etA = EetD E −1 . Gia na broÔme ta
E
kai
D
qreiazìmaste
n
grammik anexrthta idiodianÔsmata tou
A.
Sthn perÐptwsh pou den ta
èqoume ja prèpei na prospaj soume kti poio perÐploko. Den axÐzei ìmwc na asqolhjoÔme sto mjhma autì me mia tètoia perÐptwsh. 'Estw
~v1 ,
idiotimèc kai
...,
~vn
E
A. ~vn ].
o pÐnakac o opoÐoc èqei san st lec ta idiodianÔsmata tou
ta idiodianÔsmata tou
A.
E = [ ~v1
SofÐ èqoume
A.
pÐnakac pou èqei san diag¸nia stoiqeÐa tic idiotimèc tou
···
~v2
'Estw epÐshc 'Estw tèloc
λ1 , . . . , λn oi D o diag¸nioc
Tìte èqoume
··· ···
0 0 . . . .
λ1 0 D= . ..
0 λ2 . . .
.
0
0
···
λn
AE = A[ ~v1
~v2
···
~vn ]
.
.
'EÔkola blèpoume ìti
= [ A~v1 = [ λ1~v1 = [ ~v1
···
A~v2
···
λ2~v2 ···
~v2
A~vn ] λn~vn ]
~vn ]D
= ED. E
Oi st lec tou 'Ara o
E
eÐnai grammik anexrthtec epeid upojèsame oti ta idiodianÔsmata tou
eÐnai antistrèyimoc. Epeid
AE = ED,
pollaplasizontac me
E −1
A
eÐnai grammik anexrthta.
èqoume
A = EDE −1 . Dhlad
eA = EeD E −1 .
Prosjètontac kai to
t
katal goume ìti
etA = EetD E −1
λ1 t e 0 =E . ..
0 λ2 t
e
0
··· ···
. . .
.
0
···
.
.
0 0 −1 . . E . .
(3.4)
eλn t
Sunep¸c h sqèsh (3.4) mac prosfèrei ènan tÔpo gia ton upologismì tou pÐnaka twn jemeliwd¸n lÔsewn sust matoc
0
~x = A~ x
sthn perÐptwsh pou o pÐnakac
A
èqei
n
etA
tou
grammik anexrthta idiodianÔsmata.
Shmei¸ste ìti h parapnw diadikasÐa mporeÐ mesa na efarmosjeÐ kai sthn perÐptwsh pou oi idiotimèc (kai ta idiodianÔsmata profan¸c) eÐnai migadikèc. Apl oi prxeic mac ja gÐnontai me migadikoÔc arijmoÔc. Den eÐnai dÔskolo na doÔme ìti en o pÐnakac ton tÔpo tou
Euler
A eÐnai pragmatikìc, tìte kai o etA
ja eÐnai pragmatikìc. Tèloc jumhjeÐte ìti efarmìzontac
mporoÔme na aplopoi soume ta migadik apotelèsmat mac metatrèpontac ton pÐnaka
autìc na mhn perièqei kpoion migadikì arijmì.
A
ètsi ¸ste
3.7. ΕΚΘΕΤΙΚΑ ΠΙΝΑΚΩΝ Pardeigma 3.7.1:
91
UpologÐste ton pÐnaka twn jemeliwd¸n lÔsewn tou sust matoc qrhsimopoi¸ntac ekjetik
pinkwn
0 1 x = 2 y
2 1
x . y
UpologÐste epÐshc kai thn sugkekrimènh lÔsh h opoÐa ikanopoieÐ tic ex c arqikèc sunj kec 'Estw
A
o pÐnakac twn suntelest¸n
ta antÐstoiqa idiodianÔsmata eÐnai
tA
e
[ 11 ]
1 = 1 1 = 1 −1 2
=
−1 = 2
kai
[12 21 ]. 1
x(0) = 4
kai
y(0) = 2. −1 kai ìti
Pr¸ta brÐskoume (skhsh) ìti oi idiotimèc tou eÐnai 3 kai
−1 . 'Ara mporoÔme na doÔme ìti
−1 1 e−t −1 3t 1 e 0 −1 −1 −1 −t −1 0 e 1 2 −1 3t −t e e −1 −1 1 e3t −e−t −1 " e3t +e−t 3t −t 3t −e − e −e + e−t 2 = e3t −e −t −e3t + e−t −e3t − e−t 1 −1
e3t 0
0
1 1
e3t −e−t 2 e3t +e−t 2
2
# .
x(0) = 4 kai y(0) = 2. 'Ara me bsh thn idiìthta e0A = I brÐskoume ìti h sugkekrimènh b ìpou ~b eÐnai [ 42 ]. H sugkekrimènh lÔsh pou yqnoume loipìn eÐnai h ex c eÐnai h e " e3t +e−t e3t −e−t # 3t 3t x 3e + e−t 4 2e + 2e−t + e3t − e−t 2 2 . = = e3t −e = 3t −t −t 3t −t 3t −t 3t −t e +e y 3e − e 2e − 2e + e + e 2
Oi arqikèc sunj kec eÐnai lÔsh pou yqnoume
tA~
2
3.7.4
2
PÐnakac jemeliwd¸n lÔsewn
Shmei¸ste ìti en katafèrete na upologÐsete ton pÐnaka twn jemeliwd¸n lÔsewn me kpoion diaforetikì trìpo, mporeÐte na ton qrhsimopoi sete gia na breÐte ton
etA .
pÐnaka twn jemeliwd¸n lÔsewn enìc sust matoc SDE den
t = 0 gÐnetai o tautotikìc X eÐnai ènac opoiosd pote
eÐnai monadikìc. O ekjetikìc pÐnakac eÐnai o pÐnakac twn jemeliwd¸n lÔsewn o opoÐoc gia pÐnakac.
Prèpei loipìn na broÔme ton katllhlo pÐnaka twn jemeliwd¸n lÔsewn.
pÐnakac twn jemeliwd¸n lÔsewn tou sust matoc
~ x 0 = A~ x
En
tìte mporoÔme na isqurisjoÔme ìti
etA = X(t) [X(0)]−1 . Profan¸c en jèsoume
t=0
sto
X(t) [X(0)]−1
paÐrnoume ton tautotikì.
Den eÐnai dÔskolo na diapist¸soume ìti
mporoÔme na pollaplasisoume ènan pÐnaka jemeliwd¸n lÔsewn apì ta dexi me opoiond pote stajerì antistrèyimo pÐnaka kai na katal xoume se ènan llo pÐnaka twn jemeliwd¸n lÔsewn. me allag twn tuqaÐwn stajer¸n thc genik c lÔshc
3.7.5
Dhlad h parapnw diadikasÐa isodunameÐ
~ x(t) = X(t)~c.
Ask seic
x0 = 3x + y , y 0 = x + 3y .
3.7.2
BreÐte ton pÐnaka twn jemeleiwd¸n lÔsewn tou sust matoc
3.7.3
UpologÐste ton pÐnaka
3.7.4
BreÐte ton pÐnaka twn jemeleiwd¸n lÔsewn tou sust matoc
x03 = −3x1 − 2x2 − 5x3 .
eAt
ìpou
A = [ 20 32 ].
BreÐte met thn lÔsh pou ikanopoieÐ tic
A
UpologÐste ton pÐnaka
3.7.6
'Estw
3.7.7
Qrhsimopoi ste thn skhsh 3.7.6 gia na deÐxete ìti
AB = BA
ìtan
−2
A = [ 10 21 ].
3.7.5
e
x01 = 7x1 + 4x2 + 12x3h, x02i = x1 + 2x2 + x3 , 0 ex c arqikèc sunj kec ~ x= 1 .
(antimetatijìmenoi pÐnakec). DeÐxte ìti
strèyimoc akìma kai sthn perÐptwsh pou o
A
den eÐnai.
eA+B = eA eB .
(eA )−1 = e−A
gegonìc pou shmaÐnei ìti o
eA
eÐnai anti-
92 3.7.8
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ 'Estw ìti o pÐnakac
A
èqei idiotimèc
−1,
1, kai antÐstoiqa ididianÔsmata
[ 11 ], [ 01 ].
a) BreÐte ènan pÐnaka
ikanopoieÐ tic parapnw idiìthtec. b) BreÐte ton pÐnaka twn jemeleiwd¸n lÔsewn tou sust matoc to sÔsthma me tic ex c arqikèc sunj kec
3.7.9
'Estw ìti
A
DeÐxte ìti o pÐnakac
ènac
A
n×n
~ x(0) = [ 23 ]
pÐnakac me idiotim
~ x0 = A~ x.
A
pou
c) LÔste
.
λ
pollaplìthtac
eÐnai diag¸nioc, kai sugkekrimèna
A = λI .
n
kai
n
grammik anexrthta idiodianÔsmata.
Upìdeixh: Qrhsimopoi ste diagwnopoÐhsh kai to
gegonìc ìti o tautotikìc pÐnakac antimetatÐjetai me opoiond pote llo pÐnaka.
3.8. ΜΗ-ΟΜΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ 3.8
93
Mh-omogen sust mata
3.8.1
Pr¸thc txhc sust mata me stajeroÔc suntelestèc
Ολοκληρωτικός παράγοντας Ac epikentrwjoÔme pr¸ta sthn mh-omogen exÐswsh pr¸thc txhc
~ x 0 (t) = A~ x(t) + f~(t), ìpou o
A
eÐnai stajerìc (den exarttai apì to
t).
H pr¸th mèjodoc pou ja exetsoume eÐnai h mèjodoc tou
oloklhrwtikoÔ pargonta. Apl xanagrfoume thn exÐswsh wc ex c.
~ x 0 (t) + P ~ x(t) = f~(t), ìpou
P = −A.
Pollaplasizoume kai ta dÔo mèlh thc exÐswshc me
etP
etP ~ x 0 (t) + etP P ~ x(t) = etP f~(t). Shmei¸ste ìti
P etP = P
P etP = etP P .
I + tP +
Autì prokÔptei eÔkola en gryoume ton orismì tou
1 (tP )2 + · · · 2
= P + tP 2 +
d dt
etP = P etP .
san seir,
1 2 3 t P + ··· = 2 =
'Eqoume dh diapist¸sei ìti
etP
1 I + tP + (tP )2 + · · · P = etP P. 2
Sunep¸c,
d tP e ~ x(t) = etP f~(t). dt MporoÔme t¸ra na oloklhr¸soume. Oloklhr¸nontac bebaÐwc kje sunist¸sa twn dianusmtwn xeqwrist.
etP ~ x(t) = Qrhsimopoi¸ntac to gegonìc ìti
(etP )−1 = e−tP
Z
etP f~(t) dt + ~c.
èqoume
~ x(t) = e−tP
Z
etP f~(t) dt + e−tP ~c.
'Iswc ìla ta parapnw na eÐnai pio katanoht an qrhsimopoi soume orismèna oloklhr¸mata.
Sthn perÐptwsh
aut mlista ja mporèsoume na broÔme tic lÔseic pou ikanopoioÔn tic arqikèc sunj kec eukolìtera. 'Estw loipìn h paraktw exÐswsh kai arqikèc sunj kec.
~ x 0 (t) + P ~ x(t) = f~(t),
~ x(0) = ~b.
H lÔsh t¸ra mporeÐ na grafjeÐ sthn ex c morf
~ x(t) = e−tP
t
Z
esP f~(s) ds + e−tP ~b.
(3.5)
0
Mhn xeqnte ìti to olokl rwma tou dianÔsmatoc
esP f~(s)
prokÔptei oloklhr¸nontac kje sunist¸sa tou xeqwrist.
Den eÐnai dÔskolo na doÔme ìti h (3.5) pragmatik ikanopoieÐ tic arqikèc sunj kec
~ x(0) = e−0P
0
Z 0
esP f~(s) ds + e−0P ~b = I~b = ~b.
~ x(0) = ~b.
94
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
Pardeigma 3.8.1:
Jewr ste to sÔsthma
x01 + 5x1 − 3x2 = et , x02 + 3x1 − x2 = 0, kai tic ex c arqikèc sunj kec
x1 (0) = 1, x2 (0) = 0.
Ac diatup¸soume to sÔsthma sthn ex c morf
~ x0 + etP
'Eqoume dh upologÐsei to arnhtikì prìshmo sto
gia
P =
5 3
t e −3 ~ x= , −1 0
~ x(0) =
1 . 0
5 −3
3 −1 . EÔkola diapist¸noume ìti mporoÔme na upologÐsoume to
e−tP , dÐnontac
t.
etP =
(1 + 3t) e2t 3te2t
−3te2t 2t , (1 − 3t) e
e−tP =
(1 − 3t) e−2t −3te−2t
3te−2t −2t . (1 + 3t) e
AntÐ na upologÐsoume ìlon to tÔpo monomic ac ton upologÐsoume stadiak. ArqÐzoume me
t
Z
esP f~(s) ds =
0
Z
t
t
0
(1 + 3s) e2s 3se2s
(1 + 3s) e3s = 3se3s 0 " # te3t = (3t−1) e3t +1 . Z
−3se2s (1 − 3s) e2s
s e ds 0
ds
3 Then
~ x(t) = e−tP
Z
t
esP f~(s) ds + e−tP ~b
0
# " te3t (1 − 3t) e−2t 3te−2t (1 − 3t) e−2t = −2t −2t (3t−1) e3t +1 + −3te (1 + 3t) e −3te−2t 3 te−2t (1 − 3t) e−2t −2t + = −2t et 1 −3te − 3 + 3 +t e −2t (1 − 2t) e . = t − e3 + 31 − 2t e−2t
3te−2t (1 + 3t) e−2t
1 0
OÔf! Ac epibebai¸soume thn orjìthta autoÔ pou mìlic br kame.
x01 + 5x1 − 3x2 = (4te−2t − 4e−2t ) + 5(1 − 2t) e−2t + et − (1 − 6t) e−2t = et . ParomoÐwc mporoÔme na doÔme ìti (skhsh)
x02 + 3x1 − x2 = 0.
Tèloc eÔkola diapist¸noume (llh skhsh) ìti kai
oi arqikèc sunj kec ikanopoioÔntai.
H mèjodoc twn oloklhrwtik¸n paragìntwn gia sust mata eÐnai apotelesmatik mìnon ìtan o pÐnakac exarttai apì to
t,
dhlad o
P
eÐnai stajerìc. To prìblhma bebaÐwc eÐnai ìti en gènei èqoume
R d R P (t) dt e 6= P (t) e P (t) dt , dt epeid oi dÔo pÐnakec mporoÔn kllista na mhn antimetatÐjentai.
P
den
3.8. ΜΗ-ΟΜΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ
95
Παραγοντοποίηση Ιδιοδιανυσμάτων H jewrÐa all kai h praktik thc paraktw mejìdou basÐzetai sto gegonìc ìti ta idiodianÔsmata enìc pÐnaka mac dÐnoun tic kateujÔnseic stic opoÐec o en lìgw pÐnakac dra san arijmìc. En lÔsoume to sÔsthm mac stic kateujÔnseic autèc tìte oi lÔseic autèc ja eÐnai aploÔsterec mia kai ja mporoÔme na diaqeirizìmaste ton pÐnaka san arijmì. MporoÔme na sundusoume tic aplèc autèc lÔseic me katllhlo trìpo kai na proume thn genik lÔsh. Jewr ste thn exÐswsh
~ x 0 (t) = A~ x(t) + f~(t). Upojèste ìti o pÐnakac
A
èqei
n
grammik anexrthta idiodianÔsmata
(3.6)
~v1 , . . . , ~vn .
Ac gryoume
~ x(t) = ~v1 ξ1 (t) + ~v2 ξ2 (t) + · · · + ~vn ξn (t).
(3.7)
A. Gia na upologÐsoume f~ sunart sei twn idiodianusmtwn.
Jèloume dhlad na gryoume thn lÔsh mac san grammikì sunduasmì twn idiodianusmtwn tou thn lÔsh mac
~x, arkeÐ na broÔme tic sunart seic ξ1
èwc
ξn .
Ac upologÐsoume kai thn
Ac gryoume
f~(t) = ~v1 g1 (t) + ~v2 g2 (t) + · · · + ~vn gn (t). Jèloume loipìn na broÔme tic
g1
èwc
gn
(3.8)
oi opoÐec ikanopoioÔn thn sqèsh (3.8). Shmei¸ste ìti epeid ìla ta idiodianÔs-
E = [ ~v1 ~v2 · · · ~vn ] eÐnai antistrèyimoc. Blèpoume ìti f~ = E~g , ìpou oi sunist¸sec thc ~g eÐnai oi sunart seic g1 èwc gn . Tìte èqoume ~g = E −1 f~. Sunep¸c eÐnai pnta efiktì na broÔme to ~g arkeÐ na uprqoun n grammik anexrthta idiodianÔsmata. AntikajistoÔme thn (3.7) sthn (3.6), kai parathroÔme ìti A~ vk = λk ~vk . mata tou pÐnaka
A
eÐnai grammik anexrthta, o pÐnakac
mporoÔme na gryoun thn (3.8) wc ex c
~ x 0 = ~v1 ξ10 + ~v2 ξ20 + · · · + ~vn ξn0 = A (~v1 ξ1 + ~v2 ξ2 + · · · + ~vn ξn ) + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = A~v1 ξ1 + A~v2 ξ2 + · · · + A~vn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = ~v1 λ1 ξ1 + ~v2 λ2 ξ2 + · · · + ~vn λn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = ~v1 (λ1 ξ1 + g1 ) + ~v2 (λ2 ξ2 + g2 ) + · · · + ~vn (λn ξn + gn ). En anakalÔyoume touc suntelestèc twn dianusmtwn
ξ10 ξ20
~v1
èwc
~vn
katal goume stic exis¸seic
= λ1 ξ1 + g1 , = λ2 ξ2 + g2 , . . .
ξn0 = λn ξn + gn . H kje mia apì tic exis¸seic autèc eÐnai anexrthth apì tic llec. EÐnai ìlec grammikèc exis¸seic pr¸thc txhc kai mporoÔme eÔkola na tic lÔsoume me thn basik mèjodo twn oloklhrwtik¸n paragìntwn. Gia pardeigma gia thn
kth
exÐswsh èqoume
ξk0 (t) − λk ξk (t) = gk (t). Qrhsimopoi¸ntac ton oloklhrwtikì pargonta
e−λk t
paÐrnoume
i d h ξk (t) e−λk t = e−λk t gk (t). dx Oloklhr¸nontac kai lÔnontac wc proc
ξk
katal goume sto
ξk (t) = eλk t
Z
e−λk t gk (t) dt + Ck eλk t .
Shmei¸ste ìti en endiafèreste gia mia opoiad pote sugkekrimènh lÔsh tìte ja bìleue polÔ na jèsete to me to mhdèn.
En den d¸soume timèc stic stajerèc, tìte apl èqoume thn genik lÔsh.
Sugkekrimèna thn
Ck Ðso ~ x(t) =
~v1 ξ1 (t) + ~v2 ξ2 (t) + · · · + ~vn ξn (t). eÐnai Ðswc protimìtero an, ìpwc kai prohgoumènwc, gryoume ta oloklhr¸mata san orismèna oloklhr¸mata. Ac upojèsoume ìti èqoume thn ex c arqik sunj kh
~ x(0) = ~b.
96
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ PaÐrnoume
~c = E −1~b
kai parathroÔme ìti, ìpwc akrib¸c kai prin, èqoume
ξk (t) = eλk t
Z
t
~b = ~v1 a1 + · · · + ~vn an .
Met grafoume
e−λk s gk (s) dt + ak eλk t ,
0 kai ètsi sthn ousÐa ja proume thn sugkekrimènh lÔsh
~x(0) = ~b,
epeid
~ x(t) = ~v1 ξ1 (t) + ~v2 ξ2 (t) + · · · + ~vn ξn (t)
h opoÐa ikanopoieÐ thn
ξk (0) = ak .
Pardeigma 3.8.2:
'Estw
A = [ 13 31 ].
LÔste to sÔsthma
~ x0 = A~ x + f~ ìpou f~(t) = 1
A eÐnai −2 kai 4 kai ta antÐstoiqa idiodianÔsmata eÐnai −1 E kai ac upologÐsoume ton antÐstrofì tou. 1 1 −1 1 1 −1 . E= , E = 1 −1 1 2 1 1 AnazhtoÔme mia lÔsh thc morf c ~ x = −1 ξ1 + [ 11 ] ξ2 . Jèloume na na ekfrsoume t 1 ~ 2e idiodianusmtwn. Jèloume dhlad na gryoume f = = −1 g1 + [ 11 ] g2 . 'Ara 2t t t 1 1 −1 2et e −t g1 2e = t . = = E −1 2t e +t 1 2t g2 2 1 Oi idiotimèc tou
h
i
3/16 2et gia ~ x(0) = −5/16 . 2t 1 kai [ 1 ] antÐstoiqa (skhsh).
Ac
gryoume ton pÐnaka
'Ara
g1 = et − t
kai
3/16 −5/16
i
=
1 −1
a1 +
~ x(0)
sunart sei twn idiodianusmtwn. Jèloume dhlad na gryoume
a1 a2
a1 = 1/4
kai
sunart sei twn
~ x(0) =
[ 11 ] a2 . Sunep¸c "
'Ara
f~
g2 = et + t.
Jèloume epiplèon na ekfrsoume to
h
kai to
#
" =E
−1
3 16 −5 16
#
" =
1 4 −1 16
# .
a2 = −1/16. AntikajistoÔme to ~ x sthn exÐswsh kai paÐrnoume 1 1 0 1 1 1 1 ξ10 + ξ2 = A ξ1 + A ξ2 + g1 + g −1 1 −1 1 −1 1 2 1 1 1 1 t = (−2ξ1 ) + 4ξ2 + (e − t) + (et − t). −1 1 −1 1
PaÐrnoume loipìn tic ex c exis¸seic
ξ10 = −2ξ1 + et − t,
where
ξ20 = 4ξ2 + et + t,
where
1 , 4 −1 . ξ2 (0) = a2 = 16
ξ1 (0) = a1 =
En lÔsoume me oloklhrwtikì pargonta (skhsh, prosoq ja prèpei na qrhsimopoi sete olokl rwsh kat mèrh) èqoume
Z
ξ1 = e−2t C1
eÐnai h stajer olokl rwshc Epeid
et t 1 − + + C1 e−2t . 3 2 4 1/4 = 1/3 + 1/4 + C kai sunep¸c C = −1/3. 1 1
e2t (et − t) dt + C1 e−2t = ξ1 (0) = 1/4
èqoume ìti
Parìmoia
èqoume
et t 1 − − + C2 e4t . 3 4 16 ξ2 (0) = 1/16 èqoume ìti −1/16 = −1/3 − 1/16 + C2 kai sunep¸c C2 = 1/3. H lÔsh eÐnai # t 4t " e4t −e−2t 1 − 2t e − et 4t + 1 e − e−2t 1 1 + 3−12t 3 16 + = e−2t +e4t +2et . ~x(t) = + − −1 1 3 4 3 16 + 4t−5 3 16 ξ2 = e4t
Epeid
Dhlad ,
3.8.1
x1 =
e4t −e−2t 3
+
3−12t kai 16
Epibebai¸ste ìti ta
thn arqik sunj kh.
x1
kai
Z
e−4t (et + t) dt + C2 e4t = −
x2 =
x2
e−2t +e4t +2et 3
+
4t−5 . 16
eÐnai lÔseic tou sust matoc, ikanopoioÔn dhlad kai thn diaforik exÐswsh kai
3.8. ΜΗ-ΟΜΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ
97
Απροσδιόριστοι συντελεστές MporoÔme bebaÐwc na epekteÐnoume thn mèjodo twn aprosdiìristwn suntelest¸n gia sust mata. Autì mporeÐ na gÐnei idiaÐtera eÔkola mia kai h mình diafor ja eÐnai to ìti ja prospajoÔme na prosdiorÐsoume thn tim enìc dianÔsmatoc kai ìqi enìc mìnon arijmoÔ. Profan¸c ìti probl mata antimetwpÐsame sthn perÐptwsh thc miac exÐswshc perimènoume na antimetwpÐsoume kai sthn perÐptwsh twn susthmtwn. H mèjodoc aut loipìn den mporeÐ na antimetwpÐsei ìla ta probl mata en¸ eÐnai idiaÐtera polÔplokh ìtan to dexiì mèroc thc exÐswshc eÐnai kpwc perÐploko. Epeid h mèjodoc den diafèrei ousiastik kajìlou apì thn antÐstoiqh mèjodoc miac exÐswshc ac asqolhjoÔme amèswc me èna pardeigma.
Pardeigma 3.8.3:
f~(t) =
t
e t
.
A = tou A
'Estw
Oi idiotimèc
−1 0
−2 1 .
eÐnai
UpologÐste mia sugkekrimènh lÔsh tou sust matoc
−1
1 kai 1 kai ta idiodianÔsmata eÐnai [ 1 ] kai
~ x0 = A~ x + f~
[ 01 ] antÐstoiqa.
ìpou
Sunep¸c h
sumplhrwmatik lÔsh mac eÐnai
1 −t 0 t ~ xc = α1 e + α2 e, 1 1 gia kpoiec stajerèc
α1
kai
α2 .
T¸ra jèloume na mantèyoume mia sugkekrimènh lÔsh tou
~ x = ~aet + ~bt + ~c. 'Omwc, kpoioc ìroc thc morf c en to dinusma
~a
~aet
faÐnetai na uprqei sthn sumplhrwmatik lÔsh.
eÐnai grammik exarthmèno (pollaplsio dhlad ) tou
[ 01 ]
Epeid den gnwrÐzoume akìma
den gnwrÐzoume en ja uprxei prìblhma.
Endeqomènwc bèbaia na mhn uprxei prìblhma. Gia na eÐmaste asfal c ìmwc ja prèpei na dokimsoume kai thn Ac dokimsoume loipìn kai thn
~aet
Thuc we have 8 unknownc. We write
kai thn
~btet
san manteyièc, kai ìqi mìnon thn
~ ~ x = ~aet + ~btet + ~ct + d. h i h i ~a = [ aa12 ], ~b = bb12 , ~c = [ cc12 ], kai d~ = dd12 ,
sthn exÐswsh. Pr¸ta ac upologÐsoume
~ x
0
~btet .
~btet .
Sunep¸c èqoume
Ac antikatast soume tic parapnw
.
~ x 0 = ~a + ~b et + ~btet + ~c. T¸ra h
~x 0
prèpei na eÐnai Ðsh me
A~ x + f~ ra
A~x + f~ = A~aet + A~btet + A~ct + Ad~ + f~ = t −a1 −b1 −c1 −d1 e . = et + tet + t+ + t −2a1 + a2 −2b1 + b2 −2c1 + c2 −2d1 + d2 Ac exis¸soume t¸ra touc suntelestèc twn
et , tet , t
kai touc stajeroÔc ìrouc.
a1 + b1 = −a1 + 1, a2 + b2 = −2a1 + a2 , b1 = −b1 , b2 = −2b1 + b2 , 0 = −c1 , 0 = −2c1 + c2 + 1, c1 = −d1 , c2 = −2d1 + d2 . MporoÔme na gryoume tic parapnw exis¸seic san èna
8×9
pÐnaka kai na lÔsoume to sÔsthma me apaloif . Sthn
perÐptws mac bèbaia to sÔsthma eÐnai tìso aplì pou mporoÔme eÔkola na diapist¸soume ìti Antikajist¸ntac tic timèc autèc stic exis¸seic brÐskoume ìti
c2 = −1
eÐnai oi ex c
a1 = −a1 + 1, a2 + b2 = −2a1 + a2 .
kai
d2 = −1.
b1 = 0, c1 = 0, d1 = 0.
Oi upìloipec qr simec exis¸seic
98
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
'Ara
1 kai b2 = −1. 2 a2 = 0. Tìte,
a1 =
epilèxoume
To
a2
mporeÐ na prei opoiad pote tim .
~ x = ~aet + ~btet + ~ct + d~ = Dhlad ,
x1 =
1 2
et , x2 = −tet − t − 1.
1 2
0
et +
Mia kai yqnoume mia opoiad pote lÔsh ac
1 t e 0 0 0 2 tet + t+ = . −1 −1 −1 −tet − t − 1
H genik lÔsh tou sust matoc eÐnai ìpwc gnwrÐsoume to jroisma tic
sugkekrimènhc lÔshc pou mìlic br kame kai tic sumplhrwmatik c lÔshc. Parathr ste ìti mac qreisjhkan kai h kai h
~aet
~btet .
3.8.2
Exetste en oi
x1
kai
x2
eÐnai prgmati lÔseic.
EpÐshc dokimste na jèsete
a2 = 1
kai dokimste en oi
prokÔptousec sunart seic eÐnai lÔseic. Poia eÐnai h diafor twn dÔo lÔsewn pou upologÐzoume me ton trìpo autì
3.8.2
Exis¸seic pr¸thc txhc me metablhtoÔc suntelestèc
Uprqei bebaÐwc kai h mèjodoc twn metablht¸n paramètrwn , thn opoÐa dh qrhsimopoi same gia na lÔsoume aplèc exis¸seic.
Gia thn perÐptwsh susthmtwn me stajeroÔc suntelestèc h mèjodoc aut ousiastik tautÐzetai me thn
mèjodo twn oloklhrwtik¸n paragìntwn me thn opoÐa asqolhj kame parapnw.
H mèjodoc aut apokt idiaÐtero
endiafèron gia sust mata me mh-stajeroÔc suntelestèc kai idiaÐtera sthn perÐptwsh pou dh èqoume thn lÔsh tou antÐstoiqou omogenoÔc probl matoc. Ac jewr soume thn exÐswsh
~ x 0 = A(t) ~ x + f~(t)
(3.9)
kai ac upojèsoume ìti èqoume dh lÔsei thn antÐstoiqh omogen exÐswsh jemeliwd¸n lÔsewn dinusma
~c.
X(t).
0
~ x = A(t) ~ x
kai br kame ton pÐnaka twn
H genikeumènh lÔsh tou omogenoÔc probl matoc eÐnai bebaÐwc
X(t)~c
gia kpoio stajerì
'Opwc akrib¸c sthn perÐptwsh thc mÐac exÐswshc ac prospaj soume na broÔme thn lÔsh thc mh-omogenoÔc
qrhsimopoi¸ntac mia manteyi thc morf c
~ xp = X(t) ~ u(t), ìpou
~ u(t)
eÐnai èna dinusma ta stoiqeÐa tou opoÐou antÐ gia stajerèc eÐnai sunart seic. Antikajist¸ntac sthn (3.9)
èqoume
~ xp 0 (t) = X 0 (t) ~ u(t) + X(t) ~ u 0 (t) = A(t) X(t) ~ u(t) + f~(t). Epeid o
X
eÐnai o pÐnakac twn jemeliwd¸n lÔsewn tou omogenoÔc èqoume ìti
X 0 (t) = A(t)X(t),
kai sunep¸c
X 0 (t) ~ u(t) + X(t) ~ u 0 (t) = X 0 (t) ~ u(t) + f~(t). 'Ara
X(t) ~ u 0 (t) = f~(t). En upologÐsoume to [X(t)]−1 , tìte ~ u 0 (t) = [X(t)]−1 f~(t). Ac oloklhr¸soume ~ u kai katèpèktash thn ~ xp = X(t) ~ u(t). MporoÔme bebaÐwc na gryoume thn lÔsh wc ex c
t¸ra gia na
proume to
Z ~ xp = X(t) Shmei¸ste ìti an o
A
[X(t)]−1 f~(t) dt.
eÐnai stajerìc kai prospaj soume thn manteyi
kai sunep¸c paÐrnoume thn lÔsh
~ xp = e
tA
R
−tA
e
f~(t) dt
X(t) = etA ,
èqoume ìti
[X(t)]−1 = e−tA
dhlad ìti akrib¸c p rame qrhsimopoi¸ntac thn mèjodo tou
oloklhrwtikoÔ pargonta.
Pardeigma 3.8.4:
BreÐte mia sugkekrimènh lÔsh tou
~ x0 =
1 t t2 + 1 1
−1 t ~ x+ (t2 + 1). t 1
A = t21+1 [ 1t −1 t ] profan¸c den eÐnai stajerìc pÐnakac. Ac upojèsoume ìti gnwrÐzoume (h 0 X = [ 1t −t ] apoteleÐ lÔsh tou X (t) = A(t)X(t). Apì thn stigm pou èqoume thn sumplhrwmatik 1
Sthn perÐptwsh aut o manteÔoume) ìti o
(3.10)
lÔsh eÐnai eÔkolo na upologÐsoume thn genikeumènh lÔsh tou (3.10). Pr¸ta diapist¸noume ìti
[X(t)]−1 =
1 1 t2 + 1 −t
t . 1
3.8. ΜΗ-ΟΜΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ
99
Mia sugkekrimènh lÔsh tou (3.10) ìpwc gnwrÐsoume eÐnai h
Z ~ xp = X(t) [X(t)]−1 f~(t) dt Z 1 1 −t 1 t t = (t2 + 1) dt t 1 t2 + 1 −t 1 1 Z 1 −t 2t = dt 2 t 1 −t + 1 1 −t t2 = 1 3 t 1 −3 t + t 1 4 t = 2 33 . t +t 3 Prosjètontac se aut n thn sumplhrwmatik lÔsh paÐrnoume thn ex c genikeumènh lÔsh tou (3.10).
1 ~ x= t 3.8.3
Epibebai¸ste ìti prgmati oi
3.8.3
−t 1 x1 =
1 4 t c1 − c2 t + 13 t4 c1 3 = . + 2 3 t +t c2 + (c1 + 1) t + 23 t3 c2 3 1 3
t4
kai
x2 =
2 3
t3 + t
apoteloÔn lÔsh tou (3.10).
Sust mata deÔterhc txhc me stajeroÔc suntelestèc
Απροσδιόριστοι συντελεστές 'Eqoume dh epilÔsei sust mata deÔterhc txhc me stajeroÔc suntelestèc qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n sto
§
3.5. H mèjodoc eÐnai ousiastik h Ðdia me thn mèjodo twn aprosdiìristwn suntelest¸n
gia sust mata pr¸thc txhc. MporoÔme na knoume kpoiec qr simec aplopoi seic, san autèc pou kname sthn
§
3.5.
Jewr ste thn exÐswsh
ìpou o pÐnakac
A
eÐnai stajerìc.
An to
~ (t), ~ x 00 = A~ x+F ~ (t) eÐnai thc morf c F ~0 cos ω t, dinusma F
tìte mporoÔme na proume san
manteyi thc lÔshc thn ex c
~ xp = ~c cos ω t, kai profan¸c den qreizetai na sumperilboume hmÐtona. An to
~ F
~ (t) = F ~0 cos ω0 t + F ~1 cos ω1 t, F ~0 cos ω0 t, mporoÔme na dokimsoume ~a cos ω0 t gia na lÔsoume to ~ x 00 = A~ x+F ~0 cos ω1 t. Met mporoÔme apl¸c na prosjèsoume tic lÔseic. to ~ x 00 = A~ x+F
eÐnai jroisma sunhmitìnwn, tìte me bsh thn arq thc upèrjeshc, an
mporoÔme na dokimsoume thn manteyi thn manteyi
~b cos ω1 t
gia na lÔsoume
Thn perÐptwsh na uprqei dh kpoioc ìroc thc manteyic mac kai sthn sumplhrwmatik lÔsh, h exÐswsh na eÐnai thc morf c
~ (t), ~x 00 = A~ x 0 + B~ x+F
mporoÔme na thn antimetwpÐsoume me ton Ðdio akrib¸c trìpo pou qrhsimopoi same
gia ta sust mata pr¸thc txhc. 'Opwc èqoume tèloc dh diapist¸sei den ja qsoume tÐpote en sthn manteyi mac sumperilboume kai ìrouc thc sumplhrwmatik c lÔshc, apl oi suntelest¸n twn ìrwn aut¸n ja diapist¸soume ìti èqoun tim mhdèn kai apl¸c ja èqoume talaipwrhjeÐ qwrÐc lìgo me kpoiec epiprìsjetec prxeic pou den tan anagkaÐec.
Ανάλυση ιδιοδιανυσμάτων Gia na lÔsoume to sÔsthma
~ (t), ~ x 00 = A~ x+F mporoÔme na qrhsimopoi soume anlush idiodianusmtwn, me akrib¸c ton Ðdio trìpo me ta sust mata pr¸thc txhc. 'Estw oi idiotimèc
λ1 ,
...,
λn
kai ta idiodianÔsmata
~v1 ,
...,
~vn .
'Opwc kai prin me bsh to
~ x(t) = ~v1 ξ1 (t) + ~v2 ξ2 (t) + · · · + ~vn ξn (t). AnalÔoume to
~ F
me ìrouc idiodianusmtwn
~ (t) = ~v1 g1 (t) + ~v2 g2 (t) + · · · + ~vn gn (t). F
E = [ ~v1 · · · ~vn ]
èqoume.
100
ΚΕΦΑΛΑΙΟ 3. ΣΥΣΤΗΜΑΤΑ ΣΔΕ
opìte èqoume
~. ~g = E −1 F
AntikajistoÔme kai ìpwc kai prin èqoume
~ x 00 = ~v1 ξ100 + ~v2 ξ200 + · · · + ~vn ξn00 = A (~v1 ξ1 + ~v2 ξ2 + · · · + ~vn ξn ) + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = A~v1 ξ1 + A~v2 ξ2 + · · · + A~vn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = ~v1 λ1 ξ1 + ~v2 λ2 ξ2 + · · · + ~vn λn ξn + ~v1 g1 + ~v2 g2 + · · · + ~vn gn = ~v1 (λ1 ξ1 + g1 ) + ~v2 (λ2 ξ2 + g2 ) + · · · + ~vn (λn ξn + gn ). Exis¸nontac touc suntelestèc twn idiodianusmtwn èqoume tic exis¸seic
ξ100 = λ1 ξ1 + g1 , ξ200 = λ2 ξ2 + g2 , . . .
ξn00 = λn ξn + gn . Kje mia apì tic parapnw exis¸seic eÐnai anexrthth apì tic llec kai sunep¸c mporoÔme na thn lÔsoume me mejìdouc tou kefalaÐou 2. Grfoume loipìn
~ x(t) = ~v1 ξ1 (t) + · · · + ~vn ξn (t),
kai èqoume sunep¸c upologÐsei mia sugkekrimènh
lÔsh.
Pardeigma 3.8.5:
Ac lÔsoume to sÔsthma tou paradeÐgmatoc
§
3.5 qrhsimopoi¸ntac thn parapnw mèjodo.
'Eqoume loipìn thn exÐswsh
~ x 00 = Oi idiotimèc eÐnai
−1
kai
−4,
−3 2
kai ta idiodianÔsmata
" # g1 g2
=E
−1
1 0 ~ x+ cos 3t. −2 2 1 1 1 [ 12 ] kai −1 . 'Ara E = 2 −1
" 1 1 ~ (t) = F 3 2
1 −1
#"
0 2 cos 3t
#
" =
kai
E −1 =
1 3
1
1 2 −1 . Sunep¸c,
#
2 cos 3t 3 −2 cos 3t 3
.
Tèloc antikajistoÔme kai èqoume
2 cos 3t, 3 2 ξ200 = −4 ξ2 − cos 3t. 3
ξ100 = −ξ1 +
Efarmìzontac thn mèjodo twn aprosdiìristwn suntelest¸n, manteÔontac ìti shc kai
C2 cos 3t
C1 cos 3t
eÐnai h lÔsh thc pr¸thc exÐsw-
eÐnai h lÔsh thc deÔterhc exÐswsh kai antikajist¸ntac èqoume
2 cos 3t, 3 2 −9C2 cos 3t = −4C2 cos 3t − cos 3t. 3
−9C1 cos 3t = −C1 cos 3t +
MporoÔme na lÔsoume kje mia apì tic parapnw exis¸seic xeqwrist kai na proume ìti
−9C2 = −4C2 − 2/3.
'Ara
C1 = −1/12 ~ x=
kai
C2 = 2/15.
Sunep¸c h sugkekrimènh lÔsh mac eÐnai
1/20 −1 2 1 1 cos 3t + cos 3t = −3 cos 3t. 2 −1 /10 12 15
BebaÐwc h lÔsh mac aut tautÐzetai me aut n pou br kame sthn
§
3.5.
−9C1 = −C1 + 2/3
kai
3.8. ΜΗ-ΟΜΟΓΕΝΗ ΣΥΣΤΗΜΑΤΑ 3.8.4
3.8.4
101
Ask seic
BreÐte mia sugkekrimènh lÔsh tou sust matoc
x0 = x+2y+2t, y 0 = 3x+2y−4, a) qrhsimopoi¸ntac thn mèjodo
tou oloklhrwtikoÔ pargonta, b) qrhsimopoi¸ntac thn mèjodo thc anlushc idiodianusmtwn, g) qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n.
3.8.5
BreÐte mia sugkekrimènh lÔsh tou sust matoc
x0 = 4x+y −1, y 0 = x+4y −et , a) qrhsimopoi¸ntac thn mèjodo
tou oloklhrwtikoÔ pargonta, b) qrhsimopoi¸ntac thn mèjodo thc anlushc idiodianusmtwn, g) qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n.
3.8.6
BreÐte mia sugkekrimènh lÔsh tou sust matoc
x001 = −6x1 + 3x2 + cos t, x002 = 2x1 − 7x2 + 3 cos t,
a) qrhsi-
mopoi¸ntac thn mèjodo thc anlushc idiodianusmtwn, b) qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n.
3.8.7
BreÐte mia sugkekrimènh lÔsh tou sust matoc
x001 = −6x1 + 3x2 + cos 2t, x002 = 2x1 − 7x2 + 3 cos 2t,
a)
qrhsimopoi¸ntac thn mèjodo thc anlushc idiodianusmtwn, b) qrhsimopoi¸ntac thn mèjodo twn aprosdiìristwn suntelest¸n.
3.8.8
Jewr ste thn exÐswsh
0
1
~ x =
t
1
−1 1 t
t2 . ~ x+ −t
a) Epibebai¸ste ìti h
~ xc = c1 eÐnai h sumplhrwmatik lÔsh. kekrimènh lÔsh.
t cos t t sin t + c2 −t cos t t sin t
b) Qrhsimopoi ste thn mèjodo twn metablht¸n paramètrwn gia na breÐte mia sug-
Keflaio 4
Seirèc F ourier kai MDE 4.1 4.1.1
Probl mata sunoriak¸n tim¸n Probl mata sunoriak¸n tim¸n
Prin asqolhjoÔme me tic seirèc èstw ìti gia kpoia stajer
λ
F ourier,
prèpei na melet soume ta probl mata sunoriak¸n tim¸n Gia pardeigma,
èqoume
x00 + λx = 0, ìpou to
x(t)
èqei pedÐo orismoÔ to
[a, b].
x(a) = 0,
x(b) = 0,
Se antÐjesh me prohgoumènwc, ìpou kajorÐzame thn tim kai thn pargwgo
thc lÔshc se èna shmeÐo, t¸ra orÐsoume thn tim thc lÔshc se dÔo diaforetik shmeÐa. Shmei¸ste ìti h profan¸c mia lÔsh thc exÐswshc, opìte kai to jèma thc Ôparxhc lÔsewn den mac apasqoleÐ. lÔshc ìmwc eÐnai èna llo endiafèron jèma. Perimènoume ìti sthn genik lÔsh tou
x00 + λx = 0
x=0
eÐnai
H monadikìthta thc ja emplèkontai dÔo
tuqaÐec stajerèc. EÐnai loipìn logikì (all ljoc!) na pisteÔoume ìti ikanopoi¸ntac tic dÔo sunoriakèc sunj kec ja odhghjoÔme se monadik lÔsh.
Pardeigma 4.1.1:
'Estw
λ = 1, a = 0, b = π .
Dhlad èqoume,
x00 + x = 0,
x(0) = 0,
x(π) = 0.
x = sin t eÐnai mia llh lÔsh (epiprìsjeta thc x = 0) h opoÐa bebaÐwc ikanopoieÐ tic sunoriakèc sunj kec. Ac gryoume thn genik lÔsh thc exÐswshc h opoÐa gnwrÐsoume ìti eÐnai h x = A cos t + B sin t. H sunj kh x(0) = 0 mac anagkzei na jèsoume A = 0. H llh sunj kh x(π) = 0 den mac prosfèrei kpoia epiprìsjeth plhroforÐa mia kai h x = B sin t thn ikanopoieÐ gia opoiad pote tim tou B . Uprqoun dhlad peirec lÔseic thc morf c x = B sin t, ìpou B eÐnai mia tuqaÐa stajer. Profan¸c h
Uprqoun ìmwc kai llec lÔseic?
Pardeigma 4.1.2:
Ac exetsoume thn perÐptwsh tou
x00 + 2x = 0, H genik lÔsh eÐnai sunj kh prèpei na
λ = 2.
x(0) = 0,
x(π) = 0.
√ √ t. Jètontac x(0) = x = A cos 2 t + B sin 2 √ √ 0 èqoume A = 0. Gia na ikanopoi soume thn deÔterh èqoume 0 = x(π) = B sin 2 π . Epeid sin 2 π 6= 0 paÐrnoume ìti B = 0. 'Ara h x = 0 eÐnai h
monadik lÔsh tou probl matoc.
Ti sumbaÐnei loipìn me ta probl mata aut?
Mac endiafèrei profan¸c na anakalÔyoume gia poiec stajerèc
èqoume mh-mhdenikèc lÔseic, kai fusik na upologÐsoume tic lÔseic autèc. prìblhma eÔreshc twn idiotim¸n kai twn idiodianusmtwn enìc pÐnaka.
102
λ
To prìblhma autì eÐnai anlogo me to
4.1. ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ 4.1.2
103
Probl mata idiotim¸n
Gia na anaptÔxoume ta basik stoiqeÐa twn seir¸n
F ourier
ja qreiasteÐ na melet soume ta paraktw trÐa probl mata
idiotim¸n.
x00 + λx = 0, 00
x(a) = 0,
x(b) = 0,
0
x + λx = 0,
(4.1)
0
x (a) = 0,
x (b) = 0,
(4.2)
kai
x00 + λx = 0, 'Ena arijmìc
x0 (a) = x0 (b),
x(a) = x(b),
(4.3)
λ lègetai idiotim tou (4.1) (antÐstoiqa tou (4.2) (4.3)) an kai mìnon an uprqei mh-mhdenik lÔsh (lÔsh λ. H mh-mhdenik
pou den eÐnai tautotik mhdèn) tou (4.1) (antÐstoiqa tou (4.2) (4.3)) me dedomèno to sugkekrimèno aut lÔsh pou brÐskoume lègetai to antÐstoiqo idiodinusma.
Shmei¸ste thn omoiìthta me tic idiotimèc kai ta idiodianÔsmata pinkwn. H omoiìthta aut den eÐnai kajìlou tuqaÐa. En fantastoÔme tic algebrikèc exis¸seic san diaforikoÔc telestèc, tìte akoloujoÔme akrib¸c th Ðdia diadikasÐa. d2 Gia pardeigma jètoume oi opoÐec na ikanopoioÔn sugkekrimènec 2 . AnazhtoÔme mh-mhdenikèc sunart seic
L = − dt
f
sunoriakèc sunj kec kai apoteloÔn lÔseic thc
(L − λ)f = 0.
Meglo mèroc rou formalismoÔ thc grammik c lgebrac
mporeÐ eÔkola na efarmosjeÐ kai gia ta probl mata tou kefalaÐou autoÔ. Den ja epektajoÔme ìmwc sto jèma autì.
Pardeigma 4.1.3:
Ac upologÐsoume tic idiotimèc kai ta idiodianÔsmata tou ex c probl matoc
x00 + λx = 0,
x(0) = 0,
x(π) = 0.
Gia lìgouc pou sÔntoma ja katano soume, ac asqolhjoÔme me tic peript¸seic exetsoume pr¸ta thn perÐptwsh
λ > 0,
√ x = A cos H sunj kh
x(0) = 0
λ > 0, λ = 0 , λ < 0 x00 + λx = 0 eÐnai
xeqwrist. Ac
gia thn opoÐa h genik lÔsh thc exÐswshc
amèswc sunepgetai ìti
A = 0.
√ λ t + B sin
λ t.
EpÐshc
√ 0 = x(π) = B sin
λ π.
√ B eÐnai mhdèn tìte √ h x den eÐnai mh-mhdenik lÔsh. 'Ara gia na proume mia mh-mhdenik lÔsh prèpei na√èqoume λ π = 0. 'Ara, h λ π prèpei na eÐnai akèraio pollaplsio tou π . Me lla lìgia, prèpei na isqÔei λ = k 2 gia kpoio jetikì akèraio k . Sunep¸c oi jetikèc idiotimèc eÐnai k gia ìlouc tou akèraiouc k ≥ 1. MporoÔme na epilèxoume eÔkola san antÐstoiqec idiosunart seic tic x = sin kt. Profan¸c, ìpwc kai sthn grammik lgebra, kje An to
sin
pollaplsio enìc idiodianÔsmatoc eÐnai kai autì idiodinusma, ra arkeÐ na epilèxoume mìnon èna apì aut. En
λ=0
h exÐswsh ekfulÐzetai sthn
sunepgetai ìti
B = 0,
x(π) = 0 ìti ìti λ < 0. Sthn
kai h
Tèloc ac upojèsoume
x00 = 0 kai bebaÐwc h genik lÔsh eÐnai x = At + B . A = 0. Autì shmaÐnei ìti λ = 0 den eÐnai idiotim .
A=0
√ √ −λ t + B sinh −λ t.
cosh 0 = 1 kai sinh 0 = 0). 'Ara h lÔsh mac prèpei na eÐnai thc x(π) = 0. Kti tètoio eÐnai dunatìn mìnon en to B eÐnai ξ = 0, knte thn grafik parstash thc sunrthshc sinh gia na
Jètontac
ìti
morf c
kai na ikanopoieÐ thn sunj kh
mhdèn.
x(0) = 0
perÐptwsh aut èqoume thn ex c genik lÔsh
x = A cosh x(0) = 0 √ paÐrnoume x = B sinh −λ t kai GiatÐ? Epeid h sinh ξ
H sunj kh
(jumhjeÐte ìti
eÐnai mhdèn mìnon gia
epibebai¸sete thn parat rhsh aut . Enallaktik mporoÔme na thn epibebai¸soume qrhsimopoi¸ntac ton orismì tou t −t et −e−t me bsh ton opoÐo èqoume . 'Ara , to opoÐo mac dÐnei kai to opoÐo isqÔei mìnon
sinh ìtan
0 = sinh t =
t = 0.
2
t = −t
e =e
'Ara den uprqoun arnhtikèc idiotimèc.
Sumperasmatik, oi idiotimèc kai ta antÐstoiqa idiodianÔsmata eÐnai
λk = k 2 Pardeigma 4.1.4:
me idiodinusma
xk = sin kt
gia kje akèraio
k ≥ 1.
Ac upologÐsoume tic idiotimèc kai ta idiodianÔsmata tou ex c probl matoc
x00 + λx = 0,
x0 (0) = 0,
x0 (π) = 0.
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
104
= 0, λ < 0 √ λ > 0, λ √ λ t + B sin λ t. 'Ara √ √ x0 = −A sin λ t + B cos λ t.
Ac exetsoume kai pli kje mia apì tic peript¸seic
λ > 0.
H genik lÔsh thc
H sunj kh
x0 (0) = 0
x00 + λx = 0
sunepgetai
eÐnai
B = 0.
Epiprìsjeta èqoume
0 = x0 (π) = −A sin Epeid o A √ λ = k gia
den mporeÐ na eÐnai mhdenikìc en jèloume to kpoio jetikì akèraio
k.
xeqwrist. Pr¸ta ac upojèsoume ìti
x = A cos
λ
√ λ π.
na eÐnai idiotim , kai to
Sunep¸c oi jetikèc idiotimèc eÐnai kai pli oi
antÐstoiqa idiodianÔsmata mporoÔme na proume tic
k2
sin
√ λπ
eÐnai mhdèn mìnon ìtan
gia kje akèraio
k≥1
en¸ san
x = cos kt.
λ = 0. Sthn perÐptwsh aut h exÐswsh ekfulÐzetai sthn x00 = 0 kai h genik lÔsh eÐnai x = At + B opìte èqoume x = A. H x0 (0) = 0 sunepgetai ìti A = 0. Profan¸c jètontac x0 (π) = 0 den paÐrnoume kpoia epiprìsjeth plhroforÐa sqetik me thn lÔsh. Autì shmaÐnei ìti to B mporeÐ na prei opoiad pote tim (ac epilèxoume loipìn thn tim 1). 'Ara h λ = 0 eÐnai mia idiotim kai h x = 1 eÐnai to antÐstoiqo idiodinusma. √ √ Tèloc, an λ < 0 h genik lÔsh èqei thn morf x = A cosh −λ t + B sinh −λ t kai sunep¸c √ √ x0 = A sinh −λ t + B cosh −λ t. Ac upojèsoume t¸ra ìti
0
EÐdame dh ìti (ta
A = B = 0.
A
kai
B
antallssoun touc rìlouc touc) gia na eÐnai h lÔsh mhdèn gia
t=0
kai
t=π
prèpei
Den uprqoun loipìn arnhtikèc idiotimèc.
Sumperasmatik, oi idiotimèc kai ta antÐstoiqa idiodianÔsmata eÐnai
λk = k 2
me idiodinusma
xk = sin kt
gia kje akèraio
k ≥ 1,
kai uprqei kai mia akìma idiotim
λ0 = 0
x0 = 1.
me idiodinusma
To paraktw prìblhma eÐnai autì pou mac odhgeÐ stic genikèc seirèc
Pardeigma 4.1.5:
F ourier.
Ac upologÐsoume tic idiotimèc kai ta idiodianÔsmata tou ex c probl matoc
x00 + λx = 0, Ac paraleÐyoume thn perÐptwsh
λ< 0
x(−π) = x(π),
x0 (−π) = x0 (π).
thn opoÐa mporoÔme eÔkola na antimetwpÐsoume ìpwc parapnw katal -
gontac sto sumpèrasma ìti den uprqoun arnhtikèc idiotimèc.
λ = 0, h genik lÔsh eÐnai x = At + B . H sunj kh x(−π) = x(π) sunepgetai ìti A = 0 (h Aπ + B = −Aπ + B A = 0). H deÔterh sunj kh x0 (−π) = x0 (π) den epiblei kpoion periorismì stic timèc tou B kai sunep¸c h λ = 0 eÐnai idiotim me antÐstoiqo idiodinusma x = 1. √ √ Gia λ > 0 èqoume ìti x = A cos λ t + B sin λ t. T¸ra √ √ √ √ A cos − λ π + B sin − λ π = A cos λ π + B sin λ π. Gia
sunepgetai ìti
sin −θ = − sin θ paÐrnoume √ √ √ √ A cos λ π − B sin λ π = A cos λ π + B sin λ π. √ kai sunep¸c eÐte B = 0 sin λ π = 0. Parìmoia √ (skhsh) an paragwgÐsoume thn x kai antikatast soume sthn deÔterh sunj kh brÐskoume ìti eÐte A = 0 sin λ π = 0. 'Ara gia na èqoume kai to A kai to B mhdèn prèpei na √ √ isqÔei sin λ π = 0. Sunep¸c, h λ eÐnai kpoioc akèraioc kai ìpwc kai prohgoumènwc oi idiotimèc eÐnai xan λ = k2 gia kje akèraio k ≥ 1. Sthn perÐptwsh aut ìmwc h x = A cos kt + B sin kt eÐnai idiosunrthsh gia kje tim tou A kai tou B . 'Ara èqoume tic ex c dÔo grammik anexrthtec idiosunart seic sin kt kai cos kt. An jumhjoÔme ìti
cos −θ = cos θ
kai
Sumperasmatik, oi idiotimèc kai ta antÐstoiqa idiodianÔsmata eÐnai
λk = k 2
me idiodianÔsmata
cos kt
λ0 = 0
me idiodinusma
x0 = 1.
kai
sin kt
gia kje akèraio
k ≥ 1,
4.1. ΠΡΟΒΛΗΜΑΤΑ ΣΥΝΟΡΙΑΚΩΝ ΤΙΜΩΝ 4.1.3
105
Orjogwniìthta idiodianusmtwn
Je¸rhma 4.1.1.
En
x1 (t) kai x2 (t) eÐnai dÔo idiosunart seic tou probl matoc (4.1), (4.2) (4.3) pou antistoiqoÔn λ1 kai λ2 tìte autèc eÐnai orjog¸niec me thn ex c ènnoia Z b x1 (t)x2 (t) dt = 0.
se dÔo diaforetikèc metaxÔ touc idiotimèc
a To je¸rhma autì èqei thn ex c polÔ apl , komy kai diafwtistik apìdeixh. XekinoÔme me tic ex c dÔo exis¸seic
x001 + λ1 x1 = 0 Pollaplasizoume thn pr¸th me
x2
kai thn deÔterh me
x002 + λ2 x2 = 0.
kai
x1
kai afairoÔme gia na katal xoume sthn sqèsh
(λ1 − λ2 )x1 x2 = x002 x1 − x2 x001 . Ac oloklhr¸soume t¸ra kai ta dÔo mèlh thc exÐswshc.
b
Z (λ1 − λ2 )
b
Z x1 x2 dt =
a
x002 x1 − x2 x001 dt
a
Z
b
d x02 x1 − x2 x01 dt a dt h ib = x02 x1 − x2 x01 = 0.
=
t=a
H teleutaÐa isìthta prokÔptei ex aitÐac twn sunoriak¸n sunjhk¸n. Gia pardeigma, en jewr soume thn (4.1) èqoume
x1 (a) = x1 (b) = x2 (a) = x2 (b) = 0
kai ra
x02 x1 − x2 x01
eÐnai mhdèn kai sto
a
kai sto
b.
Mia kai
λ1 6= λ2 ,
h apìdeixh
èqei oloklhrwjeÐ.
4.1.1(eÔkolh)
Oloklhr¸ste pl rwc thn apìdeixh tou jewr matoc (elègxte thn teleutaÐa isìthta thc apìdeixhc) gia
tic peript¸seic (4.2) kai (4.3). 'Opwc diapist¸same prohgoumènwc h 'Ara èqoume to olokl rwma
sin nt
eÐnai idiodinusma tou probl matoc
x00 + λx = 0, x(0) = 0, x(π) = 0.
π
Z
(sin mt)(sin nt) dt = 0,
ìtan
m 6= n.
(cos mt)(cos nt) dt = 0,
ìtan
m 6= n.
(sin mt)(sin nt) dt = 0,
ìtan
m 6= n,
(cos mt)(cos nt) dt = 0,
ìtan
m 6= n,
0 Parìmoia èqoume
π
Z 0 kai telik èqoume
Z
π
Z
−π π −π
kai
π
Z
(cos mt)(sin nt) dt = 0. −π To parapnw je¸rhma isqÔei kai gia diaforetikèc sunoriakèc sunj kec. (deÐte to thn apìdeixh) ìti isqÔei gia tic
x0 (a) = x0 (b) = 0,
gia tic
Gia pardeigma, eÐnai eÔkolo na doÔme
x(a) = x0 (b) = 0
gia tic
x0 (a) = x(b) = 0.
MporoÔme, me bsh ta parapnw, na efarmìsoume to je¸rhma gia na broÔme tic timèc twn ex c oloklhrwmtwn
Z
π
Z (sin mt)(sin nt) dt = 0
−π ìtan
m 6= n,
π
(cos mt)(cos nt) dt = 0,
kai
−π
kai
Z
π
(sin mt)(cos nt) dt = 0, −π gia kje
m
kai
n.
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
106 4.1.4
F redholm
Enallaktikì je¸rhma tou
Ac asqolhjoÔme gia lÐgo me èna idiaÐtera qr simo je¸rhma twn diaforik¸n exis¸sewn. To je¸rhma autì isqÔei gia polÔ pio genik probl mata apì autì pou ja asqolhjoÔme emeÐc. H apl morf tou, pou ja parousisoume paraktw, ìmwc kalÔptei pl rwc tic angkec mac.
Je¸rhma 4.1.2
(enallaktikì je¸rhma tou
F redholm
∗
). 'Etsw
p
kai
q
suneqeÐc sunart seic sto
[a, b].
Tìte eÐte
to prìblhma
x00 + λx = 0,
x(a) = 0,
x(b) = 0
(4.4)
èqei mia mh-mhdenik lÔsh, eÐte to prìblhma
x00 + λx = f (t), èqei mia monadik lÔsh gia kje suneq sunrthsh
x(a) = 0,
x(b) = 0
(4.5)
f.
To je¸rhma isqÔei kai gia tic upìloipec (diaforetikoÔ tÔpou) sunoriakèc sunj kec pou èqoume sunant sei parapnw.
To je¸rhma ousiastik mac dhl¸nei ìti en to
monadik lÔsh gia kje dexiì mèloc. mhn èqei lÔsh gia kpoiec
4.1.5
f,
λ
den eÐnai idiotim , tìte to mh-omogenèc prìblhma (4.5) èqei
Mac dhl¸nei epÐshc ìti an h
λ
eÐnai idiotim tìte to prìblhma (4.5) mporeÐ na
kai epiprìsjeta, akìma kai en èqei lÔsh tìte aut den ja eÐnai monadik .
Ask seic
Upìdeixh: Gia ìlec tic paraktw ask seic shmei¸ste ìti oi
cos
√
λ (t − a)
kai
sin
√
λ (t − a)
eÐnai epÐshc lÔshc tou
omogenoÔc probl matoc.
4.1.2
UpologÐste ìlec tic idiotimèc kai ta idiodianÔsmata tou probl matoc
• x00 + λx = 0, x(a) = 0, x(b) = 0. • x00 + λx = 0, x0 (a) = 0, x0 (b) = 0. • x00 + λx = 0, x0 (a) = 0, x(b) = 0. • x00 + λx = 0, x(a) = x(b), x0 (a) = x0 (b). 4.1.3
Elègxte analutik thn perÐptwsh tou
0
0
x(π), x (−π) = x (π).
∗ P re
λ<0
gia to ex c prìblhma sunoriak¸n tim¸n
Eidikìtera deÐxte ìti den uprqoun arnhtikèc idiotimèc.
to ìnom tou apì ton Souhdì majhmatikì Erik Ivar F redholm (1866
1927).
x00 + λx = 0, x(−π) =
4.2. ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΕΙΡΕΣ 4.2
107
Trigwnometrikèc seirèc
4.2.1
Periodikèc sunart seic
H melèth tou probl matoc
x00 + ω02 x = f (t), ìpou
f (t)
(4.6)
eÐnai kpoia periodik sunrthsh ja mac d¸sei èna safèc kÐnhtro gia na melet soume tic seirèc
F ourier.
'Hdh èqoume lÔsei thn exÐswsh
x00 + ω02 x = F0 cos ω t. 'Enac trìpoc gia na lÔsoume thn (4.6) eÐnai na analÔsoume thn
(4.7)
f (t) san jroisma hmitìnwn (endeqomènwc kai sunhmitìn-
wn) kai katìpin na lÔsoume poll probl mata thc morf c (4.7).
Met arkeÐ na qrhsimopoi soume thn arq thc
upèrjeshc, gia na ajroÐsoume ìlec tic lÔseic pou p rame kai ètsi na apokt soume thn lÔsh thc (4.6). Prin proqwr soume parapèra, ac asqolhjoÔme gia lÐgo me merik jèmata twn periodik¸n sunart sewn. Lème ìti
P an isqÔei f (t) = f (t + P ) gia kje t. En suntomÐa ja lème ìti h f (t) eÐnai P -periodik sunrthsh eÐnai tautìqrona kai 2P -periodik , 3P -periodik kai oÔtw kaj' cos t kai sin t eÐnai 2π -periodik ìpwc bebaÐwc eÐnai kai oi cos kt kai sin kt gia kje akèraio
mia sunrthsh eÐnai periodik me perÐodo
P -periodik .
Shmei¸ste ìti mia
ex c. Gia pardeigma, oi arijmì
k.
Oi stajerèc sunart seic apoteloÔn akraÐa paradeÐgmata periodik¸n sunart sewn. EÐnai periodikèc wc proc
opoiad pote perÐodo (giatÐ?).
f (t) orismènh se kpoio disthma [−L, L] thn opoÐa epijumoÔme na epekteÐnoume 2L-periodik sunrthsh. MporoÔme na knoume thn epèktash aut orÐzontac mia nèa sunrthsh F (t) tètoia ¸ste gia t sto disthma [−L, L], F (t) = f (t). Gia t sto disthma [L, 3L], orÐzoume F (t) = f (t − 2L), gia t sto [−3L, −L], F (t) = f (t + 2L), kai oÔtw to kajex c. Ac jewr soume mia sunrthsh
periodik ètsi ¸ste na thn knoume
Pardeigma 4.2.1:
OrÐste thn
f (t) = 1−t2
sto disthma
[−1, 1] kai epekteÐnete thn periodik ètsi ¸ste na prete
mia 2-periodik sunrthsh. DeÐte to Sq ma 4.1. -3
-2
-1
0
1
2
3
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0
-0.5
-0.5 -3
-2
-1
0
1
2
3
Σχήμα 4.1: Περιοδική επέκταση της συνάρτησης 1 − t2 .
Prosoq !
H
f (t)
den tautÐzetai me thn epèktas thc.
llh perÐodo apì thn epèktas thc
4.2.1
OrÐste thn
f (t) = cos t
Gia pardeigma h
sto disthma
[−π/2, π/2].
mporeÐ na eÐnai epÐshc periodik me
π -periodik cos t.
Kataskeuste thn
grafik thc parstash. SugkrÐnete thn me thn grafik parstash thc
4.2.2
f (t)
F (t). epèktas thc kai knte thn
Eswterikì ginìmeno kai anlush idiodianusmtwn
Gia na analÔsoume to dinusma
~v
se sunduasmì dianusmtwn
w ~1
kai
~v = a1 w ~ 1 + a2 w ~ 2.
w ~2
orjog¸niwn metaxÔ touc èqoume
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
108 Ac upologÐsoume ènan tÔpo gia ta
a1
kai
a2 .
Pr¸ta ac upologÐsoume
h~v , w~1 i = ha1 w ~ 1 + a2 w ~ 2 , w~1 i = a1 hw ~ 1 , w~1 i + a2 hw ~ 2 , w~1 i = a1 hw ~ 1 , w~1 i. 'Ara,
a1 =
h~v , w~1 i . hw ~ 1 , w~1 i
a2 =
h~v , w~2 i . hw ~ 2 , w~2 i
Parìmoia èqoume
Pijan¸c na jumste ton parapnw tÔpo apì to mjhma tou LogismoÔ.
Pardeigma 4.2.2:
1 ~v = [ 23 ] san grammikì sunduasmì twn w~1 = −1 kai w ~2 = [ 11 ]. ta w ~ 1 kai w ~ 2 eÐnai orjog¸nia metaxÔ touc mia kai hw ~ 1, w ~ 2 i = 1(1) + (−1)1 = 0.
Gryte to
Xekin ste shmei¸nontac ìti
a1 =
Tìte
2(1) + 3(−1) h~v , w~1 i −1 = = . hw ~ 1 , w~1 i 1(1) + (−1)(−1) 2 a2 =
h~v , w~2 i 2+3 5 = = . hw ~ 2 , w~2 i 1+1 2
Hence
5 1 −1 1 2 + . = 3 2 −1 2 1 4.2.3
Trigwnometrikèc seirèc
T¸ra, antÐ na analÔsoume èna dinusma wc proc ta idiodianÔsmata enìc pÐnaka, ac analÔsoume mia sunrthsh wc proc tic idiosunart seic enìc probl matoc idiotim¸n. Sugkekrimèna, ac jewr soume to ex c prìblhma
x00 + λx = 0,
x(−π) = x(π),
tou opoÐou ta idiodianÔsmata xèroume ìti eÐnai 1, sunrthsh
f (t)
cos kt
kai
x0 (−π) = x0 (π)
sin kt.
Jèloume na parast soume mia
2π -periodik
wc ex c
∞
f (t) = H parapnw seir lègete seir
F ourier†
qrhsimopoi same thn idiosunrthsh na asqolhjoÔme mìnon me tic
cos kt
a0 X an cos nt + bn sin nt. + 2 n=1
trigwnometrik seir tou
kai
h f (t) , cos nt i.
def
Gia pardeigma, gia na broÔme to
1 π
Z
† Apì
kai sunep¸c
an
prèpei na up-
π
f (t)g(t) dt. −π
Qrhsimopoi¸ntac ton orismì autìn, blèpoume ìti oi idiosunart seic
sin kt
1 = cos 0t,
OrÐsoume loipìn to eswterikì ginìmeno wc ex c
h f (t) , g(t) i =
dianÔsmatoc), kai
Shmei¸ste ìti, gia diki mac eukolÐa,
sin kt.
Ac orÐsoume t¸ra to eswterikì ginìmeno sunart sewn. ologÐsoume to
f (t).
1 antÐ gia thn 1. MporoÔme bebaÐwc na jewr soume ìti 2
cos kt
(sumperilambanomènou tou stajeroÔ idio-
eÐnai, ìpwc apodeÐxame sthn prohgoÔmenh pargrafo, orjog¸niec me thn ex c ènnoia
h cos mt , cos nt i = 0
gia
m 6= n,
h sin mt , sin nt i = 0
gia
m 6= n,
h sin mt , cos nt i = 0
gia kje
m
kai
to ìnoma tou Gllou majhmatikoÔ Jean Baptiste Joseph F ourier (1768
n. 1830).
4.2. ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΕΙΡΕΣ
109
h cos nt , cos nt i = 1 (ektìc apì thn perÐptwsh n = 0) h 1 , 1 i = 2. Oi suntelestèc loipìn dÐnontai apì tic sqèseic
EÔkola diapist¸noume ìti stajer èqoume
an = bn = O parapnw tÔpoc isqÔei kai gia
n = 0,
h f (t) , cos nt i 1 = h cos nt , cos nt i π h f (t) , sin nt i 1 = h sin nt , sin nt i π
Z
kai
h sin nt , sin nt i = 1.
Gia thn
π
f (t) cos nt dt, Z
−π π
f (t) sin nt dt. −π
opìte èqoume
a0 =
1 π
Z
π
f (t) dt. −π
Ac elègxoume touc tÔpou pou p rame qrhsimopoi¸ntac tic idiìthtec orjogwniìthtac. Ac upojèsoume proc stigm ìti
∞
f (t) = Tìte gia
m≥1
a0 X + an cos nt + bn sin nt. 2 n=1
èqoume
h f (t) , cos mt i = =
∞ E Da X 0 an cos nt + bn sin nt , cos mt + 2 n=1 ∞ X a0 an h cos nt , cos mt i + bn h sin nt , cos mt i h 1 , cos mt i + 2 n=1
= am h cos mt , cos mt i. kai sunep¸c
4.2.2
am =
h f (t) , cos mt i . h cos mt , cos mt i
UpologÐste analutik ta
Pardeigma 4.2.3:
a0
kai
bm .
'Estw h sunrthsh
f (t) = t gia
t
sto disthma
(−π, π].
EpekteÐnete periodik thn
f (t)
kai gryte thn se morf seirc
aut eÐnai gnwst me to ìnoma prionwt . -5.0
-2.5
0.0
2.5
5.0
3
3
2
2
1
1
0
0
-1
-1
-2
-2
-3
-3 -5.0
-2.5
0.0
2.5
5.0
Σχήμα 4.2: Γραφική παράσταση της πριονωτής συνάρτησης.
F ourier.
H sunrthsh
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
110
H grafik parstash thc epektamènhc periodik c sunrthshc dÐnetai sto Sq ma 4.2 sthn prohgoÔmenh selÐda. Ac upologÐsoume t¸ra touc suntelestèc xekin¸ntac apì to
Z
1 π
a0 =
a0
π
t dt = 0. −π
Ja knoume suqn qr sh tou gegonìtoc ìti to olokl rwma miac peritt c sunrthshc se èna summetrikì disthma
ϕ(t)
eÐnai mhdèn. JumhjeÐte ìti lème ìti mia sunrthsh
t, sin t,
kai en prokeimènw
t cos mt
am = Ac upologÐsoume t¸ra ta
bm .
eÐnai peritt an
ϕ(−t) = −ϕ(t).
Gia pardeigma oi sunart seic
eÐnai ìlec perittèc.
1 π
π
Z
t cos mt dt = 0. −π
Ed¸ ja qrhsimopoi soume to gegonìc ìti to olokl rwma miac rtiac sunrthshc se
èna summetrikì disthma isoÔtai me to diplsio tou oloklhr¸matoc sto misì disthma. sunrthsh
ϕ(t)
eÐnai rtia an
JumhjeÐte ìti lème ìti mia
ϕ(−t) = ϕ(t). Gia pardeigma h t sin mt eÐnai rtia. Z 1 π bm = t sin mt dt π −π Z π 2 = t sin mt dt π 0 π Z π 2 −t cos mt 1 = cos mt dt + π m m 0 t=0 2 −π cos mπ = +0 π m 2 (−1)m+1 −2 cos mπ = = . m m
Qrhsimopoi same to gegonìc ìti
( cos mπ = (−1)
m
=
1 −1
an to an to
m m
,
eÐnai rtio
.
eÐnai perittì
'Ara oi seirèc eÐnai
f (t) =
∞ X 2 (−1)n+1 sin nt. n n=1
Ac gryoume tic 3 pr¸tec armonikèc twn seir¸n tou
f (t).
f (t) = 2 sin t − sin 2 t +
2 sin 3 t + · · · 3
H grafik parstash twn pr¸twn tri¸n aut¸n ìrwn twn seir¸n, mazÐ me aut twn pr¸twn 20 dÐdetai sto Sq ma 4.3 sthn epìmenh selÐda.
Pardeigma 4.2.4:
Na epektajeÐ periodik h sunrthsh
( 0 f (t) = π kai na grafjeÐ san seir
F ourier.
an an
−π < t ≤ 0, 0 < t ≤ π.
H en lìgw sunrthsh, kai oi parallagèc thc, emfanÐzetai suqn se pollèc
efarmogèc kai eÐnai gnwst me to ìnoma tetragwnikì kÔma. H grafik parstash thc epektamènh periodik c sunrthshc dÐnetai sto Sq ma 4.4 sthn paroÔsa selÐda. upologÐsoume t¸ra touc suntelestèc xekin¸ntac apì to
a0 =
1 π
Z
a0
π
f (t) dt = −π
1 π
π
Z
π dt = π. 0
Ac
4.2. ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΕΙΡΕΣ -5.0
-2.5
0.0
111
2.5
5.0
-5.0
-2.5
0.0
2.5
5.0
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
-3 -5.0
-2.5
0.0
2.5
-3
5.0
-5.0
-2.5
0.0
2.5
5.0
Σχήμα 4.3: Οι πρώτες 3 (αριστερό γράφημα) και οι πρώτες 20 (δεξιό γράφημα) αρμονικές της πριονωτής συνάρτησης. -5.0
-2.5
0.0
2.5
5.0
3
3
2
2
1
1
0
0
-5.0
-2.5
0.0
2.5
5.0
Σχήμα 4.4: Γραφική παράσταση της συνάρτησης του τετραγωνικού κύματος.
AkoloÔjwc,
am =
1 π
Z
π
f (t) cos mt dt = −π
1 π
Z
π
π cos mt dt = 0. 0
kai telik
bm =
1 π
Z
π
Z
−π π
f (t) sin mt dt
1 π sin mt dt π 0 π − cos mt = m t=0 =
1 − (−1)m 1 − cos πm = = = m m
(
2 m
an to
0
an to
m m
,
eÐnai perittì
.
eÐnai rtio
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
112 'Ara oi seirèc eÐnai
f (t) =
∞ X
π + 2
n=1
n
∞
π X 2 2 sin nt = + sin (2k − 1) t. n 2 2k − 1 k=1
perittì
Ac gryoume tic 3 pr¸tec armonikèc twn seir¸n tou
f (t) =
f (t).
2 π + 2 sin t + sin 3t + · · · 2 3
H grafik parstash twn pr¸twn tri¸n aut¸n ìrwn twn seir¸n, mazÐ me aut twn pr¸twn 20 dÐdetai sto Sq ma 4.5. -5.0
-2.5
0.0
2.5
5.0
-5.0
-2.5
0.0
2.5
5.0
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
-5.0
-2.5
0.0
2.5
5.0
-5.0
-2.5
0.0
2.5
5.0
Σχήμα 4.5: Οι πρώτες 3 (αριστερό γράφημα) και οι πρώτες 20 (δεξιό γράφημα) αρμονικές της συνάρτησης του τετραγωνικού κύματος.
Den asqolhj kame, oÔte ja asqolhjoÔme, me thn sÔgklish twn seir¸n pou upologÐsame.
Ac rÐxoume ìmwc mia
mati sto kat pìso aut exarttai apì endeqìmenec asunèqeiec. Ac estisoume sto shmeÐo asunèqeiac tou tetragwnikoÔ kÔmatoc kai ac knoume thn grafik parstash twn pr¸twn 100 armonik¸n sto Sq ma 4.6 sthn paroÔsa selÐda. Parathr ste ìti h seir apoteleÐ mia kal prosèggish thc sunrthshc makri apì ta shmeÐa asunèqeiac. To sflma (uper-ektÐmhsh) kont sto asuneqèc shmeÐo san fainìmeno tou
Gibbs.
t=π
den faÐnetai na elatt¸netai. H sumperifor aut eÐnai gnwst kai
H perioq ìpou to sflma eÐnai meglo ìmwc surrikn¸nesai ìso auxnoume touc ìrouc thc
seirc pou lambnoume upoyin mac.
4.2.4
4.2.3
Ask seic
EpekteÐnete periodik kai upologÐste tic seirèc twn sunart sewn
• f (t) = sin 5t + cos 3t • f (t) = |t| • f (t) = |t|3 ( −1 • f (t) = 1 • f (t) = t3 • f (t) = t2
an an
−π < t ≤ 0, 0 < t ≤ π.
f (t)
oi opoÐec orÐzontai sto
[−π, π]
wc ex c
4.2. ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΕΙΡΕΣ
1.75
113
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.50
3.25
3.25
3.00
3.00
2.75
2.75
1.75
2.00
2.25
2.50
2.75
3.00
3.25
Σχήμα 4.6: Η δράση του φαινομένου του Gibbs.
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
114 4.3 4.3.1
Epiprìsjeta jèmata seir¸n
2L-periodikèc
diaforetikèc periìdouc. loipìn ìti èqoume mia
sunart seic
F ourier
'Eqoume asqolhjeÐ me seirèc
2π -periodikèc
gia
sunart seic.
2L-periodik f (t)
L
sunrthsh (to
onomzetai hmi-perÐodoc). 'Estw
2π -periodik .
Ac asqolhjoÔme t¸ra kai me sunart seic me
Mia tètoia epèktash eÐnai idiaÐtera eÔkolh kai apaiteÐ apl mia allag metablht¸n.
g(s) = f eÐnai
F ourier
π L
s=
t,
'Estw
tìte h sunrthsh
L s π
Prèpei bebaÐwc na allxoume kai ta hmÐtona kai ta sunhmÐtona wc ex c.
∞
f (t) =
En allxoume thn metablht
t
se
s
nπ a0 X nπ + t + bn sin t. an cos 2 L L n=1
blèpoume ìti
∞
g(s) = 'Ara mporoÔme na upologÐsoume ta
an
kai
bn
a0 X + an cos ns + bn sin ns. 2 n=1
ìpwc kai prohgoumènwc. Grfoume loipìn ta oloklhr¸mata kai allzoume
thn metablht mac epistrèfontac ètsi pÐsw sto
a0 = an = bn =
π
1 π
Z
1 π
Z
1 π
t.
g(s) ds = −π π
1 L
Z
L
f (t) dt, −L
g(s) cos ns ds = −π Z π
g(s) sin ns ds = −π
1 L
Z
1 L
Z
L
f (t) cos −L L
f (t) sin −L
nπ t dt, L
nπ t dt. L π F ourier genik¸n 2L-
Oi dÔo sunart seic me tic opoÐec asqoloÔntai, lìgw thc aplìthtac touc, ta paradeÐgmat mac èqoun hmi-perÐodo kai 1. Na tonÐsoume ìti apl apaiteÐtai allag metablht¸n kai tÐpote llo. En èqoume katano sei tic seirèc gia
2π -periodikèc
sunart seic den ja sunant soume kanèna apolÔtwc prìblhma me thn perÐptwsh twn
periodik¸n sunart sewn.
Pardeigma 4.3.1:
'Estw ìti h
f (t) = |t|
gia
−1 < t < 1,
èqei epektajeÐ periodik. H grafik parstash thc periodik c aut c epèktashc dÐdetai sto Sq ma 4.7 sthn epìmenh selÐda. UpologÐste thn seir
F ourier thc. P f (t) = a20 + ∞ n=1 an cos nπt + bn sin nπt.
Jèloume na proume
Gia
n≥1
èqoume ìti h
|t| cos nπt
sunep¸c
Z
1
an =
f (t) cos nπt dt −1
Z
1
t cos nπt dt
=2 0
1 Z 1 t 1 sin nπt −2 sin nπt dt nπ nπ 0 t=0 ( i1 2 (−1)n − 1 0 1 h = 0 + 2 2 cos nπt = = −4 n π n2 π 2 t=0 n2 π 2
=2
an to an to
n n
,
eÐnai rtio
.
eÐnai perittì
eÐnai rtia kai
4.3. ΕΠΙΠΡΟΣΘΕΤΑ ΘΕΜΑΤΑ ΣΕΙΡΩΝ F OU RIER -2
-1
115
0
1
2
1.00
1.00
0.75
0.75
0.50
0.50
0.25
0.25
0.00
0.00
-2
-1
0
1
2
Σχήμα 4.7: Περιοδική επέκταση της συνάρτησης f (t).
O
a0
upologÐzetai eÔkola wc ex c
Z
1
|t| dt = 1.
a0 = −1 Tèloc ac upologÐsoume ta
bn .
|t| sin nπt
ParathroÔme ìti h
eÐnai peritt kai sunep¸c èqoume
1
Z bn =
f (t) sin nπt dt = 0. −1
'Ara h seir pou yqnoume eÐnai h
f (t) =
1 + 2
−4 cos nπt. n2 π 2
X n=1
perittìc
n
Ac gryoume analutik merikoÔc apì touc pr¸touc ìrouc thc seirc. Sugkekrimèna, ac asqolhjoÔme me tic treic pr¸tec armonikèc.
f (t) ≈
1 4 4 − 2 cos πt − 2 cos 3πt − · · · 2 π 9π
H grafik parstash thc parapnw seirc ìpwc kai aut c pou apoteleÐtai apì tic pr¸thc 20 armonikèc dÐnetai sto Sq ma 4.8 sthn epìmenh selÐda.
•
AxÐzei na parathr soume to pìso eÔkola proseggÐzei h seir thn pragmatik
sunrthsh kai thn apousÐa tou fainomènou tou
4.3.2
4.3.1
Gibbs
mia kai den uprqoun shmeÐa asunèqeiac.
Ask seic
'Estw ìti h
( f (t) = èqei epektajeÐ periodik. a) UpologÐste thn seir
0 t
−1 < t < 0, 0 ≤ t < 1,
if if
F ourier
thc
f (t).
b) Gryte thn seir analutik mèqri kai thn
3h
thc armonik .
4.3.2
'Estw ìti h
( f (t) = èqei epektajeÐ periodik. a) UpologÐste thn seir thc armonik .
−t t2
if if
F ourier
−1 < t < 0, 0 ≤ t < 1,
thc
f (t).
b) Gryte thn seir analutik mèqri kai thn
3h
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
116 -2
-1
0
1
2
-2
-1
0
1
2
1.00
1.00
1.00
1.00
0.75
0.75
0.75
0.75
0.50
0.50
0.50
0.50
0.25
0.25
0.25
0.25
0.00
0.00
0.00
0.00
-2
-1
0
1
2
-2
-1
0
1
2
Σχήμα 4.8: Σειρές F ourier της f (t) με τις 3 πρώτες αρμονικές (αριστερά) και τις 20 πρώτες αρμονικές (δεξιά).
4.3.3
'Estw ìti h
( f (t) = èqei epektajeÐ periodik. a) UpologÐste thn seir thc armonik .
−t 10 t 10
if if
F ourier
−10 < t < 0, 0 ≤ t < 10, thc
f (t).
b) Gryte thn seir analutik mèqri kai thn
3h
4.4. ΣΕΙΡΕΣ ΗΜΙΤΟΝΩΝ ΚΑΙ ΣΥΝΗΜΙΤΟΝΩΝ 4.4
117
Seirèc hmitìnwn kai sunhmitìnwn
4.4.1
Perittèc kai rtiec periodikèc sunart seic
Ja parathr sate Ðswc ìti oi perittèc sunart seic den èqoun ìrouc sunhmitìnou sta anaptÔgmata touc se seirèc
F ourier
oi rtiec den èqoun ìrouc hmitìnwn. Kti tètoio den eÐnai tuqaÐo ìpwc ja doÔme paraktw.
JumhjeÐte ìti h pardeigma, h
cos nt
f (t)
eÐnai mia peritt an
eÐnai rtia kai h
kai peritt gia perittèc timèc tou
4.4.1
h(t)
Mia sunrthsh
f (t) tk
eÐnai rtia an
f (−t) = f (t).
Gia
eÐnai rtia gia rtiec timèc tou
k
f (t)
kai
g(t)
kai orÐste ton ginìmenì touc
h(t) = f (t)g(t). a) En kai oi dÔo eÐnai h(t) peritt rtia? c) En kai oi
peritt ? b) En eÐnai mia peritt kai h llh rtia, eÐnai h
dÔo eÐnai rtiec, eÐnai kai h An h
f (−t) = −f (t).
eÐnai peritt . Parìmoia h sunrthsh
k.
Jewr ste dÔo sunart seic
perittèc, eÐnai kai h
sin nt
h(t)
rtia?
f (t) eÐnai kai h g(t) eÐnai den mporoÔme na apofanjoÔme gia to en h f (t) + g(t) eÐnai kai aut rtia. Mlista, F ourier miac opoiasd pote sunrthshc apoteleÐte apì to jroisma miac peritt c sunrthshc
to anptugma miac seirc
(oi ìroi hmitìnwn) kai miac rtiac sunrthshc (oi ìroi sunhmitìnwn). Sthn pargrafo aut ja asqolhjoÔme mìnon me sunart seic pou eÐnai eÐte perittèc rtiec. orÐsame
2L-periodikèc
epektseic miac sunrthshc orismènhc se èna disthma thc morf c
endiafèrei h sumperifor thc sunrthshc mìno sto disthma
[0, L].
[−L, L].
Prohgoumènwc
Arketèc forèc mac
En h en lìgw sunrthsh eÐnai peritt ( rtia)
tìte den ja uprqoun oi ìroi twn hmitìnwn ( antÐstoiqa twn sunhmitìnwn). 'Estw loipìn ìti h sunrthsh sto disthma
f (t)
eÐnai orismènh sto disthma
[0, L].
MporoÔme na orÐsoume tic ex c sunart seic
(−L, L] ori
(
ori
(
Fperitt (t) = Frtia (t) = kai epekteÐnoume tic
f (t) −f (−t) f (t) f (−t)
0 ≤ t ≤ L, −L < t < 0,
an an an an
0 ≤ t ≤ L, −L < t < 0.
Fperitt (t) kai Frtia (t) ètsi ¸ste na eÐnai 2L-periodik . Tìte h Fperitt (t) f (t), kai h Frtia (t) onomzetai rtia periodik epèktash thc f .
onomzetai peritt
periodik epèktash thc
4.4.2
Epibebai¸ste ìti h
Pardeigma 4.4.1:
Fperitt (t)
eÐnai peritt kai h
'Estw h sunrthsh
Frtia (t)
f (t) = t(1 − t)
rtia.
orismènh sto disthma
tic grafikèc parastseic twn peritt¸n kai rtiwn epektsewn thc -2
-1
0
1
2
-2
[0, 1].
To sq ma 4.9 perilambnei
f (t). -1
0
1
2
0.3
0.3
0.3
0.3
0.2
0.2
0.2
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.1
-0.1
-0.1
-0.1
-0.2
-0.2
-0.2
-0.2
-0.3
-0.3
-0.3 -2
-1
0
1
2
-0.3 -2
-1
0
1
Σχήμα 4.9: Περιττή και άρτια 2-περιοδική επέκταση της f (t) = t(1 − t), 0 ≤ t ≤ 1.
2
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
118 4.4.2 'Estw ìti
Seirèc hmitìnwn kai sunhmitìnwn
f (t)
eÐnai mia peritt
2L-periodik sunrthsh. An upologÐsoume to anptugma an (sumperilambanomènou kai tou a0 ) èqoume
thc
f (t)
se seir
F ourier,
upologÐzontac ìlouc touc suntelestèc
an =
1 L
L
Z
f (t) cos −L
nπ t dt = 0. L
Den uprqoun bebaÐwc ìroi sunhmitìnwn. To olokl rwma eÐnai mhdèn epeid h
f (t) cos nπL t
eÐnai peritt sunrthsh
(ginìmeno peritt c me rtia sunrthsh eÐnai peritt sunrthsh) kai to olokl rwma miac peritt c sunrthshc se èna summetrikì disthma eÐnai pntote mhdèn. disthma
[−L, L]
Epiprìsjeta, to olokl rwma mia rtiac sunrthshc se èna summetrikì
eÐnai to diplsio tou oloklhr¸matoc thc sunrthshc sto disthma
[0, L].
H sunrthsh
f (t) sin
nπ L
t
eÐnai peritt mia kai eÐnai ginìmeno dÔo peritt¸n sunart sewn.
bn =
1 L
MporoÔme t¸ra na gryoume thn seir
L
Z
f (t) sin −L
F ourier
nπ 2 t dt = L L f (t)
thc
∞ X
f (t) eÐnai bn = 0 kai ìti
Parìmoia, an h
peritt
2L-periodik an =
O parapnw tÔpoc isqÔei kai gia
n=0
2 L
F ourier
0
nπ t dt. L
nπ t. L
bn sin
sunrthsh gia akrib¸c touc Ðdiouc me touc parapnw lìgouc
L
Z
f (t) cos 0
nπ t dt. L
opìte kai èqoume
2 L
a0 = 'Ara to anptugma se seir
f (t) sin
wc ex c
n=1
brÐskoume ìti
L
Z
L
Z
f (t) dt. 0
eÐnai
∞ a0 X nπ t. an cos 2 n=1 L
Je¸rhma 4.4.1.
En
ex c anptugma se seir
f (t) eÐnai F ourier.
mia tmhmatik suneq c sto
Fperitt (t) =
∞ X
[0, L]
bn sin
n=1
sunrthsh tìte h peritt thc epèktash èqei to
nπ t, L
ìpou
bn = H rtia epèktash thc
f (t)
2 L
L
Z
f (t) sin 0
èqei to ex c anptugma se seir
nπ t dt. L
F ourier ∞
Frtia (t) =
a0 X nπ + an cos t, 2 L n=1
ìpou
an =
2 L
L
Z
f (t) cos 0
nπ t dt. L
4.4. ΣΕΙΡΕΣ ΗΜΙΤΟΝΩΝ ΚΑΙ ΣΥΝΗΜΙΤΟΝΩΝ Pardeigma 4.4.2:
f (t) = t2
gia
119 F ourier
UpologÐste to anptugma se seir
thc rtiac periodik c epèktashc thc sunrthshc
0 ≤ t ≤ π.
'Eqoume
∞
a0 X + an cos nt, 2 n=1
f (t) = ìpou
a0 =
2 π
π
Z
t2 dt = 0
2π 2 , 3
kai
π Z π 4 2 21 sin nt − t sin nt dt t π n nπ 0 0 0 Z π iπ 4(−1)n 4 4 h = 2 t cos nt + 2 cos nt dt = . n π n π 0 n2 0
an =
2 π
Z
π
t2 cos nt dt =
Ac gryoume analutik merikoÔc ìrouc thc seirc
4 π2 − 4 cos t + cos 2t − cos 3t + · · · 3 9 4.4.3
Efarmogèc
'Opwc dh anafèrame oi seirèc
F ourier
eÐnai sundedemènec me ta probl mata sunoriak¸n tim¸n pou melet same
prohgoumènwc. Ac doÔme to pwc sundèontai ìmwc me perissìterh lÐgh leptomèreia. Jewr ste to paraktw prìblhma sunoriak¸n tim¸n gia
0 < t < L,
x00 (t) + λ x(t) = f (t), kai tic ex c sunoriakèc sunj kec
Dirichlet x(0) = 0, x(L) = 0. Qrhsimopoi¸ntac to λ den eÐnai idiotim tou antÐstoiqou
(Je¸rhma 4.1.2 sth selÐda 106) shmei¸noume ìti en to tìte to parapnw prìblhma èqei monadik lÔsh. parapnw prìblhma idiotim¸n eÐnai oi sunart seic thn
f (t)
se seir
F ourier.
Grfoume kai to
je¸rhma tou
F redholm
omogenoÔc probl matoc,
Shmei¸ste epÐshc ìti oi idiosunart seic pou antistoiqoÔn sto
sin
nπ t. 'Ara, gia na upologÐsoume thn lÔsh, pr¸ta anaptÔsoume L
x san anptugma seir¸n hmitìnwn. BebaÐwc to en lìgw anptugma F ourier touc opoÐouc fusik en upologÐsoume kai antikatast soume
sumperilambnei gnwstouc suntelestèc autoÔc sto anptugma tìte ja èqoume to to anptugma thc
x
x, dhlad ja èqoume thn lÔsh.
Gia na katafèroume to parapnw ac antikatast soume
sthn diaforik exÐswsh kai ja lÔsoume.
Sthn perÐptwsh twn sunoriak¸n sunjhk¸n
N eumann x0 (0) = 0, x0 (L) = 0 akoloujoÔme thn parapnw diadikasÐa
qrhsimopoi¸ntac ìmwc t¸ra seirèc sunhmitìnou. Se kje perÐptwsh o pio katllhloc trìpoc gia na katalboume tic mejìdouc autèc eÐnai efarmìzontac tec se paradeÐgmata.
Pardeigma 4.4.3:
Jewr ste to prìblhma sunoriak¸n tim¸n gia
0 < t < 1,
x00 (t) + 2x(t) = f (t), f (t) = t gia 0 < t < 1. Jèloume na broÔme mia lÔsh x pou na x(0) = 0, x(1) = 0. Ac anaptÔxoume thn f (t) se seir hmitìnwn ìpou
f (t) =
∞ X
ikanopoieÐ tic ex c sunoriakèc sunj kec
cn sin nπt,
n=1 ìpou
Z cn = 2
1
t sin nπt dt = 0
Ac gryoume kai thn
x(t)
2 (−1)n+1 . nπ
wc ex c
x(t) =
∞ X n=1
bn sin nπt.
Dirichlet
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
120 Antikajist¸ntac sthn exÐswsh èqoume
∞ X
x00 (t) + 2x(t) =
n=1 ∞ X
=
∞ X
−bn n2 π 2 sin nπt + 2
bn sin nπt
n=1
bn (2 − n2 π 2 ) sin nπt
n=1
= f (t) =
∞ X 2 (−1)n+1 sin nπt. nπ n=1
Sunep¸c,
bn (2 − n2 π 2 ) =
2 (−1)n+1 nπ
or
bn =
2 (−1)n+1 . nπ(2 − n2 π 2 ) F ourier
'Eqoume loipìn upologÐsei thn lÔsh san anptugma seirc
x(t) =
∞ X n=1
Pardeigma 4.4.4:
2 (−1)n+1 sin nπt. nπ (2 − n2 π 2 )
MporoÔme na antimetwpÐsoume sunj kec
soume thn Ðdia exÐswsh gia
N eumann
me ton Ðdio ousiastik trìpo. Ac jewr -
0 < t < 1, x00 (t) + 2x(t) = f (t),
ìpou
f (t) = t
gia
Ac gryoume thn
0 < t < 1. Aut thn for ja èqoume tic f (t) san anptugma seirc sunhmitìnwn
ex c sunoriakèc sunj kec
N eumann x0 (0) = 0, x0 (1) = 0.
∞
f (t) =
c0 X + cn cos nπt, 2 n=1
ìpou
1
Z c0 = 2
t dt = 1, 0
kai
1
Z cn = 2 0 Ac gryoume kai thn
x(t)
2((−1)n − 1) t cos nπt dt = = π 2 n2
(
−4 π 2 n2
gia
0
gia
n n
,
perittì
.
rtio
san anptugma seirc sunhmitìnwn
∞
x(t) =
a0 X + an cos nπt. 2 n=1
Antikajist¸ntac sthn exÐswsh èqoume
x00 (t) + 2x(t) =
∞ h X
∞ h i i X −an n2 π 2 cos nπt + a0 + 2 an cos nπt
n=1
= a0 +
n=1 ∞ X
an (2 − n2 π 2 ) cos nπt
n=1
= f (t) =
∞ X
1 + 2
n=1
n
perittì
−2 cos nπt. π 2 n2
4.4. ΣΕΙΡΕΣ ΗΜΙΤΟΝΩΝ ΚΑΙ ΣΥΝΗΜΙΤΟΝΩΝ 'Ara,
1 , 2
a0 =
an = 0
gia
n
n
rtio kai gia
121
n ≥ 1)
perittì (
an (2 − n2 π 2 ) =
−4 π 2 n2
an =
−4 . n2 π 2 (2 − n2 π 2 ) F ourier
'Eqoume loipìn upologÐsei thn lÔsh san anptugma seir¸n
x(t) =
∞ X n=1 n odd
4.4.4
4.4.3
4.4.4
'Estw h sunrthsh
f.
gia
gia
orismènh gia
0 ≤ t ≤ 1.
a) D¸ste thn grafik parstash thc rtiac
b) D¸ste thn grafik parstash thc rtiac periodik c epèktashc thc
f.
F ourier gia thn rtia kai gia thn peritt periodik epèktash thc sunrthsh-
0 ≤ t ≤ 1.
UpologÐste ta anaptÔgmata seir¸n
f (t) = t
4.4.6
f (t) = (t − 1)2
UpologÐste ta anaptÔgmata seir¸n
f (t) = (t − 1)2
4.4.5 c
−4 cos nπt. n2 π 2 (2 − n2 π 2 )
Ask seic
periodik c epèktashc thc
c
wc ex c
F ourier gia thn rtia kai gia thn peritt periodik epèktash thc sunrthsh-
0 ≤ t ≤ π.
UpologÐste to anptugma seir¸n
F ourier
gia thn rtia periodik epèktash thc sunrthshc
f (t) = sin t
gia
0 ≤ t ≤ π. 4.4.7
ìpou
UpologÐste thn lÔsh thc exÐswshc
x00 (t) + 4x(t) = f (t),
f (t) = 1
gia
0 < t < 1 h opoÐa ikanopoieÐ a) tic ex c N eumann x0 (0) = 0, x0 (1) = 0.
Dirichlet x(0) = 0, x(1) = 0.
sunoriakèc sunj kec
b) tic
ex c sunoriakèc sunj kec
4.4.8
ìpou
UpologÐste thn lÔsh thc exÐswshc
x00 (t) + 9x(t) = f (t),
f (t) = sin 2πt
sunoriakèc sunj kec
4.4.9
0 < t < 1. a) tic ex c sunoriakèc N eumann x0 (0) = 0, x0 (1) = 0.
gia
sunj kec
Dirichlet x(0) = 0, x(1) = 0.
b) tic ex c
'Estw ìti
f (t) =
ìpou
sunart sei
x00 (t) + 3x(t) = f (t), P∞
n=1 bn sin nπt. twn ìrwn bn .
D¸ste to anptugma se seir
x(0) = 0, F ourier
x(1) = 0, thc lÔshc
x(t),
ìpou oi suntelestèc na dÐnontai
ΚΕΦΑΛΑΙΟ 4. ΣΕΙΡΕΣ F OU RIER ΚΑΙ ΜΔΕ
122 4.5
MDE, qwrismìc metablht¸n, kai h exÐswsh jermìthtac
Mia exÐswsh lègetai merik diaforik exÐswsh MDE en perilambnei merikèc parag¸gouc wc proc perissìterec
‡
apì mia anexrthtec metablhtèc . H epÐlush MDE apoteleÐ Ðswc thn pio shmantik kai basik efarmog twn seir¸n
F ourier. Mia MDE lègetai grammik an h anexrthth metablht kai oi pargwgoÐ thc den emfanÐzontai se kpoia dÔnamh (megalÔterh tou 1) oÔte san ìrisma kpoiac sunrthshc.
Ja asqolhjoÔme mìno me grammikèc MDE. MazÐ me mia
MDE, sun jwc orÐzoume kai kpoiec sunoriakèc sunj kec, me tic opoÐec kajorÐzoume thn tim thc lÔshc /kai thc parag¸gou thc sto sÔnoro enìc qwrÐou. Epiprìsjeta, enallaktik, mporeÐ na orÐsoume kpoiec arqikèc sunj kec me tic opoÐec kajorÐzoume thn tim thc lÔshc /kai thc parag¸gou thc se kpoia qronik stigm thn opoÐa jewroÔme arqik .
Merikèc forèc oi dÔo parapnw tÔpoi sunjhk¸n sumplèkontai kai tìte lème ìti èqoume genik pleurikèc
sunj kec. Ja melet soume treic tÔpouc merik¸n diaforik¸n exis¸sewn, h kje mia apì tic opoÐec eÐnai antiproswpeutik miac genikìterhc klshc diaforik¸n exis¸sewn.
Pr¸ta ja melet soume thn exÐswsh thc jermìthtac, h opoÐa eÐnai
èna pardeigma parabolik c MDE. Katìpin ja melet soume thn exÐswsh tou kÔmatoc, h opoÐa eÐnai èna pardeigma uperbolik c MDE. Tèloc ja melet soume thn exÐswsh tou
Laplace,
h opoÐa eÐnai èna pardeigma elleiptik c MDE.
H sumperifor kai h praktik epÐlushc kajemic apo tic parapnw exis¸seic eÐnai antiproswpeutikèc ìlhc thc klshc twn exis¸sewn sthn opoÐa an koun.
4.5.1
Jermìthta se èna monwmèno kal¸dio
Ac melet soume pr¸ta thn exÐswsh thc jermìthtac 'Estw ìti èqoume èna kal¸dio ( mia lept metallik rbdo) h opoÐa eÐnai monwmènh pantoÔ ektìc apì ta dÔo kra thc. 'Estw ìti me ìti me
t
x
sumbolÐsoume thn jèsh pnw sthn rbdo kai
sumbolÐzoume ton qrìno. DeÐte to Sq ma 4.10.
jermokrasÐa u
0
L
mìnwsh
x
Σχήμα 4.10: Μονωμένο καλώδιο.
Ac sumbolÐsoume t¸ra me
u(x, t)
thn jermokrasÐa tou kalwdÐou sto shmeÐo
x
thn qronik stigm
t.
H exÐswsh
pou dièpei to sÔsthma autì onomzetai mono-distath exÐswsh jermìthtac:
∂u ∂2u = k 2, ∂t ∂x ìpou
k>0
eÐnai mia stajer.
kaiBibliografÐaBibliografÐa
‡ EÐnai, kat thn gn¸mh mou polÔ pio orjì, all dustuq¸c kajìlou sunhjismèno oi exis¸seic autèc na lègontai exis¸seic me merikèc parag¸gouc
BibliografÐa [BM] Paul W. Berg kai James L. McGregor, Elementary Partial Differential Equations, Holden-Day, San Francisco, CA, 1966. [BD] William E. Boyce kai Richard C. DiPrima Differential Equations and Boundary Value Problems, 9th edition, Laurie Rosatone, 2009. [EP]
C.H. Edwards kai D.E. Penney, Differential Equations kai Boundary Value Problems: Computing and Modeling, 4th edition, Prentice Hall, 2008.
[F]
Stanley J. Farlow, An Introduction to Differential Equations and Their Applications, McGraw-Hill, Inc., Princeton, NJ, 1994.
[EP]
C.H. Edwards kai D.E. Penney, Differential Equations kai Boundary Value Problems: Computing and Modeling, 4th edition, Prentice Hall, 2008.
[I]
E.L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New York, NY, 1956.
123
124
ΒΙΒΛΙΟΓΡΑΦΙΑ
Euret rio rtia periodik epèktash, 117
diaqwrÐsimh, 19
rtia sunrthsh, 110, 117
dunamik apìsbesh, 84
èmmesh lÔsh, 20 Ôparxh kai monadikìthta, 16, 36
eikìna fshc, 32
Ôparxhc kai monadikìthtac, 42
ekjetikì enìc pÐnaka, 88
MDE, 6
ekjetikì pÐnaka, 88 eleÔjerh kÐnhsh, 46
aìristo olokl rwma, 10
elleiptik c MDE, 122
algebrik pollaplìthta, 85
elleiptikì (dianusmatikì pedÐo), 75
anlush idiodianusmtwn, 99
enallaktikì je¸rhma tou
analogoÔsa omogen c exÐswsh, 52
F redholm
apl perÐptwsh, 106
anexrthth metablht , 5
epekteÐnoume periodik, 107
antÐstoiqo idiodinusma, 103
epitqunsh, 12
antipargwgoc, 10
eswterikì ginìmeno sunart sewn, 108
apìstash, 12
eustajèc krÐsimo shmeÐo, 31
apl armonik kÐnhsh, 48
eustaj periodik lÔsh, 60
aprosdiìristoi suntelestèc, 52
eustaj c kìmboc, 74
Bernoulli, 28 Chebychev 1hc txhc, 37 ExÐswsh Hermite 2hc txhc, 37
gia sust mata, 83
exÐswsh
sust mata, 97
exÐswsh
sust mata deÔterhc txhc, 99 arqikèc sunj kec, 7
exÐswsh thc jermìthtac, 122
arqikèc sunj kec miac MDE, 122
exÐswsh tou
asjen c pÐnakac, 85
exÐswsh tou
asjen¸c fjÐnon sÔsthma, 50
exÐswsh tou kÔmatoc, 122
astajèc krÐsimo shmeÐo, 31
exanagkasmènec talant¸seic, 83
astaj c kìmboc, 74
exanagkasmènh kÐnhsh, 46, 49
atèleia, 85
exarthmènh metablht , 5
atel c idiotim , 85
exis¸seic
autìnomh exÐswsh, 31
exis¸seic
Euler, 41 Laplace, 122
Cauchy − Euler, Euler, 37
37
autìnomo sÔsthma, 65 fainìmeno tou
Gibbs,
112
deÔtero nìmo tou NeÔtwna, 46, 47, 64
fantastikì mèroc, 40
deÔteroc nìmoc tou NeÔtwna, 78
fusikèc suqnìthtec, 80
digramma fshc, 32
fusik (gwniak ) suqnìthta, 48
dinusma metatìpishc, 78
fusik suqnìthta, 57
dinusma sunart sewn, 67
fusik suqnìthta suntonismoÔ, 60
diaforik exÐswsh, 5
fusikì pltoc suntonismoÔ, 60
diaforik exÐswsh deÔterhc txhc, 8
fusikìc suntonismìc, 58, 60
diaforik c exÐswshc pr¸thc txhc, 5
fusikoÐ trìpoi talntwshc, 80
diag¸nioc pÐnakac ekjetikì pÐnaka enìc, 89
genik lÔsh, 7
diagwnopoÐhsh, 90
genikeumèna idiodianÔsmata, 86, 87
diakÔmansh twn paramètrwn, 54
gewmetrik pollaplìthta, 85
dianusmatikì pedÐo, 65
grammik anexrthtec, 36, 42
125
126
ΕΥΡΕΤΗΡΙΟ
grammik exarthmènec, 42
migadikèc rÐzec, 40
grammikèc exis¸seic, 23
migadikìc arijmìc, 39
grammikèc exis¸seic pr¸thc txhc, 23
mono-distath exÐswsh jermìthtac, 122
grammik exÐswsh, 35
montèlo ekjetik c aÔxhshc, 7
grammik MDE, 122
morf
Leibniz ,
19
grammik c diaforik c exÐswshc deÔterhc txhc, 35 grammikì sÔsthma pr¸thc txhc, 65
nìmo tou Qouk, 46
grammikì sÔsthma SDE pr¸thc txhc, 67
Nìmoc didoshc thc jermìthtac tou NeÔtwna, 26
grammikìc telest c, 52
nìmoc thc didoshc tou NeÔtwna, 31
gwniak suqnìthta, 48
nìmoc tou
hmi-perÐodoc, 114
oloklhrwtikìc pargontac, 23
Hooke,
78
omogenèc sÔsthma, 67 idizousec lÔseic, 20
omogen grammik exÐswsh, 35
idiodinusma, 70, 103
Omogen c exÐswsh, 29
idiotim , 70
orjog¸niec
idiotim enìc probl matoc sunoriak¸n tim¸n, 103
sunart seic, 105, 108
isqur fjÐnwn, 49 pÐnakac akamyÐac, 78 je¸rhma tou
P icard,
16
pÐnakac mzac, 78
jemeli¸dhc pÐnakac, 68
pÐnakac sunart sewn, 67
jemeli¸dhc pÐnakac epÐlushc, 68
parstash fsewn, 65
jemeli¸dhc pÐnakac lÔsewn, 88
parabolik c MDE, 122 paragontopoÐhsh idiodianusmtwn, 95
kèntro, 76
pedÐo kateujÔnsewn, 14
kÐnhsh me apìsbesh, 46
pedÐou dieujÔnsewn, 65
kÐnhsh qwrÐc apìsbesh, 46
perÐodoc, 48
kÐnhsh qwrÐc ustèrhsh
periodik , 107
sust mata, 78 kÔklwma
RLC ,
46
peritt periodik epèktash, 117 peritt sunrthsh, 110, 117
kampÔlh epÐlushc, 65
phg , 74
katabìjra, 74
pltoc, 48
katanlwsh, 32
pl rhc idiotim , 85
krÐsima fjÐnon, 50
pleurikèc sunj kec miac MDE, 122
krÐsimo shmeÐo, 31
pollaplìthta, 44 pollaplìthta miac idiotim c, 85
lÔsh, 5 lÔsh isorropÐac, 31 logistik exÐswsh, 31 logistik exÐswsh me katanlwsh, 32
mèjodoc elttwshc thc txhc, 37
pollaplasiasmìc migadik¸n arijm¸n, 39 prìblhma sunoriak¸n tim¸n, 102 pragmatikì mèroc, 40 prionwt , 109
qarakthristik exÐswsh, 38
mèjodoc oloklhrwtikoÔ pargonta, 23 mèjodoc tou oloklhrwtikoÔ pargonta sust mata, 93
rÐzec pollaplìthtac, 43 realistik probl mata, 6
majhmatik lÔsh, 6 majhmatikì montèlo, 6
sÔsthma diaforik¸n exis¸sewn, 63
MDE, 122
sagmatikì shmeÐo, 74
merikèc diaforikèc exis¸seic, 6
SDE, 6
merik diaforik exÐswsh, 122
seir
metabatik lÔsh, 60
speiroeid c katabìjra, 76
metablhtèc parmetroi
speiroeid c phg , 76
sust mata, 98
F ourier,
108
stajeroÐ suntelestèc, 38
metatìpish fshc, 48
stajeroÔc suntelestèc, 67
mh-exanagkasmènh kÐnhsh, 46
sugkekrimènh lÔsh, 7, 52
ΕΥΡΕΤΗΡΙΟ sumbolismì
127
Leibniz ,
11
sumplhrwmatik lÔsh, 52 sun jeic diaforikèc exis¸seic, 6 sunoriakèc sunj kec
Dirichlet,
119
sunoriakèc sunj kec miac MDE, 122 sunoriak¸n sunjhk¸n
N eumann,
suntonismìc, 58, 84 superposition, 42 sust mata tri¸n swmatidÐwn, 78 suzug migadikì, 72
tÔpo tou
Euler,
40
tÔpo tou triwnÔmou, 38 taqÔthta, 12 tetrgwno kÔma, 61 tetragwnikì kÔma, 110 trigwnometrik seir, 108 troqi, 65
upèrjesh, 35, 68 uperbolik c MDE, 122
119