;_jljZgJZkk_e F:L?F:LBQ?KD:YEH=BD:HKGH<:GG:YG:L?HJBBLBIH< Hli_j_\h^qbdZIj_^eZ]Z_fZy\jmkkdhfi_j_\h^_jZ[hlZ;JZkk_eZ³Mathematical Logic as based on the Theory of Types´\i_j\u_him[ebdh\ZgZ\]\American Journal of Mathematicsbkl_oihj g_h^ghdjZlgh i_j_ba^Z\ZeZkv >ey ^Zggh]h ba^Zgby i_j_\h^ k^_eZg ih k[hjgbdm: Russell B. Logic and Knowledge (Essays 1901-1950) // London: Allen and Unwin LTD, 1956. – P. 57-102. <wlhcjZ[hl_;JZkk_e \i_j\u_^ZzljZa\zjgmlh_j_r_gb_eh]bq_kdboiZjZ^hdkh\hkgh\Zggh_gZjZajZ[hlZgghcbfl_hjbblb ih\Kh^_j`Zgb_klZlvbihkms_kl\mkh\iZ^Z_lki_j\uflhfhfhim[ebdh\Zggh]h\-]]fhgm f_glZevgh]h ljzolhfgh]h ljm^Z Principia Mathematica gZibkZggh]h ; JZkk_ehf \ khZ\lhjkl\_ k :G MZclo_^hfDhfiZdlghklvklZlvbbykghklvbaeh`_gby^Zzlohjhrmx\hafh`ghklv[_abaebrgbo^_lZ e_cijhke_^blvfZ]bkljZevgmxb^_xl_hjbblbih\blhdZdhgZhljZ`Z_lkygZjZaebqguojZa^_eZofZ l_fZlbdb b _z hkgh\Zgbc K lhqdb aj_gby bkihevam_fuo nhjfZevguo f_lh^h\ b l_ogbq_kdbo kj_^kl\ klZlvym^Zqgh^hihegy_lbf_xsmxky\jmkkdhfi_j_\h^_dgb]mJZkk_e;<\_^_gb_\fZl_fZlbq_kdmx nbehkhnbx–F=ghabki_j_\h^<<P_ebs_\Z dhlhjZyihk\ys_gZnbehkhnkdbfhkgh\Zgbyf bke_^kl\byfjZa\b\Z_fh]h;JZkk_ehfih^oh^ZdfZl_fZlbd_ I_j_\h^\uiheg_gijbih^^_j`d_]jZglh\J=GN-03-bJNNB-06-80359. <:KMJH
Gb`_ke_^mxsZy l_hjby kbf\hebq_kdhc eh]bdb aZj_dhf_g^h\ZeZ k_[y ij_`^_ \k_]h k\h_c kihkh[ghklvx j_rZlv hij_^_ezggu_ ijhlb\hj_qby ba dhlhjuo fZl_fZlbdZf emq r_\k_]hba\_kl_giZjZ^hdk;mjZeb-NhjlbdZkZxsbckygZb[hevr_]hhj^bgZeZ1GhjZk kfZljb\Z_fZyl_hjbyg_aZ\bkbl\k_p_ehhlwlhcdhk\_gghcj_dhf_g^ZpbbhgZ_kebyg_ hrb[Zxkv d lhfm `_ hij_^_ezggh kha\mqgZ a^jZ\hfm kfukem dhlhjuc \ k\h_c hkgh\_ ^_eZ_l_zijZ\^hih^h[ghcH^gZdhwlhg_lZaZkem]ZgZdhlhjhcke_^h\Zeh[ukebrdhf gZklZb\Zlv b[h a^jZ\uc kfuke \ ]hjZa^h [hevr_c kl_i_gb ih^\_j`_g hrb[dZf q_f h[uqgh kqblZ_lky LZdbf h[jZahf y gZqgm k nhjfmebjh\db g_dhlhjuo ijhlb\hj_qbc dhlhju_^he`gu[ulvjZaj_r_guZaZl_fihdZ`mdZdbfh[jZahfl_hjbyeh]bq_kdbolb ih\nhjfbjm_lk\hzj_r_gb_ II:J:>HDKU KlZj_crbf ijhlb\hj_qb_f jZkkfZljb\Z_fh]h \b^Z y\ey_lky iZjZ^hdk Wibf_gb ^ZDjblygbgWibf_gb^kdZaZeqlh\k_djblyg_e`_pub\k_\ukdZau\Zgbyk^_eZggu_ djblygZfb hij_^_ezggh eh`gu Eh`gh eb \ukdZau\Zgb_ kZfh]h Wibf_gb^Z" Ijhkl_c rmxnhjfmwlh]hijhlb\hj_qbyij_^hklZ\ey_lq_eh\_ddhlhjuc]h\hjblµYk_cqZke]m¶ _kebhge`zlhg]h\hjblijZ\^mbgZh[hjhl Imklvw –wlhdeZkk\k_ol_odeZkkh\dhlhju_g_y\eyxlkywe_f_glZfbkZfbok_ [yLh]^ZdZdbf[ugb[uedeZkko, ‘o_klvw¶wd\b\Ze_glghµog__klvo’2Ihwlhfm_keb oijb^ZlvagZq_gb_wlhµw_klvw¶wd\b\Ze_glghµwg__klvw’. ImklvL –hlghr_gb_dhlhjh_bf__lf_klhf_`^m^\mfyhlghr_gbyfbRbS\k_ ]^Zdh]^ZRg_bf__lhlghr_gb_RdSLh]^ZdZdbfb[ugb[uebhlghr_gbyRbS, ‘R bf__lhlghr_gb_LdS¶wd\b\Ze_glghµRg_bf__lhlghr_gb_RdS¶Ke_^h\Zl_evgh_keb 1 2
Kfgb`_ >\_ijhihabpbbgZau\Zxlkywd\b\Ze_glgufbdh]^Zh[_hgbbklbgubebh[_eh`gu
ijb^ZlvagZq_gb_LdZdRlZdbSlhµLbf__lhlghr_gb_LdL¶wd\b\Ze_glghµLg_bf_ _lhlghr_gb_LdL’. Qbkehkeh\\jmkkdbogZa\Zgbyodhg_qguop_euoqbk_e\hajZklZ_lihf_j_\hajZk lZgby qbk_e b ^he`gh ihkl_i_ggh m\_ebqb\Zlvky g_h]jZgbq_ggh ihkdhevdm ijb aZ^Zg ghf dhg_qghf qbke_ keh\ fh`_l [ulv kha^Zgh lhevdh dhg_qgh_ qbkeh bfzg Ihwlhfm bf_gZg_dhlhjuoqbk_e^he`gukhklhylvihf_gvr_cf_j_ba^_kylbkeh\bkj_^bgbo ^he`gh [ulv gZbf_gvr__ Ke_^h\Zl_evgh µgZbf_gvr__ p_eh_ qbkeh g_ bf_gm_fh_ f_ g__q_f^_kylvxkeh\Zfb¶^he`ghh[hagZqZlvhij_^_ezggh_qbkehGhµgZbf_gvr__p_ eh_qbkehg_bf_gm_fh_f_g__q_f^_kylvxkeh\Zfb¶kZfhy\ey_lkybf_g_fkhklhysbf ba^_\ylbkeh\klZeh[ulvgZbf_gvr__p_eh_qbkehg_bf_gm_fh_f_g__q_f^_kylvx keh\Zfbfh`_l[ulvgZbf_gh\Zgh^_\ylvxkeh\Zfbqlhy\ey_lkyijhlb\hj_qb_f1. Kj_^bljZgknbgblguohj^bgZeh\g_dhlhju_fh]ml[ulvhij_^_e_guZg_dhlhju_ –g_lb[hkh\hdmigh_qbkeh\hafh`guohij_^_e_gbc_klv 0lh]^ZdZdqbkehljZgknb gblguohj^bgZeh\ij_\urZ_l 0Ke_^h\Zl_evgh^he`gu[ulvg_hij_^_ebfu_hj^bgZ eubkj_^bgbo^he`_g[ulvgZbf_gvrbcGhhgbhij_^_ey_lkydZdµgZbf_gvrbcg_hi j_^_ebfuchj^bgZe¶qlhy\ey_lkyijhlb\hj_qb_f 2. IZjZ^hdkJbrZjZjh^kl\_g_giZjZ^hdkmhgZbf_gvr_fg_hij_^_ebfhfhj^bgZe_3. Hgkhklhbl\ke_^mxs_fJZkkfhljbf\k_^_kylbqgu_^jh[bdhlhju_fh]ml[ulvhij_ ^_e_guihkj_^kl\hfdhg_qgh]hqbkeZkeh\imklv?[m^_ldeZkkhflZdbo^jh[_cLh]^Z? bf__l 0we_f_glh\ke_^h\Zl_evgh_]hqe_gufh]ml[ulvmihjy^hq_gudZd-uc-hcbc«ImklvN[m^_lqbkehfhij_^_ey_fufke_^mxsbfh[jZahf?keb n-ZypbnjZ\n-hc ^jh[b_klvjlhimklvn-ZypbnjZ\N[m^_ljbeb_kebj Lh]^ZNhlebqgZhl \k_oqe_gh\?ihkdhevdmdZdbf[ug_[uehdhg_qgh_agZq_gb_n, n-ZypbnjZ\Nhlebq gZhln-hcpbnju\n-guo^jh[yokhklZ\eyxsbo?bke_^h\Zl_evghNhlebqgZhln-hc ^jh[bL_fg_f_g__fuhij_^_ebebNkihfhsvxdhg_qgh]hqbkeZkeh\bke_^h\Zl_ev ghN^he`gZ[ulvqe_ghf?LZdbfh[jZahfNby\ey_lkybg_y\ey_lkyqe_ghf?. IZjZ^hdk ;mjZeb-Nhjlb nhjfmebjm_lky ke_^mxsbf h[jZahf4 Fh`gh ihdZaZlv qlhdZ`^Zy\iheg_mihjy^hq_ggZyihke_^h\Zl_evghklvbf__lhj^bgZevgh_qbkehqlhih ke_^h\Zl_evghklvhj^bgZeh\\hajZklZxsZyb\dexqZxsZyex[hc^Zgguchj^bgZeij_ \urZ_l^Zgguchj^bgZegZh^bgbgZ\_kvfZgZ^z`guob_kl_kl\_gguoij_^ihkuedZo qlhihke_^h\Zl_evghklv \k_ohj^bgZeh\\ ihjy^d_ m\_ebq_gby y\ey_lky \iheg_ mihjy ^hq_gghc Hlkx^Z ke_^m_l qlh ihke_^h\Zl_evghklv \k_o hj^bgZeh\ bf__l hj^bgZevgh_ qbkehkdZ`_fΩGh\wlhfkemqZ_ihke_^h\Zl_evghklv\k_ohj^bgZeh\\dexqZxsboΩ, bf__lhj^bgZevgh_qbkehΩdhlhjh_^he`gh[ulv[hevr_q_fΩKe_^h\Zl_evghΩ g_y\ey_lkyhj^bgZevgufqbkehf\k_ohj^bgZeh\ M\k_omdZaZgguo\ur_ijhlb\hj_qbcdhlhju_kmlvebrv\u[hjdZba[_kdhg_qgh]h qbkeZ _klv h[sZy oZjZdl_jbklbdZ dhlhjmx fu fh`_f hibkZlv dZd kZfhj_n_j_glghklv beb j_ne_dkb\ghklv AZf_qZgb_ Wibf_gb^Z ^he`gh \dexqZlv kZfh k_[y \ k\hx kh[kl \_ggmxkn_jm?keb\k_deZkkuijbmkeh\bbqlhhgbg_y\eyxlkywe_f_glZfbkZfbok_ [yy\eyxlkywe_f_glZfbwlhwlh^he`ghijbf_gylvkylZd`_bdwlh`_kZfh_hlgh WlhliZjZ^hdkijbgZ^e_`blf-jm>`;_jjbba;h^ebZgkdhc[b[ebhl_db KjKönig, ‘Über die Grundlagen der Mengenlehre und das Kontinuum-problem’, Math. Annalen, Vol. LXI (1905); A.C. Dixon, ‘On “well-ordered” aggregates’, Proc. London Math. Soc., Series 2, Vol. IV, Part I (1906); E.W. Hobson, ‘On the Arithmetic Continuum’, ibidJ_r_gb_ij_^eh`_ggh_\ihke_^g_cbawlbo klZl_cg_dZ`_lkyfg_Z^_d\Zlguf 3 Kj.: Poincaré, ‘Les mathématiques et la logique’, Revue de Métaphysique et de Morale (May, 1906), hkh[_g gh jZa^_eu VII b IX; kf., lZd`_, Peano, Revista de Mathematica, Vol. VIII, No.5 (1906), K. 149 b ^Ze__. 4 ‘Una questione sui numeri transfiniti’, Rendiconti del circolo matematico di Palermo, Vol. XI (1897). 1 2
kblkydZgZeh]bqghfmijhlb\hj_qbxkhlghr_gbyfb<kemqZ_bfzgbhij_^_e_gbciZjZ ^hdku\ul_dZxlbajZkkfhlj_gbyg_bf_gm_fhklbbg_hij_^_ebfhklbdZdwe_f_glh\bfzg bhij_^_e_gbc<kemqZ_iZjZ^hdkZ;mjZeb-Nhjlbihke_^h\Zl_evghklvqvzhj^bgZevgh_ qbkeh\uau\Z_laZljm^g_gb_y\ey_lkyihke_^h\Zl_evghklvx\k_ohj^bgZevguoqbk_e< dZ`^hfijhlb\hj_qbbg_qlh]h\hjblkyh\k_okemqZyg_dhlhjh]hjh^Zbbalh]hqlh]h \hjblkyih-\b^bfhfmijhba\h^blkygh\uckemqZcdhlhjucdZdhlghkblkylZdbg_hl ghkblkydlhfm`_kZfhfmjh^mqlhbl_kemqZb\k_badhlhjuojZkkfZljb\Zebkv\lhf qlh[uehkdZaZghIjhkfhljbfijhlb\hj_qbyh^ghaZ^jm]bfbm\b^bfdZdwlhijhbkoh ^bl Dh]^Zq_eh\_d]h\hjblµYk_cqZke]m¶fufh`_fbgl_jij_lbjh\Zlv_]h\ukdZau \Zgb_dZdµKms_kl\m_lijhihabpbydhlhjmxyml\_j`^ZxbdhlhjZyy\ey_lkyeh`ghc¶
Wlh ijhlb\hj_qb_ j_rZ_lky ih^h[gh _keb aZf_lblv qlh µ\k_ hij_^_e_gby¶ – ihgylb_ g_aZdhggh_ Ihwlhfm qbkeh ? g_ hij_^_ebfh dhg_qguf qbkehf keh\ [m^mqb nZdlbq_kdbg_hij_^_ebfuf\hh[s_1. Ijhlb\hj_qb_;mjZeb-NhjlbihdZau\Z_lqlhµ\k_hj^bgZeu¶g_aZdhggh_ihgylb_ b[h\ijhlb\ghfkemqZ_\k_hj^bgZeu\ihjy^d_m\_ebq_gbyh[jZamxl\iheg_mihjy^h q_ggmxihke_^h\Zl_evghklvdhlhjZy^he`gZbf_lvhj^bgZevgh_qbkeh[hevr__q_f\k_ hj^bgZeu LZdbfh[jZahf\k_gZrbijhlb\hj_qby\h[s_f^himkdZxlkh\hdmigh_p_eh_lZdh_ qlh_keb[uhgh[uehaZdhgguflhkjZamm\_ebqb\Zehkv[uaZkqzlgh\uowe_f_glh\hi j_^_ebfuo\l_jfbgZo_]hkZfh]h Wlhijb\h^blgZkdijZ\bemµLhqlh\dexqZ_l\kzbakh\hdmighklbg_^he`gh[ulv we_f_glhf kh\hdmighklb¶ beb gZh[hjhl µ?keb hij_^_ezggZy kh\hdmighklv ijb mkeh \bb qlh hgZ h[eZ^Z_l p_ehklghklvx bf_eZ [u we_f_glu hij_^_ebfu_ lhevdh k lhqdb aj_gbywlhcp_ehklghklblhwlZkh\hdmighklvg_h[eZ^Z_lp_ehklghklvx¶2. MdZaZgguc \ur_ ijbgpbi \ k\h_c h[eZklb y\ey_lky h^gZdh qbklh hljbpZl_evguf Hgih^oh^bl^eylh]hqlh[uihdZaZlvqlhfgh]b_l_hjbby\eyxlkyhrb[hqgufbghhg g_ihdZau\Z_ldZdgm`ghba[Z\eylvkyhlhrb[hdFug_fh`_fkdZaZlvµ=h\hjyh\k_o ijhihabpbyo y ih^jZamf_\Zx \k_ ijhihabpbb djhf_ l_o \ dhlhjuo mihfbgZxlky ³\k_ ijhihabpbb´¶b[h\wlhfh[tykg_gbbfumihfygmebijhihabpbb\dhlhjuomihfbgZxl ky\k_ijhihabpbbq_]hg_evayk^_eZlvhkfuke_gghG_\hafh`ghba[_`ZlvmihfbgZgby \_sb mihfbgZy qlh fu g_ ohl_eb _z mihfbgZlv =h\hjy h q_eh\_d_ k ^ebgguf ghkhf fh`ghkdZaZlvµDh]^Zy]h\hjxhghkZoybkdexqZxklhevg_h[uqgh^ebggu_¶ghwlh \jy^eb[ueh[umki_rghcihiuldhcba[_`Zlvs_dhleb\hcl_fuLZdbfh[jZahf_keb fu g_ ohlbf ih]j_rblv ijhlb\ mdZaZggh]h \ur_ g_]Zlb\gh]h ijbgpbiZ g_h[oh^bfh kdhgkljmbjh\Zlv gZrm eh]bdm [_a mihfbgZgby lZdbo \_s_c dZd µ\k_ ijhihabpbb¶ beb µ\k_ k\hckl\Z¶ b^Z`_ [_a g_h[oh^bfhklb ]h\hjblv qlh fu lZdb_ \_sbbkdexqZ_f Wlh bkdexq_gb_^he`gh_kl_kl\_gghbg_ba[_`gh\ul_dZlvbagZr_cihablb\ghc^hdljbgu dhlhjZy^he`gZk^_eZlvykgufqlhµ\k_ijhihabpbb¶bµ\k_k\hckl\Z¶y\eyxlky[_kkfuk e_ggufbnjZaZfb I_j\h_\klZxs__i_j_^gZfbaZljm^g_gb_dZkZ_lkynmg^Zf_glZevguoijbgpbih\eh ]bdbba\_klguoih^aZl_ceb\ufgZa\Zgb_fµaZdhgufure_gby¶GZijbf_jµ
jm]h_[he__ki_pbZevgh_aZljm^g_gb_beexkljbjm_lkyqZklgufkemqZ_ffZl_fZlb q_kdhc bg^mdpbb Fu ohlbf [ulv \ khklhygbb kdZaZlv µ?keb n y\ey_lky dhg_qguf p_ eufqbkehflhnbf__l\k_k\hckl\Zij_^iheZ]Z_fu_bqbkeZfbke_^mxsbfbaZ\k_ fb l_fb qbkeZfb dhlhju_ ij_^iheZ]Zxl wlb k\hckl\Z¶ Gh a^_kv njZaZ µ\k_ k\hckl\Z¶ ^he`gZ[ulvaZf_g_gZg_dhlhjhc^jm]hcnjZahcdhlhjZyaZdjulZ^eyl_o`_kZfuo\ha jZ`_gbcFh`gh^himklblvqlhnjZaZµ\k_k\hckl\Zij_^iheZ]Z_fu_bqbkeZfbke_ ^mxsbfb aZ \k_fb l_fb qbkeZfb dhlhju_ ij_^iheZ]Zxl wlb k\hckl\Z¶ fh`_l [ulv aZ dhgghh[hkgh\Zgghc^Z`__kebnjZaZµ\k_k\hckl\Z¶–g_lGhnZdlbq_kdbwlhg_lZdFu 1 2
Kj. fhx klZlvx: ‘Les paradoxes de la logique’, Revue de Métaphysique et de Morale (May, 1906), K. 645. =h\hjyqlhkh\hdmighklvg_h[eZ^Z_lp_ehklghklvxyih^jZamf_\Zxqlh\ukdZau\Zgbyh\k_o_zqe_ gZoy\eyxlky[_kkfuke_ggufbDjhf_lh]hh[gZjm`blkyqlhbkihevah\Zgb_wlh]hijbgpbiZlj_[m_l jZaebqbyf_`^m\k_bdZdb_-lhjZkkfhlj_ggh_\JZa^_e_
gZc^zfqlhnjZaunhjfuµ\k_k\hckl\Zdhlhju_etc¶\dexqZxl\k_k\hckl\Z^eydhlh juoµetc¶fh`_lagZqbfhml\_j`^ZlvkybebhljbpZlvkyZg_lhevdhl_dhlhju_nZdlbq_ kdbbf_xldZdmx-lhjZkkfZljb\Z_fmxoZjZdl_jbklbdmb[h\hlkmlkl\bbkibkdZk\hckl\ h[eZ^Zxsbo wlhc oZjZdl_jbklbdhc \udZau\Zgb_ h \k_o k\hckl\Zo dhlhju_ bf_xl wlm oZjZdl_jbklbdm^he`gh[ulv]bihl_lbq_kdbfbbf_lvnhjfmµeybeexkljZpbb \havfzfke_^mxs__hij_^_e_gb_ µFugZau\Z_ff(x g_ij_ju\ghc^eyo = Z_keb^eydZ`^h]hiheh`bl_evgh]hqbkeZσ, hlebqgh]hhlkms_kl\m_liheh`bl_evgh_qbkeh εhlebqgh_hllZdh_qlh^eyagZq_ gbcδdhlhju_qbke_gghf_gvr_εjZaghklvf(a + δ )– f(a qbke_gghf_gvr_σ.’ A^_kvnmgdpbyf_klvdZdZy-lhnmgdpby^eydhlhjhcmdZaZggh_\ur_\ukdZau\Zgb_ bf__lkfukewlh\ukdZau\Zgb__klv\ukdZau\Zgb_h fbbaf_gy_lkykbaf_g_gb_ffGh wlh\ukdZau\Zgb_g_y\ey_lky\ukdZau\Zgb_fh σ, εbeb δihkdhevdmjZkkfZljb\Zxlky \k_\hafh`gu_agZq_gbyihke_^gboZg_h^ghg_hij_^_ezggh_agZq_gb_<hlghr_gbbε \ukdZau\Zgb_µKms_kl\m_liheh`bl_evgh_qbkeh εlZdh_qlhetc¶_klvhljbpZgb_lh]h qlhhljbpZgb_µetc¶bklbggh^ey\k_oiheh`bl_evguoqbk_e Ihwlhcijbqbg_dh]^Zml \_j`^Z_lky dZdh_-lh agZq_gb_ ijhihabpbhgZevghc nmgdpbb Zj]mf_gl gZijbf_j f \u
r_ gZau\Z_lky^_ckl\bl_evghci_j_f_gghc\lh`_\j_fydh]^Zhnmgdpbb]h\hjblky dZdh\k_]^ZbklbgghcbebdZdhg_\k_]^ZbklbgghcZj]mf_glgZau\Z_lkyfgbfhci_j_ f_gghc1LZdbfh[jZahf\mdZaZgghf\ur_hij_^_e_gbbf_klv^_ckl\bl_evgZyi_j_f_g gZyZσ, εbebδkmlvfgbfu_i_j_f_ggu_ Ml\_j`^Zy dZdh_-lh agZq_gb_ ijhihabpbhgZevghc nmgdpbb fu ijhklh [m^_f ]h\h jblvqlhml\_j`^Z_fijhihabpbhgZevgmxnmgdpbxLZd_kebfubaeZ]Z_faZdhglh`^_ kl\Z\nhjf_µx = x¶fuml\_j`^Z_fnmgdpbxµx = x¶l_fuml\_j`^Z_fdZdh_-lhagZq_ gb_wlhcnmgdpbbKoh^gufh[jZahffh`gh[ueh[ukdZaZlvqlhfuhljbpZ_fijhihab pbhgZevgmx nmgdpbx dh]^Z hljbpZ_f dZdhc-lh _z ijbf_j Fu fh`_f ^_ckl\bl_evgh ml\_j`^ZlvijhihabpbhgZevgmxnmgdpbxlhevdh_kebdZdh_[uagZq_gb_fug_\u[jZ ebwlhagZq_gb_y\ey_lkybklbggufkoh^gufh[jZahffufh`_fih^ebgghhljbpZlv_z lhevdh_kebdZdh_[uagZq_gb_fug_\u[jZebwlhagZq_gb_y\ey_lkyeh`gufHlkx^Z \h[s_fkemqZ_dh]^Zg_dhlhju_agZq_gbyy\eyxlkybklbggufbZg_dhlhju_–eh`gu fbfug_fh`_fgbml\_j`^ZlvgbhljbpZlvijhihabpbhgZevgmxnmgdpbx2. ?keb φo –ijhihabpbhgZevgZynmgdpbylhihkj_^kl\hfµx).φx¶fu[m^_fh[hagZqZlv ijhihabpbxµφo\k_]^Zbklbggh¶Koh^gufh[jZahfµx, y).φ(x, y ¶[m^_lh[hagZqZlvµφ(o, m \k_]^Zbklbggh¶bl^Lh]^ZjZaebqb_f_`^mml\_j`^_gb_f\k_oagZq_gbcbml\_j`^_ gb_fdZdh]h-lhagZq_gby_klvjZaebqb_f_`^m ml\_j`^_gb_fo).φob ml\_j`^_gb _f φo]^_og_hij_^_ezgIhke_^g__hlebqZ_lkyhli_j\h]hl_fqlhhghg_fh`_lljZd lh\ZlvkydZdh^gZhij_^_ezggZyijhihabpby JZaebqb_f_`^mml\_j`^_gb_f φobml\_j`^_gb_fo).φoy^mfZx\i_j\u_ih^qzjd gmeNj_]_3?]h^h\h^\ihevamy\gh]h\\_^_gbywlh]hjZaebqbykh\iZ^Z_lkl_fqlhy\ ey_lkyijbqbghcijbkmlkl\bywlh]hjZaebqby\ijZdlbd_fZl_fZlbdh\Zbf_gghqlh^_ ^mdpbyfh`_l[ulv^_ckl\_gghclhevdh\kemqZ_^_ckl\bl_evguoZg_fgbfuoi_j_f_g guo<kemqZ_^hdZaZl_evkl\?\deb^Zwlhhq_\b^ghKdZ`_f^eyjZkkm`^_gbygZfgm`_g g_dhlhjuch^bglj_m]hevgbd:eylh]hqlh [uhkms_kl\blvgZr\u\h^fu^he`gui_j_clbhlµφo\k_]^Zbklbggh¶dφobhlµφo\k_ ]^Z\e_qzl ψo¶dµφo\e_qzl ψo¶]^_wlhlohklZ\ZykvdZdbf-lh\hafh`gufZj]mf_glhf ^he`_g[ulvh^bgZdh\uf\h[hbokemqZyoLh]^Zbaµφx¶ bµφo\e_qzl ψo¶fu\u\h^bf ‘ψx¶lZdbfh[jZahf ψoy\ey_lkybklbgguf^eyex[h]h\hafh`gh]hZj]mf_glZbke_^h \Zl_evgh bklbgguf \k_]^Z KlZeh [ulv ^ey lh]h qlh[u \u\_klb µx).ψx¶ ba µx).φx¶ b Wlbfb^\mfyl_jfbgZfbfuh[yaZguI_Zghdhlhjucbkihevam_lboijb[ebabl_evgh\mdZaZgghf\u r_kfuke_KjgZijbf_jFormulaire Mathématique (Turin, 1903), Vol. IV, C. 5. 2 F-jFZdDhee]h\hjblqlhµijhihabpbb¶^_eylkygZljbdeZkkZ^hklh\_jgu_i_j_f_ggu_bg_\ha fh`gu_Fufh`_fijbgylvwlh^_e_gb_\ijbf_g_gbbdijhihabpbhgZevgufnmgdpbyfNmgdpby dhlhjmxfh`ghml\_j`^Zlvy\ey_lky^hklh\_jghcnmgdpbydhlhjmxfh`ghhljbpZlvy\ey_lkyg_ \hafh`ghc\k_^jm]b_nmgdpbby\eyxlky\kfuke_f-jZFZdDheeZ i_j_f_ggufb 3 Kf. _]h Grundgesetze der Arithmetik (Jena, 1893), lhf I, § 17, C. 31. 1
‘(x).{φx\e_qzl ψx`¶fu^he`gui_j_clbhlfgbfhcd^_ckl\bl_evghci_j_f_gghcZaZ l_f\gh\v\_jgmlvkydfgbfhci_j_f_gghcWlZijhp_^mjZlj_[m_lky\h\k_ofZl_fZlb q_kdbo jZkkm`^_gbyo \ dhlhjuo hkms_kl\ey_lky i_j_oh^ hl ml\_j`^_gby h \k_o agZq_ gbyoh^ghcbeb[he__ijhihabpbhgZevguonmgdpbcdml\_j`^_gbxh\k_oagZq_gbyog_ dhlhjhc ^jm]hc ijhihabpbhgZevghc nmgdpbb dZd gZijbf_j ijb i_j_oh^_ hl µ\k_ jZ\ gh[_^j_ggu_ lj_m]hevgbdb bf_xl jZ\gu_ m]eu ijb hkgh\Zgbb¶ d µ\k_ lj_m]hevgbdb bf_xsb_ jZ\gu_ m]eu ijb hkgh\Zgbb y\eyxlky jZ\gh[_^j_ggufb¶ < qZklghklb wlhl ijhp_kk lj_[m_lky ijb ^hdZaZl_evkl\_ Barbara b ^jm]bo fh^mkh\ kbeeh]bafZ >jm]bfb keh\Zfb\kydZy^_^mdpbyhi_jbjm_l^_ckl\bl_evgufbi_j_f_ggufbbebdhgklZglZfb Fh`gh ij_^iheh`blv qlh fufh]eb[u \hh[s_h[hclbkv [_afgbfuoi_j_f_gguo h]jZgbqb\rbkvdZdhc-lh\dZq_kl\_aZf_gu^ey\k_Wlhh^gZdhg_bf__lf_klZeygZrbop_e_cwlhjZaebqb_bf__ljZagmxihevamdhlhjZy\_kvfZagZqbl_evgZ< kemqZ_lZdboi_j_f_gguodZdijhihabpbbbebk\hckl\ZµdZdh_-lhagZq_gb_¶aZdhgghlh ]^ZdZdµ\kydh_ agZq_gb_¶ –g_l LZdfu fh`_f kdZaZlvµj –bklbgghbeb eh`gh]^_j _klvdZdZy-lhijhihabpby¶ohlyfug_fh`_fkdZaZlvµ
Wlh\ujZ`_gb_g_hlebqZ_lkyhlµ\k_k\hckl\Z¶
k\hckl\h b \ bkihevah\Zgbb lZdh]h hij_^_e_gby fu ij_^iheZ]Z_f qlh hgh ho\Zlu\Z_l k\hckl\h hlebqbl_evgh_ ^ey dhg_qguo p_euo qbk_e dhlhjh_ dZd jZa b y\ey_lky jZagh \b^ghklvxij_^ihkuedbbadhlhjhcdZdfu\b^_eb\ul_dZxlj_ne_dkb\gu_iZjZ^hdku <mdZaZgghf\ur_ijbf_j_g_h[oh^bfhba[_]Zlvij_^iheh`_gbch[u^_ggh]hyaudZ dhlhjucg_ih^oh^bl^ey\ujZ`_gbylj_[m_fuojZaebqbcKmlv^_eZfh`_l[ulv^Ze__ ijhbeexkljbjh\ZgZ ke_^mxsbf h[jZahf ?keb^eyhij_^_e_gby dhg_qguo p_euoqbk_e g_h[oh^bfhbkihevah\Zlvbg^mdpbxhgZ^he`gZmklZgZ\eb\Zlvhij_^_ezggu_k\hckl\Z dhg_qguop_euoqbk_eZg_k\hckl\Z^\mkfuke_ggu_Gh_keb φ _klv^_ckl\bl_evgZyi_ j_f_ggZy\ukdZau\Zgb_µnbf__lk\hckl\h φijbmkeh\bbqlh φij_^iheZ]Z_lkybqbk eZfbke_^mxsbfbaZl_fbqbkeZfbdhlhju__]hij_^iheZ]Zxl¶ijbibku\Z_lnk\hckl \h dhlhjh_ baf_gy_lky k baf_g_gb_f φ b lZdh_ k\hckl\h g_ fh`_l bkihevah\Zlvky ^ey hij_^_e_gby deZkkZ dhg_qguo p_euo qbk_e FuohlbfkdZaZlvµ³n _klv dhg_qgh_ p_eh_ qbkeh´hagZqZ_l³DZdbf[ugb[uehk\hckl\hφ, nh[eZ^Z_lk\hckl\hfφijbmkeh\bbqlh φ ij_^iheZ]Z_lky b qbkeZfb ke_^mxsbfb aZ l_fb qbkeZfb dhlhju_ _]h ij_^iheZ]Z xl´¶Gha^_kv φklZehfgbfhci_j_f_gghcQlh[ukhojZgblv_z\dZq_kl\_^_ckl\bl_ev ghc i_j_f_gghc fu ^he`gu [ueb [u kdZaZlv µDZdbf [u gb [ueh k\hckl\h φ, “n _klv dhg_qgh_p_eh_qbkeh´hagZqZ_l³nh[eZ^Z_lk\hckl\hf φijbmkeh\bbqlh φij_^iheZ ]Z_lkybqbkeZfbke_^mxsbfbaZl_fbqbkeZfbdhlhju__]hij_^iheZ]Zxl´¶Gha^_kv agZq_gb_³n_klvdhg_qgh_p_eh_qbkeh´baf_gy_lkykbaf_g_gb_fφbihwlhfmlZdh_hi j_^_e_gb_g_\hafh`ghWlhlkemqZcbeexkljbjm_l\Z`gucimgdlZbf_gghke_^mxsbc µH[eZklv1^_ckl\bl_evghci_j_f_gghcgbdh]^Zg_fh`_l[ulvf_gvr_q_f\kyijhihab pbhgZevgZynmgdpby\dhlhjhc\klj_qZ_lky^ZggZyi_j_f_ggZy¶Lh_klv_kebgZrZijh ihabpbhgZevgZy nmgdpby _klv kdZ`_f µφo \e_qzl j¶ ml\_j`^_gb_ wlhc nmgdpbb [m^_l hagZqZlvµdZdh_-lhagZq_gb_³φo\e_qzlj´y\ey_lkybklbgguf¶ghg_µ³dZdh_-lhagZq_gb_ φoy\ey_lkybklbgguf´\e_qzlj¶<ihke_^g_fkemqZ_\^_ckl\bl_evghklbfubf__fµ
H[eZklv^_ckl\bl_evghci_j_f_gghc–wlZ\kynmgdpbyhlghkbl_evghdhlhjhcjZkkfZljb\Z_lkyµdZ dh_-lhagZq_gb_¶LZd\µφo\e_qzlj¶h[eZklvo –wlhg_φoghµφo\e_qzlj’.
h^ghc ijhihabpbb g_ fh`_l [ulv ^_ckl\bl_evghc i_j_f_gghc b[h lh qlh kh^_j`bl ^_ckl\bl_evgmxi_j_f_ggmx_klvijhihabpbhgZevgZynmgdpbyZg_ijhihabpby I_j\uc \hijhk dhlhjuc g_h[oh^bfh aZ^Zlv \ wlhf jZa^_e_ ke_^mxsbc DZd fu ^he`gu bgl_jij_lbjh\Zlv keh\h \k_ \ lZdbo ijhihabpbyo dZd µdenoting@ njZaZ b ih ijbqbgZf dhlhju_ y \u ^\bgme\^jm]hff_kl_2dZ`_lkyqlhh[hagZqZxsb_njZaugbdh]^Zg_h[eZ^ZxlagZq_ gb_f\baheypbbghebrv\oh^yl\dZq_kl\_dhgklblm_gl\\_j[Zevgh_\ujZ`_gb_ijhih abpbc dhlhju_ g_ kh^_j`Zl dhgklblm_gl khhl\_lkl\mxsbo jZkkfZljb\Z_fuf h[hagZ qZxsbfnjZaZf>jm]bfbkeh\Zfbh[hagZqZxsZynjZaZhij_^_ey_lkyihkj_^kl\hfijh ihabpbc \ qvzf \_j[Zevghf \ujZ`_gbb hgZ \klj_qZ_lky Ke_^h\Zl_evgh g_\hafh`gh qlh[uwlbijhihabpbbijbh[j_lZebk\hzagZq_gb_q_j_ah[hagZqZxsb_njZaufu^he` gu gZclb g_aZ\bkbfmx bgl_jij_lZpbx ijhihabpbc kh^_j`Zsbo lZdb_ njZau b g_ ^he`gubkihevah\ZlvwlbnjZau\h[tykg_gbblh]hqlhhagZqZxllZdb_ijhihabpbbIh wlhfm fu g_ fh`_f jZkkfZljb\Zlv µZ`__keb[ulZdhch[t_dldZdµ\k_ex^b¶kms_kl\h\Zeykghqlhwlhg_lhlh[t _dldhlhjhfmfuijbibku\Z_fkf_jlghklvdh]^Z]h\hjbfµ
Logic, qZklv I, jZa^_e II. ‘On Denoting’, Mind (October, 1905). >Jmkkdbci_j_\h^kfJZkk_e;H[h[hagZq_gbbYaudbklbgZ kms_kl\h\Zgb_–Lhfkdba^-\hLhfkdh]h]hkmgb\_jkbl_lZ@
µ
NmgdpbygZau\Z_lkyagZqbfhc^eyZj]mf_glZo_kebhgZbf__lagZq_gb_^eywlh]hZj]mf_glZLZdbf h[jZahffufh`_fdjZldhkdZaZlvµφoy\ey_lkyagZqbfhc¶ih^jZamf_\Zyµnmgdpby φbf__lagZq_gb_ ^eyZj]mf_glZo¶H[eZklvagZqbfhklbnmgdpbbkhklhblba\k_oZj]mf_glh\^eydhlhjuonmgdpbyy\ ey_lkybklbgghc\kh\hdmighklbkh\k_fbl_fbZj]mf_glZfb^eydhlhjuohgZy\ey_lkyeh`ghc
Djhf_lh]h_kebh[eZklvagZqbfhklbnmgdpbb_klvilhnmgdpbyµ_kebo_klvilh_kebo –q_eh\_dlho –kf_jl_g¶bf__llm`_kZfmxh[eZklvagZqbfhklbihkdhevdmhgZg_fh `_l[ulvagZqbfhc_kebagZqbfhcg_y\ey_lky_zdhgklblm_glZµ_kebo –q_eh\_dlho – kf_jl_g¶Gha^_kvh[eZklvagZqbfhklbkgh\Zy\ey_lkykdjulhcdZdwlh[ueh\³_kebo – q_eh\_d lh o – kf_jl_g´ Ihwlhfm fu g_ fh`_f k^_eZlv h[eZklb agZqbfhklb y\gufb ihkdhevdmihiuldZlZdihklmiblvijb\h^blebrvd\hagbdgh\_gbxgh\hcijhihabpbb\ dhlhjhcwlZ`_kZfZyh[eZklvagZqbfhklby\ey_lkykdjulhc BlZd\h[s_f\b^_µx).φx¶^he`ghhagZqZlvµ\k_]^Z φx¶ Wlhfh`ghbgl_jij_lbjh \Zlvohlybkf_gvr_clhqghklvxdZdµφx\k_]^Zbklbggh¶beb[he__y\ghdZdµ
Ebg]\bklbq_kdb m^h[gh_ \ujZ`_gb_ ^ey wlhc b^_b ke_^mxs__ µφo – bklbggh ^ey \k_o \hafh`guo agZq_gbco¶\hafh`gh_agZq_gb_ihgbfZ_lkydZdagZq_gb_^eydhlhjh]hφoy\ey_lkyagZqbfhc
fh`gu_ Zj]mf_glu ^ey ³j – bklbggh´ g_h[oh^bfh ij_\urZxl \hafh`gu_ Zj]mf_glu ^ey φbke_^h\Zl_evghjZkkfZljb\Z_fh_h[s__\ukdZau\Zgb_g_\hafh`ghIhwlhcijb qbg_ih^ebgguoh[sbo\ukdZau\Zgbch\k_obklbgguoijhihabpbyok^_eZlvg_evayH^ gZdh fh`_l kemqblvky qlh ij_^iheZ]Z_fZy nmgdpby φ ih^h[gh ³j – bklbggh´ y\ey_lky g_hij_^_ezgghcb_kebkemqblkyqlhhgZh[eZ^Z_lg_hij_^_ezgghklvxlhqghlZdh]h`_ \b^ZdZdb³j –bklbggh´fu\k_]^Z[m^_f\khklhygbbaZ^Zlvbgl_jij_lZpbx^eyijh ihabpbbµ³j –bklbggh´\e_qzl φj¶Wlhijhbahc^zlgZijbf_j_keb φj_klvµg_-j –eh` gh¶LZdbfh[jZahf\wlbokemqZyofuihemqZ_f\b^bfhklvh[sboijhihabpbcjZkkfZl jb\Zxsbo \k_ ijhihabpbb gh wlZ \b^bfhklv k\hbf ihy\e_gb_f h[yaZgZ kbkl_fZlbq_ kdhcg_hij_^_ezgghklblZdbokeh\dZdbklbgghbeh`ghWlZkbkl_fZlbq_kdZyg_hij_ ^_ezgghklv \ul_dZ_l ba b_jZjobb ijhihabpbc dhlhjZy [m^_l h[tykg_gZ iha^g__
IVB?J:JOBYLBIH< Lbihij_^_ey_lkydZdh[eZklvagZqbfhklbijhihabpbhgZevghcnmgdpbbl_dZdkh\h dmighklv Zj]mf_glh\ ^ey dhlhjuo mdZaZggZy nmgdpby bf__l agZq_gby
GZijbf_j, ImZgdZj_. Kf.: Revue de Métaphysique et de Morale (May, 1906).
ijhihabpbb \klj_qZ_lky fgbfZy i_j_f_ggZy h[eZklv agZq_gbc fgbfhc i_j_f_gghc y\ ey_lky lbihf lbi nbdkbjm_lky nmgdpb_c hlghkbl_evgh dhlhjhc jZkkfZljb\Zxlky µ\k_ agZq_gby¶ G_h[oh^bfhklv jZaebq_gby h[t_dlh\ gZ lbiu \ua\ZgZ j_ne_dkb\gufb g_^h jZamf_gbyfbdhlhju_\hagbdZxl_keblZdh]hjZaebqbyg_ijh\_klbDZdfu\b^_ebwlb g_^hjZamf_gby ke_^m_l ba[_]Zlv k ihfhsvx lh]h qlh fh`_l [ulv gZa\Zgh µijbgpbihf ihjhqgh]hdjm]Z¶l_µp_ehklghklvg_fh`_lkh^_j`Zlvwe_f_gluhij_^_ezggu_\l_j fbgZo_zkZfhc¶<gZr_fl_ogbq_kdhfyaud_wlhlijbgpbiklZgh\blkyke_^mxsbfµLh qlh kh^_j`bl fgbfmx i_j_f_ggmx g_ ^he`gh [ulv \hafh`guf agZq_gb_f wlhc i_j_ f_gghc¶ LZdbf h[jZahf \kz qlh kh^_j`bl fgbfmx i_j_f_ggmx ^he`gh hlghkblky d lbimhlebqghfmhl\hafh`guoagZq_gbcwlhci_j_f_gghcfu[m^_f]h\hjblvqlhhgh hlghkblkyd[he__\ukhdhfmlbimLZdbfh[jZahffgbfu_i_j_f_ggu_kh^_j`Zsb_ky\ \ujZ`_gbbkmlvlhqlhhij_^_ey_l_]hlbiWlh–\_^msbcijbgpbi\^Zevg_cr_fba eh`_gbb Ijhihabpbb dhlhju_ kh^_j`Zl fgbfu_ i_j_f_ggu_ \hagbdZxl ba ijhihabpbc g_ kh^_j`Zsbowlbofgbfuoi_j_f_gguoihkj_^kl\hfijhp_kkh\h^bgbadhlhjuo\k_]^Z y\ey_lky ijhp_kkhf h[h[s_gby l_ ih^klZgh\dhc i_j_f_gghc \f_klh h^gh]h ba l_jfb gh\ ijhihabpbb b ml\_j`^_gb_f j_amevlbjmxs_c nmgdpbb ^ey \k_o \hafh`guo agZq_ gbcwlhci_j_f_gghcKe_^h\Zl_evghijhihabpbygZau\Z_lkyh[h[szgghc,dh]^ZhgZkh ^_j`bl fgbfmx i_j_f_ggmx Ijhihabpbx g_ kh^_j`Zsmx fgbfuo i_j_f_gguo fu [m^_fgZau\Zlvwe_f_glZjghcijhihabpb_cYkghqlhijhihabpbykh^_j`ZsZyfgbfu_ i_j_f_ggu_ij_^iheZ]Z_l^jm]b_ijhihabpbbbadhlhjuohgZfh`_l[ulvihemq_gZih kj_^kl\hf h[h[s_gby ke_^h\Zl_evgh \k_ h[h[szggu_ ijhihabpbb ij_^iheZ]Zxl we_ f_glZjgu_ijhihabpbb<we_f_glZjghcijhihabpbbfufh`_fjZaebqblvh^bgbeb[h e__qe_gh\hlh^gh]hbeb[he__ihgylbc; qe_gukmlvlhqlhfh`_ljZkkfZljb\ZlvkydZd km[t_dl ijhihabpbb lh]^Z dZd ihgylby y\eyxlky ij_^bdZlZfb beb hlghr_gbyfb ml \_j`^Z_fufbhlghkbl_evghwlbol_jfbgh\1Qe_guwe_f_glZjguoijhihabpbcfu[m^_f gZau\Zlvbg^b\b^Zfbhgbh[jZamxli_j\ucbebgbarbclbi GZijZdlbd_g_h[yaZl_evghagZlvdZdb_h[t_dluijbgZ^e_`Zlgbar_fmlbimg_h[y aZl_evgh^Z`_agZlvy\ey_lkyebgbarbclbii_j_f_gguo\klj_qZxsboky\^Zgghfdhg l_dkl_ lbihf bg^b\b^h\ beb `_ dZdbf-lh ^jm]bf B[h gZ ijZdlbd_ bf_xl agZq_gb_ lhevdhhlghkbl_evgu_ lbiu i_j_f_gguo ihwlhfm gbarbc lbi \klj_qZxsbcky \ ^Zg ghfdhgl_dkl_fh`_l[ulvgZa\Zglbihfbg^b\b^h\ihklhevdmihkdhevdmjZkkfZljb\Z _lkywlhldhgl_dklHlkx^Zke_^m_lqlhijb\_^zggh_\ur_jZkkfhlj_gb_bg^b\b^h\g_ kms_kl\_ggh^eybklbgghklblh]hqlhb^zl^Ze__kms_kl\_g_glhevdhkihkh[dhlhjuf ba bg^b\b^h\ ijhba\h^ylky ^jm]b_ lbiu L_f g_ f_g__ lbi bg^b\b^h\ fh`gh h[jZah \Zlv Ijbf_gyy ijhp_kkh[h[s_gby dbg^b\b^Zf \oh^ysbf \ we_f_glZjgu_ ijhihabpbb fu ihemqZ_f gh\u_ ijhihabpbb H[hkgh\Zgghklv wlh]h ijhp_kkZ lj_[m_l lhevdh lh]h qlh[ubg^b\b^ug_[uebijhihabpbyfbLhqlhwlhlZd^he`ghh[_ki_qb\Zlvkykfuk ehfdhlhjucfuijb^Zzfkeh\mbg^b\b^Fufh`_fhij_^_eblvbg^b\b^dZdg_qlheb rzggh_dhfie_dkghklblh]^Zhq_\b^ghqlhhgg_y\ey_lkyijhihabpb_cihkdhevdmijh ihabpbbkms_kl\_gghdhfie_dkguKe_^h\Zl_evgh\ijbf_g_gbbijhp_kkZh[h[s_gbyd bg^b\b^Zffug_ih^\_j`_gujbkdm\iZklv\j_ne_dkb\gu_g_^hjZamf_gby We_f_glZjgu_ijhihabpbb\kh\hdmighklbkl_fbijhihabpbyfbdhlhju_\dZq_kl\_ fgbfuoi_j_f_gguokh^_j`Zllhevdhbg^b\b^ufu[m^_fgZau\Zlvijhihabpbyfbi_j \h]hihjy^dZHgbh[jZamxl\lhjhceh]bq_kdbclbi 1
KfPrinciples of Mathematics, § 48.
LZdbf h[jZahf fu bf__f gh\mx p_ehklghklv p_ehklghklv ijhihabpbc i_j\h]h ih jy^dZKlZeh[ulvfufh`_fh[jZah\Zlvgh\u_ijhihabpbb\dhlhju_i_j\hihjy^dh\u_ ijhihabpbb\oh^yldZdfgbfu_i_j_f_ggu_Bofu[m^_fgZau\Zlvijhihabpbyfb\lh jh]h ihjy^dZ hgb h[jZamxl lj_lbc eh]bq_kdbc lbi LZd gZijbf_j _keb Wibf_gb^ ml \_j`^Z_lµey hijZ\^Zgby φ \ dZq_kl\_ fgbfhc i_j_f_gghc g_h[oh^bfhqlh[u_zagZq_gbyh]jZgbqb\Zebkvijhihabpbyfbg_dhlhjh]hh^gh]hlbiZ Ihwlhfmfuijh^he`Z_fke_^mxsbfh[jZahf NmgdpbyqvbfZj]mf_glhfy\ey_lkybg^b\b^bqvbfagZq_gb_f\k_]^Zy\ey_lkyijh ihabpbyi_j\h]hihjy^dZ[m^_lgZau\Zlvkynmgdpb_ci_j\h]hihjy^dZNmgdpby\dex qZxsZyi_j\hihjy^dh\mxnmgdpbxbebijhihabpbx\dZq_kl\_fgbfhci_j_f_gghc[m ^_l gZau\Zlvky \lhjhihjy^dh\hc nmgdpb_c b l^ Nmgdpby hl h^ghc i_j_f_gghc hlgh kysZykydihjy^dmke_^mxs_fmaZihjy^dhf_zZj]mf_glZ[m^_lgZau\Zlvkyij_^bdZlb\ ghc nmgdpb_c lZdh_ `_ gZa\Zgb_ [m^_l ^Z\Zlvky nmgdpbb hl g_kdhevdbo i_j_f_gguo _kebkj_^bwlboi_j_f_gguo_klvi_j_f_ggZy\hlghr_gbbdhlhjhcnmgdpbyklZgh\blky ij_^bdZlb\ghc dh]^Z agZq_gby ijbibku\Zxlky \k_f ^jm]bf i_j_f_gguf Lh]^Z lbi nmgdpbbhij_^_ey_lkylbihf_zagZq_gbcbqbkehfblbihf_zZj]mf_glh\
>Ze__b_jZjobynmgdpbcfh`_l[ulvh[tykg_gZke_^mxsbfh[jZahfNmgdpbyi_j \h]h ihjy^dZ hl bg^b\b^Z o [m^_l h[hagZqZlvky dZd φ!o ^ey nmgdpbc [m^ml lZd`_ bk ihevah\Zlvky[md\u ψ, χ, θ, f, g, F, G G_i_j\hihjy^dh\u_nmgdpbbkh^_j`Zlnmgdpbx \dZq_kl\_fgbfhci_j_f_gghcke_^h\Zl_evghlZdb_nmgdpbbh[jZamxl\iheg_hij_^_ ezggmxp_ehklghklvb φ\ φ!ofh`_l[ulvij_h[jZah\ZgZ\fgbfmxi_j_f_ggmxEx[Zy ijhihabpby\dhlhjhc φihy\ey_lkydZdfgbfZyi_j_f_ggZyb\dhlhjhcg_lfgbfuoi_ j_f_gguo[he__\ukhdh]hq_f φlbiZy\ey_lkyijhihabpb_c\lhjh]hihjy^dZ?keblZ dZyijhihabpbykh^_j`blbg^b\b^ohgZg_y\ey_lkyij_^bdZlb\ghcnmgdpb_chlogh _kebhgZkh^_j`bli_j\hihjy^dh\mxnmgdpbx φhgZy\ey_lkyij_^bdZlb\ghcnmgdpb_c hl φb[m^_laZibku\ZlvkydZdf!(ψ! ∧z Lh]^Zf_klvij_^bdZlb\gZynmgdpby\lhjh]hih jy^dZ \hafh`gu_ agZq_gby f kgh\Z h[jZamxl \iheg_ hij_^_ezggmx p_ehklghklv b fu fh`_f ij_h[jZah\Zlv f \ fgbfmx i_j_f_ggmx LZdbf h[jZahf fu fh`_f hij_^_eblv ij_^bdZlb\gu_nmgdpbblj_lv_]hihjy^dZdhlhju_[m^mlij_^klZ\eylvkh[hcnmgdpbb bf_xsb_ \ dZq_kl\_ agZq_gbc ijhihabpbb lj_lv_]h ihjy^dZ Z \ dZq_kl\_ Zj]mf_glh\ \lhjhihjy^dh\u_ij_^bdZlb\gu_nmgdpbbWlbfimlzffufh`_fijh^\b]Zlvky^h[_k dhg_qghklb<lhqghklblZdh_`_jZa\blb_kx`_lZhlghkblkydnmgdpbyfhlg_kdhevdbo i_j_f_gguo Fu [m^_f ijbf_gylv ke_^mxsb_ kh]eZr_gby I_j_f_ggu_ kZfh]h gbadh]h lbiZ \klj_qZxsb_ky\ex[hfdhgl_dkl_[m^mlh[hagZqZlvkykljhqgufbeZlbgkdbfb[md\Zfb aZbkdexq_gb_ffbgdhlhju_aZj_a_j\bjh\Zgu^eynmgdpbc ij_^bdZlb\gZynmgdpby hlZj]mf_glZo]^_ofh`_l[ulvex[h]hlbiZ [m^_lh[hagZqZlvkydZd φ!o]^_ ψ, χ, θ, f, g, F, G fh]mlaZf_gylv φ koh^gufh[jZahfij_^bdZlb\gZynmgdpbyhl^\moZj]mf_glh\ o b m [m^_l h[hagZqZlvky dZd φ!(o, m h[sZy nmgdpby hl o [m^_l h[hagZqZlvky dZd φo Z h[sZynmgdpbyhlobmdZd φ(o, m < φo φg_evayij_h[jZah\Zlv\fgbfmxi_j_f_ggmx ihkdhevdm_zlbig_hij_^_ezggh\φ!o]^_φy\ey_lkyij_^bdZlb\ghcnmgdpb_cq_cZj ]mf_gl hlghkblky d g_dhlhjhfm aZ^Zgghfm lbim φ fh`gh ij_h[jZah\Zlv \ fgbfmx i_ j_f_ggmx
mkljZgyeky[u>Ze__fufh`_fij_^iheh`blvqlhµbf_gm_fuc\l_jfbgZobfzgdeZkkZ N¶ hagZqZ_l µy\ey_lky _^bgkl\_gguf l_jfbghf \uihegyxsbf g_dhlhjmx nmgdpbx \k_p_eh khklZ\e_gguf ba bfzg deZkkZ N¶ J_r_gb_ wlh]h iZjZ^hdkZ e_`bl y ^mfZx \ ijhklhfgZ[ex^_gbbqlhµbf_gm_fuc\l_jfbgZobfzgdeZkkZN¶kZfhgbdh]^Zg_bf_ gm_fh\l_jfbgZobfzgwlh]hdeZkkZ?kebfujZkrbjy_fN^h[Z\eyybfyµbf_gm_fuc\ l_jfbgZobfzgdeZkkZN¶lhjZkrbjy_lkygZrhkgh\ghcZiiZjZlbfzg_kebwlhlgh\uc ZiiZjZlgZa\ZlvN/lhµbf_gm_fuc\l_jfbgZobfzgdeZkkZN/¶hklZzlkyg_bf_gm_fuf\ l_jfbgZobfzgdeZkkZN/?kebfuihiulZ_fkyjZkrbjylvN^hl_oihjihdZhgg_ho\Z lblv\k_bf_gZlhµbf_gm_fuc¶klZgh\blkykh]eZkghlhfmqlh]h\hjbehkvjZg__ µy\ey _lky _^bgkl\_gguf l_jfbghf \uihegyxsbf g_dhlhjmx nmgdpbx \k_p_eh khklZ\e_g guf ba bfzg¶ Gh a^_kv \ dZq_kl\_ fgbfhc i_j_f_gghc nb]mjbjm_l nmgdpby ke_^h\Z l_evghfuh]jZgbq_gu^hij_^bdZlb\ghcnmgdpbbg_dhlhjh]hh^gh]hlbiZb[hg_ij_ ^bdZlb\gu_ nmgdpbb g_ fh]ml [ulv fgbfufb i_j_f_ggufb Ke_^h\Zl_evgh ^ey lh]h qlh[uba[_`ZlviZjZ^hdkZgZfgm`ghebrv\b^_lvqlhbf_gm_fhklvklhqdbaj_gbylZ dbonmgdpbcy\ey_lkyg_ij_^bdZlb\ghc KemqZc k µgZbf_gvrbf g_hij_^_ebfuf hj^bgZehf¶ \iheg_ ZgZeh]bq_g kemqZx dh lhjucfulhevdhqlhh[km`^ZebA^_kvdZdbjZg__µhij_^_ebfuc¶^he`gh[ulvkhhlg_ k_ghkg_dhlhjufaZ^ZggufZiiZjZlhfhkgh\hiheZ]Zxsbob^_cb_klvijbqbgZij_^ih eZ]Zlvqlhµhij_^_ebfuc\l_jfbgZob^_cdeZkkZN¶g_hij_^_ebfhklhqdbaj_gbyb^_c deZkkZN<_jguf[m^_llhqlhkms_kl\m_lg_dhlhjuchij_^_ezgguck_]f_gljy^Zhj^b gZeh\ \k_p_eh khklhysbc ba hij_^_ebfuo hj^bgZeh\ b bf_xsbc \ dZq_kl\_ ]jZgbpu gZbf_gvrbcg_hij_^_ebfuchj^bgZeWlhlgZbf_gvrbcg_hij_^_ebfuchj^bgZe[m^_l hij_^_ebfihkj_^kl\hfg_agZqbl_evgh]hjZkrbj_gbygZr_]hhkgh\gh]hZiiZjZlZghlh ]^Z [m^_l gh\uc hj^bgZe dhlhjuc [m^_l gZbf_gvrbf hj^bgZehf g_hij_^_ebfuf \ wlhf gh\hf ZiiZjZl_ ?keb fujZkrbjy_f gZr ZiiZjZl kl_f qlh[u \dexqblv \k_ \ha fh`gu_b^_blh[he__g_ldZdhc-lhijbqbgu^mfZlvqlhkms_kl\m_ldZdhc-lhg_hij_^_ ebfuchj^bgZeY^mfZxqlhfgbfZykbeZiZjZ^hdkZih[hevr_cqZklbe_`bl\ij_^ih eh`_gbbqlh_keb\k_hj^bgZeuhij_^_ezggh]hdeZkkZhij_^_ebfu^he`_g[ulvhij_ ^_ebfbwlhldeZkkZ\wlhfkemqZ_hij_^_ebflZd`_bdeZkkke_^mxsbcaZgbfgh^ey ijbgylbywlh]hij_^iheh`_gbyijbqbgg_l >jm]b_iZjZ^hdku\qZklghklbiZjZ^hdk;mjZeb-Nhjlb^eyk\h_]hj_r_gbylj_[mxl g_dhlhjh]h^Zevg_cr_]hjZa\blbyl_fu V:DKBHF:KBFHKLB IjhihabpbhgZevgZynmgdpbyhlodZdfu\b^_eb^he`gZhlghkblvkyddZdhfm-lhih jy^dmke_^h\Zl_evghex[h_\ukdZau\Zgb_hµ\k_ok\hckl\Zoo¶[_kkfuke_gghµK\hckl \ho¶_klvlh`_kZfh_qlhbµijhihabpbhgZevgZynmgdpbybf_xsZykbem^eyo¶ Gh^ey \hafh`ghklbfZl_fZlbdbZ[khexlghg_h[oh^bfhbf_lvg_dhlhjucf_lh^^_eZlv\ukdZ au\Zgbydhlhju_[ueb[uwd\b\Ze_glgulhfmqlhfuih^jZamf_\Z_fdh]^Zg_dhjj_dl gh ]h\hjbfhµ\k_ok\hckl\Zoo¶WlZg_h[oh^bfhklvijhy\ey_lky\hfgh]bokemqZyogh hkh[_ggh\k\yabkfZl_fZlbq_kdhcbg^mdpb_cFufh`_fkdZaZlvbkihevamydZdh_-lh \f_klh\k_µDZdh_-lhk\hckl\hij_^iheZ]Z_fh_bqbkeZfbke_^mxsbfbaZ\k_fbqbk eZfb_]hij_^iheZ]Zxsbfbij_^iheZ]Z_lky\kydbfdhg_qgufqbkehf¶Ghfug_fh`_f i_j_clb d µDhg_qgh_ qbkeh – wlh qbkeh dhlhjh_ ij_^iheZ]Z_l \k_ k\hckl\Z ij_^iheZ ]Z_fu_bqbkeZfbke_^mxsbfbaZ\k_fbqbkeZfbboij_^iheZ]Zxsbfb¶?kebfuh] jZgbqb\Z_fwlh\ukdZau\Zgb_^h\k_oi_j\hihjy^dh\uok\hckl\qbk_efug_fh`_f\u
\_klbqlhhghbf__lkbem^ey\k_o\lhjhihjy^dh\uok\hckl\GZijbf_jfug_\khklhy gbb^hdZaZlvqlh_kebmbny\eyxlkydhg_qgufbqbkeZfblhm + ny\ey_lkydhg_qguf qbkehf B[h kh]eZkgh ^Zgghfm \ur_ hij_^_e_gbx µm _klv dhg_qgh_ qbkeh¶ y\ey_lky \lhjhihjy^dh\ufk\hckl\hfmke_^h\Zl_evghlhlnZdlqlhm_klvdhg_qgh_qbkeh bqlh_kebm + n_klvdhg_qgh_qbkehlhlZdh\ufy\ey_lkybm + ng_iha\hey_lgZf \u\_klbihbg^mdpbbqlhm + n _klvdhg_qgh_qbkehHq_\b^ghqlhlZdh_iheh`_gb_^_e ij_^klZ\ey_lfgh]h_bawe_f_glZjghcfZl_fZlbdbg_\hafh`guf Beb\havfzfhij_^_e_gb_dhg_qghklbq_j_ag_kh\iZ^_gb_p_eh]hbqZklbqlhgbqmlv g_ h[e_]qZ_l ^_eh B[h wlh hij_^_e_gb_ khklhbl \ ke_^mxs_f µ=h\hjblvky qlh deZkk dhg_q_g dh]^Z dZ`^h_ h^gh-h^ghagZqgh_ hlghr_gb_ qv_c h[eZklvx y\ey_lky ^Zgguc deZkk b qvy dhg\_jkgZy h[eZklv kh^_j`blky \ wlhf deZkk_ bf__l \_kv deZkk \ dZq_kl\_ k\h_c dhg\_jkghc h[eZklb¶ A^_kv ihy\ey_lky i_j_f_ggh_ hlghr_gb_ l_ i_j_f_ggZy nmgdpbyhl^\moi_j_f_gguofu^he`gu\aylv\k_agZq_gbywlhcnmgdpbbZwlhlj_[m _l qlh hgZ ^he`gZhlghkblky d g_dhlhjhfm ijbibkZgghfm ihjy^dm gh gbdZdhc ijbib kZggucihjy^hdg_iha\heblgZf \u\_klb fgh]b_ baijhihabpbc we_f_glZjghc fZl_fZ lbdb Ke_^h\Zl_evghfu^he`guhlukdZlv_keb\hafh`ghg_dhlhjucf_lh^k\_^_gbyih jy^dZijhihabpbhgZevghcnmgdpbbg_\ha^_ckl\mygZbklbgghklvbeh`ghklv_zagZq_ gbcIh-\b^bfhfmwlh]h^hklb]Z_la^jZ\uckfuke\\_^_gb_fdeZkkh\?keb\aylvdZdmxlh ijhihabpbhgZevgmx nmgdpbx φo ex[h]h ihjy^dZ ij_^iheZ]Z_lky qlh ^ey \k_o agZ q_gbcohgZwd\b\Ze_glgZ\ukdZau\ZgbxnhjfuµoijbgZ^e_`bldeZkkmα¶Wlh\ukdZau \Zgb_hlghkblkydi_j\hfmihjy^dmihkdhevdmhghg_^_eZ_lhlkuehddµ\k_nmgdpbblZ dh]h-lhblZdh]h-lhlbiZ¶B^_ckl\bl_evgh_]h_^bgkl\_ggh_ijZdlbq_kdh_ij_bfms_kl \hi_j_^i_j\hgZqZevguf\ukdZau\Zgb_f φokhklhbl\lhfqlhhghhlghkblkydi_j\hfm ihjy^dm<ij_^iheh`_gbbqlh^_ckl\bl_evghkms_kl\mxllZdb_\_sbdZddeZkkuij_ bfms_kl\g_lbijhlb\hj_qb_hlghkbl_evghdeZkkh\g_y\eyxsbokyqe_gZfbkZfbok_ [ywlhihdZau\Z_l_kebdeZkkukms_kl\mxlhgb^he`gu[ulvq_f-lhjZ^bdZevghhlebq gufhlbg^b\b^h\YiheZ]Zxqlh]eZ\gZyp_evdhlhjhckem`ZldeZkkub]eZ\gZyijb qbgZdhlhjZy^_eZ_lboebg]\bklbq_kdbm^h[gufbkhklhbl\lhfqlhhgbh[_ki_qb\Zxl f_lh^ k\_^_gby ihjy^dZ ijhihabpbhgZevghc nmgdpbb Ke_^h\Zl_evgh yg_[m^m ^himk dZlvgbq_]hqlhih-\b^bfhfmih^jZamf_\Z_lkyijb^hims_gbbdeZkkh\a^jZ\ufkfuk ehf aZ bkdexq_gb_f ke_^mxs_]h DZ`^Zy ijhihabpbhgZevgZy nmgdpby ^ey \k_ k\hbo agZq_gbcwd\b\Ze_glgZg_dhlhjhcij_^bdZlb\ghcnmgdpbb Wlh ^hims_gb_ \ hlghr_gbb nmgdpbc g_h[oh^bfh ijbgylv g_aZ\bkbfh hl lbiZ bo Zj]mf_glh\ Imklv φo – nmgdpby dZdh]h-lhihjy^dZhl Zj]mf_glZ o dhlhjuckZf fh`_l [ulv eb[h bg^b\b^hf eb[h nmgdpb_c dZdh]h-lh ihjy^dZ ?keb φ hlghkblky d ihjy^dm ke_^mxs_fmaZofuaZibku\Z_fnmgdpbx\nhjf_ φ!o\ wlhfkemqZ_fu[m^_fgZau \Zlv φ ij_^bdZlb\ghc nmgdpb_c LZdbf h[jZahf ij_^bdZlb\gZy nmgdpby hl bg^b\b^Z y\ey_lky nmgdpb_c i_j\h]h ihjy^dZ ^ey [he__ \ukhdbo lbih\ Zj]mf_glh\ ij_^bdZlb\ gu_ nmgdpbb aZgbfZxl f_klh dhlhjh_ i_j\hihjy^dh\u_ nmgdpbb aZgbfZxl \ hlghr_ gbb bg^b\b^h\ AZl_f fu ij_^iheZ]Z_f qlh dZ`^Zy nmgdpby ^ey \k_o k\hbo agZq_gbc wd\b\Ze_glgZ g_dhlhjhc ij_^bdZlb\ghc nmgdpbb hl l_o `_ kZfuo Zj]mf_glh\ Wlh ^h ims_gb_ih-\b^bfhfmy\ey_lkykmlvxh[uqgh]h^hims_gbydeZkkh\\h\kydhfkemqZ_ hghkhojZgy_lhldeZkkh\klhevfgh]hqlh[ufufh]ebbodZd-lhbkihevah\Zlvb^hklZ lhqgh fZeh qlh[u ba[_`Zlv ijhlb\hj_qbc dhlhju_ hohlgh ij_^iheZ]Zxl deZkku Fu [m^_fgZau\Zlvwlh^hims_gb_ZdkbhfhcdeZkkh\bebZdkbhfhck\h^bfhklb. Fu[m^_fij_^iheZ]ZlvqlhdZ`^Zynmgdpbyhl^\moi_j_f_gguowd\b\Ze_glgZ^ey \k_o k\hbo agZq_gbc ij_^bdZlb\ghc nmgdpbb hl wlbo i_j_f_gguo ]^_ ij_^bdZlb\gZy
nmgdpby hl ^\mo i_j_f_gguo lZdh\Z qlh \ hlghr_gbb h^ghc ba i_j_f_gguo nmgdpby klZgh\blkyij_^bdZlb\ghc\gZr_fij_^u^ms_fkfuke_ dh]^ZagZq_gb_ijbibku\Z_l ky^jm]hci_j_f_gghcWlh^hims_gb_ih-\b^bfhfmbih^jZamf_\Z_lkydh]^Z]h\hjyl qlh ex[h_ \ukdZau\Zgb_ h ^\mo i_j_f_gguo hij_^_ey_l hlghr_gb_ f_`^m gbfb Wlh ^hims_gb_ fu gZau\Z_f Zdkbhfhc hlghr_gbc beb Zdkbhfhc k\h^bfhklb ?keb bf_lv ^_eh k hlghr_gbyfb f_`^m [he__ q_f ^\mfy we_f_glZfb gm`gu koh^gu_ ^hims_gby ^eyljzoq_lujzo«i_j_f_gguoGhwlb^hims_gby^eygZr_cp_ebg_y\eyxlkyg_h[ oh^bfufbihwlhfmhgbbg_ijbgbfZxlky\^ZgghcklZlv_ KihfhsvxZdkbhfuk\h^bfhklb\ukdZau\Zgbyh[hµ\k_oi_j\hihjy^dh\uonmgdpb yohlo¶bebµ\k_oij_^bdZlb\guonmgdpbyohl α¶ho\Zlu\Zxl[hevrbgkl\hj_amevlZlh\ dhlhju_bgZq_lj_[h\Zeb[u\ukdZau\Zgbchµ\k_onmgdpbyo¶Kms_kl\_ggucimgdlkh klhbl \ lhf qlh lZdb_ j_amevlZlu ihemqZxlky \h \k_o kemqZyo ]^_ mf_klgZ lhevdh bk lbgghklvbebeh`ghklvagZq_gbcjZkkfZljb\Z_fuonmgdpbcZwlhlkemqZc\fZl_fZlbd_ ihklhy]g_g LZdbf h[jZahf fZl_fZlbq_kdZy bg^mdpby gZijbf_j gm`^Z_lky l_i_jv lhevdh\lhfqlh[u[ulvmklZgh\e_gghc^ey\k_oij_^bdZlb\guonmgdpbchlqbk_elh ]^ZbaZdkbhfudeZkkh\ke_^m_lqlhhgZbf__lkbem^eyex[hcnmgdpbbex[h]hihjy^dZ Fh`ghih^mfZlvqlhiZjZ^hdkujZ^bdhlhjuofubah[j_ebb_jZjobxlbih\ihy\ylky \gh\vGhwlhg_lhlkemqZcihkdhevdm\lZdboiZjZ^hdkZoeb[haZljZ]b\Z_lky_szqlh-lh ihfbfhbklbgghklbbeh`ghklbagZq_gbcnmgdpbceb[h\klj_qZxlky\ujZ`_gbydhlh ju_hklZxlky [_a agZq_gby ^Z`_ihke_ \\_^_gby Zdkbhfuk\h^bfhklb GZijbf_j lZdh_ \ukdZau\Zgb_ dZd µWibf_gb^ ml\_j`^Z_l ψo¶ g_ wd\b\Ze_glgh µWibf_gb^ ml\_j`^Z_l φ!o¶^Z`__kebψob φ!owd\b\Ze_glguLZdbfh[jZahfµYk_cqZke]m¶hklZzlky[_aagZq_ gby_kebfuiulZ_fky\dexqblv\k_ijhihabpbb\kh\hdmighklvl_odhlhju_yfh][u eh`gh ml\_j`^Zlv b g_ aZljZ]b\Z_lky Zdkbhfhc deZkkh\ _keb fu h]jZgbqb\Z_f _z ^h ijhihabpbcihjy^dZnB_jZjobyijhihabpbcbnmgdpbcklZeh[ulvhklZzlkymf_klghc dZdjZa\l_okemqZyo\dhlhjuog_h[oh^bfhba[_`ZlviZjZ^hdkZ VIBKOH>GU?B>?BBIJHIHABPBBKBFbatxgdpbybebeh]bq_kdZykmffZ^\moijhihabpbcl_µwlhbeblh¶?kebjbq kmlv^\_ijhihabpbbbo^batxgdpby[m^_lh[hagZqZlvkydZdj∨q1. Bklbgghklv dZdh]h-lh agZq_gby ijhihabpbhgZevghc nmgdpbb l_ nmgdpbb φo, ]^_og_mlhqgy_lky Bklbgghklv \k_o agZq_gbc ijhihabpbhgZevghc nmgdpbb Wlh h[hagZqZ_lky dZd (o).φobebo):φo^eyaZdexq_gbyijhihabpbc\kdh[dbfh`_lihlj_[h\Zlvkyb[hevr__ 1
< ij_^u^ms_c klZlv_ ^ey wlh]h `mjgZeZ \ dZq_kl\_ g_hij_^_ey_fhc \f_klh ^batxgdpbb y [jZe bf iebdZpbx
qbkehlhq_d1<o).φo ogZau\Z_lkyfgbfhci_j_f_gghcdh]^Z φoml\_j`^Z_lkylZf]^_ og_mlhqgzgogZau\Z_lky^_ckl\bl_evghci_j_f_gghc. DZdZy-lh ij_^bdZlb\gZy nmgdpby hl Zj]mf_glZ dZdh]h-lh lbiZ ih h[klhyl_evkl \Zf hgZ [m^_l ij_^klZ\e_gZ dZd φ!o, φ!α beb φ!R Ij_^bdZlb\gZy nmgdpby hl o – wlh nmgdpby qvb agZq_gby y\eyxlky ijhihabpbyfb hlghkysbfbky d lbim ke_^mxs_fm aZ lbihf o _keb o y\ey_lkybg^b\b^hfbeb ijhihabpb_c beb aZ lbihf agZq_gbc o _keb o y\ey_lkynmgdpb_cHgZfh`_l[ulvhibkZgZdZdnmgdpby\dhlhjhc\k_fgbfu_i_j_ f_ggu__keblZdh\u__klvhlghkylkydh^ghfmlbimkobebdf_gvr_fmlbimI_j_f_g gZyhlghkblkydf_gvr_fmq_folbim_kebhgZfh`_lagZqbfh\klj_qZlvkydZdZj]mf_gl \kZfhf obebdZdZj]mf_gl\Zj]mf_gl_kZfh]hobl^ Ml\_j`^_gb_l_ml\_j`^_gb_qlhg_dhlhjZyijhihabpbyy\ey_lkybklbgghcbeb qlh dZdh_-lh agZq_gb_ g_dhlhjhc ijhihabpbhgZevghc nmgdpbb y\ey_lky bklbgguf Ml \_j`^_gb_ lj_[m_lky ^ey lh]h qlh[u hlebqblv ^_ckl\bl_evgh ml\_j`^Z_fmx ijhihab pbxhlijhihabpbbijhklhjZkkfZljb\Z_fhcbebhlijhihabpbbgZdhlhjmxkkueZxlky dZdgZmkeh\b_g_dhlhjhc^jm]hcijhihabpbbGZml\_j`^_gb_[m^_lmdZau\ZlvagZdµL¶ ij_^ihkeZgguc lhfm qlh ml\_j`^Z_lky k ^hklZlhqguf dhebq_kl\hf lhq_d qlh[u aZ dexqblvlhqlhml\_j`^Z_lky\kdh[db2. I_j_^ l_f dZd i_j_clb d bkoh^guf ijhihabpbyf gZf gm`gu g_dhlhju_ hij_^_e_ gby<ke_^mxsbohij_^_e_gbyolZd`_dZdb\bkoh^guoijhihabpbyo[md\up, q, rbk ihevamxlky^eyh[hagZq_gbyijhihabpbc p ⊃ q . = . ∼p ∨ q Df. Wlhhij_^_e_gb_mklZgZ\eb\Z_lqlhµp ⊃ q¶dhlhjh_ijhqblu\Z_lkydZdµj\e_qzlq’) ^he`ghhagZqZlvµj –eh`ghbebq –bklbggh¶Yg_gZf_j_\Zxkvml\_j`^Zlvqlhµ\e_ qzl¶g_fh`_lbf_lv^jm]h]hkfukeZghml\_j`^ZxlhevdhlhqlhwlhlkfukegZb[he__ ih^oh^bl ^ey lh]h qlh[u aZ^Zlv µ\e_qzl¶ \ kbf\hebq_kdhc eh]bd_ < hij_^_e_gbb agZd jZ\_gkl\Z b [md\u µDf¶ ^he`gu jZkkfZljb\Zlvky dZd h^bg kbf\he kh\f_klgh hagZqZy µagZqblihhij_^_e_gbx¶AgZdjZ\_gkl\Z[_a[md\µDf¶bf__lbghckfukedhlhjuc\kdh j_[m^_ljZkkfhlj_g p . q . = . ∼(∼p ∨ ∼q)
Df.
Wlhhij_^_ey_leh]bq_kdh_ijhba\_^_gb_^\moijhihabpbcjbql_µjbqh[Zy\ey xlky bklbggufb¶ Ijb\_^zggh_ hij_^_e_gb_ mklZgZ\eb\Z_l qlh wlh ^he`gh hagZqZlv µEh`ghqlhj –eh`ghbebq –eh`gh¶A^_kvhij_^_e_gb_kgh\Zg_^Zzl_^bgkl\_ggh]h kfukeZdhlhjucfh`_l [ulvijb^Zgµjbqh[Zy\eyxlkybklbggufb¶ gh aZ^Zzl agZq_ gb_dhlhjh_gZb[he__ih^oh^bl^eygZr_cp_eb p ≡ q . = . p ⊃ q . q ⊃ p Df.
Ijbbkihevah\Zgbblhq_dfuke_^m_fI_ZghWlh bkihevah\Zgb_ iheghklvx h[tykg_gh f-jhf MZclo_ ^hf; kf.: ‘On Cardinal Numbers’, American Journal of Mathematics, Vol, XXIV, b ‘On Mathematical Concepts of Material World’, Phil. Trans. A., Vol. CCV, P. 472. 2 WlbfagZdhfdZdb\\_^_gb_fb^_bdhlhjmxhg\ujZ`Z_lfuh[yaZguNj_]_Kf_]hBegriffsschrift (Halle, 1879), C>Jmkkdbci_j_\h^kfBkqbke_gb_ihgylbcNj_]_=Eh]bdZbeh]bq_kdZyk_fZglb dZ–F:ki_dlIj_kk@bGrundgesetze der Arithmetik (Jena, 1983), Vol. I, C. 9. 1
Lh _klv µp ≡ q¶ dhlhjh_ qblZ_lky dZd µj wd\b\Ze_glgh q¶ hagZqZ_l µj \e_qzl q b q \e_qzlj¶hldm^Zdhg_qghke_^m_lqlhjbqy\eyxlkyh[Zbklbggufbbebh[Zeh`gufb (∃ ∃o) . φo . = . ∼{(x) . ∼φx}
Df.
Wlhhij_^_ey_lµKms_kl\m_lihdjZcg_cf_j_h^ghagZq_gb_o^eydhlhjh]h φoy\ey _lkybklbgguf¶Fuhij_^_ey_fihke_^g__dZdhagZqZxs__µEh`ghqlh φo\k_]^Zeh` gh¶ x = y . = : (φ) : φ!x . ⊃ . φ!y
Df.
Wlh–hij_^_e_gb_jZ\_gkl\ZHghmklZgZ\eb\Z_lqlhobm^he`gugZau\ZlvkyjZ\ gufb dh]^Z dZ`^Zy ij_^bdZlb\gZy nmgdpby \uihegyxsZyky o \uihegy_lky m Ba Zd kbhfuk\h^bfhklbke_^m_lqlh_kebo\uihegy_l ψo]^_ ψ_klvdZdZy-lhnmgdpbyij_ ^bdZlb\gZybebg_ij_^bdZlb\gZylhm\uihegy_lψm. Ke_^mxsb_hij_^_e_gbyf_g__\Z`gub\\h^ylkylhevdhkp_evxkhdjZs_gby (x, y) . φ(x, y) . = : (x) : (y) . φ(x, y) Df, Df, (∃ ∃x, y) . φ(x, y) . = : (∃ ∃x) : (∃ ∃y) . φ(x, y) φx . ⊃x . ψx : = : (x) : φx ⊃ ψx Df, φx . ≡x . ψx : = : (x) : φx . ≡ . ψx Df, φ(x, y) . ⊃x, y . ψ(x, y) : = : (x, y) : φ(x, y) . ⊃ . ψ(x, y)
Df,
bl^^eyex[h]hqbkeZi_j_f_gguo Lj_[mxlky ke_^mxsb_ bkoh^gu_ ijhihabpbb \ b p, q, r h[hagZqZxl ijhihabpbb (1) Ijhihabpby\u\_^_ggZybabklbgghcihkuedby\ey_lkybklbgghc (2) L: p ∨ p . ⊃ . p. (3) L: q . ⊃ . p ∨ q. (4) L: p ∨ q . ⊃ . q ∨ p. (5) L: p ∨ (q ∨ r) . ⊃ . q ∨ (p ∨ r). (6) L: . q ⊃ r . ⊃ : p ∨ q . ⊃ . p ∨ r. (7) L: (x) . φx . ⊃ . φy; l_µ_keb\k_agZq_gbyφ ∧o y\eyxlkybklbggufblhφmy\ey_lkybklbgguf]^_φm_klvdZ dh_-lhagZq_gb_¶1. ?keb φm – bklbggh ]^_ φm _klv dZdh_-lh agZq_gb_ φ ∧o lho).φo – bklbggh Wlh]h g_evay\ujZablv\gZrbokbf\heZob[h_kebfuaZibku\Z_fµφm . ⊃ . (o)φo¶wlhhagZqZ_l ‘φm\e_qzlqlh\k_agZq_gby φ ∧o y\eyxlkybklbggufb]^_mfh`_lijbgbfZlvex[h_agZ q_gb_ih^oh^ys_]hlbiZ¶qlh\h[s_fg_bf__lf_klZLhqlhfugZf_j_\Z_fkyml\_j `^ZlvaZdexqZ_lky\ke_^mxs_fµ?kebijbex[hf\u[jZgghfm φm –bklbgghlho).φo – bklbggh¶lh]^ZdZdlhqlh\ujZ`_ghihkj_^kl\hfµφy . ⊃ . (x) . φx¶_klvµIjbex[hf\u
1
M^h[ghbkihevah\ZlvaZibkvφoqlh[uh[hagZqblvkZfmnmgdpbx\ijhlb\hiheh`ghklvlhfmbebbgh fmagZq_gbxwlhcnmgdpbb
[jZgghfm_kebφm –bklbgghlho).φo –bklbggh¶qlhy\ey_lkykh\_jr_gghbguf\ukdZ au\Zgb_fdhlhjh_\h[s_fkemqZ_eh`gh (9) L: (o) . φo . ⊃ . φZ]^_Z_klvdZdZy-lhhij_^_ezggZydhgklZglZ WlhijbgpbigZkZfhf^_e_ij_^klZ\ey_lkh[hcfgh]hjZaebqguoijbgpbih\Zbf_g gh klhevdh kdhevdh kms_kl\m_l \hafh`guo agZq_gbc Z L_ hg mklZgZ\eb\Z_l gZijb f_j qlh lh qlh bf__l kbem ^ey \k_o bg^b\b^h\ bf__l kbem ^ey KhdjZlZ Z lZd`_ hgh bf__l kbem ^ey IeZlhgZb l^ Wlhl ijbgpbi khklhbl \ lhf qlhh[s__ijZ\beh fh`gh ijbf_gblvdqZklghfmkemqZxghqlh[uaZ^Zlv_]hh[eZklvg_h[oh^bfhmihfygmlvhl ^_evgu_ijbf_juihkdhevdm\ijhlb\ghfkemqZ_gZfgm`_gijbgpbidhlhjuckZfaZ\_ jylgZk\h[s_fijZ\be_qlhh[sb_ijZ\beZdhlhju_fh]mlijbf_g_gudqZklghfmkem qZx fh]ml [ulv ijbf_g_gu d hl^_evghfm kemqZx kdZ`_f d KhdjZlm LZdbf h[jZahf wlhlijbgpbihlebqZ_lkyhl ^Zggucijbgpbi\ukdZau\Z_lkyhKhdjZl_IeZlhg_beb dZdhc-lh^jm]hcdhgklZgl_lh]^ZdZd \ukdZau\Z_lkyhi_j_f_gghc MdZaZgguc ijbgpbi gbdh]^Z g_ bkihevam_lky \ kbf\hebq_kdhc eh]bd_ beb \ qbklhc fZl_fZlbd_ihkdhevdm\k_gZrbijhihabpbby\eyxlkyh[sbfbB^Z`_lh]^Zdh]^ZdZd \µh^bg_klvqbkeh¶ fuih\b^bfhklbbf__fkljh]hqZklguckemqZcijb[ebadhfjZk kfhlj_gbbhgg_hdZau\Z_lkylZdh\ufNZdlbq_kdbijbf_g_gb_wlh]hijbgpbiZy\ey_l ky hlebqbl_evguf ijbagZdhf ijbdeZ^ghc fZl_fZlbdb KlZeh [ulv kljh]h ]h\hjy fu ^he`gubkdexqblv_]hbagZr_]hkibkdZ (10) L: . (o) . j ∨ φo . ⊃ : j . ∨ . (o) . φo; l_µ_keb³jbebφo” –\k_]^Zbklbgghlhbebj –bklbgghbebφo –\k_]^Zbklbggh¶ Dh]^Zf(φx) –bklbgghijbex[hf\hafh`ghfZj]mf_gl_obF(φy) –bklbgghijb ex[hf\hafh`ghfZj]mf_gl_mlh]^Z^f(φx) . F(φx `y\ey_lkybklbggufijbex[hf\ha fh`ghfZj]mf_gl_o. Wlh–ZdkbhfZµg_hij_^_ezgghklbi_j_f_gguo¶HgZgm`gZdh]^ZhdZ`^hcba^\mo hl^_evguoijhihabpbhgZevguonmgdpbcba\_klghqlhhgb\k_]^Zy\eyxlkybklbggufb b fu ohlbf \u\_klb qlh bo eh]bq_kdh_ ijhba\_^_gb_ \k_]^Z y\ey_lky bklbgguf Wlhl \u\h^ hijZ\^Zg lhevdh lh]^Z dh]^Z ^\_ nmgdpbb ijbgbfZxl Zj]mf_glu h^gh]h b lh]h `_lbiZb[h\ijhlb\ghfkemqZ_boeh]bq_kdh_ijhba\_^_gb_[_kkfuke_ggh ?keb φo.φo⊃ψo –bklbggh^eyex[h]h\hafh`gh]holh ψo –bklbggh^eyex[h]h \hafh`gh]ho. WlZ ZdkbhfZ lj_[m_lky ^ey lh]h qlh[u aZ\_jblv gZk \ lhf qlh h[eZklv agZqbfhklb ψo\ij_^iheZ]Z_fhfkemqZ_kh\iZ^Z_lkh[eZklvxagZqbfhklbφo.φo⊃ψo.⊃.ψonZdlbq_ kdbh[_h[eZklbkh\iZ^Zxlkh[eZklvxagZqbfhklbφo<ij_^iheZ]Z_fhfkemqZ_fuagZ _f qlh ψo – bklbggh \_a^_ ]^_ b φo.φo⊃ψo b φo.φo⊃ψo.⊃.ψo y\eyxlky agZqbfufb gh [_aZdkbhfufug_agZ_fqlh ψo –bklbggh\_a^_]^_ ψoy\ey_lkyagZqbfufKe_^h\Z l_evghwlZZdkbhfZgZfg_h[oh^bfZ :dkbhfu b lj_[mxlkygZijbf_jijb^hdZaZl_evkl\_ (o) . φo : (o) . φo ⊃ ψo : ⊃ . (o) . ψo. Ih b L: . (o) . φo : (o) . φo ⊃ ψo : ⊃ : φm . φm ⊃ ψm, hlkx^Zih L: . (o) . φo : (o) . φo ⊃ ψo : ⊃ : ψm,
hlkx^Zj_amevlZl\ul_dZ_lih b (13) L: . (∃ ∃f) : . (x) : φx . ≡ . f!x. Wlh – ZdkbhfZ k\h^bfhklb HgZ mklZgZ\eb\Z_l qlh _keb aZ^Zlv dZdmx-lh nmgdpbx ∧ φ o lhkms_kl\m_llZdZyij_^bdZlb\gZynmgdpbyf! ∧o qlhf!x\k_]^Zwd\b\Ze_glgZ φoAZ ∃f ¶ihhij_^_e_gbx_klvhljbpZgb_ f_lbfqlhihkdhevdmijhihabpbygZqbgZxsZykykµ∃ ijhihabpbbgZqbgZxs_ckykµf ¶ijb\_^zggZyZdkbhfZ\dexqZ_l\hafh`ghklvjZkkfhl j_gby µ\k_o ij_^bdZlb\guo nmgdpbc hl o¶ ?keb φo _klv dZdZy-lh nmgdpby hl o fu g_ ∃φ ¶ihkdhevdmfug_fh`_f fh`_f\ukdZaZlvijhihabpbxgZqbgZxsmxkykµφ ¶bebµ∃ jZkkfZljb\Zlv µ\k_ nmgdpbb¶ gh lhevdh µdZdmx-lh nmgdpbx¶ beb µ\k_ ij_^bdZlb\gu_ nmgdpbb¶ (14) L: . (∃ ∃f) : . (x, y) : φ(x, y) . ≡ . f!(x, y). Wlh–ZdkbhfZk\h^bfhklb^ey^\mof_klghcnmgdpbb < ijb\_^zgguo \ur_ ijhihabpbyo gZrb o b m fh]ml hlghkblvky d ex[hfm lbim ?^bgkl\_ggh_ ]^_ mf_klgZ l_hjby lbih\ khklhbl \ lhf qlh ebrv iha\hey_l gZf hlh`^_kl\blv ^_ckl\bl_evgu_ i_j_f_ggu_ \klj_qZxsb_ky \ jZaebqguo kh^_j`Zgbyo dh]^Z^_fhgkljbjm_lkyqlhhgbhlghkylkydh^ghfmblhfm`_lbimihkdhevdm\h[hbo kemqZyo\oh^yldZdZj]mf_gluh^ghcblhc`_nmgpbbbqlh\ b mbZkhhl\_lkl \_ggh^he`guhlghkblkydlbimih^oh^ys_fm^eyZj]mf_glh\ φ ∧z Ihwlhfm_kebij_^ iheh`blvgZijbf_jqlhmgZk_klvijhihabpbynhjfuφ).f!(φ! ∧z , x y\eyxsZyky\lhjh ihjy^dh\hcnmgdpb_chlolhih L: (φ) . f!(φ! ∧z , x) . ⊃ . f!(ψ! ∧z , x), ]^_ ψ! ∧z _klvdZdZy-lhnmgdpbyi_j\h]hihjy^dZGhφ) . f!(φ! ∧z , x g_evayjZkkfZljb\Zlv lZddZd_keb[uhgZ[ueZi_j\hihjy^dh\hcnmgdpb_chlob[jZlvwlmnmgdpbxdZd\ha fh`gh_agZq_gb_ ψ! ∧z \mdZaZgghf\ur_\ujZ`_gbbIh^h[gh_kf_r_gb_lbih\ijb\h ^bldiZjZ^hdkme`_pZ. Kgh\Z jZkkfhljbf deZkku dhlhju_ g_ y\eyxlky qe_gZfb kZfbo k_[y Ykgh qlh ih kdhevdmfuhlh`^_kl\ey_fdeZkkuknmgdpbyfb1gbh[h^ghfdeZkk_g_evayagZqbfh]h \hjblvqlhhgy\ey_lkybebg_y\ey_lkyqe_ghfkZfh]hk_[yb[hqe_gudeZkkZy\eyxlky Zj]mf_glZfb nmgdpbb Z Zj]mf_glu nmgdpbb \k_]^Z hlghkylky d lbim [he__ gbadhfm q_fnmgdpbyB_kebfukijhkbfµDZdh[klhbl^_ehkdeZkkhf\k_odeZkkh\"Hgqlh`_ g_ y\ey_lky deZkkhf b ihwlhfm qe_ghf kZfh]h k_[y"¶ hl\_l ^\hckl\_g_g
Wlhhlh`^_kl\e_gb_ih^e_`blfh^bnbdZpbbdhlhjZy\kdhj_[m^_lh[tykg_gZ
VIIWE?F?GL:JG:YL?HJBYDE:KKH<BHLGHR?GBC Ijhihabpbb\dhlhju_\oh^blnmgdpby φfh]mlihk\h_fmbklbgghklghfmagZq_gbx aZ\bk_lvhlhkh[hcnmgdpbbφbeb`_hgbfh]mlaZ\bk_lvhlh[tzfZφl_hlZj]mf_glh\ dhlhju_\uihegyxl φNmgdpbbihke_^g_]hkhjlZfu[m^_fgZau\Zlvwdkl_gkbhgZevgu fbLZdgZijbf_jµY\_jxqlh\k_ex^bkf_jlgu¶g_fh`_l[ulvwd\b\Ze_glghµY\_ jxqlh\k_[_kizju_^\mgh]b_kf_jlgu¶^Z`__kebex^bihh[tzfmkh\iZ^Zxlk^\mgh ]bfb [_kizjufb b[h y fh]m b g_ agZlv qlh ih h[tzfm hgb h^bgZdh\u Gh µ
Df.
Nmgdpbyf{ ∧z (ψz `nZdlbq_kdb_klvnmgdpbyhl ψ ∧z ohlyhgZbg_kh\iZ^Z_lknmgdpb_c f(ψ! ∧z ij_^iheZ]Zy qlh wlZ ihke_^gyy y\ey_lky agZqbfhc Gh ljZdlh\Zlv lZd f{ ∧z (ψz)} l_ogbq_kdb m^h[gh ohly hgZb kh^_j`bl Zj]mf_gl ∧z (ψz dhlhjuc fugZau\Z_fµdeZkk hij_^_ey_fucihkj_^kl\hfψ¶Fubf__f L: . φx . ≡x . ψx : ⊃ : f{ ∧z (φz)} . ≡ . f{ ∧z (ψz)},
ke_^h\Zl_evgh ijbf_gyy hij_^_e_gb_ lh`^_kl\Z d nbdlb\guf h[t_dlZf ∧z (φz b ∧z (ψz), ^Zggh_\ur_fugZoh^bfqlh L: . φx . ≡x . ψx : ⊃ . ∧z (φz) = ∧z (ψz).
Wlhml\_j`^_gb_ZlZd`__]hdhg\_jkbyqlhlZd`_fh`gh^hdZaZlv mdZau\Z_lhleb qbl_evgh_ k\hckl\h deZkkh\ Ke_^h\Zl_evgh fu \iheg_ fh`_f ljZdlh\Zlv ∧z (φz dZd deZkkhij_^_ey_fucihkj_^kl\hfφL_f`_kZfufkihkh[hffumklZgZ\eb\Z_f f{ ∧x ∧y ψ(x, y)} . = : (∃ ∃φ) : φ!(x, y) . ≡x, y . ψ(x, y) : f{φ!( ∧x , ∧y )}
Df.
A^_kvg_h[oh^bfhg_kdhevdhkeh\hlghkbl_evghjZaebqbyf_`^m φ!( ∧x , ∧y b φ!( ∧y , ∧x Fu [m^_f ijbgbfZlv ke_^mxs__ kh]eZr_gb_ Dh]^Z nmgdpby \ ijhlb\hiheh`ghklv k\hbf agZq_gbyf ij_^klZ\e_gZ \ nhjf_ \dexqZxs_c ∧x b ∧y beb dZdb_-lh ^jm]b_ ^\_ [md\u ZenZ\blZ agZq_gb_wlhcnmgdpbb^eyZj]mf_glh\Zbb^he`ghh[gZjm`b\Zlvkyih^klZ gh\dhc Z \f_klh ∧x b b \f_klh ∧y l_ Zj]mf_gl mihfbgZxsbcky i_j\uf ^he`_g ih^ klZ\eylvky \f_klh [md\u dhlhjZy \klj_qZ_lky \ ZenZ\bl_ jZgvr_ Z Zj]mf_gl mihfb
gZxsbcky \lhjuf – \f_klh [md\u dhlhjZy \klj_qZ_lky iha^g__ B wlh \iheg_ m^h\e_ l\hjbl_evghijh\h^bljZaebqb_f_`^mφ!( ∧x , ∧y bφ!( ∧y , ∧x gZijbf_j AgZq_gb_φ!( ∧x , AgZq_gb_φ!( ∧x , AgZq_gb_φ!( ∧y , AgZq_gb_φ!( ∧y , FumklZgZ\eb\Z_f ke_^h\Zl_evgh
∧ y ^eyZj]mf_glh\Zbb_klvφ!(Z, ∧ y ^eyZj]mf_glh\bbZ_klvφ!(b, ∧ x ^eyZj]mf_glh\Zbb_klvφ!(b, ∧ x ^eyZj]mf_glh\bba_klvφ!(a,
o∈φ! ∧z . = . φ!o
b). Z). a). b).
Df.,
L: . x∈ ∧z (ψz) . = : (∃ ∃φ) : φ!y . ≡y . ψy : φ!x.
Dlhfm`_ihZdkbhf_k\h^bfhklbfubf__f
(∃ ∃φ) : φ!y . ≡y . ψy,
ke_^h\Zl_evgh
L: x∈ ∧z (ψz) . ≡ . ψx.
Wlh bf__l kbem ijb ex[hf o Ij_^iheh`bf l_i_jv qlh fu ohlbf jZkkfhlj_lv
∧ ∧ ∧ z (ψz)∈ φ f{ z (φ!z `Kh]eZkghbaeh`_gghfm\ur_fubf__f
hlkx^Z
L: . ∧z (ψz)∈ φ∧ f{ ∧z (φ!z)} . ≡ . f{ ∧z (ψz)} : ≡ : (∃ ∃φ) : φ!y . ≡y . ψy : f(φ!z), L: . ∧z (ψz) = ∧z (χz) . ⊃ : ∧z (ψz)∈x . ≡χ . ∧z (χz)∈x,
]^_oaZibku\Z_lky\f_klhex[h]h\ujZ`_gbynhjfu φ∧ f{ ∧z (φ!z)}. FumklZgZ\eb\Z_f Df. ∃φ} . α = ∧z (φ!z)} cls = α∧ {(∃
A^_kv cls h[eZ^Z_l agZq_gb_f dhlhjh_aZ\bkblhl lbiZ fgbfhc i_j_f_gghc φ Ke_^h\Z l_evgh ijhihabpby µcls ∈ cls¶ gZijbf_j y\eyxsZyky ke_^kl\b_f ijb\_^zggh]h \ur_ hij_^_e_gbylj_[m_lqlhµcls’^he`ghh[eZ^ZlvjZaebqgufagZq_gb_f\^\mof_klZo]^_ hgh \klj_qZ_lky Kbf\he µcls’ fh`_l bkihevah\Zlvky lhevdh lZf ]^_ g_h[oh^bfh agZlv lbihgh[eZ^Z_lg_hij_^_ezgghklvxdhlhjZyijbkihkZ[eb\Z_lkydh[klhyl_evkl\Zf?k eb fu \\h^bf dZd g_hij_^_ey_fmx nmgdpbx µIndiv!x’ hagZqZxsmx µx – bg^b\b^¶ fu fh`_fmklZgh\blv Kl =
∧ ∃φ} α {(∃
. α = ∧z (φ!z . Indiv!z)}
Df.
Lh]^ZKl –wlhhij_^_ezgguckbf\hehagZqZxsbcµdeZkkbg^b\b^h\¶ Fu[m^_fbkihevah\Zlvkljhqgu_[md\u]j_q_kdh]hZenZ\blZbgu_q_f ∈, φ, ψ, χ, θ qlh[uij_^klZ\eylvdeZkkuex[h]hlbiZl_h[hagZqZlvkbf\heunhjfu ∧z (φ!z beb ∧ z (φz). Kwlh]himgdlZl_hjbydeZkkh\\hfgh]hfjZa\b\Z_lkydZd\kbkl_f_I_Zgh ∧z (φz aZ f_gy_lz%(φz LZd`_ymklZgZ\eb\Zx
α ⊂ β . = : x∈α . ⊃ . x∈β Df., Df., ∃!α . = . (∃ ∃x) . x∈α ∧ V = x (x = x)Df., Λ = ∧x {∼(x = x)} Df., ∃, Λ, VdZdbkbf\heuclsb ∈g_hij_ ]^_ΛdZdbmI_Zgh_klvgmev-deZkkKbf\heu∃ ^_e_gubijbh[j_lZxlhij_^_ezggh_agZq_gb_dh]^ZjZkkfZljb\Z_fuclbimdZaZgbguf kihkh[hf Hlghr_gbyfuljZdlm_flhqghlZdbf`_kihkh[hfmklZgZ\eb\Zy a{φ!( ∧x , ∧y )}b . = . φ!(a, b)
Df.
ihjy^hd ij_^hij_^_ezg ZenZ\blguf ihjy^dhf o b m b lbih]jZnkdbf ihjy^dhf Z b b); hlkx^Z L: . a{ ∧x ∧y ψ(x, y)}b . ≡ : (∃ ∃φ) : ψ(x, y) . ≡x, y . φ!(x, y) : φ!(a, b), hldm^ZihZdkbhf_k\h^bfhklb L: a{ ∧x ∧y ψ(x, y)}b . ≡ . ψ(a, b). Bkihevamyijhibkgu_[md\ueZlbgkdh]hZenZ\blZ\dZq_kl\_khdjZs_gby^eylZdbokbf \heh\dZd ∧x ∧y ψ(x, y fugZoh^bfqlh ]^_ FumklZgZ\eb\Z_f
L: . R = S . ≡ : xRy . ≡x, y . xSy, R = S . = : f!R . ⊃f . f!S Rel =
∧ R {∃ ∃φ)
.R=
∧ ∧ x y φ!(x,
Df. y)} Df.
b gZoh^bf qlh \kz qlh ^hdZau\Z_lky ^ey deZkkh\ bf__l k\hc ZgZeh] ^ey ^\mof_klguo hlghr_gbcKe_^myI_ZghfumklZgZ\eb\Z_f
α∩β = ∧x (x∈α . x∈β)
Df.,
hij_^_eyyijhba\_^_gb_bebh[smxqZklv^\modeZkkh\
α∪β = ∧x (x∈α . ∨ . x∈β) Df., hij_^_eyykmffm^\modeZkkh\b – α = ∧x {∼(x∈α)} Df., hij_^_eyyhljbpZgb_deZkkZKoh^gufh[jZahf^eyhlghr_gbcfumklZgZ\eb\Z_f
•
R ∩S = •
R∪S =
∧ ∧ x y (xRy
∧ ∧ x y (xRy
. xSy)
Df.,
. ∨ . xSy)
• ∧ − R = x ∧y {∼(xRy)}
Df., Df.
VIII. >?KDJBILB
pbclZdbodZdR ∩ S[uebijhihabpbhgZevgufbGhh[uqgu_nmgdpbbfZl_fZlbdblZ db_dZdo2, sin x, log xg_y\eyxlkyijhihabpbhgZevgufbNmgdpbbwlh]h\b^Z\k_]^Zha gZqZxlµwe_f_glbf_xsbclZdh_-lhblZdh_-lhhlghr_gb_do¶Ihwlhcijbqbg_hgbfh ]ml [ulv gZa\Zgu ^_kdjbilb\gufb [descriptive@ nmgdpbyfb ihkdhevdm hgb hibku\Zxl [describe@ hij_^_ezgguc we_f_gl q_j_a _]h hlghr_gb_ d bo Zj]mf_glZf LZd µsin π/2’ hibku\Z_lqbkehh^gZdhijhihabpbb\dhlhjuo\klj_qZ_lky πg_hklZgmlkyl_fb`_ kZfufb_keb[u\gbo[uehih^klZ\e_ghWlhgZijbf_jh[gZjm`b\Z_lkybaijhihab pbbµsin π ¶dhlhjZykh^_j`blagZqbfmxbgnhjfZpbxlh]^ZdZdµ ¶–ljb\bZevgh >_kdjbilb\gu_ nmgdpbb bf_xl agZq_gb_ g_ kZfb ih k_[_ gh lhevdh dZd dhgklblm_glu ijhihabpbcbwlh\hh[s_ijbf_gy_lkydnjZaZfnhjfuµwe_f_glbf_xsbclZdh_-lhb lZdh_-lhk\hckl\h¶Ke_^h\Zl_evghbf_y^_ehklZdbfbnjZaZfbfu^he`guhij_^_eylv dZdmx-lhijhihabpbx\dhlhjmxhgb\oh^ylZg_njZamkZfmihk_[_1LZdbfh[jZahf fu ijboh^bf d ke_^mxs_fm hij_^_e_gbx \ dhlhjhf µ x)(φx)’ ^he`gh qblZlvky dZd ‘^Zgguc [the@we_f_glxdhlhjuc\uihegy_lφo’. •
∃b) : φx . =x . x=b : ψb ψ{( x)(φx)} . = : (∃
Df.
Wlh hij_^_e_gb_ mklZgZ\eb\Z_l qlh µwe_f_gl dhlhjuc \uihegy_l φ \uihegy_l ψ’ ^he`gh hagZqZlv µKms_kl\m_l l_jfbg b lZdhc qlh φo – bklbggh lh]^Z b lhevdh lh]^Z dh]^Zo_klvbb ψb –bklbggh¶LZdbfh[jZahf\k_ijhihabpbbh[µ^ZgghflZdhf-lhb lZdhf-lh¶[m^mleh`gufb_keblZdh]h-lhblZdh]h-lhg_kms_kl\m_lbebbokms_kl\m_l g_kdhevdh H[s__hij_^_e_gb_^_kdjbilb\ghcnmgdpbby\ey_lkyke_^mxsbf R‘y = (
x)(xRy) Df.;
l_µR‘y¶^he`ghhagZqZlvµwe_f_gldhlhjucbf__lhlghr_gb_Rdm¶?keb`_kms_kl\m _lg_kdhevdhbebg_kms_kl\m_lgbh^gh]hwe_f_glZbf_xs_]hhlghr_gb_Rdmlh\k_ ijhihabpbbhR‘y[m^mleh`gufbFumklZgZ\eb\Z_f E!(
x)(φx) . = : (∃ ∃b) : φx . ≡x . x=b
Df.
A^_kvµE!( x)(φx ¶fh`_lijhqblu\ZlvkyµKms_kl\m_llZdhcwe_f_gldZdodhlhjuc\u ihegy_lφo¶bebµlhlodhlhjuc\uihegy_lφokms_kl\m_l¶Fubf__f L: . E!R‘y . ≡ : (∃ ∃b) : xRy . ≡x . x=b. 1
Kfmihfygmlmx\ur_klZlvxµOn Denoting¶]^_ijbqbguwlh]hij_^klZ\e_gu[he__ijhkljZggh
DZ\uqdZ\R‘yfh`_lijhqblu\ZlvkyLZd_kebR –hlghr_gb_hlpZdkugmlhµR‘y¶_klv µhl_pm¶?kebR –hlghr_gb_kugZdhlpm\k_ijhihabpbbhR‘y[m^mleh`gufb_kebm g_bf__lgbh^gh]hbeb[hevr_q_fh^gh]hkugZ BakdZaZggh]h\ur_h[gZjm`b\Z_lkyqlh^_kdjbilb\gu_nmgdpbbihemqZxlkybahl ghr_gbc Hij_^_ey_fu_ l_i_jv hlghr_gby ]eZ\guf h[jZahf \Z`gu ^ey jZkkfhlj_gby ^_kdjbilb\guonmgdpbcdhlhjufhgb^ZxlgZqZeh ∧
∧
Cnv = Q P {xQy . ≡x, y . yPx}
Df.
A^_kvCnv_klvkhdjZs_gb_^eyµdhg\_jkby¶Wlhhij_^_ey_lhlghr_gb_g_dh]hhlghr_ gby d k\h_c dhg\_jkbbgZijbf_jhlghr_gb_ hlghr_gby[hevr_ dhlghr_gbx f_gvr_, hlghr_gby hlph\kl\Z d hlghr_gbx kugh\kl\Z hlghr_gb_ ij_^r_kl\_ggbdZ d hlghr_ gbxgZke_^gbdZbl^Fubf__f L. Cnv‘P = ( Q){xQy . ≡x, y . yPx}.
>eykhdjZs_gbyaZibkbqlhqZklh[he__m^h[ghfumklZgZ\eb\Z_f ∪
P = Cnv‘P Df.
GZflj_[m_lky_szh^gZaZibkv^eydeZkkZl_jfbgh\bf_xsbohlghr_gb_RdmKwlhc p_evxfumklZgZ\eb\Z_f → ∧ R = α ∧y {α = ∧x (xRy)}
hlkx^Z
Df.,
L. R ‘y = ∧x (xRy). →
Koh^gufh[jZahffumklZgZ\eb\Z_f
← ∧ R = β ∧x {β = ∧y (xRy)}
hlkx^Z
Df.,
L. R ‘x = ∧y (xRy). ←
>Ze__gZflj_[m_lkyh[eZklvRl_deZkkwe_f_glh\bf_xsbohlghr_gb_Rdq_fmeb[h dhg\_jkgZyh[eZklvRl_deZkkwe_f_glh\ddhlhjufqlh-eb[hbf__lhlghr_gb_ R bihe_ Rij_^klZ\eyxs__kh[hckmffmh[eZklbRbdhg\_jkghch[eZklbRKwlhcp_ evx fu hij_^_ey_f hlghr_gby h[eZklb dhg\_jkghc h[eZklb b ihey d R Hij_^_e_gby lZdh\u ∧
∧
∃y) . xRy)} D = α R {α = ∧x ((∃ ∧
Df.,
∧
∃x) . xRy)} Df., [D] = β R {β = ∧y ((∃ ∧ ∧
∃y) : xRy . ∨ . yRx)} C = γ R {γ = ((∃
Df.
AZf_lbf qlh lj_lv_ ba wlbo hij_^_e_gbc agZqbfh lhevdh lh]^Z dh]^Z R _klv lh qlh fh`gh [ueh [u gZa\Zlv h^ghjh^guf hlghr_gb_ l_ hlghr_gb_f \ dhlhjhf _keb xRy bf__lf_klhobmhlghkylkydh^ghfmblhfm`_lbim<ijhlb\ghfkemqZ_dZd[ufug_ \u[bjZebobmeb[hxRyeb[hyRx[ueb[u[_kkfuke_ggufbWlhgZ[ex^_gb_\Z`gh\ k\yabkiZjZ^hdkhf;mjZeb-Nhjlb GZhkgh\Zgbbijb\_^zgguohij_^_e_gbcfuihemqZ_f ∃y) . xRy}, L. D‘R = ∧x {(∃ ∧ ∃x) . xRy}, L. [D]‘R = y {(∃ ∃y) : xRy . ∨ . yRx}, L. C‘R = ∧x {(∃
ihke_^g__[m^_l agZqbfh lhevdh lh]^Z dh]^Z R h^ghjh^ghµD‘R¶ qblZ_lky dZdµh[eZklv R’; ‘[D]‘R¶qblZ_lkydZdµdhg\_jkgZyh[eZklvR’; ‘C‘R¶qblZ_lkydZdµihe_R’. >Ze__gZflj_[m_lkyaZibkv^eyhlghr_gbydeZkkZqe_gh\ddhlhjufg_dhlhjucwe_ f_gl ba α bf__l hlghr_gb_ R d deZkkm α kh^_j`Zs_fmky \ h[eZklb R Z lZd`_ aZibkv ^eyhlghr_gbydeZkkZqe_gh\dhlhju_bf_xlhlghr_gb_Rdg_dhlhjhfmwe_f_glmba β, ddeZkkm βkh^_j`Zs_fmky\dhg\_jkghch[eZklbR>ey\lhjhcbagbofumklZgZ\eb\Z _f ∧
Ihwlhfm
∧
∃y) . y∈β . xRy)} R∈ = α β {α = ∧x ((∃
Df.
∃y) . y∈β . xRy}. L. R∈‘β = ∧x {(∃
LZd_kebR_klvhlghr_gb_hlpZdkugmZ β –wlhdeZkk\uimkdgbdh\BlhgZlhR∈‘β[m ^_ldeZkkhfµhlpu\uimkdgbdh\BlhgZ¶_kebR_klvhlghr_gb_µf_gvr_¶Zβ –wlhdeZkk ijZ\bevguo ^jh[_c nhjfu –2–n ^ey p_euo agZq_gbc n lh R∈‘β [m^_l deZkkhf ^jh[_c f_gvrboq_fg_dhlhjZy^jh[vnhjfu–2–nl_R∈‘β[m^_ldeZkkhfijZ\bevguo^jh[_c >jm]h_\ur_mihfygmlh_hlghr_gb__klv R )∈. <dZq_kl\_Zevl_jgZlb\ghcaZibkbqZklh[he__m^h[ghcfumklZgZ\eb\Z_f ∪
R‘‘β = R∈‘β Df. Hlghkbl_evgh_ ijhba\_^_gb_ ^\mo hlghr_gbc R b S _klv hlghr_gb_ dhlhjh_ bf__l f_klhf_`^mobz\k_]^Zdh]^Zbf__lkywe_f_glmlZdhcqlhbxRybyRzbf_xlf_klh Hlghkbl_evgh_ijhba\_^_gb_h[hagZqZ_lkydZdRSLZd RS = FulZd`_mklZgZ\eb\Z_f
∧∧ ∃y) x z {(∃
. xRy . yRz}
R2 = RR
Df.
Df.
QZklh lj_[mxlky ijhba\_^_gb_ b kmffZ deZkkZ deZkkh\ Hgb hij_^_eyxlky ke_^mx sbfh[jZahf ∃α) . α∈κ . x∈α} s‘κ = ∧x {(∃ ∧ p‘κ = x {α∈κ . ⊃α . x∈α}
Df. Df.
Koh^gufh[jZahf^eyhlghr_gbcfumklZgZ\eb\Z_f . s ‘λ = ∧x ∧y {(∃ ∃R) . R∈λ . xRy}
Df.
. p ‘λ = ∧x ∧y {R∈λ . ⊃R . xRy}
Df.
GZfgm`gZaZibkv^eydeZkkh\qvbf_^bgkl\_ggufwe_f_glhfy\ey_lkyoI_Zghbk ihevam_lιxihwlhfmfu[m^_fbkihevah\Zlvι‘xI_ZghihdZaZewlhih^qzjdb\ZebNj_ ]_ qlh wlhl deZkkg_evay hlh`^_kl\blv k o Ijbh[uqghf \a]ey^_gZ deZkkug_h[oh^b fhklv lZdh]h jZaebqby hklZzlky aZ]Z^hqghc gh k lhqdb aj_gby \u^\bgmlhc \ur_ hgZ klZgh\blkyhq_\b^ghc FumklZgZ\eb\Z_f ∧
ι = α ∧x {α = ∧y (y = x)}
hlkx^Z
Df.,
L. ι‘x = ∧y (y = x) Df.,
b
L: E! ι ‘α . ⊃ . ι ‘α = ( ∪
∪
x)(x∈α);
l__keb α –wlhdeZkkdhlhjucbf__llhevdhh^bgwe_f_gllhwlbfwe_f_glhfy\ey_lky ∪
ι ‘α . 1
>eydeZkkZdeZkkh\kh^_j`Zsboky\^ZgghfdeZkk_fumklZgZ\eb\Z_f ∧
Cl‘α = β (β ⊂ α) Df. L_i_jvfufh`_fi_j_clbdjZkkfhlj_gbxdZj^bgZevguobhj^bgZevguoqbk_eblh ]hdZdboaZljZ]b\Z_lmq_gb_hlbiZo IXD:J>BG:EVGU?QBKE: DZj^bgZevgh_qbkehdeZkkZ αhij_^_ey_lkydZddeZkk\k_odeZkkh\koh^guok α^\Z deZkkZ y\eyxlky koh^gufb dh]^Z f_`^m gbfb bf__lky h^gh-h^ghagZqgh_ hlghr_gb_ DeZkkh^gh-h^ghagZqguohlghr_gbch[hagZqZ_lkydZd→bhij_^_ey_lkyke_^mxsbf h[jZahf ∧
1→1 = R {xRy . x/Ry . xRy/ . ⊃x, y, x/, y/ . x = x/ . y = y/}
Df.
Koh^kl\hh[hagZqZ_lkydZdSimbhij_^_ey_lkylZd ∧
∧
Sim = α β {(∃ ∃R) . R∈1→1 . D‘R = α . D‘R = β}
Df.
Lh]^Z Sim ‘α_klvihhij_^_e_gbxdZj^bgZevgh_qbkeh α_]hfu[m^_fh[hagZqZlvdZd Nc‘αke_^h\Zl_evghfumklZgZ\eb\Z_f →
1
∪
LZdbfh[jZahf ι ‘α_klvlhqlhI_ZghgZau\Z_lια.
→
Nc = Sim
hlkx^Z
Df.,
L. Nc‘α = Sim ‘α. →
DeZkkdZj^bgZevguoqbk_efu[m^_fh[hagZqZlvdZdNClZdbfh[jZahf NC = Nc‘‘cls
Df.
hij_^_ey_lky dZd deZkk qvbf _^bgkl\_gguf we_f_glhf y\ey_lky gmev-deZkk l_ Λ), ihwlhfm 0 = ι‘Λ
Df.
Hij_^_e_gb_ke_^mxs__ ∧
∃c) : x∈α . ≡x . x = c} Df. 1 = α {(∃ E_]dh^hdZaZlvqlhkh]eZkghhij_^_e_gbxby\eyxlkydZj^bgZevgufbqbkeZfb H^gZdhg_h[oh^bfhhlf_lblvqlhkh]eZkghijb\_^zgguf\ur_hij_^_e_gbyfb \k_^jm]b_dZj^bgZevgu_qbkeZy\eyxlkyg_hij_^_ezggufbkbf\heZfblbiZclsbbf_ xlklhevfgh]hagZq_gbckdhevdhkms_kl\m_llbih\GZqgzfkagZq_gb_aZ\bkblhl agZq_gbyΛZagZq_gb_ΛjZaebqZ_lkykh]eZkghlbimgmev-deZkkhfdhlhjh]hhgy\ey_lky LZdbfh[jZahfkms_kl\m_lklhevdh`_kdhevdhkms_kl\m_llbih\lh`_kZfh_ijbf_ gy_lkydh\k_f^jm]bfdZj^bgZevgufqbkeZfL_fg_f_g___keb^\ZdeZkkZ αb βhlgh kylkydjZaebqguflbiZffufh`_f]h\hjblvhgbodZdh[bf_xsboh^ghblh`_dZj ^bgZevgh_qbkehbeb qlhh^bg ba gbo bf__l dZj^bgZevgh_ qbkeh[hevr__ q_f ^jm]hc ihkdhevdmh^gh-h^ghagZqgh_hlghr_gb_fh`_lbf_lvf_klhf_`^mwe_f_glZfb αb β^Z `_ lh]^Z dh]^Z α b β hlghkylky d jZaebqguf lbiZf GZijbf_j imklv β [m^_l ι‘‘α l_ deZkkhfqvbfbwe_f_glZfby\eyxlkydeZkkukhklhysb_ba_^bgkl\_ggh]hqe_gZ αLh ]^Z ι‘‘αhlghkblkyd[he__\ukhdhfmlbimq_f αghih^h[gh αihkdhevdmkhhlg_k_ghk αihkj_^kl\hfh^gh-h^ghagZqgh]hhlghr_gbyι. B_jZjobylbih\bf__l\Z`gu_ke_^kl\by\hlghr_gbbkeh`_gbyIj_^iheh`bfmgZk _klvdeZkkba αqe_gh\bdeZkkba βqe_gh\]^_ αb βy\eyxlkydZj^bgZevgufbqbkeZfb fh`_lkemqblvkylZdqlhbokh\_jr_gghg_\hafh`ghh[t_^_gblvqlh[uihemqZlvdeZkk khklhysbcbaqe_gh\ αbbaqe_gh\ βihkdhevdm_kebdeZkkug_hlghkylkydh^ghfmb lhfm`_lbimboeh]bq_kdZykmffZ[_kkfuke_ggZLhevdhlZf]^_jZkkfZljb\Z_fh_qbk ehdeZkkh\dhg_qghfufh`_fmkljZgblvijZdlbq_kdb_ke_^kl\bywlh]h[eZ]h^Zjylhfm nZdlmqlhfu\k_]^Zfh`_fijbf_gblvddeZkkmdhlhjucm\_ebqb\Z_lk\hclbi^hex [hc lj_[m_fhc kl_i_gb [_a baf_g_gby k\h_]h dZj^bgZevgh]h qbkeZ GZijbf_j ijb ex [hf deZkk_ α deZkk ι‘‘α bf__l lh `_ kZfh_ dZj^bgZevgh_ qbkeh gh hlghkblky d lbim b^ms_fmaZ αKe_^h\Zl_evgh^eyex[h]hdhg_qgh]hqbkeZdeZkkh\jZaebqguolbih\fu fh`_fm\_ebqblv\k_bo^hlbiZdhlhjucfufh`_fgZa\ZlvgZbf_gvrbfh[sbffgh `bl_e_f \k_o jZkkfZljb\Z_fuo lbih\ b fh`gh ihdZaZlv qlh wlh fh`_l [ulv k^_eZgh lZdbfkihkh[hfqlhj_amevlbjmxsb_deZkkug_[m^mlbf_lvh[sbowe_f_glh\AZl_ffu fh`_fh[jZah\Zlveh]bq_kdmxkmffm\k_oihemq_gguolZdbfh[jZahfdeZkkh\b_zdZj
^bgZevgh_qbkeh[m^_lZjbnf_lbq_kdhckmffhcdZj^bgZevguoqbk_ebagZqZevguodeZk kh\GhlZf]^_mgZk_klv[_kdhg_qgu_ihke_^h\Zl_evghklbdeZkkh\\hkoh^ysbolbih\ wlhlf_lh^ijbf_gblvg_evayIhwlhcijbqbg_fug_fh`_f^hdZaZlvqlh^he`gu[ulv [_kdhg_qgu_deZkkuB[hij_^iheh`bfqlh[ueh[u\hh[s_lhevdhnbg^b\b^h\]^_n –dhg_qghLh]^Z[ueh[u 2 n deZkkh\bg^b\b^h\ 2 2 deZkkh\deZkkh\bg^b\b^h\bl^LZ dbfh[jZahfdZj^bgZevgh_qbkehqe_gh\dZ`^h]hlbiZ[ueh[udhg_qghbohlywlbqbk eZij_\hkoh^beb[uex[h_aZ^Zggh_dhg_qgh_qbkehg_[ueh[ukihkh[Zkeh`blvbolZd qlh[uihemqblv[_kdhg_qgh_qbkehKe_^h\Zl_evghgZfg_h[oh^bfZbih\k_c\b^bfh klb lZd hgh b _klv ZdkbhfZ \ lhf kfuke_ qlhgbh^bg dhg_qguc deZkkbg^b\b^h\ g_ kh^_j`bl\k_bg^b\b^uh^gZdh_kebdlh-lhhl^Zklij_^ihql_gb_lhfmqlhh[s__qbkeh bg^b\b^h\\mgb\_jkmf_jZ\ghkdZ`_flhih-\b^bfhfmg_lZijbhjgh]hkihkh[Z hijh\_j]gmlv_]hfg_gb_ GZ hkgh\Zgbb ij_^eh`_ggh]h \ur_ kihkh[Z jZkkm`^_gby ykgh qlh ^hdljbgZ lbih\ ba[_]Z_l\k_oaZljm^g_gbchlghkbl_evghgZb[hevr_]hdZj^bgZevgh]hqbkeZGZb[hevr__ dZj^bgZevgh_qbkeh_klv\dZ`^hflbi_gh_]h\k_]^Zij_\hkoh^bldZj^bgZevgh_qbkeh ke_^mxs_]hlbiZihkdhevdm_kebα –dZj^bgZevgh_qbkehh^gh]hlbiZlhdZj^bgZevgh_ qbkehke_^mxs_]hlbiZ_klv 2α dhlhjh_dZdihdZaZeDZglhj\k_]^Z[hevr_q_f αIh kdhevdmg_kms_kl\m_lf_lh^Zkeh`_gbyjZaebqguolbih\fug_fh`_f]h\hjblvhµdZj ^bgZevghfqbke_\k_oh[t_dlh\dZdbo[ulhgb[uehlbih\¶bihwlhfmZ[khexlghgZb [hevr_]hdZj^bgZevgh]hqbkeZg_kms_kl\m_l ?kebijbgbfZ_lkyqlhgbh^bgdhg_qgucdeZkkbg^b\b^h\g_kh^_j`bl\k_obg^b\b ^h\hlkx^Zke_^m_lqlhkms_kl\mxldeZkkubg^b\b^h\bf_xsb_ex[h_dhg_qgh_qbk eh Ke_^h\Zl_evgh \k_ dhg_qgu_ dZj^bgZevgu_ qbkeZ bf_xl f_klh dZd dZj^bgZevgu_ qbkeZbg^b\b^h\ l_ dZd dZj^bgZevgu_ qbkeZ deZkkh\ bg^b\b^h\ Hlkx^Z ke_^m_l qlh kms_kl\m_l deZkk 0 dZj^bgZevguo qbk_e Z bf_ggh deZkk dhg_qguo dZj^bgZevguo qb k_eKe_^h\Zl_evgh 0bf__lf_klhdZddZj^bgZevgh_qbkehdeZkkZdeZkkh\deZkkh\bg ^b\b^h\H[jZamy\k_deZkkudhg_qguodZj^bgZevguoqbk_efugZoh^bfqlh 2ℵ bf__l f_klhdZddZj^bgZevgh_qbkehdeZkkZdeZkkh\deZkkh\deZkkh\bg^b\b^h\blZdfufh `_fijh^he`Zlvg_hij_^_ezggh^he]hFh`ghlZd`_^hdZaZlvkms_kl\h\Zgb_ n^eydZ `^h]hdhg_qgh]hnghwlhlj_[m_ljZkkfhlj_gbyhj^bgZeh\ ?keb\^h[Z\hddij_^iheh`_gbxqlhgbh^bgbadhg_qguodeZkkh\g_kh^_j`bl\k_o bg^b\b^h\fuij_^iheZ]Z_ffmevlbiebdZlb\gmxZdkbhfml_Zdkbhfmqlh^eyaZ^Zg gh]h fgh`_kl\Z \aZbfgh bkdexqZxsbo deZkkh\ gb h^bg ba dhlhjuo g_ y\ey_lky gme_ \uf _klv ih djZcg_c f_j_ h^bg deZkk \dexqZxsbc h^bg we_f_gl ba dZ`^h]h deZkkZ wlh]hfgh`_kl\Z lhfufh`_f^hdZaZlvqlhkms_kl\m_ldeZkkkh^_j`Zsbc 0we_f_g lh\ lZd qlh 0 [m^_l bf_lv f_klh dZd dZj^bgZevgh_ qbkeh bg^b\b^h\ Wlh g_kdhevdh mf_gvrZ_llbi^hdhlhjh]hfu^he`gu^hclbqlh[u^hdZaZlvl_hj_fmhkms_kl\h\Zgbb ^eyex[h]haZ^Zggh]hdZj^bgZevgh]hqbkeZghg_^ZzlgZfdZdhc-eb[hl_hj_fuhkms_ kl\h\ZgbbdhlhjZyjZgvr_bebiha`_g_fh`_l[ulvihemq_gZbgZq_ Fgh]b_we_f_glZjgu_l_hj_fu\dexqZxsb_dZj^bgZevgu_qbkeZlj_[mxlfmevlbi ebdZlb\gmx Zdkbhfm1 G_h[oh^bfh hlf_lblv qlh wlZ ZdkbhfZ wd\b\Ze_glgZ Zdkbhf_ P_jf_eh2bke_^h\Zl_evgh^hims_gbxqlhdZ`^ucdeZkkfh`_l[ulv\iheg_mihjy^h n
0
Kj.: qZklv III fh_c klZlvb ‘On some Difficulties in the Theory of Transfinite Numbers and Order Types’, Proc. London Math. Soc. Ser. II, Vol. IV, Part I. 2 H[Zdkbhf_P_jf_ehbh^hdZaZl_evkl\_lh]hqlhwlZZdkbhfZ\e_qzlfmevlbiebdZlb\gmxZdkbhfmkf ij_^u^msmxkghkdmH[jZlguc\u\h^\u]ey^bllZdH[hagZqbfdZdProd‘kfmevlbiebdZlb\gucdeZkk kjZkkfhljbf 1
q_g1Wlbwd\b\Ze_glgu_ij_^ihkuedbih-\b^bfhfm^hdZaZlvg_\hafh`ghg_kfhljygZ lhqlhfmevlbiebdZlb\gZyZdkbhfZ\u]ey^bl^hklZlhqghijZ\^hih^h[ghc<hlkmlkl\bb ^hdZaZl_evkl\Z\b^bfhemqr_g_ijbgbfZlvfmevlbiebdZlb\gmxZdkbhfmdZd^hims_ gb_ghmklZgZ\eb\Zlv_zdZdmkeh\b_\dZ`^hfkemqZ_\dhlhjhfhgZbkihevam_lky
XHJ>BG:EVGU?QBKE: Hj^bgZevgh_qbkeh_klvdeZkkhj^bgZevghkoh^guo\iheg_mihjy^hq_gguojy^h\l_ hlghr_gbch[jZamxsbolZdb_jy^uHj^bgZevgh_koh^kl\hbebih^h[b_hij_^_ey_lky ke_^mxsbfh[jZahf ∧
∧
∪
∃S) . S∈1→1 . [D]‘S = C‘Q . P = SQ S } Smor = P Q {(∃
Df.,
]^_µSmor¶_klvkhdjZs_gb_^eyµkoh^guhj^bgZevgh¶ DeZkkhlghr_gbcjy^Zdhlhju_fu[m^_fgZau\ZlvµSer¶hij_^_ey_lkylZd ∧
→
←
Ser = P {xPy . ⊃x, y . ∼ (x = y) : xPy . yPz . ⊃x, y, z . xPz : x∈ C‘P . ⊃x . P ‘x ∪ ι‘x ∪ P ‘x = C‘P}Df. L__kebqblZlvJdZdµij_^r_kl\m_l¶lhhlghr_gb_y\ey_lkyhlghr_gb_fjy^Z_keb g_lgbh^gh]hwe_f_glZij_^r_kl\mxs_]hkZfhfmk_[_ ij_^r_kl\_ggbdij_^r_ kl\_ggbdZ_klvij_^r_kl\_ggbd _kebo_klvdZdhc-lhqe_giheyhlghr_gbylhij_^ r_kl\_ggbdb o \f_kl_ k o \ kh\hdmighklb k _]h ij_^r_kl\_ggbdZfb h[jZamxl \kz ihe_ hlghr_gby
∪
Ω = P {P∈ Ser : α ⊂ C‘P . ∃!α . ⊃α . ∃!(α – P ‘‘α)}
Df.;
l_ P ihjh`^Z_l \iheg_ mihjy^hq_ggu_ jy^u _keb J _klv hlghr_gb_ jy^Z b ex[hc deZkk αkh^_j`Zsbcky\ihe_Jbg_y\eyxsbckygme_\ufbf__li_j\ucqe_gHlf_ lbfqlh P ‘‘αkmlvqe_gu\oh^ysb_ihke_g_dhlhjh]hqe_gZα). ?kebdZdNo‘Ph[hagZqblvhj^bgZevgh_qbkeh\iheg_mihjy^hq_ggh]hhlghr_gbyJZ dZdNOdeZkkhj^bgZevguoqbk_elhfuihemqbf ∪
∧
∧
→
No = α P {P∈Ω . α = Smor ‘P} Df., NO = No‘‘Ω. ∧
bij_^iheh`bfqlh
∃x) . x∈β . D‘R = ι‘β . [D]‘R = ι‘x} Z‘β = R {(∃ ∧ ∧
Df.,
γ∈ Prod‘Z‘‘cl‘a . R = ξ x {(∃ ∃S) . S∈γ . ξSx}. Lh]^ZR –wlhkhhl\_lkl\b_P_jf_ehKe_^h\Zl_evgh_kebProd‘Z‘‘cl‘ag_y\ey_lkygme_\uflh^eyZ kms_kl\m_lihdjZcg_cf_j_h^ghkhhl\_lkl\b_P_jf_eh 1 Kf.: Zermelo, ‘Beweis, dass jede Menge wohlgeordnet werden kann’. Math. Annalen, Vol. LIX, C.514-16.
Bahij_^_e_gbyNofuihemqZ_f L: P∈ Ω . ⊃ . No‘P = Smor ‘P , L: ∼(P∈ Ω) . ⊃ . ∼E!No‘P. →
?kebl_i_jvfuijh\_jbfgZrbhij_^_e_gbyklhqdbaj_gbybok\yabkl_hjb_clbih\ fu m\b^bf ij_`^_ \k_]h qlh hij_^_e_gby µSer¶ b Ω \dexqZxl ihey hlghr_gbc jy^Z Ihe_ `_ agZqbfh lhevdh lh]^Z dh]^Z hlghr_gb_ y\ey_lky h^ghjh^guf ke_^h\Zl_evgh hlghr_gby dhlhju_ g_ y\eyxlky h^ghjh^gufb g_ ihjh`^Zxl jy^ GZijbf_j fh`gh ih^mfZlvqlhhlghr_gb_ιihjh`^Z_ljy^hj^bgZevgh]hqbkeZωlbiZ x, ι‘x, ι‘ι‘x, … ιn‘x, …, bwlbfkihkh[hffufh`_fihiulZlvky^hdZaZlvkms_kl\h\Zgb_ ωb 0Ghob ι‘xhlgh kylkydjZaebqguflbiZf bke_^h\Zl_evgh kh]eZkgh gZr_fm hij_^_e_gbx lZdh]hjy^Z g_lHj^bgZevgh_qbkehjy^Zbg^b\b^h\kh]eZkghijb\_^zgghfm\ur_hij_^_e_gbxNo, _klvdeZkkhlghr_gbcbg^b\b^h\Ke_^h\Zl_evghhgihlbimhlebqZ_lkyhlex[h]hbg ^b\b^Z bg_ fh`_l h[jZah\u\Zlv qZklv dZdh]h-lhjy^Z \dhlhjhf \klj_qZxlky bg^b\b ^uHiylv`_ij_^iheh`bfqlh\k_dhg_qgu_hj^bgZeubf_xlf_klhdZdhj^bgZevgu_ qbkeZ bg^b\b^h\ l_ dZd hj^bgZeu jy^h\ bg^b\b^h\ Lh]^Z dhg_qgu_ hj^bgZeu kZfb h[jZamxl jy^ qvz hj^bgZevgh_ qbkeh _klv ω lZdbf h[jZahf ω kms_kl\m_l dZd hj^b gZevgh_qbkehhj^bgZeh\l_dZdhj^bgZejy^Zhj^bgZeh\Ghlbihj^bgZevgh]hqbkeZ hj^bgZeh\–wlhlbideZkkh\hlghr_gbcdeZkkh\hlghr_gbcbg^b\b^h\LZdbfh[jZahf kms_kl\h\Zgb_ ω ^hdZau\Zehkv \jZfdZo[he__ \ukhdh]hlbiZ q_f lbi dhg_qguo hj^b gZeh\HiylvlZdbdZj^bgZevgh_qbkehhj^bgZevguoqbk_e\iheg_mihjy^hq_ggh]hjy^Z dhlhjuc fh`_l [ulv kha^Zg ba dhg_qguo hj^bgZeh\ _klv 1 ke_^h\Zl_evgh 1 bf__l f_klh\lbi_deZkkh\deZkkh\deZkkh\hlghr_gbcdeZkkh\hlghr_gbcbg^b\b^h\Dlhfm `_ hj^bgZevgu_ qbkeZ \iheg_ mihjy^hq_gguo jy^h\ khklZ\e_gguo ba dhg_qguo hj^b gZeh\fh]ml[ulvmihjy^hq_gu\ihjy^d_\_ebqbgubj_amevlZlhf[m^_l\iheg_mihjy ^hq_ggucjy^qvzhj^bgZevgh_qbkeh_klv ω1Ke_^h\Zl_evgh ω1bf__lf_klhdZdhj^b gZevgh_ qbkeh hj^bgZeh\ hj^bgZeh\ Wlhl ijhp_kk fh`gh ih\lhjblv ex[h_ dhg_qgh_ qbkehjZablZdbfh[jZahffufh`_f\khhl\_lkl\mxsbolbiZomklZgh\blvkms_kl\h \Zgb_ nbωn^eyex[h]hdhg_qgh]hagZq_gbyn. Gh\ur_mdZaZggucijhp_kkihjh`^_gby[he__g_\_^zlddZdhc-lhp_ehklghklb\k_o hj^bgZeh\ihkdhevdm_kebfu\havfzf\k_hj^bgZeudZdh]h-lhaZ^Zggh]hlbiZ\k_]^Z kms_kl\mxl[he__\ukhdb_hj^bgZeu\[he__\ukhdbolbiZobfug_fh`_fh[t_^bgblv fgh`_kl\hhj^bgZeh\lbidhlhjh]hij_\urZ_lex[mxdhg_qgmx]jZgbpmLZdbfh[jZ ahfhj^bgZeu\dZdhf-lhlbi_fh]ml[ulvmihjy^hq_gu\ihjy^d_\_ebqbgu\h\iheg_ mihjy^hq_ggucjy^dhlhjucbf__lhj^bgZevgh_qbkeh[he__\ukhdh]hlbiZq_flbihj ^bgZeh\khklZ\eyxsbojy^<gh\hflbi_wlhlgh\uchj^bgZeg_y\ey_lkygZb[hevrbf NZdlbq_kdbg_kms_kl\m_lgZb[hevr_]hhj^bgZeZ\dZdhf-lhlbi_gh\dZ`^hflbi_\k_ hj^bgZeuf_gvr_q_fg_dhlhjuchj^bgZe[he__\ukhdh]hlbiZG_\hafh`ghaZ\_jrblv jy^hj^bgZeh\ihkdhevdmwlhijb\h^beh[udlbiZfij_\urZxsbfdZ`^mxijbibku \Z_fmxdhg_qgmx]jZgbpmlZdbfh[jZahfohlydZ`^uck_]f_gljy^Zhj^bgZeh\\iheg_ mihjy^hq_gfug_fh`_fkdZaZlvqlh\iheg_mihjy^hq_g\_kvjy^ihkdhevdmµ\_kvjy^¶ y\ey_lkynbdpb_cKe_^h\Zl_evghiZjZ^hdk;mjZeb-Nhjlbbkq_aZ_l
Ba^\moihke_^gbojZa^_eh\h[gZjm`b\Z_lkyqlh_kebijbgylvqlhqbkehbg^b\b^h\ g_y\ey_lkydhg_qguflhfh`gh^hdZaZlvkms_kl\h\Zgb_\k_odZglhjh\kdbodZj^bgZev guo b hj^bgZevguo qbk_e aZ bkdexq_gb_f ω b ωω Ohly \iheg_ \hafh`gh qlh[u bo kms_kl\h\Zgb_[ueh^hdZam_fuf Kms_kl\h\Zgb_\k_odhg_qguodZj^bgZevguobhj^b gZevguo qbk_e fh`gh ^hdZaZlv [_a ij_^ihkuedb h kms_kl\h\Zgbb q_]h [u lh gb [ueh B[h_kebdZj^bgZevgh_qbkehqe_gh\\dZdhf-lhlbi__klvnqbkehqe_gh\\ke_^mxs_f lbi__klvnLZdbfh[jZahf_keb[ubg^b\b^h\g_kms_kl\h\Zehlh[ue[uh^bgdeZkk Zbf_gghgmev-deZkk ^\ZdeZkkZdeZkkh\Zbf_gghlhlqlhg_kh^_j`bldeZkkh\blhl qlhkh^_j`blgmev-deZkk q_luj_deZkkZdeZkkh\deZkkh\b\h[s_fn–1deZkkh\n-]hih jy^dZGhfug_fh`_fh[t_^bgblvqe_gujZaebqguolbih\bihwlhfmg_fh`_fwlbf kihkh[hf^hdZaZlvkms_kl\h\Zgb_dZdh]h-lh[_kdhg_qgh]hdeZkkZ L_i_jv fu fh`_f ih^\_klb blh] \k_fm jZkkfhlj_gbx Ihke_ mklZgh\e_gby g_dhlh juoiZjZ^hdkh\eh]bdbfugZrebqlh\k_hgb\ujZklZxlbalh]hnZdlZqlh\ujZ`_gb_ mdZau\Zxs__gZ\kzbag_dhlhjhckh\hdmighklbih-\b^bfhfmh[hagZqZ_lkZfhk_[ydZd h^ghbawlhckh\hdmighklbdZdgZijbf_jµ\k_ijhihabpbby\eyxlkyeb[hbklbggufb eb[heh`gufb¶kZfhih\b^bfhklby\ey_lkyijhihabpb_cFuj_rbebqlhlZf]^_wlh km^y ih \k_fm \klj_qZ_lky fu bf__f^_eh k eh`ghc p_ehklghklvx b qlhnZdlbq_kdb gbq_]h\hh[s_g_evayagZqbfhkdZaZlvh[h\kzfbaij_^iheZ]Z_fhckh\hdmighklbQlh[u ^Zlv oh^ wlhfm j_r_gbx fu h[tykgbeb ^hdljbgm lbih\ i_j_f_gguo ijb^_j`b\Zx smxky ijbgpbiZ qlh ex[h_ \ujZ`_gb_ dhlhjh_ mdZau\Z_l gZ \kz ba g_dhlhjh]h lbiZ ^he`gh _keb hgh qlh-eb[h h[hagZqZ_l h[hagZqZlv g_qlh [he__ \ukhdh]h lbiZ q_f \kz lh gZ qlh hgh mdZau\Z_l LZf ]^_ mdZau\Z_lky gZ \kz ba g_dhlhjh]h lbiZ _klv fgbfZy i_j_f_ggZyijbgZ^e_`ZsZywlhfmlbimLZdbfh[jZahfex[h_\ujZ`_gb_kh^_j`Zs__ fgbfmx i_j_f_ggmx hlghkblky d [he__ \ukhdhfm lbim q_f wlZ i_j_f_ggZy Wlh – nmg^Zf_glZevguc ijbgpbi ^hdljbgu lbih\ Baf_g_gb_ \ kihkh[_ dhlhjuf dhgkljmb jmxlkylbiuwlhke_^m_l^hdZaZlvkg_h[oh^bfhklvx hklZ\beh[uj_r_gb_ijhlb\hj_ qbcg_aZljhgmluf^hl_oihjihdZkh[ex^Z_lkywlhlnmg^Zf_glZevgucijbgpbiF_lh^ dhgkljmbjh\Zgby lbih\h[tykgzgguc \ur_ijh^_fhgkljbjh\ZegZfdZd \hafh`gh mk lZgh\blv\k_nmg^Zf_glZevgu_hij_^_e_gbyfZl_fZlbdbb\lh`_\j_fyba[_`Zlv\k_o ba\_klguo ijhlb\hj_qbc B hdZaZehkv qlh gZ ijZdlbd_ ^hdljbgZ lbih\ mf_klgZ ebrv lZf]^_aZljZ]b\Zxlkyl_hj_fuhkms_kl\h\ZgbbbeblZf]^_g_h[oh^bfhi_j_clbdg_ dhlhjhfmqZklghfmkemqZx L_hjby lbih\ klZ\bl jy^ ljm^guo nbehkhnkdbo \hijhkh\ dZkZxsboky _z bgl_jij_ lZpbbH^gZdhwlb\hijhku\kmsghklbhl^_ebfuhlfZl_fZlbq_kdh]hjZa\blbywlhcl_h jbbbih^h[gh\k_fnbehkhnkdbf\hijhkZf\\h^ylwe_f_glg_hij_^_ezgghklbdhlhjuc g_ hlghkylky d kZfhc l_hjbb Ke_^h\Zl_evgh ih-\b^bfhfm emqr_ nhjfmebjh\Zlv wlm l_hjbx [_a kkuedb gZ nbehkhnkdb_ \hijhku hklZ\eyy bo ^ey g_aZ\bkbfh]h bkke_^h\Z gby