911 .
,
.
1986
,
.
1
1986
2
621.43-52: 62-531.6 36-01-86. : . 1986. 26 .
/ ,
.
,
.
.
.: ,
». 0523 «
»...
14 downloads
126 Views
254KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
911 .
,
.
1986
,
.
1
1986
2
621.43-52: 62-531.6 36-01-86. : . 1986. 26 .
/ ,
.
,
.
.
.: ,
». 0523 «
»
1609
». . 11.
. 7.
. 2.
: ;
.
,
.
.
,
-
.
©
, 1986
3
[1],
(
)
( ) (
, ) ).
(
, ,
-
. (
2).
4
-
.
«
»
-
. ,
-
. .
,
,
[1]. .
,
,
«
»
,
,
-
. ,
, , .
4
1
, E
, (
-
). ,
-
. ,
-
E ,
P. C , ,
, , . P
-
P = A( z )ω2 ,
A(z) z; ω
(1) , .
A(z)
, .
-236 A(z)
ω
P z1,
5
A( z ) =
P , ω2
(2)
,
-
,
(n = 2n ),
n .
(
. 1)
,
,
. z .
n
.
-
, ( ).
1. 2.
9
7
. -
. 3.
,
-
, ( , , ). 4. , 6...5 5.
). . 1-4
0, 3, 5, 7
. . .
1
;2 ;7
. 1. ;3 ;8
;4
;5 ;9
: ; 10
;6
6
7
1.
1. 1
z, ⋅10
3
G,
0 5
6
3 7
5
6
7 7
5
6
7
1
n, ω,
1
P, A′(z) A(z) : ω =
π n ⋅ 2,37 , 30
2,37
; P = 2G ⋅ 9,81 [ ] ,
G
(3)
(4)
; A′( z ) =
A( z ) =
P ; 2 ω
∑ A′( z ) . 3
(5)
(6)
8
2.
A = f (z) (
1
.
2 ). 3.
2 -
P = f (ω )
n = 2 n ).
2 z, ⋅10
3
ω,
1 1
n,
500
1000
1500
2000
2500
0 2 4 6 8 4. z,
2(
. 2 ).
5.
,
2(
. 2 ).
. P = f (z)
3, ,
E = f (z).
F. 3(
(z = 0, z = 8) E = f (z). .
. 18).
P = f (z) -
9
. 2.
10
2
. z
ω
z = f (ω). ,
z = f (ω) h = f (ω).
-
, . -236 (
. 3) .
1
2
,
-
3
4. 5,
6
7
,
8. 9, 10 12, 13.
11. 14
: 15,
12 16 18 .
17, 20 22,
19 21 24,
12 23
. 25
.
26
-
24 28
27, 29.
30 31.
-
. 3.
11
12
, ,
32
33 -
. 34.
35
36.
, ,
.
.
-236, 25.
,
-
2,37.
,
, 1
1, ( ), 11 (
)(
1.
.
. 1).
,
-
. 2.
, (
-
).
3.
,
-
( ), 3. 4. . 5.
10°, . 2, 3, 4
6.
. ,
( ).
-
13
3. h = 18 2,25z. 3 ψ°
0
z
15
30
45
h
1.
h = f (n) (
. 4).
2. (
).
3. , . δ=
n −n n +n
⋅ 200, % .
(7)
4. (
. 4).
5.
(
. 5). δ = f (n)
. ,
n .
14
. 4.
h: 1-1 ∆h ∆n
. 5.
; ;
15
3
, . ,
E
,
. . ,
-
,
,
E = E0 + ∆E = E0 + ∆z ⋅ C , E E0
(8)
; -
( ∆z C
); ; .
( ,
. 3). ( ,
, ,
)
. . (
. 6). 1
2, 3
5,
6
4.
7 9
10,
8. -
. 6.
16
17
. (
-
)
. . ,
, E
E = f (z)
ψ
-
, . .
ψ = const, .
1.
P0 .
2.
, 10
.
3.
i (
, . 7).
,
4. 5. 6.
(
25
. 3). .
, ( ).
-
4. 4 ψ°
0
10
20
z E 7. 10°.
30
40
18
1.
E
P
P0 (
. 8).
∑ M 0 = ( P + P0 ) L − El = 0 , E = ( P + P0 ) 2. 3. E = f (z).
L = P0i + Pi . l
E
4.
( ( E = f (z) P = f (z). 4. Fp = f (n) (
(9)
)5 )1
.
10
. 20
. 1,
-
,
, . 9).
z=2
z = 6.
,
(
. 10).
,
F =
dE dP − . dz dz
(10) .( ,
). ,
dE ∆E [ ] = . dz ∆z [ ⋅10−3 ]
-
19
.7.
. 8.
20
100 dE = = 25 ⋅103 −3 dz 4 ⋅10
⋅
−1
40 dP = = 10 ⋅103 −3 dz 4 ⋅10
⋅
−1
dE = 25000 dz
⋅
−1
80 dP = = 20000 dz 4 ⋅10−3
.
;
⋅
−1
.
F ( )=
∆E − ∆P = 15000 ∆z
⋅
−1
F ( )=
∆E − ∆P = 5000 ∆z
⋅
−1
.
ω′ ,
;
;
.
F = f (n )
ω′′ .
P = f (z),
, ,
21
. 9.
. 10.
22
4
µ ,
,
-
, . µ ( :
-
), ,
, . :
1.
,
:
,
-
, . 2.
,
, (
,
-
,
).
3.
, (
,
,
).
: )
:
,
,
, ,
,
; ) ,
:
,
,
,
-
. . 5. 5
1 2 3 4 5 6
23
µ µ1.
) : 1. 2. 3. 4. 5.
. . . . . . µ.
) ,
,
m 2
µ 2
V 2.
(11)
V2,
(12)
m V V
; ; .
µ =m R . 11); R
.
V2 V2
=m
R2 R2
,
(13)
.
24
,
-
µ
,
-
, µ = (0,08 ÷ 0,1)µ .
µ
,
,
,
( , )
:
µ=
J , l12
(14)
l1 J
; , :
τ2Gl2 J= , 2 4π (G = mg);
G τ l2
; . τ
. 10
(15)
15
. ,
(15) τ G
, l2
.
. 11. ;
;
:
25
26
.
-
6. 6 m
µ =
G
l1
τ
l2
µi
J
,
7. 7 µ1
µ
1.
. .
µ
µ
µ
.:
, 1979. 615 .
2. /
.
, . , 1969,
, 8, . 1-4.
.
.
-