:JKLJ:L?HJBBNMGDPBCB=?HF?LJBB
IJH?DLBJH...
3 downloads
141 Views
296KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
:JKL
D:N?>J:L?HJBBNMGDPBCB=?HF?LJBB
IJH?DLBJH<:GB? MJHDH<J:A
KhklZ\bl_eb: <G>HGPH<K:KDEY>G?<
KH>?J@:GB? <\_^_gb_. . . . . . . . . . 3 H ijh_dlbjh\Zgbb mjhdh\ kbkl_fZlbaZpbb b h[h[s_gby ih l_f_ “F_lh^ ijZ\bevghcibjZfb^u” F_lh^bq_kdh_p_e_ijh_dlbjh\Zgb_l_fu5 F_lh^bq_kdbcijh_dlmjhdZijh[e_fghce_dpbb . . . . . . . . . . . . . . 9 F_lh^ijyfhm]hevgh]hl_ljZw^jZ13 Ljb]hghf_ljbyijZ\bevghc-m]hevghcibjZfb^u Hihjgu_nhjfmeu . . . . . . . . . . . . . . . . . 16 Ijbf_juj_r_gbyaZ^Zq Ljb]hghf_ljbyijZ\bevghc-m]hevghcibjZfb^u Hihjgu_nhjfmeu. . . . . . . . . . . . . . . . . . . 24 Ijbf_juj_r_gbyaZ^Zq Ljb]hghf_ljbyijZ\bevghc-m]hevghcibjZfb^u Hihjgu_nhjfmeu . . . . . . . . . . . . . . . . . . . . 30 Ijbf_juj_r_gbyaZ^Zq34 Ljb]hghf_ljbyijZ\bevghc-m]hevghcibjZfb^u Hihjgu_nhjfmeu. . . . . . . . . . . . . . . . . . . . . . 36 Ijbf_juj_r_gbyaZ^Zq39 Ljb]hghf_ljbyijZ\bevghcQ-m]hevghcibjZfb^u Hihjgu_nhjfmeu. . . . . . . . . . . . . . . . . . . . . . . . 42 7.2Ijbf_juj_r_gbyaZ^Zq46 AZ^Zqb^eykZfhklhyl_evguobdhgljhevguojZ[hl. . . . . . . . 48 Ebl_jZlmjZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2
“Mqbl_ev k gZmqghc lhqdb aj_gby – lhevdh hj]ZgbaZlhj khpbZevghc \hkiblZl_evghc kj_^u j_]meylhj b dhgljhe_j _z \aZbfh^_ckl\by k dZ`^uf mq_gbdhf” EK:e_dkZg^jh\ <>?GB? <dhgl_dkl_ghjfZlb\gh–^_yl_evghklgh]hih^oh^Zdijhn_kkbhgZevghc fZl_fZlbdh-i_^Z]h]bq_kdhc ih^]hlh\d_ klm^_glh\ mgb\_jkbl_lZ \hagbdZ_l aZ^ZqZ Zdlb\gh]h h[mq_gby bo f_lh^Zf nhjfZf b ijbzfZf ^b^Zdlbq_kdh]h p_e_ijh_dlbjh\Zgby b f_lh^bq_kdh]h dhgkljmbjh\Zgby kbkl_fu mjhdh\ fZl_fZlbdb ih dhgdj_lghc ^b^Zdlhl_f_ >ey wlbo p_e_c \ ^Zgghf f_lh^bq_kdhf ihkh[bb \ dZq_kl\_ ij_^f_lgh]h fZl_jbZeZ \u[jZgu f_lh^u ijyfhm]hevgh]hl_ljZw^jZ bijZ\bevghcn–m]hevghcibjZfb^u–§7), dhlhju_h[jZamxlh^bgbah[h[szgguoeh]bq_kdbokl_j`g_c\l_fZlbq_kdhf jZa\_jlu\Zgbb mq_[guo aZ^Zq ih ]_hf_ljbb – deZkkh\ \h \k_o ljzo f_lh^bq_kdbo ijh_dlZo jZajZ[hlZgguo ih^ jmdh\h^kl\hf ZdZ^_fbdh\ J:G :> :e_dkZg^jh\Z :< Ih]hj_eh\Z :L Lbohgh\Z Knhjfmebjh\Zggu_ \ \b^_ pbdeh\ h[h[s_gguo jZa\b\Zxsbo hihjguo aZ^Zq “l_hjbb \ mijZ`g_gbyo” wlbf_lh^ukha^Zxlkh^_j`Zl_evgmxhi_jZpbhggmx[Zam^ey nhjfbjh\Zgby m rdhevgbdh\ klZjrbo deZkkh\ ]_hf_ljbq_kdh]h f_lh^Z fure_gby \ kljmdlmj_ bo mq_[gh-fZl_fZlbq_kdhc ^_yl_evghklb GZ \Z`ghklv knhjfmebjh\Zggh]h ikboheh]h-^b^Zdlbq_kdh]h lj_[h\Zgby h[jZsZxl\gbfZgb_\k\hbojZ[hlZo:;mgbq_\ :? AZoZjh\Z :G A_feydh\ <G Ebl\bg_gdh <B Fbrbg:=Fhj^dh\bq<FIZih\kdbc::KlheyjJKQ_jdZkh\b^j Hlebqbl_evghc hkh[_gghklvx jZa\blby f_lh^bdb ij_ih^Z\Zgby fZl_fZlbdbgZjm[_`_–\_dh\y\ey_lkymdj_ie_gb_khxaZfZl_fZlbdh\ b mqzguo-f_lh^bklh\ k i_^Z]h]bq_kdhc Zdf_heh]b_c ikboheh]b_c i_^Z]h]bdhcbijZdlbdhcj_nhjfbjh\ZgbyfZl_fZlbq_kdh]hh[jZah\Zgby< ^Zgghf f_lh^bq_kdhf ihkh[bb jZkdju\Z_lky h^bg ba ijbdeZ^guo Zki_dlh\ wlh]hkhxaZHibjZykvgZkh\j_f_ggmxl_hjbxi_^Z]h]bq_kdhc^_yl_evghklb 3
G< DmavfbgZ G> GbdZg^jh\ <: DZg-DZebd :D FZjdh\Z <: KeZkl_gbg :: J_Zg <: Ydmgbg b ^j \ jZfdZo l_hjbb dhgl_dklgh]h h[mq_gby :: <_j[bpdbc klm^_glh\ hkgh\Zf ijhn_kkbhgZevghi_^Z]h]bq_kdh]h fZkl_jkl\Z \ <MA_ a^_kv ij_^eZ]Z_lky mq_[guc fZl_jbZe ^ey dhgkljmbjh\Zgby \ ijhp_kk_ bamq_gby klm^_glZfb-fZl_fZlbdZfb dmjkZ ³F_lh^bdb´ ^_eh\uo i_^Z]h]bq_kdbo b]j B]jh\Zy fh^_ev \ gbo bf__l ke_^mxsmxdhfihg_glgmxkljmdlmjm I. P_eb i_^Z]h]bq_kdbo b]j Zdlb\gh_ jZkrbj_gb_ b mihjy^hqb\Zgb_ ikboheh]h-i_^Z]h]bq_kdh]h b f_lh^bq_kdh]h l_aZmjmkZ klm^_glh\ \hkiblZgb_ ihlj_[ghklb \ bggh\Zpbhgghc i_^Z]h]bq_kdhc ^_yl_evghklb jZa\blb_ l\hjq_kdh]h i_^Z]h]bq_kdh]h fure_gby b kihkh[ghklbdi_^Z]h]bq_kdhcj_ne_dkbb::>_jdZq:D>mkZ\bpdbc<: DZg-DZebd G< DmavfbgZ <: Djml_pdbc G> GbdZg^jh\ <: KeZkl_gbgb^j II. Kp_gZjbci_^Z]h]bq_kdbob]jij_^mkfZljb\Z_lkh^ghcklhjhgu ijh_dlbjh\Zgb_ klm^_glZfb kbkl_fu mjhdh\ fZl_fZlbdb dZd ijhp_kkZ bgnhjfZpbhggh]h \aZbfh^_ckl\by b f_`ebqghklgh]h h[s_gby mqbl_ey b \hh[jZ`Z_fuo mqZsboky Z k ^jm]hc klhjhgu bo ZgZeba j_clbg] b Zmlhj_clbg] III. Dhfie_dl jhe_c \ b]jZo mqbl_ev-ij_^f_lgbd mqbl_ev-^m[ezj jmdh\h^bl_ev rdhevgh]h f_lh^h[t_^bg_gby mqbl_e_c fZl_fZlbdb aZf_klbl_ev ^bj_dlhjZ rdheu bgki_dlhj-f_lh^bkl dZd i_^Z]h]bq_kdb_ f_g_^`_juijhp_kkZjZa\b\Zxs_]hh[mq_gbyfZl_fZlbd_ IV. IjZ\beZ b]ju – wlh ikboheh]h-i_^Z]h]bq_kdb_ b f_lh^bq_kdb_ lj_[h\Zgby d jZa\b\Zxs_fm klbex kh\j_f_ggh]h mjhdZ fZl_fZlbdb ijh_dlbjm_fh]h ^ey jZ[hlu \ ki_pbZebabjh\Zgguo deZkkZo jZaebqgh]h ijhnbeyfZl_fZlbq_kdh]h]mfZgblZjgh]hobfbdh-[bheh]bq_kdh]hb^j V. Dhfie_dl b]jh\hc ^hdmf_glZpbb dhgki_dl mjhdZ hihjgu_ lZ[ebpu q_jl_`b ]jZnbdb ^b^Zdlbq_kdb_ fZl_jbZeu l_ogbq_kdb_ kj_^kl\Zh[mq_gbydh^h]jZffuhlau\uj_p_gabbhiihg_glh\ VI. Kbkl_fZ ZgZebaZ b hp_gb\Zgby \aZbfhdhgljhev \aZbfhhp_gb\Zgb_klm^_glh\j_clbg]ihba\_klgufko_fZfZgZebaZmjhdh\ :: >_jdZq B: Abfgyy D< Ah[dh\Z K< B\Zgh\ XF Dhey]bg G< DmavfbgZ=EEmdZgdbg?BEys_gdhK=FZg\_eh\<:H]Zg_kyg<Y KZggbgkdbcJKQ_jdZkh\b^j
4
HIJH?DLBJH<:GBBMJHDH<KBKL?F:LBA:PBBB H;H;S?GBYIHL?F?“F?LH>IJ:U” 1.1.
F?LH>BQ?KDH?P?E?IJH?DLBJH<:GB?L?FU
Mjhd fZl_fZlbdb – ijbdeZ^gZy fbdjh^b^ZdlbdZ p_ehklgZy mihjy^hq_ggZy \ ijhkljZgkl\_ b \j_f_gb ]_g_lbq_kdZy de_lhqdZ \ fZdjhkljmdlmj_ijhp_kkZh[mq_gbydhlhjh_ij_ke_^m_lljb_^bgmxp_ev` =benhj^ Klj_fe_gb_ d jZpbhgZevghfm b wdhghfghfm j_r_gbx \k_]^Z oZjZdl_jbah\Zeh ^_yl_evghklv djmiguo fZl_fZlbdh\ ijhreh]h b gZklhys_]h GZijbf_j ba\_klguc hl_q_kl\_gguc fZl_fZlbd < =emrdh\ hlf_qZe ³P_ev fZl_fZlbdb – wlh \k_]^Z ihemq_gb_ g_ dZdh]h-gb[m^v Z bf_ggh kZfh]h baysgh]h kZfh]h ijhklh]h j_r_gby” (1965). >bnn_j_gpbZevgh-ikboheh]bq_kdb_ bkke_^h\Zgby ijhn_kkhjZ <: Djml_pdh]h ijb\_eb _]h d \u\h^m ³?keb ^ey mq_gbdh\ kh kj_^gbfb kihkh[ghklyfb p_ev aZdexqZ_lky \ lhf qlh[u j_rblv aZ^Zqm lh ^ey kihkh[guo d fZl_fZlbd_ hgZ aZdexqZ_lky \ lhf qlh[u j_rblv _z gZbemqrbfgZb[he__wdhghfgufkihkh[hf1.” <:Djml_pdbcIkboheh]byfZl_fZlbq_kdbokihkh[ghkl_crdhevgbdh\– F–K 1
5
I_^Z]h]bq_kdhfm ^hklb`_gbx k\_joaZ^Zqb kbkl_fu mjhdh\ ih knhjfmebjh\Zgghc l_f_ fh]ml [ulv ih^qbg_gu ke_^mxsb_ qZklgu_ ^b^Zdlbq_kdb_p_eb 1) ^hdZaZlvbkbkl_fZlbabjh\Zlv\nhjf_mdjmigzgguo^b^Zdlbq_kdbo [ehdh\ k\hckl\Z ijZ\bevghc n–m]hevghc ibjZfb^u ^ey jZaebqguo dhgdj_lguoagZq_gbcngZijbf_jn =4; 5; 6; 2) l_hj_lbq_kdb h[h[sblv wlb k\hckl\Z ^ey kemqZy ijhba\hevgh]h n (n∈N, n ≥ 3 bknhjfmebjh\Zlvfg_fhgbq_kdbcZe]hjblfboaZihfbgZgby 3) ijhdhgljhebjh\Zlvbhp_gblvmjh\gbh\eZ^_gbymqZsbfbky Z f_lh^hfijyfhm]hevgh]hl_ljZw^jZ [ f_lh^hf\hkoh^ys_]hZgZebaZ \ Ze]_[jZbq_kdbff_lh^hf\kl_j_hf_ljbb ] f_lh^Zfb ihkljh_gby ijh_dpbhgguo bah[jZ`_gbc ijZ\bevghc 2 ibjZfb^u ; 4) jZkrbjblv m]em[blv b mihjy^hqblv ]_hf_ljbq_kdbc l_aZmjmk mqZsboky q_j_a h[_ki_q_gb_ mk\h_gby bfb gh\uo hihjguo nhjfme oZjZdl_jbamxsbo h[h[szggu_ ljb]hghf_ljbq_kdb_ k\hckl\Z fgh`_kl\Z ijZ\bevguoibjZfb^ 5) jZkdjulv h[jZapu ijbeh`_gbc nhjfbjm_fh]h f_lh^Z ijb j_r_gbb klZg^Zjlguobg_klZg^ZjlguoaZ^Zq Ijhn_kkbhgZevgZy dhfi_l_glghklv mqbl_ey fZl_fZlbdb dZd i_^Z]h]bq_kdh]hf_g_^`_jZijhy\ey_lky\h[_ki_q_gbb_^bgkl\Zh[mq_gbyb \hkiblZgby mqZsboky hgph\Ijh_dlbjh\Zgb_kbkl_fumjhdh\hihjguo aZ^Zq\dmjk_]_hf_ljbb–deZkkh\–
6
^ kdjmimezagZy lhqghklv \ujZ`_gbykj_^kl\Zfbkbf\hebq_kdh]h fZl_fZlbq_kdh]hyaudZ::Klheyj _ eZdhgbaf b ykghklv keh\_kgh-kbf\hebq_kdh]h yaudZ :: Klheyj ` gZ]ey^ghklv ijh_dpbhgguo beexkljZlb\guo bah[jZ`_gbc fgh]h]jZggbdh\ \ ijhba\hevghc iZjZe_evghc ijh_dpbb <: =mk_\ <G Ebl\bg_gdh:=Fhj^dh\bq 3) ijh^he`blv \hkiblZgb_ ZdZ^_fbq_kdhc kZfhklhyl_evghklb mf_gby j_ne_dkbjh\Zlv; mklhcqb\h]h ihagZ\Zl_evgh]h bgl_j_kZ d l_f_ d ij_^f_lmfZl_fZlbdbdijhn_kkbbfZl_fZlbdZbij_ih^Z\Zl_ey 4) ijh^he`blv \hkiblZgb_ dhffmgbdZlb\guo mf_gbc klj_fe_gby [ulv agZqbfuf ^ey khdeZkkgbdh\ b mqbl_ey kihkh[ghklb d Z^_d\Zlghc j_ne_dkb\ghckZfhhp_gd_k\hbofZl_fZlbq_kdbo\hafh`ghkl_c 5) ijh^he`blv \hkiblZgb_ dmevlmju kZfhhj]ZgbaZpbb mqZsboky \ nhjfbjm_fhc mq_[gh-fZl_fZlbq_kdhc ^_yl_evghklb mf_gb_ kdhgkljmbjh\Zlv b ij_^klZ\blv l_dkl ^hdeZ^Z hlq_lZ khh[s_gby b gZ]ey^gu_ fZl_jbZeu d g_fm gZijbf_j dh^h]jZffu mf_gb_ j_ne_dkbjh\Zlv b dhjj_dlbjh\Zlv k_[y ijb \uiheg_gbb bg^b\b^mZevguo mq_[guo aZ^Zgbc mf_gb_ hj]Zgbah\Zlv kbkl_fm jblf ihjy^hd ijb kZfhih^]hlh\d_dmjhdZfbl^ 3 JZa\b\Zxsb_ p_eb
H;?ibr_\Z<BDjmibqMqblvrdhevgbdh\mqblvkyfZl_fZlbd_ Nhjfbjh\Zgb_ijbzfh\mq_[^_yl_evghklbDg^eymqbl_ey–F–K-16; <G>hgph\Mq_[gZykZfhhj]ZgbaZpbyklm^_glh\–fZl_fZlbdh\–<> dZd nZdlhjmki_\Z_fhklb:\lhj_ndZg^^bkk–E977.–k 3
7
fZl_fZlbq_kdhc ^_yl_evghklb < bo kljmdlmj_ kh]eZkgh l_hjbb <: Djml_pdh]h4fh`gh\u^_eblv^_kylvke_^mxsbodhfihg_glh\ – kihkh[ghklvdnhjfZebaZpbbmq_[gh]hfZl_jbZeZ – kihkh[ghklv d eh]bq_kdhfm fure_gbx \ ij_^f_lghc h[eZklb ijhkljZgkl\_gguonhjfbdhebq_kl\_gguohlghr_gbc – kihkh[ghklv d k\zjgmlhklb wdhghfghklb ijhp_kkZ fZl_fZlbq_kdh]h jZkkm`^_gby d ]b[dhfm k_fZglbq_kdb ihebebg_cghfm – kihkh[ghklv fZl_fZlbq_kdhfmfure_gbx – kihkh[ghklvdh[jZlbfhklbfZl_fZlbq_kdbojZkkm`^_gbc – kihkh[ghklvdg_klZg^Zjlghfmhjb]bgZevghfmj_r_gbx – kihkh[ghklv d lhqghfm aZ\_jrzgghfm mq_[gh-fZl_fZlbq_kdhfm j_amevlZlm – kihkh[ghklvdh[h[szgghck\zjgmlhcfZl_fZlbq_kdhciZfylb – fZl_fZlbq_kdmxgZijZ\e_gghklvmfZ J_Zebamy _^bgkl\h h[mq_gby b jZa\blby mqbl_ev fZl_fZlbdb dZd i_^Z]h]bq_kdbc ikboheh]-f_g_^`_j bf__l \hafh`ghklv kijh_dlbjh\Zlv \ ^Zgghcl_f_ij__fkl\_ggh_mijZ\e_gb_nhjfbjh\Zgb_fmmqZsbokyklZjrbo deZkkh\ 1) gh\hchjb_glbjh\hqghchkgh\uIY=Zevi_jbg \nhjfbjm_fhc mq_[gh-fZl_fZlbq_kdhc^_yl_evghklbk\yaZgghckj_r_gb_fijZ\bevguon– m]hevguoibjZfb^dZd\l_f_-]hdeZkkZ³Fgh]h]jZggbdb´ lZdb\l_fZo 11-]h deZkkZ ³Dhf[bgZpby fgh]h]jZggbdh\ b rZjh\´ ³H[h[sZxs__ ih\lhj_gb_´); 2) kihkh[ghkl_c d kh^_j`Zl_evghfm l_hj_lbq_kdhfm h[h[s_gbx << >Z\u^h\ dh[h[szgghcZkkhpbZpbbYB=jm^_gh\I:R_\Zj_\ d k\zjgmlhfmwdhghfghfmfZl_fZlbq_kdhfmmfhaZdexq_gbx<:Djml_pdbc GN LZeuabgZ gZ hkgh\_ ihkl_i_ggh]h i_j_oh^Z hl jZa\zjgmluo ^_ckl\bc ih\uy\e_gbxk\hckl\dhgdj_lguoijZ\bevguoibjZfb^dboh[h[s_gbx 3) ]b[dhklb fZl_fZlbq_kdh]h fure_gby >` =benhj^ <: Djml_pdbc ez]dh]h b k\h[h^gh]h i_j_dexq_gby k h^gh]h f_lh^Z ^hdZaZl_evkl\ZgZ^jm]hc 4) eh]bq_kdhc fZl_fZlbq_kdhc iZfylb kihkh[ghklb d kbkl_fZlbaZpbb mihjy^hqb\Zgbx b aZihfbgZgbx \g_rg_ bahebjh\Zgguo hihjguonhjfmegZhkgh\_dhgkljmbjh\Zgbyfg_fhgbq_kdh]hZe]hjblfZ 5) dhgkljmdlb\gh-]_hf_ljbq_kdh]h\hh[jZ`_gbygZhkgh\_h[mq_gby rdhevgbdh\ fuke_gghfm \u^_e_gbx \ kljmdlmj_ fgh]h]jZggbdh\ b bo dhf[bgZpbcijyfhm]hevgh]hl_ljZw^jZ 6) f_`^bkpbiebgZjgh]h bgl_]jZlb\gh]h _^bgkl\Z kl_j_hf_ljbq_kdh]h b Ze]_[jZbq_kdh]h bg^mdlb\gh]h b ^_^mdlb\gh]h Ze]hjblfbq_kdh]hbw\jbklbq_kdh]hfure_gby 4
8
<:Djml_pdbcMdZakhq–K-386
1.2.
F?LH>BQ?KDBCIJH?DLMJHD:IJH;E?FGHCE?DPBB
>ZlZ«Ij_^f_l=_hf_ljby –DeZkkfZl_fZlbq_kdbcMjhd« L_fZ “LJB=HGHF?LJBYIJ:U” \f_lh^bq_kdbokbkl_fZo :>:e_dkZg^jh\Z:<Ih]hj_eh\Z:GLbohgh\Z P_ev q_j_a \\_^_gb_ b i_j\bqgh_ aZdj_ie_gb_ kh^_j`Zl_evguo l_hj_lbq_kdbo h[h[s_gbc >; Wevdhgbg << >Z\u^h\ BB Bevykh\ oZjZdl_jbamxsboljb]hghf_ljbq_kdb_k\hckl\ZijZ\bevghc n–m]hevghc ibjZfb^u ijh^he`blv ebqghklgh_ fZl_fZlbq_kdh_ jZa\blb_ b ijhn_kkbhgZevgh_ \hkiblZgb_ klZjr_deZkkgbdh\ <F FhgZoh\KBR\Zjp[mj^ Mjh\_gv i_^Z]h]bq_kdh]h f_g_^`f_glZ mqbl_ey fZl_fZlbdb gZ mjhd_ – kbkl_fgh-fh^_ebjmxsbc l_hj_lbq_kdb_ fZl_fZlbq_kdb_ agZgby b gh\uc f_lh^ nhjfbjm_fhc mq_[gh-fZl_fZlbq_kdhc ^_yl_evghklb \ ]_hf_ljbbG<DmavfbgZ<YEym^bk<IKbfhgh\<G>hgph\ Lbi mjhdZ k^\h_ggh]h ih djbl_jbx \_^msm]h jZa\b\Zxs_]h f_lh^Z h[mq_gby – mjhd-ijh[e_fgZy e_dpby :: <_j[bpdbc XF Dhey]bg =E EmdZgdbg :F FZlxrdbg K= FZg\_eh\ EF Njb^fZg :: Klheyj ih djbl_jbx ]eZ\ghc ^b^Zdlbq_kdhc p_eb – mjhd \\_^_gby gh\uo agZgbc K< B\Zgh\ K= FZg\_eh\ <Y KZggbgkdbc DI Kbdhjkdbc I< KljZlbeZlh\ ih djbl_jbx \_^ms_]h kh^_j`Zgby – mjhdmk\h_gbydhf[bgbjh\Zggh]hf_lh^Z\kl_j_hf_ljbbdZd_^bgkl\Z dhgkljmdlb\gh-]_hf_ljbq_kdh]h b Ze]_[jZbq_kdh]h _]h dhfihg_glh\ :; _jdZq G< DmavfbgZ :D FZjdh\Z AB Ke_idZgv JK Q_jdZkh\KBR\Zjp[mj^=BSmdbgZ ,,wlZi QZklbqgZy wdkij_kk–ijh\_jdZ ^bZ]ghklbdZ b dhjj_dpby mjh\gy ^hfZrg_c jZ[hlu
mdZaZgbc – ³dexq_c´ d ^hfZrgbf aZ^Zgbyf \ua\Z\rbf mq_[gu_ aZljm^g_gby \ \u\_rb\Zgb_ ih^jh[guo mdZaZgbc d j_r_gbx ^hfZrgbo aZ^Zq \ fZl_fZlbq_kdhf m]hed_ deZkkZ k p_evx hj]ZgbaZpbb ihke_mjhqgh]h kZfhdhgljheybklbfmebjh\Zgbyj_ne_dkbbmqZsboky ,,,wlZi :dlmZebaZpby b dhjj_dpby hihjguo agZgbc ih jZg__ bamq_gghc l_f_ ³K\hckl\Z ijyfhm]hevgh]h l_ljZw^jZ´ kf F_lh^u ^bZ]ghklbdb dZl_obabq_kdZybkhdjZlbq_kdZy[_k_^ZijbjZa[hj_l_klh\hldjulh]hlbiZ ,9wlZi Bamq_gb_ gh\h]h fZl_jbZeZ “F_lh^ ijZ\bevghc n–m]hevghc ibjZfb^u´ kf §7). F_lh^ h[mq_gby – ijh[e_fgZy e_dpby ih kl_j_hf_ljbb dZd kj_^kl\h mijZ\e_gby dh]gblb\gufb wfhlb\guffb b dhgZlb\gufb f_oZgbafZfb \ nhjfbjm_fhc mq_[gh-fZl_fZlbq_kdhc ^_yl_evghklb mqZsboky jZa\blby m gbo ijhkljZgkl\_gguo ij_^klZ\e_gbc b ijhkljZgkl\_ggh]h \hh[jZ`_gby ;= :gZgv_\ :; =e_ca_j NK ` =benhj^ h ^_kylb h[h[szgguo ljb]hghf_ljbq_kdbo k\hckl\Zo ijZ\bevghc n–m]hevghcibjZfb^uDhgkljmbjh\Zgb_ijh_dpbhggh]hbah[jZ`_gby 2. Bkke_^h\Zgb_h[h[szgguomkeh\bcjZaj_rbfhklbaZ^Zqb>;Wevdhgbg <<>Z\u^h\BBBevykh\ \\_^_gb_h]jZgbq_gbcgZ\_ebqbgum]eh\kf ijbk 3. W\jbklbq_kdbc ihbkd ]_g_jbjh\Zgb_ ]bihl_lbq_kdbo b^_c ^hdZaZl_evkl\Z k\hckl\ bo Zj]mf_glbjh\Zggh_ hlklZb\Zgb_ mqZsbfbky ih ko_f_³fha]h\h]hrlmjfZ´ 4. IhcZBNRZju]bg ^hdZaZl_evkl\ g_dhlhjuo k\hckl\ h[mq_gb_ mqZsboky ihbkdm ^hdZaZl_evkl\ <= ;helygkdbcYB=jm^_gh\XFDhey]bgEFNjb^fZg 1) F_lh^ \hkoh^ys_]h ZgZebaZ ijb ^hdZaZl_evkl\_ nhjfmeu g_ kh^_j`Zs_cm]eZNkflZ[ebpm?jbk 2) F_lh^ gbkoh^ys_]h ZgZebaZ ijb ^hdZaZl_evkl\_ nhjfmeu kh^_j`Zs_cm]heN,ghg_kh^_j`Zs_cm]eZ<jbk 3) :e]_[jZbq_kdbc f_lh^ bkdexq_gby \_ebqbgu m]eZ ijb ^hdZaZl_evkl\_nhjfmekh^_j`Zsbom]euNb<. Z >hdZaZl_evkl\hk\hckl\ZbalZ[ebpu? [ >hdZaZl_evkl\hk\hckl\ZbalZ[ebpu?
10
5. W\jbklbq_kdbc ihbkd mqZsbfbky b nhjfmebjh\dZ mqbl_e_f Ze]hjblfZ eh]bq_kdh]haZihfbgZgby::Kfbjgh\<YEym^bk \k_o^_kylbnhjfmek ihfhsvxfg_fhgbq_kdh]hdjm]Zjbk 6. Nhjfmebjh\dZ mqbl_e_f gh\h]h \b^Z hjb_glbjh\hqghc hkgh\u IY =Zevi_jbg GN LZeuabgZ fZl_fZlbq_kdhc ^_yl_evghklb aZdexqzgghc \ ihgylbbijZ\bevghcibjZfb^u 7. Q_luj_h[h[szgguolbiZhkgh\guodhg\_j]_glguoaZ^Zq>`=benhj^ h \uqbke_gbb m]eh\uo we_f_glh\ ijZ\bevghc n–m]hevghc ibjZfb^u ih ke_^mxs_cmdjmig_gghcko_f_ n/n I II III IV
>Zgh GZclb α θ Β Φ
α
θ
Β
Φ
– 7 4 5
7 – 3 9
4 3 – 6
5 9 6 –
ey ijZ\bevghc n–m]hevghc ibjZfb^u kZfhklhyl_evgh ih h[jZapZf^Zggufmqbl_e_f ^hdZaZlvk\hckl\ZlZ[ebpu? 2) J_a_j\gh_aZ^Zgb_j_rblvaZ^ZqmZ[ ba 9,wlZi IhklZgh\dZ\ZjbZlb\gh]h^hfZrg_]haZ^Zgbyf_lh^jZkihjy`_gby qzldhcbgkljmdpbb ?]hkh^_j`Zgb_fh`_l[ulv\ujZ`_ghke_^mxsbfb wibkl_fbq_kdbfblj_[h\ZgbyfbjZa\b\Zxs_]hoZjZdl_jZXD;Z[Zgkdbc 1) Ih dhgki_dlm \umqblv k\hckl\Z ljb]hghf_ljbq_kdb_ nhjfmeu ijZ\bevghcn–m]hevghcibjZfb^uZe]hjblfboeh]bq_kdh]haZihfbgZgbyb ^hdZaZl_evkl\Z 2) >hdZaZlvk\hckl\ZbalZ[ebpu? . 3) Ih\lhjblvljb]hghf_ljbq_kdb_k\hckl\Zijyfhm]hevgh]hl_ljZw^jZ k p_evxih^]hlh\dbdfZl_fZlbq_kdhfm^bdlZglm 4) J_rblv • \k_fihaZ^Zqgbdmih^j_^Zdpb_cFBKdZgZ\b[20@ • `_eZxsbf kf Z[ l_dkl aZjZg__ \u\_rb\Z_lky \ fZl_fZlbq_kdhfm]hed_deZkkZ
11
• ijbah\mxaZ^Zqmkf_ ^eyn=5. 5) K^_eZlv jZ[hlm gZ^ hrb[dZfb \ ij_^u^ms_c ^hfZrg_c jZ[hl_ b \ deZkkghckZfhklhyl_evghcjZ[hl_ 9,,wlZi AZdexq_gb_ mjhdZ f_lh^ djZldh]h h[h[s_gby dhgljhey b dhjj_dpbb _jdZqB:AbfgyyG<DmavfbgZ:DFZjdh\Z::J_Zg 1) l_hj_lbq_kdb_blh]bmjhdZ-e_dpbb 2) hp_gdZ mjh\g_c ih^]hlh\e_gghklb mqZsboky mk\h_gby bfb l_fu bo j_ne_dkbb khljm^gbq_kl\Z b bgl_ee_dlmZevghc khklyaZl_evghklb dhffmgbdZlb\ghc b j_q_\hc dmevlmju B: Abfgyy :: E_hglv_\ :: Klheyj mqZsbokygZmjhd_ 3) h[ty\e_gb_Zj]mf_glbjh\Zgguohlf_lhdihmjhqgh]h[ZeeZ 4) k[hj l_ljZ^_c k ^hfZrg_c jZ[hlhc gZ kiehrgmx beb \u[hjhqgmx ijh\_jdm Ijb\_^zggucklbevm]em[e_ggh]hp_e_ijh_dlbjh\ZgbymjhdZfZl_fZlbdb\ dmjk_³F_lh^bdb´fh`_l[ulvgZeh`_ggZijh_dlu^jm]bolbih\mjhdh\
12
F?LH>IJYFHM=HEVGH=HL?LJ:W>J: L_ljZw^j \k_ ]jZgb dhlhjh]h – ijyfhm]hevgu_ lj_m]hevgbdb gZau\Zxlijyfhm]hevguf Imklv\ijyfhm]hevghfl_ljZw^j_AXBC: AC⊥ ie;%& ; XB⊥ ie$%& ;
∠CXB=α; ∠AXC=β; ∠AXB=γ; A –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_XA, B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_XBjbk F_lh^ijyfhm]hevgh]h l_ljZw^jZ–wlhdhf[bgbjh\Zggucf_lh^j_r_gbykl_j_hf_ljbq_kdboaZ^Zq \dexqZxsbc\k_[y
dhgkljmdlb\gh-]_hf_ljbq_kdh_
\uqe_g_gb_
\
kljmdlmj_
ijhkljZgkl\_gghcnb]mjuijyfhm]hevgh]hl_ljZw^jZ Ze]_[jZbq_kdmx nhjfmebjh\dm gZ hkgh\_ fg_fhgbq_kdh]h djm]Z jbk h^ghc beb g_kdhevdbo ljb]hghf_ljbq_kdbo nhjfme \ujZ`Zxsbo k\yav f_`^m aZ^Zggufb b bkdhfufb m]eh\ufb we_f_glZfb lZ[e : Fg_fhgbq_kdh_
ijZ\beh
khklhbl
ba
ke_^mxs_c
Ze]hjblfbq_kdhc
ihke_^h\Zl_evghklbrZ]h\ 1°JZkiheh`bfihke_^h\Zl_evghklv\_ebqbgm]eh\A, γ, B, α, 90°, β^ey lj_o]jZggh]hm]eZk\_jrbghcX\iylbk_dlhjZofg_fhgbq_kdh]hdjm]Z Z ijhimklb\ijbwlhfijyfhc^\m]jZggucm]hekj_[jhfXCb [ aZf_gb\ \_ebqbgu _]h iehkdbo m]eh\ α, β g_ ijhlb\he_`Zsbo ijyfhfm ^\m]jZgghfmm]emkj_[jhfXC gZ(90°-α), (90°-β)khhl\_lkl\_ggh :γ<°-α, 90°-β; 2° \uqbkeb\ dhkbgmk dZ`^h]h we_f_glZ djm]Z dZd ijhba\_^_gb_ dhlZg]_gkh\ ^\mo khk_^gbo k gbf m]eh\uo we_f_glh\ ihemqbf i_j\u_ iylv hihjguonhjfme 3°\gh\v\uqbkeb\dhkbgmkdZ`^h]hwe_f_glZdjm]ZdZdijhba\_^_gb_ kbgmkh\ ^\mo g_ khk_^gbo k gbf m]eh\uo we_f_glh\ ihemqbf gh\u_ iylv hihjguonhjfme5. >hdZaZl_evkl\Zkf\f_lh^ihkh[bbKdey^g_\K:>hgph\<G Ijh_dlbjh\Zgb_kbkl_fumjhdh\hihjguoaZ^Zq\dmjk_]_hf_ljbb– 11 deZkkh\–
13
14
LZ[ebpZ: LJB=HGHF?LJBQ?KDB?KJ: i i
1.
Ij_^\Zjbl_evgh
HdhgqZl_evgh
cos A = ctg γ ⋅ ctg ( 90 ° − β ) cosΑ = ctgγ ⋅ tgβ
cos γ = ctg Α ⋅ ctg Β
i i
1.
cosγ = ctgΑ ⋅ ctgΒ
2.
3.
cos Β = ctgγ ⋅ ctg ( 90° − α ) cos B = ctgγ ⋅ tgα
3.
4.
cos(90° − α ) = ctgB⋅ ctg( 90° − β ) sinα = ctgΒ ⋅ tgβ
4.
5.
cos(90° − β ) = ctgΑ ⋅ ctg( 90° −α )
5.
2.
sinβ = ctgΑ⋅ tgα
6.
cos Α = sin Β ⋅ sin( 90 ° − α ) cosΑ = sinΒ ⋅ cosα
6.
7.
cosγ = sin(90° −α ) ⋅ sin(90° − β ) cosγ = cosα ⋅ cos β
7.
8.
cos B = sin Α ⋅ sin( 90 ° − β ) cos Β = sin Α ⋅ cos β
9.
10.
cos( 90 ° − α ) = sin γ ⋅ sin Α sin α = sin γ ⋅ sin Α sin β = sinγ ⋅ sin Β cos( 90 ° − β ) = sin B ⋅ sin γ
8.
9.
10.
15
LJB=HGHF?LJBYIJ:U HIHJGU?NHJFMEU A:>:Q:<ijZ\bevghc-m]hevghcibjZfb^_ α –m]hegZdehgZ[hdh\h]hj_[jZdiehkdhklbhkgh\Zgby θ –iehkdbcm]heijb\_jrbg_ibjZfb^u B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_hkgh\Zgby N –\_ebqbgZ^\m]jZggh]hm]eZijb[hdh\hfj_[j_ Knhjfmebjmcl_ b h[hkgmcl_ ljb]hghf_ljbq_kdb_ k\hckl\Z ^Zgghc ibjZfb^u J?R?GB? Dhf[bgbjh\Zggucf_lh^ ,H[hkgh\Zgb_bah[jZ`_gbyjbk 3).Imklv\^ZgghcibjZfb^_SABC O –p_gljhkgh\Zgbyy\eyxs_]hkyijZ\bevguflj_m]hevgbdhfLh]^ZSO – π _z\ukhlZ∠6$2 .]^_. ImklvE –k_j_^bgZj_[jZ:KLh]^Z 2 θ 2π π ∠6(2 <]^_< ; ∠:6? ]^_ Kp_evxihkljh_gby 2 2 3 bah[jZ`_gby ebg_cgh]h m]eZ ^ey ^\m]jZggh]h m]eZ ijb [hdh\hf j_[j_ SA ijh\_^_f \ ie6$& &) ⊥ SA b kh_^bgbf lhqdm F k lhqdhc < Lh]^Z lj_m]hevgbdbAFC bAFBjZ\guihi_j\hfmijbagZdmAF –h[sZyklhjhgZ π −θ π :< :K, ∠FAC =∠FAB = Ihwlhfm ∠AFB = ∠AFC = b ∠K)% 2 2 π Nijbq_f NKh_^bgb\lhqdmFkk_j_^bghc E 1 j_[jZ
16
17
LZ[ebpZ; KU i i 1. 2.
3.
Ij_^\Zjbl_evgh
cos
HdhgqZl_evgh
θ N = ctg( 90° − α ) ⋅ ctg( 90° − ) 2 2
cos( 90 ° −
θ N ) = ctg ⋅ ctgB 2 2
cos B = ctg 60 ° ⋅ ctg ( 90 ° −
θ ) 2
N θ = tg α ⋅ tg 2 2 N θ sin = ctg ⋅ ctgB 2 2 θ 3 cos B = tg 3 2
cos
4.
cos 60 ° = ctgB ⋅ ctg ( 90 ° − α )
tg α =
1 tgB 2
5.
N cos( 90° − α ) = ctg 60° ⋅ ctg 2 N cos = sin B ⋅ sin 60 ° 2
sin α =
N 3 ctg 3 2
6.
7.
8.
9.
10.
N 3 sin B = 2 2 θ cos( 90° − ) = sin60° ⋅ sin( 90° − α ) sin θ = 3 cos α 2 2 2 N N cos B = sin( 90 ° − α ) ⋅ sin cos B cos sin = ⋅ α 2 2 θ N 1 N θ = sin ⋅ cos cos 60 ° = sin ⋅ sin( 90 ° − ) 2 2 2 2 2 θ θ = ⋅ α sin sin B cos cos( 90° − α ) = sin B ⋅ sin( 90° − ) 2 2 cos
i i 1. 2.
3.
4.
5.
6.
7.
8.
9.
10.
Ihemq_ggu_^_kylvnhjfmefh`gh[uehZgZeh]bqghknhjfmebjh\Zlv \u^_eyy\kljmdlmj_^Zgghc-m]hevghcibjZfb^uijyfhm]hevgucl_ljZw^j BAE 1 F jbk bijbf_gyylhl`_fg_fhgbq_kdbcdjm]
18
IJBF?JUJ?R?GBYA:>:Q Ijbf_j deZkk JZkkfhljbfaZ^Zqmbamq_[gbdZEK:lZgZkygZb ^j>@k
h3 ⋅ 3 1 1 3 2 ⋅ ( 3tg2ϕ − 1). IhwlhfmVibj = ⋅ 3 ⋅ h ⋅ 3 ⋅ ⋅ ( 3tg ϕ − 1) = 4 4 3 h3 ⋅ 3 ⋅ ( 3 tg 2 ϕ − 1 ) . Hl\_l 4 Ijbf_j deZkk J_rbf aZ^Zqm ba k[hjgbdZ ih^ j_^Zdpb_c FB KdZgZ\b >@ k < IjZ\bevgZy lj_m]hevgZy ibjZfb^Z i_j_k_q_gZ iehkdhklvx ijhoh^ys_c q_j_a _z [hdh\h_ j_[jh b \ukhlm < k_q_gbb h[jZah\Zeky lj_m]hevgbd k m]ehf 45º ijb \_jrbg_ ibjZfb^u GZc^bl_m]hef_`^m[hdh\hc]jZgvxbiehkdhklvxhkgh\ZgbyibjZfb^u J?R?GB? Kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme < ijbgyluo h[hagZq_gbyo jbk bkihevamy mkeh\b_ b hihjgmx nhjfmem balZ[ebpu;ihemqbfljb]hghf_ljbq_kdmxkbkl_fm o o o
α + B + 45 = 180 α = 135 − B ⇔ tgB = 2 ⋅ tg( 135 o − B ). tgB = 2 ⋅ tgα
19
Ba\lhjh]hmjZ\g_gbyihke_^g_ckbkl_fuihemqbf
2 + 2 ⋅ tgB tgB = − 2 ⋅ tg ( 45 o + B ) ⇔ tgB = ⇔ tgB − 1 3 + 17 , tgB = 2 tg B − 3 ⋅ tgB − 2 = 0 2 ⇔ ⇔ tgB ≠ 1 tgB = 3 − 17 ( < 0 ). 2 3 + 17 3 + 17 π ( ≈ 74,3o ). BlZddZd<∈(0; ),lh B = arctg BlZd tgB = 2 2 2 3 + 17 Hl\_l arctg . 2 Ijbf_j deZkk JZkkfhljbf aZ^Zqm ba k[hjgbdZ ih^ j_^Zdpb_c FB KdZgZ\b >@ k < KlhjhgZ hkgh\Zgby ijZ\bevghc lj_m]hevghc ibjZfb^u jZ\gZ Z ;hdh\Zy ]jZgv khklZ\ey_l k iehkdhklvx hkgh\Zgby m]he < GZc^bl_ jZkklhygb_ f_`^m [hdh\uf j_[jhf b g_ i_j_k_dZxs_c_]hklhjhghchkgh\Zgby J?R?GB? :gZeblbdh-kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme <ijbgyluoh[hagZq_gbyojbk bkdhfh_jZkklhygb_ d ( SA , BC ) = FE 1 = AE 1 ⋅ sin α =
a ⋅
3 2
⋅ sin α .
Bkihevamy hihjgmx nhjfmem ba lZ[ebpu ; gZc^_f VLQ.
1 2 1 2 π tg tgB ctg sin = ⋅ ⇒ = ⇒ = ⇒ α α α ( α ∈ ( 0 ; )) : 2 2 tgB 1 ctg + α 2
⇒ sin 2 α =
1 1 sin . ⇒ = α 2 2 1 + 4 ⋅ ctg B 1 + 4 ⋅ ctg B
BlZd d ( SA , BC ) =
Hl\_l
20
a⋅ 2⋅
a⋅
3
2 ⋅ 1 + 4 ⋅ ctg B 2
3
1 + 4 ⋅ ctg 2 B
.
.
Ijbf_jdeZkk J_rbfaZ^Zqmbaihkh[byBNRZju]bgZb<B =hem[_\Z >@ k GZc^bl_ jZ^bmk rZjZ dZkZxs_]hky \k_o j_[_j ijZ\bevghclj_m]hevghcibjZfb^umdhlhjhcklhjhgZhkgh\ZgbyZjZ\gZ Z[hdh\h_j_[jhb jZ\gh J?R?GB? Dhf[bgbjh\Zggucf_lh^ ,H[hkgh\Zgb_bah[jZ`_gbyjbkZ RZjgZau\Z_lkyihem\ibkZgguf \ fgh]h]jZggbd Z fgh]h]jZggbd - ihemhibkZgguf hdheh rZjZ _keb rZj dZkZ_lky\k_oj_[_jfgh]h]jZggbdZ6. >ey ex[hc ijZ\bevghc ibjZfb^u kms_kl\m_l ihem\ibkZgguc rZj ( O ρ ; ρ ) ?]h p_glj e_`bl \ lhqd_ i_j_k_q_gby hkb SO ibjZfb^u k i_ji_g^bdmeyjhf\hkklZ\e_ggufdiehkdhklbijhba\hevghc[hdh\hc]jZgb ba p_gljZ O1 hdjm`ghklb \ibkZgghc \ wlm ]jZgv Lhqdb dZkZgby ( E i ) k j_[jZfb hkgh\Zgby _klv k_j_^bgu wlbo j_[_j Lhqdb dZkZgby ( M i ) k [hdh\ufbj_[jZfbm^Ze_guhl\_jrbghkgh\ZgbygZh^ghblh`_jZkklhygb_ jZ\gh_iheh\bg_j_[jZhkgh\Zgby>hdZ`_fwlh Hq_\b^gh qlh ex[Zy lhqdZ hkb SO ibjZfb^u jZ\ghm^Ze_gZ hl \k_o j_[_j _z hkgh\Zgby gZ jZkklhygb_ jZ\gh_ ^ebg_ hlj_adZ kh_^bgyxs_]h wlm lhqdm k k_j_^bghc E i j_[jZ hkgh\Zgby ih k\hckl\m gZdehgguo bf_xsbo jZ\gu_ijh_dpbb LhqdZ O ρ i_j_k_q_gby emqZ SO k i_ji_g^bdmeyjhf O 1 O ρ , \hkklZ\e_ggufdijhba\hevghc[hdh\hc]jZgbbap_gljZ O 1 \ibkZgghc\g__ hdjm`ghklb h[eZ^Z_l ihfbfh mdZaZggh]h k\hckl\Z ( O ρ E 1 = O ρ E 2 = ) , k\hckl\hf h^bgZdh\hc m^Ze_gghklb hl [hdh\h]h j_[jZ b j_[jZ hkgh\Zgby O ρ E 1 = O ρ M 2 = O ρ M 3 ]^_ E 1 , M 2 , M 3 - lhqdb dZkZgby hdjm`ghklb \ibkZgghc\[hdh\mx]jZgvk_zklhjhgZfb BlZd lhqdZ O ρ jZ\ghm^Ze_gZ hl \k_o j_[_j ijZ\bevghc ibjZfb^u gZ jZkklhygb_ ρ = O ρ E i = O ρ M i Ihwlhfm kms_kl\m_l rZj k p_gljhf O ρ b jZ^bmkhf!ihem\ibkZgguc\ijZ\bevgmxibjZfb^m Ih l_hj_f_ h lj_o i_ji_g^bdmeyjZo jZ^bmku ihem\ibkZggh]h \ ibjZfb^m rZjZ ijh\_^_ggu_ \ lhqdb dZkZgby E i , M i i_ji_g^bdmeyjgu khhl\_lkl\mxsbfj_[jZfibjZfb^uLhqdbdZkZgby M i m^Ze_guhl\_jrbg
A_feydh\:G=_hf_ljby\deZkk_F_lh^j_dhf_g^Zpbbd ij_ih^Z\ZgbxdmjkZ]_hf_ljbbihmq_[ghfmihkh[bx:<Ih]hj_eh\Z– F– k 6
21
22
hkgh\ZgbygZh^ghblh`_jZkklhygb_jZ\gh_iheh\bg_j_[jZhkgh\Zgbyih k\hckl\mdZkZl_evguoijh\_^zgguodrZjmbah^ghclhqdb Ql^ ,,
ρ = O ρ M 2 = SM 2 ⋅ ctgα = ( b −
a=2 a = 2 ⋅ ctgα . ) ⋅ ctgα = 2 b=3
<ijyfhm]hevghf ∆ SCE 1 ( ∠E 1 = 90° ):
sin
a 1 . = = 2 2 ⋅b 3
Ihhihjghcnhjfme_ balZ[ebpu;
cos α =
2 θ ⋅ sin , 2 3
2 b 3⋅ 3 1 23 − = tgα = 1 aZf_lbfqlh α ≈ 67 ,4° ). 2 2 cos α
hldm^Z cos α
=
Ihwlhfm
ρ = 2 ⋅ ctg α = Hl\_l
4 . 23
4 . 23
23
LJB=HGHF?LJBYIJ:U HIHJGU?NHJFMEU A:>:Q:<ijZ\bevghc-m]hevghcibjZfb^_ α –m]hegZdehgZ[hdh\h]hj_[jZdiehkdhklbhkgh\Zgby θ –iehkdbcm]heijb\_jrbg_ibjZfb^u B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_hkgh\Zgby N –\_ebqbgZ^\m]jZggh]hm]eZijb[hdh\hfj_[j_ Knhjfmebjmcl_ b h[hkgmcl_ ljb]hghf_ljbq_kdb_ k\hckl\Z ^Zgghc ibjZfb^u J?R?GB? , H[hkgh\Zgb_ bah[jZ`_gby jbk Imklv \ ^Zgghc ibjZfb^_ SABCD π O –p_gljhkgh\ZgbyABCDLh]^ZSO –_z\ukhlZ ∠6$2 .]^_. . 2 θ π ImklvE –k_j_^bgZj_[jZADLh]^Z∠6(2 <]^_< ; ∠:6? ]^_ 2 2 π .>eyihkljh_gbybah[jZ`_gbyebg_cgh]hm]eZ^ey^\m]jZggh]hm]eZ 2 ijb [hdh\hf j_[j_ SB ijh\_^_f \ ie6$% $) ⊥ SB b kh_^bgbf lhqdm F k lhqdhcCLh]^Zlj_m]hevgbdbAFBbCFBjZ\guihi_j\hfmijbagZdmAF – π −θ π h[sZy:< %K, ∠FBA = ∠FBC == Ihwlhfm∠AFB = ∠AFC = b 2 2 N ∠ $)& N ijbq_f ∠ AFO = ∠ CFO = l d \ jZ\gh[_^j_gghf 2 lj_m]hevgbd_AFCf_^bZgZFOy\ey_lkyb[bkk_dljbkhcm]eZAFCAZf_lbf π qlh N. 2 ,,Ijbf_g_gb_f_lh^Zijyfhm]hevgh]hl_ljZw^jZ < kljmdlmj_ ijZ\bevghc -m]hevghc ibjZfb^u SABCD \u^_ebf ijyfhm]hevguc l_ljZw^j SAOE jbk b d m]eh\uf we_f_glZf _]h lj_o]jZggh]h m]eZ ASEO k _^bgkl\_gguf ijyfuf ^\m]jZgguf m]ehf ijb j_[j_ :H ijbf_gbf ijZ\beh-Ze]hjblf nhjfmebjh\db ^_kylb hihjguo ljb]hghf_ljbq_kdbo nhjfme-k\yahd k bkihevah\Zgb_f fg_fhgbq_kdh]h djm]Zjbk IhemqbflZ[ebpm<
24
25
LZ[ebpZ< KU i i 1.
Ij_^\Zjbl_evgh
cos
HdhgqZl_evgh
θ N = ctg( 90° − α ) ⋅ ctg( 90° − ) 2 2
θ N 2. cos( 90 ° − ) = ctg ⋅ ctgB 2 2 3.
4.
5.
6.
θ cos B = ctg 45° ⋅ ctg( 90° − ) 2
cos 45° = ctgB ⋅ ctg( 90° − α ) N cos( 90° − α ) = ctg45° ⋅ ctg 2 N cos = sin 45 ° ⋅ sin B 2
7.
θ cos( 90° − ) = sin45° ⋅ sin( 90° − α ) 2
8.
cos B = sin( 90 ° − α ) ⋅ sin
9.
10.
N 2 N θ cos 45° = sin ⋅ sin( 90° − ) 2 2
cos( 90° − α ) = sin B ⋅ sin( 90° −
i i
θ ) 2
N θ = tg α ⋅ tg 2 2 N θ sin = ctg ⋅ ctgB 2 2
cos
θ cos B = tg 2
tg α =
3.
5.
N 2
N 2 = sin B 2 2 θ 2 sin = cos α 2 2
cos
cos B = cos α ⋅ sin
2.
4.
2 tgB 2
sin α = ctg
1.
N 2
θ N 2 = sin ⋅ cos 2 2 2 θ sinα = sin B ⋅ cos 2
6.
7.
8.
9.
10.
Ihemq_ggu_ ^_kylv ljb]hghf_ljbq_kdbo nhjfme-k\yahd fh`gh [ueh ZgZeh]bqgh knhjfmebjh\Zlv \u^_eyy \ kljmdlmj_ ^Zgghc ibjZfb^u ijyfhm]hevgucl_ljZw^jABOFjbk
26
IJBF?JUJ?R?GBYA:>:Q Ijbf_j deZkk J_rbf aZ^Zqm ba mq_[gh]h ihkh[by B N RZju]bgZ b < B =hem[_\Z >@ k < ijZ\bevghc q_lujzom]hevghc ibjZfb^_ iehkdbc m]he ijb \_jrbg_ jZ\_g m]em f_`^m [hdh\uf j_[jhf b iehkdhklvx hkgh\Zgby Hij_^_ebl_ ^\m]jZggu_ m]eu f_`^mkhk_^gbfb[hdh\ufb]jZgyfbwlhcibjZfb^u J?R?GB? Kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme Bkihevamy mkeh\b_ b hihjgu_ nhjfmeu b ba lZ[ebpu < ihemqbfljb]hghf_ljbq_kdmxkbkl_fm α =θ θ cos α = 2 ⋅ sin 2 sin Φ ⋅ cos θ = 2 2 2 2 Ba\lhjh]hmjZ\g_gbykbkl_fuihke_aZf_gu .ihemqbf α α α π 2 ⋅ sin 2 + 2 ⋅ sin − 1 = 0 hldm^Zld ∈ ( 0 ; ) , 2 2 2 4 5 −1 α sin = bihwlhfm 2 2⋅ 2
α cos = 2
α 1 − sin 2 = 2
5 −1 1 − 2 ⋅ 2
2
=
1+ 5 2
Balj_lv_]hmjZ\g_gbykbkl_fuihke_aZf_gu .ihemqbf Φ 2 Φ 1+ 5 2 sin ⋅ = ⇔ sin = ⇔ 2 2 2 2 1+ 5
⇔ Φ = 2 ⋅ arcsin Hl\_lΦ = 2 ⋅ arcsin
2 1+ 5
2 1+ 5
ld
Φ π π ∈( ; ). 2 4 2
( ≈ 103 ,66 O ) .
AZf_qZgb_
Φ = 2 − 5 ihemqbf ^jm]mx 2
nhjfmhl\_lZΦ = arccos( 2 − 5 )( ≈ 103 ,66 O ) . 27
Ijbf_j deZkk JZkkfhljbf aZ^Zqm ba k[hjgbdZ ih^ j_^Zdpb_c FB KdZgZ\b >@ k < JZkklhygby hl p_gljZ hkgh\Zgby ijZ\bevghc q_luj_om]hevghc ibjZfb^u ^h [hdh\hc ]jZgb b ^h [hdh\h]h j_[jZjZ\gukhhl\_lkl\_ggha b b GZc^bl_^\m]jZggucm]heijbhkgh\Zgbb ibjZfb^u J?R?GB? Dhf[bgbjh\Zggucf_lh^ ,H[hkgh\Zgb_bah[jZ`_gby <ijbgyluoh[hagZq_gbyojbk d(O;SB)=OF=b. 2) Ie .( SDC )⊥ie .( SOE 1 ) ld ie6'& ijhoh^bl q_j_a i_ji_g^bdmeyj DCdie62( Ihwlhfmihk\hckl\mi_ji_g^bdmeyjguoiehkdhkl_chlj_ahd OK ijh\_^zgguc \ ie .( OSE 1 ) i_ji_g^bdmeyjgh d SE 1 [m^_l i_ji_g^bdmeyj_gdie6'& Ihmkeh\bxHD Z π P_evgZclb ∠SE 1 O = ∠SOK = B , ]^_ B ∈ ( 0 ; ) . 2 ,,
a 1 b a2 = − 1= 2 −1 2 cos B cos α ⇔ cos 2 α b ⋅cos B ⇒ 2 2 tgB = 2 ⋅ tgα α = ⋅ tg B 2 tg 2 ⋅( a 2 − b 2 ⋅cos 2 B ) 2 2 2 2 2 2 ⇒ tg B = ⇔ ⋅ = ⋅ − ⋅ b sin B 2 ( a b cos B )⇔ 2 2 b cos B 2 ⋅a 2 − b 2 2 ⋅a 2 − b 2 2 ⇔ cos B = < 1. , ]^_ 0 < 2 2 b b Hl\_l :
28
2 ⋅a 2 − b 2 B = arccos , b
]^_
a < b < a ⋅ 2.
kihkh[Dlhc`_ljb]hghf_ljbq_kdhckbkl_f_fuijb^zf_keb mjZ\gy_f^ebgmhlj_adZH<\ujZ`_ggmx^\mfykihkh[Zfb b . <ijyfhm]hevghf ∆OBF (∠BFO= 90° ) OB = sin α a a 2 <ijyfhm]hevghf ∆OE 1 D ( ∠OE 1 D = 90° ; OE 1 = DE 1 = )OD = . sin B sin B Ihwlhfm bf__f ke_^mxsmx ljb]hghf_ljbq_kdmx kbkl_fm \ dhlhjhc ihke_i_j_fgh`_gbymjZ\g_gbcbkdexqbf\_ebqbgm.:
a⋅ 2 b a b = = sin B sin α ⇔ cos B cos α tgB = 2 ⋅ tgα tgB = 2 ⋅ tgα
b l^kf 1 kihkh[
kihkh[ < _]h hkgh\_ khklZ\e_gb_ ljb]hghf_ljbq_kdhc kbkl_fu \dexqZxs_c \ k_[y hihjgmx nhjfmem ba lZ[ebpu < b mjZ\g_gb_ khklZ\e_ggh_ gZ hkgh\_ f_lh^Z mjZ\gb\Zgby ^ey ^ebgu hlj_adZ H: H', \ujZ`_gghc^\mfyjZagufbkihkh[Zfb Φ <ijyfhm]hevghf ∆AOF (∠AOF= 90° ) AO = b ⋅ tg . 2 a a 2 ) OD = . <ijyfhm]hevghf ∆OE 1 D ( ∠OE 1 D = 90° ; OE 1 = sin B sin B Ihwlhfm bf__f ke_^mxsmx ljb]hghf_ljbq_kdmx kbkl_fm \ dhlhjhc Φ bkdexqbf\_ebqbgmm]eZ : 2
2 ⋅a 2 Φ 2 Φ a ⋅ 2 tg = 2 b tg ⋅ = 2 b ⋅ sin 2 B 2 2 sin B ⇔ ⇒ −1 = 2 1 Φ sin B 2 1 1 sin B 2 Φ − = sin 2 B − cos = 2 2 cos 2 2 ⋅a 2 2 ⋅b 2 − 2 ⋅a 2 2 , ]^_ a < b < a ⋅ 2 . = 2 ⇔ sin B = 2 2 b ⋅ sin B b 2 ⋅ b 2 − 2 ⋅a 2 Hl\_l : B = arcsin b
, ]^_
a < b < a⋅ 2.
29
LJB=HGHF?LJBYIJ:U HIHJGU?NHJFMEU A:>:Q:<ijZ\bevghc-m]hevghcibjZfb^_ α –m]hegZdehgZ[hdh\h]hj_[jZdiehkdhklbhkgh\Zgby θ –iehkdbcm]heijb\_jrbg_ibjZfb^u B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_hkgh\Zgby N –\_ebqbgZ^\m]jZggh]hm]eZijb[hdh\hfj_[j_ Knhjfmebjmcl_ b h[hkgmcl_ ljb]hghf_ljbq_kdb_ k\hckl\Z ^Zgghc ibjZfb^u J?R?GB? , H[hkgh\Zgb_ bah[jZ`_gby jbk >ey ihkljh_gby ijh_dpbhggh]h bah[jZ`_gbyijZ\bevgh]h-m]hevgbdZ A1 A2 A3 A4 A5 e_`Zs_]h\hkgh\Zgbb ^Zgghc ibjZfb^u k \_jrbghc S [m^_f hibjZlvky gZ ke_^mxsb_ ljb _]h ieZgbf_ljbq_kdbok\hckl\Z – dZ`^Zy_]h^bZ]hgZeviZjZee_evgZh^ghcbaklhjhg – dZ`^Zy _]h ^bZ]hgZev ^_eblky ^jm]hc ^bZ]hgZevx \ djZcg_f b 5 +1 ≈ 1 ,6 ; kj_^g_fhlghr_gbbjZ\gufqbkemNb^by 2 – _]h p_glj e_`bl \ lhqd_ i_j_k_q_gby ^\mo f_^bZg ^\mo jZ\gh[_^j_gguo lj_m]hevgbdh\ khhl\_lkl\_ggh A1 A4 A2 b A2 A5 A3 , ijh\_^_gguodbohkgh\Zgbyf A1 A2 b A2 A3 . Ihwlhfm ihkljh_gb_ ijh_dpbhggh]h bah[jZ`_gby ijZ\bevgh]h 5-m]hevgbdZfh`ghhkms_kl\blvke_^mxsbfh[jZahf Kljhbfijhba\hevguclj_m]hevgbd A1 A4 A2 \dhlhjhf? –k_j_^bgZ klhjhgu A1 A2 , A4 E –f_^bZgZ Hlj_adb A4 A1 b A4 A2 ^_ebf lhqdZfb L b M khhl\_lkl\_ggh \ A L A M 5 djZcg_f b kj_^g_f hlghr_gbb ijb[eb`_ggh iheZ]Zy qlh 4 = 4 ≈ . LA1 MA2 3 AZf_lbfqlhLM|| A1 A2 . Ijh\h^bf A1 A5 iZjZee_evgh A2 A4 ^h i_j_k_q_gby \ lhqd_ A5 k ijh^he`_gb_f A2 L aZlhqdmL. Ijh\h^bf A2 A3 iZjZee_evgh A1 A4 ^h i_j_k_q_gby \ lhqd_ A3 k ijh^he`_gb_f A1 M aZlhqdmF. Kljhbfhlj_adb A3 A4 b A4 A5 .
30
31
P_glj O ihemq_ggh]h bah[jZ`_gby ijZ\bevgh]h -m]hevgbdZ A1 A2 A3 A4 A5 hij_^_ey_f dZd lhqdm i_j_k_q_gby f_^bZg lj_m]hevgbdh\ A1 A4 A2 , A2 A5 A3 ijh\_^_gguokhhl\_lkl\_gghdklhjhgZf A1 A2 b A2 A3 . π Lh]^Z SO – \ukhlZ ^Zgghc ibjZfb^u ∠ SA1 O = α ]^_ 0 < α < ; 2 π θ 2π ∠ SEO =B]^_0 < B < ; ∠ A1 SE = ]^_0 < θ < . 2 2 5 Kp_evxihkljh_gbybah[jZ`_gbyebg_cgh]hm]eZ^ey^\m]jZggh]hm]eZ ijb[hdh\hfj_[j_ SA2 ijh\_^_f\ie A1 SA2 ) A1 F⊥SA2 bkh_^bgbflhqdmF N l d k lhqdhc A3 Lh]^Z ∠ A1 FA3 N ijbq_f ∠A1 FN = ∠ A3 FN = 2 3π Nπ. f_^bZgZFNy\ey_lky[bkk_dljbkhcm]eZ A1 FA3 AZf_lbfqlh 5 II. Ijbf_g_gb_f_lh^Zijyfhm]hevgh]hl_ljZw^jZ < kljmdlmj_ ijZ\bevghc -m]hevghc ibjZfb^u SA1 A2 A3 A4 A5 \u^_ebf ijyfhm]hevguc l_ljZw^j SA1 OE jbk b d m]eh\uf we_f_glZf _]h lj_o]jZggh]h m]eZ A1 SOE k _^bgkl\_gguf ijyfuf m]ehf ijb j_[j_ A1 O ijbf_gbf ijZ\beh-Ze]hjblf nhjfmebjh\db ^_kylb hihjguo ljb]hghf_ljbq_kdbo nhjfme-k\yahd k bkihevah\Zgb_f fg_fhgbq_kdh]h djm]Zjbk IhemqbflZ[ebpm= LZ[ebpZ= KU i i
HdhgqZl_evgh
N N θ θ = ctg( 90° − α ) ⋅ ctg( 90° − ) cos = tg α ⋅ tg 2 2 2 2 N θ N θ sin = ctg ⋅ ctgB cos( 90 ° − ) = ctg ⋅ ctgB 2 2 2 2 θ θ cos B ctg 36 tg = ° ⋅ cos B = ctg 36 ° ⋅ ctg ( 90 ° − ) 2 2
1. cos
1.
2.
2.
3. 4. 5.
32
Ij_^\Zjbl_evgh
i i
cos 36 ° = ctgB ⋅ ctg ( 90 ° − α ) cos( 90 ° − α ) = ctg 36 ° ⋅ ctg
N 2
tg α = cos 36 ° ⋅ tgB N sin α = ctg 36 ° ⋅ ctg 2
3. 4. 5.
i i
Ij_^\Zjbl_evgh
i i
HdhgqZl_evgh
N = sin 36° ⋅ sin B 2
cos
N = sin 36° ⋅ sin B 2
6.
θ ) = sin 36° ⋅ sin( 90° − α ) 2
θ sin = sin 36° ⋅ cosα 2
7.
N 2
8.
N θ ⋅ cos 2 2
9.
θ ) sin α = sin B ⋅ cos θ 2 2
10.
6.
cos
7.
cos( 90° −
8.
N cos B = sin( 90 ° − α ) ⋅ sin 2
9.
cos 36 ° = sin
10.
cos( 90° − α ) = sin B ⋅ sin( 90° −
θ N ⋅ sin( 90 ° − ) 2 2
cos B = cos α ⋅ sin cos 36° = sin
Ihemq_ggu_ ^_kylv ljb]hghf_ljbq_kdbo nhjfme fh`gh [ueh ZgZeh]bqgh knhjfmebjh\Zlv \u^_eyy \ kljmdlmj_ ^Zgghc -m]hevghc ibjZfb^uijyfhm]hevgucl_ljZw^j A1 A2 NF jbk Ihe_aghihfgblvf_lh^\uqbke_gbyke_^mxsboagZq_gbc7:
5 − 1 10 + 2 5 sin 18 ° = cos 18° = 4 4 5 + 1 10 − 2 5 ° = cos 36 sin 36° = 4 4 :e]_[jZ ^ey deZkkZ / G Y
33
IJBF?JUJ?R?GBYA:>:Q Ijbf_j deZkk GZc^bl_ m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx ijZ\bevghc iylbm]hevghc ibjZfb^u m dhlhjhc[hdh\u_]jZgb–jZ\ghklhjhggb_lj_m]hevgbdb. J?R?GB? Kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme <ijbgyluoh[hagZq_gbyojbk 60° .
θ sin = sin 36° ⋅ cosα hldm^Z Ihhihjghcnhjfme_ balZ[ebpu= 2 5+ 5 . 1 4 cos α = = = 10 2 ⋅ sin 36 ° 2 ⋅ 10 − 2 ⋅ 5 Ihhihjghcnhjfme_ balZ[ebpu= cos Β = ctg 36° ⋅ tg
cos B =
=
5 +1 3 ⋅ 10 − 2 ⋅ 5
( 5 + 1 )3 2 ⋅ 2 ⋅ 3⋅ 5
Hl\_l . = arccos
=
=
5 +1 3 ⋅ 2⋅ 5 ⋅
8 ⋅( 5 + 2 ) 2 ⋅ 2 ⋅ 3⋅ 5
=
5+ 5 ( ≈ 31 ,7 ° ); B = arccos 10
5 −1
5 +2 = 3⋅ 5
θ hldm^Z 2
=
5 + 2⋅ 5 . 15
5 + 2⋅ 5 ( ≈ 37 ,4 ° ). 15
AZf_qZgb_:gZeh]bqgmxaZ^Zqmfh`ghknhjfmebjh\Zlvebrv^eyn=3; 4. Ijbf_j deZkk RZj \ibkZgguc \ ijZ\bevgmx iylbm]hevgmx ibjZfb^m b rZj hibkZgguc hdheh wlhc ibjZfb^u bf_xl h[sbc p_glj >hdZaZlv qlh hdjm`ghklb hibkZggu_ hdheh hkgh\Zgby b [hdh\uo ]jZg_c ibjZfb^u jZ\gu GZc^bl_ m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhfb[hdh\hc]jZgvxZlZd`_^\m]jZggucm]heijb[hdh\hfj_[j_ J?R?GB? Dhf[bgbjh\Zggucf_lh^ ,H[hkgh\Zgb_bah[jZ`_gbyBa\_klgu^\ZnZdlZ8. <ex[mxijZ\bevgmxibjZfb^mfh`gh\ibkZlvkn_jmh[hagZqbf_z jZ^bmk r ijbqzf _z p_glj O r e_`bl \ lhqd_ i_j_k_q_gby \ukhlu SO b [bkk_dljbku m]eZ SEO jbk Z lhqdb O 1 dZkZgby kn_ju k [hdh\ufb ]jZgyfbe_`ZlgZZihn_fZogZijbf_jSE ibjZfb^u Hdheh ex[hc ijZ\bevghc ibjZfb^u fh`gh hibkZlv kn_jm h[hagZqbf_zjZ^bmkR ijbqzf_zp_glj O R e_`bl\lhqd_i_j_k_q_gbyhkb A_feydh\:G=_hf_ljby\deZkk_F_lh^j_dhf_g^Zpbbd ij_ih^Z\ZgbxdmjkZ]_hf_ljbbihmq_[ghfmihkh[bx:<Ih]hj_eh\Z– F–K-119. 8
34
SO ibjZfb^u k k_j_^bgguf i_ji_g^bdmeyjhf d [hdh\hfm j_[jm gZijbf_j SA1 ijh\_^zgguf\ ie .( SAO 1 ) . Ih mkeh\bx p_glj O r \ibkZgghc b p_glj O R hibkZgghc kn_j kh\iZ^ZxlH[hagZqbfh[sbcp_gljwlbokn_j, ,,>hdZaZl_evkl\hkbgl_lbq_kdbcf_lh^ LZd dZd IS = IA1 = IA2 = R dZd jZ^bmku hibkZggh]h rZjZ lh O 1 S = O 1 A1 = O 1 A2 dZd ijh_dpbb gZ [hdh\mx ]jZgv SA1 A2 jZ\guo gZdehgguo Ihwlhfm O1 – p_glj hdjm`ghklb hibkZgghc hdheh [hdh\hc ]jZgb Ijyfhm]hevgu_ lj_m]hevgbdb IOA1 b IO 1 A1 jZ\gu ih dZl_lm b ]bihl_gma_ IO = IO 1 = r , IA1 – h[sZy Ihwlhfm OA1 = O 1 A1 l_ hdjm`ghklb hibkZggu_ hdheh hkgh\Zgby b [hdh\uo ]jZg_c ibjZfb^u jZ\guQl^ ,,,
1 = 2 ⋅ cos 18°
2 10 + 2 ⋅ 5
=
θ = sin 36 ° ⋅ cos α ihemqbf qlh 2
5− 5 . 10
Bkihevamy hihjgmx nhjfmem ba lZ[ebpu = cos Β = ctg 36° ⋅ tg ihemqbfqlh cos Β =
tg 18° cos 36° 5 +1 5 = = = tg 36° 1 + cos 36° 5 5 +5
Bkihevamy hihjgmx nhjfmem ba lZ[ebpu = cos Β = cos α ⋅ sin
θ , 2
Φ , 2
Φ Φ cos Β 5+ 5 5− 5 = = hldm^Z cos = 2 cos α 10 2 10 Φ LZdbf h[jZahf ^ey ^Zgghc ibjZfb^u α = ^ey^jm]boijZ\bevguo
ihemqbfqlh sin
ibjZfb^wlhg_\_jgh Φ Hl\_l α = = arccos 2
2
5 5− 5 ( ≈ 63.4° ) . ( ≈ 58 .3 ° ) ; Β = arccos 5 10
35
LJB=HGHF?LJBYIJ:U HIHJGU?NHJFMEU A:>:Q:<ijZ\bevghc-m]hevghcibjZfb^_ α –m]hegZdehgZ[hdh\h]hj_[jZdiehkdhklbhkgh\Zgby θ –iehkdbcm]heijb\_jrbg_ibjZfb^u B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_hkgh\Zgby N –\_ebqbgZ^\m]jZggh]hm]eZijb[hdh\hfj_[j_ Knhjfmebjmcl_ b h[hkgmcl_ ljb]hghf_ljbq_kdb_ k\hckl\Z ^Zgghc ibjZfb^u J?R?GB? I. H[hkgh\Zgb_ bah[jZ`_gby jbk >ey ihkljh_gby ijh_dpbhggh]h bah[jZ`_gby ijZ\bevgh]h -m]hevgbdZ A1 A2 A3 A4 A5 A6 e_`Zs_]h \ hkgh\Zgbb^ZgghcibjZfb^uk\_jrbghcSfh`ghihkljhblvijhba\hevguc iZjZee_eh]jZff A1 A2 A3 O b gZ emqZo A1 O , A2 O , A3 O hleh`blv hlj_adb OA4 = OA1 , OA5 = OA2 , OA6 = OA3 < j_amevlZl_ ihemqbf bah[jZ`_gb_ ijZ\bevgh]h-m]hevgbdZkp_gljhfHLh]^ZSO –\ukhlZ^ZgghcibjZfb^u π ∠ SA1 O = α]^_0 < α < Imklv?k_j_^bgZj_[jZ A1 A2 , lh]^Z ∠ SEO =B, 2 π θ π ]^_0 < B < ; ∠ A1 SE = ]^_0 < θ < Kp_evxihkljh_gbybah[jZ`_gby 2 2 3 ebg_cgh]h m]eZ ^ey ^\m]jZggh]h m]eZ ijb [hdh\hf j_[j_ SA6 ijh\_^_f \ ie SA1 A6 ) A1 F⊥SA6 bkh_^bgbflhqdmFklhqdhc A5 Lh]^Z ∠ A1 FA5 N, N ijbq_f ∠ A1 FN = ∠ A5 FN = l d \ jZ\gh[_^j_gghf lj_m]hevgbd_ 2 A1 FA5 f_^bZgZ FN y\ey_lky [bkk_dljbkhc m]eZ A1 FA5 AZf_lbf qlh 2π <Φ <π . 3 II. Ijbf_g_gb_f_lh^Zijyfhm]hevgh]hl_ljZw^jZ < kljmdlmj_ ijZ\bevghc -m]hevghc ibjZfb^u SA1 A2 A3 A4 A5 A6 \u^_ebf ijyfhm]hevguc l_ljZw^j SA1 OE jbk b d m]eh\uf we_f_glZf _]h lj_o]jZggh]h m]eZ A1 SOE k _^bgkl\_gguf ijyfuf m]ehf ijb j_[j_ A1 O ijbf_gbf ijZ\beh-Ze]hjblf nhjfmebjh\db ^_kylb hihjguo ljb]hghf_ljbq_kdbo nhjfme-k\yahd k bkihevah\Zgb_f fg_fhgbq_kdh]h djm]Zjbk IhemqbflZ[ebpm>
36
37
LZ[ebpZ> KU i i 1.
2.
Ij_^\Zjbl_evgh
cos
HdhgqZl_evgh
θ N = ctg ( 90 ° − α ) ⋅ ctg ( 90 ° − ) 2 2 θ N cos( 90 ° − ) = ctg ⋅ ctgB 2 2
θ ) 2
3.
cos B = ctg 30 ° ⋅ ctg ( 90 ° −
4.
cos 30 ° = ctgB ⋅ ctg ( 90 ° − α )
5. 6.
cos( 90 ° − α ) = ctg 30 ° ⋅ ctg
N cos = sin 30 ° ⋅ sin B 2
i i
N 2
N θ = tg α ⋅ tg 2 2 N θ sin = ctg ⋅ ctgB 2 2 cos
θ 2
cos B =
3 tg
tg α =
3 tgB 2
1.
2. 3.
4.
N sin α = 3ctg 2
5.
cos
6.
N 1 = sin B 2 2
θ 1 θ sin = cos α 7. cos( 90° − ) = sin 30° ⋅ sin( 90° − α ) 2 2 2 N N α = ⋅ cos B cos sin cos B = sin( 90° − α ) ⋅ sin 8. 2 2 N θ N 3 9. θ cos 30° = sin ⋅ sin( 90° − ) = sin ⋅ cos 2 2 2 2 2 θ θ 10. cos( 90 ° − α ) = sin B ⋅ sin( 90° − ) sinα = sin B ⋅ cos 2 2
7.
8.
9. 10.
Ihemq_ggu_ ^_kylv ljb]hghf_ljbq_kdbo nhjfme-k\yahd fh`gh [ueh ZgZeh]bqgh knhjfmebjh\Zlv \u^_eyy \ kljmdlmj_ ^Zgghc -m]hevghc ibjZfb^uijyfhm]hevgucl_ljZw^j A1 A6 NF jbk .
38
IJBF?JUJ?R?GBYA:>:Q Ijbf_j deZkk J_rbf aZ^Zqm ba mq_[gh]h ihkh[by BN RZju]bgZb<B=hem[_\Z>@k <ijZ\bevghcr_klbm]hevghc ibjZfb^_p_gljhibkZgghckn_jue_`blgZih\_joghklb\ibkZgghcGZc^bl_ hlghr_gbyjZ^bmkh\hibkZgghcb\ibkZgghckn_j J?R?GB? Dhf[bgbjh\Zggucf_lh^ , DjZldh_ h[hkgh\Zgb_ bah[jZ`_gby < ex[mx ijZ\bevgmx ibjZfb^m fh`gh \ibkZlv kn_jm h[hagZqbf _z jZ^bmk r ijbqzf _z p_glj O r e_`bl \ lhqd_ i_j_k_q_gby \ukhlu SO b [bkk_dljbku m]eZ SEO jbk Z lhqdb L dZkZgby kn_ju k [hdh\ufb ]jZgyfb e_`Zl gZ Zihn_fZo gZijbf_j SE) ibjZfb^u Hdheh ex[hc ijZ\bevghc ibjZfb^u fh`gh hibkZlv kn_jm h[hagZqbf_zjZ^bmkR ijbqzf_zp_glj O R e_`bl\lhqd_i_j_k_q_gbyhkb SO jbk ibjZfb^u k k_j_^bgguf i_ji_g^bdmeyjhf KO R d [hdh\hfm j_[jm gZijbf_j SA1 ijh\_^zgguf \ ie( SA1 O ) P_glj O R hibkZgghc π kn_jufh`_lgZoh^blvky\gmljbibjZfb^u_keb α > fh`_lkh\iZ^Zlvk 4 π p_gljhf H hkgh\Zgby ibjZfb^u _keb α = fh`_l gZoh^blvky \gmljb 4 π ibjZfb^u_keb α < gZijh^he`_gbbSOaZlhqdmH. 4 <^ZgghcaZ^Zq_p_glj O R hibkZgghckn_jufh`_leb[he_`Zlv\gmljb hlj_adZSOkemqZc eb[hkh\iZ^Zlvkp_gljhfHhkgh\ZgbykemqZc ,, tgα = 2 w\jbklbq_kdbf ijbgpbihf iZjZ^b]fu wlZ nhjfmeZ [m^_l ih^kdZau\Zlv ^Zevg_crbcoh^fuke_c JZkkfhljbfk_q_gb_ibjZfb^uiehkdhklvx ( SA1 O ) ijhoh^ys_cq_j_a \ukhlmSOb[hdh\h_j_[jh SA1 jbkZ
39
kemqZc
S S
R R
α
K
OR
OR
L
Or
R
O
r
Or
r
α A1
B r B
B
E
A4
O
JbkZ Jbk[ < ijyfhm]hevghf ∆ O R A1 O : A1 O = A1 O R 2 − O R O 2 = R 2 − 4 r 2 ]^_ R>2r. <ijyfhm]hevghf∆ SA1 O : tgα =
SO = A1 O
R + 2r R − 4r 2
2
.
JZkkfhljbfk_q_gb_ibjZfb^uiehkdhklvx(SOE)ijhoh^ys_cq_j_a_z \ukhlmSObZihn_fmSEjbk[ ( R + r )2 − r 2 SL = . <ijyfhm]hevghf∆ SO r L : tgB = LO r r BlZd^ey\uqbke_gby
R bf__fmjZ\g_gb_dhlhjh_ihke_\ha\_^_gbyh[_bo r
qZkl_c\d\Z^jZlk\_^zfdd\Z^jZlghfm 2
R + 2r R 2 − 4r 2
40
R + 2 2 2 3 R + 2 Rr 3 R R r = ⋅ ⇔ = ⋅ + 2 ⋅ . 2 2 r 4 r r R −4 r
Ihke_aZf_gu
R = t ]^_t>2ihemqbfmjZ\g_gb_ r
t>2 1 3 3 t>2 2 = ⋅ t ⋅ ( t + 2 )⇔ = ⋅ t ⇔ 3t − 6 t − 4 = 0 ⇔ 2 4 t−2 4 t −4
( t + 2 )2
3 + 21 > 2, t = 3 ⇔ 3 − 21 < 0 , ihwlhfm g_ijb]h^gh . t = 3 R 3 + 21 = . r 3
BlZd^eyi_j\h]hkemqZyihemqZ_fhl\_l
π . 4 Ih-ij_`g_fm \ dZq_kl\_ hkgh\u ^ey khklZ\e_gby mjZ\g_gby hlghkbl_evgh R hlghr_gby \havf_f nhjfmem ba lZ[ebpu > JZkkfhljbf k_q_gb_ r ibjZfb^uiehkdhklvxijhoh^ys_cq_j_a\ukhlmSObZihn_fmSEjbk\ < ijyfhm]hevghf∆ SO r L ( ∠SLO r = 90° , ∠SO r L = Β ): kemqZcLhqdZ H R kh\iZ^Z_lkp_gljhfHhkgh\Zgbyihwlhfm α =
2
( R − r )2 − r 2 SL tgΒ = = = LO r r Bf__f^ey\uqbke_gby
R 2 − 2 Rr R R = − 2 ⋅ ]^_R>2r. r r r R r
mjZ\g_gb_dhlhjh_k\_^_f dd\Z^jZlghfmkemqZc
S
2
3 R R R ⋅ − 2 ⋅ = 1 ]^_ > 2 . 2 r r r R Ihke_aZf_gu = t ]^_t>2, r 2 ihemqbf 3t − 6 t − 4 = 0 , R 3 + 21 hldm^Z t = = . B r 3 E 3 + 21 . Hl\_l 3
L r
B r
R Or
B O = OR
Jbk\
41
LJB=HGHF?LJBYIJ:
n-M=HEVGHCIBJ:FB>U HIHJGU?NHJFMEU A:>:Q:<ijZ\bevghcQ-m]hevghcibjZfb^_ α –m]hegZdehgZ[hdh\h]hj_[jZdiehkdhklbhkgh\Zgby θ –iehkdbcm]heijb\_jrbg_ibjZfb^u B –\_ebqbgZ^\m]jZggh]hm]eZijbj_[j_hkgh\Zgby N –\_ebqbgZ^\m]jZggh]hm]eZijb[hdh\hfj_[j_ Knhjfmebjmcl_ b h[hkgmcl_ ljb]hghf_ljbq_kdb_ k\hckl\Z ^Zgghc ibjZfb^u J?R?GB? I. H[hkgh\Zgb_ bah[jZ`_gby GZ jbk bah[jZ`_g njZ]f_gl n-m]hevghc ibjZfb^u k \_jrbghc 6 b hkgh\Zgb_f A1 A2 ...An y\eyxsbfky ijZ\bevguf Q-m]hevgbdhf k p_gljhf H. SO – \ukhlZ ibjZfb^u π ∠ SA1 O = α]^_0 < α < Imklv?k_j_^bgZj_[jZ A1 A2 lh]^Z ∠ SEO =B, 2 π θ 2π ]^_ 0 < B < ; ∠ A1 SE = ]^_ 0 < θ < l d kmffZ iehkdbo m]eh\ 2 2 n \uimdeh]h Q-]jZggh]h m]eZ9 f_gvr_ 2π K p_evx ihkljh_gby bah[jZ`_gby ebg_cgh]h m]eZ ^ey ^\m]jZggh]h m]eZ ijb [hdh\hf j_[j_ SA2 ijh\_^_f \ ie SA1 A2 ) A1 F⊥SA2 bkh_^bgbflhqdmFklhqdhc A3 Lh]^Z ∠ A1 FA3 N, N ijbq_f ∠ A1 FN = ∠ A3 FN = l d \ jZ\gh[_^j_gghf lj_m]hevgbd_ 2 A1 FA3 f_^bZgZ FN y\ey_lky [bkk_dljbkhc m]eZ A1 FA3 LZd dZd kmffZ \_ebqbg ^\m]jZgguo m]eh\ \uimdeh]h Q-]jZggh]h m]eZ10 [hevr_ π(n–2) lh π(n − 2 ) Nπ. n II. Ijbf_g_gb_f_lh^Zijyfhm]hevgh]hl_ljZw^jZ < kljmdlmj_ ijZ\bevghc Q-m]hevghc ibjZfb^u SA1 A2 ...An \u^_ebf ijyfhm]hevguc l_ljZw^j SA1 OE jbk b d m]eh\uf we_f_glZf _]h lj_o]jZggh]h m]eZ A1 SOE k_^bgkl\_ggufijyfuf^\m]jZggufm]ehfijb j_[j_ A1 O ijbf_gbfijZ\beh-Ze]hjblfnhjfmebjh\db^_kylbhihjguo IjZkheh\<<RZju]bgBNAZ^Zqbihkl_j_hf_ljbb–F–K [ 10 LZf`_Z 9
42
43
ljb]hghf_ljbq_kdbo nhjfme-k\yahd k bkihevah\Zgb_f fg_fhgbq_kdh]h djm]Zjbk IhemqbflZ[ebpm? LZ[ebpZ?
i i 1. 2.
3.
4. 5.
6. 7.
8. 9.
10.
KU Ij_^\Zjbl_evgh
θ N = ctg( 90° − α ) ⋅ ctg( 90° − ) 2 2 θ N cos( 90 ° − ) = ctg ⋅ ctgB 2 2
cos
cos B = ctg
θ 180 ° ⋅ ctg ( 90° − ) n 2
HdhgqZl_evgh
cos sin
N θ = tg α ⋅ tg 2 2
θ N = ctg ⋅ ctgB 2 2
cos B = ctg
1. 2.
θ 3. 180 ° ⋅ tg n 2
180 ° 180 ° = ctgB ⋅ ctg ( 90 ° − α ) = tg α ⋅ ctgB cos n n N 180 ° 180° N sin α = ctg ctg ⋅ ctg cos( 90° − α ) = ctg n 2 n 2 N 180 ° N 180 ° ⋅ sin B cos = sin cos = sin ⋅ sin B 2 n 2 n θ 180 ° 180° θ ⋅ cos α cos( 90° − ) = sin ⋅ sin( 90° − α ) sin = sin 2 n 2 n N N cos B = cosα ⋅ sin cos B = sin( 90 ° − α ) ⋅ sin 2 2 N θ 180 ° 180 ° N θ cos = sin ⋅ sin( 90 ° − ) cos n = sin 2 ⋅ cos 2 n 2 2 θ θ = ⋅ α sin sin B cos cos( 90° − α ) = sin B ⋅ sin( 90° − ) 2 2 cos
i i
4. 5.
6. 7.
8. 9.
10.
Ihemq_ggu_ ^_kylv ljb]hghf_ljbq_kdbo nhjfme-k\yahd fh`gh [ueh ZgZeh]bqgh knhjfmebjh\Zlv \u^_eyy \ kljmdlmj_ ^Zgghc Q-m]hevghc ibjZfb^uijyfhm]hevgucl_ljZw^j A1 A2 NF jbk NhjfmeubalZ[ebpu?fh`ghjZa^_eblvgZ]jmiiu
44
N 2 Bo^hdZaZl_evkl\hm^h[ghijh\_klbf_lh^hf\hkoh^ys_]hZgZebaZgZhkgh\_ j_r_gby ijyfhm]hevguo lj_m]hevgbdh\ \oh^ysbo \ kljmdlmjm SA1 OE jbk Ijb\_^_f ijbf_j ijyfhm]hevgh]h l_ljZw^jZ ^hdZaZl_evkl\Znhjfmeu 180° OE OE EA1 θ ⋅ tg ⇐ = ⋅ qlhbklbggh (3) cos B = ctg n 2 SE EA1 SE N gh g_ ,, ]jmiiZ – wlh nhjfmeu kh^_j`Zsb_ \_ebqbgm m]eZ 2 kh^_j`Zsb_< Bo^hdZaZl_evkl\hih-ij_`g_fmm^h[ghijh\_klb f_lh^hf \hkoh^ys_]h ZgZebaZ gh gZ hkgh\_ j_r_gby ijyfhm]hevguo lj_m]hevgbdh\ \oh^ysbo \ kljmdlmjm ^jm]h]h ijyfhm]hevgh]h l_ljZw^jZ A1 A2 NF jbk Ijb\_^_fijbf_j^hdZaZl_evkl\Znhjfmeu ,]jmiiZ–wlhnhjfmeug_kh^_j`Zsb_\_ebqbgmm]eZ
(1) cos
N FN FN FA 2 θ = tg α ⋅ tg ⇐ = ⋅ qlhbklbggh 2 2 FA 1 FA 2 FA 1
N b< 2 Bo ^hdZaZl_evkl\h wdhghfg__ \k_]h ijh\_klb Ze]_[jZbq_kdbf f_lh^hf bkdexq_gby \_ebqbg g_dhlhjuo m]eh\ ba jZg__ ^hdZaZgguo nhjfme Ijb\_^_fijbf_ju NhjfmeZ \u\h^blky ba ^hdZaZgguo nhjfme b iml_f θ bkdexq_gby\_ebqbgum]eZ \k_m]euhklju_ 2 180 ° θ tg cos B tg = ⋅ 180 ° θ 2 n cos B ctg tg = ⋅ n 2 N ⇔ ⇒ sin 1 180 N ° θ 2 cos = = sin ⋅ cos 180 ° θ n 2 2 cos cos 2 n N sin2 180° 2 ⇔ cos2 180° + ( 1 − sin2 B)⋅ sin2 180° = sin2 N ⇔ ⇒ 1 + cos2 B ⋅ tg2 = 180° n n n 2 cos2 n 180° 180 ° N 2 N = sin 2 B ⋅ sin 2 ⇔ ⇔ 1 − sin 2 B ⋅ sin 2 = sin 2 ⇔ cos 2 n n 2 III]jmiiZ–wlhnhjfmeukh^_j`Zsb_\_ebqbgum]eh\
⇔ cos
N 180 ° = sin B ⋅ sin . 2 n
45
NhjfmeZ \u\h^blky ZgZeh]bqgh ba nhjfme b f_lh^hf θ bkdexq_gby\_ebqbgum]eZ . 2 NhjfmeZ \u\h^blky ba nhjfme b f_lh^hf bkdexq_gby \_ebqbgum]eZαgZhkgh\_nhjfmeu
180 ° 180 ° tg ctgB ctgB cos cos α = ⋅ ctg α = ⋅ n n ⇒ ⇔ ° ° N 180 180 N ctg sin α = ctg = tg ⋅ sin α ⋅ ctg 2 n n 2 N 180 ° N θ ⇒ ctg ⋅ ctgB = sin ⋅ cos α ⇔ ctg ⋅ ctgB = sin . 2 2 2 n
IJBF?JUJ?R?GBYA:>:Q Ijbf_j deZkk J_rbf aZ^Zqm ba k[hjgbdZ ih^ j_^Zdpb_c FB KdZgZ\b >@ k ; Hlghr_gb_ iheghc ih\_joghklb ijZ\bevghc Q-m]hevghc ibjZfb^u d iehsZ^b hkgh\Zgby jZ\gh l GZc^bl_ m]hef_`^m[hdh\ufj_[jhfbiehkdhklvxhkgh\Zgby J?R?GB? Kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme <ijbgyluoh[hagZq_gbyojbk ihegZyih\_joghklvibjZfb^u
S hkg 1 + S hkg = S hkg ⋅ + 1 ⇒ cos B cos B 1 S 1 , ⇒ = + 1 = l ⇒ cos B = l −1 S hkg cos B
_klv S = S [ + S hkg =
]^_^ey B ∈ ( 0 ;
π ) cos B ∈ ( 0 ;1 ) bihwlhfml>2. 2
Ihhihjghcnhjfme_ balZ[ebpu? tgα = cos LZddZd^eyl >2 tgB = lh tg α = cos π ⋅
n
Hl\_lα
46
π ⋅ tgΒ . n
1 − 1 = (l- 1 ) 2 − 1 = l ⋅ (l- 2 ) , 2 cos B π .
l ⋅ ( l − 2 ) b α = arctg cos ⋅ l ⋅ ( l − 2 ) n
π = arctg cos ⋅ l ⋅ ( l − 2 ) ]^_l > 2. n
Ijbf_jdeZkk <ijbgyluoh[hagZq_gbyojbk j_rbfaZ^Zqm bamq_[gbdZEK:lZgZkygZb^j>@k <ijZ\bevghcQ-m]hevghc ibjZfb^_ iehkdbc m]heijb\_jrbg_jZ\_gZklhjhgZhkgh\ZgbyjZ\gZa. GZc^bl_h[tzfibjZfb^u J?R?GB? :gZeblbdh-kbgl_lbq_kdbcf_lh^f_lh^hihjguonhjfme 1 ⋅ S hkg ⋅ H ibj lh ^hklZlhqgh gZclb H ibj = SO b 3 S hkg = n ⋅ S ∆ A1OA2 jbk
1) LZd dZd Vibj =
a a2 n⋅ a2 = Ihwlhfm S hkg = . 2) S ∆ A1OA2 180° 180° 180° 2 tg 4 tg 4 tg n n n a ⋅ tgα Ba¨ SOA2 : H = OA2 ⋅ tgα = ]^_ α = ∠SA2 O . 180° 2 sin n θ 180° ⋅ cos α ihwlhfm Ihhihjghcnhjfme_ balZ[ebpu? sin = sin 2 n θ 180° − sin 2 sin 2 sin α n 2 = , tgα = θ cos α sin 2 θ 180° θ 180° ]^_ sin ≤ 60° ijb n ≥ 3 . > sin > 0 ld 0 < < n 2 2 n θ 180° − sin 2 a ⋅ sin 2 n 2 . BlZd H ibj = θ 180° ⋅ sin 2 sin n 2 1 1 = ⋅ a ⋅ OE = ⋅ a ⋅ 2 2
θ n ⋅ a 3 ⋅ sin 180° − θ ⋅ sin 180° + θ 180° − sin 2 2 2 n n n 2 Hl\_lV = . = θ θ 180° 180° 180° 180° ⋅ tg ⋅ sin ⋅ tg ⋅ sin 24 sin 24 sin n n 2 n n 2 AZf_qZgb_ J_rzggZy aZ^ZqZ y\ey_lky l_hj_lbq_kdbf h[h[s_gb_f aZ^Zqbbalh]h`_mq_[gbdZEK:lZgZkygZb^j>@k n ⋅ a 3 ⋅ sin 2
47
§ 8. A:>:QB>EYK:FHKLHYL?EVGUOBDHGLJHEVGUOJ:;HL <BDE:KK:O AZ^ZqZ 1.
48
AZ^ZqZKlhjhgZhkgh\ZgbyijZ\bevghcn-m]hevghcibjZfb^ujZ\gZ Z[hdh\h_j_[jhjZ\ghGZclb Z m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx iehkdbc m]he ijb \_jrbg_ Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb[hdh\ufb]jZgyfbwlhcibjZfb^udeZkk [ iehsZ^viheghcih\_joghklbibjZfb^udeZkk \ h[tzfibjZfb^udeZkk ] h[tzf rZjZ hibkZggh]h hdheh ibjZfb^u b iehsZ^v _]h kn_ju (11 deZkk ^ h[tzf\ibkZggh]h\ibjZfb^mrZjZbiehsZ^v_]hkn_judeZkk _ h[tzf ihem\ibkZggh]h \ ibjZfb^m rZjZ b iehsZ^v _]h kn_ju (11 deZkk AZ^ZqZ < ijZ\bevghc n-m]hevghc ibjZfb^_ iehkdbc m]he ijb \_jrbg_ jZ\_g m]em f_`^m [hdh\uf j_[jhf b iehkdhklvx hkgh\Zgby GZc^bl_ ^\m]jZggu_ m]eu khklZ\ey_fu_ [hdh\hc ]jZgvx k hkgh\Zgb_f b khk_^gbfb[hdh\ufb]jZgyfbdeZkk AZ^ZqZ JZkklhygby hl p_gljZ hkgh\Zgby ijZ\bevghc n-m]hevghc ibjZfb^u^h[hdh\hc]jZgbb^h[hdh\h]hj_[jZjZ\gukhhl\_lkl\_gghZbb. GZc^bl_ Z m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx iehkdbc m]he ijb \_jrbg_ Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb[hdh\ufb]jZgyfbwlhcibjZfb^udeZkk [ iehsZ^viheghcih\_joghklbibjZfb^udeZkk \ h[tzfibjZfb^udeZkk ] h[tzf rZjZ hibkZggh]h hdheh ibjZfb^u b iehsZ^v _]h kn_ju (11 deZkk ^ h[tzf\ibkZggh]h\ibjZfb^mrZjZbiehsZ^v_]hkn_judeZkk _ h[tzfihem\ibkZggh]h\ibjZfb^mrZjZb_]hkn_judeZkk AZ^ZqZ<ijZ\bevghcn-m]hevghcibjZfb^_n =3;4) [hdh\u_]jZgb – jZ\ghklhjhggb_ lj_m]hevgbdb GZc^bl_ m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb[hdh\ufb]jZgyfbwlhcibjZfb^u deZkk AZ^ZqZRZj\ibkZgguc\ijZ\bevgmxn-m]hevgmxibjZfb^mbrZj hibkZgguc hdheh wlhc ibjZfb^u dhgp_gljbqgu GZc^bl_ m]eu, khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx Z lZd`_ ^\m]jZggucm]heijb[hdh\hfj_[j_deZkk
49
AZ^ZqZ < ijZ\bevghc n-m]hevghc ibjZfb^_ p_glj hibkZgghc kn_ju e_`blgZih\_joghklb\ibkZgghcGZc^bl_ Z hlghr_gbyjZ^bmkh\hibkZgghcb\ibkZgghckn_jdeZkk [ m]eukhklZ\ey_fu_hkgh\Zgb_f[hdh\ufj_[jhfb[hdh\hc]jZgvx iehkdbc m]he ijb \_jrbg_ Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb [hdh\ufb]jZgyfbwlhcibjZfb^udeZkk AZ^ZqZ < ijZ\bevghc n-m]hevghc ibjZfb^_ iehkdbc m]he ijb \_jrbg_jZ\_gθZklhjhgZhkgh\ZgbyjZ\gZZGZc^bl_ Z m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb [hdh\ufb ]jZgyfb (10 deZkk [ \ukhlmibjZfb^ubiehsZ^v_zih\_joghklbdeZkk \ h[tzfibjZfb^udeZkk ] h[tzf rZjZ hibkZggh]h hdheh ibjZfb^u b iehsZ^v _]h kn_ju (11 deZkk ^ h[tzf rZjZ \ibkZggh]h \ ibjZfb^m b iehsZ^v _]h kn_ju deZkk _ h[tzf ihem\ibkZggh]h \ ibjZfb^m rZjZ b iehsZ^v _]h kn_ju (11 deZkk AZ^ZqZ Hlghr_gb_ iheghc ih\_joghklb ijZ\bevghc n-m]hevghc ibjZfb^udiehsZ^bhkgh\ZgbyjZ\ghlGZc^bl_ Z m]eu khklZ\ey_fu_ k hkgh\Zgb_f [hdh\uf j_[jhf b [hdh\hc ]jZgvx iehkdbc m]he ijb \_jrbg_ Z lZd`_ ^\m]jZgguc m]he f_`^m khk_^gbfb[hdh\ufb]jZgyfbdeZkk [ hlghr_gb_h[tzfh\ibjZfb^ub\ibkZggh]h\g_zrZjZdeZkk \ hlghr_gb_ h[tzfh\ ibjZfb^u b hibkZggh]h hdheh g_z rZjZ (11 deZkk ] hlghr_gb_ h[tzfh\ ibjZfb^u b ihem\ibkZggh]h \ g_z rZjZ (11 deZkk
50
EBL?J:LMJ: 1. :df_heh]by/Ih^j_^G<Dmavfbghc:FAbfbq_\ZKI[Ba^-\h
K-I_l_j[mj]:df_heh]:dZ^k 2. :e_dkZg^jh\ : > <_jg_j : E Ju`bd < B =_hf_ljby ^ey —11 deZkkh\ Mq_[ ihkh[b_ ^ey mqZsboky rd b deZkkh\ k m]em[e bamq fZl_fZlbdb—FIjhk\_s_gb_]— k 3. Zx mjhdb fZl_fZlbdb Dg ^ey mqbl_ey ba hiulZ jZ[hlu—FIjhk\_s_gb_.— k 10. Djml_pdbc < : Ikboheh]by fZl_fZlbq_kdbo kihkh[ghkl_c rdhevgbdh\—FIjhk\_s_gb_68. — k 11. DmavfbgZ G < Ijhn_kkbhgZebaf ^_yl_evghklb ij_ih^Z\Zl_ey— F hjhn__\ b ^j Khkl < B Fbrbg—FIjhk\_s_gb_—k 16. F_lh^u kbkl_fgh]h i_^Z]h]bq_kdh]h bkke_^h\Zgby Ih^ j_^ G < Dmavfbghc— EBa^-\hE=M— k
51
17. IZih\kdbc < F M]em[e_ggh_ bamq_gb_ ]_hf_ljbb \ — deZkkZo
F_lh^S_dhf_g^Zpbbdij_ih^Z\ZgbxdmjkZ]_hf_ljbb\ — deih mq_[ ihkh[bx : > :e_dkZg^jh\Z : E <_jg_jZ < B Ju`bdZ— F Ijhk\_s_gb_— k 18. IhcZ>DZdj_rZlvaZ^Zqb—FGZmdZ. — k 19. Ju`bd<Bmjhdh\fZl_fZlbdb—FIjhk\_s_gb_— k 20. K[hjgbd aZ^Zq ih fZl_fZlbd_ ^ey ihklmiZxsbo \h \lmau Mq_[ ihkh[b_Ih^j_^FBKdZgZ\b—F
ChklZ\bl_eb>hgph\ AZdZa hl ] LbjZ` wda EZ[hjZlhjby hi_jZlb\ghc iheb]jZnbb<=M 52