22 downloads
151 Views
786KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
. .. -
.. , ..
. .
!"# 2000
519.6 517.5 62-50 !! 22.19 61 ".#., %.#. " &' ( / * . #.+. ", . { ".: %, - "/, 2000. { 102 . 01 & 23 ' ' 42 , &' ( 2 2 5 ( 4' , & . 2 , 6' , 7 5' ' ( '5( & 5 2,83 ' 42, &' ( '-!8 2 & , & 2 &' , & , 5 1 8 2 ' 4'', 6 ,1 &1 6 ' 42 , 2 5 '7, & '7 (( ' 2' ' &, '. "5(2 7 , & 47 , 837 2 &1 '' 2 5 ( 5 7 4' . 9 '6 1 & , & & 7 4 2 , '' 11 , : &' , & 1, & 2, : . %, 3 & ( & 6 ;<* " 0 - ( ' 2" (5 ? 4-5584), 0 5 ( ( ' 7 (5 ? 98-01-00345), 0;;% "1" (5 ? 98-01-03628)
0,: 7 7 9. !. +42, (,-'' 7 D.;. / 2,
ISBN 5-211-03916-5
c " 5 , 2000
1 2 3
4
5 6
# : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : * , &' ( : : : : : : : : : : : : : : : : : : : : : : 1.1 9 1,2 &22 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.2 * , &' ( . #-F&( : : G &' ( 2 7 7 & . ; # : 2.1 D & : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.2 ; # : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2.3 9 ' ( # : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : G &' ( 2 7 7 & : : : : : : : : : : 3.1 ; '-!8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.2 9113 ( '-!8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.3 D ( '-!8 : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.4 " ('835 ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.5 " 9'0 -8' : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 05 2, ( : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.1 05 2, ( 2 135 2 6 5 1 5 4'
1 8 27 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4.2 04 , &' ( & 1 8 27 ' 4'' : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 42. #1 &' 5 2, : : : : : : : : : : : : : : : : : : 5.1 9 42 , &' ( : : : : : : : : : 5.2 #1 ,&' 5 &' 5 2, : : : : : : : : : : : : : : : : : : J &' ( '7 & ' &'' : : 6.1 * 113 , 4 2 &1 7 ' : : : : : : : : : : : 6.2 # 5 &1 7 '7 : : : : : : : : : : : : : : : : : : : 6.3 *1 6 4 , ( : : : : : : : : : : : : : : : : : : : G : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
3
4 7 7 19 22 22 23 25 29 29 36 42 43 45 59 59 64 67 67 74 79 79 88 91 98
9 , 647 , & 2 , 8 2 83': 1 2 4' 1,' , ('8 1 ,'' & , ,' 7 5 7 , ,' { 7 & 7 &54 2' (,4' 7). K 17 ' 2 &22 & 7 4 & 1 8 8 , '' & ' 1 &' 5 ( ' ' ) & 2. #, &1 ', , ' , ( 2, 2, ', 81 ' 2, & 2 7 & ( 5 ) , (& & , (' ' ' ). * && ,1 :(( '' ' 42 , ( '6 '' /. / 2, +. G6 . / . / , 2, & 6 & &1 &22 2, 1 &' 62 1 7 . # 1795 5. . / ,1 ' '47 , 2 2 2 ' , 7 &5, 2 ( . " '47 &, 4 , &5,
7 1 8 & ' &'6 ', ': & 8 L, 5 1801 5. 45 2 , & 2 ,2 1 7, ,' 7 D { & 1 8 2' 1/40 5 1. 0 , & / ', &, & ' 76 2 & &7 ' , ' & 6 1 8 , '. " '47 '3' &&' & 4 , &5, ( . ' ' , & ' 5 , 2 2 , & & & (' 1 8 '' & 2 2 1 & & ' 1M', '5 . # 1821 5. ./ & 6 ' '47 , &, & & & 7 ,' 4 2 & , . <' 1,', 1 ,1 2 2 ' '47 . D 83 :& ,1 '' 7 ' 42 , & 2 2, ' , ' 7, 30-7 { 40-7 5.5. XX 2. * :' & & 5 &1 ' 42 , ( { 2 & ,5 5 ( 4'. K , 5 2 7 7 7 & & ' +.. '5 O15]. &,6 5'
& ' ,' 2 . # O44], 2 & 7 7 7 & . D 1 +.. '5 . # 1 '2 2 ( . +.. '5 . # ' & 1 ' 1 8 2 2 & 2 &' & , ' '47 . . #' 1 &,, , &' ( & ' '47 : 48 5 5 2 { 2 #-F&(. <2 ( '5 -# ' ;, & & 8 ( '7 7 7 . . # 6 5 ' 42 5 5 2, &1, 5 5 2 1 & 7 ( , & ,2 , 6 & & 1 8 '5 & &, 7 , ''7 '6 . K & 8 7 ', &6 83 7 & & & & 7 1 5 4' , ' '. <2 &2 ' # 1 1950 5. ! Q' , & ('835 ( . &2 ('835 ( ,' 6 ' ' ( O27]. D, & 7 1 +.. '5 . # && 2 52,
'. # 1952 5. 0. ! 113 5 #-F&( -
5
7 & ( , , 237 ' O38]. 9 & :' 1 , ' 42 & 5 5 5 2. 04 :5 2 & 6 1957 5. #.D. *5 O26]. &,6 0. !8 O40] &, , &' ('& 2 &7 2 (2) ( '6 1 & &'38 (( 7 2 7 & . + 5 , 2 5 ' & 1958 5. *. D 5' O43]. # 1960 5. (, ' 5 5) 0.G. D O32] 0. ' O41] 113 8 ( 8 5 & 1 8 2, & ' '. + 5' 0. ' 42 , , 5' 0.G. D , 1 5 '' 1 , 6 1 0. ' & 4 & 6 -& , 1 & "6'" 2,. ; ' &'2 '7 & 2 1 8 2 & . &,6 '' 1 5' ' 1 & O14]. # 1961 5. 0. ' ' 0. !8 O13] &1 5 , 2 & 5
'. # : , ( (' 2 & 2, ' 2 #-F&(, &1, : 8 ' ' (( 7 . 01 0. ', 0. !8 0.G. D :& ,1 ' 42 , 2 &5,. ' & ( '-!8 2 2 5' 5 :(( 2 ,' K#". D 1 & , 0. ' 0. !8 & ( 3 & , 6 ' 1 5 4' 1 8 27 O13]. # :' #-F&( ( 2 2 2 ' 5 , , 42 5 O33]. # 1965 5. +. ! . R7 O39], ,' ;. / T. O9] & 8 ( '-!8 , 5 2 &'7 ,'27 '6 & ('83 ( . 9'', , , & 2 ('835 ( ' & 1 62 4 4 7 7 27. " 42 , 2 , 5 1 4' 1 8 27 6 (' 1 5 4' ,'27 2 2 2 5 & 6 & ), & 132, 1 & 6 0. '' O14]. 2 76 2 & 1 ' & , { 13. { 13, , , , : , 2 ,8 5' O45]. # 70- 5 2 ' O3,5,11,23,25,29] 2 42 , &' ( 1 ' ( ') 4'' 1 8 27 1 & 6 ' 42, 5 2, +.. <7 O33]. # 1977 5. #.*. 9.U. L & 5' 42 , &' ( 4'', : ' ' 5 & 6 & 5'7 ' ( O12,25,3]. <' 1,', &1 ' 42 , 2 ' 4 2 & 7 5 7 7 & . #& ( 5 7 & ( 74 , ,-, 7 6 2 5 & 7 48 7 , O27]. # '5( ' ' 42 , &' ( 5 7 7 & 2 ' ' & ' &''. 2 5 7 & 2 2 2 2 4 O8,30] &' 7 &' , ''' 41, & & 12 1 , & ' ' 6 , O30]. # 1 & ,1 ' 5 2,83 5', &' ( '-!8 2 & , &' ( ' ( , 6 ' 1 ') 4'' ,'27. 2 1 ,&' 5 ,2 O33] &' 5 2, & (( 42, ,' ' & 1'. 37 5 1 7 & O25,4,7] & 5 2, 7 4 , & 1137 (. 0,1 ' &1 65 42 , 2 5 '7, & '7 (( ' 2' ' &, ' & 7 4' 1 8 27. " 5 2, +..<7 &1, , (
'7 &' :((' , ( '7, & '7
6
1 ' (( ' 2' , 7 ' 835 5'. %, 6 ' & 1 2 ( , & 6 &( ' #.*. O25], 2 3 & , 7 37 5 1 7 & . # , 8 & 2 88 1 5 &( , (,-'' 7 #.+. ", , & 2 ' 1, & 1 1 6 , , & , ,'2 , 6 7 7 , &( 9.!. +42 (,-'' 7 D.;. / 2, , 2 7 ' & (' 8 68 1.
1 !"# $#%& 1.1
* En | n {' & 2' &, ' (: :)n L2 Oa b] | 5 1 & -(, & 7 5' Oa b] 5'7 ' & G15, ' k : : : k0 2' &, ' (: :)0 . % 1 , &8 & 2. # ' 1,2: W21Oa b] | &, 5 1 & , & && ' & - (('7 -( u(t) a t b & 2' &, 8 Zb du(t) dv(t) (t)v(t) dt + u (u v)1 = dt dt a p 1 kuk1 = (u u)1 | ' W2 Oa b] W2;1 Oa b] | 5 & , & && ' '6 L2 Oa b] & 5 ' 8Zb 9 < = kuk;1 = sup : u (t)v(t) dt j v(t) 2 W21Oa b] kvk1 = 1 u(t) 2 L2 Oa b] : v a
#7 1, &, 5 & , 3 2 ( , :5 '6 5' ' 113 &, ( ' D1 O3,4,7], '. . 8). #7 1, 5 5 & , ,, : & & &'38 '6 W21 Oa b]: < & W21 Oa b] L2Oa b] W2;1 Oa b] , 8 3' 5 1 ' & ' O7]. 2 817 7 : ' u 2 W2;1Oa b] v 2 W21 Oa b] & ' 1 8 ('
Zb
hu vi = klim uk (t)v(t) dt !1 a
5 fuk (t)gk=1 | & ( , L2 Oa b] 2, ' ku ; uk k;1 ! 0 & k ! 1 . 9 , 1 2 (' & 2' &, ' L2 Oa b] u 2 L2Oa b]: D3 ,' & I & 23 W2;1 Oa b] W21Oa b] ' 1 I ;1 & & W21Oa b] & W2;1 Oa b]: *' 2 8 2 W2;1Oa b] 8u v 2 W21 Oa b] & 42 h I i = hI i = (I I)1 = ( );1 : 6 & 2 2 &, W2;1 Oa b] , ' 5 (u v)1 = hu I ;1vi = hI ;1 u vi = (I ;1 u I ;1 v);1 h ui = (I u)1 = ( I ;1 u);1: 9& I ;1 6 & (('7 (27 , & W21 Oa b] 2837 5' 2' du(t) = du(t) = 0 (1:1:1) dt dt 1
t=a
t=b
8
1
2 & (( ' 6' ; d dtu(t) 2 + u(t) & I 2 2 2 4' 5 5 & 2 ' { ' / G(t s) 2 ,5 4 (( 5
62 5' 2' (1.1.1). D5 ' 62 D.G. D1 O25, 4, 7], 5 & 7 2 113 ( & {( ( {( , 2 ( (t) & & ' & 7 ( COa b] 6'
8 0 > < 1=2 '(a) >b=a< a limh(t ; ) '" i = > 1=2 '(b) "!0 : '(t) a < =
2 1 (' & 4-!2 5 (Q )
jhu vij kuk;1kvk1 8u 2 W2;1Oa b] 8v 2 W21 Oa b]: * &, & ( y(t) a t b 1 ' &' : ' ' 2 W2;1Oa b]
2 5 & 1 hy dv dt i = y(b)v(b) ; y(a)v(a) ; h' vi 2 8v 2 W2 Oa b]: U : 4 ' '6 (7 1 (('7 Oa b] (27 v(t) ' & 113 &, & Q O3,25]. Z, COa b] 1 ' 1, & & 7 Oa b] -( u(t) ' n 2 = P u2 uk (t) | u(t) C l Oa b] | & kukC = max fj u(t) j t 2 Oa b] g j u j k t k=1
-(, '837 l & 7 &, 7 Oa b] . ' C l Oa b] '
dku(t) t 2 Oa b] 0 k l : kukC l = max tk dtk
#' , 4 ' C l Oa b] '6
: 8 ' & ('
kukC l =
Xl k=1
dku(t) t 2 Oa b]g: max f t dtk
* C01O0 t] Ct1O0 t] | '6 , & - (('7 5' O0 t]
-( x() 2 O0 t] 2 7 & 28 2 2 x(0) = dx() =0 = 0 ( d 1 1 x(t) = dx() d =t = 0 ), 5 1 & W20O0 t] W2t O0 t]| && 2 '6 C01O0 t] Ct1O0 t] & ''
0Zt 0Zt 2 11=2 2 11=2 dx() dx() d A kxk1t = @ d A kxk10 = @ 0
d
0
d
k : : : k10 k : : : k1t | ' :7 & 7, W20;1O0 t] W2;t 1 O0 t]| && 2 '6 L2 O0 t]
& 5 ' ''
Zt y ()v() d v 2 W201 O0 t] kvk10 = 1g kyk;10 = sup f v 0
1.1
Zt y ()v() d v 2 W21tO0 t] kvk1t = 1g: kyk;1t = sup f v
9
0
Z, h: :i0 h: :it 1,' 1 (' & 7 W201 O0 t] W20;1 O0 t] W21t O0 t] W2;t 1 O0 t]: 2 :7 & & 3 8 ,' & I0 It 1683 W20;1O0 t] W201 O0 t] W2;t 1O0 t] W21t O0 t]: 9& I I0 It '6 & I = jj I0 = j0 j0 It = jt jt : %,' & j j0 jt 168 L2O0 t] W21O0 t] W201 O0 t] W21t O0 t] , & j j0 jt 168 W2;1O0 t] W20;1O0 t] W2;t 1O0 t] L2 O0 t]: 2 & j j0 jt j j0 jt 3 8 1 &: D = j ;1 D0 = j0;1 Dt = jt;1 D = (j );1 D0 = (j0 );1 Dt = (jt );1 : 8 : & &, . 1.1.
0 .1.1. 5'' ,' 7 & D& 82 W2;1 O0 t] W20;1 O0 t] W2;1 O0 t] W2;t 1O0 t]: %5 , 2 ( 7 &'7 w( s) & ', 25 &, 2, 1 (' & ' , 5' , 1 & , ,2 2 28 2 (2' &', 1 ' & kw()ki (w() :)i < w() : >i 5 i | , , 83 & 6 ', 25 &, 2 1 (' 83' & . * 1 ' &, 7 5 7 & '6 ,' 2 '5(27 O25, 3, 7]. * F (t) | 2 ' &2 n : '' , L2 O0 t]: 0 '' (( 6 l(x) dx() (1:1:2) d ; F ()x() 5 x() 2 C01O0 t]: <5 & c1 kl(x)k;1t kxk0 c2 kl(x)k;1t c1 > 0 c2 > 0 c1 c2 { . (1:1:3) 2 &265 (( 5 62 l (x) ; dxd() ; x ()F () x() 2 Ct1O0 t] (1:1:4) ' ' 4 c0 1kl (x)k;10 kxk0 c02 kl (x)k;10 (1:1:5) c01 c02 | & 6 O25].
10
1
# & '6 C01 O0 t] L2 O0 t] 2 815 x 2 L2 O0 t] 3 fxi ()g1 i=1 | & -( , C01O0 t] ( ' 2 & ' k:k0 7 232 2 x0: 5 , (1.1.3) , kln (x) ; lm (x)k;1t ckxn ; xm k0 ! 0 & n m ! 1 ;1 .. & ln (x)1 n=1 7 2 1, W2t O0 t]{ & & , ' & L(x): 9& L(x) & : '7 L2O0 t] , kLk = klk: 9& L , 2 4' (& 6') & l & & . 1.1 1 L l (1.1.2) C0 O0 t] (1.1.3). L ! " L2 O0 t] W2;t 1O0 t]: L l , (1.1.4) Ct1O0 t] (1.1.5). L ! " L2O0 t] W20;1 O0 t] O25]: 1.1 & '( ) dx() = F ()x() + v() x(0) = 0 v() 2 W ;1O0 t] (1:1:6) 2t d " ' * -!*+ x() 2 L2 O0 t] * fx()g1 n=1 ' C01O0 t] *, ( kxn ; xk0 ! 0 kLxn ; vk;1t ! 0 n ! 1: D ', : ' ' F () v() & 6 CO0 t] (' , 4 ' ' ' & 2 1.1 & 8. U (' , 4 2 , x(0) = x0 , &'38 ,' x^() = x() + x0 , 2 (1.1.6). %, , : ' ' F() v() & 6 & COt0 t] 4 , 4 & 2 2 (' 4
Z
x() = \( t0 )x(t0 ) + \( s)v(s)ds t0
(1:1:7)
5 \( s) | ( ' 2 ' ', 2 2 d\( s) = F()\( s) \(s s) = I n d 1 83' ': \( s)\(s ) = \( ) \;1( ) = \( ): U : ' ' F() & 6 & L2 Ot0 t] v() , W2;1 Ot0 t] & 1132 (' 4 O25] 2 h\ () vi 3 66 h\12 () vi 77 6 : : : 77 2 Ot t] x() = \( t0 )x(t0 ) + 66 h\ () (1:1:8) 0 64 j : : : vi 775 h\n () vi 5 \j () = \j ( s) ' \( s) h\j () vi | 1 2 (' 3' & fW21Ot0 ] L2Ot0 ] W2;1Ot0 ]g 2 2 81 & fvk (s)g1 k=1 , L2 Ot0 ] , kv ; vk kW2;1 t0 ] ! 0 & 2 2 4':
Z
h\j () vi = klim \j ( s)vk (s) ds: !1 t0
11
1.1
1.2 , + K( ) ( 2 Ot0 t]) * n n - Kij ( ) 2 W21Ot0 t] i = 1 2 ::: n j = 1 2 ::: n " + h() ' n m - Rt h () 2 W ;1 Ot t] j = 1 2 ::: n k = 1 2 ::: m K( )h() d " jk
2
"' :
0
t0
2 hK () h i 66 hK12 () h11i Zt 6 :: K( )h() d = 66 hK :() 64 i : : : h1i t
::: ::: ::: ::: ::: hKn () h1i : : :
3
hK1 () hk i : : : hK1 () hm i hK2 () hk i : : : hK2 () hm i 77 :::
:::
:::
77
hKi () hk i : : : hKi () hm i 77 0 5 ::: ::: ::: hKn () hk i : : : hKn () hm i Ki ( ) | * + K( ) hk () | "+ + h() hKi () hk i | " ! fW21 Ot0 t] L2Ot0 t] W2;1Ot0 t]g: 0 '' 2 &22, & ,' 4' (& 1 ,5 '' , & ' '6 ,' 2 O8,27,3] ). 91,' , (] F P ) 2 & , ' & 83 2
4' (, | & '' 5 6 2. * x() x( !) { & ( 2 O0 t] ! 2 ]) 1 ( 5 2 8 1 (& ) & 6 & W2;t 1O0 t]: "' 6 Ox()] 2 2 & (' Ox()] = Dt Ojt x()] 2 ' 2 2 O0 t] Ox()x()] = Dt Dt O(jt x())(jt x()) ] 5 & Dt ,'( 16 L2 O0 t] W2;t 1O0 t] jt 1 ' &.
1.3 (27]) 0( + v( !) * + !*+ , {!*+ ,*,
Ov()] = 0 Ov()v ()] = V ()( ; ) V () = V () V ()z 2 COa b]
8z 2 En ' " . "6 V () & {( , 2 ' 1 5 4' v( !): % 1 5 4' & 2 1 & 8 '' 8 '. 2 & ,, 2 8z 2 En 8 t 2 Oa b] 2 &, (z ())n 0: ' 5, ( ; ) = 0 & 6= ' V () '6 1 V () pVV()V (): & 2 Ov()v ()] 1 5 4' 1 , 5 ,2 7 5 1 ,7 7 . ! 4' 3 (, , 2 5 , 17 ' 1 2 '3 . *2 1 5 4' 2 2 2 '' 1 , 1 2 & 2 . * '6 5 4 1 4 '4 & &1 62 5 & 1 ' 4'. 0 & '6 & 2 ,' 1 ' 4'' 5 , 5 '6 ,2' 5', & ' ,2 5 & & , ' . *2 " ' " '' 5 & , & ,' 5 5 & 1 ' 4'' 6 6 ' 1 2 1 , 1 & .
1.4 (27]) 0( + v( !) ' " , ( !! + ( + ' .
(( &' 2 113' ' 1 4' 2 2 2 113' ' & '. 0 , 1 5 4' 2 8 1 & 6 5 ' & W2;1O0 t]: 91,' , w( !) 2 O0 t] ! 2 ] & 83' ': 1) w() | & ' , '' &32' 2) w(0) = 0 &
12
1
3) 2 817 & 637 O0 t] ^w = w() ; w() ' 5 & , 8 ' Kw ( ) = Rj ; j R | -& 2 ' 4) & 2 7 ! 2 ] 1 ( w() & , ((' & 1' ' '8 81' 5 ' ' 1 8 8 5) MOw()] = 0 MOw()w()] = R min( ): * w( !) 283 :' 2', , 2 ' ' & '. ((2 113' ' 1 w( !) & ' & v( !) v()
1 ( 5 & & 6 5 ' & W2;1 O0 t]: : 2 8'() 2 Ct1O0 t] ''
Z d' hv 'i = ;hw d i = ; w () '() d d: t
0
< v() = Dt w(): # ' & '' 5 & v() : MOv()] = Dt MOjt Dt w()] = Dt MOw()] = 0 MOv()v ()] = Dt Dt MO(jt v())(jt v()) ] = = Dt Dt MO(jt Dt w())(jt Dt w()) ] = Dt Dt MOw()w ()] = Dt Dt (R min(t s)) = R( ; ) n < Dt (min( )) = 1(t s) = 1 0 > Dt (1( )) = ( ; ) 5 ( ; ) {(2 , ( ; ) 2 W2;1 O0 t]: <' 1,', v() | 1 4'. 1.5 2 , " ' * + , ' * " . # 4' & " , &' 2 " * !" ' . 0 '' , 4 (1.1.6) , 5 v() 2 2 2 , 5 1 5 5 5 4', dx() = F()x() + v() x(0) = x 0 t (1:1:9) 0 d 5 x0 = x0(!) | 2 5 2 , ' '2 & ' ''', &, 2
(1.1.9) &' 2 113' ' . 1.6 3 * ( + x() x( !) " ' '( ) (1.1.9), '+ (1.1.9) ( ( 1.1). * x() 283 (1.1.9), ' & & 1. , , (1.1.9) '6 ,& ;Dt x() = F()x() ; Dt w() 5 v() = ;Dt w(): * ' 1 :5 &' jt 5 & ' ;x() = jt (F()x()) ; w(): < jt Dt | 6 &, & jt : '7 , L2 O0 t] ' :
Z
Z
0
0
jt u() = ; u(s) ds 7 ', x() =
R
F(s)x(s) ds + w():
D5 '' 1.1, x() 2 L2 O0 t] , F (s)x(s) ds & 6 CO0 t] x() '' 0 7 & 7 ( 6 & O0 t] 2 8 1. # ' &22 & 2. D ' , 8 818 & ,' 837 & ' &, & . #4 , 2 ' , 8 7 ' 5 ' ( ,'3', & ', 7 ). # 2 ' 6838 5 ' , 8 7 ' 5 ' ( 7 ).
1.1
13
D ', 2 & 2 , ', 7 '' ' . #4& & 2 ', 7 7 7 7 5 2 28 2 13' 2 & 2 '' 7 ' ' & 2 18 2. * _ { 2 '. # 6 '' ' ' _ & 7 , u() , ( 5 '6 U &6 7 8 y() & 638 '6 Y: 9'', 7 , u() '6 1 &, (. #1 '6 U & & '' ' ', '6 2 , ' 162', &' { (, ', 3 & 2 2 '' ' &1 2'. ' 5, , 7 5 5 u() & , 2 & 2 y(): J 7 , , 13' , 7 5 , 2, & ,'2 ', .. 22 x() 2 X 5 X | & 2 '. "' 818 ' '6 , ' & '7 ( 7 U 4' y() = H(u()) 5 u() { (2 7 , u() 2 U y() { , ( 7 ' '' H | & ', 83 , 1 & '7 7 7 5 1 , 7 7 5 ' Y y() 2 Y: "' ' 8 ' , 8 1M 7 : ' : 1) & 2 X 2) & 7 7 5 U 3) & 7 7 5 Y 4) 4, 2, 837 7 7 5 22 ' (& ' H ). 9& ' H 1 & 28 : H = C (\) 5 (2 \ , U X C , X Y ( \ : U ! X C : X ! Y ). # 1963 5 0. ' 13 & &22 ' ', 13&2.
1.7 0 _ " ' ( * ,
1. 5 : ( T | , 6 6 ' U X 6 6 ( Y: 2. 0 6 !*+ \ : ) \ 6 t0 ( 2 T t0 2 T ) T T X U X x(t) = \(t u() x(t0) t0 t t 2 T)
t0 ( 2 T t0 2 T) \ " ('* { " '( * '
)7 ") "6 t > t0 t 2 T t0 2 T '( u() ( 2 T '( t0 t ) x(t0 ) '( x(t) ( " ( "). 3) 5 6 " C : T X ! Y 6 ( y() = C ( x()): "& " ,, &4 2 1 3, 1. K , 8 6 ' (, ,' '. D ', , ' '6 T 2 .
1.8 ,( * _ ' ( -
) * , * T 6 ( , ' * (* ) * , * T | + 6 ( . # '57 & 627 & 2 , '6 & ' ' '' 3 1 '6 ' & 2 2 '' ' 162'.
1.9 ,( * _ ' * , * ) X U Y * 7 ") " \ : T T X U ! X 6 t 7 ) " C : X ! Y "6 t:
14
1
&'', 16 H , 2 ', 2 && &&,
H(u1 () + u2 ()) = H(u1 ()) + H(u2 ()) - &, , u1 () u2() 2 U: ' 1 ' ' & ' '. " 1 ' 6 5 , 7 , (& ) u() & (,'2, &1,) 2 x(t0) 2 x() 5 (' , &6 ) & x() &'38 &1, 2 H: * 4' &'' ' '6 6 &1, y() =
Zb a
h( s)u(s) ds
(1:1:10)
2 5 & '7 ( U , ' h( s) ,' m n: <, &', 8z 2 En h( s)z 2 L2 Oa b] & 1' 5'', '6 & '7 & U 6 & 6 & L2 Oa b] 5 G15 (1.1.10) 2 ' . * (1.1.10) 4 & , 2 & 2 ' ''. D ', 5 2 5 '6 U 4 (2' , L2 Oa b]: <, ' , 7 &' 2 ' & 2 2 2 2 , 7 7 5 {( , 2 2 2 2 113 ( ( 2 W2;1Oa b] ). # :' , 1 ,16 & 62 (1.1.10), &7 2 '8 '
'7 &7 7 & 7 ( (.. & 2 2 &1, G& ;). : &' ' 4 2 7 ' 7 '.
1.10 ,( * _ ' + * , *
) T
( "( + 6 ( )7 ") U '* Z s u() = u( + s) 6 s 2 T ) \(t x u) = \(t + s + s x Z su) 6 s 2 T ) " C ' t: # 4' 1 ' 2, ', '. *:' &6', &' 6 (1.1.10), & 2 2 2 : '' 5 5 & W2;1Oa b]: 91,' , hk ( s) k = 1 2 :::m ' h( s) &1', 1 hk ( s) 2 W21 Oa b] & 1' 5''. "6 L2 Oa b] & W2;1 Oa b]: "6 & (('7 ( C 1 Oa b] & L2 Oa b] W2;1Oa b] <'1 1,', 2 815 u() 2 W2;1Oa b] 3 & -( ui ()i=1 , C 1Oa b] 7 232 2 & ' 5 5 & u() .. ku ; uik;1 ! 0 & i ! 1: 0 '' & yi () =
Zb a
h( s)ui (s) ds:
D '
7 1, '6 ,&
2 Rb 3 66 a h1( s)ui(s) ds 77 66 Rb 77 6 77 : h ( s)u (s) ds 2 i yi () = 66 a 77 66 ::: 4 Rb h ( s)u (s) ds 75 a
m
i
15
1.1
* ' & & i ! 1 , & ,2 & 1 (' ( '. . 7), 7 '
2 Rb h ( s)u (s) ds 3 lim i 66 !1 a 1 77 2 3 66 77 hh1() ui b R h2( s)ui (s) ds 77 = 66 hh2 () ui 77 = y(): 66 lim lim y () = !1 a i !1 66 77 4 : : : 5 : : : 64 Rb 75 hhm() ui lim h ( s)u (s) ds i !1 m
(1:1:11)
a
*6', : & 3 5 2 815 ( 5 2 Oa b]: * yk () yik () y() yi () . <5 , & ,2 4-!2 5 2 k = 1 2 : : : m '' jyk () ; yik ()j = jhhk () uiij khk ()k1 ku ; ui k;1 ! 0 & i ! 1: %, :5 42, & 5 2 815 ( 5 ,2 2 Oa b] 3 5 & (1.1.11). <' 1,', u 2 W2;1Oa b] : ' ' h( s) 6 & 1' 5'' & 6 & W21Oa b] 5 (1.1.10) 1 ' &' & (1.1.11). *6', y() & 6 & 5'7 ' & G15 ( , Oa b]: * & 8 ' L2 Oa b] (1.1.11), '':
0Zb m 11=2 0Zb m 11=2 X X kyk0 = @ jyk ()j2 d A = @ j < hk () u > j2 d A : a k=1
a k=1
*'' & ' 68 Q . <5
0Zb m 11=2 0Zb m 11=2 X X kyk0 = @ j < hk () u > j2 d A @ khk ()k21 kuk2;1 d A = a k=1
a k=1
0Zb m 11=2 X =@ khk ()k21 d A kuk;1 < 1 a k=1
& 6 & s u 2 W2;1 Oa b]: D , y() 2 L2 Oa b]: * : ' ' h( s) & &'' s & 6 '6 C 1Oa b]: <5 , 7 ' & & 5 u(s) = z( ; s) 5 z | , En 2 Oa b] ( ; s) - {(2 , 5 ' {( ( '. . 8) 8 0 Zb < a > b < h( s)z( ; s) ds = : 12 h( )z = a = b h( )z a < < b a y() = h( )z & a < < b: <' 1,', (8 h( )z & 8 ' {(8 '' ' : " h( ) , 8 '& &7 ' '. # (' 7 (1.1.10) (1.1.11) 2 ' '' , , ( 7
'' > s '' ' < s: # & 2 8 2 ', 2 7 , & & 47 & &837 7 5 , 1 37. *:' 8, h( s) = 0 & < s: K , 8 ' (, 3 ' ( ,' ) '. 1.11 , + u() "' H ' ! (,
, ! ), ' ! (1.1.10), - + h( s) * , ( (1.1.10) ( ** (1.1.11)). hk ( s)
W21Oa b]
16
1
1.12 , + x() !! + dx() = F()x() + G()v() d v() | 6 , F() G() | ' +, ' ! ! , + x() 6 - 6 " . 2 '' 5 & 2 & ' ' ' 1 ' & , 83 & :
1.13 : ( *
" ' , * : * " " !! + dx() = F()x() + G()u() x(t ) = x (1:1:12) 0 0 d 6 y() = C()x() (1:1:13) F() G() C() | ' +, u() | 6 , x0 | * ( , ' " " . ;+ C() ' + ' " . < + F () L2 Ot0 t] + G() C() { W21 Ot0 t]: #6 , & 2 '8 &22 1 8 ' & 2' ' 7 '. # 1 ' &1 ' 1 8 ' . 2 :5 '' 8 ' n -5 &2 : dx() = F()x() x(t ) =? (1:1:14) 0 d y() = C()x(): (1:1:15) " F() C() m -' 7 5 y() | , Ot0 t]:
1.14 = * x(t)
(1.1.14)-(1.1.15) ' " Ot0 t] '(
' ' y() Ot0 t]:
1.15 > * x(t) (1.1.14)-(1.1.15) " Ot0 t] ' " Ot0 t]: 1.16 > * t t0 * , ( x(t) (1.1.14)(1.1.15) " Ot0 t] * ' "
.
04 2 (1.1.14), , , (( 7 , 2 815 2 Ot0 t] '6 & x(t) = \(t )x() (1:1:16) 5 \(t ) | ( ' 2 ' 4 ' (1.1.14). " \(t ) 2 ' d\(t ) = F(t)\(t ) \( ) = I (1:1:17) n dt 5 In | 2 ' &2 n: " \(t ) 6 2 \;1 (t ) = \ ( t): ' , (1.1.16) x() & ' (1.1.15). <5 y() = C()\ ( t)x(t):
(1:1:18)
17
1.1
'6' : 6 \ ( t)C () , 52 & 7 ':
Zt t0
\ ( t)C ()y() d
# ' 1,
=
Zt t0
\ ( t)C ()C()\( t) d x(t):
Zt
M(t t0) = \ ( t)C ()C()\( t) d: <5
t0
Zt t0
\ ( t)C ()y() d = M(t t0)x(t):
(1:1:19)
(1:1:20)
2 & 2 x(t) (1.1.20) 6 1 ,4'. U 4 :5 2 3 5 5 , 5 ' M(t t0) 6 . " M(t t0) & 2 6' (1.1.19), , 2 ' 1 8 ' . K '' 2 2 ' &2 n:
' 1.1 , " (1.1.14)-(1.1.15) Ot t0] "6
( , ( " + " M(t t0) (1.1.19), " . , . , 2 42 (1.1.20). 17 ' . '6' (1.1.20) x (t) & ,2 (1.1.18) & '
Zt t0
y ()y() d = x (t)M(t t0)x(t):
(1:1:21)
%, :5 , ' M(t t0) & . * M(t t0) 6 2. <5 2 72 1 x(t) 6= 0 , M(t t0)x(t) = 0: 2 5 13 2 & 2 (1.1.21) , { 2. <' 1,', y() 0 ' Ot0 t] & . 6 7 5 1 & x(t) 0: < & 1 8 27 y() 2 Ot0 t] 3 8 , '7 22 ', : & & 8 1.15 ( & 1 8 ' ). <' ,. 2 2 &22 & 2' ' '' 8 ' n | &2 1, 2 7 : dx() = F()x() + G()u() x(t ) = x : (1:1:22) 0 0 d
" F() G() , 2 7 , Ot0 t]: #7 5 u() ' ,' p: 2 ' x0 & & 5 2 , ', 6 ' 2 x(t) { , . J & 2 ', 1 & 2 Ot0 t] 1 & 283 , ' 1,', 1 2 ' & .
1.17 0 x(t0) (1.1.22) ' Ot0 t] Ot0 t] !*+ u() *, ( x(t) = 0:
1.18 > * x(t0) (1.1.22) Ot0 t] ' Ot0 t]:
1.19 0 (1.1.22) '
* , * * t0 t * , ( (1.1.22) " Ot0 t]:
18
1
# :7 & 27 2 & 5 2 ' 8. K 2 ' , ' & 2 & & 2' 4 13 6 . , , 13 4 2 (1.1.22) , 2 (' 4
Zt
x(t) = \(t t0 )x(t0) + \(t )G()u() d: t0
U x(t) = 0
Zt t0
(1:1:23)
\(t )G()u() d = ;\(t t0)x(t0 )
'62 1 :5 \ (t0 t) 7 ',
Zt
t0
\(t0 )G()u() d = ;x(t0 ):
# ' ' W(t t0 ) =
Zt t0
\(t0 )G()G ()\ (t0 ) d:
(1:1:24)
(1:1:25)
U ' W(t0 t) 6 , -(2 u() = ;G ()\ (t0 )W ;1(t t0)x(t0 ) t0 t
(1:1:26)
2 2 2 4' , & 2. , & ' (1.1.26) 8 (1.1.24). <5
Zt
Zt
t0
Zt
\(t0 )G()u() d = \(t0 )G()(;G ()\ (t0 )W ;1(t t0 )x(t0) d = t0
= ; \(t0 )G()G()\ (t0 ) d W ;1 (t t0)x(t0 ) = ;W(t t0 )W ;1(t t0)x(t0 ) = ;x(t0): t0
Z 1 . D'' 2, & 2 ' W(t t0) , 2 ' & 2' ' (1.1.22). D& 83 6 :
' 1.2 , (1.1.22) Ot t0] "6 ( , ( " + W(t t0) (1.1.25), " .
, : ' '6 O14]. D(' ' ' ( 5 ,, &18 2 & , ' 3 2 42 , ( .
' 1.3 (' (-*+24]) 3* !*+ f(x) -
"' L E 6 , . . !*+ F (x) E * , ( 1) F(x) = f(x) x 2 L 2) kF kE = kf kL :
19
1.2 . -
' 1.4 (' ,. - .. 2]) 3* !*+
f(x) " H f(x) = (x u)H (: :)H | * ' H - u '( !*+ f: - kf k = kukH : * fH + H0 H ; g | 3 5 1 & 1 (' h: :i: <5 ' ;. 0 '6 (' 83' 1,': ' 1.5 (//01 2 ,. - ..) 3*
!*+ f(x) H ; " f(x) = hx vi - v 2 H + '( !*+ f: - kf k = kvkH + : 3* !*+ f(x) H + " f(x) = hx ui ; - v 2 H '( !*+ f: - kf k = kukH ; . , : ' 7 ' 1. 9'' 4 , 3 2 , , & 5 O2]. 1.2 .
91,' , x() x( !) t0 t ! 2 ] | n | ' 5 & ,2', & 63' 2 8 1 & & 7 ( COt0 t] ' MOx()] = mx () MO(x() ; mx ())(x() ; mx ()) ] = Kx ( ) 5 t0 t C() | ' 1 8 (,') ,' m n m n 5 ' : '', v() v( !) | m {' 5 & '' ' 6 ' MOv()] = mv () ' Kv ( ) = MO(v() ; mv ())(v() ; mv ()) ] & x() v() . < & x() v() 5 , & 7 & 8 & 8 O6,24]. K ' ' Kx ( ) & 1' 5'' & 6 L2 Ot0 t] , v() mv () : ' ' Kv ( ) '5 & 6 5 ' & W2;1Ot0 t]: J &' ( 83'. * , & fy() t0 tg 2, & ' x() 4' y() = C()x() + v(): (1:2:1) <1 2 & 1 8 2' & fy() t0 tg 8 x^() & x() 2838 8 ''' 41 '' ' = t : m(t) = inf fMO(z x(t) ; x^(t))2n ]j x^(t) = h
Zt
t0
h(t ) d g
(1:2:2)
5 z | &, & 2 , En , 622 5 1 2 & ' '' h(t ) ,' n m 2 7 3 & ' ( x^(t) =
Zt
t0
h(t )y() d:
20
1
,, ( 2 5 7 & 2 2 2 4' , 7 ( , 2837 8 ''' 41 O8,30]. ' 5, , & 2 & :' 8, & ', ' & 8 ' '' & & 12 1 ' ' O30]. *6', , ( : 48 5 5 5 2 { 2 #-F&(. *6 ' & & 2 #-F&(, &1,' , ( 83' 1,'. # ' & xc() = x() ; mx () vc () = v() ; mv (): * xc () vc () '8 '' & 5 &2 , 7 & 8 2' & x() v(): #' & y() 1 ' & , & yc () = y() ; C()mx () ; mv () = C()xc() + vc (): 1 ' ' , ( 2 & xc () vc () yc () 7' & :' 1,2 x() v() y(): 1.2 (.1 3 .4 . 1) > * !*+ u()
Zt
t0
u()v() d = 0
v() - !*+, '* Ot0 t] v() 0 - '* . 2 35 & W21 Ot0 t] L2Ot0 t] W2;1Ot0 t] : '' '6 (' 83' 1,': 1.3 > * * -!*+ u() 2 W2;1Ot0 t] " ! hu vi = 0 v() 1 * !* * -!*+ ' W2 Ot0 t] v() 0 '* t0 t: > * * -!*+ v() 2 W21 Ot0 t] " ! hv ui = 0 u() * !* * -!*+ ' W2;1Ot0 t] u() 0 ( 6 ' Ot0 t]:
Rt
* 622 5 ( m(t) 5 2 & , h(t ) = h0(t ) ( x^(t) = h0 (t )y( t0 & '. <5 818 ' h(t ) , '6 & '7 ' '6 & 83' 1,': h(t ) = h0 (t ) + hv (t ) 5 | , hv (t ) | &, 2 ' , & '7 '. *1,' 6 m(t) :
Zt
MO(z x(t) ; (h0(t ) + hv (t ))y() d)2n] = MOz x(t)x (t)z ;
;2z +2z
Zt Zt t0 t0
Zt t0
t0
x(t)y ()hv (t ) dz ; 2z
Zt t0
h0 (t )y()y()hv (t )dd + 2 z +z
Zt Zt t0 t0
x(t)y ()h0 (t ) dz+
Zt Zt
t0 t0
hv (t )y()y()hv (t )dd+
h0 (t )y()y()h0 (t ) dd]:
((2 : 6 & & 2 &, 8 8 = 0 7 ', t t
Z
Z
t0
t0
MO2z f;x(t)y () + h0 (t )y()y () d ghv (t )dz] =
21
1.2 . -
= 2MO(f;x(t)y () +
Zt t0
h0 (t )y()y () d g z hv (t )z)0] = 0
(1:2:3)
, (: :)0 - 2 &, L2Ot0 t]: < ' hv (t ) z &, , (1.2.3) 1 & 2 2 & 7 h0(t ) 2837 8 MOx(t)y ()] =
Zt
t0
h0 (t )MOy()y ()] d:
(1:2:4)
K ' #-F&(. J'' (1.2.4) & y() 5 & ' (1.2.1) 5 & ' Kx (t )C () =
Zt
t0
h0 (t )C()Kx( )C () d +
Zt
t0
h0(t )Kv ( ) d:
(1:2:5)
(1.2.5) 13' 2 2 2 ' ; 5 ' & 5 , 4 5, , , , ' 5, '6 & 6 & '7 '. J &' ( , &3 2, 4' 1 8 27 v() 1 1 ' 5 ' 4'' 6 ' , , ' 4' Kv ( ) = R()( ; ) R() | & 6 & 2 ' ( 2 8u 2 L2 Ot0 t] 9 > 0 2, (u Ru)0 ckuk20 ), : ' R() { 5 (, R() | 1 5 4'. %' & 7 27 1 & & 5' 42 , &' ( +.. '5 ', . #', 0. '' 0. !8 . # , 8 :5 &5( 3 ,' ' 5. D & v() 4 (1.2.1) 1 ' , 4'', x() | & ,' 5 '.
1.20 (25]) ? v() " 6 y() ' + ( " ),
* * + + Kv ( ) {!*+ ,*. > - + Kv ( ) L2 Ot0 t] v() " ' ( + . > Kv ( ) = R()( ;) + R() + , 8u 2 L2 Ot0 t] (u Ru)0 0 ( - ( " + * R() ), v() " ' " .
2 ( !"#( $#% ) &%(* + (* !%&. #% %
# :' , & 17 ' & 83' & 2 ( , 7 ( O27,8,35], 6 5' 42 , &' ( , & 6 .#' O44,30]. , 5 &'2 ( #. 2.1 ! "
D' &2 , & , 7 7 5 ' ( , 2 '). # 7 ( , 8 & 7 7 & ((). 2.1 0( !*+ x( !) ' + * , ( * , * + + ' * ' , mx () = mx = const Kx ( ) = Kx ( ; ): 2.2 0( !*+ x( !) ' + '* , * ( ' * ' . %, & 2.1 2.2 . 7 & ' ''' & 5
5 &2 , 7 ,' ' , 2 2 2 & '6 ' '6 7 & , 7 4' ' . 2.3 0( !*+ x( !) ' * + + , * + + ' * ' . <' 1,', 4' ' & 1 '. # 8 , 5 4' 7 & 7, '8 2 . 2.4 0( + x( !) y( !) ' + ', 6 ' * + + ' * ' Kxy ( ) = Kxy ( ; ) . * 1 4' v( !) ( '. & 1.3) ' & 28 ' V () = V vij = const vij > 0 5 vij {: ' ' V . <5 5 2 ' & 2 2 (' Kv ( ) = V ( ; ) . 2.5 2 v( !) ' + " , * + + Kv ( ) = V ( ; ): ' & 8 & 5 1 5 4'. 2 :5, &'22 113 &1, ; O6,26] ' 5 1 5 4', & ': 1V Sv () = 2
Z+1
;1
1 V: (s)e;is ds = 2
(2:1:1)
23
2.2
1 5 (2.1.1) &' 2 113' ' O6, 8, 25]. <' 1,', & 2 & 5 1 5 4' & 2. # :5, ( 5 , 8 2 1 ' 4'' & 5 1 ' ', & '& 5 '8 6 . 2.2
#
* , 4, En { n {' & 2' &, ' (: :)n , L2(;1 1) {5 1 & -(, & 7 &2' (;1 1) 5'7 ' & G15, ' k : k0 2' &, ' (: :)0 . # ' 1,2: W21 (;1 1) {&, 5 1 & , & && ' '6 & (('7 -( u() 2 L2 (;1 1) du() d 2 L2 (;1 1) & 2' &, 8 Z1 (u v)1 = (u ()v() + dud() dv() d ) d ;1
p kuk1 = (u u)1 {' W21 (;1 1) , W2;1(;1 1) {5 & , & && -
' '6 L2 (;1 1) & 5 '
Z1
kuk;1 = sup f u ()v() d j v 2 W21 (;1 1) kvk1 = 1 u 2 L2 (;1 1)g: v ;1
* , . * x() v() { 5 & ,' n m , 83' ': MOx()] = 0 MOx()x ()] = Kx ( ; ) MOv()] = 0 MOv()v ()] = Kv ( ; ) MOx()v ()] = 0 : ' ' Kx ( ;) & 6 & &'' & W21 (;1 1) , : ' ' Kv ( ; ) , & W2;1 (;1 1) . %,'2 2 & fy() 2 (;1 t]g , 2, & ' x() 4' y() = Cx() + v() (2:2:1) 5 {' 1 8 ,' m n , , 232 ' &'', x() { n { ', v() { m {' . * y() { . <1 2 & x() = t , 2838 8 ''' 41: m(t) = inf fMO(z x(t) ; x^(t))2 ]j x^(t) = n
h
Z1
h(t ; )y() d g
(2:2:2)
;1
5 622 5 1 2 & ' & '' '' h(t ; ) , 5 &' 2 ' 1 (' ( '. & 1.2 . 11 . 15). ' K 2 , (2.2.1)-(2.2.2) 2 2 2 #-F&( Kxy (t ; ) =
Z1
h(t ; )Kyy ( ; ) d
(2:2:3)
;1
( '. 2 (1.2.4 )). # ' 1,2: t ; = ; = : <5 Kxy (t ; ) = Kxy () , Kyy ( ; ) = Kyy () , h(t ; ) = h( ; ) (2.2.3) ,&4 2 2 & 5 Kxy () =
Z1
;1
h( ; )Kyy () d:
(2:2:4)
24
2
%5 (2.2.4) 2 4 4 7 27, ', 5 4' v( !) 1 ', &, 283' & 5' 42 :5 2. ' 4'' 2 2 1 5 4' 4', & ' ' & & 1 8 2 & (,8 O30], 2 2 2 ', & 2' Syy () = () (;) (2:2:5) 5 Syy () {' & & 1 8 , () {', & ' & 8 & & '& &' . K 5 , () ;1() & & & { ( 8 (, ,'' & ' (2' 7 ' & 2 ( ' &6
7 5 5 ). 0 '' 4 , &' ( & & 2 (2.2.5) . U v( !) {1 5 4', ' Syy () & (,8 (2.2.5) O8]. * 4' 1 8 27 v( !) ' & ' x( !) , ' 8 Kv ( ; ): *' ' Kv ( ; ) , & 2 & 1 8 2 Kyy () & (,8 (2.2.5). %, 2 #-F&( ( '. . 20) , 17 '' ' 62 6 5 ( (2.2.2) 2 2 2 & MO(f;x(t)y () +
Zt
t0
h0(t )y()y () d g z hs (t )z)0 ] = 0
5 hs(t ) {&, 2 & '2 ' ,' m n , ' h0 (t ) 2 688 5 ( (2.2.2) ( '. 1.2.3). 2 7 & & & 2 & '' 5 6 2 : ,&4 2 (f;Kxy () +
Z1
h0 ( ; )Kyy () dg z hs ()z)0 = 0
(2:2:6)
;1
= t ; = ; , z {&, , En : %5 &' 2 113' ' (& 1.2). * : ' ' Kxy () Kyy () h0() hs() & 8 &' 1135 &1, 2 ;. <5 , 5 ' * 2 O30], '':
1 Z1 0 Z1 z @;Kxy () + h0 ( ; )Kyy () dA hs () dz = ;1
;1
= z
1 2i
Z
+i1 ;i1
(Kx ()C + H0()Ky ())Hs (;) dz
(2:2:7)
5 Kx () Ky () { & & & x() y() , H0() {;-1, ' h0() , Hs() {;-1, ' hs() z {&, : ' , En i {''2 ( i2 = ;1 .) < & 8 & 2 & 1 8 2 & (,8 (2.2.5), 4 (2.2.7) '6 &1, 83' 1,'
Z
+i1 ;i1
=
(Kx ()C + H0() () (;)) Hs (;) d =
Z Kx ()C O (;)];1 (;) + H0() () (;) Hs (;) d =
+i1 ;i1
25
2.3 !
=
Z Kx ()C O (;)];1 + H0()() (;)Hs (;) d = 0:
+i 1 ;i1
(2:2:8)
0 8 (2.2.8) , (2.2.6). * ' ' Kx ()C O (;)];1 7 5'7 Kx ()C O (;)];1 = A() + B(;)
(2:2:9)
5 A() | ' 1M 2 , '83 & 8 & & ,'2 '& &' , B(;) | , '83 & 8 & & & . <5 (2.2.8) 1 5 2 :
Z
+i1 ;i1
Z
+i1
fA() + H0(l)()g (;)Hs (;) d ;
;i1
B(;) (;)Hs (;) d = 0:
(2:2:10)
# 5 & , 63' & & &' , 13 2 , : ' ' B(;) (;) : & & (, Hs (;) | &, 2 '6 1 6 & & . <' 1,', & ',
Z
+i1
;i1
fA() + H0 () ()g (;)Hs (;) d = 0
(2:2:11)
2 &, ' Hs (;) . # '' 5 2 ( '. . 20) 3 2 1 ' ;1() & & & ( & 8 ' 7 2 2 & & '. . 24), , (2.2.11) , H0() = A() ;1 (): (2:2:12) K 1 4 , &' ( 2 7 & ' & & 1 8 2, & 83 (,8 (2.2.5). " ( # (2.2.12) 4 45 &'2 & ,-, 7 & (, ' Kx () . * 76 2 ' () ,1 !..+ ' O36] & 2 1 68 8 & . ' 5, & 2 ,2 ,15 &,6 5 ( '-!8 , , 5 ' ( #. K 5' ' 4 , 3.2.2. 2.3
0 '' ' ( #, 4 & , 2 & 2. # 1 O8, . 325] & ', 17 ' 2 (, & & 5 & . 9'', 2 5'2 (2 K() (;1 < < 1) & (,8 ((,'), '6 1 & : K() = (i)(;i) = j (i)j2
R1
R1
5 (i) = b(s)e;is ds , jb(s)j2 ds < 1 & & & 8 0 0 2 2 2 (, ,' ' 1 4', 7 ' ('835 ( (& 1.12). *6', '6 & & (, 2 5 & & & 8, & 283 1 1- 8 (8 O27], & &7 8 (8 ('835 ( .
26
2
* & y() ' & 8 & Ky () , 2 2838 2 1- (, () Ky () = PQ2m() 2n
5 P2m () {& ' & 2m , Q2n() { & ' & 2n , &' n > m . * ' Q2n() P2m() 6 & , Ky () { 2 (2 ( & & ). *, & ,' 2 1 4 &, 2 & 2, &
1 & ( y() , , 1 '3 &'7 ( & , 5 '6 ' 1 8 '3 ) ('2 & ,' 5 2 2. ' 5, Q2n() 6 13 2 & ' ' , :' 1 5 & & 1 7 2. <' 1,', '5 Q2n() > 0 2 7 7 , P2m() { ( P2m () 0 , 2 7 7 ). 0 '' & ' Q2n() . K & ' ' '& ( 2 7 , &, 4, '5 Q2n() > 0 ). <5 Q2n() = a2n( ; 1 )( ; 2 ) : : :( ; 2n) 5 fk jk = 1 : : : 2ng { 2 Q2n() = 0 k 2 C k = 1 2 : : : 2n Im k 6= 0 C | '& 2 & , a2n > 0 , a2n | :(( & ' ' & . %, 51 , , k 2 Q2n() = 0 , k | &26 k '& , 6 :5 2. 9 8 , :(( & ' Q2n() | , & ' # 2 Q2n a2nx2n + a2n;1x2n;1 + : : : + a1x + a0 = 0 '':
a0 = : : : 2 R1 a2n 1 1 2 2 n n
; aa1 = 1 1 2 2 : : : n;1n;1n + 1 1 2 2 : : :n;1 n;1n + 2n
+1 1 22 : : :n;1n n + 11 2 2 : : :n;1n n + : : :+ +1 2 2 : : :n;1 n;1n n + 1 2 2 : : :n;1n;1n n 2 R1 ::: a2n;2 = + + + + + : : : + + + : : : + 2 R1 1 1 1 2 1 2 2 2 n n 1 2 1 2 1 n a2n
; aa2n;1 = 1 + 1 + : : : + n + n 2 R1 2n
5 R1 {'6 7 , {&2 &262 '& 5 . % ' & 6 '5 Q2n() '& & C . * k 6
& ' . <5 k+1 = k { 6 ' , '' Re . k+2 k+3 = k+2 & 58 2 '' '' Im , ( Q2n() . <' 1,', & ' Q2n() & 58 2 '' '' '& & &' . 5'' & 62 & ' Q2n() ' & C & 2.1.
27
2.3 !
6Im
k+2 r
r
k
Re -
r
r
k+3
k+1
0 .2.1. 0 & 6 & ' '& &
C
+ 5 2 & ' P2m () . 9 4 ', P2m() '6 ' . U P2m () ' , '8 8 . *6', : 6 . * k { , 2 P2m () . <5 3 k+1 , & ' P2m () ' ' 2 & 2. * & 6', k 6= k+1 57 . # :' 2 7 , 637 '6 k k+1 '5 P2m () 1 ', : & 8 P2m (): * & , , k = k+1 k ' 2. * ' '5 P2m () &, 2 7 '6 C : P2m () = b2m ( ; 1)( ; 2 ) : : :( ; 2m ) = b2m
2m Y
( ; k )
k=1
Q
5 k k = 1 2 : : : 2m , b2m > 0 b2m | :(( & 2m , | , &, 2. D5&&' '6 ( ; k ) 83' 1,': ' & 5&& '6 , 7, 7 2 k & 6 ' ''' 2' ( Im k > 0 ). : 5&& ' 6 & '6 ' 2' & ' P2m(): U k { 2r , & 8 5&& 8' r '6 { 8. #
5&& 6 2 '& , 63 6 & & ( Im < 0 ). 91,' , 23 2 & 5&&, , 1 2 : : : m , { m+1 m+2 : : : 2m . D ', m+k = (k ; ik ) = k + ik = k k = 1 2 : : : m k 0: <5 p p P2m () = O b2m( ; 1)( ; 2) : : :( ; m )]O b2m ( ; m+1 )( ; m+2 ) : : :( ; 2m )] =
p
= O b2m
'6' '5
m Y
p
( ; k )]O b2m
m Y
( ; k )]:
k=1 k=1 m pb Q ( ; k ) im . <5 2m k=1 m m p Y p Y m i b2m ( ; k ) = b2m (i ; 0k ) = (i) k=1 k=1
5 0k = ik = i(k + ik ) = ; + ik k 0 . m p Q + 5, '6' b2m ( ; k ) (;i)m : <5 k=1
p
(;i)m b2m
m Y
p
k=1
( ; k ) = b2m
m Y
~ (;i ; 0k ) = (i)
k=1
(2:3:1)
28
2
~ = (;i): '6 i 3 2 & '& & 90o . *6', (i) <' 1,', (i) ' 0k = ;k + ik , 0k = ;k ; ik { 6 (i) (i ; 0k )(i ; 0k ) = (i)2 + (i)2k + 2k + k2 :
(2:3:2)
9'', '6 (;i) 3 2 & '& & ;90o . <5 , 0 ~ k = ;k ; ik - (i) , k = ;k + ik { 5 & :' 0
(i ; 0k )(;i ; 0k ) = (;i)2 + (;i)2k + 2k + k2 : ~ = (;i) , im (;i)m = 1 , %, (2.3.2) (2.3.3) , (i) P2m() = (i)(;i)
(2:3:3) (2:3:4)
(i) & 6 & & . * &2 5 2 & ' Q2n() , 7 ', Q2n() = d(i)d(;i)
(2:3:5)
d(i) 6 & & . * ' (2.3.4) (2.3.5) 6 & & Ky () , 5 (i)(;i) = (i) (;i) Ky () = d(i)d( (2:3:6) ;i) 5 (2 (i) = (i) d(i) ' & 8 '& & . <' 1,', (i) , &7 8 (8 (, ,' '. ;,2 & & & . ' ' # , , (, & 2 2 2 7 5 &' 5 ( , : &, 2 5 16 3 & '5 42. ' 5, ' ' # 2 4 , (
1 7 4' ,'27 52, 2, 3' 5 8 & && 2 '. 9 & & 2 &' &7 ' ( 3 17 ' (, ,'8 , :, , 4, 65, 5 & 2 , .
3 ( !"#( $#% ) &%(* + (* !%& 3.1
# % -&'
# 1960 5 0. ' & 6 5' 42 , &' ( 2 7 7 5 7 7 & . + 1961 5 ' 0. !8 &1 5' 42 , 2 & 5 ' O13]. 0. ' ,' & , &' ( . 9 ' '' 5 6 2 2 & 2 '5 5 & x( !) &'
('83 ( { ' 8 ', ,16 '8 1 ' 5 ' 4''. # , 1 & 5' 42 , 2 2 1 5 4' ,'27. + 5' 1 2 , K#". K & 5 4' & 8, '2 , 13' ,' & 2 5 & &'38 '' 5 5 & ('83' ( ' 2 3 4 &1 ' 76 2 &' ' '. *1 ' & 2 ('835 ( & 8 4 4 2 7 7 & , & 2 & 7 & (,8 (2.2.5). 6 2 1 4 & 7 , & 2 : , 2 &4 4, '57 27 ('83 ( , 6 & 2 ' & 2. 0 '' & 4 , &' ( , & 6 0. '' 0. !8 . 2 1 2 & 42 , 1 ' & , ' , 7 37 5 1 7 & O25,16] * , . * n {' & x( !) (' 2 &' && 2 p {'5 1 5 5 5 4' u( !) , 8 ' dx() = F ()x() + G()u() x(0) = x (3:1:1) 0 d 5 &, 2 &' 2 113' ' , 4 2 (3.1.1){ ' & 2 1.6 ( . 12) F() | ' ,' n n : '' , L2 O0 t], G() | ' ,' n p n p 5 ' : '' ( Gk () 2 C 1 O0 t] Gk () | k - 1 ' G() ) 1 4' u( !) ' 8 ' MOu()u()] = Q()( ; ) 2 O0 t] , Q() | 5 1 5 4' x0 x0 (!) | n {' 5
, MOx0] = 0 , MOx0x0 ] = P0 , P0 | & 2 '' 2 ', & u( !) x0(!) . %,'8 & m {' & y( !) , 2 O0 t] 2, & ' x( !) 4' y() = C()x() + v() (3:1:2) 5 C() | ' 1 8 ,' m n m n , 5 ' : '' v( !) | 1 m {' 5 4', ' & ' u( !) ' ' x0(!) , ' ' ' MOv()v (s)] = R()( ; ) R() | & 6 & 2 '' 2 ' &2 m 5 ' : '', .. 2 8u() v() 2 L2O0 t] (u Rv)0 = (Ru v)0 (u Ru)0 ckuk20:
30
3 " -#$
<1 2 & ,'2' fy() 0 tg 8 x^() 5 & x() , 2838 = t 8 m(t) = inf fMO(z x(t) ; x^(t))2 ]j x^(t) = n
h
Zt 0
h(t )y() d g
(3:1:3)
622 5 1 2 & ' '' h(t ) ,' n m : '' , W21O0 t] . %5 (3.1.3) &' 2 6 4 (1.1.11). D ', 1 & 6 & ' Q() ' 1 5 4' (& 1.5) 2 2 2 17 '' 5 '6 1 ' ( 2 817 u 2 L2 O0 t] (u Qu)0 0 ), 4' ' '6 1
6 ' 1 ' 4'' (& 1.20). 1. %,' ' h(t ) , 283 8 #-F&(, 2 2 2 ' K 2 (3.1.3) ' Kx (t )C () =
Zt 0
h(t )Ky ( ) d
(3:1:4)
5 Kx (t ) = MOx(t)x ()] Ky ( ) = MOy()y ()] = R()( ; ) + + C()Kx ( )C () 5 &' & 1.2. " Kx ( ) = MOx()x()] 2 2 83' 1,':
5 113 (' 4 ( '. . 10) 22 ' x() & 2 2 6' Z x() = \( 0)x(0) + \( s)G(s)u(s) ds 0
' MOx()x ()] MOx()x()] = \( 0)MOx(0)x(0)]\ ( 0) + = \( 0)P0\ ( 0) +
Z Z 0 0
Z Z 0 0
\( s)G(s)MOu(s)u ()]G ()\ ( ) dsd =
\( s)G(s)Q(s)G ()\ ( )(s ; ) dsd:
9 8 , & ,2 {( , 7 ', 2 ' Kx ( ) 5 & x() '6 1 & (' : Kx ( ) = \( 0)P0\ ( 0) +
Z
min() 0
\( s)G(s)Q(s)G (s)\ ( s) ds
(3:1:5)
5 \( ) | ( ' 2 ' ' (3.1.1), 2832 (( ' 8 d\( ) = F()\( ) \( ) = I (3:1:6) n d In | 2 ' &2 n . 9'', , ' Q(s) G(s) (5 7 : ' ), & : ' ( ' 7 ' \( s) \ ( s) (3.1.5) 3 &, (& ' & ) ' Kx ( ) & &'' : * 22 6 Ky ( ) (3.1.4) 2 {( , & ' Kx (t )C () =
Zt 0
h(t )C()Kx ( )C () d + h(t )R():
(3:1:7)
(3.1.7) 2 2 2 5 ' ' 5 , 4 5, & , 3 , & 48 ' ' ,'32' 7, ', &
31
3.1 " -#$
' 3.1 - * + + Kx( ) + C() R() 0 t 0 t L2 O0 t] . h(t ) 3 @ ! (3.1.7), - * !*+ ' L2 O0 t] . , . 91,' , u() = h (t )z , z { &, , En t R Au = z h(t )C()Kx ( )C () d Ru = (z h(t )R()) f() = (z Kx (t )C ()) 0
Bu = Au + Ru:
(3:1:8)
'62 (3.1.7) z & ,2 4
1,2, & ' Bu Au + Ru = f: (3:1:9) 9& B & 6 & '' L2 O0 t] . K , ' Kx ( ) R() . " Kx ( ) | '' 2 2, R() | '' 2 & 6 & . * 2 { 2 ' 5 & x( !) , 2 { ' 1 5 4'. , Kx ( ) = Kx ( ) , 2 817 u() v() , L2 O0 t] '':
9 Zt 8
* 6 2 & & B , & A & 6 & R (Bu u)0 = (Au u)0 + (Ru u)0 ckuk20 (3:1:10) 5 c | & 6 2 . %, (3.1.10) 42 2 #-F&(. *6' :. * u1 u2 | 42 (3.1.9), &' u1 6= u2 . <5 Bu1 = f Bu2 = f . #' , & 5, & ' B(u1 ; u2) = 0 . %, (3.1.10) '' 0 = (B(u1 ; u2 ) (u1 ; u2))0 cku1 ; u2 k20 , ku1 ; u2 k0 = 0 u1 = u2 . + : & & & 68, &2' 4. U ,. 6' & 3 42 (3.1.9) . 2 &, 5 v 2 L2O0 t] '' (f v)0 kf k0kvk0 ckBvk0 kf k0 . D 2 &, (f v)0 = lf (v) '6 '
5 ( Bv . * ' F-!7 ( '. . 18) 4' lf (v)
L2O0 t] & ' 0 ( '. . 19) & 5 ( 5 1 ' & & ', lf (v) = (u Bv)0 , 5 u | ( : ' L2 O0 t]: <' 1,', (f v)0 = (Bv u)0 = (v Bu)0 , B '' &. %, & 5 &, v & L2 O0 t] , Bu = f: <' ,. ' 3.2 > - + Kx( )C () C()Kx( )C () R() @@ OKx( )C ()] , @ d @ OC()Kx( )C ()] d R() * ( : " ) O0 t] , h(t ) 3 -@ ! (3.1.7) ' , L2O0 t] . , . 2 1,2 (3.1.8), ((' (3.1.9), 5 @ f () = Z u ()C() @ OK ( )C ()] d + @u () R() + u () d R(): @ @ x @ d t
0
32
3 " -#$
9 8
@u () = @f () R;1() ; Z u ()C() @ OK ( )C ()] dR;1() ; u () dR() R;1(): @ @ @ x d t
0
#, ' : . %52 & 6 & 7 0 t & ,2 , (a ; b)2 2a2 + 2b2 , 7 '
+2
Zt @u () @u()
Zt @f ()
0
0
@
Zt Zt Zt 0 0 0
@ d 2
@f() ;1 ;1 @ R ()R () @ d+
@ OK ( )C ()]R;1 ()R;1 () @ OC()K ( s)]
u ()C() @ x x @
C (s)u(s) ddsd + 2
Zt 0
dR() ;1 ;1 u () dR() d R ()R () d u() d:
, &'22 4-!2 5, ''
( ) 2 dR() 2 @ 2 Zt @u() 2 @f() ; 1 2 2 ; 1 2 2 ; 1 2 @ d 2 @ 0 kR k + kuk0 d kR k + kuk0 @ C()Kx ( )C () kR k 0
5 kRk = supfj(u Rv)0j u v 2 L2 O0 t] kuk0 = kvk0 = 1g | &2 '. uv * 8 ' & 2 & 5 5,
2 Zt @u() 2 d = @u() < 1 @u() 2 L2O0 t]: @ @ 0 @ 0
) < u() = h (t )z , 5 z | &, , En , : ' ' @h(t @ & 6 & &' & L2O0 t] . <' ,. %, ' 3.1 3.2 , 4 2 #-F&( 3 & 6 & '' '6 &7 7 ' ( . 2 2 ( '-!8 1 2 , ' h(t ) & &' t . #2 : 1 &'38 &22 . 2. *6', 4 , &' ( (3.1.1) - (3.1.3) (: ) 48 , &' 5 & 2 ' ' ' . %, ' 3.1 3.2 , : ' ' h(t ) | 42 2 (3.1.7) & ( ' t & 6 & W21 O0 t]: 0 , 5 5 & y( !) 2 28 2 (2' & W2;1O0 t] , ' & 6 , 1 5 4' v( !) ( '. & 1.4). <' 1,', 5 6
Zt
x^(t) = h(t )y() d
(3:1:11)
0
&' 113' ' ( '. . 15, (1.1.11)). Z1 ' 2' 2', '6' 1 (3.1.11) &, z 2 En . # ' 1, H(t ) = ;z h(t ) . D& & z x^(t) =
Zt 0
z h(t )y() d
Zt
Zt
0
0
= ; H(t )C()x() d ; H(t )v() d:
(3:1:12)
33
3.1 " -#$
# ' '(t ) , & 2' 2 6 5 ( 5 t , 4 (( 5 2 d'(t ) = ;F ()'(t ) ; C ()H (t ) d (3:1:13) d' (t ) = ' (t )F() ; H(t )C() d ' '(t )j =t = '(t t) = z 0 t: (3:1:14) * Z"t + u"() = A" u u()!" ( ; s)ds !" () = ";1 !0 " MOx0] = 0 0 < " < 1 0
!0() = 0 & < 0 > 1 , !0 () - 1 (('2, 2 8 27 Rt 0 t , 2 O0 t] (2 !" ()d = 1 . ;8 u" () , 8 ' u(): 0 (! & 18 ('8 1 &7 2 '6 O25].) #' 2 (3.1.1) 1 ' ' ' & ' u"() : dx() = F ()x() + G()u () x(0) = x : (3:1:15) " 0 d 04 (3.1.15) , " , &:' 1 ' 1, 5 , x"(): #-(2 u" () { 1 (('2 x"() 2 2 2 4' (3.1.15) 1' ' . 2 (3.1.14), '' Zt d z x" (t) = ' (t t)x"(t) = ' (t 0)x0 + O d ' (t )x"()]d: 0
% & ,2 2 (3.1.13) (3.1.15), ,&4' d O' (t )x ()] = d' (t ) x () + ' (t ) dx"() = ;H(t )C()x () + ' (t )G()u (): " " " " d d d %52 : 6 & 7 0 t , & ' z x" (t) = ' (t 0)x0 + # ' 4 z x^" (t) = ;
Zt 0
Zt 0
O;H(t )C()x"() + ' (t )G()u"()] d:
Zt
H(t )C()x"() d ; H(t )v() d: 0
D ' , z fx" (t) ; x^"(t)g = '(t 0)x0 +
Zt 0
' (t )G()u"() d +
Zt 0
H(t )v() d:
#, ' 1 :5 62 &'' & ' 48 &8 '' 5 6 2. <5 MO(z x"(t) ; x^"
(t))2 ] = n
Zt Zt 0 0
' (t )G()MOu"()u" ()]G ()'(t ) dd+
34
3 " -#$
+
Zt Z t 0 0
H(t )MOv()v ()]H (t ) dd + ' (t 0)P0'(t 0):
< 5 7 ' & & 68 & u() , v() x0 , ', MO(z x"(t) ; x^"(t))2n ] = ' (t 0)P0'(t 0) + +
Zt Zt 0 0
' (t )G()
Z"t 0
Zt 0
H(t )R()H (t ) d+
!" ( ; s)Q(s)!" ( ; s) ds G ()'(t ) dd:
(3:1:16)
# ' 5'' & (3.1.16) &'2' & 5 2 5 2 5 '' 6
1 0 Zt 1 Z"t 0Zt @ ' (t )G()!"( ; s) d A Q(s) @ !"( ; s)G()'(t ) dA ds: 0
0
(3:1:17)
0
&6', ' h(t ) & & &' O0 t], max kA;" h(t );h(t )k ! 0
R"t
& " ! 0 , 5 2 O0 t] A;" | & 2, A;" u() = u( + s)!" (s) ds k:k | '0
sm n P P h2 : , , ( ! () , R"t! (s) ds = 1 2 ', khk = " " ij i=1 j =1 0
& & 4
Z"t Oh(t + s) ; h(t )]!"(s) ds max kA;" h(t ) ; h(t )k = max 0
sup sup jh(t + s) ; h(t )j ! 0 & " ! 0 2 O0 t] s 2 O0 "t] s
1 ,. R"t * ' & & " ! 0 (3.1.17). 2, !"(s) ds = 1 , & ' 0
1 0 Zt 1 Z"t 0Zt lim @ ' (t )G()!"( ; s) d A Q(s) @( !" ( ; s)G ()'(t ) dA ds = "!0 0
0
=
Zt 0
0
' (t )G()Q()G()'(t ) d
(2 '(t ) , O0 t] 2 8. , &7 2 & (3.1.16) & " ! 0 , '' MO(z x(t) ; x^(t))2 ] = ' (t 0)P n
Zt
0'(t 0) +
Zt 0
H(t )R()H (t ) d+
+ ' (t )G()Q()G()'(t ) d = m(t H): 0
(3:1:18)
35
3.1 " -#$
J &2 ' , & x"(t)">0 x^" (t)">0 & " ! 0 7 2 2 & ' & L2 O0 t] x(t) x^(t) . &'' & , 5 &' 5 & 2. * ' 2 ' & 2 & 2 (( ' ' (3.1.13) ' (3.1.14). <1 2 , & 2 H(t ) ' (3.1.13),(3.1.14), '', (3.1.18). <& '6 (' ,8 4 ' , ( , 5 &' 5 & 2 ' ' . ' 3.3 (' .2.2 ) & '( !+ (3.1.1)-(3.1.2) -* 6 '* H(t ) (3.1.13)-(3.1.14) !*+ (3.1.18) { '(
. 3. *6', , 5 &' 5 & 2 (3.1.13), (3.1.14), (3.1.18) 2 48 2 0 dP () = F()P () + P ()F () + G()Q()G () ; P ()C ()R;1()C()P() (3:1:19) d P()j =0 = P0 5 P0 = MOx0x0 ] . D &'38 (3.1.13) (3.1.19) &1,' 6 d O' (t )P()'(t )] = d' (t ) P()'(t ) + ' (t ) dP () '(t ) + ' (t )P() d'(t ) = d d d d = ;' (t )F ()P ()'(t ) ; H(t )C()P ()'(t) + '(t )F ()P ()'(t ) + '(t )P()F ()'(t )+ +' (t )G()Q()G()'(t ) ; ' (t )P()C ()R;1()C()'(t ) ; ' (t )P()C ()H (t ) = = ;OH(t )+ ' (t )P ()C ()R;1()]R()OH(t )+ ' (t )P ()C ()R;1 ()] + H(t )R()H (t )+ +' (t )G()Q()G ()'(t ) , &1 H(t )R()H (t ) . . & 22 & 4 ' (t t)P(t)'(t t) = ' (t 0)P0'(t 0) + '' ' (t 0)P0'(t 0) +
Zt
Zt 0
H(t )R()H (t ) d +
Zt d d O' (t )P()'(t )] d 0
Zt 0
' (t )G()Q()G()'(t ) d =
= ' (t t)P(t)'(t t)+ fOH(t )+' (t )P()C ()R;1()]R()OH(t )+' (t )P()C ()R;1 ()] gd: 0
G 2 :5 62 & (3.1.18) 5 '' 5 ,2 & H(t ) = ;' (t )P()C ()R;1():
(3:1:20)
9 8 , , ,2 4 2 0 P () , '6 4 , &' 5 & 2. 4. ' (( 2 2 . # ' 1, K() = P()C ()R;1() ,&4' (3.1.20) H(t ) = ;' (t )K() . <5 (3.1.13) &' d'(t ) = ;OF () ; C ()K ()]'(t ): (3:1:21) d
36
3 " -#$
* ( t) | 4 (( 5 2 d( t) = OF() ; K()C()]( t) d ' ' (t t) = In , In | 2 '. # :' 4 (3.1.21) ' ' '(t t) = z 2, ( t) ' '(t ) = ( t)z . D , H(t ) = ;z ( t)K() . 9'', ( t) 2 2 2 ( ' ', H(t ) ((' & & ' 5'. % & ,2 1,2 (3.1.12), 7 ', h(t ) = ( t)K(): <' 1,', : ' ' h(t ) & &' t & 6 '6 (('7 (, x^(t) ,&4 2 x^(t) =
Zt 0
( t)K()y() d:
" O( t)];1 = (t ) 2 2 2 ( ' & & ' 5' 2 &26' (3.1.21) 8. J, x^(t) | 4 (( 5 2 d^x() = OF () ; K()C()]^x() + K()y() d d^x() = F()^x() + K()OC()^x() ; y()] (3:1:22) d ' ' x^(0) = MOx(0)] = MOx0] = 0 . D& 83 , . ' 3.4 ( , 52 6-*57. ) : + * x^() * x() (3.1.1) ' 6 (3.1.2), !*+ (3.1.3), !! + (3.1.22), K() | * -!!+ !, K() = P ()C ()R;1 () P() | * + + "* + *, &** (3.1.19). %, ' 3.4 , 5' 42 , &' ( 2 7 7 & 2 1 5 5 5 4' 1 8 27. # 5' ( '-!8 3 8 5 6 ' R() | ' 1 5 4'. *& & 4 , ( 2 1 45 4' ' ,'27 & &' , 6 & &1 2 , 0. '. 0 '' ' 42 , &' ( & '25 5 4' 1 8 27 '. 3.2 ( % -&'
# & 3' , ' ( '-!8 , 5 & u( !) v( !) '8 ,2. # :' &5( & 5' 42 ,
&' ( 1 13 & . * , . # n {' & x( !) ' 2 ' ' dx() = F()x() + G()u() + L()f() x(0) = x (3:2:1) 0 d 5 F() , G() , L() | , ', u( !) | 1 4', f() | , 2 ' 2 ( 2) -(2, x0 (!) | n {' . 0,' ' F() , G() L() 5 ,' 8 x() , u() f() . K ' ' F() & 6 L2 O0 t] , ' G() L() 5 , f() 2 L2 O0 t] .
37
3.2 %! " -#$
1 8 2 & fy() 0 tg 2, x() 4' y() = C()x() + v() + g() (3:2:2) g() | , 2 (2 , L2 O0 t], v() | 1 4', C() | ' ,' m n 5 ' : ''. <1 2 & 1 8 2' fy() 0 tg 8 x^() x() = t , 2838 8
8 9 Zt < = 2 ] x^(t) = h(t )y() d m(t) = inf MO(z x(t) ; x ^ (t) ; (m (t) ; m ^ (t))) x x n h : 0
(3:2:3)
5 z 2 En , mx (t) = MOx(t)] , m(t) ^ = MO^x(t)] . * u() v() { ,' '8 83 MOu()] = mu () MOv()] = mv () MOx0] = mx0 MOu()x0 ] = 0 MOv()x0 ] = 0 MO(x0 ; mx0 )(x0 ; mx0 ) ] = P0 P0 0 P0 = P0 MO(u() ; mu ())(u() ; mu ()) ] = Q()( ; ) Q() 0 Q() = Q () MO(v() ; mv ())(v() ; mv ())] = R()( ; ) R() 0 R() = R () MO(u() ; mu ())(v() ; mv ()) ] = S()( ; ) 0 t: * ' 2 1135 ( '-!8 . 2 :5 ' ,': u() = u1() + mu () , v() = v1 () + mv () , x0 = x01 + mx0 . * u1() , v1 () x01 '8 . (3.2.1) 1 ' dx1() = F()x () + G()u () + G()m () + L()f() x (0) = x (3:2:4) 1 1 u 1 01 d 4 (3.2.2) &' y() = C()x1() + v1 () + mv () + g(): (3:2:5) # ' -(8 x2() , 2838 (( ' 8 dx2() = F()x () + G()m () + L()f() x (0) = 0: (3:2:6) 2 u 2 d #' (3.2.6) , (3.2.4), & ' d(x1() ; x2()) = F()(x () ; x ()) + G()u () x (0) ; x (0) = x 1 2 1 1 2 01 d , 1,2 x1() ; x2() = xc() yc () = y() ; C()x2() ; mv () ; g() 7 ' dxc () = F()x () + G()u () x (0) = x (3:2:7) c 1 c 01 d yc () = C()xc () + v1(): (3:2:8) %, 132 ' (3.2.1)-(3.2.3) & & 7 ,' ' (3.2.7)-(3.2.8), 5 & u1() v1 () '8 ,' . ' 2 ( 2 ' (3.2.7)-(3.2.8). # & ' :& . % c 1 1, 7 & xc , yc , u1 v1 1 ' & . 1. ' (( 2 ' '& &7 ( ( . #-F&( ' MOx(t)y ()] =
Zt 0
h(t )MOy()y ()] d:
(3:2:9)
38
3 " -#$
# :5 2 , 1.2. 0 ' 6 MOx(t)y ()] & ,2 (3.2.8) 1138 (' 4 ( '. . 10 O25]), & ': MOx(t)y ()] = MOx(t)x()]C () + MOx(t)v ()] = Kx (t )C ()+ +MO\(t 0)x0v ()] + + 5
Zt 0
\(t )G()MOu()v ()]d = Kx (t )C () + \(t )G()S():
(3:2:10)
MOy()y ()] = C()Kx ( )C () + C()MOx()v ()] + MOv()x ()]C () + R()( ; )
8 0 < 1=2G()S() = MOx()v ()] = \( s)G(s)S(s)(s ; )ds = : \( )G()S() > 0 8 Z 0 < < MOv()x ()] = S (s)(s ; )G (s)\ ( s)ds = : 1=2S ()G () = S ()G ()\ ( ) > : 0 Z
# ' '8 (8 L( ) 8
8 C()\( )G()S() > < S ()G ()\ ( )C () < L( ) = : 1=2OC()G()S() + S ()G ()C ()] = :
<5 #-F&( 1 ' Kx (t )C () + \(t )G()S() =
Zt 0
h(t )fC()Kx( )C () + L( )g d + h(t )R():
(3:2:11)
K 2 2 2 ' ; 5 ' 5 , 4 5 { 2 , . "6 &, 6, 3.1, ' h(t ) ((' & t . * ((' (3.2.11) & t . <5 @Kx (t ) C () + \(t ) G()S() = h(t t)C(t)K (t )C ()+ x @t @t +h(t t)L(t ) +
Zt @h(t ) 0
@t
C()Kx ( )C () d +
< L(t ) = C(t)\(t )G()S() & t > ,
Zt @h(t )
@h(t ) @t L( ) d + @t R():
0
(3:2:12)
h(t t)C(t)Kx (t )C () + h(t t)L(t ) = h(t t)C(t)OKx (t )C () + \(t )G()S()]: # 7 17 { 2 2 #-F&(. <' 1,', h(t t)C(t)Kx(t )C () + h(t t)L(t ) =
Zt 0
h(t t)C(t)h(t t)Ky ( ) d:
(3:2:13)
0 '' 8 (3.2.12). % & ,2 (3.2.7) (, ,' ' MOu(t)y ()] = 0 7 ', @Kx (t ) C () + \(t ) G()S() = MO dx(t) y ()] = @t @t dt = F(t)MOx(t)y ()] + G(t)MOu(t)y ()] = F(t)MOx(t)y ()]:
39
3.2 %! " -#$
%, (3.2.9) ,
@Kx (t ) C () + \(t ) G()S() = Z F(t)h(t )K ( ) d: y @t @t t
0
* ' 62(3.2.13) (3.2.14) (3.2.12), ''
Zt
0
Zt
Zt @h(t )
0
0
F (t)h(t )Ky ( )d = h(t t)C(t)h(t )Ky ( )d +
Zt @h(t ) 0
O @t
(3:2:14)
@t Ky ( )d
; F(t)h(t ) + h(t t)C(t)h(t )]Ky ( ) d = 0:
< Ky ( ) & 6 & 2 ', 2 h(t ) & ' @h(t ) = F(t)h(t ) ; h(t t)C(t)h(t ): (3:2:15) @t 2. # ' (( 2 x^(t) . < x^(t) 2 L2 O0 t] , { CO0 t] '6 1138 &, 8 & x^(t) : d^x(t) = h(t t)y(t) + Z @h(t ) y() d: dt @t t
0
% & ,2 (3.2.15) , x^(t) = 7 '
Zt 0
h(t )y() d
d^x(t) = h(t t)y(t) + Z F(t)h(t )y() d ; Z h(t )C()h(t )y() d = dt t
t
0
(3:2:16)
0
= h(t t)y(t) + F(t)^x(t) ; h(t t)C(t)^x(t) = F(t)^x(t) + h(t t)(y(t) ; C(t)^x(t))
d^x(t) = F(t)^x(t) + h(t t)Oy(t) ; C(t)^x(t)] x^(0) = 0: (3:2:17) dt # 27 (3.2.15) (3.2.17) , 2 ' h(t t) . 3. *6', h(t t) ( 2, ' 41 2 P (t) . # ' 41 2 x~(t) = x(t) ; x^(t): (3:2:18) J&4' #-F&( (3.2.11) MOx(t)x()]C () + \(t )G()S() =
Zt 0
h(t )fMOy()x ()]C ()+
+C()MOx()v ()]gd + h(t )R(): *'2' ' ' & 5 2 '' 5 6 2. <5 , & ,2 1138 (' 4 (3.2.16), & ', MOx(t)x()]C () + \(t )G()S() = MO^x(t)x ()]C ()+
40
3 " -#$
2Zt 3 Z +M 4 h(t )C() \( s)G(s)MOu(s)v ()] dsd 5 + h(t )R(): 0
0
* ' & 5' & :5 62 , & ,2 (3.2.18), 7 ' MO~x(t)x ()]C () + \(t )G()S() =
Zt 0
h(t )C()\( )G()S() d + h(t )R():
(3:2:19)
* ' :' 4 & & ! t ''
Zt
MO~x(t)x (t)]C (t) + \(t t)G(t)S(t) = h(t )C()\( t)G(t)S(t) d + h(t t)R(t): 0
< \( t) = 0 & t > ( &7 2 (2 (, ,' ' ) \(t t) = In | ' &2 n MO~x(t)x (t)]C (t) + G(t)S(t) = h(t t)R(t): (3:2:20) *1,' 8 MO~x(t)x (t)] : MO~x(t)x (t)] = MO~x(t)fx (t);x^ (t)g]+MO~x(t)^x (t)] = MO~x(t)~x (t)]+MO~x(t)^x (t)] = MO~x(t)~x (t)] = P (t) MO~x(t)^x (t)] = 0 { & '' 1 5 ' & O26] ( 2 5 5 5 & x( !) & 8 ''' & 41 & , ' ' & 1 8 Y = fy( !) 0 t ! 2 ]g , 2 5 & x Y Rt .. MO~x(t)^x (t)] = 0 x~(t) = x(t) ; x^(t) x^(t) = h(t )y()d ). 0 <' 1,', , (3.2.20) , h(t t) = OP(t) + G(t)S(t)]R;1 (t): (3:2:21) D 2, h(t t) ' 41 . 4. # ' 1138 &, 8 62 (3.2.18). % & ,2 (3.2.7), (3.2.17), '' d~x(t) = dx(t) ; d^x(t) = OF(t) ; h(t t)C(t)]~x(t) + G(t)u(t) ; h(t t)v(t) dt dt dt x~(0) = x(0) = x0 : (3:2:22) <' 1,', 41 2. 5. 9& ' 2 ' 41 2 P (t) = MO~x(t)~x (t)] . ((' P(t) & t ( 113' ' ): dP(t) = M d~x(t) x~ (t) + M x~(t) d~x (t) : (3:2:23) dt dt dt d~x(t) 0 '' 6 M dt x~ (t) . %, (3.2.22) , M d~xdt(t) x~ (t) = OF(t) ; h(t t)C(t)]P(t) + MOG(t)u(t)~x (t)] ; h(t t)MOv(t)~x (t)]: (3:2:24) % & ,2 (3.2.18), '': MOu(t)~x (t)] = MOu(t)x (t)] ; MOu(t)^x (t)] . : MOu(t)x(t)] = MOu(t)x]\ (t 0) + 0
Zt 0
MOu(t)u ()]G ()\ (t ) d = 12 Q(t)G (t)
41
3.2 %! " -#$
MOu(t)^x (t)] =
Zt
Zt 0
MOu(t)y ()]h (t ) d
=
Zt 0
MOu(t)v ()]h (t ) d+
+ MOu(t)x()]C ()h (t ) d = 12 S(t)h (t t): 0
" MOu(t)x ()] = 0 & t > , 2 ' '6 , & & 45 3 7 5 . <' 1,', (3:2:25) MOu(t)~x(t)] = 21 Q(t)G (t) ; 12 S(t)h (t t): %,' 6 MOv(t)~x (t)] . < x~(t) = x(t) ; x^(t) , MOv(t)~x (t)] = MOv(t)x (t)] ; MOv(t)^x (t)]: (3:2:26) J', & ,2 (' 4 & , 6 , , (, ,' ' MOv(t)x ()] = 0 , 7 ' MOv(t)x (t)] = MOv(t)x ]\ (t 0) + 0
MOv(t)^x (t)] =
Zt
Zt 0
Zt 0
MOv(t)u ()]G ()\ (t ) d = 21 S (t)G (t)
MOv(t)y ()]h (t ) d
=
Zt 0
MOv(t)v ()]h (t ) d+
+ MOv(t)x ()]C ()h (t ) d = 21 R(t)h (t t): <' 1,',
0
MOv(t)~x (t)] = 21 S (t)G (t) ; 12 R(t)h (t t): (3:2:27) * ' (3.2.27) (3.2.25) (3.2.24), 5 MO d~xdt(t) x~ (t)] = OF(t) ; h(t t)C(t)]P (t) + G(t)O 12 Q(t)G (t) ; 12 S(t)h (t t)] ; h(t t)O 21 S (t)G (t); ; 21 R(t)h (t t)] = OF (t) ; h(t t)C(t)]P(t) + 12 G(t)Q(t)G (t) ; 12 G(t)S(t)h (t t); ; 12 h(t t)S (t)G (t) + 12 h(t t)R(t)h (t t): (3:2:28) + 5, MO~x(t) d~xdt(t) ] = P(t)OF(t) ; h(t t)C(t)] + 12 G(t)Q(t)G (t); 1 1 1 (3:2:29) 2 G(t)S(t)h (t t) ; 2 h(t t)S (t)G (t) + 2 h(t t)R(t)h (t t): D''2 (3.2.28) (3.2.29), 7 ', dP (t) = OF(t) ; h(t t)C(t)]P(t) + P(t)OF(t) ; h(t t)C(t)]+ dt +G(t)Q(t)G (t) ; G(t)S(t) h(t t) ; h(t t)S (t)G (t) + h(t t)R(t)h (t t) P(0) = P0 (3:2:30) 5 h(t t) = OP(t) + G(t)S(t)]R;1(t) . D(' ' 5' ( 2 ' (3.2.7)-(3.2.8).
42
3 " -#$
2 76 2 ' d^x(t) = F(t)^x(t) + h(t t)Oy(t) ; C(t)^x(t)] x^(0) = 0 dt 5 h(t t) = OP (t) + G(t)S(t)]R;1 (t) , ' 41 ( P(t) 2 8 0 (3.2.30). + 5' 2 113 ( '-!8 (4 , (3.2.1) - (3.2.3)). 2 76 2 ' d^x(t) = F(t)^x(t) + G(t)m (t) + L(t)f(t) + K(t)Oy(t) ; m (t) ; g(t) ; C(t)^x(t)] u v dt x^(0) = mx0 5 :(( 2 ( K(t) 2 2 & (' K(t) = OP (t) (t) + G(t)S(t)]R;1 (t): " 41 ( P (t) 2 8 0 dP(t) = F(t)P (t) + P(t)F (t) + G(t)Q(t)G (t) ; K(t)R(t)K (t) dt P(0) = P0 : 3.3 ! % -&'
* ' F , G C , 7 23 ' 8 & , &' ( (3.1.1){(3.1.3), ,'28 2 '', 4' u() v() (;1 < t) 2 28 2 ' ' 4' ' 1 ' 4''. <5 ' ' ', ('83 & x() , ' 1 8 2 fy() ;1 < tg '6 ,& : ' 132 { dx() = Fx() + Gu() (3:3:1) d 5 F G | & 2 ', MOu()] = 0 MOu()u()] = Q( ; ) 2 (;1 t] Q | 2 '' 2 2 ' ' ,' { y() = Cx() + v() (3:3:2) 5 ' C | ' & 2' : '', MOv()] = 0 MOv()v ()] = R( ; ) 2 (;1 t] R | & 6 & 2 2 '' 2 '. 0 (3.3.1) (3.3.2) &'8 2 113' ' . * 7 & & 627 x() y() 2 28 2 ' ' ' & ' O27,30]. J ( , 8 2 83': Rt & 1 8 2' fy() ;1 < tg 1 2 8 x^(t) = h(t )y() d & ;1 x() = t 2838 8 m(t) = inf fMO(z x(t) ; x^(t))2n ]j h (t )z 2 W21 (;1 +1)g (3:3:3) h 5 z | &, , En: %, , 3.1 , , x^() 2 2 2 4' 2 d^x() = F x^() + KOy() ; C^x()] x^(;1) = 0 (3:3:4) d
43
3.4 ' ($%)
5 K | :(( 2 ( , K = P C R;1
(3:3:5)
P | 2 41 2. < 2 7 & P | & 22 ', dP d = 0 (( (3.1.19) 2 & 2 41 6 2 &' FP + PF + GQG ; PC R;1CP = 0: (3:3:6) <' 1,', & , 5 ( '- !8 17 ' 4 ' (3.3.6). 0 ,2 5' 76 2 42 5 51 5 2 K#" 5 1. *:' 1 :(( ' 42 (3.3.6) ( 4 2) 4 (( 5 2 0 dP () = F P() + P()F + GQG ; P(t)C R;1CP(t) P (0) = P (3:3:7) 0 d 5 P0 | &, 2 '' 2 & 6 & 2 '. 91 (3.3.7) 48 K#" 7 &, & P() 5 45 2 ,2. K 4 2 , &' 2 , P . # , 7 2 3.3 & , 7 ' 42 , &' (
' . # , 2 2 & 2 ( &' & 7 , 3.3 {
'. 9 :7 7 & 7 2, , ' & x() . # ( # & x() , 2 , & 8 & Kx () , ' ( { ' (( 7 (3.3.1). K & 7 : , & ' (3.3.1) '6 & 8 & Kx () , 2 Kx () = (In ; F );1GQG (In ; F );1 5 In | 2 ' n -5 &2 . + & & & Kx () , , ' & , #, '6 & (, ,'8 ' 8 ', &6 838 & x() . *7 8 (8 ' '6 & ,2 ' (,, 2 '7 ' ' , 6 2.3, 2 '5'7 { O31]. ! & 1 5' ( # ' & O30]. D ', ( # ( ' &'' 1 5 4' 1 8 27. K 2, ', & 5 & & , 2 (, ,' ( , ', (, ' & & 1 8 2. K 5 '6 & '7 4. <' 1,', 5' ( # 2 2 2 "5 2,83'" 2 , &' ( , 7 & 2 & ,' & (,8 (2.2.5). + 5' ' ' ' 1 2 5 2 2 2 3 ' 1 5, 1 4' ,'27 1 1 '. 5' ' 1 1 2 , K#" &:' 4 4 &' & 4 & 7 , '57 27 ( #. 3.4 * "'( +
K ' & 6 ! ' R7 ' 1965 5 O39]. # ' && &' ( '-!8 2 42 , 5 2 , 4' 1 8 27 1 . * , . * & x() 2 8 dx() = F ()x() + G()u() x(0) = x (3:4:1) 0 d 5 u() | 1 5 4', Ou()] = 0 Ox0] = 0 Ou()u()] = Q()( ; ) Ox0x0 ] = P0
44
3 " -#$
& u() x0 . *, 2 (3.4.1) &' 2 113' ' . %,'8 & fy() 0 tg , 2, x() 4' y() = C()x() + w() (3:4:2) 5 w() | m {' 4', w() ' 2 ', ,16 ' 1 ' 5 ' 4'' v() dw() = N()w() + L()v() w(0) = w (3:4:3) 0 d 5 v() | u() x0 , Ov()] = 0 Ov()v ()] = R()( ; ) w0 | m {' 5 , Ow0] = 0 , Ow0w0 ] = S0 , ' R() & 6 & , S0 | . <1 2 8 x^() x() = t , 2838 8 ''' 41 m(t) = inf fMO(z x(t) ; x^(t))2 ] j x^(t) = n
h
Zt 0
h(t )y() d g:
(3:4:4)
! R7 & 6 2 42 & , 838 & . # ' 1138 &, 8 & y() , & ,2 62 (3.4.1) (3.4.3), 7 ' dy( = dC() x() + C()F()x() + N()w() + C()G()u() + L()v(): d d # ' 1,2: dC() F() = OF() N()] C () = + C()F() N() y1 () = dy() 1 d d x() u() V1() = OC()G() L()] G1() = OG() L()] x1() = w() u1 () = v() : <5 , (3.4.1)-(3.4.4) '6 && 83' 1,'. 0 4 22 x1 () 2 ' dx1() = F1 ()x1() + G1()u1 () d x (3:4:5) x1(0) = x10 = w00 : 1 8 2 & y1 () = C1()x1() + V1 ()u1 () (3:4:6) &' MOx10] = 0 MOu1()] = 0 MOx10x10] = P00 S0 = P10 0
Q()
0 0 ( ; ) Q() 0 > 0: R() 0 R()
MOu1()u1 ()] = 0 <1 2 8 x^1() x1 () = t '',838 8 41. J (3.4.5)-(3.4.6) 2 2 2 , &' ( ' 1 ' 4'' ,'27 ', 5' 42 , 3.2. ' & 5 ' 2 2 2 , 1 , ', ' 832 4' w() . + & 1 & 2 ('835 ( (3.4.3) 2 & w() ,1 , 4' ,'27 { 5 & & & 8, & 83 (,8 (2.2.5) O27,26]. ' 5, &2 (( 2 ,' { : &' & 7 7, , , O33,25] 76 & y1 () , .
45
3.5 ' ',!--$ 3.5 * '. -/'
5' ,1 1975 5 9'0 8'' O42] 2 2, 5 4' 1 8 27 2 2 2 6 ' 1 ' 5 ' 4'' (& 1.20, '. . 21). 1. * , . * n {' & x() = x( !) 2 O0 t] ! 2 ] 5 2 &' && 2 p {'5 5 5 4' u() , 8 ' 8 ' dx() = F ()x() + G()u() x(0) = x (3:5:1) 0 d 1 8 2 & ,' m ( m n ) y() = C()x() + w() (3:5:2) 5 F () , G() C() | ' 83 ,' , &' : ' ' G() C() | 5 (, F() | -& . 04 , 4 (3.5.1) &' 2 ' & 2 1.6. 0 , 4' w() & 6 2 8 5 ' & W2;1 O0 t], 4' w() '6 1 & 0 w() = v() (3:5:3) 5 v() | 1 q {' 5 4' q < m: J &' ( , 8 2 83': 1 2 & 1 8 2' fy() 0 tg 8 x^() x() = t , 2838 8 m(t) = inf fMO(z x() ; x^())2 ] j x^() = h
n
Zt 0
h(t )y() d g:
(3:5:4)
622 5 1 2 & ' & '' '' h(t ) , ', 2 7 5 (3.5.4) ' ' , z | &, , En: %, 6 7 & u() w() 5 x0: 2.*6', 4' w() (3.5.3) 2 81 6 1 5 4'. , & 1 8 2 m {' & y() = C()x() + w1() (3:5:5) 5 w1() | m {' 6 1 4' ' ' ' MOw1()w1 ()] &' 5 ' 4' q q < m . 2 ' R1() , '' , 3 5 2 m {'2 ' () O1] 2, 2 0 ::: 0 0 ::: 0 3 66 01 2 : : : 0 0 : : : 0 77 66 : : : : : : : : : : : : : : : : : : : : : 77 R1() = T () 66 0 0 : : : q 0 : : : 0 77 T (): 66 0 0 : : : 0 0 : : : 0 77 4 ::: ::: ::: ::: ::: ::: ::: 5 0 0 ::: 0 0 ::: 0 9'', ' T ()R1 ()T () 5 5 2 4 q & 6 7
1 2 : : : q : # ' ' H() ,' m q 2 0 ::: 0 3 66 01 2 : : : 0 77 66 : : : : : : : : : : : : 77 H() = T() 66 0 0 : : : q 77 66 0 0 : : : 0 77 4 ::: ::: ::: ::: 5 0 0 ::: 0
46
3 " -#$
5 ' H() q (Rang H() = q): <5 R1() = H()H () y() = C()x()+H()v1 () , 5 v1() | q {' 1 5 4' ' ' MOv1()v1 ()] = = Iq ( ; ) , Iq | 2 ' &2 q . * ' ' H() . 1. 91,' , N(H) = fx j Hx = 0 x 2 Eq g 2 ' H() . "6 N(H) 6
4 . K , 5, Hx = 0 ' 4 Eq , Rang H() ,' x: 2." H ()H() | 6 2. , H()x = 0 , H ()H()x = 0 N(H) N(H H) . D 5 , H ()H()x = 0 , x H ()H()x = (Hx Hx)q = kHxk2q = 0: 9 8 , N(H H) N(H) . <' 1,', N(H H) = 0 Rang H = Rang(H H) = q: 3. " H H | '' 2 &2 q . ' '' : ' ~hij h~ ji &, 2 ' H H :
X X h~ ij = hkihkj = hkj hki m
m
k=1
k=1
5 hki | : ' ' H() . # 4' 1 & , 83 &2 & 1 ' ( ' "-*, O1]). 3.1 ;+ H + ' " + * H , 1: HH + = H + H 2: HH + H = H 3: H + HH + = H + : D& ' 3.5 , * + H ' n m + H + = lim f(H H + 2Im );1 H g = lim fH (HH + 2Im );1 g !0 !0
. , " n { * z - x = H + z *
6 * , '6 !*+ kz ; Hxk2n . , ' '6 O1] . # ' ' H1() = OH ()H()];1=2H () . K ' ' q , '7 . 9& ' ' H1+ . D5 ' 3.5 H1+ () = lim H ()OH1()H1 () + 2Iq ];1 = H1 ()OH1()H1 ()];1 !0 1 H1()H1 () | 6 2 '. * ' : 6 , ' H1() . <5 n H1+ () = fOH ()H()];1=2H ()g OH ()H()];1=2H ()
H() (OH ()H()] );1=2
o;1
= fOH ()H()];1=2H ()g = H1 (): + 5, 2 ' H() 7 ', H + () = OH ()H()];1H (): 0 '' ' H()H + () .
47
3.5 ' ',!--$
3.2 ;+ ' , 2 = . " H()H + () - '&2, OH()H + ()]2 = H()OH ()H()];1H ()H()OH ()H()];1H () = = H()OH ()H()];1H () = H()H + (): " Im ; H()H + () 6 '&2: (Im ; H()H + ())2 = Im ; H()H + () ; H()H + () + H()H + ()H()H + () = = Im ; H()OH()H ()];1H () ; H()OH()H ()];1H ()+ +H()OH()H ()];1H ()H()OH()H ()];1 H () = = Im ; H()OH()H ()];1H () = Im ; H()H + (): D1 ,2 '& ' 1 0. . * x 1 , 83 1 ' ,8 , .. x = x , '&2 ', 2 = . <5 & A2 x = A(Ax) = A(x) = Ax = 2 x: <' 1,', x | 1 ' A2 , 83 1 ' ,8, ' 2: 2 = A2 x = Ax = x 2 = ,'6 4 & = 1 = 0: 9 8 , 5 '& ' : Rang A = Trance A ( ' { Pn Pn '' 5 7 : ' , Trance A = aii = i , i | 1 , ' , i=1 i=1 aii | 5 : ' : '). % & ,2 '& ' Im ; H()H + () , H()H + () , '' Rang OIm ; H()H + ()] = Trance OIm ; H()H + ()] = = m ; Trance H()H + () = m ; Rang H()H + () = m ; q: <' 1,', ' Im ; H()H + () 6 m ; q , '7 . D ' , :7 ' H2() ,' (m ; q) n: 9'' 6, ' Im ; H()H + () 5 1' ' H() OIm ; H()H + ()]H() = H() ; H()H + ()H() = H() ; H() = 0: " H2() 1, , ' Im ; H()H + () , , H2()H() = 0 H2()H1 () = 0 , H2()H1 () = H2()H()fOH ()H()];1=2g : %, H2()H1 () = 0 , ' H2() H1() , '. *H () 1 :' ' H () ,' m m 6 2 '6
6 2 &1, y () H () 1 1 y2 () = H2() y(): *'22 : &1, 1 8 2' (3.5.5), & '
y1 () = H1()C()x() + s() y2 () = H2()C()x()
(3:5:6)
5 s() = H1()H()v1 () = OH ()H()]1=2v1 () | 6 q {' 1 5 4' ' ' ' MOs()s ()] = H ()H()( ; ):
48
3 " -#$
%, ' & , , 1 8 2 (3.5.5) : 1 8 2' (3.5.6) 4'' (3.5.1). *:' 5' 2 4'' (3.5.3). < 4' & 838 &8 : 1 8 2 &, 2 2 , , 7, &54 7 '42, &1 6 '6 '. K & ' m ; q ' 4' (3.5.3). 9 ,'2' &' ' & 6' , 8 4' 6 ' . 9'', & q = m ' & ' , ( '- !8 . 3. *1,' 1 8 2 (3.5.2) 4'' (3.5.3) ' : y1 () = x1 () (3:5:7) y2 () = C1()x1() + C2 ()x2() + v2 (): * ' C() ' 5 m . <5 '6 & 83' 1,': C() = OA() B()] 5 ' A() ' 58 18 ' A;1 () . # ' 6 &1, ;1() ;;1()B() S() = (3:5:8) 0 In;m 5 In;m | 2 ' &2 (n ; m) . <5 & y() = OA() B()]x() + w() = OA() B()]S()S ;1 ()x() + w() = OIn;m 0]S ;1()x() + w(): 91,' x() = S()() . #-(2 () 2 2 2 4' 2 d() = S ;1 ()OF()S() ; dS() ]() + S ;1 ()G()u() d d (3:5:9) ; 1 (0) = S (0)x0 = 0 &, 2 S() 3 , & 8 : ' ' 1 8 2 C() | 5 (. # 1 8 2 y() 2, & ' () 4' y() = OIm 0]() + w(): 0, 6' () 283 () = 1 () (3:5:10) 2 () & 1() ' ,' m ; q , 2() { (n ; m + q) . <' 1,', &'38 &1, 2 (3.5.9) & 2 (3.5.10) 1 8 2 y() & 2 2 ' (3.5.7) 1 () 2 () : y1 () = 1 () (3:5:11) y2 () = L2 () + v() 5 L = OIq 0] - ' ,' q (n ; m + q) . J ( '6 (' & () , (' 2 ' (3.5.9), 5 ,'2 '8 (3.5.11). 9 x^() x() 2, ^()
() 4' x^() = S()^() . 4. ' #-F&( ' ' h(t ) 283 8 (3.5.4). 2 &32 ', & u() v() '8 , , &' & 6 , O0 t] t < 1 MOu()u()] = Q()( ; ) , Q() | '' 2, 2 ' 5 ' : '', MOv()v ()] = = R()( ; ) ,
49
3.5 ' ',!--$
R() | '' 2, & 6 & 2 q {'2 ' 5 ' : ''. # x0 ' , & ' u() v() , MOx0x0 ] = P0 , P0 | '' 2, 2 '. 76 &' ' ''' 41, 6 ' , 1.2, : 48 2 #-F&( (1.2.13) (1.2.14). D ' ' ' , , , ' 5, 4' 1 8 27 ' (3.5.3), 5 (1.2.14) ,&4 2 Kx (t )C () =
Zt 0
0 h(t )C()Kx( )C () d + h(t ) 00 R()
(3:5:12)
5 ' Kx ( ) & 2 2 6' ( '. . 30) Kx ( ) = \( 0)P0\ ( 0) +
Z
min() 0
\( s)G(s)Q(s)G (s)\ ( s) ds:
(3:5:13)
; ' 2 ' \( ) 0 t 4 ' (3.5.1) 2 8 d\( ) = F()\( ) \( ) = I : n d ! 5 2 5 : ' ' G Q 2 & : ' ' F , (3.5.13) & : ' ' Kx ( ) 3 , & ', 5 &, & 1' 5''. 91,': u() h (t )z f() Kx (t )z 5 z | &, ( , En C u C ()u C | &, 23 : ' 5 m {'55 & : ' n {'5 & 5 6 &, &', u 2 Lm2 O0 t] , C : Lm2 O0 t] ! Ln2 O0 t] 5 Lk2 O0 t] | k {' & 5'7 ' ' G15 -( & 7 O0 t] k 2 fm ng C | &26 C & 2 & 5 4 &': C : Ln2 O0 t] ! Lm2 O0 t]
Av
Zt 0
Kx ( )v() d
8v 2 Ln O0 t] C AC u = 2
Zt 0
C()Kx ( )C ()u() d
0 0 0 Iq u 0 Iq u Rm u = Iq RIq u Iq R 0 Iq u = 0 R u 0 0 Zt Zt
Bu fMOy()y ()]g u() d = C()Kx ( )C ()u() d + 0 R() u() 0
0
0 J 0 0 : Bu = C AC u + IqRIq u Rm 00 R() m 0 Iq
3.1 0
hu Bui c1fkC uk2;10 + kIq uk20g
(3:5:14)
c1 | * . (3.5.14) '6 ,& 6 :
hh (t)z Bh (t)z i c1fkC h (t)z k2;10 + kJm h (t)z k20 g 5 h (t)z = h (t )z = u(): < & 1 5 &'2 2 4'.
50
3 " -#$
, . % & ,2 (3.5.13)
4 1,2, & '
hu Bui ==
Zt 0
z h( )
h (t )z ds d d +
Zt 0
Zt 0
C()
z h(t )
Zt
Z
minfg
Zt 0
\( s)G(s)Q(s)G (s)\ ( s)C ()
0
C()\( 0)P0\ ( 0)C ()h (t )z d d+
+ z h(t )Rm h (t )z d = k1 + k2 + k3: 0
9' & 5' (3.5.15) . * \^ ( s) =
(3:5:15)
0 s >
\( s) s :
<5 & 832 & 4
2 0 minfg 1 3 Zt 6Zt Z k1 = 4 z h(t )C() B \( s)G(s)Q(s)G (s)\ ( s) dsC @ A C ()h (t )zd 75 ds = 0
0
0
2 0 minfg 1 3 Zt 6Zt Z = 4 z h(t )C() B \^ ( s)G(s)Q(s) G (s)\^ ( s) dsC @ A C ()h (t )z d 75 d = 0
0
0
3 2Zt 3 Zt 2Zt = 4 z h(t )C()\^ ( s)d5 G(s)Q(s)G (s) 4 \^ ( s)C ()h (t )z d 5 ds 0
0
c2 2 = maxfjG()Q()G ()j
0
Z t 0 Z t
1 2 @ \^ ( s)C ()h(t )z d A ds n
0
0
(3:5:16)
5 0 tg , j : j | '2 ' En , z | &, , En: < \( ) | ( ' 2 ' ' (3.5.1), , \( ) , \ ( ) | ( ' 2 ' &26 ' (3:5:17) l ; dxd() ; F ()x () = C ()h (t )z & x (t) = 0 4 (3.5.17) , 2 (' x (t) =
Zt 0
\ (s )C (s)h (t s)z ds:
9& l (x ) 5''( 16 L2O0 t] W20;1O0 t] ( '. & 1 O25] . 38). *:'
1 Zt 0Zt 2 c2 @ \^ ( s)C ()h (t )z d nA ds c3 kC h (t)z k2;10 = c3kC uk2;10 0
0
5 c3 | 2 & 6 2 .
(3:5:18)
51
3.5 ' ',!--$
0 '' 5' (3.5.15). %'': k2 = =
Zt 0
Zt 0
z h(t )
Zt 0
C()\( 0)P0\ ( 0)C ()h (t )z dd =
z h(t )C()\( 0) dP0
Zt 0
\ ( 0)C ()h (t )z d
c4kP0k k\( 0)k2 kC h (t)z k2;10 c5 kC h (t)z k2;10 = c5 kC uk2;10: (3:5:19) J &' 113 4-!2 5 (Q )O25]: 2 8u 2 W2;1 O0 t] 8v 2 W21O0 t] jhu vij kuk;1kvk1 , k : k - &2 ', 4 5 | & 6 . 2 5 5'5 & k3 = =
Zt 0
Zt 0
z h(t )Rm h (t )z d = (u Iq RIq u)0 = (Iq u RIq u)0 =
z h(t ) I0q R() 0 Iq h (t )z d c6kJm h (t )z k20 = c6kIq uk20:
(3:5:20)
91,2 , 1 = maxf2c3 2c5 c6 g , & ' 1' . 3.2 > + G()Q()G() , R() P0 , " * ' 2 L2 O0 t] (' GQG')0 cq k'k20 , (Jm ' RJm ')0 cr kJm 'k20 8z 2 En * ' (z P0z)n cp kz k2n q r p - * , c0 f kC h (t)z k2;10 + k Jm h (t)z k20 g hh (t)z B(h (t))z i c0 = const c0 > 0
, ' " '( , c0 f kC uk2;10 + kIq uk20 g hu Bui: , . 9' , 5'7 (3.5.15). % & ,2 & 6 8 & ' G()Q()G () , (3.5.16), 7 '
3 2Zt 3 Zt 2Zt k1 = 4 z h(t )C()\^ ( s) d5 G(s)Q(s)G (s) 4 \^ ( s)C ()h (t )z d 5 ds 0
0
0
Zt Zt 2 ^ cq \ ( s)C ()h (t )z d 0 = cq \ ( s)C ()h (t )z d 20 : s
0
9'', (' 4 2 2 l (x) ; dx() d ; F ()x() = v() x(t) = xt v() 2 L2Ot0 t] & xt = 0 2 2 2 &26' (3.5.1), ' : x() = \ (t )xt +
Zt
\ (s )v(s) ds
52
3 " -#$
' 5, xt = 0 & ' x() =
Zt
\ (s )v(s) ds
& (1.1.5). <' 1,', v() = = C ()h (t )z
Zt k1 cq \ ( s)C ()h (t )z d 20 cq c0 21 kC h (t)z k2;10 = c0q kC uk2;10 s
5 c0q = cq c0 21: %, 62 (3.5.19) & 6 & ' P0 , k2 =
Zt 0
z h(t )C()\( 0) dP0
Zt 0
\ ( 0)C ()h (t )z d
Zt cp \ ( 0)C ()h (t )z d 2n : 0
+ v() = C ()h (t )z & (' 4 2 &265 2 x(0) =
Zt 0
\ (s 0)C (s)h (t s)z ds
, & ,2 8 (1.1.5), 7 ',
Zt k2 cp \ ( 0)C ()h (t )z d 2n cp c021 kC h (t)z k2;10 = c0p kC uk2;10 0
5 c0p = cp c021 : %, & 6 & ' R() 4 & 7 2 k1 k2 , hu Bui c0 q kC uk2;10 + c0p kC uk2;10 + cr kIq uk20 c0 fkC uk2;10 + kIq uk20g 5 & 22 c0 = minfc0q c0p cr g . G'' 3.1 3.2 &, 8, & & '' 3.2 & & : c0 fkC uk2;10 + kIq uk20g hu Bui c1 fkC uk2;10 + kIq uk20g c0 fkC h (t)z k2;10 + kJm h (t)z k20 g hC h (t)z BC h (t)z i c1 fkC h (t)z k2;10 + kJm h (t)z k20 g: <' 1,', &'38 1 (' hu Bui 5 ' & W20;1 O0 t] '6
': kuk2H hu Bui kuk2H kC uk2;10 + kIq uk20: Z, HO0 t] 1, & ' k : kH . * HO0 t] 17 , W20;1O0 t] L2 O0 t] - 5 1 & .
3.3 0 h (t) ; h(t) 2 1 m z = g(hn ) + 1 g(hm ) ; g( hn + hm ) n H 2 2 2 2
Zt ; g(h) = m(t) = inf fM z x(t) ; h(t )y() d "2n j h (t )z 2 W21O0 t]g: h 0
53
3.5 ' ',!--$
* 6 2 '' 5 & & & , & ( g(h) : n;2
g(h) = MO(z x())2 5
k0 = z MOx(t)x(t)]z .
Zt 0
z MOx(t)y ()]h (t )z d +
Zt Z t 0 0
z h(t )MOy()y ()]h (t )z d d
g(u) = k0 ; 2hC f ui + hu Bui
' 3.6 > + G()Q()G() , R() P0 , 3 -@ ! * !*+ ' HO0 t] . , . * & 8 6 5, 2 815 5 n 2 hn(t ) , fg(h) j h (t )z 2 HO0 t]g: 0 a g(hn ) a + n1 a = inf h % & ,2 '' 3.3, 2 : ' hn(t ) hm (t ) , 1 & 2 g(h) '' khn (t)z ; hm (t)z k2H 2(a + n1 ) + 2(a + m1 ) ; 4a = n2 + m2 ! 0 n m ! 1: <' 1,', & fhn (t )z g1 n=1 ( ' & HO0 t] , & HO0 t] 7 2 ' : ' h0 (t ): D3 42 2 #-F&( ,. * h1 (t ) h2(t ) | 42 2 #-F&(, &' h1 (t ) 6= h2 (t ) . <5 , & ,2 4 '' 3.2, 7 ' kC (h1 (t) ; h2 (t)) z k2;10 + kJm (h1(t) ; h2 (t)) z k20 c(2a + 2a ; 4a) = 0: <' 1,', & , h1(t ) = h2 (t ) ' & HO0 t] . %, 4 &,, 2 76 2 '& &7 ' ( h0(t ) 17 ' 4 #-F&( (3.5.10). * :' '& ' h0(t ) & &' 2 4 5 ' 2' & 5 & 6 & 5'7 ' ( 6 & , '& ' Kx ( ) C() R() 5 . 04 (3.5.10) 13' { & 2 , . & 7 527 7 , 7 1 , 6, 2 & 5' 42 , &' ( 1, &'2 ' 5 2, +.. <7 . ' ' ' 2 5' 9'0 8'. 5. 0 '' ' 9'0 -8'. * , . * , ' 2 ' dx1() = F ()x () + F ()x () + u () (3:5:21) 11 1 12 2 1 d dx2() = F ()x () + F ()x () + u () (3:5:22) 21 1 22 2 2 d 5 0 t 1 , x1() x2 () | n1 { n2 {' & , & 83 2 ', u1() u2() | 1 5 4' ' ', x1(0) x2(0) | 5 , &' 2 8 2 O0 t] < 1 '8 ' 42: MOu1()u1 ()] = Q11()( ; ) Q11() = Q11() > 0 MOu2()u2 ()] = Q22()( ; ) Q22() = Q22() > 0 (3:5:23) MOu1()u2 ()] = Q12()( ; ) = MOu2()u1 ()]
54
3 " -#$
MOx1(0)] = x10 MOx2(0)] = x20 MO(x1(0) ; x10)(x1(0) ; x10) ] = P11 P11 = P11 > 0 MO(x2(0) ; x20)(x2 (0) ; x20) ] = P22 P22 = P22 > 0 MO(x1(0) ; x10)(x2 (0) ; x20) ] = P12 P12 = P21
6 Q() > 0 ,, 2 8u() 2 L2O0 t] (u Qu)0 ckuk20 c > 0 P > 0 { 2 8z 2 En (z P z)n c0 kz k2n c0 > 0: " fFij ()gij =12 2 , : ' , & 637 L2O0 t]: 1 8 2 & 2 2 & , y1 () = x1 () (3:5:24) y2 () = C1()x1 () + C2()x2 () + v() (3:5:25) 5 0 t < 1 v() | q {' 1 5 4' ' ' MOv()v ()] = R()( ; ) ' R() | '' 2 & 6 & 2. * u1() u2() v() ' ' x1(0) x2(0):
u ()v () U () M 1 = 1 ( ; ): u2()v ()
(3:5:26)
U2 ()
K ' ' R() fQij ()gij =12 | 5 , .. '8 ''' & 8 & 8 &, 8, C1() C2() | & O0 t]: <1 2 & ,'2' fy1 () y2() 0 tg 8 x() = xx1() 2()
= t 2838 8 m(t) = inf fMO(z x(t) ; x^(0) ; x^(t))2 ] j x^(t) = n
h
Zt 0
h(t )y() d g
(3:5:27)
5 622 5 1 2 & ' '' h(t ) 283' 48: h (t )z 2 HO0 t] ( '. & 4 , 3.5) 2 8z 2 En x^(0) { 5 22 x(0): * , (3.5.24), x1() 1 8 2 &'6 O0 t] , , 2 76 8 x^2(t) x2 (t) ,
x (t) Zt 1 x^2(t)
=
0
h0(t )y() d + x^0(0) x^0 (0) = xx^1(0) 2(0)
h0(t ) { &' 2 '& 2 &7 2 ' ( , x^0(0) { 42 5 22 x(0): # 2 ', 1 &' 8 x^0 (0) , 2 ,2 , x1(0) . 2 :5 x^2 (0) & ' x^2(0) = x20 + N(x1(0) ; x10): (3:5:28) " N (3.5.28) 1' , 1 2 41 & & x^2(0) 1 '' . * "(0) x2(0) ; x^2 (0) P(0) MO"(0)" (0)]: <5 "(0) = x2 (0) ; x20 ; N(x1 (0) ; x10) P (0) = P22 ; NP21 ; P21N + NP11N P12 = P21: 9 , P (0) 5 '45 ,2 ( ' &: '5 2 ') ' ' , ' N = P21P11;1: <' 1,', 4 ' ' 1 : x^2(0) = x20 + P21P11;1Ox1(0) ; x10]
(3:5:29)
P(0) = P22 ; P21P11;1P21 :
(3:5:30)
55
3.5 ' ',!--$
< , & 8, x2 (0) x1 (0) { ' 5 , 4 x^2(0) x2(0) 2 2 2 '' 6 MOx2(0)jx1(0)] & 6' (3.5.29). ' &' 8 8 x^2(t) t > 0 . 91,' , xk(t) 5 & x2(t) ; x^2(0) . <5 MOkx(0)] = 0 (3.5.27) '' m(t) = inf fMOz xk(t) ; x^2 (t))2n ] j x^(t) = h
Zt 0
kh(t )y() d g
(3:5:31)
5 622 5 1 2 & ' & '' ''-(2' hk (t ) , kh (t )z 2 HO0 t] , 8z 2 En . %5 &' 2 ' 42 (1.1.11). " kh0 (t ) 2832 8 (3.5.31), 2 2 2, , , 4' 2 #-F&( Zt MOkx(t)y ()] = kh0(t )MOy()y ()] d 2 O0 t]: (3:5:32)
y ()
0
1 8 2 y() = y1 () & 6 ' &, 8 & L2 O0 t] W2;t 1O0 t]: 2 91,' , LO0 t] L2 O0 t] W2;t 1O0 t]: # ' & # " d f () f () ; F 0 1 11 d f = f12 () F (f) ;C () I f () 2 1 q ;1 f1 () 2 L2 O0 t] , f2 () 2 W2t O0 t], ,' f1() f2 () m ; q q , &, 2 dd &' 2 113' ' . 9& F 2 2 2 ' & ' &', 1683' LO0 t] &, W2;t 1 O0 t] W2;t 1O0 t] , & L dd ; F11() - & , L2 O0 t] W2;t 1 O0 t] ( '. '' 1.1). D3 & & F ;1 , , ' 6' L;1 0 \( 0) 0 ; 1 F C1()L;1 Iq = C1()\( 0) Iq 5 & L;1 | 1 L : '7 y() , L2 O0 t] & 2 2 (' L;1 y \( 0)y(0) , \( ) | ( ' 2 ' 4 2 Lx = 0: * 1 8 2 & s() 2, y() 4' " dy1() # ; F ()y () 11 1 s() = F (y) = : (3:5:33) d y2 () ; C1 ()y1 () <5 , 2 (3.5.24), (3.5.25), (3.5.21) (3.5.22), ,'2 s() '6 & 2 () + u1() : s() = FC11()x (3:5:34) 2()x2 () + v() () 1 91,' w() = uv() . < Q11() > 0 R() > 0 , w() | 1 5 4' ' ' 8 () U () 11 1 Rw Q (3:5:35) U1 () R() > 0 2 O0 t]: 0 '' #-F&( MOkx(t)s ()] =
Zt 0
h1 (t )MOs()s ()] d:
(3:5:36)
56
3 " -#$
< s() = F y() MOkx(t)fF y()g ] =
Zt
h1 (t )(MOF y()fF y()g ]) d:
0
, '6' : 6 &, : ' z 2 En &' & 4 '2' ' ' &8 '' 5 6 2 M & F (& M F & ), 5
F MOy()kx (t)]z = F
Zt 0
MOy()fF y()g ]h1 (t )z d:
% & ,2 & F 7 ',
FfMOy()kx (t)]z ;
Zt
MOy()fF y()g ]h1 (t )z d g = 0
0
1 5 2 3 8 55 15 & F ;1 &, z & ' MOy()kx (t)] =
Zt 0
MOy()fF y()g ]h1 (t ) d
, &2 & 6, '': MOkx(t)y ()] =
Zt 0
h1 (t )MOF (y())y ()] d:
<' 1,', (3.5.36) : 8 MOkx(t)y ()] =
Zt 0
h1 (t )F (MOy()y ()]) d:
D& 4
Zt 0
h1(t )F (MOy()y ()]) d
Zt
= Fm (h1 (t ))MOy()y ()] d 0
(3:5:37)
(3:5:38)
5 Fm x = OF x] 2 8x 2 L2 O0 t] W2;t 1 O0 t] F | &26 F &, F = L0 ;CI1q () L | &26 L &, L ; dd ; F11 () . <' 1,', (3.5.37) '6 ,&
Zt 0
Fm (h1(t ))MOy()y ()] d = MOkx(t)y ()]:
(3:5:39)
#2 (3.5.39) , (3.5.32) 7 ',
Zt 0
fkh0(t ) ; Fm (h1(t ))gMOy()y ()] d = 0:
(3:5:40)
57
3.5 ' ',!--$
*6',
kh0(t ) = Fm (h1(t )): 2 :5 6', 4 2 (3.5.36) 3 . * F () A() = C12() :
(3:5:41)
s() = A()kx2 () + w() 2 5 5 2 (3.5.36)
(3:5:42)
2
<5 (3.5.34) &'
MOs()s ()] = A()Kx ( )A () + Rw ()( ; ) 2 2 2 & 6 & ', ' Rw () & 6 & , ' A()Kx ( )A () 2. %, & 6 & 2 2 (3.5.36) 3 5 42. % & ,2 {( , & ' MOkx(t)s ()] =
Zt 0
h1 (t )A()Kx ( )A () d + h1(t )Rw ()
: ; 5 ' 2-5 , 4 5 . '6' 2 (3.5.32) (3.5.36) &, z , En
' 1,2: u1() h1 (t )z Bs u
Zt 0
MOs()s ()]u() d 2 8u() 2 W21 O0 t]
f1 () MOs()kx (t)]z u0() h0 (t )z f() MOy()kx (t)]z
Zt
(3:5:43)
Bv MOy()y ()]v() d 2 8v() 2 W2(;m1 ;q) O0 t] W2(1 q) O0 t]
0 1 5 W2(m;q) O0 t] W2(q) O0 t] | &, m ; q {'5 5 5 & W2(;m1 ;q) O0 t] q {'5 &, 5 & W2(1 q) O0 t]: ;1
2 (3.5.32) (3.5.36), '
7 1,, &'8 :
Bu0 = f
(3:5:44)
Bs u1 = f1 :
(3:5:45) G5 &,, 2 8u 2
: Bs u = FBF u { Bs = FBF 1 W2 O0 t] f1 = F f -( f f1 & 6 W21 O0 t] ( '. , 3.1). 9'', & F 5 2 8u 2 L2 O0 t] & : kF uk;10 c kuk0 5 c | & 6 2 . ' :5, & F ' 5 1 &: ;1 ;1 (F );1 = (L 0) (L ) I C1 () : q W21O0 t]
K , '' 1.1. 0 '' 2 &, (Bs u u)0 u | &, : ' , W21: %, & Bs F 2 8u 2 W21 & & 4: (Bs u u)0 = (FBF u u)0 = hBF u F ui ckuk20 (cc)2 kF uk2;10:
58
3 " -#$
<' 1,', & B & 6 & ' &, & : (m ; q) '' & L2(m;q) O0 t] q {'' { W2(1 q) O0 t] L2(m;q) O0 t] W2(1 q) O0 t]: * ' (3.5.45) ' & Bs 5 & FBF '6' &
6 F ;1: # , 7 ', (3.5.45) : 8: BF u1 = f: (3:5:46) %, 6 (3.5.44), (3.5.46) & 6 & & B '', u0 = F u1 u0 '6 & (' u0 = F (Bs );1 F f: D4 (3.5.41) ,. 2 2 x^2(t) & ' ( & '-!8 . * 22 (3.5.22) , 8 (8 x1 () , & ' (( 2 22 ' x2 () dx2() = F ()y () + F ()x () + u () (3:5:47) 21 1 22 2 2 d 5 y1 () = x1() , 2 -(2. D', 1 8 2 & s() F () u () 12 1 s() = C () x2() + v() : (3:5:48) 2 "' 6 x2(0) ,'2' ' '' ' 6 ' (3.5.29), & 8 & 5' P(0) , (3.5.30). # & ,' 2 & & 1135 ( '-!8 . # , & ' (
d^x2() = F ()^x () + F ()x () + K () dx1() + F ()x (); 22 2 21 1 1 11 1 d d ;F12 ()^x2() + K2 ()Oy2 () ; C1()x1() ; C2()^x2 ()] (3:5:49)
x^2 (0) 2 2 & (3.5.29), ' K() OK1() K2()] ' K() = fP()Q() + OQ21() U2 ()]gR;w 1() (3:5:50) 5 ' Rw () ' (3.5.35). " 41 P() 2 (( ' 8 0 dP() = F P() + P()F + Q (); 22 22 22 d
;OP()A () + OQ21() U2 ()]]R;w 1()OP ()A() + OQ21() U2 ()]]
(3:5:51) 5 P0 ' (3.5.30). # (( ' 2 x^2() & 2 &2 (( 2 1 8 '5 & . Z1 8 (( (3.5.49), ' ,' & (' x^2 () = () + K1 ()x1 () (3:5:52) 5 ' K1() & 2 2 , 62 (3.5.50). * & (3.5.52) (3.5.49) 3 & ' d() = fF () ; K ()F () ; K ()C ()g + fF ()K ()+ 22 1 12 2 2 22 1 d +F21() ; K1 ()F11 ; K1 ()F12()K1 () ; K2 ()C1() ; K2 ()C1(); ;K2 ()C2()K1 () ; dKd1 () gy1() + K2 ()y2 () (3:5:53) &' (0) = x20 + (P21P11;1 ; K1(0))x1 (0) ; P21P11;1x10: (3:5:54) <' 1,', 2 76 2 x^2() 17 ' &'5 8 -(8 () & ,2 42 (3.5.51), (3.5.30), (3.5.53) (3.5.54), ,' &' (' (3.5.52). # , 8 &'', 5' 9'0 -8' '6 1 &' 2 42 , ( 4 & & : ' Q11() & 6 & & ' P11 2.
4 0+)%( ( $#%(
# & 3' , ' ( '-!8 5 1132. * 5' 42 , 7, '7 4, 3 8 5 2, ' 4' ', 1 8 27 8 ' 7 . U : 2 4, , &' ( 2 & 2 42 17 ' & , ' 5 2,. 4.1 . +" ( + " 0 +
+ 1" ' 2
1. * , . * n {' & x() = x(! ) , 2 O0 t] , ! 2 ] 5 2 &' && 2 5 5 & u() '&' 1 7 5 7 4' ( ,'6 6 7) , 8 8 '
L(x) dx() d ; F()x() = G()u() x(0) = x0 :
(4:1:1)
y() = C()x() + w()
(4:1:2)
1 8 2 & ,' m n
5 F () , G() C() | '-( 837 ,' . K ' ' G() C() | 5 (, ' F() | - & . 04 , 4 &' 2
' & 2 1.6, , 4'
0 w() = v()
(4:1:3)
'8 '& , 5 5 & W2;1O0 t] . 0 (4.1.2) &' 2 ' 5 5 & W2;1O0 t] &, v() | 1 ( ,'6 6 ) q {' 4'. # : ' ' & w() & 6 &, 8 W2;1 O0 t] W2; 91,' m(t) = inf f (z x(t) ; x^(t))2 ] j x^(t) = n
h
Zt 0
h(t )y() d g
(4:1:4)
5 z | &, & 2 , En 622 5 1 2 & ' '' h(t ) : '' , &, 5 & W21 O0 t] (& &' ), 5 &' 2 (1.1.11). J &' ( '6 (' 83' 1,'. * , 1 8 2 fy() 0 tg . <1 2 & n {'7
Zt
fx^ (t) = h (t )y() d g >0 0
(4:1:5)
60
4 ,)( !
''-(2' h (t ) , : ' 7 & 817 > 0 & 6 &, ' & W21 O0 t] 8, lim MO(z x(t) ; x^ (t))2n ] = m(t) 8z 2 En: (4:1:6) !0 2 &32 47 ', 4' u() w() '8 '6 1, &' MOx0] = 0 MOx0x0 ] = P0 P0 = P0 0 MOx0w ()] = 0 MOx0u ()] = 0 MOu()u ()] = Q()( ; ) Q() = Q () 0 MOw()w ()] = Rw ()( ; ) 2 O0 t] 0 0 5 Rw () = 0 R() R() | ' 1 5 4' v() MOv()v ()] = = R()( ; ) R() | '' 2, & 2 ' 5 ' : ''. 76 &' ' ''' 41, 6 ' , : 48 2 #-F&( Kx (t )C () =
Zt 0
h(t )C()Kx( )C () d + h(t )
0
0 0 R() :
(4:1:7)
D 42 :5 2 , , 3.5.4. 0 '' , 5 48 2 2, &2 3.5.5. 2. 0 4 , ( . 0 '' MOx(t)y ()] =
Zt 0
h (t )MOy()y ()] d + h (t )
(4:1:8)
5 | & 6 , &' 5 2,. % & ,2 7 & u() v() 5 x0 {( , (4.1.8) '6 ,& 83' 1,': Kx (t )C () =
I
Zt 0
h (t )C()Kx( )C () d + h (t )S ()
(4:1:9)
0 m;q 5 S () = 0 R() + Iq Im;q Iq | ' &2 (m ; q) q . (4.1.9) 2 (4.1.7) 5'' h (t ) & ( ' & 2 1 ; 5 ' 5 , 4 5, , , 2 2 2 & , . J&4' (4.1.9) & ('. 2 :5 '6' (4.1.9) &, ( z 2 En
' 1,2: C()Kx (t )z = f(t ) h (t )z = u (t ) B = A + R
Au =
Zt 0
C()Kx ( )C ()u() d
0
0 u(): Ru = 0 R()
9& A , R B | '' & . #-F&( (4.1.9)
& (' ' Bu + u = f (4:1:10) % ' 42 u ( ) 2 (4.1.10).
61
4.1 .! /( $0
' 4.1 > - + Kx(t )C () C()Kx( )C () R() *-
* !* t > 0 , h (t ) (4.1.9), * , . . h (t )z 2 L2 O0 t] . , ' 5 , ' 3.1. 9'', & B = B +I | & 6 & '' & 817 > 0 . )C () , S ;1 () dR() ' - , ' 4.2 > + Kx(t )C () , @Kx (t@ d 6 * O0 t] h (t ) (4.1.9) (t ) @h * ' , 8z 2 En @ z 2 L2 O0 t] . , 5 , ' 3.2. 4.1 & Bu + u = f (4:1:10) !*+ ' (u) = kBu ; f k20 + hu Bui u 2 HO0 t] (9& & HO0 t] & , '' 3.2, '. . 51). , . K 2 ( '(u) '
B(Bu + u ; f) = 0: 9 8 , ( ' (u) 4 2 Bu + u = = f 5 '''. ;,' & W20;1 O0 t] & '6 1 (' hu Bui , u 2 HO0 t] & ' & H; O0 t]. * ' &'38 ,' 5 & j0 & H0O0 t] 83' 1,': u 2 H;O0 t] , j0 u 2 H0O0 t] . # ' H0O0 t] ' kuk2B = hu Bui , (hu Bui > 0 , 8u 2 H; O0 t] u = 6 0) . *& & H0O0 t] & : ' 1,' HB O0 t] . &'', 5 ' 4' , 8 4, '83 '' 8 ' O33].
' 4.3 fh (t )g >0 3 -@ ! (4.1.9) ! 0
6 ( * !* t ) HB O0 t] * (4.1.7). > 3.3, * !* t
kC h (t)z ; C h0 (t)z k2;10 + kIm h (t)z ; Im h0 (t)z k20 ! 0 ! 0
0 0 h0(t ) (4.1.7), Im = 0 Iq :
, . ; ' (u) '
7 1, '6 ,& ' (u) = kBu ; f k20 + kuk2B: K ( , 5 '' 3.4, 5 ''' : ' u 2 283' 2 4' 2 Bu + u = f: <' 1,', & ' (u ) ' (u0) & 1:
kBu ; f k20 + ku k2B ku0k2B
(4:1:11)
5 > 0 , u0 | 5 4 2 (4.1.7), & (' ' %, (4.1.11) ,
Bu = f:
(4:1:12)
ku kB ku0kB :
(4:1:13)
62
4 ,)( !
<' 1,', '6 4 2 Bu +u = f (1,' 5 , D ) 5
HB O0 t] , { 1 '& O24]. # ' , D 818 1 7 238 2 & & fu g >0 1 & 1,' uk0 : *6', uk0 = u0 Buk0 = fk = f: * '
(4.1.11) & & : lim fkBu ; f k20 + ku k2B g = kBuk0 ; f k20 = kfk ; f k20 = 0 !0 uk0 = u0 fk = f: %, 1 7 ' u u0 ' D.!7 O24,25] & ': lim ku k ku0kB , :5 (4.1.13) , ku ; u0 kB ! 0 & ! 0 , !0 B ' ' 2 7 ' HB O0 t]: %, 7 ' & fu g >0 u0 HB O0 t] 7 ' & 1 (' hu Bui HO0 t] , & 2
'' 3.3, ' ' 4 kC (h (t) ; h0 (t)) z k2;10 + kIm (h (t) ; h0 (t)) z k20 ! 0 & ! 0: <' & 8 ,. ' 4.4 + * fx^ ()g >0 * (4.1.6), 6 ' t x^ (t) =
Z 0
D(h (t ))j y() d
(4:1:14)
h (t ) - (4.1.9), D j - ' ( * , ' W21 O0 t] L2 O0 t] ' W2;1O0 t] L2 O0 t] (.' 1.1). , . % ' , jM(z x(t) ; x^(t))2n ] ; (z x(t) ; x^ (t))2n ]j = jhh0 (t)z Bh0 (t)z i; ;hh (t)z Bh (t)z i + 2h(MOx(t)y ()]) z fh (t) ; h0 (t)g z ij: 9' & 7 5'7 & : jhh0 (t)z Bh0 (t)z i ; hh (t)z Bh (t)z ij = j kh0 (t)z k2B ; kh (t)z kB j (kh0 (t)z kB + kh (t)z kB )kh0 (t)z ; h (t)z kB 2kh0 (t)z kB kh0 (t)z ; h (t)z kB ! 0 & ! 0: (4:1:15) J & , (4.1.13) ' 4.3. 0 '' & 6 h(MOx(t)y ()]) z fh (t) ; h0 (t)g z i = hKxy (t)z fh (t) ; h0 ()g z i = (^h) 5 ^h = fh (t ) ; h0 (t )gz z 2 En . ; (^h) | & 6 ' ( ' t & W2;1 O0 t] . #-(2 (t )z & 6 &, ' & & &' 2 817 z 2 En : 2 K (t )z Kxy (t )z = Buxy. <5 '6 (8 u () 2 HB O0 t] ,'6 8, 8, Kxy (^h) = hBu ^hi = hu B^hi . D& p p jhu Bvij = jh Bu B vij2 = hu Buihv Bvi 8u v 2 HB O0 t]: % & ,2 : 42, 7 ' j(^h)j2 hu Buih^h B(^h)i ch^h B(^h)i ! 0 & ! 0 (4:1:16) & ' 4.3, c | & 6 2 , 1 2 (' hu Bui u 2 HB O0 t] 5. %, 4 (4.1.15) (4.1.16) & ' 4.4. 05 2, #-F&( (4.1.9) 83 , ( . & x() ' 2 ' (4.1.1).
63
4.1 .! /( $0
1 8 2 & fy () 0 tg 2, x() 4' y () = C()x() + v ()
(4:1:17)
5 v () | & & 1 5 5 5 4' ' ' MOv ()v ()] = S ()(
; ) S () =
I
m;q
0
0 R() + Iq
S () | ''2, '. * v () , u() x0 && . <1 2 & & 1 8 2' (4.1.17) x^ (t) & x(t) 2838 ''' ( m(t) = MO(z x(t) ; x^ (t))2n ] (4:1:18)
Rt
5 x^ (t) = h (t )y () d: %5 , &' 2 4 (1.1.11), 0 (4.1.1) (4.1.18), 4, ' 5 5 & . 05 2, 2 , ( (4.1.1), (4.1.17), (4.1.18) 2 6 5 ( 5 > 0 2 2 2 1 , '-!8 . 2 : , & ' (' 3.3), 8 '6 (' 83' 1,'. ' 4.5 5( + * * (4.1.1) " (4.1.17) -* 6 '* H(t )
d'(t ) = ;F ()'(t ) ; C ()H (t ) (4:1:19) d ( '(t )j =t = '(t t) = z z 2 En (4:1:20)
- H(t ) { ' !*+ l(H) = ' (t 0)P0'(t 0) +
Zt 0
H(t )S ()H (t ) d +
Zt 0
' (t )G()Q()G(t)'(t ) d:
(4:1:21)
5* H(t ) ' 6 !*+ ! h (t ) H(t ) = ;z h (t ):
(4:1:22)
, : ' 5 , ' 3.3. <6 & ', 832 2, '6 4' '5 2 0 &' ' & ' H(t ) . + ', ' 4.6 ( !*+ P () &** dP () = F()P() + P ()F () + G()Q()G () ; P()C ()S ;1 ()C()P() P (0) = P : (4:1:23) 0 d H(t ) '( (4.1.19)-(4.1.21) H(t ) = ;' (t )P ()C ()S ;1 ():
(4:1:24)
, ' & 2 , 3.1.2. &6', x^ (t) '6 1 & , 42 (4.1.14), 2 , 5 1 2 , '& &7 ' h (t ) , 283 8 #-F&( (4.1.19), , 42 5 (( 5 2, &3
& .
64
4 ,)( !
' 4.7 , + * x^(t) , (4.1.4), + * fx^ (t)g >0 d^x () = F()^x () + P()C ()S ;1 ()Oy() ; C()^x ()] d x^ (0) = 0 0 t < 1 (4:1:25) *, ( lim fMO(z x(t) ; x^ (t))2n ] ; MO(z x(t) ; x^(t))2n ]g = 0 8z 2 En: !0
, . * 22 (4.1.24) (4.1.22) 7 ', z h (t ) = ' (t )P()C ()S ;1 () . 91,' P ()C ()S ;1 () = K () & ' ' ' (t ) 5 , ' (t ) = z o(t ) , 5 o(t ) | ( ' 2 ' ' (4.1.25), do(t ) = OF(t) ; K (t)C(t)]o(t ) o( ) = I: (4:1:26) dt <5 h (t ) = o(t )K () 6 2 '6 ,& x^ (t) =
Zt 0
h (t )y() d =
Zt 0
o(t )K ()y() d:
((2 ( 113' ' ) : 6 & t , &'22 (4.1.26) ' 4.4, & ': d^x (t) = o(t t)K (t)y(t) + Z do(t ) K ()y() d = F(t)^x (t) + K (t)Oy(t) ; C(t)^x (t)] dt dt t
0
7 ' (4.1.25). 4.2 . 1 ' 2
1"
+ 5' 42 , &' ( ' 4'' ,'27 ,1 1977 5 #.*. 9.U. L' O12,3,25] . 1. * , . D n {' & x() 5 2 &' && 2 5 5 & u() '&' 1 7 5 7 4' ( ,'6, 6 7 ) , 8 8 ' dx() = F ()x() + G()u() x(0) = x 0 t < 1: (4:2:1) 0 d 1 8 2 & fy() 0 tg ,' m n y() = C()x() + w() (4:2:2) 5 F () , G() C() | ' 837 ,' . K ' ' G() C() | 5 (, ' F () | -& . 04 , 4 &' 2 ' & 2 1.6 ( '. . 12), (4.2.1) { ' 5 5 & . Q' w() & & 5 2 ', : ' 5 ' Kw ( ) = MOw()w ()] 2 O0 t] & 6 &, 8 L2 O0 t] L2 O0 t], '& 5 , 2 8 1 { & 5'7 ' O0 t] (. <1 2 & n {'7
Zt
fx^ (t) h (t )y() d g >0 0
(4:2:3)
65
4.2 1 ! /( $0
'' h (t ) : ' 7 & 81' > 0 & 6 &, ' & W21O0 t], 8, lim MO(z x(t) ; x^ (t))2n ] = m(t) 8z 2 En (4:2:4) !0 5 m(t) = inf fMO(z x(t) ; x^(t))2 ] j x^(t) = n
h
Zt 0
h(t )y() d g
(4:2:5)
622 5 1 2 & ' '' h(t ) : '' , W21 O0 t] & &' . Q' u() , w() x0 '8 '6 1, &' MOu()u()] = Q()( ; ) MOw()w()] = Kw ( ) MOx0x0 ] = P0 ' Q() P0 | '' & , : ' ' Q() | 5 (. 2. + 5 ' 4 2 , . * f'i ()g1 i=1 | &, 5 1, L2 O0 t] KN ( ) =
N X
ij =1
'i ()Cij 'j () = MN ()AN MN ()
5 Cij | ', 232 , :(( ; : ' ' Kw ( ) : MN () = O'1()Im '2 ()Im 'N ()Im ] Im | m {'2 2 ', 2 C C C 3 11 12 1N 6 7 C C C 21 22 6 AN = 4 2N 75 : CN 1 CN 2 CNN
0 # ' 1,2: W(t) = B(t) 0 AN V () = OC()Z() MN ()] , Z() | ', 1 2 28 2 , '' 42' ' dx() = F()x() d B(t) = Z (0)P0fZ ;1
;1
(0)g +
Zt 0
Z ;1 ()G()Q()G ()fZ ;1 ()g d:
' 4.8 0 !*+ fx^ (t)g >0 (4.2.3), =
= (N) " * N '+, ( fx^ (t)g >0 *, ( (4.2.4). , * ( N) * -!*+ x^ (t) = x^ (N ) (t) * !! + d^x (t) = F (t)^x (t) + ;1OQ (t)C (t) + Q (t)M (t)]Oy(t) ; V (t)v (t)] x^ (0) = 0: (4:2:6) 1 2 N dt 3 * v (t) * !! + dv (t) = ;1OV (t)P1 (t) + V (t)W (t)] Oy(t) ; V (t)v (t)] (4:2:7) dt v (0) = 0
( dP1(t) = ;;1OV (t)P1 (t) + V (t)W(t)] OV (t)P1(t) + V (t)W(t)] (4:2:8) dt P(0) = 0:
66
4 ,)( !
;+ Q1 (t) Q2(t) " * ( * + Q2 (t) P2 (t) = QQ1(t) 2 (t) Q3 (t) ( !! + dP2(t) = F (t) 0 P (t) + P (t) F (t) 0 + G(t)Q(t)G (t) 0 ; 2 0 0 2 0 0 0 0 dt ;;1P2 (t)OC(t) MN (t)] OC(t) MN (t)]P2(t) (4:2:9) P 0 P2 (0) = 00 AN : <' 1,', 5' & 2 x^ (t) 5 & x(t) & ( 7 N &' 83 . 5 ( { : (( 2 (4.2.6) (4.2.7). , :(( :7 7 ', 42 ' 2 (4.2.8) (4.2.9) & 0. :' , 8 2 & 2. * :5 & &83 1 8 2 y(t) & ' 7 ' (4.2.7) & 2' v (t) . J' : 1 8 2 y(t) & 2' (4.2.6) 7 ' x^ (t) . * 1 1 5' O12], O25, . 105-136].
5 & %2). (3% !%"% %0+)%&
# 17 O16, 25, 3] , 4 ', , &' ( (, & 2 &' ' ''' 41 5 & ) & 5 4' 1 8 27 & . 2 42 ,1 5 2,83 5', & 5 2, ' ( '-!8 . + 5' 5 2, 2 #-F&(, ', ' 2 Bu = f (5:0:1) ' 2 5 2, #-F&( Bu + u = f > 0 (5:0:2) 5 - &' 5 2,. 04 u 2 (5.0.2) 2 ''' ( '(u) = kBu ; f k20 + hu Bui > 0 (5:0:3) & 2 '& 8 &7 8 '-(8 5 &' 5 ( . * fu (t )g >0 4 (5.0.2) & ! 0 7 2 '& &7 ( u0 (t ) , 283 8 (5.0.1) ( '. ' 4.3) , 83 4 , &' ( (' 4.4). # , 6' , 4.1 5' , '& &7 (, , 42 2 (5.0.2) 1 2, & :' 1 7 ' fu (t )g >0 ! u0(t ) & ! 0 2 7 ' 5 2, 7 48 , ( (' 4.4, '. . 62). 5.1 1
# :' , & 2 ' 7 ' & 42 ,
&' ( &1 65 , 2 7 7 7 & & , 5 2,835 5', & 5 , 4.1. * , . * n {' & x() ( 0 t < 1 ) 5 2 ' dx() = F ()x() + G()u() x(0) = x (5:1:1) 0 d 5 u() - 1 5 4' 83' ': MOu()] = 0 MOu()u()] = Q()( ; ) Q() = Q () Q() 0 , 2 O0 t] x0 | 5 , MOx0] = 0 MOx0x0 ] = P0 P0 = P0 P0 0 MOu()x0 ] = 0: 0 (5.1.1) &' 2 ' 5 5 & . 1 8 2 m {' & fy() 0 tg 2, x() 4' y() = C()x() + w() (5:1:2) 5 C() | ' 1 8 , w() | 5 6 1 4', 0 ( ; ) MOw()] = 0 MOw()u()] = 0 MOw()x0 ] = 0 MOw()w()] = 00 R()
68
5 2 / )( 2
5 R() | ' q {'5 1 5 5 5 4', R() > 0 R() = R () ( 0 q m n ). #' '6 7 7 7 ^ = fF () G() Q() P0 C() R()g , & 7 &1 6 ^" = fF"() G"() Q"() P0" C"() R"()g: " Q" () P0" R" () | '' & . "6 ^" , & 4: max fkIi ; Ii"k Ii 2 ^ Ii" 2 ^" g " (5:1:3) i
5 " > 0 | 2 , k k | '2 ' L2 O0 t] . <1 2 & 1 8 2' fy() 0 tg & & fx^" ()g >0 & x() = t , 2838 48 lim lim MO(z x(t) ; x^" (t))2n ] = m(t) (5:1:4) !0 "!0 5
Zt
m(t) = inf fMO(z x(t) ; h(t )y() d)2n ] h (t )z 2 W21 O0 t]g h 0
z | &, : ' , En , h(t ) | '& 2 &7 2 ', 5 & '
6 &' 2 ' (1.1.11). ' 5.1 + * fx^" ()g >0 * 6 (5.1.4), " ' x^" () = F ()^x () + P ()C ()S ;1 ()Oy() ; C ()^x()] x^ (0) = 0 " " " " " " " d P"() ( &** dP"() = P ()F () + F ()P () + G ()Q ()G () ; P ()C ()S ;1 ()C ()P () P (0) = P " " " " " " " " " 0" " " " " d I 0 m ;q S" () = 0 Iq + R"() Im;q , Iq | ( + ' (m ; q) (m ; q) q q , > 0 | '+. , ' 5 , ' 4.4, & :' x^" (t) =
Zt 0
Dh" (t )j y() d
(5:1:5)
, h" (t ) | 4 2 #- F&( Kx" (t )C" () = MOx"()x" ()] ,
Zt 0
h" (t )C"()Kx" ( )C" () d + h" (t )S" ()
(5:1:6)
5 Kx" ( ) = x" () | 4 (( 5 2 (5.1.1) 7 ' ' ^" . (5.1.6) '6 ,& (' B" u" + u" = f" (5:1:7)
69
5.1 2 /
5
(t )z z 2 En u" (t ) = h" (t )z f" (t ) = C"()Kx" Zt B" u = C"()Kx" ( )C" ()u() d + 00 R"0() u():
(5:1:8)
0
04 2 (5.1.7) '', (
'" (u) = kB" u ; f" k20 + hu B"ui: %' ' ' 5.2 D+ * ( '( !+ ' 2 "2 + "2 ku k2 MO(z x(t) ; x^" (t))2n ] MO(z x(t) ; x^ (t))2n ] + 2 f B " ;10 ! m(t) ! 0 " ! 0 " ! 0 (5:1:9) C k) + (" + kC"k)O"xkC" k + ("x + kKx" k)"] "f = "kKx" k + (" + kC"k)"x "B = "(1 + kKx" " "x = " jP0"jk\"k + (" k\" k)f"k\"k + (" + jP0"j)" g + " kG"Q"G" kk\" k+ h i + "kQ"G" kk\" k + (" + kG" k "kG" kk\"k + (" + kQ"k)("k\" k + (" + kG"k)" ) (" + k\"k) "2 = 2"2ect k\" k c > 0 c = const \"( ) | ! + (5.1.1) 6 ^" . > 3.2, c0kuk2;10 hu Bui c1 kuk2;10 c0 c1 | * + * : p p MO(z x(t) ; x^" (t))2n ] f m(t) + c0kKx kkC kkz kn+
r q 2
2
+ ("2f + "2B kPx^" kkz k2n g2 ! 0 ! 0 " ! 0 " ! 0
p
(5:1:10)
p
MO(z x(t) ; x^" (t))2n ] f m(t) + c0("x + kKx" k)(" + kC"k)kz kn+ r q 2 + 2 ("2f + "2B kPx^" kkz k2n g2 ! 0 ! 0 " ! 0 " ! 0 (5:1:11) Px^" (t) = MO^x" (t)^x" (t)] . , . # 6 (t) = MO(z x(t) ; x^" (t))2n ] &1 ' ' x^ (t) & ,' 25 &, 2, 5 , & ,2 4-!2 5, & ' (t) MO(z x(t) ; x^ (t))2n ] + MO(z x^ (t) ; x^" (t))2n ]+ +2fMO(z x(t) ; x^ (t))2n ]MO(z x^ (t) ; x^" (t))2n ]g1=2 (5:1:12) , x^ (t) | 4 , &' ( & 7 7 7 7, x^ (t) = h (t ) { 2 8 Kx (t )C () =
Zt 0
Zt 0
Dh (t )j y() d
h (t )C()Kx( )C () d + h (t )S ()
(5:1:13)
(5:1:14)
70
5 2 / )( 2
Kx ( ) = MOx()x()] , x() | 4 (5.1.1). 2 7 7 (5.1.14) ' : Bu + u = f: (5:1:15) 9' 6 MO(z x^ (t) ; x^" (t))2n ] . 2 & 2 (5.1.5) (5.1.13) 2 x^" (t) , x^ (t) 1,2 (5.1.8), 7 ', MO(z x^ (t) ; x^" (t))2n ] = hu ; u" B(u ; u" )i: #' , (5.1.7) (5.1.15). <5 B^u + ^u = f" ; f + (B ; B" )u" ^u = u" ; u 4 :5 2 2 ''' ( L(u) = kBu ; ff" ; f + (B ; B" )u" gk20 + hu Bui u 2 W20;1 O0 t]: D& L(^u ) L(0) , 5 , h^u B^u i kf" ; f + (B ; B" )u" k20 2(kf" ; f k20 + kB ; B" k2 ku" k2;10) (5:1:16) 5 ku" k;10 | ' W20;1 O0 t], k k | &2 ': kBk = supfhu Buij u 2 W20;1 O0 t] kuk;10 = 1g: u
9' ' kf" ; f k0 kB ; B" k . < (t ) ; C()OKx"(t ) ; Kx (t )] gz f" (t ) ; f(t ) = fOC"() ; C()]Kx" kC"() ; C()k < " kf" ; f k0 "kKx" k + (" + kC"k)kKx" ; Kx kkz kn
0 Zt 11=2 5 k k = @ j j2 d A j j2 { '' : ' '.
(5:1:17)
0
* (' 4 , (5.1.1) '':
Rt 0 t R x"(t) = \" (t 0)x0" + \"(t )G"()u" () d x(t) = \(t 0)x0 + \(t )G()u() d
(5:1:18)
0
&'
d\(t ) = F (t)\(t ) \( ) = I dt (5:1:19) d\" (t ) = F"(t)\" (t ) \"( ) = I dt I | 2 '. % & ,2 (5.1.18), (5.1.19), 7 ' 6 2 , 7 ' 7 & x() x" () : Kx" ( ) ; Kx ( ) = \" ( 0)P0"\" ( 0) ; \( 0)P0 \( 0)+ +
Z
min() 0
\" ( s)G" (s)Q" (s)G" (s)\" ( s) ds ;
Z
min() 0
\( s)G(s)Q(s)G (s)\ ( s) ds:
*'22 4-!2 5 4 & ' 68, & 67 &1, & ' kKx" ; Kx k j\"(t 0) ; \(t 0)j jP0"j j\"(t 0)j + j\"(t 0)jf"j\"(t 0)j + jP0j j\"(t 0) ; \(t 0)jg+
5.1 2 /
71
+k\" ; \kkG"Q"G" kk\"k + k\" k "kQ" G" kk\"k + kGkO"kG"kk\"k + kGkk\" ; \k] : (5:1:20) ' ' , k\"(t ) ; \(t )k: # ' 1,2 o(t ) = \" ( ) ; \( ): D& do( ) = F()o( ) + fF"() ; F ()g\"( ) (5:1:21) d o( ) = 0 o( ) = 0 & < : '6' (5.1.21) &, z 2 En 1,' v( ) = o( )z , g( ) = \" ( )z 5 (5.1.21) &' dv( ) = F()v( ) + fF () ; F()gg( ) " d v( ) = 0 v( ) = 0 & < : D& dv kF vk;1t + k(F" ; F )gk;1t: d ;1t
#, ' 1 : , & ,2 , j2abj a2 + b2 & '
dv 2 2(kFvk2;1t + k(F" ; F)gk2;1t) d ;1t
d: Dt & L2O0 t] W2;t 1 O0 t], &' kDt vk;1t = kvk0 2 817 5 & d v 2 L2 O0 t] O25]. < & & 8 : ' ' \" ( ) \( ) v( ) & 6 & 1' 5'' L2 O0 t] , kvk20 2(kFvk2;1t + k(F" ; F)gk2;1t) (5:1:22) ' kFvk2;1t '6 83' 1,'
kFvk2
;1t
1
Zt Zt 0 0
jv( s)j2 dsd
Zt
1 = tlim jF(s)j2 ds: !1 0
(5:1:23)
(5.1.23) , & 2 ' 5 ' &
Zt
kFvk;1t = sup fj y (s)F(s)v(s ) dsj y 2 W21tO0 t] kyk1t = 1g y 0
4
Zt
Zt
0
0
Zt
j y (s)F(s)v(s ) dsj = j y (s) dsd F ()v( ) ddsj = 0
0Zt Zs 11=2 @ j F()v( ) d j2 dsA
dy = j; F()v( ) ddsj ds ds 0 0 0 0 0 0Zt Zs 0Zt 2Zs 3 11=2 11=2 Zs p kyk1t @ 4 jF ()j2d jv( )j2 d 5 dsA c1kyk1t @ jv( )j2 ddsA : Zt dy (s) Zs
0
0
0
<5 (5.1.22), ' (5.1.23), ,&4 2
kvk20 21
Z t Zs 0 0
0 0
jv( )j2 dds + 2k(F" ; F)gk2;1t:
(5:1:24)
72
5 2 / )( 2
2 (5.1.24) & '' /
: %(t) (t) (, 2 7 & 2 2
Zt
%(t) c %(s) ds + (t) c = const c > 0 0
' ' %(t) ect(t) . <' 1,', & 42
kvk20 22ctk(F" ; F)gk2;1t 2"2kgk2;1t2ct
2 817 z 2 En ,,
Zt
kF" ; F k2 2"2 2ctk\" k2 = "2 ! 0 & " ! 0
5 c = 4(" + tlim jF"()j2 d)): %, :5 kQk "+ +kQ" k kGk " + kG"k !1 0 , kKx" ; Kx k " jP0"j k\"k + (" + k\" k)f"k\"k + (" + jP0"j)" g+ h +(" + k\" k) "kQ" G" kk\"k + (" + kG"k) "kG"kk\" k+
i
+(" + kQ" k)O"k\"k + (" + kG"k)" ] = "x ! 0 & " ! 0 ' (5.1.25) (5.1.17) '6 ,&
(5:1:25)
kf" ; f k "kKx" k + (" + kC" k)"x = "f ! 0 & " ! 0: 9' ' kB" ; Bk . 91,': ^Su = OS" () ; S()]u() ,
(5:1:26)
0 S" () = 00 R 0() S() = 00 R() "
Zt
( )C () ; C()K ( )C ()]u() d ^Bu = OC"()Kx" " x 0
& ' ' k^S k k^Bk: * & 8 & ' 0j u 2 L O0 t] kuk 6= 0 : (5:1:27) k^S k = sup j(uk^Su) 2 0 uk20 u *'22 4-!2 5 8 (5.1.27) 2 (5.1.3), & '
j(u ^Su)0j k^S kkuk20 "kuk20 8u 2 L2 O0 t] + 5
k^S k = kS" ; S k ":
(5:1:28)
j(u Bu)0j kC"Kx" C" ; CKx C kkuk20 = k(C" ; C)Kx" C" +C(Kx" ; Kx ) C ; "+CKx" (C" ; C) kuk20 f"kKx" C" k + (" + kC"k)O"kC"k + (" + kKx" k)"]gkuk20 8u 2 L2 O0 t] 8
k^B k "kKx" C" k + (" + kC" k)O" + kKx" k)"]:
(5:1:29)
73
5.1 2 /
* (5.1.29) & , (5.1.3), (5.1.25) 42 kC k "+kC" k , kKx k "+kKx" k . %, (5.1.28) (5.1.29) , kB" ; Bk "(1 + kKx" C" k) + (" + kC"k)O"xkC" k + ("x + kKx" k)"] = "B ! 0 & " ! 0: (5:1:30) * ' (5.1.30) (5.1.26) (5.1.16). <5 hu ; u" B(u ; u" )i 2("2f + "2B ku" k2;10)
MO(z x^ () ; x^" ())2n ] = hu ; u" B(u ; u" )i 2 ("2f + "2B ku" k2;10) ! 0 & " ! 0: (5:1:31) %, (5.1.31) (5.1.12) (5.1.9). ' & 5' & (5.1.12). 1 ' ' 6 MO(z x(t) ; x^ (t))2n ] x^(t) , 2838 48
Zt 2 (t )z 2 W 1O0 t] 8z 2 En : m(t) = inf MO(z x(t) ; x ^ (t)) j x ^ (t) = h(t )y() d h n 2 h 0
<5 , & 67 &1, , '' MO(z x(t) ; x^ (t))2n ] m(t) + MO(z x^(t) ; x^ (t))2n ] + 2fm(t)MO(z x^(t) ; x^ (t))2n ]g1=2:
Rt
(5:1:32)
' 62 MO(z x^(t) ; x^ (t))2n ]: < x^(t) = h(t )y() d
Rt x^ (t) = h (t )y() d (5 &'8 2 6, (1.1.11)), 0
MO(z x^(t) ; x^
(t))2 ] = n
Zt Zt 0 0
0
z Oh(t ) ; h (t )]Ky ( )Oh(t ) ; h (t )] z dd =
= hu0 ; u B(u0 ; u )i (5:1:33) 5 u0 | 4 (5.0.1), u | 4 (5.1.15), Ky ( ) = MOy()y ()]: 2 1 (' (5.1.33) ' (5.0.1) , (5.0.2). # , & ' B(u0 ; u ) + (u0 ; u ) = u0 (5:1:34) 5 u0() & 6, 6 ' , W20;1 O0 t] (5.1.34) &' 2 ' 5 5 & . *'' & B 68 (5.1.34) 1,' , v , & B : ' u0 ; u v = B(u0 ; u ): <5 '', Bv + v = f: 04 :5 2 2 ''' ( J(v) = kBv ; f k20 + (v Bv)0 & J(v ) J(0) kBv ; f k20 + (v Bv )0 2kf k20
(5:1:35) (v Bv )0 kf k20 : * & 28 2 2 '' 3.2. <5 2 8v 2 L2 O0 t] & (v Bv)0 c0 kvk20 4 (5.1.35) &' : pc0kv k0 pkf k0 : 2 , v = B(u0 ; u )
74
5 2 / )( 2
p & ' 6: pc0 kB(u0 ; u )k0 kf k0 : < B | 5, & 6 & & ( '. '' 3.1 3.2), hu0 ; u B(u0 ; u )i c1 kf k20 c0kKx k2kC k2kz k2n c0 > 0 c0 = const: 0 J' u0 u B 7 ,2', & ': MO(z x^(t) ; x^ (t))2n ] c0 kKxk2 kC k2kz k2n: (5:1:36) * ' (5.1.36) (5.1.32), '' MO(z x(t) ; x^ (t))2n ] m(t) + c0kKx k2 kC k2kz k2n + p p
p
p p
(5:1:37) +2f c0 m(t)kKxkkC kkz kng = f m(t) + c0 kKx kkC kkz kng2: <& '6 4 (5.1.12). J'22 (5.1.12) 62 MO(z x(t) ; x^ (t))2n ] MO(z x^ (t) ; x^" (t))2n ] ' (5.1.31) (5.1.37), 7 ' p pp MO(z x(t) ; x^" (t))2n ] O m(t) + c0kKx kkC kkz kn]2 + 2 ("2f + "2B ku" k2;10)+ r q p p0 p +2O m(t) + c kKxkkC kkz kn] 2 ("2f + "2B ku" k2;10 = r q p p0 p = f m(t) + c kKx kkC kkz kn + 2 ("2f + "2B ku" k2;10 g2: (5:1:38) # & (5.1.38) & 8 : kKx k | ' ' 5 x(t) , kC k | ' ' 1 8 2, '5 1 & , ' &1 6' ' ^" &:' 7 17 ' 8. G5 &,, & kKx k ("B + 1)kKx" k (5:1:39) k k (" + 1)k" k: (5:1:40) ' 5, & B | & 6 & , ku" k210 ckPx^" kkz k2n (5:1:41) 5 Px^" = MO^x" (t)^x" (t)] z Px^" z = hu" B"u" i cku" k2;10: * (5.1.39),(5.1.40) (5.1.41) & 8 (5.1.38), & ' (5.1.11). (5.1.10) , (5.1.38) (5.1.31). <' & 8 ,. 5.2 + +"
* 4 , &' ( 1 , - 1 & , 2 7 7 7 7 , 8 2 51. # :7 27, &' 5 2, 1 5 8 2, 1135 && 2, O33,20,21], 4 , &' ( 1 , 2 5 42 O33]. # 17 O33,22] 2 1 &' 5 2, & 58 2 & 1, , 2 2 ' 41 , 2 7 7 7 { ,&' 42. # 13' : , (& 1 4' &' ), 5 , 2 & 2 51 7 ' , & O22]. ' :7 ' 2 2 2 , 18 1 , 1 , &' ' &' 5 2, { O33,22] &:' 7 &'2 5' & 1' 1 &' 5 2,, ', 2, O20], ''' '67 O33]. # :' &5( & 42 2 1 ,&' 5 ,2 &' 5 2, & 4 , &' ( .
75
5.2 )( 2
, & ' O33,22]. 3 *( *' '( '+ k " ' '( > 0 , '6 * !*+ @u (t ) J() = @ : ;10 (t ) 7 2, 1, , 4: # @u @ Bu + u = f
@u (t ) @u (t ) + = f ; Bu : B
@ @ (5.2.2) & 83' 1,': ((2 & (5.2.1) ''
(5:2:1) (5:2:2)
(t ) @u (t ) B @u @ + @ + u = 0
, '6' & 4 ,'' ' u 6' , (5.2.1). 2 (5.2.1) (5.2.2), & B | '' { '8 42. 2 , &' ( 5 2 (5.2.1) (5.2.2) '6 (( ', &, 2 & & . ' 5.3 3 *( '( '+ k " ' '( > 0 , '6 * !*+ @h (t ) J() = @ z ;10 ' z | ' - ' En , ( @h @(t ) = v (t ) 6 '
@v (t ) = OF(t) ; K(t)C(t)]v (t ) ; v (t t)C(t)h (t ) (5:2:3) @t
v (t t) =
Zt 0
;1 (t) h (t )h (t )dC (t)S ;1 (t) + P (t)C (t) @S@
(5:2:4)
6 + h (t ) ( !! + @h (t ) = OF(t) ; K(t)C(t)]h (t ) (5:2:5) @t h (t t) = P (t)C (t)S ;1 (t) = K(t) (5:2:6) + P (t) | &** dP (t) = P (t)F (t) + F(t)P (t) + G(t)Q(t)G (t) ; P (t)C (t)S ;1 (t)C(t)P(t) (5:2:7) dt P (0) = P0: , . * (( & t #-F&( Kx (t )C () =
Zt 0
h (t )C()Kx ( )C () d + h (t )S ()
(5:2:8)
76
5 2 / )( 2
& '
@Kx (t ) C () = h (t t)C(t)K (t )C ()+ Z @h (t ) C()K ( )C () d + @h (t ) S (): (5:2:9) x x @t @t @t t
0
<
@Kx (t ) = @ MOx(t)x ()] = MO dx(t) x ()] @t @t dt &, 2 & ' 6 &' 2 113' ' (.. ' 5 5 & ), , & 22 : 6 ' dx(t) dt 5 , , (5.1.1) 2 & x() u(t) & t > 7 ', @Kx (t ) = F(t)K (t ): x @t <5 6 (5.2.9) '6 ,& 83' 1,'
Zt @h (t ) 0
@t
; OF(t) ; h (t t)C(t)]h (t ) C()Kx ( )C () d+
+ @h @t(t ) ; OF(t) ; h (t t)C(t)]h (t ) S ;1 () = 0: K & 2 2 & , @h (t ) = OF(t) ; h (t t)C(t)]h (t ) @t &' h (t t) = P (t)C (t)S ;1 (t) 5 P (t) 4 2 0 (5.2.7) ( '. ' 4.7 ' 4.5). D42 (5.2.5) (5.2.7) ,. ((' & (5.2.8), & ' Zt @h (t ) 0
() d + @h (t ) S () + h (t ) = 0: C()K ( )C x @ @
(5:2:10)
9& ' (( 2 2 (t ) . 2 :5 & ((' (5.2.10) & t: <5 v (t ) = @h @ v (t t)C(t)Kx (t )C () +
Zt @v (t ) 0
@t
(t ) S () + @h (t ) = 0: (5:2:11) C()Kx ( )C () d + @v @t @t
J'' & ' 5'' 6 Kx (t )C () 5 (5.2.8). 2 42 (5.2.5) (5.2.10), & 7 &1, & ' 5
Zt h @v (t ) 0
@t
h
i
+ v (t t)C(t)h (t ) ; fF(t) ; K(t)C(t)gv (t ) C()Kx ( )C () d+
i
(t ) + v (t t)C(t)h (t ) ; fF(t) ; K(t)C(t)gv (t ) S () = 0 + @v @t ' 4 4, ' S () > 0 , ' C()Kx ( )C () | 2 5 5 &. <' 1,', @v (t ) = OF(t) ; K(t)C(t)]v (t ) ; v (t t)C(t)h (t ): @t
77
5.2 )( 2
D4 (5.2.3) ,, ' , v (t t) . 2 & 2 v (t t) ((' & 6 (5.2.6) @h (t t) = v (t t) = @P (t) C (t)S ;1 (t) + P (t)C (t) @S ;1 (t) : (5:2:12) @ @ @ " P (t) 2832 8 0 (5.2.7), '6 1 & ' 41 2 , &' ( , : 22 x() (' 2 ' (5.1.1), 1 8 2 & y () , 2, x() 4' p (5:2:13) y() = C()x() + w() + () 5 () | m {' 1 5 4' ' ', MO() ()] = Im ( ;) & ' u() w() x0: 941 2 , (5.1.1), (5.2.13) & 2 2 6' x" (t) = x(t) ; x^ y (t) 5 x^ y (t) = ' 41 2
Zt 0
(5:2:14)
Dh (t )j y () d
(5:2:15)
P (t) = MO(x(t) ; x^ y (t))(x(t) ; x^ y (t)) ]: ((' P (t) & :
@P (t) = M ; @^x y (t) (x(t) ; x^ (t)) + M (x(t) ; x^ (t)) ; @^x y (t) : y y @ @ @ y (t) . %, (5.2.15) # ' &, 8 @^x@ @^x y (t) = Z Dv (t )j y () d + (2p);1 Z Dh (t )j () d: @ t
t
0
0
(5:2:16)
(5:2:17)
0 '' & 5' & (5.2.16). * 22 5 (5.2.17), ''
@^x (t) Zt y M ; (x(t) ; x^ y (t)) = Dv (t )j MOy ()x (t)] d+ @
0
Zt Zt p ; 1 +(2 ) Dh (t )j MO()^x y ()] d ; Dv (t )j MOy ()^x y (t)] d ; 0
Zt
0
;(2p);1 Dh (t )j MO()^x y(t)] d: 0
(5:2:18)
< & () x() , 5' (5.2.18) 13 2
0. , 5 (5.2.13), MOy ()x (t)] = C()Kx ( t) MOy ()^x y (t)] =
Zt 0
MOy ()y ()]h (t ) d = S ()h (t )+
78
5 2 / )( 2
Zt
+ C()Kx ( )C ()h (t ) d = C()Kx (t ): 0
* , (5.2.8). * ' : 62 (5.2.18). <5 M
@^x y(t) @
(x(t) ; x^ y (t))
p Z = (2 );1 Dh (t )j MO()^x y (t)] d: t
0
% & ,2 (5.2.15) (5.2.13), 7 ',
Zt
Zt
0
0
MO()^x y(t)]= MO()x ()]C ()h (t ) d + MO()w()]h (t ) d+
p Z p + MO() ()]h (t ) d = h (t ) t
0
, 2 & () , x() , w() , 6 ( {( . <' 1,', 1 Zt @^x (t) y M @ (x(t) ; x^ y (t)) = 2 h (t )h (t ) d: 0
* 22 : 6 (5.2.16), & '
@P (t) = 1 Z h (t )h (t ) d @ 2 t
0
'' v (t t) = <' ,.
Zt 0
;1 (t) : h (t )h (t ) d C (t)S ;1 (t) + P (t)C (t) @S@
6 5 !"# $#%& "* %!%(" !%"%"
0, & 23 & ' 42 , ( & 8 5' & 2 &1 65 42 2 ', & '7 2' &1 5 & & 5 4' ,'27. # ' 5 '7 & ' &'' ,' 0. ' O14], +.! O37] .. 1 4 1 5' & 2 & (', ,2 5 K#" 2 2 2 6 &1 '. ' 5, 1 8 27 & 4', , ( 2 2 2 & 2 42 17 ' &'2 5 2,8. 9 , & 7 1, & 237 & 76 2 &1 6 22 ' & 2 :
& ' &', 2 2 2 O25], , 7 ' 5' 42 1 7 7 4' 1 8 27. *1 ' 42 , ( 2 ', & '7 2' 7 &, 7
27 & , & 23 1 O3,16,17]. 6.1 ( %1 2
# ' , 2 , 42 (( 7 &1 5 & 5' 2' ' , 5 & 2 & 6 & 1137 (. * 7 48 7 , ,1 17 O3,25,16]. * ' & En , ,'2 52 1 P 5 @P = ;
6 3 2 ' nk0 C 2 (P) | '6 6 (('7 ' ' ( u(x) P C12(P) | '6 ( u(x) 2 C 2(P ) 2 7 & 2 2 du(x) = 0 (6:1:1) d x2;
2 % !231=2 n n n P P P 5 | ' (&2'8 & 283' ' i = a1 aij nj 5 a = 4 aij nk 5 j =1 i=1 j =1 nj | ' &7 238 , 6 8 5 ; , 8 ' 8). D& 4 O31] n X
n X d cos(kn0 xj )aij (x) @x@ = a cos( xi) @x@ a d j i i=1 ij =1
d d | &, 2 & ' ,
2 0 1231=2 n n X X a = 64 @ aij (x) cos(kn0 xj )A 75 : i=1 j =1
80
6 4
# ' 1,2: L2 (P ) | 5 1 & 5'7 ' ( ' G15 P (: :)0P k : k0P | 2 &, ' L2 (P ) W21(P) | &, 1 & Z X n @u @v + u(x)v(x) dP (u v)1P = @x @x P
i=1
p
i
i
2 &, W21(P) kuk1P = (u u)1P | ' W21 (P ): D& kuk0P kkuk1P 8u 2 W21 (P ) k = const: 0 '' P (( 6 5 &2 n @ X @u(x) Nu = ; @x (aij (x) @x ) + c(x)u(x) ij =1
(6:1:2)
5 aij (x) = aji(x) 2 C 2(P) i j = 1 ::: n c(x) 2 C(P) C(P) | & & 7 ( P c(x) c0 2 8x 2 P c0 = inf fc(x) j x 2 P g > 0: x * & 5', & 6 n X
ij =1
aij (x)i j
n X i=1
i2
(6:1:3)
5 | & 6 2 , i | &, 3 ( i = 1 ::: n). D42 (6.1.1)-(6.1.3) , 8 & L2 (P) ,' & B , Bu = Nu 2 8u 2 C12(P): 9& B ' & 8 L2 (P ) 1 & 2 D(B) 2 2 2 '' ' & 6 -& ', .. & 42 (Bu v)0P = (u Bv)0P 2 8u v 2 D(B) (Bu u)0P c k u k20P 2 8u 2 D(B) c = const > 0:
(6:1:4)
# ' 1, (u v)B = (Bu v)0P 2 8u v 2 D(B) . *& ' D(B) & :' 2' &, 8. * & 1,' , HB . *'' : & , &, HB = HB+ & ' & HB+ L2 (P) 5 & HB; . * f(x) 2 L2 (P ) . <5 6 (f u)0P u 2 HB+ & 2 & ( HB+ (& , (6.1.4)) j(f u)0P j = jlf (u)j kf k0P kuk0P ckf k0P kuk+ f 2 L2 (P) u 2 HB+ (HB+ L2 (P)) k : k+ | ' HB+ . *& ' L2 (P) & '
j(f u)0P j + f 2 L kf k; = sup 2 (P ) u 2 HB kuk+ 6= 0 : kuk+ u * && , & HB; . 9& B & , HB+ HB; . * O0 t] | , &'2 2 O0 t]: 9& ' 1 Q = P O0 t] L2 (Q) | & ( u( x) Q 16837 5' O0 t] & En 7,
Zt 0
k : k0Q | ' L2 (Q) .
ku()k20P d = k u k20Q < 1
0 '' & L2 (Q) (( & @u + Bu u 2 D(L ) Lu @ 1
81
6.1 % " /
5 D(L1 ) | '6 ( u( x) , 7 1 Q & (('7 & 2 O0 t] & &' x 2 P ( u( x) 2 HB+ 2837 2' x) = 0: (6:1:5) u( x)j =0 = 0 du( d x2; # ' 1,2: W201 (Q) | && '6 D(L1 ) & ' Z @u (6:1:6) kuk10Q = ( O( @ )2 + uBu]dQ)1=2 Q
k : k10Q (: :)10Q | ' 2 &, &, ' & W201 (Q) W20;1(Q) |
5 & , & && ' L2 (Q) & ' j(u v)0Qj 1 kvk;10Q = sup kuk10Q v 2 L2 (Q) u 2 W20(Q) kuk10Q 6= 0 : u 91,' , D(L1 ) '6 ( u( x) '837 72 1 &, 8 ' ' & & &' x ( u( x) 2 HB+ 2837 2' x) = 0: (6:1:7) u( x)j =t = 0 du( d x2; W21t(Q) | && '6 D(L1 ) & ' (6.1.6). * W2;t 1 (Q) 5 & 2 W21t(Q) L1 | &26 & L1 L1 u ; @u @ + Bu u 2 D(L1 ): 0 4' & L1 L1 & W201 (Q) W21t(Q) . 0 4 & 1 ' 1, L L : 6.1 D" " '( Lu = f f 2 L2 (Q) (6:1:8)
f | ' !*+, ' !*+ u( x) 2 W201 (Q) * !*+ fui ( x)g1 i=1 ' D(L1 ) kLui ; f k;1tQ ! 0 kui ; uk10Q ! 0 i ! 1: 6.2 D" " '( Lv = g g 2 L2 (Q) (6:1:9) g | ' !*+, ' !*+ v( x) 2 W21t (Q) * fvi ( x)g1 i=1 !*+ ' D(L1 ) kL v ; gk;10Q ! 0 kvi ; vk10Q ! 0 i ! 1: 6.1 , (6.1.8) (6.1.9) kLuk;1tQ c1kuk10Q u 2 W201 (Q) c = const c > 0 (6:1:10) (6:1:11) kLvk;10Q c2 kvk1tQ v 2 W21t(Q) c = const c > 0: , . * u( x) | 5 2 (2 , &, 5 & W201 (Q) v( x) 2 W21t(Q) . <5 & (v Lu)0Q = (Lv u)0Q . <6 ' ' 4
p
j(u Bv)0P j (u Bu)0P (v Bv)0P :
82
6 4
0 '' 6
Z @u( x) j(v Lu)0Qj = @ v( x) + OBu( x)]v( x) dQ = Q
Z @v( x) = ; u( x) @ + u( x)Bv( x) dQ ckuk10Qkvk1tQ Q
5 c = const c > 0 & , kuk0Q c kuk10Q 2 817 ( u 2 W201 (Q): * & 8 ' 5 ' & j(v Lu) j 0Q kvk kLuk;1tQ = sup 1tQ 6= 0 c1kuk0Q ckuk10Q kvk1tQ v u 2 W201 (Q) v 2 W21t(Q): 2 &, ( u( x) 2 W201 (Q) & ' & ' &7 '. , (6.1.11) 5. 6.2 , '( (6.1.8) (6.1.9) c1 kuk0Q kLuk;1tQ c1 = const > 0
(6:1:12)
(6:1:13)
c2kvk0Q kL vk;10Q c2 = const > 0: (6:1:14) , . # ' & Jt L2 (Q) (27 v( x) 2 W201 (Q) & 2 2 6'
Z
Jt v( x) b;1 (s)v(s x) ds = u( x): t
@u = 0 .. u 2 W21t(Q) . <' 1,', & Jt ;2 u( x) = Jt v & = t 0 @ x2; & W201 (Q) W21t (Q) b() = ;(1 + ) . 0 '' 6 Z @v Z @ Z @u @u ) dQ: (Jt v Lv)0Q = (u Lv)0Q = u( @ + Bv) dQ = u @ Ob() @ ] dQ + uB(b() @ (6:1:15) Q
Q
Q
J , v( x) = b() @u @ . 9' 5 & . * 5 '6 ,&
Z @ Z @ @u ] dQ ; Z b() @u 2 dQ: ] dQ = Oub() u @ Ob() @u @ @ @ @ Q
Q
Q
D5 (' 9 5 5 Z @ @u( x) ] dQ = Z u( x)b() @u( x) cos(kn ) dS = 0 Ou( x)b() 0 @ @ @ Q
S
5 S = @Q | 5 1 Q . 0 8 , 5, cos(kn0 ) 2 4 & 7 P P + T 5 | ' f x1 = 0 x2 = 0 ::: xn = 0g . , v(0 x) 2 P u( x) 2 P + T v(0 x) = 0 u( x) = 0 . <' 1,', Z @ Ob() @u ] dQ = ; Z b() @u 2dQ: u( x) @ (6:1:16) @ @ Q
Q
83
6.1 % " /
*1,' 5 & (6.1.15). <
Z Z Z @ @u db() Bu( x) dQ Ou( x)b() B u( x)] dQ = 2 u( x)b() B dQ + u( x) @ @ d Q
Q
Z Q
Q
Z @ Z @u 1 1 u( x)BOb() @ ] dQ = 2 @ Ou( x)b()Bu( x)] dQ ; 2 u( x) db() d Bu( x) dQ: Q
Q
% & ,2 (' 9 5 5, & ' Z @ Z Z Ou( x)b() B u( x)] dQ = u( x)b() B u( x) cos(k n ) dS = ; b(0) u(0 x)Bu(0 x) dP 0 @ Q
S
P
(6:1:17)
(6:1:18)
( u(t x) = 0 cos(kn0 ) 6= 0 4 '6 7 P P + T ). * (6.1.16)-(6.1.18) (6.1.15), & '
Z 1 b(0) Z u(0 x)Bu(0 x) dP ; db() u( x)Bu( x) dQ: dQ ; (Jt v Lv)0Q = b() @u @ 2 d P
Q
% & ,2 2 & Jt 7 ' Z h @u 2 Z @u 2 Z i Z @u 2 1 1 1 (Jt v Lv)0Q = 2 @ + uBu dQ + @ dQ + 2 @ dQ + 2 u(0 x)Bu(0 x) dP Q
Q
6
Z Q
Q
P
2 1 Z u(0 x)Bu(0 x) dP 0 ( + 12 ) @u dQ + @ 2 P
& (Jt v Lv)0Q 21 kuk21tQ . *' 1135 4-!2 5 , 1 kuk2 (J v Lv) = (u Lu) kuk kLvk t 0Q 0Q 1tQ ;1tQ 2 1tQ kLvk;1tQ 12 kuk1tQ: # & ,2 2 & Jt & '
kuk21tQ =
Z
Z h @u 2
Q
@
i
+ uBu dQ =
Z
Z h @ Z
Q
i2
@ f;(1 + s)gv(s x) dQ+ t
+ u( x)Bu( x) dQ O;(1 + )v( x)]2 dQ kvk20Q : Q
Q
(6:1:19)
8 kLvk;1tQ c1kvk0Q . 2 &, 7 v 2 L2 (Q) & ' & ' &7 '. (6.1.14) '6 , 5.
' 6.1 > + * (6.1.13) (6.1.14), "6 !*+ f 2 L2(Q) g 2 L2(Q) " " '( (6.1.8) (6.1.9) 6 W201 (Q) W21t (Q) .
84
6 4
, . 0 '' (
lf (v) = (v f)0Q : % & ,2 , '' 6.2, 7 '
jlf (v)j = j(v f)0Q j kvk0Qkf k0Q ckLvk;10Q .. lf (v) | & ( Lv v 2 D(L1 ) . ;1
0 4' & ' F-!7 : ( W20 (Q): * 113 ' 0 O25] 2 5 & 5 ( , & 5 & W20;1 (Q) 3 (2 u 2 W201 (Q) 2, l() = hu i0Q 2 8 2 W20;1(Q) 5 hu i0Q | 1 2 (' & 7 W201 (Q) W20;1 (Q) . * = L v 5 v u | 5 (, 283 2' (6.1.7) (6.1.5) . <5 l() hu i0Q = hu Lvi = (u Lv)0Q = (Lu v)0Q = (f v)0Q : ; u( x) 283 2' (6.1.5), & W201 (Q): <' 1,', 3 & fui( x)g1 i=1 5 7 (, 2837 (6.1.5), 2, kui ; uk10Q ! 0 i ! 1: , & ,2 '' 6.1, 7 ', kLui ; f k;1tQ ! 0 i ! 1: D3 42 5 ,. D3 42 , (6.1.9) , 8 2 5. 6.3 D" " '( (6.1.8) f 2 W2;t1(Q) ' !*+ 1 u( x) 2 L2 (Q) *, ( *6 !*+ fui( x)gi=1 u 2 W201 (Q) 6 kLui ; f k;1tQ ! 0 kui ; uk0Q ! 0 i ! 1: 6.4 D" " '( (6.1.9) ( ' W20;1(Q) ' !*+ v( x) 2 L2 (Q) *, ( !*+ fvi ( x)g1 v 2 W21t (Q) i i=1 6 kL v ; gk;10Q ! 0 kvi ; vk0Q ! 0 i ! 1:
' 6.2 > + * (6.1.13) (6.1.14), "6 !*+ f 2 W2;t1(Q) ;1
" " 6.3 '( (6.1.8)7 "6 g 2 W2o (Q) " " 6.4 '( (6.1.9). , . * L2 (Q) & W2;t 1 (Q) &:' 2 81 f 2 W2;t 1(Q)
L2(Q) 3 & ffi g1 i=1 2832 48 kfi ; f k;1tQ ! 0 i ! 1 . * ' 6.1 2 81 f 2 L2(Q) 3 4 u( x) , (6.1.8) ' & 2 6.1. % & ,2 (6.1.13), 7 ' kLui ; f k;1tQ = kfi ; f k;1tQ ckui ; uk0Q: *7 2 :' & & i ! 1 ' 3 1135 42 , (6.1.8) & 8 , W2;t 1(Q) ' & 2 6.3. U , (6.1.12). , ' 5. 91' 2 & &1 6' 48 , . 0 '' , (6.1.8), 5 & 2 f 2 L2 (Q): U &1 6 4 1 ' uk ( x) =
k X i=1
yi ()i (x) k = 1 2 :::
(6:1:20)
5 (x) | & 2 ' 2 ' 5 7 ( L2 (Q) 2832 8 (6.1.1), 6 2 yi () 7 2 , 4 k ( @u @ j )0P + (Bu j )0P = (f j )0P (6:1:21) (uk (0 x) j )0P = yj (0) j = 1 ::: k
85
6.1 % " /
, & ,2 (6.1.20), & ', dyi () + Pk ys ()(Bs j )0P = (f j )0P s=1 d yi (0) = 0 i j = 1 ::: k:
(6:1:22)
K '6 ,& ' (' dy() = F y() + G () y(0) = 0 k k d 5 y() Gk () | 1, y() = fy1() y2 () ::: yk()g Gk() = f(f 1 )0P (f 2 )0P ::: (f k)0P g Fk | '
(6:1:23)
2 (B ) ( B ) 3 1 1 0P 1 k 0P 5: Fk = 4
(Bk 1)0P (Bk k )0P 9'', 4 (6.1.22) &' 2 ' & 2 6.1. 6.3 , " !*+ f 2 L2(Q)
kf k0Q ckuk k10Q: j () . D''2 & , . '6' 1 42 (6.1.21) (2t ; ) dyd j (j = 1 ::: k) 52 & 0 t 7 '
Zt Zt @uk () X k k X dy () j (2t ; ) j )0P d + (Buk (2t ; ) dyj () j )0P d = ( 0
@
d
j =1
0
Zt
k X
0
j =1
= (f( x)
j =1
d
j () ) d (2t ; ) dyd j 0P
8 , & ,2 4 (6.1.20), & ' k () (2t ; ) @uk () ) + (Bu (2t ; ) @uk () ) ( @u@ k @ 0Q @ 0Q (Luk (2t ; ) @u@k () )0Q = (f (2t ; ) @u@k () )0Q: k () )0Q : D& 0 '' 6 (Buk (2t ; ) @u@
k () ) = 1 ( @ fO2t ; ]Bu u g) + 1 (Bu u ) : (Buk (2t ; ) @u@ 0Q k k 0Q 2 k k 0Q 2 @
*'22 (' 9 5 5, '' @ fO2t ; ]Bu u g) = Z (2t ; )(Bu )u cos(kn ) dS = ( @ k k 0Q k k 0
Z
S
= ; 2t(Buk (0 x))uk(0 x) dP + u(0 x) = 0: <5
P
Z
P +T
t(Buk (t x))uk (t x) d(P + T )
k () ) = 1 (Bu u ) + 1 t(Bu u (t x)) 1 (Bu u ) : (Buk (2t ; ) @u@ 0Q 2 k k 0Q 2 k k 0Q 2 k k 0Q
86
6 4
<' 1,',
k () ) 1 (Bu u ) + ( @uk () (2t ; ) @uk () ) (f (2t ; )) @u@ 0Q 2 k k 0Q @ @ 0Q
21 (Buk uk)0Q + c( @u@k () @u@k () )0Q ckuk k210Q: J , (2t ; ) 1 0 < c 1 c | .
*'22 113 4-!2 5 , 7 ' k () k kf k k @uk () k ckuk k210Q kf k0Q (2t ; ) @u@ 0Q 0Q @ 0Q & 4
0 12 2 k u k ku k4 k 10 Q kf k20Q @c @u () A @u () k 10Q = c2 kuk k210Q: k k 2 k k0Q k k0Q + (Buk uk )0Q
@ @ * , (Buk uk)0Q 0: <' 1,', kf k0Q ckuk k10Q 1 ,. ' 6.3 fi (x)g1i=1 | *6 !*+ L2 (P) d (x) i = 0 yi () | '( (6.1.23). *, ( dx x2@P uk ( x) =
k X i=1
yi ()i (x) k = 1 2 :::
' 6.1 '( (6.1.8), kuk ; uk10Q ! 0 kLuk ; f k;1tQ ! 0 k ! 1: 1 , . D5 '' 6.3 '6 ( fuk g1 ,k=1 5 W20(Q) 1 1 , 1 '& W20 (Q) '6 1 7 238 2 & & fukn gkn =1
W201 (Q): <5 & W201 (Q) & & fukn g1 kn=1 1 7 2 ' & uk 2 W201 (Q) . *6', uk | 4 , (6.1.8). '6' (6.1.21) (8 '() 2 W201 (Q) & 5 2 0 t & ' (Lukn '()j (x))0Q = (f '()j (x))0Q j = 1 ::: k: (6:1:24) < kukn ; ukk10Q ! 0 k ! 1 5 (6.1.10) kLukn ; Lukm k;1tQ kukn ; ukk10Q ! 0 n ! m: ;1 ;1 * fLukn g1 kn =1 ( ' W2t (Q) ' & W2t (Q) . 91,' : ; 1 & Luk: ;2 '()j (x) & 6 W2t (Q) (6.1.24) '6 &' ' 1 (', .. (6.1.24) & , Lukn 2 W2;t 1 (Q) . * ' & & k ! 1 (6.1.24) ' & 25 &, 2 L2 (Q) & ' hLuk '()j (x)itQ = hf '()j (x)i0Q j = 1 ::: k: K 6 '6 ,& hLuk ; f '()j (x)itQ = 0: (6:1:25) # & '()j (x) 7 ' Luk ; f = 0 .. uk | 4 2 (6.1.8), 1 ,. D ', (6.1.25) & , f 2 W2;t 1 (Q) . ' 6.4 fig 1i=1 | *6 !*+ L2(P) ( i(x) = 0 * -!*+ f( x) W2;t 1(Q) i (x) 2 W21(P) d'dx x2@P ff"g">0 | !*+ f !*+ yi" () | '( k dyi" () + X yj"()(Bj i )0P = (f" i)0P yi" (0) = 0 i = 1 ::: k: d j =1
87
6.1 % " /
kuk" ; uk0Q ! 0 kLuk" ; f k;1tQ ! 0 k ! 1 " ! 0 uk"( x) =
Pk y () (x) kf ; f k ! 0 " ! 0: i" i " ;1tQ
i=1
, . J&4' 4 (6.1.21) 2 ( f f" @uk" @ j 0P + (Buk" j )0P = (f" j )0P @uk @ j 0P + (Buk j )0P = (f j )0P : * 2 & 5 , 5 & ' @(uk ; uk") j 0P + (B(uk ; uk") j )0P = (f ; f" j )0P : @
(6:1:26)
R
'62 (1.1.26) & Jt (yj" ; yj ) = O;(1 + s);1 ]Oyj"(s) ; yj (s)]ds ''2 & j (j = 1 ::: k) t 7 ' @(uk ; uk") J (u ; u ) +(B(uk ;uk") Jt (uk ;uk"))0Q = (f ;f" Jt(uk ;uk"))0Q = (f ;f" Jt(uk ;uk")0Q : t k k" @ 0Q 9& Jt & : ' , L2 (Q) & W21t(Q) &:' & h @(uk@; uk") Jt(uk ; uk")i0Q + hB(uk ; uk") Jt (uk ; uk")i0Q = hf ; f" Jt(uk ; uk")i0Q hL(uk ; uk") Jt(uk ; uk")itQ = hf ; f" Jt(uk ; uk")itQ : D5 (6.1.26) hL(uk ; uk") Jt(uk ; uk")itQ ckJt (uk ; uk")k21tQ: # 6 hf ; f" Jt(uk ; uk")itQ ckJt (uk ; uk")k21tQ , &'22 113 4-!2 5, 7 ' kf ; f" k;1tQ ckJt(uk ; uk")k1tQ ckuk ; uk"k0Q (6:1:27) & ' 6.3 kuk" ; u"k10Q ! 0 kLuk" ; f" k;1tQ ! 0 k ! 1: %' ' 4 ( '. '' 6.2) c0 kuk" ; u" k0Q kL(uk" ; u")k;1tQ (6:1:28) < kf ; f" k;1tQ ! 0 & " ! 0 & fu" g">0 ( ' . , kf"1 ; f" k;1tQ ! 0 & "1 " ! 0 , (6.1.28) , ku" ; u"1 k0Q ! 0 "1 " ! 0 . 91,' uk = "lim u" . *6', uk = u . (6.1.13) & 2 7 u 2 L2 (Q) .. !0 kLu"k;1tQ cku"k0Q ,
kL(uk" ; u)k;1tQ = kf" ; f k;1tQ cku" ; uk0Q: *7 2 & & " ! 0 7 ' 0 ckuk ; uk0Q kuk ; uk0Q 0 &:' uk = u: 9' ' kuk ; uk0Q . *'22 5 , 7 ' kuk ; uk0Q ku ; u" k0Q + ku" ; uk"k0Q + kuk" ; uk k0Q:
(6:1:29)
88
6 4
#12 " k , 1 ku ; u"k0Q 3 ku" ; uk"k0Q 3 kuk" ; uk k0Q 3 ( > 0 | ( &, ), & ,2 4 (6.1.27) ' 6.3, & '
kuk ; uk0Q < ! 0 k ! 1 5 uk (t x) =
k X i=1
yi ()i (x) k = 1 2 :::
Dyi dydi () ; Fk yi () = Gk () Gk () 2 W2;1O0 t] yi ()j =0 = 0 i = 1 ::: k:
2 ( y() 2 L2 O0 t] 3 & 5 7 ( fi()g1 i=1 , i(0) = 0 i = 1 2 :::
ky() ; i ()k0 ! 0 kDi () ; Gk ()k;10 ! 0 i ! 1: <' 6.4 ,. 6.2 + 2 2
0 '' , 2 5 '7, & '7 (( ' 2' &1 5 & & 7 4' ,'27. , , 4 ,
( :' , 13 5 2, O33,25]. 6 & 6 ' 76 2 &1 65 42 , , 5 2, +.. <7 , ( '7 &' :((' , (
'7, & '7 1 ' (( ' 2'. , 2 7 ' 5' 42 , . * , 4, n {'' : ' & En , 52 ,'2 1 P 5 @P . # 6 5 @P = ; 3 2 422 ' nk 0: L2 (P ) | & 5'7 ' ' G15 ( P (, 4 1 17 , 1 '6 , ' & (, & 63 ' '' & ) (: :)0P | 2 &, L2 (P ): '6 6 (('7 ( C 2(P ) , & B & 4' Nu = ;
n @ X @u(x) ) + c(x)u(x) (a (x) ij @x @x
ij =1
5 aij (x) = aji(x) 2 C 2 (P ) i j = 1 ::: n c(x) 2 C(P ) C(P) | & & 7 ( Pn a (x) Pn | & 6 2 P c(x) c0 2 8x 2 P c0 = inf fc(x) j x 2 P g > 0: ij i j i ij =1 i=1 , i | &, 3 ( i = 1 ::: n ). D3 52 &, 2 @aij (x) 8x 2 P & 28 2 5 2 @xi du = 0 d x2;
5 d=d | &, 2 & ' : 9& B '' & 6 & . * Q = P O0 t] 5 O0 t]| &'6 '. 0 '' L2 (Q) ((@u + Bu( x) & '6 D(L1 ) ( u( x) 0 t & L1u @ x 2 P & (('7 & 6 & (('7 & x 28 2' u(0 x) = du d x2; = 0:
6.2
)
0 0
Z, W201 (Q) 1,' && D(L1) & ' Z 2 1=2 kuk10Q = ( O( @u @ ) + uBu] dQ) : Q
89 (6:2:1)
*'' W201 (Q) , &, & . * W201 (Q) L2 (Q) & ' & W20;1 (Q): W21t(Q) | && & ' (6.2.1) 5 7 ( v( x) 2837 42' v(t x) = dv(x) d x2; = 0: * W2;t 1 (Q) | 5 & , & & W2;t 1 (Q) L( Q): 0 4 & L1 @v + Bv( x) W201 (Q) 1,' , L , L | & &26 L: L v ; @ 5 7 (27 v( x): * , . * & , q {' 5 u( x) (' 2 ' @u + Bu( x) = v( x) Lu @ (6:2:2) x) u(0 x) = u0 (x) u( (6:2:3) d x2; = 0
5 v( x) | 1 5 4' , ' ', , v( x) 2 W2;t 1(Q): %,'2 &, 2 2 O0 t] 2, u( x) 4' r( x1) = S u + () r( x1) 2 W2;t 1(G) 5 S | & &, 83 , & 2 L2(Q) & ,' L2 (G) G = d O0 t] d | '6 , & S & 1 P ( d En ) () | 4' ,' (&', 6 1 5 4'). 0 1 8 (6.2.2) &'8 2 ' 5 5 & , 4 (6.2.2), (6.2.3) { 113' ' . <1 2 & ,'2' fr( x1) 0 tg & & u^ ( x) & u( x) = t 2 & 2 2 4 lim MO(z A r ; u)2q ] = m(t) A r = u^ ( x) (6:2:4) !0 5 A | & &, 83 , & 1 8 W2;t 1(G) & 2 L2 (Q) z | &, , En m(t) = inf MO(z Air ; u)2n] (6:2:5) A i
622 5 1 2 & ' ' & ' &' Ai 83' , W2;t 1(G) L2(Q): * 7 & 1,' , F(G Q): 04 , ( 2 ' & ' &'' : 48 &5 2 #-F&( A0Rr = Rur (6:2:6) 5 A0 | &, 283 8 (6.2.5) Rr | 2 & 5 & r( x1 ) Rur | ,' 2 & 7 & u( x) r( x1): D& 83 6 . ' 6.5 fA g >0 A 2 F (G Q) * (6.2.4), 6 ' A Rr + A = Rur (6:2:7) | '+, > 0:
90
6 4
, . 0 '' 6 '(A) = MO(z Ar ; u)2n ] 5 A 2 F(Q G) z 2 En: K ( '6 ,& , ' '(A) = (z AA Rr z)n ; 2(z ARru z)n + (z Ruz)n (6:2:8) 5 A | &, 2, &' A 4' A r = (Ar) Ru | 2 & 5 & u( x): %, & 5 62 2 '(A) , '', & 5'. # ' 1,2 (A) = (z AA Rr z)n ; (z ARru z)n : 9'', inf f(A) A 2 F(Q G)g = ;(z A0 Rru z)n (6:2:9) A 5 A0 2 ARr = Rru : 04 :5 2 13' O33]. 05 2,83 ( ' ' (A) = (z Ru z)n + (A) + (z AA z)n 6, 17 ' '', , (A) = (A) + (z AA z)n : (6:2:10) K 2 ( ' (A) ' (6.2.7). K ' 4. 91,' ^ = A ; A A | 4 (6.2.7), ,&4' 6 (6.2.10), & ,2 : 1,. * 67 &1, 7 ' (A) ; (A ) = (z AA z)n + (z ^^z)n (z ^^z)n 0 & (A) (A ) + (z AA z)n (A ): (6:2:11) 622 5 (A) inf f (A) A 2 F(Q G)g = ;(z A Rru z)n : (6:2:12) A * & 1 > 2 > 0: <5 & ;(z Ru z)n ;(z A0Rru z)n ;(z A Rru z)n , (6.2.12) (z Ruz)n j(z A0Rru z)n j inf f' (A) A 2 F(Q G)g = (z Ruz)n ; (z A0Rru z)n 0: A <' 1,' & & fA g >0 , 58 , & f(z A Rru z)n g >0 & ! 0: K & ' 1 , ,, 3 &
lim (z A Rru z)n : !0 < (A) (A) 2 > 0 7 A 2 F(Q G) inf f(A) A 2 F(Q G)g inf f (A) A 2 F(Q G)g A A inf f(A) A 2 F(Q G)g ; lim (z A Rru z)n : (6:2:13) !0 A D& 6 inf f(A) A 2 F(Q G)g ; lim (z A Rru z)n (6:2:14) !0 A
91
6.3 . / ! ! 2
, 42 (A) = lim (A) ; lim (z A Rru z)n !0 !0 (A) (A ) = inf f (A) A 2 F (Q G)g: A %, (6.2.12) (6.2.14) , inf f(A) A 2 F(Q G)g = ; lim (z A Rru z)n : !0 A
# 8 , & 4 (A ) ; (z A A z)n = (A ) inf f (A ) A 2 F (Q G)g = ; lim (z A Rru z)n !0 A (A ) inf f(A) A 2 F(Q G)g = ; lim (z A Rru z)n : !0 A <' 1,' 7 ', inf f(A) A 2 F(Q G)g = ; lim (z A Rru z)n (A ) inf f (A ) A 2 F (Q G)g = ;(z A Rru z)n : !0 A A *7 2 & & & & ! 0 & ', inf f(A) A 2 F(Q G)g = ; lim (A ): !0 A
(6:2:15)
D , & 4 fA g >0 &5 2 (6.2.7) 2 2 2 4' , ( . 6.3 0 1
* fi (x)g1 i=1 5 2 ' 5 7 ( & L2 (P) &' & 2d i 8 2 2 d(x) x2; = 0 fi (x)g1 i=1 | 5 2 ' L2 (d): *6 ' & & , 68 ' , '' ' '7 ( & . U u( x) 2 W2;t 1(Q) -(8 u( x) '6 & u( x) =
1 X
i=1
#i()i (x) #i() 2 W2;t 1 O0 t]:
. *'' ( u( x) & jt & ' jt u( x) = ( x) 2 L2 (Q) ( x) = % & ,2 & Dt 7 ' u( x) =
1 X
i=1
1 X
i=1
Dt i ()i (x) =
i ()i (x) i () 2 L2O0 t]:
1 X
i=1
#i()i (x)
(6:3:1)
5 #i() = Dt (): 91,' , #() = f#1() #2() #3() ::: #k :::g | 1 . <5 , (2 g( x) 2 W2;t 1 (Q) '6 & g( x) =
1 X
i=1
!i ()i (x) = ! ()(x)
(x) = f1 (x) 2 (x) :::g | 1 ' , L2 (P) !() = f!1 () !2() :::g:
92
6 4
6.4 , ( " A ' W2;t1(Q) L2(Q) : 1 X Ag
i=1
#i()i (x) = u
(6:3:2)
" , "6 ( , ( " * #()
Z
#() = H( s)!(s) ds
(6:3:3)
0
H( s) | " * ( + - hij ( s) s ' W21 O0 t]: , . 17 ' . * & A - & . <5 2 6 5 i = 1 2 ::: 6 #i() = (Ag i )0P 2 2 2 ' & ' ( ' W2;t 1(Q) ( & & A 25 &, 2 L2 (P ) ). D5 113 ' 0 5 & 5 ( 3' 5 1 ' & O25], ' , 2 ( 5 1 ' & W2;1 ' : \(u) = hu vi 5 v | : ' , W21 , & 2' : '' v & :' k\k = kvk1 7 ' #i () = (Ag i )0P = hg hi i (6:3:4) 1 5 hi( x) 2 W2t(Q) . K ' hi ( x) '6 & hi ( x) =
1 X
j =1
hij ()j (x) hij () 2 W21 O0 t]
fj (x)g1j =1 | 5 2 ' ( L2 (d): #6 (6.3.4) ' 4 & 5 42 (6.3.1), ,&4 2 83' 1,' 1 X
hi ( x) = h
j =1
!j ()j (x)
1 X
k=1
hik ()k (x)i =
1 X
j =1
h!j () hij ()i:
. , , & &1 ' 5 1 ' & ' ' & , 5 O4,25], & 2 2 1 X 1 X
j
i=1 k=1
hik xk j2 N 2
1 X
i=1
jx i j 2
(6:3:5)
1 P
2 817 xi (i = 1 2 3 :::) 2837 jxij2 < 1 N | & 22 , 232 i=1 & A: K & & 1 2 & , ' 7 ' . * ' 48 , ( . *1 6 , 22 ' @u + Bu( x) = v( x) (6:2:2) Lu @ x) = 0 u(0 x) = u0 (x) du( (6:2:3) d x2; 1 ' '' uk ( x) =
k X i=1
#i()i (x)
(6:3:6)
6.3 . / ! ! 2
di (x) = 0 # () { 7 2 2 , 4 fi (x)g1 5 1,
L (P) 2 i i=1 d x2;
8 @uk( x) > < @ j 0P + (Bu j )0P = (v j )0P Pk > : uk (0 x) = #i(0)i (x)
93
(6:3:7)
i=1
d d | &, 2 & ' . * 22 4 (6.3.6) (6.3.7), & ' 2 2 & 2 #j () k d#j () + P #i()(Bi j )0P = (v j )0P d i=1 (6:3:8) #j (0) = (u0(x) j )0P j = 1 2 ::: k: J (6.3.8) 2 2 2 113 , 4 2 ' 7 1 7 (( 7 &2 k: 1 8 2, 2 &1 6 , , & ' 83' 1,' (r() i)0 = (S u i )0 + ( i )0 (6:3:9) (: :)0 | 2 &, 5 1 ' & L2 (d): ! ' , 1 8 2 & frm () 0 tg 2, #() 4'
Pk
rmi () = (r() i)0 = #j ()(S rhoj i )0 + ( i )0 j =1 i = 1 2 3 :::m < 1:
(6:3:10)
# ' 1,2. #() { k {' : '' f#i()gki=1 F | ' ,' k k Fij = (S i j )0P Gv | ' ,' 1 k (Gv)i = (v i )0P C | ' k m Clj = (S j l )0 rm () | 1 8 , rml () = (r() l )0 w() | 4', wl = ( l )0 i = 1 2 ::: k j = 1 2 ::: k l = 1 2 ::: m: D '
7 1, , &' ( '6 ('
. # & #() ' 2 ' d#() = F#() + Gv() #(0) = # (6:3:11) 0 d 5 Gv | 1 4'. 1 8 2 & frm () 0 tg 2, #() 4' rm () = C#() + w(): (6:3:12) <1 2 #^() & #() '' = t 2838 8 ''' 41 m(t) = inf fMO(z #(t) ; Hrm (t))2k ]g (6:3:13) H 5 622 5 1 2 & ' ' &' H 83' , & 1 8
& 2, H | & 2 2 (4.1.5), z 2 Ek : %'8 ' 83 : MO#0] = 0 MO#0#0 ] = P0 P0ij = (U0i j )0P i j = 1 2 ::: k MOGv()] = 0 MOGv()(Gv()) ] = Q()( ; ) Qij () = (V i j )0P MOw()] = 0 MOw()w ()] = R()( ; ) Rql () = (W q l )0 q l = 1 2 :::m R() | ' &2 m R() 0 U0 | & & u0 (x) V | & & v( x) W | & & ( x):
94
6 4
" R() 6 2. *:' 2 42 , ( (6.3.11)-(6.3.13) 17 ' & , 5', & 4.1. *6', &1 6 4 , &' ( (6.2.1)-(6.2.3) Pk u^ k( x) = #^ i()i (x) & & , (6.3.11)-(6.3.13) & k ! 1 7 2 83 i=1 ' ' 48. 2 :5 6' 2 &'5 7 6 . 6.5 , ( 6 t lim MOkuk(t x) ; u(t x)k20P ] = 0 k!1
uk (t x) { (6.3.6), u( x) | (6.2.2), (6.2.3) (* = t: , . D5 ' 6.4, ' ' 4
Zt
sk (t !) = juk () ; u()j2d ! 0 k ! 1
(6:3:14)
0
2 & 7 ! 2 ]
Zt
MOsk (t !)] = MO juk () ; u()j2d] ! 0 k ! 1: 0
G'' ,. J&4' #-F&( 2 , (6.3.11)-(6.3.13) MO#(t)rm()] =
hmk (t )MOrm()rm ()] d:
(6:3:15)
hmk (t )MOrm ()rm ()] d + h mk (t ):
(6:3:16)
05 2, ' MO#(t)rm ()] =
Zt 0
Zt 0
(6.3.16) '6 ,& &'38 1 7 ', & & 1 2 & , 7 ' . % & ,2 8 ' MO#(t)rm ()] & ' 1 8 ' Kkm (t ) 83' 1,' 2 MO#(t)r()] 0 3 m 0 0 5: Kkm (t ) = 4 ;1
K ' , W2t (G) &, 83 , W2;t 1(G) L2 (Q): , 1 Rt P 2 815 g 2 W2;t 1(G) & 4 g = yj ()j (x) h^ (t) = Kkm (t )^y() d 5 j =1
0
1 P y^() | ' yi () (2 h(t x) = h(g) = hj (t)j (x) hj |
j =1
^h(t): <' 1,', ' Kkm (t ) , & W2;t 1(G): 91,' : & , Rkm: + 5, 1 2 ' Kmm ( )+I( ;) & 2 & MOrm ()rm ()]+ I( ;) , & Rmm 83 , W2;t 1 (G) L2 (Q): * 2 h (t ) 0 3 mk Hmk (t ) = 4 0 0 5:
95
6.3 . / ! ! 2
<5 , & ,2 1 ', (6.3.16) ,&4 2
Zt
(t )Kmm ( ) d + H (t ) Kkm (t ) = Hmk mk 0
& ('
A km Rmm + A km = Rkm :
*6', 4 2 (6.3.17) , &1 6 4 (6.2.7). 6' 2 & 7 ( .
(6:3:17)
6.6 0 lim kRur ; Rkm k = 0:
km!1
, . 2 6 5 ( 5 t & & 8 & ' kRur ; Rkm k = sup j(ORkur'k; Rkmk]'k )0Qj ;1tG 0Q '
o
' 2 W2;t 1(G) 2 L2 (Q) k'k;1tG 6= 0 kk0Q 6= 0 : 9' & :5
j(ORur ; Rkm ]' )0Q j = jMO(u )0Q(r ');1tG ; (uk )0Q (rm ');1tG]j , &'22 113 4-!2 5, 7 '
j(ORur ; Rkm ]' )0Qj (MOku ; uk k20Q ]MOkrk2;1tG])1=2+
+(MOkuk k20Q]MOkr ; rm k2;1tG])1=2 k'k;1tGkk0Q : %, '' 6.5 , & 5' & & k ! 1 ' 2 0: *6', & m ! 1 MOkr ; rm k2;1tG] ! 0: 0 '' ' kr ; rm k;1tG: 9'', , r rm &'8 2 1 . (r ) i 0 i m ' 5 rk '8 ri = (r i)0 rkm | rmi = 0 i > m: & krk ; rkm k;1tG = kr ; rm k;1tG 5 r rm & 113' 2 ' ; 1 1 X X jt r = (jt (r i )0i j rm = (jt rm i )0i : <5
i=1
i=1
krk ; rkm k2;1tG = k =2
1 X
i=m+1
X 1
i=m+1
(r i)0i k0G 2
1 X
i=1
(jt k(r i)0 i k20G =
k(r i)0i k2;1tG ! 0 m ! 1
, 62 ( 2 ;. <' 1,', MOkr ; rm k2;1tG] ! 0 m ! 1: G'' ,.
6.7 , * !* t lim kR r ; R mm k = 0:
m!1
96
6 4
, . Z, R r 1,' & R r = Rr + I( ; ) R mm = Rmm + +I( ;): K & & 7 > 0 & ' W21 (G) ( C(G) | & & 7 ( G ). * & 8 & ' jhOR ; R ]g gij r mm 1 (G) kgk g 2 W = 6 0 : kR r ; R mm k = sup 1tG 2t kgk1tG g 9' . * 67 &1, , 7 ' jhOR r ; R mm ]g gij = jMOhr gi2 ; hrm gi2]j = = jMOhr ; rm gihr + rm gi]j (6:3:18) 5 r () | 1 8 2, 2, u( x) 4' r () = S u+ +w () w () | 1 6 4' ' ' ' &' MOw () w ()] = (W + I)( ; ): 1 8 2 rm () 2 2 5. K & 6 4 2 , , 5' 7 1 6. *'22 113 4-!2 5 & (6.3.18), & ' jhOR r ; R mm ]g gij (MOkr ; rm k2;1tG](MOkr ; rm k2;1tG])1=2kgk21tG ! 0 & m ! 1 5 , '' 6.6, & r rm 6, r rm : ' 6.6 , * !* > 0 t lim MO(z u^ km ; u^ )2n ] = 0 z 2 En : (6:3:19) km!1 , . %, 2 (6.3.17) 7 ', A km = Rkm (Rmm + I);1 : & , &' 8 8 u^ km (t x) = A km r = Rkm (Rmm + I);1 r = Rkm (R mm );1r: 2 2 (6.2.7) 5 u^ (t x) = A = Rur (Rr + I);1 r = Rur (R r );1r: D5 :7 (' '' 6 (6.3.19) '6 ,& MO(z u^ km ; u^ (t x))2n ] =
2
= MO z fRkm(R mm );1 (rm ; r)g + fRkm (R mm );1 ; Rur (R r );1 r n]
2 MO(z Rkm(R mm );1(rm ; r)2n ]+ +MO(z fRkm(R mm );1 ; Rur (R r );1 gr)2n] :
(6:3:20)
*'22 4-!2 5 & ' 5'' & , & ' MO(z Rkm(R mm );1 (rm ; r)2n ] kz k2nkRkm (R mm );1 k2MOkrm ; rk2;1tG] ! 0 & k m ! 1 & '' 6.6. 9' 5'. *1 ' ' Rkm (R r );1 & &1, , &'' 4-!2 5, '' MO(z fRkm(R mm );1 ; Rur (R r );1 gr)2n] 2 kz k2n kRkmk2 k(R mm );1 ; (R r );1 k2+
+k(R r );1 k2 kRkm ; Rur k2 krk2;1tG ! 0 k m ! 1
5 ''' 6.6 6.7. * ' : 42 (6.3.20) & ' 6 '.
97
6.3 . / ! ! 2
' 6.7 , * !* t lim lim MO(z u^ km(t x) ; u(t x))2n] = m(t)
!0 km!1
u^ km (t) | " '( !+ (6.3.2),(6.3.3). , . *1 ' ' & ,' 25 &, 2 u^ (t x) & ' 2 &1, : lim lim MO(z u^ km(t x) ; u(t x))2n] = !0 = lim lim !0
km!1
km!1 MOf((z u^ km(t x) ; u^ (t x))n + (z u^ (t x) ; u(t x))ng2 ]
lim lim MO(z u^ km(t x) ; u^ (t x))2n]+ !0
+2f lim
km!1
km!1 MO(z u^km(t x) ; u^ (t x))2n]MO(z u^ (t x) ; u(t x))2n]g1=2+
+MO(z u^ (t x) ; u(t x))2n] = m(t)
5 ' 6.6. <' 1,' , 7 ' 42 &1 6 5 2, , ( 48 7 , . + 5' 42 &1 6 , ' 4.1. *' 5 2, 1 2 5 O33,20,25] 5.1.
98
%+%
5 (
1. + 1 +. 05 2, & 2 . ".: , 1977. {224 . 2. +7, .%., / ,' %.". <2 7 & 5 1 ' & . <' 1. F : %, . & F/ , 5 1M 2 #3 4 , 1977. {315 . 3. ! v.+., #.*., . "' 1 & 65 : &'. 911 ,' & 67 '. : ', 1982. <. 1. {301 . 4. !, v.". 0, 6 & 1 ' (2' ' &267 & . : ', 1965. {798 . 5. # #.+. " &' ( '7 & 2 ' ' &&' // #& & 2 ' ' &&'. ".: ", 1975. D. 58-94. 6. # ' #.D. 2 '' (,. ".: , 1967. {436 . 7. / ( %."., Q /.U. 9113 (. #&. 1-5. ".: ;,'5,, 1958-62. 8. /7' %.%., D7 +.#. <2 7 & . ".: , 1970- 1975. <. 1-3. 9. / ;.!., T.+. 04 7 , ( & 2 & &, &'7 ' ' ' 2 // + ' '7. 1966. ?10. D. 153-168. 10. #.*., , .. 9 5 2, 7 7 , 7 1 // + DDD0. 1974. 214. ?3. D. 528-531. 11. #.*., , .. 05 2, ' 42 , 13 // + DDD0. 1975. ?5. D. 1045-1048. 12. #.*., L 9.U. ; 2 5 2,2. : /, 1977. {51 . 13. ' 0.U., !8 0.D. , ( & ,2 // <7.'7. 1961. <. 83, D. , ?1. D. 123-141. 14. ' 0.U., ; 1 *., +11 ". 9 & '' '. ".: ", 1971. {400 . 15. '5 +.. %& : & 7 7 & // %, . + DDD0. D.'., 1941. 5, ?1. D. 5-16. 16. %.#. 9 4 , ( & 5 4' 1 8 27 // .'.6 . 1979. 31, ?4. D. 372-379. 17. %.#. 9 &1 6' 4 113 , ' 2 &1 7 // # 5 : " &',2 67 '. : %, . /, 1982. #&. 1. D. 27-39. 18. %.#. 91 , 2 5 '7 &' :((' // # 2 & 2 ''. 0 &1 .'6 .. 1., : %, . /, 1981. #&. 45. D. 21-24. 19. %.#., ".#. 91 7 42 , &' ( ' 4'' 1 8 27 // # . ' ' 11 7 K#". ".: "/, 1988. D. 19-33. 20. ", #.+. 05 2 ' 42 & 7 , . ".: , 1987. {240 . 21. ", #.+., /1 +.%. " 42 & 7 , . + 5' &. ".: "/, 1992. {320 . 22. G +.D. 1 8 1 &' 5 2, & 8 ,&' 42 // T#" ";. 1978. 18, ?6. D. 1363-1376. 23. G& 0.Q. & &' 5 ( ' & 1 ' 4' 1 8 27 // + ' '7. 1974. ?1. D. 35-41. 24. G8 G.;., D1 #.%. K ' ( 5 ,. ".: , /0;"G. 1965. {520 . 25. G24 %.%., #.*., L 9.U. ; 2 4' . : ', 1979. {232 . 26. *5 #.D. %5 & 2 7 ( 7 & 6 & 8 &' 7 7 ' // + ' '7. <. 28, ?1. 1957.
5 (
99
27. *5 #.D., D %.. D7 (( '. ".: , 1985. {560 . 28. 0 . 9 '' 5 ,. ".: ", 1966. {320 . 29. 021 -94 +.*. 91 ( ' // %, . + DDD0. D.7.1. 1970. ?5. D. 203-212. 30. D 6 K., " 6. <2 2 &' 2, & . ".: D 2,, 1976. {496 . 31. D' ".G., 4 2 .D., / K.!. 9 (( 7 '' (,. ".: , 1962. {768 . 32. D 0.G. *' & " 2 &' ( 5 // 0 7 : . 1960. <. 5, ?11. D. 1751-1763. 33. <7 +.., + #.w. " 42 7 , . ".: , 1979. {286 . 34. ;75 /.". (( 5 5 5 2. <' 1 - 3. ".: , /0;"G, 1966. 35. Q2 +.. #2 . ".: , 1980. {576 . 36. Anderson B.D. An Algebraic solution to Spectral factorization problem // IEEE Trans. Autom. Control. 1967. V. AC-12, ?4. P. 410-414. 37. Bensoussan A.V. Optimization of sensors location in distributed ltering problem // Notes in Math., 1972. 294. P. 62-84. 38. Booton R.C. An optimization theory for time-varying linear systems with nonstationary statistical inputs // Proc. IRE. 1952. V. 40. P. 977-981. 39. Bryson A.E., Johansen D.E. Linear ltering for time - varying systems using measurements containing coloured noise // IEEE Trans. Automat. Contr.. 1965. 10, ?1. P. 4-10. 40. Bucy R.C. Optimum nite time lters for a special non-stationary class of inputs // Internal. Report Nr. BBD-600, Jons Hopkins University, Applied Physics Lad., 1959. 41. Kalman R.E. A new approach to linear ltering and prediction problems // Trans. ASME series D., J. Basic. Engg.. 1960. V. 82. P. 35-45. 42. O'Reilly J., Newmann M.M. Minimal-order observer-estimators for continuous time linear systems // Int. J. Control. 1975. 22, ?4. P. 573-590. 43. Swerling P. First - order error propagation in a stage - wise smoothing procedure of satellite observations // J. Astronautical sciences. 1959. V. 6. P. 46-52. 44. Wiener N. Extrapolation, interpolation and smoothing of stationary time series, with engineering applications. New-York: Wiley, 1949. 45. Yoshihawa T. On discrete - time Kalman lter in singular case and akiud of pseudo-inverse of a matrix // Int. J. Control. 1972. 15, ?6. P. 1157-1163.
! 2 (', 7
" '&2, 46 1 ,2, 46 ,' (1 8 ), 16 '& 2 &7 2, 15 1 8 ' , 16 & 12, 46 3 , 46 , 47 & 2' , 18 ( ' 2, 10, 16, 30, 48 &26 ', 49 " #, 28 9'0 -8', 52 & , , 44 ('835 ( 5' 42, 43 & , , 43 1 8 2 6 ' 1 ' 4'' , 47 4-!2 5, 8 113, 50 Q , 8, 50 9& L L2 (Q) , 79 L L2 (Q) , 78, 86 (( B , 78, 86 L L2(Q) , 86 ,' , 7, 9 ' & , 90 9 2 '' 5 2, 19
3' & , 20 9 , 33, 34 9 &' 2 7 7, 54 7 ' , 66 42, 67 *' 5 2,
1, 73
/ 4, 60 /''(,', 10, 50 , 32, 34 J 4, 10, 12
5 &' 5 & 2, 34 4, 35 J ' 113 4, 79, 82 &26 , , 79 3 , 81, 82 &1 6 4, 82, 84 7 ' , 84 J &' ( 5 2, 2 & , 58 J &' ( , 19 2 7 & , 23 & , 29, 48 &1 6' ', 91 &1 6' ', 65 & ' &'', 86 ' 4'', 63 5 2, 2, 61 & ' &'', 77 ' 4'' 5' 42, 63 7 ' &1 65 42, 94 %5 113, 10 2 5 & , 11 ' , 77 :(( 2, 36 1135 ( , 41 5 ( , 42 8 ''' 41, 19 G'' /
, 70 "' 6 , 11 100
101
6 ! (
,&' , 72 *, 2 1132, 8 * C 2(P ) , 77, 86 C12(P ) , 77 HO0 t], 51 HB , 78 HB O0 t], 60 HB+ , 78 HB; , 78 L2 (P) , 77, 86 L2 (Q) , 78 W21(P ) , 78 W201 (Q) , 79, 86 W21t(Q) , 79, 86 W20;1(Q) , 79, 86 W2;t 1(Q) , 79
2 , 11 5 W2;1 O;1 +1] , 23 W2;1 Oa b] , 7 W20;1 O0 t], 8 W2;t 1 O0 t], 8 3, 7, 11 &, W21 O;1 +1], 23 W21 Oa b], 7 W201 O0 t], 8 W21t O0 t], 8 *
, 12 , 22 , 22
,' ' , 22
4' ' , 22 * 2,, 22 D5
7 , 12
7 , 12 & ,, 21 D ', 12
22, 13
& 1 8 '2 8 , 16
& 1 8 '2 , 16
& & 2', 17
& & 2' , 17 ' 2, 13
2, 13
2 & 2, 15 & ' '', 13 2, 14 '' 2 ' , 13 1 8 '2 , 16 & , 13
& 2' , 17 D& 2 & 1 4', 22 (,2, 23, 28 D7 ' , 61 <' #, 26 ;. 0 , 18, 89 1132, 18 F-!7, 18 , 62 #-F&(, 20, 37, 55
6 1 4', 48, 59 2 , ( , 23 &, 59, 87 5 2, , 59, 87 5 2, 5 42, 60 42, 31 3 5 2, 5 42, 59 3 42, 30 7 ' 4 h , 60 0, 35, 62
, 35, 62 &26, 51 2 #-F&( 3 42, 52 ;, 2 ,' , 15, 24 ; # ', 25 ', 25 '-!8 , 36 2 7 & , 42 113, 36 & ', 15 ('83, 15 ;' 4 2 &265 2, 51 ;' 4, 10, 17 1132, 10 ;2 {(2 , 8 1- 2, 25 Q', 21 1 , 11, 12
5' ' , 11
102
6 ! (
6 , 21, 45 5 , 12 , 22 (1 ), 21 , 21
894 6. 1 14. 6. :35 . 5 4 ;'<= :8;>8> ': ?8> ,:?'- @::
. .
0 <.U. # %, . . ? 040414 18.04.97. * & & 14.11.2000. ;' 60 84/16. !'5 ( . ? 1. 9( 2 &. . &. . 9,2. .{, . . 9,1. <6 70 :,. J, ? 23. 9 \J *" , " 5 . 103009, " , . !. 2, 5/7. 0& %#L "/. 119899, " , #1 5.