E. RIEFFEL
FX Palo Alto Laboratory, 3400 Hillview Avenue, Palo Alto, CA 94304, USA
W. POLAK
1021 Yorktown Drive, Sunn...
10 downloads
238 Views
683KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
E. RIEFFEL
FX Palo Alto Laboratory, 3400 Hillview Avenue, Palo Alto, CA 94304, USA
W. POLAK
1021 Yorktown Drive, Sunnyvale, CA 94087, USA
y ,
- p . ! ! !"# # p$ , p
p ! , . %
$ ! $ & ', p !
( $ p $ . )
p p p , $ . %
$
( , ! . % # p #
!# p p p p . % ( ( p!#
( . * " ! , ! , , !,
. &
, !+ ", # ! "
( # # . ,
(, . & (
( . ) - p p
-!.
1.
1982] , ! "- " $ " " " %1 . ' (% ")
, , *, $, ) ( ( )" , )+ % + " $ . , " " " % , " )% ( " $ , " *. - ) * ( )p , " .//" ) "p . 0.) p "p . 1" *
c ACM (Association for Computing Machinery). ACM Computing Surveys, V. 32, 23, September 2000 y c & (.: 5. 6. , 7. 8. . 1 ) 1980 (# ! !$ ! $ 6. <. = . >. = 6. <., ?) @, =.: >. , 1980, . 15. | . .
4
1994 , " 0 3 ) , " p* $ * 3 19944 3 1997]. 1 ( " ) * . ' " () " % "" ." , %+ " " %, " ", %+ " . 6 " .) ) ( ( " " "%, "* + ) , ) ." " $ $ !")( " " %. 7 + ( "% , (
) $ , %+ ." ( " , p $ ) ( , %+ " $ , "* " . . 6 (+ * . , .". ) " , * . (+-, , " ( )+ ! , * ) , ) $ . 8( ." $ ) , () ." $ ) p$ p, , , (9! / " . 1 "" " ." $ ) p , p() ) (9! ( / " . ' p " 6 6* 1992]. :)+ ) +! * ( . 0" " , ) " ) . 0$ ) " ) | p$ , " )+ " , "* . <* " , )$ +! )*, " " . 0) , * " ) p$ , " ") p p , * * ( , p) "" p$ ) . = " " % ()* ) ") , ( )+ " . < )$ ( % " " ()% $ . , " ! "% ) " " (, ( ( (+ ) )%+ , " "" /)"$ . 0 ( " ) * * 3. 0 ) " ()% ", ( ) )%+ ) . ' p ! ) " >. p( " p , "* p !, %+ + .
5
E. Rieffel, W. Polak
2, )%+ , % "$ $ " " , ( " . ' p , ", * p* p (p " " . = $ % (* ) / " " " ( ( " ", ) " . = , + ( , ( " " . 3 ! ") ( ) ")( )1. " " ( " ( * ) $ , p* "" 0, " 1. 0 ) $ " " . , " ( % . < " ( + +! " "%. = + " p " ." $ * " ( : ", ")( * ( ) $ 0 1, p "" n ")( * ( ) $ 2n . C:D , %+ " " )+ " ." $ " , % ) , ( %, +) " " ) '02. < $ , + " : ( " . E " "% ( " , "p ) . 6 " % )+ ) ( , " % ) , %( " " * ( ( . . 0 ( * ( )+ )% ( ( " , " , " ) " . F " " ( , * " ) ) )% ")% ) 1 % . - / " " ( , " * . , ( " , , , " , * ( ( . G%( " " * (
" " % p p. =" (+ " p 4. 6 ( , (9 %+ " ) , % 4.2: $ " . 1 $ | . " ) " " ". 1" $ ) , . ". " " , * " " * ( )+ . 1" (, , "")% /$ % " " ", ( , 1 2
6
, (. quantum bit | qubit. | . . & (EPR) | - , & , .
*, ( " ) " ) "$. 0 " , $ , ) ( " " /$ ) " ( . -" $ , " " , " ) , ." '0. F " 5 ) , ") (! ." $ ) "p " " %p p " " . = " * ( ) $ , "p "% * . . * () ) ) $ % )%+ . 1" (, * p " " " % , " p % . 1" $ "" " . F * ) " ) $ , * ) . 5 " )$ (. 6 7 % )+ " , " " " " , * (
. 6 ( 3p | * ) * . : ( " " * () ." $ . (+, ( . p "), " " * * )+ ). 3 " ) ( p % " ( ) . G > ( " ) p " n . O (pn) .p p$ " " %. - " " % (% ) O(n), .) " ) p " " " % .//" , * " " " " %. = ! * ) "p , ." $ , p 3p. E
", > ( p " ) " " " %. = p
" " () ) p ", , " "% ")% ) ) p , ) ( ( p. 1 K, ) ) )! , ")% * . 7 " ! ". 6 " , * + " " ") . , | ) " " % NP - | ! ". =, *), * ! " " %. :)+ ) ( * * % " "
7
E. Rieffel, W. Polak
% )", (L<), " ! . ")+ * " % p( ) ")( . =( " ) , ( (( " , ")( /$ . = L< )" % ( pp( , " " ! "* ! * . " " % )" 3 " M 19954 : 1996] , %+ ")( , ." " . 6 , ( ")( " p$ , % . 6)")( $ )+ % , ")(
"( , " $ ")( , ) * )")( )% $ %. 0 () , ( p ")) " " ). 0 )+ L< "% , * " ). 1 (, L< $ )* ( " ) . :) , (
" " " " " " ( ( " . : * ) , *
+ " L<. , ( . "% ) ) " . <+ "" 21n , n | ")( . , ", * 3) (1998)] * .) (). = " ( ) !")( L< " % - . 19984 . 19994 >/
8) 19974 G/ . 1997]. ( , / " * " " %, () ). , ( " " % ) " ) " - ")*%+ . =" )+ , " " % () , .". *. . ( " ", / " : ( ) ! " ""$ (". : )! ) , " ""$ (" () )+ - * !* " " . =, " , * ( " , " ()* % ! (" " " . - ""$ (" () 8. * % (. 8
2.
L " " p) , " ") ( % )% " " " " . F (, " * %, * )(" " " ( /$ " " (+ : . 19654 G ( 19974 > M*"]). . () , ) ")% ") " / (9!, ( ( " . : " " p , " " | . p , p "p (p " . : . " % " . - " " " " : * " , .//" - ) , ." '0 p p p ( , "
(." p '0 () p p 3.4). =! ." , " * ( )+ ! p + " ) () " ) " "% " " " , ( " . 2.1.
| $, " * p . 6 ." p() ( () : " p" , , )"", ( $ / ), " * ") %( " . =(% ." / p $ % p p) * " " .
2.1.1. . G) *%+ .". A
p p , B | ) 45 , C | p " . ( p % " (, ) p "). : ) / A. E) , + ) (. F + () +. + / .
)"$ % / A "" C D, " ) " " /. N ( . ( ",
9
E. Rieffel, W. Polak
) + / ( ( , ( ( * / . 6 ) / C, , + / * ), .. / * " / . (< C D " / (9 +! *).
O p / B * ) A C. 0p . " ) /": ."p p ( ). (, () p p ).
< (% ") . F " " " , ( / * " + /. -" * . " ) ?
2.1.2. . : / * (
", %+ p ! p . G%( $ * ( * "" "( $ aj "i + bj !i
) ( "1 j !i ( $ ) j "i ( " $ ). 0 " ") ) " $ ( " *), " () ", . . jaj2 + jbj2 = 1. (+ ) $ / * ( * "" aj "i + bj !i, a b | " " 2, " jaj2 + jbj2 = 1. M : ( ( ) ( % | * %( " ( ., fj -ij %ig).
,! j!i !# + 2.2. =
# #( . (&. .: , #( -
.) 1 2
10
0 ) " " )p* , %( ) , %+ ))% ), ( ( , % " "p) " . F () ( "p p%+ ) p . , "" ( " jui, " ) "$ ( " jui. = , ) ) $ / ( fj "i j !ig, S = aj "i + bj !i "" j "i % jaj2, "" j !i % jbj2 ( . . 1). p%+ ) p % p ( , .) p) p , p ) , (+ ) %. 0 " ") % " p) ( ), ( () ) p . * , p " , " ) ) , , S = aj "i + bj !i ) j "i, S p j "i, , % " ) * ( ), () p) j "i p % 1. 1" (, , " ( " p%+ ) p , p$ () . 0 p )* * , "" ( . : " " " ." $ * (9 )%+ (. 0 " / % " ( ), *+) " $ , ", ") ") $ . , " / % ) * $ %, / , "" *! / ( % $ , ") $ / . = , / A $ % / % " ( ) ") j !i. / . 1. / A ( % j !i $ . 1 /, " *% , % j "i $ %. N ) , " ) " / $ , / A () ) " 50% /. : / () j !i. C () / % " j "i. = j !i = 0j "i + 1j !i () " j "i % 0, .) / ! / C. ="$, / B " % " ( ) o n1 p (j "i + j !i) p1 (j "i ; j !i) 2 2
11
E. Rieffel, W. Polak
" "" fj %i j -ig. , ,
;
j !i
= p1
;j %i ; j -i
. , " % "" j %i, 2
j "i = p . / . , + A j !i, () ) / B "" j %i % 21 , , 50% /, + A, ) B () ) j %i. : , . / () ) / C "" j "i % 21 . 1" (, " / ( * / A B C. 1 j %i + j -i 2
2.2. /
0 " , + " , , $ , . . $, ( /)"$ . ( . /)"$ () . 6 " ( " " " , . () " " " " . : " ( * " $ ) ( " " (/" ( , ! 6 " 6 " 1958]. --" jxi (% "- ($ ( )% " . 0 (" haj (% * "-" jxi. , ( fj0i j1ig ( % "" f(1 0)T (0 1)T g. G%()% " " )% )% "( $ % j0i j1i: aj0i + bj1i * , "" (a b)T . $ , ( " ( " * . = , * j0i "" (0 1)T j1i "" (1 0)T , * !. -( $ hxjyi ( ) ( ") ) ". = , j0i | ", h0j0i = 1. " j0i j1i h0j1i = 0. -( $ jxihyj | jxi hyj. = , j0ih1j ( , " () j1i j0i j0i (0 0)T , .". j0ih1jj1i = j0ih1j1i = j0i 0 j0ih1jj0i = j0ih1j0i = 0j0i = 0 : F ) j0i = (1 0)T h0j = (1 0) j1i = (0 1)T h1j = (0 1) j0ih1j * ." $ 1 0 1 j0ih1j = 0 (0 1) = 0 0 : 12
' ( % ) ( ( " / "$ ( " ), ( " ( . 4) = , ( , %+ j0i j1i, ! $ X = j0ih1j + j1ih0j: , " . ( ) / X : j0i ! j1i j1i ! j0i " ! ) ( ( ". 3.
- ( ")( | . " 2- " " " , " / " " ( fj0i j1ig. , ( j0i j1i * j "i j !i j %i j -i $ / C D, C D .". - ! ")( " (+, ( fj0i j1ig,
" )* , ( . < () , ( (, . ( ( . " ( (% j0i j1i, ( C D " " ( 0 1. =, " " ( , ")( ) ) $ j0i j1i, , aj0i + bj1i, a b | " " , " jaj2 + jbj2 = 1. ) $ /, " ) $ ( fj0i j1ig, , j0i jaj2, , j1i | jbj2. K " ( * ( * ) $ , )! * " ( " " /$ . F ")( ( , (% ." $ /. 1" "" "* " " ) ) , . . " ) ( " ) , , "" " " ,
" * . F , .) , * ( ) ( . E , "" ) 4.1.2, " " , .. ")( * ) ( * " , , " ")( " % ( , . 3.1.
0 ) ")( * " "%. 1984 E E )% "
13
E. Rieffel, W. Polak
)% ) " "% E E 19874 E . 1992]. ,(, " "% ) $ ) / " "%, , RSA. )$ %, " Y E( " "%. : )+ ()
) ) ") ) ") "). ' ( " ) % N, " ) . : )$ (* )" *.
- " Y E() $ ( , /) " E(), " * . N "* * . $ E(). 6 , ( $ " "% Y E() ( , " ) "* ( " / )%+ (: " " "* ( ) ( 0 ! j "i 1 ! j !i 0 ! j -i 1 ! j %i: E( /, ( "* ) ( . ( . 0 "" ( , E( Y (+% ) )) ") "), "" ( " ( " ) ( ( !) /. ,( " /$ , ) , "" ( , . . ( , " ( !. ' ( () ) " "%, () ) (. Y E( () ) 50% ( , . ., "% () ( . 14
1 * , N /, Y , E() / . * . 0 ) () * ( . 0.), " E( ")( ( , , ) , 25%. 1" (, " ) " " ) (" , " * (
()* Y E(, ") ") " " " ( "%. F", , " , 25% "% ) N , , Y E() , "- ) . 0 ) ! " $ "%. = , !, * '" '" . 1992], E E 1992], G) 8 G) 8 1999]. = * " " "% " * ( / % " "%. - ) , * ) " . + ( " +% ( < < 1998] G) 8 G) 8 1999]. - " "% ( ( 24 " " "( K % . 1997] 0.5 " )) K % . 1999]. 3.2. ! " #
0 ( / " " " " (9", " n , %+ . C " * %, "* %+ ! . 6 " * n $, ) ) , " "% , " , (+ )
%+ ! $. F ( , ( ")( ! * , ") (! + " " %. -" )* )( , ")( * "
) " " " , * ! j0i j1i. " " / " * n $, " "* $ " 2- , ()% 2n- " . , ", " (+ 1 ( : n ")( 2n . F . ." $ $ ! ." $ )+ " " " % " " . 1 % !# , n #! | $ 2n - ,
$, ( #! aj0i + bj1i,
jaj2 + jbj2 = 1.
15
E. Rieffel, W. Polak
" " n $, "* $ % " . - * % . : * " $ ( % * A. 6 "" * ) " , " % "% " . 0) V W | 2- " " " ( fv1 v2g fw1 w2 g . F " ()
( fv1 v2 w1 w2g. 0 " ( . . ( 1 . , * " " $ ) $, .". dim(X Y ) = dim(X) + dim(Y ). 1 * V W ( fv1 w1 v1 w2 v2 w1 v2 w2 g. 6 " ( . ( (+ ) . (' , " () $). F", ) ")( , ) "* " ( fj0i j1ig, ( fj0ij0i j0ij1i j1ij0i j1ij1ig, ( "" / fj00i j01i j10i j11ig. ( (+ ) () jxi, ) jbnbn;1 : : :b0 i, bi | $ / x. E !")( () fj000i j001i j010i j011i j100i j101i j110i j111ig (+ ), n ")( 2n ( ". 1 ." $ " ) $. 1 X Y
dim(X) dim(Y ). : j00i+j11i " , " ")( . * ; 6) , " a1 a2 b1 b2 , (a1j0i + b1 j1i) a2 j0i + b2j1i = j00i + j11i, . ".
;a j0i + b j1i ;a j0i + b j1i = a a j00i + a b j01i + b a j10i + b b j11i 1
1
2
2
1 2
1 2
1 2
1 2
a1b2 = 0 ), ( a1 a2 = 0, ( b1b2 = 0. : , " ) ( (, % ) . ' % " " . ' * ( % ." $ " ) $. : ) , ()% ) , ( * ( )% ")% ) " " " %. '%$ " " ." $ ( , .%$ " " . 0$ + " " % " * .%$ % " " .
1 &
! !# $ , ( !# !
! .
16
3.3. $
'" 2.1.2. ), "" ( ")( " ) " ( , %+ ) . ) , $ . , , $ 2-")( . : %( ) ")( * "" aj00i + bj01i + cj10i + dj11i, a b c d " " , " , jaj2 + jbj2 + jcj2 + jdj2 = 1. 0 * ")( ( fj0i j1ig. 6 ) ( )%+ (: ; ; aj00i + bj01i + cj10i + dj11i = j0i aj0i + bj1i + j1i cj0i + dj1i = ; ; = uj0i a=uj0i + b=uj1i + vj1i c=vj0i + d=vj1i : p p 1" "" u = jaj2 + jbj2 v = jcj2 + jdj2, c=vj0i + d=vj1i | " . M ( " . G" , "" ) ( ) . F ; ( % u2 = jaj2 + jbj2 j0i, " ) , j0i a=uj0i +b=u j1i , % v; = jcj2 + jdj2 ;
j1i;, " ) j1i c=vj0i +d=vj1i . 1. ". j0i a=uj0i +b=uj1i j1i c=vj0i + d=vj1i % " , " () . F ")( . 6 " ( *
"" ( ( . * ) . = , * , % ")( " , ")( . = ( ." ) ( , " ) ")( , .) " . ) ")( " , + , ")( j0i, , ")( j1i. G%( " *
) ) ", ) "* . F k ")( ( 2k * ) mi . G%( ) , %+ k ")( n-")( , 2n - H " S1 : : : S2k , H = S1 : : : S2k . . k ")( mi , Si " i. O ( Si % " ) " Si . 6 " ) .) " ), )
. 6) , , ) , ) " ( % ) ( ", . .
17
E. Rieffel, W. Polak
F % ) ) $ ) . 8 $ % ) , ; 1
))%. = , p j00i + j11i ), .". , 2 ( j0i 1=2, ) , ( . , " ( ( , ( "" j0i 1 0, , "" ( ( ( : "" j0i j1i . : , ) ( ; 1 ( . : ) , p j00i + j01i ), .".
; p
= j0i p1 ;j0i + j1i.2 Y %( ( j0i 2
1 j00i + j01i 2
, ( ( . Y (, ( ( "" j0i, , ( ( . , , ) , "" $ ) ), ) )+) % ) , "" , " $. 3.4. &'
', 0 " * " C." D, " ) $ )% ", ! , () . ." /) . 6 (, )+ ) ", (%+ " ) $ p1 j00i + p1 j11i, 2 2 '0 , Y E().
Y E( ) ). 0 * , Y % $) ()* j0i. ' , (+ () j00i. Y E( % $), "* ()* j0i. Y (, Y j1i, ) E( () * ) . M , (+ " , , $ )
) ). 0) , . Y E() ) )) , " % ( " . 6 18
"*, , * ) ) $ )+ ) , Y E( ! * ) . /$ . :)+ ) "" , " )! ! +! %
) . O "* % , ( ) " ) . 6 . ', 0 " * , "* $ ( " ) , " % , "" () ) %( . ' ", .) !, * c , . . ' "" " . 0 " '0 "% , ( $ ( j0i, ( j1i4 , "" . " , ( (9 " , * ) ) ! $ )*. : " " , ", (9 ) ( . E ", %( " ", () ) )
") ), ) "" E. , ", ) ." " , E . 1" (, ")% ") (9 + % " . E ! E )%+ ." * ( > M* " 1997]. ( . = , ( ", , )+ Y , , " E(. 1 , . " "* , , "" ', 0 " , )(" . <* * )%+ $ '0: (% (% Y , E(. . (% E(, Y . ) * ( (% , .. (% (% * . '" ) " * (9 + % E( $ Y , (. ' , E(, Y ) '0
( " . 1" ( )+ )%+ " . !, * " , . , Y E( () ) (% " ) ) .
, , " %+ " $ , ) , '0 * () ) " )+ /$ , " ! ! () " .
19
E. Rieffel, W. Polak 4.
6 " " , " " . '%$ * " " ) 3! . 0 . % . G ( " " " , " % , % ) . G%( ( " " " * $. 0) $ M ) M )%+ " " * . < $ M ) (.. ) ( ) " , " MM = I. G%( ) ( ) .%$ " (. O ( * "" " " " . * , " ( ) , ( . 1.. " * ( ( . 8 * " " " , , "" " E, " 1// , ) ( ( . E ( ( . " " CG"$ D 1996]. 4.1. (
" " ( 1-")( " . ) , ( % % ( ". : )%+ $ ( . 1 0 I : j0i ! j0i j1i ! j1i 0 1 0 1 X : j0i ! j1i j1i ! j0i 1 0 0 1 Y : j0i ! ;j1i j1i ! j0i ;1 0 1 0 Z : j0i ! j0i j1i ! ;j1i 0 ;1 : ,( . ( % (+ . I | * ( , X | $ , Z | $ /, Y = ZX "( $ ). 0( X )* 2.2. 0 , . ) , ( ) . = , 0 ;1 0 1 Y Y = 1 0 ;1 0 = I: 20
CONTROLLED-NOT Cnot, ) ")( )%+ (: ")( , $, ! ( , )%. " j00i j01i j10i j11i ()% ( )")( { ! " " " . 6 , ( ( . / ( ( / * ) . ! " " . N , " / )), . ) . 1" / j00i j01i j10i j11i ( " * " (1 0 0 0)T (0 1 0 0)T (0 0 1 0)T (0 0 0 1)T . 1 ( Cnot 01 0 0 01 j00i ! j00i BB0 1 0 0CC : j01i ! j01i @0 0 0 1A j10i ! j11i j11i ! j10i 0 0 1 0 =C 0( Cnot ) , .". Cnot not Cnot Cnot = I. M , Cnot , "" ) ( ( . O ( ( " / " , ( ), " " " ( . Cnot ( % )%+ =" ")*" ( ) %+ ")( , " | ) $ ! ")( . =" " ")*" (% ) ) 0, ) ( , " ) %+ ( 0. (+ ), ) %+ ")( * ( " ". CONTROLLED-CONTROLLED-NOT $ ")( !, " ), ( ")( $. >/ " * "" " )". , ")( $ / " (*% + % " , "" " *.
4.1.3. { . 6) * -
( ( | . ( Y , "" H : j0i ! p1 (j0i + j1i) 2 j1i ! p1 (j0i ; j1i): 2 0( H ( * . 6 ) j0i, H ) $ p1 (j0i + j1i). 0 H " n ")( 2
21
E. Rieffel, W. Polak
, ) ) $ % 2n * , (
0 2n ; 1. (H H : : : H)j00 : : :0i = n ;1 2X ; 1 1 = p n (j0i + j1i) (j0i + j1i) : : : (j0i + j1i) = p n jxi: 2 2 x=0 0( W, " H " n ")( ( O{Y . N * ") W1 = H Wn+1 = H Wn : (4.1)
4.1.4. ! " . ," , ) " " " . 0 " * " ( ) ) M)" ) M)" 1982]. , "% ) ( . 0 * , U | . " )%+ ) ( , " U(ja0i) = jaai jai. 0) jai jbi | " . U(ja0i) = jaai U(jb0i) = jbbi. ! jci = p1 (jai + jbi). 1 , ) , ) 2 ; ; ; U jc0i = p1 U(ja0i) + U(jb0i) = p1 jaai + jbbi : 2 2 = .". U " )%+ ( , ; ; U jc0i = jcci = 21 jaai + jabi + jbai + jbbi 1 p (jaai + jbbi . 1" (, ) $ , " 2 * " " , )+ ). : , " * , .". )" , %+ ( " ) . - * , "" " ) " , "" . -" " , " " *. , " " $ * " . 0 n $ ) aj00 : : :0i + bj11 : : :1i aj0i + bj1i *. -* . $ () ( " ( fj00 : : :0i j00 : : :01i : : : j11 : : :1ig, ( ( " , (; ""- )
; ( . : n $ aj0i +bj1i : : : aj0i +bj1i aj0i + bj1i *. 22
4.2.
. " ) : " $ . 0 " ) " " ( ) '0 . 1" "" '0 * ( ,
) ( /$ () / " ) $). ' * /", " "), "" 3, ")( )! * " " " ( /$ . 1 $ | . $ , * ) " %. M ")( , "" , )% " " ( . 1 $ * ) $ * " , .". " .
-% " $ ) . 0 ) " " ( $ . 0) , , Y E( ) )) /$ %. -* ) ) $ '0 ; 0 = p1 j00i + j11i : 2 0 * , Y )% $), E() | )%. F", " $ % , " Y * ( $, " E( | .
4.2.5. . Y " " ( , "-
)* E(), " ) 0 3. . Y ( fI X Y Z g ")( ) 0. 0( ")( ) , ) ")( ( . 0) " ( $:
23
E. Rieffel, W. Polak
M 0( = ; 0 0 = (I I)0 p1 j00i + j11i 2 ; 1 1 1 = (X I)0 p j10i + j01i 2
2 = (Y
I)0
3
3 = (Z I)0
2
;
p12 ;j10i + j01i ; p12 j00i ; j11i
M Y ")( E(). E( CONTROLLED-NOT " ) . 0 CONTROLLED-NOT 0 ")( B ; ")( ; ; 1 1 1 0 = p j00i + j11i p j00i + j10i j0i p j0i + j1i
; p12 ;j11i + j01i 2 2 ; ; 1 1 2 = p ;j10i + j01i p ;j11i + j01i 2 ; 2; 3 = p1 j00i ; j11i p1 j00i ; j10i 2 2 2
1 = p1 j10i + j01i
2
;
p12 j1i + j0i ; p12 ;j1i + j0i ; p12 j0i ; j1i
j1i j1i j0i
, , E( * ")( , )+ " . N ) j0i, . , " ( 0 3, ) j1i, | 1 2. 6 E( Y H " ) ")( ). 0 - 0 ")( H ( ")( ) ; ; 0 p12 j0i + j1i p12 p12 (j0i + j1i + p12 (j0i ; j1i) = j0i ; ; 1 p12 j1i + j0i p12 p12 (j0i ; j1i) + p12 (j0i + j1i) = j0i ; ; 2 p12 ;j1i + j0i p12 ; p12 (j0i ; j1i) + p12 (j0i + j1i) = j1i ; ; 3 p1 j0i ; j1i p1 p1 (j0i + j1i) ; p1 (j0i ; j1i) = j1i 2
2
2
2
F "$, ")( , ) 0 3 1 2.
4.2.6. % &. N! $ % " -
$, " " " ( , " ) ). 0 " ") " " , ) $ ( () ). 1 $ % ")( ." )+ E) . 19974 = . 19984 E . 1998]. 24
Y + ) ! ")( . ,
. ")( ' = aj0i + bj1i E() " " ". -" " , ) Y E( ) ")( ) ) 0 = p1 (j00i + j11i): 2 Y " )%+)% $ )) " " ")( ), " )* , " $ ) . : )%+ Y / " ")( ', "* % ) ) . : ; ' 0 = p1 aj0i (j00i + j11i) + bj1i (j00i + j11i) = 2 ; = p1 aj000i + aj011i + bj100i + bj111i 2 " Y ) ) ")( , E( | . 6 Y " Cnot I H I I " .) %: (H I I)(Cnot I)(' 0 ) = ; = (H I I)(Cnot I) p1 aj000i + aj011i + bj100i + bj111i = 2 ; = (H I I) p1 aj000i + j011i + bj110i + bj101i = 2 ; = 12 a(j000i + j011i + j100i + j111i) + b(j010i + j001i ; j110i ; j101i) = ; = 21 j00i(aj0i + bj1i) + j01i(aj1i + bj0i) + j10i(aj0i ; bj1i) + j11i(aj1i ; bj0i) : M Y ")( , ) % j00i j01i j10i j11i. ) " ")( E( " ) aj0i +bj1i aj1i +bj0i aj0i; bj1i aj1i; bj0i
25
E. Rieffel, W. Polak
. Y ) E() ) " " ( . , , Y ( ")( '. F . , " $ $ ) * " . E(, " " ( Y , , "" $ ) ")( Y 0 ")( : /" 00 aj0i + bj1i I 01 aj1i + bj0i X 10 aj0i ; bj1i Z 11 aj1i ; bj0i Y 0 )%+ ( " ) , E( * ")( Y '. M , . " )%+ " . 5. *
+ ( )* , "" " " * ( , ! " " , " " " %. , 4 , ( " ( . - " NOT (=N) * ( , "" AND (F), OR (FGF) NAND (2F-=N) " % . : , c + % " ( * " " . % ( ( , " ) )+ %( " " " " %. E , a * % ( , + % " * " . " " . 5.1.
- " ) $ ) ( + % (- ".( . 6 ) ) ( U1 U2 C) D ( j0ih0j U1 + j1ih1j U2 * ) .
CONTROLLED-NOT (--=N) * ( !, "" Cnot = j0ih0j I + j1ih1j X: 1!")( CONTROLLED-CONTROLLED-NOT 1// , 4, "* . ) : T = j0ih0j I I + j1ih1j Cnot : 26
, 1// T * ( ( () ", " "" + % * AND NOT: T j1 1 xi = j1 1 :xi T jx y 0i = jx y x ^ yi: F ) 1// * %()% " ")% ")% ). = , )%+ " * , ) 1// CONTROLLED-NOT ( . 12)
x y . ( , s | ) )% 2, c | , c0 | . ( , E" '" '" . 1996] )% ( * . " " C) (D, , "" F = j0ih0j I I + j1ih1j S S | $ , + ( S = j00ih00j + j01ih10j + j10ih01j + j11ih11j: 8 * , F T, % " " " . 6 " 6 1985], * ( " %( " " /)"$ . " " * ) " 1 % E 1997]. 0 . ), CD 1 % * ( ( " ")( . G%( " " /)"$ f m k ( * ( " " %, , )+ ) " " , " f. (m + k)-( ( Uf : jx yi ! jx y f(x)i, ( ( "%%+-FGF ( ) " )). - Uf , " (, ) %( /)"$ f. 6 , ( f(x) Uf " jxi, )*) k ) jx 0i. 0 " ") f(x) f(x) = 0, Uf Uf = I. >/ " ( Uf : jx yi ! jx y f(x)i (* )%+ (
27
E. Rieffel, W. Polak
K T F % ) " " " , " ( . 6 , ( )+ ) ( c % / * ((+ / / " ), ( + ( . E" . E" . 1995] " , Cnot ( ( " ) (. 6 * )%+ ( ( cos sin ei 0 0 e;i : ; sin cos
0 6 6 2, "* Cnot1 , ( ) ) ( " . -" () , " ( % "% )+ " . 5.2.
8 , Uf " ) %, " ) $ ? , ) : " ") Uf | . ( , " ( " ) $ , ) $ % ) . 1" ( * f(x) n ) x " Uf . 1" .//" " . 6 " "% )+ " ) . 1", ( " )%+ /)"$ ) $ . j00 : : :0i n-")( . 6 ( O{Y W 4.1.1. ) ) $
X ; jxi: p1 j00 : : :0i + j00 : : :1i + : : : + j11 : : :1i = p1 2n 2n x=0 6( k-( j0i, , ) % , )2n ;1
X X ; 1 X Uf p1 n jx 0i = p1 U jx 0i = p n jx f(x)i 2 x=0 2n x=0 f 2 x=0 2n ;1
2n ;1
2n ;1
1 < # $ #" C not #! . | . .
28
f(x) | )%+ /)"$ . : ) , " ") n ")( % ( 2n , " ( - " " , " "" * ( ." $ (9! / " . CONTROLLED-CONTROLLED-NOT 1// T, " %"$ ) : = ) $ % * ( -"( $ x y, " x = 1, y = 1: ; H j0i H j0i j0i = p1 j0i + j1i 12 (j0i + j1i) j0i = 2 ; 1 = 2 j000i + j010i + j100i + j110i :
0 T " ) $ , ( ) ) $ % ) : ; ; T H j0i H j0i j0i = 12 j000i + j010i + j100i + j111i : ) )%+)% ) $ % * "" ( $) "9%"$ "" / /)"$ . = x y x ^ y ) " (, ) ) ") ( $ , , ." , ") / /)"$ . 0 , ")( )% ) , ")( | )%+) % f. = , )+ " " , " ") * ) " ) , " ) * * ( , "" ) ) . :) %( " | . (, + %, " ) ) " " (, ( * ) ( %. O " " " () $ . , " : O )* . , . ( "% ( " (, ( )%+ ( )% ) ) , , ( ")% ( . 0 () ) 7. =* (+ f(x). ' ( 3, ) " ( ) ) f. 6. ,- .
1994 ) 0 3, ( 6 : ( )( " * : 1997]), " {
29
E. Rieffel, W. Polak
* * n- " " %. = , % +) .//" * $ . = ( .//" " " , , G G G G 1993], " ." $ ) . | . ( $ / M, %+ n log M. G% ( " ) , .//" * )+ ), ( " / " , RSA, " % *
. (. ) 3 ( %+ ( )!, () " " ( ( " . ( , "% 3, ) ( * " " /)"$ . 3 ) " ) ) $ /)"$ . M " ( ) , ) ", "" " " ( ) , /)"$ , ) " " , ( ). : " % + , " % , )* * $ M. ( " , " ) " , ) +! . = ( ) "% , " ( ) ( ( ) , " (, " ( ) ( ). 6 " ( ) , ( 3. 6.1. /#*
(+ ) ( ) )% ( . 1", ( ) ()% /)"$ r /)"$ , ) " , ), % " " 2r . 6 " ( ) (DFT, 60) ) N ) (" ) 0 2) " N, /)"$ %, ( | . $ 0 N ; 1. 6 " ( ) /)"$ r | . /)"$ , "$ " , " Nr . N r N ( ", ) () /)"$ , ) " , ), % " ", " Nr . ) ) () ( *!, ) , ( " " " Nr . E ( ) (FFT, E0) % DFT, N | " . - ( ) (QFT, -0) DFT, , "*, "" FFT, )% " . --
30
( ) ) ) " , ""
X x
g(x)jxi !
X c
G(c)jci
G(c) | . " ( ) g(x), x c )% , "" $ 0 N ; 1 ( ). N ( , "" ( ) , , ) jci, ( ( jG(c)j2. 0 " ( ) P " " /)"$ g(x) r, " c G(c)jci, G(c) )% , c " , " Nr . 1" (, " , ) % , " Nr , j Nr . =, "" )* ( , " ( ) % ( )
, " % % ), .. , "
N. , " ( " , " ( ( , " $ . - ( ) UQFT ( N = 2m ""
X 2icx UQFT : jxi ! p1m (6.1) e 2m jci: 2 c=0 6 , ( 3 ( , ( ( " ( ) .//" . 3 ", " ( ) ( 2m * " m(m2+ 1) ( . ' ) 2 . , | $ )* " ( Y H ( Hj ( ( Y , " j-) ( )), ) | $ )( ( 01 0 0 0 1 B1 0 0 0 CC Sj k = B @0 0 1 0 A 0 0 0 eik;j 2m ;1
k;j = =2k;j . ' ( ) k- j- ( ( . - ( ) * H0S0 1 : : : S0 m;1 H1 : : :Hm;3 Sm;3 m;2 Sm;3 m;1 Hm;2Sm;2 m;1 Hm;1 " ) (+ ( . N FFT ) , "" 3, (+ ( " " (.
* ( 3 1997].
31
E. Rieffel, W. Polak 6.2. - .
0 3 * )%+ , * M = 21. 1. . 0 ( a. N a c M, )* M. ) )% . 0) m () " , M 2 6 2m < 2M 2 ' ( ( " (, ( " $ , 3 /)"$ , % " , () , (
(]. F ) " , "" 5.2. f(x) = ax mod M $ 0 2m ; 1. 0) , " ( 1m X jx f(x)i: (6.2) 2 x=0 . 0 * a = 11 ( ( ). 1.". M 2 = = 441 6 29 < 882 = 2M 2, m = 9. 1" (, 14 ")( , 9 x 5 f(x), ()% ) $ (6.2). 2. , , f. - ( ) ) /)"$ % ) , . 8( " ( ) ) /)"$ f, ( , /)"$ ) * , f. 6 " , log2 M] ")( (6.2), " " f(x). 0) ) u. : ( u "" 4 ) " * ) $ . ' " ) , .) 2m ;1
C
X x
g(x)jx ui
c % " * C,
(
g(x) = 1 f(x) = u, 0 ). , , " , " ), , g(x) 6= 0, % ) ) , " ), , g(x) . /)"$ , ")% +. N ( ) " ), ( . = " * %, " " / " % " . 32
. 0 * , ) ) $ ) (6.2) 8. : . (= . 2 " 9 ( 4 ( f(x) ) ) f. 3. ! ". 8 jui ( () , .) . 0 " ( ) " %, )) 2.
UQFT :
X x
g(x)jxi !
X c
G(c)jci
F ) ), , " r /)"$ g(x), 2, " , ) " ( )
X 2m cj jj r i j
) )%, " ", " 2m =r. - r 2m , ( , m ! ( ) ( $ , " 2r .
. 2
P
x C jx 8i )x2X 2, X = fxj211x mod 21 = 8gg. " ( ) . . = . 3 (*! ) " ( ) " %, )) 2. =( , . 3 | . / " E 0( ) /)"$ , " . 2. . ) /)"$ f 2m .
33
E. Rieffel, W. Polak
. 3
4. $ . F ( ) ) v. ), " % " , " ( , " 2m=r, *m . . ) v = j 2r " j. ( ) j r () ) , . ) "+ ( 2vm (= rj ) ( , q r. 6 , (+ ) " ( ) ! " " ( , ) * ) ) . - % " , * ( ) $" , " * ( ")% ( 2vm ' " " ! * B. . 6 ) , ! ) v = 427. 0 " ") v 2m , r " () 2m .) * * ( ")% ( , * B. : )%+ ( $ * , * B, i ai pi qi "i 0 0 0 1 0:8339844 1 1 1 1 0:1990632 2 5 5 6 0:02352941 3 42 211 253 0:5 " " 6 = q2 < M 6 q3. 1" (, q = 6 " /)"$ f. 5. &' M. - ) q !, ) N" .//" " , % aq=2 + 1 aq=2 ; 1 $ (+ M. 0 , " aq=2 + 1 aq=2 ; 1 ) (+ $ M )%+. N q
34
/)"$ f(x) = ax mod M, aq = 1 mod M, " ") aq ax = ax x. N q | !, *
(aq=2 + 1)(aq=2 ; 1) = 0 mod M: : , " ") aq=2 + 1, aq=2 ; 1 % " M, aq=2 +1 aq=2 ; 1 % $ (+ M . . 0 " ") 6 ! , ( a6=2 ; 1 = 113 ; 1 = 1330, ( a6=2 +1 = 113 +1 = 1332 () ) (+ M . . =,6(21,1330)=7 =,6(21,1332)=3. 6. !' . =" ) , .) $ *
M: m 2 (1) M v ( " " ") r . (2) 0 r * j ) (+ * , . q , . (3) 3 5 ! M, "" M. (4) 0 /)"$ f(x) = ax mod M !. 3 ", ( * M " %.
6.2.7. ( ) *+ 2 * , . ," , -
2 * % ) . E E 1997] " , * (* . N "% 2, () ) $ " " " /)"$ . -* * . " , " ( ) " ) $ ( ) . /)"$ . -* . ( ) )%+ u , , / )% ) ). F . ( . 0 , "" . )* * ((+ , % ) " " ( " ) $ . 0 " ( 2nP ;1 ) , UQFT I, " C jx f(x)i ) x=0
C C0
0
X X
2n ;1 2m ;1 2ixc 2m j
x=0 c=0
e
X X X u xjf (x)=u c
e
c f(x)i
2ixc 2m j
c ui
(6.3) 35
E. Rieffel, W. Polak
u f(x). 1, ) , ) $ ) , ) 3, * u. - ( ) % " ) /)"$ gu , " ) u,
(
gu = 1 f(x) = u 0 ), ! ) " . =( , ) u " / )% ( " % ) *% ) ) ). 0( UQFT I * "" UQFT I : C
n ;1 X 2X
u2R x=0
gu (x)jx f(x)i ! C
0
n ;1 2n;1 X 2X X
u2R x=0 c=0
Gu(c)jc ui
Gu (c) | . " ( ) gu(x), R | f(x). F c 4 5 "" * . 7. 1
E " * "" " C x * * , ", )* P (x) | D. 6 ( ": " /$ ( " " /. = , ) " " / * "" " " ( $ , )* C "%+ % $D . Y " * ( , "" " " , " )* C " x " *D
( . " )") ( )* P . = , P(x0) "" /$ * P (x1) x0 6= x1.
" * /$ % " ( )* P . = , " / ) ") ) ", / " ) . ) ), "*, , )* ( (3- SAT " " /) )")) * . " , " ( % " ). = (+ ), " ) ) ", ), * " " )! | . "* )* P(xi). 6 " N . ( ) " () O(N) " P. = " * " %, "" " >, ) ) p " * ( % " O( N) 36
" P . 1" (, " > > 1996] ( .//" , %( ) ", " " " %. ," , ) " > E . 19974 E) . 19964 M" 1997]. , " ( " () ) ". 0 " ") )+ )% " " . " , )%+ ) , * * , )+ )% "* .//" "
) ". :/ . :/ . 1998] )% > " " " ) . " , ( " , * " ) " , " ! NP- * . E . E . 1998], >, " , (+ " " . " " " " ) " . N " * , " ) )+ ) ) " ( , " . *, ( ()% , " "%% " " " . N 3 " " * , * )* , "
." $ ) " , ) )")) ( % ) (, ) " " . 1 K "* ( " " . " " ) ". N " " , ! )% " . N ) "% , , "" . " , ) ) *!, . ) ) $ . : , " +! , " " .//" K. " " .//" . " $ + % . " . =, " "), " $ " " " % (% ." $ , . " " *, ( "% . Y K " " ) ", ( .//" , >, ) " . . : " " | . , " " | * ) " . . 6 , " () ( " " % ) ! " , .//" () .
37
E. Rieffel, W. Polak 7.1. - 2
Y > " . x, " " )* , ) " N. 0) n () " , 2n > N, ) Up () " , " " ")% /)"$ % P (x), %+)% )* ( ) 1). Up : jx 0i ! jx P(x)i: 0 | " , 5.2. P * xi UP " ), nP ;1 *+) ) $ % p1 n jxi 2n * x 2 x=0 , ) 0. : ., ! "
1 X jx P(x)i: (7.1) 2n x=0 :* ) . ) $ . 6 %( x0 , " P (x0) | , jx0 1i () % ) $ ) 2. 1. ". ) " p1 n ,
2 , ) ) $ x0 { 2;n. K
, ( " ). 2 " (, ) " jx0 1i, " P , %, ) " jx 0i, " P * | ) % . 0) " ( " ( , " ")( " , " P(x). 1" "" ) , )%+ ( ) , )+ ) " , ) 1. . )Pk " ) ). 2 p1 k jxi 1i, 2 i=1 k | . 6 ( . . N ")( P (x) 0, $ , ) $ % ). 2 . Y > )%+ : (1) 0 " , *+ ) $ % * xi 2 0 : : :2n ; 1]. (2) P(xi) . . (3) F ) aj ;aj " xi, P (xj ) = 1 ('//" . $ 7.1.2). >/ " ) . : (4) 0 ) ) xj , )%+ P(xj ) = 1 (- .//" 7.1.1). ) )%+ ) "" p
38
n;1
Y ) xi, "pP(xi) = 0 ( *. (5) 0 2,3,4- 4 2n . (6) : ) . E . E . 1996] $ >. , " , . ( % * ), ) " * ) " ( . , "* " , , p )+ ) " x0 , " P(x0), 8 2n $ p 2,3 4 (" 0,5. 0 4 2n $ (" * 2;n. F, p , $ ) % !. = , 2 2n $ (" ( * " 1. :)+ ) * " " , $ ) ) ) ) . 0 " $ ), * )) ) , ! " ) )) . - $ ) | . ) ( , " % + " " . 1" (, " ( " *) %, , , () ) " ) % * . : , ( ) ) ) " ( , , " . E . E . 1998] % >, " ) ( ) " $ . ' (+, ) * . > ) " ) " " " , , " "" /)"$ > 1998]. F ) ( !, > "* ", " " , " " " " % % O(log N), ) ( O(1) " " %. 0 " > * ) " "
39
E. Rieffel, W. Polak
. E . E . 1998] " , > * p ) , . * " O( N).
7.1.8. . " *. 8( )+ %
" " %, * (
p ) ( . E , ( ) O( N),
* ( .//" .; -" "$ () ", % * ) O(n) = O log(N) " . =) , ( NX ;1 i=0
ai jxii !
NX ;1 i=0
(2A ; ai )jxii
A ( aj , $ N N
02 2 BB N 2; 1 2 N : : : D=B BB N N ; 1 : : : @ : 2: : : 2: : : : :
1 N C 2 C N C C: ::: C A 2 2
::: N ; 1 1" "" DD = I, D | ) , , * ( " . 1 " ) ( .//" $ ; . ( . 0"*, * * O(n) = O log(N) " . : ) ( >, D * "" D = WRW, W | ( O{Y ( 4.), N
N
01 0 : : : 0 1 B0 ;1 0 : : :CC : R=B @0 : : : : : : 0 A 0 :::
0
;1
8( )( , D = WRW , * , R = R0 ; I, I | * , 02 0 : : : 0 1 B0 0 0 : : :CC : R0 = B (7.2) @0 : : : : : : 0 A 0 ::: 0 0
40
1 WRW = W(R0 ; I)W = WR0 W ; I. G" ,
1 02 2 2 : : : BB N2 N2 2 N CC B N N N : : :CC : WR0 W = B BB 2 : : : : : : 2 CC NA @ N2 2 2 N :::
1" (, WR0 W ; I = D.
N
N
7.1.9. . . M "* (+ )
( ) , " P(x) = 1. 0) UP " , " ( UP : nP ;1 jx bi ! jx b P (x)i. 0 UP " ) $ ji = p1 jxi (n 2
x=0
b = p ( , " " x, ". P(x) = 1 () !, b . 6 ( ) ., * X0 = fxjP (x) = 0g, X1 = fxjP(x) = 0g UP X X X X UP (j bi) = p 1n+1 UP jx 0i + jx 0i ; jx 1i ; jx 1i = 2 x2X1 x2X0 x2X1 Xx2X0 X X X jx 0 0i+ jx 0 1i; jx 1 0i; jx 1 1i = = p 1n+1 2 X0 x2X1 x2X0 x2X1 x2X X X X = p 1n+1 jx 0i + jx 1i ; jx 1i ; jx 0i = 2 x2X0 x2X1 Xx2X0 X x2X1 = p1 n jxi ; jxi b: 2 x2X0 x2X1 Y ) X1 , ( . 1 j0i ; j1i, 2
7.2. &
7.2.10. 1 2 3 { . :)+ ) ) ( O{Y , 4.1.1, , "" * . ( " . n-( ( O{Y * $ W 2n 2n . Wrs , r s )% 0 2n ; 1. < "*, Wrs = p1 n (;1)rs 2
41
E. Rieffel, W. Polak
r s . (+ ( r s. 8( . , , ; X W jri = Wrs jsi: s
0) rn;1 : : : r0 () r, sn;1 : : :s0 | s, ; ; ; W jri = H : : : H jrn;1i : : : jr0i = ; ; = p1 n j0i + (;1)rn;1 j1i : : : j0i + (;1)r0 j1i = 2 n ;1 2X s=0 X 1 =pn (;1)sn;1 rn;1 jsn;1i : : : (;1)s0 r0 js0 i == p1 n (;1)sr jsi: 2 s=0 2 2n ;1
. 4. ! "
CSP
(# $ %$).
7.2.11. 4 * 5**.
- n V = fv1 : : : vn g, " ) m X = fx1 : : : xm g, C1 : : :Cl . - * xi " vj V X. :)+ ) ! )"), . = )" 20 " U
42
)") n = 2 m = 2 x1 = 0 x2 = 1. , , !" "% "" , " ( . F ) * ) * ) . , " 1 n- ) "% % n- ., 0 | "% %, . * * ( " " . = , )" 5 (* !") )" 4, )% " ( , . ( )%+ ": v1 = 0 v1 = 1 v2 = 0 v2 = 1.
. 5. ! " -'
N ( ) , !" , + , * )% . 0 , " K " , )%+. : ) j0 : : :0i, $ !" * " ) * , ) * , " )% . : ) , 3 >, " % /)"$ ) $ , . - )). K ) K 19964 K 1998] ) $ * ) !". < ( (, , "" ) ) C D * . 6! +7 8: 1. :)+ ) ( , " ) ) * " ) * . G%( ) , ) * " * .. G%( ) , . * " ). * , " * . . . ( . )" !"
43
E. Rieffel, W. Polak
. * ).
= ( (
p j000i ! 1= 3(j001i + j010i + j100i) p j001i ! 1= 3(j011i + j110i + j101i)
:::
"" $ . ( ("" (, ( " * )
00 B p13 B B B B p13 B B B 0 B B B B p12 B B B B 0 B B B @0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1 0 0 0 0 0 0
p12 p12 0 0 0 0 0 0
p13 0 0
0 0
p12 0
0 0 0 p1 2 1 0 p 2 1 0
0 0 0 0 0 0 0 0 0 1 1 0
1 CC CC CC CC CC CC CC 0C CC CC A
- * % . ( ) . K K 1996] /", ( * ( )%+ ") ) $ Um " $ M * ( * M = UDV T , D | $, U V ) $. 0 UM = UV T ( *)% " M ) )% $). 0 " ") Um ( " " M, Um () ( "" M, " ( () ) ) * " ) * . 44
6! +7 8: 2. . ) K 1998] ( O{ Y . K , () $ /) WDW, W . ( O{ Y , D |
$, . " * . K . D, " " ) * ) * " ) ) * ). . ) Wrs = p1 (;1)jrsj = p1 (;1)jr\sj N N ) 7.2.1. :* +7 ;88< ! . 8( ) * , " )% , K ) / * , , " ) ) . 0 . ) , ! * , " ( % C D * ) * , ) , ! * C D * ) . "" ( () ) (
( .//" . ( % / C D * , " " "+ ) ) * , + C D C D * . ' / * ( ( ), "" . > (7.1.2) " P, " , ) ) . 6) * , , ( / C D * , ", ( " ) ) ) * C D * ( ). * ) . F- , "+ , "%+ ) / , , ) )
). E " " ( ." , * ": $ " ! * ." $ , , ) ) ". F " () ( " " % ) !
" , .//" () *. 8. $ (
F$ " | (, )%+ % " " %. $, %+ ")( , )+ " , ) " , () ") (, * ) . : : 1998] $ , " %( * 7 " ( , ( ( 3 , *+ 130 . , ", ( " ""$ (" * " , ! * )+ 3 ( .
45
E. Rieffel, W. Polak
= , " ""$ (" * " ")%, * ( ()* (". =, ", " ""$ (" *, , " . - ""$ (" * " " . 1) * % " " . , ", " , . ) , " (" !-" * . 8.1. 4 (
E) , (" % ) " ")( ")*%+ . * (" "* ")( , () "( $ : (I) ( ) (" ), (X) ( ), (Z)(/ ("), (Y ) ( / ("). 1" (, (+ * ")( (" " ( : e1 I + e2 X + e3 Y + e4 Z. ")*%+ () ")( * % ji ! (e1 I
+ e2 X + e3 Y + e4 Z)ji =
X i
ei Ei ji:
6 ( " (" " * *% "( $ ) (" Ei. ' % (" ")( fI X Y Z g ( (+ ")( (". %( ), (") *P "" ei Ei. i
8.2. -
" " ), "" )%+ " " ( (" Ei ( C, " (* n ( (n + k)( " , " * ( (" Sc , " (*; (n + k)-( " " ; i "" ) (" Ei,
i = Sc Ei(C(x)) . N y = Ej C(x) " "" ) (" , Sc (y) * C(x), ES;1C(y) (y) = C(x). 1 " ). - , * ( ) $ ( ". , (" * ( "( $ "" ) (" Ei . 0 . " , " " ! * *. M "" )%+ " C ( (" Sc . 1" (, n-( " ji " (n+k)-( " j'i = C ji. 46
P
6 ) , " " % i ei Ei j'i " "( $ "" ) (" Ei. 0 j'i * )%+ ( (1) 0 " (" Sc " ") % ( " j0i ")( SC
X i
ei Eij'i
j0i =
X i
ei Eij'i jii :
- ) $ % (" ( " ) i). (2) F " ) jii ) . ' ")% ( ))%) ) i0 " ) Ei0 j' i0 i: (3) 0 ( ( (" Ei;1 " n + k 0 ")( Ei0 j' i0 i, ( ) j'i. M , (2) ) $ " " (" " ) )% ("). : , (3) ( " ( ( (" . 8.3. (
"" )%+ " C, (*%+ j0i ! j000i j1i ! j111i. : + % C * "" (") ")( E = fI I I X I I I X I I I X g: , ("
S : jx0 x1 x2 0 0 0i ! jx0 x1 x2 x0 xorx1 x0 xorx2 x1 xorx2i )%+ ""$ (" , ( $ * ( , . Ei = Ei;1 ). F ( 0 " (" -"$ (" | j000i | 0 j110i X I I 1 j101i I X I 2 j011i I I X " ( ji = p1 (j0i ; j1i), " ) )%+ 2 ( ; C ji = j'i = p1 j000i ; j111i 2
47
E. Rieffel, W. Polak
(")
E = 54 X I I + 53 I X I: : ("
4
E j'i = 5 X I I + 35 I X I
!
1 p (j000i ; j111i) = 2
!
= 54 X I I + 35 I X I p1 (j000i ; j111i) = 2 ; ; = p4 X I I j000i ; j111i + p3 I X I j000i ; j111i; = 5 2 5 2 ; ; = p4 j100i ; j011i + p3 ; j010i ; j101i 5 2 5 2
;
M " * % E j'i j000i " (" :
; SC ((E j'i) j000i) = SC p4 j100000i ; j011000i + p3 (j010000i ; j101000i = 5 2 5 2 ; ; 4 3 = p j100110i ; j011110i + p j010101i ; j101101i 5 2 5 2 ; ; 4 = p j100i ; j011i j110i + p3 j010i ; j101i j101i: 5 2 5 2 F ( . , ) ( j110i, ( j101i. O * ) , "" 1; p j100i ; j011i j110i: 2 F ( ) (" ), " . , (" * ( " ! ( ( (" X I I, )%+ ) % j110i. 1 ) 1; p j000i ; j111i = C ji = j'i: 2 9.
- | . , ( " , * . (" ! " " % | * ) $ . - 48
) / " $ "% $ * . 0 ( , () !, / ( , ) ) . < ( * + ( " ) $ , ) %+ " ) % ( )" . < " "- " .//", " , "" ." $ , ) ,
" ( , " % " *.1 = , " * ( ( , %( " " * ( " " . = + + . , .. ." $ , * ( " " . 1" ( . < 3 * * , " ) ( " . Y 3, )%+ " " %, ( ! " / " . Y ", ( >, * ( ) " , . /" ", " " % + " " . = , > , )+ ) * ( ( ) ". < " % " , * K. :)+ ) +! " " " , " . 6* < " 6* < " 1998] $ % 2- ( " " %, + " * , ( /)"$ . > > 1998] ( .//" $" " * . 0* >, : 1 * " ( . = . , !-" +! " , * " " % " ". :* " , " ( ." $ ) " ) , " /" $ ? ' ". : / " * , " ( ) ( " . 6 + ! ." )% " " " , ( * *. Y(1
# . H! $ ! , ! #"
, !" (, ! . >., , D.Aharonov, A. Kitaev, N. Nisan ?Quantum Circuits with Mixed States@ (29806029
http://xxx.itep.ru/quant-ph). | . .
49
E. Rieffel, W. Polak
G Y( G 1998] " , * (
* ( * NP- " " % . 0 ) , . , | . /) / " $ , .//" )% " / " . O " " " % % " * . = , " BQP | . ( ", (( " 1 % " %. 6 , ( " * , " . 8 , * " , ) )%+)% /$ % E 1997] ) 1998]. -) 1998] * ) ( " * . -, " )+ )% * / " (, " )* () . E . () " " (%+ " " %. 6" , .. "* " - ")*%+ | "% (. C " ""$ (" ( ) " ( , ( " , / ". < )* " ""$ (". 6 * ( " ""$ (" ) " (" () ) "* * " " %, "" ) " ( . 9.1. ' # #
,( ' % : C- D : 1998] / ". < " ) .) %, ( " " . , ( * ) /$ " , "* % ""$ " (", ( ! . 1 ( / " , " ( " " %. ' ( % 1997 . ( (, , " . 1"* ". 6) , ( , ( , * E 1997]. ) * 1996] * ") "$ -' , 1985], " * ) %. "* ( )* " , " ( /$ . - - O :" -) $ ! ' O -) 1998] (* 50
/ " CMathematicaD, " )% " " , , 3. *) CSIAM Journal of ComputingD "( 1997 * 6 "$ " , "% "$ , " )* E . 1997] E $ 1997] 3 1997] : 1997]. E )% , ) (, "* ) , * G Y :1 http://xxx.lanl.gov/archive/quant-ph. : " " " ))% /$ % " * $ F: http://www.pocs.com/qc.html. 6 #
D. S. Abrams and S. Lloyd, 1998. Nonlinear quantum mechanics implies polynonual-
time solution for NP-complete and #p problems. Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9801041.
A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. H. Margolus, P. W. Shop, T. Sleator, J. A. Smolin, and H. Weinfurter, 1995. Elementary gates for quan-
tum computation. Physical Review A 52, 5, 3457{3467. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9503016 and at http://vesta.physics.ucla.edu/cgi-bin/uncompress-ps-cgi?torgatsl.ps. C. H. Bennett, 1992. Quantum cryptography using any two nonorthogonal states. Physical Review Letters 68. C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani, 1997. Strengths and weaknesses of quantum computing. Society for Industrial and Applied Mathematics Journal on Computing 26, 5, 1510{1523. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9701001. C. H. Bennett and G. Brassard, 1987. Quantum public key distribution reinvented. SIGACTN: SIGACT News (ACM Special Interest Group on Automata and ComputabHity Theory) 18. C. H. Bennett, G. Brassard, A. K. Andekert, 1992. Quantum cryptography. Scientic American 267,4 (Oct.), 50. E. Bernstein and U. V. Vazirani, 1997. Quantum complexity theory. Society for Industrial and Applied Mathematics Journal on Computing 26, 5, 1411{1473. A preliminary version of this paper appeared in the Proceedings of the 25th Association for Computing Machinery Symposium on the Theory of Computing. O , " , !" # # ( http://xxx.itep.ru/quant-ph. | . . 1
51
E. Rieffel, W. Polak
Berthiaume. 1997. Quantum computation. In Alan L. Selman, Editor, Complexity
Theory Retrospective, In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, Volume 2. D. Biron, O. Biham, E. Biham, M. Grassel and D. A. Lidar 1998. Generalized grover search algorithm for arbitrary initial amplitude distribution. Los Alamos Physics Preprint Archive. http://xxx.lanl.gov/abs/quant-ph/9801066. D. Boschi, S. Branca, F. D. Martini, L. Hardy and S. Popescu, 1998. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolski-rosen channels. Physical Review Letters 80, 1121{1125. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Elbl, H. Weinfurter, A. Andzeilinger, 1997. Experimental quantum teleportation. Nature 390, 575. M. Boyer, G. Brassard, P. Hoyer and A. Tapp, 1996. Tight bounds on quantum search. In Proceedings of the Workshop on Physics of Computation: PhysComp '96 (Los Alamitos, CA, 1996). Institute of Electrical and Electronic Engineers Computer Society Press. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9605034. G. Brassard, P. Hoyer and A. Tapp, 1998. Quantum counting. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9805082. N. J. Cerf, L. K. Grover and C. P. Williams, 1998. Nested quantum search and np-complete problems. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9806078. J. I. Cirac and P. Zoller, 1995. Quantum computations with cold trapped ions. Physical Review Letters 74, 4091{4094. D. G. Cory, W. Mass, M. Price, , E. Knill, R. La-amme, W. H. Zurek, T. P. Havel and S. S. Somaroo, 1998. Experimental quantum error correction. Preprint at Los
Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9802018. D. Deutsch, 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Ser. A A400, 97{117. D. Deutsch and R. Jozsa, 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London Ser. A A439, 553{558. P. Dirac, 1958. The Principles of Quantum Mechanics (4th ed.). Oxford University Press. A. K. Ekert, J. Rarity, P. Tapster and G. Palma, 1992. Practical quantum cryptography based on two-photon interferometry. Physical Review Letters 69. R. Feynman, 1982. Simulating physics with computers. International Journal of Theoretical Physics 21, 6&7, 467{488. R. Feynman, 1985. Quantum mechanical computers. Optics News 11. Also in Foundations of Physics, 16(6) : 507{531, 1986.
52
R. Feynman, 1996. In A. J. Hey and R.W.Allen Eds., Feynman Lectures on Compu-
tation. Addison-Wesley:
R. P. Feynman, R. B. Leighton and M. Sands, 1965. Lectures on Physics, Vol. III.
Addison-Wesley.
N. A. Gershenfeld and I. L. Chuang, 1997. Bulk spin resonance quantum computing.
Science 275, 350{356.
G. Greenstein and A. G. Zajonc, 1997. The Quantum Challenge. Jones and Bartlett
Publishers, Sudbury, Mass. L. K. Grover, 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, Pennsylvania, 22{24 May 1996), pp. 212{219. L. K. Grover, 1998. A framework for fast quantum mechanical algorithms. Proceedings of the 30th annual ACM symposium on the theory of computing, 53{62. Preprint at Los Alamos Physics Preprint Archive, http: //xxx.lanl.g6v/abs/quant-ph/9711043. G. H. Hardy, and E. M. Wright, 1979. An Introduction to the Theory of Numbers. Oxford University Press. T. Hogg, 1996. Quantum computing and phase transitions in combinatorial search. Journal of Articial Intelligence Research 4, 91{128. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9508012, T. Hogg, 1998. Highly structured searches with quantum computers. Physical Review Letters 80, 2473{2473. R. J. Hughes, W. T. Buttler, P. G. Kwiat, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C.G.Peterson, 1999. Practical quantum cryptography for secure
free-space communications. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9905009.
R. J. Hughes, W. T. Buttler, P. G. Kwiat, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson and C. M. Simmons, 1997. Secure communications using quan-
tum cryptography. In S. P. Hotaling and A. R.Pirich Eds., Photonic Quantum Computing, Volume 3076 (1997), pp. 2{11. T. A. Hungerford, 1974. Algebra. Springer Verlag, New York, Heidelberg, Berlin. J. A. Jones and M. Mosca, 1998. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. Journal of Chemical Physics 109, 5, 1648{1653. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9801027. R. La-amme, E. Knill, W. Zurek, P. Catasti and S. Mariappan, 1997. NMR GHZ. Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9709025. A. Lenstra and H. Lenstra, Eds. 1993. The Development of the Number Field Sieve, Volume 1554 of Lecture Notes in Mathematics. Springer Verlag.
53
E. Rieffel, W. Polak
R. L. Libo., 1997. Introductory Quantum Mechanics (3rd edition). Addison-Wesley,
Reading. Mass.
H.-K. Lo and H. F. Chau, 1999. Unconditional security of quantum key distribution
over arbitrarily long distances. Science 283, 2050{2056. D. Mayers, 1998. Unconditional security in quantum cryptography. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9802025. M. A. Nielsen, E. Knill and R. La-amme, 1998. Complete quantum teleportation using nuclear magnetic resonance. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9811020. L. J. Schulman and U. Vazirani, 1998. Scalable NMR quantum computation. Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9804060. P. W. Shor, 1994. Algorithms for quantum computation: Discrete log and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Nov. 1994). pp. 124{134. Institute of Electrical and Electronic Engineers Computer Society Press, ftp://netlib.att.com/netlib/att/math/shor/quantum.algorithms.ps.Z. P. W. Shor, 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Society for Industrial and Applied Mathematics Journal on Computing 26, 5, 1484{1509. Expanded version of Shor 1994]. D. R. Simon, 1997. On the power of quantum computation. Society for Industrial and Applied Mathematics Journal on Computing 26, 5, 1474{141483. A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium on Foundations of Computer Science. A. Steane, 1996. The ion trap quantum information processor. Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9608011. A. Steane, 1998. Quantum computing. Reports on Progress in Physics 61, 2, 117{173. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9708022. B. M. Terhal and J. A. Smolin, 1997. Single quantum querying of a database. Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9705041. L. M. K. Vandersypen, C. Y. Yannoni, M. H. Sherwood and I. L. Chuang, 1999. Realization of eective pure states for bulk quantum computation. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lanl.gov/abs/quant-ph/9905041. V. Vedral, A. Barenco and A. K. Ekert, 1996. Quantum networks for elementary arithmetic operations. Physical Review A. Preprint at Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9511018. 54
J. Watrous, 1998. Relationships between quantum and classical space-bounded com-
plexity classes. In Thirteenth Annual IEEE Conference on Computational Complexity (June 1998). C. P. Williams and S. H. Clearwater, 1998. Explorations in Quantum Computing. Telos, Springer-VerIag. W. K. Wootters and W. H. Zurek, 1982. A single quantum cannot be cloned. Nature 299, 802. C. Alka, 1997. Grover's quantum searching algorithm is optimal. Los Alamos Physics Preprint Archive, http://xxx.lani.gov/abs/quant-ph/9711070. 7-
, ( ( ( 1 K - <" ( " " + . . < "* ( G -( ), 6 ) > (), G) >), =) K , ) 0), <") /% ." , * , ( " " . F " ( % ( ) " FXPAL, " .)
* ) (). " ,. 8
1 () n- k- " nk- ". : , A B % ( n- k- " , A B 1 ( nk- " . 0 ( " . ( ( . K/ 1974]). 6 $ () " " ( " , ( ! . 6 $ A B C D U, " u x y " a b % )%+ ) : (A B)(C D) = AC BD (A B)(x y) = Ax By (x + y) u = x u + y u u (x + y) = u x + u y A Bax by = ab(x A Uy) B U C D U = C U DU 1
T .
55
E. Rieffel, W. Polak
, " a b c d a b aU bU c d U = cU dU : - " * () , .. (A B) = A B < $ U ) , $, * , ( " : U U = I. 1 " " $ ) , " , " "* $ . ) c % " . 0) U = A1 A2 : : :An . 1 $ U ) , Ai Ai = ki I i ki = 1. U U = (A1 A2 : : : An)(A1 A2 : : : An ) = = A1 A1 A2 A2 : : : An An = = k1 I : : :knI = I "* I * $ )%+ . = , () " )%+ : (a0 j0i + b0j1i) (a1j0i + b1j1i) = = (a0 j0i a1j0i) + (b0j1i a1 j0i) + (a0 j0i b1 j1i) + (b0 j1i b1j1i) = = a0 a1((j0i j0i) + b0a1 (j1i j0i) + a0b1 (j0i j1i) + b0 b1(j1i j1i) = = a0 a1(j00i + b0 a1j10i + a0 b1j01i) + a0 b1j11i . 9 - .
(+ ), " r 2m , v, 4- 3, ( % () ( " " ") ), m m 2 2 ") r , j r . 7 % r v. 3 ", ( % v ) m 1 2 (, 2 j r . 1" (,
2m 1 v ; j r < 2
" j, ") ) v j 1 2m ; r < 2 2m < 2M1 2 : 56
0 $ * ) ) ( qp pq0 , , M, :
p p0 pq0 ; p0q 1 q ; q0 = qq0 > M 2 :
1" ( )+ ), " , ( pq q < M, " 2vm ; pq < 1 2 . ( ), " v ) M
( r . ( () rj . N ( M, .. ) ( 1 2 2vm , * ( ) ./" ( + % M * ( ")% ( 2vm . F ) 1 2
m j2 ,
h i a0 = 2vm
0 = 2vm ; a0 h i an = 1; 1
n = 1; 1 ; an n n p0 = a0 p1 = a1 a0 + 1 pn = anpn;1 + pn;2 q0 = 1 q1 = a1 qn = an qn;1 + qn;2
)% ( pqnn ")%, qn < M 6 qn+1. 6" . . %( " . ( ), " 2vm ) ( M1 2 jr , " 1r , ( , )-
)+ $ ), rj , . ". , M. < q ) ( " ) , " () , " j r | .
57