51 downloads
165 Views
461KB Size
Report
This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
Report copyright / DMCA form
!" # $ ! "
!"# $" $%"& !'& (& ')* +,- ! . $+ /"%"# $0 /$') 1 ( 21+ ! ' -* " 0+'34 5+"'6 "&7 #) 4 8 59 4 4 - $%"& 1"- ' $:"*7 #" (-; /"%"# $( /$') 4 < 1%'" ! ( (0" + "# $" +% ! '- $+ 2( ("# $"* '"%37 &=" & $ !* ( 7 "%#) (& ')4 5 # & 1 + > "? $/ !+- !"// + :"')-; " " 0+')-; + "* @ (& 04 A1+$' B C4
D E4 ( +"# $" 1+"'6 "& 1+ ! ' 0 " 0+' 4444444444444 F -#"' " 1'=! * 444444444444444444444444444444444444444444 F -#"' " !'"- !0" 4444444444444444444444444444444444444444 G -#"' " ,H ( 1(=)? 1+ ! ' 0 " 0+' 444 .. 5'=!) 1 +;" += "& 444444444444444444444444444444 . I4 ;"# $" 1+"'6 "& 1+ ! ' 0 " 0+' 4444444444444 .I !+!0 +6& 444444444444444444444444444444444 .I +!"- : + &6 " 4444444444444444444444444444444444 .I , 1 + ( * "'- 444444444444444444444444444444444444444 F 9" ++ 44444444444444444444444444444444444444444444444444444444 J
8◦
% &' ( )
- % (7 # $ 1&"? 1+ ! ' 0 " 0+' 1+"!" %! # ;6! "" 1'=!" $+"'" ** +1 :"" A(4 %!# .C4 $7 1+ !'" * + , y = f (x) 0 f (x) [a, b]
b S=
A.FC
f (x) dx. a
D = {(x, y)
y
6
a x b, y = f (x) < 0}
D∗ D b SD = SD ∗ =
y = −f (x)
D∗
b (−f (x)) dx = −
a
f (x) dx.
-
O a
b x D
a
y = f (x)
D = {(x, y) : a x b,
f (x) y g(x)}
0 f (x) y g(x) ! "
" "
g(x) f (x)
y
6
y = g(x) D y = f (x) a
O
b
-
x
# b SD =
b g(x) dx −
a
b f (x) dx =
a
A.JC
[g(x) − f (x)] dx. a
$ f (x) %! & ! % ' y = g(x)+c y = f (x)+c c ( % f (x) + c 0 % x ∈ [a, b] y
y
6
6
y = g(x) D∗ D O y = f (x) b
a
-
x
a
b
O
-
x
) D∗ % D * b SD = SD ∗ =
b [g(x) + c − f (x) − c] dx =
a
[g(x) − f (x)] dx. a
- f (x) % ! [a, b]
! [a, b] Ox y = f (x) % % b S=
|f (x)| dx. a
#
b f (x) dx
+
a
&" + Ox b
a
6
S3
S1 f (x) dx = S1 − S2 + S3 − S4 .
a
y
S2
-
S4 b x
(+"( $+? /$:"? r = r(ϕ)7 1+ ! ' ? [α, β]4 ! ( #")7 # r " ϕ K 1'&+- $+!"- #$"4 0! '?,( ϕ ∈ [α, β] r = r(ϕ ) "7 %#"7 #$ M (ϕ , r )7 0! ϕ 7 r K 1'&+- $+!"- #$"4 '" ϕ ,! ( &)&7 21+, 0&3 ) [α, β]7 1 + ( & #$ M 1"> $+? $+"? AB 7 %!? + " ( r = r(ϕ)4 0
0
0
0
0
0
0
0
. +/ , ! %
% % ϕ = α ϕ = β AB ! %"
" r = r(ϕ) α ϕ β B
r = r(ϕ) A β α
-
x
O
1+ !'" ' !?=& * +
% r(ϕ) 0 [α, β]
% % S
1 = 2
β
A.@C
r2 (ϕ) dϕ.
α
%,) ( ) [α, β] 1+"%')-( ,+%( n # * α = ϕ < ϕ < ... < ϕ < ϕ < . . . < ϕ = β 4 5+ ! ( '#" ϕ = ϕ 7 k = 1, . . . , n − 14 0! ) $+"'" *-* $+ +%,) & n L' ( +-; $+"'" *-; $+7 1'=!) $+-; 1+",'" 6 + 1'=!" $+00 $+7 0+"# 0 '#(" ϕ = ϕ 7 - ! 0
1
k−1
k
n
k
k−1
" !0* $+6" r = r(θ )7 θ K 1+"%')& #$ 0( , ϕ ]4 ϕ 5'=!) L' ( +0 $+" '" *0 $+ ,! 1+" 1 r (θ )∆ϕ 7 ,'"6 +&)& 2 θ ∆ϕ = ϕ − ϕ 4 $"( ,+%(7 r(θ C " + ?=& 1'=!)
ϕ = ϕk [ϕk−1
k
k
k
k
2
O
k ∆ϕk
k
k
k
k
k
k−1
1 2 S≈ r (θk ) · ∆ϕk . 2 n
-
ϕk−1
< + ( # 7 # ( ( )> ∆ϕ 4 ,%#"( λ = max ∆ϕ " +(+"(
k=1
k
k
1kn
1 2 σ= r (θk ) · ∆ϕk . 2 n
k=1
# "!7 # σ ) " 0+')& ((7 ' & !'& /$:"" 12 r (ϕ) " "' 1+ +-" r(ϕ) [α, β] L " 0+')& (( "( $ #-* 1+ ! ' 1+" λ → 07 %"&="* " +%," "& 0( [α, β] 1 #"7 " -,+ # $ θ M + 2 r (ϕ) dϕ4 ' ! ')7 $# ') 2
β
2
k
α
S
# " + ,') !$%)4
1 = 2
β
r2 (ϕ) dϕ,
α
%% &' '
5) 1'$& $+"& AB %! + " ( y = f (x)7 x ∈ [a, b] " f (x) /$:"& 1+ +-& [a, b]4 %,) ( [a, b] 1+"%') n # * #$(" x 8 a = x < x < < x < . . . < x = b4 5+ ! ( 1+&(- x = x 7 k = 1, . . . , n − 14 ... < x k
k−1
k
n
k
0
1
5+" L( !0 AB +%,) & n # * #$(" A = M , M , . . . , M 7 0
y6
Mrn = B
Mk−1Mk
1+' "" A $ B4 !""( L" #$" + %$(" 1+&(-; " 1'#"( '(? '""? M M . . . M 4 ,%#"( !'" L* '(* # + % L 7 !'" !0 % # + % ∆ 7 λ = max ∆ 4 0
A = M0 r
xk−1 xk
b = xk
k−1
Mk , . . . , Mn = B
M1
O a = x0
1
-
x
1
n
n
k
1kn
k
. +0 , % AB ! % %%
" " + AB λ → 0 . ! !
LAB
A.GC
LAB = lim Ln . λ→0
* + % AB ! y = f (x) f (x) f (x)
[a, b] AB % % % %% LAB
b = 1 + [f (x)]2 dx.
A.EC
a
%,) ( + %$ [a, b] 1+"%') n # *7 0! AB +%,) & n # * #$(" M (x , f (x ))7 k = 1, 2, . . . , n4 ( +"( '(? '""? M M . . . M M . . . M 4 !'" - !
k
0
Ln =
n k=1
∆k =
5 + ( 90+6
1
k−1
k
k
k
n
n
(xk − xk−1 )2 + [f (xk ) − f (xk−1 )]2 .
k=1
f (xk ) − f (xk−1 ) = f (ξk )∆xk ,
∆xk = xk − xk−1 ,
ξk ∈ [xk−1 , xk ],
n n 2 2 (∆xk ) + (f (ξk )∆xk ) = 1 + [f (ξk )]2 · ∆xk . Ln = k=1
k=1
5' ! -+6 " &'& & " 0+')* ((* !'& 1+ +- *7 7 ' ! ')7 " " 0+"+ (* [a, b] /$:"" 1 + [f (x)] 4 ?! - $ 7 # +(+" (& $+"& &'& & 1+&('& (* " !'" -#"'& & 1 /+('
LAB
2
b = lim Ln = 1 + [f (x)]2 dx, λ→0
a
# " + ,') !$%)4
AB ! ⎧ ⎨ x = x(t)
,
⎩ y = y(t)
α t β;
A(x(α), y(α));
B(x(β), y(β)).
x(t) y(t)
/01 & ! LAB
[α, β]
'
b = 1 + [y (x)]2 dx. a
# ! " y (t) dy = 2 dx = x (t) dt dx
x (t)
β LAB =
α
y (t) 1+ x (t)
LAB
2
x = x(t)
y (x) =
β · x (t) dt = [x (t)]2 + [y (t)]2 dt, α
β [x (t)]2 + [y (t)]2 dt. =
A.IC
α
% AB ! % %"
"
r = r(ϕ) ϕ ∈ [α, β]
! +
3 & !
⎧ ⎪ ⎨ x = r(ϕ) cos ϕ ⎪ ⎩ y = r(ϕ) sin ϕ
,
ϕ ∈ [α, β].
' ! /41 LAB
β = r2 (ϕ) + [r (ϕ)]2 dϕ.
AC
α
⎧ ⎨ x = ϕ(t)
, t ∈ [α, β]4 (+"( !0 AB7 %!? + "&(" ⎩ y = ψ(t) 5) /$:"" ϕ(t)7 ψ(t) 1+ +-!"// + :"+ (- [α, β]4 -, + ( $+? 1 + ( ? #$ M ∈ AB4 * %# " 1+( + t4 '" 1 + ( * !0" AM ,%#"( L(t) " 0' /+ (' A.IC t L(t) = ϕ 2 (τ ) + ψ 2 (τ ) dτ. α
$ $$ 1!" 0+')& /$:"& 1+ +-7 L(t)7 $$ " 0+' 1 + ( -( +;"( 1+ ! '(7 ) /$:"& !"// + :"+ (& " L (t) =
ϕ 2 (t) + ψ 2 (t).
'" L2 (t) = ϕ2 (t) + ψ 2 (t) =⇒ [L (t) dt]2 = [ϕ (t) dt]2 + [ψ (t) dt]2 =⇒ =⇒ dL2 = dϕ2 + dψ 2
"'" 1
dϕ dL
2
+
dψ dL
2
A.C
= 1.
$% + !'& 1'$"; !0 +1++& & " 1++ - !0"8 ⎧ ⎪ ⎪ ⎪ ⎨ x = ϕ(t)
y = ψ(t) ⎪ ⎪ ⎪ ⎩ z = g(t),
t ∈ [α, β].
'" /$:"" ϕ(t)7 ψ(t)7 g(t) 1+ +-!"// + :"+ (- [α, β]7 β L= ϕ2 (t) + ψ 2 (t) + g 2 (t) dt. α
%%% &' 23 (4
!
" #
(+"( $+ ' T 4 %)( ( 1+"%') x " 1+ ! ( 1'$)7 1 +1 !"$'&+ " Ox4 # "" 1'#"( 1'$? /"0+4 5+ !1'6"(7 # 1'=!) L* /"0+- S(x) ( "% " /$:"& S(x) 1+ +- 0( [a, b]4 *! ( ,H ( L0 ' T 4 %,) ( 0( [a, b] 1+"%') n # * a = x < x < . . . < < x < . . . < x 4 N + % $6!? #$ ! ' "& x 1+ ! ( 1'$) x 1 +1 !"$'&+? " Ox4 5+" L( ' T +%,) & 1+ ! ' - L' ( +- '"7 -#"'"( 1+",'"6 ,H ( V !0 '&4 '& L0 -, + ( 1+"%')? #$ ξ ∈ [x , x ] " 1+ ! ( # + % L #$ 1'$)7 1 +1 !"$'&+? " Ox4 5'=!) 1'$* /" 0+-7 1'# * # ""7 + S(ξ )4 ( "( 1 +) L' ( +-* '* :"'"!+( " (7 1'=!) $+0 ) S(ξ )7 " -* ∆x = x − x 4 0! V ≈ S(ξ )∆x "7 ' ! ')7 0
k−1
k
n
1
k
k
k
k−1
k
k
k
k
k
k−1
k
k
V ≈
k
n
S(ξk )∆xk .
k=1
5'# & (( )7 # "!7 " 0+')& ((7 ' & !'& 1+ +-* /$:"" S(x)7 x ∈ [a, b]4 ' ! ') L " 0+')& (( "( $ #-* 1+ ! ' 1+" λ = max ∆x → 07 %"&="* " 1, +%," "& [a, b] " -,+ # $ ξ 4 $7 $# ') k
k
b V =
S(x) dx. a
AC
$ % #
5) /$:"& y = f (x) 1+ +- " +": ') [a, b]4 - #"'"( ,H ( '7 1'# 0 + %') += "& $+"*7 %!* + " ( y = f (x) $+0 " Ox4 # "!7 # L %!# &'& & #-( '# ( 6 +(+ * 14. %!#"4 y *" ')7 1+ !& # + % y = f (x) 1+"%')? #$ x ∈ [a, b] # " 1'$)? 1 +1 !" $'&+* " Ox7 (- 1'#"( b O a x $+07 +!" $+0 + f (x) "7 %#"7 1'=!) L0 # "& S(x) = πf (x)4 $"( ,+%(7 "1')%& /+(' AC7 1'#"( V = π f (x) dx. AC 6
-
U
2
b
2
Ox
a
1 '0"# (6 1'#") /+(' !'& -#"'
( ' += "& $+0 " Ox8
d
VOy = π
x2 (y) dy.
"& ,H AFC
c
%5 ( 6 (
(+"( 1 +;)7 ,+%? += " ( $+"* y = f (x) A/$:"& y = f (x) 0 1+ +-!"// + :"+ (& [a, b]C $+0 " Ox4 *! ( 1'=!) 1 +;" += "&4 #' -&"(7 # ,! ( 1"() 1! 1'=!)? 1 +;" += "& '4 %,) ( 0( [a, b] 1+"%')-( ,+%( n # * a = x0 < x1 < . . . < xk−1 < xk < . . . < xn = b.
y6
Mn
Mk
6!* #$ x M #$ M (x , f (x )) $+"*4 !"" #$" M 7 1'#"( ' (?7 1"? !? $+" x x O a b x ?4 (+"( !'& 1+- ! % '(* M M 4 5+" += y "" 0 $+0 " Ox 1'#"( M ∆ M ∆y # -* $7 1'=!) 1 +;" ∆x $+0 + 2π y 2+ y ∆ 7 0! ∆ K !'" + %$ M M 4 N x x x O + % P ,%#"( (( 1'=! * 1 +; * ; $ Mk−1
k
0
k
k
k
k
-
k−1
k
k−1
k
6
k
k
k−1
k
k−1
k
k
-
k−1
k
k−1
k
k
k
n
Pn =
n
2π
k=1
yk−1 + yk · ∆k . 2
. +7 Pn
λ = max ∆xk → 0 ! + " % 1kn
! P
AJC
P = lim Pn . λ→0
* + - % y = f (x)
[a, b] " % P b P = 2π
% %
f (x) 1 + [f (x)]2 dx.
A@C
a
- !
"( P
%,) ( [a, b] 1+"%') n # *4 0' AJC
n
Pn = 2π
n yk−1 + yk k=1
2
∆k = 2π
n f (xk−1 ) + f (xk ) k=1
2
∆k .
# "! ∆k = (∆xk )2 + (∆yk )2 =
1+
1')% (& + (* 90+68
∆yk ∆xk
2
· ∆xk .
∆yk = f (xk ) − f (xk−1 ) = f (ξk )(xk − xk−1 ) = f (ξk ) · ∆xk ,
0! ∆k =
$"( ,+%(
1 + (f (ξk ))2 · ∆xk .
n f (xk−1 ) + f (xk ) Pn = 2π · 1 + [f (ξk )]2 · ∆xk 2
"'"
k=1
Pn = 2π
n f (xk−1 ) − f (ξk ) 2
k=1
+
ξk ∈ [xk−1 , xk ].
n f (xk ) − f (ξk )
2
k=1
1 + [f (ξk )]2 · ∆xk +
1 + [f (ξk )]2 · ∆xk +
n
f (ξk ) 1 + [f (ξk )]2 · ∆xk
.
k=1
# "!7 # 1' ! '0 ( ) " 0+')& ((7 ' & !'& /$:"" 2πf (x) · 1 + [f (x)] 4 5$6 (7 # 1 +- ! '0 (-; + (&& $ '? 1+" λ → 04 $ $$f (x) 1+ +- [a, b]7 0+"# ( "7 ' ! ')7 1 + [f (ξ )] < M 4 $ $$ f (x) 1+ +- [a, b]7 " +( + 1+ +- (7 " 1L( !'& ∀ ε > 0 = δ = δ(ε) $ 7 # |f (x ) − f (x )| < ε $$ ')$ |x − x | < δ, ∀ x , x ∈ [a, b]. $ $$ λ = max ∆x → 07 (6 #")7 # |x − x | < δ7 1( " 1! |x − ξ | < δ4 ' ! ')7 |f (x ) − f (ξ )| < ε " %#"
2
k
2
k
k
k
k
k
k−1
k
n ε f (xk ) − f (ξk ) 2 · 1 + [f (ξk )] ∆xk · M. 2 2 k=1
'0"# : " & " 1 + '0 ( 4 $7 ;!& 1+ ! ' !'& - +6 "& P 1+" λ → 07 (- 1'#"( /+(' A@C4 + ( !$%4 n
1 .C '" 1
+;) 1'# += " ( $+0 " Ox $+" * AB7 %!* 1+( +"# $" + "&(" x = ϕ(t)7 y = ψ(t)7 α t β 7 1+"# ( ψ(t) 0 " a ϕ(t) b 1+" α t β 7 ϕ(α) = a7 ϕ(β) = b7 ! '& %( 1 + ( -; A@C x = ϕ(t)7 "( ( β POx = 2π
ψ(t) ϕ2 (t) + ψ 2 (t) dt.
α
C '" $+"& AB %! 1'&+-; $+!"; r = r(ϕ)7 ϕ ∈ [α, β]7 0! r(ϕ) 1+ +-!"// + :"+ (& [α, β]7 L !"& $ 1+( +"# $( %!"? $+"* x = r(ϕ) cos ϕ7 y = r(ϕ) sin ϕ7 α ϕ β " %#"7 β
POx = 2π
r(ϕ) sin ϕ
r2 (ϕ) + r2 (ϕ) dϕ.
α
(+"( $')$ 1+"( +7 "''?+"+?="; 1&" 1+ ! ' 0 " 0+'4 *" 1'=!) /"0+-7 0+"# * '"" * 3x +2y −4 = 0 " )? Ox4 y 56 & $+"& ) 1+,'7 2 + " ' 0$ 1+" " $ "! −3x = 2(y − 2)7 ) +>" #$ (0, 2)4 #$" 1 + # "& )? Ox√ *! ( "% + "& 3x − 4 = √ √ 2/ 3 x −2/ 3 0 0 −→ x = ±2/ 34 2
6
2
2
-
√ 2/ 3
S=
√ 2/ 3
y(x) dx = √ −2/ 3
√ −2/ 3
√ 2/√3 x3 2/√3 16 4 − 3x2 3 dx = 2x √ − √ = . −2/ 3 2 2 −2/ 3 9
*" 1'=!)7 0+"#
? 1 +* +$* +$* :"$'"!-
⎧ ⎨ x = a(t − sin t), ⎩ y = a(t − cos t)
y
" )? Ox4
6
2a 0
56 % +
2πa
-
x
"& $+"* dx = a(1 − cos t) dt4 5 +& +$ :"$'"! "%( "? 1+( + t 0 ! 2π4 ' ! ')7 2π 2π S = a2 (1 − cos t)2 dt = a2 (1 − 2 cos t + cos2 t)dt = 0
= a2
2π
0
dt − 2a2
0
2π 0
a2 cos t + 2
2π (1 + cos 2t)dt = 0
2π 2π 2π a2 2π a2 a2 2 2 = a t −2a sin t + t + sin 2t = a 2π + 2π = 2πa2 . 0 0 0 2 0 4 2 2
- *" 1'=!)7 0+"#
? $+"* r = 4(1 + cos ϕ)4 56 "' "(( +"#" /"0 +- " ') " Ox7 ,! ( -#" '&) 1'=!) +; * #"4 5'=!) %$'?# ( 6! !(& '#(" ϕ = 0 " ϕ = π4 1 S = 2 2
π 0
r2 (ϕ)dϕ =
π
16(1 + cos ϕ)2 dϕ = 16
0
π
(1 + 2 cos ϕ + cos2 ϕ)dϕ =
0
π 1 π π (1 + cos 2ϕ)dϕ = = 16 ϕ +2 sin ϕ + 0 0 2 0
π 1 π 1 = 16 π + ϕ + sin 2ϕ = 24π. 0 2 0 4
/ *" !'" +"!- x2/3 + y2/3 = a2/34
"// + :"+& + " +"!-7 1'# ( y = −y /x 4 5L( !'" !0" !* # +" +"!- -#"'& & 1 /+(' 56
1 L = 4
1/3
y
1/3
ra
a
r
y 2/3 1 + 2/3 dx = x
0
a =
+ x2/3
x2/3
0
y 2/3
a dx = 0
L=
2π
a2 (1
−
cos t)2
+
0
a2 sin2 t
=
0
7 *" !'"
⎧ ⎨ x = a(t − sin t), ⎩ y = a(1 − cos t)
4
7 1L(
dy = a sin t dt
2π = 2a
a r
3 a dx = a. 2 x1/3
= a(1 − cos t)7 y ( x = dx dt
r
0
1/3
0 *" !'" !* +$" :"$'"!-
56 (
6
t 2π t sin dt = 4 cos = 8a. 2 2 0
* $+"* r = a sin ϕ3 4 56 & $+"& 1"- & # $* (ϕ, r) 1+" "%( "" ϕ 0 ! 3π4 ( ( r = a sin ϕ3 cos ϕ3 7 1L( !'" * !0" $+"*
3
2
3π 3π 3πa γ ϕ ϕ ϕ . L= a2 sin6 + a2 sin4 cos2 dϕ = a sin2 dϕ = 3 3 3 3 2 0
+ *" ,H x2 + (y − b)2 a2
0
( +7 ,+%0 += " ( $+0 Ab aC $+0 " Ox4
-
x
y
56 %+
>"( +√ " $+0 "√ ') y8 y = b − a − x 7 y = b + a − x 4 5L( 2
1
2
2
r
6
b
2
2
a
y2
6
y1 −a O
VOx = π
6
a
?
?
w
-
x
2 2 2 2 2 2 a2 − x2 dx. b+ a −x − b− a −x dx = 4πb a
−a
−a
! ' ( %( 1 + ( -; x = a sin t4 0! dx = a cos t dt4 5 + #" ( 1+ ! '- " 0+"+"& x = −a −→ t = −π/2M x = a −→ t = π/24 ?! "( ( VOx
π/2 π/2 = 4πb a2 (1 − sin2 t) a cos tdx = 4πa2 b cos2 tdt = −π/2
−π/2
π/2
2
= 2πa b
π/2 π/2 2 (1 + cos 2t)dt = 2πa bt +πa b sin 2t = 2π 2 a2 b. 2
−π/2
−π/2
−π/2
8 *" 1'=!) 1
+;"7 ,+%* += " ( $+0 " Ox 1 '" $+"* 9y = x(3 − x )4 y 56 '& +; * #" $+"* 1+" √ 1 0 x 3 "( ( y = (3−x) x4 ?! 3 x O !"//+ :"' !0" 3 x+1 d = 1 + y (x) dx = √ dx4 0! x 2
2
6
r
2
3 POx = 2π 0
π = 3
3 0
√ x+1 π 1 (3 − x) x · √ dx = 3 3 2 x
(2x − x2 + 3) dx = 3π.
3 (3 − x)(x + 1) dx = 0
-
9◦
6
%
5) 0( [a, b] +1'6 !+!-* +6 )7 '" * & 1') $+0 ρ(x) ) /$:"& 1+ +-& [a, b]4 1( "(7 # ρ(x) = lim ∆m/∆x7 0! ∆m K ( #" +6& 0( [x, x + ∆x]4 %,) ( [a, b] #$(" a = x < x < . . . < x = b7 $6!( #"#( 0( [x , x ] -, + ( 1+"%') #$ ξ " 1+ !1' 6"(7 # L( 0( 1') ) '"#" 1&&7 +& ρ(ξ )4 0! ( m L0 0( ,! +&)& 1+",'"6 1+"% ! "? ρ(ξ )∆x 7 0! ∆x = x − x 7 ( m 0 +6& 1+",'" 6 %1"> & $8 m ≈ ρ(ξ )∆x 4 '& ;6! "& #0 %# "& m ! 1 + *" $ 1+ ! ' 1' ! ( + 1+" λ = max ∆x → 04 $# ') 1'#"( m = ρ(x) dx. AGC ∆x→0
0
k−1
k
1
k
n
k
k
k
k
k
k
n
k−1
k
k
k=1
1kn
k
b
a
( "(7 # L " 0+' = 7 $ $$ ρ(x) 1+ +-& [a, b]4
%% ! ' "
.C (+"( #' 1'$" Oxy " ( ( +"')-; # $ A (x , y )7 A (x , y )74447 A (x , y )7 (- $+-; +- m , m , . . . , m 4 ,%#"( # + % (x , y ) $+!"- : + &6 " L* " (-4 1')% (& "% -( /$( "% $+ ( ;"$" " % 1"> ( ' !?=" + 1
1
1
2
1
2
2
n
2
n
n
n
c
c
n
mk x k m1 x 1 + m2 x 2 + . . . + mn x n My k=1 , xc = = = n m1 + m2 + . . . + mn m mk k=1 n
mk yk m 1 y 1 + m 2 y 2 + . . . + mn y n Mx k=1 yc = = = , n m1 + m2 + . . . + mn m mk k=1
AEC
0!
My =
Mx =
n
n
) "# $"* (( " (- " ') " Oy7 K "# $"* (( " (- " ') " Ox7
mk x k
k=1
mk yk
k=1 n
4 "6 (- "1')% ( L" /+('- !'& ;6! "& $+!" : + &6 " +%'"#-; /"0+4 C + &6 " 1'$* $+"*4 5) $+"& AB %! + " ( y = f (x)7 0! f (x) 1+ +- !"// + :"+ ( 0( [a, b]M " 1) L $+"& ) ( +"')& '""&7 '" *& 1') ρ ) '"#" 1&& A$+"& ! +!C4 %,) ( $+"? 1+"%') n # * #$(" A = A , A 74447 A = B 7 !'"- !0 A A 7 A A 7 y A A 4447 A B +- B = A P ∆s 7 ∆s 7 4447 ∆s 4 - m L"; A A C(x , y ) !0 ,! +&)& 1+"% ! "? y !'" 1') ρ8 m = ρ∆s 4 A =A x x $6!* !0 A A -, + ( m = ρ∆s 4 $6!* !0 A A -, + ( 1+"%') #$ P [ξ , f (ξ )] " ,! ( #")7 # ( L* !0" ρ∆s + !# #$ P 4 5+" L( $+"? AB (6 1+",'"6 %( ") " (* ( +"')-; # $ P , P , . . . , P +1'6 -(" "; ((" ρ∆s 7 ρ∆s 7 4447 ρ∆s 4 ?!7 "' + AEC7 !'& $+!" : + &6 " 1' $* $+"* (x , y ) 1'# ( ' !?=" 1+",'"6 - + 8 m=
mk
k=1
0
0
n
6
r
k−1 r k
2
r
1
c
1
2
n
k
k−1
k
k−1
k
k
k
k
k
1
2
2
k
-
c
k
1
c
c
0
1
n−1
n
k
r
1
k
k
k
1
n
2
n
c
n
c
ξk ρ∆sk
xc ≈ k=1 n k=1
ρ∆sk
n
n
ξk ∆sk
= k=1 n k=1
, ∆sk
yc ≈
n
f (ξk )ρ∆sk
k=1
n
k=1
= ρ∆sk
f (ξk )∆sk
k=1
n
k=1
. ∆sk
$ $$ /$:"" f (x) " f (x) 1+ +-- [a, b]7 ((-7 &=" #"'" ' " %( ' , "; !+, * "( ? 1+ ! '- 1+" λ → 07 +
1+ ! '( ?="; " 0+')-; ((4 $"( ,+%( 1'# ( $# ') b xc =
yc =
x ds
a
b
a b a
b x 1 + f 2 (x) dx =
a
b
ds
a
f (x) ds b
= ds
a
1 + f 2 (x) dx b a
b x 1 + f 2 (x) dx =
a
f (x) 1 + f 2 (x) dx b
1 + f 2 (x) dx
;
S b =
AIC
f (x) 1 + f 2 (x) dx
a
S
,
a
0! S K !'" $+"* AB4 % /+('- !'& y 1'# (7 # S · y = (6& , #" 1' ! 0 + 2π7 c
c
b
f (x) 1 + f 2 (x) dx
"'"7
a
b 2πyc · S = 2π
f (x) 1 + f 2 (x) dx,
a
0! 1+& #) ) 1'=!) 1 +;"7 1'# * 1+" += "" $+"* AB $+0 " Ox7 2πy ) !'" $+6" +!" y 4 $"( ,+%(7 "( ( c
c
* + / "
+ & & & %& & *" $+!"- :
7
4
x2 + y 2 = a2 y > 0
+ &6 " 1'$+6"
56 (
( y = √a
7
− x2 y = − √
2
a xc = a
a −a a −a
√ x dx a2 −x2 √ dx a2 −x2
a √ yc =
−a
7
x a dS = √ dx a2 − x2 a2 − x2
4 0!
a a2 − x2 −a 0 = 0; =− = a πa arcsin xa −a √
a2 − x2 √aa2dx −x2 πa
=
2a2 2a = . πa πa
C + &6 " $+"'" ** +1 :""4 $ ,-#7 +%,) ( $+" y '" *? +1 :"? L' ( y = f (x) +- +1 :"" " ( ∆x = x − x " %( "( $6!? P $? +1 :"? 1+&(0')"$( x ξ x b=x x a=x ( 6 " ( " -* f (ξ )7 0! ξ + !&& #$ [x , x ]4 1+&(0')"$ + ρ · f (ξ )∆x Aρ ) 1 +;& 1')7 4 4 (7 1+";!&=&& !"": 1' =!"C4 % ( ;"$" "% 7 # : + &6 " 1+&(0')"$ ' 6" #$ 1 + # "& 0 !"0' * "7 ' ! ')7 $+!"- : + &6 " k0 1+&(0')"$ +- ξ 7 f (ξ )4 ! ( #")7 # ( L0 1+&(0')"$ ;!"& #$ P (ξ , f (ξ ))4 $"( , +%(7 +1 :"? (6 1+",'"6 %( ") " (* ( +"')-; # $ P , P , . . . , P ((" ρf (ξ )∆x 7 ρf (ξ )∆x 74447 ρf (ξ )∆x 7 "7 ' ! ')7 "1')%& + AEC7 1'#"( 1+",'"6 - + 6
k
k
r k
k−1
0
k
k
k−1
k−1 k
k
k
1 2
k
k
k
1
2
1
n
n
xc ≈
n
k
1
2
n
ξk ρf (ξk )∆xk
k=1 n k=1
ρf (ξk )∆xk
=
1 k 2
k
2
n
ξk f (ξk )∆xk
k=1 n k=1
, f (ξk )∆xk
n
k
yc ≈
1 2
n
1 2
f (ξk )ρf (ξk )∆xk
k=1 n
n
k=1 = n
ρf (ξk )∆xk
k=1
f 2 (ξk )∆xk . f (ξk )∆xk
k=1
5 + ;!& $ 1+ ! ' 1' !"; + ; 1+" λ → 07 1'# ( $# ') b
xc =
b
xf (x) dx
a
b
=
xf (x) dx
a
f (x) dx
S
;
yc =
a
1 2
b
a b
f 2 (x) dx = f (x) dx
1 2
b
f 2 (x) dx
a
S
,
AC
a
0! S K 1'=!) * +1 :""4 $ " 1+ !-!= ( '# 7 "% +0 + AC "( ( + b
f 2 (x) dx,
2πyc · S = π
$+ /+('"+ & $
a
* + 0 & 78 %
+ & & & & %&
FC + &6 " !+!0 +6&4 %,"&7 $$ 0!7 0( [a, b] #" A(4 OC7 ( m #" +6& [x , x ] *! ( 1 /+(' AGC k
k−1
k
xk mk =
ρ(x) dx = ρ(ξk )(xk − xk−1 ) = ρ(ξk )∆xk xk−1
A%! ) (- 1')%'") + (* + ! (7 ξ $+& #$ 0 ( [x , x ]C4 ! ( #")7 # L ( + !# "( #$ P (ξ )4 $"( ,+%( (- ) 1'# ( " ( # $ +6 k
k−1
k
k
k
((" ρ(ξ )∆x , ρ(ξ )∆x , . . . , ρ(ξ )∆x 4 6!& $$ 1+ !-!="; 1$;7 (6 ( %1")
P1 , P2 , . . . , Pn
1
1
2
n
2
n
n
ρ(ξk )ξk ∆xk
xc ≈ k=1 n
ρ(ξk )∆xk
k=1
"'"7 $# ')7 1 + ;!& $ 1+ ! ' 1+" λ → 07 1'#"( b xc =
xρ(x) dx
a
b
ρ(x) dx
a
Ax K $+!"- : + &6 " !+!0 +6&C4 c
%%% 2 ) '
5) ( +"')& #$ M !"6 & 1 $+* 1+&(* OS 1! ! *" ( "'- F 7 1+' " $+* 1! 1+' " ( !"6 "&4 1+ ! '") +,7 1+"% ! ? "'*7 1+" 1 + ( = "" #$" "% 1'6 "& s = a 1'6 " s = b4 '" F 1&7 7 $$ "% 7 +, A ;!"& 1 /+(' A = F (b − a).
5+ !1'6"(7 # F %"" 1'6 "& #$"7 4 4 F = F (s)7 0! F (s) 1+ +- [a, b]4 %,) ( [a, b] n 1+"%')-; # * [s , s ]7 -, + ( 1+"%') #$ ξ ∈ [s , s ] " ,! ( #")7 # [s , s ] F (s) 1& " + F (ξ )4 0! +, A ,! 1+",'"6 + k−1
k
k−1
k
k−1
k
k
k
A≈
?! 1+" λ = ;!"(
n
F (ξk )∆sk ,
k=1
max ∆sk → 0
1kn
∆sk = sk − sk−1 .
A#"-&7 # F (s) 1+ +- [a, b]C b
A=
F (s) ds. a
P.Q - ( ("# $0 '"%4 K 48 $7 .I@G4 PQ ->& ( ("$4 K 48 ->& >$'7 .II4 PQ !#" " 1+6 "& 1 ( ("# $( '"% A!'& %C4 K 48 + ') 7 4 PFQ !" # $!% & ' 5+"'6 "& 1+ ! ' 0 " 0+'4 !"# $" $%"& " "!""!')- %!"& !'& ! . $+ /"%"# $0 /$') 4 K R8 59 7 .IIF4