!" #$ %&"' ( ) * * *
+, -. /.$ 0 $& !0&1 * 2 #&3 4 , 5 6 $ *78 5 6# !'& 95 *:; ISBN 964-94471-2-1 *&<= >&,?@ /& 0 "# ( = *4$ ) /& 0 "# ( = *AB&,C DE F &+ . !" #$ %&"' * *AB&,C DE F &+ . %&"' *; *AB&,C DE F &+ . * *GB *AB&,C DE F &+ . >&-. * *5 , HH2H QAI225JKH 47 8I 5 # &L0& M ;
+, -. 9%& M 4& M$ 9"# 8 J ; 9N0&O 78 5& "0& 9P&Q (0 R+ 0 &L3&Q 9= S B =&T P&Q ;J 9>&T $ U ;H 9& VO $ U L" HII 9W . IIII 9(+1 A>&C 5 6# !'& 9O&
6#& EF .$ 5&3 .$ O 4& & 0&OE. ; XB&Y Z .$ 5F [" (\= E [ 5F ]#. &0 .&M R# C $. $ 5 6 $ +, ^Y R =. _&0 .$ *A =S 4& & S #& &0 "#&\
&0 "#&\ .$C ( ` & B&a E + -&' %& M *A( 60 0 0 & $ 0&6 & 0& M $. & B& " R#+ $E .&"0 $ U . $ -&' %& M X@ E.&[ >&#+ 0 E&bF B +U !#&" E M ( 0 E& $S&O Z /. Z /& R+ 0 *0 $ *. #) !#&" ") DE F !< . c= 4 E $& %& M d'&[ ? .$ H S$ DE F e#" X) .&M R# ( O $ $ *$ O
%& M OE F N+M $ ! &O # (#& N# 8 .&"0 f 5F E X& $& M M + . >&gc) h'? 0C *O&0 O $ DE F .$ =O # /.$F ;H7 T 0 i j R# .$ 60 http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
A*$ O U)
0 X&) R# N#
+, [-. %& M c %& M R# E !" #$ %&"' DE F .$ L & O .& Q /.$ $ 9h *$ + $& 5 A; -.C ' /.$ $ A; -.C ' M . Y0 *AFFF FF F -.C ' .& Q /.$ -. /.$ ]#. 0 X& N#
+, -. %& M /.$ ]#. 0 X& $
+, -.
+, -. %& M !j= ( E *O&0 ;
+, -. -. %& M F !j= $ E F -. /.$ 0 N#
+, 0 $
+, -. %& M !j= .& Q c N#
+, $
+, -. %& M F !j= k3 E FF -. /.$ 0 l&Q *$ + $& 5 FFF -. /.$ 0 %& M R# E ZM mn' . . $ =63 [) M XB&Y
*$ + $& 5 c
+, -. /.$ 0 .$ ' M ( ' E 60 %& M R# !#&" $ U + !' 0 GV . 6 $ 5 0 AFFF FF F -.C 4 /.$ 4 $& M ( R# GB $& 63 *$ + & F !' . & F & L0 6 $ E $ + %&L . #&"
4 $& M ( #&" $ U !1 ' e1 .$ R# *M 6 $ R+- .$ * $ 4E_ 5 6 $ .0 0 $. $M %&L . 60 !#&" $ 6 $ O oL6 ∗ ( ?, &0 !#&" E 0 *$ . 1 .0 0 .$&1 5 l6 $ + M $.+ e1 . O$ !#&" R#
p&[. .$ $ .$ N# E /.$ R $ %& M R# ` -
` - *O&0 !" #$ %&"' &0 N?M -. cB&F &[& &[) &0 #&OF 5F T e0 i UB&Y 0 N?M -. cB&F .$ *O&0
! &O UB&Y R# *$ O $3 1 &&q= R0 !B$ 0 *( r s rt 6 s r's & uL0 (" RV+ .&0 N# 0 R → R 4= 0 e0 UB&Y V# 0 ' !VO 0 O Z"\ G L & 6L0 0 ` -
e0 N#
+, -. .$ *$S . 1 UB&Y $. '
*m = n = (B&' U# ( O UB&Y R → R 4= 0 0 e0 0 $
+, -. .$ XY R# j' E ]3 ]< =S . 1 UB&Y $. A. $0 e0 C R → R 4= 4= 0 e0 &F Av Q e0 C R → R !VO 0 e0 . 1 .0 $. A. $0 & & O&C R → R " [B&Y -&' .$ .$ $ ) d'&[ #& *S
. 1 $& $. & +"1 #& .$ Z\ " b Z\ " M *S
Y [) 0 !j= *( !j= . $ %& M R# U# 4$ !j= w.$ 0 \ M $. $ i&j i&j . $0 e0 0 M 4 !j= .$ *O&0 e0 UB&Y *$S . 1 UB&Y $. e0 ` R# cB&F $. $ *M 3 $ Z !j= & E&bF .& Q !j= E v Q Q e0 t 6 ' d'&[ X 0 j= R# .$ . Z 6 !j= .$ *$S . 1 .0 $. v
. 1 .0 $. 5F &$0.&M i O KY &
0 Z !j= .$ *$$S KY R#S q1 =S *$$S 5&0 /&S ]M &q1 O KY &#.
+, -.
+, -. /.$ M ( & B& 5 6 $ i jL C FFF FF F x. /.$ c ; e) & O ]#. . 6M & &6 $ .$ A-. O. 4 , >. E % j & j= 0 M (O $ ) [&
5 6 $ y# O &' R, .$ $.F0 . .F R= >&\\ ]#. 0 & B& $ M GB *$0 h .$ c . /.$ R# ) &0 c XY R# 0 Z, &0 ( $ 0 v6 /.$ R# $ + f R# R# 0 4 1 5& ) .$ $ ) &$. & 0 *( & F E 0 M ( ")0 >&V . $ %& M R# & F E $. 5&0 0 ?z #{ *O&0 f R# i jL
9Z#E $3
. 6M & &6 $ .$ ]#. E %& M R# *$S . 1 $ $& !0&1 ?z+, nB ( n
m
m
n
n
m
Z& .&M c & .$&0 ' . Z& .&M . %& M R# } . c= 4 N+M 0 &U= .' E= $ + |3& N.&= B?) &1F %&) ~= &-. +' &1F %&) R# + #.$ 0 >&+'E E &# .$ M $ + u# # N+M 0 GB y & VO *4. $ . V6 &+M 5 c#c, O GSview Maple Photoshop Paint &. c= 4 *( 5&1F #.$ 0 >&+'E E $ 5& & Z $ 4E_ $ 0 -&' %& M *4. $ 4?, . u &- R" 0 [). , E Rl+ *( O .F e[ . #E 0 5&S.c0 R# (+ 0 $ + + f R# .$ . X&) R# M &"M + $ ) $. >&V /&VU &0 M 6 $ Q *ZM V6 > .&O &0 M .&V+ Q #$S 5F 5O _&0 d,&0 5 Q * O 5F .$ & >&'?T $&# d,&0 $ &+ = RV+ \ R# .$ 5F M{ & ( .&"0 5&6# $ U *ZM "0 M /&< E 0 0 & ("
78 5& "0& 5
*O&0 & F !' .$ G B ] #. & B& ! T& ' %& M R # Q 0 G L .$ uO .$ ( $ 0 G L & &6 $ >_ j + &+ & ( O ]#. 6#& EF >. T R# 0 Z, &0 GB *O&0 5 = & &M . $ 60 $&\ V S M $. $ &, 4 E XY
9/.$F 0C &0 . %& M R# XB&Y i j .$ $& 63 -. V6 $ 5 # (UT Z, &6 $ N .& 5 *$. n0 5& .$ Aemail : m nadjafi
[email protected] !< . c= 4 E $& s 5 , ( W3 .$ "# Z, &6 $ m@ E M rN#
+, -. DE F .$ . U &) & .0 (S . 1 (#&+' $. 5 # (UT E $ $ 4& . c= 4 R# E $& 5&V E .$ R+ 0 *( $ + $& f R# GB& .$ $ >&0 5&V M 5 # (UT Z, &6 $ 4 RB " E /& @ . %& M R# ]# $ 6#& EF ]#. c t\ R# *ZM $.1 $ + Z = B & B&
H
. . . . . . . . . . .
4$ ).$ & 7*;
H
. . . .
H
. . . . . . . . . . .
HJ
. . . .
. . . . . . . . . . . . . .
4$ ).$ & 5$ + .&3 *; 4$ ).$ &#. I*; !< E $& ;*;
8
Q&[#$
& !" #$ ;*
%
!"# $% &
N#c= .$ $0.&M *
%
. . . . . .
. . . . . . . . . . . . . . . . . . .
!< E $& H*
. . . . . . .
"&
. . . . . . . . . . . . . . . . .
]#& *
8
. . . . . . . . . . . . . . . . .
5& $ H*
. . . . . . . . . .
;
. . . . . . . . . . . .
;8
. . . . . . . .
!< E $& H*
;7
. . . . . . . . . . . . . . .
I
. . . . . . . . . . . . . .
. $0 e0 cB&F *
8
. . . . . . . . . . . .
8H
. . . . . . . .
J
. . . . . . . . . . . . .
JH
. . . . . .
J7
. . . . . . . . . . . . . .
& #h .$ 60 d'&[ *
J J
. . . . . . . . . .
7
. . . . . . . . . . . . . . . .
' >&[f ;*
!
. . . . . . . . . . . . . . . .
' &Y0 *
77
4$ ).$ &#. 5$ + .&3 *;
v Q e0& G#U *
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 *
1 &q= T y * . $0 ;*
U0 #&3 "0 ?\ *
Y >_$&U & $ 8* # . $0 . \ J*
5.&\ &U & "#& 7* Y !#[ *
!< E $& I*
. . . . . . . . . . . . . . .
t 6 G#U *H
. . . . . . . . . . . . . . .
#c) t 6 ;*H
. . . . . . . . . . . . . . .
I
. . . . . . . . . .
t 6 E ,&1 *H
. . . . .
"#$
. . . . . . . . . . . . . . . . . .
0 M W *H
8
. . . . . . . . . . . . . .
).& %- *;
IH
. . . . . . . . . . . . . . . .
+- e0& H*H
J
. . . . . . . . . . . . . .
&S %- *;
I8
. . . . . . . . . . . . . . . .
v v 8*H
. . . . . . . . . . . . . .
T .$ y H*;
I
. . . . . . . . . . . . . .
$ t 6 J*H
. . . . . . . . . . . . . .
&q= .$ T 8*;
;
. . . . . . . . . .
. y"0 !" #$ 7*H
;
. . . . . . . . . . . . . . .
H
!''( )*+ ,
$ %- *;
(+O 4 S D. &U #&3 ;*;
&q= .$ y J*;
U- 4 "M *H
. . . . . . . . . . . .
` y *7
""%
. . . . . . . . . . . . .
S = 4 "M I*H
` y $0.&M ;*7
;I
. . . . . . . . . . . . .
p6 4 "M *H
4$ ` y *7
;
. . . . . . . . . . . . . .
4$ ` y $0.&M *7
"'
. . . . . . . . . . . . .
.$ $0.&M *H
-# ./ 0
. . . . . . . . . . .
;I
. . . . . . . .
;I8
. . . . . . . . . . .
;I7
. . . . . . . .
;
. . . . . . . . . . . . . . .
#&\0 5 H*7
"'
. . . . . . . . . . . . .
&v ?\ *H
;H
. . . . . . . . . . . . . . .
R#S q1 8*7
. . . . . . . . . . . . . .
!< E $& H*H
''"
. . . . . . . . . . . . . .
!< E $& J*7
H
;;
1"+ ./ 2
" #$ 4= ;*H
) 3 ./ 4
&S$ G#U *8
H
. . . . . . . . . . .
^Y #. *
. . . . . . . . . . . . . .
` ^Y ;*
. . . . . . . . . . . . . . .
` ^Y $0.&M *
HI
. . . . . . . . . . . . . .
4$ ` ^Y *
H
. . . . . . . . . . .
&S$ $0.&M H*8
4$ ` ^Y $0.&M H*
8
. . . . . . . . . . .
& &S$ 8*8
/&S q1 8*
J;
. . . . . . . . . . . . . .
6Q & J*
J
;;
. . . . . . . . . . . . . . .
;;7
. . . . . . . . . .
;;
. . . . . . .
;J
. . . . . . . . . .
;
. . . . . . .
;H
. . . . . . . . . . . . . . .
;H
. . . . . . . . . . . .
;H
. . . . . . . . . . . . . .
]M q1 7*
J
. . . . . . . . . .
;HJ
. . . . . . . . . . . . . .
!< E $& *
"%
. . . . . . . . . . . .
Zh , + ;*8 .V *8
>&j L v *8
!< E $& J*8 ) 3)+ ./ 5
&S G#U *J Zh −xy , + ;*J
;H7
!< &0 B #&OF
J
. . . . . . . . . . .
;8I
5& Q
7;
. . . . .
;8
& %& M
. . . . . . . . . .
;8H
#&[B ( =
8
. . . . . . . . . . .
;J
= Q
7
. . . . . . . . . . . . . .
&S .V *J
&S .$ >&j L v *J &S $0.&M H*J & &S 8*J !< E $& J*J
Z"\ UY1 $ 0 O y x y *ZM x= ' *Z & !6 . #$ 7$8 . $ 5F E V# *$ O
* !VOC Z#E $3 y Z"\ 0 ' N+M 0 5 M |Q E X 0 . ([a + .$ F (0 >&+"\ *AGB + .$ F (0 >&+"\ ZM . nS.&+O ( . 0 ]< ZM . nS.&+O |Q 0 ( . E X 0 .
*A% * !VOC Zg c= ( ?, N# 0 E F (0 & +"1 E N# 5$M Z"\ 0 5 M E M X R# 0 *ZM $& 0&6 & aa (T& n E 0 &0 $ + :.& \\' . &0 E b Y Z$ V #& Y\ E 5 M *ZM oL6 5F 0 ' $ 0 c Z"\ p&\ #& E $ + !j n + Y\ 0 . Y ! E X R# 0 *Z .nS . @ Y y R# > E
(+"1 $ 0 E&0 R# [n; n + ] E&0 &0 #) y $. 0 *A: * !VOC $$S Z"\ &"
}
U0 j= w.$ 0 4E_ >& \ !j= R# E m 0 -&' !j= *( U# 4$ !j= &zT j %& M R# j= #& w.$ 0 4E_ E U0 !j= + XB&Y E +, (+"1 M . h 0 *E& Z = . *( $ + UB&Y &6 $ E ![1 .$ .$ . !j= R# =&M #&OF !j= R# $& &0 4 l&Q R# 0&0 %& M $ 0 $M h mT 5F UB&Y E $. $ *$E $<0
E , + 0 %& M R# $ .$ UB&Y $. DZ&O A.&M$ C 1 &q= T y & & 0 i& *Z$ 5&6 R R R $&+ &0 X 0 . R# *\U
*Z#E $3 & F E N# t1$ G#U 0 ?z#{ 0 $& + \ \ ' $ , x ∈ N ∪ {} 5F .$ M ( x = ±x x x · · · x · · · !VO 5&0E 0 e1 .$ *x , x , · · · , x , · · · ∈ , , , · · · , Z#. $ &B&[$ x = lim ±x x x · · · x n
n
\\' . 0 $ , u#&+ 9* !VO
n→∞
n
x x xn = ± lim x + + + · · · + n→∞ n
(0 >&+"\ E N# $ $ $ 5 . . R# 5&6 0 *** $ + Z"\ &" (+"1 $ 0 z $ . F !+, #E O 0 \\' y 0 x = x x x · · · x · · · 5$ $ 9ZM
*(x ∈ N ∪ {}) ZM %&L . 0 . x $, 0 $ + %&L . [x ; x + ] E&0 E x .&+O UY1 ]< . [x x ; x x + / ] E&0 E x .&+O UY1 ]< *O&0 0 ([" x #1 −x $, *** ZM %&L
-# 5F 0 $ $ 5&6 R $&+ &0 . \\' $ , + , +
*Zg S !99 y u#&+ 0 >. T 0 . R# *ZM $& \\' . E 1 9$ O & #E . Y\ $ + oL6 T .$ . . y 0 5 U0 . Y.&3 ]< *ZM RU 5F 0 O DZ [ 5 U0
n
J
& y . −y x ≥ , y ≥ . . . . . . . . . . . . . . . . . . . . . . e0. x ≤ , y ≥ . . . . . . . . . . . . . . . . . . . . . . 4$ e0. x ≤ , y ≤ . . . . . . . . . . . . . . . . . . . . . 4 e0. x ≥ , y ≤ . . . . . . . . . . . . . . . . . . . . 4.& Q e0. y = x . . . . . . . . . . . . . . . . . . 4 e0. E&"+ y = −x . . . . . . . . . . . . . . 4.& Q 4$ e0. E&"+ S : x + y = . . . . . . . . . . . . . . . . ' # $ x = .........................
$ , E X &#& + , + 5&6 R $&+ &0 & A! C !+': ;< . \\' 9Z$
R =
(x, y, z) x, y, z ∈ R
$ , E X #& N# U# ;< )"9 X R# 0 *\\' 5$ $ 5&6 0 *$ O $& & m @ U1 &q= E 1 &q= p&\ DZ [ .$ . & F $ + %&L &+ . . h R# 0 0 *O&0 $ . T&' kM M S 0 ZM $ +, Z 0 . −z . −y . −x X 0 . & F S M U R# .$ π/ E &0 . −y (+ 0 . . −x S &F Z &0 ( . ($ 5& 6 &0 . (M' R# Z$ 5 .$ ([a ( ) $0 . 1 . −z $ .$ ( . ($ ("O Z$ 5&6 *A% ;* !VOC }
&q= .$ p&\ u#&+ 9* !VO x O Y\ .& Q 0 (x , y , z ) Y\ u#&+ 0 5 M XUV A. −z 0C z A. −y 0C y A. −x 0C $ +, T 5 .nS &0 .&M R# *ZM Z. . Y "
Y\ .$ . −y 0 $ +, T x Y\ .$ . −x 0 $#n3 4& z Y\ .$ . −z 0 $ +, T y Y\ 0 DZ [ 0 !0&\ / . X R# 0 *AGB * !VOC *( & (x , y , z )
y R , + R0 N[V# & , + E !T N# e1 .$ +) R# *$. $ $ ) \\' N# y 5F [ 0 M ( Y" U- T 4 $ R# R0 ]3 R# E !B$ R+ 0 *$#n3 uMy *Z " !#&1 1= $ , E X & )E + , + 5&6 R $&+ &0 & A! C !+': )*(6= . \\' )"9 X R# 0 * R = (x, y) x, y ∈ R Z$
*\\' $ , E X :E N# U# )(6= \\' . $ !"# $ ZM $ +, Z 0 . @ . $ R# *ZM %&L &+ π/ E 0 .$ &0 O t[Y Z 0 $ DZ [ M t[Y $ +, . ([a + 0 . \= . ([a + 5 0 . −y . $ +, . . −x . \= . 5 M *$ + T .$ (x , y ) ∈ R Y\ 5$ $ 5&6 0 *Z &
. −y > E 0 . Y . −x 0 e1 x $, E \\' . Y c . −y 0 e1 y $, E ]< $ + Z. y $ R# $. 0 ! *ZM Z. . −x > E 0 *A$ O ) GB ;* !VO cC ( (x , y ) Y\ 6#&+ }
T .$ p&\ u#&+ AGB 9;* !VO $ . kM A% 1 T p&\ R0 N[V# & % $ $. 1 E q1 R# *$. $ $ ) \\' T R V# ?z+, . $ R# ]3 R# E !B$ R+ 0 *( A**C *Z#S
E , + T .$ >?@ E . h & *O&0 R .$ p&\ T .$ mU & VO E + Q ?z#{ '() * 9ZM =U . O = (, ) . . . . . . . . . . . . . . . . . . . . . . . . . . . DZ [
y = . . . . . . . . . . . . . . . . . & x . . −x
Z 6 Z 6 N# . . . . . . . . . . . . ' M *Z# $ $ u#&+ * !VO .$ . , + $c&3 R# E 0 x ≥ , y ≤ , z ≤ ....... S : x + y + z =
+ !"# , -.
5 1 T .$ (x, ) = x x= &0 . 1 y . 1 T 5 c (x, y, ) = (x, y) x= &0 *&6 R ⊆ R ⊆ Z"# 0 Z R# 0&0 *&6 1 &q= .$ *$ O =&M ) &, + & B$&U 0 #&0 [B *R 0 0 R .$ ( O Y\ R .$ A : x = , + ?za
*O&0 T−yz 0 0 R .$ ( . −y R ![1 0&6 >. T 0 + / $ 5 \\' $ , E X &#&.& Q + , + . 9$ + G#U M !VO 0 $M G#U Rn = n =
n
=
$. XB&1 .$
≤ n
]3 R# E e1 .$ *(
0 . $0 *( . $0 Y\ E ]3 4 R# +
5&0 .$ . $0 E $& RB e1 .$ *( (M' ( ) 5&0 $ 0 &3 Y\ N# 0 E&bF Y\ N# E Z") N# 5&V v *O&0 \ . $0 G#U 0 c R# *( A Y\ .$ 0 &0 . ) y.&3 &0 & B 5&3 A `O &0 9 . B Y\ .$ & → → X :E E >.&[, −AB #$ 5&0 0 *Z$ 5&6 −AB $&+ −→ −→ M Zg S 0 0 . CD AB &. $0 . T .$ *( (A, B) *B = D A = C 5&6 R ×R $&+ &0 . R .$ \ &. $0 + , +
→ −→ !VO 0 . −→ G#U −AC BC AB . $0 e+) !T&' *Z$
*A$ O ) GB H* !VO 0C ZM
n
&q= p&\ R0 N[V# & q1 R# *$. $ $ ) \\' &q= p&\ R 1 R0 ]3 R# E !B$ R+ 0 *( ** $ $. 1 E *Z " !#&1 1= $ R# , + &q= .$ !VO N# E . h *O&0 R p&\ E }
(x , · · · , xn ) x , · · · , xn ∈ R
. O $ $ p&\ E N# 0 % (− , ) (, − ) 9$ 5&6 &q= .$ T .$ ( , , ) (, , ) ( , , ) ( , , ) (, ) ( , ) *(− , −, −) (− , − , ) (− , , − ) ( , , )
n
*$ $ 4& 5 c y.&3 & Z &0 . .&M R# ZM oL6 . x $, . −x 0 0 M X R# 0 Z . Y.&3 . −y > E 0 y E 0 x E ]< y.&3 N# z @ 0 . −z > E 0 &F ZM
(x , y , z ) 0 y.&3 R#F #& Y\ *ZM Z. *A% * !VOC ( &
n
(+"1 (6 0 &q= Z"\ AGB 9* !VO &j L >&T A% "#&0 =U &q= E #E & VO
'()
9 O " $ O = (, , ) . . . . . . . . . . . . . . . . >&j L DZ [
y = , z = . . . . . . . . . & x . . −x x = , z = . . . . . . . . . & y . . −y x = , y = . . . . . . . . . & z . . −z z = . . . . . . . . . . . . . xOy T T−xy y = . . . . . . . . . . . . . xOz T T−xz x = . . . . . . . . . . . . . yOz T T−yz x ≥ , y ≥ , z ≥ . . . . . . . . Z 6 N# x ≤ , y ≥ , z ≥ . . . . . . . . 4$ Z 6 N# x ≤ , y ≤ , z ≥ . . . . . . . . 4 Z 6 N# x ≥ , y ≤ , z ≥ . . . . . . 4.& Q Z 6 N# x ≥ , y ≥ , z ≤ . . . . . . . Z3 Z 6 N# x ≤ , y ≥ , z ≤ . . . . . . . Z6O Z 6 N# x ≤ , y ≤ , z ≤ . . . . . . . Z Z 6 N#
\ &. $0 A, .8 −−−−−−−−−−−−→ x −x = ()−( ) #E "
"+ ( , , ) (, , ) *(" x − x = () − ( ) 0 0 → , + *( \ . $0 −AB M x= & −→ CD \ &. $0 + #&+ &0 B . AB &0
"+ −→ −→ → O&0 OC !VO 0 q, . $ , + R# *Z & −AB 5F .$ M −−−−−−−−−−−−−−→ ( , − , ) (, , )
D
C
B
A
. $0 N#c= h E 1) 2 3 4 . → 0 U# *O&0 B 0 A E 5&V v U 0 −AB M . (M' 5 R# 0 *O&0 !C% ^- *$ $ ^- O&0 &#&0&) E , + E >.&[, }
C = (xB − xA , yB − yA , zB − zA )
)*"9 ! ? 5F 0 $ $ 5&6 C $&+ &0 . . Mn , +
R $&+ &0 . R .$ $ EF &. $0 + , + *Zg S C 9Z$ 5&6 −−−−→ R = (x, y, z) x, y, z ∈ R
0 &0 . $0 0 9$M RQ 5 $ EF . $0 Z" 0 $ EF 5F 0 M M x= ]< =S h .$ . C & &0 !T&' . $0 M $S . 1 . @ . + 5F & ( *O&0
"+ −→ OC −−−−−−−−−−−−−−→ ( , , − ) (, , ) \ . $0 A& '() * −−−−−→ *( (, , ) $ EF . $0 #&+ −(−−, −−, −−−−)−(−−,−−,−→) \ &. $0−−−−A, .8 −−−−−−−−→ U# M oL6 . $ EF . $0 N# (, , ) (, , ) *−(−−−−,−−,−→) . $0 → 6= $ EF . $0 #&+ −AA &F O&0 LB$ A S A .8 *$ 0 O = −(−,−−,−→) → → #&+ −BA &F O&0 C = −(a,−−b,−→c) #&+ −AB S A .8 −−−−−−−−−→ *( −C = (−a, −b. − c) \ &. $0 E N# 0 h $ EF . $0 0 M oL6 . #E O
−−−−−−−−−−−−−−→ ) ( , , − ) (, , )
)
−−−−−−−−−−−−−−→ ( , − , ) (, , )
−−−−−−−−−−−−−−→ ( , − , ) (, , )
)
−−−−−−−−−−−−→ ( , , ) (, , )
)
M 0&0 . @ . z y x $ , AH −−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−→
(x − y, y − z, x − z) ( , , ) ∼ (, , − ) (z, y, x)
\ &. $0 R0 N[V# & M $ 5&6 A8 1 T x \ . $0 N# &0
"+ *$. $ $ )
\ . $0 AGB 9H* !VO
"+ &. $0 A% −→ CD AB M x= \ . $0 $ −→ M " DEF . $0 $ R# Zg S . T .$ *O&0 −→ −→ CD AB U# O&0 `?-_ E ABCD U-.& Q Z"# >. T R# .$ *O&0 & . Z @ Z ( ) Z → −→ ∼ CD *A% H* !VOC −AB . $0 $ M (O $ .& 5 . @ R# # j E !T&' &y.&3 @ M "
"+ . T .$ .$ "+ Y0 . *O&0 V# &j L . 0 & F E 0 U# *( E. Z Y0 . N# \ &. $0 R0 −→ −→ −→ EF CD AB → −→ *−AB ∼ AB AGB −→ −→ −→ CD ∼ AB &F AB ∼ CD S A% *−→ → −→ −→ −→ −→ −→ ∼ EF &F CD ∼ EF AB ∼ CD S A: *−AB −→ CD
→ −AB M R# 0 =&M 4E_ pO $ M ( 5F O&0
"+ xB − xA
=
xD − xC
yB − yA
=
yD − yC
zB − zA
=
zD − zC
−(−−, −−−−,−−)−(−−,−−,−→) \ &. $0 A& −−−'() % −−−−−−−−−→ #E "
"+ ( , , ) (, , ) () − ()
= () − ( ) ,
() − (− ) = () − () , () − ( )
= () − ()
d0 . E O D = . $ 0 $&+ a0 .$ l&Q *+ = . d0 $. DZ&O 5$ 0 . $0 5
E _&0 $&U0 0 . _&0 d'&[ 4&+ / $ X R# 0 *$ O 4& T& .&M VF0 $ $ Z+U 5
. $0 &q= R U0−n 1 &q= E R S RL *( E& R 1 U0−n n
M x= 52 2 '6 −−→ >. T R# .$ *α ∈ R . $ . 1 R .$ v = −− (x, y, z) #E >. T 0 X 0 . u .$ α %qT&' v u ` +
9ZM G#U
−−−−→ u = (a, b, c)
−−−−−−−−−−−−−→ u + v = (a + x, b + y, c + z) −−−−−−−→ αu = (αa, αb, αc)
n
0 %
$ v = −(−−−−,−−,−−,−→) u = −(−−, −−, −−−−,−→) M x= A u + v −v u [& ("0 Y *O&0 R .$ . $0 *u − v M 0&0 . @ .−−d−−−c−−b−−a→$ , A; −−−−−−−−−→ −−−−−−−−−→
&F a, b ∈ R u, v, w ∈ R S
( , − , , ) = a(− , , , ) + b( , − , , ) −−−−−−−−−→ +c( , , − , ) + d(, , , )
T #E Y0 . .$ M c b a $ , M $ 5&6 A (= 5 + M −−−−−−−−−→ −−−−−−−−−−−−−→ (, , , , ) = a( , , , , ) −−−−−−−−−→ −−−−−−−−−→ +b(, , , , ) + c(, , , , )
!"# $ $ O S M B&' .$ ( U0 &q= Zg S Q ( U Q 0 &q= N# U0 &z& ( U0 $ T *( u3 R# 0 &3 uL0 R# E m *. $0 u , · · · , u ∈ R M x= !VO 0 ( .&[, &. $0 R# E !"# G N# E . h
* " $, a, · · · , a ∈ R 5F .$ M au + · · · + a u @ H ;< . &. $0 R# Y >&[M + , +
*Z$ 5&6 span{u , · · · , u } $&+ &0 & & F y '() v = −(−−, −−−→) ∈ R ZM x= A& −−−−→ −−−→ u + v−=−−(→, ) >. T R# .$ * u = (, ) −−−−−→ u − v = (, ) u + v = ( , − ) *O&0 . $0 $ R# Y >&[M E #& + −−−−−→ v = (, , ) u = −(−−, −−, −−−→) M . T .$ A, .8 Z#. $ w = −(−,−−,−→) n
k
k
k
k
k
span u, v, w = =
9e+) 5$ 0 "0 A& u + (v + w) = (u + v) + w 9e+) #n< MO A, u+0=0+u=u 9U+) a $ ) A
u + (− ) u = 0 9U+) #1 $ ) A u+v=v+u 9e+) #n
M 0&0 . @ . z y x A& 0 *−(−−, −−, −−−→) = x−( −,−−,−→) + y(−−,−−,−→) + z(−−,−−,−→) v = −(−−−−,−−,−→) w = −(−,−−,−→) ∈ R M x= A; −−−−−→ −v u u+v #$&\ >. T R# .$ u = ( , , ) [& . u + v + w u + v − w u − v + w u *M pO .$ $&T y x $ , M $ 5&6 A u + v ∈ R
au + bv + cw a, b, c ∈ R (a + b + c)i + (a + b + c)j +(−a + b + c)k a, b, c ∈ R
−−−−−−−→ −−−−−→ −−−−−−−→ ( , , − ) = x(, , ) + y ( , − , )
*. $ ) M XY R# R S &0 ]3 R# E → → U# *ZM $& C = −AB $&+ E ( C #&+ N# −AB *C = B − A C . $0 ( C . $0 DZ& C Y\ 0 *( C Y\ 0 DZ [ 5$ + !j E !T&' . $0 E >.&[, S *Z# O+ !#&1 1= C C R0 $. XB&b .$ !B$ R+
!\ " w v u &. $0 R# 0&0 a = b = c = ]3 * Y −−−−−−−→ −−−−−−−−→ v = ( , , , ) u = (, , , ) &. $0 A, .8 −−−−−−−−−→ $ O x= S #E Y "0 R .$ w = ( , − , , ) "#&0 &F au + bv + cw = O
&F β = a + b + c α = a + b + c ZM x= S #.F (0 #E !VO 0 c β α X"' 0 . b a 5
.$ *b = −c + α − β a = c − α + β
⎧ ⎪ ⎪ ⎨
>.&[, span{u, v, w} , + β = b α = a x= &0 ]3 E (
⎪ ⎪ ⎩
⎧ a + b + c = ⎨ a + b = b − c = c = b ⇒ ⇒ a + b + c = ⎩ a + b = a + b + c =
c = b a = −b
−a + b + c = α −
=
R#0&0 c = a = − &F b = $ O x= S * " Y "0 . $0 R# U# *−u + v + w =
=
O $ $ &. $0 , + E N# 4 M 0 % Q " Y !\ "
= =
−−−−−→ −−−→ ) u = ( , − ), v = (, ),
)
−−−−−→ −−−−−→ u = (, −), v = (−, )
)
−−−−−−−→ −−−−−→ −−−−−→ u = ( , , − ), v = (, , ), w = (, , ),
)
−−−−−→ −−−−−−−−−→ u = ( , , ), v = (−, , ),
⎧ ⎫
−−−−−−−−−−→ ⎨−− ⎬ α, β, α − β | α, β ∈ R ⎩ ⎭ −−−−−−−−−−−→ (a, b, a − b) | a, b ∈ R −−−−−→ −−−−−−−→ a( , , ) + b(, , −) | a, b ∈ R −−−−−→ −−−−−−−→ span ( , , ), (, , −)
R# .$ v = −(−−−−,−→) u = −(−−, −−−→) M x= A .8 >. T span{u, v} =
−−−−−−−−→ w = (−, , ),
)
=
−−−−−−−→ −−−−−−−→ u = ( , , , ), v = (, , , ),
b
−−−−−−−−−→ −−−−−−−−−→ w = (, , , −), n = (, , −, )
=
α+β
{au + bv | a, b ∈ R} −−−−−−−−−−→ (a − b, b − a) | a, b ∈ R = R
&F β
=
−−→ 1 v = −−→ (c, d) u = (a, b) &. $0 M $ 5&6 A8 d = (B&' .$ *ad = bc M Y !\ " 1 & *( a/b = c/d U 0 pO R# b =
[M >. T 0 . R E LB$ . $0 M $ 5&6 AJ v = −(−−, −−−−,−→) u = −(−−−−,−−,−→) &. $0 E Y *(O 5 w = −(−−, −−, −−−→) &. $0 . T .$ & M M H . &q= [M >. T 0 . R E q, .$ *R = span u, · · · , u U# (O 5 0 & F E Y )I N# !V6 u , · · · , u ∈ R &. $0 Zg S . T . &q= &f .$ O&0 Y !\ " _z M $ R 0 &. $0 E Y !\ " , + M (B&' .$ *M B * O & V 0 . #&3 M B . V . $0 &q= M u , · · · , uk ∈ Rn
n
k
k
n
n
b − a
α
= a−b
S #E
*a = α + β
&F u, · · · , u ∈ R S (T& U# *( . $0 &q= N# span{u, · · · , u } R *$. $ . *;* q1 E −→ .$ . u , · · · , u ∈ R &. $0 O $ #0 b T XM N# M Zg S !"# )*E . T " T 5& c+ + M a, · · · , a $ , U# *O&0 *$ O T a u + · · · + a u M O&0 O $ $ ) S 0 * O S !"# >9E O&[ Y "0 #&. $0 S v = −(−,−−,−→) u = −(−−, −−−−,−→) A& '()−−$−−−−−→ ZM x= S #E Y !\ " R .$ w = ( , − , ) &F au + bv + cw = O n
k
n
β
k
n
k
n
k
k
k
−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−→ (a + b + c, −a − c, a + b + c) = (, , )
.$
⎧ ⎧ ⎧ ⎨ a + b + c = ⎨ a + b = ⎨ − a = −a − c = ⇒ c = a c=a ⇒ ⎩ a + b + c = ⎩ a + b = ⎩ b = −a
9$ O ⎧ ⎧ a + a + a + a = a ⎪ ⎪ ⎪ ⎪ ⎨ ⎨ a + a + a = a ⇒ ⎪ a + a = ⎪ a ⎪ ⎪ ⎩ ⎩ a = a
= −a − a − a = −a − a = −a =
⇒ a = a = a = a =
x= E M B . &q= ?U0 −−−−−−→ (a, b, c, d) = a u + a u + a u + a u
M $$S ⎧ ⎧ a + a + a + a = a a ⎪ ⎪ ⎪ ⎪ ⎨ ⎨ a + a + a = b a ⇒ a + a = c a ⎪ ⎪ ⎪ ⎪ ⎩ ⎩ a = d a
=a−b =b−c =c−d =d
&F B = {u, u , u, u} S R# 0&0
−−−−−−→ −−−−−−−−−−−−−−−→ (a, b, c, d) = (a − b, b − c, c − d, d) B
M $ 5&6 #E $. E N# .$ 0 #&3 0 . v . $0 ]< $ #&3 N# !V6 e &. $0 9M 5&0 & F
&z\1$ R &q= E #&3 &. $0 $ U * *Z & R ;< J . w 6 $, R# *( n 0 0 "0 R .$ &. $0 E $ U k &F n < k S R# 0&0 * " Y #&3 B = {u, · · · , u } ⊆ R S $0 j $ , &F O&0 LB$ . $0 v ∈ R $ 0 *v = a u + · · · + a u M $ O (= . @ a , · · · , a ZM $ $ . 1 Z & B #&3 0 v >&j L . $ , R# *[v] = −(a−−,−·−·−· −, a−→) *j = −(−,−→) i = −( −,−→) ZM x= A& '() *$ O & R 0 . & #&3 B = {i, j} >. T R# .$ −−→ (a, b) = ai + bj ?U0 * −−−−−→ −−−−−→ j = (, , ) i = ( , , ) ZM x= A, .8 0 . & #&3 B = {i, j, k} >. T R# .$ *k = −(−,−−,−→) *−(a,−−b,−→c) = ai + bj + ck ?U0 *$ O & R .8 v = −( −,−−,−→) u = −( −,−−,−→) &. $0 A
− − − _z #E *$ !V6 R 0 #&3 N# w = (, −,−→) M $ O au + bv + cw = O x= E 9 Y !\ "
n
n
n
n
n n
⇒ a=b=c=
x= E M B . &q= &f .$
−−−−−−−→ −−−−−−−→ ) e = (, , − ), e = (, − , ), −−−−−−−→ −−−−−→ e = (− , , ), v = ( , , ).
(α, β, γ) = au + bv + cw ⎧ ⎨ a+b=α a+c=β ⎩ b+c=γ
−−−−−−−→ −−−−−→ ) e = ( , , − ), e = (, , ), −−−−−→ −−−−−→ e = (, , ), v = (x, , y). −−−−−→ −−−−−→ e = ( , , ), e = (, , ), −−−−−→ −−−−→ e = (, , ), v = (x, y, z).
−−−−−−−→ −−−−−−−→ ) e = ( , , , ), e = (, , , ),
a=
−−−−−−−−−→ −−−−−−−−−−→ e = (, , , −), e = (, , − , −),
−−−−−−−→ −−−−−−−→ ) e = ( , , , ), e = (, , , ), −−−−−−−→ −−−−−−−→ −−−−−−→ e = (, , , ), e = (, , , ), v = (x, y, z, t).
R0 .$ Y !\ " &. $0 $ U aM ' M . T .$ span u , · · · , u &q= U0 . u *** u &. $0 k
k
n
⎧ ⎧ ⎨ b = −a ⎨ a+b= a+c= ⇒ c = −a ⎩ ⎩ b+c= − a =
−−−→ −−−→ −−−→ ) e = ( , ), e = (, ), v = (, ). −−−→ −−−→ −−−→ ) e = ( , ), e = ( , ), v = (x, y).
−−−−−−−→ v = (, , , ).
n
B
i
)
n
n
α+β−γ
−−−−−→ (α, β, γ) = B
, b=
⎧ ⎨ a+b=α b−c=α−β ⇒ ⎩ b+c=γ ⎧ ⎨ a=α−b b = α − β + γ ⇒ ⎩ c = −α + β + γ α−β+γ
.$
−α + β + γ , c= B = u, v, w
&F
Z#. $
S U#
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (α + β − γ, α − β + γ, −α + β + γ)
&. $0 A .8
−−−−−−−→ −−−−−−−→ u = ( , , , ) u = ( , , , ) −−−−−−−→ −−−−−−−→ R u = ( , , , ) u = ( , , , )
0 #&3 x= E Y !\ " _z #E $ !V6 a u + a u + a u + a u = 0
)
A = A.
&#F.$ + M ( T ]#& O = [o ] &# .$ M E >.&[, A = [a ] ]#& U+) #1 ?U0 *T &#F.$ + 5$M E M ( (− ) A = [−a ] *( F ($ 0 A ]#&
Mat (n × m) DZ&q, n = S A& '() z R = Mat ( × ) ?+, * & "+ E . *R = Mat ( × ) E . Mat (n × m) DZ&q, n = m S A, .8 h & !J ij
ij
ij
[ ],
−
⎣
,
⎡
−
−
⎦
Z#. $ Mat ( × ) .$ A .8
−
=
− X 0 C B A M x= A; R# .$ * " − − [& . A − C A + B + C B − C A >. T *M &#F.$ + M O&0 n×m ]#& E M x= A *( N# 0 0 M 5F 4 (i, j) o L c0 T 5F 0 #&3 N# !V6 & E , + M $ 5&6 ( .\Q Mat (n × m) U0 *Mat (n × m) 0 #&3 N# O $ $ & "#& $ 5&6 A LB$ ]#& ]< $ !V6 Mat ( × ) 9M 5&0 & F X"' 0 . xz yt ij
ij
A = A =
− −
A = A =
&$0.&M . $ ( . $0 4 U[@ Z+U ]#&
5&0 0 *O&0 (UT c -. & 6L0 #& .$ = *( $ , E X # .F ]#& $& XM # $S n × m ]#& E . h !Y " !VO 0 $, nm E ⎡
a ⎢ a ⎢ A=⎢ ⎣ an
***
a a
***
an
⎤ am am ⎥ ⎥ ⎥ ⎦ · · · anm ··· ···
***
0 >. T R# .$ * O X 5 m Y n .$ M ( A 4 (i, j) #F.$ . a A = [a ] Z"# T? !VO ]#& E 4 j 5 4 i Y .$ e1 #F.$ U#C Z &
0 & F .$ M (O $ Z #& "#& $ .$ [B *AA q1 >. T 0 &a 5 U0C . $0 e0& +, & a E n × m & "#& + , + *AM U) H*7* ]M *Z$ 5&6 Mat (n × m) $&+ &0 . A = [a ], B = [b ] ∈ E 0 S A + B := [a + b ] ZM G#U a ∈ R c Mat (n × m) e+) !+, + 0 Mat (n × m) >. T R# .$ *aA := [aa ] U R# 0 *( . $0 &q= N# _&0 .$ K6 %- 9Z#. $ a, b ∈ R A, B, C ∈ Mat (n × m) E 0 M ij
ij
ij
ij
ij
ij
ij
ij
) A + B ∈ Mat (n × m) ,
) A + (B + C) = (A + B) + C, ) A + O = O + A = A, ) A + B = B + A,
−
%& ' (
0
& "#& F A Y !\ " − −
−−−−−→ −−−→ −−−−−→ u = ( , − ), u = (, ), u = ( , − ). −−−−−−−→ −−−−−→ −−−−−−→ ) u = ( , , − ), u = (, , ), u = ( , , ). −−−−−−−−−→ −−−−−−−→ ) u = ( , , , − ), u = (, , , ), −−−−−−−−−−→ −−−−−−−→ u = (− , , , − ), u = (, , , ), −−−−−−−−−−→ u = ( , − , , − ).
)
⎤
− Z#. $ Mat ( × ) .$ A .8 − − − − = − − +
&. $0 E $ y O B &q= U0 ZM G#U 9M oL6 . #E
−
) A + (−
) A = O,
) a (bA) = (ab) A,
)
aA ∈ Mat (n × m) ,
) a (A + B) = aA + aB,
]#& A& '() ( #n< VU ]#& A ZM x= S #E ( #n< VU
α β U 0 AA = I x= &F A = γ η + γ β + η .$ *( α −α = −β
A =
−
−
−
⎧ α + γ = ⎪ ⎪ ⎨ −α = β + η = ⎪ ⎪ ⎩ −β =
⇒
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
γ = α= η −
]#& M R# >&[f 0 *A = / −/ ]3 Z$ 4& . #E >&[& #&0 ( A / VU . Mn
−
−
AA
=
−
/
=
/
− /
− /
−
=
= A− A
#E (" #n< VU A = − − ]#& A, .8 &F AB = I B = αγ βη $ O x= S
α + γ β + η −α − γ
−β − η
=
2
=
ai bj + ai bj + · · · + aim bmj ⎡ bj b ⎢ ⎢ j ai ai · · · aim ⎢ ⎣ bmj
***
−
−
−
−
⎡ ⎣
⎤ ⎦
⎡
⎡
−
−
B=
& 1 5F / VU ?U0
]#& M $ 5&6 A; M ( #n< VU
1 *( ad − bc −cd −ba
Y 4 i Y # U E !T&' ]#& P M x= A 9$ 5&6 >. T R# .$ *O&0 I &+ ]#& 4 j *P P = P A%C *P = I AGB C P A:C *$ O !T&' I ]#& 4 j 4 i & # U E E (".&[, P A &F O&0 × ]#& A S A$C *A ]#& 4 j 4 i &Y # U E !T&' ]#&
E (".&[, AP &F O&0 × ]#& A S AC *A ]#& 4 j 4 i & # U E !T&' ]#&
*( #n< VU P ]#& AC ij
jk
ik
⎥ ⎥ ⎥ ⎦
⎦ =
=
= ⎣
−+ +− − − − − −
=
+ +
= ⎤⎡
⎦⎣ ⎤ ⎦
⎤ ⎦
*CAB = BCA = I &F ABC = I S M $ 5&6 A
ij
⎣
M 0&0 B&' .$ . A BA %qT&' A
⎤
⎡
=
= ⎣
A=
⎤
E 4 j 5 .$ A ]#& E 4 i Y %qT&' E M ( *( O !T&' B ]#&
9Z#. $ & "#& %- G#U 0 ) &0 '() %
0
a b A = c d ad = bc
ij
=
ij
*( o1& M −α − γ = α + γ = "#&0 ]3
cij
⎧ α= ⎪ ⎪ ⎨ β=− ⇒ γ = / ⎪ ⎪ ⎩ η = /
=
β=−
]#& A = [a ] S $ n×l ]#& . AB K;'= &F O&0 m×l ]#&
0 0 5F 4 (i, j) #F.$ M ZM G#U B = [bij ] n×m
5F Y1 M O&0 n × n ]#& I S & S c An × n &+ ]#& C T 5F DZ&q, #& N# ?U0 *I A = A AI = A &F O&0 n × m ]#& A >. T R# .$ O&0 $, a $ 0 ]#& C B A S n
n
m
) A (B + C) = AB + AC
)
a (AB) = (aA) B = A (aB)
) )
A (BC) = (AB) C A=A
ij
ij
ij
ij
. T .$ . A U0 ]#&
* $$S (= 5&Q #$ B U0 ]#& M # S #n< VU
&0 & A / VU . B >. T R# .$ *AB = BA = I M *Z$ 5&6 A $&+ n
−
?z[1 (n − ) × (n − ) & "#& 5& $ M x= A *O&0 n × n ]#& N# A = [a ] O&0 O G#U Y mn' E !T&' ]#& 5& $ 0 0 A S ZM G#U &F O&0 A ]#& 4 j 5 ij
j
|A| = a A − a A + · · · + (− )n+ an An
$& Y E *H* G#U .$ 78 $ #$ Y N+M 0 5 . G#U R# *( O $ ) Y [) E q1 *$ + g . ]#& &5 E N# Z#. $ e1 .$ *$ 5&6 . G#U R# E. Z M $. $ O&0 n × n ]#& N# A = [a ] S $ 4 j 5 4 i Y mn' E !T&' ]#& 5& $ A &F O&0 A ]#&
ij
A = − $. .$ BA AB [& &0 AH $ R# M (B&' .$ M $ 5&6 B = *(" #n
A8 Q = P = − M x= >. T R# .$ *E = R = − M $ 5&6 a) E = E
b) P = −E
c) Q = E
d) R = E
e) EP = P E = P
f ) EQ = QE = Q
g) P Q + QP = O
h) RP + P R = O
i) QR + RQ = Oj) P + Q + R + E =
ij
i+
|A| =
(− )
i+
ai Ai + (− )
ai Ai + · · ·
i+n
· · · + (− ) j+
=
(− )
i+
aj Aj + (− )
j+n
· · · + (− )
ain Ain
#& "#& X 0 D C B A S M $ 5&6 AJ &F O&0 q k × n p × m × k
× A O C O AC O * O B O D = O BD ⎛
aj Aj + · · ·
A =
anj Anj
&F A = ⎝
*n ≥ M A
n
Z#. $ 5& $ G#U 0 ) &0 −
−
−
=
'() $
( ) ( ) − () (− ) =
= () −
+ (− )
= () ( + ) − () ( + (− −
−
= ()
−
− ) ) (− − ) =
− ()
+ (− )
=
−
⎞ ⎠
=O
S M $ 5&6 A7 ⎛
⎝
⎞ ⎠
) *'& +
+=
− ()
− () ( − ) − () ( + ) + (− ) ( − ) = −
G#U *$$S G#U U0 &]#& 0 & 5& $ G#U 0 M X R# 0 *( 6SE&0 !VO 0 5& $ z [1 #&0 n × n ]#& 5& $ (n − ) × ]#& 5& $ ? *O&0 O G#U (n − ) |A| $&+ &0 . A U0 ]#& 5& $ $ 9ZM G#U #E >. T 0 $ $ 5&6 a = a 9 × U0 ]#& 5& $ A a c
b = ad − bc d
a d g
b c e e f = a h h i
9 × U0 ]#& 5& $ A; 9 × U0 ]#& 5& $ A f d f d e −b +c i g i g h
Z#. $ 8*H* q1 N+M 0 A&
−
() − = − + (− ) (− )
=
0 F $. $ $ ) T q, $ #E ]#& E 4 Y .$ 5 Q Z$ y"0 4 Y X"'
'() & $
−
= −
−
() − = = ( )(
−
) () ( ) =
5 0 0 k3 Z# $c= 4 5 0 . 5 AC .$ M 4$ 5 0 0 ( A;C .$ Z# $M ZM 4.& Q 5 E . 4 Y E . 4.& Q Y AC .$ Z# $M ZM 4.& Q 5 E . *Z# $M ZM a a ()
=
()
=
=
Z#. $ 8*H* q1 N+M 0 A .8
() b c = a b−a c−a a b − a c − a b c (b − a) (c − a) a a b + a c + a (b − a) (c − a) a a b + a c − b
(b − a) (c − a) (c − b)
E A;C .$ Z# $M ZM #$ 5 $ E . 5 AC .$ M Z# =S . M&= . c− a $, 4 5 E b − a $, 4$ 5 *Z# $M ZM 4 5 E . 4$ 5 AC .$ 0 . #E & "#& E N# 5& $ 0 * $ M [& 5& $ i N+M ⎡
) ⎣
−
−
⎤ ⎦
⎡
)
⎣ −
−
⎤ ⎦
= (− )+ () A +
+
(− ) A + (− ) = + =
. #E & "#& E N# 5& $
Z#. $ 8*H* q1 N+M 0 A, .8 () − = − − (=) − − − − −
−
+ (− ) = A = −
Z# $c= Y 0 0 4 Y 0 0 0 AC .$ M *Z# $c= 4$ Y 0 . 4 Y 0 0 $ ]< −
) ⎡
)
⎣ ⎡
)
⎢ ⎢ ⎣
−
⎤
⎦ ⎤ ⎥⎥ ⎦
)
⎡
)
⎣ ⎡
)
⎢ ⎢ ⎣
() A
0 $ $
−
M [&
⎤ ⎦ ⎤ ⎥ ⎥ ⎦
G#U . E 5& $ Z\ " [& $. XB&b .$ 5$M $& 0 _z +U !B$ R+ 0 *( 1 ]0 .&M *M $& 5& $ i E & F [&
% $
( ?, ZM x , . Y $ &) & $ .$ S A *O x , 5& $ ZM - $, .$ . ]#& N# E Y S A; *$ O %- $, R# .$ ]#& 5F 5& $ ]#& 5F E #$ Y 0 . Y N# E 0q S A *M+ v ]#& 5F 5& $ Zg c=&0 *( ^T c & 0 _&0 i A $ O T T Y1 Rg&3 T Y1 _&0 S AH 0 0 T Y1 T&, %qT&' &0 ]#& 5& $ *( #$ Y N# E 0q 0 0 ]#& N# E Y S A8 *( T ]#& 5& $ &F O&0 5F #$ 5 N# E 0q 0 0 ]#& N# E S AJ *( T ]#& 5& $ &F O&0 5F O&0 T "#& E 5 N# Y N# S A7 *( T ]#& 5F 5& $
)
⎤
⎡
A−
⎡
.$
(− ) −(− ) () ⎣ −( ) ( ) −(−) ⎦ ( ) −() (−) ⎡ ⎤ / / − / ⎣ − / / / ⎦ / −/ − /
=
=
/ VU 5 Q *(I + A)
M (0&f A, .8 ( $= 0 j $ ) >. T .$
−
= A(A + I)−
(I + A− )(A(A + I)− )
= (I + A− )A(A + I)− = (A + A− A)(A + I)− = (A + I)(A + I)− = I
*( O >&[f ZV' .$ . #E & "#& E N# / VU 0 $ 90&0 ⎤
) ⎡
)
×
−
−
−
⎣ −
⎡
)
⎣ ⎡
⎤
−
−
β β β
γ γ γ
⎢ α ⎢ ⎣ α α A = [aij ] ⎦
−
)
⎤ θ ⎥ ⎥ θ ⎦ θ
−
a a
a a
a a a a
a a
a a
a a a a
a a
*(I + AB)
−
*A
−
a a
a a a a
⎤ a a ⎥ ⎥ ⎥ ⎥ a ⎥ ⎥ a ⎥ ⎥ ⎥ ⎥ a ⎦ a
M (0&f AJ M (0&f A7
A = A(I + BA)−
+ B − = A− (A + B)B −
x= 9 8 :; ) < 2 =3) $ $M E = CA DB >. T 0 5 0 . S LB$ ]#& M A S >. T R# .$ * " U0 &]#& D A M Z#. $ O&0 #n< VU
A C
A C
B D
B D
= |A||D − CA− B|
Z#. $ O&0 #n< VU D S = |D||A − BD− C|
⎢ ⎢ ⎣
−
⎤
⎡
⎥ ⎥ ⎦
)
⎢ ⎢ ⎣
−
−
−
⎤ ⎥ ⎥ ⎦
M (0&f 8*H* N+M 0 & AH
a b c d −b a d −c + b + c + d = a −c −d a b −d c −b a
a+b a a
a a+b a
a a a+b
M (0&f H*H* N+M 0 & A8
= (a + b)b
$ 1 & 1 A U0 ]#&
0 0 A ?U0 *O&0 T GB&L |A| M ( #n< VU
*(AB) = B A ( /|A| ]#& N# A = [a ] M x= $ ]#& 5& $ A ( T GB&L Δ 5& $ &0 U0
R# .$ *( A ]#& 4 j 5 4 i Y mn' E !T&' &0 ( 0 0 A >. T −
−
−
−
ij
ij
⎦
]#& N# S M $ 5&6 AH &0 ( 0 0 A &F O&0 #n< VU
⎡ a ⎢ a ⎢ ⎢ ⎢ ⎢ a ⎢ |A| ⎢ ⎢ a ⎢ ⎢ ⎣ a a
−
⎡
½+½
(− ) A½½ ⎢ (− )½+¾ A½¾ ⎢
*** ½
⎢ Δ⎣
(− )
+n
⎡
A = ⎣
−
···
*** ¾
···
(− ) An½ n+¾ (− ) An¾ ⎥ ⎥
···
(− )
(− )
A½n
⎤ ⎦
⎤
¾+½
(− ) A¾½ ¾+¾ (− ) A¾¾ +n
A ¾n
M x=
n+½
***
n+n
⎥ ⎦
Ann
> '() $
>. T R# .$
Δ = |A| = − − − − − = = − + = A = A =
−
A = − A = A =
?U0 ( #n< VU A ]#& nB
= − , = ,
= ,
= , = −.
A = − A =
A = − A =
=−
= ,
= , = −,
,
= = = ⎡
−
− −
−
−
⎡
⎤ −
⎢ =⎢ ⎣
⎥ ⎥ ⎦
⎡ ⎢ =⎢ ⎣ − ⎡ ⎢ =⎢ ⎣
!− − − − − − / / = / − /
−
−
# ×
−
⎡
+
⎢ − ⎢ ⎣
⎢ +⎢ ⎣
−
−
⎤
⎤
⎥ ⎥ ⎦×
−
⎡
⎤−
⎥ − ⎥ ⎦
−
− "
−
− ⎤ ⎡ ⎤ ⎥ ⎥⎥ + ⎢⎢ ⎥× ⎦ ⎣ − − − ⎦ − − × / − / − ⎡ ⎤ ⎢ ⎥ ⎥ =⎢ ⎣ − ⎦ ⎤ ⎡ − − ⎢ / − / − / ⎥ ⎥ +⎢ ⎣ / −/ − / ⎦ −/ / / − ⎡ ⎤ − − ⎢ / − / − / ⎥ ⎥ =⎢ ⎣ / −/ / ⎦ −/ / / −
− −
−
− − − (− ) − [ ]
− / +/ − = − − − [ ] +/ − /
/ = − − − [ ] −/
= − − + = =
−
×
⎥ ⎢ ⎥ ⎥+⎢ ⎥ ⎦ ⎣ − − ⎦ − −
=
" −
⎤
'() $
− = × − − × − − / −/ = − / / A − / / = − / / / / = − / / −/ −/ = −/ −/ = − = −
A C
B D
A C
B D
A &]#& S −
=
+
A−
−
−A B I
$ $
&F O&0 #n< VU
(D − (A− B)− )[−CA− I]
Z#. $ O&0 #n< VU D S 0&6 >. T
A C
B D +
− =
I −D− C
D − (A − BC − C)− [I − BD− ]
, -. ' / 0 &$0.&M .$ . + u\ Y >_$&U & & $ T 0 . & F t1$ UB&Y nB *M DZ&# >&-. *ZM
'() % $
−
( )−
−( )− ()
= + − − $ − ( )( )− × (− ) − ( )( )− ()
%
×
M $$S B$&U E *#0 h .$ . 4$ B$&U Z$ . 1 x &0 U0 B$&U $ .$ S *y − z 0 c 4 B$&U $ O !#[ y − z = − !VO 0 #E & $ &0 O $ $ & $ ]3 *$$S !#[ B$&U 5&+ 9( $&U
x =
+
x=
+ y − z,
y − z = −
. 5F S M y = (z − ) / $ O 4$ B$&U E 9(O $ Z Z$ . 1 B$&U .$ x=
+
z − − − z =
z+
E ( >.&[, & $ % ) , + .$
S=
−
? @A) 9BC < D ) E38 %
Y >_$&U & $ 5 & "#& %- 4 N+M 0 "#& !VO 0 . A;* C AX = B A* C 5F .$ M (O ⎢ A=⎣
a
···
an
· · · anm
***
m
am
***
⎤
⎡
⎥ ⎢ ⎦, X = ⎣
x
***
xm
⎤
⎡
⎥ ⎢ ⎦, B = ⎣
b
***
m m
m
m
m
bn
L+ . B MN C L+ . X GO P . A E !T&' ]#& *Z & /+ ! Q RS M'J *C /+ !<O P . A ]#& 0 B 5 &B *Z$ 5&6 AB $&+ &0 & A RQ D. R# "= F+G HIJ K+ % &v #& X"' 0 B$&U E . v N# 0 9( 5 M *Z$ . 1 U0 >_$&U .$ ]< $.F (0 +M B$&U N# c +M v N# . $ &+1&0 >_$&U
S *$ O $& & $ =. =. .&M R# $ &0 *O&0
% ) $M !' . F & $ && 1& 0 . R# .$ . F (0 % ) ]< Z$ . 1 [1 B$&U .$ . *F B Z$ . 1 5F E ![1 B$&U
"#& 4= E D. R# S.&V0 5$M $& 0 9ZM $& #E Z #. B & $ 9E .&[, ! 9 "+ .FT
m
⎧ a x + a x + · · · + am xm = b ⎪ ⎪ ⎨ a x + a x + · · · + am xm = b .................................. ⎪ ⎪ ⎩ an x + an x + · · · + anm xm = bn
A;* C
K% N# E . h *Z & !H C m )*HJ n /+ . X #&−m N# A;* C >_$&U & $ 0 !=U# B$&U n E N# % ) 5& c+ . Y0 M ( (α , · · · , α ) T j & 0 ) + , + *O&0 & $ .$ $ )
*Z & 5F K% . A;* C >_$&U & $ A& '() % m
x − y = −,
⎤ ⎥ ⎦
%
>.&[, a x + · · · + a x = b A* C m !"# )*HJ
U (0&f $ , b a *** a M . B$&U R# T j % ) N# E . h *Z & x= 1 M ( $ , E (α, · · · , α ) X #&−m N# *C &" &F x = α · · · x = α ZM
. B$&U T j & 0 ) , + *$ 0 . 10 A Y B$&U Q E XM # $S *Z & )HJ L K% Z & Y >_$&U & $ N# . w 6 >_ &0 & $
z + z − , , z z ∈ R
T j % ) (#& 0 >_$&U & $ R# M $ O ) *$. $
⎡
*v x * * * x x M x=
x + y =
*x = y − $$S B$&U E *#0 h .$ . &" 0 Z0 . 1 . >.&[, R# x &0 4$ B$&U .$ S ]3 *x = y = R# 0&0 *Z. y − = (".&[, 5F % ) ( & $ T j % ) & (, ) *S = (, ) E >_$&U & $ A, .8 x − y + z = , x − y + z =
x + y + z = ,
M $ O B$&U E *#0 h .$ . $ . 1 . >.&[, R# z &0 U0 B$&U $ .$ S *x B$&U $ O !#[ −x + y = − !VO 0 4$ B$&U
o1& N# R# *$ O !#[ −x + y = !VO 0 4 *S = U# *( T j % ) 1&= & $ ]3 ( >_$&U & $ A &a
z=
+ y −
x − y + z = ,
x − y + z =
x + y + z = ,
>_$&U & $ A, .8 x − y + z = ,
*Z &0 Y $ # U AGB *T GB&L $, .$ Y N# 5$M %- A% *#$ Y 0 Y N# E 0q 5$M =&- A:
x + y − z = ,
x + y + z =
E (".&[, 5F 0 h =&- ]#& *#0 h .$ . ⎡ ⎣
⎡ ⎣
−
−
−
⎦
*ZM !+, #E D. 0 &'
⎤ ⎦
⎤
− ⎡
()
−→ ⎣ ⎡ ()
−→ ⎣
−
−
−
− −
⎤ ⎦ ⎤ ⎦
ZM 4$ Y E . Y 0 0 $ AC .$ M R# ^- .$ *Z# $ + ZM 4 Y E . Y 0 0 .& Q Z# $ + 0 h & $ *Z# $ + ZM 4 Y E . 4$ Y A;C E (".&[, F ]#&
x − y + z = ,
nB A* C & $ 0 h =&- ]#& AB ZM x= E ' & $ U 0 E& 5 M *O&0 A;* C & $ aa _&0 !VO 0 AB & $ & ZM $& _&0 !+, * O T + 5F T Y1 #E T&, U# *$$S !#[ . & $ !T&' =&- ]#& . E z $ F ' .$ *ZM !' . !T&' $& & $ $ + E&E&0 >_$&U & $ A& '() $ % x − y + z = , −x + y + z = .
5 >_ 5 X# - ]#& *#0 h .$ . E .&[, X 0 5F =&- ]#& >&
U
⎡
y − z =
y − z +
y
=
S=
=
(−
z+
)
E ( >.&[, & $
+, % ) ]3
( − z) , ( z + ) , z z ∈ R
>_$&U & $ A .8
−x + y + z = ,
−
−
⎣ −
⎡ ⎣
−
−
⎤
⎡
⎡
⎤ ⎦
ZM !+, #E D. 0 &' *
⎦
ZM !+, #E D. 0 &' ⎤
− ⎦ − −
−
⎣
− ⎡
()
→⎣ ⎡ →⎣
⎤
− ) ⎣ − ⎦ (→ − ⎤ ⎡ ⎡ − () ) ⎣ ⎦ (→ →⎣
⎡
()
E ( & $ 5F 0 h =&- ]#& *#0 h .$ . ⎡
−
( z + )
x + y − z = , x + y − z =
⎤
⎤ x ⎦, X = ⎣ y ⎦, A=⎣ − z ⎡ ⎤ ⎡ − − B = ⎣ ⎦ , AB = ⎣ −
.$ x =
x + y − z = ,
⎦
⎤
⎡
⎤ ⎦
Z# $M ZM 4$ Y E . Y 0 0 $ AC .$ M R# ^- &) A;C .$ *Z# $M =&- 4 Y 0 . Y 0 0 .$ . 4$ Y AC .$ *Z# $M x , . 4 Y 4$ Y 4 Y E . 4$ Y 0 0 k3 AC .$ *Z# $ + %- − *Z# $ + %- / .$ . 4 Y AHC .$ *Z# $ + ZM E (".&[, F ]#& 0 h & $ x − y + z = ,
⎤
⎤
() − − ⎦ → ⎣ − ⎦ −
⎤ ⎤ ⎡ − − ) ⎣ − ⎦ (→ − − ⎦ − − ⎤ ⎡ − () − − − ⎦ → ⎣ − −
y−
z = − ,
z=
*x = y − z + = y = z − = z = R# 0&0 *S = (, , ) E ( >.&[, & $ % ) U#
#E ( 0 0 $ [. = =
|A|
.$ *Z# $ + x , . 4$ Y AC .$ M R# ^- 0 0 Z# $M =&- 4$ Y 0 . Y 0 0 $ A;C 4 Y E . 4$ Y 0 0 $ AC .$ *4 Y 0 . Y *Z# $ + ZM E (".&[, F ]#& 0 h & $
− − − = − = −
−x + y + z = ,
m − rank(A) = − = 5 Q *$. $ % ) & $ ]3 *$. $ T j % ) N# & & $ R# 0&0 >_$&U & $ A, .8 x − y + z = , x + y − z =
A=⎣
−
− −
x + y − z = ,
⎡ ⎦ , AB = ⎣ ⎤
−
− −
#E (" A [. |A| =
= =
− − − − − − − − = − − −
5F 5 $ Y $ E !T&' ]#& 5& $ & &0 ( 0 0
− =+
= =
( 0 0 AB [. M B&' .$ *( $ 0 0 A [. ]3 5 AB ]#& Y E !T&' ]#& 5& $ #E ( T GB&L 5F F − − −
= = =
− − − − − − − − − − − =−
=
*( % ) 1&= h $. & $ 7*8*q1 t0&Y ]3
=
*S = $. % ) & $ ]3 *( 1& F B$&U M D. 0 . #E & & $ E N# 0 % % M !' /&S
⎤ ⎦.
x − y = x + y =
x − y + z = x − y + z = ⎧ ⎧ ⎨ x + y + z = ⎨ x − y + z = ) ⎩ x − y − z = ) ⎩ x + y − z = x + y + z = − x − y + z = ⎧ ⎨ y −z + t = − x + y − z + t =
x+ y − z + t = ) ) x − y − t = ⎩ x−y +z −t = )
&0 0 0 5F =&- ]#& X# - ]#& *#0 h .$ . ⎡
y + z = ,
)
5F % ) $ ) 4, $ ) .$ 5 & $ !' 50 F [. 4 R " $ S .$ u3 R# &3 $M d0 & $ *( ( m × n ]#& N# A M x= &&% ' A E k × k P B N# E . h * ≤ k ≤ min m, n A ]#& E Y k 5 k $. 0 ! E M ( "#&
*$ O !T&' O&0 T GB&L A E k × k ]#& #E N# 5& $ S T A E (k + ) × (k + ) & "#& #E M 5& $ $ O O ( k 0 0 A )*$ M $ O S &F O&0 *rank (A) = k & $ M R# 0 =&M 4E_ pO * % 5F X# - ]#& [. M ( 5F O&0 O $ % ) A;* C &v $ U *O&0 0 0 AB D =&- ]#& [. &0 A *( m − rank (A) 0 0 % ) .$ $ ) !\ "
>_$&U & $ A& '() % x − y + z = ,
x + y + z = ,
x + y − z =
]#& X# - ]#& >. T R# .$ *#0 h .$ . &0 0 0 X 0 >_$&U & $ R# =&- ⎡
A=⎣
−
−
⎡ ⎦ , AB = ⎣ ⎤
−
−
⎤
⎦.
y − z + t = −,
*S
=
>_$&U & $ A .8
x + y − z + t =
(, −, − , )
>. T R# .$ *#0 h .$ . M D. /& 0 M Q
− − − − = = −
− − − |A | = = , − − − − − = − , |A | = − − −
− − = − , |A | = − − − = , |A | = − − − |A| =
)
|A | = |A|
x + y − z =
(O 5 ]3 ( 4 U z ZM x= *#0 h .$ . x + y = + z
.$
|A| =
(z +
− − z |A | = + z x = x = |A | =
=
|A | = |A|
) , (z − ) , z
− = z + ,
z +
− z + z
z ∈ R
#E =
= z − ,
)
x + y = −x − y =
x − y + z = x + y − z = ⎧ ⎨ x − y + z + t = y − z + t = ⎩ x + z + t = −
A;* C & $ .$ S )L K+ % 5& $ (m = n) O&0 0 0 >_ >_$&U $ U &F O&0 T GB&L c 5F X# - ]#&
# U E !T&' ]#& E ( >.&[, A M *x = |A |/|A| *B >&
U 5 &0 A ]#& 4 i 5 >_$&U & $ A& '() % i
>_$&U & $ AO&[ U0 & $ S C A .8
x − y = x + y =
x − y = ) ) −x + y = − ⎧ ⎨ x − y + z = ) ⎩ x + y + z = − ) x − y + z =
t = x =
' − x − y, ) x, y ∈ R
$ ) .$ & $ !' 50 $. .$ 0 % M d0 5F % ) $ ) 4,
|A | z = x = = − |A|
S=
x+y+z =
& S = (x, y,
|A | y = x = = − |A|
x − y = − z,
y+z+t= ,
X# - ]#& [. >. T R# .$ *#0 h .$ . & $ ]3 *( ; 0 0 >_$&U & $ R# =&- ]#&
5F % ) .$ !\ " &v $ U ( % ) . $ e1 .$ *O&0 m − rank(A) = − =
|A | x = x = = |A|
x − y + z = ,
x + y + z + t = ,
x − y + z = , x − y + z =
#E *S = {(
i
i
x + y − z = −
,
>. T R# .$ *#0 h .$ .
, , )} − − = = − − − = , x = x = |A | = |A | = − |A| −
|A | − = , y = x = = |A | = − |A| ⎤ −
|A | |A | = − ⎦ = , z = x = = |A| − |A| =
>_$&U & $ A, .8
x + y − z + t = ,
x − y − t = ,
1 & 1 λ ∈ R $, 0C )5 & M ( A ∈ Mat (n × n) U0 ]#& # . \ N# P )*UV )*HJ . B$&U R# *p(λ) = |λI − A| = A )*UV )'F% . p(λ) 4 n [ +) Q A *Z &
|A | y = x = = |A|
>_$&U & $ AO&0 T & $ 5& $ S C A .8
n
R# .$ *A =
M x= A& '() & E (".&[, A jL6 B$&U >. T
= |λI − A| = λ−−
− λ−
x y x + y = x x + y = y
Av = λ v ⇔ ⇔
=
x y
x −x
⇔ λ =
x y
R# .$ *A
= =
x x
x ∈ R = span
⎡ = ⎣
−
−
M x= A, .8 E ( >.&[, A jL6 B$&U >. T ⎦
− − λ− − λ−
(λ − ) (λ − ) (λ − )
|A | = |A|
− z
y = x =
|A | = |A|
z −
(0 &3 (T $ $ . 1 4 B$&U .$ . y x #&0 &' $ + t\ . F
S=
R# 0&0
( − z) , (z − ) , z z ∈ R
*$ 0 % ) O+ . 10 F &" l&Q S D. 0 . #E & & $ E N# 0 % M !' M )
)
⎤
λ− |λI − A| = −
x = x =
)
0 h # &. $0 , + U# *y = x R# 0&0 E (".&[,
x = y x + y = x x + y = y
x + y = − z
R# 0&0 *( AC &a 0 [O ?z &M M
Z#. $ c λ # . \ $. .$ ⇔
x − y = − z,
x ∈ R = span −
Av = v
T & $ R# X# - ]#& 5& $ *#0 h .$ . $ E !T&' & $ O nS .&M 0 . 4 B$&U &z 1 *( 9ZM !' . B$&U
x − y + z = − z − z − + z =
# &. $0 , + U# *y = −x nB x+y = ]3 &0 ( 0 0 λ = 0 h
x + y + z = ,
x − y + z =
= (λ − ) −
U# *λ = ± λ − = ± (λ − ) = ]3 λ # . \ $. .$ ?U0 * " A # #$&\ λ = Z#. $
x − y + z = ,
λ =
z −
⎧ ⎨ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
x − y = − x + y =
)
x − y + z = x + y − z = ) x − y + z =
x−y+z+t= x + y − z − t = x − y − z + t = ) x + y + z − t =
x + y = − x + y =
⎧ ⎨ x+y−z = x − y − z = ⎩ x + y − z = ⎧ −x + y + z + t =
⎪ ⎪ ⎨ x−y+z+t= ⎪ x+y−z+t= ⎪ ⎩ x+y+z−t=
/1 #' 2 n × n ]#& A M x= & $, v ∈ Mat (n × ) . $0 S *( . λ &F Av = λv M $S (= . @ λ \\' h *W N# . v A P *W 9 N# T GB&L v &. $0 Xb *Z & A 0 λ 0 B$&U .$ U[@ . Y0 T . $0 #E ( ) $.
*$. $ T λ E 0 Av = λv
]#& M R# 0 =&M 4E_ pO % & n . $ A M ( 5F O&0 O Y1 A ∈ Mat (n × n) #$&\ . $ A ]#& S ?U0 O&0 Y !\ " # . $0 . . . v v $ 0 A. V &0 _z&+ ' C λ . . . λ λ # !T&' ]#& C O&0 & F 0 h # &. $0 v R# .$ O&0 v . . . v v & 5$ $ . 1 Z .&M E ( Y1 C AC >. T n
.$ *λ = λ = λ = E .&[, A # #$&\ U# Z#. $ λ = # . \ $.
Av = v ⇔
n
n
⇔
−
⎡ ⎢ ⎢ C − AC = ⎢ ⎣
λ
··· ···
· · · λn
*** ***
⎥ ⎥ ⎥ ⎦
***
A
R# .$ ;*J* B A&X .8 )* A&
C=
v
v
'() & &
−
− −
−
=
(B&' R# .$ A;*J* E A;C &a $ C A, .8 C=
v
v
v
⎡ =⎣
⎤ ⎦
−
.$ ⎡ ⎣
⎡ =
⎣
⎤− ⎡
⎦
⎣
−
⎤
−
−
⎤⎡ ⎦⎣
⎤ ⎦
−
⎦
⎤ − − − ⎦ A = ⎣ − − −(λ + ) = ⎡
R# .$ * M x= A .8 .$ ( jL6 B$&U . $ A >. T x= *$. $ . V &0 λ = − # . \ N# & >_$&U & $ 0 AX = −X
x − y + z = x − y + z =
5F Y !\ " % ) & M $ O
*(" O Y1 A ]#& R# 0&0 *(
v = ( , , − )t
=
⎤ x y ⎦ z
0 h # &. $0 , + U# E .&[,
⎧⎡ ⎫ ⎧⎡ ⎤ ⎨ x ⎬ ⎨ ⎣ ⎦ x ∈ R = span ⎣ ⎩ ⎭ ⎩ x
.$
]#& E λ
(B&'
=
⎡
⎤
x ⎣ − ⎦ ⎣ y ⎦ = ⎣ −
z ⎧ ⎨ −x + y + z = x − z = ⎩ −x + y + z =
⎧ ⎨ x=y+z z=x ⇒ ⎩ y + z = x ⎧ ⎨ y= x=z z=x ⇒ ⇒ y= ⎩ z=x
⎤
λ
⎤⎡
⎡
λ
=
⎧⎡ ⎨ span ⎣ ⎩
⎤⎫ ⎬ ⎦ ⎭
0 h # &. $0 , + 0&6 >. T 0 &0 0 0 X 0 A ]#& E λ =
⎤⎫ ⎬ ⎦ ⎭
⎧⎡ ⎨ span ⎣ ⎩
⎡
−
⎤⎫ ⎬ ⎦ ⎭
⎤
⎦ M x= A .8 >. T R# .$ *A = ⎣ − (O λ − λ + λ + = E ( >.&[, A jL6 B$&U
:$c y L &6#. λ = − \\' 6#. . $ M !V6 &, + *( λ = − i λ = + i &0 0 0 X 0 & F 0 h # &. $0 E ⎧⎡ ⎨ span ⎣ − ⎩
⎧⎡ ⎧⎡ ⎤⎫ ⎤⎫ ⎤⎫ ⎬ ⎬ ⎬ ⎨ ⎨ ⎦ , span ⎣ i ⎦ , span ⎣ −i ⎦ ⎭ ⎭ ⎭ ⎩ ⎩ i
]#& N# # #$&\ + %qT&' & *( ]#& 5F 5& $ 0 0 5F 5& $ f 0 0 ]"#& N# # #$&\ + ` +
*]#& 5F T Y1 T&, ` + 0 0 U# ( ]#&
h Y !\ " # &. $0 $ U $ & .$ # . \ 5F . V .&+O 0 0 aM ' # . \ 0 *( jL6 B$&U
Y !\ " >& # #$&\ 0 h # &. $0 * "
. #E & "#& E N# . \
n
− − ⎡ − ) ⎣ − −
)
)
⎤n
)
⎦
0 &
9M [&
− −
n
n
λ
λ
) #' ' ' 3 & ' 4 *A = [a ] ∈ Mat (m × n) M x= * M $ O G#U A = [a ] >. T 0 A P a T&, 5&V # U E ( Mat (m × n) E q, *(A ) = A M ( RO. >. T R# .$ *$$S !T&' a U# *AA = I M Zg S &U . T .$ . A ]#&
*O&0 D$& 0 0 5F / VU
M $ O h'? '() * ij
t
E N# # &. $0 # #$&\ 4&+ 0 * & Y1 !VO 5&V >. T .$ $.F (0 . #E &]#&
*#.F (0 F
ji
ij
t t
⎤
−
⎦
⎡
⎤ − − − ) ⎣ − − − ⎦
) ⎤ ⎡ −
) ⎣ − − ⎦ − − ⎤ ⎡ ⎥ ⎢ ⎥ ) ⎢⎣ ⎦
_&0 ]#& Y1 4= # &. $0⎡ # #$&\ ⎤A5 a b d *M [& . ⎣ c e ⎦ aa
ji
t
A−
= = ⎡
A−
⎣
=
⎡ ⎣
=
/ −/
/ / / −/ / / / / / / / /
/ − / −/ / − / −/
−
n
.$ A =
= At
=
A
n
=I
ij
ji
x x− −
'() &
>. T R#
−
x+
−
x −
=
x x−
=
x − x +
p (x) =
in nj
ij
M x= A&
n+
ni jn
j
n ≥ E 0 R# 0&0 A = I .$ =A *A &F A = − S A, .8
in
i
i j
−
nj
j
i
=
ij
j
p (x) =
⎤− / −/ ⎦ / ⎤ / −/ ⎦ = At = A /
f
( n × n ]#& N# A M x= & *p (A) = O >. T R# .$ *P (x) = |xI − A|
pO &F A = [a ] ∈ Mat (n × n) S * M ( 5F O&0 &U A M R# 0 =&M 4E_ *a + a + · · · + a = ≤ j ≤ n E 0 AGB *a + a + · · · + a = ≤ i ≤ n E 0 A% *a a + · · · + a a = ≤ i = j ≤ n E 0 A: *a a + · · · + a a = ≤ i = j ≤ n E 0 A$ .$ . A = [a ] ∈ Mat (n × n) ]#& * DZ E 0 U# O&0 0 0 D$& &0 M Zg S L9 . T *a = a j i $ * n . $ n × n 5.&\ ]#& Y !\ " # . $0 n A. V %&" ' &0C \\' # . \
0 h # &. $0 ?U0 *( O Y1 R# 0&0 ( * &U >& # #$&\
i
) ⎡ ) ⎣ −
B =
−
− x−
−
*A = A − I A − A + I = O .$ x= &0 A = S A .8 − .$ *B AB = Z#. $ −
n
A
= = =
B n B n−
n
n + n −
−
n
B B −
n − n +
R# 0&0 C
⎡ C
−
AC = ⎣ ⎡
B$&U >. T R# .$ *⎣
−
= Ct
√
− √ − − −
⎤
>. T R# .$
n
⎦
i
M x= A .8 E ( >.&[, A jL6
E ( >.&[, λ = 0 h # &. $0 &q= 0 h # &. $0 &q= span ( , , ) , ( , , − ) R# 0&0 *span ( , , ) E ( >.&[, λ = t
t
t
⎤
C=⎣
⎡
⎦ , C − AC = ⎣
−
*C
−
−
⎤ ⎦
(B&' R# .$ M $ O ) − A . \ *n ∈ N A = M x= A .8 − *#.F (0 . B$&U *ZM Y1 . A 0 . h R# 0 *!' λ = − 5F # #$&\ λ − λ − = 5F jL6
λ 0 h Y !\ " # &. $0 * " λ = &0 *v = ( , − ) v = ( , ) E .&[, X 0 λ ]#& 0 v/v v /v &. $0 5$ $ . 1√ Z .&M) ( √ R# 0&0 *Z. C = √// −√// −
= C t
n
t
t
C t AC =
−
.$ *A = C n
A
= = = =
−
n − t C C n − t C C (− )n + n (− )n − n C Ct (− )n − n (− )n + n − n n (− ) + −
Ct
& "#& E N# M $ 5&6 0 * * 9( E. Z Y1 ]#& N# &0 #E 5.&\
) ⎡
−
−
)
−
−
) ⎣ −
−
⎡
⎦
(λ + ) (λ − ) =
⎡
n
n
⎤
5.&\ ]#& N# A ∈ Mat (n × n) S MC % * v V# # &. $0 λ . . . λ λ # &. \ &0 & v 5$ $ . 1 Z .&M E !T&' ]#& $ 0 v . . . v &F Z &0 C = [vv · · · v ] .
⎤
⎡
⎦
) ⎣
−
⎤ ⎦
⎢ ⎢ C − AC = ⎢ ⎣
⎤
λ
··· ···
· · · λn
λ
*** ***
⎥ ⎥ ⎥ ⎦
***
&. $0 E C .$ O&0 c#&+ A # #$&\ + S R# 0&0 *$ 0 &U C ]#& &F ZM $& V# − ]#& A& '() & * . A = − 5F jL6 B$&U ( 5.&\ ]#& R# *#0 h .$ λ = λ = 5F # #$&\ ]3 *( λ − λ = 0 0 X 0 λ = λ = 0 h * # &. $0 " x= Z ]3 *span − span &0 ZM ( √ ) / √ v = , / C=
.$ C
( √ ) / √ v = , − / ( √ ) √ / / √ v = √ / − /
v
−
= Ct
c#&+ A # #$&\ 5 Q >. T R# .$
−
C − AC = C t AC = ⎡
⎤
*#0 h .$ . A = ⎣ − ⎦ ]#& A, .8 5F jL6 B$&U ( 5.&\ ]#& R# λ λ − =
λ = −√ λ = &0 0 0 A # #$&\ ]3 *O&0
X 0 λ λ λ 0 h # &. $0 *λ = √ ⎧⎡ ⎨ span ⎣ ⎩
⎡ √ v = ⎣ ⎡ v = ⎣
⎧⎡ ⎧⎡ ⎤⎫ ⎤⎫ ⎤⎫ ⎬ ⎬ ⎬ ⎨ √ ⎨ √ ⎦ , span ⎣ ⎦ , span ⎣ − ⎦ ⎭ ⎭ ⎭ ⎩ ⎩ − − ⎤
⎡
$M x= 5 ]3 *O&0
⎤
/ √ / ⎦ , v = ⎣ / ⎦ , √ − / / ⎡ √ ⎤ / √ / √/ ⎢ ⎦ − / , C = ⎣ √ / − / / − /
⎤ / √ ⎥ − / ⎦ − /
F ((x, y, z) + (α, β, γ)) = F (x + α, y + β, z + γ)
t
= x + α − y − β + z + γ = (x − y + z) + (α − β + γ) = F (x, y, z) + F (α, β, γ)
R 0 R E Y & O& G F S aF >. T R# .$ a ∈ R O&0 R 0 R E Y O& H Y !#[ / VU ?U0 * Y (O& H◦F F +G *(A ) = A ( #n< VU Y !#[ N# #n< VU
M ( . $0 e ∈ R M x= E ∈ ?U0 T 5F >&j L #& N# 5F 4 i o L
T u&j L #& N# 5F 4 i o L M ( . $0 R *O&0 E 0 ( Y O& F : R → R M x= ZO&0 O $ ≤ j ≤ n m
n
l
−
&F O&0 LB$ A ∈ Mat (n × n) S M $ 5&6 AH *( 5.&\ ]#& N# M = A + A ! Q ( 5.&\ 5.&\ ]#& $ %qT&' F A8 Q ( 5.&\ &U ]#& $ %qT&' F AJ − [& n E 0 . A − l&Q A7 *M *A = O &F AA = O S M M (0&f A
m
n
t
−
, 56& 7
n
i
i
m
n
m
F (ei ) = aj E + aj E + · · · + amj Em
>$ F P . A = [a ] ]#& >. T R# .$ S R# 0&0 *Z$ 5&6 M (F) $&+ &0 Z & F !"# v ∈ R E 0 &F O O !VO 0 &. $0 ij
n
∀v ∈ Rn
" 5$ 0 Y (T& =&' M . $0 &&q= R0 e0 U# * O & Y . T .$ . F : R → R (O& a ∈ R u, v ∈ R E 0 M Zg S Y F (au) = aF (u) F (u + v) = F (u) + F (v) −−→ *f (x, y, z) Z"# f (−− (x, y, z)) &0 _z +U
(O& A& '() n
m
n
−−−−−−−−−−−−→ F (x, y) = (x, x − y, y − x)
: F (v) = M (F ) v
E Y & O& R0 N[V# & $ *$. $ $ ) m × n & "#& , + R 0 R 0 R E Y & O& G F S % E #n< VU Y O& J R 0 R E Y O& H >. T R# .$ a ∈ R O&0 R 0 R
#E *( Y R 0 R E
Rn
m
m
F (a (x, y)) =
m
n
= =
aF (x, y)
=
n
l
F (ax, ay) −−−−−−−−−−−−−−−−−→ (ax, ax − ay, ay − ax) −−−−−−−−−−−−→ (x, x − y, y − x)
n
) M (aF ) = aM (F )
)
F ((x, y) + (s, t)) = F (x + s, y + t) −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ = (x + s, x + s − y − t, y + t − x − s) −−−−−−−−−−−−→ −−−−−−−−−−−→ = (x, x − y, y − x) + (s, s − t, t − s)
M (F + G) = M (F ) + M (G)
)
M (H ◦ F ) = M (H) M (F ) ) M J − = M (J)−
a = M x=
−−−−−−−−−−−−−−−−→ F (x, y) = (x − y, x + y, x + y) −−−−−−−−−−−−−−−→ G (x, y) = (x, x + y, x + y)
−−−−−−−−−−−−−−−−−−→ H (x, y, z) = (x − y + z, x + y − z) −−−−−−−−−−→ J (x, y) = (x − y, x + y)
=
'() &
F (x, y) + F (s, t)
Y R 0 R E F (x, y, z) = x − y + z (O& A, .8 #E *( F (a (x, y, z)) = F (ax, ay, az) = ax − ay + az = a (x − y + z) = aF (x, y)
Z#. $ 8** q1 E A t\ 0 A
9ZM t\ (B&' R# .$ . 8** q1 Z
A &. $0 !VO 0C 5 Q A&
(H ◦ F ) (x, y) = H (F (x, y)) = H (x − y, x + y, x + y) = (x − y) − (x + y) + (x + y) i + (x − y) + (x + y) − (x + y) j
F
⎡
=⎣
M (H ◦ F )
=
⎡
−
−
⎡
⎣
⎤
−
⎦
= M (H) M (F )
x= &0 8** q1 E A (+"1 t\ 0 A Z#. $ J (x, y) = (u, v) −
u−v =x u + v = y ⇒
⎡
M (G) = ⎣ ⎛⎡ H ⎝⎣
J
u = x + y v = −x + y
M (J)
=
=
/ −/
−
−
=
/ /
F (x, y) = (x − y, x + y, x + y)
)
F (x, y) = x − y
)
F (x, y) = (x + y, x − y)
)
F (x, y, z) = (x + z, y + x, z + x)
⎡
=⎣
⎤
−
⎦
⎤⎞
⎦⎠ =
⎦
⎤
0&6 >. T 0
⎦,
⎛⎡
⎛⎡ , H ⎝⎣
−
,J
− − = ,
⎦⎠ = ⎤⎞ ⎦⎠ =
⎤
⎦,
,
−
=
M (J) =
=⎣
⎤⎞
H ⎝⎣
−
⎡
G
⎦,
⎤
−
,
−
, .
Z#. $ 8** q1 E A (+"1 t\ 0 A, (aF ) (x, y) = = =
aF (x, y) −−−−−−−−−−−−−−−−→ (x − y, x + y, x + y) −−−−−−−−−−−−−−−−−−−−−→ (x − y, x + y, x + y) ⎡
= ⎣
M (aF )
⎡ =
⎣
−
−
⎤ ⎦ ⎤ ⎦ = aM (F )
Z#. $ 8** q1 E A; t\ 0 A
(F + G) (x, y) = F (x, y) + G (x, y) −−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−→ = (x − y, x + y, x + y) + (x, x + y, x + y) −−−−−−−−−−−−−−−−−−−−→ = (x − y, x + y, x + y)
a = M M t\ . T .$ . 8** q1 A4 F (x, y) = (x − y, x + y) H (x, y) = (x + y, x − y) G (x, y) = (x − y, x − y) J (x, y) = (x + y, x + y)
(A
⎤
= M J −
)
= B − A−
=⎣
−
) F (x, y, z) = (x − y + z, x + y − z)
−
⎡
#E & O& E N# M $ 5&6 0 * 9M oL6 . N# u#&+ ]#& ]< * Y
*(AB)
M (H) =
−
−−−−−−−−−−−−−→ x + y −x + y − ⇒ J (x, y) = ,
−
G
−−−→ −−−→ J J − (x, y) = (x, y) ⇒ J (u, v) = (x, y) −−−−−−−−−−→ −−−→ ⇒ (u − v, u + v) = (x, y)
F
M (F ) = ⎣
−
⎦
=
E (".&[, F u#&+ ]#& R# 0&0
−−−−−−−−−−−−−→ = (x + y, x − y)
⎤
− −
)
=A
M M (0&f A5
⎡ M (F + G)
= ⎣ ⎡ = ⎣
−
−
⎤ ⎦ ⎤
⎡
⎦+⎣
= M (F ) + M (G)
⎤ ⎦
!<
]#& $& !<
det ( A ) −−−−→ . . . . . . . . . . . . . . . . . . . . A ]#& 5& $ >. T 0 . I** R#+ E ; (+"1 '() 9Z$ 4& !< N+M 0 #E transpose(A) −−−−→
with(linalg) : A := matrix(2, 2, [[1, −2], [2, 3]]); B := matrix(2, 2, [[0, 2], [3, 1]]); C := multiply(inverse(A), B); multiply(C, A);
M x=
58' 9 / :
............... A
? @A) 9BC EJ $
>_$&U E Sy & $
eq_i:a_{i1}*x_1+a_{i2}*x_2+...+a_{im}*x_m=b_i
.$ #E !VO 0 . & $ R# *
≤i≤n
M O&0 O !V6 9ZM $. !<
;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= Y [) $. .$ > . $ : 9 . $ &0 M $. $ $ ) linalg 4&0 . c= 4 .$ !<[ .$ *$ + .&M 0 $& F h=&' .$ . 5F 5 with(linalg) N# E $& 0 ; ) + 2 =U i jL0 + &0 . 5F ( 0 ]#& N# . $0 &#F.$ &0 v 4&0 B −n . $0 G#U 0 *ZM . $ E v_n * * * v_2 v_1 X 0 !<
−−−−−−−−−−→ v := vector([v1 , v2 , ..., vn ]) −−−−→ v := (v , v , · · · , vn )
#F.$ &0 A 4&0 n × m ]#& G#U 0 *ZM $& . $ E A 4 (i, j) ij
A := matrx(n, m, [[A 11, A 12, ..., A 2m]
with(linalg) :
, [A 21, A 22, ..., A 1m],
eq 1 := a 11 ∗ x 1 + ... + a 1m ∗ x m = b 1; .. .
... , [A n1, A n2, ..., A nm, ]])
eq n := a n1 ∗ x 1 + ... + a nm ∗ x m = b n; Sy := {eq 1, eq 2, ..., eq n}; Va := {x 1, x 2, ..., x m}; solve(Sy,Va)
. $ E ( =&M & $ R# !' 0 5 M *$ O $&
5$.F (0 0 9N+ 2 + 1) % . $ E ( =&M A ]#& jL6 +)Q eigenvectors(A) . $ N+M 0 *$ O $& charpoly(A) !VO 0 [ *$.F (0 . A # &. $0 #$&\ 5
[a,b,(v_1,...,v_k)] 4= 0 & .&[, E E jL6 +)Q .$ 5F . V .&+O b # . \ a M $ 0 # &. $0 E Y !\ " , + (v_1,...,v_k) *O&0 a 0 h # /.$F .$ 78 & http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
]#& G#U 0
⎡
A ⎢ A ⎢ A := ⎢ ⎣ An
***
A A
***
An
⎤ Am Am ⎥ ⎥ ⎥ ⎦ · · · Anm ··· ···
***
c &. $0 G#U 0 ' M $ O T *ZM $& $&# 0 #$ > . $ [B *$ O $& ]#& . $ E 0 !< help N+M 0 M $. $ $ ) G#U .$ (B *#E $<0 & F UB&Y
]#& B A M x= OD ) 2 '6 >. T R# .$ O&0 LB$ $, c !<
A + B −−−−→ . . . . . . . . . . . . . . . . . . . B A & "#& e+) !<
A − B −−−−→ . . . . . . . . . . . . . . . . . . . . . B ]#& A !<
c ∗ A −−−−→ . . . . . . . . . . . . . . . . . . . . . . . . . . A ]#& .$ c !<
B .$ A & "#& %qT&' multiply ( A , B ) −−−−→ !<
A ∧ n −−−−→ . . . . . . . . . . . . . . . . . . . . . . n 5 0 A ]#&
!<
inverse ( A ) −−−−→ . . . . . . . . . . . . . . . . . . . . . . . . A / VU
) u •v = v •u
)
u • (v + w) = u • v + u • w
)
a (u • v) = (au) • v
)
u •u ≥
G#U 5 &VO i UB&Y Z, >. T 0 . Z &0 da $ R0 # E e- $ S V# ?z a *$ + ZV' N# 1&[Y !0&1 da $ 5F O&0 0 0 *$. $ $ ) !#&" !' 0 $U & O. *( ( tY 0 [ M , - !T +) E !" #$ %&"' 0 [ M !" #$ !#&" !' .$ Y [) E $& !j= R# E m *O&0
* & . Z, R# *(
;**; q1 E AC S# !B$ 0 >. T 0 . u ∈ R x . $0 AB Y C .S u =
√ u •u
U# *ZM G#U + *−−−−→* *(a, b, c)* := a + b + c
9&F a ∈ R u, v ∈ R S ) u ≥
)
u = ⇔ u = 0
)
|u • v| ≤ uv
;< M . @ 5&+ #E ( & .&"0 uL0 R# ` -
4&+ &z[#\ M ( (.$ &,$ R# #$ *(& 5 $ %- R O $ &0 & . ! v = −a,−−b,−→c!, w = −−x,−y,−−→ z ∈ R S !VO 0 $ $ 5&6 v w $&+ &0 . w .$ v $ %qT&'
)
au = |a|u
)
u + v ≤ u + v
O M &" & aa &" & X 0 . AH A &" & * &
Z#. $ O M &" & $ ) !B$ 0 $ v ≤ &. $0 R0 # E .$ *− ≤ uu v >. T 0 . u, v ∈ R
•
v • w = ax + by + cz
*ZM G#U 9$ + G#U 5 . R .$ $ %- 0&6 >. T 0 −−−−−−−→ −−−−−−−−→ R .$ . $0 $ w = (b , · · · , b ) v = (a , · · · , a ) S ZM G#U O&0
•
∠ (u, v) := arccos
u•v u v
n
n
n
n
v • w := a b + · · · + an bn
*$ + G#U 5 &F O&0 α 0 0 v u R0 # E S R# 0&0
RL R .$ $ %- i $. .$ & ]3 R# E R 0 #$ 50 XB&Y R# & (S Z * " ^T 9&F a ∈ R u, v, w ∈ R S n
u • v = uv cos α
E N# / g. D C B A M x= A .8 &0 `?- @ 4$ 5 ` + M M (0&f *,?-_ 9AGB *; !VOC *( 0 0 Y1 $ @ 4$ 5 ` +
AB + BC + CD + DA = AC + BD −→ >. T R# .$ *v = −→ DA u = AB ZM x= *!' −→ −→ −→ −→ DB = DC + CB = u + v CB = v DC = u −→ → −→ −→ h $. ZV' R# 0&0 *−CA = CB − AB = v − u
u &. $0 V# 0 =&M 4E_ pO % *u v = M ( 5F O&0 J v •
>. T R# .$ *A, B ∈ R M x= & → . $0 E >. T 0 . B A )*'=< $&+ &0 $ + G#U −AB #$ 5&0 0 *Z$ 5&6 d (A, B) ! d (x, y, z) , (a, b, c) :=
u + v = u + v + v − u
9$ O $& E G#U E ( =&M >&[f 0
) d (A, B) ≥
)
(u + v) • (u + v) + (u − v) • (u − v)
=
u • u + u • v + v • v + u • u − u • v + v • v
=
u
•
d (A, B) = d (B, A)
)
d (A, B) + d (B, C) ≥ d (A, C)
*
* & !8'8 E . A &" & }
#E $. E N# .$ 0 9M [& . ∠ (u, v)
$ %- AGB 9*; !VO #$ 0 . $0 N# # j A%
−−−−−→! −−−−−−−→! ) u = , , − , v = , , u=
u + v • v = u + v
u • v v u
)
d (A, B) = ⇔ A = B
)
u + v + v − u = =
(x − a) + (y − b) + (z − c)
9&F A, B, C ∈ R S
u + − v + − u + v = u + v + v − u
#$ 5&0 0 *(
,
−−−−−→! −−−−−→! , , , v = , ,
&. $0 R0 # E A&
−−−−−→! −−−−−→! ) u = , , , v = , , −−−−−−−→! −−−−−−−−→! ) u = , , − , v = − , ,
B = (, , ) A = ( , , − ) M x= A $. R# .$ . 7**; q1 E AC (+"1 *C = (, , ) *M t\ GB&L . $0 u ∈ R M x= *ZM G#U u/u >. T 0 . u V# . $0 *( T ( N# . $0 R# E M ( 5F . nS Z R# !B$ u *u = u u 9?U0 x= B 2 2 2 < =P 0 0 u 0 v # j >. T R# .$ *u = 0 u, v ∈ R M u •v u proju v = u •u
*$ O ) % *; !VO 0 *(
u=
−−−−−−−√ −−→ , −,
'()
−−−−−−−√ −−→ v = −, ,
&0 ( 0 0
∠ (u, v) = arccos ⎛
u •v uv
⎞ √ √ ( )(− )+(− )( )+( )( ) ⎠ , = arccos ⎝ , √ √ +(−) +( ) (−) + +( )
− = arccos = arccos ( ) ≈ ×
5F / g. M aa A, .8 9 #E *( `?-_ &" " C = (, , )
B = ( , , ) A = ( , , )
, √ ( − ) + ( − ) + ( − ) = , √ d (A, C) = ( − ) + ( − ) + ( − ) = , √ d (B, C) = ( − ) + ( − ) + ( − ) = d (A, B) =
*( u 0 v # j E >.&[, l 5F .$ M h = v − l U# U#
0 0 u 0 v . $0 # j @ ZM$Q proju v =
* * |u • v| | + − | =√ l = *proju v* = = √ u ++ ,
/
0 0 O @ .$
#E *O&0
h
+
=
++
−
=
−
=
90&0 v 0 . u # j $. .$
√
0
= =
S M ( RO. *( ∠ (u, v) # E α M ( R+ 0 *$ O @ nB cos α < &F α ≤ π ≤ S =@ E *( O & | cos α| _&0 [& .$ !B$ S ( 0 0 u V# . $0 &0 # j V# . $0 &F α < π/ .$ *( 0 0 −u &0 &F π/ < α ≤ π M π/ <
u proju v = sgn (cos α) proju v u
−−−−−−−→! −−−−−−−→! ) u = , − , , v = , , −
)
u=
9Z#. $ ` + .$ ]3
−−−−−→! −−−−−→! , , , v = , ,
/ g. &0 da ('&" A *M [& . C = (, , − ) $ +, $ 0 $ V# . $0 w v u S M $ 5&6 A 9 x LB$ . $0 E 0 &F O&0 Z 0
proju v
B = (− , , ) A = ( , , )
a) proju x = (u • x) u b) projv x = (v • x) v c) projw x = (w • x) w d) x = (u • x) u + (v • x) v + (w • x) w
& x . R0 # E M x= A$& & "MC AH # E β . u . $0 & y . R0 # E α . u . $0 ;*; !VOC *Z &0 γ . u . $0 & z . R0 &0 u V# . $0 u/u >. T R# .$ M $ 5&6 *A% −−−−−−−−−−−−−→ α, cos β, cos γ) i jL0 *( 0 0 (cos cos α + cos β + cos γ =
∠ (u, v) = π/ v = u = M . T .$ A8 9M [& . #E > .&[, E N# . \
a) u • v
b) u • u
c) u + v
d) u − v
e) (u − v) • (u + v) f ) u + v
u + v + w = 0 V# w v u &. $0 M x= AJ *#.F (0 . u v + u w + v w ` + . \
•
•
•
v.| cos α| |u • v| v u.v |u • v| u
proju v = proju v proju v u |u • v| sgn (cos α) = u u uv| cos α| cos α u = u | cos α| u uv cos α = u u u •v = u u •u
. $0 0 v = −−−, −−, −−−→! . $0 # j A& '() *#.F (0 . u = −−−, −−−−,−→! Z#. $ G#U 0 ) &0 *!' proju v
u •v
u u •u ( ) ( ) + (− ) () + () (− ) −−−−−−−→ = ( , − , ) ( ) + (− ) + () −−−−−−−−−−→
= − , ,− =
B = ( , , ) A = ( , , − ) M x= A, .8 . BC e- 0 A / . E $. `&. @ *C = (, − , ) *M [&
ZM x= 0 . h R# 0 *!' −−−−−→ −→ u = CB = B − C = ( , , ) −−−−−−−→ −→ v = CA = A − C = ( , , −)
. H & A T&= & H . BC e- 0 A # j S CAH # cB Zg&1 da .$ &F AGB ;* ; !VOC Z &0 h *$M [& . CH e- CA e- 5 h [& 0
&U #&3 B = &v, v , · · · , v ' S E&0 >. T R# .$ O&0 R E V . $0 &q= #E 0 v ∈ V k
n
v=
v • v v • v
v +
v • v v • v
v + · · · +
ZM x= v =
vk • v vk • vk
vk
√
∠ (u, v) = π/ v = u = M . T .$ A7 *#.F (0 . u − v u + v R0 # E . $0 w v u LB$ . $0 E 0 M $ 5&6 A *( $ +, u 0 v (u w) − w (u v) •
}
'()
−−−−−→! −−−−−−−−→! −−−−−−−→! , v = − , , , v = , −, , ,
*( R 0 #&3 B >. T R# .$ *B = v , v, v >. T R# .$ v = −a,−−b,−→c! ∈ R S ?U0
v • v v • v v • v v = v + v + v v • v v • v v • v
a+b+c −a + c a − b + c = v + v + v
5 Q #&3 B M x= 78 QGK+ $ O&0 R E V . $0 &q= #E 0 v, v, · · · , v ZM G#U n
k
w
=
v
w
=
v −
w
=
wk
•
*** =
v • w w w • w v • w v • w v − w − w w • w w • w vk • w v k • w vk − w − w − ··· w • w w • w vk • wk− ··· − w wk− • wk− k− B = w , w , · · · , wk
>. T R# .$ *( R E V . $0 &q= #E 0 ! v = −−,−−,−−,−→ M x= A& '() % −−−−−−−−−−−→! ! ?U0 v = − , , −, v = −−,−−,−−−→ , 4 S D. N+M 0 >. T R# .$ *B = v, v , v #E 0 V# &U #&3 N# c &U
#&3 (+O *#E&"0 R E v, v, v &q= Z#. $ 8*;*; q1 0 ) &0 . h R# 0 *!' V# &U #&3
n
#$ . $0 0 . $0 N# # j AGB 9;*; !VO $& & "M A%
=>?@AB C ' ' D !#&" 0 .$ ( (' . _z +U &U &#&3 &0 5$M .&M & ( 4E_ 4$ ).$ &#. & E&"B& h R# 0 &3 uL0 R# E m *ZM &U . O $ $ #&3 E d0 $ .$ S $&# 50 *( >&)& ' *$ + h mT 5 uL0 R# UB&Y
v , v , · · · , vk
M x= . T .$ *O&0 R E V . $0 &q= #E 0 #&3 i E&0 M ( V J )*I [ B Zg S
# S )? J . T .$ . #&3 R# *v v = j = i ***v ** = i E 0 M v = −−−, −−, −−−→! M x= A& '() &U #&3 N# B = &v , v' >. T R# .$ *v& = −−,−'−,−→! *( V = span v , v 0 M x= A, .8 B =
n
i
•
j
i
−−√ −−−−√ −−−− −−→ # " √ v =
, ,
−−√ −−−−−−−− # " √−−→
, , −
v =
0 &U #&3 N# B = &v, v' >. T R# .$ *( span&−(−−, −−, −−−→), −( −,−−,−→)' &# .$ + 0 O&0 R .$ . $0 e M x= A .8 >. T R# .$ *( N# 0 0 M 4 i #F.$ c0 T 5F *( R 0 V# &U #&3 N# B = &e , e , · · · , e ' V =
w
= =
w
= =
v −−−−−−−→! , , , v • w v − w w • w −−−−−−−→! + + + −−−−−−−→! , , , − , , , ++ +
n
n
i
n
w
v • w v • w v • w w − w − w w • w w • w w • w −−−−−−−→!t + + + −−−−−−−−−−→!t , , , − − , , , +++ −
−−−−−−−−−−−→ t +++ − , , , − − / + + + / −−−−−−−−−−−−−−→ t
+++ − − , ,− ,− / + + / + / −−−−−−−→!t , , , B = v , v , v , v v −
= =
=
.$ *( &U #&3 u
w = ||w ||
=
u
w = ||w ||
=
u
w = ||w ||
=
u
X R# 0 ZM V# . #&3 R# $
−
, , ,
=
= =
l&Q ( &U #&3 N#
−−−√ −−−−−−−− −−→ # "t √−−−−−√ −
, , , −
u
,
− #−−−−−−−−−−−−−−−−−−−−→ "t √
−
√
√
u
√
, , − , −
,
>. T R# .$ *(
w
−−−−−−−→! −−−−−−−→! , , , , v = , , , ,
w
M !#[ Y1 !VO 0 . #E & "#.& E N# )
⎡
)
⎣
−
= =
−−−−−−−−−−→!t − , , , −
=
−−−−−−−−−−−−→
t − , , , −
w
=
= =
−−−−−−−→! −−−−−−−→! , , , , v = , , ,
) ⎤ ⎦
−
⎡
)
⎣
,
−−−−√ −−−−−−√ −−→ " #
, , ,
,
−
−−−−−−−−−−−−→ ,− ,− ,
= u , u , u
v −−−−−−−−−−→!t − , , , v • w v − w w • w −−−−−−−−−−→!t − , , , −
= =
−−−−−→! −−−−−→! −−−−−→! , , , v = , , , v = , ,
−−−−−−−→! −−−−−−−→! v = , , , , v = , , ,
, , ,
t
−−−→! −−−→! , , v = ,
v =
=
w = ||w ||
−−√ −−−−−− −−−−→ # " √
>. T R# .$
t
−−−−−−−→! −−−−−−−→! ) v = , , , , v = , , , ,
v =
=
w = ||w ||
.$ $ O x=
−−−−−−,−−,−−,−→! 0 0 X 0 v v v M x= A, .8 (+O 4 S D. *O&0 −−−−−−,−−,−−,−→! −−−−−−,−−,−−,−→! 9ZM ) B = v , v, v, v #&3 0 .
−−−−−→! −−−−−→! −−−−−→! ) v = , , , v = , , , v = , ,
)
=
w = ||w ||
*( V# &U #&3 N# B
−−−−−→! −−−→! ) v = , − , v = , v =
−−−−−−−→! −−−−−−−→! −−−−−−−→! , , , − , , , = , , , v • w v • w v − w − w w • w w • w −−−−−−−−−−−→! − + − + −−−−−−−→! − , , −, − , , , ++ + + + + −−−−−−−→! , , , − + ++ −−−−−−−→! −−−−−−−→! −−−−−−−−−−−→! − , , −, + , , , − , , , −−−−−−−−−−→! ,− ,− , B = w , w , w
u
(+O 4 S D. N+M 0 $. .$ 0 & 90&0 V# &U #&3 N# ]< &U #&3 N#
)
=
,
V# &U #&3 N#
) v =
w
−−−− # "t √−−−−−−−− √−−→
−−−−−−−−−−→ t
w = , , , . ||w || B = u , u , u , u
=
=
=
−
+ + + −−−−−−−−−−→!t − , , , +++ −−−−−−−−−−→!t − , , ,
v • w v • w v − w − w w • w w • w −−−−−−−−−−→!t + + + −−−−−−−−−−→!t − , , , − , , , − +++ −−−−−−−−−−−−→
t / + + + − , , , − − / + + + / t t −−−−−−−−−−→! −−−−−−−−−−→! − , , , − , , , −
− t
−−−−−−−−−−−→ − − , , , −
⎤ ⎦
=
t
−−−−−−−−−−−−−−→
t − , ,− ,−
= = = (u × v) × w = = = =
−−−−−−−−−→ u × (− , −, −) i j k − − − −−−−−−−→ (, , −) i j k × w − −−−−−−−→ (, , − ) × w i j k − − −−−−−−−−→ (, −, −)
E ;< $ M x=
−−−−→ −−−−→ v = (x, y, z), u = (a, b, c) ∈ R
#E >. T 0 . v .$ u . $0 A!%# C ! K;'= 9ZM G#U u×v = = =
*(" #n< MO ).& %- R# 0&0 9Z#. $ R $. & #&3 &. $0 $. .$ A .8
w =
v
= = =
v
k c z
(bz − cy) i + (cx − az) j + (ay − bx) k −−−−−−−−−−−−−−−−−−−→ (bz − cy, cx − az, ay − bx)
u, v, w ∈ R E 0
u × (v + w) = u × v + u × w
j × k = −k × j = i
)
a (u × v) = (au) × v
k × i = −i × k = j
)
u⊥u × v , v⊥u × v
)
u × v = uv sin (∠ (u, v))
)
u • (v × w) = (u × v) • w
M x= A .8 γ) 9>. T R# .$ −(α,−−β,−−→
i j k u • x y z α β γ −−−−−−−− −−−−−−→ − −−−−−−−−−−−
y z x z x y u• , − , α γ α β β γ y z x z x y a −b + c β γ α γ α β a b c x y z α β γ
.$ u ).& %qT&' $. .$ −−−−−−−→ −−−−−→ ) u = ( , − , ), v = (, , )
)
u = i − j, v = i + j + k
)
−−−−−→ −−−−−→ u = (, , ), v = ( , , )
)
−−−−−−−→ u = i − j + k, v = ( , − , )
λ ∈ R S & S uv S & S u × v = 0 AJ *u = λv M $$S (= *$ !V6 $ . kM u × v v u &. $0 A7 &F O&0 $ +, v u x &. $0 0 w . $0 S A *wu × v ZM x= A& '() −−−−−−−→ −−−−−−−→ u = ( , , − ) , v = ( , , − )
0
9M [& .
v = −(−−−−,−−,−→) u = −(−−, −−−−,−→) M x= AH −−−−−→ ;**; q1 ( & N# $. *a = w = ( , , ) *M t\ $. R# .$ .
) u × v = −v × u
)
u • (v × w) =
a∈R
i j a b x y
i × j = −j × i = k
−−−−→ −−−−→ = (x, y, z) u = (a, b, c)
u×v
i =
9>. T R# .$
j k − − −−−−−−−−−−−−−−−−−−→ = (− + , − + , − ) −−−−−−−−→ = (− , , − )
v = −(−−, −−−−,−→) u = −( −,−−,−→) M . T .$ A, .8 9Z#. $ w = −(−−, −−−−,−→) u × (v × w)
i j = u × − −
k
}
U * (u − v) × (u + v) = u × v M M (0&f A8 ("Q &" R# √ . \ u v = v = u = M . T .$ AJ *M [& . u × v u × v = v = u = M . T .$ A7 *M [& . u v . \
*u × v + (u v) = uv M (0&f A Q .$ &" *u × v ≤ uv . + M $ 5&6 AI ( . 10 . T M (0&f u + v + w = 0 M x= A *u × v = v × w = w × u * u × (v × w = (u w)v − (u v)w M M (0&f A; M M (0&f A * (u + v) × (v + w) (u + w) = (u × v) w M M (0&f A *u × (v × w) + v × (w × u) + w × (u × v) = 0 &F u ⊥ v S M $ 5&6 AH & ' *u × u × (u × [u × v]) = uv . $0 x 4 U &. $0 v u M x= A8 B$&U & $ O &+, v u 0 #&0 Y# O Q O&0 . 10 >. T .$ O&0 % ) . $ u×x = v . $0 *M oL6 . B&" % Q y# O R# •
%- E [U AGB 9*; !VO N+M 0 ('&" [& A% ).& ).& %0 0 X 0 C B A M x= '() % da ('&" * " (− , , ) (, , ) ( , −, ) *M [& . ABC −→ −→ ( RO. *Z#S h .$ . AC AB &. $0 *!' . $0 $ R# E !T&' `?-_ E M A% *; !VOC ( =&M 0&0 *( ABC da ('&" 0 0 $ . $ → −→ 9ZM [& . −AB × AC Gj M −→ AB = −→ AC =
−−−−−→ B − A = ( , , ) −−−−−−−→ C − A = (−, , )
= =
=
*−→ −→* *AB × AC * j k * * i * * * − * √ −−−−−−−−−−−−→ (− , − , ) =
.$ . ABC da ('&" $. .$
0 &
9M [&
) A = ( , , − ) , B = (, − , ) , C = (, , − )
)
A = (, , ) , B = (, , ) , C = (− , , )
F B ;< ( & F .$ . $0 $ U# #& $ ).& $ %- &+, *( #& !+, N# &S %- M B&' .$ *. $ u\ *$. $ .&"0 &$0.&M #) % u, v, w ∈ R . $0 E 0 G#U u (v × w) >. T 0 . R# ! )+ K;'= E A8C (+"1 0&0 *Z$ 5&6 [u, v, w] $&+ &0 $M •
•
•
•
•
R# 0&0 Area(ABC)
•
•
u S R ST 9: U5 . $ x= DZ [ .$ . & F $ 0 O&0 LB$ . $0 $ v N# u $ .$ v c v $ .$ u 5$ $ (M' &0 ZM ('&" *AGB * ;!VOC $ O !T&' `?-_ E
E $. `&. .$ %- u . $0 @ 0 0 `?-_ E R# v . $0 @ 0 0 h $. `&. & *O&0 u e- 0 v / . .$ *( v u R0 # E / .$ %A
= u.h = uv sin (∠ (u, v))
E U# *(" u × v . $0 E c) cQ R# M `?-_ E ('&" &0 ( 0 0 u× v ).& %qT&' 0 u × v M $ O ) *v u &. $0 y O & *( $ +, $. $ . 1 5F .$ `?-_ E R# M T
−→ −→ 9ZM [& . −→ AD AC AB &. $0 &S %−→ AB = −→ AC = −→ AD =
−−−−−−−→ B − A = (, −, ) −−−−−→ C − A = (, , ) −−−−−−−→ D − A = (, −, )
= =
−→ −→ −→ [AB, AC, AD] * * * − * * * * *= ** − **
−→ −→ −→ AB, AC, AD =
= = =
yu yv yw
zu zv zw
a ∈ R O&0 . $0 w v u u S
9&F
) [u + u , v, w] = [u, v, w] + [u , v, w]
}
&S %- [U AGB 9*; !VO &S %- N+M 0 XUV Z' [& A% B = (, , ) A = ( , , − ) p&\ F A, .8 T Z D = (, , ) C = (, , − ) M ZM ) V R# 0 u3 R# 0 &3 0 *!' M . $ . 1 T N# .$ 1 & 1 . Mn Y\ .& Q %qT&' ( =&M ]3 *O&0 T & F E !T&' 4 Z' −→ −→ AD AC AB &S T %- R# S *ZM [& . −→ & *]VUB&0 T N# 0 p&\ O&0
Z#. $ ;**; q1 Z#. $ **; &a E AC (+"1
= (u × v) • w
xu [u, v, w] = xv xw
.$ V
0&0 ?U0 *[u, v, w]
$ % B − A, C − A, D − A −−−−−→ −−−−−−−−→ −−−−−−−→ (, , ), (− , − , ), (, − , ) − − − − + + =
*U1 T N# .$ . Mn p&\ ]3 *M >&[f . ;**; q1 A& 0 $ B = ( , , ) A = ( , , ) / g. &0 Z' A; *0&0 . D = (, , ) C = (− , , ) E .&[, 5F / g. M 0&0 . Z' A C = (, , ) B = ( , , ) A = ( , , ) *D = ( , , )
)
[au, v, w] = a[u, v, w]
)
[u, w, v] = [v, u, w] = −[u, v, w]
)
[u, v, w] = [w, u, v] = [v, w, u]
v u &. $0 M [u, v, w] = 1 & 1 A *O&0 Y "0 w v u . $0 &0 G ST U5 . *AGB *; !VOC $$S oL6 K Y"B E N# w `?-_ E ('&" &0 ( 0 0 K Y"B E R# Z' / . E $. `&. .$ %- v u &. $0 y O & `?-_ `&. R# 0 u × v 5 Q *`?-_ E R# 0 w 0 w . $0 # j @ &0 ( 0 0 h $. `&. ( $ +, U# u × v h = = u
proju×v w | (u × v) • w| u × v
&. $0 y O & `?-_ E ('&" =@ E 9&0 ( 0 0 K Y"B E Z' ( u × v 0 0 v V
= = =
u × v h (u × v) • w [u, v, w]
5F / g. M 0&0 . Z' A& C = (, , ) B = ( , , ) A = (
'()
E .&[, *D = ( , − , ) −→ −→ −→ oL6 ' Y"B E AD AC AB . $0 &0 *!' 4 Z' 4 K Y"B E i 0&0 *$$S
K Y"B E Z' Z6O N# 0 0 D C B A / g. &0 Z6O N# M ( =&M ]3 *$ O ) % *; !VO 0 *( , , − )
p&\ E M . y B$&U A& '() $ 0&0 . T .$ . $.nS X = (x , y) X = (x , y) *X = X M −−−→ *Z#0 Z $& . XX . $0 &S V . X *!' E .nS y B$&U .$ *$ O ) % H*; !VO 0 9&0 ( 0 0 X X p&\ : X = ( − t) X + tX ; t ∈ R x = ( − t) x + tx : ; t∈R y = ( − t) y + ty y − y x − x = : x − x y − y
B = (− , , ) A = ( , − , ) Y\ .& Q F A U1 T N# .$ D = (, , ) C = ( , , ) B = (, , −) A = ( , , ) Y\ k3 F AH .$ E = (, , ) D = ( , , ) C = ( , , ) . $ . 1 T N# *[u + v, v + w, w + u] = [u, v, w] M M (0&f A8 M M (0&f AJ *(u × v) × (w × x) = [u, v, x]w − [u, v, w]x *[u × v, v × w, w × u] = [u, v, w] M M (0&f A7
∗
}
+ y G#U AGB 9H*; !VO Y\ $ E .nS y A% y $ (U- A, .8
: x + y =
:
x=t+
, y = t −
;t∈R
*M oL6 Z 0 ([" . .$ E b y $ & 0$ d'&[ 0 h *!' . p Y R# 5$ 0 E ( =&M ]3 *U@&\ &z cB R 9Z"# $. & !VO 0 . 0 *ZM t\
: : :
x + y = x − = −y y− x− = −
?U0 *v = −(−−, −−−→) X = (, ) Z#. $ R# 0&0 ([" y $ E pO *v = −( −,−→) X = ( , − ) U 0 v v & ( $ 5F $& &. $0 E Z 0 * " E y $ ]3 *( yb M O&0 = − 9?U0 *O&0 e@&\ R# 0&0 ∩
⎧ ⎨ x + y = x=t+ : ⎩ y = t − x= / : y = /
*O&0 e@&\ X
=(
⎧ ⎨ t + + t − = x=t+ : ⎩ y = t −
/ , / )
.$ . Mn y $ U#
5F 0 # O&0 e1 DZ? .$ .{ S G#U 0&0 .$ . " .{ $ O $. 5F 0 0- 5& S& $ 6 $. N# &0 y R# 0&0 * & y . " R# *$S 3 . $0 ( )C $& . $0 N# A.{ B 5&V C &S V *$$S oL6 A.{ 0 $. X = (x , y ) 3 )? &0 ( . y $ 0 p&\ + , + E ( >.&[, v = −−→ (a, b) 9Z"# (B&' R# .$ *t ∈ R M −X→ + tv !VO : X = X + tv ; t ∈ R
\ )*HJ . B$&U R# *$ O ) GB H*; !VO 0 * & -# I E .&[, -# I MNJ : x = x + at , y = y + bt ; t ∈ R
-# ! )*HJ O&0 T GB&L b a M . T .$ E ( >.&[, :
y−y x−x = a b
$& X &S V &0 y M x= $ R# .$ *O&0 v $& X &S V &0 y ( v O&0 v E v M V# 1 & 1 >. T *O&0 O $ tU 0 X $& . $0 M ( R# ;*H*; q1 E i& N# x , 5 5&+ E T b 0q &0 . x y N# *(=S x= y 0 Y\ 5 . &S V ?U0 *$M
Z#. $ % (B&' 0&6 O&0 T GB&L a b = S A: *h = |ax|a|+ c| *( . 10 h = |ax+ +by + c| = (B&' .$ ]3 a +b
}
0 $
p&\ E .nS y B$&U A *0&0 . p&\ E .nS y E . X = ( , ) Y\ T&= A; *0&0 . X = (, ) X = ( , − ) . . −y a .$ . . −x y S M $ 5&6 A x/a + y/b = 5F &M B$&U &F M eY1 b .$ *$ 0 : : a x + b y + c = S M $ 5&6 A B$&U &F O&0 e@&\ y $ ax + by + c = !VO 0 . $ 5F 1? ! E .nS = y 5 : ax + by + c + λ (a x + by + c) = . p Y , + *( \\' $, N# λ M (O * & y O oL6 y $ i = , , M X = (x , y ) Y\ M $ 5&6 AH 9M U1 y N# 0 1 & 1 X = (, )
X = (
i
x x x
y & Y\ T&= 98*; !VO
, )
i
y y y
B$&U 0 y & X
Y\ T&= A .8 *0&0 . ax + by + c = 0C O&0 y 0 X Y\ # j H ZM x= *!' −−−→ −−−→ d = X H X X `?- da R# .$ *A$ O ) 8*; !VO 9 [& !0&1 X X
=
d = =
, (x − x ) + (y − y ) −−−→ * −→* |X X • v| *projv −− X X * = v |a (x − x ) + b (y − y ) | + a + b
*−−−→* *X X * =
(a, b) &S V X = (x , y ) &# .$ M *( $& v = −−→ 9$ . ( RV+ (B&' (O 5 O&0 T GB&L b a S AGB
i
=
: ax + by + c = p Y M $ 5&6 A8 5.&\ . −y 0 ([" : −ax + by + c = * " : ax + by + c = p Y M $ 5&6 AJ * " 5.&\ . −x 0 ([" : ax − by + c = : ax + by + c = p Y M $ 5&6 A7 * " 5.&\ DZ [ 0 ([" : −ax − by + c = y y O & da ('&" M $ 5&6 A &0 0 0 . −y . −x l : ax + by + c = *( c/|ab| y $ 1? ! E M "# 0 . Y B$&U AI Y\ c : x + y = : x − y + = *$.nS X = (, )
= (x , y )
:
y + c/b x− = −b a
−−−−→ a) . v (, −c/b) . X R# 0&0 x= 5 (−b, 9 .$ *$M h
= = =
, X X − d c (−bx + a (y + c/b)) (x ) + y + − b b + a |ax + by + c| + a + b
Z"# 0 Z O&0 T GB&L b a = S A% X = (, −c/b) R# 0&0 l : x = t , y = −−c/b 9 .$ *v = ( −,−→) h = = =
, X X − d c |x | (x ) + y + − b + |by + c| c y + = b |b|
Y\ E M "# 0 . T B$&U A .8 *$.nS C = (, − , ) B = ( , , ) A = ( , , − ) −→ −→ AC AB &. $0 U1 P T 0 C B A 5 Q *!' 7*; !VO 0C * T E R# 0&0 . $ . 1 T 0 X = M ZM x= ![1 &a & Z ]3 *A$ O ) → −→ × AC A 9=@ E *n = −AB n = =
−→ −→ AB × AC = (B − A) × (C − A) −−−−−→ −−−−−−−−→ −−−−−−−−→ (, , ) × (− , −, ) = ( , −, )
E ( >.&[, T B$&U R# 0&0 (x −
) − (y − ) + (z + ) =
*y = x −
} x Y\ E .nS T 97*; !VO
0 $ +, T 0 Y S & 0$ E q1 0&0 R# *( $ +, T .$ $ ) p Y e+) 0 y 5F O&0 9Z#S T G#U &[ . X = (x , y , z ) 3 )? &0 P T % & ( @&\ + , + n = −(a,−−b,−→c) . −→ 9U# ( $ +, n 0 −− X X M X = (x, y, z) P : n • (X − X ) =
!VO 0 * & P )*(6= )*HJ . . Mn B$&U
E ( >.&[, B$&U R# &j L
P : a (x − x ) + b (y − y ) + c (z − z ) =
GB J*; !VO 0 *$ O & )(6= ! )*HJ M *$ O ) Y\ E M "# 0−− .− T B$&U A& '() % −−→ *( $ +, n = (, , ) . $0 0 OnS X = ( , , − ) Z#. $ *8*; 0 ) &0 *!' (x −
) + (y − ) + (z + ) =
*x + y =
T $ (U- A .8 *M oL6 Z 0 ([" . P : x + y = z + pO *E " e@&\ &q= .$ T $ *!' B&" R# .$ & *( & F−−& E T−−$−−−E −−−−−→ . T .$ n n *n = (, , − ) n = ( , −−,−→) #$ 5&0 0 *O&0 0 0 5&6&j L ([" M #E
P
: x −
y
+
z
=
=
−
=
−
*U@&\ . Mn T $ R# 0&0 *(" RQ M 0 %
c x = y x + y + z = T 1? ! A *0&0 . x + y + z + = A = (
p&\ E M "# 0 . T B$&U A; *$.nS C = ( , − , ) B = (, , )
, , )
Y\ E M "# 0 . T B$&U A *$.nS P : x − y = z T > E 0
X = ( , , − )
}
G#U G L & . T 9J*; !VO &q= .$ T Y\−−−−E −→M "# 0 . T B$&U A, .8 v = (, , ) x . $0 $ &0 $.nS X = ( , − , ) *$ O ) % J*; !VO 0 *( E w = −( −,−−,−→) v E b . $0 $ 0 n = v × w ).& %qT&' *!' 0 *O&0 $ +, c P $. 0 nB ( $ +, P T E w 9R# 0&0 *#F .&+O 0 T & !B$ R+ i n = v × w =
j
k
⎤
−−−−−−−−→ ⎦ = (− , , − )
P : − (x − ) + (y + ) − (z − ) = : z+x=y+
9>. T 0 5F .&3 >_$&U ( : x = x + at , y = y + bt , z = z + ct ; t ∈ R
E .&[, 5F &M >_$&U O&0
:
y−y z−z x−x = = a b c
>&j L 0 p&\ E .nS y B$&U A& '() & *"# 0 . X = (x , y, z) X = (x , y, z) −−−→ −−−−−−−−−−−−−−−−−−−→ X X = (x − x , y − y , z − z ) &S V . X *!' y R# B$&U ]3 *Z#0 Z $& . $0 . :
x − x y − y z − z = = x − x y − y z − z
*O&0
0 T $ $. 0 E !T&' y &M >_$&U A, .8 . P : x + y + z = P : x − y + z = >_$&U
*#.F (0 . T $ 5F B$&U y E &S V R = 0 *!' % ) (#& 0 & $ R# 5 Q [B *ZM !' & $ .$ & $ $M . nS . \ . &v E V# Z ]3 *$. $ z = ZM x= ]3 *ZM [& 5F X"' 0 . #$ 9A$ O ) GB *; !VO 0C R# 0&0
x − y = x + y = ⇒
x y
= ⇒X = =
, ,
. $0 0 v 5F $& . $0 nB ( e1 P T 0 y 5 Q $ +, n 0 v !B$ R+ 0 *( $ +, P T n & $ + x= 5 .$ *( v = n × n = ( , −, ) × (, , ) = (−
x − / y − / z− = = −
%qT&' @ [U AGB 9*; !VO T y R0 # E A% .&M$
x x x x
y y y y
z z = z z x − x = x − x x − x
i
y − y y − y y − y
}
i
z − z z − z z − z
i
i
=
X 0 . z y x . P T S M $ 5&6 AH B$&U &F M eY1 c b a T GB&L . \ .$ *$ 0 x/a + y/b + z/c = >. T 0 P T & (x , y, z) Y\ T&= M $ 5&6 A8 &0 ( 0 0 ax + by + cz + d = h=
x + y
=
|ax + by + cz + d| + a + b + c
z + >_$&U 0 T $ R0 # E *M oL6 . y + z = x +
AJ
T $ T&= A7 *M [& . #V# E a x + b y + c z + d = T $ S M $ 5&6 A T &F O&0 e@&\ ax + b y + cz + d = $.nS $ 5F 1? ! E 1 & 1 P = P 9(O 5 0 λ E 0 M x + y = z + x + y − z =
∗
P : a x + b y + c z + d +λ (a x + b y + c z + d ) =
& # E y E (.$ M "# 0 . T B$&U AI 9$.nS O $ $ T $ O
P : x + y + z = , P :
, , )
9E ( >.&[, y B$&U R# 0&0 :
Y\ E .nS T B$&U M $ 5&6 A 9&0 ( 0 0 i = , , M X = (x , y , z )
x + y + z +
=
2 U# *$$S G#U T .$ y 0 [O ?z &M &q= .$ y *$ O G#U 5F &0 E . $0 N# Y\ N# &0 Y\ .$ 3 )? &0 ( . y & −−−−→ + , + v = (a, b, c) X = (x , y , z ) *( v E −X−−→X . $0 &0 M ( X = (x, y, z) @&\ X = tv M $. $ $ ) t ∈ R U# )*HJ R# 0&0 *−X−−→ >. T 0 -# I\ −→ : X = X + tv ; t ∈ R
h $. T&= &F Z &0 H . 0 X # j S *!' −−→ # cB Zg&1 X X H da 5 Q *( 0 0 −HX e- @ &0 −−−→ −−→ y $& X X R0 α # E / .$ 0 0 −HX *( 9( v h
h
−−−→ ! −−−→ = X X sin ∠ X X , v −−−→ −−−→ X X × v −−−→ X X × v = X X −−−→ = v X X v
9Z#. $ M (B&' .$ R# 0&0 >. T 0 &M >_$&U i& B&" R# .$ 5 Q l : x = t, y = t, z = t +
T&= R# 0&0 *v = (,
, )
X
v *−−−−−−−→ −−−−−→* * * *(, , −) × (, , )* √ + + . *−−−−−−−−→!* * * √ * , − , * =
= =
x + y + z + =
l :
]3 ( 9&0 ( 0 0 h $.
= (, , )
* * ! * * * X − X × v*
d (X , l) =
y # j B$&U A4 .8 x − y + z − =
x + y + z + + λ (x − y + z − ) =
q, 5F $. 0 ! E ( >.&[, P 0 # j 5 M *( ( =&M nB *A% I*; !VO 0C *( $ +, P 0 M P E t\ U 0 R# *ZM t\ . P P 5$ 0 $ +, pO −−−−−−−−−−−−−−−−−−→! P 0 & n = + λ, − λ, + λ . $0 5$ 0 $ +, & ( P 0 & n = −−,−−,−→! . $0 λ
λ
λ
: :
x = y x+y+z =
x−
=
y−
:
=
z− −
x = y x + z =
]3 *Z"#
?U0 * O&0 E v v M #E . T .$ y $ R# * " E ]3 *( yb M = = − U# & $ N# .$ . & F >_$&U & F 5$ 0 e@&\ t\ 0 .$ >_$&U E . t X"' 0 z y x #$&\ *ZM !' 9Z$ . 1 >_$&U
*v
−−−−−−−→ = ( , , −)
t − = t + t − + t +
X
= (, , − ) −−−−−→ v = (, , ) X = (− , , −)
+t−=
⇒ ⇒
*"# 0 . P : x + y + z + = T 0 >&T $ B$&U ( T $ $. 0 ! 5 Q *!' 9>. j0 E OnS Pλ :
*M oL6 Z 0 ([" E 9 " M (U- . $ &q= .$ y $ *!' y $ $& &S V 60 d0 E ![1 *=& e@&\
9>. j0 . 9Z0 . O $ $
−−−→ X X × v d (X , l) = v
*
x = y x+y +z = >_$&U 0 y (U- A .8 . z = t − y = t + x = t − >_$&U 0 c
t= t =
t=
$ O >& t #$&\ S C U@&\ y $ ]3 Y\ E ( >.&[, & F $. 0 ! A$ 0 =& y *X = (, , ) : x = y + , x = z − y R0 # E A .8 *M [& . P : x + y + z + = T R0 # E #F 0 % *; !VO E M . @ 5&+ *!' # E R# *A U#C P 0 # j R0 # E &0 ( 0 0 P ! & ( T & y $& R0 β # E !+V α ).& %qT&' 0 0 5F $& ]3 ( T $ $. 0 9O&0 T $ 5F &
−−−−−−−→ −−−−−−−→! −−−−−→ v = n × n = (, −, ) × , , − = (, , )
9R# 0&0
λ
n • nλ = ( + λ) + ( − λ) + ( + λ) = − λ +
(0 P B$&U .$ λ . \ 5$ $ . 1 &0 *λ λ
9R# 0&0 *P : x − y +
= P ∩ P
: :
=
#&0 ]3 Z#.F
z − = x + y + z + = x − y + z − = − y + z = − x − y =
∠ (l, P ) = α = = = =
>_$&U 0 y & X
π
π
−β
− ∠ (v, n)
v •n π − arccos vn
π − arccos
= (, , − )
Y\ T&= A .8
*0&0 . : x = y, z = y +
}
Z E y $ T&= AGB 9*; !VO y $ w 6 $ +, A% $ 6 % *; !VO .$ M . @ 5&+ >. T R# .$ &0 R# 0&0 ( ! &O . p Y P T 5 Q ( p Y P *n = v × v .$ ( E & F $ .$ ( E & F $ &0 R# 0&0 ( ! &O . y $ 0 y M R# E *n = v × v ` + .$ ]3 *v = v × v M $$S ( $ +, n
=
=
n
= =
i j k v × v × v = × v i j k −−−−−−−−−−−−→ − = (− , −, ) i j k v × v × v = − −
−
) ∈ ⊂ P
(x − ) − (y − ) + (z −
T B$&U (, , −
) ∈ ⊂ P
5 Q
)=
: :
:
x = t −
:
x=y−
, y = t + , z = =
−t
(z − )
$& X &S V . $ y ZM x= *!' −→ X X . $0 X Y\ 0 X Y\ E *O&0 ZM !j . −− O&0 e1 T N# 0 y $ R# S *AGB *; !VOC &. $0 M " j+ 1 y $ R# ]3 *]VU0 −→ U# *O&0 Y "0 −− X X v v vi
i
i
−−−→ X X , v , v = =
5 Q 0&6 >. T 0 E ( >.&[, P
E ( >.&[, O&0 P P eY\ M .$
X = (− , , ) Z#. $ i jL0 (B&' R# .$ & .$ *v = (−−,−−,−→) X = (, , ) v = −(−−, −−, −−−→) 9
−(x − ) − (y − ) + (z − ) =
y & Y\ T&= AGB 9I*; !VO T 0 y # j A% Q U1 T N# .$ y $ F A5 .8
−−−→ X X , v , v =
−−−−−−−−−−−−→ (−, −, )
E ( >.&[, P T B$&U (, ,
}
− (x − ) − (y − ) + (z − ) = −(x − ) − (y − ) + (z − ) =
x + y − z − = x + y − z − =
0 &
> E 0 (, , −) Y\ E M "# 0 . Y B$&U A *$.nS x = y = z − y ( , , −) (, − , ) p&\ E .nS y F A; M eY1 . x + y = z + T
$−−−−−−−→ −−−−−−−→ −−−−−→% ( , − , ), (, , − ), ( , , ) ⎤ − − ⎦ = =
* " j+ . Mn y $ ]3
90&0 . O $ $ p Y w 6 $ +, B$&U A0 .8
⎧ ⎨ x = s + : y = s + ⎩ z = s −
;
⎧ ⎨ x = t + : y = t + ⎩ z = t +
( Y E >.&[, y $ w 6 $ +, G#U 0&0 *!' *; !VOC O&0 c $ +, & F 0 $M eY1 . $ M *( y 5F &3 ( O !' B&" ZM x= *A% . $0 X 0 v = −(−,−−,−→) v = −(−,−−,−→) v 9ZM x= $. 0 ! X 0 X X *O&0 y $& y E M O&0 T P *O&0 y &0 y X Y\ y E M O&0 T P *$.nS X Y\ *O&0 P P T & . $0 X 0 n n *$.nS
Y\ E M @&\ + 5&V 9 * cM . (0&f Y\ * & # $ . T&= N# 0 i jL0 ) GB ;*; !VO 0 *Z & # $ `&UO . (0&f $, x= R . `&UO X = (x , y ) . cM >&j L S *$ O . 1 C # $ 0 1 & 1 X = (x, y) Y\ &F ZM 0 R = −X−−→X U# $ O R 0 0 X & X T&= M $. $ 9&j L !VO
C : (x − x ) + (y − y ) = R
}
!j= y &0 x + = y−− = z y M M (0&f A x = y + z + x + y − z = T $ w 6
*( E
x− y + z = T $ w O E !T&' y B$&U A *0&0 . x + y = z y $ OnS (−, −, ) Y\ E M 0&0 . Y AH x+ y+ z− : = = 9M eY1 . #E =&
− − * : x − = y + = z−− >_$&U 0 y 0 ([" X = (, −, ) Y\ #1 A8 *0&0 . x + = y − = z 0&0 y $ R0 T&= R# & M [& 0 B = AJ 9#[0 .&V0 . O $ $ y $ $. .$ ]< : x = t − , y = − t , z = −t −
R# VQ M A% # $ G#U AGB 9;*; !VO x Y\ $ E .nS # $
`&UO X = ( , − ) cM 0 # $ A& '() * ( (x − ) + (y + ) = B$&U 0 R = x + y − x + y =
# $ N# mU
: x = t − , y = −t + , z = −t +
N N 0 . x −
a x − x x − x
B$&U A, .8 B$&U 0 5F 5$M ! &M e0 &0 #E *(
x + y − x + y + =
R X
A = (
= = , )
d (A, B) =
(A + B) =
*−→* *AB * =
*−−−−−→* *(, −)* =
−−−→ −−−→ (, ) = (, )
Y\ E M "# 0 . # $ B$&U A .8 *$.nS C = (, ) B = (− , )
b y − y y − y
c z − z z − z
=
A E 3**' 4
(x − ) + (y + ) =
Y\ .$ cM &0 R = `&UO 0 # $ B$&U M Z.
*( X = (, −) y .&3 5F Y1 M "# 0 . # $ B$&U A .8 `&UO (B&' R# .$ M ( RO. *( AB = (, ) (, ) Y\ &z\1$ c 5F cM ( B & A T&= Gj 0 0 # $ R .$ *$ O ) % ;*; !VO 0 *( AB y .&3 y X *(x − ) + (y − ) = E ( >.&[, # $ B$&U #E
y− z− = −
y # j A7 *0&0 &j L &T (x , y , z ) Y\ E OnS T B$&U M $ 5&6 A 0 v = (a, b, c) $& (x , y , z ) &S V &0 y 9( #E >. T =
E M . @ 5&+ @L e@&\ 4$ ).$ &
$. & pL $. 0 E !T&' #&j #F 0 5&6+ 0 * " T−xy 0 LB$ T N# x + y = z \1$ 5&0 !SV "9 Y )% !( * !VO 0 B$&U & 0 ) , +
C : ax + by + cxy + dx + ey + f =
c = l&Q *a + b + c = 5F .$ M ( *Z & + . Z#E $3 $. & & + 0\[@ 0 $ .$ . & S R# M >. T c = pO R O $0 &0 ]< *$ + Z .0
C
` + M @&\ + 5&V 2 $ * . ( 4 U $, 0 0 oL6 Y\ $ & & F !T = $, !; . O oL6 p&\ * & !; (B 0 *AGB *; !VOC & 5F Y . 4 U
B = A = (−c, ) & &M M $M x= 5 d0 .$ h $. q0 C S ]3 *( a (0&f $, (c, ) 9Z#. $ G#U 0&0 &F O&0 e1 C 0 X = (x, y) O&0
# $ B$&U ZM x= *!' M $ O X 0 A, B, C ∈ S x= E *(
S : x + y + ax + by + c =
⎧ + + a + b + c = ⎨ a + b + c = − + − a + b + c = ⇒ −a + b + c = − ⎩ + + a + b + c = ⎩ a + b + c = − ⎧ ⎨
c =
d (X, A) + d (X, B) = a , , (x + c) + y + (x − c) + y = a
b
= −
:
y + = (x − ) + (y − ) = 0 *
. −y &0 ±a 0 0 . −x &0 C $. 0 ! M $ O ) y x 0 h Y1 Z X 0 . b a $, *( ±b 0 0 q0 M (B&' .$ *( (, ) q0 R# cM * &
#E B$&U 0 X = (x , y ) .$ cM &0 b a &Y1 Z &0 9AR#+C ( C :
#$&\ & $ !' E ]3 M
: x + y −
S
x y + = a b
=
9E (".&[, h $. # $ R# 0&0 *$ O !T&'
Z#. $ b = c − a x= &0 5$M $& E ]3 M C :
a
(x − x ) (y − y ) + = a b
}
y (U- A *M oL6 . Z 0 ([" 0 X = (, − ) E M 0&0 . @&\ 5&V A; e1 5F . 0 X = (, ) F * " R = T&= ( e1 5F 5.$ X F ( X = (, ) .$ 5F cM M "# 0 . # $ B$&U A *( /&+ x + = y y 0 ( 9E (".&[, 5F B$&U M 0&0 . # $ `&UO cM A C : x + y =
# $ l
: x+y =
GB C x + y + x − y = %C q0 G#U AGB 9*; !VO !Y " N# .$ p& q0 A% + C & &M &F c = a − b b < a ZM x= S S M B&' .$ *( a c 5F 4 (x ± c, y ) E .&[, + .&[, C & &M &F c = b − a ZM x= a < b *$ 0 b 5F 4 (x , y ± c) E B$&U 0 N# A& '() % * C :
x + y = x + y +
*M oL6 . 5F ` *( O $ $ B$&U 0 5$M ! &M e0 &0 *!' C :
&Y1 Z X
(x − )
+
(y − )
=
= ( , ) .$ cM &0 q0 N# M Z.
*( b = a =
x + y − y =
# $ A = (
, −)
C : x + y − y =
Y\ (U- AH
*M oL6 . Z 0 ([" C : x + y − x + y = # $ (U- A8 oL6 . Z 0 ([" C : x + y = x + y + *M . R `&UO X = (x , y ) cM 0 # $ M $ 5&6 AJ 9$M .&3 5 !#{ >. j0 *C : x = x + R cos t , y = y + R sin t ; ≤ t < π x y $ 0 /&+ # $ + cM 5&V A7 *0&0 . l : x = y l : x + y = # $ 0 /&+ &# $ + cM 5&V A *0&0 . x = y x + y =
x + y = q0 X
Y\ (U- AJ *M oL6 Z 0 ([" .
x +y + x+
= ( ,− )
q0 x+y = y (U- A7 *M oL6 Z 0 ([" .
= y
C : x + y = M x= A F (x, y) = x + y − , x + y +
!
& &M &0 q0 B$&U A, .8 *"# 0 . 4 0 & &M ]3 ( V# Y\ $ x o L 5 Q *!' + c = b − a a < b (B&' M " (x , y ± c) !VO Z#. $ .$ *( u &M $ y q0 cM 5 Q *( c = − = ?U0 *X = (A + B) = ( , ) b = R# 0&0 *b = √x= t0&Y & *c+= >.&[, q0 B$&U ]3 *a = .$ = − a E (
x − x = a (y − y )
x − x = −a (y − y )
y − y = a (x − x )
y − y = −a (x − x )
x −
B
x=x −
,y
x ,y +
x ,y −
,y
x=x +
a
y=y −
a
y=y +
a
a
=
AB =
b
=
BC =
/ . ( /a &M T&= (B&' .& Q .$ V# ^- A( (, ) / . GB *; !VO .$C ( (x , y ) & F 0 RV+ & B&' &6 0 *O&0 ([a $, a *M ) % *; !VO
=
B − A = C − B =
(A + B + C + D) = (, )
q0 B$&U .$
(x − )
+
(y − )
=
A QC *(
a
a
+
90&0 . O $ $ & q0 &M B$&U
a
(y − )
a
X =
a
(x − )
R# 0&0 ( U-.& Q y q0 cM ?U0
&+ 0 $. & !VO .& Q 5 0&6 >. T 0 9$.F (0
x +
, )
/ g. &0 `?-_ E .$ p& q0 B$&U A .8 . D = (, ) C = (, ) B = (, ) A = (, ) *0&0 &F O&0 D C B A X 0 . O $ $ p&\ S *!' 9&0 0 0 &Y1 Z % *; !VO t0&Y
: (p, ) (x, y) = (x − (−p)) , y (x − p) + y = x + p : x = : p
5 &M
A=(
C :
@&\ 5&V + G#U t0&Y O * * T&= 0 0 x y N# & & F T&= M ( T E 5 &M . Y\ B . y *( x Y\ N# & & F &M T&= . 5 &M & B T&= Gj * & + + 5 &M ZM x= d0 .$ (B 0 * &
1 5 M *O&0 x = −p y 5F B (p, ) Y\ & X T&= M ( e1 C + 0 X = (x, y) 1 & GB *; !VO 0C O&0 x = −p & X T&= 0 0 (p, ) 9A$ O )
+ B$&U
, )
!VO F *M oL6 F f& E ]3 . C (U- ( q0 !T&'
C
B=(
)
0 & *
x + y =
) x + y = x + y − )
x + y = x + y −
) x + y + x = y −
.
4 ( , ) (, ) & &M &0 q0 B$&U
AH
*0&0 Z X = (x , y ) cM 0 q0 M $ 5&6 A8 9$M .&3 5 #E >. j0 . b a &Y1 C : x = x + a cos t, y = y + b sin t; ≤ t < π
}
. #E &+ E N# &M T&= 5 &M / . 9M oL6
)
x + y = y
)
x=
)
+ y + y
x + y +
) y = x
0 ([" . y = x − + ( . x
= − (y − )
=
Y\ (U- A *M oL6 Z
,− )
+ y = x y (U- AI *M oL6 Z 0 (["
( y = x + C M x= A F (x, y) = (x + y + , x − y)
( + F *M Z. . F (C) !VO E&"+ . −y DZ [ 0 ([" y = x + ]VU A; *0&0 . 4 e0. M M oL6 C : y − y = P (x − x ) M x= A *M v Q !VO x v &0 M M oL6 C : y − y = P (x − x ) M x= A *M v Q !VO y v &0 M M oL6 C : y − y = P (x − x ) M x= AH *M v Q !VO P v &0 E , + B Bn G#U 0&0 V=VI5 * 0 0 oL6 Y\ $ E & F !T = !-& M ( p&\ . O oL6 p&\ *AH*; !VOC ( oL6 $, * & !HH] Y . h $. (0&f $, L
}
B Bn G#U 9H*; !VO
+ G#U AGB 9*; !VO $. & + ` A% ( ) 0 . ( , − ) .$ / . &0 + A& '() * B$&U . $ / &M T&= &0 . −y
y − (− ) =
− (x − ) ( / )
*( y + = − (x − ) ([a ( ) 0 . (, ) Y\ .$ / . &0 + A, .8 B$&U . $ / &M T&= &0 . −x x− =
( /)
(y − )
*( x − = (y − ) .$ / . &0 + N# y = x + x A .8 ! &M e0 E ]3 #E ( / &M T&= (− , ) 0 . + R# *y − = (x + ) (O 5 5$M *O&0 . −y ([a ( ) (, ) .$ / . &0 + N# y + x = y A .8 $. $ !#&+ . −x ( ) 0 M ( / &M T&= *x − = − (y − ) (O 5 #E . #E &+ E N# B$&U 0 * 9"# 0 0 ( 5F &M T&= ( (, ) 5F / . A *( . ) . −x ([a (+ 0 ( / 5F &M T&= ( ( , ) 5F / . A; *( . ) . −x (+ 0 ( 5F &M T&= ( (− , ) 5F / . A *( . ) . −y ([a (+ 0 ( / 5F &M T&= ( ( , ) 5F / . A *( . ) . −y (+
&Y1 Z cM RU R+0 * 9M Z. . & F #E &B Bn E N# & [&
) (x − ) −
(y + )
) x − y =
=
) −y = ) (x −
) y − (x −
)
M ( e1 C 0 X = (x, y) 1 & 1 &F ( R# 0&0 (−c, ) (x, y) − (c, ) (x, y) = a , , (x + c) + y − (x − c) + y = a
=
& C W Q+ R OU!U) * x= 5 M *Z $3 4$ ).$ & 0 \[@ 0 &# M O $0 . c = C : ax + by + cxy + dx + ey + f =
a 4 (−c, ) (c, ) & &M &0 B Bn C ZM x= S
A*; C
E ]3 Z$ 5&6 M ( 5F m *Z#S h .$ . N# 0 . C X& 5 .$ _z&+ ' &\ N# *$ + !#[ 5 $. & K+ X Q+ R U!U) : ') $ *
B$&U .$ xy +) X#- 5 &. 5$ $ 5 .$ &0 '+ x= #&0 (B&' R# .$ *$ + T . A*; C 4$ ).$
9$M
α=
arctan
c
a−b
=
arccot
a−b c
T uv X#- Z"# 0 v u X"' 0 . A*; C S &' R# + *$ O S E& & .&M R# 0 *$ 0 & F 5.&\ &. M ( 5F ($ R# E & S# *O&0 &j L &. E
*#0 h .$ . xy = A& '() % * 9Z#. $ H*7*; 0&0 >. T R# .$
π π α = arccot = = ⎧ π √ π ⎪ ⎪ ⎨ x = u cos − v sin = (u − v) √ π π ⎪ (u + v) ⎪ ⎩ y = u sin + v cos =
x= 5$M $& E ]3
x y − = a b
C :
a $ , *( y = ± ab x X& $ . $ . Mn B Bn * & B Bn &Y1 Z . 9Z#. $ B Bn $ $ M (B&' .$ .$ b a &Y1 Z X = (x , y ) cM 0 B Bn AGB 9A$ O ) GB 8*; !VO 0C . −x $
b
(y − y ) (x − x ) − = a b
.$ b a &Y1 Z X = (x , y ) cM 0 B Bn A% 9A$ O ) % 8*; !VO 0C . −y $
(y − y ) (x − x ) − = b a
E .&[, & [& (B&' $ .$
x = u cos α − v sin α , y = u sin α + v cos α
5F .$ M
+ c − a
9Z#. $ b =
b y − y = ± (x − x ) a
Z (
cM 0 B Bn A& '() * 9( #E B$&U 0 . −x $ .$ &Y1 ,− )
(x − )
−
(y + )
=
cM 0 (y − ) / − (x − ) / = B Bn A, .8 *( . −y $ .$ &Y1 Z (, ) #E ( B Bn N# x − y + y = A .8 5 x / − (y − ) / = >. T 0 . 5F B$&U
* " u#&Y1 Z (, ) B Bn R# cM *(O }
0 B Bn N# B$&U M u − v = Z#. $ . n#&) E ]3 T .$ . −v $ .$ &Y1 Z (, ) cM
*A$ O ) J*; !VO 0C O&0 uv
$. & B Bn ` 98*; !VO
}
}
q0 N# 5$ + & 97*; !VO U!U) < Y 1 =!)
+ 4L) 0 *
9>_$&U & $ A*; C 4$ ).$ 0 &
B Bn N# 5$ + & 9J*; !VO Q+ R
*#0 h .$ . x +
xy+y − = A, .8
9>. j# .$
'
ax + cy + d = , by + cx + e =
9>. j# .$ *ZM h . ( & 0 ) E y N# . $ & $ &F = S AGB *( F (0 !VO 5.&\ . y R# M & $ % ) *$. $ % ) N# & $ &F = S A% E V# & $ >_&U E N# *( C B Bn q0 cM
*M oL6 . 5.&\ &.
h .$ . xy = B$&U 0 A& '() * B Bn !VO nB ( ([a = / >. j# .$ *#0 ]3 {x = , y = } E (".&[, 0 h & $ *( &. . −y . −x ( (, ) B Bn R# cM
* " 5F 5.&\ *#0 h .$ . x + y = xy + x B$&U 0 A, .8 *( q0 !VO nB ( = −/ >. j# .$ {x − y − = , y − x = } 0 h & $ cM &0 q0 R# ]3 *( (/, /) 5F % ) M ( *O&0 x = y + x = y 5.&\ &. (/, /) . x + y + xy = x + y + B$&U 0 A .8 ( T = − = >. j# .$ *#0 h .$ (".&[, R# 0 h & $ *O&0 + !VO nB (#& 0 . $ M {x + y − = , y + x − = } E . B$&U R# *( x + y = B$&U .$ $&T % ) *O&0 + 5.&\ 5.&\ &. ` $. .$ 0 * 9M oL6 . 5.&\ cM ) x + y = xy + x
√
# √ α=
arctan
"
π
=
=
− ⎧ π π ⎪ ⎨ x = u cos − v sin = π π ⎪ ⎩ y = u sin + v cos =
π
√
u − v
u+
√
v
5$M $& O $ $ B$&U .$ y x . n#&) E ]3 0 q0 N# M Z. u/ + v / = B$&U 0 √ 0C O&0 T−uv .$ &Y1 Z DZ [ cM
*A$ O ) 7*; !VO $ $ 4$ ).$ & E N# ) xy =
)
xy +
) =x+y
0 & *
9M & . O
x + y =
√
xy +
√
) x + xy = y +
) x + xy + y = )
x + y = xy +
)
x + y + x = xy + y +
)
xy + y =
Q+ R U!U) Z= 0 Y=):[ * *
([" . = c − ab R[ A*; C 4$ ).$ 0 9Z b i& & B&' E h mT >. j# .$ *Z$
*( + C &F = S AGB *( B Bn C &F > S A% *( q0 C &F < S A:
5.&\ ]#& N# M A = ac bc ZM x= O A # #$&\ β α S 8*7* q1 0&0 *O&0 × 9$ . M ( RV+ (B&' $ &F O&0 0 h # &. $0 >. T R# .$ M α = β AGB V# &U . $0 $ 5 R# 0&0 $ +, Z 0 & F v M (= S 0 v = [a , a] v = [a , a ] *O&0 β α 0 h # . $0 X 0 v &U . $0 $ 5 Z E&0 >. T R# .$ M α = β A% M (= S 0 v = [a , a] v = [a , a ] V# *$ !V6α 0 h # &. $0 0 #&3 $ M a 5 . B = aa &U ]#& (B&' $ .$ a *B AB = α β B = B >. T R# .$ *$ + x &F y = Xv + Y v $ O x= S .$ t
t
t
−
t
ax + by + cxy =
x y
t
t
t
A
x y
C : αX + βY + γX + ηY + θ =
θ η γ β α G L #$&\ 0 "0 X R# 0 9( #E $. E V# 0 $ 0 ( ?, Z T GB&L β α S A& #
φ := θ −
η γ + β α
φ := θ −
η γ + β α
φ := θ −
) x + xy + y + x = x + y = xy + x + y
)
O $ $ .&3 !VO 0 4$ ).$ N#$. .$ 5.&\ &. ` 5F B$&U : L R+- *( 9M oL6 . 5.&\ cM )
x = sin t − , y = cos t + ,
)
x = t,
)
x = t,
η γ + β α
≤ t < π
y = t − t, + y= − t ,
−∞ < t < ∞
x = − cosh t, y = sinh t, + ) x = t , y = t + ,
−∞ < t < ∞
) )
− ≤t≤
≤t
x = sinh t + , y = cosh t + , −∞ < t < ∞
9M .&3 . #E 4$ ).$ & E N# ) ) )
xy = x
x
− (y − ) = +
y
)
xy + y = x + y
)
x + y + xy = x − y √
) x + xy = y
=
M $ 5&6 A (a x + b y + c ) (a x + b y + c ) = a
"
x= &0 >. T R# .$ O&0 ( ?, Z $ 5F &0 c X"' 0 C B$&U R O v = Y + η/β u = X + γ/α S M Z. αu + βv + φ !VO 0 B$&U 0 v u *( C 4$ ).$ (B&' R# .$ U# *$. 0 ) $ 0 ( ?, Z T GB&L β α S A
#
√
) x + xy = y
"
u = X + γ/α x= &0 >. T R# .$ O&0 T B$&U 0 v u X"' 0 C B$&U R O v = Y + η/β Y\ N# 5F % ) & M Z. αu + βv = !VO 0 C 4$ ).$ (B&' R# .$ U# *u = v = 9( *( Y\ N# $ 0 ( ?, Z T GB&L β α S A, #
xy + y = x + y
)
= αX + βY
!T&' B$&U &F Z"# 0 Y X X"' 0 . C S R# 0&0 9$ 0 & C
) x + y + y = xy + x
"
& [& &0 B Bn N#
a x + b y + c = *ab = ab VF 0 p6 ( &F a b = a b S M $ 5&6 A;I
a x + b y + c =
∗
(a x + b y + c ) = (a x + b y + c ) + a
*( B Bn N#
K+ X Q+ R 5U!U) :DV) *
M ( XY R# >&[f uL0 R# E m
Q+
0 &VO E V# 4$ ).$ * e@&\ y $ + B Bn q0 # $ s 9( #E KO r* , + Y\ N# y N# !VO 0 . A*; C B$&U XY R# >&[f 0 "#&
x
y
a c
c b
x y
+ dx + ey + f =
A;*; C
0 v u X"' 0 C B$&U R O v = Y + ηβ u = X , v = ± − u y $ M Z. βv +φ = !VO 0 B$&U
C 4$ ).$ (B&' R# .$ U# *( T−uv .$ *( E y $ E ,&+ ) φ := O&0 T GB&L α β = γ = S A&& 0 [O ?z &M (U- &F O&0 ?UB G L α θ − γ β *( AIC O&0 T GB&L β α = γ = S A&, u = X x= &0 >. T R# .$ φ := θ − η β = 0 B$&U 0 v u X"' 0 C B$&U R O v = Y + ηβ T−uv .$ v = y N# M Z. βv = !VO *( ( . y C 4$ ).$ (B&' R# .$ U# *( O&0 T GB&L α β = γ = S A&
*( A;C 0 [O ?z &M (U- &F φ := θ − γα = C >. T R# .$ θ = α = β = γ = S A& 2 *( 4&+ 5&0 X R# 0 *( .$ . x + y = xy + x A& '() * 9(O 5 *#0 h φ β
x y
−
−
x y
9]#& R# jL6 B$&U *A = = |λI − A| = λ −
−x=
−
−
.$
= λ − λ −
λ−
. $0 *β = α = − E .&[, 5F # #$&\ ]3 *( E (".&[, α = − 0 h # V# v =
$√
%t
√
/, /
E (".&[, c β = 0 h # V# . $0 v =
$√
%t
√
/, − /
9ZM x= R# 0&0
x y
⎡ √ ⎢ = Xv + Y v = ⎢ ⎣
. 1 E ]3 M y =
√
√
X + Y √ √ X − Y
⎤ ⎥ ⎥ ⎦
√
(X − Y ) x = (X + Y ) R# 0&0
X − Y −
√
Z#. $ O $ $ B$&U .$ 5$ $ √
X − Y
=
x= &0 >. T R# .$ O&0 ?UB G L & F &0 u X"' 0 C B$&U R O v = Y +η/β u = X +γ/α q0 N# M Z. αφ u + βφ v = !VO 0 B$&U 0 v C 4$ ).$ (B&' R# .$ U# *( T−uv .$ *( q0 N# $ 0 ?UB G L T GB&L β α S A #
φ := θ −
η γ + β α
"
u = X + γ/α x= &0 >. T R# .$ O&0 T 0 B$&U 0 v u X"' 0 C B$&U R O v = Y + η/β α β α v = ± u !VO 0 . 5F M Z. u + v = !VO β φ φ *( T−uv .$ e@&\ y $ E >.&[, (O 5
y $ E ,&+ ) C 4$ ).$ (B&' R# .$ U# *( e&\
$ 0 ?UB G L T GB&L β α S A #
φ := θ −
η γ + β α
"
u = X + γ/α x= &0 >. T R# .$ O&0 T GB&L
B$&U 0 v u X"' 0 C B$&U R O v = Y + η/β !VO 0 . 5F M Z. αφ u + βφ v + = !VO 0 T−uv .$ B Bn N# M (O 5 Au − Bv = ± B Bn N# C 4$ ).$ (B&' R# .$ U# *( *( >. T R# .$ O&0 T GB&L γ β α = S A4 R O v = Y + η/β u = X φ := θ − η /β x= &0 γu + βv + φ = !VO 0 B$&U 0 v u X"' 0 C B$&U
M (O 5 u = − φγ − βγ v !VO 0 . 5F M Z.
(B&' R# .$ U# *( T−uv .$ + N# *( + N# C 4$ ).$ (U- &F O&0 T GB&L γ α β = S A5 *( A8C 0 [O ?z &M η ( ?, Z φ := θ − β β = α = γ = S A0 v = Y + ηβ u = X x= &0 >. T R# .$ O&0 β &0 βv + φ = !VO 0 B$&U 0 v u X"' 0 C B$&U R O (B&' R# .$ U# *$. 0 ) S M Z.
*( C 4$ ).$ γ φ := θ − O&0 T GB&L α β = γ = S A2 α *( A7C 0 [O ?z &M (U- &F O&0 α &0 ( ?, Z O&0 T GB&L β α = γ = S A&^ x= &0 >. T R# .$ O&0 ?UB G L β φ := θ − η β
, + N# 5$ + .&3 E . h *( e0& Q N# $0 >. T 0 , + 5F 5&0 # $ M !VO 0 ) &0
9
C : (x − x ) + (y − y ) = R
.$ *y − y
x − x = R cos t $ + x= 5
9(O 5 #E e0& $0 >. T 0 . C
= R sin t
−−−−−−−−−−−−−−−−−−−→! r(t) = x + R cos t, y + R sin t ;
≤ t ≤ π
q0 M !VO 0 ) &0 C :
.$ *y − y
2
(x − x ) (y − y ) + = a b
√
.$ *v = Y + u = X − ZM x= 5 M M /u − v/ = u − v = 9(O $ Z *( T−uv .$ B Bn N# B$&U
h .$ . x = y + xy + y + A, .8 9(O 5 *#0
x
y
Zg&1 + M !VO 0 ) &0
O
C : y − y = a(x − x )
$0 >. T 0 . C .$ x − x
$ + x= 5
9(O 5 #E e0&
\= + 0 0&6 >. T 0 C : x − x = b(y − y )
$0 >. T 0 . C .$ y − y
$ + x= 5
9(O 5 #E e0&
=t
−−−−−−−−→! r(t) = x + bt , t ; −∞ < t < ∞
\= B Bn M !VO 0 ) &0 C :
V=VI5 $
(x − x ) (y − y ) − = a b
− −
x y
λ−
y − =
−
λ+
−
− −
.$
= λ −
. $0 *β = − α = E .&[, 5F # #$&\ ]3 *( E (".&[, α = 0 h # V# %t $ √ √ v = − /, /
E (".&[, c β = − 0 h # V# . $0 v =
$√
√
%t
/, / ⎡
√
9ZM x= R# 0&0 √
⎤
X + Y ⎢ − ⎥ x ⎢ ⎥ √ √ = Xv + Y v = ⎣ y X + Y ⎦ √ √ E ]3 M y = (X + Y ) x = (−X + Y ) R# 0&0
Z#. $ O $ $ B$&U .$ 5$ $ . 1 √
√
X = y + X + Y
=t
−−−−−−−−→! r(t) = t, y + at ; −∞ < t < ∞
−
= |λI − A| =
x − x = a cos t $ + x= 5
9(O 5 #E e0& $0 >. T 0 . C ≤ t ≤ π
9]#& R# jL6 B$&U *A =
= b sin t
−−−−−−−−−−−−−−−−−−→! r(t) = x + a cos t, y + b sin t ;
√
√
+
√
*v = Y − / u = X − / ZM x= 5 M y $ B$&U M v = ±u u = v 9(O $ Z .$ *( T−uv .$ e@&\
& E N# $. .$ . _&0 . 0 $ * 9M ) #E 4$ ).$ ) xy =
)
x − y + xy =
√
) x + xy = y )
xy + y = x + y
A E 3**' )G>F /' 7 (6 !j= UB&Y 0 4E_ E $&# uL0 R# E m 4& 5F & . uL0 R# UB&Y *( !j= c *M G1
}
.$ *y − y = b sinh t x − x = a cosh t $ + x= 5
9(O 5 #E e0& $ $0 `&+ ) >. T 0 . C r(t) = h(t) =
. c b a $ , cM . X = (x , y , z ) *( % *; !VO 0C & S 5 Sq0 &Y1 Z X 0 (x , y ± b, z ) (x ± a, y , z ) Y\ uO *A$ O ) *U1 5 Sq0 ^Y 0 (x , y , z ± c) T .$ q0 N# M x= -+ \) .$ T 5F 0 e1 b X Y\ T−xy &0 E
p&\ E .nS p Y 0 e1 p&\ 5&V *Z#. $ .& B$&U X .$ / . &0 ( @L X Y\ c q0 5F !VO 0 $ ).$ #. RQ
S :
(z − z ) (x − x ) (y − y ) = + c a b
pL 5.&\ . *A$ O ) GB ;I*; !VO 0C ( 0 &" m@ S M ( RO. *( . −z E
0 S ( . −y > E 0 5.&\ . O&0 y X"' R# 0&0 *( . −x E 5F 5.&\ . O&0 x X"' *$. $ $ ) & pL ` &zU+) eY1 pL &0 . T S O S ?z[1 M . Y&+ Az = x + y pL &0 . z = ax + b T ?za C Z$ !B$ R+ 0 *( 4$ ).$ N# F (0
* & @L e@&\ . 4$ ).$ &
4$ ).$ #. ]^3 Y=GV=VI5 $
S :
(x − x ) (y − y ) (z − z ) + − = a b c X = (x , y , z )
5.&\ . cM &0 Q.&
Q.&
>.&[, E ![1 . ( =&M . h R# 0 *$ + G#U *Z#[0 x y
≤ t ≤ π ≤ t ≤ π
Zg&1 B Bn 0&6 >. T 0
5 Sq0 M 9*; !VO &0 D$. 0 M #&q= !VO Y=G2 . O&0 q0 N# Y\ N# LB$ T 4$ ).$ #. R# M B$&U * & 5 Sq0 (x − x ) (y − y ) (z − z ) S : + + = a b c
−−−−−−−−−−−−−−−−−−−−→! x + a cosh t, y + b sinh t ; −−−−−−−−−−−−−−−−−−−−→! x − a cosh t, y + b sinh t ;
C : −
(x − x ) (y − y ) + = a b
9(O 5 #E e0& $ $0 `&+ ) !VO 0 . r(t) = h(t) =
−−−−−−−−−−−−−−−−−−−−→! x + a sinh t, y + b cosh t ; −−−−−−−−−−−−−−−−−−−−→! x + a sinh t, y − b cosh t ;
≤ t ≤ π ≤ t ≤ π
A DE H : ).$ #. . U0 (B&' 0 4$ ).$ & Z+U E *( DZ&O R# 0 $ uL0 R# E m * & 4$ *$ O $& .&"0 $ .$ &#. R# Q B$&U N# & 0 ) , + &q= .$ z y x X"' 0 4$ ).$ +) S
: a x + a y + a z + a xy +a xz + a yz
A*; C
+a x + a y + a z + a =
Zg S & . T .$ . #. * & 4$ ).$ #. . (+"1 .$ *O&0 T 5F .$ yz xzxy >?+) X# - M $ $ 5&6 A*; C x #. E& & D. *I*; ZM x= d0 .$ (B $&# 0 ?zU= *O $ 0 $ .$ *a = a = a = 9O&0 & S #. *Z#E $3 4$ ).$ &#. 0 + , + R `&UO X .$ cM 0 M 9L B$&U * " R T&= 0 X Y\ E M ( &q= E @&\ !VO 0 $ ).$ #. RQ
S : (x − x ) + (y − y ) + (z − z ) = R
0C O&0 5F 5.&\ Y\ X
M cM *( *A$ O ) GB *; !VO
= (x , y , z )
0 . S $ ZM x , . ( . (+ .$ &) S *( *O . −x
4$ ).$ #. S : −
]_ + Y=GV=VI5 %
(x − x ) (y − y ) (z − z ) − + = a b c
5.&\ . X = (x , y , z ) cM &0 Q.&3 $ 5 SB Bn . &0 *A$ O ) GB ;*; !VO 0C & . −z E
&0 Q.&3$ & S B Bn 5 ( ?, 5&V 5$M x , *$ + G#U . . −y . −x E .
}
Q.&3 $ 5 SB Bn AGB 9;*; !VO q0 5 S+ A% . −x S 5.&\ . ZM x , . x z u\ S uO R# 0&0 *( (.$ . −y 0 XY R+ *O GB ;;*; !VO 0C $. $ $ ) & B Bn 5 S + ` *A$ O ) }
}
pL AGB 9;I*; !VO Q.&
( $ ).$ #. =2 Y=GO & Y\ N D. 0 $ +, >&T &0 5F e@&\ M + D. E >&T &0 5F e@&\ ( q0 X = Y\ .$ / . &0 & q0 5 S+ * + ([a ( ) 0 . . −z E 5.&\ . (x , y , z ) 9B$&U 0 . −z S : z−z =
B Bn 5 S+ AGB 9;;*; !VO q0 A% B$&U S =2 =C S :
(x − x ) (y − y ) + = a b
.$ cM &0 q0 N# &3 ZM !' T .$ . R# 0 (x, y, ) Y\ S & *$ 0 b a &Y1 Z ( LB$ z M (y, x, z) p&\ + &F O&0 e1 q0 q0 g&1 &0 N# S X R# 0 *. $ . 1 S 0 S *A$ O ) % ;;*; !VO 0C ( . −z > E 0 ZM x , z &0 . y &) U# O&[ y B$&U .$ l&Q ` U# * F (0 . −y &0 E *Z#. $ q0 (x , y )
(x − x ) (y − y ) + a b
( ) 0 . 5 S+ ( . (+ ( ?, # U &0 *( ).$ >.&[, V# &0 S *Q . −z
.& .$ y X"' 0 N# ).$ .&[, ZO&0 O $ z X"' 0 XY R+ *$ 0 . −y > E 0 5 S+ S O&0 5 S+ ` uO &zU+) .$ *( (.$ . −x 0 *A$ O ) % ;*; !VO 0C $. $ $ ) & q0 ( $ ).$ #. =V=VI5 Y=GO * O&0 B Bn D. 0 $ +, >&T &0 5F e@&\ M * + + D. &0 E >&T &0 5F e@&\ X = (x , y , z ) Y\ .$ / . &0 & q0 5 S+ 0 . −y > E 0 $ . −z E 5.&\ . &0 9B$&U
S : z−z =
(x − x ) (y − y ) − a b
4$ ).$ #.
m Q+ R 5+ : ') LB$ 4$ ).$ #. N# B$&U E& & uL0 R# E !VO 0 X& >&j L v N# %&L U# ( ⎧ ⎨ x = α u + α v + α w + α y = α u + α v + α w + α ⎩ z = α u + α v + α w + α
$. & B$&U N# 0 . A*; C B$&U 0 M 0 vw uw uv >?+) X#- 5F .$ M B$&U U#C >&j L v MC >&j L v ` R# *M !#[ AT V0 $+ v . #. M !VO A O & Y *$$S !VO R = ]& /&VU 5 .$ &\ d,&0 . A = [a ] 5.&\ × ]#& A*; C B$&U 0 ?za a = a ]#& R# .$ M $ O ) C Z$ ([" Z"# 5F &0 M ( a xy 0 0 xy +) X#. \ . $ A ]#& 8*7* q1 0&0 *Aaxy+a yx # &. $0 M Z $ *( A. V &0 _z&+ ' C \\' # # . \ S ?U0 $ +, Z 0 >& # #$&\ 0 h 0 #&3 5 . + $ O . V .&0 N# E u0 T jL0 ZV' .$ *$ + %&L 5F 0 h # &. $0 &q= 9Z#. $ . #E B$&U 0 h ]#& A ZM x= A 0 h # #$&\ λ ≤ λ ≤ λ O&0 A*; C 4$ ).$ . @ v , v, v &,( &. $0 >. T R# .$ *O&0 *( λ 0 h # . $0 v M . $ $ ) q1 &+ & v & λ ZM x= $ O&0 *I*; ij
ij
ji
i
i
=V=VI5 =C
(x − x ) (y − y ) − = a b
S :
T .$ . B$&U R# S * & B Bn . R# ( =&M S Z 0 $ 0 B Bn ZM Z. . &) S *Z$ (M' & z . $ .$ . B Bn . −y $ .$ &0 !VO $ ZM x , S B$&U .$ $ .$ B Bn S U# *$ 0 . −x ;*; !VO 0C ( . −y $ .$ $ &0 . −z & B Bn ` uO &zU+) R# 0&0 *A$ O ) GB *$. $ $ ) B$&U 0 4$ ).$ #. =O =C S : y − y = a (x − x )
( ) . −z > E 0 + . a > M S *A$ O ) % ;*; !VO 0C Z & . −x ([a
. −x ( ) 0 . + &F a < > E 0 + ZM x , z &0 . y u\ S *(O $ ` uO &zU+) R# 0&0 * F (0 . −y *$. $ $ ) & +
i
i
t x y z = Xv + Y v + Zv
X"' 0 #$&\ z y x &0 A*; C .$ S >. T R# .$ U# *$ 0 & !T&' B$&U Z$ . 1 . Z Y X !VO 0 λ X + λ Y + λ Z + αX + βY + γZ + η =
v N# N+M 0 4$ ).$ #. % 9( #E &#. E V# 0 !#[ !0&1 Y >&j L
Q.&3$ 5 SB Bn Q.&
e@&\ T $ B Bn + q0 E y $ e@&\ y $ E T $ T N# *rY\ N# Y\ $ y N#
}
B Bn AGB 9;*; !VO + A% #E 4$ ).$ &#. E N# ` 0 9M Z. . & F $ + oL6 . ) x + y + z =
)
x + y − z =
)
x = z − y
)
x = y + z
)
y = z
)
z = y −
)
x + z = y + y +
x + y = z ) z = − x + y
)
) x + y =
R# 0&0 *( λ − λ = 0 0 ]#& R# " B$&U
&. $0 *λ = λ = λ = E .&[, A # #$&\
v = [, , ] v = [ , , ] E .&[, 0 h # E ( >.&[, c 0 h # . $0 $ +, Z 0 M ZM x= 5 M *v = [− , , ] t
t
t
4$ ).$ #. A& S :
x + y + z + yz = xz + xy +
9E (".&[, S 0 h A ]#& *#0 h .$ . ⎡
)
x + y − xy + xz + yz =
)
x − y + z + x + y − z =
)
(x + y) + y + z =
)
x − y + xz + x − z + =
)
xy + xz + yz =
)
⎦
0 0 5.&\ ]#& R# " B$&U
λ = λ = E .&[, A # #$&\ R# 0&0 *( v = [, , − ] E .&[, 0 h # &. $0 *λ = 0 h # . $0 $ +, Z 0 M v = [, , ] ZM x= 5 M *v = [− , , ] E ( >.&[, c x = Y − Z >. T R# .$ [x, y, z] = Xv + Y v + Zv R# . c#&) E ]3 *z = −X + Y + Z y = X + Y + Z M *Z. X + Y + Z = 0 S B$&U .$ #$&\
*( &q=−XY Z .$ 5 Sq0 N# 4$ ).$ #. A, .8 t
t
t
t
⎡
=
yz + x = z =
(6 !j= UB&Y 0 4E_ E $&# uL0 R# E m 4& 5F & . uL0 R# UB&Y *( !j= c *M G1
, + N# 5$ + .&3 E . h *( e0& Q N# $0 >. T 0 , + 5F 5&0 M M !VO 0 ) &0 9L S : (x − x ) + (y − y ) + (z − z ) = R
= R sin t cos s $ + x= 5
$0 >. T 0 . S .$ *z − z = R cos t R sin t sin s 9(O 5 #E e0& = x − x
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + R sin t cos s, y + R sin t sin s, z + R cos t
≤ t ≤ π, ≤ s ≤ π
⎤
i
j
9E (".&[, S 0 h A ]#& *#0 h .$ .
A E H )G>F /'
y − y
−
λ − λ + λ − =
A=⎣
) x + y + z + xy + xz −
−
S : y + xy − xz − yz − x + y − z − =
xy − yz = x
) x − y + z + xz + x − y − z +
A=⎣ − −
[x, y, z]t = Xv + Y v + Zv
E ]3 *z = X + Z y = Y x = X − Z >. T R# .$ R# *Z. Z = 0 S B$&U .$ #$&\ R# . c#&) E ,&+ ) M (O 5 Z = ± / >. T 0 . B$&U
*( T−XY E T $ . #E 4$ ).$ &#. E N# 0 * 9M oL6 F ` $.F.$ & !VO 0
'() &
− −
⎤ − − ⎦
0 0 5.&\ ]#& R# " B$&U
λ = λ = − E .&[, A # #$&\ R# 0&0 *( 9&0 0 0 X 0 R# 0 h # &. $0 *λ = *v = [− , − , ]t v = [− , , ]t v = [ , , ]t λ − λ −
λ
=
R# .$ [x, y, z] = Xv + Y v + Zv ZM x= 5 M *z = X + Y + Z y = Y − Z x = X − Y − Z >. T 0 S B$&U .$ #$&\ R# . c#&) E ]3 t
Z − X − X + Y
−Z − =
>. T 0 . B$&U R# *Z.
Y −
=
(X + /) (Z − / ) − (/) (/)
. −Y & . .$ B Bn 5 S+ N# M (O 5
*( h .$ . S : x + z + xz + 4$ ).$ #. A .8 9E (".&[, S 0 h A ]#& *#0 ⎡
A=⎣
−
−
⎤ ⎦
pL M !VO 0 ) &0 S :
(x − x ) (y − y ) (z − z ) + = a b c
&F z − z
*y − y
-+ \) %
= cs
5 Sq0 M !VO 0 ) &0 S :
ZM x= l&Q
(x − x ) (y − y ) (z − z ) + + = a b c
$ + x= 5
(x − x ) (y − y ) + = s a b
x − x = as cos t ZM x= R# 0&0 9(O 5 #E e0& $0 >. T 0 . S .$
= bs sin t
−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + as cos t, y + bs sin t, z + cs
≤ t ≤ π, ≤ s ≤ ∞
M !VO 0 ) &0 S :
*y − y
= a sin t cos s,
y−y
= b sin t sin s,
z−z
= c cos t.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + a sin t cos s, y + b sin t sin s, z + c cos t
q0 5 S+
(x − x ) z−z (y − y ) = + c a b
&F
x−x
9(O 5 #E e0& $0 >. T 0 . S .$ ≤ t ≤ π, ≤ s ≤ π
=2 Y=GO &
z − z = cs
Y=G2
M !VO 0 ) &0
ZM x= l&Q S :
(x − x ) (y − y ) + = s a b
]^3 Y=GV=VI5
Q.&
(x − x ) (y − y ) (z − z ) + − = a b c
$ + x= 5
x − x = as cos t ZM x= R# 0&0 9(O 5 #E e0& $0 >. T 0 . S .$
= bs sin t
−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + as cos t, y + bs sin t, z + cs
≤ t ≤ π, ≤ s ≤ ∞
M !VO 0 ) &0 S :
x−x
=
a cosh t cos s,
y−y
=
b cosh t sin s,
z−z
=
c sinh t.
9(O 5 #E e0& $0 >. T 0 . S .$
=V=VI5 Y=GO *
B Bn 5 S+
(x − x ) z−z (y − y ) = − c a b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + a cosh t cos s, y + b cosh t sin s, z + c sinh t −∞ ≤ t ≤ ∞,
y − y = b(s − t) x − x = a(s + t) ZM x= l&Q e0& $0 `&+ ) >. T 0 . S .$ *z − z = cst &F 9(O 5 #E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + a(s + t), y + b(s − t), z + cst)
M !VO 0 ) &0 S : −
≤ s ≤ π
]_ + Y=GV=VI5 $
Q.&3 $ 5 SB Bn
(x − x ) (y − y ) (z − z ) − + = a b c
$ + x= 5
−∞ ≤ t ≤ ∞, −∞ ≤ s ≤ ∞
M !VO 0 ) &0 S :
=2 =C
q0
(x − x ) (y − y ) + = a b
*z = s y − y = b sin t x − x = a cos t $ + x= 5
9(O 5 #E e0& $0 >. T 0 . S .$ r(s, t)
=
−−−−−−−−−−−−−−−−−−−−→! x + a cos t, y + b sin t, s
≤ t ≤ π,
−∞ < s < ∞
x−x
= a sinh t cos s,
y−y
= b sinh t sin s,
z−z
= c cos t.
9(O 5 #E e0& $ $0 `&+ ) >. T 0 . S .$ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(s, t) = x + a sinh t cos s, y + b sinh t sin s, z + c cosh t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! h(s, t) = x + a sinh t cos s, y − b sinh t sin s, z − c cosh t −∞ ≤ t ≤ ∞,
≤ s ≤ π
!<
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u @ !<
evalm(a ∗ u) −−−−→ . . . . . . . . . . . . . . . . u .$ a %qT&' !<
dotprod(u, v) −−−−→ . . . . . . . . v .$ u $ %qT&' !<
crossprod(u, v) −−−−→ . . . . . v .$ u ).& %qT&' 0 #E &0 E B 2 2 2 =P 9$ + $& 5 v . $0 0 u . $0 # j [&
norm(u) −−−−→
proj := proc(u, v) dotprod(u, v), dotprod(v, v) ∗ v end;
. $ E ( =&M v 0 u . $0 # j [& 0 5 M *$ O $& proj(u,v) R0 # E [& 0 2 + 02 +: *$ O $& angle(u,v) . $ E v u &. $0 ZM $ $. 1 ?1 + 02 E#+ 2 .$ P:=[a,b,c] >. T 0 . (a,b,c) >&j L 0 P Y\ M &0 . Q P Y\ $ R0 !T −→ P Q . $0 *ZM $. !< y
*$.F (0 5 evalm(vector(P)-vector(Q)) . $ D. &+, 0 78 QG K+ $ *** v_2 v_1 x &. $0 , + 0 (+O 4 S $& GramSchmidt([v_1,v_2,...,v_n]) . $ E v_n *ZM
. c= 4 "0 E -&' uL0 5&3 & U0 0 R# E ( =&M 5F 5$ 0 / $ .$ 0 *ZM $& Geom3d *ZM ) !< y .$ . with(geom3d) . $ >&j L 0 P Y\ 5$ + $. 0 ?1 % point(P,[a,b,c]) . $ E !< y .$ (a,b,c) ?U0 *ZM $& !<
coordinates(P) −−−−→ . . . . . . . . . . . . . P Y\ >&j L
!<
xcoord(P) −−−−→ . . . . . . . . . . . . . . . . . . P Y\ x o L
!<
ycoord(P) −−−−→ . . . . . . . . . . . . . . . . . . P Y\ y o L
!<
zcoord(P) −−−−→ . . . . . . . . . . . . . . . . . . P Y\ z o L
E !< y .$ l y 5$ + $. 0 & 9$ + $& 5 #E > . $ E V# line(l,[P1,P2]) . . . . . . . . . . . P2 P1 p&\ E .nS y line(l,[P,v]) . . . . . . . . . . P &S [V v $& . $0 &0 y line(l,[p1,p2]) . . . . . p2 p1 T $ 1? ! y
M !VO 0 ) &0 S :
=V=VI5 =C
B Bn
(x − x ) (y − y ) − = a b
y − y = b sinh t x − x = ±a cosh t $ + x= 5
5 #E e0& $ $0 `&+ ) >. T 0 . S .$ *z = s 9(O r(s, t) = h(s, t) =
−−−−−−−−−−−−−−−−−−−−−−→! x + a cosh t, y + b sinh t, s −−−−−−−−−−−−−−−−−−−−−−→! x − a cosh t, y + b sinh t, s −∞ ≤ t ≤ ∞, −∞ < s < ∞
M !VO 0 ) &0
=O =C
+
S : y − y = a(x − x )
.$ *z = s y − y = at x − x = t $ + x= 5
9(O 5 #E e0& $0 >. T 0 . S r(s, t) =
−−−−−−−−−−−−−−→! x + t, y + at , s −∞ ≤ t ≤ ∞, −∞ < s < ∞
58' 9 / ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= 0 ;*I* .$ & Y[ 2 '6 + 2 >. T !< −−−−→! vector([a, b, c]) −−−−→ a, b, c . $0 4 > . $ *$ + G#U !< y .$ . . $0 5
4 "0 .$ &. $0 ).& %- $ %- ` +
5 with(linalg) . $ &0 M $. $ . 1 linalg . c= #E !VO 0 . &. $0 0 &+, *$ + $& F h=&' .$ . 5F .$ O&0 $, a . $0 v u M x= 9$ $ 4& 5
>. T R# !<
evalm(u − v) −−−−→ . . . . . . . . . . . . . . . . . . . . u E v !-& !<
evalm(u + v) −−−−→ . . . . . . . . . . . . . . . . . . . . v u ` +
A M x= /5 : DZ8 + # DZO $ R# T&= >. T R# .$ O&0 T y Y\ *$.F (0 5 distance(A,B) . $ &0 . Z E B
y B A M x= DZ8 + 02 +: . $ &0 . DZO $ R# R0 # E >. T R# .$ O&0 T *$.F (0 5 FindAngle(A,B) x= B DZ8 2 DZ8 < =P # j >. T R# .$ O&0 T y Y\ B A M 5 projection(C,A,B) . $ &0 . B DZO 0 A O C *$.F (0 x= 2 < 9: 2 DZ8 < '1C .$ O&0 . $0 N# v O&0 T y Y\ N# A M . $ &0 . v . $0 E &0 A DZO C = &\ >. T R# *$.F (0 5 translation(C,A,v) # /.$F .$
78
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
* . . . . . . . . . z0+ct y0+bt x0+at .&3 >_$&U &0 y $ + 5&0 .&3 E b 0 & O. E V# 0 . l y l&Q . 5F .&3 !VO Equation(l) . $ &0 O&0 FixedVector(L) ParallelVector(l) > . $ *0&0 *. $ 4?, . l 0 &S V N# $& . $0 N# X 0 y .$ P T 5$ + $. 0 !"# * 9$ + $& 5 #E > . $ E V# E !<
plane(P,[X,Y,Z]) . . . . . . . Z Y X p&\ E .nS T plane(P,[X,v]) . . . . . . X &S V v & . $0 &0 T plane(P,[l1,l2]) . . . . . . l2 l1 y $ E .nS T plane(P,eq) . . . . . . . . . . . . . . . . . . . . . . . eq B$&U 0 T $ + 5&0 $. & b & O. E V# 0 . P T l&Q . 5F $. & !VO Equation(P) . $ &0 O&0 4?, . P T & . $0 NormalVector(P) . $ *0&0 *$. $
y Y\ B A M x= DZ8 + =2 . DZO $ R# C $. 0 ! >. T R# .$ O&0 T *$.F (0 5 intersection(C,A,B) . $ &0 line(l,[a*t+x0,b*t+y0,c*t+z0],t) . . . . . . . . . . . . . . .
0 0 Rr := &r(t) t ∈ Dr ' 5F $0 Dr = [−
. $0
5&0 R+- *( R 0 R E e0 &0 #&OF !j= R# E m RU & t 6 ' U#C e0 S R# cB&F . N#c= cB&F .$ e0& R# $0.&M ARU *$ + Z KY
.&3 . $0 B$&U Rr .$ O! KY B$&U & *( $& . $0 X = , , &SV &0 ( . y $ m@ $ E t .&3 5 Q *O&0 v = −−−, −−−−,−→! E y .&3 U# *O&0 y .&3 N# r(t) $0 ]3 ( 0C r ! = − −−, −−−−,−−→! & r − ! = −−−−−−, −−, −−−→! *A$ O ) * !VO }
IG& JK FL $
; ]
−−−−−−−−−−−−−−−−−−→! + t, − t, t + − ≤ t ≤ = −−−−−→! −−−−−−−→! = , , + t , −, − ≤ t ≤
RU & t 6 ' E ( >.&[, uL0 R# ` -
$. .$ B&" M $ $ Z 5&6 . $0 e0 RU N# M $$S !V6 $& B&" Q E . $0 e0& N# -. .$ d0 $. e0 C R 0 R E e0 i j .$ & F E *O&0 AN#
+, !VO 0 ( U0& R r E 0 &F Z &0 Dr . r $ S *r : R −→ R 9(O 5 R# 0&0 r(t) ∈ R t ∈ Dr −−−−−−−−−−−→! r(t) = x(t), y(t), z(t) = x(t)i + y(t)j + z(t)k
( . $0 e0& N# $0 y .&3 9* !VO M x= A, .8 r(t) =
e0 R# * & r(t) )6H* . z(t) y(t) x(t) e0 !0&1 R R .$ . $0 e0& 0&6 >. j0 * " R 0 R E *O&0 LB$ U[@ $, n M ( G#U e0 $ w O 0 0 . $0 e0& $ M $ O ) *Dr = D ∩ D ∩ D 9( 5F B
9M x= A& '() n
−−−−−−−−−−−−−−−−→! + sin t, cos t, ; −π ≤ t ≤ π
9(O 5 >. T R# .$ r(t) =
! + sin t i +
sin t 5F B e0 U# [−π; π] 0 0 r $ M $$S h'? *O&0 z(t) = *z(t) = cos t = y(t) sin t = x(t)− ! ?U0 ( y(t) =
cos t x(t)
x
! cos t j + k
=
+
!j= 0 r(t) $0 .$
cos t + sin t =
r(t) =
y
z
−−−−−−−−−−−−−−−−−−→! + t, − t, t + ; − ≤ t ≤
x(t) = t + 5F B e0 >. T R# .$ e0& R# $ * " z(t) = t + y(t) = −t +
=@ E
8
9>. T R# .$ lim r(t)
=
t→
()
=
−−−−−−−−−−−−−−−−−−−−−−−−−→ " # et − sin t , lim cos t, lim lim sin t t→ t t→ t→ −−−−−−−−−−−−−−−−→ # " −−−−−→ et , cos( lim ), = (, , ) t→ cos t
(x − )
y
q0 z = T w 6
.$ e1 q0 N# U# A$ O ) ;* !VO 0C *( e1 q0 0 0 T−xy 0 5F # j M ( z = T 9O&0 (x − ) + y =
+
Rr :
*( O $& #F.$ 0 & 3 ,&1 E AC .$ M ZM x= A, .8
=
(x − )
+
y
,z=
=
*A$ O ) ;* !VO 0C
−−−−−−−−−→! −−−−−−−−→! r(t) = t , −t, t + , h(t) = t, t − , t
r(t) × h(t) =
lim
t→−
9>. T R# .$
i j k t −t t+ t t− t −−−−−−−−−−−−−−−−−−−−−−−→! = − t + , −t + t + t, t ! −−−−−−−−−→! r(t) × h(t) = − , , −
9Z#. $ Z\ " [& &0 =@ E
−−−−−→! −−−−−−−−−−→! , , × − , − , − lim r(t) × lim h(t) =
t→−
t→−
=
−−−−−−−−−→! − , , −
(.$ . $0 e0 0 & . \ q1 F
A .8 ( −−−−−−−−→! M r(t) = cos t, sin t ZM x= S ?za #E *!' p&\ R0 !T y .&3 0 C = (, ) 5 M * ≤ t ≤ π ! 0 M B&' .$ $. $ . 1 r π! = −−−−−−,−→! r() = −−,−→ yb R# U# *$ O+ r(t) = C t ∈ [, π] E 9Zg 0 M ( ! ! e1 r a r b y .&3 0 C O&0 3 [a; b] 0 r(t) S *r(t) = C M $. $ $ ) t ∈ [a; b] &F O&0 9M [& . #E $' E N# 0 % − −−−−−−−− !−−−−−−−−−−−−→ ) lim t sin πt , t − t + , et t→
−
−−−−−−−−−t−−−−−−→ sin t − t e − cos t ) lim , sin t t→ t ! π! ) lim ti − sin k ) lim i + tj + t k te/t t t→ t→ − −−−−−−→! − − − − − −→! h(t) = t, , t r(t) = t, −t, t
.$ y0 . *2
∈ {−, +,
•
}
M x= A , ×} Rl+ t = a = *M t\ . **
( . $0 e0& N# $0 q0 9;* !VO & .$ . (S 5 . $0 e0 cB&F $. .$ M lF 4&+ 9$ + T? $ O +) N# M x= 2 a2= 4V[ E# .$ *O&0 AR 0 R E U#C B +U e0 i j .$ T& P M ( P (T& . $ r(t) . $0 e0& Zg S . T *O&0 O $ . P (T& 5F r(t) B e0 E N# 9Z#. $ ** M G#U R# E 5 , 0 −−−−−−−−−→! r(t) = −−x(t), y(t), z(t) S
BC =_ + J
&F
−−−−−−−−−−−−−−−−−−−−−→
lim r(t) = lim x(t), lim y(t), lim z(t)
t→
t→
t→
t→
B e0 + M ( 3& t .$ r(t) 1 & 1 2 ∈ {+, −, , ×} a ∈ R S ?U0 *O&0 3 t .$ 5F 9&F •
) lim ar(t) = a lim r(t) t→t
! ) lim r2h = t→t
t→t
! ! lim r(t) 2 lim h(t)
t→t
t→t
ZM x= A&
'() $
−−−−−−−−−−−−−−−−→ " # sin t et − , cos t, r(t) = t t
9Z#. $ B&" >&- 0 ) &0 *!' r(t)
≈ r
!
+ tr
!
+ −−−−−−−−−−−→! = et , cos t, t sin t
t
r +
t
!
r
t→t
t=
−−−−−−−−−−−−−−−−−−→! +t et , − sin t, sin t + t cos t
( 3 t = t .$ r(t) M x= bCc) & ' M ( #n3t 6 t = t Y\ .$ r(t) Zg S . T .$ t 6 . ' R# . \ *O&0 $ ) lim t − t r(t) − r t !! >&[f S$& 0 *Z$ 5&6 r t ! &0 & t = t .$ r(t) −−−−−−−−−→! A** 0&0C &F r(t) = −−x(t), y(t), z(t) S M $ O
t=
t −−−−−−−−−−−−−−−−−−−→!
+ e , − cos t, cos t − t sin t t= t −−t−−−−−−−−−−−−−−−−−→! e , sin t, − sin t − t cos t +
r t
t
t=
−−−−−→! −−−−−→! = , , + t , , +
t −−−−−−−→! t −−−−−→! ,− , + , ,
−−−−−−−−−−−−−−−−−−−−−−−→ # " t t t = +t+ + , − ,t
e0 4 [ . y"0 ** !T #& .$ M $ O ) x(t) = e ≈ + t + t + t 9E .&[, r(t) B
*z(t) ≈ t y(t) = cos t ≈ − t (0&f &) + .$ . $0 e0& N# @ S M M (0&f A .8 $ +, D$ 0 . $0 e0& 5F t 6 &) + .$ &F O&0 *( t E 0 O&0 (0&f $, A ZM x= *!' r(t) r(t) = r(t) = A Z#. $ >. T R# .$ *r(t) = A "#&0 ]3 *r (t) r(t)+r(t) r (t) = Z#. $ \ 6 &0 $ +, Z 0 r (t) r(t) U# *r (t) ⊥ r(t) r(t) r (t) = * " .$ K6 . $0 e0 E N# t 6 0 9M [& . #E t
−−−−−!−−−−−− !−−−−−→ !! = x t , y t , z t
&B M ( #n<\ 6 . T .$ . $0 e0& .$ *O&0 #n<\ 6 5F O&0 #n<\ 6 . $0 e0 l h r S * >. T R# .$ a ∈ R )
!
)
! ar = ar ! r • h = r • h + r • h
•
r = (r • r ) /r ) r, h, l = r , h, l + r, h , l + r, h, l
3 4 r(t) =
k+
!
[ t 6 . $ r(t) S Z' )*;: A5 9&F O&0 t = t .$
! ! ! ! t−t r t + t−t r t + r t + · · · !k ! t−t r(k) t + h(t) ··· + k! !
) r(t) =
−−−−−−−−−−→
t+ , cos t t−
•
ti − t j r(t) = + + t
)
)
−−−−−−−−−−−−−−→! r(t) = tet , cos t, arctan t
)
t + r(t) = t −
! i − et j + tan t k
−−−−−−−−−−→! h(t) = sin t, + t, t
M x= A
−−−−−−−−→! r(t) = et , sin t, t
*M t\ $. R# .$ . 7** E H ; y0 . *M (0&f . 7** q1 A4 h(t) Zg S . T .$ 0) 'BC e0 + , + h (t) = r(t) M ( r(t) B e0& N#
* lim
•
)
! r + h = r + h ! r × h = r × h + r × h
)
•
)
t→t
h(t) !k+ = t−t
5F .$ M
−−−−−−−−−−−→! r(t) = et , cos t, t sin t
ZM x= A& '() −−−−−−−−→ . 7** E AC Y0 . >. T R# .$ *h(t) = t, t + , t ! *M \\ 9Z#. $ B&" >&- 0 ) &0 *!' −−−− −−−−−−→ !−−−−−−!− ! ! et , cos t , t sin t −−−−−−−−−−−−−−−−−−→! = et , − sin t, sin t + t cos t −−−−−−−−−− −−−−−−→! !−−−−!→ ! , t = , , t h (t) = (t) , t + ! (r(t) • h(t)) = tet + + t cos t + t sin t ! = et + tet + cos t − + t sin t + t sin t + t cos t ! r (t) • h(t) + r(t) • h (t) = tet − + t sin t r (t)
=
+t sin t + t cos t + et + cos t + t sin t
. $0 e0& At = .$ . C 5. B N y"0 A, .8 −−−−−−−→! t, t sin t *M [& 4 [ & . r(t) = −−e−,−cos t
DZ E 0 ( [a; b] E&0 E E = M & ` + ' S *( LB$ . \ 0 ( #n
&F O&0 r(t) B e0& N# h(t) S % ζi ∈ Ii = [ti− ; ti ] i n / ! ti → r ζi ti i=
b
a
0
b
r(t)dt = h(b) − h(a) a
9Z#. $ _&0 q1 0 ) &0
'() &
−−0−−−−−−−−0 −−−−−−−→ # " 0 −−−−−−→ ! t t [t], te dt = ) [t] dt, te dt −− −−−−−−−− −−−−−−−−−−−−0 −−−−−−→ # " 0−− 0−− / t t = dt, te − e dt dt + /
−−−−−−−−−−−→ −−−−−→
t ,e − e , = =
)
0
0
)
= i −
−−−−−−−−→ 0
, ln(t ) dt ) t 0 i + tj + ) dt − t
) )
π
0 *
9M [&
−−−−−−−t−−−−−−−−→ !! t sin t, e , ln + t dt
#&. $0 v r . $0 U0& r : R → R M x= AH B&" *O&0 \\' $, ω (0&f rr () = v r() = r ddtr = −ωrs $ ) >. T .$ $. $ $ ) % ) &z& F *M !' . ( & V# % ) F % ) #&. $0 v r . $0 U0& r : R → R M x= A8 B&" *O&0 \\' $ , c g (0&f s rr () = v r() = r ddtr = −gk − c dr dt $ ) >. T .$ $. $ $ ) % ) &z& F *M !' . ( & V# % ) F % ) *M (0&f . 8** q1 AJ
0 r(t) dt +
h(t) dt
M . T .$ M (S 5 ** !T $. .$ −−−−−−−−−→! y(t), z(t) 9&F r(t) = −−x(t), −−−−−−−−−−
0 0−−−−−−−− 0−−−−−−→ x(t) dt, y(t) dt, z(t) dt
'()
0 et i − tet j + t k dt −
0
x(t) e0 #n
0
r(t) dt
! r(t) + h(t) dt =
r(t) dt =
−−−−−−−−−→ " # −π j = , ,
. #E & B E N# . \
0
0
π
0
ar(t) dt = a
)
π
{sin ti − tj + cos tk} dt = ( )π π π t j + sin t k = − cos t i −
5&6 1 r(t) dt $&+ &0 & r(t) RU & . r(t) B *Z$
$ h h O&0 AQ.&
−−−−−−−−−−−−−−−−→
0 −−−−−−−−−−−−−→ ! t − , sin t, et dt = t − t, − cos t, et + c 0 ! t+ t sin t i − ) j dt = t− 0 0 t+ dt = i t sin t dt − j t + 0 0 t + = i −t cos t+ cos dt −j dt t + t + = i {−t cos t + sin t + c } −j ln |t + | + arctan t + c )
. #E . $0 e0 E N#
0
9M [&
−−−−−−−−−−−−−→
−−−−−−−−−−−→ ! , ln t, sin t ) r(t) = t − t, t ln t ) r(t) = t
)
ti − t j r(t) = + t +
M x=
)
r(t) = t i − sin tj + et k
0) 'BC $
P : a = t < t < · · · < tn = b
!
# $ C R > X = x , y ! ZM x= _ A, .8 !VO 0 C B$&U *( R `&UO X .$ cM 0 x−x
x−x
= R cos t
!
+ y−y
!
= R
M ZM x= Z R# 0&0 *( R# 0&0 *y − y = R sin t
−−−−−−−−−−−−−−−−−−−→! r(t) = x + R cos t, y + R sin t
t\ . & y# O 5 S$& 0 * ≤ t ≤ π M #E r = 0 9Z#. $ pO $. .$ *$ +
* * *−−−−−−−−−−−−−→!* *r (t)* = * − R sin t, R cos t * = R =
M $ O < R r(t) = r(s) x= E ?U0 x= t0&Y 5 Q *cos t = cos s sin t = sin !s *( N# C ]3 *s = t "#&0 t, s ∈ ; π ! b a &Y1 Z X = x , y cM 0 q0 A .8 9Z#. $ A;C 0 [O d0 &0 #E ( N# −−−−−−−−−−−−−−−−−−→! C : r(t) = x + a cos t, y + b sin t ;
Γf =
! x, f (x) a ≤ x ≤ b ⊆ R
Z $0 0 0 #E ( N# $ O G#U −−−−−→! r(t) = t, f (t) ; a ≤ t ≤ b
M y = x − x + B$&U 0 + &a 5 , 0 *O&0
>. j0 . − ≤ x ≤ 5F .$ −−−−−−−−−→! ; − ≤t≤ C : r(t) = t, t − t +
*$ + .&3 5
Y\ X ZM x= *&q= .$ = Z+U q0 A .8 * !VO 0 * &U V# v u &. $0 ( &q= E R# .$ * [a $ , b a ZM x= Rl+ *$ O ) % u > E 0 b a &Y1 Z X cM 0 C q0 >. T 0 . n = u × v Zg&1 . $0 X &SV &0 T .$ e1 v Z N+M ! ! −→ r(t) = X + a cos t u + b sin t v ;
UB&Y .$ . $0 e0 E $& uL0 R# E m ( R# T B&" *( &q= T .$ &
&0 5 . T Q .$ - C C & M *$ + t[Y #$ 0 . V# A(M'C 1 !#[ N# 5F M{ 0 & & ( VV .&"0 B&" R# &3 [B *$ O M !" #$ /.$ 0 5F >&[f Z#E $3
−−−−−−−−−→! y(t), z(t) . $0 e0& . r(t) = −−x(t), 9M Zg S I `# . T .$ *O&0 [a; b] !VO 0 r $ A *O&0 3 [a; b]! 0 r A; *O&0 #n3t 6 a; b! 0 r A *O&0 T GB&L a; b !0 r A *O&0 N[V# a; b 0 r AH
≤ t ≤ π
0 y = f x! ZM x= *T .$ x E U0&! . $ + A .8 f . $ + >. T R# .$ *O&0 #n3t 6 a; b 0 3 [a; b] >. j0 M [a; b] 0
3**' 5 F *H $
≤ t ≤ π
}
y .&3 AGB 9* !VO = Z+U q0 A% M Zg S a: !( . T .$ . C ⊆ R , + #E M #& + RU *O&0 0 0 Z Q N# $0 E ,&+ ) &0 I L I $ O C , + 0 0 & F $0 `&+ ) *$ O S C $ B A ZM x= _-#I A& '() . $0 e0& *O&0 AB y .&3 C $ 0 R E >&! Y\ R# .$ *#0 h .$ . [; ] ! $ &0 r(t) = − t A + tB 9( #n3t 6 ; 0 3 [; ] 0 r >. T AB
r (t) = −A + B = 0
r(t)
x= &0 ?U0 *. 10 pO .& Q ]3 ! ! R# 0&0 * − t A + tB = − s A + sB Z#. $
= r(s)
! ! s−t B−A =0
R# 0&0 *( N[V# ; ! 0 r nB s = t ]3 A = B & *A$ O ) GB * !VO 0C ( N# AB
0 *M oL6 . 3.& $' LB$ $ , β α M *$ O ) % * !VO N# $ & $ U `&+ ) 5 Q A0 .8 #) (#& 0 5 _&0 & &0 R# 0&0 ( z a *(& ⊕ !VO ( y .&3 `&+ ) M da ? *( y .&3 $ # $ N# `&+ ) M ?za *( N# $ N# E UY1 A2 .8 *q0 E e0. N# ( N# # $ Z $ y M ( 4$ e0. E +"1 D M x= A&^ .8 . 5F C E *( O ) y = − x y = x + !VO 0 *C = C ∪ C ∪ C ∪ C ZM x= *M .&3 .$ *( y .&3 C *$ O ) GB H* C : r(t)
−−−→! −−−→! = ( − t) , + t , ; −−−−→! = , t ; ≤ t ≤
≤t≤
*M eY1 ( , ) (− , ) p&\ .$ O $ $ + $ y = − x + E +"1 C *− ≤ x ≤ $ .$ ]3 y = − t .$ *x = t $M x= 5 ]3 *( C : r(t) =
−−−−−−−→! t, − t ; − ≤ t ≤
0&6 >. T 0 C : r(t) =
−−−→! t, t ; − ≤ t ≤
*$ + .&3 5
9Z#. $ 4.& Q pO $. .$ * " #0 pO r (t) = 0
⇒ ⇒
r •u = r •v =
! − a cos ! t u •u = b sin t v • v =
⇒ cos t = sin t =
9M $ O r(t) = r(s) x= E ?U0 *( & M
! r(t) • u = r s! • u r(t) • v = r s • v
⇒ ⇒
a cos t = a cos s b sin t = b sin s cos t = cos s sin t = sin s
*s = t R# 0&0 < t s < π & R# B +U E V# *v e0& $ . $ + $. 0 A4 .8 5& Y0 . $ E $& &q= .$ & G#U 0 & O. h O&0 z y x ! ! C : f x, y, z = a , g x, y, z = b
X R# 0 ( >_$&U & $ !' $M #&0 M .&M & *ZM x= e0& . #$ &$ $M x= v . V# M &F C : x + y = x + y + z = S ?za
Z M x + y = x= 0&0 & *z = −x − y z = − cos t − sin t R# 0&0 *Z#0 y = sin t x = cos t .$ −−−−−−−−−−−−−−−−−−−→! C : r(t) = cos t, sin t, − cos t − sin t ;
≤ t ≤ π
*$ O ) GB * !VO 0 }
pL ^Y E +"1 S M x= A&& .8 z = >&T y $. $ . 1 Z 6 N# .$ M ( ZM x= *M .&3 . 5F C E *( O ) z = *$ O ) % H* !VO 0 *C = C ∪ C ∪ C ∪ C z = x +y
#. $ $. 0 E !T&' AGB 9* !VO = Z+U 3.& A% M M (M' 5&Q M M x= *3.& A5 .8 &0 ( AHC &a .$ q0 0 0 N . $0 $ .$ 5F # j >. T 0 . R# *$. _&0 n $ .$ c (0&f (, 9$ + .&3 5 #E
} ;*;* &a E I & +"1 9H* !VO
! ! −→ r(t) = X + a cos t u + b sin t v + ctn ; α ≤ t ≤ β
q0 5 S+ $ $. 0 E !T&' C A& .8 !VO 0 *#0 h .$ . z = − x + y z = x + y & $ N# .$ #. $ R# B$&U !' E *$ O ) GB J* *x +y = − x +y = x + y M $$S h'?
>. T R# .$ *y = sin t x = cos t $ + x= 5 ]3 R# 0&0 z = x + y = + cos t −−−−−−−−−−−−−−−−−−→! C : r(t) = cos t, sin t, + cos t ;
.$ " y .&3 C C C : r(t) = = C : r(t) = =
:
: C
: :
;*;* &a E H & +"1 9J* !VO
M $. 0 E !T&' C
A& .8 ) % J* !VO 0 *#0 h .$ . z = x + y T $$S h'? & $ N# .$ #. $ R# B$&U !' E *$ O *x + y + xy = x + y + (x + y) = M x + y + xy = >. T 0 . R#
x + y + z =
≤t≤ ≤t≤
.$ * " # $ e0. C C
≤ t ≤ π C
}
−−−−−→! −−−−−→! ( − t) , , + t , , ; −−−−−−−−−−−→! , + t, + t ; ≤ t ≤ −−−−−→! −−−−−→! + t , , ; ( − t) , , −−−−−−−−−−−→! + t, , + t ; ≤ t ≤
⎧ ⎧ ⎨ x + y = ⎨ x + y = z : z= z= ⎩ ⎩ ≤ x, y ≤ x, y −−−−−−−−−−→! π r(t) = cos t, sin t, ; ≤t≤ ⎧ ⎧ ⎨ x + y = ⎨ x + y = z : z= z= ⎩ ⎩ ≤ x, y ≤ x, y −−−−−−−−−−−−−→! π r(t) = cos t, sin t, ; ≤ t ≤
C : r = a( + cos θ) ;
≤ θ ≤ π &+B$ A&, .8 C #0 h .$ . y L T .$
8* !VO 0 *Aa > x = r cos θ # 0 ) &0 t = θ x= &0 *$ O ) GB 9M $$S h'? x = r sin θ −−−−−−−−→! C : r(t) = a( + cos t). cos t, sin t ;
≤ t ≤ π
}
√ (x + y) + ( y) =
x + y = cos t $ + x= 5 R# 0&0
*(O 5
.$ * y = sin t √
y
=
x = z
=
√
sin t √ ( cos t − y) = cos t − sin t √ x + y = cos t + sin t
;*;* &a E ; & +"1 98* !VO >&V"+B A& .8
Z#. $ ` + .$ C : r(t)
=
√
√
!
!
cos t − sin t i + sin t j √ ! + cos t + sin t k ; ≤ t ≤ π
5$ + .&3 Q *; uL0 .$ 78 *( O $ $ ^- 4$ ).$ &
9M .&3 . & E N# *T .$
, −
!
0
!
,
y .&3 A
C : r = a cos(θ) ;
≤ θ ≤ π
8* !VO 0 *Aa > C #0 h .$ . y L T .$ R# 0&0 *cos(θ) > #&0 M ( RO. *$ O ) % &0 .$ *k ∈ N M kπ − π/ ≤ θ ≤ kπ + π/ −π/ ≤ θ ≤ π/ Z#. $ X 0 k = k = x= 9( V $ h $. U# *π/ ≤ θ ≤ π/ x = r cos θ # 0 ) &0 t = θ x= &0 *C = C ∪ C 9M $$S h'? x = r sin θ C C
, −−−−−−−−→! π π cos(t). cos t, sin t ; − ≤ t ≤ , −−−−−−−−→! π π : r(t) = cos(t). cos t, sin t ; ≤t≤ : r(t) =
*T .$ `&UO
z = x , y = x , − ≤ x ≤ √
) x = + y + z , x =
)
, x + y = z
) x + y + z = )
∗
x + y = , x + z = ) x + y + z = R ,
(x − a) + (y − a) = r ,
√
|a| + |r| < R
*M .&3 . 7* !VO .$ ;8 & ;; &
M x= U!U) < F= '=d $
,−
!
cM 0 # $ A;
)
x + y = x
)
x + y = , − ≤ x ≤
)
x / + y =
)
y = x − , y ≤
)
x − y = , |x| ≤ ) x/ + y / =
* , , − ! , , ! y .&3 A2 . 7* !VO .$ O $ $ 5&6 & I &
*M .&3
}
C : r(t) ; a ≤ t ≤ b
0 r t + dt! & r t ! E / 1 @ *a < t < b l h $. @ &0 B&" R# 0 &3 0 ( .\Q !VO 0C ZM [& . d Y\ $ 5F R0 !T . $0 @ 9A$ O ) GB * C
*−−−− !−−−−−−→!* ≈ d = *r t r t + dt * ! ! !! !! = x t − x t + dt + y t − y t + dt !! / ! + z t − z t + dt
.$ t t t $ , Z mU i S_ q1 0&0! & 9M O (= 5&Q t ; t + dt E&0 l ≈ d =
! ! ! ! ! ! / x t dt + y t dt + z t dt
9Z#. $ O&0 NQ M =&M E 0 dt S ]3 ,
l
x t
≈ d ≈
!!
+ y t
!!
+ z t
!!
dt
! = r t dt
U# & / 1 @ !" #$ . F >.&[, ( =&M C a: .S [& 0 5 M *ds = r (t)dt 9Z#0 [a; b] E&00 ds E
0
=
0
b
ds =
b
r (t) dt
a
M . T .$ A& −−−−−−−−−−−−−−−−−→! C ; r(t) = cos t + , sin t − ; 0
= =
'() %
≤t≤π
&0 ( 0 0 C / 1 @
*−−−−−−−−−−−−−→!* * − sin t, cos t * dt 0 π, sin t + cos t dt = π π
;8 & ; ; & I !#&" 97* !VO * , , ! − , , ! , − , ! / g.&0 da A , − , ! .$ cM z = T .$ e1 # $ A * `&UO )
x = y = z, − ≤ x ≤
)
x + y = , x + y = z
}
/ t k; ≤t≤
) r(t) = t i − t j − t k ; ≤ t ≤ )
r(t) = ti +
)
! r(t) = t, cosh t ; − ln ≤ t ≤ ln
)
r(t) =
cos t
! i+
sin t
√ ! j + tk ;
≤t≤π
−−−−−−−−−−−−−−−−−−−−→! √ r(t) = t sin t + cos t, t cos t − sin t ; ≤ t ≤ √ ! ! ) r(t) = t cos t i + t sin t j + t/ k ; ≤ t ≤ π
)
/ 1 @ AGB 9* !VO 8*;* &a E (+"1 A% ! ! , , , , − y .&3 / 1 @ A, .8 p&\ R# R0 !T . $0 @ &0 (
M x=
0 0 C = .d C)_ *
*−−−−−−−→! −−−−−→!* *−−−−−−−→!* = * , , − − , , * = * , , − * =
C : r(t) ; a ≤ t ≤ b
9!VO 0 . C =@ E
>. j0 . s $ UT e0& *O&0 O .&3 N# 0
t
s(t) =
−−−−−−−→! !−−−−−→! −t , , + t , , − −−−−−−−−−−−→! , , −t + ; ≤ t ≤
C : r(t) =
r (t) dt , a ≤ t ≤ b
=
a
e0& R# *$ O ) GB I* !VO 0 *ZM G#U = r > #E ( #n< VU
0 . t 5 ]3 * ds dt C / 1 @ l ≤ s ≤ l M t = t(s) 9$.F (0 s X"' 9(O $M $& s E t &0 r .$ 5 5 M *(
R# 0&0 *$ + .&3 5
C : rn (s) = r(t(s)) ;
≤s≤l
.&3 R# R"' * & C !J$S I . r (s) &z'?YT 9( N# 0 0 &) + .$ 5F (, M ( 5F .$
=
0 0 *−−−−−−−→!* * , , − * dt = dt =
. % * .$ O $ $ 5&6 / 1 @ A .8 C C DZc) $ E R# *ZM [&
O !V6 ! ! , , & , , 0 &0 Y .&3 C *( R# 0&0 (
n
* * *rn (s)* = = =
*d !* * r t(s) * ds * * * dt d * ds * r(t)* = *r (t)* ÷ ds* * dt * ds * *r (t)* ÷ *r (t)* =
C : r(t) =
.$ R = `&UO X C : r(t)
}
= =
−−−−−−−−−−→! t, − t, ;
=
DZ [ cM 0 # $ e0. C =@ E 9R# 0&0 ( T −xz
! ! → = − o + cos t i + sin t k −−−−−−−−−−−−−→! = cos t, , sin t ; ≤ t ≤ π/
+ 0 −−−−−−−→! , −, dt 0
π/
+ =
0 √
dt +
−−−−−−−−−−−−−−−→! − sin t, , cos t dt
0
π/
√
π dt = +
. #E & E N# / 1 @ = kM A% U[@ .&3 AGB 9I* !VO
≤t≤
−−−−−−−−−−−−−−−−−→! ) r(t) = sin t + , cos t + ;
0 &
9M [&
≤t≤π
9G#U 0&0 5 M Tn (s)
rn (s)
=
cos s − π i − sin s − π j + k s s − sin −π i− cos −π j
= rn (s)
=
Nn (s)
=
Bn (s)
=
s s rn (s) = − sin − π i − cos − π j rn (s) Tn (s) × Nn (s) i j k ! ! s s −π − sin −π cos ! ! s s −π − cos −π − sin s s cos − π i − sin −π j− k
=
=
.&3 E $& 50 . N# &a = kM A, .8 9ZM [& U[@ r (t) =
cos t
! ! i + − sin t j + k
r (t) × r (t) =
cos t
! i+ −
r (t) =
sin t
! j − k
N(t)
r (t) × r (t) =
cos t!i + − sin t!j + r (t) = r (t) r (t) × r (t) = r (t) × r (t) ! ! = cos t i + − sin t j − k ! ! = B(t) × N(t) = − sin t i + cos t j =
k
= kM A .8 C : x + y =
*0&0 X
√
r
π
N# 0 0 5F @ ( /&+ C 0 r (s) Y\ .$ ?U0 *Z & !( aF )*? . 5F O&0
I* !VO 0C O&0 s .&3 $$E & . .$ 5F ( ) *A$ O ) % *O&0 $ +, u\ 6 0 ( N# 0 0 T (s) @ 5 Q V# . $0 n
n
Nn (s) :=
√
n
n
! Bn (s) := Tn s × Nn (s)
X #& *Z & r
Y\ .$ Y `b: .
kM N# kM R# *Z & r (s) Y\ .$ C )* < c . N# 0 0 @ M U R# 0 ( $ . V# &U
*( ([a & F #& %qT&' $ +, $ 0 $ ( (0 . = kM 5 c U[@ .&3 E $& 50 *ZM >&[f ** .$ . q1 R# 9$.F O&0 [a; b] $ &0 LB$ Z N# r S &F t ∈ (a; b) r (t) × r (t) r (t) , B(t) = , r (t) r (t) × r (t) N(t) = B(t) × T(t)
T(t) =
M x= A&
C : r(t) =
sin t
! i+
cos t
'()
! j + tk ; −π ≤ t ≤ π
9E ( >.&[, C / 1 @ e0& >. T R# .$ t
= −π t
0
/, /, /
−−−−−−−−−−−−−→ = (− sin t, cos t, cos t) π
Tn (s) r (s) = n rn (s) Tn (s)
.$ . $0 R# *Z & r (s) Y\ .$ C !( !'= `b: . DZ& cM (+ 0 ( $ +, 0 r (s) Y\ 9).& %qT&' *$. $ m
s(t)
Y\ .$ . * 9ZM .&3 . C 0 *!' . & F E V# & . Mn
.&3 ( e@&\ # $ $ C [B π 9R# 0&0 *X = r M ( RO. ?U0 *M .&3 = −−−−−−−−−−−→ r(t) = (cos t, sin t, sin t)
Tn (s) := rn (s)
0
, x + z = √
. $0 *ZM
n
9Z#. $ @ 0 & B = N+M 0
B(t)
eUL
C n (s) Fn (s) : = Tn (s), Nn (s), Bn (s)
! ! r (t) = − sin t i + − cos t j
T(t)
$& 7*;* (+"1 >&- E
= −π
*−−−−−−−−−−−−−−→!* * cos t, − sin t, *dt
dt =
9 .$ * ≤ s ≤ C : rn (s)
s
=
r
=
sin
−π
s
t+π
!
π M t = s/ − π R# 0&0
s − π i + cos −π j s + −π k
−−−− " # √−−−− √−−→ √−−−−
r
π
=
−−−−−−−−−−−−−−−−→ (− cos t, − sin t, − sin t) π
'?T >&T 9* !VO /&+ y Zg&1 /&+
R# *( T(t) $& r(t) &SV &0 y 9/&+ y *( r(t) Y\ .$ C 0 y R# V#$c y *( B(t) & r(t) &SV &0 T 9/&+ T 0 *( r(t) Y\ .$ C 0 T R# V#$c T R# T 5F 0 T N# .$ r(t) L0 S M U R# c . /&+ T *O&0 /&+ T 5&+ * &
. $0 *( T(t) & r(t) &SV &0 T 9Zg&1 T Zg&1 T .$ M *( $ +, C 0 r(t) .$ 1 & 1 v *O&0 O $ . 1 *( N(t) & r(t) &SV &0 T 9'?T T M x= A& '()
r
π
−
× r
π
+ cos
!! ! πt i+ sin πt j+πtk ; − ≤ t ≤
! Z#. $ X R# 0 *X = r( ) = −−,−−,−−→ π 5F .$ M ! −−−−−−−−−−−→ Rl+ N( ) = −−,−−,−→ T( ) = (, −/, /) −−−−−−−→ 9R# 0&0 *B( ) = −− (, /, /) /&+ y : x − = −y −/ = z −/π
Zg&1 T
: x = , y + z = π ! ! ! : x− − / y − ! ! + / z − π = :
/&+ T
:
:
'?T T
:
z = y + π ! ! ! x − + / y − ! ! + / z − π = y + z = π ! ! x− + y− ! + z − π =
: x=
>&j L 0 X Y\ .$ . #E $ R0 # E A, .8! 90&0 , −, −
=
r
B
π
=
π
−−−−−−−→ = (, − , )
π* √ * π *= *r × r π π ÷ r
−
, ,
π
r
× r
π
π* * π * ÷ *r × r
− " #−−−−− √−−−− √−−→ =
N
, − , −
−−−− # " √−−−− √−−−− √−−→ =
r(t) =
π
√ * π* *= *r
T
−−−− −−−−−− # " √−−−−−√ √−−→ =
}
, ,
−
=
=
, − ,
B
π
×T
π
−−−− −−−−−− " # √−−→ √−−−−−√ =
−
, − , −
!VO 0 . #E & E N# 0 9#.F (0 . & F = kM $M .&3 U[@ ) r(t) =
−−−−−−−−−−−−−− √−−→! cos t, sin t , t ;
≤ t ≤ π
−−−−−−−−−−−−→! t + , − t ; − ≤ t ≤
)
r(t) =
)
C : x + y + z =
)
C : x + y + x + y =
, z=
√
y
90&0 X Y\ .$ . O $ $ = kM !
)
C : x = y = z, X =
)
−−−−−−−−−−−−−−−−→! C : r(t) = t − , t + t, t − , X = r
, , −
!
E Y\ .$ = kM $ ) !B$ 0 E Y\ 0 #E KO 0 y N# T N# 9A$ O ) * !VO 0C $ O $ $ (["
}
− −−−−−−−−−−−−−−−−→ C : r (t) = t + , t − , t + −−−−−−−−−−−−−→ C : r (t) = t , t − , − t
0 0 $ 5F 0 /&+ &. $0 R0! # E 0 0! # E R# _> # E R# 0&0 r − = r = X B *( &0 ( 0 0 α O
( ?, A% /&+ # $ AGB 9;* !VO DZ&
κ(t) =
- x x
x y + y x
y z + z y !/ (x ) + (y ) + (z )
z z
9(O 5 Y" & $. .$
x y − x y κ(t) = !/ (x ) + (y )
&0 M ( ([a . T .$ κ ( ?, ( ( ?, . $ M b .$ *l0 (,& &0\, ( ) .$ T(t) . $0 t $$E *A$ O ) % ;* !VO 0C $ 0 κ >. T R# DZ& `&UO! DZ& cM DZ& A& '() & X = , Y\ .$ . O $ $ 0 /&+ # $ B$&U
9#.F (0 −−−−−−−−−−−→! C : r(t) = t + , − t ; − ≤ t ≤
V# 0 ) &0 *!'
9Z#. $ X
= (, ) = r( ) −−−−−−−→! −−−−−−−→! r ( ) = , −t, = , −, −−−−−−−→! r ( ) = , −, #√ √ T( ) =
t=
,− ,
r ( ) × r ( ) =
"
−−−−−−−→! , , −
−−−−−−−→! B( ) = , , −
−
r ( ) × r ( ) = κ( ) = r ( )
cM ( R(
) =
/κ( )
√
√ ! =
√ = 0 0 DZ& `&UO ]3
−−−−−→! , ,
!
) r(t) = t +
i + tj + t k, X = r( )
)
−−−−−−−−−→! ! r(t) = cos t, sin t, t , X = − , , π
)
x = y + , z = y + x ; X =
)
x + y + z = , x + y + z = , X =
, −
!
,
! , − ,
−−−−−−−−−−−−−−−−−→! r(t) = a cos(wt), a sin(wt), bt
0 /&+ M $ 5&6 AH *$E& T−xy &0 (0&f # E . + &0 y = x + ax + b + M M RU . @ . b a A8 *O&0 /&+ x + y = # $ Q &0 . #V# x − y = b xy = a &B Bn AJ *M eY1 # E & .C T (s) > v 5 c S + DZU! % &3&M $ O C κ (s) DZ( . / 1 @ 0 ([" A/&+
h E *κ (s) = T (s) 9Z & As .$ n ]# aM ' . $ `&UO r (s) + N (s) cM 0 # $ k 0 0 X Y\ .$ C DZ& S U# *( &0 /&+ `&UO 0 # $ N# 0 [O X #&"+ .$ C &F O&0 DZ( e . r (s) + N (s) !B$ R+ 0 *O&0
.$ C 0 aF * . . Mn # $ DZ( fJ@ . /κ (s) 0 *A$ O ) GB ;* !VO 0C *Z & r (s) Y\ 9$ + $& 5 #E & B = E DZ& . \ [&
n
n
n
κn (s)
9E ( >.&[, DZ&
−−−− −−−−→ " # √ √−−−−− √ −−−−−→! r( ) + R( )N( ) = , , + − ,− , =
/&+ T /&+ y B$&U 0 $ X Y\ .$ . O $ $ '?T T Zg&1 T 9#.&0 (0
n
, − ,
n
−−−− −−−−→ # " √−−−−− √ N( ) = B( ) × T( ) =
! ! ∠ r − , r () =
−−−−−−−→! −−−−−−→! , t, , − = ∠ t, , t=− t=
−−−−−−−−→! −−−−−−−→! = ∠ − , , , , , −
−
√ = cos− = cos− √ √
κn (s)
n
κ
n
κn (s)
n
n
n
κ(t) =
r (t) × r (t) r (t)
9#$ 5&0 0
9E ( >.&[, DZ& cM
h(t)
= r(t) + R(t)N(t) −−−−−−−−−−→ = (a cos t, b sin t) +
S
! + b − a cos t
) ) )
√ ! ! r(t) = e cos t i + et sin t j + et k, X = r() ! x = ln y, X = , e ! ! ! r(t) = cos t i + sin t j, X = r π/ √ √ ! x + y = z , z = , X = , − , t
DZ& cM 5&V E !T&' . $ + A8 *M Z . y = x DZ& cM 5&V E !T&' . $ + AJ *M Z . r(t) = sin ti + cos tj + tk Y\ .$ C 0 /&+ T M Z $ S ([" B (s) > v 5 c *O&0 B (s) & . $ r (s) s 0 ([" /&+ T > v 5 c R[ M / 1 @ 0 $ O C τ (s) = B (s) 9Z & %& . O&0
M $ O (0&f *As .$ n ]# & n
n
n
τ (t)
=
=
−−−−−−−−−−−√ −−−−−→! C : r(t) = cos t, sin t, cos t ; −π ≤ t ≤ π/
U#C ( Y" M $ O (0&f ( =&M *!' &) R# .$ & *O&0 (0&f c 5F DZ& `&UO A( (0&f 9Z#. $ −−−−−−−−−−−−−−−√ −−−−−−→ −−−√ −−−−−−−→ # " # " − T= sin t, cos t, − sin t B = − , ,
z z z + y y
S $. _&0 B(t) $ .$ O&0 ([a τ (t) l&Q T 0 0 Y" %& *(=. Rg&3 O&0
*O&0 (0&f B(t) U- RQ .$ #E (
DZ& cM ( R =
/κ =
!
=
DZ& `&UO ]3
9E ( >.&[, #E
−−−−−−−−−−−√ −−−−−→! r(t) + R(t)N(t) = cos t, sin t, cos t −−−−−−−−−−−−−−√ −−−−−−→ " # − − cos t + , sin t, cos t = 0
M ( $ 0 /&+ T .$ e1 # $ E UY1 C ]3 9( #E KO 0 B$&U . $ √
: −
P
! ! x − cos t + y − sin t √
z−
cos t
9#$ >.&[, 0 *( `&UO C
!
=; z= ! , , √ : x + y + z = , z = x √ : x + y = , z = x +
√
x
cM 0 # $ C
*( x /a + y/b = q0 C M x= A .8 *M oL6 . C DZ& cM 5&V
−−−−−−−−−−→! C : r(t) = a cos t, b sin t : ≤ t ≤ (B&' R# .$ *!' 9R# 0&0 *π T(t) =
z z
− −−−−−−→ #−−−−−−−−−−−−−−√ " − N= cos t, sin t, − cos t κ =
n
n
[r (t), r (t), r (t)] r (t) × r (t) x y x y x y x y + x z x y x z
B
( aM ' DZ& 1 & 1 9M (=S 5
t = h p&\ ]3 *cos t = U# O&0 !1 ' cos t M _ &0 * , ±b! 9 " DZ& aM ' &0 t = π/ π/ *O&0 DZ& !1 ' &0 ± a, ! p&\ 0&6
DZ& cM DZ& `&UO DZ& 0 * O Y\ .$ . O $ $ /&+ # $ B$&U
9#.F (0 )
√ !
! + y− =
9( # $ N# E 6L0 #E M $ 5&6 A, .8
Z"# 0 a < b S ,
!
: x − x + y =
−−−−−−−−−−−−→ (−b cos t, −a sin t)
ab −−−−−−−−−−−−−−−−−−−−−−→
! ! = cos t, b − sin t a− a b
κ(t) = ab ÷
x−
:
9( RQ /&+ # $ B$&U
N(t) = κ(t) = =
−−−−−−−−−−−−→! − a sin t, b cos t + a sin t + b cos t −−−−−−−−−−−−→ (−b cos t, −a sin t) + a sin t + b cos t ! ! ! ! | − a cos t b cos t − − b sin t − a sin t | + a sin t + b cos t ab + a sin t + b cos t
%& A&
?z &M %& DZ& N+M 0 c &q= .$ & M U R# 0 *$ O oL6
C : r (t) : a ≤ t ≤ b S pO &F O&0 &q= .$ $ C : r(s) : c ≤ s ≤ d U0& M ( 5F C 0 C 5$ 0 &[Y !0&1 0 =&M 4E_ t ∈ a; b! E 0 M $$S (= 5&Q h : [a; b] → [c; d] @ .$ ( ?, *τ h(t)! = ±τ (t) k h(t)! = k (t) *( (0&f a; b! 4&V' _&0 q1 $ E $0.&M 5 , 0 '() 9ZM KY . #E UY1 x N# V# 0 =&M 4E_ pO A *O&0 T DZ& M ( 5F O&0 ( . y E UY1 x N# V# 0 =&M 4E_ pO A; 5F DZ& T %& M ( 5F O&0 # $ E *O&0 (0&f E UY1 N# V# 0 =&M 4E_ pO A *O&0 (0&f %& DZ& M ( 5F O&0 3.&
MJ N $$ N# (M' Y0&- U 0 .&3 Z N&V &S#$ E *O&0 5F (M' " U 0 / 1 ( w
%& O (, 5 Q &,?@ 5 (M' Y0&- Z E 5$ 0 4 U &0 & *$.F (0 . Zg&1 %& O &+ %& O ?za * " RU !0&1 . Mn #$&\ (M' "
G L & , &0 ![
$ x $&) N# 0 ( RV+
*M (M' r(t) : a ≤ t ≤ b Y0&- &0 +") S N#c= E >&,?@ 0 &0 >. T R# .$ M (M' &q= .$ ) GB * !VO 0C ZM KY . #E KO 0 G#.&U *A$ O >. T 0 $ $ 5&6 v(t) $&+ &0 . )g(H 7T+ #$ 5&0 0 *ZM G#U rt 5& E 0 ([" 5&V v 5 c s *r (t) >. T 0 5 c s >. T 0 $ $ 5&6 a(t) $&+ &0 . )g(H K@ 0 #$ 5&0 0 *ZM G#U rt 5& E 0 ([" (, v *r (t) >. T
'()
C : r(t) = cos ti + sin tj + tk
9ZM [& . −−−−−−−−−−−−−−−→! r (t) = − sin t, cos t, −−−−−−−−−−−−−−−−→! r (t) = − cos t, − sin t, r (t) × r (t) =
−−−−−−−−−−−−−−−−→! sin t, − cos t,
−−−−−−−−−−−−−−→! sin t, − cos t, r (t) × r (t) = r (t), r (t), r (t) = r (t) =
.$ r %& U# *τ (t) = / ! = / R# 0&0 h $. 5$ 0 3.& R# !B$ *( (0&f &)+ *O&0
M ZM (0&f Z A, .8 C : r(t) = C
−−−−−−−−−−−−−−−−−−−−−−→! t − , t + t + , t − t
%& M $ O (0&f ( =&M . h R# 0 *( Y"
9( T &)+ .$
τ (t) = r (t) × r (t)
t +
t −
=
*O&0 r &B 5$ 0 4$ ).$ R# !B$ Y\ .$ . #E & E N# %& 0 9M [& O $ $ ) r(t) =
) r(t) =
−−t−−−−−−t−−−−−→ ! e cos t, e sin t, et , X = r()
) r(t) = ) r(t) =
−−−−−−−−−−−→! + t, t , t , X = r(− )
−−−−−−−−−−−−→! t sin t, t , t cos t , X = r(π)
−−−−−−−−−−−−−→! cosh t, − sinh t, t , X = r()
U#C . ?, DZ& N+M 0 Y" & R# 0 *$ O oL6 ?z &M A8*;* .$ tY .1 50 M U
C : r(t) ; a ≤ t ≤ b S pO O&0 T .$ $ C : r (s) ; c ≤ s ≤ d U0& M ( 5F C C 5$ 0 &[Y !0&1 0 =&M 4E_ DZ E ! 0 M $$S (= 5&Q h ! : [a; b] → [c; d] # $! a; b @ .$ ( ?, *κ h(t) = ±κ (t) t ∈ a; b *( (0&f
}
3.& &0 M ZM x= A .8 ! ! r(t) = a cos wt i + a sin wt j + btk
9>. T R# .$ *$. _&0 v(t)
=
a(t)
=
! ! − aw sin wt i + aw cos wt j + bk ! ! − aw cos wt i − aw sin wt j
aT (t)
=
aN (t)
=
a(t) − aT (t) = a(t)
U# *a(t)
+
v = aw + b ?U0 *( (0&f (, %& O E &0 M' Zg&1 %& O &+ %& O %& O (, 0 9M oL6 . #E & M E N# r(t)
= aw
! i + tj + t k ! ) r(t) = t cos t, t sin t, t ! ! ) r(t) = i − j cos t + sin t k ! ! ) r(t) = cos t i + sin t j ) r(t) = t +
−−−−−−−−−→ ) r(t) = t /, t / ! ) r(t) = ln t + i + t − arctan(t)j
3**' DOF P QR 6' ($ 5 c RU & B = R# E m OV=) #$ Z $ .$ *O&0 D$ 0 ([" = kM > v kM 5 Q *$M E& E&0 . 5 y0 . R# R O $ &0 9(O 5 R# 0&0 $ O !V6 !\ " . $0 E = ⎧ ⎨ Tn = a Tn + a Nn + a Bn N = a Tn + a Nn + a Bn ⎩ n Bn = a Tn + a Nn + a Bn
*$.F (0 . a X# - & ( 4E_ 5 M ij
Tn • Tn = Tn =
⇒ Tn • Tn = ⇒ a =
Nn • Nn = Nn =
⇒ Nn • Nn = ⇒ a =
Bn • Bn = Bn =
⇒ Bn • Bn = ⇒ a =
Tn • Nn =
•
Nn + Tn • Nn = ⇒ a = −a
Tn •
•
Bn + Tn • Bn = ⇒ a = −a
•
Bn + Nn • Bn = ⇒ a = −a
Nn •
⇒ Tn Bn = ⇒ Tn Bn = ⇒ Nn
%& O &B AGB 9* !VO # $ (M' A% # js >. T 0 $ $ 5&6 a (t) $&+ &0 . !+F K@ >. T 0 #$ 5&0 0 *ZM G#U r(M' $ .$ %& O T
a •v v projv a = v •v
# js >. T 0 $ $ 5&6 a (t) $&+ &0 . `b: K@ 0 #$ 5&0 0 *ZM G#U r(M' 0 $ +, $ .$ %& O *a − a >. T 9Y0&- &0 M ZM x= A& '() N
T
r(t) =
−−−−−−−−−−−−−−−−−−−−−−→ t − , t + , t − t + ;
≤t≤
9Z#. $ t = hB .$ >. T R# .$ *M (M'
−−−−−−−−−−→! −−−−−→! t, , t − |t= = , , −−−−−→! a( ) = r ( ) = , , −−−→! + + v = −− aT ( ) = , , + + −−−−−−−−−−→! , − , aN ( ) = a( ) − aT ( ) =
v( ) = r ( ) =
−−−−−→! a = , ,
(0&f %& O &0 N# &a .$ (M' A, .8 O&0 aM ' z(t) M ( & 5F !1 ' Y\ *O&0
[; ] & E E&0 0 e0& R# 4 + & *z(t) = t − t + U# .$ `&. !1 ' &0 hB R# 0&0 *( t = / hB .$ *O&0 z ( /) = / 5F `&. ( t = / (M' *( $ 0 v ! = −−,−−,−→! (M' R# B (, # $ (M' Zg&1 %& O M $ 5&6 A .8 −−−−−−→! t, sin t *( 0 0 −r(t) &0 . + r(t) = −−cos % * !VO 0C M ZM ) R# &6 0 *!' 9A$ O ) a(t)
aN (t)
d −−−−−−−−−−→! − sin t, cos t dt −−−−−−−−−−−→! = − cos t, − sin t = −r(t) a •v v = a(t) − v •v cos t sin t − cos t sin t = −r(t) − v = −r(t) sin t − cos t = r (t) =
Z#. $ _&0 y"0 0 ) &0 >. T R# .$ ) x(t) = s + O( )
)
y(t) =
)
z(t) =
s
s
κn () + O() κn ()τn () + O()
R# # j = kM 0 ([" (U- Z" 0 5 M *Z0 . = kM y O & >&T .$ .
$ R0 . s / 1 @ .&3 ZM U . h R# 0 9ZM mn' z(s) y(s) x(s) B$&U E %&L &0
Nn (
¼) + Tn (¼) E)8 !"# 2 =P
V# 0 )
x≈s , y≈
κn () s
!VO 0 *( + N# M y ≈ &0
Bn (
κn () x
Z#S *$ O ) *
¼) + Tn (¼) E)8 !"# 2 =P κn ()τn () s
4 ).$ N# M z ≈ κn()τn () x Z#S
*$ O ) * !VO 0 *(
&0
Bn (
¼) + Nn (¼) E)8 !"# 2 =P
M
Tn = (rn ) = rn = κn = κn Nn
Z#. $ ?U0 *a = a = κ R# 0&0 n
Bn = a ⇒ τn = Bn = |a |
$. $ $ ) !+, $ EF N# &# .$ *a = ±τ R# 0&0 R# +U *ZM %&L LB$ 0 . ([a Z
[U+) 0 5 ` + .$ ]3 *$ O %&L M ( 9. #E .&3 0 ([" = kM >&\ 6 $. .$ Z#. $ / 1 @ n
⎧ ⎨ Tn = κn Nn N = −κn Tn + τn Bn ⎩ n Bn = −τn Nn
. h R# 0 OU!U) T=) 5 M *O&0 X = r () ∈ C & h $. Y\ ZM x= 9Z"# s = T Y\ B ' .$ . r (s) e0& . y"0 n
n
rn (s) =
rn () + srn () +
s
rn () +
s
r n () + O()
X"' 0 . r () 4 & [ >&\ 6 M ( 4E_ ]3 9ZM [& = kM n
%
V# 0 )
κn () κn ()τn () y≈ s , z≈ s y ≈
ij
$
V# 0 )
x≈s , z≈
U# *( 5.&\ $&3 [a ] h $. X# - ]#& R# 0&0 #$ O 5&0 0 *( ]#& $ 0 0 u V# 0 0 c Y1 _&0 T&, T 5F T Y1 T&, & X R# 0 * " T Y1 Rg&3 .$ h T&, 5 Q =@ E *ZM oL6 #&0 . a a a X# -
κn () &F τ () = S M Z#S z n τn ()
*$ O ) * !VO 0 *( [UV N#
rn ()
=
X
rn ()
=
Tn ()
rn ()
=
κn ()Nn ()
r n ()
=
−κn ()Nn () − κn ()Tn () +κn ()τn ()Bn ()
M Z#S . y"0 .$ 5$ $ . 1 &0 R# 0&0
9$ + T? 5 #E q1 .$ . _&0 XB&Y
OU!U) T=) U5 U2 &
( O .&3 U[@ >. T 0 C ZM x= ZM x= *( C E LB$ Zh Y\ X = r() 0 X .$ = kM 0 ([" X Y\ B ' .$ .
>. T rn (s) = x(s)Tn () + y(s)Nn () + z(s)Bn ()
rn (s)
= X + sTn () + +
s
s
(κn ()Nn ())
− κn ()Tn () + κn ()Nn () +κn ()τn ()Bn () + O()
ZM x= S ]3 rn (s) = x(s)Tn () + y(s)Nn () + z(s)Bn ()
O .&3 r(t) y C l&Q r (t) ) T(t) = r (t)
&F O&0
)
N(t) = B × T
)
κ(t) =
)
B(t) =
r (t) × r (t) r (t) × r (t)
)
τ (t) =
(r (t) × r (t)) • r (t) r (t) × r (t)
= =
y≈
κn () x
z≈
κn ()τn () x
y ≈
κn () z τn ()
}
r (t) × r (t) r (t)
Z#. $ v(t) = r (t) V# 0 ) &0 T(t)
>. T R# .$ *Z# O
d d dt rn (s) = × rn (s) ds ds dt d r(t) v(t) × r(t) = v(t) dt r(t)
Tn (s) =
E ( >.&[, 5F E i& N# *O >&[f AC = R# 0&0 *r = vT
r = (vT) = v T + vT = v T + κv N r × r = (vT) × (v T + κv N) = κv B
AC = .$ r × r = κv B = |κ|v R# 0&0 AC = _&0 >.&[, .$ . \ R# 5$ $ . 1 &0 *#$S >&[f ?U0 *$$S c
r
=
(r ) = (v T + κv N)
=
v T + v T + κ v N + κvN + κv N
=
v T + v (vκN) + κ v N + κvN
& U- u#&+ 9* !VO kM >&\ 6 $. .$ C / * Z#. $ LB$ .&3 0 ([" = ⎧ T (t) = v(t)κ(t)N(t) ⎪ ⎪ ⎨ N (t) = −v(t)κ(t)T(t) + v(t)τ (t)B(t) ⎪ ⎪ ⎩ B (t) = −v(t)τ (t)N(t)
*v(t) = r (t) = ds &# .$ M dt M Z#. $ )
+κv (−vκT + vτ B)
T (t) =
(r (t) × r (t)) • r (t) = κ v τ = r (t) × r (t)τ
=
*( #0 A;C = *#$S >&[f A8C =
2
.&3 &0 C Y" $. .$ ! x (t), y (t)
=
MC
Z#. $ r(t) =
! x(t), y(t)
)
N(t) = sgn(κ(t)) +
)
κ(t) =
= =
−v(t)κ(t)T(t) + v(t)τ (t)B(t)
=
! − y (t), x (t)
d d N(t) = Nn (s) dt dt d ds × Nn (s) = v(t) × Nn (s) dt ds v(t) (−κn (s)Tn (s) + τn (s)Bn (s))
N (t) =
) T(t) = + x (t) + y (t)
x (t) + y (t)
x (t)y (t) − y (t)x (t) + ( x (t) + y (t) )
O&0 O $ $ C x Y" N# = kM S .$ O&0 oL6 5F >&hB + .$ R# DZ& S c *(= $0 j >. T 0 . C 5 >. T R#
B (t) = = = 2
d d T(t) = Tn (s) dt dt d ds × Tn (s) = v(t) × Tn (s) dt ds v(t) (κn (s)Nn (s)) = v(t)κ(t)N(t)
d d B(t) = Bn (s) dt dt ds d × Bn (s) = v(t) × Bn (s) dt ds v(t) (−τn (s)Nn (s)) = −v(t)τ (t)N(t)
*( 4&+ 5&0 X R# 0
58' 9 / +$ T 0 !< . c= 4 E $& >& \ &6 0 4 "0 E $ .$ *$ O U) doc.pdf !#&= ;H7 . $ &0 . . c= 4 R# *ZM $& linalg . c= *$ + -&' !< y .$ 5 with(linalg) . $0 e0& 2 a2 $ −−−−−−−−−−−→! r(t) = f (t), g(t), h(t)
.$ 5
. $ &0 . *$ + $. !< y
r:=vector([f(f),g(t),h(t)])
&+ (.$ 2 a2= 2 V=) '6 $ e0 &0 5 O $ $ 5F KO ![1 !j= & .$ M &. $0 *$M !+, . $0 2 a2 'BC + bCc) . !) $
*O&0 nO mU !< y .$ ?z[1 r . $0 e0& M x= >. T R# .$ !<
map(diff, r, t) −−−−→ t 0 ([" r . $0 e0& t 6
!<
map(int, r, t) −−−−→ t 0 ([" r . $0 e0& RU & !<
map(int, r, t = a..b) −−−−→ b & a E r . $0 e0& . $0 e0& Z L0 M x= U!U) / $ R# .$ *ZM Z [a; b] E&0 0 . r(t) = f(t), g(t), h(t)! . $ E >. T plots[spacecurve]([f(t),g(t),h(t)],t=a..b)
numpoints color > . $ &0 *ZM $& Y1 p&\ $ U
. 5 X 0 thickness *$ + M . O Z # /.$F .$ 78 $ $ http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
^Y" N# DZ& S M ( 5F XY R# N# A1 !#[ N# E h mTC 5F O&0 O $ $ *( oL6
OU!U)
G
U5
U2
$ 0 I ⊆ R E&0 0 U0& f (t) M x= 2 !?D)3 u = v = U#C O&0 R=F kM N# X , u, v N# >. T R# .$ *( LB$ $, t ∈ I Au ⊥ v M $. $ $ ) I $ &0 r(t) Y" N# & ) ∀t ∈ I : κ(t) = f (t)
) T(t
) r(t ) N(t
)=u
)=X )=v
& . @ Y" $ S MC 5F >. T R# .$ 0 0 DZ& . $ & p&\ .$ M O&0 *1&[Y !0&1 $ kM 0 ?, M ( 4E_ ^Y" b & $. .$ V# RL & M *$ O $ $ c %& DZ& = OU!U)
G
U5
U2
E&0 0 U0 g(t) ≤ f (t) M x= U#C O&0 $ . R=F kM N# < X , u, v, w > " O&0 $ +, Z 0 $ 0 $ $ 0 N# 0 0 . $0 R# @ R# .$ *( LB$ $, t ∈ I Aw = u × v ?U0 M $. $ $ ) I $ &0 r(t) N# & N# >. T
I ⊆R
) ∀t ∈ I : κ(t) = f (t)
) r(t ) N(t
) ∀t ∈ I
: τ (t) = g(t)
)=X
) T(t
)=u
)=v
) B(t
)=w
M O&0 & . @ $ S MC $ 5F >. T R# .$ 0 0 %& DZ& . $ & p&\ .$ *1&[Y !0&1
i j R# .$ 60 UB&Y 0 78 $ + $& !" #$ s %& M 0
*M U) r7 5 5 6# !'&
! " #$ % *f ( , /a) = a .$ *y = /a Z#. $ x = x= &0 ) * !VO 0C R = R − {} E ( >.&[, f $0 U# *A$ O f ( , − ) = − M $ O h'? e0& R# $. .$ *f ( /x, x) = f (x, /x) = f (, ) = / }
5F ' v Q e0& 4 =U !j= R# E m e0 S R# UB&Y 0 %& M U0 XB&Y +, *O&0
M . -&' !j= UB&Y /& R+ 0 $. $ i&j Z+U e0 S R# *$ + \ 5 j= #& Z = 0 * " R → R B +U e0 U[@
f
/S' *T I & U& ( O& 0 R 0 R E M e 0& U0& f : R → R S * & −n . & F E 0 f M #& X ∈ R + , + O&0 v −n Z$ 5&6 D $&+ &0 & f )* . $$S G#U R $&+ &0 & f . X ∈ D M & f (X) + , +
*D := X ∈ R f (X) ∈ R 9Z$ 5&6 n
n
n
v $ e0& 9* !VO .$ *#0 h .$ . f (x, y) = log x v $ e0& A, .8 E ( >.&[, f $ >. T R#
f
z = f (x, y)
f
y
Df
=
f
n
a
a
f(
, ) = log
f ( , y) = logy
= log
n
K?YT D#n3 . h Y\ E 78 S R# ( 0 e1 .$ ( . O$ +M rv Q e0&s f s U# *( . $0 N# f : R → R e0& v M $ O S *r( B −n . $0 v &0 U0& . f (x, y) = /xy v $ e0& A& '() T GB&L xy #&0 f (x, y) 5O G#U 0 *#0 h .$ E ( >.&[, f $ R# 0&0 O&0
(x, y) x > , y > , y = − {y = }
e0. y ) f $0 RU 0 ?U0 *A$ O ) ;* !VO 0C y = e x= &0 *x = y &F f (x, y) = a S M ZM
R !M 0 0 f $0 U# *f (e , e) = a nB x = e Z#. $ z y x S M $$S h'? &a 5 , 0 &# .$ *( &F O&0 N# GB&L ([a \\' $ , =
f
a
=
Df
=
(x, y) xy = = R − (x, y) xy = R − (x, y) x = y = & ' & ' −y ∪ −x R −
.
.
= O&0 . 1 S M ZM ) f 0 RU 0 ?U0 *a = &z+ ' ]3 *xy = /a #&0 &F f (x, y) = a
=
=
f (x, x) = logx x = f ( /x, y) = logy /x = − logy x = −f (x, y) f (xy, z) = logz xy = logz x + logz y = f (x, z) + f (y, z)
J
oL6 . #E e0 E N# $0 $ , x + y ) f = arcsin x − y
)
f = ln ( − xy)
)
f=
f = ln x + y
)
) f=
0
9M
. f (x, y, z) = Df
√ f = x+ y ) f = ln x + y + z
)
v e0& A .8 0 0 f $ >. T R# .$ *#0 h .$ − x − y − z
(x, y, z) − x − y − z ≥ (x, y, z) x + y + z ≤
=
)
√ √ x + yz
,
=
}
f = ln (xyz)
)
f = arccos (x + y + z) , ) f = ( − x) ( − y) ( − z)
M . T .$ A&& 9[& ("0 Y v = (, ) %) lim f (X + tv)
X = (− , ) f (x, y) = x/y − x y
GB ) lim f (X
+ tv)
t→
:)
t→
d ) f (X + tv) dt t= d ) f X − sin(t )v dt t=−
$
lim f (X + tv)
t→−
K) dtd f (X
+ tv)
t=
. f (x, y) e0& *f (x + y , y/x) = x − y M x= A; *0&0
e0& $ 9;* !VO 5 Q ?U0 *O&0 N# `&UO [ cM 0 M M ( ≤ − x − y − z ≤ ]3 ≤ x + y + z ≤ f $0 R# 0&0 * ≤ f (x, y, z) ≤ Z#. $ R =S .c) &0 .$ *A$ O ) * !VO 0C R = [; ] E ( >.&[, Z#. $ (x, y, z) ∈ R E 0 M $$S h'? &# *f (x, y, z) = f (±x, ±y, ±z) = f (±y, ±x, ±z) } f (x, y) = logy x
f
e0& * ≤ r f (r sin θ , r cos θ) = r tan θ M x= A *0&0 . f (x, y) f
ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ = ρ
l&Q A *0&0 . f (x, y, z) e0&
#E $' f (x, y) GB )
= xy/(x + y )
lim
lim f (x, y)
x→
y→
%)
lim x→
M . T .$ AH 9M [&
lim f (x, y)
y→x
}
&a e0& . $ + 9* !VO 9>. T R# .$ f (x, y, z) = z lim f
t→ +
t , t , t
= lim
t→ +
v $ e0& . $ + AGB 9* !VO e0& . $ + A% D , + 0 z = f (x, y) D : x + y ≤ , + 0 f = x + y
+
, x + y
= lim
t→ +
ZM x= A .8
+ t
t + t
+ t =
d f ( − t , t + , t − ) = dt t=− , d = ( − t) + (t + ) dt t − t=− 4 t +
+ = (t − ) (t − ) t + t + 5 + √ − t + t + = t=−
ZM x= 9fC) + a2 = $ D 0 f . $ + E . h *D ⊆ D ( v $ U0& 9z = f (x, y) M ( &q= E (x, y, z) 5 Q @&\ + , +
z = f (x, y)
f
(x, y, z) (x, y) ∈ D , z = f (x, y)
Γf,D :=
S *Γ : (x, y) ∈ D , z = f (x, y) j L u#&+ .$ *AGB * !VOC ZM . $ $ D M{ E D = D '() % f (x, y) = x + y M x= A& S (x, y, z) ∈ Γ >. T R# .$ *D : x + y ≤ +"1 D 0 f . $ + X R# 0 z = x + y S y\= T−xy 0 5F # j M ( q0 5 S+ N# E 9M ) % * !VO 0 *( x + y ≤ f,D
f
} v $ e0& N# E 98* !VO . D 0 z = f (x, y) . $ + $. .$ 0 & 9M Z
f,D
) f = − x − y , D : x + y ≤ , ≤ y , ) f = − − x − y , D : x + y ≤ , ) f = x + y , D : ≤ x + y ≤ , ) f = + x + y , D : x + y ≤
, ) f = x + y − , D : ≤ x + y ≤
Γf,D : x + y ≤ , z = x + y
D : ≤x≤ , ≤y≤ , ) f = y − x , D : x ≤ y ≤
}
) f = ,
) f = x, ) f =
D :
− x − y, D :
) f = sin x,
D :
≤x≤
, ≤ y ≤
+ x + y
e0& . $ + AGB 9H* !VO ≤ x , ≤ y , x + y ≤ , +
+ 0 − x − y v $ e0& . $ + A% x + y ≤ , +
, f (x, y) = x + y M x= A, .8
−x
≤ x ≤ π , ≤ y ≤
) f = cos(x + y ), D : x + y ≤
) f =
0
≤ x ≤ , ≤ y ≤
π
− |x| − |y|, D : |x| + |y| ≤
D :
*a ∈ R z = f (x, y) M x= : U!U) * . ( a 0 0 f & F E 0 M #& (x, y) + , +
.$ *Z$ 5&6 C $&+ &0 & a 0 h f E
0C O&0 f e0& . $ + &0 z = a T $. 0 ! C e1 & N+M 0 *C : f (x, y) = a 9A$ O ) 8* !VO *$M Z" . e0& . $ + 5 E h .$ . f (x, y) = x − y e0& A& '() 9$ . ( RV+ (B&' a ∈ R S *#0 B Bn N# C : x − y = a >. T R# .$ 9 < a AGB *( . −x & . .$ y$ `&+ ) C : x = y >. T R# .$ 9a = A% f
a
a
,
*z = x + y M (x, y, z) ∈ Γ @O 0 >. T R# .$ & z . > E 0 pL N# M z = x +y #$ 5&0 0 ( h $. 5F #_&0 + E +"1 ]3 ≤ z 5 Q *( H* !VO 0C *$$S D 0 0 T−xy 0 5F # j M E ( >.&[, D 0 f . $ + .$ *A$ O ) GB f,D
a
a
≤ x , ≤ y , x + y ≤
Γf,D :
≤ x , ≤ y , x + y ≤ , z = ,
, x + y
R# .$ *f (x, y) = − x − y M x= A .8 (x, y, z) ∈ Γ 1 & 1 D : x + y ≤ >. T , x + y + z = M $ O ) *z = − x − y M ) % H* !VO 0C O&0 `&UO DZ [ cM 0 M *A$ O f
f
e0& A& '() N# S &F a > S >. T R# .$ *#0 h .$ . ( pL S &F a = S ( Q.&3 N# 5 S B Bn 0C O&0 Q.&3 $ 5 S B Bn N# S &F a < S *A$ O ) GB * !VO } f (x, y, z) = x + y − z a
a
a
*( y = −x y = x .$ B Bn N# C >. T R# .$ 9a < A: *A$ O ) J* !VO 0C ( . −y & . } a
: x − y = a
e0& E & 9J* !VO S *#0 h .$ . f (x, y) = min {x , y} e0& A, .8 9&F a ∈ R & ' C : min x , y = a : a = x ≤ y a = y ≤ x 7* !VO 0C O&0 (a, a) Y\ E `O &0 y Z $ M *A$ O ) } f = x − y
e0& E K Y AGB 9* !VO e0& E K Y A% f = x + y − z
a
f = x + y + z
.$ *#0 h .$ . f (x, y, z) = x + y + z e0& A, .8 &F a = S *( S &F& a < 'S >. T R# &F a > S _&0 √ ( (, , ) Y\ N S % * !VO 0C O&0 a `&UO DZ [ cM 0 M S *A$ O ) >. T R# .$ *#0 h .$ . f = x+ y − z e0& A .8 0C O&0 x + y − z = a B$&U 0 T E >.&[, S *A$ O ) GB I* !VO } a
a a
a
E & 97* !VO . #E e0 E N# E & 0 9M Z" . & F . $ + $M Z. f = min{x, y}
) f = x + y
)
e0& E K Y AGB 9I* !VO X 0 X X X A% f = x + y − z * " A , + 0 E .$ Y\ . O $ $ e0 E N# E K Y 0 9M Z ) u=x+y+z
)
u = x − y − z
)
u = z − x − y
)
u = z − x + y
u = |x + y| + |z| ) u = z − xy ) u = arcsin x + y + z
) u = sgn sin x + y − z
)
f = x + y
)
f = |x| + |y| − |x + y| & ' ) f = max x , y
)
f = x sin y
)
f = (x + y)
)
f = y/x
√ xy
) f = sin π x + y
)
f=
)
f = |x − y |
&q= 5$ 0 U0 !B$ 0 : g=? !1 ' *$. $ ) v e0& . $ + Z 5&V R t0&Y *( 5F E K Y Z $ $ 4& 5 M .&M + , + f (x, y, z) e0& E a $, 0 h E ^Y G#U 9U# *f (x, y, z) = a M ( (x, y, z) X &#& Sa : f (x, y, z) = a
U0& f : R → R M x= $, f $ 0 ["Q Y\ X ∈ R v Q ( X f Zg S . T .$ *( \\' δ > N# ε > DZ E 0 M lim f (X) = Z"#
tY .1 X ∈ B (X ) ∩ D E 0 M $ O (= ) * !VO 0C $ O +M ε E f (X ) f (X) !-& #$ 5&0 0 *A$ O
R - 6V (
n
n
X→X
δ
f
A* C
∀ε > ∃δ > ∀X ∈ Df < X − X < δ ⇒ |f (X) − f (X ) | < ε
E ( 1 +M < X − X < δ pO .0 5 Q 9$ + $& 5 #E $&U pO |x − x | < δ , |y − y | < δ , |z − z | < δ · · ·
Y\ X U# * =
A;* C
M x= A& '() − M (0&f >. T R# .$ *( (− , ) * lim xy = − Z$ 5&6 #&0 XY R# >&[f 0 *!'
f = xy
(x,y)→(− , )
∀ε > ∃δ > ∀(x, y) ∈ R & ' |x + | < δ, |y − | < δ ⇒ |xy + | < ε
9ZM `O |xy + | tY .1 E |xy + | =
| (x + ) y + − y |
=
|y (x + ) + (y + ) (y − ) |
≤
y |x + | + |y + ||y − |
≤
y δ + |y + |δ
!j= .$ MC #&"+ `&UO NV E δ X# - mn' 0 δ ≤ ZM x= *ZM $& A( O 0 .&"0 nB − < y < ]3 *|y − | < |x + | < R# 0&0 R# 0&0 *|y + | < y < |xy + | ≤ δ + δ =
*( !" #$ %&"' .$ T 4 E V# ' uL0 R# E m *# O &OF R 0 R E e0 ' 4 &0 ?z[1 G#U 0 R $3 E ![1 *O&0 R 0 R E e0 0 5F Z+U *Z#. $ E& ["Q Y\ K?YT 0 ' E . h < r ∈ R X ∈ R S ( R E X @&\ + , + r `&UO X cM 0 3 *X − X < r U# O&0 r E +M X & & F T&= M 0 )*6+ 3 *Z$ 5&6 B (X ) $&+ &0 . , + R# X Y\ B (X ) , + E >.&[, r `&UO X cM
9( n
n
n
r
r
Br (X ) = Br (X ) − {X }
( A ⊆ R , + *$E )*"9 X Zg S . T .$ , + r `&UO X cM 0 S r > E 0 M ["Q X X p&\ % I* !VO .$ *M eY1 . A $ ) X cM 0 S N# !1 ' #E (" X B " *M+ eY1 . A M $. $ # $ 0 ["Q p&\ , + A& '() *( 0 0 # $ $ &0 x + y = x + (y − ) < E&0 S 0 ["Q p&\ , + A, .8 *O&0 x + (y − ) ≤ "0 S 0 0 &F A : ≤ x ≤ , x ≤ y < , ≤ z ≤ S A .8 E (".&[, A 0 ["Q p&\ , +
n
A :
≤x≤
,x≤y≤
,
p&\ , + &F A = & /n n ∈ N' S A .8 ) #&0 $. .$ *A = A ∪ {} E (".&[, A 0 ["Q !VO 0 $, (#& 0 ?z+, (−ε; ε) !VO 0 E&0 E&0 M $ O *n ≥ [ /ε] M $ O x= ( =&M *$. $ $ ) /n }
δ
* δ ≤ ε $ O x= ( =&M |xy + | < ε 0 ]3 M ZM x= Z R# 0&0 *δ ≤ ε/ #$ 5&0 0 (=. 5 B&" 0 0 5 M *δ = min { , ε/ } *$ + >&[f . h $. @O Y0 . X = (, ) f (x, y) = xx+−yy M x= A, .8 #$ >.&[, 0 * = / M M (0&f >. T R# .$
≤z≤
' >&[f 9* !VO
R# 0&0 ∀ε > ∃δ > ∀x ∈ [− ; ] " # √ π < x + < δ ⇒ arcsin x + < ε
ZM (0&f Z M lF &0 . cS R# XM &0 $ O (0&f #&0 M Z#S
∀ε > ∃δ > ∀ (x, y, z) ∈ Df < |x + | < δ , √ < y − < δ , < |z − | < δ √ < ε ⇒ xyz +
9M ZM ) R# >&[f 0
√
yz (x + xyz + = ) − z y− ≤ |yz||x + | + |z| y − = |yz| + |z| + δ
−
+
z−
√
√ z −
9Z#. $ δ <
/
B
∗ δ
(X ) ∈ Df √ xyz + / < { + + /} δ < δ
R# 0&0 *δ
x= &0
δ
R# 0&0
$ O x= ( =&M ]3 *δ = min { / , ε/} sin x + y + z f (x, y, z) = x + y + z ZM x= A .8 U# * = M $ 5&6 >. T R# .$ X = (, , ) ≤ ε/
≤ ε
sin x + y + z lim
(x,y,z)→( , , )
x + y + z
=
9M Z$ 5&6 #&0 *!' ∀ε > ∃δ > ∀ (x, y, z) ∈ Df
lim
(x,y)→(,)
x + y = x − y
M $ O (0&f #&0 *!'
∀ε > ∃δ > ∀(x, y) ∈ Df
x + y − (|x − | < δ, |y − | < δ) ⇒ x − y X = (, )
< ε
D = R − {y = −x} ∪ {y = x} &# .$ M >. T R# .$ *O&0 D 0 ["Q Y\ N# f
f
x + y x − y −
= x + y − x + y ! x − y
( x + ) (x − ) + ( y + ) (y − ) |x − y | ≤ | x + ||x − | + | y + ||y − | |x − y | x + | + | y + | δ | ≤ |x − y |
=
M O&0 . @ δ x= #&0 #EC δ ≤ / ZM x= &' >. T R# .$ AB (X ) ⊆ D ∗ δ
⎧ ⎧ <x< ⎪ ⎪ ⎪ |x + | < ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎨
⎪ ⎪ ⎪ ⎪ √ √ √ ⎪ ⎪ ⎩ ⎪ ⎩ z − < − +
⎧ √ ⎪ ⎪ − ≤
− < xyz ⎪ ⎪ ⎪ ⎪ ⎪ √ + < ⎪ ⎨ < ⇒ √ − < yz < √ + < ⎪ ⎪ ⎪ ⎪ ⎪ √ ⎪ √ ⎪ ⎪ ⎩
−
*
⎧ ⎪ ⎨ ⎪ ⎩
f
⎧ ⎪ ⎨
<x< ⇒ ⎪ ⎩ < |y − | <
< x + < ⇒ ⎪ |x + | < ⇒ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ < y + < ⎩ |y + | < < |x − | <
x + y x − y −
R# 0&0 *δ
<
≤
× (/) δ ≤ δ = ε/ δ < ε $ O
R# 0&0
+×
δ
x= ( =&M ]3
*δ = min { / , ε/ } Rl+ f (x, y, z) = arcsin (xyz) Mx= A .8 √ #$ >.&[, 0 * = π/ M (0&f *X = − , /, * lim arcsin(xyz) = −π/ ( ) M $ O (0&f #&0 *!' (x,y,z)→ − , / ,
√
∀ε > ∃δ > ∀(x, y, z) ∈ Df √ |x + | < δ , |y − /| < δ , z − < δ ⇒ |arcsin(xyz) + π/| < ε
0 X D = {(x, y, z) | − ≤ xyz ≤ } &# .$ M lim arcsin x = −π/ 5 Q *A QC ( ["Q D f
x→−
√
f
/
)
lim
(x,y,z)→(x ,y ,z )
O&0 ÷ × − + &+, E V# 2 S * 9&F a ∈ R O&0 v Q e0 g f )
X→X
X→X
lim f (x) =
X→X
X→X
g : R → R f : R
n
→R
S A
lim g (f (X)) = lim g(t)
X→X
lim g(t) = X g t→t
t→
: R→ R
n
f
S A &F S AH
: Rn → R
lim f (g(t)) = lim f (X)
t→t
X→X
, + E X E 0 M $ O (= r > O&0 . 10 f (X) ≤ g(X) &" & D ∩D ∩B (X ) lim f (X) ≤ lim g(X) >. T R# .$ 9Z#. $ 7*;* 0 ) &0 '() f
X→X
g
∗ r
X→X
lim
(x,y)→(,)
x y =
lim
(x,y)→(,)
lim
x
lim
(x,y)→(,)
y
lim y =
x→ y→
arcsin x + y + z =
= lim x (x,y,z)→( ,,−)
π = lim arcsin(t) = t→ x + y z = ) lim (x,y,z)→( ,,−)
= lim x + lim y lim z = y→
x→
)
)
sin x + y + z x + y + z ≤
X→X
lim (f 2g) (x) = lim f (X)2 lim g(X)
&F
)
E 0 ≤ sin α ≤ α M Z $ *D
lim af (X) = a lim f (X)
X→X
)
)
⎞ sin x + y + z ⎠ ⎝{|x| < δ, |y| < δ , |z| < δ} ⇒ x + y + z < ε ⎛
k=k
z→−
x − y = lim (x + y) (x,y)→(,−) x − y (x,y)→(,−) lim
= lim x + lim y = x→ y→ sin x + y + z
lim
(x,y,z)→(,,−)
x + y + z
= lim t→
sin t = t
* lim x + y + z = + − = #E 0&0 >. T R# .$ u = max &|x|, |y|' ZM x= A5 .8 9Z#. $ 7*;* E H (+"1 (x,y,z)→( , ,− )
≤
lim
(x,y)→( ,
x y u u ≤ lim = lim u = ) |x| + |y| u→ + u u→
R# 0&0 *|y| = u |x| = u . + #E
lim
(x,y)→( ,
x y = ) |x| + |y|
f
&# .$ M 9R# 0&0 ≤ α
= R
x + y + z x + y + z
*u < δ x= #&[ ]3 u = max {|x|, |y|, |z|} ZM x= &' 9?U0 sin x + y + z x + y + z ,
≤
u + u + u = u < δ + + u
*δ = ε/ δ = ε $ O x= ( =&M ]3 M (0&f ' G#U N+M 0 0 $ 9M @O 0 lim f (X) = X→X
) f = xy − y/x, X = (, −) , = /
) )
f = sin (x − y) , X = (π/, π) , = x + y f= , X = (, ) , = / x + y
f = x + y + xyz, X = ( , , − ) , = , √ ) f = x + y + z , X = ( , , ) , = ) f = tan (x + y) − tan z, X = π , , π , =
)
E e0 [O (.$ G J .R K+ % $' [& 0 5E D. N# c (B&' R# .$ R 0 T * & [) D. . D. R# *$ + K@ 5
C $ O KY [ 5 , 0 ' $ U 9( RQ 5F N+M 0 M q1 $ U ]< A$$S >&[f ε − δ >. j0 $ + 5&0 5 $& $' X"' 0 . l3 $' & F ( =&M LB$ ' N# [& 0 5 M *$ O KY
AB x $'C ) 0 & ZM $& &q1 E .\F *Z0 f v N# e0& DZ E 0 + J '+ R & 9Z#. $ k (0&f $, R
)
) )
lim
f (x) = lim f (x)
lim
f (y) = lim f (y)
lim
f (z) = lim f (z)
(x,y,z)→(x ,y ,z ) (x,y,z)→(x ,y ,z ) (x,y,z)→(x ,y ,z )
x→x
y→y
z→z
= lim r cos θ = r→ ⎞z ⎛ sin x + y ⎝ ⎠ lim (x,y,z)→( , ,−) x + y # "z sin r = lim = − = (r,z)→( ,−) r xyz lim (x,y,z)→( , , ) x + y + z (ρ cos φ cos θ) (ρ cos φ sin θ) (ρ sin φ) = lim ρ→ (ρ cos φ cos θ) + (ρ cos φ sin θ) + (ρ sin φ) = lim ρ cos φ sin φ cos θ sin θ =
9M [& . $' E N# . \
)
)
)
) ) ) )
lim
(x,y)→( ,
xy + ) x + y
lim
(x,y,z)→( ,
lim
)
x y
)
(x,y)→( , )
9M
x + y
(x,y,z)→( , ,)
#
tan
x + y x−y
"
x − y + z
lim
(x,y,z)→(,−,)
xy − y − x + x− (x,y)→(,) lim
lim
(x,y,z)→(π, ,)
ze−(x+y) cos (z)
x y (x,y)→( , ) x + y ) lim ln x + y + z
)
x y z ) |x| + |y| + |z| , arctan x + y + z +
(x,y,z)→( , , )
lim
0
lim
x sin (πy)
x + y − z
zxy x+ ) lim y (x,y,z)→(,,−) # "xy+ x + y ) lim x+y+ (x,y)→( , )
x sin y − y cos z ,) |x| + |y| + |z|
(x,y,z)→( , ,
lim
)
lim
(x,y)→(π, )
)
ρ→
[& *;* N+M 0 . #E $'
lim
(x,y)→(,−)
0
lim
(x,y,z)→(, ,−)
√ √ x−y+ x− y √ √ x− y (x,y)→( , ) ) lim sin arctan x − y z
)
x+y+z x + y + z
lim
(x,y,z)→( , , )
R ! , $( $ ) $' A&Y0 U#C $ ) 4, >&[f 0 Z D. $ ' 4 Z+U " ' *&B&[$ " ' *$. $ *( v Q e0 $. .$ =YV#
)
lim
(x,y)→( ,
x + y sin ) x + y
+ =C ,.? @PC\) 2 E .
>&j L .$ Z\ " D. 0 ' [& l&Q + L *$ + $& 5 >&j L #& E O&[ " .&M$ 9$ + KY 5 #E KO 0 q1 )
lim
(x,y)→( , )
f (x , y) = lim f (r cos θ , r sin θ) r→
9O&0 O "0 θ 0 ( . (+ ' VF 0 p6
)
}
lim f (x, y, z) =
(x,y,z)→( , ,z )
lim
(r,z)→( ,z )
f (r cos θ , r sin θ , z)
9O&0 O "0 θ 0 ( . (+ ' M R# 0 p6
)
*X .$ " N# AGB 9;* !VO X Y\ .$ G L &" A%
ρ→
n
n
f
f (x, y, z) =
! = lim f ρ cos φ cos θ, ρ cos φ sin θ , ρ sin φ
U0& X ∈ R Y\ .$ " E . h ( 3 t = .$ M ( r : R → R . $0 M . T .$ *A$ O ) GB ;* !VO 0C r (t ) = X r : R → R D 0 ["Q Y\ X f : R → R n
lim
(x,y,z)→( , , )
n
*O&0 O "0 φ θ 0 ( . (+ ' M R# 0 p6
9Z#. $ *;* 0 ) &0 '() lim
(x,y)→( ,
x r cos θ = lim ) x + y r→ r cos θ + r sin θ
0 0 r 0 f " ' >. T R# .$ m
lim f (rm (t))
t→
tm t lim f (t, mt) = lim t→ t→ t + m t m t = lim = t→ + m t =
%&L &0 *$. $ ) ' & $. "0 m 0 M( $ O 5&"V# y x 5 5F X) 0 M r(t) = t, t "
9Z#. $ t lim f (r(t)) = lim f t , t = lim = t→ t→ t→ t + t
=
x − y + z
M x= A .8 X Y\ .$ f ' $ ) 4, $ ) .$ *X = ( , , ) *M d0 −−−−−−−−→ r(t) = ( , , + t) &" . h R# −− 0 *!' −−−−−−→ ' >. T R# .$ *Z#S h .$ . r(t) = ( , + t, ) #E *$. $ ) X .$ f f (x, y, z)
=
x + y − z
lim f (r (t))
=
t→
− + (t + )
lim t→
=
lim t→
+
− (t + )
t + t − = −t − t
lim f (r (t))
=
t→
− (t + ) +
lim
+ (t + ) −
t→
=
lim t→
−t − t = − t + t
f (x, y, z)
=
(sin x/y)
= ≥
/t sin (t) t t→ + "/t # # t − (t) / lim = lim − t t→ + t→ +
/t lim = +∞ t→ +
$&
t
sin t ∼ t − t /
x−y (x,y)→(,) x − y lim
' M $ O (= X .$ " S MC $ ) X .$ f ' &F O&0 O $ ) 5F 0 f "
*(" ' M O (= X .$ " $ S MC $ ) c X .$ f ' &F O&0 >& & F 0 f "
*(" f (x, y) = sin x/xy M x= A& '() $ d0 X Y\ .$ f ' $ ) 4, $ ) .$ *X = (, ) *M −−→ h .$ . X .$ r(t) = (t, t) " . h R# 0 *!' &0 ( 0 0 r " 0 f ' >. T R# .$ *Z#S
)
lim
(x,y)→( ,
= =
** 0&0
sin t lim f (t, t) = lim t→ t
sin t lim lim = ±∞ t t→ t→ t
t→
.$ *$. $ ) M *$. $ ) xy .$ *X = (, ) f (x, y) = x + y M x= A, .8 *M d0 X Y\ .$ f ' $ ) 4, $ ) −→ ZM %&L . r (t) = −(t,−−mt) " . h R# 0 *!' " ' >. T R# .$ *O&0 y = mx y 5F . $ + M 0 0 r " 0 f lim
(x,y)→( , )
sin x/xy
m
"/t
E. Z E AC .$ V# ^- *Z# $ + $ ) #E $' E N# M $ 5&6 0 % 9. )
e0& ' M R# 0 =&M 4E_ pO M M ( 5F O&0 0 0 $ ) X Y\ .$ u = f (x) *O&0 0 0 $ ) X .$ f " $'
/z
()
t→
lim f (r(t))
lim f (r(t)) = lim
t→ +
f
t→
M x= A .8 X Y\ .$ f ' $ ) 4, $ ) .$ *X = (, , ) *M d0 −−−−−→ *Z#S h .$ . r(t) = (t, t, t) " . h R# 0 *!' #E $. $ ) X .$ f ' >. T R# .$
.$ f " ' &F O&0 AD .$ &z &+ C X .$ "
≤ n S *ZM G#U lim f (r(t)) >. j0 . r " 0 n = 0 M B&' .$ $. $ $ ) X .$ " ' (#& 0 *A( . ' |Q 'C O . j 5 " ' $ & X
x − y ) x + y
m
lim f (rm (t)) =
t→
=
tmt lim f (t, mt) = lim t→ t + m t m lim =m t→ + m t t→
' ** t0&Y R# 0&0 *$. $ "0 m 0 M ( *$. $ ) lim x xy+ y .$ *X = (, ) f (x, y) = xxy+ y M x= A .8 *M d0 X Y\ .$ f ' $ ) 4, $ ) *ZM %&L . r (t) = (t, mt) " . h R# 0 *!' (x,y)→( , )
m
lim (x,y)→(
9Z#S h .$ . X
,
= (, )
≤ lim |y| = y sin x y→ )
E *( T 0 0 $ )
Z#. $ J** 0&0 nB lim (
lim
(x,y)→( , )
n→∞
R# 0&0 (, ) =@
y sin ( /x)
/m, /n) =
* lim (sin m)/n = $ ) #E $' E N# M $ 5&6 0 9$. (m,n)→∞
)
)
lim
(x,y)→( , )
lim
(x,y)→( , )
(cos x)/x
)
/y
)
( + x)
y
lim
(x,y)→( , )
lim
(x,y)→( , )
x
n m
p
p
G (( .$ u = f (X) e0& Zg S . T .$ .$ *O&0 f (X ) 0 0 $ ) X .$ f ' M ( )+I X tU C X E 0 M ( )+I AD 0C f Zg S . T *O&0 3 X .$ f AD 0 "M +) Q (0&f e0 &aa / VU &aa +.&B #&+ B&V#$ . *Z & ! 9 . tY .1 Z &0 e0& $ e+) e0& N# .$ $, N# %- &+, .$ e0& N# Z"\ Z .$ e0& $ %- Z E e0& $ t# . U0& e0& N# E S / VU e0& $ XM #$ U0& *Z & ! 9 .FT . 5&. #$ e0& 5 0 $ U & \ e0& & $ U E $& &0 U0& S *Z & & \ c F $ O & & \ !+, &
X ∈ D O&0 & \ u = f (X) S *( 3 X .$ f &F .$ . f (x, y) = x sin (x/y) e0& A& '() *M RU . f 3 $ *#0 h ' & D = (x, y)y = 5F $ ( & \ e0& R# *!'
*( 3 D 0 f ]3 *( h .$ . f (x, y, z) = ln x + yz + z e0& A, .8 *M RU . f 3 $ *#0 f
f
f
lim
(x,y)→( ,
)
lim
xy ) lim y/x ) |x| + |y| (x,y)→( ,) sin (x + y) ) lim (x,y,z)→( x + y # " |x| + y arctan ) x + y
(x,y)→( , )
)
lim
(x,y)→( ,
)
lim
(x,y,z)→( , , )
)
lim
(x,y,z)→( ,
)
xe/y
#&0 Y# O Q *O&0 \\' $ , p n m M x= A $ ) lim |x|x +y |y| ' & $ O &+, $ , R# 0 *0&0 $ ) >. T .$ . ' . \ *O&0 (x,y)→( , )
)
)
lim
(x,y)→( ,
lim
(x,y)→( ,
, , )
x x + y + z
x − y + xz ! x + y + z
xy + yz + zx , ) x + y + z x ) x − xy + y x + y ) x + y
*( &B&[$ ' E $& ' &Y0 0 #$ D. e0& ' M R# 0 =&M 4E_ pO & E 0 M ( 5F O&0 0 0 $ ) X .$ u = f (X) + 0 {f (X )} B&[$ X 0 + &X ' B&[$ *O&0 Y\ f (x, y) = tan( /xy) e0& A& '() * f ' $ ) 4, $ ) .$ *#0 h .$ . X = (, ) *M d0 X Y\ .$ h .$ . X = ( /(nπ + π/ + /n), ) B&[$ *!' .$ lim X = (, ) M $ O h'? S$& 0 *Z#S
M B&' n
∞ n n=
∞ n=
n
n
lim f (Xn ) =
n→∞
=
lim tan nπ + π/ + /n
n→∞
lim tan (π/ + /n) = ∞
n→∞
*$. $ )√X .$ f ' ]3 h .$ . X = ( , ) Y\ f (x, y) = x e0& A, .8 *M d0 X Y\ .$ f ' $ ) 4, $ ) .$ *#0 ZM x= a LB$ ([a $, E 0 . h R# 0 *!' h'? S$& 0 >. T R# .$ *X = ( + a/n, /n) M B&' .$ * lim X = ( , ) M $$S
y
n
n→∞
n
,
lim f (Xn ) =
n→∞
=
/n
lim
+ a/n n/a a lim ( + a/n) = ea
n→∞
*$. $ ) ( , ) .$ √x ' ]3 *$. $ "0 a 0 M *M [& . lim (sin m)/n ' A .8 Y\ f (x, y) = y sin( /x) e0& . h R# 0 *!' y
n,m→∞
) f = /x − /y +
√
xy
)
f = arcsin x − y
+ f =x −y ) f = ln (−x − y) , ) f = cos |xy| − ) f = ln (xyz) , ) f = − x − y − z ∗
) f = sgn tan x + y + z ) f = arccos x + y − z
)
)
f = sin (x + cos (y + tan z)) ⎧ x ⎨ x = ±y ) f= ⎩ x −y 4
)
f= ⎧ ⎨
>. T R# b .$
xyz x + y + z
x − y xy ) f = ⎩ x + y 4
)
ln
f=
(x, y, z) = (, , ) (x, y, z) = (, , ) (x, y) = (, )
(x, y) = (, ) x + y + z < − x − y − z x + y + z ≥
DZ [ .$ O $ $ e0& 3 4, 3 .$ $. .$ *M d0 >&j L
)
(x + y) sin( /x) sin( /y)
f=
⎧ ⎨ sin x − sin y ) f = ⎩ x − y
)
⎧ ⎨
f=
x y
x ⎩ x +y e
xy = xy =
x = y x=y x + y = x=y=
58' 9 / +( ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= . $ E $& &0 9fC) U] a2 $ &v &0 f v e0& 5 f:=(x,y,z)->F(x,y,z) *$ + G#U . F (x, y, z) Y0&- z y x . f e0& l&Q 9fC) U] a2= 2 1) $ X #& .$ . 5F . \ Z L0 ZO&0 $ + G#U ?z[1 y .$ . f(a,b,c) . $ ( =&M ZM [& (a, b, c) *ZM :.$ !<
, + 0 0 5F $ ( & \ & e0& R# *!'' *( 34 D xy0 f ]3 *( D = (x, y, z) z > . f (x, y) = x + y (x, y) = (, ) e0& A .8 (x, y) = (, ) *M RU . f 3 $ *#0 h .$ Y0&- $ e0& !+, 5 Q *(" & \ e0& R# *!' *(" & \ f e0& R# 0&0 (" & \ 5$M G#U N# 0 f &F O&0 DZ [ c0 f S *O&0 R 0 0 f $ & \ U0& M O&0 (x xy+ y) 0 0 X E #&"+ f ' K - 0 ?U0 *( 3 X Y\ .$ f ]3 *( B $ O G#U R 0 f ]3 *A QC $. $ ) (, ) .$ *( 3 R − {(, )} 0 & *#0 h .$ . f (x, y) = sgn x − y e0& A .8 *M RU . f 3 $ e0& & ( R 0 0 5F $ (" & \ e0& R# *!' *(" & \ c f nB $ [ & \ e0 R0 .$ ( ?, 9$ . ( RV+ (B&' X ∈ R %&L 0 "0 0 0 X E #&"+ N# .$ f &F x − y > S AGB *( 3 X .$ nB ( N# 0 0 X E #&"+ N# .$ f &F x − y < S A% *( 3 X .$ nB ( N#
0 0 y = ±x y m@ N# .$ f &F x = y S A: " ]3 ( N# 0 0 5F #$ (+ .$ N# M " c ( N# 0 0 5F 0 f M X 0 + f R# 0&0 *(= 5 O&0 N# 0 0 5F 0 f *( 3& X .$ , + 0 & B $ O G#U R 0 f ` + .$ ]3 *( 3 R − {y = x} ∪ {y = −x} M x= A .8 f
f
⎧ ⎨
xy f (x, y) = ⎩ x +y
(x, y) = (, ) (x, y) = (, )
*#.F (0 . f 3 $ S *( R 0 0 f $ *(" & \ e0& R# *!' &0 0 0 X E #&"+ N# .$ f &F O&0 DZ [ c0 X S & *( 3 X .$ R# 0&0 O&0 xy /(x + y) .$ e0& . \ MC T 0 0 X .$ f ' &F X = (, ) R# 0&0 *( 3 c (, ) .$ f ]3 *O&0 A( X ( 3 D = R !M 0 f . #E e0 E N# 3 $ 0 $ 9M oL6
f
9ZM $& #E . $ E >. T R# .$ *ZM Z plots[contourplot3d]( f(x, y, z) , x = a . . b , y = c . . d , z = h . . l , contours = [a 1, a 2, ..., a n] )
v e0& M M x= G J % $ R# .$ ZO&0 $ + G#U !< y .$ ?z[1 . f (x, y, z) [B MC (a, b, c) Y\ .$ f E S ' 0 >. T 9ZM $& #E . $ E AO&0 (#& 0 c b a limit(f(x,y,z),{x=a,y=b,z=c})
e0& M M x= D) J . !) & $ R# .$ ZO&0 $ + G#U !< y .$ ?z[1 . f v
B$&U 0 C : r(t) " $ .$ f E S ' 0 >. T −−−−−−−−−−−→ y(t), z(t)) 9ZM $& #E . $ E (x(t),
e0& M x= 9fC) + a2 = / $ &F *O&0 O G0U !< y .$ ?z[1 f (x, y) v $ D : a ≤ x ≤ b, c ≤ y ≤ d !Y " 0 5F Z 0 *ZM $& plot3d(f(x,y),x=a..b,y=c..d) . $ E X 0 gride=[n,m] thickness=a color=c > . $ &0 >&+"\ $ U a . O Z p Y Y1 c .
. 5
m . . −y $ .$ >&+"\ $ U n . . −x $ .$ *$ + Zh Z L0 M x= : OU!U) / $ z=a_2 z=a_1 E 0 . f (x, y) v $ e0& E &
Z D : a ≤ x ≤ b, c ≤ y ≤ d !Y " 0 z=a_n * * * 9ZM $& #E . $ E >. T R# .$ *ZM plots[contourplot]( f(x, y) , x = a . . b , y = c . . d , contours = [a 1, a 2, ... , a n] )
limit(f(x(t), y(t), z(t)), t = 0)
# /.$F .$
78 * $
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
K Y Z L0 M x= : g=? / $ $ * * u = a 2 u = a 1 E 0 . f (x, y, z) v e0& E !Y " XUV 0 u = a n * Ω : a ≤ x ≤ b, c ≤ y ≤ d, h ≤ z ≤ l
&' ( ! )$* $&+ &0 & X Y\ .$ u = f (X) t 6 . v >. T R# .$ .$ f L3 . f (X ) e) 0 .$ *Z$ 5&6 f (X ) .$ f h $ 5&6 grad (f )| $&+ &0 & X *$ 5&6 f (X ) $&+ &0 & X Y\ f (x , y) = x y e0& A& '() $ X .$ f M M (0&f *#0 h .$ . X = (− , ) *O&0 f (X ) = −(−−, −−−→) 5F t 6 ( #n<\ 6
M $ O >&[f #&0 . h R# 0 *!'
t 6 !" #$ %&"' .$ & ` - R $ 0 ([" e0& > v 5 c RU 0 t 6 *( .$ $E $0.&M !B$ R+ 0 *O&0 u#&v v
*$. $ h +, !#&"
([" (+M N# > v UB&Y 5&0 0 N#c= R 1 aM !VO 0 R 1 R# 5&0 E ]3 *$. $ i&j >&+M #& 0 .$ M $ O KY !" #$ >_$&U 4&0 _$&U -. S.$ 5&6#&v c 5&6&\ 6 &0 e0& Q e0& N# & F 0 ?U0 ( { (+ . $ !j= R# XB&Y * " &0 B +U C !" #$ >_$&U UB&Y 0 E 5 , *O&0 4E_ Agc) >&\ 6
X
x y + lim
(x,y)→(−,)
−−−−−→ −−−→ −−−−−→ − (, −) • (x, y) − (− , ) = *−−−→ −−−−−→* * * *(x, y) − (− , )*
>. T 0 v = y − u = x + x= &0 . |Q (+ ' 9(O 5 #E
WP' U& + Y\ x ( \\' v N# e0& y = f (x) M x= ) E 4.& Q !j= .$ *O&0 y = f (x) G#U $ E !VO 0 M $ 0 f (x ) $, x .$ f t 6
(u − ) (v + ) + − u + v + = (u,v)→( , ) u + v u − u (v + ) + uv + uv − v + lim (u,v)→( , ) u + v lim
f (x ) = lim
*;* E $& &0 v = r sin θ u = r cos θ x= &0 5 M 9Z#. $ = lim r r cos θ − cos θ (r sin θ + ) r→
x→x
. _&0 &" d0 (M E 5O &M 50 *O G#U $&U !VO 0
lim
+r cos θ sin θ + r cos θ sin θ − r sin θ = ⎧ ⎨
xy f (x, y) = ⎩ x +y
x→x
f (x) − f (x ) − f (x ) (x − x ) = |x − x |
*$ $ Z+U 5 #E >. T 0 . G#U R# *(O 5
3 X .$ f : R → R M x= $ M ( #n<\ 6 X .$ u = f (X) Z# S . T .$ *( 9M $$S (= 5&Q v ∈ R . $0
(x, y) = (, )
e0& A, .8 .$ i jL0 &) + .$ f M ( RO. *#0 h .$ . #n<\ 6 X .$ f M M (0&f *( 3 X = (, ) *(" E&bF x= R# &0 U# *ZM !+, G D. 0 *!'
f (x) − f (x ) x−x
(x, y) = (, )
n
n
lim
X→X
f (X) − f (X ) − v • (X − X ) = X − X
*( 4&+ 5&0 Y\ .$ f (x, y, z) = |x + y + z| e0& M $ 5&6 A .8 *(" #n<\ 6 X = (− , − , ) (= (a, b, c) M Z$ 5&6 . h R# 0 *!' 9O&0 T 0 0 O $ $ ) #E ' & F E 0 M $ O+ lim
(x,y,z)→(−,−,)
|x+y +z|−a (x+ )−b (y + )−c (z − ) , (x + ) + (y + ) + (z − )
" $ XY R# >&[f 0 − −−−−−−−−−−−−→ −−−−−−−−−−→ r (t) = t − , − , , r (t) = −t − , − ,
*f
−−→ −−−→ xy − − (a, b) • (x, y) x + y lim = −−−→ (x,y)→( , ) (x, y) xy − (ax + by) x + y = lim = !/ (x,y)→( , ) x + y
r(t) = −(−−,→t) r (t) = −(t,−−→) " &' 0 |Q (+ e0& ' "#&0 x= 0 &0 *Z#S h .$ . .$ *O&0 T &" R# E N#
−−→ r (t) = (t, t)
0 h $. e0& " ' >. T R# .$ *Z#S h .$ . &0 ( 0 0 " $ R#
|t | − at = −a⇒a= t→ t→ t | − t | + at = lim h (r(t)) = lim = +a⇒a=− t→ t→ t = lim h (r(t)) = lim
*( o1& M .&M _&0 D. 0 ' $ ) t\ 78 $ E t 6 B /' M (" 4 U ?U0 *( . O$ ]0 $ ) q1 #&0 !V6 R# !' 0 *( O $.F &M *Z$ 4& U0 uL0 .$ . .&M R# *$ O KY
=
=
=
)
−−−→ f = x sin y, X = (, π) , f (X ) = (, )
)
−−−−−→ f = xy z , X = (, , ) , f (X ) = ( , , )
)
f=
x z − , X = (− , , ) , y x −−−−−−−−−→ f (X ) = (/, /, )
)
f = ln x + y + z , X = ( , , ) ,
−−−−−→ f (X ) = ( , , )
t
− (bt) t
= −a
= −b t − (at + bt) t √ lim f (r (t)) = lim t→ t→ t − (a + b) √ lim f (r (t)) = lim
t→
t
t→
4
lim
xy
(x,y,z)→(,−,)
z
−
−
−−−−−−−−−→
5
−−−−→ −−−−−−−→ − − , , • (x, y, z) − ( , − , )
v
−−−−→ −−−−−−−→ ÷(x, y, z) − ( , − , ) = y+
lim
u
x= &0 . ' R# *( T 9(O 5 #E >. T 0 w = z −
= x−
(u+)(v−) (w+)
(u,v,w)→( , , )
=
y
lim
(u,v,w)→( , , )
+ + u− v− w = + u + v + w uv + uw − vw − w + (w + ) u + v + w
x= &0 5 M 9Z#. $ *;* E $& &0 z = ρ sin ϕ
= ρ cos ϕ sin θ x = ρ cos ϕ cos θ
= lim ρ→
9(" #n<\ 6 X .$ f M $ 5&6 $. .$
t
*O&0 yb ( #n<\ 6 X .$ f V# 0 [ B x= *X = ( , − , ) f (x, y, z) = xy/z M x= A .8 X .$ f M (0&f *( 3 X .$ f M ( RO. *f (X ) = −(−−−−/−−,−−/−−,−−/−→) ( #n<\ 6
' M $ O (0&f #&0 . h R# 0 *!'
−−−−−→ ) f = xy − yx , X = ( , − ) , f (X ) = (, −) −−−−−−−−→
− ,
t→
− (at)
E M B&' .$ *b = a = $ O B$&U $ E ]3 *( 1& M a + b = / $ O 4 B$&U
) f = xy , X = (, ) , f (X ) = x −y
lim f (r (t)) = lim
t→
=
.$ f M $ 5&6 G#U N+M 0 0 $ 9O&0 O $ $ . $0 0 0 f (X ) ( #n<\ 6
X
( #n<\ 6 X .$ f M ZM
"#&0 R# 0&0
−−→ (X ) = (a, b)
(ρ sin ϕ + )
ρ cos ϕ cos θ sin θ
+ρ cos ϕ sin ϕ cos θ − ρ cos ϕ sin θ sin ϕ − ρ sin ϕ =
E .&"0 .$ M O 4 U z U0 *O&0 v N# e0 " t 6 DZ c) #c) >&\ 6 $.
u = f (x, y, z) ZM x= 0 $ X Y\ .$ x 0 ([" f gc) t 6 *X = (x , y , z ) >. T 0 . f (x, y , z ) − f (x , y , z ) d f (x, y , z lim = x→x x−x dx
)
)
f = [x + y ], X = (, − ) , + ) f = − x − y − z, X = (, , ) , 4 −/(x +y ) (x, y) = (, ) , ) f = e (x, y) = (, ) 4
x=x
∂f ∂f (X ) = fx (X ) = f (X ) = ∂x X ∂x
.$ y 0 ([" f #c) t 6 0&6 >. j0 *Z$ 5&6 X 0 . X Y\ .$ z 0 ([" f #c) t 6 c X Y\ 9ZM G#U #E >. T 0
∂f ∂z X
∂f (X ) = fy (X ) ∂y d f (x , y, z = f (X ) = dy
=
)
y=y
∂f (X ) = fz (X ) ∂z d = f (X ) = f (x , y , z) dz z=z
=
*$. $ $ ) v . . . .& Q $ e0 0 0&6 G#.&U f (x, y, z) = xyz M x= A& '() $ .$ f gc) >&\ 6 . \ >. T R# .$ *X = (, , − ) *M [& . X Z#. $ G#U 0 &0 *!' ∂f ∂x X ∂f ∂y X
= = =
∂f ∂z X
= =
d d f (x, , − )|x= = {−x}x= = − dx dx d f (, y, − ) dy y= d −y = {−y}y= = − dy y= d f (, , z) dz z=− d z = z = dz z=− z=−
c f (x, y) = arcsin(x/y) M x= A,√.8 X .$ f gc) >&\ 6 . \ >. T R# .$ *X = ( , ) *M [& . Z#. $ G#U 0&0 *!' ∂f ∂x X
=
√ xy, X = (, ),
)
) f=
&$&+ E V# &0 A$ ) >. T .$ [B C ZM G#U
∂f ∂y X
f=
x d d f (x, ) √ = arcsin dx dx x=√ x=
X = (, ), xyz x + y + z
(x, y, z) = (, , )
(x, y, z) = (, , )
,
X = (, , )
O&0 #n<\ 6 X .$ f S A& $ $ ?U0 ( #n<\ 6 X .$ af &F a ∈ R
(af ) (X ) = af (X )
f /g
f g f − g f + g &F O&0 #n<\ 6 X .$ g f S #n<\ 6 X .$ c
)
(f + g) (X ) = f (X ) + g (X )
)
(f − g) (X ) = f (X ) − g (X )
)
(f g) (X ) = g (X ) f (X ) + f (X ) g (X )
g (X ) f (X ) − f (X ) g (X ) f ) g (X ) = g (X ) n f :R →R t r : R → Rn X = r (t )
.$ .$ S A8 ( #n<\ 6 t .$ c f (r(t)) &F O&0 #n<\ 6
* {f (r)} (t ) = f (r (t )) r (t ) ?U0 f (X ) .$ g : R → R X .$ f : R → R S AJ ( #n<\ 6 X .$ c g (f (X)) &F O&0 #n<\ 6
*{g (f )} (X ) = g (f (X )) f (X ) ?U0
•
n
&0 .&"0 H**H q1 E 8 (+"1 78 % $ uL0 .$ *$ O & t 6 E ,&1 ( (+ *( $3 Z 5F 60 UB&Y 0 >&[f . H**H q1 E (+"1 A& 0 & $ *M *M (0&f . H**H q1 E ; (+"1 A, *M (0&f . H**H q1 E (+"1 A
JE WP' + #E (
+, >&-. .$ Z .&"0
gc) t 6
t 6 0 v Q e0 t 6 4 (6S0 0 . ?z+,
t 6 &0 ln f ∂f ∂y
∂f = f . z . y z− . ln x ∂y ∂f f = ln ∂y X ln(ln f ) = z . ln y + ln(ln x)
Z Z#0 ln .&0 $ E S * R=@ E S t 6 &0 ∂f /∂z f
R# 0&0 (O $ Z#. $ z 0 (["
∂f = f . ln f . ln y ∂z ∂f = ∂z X
x+y f (x, y) = arctan − xy
*
= (, )
∂f ∂x X
=
= ∂f ∂y X
=
=
R# 0&0
( ) ( − xy) − (x + y) (−y) ( − xy)
x+y + − xy X = x + X ( ) ( − xy) − (x + y) (−x) ( − xy)
x+y + − xy X = y + X
f = x sin(y ), , ) f = x + y ,
)
f = xy ,
X = ( , )
)
f = arctan(x/y),
X =( , )
)
f = logy x,
X = (, )
)
)
f = xy − xz,
X = (, , )
)
f = xy ln z ,
X = (, , e )
)
f = ln(x + y) −
+ x + z , X = (, , )
f = arctan(x + y + z ), X = (, , − )
) f =e
xyz
,
X = (− , , )
d dy
4
# √ "5
arcsin
=−
y=
y
y=
f (x, y) = y √x M x= A .8 *(" $ ) ∂f /∂x M (0&f >. T M ( 5F R# !B$ *!'
R# .$ *X
= (, )
∂f ∂x X
f (x, ) − f (, ) x− x→ √ x = lim √ lim = +∞ x x→ x→ x
=
lim
=
5 $& . #c) >&\ 6
78 $ $ ) ' ∂f /∂x [& .$ e1 .$ *$M %&"' 9$. $ z y . nS&) A x 0 ([" S t 6 A; *x . nS&) A 9$ $ u&M 5 ' $ 0 . ' R# *Z#S t 6 x 0 ([" z y 5$ 0 (0&f x= &0 AGB *ZM [& X .$ . !T&' e0& A% X
0 $ $
X = (, − ) √ X = ( , π) √ X = ( , )
) f = xy − x/y,
)
=
=
X
S A .8 &F
Y\ .$ . f e0& #c) >&\ 6
X
=
= ln y =⇒
ln f
X
∂f ∂y X
√
/
=
X
= z . y z− . ln x =⇒
f
, √ − (x/) x= d √ f , y = dy y= √ − /y , √ − ( /y)
0 ) &0 * ∂f = R# 0&0 ∂x Z#. $ y 0 ([" Y0 . R# R=@ E S
= y z ln x
90&0
f (x, y, z)
= xz − y/x ∂f ∂x X ∂f ∂y X ∂f ∂z
S A& '() $ &F X = ( , , − )
y z+ = x X − = =− x X
=
= {x}X = .
X
&F X
= (π, /)
∂f ∂x X ∂f ∂y
=
f (x, y) = y sin(xy) S A, .8
y cos (xy) X
=
=
sin (xy) + xy cos (xy)
= X
X
&F X
= (, , ) z
∂x(y ∂f = ∂x ∂x
)
f (x, y, z) = x S A .8 yz
= y z . x(y
z
−)
( RV+ A2 h) 4R @1Cc) $ 5 #c) t 6 z $ 5F E nB O&0 #n<\ 6 U0& 9
#E & #. nS $&+ *(=S
f = x sin(y + cos z), X = ( , π/, π/) 0 y ) f = t dt, X = (, )
)
∂f ∂x
∂f ∂x
∂ ∂f ∂f = fyx = f = ∂x∂y ∂x ∂y " # ∂ ∂f ∂f = fz x = f = ∂x ∂z ∂x∂z ∂f ∂ = fxx = f = ∂x ∂x
∂f
X
f (x, y, z) = arcsin
B&' .$ ( −
Z#. $ ` + .$ R# 0&0
∂f (x + θ h, y + θ k). ω = kh . ∂x∂y
A*H C
E&0 &F ψ(x, y) = f (x, y + k) − f (x, y) ZM x= &' $ , 0&6 >. T 0 ω = ψ(x + h, y) − ψ(x, y) Z M . $ $ ) θ, θ ∈ (; ) ω
∂ψ (x + θ h, y) ∂x ∂f ∂f (x + θ h, y + k) − (x + θ h, y) = h. ∂x ∂x ∂f (x + θ h, y + θ k). = kh . ∂y∂x = h.
A;*H C
S A&
−
'() & $
&F
xyz , ∂f = + ∂y − x y z
0 0 f $ M $ O ) 0 0 !T&' #c) t 6 e0& $ M *O&0
≤ xy z ≤
< xy z <
&F f (x, y) =
M $. $ $ ) θ ∈ (; ) S_ q1 E $& &0 Z E&0 ∂f (x + θ h, y + θ k). ∂x∂y
xy z
∂f xy z = + ∂z − x y z
∂ϕ (x, y + θ k) ∂y ∂f ∂f (x + h, y + θ k) − (x, y + θ k) . k. ∂y ∂y
∂f ∂f (x + h, y + θ k) − (x, y + θ k) = ∂y ∂y
y z ∂f = + , ∂x − x y z
k.
= h.
∂f D X → ∈R ∂x X
0&6 >. j0 * & x 0 ([" f #c) t 6 . e0& R# ( =&M ∂f [& 0 * " G#U !0&1 ∂f ∂f ∂x ∂z ∂y ∂f $ 4& . ∂x [& .$ 4$ '
=
X =( , , )
∂f : R → R , ∂x
E #&"+ N# .$ ∂y∂x ∂x∂y S $ *( 0 0 X .$ $ 5F . \ &F O&0 3 X #&"+ N# .$ ∂ f /∂x∂y ∂ f /∂y∂x ZM x= (x + h, y + k) (x, y + k) (x + h, y) (x, y) p&\ ! &O ϕ(x, y) = f (x + h, y) − f (x, y) ZM x= *O&0 3 *ω = ϕ(x, y + k) − ϕ(x, y) M $. $ $ ) θ ∈ (; ) S_ q1 0&0 =
dt , z+t
f
?za U# ( Z #c) >&\ 6 X M (B&' .$ ∂f ∂f = 0 =&M pO N# *A$ O ) H R#+ 0C ∂x∂y ∂y∂x *( #E KO 0 #c) >&\ 6 X 5$M (+ 0
ω
f=
e0& #c) t 6 S 4R @1Cc) a2= % $ $ ) D ⊆ D .$ X p&\ M .$ x 0 ([" u = f (x, y, z) 9ZM G#U #E KO 0 #) e0& Z O&0
***
∂f
)
x xy
0
x ∂f = + ∂x x + y
,
+ x + y
∂f = ∂y
y
+
S A, .8
x + y
$ M B&' .$ ( ≤ x + y 0 0 f $ (B&' R# .$ *( < x + y 0 0 !T&' e0& $ . #E e0 E N# #c) >&\ 6
) f = x sin(x + y)
)
f = y cos x
)
f = arctan (y/x) , ) f = x + y + z
)
f=
√ x
yz ) f = ln x + y + z
)
0 * $
9M [&
f = x + y − x y
)
f = xy + y/x , ) f = arcsin x + y
)
f = xy + yz + zx
)
f = zex + xey + yez
)
f = x cos y + z ln(x + y)
) )
M Z#S A;*H C A*H C "#&\ &0
∂f =? ∂x∂y∂z ∂ f =? ∂x∂y
f = x ln (y + z) , f = xy ,
∂f ∂f (x + θ h, y + θ k) = (x + θ h, y + θ k). ∂x∂y ∂y∂x
(,−)
xy z
∂f =? ∂x ∂y ∂z
)
f =e
)
f = (x − a) (y − b) ,
∂ p+q f =? ∂xp ∂y q
)
f = xyz + ex+y+z ,
∂ m+n+k f =? ∂xm ∂y n ∂z k
, p
q
>. T 0 . f : R → R e0& A5 ⎧ ⎨
x − y xy f (x, y) = x + y ⎩
S (x, y) = (, ) S M $ 5&6 >. T R# .$ *ZM G#U * ∂f = x x E 0 AGB ∂y * ∂f = −y y E 0 A% ∂x ∂ f ∂ f * ∂y∂x = A: ∂x∂y (x, y) = (, )
(x, )
( ,y)
( , )
( , )
5F N+M 0 M Z#. $ . q1 5&0 5&V 5 M *$ + t\ 5 ' . 0 . v Q e0 #n<\ 6
*$ O Z = c t 6 e# [& 5&V ?U0 >&\ 6 4&+ u = f (x, y, z) e0& S $ $ .$ e0 R# &F O&0 3 X Y\ .$ 5F [ #c) ?U0 ( #n<\ 6 X −−−−− # " −−−−−−−−−−−−−−−→ ∂f ∂f ∂f f (X ) = , , ∂x X ∂y X ∂z X
e0& 0 S_ q1 E $& &0 $ ) 5&Q t ∈ (x ; x) M Z#S [x ; x] E&0 0 &F X = (t , y, z) S M $. $ h(x) = f (x, y, z)
f (x, y, z) − f (x , y, z) = h(x) − h(x ) ∂f = h (t ) . (x − x ) = . (x − x ) ∂x X
A*H C
$ ) 5&Q t ∈ (z ; z) t ∈ (y ; y) $ , 0&6 >. T 0 M . $ ∂f . (y − y ) ∂y X ∂f f (x , y , z) − f (x , y , z ) = . (z − z ) ∂z X f (x , y, z) − f (x , y , z) =
A*H C AH*H C
(x, y) Y\ .$ gc) >&\ 6 3 pO 0 ) &0 5 M (h, k) → 1 m@ $ ' "#&0 M Z#S 2 *( q1 ZV' 5&+ R# M O&0 0 0 (, ) 9$ $ Z+U 5 #E M q1 0 ' . 0 . q1 R# .$ _&0 X gc) >&\ 6 S $ S t 6 X &F O&0 3 Y\ #&"+ *$. + pO $. E .&"0 .$ 5 Q 78 $ & F X 0 + ( R & #c) >&\ 6 3 *Z$+ R# .$ f (x, y) = x y ZM x= A& '() $ >. T ∂f ∂f = xy = x y ∂x ∂y ∂f ∂ = y = xy ∂x ∂x ∂ ∂ f = x y = xy ∂x∂y ∂x ∂ ∂f = xy = xy ∂y∂x ∂y ∂ ∂ f = x y = x y ∂y ∂y ∂f ∂ = y xy = ∂x ∂x ∂y ∂ ∂f = xy = y ∂x∂y∂x ∂x x+y f (x, y) = x−y 4 5 ∂f ∂ ∂f ∂f = = ∂x ∂y∂x∂y ∂ x∂ y ∂ x ∂y x ∂ − ( x + ) = = ∂ x (x − y) (x − y)
ZM x= A, .8
>. T R# .$
ZM x= A .8 0 >. T R# .$ f (x, y, z) = e * ∂x∂ ∂y ∂zf = a b c e n m l E . O #c) t 6 $. .$ 0 $ 9M [&
ax+by+cz
l+m+n l
m
l m n ax+by+cz
n
) f = x − xy + y + y ,
∂f =? ∂x∂y
.$ .$ * O G#U X .$ " & \
?U0 *( #n<\ 6 X .$ f R# 0&0 3 X f (X ) =
=
R# .$ *X
&0 .$ *X = (x , y , t) X = (t , y, z) & F .$ M Z#. $ AH*H C A*H C A*H C E $& ! f (x, y, z) − f (x , y , z ) = f (x, y, z) − f (x , y, z) ! + f (x , y, z) − f (x , y , z) ! + f (x , y , z) − f (x , y , z ) ∂f ∂f = . (x − x ) + . (y − y ) ∂x (t ,y,z) ∂y (x ,t ,z ) ∂f + . (z − z ) ∂z (x ,y ,t )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x −x + ,+ + x − y X + x − y X − −−−→ ,
= ( , , − )
f = xyz M x= A, .8 5F gc) >&\ 6 e0 f >. T
∂f ∂f ∂f = yz , = xyz , = xy z ∂x ∂y ∂z
.& Q .$ * O G#U X .$ " & \
?U0 *( #n<\ 6 X .$ f R# 0&0 3 X .$ e0& −−−−−− −−−−−−−−−−−−−−−−−−−→ y z , xyz , xy z
f (X ) =
X
X
X
−−−−−−−−−−→! − , − ,
=
e0 f >. T R# .$ *f = ln( ∂f = ∂x
+ xy)
y ∂f , = + xy ∂y
x + xy
f
f
−−−−y−−−−−−− x−−→ , + xy + xy
*( D $ &0 f
M $ O ) >. T R# .$ *f = arcsin(x + y + z) M x= A .8 5F gc) >&\ 6 f f
M Z#S X Y\ .$ ∂f 3 E $& &0 5 M ∂x &F |x − x | < δ S M $. $ $ ) 5&Q δ > ∂f ε ∂f < − ∂x X ∂x X
: R → R
∂f ∂f − ∂x X ∂x X ∂f ∂f − ∂x X ∂x X
f
f (x, y, z) =
+
− (x + y + z)
*( D $ &0 f
.
−−−−−→! , ,
: R → R
M $ O )
A7*H C A*H C
* ∂f * *f (X) − f (X ) − . (x − x ) ∂y X * ∂f ∂f * − . (y − y ) − . (z − z )* < ∂y X ∂z X ∂f ∂f < − . |x − x | ∂x X ∂x X ∂f ∂f + − . |y − y | ∂y X ∂y X ∂f ∂f + − . |z − z | ∂y X ∂z X ε < |x − x | + |y − y | + |z − z |
<
f
ε < ε <
X − X < δ δ = min{δ, δ, δ } S >. T R# .$ Z#. $ AH*H C .$ A*H C A7*H C AJ*H C 5$ $ . 1 &0 &F
∂f ∂f ∂f = = =+ ∂x ∂y ∂z − (x + y + z)
( D : − ≤ x + y + z ≤ 0 0 f $ * " & \
U# ( D E 0 0 5F gc) >&\ 6 e0 $ M B&' .$ D , + 0 e0& .& Q .$ *D : − < x+y+z < R# 0&0 * 3 , + R# 0 + nB O G#U (x, y, z) ∈ D E 0 ( #n<\ 6 , + R# 0 f
AJ*H C
S M . $ $ ) δ > δ > 0&6 >. T 0 &F |z − z | < δ |y − y | < δ
M x= A .8 5F gc) >&\ 6
* O G#U D : +xy > , + 0 " & \
R# 0 f R# 0&0 * 3 , + R# 0 .$ (x, y) ∈ D E 0 ( #n<\ 6 , +
f (x, y) =
A8*H C
ε
× × X − X = ε . X − X
*$$S t 6 G#U E ZV'
2
$ U &0 e0& 0 q1 R# 78 % $ *$$S >&[f 0&6 >. T 0 ( (.$ c v
+
f = + x − y M x= A& '() & $ 5F gc) >&\ 6 e0 f >. T R# .$ *X = (, − ) x −y ∂f ∂f = + = + , . ∂x ∂y +x −y + x − y
&0 & F E !T&' e0 M + #.&B #&+ &aa "M .$ &+, R# *$$S !V6 & \ !+, & $ U * O 5&0 **
f
e0& $ 5&6 8 & >&#+ .$ 0 * $ *M [& . f (X ) ]< ( #n<\ 6 X Y\ .$
) f = x − y sin(πx),
X = ( ,− )
O&0 i& & \ u = f (X) e0& S $ u = f (X) &F O&0 5F G#U $ E .$ Y\ X Int (D ) 0 u = f (X) #$ 5&0 0 *( #n<\ 6 X .$ *( #n<\ 6
) f = ln(xy),
X = (−, − )
) f = arctan(x + y),
X = (, )
*f (x, y) = arcsin (x/y) ZM x= A&
) f = x − y + z , x+y−z
f
Df
'() $
9>. T R# .$
(x, y) − ≤ x/y ≤ (x, y) < y , −y ≤ x ≤ y ∪ (x, y) y < , y ≤ x ≤ −y
= =
( i& & \ f 5 Q ( 3 D 0 f 5 Q ]3 9, + 0 ]3 f
Int (Df )
=
(x, y) < y , −y < x < y ∪ (x, y) > y , , y < x < −y
*( #n<\ 6 A$ O ) ;*H !VO 0C }
) f = √xyz, ) f = z
X = (, , ) √ − x − y , X = − , ,
,
X
= (, , )
p&\ 4 M .$ f e0& M M oL6 ; & J >&#+ .$ *M oL6 . f Y0&- ]< ( #n<\ 6
) f = yx − xy ,
) f = ln(
) f = (x − y )/ , x , )f = yz
+ x − y ),
) f = xy + yz + zx , -
) f =
x y z − − − . a b c
. T .$ *A ⊆ R M x= $ (T& &0 r > M ( A ! )*"9 N# X Zg S
, + *A$ O ) *H !VO 0C $$S (= B (X ) ⊆ A 5&6 Int (A) $&+ &0 & A L . A .$ p&\ + u@&\ + M Zg S B . T .$ . A , + *Z$
*Int (A) = A U# *O&0 .$ E&0 R A $ ( E&0 E&0 &, + E LB$ $, `&+ ) A; *( E&0 E&0 &, + E & $ U w O A n
r
n
i& & \ e0& #n<\ 6 $ 9;*H !VO f (x, y) = arcsin (x/y)
>. T R# .$ *
M x= A, .8 0 0 ( i& & \
f R# 0&0 *A$ O ) *H !VO 0C ( E&0 D U# *( *O&0 #n<\ 6 3 D D $ 0 f (x, y) = x ln(x − y) f (x, y) y < x Int (Df ) = Df
f
f
⎧ ⎨
xy
(x, y) = (, )
Z#S A .8 D = R !M 0 M B&' .$ *(" & \ f e0& R − {(, )} E&0 , + 0 =@ E *A QC ( 3 0 f ]3 *( 0 0 xxy+ y i& & \ e0& &0 #n<\ 6 (, ) .$ f =@ E *( #n<\ 6 R − {(, )} *f (x, y) = ⎩ f
x + y
(x, y) = (, )
} ( A .$ Y\ X 9*H !VO G#U & \ e0& ** (+"1 .$ $ e0& E u = f (X) & \ e0& (& .$ S ( O i# ! 9 . u = f (X) e0& $ 6 $& tY .1 +) Q e0 E & i& & \ e0& ]3 *Z &
.$ #E e0 E N# M M oL6
√ ) f = x sin ( xy) cos x ln x
)
f=
)
f = logz (x + y)
)
y
. f=
x+y+z x−y−z
0 $
9#n<\ 6 p&\ 4 M
)
f = arctan(x + y)
)
x+y f= x + y
)
f= + x + y − z
)
4E_ pO N# X .$ f 5$ 0 3 V# &0 ]3 *A QC (" ?U0 *(" =&M pO & ( X .$ f #n<\ 6 0 ∂f ∂x ( ∂f ∂y (
(, )
, )
, )
f (x, ) − f (, ) = lim x− x→ x→ f (, y) − f (, ) = lim = lim y− y→ y→ = lim
− =
x − = y
.$ f B $ ) (, ) .$ f gc) >&\ 6 U# *(" #n<\ 6
f = arcsin (xyz)
f = |x − y | ) f = sgn (x + y + z) , ) f= − x − y − z ) f = −z ln + x + z
)
3 (, ) Y\ .$ (, ) $ ) ∂f ∂y
+ f (x, y) = |xy| ∂f (, ) ∂x (, )
e0& $ 5&6 A #c) >&\ 6 ( *(" #n<\ 6
.$ f B
e0 ( 3 (, ) .$ O $ $ e0& $ 5&6 A ∂f ∂f (, ) .$ f & . M #c) >&\ 6
∂y ∂x 9(" #n<\ 6
⎧ ⎨ + xy *f (x, y) = ⎩ x + y (x, y) = (, )
(x, y) = (, )
& ( #n<\ 6 (, ) .$ O $ $ e0& $ 5&6 AH 9 " 3 (, ) .$ ∂f ∂f #c) t 6 e0 ∂y ∂x
∗
f (x, y) = (x + y ) sin(x + y )−/
(x, y) = (, ) (x, y) = (, )
n
y y ∂z ∂z n− n −y +x + y = x nx x f f ∂x ∂y x x x
y y = nz +y xn f = nxn f x x x
e0& #n<\ 6 $ 9*H !VO f (x, y) = x ln(x − y)
R# .$ *f (x, y) = |x + y| M x= A .8 R !M 0 f ]3 D = R ( & \ f >. T E&0 , + 0 f *(" i& & \
B ( 3 , + 0 x+y i& & \ e0&&0 (x,y) < x + y 0 0 −x − y i&& \ e0& &0 (x, y) x + y < E&0 E *( #n<\ 6 (x, y) x + y = 0 f R# 0&0 *( → 9 "#&0 &F f (X ) = −− (a, b) X = (x , −x ) S =@ f
lim
(x,y)→(x ,−x
−−→ −−−−−−−−−−−→ |x + y| − − (a, b) • (x − x , y + x ) * * = *−−−−−−−−−−−→* ) *(x − x , y + x )* * *
" $ 5 M −−−−−−−−−−−→ −−−−−−−−−−−→ , r (t) = x − t , −x r (t) = x + t , −x
R# 0&0 *Z#S h .$ .
U0& f z = x f y/x S A& '() $ $ ∂z ∂z + y = nz M (0&f O&0 #n<\ 6
*x ∂x ∂y 9ZM [& . _&0 &" |Q (+ ( =&M *!'
}
B$&U .$ z = yf x − y e0& $ 5&6 A, .8 ∂z ∂z + xy = xz #n<\ 6 U0& f 5F .$ M M T y ∂x ∂y
=
|x − t − x | − (a, b) * !* lim * t , * t→
=
lim t→
= =
t − at = t
−a
t + at = t
+a
•
t ,
|x + t − x | − (a, b) • −t , * !* lim * −t , * t→ lim t→
0 y\= y\=
f
` + .$ ]3 *( 1& M *( #n3 t 6 (x, y) x + y =
9Z#. $ y
∂z ∂x
=
∂z ∂y
=
x x x x + f + g y y y y
x x x x x − f +g − g y y y y y f
∂z ∂z e+) . & F $ + %- y .$ . ∂y x .$ . ∂x 5 M ∂z ∂z +y = z M Z#S ZM
*x ∂x ∂y !" #$ U0 g f V# x= &0 0 % $ 9M (0&f . #E &. cS E N# #n3 &F z = yx + f (xy) S M $ 5&6 A ∂z ∂z − xy = −y ∂x ∂y z = ey f yex /y ∂z ∂z x − y + xy = xyz ∂x ∂y
*( 9ZM [& . _&0 &" |Q (+ ( =&M *!' y y × xf x − y + xy f x − y = +y × (−y) f x − y = xyf x − y = xz
+- !V60 z = z(x, y) e0& M x= A .8 ∂z . \ *O&0 O G#U x + y + z = xyz Y\ .$ . ∂x *M [& X = (− , , − ) Z#S t 6 x 0 ([" O $ $ Y0 . R=@ E *!' x + + z
x
&F
S M $ 5&6 A;
&F u = f (y − x) + g (y − x) S M $ 5&6 A ∂u ∂u ∂u + = + ∂x∂y ∂x ∂y
∂ f ∂x∂y
S M $ 5&6 A ∂z ∂z ∂z + abz = b +a &F ∂x∂y ∂x ∂y &F z = xg(x + y) + yf (x + y) S M $ 5&6 AH =
z
= f (x, y)eax+by
∂z x − yz = X Y\ .$ [& &0 ∂x R# 0&0 xy − z ∂z * ∂x = − M Z#S
?U0 O&0 #n<\ 6 e0 g f S M (0&f A .8 * ∂∂tu = a ∂∂xu &F u = f (x − at) + g (x + at) 9Z#. $ x= 0 ) &0 *!' X
a
∂z ∂ z ∂z ∂ z = ∂x ∂x∂y ∂y ∂x y y + x−n g z = xn f x x ∂z ∂z ∂z +y x + xy = n (n − ) z ∂x∂y ∂x ∂y
&F
S M $ 5&6 A7
.$ z = y (f (ax + y) + g (ax − y)) S M $ 5&6 A
∂z ∂z a ∂ = >. T R# y ∂y ∂x y ∂y 50 Y0 . 3&3 S t 6 &0 #E >&#+ E N# .$ 90&0 z y x R0 g f . q' )
z = f (x) + g(y)
, ) z = f x + y
) z = f (x + y) + f (x − y)
x ) z = f (xy) + g y
=
= ∂u ∂t
S M $ 5&6 A8
&F z = f (x + g(y)) S M $ 5&6 AJ
∂u ∂x
=
∂z ∂z ∂z + = ∂x∂y ∂x ∂y y y + xg z = yf x x ∂ z z ∂z ∂ + y = x + xy ∂x∂y ∂x ∂y
&F
∂z ∂z = yz + xy ∂x ∂x
= = =
∂ ∂u ∂x ∂x ∂ { f (x − at) + g (x + at)} a ∂x a {f (x − at) + g (x + at)} ∂ ∂u ∂t ∂t ∂ {−af (x − at) + ag (x + at)} ∂t a f (x − at) + a g (x + at) a
z = x + f (xy) x= &0 3&3 S t 6 &0 A .8 *0&0 z y x R0 f . q' 50 Y0 . x 0 ([" O $ $ &" m@ $ E S t 6 &0 *!' Z#. $ y ∂z = ∂x
+ yf (xy) ,
∂z = + xf (xy) ∂y
Z#.F (0 $M mn' Y0 . $ R# R0 . f (xy) &' ∂z ∂z =x+y *x ∂x ∂y x= &0 3&3 S t 6 &0 A4 .8
x x z = xf + yg y y
*0&0 z y x R0 g f . q' 50 Y0 . x 0 ([" O $ $ &" m@ $ E S t 6 &0 *!'
}
( , − , −)
∂z Y\ .$ . ∂x . \ xyz = x + y S A *0&0
>.&[, . \ x +y +z = xy+yz+ M . T .$ AH ∂z ∂z + x + y + z (, , −) Y\ .$ . xyz ∂x ∂y *M [&
t 6 E ,&1 9*H !VO x = sin t f = zyx M x= A& '() $ Z\ " !VO 0 >. T R# .$ *z = ln t y = cos t df dt
d (ln t) (cos t) (sin t) dt
= =
t
cos t sin t − ln t cos t sin t + ln t cos t sin t = A
A$ O ) % *H !VO 0C AI*H C = N+M 0 9Z#. $ df dt
=
∂f dx ∂f dy ∂f dz + + ∂x dt ∂y dt ∂z dt zy x (cos t) + zyx (− sin t) + y x ( /t)
=
ln t sin t cos t − ln t cos t sin t
=
+ cos t sin t( /t) = A
*y =
/t
x = ln t f = arcsin (x/y) M x= A, .8 >. T R# .$
d ln t + df = {arcsin (t ln t)} = , =A dt dt − (t ln t)
9Z#. $ t 6 E ,&1 N+M 0 M B&' .$ df dt
= =
∂f dx ∂f dy + ∂x dt ∂y dt " # /y , t − (x/y) "
# − −x/y =A + , t − (x/y)
y = s/t x = st f =
∂f ∂t
=
+ x + y + z
M x= A .8 >. T R# .$ *z = s ln t
∂f ∂x ∂f ∂y ∂f ∂z + + ∂x ∂t ∂y ∂t ∂z ∂t
∂ z [& . ∂x∂y >.&[, xyz = x + z M . T .$ A8 *M
x + y + z
=
M M x= AJ ∂ z ∂z * ∂x ∂x ("0 Y
x + y + z
f
∗
M ax + by + cz = f x + y + z M x= A7 9M (0&f * 0&f $ , c b a ( #n<\ 6 U0& (cy − bz)
∂z ∂z + (az − cx) = bx − ay ∂x ∂y
WP' /XF9 /DY $+ .$ O&0 R 0 R E e0 g f S M Z#. $ $&0 ) E >. T uL0 R# .$ f g(x)!! = f g(x)! g (x) >. T R# (+"1 *ZM KY v Q e0 0 . = R# M *$ + "# E&0 5 #E >. T 0 . H**H q1 E A8C
x x &v E #n<\ 6 U0& f S $ t &v E #n<\ 6 U0& & x E N# $ 0 x · · · t t &v E N# 0 ([" f &F O&0 t · · · t ?U0 ( #n<\ 6 t · · · i
n
m
m
∂f ∂f ∂x ∂f ∂x ∂f ∂xn = + + ···+ ∂ti ∂x ∂ti ∂x ∂ti ∂xn ∂ti
AI*H C
(B 0 *Z & C B *T: . = R# 0 ZM $& Z /&
. $ + E = R# R O .$ *$ O ) GB *H !VO S MC $ #n<\ 6 c t 0 ([" f &F O&0 #n<\ 6 z = θ(t) ?U0 (
y = ψ(t) x = ϕ(t) u = f (x, y, z)
∂f dx ∂f dy ∂f dz df = + + dt ∂x dt ∂y dt ∂z dt
A*H C
z
y x 0 ([" O $ $ Y0 . R=@ E S t 6 &0 *!' 9Z#. $ s = y/z t = x/y x= &0 ∂u ∂x ∂u ∂y ∂u ∂z
= = =
∂f ∂t ∂f ∂t ∂f ∂t
∂f ∂s ∂f ∂t ∂f ∂f + = + = ∂x ∂s ∂x y ∂t ∂s y ∂t ∂t ∂f ∂s x ∂f ∂f + =− + ∂y ∂s ∂y z ∂s y ∂t ∂t ∂f ∂s y ∂f ∂f ∂f + = − =y ∂z ∂s ∂z ∂t ∂s z ∂s
Z#. $ 4 Y0 . E Z#. $ Y0 . E R# 0&0 z ∂u =− 4$ B$&U .$ >.&[, R# . nS&) &0 * ∂f ∂s y ∂z Z#S
∂f ∂u = y ∂t ∂x
# "
x z ∂u x ∂u z ∂u ∂u ∂u =− y − =− − + ∂y ∂x z y ∂z y ∂x y ∂z y
V# x
∂u ∂u ∂u + +z = ∂x ∂y ∂z
E N# 0 . t 6 E ,&1
0 $
9M t\ #E $.
df ) f = x sin (yz) , x = t , y = t , z = t , =? dt √ ) f = y x + arctan z , x = sin t, y = cos t , x df z = x , =? dt s ∂f =? ) f = x + y , x = st , y = , z = s ln t , x+z t ∂s , ) f = x + y + z , x = uvw , y = u , v w ∂f z= , =? u ∂u , ) f = arctan x + y , x = sin t , y = cos t , df =? dt
)
f = x/ + y / , x = ln t , y = et ,
df =? dt
s ∂f =? f = x sin y , x = st , y = , t ∂t √
) f = x √ y + y x , x = s cos t , y = t cos s , ∂f =? ∂s y z , u = (xy ln x) + xf z x x ∂u ∂u xy ∂u +y +z =u+ x ∂x ∂y ∂z z y z u = xn f , xα xβ ∂u ∂u ∂u + αy + βz = nu x ∂x ∂y ∂z
)
M (0&f
M (0&f
x= &0 A
x= &0 AI
=
∂f ∂s
= =
x y + (s) + + x + y + z x + y + z s z ++ x + y + z t ∂f ∂x ∂f ∂y ∂f ∂z + + ∂x ∂s ∂y ∂s ∂z ∂s x
y
+ (t) + + x + y + z x + y + z
−s t
t
z (ln t) ++ x + y + z
*y = r sin θ x = r cos θ z = f (x, y) M x= A .8 >. T R# .$
∂z ∂θ
∂z ∂x ∂z ∂y + + = ∂x ∂r ∂y ∂r r
∂z ∂x ∂z ∂y + + ∂x ∂θ ∂y ∂θ r
∂z ∂z cos θ + sin θ = ∂x ∂y
∂z ∂z r cos θ + − r sin θ + ∂x ∂y r
∂z ∂z = + ∂x ∂y
∂z ∂r
x = st O&0 z y x E U0& f M . T .$ A .8 50 . s 0 ([" f gc) t 6 z = t/s y = s/t 9$ + [& 5 f 5$ 0 oL6
∂f ∂s
= =
∂f ∂x ∂f ∂y ∂f ∂z . + . + . ∂x ∂s ∂y ∂s ∂z ∂s ∂f ∂f ∂f −t . (t) + . + . ∂x ∂y t ∂z s
$ 5&6 u = f (y − z, z − x, x − y) M x= A4 .8 ∂u ∂u + + = * ∂u ∂x ∂y ∂z R# .$ *c = x − y b = z − x a = y − z ZM x= *!' 9>. T
∂u ∂a ∂u ∂b ∂u ∂c ∂u ∂u ∂u + + = + + ∂x ∂y ∂z ∂a ∂x ∂b ∂x ∂c ∂x
∂u ∂a ∂u ∂b ∂u ∂c + + + ∂a ∂y ∂b ∂y ∂c ∂y
∂u ∂a ∂u ∂b ∂u ∂c + + + ∂a ∂z ∂b ∂z ∂c ∂z
∂u ∂u ∂u ∂u ∂u ∂u + − − + + = ∂a ∂b ∂c ∂a ∂b ∂c
∂u ∂u ∂u + + + − ∂a ∂b ∂c =
Y0 . u = f (x/y, y/z) E 3&3 S t 6 &0 A5 .8 *0&0 u z y x R0 f . q' 50
(f , f , · · · , f ) *Z$ 5&6 ΔΔ (x $&+ &0 $ + G#U , x , · · · , x ) m
n
0 R E O& F = (f , · · · , f ) S $ · · · f f U#C 5F B e0 E N# O&0 R .$ F 0 M W 0 0 F (X ) >. T R# .$ *O&0 #n<\ 6 Af *( X n
m
m
m
R0 M W M $ O ) 78 $ L &F n = m S *O&0 m × n ]#& N# (f , f , · · · , f ) *Z$ 5&6 ∂∂ (x $&+ &0 . F jk , x , · · · , x )
r
n
z = t y = s x = st ZM x= A& ⎡ ∂x/∂s Δ (x, y, z) ⎣ = ∂y/∂s Δ (s, t) ∂z/∂s
'() $
>. T R# .$
⎤ ⎡ ∂x/∂t t ∂y/∂t ⎦ = ⎣ s ∂z/∂t
s
t
⎤ ⎦
.$ *z = uvw y = u − w x = uv ZM x= A, .8 >. T R# ∂ (x, y, z) ∂ (u, v, w)
=
=
∂x/∂w ∂y/∂w ∂z/∂w −w = −u v uv
∂x/∂u ∂x/∂v ∂y/∂u ∂y/∂v ∂z/∂u ∂z/∂v v u vw
u
uw
c x = uvw S M x= A& 0 $ $ v u 0 ([" y x R0 M W ("0 Y y = u − v + w *w *c = wu v b = vw u a = uvw M x= A, *w v u 0 ([" c b a R0 M W 5& $ ("0 Y
Z#. $ & \ 6 $ ) x= 0 % $ ! Δ (x , · · · , x ) =I n × n&+ ]#&
Δ (x , · · · , x ) n
)
n
n
Δ (z , · · · , zl ) Δ (y , · · · , ym ) Δ (z , · · · , zl ) = • Δ (x , · · · , xn ) Δ (y , · · · , ym ) Δ (x , · · · , xn ) − Δ (y , · · · , yn ) ) Δ (x , · · · , xn ) = Δ (y , · · · , yn ) Δ (x , · · · , xn )
)
= Z+U E ,&1 . A;C Y0 . V# ^- & y 0 ([" & z S ,&1 R# t0&Y *# S t 6
&F O&0 #n<\ 6 & x 0 ([" c & y O&0 #n<\ 6
i
i
i
i
r
− r
M (0&f u = f (r − s, r + s) x= &0 A ∂u = ∂y∂x
F : Rn → Rm
m
= f x + y , xy
x= &0 A ∂w ∂w ∂w + 9M [&
+ ∂x∂y ∂x ∂y (0&f y = e sin θ x = e cos θ4u = f (x, y) 5x= &0 A; ∂u ∂u ∂u ∂u + = e + 9M ∂x ∂y ∂r ∂θ . O $ $ >.&[, w
#
∂ u + ∂ u − ∂ u ∂r∂s ∂r ∂s
"
v = x − y u = x + y w =f (x + y, x− y) x= &0 A ∂f ∂f ∂w ∂w × = − 9M (0&f ∂x ∂y ∂u ∂v ( #n<\ 6 U0& f V# x= &0 AH u = f (y + z − x, z + x − y, x + y − z) ∂u ∂u ∂u + + = 9M (0&f ∂x ∂y ∂z R0 g f . q' 50 Y0 . 3 .$ 3 \ 6 &0 90&0 u z y x ) u = f
x z ! , y y
) u = x f (x + y , z)
) u = f
x! y x + ,y + z z
) u = f (x + y) + g(x − y)
) u = f
x+
! y
+g y+
! z
) u = f (x − y, y − z, z − x)
GNZ (+ *F
M x= ( t 6 E ++U 0 M W !VO 0 . F (O& *Z & (O& . U0 RQ
: Rn → Rm
F (x , · · · , xn ) = f (x , · · · , xn ) , · · · , fm (x , · · · , xn )
" v −n U0 f · · · f f M (O 5
* O & F &B
O& F = f, · · · , f ZM x= $ M ( #n<\ 6 F Zg S . T .$ *O&0 R 0 R E M $$S (= A & m × n ]#&
m
m
m
lim
X→X
n
F(X) − F(X ) − A(X − X ) = X − X
5&6 F (X ) $&+ &0 & X .$ F . A ]#&
9>. T 0 . F !k *Z$
⎡
⎤ ⎡ f ∂f /∂x ⎢ f ⎥ ⎢ ∂f /∂x ⎢ ⎥ ⎢ ⎢ ⎥=⎢ ⎣ ⎦ ⎣ fm ∂fm /∂x
***
***
∂f /∂x ∂f /∂x
***
∂fm /∂x
⎤ ∂f /∂xn ∂f /∂xn ⎥ ⎥ ⎥ ⎦ · · · ∂fm /∂xn ··· ···
***
=
×
−xy (x − y) xy − y − s
=
− t xy − x
*Z#. $ . A;C &" #n<\ 6 & x 0 ([" c & z q1 R# t0&Y * & 5. (O& q1 . AC &" O&0 T GB&L & x 0 ([" & y R0 M W 5& $ S 5 & y X"' 0 . & x AU- !VO 0 !1 'C &F (O& #$ 5&0 0 *Z#. $ . AC &" ?U0 $ + 5&0 *( #n< VU (x , · · · , x ) → (y, · · · , y ) Z#. $ & \ 6 $ ) x= 0 MC & $ i
s −t s t
×
i
i
i
−xy (x − y)
sxy − sy − ts ty − txy − t s xy − s − s x ts + t xy + t x U# ( _&0 ]#& E (, ) #F.$ ∂y/∂t .$ ∂y −ts + t xy + t x = ∂t −xy (x − y) t s + xyt + tx = − xy (x − y)
y = ρ cos ϕ sin θ x = ρ cos ϕ cos θ M x= A .8 >. T R# .$ AM >&j L vC z = ρ sin ϕ
0 $
v = x + y + z u = x + y + z M x= A *∂y/∂v ∂x/∂v ("0 Y *w = x + y + z z = u/vw y = u − w x = uvw M . T .$ A; ∂x/∂t [& ("0 Y w = t/s v = s/t u = st *∂y/∂s x = arcsin(u/v) f = x − yz M . T .$ A w = −t v = t u = t z = uvw y = tan(u/w) *df /dt ("0 Y
*v = cos (x + y) + y/x u = x + y M x= A *u 0 ([" y x gc) >&\ 6 ("0 Y
v = sin (xy) u = x − y f = x + y M x= AH *M [& . df /dt >. T R# .$ *v = sin t u = t *A[Y1 >&j L C y = r sin θ x = r cos θ M x= A8 *M [& . θ r 0 ([" y x R0 M W 5& $ . T .$ " v u E U0 y x (S 5 F AJ *v = x /y − /y + x u = arcsin (x/y − x) M Q
i
n
)
∂ (x , x , · · · , xn ) = ∂ (x , x , · · · , xn )
)
∂ (x , x , · · · , xn ) = ∂ (y , y , · · · , yn )
x
= uv w
∂ (x, y, z) = ∂ (ρ, ϕ, θ) cos ϕ cos θ −ρ sin ϕ cos θ −ρ cos ϕ sin θ = cos ϕ sin θ −ρ sin ϕ sin θ ρ cos ϕ cos θ sin ϕ ρ cos ϕ = sin ϕ −ρ cos ϕ sin ϕ cos θ − ρ cos ϕ sin ϕ sin θ −ρ cos ϕ ρ cos ϕ cos θ + ρ cos ϕ sin θ = −ρ cos ϕ sin ϕ − ρ cos ϕ = −ρ cos ϕ
i
÷
n
∂ (y , y , · · · , yn ) ∂ (x , x , · · · , xn )
M M x= A& '() * $ >. T R# .$ w = t v = t u = t y = (u + v)/w
Δ (x, y) Δ (u, v, w) = Δ (u, v, w) Δ (t) ⎤ ⎡ v w uvw uv w ⎣ t ⎦ = /w /w −(u + v)/w t ⎡ ⎤ v w + tuvw + uv w Δ (x, y) = ⎣ w + tw − t u − t v ⎦ = Δ (t) w
("0 Y *v = xy − x/y u = x + y M x= A, .8 *∂x/∂u Z#. $ 8**H q1 E (+"1 0 ) &0 *!' Δ (x, y) = Δ (u, v) =
Δ (u, v) Δ (x, y)
=
x
y
−
y − /y x + x/y x + x/y −y x − y + y + x /y −y + /y x
U# ( _&0 ]#& ( ∂x ∂u
, )
B E >.&[, ∂x/∂u .$
x + x/y x − y + y + x /y
= =
v
−
xy + x x y − y + y + x
M x= A .8 *∂y/∂t ("0 Y *v = s + t u = s − t &0 *(" $ 5 v u E U0 . y x B$&U $ E *!' *(" $ 5 t s E U0 . v u c F B$&U $ 0 ) ?U0 *O&0 t s E U0 y x ]3 = yx − x u = xy − y
− Δ (x, y) Δ (u, v) Δ (u, v) Δ (x, y) Δ (u, v) = = Δ (s, t) Δ (u, v) Δ (s, t) Δ (x, y) Δ (s, t) − s −t xy − x x = s t y xy − y
z
=
5 z X"' 0 z ∂x ∂z
=
∂y ∂z
=
*Z
=
x − y
Z
E #&"+ N# .$ . y x R# 0&0 ?U0 *$ + 5&0
z y ∂ (f, g) − z − − x y xy xz ∂ (z, y) ! = ! = ∂ (f, g) z x − y x x − y ∂ (x, y) x z ∂ (f, g) − x − − y z yz xy ∂ (x, z) ! = ! = ∂ (f, g) z x − y z x − y ∂ (x, y)
= ( , − , )
&F
x + y + z =
M x= A, .8 M $ O x= S
f = x + y − z −
∂f = x = ∂x Z Z
9?U0 *(" $ 5 z y E U0& . x nB ∂x ∂y
∂f /∂y y = − =− ∂f /∂x x
∂x ∂z
= −
⎧ f (y , y , · · · , ym , x , x , · · · , xn ) = c ⎪ ⎪ ⎪ ⎨ f (y , y , · · · , ym , x , x , · · · , xn ) = c ⎪ ⎪ ⎪ ⎩
***
fm (y , y , · · · , ym , x , x , · · · , xn ) = cm
M x= A .8 ∂y ∂z =− * ∂x ∂y ∂z ∂x Z#. $ *H*H q1 0 ) &0 *!' = c
=
∂f /∂y ∂f /∂z ∂f /∂x − . − . − ∂f /∂x ∂f /∂y ∂f/∂z
=
(− ) = −
*xy + y = uv + v x + y = u + v M x= A .8 *∂x/∂u ("0 Y
ZM x= *!' f = x + y − u − v , g = xy + y − uv − v
>. T R# .$
∂x ∂u
e0& 5& y0 . E $& e0 =U k# . & O. E V# Y0 . &a 5 , 0 *O&0 &v v e0 & *M =U x E U0& 5 , 0 . y x + y = x $ O h'? H*H !VO .$ M . @ 5&+ &) + .$ U0& x E #&"+ N# .$ . y 5 + &F x = ± S Y# O pO RU uL0 R# E m (" $ x v E *$ + G#U . +- e0 5 0 & F @ M ( m+ n &0 B$&U m M x= UT a2 $ $
∂f /∂z z = − z =− ∂f /∂x x x
M $ 5&6 *f (x, y, z)
∂x ∂y ∂z . . ∂y ∂z ∂x
*>< I & ++
= − =
∂ (f, g) ∂ (u, y) = − ∂ (f, g) ∂ (x, y) =
−u y −v x + y =− x y y x + y
ux + uy − vy x + xy − y
∂z
[& . ∂x xy z = x + y + z M . T .$ A .8 *M z &F f = xy z − x − y − z S M ( RO. _ *!' ∂f /∂x y z − ∂z =− =− ∂x ∂f/∂z xy z −
}
+- e0& 9H*H !VO M x= *O&0 $, & c e0& & f M O&0 O $ $ Y = (y , y , · · · , y ) X = (x , x , · · · , x ) Y\ .$ f * * * f f e0 M Z = (Y , X ) V# 0 =&M 4E_ pO >. T R# .$ *#n<\ 6 Z 0 . y * * * y y 5 0 X Y\ E #&"+ N# .$ M ( 5F $ + G#U x * * * x x E U0 !VO ∂ (f , f , · · · , f ) e0 y * * * y y ?U0 * ∂ (y, y, · · · , y ) = " x * * * x x E . + i
i
m
n
m
m
n
m
m
m
Z
n
∂ (f , f , · · · , fm ) ∂yi ∂ (y , · · · , yi− , xj , yi+ , · · · , ym ) =− ∂ (f , f , · · · , fm ) ∂xj ∂ (y , y , · · · , ym )
x + y + z = M x= A& '() $ $ y x 5 >. T R# .$ *Z = (−, −, ) xyz = g = xyz f = x + y + z x= &0 #E (" $ z E U0& . Z#. $ ∂ (f, g) ∂ (x, y) Z
x = yz
xz Z
y
X
= (− , , − )
xy z = M . T .$ A ∂ z * ∂x∂y [& ("0 Y
X
∂z ∂x
∂ ∂x
=
E)8
@.6
5fC)
i= % $
ZM x= Y[ @1Cc) + 9fC) < a2 y e0& x v X"' 0 .&[, f x, y, y , y , · · · ! = S *A· · · y = y y = y C ( x 0 ([" y >&\ 6
v X"' 0 y x 5&0 X 0 y = ψ (t, u) x = ϕ (t, u) E ,&1 N+M 0 O&0 u = u (t) #) e0& t #) 9&a 5 , 0 #E (O 5 u t X"' 0 . E t 6
x
xx
yx
=
yxx
= =
xx
x
yt tt ψt + ut ψu ψt + ut ψu = = xt tt ϕt + ut ϕu ϕt + ut ϕu ψt + ut ψu (yx )x = (yx )t tx = xt ϕt + ut ϕu t (ψtt + utt ψu + ut ψut ) (ϕt + ut ϕu ) (ϕt + ut ϕu ) − (ϕtt + utt ϕu + ut ϕut ) (ψt + ut ψu )
y t tx =
!" #$ B$&U A& '() % $ "# E&0 t #) v y e0& X"' 0 x = e x= &0 . *M R# 0&0 *y = u x = e Z#. $ *8*H &0 "#&\ .$ *!' x y +xy +y =
t
t
y x = y t tx =
U# *x y
(yx )t = t xt e
yt
=
(yx )x =
=
ytt x − xt yt ytt − yt = x x x
x
t
.$ *$$S !#[ y + y = !VO 0 . Mn B$&U
+ xy + y = ytt − yt + yt + y = ytt + y tt
4
!
y z ∂z
xy z −
∂x 5 ∂z y z − − y z + xy z ∂x
*Z$ . 1 [1 &" E ∂z/∂x &0 ( =&M &' 0 $ $
("0 Y *xy+yz+zx = xyz = M x= A *dy/dz dx/dy dz/dx [&
*xyz = z + xy + yz + xz = M x= A; *dx/dz dz/dx ("0 Y
∂z/∂x ("0 Y x arcsin (y + z) = M x= A *∂y/∂x ∂x/∂z ∂x/∂y [& ("0 Y xyz + sin (xyz) = M x= A *∂ z/∂x∂y ∂ z/∂x &F f (x, y, z) = c S M M (0&f AH ∂z ∂x∂y
4
=
∂ f ∂f ∂f ∂f − ∂x∂z ∂y ∂z ∂x∂y
∂f ∂z
∂ f ∂f ∂f ∂ f ∂f ∂f + − ∂y∂z ∂x ∂z ∂z ∂x ∂y
5
÷
∂f ∂z
?U0 u + v = ln (x + y) ZO&0 O $M x= A8 *∂y/∂v ∂u/∂x ("0 Y *uv = sin x + y *u +v = x/y u +v = xy z = x +y M x= AJ *∂z/∂v ∂z/∂u ("0 Y
∂ z [& ("0 Y A7 M B&' .$ ∂x∂y
∗
f x + y + z, x + y + z =
M @O 0 ∂z/∂y ∂z/∂x [& ("0 Y A
yt yt yt = t = xt e x
nB yxx
xy z −
S' S& 0+
<
∂z ∂x −
=
B +U C !" #$ >_$&U ` - 0 E uL0 R# 5F E 5 UB&Y .$ .$ ( A#c) >&\ 6 &0 *O L $& U0 & 6L0 .$ #E $M h mT
.$
f (x − y, y − z, z − x) =
[& ("0 Y f (xz, yz) = Z 0 M . T .$ AI *∂ z/∂x Z 0 M 0&0 B&'.$ . dy/dz dx/dz A g xyz, x , z = f xyz, x , y =
Zg 0 M ( (.$ F f (x, y, z)
M x= A;
= c ∂x ∂y = ∂y ∂x
*"# 0 t = ln |x| v X"' 0 . x y
B$&U A B&' .$ t X"' 0 . − x !y − xy + y = A *x = cos t M "# 0
= y
*y = u/ cos t x = tan t ( t E U0& u M x= AH *"# 0 E&0 t u X"' 0 . + x y = y B$&U
B$&U .$ . v e0& u\ A, .8 *M x , &0 R# 0&0 y = t x = u ZM x= #&0 #$ 5&0 0 *!' 9Z#. $ *8*H 0 ) y − xy + y = x
B$&U *yt = u xt = ( t E U0& u M x= A8 *"# 0 E&0 t u X"' 0 . y − x y + xy = y
( + y ) − y y =
B$&U M M (0&f
v e0& v 0
A7
$+ !VO v
5F .$ M >. T 5&+ 0 U#C *A$ O !#[ θ r X"' 0 . (xy − y) = xy( + y ) B$&U A x= θ E U0& r y = r sin θ x = r cos θ M "# 0 *$ O
. y = f (x)
B=f
y
= yx =
zv
= zx xv + zy yv = ϕv zx + ψv zy
zuu
= (zu )u = (zu )x xu + (zu )y yu
y
= yxx =
=
t + uu (t) + (u) ut = (u) + (t) ut u + tu
(u + tu )
() + (u) u + u (u + tu )
− (u + tu + u ) ((t) + (u) u ) u − t u + tu (u + tu )
!VO 0 . x B$&U .$
( y x !\ "
(u + tu − t u )
(u + tu )
−
(t + uu) u + tu
= ut
Z#. $ .$ *(O 5
y
= zx xu + zy yu = ϕu zx + ψu zy
x = ut >&- y − y = x B$&U .$ A .8 *( O x= t v E U0& u M M $. . y = u + t "# E&0 t #) v u #) e0& X"' 0 F #$ 5&0 0 *M Z#. $ *8*H & B = 0 ' &0 *!'
" ∂z ∂z ∂ z ∂ z ∂ z , , , x, y, z, , ,··· ∂x ∂y ∂x ∂x∂y ∂y
zu
x + x (x ) + y (x ) = x (x )
9fC) U] a2 <
x X"' 0 z #c) >&\ 6 z y x X"' 0 .&[, v u #) !\ " &v X"' 0 y x M x= *O&0 R# .$ * O =U y = ψ (u, v) x = ϕ (u, v) !VO 0 u X"' 0 . B >.&[, t 6 E ,&1 N+M 0 >. T _z&a #E (O 5 v
]3 u = x t = y 5 Q *$$S !#[
E)8 .6 E1CD) 5fC) i= % $
#
− u ut + t
(ut )
utt + u (ut ) + t (ut ) = u (ut )
DZ& = AI *"# 0 [Y1 >&j L .$
&v E U0& z M x=
utt
.$
!VO 0 . Mn B$&U ]3
κ = y /( + y )/
=
∗
a u + b t + c a u + b t + c , y= x= au + bt + c au + bt + c a b c a b c = a b c u ( + u ) − u u =
yxx
+ ut = + ut ut (yx )t utt −utt = =− xt ut (ut ) (ut )
y − xy + y = yxx − xyx + y = −
=
Ay x= &0 . y = ]M B$&U AJ ((x − a)(x − b)) x − a y E U0& 5 U0 u .& &0 u = x − b t = ln x − b *M !#[ t
([" y
yx
t u − tu − u + (t + uu ) (u + tu ) = ut (u + tu )
0 % $
t
X"' 0 x = e x= &0 . x y t
− xy + y =
A
*"# 0 B$&U ( v t = xy e0& x V# x= &0 A; *M "# E&0 . y + x y + y =
xv = y 5F .$ M xz
x
+ x + y + z + u = z + x + y + z
+ yzy = z +
u = y + z M (x + z) z
*
x
+ (y + z) zy = x + y + z
*v = x + z
A
=
ϕu (ϕu zx + ψu zy )x + ψu (ϕu zx + ψu zy )y
=
ϕu ((ϕu )x zx + ϕu zxx + (ψu )x zy + ψu zxy ) +ψu (ϕu )y zx + ϕu zxy + (ψu )y zy + ψy zyy
AH =
+ϕu zy (ux ψuu + vx ψuv ) + ϕu ψu zxy
hDJ 2 .6 a2 + 5fC) i= & % $
>.&[, S # B=f
#) e0& v u #) &v $ 0 .& .$ z = η (u, v, w) y = ψ (u, v, w) x = ϕ (u, v, w) !VO 0 (O 5 w v u X"' 0 . B &F O&0 O KY
& $ E ?za #E
*v = x − y u = x + y M x= A& '() $ % $ . 5F ]< O v u X"' 0 . ∂z/∂x = ∂z/∂y B$&U
*M !' Z#. $ B&" >&- 0 ) &0 *!' ∂z ∂y ∂z ∂x
zx (ϕu + ϕw wu ) + zy (ψu + ψw wu ) = ηu + ηw wu zx (ϕv + ϕw wv ) + zy (ψv + ψw wv ) = ηv + ηw wv
*$M [& w w v u X"' 0 . z z 5
∂z ∂z +x = (y + x) z B$&U .$ A& y '() * % $ ∂x ∂y *z = uv + vw y = /u + /v x = u + v M x= B$&U ( #) e0& w #) &v v u V# x= &0 *"# 0 w v u X"' 0 . Z#. $ J*8*H 0 ) &0 *!' v
u
zx ((u) + ()wu ) + zy
y
x
− /u + ()wu =
zx ((v) + ()wv ) + zy
− /v + ()wv = zy
= (u + w) + (v)wv
Z#. $ "#& !VO 0
u v
− /u − /v
zx zy
=
v + vu u + v + vv
=
zy
=
=
∂z ∂u ∂z ∂v ∂z + = − ∂u ∂y ∂v ∂y ∂u ∂z ∂u ∂z ∂v ∂z + = + ∂u ∂x ∂v ∂x ∂u
= zu ux + zv vx x = zu + x + y = zu uy + zv vy y = zu − x + y
x
zv = x + y
v (u + v + wv ) − u (v + vwu ) v − u u v (u + v + wv ) − u v (v + vwu ) v − u
9Z#. $ O $ $ B$&U .$ . nS&) E ]3
+ v (u + v + wv ) − u (v + vwu ) u v + u + v u v (u + v + wv ) − u v (v + vwu ) =
= u −v u +v + + (uv + vw) u v
∂z ∂v ∂z ∂v
x (zu + zv ) x + y
y y (zu − zv ) zv = x + y x + y
Z$ . 1 B$&U .$ ]3
R# 0&0
zx
=
% ) M Z. ∂z/∂v = B$&U 0 & # 5$ $ . 1 0 0 &0 U0& f M z = f (x + y) #$ 5&0 0 *( z = f (u) 5F *O&0 LB$ + ! *v = arctan(y/x) u = ln x + y M x= A, .8 ∂z ∂z − (x − y) = !" #$ B$&U
u X"' 0 . (x + y) ∂x ∂y *"# 0 v Z#. $ B&" >&- 0 ) &0 *!' zx
= (v) + (v)wu
+ψu zy (uy ψuu + vy ψuv ) + ψy zyy
"
w = w(u, v)
+ψu zx (uy ϕuu + vy ϕuv ) + ϕu ψu zxy
O[ 4R @1Cc) + a2 ,5fC)
∂z ∂z ∂ z ∂ z , , ,··· x, y, z, , ∂x ∂y ∂x ∂x∂y
ϕu zx (ux ϕuu + vx ϕuv ) + ϕu zxx
(x + y)
x (zu + zv ) y (zu − zv ) − (x − y) = x +y x + y
O&0 z = f (u −v) 5F
+, % ) M z + z = + *z = f ln x + y ! − arctan(y/x) U# #) &v 5 , 0 v u %&L &0 0 % % $ 9M "# E&0 . #E >_$&U E N# *v = x + y u = x M yz − xz = A *v = y/x u = x M xz + yz = z A; + c u = ln x 5F .$ M xz + + y+ z = xy A *v = ln y + + y u
x
v
x
y
x
y
y
(O 5 #E !VO 0 . O $ $ B$&U nB v
#
u
u − wu − v
u wuu v
"
# +
u wu v+ v
" =
v
e0& R# 0&0 *$ O $& w = −/u !VO 0 M M (" g e0& w = /u + f (v) M (" B$&U % ) U# *w = − /u + uf (v) + g (v)
f
uu
u
∂z ∂z + = x + yz B$&U A, .8 &0 . (xy + z) ∂x − y ∂y e0& X"' 0 w = xy − z v = xz − y u = yz − x x= *"# 0 v u #) &v w #) 9Z#. $ B&" >&- 0 ) &0 *!'
Δ (x, y, z) Δ (u, v, w)
= ⎡
− ⎣ z y
= x y z = xy + − f (x) − g(x) x y
* LB$ e0 g f M (
Δv (u, v, w) Δ (x, y, z) z − x
− ⎤− y x ⎦ −
× x + y + z + xyz − ⎡ ⎤ − x xy + z xz + y ⎣ xy + z − y yz + x ⎦ − z xz + y yz + x
=
}
9$M [& 5 t#@ $ 0 . z ?U0 v
zx xv + zy yv
= zv
= (xy − w)v
$ t 6 98*H !VO
=
X"' 0 . O $ $ >_$&U E N# 0 % $ 9"# 0 v u #) &v w #) e0& v
=
/y − /x u = x
y = ve x = ue M w
w
M x z + yz = z A *w = /z − /x x
y
(xzx ) + (yzy ) = z zx zy
*z = we
A;
w
e0& X"' 0 . xu + yu + zu = u + xy/z B$&U A M "# 0 B&' .$ γ β α #) &v w #) *w = u/z γ = z β = y/z α = x/z x
y
z
&0 B$&U *w = z/x v = y/x u = x + y M x= A ∂z ∂z ∂z + X"' 0 . ∂x − = gc) >&\ 6
∂x∂y ∂y *M "# E&0 v u #) &v w #) e0& B$&U *w = x + y + z v = x + y u = x M x= AH ∂z ∂z y ∂z + − + = ∂x∂y x ∂y ∂x
*M "# E&0 v u &v w #) e0& X"' 0 .
(xy + z) zx +
− y zy
x + y + z + xyz − − y x (xy + z) y + − wv x + y + z + xyz −
.$
− y zy = wv = (yz + x) − x + y + z + xyz −
(xy + z) zx +
]3 ( yz + x 0 0 _&0 &" |Q (+ x= t0&Y & 5&0 0 *w = f (u) M $. $ $ ) f e0& U# *w = "#&0 *( B$&U % ) xy − z = f (yz − x) #$ ∂ z ∂z = B$&U A .8 v = x u = x/y x= &0 . y + ∂y x ∂y E&0 v u #) &v w #) e0& X"' 0 w = xy − z *M "# *z = v /u y = v/u x = v B&" >&- 0 ) &0 *!' $ + [& 5 !VO $ 0 . z v
u
v v v zx xu + zy yu = − wu ⇒ zx − zy = − − wu u u u
[& #E t#@ $ 0 . z 5 M *z yu
zxy xu + zyy yu =
u w
− uv z
v
yy
u
=
u wu v
R# 0&0 ZM
u wuu v
R# 0&0
y
=v+
+
u wuu v
u v
wu +
u u zyy = − wu − wuu v v
0 y x &v u# c= j1 RB " O&0 X = (, ) R# ) 3 .$ M M oL6 O&0 O $ . : ([" *O $&# % >&UY1 $ U .$ v Q (& f = x y − y e0& $ t 6 E >.&[, B&" &3 *!' 9U# O&0 v = −(−,−→) $ X = (, ) Y\ .$ Dv f (X ) =
−−−−−−−−−−−→ xy, x − y
•
X
=
−−−→ −−−→ (, ) = (, ) •
v v
=
Z+j h $. RO& M (U- 0 ) &0 R# 0&0 % >&UY1 u# c= d,&0 #E ( $ [ (.$ O {&L ( O (, &0 E (MO N# 5E $ UB&Y .$ M x= A .8 (MO $ UB&Y E ]3 ( O $& z y x &v
M (U- S *( O =U f = x − yz >. T 0 O&0 O $ Z+j # >& O&0 X = ( , , − ) (MO $ v 5 c $ u# c= − : : ([" &0 . &v & *M oL6 . Z+j R# ) E ]3 (MO Y\ .$ f = x − yz $ t 6 E >.&[, B&" &3 *!' *O&0 v = −(−−−−,−−,−→) . $0 & . .$ X = ( , , − ) #$ >.&[, 0 Dv f (X ) = =
−−−−−−−−→ (x, −z, −y)
v v X −−−−−−−→ −−−−−−−→ (− , , ) − (, , −) • √ = √ •
*$ O (MO 5E X) $ 0 &[ O h $. Z+j U# .$ X Y\ .$ . f e0& $ t 6 0 & $ 9M [& v . $0 $ ) f = x arctan (y/z) , X = (, , ), −−−−−−−−→ v = (− , , −)
, −−−−−→ ) f = x + y , X = (− , ) , v = (, −)
)
f = ln |x + y + z |, X = ( , − , ) , −−−−−−−→ v = (, −, )
)
−−−→ f = xy − y , X = (, ) , v = (, )
)
f = xy + yz + zx, X = ( , − , ) ,
−−−−−−−→ v = (, , −) −−−−−→ ) f = x sin (x/y) , X = (, /π) , v = (, −)
' WP' 2+ E *X ∈ D ( v Q U0& u = f (x) M x= `O &0 y Z U#C $ O :.& `&UO (#& 0 X Y\ oL6 5 v V# $& . $0 N# &0 . `&UO *AX E 0 y Z R# .&3 B$&U *AN# @ &0 U# V#C $ + *$ O ) 8*H !VO 0 * ≤ t M ( t → X + tv !VO & u = f (X) e0& > v 5 c & $ (M' 0 `O v = o . $0 $ .$ X Y\ E X w M $&+ &0 & v & . .$ X .$ f $ t 6 . M
_&0 d0 0 h *Z$ 5&6 Dvf (X ) f
Dv f (X ) := =
v f X +t − f (X ) v t→ t
d v f X +t dt v t= lim
Z u = f (X) e0& 0 t 6 E ,&1 E $& &0 Z#. $ r (t) = X + tv v Dv f (X ) = f (X ) A;*H C v
•
M O&0 t > U#C O&0 ( + w v S R# 0&0 *0 0 w $ .$ v $ X .$ f t 6 &F Aw = tv .$ . f = x sin (yz) > v 5 c A& '() & $ −−−−−→ *M [& v = (, , ) & . .$ X = ( , , π) Y\ 9Z#. $ *J*H G#U 0 ) &0 *!' v v −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x sin (yz) , x z cos (yz) , x y cos (yz)
Dv f (X ) = f (X ) =
•
•
X
−−−−−→ −−−−−→ (, , ) = (, π, ) •
=
v v
Y\ .$ . f = arctan (y/x) e0& $ t 6 A, .8 *M [& v = −(−−−−,−→) . $0 $ X = (, ) 9Z#. $ G#U 0 ) &0 *!' v v −−−−−−−−−−−−−−−→
−y x , x + y x + y
Dv f (X ) = f (X ) =
•
X
−−−−−→ (−, ) √ • =
√
$& y x &v E . c= RO& N# UB&Y .$ A .8 >&UY1 $ U M ( $ 0 R# >&\\ ( O RO& M (U- S *( f = xy − y 0 0 %
&0 U# *$ 0 D = f (X ) = .&M `O .$ (= u# c= (, &0 (MO $ Z+j R# {&L
max
$. .$ . D v D v min
min
max
max
0 % & $
90&0
) f = x + xy + y , X = (− , ) ) f = ln x + y − + y sin z, X = (, , π) √ ) f = x √y + y x, X = (, )
)
f = ln(xy) + ln (y/z) − x, X = ( , , )
)
f = x / − y / + xy, X = (, −)
)
f = z arctan (x/y) + xyz, X = (− , , −)
Y\ .$ M f v $ e0& E 0 M $ 5&6 AJ Z#. $ ( #n3 t 6 X Dif (X ) = ∂f ∂x *Djf (X ) = ∂f ∂y ]< 5&0 v e0 0 J R#+ 0&6 ZV' A7 *M . 5F (0&f X
X
R# ZM h'? . AC ;*J*H &a &3 M & ( &[ O O %&L (& S 9M $ O KY ( 4 M (& R# 0 ( 4 M ^T (& ]3 *( #E q1 .$ u3 $ R# % ) X .$ u = f (X) e0& M x= & $ Y\ .$ f e0& > v aM ' >. T R# .$ *( #n<\ 6
$#n3 >. T v = f (X ) . $0 $ .$ X 0&6 >. T 0 *O&0 D = f (X ) &0 0 0 .&M $ .$ X Y\ .$ f e0& > v !1 ' M $$S &0 0 0 .&M $#n3 >. T v = −f (X ) . $0 *O&0 D = − f (X ) =@ E *$ O ) A;*H C = 0 ( =&M v R0 # E α M ( f (X ) cos α 0 0 5F ( . (+ (0&f c f (X ) ( (0&f f 5 Q *O&0 f (X ) M ( aM ' . T .$ %qT&' .$ ( ( ) Z f (X ) v #&0 R# 0&0 *α = cos α = Z (" Z $ t 6 .$ . $0 @ 5 Q *O&0 $ t 6 . \ (B&' R# .$ *Z#0 f (X ) 0 0 . v >. T 0 !1 ' (B&' *$ O f (X ) × = f (X ) 2 *$$S d0 0&6
Z+j R# 0 *AC ;*J*H &a $ A& '() $ & $ E ( >.&[, $$S % >&UY1 !1 ' X) M
max
M x= C) bCc) U5 . & & $ ( f $ E Y\ X = (x , y ) z = f (x, y) −−→ xy T 0 $ +, T X Y\ E *v = (a, b) = 0 −−→ .$C .nS 5 O&0 ! &O c . v = −− (a, b, ) . $0 M ZM x= *$ O ) 8*H !VO 0 A( v × k 5F & e1 R# .$ *Z &0 C A C . T R# f . $ + $. 0 !
!VO 0 . C >. T −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C : r (t) = (x + at, y + bt, f (x + at, y + bt))
E $ 0 >.&[, Dvf (X ) 5 M *$M .&3 5
# E ( & &0 U# r() Y\ .$ C 0 /&+ y XO *( 0 0 $E& xy T &0 r () Y\ .$ C 0 /&+ M *$ O ) J*H !VO 0 0 [U R# $ 0 .\ _&0 U0 &0 &&q= . j l&Q U0 . . . k3 .& Q &&q= .$ v . . . .& Q e0 $ 0 (.$ }
max
min
min
−−−−−−→ vmin = −f (X ) = (−, −)
.&M `O .$ (& R# &+,
√ Dmin = −f (X ) = −
$ t 6 [U 9J*H !VO
&0 % >&UY1 $ U Z+j R# {&L &0√U# *$ 0 0 u&M − ≈ − (, X) M Z+j R# 0 *AC ;*J*H &a $ A, .8 E ( >.&[, $ O h $. (MO 0 $ aM ' (& R# &+, *( v = f (X ) = −(−−, −−, −−−→) max
d f
X
= {}X dx + + {
d f
= = X
= = X
y
G& 5 F 4+
xy}X
dx dy dxdy + x X
dy X
dx dy − dxdy + dy {}X dx + {}X dx dy + {
d f
y}X
dx dy + {
x}X + {}X
dxdy dy
dx dy − dxdy {}X dx + {}X dx dy
0 ([" e0& N# > v 5&0 0 !" #$ !" #$ G#U 0 4E_ pO *O&0 5F &v
*O&0 e0& #n<\ 6
Y\ .$ z = f (x, y) M x= * $ 4 k [ & #c) >&\ 6 . $ 3 X = (x , y ) dx = x = x − x S >. T R# .$ *O&0 X .$ 3 >. T 0 . X .$ f >E 6 dy = y = y − y df
{}X dx dy + { }X dx dy + {}X dxdy + {}X dy dx dy d f = · · · = +
d f
= = X
X
d f
d f
X
−x dy = dx − dy y X X − = {}X dx + dxdy y X x + dy y X =
X
y
dx +
= −dxdy + dy X
= {}X dx + {}X dx dy + −x dxdy dy + y X y X =
dxdy − dy
*dy = y − dx = x − &# .$ M z = f (x, y) e0& 4 k [ & !" #$ 0 * $ 90&0 X Y\ .$ . ) f = x arctan y, X = (, − ) , k = , ) f = x + y , X = (, ) , k =
)
f = x y − x/y, X = ( , − ) , k =
)
f = ln |x − y |, X = (, ) , k =
)
f = ex
)
+y
, X = (, ) , k =
X
∂f ∂f dx + dy ∂x X ∂y X
0 . X .$ f 4$ [ !" #$ $ .$ *ZM G#U >. T
*dy = y − dx = x + &# .$ M >. T R# .$ *X = ( , ) f = x/y M x= A, .8 df
:=
d f
:=
X
X
.$ f 4 k [ !" #$ M (B&' .$ *ZM G#U !VO 0 . d f k
∂ k f dxi dy k−i i ∂ i x∂ k−i y X
i=
n n! = m m! (n − m)!
M ZM G#U *O&0 DZO n R0 v $ M U R# 0 ( v .& Q d f M $ O ) dx & " #$ 0 (x, y) v $ X# - 0 (x , y ) z a S #$ 5&0 0 *dy df : R → R Y0&- &F k = ? 9( RQ k
(x , y ; x, y) →
∂f ∂x (x
,y )
(x − x ) +
∂f ∂y (x
,y )
(y − y )
v 0 ([" d f ?U0 k
ΔX := X − X = (x, y) − (x , y ) = (dx, dy)
=
*O&0 4 k [ R+ +) Q x y M M x= A& '() * $ 9>. T R# .$ *X = (− , )
=
X
d f
= =
X
e0 0 . 4 k [ . y"0 4 k [ !" #$ A5 M (B&' .$ *M M{ B&a N# E $M G#U v
k / k
E DZO m %&L
df
f = tan (x/y) , X = (, ), k =
:=
X
f
∂ f + ∂ f dxdy + ∂ f dy dx ∂x∂y X ∂x X ∂y X
xy dx + x y X X −dx + dy y dx + xy X
∗
dy
dxdy + x y X
X
=
dx − dxdy + dy
dy
e0& 4 [ . y"0 A& '() $ * $ *0&0 X = (− , ) Y\ .$ . 9ZM $& AC ;*7*H &a .$ >&[& E *!'
(S 5 Q
f = x y
x y
{ } + {−dx + dy} + dx − dxdy + dy +
dx dy − dxdy + dy +O (X − X )
=
− dx + dy + dx − dxdy + dy
=
+O (X − X )
e0& 4 [ . y"0 A, .8 *0&0 X = ( , ) 9ZM $& A;C *7*H &a .$ >&[& E *!'
x y
=
{ } + {dx − dy} +
−dxdy + dy
dxdy − dy
+ O (X − X )
+ dx − dy − dxdy + dy + dxdy −dy + O (X − X )
%C
≈
+ dx − dy
=
+ (
≈
+ dx − dy − dxdy + dy
) − (−
)=
f (X ) + df
+
X
··· +
k!
dk f
X
d f
X
+ ···
+ O (X − X )k
!
*Z & X .$ 4 k [ . y"0 . !T&' >.&[, R# .$ *ϕ(t) = f (x + tΔx, y + tΔy) ZM x= Z#. $ t 6 E ,&1 E $& &0 >. T
ϕ (t) =
fx (x + t Δx, y + t Δy) . Δx +fy (x + t Δx, y + t Δy) . Δy
ϕ (t) =
fxx (x + t Δx, y + t Δy) . Δx +fyy (x + t Δx, y + t Δy) . Δy
= ≈
+ dx − dy − dxdy + dy + dxdy − dy
) + (−
)
*** Z#.F (0 ZM [& t = . & F S M
+ ( ) (− ) − (− ) = [ (1$ &0 . () +() ! [#\ . \ A .8 *M [& 4$ + *k = X = (, ) f (x, y) = x ++ y &# .$ *!' &0 ( 0 0 &z[#\ x + y .$ =
X→X
+ h (X)
X
+ . fxy (x + t Δx, y + t Δy) . ΔxΔy
− (
) (−
k!
dk f
h (X) = X − X k
lim
f (X) =
9&a 5 , 0
=
X
··· +
= x/y
+ =
X
.$ * & X f Yk )*$ "# . z = h(x, y) e0& 9Z"# >. T R#
+dx dy − dxdy + dy
Y\ .$ . f
[ & #c) >&\ 6 4&+ S = * $ 3 $ ) X Y\ .$ z = f (x, y) e0& 4 (k + ) 9M $. $ $ ) z = h (x, y) U0& &F O&0 GB C f (X) = f (X ) + df + df + · · ·
ϕ()
=
f (x , y )
ϕ ()
=
fx (x , y ) . Δx + fy (x , y ) . Δy
ϕ ()
=
fxx (x , y ) . Δx + . fxy (x , y ) . ΔxΔy
***
/
# " x y + + dx+ + dy X x + y X x + y X # y + + dx ( x + y ) X " −xy x + + dxdy + + dy ( x + y ) X ( x + y ) X
+fyy (x , y ) . Δy
f (x + t Δx, y + t Δy) = ϕ(t)
.$
t + ··· = ϕ() + ϕ () . t + ϕ () . = f (x , y ) + fx (x , y ) . Δx + fy (x , y ) . Δy . t + fxx (x , y ) . Δx + . fxy (x , y ) . ΔxΔy
, x + y
t +fyy (x , y ) . Δy . + ···
2
*t = Z$ . 1 &" R# .$ ( =&M 5 M
)
f = ex
+y
, X = (, ) , k=
)
)
,−
dx + dy + dx − dxdy + dy 9 nB dx = dy = − i& $. R# .$
, (
f = ln (x + y + ) , X = ( , − ) , k= X =(
)
X = (,
= +
)
f = x/(x + y), X = (− , ) ,
, )
k = X = (−
.$ . f = sin
f
=
d ∂f f (x, y ) = g (x ) = dx ∂x X x
&0 e0& (B&' *$ + d0 5 0&6 >. T 0 y v 0 2 *( d0 !0&1 0&6 >. T 0 c v $ E u0
x + y
sin u = u −
u
u
+
+ O (X − X )
x + y (x + y) − x + y + O (X − X ) + y + x − +
=
y − x y − x y y + O (X − X )
dy + dx − +
dy − dx dy − dy + O (X − X )
dx dy
Y\ .$ f = ln (xy+ ) e0& 4.& Q [ . y"0 A .8 *0&0 . X = (, ) 9Z#. $ -. >&,?@ 0 ) &0 *!' f
ln (dx + ) − dy + dy − dy + · · · × =
× dx − dx + dx − · · ·
=
y
ln (x + ) =
+ dy
dx − dxdy + dx + dxdy + dydx + O (X − X )
= dx −
e0& U- 4 "M Y\ X S $ *$ 0 e0& 5F RV Y\ X &F O&0 u = f (X) *( yb XY R# ]V, X = (x , y ) ( v $ e0& ZM x= $. $ U- 4 "M X .$ f 5 Q *g(x) := f (x, y ) 0&0 & *O&0 U- 4 "M . $ x = x .$ c g #&0 ( RV+ . T .$ & R# N#
+, -. E q1 & *g (x ) = M
= =
r
e0& j? )*"9 X Zg S . T .$ $ .$ O&[ #n3t 6 X .$ u = f (X) M ( u = f (X) *f (X ) = 0 5$ 0 #n3t 6 >. T
e0& Z3 [ . y"0 A .8 *0&0 X = (, ) Y\ S *ZM $& y = sin x e0& 5. B N y"0 E *!' 9&F u = x + y
B&" !' .$ 5F E $& t 6 &$0.&M R# + E V# RO. . U- 4 "M E . h #&0 0 *O&0 4 "M *ZM #&"+ N# .$ u = f (X) ZM x= $ Y\ N# X Zg S . T .$ *$ O G#U X Y\ E E 0 r > E 0 M ( f !JO YFe ) GB 7*H !VO 0 *f (X) ≤ f (X ) X ∈ B (X ) *( G#U !0&1 !JO YF Y\ 0&6 >. T 0 *$ O U- 4 + 4 +#cM& U 0 !JO YE K?YT *(
) + () ≈ + + −
+ − + = − + =
.$ z = f (x, y) e0& 4 k [ . y"0 0 % * $ 9M [& . f (X) [#\ . \ ]< 0&0 . X Y\ ) f = x arctan y, X = (, − ) ,
k = X = (
)
, )
f = x y − x/y, X = ( , − ) , k= X =(
, − )
}
d0 D = (B&' _&0 q1 .$ *$ O ) % 7*H !VO 0 &q1 E #&0 $. R# .$ M ( R# (U1 *( 6 $ RV+ & B&' + UB&Y *$ O $& _&0 [ E R# T ' E $ !V6 . >&-. E $ "S &O N# *( :.& %& M *f = x + y + xy M x= A& '() $ $ RV p&\ ]3 *( #n3t 6 R !M 0 f >. T R# .$ pO R# 0&0 *Af = 0 U#C O&0 4$ ` E 9ZM t\ . f (x, y) = 0
U- 4 +#cM& AGB 97*H !VO #E Y\ A%
x + y = y + x =
⇒ ⇒
x = −y y = −x x = x ⇒ y = −x
x = ± , y = −x
X = (, ) RV Y\ . $ e0& R# ]3 t 6 5 EF &' *O&0 X = (− , ) X = ( , − ) V# 0 ) &0 *Z#S .&M 0 . 4$ A=
∂f = ∂x
x ,
B=
∂f = ∂y
y ,
C=
∂f = ∂x∂y
9A$ O ) GB *H !VO 0C Z#. $ i
A
B
C
Y\ N# X ( #E ( U- 4 +
( U- 4 +
D −
i
f (Xi )
− −
+
>. T R# .$ *f = xy − x − y M x= A, .8 T&=?0 ]3 *( D : x + y ≤ &0 0 0 f $ p&\ .$ f A]3 ( & \ f 5 QC M (=S 5
f RV p&\ C p&\ + (" #n3t 6 C : x + y = R# 0 Int(D) : x + y < 0 f = 0 pO ?U0 * " M ( U
⎧ , ⎪ x y ⎪ ⎪ − x − y − + = ⎨ y − x − y , ⎪ ⎪ − y − + xy ⎪ x − x = ⎩ − x − y y( − x − y ) = ⇒ x( − x − y ) =
*O&0 y √= ±
√
/
#&0 &F y = x = S #&0 &F x = y = S #&0 &F x = = y S *O&0
− y =
x = ± / − x = x + y = x + y =
O&[ U- 4 "M Y\ V Y\ ( RV+ 5 Q $ ) XY R# t\ 0 Z\ " b O. & ( 4E_ " 4 + " 4 +#cM& RV p&\ 4 M Ms O&0 O $ r4 Vl gc) >&\ 6 M x= Q+ bCc) Y=):[ $ $ ) X RV Y\ .$ u = f (x, y) e0& 4$ [
M x= ?U0 * 3 ∂ f A= ∂x
X
∂ f , B= ∂y
X
∂ f , C= ∂x∂y
X
>. T R# .$ *D = AB − C Y\ N# X &F < D A < B C < A S AGB *( u = f (X) U- 4 +
Y\ N# X &F < D A > B C > A S A% *( u = f (X) U- 4 +#cM&
u = f (X) e0& #E Y\ N# X &F D < S A: *( 9Z"# X Y\ .$ . f 4$ [ . y"0
f (X) ≈ f (X ) +
*C = f
xy (X
)
B =f
f (X) − f (X ) ≈
A dx + C dx dy + B dy
5F .$ M >. T 0 . 5F A = l&Q
yy (X
A
) A = fxx (X )
(A dx + C dy) + D dy
A > D > S M $ O q'? *(O 5
( ([a X E #&"+ N# .$ ( . (+ >.&[, &F D < (B&' .$ *( U- 4 + Y\ N# X R# 0&0 2 *$ ( ?, v c 3 ! $ >.&[, #&"+ .$ M ( Y\ !B )*"9 V# ^- M $. $ $ ) . @ X X p&\ 5F E LB$ f (X ) ≤ f (X) ≤ f (X )
E ( >.&[, !Y " XUV Z' X R# V (x, y) = xyz = xy
< y < x pO &0 . V
S − xy x+y
U- 4 +#cM& ( =&M 5 M 9ZM oL6 . V RV p&\ 0 *ZM [& < V
y (S − x − xy)/(x + y) = x (S − y − xy)/(x + y) = x=y x + xy = S ⇒ ⇒ x = S y + xy = S + V x = y = S/ + + X = S/, S/
pO &0C RV Y\ & U# * Y\ A & *O&0
A =
B
C
=
=
.$ <x >. T R# .$
√ S , −y (y + S) =− (x + y) X √ S , −x (x + S) =− (x + y) X √ xy(S − x − y − xy) = − S , (x + y) X
D
= AB − C =
S
aM ' U# *( U- 4 +#cM&
Y\ N# X R# 0&0 + $S >. T x = y = z = S/ $&U0 + E 0 Z' XUV [&) ('&" Gj S M ( V = ( S/) 0 0 ( % ) 5$ 0 XUV >&[& R# i jL0 *( 0 M ( y x E U0& z = f (x, y) M x= A .8 x +y +z −x+y−z− = >. T 0 +- !VO *M oL6 F U- &
"M *( O G#U Z $ *!' (x − ) ∂z =− , ∂x (z − )
√
]3 *y = ±x= ±√ / ]3 *x = / y = ±x U# X = X = , / 9E .&[, f RV p&\ ` + .$ √ √ √ X = − /, X = /, , − / √ √ √ √ X = − /, / X = /, / √ √ √ √ X = − /, − / X = /, − / .&V0 X & X 0 . 4$ t 6 5 EF &' *X = (, ) 0 E& nB ( T 0 0 C 0 f Z $ #E Z#S
V# 0 ) *(" @&\ RQ UB&Y
∂f ∂x
=
∂f ∂y
=
∂f ∂x∂y
=
xy(x + y − ) ( − x − y )/ xy(x + y − ) ( − x − y )/
− y − y + x + y + x y ( − x − y )/
Z#. $ A$ O ) % *H !VO 0C i
A
B
√
√
√ √ √ − −
√ √ √ − −
C √ − √ − √ − √ − √
√ − √ − √ − −
− − −
D
−
−
}
∂z (y + ) =− ∂y (z − )
.$ &F x + y − x + y = S U# z = S ]3 ( U R# 0 z = 0 pO ?U0 *(" #n3t 6 (x, y) z = z − z = .$ *y = − x = M # $ 0 p&\ z RV p&\ R# 0&0 *z = −
C : z = , (x − ) + (y + ) =
.$ * " X = ( , − , −) X = ( , − , ) Y\ $ 0 0 z . + #E ( 4&+ d0 AC 0 p&\C $ $.
V# 0 ) &0 c X X $. .$ *O&0 ∂f ∂x
= −
(z − ) + (x − ) , (z − )
S = &
"M 9*H !VO [&) ('&" &0 &!Y " XUV + R0 E A .8 ( aM ' Z' . $ N# 4 M 0 0 O&0 z y x !Y " XUV $&U0 ZM x= *!' #$ 5&0 0 O&0 S 0 0 !Y " XUV R# [&) ('&"
0 *z = (S − xy)/(x + y) R# 0&0 *xy + xz + yz = S
*M ' @ !1 ' ('&" (0&f Z' &0 L N# A . z
= f (x, y)
+- e0& U- & + "M $. .$ 90&0
) x + y + z − xy − yz + x + y + z − =
) (x + y + z ) = a (x + y − z )
i
(
B AG' N :+ l&Q *(O $ (+ e0& $ & U- 4 "M .$ 5F 0 U0& aM ' !1 ' & $ O oL6 , +
S = 4 "M B&" 4&0 #) B&" #F (0 , +
*#F $ ) 0 M x= G Q=)CDL VD) $ + RU ("0 Y *D ⊆ D ( e0& N# u = f (X) X ∈ D E 0 M S 0 D E X X 5 Q @&\ *f (X ) ≤ f (X) ≤ f (X) f
S = 4 "M B&" l&Q $ l9 X 0 . X X O&0 % ) . $ D 0 u = f (X) f (X ) f (X ) Z & D 0 u = f (X) YFe YF Z & D 0 u = f (X) `Fe YF X 0 c . * min f (X) = f (X) max f (X) = f (X) Z"#
$ ) >. T .$ AS =C 4 + 4 +#cM& M $ O ) 4 + 4 +#cM& p&\ M B&' .$ " $0 j
% ) $ ) B&" 0 &3 0 *O&0 V# E u0
*Z#. $ E& #E G#U 0 S = 4 "M B&" 0 X∈D
X∈D
.$ *X ∈ R D ⊆ R M x= $ E 0 M ( D B )*"9 N# X Zg S . T D D &, + r `&UO X cM 0 S r > 9A$ O ) GB I*H !VO 0C M eY1 . AD Z+ U#C n
n
c
∀r >
∃ X ∃ X
:
X ∈ Br (X ) ∩ D , X ∈ Br (X ) ∩ Dc
5&6 ∂D $&+ &0 & D B . D E p&\ + , +
p&\ + M Zg S )E . T .$ . D , + *Z$
9$ + >&[f 5 *∂D ⊆ D 9O&0 O $ 0 .$ . $ E
∂f ∂y
=
∂f ∂x∂y
(y + ) − (z − ) (z − )
=
( − x)/(z − )
Y\ N# X ( U- 4 +#cM&
( U- 4 +
, ) cM 0 M N# z . $ + V# 0 ) &0 [B ( #0 !T&' k#& O&0 `&UO
A B C − / − / / / ,−
D / /
0 % $
90&0 . z = f (x, y) e0& U- &
"M $. .$ ) f = x + xy + y + x − y +
) f = xy − x − y + x − ) f = x + xy + y − ln x − ln y ) f = x + y − x − y ) f = x + xy
) f = x + xy + y
) f = xy − x − y ) f =
x
+ xy +
y
) f = ex cos y
) f = y sin x ) f = xy ln(x + y )
) f = +
x+y+ + x + y
Y\ .$ z = f (x, y) e0& 4$ [ . y"0 N+M 0 A *M >&[f . **H q1 X RV Y\ .$ u = f (x, y, z) e0& 4$ [ . y"0 N+M 0 A 5&0 v e0 0 . **H q1 [O X RV *M (0&f ]< $ + 90&0 . #E e0 E N# U- &
"M
∗
) f = xy − x − y + x − ) f = x + y + z + x + y − z ) f = x +
z y + + x y z
) f = xy z (
− x − y − z)
x y z a + + + x y z b +
) f = xyz − x − y − z
) f =
& 0 &0 R# * " .$ RV Y\ V# U1 *$. $ .&SE& (U[@ E S = 4 "M B&" !' 0 #E KO 0 + #. B 9$ O $& 63 G Q=)CDL VD) EJ /C =BV * $
4 "M B&" !' 0 *D ⊆ D u = f (X) M x= 9Z$ 4& . #E !' D 0 u = f (X) S = RQ S *( $6= u = f (X) F M ZM t\ A *Z$ $ $ 0 S *( 3 D 0 u = f (X) F M ZM t\ A; *Z$ $ $ 0 RQ = . " e1 D .$ M u = f (X) RV p&\ A *ZM [& & F E N# .$ . u = f (X) . \
D , + E 0 . u = f (X) S = &
"M A *Z0 A∂D U#C R# S.c0 ' .$ F (0 $ , "#&\ &0 AH e0& 4 + . & F R# VQ M 4 +#cM& . . \
*ZM 4?, D , + 0 u = f (X) x
f
e0& S = &
"M A& '() $ 0 $ D , + 0 f = x − x + y − y + *#.F (0 . y = x y = x = y *H !VO 0 ZM Z R .$ . D , + 0 *!' & \ U0& f ( . M "0 D 5 Q *$ O ) GB 5F 0 f $6= Ds ]3 $$S G#U D !M 0 ( R = 0 *O&0 % ) . $ B&" R# 0&0 *r( 3 9ZM t\ . f = 0 pO Int(D) 0 f RV p&\
x − = y − =
=⇒
x= =⇒ X = ( , ) y=
S = 4 "M 9*H !VO
}
O&0 E&0 D
( "0 D A& $ "0 R n E 0 A, ( "0 "0 , + $ U w O A
( "0 "0 , + & $ U `&+ ) A *∂D ∩ D = ⇔ ( E&0 D A *$ O U) H*;*H 0 E&0 , + G#U &6 0 . T .$ . D ⊆ R , + #E $ $ u@&\ T&= U# $0&) S N# .$ M Zg S #$ 5&0 0 *A$ O ) % I*H !VO 0C O&0 $
c
⇔
n
n
∃M > ∀X, Y ∈ D : X − Y ≤ M
"0 M Zg S < . T .$ . D
⊆ Rn
, + #E *O&0 . M }
*( D E Y\ X AGB 9I*H !VO *$S &) S N# .$ D . M , + A% *D : x + y ≤ ZM x= A& '() % $ D M ( #0 5 Q ∂D : x + y = >. T R# .$ *O&0 $6= D ]3 ( . M >. T R# .$ *O&0 R .$ & x . D ZM x= A, .8 T&= #E (" . M D & *( "0 D nB ∂D ⊆ D *(" $6= D ]3 *( 5 M 0 u@&\ .$ *D : − ≤ x ≤ , ≤ y < ZM x= A .8 (− , ) .$ / g. &0 !Y " E ( >.&[, D E >. T R# D 0 (− , )(, ) e- 5 Q *(, ) (, ) (− , ) *( . M D M B&' .$ *(" "0 D ]3 $. tU *(" $6= D R# 0&0 D $6= , + 0 u = f (X) e0& S & $ % ) . $ D 0 u = f (X) 4 "M B&" &F O&0 3 0 u = f (X) 4 "M B&" % ) N# X S ?U0 *( Y\ N# X ∈ Int(D) V# X ∈ ∂D &F O&0 D *( u = f (X) e0& RV u = f (X) e0& S = &
"M J*I*H q1 0 h D E 0 V0 $. . 5&V &) + .$ D , + 0
9ZM UB&Y &S ) . @ 0 . OA
: (x, ) ;
≤x≤π f (π, ) = f (, ) = ≤ f (x, ) = sin x ≤ = f (π/, ) (π, y) ; ≤ y ≤ π , f (π, y) = (x, π) ; ≤ x ≤ π f (π, π) = f (, π) = ≤ f (x, π) = sin x ≤ = f (π/, π) (, y) ; ≤ y ≤ π , f (, y) =
AB
:
BC
:
CO
:
p&\ .$ M ( 0 0 D 0 f 4 +#cM& ` + .$ ]3 − 0 0 D 0 f 4 + $ O .& (π/, π) (π/, ) *$ O .& (π/, π) Y\ .$ M ( f = + x + y − x − y e0& S = &
"M A .8 *0&0 D : x + y ≤ , + 0 . R# 0&0 ( 3 D 0 f ( . M "0 D 5 Q *!' U 0 f = 0 pcO *( % ) . $ D 0 f 4 "M B&"
− x = − y =
⇒
x= y=
⇒X =( , )
E ( >.&[, D E *f (X ) = ?U0 ( ∂D : x + y =
>. T 0 M ∂D : r(t) =
−−−−−−−−−−−→ cos t, sin t ;
≤ t ≤ π
ZM G#U X R# 0 *$ O .&3 ! g(t) := f r(t) = − + cos t + sin t
0 g (t) = pO *$ O UB&Y [; π] 0 "#&0 M t = ∂π/ nB√ ( − cos t + sin t = U 0 g(π/) = − + g() = g(π) = 5 Q *t = π/ 0 0 D E 0 f 4 +#cM& √]3 √g(π/) = − − √√ f 4 + $ O .& , .$ M ( − + √ √ .& − , − .$ M ( − − √ 0 0 D E 0 M Z#S f (X ) . \ &0 √"#&\ .$ ]3 *$ O
√ √ , Y\ .$ M ( − + 0 0 D 0 f Z+#cM&
M ( − − √ 0 0 D 0 f 4 + √$ O √ .& ) GB ;*H !VO 0 *$$S .& − , − .$ *$ O (; π)
E *$. c d0 0 E& $. $ . 1 D E 0 5 Q M N0 *$ + Z"\ 5 OB AB OA y.&3 0 . 9ZM UB&Y &S ) . & Y.&3 R# E * ≤ x ≤ M ( (x, x) p&\ + , + OA eM ( =&M R# 0&0 *f (x, x) = x − x + & E&0 0 . g(x) = x − x + e0& S = &
"M g() = 5 Q x = U# g = pO *Z0&0 [; ] (, ) .$ ( 0 0 AB 0 f 4 +#cM& ]3 g( ) = − ( , ) .$ ( − 0 0 OA 0 f 4 + $ O .& *$$S .& M ( (x, ) !VO 0 p&\ + , + AB e=&M R# 0&0 *f (x, ) = x − x − & * ≤ x ≤ E&0 0 . g(x) = x −x− e0& S = &
"M M ( g() = − 5 Q x = U# g = pO *Z0&0 [; ] (, ) .$ ( − 0 0 AB 0 f 4 +#cM& ]3 g( ) = − ( , ) .$ ( − 0 0 AB 0 f 4 + $ O .& *$$S .& & *( ≤ y ≤ &0 (, y) p&\ + , + OB e&
"M M ( =&M R# 0&0 *f (, y) = y − y + pO *Z0&0 [; ] E&0 0 . g(y) = y − y + e0& S = g() = − g() = 5 Q y = U# g = $ O .& (, ) .$ ( 0 0 OB 0 f 4 +#cM& ]3 *$$S .& (, ) .$ ( − 0 0 OB 0 f 4 + .& (, ) .$ ( 0 0 D 0 f 4 +#cM& V# .& ( , ) .$ ( − 0 0 D 0 f 4 + $ O
*$$S
, + 0 . f = sin x cos y e0& S = &
"M A, .8 *D : ≤ x ≤ π, ≤ y ≤ π 90&0 D O&0 R .$ 3 !Y " N# D M ZM ) 0 *!' *$ O ) % *H !VO 0 ( . M "0 R# 0&0 R# 0&0 C &aa U0& f ( . M "0 D 5 Q f $6= Ds ]3 $$S G#U D !M 0 ( A& \
0 *O&0 % ) . $ B&" R# 0&0 *r( 3 5F 0 9ZM t\ . f = 0 pO Int(D) 0 f RV p&\ R = D
cos x cos y = − sin x sin y =
⇒ ⇒
cos x sin x
cos y = sin y =
cos x = sin y = cos y = sin x =
& ∂D : < x < π, < y < π V# 0 ) &0 ]3 O&0 X = (π/, π) E >.&[, ∂D .$ $ ) f RV Y\ (, ) / g. &0 B& !Y " N# D E *f (X ) = − M ∂D e- .& Q E N# *O&0 (π, ) (π, π) (, π)
e0 M x= -+ c) Q=)CDL VD) $ e0& &
"M ("0 Y *#n<\ 6 f, g : R → R 4 "M . B&" % ) *S : g(X) = , + 0 u = f (X) *Z & g = pO 0 f p6
. g = M x= U5 . $ 5&+ .$ . f E & >. T R# .$ *Z# $M Z >. T R# .$ M $$S h'? *$ + Z 5 T DZ E 0 M " X 5 Q @&\ g = pO 0 f &
"M 0 *$$S /&+ g = 0 f E E N# & F *$ O ) % ;*H !VO B&" % ) N# X S NGA $ S : g = , + 0 g O&0 g = pO &0 f 4 "M (O $ $ ) λ $, >. T R# .$ O&0 T GB&L
*f (X ) = λg (X ) M 0 . f = xy e0& &
"M A& '() $ *0&0 x + y = pO E ( >.&[, S_ pO g = x + y − &# .$−−*!' −→ x) = λ( , ) R# 0&0 *−(y,−−→
⎧ ⎨ y=λ x=λ ⎩ x+y =
⎧ ⎨ x=λ y=λ ⇒ ⎩ λ =
⇒ X =
,
( U- 4 +#cM& N# Y\ R# *f (X ) = / M ?za M .& c . +M . \ f 5F m @ .$ #E ( =&M !B$ R# F *f (, /) = pO 0 . f = x − y + z e0& &
"M A, .8 *0&0 x + y + z = ( >.&[, S_ pO g =−x−−−+−y−−→+ z −−−−&# .$ *!' −−−−−→ M ( RO. 5 Q R# 0&0 *( , −, ) = λ(x, y, z) E Z#. $ λ = #&0 ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩
λx = λy = − λz =
x + y + z =
√
⎧ x = / λ ⎪ ⎪ ⎨ y = − /λ ⇒ z = /λ ⎪ ⎪ ⎩ /λ = ⎧ √ −−−−−−−→ ⎨ X = ( , −, ) ⇒ √ −−−−−−→ ⎩ X = − − ( , −, )
√
]3 *f (X√) = − / f (X) = / & ( − / 0 0 g = pO 0 f U- 4 +
√ −−−−−−−→ − / ( , −, ) Y\ .$ M 4 +#cM& $ O
.& √ .$ M ( / 0 0 c g√ = pO 0 f U-
*$ O .& / −(−−, −−−−,−→) Y\
}
X A% *S = 4 "M AGB 9;*H !VO * " g = pO 0 f p6 4 "M p&\
X
0 f e0& S = & +
"M
0 $
90&0 . D , +
) f = x + y + xy − x − y + , D : ≤ x ≤ , ≤ y ≤
) f = x + xy − y,
D : x + y ≤ y
) f = sin x + sin(x + y),
D : ≤ x ≤ π, ≤ y ≤ π
) f = sin x sin y sin(x + y), ) f = sin x cos y,
D : ≤ x ≤ π, ≤ y ≤ π
D : ≤ x ≤ π, ≤ y ≤ π − x
) f = x − xy + y + x − , D : ≤ x ≤ ,x ≤ y ≤
) f = x + y − x + y,
) f = x + y + z , ) f = x + y + z,
D : x + y ≤
D : x + y + z ≤
D : x + y ≤ z ≤
) f = x + y + z + x + y − z, D : x + y + z ≤
[ P' AG' N + N# 4 "M B&" .$ Z##$ I*H uL0 .$ ?z[1 M . Y&+ $ + oL6 5 . f $ E +"1 x e0& & #$ R# *$M X@ 5F 0 . e0& &
"M y N# .$ M M & O KY >_$&U N+M 0 R# S R = E >.&[, B&" ( =S . 1 #& S ' $ .$ . p6 4 "M *( 5F Y\ R#$ *Z$ ^-
$ O AC A;C AC >_$&U E &F λ = S #&0 ]3 *$. $ $&q AC B$&U &0 M x = y = z = M $ O AC B$&U E >. T R# .$ & *λ = λ = pO E & *λ = >. T R# b .$ x = R# 0&0 *y = z = $ O AC A;C >_$&U p&\ U# *x = ± x = Z#. $ AC B$&U E 0 *$ O !T&' X = (− , , ) X = ( , , ) X = (, − , ) X = (, , ) p&\ 0&6 >. T E *$$S !T&' X = (, , − ) X = (, , ) f (X) = f (X) = f (X) = f (X) = =@ D 0 f 4 +#cM& ` + .$ ]3 *f (X ) = f (X ) = 0 0 5F 4 + $ . X X p&\ .$ 0 0 *$ . X Y\ .$ }
5 Sq0 .$ p& aM ' Z' &0 !Y " XUV A .8 *0&0 . x /a + y/b + z/c = B$&U 0 & &q= E Z 6 N# .$ M ZM x= Z *!' =&M 5.&\ !B$ 0 9$. $ . 1 !Y " XUV E / . N# ZM x= *Z#0 h .$ Z 6 N# .$ . !VO ( . 1 Z 6 N# .$ M !Y " XUV E / . 5F >&j L
!Y " XUV Z' >. T R# .$ *( (x , y , z ) $. $ 4 +#cM& M ( =&M ]3 *( f = x y z 0 0 !T&' pO *Z0&0 g = x /a + y/b + z/c = pO 0 . f M $. $ $ ) λ $, M ( U R# 0 S_ )
−−−−−−−−−−−−−−−−−→ −−−−−−−→ (yz, xz, xy) = λ x/a , y/b , z/c
&F λ = S R# 0&0
⎧ ⎧ ⎨ yz = xλ/a ⎨ xyz = λx /a xz = yλ/b ⇒ xyz = λy /b ⇒ ⎩ ⎩ xy = zλ/c xyz = λz /c ⎧ ⎧ ⎨ λ/ = λx /a ⎨ x = a / ⇒ λ/ = λy /b ⇒ ⎩ y = b / ⎩ λ/ = λz /c z = c /
.$ p& !Y " XUV AGB 9*H !VO + y R0 T&= R# +M A% 5 Sq0 O $ $ pO 0 . f e0& 4 "M 0 $ $ 9M [&
) f = xy, x / + y / =
) f = x + y,
x + y =
) f = x + y ,
x/a + y/b =
) f = Ax + Bxy + Cy , ) f = cos x + cos y,
x + y =
x − y = π/
) f = x + y + z, x + y + z = ) f = sin x sin y sin z,
) f = x + y + z ,
x + y + z = π/
( e1 Z 6 N# .$ (x, y, z)√Z#$ 0 $M x= 5 Q M √ √ #$ 5&0 0 *z = c √y = b x = a √ R# 0&0 XUV
U# * f (X ) = abc M X = (a, b, c) √ √ √ a× b× c $&U0 0 √#&0 Z' aM ' &0 !Y "
*H !VO 0C $ 0 abc 0 0 5F Z' O&0 *A$ O ) GB D : S 0 f = x + y + z e0& 4 "M A .8 *0&0 . x + y + z ≤ 9Z0 . Int(D) .$ f RV p&\ 0 *!' f = ⇔ x = y = z = ⇔ X = (, , )
N# M Z0 . D [B 0 f 4 "M &' *f (X) = M U 0 B&" R# *∂D : x + y + z = 9( M pO 0 f 4 "M R =
x /a + y /b + z /c = ,
y z , x + y + z = a, < m, n, , a √ √ ) f = x + y + z − √ xyz, x + √ y + z = m n
>&j L [ & ax + by + c = y E Y\ R# V#$c A *0&0 .
g = x + y + z −
=
(B&' R# .$ *O&0 p6 4 "M B&" N# M ( Z#. $
⎧ ⎪ ⎪ ⎨
f = λg ⇔ g= ⎪ ⎪ ⎩
x = λx y = λy z = λz
x + y + z =
( ) () () ()
0 . f = xyz e0& &
"M A '() * $ *0&0 x + y + z = c x + y + z = V# pO pO *g = x + y + z − g = x + y + z &# .$ *!' U 0 S_ −−−−−−−−→! −−−−−→! −−−−−−−−→! yz, xz, xy = λ , , + μ x, y, z
#$ 5&0 0 ( ⎧ ⎨ yz = λ + μx xz = λ + μy ⎩ xy = λ + μz
⎧ ⎨ xyz = λx + μx ⇒ xyz = λy + μy ⎩ xyz = λz + μz
A*H C
5$M e+) E x + y + z = x + y + z = 5 Q M y x R# 0&0 *xyz = μ M Z#.F (0 &" R# *M T μx + λx = /μ 4$ ).$ B$&U .$ z 9Z#S h .$ . #E & B&' !1 _ nB xy = xz = yz = &F λ = μ = S AGB x+ y + z = #&0 5 Q T z y x $ , E & $ ( & R# M B&' .$ ( T c U0 $, RV+ (B&' R# ]3 *x + y + z = "#&0 #E *(" 0 0 x X"' 0 B$&U % ) &F λ = μ = S A% RV+ M x = y = z = Z E&0 ]3 ( x = *("
I 0 0 5&60qT&' M 0&0 . @ ([a $, $ A; *O&0 !1 ' 5&6, +
x + y = x + # $ & x + y = y T&= A *0&0 . x /a +y /b = q0 .$ ('&" aM ' &0 !Y " A *M p&
0 M .$ M 0&0 . E&0 . `&. `&UO AH *$ + 5 p& R `&UO x +y +z = M E (x, y, z) >&j L 0 Y\ S A8 R#$ R# S O&0 T = x − y + z & $ . $ *0&0 . M ^Y Y\ >&T 0 5F ) M 0&0 . Y " XUV AJ 5F / . N# $. $ . 1 Z 6 N# .$ ( &j L
* < a, b, c M $. $ . 1 x/a+ y/b+ z/c = T 0 (0&f & F ` + M 0&0 . @ ([a $, A7 *( aM ' 5&60qT&' M M ' @ . @ . !Y " XUV !VO 0 L A RV+ . \ !1 ' 5F ^Y ('&" $ 0 V 5F Z' *O&0 90&0 . O $ $ T & (x , y , z ) Y\ T&= A;I Ax + By + Cz + D =
√
RV+ M x = y = z = √/ &F μ = λ = S A: *x + y + z = >. T R# .$ #E (" A*H C >_$&U E &F λ
=
S A$ Z#S
= μ
λ(x − y) = −μ(x − y ) ,
*ZM 5&0 . p6 4 "M B&" = Z+U !VO 5 M * * * g f ≤ k < n M x= VD) % $ &
"M ("0 Y * " R 0 R E #n<\ 6 U0 g , + 0 f e0& n
S : g (X) = · · · = gk (X) =
λ(x − z) = −μ(x − z ) , λ(y − z) = −μ(y − z )
Z#S h .$ . #E & B&' 5 M &F O&0 >& z y x S (a x+z =x+y =y+z =−
λ μ
M $ O !-& &0 ]3 x−y = y−z = z−x=
*( 1& M
k
mg(X) = l@ ) f l YE . B&" % ) *Z & g (X) = ___ k
% ) N0 X S NGA C / & $ g (X) = *** g (X) = y# O 0 f e0& 4 "M B&"
g (X) *** g (X) &. $0 X ∈ S E 0 O&0 (= . @ λ *** λ $ , &F O&0 Y !\ "
M O
k
k
k
f (X ) = λ g (X ) + · · · + λk g (X )
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ () ⇒ ⎪ ⎪ ⎪ ⎪ ⎩
A*H C
.$ (B&' $ *( O $& 4.& Q 4$ &" E ( ) .$ 9Z#S h x = y + β = y α = x >. T R# .$ 9λ = GB *$. \\' 6#. M x + x = , + .$ 4 &" E >. T R# .$ 9λ = % y = / R# 0&0 *x = / Z#. $ A*H C & B = *α = β + β = / + λ/ α = /(λ + ) .$ *β = −/ α = / λ = / ]3 !1 ' V# f (x,√y, α, β) = / (B&' R# + M ( / = / 0 0 y & + T&= y = x + E ( /, /) Y\ T&= E ( >.&[, !VO 0C x = y + y E ( / , −/ ) Y\ & *A$ O ) % *H y# O &0 . f e0& 4 "M $. .$
0 $
90&0 O $ $
) f = xy + yz , y + z = , x + y = , x> , y> , z>
) f = x + y + z
, x + y + z = , x + y + z =
) f = x yz + ) f = xyz
,
&F z = y = x S (b x + y + z = pO E 5 M *z = −x − λ/μ pO E x = λ/μ M $$S x + z = y + z = −λ/μ
α = ( + λ)x β = y − λ/ α = x + λ/ y = x α=β+
x − y = y + z =
x + y + z =
R# 0&0 *(/)(λ√ /μ) = M $ O .$ *λ/μ = ±√/ z − =x=y= √ z uO 5.&\ !B$ 0 M − = x = y = − 9$ O !T&' Y\ √
X = √ X =
, y=x ,
) f = x + y + z + w
,
x − y + z − w −
√
, −,
− , ,
!
X = −
!
! , , − − , ,
!
√
f (X) = f (X ) = f (X) =√− / M *f (X ) = f (X ) = f (X) = / Rl+ x + y + z = pO &F x = y = z = S (c *( yb M = $ √ / 0 0 g = g = pO 0 f Z+#cM& ` + .$ ]3 0 0 5F 4 + $ . X X X p&\ .$ M√( *$ . X X X p&\ .$ M ( − / x = y + y y = x + R0 T&= R# & M A, .8 *M 3 . y = x + 0 LB$ Y\ (x, y) ZM x= *!' e0 e0& 5 M *O&0 x = y + y 0 LB$ Y\ (α, β) Z#S h .$ . (α, β) & (x, y) T&= f = d = (x − α) + (y − β)
X 0 . B&" y# O
x + y + z = x+y−z+w =
, , − X =
√
√ √ ! X = − , −, X = −
, x + y + z = , x + y = z
) f = xy + z
!
g = y − x = , g = α − β − =
U 0 S_ pO 5 M *Z#S
,
=
*#.F (0 . x = y + y = x + $ T&= AJ O $ M 0&0 @O 0 . f = αx + βy e0& 4 +#cM& A7 α + β = x + y = ZO&0 M 0&0 @O 0 . f = αx + βy + γz e0& 4 +#cM& A *α + β + γ = x + y + z =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! (x − α), (y − β), −(x − α), −(y − β) = −−−−−−−−−→! −−−−−−−−−−−→! λ − x, , , + μ , , , − ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
R# 0&0 *(
⎧ α = ( + λ)x (x − α) = −λx ⎪ ⎪ ⎪ ⎪ (x − β) = λ β = y − λ/ ⎪ ⎪ ⎨ −(x − α) = μ α = x + μ/ ⇒ −(y − β) = −μx β = y − μ/ ⎪ ⎪ ⎪ ⎪ y = x y = x ⎪ ⎪ ⎩ α=β+ α=β+
=
)
x y
! ! a dx + b dy ∧ a sin y dx − b dy = = −ab( + sin y) dx ∧ dy
4= α η θ M x= & $ &F O&0 #n3t 6 U0& z = f (x, y) ) (f θ) ∧ η = θ ∧ (f η) = f θ ∧ η
) θ ∧ η = −η ∧ θ
!
) θ ∧ θ =
0 * $
M $ 5&6 A
P P dx + Q dy ∧ R dx + S dy = R + θ = sin(xy) dx + x + dy
Q dx ∧ dy S
!
M M x= A; α = x dx − y dy η = y/x dx + x/y dy . J*;*H E ; y0 . *f = arcsin (x/y) *M t\ 1 η = R dx + S dy θ = P dx + Q dy M (0&f A .$ θ ∧ η M " Y !\ " X Y\ .$ 1 y\= *O&0 T GB&L X Y\ >. T R# .$ θ = P dx + Q dy S
$
dθ := dP ∧ dx + dQ ∧ dy
e1 .$ ZM G#U θ !" #$ . ∂P ∂P dx + dy ∧ dx ∂x ∂y
∂Q ∂Q + dx + dy ∧ dy ∂x ∂y
∂Q ∂P − dx ∧ dy ∂x ∂y
dθ
:=
=
Z#. $ _&0 G#U 0 ) &0
'() $
x ) d x dx − dy = − dx ∧ dy y y
) d dx − dy = x y
)
+
− (x + y)
−
+ (x + y)
, dz = Δz = z − z
*O&0 (0&f ]3 R# E LB$ $ , z y x M .&[, R .$ r4= s E . h $ !VO 0 ( θ = P (x, y) dx + Q(x, y) dy
R# $ w O *#n3 t 6 U0 Q(x, y) P (x, y) M &0 . R .$ & = + , + *Z & θ $ . e0 *Z$ 5&6 6 R $&+ θ = d(x + y ) = x dx + y dy A& '() $ *( R .$ 4= N# D : x = $ &0 4= N# θ = dx/x + x dy A, .8 *( .&[, R .$ r4= ;s E . h $ #n3t 6 U0& f (x, y) M ω = f (x, y) dx ∧ dy !VO 0 ( ; + , + *Z & ω $ . f (x, y) $ *( *Z$ 5&6 6 R $&+ &0 . R .$ & = R0 A%- ∧C S %- $ $ !VO 0 . & = dy ∧ dy = dx ∧ dx = , dx ∧ dy = −dy ∧ dx
*Z$ Z+U & = !M 0 Y >. T 0 $ + G#U η = R dx + S dy Rl+ θ = P dx + Q dy S R# 0&0 &F θ∧η
=
! ! P dx + Q dy ∧ R dx + S dy
= (P S − QR) dx ∧ dy
! d arctan(x + y) dx + arcsin(x + y) dy " # =
.$ z U0 M
( r" #$s 4= uL0 R# ` -
.&V0 4$ ` ^Y c 4$ ` y (+"1 .$ 9Z$ 4& ' $ .$ . DZ&O R# UB&Y *$.
*&q= T dx = Δx = x − x uL0 R# .$ $ dy = Δy = y − y
) θ ∧ (η + α) = θ ∧ η + θ ∧ α
!
F A +
− xy sin y dx ∧ dy
Z#. $ _&0 G#U 0 ) &0
dx ∧ dy
'() % $
! y ) x dx + y dy ∧ x sin y dx + dy = x
0 θ = y dx + (xy + y) dy 4= A, .8 z = ]3 *O&0 ! &M nB Adθ = U#C ( t1$ U 5 0 R# & *θ = df Z#. $ D 0 M (" f (x, y) .$ *∂f /∂y = xy + y ∂f /∂x = y M ( D = R
0
! y dx = xy + A(y)
f (x, y) = 0
!
xy + y dy = xy + y + B(x)
f (x, y) =
0 _&0 &" >.&[, $ "#&\ &0 * LB$ e0 B A M C M B(x) = C A(y) = y + C M Z#S f E ( >.&[, θ >E I R# 0&0 * LB$ (0&f $ , C *( (0&f $, C M f = xy + y + C #E ( ! &M D = R −(, ) 0 θ = x+dxx++yydy A .8 , !VO .& D & *O&0 f = x + y e0& !" #$ 0 0 *$S+ . 1 D .$ &z &+ (− , )( , ) y .&3 #E (" N# & (" 4E_ .&V 3 q1 .$ D 5$ 0 .& pO ]3 *( =&M pO ! ! θ = x +xy−y dx+ x −xy−y dy 4= A .8 E θ !"& 3 R = 0 *( ! &M R# 0&0 t1$ D = R 0 gc) y 0 ([" dy X#- E x 0 ([" dx X#9Z#S
0 f (x, y) = x
=
0
f (x, y) =
! x + xy − y dx + x y − xy + A(y) ! x − xy − y dy
x y − xy −
=
y
+ B(x)
U0& f O&0 4= η θ S ) d(θ + η) = dθ + dη
) d(df ) =
$
&F #n3t 6
) d(f θ) = df ∧ θ + f dθ ) d(dθ) = 0 $
θ = x/y dx + xy dy f = tan(x + ,y) M x= A .$ ; y0 . *η = xe dx + x + y dy *$ 5&6 . *;*H η = dx + arcsin (x/y) dy f = xe M x= A; *;*H .$ ; y0 . θ = cos x dx−x sin y dy *$ 5&6 . y
y
x 4= Zg S . T .$ $ $ ) z = f (x, y) U0& M ( > θ = P dx + Q dy *Z & θ !"& 3 . f >. T R# .$ *θ = df M O&0 O $ *dθ = M Zg S t1$ . θ 4= . T .$ . T .$ . D ⊆ R , + #E $ 5 0 . #E (T& &0 X ∈ D Y\ M Zg S >?@ + 9(= D .$ &z &+ X X y.&3 X ∈ D LB$ Y\ E 0s r*$. $ . 1 LB$ X B ( $ ) X _&0 G#U .$ M $ O ) q1 E (+"1 0 ) &0 *A$ O ) *H !VO 0C ( R# ]V, & *( t1$ &F O&0 ! &M θ S *;*H 0 =&M pO N# #E q1 *( yb M (B&' .$ XY
*$ g . . ZV' R# ]V, . 10 n
0 _&0 &" >.&[, $ "#&\ &0 * LB$ e0 B A M M $. $ $ ) C & (0&f $, Z#S f f (x, y) =
x
−
y
+ x y − xy + C
& = 4 M M M oL6 0 & $ . O $ $ 4= !"& 3 5$ 0 ! &M >. T .$ &M #E 90&0 ! ! ) x − xy dx + y − xy dy
) )
y dx − x dy
x − xy + y +
! ! x sin(xy) dx + x + y + x + y + xy dy
} !VO .& , + 9*H !VO , + 0 θ 4= S 93=_ $ $ *( ! &M D 0 θ &F O&0 t1$ D !VO .& ! &M θ = y dx + dy 4= A& '() % $ #E O&0 !VO .& D = R 5F $ V# &0 (" *(" t1$ θ nB dθ = −dx ∧ dy
! ! ! dx + dy − dz ∧ dx − dy + dz ∧ − dx + dy + dz = − dx ∧ dy ∧ dz
M x= θ = x dx − y dy + z dz
0 $
α = dx + dy + dz
η = x dx + y dy + z dz ω = y dx ∧ dy + x dy ∧ dz + y dz ∧ dx
η ∧ ω θ ∧ α θ ∧ ω θ ∧ η & .&[, E N# >. T R# .$ *M [& . α ∧ ω θ ∧ η ∧ α θ = P dx + Q dy + R dz S $ . ω θ !" #$ ω = P dx ∧ dy + Q dy ∧ dz + R dz ∧ dx ZM G#U #E >. T 0 X 0 dθ
= =
dω
= =
dP ∧ dx + dQ ∧ dy + dR ∧ dz ! ! Qx − Py dx ∧ dy + Ry − Qz dy ∧ dz ! + Rx − Pz dz ∧ dx dP ∧ dx ∧ dy + dQ ∧ dy ∧ dz + dR ∧ dz ∧ dx ! Pz + Qx + Ry dx ∧ dy ∧ dz
*$ O G#U *;*H .$ &+ ! &M t1$ = (= 5&Q θ 4= M Zg S > . T .$ . ω 4= ; M Zg S : . T .$ . ω 4= ; *ω = dθ M $$S *O&0 T 5F !" #$ 4= N# S ;;*;*H q1 E H & +"1 0 h .$ ZV' R# ]V, *( t1$ &F O&0 ! &M 4= ; . 10 0 =&M pO N# #E q1 *( yb M (B&' *$ g . . ZV' R# ]V, ; N# ω 4= $ θ θ S $ &F O&0 #n3t 6 U0& f 4= ) d(f θ ) = df ∧ θ + f dθ
) d(f ω) = df ∧ ω + f dw
) d(df ) = ) d(dθ ) =
) d(θ ∧ θ ) = dθ ∧ θ − θ ∧ dθ ) d(dω) =
, + 0 θ 4= S 93=_ $ , + 0 ω 4= ; S *( ! &M O&0 t1$ D !VO .& *( ! &M O&0 t1$ D !VO .&
! ! x + xy + y dx + x − xy + y dy ) (x + y) ! ! ) ex ey (x − y + ) + y dx + ex ey (x − y) + dy
Z+U R 0 . _&0 d'&[ $ + E&bF . 4$ ' 5 M *Z$
( .&[, R .$ 4= E . h * $ v e0 R Q P M θ = P dx + Q dy + R dz !VO 0 *Z & θ $ . e0 R# w 6 $ *#n<\ 6
!VO 0 ( .&[, R .$ 4= ; E . h
ω = P dx ∧ dy + Q dy ∧ dz + R dz ∧ dx
w 6 $ *#n3 t 6 v U0 R Q P M *Z & ω $ . e0 R# !VO 0 ( .&[, R .$ 4= E . h
Ω = f dx ∧ dy ∧ dz
$ . f $ *O&0 0n3t 6 v U0& f M *Z &
. R .$ & = & = ; & = + , +
%- *Z$ 5&6 6 R 6 R 6 R $&+ &0 X 0 . dz dy dx & & = R0 A%- ∧ C S ZM G#U #E >. j0 Ω
dx ∧ dx = dy ∧ dy = dz ∧ dz = dx ∧ dy = −dy ∧ dx dx ∧ dz = −dz ∧ dx
dy ∧ dz = −dz ∧ dy
dx ∧ dy ∧ dz = dz ∧ dx ∧ dy = dy ∧ dz ∧ dx = −dy ∧ dx ∧ dz = −dx ∧ dz ∧ dy = −dz ∧ dy ∧ dx dx ∧ dx ∧ dy = dx ∧ dx ∧ dz = dy ∧ dy ∧ dz = dz ∧ dz ∧ dx = dz ∧ dz ∧ dy = dx ∧ dx ∧ dx = dy ∧ dy ∧ dy = dz ∧ dz ∧ dz∧ =
Z#. $ _&0 G#U 0 ) &0
'() $
! ! y dx + z dy + x dz ∧ z dx + y dy + z dz = ! ! = y − z dx ∧ dy + z − x y dy ∧ dz ! + x z − yz dz ∧ dx ! y dx + z dy + x dz ∧ x dx ∧ dy − y dy ∧ dz ! +z dz ∧ dx ! = x − y + z dx ∧ dy ∧ dz
$ $ 4= 5$ 0 ! &M t\ R+- 0 $ $ 90&0 . ! &M & = !"& 3 O ) θ = yz dx + (xz + ) dy + (xy + z) dz
4= A& '() $ M f U#C θ !"& 3 R = 0 *( ! &M nB t1$ 9ZM !+, #E D. 0 Adf = θ θ = z dx+ y dy+x dz
0
dx + y dy + z dz ) θ = x+
) θ = xyz dx − x dy + dz
f
x +y +z
) θ =
−
y
+
y z
dx +
x x + z y
)
ω = x dx ∧ dy + x dy ∧ dz + z dz ∧ dx
)
ω = sin(xy) dx ∧ dy + x dy ∧ dz − xy dz ∧ dx
)
ω = z dx ∧ dy + arcsin(x + y) dy ∧ dz +
)
ω=
)
x
dx ∧ dy −
z dz ∧ dx x
x + x dy ∧ dz + y dz ∧ dx z
z
x
y
k ∂/∂z R
x
=0
4= ; $ 5&6 A .$ $ O G#U D ⊆ R !VO .& , + 0 M 5&0 0 *P + Q + R = M ( ! &M . T $&U
ω = P dx∧dy+Q dy∧dz+R dz∧dx
z
x
y
−−−−−−−−−−→
−−−−−−→ −−−−−−→ ∂ ∂ ∂ , , div(P, Q, R) := • (P, Q, R) = ∂x ∂y ∂z
f
= 0
f
=
f
)
dx ∧ dy =
dy = gu du + gv dv
∂(x, y) du ∧ dv ∂(u, v)
z = h(u, v, w) y = g(u, v, w) x = f (u, v, w) S AK &F
y sin z dx = xy sin z + A(y, z) 0
Q dy = 0
=
x sin z dy = xy sin z + B(x, z) 0
R dz =
xy cos z dz = xy sin z + C(x, y)
A .8 *( (0&f $, D M f = xy sin z + D .$ nB ( t1$ ω = y dx∧dy +x dy ∧dz −y dz ∧dx 4= ; θ = P dx + Q dy + R dz = R# 0&0 *O&0 ! &M U# pO R# & *dθ = ω M $. $ $ ) Qx − Py = y ,
Ry − Qz = x,
Pz − Rx = −y.
.$ & F !' ( gc) >&\ 6 &0 >_$&U & $ N# M .&V 0 & O. _z +U *(" %& M R# ' "#&0 ]3 *M+ $&# V6 Q ∼= x= ?za *O&0 R = x #&0 R# 0&0 *P = −y/ #&O P = −y R# 0&0 *O&0 R = xy U# R = y y
y
x
θ=−
&F y = g(u, v) x = f (u, v) S AnH )
x dz = xz + C(x, y)
0
P dx =
# θ=
−
y
dx + xy dz
E ( >.&[, M % ) *( B&" % ) N#
fC) f % $
) dx = fu du + fv dv
0 R dz =
0
x
i j −−−−−−→ Curl(P, Q, R) := ∂/∂x ∂/∂y P Q
=
y dy = y + B(x, z)
E ( >.&[, θ !"& 3 ?U0 *( ! &M nB t1$
.& , + 0 M θ = P dx+ Q dy 4= $ 5&6 A M ( ! &M . T .$ $$S G#U D ⊆ R !VO *P = Q 0 M θ = P dx + Q dy + R dz 4= $ 5&6 A; . T .$ $$S G#U D ⊆ R !VO .& , +
0 *Q = R P = R P = Q M ( ! &M $&U 5&0 y
f
Q dy =
! ! ! θ = y sin z dx + x sin z dy + xy cos z dz
+ sin(xy) dz ∧ dx
z
=
LB$ v $ e0 C B A M f = xz + y + D .$ *O&0 LB$ $, D t1$ #E (" ! &M θ = y dx + y dy + z dz 4= A, .8 *dθ = −dx ∧ dy (" 4= A .8
ω = sin(xz) dx ∧ dy + sin(zy) dy ∧ dz
y
f
z dx = xz + A(y, z) 0
0
xy dy − dz z
9( ! &M O $ $ 4= ; 4 M M M t\
0 P dx =
0
) θ = (x − yz)dx + (y − xz)dx + (z − xy)dz
=
y
"
+ A(x)
dx + B(y) dy + (xy + C(z)) dz
* LB$ e0 C B A M ! &M ω = y dx ∧ dy + x dy ∧ dz + y dz ∧ dx 4= ; A .8 *(" t1$ R# 0&0 *dω = dx ∧ dy ∧ dz = 9 #E ("
=
dx ∧ dy ∧ dz
(u − v) du ∧ dv + (v − w) dv ∧ dw + (w − u) dw ∧ du
= =
v u
9Z#. $ & = $. .$ v du ∧ dv ∧ dw w
u+w v
u = ln x − ln y M . T .$ A .8 *#.F (0 du ∧ dv X"' 0 . dx ∧ dy Z#. $ J**H ;8*;*H &q1 0 ) &0 *!' =
=
du ∧ dv ∂(u, v) ∂(x, y) du ∧ dv /x /y x − y y − x
=
= =
dy = gu du + gv dv + gw dw
)
dz = hu du + hv dv + hw dw
)
dx ∧ dy =
∂(x, y) ∂(x, y) du ∧ dv + dv ∧ dw ∂(u, v) ∂(v, w) +
)
dy ∧ dz =
+
)
dz ∧ dx =
=
xy du ∧ dv (x + y)
∂ (u, v, w) ∂ (x, y, z) v du ∧ dv ∧ dw ÷ u u v du ∧ dv ∧ dw (v − u) (w − u) (w − v) du ∧ dv ∧ dw ÷
w w
)
x
dx
∂(x, y) dw ∧ du ∂(w, u)
∂(y, z) ∂(y, z) du ∧ dv + dv ∧ dw ∂(u, v) ∂(v, w) ∂(y, z) dw ∧ du ∂(w, u)
∂(z, x) ∂(z, x) du ∧ dv + dv ∧ dw ∂(u, v) ∂(v, w) +
v = x + y + z u = x + y + z M . T .$ A .8 du ∧ dv ∧ dw X"' 0 . dx ∧ dy ∧ dz w = x + y + z *M [&
Z#. $ AC (+"1 [O _ &0 *!' dx ∧ dy ∧ dz
)
(u − v + w) (w − u) du ∧ dv ∧ dw
v = x + y − xy
dx ∧ dy
) dx = fu du + fv dv + fw dw
dx ∧ dy ∧ dz =
∂(z, x) dw ∧ du ∂(w, u)
∂(x, y, z) du ∧ dv ∧ dw ∂(u, v, w)
M M x= A& '() & $ vdu + udv Z#. $ >. T R# .$ y = u + v .$ dy = udu + v dv
= uv =
v dx ∧ dy = u
u − u du ∧ dv du ∧ dv = v v
y = uv + vw x = u + v + w M x= A, .8 9Z#. $ & = $. .$ >. T R# .$ z = u + v + w dx
= du + dv + dw
dy
= vdu + (u + w) dv + vdw
dz
=
udu + vdv + wdw
0 * $
[& ("0 Y y = uv x = u − v M x= A *dx ∧ dy dy dx [& ("0 Y y = r sin θ x = r cos θ M x= A; *dx ∧ dy dy dx z = u − v y = u + v x = uv M x= A dz ∧ dx dy ∧ dz dx ∧ dy dz dy dx ("0 Y
*dx ∧ dy ∧ dz ("0 Y z = uv y = ve x = ue M x= A dz ∧ dx dy ∧ dz dx ∧ dy dz dy dx [&
*dx ∧ dy ∧ dz 0 . dx ∧ dy v = sin x/y u = x − y M . T .$ AH *M [& du ∧ dv X"' u
v
9Z#. $ & = ; $. .$ dx ∧ dy
=
= dy ∧ dz
= + =
v u+w + u+w
du ∧ dv dv ∧ dw + v v
dw ∧ du v
(u − v + w) du ∧ dv + (−u + v − w) dv ∧ dw v u+w u v du ∧ dv v u + w v v v w dv ∧ dw+ w u dw ∧ du −u + v − uw du ∧ dv
+(uw − v + w )dv ∧ dw+ (uv − w )dw ∧ du v w u v dv ∧ dw dz ∧ dx = du ∧ dv + w u dw ∧ du +
0 f = cos x f = tan x e0 A& '() $ #E " U0& "0 D = (, π/) df ∧ df =
0 f
dx ∧ (− sin x dx) = cos x
f = x − y e0 A, .8 #E " U0& !\ " D = R − {(x, y)|xy = } = x + y
df ∧ df
=
(x dx − y dy) ∧ (x dx + y dy)
=
xy dx ∧ dy =
e0 A .8 U0& !\ " D = R − {(x, y, z)|x = y x = z y = z} 0 #E " f = xyz f = xy+xz +yz f = x+y+z
z
M x= A8 *dz ∧ dx dy ∧ dz dx ∧ dy [& ("0 Y
dx ∧ dy & .&[, z = x + y y = vu x = uv AJ *#.F (0 . dz ∧ dx dy ∧ dz M 0&0 B&' .$ dx ∧ dy ∧ dz X"' 0 . dρ ∧ dϕ ∧ dθ A7 *z = ρ sin ϕ y = ρ cos ϕ sin θ x = ρ cos ϕ cos θ B&' .$ dx ∧ dy ∧ dz X"' 0 . da ∧ db ∧ dc A v = a + b + c u = a + b + c M 0&0 v = u = x + y + z ?U0 w = a + b + c *w = x + y + z x + y + z = v
y
= v sinh u x = v cosh u
HS' !"# $+
df ∧ df ∧ df = (dx + dy + dz) ∧ ((y + z) dx + (x + z) dy + (x + y) dz)
= =
∧ (yz dx + xz dy + xy dz) y + z x + z x + y dx ∧ dy ∧ dz yz xz xy (x − y)(y − z)(z − x) dx ∧ dy ∧ dz =
R# *r " !\ " &v y xs M # O .&"0 ?[1 0 u3 R# 0 &3 0 ( U Q 0 &\1$ +) *( E& #E G#U 0 U0 f *** f f M x= $ !J )*E e0 R# Zg S . T .$ *O&0 D , +
E 0 M $$S (= G 5 Q v k e0& M " M U0 *G(f (X), f(X), · · · , f (X)) = X ∈ D * O & !J >9E O&[ U0& "0 f = sin x D = R M x= A& '() $ * " U0& "0 D 0 f f >. T R# .$ *f = cos x >. T R# .$ G(u, v) = u + v − $ O x= S #E *( T D 0 G(f, f) f = x − y f = x + y M M x= A, .8 f = (x + y)/(x − y) k
$ $ e0 M M t\ $. .$ 0 $ $ 9 " U0& !\ " , + 4 M 0 O
k
) f = x + y, f = x − y
) f = xy,
f = x/y, f = x − y
) f = x + y + z, ) f = xy z ,
f = x + y + z
f = yz x , f = zx y
) f = x + y + z + u,
f = x + y + z + u , f = x + y + z + u
) f = x + y + z + u ,
f = y + z + u + x , f = z + u + x + y
' & D = (x, y) x = y , x = −y
*H N (+
* " U0& "0 D 0 f f f e0 >. T R# .$ .$ G(u, v, w) = (u + v )/(uv) − w $ O x= S #E *( T D 0 G(f , f, f) >. T R#
$ + G#U 5 [) >_$&U N+M 0 . DZ&O + x +y = B$&U 0 T .$ ( VO # $ ?za
*( &q= .$ z = x − y B$&U 0 VO B Bn 5 S *O&0 DZ&O S R# UB&Y uL0 R# ` -
U0 f *** f f M x= $ 4E_ pO . T R# .$ *O&0 D , + 0 #n<" #$ ( R# O&0 U0& "0 D 0 e0 R# V# 0 =&M *df ∧ df ∧ · · · ∧ df = X ∈ D E 0 M k
X
X
k
X
.$ >.&[, R# 5$ $ . 1 &0 *y = r sin θ x = r cos θ (=S 9R# 0&0 * ≤ sin θ r = sin θ cos θ M $ O C −−−−−−−−−−−−−−−−−−−→ C : r (t) = sin θ cos θ, sin θ cos θ ;
≤θ≤π
*( . M V C *$ O ) % H*H !VO 0 ( 5 M0 V N# C : x = y A .8 .$ & f f (x, y) = −(−−x,−−−−−→ y) f (x, y) = x − y #E y = x y $ `&+ ) C ?U0 *$ O T (, ) ∈ C *AGB 8*H !VOC O&0 y = −x }
t 6 U0& z = f (x, y) M x= $ $% !( . C . T .$ *C : f (x, y) = c ( #n3 . S . T .$ *f (X) = 0 X ∈ C E 0 M Zg S & $ U E h mT C M Zg S )? $% !( . T .$ . C A VC *O&0 [) Y\ *O&0 . M R E , + #E 5 , 0 M Zg S N# C : x + y = x # $ A& '() $ nB f (x, y) = x + y − x (B&' R# .$ #E (
U 0 f (x, y) = −(−,−→) pO *f (x, y) = −(−−x−−−−−,−−→ y) N# C *$. tU C 0 (, ) ?U0 ( x = y = *$ O ) GB H*H !VO 0 *( . M [)
}
[) N# AGB 98*H !VO V [) N# A% V N# C
g F A .8 f (x, y) = x + y (B&' R# .$ #E *( . M −−−−−−−−−−−−−−−−−−−−→ VF 0 p6 f (x, y) = (/)x , (/)y C E (, ± ) (± , ) Y\ .& Q ]3 *y = x = R# *A% 8*H !VOC M+ T f (X) = 0 pO .$ !VO 0 [Y1 >&j L 0 5$0 &0 .
/
: x/ + y / = /
− /
− /
− −−−−−−−−−→ C : r (t) = cos t, sin t ;
≤ t ≤ π
*$ + .&3 5
}
AGB 9H*H !VO (x + y ) = xy A% ( [) N# C : x + y = y A, .8 5F t 6 .$ f (x, y) = x + y (B&' R# .$−−− #E → *(" . M C ( T GB&L
f (x, y) = (, ) *#0 h .$ . C : x + y = xy , + A .8 f (x, y) = x + y − xy (B&' R# .$ x + y = x
f (x, y) =
−−−−−−−−−−−−−−−−−−− → −−−−−−−−−−− x + xy − y , y x + y − xy
(x + y) = xy U 0 f (X) = 0 X ∈ C pO ]3 *( x + xy − y = y(x + y − xy) = x = M $$S B$&U E &F y = S M $$S 4$ B$&U E y = S & *(, ) ∈ C Z$ . 1 x + y &0 B$&U .$ S *x + y = xy x = ]3 *x = xy nB xy = xy Z#.F (0 R# .$ *y = R# 0&0 x = V# y = R# 0&0 x = x Z#S B$&U .$ y = x= &0 (B&' *M+ T 4 B$&U .$ x = y = & *x = . 10 O = (, ) ∈ C .$ & f (X) = 0 pO ]3 Z 0 *( V [) N# C R# 0&0 *(" N+M 5 A$ O U) J**8 0C [Y1 >&j L E C
[) N# 0 $ +, AGB 9J*H !VO [) $ R0 # E A% N# C : f (x, y) = a M x= $ M X ∈ C E 0 >. T R# .$ *( V
C : xa + yb = q0 $ $. 0 # E A .8 !VO 0 *M [& a < b M . C : xb + ya = *$ O ) % J*H x y x y *f (x, y) = b + a f(x, y) = a + b M x= *!' 9>. T R# .$ C ∩ C
: f (x, y) = f (x, y) =
− y = x : − a b
f(x, y) = B$&U .$,#$&\ R# 5$ $ . 1 &0 *y = ±x ]3 . $ M y = ±x = /a + /b = α Z#S 0 *O&0 (−α, −α) (α, −α) (−α, α) (α, α) % ) .& Q 5&+ *ZM .0 . X = (α, α) Y\ ( =&M 5.&\ !B$ C R0 θ # E ( RO. c % J*H !VO E M . @ 9U# O&0 0 0 f(X ) f(X ) R0 # E &0 X .$ C
θ
= =
=
=
∠ f (X ), f (X ) ⎞ ⎛ − −
−−−−−−→
−−−−−−→ x y x y ⎠ , ∠⎝ , , X a b b a X ⎛ ⎞ −−−−−−→ −−−−−−→
∠ ⎝α , , α , ⎠ a b b a # " # " /a b a b − − cos = cos /a + /b a + b
0 $ $
*0&0 (− , ) Y\ .$ . C : x + xy + y = DZ& A N# C M $ 5&6 *C : y = x + M x= A; Y\ .$ C 0 /&+ ]< *( V $ 5 M0
*0&0 . X = (−, ) C M $ 5&6 *C : x + y + x = M x= A & (− , −) E C / 1 @ *( . M N# *M [& . (− , ) B$&U 0 y C : x + y = # $ $. 0 # E A *M [& . C : y = x t 6 U0& u = f (x, y, z) M x= % $ . S . T .$ *S : f (x, y, z) = a Rl+ ( #n3 *f (X) = 0 X ∈ S E 0 M Zg S $% )* E h mT S M Zg S )? $% )* . S . T .$ $ ) pO U# *O&0 #. Y\ & $ U . 10 S p&\ + .$ 5F 5$ 0 T GB&L u = f (X) t 6
!VOC ( $ +, C 0 X Y\ .$ f (X) . $0 f (X) = 0 0 0 X = (x, y) Y\ .$ C DZ& ?U0 *AGB J*H
κ=
fxx fy + fyy fx − fx fy fxy !/ fx + fy
pO DZ& G#U 0 M $ O ) *( 0 0 (x , y) & (x, y ) Y\ E C / 1 @ ( cB
f (X) = 0 0
, dy (fx ) + (fy ) |fx |
y y
0
x
,
(fx ) + (fy ) x
dx
|fy |
*x X"' 0 . y ZM !' y X"' 0 . x V# 0 "0 ( 0 /&+ y A& '() $ x + y + xy =
x
*M oL6 . X
Y\ .$ &# .$ *!'
= ( , )
f (x, y) = x − − − − −−−−−−−−−−−→ −−−−−−→ , ) ]3 *f = x + y − , y .$ f ( , ) = (− R# 0&0 *( $ +, O $ $ 0 X = ( , ) Y\ −−→ O /&+ B$&U ( /&+ v = −− ( , ) . $0 (x − ) + (y − ) = E ( >.&[, x + y + xy −
x + y =
:
Y\ .$ . **H E AHC (+"1 g F√DZ& A,√ .8 *M [& X = /, / &0 ( 0 0 κ(X ) **H 0 ) &0 *!' #
− − / −/ x y + y
−/ −/ − x y × −
−/
#
÷
x−/
+
y−/
−/ x
"/
X
*( − / 0 0 U# (, ) & (, ) Y\ E AC **H # $ / 1 @ A .8 *M [& . VQ M 5&+M 0 9Z#. $ y = x − x 5 Q *!'
=
= =
0 , dx (x − ) + (y) |y| 0 , dx (x − ) + (x − x) + x − x
0 x − dx + = arcsin =π x − x
#. S + R# 0&0 *( T GB&L 6+ M B$&U R = 0 *A$ O ) % *H !VO 0C *( .$ S 0 /&+ −−−−T & . $0 X = (−, , −)−−−Y\ −−−−→ h .$ . n = f (X ) = (−x, , ) = (, ,−→) E ( >.&[, h $. T B$&U >. T R# .$ *Z#S
>.&[, c X Y\ .$ S 0 $ +, y B$&U *x + y + = *z = x + = y x + = y − = z E ( >. T R# .$ *S :−−x−−+−−y−−+→z = M x= A .8 ]3 *f (x, y, z) = (x, y, z) f (x, y, z) = x + y + z U 0 rf (X) = 0 X ∈ S s y# O
*S 0 e1 Y\ & $ U _z&+ ' c0 O&0 #E 5 , 0 M Zg S . T .$ . S A VC #. *O&0 . M R E , +
X
x=y=z=
x + y + z =
#. N# S M R# 0&0 *O&0 1& M ( ;I*H !VO 0C *( . M #. R# *( (B&' R# .$ M ( ) !0&1 A$ O ) GB X &V . $0 X ∈ S E 0 U# f (X) = X *O&0 $ +, X Y\ .$ S #. 0 }
AGB 9;I*H !VO A% z = x + y M x= A .8 R# 0&0 f (x, y, z) = z − x − y
x + y + z =
z = x + y
>. T R# .$ *S
:
−−−−−−−−−−−−→ f (x, y, z) = (−x, −y, −z)
}
[) #. N# 0 & 97*H !VO &F f (X ) = 0 X ∈ S S & $ *A7*H !VOC ( $ +, S 0 X Y\ .$ f (X ) >&[f 5&V &# .$ *( #$S >&[f ;** .$ q1 R# *$. $ ) 5F [) #. L I E . h * $ 3 N[V# U0& R = S : f (x, y, z) = a x
−−→ ( S ⊆ R 0 D ⊆ R E r(u, v) = −− (x, y, z) 5 Q #n<\ 6
e0& N# & &0 . S !M ( RV+ [B *S = r(D) M . @ *$#n3 >. T e0& Q &0 .&M R# $ + .&3 5 R# .$ *S : z = x +y M x= A& '() $ f (x, y, z) = z − x − y E ( >.&[, S mU e0& >. T GB&L . + M f (x, y, z) = −(−−−−x,−−−−−y,−−→) .$ 5 S+ ?z[1 . S *( [) #. N# S ]3 *( 0 *H !VO 0C *( 5 M0 #. M Z# & q0 A$ O ) GB }
V #. N# S ]3 *$ O T 0 Y\ .$ & S 0 M A$ O ) % ;I*H !VO 0C *O&0
< a < b M x= A .8 S :
, ! x + y − b + z = a
pO f (x, y, z) =
+ ! x + y − b + z
>. T R# .$ U 0 f (X) = 0
+ + x + y − b x + y − b x + = y + = z = x +y x + y
A% z = x + y AGB 9*H !VO ( RO. >. T R# .$ *S : y = x M x= A, .8 −−−−−−−−→ f (x, y, z) = (−x, , ) Rl+ f (x, y, z) = y − x M y = x
9R# 0&0 *f = x + y + z
α
= = = =
∠ f (X ), f (X )
−−−−−−−−−−−−−−→ −−−−−−−→ ∠ (x + y, y + x, ) , (x, , z) X X
−−−−−−−→ −−−−−→ ∠ ( , − , ), (, , )
π −+ cos− √ √ =
* &U X .$ $ 5F U# F M M oL6 $. .$ 0 $ *( #. O $ $ S , +
) x + y + z =
) x + y = z z / + y + x =
)
y=z+
)
)
x + y = z +
) x + z = y +
)
x + y +
) x + y + = z
= z
) z = x + y
) y = x + z /
) z = x − y +
)
x = y − z +
)
x = y
)
x + x + y =
)
z = x +
)
y = z +
)
x = y + y −
)
xyz =
$ O X ∈ S z = pO E =@ E *( + tU S 0 0 B *x = y = nB x + y − b = ±a # $ 5 .$ E S *( Zh #. S R# 0&0 *$.
C : (x − b) + z = a
% N# !VO 0 R# 0&0 ( F (0 & z . ' *A$ O ) ;*H !VO 0C ( B$&U 0 #. 0 /&+ T M M (0&f A4 .8 &j L >&T &0 . LB$ Y\ .$ S : xyz = a * < a M ( (0&f 5F Z' M M oL6
*x y z = a ]3 X = (x , y , z ) ∈ S ZM x= *!' /&+ T 0 $ +, . $0 R# 0&0 f = xyz >. T R# .$ E ( >.&[, X .$ S 0 −−−−−−−−−−−−−→ n = f (X ) = (y z , x z , x y ) = 0
E ( >.&[, 5F B$&U ]3 P : y z (x − x ) + x z (y − y ) + x y (z − z ) =
0 0 X 0 . −z . −y . −x &0 P $. 0 !
P E !T&' 4 Z' nB * xya yza xza &0 ( &0 ( 0 0 &j L >&T V =
) x + y + z = )
a a a
x
y y z x z
=
a
= (x y z )
a
*$. "0 X %&L 0 M
x + y + = x + y
) x + x + y − y + z =
)
x + y + z = x + y + z +
(x + y ) = x − y ! ) x + y + z = x y , √ ! ) x + y − + z =
)
)
x/ + y / + z / =
Y\ .$ . R#+ #. 0 /&+ T √B$&U A;J *0&0 , , Y\ .$ . J R#+ #. 0 /&+ T √B$&U A;7 *0&0 , − , Y\ .$ . I R#+ #. 0 $ +,√y B$&U A; *0&0 , , (, , ) Y\ .$ . R#+ #. 0 $ +, y B$&U AI *0&0
}
% 9;*H !VO S : x + y + xy = #. $ $. 0 # E A5 .8 *0&0 . X = ( , − , ) Y\ .$ S : x + y + z = # E &0 ( 0 0 X .$ S S R0 # E G#U 0 &0 *!' *X .$ S 0 /&+ T X .$ S 0 /&+ T R0 .$ S 0 $ +, X .$ S 0 $ +, R0 # E &0 c # E R# & S ]3 *( 0 0 X S : f (X) = a S : f (X) = a
f (X )
R0 # E &0 ( 0 0 O # E &F i jL0 B&" R# .$ B *f(X )
f = x + y + xy
E u = f (x, y, z) e0& M x= bCc) $ $ 5F A5$ SC t 6 Z L0 O G#U !< y .$ ![1 $& F . $ E ( =&M . h R# 0 *ZM [& . *$ O $& linalg[grad](f,[x,y,z]) e0& M x= j4R bCc) $ $ 0 ([" 5F E Z L0 O G#U !< y .$ ![1 E . $ ( =&M . h R# 0 *Z#0 gc) t 6 x v
z y E x &0 M ( #0 *ZM $. . diff(f,x) *$ + $& 5
∂f . $ E ∂x∂y∂z _&0 [ gc) t 6 [& 0 . $ E M >. T 0 *ZM $& diff(f,x,x,y,z) ∂ f t 6 [& 0 diff(f,x$n,y$m,z$l) ∂x ∂y ∂z *$ + $& 5
u = f (x, y, z)
n+m+l n
0
m
l
e0& M x= UT bCc) $ $ f (x, y, z) = c +- !VO 0 y x &v X"' E !< y .$ >. T R# .$ *O&0 O G#U t 6 [& 0 ZM $& eq:=f(x,y,z)=c . $ $& implicitdiff(eq,z,x) . $ E x 0 ([" z . $ E ∂x∂ ∂yz [& 0 M >. T 0 *ZM
*$ + $& 5 implicitdiff(eq,z,x$n,y$m) z
n+m n
m
y_2 y_1 e0 R0 M W [& 0 02=Lk $ $ . $ E x_m * * * x_2 x_1 &v 0 ([" y_n * * * 9ZM $& #E linalg[jacobian](vector([y 1, y 2, ..., y n]) , [x 1, x 2, ..., x m])
&0 . liesymm . c= 4 #&0 0 ED" $ $ $ &0 ("#&0 ]< *$ + .&M 0 $& F with(liesymm) . $ =U . *** y x !\ " &v setup(x,y,...) . $ ?za *ZM $. d(f) . $ &0 . f !" #$ 5 M *$ + & = %- 0 *O&0 dx−d(y/z) U 0 d(x)-d(y/z) U 0 d(x)&^d(u) ?za *ZM $& &^ E ∧ &0 *O&0 dx ∧ du # /.$F .$
78 % $ $
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
Y\ .$ . R#+ ; R#+ #. R0 # E A *0&0 ( , , ) Y\ .$ . ;H R#+ R#+ #. R0 # E A; √ *0&0 , , #. l : x + y = z + = x + z + y R0 # E A *0&0 (, , − ) Y\ .$ . J R#+ /&+ T M $. $ $ ) ;I R#+ #. 0 Y\ F A O&0 y = x B$&U 0 5F 0 T M M oL6 . 8 R#+ .$ #. E @&\ AH /&+ x + y + z = x T &0 & F 0 /&+
*O&0
5 S + x + y + z = M R0 $. 0 # E A8 *M [& . z = x + y q0 #. $ w 6 !j= 0 /&+ y B$&U AJ Y\ .$ . x + y + z = x + y = z *0&0 ( , , ) w 6 !j= 0 /&+ y B$&U M $ 5&6 A7 .$ S : f (X) = a S : f (X) = a #. $ E ( >.&[, X ∈ S ∩ S Y\ * : ∂x(f−,xf ) = ∂y(f−y, f) = ∂ z(f−,zf) ∂ (y, z)
−
∂ (x, z)
∂(x, y)
0 #. $ w 6 !j= 0 /&+ y B$&U A 90&0 ( , −, ) Y\ .$ . O $ $ >_$&U
*x + y + z = x + y + z = x X 0 S S &#. M C = S ∩ S M x= AI DZ& *O&0 f (X) = a f (X) = a B$&U 0 B$&U Rl+ *0&0 . X ∈ C Y\ .$ C %& Y\ .$ C 0 & T Zg&1 T 5& 0 T *0&0 . X 0 . B&" .$ F (0 & B = A x + y = z − z = x − $. 0 E !T&' *#0 .&V0 (, , ) Y\
58' 9 / ++ ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&=
+! , -$ M ( RO. *Z & P @ . #P P (= . |P | $, (+"1 n × m aM ' 0 D , + D 0 E = %&L &0 *A$ O ) % *8 !VO 0C $$S Z"\ **8 .$ &+ P D M x= % ≤ j ≤ m ≤ i ≤ n M . D &, + *O&0 9ZM G#U #E >. T 0 } ij
l&Q *O&0 RU 4 Z+U !j= R# E m . Y0 $$S $& v Q e0 E v N e0 &0 $ E , + #E E G#U $ E E&0 &0 U[@ &SQ 4&0 #) 4 $$S $& e0& G#U .$ M ( &S$ (B&' R#$& *O & 0 #F !j= .$ *Z#E $3 5F ^#6 0 !j= R# *( $3 Z &S
F B !F U& 0 $M &6 &S$ E uL0 R# .$ M #U UB&Y d0 5O RO. ( ) 0 & *( h .1 M ( 5F .$ $. 0 R# R"' !1 ' *( 4E_ &S#$ R# *$ + ) . &S$ &$0.&M 5 ' . 0
T .$ '& E = 9*8 !VO [xi− , xi ]× [yj− , yj ] ∩D
. M "0 D ⊆ R ZM x= % M (O $ $ ) . @ d c b a $ , R# 0&0 *O&0 ( p& !0&1 Y " .$ D U# *D ⊆ [a; b] × [c; d] [c, d] E&0 . −y 0 [a, b] E&0 0 0 . −x 0 5F # j M E = N# E . h *A(O $ ) GB *8 !VO 0C O&0
P 5F .$ M P = P × P !VO 0 ( 0qT&' D 0 9O&0 [c, d] 0 E = P [a, b] 0 E =
O&0 ! &M !Y " N# S R# b .$ Z#S [x , x ] × [y , y ] !Y " 0 0 . &M !Y " & D U# *Z#S . D >. T E . h *A$ O ) GB ;*8 !VO 0C " B& V# .$ X = &(x , y )' p&\ E $ & P E = E %&L N# &0 j i E 0 (x , y ) ∈ D M S 0 ( D *D = i1 D : x + y ≤ ZM x= '() % P : − < − < < < G#U &0 *O&0 3 E = N# 0 P = P × P P : − < − < < < |P | = max{ } = (= #P = min{, } = @ 0 E .&[, & D (B&' R# .$ *Z.
H Dij
i
i−
j−
ij
ij
j
ij
ij
ij
ij
ij
ij
ij
P
: c = y < y < · · · < ym− < ym = d
P
: a = x < x < ... < xn− < xn = b
#P := min{m, n} ZM G#U >. T R# .$ Δxi := xi − xi− , Δyj := yj − yj− |P | := max {Δx , · · · , Δxn , Δy , · · · , Δym }
+( − )( )( ) + = − +
++=−
−
( )( )
(B&' R# .$ M Z$ 5&6 & $ 000 Z .$&1 z U0 &F ε = / S R# 0&0 f (x, y) dxdy = D
/ f (xij , yij )Δxi Δyj − I < ε.
D = [− ; ] × [− ; ] , D = [; ] × [− ; ] D = [− ; ] × [; ] ,
D = [; ] × [; ]
% ;*8 !VO 0 *O&0 E = R# E %&L N# E + *$ O ) } X = {(− , − ) , ( /, −/) , (, ) , ( /, /)}
P
$ ) 4, $ ) >&[f #F 0 _&0 &a E M . Y&+ v $ e0& N# #n
$ 0 . M "0 , + D S % % O&0 . M O G#U D 0 M O&0 U0& z = f (x, y) Y0 Q N# Y\ Q N# E h mT *( #n
?za #E * " 4E_ _&0 q1 y# O 78 & % &F O&0 Q D (U- &F f (x, y) = S &F O&0 y .&3 N# D S ?U0 *( T D 0 f (x, y) *( T D 0 f (x, y) O&0 Q f (x, y) (U- f (x, y) e0& D , + l&Q * % 00 . f (x, y) dA M T 8**8 j1 y# O .$ R# E *Z & & . 5F >. T R# b .$ Zg S $&, R# m? VF $&, d0 $. & + ]3 *$$S 5&0 &z ' T .$ &+ D00 f (x, y) ZM x= A& '() % *( $&, (x − y) dA >. T R# .$ *O&0 H**8 &a
D :00 ≤ x ≤ , ≤ y ≤ ZM x= A, .8 $&, f (x, y) dA >. T R# .$ f (x, y) = [x]y M $$S h'? #E *( ⎧ ≤ x < S ⎨ f (x, y) = y ≤ x < S ⎩ y x = S rx = ; ≤ y ≤ s y .&3 $ 0 K - 0 M *O&0 3& rx = , ≤ y ≤ s D
D
D
**8 &a E (+"1 9;*8 !VO P E = D , + ZM x= % z = f (x, y) O&0 **8 .$ &+ X %&L R# .$ *$$S G#U D 0 M ( U0& + e+T&' 7 f (x , y )Δx Δy E . h >. T *D = M ( #& f (x , y )Δx Δy D , + 0 z = f (x, y) e0& Zg S . T .$ ε E 0 M $ O (= 5&Q I $, M ( ]oH/ (= S 0 n U[@ $, N# δ ([a $, N# ([a
0 |P | ≤ δ #P ≥ n M D 0 P E = E 0 M O ZO&0 O $ P E X %&L E P
ij
ij
i
ij
j
ij
ij
i
j
/ f (xij , yij )Δxi Δyj − I < ε P
$&+ &0 & D 0 f (x, y) &S$ . 0I0 >. T R# .$ _z +U (B&' R# .$ ?U0 *Z$ 5&6 f (x, y) dxdy 9$ O O D
00
f (x, y) dA = D
lim |P | → #P → ∞
/
f (xij , yij )Δxi Δyj
P
**8 &a &+ . X P D l&Q '() $ % >. T R# .$ f (x, y) = x − y ?U0 ZM x= /
f (xij , yij )Δxi Δyj =
P
=
f (x , y )Δx Δy + f (x , y )Δx Δy
=
+f (x , y )Δx Δy + f (x , y )Δx Δy
(− + )( )( ) + + ( )( )
4 =
=
=
lim n→∞ m→∞ lim n→∞ m→∞ lim n→∞ m→∞
m− / n− /
mn 4
mn 4
j=
i −
i=
.m.
n − n
n(n − )
m− − m
−
n− / m− /
m n
nm
i=
.n.
5
j
j=
m(m − )
5
5 = −
00
) f (x, y) = x + y,
D : − ≤ x ≤ ,
≤y≤
)
f (x, y) = x − y,
D :
≤x≤
,
≤y≤
)
f (x, y) = xy,
D :
≤x≤
,
≤y≤
a ∈ R O&0 #n
)
%
>. T R# .$
00 af (x, y) dA = a
f (x, y) dA D
&
' f (x, y) + g(x, y) dA =
D
00 =
00 f (x, y) dA +
D
g(x, y) dA D
R# .$ f (x, y) ≤ g(x, y) (x, y) ∈ D E 0 S A >. T 00
00
f (x, y) dA ≤ D
g(x, y) dA , D
&0 D D , + $ w O $. '& ('&" S A >. T R# .$ O&0 T ('&"
00
00
f (x, y) dA = D ∪D
e0. D 5F .$ M e dA A .8 *(" . M D #E *( & O&0 T−xy M M oL6 $. .$ 0 % 00 9& ( $&, f (x, y) dA x +y
D
) f = x y
D : x + y ≤
, ) f = x + y
f (x, y) dA+
)
f = x/y
)
f = lim {cos(n!πxy)}¾n D :
D : |x| + |y| ≤
n→∞
)
D :
≤x≤
f = [sin ( /(x + y))]
f (x, y) dA =
f (x, y) dA D
0 f (x, y) . \ R# +M D 0 f (x, y) . \ R# 60 S AJ R# .$ O&0 A m M 0 0 X 0 D ('&" D >. T
,
≤y≤
−x
(0&f #E q1 X %&L P E = X& %&L &0 5 &S$ 0 [& 0 q1 R# E *$$S
*$ + $& 00 f (x, y) dA D = [a; b]×[c; d] S % >. T R# .$ O&0 $ )
D
00 f (x, y) dA
=
lim n→∞ m→∞
D
D
=
n− m− b−ad−c / / n m i=
j=
d−c b−a ,c+ j a+i n m
ZM x= '() % >. T R# .$ *f (x, y) = x+ y − ?U0 &0 ( 0 0
D : ≤x≤ , 00 f (x, y) dA
D
00
00
≤y≤
≤ x ≤ , ≤ y ≤ x
f (x, y) dA
O&0 T ('&" &0 D D , + $ m? S A8 >. T R# .$
,
D :
D
D
≤x≤
$ % ) f = x + y
f
& F .$ M D E @&\ , + ('&" S AH >. T R# .$ O&0 0T & g(x,00y) f (x, y) 0 * f (x, y) dA = g(x, y) dA
, ≤y
D : x≥
00
D
D
≤y≤
D
D
00
ZM x= A .8 x ∈ Q y ∈ Q S f (x, y) = x ∈ Q y ∈ Q S R# 0&0 ( 3& D !M 0 f (x, y) >. T R# .$ 00 *O&0 & f (x, y) dA ,
D
. \ **8 q1 N+M 0 0 % 00 M M [& . T .$ . F (x, y) dA
)
D : ≤x≤
lim n→∞ m→∞
≤y≤
−− n m
n− / m− / i=
j=
− − , +j n m # " n− m− / / i j +− − = lim n m n → ∞ mn i= j= m→∞
f
+i
00
+
f (x, y)00= − x − y ZM x= A, .8 *0&0 . f (x, y) dxdy [#\ . \ *D : x + y ≤ y = − x = x = x = − p Y N+M 0 *!' 0C ZM Z"\ (+"1 8 0 . D , + y = y = 9A$ O ) % *8 !VO D
mA ≤
f (x, y) dA ≤ M A D
00
*
00 f (x, y) dA ≤ |f (x, y)| dA
A7 Z$ 5&6 Area(A) $&+ &0 .00D ('&" M . T .$ A * dA = Area(D) &F ZM x= A& '() $ % D
D
D
D = D ∪ D ∪ · · · ∪ D
. D , + 0 f (x, y) e0& . \ 4 + 4 +#cM& S & >. T R# .$ Z &0 m M X 0 i
i
i
√
M
=
M = M = M = f ( , ) =
M
=
M = M = M = M
=
M = M = M = f (, ) =
√
M
=
m
=
M = M = M = f (, ) = √ m = m = m = f , =
m
=
m = m = m = m m = m = m = f (, ) = √ m = m = m = f (, ) =
= m
=
E AJC A;C (+"1 0 ) &0 ` + .$ R# 0&0 Z#. $ **8 q1 00
00 f (x, y) dA = D
≤
00 √
00
= ≈
+···+
+ D
D
dA +
D
=
00
00 √
00
dA +
D
√
D
D :
≤ x ≤ , ≤ y ≤
0 5 . D >. T R# .$ f (x, y) = [x + y] ?U0 9A$ O ) GB *8 !VO 0C $ + Z"\ #E >. T D = D ∪ D ∪ D , D :
≤y≤
,
D :
≤y≤
,
D :
≤y≤
,
≤x≤
− y,
− y ≤ x ≤ − y,
− y ≤ x ≤ .
T 0 0 5F c0 D # cB Zg&1 da !M 0 f (x, y) e0& M Z **8 q1 E A8C (+"1 0 h R# 0&0 ( !M 0 f (x, y) e0& *( 0 0 D !M 0 M ZM x= ( 0 0 u . (+ e- c0 D `?-_ E
e0& *O&0 0 0 D !M 0 M $ + x= 5 R# 0&0 0 0 (, ) Y\ c0 D # cB Zg&1 da !M 0 f (x, y) $ 0 0 D !M 0 M $ + x= 5 R# 0&0 ( $ **8 q1 E () () (+"1 0 ) &0 ]3 *O&0
Z#. $}
dA
D
√
Area(D ) + Area(D ) + Area(D ) √ √ √ √ π π + − + + + −
/
Z#. $ 0&6 >. T 0 00
00 f (x, y) dA = D
≥
00
D
=
* ≤
√
00 +
D
00 +···+
D
dA +
00
D
D
√
× Area(D ) = (
00 , D
00 √
00
D
D
dA +
− x − y dA ≤
dA
H**8 &a E ; & +"1 9*8 !VO 00
[x + y] dA =
00
[x + y] dA + 8 9: ; D
*( 5F U1 . \ M Z $ [B
D
00
)≈
` + .$ ]3
[x + y] dA 8 9: ;
+ =
+
=
×
D
[x + y] dA 8 9: ;
× Area(D ) + × Area(D ) +×
=
. T .$ . R E D , + #E % >. j0 F M Zg S `g−x D : a ≤ x ≤ b , h(x) ≤ y ≤ (x)
RQ *$ O ) GB *8 !VO 0 *(O 5 0 E y $ 0 |Q ( . m@ $ E #&, +
$ x X"' 0 e0& $ . $ + 0 Rg&3 _&0 E . −y E&0 .$ x M $. $ tU D 0 . T .$ (x, y) Y\ * O
*[h(x); (x)] E&0 .$ y $S . 1 [a; b] }
.
00 f (x, y) dA D
. \ $. .$
) f (x, y) = [x − y]
)
D :
0 % %
9M [&
≤x≤
, ≤ y ≤
D : x + y ≤ , ≤ x
f (x, y) =
f (x, y) = [x ] ) f (x, y) = −
)
D :
≤ x ≤ , ≤ y ≤
|x| + |y| ≤ < |x| + |y| ≤
S S
D : |x| + |y| ≤
0 Rg&3 ' N# _&0 ' N# #E $. E 0N# 0 .$ 9#.F (0 f (x, y) dA D
) f = x y
, ) f = x + y
Zh −x , + AGB 9*8 !VO Zh −x , + N# $' RU A% ( Zh −x . M "0 , + % ( R O !0&1 Zh −x &, + E ,&+ ) !VO 0 0 0 &, + R# E & $ w O ('&" M S 0 9( T < D= D ∀ i = j : Area(D ∩ D ) = i
i
j
i
$ O (0&f &F .$ $$S E&0 W B 3 0 ZV' R# >&[f & aa E ,&+ ) >. T 0 . . M "0 , + M >&[f 0 M cQ & *(O 5 yLB `?- &0 *O&0 LB$ da N# 0 q1 ZV' 5$ $ 5&6 &
6=M)
<
+ J
U8
D :
,− ≤ y ≤
D : x + y ≤
)
f = sin(x + y)
D :
≤ x ≤ π/, ≤ y ≤ π/
)
f = x − y
D :
≤x≤
, ≤ y ≤
−x
( (i − ) ≤ x + y ≤ i \' D M x= A O G#U D : x + y ≤ R , + 0 z = f (x, y) !1 ' 0 0 X 0 M m S M $ 5&6 *( >. T R# .$ O&0 D 0 f (x, y) . \ aM ' i
i
[R]+
/ i=
00y D
i
i
00
(i− )mi ≤
f (x, y) dA ≤ D
[R]+
/ i=
(i− )Mi
p Y 0 $ da Z"\ &0 AI [#\ . \ (+"1 .& Q 0 x + y = *M [& . , + R# 0
= x = √ x + y dA
\O*' YG>X' 0
K+ %
*( O $ $ D Zh −x , + M x= /lU)−x x -= Y\ .$ . . R# M . −x 0 $ +, Y 0 (+ 0 |Q (+ , E =S h .$ M eY1 , + &0 y R# $. 0 RB .$ *Z$ (M' ( . !T&' x = b Y\ D$. 0 R#F .$ x = a Y\ D w y 5 M *A$ O ) % *8 !VO 0C *$$S
ZM x= U# Z$ . 1 & (B&' N# .$ . . Mn
0 y R# Rg&3 , E . (x, y) Y\ a ≤ x ≤ b D , + &0 Y\ R# $. 0 RB *Z$ (M' _&0
≤x≤
[& M Z. R# 0 ;**8 &a 0 ) &0 4E_ ]3 ( . O$ .&M G#U E $& &0 &S$ .&h R# *$ O ` 0 Z\ " b O. $. R# .$ ( &) 0 M Z#.F $ 0 ) E M $S > 1 1 M G#U . 1 f (x) dx M l3 ` + ' [&
R q1 0&0C F = f M Z = . F (x) e0& *( &0 .&h R# *Z#. F (b) − F (a) . \ 0 Ac [#_ *$ O KY X& G#U N# 0 .$ M ( 4E_ & b a
w y %&L &0 =@ E *b = a = R# 0&0 $. 0 Y\ R#Rg&3 M ZM &6 x Y\ E .nS 5F R#_&0+ ( (x, − x) E >.&[, D+, + !&0 y R# (x) = − x R# 0&0 *O&0 x, − x E >.&[, B$&U !' E y =+ − x M ( M{ 0 4E_ *h(x) = − x B$&U !' E y = − x ( O !T&' x+y = y R# 0&0 *( F (0 ≤ y 0 ) &0 x + y = D :
+
≤ x ≤ , − x ≤ y ≤ − x
}
Y\ 5F $. 0 Y\ R#F (x, h(x)) E >.&[, h(x) e0& $. 0 RB o L R $ R# 0&0 *$ 0 *$E& oL6 . (x) e0& $. 0 R#F o L R $ 0 $ , + D ZM x= A& '() % >. T R# .$ *O&0 y = x y = x = x = p Y H*8 !VO 0C ( Zh −x , + N# D M $ 5&6 *A$ O ) GB M $ O h'? >. T R# .$ *!' (x, (x))
D :
≤ x ≤ ,
≤y≤x
M $$S &6 *$ O ) x E OnS -= y 0 *O&0 (x, x) _&0 Y\ (x, ) R3&3 Y\ >&j L
} *;*8 &a E & +"1 98*8 !VO y = x p Y 0 $ , + D M x= A .8 D M $ 5&6 >. T R# .$ *O&0 y = y = −x *( Zh −x , +
( , ) Y\ 0 y = y = x y $ $. 0 E *!' y = −x y $ $. 0 E b = R# 0&0 Z.
0 *a = − R# 0&0 Z. (− , ) Y\ 0 y = .nS w y N# S ?U0 *$ O ) % 8*8 !VO ≤ x ≤ V# 0 "0 &F Z#0 h .$ x Y\ E (B&' .$ * F u3 (U- $ − ≤ x ≤ (B&' .$ (x, ) (x, x) E .&[, X 0 _&0 Rg&3 p&\ (x) = ` + .$ ]3 *(x, ) (x, −x) E .&[, 4$ − ≤ x ≤ S .$C = !#_$ 0 * h(x) = −x x ≤ x ≤ S ZM Z"\ uL0 $ 0 . D ( 0 A&S$ [&
9O&0 O $ Y0&- N# & 4 M .$ h(x) M 0
*;*8 &a E ; & +"1 9H*8 !VO y = x + 0 $ , + D M x= A, .8 , + D M $ 5&6 >. T R# .$ O&0 y = y *A$ O ) % H*8 !VO 0C ( Zh −x &3 0 y = y = x E !T&' & $ !' &0 *!' a = − Z#. $ .$ *Z. ry = x = ±s _&0 0 Rg&3 E (M' -= Y N# %&L &0 *( b = (x, x ) E >.&[, D , + Y\ R#Rg&3 M ZM &6
h(x) = x R# 0&0 *(x, ) E (".&[, $. 0 Y\ R#_&0 Z#. $ ` + .$ ]3 *(x) =
D = D ∪ D
D : − ≤ x ≤ , x ≤ y ≤
D : − ≤ x ≤ , −x ≤ y ≤ D :
≤x≤
,x≤y≤
4 ).$ e0& 0 $ , + D M x= A .8 , + D >. T R# .$ *O&0 . −x y = x − x & $ !' &0 &# .$ *$ O ) J*8 !VO 0 *( Zh −x x 0 − #$&\ 0 O $ $ B$&U $ E !T&' .$ M . Y&+ *O&0 b = a = − R# 0&0 Z.
R#Rg&3 &F − ≤ x ≤ S $$S &6 J*8 !VO
O&0 T e0. E +"1 D , + M x= A .8 *( O $ x + y = y x + y = # $ 0 M 0C ( Zh −x , + D M $ 5&6 >. T R# .$ *A$ O ) GB 8*8 !VO 9Z#. $ O $ $ B$&U $ E !T&' & $ !' &0 *!'
x + y = ⇒ x+y =
x − x = y =−x
⇒
x = , y =−x
*x + = y y x = y + 0 $ , + AI x+y =
y x + y = # $ 0 $ , + A *$. $ 0 .$ . (, ) Y\ M
E . −x y = | sin x| e0& . $ + 0 $ , + A; *x = π & x = −π x = y + $ 0 $ , + A * e0. .$ e1
x = y +
x + y = x
x + y = # $ 0 $ , + A *4.& Q e0. .$ e1
p Y 0 $ , + AH & B&' 0 *a < b α < β & F .$ M x + y = b *$ O ) a α /& 0 B&" G L
∗
x + y = a y = βx y = αx
) x/ + y/ ≤
)
X 0 D , + &0 w $. 0 ! 0 Y\ R#_&0 p&\ R# ≤ x ≤ S (x, x − x) (x, ) E .&[, .$ *$ 0 (x, ) (x, x − x) E >.&[, − ≤ x ≤ S h(x) = x − x ≤ x ≤ S x − x − ≤ x ≤ S (x) = ≤ x ≤ S . @ D D uL0 $ 0 . D ( 0 = !B$ 0 Z E&0 9O&0 Y0&- N & F .$ h e0 M ZM Z"\ D = D ∪ D D : − ≤ x ≤ , D :
≤ y ≤ x − x
≤ x ≤ , x − x ≤ y ≤
}
|x| + |y| ≤
) ≤ x + y ≤ ) x ≤ x + y ≤ x , ≤ y ) (x + y) + (x − y) ≤
) (x + y ) ≤ x − y
O&0 T D D w O ('&" S % % *ZM $& D + D $&+ E D ∪ D &0 /lU)
−x
@? 2 6=M) /D1 K+ & %
Z L0 O&0 .& .$ D . M "0 , + ZM x= '& ('&" M ZM Z"\ . @ Zh −x >&UY1 0 F . , + 0 *O&0 T & F E & $ R0 w O $.
. 5F M . −x 0 $ +, y N# ]< $ + Z , E . y R# *ZM Z M eY1 x .$ . 7*8 !VO 0 Z$ (M' ( . (+ 0 |Q (+ &0 w y R# w O ! UB&Y m *$ O ) GB $ U x %&L E RV+ (U- .$ *O&0 D , +
*Z#.&+O . D , + &0 y $. 0 E !T&' & Y .&3 . −x 0 . M v &B $ U & F .$ M #& &V
. −y > E 0 @ Y !T&' p&\ E *ZM oL6
E N# X R# 0 *[0 . D , + & ZM Z y &0 $. 0 .$ U# *$ 0 Zh −x !T&' >&UY1 *$ y .&3 N# & w
*;*8 &a E H (+"1 9J*8 !VO #E &, + E N# M $ 5&6 0 $ % $ O U *M oL6 . & F $' ]< " Zh −x *O&0 Y0&- N h e0 *x = −y x = y x = − p Y 0 $ , + A &. x + y = y 0 $ , + A; *&j L
*x + y = # $ 0 $ , + A *x = y y = x + $ 0 $ , + A *y = x + y = x − y 0 $ , + AH x + y = y # $ x + y = y 0 $ , + A8 *( (, ) Y\ ! &O M # $ y = −x y = x p Y 0 $ , + AJ *( (, ) Y\ ! &O M x + y = *x = y x = y + 0 $ , + A7 y = + x x + y = p Y 0 $ , + A *. −x
}
D = D + D + D √ √ D : ≤ x ≤ , − x/ ≤ y ≤ x/ + √ D : ≤ x ≤ , x − ≤ y ≤ x/ + √ D : ≤ x ≤ , − x/ ≤ y ≤ − x −
x + y = x # $ 0 $ '& D ZM x= A, .8 − R0 -= y &3 S >. T R# .$ *( x +y = D , + y y E O ) &y .&3 $ U O&0 R# 0&0 *( 0 0 $ U R# O&0 R0 S N# 0 0 R# 0 *Z$ D0 x = y y . D , + & ( 4E_ ) % *8 !VO 0C $$S Z"\ uL0 0 D X (O 5 ` + .$ A$ O D = D + D + D
+ + D : − ≤ x ≤ , − − x ≤ y ≤ − x + + D : ≤ x ≤ , x − x ≤ y ≤ − x + + D : ≤ x ≤ , − − x ≤ y ≤ − x − x
+ x = − y 0 $ , + D ZM x= A .8 R# .$ *( N# `&UO DZ [ cM 0 # $ x = − y 0 |Q (+ , E . x #&3 &0 w y S >. T $ U ( − R0 x M $& *Z$ (M' ( . (+ $ U R# O&0 R0 x S *( $ O ) & Y .&3 ( N# 0 0 $ U R# O&0 R0 x S ( N# 0 0 x = − p Y y . D , + M ( 4E_ .$ 9$$S Z"\ Zh −x UY1 .& Q 0 D & Z$ D0 x = D = D + D + D + D + + D : − ≤ x ≤ − , − − x ≤ y ≤ − x + + D : − ≤ x ≤ , − x ≤ y ≤ − x + + − x D : − ≤ x ≤ , − − x ≤ y ≤ + + D : ≤ x ≤, − x ≤ y ≤ − x
Zh −x >&UY1 # , + Z"\ 97*8 !VO .&3 $ U b & a Y\ E GB 7*8 !VO .$ &a 5 , 0 N# 0 0 w y y D , + E O ) & Y $ U R# d & c Y\ 0 5.& $.n0 b E x S & *( *( N# 0 0 f & e E 0 0 e & d Y\ E *( N# 0 0 .nS . −y E p Y Z E ]3 X R# 0 Z. VQ M , + (6 0 f e d c ba p&\ E >&UY1 $ U 5O +M !B$ 0 *$ O ) % 7*8 !VO 0 , + N# 0 $ + t 5 . &, +
*$ $ !\ ( 0 . >&UY1 $ U . ' Zh −x + $ 0 $ D , + A& '() * % > E 0 + $ R# *#0 h . x = y x = y + #E *M eY1 (, − ) (, ) .$ . #V# . −x
x = y x = y +
⇒
y = x = y +
⇒
y=± x=
ZM ) . _&0 . S *A$ O ) GB *8 !VO 0C O&0 R0 w y &3 S M $M Z &6
N# 0 0 D , + y 5F E O ) & Y .&3 $ U 4E_ R# 0&0 *( $ 0 0 $ U R# O&0 .& Q R0 xS 0 D X R# 0 *$ $ D0 x = y y . !VO M ( 9$$S Z"\ Zh −x UY1 }
$ !-& !VO 0 . $ R# A$ O ) GB I*8 !VO 0C U0 &$& .$ .&M R# *(O 5 Zh −x , +
9$ 0 A&S$ 0 p 0 C D = Da − Db + + Da : − ≤ x ≤ , − − x ≤ y ≤ − x + + − x ≤ y ≤ − x Db : − ≤ x ≤ , −
7*;*8 &a E ; & +"1 9*8 !VO
}
y !0&\ .$ x %&L / + % Zh −y , + E 5 ' . 0 R# 0&0 $. #c
9(S RL D : a ≤ y ≤ b , h(y) ≤ x ≤ (y)
*O&0 ^T c $. R# .$ ;*;*8 q1 .$ Zh −u , + N# E 5 M >. T 0 9(S RL T−uv E (+"1 E D , + A& '() % #E ( Zh −y , + R# *#0 h .$ . *;*8 &a
(O 5
D :
≤y≤
, −y ≤ x ≤ y
0 , + R# M $ O ) A*$ O ) % I*8 !VO 0C *$ 0 O O Zh −x , + $ E ,&+ ) >. T 7*;*8 &a E AC (+"1 .$ , + D M x= A, .8 5 #E *( Zh −y D , + >. T R# .$ *O&0 9(O D : − ≤y≤
, y ≤ x ≤ y +
Zh −x , + E ,&+ ) >. T 0 D ?z[1 M $ O ) *A$ O ) GB *8 !VO 0C $ 0 O O }
A% 7*;*8 &a E (+"1 AGB 9I*8 !VO Zh −y , + N# $' RU >&UY1 0 . D , + $. .$ 0 % N & F (x) h(x) e0 M M Z"\ . @ Zh −x 9O&0 Y0& y = x y = y = − p Y 0 $ , + A *y = −x *x + y = x + y = x # $ 0 $ , + A; !Y " x / + y/ = q0 0 $ , + A *q0 5F 0 y
x
+
y
=
q0 $ 0 $ , + A *x + y =
M x = y y = x + $ 0 $ , + AH * ≤ x ≤ M y = − x y = x + $ 0 $ , + A8 * ≤ x ≤ *;*8 &a E ; & +"1 9*8 !VO y = x + $ 0 $ '& D M x= A .8 Z ( Zh −x Z D >. T R# .$ *( x = y .&\ !B$ 0 e1 .$ *$ O ) % *8 !VO 0 Zh −y 9Z#. $ $. $ $ ) y x R0 M D
:
D
:
≤x≤ ≤y≤
√ , x ≤ y ≤ x √ , y ≤ x ≤ y
B$&U 0 # $ 0 $ '& D ZM x= A .8 >. T R# .$ *O&0 x + y / = q0 x + y = 9(O Zh D , + $ E ,&+ ) >. T 0 5 . D A$ O ) GB ;*8 !VO 0C
*(, ) (, ) (
(, −)
, ) (, )
(, ) (−, ) g. &0 U- .& Q A7 *(, )
) x ≤ x + y ≤ x ) ) x + y ≤
y=
xy
/ g. &0 U- .& Q AJ
)
≤ |x| + |y| ≤ ≤ x + y ≤ x
0 $ , + A *. −x ≤ t ≤ π M
− cos t x = t − sin t
=
xy
=
&B Bn 0 $ , + A *y = x y = x p Y
]' !F $0 B &" !' 0 0 5& q1 M ( . 5F 5& E 0 = $ S #&B& # 5 -. . Z R# *ZM KY &S$ *( &. 4& 0 9( Zh −x , + D M x= %
D = D + D
,
,
D : − ≤ y ≤ , − − y / , , D : − ≤ y ≤ , − y / ≤ x ≤ − y
− y ≤ x ≤ −
}
D : a ≤ x ≤ b , h(x) ≤ y ≤ (x)
>. T R# .$ *( 3 D 0 z = f (x, y) e0& 0
00
b
(0
f (x, y)dA =
f (x, y)dy dx a
D
)
(x)
h(x)
$ 0 G+ OVBC EJ B=B] % q1 N+M 0 ]< $ + Z"\ Zh −x ' 0 . Z#S & F E N# 0 O $ $ e0& E 0 = X R# 0 *ZE e+) . !T&' $ , 4& * & B +U () Q N# [& 0 h $.
0 $ , + D ZM x= A& '() % e0& . \ *O&0 x = y = −x y = x p Y *M [& D 0 . f (x, y) = xy 0C $ + oL6 . D , + $' #&0 0 *!' M $$S h'? *A$ O ) % ;*8 !VO D :
≤ x ≤ , −x ≤ y ≤ x
xy dA =
0 0
x
xy dy dx =
0 ( )y=x xy
−x
D
0 =
(
x dx =
x
) =
>. T 0 . #E &, + E N# 0 % 9"# 0 Zh −y &, +
*x = y x = y + 0 $ &, + A E B x + y = q0 0 $ , + A; *|x| + |y| = *( , ) (, ) (, ) / g. &0 da A (, ) (, ) ( , ) (, ) / g. &0 U-.& Q A E B x + y = g F 0 $ , + AH *|x| + |y| = Y0 . .$ $&T (x, y) = x+yi ∈ C / g. &0 U- uO A8 *(x, y) = /
Z#. $ 0 = q1 /& 0 R# 0&0 00
*;*8 &a E (+"1 AGB 9;*8 !VO **8 &a E (+"1 A%
dx
y=−x
}
/
)
|x| + |y| ≤
)
|x + y| + |x − y| ≤
)
x/ + y / ≤
)
≤ x + y ≤ x
) (x + y + ) + (y + x + ) ≤
e0& . $ + 0 $ , + A; *. −x − ≤ x ≤ M (x + y) = a(x − y) 5 3&3 0 $ , + A * < a E&0 0 / "M / e0 . $ + 0 $ , + A *[; π] E&0 0 y
= arcsin x
∗
**8 &a E ; & +"1 9*8 !VO
9$ O !' #&0 $ ]3 (
00
00
x dA + x −
f dA = D
D
(0
0
x − x
)
00
D
−x
dA x − 0 (0
−x dy dx + = − x −x x − x − x 0 0 xy dy −xy dy = dx + dx − x − − x − x −x ( ) 0 0 0 x = x dx + x dx = x dx = = x dy x −
−
−
)
−
dx
e0& ( x + y ≤ x i1 D ZM x= A, .8 *M [& D 0 . f (x, y) = π+sin(πx/) x − x X"' 0 . x + y = x B$&U + 0 . h R# 0 *!' #E 5$ 0 ([a pO M y = ± x − x 9ZM !' y R# 0&0 *O ≤ x ≤ U 0 &V#$ . D :
00 D
⎡ √ ⎤ 0 0 x−x π sin(πx/ ) dy ⎣ √ ⎦ dx + f dA = − x−x x − x √ )y= x−x 0 ( πy sin(πx/) + = dx √ x − x =
+
+
D :
≤ x ≤ , x − x ≤ y ≤ − x
D :
≤ x ≤ , − − x ≤ y ≤ − x − x
+
00
00 f dA = D
+
>. T R# .$
00 −xy dA
xy dA + D
D
⎡ √ ⎤ 0 0 −x ⎣ √ = xy dy ⎦ dx x−x
⎡ ⎤ √ 0 0 − x−x ⎣ √ + −xy dy ⎦ dx
0 ( y x =
=
0
√ ) −x √
−
−x
√
0 ( )− x−x y dx + dx x √
x−x
! x − x dx =
−
(
x x −
)
−x
=
(, ) (, ) .$ / g. &0 aa D M x= A5 .8 [& D 0 f (x, y) = x yy−+ e0& *( ( , )
+
Z#. $ ` + .$ ]3 *$ O ) GB *8 !VO 0
}
**8 &a E J 8 & +"1 9*8 !VO x + y = x # $ 0 $ '& D M x= A4 .8 0 f *f (x, y) = x|y| O&0 . −y x + y = *M [& . D (" Zh −x , + D *ZM UB&Y . D 0 *!' GB *8 !VO 0 ( Zh −x uL0 $ 0 !#[ !0&1 & M D = D ∪ D *$ O )
+
≤ x ≤ , − x − x ≤ y ≤ x − x
π
0
y=−
π sin x dx = −
x−x
π cos x =
y = x + $ 0 $ , + D ZM x= A .8 *M [& . D 0 f *f (x, y) = xy ( x = y Z#. $ *;*8 &a E AC (+"1 0 ) &0 0 *!' D :
0 (0
00 f dA = D
≤x≤ √
x
x
√ , x ≤ y ≤ x
R# 0&0
)
xy dy
dx =
0 $ %y=√x xy dx y=x
( ) 0 x x x − x dx = − = =
M O&0 T−xy e0. E +"1 D M x= A .8 *f (x, y) = x ( O $ y = − x + y *M [& . D 0 f D $ 0 D 0 f (x, y) [& 0 *!' R# .$ A$ O ) % *8 !VO 0C *ZM #&&O . R# 0&0 D : ≤ x ≤ , ≤ y ≤ − x >. T 0 (0 −x
00 f dA =
0 $ %−x xy x dy dx = dx
D
0 =
x − x
)
(
dx =
x −
x
)
=
E AHC (+"1 .$ O G#U '& D M x= A .8 . D 0 f *f (x, y) = x|x|− O&0 *;*8 &a
*M [&
O Z"\ Zh −x , + $ 0 D 5 Q >. T R# .$ *!'
}
*M *Z0 . da e- B$&U 0 . h R# 0 *!' e0. E&"+ E ( >.&[, (, ) (, ) p&\ E .nS y ( , ) (, ) p&\ E .nS y *y = x U# 4 ( , ) (, ) p&\ E .nS y *y = E ( >.&[, R# .$ *y = x − R# 0&0 x −− = y −− E (".&[, ) % *8 !VO 0C ( Zh −y , + D >. T (O 5 #E A$ O
**8 &a E 7 & +"1 9H*8 !VO 0 (0 /−y
00 f dA = D
/
0 ( =
/
/y
xy dx y − y −
x y y − y −
0 $ =
/
dy = −
y ≤ x ≤ y/ +
R# 0&0
dy 0 (0
00
dy
%
y − y +
≤y≤;
)
)x=/−y x=/y
D :
y/+
f dA =
y
D
y = ln x . $ + 0 $ , + D M x= A2 .8 *f (x, y) = xy /(e − e) O&0 x = e Y . −x *M [& . D 0 f }
=
0 ( x
y + y−
y
=
(y + )
)
y + dx x y−
dy
)x=y/+
0 dy =
x=y
(y + ) dy
=
B Bn 0 $ , + D M . T .$ A0 .8 . y −xyy − dA O&0 x + y = / y *M [&
$ $ y B Bn D , + $' 5O RO. 0 *!' 9Z$ $. 0 . O xy = 00
D
**8 &a E I & +"1 98*8 !VO Z ( Zh −x Z D , + >. T R# .$ _> e1 .$ *$ O ) % H*8 !VO 0 Zh −y D :
≤x≤e,
≤ y ≤ ln x
⎧ 0 (0 e ⎪ ⎪ ⎪ ⎪ 00 ⎨ f dA = 0 (0 ⎪ ⎪ ⎪ D ⎪ ⎩
:
≤y≤
, ey ≤ x ≤ e
(O 5 R# 0&0 ln x
xy ey − e
e
ey
)
dy dx )
xy dx dy ey − e
( ) ()
U# $. $ !' 0 A;C AC ( !' !0&1 b AC M 0 (
=
x y ! ey − e
⎧ ⎪ ⎨
⎧ ⎨ xy = ⎩
x − x = ⇔ ⎪ x+y = ⎩ y = −x √ ⎧ ± − ⎪ ⎨ x= ⇔ ⎪ ⎩ y = −x
⇔
⎧ ⎪ ⎨ x = , ⎪ ⎩ y=
−x
(, /) ( /, ) E .&[, $ 5F $. 0 p&\ R# 0&0 ( Zh −x , + R# *$ O ) GB H*8 !VO 0 9(O 5 #E D :
/ ≤ y ≤ , /y ≤ x ≤ / − y
)x=e
dy x=ey
.$
}
0 =
−
(
y
dy = −
y
)
=−
y = x p Y 0 $ , + D M x= A&^ .8 . D 0 f *f (x, y) = e ( x = y = *M [&
>. T R# .$ *!' x
**8 &a E ; & +"1 9J*8 !VO E ]3 .
) 0 (0 −x xey dy dx −y
A&, .8 *M !' $' X # U @ Y y = − x + 0 D &# .$ M ( RO. *!' 9( O $ x = x = y = D :
+
≤y ≤, ≤x≤ −y
>. T R# .$ *$ O ) GB J*8 !VO 0
) 0 (0 −x xey dy dx = −y ) 00 0 (0 √−y xey xey = dA = dx dy −y −y D √ ) −y 0 ( y 0 x e dx = dy = ey dy ( − y) = ey = e −
, + 0 . f (x, y) = [y − x ] e0& A& .8 *M [& x ≤ y ≤ 9$M UB&Y #&0 . ^T DZc) ! $ >.&[, *!' [y − x ] = n
⇔ n ≤ y − x < n + ⇔ x + n ≤ y < x + n +
0 ) &0 *O&0 LB$ ^T $, n M Z"\ (+"1 .& Q 0 . D , + (x, y) ∈ D (#$
9A$ O ) % J*8 !VO 0C ZM
D = D ∪ D ∪ D ∪ D D : x ≤ y < x + D : x +
,y≤
≤ y < x + , y ≤
D :
≤x≤
≤y≤x
:
≤y≤
, y≤x≤
) GB 8*8 !VO 0 *Zh −y Z ( Zh −x Z 9(O 5 t#@ $ 0 R# 0&0 *$ O ⎧ 0 0 x ⎪ x ⎪ ⎪ e dy dx ⎪ ⎪ 00 ⎨ f dA = ) 0 (0 ⎪ ⎪ ⎪ x D ⎪ ⎪ e dx dy ⎩
( ) ()
y
!' $ O . AC M B&' .$ AC ( !' !0&1 b A;C & 9$ + 0 $ 0 %y=x x ye dx = xex dx
=
= 0
(0
ex
√ π
y=
=
(e − )
) sin(x ) dx dy x
O $ $ A&& .8 . \ $' X # U &0 (" !' !0&1 & ( *#.F (0 . !VO 0 F $.F (0 . D $ ZM U ]3 *!' p Y x = √y + 0 D M ( RO. Z"# 0 Zh √−x % 8*8 !VO 0 ( O $ y = π y = x = π *ZM "# E&0 Zh x >. T 0 . , + R# *$ O ) (+"1 ]3 M+ T " y# O .$ (, π) Y\ 5 Q √ *D : ≤ x ≤ π , ≤ y ≤ x 9O&0 [1 $. g&3 Z#. $ .$ π
√ y
0
) sin(x ) dx dy = √ x y 00 0 √π (0 sin(x ) = dA = x
π
(0
√ π
D
0
√
π
=
D : x + ≤ y < x + , y ≤ D : x + ≤ y < x + , y ≤
,
=
−
(
sin(x ) y x
x
)y=x
0 dx =
y=
√ π cos(x ) =
) sin(x ) dy dx x √ π
x sin(x ) dx
=
R
0 πR
( − cos t) dx
}
00
>. T R# .$ y − x ] dA =
D
00 D
R
=
0 π
( − cos t) R( − cos t)dt
0 R π
=
= −
R
cos t + cos t 0 π
=
R# 0 *( cB **8 q1 .$ e0& 3 pO 1& 0 ( RV+ O&[ . 10 pO R# l&Q M U
*M ) #E &a 0 *Z0 M x= '() % ⎧ ⎪ /y < x < y < S ⎪ ⎨ − /x . T R# b .$ ⎪ ⎩ /y <x
0 (0
) f (x, y) dy dx =
$ 5&6 )
0 (0
f (x, y) dx dy
Z#. $ f Y0&- 0 ) &0 *!' 0
0 f (x, y) dy = 0
0
x
f (x, y) dy + 0
f (x, y) dy
&0 ( 0 0
√
= −
)
(0
√
x +
0
= −
√
− x
= =
x −
0
− √
dx + −
√
0 $ +
(
√
x
)√
−
( +
−√ √ √ + +
x −
x
R# 0&0
)
(0
0 (0
√
0
−
[y − x ] dA
D
√
dy dx + +
x +
dy dx )
dy dx
x +
− x
dx
% − x dx )√ −
(
√
+ x−
x
)
! &M UY1 N# 0 $ '& D M . T .$ A& .8 0C C : x = R(t − sin t) , y = R( − cos t) g V E . f (x, y) f (x, y) = y O&0 A$ O ) 7*8 !VO *M [& D 0 ( >.&[, . −x &0 C $. 0 U# y = pO *!' M ( U R# 0 C E ! &M UY1 N# ]3 *cos t = E >. T 0 . D , + * ≤ t ≤ π D :
≤ x ≤ πR , ≤ y ≤ R(
− cos t)
R# 0&0 *$ $ ^- 5
x
− dy + dy x x y y=x y= −y − = + =− y y=x x y= ) 0 0 (0 f (x, y) dy dx = −dx = − =
x
D
, x + ≤ y ≤ 00
D : − ≤ x ≤
0
dA
√ √ D ∪ D ∪ D : − ≤ x ≤ , x + ≤ y ≤ √ √ D ∪ D : − ≤ x ≤ , x + ≤ y ≤
dt + cos t
D
00
dA +
D ∪D
dA
+ D D ∪ D D ∪ D ∪ D &, + & #E " Zh −x
+ dt π + R t + sin(t) = πR +
D ∪D ∪D
00
dA +
D
00
dA +
− cos t + cos t − cos t dt
0 R π
00 dA +
D
00
=
**8 &a E (+"1 97*8 !VO ]3 ZM $& x = R(t − sin t) v v E 5 M π R# 0&0 xt πR dx = R( − cos t)dt
00
dA +
=
0 πR (0
00 ydA = D
=
R(−cos t)
) ydy dx
0 πR ( )y=R(−cos t) y
dx
y = a p Y 0 $ \Y D M . T .$ AJ e0& O&0 y = x y = x + a y = a *M [& D 0 . f (x, y) = x + y
M B&' .$ f (x, y) dx =
y = x
0 aa D M M [& . T .$ . xy dA A *O&0 (, ) ( , ) (, ) / g. D
5F .$ M M [& . T .$ .
00
xy dA
D
A;
− x , y ≥ x , x ≥
O&0 ( , ) ( , ) (, ) +/ g. &0 aa D S A;; *M [& D 0 . f (x, y) = xy − y e0& 00
#_&0 + D M M [& @60 . xy dA . \ A; *O&0 (x − ) + y = # $ 0 $ '& &. 0 /&+ a `&UO 0 # $ D M . T .$ A; &0 f (x, y) e0& O&0 e0. .$+e1 &j L
*M [& D 0 . / a − x Y0&D
0 $ !Y " 0 . f (x, y) = x y e0& A;H M [& y = b y = x = a x = p Y * LB$ \\' $ , a b U[@ $ , n m M n m
. !T&' B X # U E ]3 $. .$ 9M [&
) ) ) ) )
x
0
π
(0
0 (0
y dy dx
sin x
√ y
y
0 (0 √
0 (0 y
⎡ ⎤ 0 0 √−y ⎣ ) x dx⎦ dy
)
0 (0 x
y /
) xy dy dx )
x dx y ln x
) dy
) sin(x ) dx dy
√
)
sin(πy ) dy dx
x
0 (0 e
y
x
) dx dy
y
0 (0
)
√ y
f (x, y) dx y
y
+"1 D f (x, y) = y/(x + y) M . T .$ A;I y = p Y R0 M O&0 x + y ≤ i1 E [& D 0 . f ( O $ y = / *M D : y≤
f (x, y) dx +
=
00
0
y
0 − dx + dx y x x x=y x= x = + = x x=y y x= ) 0 0 (0 f (x, y) dx dy = dx = 0
+ $ 0 $ D M . T .$ A7 *M [& D 0 . f (x, y) = x y e0& O&0
x = y
0
0
) x exy dx dy
[& . #E .V & B E N# ) 0 (0 x dy ) dx y + 0 0
)
dy ) dx (x + y) ⎡ √ ⎤ 0 0 −x ) ⎣ xy dy ⎦dx x
⎡ ⎤ 0 0 √ −y ⎣ √ ) x dx⎦dy −
)
−
0 (0
−y
)
0 $ %
0 π 0
9M
a
rdr dθ sin θ
0 (0
)
[x + y] dy dx x
) 0 (0 −x ) (x + y) dy dx ⎡ ⎤ 0 0 √−y
) ⎣ |x − | dx⎦dy
) (x + y) dx dy
⎡ √ ⎤ 0 0 −x , ⎣ ) − x − y dy ⎦ dx 00 f (x, y) dA
9"# 0 . $' $. .$ (, ) (, ) (, ) (, ) / g. 0 !Y " D A *( x + y = y − x = B Bn 0 $ '& D A; *( DZ [ ! &O ( (, ) (, ) ( , ) / g. 0 `?-_ E D A *( ( , ) x + y = x y + x = # $ 0 $ '& D A *( 00 '& D M M [& . T .$ . xy dA AH ( x = p/ y y = px + 0 $
*p > x + y ≤ i1 0 . f (x, y) = |xy| e0& A8 *M [&
D
D
$ 6 $ $ Z N# E u0 Y\ N# 0 A; *O&0 \Y 4&h N# . $ & %&L A U0& A , + 0 >&j L N# E . h -. 5&0 0 Z R hC oL6 , + 0 A E S = N[V# ( *A*** R !#{ G#U ( T .$ >&j L K@ m M 5 M 9Z$ g . . T .$ >&j L v N# E . h % !VO 0 F : R → R #n3/ VU U0& ! F (u, v) = x(u, v), y(u, v)
(u, v) ∈ D E 0 M ( V $0 D $ &0 ∂(x, y) = J = ∂(u, v)
*Z & F >&j L v R0 M W . J $, e0& >&j L v R# E $& !B$ 0 78 % ('&" &0 , + #E 0 pO R# &S$ [& .$ *O&[ . 1 0 D E T D = V = R Z#S A& '() % F >. T R# .$ *F (u, v) = ((u + v)/, (u − v)/) ( #n3/ VU F _z #E *( >&j L v N# &f .$ F (x, y) = (x + y, x − y) −
* ∂(x, y) * =* J = ∂(u, v) *
/ / / − /
* * − *= *
=
=
} ZM x=
A, .8 >&j L v N# F >. T R# .$ F (u, v) = (uv, u/v) √ F (x, y) = xy, +x/y ( #n3/ VU F #E ( D = V = {(u, v) | u >
, v
>
v /v
* * u * = u −u/v * v
−
* ∂(x, y) * =* J = ∂(u, v) *
*$ O T D E $ O+ G#U v = y Z 0 & M >&j L v N# F E&+ ('&" &y Z R# 5 Q *M G#U F (u, v) = (x, y) $ 5&6 $. .$ 0 $ % oL6 . V D , + M G#U >&j L v N# 9M ) x = u, y = uv
)
x = u /v, y = v /u
) ) ) ) )
0 (0
y/
0 (0
ln x
0 (0
y (x − y)e(x−y) dy
) dx
) + y (x − ) + e dy dx )
π/
ln(cos y) dy dx arctan x
0 (0 x
0 (0
)
xy exp(yx ) dy +
y
x y + x y
dx
) dx dy
) dx dy ) y ln y + xy + f (x, y) = x y − x − y 0
e
(0
ln y
, + 0 . x + y
e0& AI = 0 $ e0. .$ e1 *M [&
0 $ , + 0 f (x, y) = xy e0& A 9M [& . #E &j L &.
*C : x = R cos t , y = R sin t , ≤ t ≤ π/ $ &j L &. 0 $ e0 D M x= A; Rl+ O&0 y = x = B$&U 0 y Zh −x !VO 0 . D *f (x, y) = (x − y)/(x + y) N# 0 ([" . f ]< O Zh −y c *M [&
- ^_' S& (0 O !' L 0 !#&" $. E .&"0 .$ v D. E $. RQ .$ * " !' !0&1 ?zT V# &O N+M e1 E .&"0 .$ M $ + $& 5 v
E .&[, &S $ .$ $. & &v v *M
&S ) . & F M Y >&j L v [Y1 >&j L v >&j L v $ R# e $0.&M !B$ 0 *$M Z .0 v M >. T 5&0 0 5&3 .$ ZM ^#6 . & F 0 *( $3 Z v
^- 0 U S M . Y0 @PC\) % *Zg S ( $3 RU . p&\ , + . nS Z 0 (#&,. "#&0 . nS 4& 0 T& T M ( RO. 9$$S O $ $ ([" Z p&\ + 0 A
}
)
)
u = xy, v = x + y
u = /x, v = /y
)
x = u + v, y = u − v , ) u = x + y , v = arctan (y/x)
.$
G+ 'BC @PC\) f % %
0 M W V $0 U $ &0 &j L v F M . T c O&0 #n3 D ⊂ V 0 z = f (x, y) e0& O&0 e0& >. T R# .$ F (D ) = D M O&0 . @ D ⊆ U S ! ?U0 ( #n3 D 0 c z = f x(u, v), y(u, v) J
0 [Y1 >&j L E , + !#[ 9;I*8 !VO ]VUB&0 .&M$ #E D S >.? @PC\) fm * % T−θr .$ 5F # j M O&0 T−xy E , +
>. T R# .$ ( D , +
00 00
f (x, y) dxdy =
0 $ '& D M x= A& '() % e0& >. T R# .$ *( x + y =+ # $ *M [& . D 0 f (x, y) = x + y 0 D 5 Q *ZM $& [Y1 >&j L v E *!' D # j U#C D ]3 $$S 5&0 x + y ≤ >. T . + r & *D : r ≤ E ( >.&[, AT−θr .$ $ ) θ 0 @O 5 Q *D : ≤ r ≤ R# 0&0 ( & U# V0 . $ > v + θ ]3 $.
D :
≤ θ ≤ π , ≤ r ≤
00 + 00 , x + y dA = r r dA D
0 π (0 = =
D
√ 0 π
)
r/ dr dθ = dθ = π
Z#. $ ` + .$ ]3
0 π
r /
dθ
*$ O ) ;*8 !VO 0 D 0 D !#[ Q Z" 0 }
J**8 E (+"1 9;*8 !VO
00
00
*
f dA = D
F − (D)
(f ◦ F ) dA
.&j 0
M x= .? @PC\) & % r &0 . O & M T&= *( T−xy .$ DZ [ c0 Y\ *$ O ) ;I*8 !VO 0 Z$ 5&6 θ &0 . xOM # E >. T R# .$ M ( RO. M = (x, y)
x = r cos θ y = r sin θ
+ x + y = r arctan (y/x) = θ
R# 0 *r = θ = ZM G#U O = (, ) DZ [ $. .$ *$ O G#U F (θ, r) = (x, y) e0& X α ≤ θ < π+α ZM x= $$S N[V# F V# 0 $ ]3 * ≤ r M ( RO. c LB$ ( $, α M >. T 0 . F U : α ≤ θ < π + α ,
√
! f x(u, v), y(u, v) J dudv
D
D
! f r cos θ, r sin θ r dA
D
D
00
00
f (x, y) dA =
≤r
!M E ( >.&[, F $0 M ( ^- ?U0 *ZM G#U c T−xy ∂(x, y) −r sin θ = J = ∂(θ, r) r cos θ
cos θ = | − r| = r sin θ
R# 0&0 *O&0 T GB&L r = Y\ c0 &) + .$ M !$": . >&j L v R# *( >&j L v N# F θ [& `O [ _z +U M ( M{ 0 4E_ *Z &
N# F $ >. T .$ ?U0 *( −π 0 0 α U# ( RV+ M #$ V *( T−θr .$ . Z E `O &0 ( Y Z θ = θ M ( 5F O&0 # $ r = r $E& θ # E . −x &0 M DZ [
*$ O ) ;I*8 !VO 0 *( r `&UO DZ [ cM 0
=
0
π/ −π/
( =
u−
() cos θdθ =
u
)
0 −
− u du
=
du = cos θdθ R# 0&0 u = sin θ ( O x= AC .$ M π/ * uθ −π/ − }
0 M O&0 e0. E +"1 D M . T .$ A, .8 e0& . \ ( $ x + y+ = # $ *M [& . D , + 0 f (x, y) = − x − y E ( >.&[, D M ZM ) . h R# 0 *!' D : x + y ≤ ,
≤ x, ≤ y
$& r sin θ E y &0 r cos θ E x &0 D R = 0 9ZM
D : r ≤ ,
D :
≤ r cos θ , ≤ r sin θ ]3 ≤ r . + &
≤ r ≤ , ≤ cos θ , ≤ sin θ
≤ U 0 ≤ θ ≤ π V# 0 ) &0 F pO $ M D : ≤ θ ≤ π/ , ≤ r ≤ R# 0&0 * " θ ≤ π/ 00 ,
− x − y dA =
J**8 E (+"1 9;;*8 !VO
D
B$&U 0 "0 0 $ '& D V# x= &0 A .8 ≤ x, < a M ( (x + y) = a+(x − y) *M [& D 0 . f = x − y }
Z"# 0 Z
00 +
− r r dA
D
0
) ( π/ 0 + r − r dr dθ
0
π/
=
=
−
( − r )/
0
π/
dθ =
dθ =
π
# $ 0 $
'& D M . T .$ A .8 + f f (x, y) = x + y c O&0 x + y = x *M [& D 0 . M ZM ) . h R# 0 *!' x + y = x
D : x ≤ x + y ≤ x
9E ( >.&[, 5F D [Y1 # j
J**8 E (+"1 9;*8 !VO
D : r cos θ ≤ r ≤ r cos θ
Z#. $ & #&" & R=@ E r mn' &0
M ZM ) . h R# 0 _> D : (x + y ) ≤ a (x − y ), ≤ x
9Z#.F (0 F [1 # j D
:
(r ) ≤ a (r cos θ − r sin θ) ,
:
r ≤ a cos(θ) ,
≤ r cos θ
D : cos θ ≤ r ≤ cos θ
R# 0&0 *O&0 & c cos θ cos θ #&0 ]3 ≤ r 5 Q nB −π/ ≤ θ ≤ π/ D : −π/ ≤ θ ≤ π/ , cos θ ≤ r ≤ cos θ
≤ cos θ
≤ cos(θ) "#&0 ]3 A$ O ) ;*8 !VO 0C $&U 5&0 0 −π/ ≤ θ ≤ π/ &z cB U# ≤ cos θ R# 0&0 *−π/ ≤ θ ≤ π/ D : −π/ ≤ θ ≤ π/ ,
≤r≤a
√ cos θ
00
00 f dA = D
D
=
0
π/
−π/
Z#. $ ` + .$ *$ O ) ;;*8 !VO 0 ,
(0
x + y dA = cos θ
cos θ
)
00
r . r dA
D
r dr dθ =
0
π/
−π/
(
r
) cos θ dθ cos θ
00 I
ln x + y dA =
= D
=
00
r ln r dA =
D
()
=
=
=
0
00
00 , 00 , x − y dA = r cos(θ)r dA
ln(r )r dA
D π/
(0
)
D
( ln − )
0
r ln rdr dθ
=
)
π/
dθ =
π
=
0
a sin β
0 ⎣
a −y
ln( + x + y ) dx⎦ dy
y cot β
9M [& . O $ $ & B
⎡ √ ⎤ 0 a 0 ax−x ⎣ ) (x + y ) dy ⎦ dx
(
π/
, r
−π/
0 a
a
π/
−π/
θ
cos(θ)
) , cos(θ)dr dθ
)r=a√cos(θ) r=
cos (θ)dθ sin(θ)
+
r
π/ −π/
=
a
π
T−xy .$ O $ $ "0 . $ + &6 . h 0 9ZM Z 0Y\ D. 0 . 5F +[Y1 4= + x = a cos θ cos(θ) x = a cos θ cos(θ) θ
−
π
−
+√
x
a
y
−a
.
−a +√
r
π
a
π
π
+√
+
a
+√
√
+
+
a
+√ a +
+
a
a
+
√ a
√
−
⎡ ⎤ 0 0 √−y ⎣ √ I = ln(x + y ) dx⎦ dy
A .8 *M [&
>.&[, D $ M ZM ) . h R# 0 *!' E ( y
D
x +y
−x −y +x +y
−π/
= =
(0 √ a cos(θ)
π/
0
( ln − )
. f e0& I & >&#+ .$ 0 % 9M [& D , + 0 + *( x + y ≤ i1 D f = − x − y A M ( x + y ≤ i1 E +"1 D f = x + y A; *$. $ . 1 . −x #E # $ 0 $ '& D f = /( + x + y) A *( x + y = x + y = y _&0 .$ e1 '& D f = / arctan (y/x) A *( x + y = # $ ! $ y = x + x + y = # $ 0 $ '& D f = x x + y AH *( y x +y = x x +y = 0 $ '& D f = x A8 *( (x + y ) = !VO 3 0 $ '& D AJ , *f = / + x + y O&0 x − y *( x + y = # $ ! $ D f = e A . 1 4 e0. .$ M O&0 x + y ≤ , i1 E +"1 D AI *f = $. $ O&0 ([a $, a ≤ β ≤ π/ M . T .$ A 9M [& . #E ⎡ √ ⎤
D
0
⎫ 0 ⎬ r dr dθ ln r − ⎩ r⎭ ⎧ ( ) ⎫ 0 π/ ⎨ r ⎬ ln − dθ ⎩ ⎭ ⎧ 0 π/ ⎨( r
?U0
r
y ≤ x ≤ √ : x + y ≤ , y ≤ x ,
:
≤y≤
√
,
,
− y
≤y
X"' 0 y x &0 D [Y1 # j 5$.F (0 . h 0 U# Z$ . 1 θ D
: r ≤ , :
√
r sin θ ≤ r cos θ , ≤ r sin θ √ ≤ r ≤ , tan θ ≤ / , ≤ sin θ
) &0 4$ &" & ( ≤ θ ≤ π U 0 4 &" & R# 0&0 *O&0 ≤ θ ≤ π/ U 0 (#$ R# 0 ]3 *( !Y " N# M D : ≤ r ≤ , ≤ θ ≤ π/ Z#. $ ` + .$
0C 4 U . $ .$ oL6 E &0 ]& A$ M (x, y) → (x, y) h 9A$ O ) $ ;*8 !VO *O&0 . −y $ .$ E &0 "& 0C 4 U Y\ 0 ([" oL6 E &0 ]& A Y0&- &0 (O& h 9A$ O ) ;*8 !VO − / E &0 "& M (x, y) → (−x/, −y/) *O&0 DZ [ 0 ([" 9E .&[, _&0 d0 k#& R# +
Q C !VO aa '& N# # j RU 0 A *ZM # j F `?- ( =&M AU B Bn q0 # $C @L eY\ N# # j A; *( $ ` E @L eY\ N# A+ >&j L v N# $ Y >&j L v N# ]V, A *( Y 0 $ '& D M x= A& '() % y = x − y = x x + y = x + y = p Y [& D 0 . F Z L0 f = (x + y) ( *M M ZM ) 0 *!' D :
)
0
a
−
⎡ √ ⎤ 0 a −y ⎣ √ (x + y )/ dx⎦ dy a −y
⎡ √ ⎤ 0 0 x−x x+y ⎣ ) dy ⎦ dx x + y
)
0
⎡ a
⎣
0
⎤
√
a −x
v N# M 4=
xy
+ dy ⎦ dx x + y ? @PC\) f %
E ( >.&[, Y >&j L
x = au + bv + c , y = αu + βv + γ
* ∂(x, y) * a =* J = ∂(u, v) * α
5F .$ M
* b * * = |aβ − αb| = β *
M ( 5F A!"# 4&0C >&j L v R# . nSZ !B$ * # j &f .$ ( Y v u X"' 0 y x M !VO _z v _z T *( y N# >&j L v R# y y 9$ 4& . #E KO 0 .&M Q N# Y >&j L
}
≤ x + y ≤ , − ≤ y − x ≤
>. T R# .$ *v = y − x u = x + y ZM x= &' y = u/ + v/ x = u/ − v/ * ∂(x, y) * =* J = ∂(u, v) *
* / −/ * *= / / *
=
.$ D M oL6 y .& Q # j M ( RO. ?U0 *v = v = − u = u = E .&[, T −uv ) ;H*8 !VO 0 D : ≤ u ≤ , − ≤ v ≤ R# 0&0 .$ *$ O
00
(x + y) dA =
D
0 (0 =
−
00 D
u
dv
u )
dA
du =
0
u du =
&. 0 $ '& D M . T .$ A, .8 &0 e0& . \ O&0 x + y = π B$&U 0 y &j L
x−y *M [& . D 0 f (x, y) = cos x + y Y0&-
Y >&j L v 9;*8 !O GB ;*8 !VO 0C x . $0 N# E &0 &\ AGB B&\ M (x, y) → (x + a, y + b) h 9A$ O ) (a, b) E &0 *( −−→ x Y\ ' oL6 # E E &0 5 .$ A% Y0&- &0 (O& h 9A$ O ) % ;*8 !VO 0C (x, y) → (x sin θ + y cos θ, −x cos θ + y sin θ)
*( DZ [ ' θ E &0 .$ M ;*8 !VO 0C x y N# 0 ([" /&VU A: &VU M (x, y) → (−x, y + b) h 9A$ O ) : *( . −y 0 (["
}
*#$S !#[ v = u >. T 0 + u = v >. T (B&' R# .$ &
u = x + y − v = x − y + * * / − / J =* * / /
0 *D 00
:
x = (u − v + )/ ⇒ y = (u + v + )/ * * * = / *
E ( >.&[, D >. T R# .$ *$ O ) ;J*8 !VO , u ≤ v ≤ u
≤ u ≤
(x − x + y − y + ) dA =
D
0 0
(u + v ) dA
D
u
00
(u + v ) dv du )v=u 0 ( v = du u v+
=
=
u
0
v=u
u − u −
u
;**8 &a E (+"1 9;H*8 !VO *v = x + y u = x − y ZM x= . h R# 0 _> >. T R# .$ x = u/ + v/ y = −u/ + v/
* / * *= / *
* * / J =* * − /
=
# j . D da e- D # j D 5$.F (0 0 S *v = −u u/ + v/ = &F x = S 9ZM
x + y = π S *v = u −u/ + v/ = &F y = v = −u v = u y 0 $ '& D ]3 *v = π &F >. T 0 . D *A$ O ) ;8*8 !VO 0C ( v = π 9Z#S O Zh −u
du =
}
00 cos D
;**8 &a E (+"1 9;J*8 !VO O&0 x /a + y/b ≤00 ,q0 D M . T .$ A .8 − x /a − y /b dA *M [& . b x :L E . a ZM U 0 . h R# 0 *!' u = x/a x= &0 ` - R# *ZM mn' y :L E . y = bv x = au (B&' R# .$ *$#n3 *>. T v*= y/b >.&[, T−uv .$ D # j D J = *** a b *** = ab [Y1 v v E $ .$ *D : u + v ≤ # $ E ( u = r cos θ 9ZM $& !Y " N# 0 D !#[ 0 # j D X R# 0 *$ O ) ;7*8 !VO 0 *v = r sin θ D : ≤ θ ≤ π , ≤ r ≤ E >.&[, T −θr .$ D .$ $ 0 D
= = =
00 u x−y cos dA dA = x+y v D 0 π 0 v u du dv cos v −v 0 π$ u %u=v dv v sin v u=−v ( )π 0 π v π v sin( ) dv = sin( ) = sin( )
}
00 D
-
x y − − dA = a b 00 + 00 + = − u ab dA = − r abr dA D
D
) 0 π (0 + = ab r − r dr dθ ) 0 π ( − ( − r )/ = ab dθ /
;**8 &a E ; (+"1 9;8*8 !VO . f = (x − x + y − y + ) e0& A .8 B$&U 0 + x + y = ( . y 0 $ '& 0 *M [& x + y + = y + xy >. T R# .$ *ZM ! &M e0 . f Y0&- 0 *!' h'? ?U0 *f = ((x + y − ) + (x − y + ) ) x + y − = x − y + !VO 0 . y B$&U M $$S
x + y − = >. T 0 c . + B$&U (O 5
u = x − y + $ O x= l&Q ]3 *(x − y + ) 0 y *( f = u + v >. T 0 f &F v = x + y −
}
ab
=
0 π
πab
dθ =
# $ 0 $ '& D M . T .$ A .8 x + y + y = x *M [& D 0 . f = x − y e0& O&0 }
x + y + y = x
;**8 &a E H (+"1 9;*8 !VO &v N+M 0 D '& 0 f e0& E 0 % 9#0 v u #) y = x + y = x − p Y 0 D f = ln(x + y) A . v x − y . u *( $ x + y = x + y = *#0 x + y ( , ) (, ) / g. 0 aa D f = x + xy A; *#0 x + y . v x . u *( (, ) x+ y = x +y + xy + $ 0 D f = x+ y A M x= *( $ x + y = x + y + xy *v = x + y u = x + y x= *( $ |x|+|y| = E B 0 D f = |xy| A *v = x + y u = x − y M x + y = q0 $ 0 D f = x + y AH u = x M x= *( $ x + y = *v = y (x + y + ) + (x − y) ≤ q0 0 D f = x A8 *v = x+y+ u = x−y M M x= *( $
AJ x + y = y .& Q 0 D f = (x − y)e M x= *( $ x = + y x = y x + y = *v = x − y u = x + y y = x + x = y + y .& Q 0 D f = y − x A7 M x= *( $ y + x = y + x = *v = y + x u = y − x x= *( ≤ x, y ≤ π e0 D f = | cos(x + y)| A *v = x − y u = x + y M
;**8 &a E (+"1 9;7*8 !VO >. T R# .$ v = x − y u = x + y ZM x= _>
u=x+y ⇒ v = x−y * * / / J =* * / − /
u X"' 0 y x &0 S M $$S &6 ?U0 u + v = v > .&[, 0 Z$ . 1 O $ $ >_$&U .$ '& E ( >.&[, D U# *. Z u + v = v U# *u + u = v u + v = v # $ 0 $
v ≤ u + v ≤ v
D :
>&j L 0 . D '& v = r sin θ u = r cos θ x= &0 9Z#0 [Y1
D
r sin θ ≤ r ≤ r sin θ sin θ ≤ r ≤ sin θ , ≤ sin θ ≤ θ ≤ π , sin θ ≤ r ≤ sin θ
: : :
Z#. $ X R# 0 *$ O ) ;*8 !VO 0 00
00 (x − y) dA = D
0 =
=
π
0
=
.$ . $ U $ $. & b >&j L v #E & B&a * O %&L 5F &0 X& !VO 0 B&"
*O&0 & F ` E #& +
x = u/ + v/ y = u/ − v/ * * − *= * =
v
(x +y )/
∗
π
(0 (
v D
π
sin θ
sin θ
r
0
dA =
00
r sin θr dA
D
)
r sin θdr dθ )r= sin θ
sin θ
dθ = r= sin θ
− cos(θ)
0
dθ = · · · =
π
sin θdθ
π
*M [& D 0 . f *f .$ *v = y/x u = x + y ZM x= . h R# 0 *!' >. T R# ∂(x, y) = ÷ ∂(x, y) = ∂(u, v) ∂(u, v) * * * * *= x * = ÷* −y/x /x * x + y
J
5 *D
.$ *D
00
: 00
x D
+
dA =
y
dA =
v
D
=
ln
du = ln
R# .$ y /
≤ t ≤ π
M [& . O&0 . −x x = u( − cos t) ZM x= . h R# 0 *!' ≤ u ≤ a S M ( RO. >. T R# .$ *y = u(t−sin t) &O 3 & R# y D '& !M &F ≤ t ≤ π # j D R# 0&0 *$ O ) % I*8 !VO 0 $ O
E ( >.&[, T−uv .$ D '&
00
00 x dA =
≤ t ≤ π , ≤ u ≤ a
E ( >.&[, c !#[ R0 M W
* t − sin t * * = u | − cos t − t sin t| − cos t *
.$
u( − cos t)u − cos t sin t dA
D
D
0 π 0
a
= =
a
0 π
u ( − cos t) − cos −t sin t du dt
( − cos t) − cos t − t sin tdt
f (t) = − cos t−t sin t e0& ( ?, #&0 [& $ 0 $ O h'? >. T R# .$ *$ + oL6 [, π] 0 . M α & Y\ .$ f & *f (t) = sin t − t cos t M Z#. $ ?U0 *$$S T π ≤ α ≤ π/ t π α π f (t) f (t) f (t)
+ +
π
− +
/
/
α cos α
− −
−α cos α
− cos α
−π
i& >&j L v 9I*8 !VO = a v x = a u $ O x= S ]3 ?U0 y = av x = au >. T /
* * J =* *
D
* * u( − cos t) J =* * u sin t
/
x dA x+y
C : x = a(t − sin t) , y = a( − cos t) , 00 ( < a) x dA
D :
/
/
0 $ '& D M . T .$ A .8 *
/
y ) dv du v
0
/
(0
0
=
x
D
00
+
/
/
, ≤ y/x ≤ 5 Q ?U0 ≤ u ≤ , ≤ v ≤ (O
≤ x+y ≤
:
$ '& D M . T .$ A& '() % O&0 x + y = a A!VO .& C g F 0 + *M [& D 0 . f = / |xy| e0& 5 R# 0&0 D : x +y ≤ a M Z#. $ ) *!' I*8 !VO 0 *D : (x ) + (y ) ≤ (a ) (O *$ O ) GB }
/
/
au av
* * * = a u v *
# $ E ( >.&[, T−uv .$ D E !T&' D , +
Zh −u >. j0 . , + R# *D : u + v ≤ 3
D : − ≤ u ≤
,−
+
− u ≤ v ≤
+
− u
R# 0&0 *(O 5
00
00 D
+ .a u v dA av | |au D ⎡ √ ⎤ 0 0 −u ⎣ √ a/ |uv| dv ⎦ du
+ dA = |xy| =
−
−
−u
=
⎡ √ ⎤ 0 0 −u ⎣
a/ |u|v dv ⎦ du
=
√ )v= −u 0 ( v
a/ du |u|.
()
= ()
=
−
a /
0
−
−
a/
v=
|u|( − u ) du
0
u( − u ) du =
a/
:E B $. e0& A;C .$ AC .$ V# ^- . $M Gj . $ ]3 ( 5.&\ $ *ZM 0 0 $ x + y = y .& Q 0 $ '& D M x= A, .8 *f = /x+ /y Rl+ ( y = x y = x x+y =
}
(O 5 ( ([a [; π] !M 0 f R# 0&0 00 x dA = D
a
=
i& >&j L v 9*8 !VO y = x p Y 0 $ '& D M . T .$ A .8 x + y = x y x + y = x y $ x = y [& D , + 0 . f (x, y) = (xy) e0& O&0 *M .$ *v = y/x u = x/y ZM x= . h R# 0 *!' y = u v x = u v >. T R# −
− /
− /
− /
− /
* * − u−/ v −/ * * * *= * −/ −/ * − u v *
* * −/ −/ * − u v * * J =* * * * − u−/ v −/
y
u − v −
v
0 x = B$&U u = >. T 0 y = x B$&U
0 x + y = x y B$&U *$$S !#[ v = u >. T >. T 0 x + y = x y B$&U u + v = >. T −uv .$ D # j D R# 0&0 *#$S !#[ u +v = D : / ≤ v/u ≤ , ≤ u + v ≤ E >.&[, T D &0 O&0 5.&\ $ ( :E f e0& 5 Q *( D : u/ ≤ v ≤ u, ≤ u + v ≤ u + E 5
*$ + 0 0 $ . ( e1 e0. .$ M $M $& # j α = arctan l&Q [Y1 >&j L v N+M 0 E >.&[, T−rθ .$ D
−
(xy) D
00 dA =
00 =
=
=
(uv) dA =
D
00
≤ u + v ≤ , u ≤ v ≤ u * * * au * * * J = * bv * = abuv t = v/u s = u + v
D :
v E 5 M * ?, 0 #) v
R# .$ *ZM $& E >.&[, T−st .$ D # j D >. T
D :
00
α
(0
J
D
xy =
dθ
∂(u, v) = ÷ ∂(s, t) ∂(s, t) ∂(u, v) * * * * * *= u ÷* * −v/u /u u+v
00
00 dA =
D
π/−α 0 α sin θ dθ = (sin α − cos α) = π/−α
≤t≤
Z#. $ ` + .$ *$ O ) *8 !VO 0 *O&0
) r sin(θ) dr
= =
dA
(uv) dA
≤ s ≤ ,
0 0 c 5F R0 M W (
≤r≤
(r cos θ/r sin θ) r dA
D
0
=
D
u − v −
! dt
Z#. $ ` + .$ ]3 *$ 0
(uv)+
− cos t − t sin t
>. T R# .$ * [a $, $ b a M x= A .8 p Y 0 $
D '& 0 f (x, y) = /xy e0& + + x/a + y/b = & x/a+= y/b x/a = y/b + *M [& . x/a + y/b = + + *v = y/b u = x/a ZM x= . h R# 0 *!' y B$&U >. T R# .$ * ≤ v ≤ u i jL0 ]3 u = v U 0 [a v, u 5 Q M ( u = v U 0 u = v u = v B$&U 0 4$ y X R+ 0 *( + + x/a+ y/b = u+v = U 0 u = v B$&U *( .$ D # j D ` + .$ ]3 *O&0 u + v = U 0 E ( >.&[, T −uv
00
( − cos t)
t − sin t + t cos t π t dt = a π + sin t cos t − cos t
D : π/ − α ≤ θ ≤ α,
0 π
a
= =
00
D
au bv u
abuv dA =
00
00 D
uv
dA
dA = dA uv u + v st D D s= 0 (0 ) 0 ds dt dt = ln s t st s= 0 $ % ln dt = (ln )(ln t) = (ln ) t
x= c α b a X& %&L &0 #E $. E N# .$ . O $ $ '& ('&" y = br sin θ x = ar cos θ 9M [&
α
α
x y x y x y x y ∗ + + + ≤ ) ≤ h a b a b c . . x y ) + ≤ , ≤ x, ≤ y a b
)
. O $ $ & 0 $ '& ('&" $. .$ 9M [&
)
x + y = a, x + y = b, y = αx, y = βx ,
< a < b, < α < β )
xy = a , xy = a , y = x, y = x,
)
y = x, y = x, x = y, x = y
)
x = ay, x = by, x = cy , x = dy ,
≤ x, ≤ y
< a < b, < c < d )
(x/a)/ + (y/b)/ = , /
(x/a)
/
+ (y/b)
= ,
≤ x, ≤ y
$ '& D ([a $ , d c b a M x= A; x − y = c x + y = b x + y = a # $ 0 0 f = xy E c > d a > b x= &0 *( x − y = d *#0 D
F B !F N +0 -. & +"1 #& .$ = &$0.&M &S$ : L "= *$. $ W B 0 ' +O N#c= &+B D. 4&0 Z" O. $0.&M 0 p 0 = *Z#E $3 5F ^#6 0 M ( $, +M q M x= BV K+ $ % !0&1 & (x, y) ∈ D E 0 M ( y x 3 &v &0 $M Z"\ NQ M & Y " 0 . D l&Q *O&0 G#U 5$M %- &0 ( (0&f & F E N# 0 q M ZM x= O $ $ (+M . \ .$ NQ M !VO !Y " '& ('&"
[& !Y " 5F (= !Y " R# p&\ E V# .$ &0 *$ 0 q(x , y )Δx Δy !VO 0 !T&' >.&[, *$$S 9$$S [& D !M (= [#\ #$&\ R# + 5$E e+) (= . \ 0 j' 0 *Q ≈ 7 7 q(x , y )Δx Δy X R# 0 $ O =S ' _&0 ` + E ( =&M D !M i
j
i
j
i
j
i
j
i
j
0 $ %
# $ 0 $ D / 1 0 . f (x, y) = x + y e0& A *M [& x + y = x + y (0&f e0& E y = u sin v x = u cos v x= &0 A; &j L &. 0 $ D '& 0 f (x, y) = $, a M #0 √x + √y = √a *( ([a
e0& .$ y = uv x + y = u >&j L v &0 A &j L &. 0 $ da 0 f (x, y) = xy *M [& F x + y = y x − y = y $ 0 $ '& D M . T .$ A 0 O&0 xy = xy = B Bn $ y − x = e0& v = x − y u = xy >&j L v N+M *M [& D 0 . f (x, y) = /x + /y y $ 0 $ '& 0 f (x, y) = x + y e0& AH y = x y = x + $ x+y = x+y = *M [& . 0 $ , + 0 f (x, y) = x + y e0& A8 *M [& . x + y =
0 $ , + 0 f = exp e0& AJ x = y/ x = y y = x y = x &
*M [& . 0 $ , + 0 f = √ye + +ye e0& A7 . y = e y = e y = e y = e
*M [&
$ , + 0 f = exp +y/x+√xy e0& A . x = y x = y xy = xy = & 0 *M [&
& 0 $ , + 0 f = xy e0& AI [& . x = y x = y y = x y = x *M 0 $ , + 0 f = y ln( − x − y) e0& A *M [& . x + y = y = x = p Y + 0 $ , + 0 f = x + y e0& A; [& . x + y = x + y = p Y y = x *M ∗
x +y xy
−x
x
−x
−x
x
x
Area(D)
=
dA = 0 a #
y
"
a − y − a
=
j
dx dy
y /a
D
T&= 5& c+ 0 u# c= y >&+"\ x >&+"\ $ U M 90 u&M B & y T&= c B & x
)
0 a (0 a−y
00
a
dy =
Q=
B$&U 0 g F 0 $ '& ('&"
A, .8 *M [& . (x/a) + (y/b) = c u = (x/a) ZM x= . h R# 0 *!' y = bv x = au R# 0&0 *v = (y/b) /
lim N, M → ∞ Δxi , Δyj →
00
/
∂(x, y) = J = ∂(u, v)
au bv
= abu v
.$ D : (x/a) + (y/b) ≤ '& # j D . D 5 M *( D : u + v ≤ E >.&[, T−uv J = r R# 0&0 ZM !#[ [Y1 (B&' 0 /
/
≤ θ ≤ π , ≤ r ≤
D : 00
00
Area(D) =
dA =
=
ab
=
ab
abu v dA
r cos θr sin θ dA
D
00
r sin (θ) dA
D
ab
=
#0 π
sin (θ)dθ
ab θ − sin(θ)
=
! x + y ≤
.
π
" #0 ( ×
r
" r dr
)
Q=
q(x, y) dA D
9$ + T? 5 #E >. T 0 . &+B D. R# 0&0 ) )*"9 ) D J )* [ > 7<p )*$+( q B m7+ q(x, y) !F !H/ L B (x, y) MUV _`3! ) 3 ./ D ZM x= H# J= 7JD) . !) $ % Δy Δx $&U0 0 !Y " * ( T E , + #E *( Δx Δy 000 0 !Y " R# ('&" *Z#S h .$ . Area(D) = dA 0 0 D !M ('&" *H*8 0&0 ]3 *Q = Area(D) q(x, y) = &# .$ #E *( x + y = a y 0 $ ('&" A& '() $ % *M [& . ≤ y T Z .$ e1 y = ax + $. 0 Z &0 . O $ $ y + . h R# 0 *!' 9Z$
D
j
i
i
j
D
D
D
00
.$
q(xi , yj )Δxi Δyj
i= j=
M $S &S$ G#U 0 U) &0
/
/
N / M /
= πab
, + E +"1 ('&" A .8 *( e1 e0. .$ M M [&
[Y1 >&j L 0 . O $ $ D '& . h R# 0 *!' 9Z#0
a xy
y = ax x + y = a
⇔
y = −ax ± a x = a − y
'& R# 0&0 *$$S !T&' (a, a) (a, −a) p&\ M *;*8 !VO .$ O oL6 \Y E ( >.&[, h $.
#E ( Zh −y '& R# D :
≤ y ≤ a , y /a ≤ x ≤ a − y
&0 ( 0 0 5F ('&" R# 0&0
D : (r ) ≤ a r cos θr sin θ : r ≤ a sin(θ)
≤θ
*D
:
]3 ( e1 e0. + .$ D x= 0&0 5 Q ≤ θ ≤ π/ , ≤ r ≤ a sin(θ) .$ Z#. $ ` + .$ R# 0&0 ≤ π/
00
00
Area(D) =
dA = D
0
π/
(0
a
= =
√
D
sin(θ)
r dA )
r dr dθ =
a
0
π/
sin(θ)dθ = a
0
π/
(
r
i
)r=a√sin(θ) r=
}
*H*8 &a E (+"1 9;*8 !VO
} 0 $ %
. (x − y) + x = q0 0 $ '& ('&" A *M [&
x = y x = y p Y 0 $ ('&" ("0 Y A; *( ([a $, a M x + y = a x + y = a N+M 0 Z' [& AGB 9*8 !VO 8*H*8 &a E ; (+"1 A% &S$ *M [& . R `&UO 0 M Z' A& '() % $ % cM 0 Ω : x + y + z ≤ R M . h R# 0 *!' ^Y mU B$&U S *Z#S h .$ . R `&UO DZ [ .$ R# .$ ZM !' z X"' 0 . Ax + + y + z = R U#C 5F . $ + 0 $ Z") Ω ]3 z = ± +R − x − y >. T $ G#U $ M ( z = ± R − x − y e0& $ U# *O&0 D : x + y ≤ R & F , , Ω : (x, y) ∈ D, − R − x − y ≤ z ≤ R − x − y
Z#. $ H*H*8 0&0 ]3
V =
, 00 , R − x − y − − R − x − y dA
$ 0 $ '& ('&" O&0 ([a $ , b a S A y = −bx + b y = ax + a >_$&U 0 + *M [& . ae = bd
&0 LB$ $ , f e d c b a M . T .$ A B$&U 0 q0 ('&" O&0
(ax + by + c) + (dx + ey + f ) ≤
*M [& .
x = ay + .& Q 0 $ ('&" < a < b S AH *M [& . y = bx y = ax x = by . x + y = x + y 0 $ '& ('&" A8 *M [&
. (x/a)
0 $ '& ('&" AJ *( $= $, n 5F .$ M M [&
/n
/n
+ (y/b)
D
00 , 00 + R − x − y dA = R − r r dA = D
= =
#0
" #0
π
[θ]π
dθ
D R
r
+
"
R − r
(R − r )/
−
R =
πR
9O&0 D [Y1 # j D &# .$ M
D :
≤ θ ≤ π , ≤ r ≤ R
0 q0 5 S+ $ 0 $ Z") Z' A, .8 [& . z = − x − y z = x + y >_$&U
*M $. $ . 1 DZ [ .$ u . ( _&0 0 . 5 S+ *!' *$. $ Rg&3 0 . ( (, , ) .$ / . &0 4$ 5 S+ *O&0 g $ f B ]3 AT−xy 0 & F w O # j U#C D R = 0 *ZM !' . B$&U $ E XM & $
z = x + y z = − x − y
⇒
x + y =
⇒ x + y =
=
9M [& . & E N# 0 $ '& ('&"
)
(x + y ) = x − xy ,
)
(x + y ) = xy,
)
) (x + y) = x − y ,
. T .$
(x/a + y/b) = x y ,
≤ x, ≤ y.
2 QDR /MJ . !) $ $ %
z = f (x, y) e0 . $ + 0 $ Z' Ω M ( D , + &0 T−xy 0 5F # j M . @ O&0 0 0 Ω Z' >. T R# .$ *A$ O ) GB *8 !VO 0C
z = g(x, y)
00 Vol(Ω) =
! f (x, y) − g(x, y) dA
D
.$ . D E Δy Δx $&U0 0 Y " S #E ( . 1 !Y " R# 0 M Ω E +"1 Z' &F Z#0 h T $ R0 M ( +g&1 . 6 Z' 0 0 &z[#\ $. $ 0 5F # j $. $ . 1 z = f (x , y ) z = g(x , y ) 5F Z' R# 0&0 *( & Δx Δy !Y " 0 0 T−xy ' x= &0 *H*8 E ( f (x , y ) − g(x , y ) Δx Δy 0 0 *$$S !T&' . Mn q = f − g j
i
i
i
i
j
i
j
j
i
j
i
j
j
}
.$ *$ O ) % *8 !VO 0 D V
=
00
#0
−(x +y )
/
D
dθ (
r −
( − r )r dA
r
"
(r − r ) dr
)
= π
. a `&UO DZ [ cM 0 3 M E +"1 Z' A .8 *$S . 1 x + y = ax ! $ .$ M 0&0 . Mn M B$&U M ZM ) . h R# 0 *!' $ O !' z X"' 0 l&Q M ( x++ y + z = a R# .$ M ( RO. *Z. z = ± a − x − y 0 ?U0 *( g&3 + 0 0 g #_&0 + 0 0 f (B&' D : x + y ≤ ax 0 0 T−xy 0 h $. Z' # j h $. Z' ]3 *A$ O ) GB *8 !VO 0C ( &0 ( 0 0
,
00 ,
a − x − y − −
V = D
00 ,
=
0
=
0
= =
=
a − x − y
dA
00 +
a − x − y dA (=)
a − r r dA
D
D
(x/a)/ + (y/b)/ + (z/c)/ =
*M [& . . x = z x = z + y &#. 0 $ Z' A *M [&
(x + y + z ) = x + y − z #. 0 $ Z' AI *M [& . B$&U 0 #. x + y = T 0 $ Z") Z' A *M [& . z = x + y 0 #. 0 $ Z") Z' < a < b S A; [& . z = xy x + y = b x + y = a >_$&U
*M
" #0
π
$ %π = θ
T &j L >&T 0 M 0&0 . Z' A *( $ x + y + z = T z = x + y q0 5 S+ R0 e1 Z' A; *0&0 . z = M x + z = y pL E +"1 Z' a < b S A . $$S $ b a `&UO DZ [ cM 0 > M R0 *M [&
y = x + z q0 5 S+ $ 0 . j Z' A *M [& . y = − x − z z = x + y = &#. 0 $ Z' AH *M [& z = e x + x + y = a $ 0 $ Z") Z' A8 *M ) . z = a Z' [" Q 0 x + y = a + z q0 5 S+ AJ M ) . x + y + z = a M 0 $
#&q= g F 0 $ Z' A7
/
=
00
( − x − y ) dA =
D
0 & $ %
R# 0&0
00 ( − x − y ) − (x + y ) dA = D
8*H*8 &a E (+"1 AGB 9*8 !VO ^Y N# ('&" A%
: x + y ≤
π/ −π/
) (0 a cos θ + r a − r dr dθ
/ r=a cos θ (a − r ) dθ −π/ r= 0 π/ 0 () a cos θ dθ = a ( − s )ds −π/ − π/
a
−
(
s−
s
)
= −
a
Z# $M $& [Y1 >&j L v E AC .$ V# ^- 9( D # j D
D
: r ≤ ar cos θ : r ≤ a cos θ : :
≤ r ≤ a cos θ , ≤ cos θ −π/ ≤ θ ≤ π/ , ≤ r ≤ a cos θ
R# 0&0 *( O $& s = sin t >&j L v E A;C .$ π/ ds = cos θdθ * θ −π/ −
5 / −x −y = + + + + dA R − x − y R − x − y D 00 00 dA rdA () + + = R = R R − x − y R − r D D #0 " #0 " π R rdr + =R dθ R − r %R $ %π $ + =R θ × − R − r = πR
5 Sq0 Z' A
00 4
>&j L v E AC .$ D
:
≤ θ ≤ π , ≤ r ≤ R M
*( O $& [Y1 + M 0&0 . z = x + y pL E +"1 ('&" A, .8 *( O ) x + y = x y + f (x, y) = x + y e0& . $ + E +"1 h $. #. *!' D : x +y ≤ x i1 0 0 T−xy 0 5F # j M ( R# 0&0 *( N# `&UO 0 T1 D 5 Q *O&0
00 Area(S) = D
00 -
i=
(ai x + ai y + ai z + ai ) = a a a
a a a
M M [& . T .$ . a a = a
\V U!U) g=? 7JD) . !) * $ %
M O&0 z = f (x, y) e0& . $ + E +"1 S ZM x= (B&' R# .$ *( D , + T−xy 0 5F # j [& 0 *S : z = f (x, y) , (x, y) ∈ D 9Z"#
M Z#S h .$ . 5F E VQ M (+"1 S ^Y ('&"
[x ; x ] × [y ; y ] !Y " 0 0 T−xy 0 D# j −−−−−−−−−−−→ Y\ .$ u = −(−−, −−, (∂f /∂x)(x , y ))Δx . $0 *( 0 5F # j ( /&+ S 0 X = x , y , f (x , y )! >. T 0 *O&0 [x ; x ] × {y } e- 0 0 T−xy −−−−−−−−−−−−−−−−→ X Y\ .$ v = (, , (∂f /∂y)(x , y ))Δy . $0 0&6
e- &0 0 0 T−xy 0 5F # j ( /&+ S 0 h $. (+"1 ('&" R# 0&0 *O&0 {x } × [y ; y ] 0 . !Y " ('&" &0 0 0 &z[#\ 5 . S ^Y E ]3 *A$ O ) GB H*8 !VO 0C (" $ v u &. $0 ).& %- E 0 0 !Y " R# ('&" M R# 0 ) &0 9Z#. $ ( v .$ u i−
i
j
j−
i
i
x
i
i
i−
i
i
i
i
j
i−
00
√ x + y + dA = × dA x + y D D √ √ √ = Area(D) = × π × = π =
# " $ 0 $ Z") Ω M x= A .8 5F ).& ^Y S ( x + z = a x + y = a *M [& . S ('&" *O&0
}
i
j−
i
y + + + + dA x + y x + y
/
∗
j−
j
Area(Sij ) ≈ ≈
=
* * * *i j k * * * u × v = * (∂f /∂x)(x , y )Δx i i i* * * (∂f /∂y)(xi , yi )Δyj *
∂f ∂f (xi , yi ) + (xi , yi ) Δxi Δyj + ∂x ∂y
M Z#S *H*8 0 ) &0 R# 0&0 00
-
Area(S) =
+
∂f ∂x
+
∂f ∂y
dA
D
. R `&UO 0 M ^Y ('&" A& N+M 0 ^Y N# ('&" [& 9H*8 !VO &S$ # U &0 −y y # U &0 −x x # U &0 _> R# 0&0 *$$S+ &6 B&" >. T .$ v −z (=S h .$ 5 . $. $ . 1 Z 6 N# .$ M +"1 $M 0 0 (6 . !T&' ]< $ + [& . 5F ('&"
S . #. E uL0 R# S *$ O ) % H*8 !VO 0 z
/
'() $ %
*M [&
$ + [& . M #_&0 + ('&" . h R# 0 *!' ZM x= R# 0&0 *ZM 0 0 $ . !T&' S/ : z =
, R − x − y , (x, y) ∈ D
( ?, #E >.&[, 5$ + x= ([a E M R# 0&0 *D : x + y ≤ R 9$ O
Area(S) = Area(S/ )
. \ >. T R# .$ *( f (x, y) (+M B&Q . $ D 0 0 &z[#\ [x ; x ] × [y ; y ] !Y " .$ -&' (+M (= Q *H*8 0&0 .$ 00( f (x , y )Δx Δy 0 0 D 0 f y . \ ]3 *( f (x, y)dA 0 0 D !M 9O&0 D ('&" 0 Z"\ . \ R# i
i−
j−
j
total
i
j
i
j
D
Qmean :=
Qtotal Area(D)
⎛ ⎞ ⎛ ⎞ 00 00 = ⎝ f (x, y) dA⎠ ÷ ⎝ dA⎠ D
=
=
⎛ ⎞ 00 , 00 =⎝ x + y dA⎠ ÷ ⎝ dA⎠
⎞
D
π/
R
dθ
πR
r dr
=
R
i
Pmean
= ()
=
=
j
i−
j
i
i
j−
j
j
⎛ ⎞ # " ⎞ ⎛00 00 x y =⎝ P h − − dA⎠ ÷ ⎝ dA⎠ a b D D # " 00 hP x y − − dA πab a b D 00 hP ( − r )abr dA πab D #0 " #0 " π hP hP dθ r( − r )dr = π
c x = ar cos θ ( O x= ( ) .$ V# ^- T−rθ .$ D # j D J = abr R# 0&0 *y = br sin θ
≤ x ≤ a, ≤ y ≤
= =
=
a − x
Z#. $ ` + .$ R# 0&0
Area(S/ )
= # " 00 > > −x ? + + + () dA a − x D 00 a + dA a −x D ⎡ √ ⎤ 0 a 0 a −x dy ⎦ dx + a ⎣ a − x √ ) a −x 0 a( y + a dx = a a − x 0 $ %
*O&0 T−rθ .$ D [Y1 # j D M 0 ( O & &Q ]) N# E < A, .8 ( x /a + y/b = q0 !VO 0 5F ,&1 M z=h − x /a − y /b 0 0 D E (x, y) Y\ .$ `&. . 5F ,&1 0 < E XUV & N# E $. .&6= S *O&0
*M [& . < ,&1 0 $. y .&6= Z &0 P NQ M !Y " 0 M $ O ) ( =&M . h R# 0 *!' O&0 Δx Δy ('&" 0 M [x ; x ] × [y ; y ] ' f = P z(x , y ) E 0 M $. $ . 1 z(x , y ) `&. 0 y .&6= *H*8 0&0 ]3 *M $. .&6= < ,&1 0 E ( >.&[, i
D :
=
D
00 , 00 + y dA = x r dA πR πR D D " #0 " #0
/
Area(S) =
, + p&\ y T&= A &a '() $ % # $ 0 $
*#.F (0 . DZ [ & e0. .$ e1 x + y = R &0 0 0 DZ [ & D E (x, y) LB$ Y\ T&= 5 Q *!' + 9( RQ O y ( f (x, y) = x + y dmean
/
D
D
⎛
*M+ v z y # U &0 M ZM h'? Z &0 . 5F ('&" (=S h .$ 5 . #_&0 + R# 0&0 >. T R# .$ Z &0 S . uL0+R# S *$ + 0 0 $ 5F .$ M S : z = +a − x , (x, y) ∈ D
y M 0&0 . x + z = T E +"1 ('&" A *$ O ) x + y = a M 0&0 . x + y + z = R M E +"1 ('&" A; *$. $ . 1 z = R/ T _&0 + . z = R − x − y V+ E +"1 ('&" A *( O #0 x + y = Rx y M 0&0 z = Zg&1 pL 0 $ Z") Z' Ω M . T .$ A O&0 Ω ).& ^Y S z = T x + y *M [& . S ('&"
y M x = (z + y) pL E +"1 ('&" AH *0&0 . ( O ) x = z + y q0 5 S+ *M [& . |x| + |y| + |z| = #. ('&" A8 $ R0 M x + y + z = M E +"1 ('&" AJ . $. $ . 1 x + y = z x + y = z pL
*M [&
.$ V3 Y ) < =C) . !) $ % 0 * & . $0 5 . v Q e0& N#c= K?YT $ $ ([" A$,C B&V &q= E Y\ 0 M U R# .&0 B&Q 4) B&Q & $ B&V 5 h $ O
U#C ( U0 $ $& Z") N# D M x= *V# VB E (x, y) Y\ A(" ) $. B$ 0 5F 4 U0
.$ ]3 *( 00 δ(x , y )Δx Δy NQ M UY1 R# 4) R# 0&0 *( m = δ(x, y)dA 0 0 D !M 4) *H*8 0&0 ` +
$ VQ M '& D M x= A& '() $ $ % (x, y) Y\ ( x +y = q0 x = y + 0 *M [& . D 4) *( δ = x 4) B&Q . $ $ $ q0 + $. 0 ! 0 . h R# 0 *!' 9ZM [& . O i
j
i
j
D
x + y = ⇒ y + y − = x = y x = y √ ⇒ y = − ± / ⇒ y = ± / x = y x=
D : −
√
, ≤y≤ , y ≤ x ≤ − y
m
= D
=
x dA = 0
√
−
0
√
−
/
√
/
⎡ √ ⎤ 0 −y ⎣ xdx⎦ dy
√
/
− y − y
#0
√ dy =
#0
⎞
D
x
⎛
(x + y) dA⎠ ÷ ⎝
( 0
= =
y
/
Tmean = ⎝
00
=
&0 ( 0 0 h $. Z") 4) R# 0&0
00
⎛
( Zh −y , + R# *$ O ) GB 8*8 !VO 0 9(O 5 M Q √
?U0 *( D : ≤ r ≤ , ≤ θ ≤ π E >.&[, &Y\+ %qT&' .$ %- π 0 0 D ('&" M Z $
*O&0 5F e0& . $ + . −y 0 $ , + D M x= A
& $ . $ (x, y) ∈ D Y\ M ( y = y y = x y N# .$ . Z") R# l&Q *( T (x, y) = x + y & $ >. T R# .$ 0 . #&3 & $ 0 & Z$ . 1 DZ? *M [& . & $ R# *AO (0&f 5F p&\ + m D : ≤ x ≤ , x ≤ y ≤ M Z#. $ ) *!' R# 0&0 ( D 0 T y [&
)
⎞
00
dA⎠
D
"
(x + y)dy dx
#0 ÷ "
( x − x + − x )dx
÷ =
}
≈
( 0
#0
÷
x
)
"
dy dx "
( − x )dx
0 $ %
i1 0 z
+ a − x − y
V+ y `&. A *M [& . x + y ≤ a Y\ O&0 |x| + |y| ≤ E B D M . T .$ A; O&0 |x| + |y| V# VB .&0 B&Q . $ (x, y) ∈ D *M [& . D 0 $ ) .&0 y
&j L &. 0 $ da p&\ T&= y A *M [& . DZ [ & x + y = y &$ &0 z = x / + y − $ S y t+, A *M [& . D : x / + y ≤ & D : y ≤ a − x , y ≥ 0 p&\ T&= e0 y AH *M [& . : y = , −a ≤ x ≤ a y .&3 =
∗
H*H*8 &a E & +"1 98*8 !VO x = y + $ 0 $ '& D M x= A, .8 (x, y) Y\ O&0 xy = xy = B Bn $ x = y *M [& . D 4) *( y/x 4) B&Q . $ v = y /x u = xy >&j L v E . h R# 0 *!' >. T R# .$ *ZM $& J
∂(x, y) = ÷ ∂(u, v) = ∂(u, v) ∂(x, y) * * * y x * * * ÷* = y/x * = −y /x
÷
y x
=
v
E >.&[, T−uv .$ D # j D ?U0
D : ≤ u ≤ ,
≤v≤
∗
x= 2 + /DR < QR . !) $ % 0 5F 4 U0 U#C ( U0 $ $& Z") N# D ZM 5F ( &L- ( RV+ ?za *(" Z & ! .$ B$ *( δ(x, y) 4) B&Q . $ (x, y) ∈ D Y\ A*O&0 (0&f NQ M !Y " p&\ 4&+ M $ + x= 5 >. T R# .$ " δ(x , y ) 4) B&Q . $ [x ; x ] × [y ; y ] i
j
i−
i
j−
j
&0 ( 0 0 D 4) R# 0&0 *(
2 + /DR < E1n 4L) . !) & $ %
0 Y\ ( U0 $ $& Z") N# D M x= R# .$ *( δ(x, y) B&Q . $ (x, y) ∈ D >&j L
ZM Z"\ NQ M & Y " 0 . D S >. T
00
Dij := [xi− ; xi ] × [yj− ; yj ]
5F p&\ + B&Q M ZM x= Z O&0 & F E V# D !Y " &0 M ZM x= &' *( δ(x , y ) 0 0 (x , y ) >&j L &0 δ(x , y )Δx Δy 4) 0 $& Y\ N# *Z#. $ $& Y\ mn aM ' D &0 X R# 0 *Z#. $ 0 0 p&\ R# !}\f cM E x o L N#c= /.$ 0&0 ij
i
i
j
x ¯=
i
/
j
i
j
Z#. $ y = J
t1$ . \ Z#0 0' _&0 >.&[, E l&Q ]3 *( 0 m M ( x ¯ = xδ dA 0 0 D ! } \f cM E x o L
0 0 D !}\f cM E y o L 0&6 >. T 000 *( D 4) *y¯ = yδ dA &0 (
D :
D
= y¯ =
=
=
0 0 D 4) X R# 0 *( 00 m
=
πδ R
y dA = x
D
= =
ut
D
ut ( + t ) dA
+t ut
+t
#0 " " #0 t dt a t dA = du + t + t
00 D
00
a ln
*$ O ) % 8*8 !VO 0 *( 0 % $ %
π δ × × πR = δ R 00 00 yδ dA = yδ dA m πδ R D D 00 r sin θr dA πR D " #0
0 π
R
sin θdθ
r dR
* * * ut *= * ( + t ) *
≤ u ≤ a
,
dA = δ Area(D) D
≤t≤
D
00 δ dA = δ
=
t +t t +t
00
+t
E >.&[, T−tu .$ D # j D
m
∂(x, y) = ∂(t, u) * * u(−t ) * (+t ) = * * ut(−t ) * (+t )
D
`&UO 0 # $ Z N# !\f cM A& .8 '() * $ % *0&0 . ( O & R+ ]) N# E M R >.&[, . Mn # $ Z ZM x= d0 .$ (B 0 *!' *δ(x, y) = δ D : x + y ≤ R , ≤ y E ( &F O&0 [Y1 T .$ D # j D S >. T R# .$ R# 0&0 D : ≤ r ≤ R , ≤ θ ≤ π
at , ≤ t ≤
,y= + t y/x
B&Q . $ (x, y) ∈ D Y\ ( *M [&
ut ut x = + t x= &0 >. T R# .$ *!' + t
. D 4) *(
j
m
at
C : x=
i,j
m
=
.&M$ 0 0 $ '& D M x= A .8
/ xi δ(xi , yj )Δxi Δyj ÷ δ(xi , yj )Δxi Δyj
i,j
00 x dA dA = y v v D D " #0 #0 " dv
= du = v
m
=
R π
.$ *x¯ = Z#. $ . −y 0 ([" D 5.&\ !B$ 0 *C = (, R/π) e1 x /a + y/b = 0 $ q0 e0. !\f cM A, *0&0 . ( xy 0 0 (x, y) ∈ D B&Q M e0. .$ D : ≤ x , ≤ y , x /a + y/b ≤ &# .$ *!'
. $ x + y ≤ x i1 E (x,+y) Y\ M . T .$ A *M [& . D 4) O&0 x x + y 4) B&Q y = x = p Y 0 $ '& D M . T .$ A; E (x, y) >&j L 0 Y\ B&Q $ 0 x + y = *M [& . D 4) O&0 (x + y) 0 0 5F (, ) ( , ) (, ) / g. &0 da D M . T .$ A 4) O&0 xy 4) B&Q . $ (x, y) ∈ D Y\ O&0 *M [& . D "0 0 $ '& D M x= A
C:
x=a y=a
!
cos t − cos(t)! sin t − sin(t)
;
≤ t ≤ π
. D 4) *( |y| B&Q . $ (x, y) ∈ D ( *M [&
D + $ 0 . −y N+M 0 . D *$ O ) J*8 !VO 9ZM Z"\ D D D
: :
≤x≤ −
a
a
,
b x ≤ y ≤ h x a
≤ x ≤ , −
= Z+U [Y1 >&j L v E *δ(x, y) = xy .$ D # j D >. T R# .$ *ZM $& y = br sin θ E ( >.&[, T−rθ
x = ar cos θ
a
D :
h x ≤ y ≤ − b x a
Z#. $ R# 0&0 *( J = abr c !#[ R0 M W
a
?U0 x¯ = M ( RO. >. T R# .$ m
= =
m(D) = m(D ) = Area(D ) × δ
a a aδ δ × ×h− × ×b = (h − b)
00 m
=
00 δ dA =
D
00
>. T & *( C = (, (h + b)/) 0 0 D !\f cM U# M "#&0 R# 0&0 C = (, b) M ( & E B&"
. ! $ da `&. U# *b = h/ (h + b)/ = b N# E . D !VO S *(=S O $ $ da `&. / #&0 0 ZM . E w 0 . C / . Z#E&"0 X' UY1 *. Z C .$ .@ b 6+ Z") N# S *0&0 . D !\f cM $. .$ 0 $ % &+O *( (0&f B&Q M ( 5F 0 x= $ 6 M{ B&Q *M x= N# . B&Q . \ Z
*δ = x ( x + y ≤ x i1 D A x + y = x + y = ax # $ 0 $ , + D A; *δ = y ( ay ?U0 ( (, ) ( , ) (, ) / g. &0 da D A *δ = x + y *( e0. .$ e1 . g F 0 $ , + D A $ y = −x + y = x + + $ 0 D AH *( >_$&U 0 E / 1 N# 0! $ , + D! A8 *( . −x y = a − cos t x = a t − sin t ay = x + x+y = a y 0 $ , + D AJ *( (x + y ) = a (x − y ) 0 $ , + D A7 * ≤ x ( 0 # $ 0 $ &Q 1. N# D M x= A M ( x + y = bx x + y = ax >_$&U
0 0 D !\f cM M M RU . @ . a * < a < b *O&0 (a, )
≤ θ ≤ π/ , ≤ r ≤
=
abr sin θ cos θ abr dA
D
=
a b
#0
" #0
π/
sin θ cos θdθ (
=
xy dA D
sin θ a b
(
)π/ ×
r
) =
" r dr
a b
&F O&0 D !\f cM C = (¯x, y¯) S .$ 00
x ¯ =
=
=
00
xδ dA = x y dA m a b D D
00 a b r cos θ sin θ dA a b D #0 " #0
a
π/
cos θ sin θdθ
" r dr
=
a
9U# (" y¯ [& 0 E& B&" .$ $ ) 5.&\ !B$ 0 *C = ( a/ , b/ ) R# 0&0 *y¯ = b/ `&. 0 R1&"B &" da N# !VO 0 '& A .8 .$ . ( O & &Q ]) N# E M a ,&1 @ h #[0 . @ 5F ,&1 E R1&"B &" aa *Z#. $ .& R# `&. *O&0 $ da / . .$ !T&' Z") !\f cM M *0&0 . da
}
7*H*8 &a E (+"1 9J*8 !VO h $. D da ,&1 ZM x= . h R# 0 _> 0 *O&0 . −x c D 5.&\ . $. $ . 1 . −x 0
0 $ da D M x= A& '() $ % (x, y) ∈ D M ( x + y = y &j L &.
(0 . y = y ' D .& 6S *( x B&Q . $ *#.F D : ≤ x ≤ , ≤ y ≤ − x V# 0 ) &0 *!' *( d = |y − | 0 0 : y = y & (x, y) T&= 00
|y − | .x dA =
I = D
=
0 $ (
=
x
x(y − ) x
−
%−x
)
dx =
0
)
x(y − ) dx x − x dx
D : −
00 m
≤θ≤
00
xδ dA = δ
=
0
= δ
= δ
*( R
. =
>. T R# .$
00 x dA = δ
D
)
π/
0
r cos θr dA
−π/
cos θ
dθ
M ( U0 $ '& D M x= QR +CcG ZM x= *( δ(x, y) 4) B&Q . $ (x, y) ∈ D Y\ Y\ (x , y ) ( D E Δy Δx $&U0 0 UY1 D (x , y ) Y\ .$ D 4) 4&+ ZM x= *( 5F E LB$ R# .$ *δ(x , y )Δx Δy 5 c 0 U# ( O e+) ( >.&[, x
y ' Y\ R# ! & .& 6S >. T ! T&= d (x , y ), M d (x , y ), δ(x , y )Δx Δy E ' D .& 6S ` + .$ ]3 *O&0 y & (x , y ) Y\ E >.&[, y j
j
j
i
ij
ij
i
i
j
i
j
j
i
j
i
j
i
i
00
j
j
! d (x, y), δ(x, y) dA
I =
>. T R# .$ Z#0 . −y . −x . S *( E $ 0 >.&[, X 0 ' .& 6S 00 00 I = y δ(x, y) dA I = x δ(x, y) dA y
D
* & ( . # fJ@ . R := +I /m $, ω (0&f # E (, &0 . D O&0 &0 S N#c= h E 0 0 .&M R# 0 4E_ W . \ Z$ 5 .$ . ' 0 . m E &0 Y\ 4) S ?U0 *( K = /I ω Z E& W . \ R+ 0 Z$ . 1 . & R T&= *(O $ 0 M Y\ ' D Z") & .& 6S 0&6 >. T 0 . M ' D00 uQ `&UO Rl+ (x , y ) >&j L
I = d (x, y), M !δ(x, y) dA >. T 0 X 0 + ! d (x, y), M 5F .$ M *$ + G#U 5 R := I /m Z#. $ ADZ [ U#C M = O 0 *( M & (x, y) T&=
πδ
πδ
=
+ (x − ) + y
0 0 (
cos θdθ = πδ
0 0 uQ `&UO R# 0&0
&
, ) (x, y)
00 00 (x − ) + y δ dA = |x| dA D
. !) $ %
D
r cos θdr dθ
D : − ≤ x ≤ , x ≤ y ≤ x +
IM =
+CcG
x
D
) cos θ
r
π/
Iy = m
πδ
y y = x + 0 $ '& D M x= A .8 |x| 0 0 (x, y) ∈ D Y\ B&Q ( y = x+ (x − ) + y *M [& . M = ( , ) Y\ ' D .& 6S *( (, ) p&\ .$ O $ $ y + M Z#. $ ) *!' R# 0&0 . $ $. 0 (− , ) Z#. $ (
, )
(
−π/
δ
y
≤ r ≤ cos θ
00
( π/ 0 cos θ −π/
0
=
,
Z8
D
=
D
δ dA = δ Area(D) = δ × π × =
D
Iy
π
]
i
. . −y ' D uQ `&UO *( δ = δ (0&f B&Q &0 *M [&
9ZM $& [Y1 >&j L E . h R# 0 *!' π
∗
i
x 0 $ &Q '& D M x= A, .8
x + y =
∗
+
dx =
0 (0 −x
y y = x + 0 $ , + D M x= AI x= *( O & &Q ]) N# E ( y = h Q E ]3 *Z# $M $. 5F 0 VQ M .&"0 0- M . #&3 (B&' N# 0 Z") R# (6S0 (=. .&0 *M oL6 . . Mn (U- *. D : x +y ≤ ay , y ≤ a i1 Z 0 . I B&" A *M !'
D
T&= 5 Q
M
D
M
00
IO =
M
! x + y δ(x, y) dA
D
y N# ' Z") .& 6S E 5 _&0 d0 [O >.&[, y ' D 4) .& 6S e1 .$ *(S RL x
00 !0&\ .$ . I .& 6S *( M = d (x, y), !δ(x, y) dA E *M + r& s (T &0 Xb M
D
x= &0 . . −y . −x ' .& 6S $. .$ 9M [& δ = )
(x − a) + (y − a) ≥ a ,
=
−
0 =
≤x≤a )
0 (0
,
≤y≤a
x = u(t − sin t) , y = u( − cos t) ,
≤u≤a
,
)
a ≤ xy ≤ a , x/ ≤ y ≤ x
)
(x + y ) ≤ a xy ,
)
x/ + y / ≤
−
≤x
x
= −
x.(x +
−
S #$S KY 7**8 .$ M . @ 5&+ & . . Mn V T J**8 q1 y# O .$ 9#$ 5&0 0 *Z &
− x ) dx +
a
a→a
a
Da
00 D = lim Da ⇒
00 f dA := lim
a→a
f dA
a→a
D
Da
9$ + $& 5 $. $ .$ & R# E M ( M{ 0 4E_ $. $ $ ) ( . (+ ' M $ O (0&f S AGB >. T .$C |Q (+ & M (=S Z #n3[& U# *O&0 h $. ' 0 0 A$ ) (" $ ) 0 B$
x
0 x.(x +
− x ) dx
=
+
) B&Q &0 '& D M . T .$ A .8 O&0 x + y = a (x + y) 0 $ (xx ++yy) *M [& . DZ [ ' D & .& 6S . D : x + y ≤ a(x + y) '& . h R# 0 *!' 9Z#0 [Y1 >&j L 0 : r cos θ + r sin θ ≤ a r a : r ≤ cos θ + sin θ
R# 0&0 $ O+ T &l cos θ + sin θ 5 Q M D :
≤ θ ≤ π , ≤ r ≤ +
00 IO = D
00
=
(x + y )δ dA =
00
&0 ( 0 0 h $. .& 6S x + y dA (x + y )
D
! cos θ + sin θ .r dA
D
⎡ 0 π 0 ⎣ = 0 π ( = =
a
a
cos θ + sin θ
√
a/
cos θ+sin θ
⎤ ! cos θ + sin θ .r dr⎦ dθ
D
&+ 9 OVBC EJ NC % % E ' 0 . & B R# ( =&M B +U & *ZM !#[ $&, & B E $ & {D } ZM x= . h R# 0 & B E N# lim D = D M O&0 &, +
00 9ZM G#U >. T R# .$ *O&0 $&, f dA
−
− x ) dx
D
O&[ . M "0 D , + S % % M ! (#& 0 0 D E Y\ .$ z = f (x, y) V# Y\ Q00E u0 D 0 f & 3& V# $$ G#U + . f dA >. T R# .$ O&0 Q *Z &
0 $ %x+ |x|y dx
δ =
/ F DF B !F 00 f dA
|x| dy dx =
|x|.(x +
D
00
)
0
=
≤ t ≤ π
x+
! r cos θ + sin θ
0 π
√ )a/ cos θ+sin θ dθ
dθ = a π 0 $ %
0 . −y 0 ([" uQ `&UO & .& 6S A x = p Y . −x y $ wE& T δ(x, y) = + x/ pO &0 . y = x + x = − *M [&
e0& . $ + . −x 0 $ &Q '& & .& 6S A; . . −y ' π ≤ x ≤ π &0 f (x) = (sin x/x) *M [&
$ y = y = −x y = x p Y 0 D M x= A uQ `&UO & .& 6S *δ(x, y) = y+ ( O *M [& . DZ [ ' D
0
()
∞
=
00
e−(x
= ≤x,y ()
=
0 e−x dx +y )
00
lim
R→∞ DR
e
#0
=
π
R→∞
e−r
00
$. $ ) ( . (+ ' M $ O (0&f S A% *$. $ ) |Q (+ & M (=S Z *( R T !M D M x= A& '() % % *M [& . D 0 f (x, 00 y) = /(x + y + ) . M D #E ( & f dA >. T R# .$ *!' 9( R `&UO DZ [ cM 0 # $ D ZM x= *(" 5 M *D = lim D M ( RO. *D : x + y ≤ R 9(O 5 [Y1 >&j L v N+V0
e−r dA
dA = lim
R→∞ DR
R
dθ
lim
()
" #0
π/
R→∞
=
e−y dy
dA
−(x +y )
lim
∞
re R =
π
−r
D
"
R
dr
R→∞
− lim e−R = R→∞
00
π
R
R# 0&0 v 5$ 0 & E AC .$ V# ^- * D M ( O x= A;C .$ Z# $M $& RU .$ e0. .$ M ( DZ [ .$ cM R `&UO 0 # $ e0. Z# $M $& [Y1 v v E AC .$ $. $ . 1 T *O&0 [Y1 T .$ D # j D √ I = π/
R
00 dA dA = lim R→∞ (x + y + ) (x + y + ) DR 00 rdA = lim R→∞ (r + ) DR
R
" #0
#0 π
=
lim
dθ
R→∞
R
rdr (r + ) R
"
$ %π − θ × R→∞ r + = π lim − =π R→∞ R +
R
R
R
=
lim
9( D [Y1 # j D &# .$ M R
R
DR : ≤ θ ≤ π ,
} e0& A .8 *M [&
, + E . h R# 0 *!'
Da : ≤ x ,
−(x+y)
≤ y , x + y ≤ a
∂(u, v) = ÷ ∂(x, y)
* * ÷* *
* * *= *
!V6 . D `?- y = x = x + y = a p Y 5 Q T−uv .$ D # j D 5$.F (0 0 $
9Z0 . `?- R# #&j a
a
a
x= ⇒ v=
ε
00
dA = lim − x − y ε→ +
D
R# .$ v = x u = x + y ZM x= *ZM $& >. T ∂(x, y) = J = ∂(u, v)
>&j L &.
0 $ '& D M x= A, .8 00 dA ( + F *( x + y = y −x−y f (x, y) = /( − x − y) #E ( & R# *!' y R# 0 (x, y) S $ O+ G#U x + y = y 0 D ZM x= *$ + ! (#& 0 0 f e0& $ O N#$c x + y = − ε y >&j L &. 0 $ , +
A7*8 !VOC D = lim D >. T R# .$ *( D
;*8*8 &a E ; (+"1 97*8 !VO T e0. 0 . f (x, y) = xe
00
Dε
ε→ +
=
lim ε→
= = = =
0 −ε $
lim
ε→ +
0 −ε
lim
ε→ +
lim
ε→ +
$
ε
dA −x−y
0 −ε $ 0 −x−ε
% dx
−x−y %−x−ε − ln( − x − y) dx ln( − x) − ln ε dx
− x ln( − x) + x + ln( − x) − x ln ε
%−ε dx
lim (ε − ) ln ε = +∞
ε→ +
*( S h $. U# *M [& . I = 1 e dx A .8 M ZM ) . h R# 0 *!' ∞ −x
y= ⇒ u=v
x + y = a ⇒ u = a
≤r≤R
I
=
I ×I
R→∞ lim
=
#0
×
R
#0
r(m+n)− e−r dr
R# 0&0 D 00
"
π
B(m, n) R→∞ lim
=
"
cosm− θ sinn− θ dθ 0
0
R
√ R
r(m+n)− e−r dr m+n− −s
s e ds B(m, n) lim R→∞ 0 ∞ sm+n− e−s ds = B(m, n) Γ(m + n) B(m, n)
= =
= =
( O x= AC .$ V# ^- *( 4&+ 5&0 v v E A;C .$ D : ≤ x, ≤ y, x + y ≤ R *D : ≤ θ ≤ π, ≤ r ≤ R ( O $& [Y1 00 >. T .$ . f dA $. .$ 0 % % 9M [& $ )
=
00 a→∞ Da
R
D
! ) f = / (x + )(y + ) , D = R /(x y), D :
)
f=
)
f = exp(−x − y ) cos(x + y ), D = R
)
f = (x − y )/(x + y ), D :
≤ x, e
−x
=
=
ve−u 0
a
(
lim
a→∞
v
xe−(x+y) dA
dA = lim
a→∞
0
0
a
u
)v=u e
−u
ve−u dv du
0 du =
a
lim
a→∞
u e−u du
v= $ %a 0 a −u lim − u e + ue−u du a→∞ %a 0 a $ lim −a e−a − ue−u + e−u du
a→∞
lim
a→∞
−a e−a − ae−a − e−a +
a + a + = a→∞ ea
− lim
− lim
a→∞
=
ea
− lim
a→∞
a + ea
.&0 $ DZc) 0 DZc) D. E .&0 $ _&0 >&[& .$ V# ^- *Z# $ + $& &3 ,&1 E c 9ZM G#U [a $ , n m a M x= A .8
≤y≤
0
≤x≤y
∞
Γ(a) :=
)
f = exp(−x − y), D : ≤ x ≤ y , ) f = / − x − y , D : x + y ≤
xa− e−x dx
0 B(m, n) :=
xm− ( − x)n− dx
M M (0&f * & & 0 e0& & &S e0& X 0 . & # = R# i& (B&' *B(m, n) = Γ(m)Γ(n)/Γ(m + n) ! U[@ $ , n m M = (m + n)!/m!n! 9( RQ * " dt = x dx Z#. $0 Γ(a) .$ t = x x= &0 *!' 0 *Γ(a) = x e dx R# 0&0 t ∞ ∞ Z#. $ B e0& .$ x = cos θ x= &0 0&6 >. T
)
f = y + , D : − ≤ x ≤ , + + − / − x ≤ y ≤ / − x
) f = exp −x /a − y /b ,
m n
D : x /a + y /b ≥ ) f = √xy exp −x − y , D =
)
00
a→∞ Da
lim
R
=
≤ v ≤ u E ( >.&[, Da ]3
xe−(x+y) dA = lim
≤x,y
=
: ≤ u ≤ a,
a
∞
e0. f = sin(x + y ), D = 4$ e0.
B&Q . $ R E (x, y) LB$ Y\ M . T .$ A ' R & .& 6S O&0 δ = exp(−x − y) 4) *M [& . >&j L DZ [ . −y . −x , >. T R# .$ *Ω : ≤ z ≤ / x + y M x= A; ^Y ('&" B ( & Ω Z' M $ 5&6 [& R# E F ( & & 5F ).& (=S 5
0 $ , + 0 . f (x, y) = y e0& A 9M [& #E x = a ( cos t − cos(t)) * C : y = a ( sin t − sin(t)) , ≤ t ≤ π
∗
B(m, n) =
0
a−
π/
−x
cosm− θ sinn− θ dθ
0 ∞ 0 Γ(m)Γ(n) = xm− e−x dx 00 = xm− y n− e−(x +y ) dA x≥ y≥
( )
=
R→∞ lim
00
xm− y n− e−(x
+y )
.$
y n− e−y dy
∞
dA
DR ( )
=
R→∞ lim
00
DR
r(m+n)− e−r cosm− θ sinn− θ dA
58' 9 / 20 ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= 0 f (x, y) [& 0 G+ 'BC & % . $ E D : a ≤ x ≤ b , h(x) ≤ y ≤ l(x) Zh −x , +
int(int(f(x,y),y=h(x)..l(x)),x=a..b)
*ZM $&
&0 G+ 'BC . 1 1) . !) & % $ O & 6 [& ( RV+ [1 . $ ) . $ E >. T R# .$ AO&[ 5F !' 0 .$&1 !< C 9ZM $& 5F [#\ . \ [& 0 evalf evalf(int(int(f(x,y),y=h(x)..l(x)),x=a..b))
# /.$F .$
78 & %
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
\' 0 $ , + 0 f (x, y) = x e0& A 9M [& . O $ $ .$ $ )
*C : x = at/(t + ) , y = at/(t + ) y y M O&0 e0. E +"1 D S M M (0&f AH &F ( O #0 x + y =
00 exp
y−x y+x
dA =
D
e − e
y y M O&0 e0. E +"1 D S M M (0&f A8 &F ( O #0 x + y = π/ 00 sin x sin y sin(x + y) dA = D
π
y y M O&0 e0. E +"1 D S M M (0&f AJ &F ( O #0 x+y = 00 0 xm− y n− f (x, y) dA =
Γ(m)Γ(n) Γ(m + n)
tm+n− f (t) dt
D
M (0&f v = y u = x +y v) v E $& &0 A7 0 (0
−x
exp
y x+y
dy dx =
e−
+ , -$ P
ZM G#U >. T R# .$
& ' #P := min n, m, ,
(B&' 0 1 f (x) dx RU Z+U .&M Z6O !j= .$ =. ) ' N# !j= R# .$ O 4& v $ e0 v U0& f 5F .$ M ZM G#U . &S $ $ $ 5 . . R# M ( RO. *( &S 60 (+ !B$ 0 *$ + G#U . &S−n E $. &3 uL0 .$ $ $ . 1 d0 $. ?z &M F *$M Z KY c . &S−n & B b a
: e = z < z < . . . < z − < z = g.
Δxi := xi − xi− ,
Δyj := yj − yj− , Δzk := zk − zk− , ' & |P | := max Δx , . . . , Δxn , Δy , . . . , Δym , Δz , . . . , Δz .
RO. *Z & P .S . #P P 7<p . |P | $, aM ' 0 Ω , + Ω 0 E = %&L &0 M ( *A$ O ) % *J !VO 0C $$S Z"\ (+"1 n× m× **J .$ &+ P Ω ZM x= & ≤ j ≤ m ≤ i ≤ n M . Ω &, + O&0 S 9ZM G#U #E >. T 0 ≤ k ≤ ijk
F B !F U& 2 .$ M ( &S$ [O &S +. G#U *O $.F **8 }
[xi− ; xi ] ∩ [yj− ; yj ] ∩ [zk− ; zk ] ∩ Ω
.$ w O R# 0 0 . Ω O&0 ! &M !Y " XUV
& Ω R# 0&0 *Z#S ∅ . 5F >. T R# b GB ;*J !VO 0C " &M !Y " XUV
*J !VO E $ & P E = E KV N# E . h *A$ O ) . M "0 Ω ⊆ R ZM x= & M S 0 ( Ω .$ X = &(x , y , z )' p&\ $ ) . @ g e d c b a $ , R# 0&0 *O&0 XUV .$ Ω U# *Ω ⊆ [a; b] × [c; d] × [e; g] M (O $ *Ω = ∅ M k j i E 0 x , y , z ! ∈ Ω E&0 0 0 . −x 0 5F # j M ( p& !0&1 Y "
P B< Ω , + ZM x= & [e, g] E&0 0 0 . −z 0 [c; d] E&0 0 0 . −y 0 [a; b] u = f (x, y, z) O&0 ;**8 &+ X KV 0 B< N# E . h *A$ O ) GB *J !VO 0C ( >. T R# .$ *$$S G#U Ω! 0 M ( U0& 5F .$ M P = P × P × P !VO 0 ( 0qT&' Ω e+T&' 7 f x , y , z Δx Δy Δz E . h 9 " [e; g] [c; d] [a; b] 0 #&E = X 0 P P P j i E 0 M ( O $ $ !V60 & .&[, + P : a = x < x < . . . < x < x = b, e0& Zg S . T .$ *Ω = ∅ h $. k P : c = y < y < . . . < y < y = d, I $, M ( ]oH/ Ω , + 0 u = f (x, y, z) J ijk
ijk
ijk
ijk
ijk
ijk
P
ijk
ijk
ijk
i
ijk
ijk
ijk
j
ijk
ijk
k
n−
n
m−
m
( [; 000 Ω
]
' XUV Ω M x= '() & >. T R# .$ *f = xy − z
n / m / / i j k , , f dV = lim f m,n, →∞ mn n m i= j= k=
n / m / / ij k − m,n, →∞ mn mn i= j= k= ⎧ ⎫ ⎛ ⎞ # n " m ⎨ ⎬ / / / ⎝ ⎠− = lim i j k m,n, →∞ ⎩ m n ⎭ i= j= k=
m+ n+ + lim lim − lim = n→∞ m→∞ m n →∞ − = =
lim
#n. T R# .$ O&0 \\' $, a O&0 000
)
000
af dV = a
f dV
Ω
)
Ω
000
000
(f + g) dV = Ω
000 f dV +
Ω
g dV Ω
f (x, y, z) ≤ g(x, y, z) (x, y, z) ∈ Ω E 0 S A >. T R# .$ 000
000
f dV ≤ Ω
g dV Ω
&0 Ω Ω , + $ w O $. '& Z' S A >. T R# .$ O&0 T ('&"
000
000
f dV = Ω ∪Ω
000
f dV + Ω
f dV Ω
& g f & F .$ M Ω E @&\ h $. Z' S AH >. T R# .$ O&0 T 000
000
f dV = Ω
g dV Ω
.$ O&0 T Z' &0 Ω Ω , + $ m? S A8 >. T R# 000
000
f dV = Ω
f dV Ω
&F Z$ 5&6 Vol $&+ &0 . Ω Z' M . T .$ AJ 000 dV = Vol(Ω) Ω
N# δ ([a $, N# < ε E 0 M $$S (= 5&Q 0 P E = E 0 M O (= S 0 n U[@ $, O $ P E X %&L E 0! #P ≤ δ |P | ≥ n M Ω 7 Δx Δy Δz − I < ε ZO&0 R# .$ * f x ,y ,z 000 f dV $&+ &0 & Ω f )* 3)+ ./ . I >. T 9$ O O (B&' R# .$ M ( +U ?U0 *Z$ 5&6 ijk
P
ijk
ijk
i
j
k
Ω
000
f dV = lim
|P |→∞
#P →
Ω
/
! f xijk , yijk , zijk Δxi Δyj Δzk
P
?z+, $. $ h [) _&0 G#U 78 & 5F $& R#+, (" &S [& 0 *O&0 &S &$0.&M ) c & &[f &1 .$ UB&Y $. & B $ ) E M ( 4E_ d0 $ 0 *M !' . B&" &z 1 #E q1 *ZM !T&' 5&+@ $ & . M "0 , + Ω S #$S G#U Ω 0 M O&0 x U0& u = f (x, y, z) Q N# Y\ Q N# E h mT ( . M &F O&0 3 Ω !M 0 & ('&" &0 #. Q N# *$. $ $ ) Ω 0 f $ ) 0 =&M y# O _&0 q1 78 % & * " 4E_ ) 0 y# O R# M =U . O&0 LB$ f T Z' &0 Ω f = LB$ Ω S ?za
*( T 0 0 O $ $ ) Ω 0 f &F y# O .$ f e0& 0Ω00 , + l&Q & & Zg S T . f dV M T H**J q1 + ]3 R# E *Z & + . 5F >. T R# b .$ 5&0 &z ' T u=? VF $&, d0 $. & B *$$S G#U N+M 0 &S [& 0 !#{ q1 E *$ + $& 5
[a; b]×[c; 000 d]×[e; h] !Y " XUV Ω S * & 0 0 f dV >. T R# .$ O&0 #n3 Ω 0 f $ 0 Ω
Ω
lim
(b − a)(d − c)(h − e) × mn
n / m / / d−c h−e b−a ,c+ j ,e + k f a+i n m
n,m, →∞
i= j= k=
M $M x= 5 [& .$ (B ( ) 0 [B *( *$ + [& . ' N# & m = n =
# U &0 M A$ O ) % ;*J !VO 0C ZM h'?
.$ *Z. Ω , + 0 Ω .$ −x 0 x +
000 =
Ω
mVol(Ω) ≤
000 x dV +
Ω+
f dV ≤ M Vol(Ω) Ω
x dV
000 000 f dV ≤ |f | dV
*
Ω−
000
000 x dV +
=
0 f . \ R# +M M 0 0 Ω 0 f . \ R# 60 S A7 >. T R# .$ O&0 m 0 0 000
−
000 f dV
Ω
Ω+
−x dV =
Ω+
% $+ x + y + z
0 f =
Ω
Ω
e0& E A&
A
'() &
*#0 Ω : x + y + z ≤ "0 S 0 f M $M Z"\ 5 . @ . Ω >. T R# .$ *!' 9O&0 (0&f UY1
**J &a 9;*J !VO 000 f dV Ω
. \ $. .$
) f (x, y, z) = [x + y + z] , Ω :
) f (x, y, z) = ,
≤ X < X ≤
⇒ ≤ X <
000 f dV
9M [&
≤ x, y, z ≤
≤ X < ⇒ X <
Ω :
≤ X <
(+"1 0&0 ]3 *A$ O ) GB ;*J !VO 0C ( T (O 5 I**J E 000
000
f dV = Ω : |x| + |y| + |z| ≤
≤ x, ≤ y, ≤ z, x+y+z ≤
) f (x, y, z) = x + y + z , ) f (x, y, z) = z,
⇒
' & Ω − Ω ∪ Ω ∪ Ω ∪ Ω = X X =
0 &
0 Rg&3 ' N# _&0 ' N# $. .$ 90&0
) f (x, y, z) = xy,
f (X) = X ∈Ω
0 0 0 Ω : ≤ X < 0 f 0&6 >. T 0 M Z' ?U0 *( 0 0 Ω : ≤ X <
Ω : x + y ≤ z ≤ − x − y
) f (x, y, z) = xyz, Ω
0 f 0&6 >. T 0 *( T 0 0 Ω : X < 0 f ]3 9( N# 0 0 Ω : ≤ X <
}
.
f (X) = ⇒ X ∈Ω
Ω
000 = Ω ( )
=
=
Ω : |x| + |y| + |z| ≤
Ω : x + y ≤ , x + y ≤
\O*'−xy DYG>X' 2 &# .$ &S$ $. .$ O KY d'&[ 0 h [& 0 Z\ " b O. M ( &0 ?z &M c Zh −xy , + 4 d0 R# \ *$ O KY &S *( Oxyz &q= .$
=
f dV
Ω ∪Ω ∪Ω ∪Ω
dV
000
000
+
dV + Ω
Ω
dV
000 +
dV
Ω
+ Vol(Ω ) + Vol(Ω ) + Vol(Ω )
π × − π ×
+ π× − π×
+ π× − π× ! π + + = π
*f = x Ω : x + y ≤ z ≤ M x= A, .8 *M [& . Ω 0 f Ω Z"\ &0 #E ( T Ω 0 f >. T R# .$ *!' pL Z $ 0 Ω+ : x + y ≤ z ≤
,
Ω− : x + y ≤ z ≤
, x≤
≤x
}
e1 .$ * " &6 . Z# $ + !' ?z[1 M #&" $.
& F Z (+'E ZM Z" . & F & VO Z &0 *Z#+ $ 0 . 0 $ Z' Ω ZM x= A& '() & *O&0 y = x = x + y + z = &j L >&T ( Zh −xy , + Ω F !Y " E >.&[, T−xy 0 Ω #& _z #E 0 *!' D :
≤ x ≤ , ≤ y ≤
.$ . D ∈ (x, y) E .nS -= y S &f .$ ( D$. 0 Y\ R#Rg&3! M $M Z &6 Z#0 h *O&0 x, y, − x − y &0 0 0 R#_&0 (x, y, ) 0 0 Ω &0 ` + .$ ]3 *(x, y) = − x − y h(x, y) = R# 0&0 Z#. $ Ω : (x, y) ∈ D ,
≤z ≤−x−y
*$ O ) GB *J !VO 0 ( Zh −xy , + Ω }
Zh −xy , + 9*J !VO . T .$ . Ω ⊆ R , +
& z = h(x, y) e0 D ⊆ R , + M Zg S `g−xy M O (= S 0 z = (x, y) Ω : (x, y) ∈ D, h(x, y) ≤ z ≤ (x, y)
e0& . $ + 0 _&0 E M ( &q= E +"1 Ω #$ 5&0 0 m@ E z = h(x, y) e0& . $ + 0 Rg&3 E z = (x, y) 0C ( D , + E 5F ,&1 M ( $ 0 *A$ O ) GB *J !VO ( Zh −xy . M "0 , + & R O !0&1 Zh −xy &, + E ,&+ ) !VO 0 R# E & $ w O $. '& Z' M S 0 ( 9( T 0 0 &, +
< Ω= Ω ∀i = j : Vol(Ω ∩ Ω ) = i
*;*J &a E ; & +"1 9*J !VO , + Ω : x +y +z ≤ S M $ 5&6 A, .8 *( Zh −xy >.&[, 0 z X"'+0 O $ $ &" & !' &0 *!' & *Z. |z| ≤ − x − y z ≤ − x − y T−xy 0 Ω #& ]3 O&0 ([a &V#$ . #E ( ?, #&0 D : x + y ≤ i1 E >.&[, .&[, X 0 h ( + + ) % *J !VO 0 − x − y − − x − y E .$ *$ O Ω : (x, y) ∈ D , −
,
,
− x − y ≤ z ≤ − x − y
[B 0 M mn' E !T&' Z' Ω M x= A .8 x = ± >&T 0 $ 3 XUV E x + y + z < 5&6 *$ O ) GB H*J !VO 0 *( z = ± y = ± *(" Zh −xy , + Ω >. T R# .$ M $
i
j
i
6=M)
<
+ J
U8
K+ &
.& .$ Ω Zh −xy , + M x= /lU)−xy .&M R# _z +U *Z0 . T−xy 0 Ω #& 0 *O&0 & F G#U $ RU c Ω $' mU >_$&U !' &0 *J !VO 0 O&0 !+, R# D ZM x= *( "
E =S h .$ D .$ (x, y) -= Y\ *$ O ) % B A ZM x= *Z#. _&0 0 Rg&3 ,
.$ *O&0 Ω , + &0 $. 0 Y\ R#F RB X 0 *B = x, y, h(x, y)! A = x, y, (x, y)! >. T R# 0 =. =. B +U !#&" E X& $ U !' &0 [B D Z !VO Z 50 M Z. y" E U- N+V0 & >_&' .&"0 .$ ?U0 *ZM oL6 . h RQ .$ *$ + oL6 . B&" $' 5 & #&" & !'
, + F M M oL6 $. .$ 0 $ & $' $ 0 ([a &3 S * ( Zh −xy O $ $ 0 . , + >. T R# b .$ M oL6 . , +
9M Z"\ Zh −xy >&UY1 *( x + y + z = x M 0 $ , + Ω A >&T x + y = 0 $ , + Ω A; *( z = − T &j L
T &j L >&T 0 $ !Y " XUV Ω A *( z = x = y = − + Rg&3 E z = x + y pL 0 $ Z' Ω A *( _&0 E z = T z = −x −y q0 5 S+ $ 0 $ Z' Ω AH *( z = x + y x + y = $ R0 $ '& Ω A8 *( z = z = T $ x + y = x +y +z = x +y +z = M $ R0 Z' Ω AJ *(
)
|x| + |y| + |z| ≤
) x ≤ x + y + z ≤ x )
x + y ≤ , x + z ≤
& ' ) max |x|, |y|, |z| ≤
)
x + y + z ≤ , z ≤
)
x + y / ≤ , x + z / ≤
E Zh −xy , + [O (.$ 78 % & *(S RL 5 Zh −yz Zh −xz &, +
Ouvw 5 &q= N# .$ Zh −uv , + E M . @ 0 0 [O ?z &M Zh −uv &, + M i *(S RL *( Zh −xy &, +
pL 0 $ Z' Ω M x= A& '() & & Ω >. T R# .$ *( y = T x + z = y !VO 0 ( Zh −yz Zh −xy Zh −xy , +
X 0 D D D S \1$ 5&0 0 *$ O ) 8*J T−yz T−xz T−xy 0 Ω # j E >.&[, &F O&0 yz
xz
xy
Dxy :
≤ x ≤ , −x ≤ y ≤ x
Dyz :
≤ z ≤ , −z ≤ y ≤ z
}
*;*J &a E (+"1 9H*J !VO T−xy 0 5F #& #E (" Zh −xy Ω , + _> B&' .$ ( D : − ≤ x ≤ , − ≤ y ≤ e0 0 0 , + .$ z #&0 &F Z#0 (, ) Y\ . (x, y) S M M B&' .$C (" Q.&
Ω = Ω ∪ Ω ∪ Ω
Ω : (x, y) ∈ D , − ≤ z ≤ , Ω : (x, y) ∈ D , − ≤ z ≤ − − x − y , Ω : (x, y) ∈ D , − x − y ≤ z ≤
pL 0 $ √, + Ω M x= A .8 .$ M $ 5&6 *O&0 z = x + T x + y = z *( Zh −xy , + Ω >. T R# $ $ $. 0 . T pL B$&U . h R# 0 *!' M Z#S
x + y = z √ z = x +
⇒
(x − )
+ y =
3 q0 E ( >.&[, T−xy 0 Ω # j nB D : (x − ) / + y ≤
l&Q #F 0 GB 8*J !VO E M . @ 5&+ Rl+ h .$ . . −z > E
0 (x,! y) E .nS -= y + Y\ R# _&0 x, y, x + y Y\ R# Rg&3√Z#0 R# 0&0 *O&0 x, y, (x + )/ Ω : (x, y) ∈ D ,
, √ x + y ≤ z ≤ (x + )/
*$ O ) % J*J !VO 0 x + y + z = M 0 $ Z' Ω M x= A .8 &q= Z .$ M ( x / + y/ + z/ = 5 S q0 Zh −yz , + Ω >. T R# .$ *( O e1 ≤ x E ( >.&[, T−yz 0 '& R# # j _z #E ( x = # $ .$ . #V# . Mn #. $ D : y + z ≤ R# 0&0 *M eY1 y + z = Ω : (x, y) ∈ D ,
,
Dxz : − ≤ x ≤ , −
+
+
− x ≤ z ≤ − x
9(O $ O #E !VO 0 . Ω
, , Ω : (x, y) ∈ Dxy , − y − x ≤ z ≤ y − x + Ω : (x, z) ∈ Dxz , x + z ≤ y ≤ , , Ω : (y, z) ∈ Dyz , − y − z ≤ x ≤ y − z
,
− y − z ≤ x ≤ − y − z
Zh −xz Zh −xy >. T 0 . , + R# l&Q *ZM Z"\ (+"1 0 . Ω M ( 4E_ Z"# 0 ( , , ) (, , ) / g. &0 ) k3 Ω M x= AH &a
!VO 0 *O&0 &q=−uvw .$ (, , ) ( , , ) (, , ) ( Zh −uv Ω >. T R# .$ *$ O ) 7*J ,&+ ) >. T 0 F & *( Zh −vw Zh −uw #&0 0 `O 0 *(O 5 Zh −uv , + E 0 T−uv 0 C D p&\ # j *$M Z . Ω E . $ + R# 0 *C = (, , ) D = ( , , ) E ( >.&[, X OC AB U- .& Q E >.&[, T−uv 0 Ω # j X *$ 0 }
}
(+"1 *;*J &a AGB 98*J !VO (+"1 J*;*J &a A% Q.&3 $ 5 S B Bn 0 $ Z") Ω M x= A, .8 Zh −yz , + Ω >. T R# .$ *( y +z = x − #. $ R# $. 0 &0 *$ O ) GB J*J !VO 0 ( # $ $ E ( >.&[, $ R# $. 0 ! M $ O h'?
0 0 T−yz 0 $ # j M y + z = , x = ± R# 0&0 *O&0 ,D : y + z ≤ , Ω : (y, z) ∈ D, −
y + z −
≤x≤
y + z −
Zh −xy >. T 0 . , + R# ZO&0 !#& l&Q *ZM Z"\ uL0 0 . Ω "#&0 Z"# 0 Zh −xz }
H (+"1 J*;*J &a 97*J !VO .& Q OBD da # j X 0 U U U ZM x= E Y\ *O&0 T−uv 0 OAC da ABDC Uy u = v B$&U 0 OA y $. 0 ! E ( >.&[, *E = ( , /, ) U# T−uv .$ u = B$&U 0 BD .$
U
:
U
:
U
:
≤u≤
≤ v ≤ u ≤ u ≤ , ≤ v ≤ u/ ≤ u ≤ , u/ ≤ v ≤ u ,
. 1 5F 0 OBD da M T B$&U V# 0 ) &0 E ( >.&[, $. $ u− − −
v− w− − − − −
= ⇔
u = v + w
; (+"1 J*;*J &a 9J*J !VO + & 0 $ , + Ω M x= A .8 .$ *( y + z = y = >&T x = − z x = z $ _z #E ( Zh −xz , + Ω >. T R# $ .$ & F $. 0 ! . $ . 1 . −y $ .$ O $ $ $ R# $. 0 ! &f .$ *( x = T .$ e1 y E ( >.&[, y = T &0 D : − ≤z≤
, z ≤ x ≤ − z
Ω : (x, z) ∈ D ,
(O 5 .$
≤y ≤−z
da E ( >.&[, T−uv 0 da R# # j 5 #E !VO 0 F #E Z") .$ U = OBD >. T 0 *Ω : (u, v) ∈ U , ≤ w ≤ u − v 9(O >. T 0 . T−uv _&0 ABD da #E Z") 0&6
9Z$ 5&6 Z #E
c Zh −xy Zh −xy , + 5 U0 F *"# 0 Zh
, + 5 U0 . |u| + |v| + |w| ≤ , + AH *"# 0 Zh −uw Zh −uv Zh −uv (, , ) ( , , ) ( , , ) (, , ) / g. &0 4 A8 Zh −uv , + >. T 0 . &q= −uvw .$ *"# 0 Zh −uw Zh −uw (u − v) + (u + v) = X#. 0 $ Z' AJ 5 U0 . &q=−uvw .$ w = w = − >&T *"# 0 Zh −uw , +
u = T v +w = 0 $ Z' A7 Zh −uv , + N# 5 U0 . Z 6 N# .$ e1 *"# 0 −yz
Ω : (u, v) ∈ U ,
>. T 0 . OAC da _&0 ADC da #E Z")
Ω : (u, v) ∈ U , u/ − v ≤ w ≤ − u − v
*Ω = Ω ∪ Ω ∪ Ω .$ *(O 5
5 S q0 S M x= A4 .8
(ρ + ) + (ρ + ϕ + ) + (ρ + ϕ + θ + ) =
F B ]' !F $2 5 U0 M ZM KY .
uL0 R# .$ *$S . 1 $& $. &S B&" !' 0 [&
*O&0 &S$ 0 [O ?z &M ` - R# ( Zh −xy , + Ω ZM x= & Ω : (x, y) ∈ D , h(x, y) ≤ z ≤ (x, y)
>. T R# .$ *( 3 Ω 0 u = f (x, y, z) 00 (0
000 f dV = Ω
/
D : (ρ + ) + (ρ + ϕ + ) ≤
E ( >.&[, !M .$ Ω $
f (x, y, z)dz dA D
h(x,y)
[& 0 G 'BC EJ B=B] & 0 . Ω 0 4cB >. T .$ Ω , + 0 f &S ?za C Z"# Zh −xy &, + E ,&+ ) >. T R0 w O $. '& Z' M . @ AΩ = Ω ∪ · · · ∪ Ω 0 **J q1 N+M 0 f E ]< *O&0 T & F E & $ . !T&' #$&\ F ($ Z#S & F E N# 9ZE e+) k
000
000
000 f dV + · · · +
f dV = Ω
, + Ω >. T R# .$ *O&0 S 0 $ Z' Ω #&0 T−ρϕ 0 Ω # j D R = 0 *( Zh −ρϕ ! ]< ZM /&+ S :.& 0 . . −θ E Y .$ N# ZM oL6 . T−ρϕ &0 D$. 0 x= *O&0 D , + 5F ! $ M $ 0 T−ρθ S *O&0 : ρ = ρ , ϕ = ϕ -= y R# ZM "#&0 &F O&0 X 5F /&+ ! O&0 /&+ S 0 .$ (ρ + ) + (ρ + ϕ + ) + (ρ + ϕ + θ + ) = *θ = − − ρ ± { − (ρ + ) − (ρ + ϕ + )} #&0 θ .$ &V#$ . &z cB ]3 O&0 Y\ N# & #&0 X & 3 q0 E ( >.&[, D .$ O&0 T
)
(x,y)
Ω
≤w ≤−u−v
f dV Ωk
0 $ Z' Ω M . T .$ A& '() & O&0 x + y/ + z/ = T >&j L >&T *M [& Ω 0 . f (x, y, z) = z Z"# Zh −xy !VO 0 . Ω 0 . h R# 0 *!' 9A$ O ) GB *J !VO 0C
Ω : (ρ, ϕ) ∈ D ,
,
− (ρ + ) − (ρ + ϕ + ) ≤ θ , − (ρ + ) − (ρ + ϕ + ) ≤− −ρ−ϕ+
− −ρ−ϕ−
0 * &
, + 5 U0 . u + v + w = vw A *"# 0 Zh −vw Zh −uv q0 5 S + $ R0 Z' Ω M x= A; >. T 0 F *( x = − y − z x = y + z *"# 0 Zh −yz , + N# (, , ) (, , ) ( , , ) (, , ) / g. &0 4 A *"# 0 Zh −yz Zh −xy , + 5 U0 . >&T 0 $ o1& pL Ω M . T .$ A O&0 y = x + z @L ^Y y = y =
}
D :
≤x≤
,
Ω : (x, y) ∈ D ,
≤ y ≤ (
− x)
( − x − y)
≤z≤
Z#. $ **J 0 &0 .$ 00 (0 (−x−y)/ ) z dV = z dz dA
000
000 f dV =
; (+"1 **J &a 9*J !VO Zg&1 0 $ Z' Ω M . T .$ A .8 O&0 x + z = y + Q.&
Ω
Ω
=
&, + $. .$ **J 0 [O ZV' 0&0 .$ Z#. $ Zh −xz 000
000
|y| dV =
f dV = Ω
⎡
00
⎣
=
0
00
Ω
=
√
y dy ⎦ dA = ()
D
=
x +z −
−
⎤
x +z −
(x + z − ) dA =
#0
⎣
" #0
π
dθ
0 (0 (−x)
=
x +z −
00
|y| dy ⎦ dA
√ x +z − [y ]y= dA
=
(r − )r dA
0
( − x) dx =
>&T 0 $ Z' Ω M . T .$ A, .8 0 . f = |x|y O&0 y = x + z = *M [& Ω Z"# Zh −xy !VO 0 . Ω 0 . h R# 0 *!' 9A$ O ) % *J !VO 0C y+z =
, x ≤ y ≤
D : − ≤x≤ Ω : (x, y) ∈ D ,
≤z≤
−y
Z#. $ **J 0 &0 .$ 00 (0 −y
000
000 f dV =
x = r cos θ ( O x= ( ) .$ V# ^- E ( >.&[, T −rθ .$ D # j D .$
z = r sin θ
Ω
≤r≤
pL 0 $ !VO M$ Z' Ω M . T .$ A .8 &q= Z .$ M O&0 x + y+ + z = M y + z = x *M [& Ω 0 . f = x y + z $. $ . 1 ≤ x Zh −yz , + !VO 0 . Ω 0 . h R# 0 *!' 9A$ O ) % I*J !VO 0C Z"#
− y − z
xy dV = Ω
=
) |x|y dz dA
D
00 $ 00 %z=−y |x|yz dA = |x|y( − y) dA z=
D : y + z ≤ , , Ω : (x, y) ∈ D, y + z ≤ x ≤
dx
y=
"
π
D : ≤ θ ≤ π ,
)
( − x − y) dy
(r − r) dr
( ) $ %π r r = θ × − =
D
)y=(−x) 0 ( −( − x − y)
=
z=
D
D
00
⎤
√
0
D
√
D
00
⎡
D
D:
+ ≤ y ≤ x + z −
D
00 ( )z=(−x−y)/ 00 z dA = ( − x − y) dA
D
D
)
0 (0
=
−
0 =
−
0 =
=
−
|x|y( − y) dy dx
x
(
|x|
y
4
|x|
0 4 x
− −
−
y
)y= dx
y=x
x
x
x
+
+
x
5 dx
5 dx =
π/
(0 cos θ
−π/
cos θ
0 =
0 =
0 =
(
π/
−π/
$
π/
−π/
)
r − r sin θ + r sin θ dr dθ
r − r sin θ + r sin θ
)r= cos θ dθ r= cos θ
cos θ − sin θ cos θ
+ sin θ cos θ
%
f dV = Ω
3 . 0 E >.&[, Ω M x= A4 .8 [& Ω 0 . f = |s| + |t| + |n| O&0 &q=−stn .$ *M 0 t −s 0 s # U &0 M ZM ) . h R# 0 *!' x= l&Q nB f M v Ω −n 0 n −t . 1 &q=−stn Z 6 N# .$ M O&0 Ω E +"1 Ω ZM 9A$ O ) % *J !VO 0C "#&0 &F O&0 $. $ |s| + |t| + |n| ≤
000
Ω
:
Ω
:
000 Ω
≤s≤
≤t≤ (s, t) ∈ D , ≤ n ≤
−s
,
−s−t
Z#. $ ` + .$ ]3
000
(s + t + n)dV
) 00 (0 −s−t (s + t + n)dn dA =
√ )x= −y −z 00 ( , x = y + z x=√y +z dA D 00 00 , () ( − y − z ) y + z dA = ( − r )r dA = D
#0
" #0
π
=
dθ
" (r − r ) dr
D
=
π
$& z = r sin θ y = r cos θ v v E ( ) V# ^- *Z# $ + }
(+"1 **J &a 9I*J !VO # " & 0 $ Z' Ω ZM x= A .8 u+w = w = >&T u +v = u u +v = u *M [& Ω 0 . f = w O&0 0C Z"# Zh −uv !VO 0 . Ω . h R# 0 *!' 9A$ O ) GB *J !VO
00 $ %n=−s−t (s + t + n) dA
−uv
n= D
00
! − (s + t) dA
D
)
0 (0 −s &
' − (s + t) dt ds
0
t=−s = ds t − (s + t) t= 5 0 4 s = −s+ ds =
≤w ≤−v
Ω : (u, v) ∈ D ,
D
=
−y −z
D : u ≤ u + v ≤ u
Ω
=
⎣ √
⎤ , x y + z dx⎦ dA
Ω
f dV =
=
Ω
000 f dV =
f dV
(, , ) ( , , ) (, , ) / g. &0 4 N# Ω & −st , + Ω .$ *( &q=−stn .$ (, , ) 9( Zh
D
, x y + z dV
0 √y +z
D
r cos θ ≤ r ≤ r cos θ −π/ ≤ θ ≤ π/ , cos θ ≤ r ≤ cos θ
:
⎡
00 =
dθ = π
:
000
000
$& v = r cos θ u = r sin θ >&j L v AC .$ M E ( >.&[, T−rθ .$ D # j D ( O D
&, + $. .$ **J 0&6 ZV' 0 &0 .$ Z#. $ Zh
−yz
&, + $. .$ **J 0&6 ZV' 0 &0 .$ Z#. $ Zh
f dV =
Ω
00 (0 −v
000
000
w dV = Ω
=
00 ( )w=−v w D
()
=
00 D
w=
) wdw dA
D
00 dA =
( − r sin θ) r dA
D
( − v) dA
}
) f = , Ω : x + y + z ≤ R x +y +z )
f = |s| + |t|, Ω : |s| + |t| ≤ , |s| + |n| ≤
F B !F - ^_' S& (2 !V6 .&"0 !' !0&1 b & B&' 0 Xb &S v 4&0 F .&M O. ` 0 0 .&Q& M $ O
e0& _z +U *Z# O >?V6 S R# e=. 0 >&j L
K?T q \ 0 . $. $ $.
*$ + 5
v N# E . h @PC\) f & ( F : R → R #n3/ VU U0& &q= .$>&j L
&0 F (u, v, w) = x(u, v, w), y(u, v, w), z(u, v, w) !VO 0 M . @ Γ $0 Ω $ ∂(x, y, z) = J = ∂(u, v, w)
(u, v, w) ∈ Ω E 0 A*J C
*Z & F >&j L v R0 M W . J #E N# 0 A*J C pO l&Q 78 & (.$ d0 $ Z E&0 O&[ . 10 Ω E T Z' &0 , +
R# !B$ *Z $ >&j L v . F 5&l+ & ( *O&0 &S [& .$ >&j L v R# E $& M x= A&
'() &
F (u, v, w) = u + v, v + w, w + u
u − y + z
,
y − z + n z − n + y . ,
* * ∂(x, y, z) * =* J = ∂(u, v, w) * *
Z#. $ Ω !M 0 &f .$ * * * * = = * *
F (u, v, w) = w cosh u cos v, w cosh u sin v, w sinh u
!
0
0
π
π
sin(x) cos(y + z) dz dy dx 0 π (0
)
π/
(0
)
)
ρ sin ϕ dρ dϕ dθ
) sin(z) dy dz dx −z ⎡ √ ⎤ ⎤ 0
0 (0 −x 0
)
x
⎡ 0 0 √−y ⎣ ⎣ ) 0
)
−
)
−x −y
z dz ⎦ dy ⎦ dx
⎡
⎡ ⎤ ⎤ 0 0 √y−x + ⎣ ⎣ √ x + z dz ⎦ dy ⎦ dx x
−
0 (0 (0 √ z
y−x
ln
) ) e x sin(πy ) x dy dz y 000 f dV
9M [& .
$. .$
Ω
f = z, Ω : x + y ≤ z ≤ − x − y , ∗
) f = x + y , Ω : x + y + z ≤ x
)
f = x y , Ω : |x| + |y| ≤ , |z| ≤
)
f = xyz, Ω : ≤ x ≤ y ≤ z ≤
) f = |z|, Ω : x + y ≤ , x + z ≤
)
f = x + y, Ω : ≤ y ≤ x ≤ , ≤ z ≤ y
)
f = u + v, Ω : u + v ≤ u, |w| ≤ u
f = uα v β w γ , Ω : u + v + w ≤ + ) f = y x + z , Ω : x + z ≤ y + , ≤ y ≤
) )
M x= A, .8
π
)
)
*( >&j L v N# F >. T R# .$ *Ω = Γ = R _z #E F − (x, y, z) =
0
8 H (+"1 **J &a 9*J !VO 9M [& . #E & B 0 &
∗ )
f = , Ω : y ≥ z, y ≤ − z, x ≥ z, x ≤ − z f =y− ,
(, , ) ( , , ), ( , , ), (, , )
)
/ g. &0 4 = Ω
f = uv + vw + wu, Ω : ≤ w −
+ u + v ≤
.&j 0
000
000 f dV = H
F − (H)
R# .$ *Ω
=
*r = θ = z = z ZM G#U M = (, , z ) DZ E 0 0 *$$S G#U F (r, θ, z) = (x, y, z) e0& X R# 0 LB$ α E 0 M ( 4E_ F 5$ 0 N# 0 N# R & . h
G#U nB * ≤ r c α ≤ θ < α + π (0&f ]3 R# E B 9A$ O ) % ;*J !VO 0C ZM
≤r,
z∈R
E ( >.&[, F R0 M W Rl+
* * ∂(x, y, z) * −r sin θ = * r cos θ J = ∂(r, θ, z) * *
cos θ sin θ
* * * *=r * *
v N# F .$ *( T . −z c0 &) + .$ M 0 4E_ *Z & ) + . R# *( >&j L
*M .& −π . θ [& α [ Xb M ( M{ 000 , 5F .$ M x + y dV A& '() & & ( O $ z = T x + y = z pL 0 Ω *M [& . >. T 0 . Ω $ *!' Ω
Ω : x + y ≤
, , x + y ≤ z ≤
≤ w, u ∈ R
z , arctanh + x + y y , arctan , x + y − z x
Rl+ −w sinh u sin v w cosh u cos v
w cosh u
=
+ ⎧ ⎨ r = x + y θ = arctan (y/x) ⎩ z=z
π ,
∂(x, y, z) ∂(u, v, w) * * w sinh u cos v * * w sinh u sin v * * w cosh u
=
>&j L 9;*J !VO Y\ M M x= =C @PC\) % & ZM x= *( (x, y, z) >&j L &0 &q=−xyz .$ DZ [ c0 T&= z . H & M T&= *O&0 T−xy 0 M # j H GB ;*J !VO 0C Z & θ . HOx # E r . O & M >. T R# .$ M ( RO. *A$ O )
Γ = R #E ( >&j L v N# F >. T
≤ v ≤
F − (x, y, z) =
J
Ω : α ≤ θ < α + π ,
(f ◦ F ) J dV
KY . U0 $. & >&j L v E + $ .$ *Y M 9ZM
}
⎧ ⎨ x = r cos θ y = r sin θ ⎩ z=z
:
cosh u cos v cosh u sin v sinh u
* * * * * *
Z' . $ T R# M ( T Ω E w = T 0 & *O&0 Ω .$ T (O& M $ 5&6 $. .$ 0 & M G#U >&j L v N# F (u, v, w) = (x, y, z) 9M oL6 . Γ Ω &, +
) x = u − v + w , y = −u + v + w , z = u + v + w,
) u = x + y + z , v = y + z + x , w = z + x + y,
) u = cos x cos y , v = cos y cos z , w = cos z cos x, ) u = x + ey , v = y + ez , w = z + ex , ) x = u cos v , y = u sin v , z = w, ) x = u , y = uv , z = uvw, ) x = u − vw , y = v − uw , z = w − uv,
) x = uev , y = vew , z = weu , ) u = x , v = y , w = z , ) u =
/x , v = /y , w = /z,
Ω $ &0 >&j L v F M . T .$ $ & #n. T R# .$
000
f (x, y, z) dV = H
000 = H
! f x(u, v, w), y(u, v, w), z(u, v, w) .J dV
>.&[, &q=−rθz .$ Ω '& # j .$ *(O 5
E ( Ω
r ≤ r cos θ , : r − r cos θ + ≤ z ≤ − r + r cos θ −π/ ≤ θ ≤ π/ , ≤ r ≤ cos θ , : r − r cos θ + ≤ z ≤ − r + r cos θ
E ( >.&[, O ` + .$ ]3 000
+ dV = z dV x + y Ω 0 π/ (0 cos θ (0 −r +r cos θ
Ω
=
−π/
0 π/ (0 cos θ =
−π/
0 =
π/
−π/
r −r cos θ+
r cos θ − r
cos θ
Ω : r ≤
Ω :
Ω :
z dz
#0
dθ =
≤ x , ≤ y , (x + y ) ≤ x − y
≤ x, ≤ y, ≤ z ,
≤ x , +≤ y , (x + y ) ≤ x − y , ≤ z ≤ x + y
Ω : :
≤ r sin θ , (r ) ≤ r cos(θ) , z ≤ r
≤ r cos θ , ≤ cos θ , ≤ sin θ , r ≤ cos(θ) , z ≤ r
.$ * ≤ cos(θ) M $ O pO E &" & $ E kπ − π/ ≤ θ ≤ kπ + π/ r ≤ cos(θ)
Ω
0 π (0 (0 =
dr dθ
9ZM # j &q=−rθz 0 #E >. T 0 . , + R#
≤ θ ≤ π , ≤ r ≤
Ω
)
$M !' ≤ z pO &0 . F &" & *(O 5
M Z#S
Ω :
,r≤z≤
,r≤z≤
000 000 , x + y dV = r r dV
dθ
(x + y ) ≤ x − y , z ≤ x + y
≤r≤
0 5 M * O $ $ 5&6 Ω Ω &, + *J !VO .$ Z#. $ 8**J N+M
))
!VO 0 . Ω R# 0&0
:
R# 0&0 * ≤ θ ≤ π ]3 (" θ 0 @O 5 Q
" #0
π
=
dθ
)
r dz $
zr
) dr dθ
%z=
" dr
z=r
Zg&1 0 $ '& Ω M x= A .8 .$ *( x + y = z pL (x + y ) = x − y *M [& Ω 0 . f = z(x − y) >. T R# z −y # y −x 0 x # U &0 M $ O h'? *!' +"1 Ω 5 .$ f M v Ω −z 0 ]3 =S h .$ . $. $ . 1 &q= Z 6 N# .$ M Ω E D & *$ + 0 0 (6 . !T&' 5F 0 f [& E E ( >.&[, T−xy 0 Ω # j D :
,r≤z≤
000
z
=&M &q=−rθz .$ $ 0 Ω !#[ 0 *(O 5
. 1 . r sin θ . \ y &) 0 r cos θ . \ x &) 0 ( 9Z#. $ X R# 0 *Z$
=
π
0
( − r)r dr =
π
}
J**J &a E (+"1 9*J !VO q0 & S+ 0 $ Z' Ω M x= A, .8 *( z = − (x − ) − y z = (x+ − ) + y *M [& . Ω 0 f = z/ x + y e0& ( Rg&3 0 . $ _&0 0 . q0 5 S+ *!' 0 A$ O ) GB *J !VO 0C Ω # j [& 0 nB !' & $ N# .$ . $ 5F >_$&U ( =&M T−xy 9ZM
z = (x − ) + y z = − (x − ) − y
⇒ (x − ) + y =
T−xy 0 O $ $ '& . j .$ D : (x − ) + y ≤
!VO 0 . Ω R# 0&0 *( Ω : (x, y) ∈ D , (x − ) + y ≤ z ≤ − (x − ) − y x + y ≤ x , : x + x + + y ≤ z ≤ − x + x − y
pL 0 $ Z' Ω M . T .$ A8 < a < b M O&0 z = b+ z = a >&T *M [& Ω 0 . f = z + x + y e0& ≤ z ≤ y, z ≤ & #&" & &0 Ω M . T .$ AJ O&0 O 5&0 x + y ≤ x c x + y ≤ *M [& Ω 0 . f = x e0&
x + y = z
M x= + L @PC\) & ) GB H*J !VO 0 *O&0 &q= .$ DZ [ E b Y\ H = (x, y, ) Y\ $M # j T−xy 0 . M *$ O ϕ . zOM # E ρ . O & M T&= *Z#.F (0 . 0 0 O / . # E OM H da .$ *Z & θ . xOH # E .$ ( π/ − ϕ M = (x, y, z)
z
=
M H = ρ sin (π/ − ϕ) = ρ cos ϕ
OH
=
ρ cos (π/ − ϕ) = ρ sin ϕ
k = #&0 R# 0&0 * ≤ θ ≤ π/ M $$S c Z#. $ ` + .$ ]3 * ≤ θ ≤ π/ Ω : 000
≤ θ ≤ π/ , ≤ r ≤
, cos(θ) ,
≤z≤r
R# 0&0 *$ O ) % *J !VO 0 z(x − y ) dV =
Ω
=
000
=
=
=
0 0
z(x − y ) dV
Ω
zr cos(θ) dV
Ω
0
000
π/
π/
(0 √
cos(θ) 0 r
(0 √
π/
cos(θ)
zr cos(θ) dz
) dθ
) r cos(θ) dr
cos (θ) dθ =
dθ
π
}
R# 0&0 r = OH Z#. $ T−xy .$ & x =
OH cos θ = ρ sin ϕ cos θ
y
OH sin θ = ρ sin ϕ sin θ
=
Z#. $ ` + .$ ]3 ⎧ ⎨ x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ ⎩ z = ρ cos ϕ
J**J &a E ; (+"1 9*J !VO
⎧ , ⎪ ⎪ ρ = x + y + z ⎪ ⎪
, ⎨ ϕ = arctan x +y ⎪ ⎪ yz ⎪ ⎪ ⎩ θ = arctan x
pO *Z. (ρ, ϕ, θ) ≤ρ,
A;*J C
U0& 0 X R# 0 M ( 5F e0& R# #n< VU
→ (x, y, z)
α ≤ θ ≤ α + π ,
≤ϕ≤π
M >&j L v 9H*J !VO
A*J C }
0 * &
, / x + y
M 0 $ S 0 . f = e0& A *M [& x + y + z = z B$&U 0 x + y = x 0 $ Z' Ω M . T .$ A; e0& O&0 z = a > z = +>&T *M [& Ω 0 . f = z x + y Q.&3 $ 5 SB Bn 0√ $ Z' Ω M . T .$ A e0& O&0 z = T x + y + = z [& Ω 0 . f = z( − x − y )/( + x + y) *M Zg&1 & 0 $ Z' Ω M . T .$ A z = b z =, a T $ x +y = b x +y = a 0 . f = / x + y e0& < a < b M O&0 *M [& Ω q0 & S+ 0 $ Z' Ω M . T .$ AH e0& O&0 y = − x − z y = x + z *M [& Ω 0 . f = |xyz|
#0
" #0
π
=
π/
dθ
" #0
sin ϕ dϕ
"
H*J 0C O&0 A−π 0 0 _z +U C LB$ $, α M E ( >.&[, e0& R# 0 M W *A$ O ) %
ρ dρ
( ) $ %π π/ ρ = θ ϕ − sin(ϕ) + sin(ϕ)
=
π (π − )
J
∂(x, y, z) ∂(ρ, ϕ, θ) * * sin ϕ cos θ * * sin ϕ sin θ * * cos ϕ
= =
}
ρ cos ϕ cos θ ρ cos ϕ sin θ −ρ sin ϕ
−ρ sin ϕ sin θ ρ sin ϕ cos θ
ρ sin ϕ
= A = (ρ, ϕ, θ) | ρ =
ϕ
, + 0 M *JC R# 0&0 *O&0 T Z' &0 &q=−ρϕθ .$ M ( T >&j L R# *M G#U A*J C $ &0 v v N# A *Z & M . R# .$ O&0 &q=−ρϕθ .$ Ω # j Ω S ` + .$ >. T =
ϕ
* * * * * *
= π
8*J !VO $ x + y + z = z M 0 Ω M+ . T .$ A, .8 *M [& Ω 0 . f f = x + y + z O&0 *J & B = Ω : x + y + z ≤ z 0 ) &0 0 *!' 9ZM oL6 . &q=−ρϕθ .$ Ω # j **J .$ Ω : ρ ≤ ρ cos ϕ :
≤ ρ ≤ cos ϕ
&z cB M >&j L v .$ & * ≤ cos ϕ #&0 ]3 R# 0&0 ≤ ϕ ≤ π/ .$ ≤ ϕ ≤ π Ω :
f (x, y, z) dV =
000 000 , x + y + z dV = ρ ρ sin ϕ dV π
= = π
" #0
Ω
( π/ 0 cos ϕ
dθ 0
π/
cos ϕ sin ϕ dϕ =
)
0 $ Z' Ω M x= A& '() & Z .$ e1 x + y + z = M x + y = z pL
Ω 0 . f = (x + y ) e0& *O&0 ≤ z &q= *M [&
9ZM 5&0 & #&" & N+M 0 . Ω 0 *!' /
z
y x 0 &q=−ρϕθ .$ Ω # j Ω R = 0 ]< 9ZM $& **J .$ A*J C & B = E X 0
Ω
"
: ρ sin ϕ ≤ ρ cos ϕ , ρ ≤ : sin ϕ ≤ cos ϕ ,
ρ sin ϕ dρ dϕ
π
ρ sin ϕ sin θ, ρ cos ϕ ρ sin ϕ dV
, Ω : x + y ≤ z , x + y + z ≤
Z#. $ X R# 0 *$ O ) J*J !VO 0 #0
f ρ sin ϕ cos θ,
Ω
Ω
≤ θ ≤ π , ≤ ϕ ≤ π/ , ≤ ρ ≤ cos ϕ
Ω
000
000
}
≤ρ≤
( U R# 0 &" & ]3 ≤ ϕ ≤ π ( 4E_ & E ( >.&[, Ω R# 0&0 ≤ ϕ ≤ π/ M
Ω :
≤ ϕ ≤ π/ , ≤ ρ ≤
Z#. $ $. $ ) θ 0 #$ 5 Q Ω :
≤ θ ≤ π , ≤ ϕ ≤ π/ , ≤ ρ ≤
.$ !Y " XUV !VO 0 '& N# Ω M $ O ) >. T R# .$ *$ O ) 8*J !VO 0 *( &q=−ρϕθ
000
M >&j L 9J*J !VO
Ω
(x + y )/ dV =
000 Ω
ρ sin ϕ ρ sin ϕ dV
*Ω : (x + y + z) ≤ x + y − z f = |z| A *Ω : (x + y + z) ≤ xyz f = AI f = (x + y + z) A
*Ω : x + y + z ≤ a , x + y ≤ az
0 $ M 3 E +"1 Ω M . T .$ A .8 N# .$ + M O&0 ; X 0 `&UO DZ [ cM 0 &M 0 f = + (x + y + z) e0& E $. $ . 1 4$ Z 6 *#0 Ω M $ O ) *!' /
Ω : x ≤ ,
>_$&U 0 &M 0 $ Z' A; *M [& . x + y + z = y
x + y + z = z
Y v v E . h
? @PC\) &
−
−
* * * *=|− |= * *
: :
≤ x, ≤ y, ≤ z , x + y + z ≤ ≤ x ≤ , ≤ y ≤ − x, ≤ z ≤
−x−y
Z"# w v u X"' 0 . z y x ]< Ω :
≤w≤
,w≤v≤
,v≤u≤
ρ sin ϕ cos θ ≤ , ≤ ρ sin ϕ sin θ , ≤ ρ cos ϕ , ≤ ρ ≤ cos θ ≤ , ≤ sin θ , ≤ ρ cos ϕ , ≤ ρ ≤ π/ ≤ θ ≤ π , ≤ ϕ ≤ π/ , ≤ ρ ≤
: :
Ω
0 . Ω 0 &q=−uvw .$ Ω # j Ω 5$M oL6 0 9ZM 5&0 & #&" & X"' Ω
Ω
000 ,
M O&0 Ω M . T .$ A& '() & c $ O ) Z 6 N# E x + y + z = T y *M [& Ω 0 . f O&0 f = /(x + y + z + ) w = x v = x + y u = x + y + z >&j L v E *!' z = u − v y = v − w x = w >. T R# .$ *ZM $& ?U0
:
([" ]& /&VU 5 .$ &\ X) v v RQ *$$S T y N# 0 ([" ]& Y\ N# 0 S S M ( 5F .$ &j L v RQ S# R#+, 4$ ).$ #. @L eY\ T y Y\ N# M U R# 0 *$ 0 RQ c S = !#[ &F O&0 ( 5 S q0 N# S = !#[ &F O&0 M S S ?za
*b_
* * ∂(x, y, z) * =* J = ∂(u, v, w) * *
E ( >.&[, &q=−ρϕθ .$ Ω # j Ω .$
!VO 0 ( v v
⎧ ⎨ x = a u + a v + a w + a y = a u + a v + a w + a ⎩ z = a u + a v + a w + a * * * a a a * * * * J =* * a a a * = * a a a *
≤ x + y + z ≤
≤ y, ≤z,
R# 0&0 + (x + y + z )/ dV =
000 ,
+ ρ .ρ sin ϕ dV
= Ω
#0 = =
"#0
π/
dθ π
×
×
"#0
π
π/
sin ϕ dϕ
ρ
,
" + ρ dρ
( − ) = π ( − √) √
9Z#0 Ω 0 f E $. .$ 0 & *( $ x + y + z = z M 0 Ω f = z A DZ [ cM 0 &M 0 Ω f = (x + y + z) A; * < a < b M ( $ b a `&UO + − x − y − z A M E +"1 0 Ω f = . 1 Z 6 N# .$ ( $ x + y + z = *$. $ + x + y = z pL 0 Ω f = x + y + z A *( $ z = T + x + y = z pL 0 Ω f = / x + y + z AH * < a < b M ( $ z = b z = a >&T x + y + z = R &M 0 Ω f = z A8 *( $ x + y + z = Rz + x + y + z = y M 0 Ω f = y/ x + y + z AJ *( O $
M E +"1 0 Ω f = ln(x + y + z + ) A7 *$. $ . 1 4$ Z 6 N# .$ M ( x + y + z = − /
0 × 0
π π+π/
=
π
#0
sin ϕ dϕ
" ρ dρ
000
|cos θ + sin θ| dθ
−π/ 0 π π/ (cos θ + sin θ) dθ = π √ −π/
=
Z#. $ .$
Ω
}
000 dV = × dV (x + y + z + ) (u + ) Ω ) ) 0 (0 (0 du = dv dw w v (u + ) ) 0 (0
= − dv dw (v + ) w 0
+w− dw = ln − = w+
*$ O ) 7*J !VO 0 }
3 .$ 3 >&j L v $ 9*J !VO M O&0 Z 6 N# E +"1 Ω M . T .$ A .8 9M [& . Ω Z' ( O ) S #. y S : x /a + y /b + z /c
!
= (xyz)/(abc)
v = y/b u = x/a >&j L v N+M 0 0 _> Ω X R# 0 *ZM mn' . c b a & .&3 w = z/c E $ 0 >.&[, &q=−uvw .$ Ω # j
M >&j L v 97*J !VO 5 Sq0 0 $ Z' Ω M . T .$ A, .8
Ω : ≤ u , ≤ v , ≤ w , (u + v + w ) ≤ uvw
∂(x, y, z) = abc J = ∂(u, v, w)
000
000
Vol(Ω) =
dV = Ω
Ω
abc dV = abc
000
.$ dV
Ω
Ω
Ω
: : :
≤ ρ sin ϕ cos θ , ≤ ρ sin ϕ sin θ , ≤ ρ cos ϕ , ρ ≤ sin ϕ cos ϕ sin θ cos θ ≤ cos θ , ≤ sin θ , ≤ cos ϕ ,
0
Ω
( π/ 0
0 = abc
π/
(0
Ω : −π/ ≤ θ ≤ π − π/ , 000
000 f dV =
sin ϕ cos ϕ sin θ cos θ
)
)
ρ dρ sin ϕ dϕ dθ
Ω
sin ϕ cos ϕ sin θ cos θ dϕ dθ
000 =
)
π/
Ω
Ω
ρ sin ϕ dV
= abc
∂(x, y, z) ∂(u, v, w) = ÷ J = ∂(u, v, w) ∂(x, y, z) * * * ** * * = ÷* * * = * * 000 000 000 f dV = |x + y + | dV = |u + v|
dV
R# 0&0
( π/ 0
R# .$ ZM $& Ω 0 M >&j L v E 5 M E ( >.&[, &q=−ρϕθ .$ Ω # j Ω >. T
≤ θ ≤ π/ , ≤ ϕ ≤ π/ , ≤ ρ ≤ sin ϕ cos ϕ sin θ cos θ
Vol(Ω) = abc
*M [& Ω 0 . f f = |x + y + | O&0 v = (x + y + ) u = x + ZM x= *!' .$ Ω # j Ω >. T R# .$ *w = (x + y + z + ) .$ *Ω : u + v + w ≤ S E ( >.&[, &q= −uvw
Ω
ρ ≤ sin ϕ cos ϕ sin θ cos θ
000
.$ ZM $& M >&j L v E 5 M E ( >.&[, &q=−ρϕθ .$ Ω # j
(x+ ) + (x+ y + ) + (x+ y + z + ) =
=
≤ ϕ ≤ π, ≤ ρ ≤
.$ *$ O ) *J !VO 0 |u + v| dV
Ω
ρ sin ϕ |cos θ + sin θ| dV
Ω
#0 π−π/ −π/
" |cos θ + sin θ| dθ
>_$&U 0 pL 5 Sq0 0 $ Z") Z' A x /a +y /b = z /c x /a +y /b +z /c = *M [& . |x| + |y| + |z| = #. 0 $ Z' Ω M . T .$ A; *M [& Ω 0 . f = |x| + |y| e0& O&0 B$&U 0 "0 [) #. 0 $ Z") Z' A *M [& . x /a + y/b + z/c = x/h x /a + y /b + z /c = #. 0 $ Z") Z' A *0&0 . B$&U 0 "0 [) #. 0 $ Z' 0 AH Z 6 N# .$ e1 (x/a + y/b + z/c) = x/h − y/k *#0 f = |x| e0& E b >&j L v M ( RO. 78 $ & & #E & B&a /& R+ 0 *( ` .&"0 $. & M . @ 5&+ * " & F E i jL0 #& + 0 ( r.&V 0 s $& $. . c0 & & F %&L .$ #$ v F $ ) 0 (U- 0 "0 B&" .$ M U R# *ZM ' @ . X& >&j L
uO 0 $ Z' Ω M x= A& '() % & x = z z = y z = y y = x y = x Ω 0 f E >. T R# .$ *f = /(xyz) ( x = z *#0 Z"# #E !VO 0 . Ω , + *!'
#0 =
≤ y/x ≤ ,
:
≤ z/y ≤ ,
()
=
=
∂(x, y, z) ∂(u, v, w) = ÷ J = ∂(u, v, w) ∂(x, y, z) * * −y/x /x * * = ÷* −z/y /y * /z −x/z 000
000 xyz
Ω
dV = #0
=
Ω
du
u
uvw
" #0
v
" #0
dw
w
#0
abc
(xyz)
Z#. $ R# 0&0
s ( − s ) ds
=
" sin θ cos θ dθ
" #0
" t ( − t ) dt
abc
s = sin ϕ >&j L v E AC .$ V# ^- *Z# $ + $&
pL 0 $ Z' Ω M . T .$ A .8 O&0 y + z = T x + xy + xz = yz *M [& Ω 0 . f = y + z (x + y) + (x + z) = (y + z) !VO 0 . pL B$&U *!' f e0& T B$&U 0 h !B$ R+ 0 (O 5
R# .$ *w = y + z v = x + z u = x + y ZM x= Ω : (x + y) + (x + z) ≤ (y + z) , y + z ≤ 5 Q >. T &q=−uvw .$ Ω # j Ω R# 0&0
Ω : u + v ≤ w , w ≤
:
+ u + v ≤ w ≤
5 Q ?U0 *(
J
= =
∂(x, y, z) = ÷ ∂(u, v, w) ∂(u, v, w) ∂(x, y, z) * * * ** − * *= ÷* * = * * *
Z#. $ ` + .$ 000
000 f dV = Ω
Ω
000 (y + z) dV =
w Ω
Ω
dV
.$ *ZM $& >&j L v E 5 M E ( >.&[, &q=−rθz .$ Ω # j
Ω : r ≤ z ≤
:
≤ θ ≤ π , ≤ r ≤
000
000 f dV
=
Ω
=
(ln )
w dV = Ω
#0
000
" #0
π
,r≤z≤
zr dV
Ω
( 0
dθ
= π
"
π/
Z#. $ R# 0&0
dV
dv
* * * *= * *
#0
t = sin θ
≤ x/z ≤
v = z/y u = y/x M $ O x= ( X& R# 0&0 >.&[, &q=−uvw .$ Ω # j Ω >. T R# .$ *w = x/z .$ *Ω : ≤ u ≤ , ≤ v ≤ , ≤ w ≤ E ( Z#. $
abc
" sin ϕ cos ϕ dϕ ×
: x ≤ y ≤ x , y ≤ z ≤ y , z ≤ x ≤ z
Ω
π/
0 r
)
"
zr dz dr r
( − r ) dr =
π
0 &
v = r sin θ u = r cos θ >&j L v E 5 M &q=−rθz .$ Ω # j Ω .$ ZM $& w = z E $ 0 >.&[,
Ω
/
≤ θ ≤ π ,
:
000
000 f dV = #0
Ω
" #0
π
=
dθ
000
−
/
/
" = π
|z| dz
/
M uO 0 $ , + 0 f = /xyz e0& E A .8 A = c x A = cx A = b x A = bx A = a x A = ax < b < b < a < a A = x + y + z 5F .$ M *#0 < c < c &v w = A/z v = A/y u = A/x ZM x= *!' >. T R# .$ *O&0 #)
/
v = (y/a) u = (x/a) x= &0 (O 5
Ω e1 .$ $$S !#[ M N# 0 S #. w = (z/a) *Ω : u +v +w ≤ E ( >.&[, &q=−uvw .$ Ω # j >. T R# .$ &
|z|r dV
" #0
r dr
.$
Ω
/
/ / / + (y/a) + (z/a) = (x/a)
≤ r ≤ , − ≤ z ≤
|w| dV =
/
− /
≤ r ≤ , − ≤ z ≤
:
Ω
#&q= g F 0 $ Z' Ω M x= A, .8 e0& *O&0 x + y + z = a B$&U 0 *M [& Ω 0 . f = (xyz) >. T 0 . S O $ $ #. B$&U *!'
J
* * ∂(x, y, z) * * ∂(u, v, w) = * *
=
a u v w
=
au av aw
Z#. $ .$
A = =
J
=
f dV
A u v w
A /uw A /vw A(A − w)/w
Ω
000 =
Ω
=
=
=
)
a
000
dV = aVol(Ω ) = aπ
Ω
* * * * * *
0 #. .& Q 0 $ Z' Ω M . T .$ A .8 z = x + (x − y) + (y − z) = >_$&U
O&0 z = x − (x − y) + (y − z) = *M [& . Ω 0 f = (z − x)( xyz − ) e0& >_$&U .$ z − x y − z x − y ! , V# !B$ 0 *!' R# .$ *Z#S w v u X 0 . & F O . V O $ $ E >.&[, &q=−uvw .$ Ω # j Ω >. T Ω :
A u v w dV A A A u v w Ω " #0 " #0 " #0 a b c du dv dw u v w a b c
a b c ln ln ln a b c
.$ * [a $ , c b a M x= 0 & & 9M [& . O $ $ #. 0 $ Z' $.
y
a
≤ u + v ≤ , − ≤ w ≤
?U0 (
000
=
x
(au av aw )−/ a u v w dV
Ω
dV xyz
(xyz)−/ dV
>.&[, T−uvw .$ Ω O $ $ , + # j Ω =@ E .$ Ω : a ≤ u ≤ a , b ≤ v ≤ b , c ≤ w ≤ c E ( 000
=
Ω
.$
∂(x, y, z) = ∂(u, v, w) * * A(A − u)/u A /uv * = * A(A − v)/v * A /vu * A /wu A /wv
000
000
A A A x +y +z = + + u v w
A + + u v w A = ÷ /u + /v + /w
?U0 *
* * * * * *
z
+ + = b c
#
)
x a
y
+ b
"
z
+ = c
J
= =
∂(x, y, z) = ÷ ∂(u, v, w) ∂(u, v, w) ∂(x, y, z) * * * x − ** * y − ** = ÷* * * − z * | xyz − | 000
000 f dV Ω
R# 0&0
f dV | xyz − | Ω 000 000 = |z − x| dV = |w| dV =
Ω
Ω
R O $ E& &S &$0.&M E .&"0 Z = M ( *( 4 , #& .$ ojL M x= h # QDR /MJ . !) $ & 0 !Y " XUV (= >. T R# .$ q ∼= Ω ⊆ R Z' &z\1$ M ( Δx Δy Δz 0 0 Δz Δy Δx $&U0 000 R# E #& B&a ?z[1 *Vol(Ω) = dV R# 0&0 *( 5F M{ E nB Z# $ + &6 . 5F &0 p&[. .$ >&#+ $0.&M *ZM . $$ & F i
j
k
k
j
i
Ω
9fC) V3 Y ) < =C) . !) $ &
A$, (+MC B&V 5 N# q Ω ⊆ R M x= XUV 0 q . \ >. T R# .$ *$$S G#U Ω 0 M O&0 *( Δx Δy Δz 0 0000Δz Δy Δx $&U0 0 !Y "
.$ *O&0 Vol(Ω) = dV 0 0 Ω !M 0 q . \ R# 0&0 (= (+"1 :.& E ( >.&[, Ω 0 q . \ y U# !M Z' 0 !M i
j
k
k
j
#
) #
)
x y z + + a b c x y z + + a b c
x
qmean := mean(q) = ⎝ Ω
000
⎞
q dV ⎠ ÷ ⎝
Ω
000
⎞ dV ⎠
Ω
E (x, y, z) Y\ & $ M x= A& '() $ & + .$ *( T = |z| x + y 0 0 Ω : x + y + z ≤ S & Z$ . 1 #& S Bc# y N# .$ . Z") R# M . T *M [& . #& (0&f & $ 0 . #&3 & $ 0 & $ R = 0 R# 0&0 #& S W y U# & $ *!' S *ZM [& . Ω 0 T y ( =&M T #& B$&U &0 ( 0 0 h $. & $ O&0 &q=−ρϕθ .$ Ω # j Ω
⎛ Tmean = ⎝
=
π ×
= =
π
− 000
000
⎞
A ≤ αx S R0 w 6 '& Ω M . T .$ A5 *A = x + y + z M O&0 A ≤ γz A ≤ βy 0 0 M $ 5&6 $M [& Ω 0 . f = xyz *( (/ )( /α + /β + /γ )
F B !F N +2
#0 π
" 0 dθ
(π)
# 0
π/
j
k
i
j
k
i,j,k
Ω
, |z| x + y dV
k
Ω
Ω
-. & +"1 #& .$ = &$0.&M &S T [ *$. $ &+ ' .& F .$ ' N#c= $ O & &S & F .$ M #& B = : L &S $ (B&' 0 [O ?z &M M ( / FH q *A$ O ) *H*8 0C O&0
+M q(x, y, z) M x= BV K+ $ & E 0 M ( z y x 3 !\ " &v &0 $, 0 . Ω l&Q *$$S G#U (x, y, z) ∈ Ω T−yz T−xz T−xy E >&T N+M (= [& 0 ZM Z"\ NQ M & Y " XUV 0 &S ) . & Y " XUV R# E N# (= Ω !M 9$M e+) Z &0 . !T&' $ , / ]< $ + [& Z
. \ 5$.F (0 0 *Q ≈ q(x , y , z ) Δx Δy Δz M Z#0 ' . T .$ ( . (+ >.&[, E =&M Q U1 *# 0 T 0 Δz Δy Δx (#& 0 0 >&+"\ $ U &0 ( 0 0 Q e1 0 i
dV ⎠
| cos ϕ| sin ϕρ dV
π π
⎛
T dV ⎠ ÷ ⎝
Ω
000
=
⎞
000
x y z = + − a b c
+
i
⎛
"
x y = + a b
xyz y z = + , ≤ x, ≤ y, ≤ z a b c abc m n p ) xm + yn + zp = a b c m, n, p ∈ , , · · · , ≤ x, ≤ y, ≤ z
)
Ω
⎛
"
n / m / /
lim
" #0 π | cos ϕ| sin ϕ dϕ ρ dρ "# cos ϕ sin ϕ dϕ
"
=
. . −z & Ω 3 p&\ T&= y A, .8 *Ω : x + y ≤ x , ≤ z ≤ 9M [&
j
n,m,→∞
i
! q xijk , yijk , zijk × Δxi Δyj Δzk
Δxi ,Δyj ,Δzk → i= j= k=
000
*Q = q dV &S$ G#U 0&0 .$ ) )*"9 ) Ω J )+ )* > 7<p )*$+( r U# m7+ q(x, y, z) !F !H/ L B (x, y, z) MUV &$0.&M E + Q $ .$ s_`3! ./ Ω q B #0 *ZM KY . . $
+, [) M &S Ω
0 $ $ &
9M [& Ω 0 . f y $. .$ >&j L >&T 0 $ 4 Ω f = x + y + z A *( x + y + z = *( Ω : ≤ x, y, z ≤ ' XUV Ω f = xyz A; +
Q.&&T x + y = + z
Y\ M . T .$ E1n 4L) + QR . !) % $ & m 4) &F O&0 δ(x, y, z) 4) B&Q . $ (x, y, z) ∈ Ω 5 #E D. 0 . Ω Z") C = (x , y , z ) !\f cM 9$ + [&
x =
m
zδ dV.
y =
Ω
xδ dV,
m
yδ dV, 000
000
δ dV, Ω
$ ( +") Ω M x= A& '() & $ & .$ e1 y = / T z = − x + 0 E (x, y, z) Y\ ) B&Q M . T .$ * Z 6 N# *M [& . 5F !\f cM 4) O&0 y 0 0 5F 9(O 5 #E >. T 0 . Z' R# *!' Ω : − ≤ x ≤ ,
≤y≤
,
≤z≤ : −π/ ≤ θ ≤ π/ , ≤ r ≤ cos θ , ≤ z ≤
[& . . −z & T&= f = fmean =
π × ×
= =
π
≤ z ≤ − x . )
m
=
−
=
−
0
=
−
x
= =
xδ dV =
m Ω 0 (0 / −
−
cos θ
(0
cos θ
(0
)
π )
r dV
Ω
r dz dr dθ )
r dr dθ
Ω
z =
x = ρ sin ϕ cos θ, z = ρ sin ϕ sin θ, y = ρ cos ϕ
( >.&[, !#[ R# R0 M W >. T R# .$ *ZM $& E ( >.&[, &q=−ρϕθ .$ Ω # j Ω J = ρ sin ϕ E
≤ρ≤
,
≤ ϕ ≤ π , ≤ θ ≤ π
E ( >.&[, O y .$
000 Vol(Ω)
q dV Ω
⎛ ⎞ 000 = ⎝ |ρ cos ϕ| (ρ sin ϕ) ρ sin ϕ dV ⎠ Ω
÷
.$ )
=
)
xy dz dy dx
=
)
xy( − x ) dy dx
π/
Ω
(0
000
M x= A .8 B$&U 0 5 Sq0 0 $
i T.$ . $ 5F E (x, y, z) >&j L +0 Y\ M . Ω i y *( q = |y| x + z *M oL6
. h R# 0 *ZM [& Ω 0 . f y ( =&M *!' >&j L v E
qmean =
y( − x ) dy dx
0 (0 / (0 −x
000
)
)
( − x ) dx =
−π/
0
y +
Ω :
y dz dy dx
0 (0 /
π/
000 , x + y dV =
π −π/ 0 π/ cos θ dθ = π −π/ π
&0 ( 0 0 Ω 4) X R# 0 0 (0 / (0 −x
e0& y 5 M 9ZM
Ω
0 =
+ x + y
⎛ ⎞ ⎛ ⎞ 000 000 =⎝ f dV ⎠ ÷ ⎝ dV ⎠ Ω
x +
Ω
m=
Ω
Ω : r ≤ r cos θ ,
4 !VO 0 ( cL
000
000
R# 0&0 *ZM $& >&j L v E *!' E $ 0 >.&[, &q=−rθz .$ Ω # j
∗
$ x + y + z = z M 0 Ω f = x + y + z A *(
z =
Ω
=
π
000 Ω
#0
π × × ×
ρ sin ϕ| cos ϕ| dV " 0
#0
π π dθ sin ϕ| cos ϕ| dϕ π 0 π/
× sin ϕ cos ϕ dϕ =
" ρ dρ
=&M 5 M *C = (, , z ) U# *$ $ . 1 . −z 0 5F $& M >&j L E . h R# 0 *Z0&0 . z ( >. T R# .$ O&0 &q=−ρϕθ .$ Ω # j Ω S *ZM
Ω
000 m
=
Ω
π b − π a 000
π(b − a )
=
#0
×
Vol(Ω) × δ − 000
zδ dV
=
ρ cos ϕρ sin ϕ dV
dθ " #0
π/
b
" ρ dρ
a
(b + ab + a )
#. 0 $ M Ω XT Z") 4) A .8 B&Q . $ z = y = x = +>&T *M [& . O&0 δ = x + y E >.&[, Ω $ *ZM [& . Ω 4) 0 *!'
z = xy
m
=
≤y≤
0 (0 0
000
xy
δ dV = Ω
0 (0 =
, xy
m Ω 0 (0 / −
,
≤ z ≤ xy
Z#. $ .$ *(
)
, x + y dz dy dx
m
√ −
≤z≤
!VO 0 >&j L .$ 5F # j M Ω : −π/ ≤ θ ≤ π/ ,
−
Ω
0 (0 / −
0
Ω
−
≤ r ≤ cos θ , ≤ z ≤
)
y( − x ) dy
( − x ) dx =
dx
: x + y ≤ z ≤ − x − y : x + y ≤
, x + y ≤ z ≤ − x − y
Z#[0 >&j L 0 . 5F l&Q *$ + 5&0 5
Z#. $ Ω :
≤ θ ≤ π , ≤ r ≤
, r ≤ z ≤ − r .
&0 ( 0 0 Ω 4) .$ =
δ dV = Ω
#0
0 $ !VO @ 1 Z") Ω M . T .$ A .8 Y\ O&0 z = T T−xy x + y = x 4) O&0 δ = x + y + z ) B&Q . $ (x, y, z) ∈ Ω *0&0 . 5F !\f cM
(B&' R# .$ M ( RO. *!' Ω : x + y ≤ x ,
000
0 x (x + )/ − x dx = =
0
dx
*O&0 (, /, / ) 0 0 Ω !\f cM R# 0&0 5 S+ $ 0 $ Z") Ω M . T .$ A, .8 Y\ $ 0 z =+ x + y z = − x − y q0 4) O&0 δ = x + y ) B&Q . $ (x, y, z) ∈ Ω *M [& . 5F >. T 0 . Z' R# *!'
m
dx
)
y ( − x ) dy
( − x ) dx = − ) ) 000 0 (0 / (0 −x zδ dV = yz dz dy dx
) x + y dy
−
=
"
#0 π
,
−
Ω
cos ϕ sin ϕ dϕ
≤x≤
=
Ω
(b + b a + ba + a )
Ω :
= z
z dV
Ω
π(b − a )
=
=
(x − x ) dx = ) ) 0 (0 / (0 −x 000 yδ dV = y dz dy dx
=
.$
000 zδ dV =
=
y
≤ ϕ ≤ π/ , ≤ θ ≤ π , a ≤ ρ ≤ b
:
=
=
≤ ρ cos ϕ , a ≤ ρ ≤ b
:
z
0
= =
π.
000 , 000 x + y dV = r dV Ω
Ω
" #0 ( 0 ) " π −r dθ . r dz dr 0
r
(r − r ) dr =
π
B& V+ N# !VO 0 3 Ω M x= A .8 ?U0 *( a 5F $ `&UO b 5F ).& `&UO M ( A(0&f B&Q &0 U#C &Q ]) N# E Ω M M x= *M oL6 . Ω !\f cM O&0 O & 0 0 p&\ + .$ Ω 4) B&Q M ZM x= Z *!' !VO 0 . Ω M ZM x= Z ?U0 *( δ = δ R# 0 *Z#S h .$ Ω : ≤ z , a ≤ x + y + z ≤ b !\f cM .$ ( 5.&\ . −z 0 ([" Ω X
+ 000 z =
m
000
=
π
=
π
dθ =
π
E ( >.&[, Ω 4) .$ *O&0
π/
(0
δ dV =
z(x + y + z) dV Ω
Ω
cos θ
(0
)
= )
+zr sin θ + z r dz dr dθ 0 = =
π π
π/
−π/
0
π/
−π/
cos θ
Ω
0
zr cos θ
=
"
# r cos θ + r sin θ + r
) dr dθ
cos θ + cos θ sin θ + cos θ dθ =
*( Ω !\f cM C = (/
,
/
, /) .$ 0 * $ &
pL 0 $ Z") Ω M . T .$ A B&Q . $ 5F E (x, y, z) Y\ O&0 y =+ T *0&0 . Ω !\f cM 4) O&0 δ = y x + z x + y + z = z M 0 $ Z") Ω M . T .$ A; + cM 4) O&0 δ = x + y + z B&Q e0& &0 *0&0 . Ω !\f 0 5 Sq0 y M O&0 Z 6 N# E 6L0 Ω S A ]) E O ) x /a + y/b + z/c = B$&U
oL6 . Ω !\f cM &F ( O & &Q *M z = x − y #. 0 $ Z") Ω M . T .$ A δ = z 5F B&Q e0& $ 0 y = T T−xy *0&0 . Ω !\f cM 4) O&0 *( R `&UO DZ [ cM 0 M Ω M x= AH Ω 4) [" Q 0 z = x + y q0 5 S+ + x= δ = x + y . B&Q e0& *M Z"\ . *#0 B$&U 0 "0 #. 0 &Q Z") N#! Ω M . T .$ A8 . 5F 4) O&0 x /a + y/b + z/c = *M [&
B$&U 0 "0 #. 0 $ &Q! Z") !\f cM AJ . Z 6 N# .$ e1 x/a + y/b + z/c = *0&0
(x + y + z) dV
000 r cos θ + r sin θ + z r dV = Ω
−π/
(0
000
000
z r cos θ + r sin θ + z r dV
Ω
0
000
zδ dV = Ω
cos θ sin θ
=
π/
(0 ( cos θ 0
−π/
0
) (0 cos θ r cos θ + r sin θ + r dr dθ
π/
−π/
0
) ) r cos θ+r sin θ+rz dz dr dθ
π/
−π/
cos θ + sin θ + cos θ
dθ = π
&0 ( 0 0 x Z &0 C = (x , y , z ) . Ω !\f cM l&Q 000 x =
000 xδ dV =
m
Ω
000
=
y = x + z
π
Ω
0 =
π
π
x(x + y + z) dV Ω
r cos θ r cos θ + r sin θ + z r dV
π/
(0
cos θ
(0
−π/
r cos θ )
)
+r cos θ sin θ + r z cos θ dz dr dθ 0 =
π
π/
(0
cos θ
r cos θ
−π/
)
+r cos θ sin θ + r cos θ dr dθ 0 =
π
π/
−π/
cos θ + cos θ sin θ +
cos θ
dθ =
?U0 000 y =
m
000 yδ dV =
Ω
000
=
π
Ω
0 =
π
π
y(x + y + z) dV Ω
r sin θ r cos θ + r sin θ + z .r dV
π/
(0
cos θ
(0
−π/
r sin θ cos θ
)
)
+r sin θ + r z sin θ dz dr dθ
∗
0 =
π
π/
−π/
(0
cos θ
r sin θ cos θ
)
+r sin θ + r sin θ dr dθ 0 =
π
π/
−π/
sin θ cos θ + cos θ sin θ
>. T R# .$ O&0 δ 0 0 (0&f Ω B&Q ( O ) T−xy . −z . −y . −x ' Ω & .& 6S *M [& . DZ [ T−yz T−xz B&" R# .$ M Z# $ ) *!' Ω : x /a + y /b + z /c ≤
,
≤ x, ≤ y, ≤ z
y = br sin θ x = ar cos θ >&j L v E ' Ω # j Ω J = abcr >. T R# .$ *ZM $& 9ZM [& . T−xy z = ct
Z 6 N# .$ e1 + &Q +XT Z") N# Ω M . T .$ A7 + O&0 x/a+ y/b+ z/c = #. 0 $ *M [& . 5F 4) [T Z") Ω M x= ) +CcG . !) $ & *( δ(x, y, z) 4) B&Q . $ 5F E (x, y, z) Y\ M ( *( &q=−xyz .$ T y Y\ N# S M x= E >.&[, S ' Ω & .& 6S G#U 0&0
000
000 Ixy
= Ω
=
z δ dV
000
δ Ω
=
= =
abc δ
z dV = δ 0
abc δ
0
abc δ
0
000
π/
(0
π/
dθ =
c t abcr dV
) ( − r )/ r dr π
dθ
Ix Iy
= Ixy + Iyz =
π
π
π
= Ixy + Ixz + Iyz =
000
Ixy (Ω) =
π
Iyz (Ω) =
−
:
≤ x, ≤ y, y ≤ x ≤ , (x + y )/ ≤ z ≤ x + y ≤ x ≤ , ≤ y ≤ x, (x + y )/ ≤ z ≤ x + y
y δ(x, y, z) dV
Ω
000
abcδ (a + b + c )
z δ(x, y, z) dV
Ω
000 Ixz (Ω) =
B&Q e0& &0 XT Z") Ω M . T .$ A, .8 x + y = ± >&T 0 $ δ = z(x + y) z = x + y z = x + y 5 S+ $ x − y = ± *M [& . . −z ' Ω & .& 6S O&0 *Ω M v δ −y 0 y −x 0 x # U &0 *!' . 1 Z 6 N# .$ M Ω E +"1 Ω E Ω &0 .$ 5 O&0 $ x = y = x >&T R0 O $ 9$M 0 0 (6 . % ) ]< $ + $& :
Ω
T−xz T−yz T−xy . S l&Q *O T−xy ' Ω & .& 6S >. T R# .$ Z## &0 0 0 X 0 T−xz T−yz
abcδ (a + b )
IO
Ω
000 z + y δ(x, y, z) dV = 000Ω = x + z δ(x, y, z) dV 000Ω x + y δ(x, y, z) dV =
abcδ (a + c )
= Ixz + Iyz =
Iz (Ω)
abcδ (b + c )
Iz
.$ Z#0 . −z . −y . −x . S S *O . −z . −y . −x ' Ω & .& 6S >. T R# 0 0 X 0 Iy (Ω)
abc δ
xz
= Ixy + Ixz =
*O&0 S & (x, y, z) Y\ T&= d(x, y, z) 5F .$ M ( DZ [ ' Ω & .& 6S &F Z#0 DZ [ . S l&Q
Ix (Ω)
Z [& 50 $. $ $ ) Ω δ .$ M .&\ !B$ 0 π π I = a bcδ I = ab cδ Z"# 0 Z#. $ *H*J .$ & B = N+M 0 yz
d (x, y, z)δ(x, y, z) dV
Ω
Ω
⎡ √ ⎤ ⎤ 0 0 −t ⎣ ⎣ t r dt⎦ dr⎦ dθ
π/
IS (Ω) :=
000 x + y + z δ(x, y, z) dV IO (Ω) =
Ω
⎡
x δ(x, y, z) dV
Ω
M $$S . @ R# _&0 G#.&U E *O Ix = Ixy + Ixz , Iy = Ixy + Iyz , Iz = Ixz + Iyz IO = Ixy + Ixz + Iyz =
(Ix + Iy + Iz )
G#U R := +I /m >. T 0 . S ' Ω uQ `&UO N# (, &0 M Ω Z") 6[) W >. T R# .$ *ZM
0 M m 4) 0 Y\ W &0 Q S ' &f .$ .$ *( 0 0 Q # E (, 5&+ &0 S E R T&= N# E +"1 Ω M . T .$ A& '() $ & 5 Sq0 y M O&0 Z 6 S
S
S
x /a + y /b + z /c =
= =
δ a + b + c abcδ
×
4
ac b
+
a bc
+
a b c
5
000
a b + a c + b c
Iz
=
a + b + c
000 − x + y δ dV = z x + y dV
Ω
0 (0
B$&U 0 #. 0 $ &Q Z") & .& 6S A *0&0 . . −y ' (x + y + z) = a y x + y + z = 0 $ &Q Z") & .& 6S A; *M [& . . −z ' x + y = z B$&U 0 "0 #. 0 $ &Q Z") & .& 6S A *M [& . DZ [ ' (x + y + z) = x + y >&j L >&T 0 $ Z") Ω M . T .$ A ' Ω & .& 6S O&0 x + y + z = a T T−xz T−xy . −z . −y . −x B&Q e0& 5$ 0 (0&f x= &0 . DZ [ T−yz *M [& δ = δ
h
=
= =
0 0
Ω
x +y
(x +y )/ x
dy dx =
) ) − z x + y dz dy dx
*−−−−−−−−−−−−−−−→ −−−−→* * * *(x − , y − , z − ) × (a, b, c)* = *−−−−→* * * ||v || *(a, b, c)* *−−−−−−−−−−−−−−−−−−−→* * * *(yc − zb, za − xc, xb − ya)* + a + b + z + (yc − zb) + (za − xc) + (xb − ya) + a + b + z
* *−−−→ * * *X X × v *
E ( >.&[, h $. '& ?U0 Ω :
000
≤ x ≤ a, ≤ y ≤ b, ≤ z ≤ c
&0 ( 0 0 I O .& 6S .$ h δ dV =
Ω
000
/ F DF B !F 02
=
l&Q O S J**J .$ M . @ 5&+ b .$ $&, . 5F M T H**J q1 y# O .$ 5$ $ 5&6 uL0 R# E m *Z & & . 5F >. T R# *( & B # [& Q
=
f dV
Ω
O&[ . M "0 Ω , + S % & G#U M ! (#& 0 # Ω , + p&\ E 0 0 f b Z' . $ Ω 0000f & 3& , + V# $$ *Z & + . f dV >. T R# .$ O&0 T
(0
>&T 0 $ !Y " XUV & .& 6S A .8 . DY1 ' z = c y = b x = a >&T &j L
*M [&
6 $.F B&Q e0& E L B&" >. T .$ 5 Q *!' Y XUV R# Y1 *( (0&f δ = δ ZM x= ( O . 5F &S[V ]3 *$.nS (a, b, c) Y\ [ E M ( Y\ T&= *$ + %&L 5 −(a,−−b,−→c) . 5F $& . $0 E ( >.&[, y R# & (x, y, z) LB$
∗
000
=
O&0 R `&UO DZ [ cM 0 S E +"1 Ω M x= AH (x, y, z) Y\ B&Q $. $ . 1 Z 6 N# .$ M + `&UO & .& 6S *O&0 δ = x + y + z 5F E *M [& . x = y = z y ' Ω uQ DZ [ cM 0 M 0 $ &Q S Ω M x= A8 X = (a, b, c) Y\ ' Ω & .& 6S *O&0 R `&UO R G L & U- 9#&+ . *M [& . *#0 h .$ . X
x
=
0 $ &
Ω
&0 ( 0 0 O .& 6S .$
=
=
(yc − zb) + (za − xc) + (xb − ya) dV a + b + c Ω 0 a (0 b 0 c δ (yc − zb) a + b + c % % +(za − xc) + (xb − ya) dz dy dx 0 a (0 b δ c +c y (b − y) b b a + b + c ) c c x + (a − x) + + c(xb − ya) dy dx a a 0 a4 δ c b c b (a − x) + a a + b + c 5 c b cb cb x + (a − x) + x + dx a a a
δ
0 =
a
0
a
a→∞
=
0
a
4
lim
a→∞ 4
=
lim
a→∞
− (v + ) (a + )
lim
w
w + + (w + ) (a + )
+
(a +
a − (a + )
5
a
dw
000
) 5
x +y +z ≤
a→a
=
a
p
a
a→ −
x +y +z ≤
= lim
a→−
Ωa
000
= lim
a→−
Ωa
#0
dV
= lim
dθ
a→−
()
=
= ()
=
= =
π π
π
lim
a→−
0
000
exp − (x + y + z )/ dV =
Ω
000 =
0
a
0
√ a
π
#0 sin ϕ
lim
a→∞
exp − (x + y + z )/ dV
Ωa
000
=
lim
a→∞
e−ρ ρ sin ϕ dV
Ωa
#0
" 0
π
lim
dθ
a→∞
lim (π)()
a→∞
−
e
π
0 sin ϕ dϕ
−a
+
=
a
ρ e−ρ dρ
π
*( &q=−ρϕθ .$ Ω # j Ω &# .$ M Z 6 N# 0 f = /(x + y + z + ) e0& E A, .8 *#0 y Z 6 N# E O ) 4 . Ω . h R# 0 *!' 9ZM G#U x + y + z = a T a
ρ sin ϕ dV ( − ρ )p " 0
'() % &
*#0 cM 0 M . Ω , + LB$ a > E 0 *!' R# .$ *Ω : x + y + z ≤ a 9Z#S h .$ a `&UO O Z#. $ M >&j L v N+M 0 >. T
=
( − x − y − z )p
= lim
a→−
/
=
π
Ωa
0 exp(−(x + y + z) ) E A&
R
a
dV ( − x − y − z )p
000
f dV
a→a
a
( − x − y − z )p
p
Ip =
f dV := lim Ω
$ ) U#C ( + I p E #$&\ 4 M DZ E 0 *0&0 $ ) >. T .$ . 5F . \ A$. $ VO 0 . Ω R# 0&# ( ' S [B .$ I !V6 *!' M [B V# Z O&0 + Ω 0 Z M ZM %&L ZM G#U < a < E 0 9O&[ & F .$ ' M $$S h'? >. T R# .$ *Ω : x + y + z ≤ a 9Z#. $ M >&j L v N+M 0 lim Ω = Ω 000
000
⇒
Ω = lim Ωa
dV
Ip :=
Ω
a
( ([a $, p M x= A .8 000
x= 9 OVBC . !) B=B] % & 000 . @ . Ω &, + *O&0 & f dV M $&, Ω , + 0 f a DZ E&0 M ZM %&L R# .$ *a → a M O&0 & Ω ' (B&' Ω &f .$ O&0 9Z"# (B&' a
a − − (a + ) (a + )
−a − (a + )
dv dw
a
ρ dρ ( − ρ )p
"
a
ρ ( − ρ )−p dρ u/ ( − u)−p du
u/ ( − u)−p du
πB , − p = π Γ (/) Γ( − p) Γ (/ − p) π (/)Γ ( /) ( − p)Γ(−p) (/ − p) (/ − p) Γ ( / − p) π/ ( − p) × Γ(−p) ( − p)( − p) Γ ( / − p)
O $& 8*8*H E () .$ u = ρ >&j L v E ( ) .$ # + 0 M $$S h'? & &S $ 0 ) &0 *(
≤ x, ≤ y, ≤ z, x + y + z ≤ a
Ωa :
$& w = x v = x + y u = x + y + z >&j L v E &q= −uvw .$ Ω# j Ω J = >. T R# .$ *ZM
*Ω : ≤ w ≤ a , w ≤ v ≤ a , v ≤ u ≤ a E ( >.&[, Z#. $ .$ a
a
000
Z 6 N# =
dV = (x + y + z + ) 000
lim
a→∞ Ωa
0
=
a
dV = lim a→∞ (x + y + z + ) 0
a
0
lim
a→∞
w
v
a
du (u + )
000 Ωa
dv dw
dV (u + )
)
000
f (x + y + z)xp− y q− z r− dV =
p
Ω
Γ(p)Γ(q)Γ(r) = Γ(p + q + r)
0
^T − p −p $ , E 4 M ( 4E_ I *O&[ .$ . #E & B E N# . \ 0 % & 9M [& $ ) >. T 000
f (u)up+q+r− du
58' 9 / 22 ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= e0& [& 0 G 'BC & & x Zh −xy , + 0 f (x, y, z) v
Ω : a ≤ x ≤ b , h(x) ≤ y ≤ l(x) , u(x, y) ≤ z ≤ v(x, y)|
. $ E int(int(int(f(x,y,z),z=u(x,y)..v(x,y)), y=h(x)..l(x)),x=a..b)
*ZM $&
RV+ G 'BC . 1 1) . !) & & !< C $ O & 6 [& [1 . $ ) &0 ( evalf . $ E >. T R# .$ AO&[ 5F !' 0 .$&1 9ZM $& 5F [#\ . \ [& 0
)
dV
Z 6 N# 000
)
000
R
)
# /.$F .$
78 & &
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
(x + y + z )a
exp −(x + y + z )/ dV
000
Z 6 N# 000
)
≤x,y,z≤
zdV (x + y + z + )
dV p x yq z r
)
000
−≤x,y,z≤
dV x+y−z
O&0 5.&\ \\' × ]#& [a ] M . T .$ AJ Aa = a U#C ij
ij
a a a
a a a 000
evalf(int(int(int(f(x,y,z),z=u(x,y)..v(x,y)), y=h(x)..l(x)),x=a..b))
dV
x +y +z ≥
)
(x + y + z + )
R
a a > , a
a a
ji
a < , a
9( ⎛ + #E &F ⎞ a > exp ⎝−
/ /
aij xi xj ⎠ dV
j= i=
$ Z 6 N# .$ e1 4 Ω S M $ 5&6 A7 &F O&0 x + y + z = T 0 000
xp y q z r dV =
) Ω
Γ(p + )Γ(q + )Γ(r + ) Γ(p + q + r + )
. , -$ ( 0 0 C E r(t ) & r(t ) UY1 0 f . \ &0 &z[#\ M Q A$ O ) GB *7 !VO 0C i
ΔQi
i−
! ≈ f r(ti ) Δsi ! ≈ f r(ti ) dsi ! = f r(ti ) r (ti ) Δti
}
$ M Z# $ $ . 1 .0 $. . #& B &# & Z+U !j= R# E m *$ 0 m&T & F B *( & 0 0 A&E&0 0 v N# e0 E C RU
& $. .$ ` *( ` $ 0 y U0 N# DZ&O (= [& 0 5F E ( B&V . $0 & $. .$ 4$ ` *$ + $& 5
( w y O 4& .&M [& 0 ?z+, ( 0 G#U &6 0 *$. .&V0 . $0 5 f& *$ O U) !j= E ; uL0
! `GF !F 4 * / 1 @ AGB 9*7 !VO ` y A% .&3 %&L E !\ " **7 G#U * 0 . 1 f ds 5$.F (0 0 >&[& S U# *( *( V# F Z$ 4& & .&3 E %&L $ f f C C C M x= * R# .$ *O&0 LB$ $ , a a v Q e0 f >. T 0 0 0 ! * af + af ds = a f ds + a f ds A &F f(X) ≤ f(X) X 0∈ C E 0 0 S A; * f ds ≤ f ds >. T R# .$ *O&0 Y\ Q C ∩ C S A Z#. $ B&'0 RQ .$ *C 0+ C : = C0 ∪ C Z"#
N# C : r(t) ; a ≤ t ≤ b M x= * 0&6 >. T 0C O&0 R &q= .$ .&3 N# & &0
f : R → R M x= *AO&0 c R T .$ G#U C 0 M ( A&q= .$ B&V 5 C v U0& !VO 0 . C 0 f >. T R# .$ *$$S
C
C
f ds = C +C
C
f ds + C
b
f ds : =
! f r(t) r (t) dt
a
C
O =U .&3 N# E u0 &0 C S *ZM G#U Z &0 C *** C C . 5F & .&3 E N# $0 O&0 ZM G#U #E !VO 0 . C 0 f >. T R# .$ n
0
0
f ds : =
C
C
0
0
C
0
f ds + · · · +
f ds +
C
C
0
C
f ds Cn
Z &0 & C E & $ w O M ( 5F 4E_ pO & @ V# O&0 Y\ & $ U . $ V# $ 0 &+B D. h Y\ E *O&0 T & F E & $ w O A$ O U) N#
+, -. %& M E 8 !j= 0C
f ds C
i
! ΔQi = f r(ti ) r (ti ) Δti
Zg&1 pL E O ) (+"1 S M x= A .8 Z 6 N# .$ z = z = >&T y x + y = z 0 . f = x(y + z) *O&0 S #. [B C ( *M [& C C *Z# $ $ 5&6 % *7 !VO .$ . C S #. *!' # $ e0. C C *ZM Z"\ C & C uL0 .& Q 0 . 9ZM .&3 #E !VO 0 . & F * " y .&3 C C C
:
C
C
:
−π π
&aa ( ) &0 &aa ( ) &0
=
r(t) =
π
≤t≤
−−−−−−−−−−−−→ sin t, cos t, ) ;
f ds = C
0
f ds + C
π/
= 0 + 0
≤t≤
+
f ds +
π( + π )
C = C + C + C C = ( , , )(, , ) : r(t) = ( − t)i + tj ;
: r(t) = ( − t)j + tk ;
π
f ds +
: r(t) = ( − t)k + ti ;
f ds =
f ds + C
0
=
! −−−−−−−−−−−−−→! cos t, sin t, dt
sin t, cos t,
! −−−−−−−−−→! f − t, , − t − , , − dt
f 0
f ds + =
0
=
√ 0
√
,
f t, ,
! −−−−−−−→! − t, t , − , dt ! −−−−−−−→! − t , , − dt
0 √ √ ( − t) dt + (t − ) dt +
=
f ds C
! −−−−−−−−→! − t, t, − , , dt 0
0
f ds + C
f
C
≤t≤
&0 ( 0 0 0 O 0 R# 0&0
0
0
+
! −−−−−→! , , dt f , t + , t +
≤t≤
C = (, , )( , , )
0
C
≤t≤
C = (, , )(, , )
! −−−−−−−−−−−−→! f cos t, sin t, − sin t, cos t, dt
f 0
0
C
π/
+
(, , ) ( , , ) / g. &0 da C M x= A, .8 [& . C 0 f *f = x − y + z ( (, , ) *M ( y .&3 `&+ ) C M ZM ) 0 *!' 9ZM .&3 &S ) . & Y .&3 R# E N#
Z#. $ ` + .$ ]3 0
! f r(t) r (t) dt
( cos t) + (t) + ( sin t) −π , (− sin t) + () + ( cos t) dt 0 π + t dt
=
C
0
) + (y + ) + z
−π
= (, , )( , , ) −−−−−→! −−−−−→! : r(t) = ( − t) , , + t , , −−−−−−−−−−−→! = − t, , − t ; ≤ t ≤
0
π
= 0
&aa ]V, ( ) &0
: C
0
&aa ]V, ( ) &0
:
( O .&3 *M [& . C 0 Z#. $ **7 G#U N+M 0 *!'
*f = (x −
=
y .&3
:
f
−−−−−−−−−−−−−−−−−−−−→! cos t + , t − , sin t ; −π ≤ t ≤ π
C
(, , )(, , ) −−−−−→! −−−−−→! + t , , r(t) = ( − t) , , −−−−−−−−−−−→! = , t + , t + ; ≤t≤ ⎧ x + y = z ⎪ ⎪ ⎨ z= ⎪ ≤ x, y ⎪ ⎩ ⎧ ⎪ ⎪ x +y = ⎨ z= ≤ x, y ⎪ ⎪ ⎩
:
C : r(t) =
f ds
−−−−−−−−−−→! r(t) = cos t, sin t, ;
:
C
0
⎧ x + y = z ⎪ ⎪ ⎨ z= ≤ x, y ⎪ ⎪ ⎩ ⎧ x + y = ⎪ ⎪ ⎨ z= ≤ x, y ⎪ ⎪ ⎩
:
0
*( @ 0 0 ds A 3.& N# E +"1 C M x= A '() * !VO 0 M (
dt
√ ( − t) dt
M O&0 y + z = E +"1 S M . T .$ A8 C ( O ) Z 6 N# .$ x = T y [& C 0 . f = x(y + z) e0& O&0 5F [B *M M M %&"' . T .$ .
1 C
|y| ds
C : (x + y ) = x − y 0 x ds C : y = a cosh a y C
.&3 &0 0 .
e0& A
C f = xy + z −−−−−−−−−−−−−−−−−−−−−−− √−−−→ r(t) = t sin t + cos t, t cos t − sin t, t
cos t( + sin t) dt + 0
π/
+
=
−−−→! C : r(t) = t, t ;
0
0
δ ds,
y =
m
x =
0 yδ ds, C
z =
m m
xδ ds, 0
C
zδ ds C
B$&U 0 # $ Z C M x= A& '() * .$ e1 x + y = R E (x, y) Y\ M ( . −x _&0 + C !\f cM 4) *O&0 δ = y x + y B&Q . $ 5F *0&0 . 9ZM .&3 . C 0 *!' −−−−−−−−−−−→ C : r(t) = (R cos t, R sin t), ≤ t ≤ π
0
dt
≤t≤
+ (t)(t ) + t dt ( + (t ))/
0
t dt + t
= ()
=
=
0
u−
du
u
( − ln )
*u =
C
C
√
! −−−−→! f t, t , t dt
=
! `GF !F N 4
m=
=
C
*M [&
0
( − t)
.$ ZM .&3
≤t≤
0
0
/
f ds
.&0 & S 4) h V#c= (+M N# B&Q f S M . @ 0 $$S G#U C 0 M O&0 *** V# VB 0 *$ 0 C !M (= E >.&[, f ds &F &S $ 0&6 &$0.&M 0 ) &0 /& R+ 9$ + KY 5 . #E KO 0 & B = &S (x, y, z) Y\ S E1n 4L) + QR . !) * >. T R# .$ O&0 δ(x, y, z) ) B&Q . $ C E 5 #E D. 0 F P = (x , y , z ) !\f cM C 4) 9$ + [&
cos t( + sin t) dt +
M ( y = x + E +"1 C M x= A .8 0 . f = xy/( + x ) * ≤ x ≤ *M [& C !VO 0 . R# *!'
* ≤ t ≤ π M M [&
0 . f = xz + yz e0& AI
dt
√ ++ + √ +
=
−− −−−−−−−→ t−−−−−−−t− r(t) = + ln t, − ln t, t ,
0
π/
=
y AJ
y A7 *M [&
5F .$ M .
0
+ t
( O x= AC .$ M 0 $ *
(
/ g. &0 da 0 f = x + y + z e0& E A *#0 (, , ) (, , ) !VO 0 C f = x + y M . T .$ A; e0& O&0 r(t) = −−−t,−−−−−t,−→t! ; − ≤ t ≤ *M [& C 0 . f 0 . f = x sin z e0& A , , )
−−−−−−−−−→! C : r(t) = cos t, sin t, t ; −π ≤ t ≤ π/
*M [&
x + y + z = M $. 0 ! C M . T .$ A C 0 . f = |z| e0& O&0 x = y T *M [&
O&0 x + y + z = z M E +"1 S M . T .$ AH [B C ( O ) z = z = >&T y M *M [& C 0 . f = z(x − y) e0& O&0 5F
0 z
= = =
#
√
m
zδ ds C
0 π
πδ √ π
√
tδ
m
dt
= =
√
√
, − , π − π π
"
* E ( >.&[, C !\f cM ]3 & . N# .$ e1 b Y\ C B A M x= A .8 *0&0 . ABC da !\f cM O&0 &q= .$ ZM x= ( & ) B&Q E L 5 Q *!' 9ZM .&3 #E !V60 . ΔABC da *δ =
= =
x
= =
AB : r(t) = ( − t)A + tB ≤ t ≤
y
=
BC : r(t) = ( − t)B + tC ≤ t ≤
=
CA : r(t) = ( − t)C + tA ≤ t ≤
=
m
=
δ ds = Δ
= x
= = =
=
.$
0 Δ
ds = Δ
−→ −→ −→ AB + AC + CA 0 xδ ds m Δ 0 0 0 x ds + x ds + x ds m AB m BC m CA 40 ! −→ ( − t)xA + txB AB dt m 0 ! −→ ( − t)xB + txC BC dt + 5 0 −→ + (( − t)xC + txA )CA dt
0 *
xδ ds 0 π R cos t . R sin t dt = R 0 yδ ds m C 0 π R sin t . R sin t dt R π R m
C
>. T R# .$ O&0 δ 0 0 C (0&f B&Q ZM x= *!' 0 m
=
δds C
0 π =
x
⎫ ⎧ − → − → − → − → → − → ⎨ −→ − A+B −→ B + C −→ C + A ⎬ + BC + CA AB m⎩ ⎭
−→ − → − → −→ − → − → −→ − → − → AB( A + B ) + BC( B + C ) + CA( C + A ) → −→ −→ (− AB + AB + CA)
R0
√ √ −−−−−→! −−−−−−−→! C : r(t) = ( cos t) , , + ( sin t) , − , −−−−→ √t− + (, , ) ; ≤ t ≤ π
#$ 5&0 0
* * *−−−−−−−−−−−−→* *(−R cos t, R sin t)* dt * *
*(, πR/) E ( >.&[, C cM .$ & &Q ]) N# E #E 3.& M . T .$ A, .8 90&0 . 5F!\f cM O&0 O
−→ xB + xC −→ xA + xB + BC AB m −→ xC + xA +CA
!\f cM .$ ( [& !0&1 z y 0&6 >. T 0 E ( >.&[, Δ aa P = (x , y , z )
δ ds 0Cπ δ(R cos t, R sin t) 0 π (R sin t)R . R dt 0 π 9: t dt; 8R sin δ ds
=
ΔABC = AB + BC + CA
0
X R# 0
0
=
√ −−−−−−−→ +( cos t)( , − , ) + 0 π δ dt
=
πδ
= = =
y
* √ −−−−−→ * δ *(− sin t)( , , )
= = =
√ −−−−−→** dt ( , , )*
0
m
xδ ds C
0 π √
πδ √ − π 0 m
√
√
cos t + sin t δ
dt
yδ ds C
πδ √ − π
0 π √
cos t + sin t δ
dt
[& . . −z ' C & .& 6S *( δ = x +y +z *M >. T 0 . C y .&3 *!' −−−−−−−→ −−−−−→ C : r(t) = ( − t)(, , − ) + t( , , ) −−−−−−−−−−−−→ = (t, − t, t − ) ; ≤ t ≤
.$ *ZM .&3
0 Iz
! x + y δ ds
= C
0 =
0 =
t + ( − t)
t + ( − t) + (t − )
*−−−−−−−→!* * * ×* , − , * dt √ (t − t + )(t − t + ) dt √
=
. T−xy .$ e1 x + y = R &Q # $ A, .8 5F & .& 6S RU R+- Z$ 5 .$ x = y = z ' *M oL6 . 5F uQ `&UO . x = y = z y & LB$ Y\ N# T&= ( 4E_ *!' 5F $& . $0 X = (, , ) y R# &SV 5 Q *Z0&0 &0 ( 0 0 . Mn T&= R# 0&0 *( v = −( −,−−,−→) −−−→ X X × v v −−−−−−−−−−−−−−→ (y − z, z − x, x − y) √ . (y − z) + (z − x) + (x − y)
h = = = 0 I
= C
= =
= =
δ
δ
&0 ( 0 0 O .& 6S R# 0&0 h δ ds 0
& ' (y − x) + (y − z) + (z − x) ds
C
0 π
(R sin t − R cos t) + (R sin t − )
*−−−−−−−−−−−−−−→* * * +( − R cos t) *(−R sin t, R cos t, )* dt 0 δ π R ( − sin t cos t) dt
πδ
R
( πR # $ / 1 @ ( (0&f δ = δ 5 Q ?U0 &0 ( 0 0 C uQ `&UO O&0 πRδ. 0 0 C. 4) *R = mI = R
−−−−−−−−→! C : r(t) = t − , t ;
B$&U 0 + 4) A ≤t≤
*M [& . ( δ = y/ 5F ) B&Q M B$&U 0 !\f cM 4) A; −−−−√ −−−−−−−−→ t ; C : r = t, t / ,
≤t≤
5&V .$ 5F ) B&Q M M [& . T .$ . *( q = /(x + ) 0 0 (x, y, z) &0 x + y = # $ Z E (x, y) Y\ M . T .$ A cM 4) O&0 δ = |x + y| 4) B&Q . $ ≤ y *M oL6 F !\f 0 $ x + y = z o1& pL S M . T .$ A Y\ ) B&Q O&0+z = − z = − >&T !\f cM O&0 δ = −z x + y 0 0 5F E (x, y, z) *0&0 . S [B x + y = # $ 0 $ i1 Z D M x= AH Y\ S *O&0 D [B C $ 0 x ≤ y T Z .$ e1 + O&0 δ = x + y ) B&Q . $ (x, y) ∈ D *M oL6 . C !\f cM
B = (, b, ) A = (a, , ) M x= A8 ]) N# E ABC da M . T .$ *C = (, , c) M M %&L . @ . c b a O&0 O & &Q *$0 . 1 ( , , ) 5&V .$ 5F !\f cM
.$ ] Z8 + ) +CcG . !) * δ(x, y, z) ) B&Q . $ C E (x, y, z) Y\ M . T .& 6S O&0 &q=−xyz 0.$ T y Y\ N# S O&0 T&= h M I = hδds E ( >.&[, S ' C . −x o DZ [ 0 0 S l&Q *( S & X = (x, y, z) &0 0 0 X 0 T−yz T−xy . −z . −y 0 ∗
S
C
(x + y + z )δ ds,
IO = 0
C
(y + z )δ ds,
Ix = 0
0 C
(x + y )δ ds,
Iz =
0 Ixy =
C
0 Ixz =
y δ ds,
C
G#U
(x + z )δ ds,
Iy =
C
+ R = I/m
0
z δ ds,
C
Iyz =
x δ ds.
C
>. T 0 . # fJ@ $. .$ *ZM
(, , − ) E y .&3 C M x= A& '() $ * ) B&Q . $ 5F E (x, y, z) Y\ ( ( , , ) &
!VO 0 . R# *!' C : r(t)
−−−−−→ −−−−−−−→ ( − t)( , , ) + t( , − , ) −−−−−−−−−→ ( , − t, t) ; ≤ t ≤
= =
*ZM [& . C 0 T y ( =&M *ZM .&3 Z#. $ ( 5F $ R0 !T E 0 0 y .&3 @ 5 Q T
= =
mean T C 0 T ds C C #0
=
*−−−−−−−→!* * * ( + t)* , −, * dt
*−−−−−−−→! −−−−−→!* * * − , , * ÷* , − ,
0 =
"
(
&
C : r(t) =
) C : x + y = , ≤ x, δ = |xy| −−−−−−−−−−−−−−−−−→! ) C : r(t) = sin t, t − , cos t , −π/ ≤ t ≤ π/, δ = |z|
) C
: |x| + |y| = , δ = |x|
) C
: max{|x| + |y|} = a, δ =
) C
: x + y + z = , z = , δ = z
C : r(t) =
g F 0 p&\ T&= y A *M [& . DZ [
3.& 0 f = z e0& y A;
−−−−−−−−−−−−−−−−−−−−→! cos t+ , sin t− , − t , ≤ t ≤ π
C
. $ C E (x, y, z) Y\ M x= ?1 < 2 U!U) 4) 0 Y\ P (x , y , z ) ( δ(x, y, z) ) B&Q −−−−−→ F = (α, β, γ) . $0 &0 P >. T R# .$ *O&0 m 5F .$ M $ O 6M C (+ 0
#E *
E#J
2oR
+
. !) *
0
α = β
=
γ
=
δ(x, y, z)(x − x ) ds C ((x − x ) + (y − y ) + (z − z 0 δ(x, y, z)(y − y ) ds Gm C ((x − x ) + (y − y ) + (z − z 0 δ(x, y, z)(z − z ) ds Gm C ((x − x ) + (y − y ) + (z − z Gm
) )/
*( u S (0&f G = × m /(kg.s) E ( >.&[, c C 0{&) 5 !"& 3 −
0
U= C
x +z =
C
:
Gm δ(x, y, z) ds ((x − x ) + (y − y ) + (z − z ) )/
C
x + z = x y=
(x − ) + z = y= −−−−−−−−−−→! : r(t) = cos t, , sin t :
C
= π ×
≤ t ≤ π
M $$S h'? >. T R# .$ ?U0 *( `&UO 0 # $ C
= π 0
mean f C
= =
π π
) )/ ) )/
C
e0& . \ y A& '() * * x &0 y = T $. 0 E !T&' # $ 0 *M [& . 9ZM .&3 . C 0 *!'
f = x + y + z
:
S A4 /z 5F B&Q e0& O&0 3.&
*M [& . T−xy π
M x= U!U) 2 a2 =C) . !) & * y >. j# .$ *$$S G#U C 0 f (x, y, z) e0& @ 0 C (= !M (+"1 :.& E ( >.&[, C 0 f . \
0 *mean f = f ds 9C / 1
*M [& . x + y ≤ x + y + B$&U 0 i1 D M x= A x + y 0 0 (x, y) ∈ D & $ S *( D [B C ( [& . C & $ y c D & $ y O&0 0 0 F M ( k j i .$ / g. &0 da C M x= A [& . C 0 f e0& y *f = x + y + z *M <
, x + y
−−−−−−−−−−−→! t cos t, t sin t, t ; π ≤ t ≤
' C 5F & .& 6S δ =
+ t) dt = 0 *
x/ + y / = a/
`&UO & .& 6S H & >&#+ .$ 0 % * 9M [& . DZ [ ' C uQ
=
f ds C
0 π &
' cos t + + sin t * * *−−−−−−−−−−−→* * × *(− cos t, , sin t)* * dt
.&3 !VO 0 E (x, y, z) Y\ & $ M x= A, .8 R# *O&0 T = xy+z 0 0 C = ( , , )( , − , ) y B$&U & $ 0 & Z$ . 1 #& S Bc# y N# .$ . *M [& . #& & $ 0
R# . #$ ('&" *( h =
E 0 5F E (x, y) *M [& . .&j' 0 *Z#0 C g F 0 h E ( =&M *!' 9ZM .&3 . g F C
/ + y/
:
x/ + y / = /
:
r(t) =
−−−−−−−−−−−−→!
cos t, sin t ;
≤ t ≤ π
&0 ( 0 0 .&j' [&) ('&" .$ 0 A=
h ds C
+ sin t
*−−−−−−−−−−−−−−−−−−−−−−−−→* * !* * ×* * − sin t cos t, cos t sin t * dt
0 π
=
= =
0 0
π
−−−−−−−−−−−−−→
∂U ∂U ∂U F= , , ∂x ∂y ∂z
* >. T R# .$ M ( RO. E !T&' 0{&) 5 !"& 3 '() * ) B&Q . $ 5F E x, y, z Y\ M ( , , )(, , ) *M [& . ( δ = x + y (x , y , z ) 5&V .$ m 4) 0 Y\ P ZM x= *!' m @ 0{&) 5 !"& 3 >. T R# .$ *O&0 E ( >.&[, C U (x , y , z ) = √ 0 Gm (( − t) + t) dt = ( − t − x ) + (t − y ) + ( − z ) )/ √ 0 = Gm t − (x + y − )t −/ +(x + y +( − z ) ) dt
0 = Gm (t−y − +x )
sin t cos t dt
π/
sin t cos t dt =
+ (x +y − ) + (z − )
= Gm ln −y +x , + ( −y +x ) +(x +y − ) + (z − ) ÷ +y −x , + ( +y −x ) +(x +y − ) + (z − )
0 *
−−−−√ −−−−−−−−→ t ; C : r = t, t/ ,
" 0 #&+3 A ≤t≤
5&V .$ 5F ( mj 5 c M (M' .$ &+3 R# *( q = /(x + ) E &0 (x, y, z) M mj ( . \ Q " !M 3.& !VO 0 3 A;
−−−−−−−−−−−−−−−→! C : r = cos t, − sin t, t ; h=
−/ dt
≤ t ≤ π
0 0 (x, y, z) Y\ .$ 5F `&. M ( *M [& . $ ^Y !M ('&" *O&0
+ z/
&$0.&M M ( RO. 78 * 0 + 5 , 0 *$ O+ T? _&0 $. 0 ` y 9M ) #E &a
Y0&- &0 5& E X"' 0 #&+3 A& '() * −−−−−−−−−−−−→ ( 5 c S *M (M' r(t) = t, + t , t + t ! (, V ( (0&f N# A M O&0 q = AV 0 0 5F =j
hB E &+3 ( mj !M 5 c ( &+3 hB *M oL6 . t = & t = 9Z#0 C &+3 " 0 q E ( =&M *!' 0
!VO 0 c= A
−−−−−−−−−−−−−√ −−−−−→ t/ ; C : r = t cos t, t sin t,
≤ t ≤ π
5F E (x, y, z) 5&V .$ V# VB .&0 B&Q M ( . R# 0 $ ) .&0 !M . \ *( q = x E &0 *M [&
Q=
q ds C
* * 0 , *−−−−−−−−−−→* * = A ( ) + (t) + ( + t) *( , t, + t)* * dt 0 =A
( t + t + ) dt = A
.& U#C g F !VO 0 ,&1 &0 .&j' A, .8 Y\ .$ `&. M ( .& .$ x + y = A!VO /
/
/
&F Z#0 h .$ ( ) R# &0 . C S *$ + .&3 5
(O 5 #E !VO 0 . −C −C : m(t) =
−−−−−−−−−−−→! sin t, cos t ; −π/ ≤ t ≤ π/
Y0&- &0 h : [−π/; π/] −→ [; π] S M $ O ) ;*7 !VO 0 *m(t) = r(h(t)) &F O&0 h(t) = π/ − t *$ O )
A `GF !F $4 5 4 #&0 &z \ 4$ ` y G#U 0 *ZM KY . . $0 U0& &q= .$ . $0 5 N# E . h * v e0& #$ 5&0 0 *F : R −→ R !VO 0 ( M . $ $ ) 5&Q F B e0 4&0 F(x, y)
=
−−−−−−−−−−−−−−−−−−−−−−−−→! P (x, y, z), Q(x, y, z), R(x, y, z)
=
P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k
5 #E !VO 0 . T .$ . $0 5 0&6 >. T 0 $ + G#U
}
N# 0 ( ) 9;*7 !VO >. T $ 0 . C = (, , )( , , ) y .&3 A, .8 D. #E .$ 0 F E F 0 E $M . ) 5
9Z# $.F . $ 5$M .&3 −−−−−→! −−−−−→! C : r(t) = ( − t) , , + t , , −−−−−→! = t, , t ; ≤ t ≤ −−−−−→! −−−−−→! C : m(t) = ( − t) , , + t , , −−−−−−−−−−−−→! = − t, , − t ; ≤ t ≤
# U U# *m(t) = r( − t) (B&' R# .$ M $ O ) h(t) = − t Y0&- &0 h : [; ] −→ [; ] h $. .&3 *( (, , ) ( , , ) / g. &0 da C ZM x= A .8 U R# 0 ( V C >. T R# .$ *O&0 (, , ) 0 . C !B$ R+ 0 *$ O E& .&3 !1 ' 0 M *A$ O ) *7 !VO 0C $M . ) 5 >. T = C = −C C = −C C = −C M $ O h'?
*C = −C }
da N# 0 G L & ) 9*7 !VO 0 $ *
F(x, y)
=
−−−−−−−−−−−−→! P (x, y), Q(x, y)
= P (x, y)i + Q(x, y)j
e0 $. .$ T& H M x= * . T .$ A *** #n3t 6 3 hC ( v Q &B M ( H (T& . $ F . $0 5 Zg S
*O&0 H (T& . $ 5F M M x= 0 U!U) 2 7OR * N# E . h O&0 &q= .$ N# C : r(t) ; a ≤ t ≤ b #n3!" #$ #n3/ VU ( U0& C 0 I tJ >. T R# .$ h : [c; d] −→ [a; b] &
C : m(t) : = r(h(t)) ; c ≤ t ≤ d
( #n< VU h 5 Q *Z & h -+ C I tJ . ([a . + ( . + (c, d) 0 h (t) R# 0&0 u< I tJ h O&0 ([a (a; b) 0 h (t) S *O&0
7 % I tJ . h O&0 (c; d) 0 h (t) S 7 % %&L C 0 i jL0 .&3 N# l&Q *Zg S L3 5 $S0 ( ) & .&3 # U E M Z E&) $ O !+, *Z & % !( N# . C &z'?YT $ O $& ( ) &0 C *Z & ! % . 0 ( ) %&L & . Q.&. T $ 0 *$ + .&3 5 t#@ 0 . R# *C : x + y = M x= A& '() * −−−−−−−−−−−→! t ∈ [; π] M r(t) = cos t, sin t >. T 0 .
k
0 ) C
0 = a
) )
Y0&- &0 h
(a F + a F ) • dr
0
0
C +C
F • dr =
0
−C
C
0 F • dr + a 0
F • dr +
0
C
F • dr = −
C
F • dr
F • dr C
F • dr C
0 ` y M $ O ) 78 * * "0 4$ ` y M B&' .$ $. "0 ) *$. $ 5F 0 4& &0 F = P i + Qj + Rk l&Q 78 1 * (O 5 F dr C
•
0
P dx + Q dy + R dz C
V# . $0 $& & "M S ?U0 &0 &F Z#0 v = (cos α, cos β, cos γ) . (O 5
T = r /r 1 C F • dr
0
0 F • dr =
(P cos α + Q cos β + R cos γ) ds
−−−−−−−−→! C : r(t) = cos t, sin t ;
≤ t ≤ π
E ( >.&[, C 0 F .$
0 π
0 F • dr
=
C
=
0 π −−−−−−−−−−→! −−−−−−−−−−→! − sin t, cos t • − sin t, cos t dt 0 π
=
! −−−−−−−−−−→! F cos t, sin t • − sin t, cos t dt
C : r(t) ; a ≤ t ≤ b
>.&[, &0 O&0 O $ $ ^- .&3 Q y C S . Q R# & .&[, ` + _&0 &" .$ ( . (+ 9ZM $& 0
0
F • dr =
−−−−−−→! 0 . F = −−xy, yz, zx . $0 5 A, .8 −−−−−→! C : r = , t, t ; − ≤ t ≤
0
F dr +
C
C
r(t)
−−−−−−−→ = (x(t), y(t))
0 F • dr =
0
F dr + · · · + C
F dr Cn
M . T .$ &j L 5&0 0 −−−−−−−→ Q(x, y)) &F F = −(P−−(x,−−y),
0 b ! ! P x(t), y(t) x (t)+Q x(t), y(t) y (t) dt a
C
−−−−−−−−−−→ 5 r(t) = −(x(t), y(t), z(t)) M . T .$ ?U0 −−−−−−−−−−−−−−−−−−−−−→! Z#. $ *O&0 F = −−P−(x, y, z), Q(x, y, z), R(x, y, z) 0
0 F • dr = C
dt = π
! F r(t) • r (t) dt
( O x= &# .$ M ZM G#U
γ
*( O . ) &aa ( ) 0 M O&0 ' # $ C *M [& . C 0 F ( &aa 5F ( ) C : x + y = 5 Q *!' Z"#
b
a
C
C
−−−−−−−−−−−−−−−−−−−−−−→! F = − y/(x + y ), x/(x + y )
$ 5&6 A
*( .&3 # U h(t) = arcsin t C : r(t) = −−sin−−t,−−cos−−t,−→t! , −π ≤ t ≤ π &S A; ]< ( .&3 v N# h(t) = πt M $ 5&6 *"# 0 . h y C .&3 # >. T Q 0 . R .$ C : x + y = q0 A *M 5&0 . N# $M . ) 5
y M ( x + y = [B $ C M x= A Q 0 . C * O ) z = z = x >&T *M .&3 . N# $M . ) 5 >. T M ( x + y + z = M E +"1 S M x= AH Q 0 . C *O&0 5F [B C $. $ . 1 Z 6 N# .$ *M .&3 . N# $M . ) 5 >. T ( . ) N# C M x= % * ` yC >. T R# .$ *O&0 . $0 F !VO 0 . C 0 F A4$
0
β α M $ O ) *( ` y N# M . −z . −y . −x &0 T M " # E X 0 *$E&
M x= A& '() *
: [− ; ] −→ [−π/; π/]
! P x(t), y(t), z(t) x (t) a ! +Q x(t), y(t), z(t) y (t) ! +R x(t), y(t), z(t) z (t) dt b
C C . $0 5 F F F S & * >. T R# .$ O&0 LB$ $ , a a C
*M [&
Z#. $ G#U N+M 0 *!'
*M [& C 0 . F $M .&3 . C $. .$ 9$ O ) RV+ & ) 0
F • dr C
−−−−−−−→ ) F = (z, y, x), C : x + y + z = , z = , ≤ y
) F = yi + (x + y)j,
) F = (x + y + z)
C
=
D : x ≥ , y ≥ , x + y ≤
(, , ) ( , , ) / g. &0 da A .8 ( , , ) . $0 $ . ( ) &0 M ZM . ) . @ . ! 5F 0 F = −z,−−x−−+−y,−−−→ z . $0 5 E *O&0 .&SE& *#0 >. T 0 . . Mn Δ da #&0 GB *7 !VO 0 h *!' >. T R# .$ & *ZM #c Δ = i j + j k + k i
−−−−−−−−−−−−→! ) F = x, y − z, x + z , S : y ≥ x , z = x + , y ≤
) F =
−
t dt =
(, , )
0 . F $M . j S D [B . C $. .$ 9$ O ) RV+ & ) 0 *M [&
) F = x j,
−−−−−→! −−−−−−→! F , t, t • , , t dt
−
≤y≤
D : x + y ≤ , ≤ x
−
0
! i+j−k ,
) F = yi + j,
=
0 −−−−−−→ ! −−−−−−→! t, t , t • , , t dt =
C : y = x , y ≤
C : x = y = z,
0
0
−−−−−−−→ −−−−−−−−→ /x, /y), C = ( , )(, )
) F = (
−−−−−−−−−→! √ z , x + y, z , S : x + y + z ≤ , y = z
−−−−−−−−→! − t, t, ; −−−−−−−−→! : r(t) = , − t, t ; −−−−−−−−→! : r(t) = t, , − t ;
i j : r(t) =
≤t≤
jk
≤t≤
ki
}
0
0 Δ
0
≤t≤
&0 ( 0 0 h $. 0
F • dr =
F • dr + F • dr + F • dr ij jk ki 0 −−−−−−−−→! −−−−−−−−→! F − t, t, • − , , dt
=
+
0 −−−−−−−−→! −−−−−−−→! F , − t, t • , − , dt
0 −−−−−−−−→! −−−−−−−→! F t, , − t • , , − dt +
. h 0 & 5$ + .&3 9*7 !VO 4$ ` y [&
0 −−−−−→! −−−−−−−−→! , , • − , , dt
=
+
A `GF !F N (4 5F e[ 0 N#c= .$ , &$0.&M 4$ ` y *$ O M{ &# .$ & F E $. & M $. $ .$ M x=
L . !) 2 L *
C : r(t) ; a ≤ t ≤ b
. $0 F ( 5& E X"' 0 M (M' "
t +Δt & t & E E&0 S *$$S G#U C 0 M ( Z $ O &M d0 (M E V# 50 Z#0 h .$ . r(t + Δt ) & r(t ) E Z\ " " 0 w M ZM x= i
i
i
i
i
i
0 −−−−−−−−→! −−−−−−−→! t, − t, t • , − , dt
0 −−−−−−−−−−−−→! −−−−−−−→! − t, t, − t • , , − dt + 0
0 dt +
=
(t − ) dt +
0
9#0 C 0 F E $. .$
(t − )dt =
0 *
−−−−−−−−→! −−−−−−→! ) F = x, x − y , C : r(t) = t+ , t −t ; ≤ t ≤
) F =
−−−−−−→! −−−−−−−−→! x, yz, xyz , C : r(t) = t , t , t ; − ≤ t ≤
) F = yi + xj,
C : r(t) = ti + t j ; − ≤ t ≤
) F = zi + yj + xi, C : r(t) = sin ti + cos tj + tk ;
≤ t ≤ π
0 π =
n
=
n
0 π
0 π =
n
F a sin t, a cos t
! −−−−−−−−−−−→! • a cos t, −a sin t dt
−−−−−−−−−−−−−−−−−−−−−−−→!
•
=
dt = nπ
=
⎧ ⎨ x + y = : y=z ⎩ ≤ x, y 4 −−−−−−−−−−−−−−−−→! r(t) = cos t, sin t, sin t : ≤ t ≤ π/
−−−−−→! −−−−−→! : r(t) = ( − t) , , + t , , ; −−−−−→! −−−−−→! : r(t) = ( − t) , , + t , , ;
≈
M B&' .$ O 4& .&M N#c= t0&Y V# ^- *( $ %qT&' 0 0 ( (0&f 5 Y 5&V v S_ q1 E A;C .$ *( AC . $0 .$ 5&V v . $0 t +Δt t R0 $, ξ M Z# $M $& . $0 e0 0 O 4& .&M !M &+B D. 0&0 R# 0&0 *O&0
0 0 F 5 f& ( w y i
i
i
=
π/
=
0
π/
≤t≤ ≤t≤
•
−−−−−−−−−→ C : r(t) = ( + t , t, t ) ; − ≤ t ≤
F = zi + (x − y)k
W
= =
= =
C
F • dr +
C
0 =
+ t , t, t
! −−−−−−−→! • t, , t dt
−
−
t + t − t
!
dt =
# $ $S 0 .&0 n M M x= A, .8 . $0 5 f& ( Q &aa ]V, ( )
x + y = a
F • dr
0 −−−−−−−−−→ −−−−−−−→ (, t − , ) • (−, , ) dt +
−
F
0 −−−−−−−−−−−−→ ! −−−−−−−→! t , , + t − t • t, , t dt 0
0
0
C
F • dr 0
. $0 5 f& ( M (M' *M [& . O 4& .&M *$ $ . 1 Z#. $ B&" &$ $ 0 ) &0 *!'
F dr =
=
(cos t − ) dt = −π
C
F • dr C
0
−−−−−−−−−−−−−−−−−−→! − sin t, cos t, cos t dt
0
! F r(t) • r (t) dt =
*Z#0 C 0 F dr E ( =&M ` + .$ ]3 *( " 0 M M x= A& '() *
0
=
ΔWi
a
−−−−−−−−−−−−−−→! sin t, − cos t, •
Δti →
=
C
0
n /
lim
n→∞ i= 0 b
F • dr
= =
W
i
W
.$
0 W
≈
()
9( y .&3 $ `&+ ) C
C
−−−−−−−−−−→ −−−−→! r(ti )r(ti + Δti ) • F r(ti ) ! ! r(ti + Δti ) − r(ti ) • F r(ti ) ! F r(ti ) • r(ξi )Δti ! F r(ti ) • r (ti )Δti
()
ΔWi
−−−−−−−−−−−→! a cos t, −a sin t dt
Y\ E C " E .&[V# M A .8 0C C " E #$ .&0 $. B = (, , ) Y\ 0 x= 0 . $. .$ O 4& .&M A$ O ) % *7 !VO *M [& F = yi − xj + k ( q0 C " *!'
C
i
a sin t + a cos t, a cos t − a sin t a
A = (, , )
C
*( F(r(t )) 0 0 UY1 R# 0 c F M (M' 0 0 UY1 R# .$ O 4& .&M X R# 0
0 −−−−−−→ −−−−−→ (t, , ) • (, , ) dt
dt =
$ O ) O 4& &.&M >& 0 0 *
. $0 5 0 . **7 &a E (+"1 A *M !' F = xi + j + zk
! F = (x + y)i + (y − x)j /(x + y )
*M [& . w y O 4& .&M *$ $ . 1 >. T 0 . R# *C : x + y = a ZM x= *!' −−−−−−−−−−→! C : r(t) = a sin t, a cos t ;
≤ t ≤ π
.&0 n w 5 Q *$M .&3 5 / VU ( ) .$ . ! &M .$ N# .$ O 4& .&M ( =&M ( Q R# 0&0 *ZM %- n .$ . !T&' ]< $ + [&
0
W
=
F • dr
n C
3.& $ .$ . [, 5) . \ A, .8
−−−−−−−−−−−−−→ C : r(t) = ( cos t, t, sin t) ;
≤ t ≤ π
*M [& . F = zi + j − xk . $0 5 y &0 ( 0 0 h $. .&O . \ G#U N+M 0 *!'
0 Fn =
F • dr C
0 π = =
cos t, t, sin t
! −−−−−−−−−−−−−−−→! − sin t, , cos t dt •
0 π −−−−−−−−−−−−−−→! −−−−−−−−−−−−−−−→! sin t, , − cos t • − sin t, , cos t dt 0 π
=
C
F
−dt = −π
0 % *
9M [& .
−−−−−−→! −−−−−→! ) F = x, y, z , C : r(t) = t , t , t ; − ≤ t ≤ −−−→! , ) F = x, y / x + y , C : x + y =
) F =
−−−−−−−−→! yz, xz, xy , C : y = x = z , y ≤
) F =
−−−−→! x, y , C : x/ + y / =
U!U) < : 9 IG 8 . !) 2 L & *
0 M ( . $0 F M x= !"# .$ N# C : r(t) ; a ≤ t ≤ b O G#U Ω '& *ZM [& . C E F y .nS .&O *( Ω C &0 $ + $& &+B D. E . h R# 0 E V# 50 *Z#S h .$ . r(t + dt) & r(t) E UY1 >.&[, UY1 R# M ZM x= Z $ O &M d0 (M *dr(t) = r(t + dt) − r(t) 9( r(t + dt) & r(t) E y .&3 E (0&f dr(t) 0 F 5 M ZM x= Z Rl+ y dr(t) E .nS .&O!X R# 0 *( F r(t)! 0 0 0 $ +, $ .$ F r(t) # j @ &0 ( 0 0 F(r(t)) Z#. $ #$ >.&[, 0 dr(t) @ .$ %- dr(t) dFn
≈
dr(t) dr(t)
⊥ dr(t)
= F(r(t)) • (dr(t))⊥ −− −−−−− !−−−−−−→ ! −−−−−−−−−−−→! = P r(t) , Q r(t) • d y(t), −d x(t) ! ! = P x(t), y(t) y (t) − Q x(t), y(t) x (t) dt
9E ( >.&[, F y C E . [, .&O !M R# 0&0 0
0
Fn =
P dy − Q dx
dFn = C
C
−−−−−−−−−−−−−−−−−→! cos t, sin t, t + ; −π ≤ t ≤ π
C : r(t) =
. F f& C y O 4& .&M $. .$ O&0 M [&
GB C F = xi + j + k %C F = x + yj + zk ! :C F = −x,−−x−−+−y,−−x−−+−y−−+−→ z $C F = (x + y + z) i + j + k! <
$ .$ F .nS 5) $. .$
−−−→! F r(t) •
!VO 0 3.& C M x= A;
C)
Y R
. !)
2 L *
'& .$ M ( . $0 F M x= U!U) N# C : r(t) ; a ≤ t ≤ b M x= *( O G#U Ω C $ .$ F .nS 5) Z *( Ω .$ e1
F 5) E +' Q M ZM oL6 U# *ZM [& . 4& &+B D. 0 . .&M R# *M (M' C $ .$ .$ r(t + dt) & r(t) E UY1 C !M &0 ZM x= *Z$
ZM x= Z d0 (M E O &M 50 *( .& dr(t) = r(t + dt) − r(t) ( y .&3 N# UY1 R# M .$ *O&0 F(r(t)) 0 0 (0&f UY1 R# 0 F ?U0 .$ F(r(t)) # j @ 0 0 UY1 $ .$ 5) >. T R# #$ 5&0 0 *( dr(t) @ .$ %- dr(t) $ d Fn = F(r(t)) • dr(t)
E ( >.&[, C $ .$ 5) !M .$ 0
Fn
b
d Fn
= a
0
b
=
! F r(t) • dr(t)
0a F • dr
= C
$ .$ 5) . \ A&
'() $ *
−−−−−−−−−→! C : r(t) = t, t + , t ; ≤ t ≤ −−−−−−−→! F = x , y , z
. $0 5 y *M [& . &0 ( 0 0 h $. 5) . \ G#U N+M 0 *!' 0
Fn =
F • dr C
0 = =
F
,t
! −−−−−−→! dt • , t,
0 −−−−−−−−−−−−−−−−→ ! −−−−−−→! t , t + t + , t • , t, dt 0
=
t, t +
t + t + t + t
dt =
& F & A & F 0 M O&0 Ω .$ $ C M M y O 4& .&M F M ( R# * " M ( M y O 4& .&M 0 0 M (M' C 0 y O 4& .&M F j L 5&0 0 M (M' C 0 "0 " %&L 0 . $ . 1 F f& ( M Ω .$ & M
0 F Zg S O&0 R# &3 l&Q $. $ *Z#E $3 4 R# t1$ UB&Y 5&0 0 ?z#{ *( #&\0 Ω B
M ( . $0 F M x= $ * ( !9 Ω 0 F Zg S . T .$ *$$S G#U Ω 0 e1 C C $ Ω E B A Y\ $ DZ E&0 M 0 F 0 0 C 0 F B & A 0 &0 Ω .$ *A$ O ) GB H*7 !VO 0C O&0 C
E .nS .&O A&
x + y = −−−−−−−−−−−−−−−−−−−−−→ F = x/(x + y ), y/(x + y )
.
'() * *
. $0 5 y *M [&
>. T 0 . R# *!'
r(t) =
−−−−−−−−−−−→! cos t, sin t ;
≤ t ≤ π
E ( >.&[, C E .nS .&O .$ *ZM .&3 0
Fn =
P dy − Q dx
0
C π
( cos t) d( sin t) ( sin t) + ( cos t) ( sin t) d( cos t) − ( sin t) + ( cos t) 0 π ( cos t)( cos t dt) − ( sin t)(− sin t dt) =
=
0 π
*O&0 Ω 0 . $0 5 F M x= $ *
DZ E&0 M ( !9 Ω 0 F Zg S . T .$ 0 0C F dr = 9O&0 T C 0 F Ω .$ C "0 *A$ O ) GB H*7 !VO }
=
( + sin t) dt = π
E .nS .&O A, .8 −−−−−−→ C : r(t) = ( − t, t ) ; − ≤ t ≤
•
C
*M [& . F = x i + yi . $0 5 y Z#. $ J**7 0 ) &0 *!' 0
Fn =
P dy − Q dx C
=
#&\0 5 G#U GT 9H*7 !VO *B$&U ; G#.&U $ * O&0 g&\0 Ω 0 G#U .$ [U 0 F ZM x= R# .$ *ZM %&L . Ω .$ e1 C LB$ "0
ZM %&L C 0 . B A !a >& Y\ $ S >. T M C = C + C &F Z &0 C C . !T&' UY1 $ O E&bF B E C M 3 Z B 0 O E&bF A E C E −C C $ .$ *M 3 Z A 0 & F 0 F nB M 3 Z B 0 O E&bF A R# 0&0 *( &"
0
0
F • dr = C
0
F • dr − C
−C
−
0 ( − t) (t) − (t )(− ) dt = − =
−
y C E . [, 5) $. $ .$ 0 * 9M [& . F . $0 5
−−−−−−→! −−→! *C : r(t) = −−t −sin−−t,t−−cos t ; ≤ t ≤ π F = y ,−x A + ( ) &0 C : x + y = F = −(x,−−→ y)/ x + y A; *&aa
−−−−−−−−−−−→ ( ) &0 C : x + y = F = x + y,x + y! A *&aa
−−−−−→ −−−−−−−−→ *C : r(t) = t,sin t!; −π ≤ t ≤ π F = xy,x +y! A /
F • dr =
*O&0 g&\0 Ω 0 ; G#U .$ [U 0 F nB $ O&0 g&\0 Ω 0 ; G#U .$ [U 0 F ZM x= A 0 &0 Ω .$ e1 C C $ Ω E B A Y\
0 ( − t) d(t ) − (t ) d( − t)
/
# )' +4 , + 0 M ( . $0 5 N# F M x= C " Ω E Y\ $ B A ZM x= *$ O G#U Ω
O $.F H !j= .$ ?z[1 AC A;C 4&V' 5$ 0 $&U
() ( $&U () &0 ( ) M ZM >&[f &# .$ *( *( $&U () &0 c e0& $ 0 g&\0 Ω 0 F ZM x= ( ) ⇒ () f (A) M ZM G#U >. T R# 0 Ω 0 . f \\' . \ &0 A 0 H E HA ( . y .&3 0 F y O 4& .&M 0 0 #$ >.&[, 0 O&0
>. T R# .$ *ZM %&L LB$ >. T 0 B & R# 0&0 ( Ω .$ "0 N# C = C − C
.$ *( T C 0 F F • dr −
0 f (A) :=
F(( − t)H + tA) dt
A .$ 0 &0 Ω .$ LB$ N# C ZM x= &' C = HA+C −HB >. T R# .$ *O&0 B .$ & .$ *( T 5F 0 F nB ( "0 Ω .$ 0
F • dr
= C
0 0 F • dr + F • dr − F • dr HA C HB 0 = f (A) + F • dr − f (B) 0
=
C
*O >&[f AH*7 C &" R# 0&0 C C O&0 . 10 AC ZM x= () ⇒ ( ) A .$ 0 &0 $ R# .$ O&0 Ω .$1 e1 B .$ & 1 w 6 . \ &0 F dr F dr $ >. T *( . 10 AC nB 0 0 f (B) − f (A) T A;C .$ Ω f F ZM x= () ⇒ () $ Ai = , &0C C : r ; a ≤ t ≤ b ZM x= *M >. T R# .$ *O&0 w 6 & 0 &0 Ω .$ LB$
•
C
•
C
i
0
0
b
F • dr = C
0 + 0
i
P (r(t)) x (t) dt
a b
0
b
Q(r(t)) y (t) dt + a b
R(r(t)) z (t) dt
a
dx ∂f dy ∂f dz ∂f (r(t)). + (r(t)). + (r(t)). dt ∂y dt ∂z dt a ∂x 0 b b d () f (r(t)) dt = f (r(t)) = dt a a = f (B) − f (A). =
*( O $& t 6 E ,&1 E AC .$ V# ^- *( . 10 AC R# 0&0 Y\ *O&0 . 10 AC ZM x= () ⇒ () & 5F 0 N#$c .&"0 Y\ Ω E A = (x, y, z) LB$ S >. T R# .$ *Z#S h .$ . B = A + (ε, , )
0
0
C
0
F • dr = C
C
F • dr =
*O&0 g&\0 Ω 0 G#U .$ [U 0 F B 4&0 q1 0 E& . $0 5 5$ 0 #&\0 t\ 0 )*TFC K?YT q1 R# .$ 9Z#. $ #&\0 & q1 *( O ^#6 *;*H .$ M $. $ $ ) >?@ + !VO .& , + Ω M x= $ * *O&0 #n<\ 6 Ω 0 M ( . $0 F = −−P,−−Q,−−R→! 9B$&U #E 4&V' >. T R# .$ U# ( g&\0 Ω , + 0 F . $0 5 A " E !\ " Ω .$ e1 & 0 F E B *( Ω 0 F dr = P dx + Q dy + R dz " #$ >.&[, A; $. $ $ ) 5&Q Ω 0 #n<\ 6 f U0& U# ( ! &M #$ >.&[U0 *df = F dr M ∂f ∂f ∂f = P, = Q, = R. A*7 C ∂x ∂y ∂z $&U 5&0 0 0 0 0 f = P dx, f = Q dy, f = R dz. A;*7 C 2
•
•
(0 . f 5 R# . \ "#&\ &0 M *$.F Ω 0 F dr = P dx + Q dy + R dz " #$ >.&[, A >.&[U0 *( T Ω 0 5F !" #$ U# ( t1$ #$ ∂Q ∂P ∂R ∂Q ∂R ∂P = , = , = . A*7 C ∂y ∂x ∂z ∂x ∂z ∂y •
0 M $. $ $ ) S 0 Ω 0 #n<" #$ f U0& A B & A 0 &0 Ω .$ C LB$ E Z#. $ 0
F • dr = f (B) − f (A) C
A*7 C
*Z & F L >E I . _&0 .$ f e0& S M O&0 Y\ H $ 0 !VO .& Ω ZM x= !T y' .&3 ZM !T 5F 0 . A !a Ω E LB$ Y\ *$0 &) Ω .$ &z &+
0 M $. $ $ ) S 0 Ω 0 #n<" #$ f U0& A B & A 0 &0 Ω .$ C LB$ E Z#. $ 0
-. E S_ q1 0&0 &F O&0 B 0 A E y .&3 C M $. $ $ ) 5&Q ε I R0 δ $,
+, ε
0
F • dr
AH*7 C
F • dr = f (B) − f (A) C
y
∂P = ey − y ∂y
! y
= ey −
y
!
= xey − x +
x
∂Q ∂x
=
E ( >.&[, 5 R# !"& 3 X R# 0 f = xey − xy − y +
#E (" #&\0 F =
(0&f
−−−−−−−−−→! x + y , xy
5 A, .8
! ! ∂P ∂Q = xy x = y = y = x + y y = ∂x ∂y
*y = y R# 0&0 y = 5F 0 M . −x 0
5 A .8
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! F = yz + xy+z + ,xz +x + yz + ,xy+ xz +y +
G#U Ω 0 F ( !VO .& R _z #E ( #&\0 R 0 &f .$ $ O
∂P ∂y
= = =
∂P ∂z
= = =
∂Q ∂z
= = =
yz + xy + z +
! y
f (B) − f (A)
=
∂f (x + δ, y, z).ε ∂x
>. T 0 . C =@ E
*Z & F L >E I . _&0 .$ f e0& Y0&- &0 F . $0 5 A& '() % $ * −−−−−−−−−−−−−−−→! R 0 F _z #E *( #&\0 R 0 e − y, xe − x − &f .$ $ O G#U
=
C
r(t) = ( − t)A + tB = (x + tε, y, z)
.$ * ≤ t ≤ M $ + .&3 5
0
0
F • dr
=
C
(= < δ
P (x + tε, y, z) dt
= P (x + ε, y, z) − P (x, y, z)
N# < ε E 0 M O (0&f ]3 M $ O
< ε
P (x + ε, y, z) − P (x, y, z) =
∂f (x + δ, y, z).ε ∂x
(x, y, z) E 0 M Z#S t 6 #& V# !B$ 0 (x, y, z) = P (x, y, z) Z#. $ Ω E $ 0&6 >. T 0 * ∂f ∂x 2 *$$S A*7 C .$ #$ &" O&0 T .$ . $0 5 S M $ O ) 9$ + 5&0 5 #E >. T 0 . H*H*7 q1 &F !VO .& , + Ω M x= $ $ * −−−−→! Ω 0 M ( . $0 F = P, Q Oxy T .$ 9B$&U #E 4&V' >. T R# .$ *O&0 #n<\ 6
U# ( g&\0 Ω , + 0 F . $0 5 A " E !\ " Ω .$ e1 & 0 F E B *( ! &M Ω 0 F dr = P dx + Q dy " #$ >.&[, A; M $. $ $ ) 5&Q Ω 0 #n<\ 6 f U0& U# ( #$ >.&[U0 *df = F dr •
z + x xz + x + yz +
!
yz + xy + z +
!
y + z
x
!
xz + x + yz +
!
xy + xz + y +
∂Q ∂x
•
∂f ∂f = P, = Q. ∂x ∂y
z
xy + xz + y +
x + y
=
x
=
∂R ∂x
z
! y
=
∂R ∂y
E ( >.&[, 5 R# !"& 3 f = xyz + x y + y z + z x + x + y + z +
(0&f
0 f=
0 P dx, f =
$&U 5&0 0
Q dy.
(0 . f 5 R# . \ "#&\ &0 M *$.F ( t1$ Ω 0 F dr = P dx+Q dy " #$ >.&[, A #$ >.&[U0 *( T Ω 0 5F !" #$ U# •
∂Q ∂P = . ∂y ∂x
=
−xy
# = ∂P ∂z
#
= = =
∂Q ∂z
= = =
(" #&\0 F =
(x + y + z )/ y + x + y + z
" = "x
x + = x + y + z z −xz (x + y + z )/ # " z + = x + y + z x # " y + = x + y + z z −yz (x + y + z )/ # " z + = x + y + z y
∂Q ∂x
∂P ∂y ∂P ∂y ∂Q ∂z
= = f
= = =
f
= = =
=
y
∂R ∂y
! ∂P = x+y y = ∂y
x
=
f
= 0
=
x
∂Q ∂x
! x + xy + A(y) x + y dx =
0 f
!
P dx
=
+ dx x + y + z , x + y + z + A(y, z) 0 Q dy
= x−y
E ( >.&[, c F !"& 3 ?U0
0
x
=
Q dy 0
! y + B(x) x − y dy = xy −
=
R# 0&0 * LB$ U0 B A M
y
+ dy x + y + z , x + y + z + B(x, z) 0 R dz
f=
z + dz x + y + z , x + y + z + C(x, y)
0 (,−) ( ,)
x
+ xy −
y
+
(0&f Z#. $ [ .$ 0
(x + y) dx + (x − y) dy =
= f (, −) − f (, ) = −
Z#. $ $. R# DZ"#&\ &0 R# 0&0 (0&f
F • dr C
DZ [ E ( , , )0& (, , ) E " M . T .$ A4 .8 x dx + y dy + z dz + *M [& . *$.n x + y + z 0 (, , ) E LB$ N# C B&" R# .$ *!' E 0 . R# *$.nS+ DZ [ E M ( ( , , ) . 1 ≤ x &q= Z .$ ?zM M $M #c 5 & E Z R# E N# 5 Q *x ≤ &q= Z .$ ?zM . $ x dx + y dy + z dz F = + . $0 5 VO .& &&q= x + y + z 5 Q c ( #n<\ 6 & F E N# 0 ( , , )
( , , )
.$ 0 (,,) x dx + y dy + z dz + x + y + z ( , , )
= = y = xy
( , )
P dx
, f = x + y + z +
!
∂Q ∂x ! ! ∂R x − z z = −z = = z x = ∂x ! ! ∂R xy z = = z y = ∂y x − z
( ,− )
0 =
=
!
. $0 5 A .8 #E
*( #&\0 . −x 0 & 5 U# y = z = VF
0 . x + y! dx + x − y! dy . \ A .8 *M [&
( LB$ (, −) & (, ) E C " &# .$ *!' ! 0 F #E *( #&\0 5 R# *( F = −x−−+−−y,−x−−−−→ y Rl+ ( #n<" #$ R !VO .& , +
∂R ∂x
0 *( #&\0 F R# 0&0 * LB$ U0 C B A M 9ZM !+, #E D. 0 F !"& 3 5$.F (0 f
=
−−−−−−−−−−−→! x − z , xy, z
=
f ( , , ) − f (, , )
=
−=
5 M M oL6 $. .$ 0 & $ * $ 0 #&\0 F l&Q *( #&\0 , + Q 0 O $ $ 9M oL6 . 5F !"& 3
∂P ∂y
#
=
x
+ x + y + z
"
= y
*$ O $.F G#U Q M x= % * Zg S . T .$ *O&0 O 5&0 .&3 N# & &0 . "0 Q `&+ ) *r(a) = r(b) M ( )E C # L . T .$ . C *Z & "0 c & $ c0 M $ + .&3 . @ F 5 0 M Zg S !J": $ 6 $ +3 .&0 $ .&3 N# y Y\ .&3 *$ 6 $ +3 c .&3 $ y Y\ ?U0 *O&0 UY1 $ 50 "0 M Zg S Lk . T .$ . C C : r(t) ; a ≤ t ≤ b
.$ " 5 $.W c b a $. J*7 !VO .$ '() % * & F M ( 5F g f d !V6 * " g f e d M B&' *(" "0 (e) . $ UY1 $ }
−−−−−−−−−−−−−−−→ ) F = x + y , x , y + y −−−−−−−−−−−−−−−−−−−−→ , ) F = /y − y/x , /x − x/y / x + y , , ) F = (xi+yj) / x +y ) F = (yi − xj) / x + y
) F = (x + y)i − xyj ) F =
)
0
)
5.$ &0 5 $.W N# C M x= % * M ( ) C + 7$8 7 % E . h *( D !VO 0 *$. $ . 1 D , + w |Q (+ . + 5F .$ *$ O ) *7
(,−)
0 (,)
5 $.W b 5 $.W 9J*7 !VO
) A
x dx − y dy + z dz
0 (,)
)
)
0 /&+ b X E E&bF &0 `&UO ⇔ X ∈ Ext(C) A% Int(C) *M eY1 Y\ :E $ U .$ . C , + C 7*7 !VO 0C Z & C L . Ext(C) C L . 0 Y\ N# X .$ Y\ N# X $ O ) *A( C
( ,,)
( , ,)
)
0 /&+ b X E E&bF &0 `&UO ⇔ X ∈ Int(C) AGB *M eY1 Y\ $= $ U .$ . C , + C
−−−−−−−−−−−−−−→ , xz + , xy)
) F = (yz −
Q M M oL6 *M [& . #E & B E N# *( E& O & & 0 E "
)
.$ 5 $.W N# C M x= Yk % * `&+ ) >. T 0 . T !M >. T R# .$ *O&0 T M . @ (O 5 C ∪ Int(C) ∪ Ext(C) c , +
−−−−−−−→ x, y , z
) F = (x/y) i + j
( ,)
0 (,
(xy − ) dx + (x + ) dy
(x − y)(dy − dx)
)
(−,−)
0
( ,, )
( , , )
)
0 (, ) x dx + y dy + x + y (, )
(x + xy ) dx + (x y − y ) dy
(x − yz) dx + (y − xz) dy
0 (,−,)
+(z − xy) dz
(x + y − z) dx + (x + y − z) dy +(x + y + z) dz / x + y + z + xy ( ,,)
0
(−,,)
(,,)
y − + y z
x x + dx+ z y
xy dy − dz z
cM &0 !VO .& , + Ω S M $ 5&6 A&5 X ∈ Ω 0DZ E&0 &F O&0 #&\0 Ω 0 F O&0 0 ! F • dr = F ( − t)A + tX • (X − A) dt AX 0 ! f (X) = F tX • X dt A=O
f (X) =
*
&F O&0 [
S
aB D 04 & q1 Z+U R#S q1 M (S 5 .&j 0 y 5 q1 R# N+M 0 *( 8**7 #&\0 *$ + !#[ " 5F ! $ 0 &S$ 0 . "0 " 0 %&"' $ B&O /&S ]M &q1 + 0 q1 R# .$ F q1 $ *$ !V6 . . $0 !" #$ ( 4E_ q1 R# >. T 5&0 E ![1 * F !j=
}
. O $ $ 5.$ $. .$ 0 % % * *M 4 U . 5F 0 $. & ([a ( ) $ + oL6
) |x| + |y| =
)
x + y =
)
” max{|x|, |y|} = ” ∪ ” max{|x|, |y|} = ”
)
”x + y = ” ∪ ”x + y = x” ∪ ”|x| + |y| = ”
[B C M x= *$ O =U D , + $. .$ C 0 $. & ([a ( ) $M oL6 . C 5.$ *( D *M oL6 . )
x + y ≤
) x + y ≤
)
≤ x + y ≤
Int(C) : x + y < , Ext(C) : x + y >
, |x| + |y| ≥
0 *( &aa ( ) 5&+
) ≤ x , ≤ y, x + y ≤ )
0 Y\ A% *.$ Y\ AGB 97*7 !VO .$ *C : x + y = M x= A& '() $ % * ?U0 ( 5 $.W N# C >. T R#
” ≤ x + y ≤ ” ∪ ”(x − ) + y ≤ ”
0 (M' ([a ( ) *$ O ) GB I*7 !VO C
∪”(x + ) + y ≤ ”
)
x + y ≤
, ≤ y , ≤ x , (x − ) + (y − ) ≥
0 0 D $ 0 5 $.W C S & % * C = ∂D Z"# >. T R# .$ *O&0 C 5.$ &0 C `&+ ) ([a ( ) &0 5 $.W
C S *Z & D [B . C @ 0 $& F dr $&+ E F dr &0 &F O&0 $. & *ZM
T .$ , + D M x= 0 G * % * ([a ( ) C 0 ( ) O&0 5F [B C 5 $.W ( #n<\ 6 F = P i + Qj M x= Rl+ *O&0 $. & >. T R# .$ O&0 3 D 0 •
•
C
C
00
@
P dx + Q dy = C
∂Q ∂P − ∂x ∂y
dA
}
([a ( ) 5 $.W N# 5.$ 9*7 !VO 5F 0 $. & (− , − ) / g. &0 e0 ! $ D M x= A, .8 x + y = / # $ :.& ( , ) ( , − ) (− , ) *( 5 $.W N# C >. T R# .$ *O&0 D [B C ( `?- 0 $. & ([a ( ) *$ O ) % *7 !VO 0 m? ! $ # $ 0 ( ) & ( &aa ( ) 5&+ e0
&# .$ *( &aa
Int(C)
D
Z D M ZM >&[f B&' 0 . q1 0 z .&j . #&, + RQ *Zh −y Z ( Zh −x !VO .$ D '& ZM x= R# 0&0 *Z & rZh s 9(O 5 0 #E >. T 0 . GB *7
Ext(C)
: − <x< : ”|x| >
,−
, |y| > ”
, x + y > /
x + y <
/
R : a ≤ x ≤ b , f (x) ≤ y ≤ g(x)
u#&+3 5 #E >. T 0 . D '& E >. T R# .$ 9$ + C
= AEB + BF A
−BF A
:
r(x) = (x, f (x)) ; a ≤ x ≤ b
AEB
:
r(x) = (x, g(x)) ; a ≤ x ≤ b
([a ( ) 5 $.W & 5.$ 9I*7 !VO 5F 0 $. &
}
9ZM Z"\ Zh ' 0 . −y . −x D=
n <
0
@ P dx
Di
P (x, g(x)) − P (x, f (x)) dx a ) 0 b (0 f (x) ∂P (x, y) dy dx − ∂y a g(x) 00 ∂P dA − ∂y
=
i
=
i
=
D
9(O 5 0 c #E >. T 0 . D ZM x= 0&6 >. T 0 R : c ≤ y ≤ d , m(y) ≤ x ≤ n(y)
C
i=
P dx + Q dy
Ci
*O&0 Zh , + & C E N# 5.$ ( 0 0 2 *( (.$ LB$ 0 R#S q1 R# 0&0 }
u#&+3 5 #E >. T 0 . D '& E >. T R# .$ 9$ +
i
C
= EBF + F AE
EBF
:
r(y) = (n(y), y) ; c ≤ y ≤ d
−F AE
:
r(y) = (m(y), y) ; c ≤ y ≤ d
0
@ Q dy
EBF 0 d
= = =
M $$S h'? X R# 0 0
Q dy −
=
C
* *8*7 &a AGB 9;*7 !VO *; *8*7 &a A%
P dx −BF A
AEB 0 b
i=
n @ /
0
P dx −
=
C
R# E N# C E 5 M *$ O ) % *7 !VO 0 ( ) &0 & F ( ) M ZM . Q . @ . D &, +
w 6 !j= .$ >. T R# .$ *O&0 .&SE& C 0 0&L , + d' E M $. $ $ ) $ &, + R# E & $ 5 R# 0&0 *& ( ) h E B " V# .$ *( T & F `&+ ) 0 F =A (P, Q) . $0 ` + &0 P dx + Q dy
M $$S h'? X R# 0
Q dy −F AE
Q(n(y), y) − Q(m(y), y) dy c ) 0 d (0 n(y) ∂Q dx dy c m(y) ∂x 00 ∂Q dA ∂x D
. $0 5 0 . R#S q1 A& '() % * −−−−−−−−−−−→ ( , ) (, ) / g. &0 C da F = x + y, x + y! *M t\ (, ) E y = y ( , ) (, ) p&\ E M ZM ) *!' y (, ) ( , ) p&\ E x = y (, ) (, ) p&\ R# 0 *A$ O ) GB ;*7 !VO 0C $.nS x + y = ([a ( ) ( 5 $.W N# Ada C C X (, ) E U# ( &aa ([a ( ) 5&+ 5F 0 $. & E ,&+ ) >. T 0 . C *(, ) ]< ( , ) 0 Z"# y .&3 C = C + C + C
≤t≤ − t)(i) + t(j) ; ≤ t ≤ − t)(j) + t(0) ; ≤ t ≤
C
: r(t) = ( − t)(0) + t(i) ;
C
: r(t) = (
C
: r(t) = (
E i& ` R# 0 R#S q1 _&0 >.&[, $ e+) &0 5 M *$$S >&[f D ' }
Zh , + AGB 9*7 !VO ,&+ ) >. T 0 . $.W 5.$ A% (O 5 Zh &, + E O&0 .& .$ C LB$ 5 $.W N# M x= &' E p Y E $& &0 . D , + *Z &0 D . 5F 5.$
0
0 F • dr +
=
F • dr
C
C
0 π −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ! +sin t−cos t, − cos t+ + sin t+sin t = −−−−−−−−−→! cos t, − sin t dt 0 π −−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ! + cos t − sin t, − sin t + cos t
E ( >.&[, R#S = |Q (+ .$ @
@
C
•
•
0 π
0 π
= −
=
+ 0
sin t = −π
[B C M ZM ) R#S = ( . (+ [& 0 !-& >. T 0 F M ( D : x ≤ x + y ≤ \' M (O 5 D = D − D D : x + y ≤ x D : x + y ≤ R# 0&0
D
D
=
00
−
(t +
00
D :
00
⎡
! x + y dA
= −
0
0 $ 0 =
!
dt
− x)
00
dA =
xy − y
x −
D
x −
!
%y=(−x)
x −
!
dA
) dy dx
dx
y=
! − − x dx =
−−−−−−−−−−−→! F = x − y , x − y
+
x x − x dx
$(x − x − )+x − x + arcsin(x − −π
% )
O&0 x + y = ax # $ E +"1 C M . T .$ A .8 $ O $ +3 (, ) 0 &aa ( ) .$ (a, ) E M 1 . I = e sin y − y! dx + e cos y + x! dy *M [&
. C $M $& R#S q1 E 5 0 V# 0 *!' !#[ "0 N# 0 (a, ) & (, ) E C y .&3 y >. T R# .$ *$ O ) GB *7 !VO 0 *ZM
*( D : x + y ≤ ax, ≤ y # $ Z [B C + C 5 $.W 9$ + .&3 5 #E >. T 0 . C ?U0 x
t−
. $0 5 0 . R#S q1 A, .8
x−x
= − =
0
−
≤ y ≤ (
(−x)
=
0 0 x−x ⎣ √ = − x dy ⎦ dx −
,
=
⎤
√
≤x≤
∂Q ∂P − ∂x ∂y ( 0 0
x dA
D
dt −
E ( >.&[, R#S = ( . (+ R# 0&0 *(
dA
D
00
t − ) dt =
!
( RO. ZM oL6 . C 5.$ 0 U0 ' .$ , + [B C M
D
! x + y dA −
D
=
!
t − t +
t dt + 0
=
0 −−−−−−−−−−−−−−→ ! −−−−−→! − t, (t − ) • , − dt 0
=
x − (−y)
F • dr C
0 −−−−−−−−−−−−−−−→ ! −−−−−−→! • + t + , t − t + − , dt
! − sin t+cos t−sin t dt
00 ∂Q ∂P − dA = ∂x ∂y D 00 ! x + y dA =
F • dr +
0 −−−→ ! −−−→! t, t • , dt
−−−−−−−−−−−−−→! − sin t, cos t dt
00
0
C
C
cos t+ sin t− sin t cos t
=
F • dr
P dx + Q dy = 0 0 = F • dr +
C
x
C
−−−→ −−−→ C : r(t) = ( − t)(, ) + t(a, ) ;
≤t≤
c x + y
# $ `&+ ) E !T&' C *M t\ *x + y = O&0 # $ R0 '& 5F 5.$ ( 5 $.W C *!' Rl+ &aa ( ) m? .$ . x + y = x .$ 0 *ZM . ) #&0 &aa ( ) .$ . x + y = !VO 0 . C .$ *$ O ) % ;*7 !VO 9ZM .&3 #E >. T 0 O C = C + C ` +
@
C
:
C
:
=
x
−−−−−−−−−−−→! + sin t, cos t ; ≤ t ≤ π −−−−−−−−−−−→! r(t) = cos t, sin t ; ≤ t ≤ π r(t) =
E ( >.&[, R#S = ( . (+ .$ 0
F • dr
P dx + Q dy = C
C
= = =
−
0 π
−−−−−−−−−−−−→ F(R cos t, R sin t) • (−R sin t, R cos t) dt
Z#. $ .$
0
−−−−−−−−−−−−−−→ 0 π
−−−−−−−−−−−−→ − − sin t, cos t • (−R sin t, R cos t) dt R R 0 π − dt = −π
I
F • dr
= @
0
C
F • dr −
= C+C
00 D
−
−−−−−−−−−−−−−→ F = (xy − x , x + y )
M ( "0 C A *O&0 x = y y = x + $ 0 $ '& E
−−−−−−−−−−−−→ F = (x − y, x + y )
A; e1 `?- &0 ( U0 C *y = y = x = x = p Y 0 y) A *C : x + y = F = −(x,−−x−−+−→ *C : |x| + |y| = F = (x + y) i − (x + y )j A (, ) (, ) / g. &0 da C F x + y
=
x # $ $ `&+ ) C
−−−−−→ = (y , x )
*( (, )
AH
−−−−−→
F = (y, x ) A8 *O&0 x + y =
−−−−−−−−−−−−→ F = (−y sec x, tan x)
(, ) / g. &0 ( aa C AI *(π/, π/) (π/, ) 0 $ # $ e0. E C F = (y − x y)i + xyj A *O&0 4 e0. .$ e1 x + y = −−−−−−−−−−−−−→
p Y 0 $ da C F = (y − x , x + y) A; *( y = x x = y = '& E C F = arctan(y/x)i + ln(x + y)j A *( [Y1 T .$ ≤ θ ≤ π ≤ r ≤
=
0
Area(D) =
=
! − ex cos y − dA
! −−−→! F at, • a, dt
0 −−−−−−−−at→! −−−→! dA − , at + e • a, dt
D
πa
DZ [ E .nS @b 5 $.W N# C M x= A .8 0 . I(C) = x xdy −+ yydx . \ ( >&j L
*M [& C G L & U- /& 5.$ .$ DZ [ AGB 9Z#S h .$ (B&' $ *!' O $ . 1 C 50 .$ DZ [ A% O&0 O . 1 C *O&0 T I(C) R#S q1 N+M 0 GB (B&' .$ R# 0&0 ∈/ D 5 Q &F O&0 C 5.$ D S #E ( ( #n3t 6 D 0 F = −y/(x + y), x/(x + y) C
00 4
−−−−−−−−−→
p Y 0 $ '& [B C F = (x − y, xy) AJ *O&0 x + y = x + y = y = x = max &|x|, |y|' = e0 `&+ ) C F = −(x−−+−−y,−→ y) A7 *( x + y = # $ E R#S q1 E $& &0 & >&#+ .$ 9#0 O $ $ 0 F . $0 5
+ + C F = x + y i + (xy + y ln(x + x + y ))j A *( , ) (, ) (, ) ( , ) / g. &0 ( U0
00
!
ex cos y +
=
$. .$ . R#S q1 7 & .$ 0 % * 9M t\ O $ $ 5
F • dr C
I(C)
=
y − x y − x − (x + y ) (x + y )
5 dA
D
00
=
dA =
}
D
* *8*7 &a AGB 9*7 !VO * *8*7 &a A% C 5.$ ( 5 $.W N# C 5 Q A%C (B&' .$ & 5 R & $, .$ O&0 E&0 , +
. 1 D 5.$ .$ ?z &M R `&UO O cM 0 # $ M . @ (= R# C `&+ ) E !T&' C + C 5 $.W 5 M *$S
(" tU C + C 5.$ 0 o #$ *Z#S h .$ . # $ *$ O ) % *7 !VO 0 *$$S E&0 AGB C (B&' 0 nB &0 ( 0 0 I(C) .$ @
0
F • dr = C
0
F • dr − C+C
F • dr C
, + R# E *$ + 0 0 $ . !T&' $M [& . M C = C + C + C E ( >.&[, −−−−−−−−−−−−−−→ # " t + t + C : r(t) = ,t ; t + t +
≤t≤
−−−→ −−−→ C : r(t) = ( − t)( , ) + t(, ) ;
≤t≤
−−−→ −−−→ C : r(t) = ( − t)(, ) + t( , ) ;
≤t≤
+ ((t + ) )
$ =
− + (t + )
@
√
+
π √
(t −
=
(t − t +
=
C
!VO g F '& ('&" A& '() % * *M [& . x + y ≤ a E ( >.&[, C 5 $.W &# .$ *!'
)
/
%
−t
x dy @ − y dx C @ x dy − y dx C
) t + dt (t − t + ) #√ "
+ =
Area(D) =
(t − t +
arctan
C
0 0 (t + ) dt + dt + dt (t + ) (t − t + ) 0
=
,
9Z#E $3 R#S q1 E $0.&M M{ 0 5 M 5.$ M O&0 T .$ '& D S % * E ( >.&[, D ('&" >. T R# .$ ( C 5 $.W
&0 ( 0 0 Area(D) R# 0&0 *$ O ) *7 !VO 0 0
@ ,
. T .$ . x + ydx + y x − x + y dy A `&UO DZ [ cM 0 # $ ! $ D M M [&
$& 5 R#S q1 E F *O&0 5F [B C $ 0 Q $ +
)
/
/
x/ + y / = a/
}
−−−−−−−−−−−−→
.&3 5 r(t) = a cos t, a sin t! !V60 . 5F M 0 0 O ('&" .$ * ≤ t ≤ π M $ + &0 ( @
Area(D)
= =
y M e0. E +"1 9*7 !VO ( O ) x + y = x + y '& ('&" R#S q1 N+M 0 0 % * 9M [& . #E & E N# 0 $
) (x − x ) /a + (y − y ) /b = −−−−−−−−−−−−−−−−−−−−−−−−→! ) r(t) = cos t − cos t, sin t − sin t ,
≤ t ≤ π
− #−−−−−−−−−−−−−−→ " t − t(t − ) ) r(t) = , , − ≤t≤ t + t + −−−−−−−−−−−−−−−−→! cos t − sin t, sin t ≤ t ≤ π
)
r(t) =
)
(x/a)/ + (y/b)/ =
)
(x + y ) = a (x − y )
)
x + y = axy
)
(x + y)n+m+ = axn y m ,
x dy − y dx C
0 π
a cos t
− a sin t
0 π
= =
a 0 a
!
π
!
a cos t sin t dt
!
− a sin t cos t dt
!
! sin t cos t dt sin (t) dt =
πa
x + y = x + y 0 $ ('&" A, .8 *#.F (0 . &j L &.
.$ 5$ $ . 1 E ]3 ZM $& y = xt .&3 v E *!' *y = tt ++ t x = tt ++ #F (0 O $ $ B$&U
ZM x= Z " 5.&\ y x 0 ([" B$&U 5 Q R# .$ * ≤ t ≤ ≤ xt ≤ x U# * ≤ y ≤ x ≤ x O '& ('&" &0 >. T D :
≤ x , ≤ y , x + y ≤ x + y
'& Gj ('&" 5
< a, n, m ∈ N
D :
≤ x , ≤ y ≤ x , x + y ≤ x + y
y C 5 $.W E .nS .&O & % * 5 # S &0 ( 0 0 F = P i + Qj . $0 5
9C 5.$ D '& 0 F 00
@ P dy − Q dx = C
D
∂P ∂Q + ∂x ∂y
dA
M x= 0 G 3 4 . * % * x= *O&0 O G#U T E Ω '& 0 F . $0 5
R `&UO 0 # $ N# C ( LB$ Y\ X ∈ Ω M .nS .&O 5 c *$. $ . 1 Ω .$ &z &+ M ( X .$ cM C ! $ '& ('&" 0 Z"\ C $ .$ F y . M ! T 0 R M & C 0 ([" F uQ . 0 *Z$ 5&6 Curl(F) $&+ &0 & X .$ F uQ #$ 5&0 C $ .$F .&O Curl(F) := lim C ! $ ('&"
@
@ X
=
P dx + Q dy ÷ C
)
n
n
,
< a, b, n ∈ N n−
(x/a) + (y/b) = (x/a)
n+
+ (y/b)
,
b , n ∈M N x= A `&UO 0 # $ 5.$ . r `&UO <0a, # $ Z# &Q DcvB 50 An ∈ N MC R = nr . R# 0$ ('&" *( O !T&' C * & g V 3 . RQ *M [&
#&\0 i j .$ 8**7 q1 5 R#S q1 N+M 0 #E G#U 0 Z+U R# K@ 0 *$ $ Z+U . & 5$ 0 *( E& . T .$ . T E D , + #E % * N# y 5 0 F E Y\ $ _z M Zg S ! $F 5.$ &f .$ $ + !j Z 0 & Y0
) H*7 !VO 0 *$0 . 1 D .$ &z &+ D .$ e1 5 $.W *$ O
−y dx + x dy C
Y0 . >. T R# .$ O&0 !" #$ F S M $ O (0&f . R#S q1 5 M *( . 10 Curl(F) = ∂Q/∂x − ∂P/∂y 9$ + [U 5 #E >. T 0 .$ F . $0 5 y .nS .&O % * '& 0 F uQ &0 ( 0 0 C 5 $.W & . 9C 5.$ D 00
@ P dx + Q dy = C
(x/a)n + (y/b)n =
R→
lim R→
)
D
∂Q ∂P − ∂x ∂y
dA
58' 9 / 24 ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= B&V 5 M x= '+ Z= 'BC & * 0 r := vector ( [X, Y, Z] ) >. T 0 M C f(x, y, z) >. T 0 t $ c O&0 .& .$ ( O .&3 t X"' XB&Y . V E S ) 0 >. T R# .$ *O&0 a ≤ t ≤ b
} #&\0 5 9H*7 !VO C S A8**7 )*;: `FJ X $ % * 4E_ pO >. T R# .$ O&0 D . [+ , + [B Y0 . M ( 5F F = P i + Qj 5 5$ 0 #&\0 0 =&M *O&0 . 10 Int(D) 0 ∂Q/∂x = ∂P/∂y . [+ B O&[ !VO .& D ( RV+ R# 0&0 *O&0 . 10 8**7 q1 ZV' 5&l+ $ 0 M x= 0 G 3 4 . % % * x= *O&0 O G#U T E Ω '& 0 F . $0 5
R `&UO 0 # $ N# C ( LB$ Y\ X ∈ Ω ZM C E .nS .&O 5 c *$. $ . 1 Ω .$ &z &+ M ( X .$ cM
([" X F !3 . C ! $ ('&" 0 Z"\ F y 5&0 0 M ! T 0 R M B&' .$ ZM G#U C 0 #$ C E F y !M .&O div(F) = lim C ! $ ('&"
@
@ R→
=
P dy − Q dx ÷
lim R→
C
−y dx + x dy C
>. T R# .$ O&0 #n3!" #$ F S M $ O (0&f >. T 0 . R#S q1 5 M *div(F) = ∂P/∂x + ∂Q/∂y 9$ + [U 5 #E
O .&3 t X"' 0 r:=vector([X,Y,Z]) >. T 0 M C .$ *O&0 a ≤ t ≤ b >. T 0 t $ c O&0 .& .$ ( 9ZM G#U XB&Y . V E S ) 0 >. T R#
LinIntFirTyp:=proc(f,r,a,b) local INT ;
LinIntSecTyp:=proc(F,r,a,b) local INT ;
INT:=linalg[norm](map(diff,r,t))*INT ;
INT:=subs({x=r[1],y=r[2],z=r[3]},F) ;
return(int(INT,t=a..b)) ;
INT:=linalg[dotprod](INT,map(diff,r,t)) ;
end :
return(int(INT,t=a..b)) ; end :
. $ E C 0 F [& 0 5 M LinIntSecTyp(F,r,a,b)
*ZM $&
9ZM G#U INT:=subs({x=r[1],y=r[2],z=r[3]},f) ;
. $ E C 0 f [& 0 5 M LinIntFirTyp(f,r,a,b)
5 G#U 0 2 Y ) & * . $ E !< y .$ F = −−P,−−Q,−−R→! . $0 F:=vector([P,Q,R])
# /.$F .$
78 & *
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
*ZM $&
*ZM $&
5 M x= Q+ Z= 'BC & * [x,y,z] &v &0 F:=vector([P,Q,R]) . $0
/ , -$ , + &F O&0 #n<\ 6 D , +
S : z = f (x, y) ; (x, y) ∈ D
$ O x= S M Q *( V [) #. N# S : g(x, y, z) = (O 5 &F g = f (x, y) − z −−−−−−−−−−−→ $. 0 + 5 , 0 *g = −(∂f−−/∂x, ∂f /∂y, − ) = 0 9$ O ) #E *D : x + y ≤ f = x + y M x= A& .8 S : z = x + y ; x + y ≤ #. >. T R# .$ 0 5F # j M ( z = x + y q0 5 S+ E +"1 ) GB * !VO 0 *O&0 D , + 0 0 T−xy *$ O + >. T R# .$ *f = − − x − y M x= A, .8 #. ?U0 *( D : x + y ≤ # $ f $
S : z = −
,
− x − y ; x + y ≤
% * !VO 0 *( `&UO k cM 0 M g&3 + *$ O ) }
E y Z+U ^Y M (S 5 .&j 0 M U R# 0 *( #$ E &S $ N# &+ R# ( yLB U0 $ DZ&O 0 B&V 5 N# E M R# 0 "0 ( ` $ 0 y *. $0 5 N# E $ O =S Av Q e0&C *ZM RO. . #. 4 M ( 4E_ 0
b, 7 &#. Xb *( U0 &q= .$ U0 $ DZO N# #. . @ 0 * " XT Z") ).& ^Y E +"1 4&+ [) &#. 9ZM Z"\ M $ $ 0 . &#. M * .&3 &#. S
( v U0& f M x= .&j 0 ( c $, 0 h f e0& E ^Y S : f (x, y, z) = c
0 $ 0 #n<" #$ f M Z & $% )* . S . T .$ E 0 f (X) = 0 l&Q *f (X) = 0 X ∈ S DZ E )* . S O&[ . 10 S 0 e1 & p&\ 0 c . V [) #. Q `&+ ) *Z & )? $% *Z & )? $% )* V [) &#. E #& B&a **H (+"1 .$ N# . $ M &[) #E & B&a *( O KY
*$. $ + (#& 0 ?z+,
;** &a E ; (+"1 9* !VO $ U0& f M x= z + x : 2 = $ U0& f M x= y + x : 2 = 5.$ 0 f S *O&0 f $ E , + #E D $ 0 v 5.$ 0 f S *O&0 f $ E , + #E D $ 0 v
;;
f =
+
D : y ≤ , y − z ≤
, S : x=
, + &F O&0 #n<\ 6 D , +
9$ O ) #E + y − z M x= A& .8 >. T R# .$
S : y = f (x, z) ; (x, z) ∈ D
$ O x= S M Q *( V [) #. N# S : g(x, y, z) = (O 5 &F g = f (x, z) − y −−−−−−−−−−−−−→ $. 0 + 5 , 0 *g = −(∂f /∂x, − , ∂f /∂z) = 0 9$ O ) #E f = x − z M x= A& .8
+ y − z , y ≤ , y − z ≤
T−yz 0 5F # j M ( V [) #. N# *$ O ) GB * !VO 0 *( D 3 B Bn R# .$ *D : y ≤ , z ≤ f = y M x= A, .8 E +"1 S : x = y , y ≤ , z ≤ #. >. T D !Y " T−xz 0 5F # j M ( x = y + *$ O ) % * !VO 0 *O&0
}
D : − ≤x≤
,− ≤z≤
#. >. T R# .$ S : y = x − z , − ≤ x ≤
. −y & . .$ y = x −z B Bn 5 S+ E +"1 GB ;* !VO 0 *( D T−xz 0 5F # j M ( *$ O ) f = sin(x + z) M x= A, .8 D : − ≤ x ≤ ,
** &a E ; (+"1 9* !VO f M x= 9fC) a2 < : p? $ O&0 &q= E , + #E Ω O&0 #n<\ 6 v U0& M x= ?U0 *S : f (x, y, z) = a , (x, y, z) ∈ Ω c E & $ U p&\ E & $ U c0C + DZ E 0 M pO M $ O ) *O&0 T GB&L f t 6 AS .$ &
S E Q 0 p&\ S E Y\ Q .$ f = 0 . O&[ . 10 f = 0 pO 5F DZ E 0 M @&\ *O&[ . 10 S >. T R# .$ *Zg S `g . p&\ #& & j? a .$ f E ^Y eY\ E ( >.&[, ( V #. N# 9$ O ) #E $. 0 + 5 , 0 *Ω , + &0 Ω : x +y +z ≤ f = x +y −z M x= A& .8 >. T R# .$ *a = −
,− ≤z≤
≤z≤
>. T R# .$ S : y = sin(x + z ) , − ≤ x ≤ , D
≤z≤
T−xz 0 5F # j M ( V [) #. N# *$ O ) % ;* !VO 0 *O&0
}
S
:
x + y − z = − , x + y + z ≤
:
−x − y + z =
, x + y ≤
DZ [ cM 0 Q.&3 $ 5 SB Bn N# E +"1 M # $ T−xy 0 5F # j M ( . −z 5.&\ .
*$ O ) GB * !VO 0 *O&0 x + y ≤ + Ω = R f = ( x + y − ) + z M x= A, .8 0 [) #. S : f (x, y) = a >. T R# .$ *a = cM N# `&UO 0 # $ 5 .$ E M ( % N# !VO
** &a E ; (+"1 9;* !VO $ U0& f M x= z + y : 2 = 5.$ 0 f S *O&0 f $ E , + #E D $ 0 v
, + &F O&0 #n<\ 6 D , +
S : x = f (y, z) ; (y, z) ∈ D
$ O x= S M Q *( V [) #. N# S : g(x, y, z) = (O 5 &F g = f (y, z) − x −−−−−−−→ $. 0 + 5 , 0 *g = −(−−−−, −∂f−−/∂y, ∂f /∂z) = 0
ZM G#U S A −
−−−−−−−−−→ ∂x ∂y ∂z , , ru = ∂u ∂u ∂u
−
−−−−−−−−−→ ∂x ∂y ∂z , , rv = ∂v ∂v ∂v
ZO&0 O $ (u, v) ∈ IntD E 0 &F S &z'?YT (B&' R# .$ *r (u, v) × r (u, v) = 0 *( Zh IntD 0 r M $ O
*O&0 N[V# IntD 0 r AH N# $0 `&+ ) 0 0 M , + * , + *$ O & I )* O&0 6\ Q P'S N# &O 3 . S #. & F $0 M #&6\ I . #. N# 0 ]@ RU !+, *$ O & S *Z & S L 0 $ pL Ω M x= A& + '() 5F ).& ^Y S $ 0 z = z = x + y &#. H* !VOC ( #. N# S M Z$ 5&6 Z *O&0 *AGB *ZM Z"\ S S UY1 $ 0 . S . h R# 0 *!' &F D : x + y ≤ S u
S
:
S
:
v
z = ; (x, y) ∈ D , z = x + y ; (x, y) ∈ D
−−−−−+ −−−−−−−→ r(u, v) = u, v, u + v
6\ $0 S M ( RO. $ .$ M O&0 &h(u,'v) = −(u,−−v,−−→) 6\ $0 S S 0 "@ A = r, h >. T R# .$ *(u, v) ∈ D 5 r &0 ?za *( \ 6\ %&L [B *O&0
−−−−→ M r(u, v) = −(u−−cos−−v,−−u−sin v, u) 9$M $& #$ 6\ E * ≤ u ≤ , ≤ v ≤ π 5F .$ XUV ).& ^Y S M x= A, .8 Ω :
≤x≤
, ≤ y ≤ , ≤ z ≤
!VO 0C ( #. N# S M Z$ 5&6 Z *( uO 0 Ω M ZM ) . h R# 0 *A$ O ) H* z = y = x = z = y = x = T 9ZM Z"\ e0 uO 0 . S /& R+ 0 *( $
M S = S ∪ S ∪ S ∪ S ∪ S ∪ S ;
≤y≤
, ≤ z ≤
S : x = ;
≤y≤
, ≤ z ≤
S : y =
≤x≤
, ≤ z ≤
S : x =
;
*$ O !T&' . −z ' T−xy .$ e1 (, , ) .$ *$ O ) % * !VO 0 }
H** &a E ; (+"1 9* !VO N# #E $. E N# M $ 5&6 0 % *$$S Z #. !VO $ O U *( V [) #. 9#0 N+M !< E .&M R# 0 ) z = xy, − ≤ x ≤ , − ≤ y ≤ + ) y = x + z , y ≤ , ≤ x
) (x + y ) = x − y , z ≤ ) x + y = z , −
≤y≤
) z = x + y , z ≤
)
y = x + z , x + z ≤
) x =
)
x = z , x ≤
)
xyz =
,
+
− y − z
) x + y + z = ) x/ +y / +z / =
, y ≤
)
) (x + y + z ) = x y
|x| + |y| + |z| = & ' ) max |x|, |y|, |z| =
) x + y + z = xyz
)
√ √ √ x+ y+ z =
B$&U N+M 0 #. N# G#U 5&V $. E 0 .$ .&3 &0. E $. RQ .$ Xb *$. $ ) *Z#. $ E& 6\ G#U 0 5F E ![1 *$ O $& !VO 0 ( U0& )9 E . h & r(u, v) = Z"# 0 Z &0 D . D $ S M r : R → R −−−−−−−−−−−−−−−−→! v), y(u, v), z(u, v) &F −x(u, *O&0 . M "0 D $ A D 0 z y x v $ e0 U# *O&0 3 D 0 r A; *O&0 3 0 z y x v $ e0 U# *O&0 . + IntD 0 r A *O&0 #n3 t 6 IntD
D :
+ { − v sin(u/)} sin u j + v cos(u/) k
S : y = ;
≤x≤
, ≤ z ≤
≤ u ≤ π , −
S : z =
;
≤x≤
, ≤ y ≤
S : z = ;
≤x≤
, ≤ y ≤
≤v≤
$. $ . N# & M U R# 0 ( #n3& ( ) #. R# *$ O ) ** 0 *A QC }
** &a E (+"1 98* !VO >. T R# −.$−−−*−S−−:−−z−→= x + y M x= A .8 M f = (−x, −y, ) f (x, y, z) = z − x − y . #. R# *( #. S ]3 *( T GB&L . + U#C 5 M0 #. M Z# & q0 5 S+ ?z[1 x = x= &0 *A$ O ) GB J* !VO 0C ( A$ & S R# 0&0 *z = u M Z#S [ y = u sin v u cos v &F D : ≤ u , ≤ v ≤ π $ O x=
−−−−−−−−−−−−−→ S : r(u, v) = (u cos v, u sin v, u ) ; (u, v) ∈ D
O .&3 !VO 0 U# O I S #. X R# 0 *O Z#. $ >. T R# .$ *S : y = x M x= A4 .8 GB&L 6+ M f = −(−−−−x,−−−,−→) f (x, y, z) = y − x . #. R# *( #. S + R# 0&0 *( T −−−−−→ 5 #E S : r(u, v) = (u, u, v) ; (u, v) ∈ D >. T 0 B$&U R = 0 *A$ O ) % J* !VO 0C $ + .&3 & . $0 X = (−, , ) Y\ .$ S 0 /&+ T
−−−−−−−−→ n = f (X ) = (−x, , )
X
−−−−−→ = (, , )
h $. T B$&U >. T R# .$ *Z#S h .$ . Y\ .$ S 0 $ +, y B$&U *( x + y + = $& x + = y − = z − E ( >.&[, c X *rx + = y , z = s
}
** &a E ; (+"1 9H* !VO 9$ + .&3 5 #E !VO 0 . & F E N# −−−−−→ S : r (u, v) = ( , u, v) −−−−−→ S : r (u, v) = (u, , v) −−−−−→ S : r (u, v) = (u, v, )
−−−−−→ S : r (u, v) = (, u, v) −−−−−→ S : r (u, v) = (u, , v) −−−−−→ S : r (u, v) = (u, v, )
R# 0&0 * ≤ u ≤ ≤ v &≤ & F + .$ M' *O&0 S 0 ]@ N# A = r , r, r, r , r , r #. 0 $ ).& ^Y S M x= A .8 Z *O&0 z = z = >&T x + y = 0 . S . h R# 0 *( #. N# S M Z$ 5&6 9ZM Z"\ (+"1 S = S ∪ S ∪ S
S : z = ; x + y ≤
S : z = ; x + y ≤
S : x + y = ;
≤z≤
0C ZM ' @ #E KO 0 #&6\ , + R# 0 9AGB 8* !VO −−−−−→ r (u, v) = (u, v, ) ; u + v ≤ −−−−−→ r (u, v) = (u, v, ) ; u + v ≤ −−−−−−−−−−−−−→ r (u, v) = ( cos u, sin u, v) ; ≤ u ≤ π ,
≤v≤
*( S 0 "@ A = {r , r , r} >. T R# .$ .$ 0 !VO !Y " nb&M . S * / 0 . A .8 Z 0 F $ ]< &Q .$ Z N# F O&0 .& mU / 0 . 4&0 M $$S !T&' VO ZM !T .&3 0 D. N# *A$ O ) % 8* !VO 0C ( 9( #E 6\ E $& 5F 5$M r(u, v) = { − v sin (u/)} cos u i
}
)
Ω : x + y + z =
)
Ω : x + y =
)
Ω : x + y = , z = , z =
)
Ω : |x| + |y| + |z| =
)
Ω : x/ + y / + z / =
)
Ω : x + y =
)
Ω : x = y , y = x , z = , z =
)
Ω : x = , y = , z = , x + y + z =
)
, x + z =
, z = , x + y + z =
Ω : x = , x =
, y = z , z =
S : r(u, v); (u, v) ∈ D Z#S >. T R# .$ *X = r (u , v ) (u , v ) ∈ IntD &+ S 0 X Y\ .$ r (u , v ) r (u , v ) &. $0 *O&0 $ +, S 0 X Y\ .$ r (u , v ) × r (u , v ) nB .$ *#0 h .$ . S 0 e1 h(t) = r(t, v )
>. T R# v
u
u
** &a E 8 H (+"1 9J* !VO >. T R# .$ −*−S−−:−−x−−+→y + z = M x= A5 .8 ]3 *f = (x, y, z) f (x, y, z) = x + y + z x = y = z =s U 0 rf (X) = X ∈ S s pO ]3 *O&0 1& M ( rx + y + z = x = cos u cos v x= &0 *( . M #. N# S M ρ = &0 M >&j L C z = sin u y = cos u sin u 9(O 5 Aθ = u ϕ = v
v
4
h (u ) = ru (u , v ).
h(u ) = r(u , v ),
*( /&+ X = r(u , v ) .$ S 0 r (u , v ) R# 0&0 /&+ X = r(u , v ) .$ S 0 r (u , v ) 0&6 >. T 0 2 *( #0 4 XY *( X ∈ S S : f (x, y, z) = c Z#S MC >. T R# .$ *Af (X ) = 0 U#C ( Zh Y\ *( Zg&1 X .$ S 0 f (X ) 0 ?za . f (x, y, x) = c #. mU B$&U ( =&M >. T 0 . S #. ]< *z = h(x, y) 9$ + !' z X"' >. T R# .$ *ZM .&3 r(x, y) = (x, y, h(x, y)) u
v
rx (x , y ) = ry (x , y ) =
−−−−−−−−−−−→ −−−−−−−−−−→! fz , , , hx (X ) = , , − fx X −−−−−−−−−−−→ −−−−−−−−−−→! , , hy (X ) = , , − fz . fy X
S :
−−−−−−−−−−−−−−−−−−−−−−−−−→ r(u, v) = ( cos u cos v, cos u sin v, sin u) (u, v) ∈ D
!VO 0 *D
: −π/ ≤ u ≤ π/ ,
≤v
≤
π 5F .$ M
*$ O ) GB 7* >. T−−R# −−−.$−−−*S−−−:→z = x + y M x= A0 .8 f = (−x, −y, z) R# 0&0 f (x, y, z) = z − x − y V #. N# S ]3 *$$S T (, , ) .$ & S 0 M S pL z = u y = u sin u x = u cos v x= &0 *O&0
!VO 0 .
4
S :
−−−−−−−−−−−−→ r(u, v) = (u cos v, u sin v, u) (u, v) ∈ D
r = z = u &0 >&j L C $ + .&3 5
*( D : u ∈ R , ≤ v ≤ π $ 5F .$ M Aθ = v *$ O ) % 7* !VO 0 }
.$
rx (x , y ) × ry (x , y ) = =
− −−−−−−−−−−−→ − fx fy , , fz X fz X fz (X )
f (X )
** q1 E ZV' 5 M *( f (X ) . $0 E M 2 *$$S uL0 .$ 5F q1 R# $0.&M i j .$ #& B&a
*( O $.F H !j= E
** &a E 7 J (+"1 97* !VO 0
90&0 S 0 "@ *( Ω ).& ^Y S $. .$ ) Ω : x + y + z = x
-
−
+
=
, fx + fy + fz dxdy =
|fz |
! `GF b, !F 7
fx fy + − dxdy fz fz
=
|fz |
f (X ) dxdy
*&[f !0&1 0&6 >. T 0 $. #&
2
#. S
M x= f (x, y, z) Av e0& C B&V 5 O&0 O .&3 ` ^Y >. T R# .$ *$ 0 O G#U 5F 0 !VO 0 . S 0 f : r(u, v) ∈ D
00
00
f dσ := (S)
! f r(u, v) ru × rv dudv
u
D
#. !M (= 0 0 . \ R# #$ 5&0 0 *ZM G#U r(u + du, v) r(u, v) / g. &0 NQ M UY1 S #E ( S Z#0 h .$ S 0 . r(u + du, v + dv) r(u, v + dv) `?- r(u, v) .$ / . N# &0 `?-_ E 5F &0 &F M $ + x= c (=S h .$ 5 . r dv r du . \ .$ *O&0 f (r(u, v)) 0 0 (0&f 5F 0 f ('&" %qT&' &0 ( 0 0 S E NQ M UY1 R# (= ('&" & *r(u, v) Y\ .$ f e0& . \ .$ `?-_ E
&. $0 ).& %qT&' E 0 0 `?-_ E R# R# 0&0 *O&0 5F E& v
dQ
#. N# 0 B&V 5 N# ` ^Y ` y Z+U # E R# *( A^Y C *O&0 &S $ 4 Z+U #$ E ( M Z#. $ E& ('&" 5&+B 4 0 R# G#U 0 *Z#E $3 5F ^#6 0 O .&3 #. N# S M x= . S 7E LFH >. T R# .$ O&0 r(u, v) 6\ y 5 .&j 0 *ZM G#U dσ = r ×r dudv !V60 .$ S 0 /&+ NQ M `?-_ E ('&" dσ M (S " r dv r du E >.&[, 5F e- $ M ( r(u, v) Y\ *A$ O ) * !VO 0C u
}
#. N# ('&" 5&+B 9* !VO !VO 0 i& $. .$ . ('&" 5&+B 9$ + [& 5 #E &F S : f (x, y, z) = S AGB dσ =
0 O&0 O !V6 (+"1 Q E S #. l&Q (0 $ , ]< $ + [& &S ) & F E N# 0 . *ZE e+) . F f
dσ =
dσ =
(S)
D
&F S : 0f0(x, y(x, z), z) = a , (x, z) ∈ D S A%
00
h dσ = (S)
D
! f dxdz h x, y(x, z), z |fy |
&F S : 0f0(x(y, z), y, z) = a , (y, z) ∈ D S A:
00
h dσ = (S)
! f dydz |fx |
h x(y, z), y, z D
+
,
&F S : 0f0(x, y, z(x, y)) = a , (x, y) ∈ D S AGB ! f dxdy h x, y, z(x, y) |fz |
f f f dxdy = dxdz = dydz |fz | |fy | |fx | ,
v U0& h #. S M x= >. T R# .$ *$$S G#U S 0 M O&0 h dσ =
u
u
! = ru du × rv dv f r(u, v) ! = f r(u, v) ru × rv dudv
00
v
dσ = z
&F S : z = f (x, y)S A%
+ (fx ) + (fy ) dxdy
&F S : y = f (x, z) S A:
+ (fx ) + (fz ) dxdz
&F S : x = f (y, z) S A$
+ (fy ) + (fz ) dydz
X"' 0 . f (x, y, x) = c #. mU B$&U l&Q >. T 0 . S #. *z = h(x, y) 9ZM !'
−−−−−−−−−→! r(x, y) = x, y, h(x, y)
.$ *$ + .&3 5
*−−−−−−→ −−−−−−→* * * dσ = rx × ry dxdy = *( , , hx ) × (, , hy )* dxdy , *−−−−−−−−−→* * * = *(−hx , −hy , )* dxdy = + hx + hy dxdy
# $ Z T−xz 0 S # j M R# 0 ) &0 D : x + z ≤ ,
.$
y = x + z
00
00
(S)
r cos θ sin θ + r
= D
(0
0
= =
! + r + r
cos θ sin θ +
r
0
π
+
r +
+
dθ dr dr
π
( O x= AC .$ M 9( T−rθ
r +
D : −π/ ≤ θ ≤ π/ ,
pL E +"1 S M . T .$ A .8 e0 T−yz 0 5F # j x ≤ 5F .$ M O&0 ,− ≤y≤
*M [& D 0 . h = x ( .$ f = y + z − x E ( >.&[, S #. mU e0& *!' dσ
= =
+ 00 , (y + z ) + y + z + dydz h dσ = − y + z | − y + z | D (S) √ 00 ! = y + z dydz 00
D
=
( √ 0 0
−
√ 0
−
00
00 h dσ =
−
) (y + z ) dy dz
+ z
dz =
√
+ (fx ) + (fy ) dxdy
&F S : y =! f,(x, z) , (x, z) ∈ D S A
+ (fx ) + (fz ) dxdz
h x, f (x, z), z
(S)
D
00
00
&F S : x =! , f (y, z) , (y, z) ∈ D S A + (fy ) + (fz ) dydz
h f (y, z), y, z D
$& ;*;* q1 ^Y G#U E ( =&M 2
*$ O
M #_&0 + S +M . T .$ A& '() $ S 0 . h = z x + y O&0 x + y + z = *M [&
f = x + y + z E >.&[, S mU e0& B&" R# .$ *!' .$ ( dσ
= =
−−−−−−−−→ (x, y, z) f dxdy = dxdy |fz | |z| + x + y + z dxdy = dxdy z z
Z#S z X"' 0 f = B$&U +!' &0 =@ E ( >.&[, T−xy 0 5F # j M z = − x − y *;* E AGB C (+"1 0&0 .$ *D : x + y ≤ E Z#. $ 00
00
z
h dσ = (S)
D
=
−−−−−−−−−→ f (−x, y, z) dydz = dydz |fx | | − x| + x + y + z dydz |x|
( D e0 E >.&[, T+ −yz 0 S # j V# 0 ) &0 (+"1 0&0 .$ x = − y + z Z#. $ S #. 0 c Z#. $ *;* E A:C
=
D
√
≤r≤
x = y + z
D : − ≤z≤
(S)
(S)
)
&F S : z =!f,(x, y) , (x, y) ∈ D S A$
h x, y, f (x, y)
h dσ =
dr
u (u − ) du =
.$ D # j D u =
dxdz
r drdθ
−π/
√
π
=
r +
π/
−π/
()
+ !
0 $ + %π/ r r + (θ − cos θ)
0
=
Z#. $ S 0 V# 0 ) &0 c O&0
Z#. $ *;* E A%C (+"1 0&0
D
00
00 h dσ =
≤x
!+ xz + (x + z ) x + z +
h dσ =
00
00
, x + y
z
dxdy
, ( − x − y ) x + y dA
D
=
00
( − r )rr dA
D
#0
" #0
π
=
=
(π)
dθ
−
" ( − r )r dr
= π
q0 5 S + E +"1 S M . T .$ A, .8 h = xz + y e0& *y ≤ ≤ x M O&0 y = x + z *M [& . S 0 .$ *f = x + z − y E ( >.&[, S #. mU e0& *!' dσ
= =
−−−−−−−−−→ (x, − , z) f dxdz = dxdz |fy | |− | + x + z + dxdz
= # " > > −y ? = − y (z − y) + + +() dydz − y D ) 00 0 (0 = (z − y) dydz = (z − y) dy dz 00 ,
−
D
0
=
T E +"1 0 h = x +x +y +y z e0& E A .8 *#0 $. $ . 1 Z 6 N# .$ M x + y + z = B&" R# .$ M $ O h'? *!' S : z=
z dz =
T−xy 0 S # j D : ≤ x ≤ , ≤ y ≤ − x M Z#. $ *;* E A$C (+"1 0&0 .$ *(
M 0 h = z / e0& E
A5 .8 *#0 9ZM .&3 M >&j L N+M 0 . S M *!'
S : x + y + z =
00
h dσ = (S)
−−−−−−−−−−−−−−−−−−−−−−−−−→! r(ϕ, θ) = cos ϕ cos θ, cos ϕ sin θ, sin ϕ
00
x+y x + y + ( − x − y)
=
) &0 *D* : −π/* ≤ ϕ ≤ π/ , ≤ θ ≤ π 5F .$ M . dσ = *r × r * dϕdθ ('&" 5&+B #&0 0 *;* 0 9ZM [&
θ
D
=
ϕ
*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! dσ = * − sin ϕ cos θ, − sin ϕ sin θ, cos ϕ −−−−−−−−−−−−−−−−−−−−−−−−→!* × − cos ϕ sin θ, cos ϕ cos θ, * dϕdθ *−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→!* = * − cos ϕ cos θ,− cos ϕ cos θ,− sin ϕ sin θ *dϕdθ = cos ϕ dϕdθ
√ 00
(x + y) dxdy =
00 h dσ
=
(S)
D
#0
( sin ϕ) cos ϕ dϕdθ π/
" #0
sin ϕ cos ϕ dϕ
=
=
× × π = π
−π/
"
π
+
( √ 0 0 −x
( − x)
) (x + y)dy dx √
dx =
S : y = x − z ; (x, z) ∈ D
.$ *( T−xz 0 S # j D : x + z ≤ z i1 M Z#. $ *;* E AC (+"1 0&0 00
00
+
h dσ = (S)
D
00 =
S = S + S + S + S + S + S ,
+ (− ) + (− ) dxdy
+"1 0 h = z/ + x + z e0& E A .8 y M y = x − z B Bn 5 S+ E *#0 ( O ) x + z = z B&" R# .$ M $ O h'? *!'
dθ
>&T 0 $ XUV Ω M . T .$ A0 .8 ^Y S $ 0 z = y = x = >&T &j L
*M [& S 0 . h = xyz O&0 Ω ).& 9$ O !V6 !VO e0 UY1 uO E #. R# *!'
,
D
√ 0
= x( − x) +
Z#. $ .$ 00
− x − y ; (x, y) ∈ D
00
z dz = D
0
π
(0
+
z + x + z
+ x + z dxdz
r sin θ.r drdθ D
sin θ
=
) r sin θ dr
dθ =
0
π
sin θ dθ = π
E +"1 0 h = x(z − y) e0& E +A4 .8 O ) z = z = >&T y M x = − y *#0 ( B&" R# .$ M $ O h'? *!'
S : z =
; (x, y) ∈ Dxy , S : z = ; (x, y) ∈ Dxy ,
S : y =
; (x, z) ∈ Dxz , S : y = ; (x, z) ∈ Dxz ,
S : x=
S : x =
; (y, z) ∈ Dyz , S : x = ; (y, z) ∈ Dyz ,
!Y " E >.&[, T−yz 0 S # j D
,
T−xy 0 S # j E >.&[, X 0 D D D M 9 " T−yz T−xz yz
Dxy : Dyz :
≤ x, y ≤ ≤ y, z ≤
. .
Dxz :
xz
≤ x, z ≤
D :
xy
,
00
≤z≤
,− ≤y≤
Z#. $ *;* q1 E AC (+"1 0&0 .$ *( h dσ =
(S)
− y ; (y, z) ∈ D
9#0 S 0 h E $. .$ 0 % z = −x −y q0 5 S+ E +"1 S f = z A *$. $ . 1 T−xy _&0 .$ M + M E O ) VQ M (+"1 S f = z x + y A; *( z = a/ T y x + y + z = a x + y + z = M E +"1 S f = x + y + z A *( O ) x + y = x y M ( y M ( x + z = E +"1 S f = y A *( O ) y = y = >&T x + y + z = T E +"1 S f = x + y + z AH *$. $ . 1 Z 6 N# .$ M ( E ≤ x &q= Z .$ e1 V+ S f = z A8 *( x + y + z = $ 3 ).& ^Y S f = x + y + z AJ *( z = z = >&T x + y = 0 M ( x + y + z = M E +"1 S f = x A7 ) x + y = z x + y = z K Y y *$. $ . 1 ≤ x &q= Z .$ $$S
0 $ pL ).& ^Y S f = x + y + z A *O&0 x = T x = y + z T 0 $ 4 ).& ^Y S f = z AI *( &j L >&T x + y + z = + o1& pL ).& ^Y S f = y x + z A y = y = >&T y = x + z 0 $
*$. $ . 1 ≤ x &q= Z .$ O&0
|x| + |y| + |z| = ) (6 S f = |x| + |y| + |z| A; *( & F + M ( !#{ i . $ ` ^Y 9&[f !0&1 &S $ i E $& &0 ' . 0 a v e0 h h h M x= & M ZM x= ?U0 *O&0 #. S S S (0&f $ , b >. T R# .$ *O&000 T S ∩ S00 ('&"
) ∀X ∈ S : h (X) ≤ h (X) ⇒
(S)
h dσ ≤
& ' ) min h(X) | X ∈ S × Area(S) ≤
00 h dσ (S)
(S)
h dσ
Z#. $ *;* E AC AC A$C $. 0 ) &0 .$ 00
00
, xy( ) + () + () dxdy
h dσ = (S)
(S )
00
, xy() + () + () dxdy
+ (S )
00
,
+
x( )z
(S )
00
x()z
+ (S )
00
+
, ( )yz
(S )
00
+
=
()yz
(S )
00
,
Dxy
=
+ () + () dxdz + () + () dydz + () + () dydz
00
00
xy dxdy + #0
,
+ () + () dxdz
xz dxdz +
Dxz
" #0
x dx
Dyz
"
yz dydz
y dy
=
' . ≤ x ≤ π M y = sin x A2 .8 f = e0& E *$$S !T&' S #. $ $ 5 .$ . −x + *#0 S 0 / − y − z >. T 0 . S #. *!' S : y + z = sin x ; y + z ≤
' 5 .$ # E v u
ZM x= *$ + 5&0 5
Z#. $ X R# 0 *( . −x
= x
−−−−−−−−−−−−−−−−−−→! S : r(u, v) = u, sin u cos v, sin u sin v ; (u, v) ∈ D
.$ *D : ≤ u ≤ π , ≤ v ≤ π 5F .$ M dσ
* * *ru × rv * dudv *−−−−−−−−−−−−−−−−−−→! * * , cos u cos v, cos u sin v
= =
−−−−−−−−−−−−−−−−−−−→!* , − sin u sin v, sin u cos v ** dudv *−−−−−−−−−−−−−−−−−−−−−−−−−−−−→!* * * * sin u cos u, − sin u cos v, − sin u sin v * dudv + + cos u dudv sin u. ×
= =
R# 0&0
00
00
+
f dσ = (S)
D
− sin u
00 sin u ddv =
= D
0
+ + cos u dudv . sin u.
π
sin u du
#0 π
" dv
= π
60 $ U 0 5$ 0 Z = !0&1 U# XY 5$ 0
+, $ $ &$0.&M R# 0&0 ( O =S h .$ 5&S E ^Y RV+ &$0.&M + E 1 $ U & O *O&0
N# 0 0 (0&f . h l&Q 7JD) . !) ('&" U 0 S E NQ M 5&+B N# (= &F Z#0 *O&0 S ('&" U 000S !M (= .$ *( 5F *Area(S) = dσ M Z#S R# 0&0 E !T&' % ^Y ('&" A& .8 '() [& . a < b `&UO 0 # $ ' a `&UO 0 # $ 5 .$ *M R# B$&U M Z#S vv E A8C (+"1 N+M 0 *!' + 0 M ( S : x + y − b + z = a E >.&[, #. >. T
) ) )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! (a cos u + b) cos v, (a cos u + b) sin v, a sin u
5F .$ ( 5$M .&3 !0&1
D :
≤ u ≤ π , ≤ v ≤ π
&0 ( 0 0 5F ('&" 5&+B ?U0
* * dσ = *ru × rv * dudv *−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! * = * − a sin u cos v, −a sin u sin v, a cos u ×
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→!* * × − (a cos u + b) sin v, (a cos u + b) cos v, * dudv * −−−−−−−−−−−−−−−−−−−−−−−→!* * * = *a(a cos u + b) −cos u sin v, cos u cos v,−sin u *dudv
= a(a cos u + b) dudv
&0 ( 0 0 S !M ('&" .$
00 Area(S) =
dσ = (S)
#0 π =
a
00
a(a cos u + b) dudv D
(a cos u + b) du
" #0
dv
= π ab
' C : x + z = a y = # $ 5 .$ E !VO R# M $. $ . 1 T 0 # $ R# *$ O !T&' & z .
C : x + y = b # $ 0 5F cM $.nS & z . E C y %qT&' 0 0 S ('&" V# XB&) *$. $ . 1 ( C y .$ z = x + y q0 5 S+ E +"1 ('&" A, .8 *M [& . ( $ z = a T 0 M >. T 0 . #. R# >&j L N+M 0 *!' −−−−−−−−−−−−−→! r(u, v) = u cos v, u sin v, u
00 h dσ =
(S +S )
00
(S)
dσ (S)
(S)
00
h dσ + (S )
Area(S) =
h dσ (S )
00 00 ) h dσ ≤ |h| dσ (S) (S)
4&") !M (= ` ^Y N+M 0 M . @ 0 S ?za *$ + [& 5 . U0 &q= .$ U0 $ N+M 0 &F Z 0 . #. N# E Y\ 4) B&Q 5 . #. uQ `&UO !\f cM 4) ` ^Y ` R# S.&V0 .$ M T 0 &# .$ *$ + [&
*ZM ^#6 . &0 #. N# S M x= BV K+ 5 h(x, y, z) M x= *(u, v) ∈ D M ( r(u, v) 6\ G#U S 0 M ( A v e0& C B&V (= 5&+B 0 S 0 h !M (= [& 0 *$$S
/ g. &0 UY1 ( =&M . h R# 0 *ZM [& . S 0 . r(u + du, v + dv) r(u, v + dv) r(u + du, v) r(u, v) r du &. $0 0 . `?-_ E &0 . 5F =S h .$ (0&f UY1 R# 0 h ZM x= ]< *Zc0 X#\ r dv 0 0 UY1 R# (= X R# 0 *O&0 h(r(u, v)) 0 0 &0 ( ! dQ = `?- _ E ('&" × h r(u, v) u
v
=
"
π
(S)
00
! `GF b, !F N $7
(S)
r(u, v) =
00
& ' ≤ max h(X) | X ∈ S × Area(S) 00 00 ! ah + bh dσ = a h dσ + b h dσ
=
* * *ru du × rv dv * h(r) * * h(r) *ru × rv * dudv
9( S 0 h ` ^Y 0 0 S !M (= .$ 00 Q
=
dQ D
00
=
! h r(u, v) ru × rv dudv
D
00 h dσ
= S
^Y &$0.&M E 0 5&0 0 $ .$ & &$0.&M R# %&L .$ M ( #0 *Z#E $3
00
00 m=
δ dσ , (S)
y =
m
x =
m
00
xδ dσ,
.$ *D : ≤ u ≤ a , ≤ v ≤ π 5F .$ M ZM .&3 E ( >.&[, . Mn #. ('&" 5&+B
zδ dσ.
dσ
(S)
00
yδ dσ ,
z =
m
pL E (x, y, z) Y\ Z#S A& '() % + δ = x + y + z 4) B&Q . $ z ≤ &0 z = x + y *0&0 . 5F !\f cM 4) *( + S : z = x + y ; (x, y) ∈ D >. T 0 . #. R# *!' 5F ('&" 5&+B *D : x + y ≤ M $ + ^#6 5
E >.&[, dσ
(S)
(S)
= # " # " > > x y ? = + + + + dxdy x + y x + y √ dxdy =
0 0 S 4) .$ *( 00 m
= = = =
* * *ru × rv * dudv *−−−−−−−−−−−→! −−−−−−−−−−−−−−−→!* * * * cos v, sin v, u × − u sin v, u cos v, * dudv *−−−−−−−−−−−−−−−−−−−−→!* * * * − u cos v, −u sin v, u * dudv + u + u dudv
Area(S)
=
δ dσ
00 dσ =
(S)
dv
π
π
+
" 0
π
= =
u
+ u dudv
D
#0
=
=
&0 ( 0 0 S ('&" R# 0&0
00
a
u
+
( + u )/
(a + )/ −
+ u du
a
(S)
, " √ 00 # = x +y + x +y dxdy D
=
√ 00
√ 00
! x + y dxdy =
D
#0 π √
" #0
"
r r drdθ
D
r dr
=
=
(π)() = π
dθ
√
√
v −x 0 x # U &0 5F B&Q e0& S #. 5 Q *( .$ $. $ . 1 x = T 0 S !\f cM M+ cM y o L 0&6 !B$ 0 *( T S !\f cM x o L
&0 ( 0 0 S !\f cM z o L *O&0 T c S !\f 00
z
=
=
m
m
zδ dσ (S)
00 , √ x + y (x + y ) dxdy
D
00
=
=
x + y
D
#0
!/
" #0
π
dθ
00 dxdy =
" r dr
=
r r drdθ
D
π
*( C = (, , π/) 0 0 S !\f cM R# 0&0 Y\ M 5F 0 p6 ' XUV ^Y 4) A, .8 (0 . O&0 δ = x + y + z 4) B&Q . $ 5F E (x, y, z) *#.F
0
9M [& . #E &#. E N# ('&"
y M z = x + y q0 5 S+ E +"1 A *( O ) z = z = >&T T y M y = x + z pL E +"1 A; *( O ) y = y M z = x − y B Bn 5 S+ E +"1 A *( O ) x + y = *|x| + |y| + |z| = a . 0 ^Y A *(x + y + z) = a (x + y − z) #. ^Y AH 5 .$ . −x ' . [a; b] E&0 0 y = f (x) e0& . $ + A8 *Z#.F (0 . S #. $ $ ∗
−−−−−−→! ' . C : r(t) = −x(t), y(t) ; a ≤ t ≤ b AJ *Z# $.F (0 . S #. $ $ 5 .$ . −x . ** E &a .$ O F / 0 . ('&" A7 *M [&
+ < E1n 4L) + QR . !) 2 L $
) B&Q . $ S #. E (x, y, z) Y\ M x= &+B D. S.&V0 &0 >. T R# .$ *O&0 δ(x, y, z) m 4) M $$S &6 A&S $ 0 [O ?z &MC 9( RQ >.&[, S #. C = (x , y , z ) !\f cM
00
Y\ T&= h M I := hδ dσ E ( >.&[, P ' R# .$ O&0 S 4) m S *O&0 P , + +& (x, y, z) ∈ S *Z & P ' S uQ `&UO . R := I /m >. T . −y . −x O DZ [ 0 0 P S i& (B&' .$ R# .$ O&0 T−yz T−xz T−xy . −z &0 0 0 X 0 P ' S #. & .& 6S >. T 00 P
(S)
P
P
00
δ dσ (S)
00
=
x+y+ (S )
! y + z δ dσ
00
(S)
! x + y δ dσ
Iz =
00
Ixy =
(S)
=
(S)
00
00
y δ dσ
Ixz =
Iyz =
(S)
x δ dσ
! x + y + z δ dσ
IO = (S)
00
! , + (− ) + () dxdy x + ( − x) + z z
= D
( √ 0 0
z x − x +
√ 0
x − x +
! + z dz
dx =
) dx
√
' x + y + z = R &Q M uQ `&UO A, .8 *M [& . . −z 9ZM .&3 . S =S N+M M >&j L E *!' −−−−−−−−−−−−−−−−−−−−−−−−−−→! r(ϕ, v) = R sin ϕ cos θ, R sin ϕ sin θ, R cos ϕ
E J (+"1 &+ *D : ≤ ϕ ≤ π , ≤ θ ≤ π 5F .$ M M $$S h'? H*;* * * dσ = *rϕ × rθ * dϕdθ = R sin ϕ dϕdθ
E ( >.&[, . −z ' S & .& 6S .$ 00
Iz (S) = (S)
! x + y δ dσ
00 (S )
00
!
x + y + 00
!
dσ +
=
x + z +
!
dσ
!
dσ
Dxz
y + z +
0 #0 0
+y+z
(S )
00
!
dσ
Dyz
=
! x + + z dσ
+ z dσ +
+ y + z dσ +
+
(S)
00
x+
(S )
Dxy
T E +"1 S M . T .$ A& '() D0 z = &j L >&T y M O&0 x + y = O&0 δ = z B&Q . $ (x, y, z) ∈ S Y\ ( $. *M [& . DZ [ ' S & .& 6S S : y = − x ; (x, z) ∈ D >. T 0 . #. R# *!' .$ *D : ≤ x ≤ , ≤ z ≤ M $ + ^#6 5
&0 ( 0 0 DZ [ ' S & .& 6S
(S )
+ 00
z δ dσ
! x + y + dσ
!
00
(S)
00
00 dσ +
(S )
! x + z δ dσ
Iy =
!
00 +
(S)
Ix =
=
00
m =
! x + y + z δ dσ
IO =
=
4) *Z# $ + GT H*;* E 7 (+"1 .$ . #. R# *!' &0 ( 0 0 S #.
" (x + y + ) dy
dx
(x + ) dx =
0 &
. 8** &a E ; (+"1 .$ #. !\f cM >&j L A *0&0 R+ ^Y E 6L0 !\f cM +>&j L A; #0 x + y = ax ^Y y M z = x + y *M [& . ( O Ω : ≤ x, y, z ≤ ' XUV ^Y S M . T .$ A O&0 δ = x +y +z 0 0 (x, y, z) Y\ B&Q O&0 *0&0 . S !\f cM 4) R+ M ^Y E +"1 !\f cM >&j L A z = a z = >&T y M x + y + z = R *0&0 . $. $ . 1 ≤ y &q= Z .$ ( O ) * < a < R &# .$ >&T 0 $ 4 ).& ^Y !\f cM >&j L AH M 0&0 . T .$ . x + y + z = T &j L
δ = x+y+z ) B&Q . $ 5F E (x, y, z) Y\ *O&0 Z8
+
)
+CcG
. !)
2 L *
Y\ M x= )R + < ] Y\ N# P $ 0 δ(x, y, z) ) B&Q . $ S #. E S & .& 6S >. T R# .$ *O&0 T N# y N# (x, y, z)
.$ *ZM .&3 D : ≤ x ≤ , ≤ z ≤ 5F = 00 > > ?
00 Area(S) =
dσ = (S)
00
D
dxdz + − x
= D
=
# +
+
" #0
#0
"
−x
− x
dz
−
+
x % $ z arcsin = π
=
0 0 . −x & mean h = S
=
=
=
=
00 Area(S)
+ ()
T&= M R# 0+ ) &0 Z#. $ ( h = y + z
S : y = ; (x, z) ∈ Dxz
S : x = ; (y, z) ∈ Dyz
≤y≤
−x
Dxz :
≤x≤
,
≤z≤
−x
Dyz :
≤y≤
,
≤z≤
−y
(S)
(S)
T dσ +
= (S )
xz
xy
dσ
00
00
(S )
00
T dσ + (S )
00 δ dσ = δ
(S)
dσ = δ Area(S) = πδ R
(S)
0 0 . −z ' S uQ `&UO R# 0&0 *( .
Iz = m
πδ R / = πδ R
.
R
0 ([" x + y + z = a R+ 3 & .& 6S A *M [& . . −z ' max &|x|, |y|, |z|' = a XUV ^Y & .& 6S A; ^Y B&Q e0& M R# x= &0 . >&j L DZ [
*M [& ( δ = |x| + |y| + |z| y M z = x + y pL E +"1 & .& 6S A ' . ( O #0 z = z = >&T 4) B&Q e0& M $ O x= *M [& +. −x *O&0 δ = z x + y R+ e0 & .& 6S A
∗
S : z = ,
≤x≤
,
≤y≤
O G#U S #. 0 h v e0& M x= p? >. T 0 . S 0 h y *O&0
00
T dσ ÷
S
00
< 2 a2 < =C) . !) 2 L
yz
mean T =
R
*M [& . x/a = y/b = z/c y '
T−xy 0 4 # j X 0 D D D M 0 *$ O ) I* !VO 0 * " T−yz T−xz E ( >.&[, T y X R# 00
πδ
0
− x − y ; (x, y) ∈ Dxy
,
sin ϕ dϕ =
& .& 6S S δ .$ $ ) 5.&\ !B$ 0 M $ O ) *( c $.n0 DZ [ E M #$ . ' S uQ `&UO *O&0 . \ R+
S = S + S + S + S
≤x≤
π
dθ
Rz =
(S)
" 0
#0 π
0 0 5F 4) ( (0&f S B&Q 5 Q =@ E m=
>&T 0 $ 4 ).& ^Y S M x= A, .8 5F E (x, y, z) Y\ M ( x + y + z = T &j L
#. R# p&\ & $ y *( T = x + y + z & $ . $ *M [& . 9$$S !V6 UY1 .& Q E 4 R# *!'
Dxy :
=
− x
h dσ
S : z = ; (x, y) ∈ Dxy
δ R
"
dx
00 dxdz ( − x ) + z + π − x D ) ( 0 0 + − x + z dz dx π − − x 5 0 4 + + + −x dx π − − x + x − x + arcsin x = π −
S : z =
(R sin ϕ)δ R sin ϕ dϕdθ
D
−
(x, y, z)
00 =
00 T dσ + (S )
T dσ
00 mean h = S
Area(S)
h dσ (S)
*$ + [& 5
0 e1 p&\ T&= e0 y A& '() T &j L >&T 0 $ x + y = *M [& . −x & . z = + .$ M S : y = − x ; (x, z) ∈ D !VO 0 . #. *!'
X =
( O x= B&" R# .$ M R# 0 ) &0 ( −−−−−→ Z#. $ v = ( , , ) (, , ) h
=
=
* i j k * √ * x y z * , √ (x − y) + (x − z) + (y − z)
÷ ()
=
I
= (S)
= =
=
=
=
T dσ +
÷
00 ,
00
+ =
− cos θ sin θ dθ =
mean I = S
I = Area(S)
=
( π × = π . \ 0 0 S ('&" M R# 0 ) &0 &0 ( 0 0 x = y = z y ' S .& 6S y R# 0&0 π 0
. z ≤ M z = x + y ^Y 0 p&\ `&. y A *M [&
y M ( x + y = T E +"1 S M x= A; ( O ) x + z = T &j L >&T *M [& . S 0 f y *f = x + y + z & F ` + M & $, z y x M x= A *M [& . & F %qT&' y *( a 0 0 &0 &Q e#& N# E & _& ( cL Ω M x= A x + y = a 0 m @ E M δ (0&f B&Q _&0 E z = x + y q0 5 S+ 0 Rg&3 E ^Y 0 .&6= y *( $ z = a T 0 *M [& . Ω ,&1
dσ +
(S )
00
dσ
(S )
,
+ (− ) + (− ) dxdy , (x + y + ) + () + () dxdy
×
00 ,
+ () + () dxdy
00 &
+
√ '
dxdy
Dxy
)
!
(S )
00 & √ ' x + y + dxdy ÷
! − cos θ sin θ r dr dθ
00
Dxy
! − cos θ sin θ r drdθ
−π/ 0 π/ cos θ −π/
T dσ ÷
(S )
dσ
+ (− ) + (− ) dxdy
Dxy
( π/ 0 cos θ
00 dσ +
Dxy
Dxy
D
D
(S )
(S )
00
00
00 dσ +
00 & ' x + y + ( − x − y)
+
h δ dσ
0
=
(S )
Dxy
+ (x − y) + x + y + + dxdy 00 ! x + y − xy dxdy
dσ +
(S )
5 S : z = ; (x, y) ∈ D !VO 0 . . Mn #. ?U0 >.&[, S .& 6S .$ *D : x + y ≤ x M $ + 5&0 E ( 00
00
00
00
) ( 0 0 −x & √ ' x + y + dy dx #
=
& √ ' ÷ + Area(Dxy ) √ √ " √ + − + = ÷
$& S S S R0 $ ) 5.&\ . AC .$ M R# ^- *Z# $M # $ 0 M O&0 T−xy E +"1 S M x= A .8 E (x, y, z) Y\ 4) B&Q O&0 $ x + y = x ' S & .& 6S y *( δ = x + y + z 0 0 5F *M [& . x = y = z y }
;** &a E ; (+"1 9I* !VO & (x, y, z) Y\ T&= M ZM ) . h R# 0 _> 0 0 v $& X &S V &0 y *−−−→ * *X X × v* h= v
) % * 0C ( O !V6 Zh b p&\ E z & S M 4&+ LB$ c b a &. $0 5 Q & *A$ O *+h }
. $ x +y+z = R M E (x, y, z) Y\ M x= AH E (+"1 5F 4) y *( δ = |xyz| 4) B&Q *M [& . $. $ . 1 4 Z 6 N# .$ M M
A `GF b, !F (7
;** E ; & +"1 9* !VO T 0 $ 4 Ω M x= A .8 0C O&0 5F ).& ^Y S ( &j L >&T 5&O 3 0 #E KO 0 6\ .& Q *A$ O ) I* !VO ) ;** E ; (+"1 0C $ + KY 5 S V.& Q 9A$ O
x+y+z =
−−−−−−−−−−−→! −−−−−→! r (u, v) = u, v, − u − v , r (u, v) = u, v, , −−−−−→! r (u, v) = u, , v ,
r (u, v) =
−−−−−→! , u, v .
, + 0 (u, v) & F & .& Q .$ M D :
≤u≤
,
≤v≤
−u
5F p&\ 4&+ S 4 e- .& Q c0 R# 0&0 *( tU
K - 0 S & B &O S E .&[, M p&\ #& *+h
*+h b p&\ , + #E $. E N# .$ 0 9M oL6 . O $ $ #. Zh
>&T y M ( z = T E +"1 S A *( O ) y = x = >&T &j L
>&T y M ( x + y = E +"1 S A; *( O ) x + z = z = y M (
pL E +"1 S A *( O ) x = x = >&T
5 4$ ` ^Y M (S 5 $& 5&0 0 F y S E . [, .&O . \ S . ) ^Y 0 F . $0 4 & ( 4E_ ` R# G#U E ![1 *O&0
*ZM ^#6 . ^Y N# 0 ( ) E Y\ X #. S M x= M ( `g )*"9 N# X Zg S . T .$ *O&0 5F . X M $$S (= 5&Q S 0 D $ &0 r & 6\ >. T 0 (u , v ) ∈ Int(D) 5 Q .$ Y\ N# E 0 .$ Y\ G#U &6 0C (O 5 0 r(u , v ) = X S 5.$ . S #. Zh p&\ , + *A$ O U) *8*7 0 *Z$ 5&6 IntS $&+ &0 & 5 S+ E +"1 S M x= A& '() O ) z = T y M ( z = x + y q0 −−−−−−−−−−→! r(u, v) = u, v, u + v 6\ N# & y . S *( .$ *D : u + v ≤ M $ + .&3 5
Int(D) : u + v < . E r y M @&\ + S 0 6\ & * " S Zh p&\ $S # j 5 U0 . S 0 u + v = O # j p&\ M (= 5 + .&[, S Zh b p&\ X R# 0 *$S 0 .$ Zh p&\ cM 0 # $ M S − Int(S) : x + y = , z = E * !VO 0 *( z = T .$ `&UO (, , ) *$ O ) GB ?z+, *O&0 R `&UO X cM 0 M S ZM x= A, .8 *$ + 5 S 0 AMC #&= v) 6\ (#& 0 *O&0 X .$ 0 &0 V# &U . $0 c b a ZM x= 9ZM G#U #E KO 0 6\ &' ! ! ! r(ϕ, θ) = R cos ϕ cos θ a + R cos ϕ sin θ b + R sin ϕ c D :
≤ ϕ ≤ π , ≤ θ ≤ π
E >.&[, D 5.$ 5 Q
x = y + z
*( ' XUV ^Y S A
Int(D) :
< ϕ < π , < θ < π
# j S 0 Int(D) e0 E r y M @&\ 4&+ ( S 0 # + N# & M $ O ) *+h p&\ O
)* *&O 3 5 0 .&SE& 6\ $ U y . 5F M Zg S ) 5F >&UY1 E N# 0 M ( #n< ) #. % *0 0 w 6 & $ 0 0&L >& ) ( O %&L 0 S #. 5&+ −S E . h O&0 . ) #. S S 0 ?z[1 S U# *( 5. ( ) &0 , + 5 , *ZM $& −n E −S 0 5 M O&0 O $& n E S R# .$ O&0 c V k . $ S #. S M ( M{ 0 4E_ *$ + G#U 5 S UY1 0 >& ( ) >. T M E +"1 S M x= A& '() & R# *$. $ . 1 T−xy _&0 .$ M O&0 x + y + z = S : x + y + z = , ≤ z ; (x, y) ∈ D !VO 0 . #. q1 E GB (+"1 0&0 *D : x + y ≤ M ZM 5&0 E .&[, S 0 Zg&1 V# &. $0 H** k
−−−−−−−−→! x, y, z f n = ± = ±+ f (x) + (y) + (z) −−−−−−
,−−−−−−−−−−→ ± = x, y, − x − y
!VO .$ *O&0 S #. mU e0& f = x + y + z M *( O $ $ 5&6 n ( ) &0 S #. GB * }
Y\ X ( #. S M x= . @ ( S 0 6\ N# r ZM x= *O&0 5F E Zh
&. $0 >. T R# .$ *r(u , v ) = X M ru (u , v ) × rv (u , v n = ±* *ru (u , v ) × rv (u , v
) * )*
*( N# 0 0 & F E 4 M @ $ +, S 0 X Y\ .$ U# * " r 6\ %&L E !\ " ±n M $ O (0&f >. T R# .$ $ $ ^- . X 5 0 c #$ 6\ &0 S Y\ .$ R# 0&0 *$ 0 −n n 0 !T&' &. $0 *$. $ $ ) Zg&1 V# . $0 $ & $ S #. E Zh
9( :& !0&1 ;** q1 E ' . 0 #E q1 0 i& & B&' .$ . −n n &. $0 $ 9$ + 5 #E !VO &F S :, f (x, y, z) = a S AnH −−−−−−−→! fx , fy , fz f n = ± = ±, f (fx ) + (fy ) + (fz ) −−−−−−−−→! fx , fy , − n = ±, S : z = f (x, y) + (fx ) + (fy ) −−−−−−−−→! fx , − , fz n = ±+ S : y = f (x, z) + (fx ) + (fz ) −−−−−−−−−→! − , fy , fz , n=± S : z = f (y, z) + (fy ) + (fz )
&F
S AK
&F
S Aw
&F
S A }
J** E ; & +"1 9* !VO pL E +"1 S M x= A, .8 0 . #. R# *( $. D0+z = T y M O&0 M $ + 5&0 5 S : z = x + y ; (x, y) ∈ D !VO &. $0 H** E % (+"1 0&0 5 M *D : x + y ≤ E .&[, S 0 Zg&1 V# z = x + y
n
−−−−−−−−−−−−−−−−−−−−−−→ " # y x + ,+ ,− x + y x + y = ±= # " # " > > x y ? + + + + x + y x + y −−−−−−−−−−−−−−−−−−−−−−→ # " x ± y + = √ ,+ ,− x + y x + y
6\ N# $0 0 ( ) AGB 9;* !VO .&SE& .} ) 6\ $ A% E 6\ r $ 0 #. S ZM x= % Zg&1 V# &. $0 ±n D AQ.&
r 6\ $ *A$ O ) GB ;* !VO 0C ( G#U .&SE& . T .$ . D D X 0 & $ &0 S 0 r O&0 V# r(D ) ∩ r(D ) , + 0 $ 5F ( ) M Zg S ]o % . T .$ . S #. *A$ O ) % ;* !VO 0C
&S ) . UY1 ]< $ + Z"\ V uO 0 ** . $0 n S 5 M *$ O ) % H* !VO 0 *ZM .&3 Z#. $ x= t0&Y &F O&0 S 0 ( ) i
i
n = i,
n = −i,
n = j,
n = −j,
n = k,
n = −k.
0 . S M ( M{ 5&O *$ O ) GB H* !VO 0 R#+ 5 , 0 $ + . ) 5 G L >. T = *M Z" $ 0 . & F E + Q 0 M ( Z 6 N# E +"1 Ω M x= A4 .8 S ( O $ z = T x + y = ZM . ) Z . @ . S *O&0 5F ).& ^Y *O&0 Ω E 50 0 . n . $0 . + M 0 #. k3 E ,&+ ) !VO 0 . S 0 . h R# 0 9Z"# #E KO S = S + S + S + S + S S : x + y = ,
≤ x, ≤ y, ≤ z ≤
S : z = , x + y ≤ ,
≤ x, ≤ y
S : z = , x + y ≤ ,
≤ x, ≤ y
S : y = ,
≤ x ≤ , ≤ z ≤
S : x = ,
≤ y ≤ , ≤ z ≤
i
i
=
= n
=
n
=
−− # −−−−−−−−−−−−→ " −x + ,− , − x ±= " ># > ? + −x + (− ) + () − x −−−−−−−−→ −−− + ∓ − x, − x ,
−−−−−−−−→! x, − ,
n = ±+ (x) + (− ) + () −−−−−−−−→! ± = + x, − , + x
. −y (+"1 0 . n ZM %&L . + l&Q . −y ([a (+"1 0 . −n ZM %&L . − S $ 0 *$ O ) GB * !VO 0 *$ 0 q0 5 S + E +"1 S M x= A .8 R# .$ *$. $ . 1 Z 6 N# .$ M O&0 x = − y − z S : x = − y − z ; (y, z) ∈ D !VO 0 . S >. T D : y + z ≤ , ≤ y , ≤ z M $ + 5&0 5
E .&[, S 0 Zg&1 V# &. $0 H** E $ (+"1 0&0 −−−−−−−−−−−−→! − , −y, −z
. $0 n S M $$S h'? H** q1 0 ) &0 5 M >. T R# .$ O&0 S 0 Zg&1 V# n
. − S $ 0 Rg&3 0 . n ZM %&L . + l&Q ) % * !VO 0 *$ 0 _&0 0 . −n ZM %&L *$ O O&0 y = x + E +"1 S M x= A .8 .$ *( O ) z = z = y = >&T y M 5 S : y = x ; (x, z) ∈ D !VO 0 . S >. T R# (+"1 0&0 D : − ≤ x ≤ , ≤ z ≤ M $ + 5&0 E .&[, S 0 Zg&1 V# &. $0 H** E A:C
n = ±+ (− ) + (−y) + (−z) −−−−−−−→! ∓ = + , y, z + y + z
. −x (+"1 0 . n ZM %&L . + l&Q . −x ([a (+"1 0 . −n ZM %&L . − S $ 0 *$ O ) % * !VO 0 *$ 0 }
−−−−−−−→! , , −
±+ = ∓k () + () + (− ) −−−−−−−→! , − , ±+ = ∓j () + (− ) + ()
.$ n M ( O 5 Q *n = ∓i n = ∓k - + & ?, E H* !VO 0 ) &0 O&0 50 0 . &' $& n n n n n &. $0 0 X 0 + + + *ZM
J** E & +"1 9* !VO *O&0 5F ).& ^Y S ' XUV Ω M x= A .8 (+ 0 . + M ZM %&L Z . @ . S 0 ( ) ( ) M $ O S &z'?YT (B&' R# .$C O&0 Ω E :.& E ; (+"1 & . S 0 . h R# 0 *A( "0
Q *$. $ . N# & #E }
R#?M Y0 98* !VO . $0 &0 . ) #. N# S M x= R# .$ $. $ . 1 F . $0 5 f& ( ( n ( ) 00 F n dσ !V60 . S 0 F 4$ ` ^Y >. T B&V 5 N# f = F n M $ O ) *ZM G#U *O&0 S 0 Av U0& U#C •
(S)
•
. $0 5 F F F M x= ('&" #n< ) &#. S S S \\' $ , b a >. T R# .$ *O&0 T S ∩ S 00
(aF + bF ) • n dσ =
) (S)
00 a
00 F • n dσ + b
(S)
)
(S)
00
00 F • n dσ =
(S ∪S )
)
00
00 F • n dσ +
(S )
F • n dσ
(S )
00
F • n dσ = − (−S)
F • n dσ
F • n dσ
(S)
5 S+ E +"1 S M x= A& '() z = T y M ( z = + x + y q0 . $0 5 *O&0 Rg&3 0 . n ( $. D0 −−−−−−−→ *M [& . S 0 F = x , y, z! S : z = + x + y ; (x, y) ∈ D >. T 0 . S #. *!' J* !VO 0 *D : x + y ≤ M $ + =U 5
>. T R# .$ *$ O ) GB −−−−−−−−−→! x, y, − n = ±, (x) + (y) + (− )
o L U#C O&0 Rg&3 0 . n ( . 1 5 Q M ?U0 *ZM %&L . (B&' AO&0 n E z
}
J** E 8 H & +"1 9H* !VO 0 . O =U & #. E N# 0 * ( ) Q M M oL6 $. .$ *M . ) LB$ *$ + G#U 5 O $ $ #. 0 G L
* ≤ z M x + y + z = x M E +"1 A *y ≤ M x + y + z = M E +"1 A; z = >&T R0 M x +y = z pL E +"1 A *$. $ . 1 z = − x + y = 0 $ 3 ).& ^Y A *x + z = z = >&T *max{|x|, |y|, |z|} = a XUV ^Y AH *|x| + |y| + |z| = a ) (6 . 0 A8 x + y = z pL 0 $ Z") ).& ^Y AJ *z = z = >&T &j L >&T 0 $ Z") ).& ^Y A7 *x + z = x + y = >&T x + y = # " & 0 $ , + A *x + z = O&[ #n< ) ( RV+ #. 78 =U . @ #. 0 .&SE& 6\ & $ U 5 U# &#. R# mU *&O <0 . #. ^Y ?z &M M $ + 9R#?M Y0 / 0 . E .&[, #n3&( ) *$ O ) % 8* !VO 0 _a \& M O&0 0 !Y " U M x= _jh " \, A X 0 . 5F / g. ( O & V _ ]) N# E . 1 BC e- 0 . @ . AD e- l&Q *Z &0 D C B Z N# 0 $ O t[Y D 0 C B 0 A M Z$ CD \' 0 . AB \' &' *$ O ) 8* !VO 0 *. \' 0 ( ) D 0 A &[Y 0 ?, M Z$ . 1 . @ 0 X R# 0 *$$S t[Y c DC \' 0 ( ) &0 AB ( #n< ) c #. R# *Z. jh " 4&0 #.
%&L . (B&' .$ O&0 . −y ([a ( ) 0 . Z#. $ ` + .$ ]3 *n = j U# ZM
00
00
−−−−−−−−−−−−−−−−−→! x − , − z, z − x • j dxdz
F • n dσ = (S)
D
00 =
(
− z) dxdz =
D ()
=
00
00 dxdz − D
.$ *dσ
D
$M $& z 0 ([" D 5.&\ z e0& 5$ 0 $= E AC .$ *( T D 0 z M Z# $ + &6
M ( x + y = T E +"1 S M x= A .8 #0 y + z = T y $. $ . 1 Z 6 N# .$ . −x ( ) 0 . n M M x= Rl+ *( O −−−−−−−−−−−−−−→! S 0 . F *F = x, x + y, x + y + z O&0 O $ *M [&
5 S : x = − y ; (y, z) ∈ D >. T 0 . S *!' !VO 0 *D : ≤ y ≤ , ≤ z ≤ − y M $ + =U
>. T R# .$ *$ O ) GB 7* √ −−−−−−−−−→! − ,− , ∓ −−−−−→! n = ±√ = , , + + , √ (− ) + (− ) + () dzdy = dzdy dσ =
&0 ( 0 0 h $.
−−−−−−−−−→! x, y, −
z dxdz
−=
+ (x) + (y) +0(− 0 ) dxdy (S)
F • n dσ
00 −−−−−−−−−−−−−−−−−→ ! x , y , ( + x + y )
• +
D
Area(D) = × × ×
=
00 = D ()
=
00
−
,
+ x + y
x + y − (
+ x + y dxdy =
+ x + y )
dxdy
( + x + y ) dxdy
D ()
=
00
−
( + r ) r drdθ
D
= =
− −
#0 π
" #0
dθ
π
!
=
" ( + r ) r dr
− π
$ 5.&\ y x e0 5$ 0 $= E AC .$ M R# ^- v E A;C .$ *T $ R# 0&0 O $& D 9O&0 D [Y1 # j D #$S $& [Y1 >&j L
*D : ≤ θ ≤ π , ≤ r ≤ }
. −x ( ) 0 . n ( . 1 M R# 0 ) &0 V# U# (B&' AO&0 n E x o L √U#C O&0 ! Z#. $ ` + .$ ]3 *ZM %&L . n = − −−,−−,−→ } ;** E ; & +"1 9J* !VO . $0 5 A, .8 F = (x − y)i + (y − z)j + (z − x)k
;** E & +"1 97* !VO 00
00 F • n dσ = (S)
−−−−−−−−−−−−−−−−−−−−−−−−→! − y, − y + y, − y + y + z
D
−−−− −−−−→ # " √−−−−− √ •
−
, − ,
√
dydz
T |x| + |z| = $. 0 E !T&' S #. 0 . ([a ( ) 0 . n ( ) . $0 M 0&0 . T .$ y = *O&0 . −y 5 S : y = ; (x, z) ∈ D >. T 0 . S #. *!' DZ [ cM 0 E B D *D : |x| + |z| ≤ M $ + =U
±j ±k / g. &0 *$ O ) % J* !VO 0 *O&0
−−−−−−−→! + Rl+ n = ± , − , / + +√ >. T R# .$ n ( . 1 M R# 0 ) &0 *dσ = + + dxdz
00
00
00
F • n dσ = (S)
Z#. $ ` + .$ R# 0&0
F • n dσ +
(S )
D
(S )
=
D
−−−−−−−−−−−, −−−−−−−−−−−−−→
x y a dxdy , , • a − x − y + a a a a − x − y − − − − − − − − − − − − − − − → " # 00 x + y + − y, x, a D
−−−−−−→! , x, y, −a + x + y + a dxdy x + y + a a 00 4 x + = + a a − x − y D 5 , •
a − x − y
00 − 00 4
a +
=
a − r
D
−
r
a
+
0 a ( 0 π 4 =
a − r
0 a
a − r
+ a +
π r + πr a
+
+
dσ
dr = −
π
. n ( x + y + z = M S M x= A .8 [& S 0 . F *F = −z,−−−y,−−−x→! $. $ S 50 0 *M 9ZM .&3 M >&j L N+M 0 . #. R# *!' r(u, v) =
−−−−−−−−−−−−−−−−−−−−−−−−−→! sin u cos v, sin u sin v, cos u
R# .$ .$ *D
:
≤ u ≤ π, ≤ v
dσ = r
u
=
≤
= n
π 5F .$ M
× rv dudv
(B&'
=
= dσ
ru × rv ru × rv −−−−−−−−−−−−−−−−−−−−−−−−−−→! = ± cos u cos v, cos u sin v, − sin u −−−−−−−−−−−−−−−−−−−−−−−→! × − sin u sin v, sin u cos v, ÷ ru × rv −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! ± = sin u cos v, sin u sin v, cos u sin v ru × rv
n=±
=
=
a − r
)
y − dz dy
− y − y + dy =
. −z ([a ( ) 0 n
az , z ≤ a
−−−−−−−−−−−−−→! x, y, z − a f ± = ±+ f x + y + (z − a) ± −−−−−−−−−→! x, y, z − a a f dxdy |fz | , x + y + (z − a) dxdy (z − a) a dxdy z − a −−−−−−−−−−→! x, y, −a g ± = ±+ g x + y + a −−−−−−→! ± x, y, −a + x + y + a , g dxdy = x + y + a dxdy |gz | a , x + y + a dxdy a
=
a − r
!
R#&3 E M ( +") ).& ^Y S M x= A .8 x + y + M 0 _&0 E az = x + y 5 S+ 0 Z") 5F E 50 0 . n &) + .$ ( $ z = az ! *M [& S 0 . F = −−−−−−y,−−x,−→ z *O&0
z + az = az .$ . #V# O $ $ M 5 S + *!' .$ *z = a &0 z = R# 0&0 *M eY1 z = az w O .$ . # $ z = a .$ &+ Z 0 & F z = 9$$S !V6 UY1 $ E S = S + S R# 0&0 *. $
n
5 ) r cos θ r + r dθ dr − a a
aπr −
=
+
5
r cos θ
0
0 (0 −y
. −z ( ) 0 n *( D : x + y ≤ a T−xy 0 $ # j mU e0 M R# 0 ) &0 *$$S ) % 7* !VO 0 f = x + y + z − az E .&[, X 0 S S Z#. $ g = x + y − az
dxdy
r cos θ r drdθ a
+
y − dydz =
S : x + y =
D
+ a +
−
!
S : x + y + z = az , z ≥ a
! x + y − x dxdy
r cos θ
=
F • n dσ
−−−−−−−−−−−−−, −−−−−−−−−−−−−→ 00
= − y, x, a + a − x − y
+
00
= =
*O&0 S 0 Zg&1 V# . $0 n S ('&" !" #$ dσ M E :.& (+ 0 n . + M R# 0 [ & 0 ) &0 n . −z ([a ( ) 0 . n #&0 ]3 O&0 . ) S U# O&0 . −z ( ) 0 . i
n =
−−x−−−− y−−−z−−−−→ , , − a a a
i
i
−−−−−−→! x, y, −a n = + x + y + a
i
y = x +z 0 $ o1& pL ).& ^Y S A7 . ) S 5.$ 0 . n ( y = y = >&T −−−−−−−→ *F = x, y , z!
O&0 S E 50 0 . n &) + .$ #&0 M R# # ) &0 X R# 0 *ZM %&L . 00( ?, n .$ #&0 M Z#S
E ( >.&[, F n O •
00
A `GF b, !F N +7 9$$S E&0 #E B&" 0 4$ ` ^Y $0.&M R#+, ( . ) #. N# S M x= VD) $ % Y *$$S G#U S 0 M O&0 . $0
*F y S E . [, .&O . \ [& ( .&3 D $ &0 r(u, v) 6\ y . S M x= *!' !Y " 5$M # j E !T&' NQ M !Y " Z# $ + 9Z#S h .$ . S ^Y 0 U = [u; u + du] × [v; v + dv] ,?-_ E &0 . yLB !Y " R# *Σ = r(U ) r(u, v) Y\ .$ r (u, v) dv r (u, v) du &. $0 y M $ + x= 5 ?U0 *$E X#\ 5 O . F(r(u, v)) 0 0 (0&f !Y " R# 0 F . $0 5 M yLB S 5F .$ M T B&" &0 R# 0&0 *O&0
E N# S 5F .$ M Z#. $ $& B&" ( v F 0 0 . [, .&O B&' RQ .$ *( (0&f 5F 0 F `?-_ #. 0 Zg&1 $ .$ 5 # j .$ #. ('&" %qT&' Y\ .$ $ ) ( ) . $0 r(u, v) S #$ 5&0 0 *O&0
>. T R# .$ O&0 r(u, v) F
v
u
* ** * dF = *ru (u, v) du × rv (u, v) dv * *projn(u,v) F(r(u, v))* * * = F(r(u, v)) • n(u, v) *ru (u, v) × rv (u, v)* dudv = F(r(u, v)) • n(u, v) dσ
&0 ( 0 0 S E . [, .&O . \ R# 0&0 00 F=
00 F • n dσ
dF = D
(S)
5 &0 &q= .$ B& M x= A& '() $ .&O . \ *$. $ $ ) F = −z,−−−y,−−−x→! > .{ (, . $0 .$ . F y ≤ y M x + y + z = M Z E . [, . −y ([a ( ) 0 . n Zg&1 . $0 &) + M 0&0 . T *O&0 + S : y = − x − z ; (x, z) ∈ D !VO 0 . S #. *!'
D
(S)
−−−−−−−−−−−−−−−−−−−−−−−−−→! cos u, sin u sin v, sin u cos v −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! sin u cos v, sin u sin v, cos u sin v dudv 00 & sin u cos u cos v + sin u sin v = •
D
' + sin u cos u sin v cos v dudv 0 π $ 0 π & = sin u cos u cos v + sin u sin v ' % + sin u cos u sin v cos v dv du 0 π & ' = sin u π cos u + π sin u du )π ( sin u cos u + − cos u = π =
0
9M [& S 0 . F $. .$ N# .$ M ( x + y + z = M E +"1 S A ( . −z ([a ( ) 0 . n $. $ . 1 Z 6 −−−−−−−→ *F = x , y, z! M ( z = x + y q0 5 S+ E +"1 S A; 0 . n ( O ) z = z = >&T y ! y $. $ . −z ( ) *F = −y−−+−−z,−x−−+−z,−−x−−+−→ T y M ( y = x + z pL E +"1 S A ([a ( ) 0 . n ( ≤ z $. D0 y = ! *F = −x,−−−y,−−−→ z $. $ . −y y M ( x + y = T E +"1 S A ( ) 0 . n ( $. D0 y + z = # "
! *F = −−x,−y,−−→ z $. $ . −y
y M ( x + y + z = T E +"1 S AH ( ) 0 . n ( O $ $ D0 |y| + |z| = E B ! *F = −−−x,−x−−+−−y,−x−−+−→ z $. $ . −x ([a
x = y >&T 0 $ Z") ).& ^Y S A8 S E 50 0 . n ( z = z = x = −y ! *F = −−x,−z,−−→ y $. $ x + y = 0 $ . 3 ).& ^Y S AJ S E 50 0 . n ( y = z + y = z >&T *F = −x−−−−−y,−y−−−−−z,−z−−−−x→! $. $
e0& 5 Q .$ *D : x +z ≤ M $ + .&3 5
Z#. $ ( f = x + y + z E >.&[, S mU
Z#. $ .$ *ZM .&3 n
ru × rv ru × rv −−−−−−−−−−−−−−−→! −−−−−→! − sin u, , cos u × , , ± ru × rv −−−−−−−−−−−−−−−−−→! − cos u, , − sin u ± ru × rv
±
=
=
=
n =
=
?U0 *n = j n = −j ( [1 $. (B&' M dσ
=
dσ
=
ru × rv dudv + dσ = + + dxdz = dxdz
F
00
00 F • n dσ +
= (S )
00
=
00 D
00
+
F • n dσ
D ()
(S )
00
D
0 (0 π
=
−−−−−→! −−−−−→! x, x, • , , dxdz
D
cos u dudv π
cos u du
" #0
"
−
dv
= π
}
F • n dσ
h $. .&O . \ .$
dxdz − x − y xz +
− x − z dxdz + − x − y r cos θ+ sin θ + − r r drdθ − r
=
D
#0
00
=
−−−−−−→! −−−−−−−→! x, x, − • , − , dxdz
D
=
=
−−−−−−−−−−−−−→! −−−−−−−−−−−−−→! cos u, cos u, • cos u, , sin u dudv +
F • n dσ +
(S)
− −−−−−−−−−−−−−→
−−−−−, x z + • , −x −y ,
00
(S )
D
=
D
00
(S)
00
, F x, − x − y , z
F • n dσ
=
&0 ( 0 0 F = 00
&0 ( 0 0 h $. .&O .$
00
−−−−−−−−→! x, y, z f + =± ± |fz | x + y + z −−−− −−−−−−−−−−−−→
, ± x, − x − y , z
π
sin θ + r − r r cos θ + dθ − r
)
dr
0 + r − r dr = π
( O $& [Y1 >&j L E AC .$ M R0 ^- *O&0 T−rθ .$ D # j
Z") ).& ^Y !VO 0 . N# S M x= A, .8 y = y = − >&T x + z = 0 $
5F (, &. $0 5 M $. $ . 1 $. .$ O&0
! *M [& . . [, .&O *( F = −−x,−x,−−→ y 9(O 5 #. E ,&+ ) >. T 0 . #. R# *!' S = S ∪ S ∪ S S : x + z = ; − ≤ y ≤ S : y = − ; x + z ≤ S : y =
;*H* E ; & +"1 9* !VO B$&U 0 % S M x= A .8 ,
! x + y − + z =
−−−−−−−−→! x, y, −z
?U0 $. $ S E 50 0 . n ( *M [& . F y S E . [, .&O *( M ZM x= 0 S #. 5$ + .&3 0 *!'
F =
; x + z ≤
h'? !VO 0 ) &0 *$ O ) GB * !VO 0 0 nB O&0 S 50 0 . n #&0 S $. .$ M $$S
S $. .$ n = −j #&0 S $. .$ ( $ +, . −y !VO 0 . #. R# *n = j #&0 S : r(u, v) =
−−−−−−−−−−−−−→! cos u, v, sin u ; (u, v) ∈ D
S : y = − ; (x, z) ∈ D
S : y = − ; (x, z) ∈ D
≤ u ≤ π , −
D : x + z ≤
D :
≤v≤
+
y = − x − z 0 $ S Z ^Y S AH $. $ S E 50 0 . n ( y = T *F = −x−−+−−y,−y−−+−−z,−z−−+−x→!
+
Z#. $ R# 0&0 *z = sin u x + y − = cos u 9$M x= 5 x + y = (cos u + ) x = (cos u + ) cos v
E >.&[, S !M &O 3 6\ ` + .$ ]3
c B D 07 P k )*;: 4&0 . 5F e) E 0 .$ M /&S q1 +V' M =U !?+3+ )*;: !3 )*;: N# 0 "0 ^Y N# 0 4$ ` ^Y !#[ 0 ( q1 R# >. T Z 0 *#. 5F ! $ 0 &S 5 N# ] W. #$ "0 #. 9Z#. $ E& #) 4 $ 0 *Z#E $3 & F 5&0 0 ?z#{ M . $0 + )*E . T .$ . S #n< ) #. % S M $ + (= . @ Ω & R .$ +' 5 0 M Zg S *S = ∂Ω Z"# >. T R# .$ *O&0 5F ).& ^Y O w O & F E #& $ M $& #. Q `&+ ) *$ O & )E )* c O&0
R# .$ O&0 "0 #. S M x= % Z"\ #E KO 0 , + #E $ 0 R − S p&\ >. T /&+ b `&UO M X ∈ R −S 5 Q @&\ AnH 9 O *M eY1 Y\ $= $ U .$ . S #. X E .$&T S 0 S 0 /&+ b `&UO M X ∈ R − S 5 Q @&\ AK *M eY1 Y\ :E $ U .$ . S #. X E .$&T $&+ &0 & S L . 5F ( . M , +
L . 5F ( 5 M0 4$ , + *Z$ 5&6 IntS S M ( RO. *Z$ 5&6 ExtS $&+ &0 & S U#C $6= , + Ω &F O&0 . M Ω = IntS ∪ S (O 5 R# 0&0 O&0 Ω [B S ( A. M "0 *S = ∂Ω S "0 #. 0 + 7 % E . h % V# . $0 X ∈ S Zh Y\ E 0 5F .$ M ( ) *O&0 O $ m S E 50 0 X .$ O %&L n Zg&1 N# S S * & E . n &z'?YT (B&' R# .$ 00 F n dσ $&+ E &F O&0 $. & ( ) &0 "0 #. 00 *$ O $& F n dσ &0 •
(S)
•
(S)
y = (cos u + ) sin v
,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(u, v) = (cos u + ) cos v, (cos u + ) sin v, sin u D :
≤ u ≤ π , ≤ v ≤ π
R# 0&0 ( n
ru × rv ru × rv
=
−−−−−−−−−−−−−−−−−−−−−−−−−−→! (cos u + ) cos u cos v, cos u sin v, sin v + sin u = ± ru × rv
.$ ]3 *ZM %&L 00 . (B&' 5$ 0 "0 ( ) 0 M &0 ( 0 0 F n dσ O .&O ` +
•
(S)
00 D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! (cos u + ) cos v, (cos u + ) sin v, − sin u −−−−−−−−−−−−−−−−−−−−−−−−−−→! cos u cos v, cos u sin v, sin v + sin u (cos u + ) dudv 00 ! (cos u + ) cos u + cos u − sin u dudv = •
D
0 π $ 0 π
=
(cos u + )
cos u
! % + cos u − sin u du dv
=
π 0 $
9M [& . F y S E . [, .&O $. .$ &q= Z .$ M O&0 z = x + y pL E +"1 S A n ( O ) z = T y $. $ . 1 x ≤ y ! *F = −−y,−x,−−→ z O&0 . −z ( ) 0 . >&T y M O&0 y = x E +"1 S A; ( ) 0 . n ( O #0 z = z = y = −−−−−−−−−−→ *F = yz, zx, xy! $. $ . −y ([a
x + y + z = M Z 0 $ Z") ^Y S A $. $ S 50 0 . n ( ≤ y &q= Z .$ e1 −−−−−−→ *F = z, y, x! x + y + z = T 0 $ 4 ^Y S A $. $ S 5.$ 0 . n ( &j L >&T −−−−−−−→ *F = x , y, z!
0 *M !+, v e0 0 +, R# *ZM G#U O&0 #n<" #$ v U0& f (x, y, z) S &a 5 , −−−−−−−−−−→
∂f ∂f ∂f , , E >.&[, f 0 ∇ !+, !T&' >. T R# .$ ∂x ∂y ∂z RO. *Z$ 5&6 ∇f $&+ &0 . #) e0& R# *$ 0 . ∇f e) E 0 .$ *O&0 f t 6 5&+ ∇f M ( *$ 5&6 grad(f ) $&+ &0 & f L3
+"1 pL # $ Z e0 A& '() % ( O $ "0 N# 0 M T E * " "0 b &#. E #& + }
9M $ + >&[f 5 t 6 i E $& &0 S$& 0 $ 0 #n<" #$ v e0 g f S & % >. T R# .$ O&0 \\' $, a ) ∇(f + ag) = ∇f + a∇g ) ∇(f g) = g∇f + f ∇g ) ∇ (f /g) = ( /g ) g∇f − f ∇g
}
*8* E ; & +"1 9;* !VO 5 N# F = −−P,−−Q,−−R→! M x= * % 5 A# S U#C P k >. T R# .$ O&0 #n<\ 6
5&6 div(F) $&+ &0 $ + G#U ∇ F >. T 0 . F . $0 9Z$
•
div(F) = ∇ • F =
∂Q ∂R ∂P + + ∂x ∂y ∂z
. $0 & G F M x= % O&0 \\' $, a #n<\ 6 v e0& f #n<\ 6
>. T R# .$ ) div(F + aG) = div(F) + a div(G)
)
div(f F) = (∇f ) • F + f div(F)
)
div(F • G) = G • div(F) + F • div(G)
*8* E & +"1 9;I* !VO #& + % @ 1 N# ^Y XUV ^Y M A, .8 E N# $. & ( ) ;I* !VO .$ * "0 &#. E *ZM h'? . K Y R# x + y + z = M $ E ,&+ ) S M x= A .8 ( "0 #. N# S >. T R# .$ *( x +y +z = . $0 *O&0 M $ R0 '& IntS : ≤ x + y + z ≤ S.c0 M 0 DZ [ (+ 0 . VQ M M 0 n $. & ( ) *$ O ) GB ;* !VO 0 *$. $ DZ [ E 50 (+ 0 . 5F .$ M Ω = Ω ∪ Ω ∪ Ω − Ω M x= A .8 Ω :
≤ x + y ≤ , − ≤ z ≤
Ω :
≤ x + y ≤ ,
Ω :
≤ x + y ≤ , − ≤ z ≤ −
Ω :
≤ z + y ≤ , − ≤ x ≤
≤z≤
).& ^Y S M x= *$ O ) % ;I* !VO 0 &6 . S 0 $. & ( ) % ;* !VO .$ *O&0 5F . ?0& +, ] W. #$ G#U . h 0 5 M *M
*( E& B G#U Q 0 5F E u3 *ZM =U
5 N# F = −−P,−−Q,−−R→! M x= $ % e0 M ( #n<\ 6 F Zg S . T .$ *( . $0 *O&0 #n<\ 6 R Q P v
>. T 0 . ∇ h +, % % −−−−−−−−−−→
∂ ∂ ∂ ∂ ∂ ∂ , , i+ j+ k ∇ := = ∂x ∂y ∂z ∂x ∂y ∂z
=
00 R(x, y, f (x, y)) − R(x, y, g(x, y)) dxdy D
00 (0
f (x,y)
= D
000
= (S)
g(x,y)
) ∂R dz dxdy ∂z
"0 #. S M x= F+G % O&0 Ω , + ).& ^Y ( n $. & ( ) &0 #n<\ 6 S 5.$ 0 F . $0 5 M x= *AS = ∂ΩC >. T R# .$ O&0 3 Ω 0 00
∂R dV ∂z
>. T R# .$ *F = −−P,−−Q,−−R→! ZM x=
00
00
00
F • n dσ = (S)
P.i • n dσ +
(S)
000 div(F) dV =
Ω
00
&# .$ *;**
a
00
,
a − x − y ; (x, y) ∈ D
.$ *(
000
(S)
F • n dσ =
Ω
= =
D
⎡ ⎤ 0 a+√a −x −y ⎣ dz ⎦ dA (x +y )/a
5 + y x dA a + a − x − y − a D 5 00 4 + r r dA a + a − r − a D 5 " #0 " #0 4 π a + r r dr dθ a + a − r − a
(π) − =− π 00 4
=
00
dV =
=
=
div(F) dV Ω
000
,
000
∂Q dV + ∂y
(S)
000 (S)
∂R dV ∂z
&# .$ *;** &a E H (+"1 $ !' A, .8 ∂ ∂ ∂ (z) + (y) + (x) = div(F) = ∂x ∂y ∂z
∂P dV, ∂x
=
(S)
(S)
00
000
Q.i • n dσ
∂ ∂ ∂ ( − y) + (x) + (z) = ∂x ∂y ∂z
(x +y ) ≤ z ≤ a+
(S)
000
P.i • n dσ
'() %
, + ).& ^Y S Ω :
P.k • n dσ
. #E & #&" Z ] W. #$ q1 >&[f &0 R# 0&0 9ZM >&[f
}
div(F) =
(S)
∂P dV + ∂x
00
P.j • n dσ +
(S)
000
;;* !VO &a E (+"1 $ !' A&
div(F) dV Ω
(S)
*$$S >&[f 0&6 >. T 0 #$ $. $
2
000
F • n dσ =
∂Q dV, ∂y
=
(S)
(S)
00
000
R.i • n dσ (S)
∂R dV. ∂z
= (S)
*ZM >&[f .
( =&M .$ * " Z [O M Z 0 S + S >. T 0 . S #. ZM x= . h R# 0 M Z"# 0 S : z = f (x, y) ; (x, y) ∈ D, _&0 0 . n , S : z = g(x, y) ; (x, y) ∈ D, R#&3 0 . n . Z#. $ X R# 0 *$ O ) ;;* !VO 0 n dσ
=
n dσ
=
−−−−−−−−−−−→ (z − f ) dxdy, dxdy = − fx , −fy , |(z − f )z | −−−−−−−−→ (g − z) dxdy = − gx , gy , − dxdy. |(g − z)z |
00
00 R.k • n dσ =
(S)
00 = D
(S )
00 R.k • n dσ +
.$
R.k • n dσ
(S )
−−−−−−−−−−−→ dxdy R(x, y, f (x, y)).k • − fx , −fy , 00
+ D
−− −−−−−−→ R(x, y, g(x, y)).k • gx , gy , − dxdy
.$ *Z#S . −z ([a ( ) 0 . . S 0 n . $0 , + S 5.$ ZM x= 5 M *n = k e1
00 F • n dσ
00 F • n dσ =
(S)
(S+S )
000 Ω
=
000 Ω
=
D
=
div(F) =
x +y
)
00 dA −
x dxdy
D
00
dxdy
r cos θ − r sin θ − r cos θ
r drdθ
D
0 (0 π
=
)
r cos θ− r sin θ−r cos θ dθ dr
π
0
− r
dr =
=
R# 0&0
00
(S)
000 =
'& ).& ^Y S F = xi+(x+y)j+(x+y +z)k A T _&0 .$ e1 x + y + z = M 0 $
*( z = −−−−−−−−−−→
0 $ '& ).& ^Y S F = x , x y, xz! A; *( z = z = >&T x + y =
Ω
Vol(Ω) = π × × =
π
div(F) dV Ω
! x + y + z dV = " #0
#0 π
=
=
π
Ω :
0 . /&S q1 7 & >&#+ .$ 0 % *M t\ O $ $ #. F . $0 5
dV
000
Ω
*8* &a E H (+"1 9;* !VO
div(F) dV =
5F `&. .$ %- ,&1 ('&" 0 0 Z' #E *O&0
x + y + z = z M ).& ^Y S M x= A .8 −−−−−−−→ *M [& S 0 . F *F = x , y, z! ( $ O x= S ( "0 #. N# S &# .$ *!' 0&0 .$ *S = ∂Ω &F Ω : x + y + z ≤ z Z#. $ /&S q1 F • n dσ =
}
000
Ω
=
y − y (x + y ) − x
=
∂ ∂ ∂ (x) + (x) + (y) = ∂x ∂y ∂z
(S)
F • k dxdy
D
=
π × = π
000 F • n dσ
00
y dz
Ω
Vol(Ω) = ×
00
F • n dσ
D
00 (0
00
F • n dσ
(S )
y dV −
dV
(S )
00
div(F) dV −
=
R# 0&0
000
&# .$ *;*H* &a E ; (+"1 $ !' A .8
00 F • n dσ −
Ω
=
R# 0&0 *O&0 Ω [B S + S U# *O&0
div(F) dV =
=
(S)
Ω : z = x + y ; (x, y) ∈ D
00
000
000 Ω
π/
(0 cos ϕ
dθ 0
π/
ρ ρ sin ϕ dV )
"
ρ sin ϕ dρ dϕ
cos ϕ sin ϕ dϕ = π
&# .$ M
≤ θ ≤ π , ≤ ϕ ≤ π/ , ≤ ρ ≤ cos ϕ
*( M >&j L .$ Ω # j z = x + y 5 S+ E +"1 S M . T .$ A .8 ( ) 0 . n ( $. D0 z = T y M O&0 −−−−−−−→ . S 0 F *F = z, y, x ! O&0 . −z
*M [&
M z = T E +"1 S N+M 0 . #. R# *!' "0 #. N# 0 ( O ) x + y = y ZM x= S ]3 *$ O ) ;* !VO 0 *ZM !#[ &F D : x + y ≤ S S
: z = x + y ; (x, y) ∈ D : z = ; (x, y) ∈ D
( ) n S M $ 5&6 >$ T R# .$ *r = r &F O&0 S 0 $. & 00 r π (, , ) ∈ Ω S n dσ = (, , ) ∈ Ω S r M x= F+G 3 4 . % G#U &q= E Ω '& 0 F #n<" #$ . $0 5
X ( "0 #. N# S M x= *X ∈ Ω O *$. $ m Ω E 50 0 . n O&0 5F E .$ Y\ E ( >.&[, F y S E . [, .&O00 y >. T00R# .$ M & . . \ R# ' (B&' * F n dσ ÷ dσ X .$ F # S ] W. #$ M ! X Y\ N 0 Ω 9Z &
•
(S)
•
(S)
#00 div(F) =
"
lim
Ω→{X }
(S)
F • n dσ
(S)
#00 ÷
" dσ
(S)
9$ + 5&0 5 #E >. T 0 . /&S q1 /& R+ 0 Z' ).& ^Y S S F+G % . $0 5 y S E . [, .&O 5 c &F O&0 Ω 0 0 Ω Z' 0 F 5 # S !M . \ &0 F #n<" #$ *( /MJ . !) F+G 2 L $ %
5F ).& ^Y S ( U0 Z") N# Ω M x= !VO 0 . Ω Z' >. T R# .$ O&0
00 Vol(Ω) =
(S)
−−−−−→! x, y, z • n dσ
$ &0 r 6\ N# & y S l&Q *$ + [& 5
>. T R# .$ *$$S GT D 00
Vol(Ω) =
r, ru , rv dA
D
9( &. $0 &S %- r, r , r OM M "#& 5& $ #$ >.&[U0 *r, r , r = r r × r ! * " r r r . $0 5F &Y w ( 5 .$ E !T&' ^Y ('&" A& '() % % . . −x ' a ≤ x ≤ b &0 y = f (x) ([a e0& . $ + *M [&
LB$ Y\ l&Q *Z &0 S . h $. #. ZM x= *!' ' θ E &0 . O $ $ e0& . $ + E X = (x , f (x ), ) $ O !T&' X = (x, y, z) ∈ S Y\ $ $ 5 .$ . −x . R# & X T&= 0 0 +. −x & X Y\ T&= &F $ R# o L −x ?U0 * x + y = f (x ) U# ( u
u
v
u
v
v
•
u
v
`&UO DZ [ .$ cM 0 M #_&0 + 0 $ Z' Ω A Rl+ ( Ω ).& ^Y S ( T−xy ; *F = −x−−−−−y,−y,−−z−−−−x→! y = x + z 5 + $ 0 $ Z' Ω A Rl+ ( Ω ).& ^Y S ( y = −x −z −−−−−−−−−−−−→ *F = xz, yx , −yz! T z = x + y Zg&1 pL 0 $ Z' Ω AH Rl+ ( Ω ).& ^Y S ( z = *F = −−−x−−−−y,−−z,−z−−−−x→! z = >&T x +y = 0 $ Z' Ω A8 ^Y S $. $ . 1 4$ Z 6 N# .$ M ( z = −−−−−−−→ *F = x , y, z! Rl+ ( Ω ).& ! z AJ 0 $ '& ).& ^Y S F = −x,−−−y,−−−→ *( z = z = >&T x + y = M ).& ^Y S F = (x +y +z)(xi+yj+zk) A7 *( x + y + z = /&S q1 N+M 0 S 0 F H & >&#+ .$ *M [&
M ).& ^Y S F = x i + yj + zk A *( x + y + z = T c &j L >&T 0 $ '& Ω AI ( Ω ).& ^Y S ( x + y + z = −−−−−−−−−−−−−−−→ *F = xy + z, y, x − y! Rl+ -
).& ^Y S F = xa + yb + zc −−,−−,−→! A *( xa + yb + zc = 5 Sq0 −−−−−−−−−−→
0 $ '& ).& ^Y S F = ax , by, cz! A; *( z = ±c y = ±b x = ±a >&T −−−−−−−−−−−−−−−−−−−−→ ).& ^Y S + F = yz + x , xz + y, xy + z! A y = − x + z pL $ 0 $
'& + *( y = x + z |x−y +z|+|y −z +x|+|z −x+y| = ).& ^Y S A ! y ( *F = −−x−−−−y−+−−z,−−y−−−−z−+−−x,−−z−−−−x−+−−→ S = ∂Ω ( U0 Z' N# Ω M x= AH r = (x, y, z) M x= Rl+ *(, , ) ∈ S
* * 00 * (a cos u + b) cos v (a cos u + b) sin v a sin u * * * * − a sin u cos v − a sin u sin v a cos u * dudv = ** − (a cos u + b) sin v (a cos u + b) cos v ** 0D0 ! ! a = a cos u + b b cos u + a dudv
*z/y = tan θ Rl+ *x = x R# 0&0 O&0 V# #&0 Y\ .$ y = f (x) cos θ, z = f (x) sin θ.
>. T 0 . S #. R# 0&0
D
0 0 ! a π π = ab cos u + (a + b ) cos u + ab du dv
= πa b
−−−−−−−−−−−−−−−−−→! r(x, θ) = x, f (x) cos θ, f (x) sin θ
5F .$ M $ + .&3 5
0 $ Z' A .8 (x/a)
/n
/n
+ (y/b)
/n
+ (z/c)
D : a ≤ x ≤ b,
=
*( $= $, n M M [& . E >.&[, #. R# 0 $ Z' *!' /n
/n
Ω : (x/a)
+ (y/b)
+ (z/c)
/n
≤
9( RQ ('&" 5&+B X R# 0
dσ
= Z+U M >&j L N+M 0 . S = ∂Ω #. *( x = a(sin u cos v) ZM x= U# ZM .&3 !M &0 6\ .$ *z = c cos u y = b(sin u sin v) E ( >.&[, S
* * * * *rx × rθ * dxdθ *−−−−−−−−−−−−−−−−−−−→! * * , f (x) cos θ, f (x) sin θ
= =
−−−−−−−−−−−−−−−−−−−→!* , −f (x) sin θ, f (x) cos θ ** dxdθ *−−−−−−−−−−−−−−−−−−−−−−−−−−−→!* * * * f (x)f (x), −f (x) cos θ, −f (x) sin θ * dxdθ , ! f (x) + f (x) dxdθ ×
n
n
n
=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(u, v) = a sinn u cosn v, b sinn u sinn v, a cosn u
*D : ≤ u ≤ π , ≤ v ≤ π E ( >.&[, 5F $ M 0 0 r, r , r R# 0&0 u
* * * * * * * * * * *
a sinn u × cosn v
b sinn u × sinn v
a cosn u
na cos u × sinn− u cosn v
nb cos u × sinn− u sinn v
−na sin u × cosn− u
n
−na sin u × sin v cosn− v
n abc
=
00 Vol(Ω) =
=
=
=
()
=
nb sin u × cos v sinn− v
sin u cos u sin v cos v
!n−
n abc
sin u
0 0 Ω Z' .$ ( r, ru , rv dudv
00 !n− sin u dudv sin u cos u sin v cos v D
0
π
| cos u|n− (sin u)n du
#0 π n−
#0
× n+
B
n n+ ,
&0 ( 0 0 h $. #. ('&" .$
00 Area(S) =
00
dσ = (S)
0 π (0
= =
,
f (x) D
,
b
f (x)
π
0
a b
,
f (x)
+
| sin(v)|
S :
dv
B
,n
"
!
f (x)
) dx dθ
! + f (x) dx
a
, x + y − b + z = a
!VO 0 . 5F M (
" n−
! + f (x) dxdθ
RU N+M 0 N#
+, -. .$ = R# [B *( O >&[f c .$ cM a `&UO 0 # $ 5 .$ E S % M x= A, *( O !T&' . −z ' T−xz .$ e1 (b..) *M [& . S Z' E >.&[, #. RQ B$&U *!'
n abc t−+n/ ( − t)(n−)/ dt × n+ #0 " −/ n− × s ( − s) dv
n abc
=
* * * * * * *= * * * *
D
n abc
× ()
n
v
≤ t ≤ π.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! r(u, v) = (a cos u + b) cos v, (a cos u + b) sin v, a sin u D :
≤ u ≤ π , ≤ v ≤ π
E ( >.&[, S Z' .$ *$ + .&3 5
00 Vol(Ω) =
(S)
−−−−−→! x, y, z • n dσ =
00
D
r, ru , rv dudv
&q= E , + #E Ω M x= & Ω 0 F . T .$ *$$S G#U 5F 0 F . $0 5 M Ω .$ e1 S S . ) ^Y $ DZ E&0 M ( !# ZO&0 O $ O&0 V# A. )00 N# 5 ,00 0C & F [B ^Y $& 5&0 0 * F n dσ = F n dσ *O&0 O $ "0 ^Y [B 0 & Ω .$ ( !VO .& , + Ω M x= & ) *;*H 0 !VO .& , + G#U &6 0C #n<" #$ Ω & 0 F = −−P,−−Q,−−R→! . $0 5 A$ O 9B$&U #E 4&V' >. T R# .$ *O&0
*( 6Q Ω 0 F AGB *( T S 0 F Ω .$ S "0 #. E 0 A% *Ω 0 div(F) = A: &F ω = P dy ∧ dz + Q dz ∧ dx + R dx ∧ dy S A$ 0C O&0 ! &M R# 0&0 ( t1$ Ω 0 ω 4= ; *A$ O ) ;*;*H 0 ! &M t1$ 4= G#U $ ) 5&Q G = −−f,−g,−−h→! #n<" #$ . $0 5 A E 0 M U R# 0 *F = Curl(G) M $. $ ∂h ∂g ∂h − − P = (x, y, z) ∈ Ω Q = ∂f ∂z ∂x ∂y ∂z ∂f ∂g − *R = ∂x ∂y O $ O&0 6Q Ω 0 F l&Q & *Z & Ω 0 F H . G &F F = Curl(G) ZO&0 !VO .& , + Ω M x= & O&0 6Q Ω 0 F = −−P,−−Q,−−R→! . $0 5 $ 0 R# .$ *F = Curl(G) U# O&0 F B G = −−f,−g,−−h→! >. T •
(S )
f (x, y, z) =
•
(S )
0 $ t z Q(tx, ty, tz)
% −y R(tx, ty, tz) dt + ϕ(x, y, z), g(x, y, z) =
0 $ t x R(tx, ty, tz) % −z P (tx, ty, tz) dt + ψ(x, y, z),
h(x, y, z) =
0 $ t y P (tx, ty, tz) % −x Q(tx, ty, tz) dt + η(x, y, z).
−−−−−−−−−−−−−−−−−−−−−−−→! H = ϕ(x, y, z), ψ(x, y, z), η(x, y, z)
5 N# 5F .$ M Z#. $ #$ 5&0 0C ( LB$ ! &M #n<" #$ . $0 *ACurl(H) = 0
( O x= AC .$ M R# ^- *( 9( #$S $& & 0 e0& E A;C .$ s = cos (v) *B(a, b) := 1 t ( − t) dt #E &#. E N# 0 $ Z' 0 & % 9M [& /&S q1 N+M 0 .
t = cos u
a−
b−
) x + y + z = R
)
(x + y + z ) = x + y − z
)
(x + y + z ) = x + y
x + y + z = R , < a ≤ z ≤ b ≤ R
x−x y−x z−z ) + + = a b c x / y / z / + + = ) a b c
)
)
/ i=
ai xi
/ / + ai xi + ai xi = i=
i=
*( T GB&L 5& $ &0 × ]#& A = [a ] M ij
. C
−−−−−−−→! : r(t) = x(t), y(t) ; a ≤ t ≤ b
"0 A7 *Z# . S #. 0 $ $ 5 .$ . −x ' ^Y ('&" M $ 5&6 * < a < b M x= A . −x ' xa + yb = q0 5 .$ E !T&' + 0 0 e 5F .$ M ( π( − e + e arcsin e) 0 0 + *( O x= a a − b 0 M ^Y E O ) ^Y ('&" M $ 5&6 AI pL Z y x + y + z = ay B$&U
+ aπ *( +( +A)( 0 0 y = Ax + By + B) 0 M ^Y E O ) ^Y ('&" M $ 5&6 A q0 5 S+ y x + y + z = ay B$&U
aπ *( √AB 0 0 y = Ax + By
PT 3F' 27 & F 0 ([" y M #&\0 . $0 & &+ G#U 5 . 6Q & (O "0 " 0 $. $ "0 ^Y [B 0 & & F .$ ^Y M $ + 5F 0
=
0 t x(y t − xzt ) − z(z t + x t ) dt
−−−−−−−−−→
) t t t t − x z − z − zx xy
( =
xy
=
−
x z
−
z
0 h − η(x, y, z) = t y P (tx, ty, tz) − x Q(tx, ty, tz) dt =
0 t y(z t + x t ) − x(x t + zt) dt ) t t t t + yx −x − xz yz
( =
yz
=
+
zx
+
z
+
yx
−
−
y
yz
+
+
x
−
xz
f − ϕ(x, y, z) =
E ( >.&[, G X R# 0
xyz
yx
−
i+
x
xy
−
xz
−
x y
−
z
j
k+H
−−−−−−−−−−−−−−−−−−−−−→! . $0 5 N# H = −−ϕ(x, y, z), ψ(x, y, z), η(x, y, z) M *( LB$ ! &M #n<" #$ ( x + y + z = M E +"1 S M x= A .8 0 . S 0 n ( ) . $0 $. $ . 1 z = T _&0 .$ M −−−−−→! S 0 . F = z, y, x . $0 5 *$. $ DZ [ E 50 *M [&
( 6Q Ω = R 0 F ]3 div(F) = 5 Q *!' M S #. 0 F &0 S 0 F . \ R# 0&0 5&"V# O&0 S [B 0 0 A. ) N# 5 , 0C 5F [B S #. [B 5 Q *( S #. Z R#0&0 ( C : x + y = , z = ) O $ $ M y M Z#0 z = T E +"1 . *ZM .& Z n = k . 5F 0 ( ) ?U0 ( #$S T−xy 0 S # j D : x + y ≤ S X R# 0 &F O&0 00
00
F • n dσ (S)
00
F • n dσ =
= (S )
00
=
R# .$ *F = xy, z, xy ! M x= A& '() $ & 6Q F . $0 5 R#0&0 div(F) = y = >. T *(" −→ M x= A, .8 >. T R# .$ *F = −(−−/y,−−−−/z,−−−/x) *( &j L >&T `&+ ) U M DF = R − U #E Ω ⊂ DF ZM x= *(" !VO .& , + R# .$ *$S . 1 DF .$ &z &+ M O&0 !VO .& , +
0 *( 6Q Ω 0 F R#0&0 div(F) = >. T R# *ZM $& *J* E G = −−f,−g,−−h→! B 5$.F (0 Z#. $ >. T R# .$
−−−−−→! z, y, x • k dxdy
D
x dxdy =
0 t =
$ y y y % − dt = t − t = − t tx x x 0 g − ψ(x, y, z) = t x R(tx, ty, tz) − z P (tx, ty, tz) dt z z z − dt = t − t = − t ty y y 0 t y P (tx, ty, tz) − x Q(tx, ty, tz) dt h − η(x, y, z) = 0 t =
=
0 t
t
−
$ x x % dt = t − t = zt z
−
x z
E >.&[, G X R# 0 −−−−−−−−−−−−−−−−−−−−−→ G = ( − y/x , − z/y , − x/z) + H −−−−−−−−−−−−−−−−−−−−−→! 5 N# H = −−ϕ(x, y, z), ψ(x, y, z), η(x, y, z) M ( *( LB$ ! &M #n<" #$ . $0 −−−−−−−−−−−−−−−−−−−−→
*F = z + x, x + z, y − xz! M x= A .8 ( !VO .& , + M Ω = R >. T R# .$ *( 6Q Ω 0 F R#0&0 *div(F) = x + − x = $& *J* E G = −−f,−g,−−h→! B 5$.F (0 0 9ZM
f − ϕ(x, y, z) =
0 t z Q(tx, ty, tz) − y R(tx, ty, tz) dt
0 = t z(x t + zt) − y(y t − xzt ) dt (
D
. $0 5 M $ 5&6 $. .$ 0 % & 9M oL6 . 5F B ]< ( 6Q Ω , + 0 F ! & F = −−y−−'−−x−+−−z,−−x−−−−y−+−−z,−−x−+−−y−+−−−→ z A *Ω : max |x|, |y|, |z| ≤
0 t z Q(tx, ty, tz) − y R(tx, ty, tz) dt
=
) t t t t zx +z −y + xyz
+
z
y xyz − + 0 g − ψ(x, y, z) = t x R(tx, ty, tz) − z P (tx, ty, tz) dt =
zx
. $[B &#. E #& + ;H* !VO .$ '() * O $ $ 5&6 & F [B 0 $. & ( ) + 0 . ) *( 5 N# F = −−P,−−Q,−−R→! M x= * . F xI .y >. T R# .$ *( #n<" #$ . $0 9ZM G#U #E !VO 0 i j k ∇ × F = ∂/∂x ∂/∂y ∂/∂z P Q R −−−−−−−−−−−−−−−−−−−−−→! Ry − Qz , Pz − Rx , Qx − Py
Curl(F) :=
=
f
! ) Curl a F + b G = a Curl(F) + b Curl(G) ! ) Curl f F = f Curl(F) + ∇f × F ! ) div Curl(F) = ! ) div F × G = G • Curl(F) − F • Curl(G)
. ) #. N# S M x= ;L=C $ * *O&0 $. & c C 0 ( ) ( C [B &0 . $[B 0 #n<\ 6 S ^Y 0 F . $0 5 M x= Rl+ >. T R# .$ O&0 3 C
00
F • dr = C
Curl(F) • n dσ (S)
>. T R# .$ *F = −−P,−−Q,−−R→! ZM x= @
@ F • dr
@
=
P dx +
C
@ Q dy +
C
C
R dz, C
00
00 Curl(F) • n dσ = (S)
*Ω :
(S)
≤ x,
≤ y,
F=
≤z −−−−−−−−−−−−−−−−−−−−−−→! y z − xz , x y, z − x z
*Ω : x + y + z ≤
#. N# [B 0 $. & ( ) 9;* !VO . ) . $[B #. N# S M x= * C .$ $. & ( ) E . h *( C [B n ( ) . $0 &0 . 1 w |Q (+ S . . + 5F @ M ( ) y O G#U ( ) &0 C ( ) $&U 5&0 0 $. $ !VO 0 *( .&SE& n &. $0 . E ( . ($ ,&1 *$ O ) ;* }
Curl(R.k) • n dσ.
. #E & #&" Z ]M q1 >&[f &0 R# 0&0 9ZM >&[f 00 P dx C
Curl(P.i) • n dσ,
= (S)
A
& (B&' 0 R#S q1 U[@ Z+U ]M q1 0 . &q= .$ 4$ ` y 5F N+M 0 ( #&q= >. T Z 0 *$ + !#[ 5 4$ ` ^Y Z & F 5&0 0 ?z#{ M Z#. $ E& #) G#U $ 0 5F *( $3 }
(S)
@
A;
−−−−−−−−−−−−−−−−−−−−−−−−→ F = −(x/y − x/z, y/z − y/x, z/x − z/y) A
00
Curl(Q.j) • n dσ +
+
*Ω = R
Curl(P.i) • n dσ (S)
00
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→! x − xy − xz, y − xy − yz, z − xz − yz
%NG D 47
. $0 & G F M x= * >. T R# .$ * \\' $ , b a v U0&
@
F=
;*7* &a 9;H* !VO
⎧ ⎨ x + y + z = : z= ⎩
C
: r(t) =
−−−−−−−−−−−−−→! cos t, sin t, ,
≤ t ≤ π
F • dr = C
0 π −−−−−−−−−−−−−→! −−−−−−−−−−−−−−−→! , cos t, sin t • − sin t, cos t, dt
=
0 π =
cos t dt = π
,
− x − y ; (x, y) ∈ D x + y ≤
: z=
D
:
&F Z#0 S mU e0& . f = x + y + z S R# 0&0 n =
=
−−−−−−−−→! x, y, z ±f = ±+ f x + y + z −
−−−−−−−− ,−−−−−−−−−−→ x y ± , , −x −y
(B&' O&0 . −z ([a ( ) 0 . n ( . 1 5 Q M ?U0 *Z##n3 . + x + y + z dxdy f dxdy = dσ = |fz | |z| dxdy = + − x − y i j k −−−−−→! Curl(F) = ∂/∂x ∂/∂y ∂/∂z = , , z x y 00
E ( >.&[, ]M = ( . (+ .$ Curl(F) • n dσ =
(S)
00 =
−−−−−→! , , •
−
−−−−−−−− ,−−−−−−−−−−→ x y , , −x −y
D
dxdy − x − y
+ 00 = D
00
= D ()
=
x+y+ +
+
00
R dz
Curl(R.k) • n dσ.
= (S)
*ZM >&[f . B ( =&M .$ * " Z [O M r : D → S >. T 0 . S #. ZM x= . h R# 0 0 0 r y D E # j r(u, v) = (x, y, z) M ZM .&3 Z#. $ X R# 0 *C = r(∂D) 9O&0 C @
@
P dx = P (r(u, v)) dx(u, v) ∂D @ ∂x ∂x = du + dv P. ∂u ∂v ∂D " 00 # ∂x ∂ ∂x ∂ () P. − P. = dudv ∂u ∂v ∂v ∂u D " 00 # ∂x ∂P ∂x ∂x ∂P ∂x . + P. − . − P. dudv = ∂u ∂v ∂u∂v ∂v ∂u ∂v∂u D " 00 # ∂P ∂x ∂P ∂x = . − . dudv ∂u ∂v ∂v ∂u D 00 # ∂P ∂x ∂P ∂y ∂P ∂z ∂x = . + . + . . ∂x ∂u ∂y ∂u ∂z ∂u ∂v D " ∂P ∂x ∂P ∂y ∂P ∂z ∂x − . + . + . . dudv ∂x ∂v ∂y ∂v ∂z ∂v ∂u 00 # ∂P ∂z ∂x ∂z ∂x () . . − . = ∂z ∂u ∂v ∂v ∂u D " ∂P ∂x ∂y ∂x ∂y . . − . dudv − ∂y ∂u ∂v ∂v ∂u " 00 # ∂P ∂(z, x) ∂P ∂(x, y) = . − . dudv ∂z ∂(u, v) ∂y ∂(u, v)
C
R# 0 *ZM [& . ]M = ( . (+ &' 9ZM .&3 . S 0 . h
S
(S)
@ C
Curl(Q.j) • n dσ,
=
C
&aa ( ) &0
&0 ( 0 0 ]M = |Q (+ X R# 0
@
Q dy
⎧ ⎨ x + y = : z= ⎩
&aa ( ) &0
00
@
R# 0&0 *$ O ) GB ;8* !VO
− x − y dxdy
− x − y
(x + y) dxdy + + − x − y
00 dxdy
D
+ Area(D) = π × = π
D
−−−−−−−−−−−−−−−−−−−→ 00 − −−−−−−−→ −−−∂P ∂P ∂(y, z) ∂(z, x) ∂(x, y) , , dudv , , − • ∂z ∂y ∂(u, v) ∂(u, v) ∂(u, v) D 00 = Curl(P.i) • n dσ =
(S)
Z# $M $& t 6 E ,&1 E AC .$ V# ^- 2 *R#S q1 E A;C .$ M E +"1 S M x= A& '() % * $. $ . 1 T−xy _&0 .$ M ( x + y + z = ! y ( . −z ([a ( ) 0 . n ( ) . $0 *F = −−z,−x,−−→ *M t\ . ]M q1 ) &0 *ZM [& . ]M = |Q (+ 0 *!' 0 *ZM %&L &aa >. T 0 . C ( ) S 0 ( ) 0
−−−−−→! −−−−−−−−−−−−−−→! ± , , × , − sin v, cos v ru × rv ± −−−−−−−−−−−−→! , − cos v, sin v ru × rv
= =
$& $ 5.&\ e0& 5$ 0 $= E AC .$ M R# ^- *( T M Z# =S Z# $ + }
?U0 *Z##n3 . ([a (B&' B&" >. T 0 ) &0 M i j ∂/∂x ∂/∂y Curl(F) = z y 00 (S)
00
k ∂/∂z x
−−−−−−−−−−−→! = , z − x,
]M = ( . (+ R# 0&0 E ( >.&[,
Curl(F) • n dσ
−−−−−−−−−−−−−−→! , sin v − u,
D
•
−−−−−−−−−−−−−→! , − cos v, − sin v ru × rv dudv =
ru × rv 00 ! u cos v − sin v cos v dudv
=
D
0 (0 π
!
=
=
0 $ %π du = u sin v − sin v
−
)
8*7* &a E ; & +"1 9;8* !VO M O&0 y + z = E +"1 S M x= A, .8 0 . n ( O #0 x = x = − >&T y . $0 5 S 0 . ]M q1 *( 50 −−−−−−−→ *M t\ F = z, y, x ! 0 *ZM [& . ]M = |Q (+ 0 *!' !V6 # $ $ E S E C = ∂S M ZM ) . h R# 9A$ O ) % ;8* !VO 0C $$S
u cos v − sin v cos v dv du
−
x = a sin t E UY1 C M x= A .8 * ≤ t ≤ π 5F@.$ M ( z = a cos t y = a sin t cos t *M [& . (y − z) dx + (z − x) dy + (x − y) dz Z#. $ C 0 M $$S h'? *!'
C
: y + z = , x =
−−−−−−−−−−−−−−−→! : r(t) = − , cos t, sin t ; ≤ t ≤ π −−−−−−−−−−−−−→! : r(t) = , sin t, cos t ; ≤ t ≤ π
C C
E ( >.&[, ]M = |Q (+
= a sin t + a cos t = a
x+z y
= =
a sin t cos t = a sin t( ax ( − x/a)
− sin t)
x + z = a T w 6 !j= C R# 0&0 M $ + x= 5 R# 0&0 *O&0 x + y = ax O&0 x + z = a T E +"1 S ( S #. [B C ?U0 *( O #0 x + y = ax y M R# 0&0 ZM %&L &aa Z . C 0 (M' ( ) .$ *O&0 . −z ([a ( ) .$ #&0 S 0 n ( ) . $0 D : + ≤ M S : z = a−x ; (x, y) ∈ D ?U0 (x−a/ ) (a/ )
y a
−−−−−→! , ,
√ dσ =
: y + z = , x = −
*−i . $0 &0 C ( ) O&0 .&SE& i . $0 &0 C ( ) #&0 M &aa ( ) . $ C T−yz 0 ([" U# R# 0&0 *O&0 &aa m? ( ) . $ C
C
± n= √
C
++
++ | |
0
@
0
F • dr = C
F • dr + C
=
0 π −−−−−−−−−−−−−−→ ! −−−−−−−−−−−−−−→! sin t, cos t, • , sin t, − cos t dt 0 π −−−−−−−−−−−−−−→ ! −−−−−−−−−−−−−−→! + cos t, sin t, • , − cos t, sin t dt
=
=
0 π
r(u, v) =
− sin t cos t + cos t sin t − cos t + sin t dt
−−−−−−−−−−−−−→! u, cos v, sin v
!VO 0 . S #. =@ E 5F .$ M $ + .&3 5
D : − ≤ u ≤ ,
± −−−−−→! = √ , , √
dxdy
≤ v ≤ π
E ( >.&[, S 0 Zg&1 .$
dxdy =
F • dr C
n =
ru × rv ru × rv
00 = D
00
=
−−−−−−−−−−−−−−−−−−−→! −−−−−→! − z, − y, − x • , , dxdy ! − (x + y + z) dxdy =
D
=
00 dxdy
i j k Curl(F) = ∂/∂x ∂/∂y ∂/∂z y−z z−x x−y
√ √ a Area(D) = × π √ √ a = πa
F • dr =
. ]M q1 7 & >&#+ .$
C
0 & *
=
9M t\
y M ( x + y + z = T E +"1 S A; O&0 _&0 0 . n O ) &j L >&T −−−−−−−−−−−−−−−−−→ *F = y + z, x + z, x + y! C :
! F = −−y−+−−−z,−−z−+−−−x,−−x−+−−−→ y A
−−−−−−−−−−−−−−−−−−−→! r(t) = cos t, sin t, cos t + sin t ≤ t ≤ π
z = x + y
"B E O ) #. [B C F = −zi+ xj+ yk AH *( z = z = − >&T y x + y = −−−−−−−−−−−−−−−−→
cM 0 M Z [B C F = x − y, −yz, −yz! A8 *( y ≤ &q= Z .$ e1 `&UO DZ [
! F = −x,−−x−−+−y,−−x−−+−y−−+−→ z AJ *( x + y + z = 5 Sq0
C
#. [B C F = (x − z)i + (x + yz)j+− xy k A7 *( z ≥ &0 z = − x + y C 0 F . $0 5 E H & >&#+ .$ *#0 y M ( x + y + z = Rx M E +"1 S A n ( ) . $0 ( O #0 x + y = rx < r < R ( . −x ([a ( ) 0 . −−−−−−−−−−−−−−−−−−−−→! F = y + z , x + z , x + y
#_&0 + [B C F =
−−−−−−−−−−−−−−−−−−−−→! xz , x y − z , xy + y z
*(
x + y + z =
Curl(F) • n dσ
D
= −
−−−−−−−−−−→! − , −, − • 00
−−√ −−−−−−√ −−→ " #
, ,
√
dxdy
dxdy = −Area(D)
D
= − × π ×
a
× a = πa
DY1 Z $ %qT&' .$ %- π 0 0 q0 ('&" #E *O&0
x + y + z = a M $. 0 ! C M . T .$ A .8 −−−−−→! , , &0 5F ( ) M O&0 x+y +z = B$&U 0 T . \ ( .&SE& @
(y + z) dx + (z + x) dy + (x + y) dz
C
#. $. 0 ! C F = xi + zj + k A *( z = T &0
#_&0 + [B
Z#. $ ]M q1 N+M 0 ]3
(S)
00
T y M ( z = x + y pL E +"1 S A −−−−−−→ *F = , x, x ! ( _&0 0 . n O #0 z =
4
00
@
D
−−−−−−−−−−→! = − , −, −
M
AI
*M [& . h .$ 5 x + y + z = T E +"1 . C *!' n ( $. D0 x + y + z = a M y M (=S O ) S #. R# 0&0 *Z#0 . −z ([a ( ) 0 . . M ( S : x + y + z = ; (x, y) ∈ D E >.&[, T E 9O&0 T−xy 0 5F # j D D : x + y + (−x − y) ≤ a : x + y + xy ≤ a /
: (x − y/) + y / ≤ a /
$ O x= S >. T R# .$ & *( q0 N# M &F f = x + y + z −−−−−→! , , f n = ± = ±√ f + +
± −−−−−→! = √ , ,
?U0 *( [1 $. (B&' B&" >. T 0 ) &0 M √ √ + + f dxdy = dxdy = dxdy dσ = |fz | | | i j k ∂/∂y ∂/∂z Curl(F) = ∂/∂x y + z x + y y + x −−−−−−−−−−−−−−−−−−−→! − z, − x, − y = 00
@ F • dr = C
Z#. $ ]M q1 0&0 .$ Curl(F) • n dσ
(S)
58' 9 / 77 ;H7 T 0 !< . c= 4 E $& >& \ &6 0 *$ O U) doc.pdf !#&= M x= '+ Z= p? 'BC . !) $ 0 r(u, v) := (x(u, v), y(u, v), z(u, v)) 6\ &0 . S #. Z# $M .&3 D : a ≤ u ≤ b, h(u) ≤ v ≤ l(u) Zh −uv R# .$ O&0 S 0 AB&V 5 C v e0& N# f (x, y, z) 9ZM G#U XB&Y . V E S ) 0 >. T SurIntFirTyp:=proc(f,r,a,b,h(u),l(u)) local INT, NOR ;
C F = (y + sin x)i + (z + cos y)j + x k A −−−−−−−→! *( r(t) = −−sin−−t,−−cos t, sin t ; ≤ t ≤ π F = (x − yz)i + (y − xz)j + (z − xy)k A; (a, , πb) & (a, , ) E ( . y .&3 `&+ ) C −−−−→! *( r(t) = −a−−cos−−t,−−a−sin t, bt ; ≤ t ≤ π 3.&
>&T R0 .$ e1 (+"1 [B C F = y i + zj + xk A M ( x + y + z = R M E z = b z = a * ≤ a ≤ b ≤ R −−−−−−−−−−−−−−→! F = x, x + y, x + y + z A 4 C :
−−−−−−−−−−−−−−−−−−−−−−→! r(t) = a sin t, a cos t, a(sin t + cos t) ≤ t ≤ π
−−−−−−−−−−−−−−−−−−−−→
INT:=subs({x=r[1],y=r[2],z=r[3]},f) ; NOR:=linalg[norm](linalg[crossprod] (map(diff,r,u), map(diff,r,v))) ; return(int(NOR*INT,u=a..b,v=h(u)..l(u))) ; end :
. $ E ( =&M S 0 f [& 0 5 M SurIntFirTyp(f,r,a,b,h(u),l(u))
*ZM $&
M x= Q+ Z= p? 'BC . !) $ 0 r(u, v) := (x(u, v), y(u, v), z(u, v)) 6\ &0 . S #. Z# $M .&3 D : a ≤ u ≤ b, h(u) ≤ v ≤ l(u) Zh −uv R# .$ O&0 S 0 . $0 5 N# F (x, y, z) := (P, Q, R) 9ZM G#U XB&Y . V E S ) 0 >. T SurIntSeeTyp:=proc(F,r,a,b,h(u),l(u)) local INT, NOR; INT:=subs({x=r[1],y=r[2],z=r[3]},F); NOR:=(linalg[crossprod](map(diff,r,u));
$. 0 ! &C F = ' y − z, z − x , x − y! AH &0 Ω : max |x|, |y|, |z| ≤ ' 3 XUV ^Y . $0 &0 5F ( ) M ( x + y + z = / T *( .&SE& −−,−−,−→! O&0 (T& R# . $ Ω , + S MC * * #. Ω .$ C UY1 $ 50 "0 E 0 M . $0 5 S c O&0 C 5F [B M $ O (= Ω .$ . ) g&\0 0 =&M 4E_ pO &F O&0 #n<" #$ Ω 0 F S U# *O&0 T Curl(F) M ( 5F Ω 0 F 5 5$ 0 *Q = R P = R P = Q &F F = −−P,−−Q,−−R→! M x= ;L=C 3 4 . * X ∈ ( #n<" #$ &q= E Ω '& 0 F . $0 5
Y\ 5 , 0 . X M O&0 Ω .$ #. S M x= *Ω .$ *( $. & ( ) . $ S [B C $. $ 0 .$ Zh
0 0 C & . .$ F . $0 5 uQ @ y >. T R# R# ' (B&' *O&0 S ('&" 0 F dr (+"1 :.& .$ F uQ # S X Y\ N 0 S M & . . \
9Z$ 5&6 Curl(F) $&+ &0 & X z
y
z
x
y
x
•
C
,map(diff,r,v)); NOR:=linalg[scalarmul](NOR,1/linalg[norm](NOR));
X
return(int(linalg[dotprod](INT,NOR),u=a..b ,v=h(u)..l(u))); end:
. $ E ( =&M S 0 F [& 0 5 M SurIntSeeTyp(F,r,a,b,h(u),l(u))
# /.$F .$
*ZM $&
78
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F MnB = d'&[ 0 p 0 e0& & B&a
Curl(F)
@ = X
F • dr ÷
lim
S→{X }
C
#00
" dσ
(S)
9$ + 5&0 5 #E >. T 0 . ]M q1 R# 0&0 . $[B . ) #. S S ;L=C * 5 S c O&0 $. & ( ) &0 C S $ 0 C [B &0 O 4& .&M &F O&0 3 C 0 #n<\ 6 S 0 F . $0 uQ 5 c 0 0 F 5 f& ( C 0 . w y *( S #. 0 F
01 2! '3 http://www.maplesoft.com
*M U) ( # V[O 0
!0&1 #& !< . c= 4 =U (+"1 R# E m
+, -. %& M R E #& +"1 *O&0 5F ) (#& .$ . O&0 !< . c= 4 E $& i j .$ M N# http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
. c= 4 ( =&M *M &6
!#&= ]< $ + Xj . pdf "3 &0 & #&= 5 0 4 M M $ + KY $. R# .$ . #E !#_$ 5 0 #&O *M &6 . doc.pdf DE F .$ !< E $& 0 =&M !B$ 5 #& 0 1 .&"0 < &M . c= 4 N# 4& AMapleC !<
h 0 5 M & M " #_$ & & # M B&' .$ O&0 t\ DE F .$ $ "S !VO 0 . c= 4 R# E *( 9. .&+60 c . $ !< *$ O $& -. $0.&M X &V + hC 0&6 &. c= 4 #& E . 5F M ( . V d'&[ &0 5O S.$ E ZU /. • 0 & S# R# E 0 *$E& c#&+ A* * * # .$ V
*$ O m&U
9#E KO !L .$ M #&cQ 5F N+M 0 /. • *$ $ 4& 5 5F .$ . ^T $ , &0 >&[& • . XY Z Q $ $ 5&6 5&, 0 . S
*$ $ 4& 5 Z1. $ U &0 . $, >&[& • *M e#" *$ $ 4& 5 5F N+M 0 . R#$&+ >&[& • S.&V0 E !T&' F (0 (T= E 5 /. • .$ . 60 >&#+ $E $<0 XB&Y t+, 0 !<
0 .&+60 . c= 4 & "0 O & e0 • *M !' /?M , - .$ 4 M M $. $ $ ) !< 5&0E *#F .&V0 i jL0 ) U# . $ B&+ ' &# • >&U=$ .$ $M y[- 5 . [#& S • *$ O eY 5F .$ Q $ + *$ + $& U0 < &M X& . #$ N# 5 , 0 5F y E • *$ + $& 5
&' R, .$ 1 .&"0 "# &0 5&0E N# !< • 5 c $. .$ 0 4 , RjjL 5& .$ *( $& M $. $ $ ) = d'&[ OE F N+M &. c0 S.&V0 Q 5 c .$ B B \B t 5F $ ) !T .$ + R+ 0 M .&M 5F &0 5 0.&M E .&+60 $ U • *( +M B&+ ' & 3 >?V6 . $ !B$ R#\ M V * " & > h . $ 5F E $& .&V0 &0 M ( R# M KY & c= 4 E $ & $& 0 $&&M B &6 $ .$ M ( . c= 4 /& .$ !<
t+, E ZU 5O .$ &+ ' &. c= 4 E $ "S S *$ + @ . $ &V =. =. F $ ) t' 0 h0 M !V6 R# *$. & 0 5$0 &3 XY 5F D "S &' .$ & S# lL#.& h'? 0 0 *$ + e 0&OE. ]#. O &0 5 . .
/.$F 0
;H7 Adobe Acrobat
*$0 =
( &$&+ m' E B&[$ !< y .$ . $ & .$ *O&0 5$M $. !0&1 M T y M $& $&+ E S *$ O $& 9 &$&+ E #&0 . $ $$S & U0 y .$ 5F O ) . $ $ O & . $ 5F $ O $& . $ N# F .$ 9 $&+ E S B *O L $ $ u#&+ $ O ) h=&' .$
. M# $ 0 $ $ . 1 $ i jL # .$ .$ . 5F *M ) . setup !#&= #0 Maple ]< Utillities *$ + Xj . !< . c= 4 .&M$ . @ 0 &+O & $ 0 U#C !< !VO 5F 0 M RV#F N# Xj E ]3 .&M 0 `O 0 *$$S & ( "0 u\ A:&M (.$ N# .&M R# E ]3 *M NM .&0 $ RV#F 5F 0 ( =&M 5F _&0 |Q (+ O S .$ M $$S & T =&M > . $ 5$ + $. 0 $. $. 1 5E N+6Q M N# .$ *M |#& 0 `O $M NM . Mn T 0 ( 4?, O ) . $ 5$E Enter &0 . $ F # $6= . Shift (O M M B&' .$ l&Q *$$S
#) y N# $ O ) . $ V# 50 c0 . M *$ O E&0 [1 > . $ $ 5$M $. 0 #$ $ 4& & B&a .$ v l&Q A$. $ . 1 &+O & $ .$ MC #$ . M# $ .$ . .&M *M {
.$ p "[ !VO 0 & ( " $ $ 0 "# /& R+ R# 4& 0 +, &.&V . $ + t\ i j R# *#&+ g . . Z
>&V 0 4 M $ O T /& R+ 0 9O&0 O $ =&M ) #E y &0 E & !< . c= 4 &0 #&OF 0 .$ • !' 5F N+M 0 c . $& &a Q O &OF 5F (T= M . $$ 60 (1 mT E B M *#0 ) %& M &0 & $ ! &M . Y0 . AAh d0CC 0 i& ` - .$ • AA!< E $& CC uL0 0 ]< $ . 1 ) $.
*M U) ( O $.F !j= 5&3 .$ M 0 . & F ]< ($ &0 0 . B & B&a M U • *#&+ !' !< N+M H /.$ 4$ E U0 & $ O T • $ O =S h .$ A-. &6#& EFC 5 , 0 \1$ $& Q DE F 0 !< 0 y" $& 5F .$ *$E $<0 5F 6L0 $ c !' &0 + . #&" @ 0 /. M $ O T • 5 $S&O E Zh . @ 0 !< E $& &0 !' $ *M X@
!" U) &0 4 & ( 4E_ !< E $& 0 !< y &0 #&OF R+- @ 0 OE F X M E V# 0 . 5F .$ XB&Y |#& Q N+M E $& 5 Q [B&Y
4$ % 5 0 . AV$ S C ] W. #$ q1 .$ A8 `&UO >&j L DZ [ cM 0 M . F = zk . $0 *M .0 x= &0 . ]M q1 (T AJ F(x, y, z) = zi + xj + zk
.$ x + z = ^Y E +"1 S 5F .$ M S ^Y . *M .0 ( y = T 0 $
Z 6 N# y z >.& [ , ! T& ' & F ω = x f x , x S A7 *0&0 . xω + yω + zω −z x y+ L : = = p Y ( U - A *M oL6 . #V# 0 ([" L : x + = y = z − x + y + z = 5 Sq0 0 /&+ T B$&U AI *#.F (0 . x − y + z = T &0 E x
y
T *$ O KY & !#&" + Q $ .$ *M >.$&[ & F !' 0 ` - 0 =&M y" E ]3 M $ O *( (,& ; 5& 5& E S$& Fs %& M 0 !#&" R# !' &6 ( ) O& GB& $
+, -. 5& 0 *M U) r*7 5 4$ u# # 5 6# !'& (#& .$ =&- !#&"
http://webpages.iust.ac.ir/m_nadjafikhah/r2.htm
*( O $.F
z
! ) ' e0& 3 4, 3 .$ A 4 f (x, y) =
A ) ' e0& 3 4, 3 .$ A 4 f (x, y) =
xy x +y
(x, y) = (, ) (x, y) = (, )
√ xy
(x, y) = (, )
x +y
(x, y) = (, )
*M d0 >&j L DZ [ .$ 9B$&U 0 C 0 Zg&1 T /&+ y B$&U A; C : x − xy + z = ,
x
tan (xz) + y − z =
*0&0 M (, , ) Y\ .$ . y $ .$ . u = +x + y + z e 0& t 6 A 9B$&U &0 C 0 /&+
x
*M d0 (, ) Y\ .$ #. $ w 6 ! j = 0 /& + y B$& U A; C : x = t, y = t , z = t Y \ .$ . x + y + z = x + y − z = . T B$& U ] < * #.F ( 0 P ( , − , − ) *#.F (0 0 e1 ( , , −) Y\ .$ 0 0 y R# 0 $ +, OnS M (, , ) Y\ E M "# 0 dy dx &S$ !T&' A *O&0 /&+ E U0 . ln y *M [& [ v 5&6 &F O&0 u = yf (x + y) + xg (x + y) &S A !T&' M >&j L .$ v v N+M 0 AH 00 *u − u + u = M $ 90&0 . #E e1 '& D 5F .$ M xdxdy [& ( % Y A √ √ *( x + y = x x + y = # $ R0 e0. .$ 0 0 0
x + y + z dzdxdy √ AH pL 0 M x + y + z = M E +"1 Z' + *#.F ($ 0 . ( O $ z = x + y ;8I e
ex
xx
D
yx
yy
−y
−x −y
x +y
A 3T ) ' y &0 M "# 0 . T B$&U A >& T w 6 ! j = E E
*$.n0 x − y + z + = e 0& & 4 " M $ ) 4 , .$ & # $ ) .$ A; *M d0 z = x − xy + y + y 9M d0 #E e0& #n3t 6 4, #n3t 6 .$ A y z− = − − x+y−z = x
=
4 f (x, y) =
x y x +y
(x, y) = (, ) (x, y) = (, )
0y0 = x − y = x p Y R0 . j '& D &S A x + y dxdy &F O&0 x + y = x + y = cos (x − y) *M [& . _&0 E xOy T 0 Rg&3 E M [T Z") Z' AH Q.&
F = (x + y) i + (y − z) j + (x − z) k
]M q1 N+M 0
z = x + y z=
'&E . 0 . *M [&
0 M ).& ^Y S F = zi + yj + xk &S AJ 00 N+M 0 . F n dσ ^Y &F O&0 N# `&UO *M [& ] W. #$ q1 •
(S)
\X* ) ' 9$ O ! &O . #E y $ M "# 0 . T B$&U A
⎧ ⎨ x = + t y = − t : ⎩ z = − t r(t) =
*( x F = x i + yj + zk . $0 e0& A8 ).& 5 S q0 ^Y . 0 . e0& R# ^Y A# S C ] W. #$ q1 N+M 0 x + y + z = *M [&
5 S + ^ Y E ( + " 1 5F S M x = AJ ( e1 z = T _&0 M O&0 z = − x − y q1 .$ >&- R# 0 ) &0 *( 5F E C
*M t\ F = yi + zj + xk . $0 e0& 0 . ]M
x + y − z = − x + y + z =
sin ti + cos tj + tk B$& U 0 + A;
.$ . DZ& . \ B N T &. $0 ( x
*0&0 5F E LB$ Y\ e 0& 3 4 , 4& # 3 .$ A √ (x, y) = (, ) R &q= !M .$ f (x, y) = (x, y) = (, ) *M d0 xy x +y
AG ) ' (
Y \ $ E M 0& 0 . T B$& U A *$.nS c $ 5F R0 E ( T&= N# 0 (, , ) e0& 3 4, 3 .$ A;
, , )
4 f (x, y) =
x y x +y
(x, y) = (, ) (x, y) = (, )
*M d0 (, ) Y\ .$ #. $ w 6 !j= >. T 0 C ZM x= A x + y =
z +
, z = x + y
.$ . %& & #$&\ B N T &. $0 *$ O G#U *0&0 (x, y, z) LB$ Y\ N# ∂z ∂x ∂y × × >.&[, . \ F (x, y, z) = x= &0 A ∂z ∂x ∂y *0&0 . ^ Y E + " 1 ( '& " [ & ( % Y AH *$. $ . 1 x + y = ! $ M z = x − y [ & 0 00(( % Y ) A8 * xa + yb + zc dxdydz q1 .$ F(x, y, z) = zi + x j + yk &S AJ x + y + z = M 0 _&0 E M Y 0 . ] W. #$ *M t\ ( . j z = x + y 5 + 0 R#&3 E >_$&U 0 C &S A7 R
C : x + y = a , z = x + y
. #E y ]M q1 N+M 0 O&0 O $ $ 9M [&
@
xdx + (x + y) dy + (x + y + z) dz C
] M q 1 N + M 0 . ( x + y + z = *M [&
Z#S h .$ . F = x i + yj + zk . $0 e0& A ).& q 0 ^ Y . 0 . e 0& R # ^ Y ] W. #$C /&S q1 N+M 0 x + y/ + z = *M [& AV$ S
\H ) ' x + yz = K Y 1? E C A $ 5& 6 *( O ! T& ' x + y + z =
Y\ E A = ( , , ) Y\ .$ C 0 /&+ y *$.nS B = (− , , ) e0& 3 A; 4 f (x, y) =
xy x +y
z=
0
t
sin(u ) du
y=
0
t
sin(u ) du
t≥
0
t
cos(u ) du
hB & t = hB E O @ (=&" ( % Y AGB *t = *0&0 t = Y\ .$ . = " DZ& `&UO A% >_$&U y M ( y x &v E U0& z A uC ( O G#U z = u + v x = u + v y = u + v [& ( % Y *A#0 h .$ y x E U0 . v ∂z ∂z * ∂y ∂x 000 , z x + y dxdydz [& ( % Y AH y = >&T x + y = x 0 D 5F .$ M *( O . j Z 6 N# .$ e1 z = a > z = pL ^Y E +"1 ('&" RU ( % Y A8 $ O ) x + y = ax y M z = x + y *Aa > M $ O x=C z = − x − y ( < z) ^ Y S M x = AJ . $ 0 5 0 . ] M q 1 .$ *( *M t\ ^Y R# F = −zi + xj + yk D
x
y
− x /a +y /b
R
( , , )
( , , )
(x, y) = (, ) (x, y) = (, )
*M .0 (, ) Y\ .$ . (M' #E 5 &1 &0 O $ $ " N# . 0 M A 9M
x=
O& 0 ! \ " & v y x S A [& ( % Y &F uu++vv++xx ++yy == *u v 00 ( ) R 5F .$ M e dxdy ( % Y AH *( x /a + y/b = B$&U 0 q0 ! $ '& x +y+z = a K Y R0+. j XT Z") Z' A8 *(a < b) 0&0 . z = x + y x + y + z = b 0 z = x + y pL E O ) ^Y ('&" AJ *#.F ($ 0 . z = z = >&T 0 [& . yzdx + xzdy + xydz y A7 *M 0 . ] W. #$ q 1 .$ A >& T 0 $ Z " ) :.& S ^ Y . $ 0 5 z = y = x = x + y + z = *M t\ F = (x + y) i + (y + z) j + (z + x) k
\P? ) ' Y\ E M "# 0 . T B$&U Aa x + y − z = − >_$& U 0 T $ e @& \ ! *$.n0 x − y + z = *M oL6 . xyz = ^Y ` Ab 90&0 . #E e0& !"& 3 e0& A;
(, − , )
yex + ez
. \ h(x, y) =
zey + ex j + xez + ey k f (x + y) + f (x − y) & S A *0&0 . ∂ h − ∂ h >.&[, i+
∂y
∂x
e 0& 3 4 , & # 3 .$ A ; (x, y) = (, ) (, ) Y \ .$ f (x, y) = ; (x, y) = (, ) *M d0 . j . $4) '& N# x . 0 ([" & .& 6S AH e0& 5$ 0 (0&f x= &0 . y + z = B$&U 0 q0 0 *0&0 (δ = ) B&Q R '& 0 . f (x, y, z) = xyz e0& &S A8 . x + z = x + y = & R0 . j
*M [&
−y x @ .$ . F = x + y i + x + y j e0& y AJ N+M 0 5 . = F *M [& &aa # $ Q $ + [& R#S q1 0 x (z − y) dx + y (x − z) dy + y A7 (, , ) / g. & 0 a a C 5F .$ M z (y − x) dz B$& U 0 T 0 e 1 (, , ) (, , ) xy x +y
C
( % Y *r(t) = e cos t, e sin t, e ! M x= A *X = r() Y\ .$ A5& 0C DZ& # $ %& DZ& S : z = x S : x + y = M x = A; oL6 R .$ . &VO R# E N# ` *C = S ∩ S *M Z >&j L & $ N# .$ . & F $ + 9#.F (0 . #E ]#& # &. $0 #$&\ A ⎛ ⎞ t
⎜ ⎜ ⎝
−
t
t
−
9M d0
⎧ sin(xy) ⎪ ⎨ x + y f (x, y) = ⎪ ⎩
R
C
⎟ ⎟ ⎠
\PH ) '
0 #E e0& 3 .$ A
e0& 3 A 4
(x, y) = (, ) ∂z ∂z +y =z x ∂x ∂y
#) &v X"' 0 . Y0 . AH 4 + 4 +#cM& #$&\ A8 *M "# E&0 v = xy w 6 !j= q0 . . f (x, y, z) = x + y + z e0& *0&0 x − z = T z = x + y pL
4 5&3 0 $ ^Y ('&" [& ( .% Y . A * e0. .$ e1 xa + yb = 000 N# .$ e1 Z' V 5F .$ M z dV . \ A; #E x + y + = z T _&0 >&j L Z 6 *M [& . ( z = T 5 Sq0 0 $ '& 0 . |xyz| e0& A *M [& xa + yb + zc = M E + " 1 4 ) [ & ( % Y A O ) x + y = x y M x + y + z = δ = x + y + z 0 0 (x, y, z) Y\ .$ B&Q ( *( F = . $ 0 5 0 . R # S q 1 AH (, ) / g. & 0 a a C (x − xy)i + (xy − y )j *M .0 (, ) ( , ) 5 0 . ] M q 1 A8 C F = (y + z)i + (z + x)j + (x + y)k 9M t\ ! u=x
V
cos t, sin t, cos t + sin t
; ≤ t ≤ π F = − xi + yj + zk r , r = x + y + z
•
(S)
(x, y) = (, )
C : r(t) =
^ Y ] W. #$ q 1 E $& 0 0 & 0 A7 F = xi + yj + yzk . $0 5 0 . F n dσ *M 3 |x|, |y|, |z| ≤ XUV ).& S ^Y B$&U 0 $& . + "0 '& [B C M x= A x y y . \ [& ( % Y *O&0 + = @ * −yxdx ++xydy
M O& 0 M . T .$ AJ '& 0 . ] W. #$ q1 5F .$ *M .0 ≤ x + y + z ≤ M $ 0 $
f (x, y) =
(x, y) = (, )
√ xy
x +y
(x, y) = (, )
*M .0 R !M 0 . >_$& U z = e cos t y = e sin t x = te S A; T v &. $0 &F O&0 M .{ (M' " .&3 t = hB .$ . 5F 0 Zg&1 T B$&U " κ DZ& *0&0 & #. 0 O . j Z " ) Z ' A *0&0 . z = x + y z = − x − y 0 ([" M 0&0 5&Q z = xy + ^Y 0 Y\ A
*O&0 T&= R# & M . $ >&j L DZ [
00 x−y cos dxdy [& ( % Y AH x+y (, ) (, ) (, ) ( , ) / g. &0 \E{ U 5F .$ M *( xOy T .$ e1 f (x, y, z) = xy + yz + zx e0& A. )C # t 6 A8 $ .$ xy + yz + zx = ^Y E LB$ Y\ .$ . *0&0 grad (f ) ^ Y [ & 0(0 % Y AJ x + y + z dσ E ! T& ' Z " ) ^ Y S M *( z = a z = >&T x + y = 1? . $ 0 5 0 . ] M q 1 .$ A7 (+"1 E C M M t\ . T .$ F = xyi + yzj + zxk x = >&T y x + y + z = T E O ) *O&0 z = y = t
t
t
U
(S)
\3F ) ' 4 5&
5$( [12] Dieudonne, J., Linear Algebra and Geometry,
[1] Adams, R. A., Calculus of Several Variables,
Hermann, Paris, 1969. [13] Douglass, S. A., Introduction to Mathemat-
Addison Wesley, Canada, 2000. [2] Adler,
ical Analysis, Addison Wesley, Massachusetts,
of
1996.
tial
Lectures
M.,
Several
Variables
Forms),
on
integration
(Using
Internet
Differen-
Version,
http://www.physics.nus.edu.sg/˜ [14] Gelbaum, B. R., and Olmsted, J. M. H., Theorem and Conterexamples in Mathematics, Springer Verlag, New York, 1990. [15] Garvan, F., The Maple Book, Chapman &
[3] Agarwal, D. C., Advanced Integral Calculus, Krishna Prakashan Media Ltd., India, 1997. [4] Apostel, T. M., Calculus, 2 vols., Blaisdell Pub., 1969. [5] Buck, R. C., Advanced Calculus, McGraw-Hill,
K. M., Maple V Learning Guide, Waterloo Maple Ins., 1988.
New York, 1978. [6] Udriste, C. and Balan, V., Analytic and Differential Geometry, Geometry Balkan Press,
[17] Hardy, G. H., A Course Pure Mathematics,
Bucharest, 2000.
Cambridge Univ. Press, Cambridge, 1948. [18] Ilyn, V. A. and Pozniak, E. G., Linear Al-
phy-
teoe/teaching/mm4
Hall/CRC, New York, 2002. [16] Heal, K. M, Hansen, M. L. and Rickard,
URL:
[7] Budak, B. M. and Fomin, S. V., Multiple Integrals, Field Theory and Seies, Mir Pub.,
gebra, Mir Pub., Moscow, 1986.
Moscow, 1978. [19] Ilyn, V. A. and Pozniak, E. G., Foundamen-
[8] Cain,
tal of Mathematical Analisis, 2 vols., Mir Pub.,
Herod,
J.,
Multivari-
//www.math.gatech.edu /˜ cain /notes /calculus.html, 1997.
[20] Israel, R. B. , The Maple Calculus, Addison
[9] Chen,
W.
,
Linear
Algebra,
URL:
http://www.maths.mq.edu.au/˜ wchen/In.html
[21] Kay, D. C., Tensor Calculus, Schaum’s Outline Series, McGraw-Hill, New York, 1988.
and
able Calculus, Internet Version, URL: http:
Moscow, 1982.
Wesley, New York, 1996.
G.
[10] Chen, W. , Multivariable and Vector Analysis,
[22] Klambauer, G., Aspects of Calculus, U.T.M.,
URL:
http://www.maths.mq.edu.au/˜
wchen/In.html
Springer Verlag, New York, 1986. [11] Davis, H. F. and Snider, A. D., Introduction to Vector Analysis, Wm. C. Brown, New Delhi,
[23] Knopp, K., Infinite Sequences and Series,
1988.
Dover Pub., New York, 1956.
;8
[35] Olver, P. and Shakiban, C. Applied Mathematics, Lecture Notes, Preprint, 2000.
[24] Kurosh,
A.,
Higher Algebra,
Mir Pub.,
Moscow,
[36] Shakarchi, R., Problem and Solutions for Undergraduate Analysis, Springer Verlag, New York, 1998.
[25] Lang, S., A First Course in Calculus, U.T.M., Springer Verlag, New York, 1986. [26] Lang,
[37] Spigle, M. R., Vector Analysis, Schaum’s Outline Series, McGraw-Hill, New York, 1959.
S.,
Calculus of Several Variables,
U.T.M., Springer Verlag, New York, 1987. [27] Landesman, E. M. and Hestenes, M. R.,
[38] Yaglom, A. M. and Yaglom, I. M., Challenging Mathematical Problems, 2 vols., San Fran-
Linear Algebra for Mathematics, Science, and Engineering, Prentice-Hall, New Iersey, 1992. [28] Livesley, R. K., Mathematical Methods for
sisco, 1964.
Engineers, John Wiley & Sons, Canada, 1989.
G#O UT &6 $ */ & 6 O [29] Loomis, L. H. and Sternberg, S., Advanced *7I 5 P&Q E ![1 Calculus, Jnes and Bartlett Pub., Boston, 1990. G#O UT &6 $ */ & 6 O I [30] Maron, I. A., Problems in Calculus of One *7I 5 P&Q E ![1 Variable , Mir Pub., Moscow, 1988. *4 [31] Myskis, A. D., Introductory Mathematics for *7I 5 &0 R+ 0 Engineers, Mir Pub., Moscow, 1978. *4 ; [32] Nikolski, S. M., A Course of Mathematical *J 5 &0 R+ 0 Analisis, 2 vols., Mir Pub., Moscow, 1987. *P *% # $ [33] Piskunov, N., Differential Calculus and Inte*J V" gral Calculus, 2 vols., Mir Pub., Moscow, 1981. *P *% # $ [34] Pogorelov, A., Geometry, Mir Pub., Moscow, *8 5 [M . O c#3 +) 1987.
!"#$
% & '( )
!"#$
'( & %
'62 4= ;H t1$ ;H ! &M 4= ; ;8 t1$ ;8 ! &M
;J 4$ ` ` ^Y ;; &+B D. J &S 7; >&j L v 7J Y >&j L v 7H M >&j L v &+B D. JH Zh −xy , +
8 & .V &S$ J &S J; DZ& . $0 N# E J $ &[Y . $0 I $ EF Y ?\ ; &U ;7 ^Y N# 0 ( ) $ R0 # E 4 E @ \
T N# & ; # $& I "+ ; V# ; # . $0 $& . $0 ; &q= .$ y JI 0 /&+ V# . $0 ;I R#?M Y0 8 q0 H 5 Sq0
5 EF HI 4$ ).$ ` RU H 4$ t 6
8 . $0 e0& cB&F &. $0 Y ?\ HH q0 H8 + H8 B Bn 4 "M J S = ;I p6
v Q e0& U-
7 S = 4 "M B&" !' Z #. B &S$ V Zh −x , +
y ` ;I8 4$ ` H &S$ H Y >&j L v H [Y1 >&j L v H &+B D. Zh −x >&UY= 0 , + N# Z"\ D. Zh −x , + N# $' #&&O D. H >&j L v q1 Zh −y , +
8 & ^Y ;;7 ` ;88
# j T 0 y ; #$ . $0 0 . $0 N# # j ;I8 .&3 # U ;I8 5 $S0 ( ) ;I8 ( ) =&' v v ;J & = .$ I8 t 6 .$ >&j L v 7H M >&j L v 7; &S .$ H &S$ .$ Y >&j L v &S V ; &q= .$ y T 8 . $0 e0& N# B e0 ; U0& "0 e0 ;I T j % ) ;I8 ) ( ) ;H "# #. N# $. & ;H 5 $.W N# 0 $. & ([a
;I8 ( ) %qT&' 8 ).& 8 .&M$ J #& H & "#&
' 7 v Q e0& y ; T $ $. 0 E !T&' J \\' T .$ $& . $0 &S V ; &q= .$ ; x= Y\ $ E .nS T .$ y .&3 >_$&U
8H AZC .&3 8 U[@ .&3 HJ H 5$ + .&3 H7 q0 H + H B Bn H q0 H7 5 Sq0 H # $ H + H7 q0 5 S+ H7 B Bn 5 S+ HJ M H7 pL
H B Bn H7 Q.&3 $ 5 SB Bn H7 Q.&
V# &U
;H 4= N# !& 3 ;; ; . $0 5 !"& 3 ;H ul3 77 3 77 v Q e0& 3 %& J N# e0& J v −n J 8 #n
7 i& & \
. $0 e0& 8 RU 8 RU & 8 B e0 8; 3 ' 8 R .$ 8 t 6
78 M [Y1 >&j L 0 ' !#[ ;7 Y !#[ ;8 ]#& $&
;; z y E U0& . $ + . $0 $ R0 # E ;; ]#& #E I (O& N# 0 M W ;H , + !VO .& J (, ;; ^Y 7; E ^Y J + HH q0 5 S+ HH B Bn 5 S+ J %& O J Zg&1 J &+
J; DZ& `&UO 7 !VO T J '?T 7 1 & . $0 J 5& 0 7 .&M$ J Zg&1 . $0 B$&U
&M B$&U
J /&+
87 N# / 1 @ . $0 N# @ T&= ; p&\ R0 I y & Y\ ; " #$ 4= 7 1 &q= . $0 &q= U0 ; #&3 I t 6 E ,&1 JI T Zg&1 JI 0 4$ Zg&1
.&3 . $0 B$&U
&M B$&U
&q= .$ y ; $& . $0 ; &S V ; .&3 . $0 B$&U
J /&+ y 8H Z H # $ J; /&+ # $ 8 5& $ I R0 M W 7 , + N# 5.$ Y >_$&U & $ ;8 4= !" #$ ; v Q e0& N# !" #$ ;8 ] W. #$ ;; ]#& N# [. D. H &S$ N+M 0 &+B Zh −x >&UY= 0 , + N# Z"\ 7H S' [) Zh −x , + N# $' #&&O ; M (+O 4 S &+B D. ;; ` ^Y .$ &+B D. #. ;H "0 ;7 #n< ) ;7 . ) ;; #. ;;H .&3 [) V [) H 4$ ).$ ;; v e0& N# E ^Y ; . M ;;H 6\ ;; Zh Y\ ;; y x E U0& . $ + ;; z x E U0& . $ +
; Z' [& .$ /&S q1 $0.&M & &M 8 q0 7 B Bn ;H M H M $& & "M JI = kM 5$ S 7 S 7 S ]#&
;8 $& H %qT&' ;; [. Y ;8 5.&\
U0
H #n< VU
;7 Y !#[ u#&+ H &+ 4 +#cM&
J , + N# 0 e0& U-
, +
Zh −x JH Zh −xy Zh −y 7 E&0 J "0 7 $6= 7 . M ;; . [+ ;H !VO .& HI >&j L
7J Y H [Y1 H pL
J , + N# E
J; DZ& cM
; Y !\ "
t 6
q1 ;H ]M ;J ;H /&S q1 ;8 .&V 3 IH +- e0& ;; S_ = Z+U H &S$ .$ >&j L v H [Y1 >&j L v . ;H 5 $.W ;H & "#& 5$M Y1 ;H R#S ;I S_ ; R & 8H / 1 ` y $0.&M ;I !\f cM 4) [& .$ ;I uQ `&UO & .& 6S [& .$ ;I N# 0 e0& N# y [& .$ ;I Y\ N# 0 N# 0{&) [& .$ 4$ ` y $0.&M ;I N# $ .$ 5) [& .$ ;I7 .&M [& .$ &S$ $0.&M 8H U0 $ Z") N# 4) [& .$ 8 U0 4&") Z' [& .$ 87 & .& 6S [& .$ 88 !\f cM >&j L [& .$ 8I m&T ' ('&" [& .$ 8 yLB K Y ('&" .$ ` ^Y $0.&M #. N# uQ `&UO & .& 6S [& .$ .$ ; . ) ;H ^Y N# 0 e0& N# y [& .$ ;; ('&" [& .$ ; !\f cM .$ ; 4$ ` ^Y $0.&M &S $0.&M ; !\f cM 4) [& .$ XT 4&") Z' [& .$ H & .& 6S [& .$ B&V 5 N# y [& .$
I v $ e0& . $ + Z H #$ . $0 0 . $0 # j 8I #$ DZO 0 DZO N# # j I ]#& . $0 G#U J7 . $0 e0& G#U 7 v Q e0& G#U ;;; . $0 5 G#U 8I DZO $ $. 0 RU 8I DZO $ R0 # E RU 8I Z E DZO $ T&= RU I S ' I Y >_$&U & $ !' H y !" #$ I Y [) . c= 4 E . H (+O 4 S D. H . $0 $ R0 # E R0 M W 8I T ;H $& E@ ;; ` y [&
;;; 4$ ` y [&
J; &S$ [&
7 &S [&
I " ' [&
t 6 [&
gc) t 6 [&
J7 . $0 e0& t 6 [&
+- t 6
I # . $0 . \
7 v Q e0 0. \
H Y\ ; #&\0 5
. $0 5
;H 6Q ;8 #n<\ 6
4 +
J , + N# 0 e0& U-
&" & O M ; aa
. $0 N# 4
I $ v Q e0& IH +- e0& I8 v v #c) I 0 M W I E ,&1 Y >_$&U
B$&U
T .$ y .&3 . $0 ; &q= .$ y .&3 . $0 T . $0 T .$ y .&3 ;I v m Y T .$ y &M T &M ; # . \
& \
77 e0& 77 !+, H @L eY\
H $. & 8H
7 E I [) I V [) ;I8 . ) H 4$ ).$ 8J &+B$ ;H 5 $.W I . M 8J >&V"+B J Y"
!<
;H #&OF H &. $0 0 &+, J7 . $0 e0 0 B +U &+, 8I . $0 N# E &0 DZO N# &\ H . $0 H Y\ $ R0 !T . $0 I E K Y Z J7 Z I E & Z
H8 4$ ).$ &#. E& & Y\ ;; #. N# 0 Zh
Y\ RV 7 ["Q 7 .$ H #E J E
7 v $ e0& . $ + ;;8 / 0 . ; Y "0 ;8 # S 7 B Bn HH Q.&3 $ 5 SB Bn H Q.&
0
au du =
0
au + C, ln a
cos x = cos¾ x − sin¾ x
sin u du = − cos u + C,
0
sin x = sin x cos x,
0 tan u du = ln sec u + C,
tan x =
cot u du = ln sin u + C,
sin¾ x =
du = ln | sec u + tan u| + C, cos u
cos¾ x =
du = ln | csc u − cot u| + C, sin u
c = ,
0
0 0 0 0
− sin¾ x = cos¾ x − ,
=
cos u du = sin u + C,
0
+
du
+
du
a¾ − u¾
0
u¾ ∓ a¾
u+a
+
u¾ ∓ a¾ + C,
= ln u +
− cos x
,
,
,
+ cos x
(uv) = u v + v u,
u + C, a
= arcsin
− tan¾ x
(u + v) = u + v ,
u − a ln + C,
a
tan x
(cu) = cu ,
u du = arctan + C, a a u¾ + a¾ du = u¾ − a¾
cot x cot y ∓ , cot y ± cot x
cot (x ± y) =
u v
u v − v u , v¾
=
(nn ) = nu nn−½ ,
(sin u) = u cos u, + ¾ ¾ du u + u ∓ a + = − ln , (cos u) = −u sin u, a u ¾ ¾ u u ∓a 0 √ + tan¾ u , (tan u) = u dx ax + b
0
√
0
√
ax + b
=
,
ax + b =
(ax + b)
a
a
−a
f (x) dx =
0
+ C,
(au ) = (ln a) u au , (eu ) = u eu ,
a
f (x) dx,
¼
f (−x) = −f (x) ⇒
0
0 ¼
0
a
−a a
¾
cos x dx = π/¾
¼
¼
π/¾
¼
¾
sin x dx =
0
π/¾
¼
tan−½ u
a
,
sin¾n x dx
0
¼
π/¾
− u¾
sin¾n+½ x dx
× × · · · × (n) , × × · · · × (n + )
f (x) dx + C,
0
0
0
v dx + C,
0 u dv = uv −
0
u dx ±
un du =
,
0
(u ± v) dx =
0
v du + C,
un+½ + C, (n = − ) n+
' !G' *T
= − cos−½ u
u = − cot−½ u + u¾
=
0
0
u
= +
af (x) dx = a
× × · · · × (n − ) π . , × × · · · × (n)
cos¾n+½ x dx = =
sin−½ u
0
a
cos¾n x dx = =
0
f (x) dx = ,
0
u , u
(ln u) =
¿
f (−x) = f (x) ⇒
0
+ C,
a
,
sin¾ x + cos¾ x = , sin x , cos x cos x , cot x = sin x tan x =
sec x = csc x =
cos x
,
sin x
,
sin (x ± y) = sin x cos y ± cos x sin y,
du = ln |u| + C, u
cos (x ± y) = cos x cos y ∓ sin x sin y,
eu du = eu + C,
tan (x ± y) =
tan x ± tan y , ∓ tan x tan y
;