This content was uploaded by our users and we assume good faith they have the permission to share this book. If you own the copyright to this book and it is wrongfully on our website, we offer a simple DMCA procedure to remove your content from our site. Start by pressing the button below!
?P?N'?FK3* ,K p @ * P?" ) F > ? $ BF QW @
F ) ' @J @ &c*ANBR N* P?"Hp`
NB>?S@ HhCO=R\A"c
NB>?S F Q F
F ) ' @J?" ' @'?" >BF * F P @`* F J?>@?= b "3,@ @' @ H * F Q ^ ANBAcB R " C&F *b C?J?' @cUF *,* F J?" > C AB %@A P?C K ?B.C?) F
P @" '?+AS "(>?P?NBR F S +T"ANG R CK1>BF '?" J?'?+HhC * F J?>@ HhC C A Hh" '?B :^ C < b ? C ' @ A B N ?P?N'?FK3* CO=TS>BF * F P?N & F '?C ?C?"cJ?C KWb@ >BF * F P?+T" N AF S b " * S F P−!&c1 * ?C?"cJ?C KWb@ >BF * F P?+T" N AF S b " * S F P−!&c1 *6LaF *<M1,
+ FA'?FHhNC?)AS F Q?'?+LM'?" P @ S " ' K3* S t, ?C?"cJ?C KWb@ >BF * F P?+T" N AF S b " * S F P−!&c1 * ?C?"cJ?C KWb@ >BF * F P?+T" N AF S b " * S F P−!&c1 *6LaF *<M1,
+ FA'?FHhNC?)AS F Q?'?+LM'?" P @ S " ' K3* S t,
" ? ' * P?FH¥S%* F J?>B" ACG S.TEU VXW @ Hh" * P F >?P?N'?FK3O. * COV F * P?" ) >?C BD C LF P A+ F >?P?N'?FK3* COV>@A+TBD Q%C?)yF *G P?" ) >BF S C P @CK AC?NKh F >?P?N'?FK3* CO(P H@ K3" >?NB@O OA, OB OD s (P H@ >@ K @ " * K\MF >?P?N'?FK3* C&S,* F J?>B" ?P?N'?FK3* C&P @AC?NK @ P @ S ' @ P. r l = 2πr.
2πr :
S " F >?P?N'?FK3* CO=cC Hh"+&cC?"F
C?Q $?" '?* PC b "3,@ C?" S FA'?F Q _b FK3>BFK3* CO= ' @ ) +TS@&c* K\ (13/ 9&; /&4<*D&\ ; 25(D=IDO^ _a`bdc>e T>f7gh b fEi cXjkml ion+p i VXqdrdsutwvx>y{z l io| c>b~} V l f+p } p b ig eb Udi l z | b dU i l TEif b~El E TE
f+p f l
5ph>T c 5 nE Ec T l TEUκεντ pf>T>Tρoν) c |dp kml c 5
f l Udi T~ j V d`bdc>e T>f
&
*@L
u
cP @ S '?" '?C?"TF >?P?N'?FK3* C,S%_?P HhF NBR F b '?+L%A" >@ P?* F S +L>BF F P AC?' @G C Hh" " *S CBA x, y
(x − a)2 + (y − b)2 = r2 ,
R\A"
B> F F P AC?' @ * +$?" '?* P @,F >?P?N'?FK3* CO=?@ " "%P @AC?NK (a, b) cP @ S '?" '?C?"H¥F >?P?N'?FK3* C`P @AC?NK @ KT$?" '?* P?FrH S' @J @b " _?PG HhF NBR F b '?F QA" >@ P?* F S F QUK3C K3* "Hh+ >BF F P ArC?' @ * ?S b??" * K\ O Oxy
2
2
2
x +y =r .
*,u1>= K 9&; /&4<*1>= C *BACED&,251>= ' @ ) +TS@ " * K\Hh'?F"K3* S F b "3G * F J?" >_b FK3>BFK3* CO=P @ K K3* F?'?C?O"TF *<>@AF QC?)c>BrF * F P?+LAF<* F J?>?C O, ,@ " QUS,_b FK3>BFK3* CO='?"%_?P?" S +T@ " *?P?NBR3@K$?" '?* r.P?FH CUP @AC?NG ?S b??" * K\F >?P?N'?FK3* (Ky$?" O'?* P?FH C K3FH P @AC?rNK3FH OP @ '?C?$?N¾>?P?NBR3@U' @ ) +TS@&c* O13(.L y *,.-0/&132547r. 68 (+*,uA r b F @A>?P?NBR3@P @AC?NK @ P @ S ' @ 2 r
−r
O −r
S.TEU V
r x
πr :
2
S = πr .
_?P HhF NBR F b '?+LZA" >@ P?* F S +L >BF F P ACG ' @ *@L Hh'?F"K3* S F* F J?" >O=T>BF F P AC?' @ * + >BF * F P?+x, LN yAF S b " * S F P!&c* '?"K3* P?F R FHhN'?" P @G S " ' K3* S N (x − a)2 + (y − b)2 6 r2 ,
? S b??" * K\(>?P?NBR FHUP @AC?NK @ R\A" >BF G r, (a, b) F P AC?' @ * +$?" '?* P @{H * F R F,>?P?NBR3@? _?P HhF NBR F b '?F QUA" >@ P?* F S F QZK3C KWG (P?NBR FH K<$?" '?* P?FH SM' @J @b " * "Hh+>BF F P AC?' @ * CP @AC?NK3FOH P?C K s <?S b??" * K\#Hh'?F"K3* S F * F J?" >O=?>BF F P AC?' @ * + Oxy >BF * F P?+LMN AF S b " * S rF P! &c*'?"K3* P?F R FHhN`'?" P @ S " ' K3* S N x2 + y 2 6 r 2 .
!#"
!
u
FNB>@ ) @ '?C?"H" R FMK3* F P?F 'O- ½ , u1 Z ¿=?b C?
F`NB>@ ) @ ?' C?"H* ?P "3L1* F J?" >O¿ S " P?C?'?+ @*@(ab) >"AS NL%* F J?" > C b "3,@ CL ½ ,u 1 Z
A B, P?C K WO, ' @,K3* F P?AOB F ' @L C a b xfb F S F NBR F b¿C?'?F R\AD@)@ Hh" '!&c*K3C HhS F b FH ∠. OF R\AD@NB½ R F b&F
F ) ' @J @ " * K\O- ∠A; ∠(ab); ∠AOB. cR F bU' @ ) +TS@ " * K\ ,( Z = ="KWb CU_?P HhF b C?'?" Q?'?+TQMF * P?" ) F >O=K3F G "WAC?'! &cC?QMAS "(" R Fb &c
+T"(* F J?>?CO=?$?"3b C?>BFHK3FA" PC?* K\US{H * FH NBRb " a
a
A
A
O
O B
B b
b
p
u
S.TEU V
cR F b=_?FK3* P?F " '?'?+TQ%' @P?C K @?=3?S b??" * K\%S +T_?NB>b +HVNBR F b= _?FK3* P?F G " '?'?+TQ&' @P?C K
= '?" S +T_?NB>b +H K\?>?C?QUS +T_?NB> b +TQ&NBR F b&"K3* ,_?" P?"K3" J?" '?C?"AS NLM_?F b NB_b FK3>BFK3* " QO !@ )3b C?J?'?+T"b NBJ?C FA'?F Q C * F Q "`_?P HhF QKF
C H ' @J @b FH' @G ) +TS@ &c* K\ CE1 1 Z /&D&4 ;Z 6/ =ID Z ,\]A3=ID Cb C CE1 1 Z /&D&4 ;Z 6/ =ID 1 Z , *][]= =ID yKWb C`K3* F P?F '?+#NBRb@?S b?! &c* K\AF _?F b '?C?* "3b '?+HhC,b NBJ @ HhCO= * F
A
O
B
A
O
B
b
b
p
u
S.TEU V
OF J?>?C_b FK3>BFK3* CO=_?P?C?' @A b "3,@ C?"yNBRb N(C'?"sb "3,@ C?"y' @c" R FcR P @G '?C?$?" =¡' @ ) +TS@&c* K\ /&,4<* ; /&/&D=ID * F J?>@ HhC¥NBRb@? OF J?>?C _b FK3>BFK3* CO= '?"(_?P?C?' @A b "3,@ C?"( NBRb N =' @ ) +TS@&c* K\ / ; 7/&D=ID * F J?>@ HhC&NBRb@?
u
d
S@cNBRb@' @ ) +TS@&c* K\ 2= ; -0/ =ID ="KWb C,CLF
O"WAC?'?" '?C?"H1?S b?G " * K\UP @ ) S " P?'?NB* +TQUNBR F b=?@,_?" P?"K3" J?" '?C?"H b NBJO xsHh"3'?+T"MNBRb + C Hh"+&c*¾F
N & K3* F P?F '?N b NBJO=h@&AS ",AP?NBR C?"MCL K3* F P?F '?+ ?S b?! &c* K\`AF _?F b '?C?* "3b '?+HhCUb NBJ @ HhCO %@P?C K NBRb + C K Hh"3'?+T" - K3* F P?F ' @ F
@O=?K3* F G b P?F '?+ C AF _?F b (ab) '?C?* "3b (bc) '?+T"b NBJ?CO Sa@S +Tc_?NB >b +L(NBRb@?= $?" '?* P @b '?FcK3C HHh" * P?C?J?'?+L
A
B1 b O a
c
O
S.TEU V
C %@P?C K ¡NBRb + >@b '?+HhCM?S b?!&c* K\UAOB NBRb +
$
B
A1
S.TEU V
S " P?* C?>@b '?+T" =@`*@ >"<S " P?* CG
A1 OB C 1 A1 OB AOB1 .
9 " 9
%
; /&4<*BA Z 6/ = , Z 1>= SF >?P?N'?FK3* C`' @ ) +TS@ " * K\,NBR F b=S " P?CG ' @>BF * F P?F R F,K3F S _ @AD@ " *K($?" '?* P?FH H * F Q&F >?P?N'?FK3* CO :%@ K3* F >?P?N'?FK3* CO=P @ K3_?F b F" '?' @ S '?NB* P?C $?" '?* P @b '?F R FzNBRb@?=' @ ) +TS@ " *G K\ CE,u13M F >?P?N'?FK3* CO=BK3F F * S " * K3* S
N &c" Q H * FHhN`$?" '?* P @b '?FHhNMNBRb N A NBR NF >?P?N'?FK3* C&' @ ) +TS@ &c* (+*,u1XL 13M CE,u13M CUR F S F P?*F,$?" '?* P @b '?FHNBR3G O b " = 1 D.*BAX8{P ; =I2[ ' @TK3F F * S " * K3* S
N &c N & B "HhN`>?P?NBR F S
N &ANBR N yKWb C.>?P?NBR F S@ ANBR3@ b "3C?* ' @F >G S.TEU V P?N'?FK3* C P @AC?NK @ * F" " ' @ ) +TS@ &c* (+*,u1
13M
CE,u13M
r,D&,2 A *BACE
P?NBR F S@¥ANBR3@ZF
F ) ' @J @ " * K\ NB >@ )@ '?C?"HAS NL * F J?" >Or.=hS¥>BF * F P?+L ( F >?P?N'?FK3* M_?" P?"K3" >@&c*UK3* F P?F '?+$?" '?* P @b '?F R FMNBRb@?=F _?C?P @&c" R FK\ ' @H * N,ANBR ND- ½ CE,uA ¿ xfb F S F ½ ANBR3@?¿
^
AB
AB
_¢l fE5i T b b k |an O j:kml ) g bdc
i TE5pn> f i n+p i V!r~vwtr#"E l f+p } p b iIg bdc T>f+p j k g bdc i TE5pn> f
b j b j |an OaV |an ¤ g Ec T> bdc T>f>f
$
u
d
%@%P?C K !3NBR F b $?" '?* P @b '?+TQ`NBR F b`F >?P?N'?FK3* CO=" R F<S " PG ?S b??" * K\$?AOB " '?* P?F H AD@ '?'?F Q F >?P?N'?FK3* CO=@¥K3* F P?F '?+ C OA _?" O P?"K3" >@ &c*
N &c*NB>@ )@ '?C?"<* F R FM$?" '?* P @b '?F R F`NBRb@?= >BF * F P?+TQ' @%'?" "cF _?C?P @ " * K\Z >@ > H * F_?F >@ )@ '?F(' @
R C "(AnB A b CG ^ A AmB. AnB @ '?+ ANBR C
O"WAC?'?" '?C?"H ANBR ^ AmB. n C ^ ?S b??" * K\F >?P?N'?FK3* =f' @¥>BAnB F * F G O AmB m ? P
F ¾ Q
F ? ' Z C b 3 " , @ * B N 3 R @
" ) B >
F ? ' ? $
F S AF G B _?F b '?" *cANBR N AF%AnB F >?P?N'?FK3* CO= @ANBR3@
" )>BF '?$?AmB F S?P?N'?FK3* CO- ^ AnB AmB CE1 1 Z /[8{P D ;>?P?NBR F S +T"ANBR CO ?P?NBR F S +LTANBRSK3NHHh"fP @ S '?+1A b C?'?" F >?P?N'?FK3* CO=' @>BF * F P?F QUF '?CUb "3,@ * cR F b=BS " P?C?' @%>BF * F P?F R F%b "3C?*' @
B
A
B
O
B
O
O
A
A
k
C
k C
k
C
u
S.TEU V
(P?NBR F S@ANBR3@ '?"¾K3FA" P,@ @S " P?C?'?+ ' @ ) +TS@ " * K\ B, D.*BA ; 472[ S _?C K @ '?'?+TQUNBR F b ANBR F QO=' @>BF * F P?N & 1 AC, ABC. %@
O
E
d <
S _?C K @ '?+%?%@P?C K @$?" '?* P ?S b??" * K\US '?" '?" Q&* F J?>BF Q&S _?C K @ '?'?F R F NBRb@ ' @P?C K
$?" '?* O P b "3C?*`' @K3* F P?F '?" S _?C K @ '?'?F R F NBRb@ ABC; ' @1P?C K p SZ$?" '?* P O ?S b??" * K\ S '?NB* P?" '?'?BC " Q* F J?>BF Q S _?CG O NBR F b K @ '?'?F R ABC; F,NBRb@ s_?C K @ '?'?+TQ1 F _?C?P @ " * K\1' @,>?P?NBR F S N & ABC. ABC ANBR N AkC.
"
@ >%C%F * P?" ) >BF S =W)@T"WAC?'?C?$?NC?)Hh" P?" '?C%_?P?CG '?C H@&c*('?" >BF * F P?+TQF _?P?"WA"3b " '?'?+TQ,NBR F b=K_?FHhF #>BF * F P?F R FcC?)Hh" PG &c*,FK3*@b '?+T"NBRb +% @
" _?P?C?'?* + AS "
N & ANBR N =A b C?' @¾>BF * F P?F Q P @ S ' @ 1 J @ K3* CMA b C?'?+ " "(F >?P?N'?FK3* CO s"3b 360 C?J?C?' @,NBRb@SFAC?'UR P @ANKcF
F ) ' @G A r J @
"
* \ K O r 1◦ cRb F S@1HhC?'?NB*@ r B 601 J @ K3* `R P @ANK @? @ A' @NBRb F S@UHhC?'?NB*@,F
F ) ' @J @ " * K\ 0 1
S.TEU VXW
10 =
cRb F S@¥K3" >?NB'BAD@ F
F ) ' @J @ " * K\ 00
F
1 60
1
J @ K3* ZHhC?'?NB* +%
100 =
@
1 ◦ . 60
A' @&NBRb F S@¥K3" >?NB'BAD@
1 0 . 60
cRb FH S¾FAC?' *BACED&AX/ ' @ ) +TS@ " * K\ $?" '?* P @b '?+TQ NBR F b=pF _?C?P @&G C?Q K\M' @>?P?NBR F S N & A NBR N =A b C?' @>BF * F P?F QMP @ S ' @P @AC?NK3N" "F >?P?N'?F G K3* C P?C K OW[?Y [?Y ϕ πn [?Y ◦ ◦ ◦ 180 = π
;
n =
?[ Y [?Y
1◦ ≈ 0,017453 00
1 ≈ 0,000005
;
180 ; ;
=
ϕ
10 ≈ 0,000291 1
[?Y
0
0
π
[?Y
· 180 ;
;
00
≈ 57 17 44 ,8.
_a`bdc>e T>f
c p
p b i z } i l
100 =
1◦ . 602
E
d <
*@
b,_?P?C?S "WA" '?+.R P @ANK3'?+T",C K3F F * S " * K3* S N &cC?",P @AC @ '?'?+T" Hh" P?+ J @ K3* F,SK3* P?" J @&cCLBK\MNBRb F S Y4 9Y OP @ANK3+
0 15 30 45 60 75 90 120 135 150 165 180 225 270 315 360
!@AC @ '?+
0
π π π π 5π π 2π 3π 5π 11π π 12 6 4 3 12 2 3 4 6 12
5π 3π 7π 2π 4 2 4
!@AC @ '?'? N & Hh" P?NZNBRb F S +LZS "3b C?J?C?' K3J?C?*@&c*&FK3'?F S '?F QZC¥F
F ) ' @G J?" '?C?"c[?YF _?NK3>@&c*=* " ?_?C?NB*?1◦ =
π ≈ 0,017453, 180
30◦ =
π 6
CMAPO
OF =?J?* F,S "3b C?J?C?' @NBRb@ AOB P @ S ' @ n◦ Cb C ϕ P @AC @ '?F S =S +TP @G ,@ " * K\U)@ _?C K3#& ◦ K3F F * S " * K3* S " '?'?F :%@ K3* F NBRb +∠' @ AOB ) +TS@&c=* nCL S "3b C?J?C?' @ HhCOs%@ _?∠P?AOB C Hh" PO=y=NBR ϕ Fb S "3b C?J?C?' @>BF * F P?F R FP @ S ' @ P @AC @ '?F S =B' @ ) +TS@&c* , Z 1>= AOB, ϕ ϕ cR F b S P @AC @ '?F SB(' @ ) +TS@ " * K\ 1 Z L ◦ Cb CO=pJ?* F¾* FZ" = / = ?(F b '?+T360 QUNBR F b&)@ _?F b '?" *SK &_2π b FK3>BFK3* s"3b C?J?C?' @P @ ) S " P?'?NB* F R F
(ab)
£ O
yKWb C,NNBRb@?=F *b C?J?'?F R F(F *P @ ) S " P?'?NB* F R F =S '?NB* P?" '?',F
b@ K3* c?S G b??" * K\1S +T_?NB>b F QO=?* F`S "3b C?J?C?' @,NBRb@Hh" '? "<S "3b C?J?C?'?+ P @ ) S " P?'?NB* F R F NBRb@?=B* " Hh" '? " P?C K @W yKWb C S '?NB* P?" '?π' F
b@ K3* NBRb@ '?" S +T_?NB>b@O=f* F S "3b C?J?C?' @ NBRb@
F b ",S "3b C?J?C?'?+ P @ ) S " P?'?NB* F R F&NBRb@?=O* "
F b " P?C K p
BW(P?C H * FH#K3J?C?*@ "H=?J?* F`NU_?F b '?F R F,NBRb@K3* F P?F '?+ K3F S _ @AD @ π&c* (F b '?+TQ&NBR F b ?S b??" * K\U'?" S +T_?NB>b +H ' @ ) +TS@ " * K\%NBR F b=S "3b C?J?C?' @ 1 1 Z /&D&4 ;Z 6/ = NBRb FH&>
N &c* S " P?* C?>@b '?+T"&C K Hh"3,G '?+T"&NBRb +%ys"3b C?J?C?' @ Hh" '? " R F C?)1'?CL' @ ) +TS@ " * K\ , Z 1>= = ; - CE, *][]= =ID s"3b C?J?C?' @NBRb@ Cb C&P @ S '?F R F_?F,S "3b C?J?C?'?"("HhN`S " P?* C?>@b G '?F R FNBRb@ "K3AOB * TNBR F b
! ! $ ]" 0!#"$ ! ! D&/&,251>= F K3* P?F R FTNBRb@T_?P HhF NBR F b '?F R F* ?P " NBR F b '?C?>@T' @ ) +TS@ " *G
K\UF * '?F " '?C?"%_?P?F * C?S F b "3,@ " R F>@ * " *@>&R C?_?F * " '?NB) "%C&F
F ) ' @J @ " * K\ P?C K O WNKWb F S '?+H ) ' @ >BFH sin
sin A =
a . c
cos A =
b . c
1325D&/&,251>= FK3* P?F R F&NBRb@U_?P HhF NBR F b '?F R FU* P?" NBR F b '?C?>@U' @ ) +G S@ " * K\UF * ?' F " '?C?"%_?P?Cb "3,@ " R F>@ * " *@,>1R C?_?F * " '?NB) "%C1F
F ) ' @J @ " * K\ N KWb F S '?+H ) ' @ >BFH P?C K O Wcos
AX/ ; /&251>= FK3* P?F R F NBRb@¾_?P HhF NBR F b '?F R F¾* P?" NBR F b '?C?>@¥' @ ) +G S@ " * K\ F * '?F " '?C?"_?P?F * C?S F b "3,@ " R F&>@ * " *@&> _?P?Cb "3,@ "HhN¥>@ * " * N CUF
F ) ' @J @ " * K\`NKWb F S '?+H) ' @ >BFH P?C K O W-
tg
tg A =
a . b
1347AX/ ; /&251>= FK3* P?F R FNBRb@,_?P HhF NBR F b '?F R F,* ?P " NBR F b '?C?>@,' @G ) +TS@ " * K\MF * '?F " '?C?"(_?P?Cb "3,@ " R F>@ * " *@>&_?P?F * C?S F b "3,@ "HhN>@ * "3G * NMCUF
F ) ' @J @ " * K\`NKWb F S '?+H) ' @ >BFH P?C K O Wctg
ctg A =
b . a
3d u )w u
; (AX/&251>= FK3* P?F R F,NBRb@_?P HhF NBR F b '?F R F* P?" NBR F b '?C?>@' @ ) +TS@G " * K\ F * '?F " '?C?"R C?_?F * " '?NB) + > _?P?Cb "3,@ "HhN¥>@ * " * N¾C F
F ) ' @J @ " * K\ NKWb F S '?+H ) ' @ >BFH P?C K O Wsec
c . b
sec A =
132 ; (AX/&251>= FK3* P?F R FNBRb@<_?P HhF G NBR F b '?F R F* P?" NBR F b '?C?>@' @ ) +TS@ " * K\ F * '?F " '?C?"{R C?_?F * " '?NB) + > _?P?F * C?S F G b "3,@ "HhN>@ * " * N C F
F ) ' @ J @ " * K\ NKWb F S '?+H ) ' @ >BFH P?C K O W-
B c a A
C
b
cosec
S.TEU VXW W
cosec A =
c . a
xyC?'?NK =>BFK3C?'?NK =*@ '?R " ' K =>BF *@ '?R " ' K =fK3" >@ ' KMC#>BFK3" >@ ' KMFK3* P?F R F NBR3b@(' @ ) +TS@&c* K\ 4<*D u13/&1>= ; 4<*D&\ ; 25(D=ID £,/&( 9 D[]=ID 13254<*1 u1 , Z A %Hh"+&c*Hh"K3* F`K3S ?) COctg A =
1 ; tg A
sec A =
1 ; cos A
1 . sin A
cosec A =
! -
xyC?'?NK =>BFK3C?'?NK =*@ '?R " ' K =>BF *@ '?R " ' K = K3" >@ ' KsC,>BFK3" >@ ' KyFK3* P?F R F NBRb@•* P?" NBR F b '?C?>@)@ S C K\?** F b >BFF *,S "3b C?J?C?'?+NBRb@?
" $ # &%
! !
(' %
$
!
! %
_?P HhF NBR F b '?F R F * P?" NBR F b '?C?>@ P?C K % `_?P?F _?C K3'?+HhC ACB
NB>?S@ HhC F
F ) ' @J?" '?+>@ > S " P? C?'?+%=O*@ > C S "3b C?J?C?'?+.S '?NB*G P?" '?'?CL`NBRA, b F S B, =_?P?CCIH * FHNBR F b _?P HhF QOV C >@ * " * +%=B_?P?F * CG C a b R C?_?F * " '?NB)@? S F b "3,@ C?"(K3F F * S " * K3* S " '?'?FS " CP? C?' @ H A B; c 037[¡0
E
d
@ '?'?+T" A, c A, a a, c a, b
Y4 9Y
!h" " '?C?" B = 90◦ − A;
b = c cos A a B = 90◦ − A; b = a ctg A; c = sin A √ a sin A = ; B = 90◦ − A; b = c cos A; b = c2 − a2 c √ a a tg A = ; B = 90◦ − A; c = ; c = a2 + b 2 b sin A "
a = c sin A;
('
!
?P?NBR F S +LANBRW=?>@ >UF * P?" ) >BF S,C&NBRb F S =B)@,"WAC?'?C?$?N C?)Hh" P?" '?C_?P?C?'?C H@&c*<'?" >BF * F P?N & F _?P?"WA"3b " '?'?N ANBR NF >?P?N'?FK3* CO=K _?FHhF # & >BF * F P?F QUC?)Hh" P! &c*FK3*@b '?+T">?P?NBR F S +T"ANBR CO (FAF
'?F%NBRb@ H¥>?P?NBR F S +T"ANBR C`C?)Hh" P! &c*<SR P @ANK @LC`P @AC @ ' @L¡ (P?NBR F S F Q%ANBR F QS(FAC?' *BACE,2 ' @ ) +TS@ " * K\>?P?NBR F S@%ANBR3@?=A b C?' @ >BF * F P?F QMP @ S ' @ 1 A b C?'?+ " "%F >?P?N'?FK3* CO ! @AC @ '?' @¾360 Hh" P @M>?P?NBR F S F Q&ANBR C¾F _?P?"WA"3b??" * K\Z>@ >¾F * '?F " '?C?"" " A b C?'?+ >&P @AC?NK3NF >?P?N'?FK3* CO=?' @>BF * F P?F QUF ' @P @ K3_?F b F" ' @?
B1
B2
A
b
O
B1 O
A1
A2
B2 C
a
S.TEU VXW
B3
S.TEU VXW
(P?NBR F S F Q ANBR F QS FAC?' *BACED&AX/ ' @ ) +TS@ " * K\ ANBR3@¥F >?P?N'?FK3* CO= A b C?' @>BF * F P?F QUP @ S ' @%A b C?'?"%P @AC?NK @oH * F QUF >?P?N'?FK3* CO OF = J?* F%S "3b C?J?C?' @>?P?NBR F S F Q%ANBR C AB P @ S ' @ n◦ Cb C ϕ P @AC @ '?F S S +TP @,@ " * K\M)@ _?C K3# & ^ ◦ K3F F * S " * K3* S " '?'?F ^ AB = n
AB = ϕ
<
& )
! -
OP @ANK3' @&CZP @AC @ '?' @1Hh" P?+>?P?NBR F S +L`ANBR
! !
"
$&!
= 2 ; (4715*1>=7? ' @ ) +TS@ " * K\`J @ K3* >?P?NBR3@?=F R P @ '?C?J?" '?' @ *,u1 AS NHpU" R F,P @AC?NK @ HhCUCMANBR F QUF >?P?N'?FK3* CU>?P?NBR3@? fKWb F S '?+T"cF
F ) ' @J?" '?CZ P?C K D BWP @AC?NKF >?P?N'?FK3* COV P @AC @ '?' @1Hh" P @`>?P?NBR F S F QMANBR CO=F R P @ '?rC?J? C?S@ &c" QZK3" >?* F P $?" '?* P ϕ@b G '?F R F&NBRb@WV ◦ R P @ANK3' @ Hh" P @&>?P?NBR F S F Q¾ANBR CO=F R P @ '?C?J?C?S@ &c" Q K3" >?* F P $?" '?* nP @b '?F R F,NBRb@WV A b C?' @,>?P?NBR F S F Q`ANBR CO=?F R P @ '?C?J?C?S@G &c" Q&K3" >?* F POV _b F @AK3l " >? * F P @?
S
_ n l l l cXj g U b >i
p j zBg c p b nE j V
¨
kml i
El Ef b n+p i VBwrdq~t vz l in+p i Vwrdqdu l f+p } p b i7g c p dc>b~
l= !
πr n; 180
)
l = rϕ;
!
S=
πr2 n; 360
0!
S=
1 2 r ϕ. 2
!
!
%@ >USKWb NBJ @ "' @ _?P @ S b " '?'?+LMF * P?" ) >BF S& S " >?* F P?F SBfP @ )3b C?J @&c*,' @G J @b '?N & C`>BF '?" J?'?N &* F J?>?CO=B*@ >`C`SKWb NBJ @ "ANBR C`' @
N &ANBR N P?C K OB
BW A AB (F '?" J?'?F "U_?F b F" '?C?" S P @ @ &c" R FK\ b NBJ @¥' @ ) F S "H (13/ ; \]/&13M (13/ ; \]/&13M¦4713\](13M >?P?NBR F S F QANBR CO 254715*13/&13M NBRb@?=?@* F J?OB >?N B ' 31 3P ; /&/&13M (+*,u1 13M CE,u13M P?C K
B' @ ) +TS@ " * K\¾E(C?R NBP @?= F _?C K3+TS@ "H@* F J?>BF QO=sK3F S " P?@ &c" Q>?P?NBR F S F "MAS C" '?C?"¾K1NB>@ )@ '?CG "H ' @ _?P @ S b " '?CAS C" '?CM* F J?>?CO=@<*@ >"c" "c' @J @b '?F R FM ' @J @b '?F Q * F J?>?CMANBR CsCU>BF '?" J?'?F R F& >BF '?" J?'?F QU* F J?>?CUANBR Cy_?F b F" '?CO @
F
" '?'? N & >?P?NBR F S
N & ANBR N )@ _?C K3+TS@ &c*1AS NHp
NB>?S@ HhC K`ANG R F Q,_?" P?"WA`'?C HhCO= _?P?C?J?"H¥' @(_?" P?S FH¥Hh"K3* "cK3* F C?*%
NB>?S@?=F
F ) ' @J @ &c@ ' @J @b F BA >@ >UCLM' @ _?P @ S b " '?CU_?P?F * C?S F _?F b F'?+% AB B B
O
p
O
A
A
u S.TEU VXW
?P?N'?FK3* C`NB>@ )@ '?C,' @J @b G ?' F Q¾C¾>BF '?" J?'?F Q¾* F J?" >¾'?"WAFK3*@ * F J?'?F ¡%@AFM)@AD@ * M' @ _?P @ S b " '?C?"@ )@ '?F`K3* P?"3b >BF QO1F'?F`_?FK3* NB_?C?* UC?' @J?" )@AD@ * (F
F
" '?'? N & ANBR N* P?"Hp`
NB>?S@ HhCO=' @ _?P?C Hh" P ^ R\A" ' @J @b ' @(* F J?>@sANBR CO= >BF '?" J?' @%" "y* F J?>@?=@ * AcB, F J?>@?=3b "3,@ A@ ' @ C *@ >BF "()@AD@ '?cC? "%K H?' @P?C K \W A
B
!
£
u
= , Z 1>= P?C K T <' @ ) +TS@ " * K\_b FK3>@E(C?R NBP @?= F
P @ ) F S@ '?' @MAS NHpZb NBJ @ HhCO=DS +LFA ?C HhCZC?)FA'?F Q¾* F J?>?CO=D>BF * F P @ ' @ ) +TS@ " * K\ ; *7D&/&13M F
F
" '?'?F R F(NBRb@?= _?P?C?J?"H NB>@ )@ '?F = >@ >BF QC?) H * CLb NBJ?" Q# K3J?C?*@ " * K\_?" P?S +H ' @J @b ' @K3* F P?F ' @Zb NBJ @C>@ >" R F S P @ @ * BF '?" J?'?F Q&K3* F P?F '?F QUNBRb@W
' 31 3P
; /&/
B
C
+
O
−
O A
D
p
u S.TEU VXW
1 Z 1X-0D&4 ;Z 6/ =§/&A *BA Z; /&D ; = *BAXP ; /&D[ ST_b FK3>BFK3* C(' @G ) +TS@ " * K\ S P @ " '?C?"_?P?F * C?S1LFAD@& J @ K3F S F Q K3 * ?P "3b >?C P?C K s @W=@ 134 L *D 9 AX4 ;Z 6/ = _?FAS C" '?C!&J @ K3F S F QMK3* ?P "3b >?C P?C K O
BW
! !
('
('
!
!
S P @ @ " * K\ST_b FK3>BFK3* C%S F >?P?NBRh* F J?>?C ST_?F b FCG yKWb C(b NBJ * 3" b '?FH' @ _?P @ OA S b " '?C?C¥ P?C K O @W=B* FANBR3@ F _?C K @ '?' @OM* F J?>BF Q 1XL C K3F F * S " * K3* S N &cC?QH * FHhN¾S P @ " '?C!&.NBR F b AB, ' @ ) +TS@&c* K\ 1 Z A, -0D&4 ;Z 6/ =ID yKWb CS P @ " '?C?"fb NBJ @ F AOB * P?C?$ @ * "3b '?F " P?C K B
BW= * F K3F F * S " * K3OC * S N &cN & ANBR N CNBR F b 6/ =ID ' @ ) +TS@ &c* 134<*D 9 AX4 ;Z CD COD (P?NBR F S@`ANBR3@1 NBR F bDC?)Hh" P?" * K\1>@ >1S R P @ANK @L¡=?*@ >1C1S`P @AC @ ' @L¡=BA" Q K3* S C?* "3b G B '?+H J?C KWb FH=p@
K3F b &c* ' @ S "3b C?J?C?' @&>BF * F G P?F R FP @ S ' @K3F F * S " * K3* S
N &c" Q%S "3b C?J?C?'?"ANG R C& NBRb@W=S )3?* F Q,K3F) ' @ >BFH1_b &K ="KWb CBFH¥HhCG '?NK =?"KWb C`ANBR3@& NBR F bDsF * P?C?$ @ * "3b ' @O yKWb C' @J @b FC,>BF '?" $>?P?NBR F S F Q%ANBR C& NBR3G b@TK3F S _ @AD@ &c*,C1_?P?C H * FH'?"<
+b F`K3F S " PG S.TEU V3W " '?FS P @ @ * "3b '?F "sAS C" '?C?" =* FS "3b C?J?CG ' { @ H * F Q`ANBR C NBRb@yP @ S ' @'?Nb & −→ 1 @ E(C?>K3C?P?N "H P?C K f4 3 R F P?C?) F '?*@b '? N & FK3 Ox, C S " >?* F P OA ' @'?" QO @ K3 _?P?C Hh"H)@,' @J @b '? N &K3* F P?F '?N`NBRb@ @,>BF '?" $ Ox AOB, S " >?* F P @ −→ )@' @J @b '? N & * F J?>?N>?P?NBR F S F Q
A
OA
AB.
£
u
'?+H¥S " >?* F P?FH −→ F _?P?"WA"3b??"H¥>BF '?" J?'? N & K3* F P?F '?NF
F
" '?'?F R FcNBRb@ @" R F%>BF '?OB $?FH * F J?>BF Q >BF '?" J?'? N & * F J?>?NF
F
" '?'?F Q<>?P?NG AOB, B) R F S F QANBR C sP @ " '?AB. C?"HMST_b FK3>BFK3* C(S F >?P?NBR* F J?>?C Kh_?FHhF # & _?FAS C'?F R F O − → F
P @ ) N "HNBRb + b &c
F Q S "3b C?J?C?'?+%=h@1" R FZ>BF '?$?FH S " >?* F P @ * F J?>BF Q OB F _?C K3+TS@ "H>?P?NBR F S AOB +T"ANBR CUb &c
F QUS "3b C?J?C?'?+% B) (F b F" '?C?"fS " >?* F P @ −→ '?"sF _?P?"WA"3b??" *FA'?F ) ' @J?'?FS "3b C?J?C?'?N%NBR3G OB b@ CMANBR C AOB AB. @ >O="KWb CS " >?* F P −→ S P @ @ K3S F >?P?NBRy* F J?>?C O Sc_?F b FC?* "3b G '?FH' @ _?P @ S b " '?C?CO='?"%F OB, _?C K3+TS@ " *_?F b '?F R F,F
F P?F *@M P?C K O4 3 W=* F C ^ R\A" ◦ ∠AOB = n◦ AB = n◦ , 0 < n◦ < 360◦ Cb C&S,P @AC @ ' @L¡C ^ R\A"
yKWb C%S " >?* F P
∠AOB = ϕ
AB = ϕ,
0 < ϕ < 2π).
F _?C K @b%* P?C%F
F P?F *@( _?P?F * C?SLFAD@sJ @ K3F S F QK3* P?"3b?G OB >?CsC&" "(_?F S F P?F * ' @,NBR F b ◦ P @AC @ '?F SBW=B* F −→
n (ϕ
∠AOB = 360◦ · 3 + n◦ = 1080◦ + n◦
C
AB = 360◦ · 3 + n◦ = 1080◦ + n◦
^
C ^ AB = 2π · 3 + ϕ = 6π + ϕ). yKWb C&F,J?C KWb "%F
F P?F * F S'?C?J?" R F,'?"(C?) S "K3* '?F =?* F C ◦ ◦ ^ ◦ ◦
(∠AOB = 2π · 3 + ϕ = 6π + ϕ
Cb C
∠AOB = n + 360 · k
C
AB = n + 360 · k
^
b &c
F "($?"3b F "(J?C KWb F k@ >?C H¾F
P @ ) FH="KWb C'?"TF R F S F P?" '?F = * F%F
F
" '?' @%>?P?NBR F S@%ANBR3@ CZF
F
" '?'?+TQ&NBR F bZ)@AD@ &c* K\¾K<* F J?'?FK3* #&AFM_?P?F C?) S F b '?F R F,$?"3b F R F J?C KWb@F
F P?F * F S BF b >?CL
∠AOB = ϕ + 2πk
AB = ϕ + 2πk,
$
u
' @b F R C?J?'?F%S +T_?F b '?" * K\@b R "
P @ C?J?"K3>BF "KWb F" '?C?"TF
F
" '?'?+L >?P?NBR F S +LMANBRFA'?F R F`C¾* F R F`"P @AC?NK @?= _?P?CH * FHANBR C¾F * >b@A+TS@G &c* K\&' @F >?P?N'?FK3* CO=P @AC?NK>BF * F P?F QUP @ S " 'UP @AC?NK3N,ANBRW
!! $
]"
! ! %! ! %@Z_b FK3>BFK3* CS S "WA"H _?P HhF NBR F b '?N & A" >@ P?* F S N K3C K3* "HhN >BF F PG AC?' @ * P?C K sWp(F b FC?* "3b '?N & _?F b N FK31@
K3$?C K K
N A"H K3J?CG *@ * M' @Oxy J @b '?F QZK3* F P?F '?F Q1NBRb F S = >BF * F P?+T"F
P @ ) N c & * K\1_?P?C¾S P @ " '?C?C S F >?P?NBR* F J?>?C s" >?* F P K3F ' @ _?P @ S b " 'UK(FK3#& @," R F
−→
P @ S ' @ (NK3* _?FAS C'?+TQ P @AC?NKWGS " >G r. y * F P −→ ?S b??" * K\ >BF '?" J?'?+H_?F b F" '?CG OB B "H#S P @ " '?C&P @AC?NK @GS " >?* F P @ −→ CZ_?P?C y OA ϕ @¥*@ >" ^ H * FH A ∠AOB = ϕ R\A" A" Q K3* S C?* "3b '?F "%J?C KWb F AB = ϕ), x r x O ϕ * F J?>?C >BF F P AC?' @ * + @MN >BF F P AAC?' @ * + F
F ) ' @J A(r, @ "H 0), C * F J?>?C B x y, * " OF R\AD@F * '?F " '?C x y C x S.TEU VXW B(x, y). , '?" )@ S C K\?*F *&A b C?'?+ _?FAS Cr'?F r R FcP @yG AC?NK @GS " >?* F P @?=B@)@ S C K\?** F b >BF,F *S "3b C?J?C?'?+ NBrRb@ ϕ AOB. xfb "WAF S@ * "3b '?F =F * '?F " '?C x y C x HhF'?F P @ K K H@ * P?C?S@ * , >@ >ME(NB'?>?$?C?CO=@ P?R NHh" '?* FH >BF * F P?+rL,?Srb??" * K\yM_?P?F C?) S F b '?+TQNBR F b ϕ. D&/&,251>= NBRb@ F
P @ ) F S@ '?'?F R F_?FAS C'?+HP @AC?NK3FHpGS " >?* F G ϕ, P?FH −→ Ks_?F b FC?* "3b '?F Q_?F b N FK3# &@
K3$?C K K P?C K W=' @ ) +TS@ " * K\
y . r
cos ϕ =
x . r
NBRb@ F
P @ ) F S@ '?'?F R F<_?FAS C'?+HP @AC?NK3FHpGS " >G ϕ, * F P?FH K_?F b FC?* "3b '?F Q_?F b N FK3#& @
K3$?C K K( P?C K ?W= ' @ ) +TS@ " * K\ F * '?F " OB '?C?"s@
K3$?C K K3+ >BF '?$ @_?FAS C'?F R FcP @AC?NK @GS " >?* F P @>" R FA b C?'?"
1325D&/&,251>= −→
* F P?FH
AX/
BN Rb@ F
P @ ) F S@ '?'?F R F`_?FAS C'?+H P @AC?NK3FHpGS " >G ϕ, K_?F b FC?* 3" b '?F Q_?F b N FK3#& @
K3$?C K K( P?C K ?W= ' @ ) +TS@ " * K\
; /&251>=
−→
OB
u
F * '?F " '?C?"TF P AC?' @ * +>@
K3$?C K K3">BF '?$ @(_?FAS C'?F R F(P @AC?NK @GS " >?* F P @?tg ϕ =
y x
(x 6= 0).
x y
(y 6= 0).
r x
(x 6= 0).
NBRb@ >BF * F P?+TQ¾F
P @ ) F S@ 'Z_?FAS C'?+H P @ACG ϕ, N K3FHpGS " >?* F P?FH −→ KZ_?F b FC?* "3b '?F Q _?F b N FK3#&@
K3$?C K K P?C K (W= ' @ ) +TS@ " * K\ F * '?F OB " '?C?"U@
K3$?C K K3+ >F P AC?' @ * "`>BF '?$ @Z_?FAS C'?F R F1P @G AC?NK @GS " >?* F P @?1347AX/
; /&251>=
ctg ϕ =
BN Rb@ F
P @ ) F S@ '?'?F R F_?FAS C'?+HZP @AC?NK3FHpGS " >?* F G ϕ, K_?F b FC?* "3b '?F Q¥_?F b N FK3#& @
K3$?C K K& P?C K yW=O' @ ) +TS@ " * K\ P?FH F * '?F OB " '?C?"A b C?'?+ _?FAS C'?F R FP @AC?NK @GS " >?* F P @T>@
K3$?C K K3"y" R Fc>BF '?$ @?
; (AX/&251>=
−→
sec ϕ =
BN Rb@ F
P @ ) F S@ '?'?F R F(_?FAS C'?+H P @AC?NK3FHpGS " >G ϕ, K_?F b FC?* "3b '?F Q(_?F b N FK3#& @
K3$?C K K P?C K =3' @ ) +TS@ " * K\F *G * F P?FH '?F " '?OB C?"cA b C?'?+ _?FAS C'?F R FP @AC?NK @GS " >?* F P @<>&F P AC?' @ * "(" R F,>BF '?$ @?
132 ; (AX/&251>= −→
cosec ϕ =
r y
(y 6= 0).
(FK3" >@ ' KcNBRb@ C?'?F R\AD@F
F ) ' @J @&c* xyC?'?NK = >BFK3C?'?NK =3ϕ*@ '?R " ' K = >BF *@ '?R " ' K = K3" >csc @ ' Khϕ. C%>BFK3" >@ ' Kh_?P?F C?) S F b G '?F R F(NBRb@' @ ) +TS@ &c* K\ 4<*D u13/&1>= ; 4<*D&\ ; 25(D=ID £,/&( 9 D[]=ID _?P?F G C?) S F b '?F R FNBRb@? xyNB"K3* S
N &c*CAP?NBR C?"_?FA LFA+¾F _?P?"WA"3b " '?C(* P?C?R F '?FHh" * P?C?J?"K3>?CL E(NB'?>?$?C?QU_?P?F C?) S F b '?F R FNBRb@? (P?F " >?$?C?C#P @AC?NK @GS " >?* F P @¥* F J?>?C ' @ >BF F P AC?' @ * '?+T"&FK3C P @ S '?+ K3F F * S " * K3* S
N &cC H&>BF F P AC?' @ *@ I H H * F Q* F J?>?CO @
F ) ' @J?C HM_?P?F " >?$?!C &P @G − → AC?NK @GS " >?* F P @ ' @ _?F b N FK3 F P AC?' @ * J?" P?" ) @ ' @ _?F b N FK3 ry , @ @
K3$?C K K J?" P?" ) OB OF R\AD@ xfb "WA F S@ * "3b '?rF x .=W* P?C?R F '?FrHhy" * =P?C?y,J?"K3>?rC?x"y= E(NBx.'?>?$?C?C(_?P?F C?) S F b '?F R FsNBR3G b@F _?P?"WA"3b?! &c* K\1KWb "WA N &cC HhC&F * '?F " '?C HhCOsin ϕ = ctg ϕ =
ry , r
rx , ry
cos ϕ = sec ϕ =
rx , r
r , rx
tg ϕ =
ry , rx
cosec ϕ =
r . ry
)
!
!#"$&%
C&
+b@_?P?C?'?*@,S csS S @ >>@ >%* P?C?R F '?FHh" * P?C?J?"K3>?C?"sE(NB'?>?$?C?C<_?P?F C?) S F b '?F R FNBRb@T'?"y)@G cA"3U"WAC?'?C?J?'?F Q&F >?P?N'?FK3*
S C K\?*F *TA b C?'?+_?FAS C'?F R FTP @AC?NK @GS " >?* F P @?= * Fc_?P?CS S "WA" '?C?C
! %@U"WAC?'?C?J?'?F Q¥F >?P?N'?FK3* C¥* F J?>?C C _?P?C¾b &c
FH A" Q K3* •S C?* "3b '?FH CMb &c
FH $?"3b FH K3F S _ P@ϕAD@ &c*?P- ϕ+2πk ϕ
k Pϕ = Pϕ+2πk ∀ϕ ∈ R, ∀k ∈ Z. %@ _?P?C Hh" PO=_?P?Cb c
FH $?"3b FH * F J?>?C K3F S _ @AD@ c*%Cb "3,@ ' @1_?" P?"K3" J?" '?C?C"WAC?'?C?J?'?F Q F >?P?Nk'?FK3* C K_?PF b 2πk FC?* "3b '?F Q _?F b N FK3
&
&
#&
*
@
K3$?C K K =B* F J?>?C K_?F b FC?* "3b '?F QM_?F b N FK3#&F P AC?' @ *=* F JG Pπ +2πk >?C KF * 2P?C?$ @ * "3b '?F Q`_?F b N FK3#&@
K3$?C K K = * F J?>?C Pπ+2πk P 3π 2 +2πk KF * P?C?$ @ * "3b '?F QU_?F b N FK3#& F P AC?' @ * x _?FHhF #&"WAC?'?C?J?'?F Q F >?P?N'?FK3* C * ? P C?R F '?FHh" * P?C?J?"K3>?C?" E(NB'?>?$?C?C _?P?F C?)3G y
S F b '?F R FNBRb@F _?P?"WA"3b?! &c* K\,KWb "WA N &cC H 1 Pϕ F
P @ ) FH sin ϕ D&/&,2 NBRb@ P @ S " ' F P AC?' @ * "¥>BF 'G ϕ ϕ Pπ P0 $ @ P @AC?NK @GS " >?* F P @ −−→ "WAC?'?C?J?'?F Q −1 cos ϕ O 1 x F >?P?N'?FK3* CO=F
P @ )
N &cOP " R F&ϕ NBR F b K_?F G b F C?* "3b '?F Q%_?F b N FK3# & @
K3$?C K K P?ϕC K W 1325D&/&,2 NBRb@ P @ S " 'U@
K3$?C K K3"c>BF 'G −1 ϕ $ @ P @AC?NK @GS " >?* F P @ −−→ "WAC?'?C?J?'?F Q F >?P?N'?FK3* CO=F
P @ )
N &cOP " R F&ϕ NBR F b K_?F G S.TEU VXW b F C?* "3b '?F Q%_?F b N FK3# & @
K3$?C K K P?ϕC K W ')2568 47AX/ ; /&251 ' @ ) +TS@ " * K\ZFK3 =D>@ K @ &c@ K\Z"WAC?'?C?J?'?F Q¥F >G P?N'?FK3* CS* F J?>B"s_?" P?" K3" J?" '?C" "TKy_?F b FC?* "3b '?F Q_?F b N FK3# &@
K3$?C K K C&K3F S _ @AD@ &c@M_?F,' @ _?P @ S b " '?!C &K(FK3# & F P AC?' @ *1 P?C K W +
)
AX/ ; /&2 NBRb@ P @ S " 'F P AC?' @ * "* F J?>?C ?S b?!&c" Q K\* F J?>BF Q M, _?" P?"K3" J?" '?CMFK3CM*@ '?ϕR " ' K3F S,Kc_?P HhF QO=>BF * F P @M K3F S _ @AD@ " *KcP @AC?NK3FHpG S " >?* F P?FH −−→ "WAC?'?C?J?'?F QMF >?P?N'?FK3* CO=F
P @ ) N &cC H Kc_?F b FC?* "3b G '?F QU_?F b N FK3OP # & ϕ@
K3$?C K KNBR F b ϕ ')2568 (1347AX/ ; /&251 ' @ ) +TS@ " * K\FK3 =>@ K @ &c@ K\ "WAC?'?C?J?'?F Q F >?P?N'?FK3* C¥SU* F J?>B",_?" P?" K3" J?" '?C¥" "K_?F b FC?* "3b '?F Q¾_?F b N FK3# &.F PG AC?' @ *,C&K3F S _ @AD@ &c" QM_?F' @ _?P @ S b " '?!C &KFK3# &@
K3$?C K K, P?C K W y
tg
tg ϕ
y
M
1
1 Pϕ Pπ −1
ctg
M Pϕ
ϕ
P0 1
O
ϕ
Pπ −1
P0 1 ctg ϕ
O
x
x −1
S.TEU VuW
−1
S.TEU V
y 1
y ϕ
1 Pϕ Pπ −1
ϕ O
P0 1
M sec ϕ
−1 Pϕ
O
1
x
x −1 M cosec ϕ
−1
S.TEU V
P0
Pπ
S.TEU V
1347AX/ ; /&2 NBRb@ P @ S " '@
K3$?C K K3"y* F J?>?C Sc>BF * F P?F Q
u w u
>BF '?$?"P @AC?NK @GS " >?* F P @ −−→ >BF * F P?+TQ¾F
P @ ) N " *`NBR F b K_?F b FCG ϕ * 3" b '?F QU_?F b N FK3#& @
K3$?C OP K K, ϕP?,C K W 132 ; (AX/&2 NBRb@ P @ S " 'ZF P AC?' @ * "* F J?>?C ?S b?!&c" Q K\Z* F JG >BF Q<_?" P?"K3" J?" '?CFK3CF ϕP AC?' @ *Ky>@ K @ * "3b '?F Q<>"WAM, C?'?C?J?'?F QF >?P?N'?FK3* C KT_?F b FCG S%>BF '?$?"TP @AC?NK @GS " >?* F P @ −−→ >BF * F P?+TQF
P @ ) N " *NBR F b OPϕ , ϕ * "3b '?F QU_?F b N FK3# & @
K3$?C K K, P?C K W K3F F * S " * K3* S C?CZK
y 1
+
Pπ −1
Pπ 2
+
P0 1 x
O −
y 1
−
Pπ −1
Pπ 2
+ O
−
−
P 3π −1
P0 1 x
−
Pπ −1
+
+
&%
#
!#"
−
2
l U~T>f>uUOT{U b 5pfEU S.TEU V
P0 1 x
P 3π −1
2
T>f>uUOT{ l U b 5pfEU
+ O
P 3π −1
2
y 1
` pf>| b fEU#T: l i pf>| b fEU
'
$
!
! %
sS "WA"H NKWb F S '?+T"cF
F ) ' @J?" '?C¾ P?C K ,3 W K3* F P?F '?A,+.B,* P?" CNBR F b S '?'?C?NB>*@ G P?" '?'?C?"`NBRb + * P?" NBR F b '?C?>@ _?P?F * C?S F b "3,@ C?"¾K3F F ABC; * S " * K3* S " a,'?'?b,F cS " P?C?' @ H ABC, A, _?" P?C Hh" * POV _?F b NB_?" P?C Hh" * POV _b F @A V P @AB,C?NC; K<S _?C PK @ ' G p S r '?F Q`F >?P?N'?FK3* COV P @AC?NKTF _?C K @ '?'?F QF >?P?N'?FK3* COV S +K3F *@ R ha >&K3* F P?F '?" a.
¨B©u¨u1gpo(g hg k epopn
B a
P = a + b + c.
c ha A
C b
S.TEU V
+ +
¨B©u®±¡u kjhg k epopn
S=
1 aha . 2
S=
1 ab sin C. 2
u w u
c7[ D YD0[D72Y-
S=
p
p(p − a)(p − b)(p − c) .
F P HhNb@&' @ ) S@ ' @`S&J?"K3* UAP?" S '?" R P?" J?"K3>BF R FUH@ * "H@ * C?>@1B" P?F ' @ < Tb " >K @ 'BAP?C?Q K3>BF R F& F >BF b FsS W S= B
S = p2 tg
R O
A B C tg tg . 2 2 2
¨B©uwOugBkhg ZnOkm ope m k l
C
a2 = b2 + c2 − 2bc cos A;
A
S.TEU V
a2 sin B sin C · . 2 sin A
b2 = a2 + c2 − 2ac cos B; c2 = a2 + b2 − 2ab cos C.
O" F P?"HhNU>BFK3C?'?NK3F S) ' @b C&" "AP?" S '?C?"
O" F P?"H@1K3C?'?NK3F SU
+b@US _?" P?S +T"@ )@ ' @MS * C?>@ HhC1yb C'?" R F,C¾xyP?"WA'?" R FsFK3* F >@?
cS S ¡H@ * "H@G
¨B©u®¦¡ugBkhg e gehm k l
B
O
a−b = a+b
r C
A
S.TEU V
A−B 2 . A+B tg 2 tg
O" F P?"H@ *@ '?R " ' K3F S F * >?P?+T*@ S S '?"Hh" $?>?C Hz@ K3* P?F '?FHhFH{C H@ * "H@ * C?>BFH (F R3@ '?FH !h" R C?FHhF '?*@ '?FH /< +
u w u
¨B©uwªOu¥k k lDgqOjfg a+b = c
A−B 2 . C sin 2
cos
a−b = c
A−B 2 . C cos 2
sin
("Hh" $?>?C?Q`H@ * "H@ * C?>C@ K3* P?F '?FH¥%@ Pb 1F b S " QBA"H * C`E(F P HhNb + _?F b NBJ?Cb&S,>BF '?$?" c ' @J @b "c S ¨B©u¡u ¾gepohg k lhg k epopn hghgi1g k m ?khk e A sin = 2
r
(p − b)(p − c) A . cos = bc 2 s A (p − b)(p − c) tg = . 2 p(p − a)
r
p(p − a) . bc
¨B©uw»Ou ¾gepohg jo m k pohm epehk q k n ehkm o
hghgi1m ?khk e o hg k epopn R= R=
a b c = = . 2 sin A 2 sin B 2 sin C
a+b+c . 2(sin A + sin B + sin C) R=
R=
p . A B C 4 cos cos cos 2 2 2
abc . 4S
¨B©uw¹Ou ¾gepohg jo m l pohm epehk q k n ehkm o
hghgi1m ?khk e o hg k epopn r=
r
(p − a)(p − b)(p − c) . p
B C sin 2 2 . A cos 2
a sin
+
r=
¨
r=
S . p
u w u
B¨ ©u¨¬Oucg gepohg&nOkm k k e hg k epopnOk l M* P?" NBR F b '?C?>B" -?@B_?Ff* P?"H K3* F P?F ' @ HV
BB_?FhAS NH K3* F P?F ' @ HC&NBRb NDV SBy_?FAS NH NBRb@ HC1K3* F P?F '?"(' @LFA ?* K\AP?NBR C?"(" R FK3* F P?F '?+ CUNBRb +% Y4 9Y @ '?'?+T"
!h" " '?C?" A tg = 2
a, b, c
s
(p − b)(p − c) ; p(p − a) C tg = 2
a, B, C
A = 180◦ − (B + C); A+B C = 90◦ − ; 2 2
a, b, C
(F,' @ QBA" '?'?+H
sin B =
a, b, A
b sin A ; a
s
B tg = 2
s
(p − a)(p − c) ; p(p − b)
(p − a)(p − b) p(p − c) b=
tg
a sin B ; sin A
c=
a sin C sin A
A−B a−b A+B = tg . 2 a+b 2
A+B C A−B 2 2 a sin C c= sin A
' @LFAC H
C = 180◦ − (A + B);
c=
A
C
B.
a sin C sin A
, yKWb C *F C Hh" " *1FA'?F1) ' @J?" '?C?" = a > b, B Hh" '? " " ◦ . yKWb C a 90 '?F * F C Hh" " * b sin A, C %@BAF "C?) C AD@ " * B1 < 90◦ B2 = 180◦ − B1 . B2 K3S F "() ' @J?" '?C?"cA b? C H * FH#KWb NBJ @ "()B@1AD@J @% AF _?NKWG >@ " *`AS@UP?" " '?CO=OC>BF R\ADc.@M* P?" NBR F b '?C?> K3F F * S " * K3* S " '?'?F FK3* P?F NBR F b '?+TQMC&* NB_?F NBR F b '?+TQO yKWb C C *F ◦ * P?" NBR F b '?C?> _?P HhF NBR aF b < '?b+TQWa = b sin A, B = 90 yKWb C C *F J?* F¾'?" S F )3G sinK3NBB">K3* 1, HhF'?F =aC&*<@ >BbF R Fa* P?<" NBR bF sin b '?A,C?>@'?"< S N " * +!
& )
$ *,u1 13M 2 ; = ; /&4 ? J @ K3* T>?P?NBR3@?= )@ >bc & J?" '?' @
! !
"
(P?NBR F S +H K3" RHh" '?* FH ?S b??" * K\F
@ J @ K3* Z>?P?NBR3@&C_?F b NB_b FKWG >BFK3* CO=R P @ '?C?$ @>BF * F P?F Q&K3FA" PC?*LF P ANH * F R F,>?P?NBR3@? %@ P?C K c _?FK3* P?F " '>?P?NBR F S F Q K3" R3G Hh" '?*K($?" '?* P @b '?+H NBRb FH F R P @G AOB,P @AC?NG ? ' ? C ? J
" ? ' ? ' T + Z Q ? > ? P B N
R
F
S
F M Q A B N
R
F Q C C1LF P AF Q S "3ACB b C?J?C?' @NBRb@ K @ l r S&P @AC @ ' @AB : ϕ h ¡ L V
S 3 " b C?J?C?' @UNBRb@ s ◦ A B AOB S¥R P @ANK @L¡V n A b C?' @¥>?P?NBR F S F Q D A b lC?' @sLF P A+ AAOB NBR C r r ACB; s ϕ _b F @Ac>?P?NBR F S F R FcK3" RHh" '?*@?V AB; S * F J?>@`_?" P?"K3" J?" '?C¥P @AC?NOC K @ ⊥ AB;C O D LF P A+ S +K3F *@>?P?NBR F S F R OC FK3" R3G AB; DC S.TEU V Hh" '?*@?V A b C?' @TS +K3F * + >?P?NBR F S F R FK3" R3G Hh" '?*@? h AD = DB,
^
AC = ^CB =
ϕ , 2
∠AOC = ∠COB =
¨?¦¡u¨u¡£ hope kj
ϕ . 2
√ s = 2 2hr − h2 . Cb C ϕ n◦ s = 2r sin s = 2r sin . 2 2
¨?¦¡u®±¡u¡£ hope¥n k lDk q j o Cb C
l = rϕ
l=
πr n. 180
¨?¦¡uwOu jo m1n r=
s2 + 4h2 . 8h
¨?¦¡u ©u1ge e ,q k
+
tg
ϕ 2h = 4 s
Cb C
tg
n◦ 2h = . 4 s
_ `bdc>e T>f
y£rdsutx>y l f+p } p b ig l i c>bddl j zXg El n l Up j V
&
d +
¨?¦¡u®¦¡u m k kj h=r− ϕ 4 ϕ
h = 2r sin2 h = r 1 − cos h=
r
Cb C
Cb C
2
1 ϕ s tg 2 4
Cb C
r2 −
s2 . 4
h = 2r sin2
n◦ . 4
n◦ . h = r 1 − cos 2 h=
1 n◦ s tg . 2 4
?¨ ¦¡uwªOu kj¥n k lDk k m g (ge b F @A(>?P?NBR F S F R F(K3" RHh" '?*@?= '?"TP @ S '?F R F(_?F b NB>?P?NBR N =S +TJ?C KWb??" *G K\U_?FE(F P HhNb@ H1 2 r ϕ ± S4AOB 2
S=
Cb C
S=
πr2 n ± S4AOB , 360
R\A"<) ' @ > ½ ¿`
" P?" * K\O= "KWb C Cb C ◦ P?C K ¡ W=@) ' @ > − ϕ<π n < 180◦ ¿
" ? P
"
* \ K O = " W K b C C b C ½+ ϕ>π n◦ > 180◦. S= 1 2 r (ϕ − sin ϕ) 2
S=
lr − s(r − h) . 2
Cb C
S=
1 2 πn r − sin n◦ . 2 180
! ! <
!! $
]" !
¨ªOu¨u¡^75 [D74 , 7 534 25%6 7 7[D747([?Y 8 032 ϕ, a. >BF F P AC?' @ * '?F Q1_b FK3>BFK3* CZK3* P?F C H P?C K ¡ "WAC?'?C?J?'?N & F >?P?N,G '?FK3* ZC ' @1FK3C F P AC?' @ *1F * >b@A+TS@ "H * F J?>?N K`>BF F P AC?' @ *@ HhC :(" P?" ))H * NM* F J?>?N`_?P?F S FAC H_?P HhN & =?_ @ P @b?b "3b '?N & FK3C&@
K3$?C K K (0, a). (P?C _?P H@ '?"y_?" P?"K3" J?" *"WAC?'?C?J?'?N & F >?P?N'?FK3* >1 y=a 1 ' @J?C?*=_?|a| P?C )@AD@J @'?"%C Hh" " *,P?" " '?C?QO |a| > 1
!#"$ !
KWb C a = y '?FK3* C S* F J?>B"
!§$
− 1, P 3π 2
* F_?P H@ Ks>BF F P AC?' @ *@ yHh=C
>@ K @ " * K\U"WAC?'?C?J?'?F Q&F >?P?N,G xy* P?F C H¾NBR F b
−1 (0, −1).
P0 OP 3π , 2
+ $
&
d +
R\A" * F J?>@_?" P?"K3" J?" '?C1"WAC?'?C?J?'?F Q1F >?P?N'?FK3* C1K%_?F b FC?* "3b G '?+H P' 0@ _? P @ S b " '?C?"HFK3C Ox. OF R\AD@_?P?C C K3>BFHh+HhCU
N ANB*,NBRb + a= −1
ϕ=
(P?C SAS NL<* F J?|a| >@L <
1 P ϕ1
_?P H@ C
P ϕ2 ,
3π + 2πk 2
∀k ∈ Z.
_?" P?"K3" J?" *1"WAC?'?C?J?'?N & F >?P?N'?FK3* F P AC?' @ * +>BF * F P?+L
y =a
1
∠P0 OPϕ2 = ϕ2 . sin ϕ1 = sin ϕ2 = a.
y
xfb "WAF S@ * "3b '?F ="KWb C * FZC K3>BFHh+HhC
NG |a| < 1, ANB*,NBRb +
a>1 a a=1
1
Pπ 2
C
a |a| < 1 Pϕ2
P ϕ1 a
−1
P0 1
O
ϕ = ϕ2 + 2πk ∀k ∈ Z.
x
P 3π 2
a = −1 −1 a
(P?C
_?P H@ 1 "WAC?'?C?JG > @ K a@ " =* K\ y'?F = Q F 1>?P?N'?FK3* C S1* F J?>B" K>BF F P AC?' @ *@ HhC Pπ (0, 1). xy* 2P?F C H NBR F b P0 OP π .
a < −1
2 xfb "WAF S@ * "3b '?F ={ "KWG b C * F C K3>BFHh+HhC
N ANBa*=NBR1, b +
a
S.TEU V
ϕ = ϕ1 + 2πk ∀k ∈ Z
ϕ=
π + 2πk ∀k ∈ Z. 2
¨ ªOu®±¡u¡^75 [D74 ,7 6 7534 25<6 7 7[D747([?Y 8 032 ϕ, >BF F P AC?' @ * '?F Q1_b FK3>BFK3* CZK3* P?F C H P?C K D "WAC?'?C?J?a.'?N &F >?P?N,G '?FK3* ¥C' @¾FK3C@
K3$?C K KMF * >b@A+TS@ "H* F J?>?N KM>BF F P AC?' @ *@ HhC :(" P?" )) H * NM* F J?>?N`_?P?F S FAC H_?P Hh N &=?_ @ P @b?b "3b '?N & FK3CUF P AC?' @ *(a, 0). _?P H@ '?"f_?" P?"K3" J?" *T"WAC?'?C?J?'? N & F >?P?N'?FK3* (P?C 1 ' @J?C?*=_?|a| P?C > 1 )@AD@J x@='?a"%C Hh" " *,P?" " '?C?QO >1 yKWb C a =|a|−1, * F(_?P H@ >@ K @ " * K\<"WAC?'?C?J?'?F QF >?P?N'?FKWG * C&S,* F J?>B" K>BF F P AC?' @ *@ HhxC = −1 xy* P?F C HNBR F b R\A" +
Pπ
( − 1, 0).
P0 OPπ ,
&
d +
* F J?>@`_?" P?"K3" J?" '?CZ"WAC?'?C?J?'?F Q¾F >?P?N'?FK3* C¥K<_?F b FC?* "3b '?+H ' P@ 0_?P @ S b " '?C?"HFK3C OF R\AD@_?P?C C K3>BFHh+HhCU
N ANB*,NBRb + a = − 1,
Ox.
?_ " P?"K3" J?" *,"WAC?'?C?J?'?N &F >?P?N'?FK3* S y=a @
K3$?C K K3+>BF * F P?+L&P @ S '?+ xy* P?F C HAS@ , a. (P?: C H * FH ∠P0 OPϕ = ϕ2 . cos ϕ = cos ϕ = a. xfb "WAF S1@ * "3b '?F =2"KWb C * FC K3>BFHh+HhC
NG < 1, A|a|NB* NBRb + ϕ = π + 2πk
P?C ( ?_ P H@ AS NL&* F J?>|a| @L < 1 C Pϕ Pϕ NBRb@ C 1
2
∠P0 OPϕ1 = ϕ1
a>1
|a| < 1
a = −1
1
a=1
2
y a < −1
∀k ∈ Z.
C
P ϕ1
ϕ = ϕ1 + 2πk ∀k ∈ Z ϕ = ϕ2 + 2πk ∀k ∈ Z.
(P?C
a
Pπ −1 a
O
a
P0 a 1
a
x
P ϕ2
−1
_?P H@ > @ aK @ " =* K\1&"WAC?'?C?JG x '?F =Q 1F >?P?N'?FK3* CS¾* F JG >B" K>BF F PBAC?' @ *@G HhC P0 xfb "WAF S@ * "3b G '?F ="(1, KWb 0). C * FC K3>BF G Hh+HhC1
N AaNB=*,NB1,Rb +
¨ªOuwOu ^75 [D74 ,7 S.TEU V Y2 W0325º6 7 7[D747 ϕ, [?Y 8 032 >BF F P AC?' @ * '?F Q1_b FK3>BFK3* CZK3* P?F C H P?C K D?"WAa. C?'?C?J?'? N &F >?P?N,G F * >b@A+TS@ "HM* F J?>?N K '?FK3* C%' @TFK3C%*@ '?R " ' K3F S ' @T_?P HhF Q >BF F P AC?' @ *@ HhC (" P?" )H * N,* F J?>?xN=C' 1)@J @b F%>BF F P AC?' @ *(_?P?F S FM : AC H _?P HhN &=f>BF * F P @(1, a). _?" P?"K3" J?" * "WAC?'?C?J?'? N & F >?P?N'?FK3* S¥AS NL * F J?>@L C Pϕ xy* P?PF ϕC H . C R\A" * F J?>@_?"3G ∠P OPϕ = ϕ1 ∠P OP = ϕ , P P?"K3" J?" '?C"WAC?'?C?0J?'?F Q F >?P?N'?FK3* C0K`_?F ϕb FC?* 2"3b '?+H0' @ _?P @ S b " '?C?"H 1 ' @J?C?*=C K3>BFHh+HhC`
N ANB*NBRb + FK3C (P? C H * FH ϕ = 2πk ∀k ∈ Z.
1
2
1
Ox.
2
tg ϕ1 = tg ϕ2 = a. ϕ = ϕ1 + πk
∀k ∈ Z.
¨ ªOu ©u¡^75 [D74 ,7 6 7 Y2W0325%6 7 7[D747([?Y 8 032 >BF F P AC?' @ * '?F Q1_b FK3>Bϕ, FK3* CZK3* P?F C H P?C K D "WAC?'?C?J?'?N a.&F >?P?N,G '?FK3* ,C&' @FK3CU>BF *@ '?R " ' K3F S ' @,_?P HhF Q sF * >b@A+TS@ "H* F J?>?N y=1
+
&
d +
KT>BF F P AC?' @ *@ HhC :(" P?" )H * N,* F J?>?N,C`' @J @b F%>BF F P AC?' @ *%_?P?F G 1)._?" P?"K3" >@ " *¾"WAC?'?C?J?'?N &F >?P?N'?FK3* ¥SZAS NL _?P Hh N &=>BF * F (a, P @ * F J?>@L C
M S FAC H
P ϕ1
P ϕ2 . y
tg a 1 P ϕ1
y
M M
ctg
1
P ϕ1 −1
P0 1
O
P0 1
a
x
−1
O
x
P ϕ2
Pϕ2 −1
−1
S.TEU V W
S.TEU V
xy* P?F C H C R\A" * F J?>@_?"3G ϕ = ϕ1 P?"K3" J?" '?CU"WAC?∠P '?C?0J?OP '?F Q& F >?P?N'?FK3∠P * C&0KOP _?F ϕb F=C?ϕ* "32b , '?+H P0' @ _?P @ S b " '?C?"H >BF F P AC?' @ * '?F QFK3C (P?C Ox. 1 ' @G H * FH y J?C?*= C ctg K3>BFϕHh1+=Hhctg CU
N ϕA2NB=*,a.NBRb + 1
2
a
1 a>
1
1
Pπ 2
P ϕ2
P ϕ1
−1
O
1
a
|a| < 1
a = −1
,
a>
a=1
ϕ = ϕ1 + πk ∀k ∈ Z. ¨ªOu®¦¡u^75 [D74 7
−1 P 3π 2
P0 x
6 75 036Y25s6 7 7[D747f[?Y 8 032 ϕ, >BF F P AC?' @ * '?F Q_b FK3>Ba. FKWG * CZK3* P?F C H P?C K s"WAC?'?C?JG '? N & F >?P?N'?FK3* C ' @FK3C F P AC?' @ *TF * >b@A+TS@ "HU* F J?>?N K&>BF F P AC?' @ *@ HhC :("3G P?" { ) H * NZ* F J?>?N1_?P?F (0, S FAa). C H >@G K @ * "3b '? N & >"WAC?'?C?J?'?F QF >G P?N'?FK3* CO (P?C HhF'?F_?FK3*G P?F C?* ¥AS |a|"&>>@ K 1@ * "3b '?+T" =h>BF G * F P?+T">@ K @ &c* K\F >?P?N'?FKWG * CMS%AS NL* F J?>@L C Pϕ Pϕ . xy* P?F C H C ∠P0 OPϕ = ϕ1 >BFK3" >@ ' K3+ 1
<
S.TEU V
1
∠P0 OPϕ2 = ϕ2 ,
2
&
d +
1 A"K3 >BF * F P?+L * F J?>@¾_?" P?"K3" J?" '?C cosec ϕ1 = cosec ϕ2 = a. "WAC?'?C?J?'?F Q& F >?P?N'?FK3* C&K(_?F b FC?* "3b '?+H' P@ 0_?P @ S b " '?C?"HFK3C Ox. xfb "WAF S@ * "3b '?F =B"KWb C * F,C K3>BFHh+HhC&
N ANB*,NBRb + |a| > 1,
C
yKWb C
ϕ = ϕ1 + 2πk
∀k ∈ Z
ϕ = ϕ2 + 2πk
∀k ∈ Z.
* F%>@ K @ * "3b '?F Q?S b??" * K\_?P H@ >BF * F P @ a = − 1, y = − 1, >@ K @ " * K\"WAC?'?C?J?'?F QF >?P?N'?FK3* CS%* F J?>B" xy* P?F C H¾NBR F b P 3π .
OF R\AD@<_?P?C
P0 OP 3π .
a
>
y 1
1
N ANB*,NBRb + a=1
a = −1
2
ϕ=
P ϕ1
a = −1
3π + 2πk 2
C K3>BFHh+Hh2 C
∀k ∈ Z.
(P?C _?FK3* P?F C?* ¥>@ K @G * 3" b '?N & |a|> <"WAC?1'?C?J?'?F Q F >?P?N'?F G a O a x K3* C&'?" S F )HhF'?F xfb "WAF S@ * "3b '?F =s"KWb C −1 Pϕ * F,)@AD@J @P?" " '?C?Q&'?"%C Hh|a| " " *< 1, * F<>@ K @ * "3b '?F Q?S G yKWb C 1 > a b??" * K\_?aP= H1,@ >BF * F P @<>@G = F 1,>?P?N'?FK3* CZS S.TEU V K @ " * K\1"WAC?'?C?J?'?yF Q¾ * F J?>B" xy* P?F C HNBR F b Pπ . P0 OP π . 2 OF R\AD@_?P?C C K3>BFHh+HhC&
N ANB*,NBRb + 2
Pπ −1
P0 1
|a| < 1
2
a=1
ϕ=
π + 2πk 2
∀k ∈ Z.
¨ªOuwªOu¡^75 [D7 0,7 5 036Y25%6 7 7[D747([?Y 8 032 ϕ, a. >BF F P AC?' @ * '?F Q1_b FK3>BFK3* CZK3* P?F C H P?C K D B"WAC?'?C?J?'?N &F >?P?N,G '?FK3* ¥C' @¾FK3C@
K3$?C K KMF * >b@A+TS@ "H* F J?>?N KM>BF F P AC?' @ *@ HhC :(" P?" )) H * NM* F J?>?N`_?P?F S FAC H>@ K @ * "3b '?N & >&"WAC?'?C?J?'?F Q&F >?P?N'?FK3(a,* CO0). (P?C HhF'?F&_?FK3* P?F C?* `AS ",>@ K @ * "3b '?+T" =D>BF * F P?+T">@ K @G &c* K\F >?P?N|a|'?>FK3* 1CSAS NL<* F J?>@L Pϕ C Pϕ . xy* P?F C H ∠P0OPϕ = ϕ C R\A" * F J?>@_?" P?"K3" J?" '?C"WAC?'?C?J?'?F QF >?P?N'?F1K3* C ∠P0 OPϕ = ϕ2 , P0 K_?F b FC?* "3b '?+H' @ _?P @ S b " '?C?"HFK3C (P?C?J?"H Ox. sec ϕ = sec ϕ2 = a. xfb "WAF S@ * "3b '?F =B"KWb C * F,C K3>BFHh+HhC&
N ANB*,NB1Rb + 1
2
1
2
|a| > 1,
<
w
£ u d w
C
yKWb C
ϕ = ϕ1 + 2πk
∀k ∈ Z
ϕ = ϕ2 + 2πk
∀k ∈ Z.
* F>@ K @ * "3b '?F Q?S b??" * K\(_?P H@ >BF * F P @ >@ K @ " * K\`"WAaC?='?C?−1, J?'?F QUF >?P?N'?FK3* CUS,* F J?>B" xy* P?F C xH=NBR −1, Fb P0 OPπ . OF R\AD@_?P?C C K3>BFHh+HhCU
N ANB*,PNBRπb . + a= −1
P?C ( _?FK3* P?F C?* 1>@ K @ * "3b '?N & > "WAC?'?C?J?'?F Q F >?P?N'?FK3* C '?" S F )HhF'?|a|F < 1 xfb "WAF S@ * "3b '?F =B"KWb C * F,)@AD@J @P?" " '?C?Q&'?"%C Hh" " * yKWb C a = 1, * F1>@ K @ * |a| "3b <'?F 1,Q¾?S b??" * K\¥_?P H@ >BF * F P @ >@ K @ " * K\,"WAC?'?C?J?'?F QF >?P?N'?FK3* CS<* F J?>B" KT>BF F P AC?x' = @ *@ 1,HhC (1, 0). OF R\AD@_?P?C C K3>BFHh+HhC&
N ANB*,NBRb P+ 0 ϕ = π + 2πk
∀k ∈ Z.
a=1
ϕ = 2πk
"
%
∀k ∈ Z.
!! $
]" ! ! &X $ [D4 72 7<0 [D4?0 536 70 7 0 5 87$
!
532 782 70
sin2 x + cos2 x = 1 ∀x ∈ R. tg x =
sin x cos x
ctg x =
sec x =
∀x ∈
cos x sin x
1 cos x
ctg x =
<+
1 tg x
−
π π + πn; + πn , ∀n ∈ Z. 2 2
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
∀x ∈
cosec x = csc x =
1 sin x ∀x ∈
−
π π + πn; + πn , ∀n ∈ Z. 2 2
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z. π 2
n;
π (n + 1) , ∀n ∈ Z. 2
)
d w 1 + tg2 x = sec2 x ∀x ∈ 1 + ctg2 x = cosec2 x
−
0 6 x 6 π/2
π π + πn; + πn , ∀n ∈ Z. 2 2
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
!! $ ]" ' &X $ 0 6 x 6 π
$
2
(P?C?
b C" '?'?+T"() ' @J?" '?CO√ √
2 ≈ 0,7071; 2
2 ≈ 1,4142;
√ 3 ≈ 0,8660; 2
√ 3 ≈ 1,7322;
√ 3 ≈ 0,5774; 3
√ 2 3 ≈ 1,1547. 3
Y4 9Y
1
' @J?" '?C x R P @ANKWG P @G '?FH C?)Hh"3G A C @G P?" '?C?C ' @L
sin x
cos x
tg x
ctg x
sec x
cosec x
'?"
'?"
◦
π 6
√
√
3 3
√
√ 2 3 3
45◦
π 4
1
1
√
√
◦
π 3
1 2 √ 2 2 √ 3 2
0◦
30
60
90◦
π 2
3 2 √ 2 2 1 2
√
3
'?"
√
3
3 3
2
'?"%K3NG "K3*G S N " *
2
√ 2 3 3
<
+
! <
+
π −x 2
− sin x cos x cos x
sin x
3π 3π −x +x 2 2
π−x
π+x
cos x
sin x
− sin x − cos x − cos x
− sin x − cos x − cos x − sin x
− ctg x tg x
− tg x − ctg x
− csc x sec x
sec x
tg x
ctg x
ctg x
tg x
csc x − csc x − sec x − sec x − csc x csc x
Y4 9Y
π +x 2
− tg x ctg x − ctg x − tg x sec x
u a
PUR%NUH "('&* −x
sin x
− ctg x − tg x csc x
− csc x − sec x − sec x
1 A"K3SHh"K3* F(F
F ) ' @J?" '?C ½ ´ ",% ´ ¿c>BFK3" >@ ' K @C K3_?F b ) F S@ '?FcP?"WA>BF SK3* P?" J @c & " "K\MF
F ) ' @J?" '?C?" ½ ´ ´ ¿ sin(x + πn) = (−1)n · sin x ∀x ∈ R, ∀n ∈ Z. cos(x + πn) = (−1)n · cos x tg(x + πn) = tg x
∀x ∈ R, ∀n ∈ Z. ∀n ∈ Z π x 6= + πk ∀k ∈ Z. 2
_?P?CUb&c
FH A" Q K3* S C?* "3b '?FH
ctg(x + πn) = ctg x
∀n ∈ Z
_?P?CUb&c
FH A" Q K3* S C?* "3b '?FH
<¨
! <
"
x 6= πk ∀k ∈ Z. !
sin(x + y) = sin x cos y + cos x sin y
∀x, y ∈ R.
sin(x − y) = sin x cos y − cos x sin y
∀x, y ∈ R.
cos(x + y) = cos x cos y − sin x sin y
∀x, y ∈ R.
cos(x − y) = cos x cos y + sin x sin y
∀x, y ∈ R.
+
tg(x + y) =
u a
tg x + tg y 1 − tg x tg y
o n π π π ∀(x, y) ∈ (x, y) : x 6= + πk, y 6= + πm, x + y 6= + πn , 2 2 2 ∀k, m, n ∈ Z.
tg(x − y) =
tg x − tg y 1 + tg x tg y
n o π π π ∀(x, y) ∈ (x, y) : x 6= + πk, y 6= + πm, x − y 6= + πn , 2 2 2 ∀k, m, n ∈ Z.
ctg(x + y) =
ctg x ctg y − 1 ctg x + ctg y
∀(x, y) ∈ {(x, y) : x 6= πk, y 6= πm, x + y 6= πn}, ∀k, m, n ∈ Z. ctg(x − y) = −
ctg x ctg y + 1 ctg x − ctg y
∀(x, y) ∈ {(x, y) : x 6= πk, y 6= πm, x − y 6= πn}, ∀k, m, n ∈ Z. sin(x + y + z) = = sin x cos y cos z + cos x sin y cos z + cos x cos y sin z − sin x sin y sin z ∀x, y, z ∈ R.
cos(x + y + z) = = cos x cos y cos z − cos x sin y sin z − sin x cos y sin z − sin x sin y cos z ∀x, y, z ∈ R.
<!
d w
£ d w
tg(x + y + z) =
tg x + tg y + tg z − tg x tg y tg z 1 − tg x tg y − tg y tg z − tg z tg x
n π π π ∀(x, y, z) ∈ (x, y, z) : x 6= + πk, y 6= + πl, z 6= + πm, 2 2 2 o π x + y + z 6= + πn , ∀k, l, m, n ∈ Z. 2 ctg(x + y + z) =
ctg x ctg y ctg z − ctg x − ctg y − ctg z ctg x ctg y + ctg y ctg z + ctg z ctg x − 1
∀(x, y, z) ∈ {(x, y, z) : x 6= πk, y 6= πl, z 6= πm, x + y + z 6= πn},
∀k, l, m, n ∈ Z.
!! $
]" ! ! ! &X $
sin 2x = 2 sin x cos x ∀x ∈ R.
cos 2x = cos2 x − sin2 x ∀x ∈ R. cos 2x = 2 cos2 x − 1 ∀x ∈ R.
cos 2x = 1 − 2 sin2 x ∀x ∈ R. n o π π π 2 tg x ∀x ∈ x : x 6= + n, x 6= + πn , ∀n ∈ Z. tg 2x = 2 4 2 2 1 − tg x tg 2x =
2 ctg x − tg x
n π o ∀x ∈ x : x 6= n , ∀n ∈ Z. 4
ctg2 x − 1 ctg x − tg x , ctg 2x = 2 ctg x 2 π π ∀x ∈ n; (n + 1) , ∀n ∈ Z. 2 2
ctg 2x =
!! $
]" $ ! ! ! &X $
sin 3x = sin x(3 cos2 x − sin2 x) ∀x ∈ R.
<
sin 3x = sin x(4 cos2 x − 1) ∀x ∈ R.
u d w sin 3x = sin x(3 − 4 sin2 x) ∀x ∈ R. cos 3x = cos x(cos2 x − 3 sin2 x)
∀x ∈ R.
cos 3x = cos x(4 cos2 x − 3) ∀x ∈ R. cos 3x = cos x(1 − 4 sin2 x) tg 3x =
tg x(3 − tg2 x) 1 − 3 tg2 x
ctg 3x =
n π π o ∀x ∈ x : x 6= + n , ∀n ∈ Z. 6 3
ctg x(ctg2 x − 3) 3 ctg2 x − 1
∀x ∈ R.
n π o ∀x ∈ x : x 6= n , ∀n ∈ Z. 3
!! $
]" ! ! ! &X $
!
tg2
sin2
x 1 − cos x = 2 2
∀x ∈ R.
cos2
1 + cos x x = 2 2
∀x ∈ R.
x 1 − cos x = , 2 1 + cos x
tg
x sin x = 2 1 + cos x
∀x ∈ ( − π + 2πn; π + 2πn), ∀n ∈ Z. tg
1 − cos x x = 2 sin x
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
1 − cos x = 2 sin2
x 2
∀x ∈ R.
1 + cos x = 2 cos2
x 2
∀x ∈ R.
x 2 sin x = 2 x 1 + tg 2 2 tg
∀x ∈ ( − π + 2πn; π + 2πn), ∀n ∈ Z.
<$
& d Ow
x 2 cos x = 2 x 1 + tg 2 1 − tg2
∀x ∈ ( − π + 2πn; π + 2πn), ∀n ∈ Z.
x n o π 2 ∀x ∈ x : x = 6 + πn, x = 6 π + 2πn , ∀n ∈ Z. tg x = x 2 1 − tg2 2 2 tg
x 1 − tg2 2 ctg x = x 2 tg 2
!
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
"
$ ! ! $ ]"
!
!
sin x + sin y = 2 sin
x+y x−y cos 2 2
∀x, y ∈ R.
sin x − sin y = 2 sin
x−y x+y cos 2 2
∀x, y ∈ R.
cos x + cos y = 2 cos
x−y x+y cos 2 2
∀x, y ∈ R.
cos x − cos y = − 2 sin
x+y x−y sin 2 2
tg x + tg y = ∀x ∈
−
<
−
∀x, y ∈ R.
sin(x + y) cos x cos y
π π π π + πn; + πn , ∀y ∈ − + πm; + πm , ∀n, m ∈ Z. 2 2 2 2 tg x − tg y =
∀x ∈
'
sin(x − y) cos x cos y
π π π π + πn; + πn , ∀y ∈ − + πm; + πm , ∀n, m ∈ Z. 2 2 2 2
& d Ow
sin(x + y) sin x sin y
ctg x + ctg y =
∀x ∈ (πn; π(n + 1)), ∀y ∈ (πm; π(m + 1)), ∀n, m ∈ Z. ctg x − ctg y = −
sin(x − y) sin x sin y
∀x ∈ (πn; π(n + 1)), ∀y ∈ (πm; π(m + 1)), ∀n, m ∈ Z. π x + y π x − y + sin + ∀x, y ∈ R. sin x + cos y = 2 sin 4 2 4 2 π π x + y y − x sin x + cos y = 2 cos − cos + ∀x, y ∈ R. 4 2 4 2 π x + y π x − y sin x − cos y = − 2 sin − sin − ∀x, y ∈ R. 4 2 4 2 π x + y π x − y sin x − cos y = − 2 cos + cos + ∀x, y ∈ R. 4 2 4 2 tg x + ctg y = ∀x ∈
−
cos(x − y) cos x sin y
π π + πn; + πn , ∀y ∈ (πm; π(m + 1)), ∀n, m ∈ Z. 2 2 tg x − ctg y = −
∀x ∈
−
cos(x + y) cos x sin y
π π + πn; + πn , ∀y ∈ (πm; π(m + 1)), ∀n, m ∈ Z. 2 2 π √ sin x + cos x = 2 sin +x ∀x ∈ R. 4 π √ −x ∀x ∈ R. sin x + cos x = 2 cos 4 π √ sin x − cos x = − 2 sin −x ∀x ∈ R. 4
<
& d
w + sin x − cos x = − 2 sin 2x
√
π +x ∀x ∈ R. 2 cos 4
π (n + 1) , ∀n ∈ Z. 2 2 π π n; (n + 1) , ∀n ∈ Z. tg x − ctg x = − 2 ctg 2x ∀x ∈ 2 2 tg x + ctg x =
$
! !
∀x ∈
π
n;
! ! ! $
]" ' §"
sin x sin y = cos x cos y = sin x cos y =
1 cos(x − y) − cos(x + y) 2
1 cos(x − y) + cos(x + y) 2 1 sin(x − y) + sin(x + y) 2
<
∀x, y ∈ R. ∀x, y ∈ R. ∀x, y ∈ R.
sin x sin y sin z = 1 = − sin(x + y + z) + sin( − x + y + z) + sin(x − y + z) + sin(x + y − z) 4 ∀x, y, z ∈ R. sin x sin y cos z = 1 = − cos(x + y + z) + cos( − x + y + z) + cos(x − y + z) − cos(x + y − z) 4 ∀x, y, z ∈ R. sin x cos y cos z = 1 = sin(x + y + z) − sin( − x + y + z) + sin(x − y + z) + sin(x + y − z) 4 ∀x, y, z ∈ R. cos x cos y cos z = 1 = cos(x + y + z) + cos( − x + y + z) + cos(x − y + z) + cos(x + y − z) 4 ∀x, y, z ∈ R. ¨
+
~ +
u 3 d w
$
"
! < !
"$
!! $ ]" '
sin2 x =
1 (1 − cos 2x) ∀x ∈ R. 2
cos2 x =
1 (1 + cos 2x) ∀x ∈ R. 2
sin3 x =
1 (3 sin x − sin 3x) ∀x ∈ R. 4
cos3 x =
1 (3 cos x + cos 3x) ∀x ∈ R. 4
$ !! $ ]" ' ! ' $&! ! &X $
s+T
F P) ' @ >@¾_?" P?"WA >BF P?'?"H)@ S C K3C?*¥F * * F R F =fS >@ >BF Q J?" * S " P?* C ' @LFAC?* K\MNBR F b x. ±¡u¨u :¥"OPT"O) sin x :
cos x = ± tg x =
sin x p ± 1 − sin2 x
ctg x =
±¡u®±¡u ¥ : "OPT"O)
tg x =
±
p
1 − sin2 x ;
π x 6= + πn ∀n ∈ Z ; 2
p
1 − sin2 x sin x
(x 6= πn ∀n ∈ Z).
cos x :
±
ctg x =
√
sin x = ± 1 − cos2 x cos x
±
√
√ 1 − cos2 x ;
cos x 1 − cos2 x
x 6=
π + πn ∀n ∈ Z ; 2
(x 6= πn ∀n ∈ Z).
¨
& w
±¡uwOu ¥ : "OPT"O)
sin x =
cos x =
tg x p ± 1 + tg2 x ±
±
"
n X k=0
n X
k=0
n X
¨
k=1
+
π 2
n;
π (n + 1) , ∀n ∈ Z. 2
1 p
(x 6= πn ∀n ∈ Z).
1 + ctg2 x
ctg x p ± 1 + ctg2 x
1 ctg x
tg x =
9
π + πn ∀n ∈ Z ; 2
π x 6= + πn ∀n ∈ Z ; 2
1 + tg2 x ∀x ∈
x 6=
ctg x :
cos x =
!
p
1 tg x
sin x =
1
±¡u ©u ¥ : "OPT"O)
tg x :
ctg x =
∀x ∈ $
π 2
(x 6= πn ∀n ∈ Z). n;
π (n + 1) , ∀n ∈ Z. 2
!! $ ]"
'
ns (n + 1)s sin x + sin 2 2 sin(x + ks) = . s sin 2
ns (n + 1)s cos x + sin 2 2 . cos(x + ks) = s sin 2 sin
sin kx =
nx (n + 1)x sin 2 2 x sin 2
(x 6= 2πm ∀m ∈ Z).
n X
sin cos kx =
k=1
+
nx (n + 1)x cos 2 2 x sin 2
(x 6= 2πm ∀m ∈ Z).
n(s + π) (n + 1)(s + π) sin x + sin k 2 2 . ( − 1) sin(x + ks) = s cos k=0 2 n X
n(s + π) (n + 1)(s + π) cos x + sin k 2 2 ( − 1) cos(x + ks) = . s cos k=0 2 n X n X
k sin(x + ks) =
k=1 n X
(n + 1) cos(x + ns) − n cos(x + ns + n) − cos x . s sin2 2
k cos(x + ks) =
k=1
(n + 1) sin(x + ns) − n sin(x + ns + n) − sin x . s sin2 2
! <
!
± ¹Ou¨u¥k k l (cos x + i sin x)n = cos nx + i sin nx.
eix + e−ix . 2
e−ix = cos x − i sin x. sin x =
eix − e−ix . 2i
eiπ = − 1.
(" P?S N & C?)%K3S F CLUE(F P HhNb$2%" F ' @ P A y . Qb " PU_?F b NBJ?Cb1S&43 RW ¨
<
£
$
! "$ B
!! $
]" '
¬Ou¨u ¡epn op³ y(x) = sin x 7 [¡0 0 D032 4 ◦ 1 . D(sin x) = R. ]0[¡0[f82Y+,' @ R. 2◦ . ]0 ?0 2+Y 3O◦P .@ E(C?>& K3C HHh" * sin( P?C?J?−" '1x)F * ='?F− K3C?sin * "3b x '?∀x F,' ∈@J R. @b@>BF F P AC?' @ * ^ 0 D [ 4 7 4 ?
0 3 5 6 Y + 1 , K F 3 K ? '
F
S ? ' + H ? _
" ? P ? C F A F H G_?" P?C?FACG ◦ T0 = 2π (2π J?"K3>4@.W?(" P?C?FA+ T = 2πn ∀n ∈ Z\{0}. 6 0[¡0 5 036Y 0 75 7[ 4 2Y Sc' @J @b "sK3C K3* "Hh+>BF F P AC?' @ *?◦ [?Y )f4 DY 5
5 . sin 0 = 0. ] 4 6◦ . x = πn ∀n ∈ Z.
OP @ E(C?>U_?" P?"K3" >@ " *FK3@
K3$?C K KcS,* F J?>@L (πn, 0) ∀n ∈ Z. 7 <0 6
4 2Y6 77[¡0 0 D032 2 75 4 %@C?'?* " P?S@b@L ◦ ^T[D
7 .
(2πn; π + 2πn) ∀n ∈ Z
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L (π + 2πn; 2π + 2πn) ∀n ∈ Z
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
y 0 (x) = cos x ∀x ∈ R.
C E%E(" P?" '?$?C?P?N "H@M' @ (P?F C?) S FA' @`'?" _?P?" P?+TS ' @' @ 1 ' @J?" '?CU_?P?F C?) S FA'?F QUE(R.NB'?>?$?C?CUS'?Nb?LUE(NB'?>?$?C?C1K3C?'?NK -
R.
y 0 (2πn) = cos 2πn = 1 ∀n ∈ Z; y 0 (π + 2πn) = cos(π + 2πn) = − 1 ∀n ∈ Z.
* F J?>@L R P @ E(C?>¥_?" P?"K3" >@ " *&FK31@
K3$?C K K,_?FA (2πn, 0) ∀n ∈ Z NBR3b FHS , S *
F ? J > @ L _?FA1NBRb FHS ◦ 135◦. s* F P 45 @U;_?P?F C?) S FA' @ (π + 2πn, 0) ∀n ∈ Z y 00 (x) = − sin x ∀x ∈ R.
S@A+ AC E%E(" P?" '?$?C?P?N "H@&' @ s* F P @&_?P?F C?) S FA' @1E(NB'?>G R. $?C&'?" _?P?" P?+TS ' @' @ R. [D4 4 ?0 536 40 7 6 4 π x = + πn ∀n ∈ Z. 9◦ . 7 <0 6 $ 4 %72 7 72 2 725 4 ?sF ) P @ K3*@ " *' @F * P?" ) >@L ◦ ^T[D ¨+¨
10 .
£
h
NB
+TS@ " *' @F * P?" ) >@L
11◦ .
?7 6 4
i π π + 2πn; + 2πn 2 2
−
hπ
+ 2πn;
65 [¡0 < Y4 2
x= −
* F J?>?C1H@ >K3C HhNH@
i 3π + 2πn 2
∀n ∈ Z; ∀n ∈ Z.
65 [¡0 !OF J?>?C1HhC?'?C HhNH@
π + 2πn ∀n ∈ Z; 2
π + 2πn ∀n ∈ Z. 2 1C?'?C HhNHh+%H@ >K3C HhNHh+%ymin = − 1; ymax = 1. * F J?>@L π R P @ E(C?>>@ K @ " * K\R F P?C?) F '?*@b '?F Q +2πn, 1 ∀n ∈ Z 2 _?P HhF Q S(* F J?>@L π R F P?C?) F '?*@b '?F Q y = 1; − +2πn, −1 ∀n ∈ Z 2 _?P HhF Q y = − 1. i 4 %75 @
P @ * C H@' @(F * P?" ) >@L h π π ◦ [?Y 12 . − + πn; + πn , 2 2 R\A" b c
F "($?"3b F "(J?C KWb F n
6 75 4¾87 2 75 s+T_?NB>b@U' @F * P?" ) >@L 13◦ . [π + 2πn; 2π + 2πn] ∀n ∈ Z; x=
&
4
S F R '?NB*@M' @F * P?" ) >@L
?7 6 4 0[¡0+4 3Y14 . _?" P?"3LFA"(J?" P?" )('?(πn, (P?CU Nb C1C?0))Hh∀n " '?∈" * Z.K\MLB@ P @ >?* " PUS +T_?NB>b FK3* CO :%53 4 7 '?" * 15◦ . 4 ?032 2+Y ,E(NB'?>?$?CO◦ [?Y2 [2πn; π + 2πn] ∀n ∈ Z.
◦
16 .
− 1 6 sin x 6 1 ∀x ∈ R.
O P @ E(C?>(P @ K3_?F b F" 'cSTR F P?C?) F '?*@b '?F Q_?F b FK3" =3F R P @ '?C?J?" '?'?F Q_?PG Hh+HhC C y = −1 y = 1. ] Y 4 7 0 0(4&2Y4 <032 0 0 2Y ?032 4 %@ C?
F b " "T) ' @J?" '?C?" 17◦ . AFK3* C?R3@ " * K\`S* F J?>@L ' @ C Hh" '? G π max(sin x) = 1 x = + 2πn ∀n ∈ Z; R 2 AFK3* C?R3@ " * K\,S<* F J?>@L " "T) ' @J?" '?C?" π min(sin x) = − 1 x = − + 2πn, R 2 R\A"(J?C KWb F b &c
F "($?"3b F " n
¨
!
£
X12 7 0 5 87 2Y ? 032 4 18◦ . [?Y f ) 4 6%_?FK3* P?F " 'U' @,P?C K E(sin x) = [ − 1; 1]. ◦
19 .
y 1 − π2
− 5π 2 −3π
−π
−2π
3π 2
O
π 2
π
2π
3π
x
−1
S.TEU V
OP @ E(C?>&E(NB'?>?$?C?C1K3C?'?NK' @ ) +TS@ " * K\ 25D&/&,2513DCE13M? OP @ E(C?> HhF'?F`_?FK3* P?F C?* M_ @ P @b?b "3b '?+H_?" P?" '?FK3FH_?F G Γ sin x SAF b
2
+ 2πk
A b C?'?+ S _?P @ S F =?@,*@ "WAC?'?C?$UA b C?'?+ S b " S F =R\A" b &c
F "($?"3b F "('?" F * P?C?$ @ * "3b '?F "(J?C KWb F
k
¬Ou®±¡u ¡epn op³ y(x) = cos x ◦ DY 5 7[¡0 0 D032 4 1 . ]0[¡0[f82+Y ,' @ D(cos x) = R. 2◦ . R. h0 2+Y 3O◦P .@ E(C? >&K3C HHhcos( " * P?C?−J?" x)'1= F * cos '?FK3xC?* "3∀x b ∈'?F,R.FK3CUF P AC?' @ * 4 ?0 536+Y 1K,FK3'?F S '?+H _?" P?C?FAFH G_?" P?C?FACG ◦ ^0[D4 7 T0 = 2π (2π J?"K3>4@.W?(" P?C?FA+ [?Y )f4 6 0[¡T0 5 03=6Y 2πn 0 7∀n 5 ∈7[ Z\{0}. 4 2Y S* F J?>B" 5◦ . (0, 1) : cos 0 = 1. π ◦ ] 4 6 . x = + πn ∀n ∈ Z. OP @ E(C?>U_?" P?"K3" 2>@ " *FK3@
K3$?C K KcS,* F J?>@L π + πn, 0 ∀n ∈ Z. 7 <0 6
4 2Y6 77 [¡0 0 D032 2 75 4 %@2C?'?* " P?S@b@L ◦ ^T[D 7 .
−
π π + 2πn; + 2πn ∀n ∈ Z 2 2
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L _a`bdc>e > j kml in+p i V w sx>a l f+p } p b ig i b i T>up k n>55p j z>gT |dTE T f:g U~T>f>uU l T53p ) l f+p } p g 55n l dU i j z>g E5i T b j z U l }Eb i pf>T>T)U| c>b~}Eb Ud5 T e ~U n l l e b l f+p } p b i]g i ειδoς b i T> l T5Ef+p g T5 j V c d| T e TU~n l up e TBzwg ~U T>f>uU l T53p j Ebdc>b l & ¨
j z b i j V
£
π 2
+ 2πn;
3π + 2πn ∀n ∈ Z 2
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
y 0 (x) = − sin x
∀x ∈ R.
C E%E(" P?" '?$?C?P?N "H@M' @ (P?F C?) S FA' @`'?" _?P?" P?+TS ' @' @ 1 ' @J?" '?CU_?P?F C?) S FA'?F QUE(R.NB'?>?$?C?CUS'?Nb?LUE(NB'?>?$?C?C&>BFK3C?'?NR.K π π y 0 − + 2πn = − sin − + 2πn = 1 ∀n ∈ Z; 2 2 π π + 2πn = − sin + 2πn = − 1 ∀n ∈ Z. y0 2 2 * F J?>@L π R P @ E(C?>_?" P?"K3" >@ " *FK3(@
K3$?C K K − +2πn, 0 ∀n ∈ Z 2 _?FANBRb FH1S ◦ Sc* F J?>@L π _?FANBRb FH1S 45 ; +2πn, 0 ∀n ∈ Z 135◦. 2 s* F P @U_?P?F C?) S FA' @
y 00 (x) = − cos x
∀x ∈ R.
S@A+ AC E%E(" P?" '?$?C?P?N "H@&' @ s* F P @&_?P?F C?) S FA' @1E(NB'?>G R. $?C&'?" _?P?" P?+TS ' @' @ [D4 4 ?0 536 40 R. 7 6 4 x = πn ∀n ∈ Z. 9◦ . 7 <0 6 $ 4 %72 7 72 2 75 4 ?sF ) P @ K3*@ " *' @F * P?" ) >@L ◦ ^T[D 10 .
NB
+TS@ " *' @F * P?" ) >@L ◦
11 .
?7 6 4
* F J?>?C1H@ >K3C HhNH@
[ − π + 2πn; 2πn] ∀n ∈ Z;
65 ¡[ 0 < Y4
65 ¡[ 0 /OF J?>?CZHhC?'?C HhNH@
[2πn; π + 2πn] ∀n ∈ Z. x = π + 2πn ∀n ∈ Z; x = 2πn ∀n ∈ Z.
1C?'?C HhNHh+%H@ >K3C HhNHh+%ymin = − 1; y = 1. * F J?>@L R P @ E(C?>>@ K @ " * max K\R F P?C?) F '?*@b '?F Q<_?PG HhF Q S,* (2πn, F J?>@L 1) ∀n ∈ Z _?P HhF Q y = 1; (π + 2πn, − 1) ∀n ∈ Z y = − 1. @ ? [ Y 4
% 7 5
P @ * C H @ ' & @
F * ? P
"
) > @ L R\A" ◦ 12 . [πn; π(n + 1)], J?C KWb F b &c
F "($?"3b F "
n
¨
$
13◦ .
£
6 75 4¾8742 7 5 s+T_?NB>b@U' @F * P?" ) >@L hπ
S F R '?NB*@M' @F * P?" ) >@L
2
+ 2πn;
i 3π + 2πn 2
∀n ∈ Z;
i π π + 2πn; + 2πn ∀n ∈ Z. 2 2 ?7 6 4 0[¡0 4 3Y- π 14◦ . + πn, 0 ∀n ∈ Z. (P?CU_?" P?"3LFA"(J?" P?" )('?Nb 2C1C?)Hh" '?" * K\MLB@ P @ >?* " PUS +T_?NB>b FK3* h
−
+
:%534 7 '?" * 15◦ . [?Y2 4?032 2Y+,E(NB'?>?$?CO◦
CO
16 .
− 1 6 cos x 6 1 ∀x ∈ R.
O P @ E(C?>(P @ K3_?F b F" 'cSTR F P?C?) F '?*@b '?F Q_?F b FK3" =3F R P @ '?C?J?" '?'?F Q_?PG C Hh+HhC y = −1 y = 1. 7 0 0(4&2Y4 <032 0 0 2Y ?032 4 %@ C?
F b " "T) ' @J?" '?C?" ◦ ]Y4 17 . AFK3* C?R3@ " * K\1S`* F J?>@L ' @ C Hh" '? " " max(cos x) = 1 x = 2πn ∀n ∈ Z; R ) ' @J?" '?C?" AFK3* C?R3@ " * K\%S* F J?>@L min(cos x) = −1 x = π+2πn ∀n ∈ Z. R 1 X 2 7
0 5 8 7 2 Y ? 3 0 2 4 18◦ . E(cos x) = [ − 1; 1]. ◦ [?Y )f4 6%_?FK3* P?F " 'U' @,P?C K ? 19 .
y 1 −2π − 5π − 3π 2 2
π
−π − π2
O
π 2
2π 3π 2
5π 2
x
−1
S.TEU V
OP @ E(C?>&E(NB'?>?$?C?C&>BFK3C?'?NKc' @ ) +TS@ " * K\ (1325D&/&,2513DCE13M OP @ E(C?> HhF'?F_?FK3* P?F C?* _ @ P @b?b "3b '?+H_?" P?" '?FK3FH _?F G Γ cos x K3* P?F " '?'?F R F' @P?C K SAF b FK3CU@
K3$?C K Kc' @ π "WAC?'?C?$ Γ sin x
2
+ 2πk
A b C?'?+ S b " S F =?@,*@ >"%' @ 3π "WAC?'?C?$UA b C?'?+ S _?P @ S F =BR\A" + 2πk b &c
F "($?"3b F "('?" F * P?C?$ @ * "3b '?2F "(J?C KWb F ¨
k
£
1◦ .
2◦ .
DY 5
¬OuwOu ¡epn po ³ y(x) = tg x 7[¡0 0 D032 4 @ _??P "WA"3b " ' @' @C?'?* " P?S@b@L
]0[¡0[f82 75
−
π π + πn; + πn ∀n ∈ Z. 2 2
?(" _?P?" P?+TS ' @' @C?'?* " P?S@b@L
π π + πn; + πn ∀n ∈ Z. 2 2 OF J?>?C1P @ ) P?+TS@?π x = + πn ∀n ∈ Z. 2 π ]0 ?0 2Y π 3◦ . tg(−x) = −tg x ∀x ∈ − +πn; +πn , ∀n ∈ Z. OP @ E(C?>&K3C HHh" * P?C?J?" '1F * '?FK3C?* "3b '?F,' @J @2b@>BF F P 2AC?' @ *
−
+
G_?" P?C?FAC?J?"KWG ◦ ^0[D4 7 4?0 536Y+`K%FK3'?F S '?+H _?" P?C?FAFH T0 = π (π >@W4?(. " P?C?FA+ T = πn ∀n ∈ Z\{0}. 75 7[ 4 2Y Sc' @J @b "sK3C K3* "Hh+>BF F P AC?' @ *?◦ [?Y )f4 60[¡0 5 036Y 0
5 . tg 0 = 0. ] 6◦ .
4 ∀n ∈ Z. OP @ E(C?>U_?" xP?"=K3" πn >@ " * FK3@
K3$?C K KcS,* F J?>@L (πn, 0) ∀n ∈ Z. T ^ D [ 7 < 0
6 4
2 Y6 77[¡0 0 D032 2 75 4 %@C?'?* " P?S@b@L ◦
7 .
πn;
π + πn ∀n ∈ Z 2
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L
−
π + πn; πn ∀n ∈ Z 2
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
1 cos2 x " P?S@b@L
y 0 (x) =
π π + πn; + πn , ∀n ∈ Z. 2 2 AC E%E(" P?" '?$?C?P?N "H@?= π π − + πn; + πn ∀n ∈ Z 2 2 ∀x ∈
−
@(C?'?* % @_?" P?S@U_?P?F C?) S FA' @ME(NB'?>?$?C&'?" _?P?" P?+TS ' @? 1 ' @J?" '?CU_?P?F C?) S FA'?F QUE(NB'?>?$?C?CUS'?Nb?LUE(NB'?>?$?C?C&*@ '?R " ' K y 0 (πn) =
1 = 1 ∀n ∈ Z. cos2 πn ¨
£
* F J?>@L R\A" >@ " *FK3@
K3$?C K (πn, Kc_?F0), A1NBRb FHnS s* F P @U_?P?F C?) S FA' @ 2 sin x cos3 x " P?S@b@L
y 00 (x) =
b &c
F "$?"3b F "J?C KWb F =DR P @ E(C?>¾_?" P?"K3"3G
45◦ .
π π + πn; + πn , ∀n ∈ Z. 2 2 AS@A+ AC E%E("3G π π − + πn; + πn ∀n ∈ Z 2 2 ∀x ∈
−
@`C?'?* % P?" '?$?C?P?N "H@O=?@S * F P @U_?P?F C?) S FA' @UE(NB'?>?$?CU'?" _?P?" P?+TS ' @? [D4 4 ?0 536 4 7 ?036%'?" * 9◦ . 7 <0 6 $ 4 %72 7 72 2 75 4 ?sF ) P @ K3*@ " *' @C?'?* " P?S@b@L ◦ ^T[D 10 .
−
π π + πn; + πn ∀n ∈ Z. 2 2
?7 ?036 65 [¡0 < Y4
R\A"
65 [¡0 % 78'?" *
& 4
11◦ . [?Y 4 %75 @
P @ * C H@' @(C?'?* " P?S@b@L π π 12◦ . − + πn; + πn , 2 2 b c
F "($?"3b F "(J?C KWb F n
6 75 4¾87 2 75 s+T_?NB>b@U' @_?F b NBC?'?* " P?S@b@L 13◦ . h π πn; + πn ∀n ∈ Z; 2
S F R '?NB*@M' @_?F b NBC?'?* " P?S@b@L
−
i π + πn; πn 2
∀n ∈ Z.
?7 6 4 0[¡0+4 3Y (P?CU_?" P?"3LFA"(J?" P?" )('?(πn, Nb C10)C?)Hh∀n " '∈?" Z. * K\MLB@ P @ ?> * " PUS +T_?NB>b FK3* CO :%53 4 7 s" P?* C?>@b '?+T"@ K3C Hh_?* F * % + π 15◦ . x = +πn ∀n ∈ Z. 2 2%" S FK3* F P?F '?'?C?"_?P?"WA"3b +%14◦ .
tg x → + ∞
_?P?C
(P @ S FK3* F P?F '?'?C?"c_?P?"WA"3b +%tg x → − ∞
!
_?P?C
x→
π 2
+ πn − 0 ∀n ∈ Z.
x→
π
+ πn + 0 ∀n ∈ Z.
2
%@ >b F '?'?+L`C&R F P?C?) F '?*@b '?+LM@ K3C Hh_?* F *,'?" * 4 ?032 2 75 (" F R P @ '?C?J?" '?' @M'?C&K3'?C?) N =?'?C1K3S " PLN ◦ [?Y2
16 .
£
]Y4 7 4 4¾2Y4 <032 4 2Y ? 032 4 '?" * 17◦ . X12 7 0 5 87 2Y ? 032 4 18◦ . [?Y f ) 4 6%_?FK3* P?F " 'U' @,P?C K E(tg B x) = R. ◦ 19 . OP @ E(C?>&E(NB'?>?$?C?C&*@ '?R " ' K' @ ) +TS@ " * K\ 47AX/ ; /&2513DCE13M
3
y
−2π
π
−π
2π x
O −
3π 2
−
π 2
π 2
3π 2
5π 2
S.TEU V
1◦ . ◦
2 .
DY 5
¬Ou ©u ¡epn po ³ y(x) = ctg x 7[¡0 0 D032 4 @ ?_ P?"WA"3b " ' @' @C?'?* " P?S@b@L
]0[¡0[f82 75
(πn; π(n + 1)) ∀n ∈ Z.
?(" _?P?" P?+TS ' @' @C?'?* " P?S@b@L
OF J?>?C1P @ ) P?+TS@ x = πn ∀n ∈ Z. ]0 ?0 2Y+ 3 . OP @ E(C?>&K3C HHh" * ctg( P?C?J?− " '1x)F * = '?FK3−C?* ctg "3b x'?F,∀x' @∈J @(πn; b@>Bπ(n F F P A+C?1)), ' @ * ∀n ∈ Z. ^0[D4 7 4?0 536Y+` K%FK3'?F S '?+H _?" P?C?FAFH T = π (π G_?" P?C?FAC?J?"KWG 4 . (πn; π(n + 1)) ∀n ∈ Z.
◦
◦
0 >@W?(" P?C?FA+ T = πn ∀n ∈ Z\{0}. [?Y )f4 6M200[¡0 5 036Y 0 7534Z7[ 4 2Y 5◦ . ] 4 π 6◦ . x = + πn ∀n ∈ Z. OP @ E(C?>U_?" P?"K3" 2>@ " *FK3@
K3$?C K KcS,* F J?>@L π + πn, 0 ∀n ∈ Z. 7 <0 6
4 2Y6 77 [¡0 0 D032 2 75 4 %@2C?'?* " P?S@b@L ◦ ^T[D
7 .
πn;
π + πn ∀n ∈ Z 2
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L !
£
π 2
+ πn; π(n + 1)
∀n ∈ Z
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
y 0 (x) = −
1 sin2 x
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
%@
π 2
+ πn = −
sin
2
1 π 2
+ πn
R\A" * F J?>@L π + πn, 0 , n _?" P?"K3" >@ " *FK3,@
2K3$?C K K_?FA1NBRb FHS s* F P @U_?P?F C?) S FA' @ y 00 (x) =
2 cos x sin3 x
= − 1 ∀n ∈ Z.
b &c
F "Z$?"3b F "ZJ?C KWb F =sR P @ E(C?> 135◦.
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
%@C?'?* " P?S@b@L AS@A+ AC E%E(" P?" '?$?C?P?N "3G H@O=?@S * F P @U_?P?F C?) S (πn; FA' @π(n UE(+NB'?1)) >?$?C∀n U'?∈" _?ZP?" P?+TS ' @? [D4 4 ?0 536 4 7 ?036%'?" * 9◦ . T ^ [D7 <0 6 $ 4 %72 7 72 2 75 4 c
+TS@ " *' @C?'?* " P?S@b@L ◦ 10 .
?7 ? 036 65 [¡0
◦
13 .
i π πn; + πn 2
S F R '?NB*@M' @_?F b NBC?'?* " P?S@b@L hπ 2
! +
+ πn; π(n + 1)
∀n ∈ Z;
∀n ∈ Z.
£
?7 6 4 0[¡0+4 3Y- π + πn, 0 ∀n ∈ Z. (P?CU_?" P?"3LFA"(J?" P?" )('?Nb 2C1C?)Hh" '?" * K\MLB@ P @ >?* " PUS +T_?NB>b FK3* CO :%53 4 7 s" P?* C?>@b '?+T"%@ K3C Hh_?* F * +%15 x = πn ∀n ∈ Z. 2%" ◦S .FK3* F P?F '? '?C?" _?P?"WA"3b +%_?P?C ctg x → − ∞ x → πn − 0 ∀n ∈ Z. P @ S FK3* F P?F '?'?C?"c_?P?"WA"3b +%( _?P?C ctg x → + ∞ x → πn + 0 ∀n ∈ Z. %@ >b F '?'?+L`C&R F P?C?) F '?*@b '?+LM@ K3C Hh_?* F *,'?" * [?Y2 4 ?032 2 75 (" F R P @ '?C?J?" '?' @M'?C&K3'?C?) N =?'?C1K3S " PLN 16◦ . ] Y4 7 4 4¾2Y 4 <032 4 2Y ?032 4 '?" * 17◦ . 1 X 2 7 0 5 87 2Y ?032 4 18◦ . ? [ Y )f4 6%_?FK3* P?F " 'U' @,P?C K E(ctg ? x) = R. 19◦ . OP @ E(C?>&E(NB'?>?$?C?C&>BF *@ '?R " ' Kc' @ ) +TS@ " * K\ (1347AX/ ; /&2513DCE13M 14◦ .
y
π
−π 3π 2 −2π
−
−
π 2
2π
Oπ 2
3π 2
3π 5π 2
x
S.TEU V
1◦ .
2◦ .
DY 5
¬Ou®¦¡u ¡epn po ³ y(x) = sec x 7[¡0 0 D032 4 @ ?_ P?"WA"3b " ' @' @C?'?* " P?S@b@L
]0[¡0[f82 75
OF J?>?C1P @ ) P?+TS@?-
−
π π + πn; + πn ∀n ∈ Z. 2 2
?(" _?P?" P?+TS ' @' @C?'?* " P?S@b@L π π + πn; + πn ∀n ∈ Z. 2 2 π x = + πn ∀n ∈ Z. 2
−
/< !
£
π h0 2Y+π sec( − x) = sec x ∀x ∈ − + πn; + πn , ∀n ∈ Z. OP @ E(C?>&K3C HHh" * P?C?J?" '1F * '?FK3C?* "3b '?F,FK3CU2F P AC?' @ *2 4 ?0 536Y+1K,FK3'?F S '?+H _?" P?C?FAFH G_?" P?C?FACG ◦ ^0[D4 7 T0 = 2π (2π J?"K3>4@.W?(" P?C?FA+ ∀n ∈ Z\{0}. [?Y )f4 6 0[¡T0 5 03=6Y 2πn 0 75 7[ 4 2Y S* F J?>B" (0, 1) : sec 0 = 1. 5◦ . '?" *OP @ E(C?>M'?"%_?" P?"K3" >@ " *FK3C&@
K3$?C K K ◦ ] D0 6 . 7 <0 6
4 2Y6 77 [¡0 0 D032 2 75 4 %@C?'?* " P?S@b@L ◦ ^T[D 3◦ .
7 .
−
π π + 2πn; + 2πn ∀n ∈ Z 2 2
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L π 2
3π + 2πn ∀n ∈ Z 2
+ 2πn;
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
π π + πn; + πn , ∀n ∈ Z. 2 2 π AC E%E(" P?" '?$?C?P?N "H@?= π − + πn; + πn ∀n ∈ Z 2 2
y 0 (x) = tg x sec x ∀x ∈
−
@(C?'?* " P?S@b@L % @_?" P?S@U_?P?F C?) S FA' @ME(NB'?>?$?C&'?" _?P?" P?+TS ' @? s* F P @U_?P?F C?) S FA' @
π π + πn; + πn , ∀n ∈ Z. 2 2 π AS@A+ AC E%E("3G π − + πn; + πn ∀n ∈ Z 2 2
y 00 (x) = sec3 x(1 + sin2 x) ∀x ∈
−
@`C?'?* " P?S@b@L % P?" '?$?C?P?N "H@O=?@S * F P @U_?P?F C?) S FA' @UE(NB'?>?$?CU'?" _?P?" P?+TS ' @? [D4 4 ?0 536 40 7 6 4 9◦ . x = πn ∀n ∈ Z. T ^ 7 <0 6 4 %72 7 72 2 75 4 sF ) P @ K3*@ " *p' @p_?F b NBC?'?* " P?S@b@L ◦ [D 10 .
h
2πn;
π + 2πn 2
C
π 2
NB
+TS@ " *' @_?F b NBC?'?* " P?S@b@L ! ¨
h
π + 2πn;
3π + 2πn 2
C
+ 2πn; π + 2πn
3π 2
i
∀n ∈ Z;
+ 2πn; 2π + 2πn
i
∀n ∈ Z.
11◦ .
£
?7 6 4
65 [¡0 < Y4
65 [¡0 /OF J?>?CZHhC?'?C HhNH@
x = 2πn ∀n ∈ Z;
* F J?>?C1H@ >K3C HhNH@
x = π + 2πn ∀n ∈ Z.
1C?'?C HhNHh+ H@ >K3C HhNHh+ ymin = 1; y = − 1. * F J?>@L R P @ E(C?>>@ max K @ " * K\R F P?C?) F '?*@b '?F Q<_?PG (2πn, 1) ∀n ∈ Z HhF Q S,* F J?>@L _?P HhF Q y = 1; (π + 2πn, − 1) ∀n ∈ Z y = − 1. %@C?'?* " P?S@b@L π π R P @ E(C?>1P @ K3_?F G
−
2
+ 2πn;
2
+ 2πn
∀n ∈ Z π 3π + 2πn; + 2πn 2 2 y = − 1.
b F" 'M'?"'?C"(_?P HhF Q ' @C?'?* " P?S@b@L y = 1; R P @ E(C?>UP @ K3_?F b F" 'M'?"(S +T"(_?P HhF Q ∀n ∈ Z 7 2 75 s+T_?NB>b@U' @C?'?* " P?S@b@L ◦ 6 75 4¾84 12 .
−
π π + 2πn; + 2πn ∀n ∈ Z; 2 2
S F R '?NB*@M' @C?'?* " P?S@b@L π
+ 2πn;
3π + 2πn ∀n ∈ Z. 2
?7 ?036 0[¡0+4 3Yc'?" * 13 . :%534 7 3s" P?* C?>@b '?+T"f@ K3C Hh_?* F * + 14◦ . 2%" S FK3* F P?F '?'?C?"_?P?"WA"3b +%2
◦
sec x → − ∞ sec x → + ∞
_?P?C _?P?C
x=
π +πn ∀n ∈ Z. 2
π + 2πn − 0 ∀n ∈ Z; 2 π x→ + 2πn − 0 ∀n ∈ Z. 2
x→
−
(P @ S FK3* F P?F '?'?C?"_?P?"WA"3b +%sec x → + ∞ sec x → − ∞
_?P?C _?P?C
π + 2πn + 0 ∀n ∈ Z; 2 π x→ + 2πn + 0 ∀n ∈ Z. 2
x→
−
%@ >b F '?'?+L`C&R F P?C?) F '?*@b '?+LM@ K3C Hh_?* F *,'?" * 4 ?032 2 75 (" F R P @ '?C?J?" '?' @M'?C&K3'?C?) N =?'?C1K3S " PLN ◦ [?Y2
15 .
!!
£
]Y4 7 4 ¾ 4 2Y4 <032 4 2Y ?032 4 '?" * 16◦ . 1 X 2 7
0 5 8 7 2 Y ?032 4 E(sec x) = ( − ∞; − 1] ∪ [1; + ∞). 17◦ . " 'U' @,P?C K ? ◦ [?Y )f4 6%_?FK3* P?F
18 .
y π 2
1 −2π −
5π 2 3π − 2
π
−π O π −1 − 2
2π
x
3π 5π 2 2
S.TEU V
HhF'?F_?FK3* P?F C?* `_ @ P @b?b "3b '?+H _?" P?" '?FK3FH_?F G O P @ E(C?> Γ sec x 3K * P?F " '?'?F R F' @cP?C K SAF b FK3C@
K3$?C K K' @ π "WAC?'?C?$
Γ cosec x A b C?'?+S b " S F =D@M*@ >"' @ 3π + 2πk b c
F "($?"3b F "('?" F * P?C?$ @ * "3b '?2F "(J?C KWb F
&
1◦ . ◦
2 .
DY 5
+2πk
"WAC?'?C?$ZA b C?'?+S _?P @ S F =R\A"
k
¬OuwªOu ¡epn po ³ y(x) = cosec x 7[¡0 0 D032 4 @ ?_ P?"WA"3b " ' @' @C?'?* " P?S@b@L
]0[¡0[f82 75
OF J?>?C1P @ ) P?+TS@ ]0 ?0 2Y+ 3 . ◦
2
(πn; π(n + 1)) ∀n ∈ Z.
?(" _?P?" P?+TS ' @' @C?'?* " P?S@b@L (πn; π(n + 1)) ∀n ∈ Z.
x = πn ∀n ∈ Z.
cosec( − x) = − cosec x
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
OP @ E(C?>&K3C HHh" * P?C?J?" '1F * '?FK3C?* "3b '?F,' @J @b@>BF F P AC?' @ * ^0[D4 7 4 ?0 536Y+1K,FK3'?F S '?+H _?" P?C?FAFH G_?" P?C?FACG 4◦ . T0 = 2π (2π J?"K3>@W?(" P?C?FA+ [?Y )f4 6M20 T0[¡=0 5 2πn 036Y 0 ∀n7∈534ZZ\{0}. 7[ 4 2Y 5◦ . ] D 0 ? '
" * O P
@ ( E ? C M > ? ' % " ? _
" ? P " K3" >@ " *FK3C&@
K3$?C K K 6◦ . T ^ D [ 7 < 0
6 4
2 Y
6 7 7 ¡ [ 0 0 D 032 2 75 4 %@C?'?* " P?S@b@L ◦ !
7 .
£
(2πn; π + 2πn) ∀n ∈ Z
_?F b FC?* "3b ' @OVIR P @ E(C?>sP @ K3_?F b F" 'sS +T"DFK3C@
K3$?C K K (@pC?'?* " P?S@b@L (π + 2πn; 2π(n + 1)) ∀n ∈ Z
F * P?C?$ @ * 3" b ' @OVR P @ E(C?>UP @ K3_?F b F" 'M'?C"(FK3C1@
K3$?C K K 4 ) )y0[¡032 9 4[ 0 %75 ? (P?F C?) S FA' @ ◦ /&* 8 .
y 0 (x) = − ctg x cosec x ∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
%@
∀x ∈ (πn; π(n + 1)), ∀n ∈ Z.
@C?'?* " P?S@b@L % AS@A+ AC E%E(" P?" '?$?C?P?N "3G H@O=?@S * F P @U_?P?F C?) S (πn; FA' @π(n UE(+NB'?1)) >?$?C∀n U'?∈" _?ZP?" P?+TS ' @? [D4 4 ?0 536 40 7 6 4 π 9◦ . x = + πn ∀n ∈ Z. 7 <0 6 $ 4 %72 7 72 2 725 4 c
+TS@ " *' @_?F b NBC?'?* " P?S@b@L ◦ ^T[D 10 .
S F ) P @ K3*@
π + 2πn; 2πn " *' @_?2F b NBC?'?* " P?S@b@L h
hπ 2
11◦ .
−
+ 2πn; π + 2πn
C
65 [¡0 < Y4
?7 6 4
* F J?>?C1H@ >K3C HhNH@
x=
1C?'?C HhNHh+ H@ ymin = 1; * F J?>@L π 2
i π 2πn; + 2πn 2
π + 2πn;
∀n ∈ Z;
i 3π + 2πn 2
∀n ∈ Z.
65 [¡0 /OF J?>?CZHhC?'?C HhNH@
π + 2πn ∀n ∈ Z; 2
x= −
C
π + 2πn ∀n ∈ Z. 2 >K3C HhNHh+ ymax = − 1.
R P @ E(C?>>@ K @ " * K\R F P?C?) F '?*@b '?F Q
+2πn, 1 ∀n ∈ Z F J?>@L π − +2πn, −1 ∀n ∈ Z 2
_?P HhF Q S(* y = 1; R F P?C?) F '?*@b '?F Q _?P HhF Q %@UC?y'?= * " P?−S@1.b@L R P @ E(C?> P @ K3_?F b F" '¾'?" (2πn; '?C"U_?P HhF Q ' @¾C?π'?+* " 2πn) P?S@b@L ∀n ∈ Z R P @ E(C?>UP @ K3_?F b yF=" 'M1;'?"(S +T"(_?P HhF Q (π + 2πn; 2π(n + 1)) ∀n ∈ Z y = − 1.
! $
£
6 75 4¾8742 7 5 s+T_?NB>b@U' @C?'?* " P?S@b@L
12◦ .
(2πn; π + 2πn) ∀n ∈ Z;
S F R '?NB*@M' @C?'?* " P?S@b@L
?7 ?036 0[¡0+4 3Yc'?" * 13 . % : 534 7 s" P?* C?>@b '?+T"%@ K3C Hh_?* F * + 14 x = πn ∀n ∈ Z. 2%" ◦S .FK3* F P?F '? '?C?" _?P?"WA"3b +%_?P?C cosec x → − ∞ x → 2πn − 0 ∀n ∈ Z; _?P?C cosec x → + ∞ x → (π + 2πn) − 0 ∀n ∈ Z. (P @ S FK3* F P?F '?'?C?"_?P?"WA"3b +%_?P?C cosec x → + ∞ x → 2πn + 0 ∀n ∈ Z; _?P?C cosec x → − ∞ x → (π + 2πn) + 0 ∀n ∈ Z. %@ >b F '?'?+L`C&R F P?C?) F '?*@b '?+LM@ K3C Hh_?* F *,'?" * (π + 2πn; 2π(n + 1))
◦
∀n ∈ Z.
y 2π
−π
−
3π 2
π − 1 2 O
3π 2 π −1 2
x
5π 2 π
3π
−2π
S.TEU V
[?Y2 4?032 2 75
(" F R P @ '?C?J?" '?' @M'?C&K3'?C?) N =?'?C1K3S " PLN
15◦ . ]Y4 7 4 4¾2Y4 <032 4 2Y ?032 4 '?" * 16◦ . X12 7 0 5 87 2Y ?032 4 17◦ . [?Y )f4 6%_?FK3* P?F " 'U' @,P?C K E(cosec ? ? x) = ( − ∞; − 1] ∪ [1; + ∞). ◦ 18 . OP @ E(C?> HhF'?F_?FK3* P?F C?* #_ @ P @b?b "3b '?+H _?" P?" '?FK3FH Γ cosec x _?FK3* P?F " '?'?F R F' @,P?C K SAF b FK3C1@
K3$?C K K' @ π "WACG Γ sec x + 2πk 2 '?C?$ZA b C?'?+S _?P @ S F =D@U*@ >"' @ 3π "WAC?'?C?$¾A b C?'?+S b " S F =DR\A" + 2πk b c
F "($?"3b F "('?" F * P?C?$ @ * "3b '?F 2"(J?C KWb F k !
&
d 3 &
!
y(x) = A sin(ωx + ϕ)
∀x ∈ R,
R\A" *@ >?C?",_?FK3* F?'?'?+T" =¡J?* F A > 0, ω > 0, 0 6 ϕ < 2π, ' @ ) +TA, S@ " ω, * K\ ϕuA> *.=I13/&D&(13M P?C K W A3= L (FK3* F?'?'?+T" =S LFA ?C?"S,E(F P HhNb N =BC Hh"+&c*,' @ ) S@ '?COA (+*,u1 A3[ \]AX25471347A V /&AX\]A Z 6/&A3[ A+A Z D&47,CEA V ω
ϕ
y A A sin ϕ −ϕ ω
− π+ϕ ω
− 2π+ϕ ω
O
− π+2ϕ 2ω
− 3π+2ϕ 2ω
π−ϕ ω π−2ϕ 2ω
2π−ϕ ω
x
3π−2ϕ 2ω
−A
S.TEU V 5W
@ P HhF '?C?>@?S b??" * K\%_?" P?C?FAC?J?"K3>BF Q<E(NB'?>?$?C?" QKO_?" P?C?FAFH
:(C KWb F
ν=
' @ ) +TS@ " * K\
1 ω = T 2π
\]AX2547134713M
T=
2π . ω
f (x) = a cos ωx + b sin ωx ∀x ∈ R (|a| + |b| 6= 0)
_?P?C?S FAC?* K\U>US CBAN
f (x) =
√
a2 + b2 sin(ωx + ϕ) ∀x ∈ R
K_?FHhF #& S S "WA" '?CUSK3_?FHhF R3@ * "3b '?F R F
a , a2 + b 2
cos ϕ = √
ϕ
_?FE(F P HhNb@ H-
b . a2 + b 2
@ P HhF '?C?>@¾?S b??" * K\P?" " '?C?"HAC E%E(" P?" '?$?C @b '?F R F¥NBP @ S '?" '?C R3@ P HhF '?C?J?"K3>BF R F>BF b "
@ '?C y 00 = − ω 2 y.
!
d
d 3 O d
$
'
]"
&
w
!
!
~O
y y = Ae−kx
A
y(x) = Ae−kx sin(ωx + ϕ) ∀x ∈ R,
O
R\A" _ @ P @ Hh" * P?+
A > 0,F _?ωC K3> +TS@0,G k >+X 0, 0 6 ϕ < 2π, " * A 47, J AX8{P D ; uA>*.=I13/&D&\ ; L
x y = −Ae−kx
−A
S.TEU V
25(D ;
(1 Z; AX/&D[
* F J?>?CO
X
"."
§
(P?C?S +T"%K_ @ P @ Hh" * P?C?J?"K3>?C H)@AD@ '?C?"H x = A sin(ω1 t + ϕ),
R\A"
A, B, ω1 , ω2
y = B sin(ω2 t + ψ),
_?F b FC?* "3b '?+T"sJ?C KWb@?=
ϕ=
π π m, m ∈ Z, ψ = n, 2 ?2 %& W
' @ ) +TS@ &c* K\ £D u,+*BA3=ID
n ∈ Z,
1
y
1
y
x −1
O
V
S.TEU V
1
−1
x = cos 3t, y = sin 2t
x −1
O
5V
S.TEU V
1
−1
x = sin 5t, y = sin 3t
w
1
~O
y
1
y
x −1
O
uV
S.TEU V
x −1
1
−1
O
x = cos 5t, y = cos t
1
V
S.TEU V
y
1
−1
x = sin 5t, y = cos 2t
1
y
x −1
O
uV
S.TEU V
x −1
1
−1
O
x = cos 6t, y = cos 5t
1
S.TEU V
1
−1
V
y
x = cos 4t, y = sin 3t
1
y
x −1
O
S.TEU V
1
x −1
−1
V
x = cos t, y = sin 3t
O
1
−1
S.TEU V V
x = sin 4t, y = sin 5t
d d #
d
$
! $
!! $
]" ' (P?F C?) S FA' @
(" P?S F F
P @ ) ' @
sin x
cos x
− cos x + C
cos x
− sin x 1 cos2 x 1 − sin2 x
sin x + C
ctg x
tg x sec x
cosec x
− ctg x cosec x
$
arcsin x
9¦$ !! $ ]"
C?)%F * P?" ) >@
x h
−
{*(47AX/
C?* " P?S@b@
+
C?)%F * P?" ) >@
∀x ∈ [ − 1; 1], ∀x ∈ [ − 1; 1].
C?)%F * ?P " ) >@ ' @ ) +TS@ " * K\M*@ >BF " J?* F " R F,>B[F− K3C?1; '?N1]KP @ S " '
x [0; π],
x.
∀x ∈ [ − 1; 1],
cos arccos x = x
∀x ∈ [ − 1; 1].
π π − ; , 2 2
x.
0 6 arccos x 6 π
; /&251>=
; , 2 2
sin arcsin x = x
{*((1325D&/&,251>= J?C KWb@
C?)ZF * P?" ) >@ ' @ ) +TS@ " * K\*@ >BF " [ − 1; 1] i π π J?* F " R FK3C?'?NKP @ S " '
π π 6 arcsin x 6 2 2
−
arccos x
ln | sin x| + C x π ln tg + +C 2 4 x ln tg + C 2
_?P?F C?) S F b ' @M_?FK3* F?'?' @W
{*(25D&/&,251>= J?C KWb@
− ln | cos x| + C
sec x
(C
J?C KWb F
!
tg x
J?C KWb F
B
?J C KWb@ ' @ ) +TS@ " * K\*@ >BF "UJ?C KWb F x J?* F" R F,*@ '? R " ' KP @ S " ' x.
arctg x
C?)
d
−
{*((1347AX/
C?)(C?'?* " P?S@b@
' @ ) +TS@ " * K\*@ >BF "1J?C KWb F J?C KWb@ J?* F" R F,>BF *x@ '?R " ' KP @ S " '
; /&251>=
(0; π),
π π < arctg x < ∀x ∈ R, 2 2 tg arctg x = x ∀x ∈ R.
arcctg x
x.
0 < arcctg x < π
∀x ∈ R,
ctg arcctg x = x
∀x ∈ R.
arcsin( − x) = − arcsin x
∀x ∈ [ − 1; 1].
arccos( − x) = π − arccos x ∀x ∈ [ − 1; 1]. arctg( − x) = − arctg x
∀x ∈ R.
arcctg( − x) = π − arcctg x arcsin x + arccos x =
π 2
arctg x + arcctg x = arcsin sin x = x
∀x ∈ R.
∀x ∈ [ − 1; 1]. π 2
∀x ∈ R.
h π πi ∀x ∈ − ; . 2 2
arccos cos x = x ∀x ∈ [0; π]. π π arctg tg x = x ∀x ∈ − ; . 2 2
arcctg ctg x = x ∀x ∈ (0; π). √ cos arcsin x = 1 − x2 ∀x ∈ [ − 1; 1]. tg arcsin x = √
x 1 − x2
∀x ∈ ( − 1; 1).
√ 1 − x2 ctg arcsin x = ∀x ∈ [ − 1; 0) ∪ (0; 1]. x √ sin arccos x = 1 − x2 ∀x ∈ [ − 1; 1].
/<
d
tg arccos x =
√
1 − x2 x
ctg arccos x = √
∀x ∈ [ − 1; 0) ∪ (0; 1].
x 1 − x2
sin arctg x = √
x 1 + x2
∀x ∈ R.
1 1 + x2
∀x ∈ R.
cos arctg x = √ ctg arctg x =
∀x ∈ ( − 1; 1).
1 x
sin arcctg x = √
∀x ∈ R\{0}.
1 1 + x2
∀x ∈ R.
x 1 + x2
∀x ∈ R.
cos arcctg x = √
1 ∀x ∈ R\{0}. x √ arcsin x = arccos 1 − x2 ∀x ∈ (0; 1). tg arcctg x =
x ∀x ∈ (0; 1). 1 − x2 √ 1 − x2 arcsin x = arcctg ∀x ∈ (0; 1). x √ arccos x = arcsin 1 − x2 ∀x ∈ (0; 1). arcsin x = arctg √
√ 1 − x2 arccos x = arctg x
arccos x = arcctg √
¨
arctg x = arcsin √
x 1 − x2
x 1 + x2
∀x ∈ (0; 1). ∀x ∈ (0; 1). ∀x ∈ (0; + ∞).
& d Ow
d
arctg x = arccos √
1 1 + x2
arctg x = arcctg arcctg x = arcsin √
! ! !
∀x ∈ (0; + ∞). ∀x ∈ (0; + ∞).
x 1 + x2
∀x ∈ (0; + ∞).
arcctg x = arctg
$
∀x ∈ (0; + ∞).
1 1 + x2
arcctg x = arccos √
1 x
1 x
∀x ∈ (0; + ∞).
! " $
]" '
! $
('
p √ arcsin x + arcsin y = arcsin x 1 − y 2 + y 1 − x2 ,
"KWb C
Cb C
x2 + y 2 6 1. p √ arcsin x + arcsin y = π − arcsin x 1 − y 2 + y 1 − x2 , xy 6 0
"KWb C
x > 0, y > 0
"KWb C
x < 0, y < 0
C
x2 + y 2 > 1. p √ arcsin x + arcsin y = − π − arcsin x 1 − y 2 + y 1 − x2 ,
C
x2 + y 2 > 1. p √ arcsin x − arcsin y = arcsin x 1 − y 2 − y 1 − x2 ,
"KWb C
Cb C
x2 + y 2 6 1. p √ arcsin x − arcsin y = π − arcsin x 1 − y 2 − y 1 − x2 ,
"KWb C
xy > 0
C
x2 + y 2 > 1. p √ arcsin x − arcsin y = − π − arcsin x 1 − y 2 − y 1 − x2 ,
"KWb C
x > 0, y < 0
C
x < 0, y > 0 x2 + y 2 > 1. p arccos x + arccos y = arccos xy − (1 − x2 )(1 − y 2 ) ,
"KWb C
x + y > 0.
!
& d Ow
d
p
arccos x + arccos y = 2π − arccos xy −
"KWb C
(1 − x2 )(1 − y 2 ) ,
x + y < 0. p arccos x−arccos y = −arccos xy+ (1 − x2 )(1 − y 2 ) , arccos x − arccos y = arccos xy +
p
"KWb C
x+y , 1 − xy
arctg x + arctg y = − π + arctg
x+y , 1 − xy
arctg x − arctg y = arctg
x−y , 1 + xy
arctg x − arctg y = π + arctg
2 arcsin x = − π − arcsin 2x 1 −
x2
,
2 arccos x = arccos(2x2 − 1),
2 arccos x = 2π − arccos(2x2 − 1),
2 arctg x = arctg
2x , 1 − x2
"KWb C
"KWb C "KWb C "KWb C
C
|x| 6
"KWb C
xy > 1.
C
xy > 1.
xy > − 1.
x<0
"KWb C
√ 2 arcsin x = π − arcsin 2x 1 − x2 ,
C
x<0
x>0
"KWb C
x−y , 1 + xy
√ 2 arcsin x = arcsin 2x 1 − x2 ,
√
"KWb C
x − y < 0.
xy < 1.
x>0
"KWb C
"KWb C
x−y , 1 + xy
arctg x − arctg y = − π + arctg
"KWb C
x+y , 1 − xy
x−y > 0.
"KWb C
(1 − x2 )(1 − y 2 ) ,
arctg x + arctg y = arctg arctg x + arctg y = π + arctg
"KWb C
xy < − 1.
C
xy < − 1.
√
2 . 2
√
2 < x 6 1. 2
√ 2 −16x < − . 2 0 6 x 6 1. − 1 6 x < 0. |x| < 1.
£d
2 arctg x = π + arctg
2x , 1 − x2
2 arctg x = − π + arctg
2x , 1 − x2
"
$
{*(25D&/&,2
!
"KWb C "KWb C
x > 1. x < − 1.
B 0
! $ ('
!! $ ]" ' "$
¡ u¨u ¡epn op³ y(x) = arcsin x E(NB'?>?$?C
h π πi − ; . 2 2
7[¡0 0 D032 4 D(arcsin x) = [ − 1; 1]. h π πi X12 7 0 5 87 2Y ?032 4 2 . E(arcsin x) = − ; . 2 2 ]0 ?0 2Y+ OP @ E(C?> 3 . arcsin( − x) = − arcsin x ∀x ∈ [ − 1; 1]. K3C HHh" * P?C?J?" '1F * '?FK3C?* "3b '?F,' @J @b@>BF F P AC?' @ *U P?C K DW ]00[D4 7 4?0 536Y+ 4 .] x = 0. 5 . ^T[D7< y 0 6 4 2Y6 7 75 7 25 8 Y (F 6b F.C?* "3b ' @%' @c_?F b NBC?'?* " P?S@b% F * P?C?$ @ * "3b ' @' @c_?F b NBC?'?* " P?S@b% (0; 1]; ^T[D7< 0 6 4 % 72 7 72 2 75 [−1; 4 0). 7 . sF ) P @ K3*@ " *' @F * P?" ) >B" −1 1 x /&4*) )y0[¡032 9 4[ 0 < [Y+−s1;(1]. P?C?* C?J?"K3>?CL 8 . * F J?" >U'?" * 6 75 4 874 2 75 ,s+G − _?NB9>b.@' @cF * P?" ) >B" S F R '?NB*@' @cF *G P?" ) >B" O F J?[0; >@,1]; _?" P?" R C?
@ [ − 1; 0]. S.TEU VuW ?7 ?036 65 [¡0 < Yc'?" * (0, 0). 10 . :%534 7 '?" * 11 . 1◦ .
DY 5
◦
◦
◦ ◦
◦
π 2
◦
O
◦
◦
π 2
◦
12◦ .
]Y4 7
0 0 2Y ?032 40
◦
max (arcsin x) =
[−1;1]
π 2
AFK3* C?R3@ " * K\%S* F JG
>B" ' @ C Hh" '? " "c) ' @J?" '?C?" π AFK3* C?R3@ " * K\`S x = 1; min (arcsin x) = − [−1;1] 2 * F J?>B" x = − 1. ¡u®±¡u ¡epn op³ y(x) = arccos x {*((1325D&/&,2 E(NB'?>?$?C(F
P @ * ' @(>%K3N" '?C!& >BFK3C?'?NK @s' @ [0; π]. 7 [¡0 0 D032 4 ◦ DY 5 1 .
D(arccos x) = [ − 1; 1].
$
2◦ .
£d
X12 7 0 5 87 2Y ?032 4
y π
8
O
S.TEU V
]Y4 7 12◦ . max (arccos x) = π
'?C?"
{*(47AX/
1◦ . 2◦ .
X12 7
AFK3* C?R3@ " * K\US,* F J?>B"
2Y6 7 75 7 25 ' @#_?F b NBC?'?* " P?S@b "
0 5 87 2Y ?032 4
−1
π/2
x = 1.
D(arctg x) = R. π π E(arctg x) = − ; . 2 2 ] 0 ? 0 2 Y 3◦ .
+
arctg(−x) = −arctg x ∀x ∈ R.
π 4 O
− π4
1
−π/2
S.TEU V
x
OP @ E(C?> K3C HHh" * P?C?J?" 'F * '?FK3CG * "3b '?F,' @J @b@>BF F P AC?' @ * ]0 0[D4 7 4 ?0 536+Y 4◦ . ] x = 0. ◦ 5 . ^T[D7 < 0 6 4 2Y6 7 75 ◦ J?C 7 KW6b 2F 5.S FHU8 Yb ?NB(J?F " b FC?* "3b ' F @*MP?' C@ G
(0; +∞); $ @ * "3b ' @U' @J?C KWb F S FH b NBJ?" ( − ∞; 0). 7 <0 6 4 %72 7 7 2 2 75 4 OsF ) P @ K3*@ " *M' @USK3" Q¾J?C KWb F S F Q ◦ ^T[D _?P Hh7F Q . P?C K W R
y
¡uwOu ¡epn op³ y(x) = arctg x ; /&2 E(NB'?>?$?C1F
P @ * ' @&>ZK3N" '?C!&*@ ?' R " ' K @,' @C?'G
π π − ; . DY 25 2 7 [¡0 0 D032 4
2 420
x = − 1;
min (arccos x) = 0
* " P?S@b
2 7
6 4 %72 7 72 2 75 4 ?P " ) >B" [ − 1; 1]. ◦ /&4*) )y0[¡032 9 4[ 0
[−1;1]
[−1;1]
]00[D4 7 4?0 536Y+
4◦ . ] 5◦ . ^T[D7 <0 x = 1.6 4 ◦ Yc6(. F b FC?* "3b ' @
[ − 1; 1).^T[D7 <0 ◦ c
+T7S@ . " *' @F *
π/2
−1
) / -
E(arccos x) = [0;5 π]. 2 4 ?0 ◦ ]0 D8 D0 3 . ?0 2 7 P?C K D W
£d
/&4*) )y0[¡032 9 4[ 0
" * 9◦ . 6 7 5 48742 75 Ts+T_?NB>b@ ' @J?C KWb F S FHb NBJ?" 10◦ . S F R '?NB*@(' @J?C KWb F S FHMb NBJ?" OF J?>@_?" P?" R C?
@ (0, 0). (−∞; 0]; [0; +∞). 7[D4 72 Y 2 f0
y π π/2 π 4
/ - ]00[D4 7 4?0 536Y+ 4 . ] D0 '?" *OP @ E(C?> '?" _?" P?5"K3." >@ " *FK3C&@
K3$?C K K ^T[D7< 0 6 4 2Y6 7 7 5 67 .25 8 Y (F b FC?* "3b ' @ ' @SK3" QUJ?C KWb F S F QM_?P HhF Q ◦
1
O
S.TEU V
◦
x
◦
+ 4
6 4 %72 7 72 2 75 4 3c
+TS@ " *' @SK3" Q(J?C KWb F S F Q_?R.PG ◦ ^T[D7 <0 7 . HhF Q R. /&4*) )y0[¡032 9 4[ 0
" * 9◦ .
6 75 487 2 75 Ts+T_?NB>b@ ' @J?C KWb F S FHb NBJ?" 10◦ . S F R '?NB*@%' @J?C KWb F S FHMb NBJ?" OF J?>@_?" P?" R C?
@ π [0; +∞); (−∞; 0]. 0, . 2 7[D4 72 Y 2 f0
¡u®¦¡upd
opnpo ke po k ehk (gpo hgBm npo ¡epn opq k po k ehk (gpo hgBm npo ¡epn opq 3B
π 2
−3π −2π − 5π − 3π 2 2
−π − π2
π O − π2
S.TEU V
π 2
2π 3π 2
3π 5π 2
x
£d
3B
y(x) = arccos cos x ∀x ∈ R
P?C K D W
y π
−3π
−2π
−π
S.TEU V
3B ?
π
O
2π
3π
x
π π y(x) = arctg tg x ∀x ∈ − + πk; + πk , ∀k ∈ Z 2 R P @ E(C?>&_?FK3* P?F " 'U' @P?C K 2 W
,3
y π 2
−3π
−π −2π 3π − π2 − 5π − 2 2
π O
2π 3π 2
− π2
S.TEU V
3B
π 2
3π x
5π 2
y(x) = arcctg ctg x ∀x ∈ πk; π(k + 1) , ∀k ∈ Z
R P @ E(C?>&_?FK3* P?F " 'U' @P?C K W y π
−3π
−2π
−π
O
S.TEU V
$
π
2π
3π
x
d u d d B a
! $
! $ B ! !! $
]" '
('¥$
(P?F C?) S FA' @
(" P?S F F
P @ ) ' @
arcsin x
√
1 ∀ x ∈ (− 1 ; 1) 1 − x2
x arcsin x +
arccos x
√
−1 ∀ x ∈ (− 1 ; 1) 1 − x2
x arccos x −
1 1 + x2
arctg x
arcctg x
− (C
$#
"$ !
1 1 + x2
√
1 − x2 + C
√
1 − x2 + C
x arctg x −
1 ln(x2 + 1) + C 2
x arcctg x +
1 ln(x2 + 1) + C 2
_?P?F C?) S F b ' @M_?FK3* F?'?' @W $
! ! $
]"
¹Ou¨u
'
cos x = cos y
cos x = cos y ⇐⇒ x = ± y + 2πn ∀x, y ∈ R, ∀n ∈ Z.
¹Ou®±¡u
sin x = sin y ⇐⇒
∀x ∈
sin x = sin y
x = y + 2πn, x = π − y + 2πn
¹OuwOu
∀x, y ∈ R, ∀n ∈ Z.
tg x = tg y
tg x = tg y ⇐⇒ x = y + πn π π π π − + πk; + πk , ∀y ∈ − + πl; + πl , ∀k, l, n ∈ Z. 2 2 2 2
¹Ou ©u
ctg x = ctg y
ctg x = ctg y ⇐⇒ x = y + πn ∀x ∈ (πk; π(k + 1)), ∀y ∈ (πl; π(l + 1)), ∀k, l, n ∈ Z.
$
¹Ou®¦¡u
cos x = − cos y
cos x = − cos y ⇐⇒ x = π ± y + 2πn ∀x, y ∈ R, ∀n ∈ Z.
¹OuwªOu
sin x = − sin y ⇐⇒
sin x = − sin y
x = − y + 2πn, x = π + y + 2πn
¹Ou¡u
∀x ∈
∀x, y ∈ R, ∀n ∈ Z.
tg x = − tg y
tg x = − tg y ⇐⇒ x = − y + πn π π π π − + πk; + πk , ∀y ∈ − + πl; + πl , ∀k, l, n ∈ Z. 2 2 2 2
¹Ouw»Ou
ctg x = − ctg y
ctg x = − ctg y ⇐⇒ x = − y + πn ∀x ∈ (πk; π(k + 1)), ∀y ∈ (πl; π(l + 1)), ∀k, l, n ∈ Z.
¹Ouw¹Ou
sin x = cos y π sin x = cos y ⇐⇒ x = ± y + 2πn ∀x, y ∈ R, ∀n ∈ Z. 2
¹Ou¨¬Ou
tg x = ctg y π tg x = ctg y ⇐⇒ x = − y + πn 2 π π ∀x ∈ − + πk; + πk , ∀y ∈ (πl; π(l + 1)), ∀k, l, n ∈ Z. 2 2
¹Ou¨¨u
sin x = − cos y π sin x = − cos y ⇐⇒ x = − ± y + 2πn ∀x, y ∈ R, ∀n ∈ Z. 2
¹Ou¨?±¡u
$ +
tg x = − ctg y π tg x = − ctg y ⇐⇒ x = + y + πn 2 π π ∀x ∈ − + πk; + πk) , ∀y ∈ (πl; π(l + 1)), ∀k, l, n ∈ Z. 2 2
#
yKWb C yKWb C
!#"$ % '¥$ ! ! $ ]"
&% |a| > 1, |a| 6 1,
'
©D¬Ou¨up¢ lehgepohg sin t = a * FNBP @ S '?" '?C?" '?"%C Hh" " *,P?" " '?C?QO sin t = a * F`Hh'?F"K3* S FH P?" " '?C?Q&
N A" * P?C K C&P?C K ? W
{( − 1)n arcsin a + πn} ∀n ∈ Z
J @ K3* '?FK3* CO=
sin t = 0 ⇐⇒ t = πn ∀n ∈ Z, π sin t = − 1 ⇐⇒ t = − + 2πn ∀n ∈ Z, 2 π sin t = 1 ⇐⇒ t = + 2πn ∀n ∈ Z. 2 sin
y
sin (a > 1)
a 1 a
Pπ−arcsin a Pπ −1
Pπ 2
Parcsin a P0 1 x
O
Pπ −1 P−π−arcsin a
a>0
S.TEU V
yKWb C yKWb C
|a| > 1, |a| 6 1,
1 P0 1 x
O
Parcsin a a −1 (a < − 1) a
−1 n> } p
y
n> } p
a60
S.TEU V
©D¬Ou®±¡uh¢ lehgepohg cos t = a * FNBP @ S '?" '?C?" '?"%C Hh" " *,P?" " '?C?QO cos t = a * F`Hh'?F"K3* S FH P?" " '?C?Q&
N A" * P?C K ?(CUP?C K W
{ ± arccos a + 2πn} ∀n ∈ Z
J @ K3* '?FK3* CO=
π + πn ∀n ∈ Z, 2 cos t = − 1 ⇐⇒ t = π + 2πn ∀n ∈ Z, cos t = 0 ⇐⇒ t =
cos t = 1 ⇐⇒ t = 2πn ∀n ∈ Z.
$
<
y Pπ 2
y Pπ
1
1
2
Parccos a
Parccos a
Pπ −1 a
P0 1
O
cos x
Pπ −1
P0 cos a 1 x
O
P−arccos a
P−arccos a −1
n> } p
−1 n> } p
−16a60 S.TEU VW
06a61 S.TEU V
D© ¬OuwOup¢ lehgepohg tg t = a (P?CMb&c
FH A" Q K3* S C?* "3b '?FH Hh'?F"K3* S FHP?" " '?C?Q&
N A" * a P?C K C&P?C K BW {arctg a + πn} ∀n ∈ Z y
Pπ+arctg a 1 Parctg a
Pπ −1
S.TEU V
Pπ −1
tg
P0 1 0
O
a>0
n> } p
S.TEU V
x
Parctg a
−1
x a
−1
n> } p
$5¨
P0 1 0
O
Pπ+arctg a
y 1
tg
a
a60
&
#
D© ¬Ou ©up¢ lehgepohg ctg t = a (P?CMb&c
FH A" Q K3* S C?* "3b '?FH Hh'?F"K3* S FHP?" " '?C?Q&
N A" * a P?C K C&P?C K W {arcctg a + πn} ∀n ∈ Z. y Parcctg a
a
Pπ −1
y ctg
0 1
P0 1
O
0 1
x
−1 Pπ+arcctg a n> } p
!#"$
%
O
S.TEU V $
P0 1
ctg
a
x
Pπ+arcctg a −1 n> } p
a60
S.TEU V
Pπ −1
Parcctg a
a>0
!! $ ]"
"$
©¨u¨u1glDgehm lDk sin t < a yKWb C a 6 − 1, * F,'?" P @ S " ' K3* S F,P?" " '?C?QU'?"%C Hh" " * yKWb C a > 1, * FP?" " '?C?"H
N A" *<b &c
F "TA" Q K3* S C?* "3b '?F "cJ?C KWb F t. yKWb C * F
b &c
F "($?"3b F "(J?C KWb F n < [?Y )f4?0 536 70s[¡0 032 40 P?C K 3
π − arcsin a + 2πn < t < 2π + arcsin a + 2πn,
Pπ−arcsin a P2π+arcsin a
$ !
&
#
?Dx NBJ?" * FH _?" P?C?FAD@,)@ _?C K3+TS@ "HSK3"
a 1 a −3π
−2π + arcsin a
π
O
−π
−2π
−1
−π − arcsin a
2π
π − arcsin a
3π
t
3π − arcsin a
arcsin a 2π + arcsin a
n> } p
a>0
S.TEU V
−3π − arcsin a
−2π + arcsin a −π − arcsin a −3π
y
arcsin a
2π + arcsin a
π
O
−π
−2π
π − arcsin a
1
2π
a −1 a n> } p
S.TEU V
Pπ−arcsin a
sin y 1 a
P2π+arcsin a Pt P0 1 x Pt
−1
$
n> } p
S.TEU V
(a < − 1)
a60
sin y 1
O
Pπ −1 Pt
3π
a>0
Pπ −1
P0 1 x
O
a
Pπ−arcsin a Pt
P2π+arcsin a
−1
n> } p
S.TEU V
Pt
a60
t
&
#
©¨u®±¡u1glDgehm lDk sin t > a yKWb C a > 1, * F'?" P @ S " ' K3* S FP?" " '?C?Q&'?"%C Hh" " * yKWb C a < −1, * F%P?" " '?C?"H¾
N A" *b &c
F "yA" Q K3* S C?* "3b '?F "TJ?C KWb F t. yKWb C * F
b &c
F "($?"3b F "(J?C KWb F n < [?Y )f4?0 536 70s[¡0 032 40 P?C K 3B(C 3 W G_?" P?C?FAC?J?'?FK3* CE(NB'?>?$?C?C,K3C?'?NKy' @LFAC H1Hh'?F"K3* S F x NBJ?" * FH ) ' @J?" '?C?Q'?" )@ S 2π C K3C HhF Q,_?" P?"Hh" '?'?F Q _?P?C`>BF * F P?+L,K3C?'?NK3F CBAD@b "3C?* t, S +T"(R F P?C?) F '?*@b '?F Q`_?P HhF Q arcsin a + 2πn < t < π − arcsin a + 2πn,
R\A"
y = a. y
(a > 1)
a 1 a −3π
−2π
π
O
−π
−1 −2π + arcsin a
2π
3π
t
π − arcsin a
−π − arcsin a
3π − arcsin a arcsin a 2π + arcsin a
n> } p
a>0
S.TEU VuW
−3π − arcsin a
−2π + arcsin a −π − arcsin a −3π
−2π
y
arcsin a
π − arcsin a
1 O
−π
a −1 a n> } p
π
2π + arcsin a 2π
3π
t
(a < − 1)
a60
S.TEU V
$$
#
76W[ 2 75 4
&
y0 032 40%5 7%7 0 4 2 42 7 sin y a
sin y 1
(a > 1)
1 Pt
Pt Pπ−arcsin a
Parcsin a
a
Pπ −1
P0 1 x
O
Pt
Pt Pπ −1
O
Pπ−arcsin a
Parcsin a a −1 a (a < − 1)
−1 n> } p
a>0
S.TEU V
P0 1 x
n> } p
a60
S.TEU V
7 [?Y 5 5 032 4 [D4 % P?C K 3C 3 BW −16a<1 ¡%@MFK3C¾F P AC?' @ *MF * >b@A+TS@ "H#_?F b NBC?'?* " P?S@b J?* F1K3F F *G (a; 1], S " * K3* S NB" *'?" P @ S " ' K3* S N t> D%@`"WAC?'?C?J?'?F QZF >?sin P?N '?Fa.K3* C¾S +sA"3b??"H ANBR N =>@AD@Z* F J?>@ >BF * F P?F Q_?P?F " $?C?P?N " * K\`' @<_?F b NBC?'?* " P?S@b FK3C`F P AC?' @ * .y* F%ANBPR3@ t (a; 1]
" )(>BF '?$?F S ^P arcsin a Pπ−arcsin a ?Dx NBJ?" * FH _?" P?C?FAD@,)@ _?C K3+TS@ "HSK3"
©¨uwOu1glDgehm lDk cos t < a yKWb C a 6 − 1, * F,'?" P @ S " ' K3* S F,P?" " '?C?QU'?"%C Hh" " * yKWb C a > 1, * FP?" " '?C?"H
N A" *<b &c
F "TA" Q K3* S C?* "3b '?F "cJ?C KWb F t. yKWb C * F
b &c
F "($?"3b F "(J?C KWb F n < [?Y )f4?0 536 70s[¡0 032 40 P?C K 3 C 3W xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* CZE(NB'?>?$?C?CZ>BFK3C?'?NK(' @LFAC H#Hh'?F"3G _?P?C,>BF * F P?+L>BFK3C?'?NK3F CBAD@ K3* S F() ' @J?" '?C?Q,'?2π " )@ S C K3C HhF Q,_?" P?"Hh" '?'?F Q t, b "3C?*,'?C"%R F P?C?) F '?*@b '?F QM_?P HhF Q R\A"
$
arccos a + 2πn < t < 2π − arccos a + 2πn,
y = a.
&
#
y (a > 1)
a − π2
− 5π 2
π 2
1
5π 2
a −3π
−π
−2π
−2π − arccos a
π
O −1
− 3π 2
2π + arccos a
3π 2
arccos a
− arccos a
3π t
2π
2π − arccos a
−2π + arccos a n> } p
a>0
S.TEU V
y −2π + arccos a − arccos a
−2π − arccos a −3π
−π
−2π − 5π 2
2π − arccos a
− 3π 2
− π2 n> } p
arccos a
1 a O −1 a
2
Pt
Pπ 2
a P0 cos 1 x
Pt
P2π−arccos a
a>0
S.TEU V
(a < − 1)
y 1
Parccos a Pt Pπ −1 Pt
P0 cos 1 x
a O
P2π−arccos a
−1Pt n> } p
5π 2
y
O
3π t
2π 3π 2
1 Parccos a
Pπ −1
π π 2
a60
S.TEU V
Pπ
2π + arccos a
−1 n> } p
a60
S.TEU V
$
#
y0 032 40%5 7 %7 0 4 2 42 7 76W[ 2 75 4 7 [?Y 5 5 032 4 [D4 % P?C K
−1
3#3 3
¡%@`FK3C¥@
K3$?C K K
©¨u ©u1glDgehm lDk cos t > a yKWb C a > 1, * F'?" P @ S " ' K3* S FP?" " '?C?Q&'?"%C Hh" " * yKWb C a < −1, * F%P?" " '?C?"H¾
N A" *b &c
F "yA" Q K3* S C?* "3b '?F "TJ?C KWb F t. yKWb C * F
b &c
F "($?"3b F "(J?C KWb F n < [?Y )f4?0 536 70s[¡0 032 40 P?C K 3C1 W xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* CZE(NB'?>?$?C?CZ>BFK3C?'?NK(' @LFAC H#Hh'?F"3G _?P?C,>BF * F P?+L>BFK3C?'?NK3F CBAD@ K3* S F() ' @J?" '?C?Q,'?2π " )@ S C K3C HhF Q,_?" P?"Hh" '?'?F Q t, b "3C?*,S +T"(R F P?C?) F '?*@b '?F QM_?P HhF Q y = a. y0 032 40% 5 7 %7 0 4 2 4 2 7 76W[ 2 75 4 %7 [?Y 5 5 032 4 [D4 P?C K ?(C1 W −16a<1 p%@&FK3C @
K3$?C K K,F * >b@A+TS@ "H_?F b NBC?'?* " P?S@b J?* F¾K3F F *G (a; 1], S " * K3* S N " *'?" P @ S " ' K3* S N t > a. D%@`"WAC?'?C?J?'?F QZF >?cos P?N '?FK3* C¾S +sA"3b??"H ANBR N =>@AD@Z* F J?>@ >BF * F P?F QM_?P?F " $?C?P?N " * K\U' @_?F b NBC?'?* " P?S@b FK3C&@
K3$?C K K .y* FANBPR3@ t (a; 1]
" )(>BF '?$?F S ^P − arccos a Parccos a ?Dx NBJ?" * FH _?" P?C?FAD@,)@ _?C K3+TS@ "HSK3"
− arccos a + 2πn < t < arccos a + 2πn,
( − arccos a + 2πn; arccos a + 2πn) ∀n ∈ Z.
&
#
y (a > 1)
a − π2
− 5π 2
π 2
1
5π 2
a −3π
−π
−2π
−2π − arccos a
π
O −1
− 3π 2
arccos a
− arccos a
3π t
2π
2π + arccos a
3π 2
−2π + arccos a
2π − arccos a n> } p
a>0
S.TEU V
y −2π + arccos a − arccos a
−2π − arccos a −3π
2π − arccos a
−π
−2π
− π2
− 5π − 3π 2 2
a O −1 a
n> } p
S.TEU V
Pπ 2
Pπ −1
arccos a
1
2π + arccos a π 3π 2
Pπ 2
a>0
S.TEU V W
y 1
Pt
Parccos a Pπ a −1
P0 cos 1 x
O
Pt
P− arccos a −1
−1 n> } p
(a < − 1)
y
O
5π 2
a60
1 Parccos a Pt P0 cos a 1 x Pt P− arccos a
3π t
2π
π 2
n> } p
a60
S.TEU V
&
#
© ¨u®¦¡u1glDgehm lDk tg t < a (P?C b&c
FH A" Q K3* S C?* "3b '?FH Hh'?F"K3* S FHP?" " '?C?Q ?S ?b ?" * K\ a F
O"WAC?'?" '?C?"C?'?* " P?S@b F S π + πn; arctg a + πn ∀n ∈ Z. 2 )f4?0 536 70s[¡0 032 40AD@ '?F,' @P?C K ?
−
< [?Y xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* CE(NB'?>?$?C?C*@ '?R " ' KC* F R F = J?* F
y
2
π + arctg a
arctg a
−π + arctg a
π 2
O
S.TEU V
+
Pt
π
−π − π2
tg a
1
1 Parctg a
Pπ
a − 3π 2
y
3π 2
t
Pt Pπ −1 Pt Pπ+arctg a
O 1 Pt −1 P π − 2
S.TEU V
P0 0 x
&
#
© ¨uwªOu1glDgehm lDk tg t > a (P?C b&c
FH A" Q K3* S C?* "3b '?FH Hh'?F"K3* S FHP?" " '?C?Q ?S ?b ?" * K\ a F
O"WAC?'?" '?C?"C?'?* " P?S@b F S π arctg a + πn; + πn ∀n ∈ Z. 2 )f4?0 536 70s[¡0 032 40AD@ '?F,' @P?C K
< [?Y xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* CE(NB'?>?$?C?C*@ '?R " ' KC* F R F = J?* F
(a; + ∞).
Parctg a P
Pπ+arctg a P 3π
? Dx NBJ?" * FH _?" P?C?FAD@,)@ _?C K3+TS@ "HSK3"
t
*@G
Pt
− 3π 2
−π − π2
Pπ y Pπ+arctg a 2 1
π + arctg a
arctg a
−π + arctg a
y
O a
π 2
Pt Pπ −1 π
3π 2
t
O Pt
Pt 1
Pt
tg 1 P0 0 x Parctg a
P 3π −1 2
a
S.TEU V
S.TEU V
/<
#
&
© ¨u¡u1glDgehm lDk ctg t < a (P?C b&c
FH A" Q K3* S C?* "3b '?FH Hh'?F"K3* S FHP?" " '?C?Q ?S ?b ?" * K\ a F
O"WAC?'?" '?C?"C?'?* " P?S@b F S < [?Y )f4?0 536 70s[¡0 032 40AD@ '?F,' @P?C K 3B xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* C¾E(NB'?>?$?C?C¾>BF *@ '?R " ' K%C¾* F R F = J?* FUF ' @ F _?P?"WA"3b " ' @<' @C?π'?* " P?S@b@L ' @LFAC H Hh'?F"3G K3* S F,) ' @J?" '?C?QU'?" )@ S C K3C HhF QU(πm; _?" P?"Hhπ(m " '?'?+ F Q 1)) ∀m _?P?C&∈>BZ, F * F P?+LM>BF *@ '?R " ' K3F G CBAD@b "3C?*'?C"(R F P?C?) F '?*@b '?F QM_?P HhF Q t, (arcctg a + πn; π + πn) ∀n ∈ Z.
y = a.
y
a π 2
S.TEU V
3π 2
π
2π t π + arcctg a
O arcctg a
−π
−2π + arcctg a
−2π
− π2 −π + arcctg a
− 3π 2
y0 30 2 40%5 7%7 0 4 2 42 7 76W[ 2 75 4 %7 [?Y 5 5 032 4 P?C K W %@FK3C&>BF *@ '?R " ' K3F S& _?P H@ DF * >b@A+TS@ "Hb NBJ yJ?* = FK31F F * S " * K3* S N " *K3* P?F R FHh(−∞; N('?" P a), @G y S " ' K3* S N 1 %%@ ctg "WAC?t'?< C?J?a.'?F QF >?P?N'?FK3* C a
S s + A 3 " ? b ? " H A B N
R CO= >@AD@ * F J?>@ ctg 0 P 1 P >BF * F P?+L *@ >@O=J?* F_?P Hh+T" Parcctg a Pt P _?" P?"K3" >@ &c* FK3>BF *@ '?R " 'G Pπ OP t ' @ b NBJ?" 1 −1 3 K
F S x .y* FANG O ( − ∞; a). P
R C C P ^ ^P π+arctg a P2π
" )(>BF P'?arctg $?F S a Pπ Pπ+arcctg a −1 ?x NBJ?" * FH _?" P?C?FAD@%)@ _?C K3+TS@G "H¥SK3"Hh'?F"K3* S F() ' @J?" '?C?Q *@G S.TEU V >?CL¡= J?* F* F J?>?C b "3,@ *' @,t S +G A"3b " '?'?+L`ANBR3@L¡ Pt t
t
0
t
t
¨
#
&
©¨uw»Ou1glDgehm lDk ctg t > a P?C b&c
FH A " Q K3* S C?* "3b '?FH ( Hh'?F"K3* S FHP?" " '?C?Q ?S b??" * K\ a F
O"WAC?'?" '?C?"C?'?* " ?P S@b F S (πn; arcctg a + πn) ∀n ∈ Z.
< [?Y )f4?0 536 70s[¡0 032 40AD@ '?F,' @P?C K ? xNBJ?" * FH G_?" P?C?FAC?J?'?FK3* C¾E(NB'?>?$?C?C¾>BF *@ '?R " ' K%C¾* F R F = J?* FUF ' @ F _?P?"WA"3b " ' @<' @C?π'?* " P?S@b@L ' @LFAC H Hh'?F"3G K3* S F,) ' @J?" '?C?QU'?" )@ S C K3C HhF QU(πm; _?" P?"Hhπ(m " '?'?+ F Q 1)) ∀m _?P?C&∈>BZ, F * F P?+LM>BF *@ '?R " ' K3F G CBAD@b "3C?*S +T"R F P?C?) F '?*@b '?F QM_?P HhF Q t,
−2π
−π − 3π 2
− π2
π + arcctg a
y arcctg a
−π + arcctg a
−2π + arcctg a
y = a.
a
O
S.TEU V
π 2
π
3π 2
2π t
y0 032 40%5 7%7 0 4 2 42 7 76W[ 2 75 4 %7 [?Y 5 5 032 4 P?C K W %@FK3C%>BF *@ '?R " ' K3F S% _?P H@ F * >b@A+TS@ "H¾b NBJ yJ?* = F 1K3F F * S " * K3* S N " *ZK3* P?F R F(a; HhN +'?" ∞), P @G y S " ' K3* S N Parcctg a 1 ctg t > a. a %@1"WAC?'?C?J?'?F Q F >?P?N'?FK3* C S +sA"3b??"H#ANBR CO=O>@AD@¥* F J?>@ P 0 >BF * F P?+L *@ >@O=yJ?* F_?P Hh+T" Pt Pπ _?" P?"K3" >@ &c*(FK3(>BF *@ '?R " ' K3F S' @OP b NtG −1 O J?" .y* FANBR C ^P0 Parctg a P (a; +∞). P C ^
" )(>BF '?$?F S P P −1 a ?yπx.π+arctg NBJ?" * FH _?" P?C?FAD@¾)@ _?C K3+G S@ "H SK3"Hh'?F"K3* S F.) ' @J?" '?C?Q S.TEU V *@ >?CL¡=J?* F%* F J?>?C b "3,@ *(' @(S +tG P t A"3b " '?'?+LANBR3@L¡
1 ctg Pt P0 1 x
t
t
t
Pπ+arcctg a
!
d
$
9
$
!! $ ]"
©¡±¡u¨up¢ lehgepohg
yKWb C yKWb C
π |a| > , 2 π |a| 6 , 2
arcsin x = a
* FNBP @ S '?" '?C?"P?" " '?C?Q&'?"%C Hh" " * * FP?" " '?C?"H
N A" *
©¡±¡u®±¡up¢ lehgepohg
x = sin a.
arcsin f (x) = g(x)
arcsin f (x) = g(x) ⇐⇒ |f (x)| 6 1, |g(x)| 6 π , π 2 |g(x)| 6 , ⇐⇒ ⇐⇒ 2 f (x) = sin g(x). f (x) = sin g(x)
yKWb C yKWb C
¡© ±¡uwOup¢ lehgepohg arccos x = a Cb C * FNBP @ S '?" '?C?"P?" " '?C?Q&'?"%C Hh" " * a > π, * FP?" " '?C?"H
N A" *
a<0 06 a 6 π,
©¡±¡u ©up¢ lehgepohg
x = cos a.
arccos f (x) = g(x)
arccos f (x) = g(x) ⇐⇒ |f (x)| 6 1, ( 0 6 g(x) 6 π, 0 6 g(x) 6 π, ⇐⇒ ⇐⇒ f (x) = cos g(x). f (x) = cos g(x)
©¡±¡u®¦¡up¢ lehgepohg
yKWb C
yKWb C
π , 2 π |a| < , 2 |a| >
arctg x = a
* FNBP @ S '?" '?C?"P?" " '?C?Q&'?"%C Hh" " * * FP?" " '?C?"H
N A" *
x = tg a.
& #d #
©¡±¡uwªOup¢ lehgepohg
arctg f (x) = g(x) |g(x)| < π , 2 arctg f (x) = g(x) ⇐⇒ f (x) = tg g(x).
yKWb C yKWb C
¡© ±¡u¡up¢ lehgepohg arcctg x = a Cb C * F,NBP @ S '?" '?C?"(P?" " '?C?Q&'?"%C Hh" " * a >π, * FP?" " '?C?"H
N A" *
a60 0 < a < π,
x = ctg a.
©¡±¡uw»Oup¢ lehgepohg
arcctg f (x) = g(x)
arcctg f (x) = g(x) ⇐⇒
!#"$
%
¦!
$
©DOu¨u1glDgehm lDk π 2
0 < g(x) < π, f (x) = ctg g(x).
9¦$ ! ! $
]" "$ arcsin x < a
yKWb C
y
(
a6 −
* F<'?" P @ S " ' K3* S F
'?C?Q&'?"%C Hh" " * yKWb C π * FHh'?F"K3* S FHP?" "3G
a
a >
−1
π , 2
P?C K ?
O
− π2
S.TEU VW
1 x sin a
2
,
'?C?Q&
N A" *,F * P?" ) F >
[ − 1; 1]. yKWb C − π < a 6 π , * F Hh'?F"K3* S FH P?" " '?C?Q&
2N A" *,_?F b NBC?2'?* " P?S@b [−1; sin a).
$
& #d #
©DOu®±¡u1glDgehm lDk
yKWb C
a >
π , 2
arcsin x > a
P?C K
* F '?" P @ S " ' K3* S F P?" "3G
'?C?Q&'?"(C Hh" " * yKWb C a < − π , * FHh'?F"K3* S FH¾P?" "3G '?C?Q&
N A" *,F * P?" ) 2F > [ − 1; 1]. yKWb C − π 6 a < π , * FUHh'?F"K3* S FH P?" " '?C?QU
N A2" *,_?F b NBC?2'?* " P?S@b (sin a; 1].
©DOuwOu1glDgehm lDk y π
π 2
y
sin a −1
1
O
a
x
− π2
S.TEU V
arccos x < a
P?C K
yKWb C * FHh'?F"K3* S FH P?" " '?C?Q
N A" *,F * aP?" >) F π, > 1]. yKWb C a 6 0, [* −F1; P?" " '?C?Q&'?" * yKWb C 0 < a 6 π, * FZHh'?F"K3* S FH P?"3G " '?C?Q&
N A" *,_?F b NBC?'?* " P?S@b
a π/2
(cos a; 1].
−1
cos a
1
O
S.TEU V
x
©DOu ©u1glDgehm lDk
yKWb C
a > π, a < 0,
arccos x > a
y π
*, F P?" " '?C?Q&'?" * * F`Hh'?F"K3* S FHP?" " '?C?Q
yKWb C
N A" *,F * P?" ) F > [ − 1; 1]. yKWb C 0 6 a < π, * F¾Hh'?F"K3* S FH P?"3G " '?C?QM
N A" *_?F b NBC?'?* " P?S@b
[ − 1; cos a).
P?C K B
π/2 a
−1
O
cos a
S.TEU V
1
x
& #d #
©DOu®¦¡u1glDgehm lDk
arctg x < a
yKWb C
π 2
π * FHh'?F"K3* S FH¾P?"3G , " '?C?Q&
N A" * 2 R. yKWb C a 6 − π , * F,P?" " '?C?QM'?" * 2 yKWb C |a| < π , * FHh'?F"K3*G S FH P?" " '?C?Q
N A2" *#J?C KWb F S F Qb NBJ
y
a O
tg a
x
− π2
S.TEU V
yKWb C
a>
π , 2
a6 −
a>
( − ∞; tg a).
©DOuwªOu1glDgehm lDk
yKWb C
arctg x > a
π , 2 R.
y
* F&Hh'?F"K3* S FH
π 2
(tg a; + ∞).
©DOu¡u1glDgehm lDk y π π/2 ctg a
P?C K
* FP?" " '?C?Q&'?" *
P?" " '?C?QU
N A" * yKWb C |a| < π , * F Hh'?F"3G K3* S FH¾P?" " '?C?Q,
N A2" *%J?C KWb F S F Qb NBJ
a
P?C K
O
S.TEU V
x
arcctg x < a
tg a x
O
a − π2
S.TEU V
P?C K 3
yKWb C * F&Hh'?F"K3* S FHP?"3G " '?C?Q&
N aA> " * π, yKWb C a 6 0,R.* FP?" " '?C?Q&'?" * yKWb C 0 < a < π, * FHh'?F"3G K3* S FH¾P?" " '?C?Q
N A" *%J?C KWb F S F Qb NBJ (ctg a; + ∞).
& d & ua ud
©DOuw»Ou1glDgehm lDk
yKWb C
arcctg x > a
P?C K
* F,P?" " '?C?Q&'?" *
y π
yKWb C aa >6 π,0, * F1Hh'?F"K3* S FH P?"3G " '?C?QU
N A" * yKWb C 0 < R.a < π, * FHh'?F"3G
π/2 a
K3* S FH¾P?" " '?C?Q,
N A" *%J?C KWb F S F Qb NBJ
S.TEU V
p
A±
!
√ B=
!
!
$ !
"
!
v q u u A + A2 − B t 2
±
!
!
x
ctg a
O
( − ∞; ctg a).
R\A"
E
!
v q u u A − A2 − B t 2
,
A > 0, B > 0, A2 − B > 0. p √ √ √ a + b + 2 ab = a + b (a > 0, b > 0) .
p √ √ √ a + b − 2 ab = | a − b | (a > 0, b > 0).
" ! "$
) 2 6 9 40 57 DY 5 7[¡0 0 D 032 4
p45 787
' @ ) +TS@ " * K\1K3F G F * S " * K3* S C?" =¡_?P?C¥>BF * F P?FH >@AFHhN1J?C KWb N C?)Hh'?DF"K3* S@ K3F _?F G K3*@ S b??" * K\M_?F'?" >BF * F P?FHhN_?P @ S Cb N`J?C KWb F x )@ S C K\?" "F * D x. @
b@ K3* F _?P?"WA"3b " '?C1E(NB'?>?$?C?C F
F y, ) ' @J @&c* f D(f ). 1'?F"K3* S F =K3FK3* F?" "yC?)sSK3"3L%J?C K3"3b *@ >?CL¡=J?* F _?P?C?' @A G f ' (x) b "3C?*1F
b@ K3* C F _?P?"WA"3b " '?CE(NB'?>?$?C?C @ ) +TS@ " * K\ %2 7x 0 5 87 f, 2Y ?032 4 E(NB'?>?$?C?C f C&F
F ) ' @J @ " * K\ E(f yKWb CE(NB'?>?$?C)@AD@ ' @cE(F ).P HhNb F QO=@" "sF
b@ K3* cF _?P?"3G A"3b " '?CM'?"(NB>@ )@ ' @?= * F,)@
y = f (x)
f.
(Nb? HhC E(NB'?>?$?C?C K,F
b@ K3* #& F _?P?"WA"3b " '?C ?S G D(f ) b?!&c* K\&>BF P?'?CUNBP @ S '?" '?Cy = f (x) _?P?C?' @A b "3,@ C?" D(f ). :(C KWb F S +T"<_?P?FHh"3NB* >?fCO(x) =' @`=>BF 0,* F P?+L1E(NB'?>?$?C _?P?C?'?C H@ " *M_?F G f b FC?* "3b '?+T"() ' @J?" '?CO=?@,*@ >"(J?C KWb F S +T"(_?P?FHh"3NB* >?CO=?' @,>BF * F P?+L E(NB'?>?$?C _?P?C?'?C H@ " *¥F * P?C?$ @ * "3b '?+T"&) ' @J?" '?CO=h' @ ) +TS@&c* K\ [D7 <0 6+Y %f 4 2Y6 77 [¡0 0 D032 2 75 4E(NB'?>?$?C?C f. [?Y )f4 6 7 E(NB'?>?$?C?C f ' @ ) +TS@ " * K\UHh'?F"K3* S F,SK3"3L`* F J?" > (x, y), R\A" @ _?P?F
" R3@ " *?¿SK &F
b@ K3* F _?P?"WA"3b " '?C&E(NB'?>?$?C?C y = f (x), x ½ f. OP @ E(C?>&E(NB'?>?$?C?C F
F ) ' @J @ &c* f Γf. (FADHh'?F"K3* S F,>BF F P AC?' @ * '?F Q&_b FK3>BFK3* C&?S b??" * K\1R P @ E(C?>BFH >@G >BF QG b C?
F E(NB'?>?$?C?CO=s"KWb C F '?FC Hh" " *'?"Z
F b " "ZFA'?F Q#F
" Q#* F J?>?CK b &c
F QU_?P HhF QO=_ @ P @b?b "3b '?F QUFK3C Oy.
f ( − x) = f (x) :
f ( − x) = f (x) ∀x ∈ D(f ).
OP @ E(C?>TJ?" * '?F QE(NB'?>?$?C?CK3C HHh" * ?P C?J?" 'TF * '?FK3C?* "3b '?FfFK3CTF P AC?' @ * ' @ ) +TS@ " * K\20 ?0 2 7 =s"KWb C A b?b&c
F R F C?)¥" "
F
b@ K3* CMF _?P?"WA"3fb " '?C f ( − x) = − f (x) :
f ( − x) = − f (x)
∀x ∈ D(f ).
O P @ E(C?>#'?" J?" * '?F QE(NB'?>?$?C?C K3C HHh" * P?C?J?" ' F * '?FK3C?* "3b '?F' @J @b@ >BF F P AC?' @ * (NK3* C AS "¥E(NB'?>?$?C?CO 7 2 7 ) 2 6 9 40 7 f g ' @ ) +TS@ &c*,E(fNB'?>?$?!C g& y = f (g(x)). xfb F' @E(NB'?>?$?C F _?P?"WA"3b " ' @(_?P?C`SK3"3L* "3L _?P?C x, >BF * F P?+LF _?P?"WA"3b " ' @E(NB'?y>?=$?Cf (g(x)) C`_?P?CU>BF * F P?+L,) ' @J?" '?C _?P?CG g(x) ' @A b "3,@ *F
b@ K3* CUF _?P?"WA"3b " '?C&g E(NB'?>?$?C?C f.
x
f (x + T ) = f (x) = f (x − T ) ∀x ∈ D(f )
(T 6= 0).
NB'?>?$?C!&K(_?" P?C?FAFH < ' @ ) +TS@&c* G 0[D4 7 4?0 536 7 yKWb C f T G_?" P?C?FAC?J?T"K3>@O=B* F,_?P?CUTb&c
FH$?"3b FH n 6= 0 ?J C KWb F * F"(_?" P?C?FA H * F Q1E(NB'?>?$?C?CO nT %@ C Hh" '? C?Q_?F b FC?* "3b '?+TQ _?" P?C?FAE(NB'?>?$?C?C _?P?C?'?* F ' @ ) +G S@ * U7532 782 Cb C [D 4 %4 482 %
yKWb CE(NB'?>?$?C
_?" P?C?FAC?J?"K3>@CC Hh" " *%_?" P?C?FA * F%E(NB'?>?$?C f T, \R A" C _?FK3* F?'?'?+%= @J?C KWb F *@ >" g(x) = Af (kx + b), A, k b k 6= 0, _?" P?C?FAC?J?' @?=_?P?C?J?"H " "%_?" P?C?FA1P @ S " ' T .
87 \[?Y 5 Y 0 ' @J?C KWb F S FH _?P?FHh"3NB* >B" "KWb C`A b? C?) * @ >?CL¡=DJ?* F S +T_?F b '?" * X,K\Z'?" P @ S " 'G
NB'?>?$?C < C b&c
+L x1 K3* S F
|k|
f x2 X, f (x2 ) > f (x1 ) :
x2 > x 1 ,
∀x1 , x2 ∈ X : x2 > x1 =⇒ f (x2 ) > f (x1 ). f8 Y 0 ' @J?C KWb F S FHZ_?P?FHh"3NB* >B" "KWb C?CL¡= J?* F S +T_?F b '?" X, * K\&'?" P @ S " ' K3* x1 x2 X, x2 > x 1 , f (x2 ) < f (x1 ) :
&G
S F
∀x1 , x2 ∈ X : x2 > x1 =⇒ f (x2 ) < f (x1 ).
yKWb C ' @MJ?C KWb F S FH _?P?FHh"3NB* >B",_?P?F C?) S FA' @
* F&' @U'?"H f 0 > 0, E(NB'?>?$?C S F ) P @ K3*@ " * yKWb C f' @MJ?C KWb F S FH _?P?FHh"3NB* >B",_?P?F C?) S FA' @ f 0 < 0, * F&' @U'?"H E(NB'?>?$?C NB
+TS@ " * 6W[¡0 5 f 2 75 0 7 6 4 ' @ ) +TS@ " * K\?P?+T* +TQ,J?C KWb F S F Q _?P?FHh"3NB* F >O=?K3FA" P,@ C?QIH *aNM* F J?>?N @ >?P?"K3* '?FK3* ,* F J?>?C
N A"H F
F ) ' @J @ * OF J?>@ x0 ' @ ) +TS@ " * K\aU82 [¡032 20 7 6 7 U(a). Hh'?F"K3* S@ "KWb CN '?" "%K3NB"K3* S N " *F >?P?"K3* '?FK3* =SHh"K3* "
x f (x) > f (x0 ) :
∃U(x0 ) : f (x) > f (x0 ) ∀x ∈ U(x0 ).
1
' @J?" '?CUE(NB'?>?$?C?CUS," "* F J?>@LUHhC?'?C HhNH@' @ ) +TS@&c* K\$%4 2 4
x f (x) 6 f (x0 ) :
1
' @J?" '?C%E(NB'?>?$?C?C%ST" "f* F J?>@L(H@ >K3C HhNH@T' @ ) +TS@&c* K\
∃U(x0 ) : f (x) 6 f (x0 ) ∀x ∈ U(x0 ).
f
fmax .
O F J?>?C&HhC?'?C HhNH@CM* F J?>?C&H@ >K3C HhNH@<' @ ) +TS@&c* K\ 7 6Y+%4 65 <[¡Y+%0 4, E(< NBYf'?E(>?NB$?'?C?>?CO$? C?CO 1C?'?C HhNHh+ C,H@ >K3C HhNHh+' @ ) +TS@&c* K\ 65 [¡0 O F J?>?CGH >K3* P?"HhNH@ME(NB'?>?$?C?C&?S b?!&c* K\ZS '?NB* P?" '?'?C HhCZ* F J?>@ HhC1" "
F
b@ K3* CMF _?P?"WA"3b " '?CO (P?C _?" P?"3LFA"`J?" P?" )U* F J?>?NHhC?'?C HhNH@¥NB
+TS@ '?C?"MK Hh" '?" * K\S F )3G P @ K3*@ '?C?"H=?@,_?P?C&_?" P?"3LFA"(J?" P?" )%* F J?>?NUH@ >K3C HhNH@S F ) P @ K3*@ '?C?"(K Hh"3G '?" * K\UNB
+TS@ '?C?"H @ >?C H F
P @ ) FH=O_?P?C _?" P?"3LFA"J?" P?" )`* F J?>? C H >K3* P?"HhNH@1C?)Hh" 'G " * K\MLB@ P @ >?* " P&HhF '?F * F '?'?FK3* C1E(NB'?>?$?C?CO yKWb C¥S '?NB* P?" '?'¥* F J?>@ x = x C?)F
b@ K3* C¾F _?P?"WA"3b " '?C¥E(NB'?>G $?C?C ?S b??" * K\* F J?>BF Q H >K3* P?"HhNH0 @E(NB'?>?$?C?C * F#_?P?F C?) S FA' @ f f, C b & C , S *
F ? J B > " ? _ ? P
F ? C
)
S F A ' @ ? ' % "
F _?P?"WA"3b " ' @? 0 f 0 (x0 ) = 0 s'?NB* P?" '?'U* F J?>@C?x)(=F
xb0@ K3* CMF _?P?"WA"3b " '?CfUE(NB'?>?$?C?C ' @ ) +TS@G "KWb C1 S H * F QZ* F J?>B"
∀x1 , x2 ∈ G : x1 6= x2 =⇒ f (x1 ) 6= f (x2 ). ('?+HhC¾KWb F S@ HhCO=DE(NB'?>?$?CZF
P @ * C H@1* F R\AD@`CZ* F b >BFM*
F R\AD@?= >BF G R\AD@P @ ) '?+H ) ' @J?" '?C H @ P?R NHh" '?*@ K3F F * S " * K3* S N &c* P @ ) '?+T"¥) ' @J?" '?C E(NB'?>?$?C?CO
.
/<
OP @ E(C?> E(NB'?>?$?C?C C R P @ E(C?>#F
P @ * '?F Q#> '?" Q E(NB'?>?$?C?C K3C HHh" *G P?C?J?'?+F * '?FK3C?* "3b '?F
C K K3" >?* P?C K1_?" P?S F R F C#* P?" * " R F >BF F P AC?' @ * '?+L NBRb F S
N &c*M*@ >?C?" f J?C KWb@ C J?* F yKWb mCK3NBM,"K3* S N " *cm*@ >B
f (x) > m ∀x ∈ D(f ) x1 ∈ D(f ), f (x1 ) = m. (C KWb F ' @ ) +TS@ " * K\M2Y4 7 4 2Y ?032 40 E(NB'?>?$?C?C "KWb C f, ) ' @J?" '?C M C¾K3NB"K3* S N " **@ >BF " J?* F f (x) 6 M ∀x ∈ D(f ) x2 ∈ D(f ), f (x2 ) = M. yKWb C f (x) > m A b?SK3"3L x C?) Hh'?F"K3* S@ G C K3NB"K3* S N " * *@ >BF " J?* F * FJ?C KWb F ' @ ) +TS@ " * K\`2Y4 <032 4 2Y ?032 x410 ∈ G, ) 2 6 9 4 4 f (x1 )2= Y %m,2 7 0 5 8 0 m C&F
F ) ' @J @ " * K\ f G min f.
:
(P?CKH * FH
yKWb C
min f
D(f )
' @ C Hh" '? " "() ' @J?" '?C?"%E(NB'?>?$?C?C
A b? SK3"3L
C?)¥Hh'?F"K3* S@
G
f.
CK3NB"K3* S N " *
f (x) 6 M *@ >BF " J?* F * FxJ?C KWb F ' @ ) +TS@ " G* K\2Y4 7 4 x2 ∈ G, f (x2 ) = M, M 2Y ?032 40 ) 2 6 9 4 4 2Y %2 7 0 5 8 0 C&F
F ) ' @J @ " * K\ f G max f.
(P?CKH * FH
max f
D(f )
¨
' @ C?
F b " "c) ' @J?" '?C?"%E(NB'?>?$?C?C
G
f.
!
O
sS "WA" '?C?" 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 f @ >?P?N'?FK3* 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ?(P?NBR 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 M ??b FK3>?C?QUNBR F b 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 (" '?* P @b '?+T"(C&S _?C K @ '?'?+T"NBRb + 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) 3 ?OP @ANK3' @MC&P @AC @ '?' @&Hh" P?+ NBRb@ 3 3 3 3 3 3 3 3 3 3 3 3 3 3f ?! sP?C?R F '?FHh" * P?C?J?"K3>?C?"E(NB'?>?$?C?CUFK3* P?F R F,NBRb@ 3 3 3 3 3 3 3 3% 3B!h" " '?C?"(_?P HhF NBR F b '?+LM* P?" NBR F b '?C?>BF S 3 3 3 3 3 3 3 3 3 3 ??OP @ANK3' @MC&P @AC @ '?' @&Hh" P?+ >?P?NBR F S +L,ANBR 3 3 3 3 3 3 3 3 % ??(P?NBR F S F QUK3" >?* F P 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ? @
F
" '?' @M>?P?NBR F S@ANBR3@C&F
F
" '?'?+TQMNBR F b 3 3 3 3 3 ()Hh" P?" '?C?"%F
F
" '?'?+L>?P?NBR F S +LANBR(C&NBRb F S 3 3 3 3 3 3 y / sP?C?R F '?FHh" * P?C?J?"K3>?C?"E(NB'?>?$?C?C&_?P?F C?) S F b '?F R FNBRb@ 3 3 3 31 ? hAC?'?C?J?' @1F >?P?N'?FK3* 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 s B!h" " '?C?"%_b FK3>?CLM* P?" NBR F b '?C?>BF S 3 3 3 3 3 3 3 3 3 3 3 3 3h
W 5V W V ¢bdc T eb i c i c>b | l n> f>TE5p V~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV W 5V uV ¢ n l pE£i c>b | l n> f>TE5p VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdV W 5V V `bdl c>bde p l U~T>f>uU l VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~V W 5V 5V `bdl c>bde pU~T>f>uU l VdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV W 5V uV `bdl c>bde pi pf>| b fEU l VdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV l c>e n l n> b b V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV W 5V V W 5V uV c p
b f>T b |an l )i c>b | l n> f>TE5p }Ebdc>bdb | l Udi l c>l f VdVdVdV~VdVdVdVdV~V l c 5
f l Udi T }Ebdc>bd W 5V V c p
b f>T bc pET>uUp l TEUpf>f l Udi l c>l f To|an i c>b | l n> f>TE5p VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV l c 5
f l Udi T }Ebdc>bd W 5V V c p
b f>T bc pET>uUp TEUpf>f l Udi l c>l f To|an i c>b | l n> f>TE5p VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~Vd V W 5V W V3S b b f>T b l U l | l n> f oi c>b | l n> f>TE l VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV
(P?NBR F S F QUK3" RHh" '?* 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3T W uV W V n>T>f+p l c VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV W uV uV n>T>f+p c | l l E|dT¦VdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV W uV V3S.pET>uU c |dpKV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV W uV 5 V b fEi c pn> f | l n VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdV W uV uV U l i p l c §VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV W uV V ¢ n l pE£ c | l l | l U b | eb fEi p V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdV
?(FK3* P?F " '?C?"(NBRb@_?FAD@ '?'?FHhN`) ' @J?" '?C!&" R F * P?C?R F '?FHh" * P?C?J?"K3>BF Q1E(NB'?>?$?C?C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 (,3 43B xyS ?) Hh"3ANM* P?C?R F '?FHh" * P?C?J?"K3>?C HhCZE(NB'?>?$?C HhC&FA'?F R F @ P?R NHh" '?*@ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 s
!
? 1 ' @J?" '?CU* P?C?R F '?FHh" * P?C?J?"K3>?CL1E(NB'?>?$?C?Q`A b?&) ' @J?" '?C?Q @ P?R NHh" '?*@ π 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 p 06x6 ?
l c>e n+p l c>e n
l p c < p VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V n bdc p VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV
? xyS F Q K3* S@CUR P @ E(C?>?CU* P?C?R F '?FHh" * P?C?J?"K3>?CL1E(NB'?>?$?C?Q.3 3 3 3
V W VfE5h>TE V uVfE5h>TE V VfE5h>TE V 5 VfE5h>TE V uVfE5h>TE V VfE5h>TE
y(x) = sin x VdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV y(x) = cos x VdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV y(x) = tg x VdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVuW y(x) = ctg x V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V y(x) = sec x VdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdV y(x) = cosec x
uV W VfE5h>TE uV uVfE5h>TE uV VfE5h>TE uV 5 VfE5h>TE uV uV c p#TE5T
y(x) = arcsin x y(x) = arccos x y(x) = arctg x l y(x) c p i = f arcctg i c T>x | l
V~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV
? @ P HhF '?C?>@ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 @ * NLB@&cC?"(R3@ P HhF '?C?J?"K3>?C?"(>BF b "
@ '?C. 3 3 3 3 3 3 3 3 3 3 c ?
VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdV VdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV VdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~V l i f l eb i c T }Eb Ud5T> #fE5h>T } b Ud5T>#fE5h>T i c > T | l f l eb i c T E VdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV
uV uV W VfE5h>TE uV uV uVfE5h>TE uV uV VfE5h>TE uV uV 5 VfE5h>TE
VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV
y(x) = arcsin sin x VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV y(x) = arccos cos xV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV y(x) = arctg tg x V~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V y(x) = arcctg ctg x
? C E%E(" P?" '?$?C?P?F S@ '?C?"C&C?'?* " R P?C?P?F S@ '?C?"(F
P @ * '?+L * P?C?R F '?FHh" * P?C?J?"K3>?CL&E(NB'?>?$?C?Q 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3B ?B!@ S " ' K3* S F,* P?C?R F '?FHh" * P?C?J?"K3>?CL&E(NB'?>?$?C?Q3 3 3 3 3 3 3 3 3 3B
V W V V uV V V V 5 V V uV V V V uV V V
V V
V WV V W W V V W uV
VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~V u W
cos x = cos y VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV uW sin x = sin y V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV uW tg x = tg y V~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdV uW ctg x = ctg y V~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV cos x = − cos y VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdV sin x = − sin y VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV tg x = − tg y VdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V ctg x = − ctg y V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV sin x = cos y V~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdV tg x = ctg y VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV sin x = − cos y VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~V tg x = − ctg y
?B!h" " '?C?"%_?P?FK3* " Q?CLU* P?C?R F '?FHh" * P?C?J?"K3>?CLUNBP @ S '?" '?C?Q 3 3 3 3
V W V V u V V V V 5V
c p f c p f c p f c p f
b > f T b f>T b f>T b f>T
b
bdc db c db c bdc bdc bdc bdc bdc
b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi
V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdV
sin t = a dV V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV cos t = a VddV VdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV tg t = a dV VdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~V ctg t = a
b b b
(P?FK3* " Q?C?"(* P?C?R F '?FHh" * P?C?J?"K3>?C?"<'?" P @ S " ' K3* S@ 3 3 3 3 3 3 3
5W V W V 5W V uV 5W V V 5W V 5 V
5W V uV 5W V V
5W V uV 5W V V
p p p p p p p p
l l l
l l l
l l
sin t < a sin t > a cos t < a cos t > a tg t < a tg t > a ctg t < a ctg t > a
VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdV VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~Vd V V~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V V~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV VdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV VdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV VdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV
B @
P @ * '?+T"(* P?C?R F '?FHh" * P?C?J?"K3>?C?"
uV W V uV u V uV V
uV 5 V uV uV
uV V V u V u uV V
c p f c p f c p f c p f c p f c p f c p f c p f
b f>T b f>T b f>T b f>T b f>T b f>T b f>T b f>T
b
VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~V
b b b
b
b
b
b
arcsin x = a VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV arcsin f (x) = g(x) V~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV arccos x = a VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV arccos f (x) = g(x) VdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV arctg x = a VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV arctg f (x) = g(x) VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdV arcctg x = a VdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV arcctg f (x) = g(x)
$
?(P?FK3* " Q?C?"(F
P @ * '?+T"(* P?C?R F '?FHh" * P?C?J?"K3>?C?"<'?" P @ S " ' K3* S@ 3 3 3
V W V V uV V V V 5V V uV V V V uV V V
bdc bdc bdc bdc bdc bdc bdc bdc
p p p p p p p p
b fEUdi b E f Udi b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi b fEUdi
l
l l l l l
l l
arcsin x < a arcsin x > a arccos x < a arccos x > a arctg x < a arctg x > a arcctg x < a arcctg x > a
VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV V~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV V~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdV VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV VdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdVdV VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV VdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdVdV~VdVdVdV~VdVdVdVdV~VdVdVdV~VdV
(P?" F
P @ ) F S@ '?CMKWb F'?F R F>?S@AP @ * '?F R F>BF P?' 3 3 3 3 3 3 p B @
C?"%K3S F Q K3* S@E(NB'?>?$?C?C 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3f
@$ ^ +%V £!#" S W S ' ^YX ! !#:$! K2*!Z & ^YX !
h7 ZV& W [ ^
@6N+&7;: 4*)+2+3+B NA4MEF-3 > *4 2A4+K,JEF-3+3
!h"WAD@ >?* F P @L?Hp?'?C?' @ (FHh_?#&c* " P?' @US " P K3* >@?-? ?yb@ >B" S C?J C?)@ Q?'UF
b F>?CO-
¢l TEUpf l Eb~} p i £UO| l c>e e p|dp|dp db i f+p 3V 5p c f>TEi c p ` ] } V T V nBV 5z
l i l p i p uV
ET+p El TEi T> l
V V
|~V
e 60 ¢×b~84/16. } p i l OU b i f+p 3V ]U~nBV Eb~} V nBVuz W V U V ` T c p
d V3p 5p
3p i b n>T El n>T>| c p #T }Eb Ud l b TEU E l n>f b f>T b }Ec>b
b f>T bl c p dl upf>TE g > c l Ef b fEUd5T | l U~3p c dU i b f>f f>T> bdc U~TEi b iT eb f> T OfE5T p n j
W
¢bdc V `b n b | c p#f
z3W pz
V 5V 5V V 5 V 5 V z c>l Ef
l i l i
l V