. . 514.764.2
: , , -
.
, ! "#$ %. &. '( ) #" $ ( ( ( .
Abstract M. P. Burlakov, Kozyrev spaces
vol. 7 (2001), no. 2, pp. 319{328.
, Fundamentalnaya i prikladnaya matematika,
It is shown in the paper that some results of N. A. Kozyrev's theory on the properties of space and time could be obtained in the framework of generalized Riemann spaces.
1. (02.09.1908{27.02.1983) | !"# ! # $ %& , #( "$( % . )* "# + # # # , "- # $ # ! ! + .
#! , + # ! * %++, %# # & , + #%" . %- %, # # % # # /% " * 0 & ! # ! $- 1 0 % ! # #. 2 ! # $ ! #
3 !-# "# , 3 #3 ! . 4 5#3 "# " # +%". "$( * 67 , !! # , ! 3 ! + "0 8 91], * 0 * + ! # ! * $ !! # + # #. ; , 0 5# * " #$ ", # "$( # , #* # $ ! # "# #3 + # # ! +% *-" +#* + 0 . <#!% + " # #0 # %# # #* ++ #, # ! + #% % ! ! # + # #- ! ( " & * ! # # 0 . = 5# ##$ ! +0 !, # %$## # !0 +%#$ !3 "">& 3 !3 + # #. 1. 2"">& ! !! ( + !!) + # #! # * !*" Mn ! & ! 0 , 2001, 7, 2 2, . 319{328. c 2001 ,
! "# !! $
320
. .
#! # ! Gij , # ! "% ! #$ "">& ! ! # ! # ! 93]. = # # # ! # ! ( + !) + # # ! + +* ! !! # # Gij , # #$ Gij = gij + hij * gij = gji hij = ;hji: (1) 2#! #! # + $, # ! # # * ! !*" & # ! !0 #$ + #$ # , 6 8, 6%*8, 6+> $8, 6"A& !8, # #$ #% # * - * ! # 3 , # %- -# 6! # 8. B
!# !, 5# # 6"">& 8 3 # # Gij , , %*! !, # !! # #$ ! # hij # 0 # + 3 ! # 3 +# * ! # . 7 0 * #$, # + # hij % #% #, # -"* # ui % !! # hij uiuj = 0 +#!% q q q juj = Gij uiuj = gij uiuj + hij ui uj = gij ui uj : ;! ## ,#, # # + # #$ !! # #$- ! # * # , + # !
,. #$ !*"
! # ! # ! Gij "">& " # ! + # # "">& + ! + # # + #+% # gij . # !! # #$ # Gij #%+ # # , * !
!# ! + %3 3 # ui vj : hu vi Gij ui vj = gij ui vj + hij uivj %* # hv ui Gij vi uj = gij ui vj ; hij uivj # #$ hu vi + hv ui = 2gij ui vj hu vi ; hv ui = 2hij ui vj : <# " 0 +-#, # # !! # #$ "">& ! ! # ! # #( %* ! . D ## $, %* ! 0 % # ! u v + #$ + # # , !% # * ! # vi cos(ud v) = p hup hu ui hv vi # ! "% ! ! #$ i j i j i j i j cos(ud v) = pgij u vi +j phij u vi j cos(vd u) = pgij u vi ;j phij u vi j : gij u u gij v v gij u u gij v v E#" " #$ " #$ # 3 ! 3 %* ! , # # + %# # ! # !! # * # hij , !
!# !
321
% %! * ! + # #, # %* ! 0 % # ! * & # ,# + #, #%# 5# # . ;#, +% #$ n = 2, #* # Gij #*$! " + ! # 1 0 0 1 Gij = g 0 1 + h ;1 0 * g11 = g22 = g, h12 = ;h21 = h. F gij # $ + # # x 2 M2 & # % * ! # -, # + 6 !! # 8, , %* ! # * # u cos sin , * | %* ! 0 % # ! u + ! " ! # !. % %* ! 0 % %! ! # ! u1 u2 ! # Gij "% # 3 !% + -: cos(u1 u2) = Gij ui1uj2 = g cos G + h sinG * G = 2 ; 1 | %* ! 0 % # ! u1 u2. 2" # + $ p 2g 2 = cos p 2h 2 = sin g +h g +h ! +% ! p ) cos ; = g2 + h2 cos(G ; ) (2) p cos + = g2 + h2 cos(G + ) * ; | %* ! 0 % # ! u1 u2 , + | %* ! 0 % # ! u2 u1 "">& ! ! # . F! " !, ! !, # "">& ! ! # %* ! 0 % # ! ! -# 3 ! # # + > | + * *. B ! 0 % 6+ !8 6 !8 > ! + # # " % %> # 3 " # # . = 67 ! 3 8 # ,% ! #$ + c2, + -> 63 ! 8, 5## + + # #$ + + > , + %- %- #.
# ! # 91,2]. "">& + # + ! # %> # !+ # # hij , 5## + + # ! ##$ 6+ 8 6 8 + > . +( #: 6H ! # ( ) # + # * #$ # # $, ! + " * ! # !0 # + #$, # # + ! # # !... I%> #%-> 1 3 ! % # # + # # "A # # + * # *.8; ! #, # 6%!# $! # # " ## $ #, # + ## $ ! -# " -> * "A # # + * # *. <# # # * ! ! .. .= * + # ! " %-# . !#, #. . ! ! #! + 3 3 ! %. = + #+! 0 "- # # + 3 3 , !.. .8 91].
\
322
. .
D %* %> # " #$- # # 6+ #$ # ! 8, # #$ #$ + ! J # + (* "% %> !%. F !! # #$ ! J* + + %# #% # "">& ! + !! + # # . D ## $,
!# ! + ## %! + ! + # # M2 , # * # x 2 M2 # Gij + # % 1 0 0 1 Gij = a 0 ;1 + b ;1 0 : F* %3 # u1 = (ch 1 sh 1 ) u2 = (ch 2 sh 2 ), 3 ! # gij , + ! # Gij hu1 u2i = a ch(G) + b sh(G) hu2 u1i = a ch(G) ; b sh(G) * G = 2 ; 1 | + ! # "% # # # u1 # % u2. 2" ch = p 2a 2 sh = p 2b 2 a ;b a ;b ! +%! p ) ch '+ = a2 ; b2 ch(G + ) (3) p ch '; = a2 ; b2 ch(G ; ) * '+ | "% # # # u1 # % u2, '; | "% # # u2 u1 "">& + ! ! # . F! " !, "">& ! + !! + # # ! J $ ! # + , $ # * . % "% #% G + " # +# $ "% # , "% !! # #$"">& + ! ! # K " #! ! J! + 5## +# $ "% # # # . . = 3 "#3 % #, # + #$ ! + #$- + # # 3 > . 2 +( #: 6) % ! %> #% # # + #, # + - # 3 3 + # # + # +#!% 0 # + !... 8 91]. / * #$, # $! # & 3! ! + # # - ! "">& + ! ! # 6+ #$8 ! ! + > , # + %3 "% # 3 + 3 & # # %$# %-> + # 95]. 2. F + $ ! +0 !, # "">& ! ! # "3 ! !3 ">3 " 0 # + # #- ! #! , ! + %# #%-# "> # # # $ #. D ## $, ,% ! #$ % H$" #{<(# 95] Rij ; 12 gij R = 8 Tij (4)
323
-# # %3 : # <(# Rij ; 21 gij R # 5 *-!+%$ Tij K
! # # <(# !! # + ! i j, # Tij ! !! # !*!+ #3 + 96] * !! # #$ # ! +# # !! # !+%$ . 75#!%, #" % #$ # !! # !+%$ !# # %#% % + # #- ! , "3 ! % 3 (4)
!! # # <(# ! #$ * !! # *. <# !0 #$, ! # + ! + # #- ! #$ "">& + ! + # # 94]. D ## $,
!# ! M4 | "">& + ! + # #- ! ! # ! # ! Gij = gij + hij ,, #$ !* "> * #+ Fijk = ;kij + Sijk , * ;kij | !! # ! #,, , Sijk | # % . P * # ! # Gij # Fijk ! -# ij p p rk Gij @G @xk ; FkiGpj ; Fkj Gip = 0 # #$ @gij + @hij = ;p g + ;p g + ;p h + ;p h + @xk @xk ki pj kj ip ki pj kj ip p g + S p h + S p h : (5) + Skip gpj + Skj ip ki pj kj ip Q! # $! # #, # % (5) !0 #$ # # $ # gij hij . D ## $, " #% (5) >& , +% * + # i, j k, @gki + @hki = ;p g + ;p g + ;p h + ;p h + ji kp ji kp jk pi jk pi @xj @xj p p p p + Sjk gpi + Sji gkp + Sjk gpi + Sji hkp (6) @grj + @hkj = ;p g + ;p g + ;p h + ;p h + ij kp ij kp ik pj ik pj @xi @xi p p p p + Sik gpj + Sij gkp + Sik gpj + Sij hkp (7) # ! (5) (6) # (7), +%!
@g
ij @xk
ki ; @gkj + @hij + @hki + @hjk = + @g @xj @xi @xk xj xi p h + 2S p h : (8) = 2;pkj gpi + 2Skip gpj + 2Sjip gpk + 2Skip hpj + 2Sjk pi ij pk
1.
Fijk
( ) Gij , rk Gij = 0,
324
. .
@gij + @gki ; @gjk = 2;p g + 2(S p g + S p g ) (9) ji pk jk pi ki pj @xk @xj @xi @hij + @hki + @hjk = 2(S p h + S p h + S p h ): (10) ij pk ki pj jk pi @xk @xj @xi D ## $, $# % !! # % # (8) + ! k j, ! +%! # (9) (10). 2" #, (9) (10) % # (8), #% " #! + " ! +% # % rk Gij = 0. I+ . % ! # + $ ">%- ,,%- #$, +* Sijk = 0. F* #$ ;kij + # #$ !! # #$- "">& ! # Gij , ! + 3 ! %-> !% + -. 2. 2"">& ! + # # !! #
#$- ;kij = ;kji, * ! # Gij , # !! + # #! 94]. D !3 + # # + %-> %# 0 , # -> # ! 1. 2. ij @gki @gjk Gpji = 12 gip @g (11) @xk + @xj ; @xi
d(hij dxi ^ dxj) = 0: (12) I#( (11) (12)
% %-# # (9) (10) +-# *%#$ + !3 + # # # # ( # * !3 + # #. D ## $, +% #$ % ! # ! + # # (Mn gij ), #* #$ 5#! + # # # + , !% (11) % # # ,, .$!% % @gijk p p (13) @xk = ;kigpj + ;kj gipK + #! % # "> # ( 5#* % . R , # * % # #$ %!! !! # * !! # * # Gij = gij + hij , * gij | ! ! # , + # +
#$ ;kij , # hij = ;hji . F* ( % (13) +
# #$- + $* !! # * # hij , % # -> * #% @hij + @hki + @hjk = 0 @xk @xj @xi i j d(hij dx ^ dx ) = 0. F! " !, 0 * ! ( + !) + # # ! # .
!3 + # #, #->3 %* # %* !%# , ! hij dxi ^ dxj .
325
Q! #! # + $, # !3 + # #3 # ( # B) # # !! # # ""> ! # hij , +5#!%, + # # Gij % (4), ! +%! "">& % * ! !3 + # #: Rij ; 21 Gij (Rij Gij ) = 8 Tij (14) * # Gij " # # % Gij , # #$ % # # #% Gij Gjk = ik . $# % !! # % % (14) ! +% ! # !% Rij ; 21 gij (Rpq gpq ) = 8 T(ij ) (15) hij (Rpq hpq ) = 16 Tji] (16) # + # ! #$ * ! # 3 3 # # ! + # #- ! # + & !# K + 5#! %# # !! # !+%$ + > #, # + # # Tij ] . !! # # Tij ] 3 # !*!+ #3 + (5 # !*#*, # *, + *, # *), + # ! + 3 #%.3 0 !# # 3 & % & 3 . ., #! #!, # % * ! (15), (16) !*%# "#$ +% .* + .+, $ #$ "">& # H$" # Z p (17) AG = (Rij Gij ) det Gij dV + # ! % * # # hij " # 94]: p p N1 < j det Gij j= ; det gij < N2 . 3. F + $ !
!# ! !% + # # - ! "">& + ! ! # , # %$## # + # $ + -# ! !! # , + , ! 3 . 3. 7% #$ M4 | + # #- ! + ! ( * ) ! # gij = gji, i j = 0 1 2 3K * !*" M4 ""> ! # Gij = gij + hij , hij = ;hji ! "% ! #$ + # #! ! # gij . 2#! #! # "> # + # # , * "! x Tx + # # %- *+ + #$ # $* + # # Tx # x 2 M4 , # & 3! # G0 , = 1 2 3, | * ! # G0ij # x *+ + #$ x . 2 , # G0 "% # "">& ! # , # $, + # %
326
. .
01 0 01 0 0 h ;h 1 3 2 G0 = g @0 1 0A + @;h3 0 h1 A
(18) 0 0 1 h2 ;h1 0 * h1 h2 h3 | !+ # # * + # ~h. = + ! 3 #0 # # ,% ! #$ + # , # # + # ! 63 ! 8 +( # & ! %-> : 6S ! ! 0 + - # # $ , + .
, # + # # + # ! c2i... S ! $ , + .
. .. . > - + # # $ #. . .2"A 5# , !$ # ( #!. 2 # + , & ! %> #$ 5#* !0 * " + ##$ > %3 ! + 03 # .. .? 5## + ! !0 ! # ##$. !0 #$ , # 5# # # %$## +#3 + %->3 # # 3
. 75#!% ! #& # + +$#$ #$ , !$! + # ! 3 ! " # # $! > + #.8 91] 7 # h~ , + # 63 ! 8 , %. % # # > , , , + #. D ## $, + # ~a ~b 2 x "% %# ! #$ h~a ~bi = g(a1 b1 + a2 b2 + a3 b3) + + h1(a2 b3 ; a3 b2) + h2 (a3b1 ; a1b3 ) + h3 (a1 b2 ; a2b1 ) h~a ~bi = g(~a ~b) + (~h~a ~b) h~a b~ i = g(~a b~ ) ; (h~ ~a ~b) * ( ) | + . ) ~a ~b | p # , ~h = h~n, * h = h21 + h22 + h23 , # ! +% ! p h~a ~bi = g cos + h cos sin = g2 + h2 cos2 cos( ; ) p h~b~ai = g cos ; h cos sin = g2 + h2 cos2 cos( + ) * | %* ! 0 % # ! ~a b~ , | %* ! 0 % # ! h~ ~a b~ . <# , !% +-#, # %* # ~a ~b # ~b ~a + # # ! + # ! h~ (+ # ! + ! M4 )K 5## + # # + !%> # + > # # ! 0 % + #.!, + #, #%# # ~a ~b, %. % # "">& ! # !! # ! # ! h12 = ;h21 = h cos . = + ! + # % 63 ! 8 + " # + # # > ( % $* ). =# # +( # "
327
5#! ! : 6<# + # ! -# ( # 0 #, # + # c2 i "3 + 3 . = ! % ! + "0 # " -# ! 0 % ". 75#!%... 3 ! >->3 # # # # "* 3 ! # !, # "!% 3 % ! * ! # " # # # $ #$ 5#3 > 8 91]. =" % #3 $ + # ~h, ! + & ! ! # % G0 % 0g 0 01 G0 = @0 g hA 0 ;h g "% ! ##$ h ,%. ! . F* + . " !* + # # R~ = Re~1 %* , + & + # ! h~ , ! dt "% # dh d, # #$ ! +% ! # > %$##, * + # !% + ! 3 : d dh v = RU R dt dt :
= "> ! % * ! # , * h # ,%. # ! , ! 0 0 #& * # # ! !! # . J
!# #$ * 0 L = 21 J ! ! + h ! #% % 0 +%-# . + . % . 7 #*, !0 #$, # + , !! # , ! 3 !0 # "#$ 0 "> + #%- 3 !% + + # #- ! , # " % # "> # # # $ # & + %-> ! ,.. = # 3 ! 0# ! # + + # # - ! J3 3 # # ! , # - $ ! + ! !# . I* 5# ! # * ! ! # 0 + #$ , ! ! : ! #$ ! J* + , # #$ # + (* "% %> !%, $ 6# ! 8 > ! + # # ! ! 0 % 6+ !8 6 !8, # #$ # #, #
% # . <# # $* ! # $ ! !0 % #$,
!# "">& % !! # %- ! # %.
1] . . , , . | ! , 1958.
328
. .
2] Kozyrev N. A. On the possibility of experimental investigation on the properties of time // Time in Science and Philosophy. | Prague, 1971. 3] )! *. . . | +, 1990. 4] )! *. . . /0 // 1 2 - 3 !3 4 0 0. 5 !. | 1987. | 6 3. 5] * 7., 8 ., . 9. + 4. 8. 1. | *.: *, 1977. 6] )3< . ., = 9. >. . | *.: !, 1980. % ! & 1998 .
. . . . , , . .
,
519.865.5 .
: ,
!
! "
#$ % &
" ! & !' & , %() /+ , & ! - %+ #. &, & ! & & + #
! ' , ! & & ! ! # % +) # / !.
Abstract M. A. Gil'man, E. E. Demidov, A. G. Mikheev, Optimal control of security portfolio, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 329{337.
Finding an optimal strategy for the security portfolio during a given period is formulated as a problem of linear programming. It is shown that if the restrictions on the risk or on the buy/sale volumes are omitted then the problem is decomposedinto some -one-stock. problems. This fact permits one to reduce the calculationcomplexity of the whole problem. Finally, for the optimization problem with the restrictions on the risk an approximate method is presented.
1.
, , , . ! " #, | % ".
& , , 2001, 7, 7 2, . 329{337. c 2001 ! " ! #$ %&, ' $ ()!! !*
330
. . , . . , . .
)% / + ! # | , , & , - % .
2. . n N . / | Q1 = (Q11 : : : Q11), Q1 i- . : P | i- t, P P | % . , " F |
, (F > 0) (F < 0) t. 4 , - / () , P , P |
, | ( - , , , )% , " ). 5 , , . . Q2 : : : Q ,
= P1 Q1 + + P Q t = N . + ,", . . , F . 7 , )% / , . . . , , " , . + P = 0 , i- t ", . . - " ". 8 - N , , ", . . 9 , ! # | + . / | , % . i
t i
t i
t i
t
t
t
N
t
t i
t
t
t n
t n
3. ! "
331
; , ," , % ! #, t Q0. s | i- t, , q | , . 5 Q = q + s i = 1 : : : n X Q0 = S s + F t
t i
t i
t i
t i
t i
t
t i
t i
t
i
S = P (1 ) | i- t %
. 9
Q0 , % , , . b |
, " i- . 5 Q +1 = q + B b i = 1 : : : n X Q0 = b t i
t i
;
t
t i
t i
t i
t i
t
t i
t i
i
8 1 < P = 0 B = : P (1 + ) 0 t 6 i
t i
t i
i- , % . /, , Q t = 2 : : : N ( Q1 : : : Q ) N 3n- v1 : : : v v = (q1 : : : q s1 : : : s b1 : : : b ): = - + , A (n + 1)N 3nN : 0 S1 0 0 : : : 0 0 1 BBB1 S2 0 : : : 0 0 CC BB 0 B2 S3 : : : 0 0 CC BB 0 0 B3 : : : 0 0 CC B@: : : : : : : : : . . . : : : : : : CA 0 0 0 : : : B ;1 S - S B , (n + 1) 3n : t i
N
N
t
t
t n
t
t n
t
t n
N
t
t
N
332
. . , . . , . .
01 1 B 1 B ... S =B B B @ 1
1
...
t
0 0 ::: 0
0 1 B B B =B B B @ ;
t
0
;
1
S1 t
;
S2 : : :
;
0 ...
0 :::
1 CC 0 ... C CC 0A
0
t
0
1 S
;
1 1 ::: 1
t n
B1 t
;
;
...
1 0 0 0 0 ::: 0
;
0
B2
0
t
...
:::
;
1 CC CC : C B A 0
t n
( + .) v = (v1 : : : v ), u = (u1 : : : u ) N
N
u1 = (Q11 : : : Q1 F 1) u2 = (0 : : : 0 F 2) :: :: :: :: :: ::: :: :: :: ::: u = (0 : : : 0 F ): n
N
N
5 - Av = u: . > ( % ),
s b = 0 i = 1 : : : n t = 1 : : : N t t i i
, , , . . - , , , , % , " (, , + ? 7 @ (?7@) , ). 8 % S A . 7 , , " , ," , " . t
N
333
4. !
, : q > 0 s > 0 b > 0 i = 1 : : : n t = 1 : : : N: 9 + v > 0. @ )% , s 6 sA i = 1 : : : n b 6 Ab i = 1 : : : n: 9 + v 6 vA. t i
t i
t i
t i
t i
t i
t i
5. % " /, , . 2,
: (v) max Av = u 0 6 v 6 vA: 8 : (v) max Av = u (Z) v>0 u > 0 (. . ). B , (v) = P1 Q1 + : : : + P Q = P1 (q1 + s1 ) + : : : + P (q + s ) . Q0 Q00 , t = 1 : : : N , | . B%
+ , Q Q = Q0 + Q00 i = 1 : : : n: B% , , . . (Z) , n + nin , nin | , .
t t = N t = 1. N
N
N
N
t
N
N n
!
!
N n
N
N
N
t
t
t i
t
t
i
i
N n
N n
N n
334
. . , . . , . .
1. " t0 Z , t = t0 +1 : : : N . 2 2. # $ . 2 3. % $ / ( ) $ ' n ' . 2 . 7 , , - , - . 7 , - - ( 001) , ( ," ,) . .
6. ' "
/ -, ?. D. D . . E F1]. , / )% / . + . Q | j - t, P | & i- , P , , j -
( % ) P (1 ) Q +1 = P (1 + ) Q : @ T , t = 2 : : : N : 8 P (1 ) > > i = j P = 0, P = 0 < T = P (11+ ) i = j P = 0 > : 0 : 5 , , maxN;1 (T N N;1 : : :T 22 1 Q11 ) = Q N () 2 t j
t j
t i
t j
t i
;
t i
t j
t
t j
t ij
;
t 6 i
6
t i
t 6 j
t 6 i
i :::i
N i i
i i
i
N i
, , . . i1 : : : i , + . H Q1 | , ," - , . 7 i N
N
335
, | max(P Q ). J R+ " x y = max(x y) x y = xy: K ", R+ . B , ( ) , (R+ ): Q N = (T : : : T 2 Q1) N (A B ) = max(a b ), + . 9 (R+ ) , . 5
+ -. 8 , . . (i1 : : : i ), ,", , I , j = 1 : : : n, t = 1 : : : N 1, I = i0 : (T +1 Q ) = T +1 Q 0 0 +1 . . i0 T Q . H Q = T ;1 : : : T 2 Q1 : I = j . 7 i P N Q N = max(P Q ): 8 , i i ;1 : : : i , i ;1
i ;1 = I t;1 : /, - ,. 8 (i1 : : : i ) , Cout = C (Q11 & i1 : : : i ) = P N Q N
- , " , P , | P ( , P 6 P 6 P ). +
! # 8 P (1 ) > > i = j P = 0, P = 0 < T~ = > P (11+ ) i = j P = 0 > : 0 N i
i
N i
N i
ij
ik
k
N
i
kj
N
t j
;
t j
t
t
t
j
t i
ji
t ji
t
t
t i
N j
N
N i
N
N
N i
N i
i
t
N i
t
t i
t
N
N
i
t i
t i
t j
t ij
t i
;
t i
6
N i
N i
t i
t i
t j 6
t 6 i
t i 6
336
. . , . . , . .
Cout > C~ = C~ (Q11 & i1 : : : i ) = P N T~ N N;1 : : : T~ 2 1 Q11 : @ , C~ (Q11 & i1 : : : i ) Q11 . . - " ! #. + , !# . 8 + P " ( % ) P0 = 1 t = 1 : : : N . , + . . T . B , ?7@ t. + i0 , j0 & + , , . 7 , -
,. + +
T : T 0 0 = P P(1nom + ) 0 (Pnom | , " -), T0 0 = Pnom T 0 0 = P (11+ ) 0 ( 0 | + ! # ( . " )), T00 = 1 T = 1 i- " t i = i0 , i = j0 , T =0 . 5 , , -
, ,, +
, , , ," . N i
N
i
N i i
N
i
i i
i
i
t
t i
t
t
t i j
t i
t j
t i
t
t i
t ii
6
6
t ij
7. ') * , , Cin .
337
/ , Cout Cout > Cout. / , " " . 8 , Cin % :
Cin =
X n
=1
P 1 Q1 : i
i
i
8 k = 1 : : : n - ,
1 % (k i2 : : : i ) k = 1 : : : n: + : c = C (1& k i2 : : : i ) c~ = C~ (1& k i2 : : : i ): @, k
k N
k k
X n
k
=1
k
k N
k
k N
c~ Q1 : k
k
5 ,
:
X n
k
=1
c Q1
X n
=1
X k
n
k
=1
k
!
k
max
P 1Q1 = Cin k
k
~c Q1 > Cout k
k
Q1 > 0 k = 1 : : : n: @ + , : , , ," ,
. k
1] Litvinov G. L., Maslov V. P. Correspondence principle for idempotent calculus and some computer applications // Preprint IHES. | IHES/M/95/33. | 1995. "+ 1996 #.
. . ,
. . , . .
517.946 .
:
,
!"
"# " $$ % " &"# & " $ '. # ( .
Abstract
A. B. Golovanchikov, I. E. Simonova, B. V. Simonov, The solution of diusion problem with integral boundary condition, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 339{349.
The di/usion model for apparatus of 0nite length with integral boundary condition is investigated. Existence and uniqueness of the solution are proved.
1]: @C + v @C = D @ 2 C (1) @t @x @x2 v | , " t
# x$ D | % & , ' ( $ C | & & ". * ( #. + ( ( , (1). +( , ( '# -# # ( (#, . . ( ( -#( / & & (# : C (x 0) = C (x). 1 (# -# # , - &, . 2 , - , ( x = 0 (2) v C (0 t) = C v + D @C @x (0 t)
12 $" $ $3 1 %& "# " %, & 4 00{01{00042. , 2001, 7, 4 2, . 339{349. c 2001 !, "# $% &
340
. . , . . , . .
#, ( x = b) -
v C (b t) = C v + D @C (3) @x (b t): 6 ( 7 C (b t) C. 8 (/ % ( (3) @C (b t) = 0: (4) @x 9 (2), (4) #7 (# 2 . 6 ( (4) ' , # ". . # % . *: 7" (. 1. 6 : C = C (x t) 2 @c = (5) A @@xC2 B @C @x @t 7" ( 7 C (x 0) = '(x) 0 6 x 6 b (# C (0 t) = 1(t) 0 6 t < +
;
Zb
Zb
Zt
1
C (x t) dx = '(x) dx + 1( ) d
0
0
0
Zt
;
C (b ) d
(6)
0
A > 0, B > 0. = ( (6) , : 7 " -> ( b, ( (6) | ( ", #: : t ( ( b. ?# - ( . @ / ( C (x t) = ex+t u(x t) = 2BA , = B4A2 . @ ( 7" 7 ( . 2. 6 : u = u(x t) - ( ut = Auxx (7) 7" ( 7 u(x 0) = '1 (x) = '(x)e;B=(2A)x 0 6 x 6 b (# 2 u(0 t) = 2 (t) = 1 (t)e B4A t 0 6 t < + ;
;B 4A t
e
2
Zb 0
e 2BA x u(x t) dx =
Zb 0
Zt
'(x) dx + 1 ( ) d 0
1
Bb ; e 2A
Zt 0
e; B4A u(b ) d: (8) 2
!" # $ " $ !
341
8' % ( , ( - ( ( (8) , : u(x t). @% -( u(b t) ( 3(t) : ( 7" 7 ( . 3. 6 : u = u(x t) - ( (7), 7" u(x 0) = '1 (x) (0 6 x 6 b) ) u(0 t) = 2 (t) (0 6 t < + ) (9) u(b t) = 3(t) (0 6 t < + ) D & 7 3 (t) (8). E : ( 1 7" , ' ,: '(x) 7 # 7 7 : 7 (- # 7 7 0 b], 0 b], '(0) = '00(0) = '(b) = '00(b) = 0$ '0(0) = '0(b), 1(t) ' # #- & 0 + ), ( 0 + ), 1(0) = 0. + 3 (t) - - -7 7" ,
' : 3 (t) #- & 0 + ), 0 + ), 3(0) = 0. @ : ( 3 u(x t) = u1(x t)+ v(x t), & u1(x t) = 2 (t) + x(3 (t) 2 (t))=b (# (9), & v(x t) | # (# . F - , : ( 3 : 7 7" ( . 4. 6 : v = v(x t) - ( vt = Avxx + F (x t) (10) 7" v(x 0) = (x) v(0 t) = v(b t) = 0 F (x t) = (u1 )0t + A(u1)00xx = ddt2 (t) xb ddt3(t) ddt2 (t) (x) = v(x 0) = u(x 0) u1(x 0) = '1(x): 9 (8) #, -( , # : Bb 2A 2A 4A 2 ;B t 4 A e 2A Bb b b + B 2 b = 3 (t)e 2 Zb Zt 2 2 = '(x) dx + 1 ( ) d + 2 (t)e; B4A t 4BA2 b 4BA2 b e 2BbA + 2BA 1 1
1
1
1
1
;
;
;
;
;
;
;
;
0
0
2A e; B4A t v(x t)e 2BA x dx e Bb 2
;
Zb
Zt
;
0
0
e; B4A 3( ) d: 2
;
(11)
342
. . , . . , . .
2] , ( : ( 4 - # 7" - :
Zb
v(x t) = G(x t)( ) d + 0
Zt Zb
G(x t )F ( ) d d ;
(12)
0 0
1 X
n : G(x t) = 2b e;( nb )2 At sin n x sin b b
n=1
* , , " (11):
Zb
e 2BA x v(x t) dx =
0
Zb
e 2BA x
0
Zb
G(x t)( ) d dx +
0
+
Zb
e 2BA x
Zt Zb
G(x t )F ( ) d d dx = I1 + I2 : ;
0 0
0
@ / - I2 1 1 X 2A cos n 2A cos n 1 2b (t) X 1 cos n + e Bb e Bb I2 = 2b2 2 (t) 3 b b B B 2 2 2 2 2 n=1 n 1 + ( 2A n ) ] n=1 n 1 + ( 2A n ) ] ;
;
;
Z X Bb 1 2A + 2BA e;( nb )2 A(t; ) e cosB n b 21 (cos n 3( ) 2 ( )) d: 1 + ( 2A n ) 0 n=1 F ( (11) - 7" : 2A 4A2 B2 t Bb 2A ; 3 (t)e 4A e 2A Bb b B + B 2 b = Zb Zt B4A2 t 4A2 4A2 Bb 2 A ; 2 A = '(x) dx + 1( ) d + 2(t)e B2b B2 b e B t
;
;
;
;
0
;
;B 4A t 2
e
Zb
0
e 2BA x
0
Zb
G(x t)( ) d dx +
0
1 X 2A cos n e Bb 1 + 2b2 2 (t) B b 2 2 n=1 n 1 + ( 2A n ) ] ;
;
1 2 b (t ) X e 2BbA cos n 1 cos n + 3 B b 2 2
2 n=1 n 1 + ( 2A n ) ] ;
Z Bb 1 X 2A + 2bA 3 ( ) e;( nb )2 A(t; ) e cosB n b 12 cos n d 1 + ( 2A n ) n=1 t
;
0
;
t 2A Z
b
0
2 ( )
;
;
;
Z B2 Bb 2A 2A e;( nb )2 A(t; ) e cosB n b 12 d e Bb e; 4A 3 ( ) d: ) 1 + ( 2A n n=1 0 1 X
;
;
t
!" # $ " $ !
343
3] , 7" #: 1 X e 2BbA cos n 1 = B b 2 2 n=1 n 1 + ( 2A n ) ] Bb 2A Bb 2 2 2 A Bb Bb
A 2 A 2 A = B 2 b2 (1 e ) + e Bb cosech 2A Bb cth 2A 1 X e 2BbA cos n 1 cos n = B b 2 2 n=1 n 1 + ( 2A n ) ] Bb 2A Bb 2 2 Bb Bb 2 A 2 A 2 A 2 A = B 2 b2 (1 e ) + e Bb cth 2A Bb cosech 2A : . / 7" -( : ;
;
;
;
;
;
Z Z B Bb B4A2 t ; 2 A f (t) = 2A e e '(x) dx + 1 ( ) d b
0
;
0
B e; 2BA Z e 2BA x Z G(x t)( ) d dx + 2A b
;
t
t BZ
b
0
0
X
Bb 2A e;( nb )2 A(t; ) cos nB eb 2 d = I3 I4 + I5 1 + ( 2A n ) n=1 0 1 ; Bb X 2 2A K (t) = 2BA e B4A t + Bb e;( nb )2 At cos nB e b 2 cos n: 1 + ( 2A n ) n=1 /# -( , ( Bb Bb ; Bb 2 A 1 cth 2A + e cosech 2A = 0 Bb Bb ; Bb ; Bb 2 A 2 A e cosech 2A + e cth 2A = 0
+b
2 ( )
1
;
;
;
(13) (14)
;
;
/ ( (11) 7 .
1-
:
Zt
3 ( )K (t ) d = f (t): ;
0
(15)
@' " : % . 2
: - - = . . : - ( f (+0) f 0 (+0). 6 / f (+0). 2 % t!+0 lim f (t). . 2] , (
344
. . , . . , . .
lim x!x
Zb
0
t!+0 0
G(x t)( ) d = (x0 ):
% , , ( f (+0) = 0. 6 / f 0 (+0). 2 % / 7 ' #,, 7" , f (t). 6 , (
I
0 3 jt=0
3 Z = 8BA2 '(x) dx:
b
0
2,
I
0 5 jt=0
=
Zt
1 (t ) ;
0
1 X
n=1
2 ;( n b ) A
e
cos n e; 2BbA d 1 + ( 2BA nb )2 ;
0 = 0: t t=0
F I4. F (G(x t))0t = A(G(x t))00 ,
I =A 0 2
9 t 7, lim
Zb
t!+0
0
e 2BA x
Zb
Zb
e 2BA x
0
Zb
G(x t)00( ) d dx:
0
0
G(x t)( ) d dx = A t
0
Zb
e 2BA x 00 (x) dx =
B 2 Z '(x) dx: 4A b
0
0
+-> #, ( ( f (+0) = 0. F 2 2 f (t) 6 C1 e B4A t + 1 + te B4A t B2 1t K (t) 6 C2 e 4A t + t & f (t) K (t) 7 . F - , % , & " 7 , - = : Lf ] + f (t), LK ] + K (t). F (15) : 7" : L3] LK ] = Lf ]. +7 : L3 ] = p pLf ] 1=(p2LK ]) : @ - = f 0 (t) + pLf ] f (0) = pLf ].
- = , ( - ' = LK ] & K (t) ( & - Re p > b2=(4A). 0
p
j
p
j
p
f
g
f
g
;
!" # $ " $ !
345
6 / - = K (t):
Z1
r1 B4A2 + (r1 B4A2 )2 + r22 0 1 X 2A r1 + ( nb )2 1 cos ne; Bb + Bb + n 2 b B 2 2 2 n=1 (r1 + ( b ) A) + r2 1 + ( 2A n ) 1 2A r2 BX r2 1 cos n e; Bb = + i 2BA (r1 B4A2 )2 + r22 b n=1 (r1 + ( nb )2 A)2 + r22 1 + ( 2BA nb )2 = C (r1 r2) + iD(r1 r2): (16) 2 F r1 > B =(4A), # LK ] , ( 1=LK ] - " - Re p > B 2 =(4A) % ( % - . +& - = K (t). LK ] = C 2(r1 r2) + D2 (r1 r2) 1=2 1 r1 + ( nb )2A + r2 B r1 B4A2 + r2 + B X 2A (r1 B4A2 )2 + r22 b n=1 (r1 + ( nb )2 A)2 + r22 A p 1 arctg p A r > B 2 : 1 + 1 b 4A r1 B4A2 + r2 r1 + r2 2 b r1 + r2 @ r1 > (k + 1)B 2 =(4A), ( k , ( B 2 k=(4A) > 1. p F r1 B 2 =(4A) > 1 r1 +jr21j; B2 < pr1 1+jr2 j , 2 arctg bA q (k+1) B2 6 2 4A 4 A p p arctg bA pr1+jr2 j . @% LK ] 1= r1 + r2 , 1=LK ] p . F 2 3 = 2 ( 7" 7 & : 1=(p LK ]) 1=p . % & ( r1 > (k + 1)B 2 =(4A) > 0) LK ] = e;pt K (t) dt = 2BA
;
;
;
;
;
;
;
j
j
f
g
;
j
j
j
j
;
p
p
;
;
j
j
j
j
j
;
;
;
j
j
j
j
j
j j
j
;
p j j j
j
j
+1 Z Z C < : dr2 1 q 6 3 = 2 (r1 + ir2 )2LK ] dr2 (r1 + r2 ) (k+1)B2 ;1 ;1 +1
j
j
1
4A
F - , 1) & 1=(p2LK ]) ( Re p > (k + 1)B 2 =(4A), 2) 7 p 7- Re p > a > > (k + 1)B 2 =(4A) arg p, 3) aZ+i1 1 (17) p2 LK ] dp j j ! 1
a;i1
-7 , , & 1=(p2LK ]) " (. 4])
346
. . , . . , . .
aZ+i1 pt e g(t) = 21 i p2LK ] dp: a;i1
@ 27 4], (
Zt
3(t) = g( )f 00 (t ) d:
(18)
;
0
8 " : (15) . 6 , ( % : . D 3 (t), # ', (12), : C (x t) ( 1 . . 1 B4A2 t 2 C (x t) = 1 (t)e B4A t + x 3(t) b1 (t)e + d; Zb Zt Zb 2 ; 2BA + G(x t)'( )e d + G(x t ) d 1( )e B4A 0 0 0 3 d3( ) d ; ( )e B4A2 d d e 2BA x; B4A2 b d d 1 ;
;
;
;
;
3
;
1 X G(x t) = 2b e;( nb )2 At sin n x sin n b b n=1
d (LK ])(0) Zt dp (t) = ; f 00 (t ; ) d +
L2 K ](0)
Zt
0
Z 1 X 1 kn 00 + LK1](0) f 00(t ) d + d (LK ])(kn ) e f (t ) d k n n=0 dp t
;
; Bb 2A
e
;
0
6 = 1 + Ab
0
Bb ; 2A Zt
2 f 00 (t ) d + 3 (t) = d 1 ( L K ])(0) dp 0 ;
Zt d22 (LK ])(0) Zt 1 X 1 dp 00 + d f (t ; ) d + ekn f 00 (t ; ) d d 2( dp (LK ])(0))2 0 k ( L K ])( k ) n 0 n=1 n dp
347
!" # $ " $ !
2A = 1+ b ; Bb f (t) (13) LK ] | e; Bb A 2A K (t) ( . (14)) k0 k1 : : : |
1 X 2A B 1 1 1 cos n e; Bb = 0: 2 2 n Bb 2 2 B 2A (x 4A ) n=1 (x + ( b ) A) 1 + 2An . 6 / # 3(t). ( - = LK ] (. (16)). & LK ](p) , ( LK ](p) = 0 r2 = 0. @ r2 = 0. F 1 1 cos n e; 2BbA : 1 +BX 1 LK ](r1 0) = g(r1 ) = 2BA 2 Bb 1 + 2An r1 B4A b n=1 r1 + ( nb )2 A . # & g(r1 ) 7- , & '" - & g(r1 ), ' & #: 1 2A 1 cos n e; Bb 1 BX 1 < 0: g0(r1 ) = 2BA 2 2 n Bb 2 2 B 1 + 2An (r1 4A ) b n=1 (r1 + ( b ) A) ;
;
;
6
6
;
;
;
;
;
;
F - , & g(r1 ) ' I = = ( ( b )2 A B4A2 ), In = ( ( (nb+1) )2A ( nb )2 A), n = 1 2 : : :,
# -#7". D , ( B2 g(r1 ) > 0 r1 4A + lim g(r1 ) = lim g(r1 ) = + B2 B2 ;
;
;
8
r1 ! 4A ;0
;1
1
1
r1 ! 4A +0
1
r !;(lim g(r1 ) = + n = 1 2 : : :: n 1 b )2 A+0 +7 , ( & g(r1 ) - " (/ ( ( ' In (n = 0 1 : : :). +-( g(r1 ) = 0 ( k0 k1 : : :, kn In , n = 0 1 : : :. D( , & 1=(p2LK ](p)) (, 0 k0 k1 k2 : : : # -# ( . 6 , ( k1 k2 : : : 7 # 7 . G k0 = 0, k0 - # 7, ( p = 0 - 7 2-
& 1=(p2LK ](p)). . ( ' k0 = 0, ( k0 - ' 7 3- & 1=(p2LK ](p)). .# , , : , ' A B b (A > 0, B > 0, b > 0) k0 = 0, , k0 = 0. *: 7" : 1 4A + 2A X 1 1 cos ne; 2BbA = 0: Bb )2 B b n=1 ( nb )2 A 1 + ( 2An lim
r1 !;( nb )2 A;0
g(r1 ) =
2
( B4A2 + ), I0 = -
;1
1
2
6
6
;
;
348
. . , . . , . .
H : 7" : 1 1 1 X 2A 2 = X 1 1 e; 2BbA X 1 1 ; Bb 2A + e Bb Bb Bb 2 : (19) 2 2 2 2 2 2 B b n=1 n + ( 2A ) n=1 n + ( 2A ) 2 n=1 n + ( 4A ) 3] , ( 1 X 1 = 1 + cth( a): (20) 2 n + a2 2a2 2a ;
n=1
@ (20) (19), ( Bb Bb Bb Bb b + 1 e; Bb 1 Bb Bb cth Bb + e; Bb 2A + e; 2A = 2A 2A 2 2 4A 2A 4A cth 2A 4A cth 4A b Bb 2A = 1 + e; Bb A 2A : ;
;
;
Bb 2A = 1 + b @ e; Bb A 2A . F ( p = 0 - 7 2-
& 1=(p2LK ](p)). LK ](0) = 0, 1=LK ](0) = 0, L0 K ](0) > 0, d 1 (0) = dpd (LK ])(0) = 0: dp LK ] L2 K ](0) * 7" : 1 L(K1](p) L(K1](0) + 1 : 1 = 2 2 p LK ](p) p p p LK ](0) @ = , ( 1 1 d L(K ](p) L(K ](0) = dp (LK ])(0) : lim p!0 p L2 K ](0) F - , & (1=LK ](p) 1=LK ](0))=p2 7 ( p = 0, & 1=(p2LK ](0)) 7 2- . 2 # & 7 1=LK ](p) (, p = B 2 =(4A) p = ( n=b)2 A (n = 1 2 : : :) . @ x = B 2=(4A)] + 2, B 2 =(4A)] | & ( ( B 2 =(4A). + ' CRn = p : p x = Rn , Rn = x + A( n=b)2, n = 1 2 : : :. F 1=(p2LK ](p)) p2CRn 0 Rn (n ), , #( ? 4], ( & g(t) (. (17)) 6
;
6
6
;
6
;
;
;
;
;
f
j
j
;
j
g
!
! 1
! 1
aZ+i1 1 1 1 X 1 1 k + 1 pt g(t) = 2 i ept p2LK dp = #(. e ](p) p2 LK ](p) LK ](0) n n =1 a;i1 1 1 1 1 pt pt + #(. e p2 LK ](p) LK ](0) 0 + #(. e p2 LK ](0) 0 : ;
;
!" # $ " $ !
349
.#( #(#, ( , ( 1 0 = t #(. ept p2LK ](0) LK ](0) 1 1 d (LK ])(0) #(. ept p2 LK ](p) LK1](0) 0 = dpL2 K ](0) kn t (n = 0 1 2 : ::): #(. ept p12 LK1](p) LK1](0) kn = d e kn dp (LK ])(kn) @ ( # ' g(t) (18), - ;
;
;
Zt d (LK ])(0) Zt 3 (t) = dpL2 K ](0) f 00 (t ) d + LK1](0) f 00 (t ) d + ;
;
0
;
0
Z 1 kn 00 + d (LK ])(kn ) e f (t ) d: k n dp n=0 0 X
t
1
;
I (
' , ( # ' 3 (t) (, 2A = 1 + b=A Bb=(2A). e; Bb F # ' 3(t) (12) v(x t), C (x t) = ex+t (v(x t) + 2 (t) + x(3(t) 2(t))=b), ( , / 7 ' . F # ( 1 :. ;
;
1] . ., . . . | .: "# ", 1991. 2] & '. (., )* '. '. + # * . | .: (-, 1976. 3] 1- '. 1., 2. '., 3. 4. 45 #. | .: (-, 1981. 4] 8 '. '. * . &. 1. | .: "# ", 1980.
' ( ) 1997 .
. .
517.95 .
: , ,
! " # $ ! !, ! ! $ ! " % ! ! " $ $. & % " ! ' % ( !( . )% " % $ ' '* ! + $ .
Abstract
V. G. Zadorozhnij, The moment functions for the solution of the heat equation with stochastic coecients, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 351{371.
The formulae of the mean value and the second moment function are obtained for the heat di2erential equation with stochastic coe3cient at the higher derivative, stochastic initial condition and stochastic exterior perturbation. The formulae do not contain the continual integral and hold even for dependent stochastic processes. The expression for the mean value of the solution generalizes the well-known Poisson formula for the solution of the heat di2erential equation.
@y(t x) = "(t)y(t x) + f (t x) (1) @t y(t0 x) = g(x): (2) n t 2 t0 t1] = T R, x 2 R , | !!" x 2 Rn, y : T Rn ! R, " | $"!%" & ( $"!( )% ! *), f : T Rn ! R | $"!%" &, , 2001, 7, 4 2, . 351{371. c 2001 !", #$ %& '
352
. .
g : Rn ! R | $"!%" &, ! %" " f . . ) " ! / 0 * ! !! 1$!0& ! 2" . 1] $!% 1$ % 3 !!%3 1$!0& " ! $ !! @y(t x) = @ 2 y(t x) + "(t)y(t x) + f (t x): @t @x2 2" % $ 1$ % 0( * ! " !!" 1$!0& ! (1), (2). 4 2" & / % ! $ ( !$/ ! !!$/ $ $ !!
& !!" !" !3 5 ! . 6 $ % / ! !! , ) 3 !" ". 1$ 3 " " !!%3 1$!0& " ! $ 0! !$ !%" !( , ! !% 10% % * %3 $"!%3 & " f . 0 !%" $" 1$ % 0( * ! ! $ ! 1$ 7$! ! ! !!( $ !! ! .
x
1.
7$ V | )!3 ! 1$!0& " v : T ! R !" kv()kV U | )!3 ! 1$!0& " u : T Rn ! R. 7$ a 2 R, b 2 R. 8) ! (a b ) 1$!0& /, $/ $/9$ $: (a b s) = sign(s ; a) s, *9 0 0!& a b, (a b s) = 0
! $. ;$ (, a b 2 T 1$!0& (a b ) ! * V $9 $ !! m > 0, 0" Z kv()kV 6 mkv()kL = m jv(t)j dt: (3) T
R
7$ %)!% 1$!0& $"!( & " 0 %, "(t)v(t) dt T !"!% (! !!% 1$!0& ! ! V , ! ( !, RR & & f / !"!%" (! !!%" 1$!0& ! f (t x)u(t x) dx dt ! U . jxj ) ! (x21 + : : : + x2n) 12 x 2 Rn. T 4! % )$ (, &% " f !% 30 0 1$!0& ! 2]
Z Z Z (v() u()) = M exp i "( )v( ) d + i f ( )u( ) d d T
T
( M ) ! 0 * ! 1$!0& ! & " f . 0 / !3* ! 0( * ! My(t x)
" !!" 1$!0& M(y(t x)y(t1 x1)) ! (1), (2).
353
< ! % ! $ $ !! & !!" !".
x
2.
7$ X | )!3 ! 1$!0& " x : T ! R y : X ! C . ( . 2, . 16]). = 11!& dy(x() h) >R 1$!0& ! y 0 x0 () % dy(x0 () h) = = '(t x0())h(t) dt, ( !( ! % )(, ' : T X ! C T ! % & !!" !" 1$!0& ! y 0 x0() ) ! y(x0 ())=x(t). 1. a : T ! C T , y : V ! C
s y(a()(t0 t ))=v(s)
(3), f (t) = = y(a()(t0 t )) T , df (t) = a(t) y(a()(t0 t )) : dt v(t) . 7* ( , !0( A 3 t 2 T % ! $ ja(t)j 6 A. 7$ t | 9! !!" t, ( ka()(t t + t )kV 6 mka()(t t + t )kL =
tZ+t = m ja(s)(t t + t s)j ds 6 mA ds = mAjtj = O(jtj): Z
T
t
70 0$ $9 $ & !! ! y(a()(t0 t ))=v(t), , $5 !( !! , !3 f (t + t) ; f (t) = y(a()(t0 t + t )) ; y(a()(t0 t )) = t t Z 1 y ( a ( ) ( t 0 t )) = t a(s)(t t + t s) ds + o(ka()(t t + t )kV ) = v(s) T
tZ+t y(a()(t t )) 1 0 a(s) ds + o(jtj) : = t v(s) t
354
. .
@0 00 y(a()(t0 t ))=v(s) $ $ s ! T 1$!0& a (! !, 1$!0& a(s)y(a()(t0 t ))=v(s) $ $ ! T . 7 2
! ! *! " 0 $ t ! 0 3] $ $ * ! %. 2. a : T ! C , (3) y0 : V ! C
s y0 (v() + a()(t0 t ))=v(s). ! y = y0 (v() + a()(t0 t ))
" #
@y(t v()) = a(t) y(t v()) y(t v()) = y (v()): 0 0 @t v(t)
(4)
. 4( ! 1 / $ ! T $9 $ ! @y(t v())=@t, 5 @y(t v())=@t = a(t)y0 (v() + a()(t0 t ))=v(t). <, y(t v())=v(t) = y0 (v()+ a()(t0 t ))=v(t). @( $ !! (4) % ! / $ ! T , % !! ! !( $ !. @
0 !. A !"!$/ ! ! !$/ $ @y(t v()) = a(t) y(t v()) + b(t v()) y(t v()) = y (v()) (5) 0 0 @t v(t) ! ! ! !( )*! y : T V ! C !0" 0! B V 0 v() = 0. 7 !! a 2 ! 4]. 3. a : T ! C T , (3), y0 (v() + a()(t0 t ))
B , b : T V ! C T # #, $ b(s v() + + a()(s t ))=v( ), $ v() 2 B T jb(s v() + a()(s t ))=v( )j 6 m(s). !
Zt
y(t v()) = y0 (v() + a()(t0 t )) + b(s v() + a()(s t )) ds t0
(6)
" (5) B. . @0 00 b(s v()+a()(t0 t )) B & !!$/ !$/, ! !% ! B v. < , b $ $ " !!", ( b(s v() + a()(s t )) $ $ s ! T . 70 0$ $ $ *! m(s), 5] & !! ! !( (6) * )% % ! & !!% 11!& ! !0 !( . D $ % $9$/ $, !3 :
355
@y(t v()) = a(t) y0 (v() + a()(t0 t )) + b(t v()) + @t v(t) t Z + a(t) b(s v() +va(t())(s t )) ds = a(t) y(vt(vt())) + b(t v()) t0
v() 2 B 3 t 2 T . @ 0 !.
x
3. "
7$ f : RnRm ! C , ( Fxf (x y)]( ) ) ! ) ! >$ !!" x. E! ( ! ) !! $ )!( ) ! >$ F;1g( y)](x). A $ 11!& !( $ !! ( 0 @y(t x v()) = ;i y(t x v()) + b(t x v()) @t v(t) (7) y(t0 x v()) = '(x v()): t 2 T R, x 2 Rn, b : T Rn V ! C | !! )*! , | !!" x 2 Rn, ' : Rn V ! C !, y | 0 )*! . 1$ 0 $/9" % $ )*! " ' b $9!% ) !! ($! , !! x v() + ij j2(t0 t ) $ ' x v() + ij j2( t ) $ b. 4. (3), $ B v() = 0, % v() 2 B j'j j'=v(t)j jFx'=v(t)]( )j j Fx']( )j 2 j j jFx']( )j j Fx'=v(t)]( )j j j2jFx'=v(t)]( )j jbj jb=v(t)j jFxb=v(t)]( )j j j jFxb]( )j 2 j j jFx b]( )j j j jFxb=v(t)]( )j j j2jFxb=v(t)]( )j t 2 T , 2 T Rn . ! " (7) %
y(t x v()) = F;1Fx'(x v() + ij j2(t0 t ))]( )](x) + Zt + F;1Fxb( x v() + ij j2( t ))]( )](x) d: (8) t0
. 7 * , $9 $ ) ! >$ !!" x ! (7). 7 ! ) ! >$
356
. .
0 (7), $ 6] @ F y(t x v())]( ) = ij j2 F y(t x v())]( ) + F b(t x v())]( ) x @t x v(t) x Fx y(t0 x v())]( ) = Fx'(x v())]( ): 6 (5), 2 . $ 1$ " (6)
Fx y(t x v())]( ) = Fx'(x v() + ij j2(t0 t ))]( ) + Zt + Fx b( x v() + ij j2( t ))]( ) d: t0
7 ! 0 2$ ! $ 1 ! )! ) ! >$, $ 1$ $ (8). 70* , (8) ! (7). 7 *! % ! $ $%3 *! ) / 11!& $ !0 !( !$*!% ! !!%. D $ " ) ! >$ 6], !3 @y = F ;1 F ij j2 '(x v() + ij j2(t0 t )) ( ) (x) + x @t v(t) ; 1 + F Fxb(t x v())]( )](x) + +
Zt
t0
2 F;1 Fx ij j2 b( x v()v+(itj) j ( t )) ( ) (x) d =
= ;i v(t) y(t x v()) + b(t x v()): @ 0 !.
x
4. $
5 ) !!
Z Z Z Y (t x v() u()) = M y(t x) exp i "( )v( ) d + i f ( )u( ) d d T
T
( 0 * ! % 1$!0& ! $"!%3 & g, " f (1), (2).
R
RR
357
H!* (1), (2) ! exp i "( )v( ) d + i f ( )u( ) d d !" 5 T T 0 * ! 1$!0& ! & g, " f . > ! 9/ )*! Y $!!% ! % / @Y (t x v() u()) = 1 Y (t x v() u()) + 1 (v() u()) (9) @t i v(t) i u(t x) Y (t0 x v() u()) = M(g(x))(v() u()) (10) ( | 30 0 " 1$!0& ! & " f . 7 2 ! *! ! $"!( & g " f . (9), (10) ! !!", !0 $ !! (9) ! & !!, 0 00 * & !! 11!& ! . D Y !! 3 0 $/9$ ! /. . J 0 * ! ! (1), (2) ! % My(t x) = Y (t x 0 0) (11) ( Y | ! (9), (10) !0" 0! !$ " 0 (0 0)
V U . = Y ! (9), (10) % ))95!!%3 1$!0& ", (11) ! % ))95!!% 0 * ! ! (1), (2). = * M(g(x))(v() u()) = '(v() u()) ;(v() u())=u(t x) = = b(t x v() u()), (9), (10) 0* 1 0 !! u()
(7). 5. Mg() Rn u() # U 4, " (9), (10) % (x)
Y (t x v() u()) = Mg(x) F;1(v() + ij j2(t0 t ) u())](x) ; Zt 2 ; i F;1 Fx (v() + ij j ( t ) u()) ( ) (x) d: (12) u( x) t0
(x)
& # x. . D $ 1$ $ (8), !3 ! (9), (10):
Y = F;1Fxg(x)]( )(v() + ij j2(t0 t ) u())](x) ; (v() + ij j2 ( t ) u()) Zt ; F;1 Fx ( ) (x) d: u( x) t0
358
. .
70 0$ )! ) ! >$ ! 1$!0& " ) $ 50$ )!%3 ) ! " >$ !* ", !( ! $ (12). @ 0 !. 6. # 5 " (1), (2)
My(t x) = Mg(x) (x) F;1(ij j2(t0 t ) 0)](x) ; ;i
Zt
t0
j2 ( t ) 0) F;1 Fx (ij u ( ) (x) d: (13) ( x)
< 0 !$*! (11) (12). . 8))95!!$/ 1$!0& / (x)
V0 (t x) = Mg(x) F;1(ij j2(t0 t ) 0)](x) )$ ! % 3!!% % !& ( !/ Mg(x) !( !! My(t x) ! (1), (2). 8))95!!$/ 1$!0& / (ij j2( t ) 0) Zt ; 1 ( ) (x) d V (t x) = F Fx u( x) t0
)$ ! % % !& !( !! My(t x).
x
5. &
7 $!! % 1$ (13) ! )9", ! )$
* ! & " f . 1. 4 $" ! %3 & " f . 7 2 30 0 " 1$!0& ! (v() u()) ! 30 0 3 1$!0& ! "(v()) f (u()), /9 3 &% " f . 7. (1), (2) # g, " f ,
(3), % # " : V ! C "
, Mg(x) Mf (t x) . ! $ "
(1), (2) %
My(t x) = Mg(x) (x) F;1"(ij j2(t0 t ))](x) + Zt
(x)
+ F;1"(ij j2( t ))](x) t0
Mf ( x) d: (14)
359
. 8 , f (0)=u(t x) = iMf (t x), f (0) = 1, (v() u()) = " (v())f (u()). 1$ " (13), !3 My(t x) = Mg(x) (x) F;1"(ij j2(t0 t ))f (0)](x) ; ;i
Zt
t0
F;1 Fx "(ij j2 ( t )) f (0) ( ) (x) d = u( x)
(x)
= Mg(x) F;1"(ij j2(t0 t ))](x) + +
Zt
t0
F;1"(ij j2 ( t ))FxMf ( x)]( )](x) d:
8)! ) ! >$ !0 !( %* 50$, 0$ $ (14). @ 0 !. 2. 4 $" ($ 0( & ". K$ 0 " $"!%" & 30 0 1$!0& ! Z ZZ 1 " (v()) = exp i M"( )v( ) d ; 2 b(s1 s2)v(s1 )v(s2 ) ds1 ds2 T
TT
( M"( ) | 0 * ! " b(s1 s2 ) = M("(s1 )"(s2 )) ; ; M"(s1 )M"(s2 ) | 0 & !! 1$!0& & ". 8. # ## " f , M"(t) > 0, M"() 2 Lp (T ), p > 1, b : T T ! R , Mg() Mf (t ) . ! $ " (1), (2)
Zt ; n2 Z X k 1 1 Zt Zt My(t x) = 4 M"( ) d b ( s s ) ds ds 2k Mg() 1 2 1 2 k k! 2 k=0 t0 t0 t0 jx ; j2 Zt exp ; 4 M"( ) d d + t0
; n2 Z X k Z t Zt 1 1 ZtZt + 4 M"(s) ds b(s1 s2 ) ds1 ds2 2k Mf ( ) k k! 2 k=0 t0 t 2Z exp ; jx ;4 j M"(s1 ) ds1 d d: (15)
. 0 ! V *! %) !;1 ;1
Lq (T ), p + q
= 1. 7 2 % ! $ (3), 1$!0& !
360
. .
" & !!$/ !$/, 1$ ! ))95!! % . D ! 6], Zt ; n2 jxj2 Zt Zt ; 1 2 F exp ;j j M"( ) d (x) = 4 M"( ) d exp ; 4 M"( ) d
Rt t0
t0
t0
t0
M"( ) d > 0. 7 ! $ % !, 0 00 M"(t) > 0. < ,
F;1"(ij j2 (t0 t ))](x) = Zt (x) 1 ZtZt ; 1 ; 1 4 2 = F exp ;j j M"( ) d (x) F exp j j b(s1 s2) ds1 ds2 (x) 2
1
t
0
1 Bk X
t0 t0
F;1 exp 2 B j j4 (x) = 2k k! F;1j j4k](x) = k=0 @ 22k 1 B k @ 2 1 Bk X X 2k = k k! i @x1 + : : : + ;i @xn (;x) = k k! (x) 2 2 k=0 k=0 ( B 2 R | -1$!0& . 7 2 (x) F;1 exp 21 B j j4 (x) Mf ( x) = Z X 1 Bk 1 Bk X 2k (x ; )Mf ( ) d = 2k = k k! k k! Mf ( x): 2 2 k=0 k=0
7 2 !! (14), !3 (15). 8 , b = 0 & " )$ ! !!% ( !% M"(t)). = f ! !, , 3 (15) 0 $ b(s1 s2) ! 0, $ !$/ 1$ $ (7$!) ! ! !!" (1), (2) 6, . 218]. 9. # ## " f , M"(t) > 0, M"() 2 Lp (T ), p > 1, b : T T ! R , Mg() 2 C1(Rn), $ c > 0, q > 0, % j2kMg(x)j 6 ck!qk x 2 Rn k = 0 1 2 : : : ZZ (16) q b(s1 s2) ds1 ds2 < 2: TT
! %# # V0 (t x) " (1), (2) t 2 T $
jV0(t x)j 6
2;q
Rt Rt t0 t0
2c
b(s1 s2 ) ds1 ds2
361
:
. $ ($ 0( & " ( 1$ % (15) )" 3!!%" " !& ( !( !! ! (1), (2), $ 3 % ; n2 X k Z Zt 1 q k Zt Zt jV0 (t x)j 6 4 M"( ) d b(s1 s2) ds1 ds2 c 2 k=0
t0
t0 t0
jx ; j2 Zt exp ; M"( ) d d: 4
t0
4( ! $ / (16) )0!! $ &! )0!!" ( 0" ( " !! , ! ! &%. 7 !0$ " 2 !! 3 ! T . D $ 3 ! ! 6, . 215] t > 0 jxj2 Z n (4 t); 2 exp ; 4t dx = 1 $
jV0 (t x)j 6 2c 2 ; q
Zt Z t t0 t0
;1 Z Zt ; n2 b(s1 s2) ds1 ds2 4 M"( ) d
jx ; j2 Zt exp ; M"(1 ) d1 d = 4 t0
t0
2;q
Rt Rt t0 t0
2c
b(s1 s2) ds1 ds2
t 2 T , x 2 Rn. @ 0 !. 10. # " f , M"(t) > 0, M"() 2 Lpn(T ), p > 1, b : T T ! R , Mf (t ) 2 C1 (R ), $ c1 > 0, q1 > 0, % j2kMf (t x)j 6 c1 k!q1k t 2 T x 2 Rn k = 0 1 2 : :: ZZ (17) q1 b(s1 s2 ) ds1 ds2 < 2: TT
362
. .
! # V (t x) My(t x) $ jV (t x)j 6 2c1
Zt
ZtZt
t0
2 ; q1
b(s1 s2) ds1 ds2
;1
d:
(18)
. 7 ($ 0 $"! & " (! f ) ( 1$ (15) )" " !&
!( !! My(t x). 7 5 &!0 , ! ( !% &!0, !!% 0 % $9" %: k ; n2 X Zt Z Zt 1 q k ZtZt 1 jV (t x)j 6 b(s1 s2 ) ds1 ds2 c1 4 M"(s) ds 2 t0
exp ; jx ; j
t 2Z
4
6 2c1
Zt
ZtZt
t0
2 ; q1
k=0
M"(s1 ) ds1 d d 6 b(s1 s2 ) ds1 ds2
;1 Z Zt ; n2 4 M"(s) ds
jx ; j2 Zt M"(s1 ) ds1 d d = exp ; 4 = 2c1
Zt
ZtZt
t0
2 ; q1
b(s1 s2 ) ds1 ds2
;1
d:
4( ! !0$ " (17) $ !!$/ 3 !( 2 T , x 2 Rn &!0 (18). @
0 !.
x
6. (
)
0 !%3 3, $%3 $ !! ! , $/ 0211 & !% / $"!% & . 8)%! 3 !/ $/9 ! !! . ." 5 &!0$ " 2 (! . ! (1), (2) $"!% &% ", f , g 3 ! !! . 7 $ ! !!$/ $
363
@y(t x) = M"(t)y(t x) + Mf (t x) (19) @t y(t0 x) = Mg(x): (20) 11. 9, 10, y1(t x) | " (19), (20) My(t x) | " (1), (2), Rt Rt cq b(s1 s2) ds1 ds2 jMy(t x) ; y1 (t x)j 6 t0 Rtt0 Rt + 2 ; q b(s1 s2 ) ds1 ds2 t0 t0
+ c1 q1
Zt
Rt Rt
b(s1 s2) ds1 ds2 d (21) Rt Rt t0 2 ; q1 b(s1 s2 ) ds1 ds2
t 2 T , x 2 Rn.
. 7 * (15) b(s1 s2) = 0, % $ ! (19), (20). 8&! 0 *, 00 3 9, 10, $ Z Zt ; n2 X k 1 1 Z t Zt 4 M"( ) d b ( s s ) ds ds 1 2 1 2 2k k !
jMy(t x) ; y1 (t x)j =
k=1
t0
jx ; j2 Zt 2 k M"(s1 ) ds1 d + (Mg()) exp ; 4
t0 t0
t0
k Z X 1 1 ZtZt b ( s s ) ds ds 2k (Mf ( )) + 4 M"( ) d 1 2 1 2 k k! 2 k=1 t0 jx ; j2 Zt M"(s1 ) ds1 d 6 exp ; 4 Zt
Zt
;n 2
; n2 X k Z Zt 1 q k Zt Z t 6 4 M"( ) d c b(s1 s2) ds1 ds2 2 k=1
t0
jx ; j2 Zt exp ; M"( ) d d + 4
t0 t0
t0
; n2 Z X k Zt Zt 1 q k ZtZt 1 + 4 M"(s) ds c1 b ( s s ) ds ds 1 2 1 2 2 t0
k=1
364
. .
jx ; j2 Zt exp ; M"(s) ds d d = 4
Rt Rt
RtRt b(s1 s2) ds1 ds2 b(s1 s2 ) ds1 ds2 Zt t 0 t0 = cq + c1 q 1 d Rt Rt RtRt 2 ; q b(s1 s2) ds1 ds2 t0 2 ; q b(s1 s2 ) ds1 ds2 t0t0
3 t 2 T , x 2 Rn. @ 0 !. 8&!0 (21) !!" x 2 Rn. @0 00 b > 0, &!0
jMy(t x) ; y1 (t x)j R R t = t0 ! !$ / !!! !!" t. 7 $ b(s1 s2 ) ds1 ds2 ! 0 (! jMy(t x) ; y1 (t x)j TT !! ! T Rn 0 !$ /.
x
7. " +
< !3* ! " !!" 1$!0& ! (1), (2) $ 0 *, 00 !3* ! 0( * ! . 5
( ! )*! Z (t t1 x x1 v() u()) =
Z ZZ = M y(t x)y(t1 x1) exp i "( )v( ) d + i f ( )u( ) d d :
H!* $ !! (1) !
T
T
Z ZZ y(t1 x1) exp i "( )v( ) d + i f ( )u( ) d d T
T
$ ! 1$!0& ! & ", f g. > ! 2 ! % ! Z Y @Z (t t1 x x1 v() u()) = @t = ;i v(t) Z (t t1 x x1 v() u()) ; i u(t x) Y (t1 x1 v() u()): (22) * ! /, $ (2) $ ! $ 5 !" ! ! $ $ !! (22), ! 2 $ 5 9/ ) !!%3 $* ! ". H!* $ (2) !
Z ZZ y(t0 x1) exp i "( )v( ) d + i f ( )u( ) d d T
T
365
$ ! 1$!0& ! & ", f , g, $ Z (t0 t0 x x1 v() u()) = M(g(x)g(x1 ))(v() u()): (23) < ( !( )*! Z $! (22), (23). 7!!% t1 , x1, u() / $ !! (22) , 0% ! & " 11!& ! . < ! ! !( $ !$*! Z (t0 t1 x x1 v() u()) (23). , !0, ( ! ! / Z ! *! )% !% !!% (t x) (t1 x1). 12. (3), Mg(x) M(g(x)g(x1 )) , # (0 0) 2 V U
(v() + ijj2(t0 t1 ) + ij j2 (t0 t1 ) u())
(v() + ij j2( t1 ) + ijj2(t0 t1 ) u()) u( x) (v() + ij j2( t ) + ijj2(t0 t1 ) u()) u(1 x) 2(v() + ijj2(1 t1 ) + ij j2( t ) u()) u( x)u(1 x1) # v. ! (t x), (t1 x1) $ " (22), (23) %
(xx )
;1(v()+ ijj2 (t0 t1 )+ ij j2 (t0 t ) u())](x x1) ; Z = M(g(x)g(x1 )) 1 F Zt1 (x) ; iMg(x) F;1 Fx1 F;1 u( x1) t0 (v() + ij j2( t1 ) + ijj2(t0 t ) u()) (x) ( ) (x1 )d ; Zt (x1 ) ; iMg(x1 ) F;1 Fx F;1 u( x) 1 t0 (v() + ij j2( t ) + ijj2(t0 t1 ) u()) (x1) ( ) (x)d ; Zt Zt1 2 ; d F;1 Fx F;1 Fx2 u( x)u( x ) (v() + ijj2(1 t1 ) + 1 2 t0 t0 + ij j2( t ) u()) () (x1) ( ) (x) d1: (24)
366
. .
. 7 * (22) t1 = t0. 7 $ $ (22), (23) Z (t t0 x x1 v() u()) (9), (10). 7 1$ (12) !3 (x)
Z (t t0 x x1 v() u()) = M(g(x)g(x1 )) F;1(v() + ij j2(t0 t ) u())](x) ; Zt ; i F;1 Fx Y (t0 x1 v() + ij j2( t ) u()) ( ) (x) d: u( x) t0
@0 00 Z ! !!% (t x), (t1 x1), (x)
Z (t0 t1 x1 x v() u()) = M(g(x)g(x1 )) F;1(v()+ ij j2(t0 t1 ) u())](x) ; Zt1 ; 1 2 ; i F Fx u( x) Y (t0 x1 v() + ij j ( t1 ) u()) ( ) (x) d: t0
@(
(x )
Z (t0 t1 x x1 v() u()) = M(g(x1 )g(x)) 1 F;1(v()+ ij j2(t0 t1 ) u())](x1) ; Zt1 ; i F;1 Fx1 u( x ) Y (t0 x v() + ij j2( t1 ) u()) ( ) (x1) d: 1 t0
D $ (10), !3 ! ! $ $ !! (22): (x )
Z (t0 t1 x x1 v() u())= M(g(x1)g(x)) 1 F;1(v()+ ij j2 (t0 t1 ) u())](x1) ; Zt1 2 ; 1 ; i F Fx1 M(g(x)) u( x1 ) (v() + ij j ( t1 ) u()) ( ) (x1 ) d = t0
(x )
= M(g(x)g(x1 )) 1 F;1(v() + ij j2(t0 t1 ) u())](x1) ; ; iMg(x)
Zt1
t0
F;1 Fx1
(v() + ij j2( t ) u()) ( ) (x ) d: 1 1 u( x1)
H !! (22) 2 ! !% $ (7), 1$ (8) !3 (x )
Z = F;1FxM(g(x)g(x1 )) 1 F;1(v() + ijj2(t0 t1 ) + Zt1 2 ; 1 + ij j (t0 t ) u())](x1)]( )](x) ; iF Fx Mg(x) F;1 Fx1 u( x ) 1 t0 (v() + ijj2( t1 ) + ij j2(t0 t ) u()) () (x1 ) d (x) ;
Zt
367
2 ; i F;1 Fx u( x) Y (t1 x1 v() + ij j ( t ) u()) ( ) (x) d: t0
4( ! (12) Y (t1 x1 v() + ij j2( t ) u()) = (x )
= Mg(x1 ) 1 F;1(v() + ij j2( t ) + ijj2(t0 t1 ) u())](x1) ;
Zt1
; i F;1 Fx2 u(1 x2) t0
(v() + ijj (1 t1 ) + ij j ( t ) u()) () (x1 ) d1: 2
2
7 2 %*! $ " ) ! " >$, !3 Z (t t1 x x1 v() u()) =
M(g(x)g(x1))( ) (x ) F;1(v() +
= F;1 Fx
1
+ ijj2(t0 t1 ) + ij j2(t0 t ) u())](x1) ( ) (x) ; (x)
; iMg(x)
Zt1 t0
F;1 F;1 Fx
u( x1 )
(v() + ijj2( t1 ) + ij j2(t0 t ) u()) () (x1) (x) d ; (x1 )
; iMg(x1 )
Zt t0
F;1 Fx F;1
(v()+ ij j2 ( t )+ ijj2(t t ) u()) 0 1 (x1 ) ( ) (x) d ; u( x) Zt Zt1 ; d F;1 Fx F;1 Fx2 t0
t0
2 (v() + ijj2( t ) + ij j2( t ) u()) 1 1 () (x1) ( ) (x) d1 = u( x)u(1 x2)
368
. . (xx )
= M(g(x)g(x1 )) 1 (xx1)
F;1F;1(v() + ijj2(t0 t1 ) + ij j2(t0 t ) u())](x1)](x) ; (x)
; iMg(x)
Zt1
t0
F;1 Fx1 F;1 u( x ) 1
(v() + ijj ( t1 ) + ij j (t0 t ) u()) (x) () (x1) d ; Zt (x1 ) ; iMg(x1 ) F;1 Fx F;1 u( x1) t0 (v() + ij j2( t ) + ijj2(t0 t1 ) u()) (x1) ( ) (x) d ; Zt Zt1 ; d F;1 Fx F;1 Fx2 2t0(v(t)0 + ijj2( t ) + ij j2( t ) u()) 1 1 () (x1) ( ) (x) d1: u( x)u(1 x2) 2
2
0!& ( !!%, 0% % / )!% ) ! >$, ) ! : * !% !). 7 2 !" 5 (24). @ 0 !.
x
8.
(1), (2)
. 8))95!!" " !!" 1$!0& " (1), (2) ! % M(y(t x)y(t1 x1)) = Z (t t1 x x1 0 0), ( Z | ))95!! ! (t x), (t1 x1) ! (22), (23). 13. 12, $
" (1), (2) % M(y(t x)y(t1 x1)) = (xx )
;1(ijj2(t0 t1 ) + ij j2(t0 t ) 0)](xx1) ; = M(g(x)g(x1 )) 1 F (x)
; iMg(x)
Zt1
F;1 Fz F;1
(ij j2 ( tt0 ) + ijj2(t t ) 0) 1 0 (x) ( ) (x1) d ; u( z )
(x1 )
; iMg(x1 )
Zt1
369
F;1 Fx F;1
(ij j2 ( t t0) + ijj2 (t t ) 0) 0 1 (x1) ( ) (x) d ; u( x) Zt Zt1 ; d F;1 Fx F;1 Fz 2t0(ijtj02 ( t ) + ij j2( t ) 0) 1 1 () (x1) ( ) (x) d1: u( x)u(1 z )
(25)
. $ % $9 ! *
(24) v = 0, u = 0, $ (25). 14. (1), (2) # g, ", f , (3), % # " "
v = 0 " (v() + ijj2(1 t1 ) + ij j2( t ))=v(s) Mg(x), M(g(x)g(x1 )), M(f (t x)f (t1 x1)) . ! $
" (1), (2)
M(y(t x)y(t1 x1)) = (xx ) ;1 = M(g(x)g(x1 )) F "(ijj2 (t0 t1 ) + ij j2(t0 t ))](x x1) + 1
+ + +
Zt1
t0
Zt
t0
Zt
t0
Mf ( x1 )Mg(x) d +
(xx )
Mf ( x)Mg(x1 ) d +
;1" (ij j2( t ) + ijj2(t0 t1 ))](x x1) 1 F
d
(xx1)
(xx )
;1" (ij j2( t1 ) + ijj2(t0 t ))](x x1) 1 F
Zt1 t0
(xx )
;1" (ijj2(1 t1 ) + ij j2( t ))](x x1) 1 d1F
M(f ( x)f (1 x1)):
(26)
. @0 00 $"!% &% " f ! %, (v() u()) = " (v())f (u()), ( " f !! | 30 0 1$!0& ! % " f . < , f (0) = 1, f (0)=u( x1) = iMf ( x1 ), 2f (0)=u( x)u(1 x2) = ;M(f ( x)f (1 x2)). D $ 2 !! " ) ! >$, $
370
. .
F;1 Fx1 F;1 " (ij j2( t1 ) + ijj2(t0 t )) t0 (0) f u( x1) (x) ( ) (x1) d = Zt1 (x) = Mg(x) F;1F;1" (ij j2( t1 ) + (x)
; iMg(x)
Zt1
t0
+ ijj (t0 t ))Fx1 Mf ( x1 )]( )](x)](x1) d = 2
(x)
= Mg(x)
Zt1
t0
F;1F;1" (ij j2( t1 ) + (x )
+ ijj2(t0 t ))](x1) 1 = ;
Zt
t0
Mf ( x1 )](x) d = (xx )
;1" (ij j2( t1 ) + ijj2(t0 t ))](x x1) 1 F
Mf ( x1 )Mg(x) d:
F;1 Fx F;1 Fz " (ijj2(1 t1 ) + ij j2( t )) t0 t0 2f (0) u( x)u(1 z ) () (x1) ( ) (x) d1 = Zt Zt1 = d F;1F;1"(ijj2(1 t1 ) + Zt
d
t0
Zt1
t0
+ ij j ( t ))Fxz M(f ( x)f (1 z ))]( )](x1)](x) d1 = =
Zt
t0
(xx1 )
2
d
Zt1
t0
(xx )
;1"(ijj2 (1 t1 ) + ij j2 ( t ))](x x1) 1 F
M(f ( x)f (1 x1)) d1 : 7 2 !! 1$ $ (25) $ (26). @ 0 !.
0 1
>$ % 0( * ! (13) " !!" 1$!0& (25) / ! )9 ($ )% !% * %3 $"!%3 &3 ", f , ! %*/ 30-
371
0 " 1$!0& ! (v() u()) 2 3 & . 7 ! %3 $"!%3 &3 g, ", f % ! 0( * ! 1$ (14) ! ! 30 0 " 1$!0& ! " 0 * ! Mg(x), Mf (t x), !3* ! " !!" 1$!0& 1$ (26) ! ! " , Mg(x) $/ $/ !!$/ 1$!0& & f . A $ % ! $/ 0! !$ !( !( ! . 8 , )%! 3 !" / $ $ !! !!%3 1$!0& " ! . >$ % (14) (25), (26) 0 % /, )9 $ 2 ! *! ) ! 3 !!%3 1$!0& " & ". M !0%3 !%3 $3 0 $ !! $/. >$ % (25), (26) / !3 0 & / ! !!% t, t1 , x, x1. D (25) (14) !3 !! 1$!0& My2 (t x) ; (My(t x))2 . E ) ( ! 1 .. M. A $ E. . >$ 0 $ )$* ! ) 11!& !%3 $ !! " $"!% 0211 & ! .
2
1] . . ,
!
" !
// $%&. | 1992. | *. 33,
,
2. |
$. 80{93. 2] 012 . 3. $42 1 5 6 4 - 5 . | %.: 82, 1980. 3] 09 :. 8., ; $. . 6 5 2 2 9 ". | %.: 82, 1972. 4] . . > 9 12 54
" 5 // %. "2. | 1993. | *. 53, 5. 4. | $. 36{44. 5] . . 95 1
5 " 5 // . -1. | 1975. | , 11. | $. 2027{2039. 6] . $. >
A
5 2 42 "2. | %.: 82,
1976.
( ) * 1997 .
,
. .
. . .
512.552+512.553
: , , , .
! , " , , " # . !! !! $-% !, &'( $, &$ ! ) &" ! ! .
Abstract S. V. Zelenov, Zelmanowitz density theorem for rings graded by semigroup, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 373{385.
Rings graded by semigroup and modules graded by polygon over semigroup are considered in the paper. Notions of graded critically compressible module and quasi-injective hull are introduced. The structure of the corresponding objects is studied. The density theorem for graded weakly primitive ring is proved.
: ( . !2] !6]). & ' ( )
. !9] , , ,' - , . & . /, !11] - - . 1 !12] , , ,' , . !10] . 3- -, , 2001, 7, 0 2, . 373{385. c 2001 , !" #$ %
374
. .
-, - -. 7 & , - !16] !17]. !1] 1. . 8 - ') . 1') , - , . , !15] - - - -. 1990 - : -, ;- 1 ( !14]
, - -, -, - -, - ( -. 1<
-- , - --, -, - ( --. !3] !4] - ' - S- ( . !7]). =, ' - & - - - , -- - ' ( . ' !5]). >- -, , - - , - -,
-' -, -- ', , -, --. - - -, < , - ( . -,' - !17] !8]) - () - & | . !16] !17]). ;
-, - -, - , - - & , ,
. A- ) -
-, , ( - , - !15]. 8 - - ,, --, 8. . /) - - - .
1. A- H G | --. / A (H G)-, H - A , G | , ) ( , 1.1.
375
, a 2 A, h 2 H g 2 G -,'
: (ha)g = h(ag): A- A B | (H G)-, : B ! A | C (H G)- . 1.2. . R -- G, -' - L fRg j g 2 Gg - , R = Rg Rg Rh Rgh g h 2 G. g2G S 7 h(R)def = Rg , g2G , - rg 2 Rg g. 3, - r P - ( r = rg , rg - g2G g 2 G. :- rg , ( r. 1.3. A- R - -- G. /- M A R--, -' - L fMa j a 2 Ag - - M, M = Ma a2A Ma Rg Mag a 2 A g 2 G. S 7 h(M) def = Ma , a 2A -, - ma 2 Ma a. 3, - m P - ( m = ma , ma - a 2A a 2 A. :- ma , ( m. 1.4. A- N - M , L N = (N \ Ma ) , ( , , ( x 2 N a2A N. 1.5. ;
R-- M N, - A B. >C f : N ! M R-- h, h 2 H, f(Nb ) Mh(b) b 2 B. >- C h -, -, -- HOM(NR MR )h - Hom(NR MR ). D N = M = idA , , END(MR )h def = HOM(NR MR )h , , L , END(MR ) def = END(MR )h (C h2H End(MR ) - H , - M - - ( .
376
. .
L
G C HOM(NR MR )h S h2H , C HOM(NR MR )h | . h2H 1.6. A- M | - - N | - -. I M=N ') - -, (M=N)a def = (Ma + N)=N. K ( -, M ! M=N - C, ) ( . 1.7. >- , - ( . L - -, - -, !13]. P - ) - - ,
' . - ,
. D .
2. A- H G | --, A | (H G)-. A- - ' G- A ( . ' !4]):
G- : - a 2 A , g1 g2 2 G ag1 = ag2 g1 = g2Q
G- : - , g 2 G , a1 a2 2 A a1g = a2 g a1 = a2 . 2.3. . , A --- H -,' :
H - : - , a 2 A h1 h2 2 H h1a = h2 a h1 = h2Q H - : - , h 2 H , a1 a2 2 A ha1 = ha2 a1 = a2. 2.4. A- R | - G , M | - A R--. 2.5. . A- N M | - A R--, ; = HOMR (N M) - H - ' H- A. I , f 2 h(;) - - K f(N) M - Ker f f ;1 (K) , - N. . 8 - - - ( . !4, 2]). 2.1. 2.2.
377
2.6. . - - M C N ! M, N | - - M. 2.7. . >- - , , - - - - . 2.8. . :- - R-- M , C - - -. 2.9. . :- - R-- M - , , , - C--. 2.10. ! .
M : (1) M - (2)
M . , !
", (2), . . (1) ) (2). A- f : N ! M | - - (C - M. A - M ,
-' - C g : M ! f(N). :
M !g f(N) = N= Ker f M= Ker f ) C M M= Ker f. - M Ker f = 0, f | C. (2) ) (1). A- f : M ! M=N | C, N | - - M. A f(M) = L=N - L M, N $ L M. D : L ! L=N C, h = f ;1 - - (C M, , C. : N Ker Ker h, , N = 0. : , M - - , (2) K L | - - -, K \ L 6= 0.
, K \ L = 0, K + L L - - - (C - M - . A . 2.11. . /-, - - , (2) , .
378
. .
:, - - , - (C - (C -. . - M - < - T ! - M. M, A- - - M^ < - ^ | ) - (C . M, V def = END(M) 2.13. ! . #" M | % R-
". & ' ( ! ' % : (1) VM % ' ' ) ' %
M^ ,
' M (2) VM )
(3)
" M ) "
, M = VM . . (2) >- - VM . < . A- N | - - - VM. D f : N ! VM | -- - C, f - - 2 V. A - (VM) VM, - - - C T 2 ENDR (VM), T - - f, , VM < . (1) A- P | - < ^ ' M. / , P VM. - - M, (, , , P P , 2 h(V). &, Q() def = fx 2 P j x 2 P g - - P, - - , Q() = P , 2 h(V). W - 2 h(V) Q def = Q(). ;
C Q ! P: q 7! q. A - P < , -' - 1 2 ENDR (P ), 1q = q q 2 Q, ) 1 , - ' H-, - . K < M^ - -' C 0 2 V, 0x = 1x , x 2 P , ) 1 0
, ( ). I 0P P , (0 ; )P = 0, P P . K, Q() 6= P, (0 ; )P 6= 0. A - M | -' ^ P -' - M, ^ - - M, 0
, ( ; )P \ P 6= 0. : x 2 P 0 6= y 2 P , y = (0 ; )x 2 (0 ; )P \ P, 0 x = 1x 2 P -, x = = 1x ; y 2 P. : x 2 Q(), x = 1x, , y = 0, - y. (3) (1) (2). A . 2.12.
379
2.14. -, MT = VM. 1 , - : ,
def
!
.
K ( , -, MT = XM, X = END(MT R ). 2.15.
! .
(1) * MR
,
"+ D def = END(MR ) ! %
"+ X, % , X "+
. (2) * MR - , D %
!" - "+ ' X. T ( . (1) A- 2 h(HOMR (M M)) Ker 6= 0. , = 0. A- 6= 0. I, 1 = j;1 (M \M ) , 1 6= 0. A - 1 - (C - M, 1 | C. : - , Ker 1 = Ker \ ;1 (M \ M) 6= 0, M -C. A- , 6= 0. A- 2 h(END(MT R )) Ker 6= 0. , ( - = 0. A- | - ( V. T - MT | - I jM 2 HOMR (M M), ^ MQ - jM . , (M) 6= 0, (M) \ Ker 6= 0, MT R -C. I , Ker( jM ) 6= 0. 1 , -, (M) = 0. A - 0 6= 2 h(V) , ,, MT = VM = 0. K , ( h(D) , X. K,
D - X. A , X - . ;
0 6= 2 h(X). K
-, ) , , C. A- 1 (C - M^ R Q 1 C, ) 1 , (- - ' H-, - - ). K , MR -C, -, M^ R , , ^ 1 . A- 1 2 V ( 1 , 1 M^ = M, ^ A - MT 1 1 = 1 = 1 1 M. ^ = 1 = , = 1 jM^ . - - M,
380
. .
(2) A- MR . A, ( - X - D. A- 0 6= 2 h(X). I N def = M \ ;1M 6= 0 | - - M, 0 6= 2 HOMR (M N) D. Y , 0 6= 2 D, . A .
3. !
R - R1 - < R . 3.2. . : ) - ! , - - -. 3.3. : ) R- ) - (X VR MR ), V - - A (X R)--, X | - -- H , XM = V , R - M ( , R END(V )). &, - X , - - -- H. A -, , - - ' (- ( !17, Theorem 2.2]). 3.4. " . "+ R : (1) R ! % (2) R- (, (X VR MR ), '
' X v1 : : : vk 2 h(V ) 0 6= a 2 h(X), !' n1 : : : nk 2 M , r 2 R,
ani = vi r 2 M i = 1 : : : k, % , % k = 1 n1 2 h(M) r
(3) R- (, (X VR MR), ' 2 END(V ) k P ' ' X-%
% U U 0 def = Xmi i=1
V , m1 : : : mk 2 h(M), r s 2 R, ( r ; s)jU = 0 rjU 0 , % , U = Xm U 0 = Xm0 % m m0 2 h(M), m
, s
. . (1) ) (2). A- MR | - - -. ; ( . . 2.14 2.15) , D = END(MR ) - , 1 - X = END(MT R ), MT = XM. I , - R- )- (X MT R MR ), T
R - END( M). 3.1.
381
T Y , vR 6= 0 , 0 6= v 2 h(M). 1 I MR vR \ M 6= 0, C a 2 HOMR (M vR1 \ M). A - MR , -' -, m 2 M r 2 R, mr 6= 0. , 0 6= am = vs s 2 R1, , 0 6= a(mr) = (am)r = vsr 2 R. T A- X ( v1 : : : vk 2 h(M). T r i = 1 : : : k Ai = vj | - ( j 6=i - - !4, 2]) R. A
( . !4]) vi Ai 6= 0 i, , -, k T vi Ai \ M 6= 0. A - MR , C T i=1 k T a 2 h HOMR M vi Ai M . I , n1 : : : nk 2 M i=1
-' -, ri 2 Ai i = 1 : : : k, ani = vi ri 2 M i. k P A r = ri , - ani = vi r 2 M. i=1 A k = 1 ( a vi ni , - r . (2) ) (3). L ' - , (3), ( m1 : : : mk X. K l P
V = XM U Xmi def = V 0 i=k+1 mk+1 : : : ml 2 h(M). , , mi k + 1 6 i 6 l, , m1 : : : mk mk+1 : : : ml -, X- W def = U 0 + V 0. :) ( r s R, ( r ; s)jW = 0 rjU 0 - C. n P A Wn = Xmi . A - n -' i=1 r s 2 R, ( r ; s)jWn = 0 rjU 0 | - C. A n = 0, - (2), r 2 R, mi r = ami i = 1 : : : k 0 6= a 2 h(X)Q - W0 = 0, ( s 2 h(R) . A- 1 6 n 6 l. A - - , -' -, r0 s0 2 R, ( r0 ;s0 )jWn;1 = 0 r0 jU 0 | - C. A 0 = r0 ; s0 Q r s 2 R, ( 0 r ; s)jWn = 0 rjU 0 | - C. , , v 2 Wn v (r0 r) = v( 0 +s0 )r = v(s+s0 r), r0 r - C. I: mn 0 2= U 0 + Wn. A- 0 = g01 + : : : + g0q , g01 : : : g0q 2 2 h(END(V )) | 0 . I, - (2), ) ( 0 6= a 2 h(X), ' ( m1 : : : mj mn g01 : : : mn g0q , j = max(n k). Y , -' -, r s 2 R,
382
. .
ami = mi r (1 6 i 6 j) amn = (mn g01 )r a0 = (mn g0p )r (p > 1)Q a0 = mi s (i 6= n) amn = mn s a0 = (mn g0p )s (p = 1 : : : q): I, , rjU 0 | - C. , 1 6 i < n mi 0 r = 0 = mi s, mn 0r = amn = mn s. I , ( 0 r ; s)jWn = 0. II: mn 0 2 U 0 + Wn . D mn 0 = 0, 0 6= a 2 h(X) r 2 R , ami = mi r 1 6 i 6 k, ) s = 0. P K, , 0 6= mn 0 = ci mi , =1 0 6= ci 2 X 1 6 i1 < : : : < i 6 j = max(n k). A- ci = cig1 + : : : + + ci gq , cigp 2 h(X) | ( ci . 1 - (2), ( 0 6= a 2 h(X), ' ( m1 : : : mj Q 0 6= b 2 h(X), ' ( a;1 ci1 g11 mi1 : : : a;1ci g1 mi mi (1 6 i 6 j, i - i = 1 : : : ). I -' - r 2 R, 1 6 6 bmi = (a;1ci g1 mi )r 2 M b0 = (a;1 ci gp mi )r 2 M (p > 1) bmi = mi r (i 6= i 1 6 6 )Q -' - s 2 R, a0 = mi s (i 6= n) a
X
=1
bmi = mn s: P
&, , bmi 2 M. =1 Y , rjU 0 | - C. , P P 1 6 i < n mi 0r = 0 = mi s, mn 0 r = ci mi r = abmi = =1 =1 = mn s. I , ( - ( 0 r ; s)jWn = 0. A- U = Xm U 0 = Xm0 m m0 2 h(M) m . A, -' -, r 2 R s 2 h(R), ( r ; s)jU = 0 rjU 0 | C. Y- - - - , ) r0 2 h(R), m0 r0 = am0 0 6= a 2 h(X). &, r0 - m0 . ( s0 0. , - 0 def = r0. A - m , - m 0 . D Xm = Xm0, - n = 1, mn def = m, ) ( r1 s1 2 R - C 0. -
383
m m 0 , - -- (2) C- , ( s1 2 R . 8 - s0 = 0, s s1 , ( r , r0r1 . K, , m m0 X. I: m 0 2= U 0 + U. I, - (2), ) ( 0 6= a 2 2 h(X), ' ( m m0 m 0 . Y , -' -, r1 2 R s1 2 h(R), am0 = m0 r1 am = (m 0 )r1 Q a0 = m0 s1 am = ms1 a0 = (m 0 )s1 : I, , r1jU 0 | - C. , m 0 r1 = am = ms1 . I , ( 0r1 ; s1 )jU = 0. A - s0 = 0, s s1 , ( r , r0r1 . II: m 0 2 U 0 + U. D m 0 = 0, 0 6= a 2 h(X) r1 2 R , am0 = m0 r1 , ) s1 = 0. K, , 0 6= m 0 = c , 0 6= c 2 h(X) m, m0 . 1 - (2), ( 0 6= a 2 h(X), ' ( m m0 Q 0 6= b 2 h(X), ' ( a;1c ,
m, m0 6= . I -' - r1 2 R, b = (a;1c )r1 2 M b = r1Q -' - s1 2 h(R), a0 = m0 s1 ab = ms: Y , r1 jU 0 | - C. , m 0 r1 = c r1 = ab = ms1 . I , ( - ( 0r1 ; s1 )jU = 0. A - s0 = 0, s s1 , ( r , r0r1 . (3) ) (1). A- M (3). A, R--, ) ( - M, - -. , 0 6= m 2 h(M) - mR1 . , - 0 6= t 2 R. I Mt 6= 0, - MR . K, 0 6= n 2 h(M), nt 6= 0. 2 END(V ), m = n, ) r s 2 R, r = s Xm rjn | - C. I mst = m rt = nrt 6= 0, - 0 6= nr 2 Xn nt 6= 0. Y , mR1 t 6= 0. A, mR1 . , - NR | - - -. A 0 6= n 2 h(N) ) 2 END(V ) , n = m. r 2 R s 2 h(R), r = s Xn rjm | - C. I -' -
384
. .
a 2 X, 0 6= mr = am, , 0 6= am = mr = n r = ns 2 N. K ( m, n s -, a . Y , 0 6= a 2 h(HOMR (mR1 N)). : , - , mR1 C. ( , C MR . K, - NR | - - - MR , - (C 0 6= 2 h(HOMR (N M)). ;
m 6= 0 m 2 h(N). ( 0 6= n 2 h(N)
2 END(V ), n = m, ) r s 2 R, r = s Xn rjm | - C. I (n)s = (ns) = (n r) = = (mr) = (m)r 6= 0, , n 6= 0. A - Ker | - - ( , 2.5), , -, C. I .
"
1] . .
. // . . 8. | : "# $ , 1989. | '. 3{16. 2] ,. - . ' .. | /.: "# $ 0 , 1961. 3] '. . 1 . 2 // Kurosh Algebraic Conference '98. Abstracts of Talks. | /.: /56, /7 - 2 0 8 $, 1998. | '. 174. 4] '. . 1 .
0 2 // 6-7 2 7 20 /5'6. | /., 1999. | '. 107{110. 5] '. . 1 . 5 1$ 2 // # , 7 - 0 , 0 70-= 8 >0 /56 (10{12 8 1999 .). | /.: /56, /7 - 2 0 8 $, 1999. | '. 25{26. 6] ". B . D $. . | /.: / , 1971. 7] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev. Rings with Generalized Identities. | New York: Marcel Dekker, Inc., 1996. 8] C. Faith. Lectures on injective modules and quotient rings. Lecture Notes in Math., vol. 49. | Berlin, New York: Springer-Verlag, 1967. 9] R. E. Johnson. Representations of prime rings // Trans. Amer. Math. Soc. | 1953. | Vol. 74, no. 2. |P. 351{357. 10] K. Koh, J. Luh. On a Unite dimensional quasi-simple module // Proc. Amer. Math. Soc. | 1970. | Vol. 25, no. 4. | P. 801{807. 11] K. Koh, A. C. Mewborn. Prime rings with maximal annihilator and maximal complement right ideals // Proc. Amer. Math. Soc. | 1965. | Vol. 16, no. 5. | P. 1073{1076. 12] K. Koh, A.C. Mewborn. A class of prime prime rings // Canad. Math. Bull. | 1966. | Vol. 9, no. 1. | P. 63{72.
385
13] C. NXastXasescu, F. van Oystaeyen. Graded Ring Theory. | North-Holland Mathematical Library, vol. 28. | Amsterdam: North-Holland, 1982. 14] C. NXastXasescu, S. Raianu, F. van Oystaeyen. Modules graded by G-sets // Math. Z. | 1990. | Vol. 203, no. 4. | P. 605{627. 15] Liu Shaoxue, M. Beattie, Fang Hongjin. Graded division rings and the Jacobson density theorem // Journal of Boijing Normal University (Natural Science). | 1991. | Vol. 27, no. 2. | P. 129{134. 16] J. Zelmanowitz. An extension of the Jacobson density theorem // Bull. Amer. Math. Soc. | 1976. | Vol. 88, no. 4. | P. 551{553. 17] J. Zelmanowitz. Weakly primitive rings // Comm. Algebra. | 1981. | Vol. 9, no. 1. | P. 23{45. & ' 2001 .
{ . .
e-mail:
[email protected]
512.64
: , , .
! " # ! # $! %& ' ()% . * , ' +% #! ,)' -) ) % (-+(- '. .-, '$, % ( ' $ & ), ,/ ', - - 0 ' ' '' % )/ -,. %' + 1% '! ' / / &/ 2 3(, ()% &% ! | &/ 3( . 2%- &(- ! %' + ' ' % (-+(- '. ++ -%&( 1 + ( !! ' ' %&', ! (-+ %& % (-+(- ', - &(- ' #' ' %& ' . 3" # %& & -. 5 %-') (! & ' (). -, ! ! &' %& ' (!, ! % 1-+(- %& ' +- &- (-' "! T- (!- 1++, /% -% &)$- --. 6 & ( - 7(-{3( -/ "/ -. - %, ( () ' () " #/ %& ' . n
n
Abstract A. N. Zubkov, The Procesi{Razmyslov theorem for quiver representations, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 387{421.
We ?nd the generators and the de?ning relations of any quiver representation invariant algebra. To be precise, let ( @) be a quiver representation space with respect to the natural action of the group consisting of all isomorphismsof the quiver representations. Denote this group by GL(@), where @ is a dimensional vector of the quiver representation space ( @). For example, when our quiver has only one vertex and several loops are incidentalto this vertex we have the well-known case R Q k
k
R Q k
k
Q
, 2001, - 7, A 2, . 387{421. c 2001 !, "# $ %
388
. . of the adjoint action of the general linear group on the space of several -matrices. In the characteristic zero case Artin and Procesi described the quotient of the last variety under this action in their classic works. In the case of arbitrary in?nite ground ?eld this result can be deduced from some results by Procesi and Donkin. In a similar manner we can de?ne the quotient of the quiver representation space ( @) by the action of the group GL(@). By the de?nition we have that E ( @) GL(@)] = E ( @)]GL(k) . Donkin has recently found the generators of that algebra. In this article we de?ne a free quiver representation invariant algebra. Then we prove that the kernel of its canonical epimorphism onto E ( @)]GL(k) is generated as a T-ideal by the values of the coeKcients of the characteristic polynomial with suKciently large number. This result generalizes the well-known Procesi{Razmyslov theorem about trace matrix identities. Besides, by an alternative way we can deduce Donkin's result about the generators of E ( @)]GL(k) . n
R Q k
K R Q k =
n
k
k
K R Q k
K R Q k
K R Q k
2].
Q = (V A h t), " V | $
% , A | $ &
. ' $ h t: A ! V ) $ a 2 A h(a) 2 V * t(a) 2 V . + $
%
, , V = f1 : : : ng. . , / E1 : : : En " K
k1 : : : kn . . , 0&
k1 = (k1 : : : kn). '
GL(k1) " GL(E1) : : : GL(En) = = GL(k1) : : : GL(k Q n). . 2 Q R(Q 1k) = HomK (Eh(a) Et(a)). 3 k1 $ , a2A 4
,)5 R(Q 1k). 6 GL(k1) 2 R(Q 1k) g (ya )a2A = (gt(a) ya gh;(1a) )a2A g = (g1 : : : gn) 2 GL(k1 ):
, m % n n * , "," 2 GL(n) | 7 2 2
% 2 m 4
5 (nm ) = ( n : : : n ).
| {z } m
,* 88 " R(Q k1) 8 Kyij (a) j 1 6 j 6 kh(a) 1 6 i 6 kt(a) a 2 A]. + $" a 2 A
Yk (a) 0) * (yij (a))16j 6kh a 16i6kt a . + 2 GL(k1) R(Q 1k) $ ,* Yk (a) ! gt;(a1) Yk (a)gh(a) , a 2 A. "
2 k1 , , " /.
, , Y (a) Yk (a). + , " KR(Q 1k)]GL(k ) $ 7 j (Y (ar ) : : :Y (a1 )), " j | j-2 788 * /
" " , 1 6 j 6 k, k | ,
, ( )
( )
{
389
/ k1 : : : kn. ", & a1 : : : ar ) 2 * (
). : , 2 | ,,
0
$ . ", " 8 ,, 0& , 2. . , k1(1), k1(2), / k(1)i > k(2)i , 1 6 i 6 n. .
, k1(1) k1(2). 3], 2 7 8 KR(Q 1k(1))] ! KR(Q 1k(2))] )/ / k1(1) k1(2) )0 . ; , a 2 A. . , h(a) = i t(a) = j. ' ki(t) kj (t)
mt lt , t = 1 2. . ) m1 > m2 l1 > l2 . . ) % 7 8 $ ysr (a) ,, , s > l2 r > m2 . ,/
/ 7 8 | $ $ . < $ , 3,4], $ , * 7 8 " k (1)k (2):KR(Qk1(1))]GL(k (1)) ! KR(Qk1(2))]GL(k (2)). ,, , + 7
% . < , 2 " fKR(Q 1k)]GL(k ) k (1)k (2) j k1(1) k1(2)g: ' 2 7 " , 2 J(Q) = = KR(Q)]GL(Q) , & 2 " 2 2 Q. . , )" k1
) * ) J(Q) KR(Q k1)]GL(k) . > 7 2 *
T (Q 1k). ? a 2 A. 3 4 5 a ( , h(a) t(a)) $ , , &
. . $ , 0& a~ t(~a) = t(a), h(~a) = h(a). ;% 2 ~ A" KR(Q 1k)]
Q. ~ k1)]. < $ , ,
" KR(Q . B
",
) " ~ k1(1))]GL(k (1)) 0 ;;;;! KR(Q 1k(1))]GL(k (1)) ;;;;! KR(Q ? ? y
? ? y
~ k1(2))]GL(k (2)) 0 ;;;;! KR(Q 1k(2))]GL(k (2)) ;;;;! KR(Q )/ k1(1) k1(2). 3 / 2 /
~ = KR(Q)] ~ GL(Q~ ) . 4;$5 $ J(Q) = KR(Q)]GL(Q) ! J(Q) $
2 , ) " & " 4 $)0 /5. ' & J(Q(1)) = KR(Q(1)]GL(Q(1)) . ,, 1)]GL(k ) , "
8 " KR(Q( 1 ) k $ " KR(Q(1) 1k)]GL(k ) | 2 4 % 5 /" , $ " J(Q). % ,
390
. .
2 * J(Q(1)) ! KR(Q(1) 1k)]GL(k )
T (Q(1) 1k). > T (Q k1) 7 " 4
5 / &
Q(1), ) Q, , * * 2 Y (a) ! 0 / a 2 A(1) n A. . P 2 , 48 , 5 $ Y (a) ! ! a :::a fa :::ar Y (ar ) : : : Y (a1 ) 8a 2 A(1)(A), " fa :::ar 2 J(Q(1))(J(Q)), r &
a1 : : : ar " Q(1)(Q) 2 t(ar ) = t(a), h(a1 ) = h(a). D 48 , 5 $ * ) $2 " KR(Q(1) 1k)](KR(Q 1k)]), , , )0 2 " . > $ , 7 " , 8 k (1)k (2). E , 2 "
J(Q(1))(J(Q)). >, ,
, 4
5, $
, /
0 *, 2. F J(Q(1))(J(Q)) , T- , , / / . E 0& , ) " , * ( , ," / ). <
, $ 8 , 2 , 7 2 , . . T (Q(1) 1k) ( T-) j (Y (ar ) : : :Y (a1)), (a1 : : : ar ) | Q(1) i, 1 6 i 6 r, kt(ai ) < j .
T(Q 1k). $ ,, / 7 , ,
0 2, 3], 8 , * , 3], ,% , 0 2 , | 7
& % 2 2 $ . I $ ,, 7 , , 8 + ) 2]. .,, , / " , 8 + ) " / " 2, $ * ) 0,, 4 8 ,5 ,
7 2 ". 1
1
1
1. 3) / ) 8 * ) / / % 2 8 , * 2 ( / 8 , * 2 3 2), $ 4tilting5 / $ 2 3,5,8]. +
, I? (3?). K " , " , K-" . " , ,*, 7 " ,, ,* 788 * | Z.
{
391
K )0 ,2
0 " $ 1.5 5], , ", / " 2 GL- 2. ",
) 8 1 6]. 1.1. ! V | GL(N)-! "#, W | GL(N)-! $#, n < N . % & ' ( dNn F 1]. ) HomGL(N ) (W V ) ! HomGL(n)(F (W) F(V )) '.
. + $ 5], & $ ), " W = NN (), V = rN ( ) ( N , 7 GL(N)- ). <" HomGL(N ) (W V ) 6= 0 ! = 8]. K "2 , F(NN ()) 6= 0 (F(rN ( )) 6= 0) " , ", "
( ), n + 1-2, . . 7 2 , " * ,,
HomGL(N ) (W V ) = K, F(W) 6= 0, F(V ) 6= 0, ,, HomGL(n) (F (W) F(V )) = K, F(NN ()) = Nn() ( F(rN ()) = rn()). 3 )0 " HomGL(N ) (W V ) = K $ , * ) NN () ! LN () ! rN (). .
| 7 7 8 , | $ , , LN () | 8 -, NN () *, rN () 8]. ., 8 F F(LN ()) = Ln(), 2 7 8 HomGL(N ) (W V ) ! HomGL(n) (F (W) F (V )). P . + " GL(k1) 0 8 Q . R ,2 " GL(k1)
T (k1) = T(k1 ) : : : T(kn), )0 " | B(k1) = B(k1 ) : : : B(kn ) B ; (k1 ) = B ; (k1) : : : B ; (kn). E , B(l) | "
/ ",/, B ; (l) | $ ",/ * GL(l). ) 1 = (1 : : : n), " $2 i | , ( ) )0 " T (ki ), i = 1 2 : : : n. . , GL(k1) / " GL(ki ). 3 , $ / X(T(k1 ))+ " GL(k1) X(T (k1 ))+ : : : X(T(kn ))+ . B
",
," 1 2 X(T (k1 ))+ 8 r(1) = r(1 ) : : : r(n) N(1) = N(1 ) : : : N(n). <
, 0& 2 8 Q k1(1), k1(2), / k(1)i > k(2)i , 1 6 i 6 n. 1 + P )" GL(k(1))- V $ ) dk (1)k (2) (V ) = = V , "
& 1 = ( 1 : : : n), $" i ,
( , ) k(2)i , 1 6 i 6 n. S $ GL(k1(2)) " 2 GL(k1(1)), , dk (1)k (2) (V ) $ GL(k1(2))-,. K
% , dk (1)k (2) (Nk (1)(1 )) 6= 0 " , ",
392
. .
" $ 4 5 i
/
> k(2)i + 1. 3 7 dk (1)k (2)(Nk (1) (1)) = Nk (2)(1 ). < $
* / 2 rk (1)(1 ),
/. F" 8 dk (1)k (2) , dk(1) k(2) dk(1) k(2) : : : dk(1)nk(2)n . F " " % ,
40& 25 1.1, 2 & 2 GL(N) GL(k1(1)), GL(n) GL(k1(2)), dNn dk (1)k (2) . 1.1. ! V | * +tilting, G-! (G | ! ). , V - , & , V 6= 0. . ! V "#, * ' * | r(), $#, * ' * | N(). %, dimV = 1, / ! ! N V , * V=N = r() (! & !, & V & "# ). 0, / * !, '* N() (! & ! ! $# V ).
. R$ / = f j 6 g, , 0 7]. B
", , O (V ) = V , " O (V ) | ,% 2 , V , * 8 " ) % 7]. R$ 0 = n fg $ 0 , 7 , O (V ) c I?, O (V )=O (V ) = r()t, " t = V : r()]. ' )
$ . 3 / 2 * / 2 8] 0 V / . S N( ) / 8 , * ) 3 2 V , N( ) = r( ) 8] / I? V . 3 r( ) / $ w0 = ;w02 = ; 6 ( ) 6 ). . $ $ , I? V , ) & 8 r( ). + 0& , ) 3?. F / /
$ 2 $ , . + , ""
% " . . , 0 ) / N N 0, N = N0 = N(). F 0 , 8 V=N V=N " ,% . + 2 ,, 8 ,2 /
V
P a ch N( ). K "2 , N( ) / 6 , 6 PdimV = 1, a = 1. 3 , ch V=N = ch V=N 0 = ch V ; ch N() = = a ch N( ). < T K "2 , (N + N 0)=N 0 = N=(N N 0 ) 6= 0. ' )2 ,2 8 N()
)
, * 2 8 L() 8], ,, ,
$ . .
% , . V )
% (i j) & 2, 2& 1
0
0
1
2
2
393
{
a 2 A, h(a) = i, t(a) = j. $2 2
% $ Aij = fa 2 A j h(a) = i t(a) = j g A. & " i j. R0 , wij = jAij j & % 2 i j. R$ /
B = B(Q).
, Q(1)
& 2 % , 7 / ( 2, , /" , , B). +
, " KR(Q 1k)] $ ,
Y O
a2Aij
(ij )2B Y O
(ij )2B
O
a2Aij
M
ra
O
KY (a)](ra)
=
KY (a)] Y
O
(ij )2B a2Aij
M
ra
S ra (Ei
E) j
" KY (a)](ra ) $ S ra (Ei Ej ) yst (a) ! et es GL(ki) GL(kj )-, (. 3]). 3 , 2 % 8 | 7 8 GL(k1)- 2. 1 1 P ? k(1) k(2) , r1 = (ra )a2A . 4'0)5 , ra
r. a2A ' S t (V W ), GL(V ) GL(W)-,,
8 , * ) 8 L (V ) L (W), " L (?) | , Q , )0 2 ) jj = t 9]. 7 2 8 , * . . $ " t " 8 . +
$" = (1 2 : : :) t
: X (V ) X(W) = = X (V ) X (W) X (V ) X (W) : : : ! St(V W ) (v11 ^ : : : ^ v1 ) (w11 ^ : : : ^ w1 ) (v21 ^ : : : ^ v2 ) (w21 ^ : : : ^ w2 ) : : : ! ! det(v1i w1j )ij=1 det(v2i w2j )ij=1 : : : : K / Im , " 8 ,% ,
M . <" 0 M(t0:::) : : : M(11:::1) = S t (V W) | 8 , * 3,9]. + $" M " % 8 , * M_ $ , & / Im , / " 8 " ,% . ? M =M_ 8 L (V ) L (W) 9]. 1
1
1
2
1
2
2
2
1
2
394
. .
' 0& , 2% ", L (V ) = r(~) GL(V )-,. ~ E , | , $& . ", , Q
) , 0 ;! Cm ;! Cm;1 ;! : : : ;! C1 ;! L (V ) ;! 0 ) & | 7 / 2 % / 2 V , C1 = X (V ). 3 , 7 2 , I? GL(V )- 6]. 3 0, % 2 , & " " % , r1 " KR(Q 1k)]
8 , * ) 8 Y O O
a2Aij
(ij )2B
(La (Ei ) La j
(E ))
GL(ki)wij GL(kj )wij -,. E , ja j = ra , a 2 A. (ij )2B Q Q + GL(ki)wij
G, GL(kj )wij (ij )2B (ij )2B
H. ", , A = (a )a2A ~ A = (~a )a2A . Q N N . ,
2 4$ ,5 La (Ei ) 8 Q
(ij )2B
a2Aij
N N
G-) r(~A ). 3 2 4$ ,5 La (Ej ) 8 a 2 A (ij )2B ij H-) N(~A ) . + , $ , , $ 1 3]. +
, ,, 3], ,, ~A | 2 % 2 G- Y O O a X (Ei) Q
a2Aij
(ij )2B
H-
Y O
(ij )2B
O
a2Aij
Xa (Ej )
:
' 7 / | 4tilting5 3,10]. 3 , $ ) 1.1 Q N N a 2& I? G- X (Ei ) , & 2 8 |
N N
Q
(ij )2B
La (Ei)
a2Aij N N
(ij )2B Q
(ij )2B
a2Aij
a2Aij
= r(~A). A" , 0 3? H--
X a (Ej ) , N(~A ). + ,
, H-,
Q
(ij )2B
N N
a2Aij
Xa (Ej ) =
Q
(ij )2B
N N
a2Aij
Xa (Ej )
{
395
I?, 2 8 2 8 N(~A ) . ' 0&
Rk (A ) Sk (A ) 7 8 Y O O Xa (Ei ) ! r(~A ) $
a2Aij
(ij )2B
N(~A ) !
Y O O
(ij )2B
a2Aij
Xa (Ej )
:
R , k1 A , / . K , , " KR(Q 1k)]
8 , * ) G H- 2, 8 2 $
, 4 5 2 A = (a )a2A : : : : VA (k1) = VA : : :, & VA =V_A =
Y O O
(ij )2B
a2Aij
La (Ei) La j
(E )
= r(~A) N(~A):
",
) ) , , 0 ;! Dk (A ) ;! XA XA (.) ;! VA =V_ A ;! 0 Q N N " Dk (A ) = XA Sk (A ) +Rk (A ) XA (.) , XA = X a (Ei) a2Aij (ij )2B Q N N XA (.) = Xa (Ej ) . a2Aij (ij )2B S 4
,5
yij (a), $
XA XA (.) ! VA =V_A $ ,
4 5. F , 7 =Nv 2 2 XA XA (.) (Yk v) = tr( Yk ), " Yk = a2A Yk (a)
2 XA , , $ Yk (a) 2 ", Xa (Ei ), $ " Xa (Ej ) ( ,) $ 788 * * Yk (a)). R " ), P Yk (a)eis = yts (a)ejt , " ei1 : : : eiki | Ei, ej1 : : : ejkj | Ej . 16t6kj .
% 7 . . 2 % 7 HomK (XA (.) XA ) = XA XA (.) . 3 , |
. E , &
, Yk 2 EndK (XA (.) KR(Q 1k)]). ' 0& , G H-, Dk (A ) I?,
8 , * ) 0 Rk (A ) Sk (A ) Rk (A ) XA (.) + XA Sk (A ) 8 Rk (A ) Sk (A )
396
. .
(r(~A ) Sk (A ) ) (Rk (A ) N(~A ) ): S /
2 " GL(k1), 7 " G H, $ $ GL(ki )wij ( $ GL(kj )wij )
2 ",2 " . . + {R , 11, 12] , % I? (3?), $ .
, XA XA (.) 4tilting5 , Rk (A ) $ I?. ), 8 , r1
2 k1(1) k1(2). F 40& "5 8 Q " GL(k1) , " 2 ] , % ,, 4
5 " ",
$ 2 Ei
> ki(2) $" i. ' )
% , 2 dk (1)k (2) ,
, XA $ 2 ) " " 8 " G. 3 , 2 $ 1.1 dk (1)k (2)
Rk (1) (A ) Rk (2) (A ), Sk (1) (A ) Sk (2) (A ) ( $ $ , $ " H). 3 " , $ $ 1 3], ) " k (1)) ;;;;! Hom (X(.) X) ;;;;! Z(k1(1)) 0 ;;;;! DkGL(
(1) GL(k(1)) ? ? y
? ? y
? ? y
k (2)) ;;;;! Hom (X(.) X) ;;;;! Z(k1(2)) ;;;;! DkGL(
(2) GL(k(2))
E , Z(k1) = (KR(Q k1)]=V_A (k1))GL(k) = KR(Q 1k)]GL(k ) =V_A (k1)GL(k ) .
0
$ ,, A 0 0 . K
, | 7 $ . . 1.1 (
, & 40& 5 ) 7 8 . A" , $ $ 1 3], & 2 % 8 , * D , 2 $ 7 8 . + , 8 / 8 , * DGL 7 , $ , , 1.1. B
, DGL
8 , * ) 8 (R ?(A ) S ?(A ) )GL(? ) = HomGL( ?) (S ? (A ) R ?(A )) (r(~A ) S ? (A ) )GL( ?) (R ?(A ) N(~A ) )GL( ?) = = HomGL( ?)(S ?(A) r(~A)) HomGL( ?)(N(~A) R ?(A )): 3 1? $ , )0 2 k1(i), i = 1 2. ", 2 | 7 " " 7 8 KR(Q 1k(1))] ! KR(Q 1k(2)]. 3 $ 2 3].
{
397
*, , $ 2 " 2 ) 8 , * VA , , , $ 1 3], 1.2. 1 * ' & KR(Q 1k(1))] ! KR(Q 1k(2)] ' & KR(Q 1k(1))]GL(k (1)) ! KR(Q 1k(2)]GL(k (2)): 2 , ' tr( Yk (1)), 2 HomGL(k (1))(XA (.) XA ) 6= 0, XA (.) XA * dk (1)k (2) ,
j"A (.) = 0. A" J = J(Q(1)) ( , " J(Q)) /
, 2 k1. + " , - , 8 , $ . 3 " $1 = GL(N)n . B
", , fN1 = ( N : : : N ) j N > 2g. >, GL(N) |
{z
}
n
1 diag(GL(N )) | 7 " ,, " KR(Q N)] t N N- *, , / 3], " K JNt . ,1 $ 7 r (Y (ar ) : : :Y (a1 )), " a1 : : : ar * JNt ZR(Q N)] $ , * Q. D ,* $ , ,* 4) /5 (
" 13]) " 2 / GL, & 2 Z. 3 , 2% 0 K-" , ,* JNt , $ . ,* 788 * | " , . 3 , $
,, " " , 7 K-" , $ ,* , 7 JNt / 3]. 1 GL(N ) ! JNt / N > 1. F ,
$ " KR(Q N)] 3 2 , $ / " J(Q) ! Jt . V , HomGL(k ) (XA (.) XA ), $ , 0 . " , $ XA (.) XA ) . + 2 ,, , 7 8 (XA XA (.) )GL(k ) =
=
=
Y O
16i6n
Y O
16i6n
O
h(a)=i
Xa (Ei )
HomGL(ki)
O
t(a)=i
O
t(a)=i
Xa (Ei )
Xa (Ei )
O
h(a)=i
GL(ki )
Xa (Ei) :
=
398
. .
' ) , / ( ) | P ra = ra / i, , 7 h(a)=i t(a)=i N N ,/ 2 Xa (Ei ) Xa (Ei ) 1]. ' t(a)=i h(a)=i " , - "/8 P P 7 2 * . S ra , 4/0 5 , ra | 4/0 5, t(a)=i h(a)=i , ) 4/0 "5 P4P /0 5. 3 , 2% , pi = ra = ra h(a)=i t(a)=i
% i. 3 (p1 : : : pn)
P. S0& , 2 $ , 3], " ,%) , 0 $)0 / $ 1.2: $ % , $
/ fYk (a) j a 2 Ag )0 . $ Yk (a) , / 0 / * " $
, Yk (a), , a . B
, , a = (1 (a) : : : ma (a)). 3 & ma 0 / * Yk (a1) : : : Yk (ama ), " a1 : : : ama | ma / &
$
*, a. <
,, 7 tr( Yk (1)) N N $ 1.2 4 *5 Yk (1) 4 *5 Yk (aj ) , , a2A 16j 6ma N
$2 45 Yk (aj ) 2 Xa (Eh(a) ) | 16j 6ma $ Yk (aj ) 2 Xj (a) (Eh(a) ), $ " Xj (a) (Et(a) ), ~ 1k) (Q~ | )0 2 % 2 2 7 , , $ T(Q ), 2 * * 2 Yk (aj ) ! Yk (a), a 2 A. < ,
$ " ,, (ra ) = a . ? 2 $
% A = fa1 : : : atg. 7 " , " YO YO (Xa (Eh(a) )): XA (.) = (Xa (Et(a))) XA = P
a 2A
a 2A
. Hom k ) (XA (.) XAN ) Q N GL(N Q N r r a a HomGL(k ) (Et(a) ) (Eh(a) ) ! tA pA , "
pA :
a2A
! a2A
Q N
Na2A
(Et(a)ra )
Q N
N ra
!
a2A
XA (.) | * , tA : XA
!
(Eh(a) ) | $ 3]. 3 $ " / 2 , rai = ri, 1 6 i 6 t. 3, 4], $ 2 f : f1 : : : rg ! f1 : : : tg : f(j) = i " , ", " r1 + : : : + ri;1 + 1 6 j 6 r1 + : : : + ri , 1 6 i 6 t. 6 2 2 & " ^" Sf 6 Sr , 0) / 2 Sr , / f = f. F " , 7 " ,
4 /5 r1 + : : : + ri;1 + 1 r1 + : : : + ri].
399
{
4;$ 5 $ 4
/5 Y (a), a 2 A, , & * Y (j), 1 6 j 6 r, " Y (j)
$
, Y (af (j ) ). + " , $ ai ri & ,
r1 + : : : + ri;1 + 1 r1 + : : : + ri . S $ , 8* h t $ &
, $ , h(j) = h(af (j ) ) ( t(j) = t(af (j ) )). + $2
% i $ : H(i) = fj j h(j) = ig T(i) = fj j t(j) = ig. >, jH(i)j = jT(i)j = pQi . N N Q N N ra 3 / / $
, (Et(ar) a ) (Eh(a) )
Q N
16j 6r
Q N
16i6n
Et(j )
N
j 2H (i)
F
:
HomGL(k )
Q
N
16j 6r
a2A
Eh(j ) ,
Q
16i6n
a2A
N N
j 2T (i)
Et(j )
Eh(j ) ( ,)
$ 2, ).
N ra
YO
a2A
(Et(a) )
YO
N ra
(Eh(a) ) =
a2A
=
Y O
16i6n
N N HomGL(ki ) (Ei pi Ei pi ):
pi pi pi F
, , Q HomGL(ki ) (Ei Ei Q ) = EndGL(ki) (Ei )
2 GL(ki)-, | 7 Et(j ), 2 | Eh(j ) . j 2T (i) j 2H (i) K" 13] " EndGL(k)(E r ), " E | k-
, $
2 Sr , 2 )0 E r (v1 : : : vr ) = v (1) : : : v (r) . B
", 2 7 8 KSr ] ! EndGL(k)(E r )
" , ", " r > k. 3 Ik+1 $ 2 P 7 (;1) , " Sk+1 $ " 2 Sr ,
2Sk
")0 2 ,
k + 1 . K , ,, ;1
;1
+1
HomGL(k )
Y O
16j 6r
Et(j )
Y
16j 6r
Eh(j )
$ ( , 8 "
&
) 2 Sr , $) T(i) H(i) $" i ( Q N " , Sr 2 Et(j ) 4 5 , , 16j 6r (v1 : : : vr ) = (v (1) : : : v (r) )). + 2 ,, j 2 H(i), " 2
v1 : : : vr , 7
, 7 v (j ) 2 Ei , ;1(j) 2 T (i). R$ /
LQr , , $& |
K LQr . ;1
;1
;1
400
. .
+ , 2% " ,
3]. S , $ g: f1 : : : rg ! f1 : : : kg, " ^" Sg 6 Sr ) $ g. B
", ,
1i 2 g;1 (i), 1 6 i 6 k,
1 = (11 : : : 1k ) 2 / & , , " Sg S , / * , 4 5 & 3]. , Sg , 4 5, g. ' , LQr | 2 ( 2) $ St (Sh ). + 2 ,, , 2 LQr , " LQr = St = Sh . +
, , 2 Sr
* (m : : :l) : : :(e : : :t), "
tr( f) tr(Y (af (m) ) : : :Y (af (l) )) : : :tr(Y (af (e) ) : : :Y (af (t) )),
, , . F $ ,, 7 7 * * 2 Y (j) ! Y (af (j ) ) 7 tr(Y (m) : : :Y (l)) : : :tr(Y (e) : : :Y (t)). . 2 tr(). . 2 $ , tr(u f), tr(u), )" u 2 KSr ] 4]. ! 2 LQr . . tr( Y ) = tr(;1 ). 3! Y = Q N 1.2. = Y (j). 16j 6r
. . ) 4 *5 Y 2
Q
Eh(j ) . 16j 6r ehsj(j ) , "
B 2 7 "
eSh(S ) = 16j 6r P h ( S ) t ( L ) 1 6 sj 6 kh(j ). R
Y eS = yLS eL . E , L & $ Q L = (l1 : : : lr ), 1 6 lj 6 kt(j ), 1 6 j 6 r. ", yLS = ylj sj (j). . ) tr( Y ) = Q
=
PD
S
ehS(S )
P
E
N
16j 6r
yLS etL(L) . K h i ,
LQ
Eh(j ) , , hehS(S ) ehS(S ) i = SS . 16j 6r +
, h(j) = t(;1 (j)), 0
0
0
X
L
yLS etL(L) =
X Y
L 16j 6r
<
, ,,
tr( Y ) =
X Y
S 16j 6r
=
Y O
16j 6r
ehl(j ) j : ;1 (
)
ys j sj (j) = ( )
X
S
ylj sj (j)
(ys s (1)ys s (1)
1
1
;1 (1)
(;1 (1))ys
;1 (1)
s
;2 (1)
(;2 (1)) : : :) : : ::
Q
+ " , $
ys sj (j) 16j 6r j * ;1 , . P . ( )
401
{
1.3 (4, 13]). % 4& 2 HomGL(k ) (XA (.) XA )
tr( Yk ) = jS1f j tr(tA pA Y )f . $-* f , , tr(tA pA Y ), Y ! Yk . N
. , $ XA ! Q N(Eh(ar)a ). D Na2A $ 2 Xra (Eh(a) ) ! EPh(ar)a a 2 A, " Xt(E) ! E t v1 ^ : : : ^ vt ! (;1) v (1) : : :
2St v (t) 9]. ' )
% , ," 2 Sf pA = (;1) pA , " , tQA =N (;1) tA . +
, 2 eL = etlj(j ) 2 16j 6r 2 XA " , ", " etlj(j ) , " j " 2 f, /. _ , 0&
pA , , eL e1L . + $" " XA 8 ) eL . ,, , Q N N ra (Eh(a) ) , , eL , / e1L = 0, a2A (eL ), " eL " $ 2, 2 Sf . R$
2
B0 , $ 2 | B1 . . ) X X tr( Yk ) = he1L ( Yk )(1eL )i = he1L pA (Yk eL )i: <
,
B1 B1 , Yk (eL ) = (Yk eL ), Sf .
2
F
h(eL) tA pA (Yk (eL ))i = heL ;1tA pA (Yk eL)i = B 2Sf B 2Sf X X X
2 = ((;1) ) heL tA pA (Yk eL )i = jSf j heL tA Yk (1eL ))i:
2Sf B B P . , w = Yk (1eL ) = L e1L . P " ,, $2 eL /B X
X
1
1
1
1
0
0
0
1
,
) tA (w) $ 788 * L . ' ), ,
heL tA Yk (1eL )i = he1L Yk (1eL ))i. 3 "
X h(eL ) tA pA (Yk (eL))i = jSf j tr( Yk ): 0
B1 2Sf
' , ,,
tr(tA pA f), eL 2 B0 pA (Yk eL ) = Yk e1L = 0. P . <
, $ , HomGL(k ) (XA (.) XA ) K LQr . ' "
DQA .
402
. .
. $ , ki > pi / i. 3 7
LQr 2 . F 2 8 tA pA ,
DQA ) ) 8 2 Sf = = (;1) . 0 R$ /
DQ A. F $ H(i) T (i) , $ / ] , / & " Sf , 7 K LQr
$ $ , 7 Sf . 3 , 0 DQ A | K LQr . + $ 3], " ,, 0 2 /
" DQ A = DQA P
D = (;1) , " D " 2 $
2D " Sf , $0 K LQr . 7 ",
, DQA /
, "2 ,
D ) ) . ' ) , 0 DQ A = DQA . *, 0 2 2, " / ki " ,% pi , 40& 25 1.1 HomGL( l) (XA (.) XA ) Q N N ra Q N N ra HomGL( l) (Et(a) ) (Eh(a) ) , " 1l k1, & li > pi / i. a2 A a2A F & / % $ 2 , , , , 7 T(Q k1) 1min k + 1 3]. .7 8 6i6n i P, , 8 r1, )/ k1(1) k1(2), / k(2)i > pi , 1 6 i 6 n, $
HomGL(k (1)) (XA (.) XA ) ! HomGL(k (2)) (XA (.) XA ) 8 . < , ) 2 " J(Q) r1 $ $ , KQ 1k]GL(k ) (1r) / k1, ) % ). < k1 , 4,% 5 ( % ) r1, ). K )0 2 7 , 3], | 2 425 HomGL( l) (XA (.) XA ) ! HomGL(k ) (XA (.) XA ): E , 1l , , 4,%25. R
) "
HomGL( l) (XA (.) XA )
;;;;! HomGL( l)
HomGL(k ) (XA (.) XA )
;;;;! HomGL(k )
? ? y
a2A
N
Q N
(Et(a)ra )
Q N
? ? y
a2A
N
(Et(a)ra )
Q N
a2A
Q N
a2A
N
N
(Eh(ar)a )
(Eh(ar)a )
{
> 7 8 HomGL( l)
YO
a2A
N ra
(Et(a) )
YO
a2A
N ra
(Eh(a) )
! HomGL(k )
!
YO
a 2A
N ra
(Et(a) )
YO
a2A
403
N ra
(Eh(a) )
N Ik +1 ( " 7 8 KSr ] ! EndGL(k) (E r ), k < r). ., " , | 7 $ , ) , 7 8 HomGL( l) (XA (.) XA ) ! HomGL(k ) (XA (.) XA ) ( ,) $ HomGL( l)N(XA (.) XA ) Q N N Q N (Eh(ar)a ) DQA \ Ik +1 . DQA HomGL( l) (Et(a)ra ) a2A a2A <
,, & 4 2 * 8 5, $ 2 4 5 $ $)0 /, 7 3]. ' $ f,
, r1 +: : :+ri;1 +1 r1 +: : :+ri],
1 i, 1 6 i 6 n. $ ,, " 2 Sf , S , / * , & . ? 0 2 LQr . <" K LQr = 0KSt ] = 0 KST (1) : : : ST (n) ]. 6 ) " " ^" St = ST (1) : : : ST (n) $ $ , KST (1) ] : : : KST (n) ]. . 7 P Ik +1 0 KST (1) ] : : : Iki +1 : : : KST (n) ]. K iki
I~k +1 . iki
DQA \ Ik +1 = 0 f 2 I~k +1 j 8 2 S = 0;1 0 = (;1) g. 3 $ 2 7 " , " , Ek , k-
. 3],
) S r (Er Er ) 2 " S(Er Er ). 6 " KSr ] $ r Q r S (Er Er ) ! e (i) ei , " e1 : : : er | Er . . i=1 $ N = f 2 KSr ] j 8 2 S = 0;1 0 = = (;1) g $ 7 g 2 KSr ], / g( x y) = det(x) det(y)g, " x y ") " P GL(). . 7 S r (Er Er ) GL(Er ) GL(Er )-,. ." GL() / - ",/ *
r1 : : : rt ,
/ . ", ;1
0
0
404
. .
2, , 0 )0) ,) * GL(Er ). _ 2 4 5 $ $)0 /, 8 , * ) KSt ] (), St (Sh ) | 7 " ^", )0 $ ) t (h)),
), 8 , * I~k +1 . ; T(i).F ;,& 7 $ 4 5 ,
, T(i) = 1ij . 4R ,5 , max 1ij < min 1ij 16j 6li , j1 < j2 . '] ;i,
" 1 : : : r]. ." ^" S ij
S . D 16i6t 16j 6li " , 3] , 2. + $2 45 & 1i1 t 1i2 t : : : t 1ili
1i . N N +
,
X Xpij (ET (i) ) . 16i6t 16j 6li E , ES | Er , ej , j 2 S, )" $ S f1 : : : rg pij = j1ij j. K$ X X $ . < $ , % , 8 , * ) M N S r (Er Er ), 8 S pi (ET (i) ET (i) ). + $" 1 1
16i6t
2
) , , GL(ET (i) ) GL(ET (i) ) -16i6t 16i6t 2 0 ;! ker ;! X X ;! M =M_ ;! 0: 3 7 I? 3]. 3 " $ T(i) | 7 ] & $ f, " GL() " 2 P GL(T ) = GL(ET (i)). = 16i6t +
, % $ KSr ] | 7 K K LQr | 7 $
S r (Er Er )(1r )(1r ) . N , S pi (ET (i) ET (i) ) ( ,) $ 16i6t r r
0 ). 3 ,
8 , * ) M(1 )(1 ) ,
", I~k +1 | 7 , 8 , * , 2 4 5 1 ) )0 2 : / " i, " pi > ki, 2 2 1ij
0 , pij > ki + 1. K 2 " , 1. K , ,, N \ I~k +1
8 , * ) 8 (M =M_ D)( GL( ) GL( )), " D = det;1 det;1 . 3 3], " 0 = 1, , , $ . E $ ", 0;1 GL()0 | , " P GL(T ). + 2 ,,
, H(i) "
F f, , H(i) = 1 j . ,, 0;1 GL()0 j E ( j ) ET (i) . ;1
0
;1
0
0
{
405
1.4 (3]). ! H | ! 5 G = = GL(li ). !* G-! "# "# H -16i6m !.
. K ,) L $ $ ,, H = GL(Vij ) , " Eli = Vij . . , 16j 6si 16i6m 16j 6si , * / G- 2. . , , N ) Li (Eli ). K ,, $ * , 0 2 16i6m L 2 ), " m = 1, , G = GL(l), H = GL(Vj ), El = Vj . 16j 6s 16j 6s ; , 0 ;! CN ;! : : : ;! C1 ;! L (El ) ;! 0 L (El ), 2 | / 2 % / 2 El . + ,L 2 X (El ) . ., Xt(El ) Xt (V1 ) : : : = t +:::+ts =t Xts (Vs), , X(El ) 2 2 s X (V1 ) : : : X (Vs ). P . F, , " 0;1 GL()0 GL() | " P G(T) G(T), " , 2
) " 0 ! (ker D)( GL( ) GL( )) ;! (X X D)( GL( ) GL( )) ;! ;! (M =M_ D)( GL( ) GL( )) ;! 0: < , , (1r ) (1r )- (X X D)( GL( ) GL( )) = (X det;1) GL( ) (X det;1 )GL( ) , . ,, $ x (X X )(1r )(1r ) , ) ) x( ) = (;1) (;1) x, 2 S 3]. R , 7 / 7
2& ) 4/5 $)0 /, " , 7 3]. F , , %
$ r ((X X )(1 )(1r ) )diag( S S ) : E , 4 ",5 " 7 (0;1 0 ), 2 S . N N . , p: ET (ip)i ! X | 2 7 8 . B 1
1
1
;1
;1
0
0
0
;1
0
;1
;1
0
0
;1
0
;1
0
16i6t
N
N
(1r )
(ET (ip)i )
16i6t
0
0
0
0
0
0
) e =
N N
16i6t j 2T (i)
e (j ) , 2 St .
406
. .
>, X $ , e1 = p(e ), " " $ 2 / $/ St S . .
, St =S ( / | St nS ) 3]. . ,2 X X $ , X e1 e1 1
1 2 2X
2
1
2
" X = St =S . + )0 $ 3], , ((X X )(1r )(1r ) )diag( S S ) 7 X e1 x e1x : ;1
0
x2S =(S \S0 1 \S2 ) ) S = S ;1 . <
;1
0 1
0
0
2
E , $)0 , / ,, $)
7 * 788 * , 7 , $ * ) ) K (. 3]). . ,
)0
$ $)0 / N \ I~k +1 : X X (;1) 0;1x0 12;1x;1 : x2S =(S \S0 1 \S2 ) 2S
*, $ 0, 4 5 $ $)0 / Ik +1 \ DQA : X X (;1) x012;1 x;1: g = 1
2
x2S =(S \S0 1 \S2 ) 2S
" ,, 7 $)0 ) 4/5 $)0 / 3], " | 1 2
" St , ", , * 8 2 7 0, 4 )0 25 . B2 % / 2 " KSt ], , $ , KSh ]. 3 7 $ 4 " ,5 ) " S Sh . 4V 5 $)0
% )0 : g = 1
2
X
X
1
2S x2S =(S \S1 \S0 2 ) ;
(;1) x12;1 0x;1:
E , 1 2 2 Sh . R , " KSt ]. K" 1.2 $ g 0&
* ): , 7 . ' 7 & 2 7
X X (;1) x21;1 0;1x;1 : h = 1
1
2
x2S =(S \S2 \S0 1 ) 2S
2
{
407
F T(Q k1) $ , 7 jS1 j tr(h f), $ 7 jS1 j tr(g f), " g 2 DQA 2 A , XA = 0, XA (.) = 0 ( // / % " ), & 7
) K, $ , 7 7 Z( , $ ZY(a1 ) : : : Y (at )]). . ,
2 N1 = (N : : : N), " N > r, " )2 7 / $)0 / $ , 45 7 Q-" JNt , & 3] ( $ % ). .,
Z3], & . B
" ,, 4,% 5 N1 = (N : : : N), " N > r. . $)0 " $)
4 5. P + 2 ,, ,,
, XA (.) = 0 g = (;1)x x, " D | 2x2D 2 $ " Sf = S . . , D = S 0S , 0 2 LQr . ." S = S 6 Sh , % $ ) 2 2 1 i
0 , > kh(i) + 1. + )" $" S y D )/ z z1 z2 2 S (S y)z = S yz ;1 (S y)z = (S )z " , ", " z1 z2 $ $ " S y . P. , Y | $ 2 $& , " g = (;1)y g1y , y2Y P P " g1y = (;1) zy ;1 | 425 7 , 2 4
1
2
1
2
;1
z2S \Sy ,5 Sh .
;1
2S
. " 4]
Z(f) ZLQr = 0 ZSt], 0
7 2 ;1 = . ,,
h 2 Z(f). + )" 2 Z(f) jS1f j tr( f), 2, 3], c( f) c( S ). 3 & 0& . B , $ w : f1 : : : rg! ! f1 : : : lg & ( & ), Sw 6 6 St \ Sh .
, $ f & . B
", $ 2 h t , St \ Sh = Sf . +
, 2 & , LQr
$ $ 7 Sw . 3 , $ , f, $ , Z(w) Z LQr , c( w) 8 2 Z(w). . ) $ c( w) jS1w j tr() * * 2 0 / * Y (j), 1 6 j 6 r * Y (bs ), 1 6 s 6 l, Y (j) ! Y (bw(j )). + " , % , , $ ai
& bj , " j "
/ & w, f ;1 (i). 1.5 (3, 2]). ! w v , * w - v, !- - 4 . ! 2 Z(w). 6 c( v) * * (
| 75 ) c( w). 1
2
408
. .
+ , . . , w: f1 : : : rg ! f1 : : : lg v: f1 : : : rg ! !f1 : : : l l + 1g, & w;1(l) = v;1(l) t v;1(l + 1). ., w v |
f, * Y (bl ) * Y (bl ), Y (bl+1 ), )0 w v, ) $
. 3 , $ , Y (bl ) ! Y (bl ) + Y (bl+1 ) c( w). ' % , , | 3]. P . . , " 7 , $
$ , " ,%
| 7 c( v) | * c( w) ", " Sv 6 Sw 3]. S0& ,
1 3]. K
/, )0 / v,
, * *
/ / & v, $ w,
), )0) 7 ) w, , 22 v w. 1.6. ! Sv 6 Sw , 2 Z(v), w v . . * v w c( v) -
c
X
2Sw =Sv
;1 w
:
F, 7 , ,, c(h S ) /0 2 _P, 22 1
z=c
X
2S
(;
1) 21;1 0;1 S 2
\
S 0 1
2
:
+
, " , " " ,, S = S \ S . K X(j) = Y (2 (j)), 1 6 i 6 r. E
/
, -
& , - "
4 $ 5 2
| f1 : : : rg. F ,
j, 1 6 j 6 r, 2
*
,
2;1 (j). 3 , 7 tr(), 2 Sr ,
,
tr(2;1 2). R$ T (i), H(i)
2 2;1 T(i) = T(i), 2;1 H(i), " St , Sh 2;1 St 2 = St , 2;1 Sh 2. 6 St ,, 7 , ) " S )0 $& ),
, 7 z
,
2
0 1
X
z=c
2S
(;1) ;1 S \ S :
E , = 2;1 01 2 LQr LQr $ , 2
* . E 0& , 4
* 5 // &
& , , 2. 3 , 2% , 7 * 4 )5, , " " ,, 2 = 1.
{
409
. $ , 0 , ,% . %
2 " (,*)
: " , & , 425. $ , " J(Q(1)) , 7 14]. + 7 " , 2 4]. K
$ $ f : f1 : : : rg ! f1 : : : mg & * 2 = (jf ;1 (1)j : : : jf ;1(m)j). . , , = (i1 i2 : : :is ) 7 $ f1 : : : mg & * . : , )0 , * 2
2 , $ ,. : , " , , (b : : :b), "
b | * < s. R$ / / *
` . K
$ * (i1 i2 : : :is ) cont(c) = = (jf ;1 (1) \ c~j : : : jf ;1(m) \ c~j), " c~ = fi1 P i2 : : : is g. '
; $ 8* 2 ` N, / (c) cont(c) = . c2# _ * 7 r (X), , P m X r ; m Y 7 r (X + Y ) 1.5 c (;1) S . E , S = Sf , f : f1 : : : rg ! f1 2g, f(i) = 1 "
2Sr , ", " 1 6 i 6 m. 3 , , = (m r ; m). S m = 0 r, ` = f(1)g, ` = f(2)g. . , , . F, 2 " 4 )0 " 7 5 (distinguished ) 4, . 27 29)], $ , Sr | ]
^" 4, . 27, 29, *
" " 8], ,, P P Q (;1) S $ ,
(c) (Xc ) ( ,c
2Sr 2; c2# 2 2). R * Xc * c = (i1 : : :is ) Xi : : :Xis , " Xi = X, i = 1,P P Xi = YQ , " i = 2. < , r (X + Y ) = r (X) + r (Y ) + (c)(Xc). $ 1
=(mr;m) 2; c2# 0<m
0& ,, 7 % , *
> r, & . S0& % 2, 2
,
, $ ), , $ " . F , )/ r t
, ( *
> rt) 7 r (X t )
: X u u drt u :::urt 1(X) : : : rt(X) rt : u1 :::urt
1
1
P
K & u1 : : : urt, iui = rt 1 6 i 6 rt (. 4], 2, x 2]). 3 788 * drt * . u :::urt ; ) ) * ) " R $)0 Y (a), a 2 A, 2 L-" 2 Jt0 , $& 2 4 5 7 r (f), f 2 LhY (a) j a 2 Ai 1
410
. .
(F = LhY (a) j a 2 Ai | ) * L-" ), )0 $ )0 % 2. 1. 8r > 1 f g 2 F r (fg) = r (gf). P P 2. 8r > 1 f g 2 F r (f+g)=r (f)+r (g)+ Q(c)(Xc )jX!f . Y !g
=(mr;m) 2; c2# 0<m
3. 8 2 L 8r >P1 8f 2 L r (f) = r r (f). u u 4. r (X t ) = drt u :::urt 1(X) : : :rt(X) rt . u :::urt E , L | Z, K. 1.7. L-& Jt0 ' &* L-& Jt .
. + , L-" Jt $ 7 r (Yc ), " c " $ * () ] ) $ f : f1 : : : rg ! f1 : : : tg. . ) Jt0 $ Jt , Jt | 2 L-" t % n n- * n, , , ) L-" 2 Jt0 . <
, ,, Jt0 $ 4 $ 5 7 , J. S 4 "5 7 r (f), , * 2 r , $
$ 7 , / f | $ . . 7 , , , % . ' & 2, " f = g : : :g = gk , k > 2. . 7
" % $ ,, g = Yc , c | 2 * . . &
% ) 7 7 $
. P . ' . 30 " , , 4] , ,* Jt 8 ,* " / $)0 / r (Yc ). 7
% ,. + 2 ,, ,
, % $ P , mi , 1 6 i 6 s, 7 r (Yc ).
, bimi = 0 8bi 2 Z Jt . < Jt 16i6s Z- , $ ,, ,% 2 0 2 , bi
1. K ,, 2& p, bi ". <" K = Fp , % ! 6], Jt -" R 8 2 " . 3 , R P Y (a) ! U(a) 2 RY (b), a 2 A. b2A 3
&
, 0 2 * . ' r 2 " 2 Q $ , ,) 2
/, % 7 1
c
1
X
1
X
x2S =(S \S2 \S0 1 ) 2S
(;
1) x21;1 0;1 x;1 S
:
{
411
. & , S " , " ^" St = ST (1) : : : ST (n). 1 $ % , " $ $ , 7 N, ,* JNt , , 7 ,* Jt ( ,% N). K2 $)0 2 r (Yc ) & ,, c = (is : : :i1 ) i1 : : : is | 2 * Q. ' , & , . ' $ Q : Jt ! Jt , , $) , , ,. + " , Q | ,* Jt ,*, $& , 7 . ,, Q (r (Yd )) = 0 ," * d, 4 )0 "5 " Q, Q (r (Yd )) = r (Yd ). D &
" % , ,, d 4 5 * Q , , " d = ck , " c | 2 * 2 * Q. . , x | ,2 425 $)0 2, 2 7 ,* Jt . + /0 " k 2 Z , kx | 2 ,/ . + 2 ,, 7 v = = x21;1 0;1x;1 , , $ $ H(i) T(i). .7
" * 2 )2 0 / 7 jv(j)
t(v(j)) = h(j)! +
, Q (kx) = kx = kQ (x). K ,, Q (x) = x. 3 , 7 x $
, , , * ) KR(Q ~k]GL(k~) , + 2]. + 2 " , 4 5 $)0 ) $ 2 Q. <
,
/ 2 2 , | 0 ) 8 " % 7 z. + 7 "
" " 3]. +$ /0 2 7 S , $ " ,, * $ *
$ / " " $ S . < ,
) S . K " S = S \ S , & , ) 1ij \ (1sl ). ., $2 2 2 $ T (i) \ H(s), ,, / " , | / " s * i. F . | 7 ) 1ij n (1sl ) . ']
(sl)6=(ij ) / & $
B, / 2 $ . ' , , , ] /, D. K )0 % , 2% : (CiFj)(ij) = (Ci)(Fj) (ij)(iCjF) = (iC)(jF ): () K C F ) 8 " * .
412
. .
.
, $ 2 ,, | 4 ,5 / & . $ , 2 , ) )0 / $ 2 3]. <
, " , ) , , 7 . 3 , 2% " , ,% . . , 2 S . E % * $ )0 : = (B1 i1 : : :Bk ik ) : : :(Bt it : : :Bs is ), " fi1 : : : isg D, B1 t : : : t Bs B. <) , & 2. F () , ;1 $ , )0 . 3 2 4 5 8 " B1 : : : Bs . . 1 = (i1 : : :ik ) : : :(it : : :is ). <" ;1 1;1, ) 4
5 8 " B1 : : : Bs )0 . <
, $ , 1ij \ B 6= ?, & 7 2 $ T(i), 0 , " ( , pi ) / ki, / " 2 " . < $ , pi > ki, 1ij ", 0 , " > ki + 1. 3 / & , % 4 ,5 / & ,
1ij , ". . , 11 : : : 1l | 7 , $0 1ij , 1l+1 = 1ij \ B. B " ,, Sr
m1 = (m1 : : : ms ms+1), "
s = j1ij \ Dj, 2 4 /5 8 " / w 2 1ij \ D m1 : : : ms ( ,) ), wP =s ms+1 = j1 l+1 j ; mj . R$ / 7
Im . w=1 ;1 7 2 S , , , 7 . $ P
gm = (;1) ;1 | S - 2 7 )" m. 1 .,
2 I P m z = c(gm S ), , 7 gm . m . , 1ij \ D = fv1 : : : vsg. 4F , 5 11 : : : 1 l )0 . _ va vb " 1t ) 425 " , ", " ma = mb . S , 4 5 1 0 . '
M(m) 1 $ / m, 1 / vt 8 " mt , 1 6 t 6 s. P D gm0 = (;1) ;1 , , S - , gm =
2 M ( m
) P = xgm0 x;1.
0
x2S =S
0
. 1.6 c(gm S ) 22 c(gm0 S ). 3 1ij , 425 1 , 2 j1j = ms+1 1 1 l+1 . 3 & ) ) " S , ) 10 1 , 1ij , 2 1ij 1 1ij n 1 . ' , 0
0
413
{
gm0 = " gm00 =
P
2S \M (m )
X
x2S =(S \S ) 0
(;1) ;1 .
xgm00 x;1
0
0
' , 4 2 5 & c(gm00 S \ S ). ' 0
0
c(g00 S
m
0
\ S ) = c 0
(;
X
2S \M (m )
1) ;1 S n
0
0n
0
c
X
2S
(;
1) S
:
3 2 $ , ms (Y ), " Y | 0 N N- *, )0 ) 1 l+1 . E , , &
, , 1 l+1 T(i) \ H(i), , , )0
Y , |
% 2 i. S ms+1 > 0, * r
% , . . , ms+1 = 0 1 = 1 n 1 l+1 . ? 4 /5 8 " B1 : : : Bs 1 l+1 , jBij = mi , 1 6 i 6 s. . , S(m) 1 / 2 M(m), 1 $ vt t . <" X X 1 1
; 1 ; 1 0 tr x (;1) x S : c(gm S ) = jS n l j jS l j x2S
2S (m ) +1
0
0
0
+1
+1
' )
% , c
X
l
+1
c(g0
(;
m S ) 0
1) ;1 S n
2S Y mt Xf (v ) ,
0
l+1
2 Xf (vt ) ;! t 1 6 t 6 s. E , $ f $ 1,
Y | ) 1 l+1 . F / $ $ 2, % , Y mt Xf (vt ) , ,
. ", S n l = S \ S . S j1 l+1 j > 0, , $ , * ) r. < ,
$ " ,, $" i 1ij
) B. S 1 u | 2 2, , )0 , & 1u = ;1 (1u). K" & 2 % * , 1ij ) 1 u 1s . K )0 ) 2 * 0 . S& 8 , ) ) 8 , 3 3]. 1.8. + , - z = P (;1) ;1 S \ S ! +&-, =c 0
2S
+1
414
. .
4/-, -, - + , S ( - &-/*, - ) , * * * 1ij . + , )0 . R
& 2 2, 2
$
" ,
z 4/5 $)0 /, / " 4 , 5, S . .
, & ,2 2. S / 7 / " /, $ , ,, , 7 " / $ 2 $ 4 ,5. . , 2 * $ $ , ". ; 2 * , 2 % , , "
$ . +
, 8 2 2, 2 , 10 . B
0 $ ,, 10 = 111 . , * 47 * 5 / & / & . . 2 10 ) ] & , ) " , $2 "
&
/. + 2 ,, 10 " , 10 * . 3,& ,2 2 1ij 6= 10 . <" (1ij ) 1i j ,
, j1ij )j 6 j1i j j, (1i j ) 1i j , j1i j j 6 j1i j j . . ' * $
, 1ij , ,, j1ij j = j1i j j = j1i j j = : : :. & ) , , & 2. ' , z = P u = j j (Y )`, " ` | 7 7 c (;1) u; 1 S . u2S E , 1 " , | 7 8 " , / 1. .
Y ) 10 , ,
% 2 1. D 4 "5 ( $
$") 0 $ , 7 , 7 ,. ' $ ,, P c (;1)u u; 1 S | 7 l (?), " l | 0 , $" u2S , ? |
/, )0 / , , / / . . ,
, 1 | 2 10 . F
, % , (1 ) 1i j , 1 (i j ) 1i j ,.... . , m |
2 (1im jm ) 10 . <
) 1 , m (1 ) = 1 (1im jm ). _ m & 2 1. < , )2 2 10 2 2 2 10 . ' & ,, ] / / &
$ ] & . 1 1
1 1
1 1
2 2
1 1
2 2
1 1
0
2 2
1 1
1 1
2 2
;1
;1
;1
;1
{
415
; * ), " / & . 3 , )" 1 2 (1 ) | 2 " S 10 . E
10 : 11 : : : 1l , & (1s ) = 1is js is 6= 1, is = 1 js 6= 1. . , 11 : : : 1l | 7 $
S 10 . . ,
X1 : : : Xl ) 11 : : : 1l , Y1 : : : Yl | 1i j : : : 1il jl . . 2 10
Y . 46 5 7 &
:
X1 : : : Xl ) & a1 : : : al 0 * 1, h(as) = is , 1 6 s 6 l ( , , $ h(;1 (x)) = t(x)),
Y1 : : : Yl | , & b1 : : : bl 0 1 t(bs) = is , 1 6 s 6 l. .
2 Y
% 2 1. 1.3. 6 z 1 1
X
c
u2S0
(;1)u u S
0
\ S
/ Xs ! Xs Ys , 1 6 s 6 l.
. 3,& ,2 7 u 2 S & )0)
* ). . , p * (pX) $ u ($, X = ?). S p 2 1s = (1is js ), " p p(p). . / / 2 7 u1 2 Sr . E u u1 ) (;1)l . $ ,, S ;1 = fu1 j u 2 S 2 S i j : : : S il jl g. + 2 ,, 7 u1 / jS j % . E , ,, u1 2 S . S p 2 1is js , 1 6 s 6 l, " (p) 2 1s u1 (p) = (p) 2 1is js . ' ) u1 (1i j t : : : t 1il jl ) = 1i j t : : : t 1il jl , u1 (10 ) = 10 . +
, X X (;1)u u;1 = (;1) (;1)u u1
0
0
1 1
1 1
u2S
1 1
u2S0 2Si1 j1 :::Sil jl
tr(1u S ) = tr(u S \ S ) jXs !Xs Ys : . $ . + " , , z t(Y ) (t = j10j > k1 +1) , Y ! Y +Xs Ys )0 / / . B
, Y ! Y +X1 Y1 , " j11j X1 Y1, r ; 2j11 j Y . E Y ! Y + X2 Y2 ,
" j12j X2 Y2 r ; 2j11j; 2j12 j Y
. E , $ ,
$ , 3]. F , * 452 (1k ) = 1 ik
0
416
. .
/ & . . ,
& ,2 , 7 " ", , l F 2 (1k ) = 1 j ( 2 $ * ). .7 , / k=1 , 2% * ,, , . $
& " , , & "
0 2 * . . $ , 10 , > 2. 3 10 2 2 1, 2 1jl , , (1jl ) = 1. 3 % " $ / 2& 0& 2 2 1st, 2 (1st ) 1jl . . $ 0& , 2 1st 2 , 2 7 2 . 3], 0& * , ) & 4] 5. 3 , 2% $ ,* Jt . 1 ; 1, 1st P ]
; 1 1jl 2.
,, z~ = c (;1) S 2S
7
c
X
x2S =(S \Sy )
x
X
2S
y;1 )x;1 S :
E , y " $ S =S = S st jl =S st S jl . . Q 7 , $ ,
, 2 2
7 z (y = 1) . S s 6= j, " " y 6= 1 ) . + 2 ,, " " tr(x(y;1 )x;1 S ) , / , u = xy;1 x;1 45 * Q, , / j $ , h(j) = t(u(j)), 7 , u $ $ H(i) T(i). '
y 6= 1, ,
, y(T (j))\T(s) 6= ?, 7 u
" 2 H(j) T(s)! <
, ) S 7 , 1st 1jl 1 (st ) * . S 1st 1jl 1st (1jl n (1st )). P 3c (;1)u ;1 S $ 7 , 2 2, u2S , Q . R , , $ , 0 7 . . )0 $ , $ ,
" ,
) ms+1 > 0, , 2 Q P ) (;1) S . + 2 ,, 1 H(s) \ T(j). $ , c
2S 3 , 1 \ T (s) = ?. E , gm0 , / 7 / 1jl n (1st)
, $ $ " ,. 3 , 45 " $ H(s), * )" x 2 1jl $ T(j),
{
417
T(s)! . 2 $ $ , 4 5 (1st ), $ 1st , / / 2
40 ,5 > 2. 3 , , 1 0 , $ 0 . +
, 1 = 1 n (1st ). ' , & " $ H(?) T(?) ) )0 : T 0 (j) = (T(j) n (1st )) 1st , T 0 (s) = T(s) n 1st , H 0(s) = H(s) n (1st ). ' , H 0 (?) T 0(?) ) / . 46 5 7 ,
% s
% j,
Y = Y (f((1st ))),
% j. < , z X
c
2S
(;
1) ;1 S
\( n ( st))
2 X ! Y X, X |
1st . . , j = s. 3 7 , Q $, , S 6 St . 3 , 7 z~ ,
2 2, , $ , , r. ' & ,, , z, ) 7 * ) " , 0 ). K ,)
, _P
/ 7 ) X u ; 1 x c (;1) u(x) S \ S : u2S
m Q E , x 2 S st sl =S st S sl . . , x = (aibi ), " ai 2 1st , bi 2 1sl , i=1 i = 1 : : : m. S (ai ) = bi " i, x ai , , 1st 2 2. . , b1 2 (fa1 : : : am g n fa1 g). R$ , = 1(ai b1X)(a1 (a1 )Z), " 1 | ,,
$0 a1 b1. F
) S :
x = (a1 b1)(ai b1X)(a1 (a1 )Z) = (b1 Xai a1 (a1 )Z) (Zb1)(Xai a1(a1)) (Zb1)((a1)Xai ): E ,
$ 2 , 1 . < , 1st , 2 2, a1 * 2 . <
, 2, ",
, (ai ) 6= b1 2 (1st ) 8i. . , y 2 1st 2, (y) = b1 . 3 7 = 1(a1 (a1 )X)(yb1 Z) 1 | % , * " $ ,
$0, , a1 b1. <" x = (a1 b1 )(a1(a1 )X)(yb1 Z) ((a1 )Zy)(Xb1). E , 1st 2 2. *, , , 2, " fb1 : : : bm g\ (1st) = ?. D , , 0& 2 1uv , $)0 2 1sl , 2 "
fb1 : : : bm g. S fb1 : : : bmg
418
. .
1uv , " , (y) = b1 8i (z) 6= bi /0 / y z 2 1uv . <" x(y) = a1 2 1st , x(z) = (z) 2 10 , , 1uv )
. F fa1 : : : am g = 1st , fb1 : : : bm g = (1uv ) , 1st . . , 1uv = fy1 : : : ym g, (yi ) = bi , 1 6 i 6 m. E m Q 1 (ai (ai )Xi )(yi bi Zi), $ ,, 7
i=1
x 1
m Y
(Ziyi ai (ai ))(Xi bi):
i=1
46 5 7 $ , , & " S % )0 : 1uv $
, 1st, & , 4
",5 1uv 2 , 2 4% 285, 1uv . 4Q 285 1st 4 5 (1uv ), (1st ) $
, 2 (1uv ), (1uv ) | 2 (1st ). ' , . E , $ , 4] 5 1st 1uv . 3 / * 8 " $ , , . . $ 2 3]. 7 ,
% .
2.
. , Q | 2 , k1 |
2 . '
W $ /
% (i j) 2 V V , $ , & Q. + " , 2& , ,
am : : : a1, t(am ) = i h(a1 ) = j t(ai ) = h(ai+1 ), 1 6 i 6 m ; 1. L ; M(Q k1)(F ) = M(ki kj )(F), "
(ij )2W M(s l)(F ) | " s l- * ,* F. . M(Q 1k)(F) 0 F-" , ,
* ) $ 2 X (B(ij ) )(ij )2W (C(ij ))(ij )2W = (D(ij ) )(ij )2W D(ij ) = B(il) C(lj ) : l(il)2W (lj )2W
A" M(Q k1)(F)
$ * " , ", " ,2
% i 2 V * / 2 ,. + $2
% i 2 V 7 2 7 e(i) 2 M(Q 1k)(F ), " , (i i)-2, ). (i i)
* )0 2
. & " 2 Q , 8 "
2 k1 K-" M(Q k1)(KR(Q k1)]), $& ) * Yk
(a), a 2 A, 7 e(i) " 2 KR(Q 1k)]GL(k) . E , * Yk (a) $ 7 "
{
419
M(Q 1k), " ), 4
5 (t(a) h(a)), " Yk (a). ' "
C(Q 1k). < $ , " ,
2 fC(Q 1k) k k j k1(1) k1(2)g: 3 , $ , ) " C(Q) 2 7 " . 2.1. 0& C(Q k1) ' & GL(k1)- - !- & * R(Qk1) M(Qk1)(K).
. ,, " C(Q 1k)
$ " GL(k1)-7 / ,/ $ 2,
, & " 8* 2 R(Q 1k). + " , ) , & $2 (i j) 2 W ) 0) kj ki - * Yij ($ , i * j). . ,2 7 " GL(k1)-7 / ,/ $ 2 $ , L f = fij 2 M(Q k1)(KR(Q k1)]). ,, 7 (ij )P 2W tr(fij Yij ) $ " . ., clos(f) = (ij )2W " $ / / /, +P ij GL(k ) 2] 8(i j) 2 W tr(fij Yij ) = gsij tr(mij s Yij ), " gs 2 KR(Q 1k)] s mij s |
& * Yk (a),
* 7 * i, | P j. 3 $ 8* 8(i j) 2 W fij = s gsij mijs , , f 2 C(Q k1). E , mij s 4 5, i = j, , 7 $ " ,, mij |
ki ki- *. . $ . s F , $ , k k : C(Q 1k1) ! ! C(Q 1k2) | 7 8 )/ k1(1) k1(2). + 2 ,, 7 , , 7 8 / 1 $2
2 Yij )0 / " / . B
", 8 2 r1 4 5 k1 / * r1- 2 . < , 4,% /5 k1(1) k1(2) 7 8 k k 0 8 . 3],
D(Q k1) * C(Q) ! C(Q 1k). ' , 7 T- ( , 7 ). ' 0&
m m- $ 6 , {7 , , m (Y ) = Y m ; 1(Y )Y m;1 + : : : + (;1)m m (Y ). 2.1 (. 3]). T- D(Q k1) m (Y (al ) : : :Y (a1 )), (a1 : : : al ) | Q kt(al) = = kh(a ) 6 m. 1
1
2
1
2
1
2
420
. .
. ' , 7 7 $ D(Q k1). '
Q~ , 2 Q , & , )0
Yij . + " , $2 (i j) 2 W 4 5 i * j. < $ , (. ), $ , $
clos . < , $
~ ,, clos(D(Q k1)) T(Q ~ 1k). B
clos: C(Q) ! J(Q). 1 ", D(Q k) $ / P 1
Yij . . , f 2 D(Q k1), clos(f) = gij , degYuv gij = (ij )(uv). (ij )2W ~ k1). < , 3 % " 8(i j) 2 W gij 2 T(Q ~ 1k) $ , gij . ., T (Q ~ 7 fr (g), f 2 J(Q), g 2 C(Q), " r (g) | ,2 7 ~ 1k), $ / / 7 , T (Q 1 Y = Yij , ,. S degY f = 1, " , f = tr(f 0 Y ), f 0 2 C(Q). K ~ 1k)C(Q) D(Q k1). + 2 ,, )0 2 $)0 2 | 7 r (g)f 0 2 T(Q r (g) = gr;1(g) ; r (g). S $ degY f = 0, r (g) $ 2 ,P 1 Y . D $ , , , " g = gi , " degY gi = i g1 6= 0. i>0 F / )0 :
& r (X + Y ) ) , 1 Y r ; 1 , X ! g0, Y ! g1. +, 2% $
) 3] ( 4 .) , & * 8 . < . #$ 2.1. A" , K ,. + ,, (3], 2). #$ 2.2. ' 7 2 , , & , )
,* * / . A" 3] ,* 2 *, $& / 7 j (Yk (ar ) : : :Yk (a1 )) k1. > * " ,* ,*, $& 7 j (Yk (ar ) : : :Yk (a1 )),
T~(Q k1). .~ 1k) J(Q) Z- ,
) ) , J(Q)=T(Q , , 0 ;! K T~(Q k1) ;! K J(Q) ;! K (J(Q)=T~(Q 1k)) = KR(Q 1k)]GL(k ) ;! 0: ' ) K T~(Q k1) = T(Q k1) )" ( ") K. <
, $ , 3, . 454]. + ,
% " . #$ 2.3. F, , " (,*) 2 7 8 " (,*) " & " $)0 / ( / $)0 / $ ,
{
421
, ), ,, " (,*)
)0
. (Z-,) 7 R(ij ), / (i j) 2 W . S i 6= j, R(ij ) | 7 2 J(Q)-, $)0 Y (ar ) : : :Y (a1 ), t(ar ) = i, h(a1) = j, t(as ) = h(as+1 ), 1 6 s 6 r ; 1. 3 0& 7 ei . V$ 2 $ 8 2, % . < , R(ij )R(jl) R(il) | 8 ,
R(jl) R(ij ) , 7 / ) 2 J(Q)-" $)0 Y (a), a 2 A. ", ei x = xei = x 8x 2 R(ij ), 1 6 i 6 n.
1] J. A. Green. Polynomial representations of GLn . | Lecture Notes in Math., vol. 830. | Berlin, Heidelberg, New York: Springer-Verlag, 1980. 2] S. Donkin. Polynomial invariants of representations of quivers. | To appear. 3] . . . !"#$!{&'" // $)! $)!. | 1996. | +. 35, - 4. | /. 433{457. 4] S. Donkin. Invariant functions on matrices // Math. Proc. Cambridge Phil. Soc. | 1992. | Vol. 113, no. 23. | P. 23{43. 5] S. Donkin. On tilting modules for algebraic groups // Math. Z. | 1993. | Vol. 212. | P. 39{60. 6] A. N. Zubkov. Endomorphisms of tensor products of exterior powers and Procesi hypothesis // Commun. Algebra. | 1994. | Vol. 22, no. 15. | P. 6385{6399. 7] S. Donkin. Skew modules for reductive groups // J. Algebra. | 1988. | Vol. 113. | P. 465{479. 8] J. Jantzen. Representations of algebraic groups. | Academic Press, 1987. 9] K. Akin, D. A. Buchsbaum and J. Weyman. Schur functors and Schur complexes // Adv. Math. | 1982. | Vol. 44. | P. 207{278. 10] A. N. Zubkov. On the procedure of calculation of the invariants of an adjoint action of classical groups // Commun. Algebra. | 1994. | Vol. 22, no. 11. | P. 4457{4474. 11] S. Donkin. Rational representations of algebraic groups: tensor products and 1ltrations. | Lect. Notes in Math., vol. 1140. | Berlin, Heidelberg, New York: Springer, 1985. 12] O. Mathieu. Filtrations of G-modules // Ann. Scient. Ec. Norm. Sup (2). | 1990. | Vol. 23. | P. 625{644. 13] C. de Concini and C. Procesi. A characteristic free approach to invariant theory // Adv. Math. | 1976. | Vol. 21. | P. 330{354. 14] 4. &. !"#$. +5#! # #$ 6$7 !'7 !$) ! 6$ 7!!# // 8". /// . /. !. | 1974. | +. 38, - 4. | /. 723{756. & ' 1998 .
{,
. . , . .
512.7
:
, , -
{.
! " ! # $ n-$ $
", %&% n-" " " ! !$ " ' ($. )#& ! , $ ! #
% !
{, ! ! ! # #!$ *$ # ! !. +! , #
" ! " ! , ! - * #, #
* !# !$ !. + !. * ! * # # ! !, $ # " !
" {, !$ ! ! # #!$ # ! ! !
$ / ! " !.
Abstract
A. V. Krotov, V. V. Rabotin, On a class of complete intersection Calabi{Yau manifolds in toric manifolds, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 423{431.
We consider the family of smooth n-dimensional toric manifolds generalizing the family of Hirzebruch surfaces to dimension n. We analyze conditions under which there exists a Calabi{Yau complete intersection of two ample hypersurfaces in these manifolds. This turns out to be possible only if the toric manifold is the product of projective spaces. If one of the hypersurfaces is not ample then we 5nd Calabi{Yau complete intersection of two hypersurfaces in Fano manifolds of the given family.
1.
6!" ! # 7 # 8 ! (9 -6 ) 7 !& ##- # " ( : 95{0{16{99), ! " ! # = " 7 # 7# *$ # ! " 7 !& ##- # " ( : 96{01{00080). , 2001, 7, : 2, . 423{431. c 2001 !, "# $% &
424
. . , . .
, { 1, 2]. $ %{' 1,3, 4]. ) %{', , . $ + , , 5{7].
8] % 0 0, 1 . 2 1 | , 1 %.
2. !" + 4 8]. 5 + 1 (., , 9,10]). 5 N | 0 4: n, M = Hom(N Z) | 4:, N. < = , NQ= N Q. > = =(1) f1 : : : d g. 5 C d | d- z1 : : : zd . ? = @0 zi C n : i $ zi , i = 1 : : : d. 5 X = X | , 0 =. B, 2 = Z X dim. , i = Di X, i = 1 : : : d. > 0 S(=) = C z1 : : : zd ]. , 0 S(=) An;1 (X) | @ - X 0 @0 X. . % Di An;1(X) : d Q zi - 0 S(=). < zia i=1 1 : i
= 2 An;1(X).
X d
i=1
ai deg zi =
X d
i=1
ai Di
(1)
{
425
: S 0 . C S : D- . d
d
2.1 (8]). Q zia Q zib -
i
i
i=1 i=1 , bi = ai + hv ei i, i = 1 : : : d,
v 2 M , ei | i. %0 S(=) X.
3. $ % "
5 0 = | Rn;1 (n ; 1)- Pn;1. E 0 1
: 0=(1) := fe1 : : : eng 0 = e1 = (1 0 : : : 0),.. ., en;1 = = (0 : : : 0 1), en = (;1 ;1 : : : ;1). Rn;1 Rn, 0 x 7! (0x 0), 1: 0 Rn: en+1 = (c1 : : : cn), cn < 0, en+2 = (0 0 : : : 0 1). F 0= + fen+1 > 0g + fen+2 > 0g, | 0 =, 0 = Rn. < Hc 1 + . F 1i (2i) , : fe1 : : : e^i : : : en en+1 g ( fe1 : : : e^i : : : en en+2g), i = 1 : : : n, , , 4 , + 1. 1 0 Hc .
3.1. An;1(Hc) Z2, ! " # n+2
Dn Dn+1. $ Q " za := zia deg z a =
X n
i=1
i=1
i
ai Dn ] + an+1 ; cn an+2 ;
nX ;1 i=1
ci ai Dn+1]:
. I 1 ( 9]) 0 ;! M ;!
d M i=1
ZDi ;! An;1(X)
;! 0
(2)
426
. . , . .
(m) = ;
d X i=1
hm ei iDi
X d
i=1
kiDi =
4 m = (m1 : : : mn) 2 M nX +2
nX ;1
i=1
i=1
hm ei iDi =
d X i=1
ki Di]:
mi (Di ; Dn + ci Dn+1 ) + mn (cn Dn+1 + Dn+2 ):
5+ (2) , deg zi = Di] = Dn ] ; ci Dn+1] i = 1 : : : n ; 1 deg zn = Dn] deg zn+1 = Dn+1] deg zn+2 = Dn+2] = ;cn Dn+1]: 5 @ (1) 4 . . F @ 1 Dn Dn+1 An;1(Hc ), + 0 (r s), (r s) $ r Dn ] + s Dn+1 ]: $, X , ;KX . F
, 1 : , d ;KX = P Di . i=1
3.2. Hc , cn = ;1. Hc %
" ":
1) c = (;1 ;1 : : : ;1)' 2) c = (0 : : : 0 1 0 :: : 0 ;1), 1 i- , i = 1 : : : n ; 1' 3) c = (0 : : : 0 ;1) ( ( Hc = Pn;1 P1). . K , 0 1 : 1 4:. < Hc . F Hc. 3.3. ) (a b) Hc
,
a > 0 b > 0 aci + b > 0
i = 1 : : : n ; 1:
(3)
{
427
. $ ( 9, x 3.4]). L
D=
d P
aiDi , d | , D - @0 , = 1 ;ai 0 1 ei =, i = 1 : : : d. F D , @0 D , . . D D @0 . 4 @0 D = aDn + bDn+1 8 axi + (aci + b)xn x 2 1i i = 1 : : : n ; 1M > > >
i bxn x 2 1nM > > : 0 x 2 2n: ) + @0, . K Hc
nP ;1 n 2 ; ci , : i=1 i=1 D
;
nX ;1 i=1
ci + 2 > 0 ;
nX ;1 i=1
ci + ncj + 2 > 0
j = i : : : n ; 1:
(4)
ci 0, + (4) + 1:
;
nX ;1 i=1
ci + 1 > 0 ;
nX ;1 i=1
ci + ncj + 1 > 0
j = i : : : n ; 1:
(5)
$ (5) (n ; 1)- 4 (;1 : : : ;1), (0 : : : 0 1 0 : :: 0), 1 i- , i = 1 : : : n ; 1. I , 0 4 (5) 4 0 , 4, | (0 : : : 0). . 5 X | (n ; 1)- N, 1 0=1 Rn;1 Rn. 5 0 Hc Xc 1 =1, @ 0 =1 , , 1 : , (c1 : : : cn;1 ;1) (0 : : : 0 1) Rn. O 4 , 0 1 : 0 =1 4 P. 5 1 .
428
. . , . .
! 3.4. Xc % , (c1 : : : cn;1) 2 P.
5 1 : 4 . Q MapleV2, 1 . % + . . 5 n = 2 c = (m ;1) Hc O 0 Fm , : 1 Hc n- O 0 . 5 m : O(m) | m- P1, O | P1 , O 0 0 ? + , Fm = P(O(m) + O) 9]. Q Hc, , cn = ;1, Hc = P(O(c1)+: : :+ O(cn;1 )+ O).
4. ' {
. { + X , @ p-@ 0 < p < dimX, . . hp0 = dimC H 0 (X Sp ) = 0 0 < p < dimX: > X.
4.1. $ Y | " " * Y1 : : : Yk X , D- " f1 : : : fk 1 : : : k , * +# Y d Q
c(Y ) =
(1 + Di])
i=1 k Q
i=1
(1 + i )
:
, @ . 5 11].
# 4.2 (11]). $ * +# " * c1 (Y ) =
d X i=1
Di ] ;
k X i=1
i :
{
429
, , -{/ , * " *, " , * " 0 . % Hc . # 4.3. $ Y k " " * Yi * (ai bi) Hc -{/
,
k X
ai = n
i=1
k X i=1
bi = 2 ;
nX ;1 j =1
ci :
(6)
B, %{' ( , : ) . I %{', , , . 5 , . I1 : 1 . ! 4.4. , Hc
-{/,
"1 " " " *, c = (0 : : : 0 ;1), . . Hc = P Pn;1.
. ) , Hc | N, + 4 3.2. 5 c = (;1 : : : ;1) Y 4.3, (3) , bj > aj + 1, j = 1 : : : k, + k X j =1 k P
bj >
nP ;1
X k
j =1
aj + k = n + k:
(7)
$ (6) bj = 2 ; ci = n + 1, + (7) , j =1 i=1 k 4 1. k P c = (0 : : : 0 1 0 :: : 0) (3) , bj = 1, . . k = 1, j =1 bj > 1. K , , 1 @ , 1.
430
. . , . .
! 4.5. , # " " * % Hc * * -{/, "
" " " *.
. 5 @ , . K Pn @ - C n+1 n f0g C C n+1 n f0g, n- X @ - C d n Z, (d = #=(1) ) (d ; n)- (C )d;n . ) I(Z) Z 0 S(X) X , U1 W m = (x0 : : : xn) 0 C x0 : : : xn] . ) I(Z) Q
z^ := zi , | =. 2= , 1 + Z (. 3]). )
3] 1 .
4.6. " Y = fz: f(z1 : : : zd) = 0g X , D- f , *, #
@f(z) = 0 A = z: f(z) = 0 @f(z) = 0 : : : @z1 @zd # Z . Hc . + Z Z = fzizn+1 = 0 zi zn+2 = 0 i = 1 : : : ng: 5 k, 0 < k < n, | 0 . F c = (;1 : : : ;1) (k k) i
f = n+1 znk znk+1 + n+2 znk znk+2 +
nX ;1 j =1
j zjk :
F c = (0 : : : 0 1 0 :: : 0), 1 i- , (k 0) f = n+1 zik znk+1 + n+2 zik znk+2 +
n X
j =1 j 6=i
j zjk :
X , +@@0 f 4.6. (n ; k n ; k + 1), | (n ; k 1). K , + ,
{
431
: , : .
Q. %. 2 + .
(
1] T. Hubsch. Calabi{Yau manifolds | a bestiary for physicists. | Singapore: World Scientic, 1992. 2] V. V. Batyrev. Dual polyhedra and mirror symmetry for Calabi{Yau hypersurfaces in toric varieties // J. Algebraic Geometry. | 1994. | Vol. 3. | P. 493{535. 3] V. V. Batyrev, D. A. Cox. On the Hodge structure of projective hypersurfaces in toric varieties // Duke Math. Jorn. | 1994. | Vol. 74. | P. 293{324. 4] P. Candelas, M. Lynker, R. Schimmrigk. Calabi{Yau manifolds in Weighted P4 // Nucl. Phys. | 1990. | Vol. B341. | P. 383{402. 5] V. Batyrev, L. Borisov. Dual cones and mirror symmetry for generalized Calabi{Yau manifolds // Essays in Mirror Symmetry II / S.-T. Yau, editor. | Preprint, alg-geom/9402002. 6] V. Batyrev, L. Borisov. Mirror duality and string-theoretic Hodge numbers. Preprint, alg-geom/9509009. 7] V. Batyrev, L. Borisov. On Calabi{Yau complete intersections in toric varieties // Proceedings of Trento Conference (1994). 8] D. Cox. The homogeneous coordinate ring of toric variety // J. Algebraic Geom. | 1995. | Vol. 4. | P. 17{50. 9] W. Fulton. Introduction to Toric Varieties. | Princeton, NJ: Princeton Univ. Press, 1993. 10] . . . !"!#$% #$&!'() "*+$,- // ./0. | 1978. | 1. 33. | 2. 85{134. 11] 3. . 4$#. 5 ('') 67!% 89) 8!$!'!&!- *:(" #$&!'(" "*+$, // 4"8!('9- , :;;!$!<=9! >$!%. | 4$'%$'(, 1996. | 2. 90{95. ' ( 1997 .
. .
. . .
519.865.5+519.8:33
: , , -
! " #$%.
& '
(!) *+
+) *+. ,
( ! " #$% ! +) *+. - )./' + ! +) *+.
Abstract B. O. Kuliev, Cournot and Stackelberg strategies in the case of several companies, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 433{440.
The classical Cournot and Stackelberg strategies for the case of two companies are generalized to the case of several companies. The Nash stability of Cournot strategy for the several companies case is investigated. A characterization theorem for Cournot strategy is given for the case of many companies.
. (i = 1 2),
.
!" # . $ %, % i-
xi xi . % & ' , ! ( !) ( . * ! % ') ') ) !+ x = x1 + x2, . . p(x) = c ; bx, c > b > 0, c > . .%
/%! # ! ! , + ! i- !" Wi (x1 x2) = xi (c ; bx) ; xi = bxi(d ; (x1 + x2)), ) d = c;b . !"" & ! % !. 0, + " %! ) , . . 1& &
x2 . $)
!
% ! " % d;x2 1 !: @W @x1 = b(d ; (x1 + x2 )) ; bx1 = 0, . . x1 = 2 . 3!)+ ! " , . .
!
1& x2 = d;2x1 . , 2001, + 7, 7 2, . 433{440. c 2001 !, "# $% &
434
. .
. $ ! ' % " # 61,3,4]. !, + % ! .
!
n- , %" 1&
(n;1) (n;1) d ; x (n) (n) 2 ) % /! : x1 = 2 , x2 = d;x12 . (n) = (x(n) x(n)) 60 d]2 1.
1 2 ; d d x K = 3 3 . . 8%&(k) " > 0, + x(k(k)) = (x(1k) x(2k)) ! " ! ' ! : kx ; K k < 2", . . x # " 2"- + K . ! ' + ! ! x(k+1) = = (x(1k+1) x(2k+1)): kx
(k+1)
=
; Kk =
s
s
d ; x(2k)
s
6
d ; x(2k) ; d 2
2
2
3
2
(k ) + d6 ; x12
(k) + d ;2x1 ; 3d
2
s
=
1 4
2
d ; x(k) 3
2
=
2
+ d3 ; x(1k)
2
=
2 2 1 d d 1 = 2 3 ; x(2k) + 3 ; x(1k) = 2 kx(k) ; K k < ": :+, + x(k+1) # " "- + K . !%" !)+
! !" x(k+p) , ) p | ! ! +!, !/ 1, !+, + + x(k+p) # " 21p "- + K . 0 ' ! +! k, + !" !) n > k ! , + kxn ; K k < ", . . # ! ! + x(n) = (x(1n) x(2n)) + = K . .% ( ! , + ! %+!
(# # , % + +! 1&
, d3 , . . ) =, ! !, ( )" !
) !" # % " . . <)" = !"
) , + !+ # ) !" % " ! ! !" ! % ! . ! " ) = !/ # ", )" = + >(/, . . %
) # & ! , + )" ! " ). 0 !, !" () % 2 ! bd9 > byd(d ; (x1 + yd)), ) " ), !+ 3d
, yd (0 6 y 6 1), " d . %+ x1 = d " );
3 3 ;1 2 bd 2 !+ 9 > bd y 1 ; 3 + y . 0! ! # %
;
;
;
435
: 19 > y 32 ; y , y2 ; 23 y + 19 > 0, y ; 13 2 > 0. > y ; 13 2 > 0 !"
# y, 0 6 y 6 1. ; ., !+ # : + ()") = K = 3d d3 @ 2 2 ! W1 = W2 = bd9 @ " ! W K = 2bd9 @ pK = c ; 23bd . . $ ) 62], ) % %! ). " % % 1&
x1, ) " ! !" & %, # " % ! " % !: x2 = d;2x1 . $ " , # " % ) " , . . " + # % ! " %; ! 1&
, ) x2 : W1(x1 ) = bx1 d ; x1 ; d;2x1 = bx1(d2;x1 ) , b(d;x1 ) = 0 =) xS = d , !+ % 1 ) @W 1 @x1 = 2 2 + ()) <!): xS1 = d2 , xS2 = d4 . $ %, !+ # ! bd2 < 2bd2 = W1S = bd82 > W1K , W2S = bd162 < W2K , " ! W S = 316 9 = W K , . . ! !/, ! " ! /, + + =@ pS = c ; 34bd , /, + + =.
! # . A' ! !+e !+ )
= ) <!), !
/, !+ )# (i = 1 2 : : : m) ) . P 8 ( !+ ' 1&
x = x1 +x2 +: : :+xm = xj . <j ! i - !" W ( x x : : : x ) = x ( c ; bx) ; i 1 2 m i P c ; ; xi = bxi d ; xj , ) d = b . j
0, + i-" %! ) # ! # (m ; 1) . $) ( , " ! % ! d; P xi P j = 6 i @Wi = b d ; xi ; 2xi = 0,
! 1&
x = . i @xi 2 j 6=i
A' " ) = !" !+" )#P . (n;1) d;
xj
. B!m . .P !" ) i = 1 2 : : : m: x(in) = j6=i2 d; x(jn;1) x(in) = j6=i2 " !"" )
% ) # . $+ +" (# )d K K K ! " !"" + = (xK 1 x2 : : : xm ): xi = m+1 , i = 1 2 : : : m. 0 !, !" # " + +" P / d; xj ! # !)+# xi = j6=2 i , i = 1 2 : : : m.
436 .
. .
8 > > > > > xi > > > <
=
d;
P
j 6=i
2X
2xi = d ;
> > > > > > > > : xi
= d;
xj
j 6=i
X
j
i = 1 2 : : : m xj i = 1 2 : : : m
xj
i = 1 2 : : : m:
A ! , + x1 = x2 = : : : = xm , , /" ! % , !+ xi = md+1 , i = 1 2 : : : m. K K ., /! + = !+ m = (xK 1 x2 : : : xm ): d d K xi = m+1 , i = 1 2 : : : m. < !" ) % m+1 .
! ". = , , +!
#
2d . = %, ! '
, 0, ! "
d2 . . $ !+ # "'" ! ! + x(n). .! ) = )# + >(/. C+ -! ) >(/ /) ! " %+, + %
) # ( )
!, + ! ! " ).
2. . . m-" !+ md+1
xm = yd, ) 0 6 y 6 1. 0, + & ! !+", ! ! (m ; 1) !
xi = md+1 . > %
;1 bd2 > byd d ; mX x + yd : i (m + 1)2 i=1
0, + ( . 0 !, xi = md+1 , %+" xi , !+
bd2 > bd2y 1 ; m ; 1 + y (m + 1)2 m+1
:
! + bd2 % & (! % ". !+
;
437
1 > y m 2+ 1 ; y (m + 1)2 y2 ; (m 2+ 1) y + (m +1 1)2 > 0 1 2 y ; n + 1 > 0:
1 2 > y ; n+1 > 0 # y, 0 6 y 6 1. $ %. > ! ' ( ! " , " " !"" #%' !" ) = !+ )# .
3. m . md+1 . . A%+
xd, ) +-
>(/ %+, + ! /", ! -! % %
, " ! #"
xd, . . !
! bxd(d ; mxd) > byd(d ; (m ; 1)xd ; yd) 8y > 0: ( . . !" !) y > 0 bd2x(1 ; mx) > bd2y(1 ; (m ; 1)x ; y) x(1 ; mx) > y(1 ; mx + x ; y) 2 y ; y(1 ; mx + x) + x(1 ; mx) > 0: 0!, !" (1 ; (m ; 1)x)2 ; 4x(1 ; mx) 6 0 1 ; 2(m ; 1)x + (m ; 1)2x2 + 4mx2 ; 4x 6 0 (m + 1)2 x2 ; 2(m + 1)x + 1 6 0 ((m + 1)x ; 1)2 6 0:
md+1 . $ ' " ) <!) !" !+" )# . m-" ! %, . . % !, # " % '& #
# ! # (m ; 1) @ (m ; 1)-" ! ' %: %
,
,.. . , (m ; 2)- , %, + m-" , %
/, , # " % ( , ! !" " %. A! !)+ %. >% & #% % " <!). 0!" " +! <!) m = 3. ! W3 (x1 x2 x3) = bx3(d ; x1 ; x2 ; x3 ). '& # x1 x2 ! !" " %, :
438
. .
@W3 = b(d ; x1 ; x2 ; 2x3) = 0, x = d;x1 ;x2 . 8" % 3 @x3 2
, # " % ), + x1 %
x3 . :+, W2 (x1 x2) = bx2 (d ; x1 ; x2 ; x3) = ; ! = bx2 d ; x1;; x2 ; d;x12;x2 = bx2 d;x21 ;x2 , ! % % " d;x1 ;x2 ; x2 = 0, !+ x = d;x1 . 8 + 2 @W 2 @x2 = b 2 2 2 " %
% , +
x2 x3 . $ %, ! d;x d ; x 1; 2 1 d ; x 1 W1 (x1) = bx1(d ; x1 ; x2 ; x3) = bx1 d ; x1 ; 2 ; = bx1 d;4x1 , 2 ; d;x1 x1 1 !+ x1 = d2 . $ @W @x1 = b 4 ; 4 = 0,
+!
x1 = x1 x1 = x1 x2 = x2 . !+, + x2 = 4d x3 = d8 . $+ (x1 x2 x3) % " + <!) !+ &# . $ & !+" )# .
4. m ! , #. j - (j = 1 2 : : : m) P d ; xi xj = i<j : 2 . ! m-
Wm (x1 x2 : : : xm ) = bxm d ;
X
i
xi :
@Wm = b d ; X x ; x = b d ; X x ; 2x = 0 m i m i @xm i i6=m
!+
xm =
d;
P
i<m
2
0!" (m ; 1)-
Wm;1 (x1 x2 : : : xm;1) = bxm;1 d ;
xi
X
i<m
xi ;
: d;
P
i<m
2
xi !
= bxm;1 P
d;
P
i<m
2
xi
P d; xi ; xi @Wm;1 (x1 x2 : : : xm;1 ) = b i<m ; xm;1 = b i<m;1 ;x m ; 1 = 0 @x 2 2 2
(
d
m;1
xm;1 =
d;
P
i<m;1
2
xi
:
439
!, %, +
d;
P
xi i<j xj = 2
!" # j = k k + 1 : : : m, ) k < m. 0 , + X
r>j
xr = d ;
X
i6j
xi
1 1 ; m;j 2
!" # j = k ; 1 : : : m ; 1. . !" j = m ; 1, ! !
/, X X 1 1 xm = d ; xi 2 = d ; xi 1 ; 2 : i<m i<m P $ & xr : r >k
1 ; m1;k = 2 r>k r>k i6k X 1 1 = xk + d ; xi 1 ; m;k ; xk 1 ; m;k = 2 2 i
xr = xk +
d;
P
x
X
xr = xk + d ;
X
xi
i X = 2m;ik;1 r>k i6k;1
$ , +
xj =
d;
P
i<j
xi
2
!" j = k ; 1. (k ; 1)- . G& ! % ! ' %:
Wk;1(x1 x2 : : : xm ) = bxk;1 d ;
X
r
xr ; xk;1 ;
X
r>k;1
xr :
440
. .
A
#:
d;
X
i
= d;
xi ; xk;1 ; d ;
X
i6k;1
X
1 ; m;1(k;1) = 2
X
i
xi ; xk;1
1
1 ; m;(k;1) = 2 X 1 1 = d; xi 1 ; 1 + 2m;(k;1) ; xk;1 1 ; 1 + 2m;(k;1) = i
xi ; xk;1 ; d ;
xi
A % ! " % ! X @Wk;1 = b 1 d; xi ; 2xk;1 = 0 @xk;1 2m;(k;1) i
d;
P
i
xi
. $ %, xj =
d; P xi i<j 2
!" j = 1 2 : : : m.
$ & + <!) !+ m . 0!" () / ! ' ! # !)+# : 8 > <
xi =
> :
d;
P
j
2
xj
i = 1 2 : : : m:
A+ , + x1 % )# xi d2 , xi % ! xj , ) j < i. / ( " !"" xS1 = 2d , xS2 = 4d ,. . . , xSm = 2dm . $ %, /! + <!) S = (xS1 xS2 : : : xSm ) !+ )# . < !" ) % 2dm .
1] Cournot A. Recherches sur les principles mathematique de la theorie des richesses. | Paris, 1938. 2] Von Stackelberg H. Marktform und Gleichgewicht. | Wien Berlin, 1934. 3] ., . . | .: !"-, 1997. 4] %&' . (., ) *. . +,- .,)/,, . | .: .,, 1998. ' ( 2001 .
. .
e-mail: [email protected] 514.1
: , ,
.
! " #$ , %& '
(# (
). , '
' % # , ", # +
' ' . , " '- # '
'
' ' , " #- " + # . ."#/' / #$ ' +' , ' # 0'$ '+1 / 2 . 3$ '$ - / | '#+ ( 2 .
Abstract
A. I. Kurnosenko, Interpolation properties of planar spiral curves, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 441{463. Some inequalities on the planar curves termed spirals (due to monotonous curvature function) are considered. For a spiral represented as a set of interpolation nodes, a region covering the parent curve is constructed. The width of the region provides an estimate of curve de;niteness by the given discrete representation, this estimate being independent of any interpolation method. A similar problem is set up for any smooth curve, assuming that vertices are distanced 0su
1.
1], 2]. # $ () | ), . , 2001, 7, = 2, . 441{463. c 2001 !, "# $
442
. .
+ , . - , , , , , $ . . , ,, , ) | / -, / , ) ). # $ ) / , 1]. + ) , , | 0 1 . / / $ ) . 2 , $ : $ )
? 5 0$ ,
. 6 , $ $ , $ $ 0 $
0 $ 3]. 0 | , , 2, . 9]. 9 , $ $ , - ,. : ) , , ,
1 , $ 0 k(s). + , / , $ . k(s), . ; )
,
.
. < = ) | , . + , , , ) $ : / . . $ , . / ) $ .
443
:
, $ - , k(s). - n fPj =(xj yj ) j =1 : : : ng : 1) 1 n , n > 2? 2) ? / , n > 3. 6 , , 0 ) , . ; . fPj ? 1 ng | - ( ) ). @ ) j - ) Kj (Pj ;1 Pj Pj +1), $ $ . A $ K1 Kn . / )$ j -$ , 1 6 j 6 n ; 1, Kj Kj +1
qj qj +1. + $ <= | , $0$ ) / . 5 ( < =) ) , (3, . 102], 4]). C $ . 1.
> . 1
: , 0 5:
, " # ? "$ fqj j = 1 : : : ng .
;
q 2c
444
. .
2 2 2 c2 ; qc ; qc q h(q c) = p ' 2 1+ 4 : 1 ; (qc)2 + 1 F j ) 2cj ,
G $ c2 j = jh(qj cj ) ; h(qj +1 cj )j ' 2j jqj ; qj +1j G = max(1 : : : n;1): (1) @ / , , j $ 8 ( ) ) (1) ). 6 . 1 / , n c 10 13. . 9 , (1) . C0 ) - , . . . @ ( / ) ) , . ), Pi 1 n $ ( . 2). +, ,
> . 2
/ , . . $ $ $ $ ) . C 0
, , , . - / ) , ) ) . ; $
, , $ . 6 $ : , #% -"" , , #% & " &' & .
2.
:
) ,. I$ /
,$
445
y = f (x) , 2c ;c c] ,
. -
;1 1], / x=c y=c, | # knorm = kc, ) $. , 0 , . I ) , $ ;1 1], ; sin . J , , 0 , c , < = : p p 2 sin2 ; cos sinp (1 ; x2) cos = 1 ; k2 A(x? ):= 1 ; x sin = cos + 1 ; x2 sin2 sin = ;k: (2) . I
M
, 0 , y = f (x), $ $ : , x 2 ;1 1], , : f (1) = 0? , $ ? , , (x) := arctg y0 (x) | y = f (x)? , k(x) = y00 =(1 + y0 2)3=2 ;1 1]? ) , ;1 1]. . $ ( M+ M; ). I
M0 0 , (2). @ < = ) 0 , (s) | : 0(s) = k(s). K $ , z (x): 0 z (x) := sin (x) = p y 0 2 (3) =) z 0 (x) = k(x): 1+y , z (x) . , z (x) , y = f (x) : Zx Zx f (x) = tg (u) du = p z (u) 2 du: (4) 1 ; z ( u ) ;1 ;1 L , f (1) = 0, , z (x) ) ,
446
. .
Z1 Y (z ) := p z (u) 2 du = 0: 1 ; z (u) ;1 p - , t 7! t= 1 ; t2 Y (u) > Y (v) u(x) v(x)
(5)
(6) < = , $ $ ) , , . . fu(x) > v(x) \ u(x) 6 v(x)g.
y = f (x) ;1 1] f (1) = 0 , = (;1) = (1) (j (x)j < =2) 1 k1 = k(;1) k2 = k(1). 2
, M ( ) M ( k1 k2). . AB jABj = 2c 6= 0. ) , $ , ;!. + , A (j j j j < ) $ ; AB $ / , 0 L( ? AB ), , . I1
k c = ; sin . 2, $ ( + )=2, 0 . + L? ( ) : 6 . +, L? ( 2 2) L?( 1 1) () 1 6 2 6 2 6 1: (7) . L( ; ) ( . 3). C0 ! ( )
! = +2 = ;2 : (8)
> . 3
3.
@
M )$ ,, )0
447
. ; , (
,$ 5]. C , , )
M ( k1 k2). 0 $
$ $ . 1. y = f (x) M( k1 k2), , , ! = ( + )=2 k1, k2
M+ : ! > 0 k1 < ; sin < sin < k2? M; : ! < 0k1 > ; sin > sin > k2? (9) 0 M: ! = 0k1 = ; sin = sin = k2: ! .+ J)
M0 . y = f (x) 2 M ( k1 k2). + , z (x). . 0 $ (3), 0 A(;1 sin ) B (1 sin ) ( . 4). I , / ,
$ , / 0 $ $, ) $ ) AB . @0 ,, AB l(x) = k0x + sin +2 sin k0 = sin ;2 sin (10) > . 4 AA1 B1 B : AA1 : z1 (x) = ;x sin B1 B : z2 (x) = x sin : (11) - z (x) < l(x) Y (z ) < Y (l) (6). 6 Y (z ) = 0 (5), a Z1 l(u) Y (l ) = p du = 2 tg +2 = 2 tg !: 1 ; l(u)2 ;1
+ $ ! > 0 y = f (x) 2 M+ . -
, (9): ; sin < sin . . (3) AP PB z (x) k1 k2. 2 ) k1 < ; sin . C ) AP , , ) AA1 : z (x) z1 (x). 5) $, ; sin = z1 (1) < z (1) = sin . 6 Y (z ) > Y (z1 ) (6). +, Y (z1 ) = 0, Y (z ) > 0, (5) $ , (9). C0 : PB z (x) B1 B .
448
. .
C y = f (x) 2 M; ( k1 k2), y1 = ;f (x) 2 M+ (; ; ;k1 ;k2) ;k1 < sin < ; sin < ;k2 , 0
M; . " 1. # , ( k1 k2) 0 . ! 6= 0. 5 (k1 k2) ) K+ K;, $ $ )
M : K+ := f(k1 k2): ;1 6 k1 < ; sin \ sin < k2 6 +1 ! > 0g (12) K; := f(k1 k2): +1 > k1 > ; sin \ sin > k2 > ;1 ! < 0g: C ! > 0, K+ ) k1 = k2 ? K; , ) ) / .
> . 5
. 5 $ K+ . 6 (k1 k2), k1 = ; sin k2 = sin , . ) C = = (; sin sin ) . 2 $ , K; c C , ) ) k1 = k2. 6 0 ) . " 2. I y = f (x) 2 M( k1 k2) , z (x). + $ APB , $ z (x). / M+ : z (x) > V (x? P ) M; : z (x) 6 V (x? P ) (13) APB
, ( V (x? P ) := k1(x + 1) + sin ;1 6 x 6 x0 k2(x ; 1) + sin x0 6 x 6 1 P
449
; sin z (k k ) = 2k1k2 + k2 sin ; k1 sin : x0(k1 k2) = k1 + k2 k+ sin 0 1 2 ; k k2 ; k1 2 1 (14) " 3. I ) K (k1 k2) 2 K P (x0 z0 ). + ) jxj 6 1 ) (M+ ) (M; ) B1 OA1 , . . P := f(x z ): jxj 6 1 \ z 7 ;x sin \ z 7 x sin g: (15) O jxj = 1 $ . + , ) P (x z ) 2 P K (k1 k2) 2 K : k1(x0 z0) = z0x; +sin1 k2(x0 z0 ) = z0x; ;sin1 : (16) 0 0 @ ) K ! P (14) P ! K (16) ) ,
: x0 ) J1(k1 k2) = 4 (k1 ;(kk0;)(kk2);3 k0) J2(x0 z0) = 2 z(0x2;;l(1) 2 2 1 P!K K!P 0 k0 l(x) (10). $ K , , (9) k0 | ; sin sin ]: ! ? 0: k1 7 ; sin 7 k0 7 sin 7 k2: (17) 6 . 5 / $ $ N (k0 k0) k1 = k0, k2 = k0 . P J2 AB | P . Q , . 5, $ $ P + , ) ) A(;1 sin ) B (1 sin ). ) ) O ) AB (10): l(0) = (sin + sin )=2 > 0. 5 O C , C | , K | $ OB1 OA1, ) , P . F, $ P , $ 0 K . @ (13) , . . z (x)
< = V (x? P ). J (5) cos cos 1 1 p 2 (18) k1 ; k2 ; k1 ; k2 1 ; z0 = 0 z0 (14). , z (x) - , k(x) - , y = f (x) ) . k1 , (;1 0) , (x0 y0) 0 $ k2 6= k1 , $ $ (1 0) .
450
. .
k12 ! 0 (18) ,
$ , $ . + ) (18) 0
Q( k1 k2) := k1k2 + k2 sin ; k1 sin + sin2 = = (k1 + sin )(k2 ; sin ) + sin2 ! = 0 (19) ( ! (8)). @ (k1 k2) / , C ( . 5). C0 $ , K . 5 ) K, (18) (19) / <= . L /, (18) (;k1 ; sin ) cos + (k2 ; sin ) cos + sin 2! = (k2 ; k1) p1 ; z 2 : 0 k1k2 k1k2 @ , (9), ! ) , . 2 , $ . @ , 0 ,. + (k1 k2) ) , 0 (k1 g2) (g1 k2),
Q( k1 g2) = 0 Q( g1 k2) = 0
(20)
$ ). 6 . 5 / K (k1 k2) 2 K+ K1 (k1 g2) K2 (g1 k2). I1 g2 g1 0 k1 k2 . (16) 0 0 (x z ): Qe(x z ):= Ex2(x;z1) = 0 E (x z ):= x2 sin2 + z 2 +2xz sin cos ! ; sin2 !: (21) I E (x z ) = 0 | / c , ( . 5). + z = 1 jxj 6 1 A, B A1 = (1 ; sin ) B1 = (;1 ; sin ). @ , ) K , ) B1 A1 / , $0$ P : p Z (x) = ; sin ! 1 ; x2 sin2 ; x sin cos ! = ; sin! + arcsin(x sin )] jxj < 1: (22) + K1(k1 g2) K2 (g1 k2) $ P1(x1 z1) P2 (x2 z2). 6 V (x? P1) k1 g2 , V (x? P2) | g1 k2 .
451
O . 6 $ ). $ . @ ) x0 ). 2 0 B1(x? k1) B2(x? g2) B0 (x? x0) (23) ) $ ,. (20) ! x cos ; q1 ; x2 sin2 ; sin k1 = 1sin 0 + x0 0 q ! x cos + 1 ; x2 sin2 + sin : g2 = 1sin 0 > . 6 ; x0 0 1. 5 ) )
L( ; ), 0 )
!. # , k1 ! ;1 P B1 / , V (x? P ) ) B1 B , ) (4) ,$ A(x? ; ). ! ! 0 $ / B1 A1 , APB , AA1 B1 B . Q, B ) $ / ,$ A(x? ). ; $ : B1(x? 1) = B0(x? ;1) = A(x? ; ) 0 M : B2 (x? 1) = B0(x? +1) = A(x? ) (24) Bi(x? ; ) = A(x? ) i = 0 1 2:
4. "
@ / ,
M . $ . 6 . % 1. M( ? k1 k2)
Q( k1 k2) 6 0
(
! > 0 (k1 < k2)? (25) ! < 0 (k1 > k2):
452
. .
! . O
$ . 6 ! > 0 1. J) , ) (k1 k2) 2 K+ , )
M+ , H+ := f(k1 k2): Q( k1 k2) 6 0 k1 < k2 ! > 0g: + $ (19), ) K+ ( . 5). + H+ (x z ) , (21), E + P + , Qe (x z ) 6 0. @ P + E (x z ) > 0 $ P + / : E + := f(x z ): jxj 6 1 z 6 Z (x) (x z ) 6= A1 (x z ) 6= B1 g: + E + jxj 6 1, ) $ ) B1 A1 , / , . 5 , ) $ ) P OB1 A1O ( . 7). ), P ) OB1 A1 O. . (13) z (x) > V (x? P ). . P P1 , ) $ B1 A1 . 5 Y (V (x? P1)) = 0 V (x? P ) > V (x? P1), 0 Y (z ) > 0 , : f (1) 6= 0. 5 , P ) ) B1 A1 , ) 0, Q 6 0. C y = f (x) 2 M; ( k1 k2), y1 = ;f (x) 2 M+ (; ; ;k1 ;k2). . (19) Q(; ; ;k1 ;k2) = Q( k1 k2). . , / > . 7 !, Q, $ . " 1. - , (25) Q = 0, . . P 2 B1 A1 , z (x) = V (x? P ) , , $ $ Y (z ) = 0. ) y = f (x) ) B (23), M . 6$ , $ ,, Q < 0. . $ $ , 3. " 2. 6 (9) g1 g2. . (19) (20) 2! ; sin2 ! ; sin : ; sin g = k1 = Qk ;;sin 1 k2 ; sin 2 sin
453
J , Q 6 0, ! 6= 0, k2 ; sin M+ ) (9), : k1 6 g1 < ; sin . K , sin < g2 6 k2 . (17), , , $ $ $ ) 1 M+ : k1 6 g1 < ; sin < k0 < sin < g2 6 k2 (26) AP1 AP2 AA1 AB B1 B P1B P2 B $ $ , )0 . 5. O (26) $ Q = 0. ), (25) . % 2. , k1, k2 (25) M, ! " .
! . ! > 0, Q 6 0 k1 < k2. ,$ z (x), ) $ $ $ y = f (x) 2 M+ ( k1 k2). 2 Q = 0 ) (23). Q < 0 , , 0 ) $ . Q < 0, . . P z (x) ) ) B1 A1 ( . 8). F (AP ) (PB ) , z (x) $ B1 A1 P1 P2. I - , V (x? P1) V (x? P2) $ , (5). I , z (x) , W (x? M N ), $ 0 AMNB , M 2 AP1, N 2 P2 B . 6 MN , ) , k12. +, k1 < k12 < k2. # $ M AP1, N P2B , ) > . 8 , Y (W ). + , N = P2, W (x? M P2) W (x? A P2) V (x? P2) (6). 6 , P2B , 0 AMNB ) $ AMB , , ) , W (x? M B ) W (x? P1 B ) V (x? P1). - ) , P2 B 0 N , W (x? M N ) , Y (W ) . y = f (x)
0 ) k1 k12 k2, $ $ $ , .
454
. .
K $ N 2 P2B ) $ $ M 2 AP1 . 2 0 , y = ;f (x). % 3. y = f (x) 2 M( ), L( ; ), ;1 < x < 1 M+ : fx f (x)g L? (; ) A(x? ; ) < f (x) < A(x? )? (27) M; : fx f (x)g L? ( ; ) A(x? ; ) > f (x) > A(x? ): k1 k2 k0 k00, , (23): M+ : k0 6 k1 < k2 6 k00 =) B1 (x? k0) 6 f (x) 6 B2(x? k00)? (28) M; : k0 > k1 > k2 > k00 =) B1(x? k0) > f (x) > B2 (x? k00): ! . 2 , y = f (x) 2 M+( k1 k2) ) (28), ) $ , b1 (x) b2(x): b1(x) := B1(x? k1) 6 f (x) 6 B2(x? k2) =: b2(x) (29) B2(x? k2) 6 B2(x? k00): (30) B1(x? k0) 6 B1(x? k1) C Q( k1 k2) = 0, k1 k2 . 5 $ 1 1 , b1(x) b2 (x) $ )
f (x) | ,
M+ . Q < 0. 5 P ( . 9) ) ) B1 A1 (22), APB 0 P1 P2 ,
x1 < x2. Q, V1 (x) = V (x? P1) V2 (x) = V (x? P2) $ b1 (x) b2(x). F (29) , ,
> . 9
1 (x) = f (x) ; b1 (x) (4) = Zx z (u) Zx V (u) = p du ; p 1 du: 2 1 ; z (u) 1 ; V1 (u)2 ;1 ;1 (31)
455
J / 1 (x) 10 (x) = p z (x) 2 ; p V1(x) 2 = 0 (32) 1 ; z (x) 1 ; V1 (x) p , t 7! t= 1 ; t2 ) z (x) = V1 (x). # AP1 V1 (x), z (x), , ) ;1 p], ;1 6 p 6 x1 . ; 0 b1(x) = f (x) x 2 ;1 p]. # P1B ) ) AB P2B (26) (p 1). . , / (32) , , 1 (x) | / . 6 , 1 (x) (26): z 0 (1) = k2 > g2 = V10 (1). / / / | , 1 (p) = 1 (1) = 0, 1 (x) > 0 (p 1). 2 (29)
,$ 2 (x) = f (x) ; b2(x), (, ) , z (x) = V2 (x). O (29) , ;1 p] q 1]. 5, b1(x) = f (x) < b2 (x) ;1 < x 6 p b1(x) < f (x) < b2 (x) p < x < q b1(x) < f (x) = b2 (x) q 6 x < 1: 0 (31){(32) (30) : 0 , V (x? P ), P 2 B1 A1 . C / . O ) k0 = k1 k2 = k00 . J) (28)
M+ . J) (27) k1 ! ;1 k2 ! +1 (24). < = ), (27) . + , y = ;f (x) 0
M; . % 4. y = f (x) 2 M+ ( k1 k2),
0 00 0 00 0 k0 6 k1 < k2 6 k00 0 66 66 00 00++ 0 > > 0
(33)
, (23):
B1(x? 0 00 k0) 6 f (x) 6 B2(x? 00 0 k00): (34) ! . 2 (34) ) B1(x? 0 00 k0) 6 B1(x? 00 k0) 6 B1(x? k0) 6 f (x)? f (x) 6 B2(x? k00) 6 B2 (x? 00 k00) 6 B2 (x? 00 0 k00):
456
. .
F f (x) ) (28). .$ , 00 k0 . 6 . 10 / , z (x) V0 (x) V1 (x) ( AP0B AP1 B 0 ). . , V0(x) V1 (x) (31){(32) , V0 (x) = V1 (x) > . 10 , ) , B1 (x? k0) ; B1 (x? 00 k0) , . | ) , 0 | $ . 10. 6 , , = 0 . . A0 | B 00 (;1 ; sin 00 ), , B1 (x? 00 k0) 2 M+ 0 . + $ ) 0 + 00 > 0. @ / , (24) $ $ ,$ y = A(x? ; ). 6 f (x) $ .
5. $ % $&
- fP1 P2 : : : Pn? 1 ng ( . 11). 2 0 i, j = i + 1, k = i + 2, l = i + 3. @ ) j - , j 6 n ; 1, 2cj j : q ! (xk ; xj )2 + (yk ; yj )2 cos j = xk2;c xj sin j = yk2;c yj : j; P;; j Pk j = 2cj = j j O
< = P0P1 PnPn+1 , 1 n, c0 = cn = 0 0 = 1 n = n : j - j qj ) ,
$ i j k, $ q j = j ; i qj = sind j dj = c2i + c2j + 2cicj cos j = 21 j;;! PiPk j j
457
0 q1 qn. J j $ 0 (; ).
> . 11
6 j pj j . , $ $ $, ) (jk) ) 0 fj (x) 2 M (j j kj0 kj00), j = j ; j j = k ; j kj0 = pj cj kj00 = pk cj : # k0 k00 | , (9) k1 k2. @ , pj j , , qj <0 = #j | / . @ P1 Pn #1 = 1 , #n = n . 6 )$ Pj Pk $ | (ijk) (jkl) qj qk . + $ L( j ; j ), L(j ; j ): j = #j ; j j = #k ; j : J ) PiPj Pj Pk (35) j = i + i = j + j =) i = j + j #j = i + i = j + j =) i = j + j : (36) @ i i , =2, i i ) . O 0 $ k sin j = ;cj dsin j = ;qj cj sin j = cj sin dk = qk cj j (37) cos j = ci + cdj cos j cos j = ck + cdj cos k : j k 2. (ijk) - % , & !
%ijk : ; i 6 ;; i 66 i 6 j j j
i > i &ijk : ; i > ; ; j > j > j
(38)
458
. .
% ( ).
. . - $ , ) $ . . ) ; ij < ij $ (9). - (9) ) pj ci = ki00 1 sin i =) sinc i 0 pj 6 sin(cj ; i ) : (39) (35) 0 i j pj cj = kj 6 ; sin j = sin(j ; i ) @ ) , ) ( ,
: sin i =ci = p;j < p+j = sin(j ; i )=cj ). O
, sin i (cj + ci cos j ) < ci sin j cos i : (40) cos i > 0. .) (cj + ci cos j ), ) i, j k, , , Pk ij , PiPj . O
$ ) Pk ( . 12).
> . 12
1. 5 Pk ij , . . 0 < cj + ci cos j (37) = dj cos i .
. , cos i > 0, j ij < =2. 5 (40) ) $ ) : ci sin j = tg =) ; < ; : tg i < c + i i i ci cos j j ; ) :
, , $ =2, jj j < =2 cj + ci cos j > 0 . . , /
,. 2. 5 Pk ( ;;! Pi Pj ) ij ,, . . cj + ci cos j 6 0, ; < j < ;=2.
459
5 i = j + j < 0. ) (40) ) : (sin i ); (cj + ci cos j );0 ci + (sin j ); (cos i )+ : . , $ ) Pk : , , . 3. 5 Pk , ij , . . cj + ci cos j 6 0, =2 < j < , sin j > 0. . (37), j > 0 =) > : cos i = cj + cdi cos j 6 0 sin i = ci sin (41) i d 2 j j j i j < =2, , ; i < ; i . + / , , $ 180. T / 0
,$ ,
$ $ $ . 6 (38) . - :
i > i =) j (36) = i ; j > i ; j (35) = j : @ $ . % 5 ( ). fPj j = = 1 : : : n? 1 ng | - % ;, j = n;1 ; L(; j j ? Pj Pj +1 ): (42) j =1
! jj j 6 =2
cj ;1 + cj cos j > 0 cj + cj ;1 cos j > 0 1 6 j 6 n (43) %% & fqj j = 1 : : : ng .
! . 2 , n , n > 3, ) (38) f 2 : : : n ; 1g f 1 : : : n;2g. # 1 n;1 $ (37): 1 = 1 = ;1 , n;1 = n;1 = n . ; (38) $ ,$ (n = 2) . 5 , <0= ) (38) ) % : ; i 6 ; i 6 i 6 i & : ; i > ; i > i > i 1 6 i 6 n ; 1 (44)
460
. .
(7) (27) ) : % : ;i L? (; i i) L?(; i i ) (45) & : ;i L? (i ; i ) L?( i ; i) 1 6 i 6 n ; 1: # ;i | ) , ) (ij ). + (43) $, ) (ij ) i ; 1 k = j + 1 ) ij . C , j j j < =2 j j j < =2. 5 sin j = ;qj cj , sin j = qk cj (37) j > ; j qj 6 qk ( j 6 ; j qj > qk ), ) . - (39) ) , (43) <0= . 5 , $ qi 6 pj 6 qk . 6 $ (43) ( )
.
*. , ) . O
- (1{2{3{4{5) - 3. 2 $ (1{2{3) $ (3{4{5) (38) $ 2 < 2 < ; 2 < ? ; 3 < ; 3 < 3 < >: - $ 2 3 . - $ ;3 < 3 2 < ; 2 , $ : ; 2 (35) = ;3 ; 3 < 3 ; 3
3 = 2 ; 3 < ; 2 ; 3 : 5 ) (2{3) (3{4) ) 3:
L? ( ; ) L? ( ; ) &% : ;;2 L? (; 2 2) L? (; 2 ; 3 ; 3 ): (46) 3 3 3 3 2 3 @ -
) $ ) : ? ? %& : ;;2
LL? ((; 2 ; 2))
LL? ((; 3 ;; 3 ; 2 )): 3 3 3 2 3 3 6 . 13 / / , $ . J | - . 9 4 5
: 5{6 < = .
461
> . 13
@ / , max jk(x)j ' 2. 6 jk(x)j 1. - , $ $ <0= | ( ). + ) (46) $ / . 0, , | = .
+ , . @ $ $ , ) . + , (44), I j - i j $ )0 $ ) : i = j + j (35). O
$ $ (43). 6 (44) $ $ : ; i 6 i 6 i =) ; i ; j 6 i ; j 6 i ; j =) ; i ; j 6 j 6 j ; j 6 j 6 j ; j + j 6 j + j 6 j + j ; j + j 6 i 6 i : + $ $ (33): i0 := max(; i j ; j ) 6 i 6 i =: i00 0j := max(;j ; i ; j ) 6 j 6 j =: 00j j0 := max(; j k ; k ) 6 j 6 j =: j00 ( ). J (33). 6 , 0j + j00 0j + j00 = max(; j ;j ; i ) + j = max(0 : : :) > 0:
462
. .
+ $ (39): sin i0 6 sin i 6 p 6 ; sin j 6 ; sin 0j =) sin i0 6 p p 6 ; sin 0k : j j k ci ci cj cj ci ck , ) j - : ;cj sin 0k k00 = +1: i0 ? k00 = k10 = ;1 kj0 j>1 = cj sin j j
> . 14
. $ (42) . 14.
/ , , (42). J (47)
$ , ( , ), ).
6.
+ , | , 0 ) 0 $. ; . +,
- , " $ . L , /
0. $
(42). I 0 . + / ) : (46)?
463
) N > 3
? ) N 2, ) ,$ , , , ) / ,. 6 $ , . . , . . / 1{4 , $ # . 6 / 0 6]. @ ) $ )0 , . + , $ , , / | ) $ , (1). + $ ) $ ) $ ). . ,
, .
0 . -, . # )$ ) ) , @. K. F . @ ) . , 0, @. K. # ,
.
"
1] . . , . 96-44. | $, 1996. 2] . . & ' - ()')* + ,$,-. 98-27. | $, 1998. 3] 1)$*$ 2. 3., 4 . ., 3 $ . . 3), $ + . | .: )6 , 1985. 4] 4 . . 8)')* + )* ** $,- // , , ,, : 38. | ;$ < , 1970. 5] Hoschek J. Circular splines // Computer-Aided Design. | 1992. | Vol. 24, no. 11. 6] . . *, $ $) - ),- $,-. 98-9. | $, 1998. % & 1998 .
- . .
. . . 512.543.5
: , , .
! " " #- " $ "% "& "% % ' ' ( "') ( ').
Abstract A. E. Pankratiev, On quotients of hyperbolic products of groups, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 465{493. In1nite periodicquotients of non-elementarynon-degeneratehyperbolicproducts of groups are constructed, where the terms (in1nite) and (periodic) are treated in a way natural for the products of groups.
1.
. 1]. . X | . y z X w (y z)w = 12 fjy ; wj + jz ; wj ; jz ; yjg. X - , & ' x y z t 2 X (x z)t > minf(x y)t (y z)t g ; . ( ),
. * , x0 : : : xn;1] + xi xi+1 ] ( & 3). , , &- & . , 2001, 7, 2 2, . 465{493. c 2001 , !" #$ %
466
. .
1 (5]). x0 x1 x2] - yi 2 xi;1 xi+1], jxi ; yi;1 j = jxi ; yi+1 j = (xi;1 xi+1)xi jyi;1 ; yi j 6 4
u 2 xi yi1] xi yi1] 4 ( 3).
2 (4]). - 8 - ! . 1 t, t0 X ' k- ,
) 2 k: jt; ; t0; j jt+ ; t0+ j 6 k.
3 (4]). " x1 : : : x4] | - , ! jx1 ; x2j > 4 max(jx1 ; x4 j jx2 ; x3 j): $ 8 - p x1 x2] q x3 x4], 7 jx ; x j ; 8: min(jpj jqj) > 20 1 2
4 (4]). %& C0 = C0(), C > C0 C 0 > 12(C +) n- x1 : : : xn] - & . ' (xi;1 xi+1 )xi < C i = 2 : : : n ; 1 jxi;1 ; xij > C 0 i = 3 : : : n ; 1, p = x1 ; x2 ; : : : ; xn 2C - x1 xn] x1 xn] C - p. p, 7 7 , ( c)- > 0 c > 0, & p(s) p(t) js ; tj ; c 6 jp(s) ; p(t)j: (1)
5 (5]). %& D = D( c), - ( c)- p q ( p; = q; p+ = q+ D- .
6 (4]). %& C1 = C1() C2 = C2(), r- - & . '
N1 , N2 , N3 1, 2, 3 C > C2 1 > Cr, 3 < 10;3Cr, p1 2 N1 , p2 2 N1 N2 , & C1- 10;3C .
7 (4]). " q1 = x1 x2] q2 = x3 x4] ( c)- - a1 a2 2 q1 ,
-
467
b1 b2 2 q2 , a1 x1 a2 , b1 x4 b2 . %& T0 = T0 ( c), C C 0
jx1 ; x3j jx2 ; x4 j 6 C ja1 ; b1j ja2 ; b2 j 6 C 0 ja1 ; a2j + jb1 ; b2 j < T0 + 2C + 2C 0.
2.
( 7 1] . ' 8 7 7 . ( 3] 9 - 7 &- 7 7 . :
) Gi, i 2 I, . F = i Gi | (2) . :
9 - H = hF jRi (3) & ) F ) ;7 R. <& w, H 2, 2] F w=
lw Y
i=1
ui ri"i u;i 1 ui 2 F ri 2 R "i = 1:
(4)
= Lw ) (4) ) 7 lw . . H
Gi, i 2 I, kmax L 6 cn 7 c. wk=n w > kwk 2], . . k ) 7 7 w u1 u2 uk , ui 2 Gni , ni = 6 ni+1 . ? 9 , . . F. = jwj 7; , &- ) 8 H, w. 1 (3]). 1 ;7 R. , &- ) 7 Gi 9 F ! H (8 & !). 2. Gei, i 2 I, | ) H = i Gi jR . A H = i Ge i jR . A ,
468
. .
) , H Ge i, i 2 I. = ;(H) 9 C8 5], 7 (3) 7 7 S &- A, -7 8 ) 7, A = Gi. i
8 (6]). )* ;(H) H = hF jRi . E , &-7 7 )'7 8 ) 7, . :
7 8 x H xFn 7;7 8
)' (xn)H ( 7 8
, &- 8 8 ). E x ' , 8 xFn
n ! 1. ? ), H = hF jRi ( ) ), ) 77 7 8 &7 7 8 x 2 H ).
9 (6]). W , & * + H ,
& W > 0 cW > 0, W m (W cW )- * ;(H) m.
10 (6]). %& d = d(H),
! + H + , d.
3. !" #" * , L , ; 2 7 (9x 2 L: jL : hxij < 1). > 9 7 8 g 2 H
) E(g) 8 H, ) - &
8 g: E(g) = fx 2 H j 9n = n(x) 6= 0: xgnx;1 = gn g. < , E(g) 7 H, ) -7 2 8 g, 7, & , & 2 & hgi: E(g) CH (g) hgi. 1 E + (g) ) 8 fx 2 H j 9n = n(x) 6= 0: xgnx;1 = gn g, E ; (g) 8 E(g), . . E ; (g) = E(g) n E + (g). 1 , E + (g) 7
-
469
E(g). H E + (g) E(g) . (
, x1 x2 2 2 E(g) n E +;(g). & 9n1 n2 : x1gn1 x;1 1 = g;n1 x2 gn2 x;2 1 = g;n2 . * 1 n1 n2 (x1 x2 )g (x1 x;2 1);1 = x1 (x;2 1g;n1 n2 x2);1 x;1 1 = x1g;n1 n2 x;1 1 = gn1 n2 , x1x;2 1 2 E + (g), . . ) )
E(g) E + (g).
11. " g | + H . $ ( hgi E(g). !"#!$.n> 9 8 x 2 E + (g), ; 1 n ; xg x = g . 7; X W & 8 x g . I ; k
9 ;(H) ( 7 8) 7 7 XW nk X ;1 W ;nk . 1 p q 8 ( W nk ). 9 p q &
( c)- , ' = (g H), c = c(g H). = p0 q0 , &- - 2 p q
. 5 p p0 (q q0 ) D- , D = D( c H). = k ) ; 8 x. 8 ) ) , jp0j jq0j ; jxj, 3, 7 7 8- p01 p0, q10 q0 ; jp0j=3. 2 p01 q10 ) 16- . A , 7 ( ;7 jp0j=3 ; 2D) p1 p q1 q, ) - (2D + 16)- . ? )& 9 & ; p1 ) 7;7 9 7 ;7 q1. (* , ; & 7 7 Al A.) I &-
&- 7 1 : : : r 7 D3 = (2D + 16) + jgj. i, - , . 1 p ) C = C(g H), & jij + ji+C j < jW C j & i. H 8 , , , 1 1+C 1+2 C :: : & - . 8 1 : : : m , m = r;C1 + 1, (1 ) = S1 : : : (m ) = Sm & 8 s1 : : : sm . A , ;(H) - & Si;1 W C Si+1 W ;ki . 8 ki & 7 7 D4 q jW ;ki j 6 kSi k + + C kW k + kSi+1 k. H , H & ; s;j 1 gC sj +1 = gkj , j = 1 m ; 1, )
m ; 1 < 2] &- . I 7 (C + D4 )jgj + 2D3, &
470
. .
)7 8 ) 7 -7 7 D5 .
; ; ( ) ) R. > , )7 Sj U1 U2 : : :Ulj ) Ui = w1w2 : : :wni , )7 8 ws ; R ) R W, &- 8 g ( . 1). (
, )7 Ui t, t0 j , &- -& v 2]. 1 t1 = t, t2 : : :, tk;1, tk = t0;1 , - v. A (tt0) = = (tt;2 1)(t2 t;3 1) : : :(tk;1t0). j j +1 & - 1 , )7 8 (tst;s+1 ) = ws 1 ; R R ( , ts , t;s+1
& ; 1 1 2 7 ), W ( ts , ts+1 | 2 ). gC
w1 w 2
Sj +1
Ui
wn Sj
wn;1
3. 1
gxj
1 L ) ;7 R W W ;1 . C ) 7 Ui = w1 w2 : : :wni - : ni 6 D5 + 2kW k. A , )7 Ui D5 + 2kW k , ) L, Sj , 8 )
-
471
) W , - R W ( - x n). A )
) &- 7 1 : : : r . (
,
) , ' ; 7 1 : : : m , &7 7 7 ) ; C: b b+C b+2C : : :. H , 7 1 : : : r ) ) W . p q W nk ' W n. ? &- 9 ; 7 X. ( k ;, p1 q1 ) 9 ; 8 . A ; p1 (),
&-) ; q1 X Si 2 W . 1 & l H ; X = W l Si , x 2 E + (g) ) )
hgisi . *, ;, 9 W Si ) ) W = W (R W ). E , 2 7 hgi E + (g) : jE + (g) : hgij 6 #(W ) < 1. ( & jE(g) : E + (g)j 6 2. 1 &
hgi E(g). < .
12. - H
+ g + , ! E(g). !"#!$. 7 8 g 2 H ) 8 7 L. (
jL : hgij 8 8 gn ) & L
. ) &-7 7 2 7 ) )' ) &-, & 8 l 2 L lgn l;1 = gn . & E(g) & L E(g). < .
13. ' H + g + x xgk x;1 = gl , l = k. !"#!$. , , jkj < jlj. H
xr gkr x;r = glr & 2 r. 12 8 8 : 2rjxj + jkjr jgj > jxr gkr x;r j = jglr j > jljr jgj ; c: 7 glr , 9. ; r ), -
, . H jkj = jlj. < .
14. - H + g, h & M = M(g h)
= (g h) > 0, xgm y = hn m > M , max(jxj jyj) > m
472
. .
xgx;1 y;1gy 2 E(h). . , g = h jxj, jyj m, x y 2 E(g)/ + x y 2 E + (g) , n > 0, x y 2 E ; (g) n 6 0. !"#!$. 8 9 ;(H) - . :
9 ;(H) ' p1 q1 p2q2 , 7 (p1) = x, (q1 ) = gm , (p2 ) = y, (q2) = h;n . 9 - & > 0 c > 0, - g h, q1 q2 & ( c)- . ? , u1 ) 2 , q1, ; mjgj ; c. :
) 7 u2 , 7 u2 = q2 . ) = =5. ; m max(jxj jyj) 6 6 m. A 3 u1 u2 ) 8- v1 v2 , jv1 j jv2j > ju1j=3. 5 7 o1j (j = 1 2) q1 o2j q2, jo11 ; v;1 j jo12 ; v+1 j jo21 ; v;2 j jo22 ; v+2 j < D D = D(g h). z 1 = o11 ; o12 jz 1 j > 31 (mjgj ; c) ; 2D 5 2 ) ; z 1 ) ;7 z 2 = o21 ; o22 ' t ; 4D + 16. :
9 ; a1 a2 a3 : : : b1 b2 b3 : : : 7 z 1 z 2 . C ;, ) ; ai ) 7 9 7 ;7 bki ' ti < 5D ( )
, 16 + jhj 6 D). A , ; m
) 11, ) 7 ; ai , aj (i 6= j), (ti ) (tj ). > 7 t;i 1(ai ; aj )tj (bkj ; bki ) T ;1 W r T V s , r = j ; i > 0, T (ti) W, V & 8 g, h. ? , T ;1W r T = V ;s H. > ), T = gn1 x;1hn2 n1 n2, T 7 , &- 9 ;. A , xgr x;1 = h;s H 12 xgx;1 h ) 7 7 ) 8 7 E(h). K , y;1 gy 2 E(h). L g = h, 13 xgr x;1gs = 1 r = s. A , x 2 E(g), y 2 E(g). r T ;1 W r T = W ;s ) ; ; m. ? 7 , jT j < 5D. 1 & ( 7), ; ai ) q1 ;, aj , ; bkj ) q2 ;, bki . E , mn > 0 r = ;s, . . T 2 E + (g) x y 2 E + (g). ( x y 2 E ; (g). < .
-
473
15. " g h | + H , E(g) 6= E(h). $ uv 6 0 ) (gm hn ), (gu gv ), (hu hv ) ( , * ;(H)) C = C(g h), & m, n, u, v. !"#!$. 1 L = (gm hn)
9 ;(H) 7 x1 x2 x3], 7 A x1 x2] gm H, B x1 x3] hn. A (A B)x1 = L. 1 - & A A1 A2, B B1 B2 , jA1j = jB1j > L ; 1 p, q x1 x2] x1 x3] A1 B1 jp+ ; q+ j 6 4. :
s t, - x1 &- W m Z n 7; W Z, &- 8 g h. 5 9 - & s1 t1 7 s t, jp+ ; s1+ j jq+ ; t1+ j 6 D = D(g h). M D maxfjgj jhjg, ) , s1 t1 & W m1 Z n1 . A gm1 fh;n1 = 1 H 8 f jf j < 2D + 4. > , m1 > (L ; 1 ; D)jgj;1, jgm1 j > L ; 1 ; D. * ; m1 14, 7 g h ) ) 7 7 ) 8 7 )& 12. A , L 7 7, -7 g h. :
(gu gv ), H
; gu1 fg;v1 = 1 8 f ; 2D+4, ' u1 > (L ; 1 ; D) jgj;1. ; L ( . . ; u1) 14 uv < 0 e 2 E ; (g), . A , (gu gv ) ) 7 7, -7 g -7 u v. < .
16. " W1 : : : Wl ( *)
+ g1 : : : gl , H , ! E(gi ) 6= E(gj ) i 6= j . $ = = (W1 : : : Wl ) > 0, c = c(W1 : : : Wl ) > 0 N = N(W1 : : : Wl ) > 0, p * ;(H) (5) (p) Wim1 1 Wim2 2 : : :Wims s ( c)- , ik 6= ik+1 , k = 1 : : : s ; 1, jmk j > N , k = 2 : : : s ; 1 (ik 2 f1 : : : lg).
474
. .
!"#!$. M c, (1) p ( . . s = 0, t = jpj), & p0 = p(s) ; p(t) p ) (p0) W 0WW 00 , kW 0k kW 00k < max(kW1k : : : kWl k), W (5). Vk | 7; , H Wimk k . 15
- C = C(W1 : : : Wl ), (Vj Vj +1 ) < C j = 1 : : : s ; 1. :
p = p1 : : :ps p, (pk ) Wimk k . :
) q = q1 : : :qs , (qk) Vk q; = p; . 9 7
> 0, L > 0, - W1 : : : Wl , jVj j > jmj jkWij k ; L j = 1 : : : s. A , ; jm2 j : : : jms;1j 4, 7 q ) T - t, &- - 2 q, ' T = T(W1 : : : Wl ). ( q = q1 : : :qs
t = t1 : : :ts , j(qj ); ; (tj ); j 6 T . 7 ; jmj j, j = 2 : : : s ; 1 ( . . Vj ) tj t ( t;1 ). ? , ) 2 t: jtj =
s X
X
X
j
j
(kWij kjmj j ; L ; 2T ) > X > 12 kWij kjmj j ; 2(L + 2T ): j ; jmj j, j = 2 : : : s ; 1. A , = =2, c = 2(L + 2T) p & (1) s = 0, t = jpj. < . %#!$ 1. + g1 : : : gl H , & E(gi ) 6= E(gj ) i 6= j , ! N = N(g1 : : : gl ), m1 : : : ml > N gpfg1m1 : : : glml g (g1m1 : : : glml ). !"#!$. ( 16 , c, N. I , H ; gim1 i1 k1 : : :gims is ks = 1 (6) ij 6= ij +1 , j = 1 s ; 1 ki 6= 0. 16 (6), X jmij jjkj jjgij j ; c 6 0 j =1
jtj j >
(jqj j ; 2T ) >
j
jmij j > N > c;1 + 1. ? .
-
475
W1 : : : Wl & 8 g1 : : : gl ) H. > 9 ) & K
) Sm = S(W1 : : : Wl N K m) W X0 W1m1 X1 W2m2 X2 : : :Wlml Xl (7) kXi k 6 K, i = 0 l, jm2j : : : jml;1j > m Xi;1 Wi Xi 2= E(Wi+1 ), i = 1 l ; 1. ? ( c)- , 7 ( c)- 9 ;(H).
17. %& > 0, c > 0 m > 0, & K W1 : : : Wl , W 2 Sm ( c)- . . , Wi Wj i j 6 l, l K. !"#!$. ( (2) W 2 Sm )
W = (X0 : : :Xl )V1m1 : : :Vlml , Vi (Xi : : :Xl );1 Wi (Xi : : :Xl ). & E(Vi ) 6= E(Vi+1 ), W 16. L Wi W1 i 6 l, ) W Xi;1 W1mi ( ml+1 = 0). E ( L)- 9, ' W1 , L W1 K. Vi 7; , H Xi;1W1mi . 15 (Vi;;11 Vi ) 7 7, -7 W1 K. A
9 ;(H) v1 : : : vl
V1 : : : Vl , v1 ; vl + ' t , 16, 4, 2 t. ( W, ' , l K, ) . < . :
9 ;(H) 7 p1q1 p2q2. (q1) W 2 Sm (q2;1) W X 0W m1 1 X 1W m2 2 : : :X l 2 S m = S(W 1 : : : W l N K m). :
q1 = s0 t1 s1 : : :tl sl q1, (ti) Wimi , (si ) Xi (Wi & 8 ) H Xi;1 Wi Xi 2= E(Wi+1 )), q2;1 = s0 t1 : : :sl , (ti ) W mi i , (si ) X i . ti tj ' , ;(H) 7' vi 7 Vi (vi ), &-7 9 ; oi oj 7 ti tj , 7 Vi W j Vi;1 2 E(Wi ), 7 ) a b, (Vi W j Vi;1)a = Wib H. (* , & 8 g, h , ) - 7 8 7 , - & a b, ga = hb.)
18. ' ! , jp1j jp2j < C C , & ( m k, ! jkj 6 1, jm2 j : : : jml;1 j jm2j : : : jml;1j > m ( W 2 Sm , W 2 S m )
476
. .
ti ti+k i = 2 : : : l ; 1, i = 1 / i = l, jm1j > m / jml j > m. . , j 6= i + k ti tj
. !"#!$. 17 - & > 0, c > 0 ( - m1 : : : ml ), p1 , q1, p2 q2;1 & ( c)- . ? 7 9 - T, & ti ; jmi j 7' t0i q2;1 , 7 t0i ti & T - . L jmi j , t0i 7 7 ( c)- . sj 7 K, 7' 7 t00i t0i, & W i+k k. ( 7 9, t000i ti , 2T - 7 t00i . 00 14 t000 i ti (, , ti ti+k ) . I , ti ti+1 ) ' ti+k . A H: Vi;1 Wia Xi Wib+1 Vi+1 = W ci+k 2 a, b, c Vi , Vi+1 7 Vi W i+k Vi;1 2 E(Wi ) c ; 1 ; a Vi+1 W i+k Vi+1 2 E(Wi+1 ). 1 & Xi = Wi Vi W i+k Vi;+11 Wi;+1b H Xi;1 Wi Xi = Wib+1 Vi+1 W ;i+ck (Vi;1Wi Vi )W ci+k Vi;+11 Wi;+1b 2 2 Wib+1 Vi+1 (W ;i+ck E(W i+k )W ci+k )Vi;+11 Wi;+1b = = Wib+1 Vi+1 E(W i+k )Vi;+11 Wi;+1b = = Wib+1 E(Wi+1 )Wi;+1b = E(Wi+1 ) (8) & Xi;1 Wi Xi 2= E(Wi+1 ). A , ti+1 ) ' tj , j 6= i + k j > i + k 7 9. L ) j > i + k + 1, ti+k+1
ti , , ;, &. ? , j = i + k + 1. * 2, jkj 6 1, 7 ti (ti ) t1 t2 (t1 t2). < . ? 8 g h 2 H , gk = ahl a;1 a 2 H 2 k l.
19. ' + a b H + , , juj jvj + c = au bv a, b. !"#!$. ), 8 c . O 16. 1 ) 9 , c
)' 8 ) 7. (
, = xgx;1, g 2 Gi, & k ck = xgk x;1 , gk 2 Gi , ( ) 7 8 c = aubv ' . E 16,
7 (au bv )k & ( d)- , ' k.
-
477
I , a c . A am = x(aubv )nx;1 jmj jnj ;. 16 am (au bv )n & ( d)- , ' d u, v, m n. 1 & 5 2 ; m1 am1 = y(au bv )m2 z, jyj jz j a b. * 8 18, 8 bv au ) ', &- am1 . K , b ) 8 c. < .
20. " + L H +. $ 2, + . !"#!$. 7 8 a ) L. ( ' 8 7' 8 x 2 L n E(a). A x;1ax 2= E(a). (
, x;1ax 2 E(a),
jE(a) : haij k l (x;1ax)k = al , . . x;1ak x = al . 13 k = l, x 2 E(a). :
8 b1 = (as x)t b2 = (a2sx)t ; s t. 17 9 ;(H) bm1 bm2 & ( c)- , c m. A , 8 b1 b2
. I , 7 ) 17 & w(b1 b2) b1 b2 wn & ( c)- , ' c n. ? 7 , 8 , 7 w(b1 b2), , 7 . ; .
21. - 20 L +. !"#!$. 20 L 7 8 b1 b2, ) &- & , gpfb1 b2g = F2 . 19 8 b1 b2 ) . H 8 . k > 2 8 b1 : : : bk ) . H )
) , 19, ) , ; m1 : : : mk 8 bk+1 bk+1 = bm1 1 bm2 2 : : :bmk k bi , i = 1 k. < .
4. % " &
) R 9 (2)
, . .
478
. .
(1) R 2 R ) R;1 2 RN (2) R 2 R R R1R2 ) R2R1 2 R. > R R1R2 | ' ) 2 ' 8 R 2]. :
9 - H = hF jSi (2). U "- R 2 R ( 2 7
R1), - R0 2 R, (1) R UV , R0 U 0V 0 V , U 0 , V 0N (2) U 0 = Y UZ H Y , Z, kY k kZ k 6 "N (3) Y RY ;1 6= R0 H. ? ), R C(" c )- & " > 0, > 0, c > 0, > 0, (1) kRk > & R 2 RN (2) & R 2 R ( c)- N (3) & "- & R 2 R kU k kU 0k < kRk. 1 , 2 - C 0() 7 7 C(" c )- , H , " = 0, = 1, c = 0, = 1. I 92 8 . K R 2 R (1) R UV U 0 V 0 U, V , U 0 , V 0, (2) U 0 = Y U 1 Z H Y , Z, ' kY k kZ k 6 ", U ' "0 - R. L ) ' ; U 0 = Y U ;1 Z, U "00- R. * 2, U 0 = Y U ;1Z Y V ) H Y (U 0V 0U);1 , U ' "000- R. 1 C1(" c )- (C2(: : :)-, C3(: : :)- ) C(" c )- kU k kU 0k < kRk & "0 - U ( & "00- U, & "000- U). :
) H ' 7 8 g 2 H. W | 7; , &- 8 g. ), , )' ;7 & W , ;
- . ( 12 11 - n > 0, xgn x;1 = gn x 2 E(g). 1 Rm ) (2 ') 2 W mn .
22. %& > 0, c > 0, > 0, " > 0 > 0 ! m0 > 0, m > m0 (1) Rm C(" c )- / (2) Rm C2 (" c )- , E(g) = E + (g)/ (3) Rm C3(" c )- , m !.
-
479
!"#!$. ( c 9. I , U "- R 2 Rm , ' kU k > kW mn k.
& "- U 0 = Y UZ, kY k kZ k 6 ". * kY k kZ k ( " + 2kW k), ) U U 0 W. kU k > jmnjkW k, ; m ) 14, 7 Y 2 E(W) H. O , 7 ) n, Y 2 E + (W ) R W mn , R0 W mn Y RY ;1 = (Y W n Y ;1 )m = W mn = R0 H. K , Y 2 E ; (W) R W mn , R0 W ;mn Y RY ;1 = R0. ( "- , 8 C(" c )- m > m0 ; m0 . A ), R W mn UV U 0V 0 U 0 = Y U ;1Z, Y 2 E + (W), U 0 W ;mn ( R). 1 & ) . I
Y 2 E ; (W) V W s, (U 0V 0U);1 W s;mn s. H Y W n Y ;1 = = W ;n H )' H: W mn2 (Y V )W ; mn2 = Y W ; mn2 W s W ; mn2 = Y (U 0V 0U);1 & "000- . A , ) .
5. ( "" " "" & " ) ;7 ) H = hF jOi, . . H 9 - H1 = hH jRi, ) ; H ) ;7: H1 = hF jO Ri: : < 2], R- ) R. R- P1 , P2 R1 R2, ; o1 o2 , ' , Q 7' s, &-7 ; o1 o2 , 7 (s);1 R1 (s)R2 = 1 H: (9) : Q s ' P1 P2, , & ) R S H ; (9). = R- , , ; . I , ) -& R- , ' ! .
480
. .
(' - . :
7 w = p1 q1p2q2 , &-7 ; = ;w 7 Q H1. q1 q2 & R- P1 P2 kp1k kp2k 6 " ". L P1 6= P2 ; ( RS) ) R- , ' '
"- P1 P2 ( P2 P1). A ) P1 = P2 , , ; R- , , p1s1 p1 s;2 1 (s1 s2 P1 ), & RS, ) R- . * 2,
"- P1 q
Q & P1 6= P2 . 1 ; kq1k=k@P1k ' P1 P2 ( q) ; (P1 ; P2). Q | 2 H1 p ; q. ? ), R- P Q
(" )-;7 7, - "- ; P @; = zuy;1 u0, uvu0v0 | P, ' kuk > k@Pk ku0k > k@Pk (yv) ) H (yu;1 v0;1u0;1). ;7 Q y ;& ) 2& H ) (yv) (y(u0 v0 u);1) ; Q R- . 8 2 Q '7,
) ; , . I &- ) - &
- R S R2S . 1 4] .
23. H > 0 & 0 > 0, 2 (0N 0] c > 0 " > 0 > 0 & . " R C(" c ). , Q | ! 3 H1 , ( @Q ( c)- q1 : : : qr , 1 6 r 6 4. $ Q R-, ! R- P Q & "- ;1 : : : ;r ( ) P q1 : : : qr
, (P ;1 q1) + : : : + (P ;r qr ) > 1 ; 23:
24. H > 0 ! 0 > 0, 2 (0N 0] c > 0 & " > 0 > 0, & & .
-
481
" R C1(: : :)-, C2(: : :)- C3(" c )- . , Q | ! ( H1 p = p1 p2 q = q1q2, ! p1 p2 q1 q2 ( c)- . $ Q R-, ! R- P & ;1 : : : ;4 ( ) P p1 p2 q1 q2 , (P ;1 p1) + (P ;2 p2) + (P ;3 q1) + (P ;4 q2) > 1 ; 23:
6. *- "" "" & "
25. H > 0 & > 0, c > 0 ! " > 0, N > 0 & > 0 & . " R C(" c ). $ *- H1 = hH jRi . . , W , kW k 6 N , W = 1 H1 , W = 1 H . 4(, U1 , U2 , N H1 , H . !"#!$. H = hF jOi ax + b | 7 92 . I &
W, 1 H1 , ) 27 kW k, 7'
n Q W Tj Rj 1 Tj;1, Rj 2 O R F , j =1 ) 7 n = nW 6 AkW k + B A = 7( ; 47);1 a + 2b, B = b. E H1. ( C ( , ' 7 2]) & W , 1 H1 , - ' Q H1 p, (p) W. ), p ( 12 1)- , . . 7' p0 p, jp0j < 21 kp0k ; 1. A )
W = UV H, kU k 6 kW k ; kp0k + 2 + jp0 j 6 kW k ; 21 kp0 k + 1 l Q V = Qi Ri 1Q;i 1 F . > Ri 2 O l 6 a( 23 kp0k; 1)+b. C W i=1 ;, nU 7 7 U. ) 2 U,
482
. .
1 3 nW 6 nU + l 6 A kW k ; 2 kp0k + 1 + B + a 2 kp0k ; 1 + b 6 1 6 AkW k + 2 kp0k ; 1 (3a ; A) + B + 2a + b 6 AkW k + B:
A > 2(2a + b) + 3a kp0k > 3. A , 2 6 12 , c > 1, . . p ) ( c)- , ( 12 1)- . L Q ) R- , W = 1 H , A > a, B > b. ( ), Q ) R- , 23, 7 7 " R- P 7 ; p (
@Q 7 ), (P ; p) > 1 ; 23. @; = s1 t1 s2 t2 , p = qt2, @P = t1u q u. * 2, R 2 R | P ( . 2). s1
t2
;
t1
u
P
Q0
q
s2
3. 2
> , Q0 Q qs;2 1 us;1 1 ;7 , Q: ks;2 1 us1k 6 2"+23kRk+2 < (1;23)kRk;c;2" < jt1j;js1 j;js2 j 6 jt2 j 6 kt2 k: > ; ( , kRk > ), ( c)- t1 @P. A , ) 2 , Q0 ) 0 n O R, n0 6 Akqs;2 1 us;1 1k + B < A(kW k ; kRk( ; 46) + 2 + c + 4") + B: (10)
-
483
? 7 , ( 12 1)- t2 ; H 2" + kt1k + 2(2" + kt1k + 1) 6 3kRk + 6" + 2. 8 O- ; a(3kRk + 6" + 2) + b. ? 8 2 , Q W = 1 H1 ) 1 + AkW k + B + a(3kRk + 6" + 2) + b ; A(kRk( ; 46) ; 2 ; c ; 4") 6 AkW k + B A B . H1 . ? (10) & W , 1 H1, H, 2 kW k > ( ; 46) ; 2 ; c ; 4". 1 & ) , ) ;: > ( ; 46);1(N + 2 + c + 4"): I 7 ), 2 ) U1 , U2 ) R- . A 24
) R- P 7 & ; 1 ; 23. > , P ( , ;, U1 ) ; 12 ; 12. ( . 2 kt2k > jt1 j ; js1j ; js2j > kt1 k ; c ; 2" > 21 ; 12 kRk ; c ; 2": 1 & , , kU1 k > kt2k > N ; . < . , ;, H H1 = hH jRi. p1 q1p2q2 | 7 ;(H), ' kp1k kp2;k1 6 ", q1 q2 & ( c)- . ), (q2 ) UV1 V2 U, kU k > kV2 k > 0 (q1) R 2 R, ' kq1k > kRk > 0.
26. > 0, > 0, > 0 ! > 0, c > 0 & " > 0 > 0 & . ' , R C(" c ), ! , V2 H (p1)R(p1 );1 . . , R C1(" c ), (q2;1) UV1 V2 U ! , . !"#!$. ( " 23 25. O , kV1 k > kU k, . . V2 U UV U, ) q2;1 = u1 vu2 , (u1) (u2 ) U, (v) V . 5 2 7 ; o1 o2 2 q1 , 7 t1 = (u1 )+ ; o1 t2 = (u2 ); ; o2 kt1k kt2k < K = K( c " H). (; o1 o2 & q1 = w1ww2. 1 Tj (tj ), Pj (pj ), Wj (wj ) j = 1 2,
484
. .
H P1W1 T1;1 = U = T2 W2 P2: (11) > , , ( c)- q2 jW1j > jU j ; jP1j ; jT1 j > kU k ; c ; " ; K. ? 7 , kU k > > (1 + );1 kq2k &, kq2k > jq1j ; jp1j ; jp2j > kRk ; c ; 2". A , jW1j jW2j > 2 (1 + );1 kRk ; c ; " ; K ; (1 + );1 (c + 2") > 3kRk ) ; < 41 2 (1 + );1 . : (11) ) X1 W1 X2 = W2 , X1 T2;1P1 , X2 T1;1 P2;1, . . kX12k < " + K. 5 3 jW1j jW2j > 3kRk, Wj Wj 1Wj 2 Wj 3 j = 1 2, jWj 2j > kRk (W21;1X1 W11 )W12(W13 X2 W23;1) = W22 H, ' T j j ". & C(" c ) &
Y R1Y ;1R2 = 1 H, R1 W12 W13WW21W22 W23W0 W11, R2 ;1 W22W23 W0W11 W12W13WW21 ( R (q;1)W 0 ) Y W21 X1 W11 , . . 1 R H W1WX1 . A P1RP1 P1 W1WT2;1 ( X1 = T2;1 P1), . . UV , ) . :
2 ) , R C1(" c )- &, W12 W22 & ) R 2 R. < .
27. " H = hF jRi > 0. $ & > 0, c > 0 " > 0 > 0, & . " R C1(" c )- C(" c )- . $ R 2 R + H , X H1 = hH jRi , X H1 , & H ( CH (R) H . " + ! CH (R) H , R C1(: : :). !"#!$. & 7 C(" c ) C1(: : :) R 2 R ( c)- . ) 8 ) , R = hgh;1 , g 2 Gi . A
7 : jRnj 6 k(hgh;1)n k = khgh;1 k. ( ; n. > R Rn 7; H R1 R2 4, (R;1 1 R1) > jR1j=13 ( ) , C0 > 12 > 13C0). * 8 , & C(" c ) R
) , &-7 kRk=13. I , 10 R, &- 7 H, ) H 2 S ; d,
-
485
d = d(H). L R , 7 2 7 R0 S = T R0T ;1 H, kT k 7 C, -7 H c. (
,
2& P ) H R S ) ' 7; t 7 ;7 2. & P0 @P0 = = t1pt2 s, t1, t2 | , (t1) = (t2 );1 = (t) = T, (p) = R0 , (s) = S ;1 . :
9 ;(H) 7 t1 pt2s
7 TR0 T ;1 S ;1 . > p ' p0 ) 2 N1 = ft1 t2g, N2 = fp0 g, N3 = fsg, ' t1 p0t2 s 6, 7 jt1j = jt2j = = jtj = kT k ) jsj = kS k. 1 & kT k < C = C(S H c) = C(H c). I , kR0 k = kRk ) ( c)- R0 . A , ; R ; H 7 . A ) = =3, = 1=3 , ", 7 26N , 1 ; 23 > . :
X k H1. ) , X ) H1 ;7 . ?- ' < Q 7 2 X k . O , Q ) R- , X k = 1 H. ? 23 Q 7' P 7 ; q = @Q, (P ; q) > 1 ; 23. 1 @; = p1 q1p2 q2
. (a) kq2k > (1 + )jX j. A ) (q2) UV1 V2 U, V1 V2 2 X kU k > kV2 k. 26 ) ) , R C1(" c )- &. ( ) C(" c ) 7 ) 26 )' H V2 (, , X)
CH (R). (b) kq2k 6 (1 + =3)jX j. A )
q2 = q0q00, kq0 k = jq0j 6 6 jX j = kX k kq00k 6 3 jq0 j. (p1q1 p2) = (q2);1 H,
jq0 j = kq0 k > (1 + =3);1kq2k > (1 + =3);1(jq1j ; jp1j ; jp2j) > > (1 + =3);1 ((1 ; 23)kRk ; c ; 2") (12)
q1 ( c)- . ? 7 , (q0 ) = (p;2 1tp;1 1(q00 );1 ) H1, t q1 2 : q1t = @P. A , X ( , (q0 ) 2 X) jq0 j 6 jtj + jp1j + jp2j + jq00j < 23kRk + 2 + 2" + =3kq0 k < < 23kRk + 2 + 2" + (=3);1 (jq0 j + c)
486
. .
jq0 j < 32 (23kRk + 2 + 2" + c=3):
(13)
< =70 kRk > ; 2 (12) (13) , . . 7 7 ) . * . I 11, 7 2 hRi 7 CH (R). < .
28. - H " 27. " X , & H + x, R R, & C(" c )- , > 3kX k. $ X
+ H1 . !"#!$. ) , X 2 H. (a) ), X k = 1 H1 Q | 8 ; . 27 kq2k < (1 + )jX j. A
kRk 6 (1 ; 23);1kq1k < (1 ; 23);1;1 (jq1j + c) < < (1 ; 23);1 ;1(kq2k + 2" + c) < (1 ; 23);1;1 ((1 + )jX j + 2" + c) < < (1 ; 23);1 ;1 (1 + ) 3 kRk + 2" + c : 1 ), - , ; kRk ; kRk > . H , kq2k > (1 + )jX j. *, 27, 8 X ) H 8 2 CH (R). ( 11 & H X R. (b) I , X ) 8 ) X = h;1 Sh, S 2 Gi . X 7 8 H, 2 Q0 8 7 )' ) R- . 24 Q0 7' R- P, &- . C 27 7 p Q0, &-7 (p) = S 1, ;p P 8 ( - ). 1 @;p = s1 t1s2 t2 . I
) (a)
7 ; 27, kq1k
(kq1k + kt1k), kt1k < ;1 (jt1j + c) < ;1 (c + 2" + 1).
29. " H 25 + R t . $ 25 , H1 + ( t).
-
487
!"#!$. & 25 H ) , , ) 7 8 . A 20 H ) K = gpfa bg, )' 8 a b. L K, - 7 x21 y12 ] : : :x2l yl2 ], l > 1, xi yi 2 K, , 2 . ? , 21 H 7 8 g0 = 2 ] : : :x2 y2 ] : : : g = x2 y2 ] : : :x2 y2 ]. W : : : W = x201 y01 t 0 t t1 t1 0l 0l tl tl & H 8 g0 : : : gt. ( ), 27 28, > 3 omax kW k. 6i6t i ) , H1 8 . A W0 : : : Wt & H1, ) 8 E & , ) -& x2 y2 ], x y 2 E. A , ) W0 : : : Wt R 2 R 28, , Wi Wj i 6= j, ) R ) t . W0 : : : Wt ' 8 H1. < .
30. - 25 *- H1 = hH jRi . !"#!$. 28 H1 ) 77 7 8 . , H1 ) , 8 g, 7 H1, &-7
). E , 8 yn = gn , n = 1 2 : : :, ) H1 2 8 z1 z2 : : :, 7 7 M. 8 ) ( ), 7; 8 , )' y1 : : : yn : : : H, & . , , W H1 8 g, Zi & 8 zi . . ? 2 ( C
7, ) n - ' 2 Q = Q(n) )' H1 8 yn zn . 1 ' p (;7, 7 W in ) q ( 7, 7 Zn ). 1. H ) , n 8 yn zn ) H. , , yi zi ) H i. A Q ) 77 R- . 24 7' R- P, &- Q, 7 & ; 1 ; 23. ), P ) .
488
. .
1. P q. ( 8
2 7 & zn . (
, ; | &- , @; = s1 t1s2 t2 , t1 @P (@P = t1 t), t2 q, q = t2 q1, 2 (1 ; 23)kRk ; c ; 2" 6 kt1 k ; c ; 2" 6 6 jt1j ; js1j ; js2j 6 jt2j 6 6 ks1 k + ktk + ks2 k 6 23kRk + 2 + 2" & ; . 2. ? P ; p ; 1 ; =3. E 7 ' &
) , 27. 1 (P ; p) 1 ; 0 (0 < 0 < 1). > 9 > 0, = 1=10. 1 ; @; = s1 t1 s2 t2 . > t1 @P (@P = t1t), t2 p, p = t2 p1 . () . ( ) L jt2j < (1 + )kW k, )
t2 = t0 t00, 0 kt k = jt0 j 6 jW j = kW k, kt00k < jt0j. 12 t0 : jt0j > (1 + );1 kt2k > (1 + );1 (jt1 j ; 2") > (1 + );1 ((1 ; 0 )kRk ; c ; 2"): ? 7 , jt0j 6 js2j + jtj + js1 j + jt00j < 0 kRk + 2 + 2" + kt0 k jt0j < (1 ; );1 (0 kRk + 2 + 2"): ? 2, (1 + );1 ((1 ; 0)kRk ; c ; 2") < jt0j < (1 ; );1 (0 kRk + 2 + 2") + (0 kRk + 2 + 2") = 11 0 kRk + 22" + 22 : (1 ; 0 )kRk ; c ; 2" < 11 ; 9 9 11 0 0 0 6 3 , , < (+11=9) , 9 ;, (1 ; 0 ). A , ; . () L jt2j > (1 + )kW k, ) (t2 ) UW1 W2 U, Wi , i = 1 2, 2 W kU k > kW k. A 26 W2 (, , W) ) H CH (R). W = ABA;1 B 2 CH (R). E R H H 27. 11 2 hRi 7 CH (R), , B k = Rl H k l 6= 0. 1 & W k = ARl A;1 . * 2 H1 , W H 7 H1.
-
489
3. 1 ' 7, P q, ; p, ' ; (1 ; =3). C ;, ; P p @; = s1 t1 s2 t2 ( t1 @P, t2 p), ;0 P q @;0 = s01 t01s02 t02 ( t01 @P, @P = t1ut01 v, t02 q, q = t20 q0 ). () 27 Q P ; ;0 . & Q1 @Q1 = p1q1 , p1 p, q1 = s;2 1 us01 ;1 q0 s02 ;1vs;1 1 ( . 3). p1
q0
1
s01
t02
;0
u
t01
s2
t0
t
s02
v s1
1
;
t00
3. 3
12 p1 q1 Q1. I 8 ' Q. H , P ; Q (1 ; =3), , (P ;0 t02) > (1 ; 23) ; (1 ; =3) = = =3 ; 23 > 4 . 1 & kt02 k > jt02j > jt01j ; js01 j ; js02 j > kt01k ; c ; 2" > 4 kRk ; c ; 2": 2 kq1k: kq1k 6 ks2 k + kuk + ks01 k + kq0 k + ks02 k + kvk + ks1k 6 6 4" + (kqk ; kt02k + 2) + kuk + kvk 6 4" + (M + 2 ; kt02k) + 23kRk + 4 6 2 2 6 4" + M + 6 ; 4 kRk + c + 2" + 23kRk = M + c + 6 + 6" + (23 ; 4 )kRk: ( < 2 =(23 8). A 8992 ) kRk 2 & ; 2 =8, ,
490
. .
;
kq1k 6 M ; 3: (> M ; 1, 2,
) )7,
.) ? 7 , , kt2 k < ;1 (jt2j + c) < ;1(jt1 j + js2 j + js1j + c) < ;1 (kRk + 2" + c) kp1k > kpk ; kt2 k > kpk ; ;1 (kRk + 2" + c) > kp3k kpk = in kW k, in ) ;. 2. p1 p ( c)- ;(H), kp1k > kpk=3 ) T;, kq1k < M ; 3. ? , Q1 ) 77 R- . A 23 Q1 ) R- P1, &-& p1 q1 7 & ; 1 ; 23. ? 7
( & ; (1 ; =3)) p1 & ), ; . 1 & . 1. C P1 q1. () P1 7 q1. 1 ;&
Q2 , @Q2 = p2q2. > p2 = p1 , kp2k = kp1k > > kp1k=3, q2 2 kq2k < kq1k ; 3. 2. C P1 q1, p1, '
p1 (1 ; =3). H ) , ;, ;1 P1 p1 : @;1 = s1 t1 s2 t2 ( t1 @P1 , t2 p1, p1 = p01 t2p001 ), ;01 P1 q1: @;01 = s01 t01s02 t02 ( t01 @P1 , @P1 = t1 ut01v, t02 q1, q1 = q100t02 q10 ). ( Q1 P1 ;1, ;01 , Q01, Q001 @Q01 = p01s;2 1 us01 ;1 q10 , @Q001 = p001 q100 s02 ;1vs;1 1 ( . 4). < , kt2k < kp1k=3, kt02 k > ks2k + kuk + ks01 k + ks02 k + kvk + ks1 k + 3. 1 & 77 7 Q01, Q001 ( , Q01 ) & 2 kp01k > kp1 k=3, ks;2 1 us01 ;1 q10 k < kq1k ; 3. 1 Q01 Q2, @Q2 = p2 q2. > p2 = p01 , q2 = s;2 1 us01 ;1 q10 . ( Q2, T 7 & kp2k > kp1k=3, kq2k < kq1k ; 3. ( 7 ; ) M , 8 qM QM 2 7. ( ) in ) ; M.
-
491
t2
p01
s2
0
q10
1
u
s01
;1
t1
1 0
t1
;0
t02
1
s1
p001
v
00
s02
1 q100
3. 4
8 kpM k > kpk=(3M ) = kW k (in=3M ). > , - ( ) 8 ' & & p. A , , H1 8 g T 8 z1 z2 : : : , . . H1 ). < . ?' 7 .
31. " + H + g ( C , & + E0 H . " M | ( . $ & m0 = m0 (H E0 M), m > m0 & *- H1 H & : (1) H1 | + / (2) * "1 : H ! H1 + , M / (3) + H1 + H ! + "1 (E0)/ (4) + , M H1 , H / (5) Ker "1 . !"#!$. 8 g W. A XW X ;1 = W 1 X 2 E(W ), C 7 7 E0 = E(g). ;7 8 m 9 - H1 = H=hW m iH ( hW m iH | W m H) 8 22, 25 29. *) H1 30. ?7 (4), ) + 9 "1 : H ! H1 ) 8 ; M, & 22 25.
492
. .
?7 (3) 27. * 2, 7 (5) 10. (
,
)' 8 & 7 d = d(H), 25 9 "1 + . V - K F = i Gi ' -, &7 8 x, &-7 K 7 ,
)' 8 ) 7: x 2 yGi y;1 . L 9 - K F = i Gi )
)' , ) - 8 ) 7, ' - . & . 3 + H ! G1 G2 : : : Gn - - *- He . " + Gi * He . !"#!$. H
' 8 ' 7. ' 8 fh1 h2 : : :g ( 20 ) ) H0 = H. Hi | 8 ) , &- 9 -7 H, 8 h1 : : : hi & . 12 31 ) 8 ) Hi+1, &- 9 -7 Hi, 8 hi+1 7 . 1 , He = lim ;! Hi - 7. 31 Hi & 8 ) . X0 | ) . Hi Hi+1 M = Mi+1 31 , 7 9 "i+1 : Hi ! Hi+1 + ) Xi+1 = fXi xi+1g, ) Xi - ; , xi+1 | 7 7 8 , S )'7 8 ) Xi . ) X = Xi , , , i 8 ). L He 8 xi 2 X )' 8 e , + ) 7 Gk ( 7 9 H ! H, Gk ), xi 2 y;1 Gk y, 8 ) ; Hj ! Hj +1. E (4) 31. A , He - . * 2, Gi & He 9, ; Hi ! Hi+1 & ; ) 8 Gi. E 31, 7 )7 9 "i+1 : Hi ! Hi+1 + ) 8 ; M , , Gi. A .
-
493
K ) & 9
K. W. 1; ) .
+
1] M. Gromov. Hyperbolic groups // Essays in Group Theory / Ed. S. M. Gersten. | M. S. R. I. Pub., vol. 8. | Springer, 1987. | P. 75{263. 2] . , . . ! ". | #.: #, 1980. 3] &. '. ()!*. +!,-!.(! /*!! " // 0!.. #.(. -. 2!. 1. #!(, #!3(. | 1999. | 4 2. | 2. 9{13. 4] A. Yu. Ol'shanskii. On residualing homomorphisms and G-subgroups of hyperbolic groups // Internat. J. Algebra and Comp. | 1993. | Vol. 3, no. 4. | P. 365{409. 5] +!,-!.(! "7 #3, +* / !. 8. +. . ! , &. | #.: #, 1992. 6] &. '. ()!*. 9 .*:.*3 "; "!,-!.(" /*!! " // <!,,!(,)7! ..!7. | 1999. | =. 4, *7. 3{4. | 2. 321{334. & ' 2001 .
, . .
. . .
512.552
: , .
, ! ! R- . " # $ %$ !! , ' %%% $ !$. ( % A R-% ( !' )! ! % ) , $#* )! # % !'$ $ !, #*! $ (
$ +( A ($ !$ | )! # % !'$ % ! ! ! #*( %% #*( !). R-% ( ( %'$( % ( $ $ ! ! % ( !$ +( %'$, . * # ! % % $ , % '$ % ( $ , % $( + ! ( (. , !$ R-% ( ! +! %! , %! ( $! .
Abstract D. I. Piontkovsky, Non-commutative Grobner bases, coherentness of associative algebras, and divisibility in semigroups, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 495{513.
In the paper we consider a class of associative algebras which are denoted by algebras with R-processing. This class includes free algebras, 5nitely-de5ned monomial algebras, and semigroup algebras for some monoids. A su6cient condition for A to be an algebra with R-processing is formulated in terms of a special graph, which includes a part of information about overlaps between monomials forming the reduced Grobner basis for a syzygy ideal of A (for monoids, this graph includes the information about overlaps between right and left parts of suitable string-rewriting system). Every 5nitely generated right ideal in an algebra with R-processing has a 5nite Grobner basis, and the right syzygy module of the ideal is 5nitely generated, i. e. , 2001, ! 7, 7 2, . 495{513. c 2001 ! "#, $% &' (
496
. .
every such algebra is coherent. In such algebras, there exist algorithms for computing a Grobner basis for a right ideal, for the membership test for a right ideal, for zero-divisor test, and for solving systems of linear equations. In particular, in a monoid with R-processing there exist algorithms for word equivalence test and for left-divisor test as well.
1. | !"1]. " &' A k , A = H=HSH, H = khx1 : : : xN i S H. + , x1 : : : xN , & ,- A ,
. & A. / ' , & ,- H ( G = hx1 : : : xN i), ' 2<3, & , 1 | . G: & , , , & | 5 . 6 & f
5 N f HSH, & & A & 5, & ' f g = N (fg) ( , H,
' & 5 ) . !7]. " I = FA | ( ) A, F = = ff1 : : : fn g A. " 2<3 ' 5 , A, I ' 8' 5 (. !9]): g = fg1 g2 : : :g I I, . g & , . I gr A. 6 , g I 8' , . & I . - g. : , A = H, I &' n , 8' , & - n (!;;9,"2]). / - , , ,- ,- . 1. " R > 0 ' A ( ) R- , , p q 2 A, q = q1q2, deg q1 > R, p q = (p q1)q2: > 0- | & & ,-. > 1- !?].
497
+ , . ,- P | (P ; 1)- . : R- , , &' 8' ( 5 & ). B -, 8' , , , . &' &' ( & 7, 9), (. !C,;]) ( 8). / - , 8' , & , & ,- . , . (. 3 4). " ,-. / 2 R- . 6 , A R- , HSH H 8' S ( & 1). 6 R- ( & 2, 3), 5 5 , ,- 5 & S. / 3 , &' R- A 8' ( 4), & , - ,- !"2]. 6 8' , ' & . / 4 R- ( 8), & & ,- . . B & ,- , !AL], !9] !8]. "
55
8' & ,- . . G , A | M ( 2, & & 9 10), R- 5 , . & . ? , M | & ,- x1 x2 : : : xN , G = hx1 : : : xN i 5 & , . " R > 0 ' M R- , , p q 2 M, q = q1q2 , deg q1 > R, p q = (p q1)q2:
498
. .
H & 1 , M ' 5 , ,- I, R- & 5 & I ( & 2, 3). ? 4 , R- . , . > J. B. 8 .
2. R- !
6 m H deg m , (. . ) ,- G f 2 H, f = m1 + : : : + ms & deg f = 1max deg mi : 6i6s
1. " R | . > A ' ( ) R- , , p q 2 A, q = q1q2, deg q1 > R, p q = (p q1)q2: 1. A | R- . A (!7]), HSH H . ! " # R + 1. . ; , S | 8' HSH. " g 2 S | , . g^ . R + 1. H . N g^ = pq1q2, ' deg p > 1, deg q1 = R, deg q2 > 1. " . 8' , g^ | , p (q1q2) 6= (p q1)q2 , R- . H 8' , . , . , , R + 1, . O . > A 0- , A = H. + &
499
, ,- . () P | . ,- , (P ; 1)- ( (P ; 2)- , & , 1). B ,- . , . ; , a b G , - , c d 2 G, : (1) b = cad, (2) a = cbd, (3) 9e: a = ce b = ed, (4) 9e: b = ce a = ed, e | . 6 & , ,- (c d) ,- , ( ) r = deg d, (1) (3), r = ; deg d, (2) (4). "- , , , 2 , 3 5 x1 x2 : : : xN , , , & ( , ). " S = fg1 : : : gr g. O 5 ;, . fg1 : : : gr g, ' gi ;! gj , & - 2 .3 & gi . gj r ,- . : , - . 5 k;1 1 g 2 : gi1 ;! i2 ;! : : : ;! gik ' r = deg g^i1 ; 1+r1 +: : :+rk;1 , & 5 ,- ' . 2. A = H=HSH S = fg1 : : : grg | HSH / H , $ ; , . R = sup r, % $ ; (
%& ). R < 1, A %% % R- . 3. ' $ ; " ! , A %% % R- % R. . " ' & R , p q & , R- . + , , ,. J p q = p q, 5 ;. " , p q 6= p q, R | . 0
500
. .
& , q = q1q2 deg q1 > R , p q = (p q1) q2 . B 2
3 ; {R. , pq -, N (pq) = p q. S & ,- . ; , . . R . , , p q, ,- , 1, R 6 R. S & 5 ,- . J r 8' gl . - f = 1m1 + 2m2 + : : : + c mc mj | , - mi = s g^l t, s t | ( , . 55 gj ). / j mj i 6= j , , mi
mi = s (gl ; g^l ) t gl = g^l + 1 gl1 + : : : + d gld glj | , mi = 1 s gl1 t + : : : + d s gld t: ; , s glj t mi r. " h c> 0 . P r1 : : : rh f = j mj ,-
j =1 rh+1 gk mi , mi = u^gk w. " mi v1 rn1 gi1 ( , 55 , , & ), v1 | v2 rn2 gi2 ( , , - v1) . ., rn rnf+1 rn1 rn2 mi = v0 ; v1 ; : : : ;f vf ; vf +1 = p q ( & 2 3, - ' , , , & ). S & vl = ul g^il wl vl 1 = ul gijll wl
- jl . 0
0
0
0
0
;
501
S & , &
. , 5 (& - , ). & ., , . pq, . | , . (&, , ). S & , pq -, ,- , | . . S. : , & , ,- wl ,- . H ' , & . & . gil+1 S wl , & gijll . B -, 5 T0 T, . & , T0 . J . pq, | . (&, , ), ' ' T0 ,- . " mi = v0 = u0g^k w0 = u1 gij11 w1 g^k gij11 , , g^k | w1 ( uj1 T0 | g^k ;! gk0 g^i1 ;! gij11 ,). / , v1 = u1 g^i1 w1 = u2 gij22 w2, - & : g^k gij22 v1 , , g^k | w2 . " & & , j : - . k, g^k gizz , ,
k - g^i0 pq. + T , . v0, , rh+1 , vz ;! v0 ( ,- & ), . pq ;! v0. ? , T . &
& , . , , gj S, . gj ;, & T . ;. T & . T , , - m1 : : : mt , ,-
502
. .
N (pq) = p q. " -
rh : vh ;! vh+1 h > 0 & . g^ih & - . gijh vh = uh g^ih wh . H , w0 w1 : : : wr , . R , T deg wl 6 deg q ; R : B , . pq, & g^0 p, q, deg w0 > deg q ; deg g^0 + 1 & ,- | deg wh ; deg wh+1 = h h | ,- . ? R 6 | . gi0 ;!gi1 ;! : : : ;!gil;1 : H , R 6 R, . . , 8' . 2
3, 2<3 & R- & , . - 5. U , ( ) A -, ,- S, & 2, A ( ) R- , , 1 S 5. > & L- : ' & 2 5 ,- . S ,- , R- R- . O A ,- x y z . g1 = g2 = g3 = 0, g1 = xyz + xz 2 , g2 = x2z + yxy, g3 = x2y2 . 5 - , ,-: x > y > z. H ' , , 8' &' , g1 g2 . + & . . , , , ,- : 0
0
0
0
503
' $ & %
(1) . g1 . g2 xz (2) . g2 . g1 xy (3) . g2 g3 y. " 5 ; , & ' li ri.
?
l2 = ;1 r2 = 1
g1
l1 = 1 r1 = ;1
l = 3 r3 = ;2g2 3 g3
6
) ; $ A = khx y zjg1 g2 g3 i
/ 5 ; & , A - L R L- R- . S , , , . 5 . , . . B . . . : g1 ;! g2 ;! g3 l = deg g1 +l1 +l3 = 6, . | . g2 ;! g1 . , - . g3, 3. B , & , 1
6- 3- . : & , . &. " ' -' , , & 2 3 , . " A = khx y z t j zt ; y xy ; z 2 i 5 - x > y > z > t.
' & ?
= 0
zt ; y
$ %
xy ; z 2 = 1
6
) ; $ A = khxy z t j zt ; y xy ; z2 i
S , 5 & A, , 2- . > 1- :. S. ? !?]. , (
504
. .
& ,- ) &' & ,-. S , ' ( , , ) 3. 6 ' , & , !"2].
3. # $ %
" A = H=HSH | R- , I = F A/A | &' , F = ff1 f2 : : : fn g A. S , d F, 1max deg fi . O 6i6n & I h = ffi mj j fi 2 F mj 2 G deg mj + deg fi < d + Rg: " F h, h & I. " N > 2 Nh & h Nh = Card h 6 n ( G . , d + R) = = n(1 + N + : : : + N d+R 1 ) 6 n N d+R : : & 5 , I N H- & h = fh1 h2 : : : hNh g, ,-
4. (% f I )
f = hi1 m1 + hi2 m2 + : : : + hir mr mi | . . S & f I N f = fi1 m1 + + fi2 m2 + : : :+ fir mr , mi | ,
f f = fi m, m | . J deg fi +deg m < d+R, f = hj j. / P m = m1 m2 , deg m1 = R. H , fi = fij , fij | , ;
j X j X j f = fi (m1 m2 ) = fi (m1 m2 ) = (fi m1 )m2 = (fi m1 )m2 j j f = hs m2 - s.
H & 8' I W . " J | H, &' & h N J = I , 4, I J. S , &' Nh , J
505
8' Gr, Nh . B . & I, , J, . - , '
I Gr S . . H , , & g = fN gi j gi 2 Gr . g^i g 8' I A. , Ng Card Gr, N > 2 : Ng 6 Nh 6 n N d+R : / 5 - G, . , . , ,
dg = deg g 6 deg Gr 6 deg h 6 d + R ; 1: H 8' . & , & d + R ; 1, ' . ( . . , ). B , 8' G d + R ; 1, N d+R 1 . O , , ,- , . 5. I R- N *& ! n d. , # n N d+R . ( $ - % # " d + R ; 1, # | N d+R 1 . " & 5 W 8' . . ;
;
! "#! " e = fe1 : : : ei : : :g H. J m & f 2 H . ei , , f ei . H m = e^i b, rei (f) f ei ' f ; ei b. : , ; , ,- , 8' H, &' f1 f2 : : :fs . . - ,
506
. .
, , . . &, 8' . 6 8' 5 - , , & . , & . . 5 . + 5 , R- . " I R- A &' , & , & F . ", , 8' Gr J H, &' ' . & h. / Gr , . , 8' S . A, . ' 5 S. " . 8' I. H 8' & -, , & . - .
4. R- !: $ ( ) ! / . R- . " e1 e2 : : : es & , I A. " Fs | A- & ,- E1 E2 : : : Es. & d: Fs ! I ,- : d(E1h1 + : : : + Eshs ) = ei1 h1 + : : : + es hs : 2. " ( . ) e = fe1 e2 : : : esg Ye & d. 9 . 3. J e^i a S, a | , ' , b e^i b , s- s(i a) s(i a) = ei a: T S(i a) Fs: S(i a) = Ei a. U , S | 8' , e^i a . - S, ' a
. .
507
$% & '(() " h 2 I. & 55 h 8' fg1 : : :, gtg I. S & . - I . gi, & f 2 I - ri(f ) , r^i(f ) (f) 6= f.^ " ff0 f1 : : : fs g ,- - ,- : f0 = h, fk+1 = ri(fk ) (fk ) 0 6 k < s, ' fs = 0. 6 : fk+1 = ri(fk ) (fk ) = fk ; gi(fk ) ak ak f^k = g^i(fk ) ak . H 0 = fs = f0 ; gi(f0 ) a0 ; : : : ; gi(fs;1 ) as 1 h = f0 = gi(f0 ) a0 + : : : + gi(fs;1 ) as 1 : 4 (+]). " f 2 I
& ,- e1 e2 : : : es f = e1 a1 + : : : + es as G, ,- . ( ) e^i a^i . G , , , . ( h | s- , . ) . h. 6. g = fg1 g2 : : : gtg | " I . + ! s- !*&#
;
;
r(i a) =
nX (ia) k=1
k gik dk
()
( k 2 K , dk 2 G), % g^i a. Y ! ! ~ a) T (i a) = S(i a) ; S(i ~ a) F ! P% S(i () *&# s-, k Eik dk . k
. Q F, &' -
& T(i a). " ! = 1Gi1 a1 + : : : + q Giq aq |
508
. .
Y. ? :
0 = d! = 1gi1 a1 + : : : + q giq aq : " , . ( ) . : mon(gi1 a1 ) = mon(gi2 a2) = : : : = mon(gip ap ) = > mon(gik ak ) p < k 6 q: (G monf G, ,- . ^ f.) J g^ij aj = 0 j 6 p, - s- s(ij b), aj = bc. ~ j b)c = G ! g j j S(i nP (ib) = ; j T(ij b)c+j Gij aj j gik ak c . " k=1 - & d! = 0 ! & , Q. " ' , &, , . H & . . . 0, , , . &. U , . & gij aj & . . gij aj g^ij aj , . H = 0, S = 0 2 Y, > 0. / = = mongi1 a1 = : : : = mongip ap > mongik ak k > p 1+: : :+p = 0. " p > 2, & , mongi1 > mon gik , 1 < k 6 p. H & 1 < k 6 p - rik (gi1 ), &. " , , Q & Y, . S & ,- N , & , & s- , , , s- , N 6 ( g ) ( a) 6 6 t ( S ): B & , 1 5 : t Card S 6 n N d+R ( R + 1) = = n N d+R (N R+1 ; 1) 6 n(N d+2R+1 ; 1) 5 - t Card S 6 N d+R 1 (N R+1 ; 1):
\
i
;
509
6 A- , 5 - & 6 & ,- . deg T (i a) 6 deg s(i a) 6 (d + R ; 1) + (R + 1) = d + 2R. , 7. ,% ! I R- " ! , !# %#,
n (N d+2R+1 ; 1) . ( $ - % G ! N d+2R , !*&# #% d + 2R. S (. !C]), , ( ) , , ( ) &' ' N, 5 5 - , &' &' , ( . !C,;]). H , 8. - ( ) R- ( ). O , - , & ' ' , ,- R- : . & 5 - . H , 5, R- - : , ' & L- . B ,- & , ,- . 9. H = khx yi, f = yx2 ; y2 x # $ - % x > y. A1 = H=HfH *& : (i) A1 / (ii) A1 | 2- / (iii) A1 / (iv) A1 & ! , *& .
.
(i) " . f^ = yx2 , f 8' HfH / H. (ii) 8 5 ; A1 . f , ,- , & ,- f . " , , & 2, A1 2- .
510
. .
(iii) 9 (ii) 8. J , & y > x, . . f ,
. H , (ii), , 2- , , . (iv) " Ik | A1 , &' mk = yk x, k > 1. 6 & , 8' . " A1 | , Ik & , Ik Ik . 6 , Ik yk & x | & ,- mk , & H f , . B , mk mk+1 = mk x : : : mk+n = mk xn : : : & , Ik , ' & Ik ( H) mk+n , n > 0. H , 8' Ik . 10. H = khx y z ti, S = ff0 = tz ; zy f1 = zxg # $ - % z > y > x > t. A2 = H=HSH *& : (i) A2 / (ii) A2 | 1- ( )/ (iii) % z A2 ! / , A2 .
' $ & %
.
(i) B . S f^0 = ;zy f^1 = zx , , S | 8' HfH / H. (ii) O 5 ; A2 (l | ). l = ;1
f0
6
l = ;1
- f1
B & , 2 A2 1- . (iii) O mi = yi x, i > 0. / , , & AnnA2 z. 6 & , & , . " , . n, AnnA2 z & mi (
n 6 2 ). " z f = 0, deg f = n ,- f mi . H f = c + tv + yw, c 2 k. ? : 0 = z f = cz + ztv + (tz) w = cz + ztv + t(z w)
511
( 1- ). P " : c = 0, v = 0 w 2 AnnA2 z, ' deg w < n. H , w = mij qj , j X f = yw = y w = mij +1 qj : j
6 & , & ,- AnnA2 z , ,. " &, , mn + mn 1 bn 1 + : : : + m0 b0 = pf0 q + rf1 s n > 1. : mn = yn x, ,- yn , n+1 & , tz, zy, zx. " , & ,- , AnnA2 z &' . , 8' , , R- &' . + ,- & ,-. ;
;
$% & 345 6 %7
" e = fe1 : : :, en g | & ,- I. " Ye & ,- . 1. " , - , 8' g = fg1 : : : gsg I. B , , : e ;;;;! h ;;;;! Gr ;;;;! ; 8' I ;;;;! g
fei mj g f
f. 5 f Grg hi g 8' g S & , , , , & ,-, ' ( H- )
H- , ,- - , , H- . / , ' ' ' 5 : n s A- S, , e = !e1 : : : en] g = !g1 : : : gs] g = eS. 2. / , & 6 & ,- Yg 8' g. 3. ; Yg Ye A- U F1 F2 : : : Fs V
512
. .
F1 F2 : : : Fn. Ye g Ye e An As , & Yg ( Ye ) !F1 F2 : : : Fs] (!F1 F2 : : : Fn]) - Ye g (Ye e ). + Ye g Ye e , , , , 0 ( ) & A- g = !g1 g2 : : : gs] e = !e1 e2 : : : en ] . T & ,- Ye , 55 F1 F2 : : : Fn, & ,- Ye e . ? 55 , s n T , , e = gT. H
& ,- Ye e ,
!AL]. " s1 s2 : : : sr | & ,- Ye g ( , 55 T(i a), & ,- Yg ). H i = 1 : : : r 0 = gsi = eTsi = e(T si ) Tsi & Ye e . 1n , A- n. ? : e(1n ; TS) = e ; eTS = e ; gS = 0: G , r1 r2 : : : rn 1n ; T S & & Ye e. " Ye e & , . 6 , r P h = !h1 : : : hn] 2 Ye e . H Sh 2 Ye g , Sh = si ai . / i=1
h = h ; TSh + TSh = (1s ; TS)h +
r X i=1
(Tsi )ai :
11. % e = fe1 e2 : : : eng R- A !
nN d+2R+1 , $ - % |
n + N d+2R , d | % e. . U & , 8' ( 5) & ,- ( & 7). J e f, ' ( ) , , &' , &' A. , & ,- . 12. ( R- % # % % * ! .
*
513
] . . ! "# " . | : , 1987. +] ,. -. , .. .. , .. . + . / " . 0 # #. !] 2. 0. !. 0 " " | 2 // 5 /6,. | 1995. | 5. 208. | 0. 106{110. 6] . ;. 6. ," # # # " // < # # . | 1995. | 5. 1, = 2. | 0. 541{544. +] .. . + . ; ? # " . 0 . | /.: /!@, 1988. A1] B. 6. A . ," R- // III # CD# E0 F. 5 . | 5, 1996. | 0. 174. A2] B. 6. A . !G " D " // < # # . | 1996. | 5. 2, = 2. | 0. 501{509. @] .. ,. @C . ; " // 0 # #. 5. 57. | 1990. | 0. 5{177. <] ;. <. ," : D, ". 5. 1. | /.: /, 1977. AL] W. W. Adams and P. Loustaunau. An Introduction to GrGobner Bases. | Graduate Studies in Math. Vol. 3. | 1994. ) !* 1996 .
. .
,
517
: , , .
( ") $ $ %$ & ' %$. ( '% % '%
$ . )* &+ "' , ,%$ *- ' %$ " $.
Abstract V. I. Rabover, Jet continuation and reducibility of smooth function families, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 515{532.
For a family of smooth functions of several variables the problem of local reducibility (through a di2eomorphism) to a lower number of variables is considered. Some su3cient conditions of such reducibility, in terms of subfamily reducibility, are obtained. The argumentation is reduced to solution of a jet continuation problem, for jets de4ned on the union of a 4nite family of sets, where the jets can be continued from each of the sets.
a 2 Rn k , q a p < n . q, ! p ? # , , $
1- & , $ , . ' , !( ! , ( ( 1). # , 2001, 7, 5 2, . 515{532. c 2001 ! "#,
! $% &
516
. .
( , 1- ( ), q ( 2). . / 0 k , ( q < k, $ . (1 $ / 2 0 3 : q k & !
- , k ! 5 6 q 5 ?) ' 5 1- & k , q < k 5 . (' 5 , !( , k q < k.) 1 , 3 5 , 5 . 7 - 5 . 7( ! 8 9 ( ). # !, , ! ( 6 5 3 . : ( , , ;1]. 1 , !( , ;2]. = / C 1 0 ( ). > / 0 / 0.
1.
V | Rn !: V ! R | . 1- ! F = (! r!) = = (! @1! : : : @n!): V ! Rn+1 ( , ! ! : V ! R A V , 1- F F ! A). A , FA : A ! Rn+1, $ A V , 1- V , ( !: V ! R, 1- F = (! r!) A FA. 7( $ 8 ;3,5] (5 $ $ ! >). C ! !. , A & A1 : : : Ak , $ Ai FA V 1- . D FA A? 0
0
517
F Ai , !( 5 . G $ , !
& - . G A1 : : : Ak V V Rn $ , a 2 V Va , Ai ! . (H S Ai V , , , a 2 A = Ai .) 1. I ! T1 : : : Tm V V Rn & Ti Tj , , , & Ti Tj Ti \ Tj ( Va | 5, , V Ti , a). 2. !1 : : : !k : V ! R | V Rn. I q < k i = 1 : : : k Ai V | , ! ( q , ! !i . H q > k2 , A1 : : : Ak ( ,
!( b 2 Ai , , !( b 2 Ai , ( !j , , b b 2 Aj ). , ! a 2 V p ( ( ) !
. > q > k 2 p , A1 : : : Ak ( a - p ! , 5 Va , ). 3. 1 : : : m : V ! R V Rn , (1 : : : m ) 3 1 2. . Vijk V | , (i j k) 2. > (Vijk ), i j k 2 1 m, . (# 3 , $ .) ' a 2 V ( , Va ) - r 1 ( ( > 1). , Vijk \ Va ! . ' $ b b Va , b 2 Vijk , b 2 Vi j k . > b i j k , i, r (r i) 2. J , b 2 , , (r i ). : b b (r i i ) 2, . . b b 2 Vrii .
1. V Rn ( ,S ) A1 : : : Ak V A = Ai . FA : A ! Rn+1, Ai V 1- Fi = (!i r!i), A V 1- F = (! r!). ! "# 'i : V ! ;0 1], '1 + : : :+ 'k = 1 ( Ai ), "# ! = '1 !1 + : : : + 'k !k . 0
0
;
0
0
0 0
0
0
0
0
0
0
0
0
518
. .
. 8 $ ( , ). I ( 9 ;4,5] ! , . 1. $ ! ( , ) A1 : : : Ak V V Rn ! % % "# !1 : : : !k : V ! R, % !i !j Ai \ Aj , "# !: V ! R, Ai !i . (&#! ! ! = P 'i !i , "# 'i : V ! ;0 1] 1 ! ' Ai .) # . $ ($ , ! !( . 2. $ ! % % "# !1 : : : !k : V ! R V Rn "# !: V ! R, a 2 V , !
"# !i, "# ! % . q | 3 > k2 . > A1 : : : Ak 2 , $ Ai \ Aj !i !j ( q > k2 ), ! | 5 ! 1. 3. V R3 "# 1 : : : 4 : V ! R ( ) ri
F1 : : : F4 : V ! R3 Fi1 , % i 6= j "# i Fj , hri Fj i = 0. "# i ! F 1, ( F : V ! R3 P F F = 'i Fi "# 'i > 0. ( ri : , - % .) I i j k l 2 1 4 Vi V , (j k l ) 2. 7( (1 : : : 4) 3 1 2 ( ri (! , ! ). 5 (. 3) V1 : : : V4 . O Fi = kFik 1 Fi : V ! R3 , $ Fi Fj Vi \ Vj . (' , Vi \ Vj Fi Fj ! 2- , r1 : : : r4, $ ! , 5 Fi = Fj , $ Vi ! .) ! 1 'i > 0, 0
0
0
0
0
0
0
;
519
P F = 'i Fi Vi Fi . 8 F 1 > 0, , ( 'i (! ), $ , ! V F ( ) L, r1 : : : r4. : !
S Vi F Fi ( , L), ! Vi F F1 : : : F4, L ( L ri ). G!( 1 !. . * 1 % , % . . !(! ! ! (! . V Rn | Vs V , s 2 S, ! . > s : V ! ;0 1], s 2 S,
s Vs , ( V ) P supp s = 1. H 5 f s : Vs ! R, s 2 S, s P f = sf s : V ! R , $ - s $ 5 f s !, f . ' ! a 2 AQ ( V ) $ Va 3 a, A1 : : : Ak . Va , Q Vb = V n AQ ! V . H a 2 A, ( s )s S , S = AQ fbg. I ! s 2 S X s 'si : Vs ! ;0 1] 'i = 1 (i = 1 : : : k) 0
0
0
0
0
2
i
!s =
X i
'si !i : Vs ! R
A \ Vs (!s r!s) = FA ( s 2 AQ 5 , $ Vs , s = b 'bi k1 , i = 1 : : : k). 7 X X 'i = s'si : V ! ;0 1] (i = 1 : : : k) ! = s !s : V ! R: s
s
> ! , $ A (! r!) = FA ( A !s !). : , ! X X ! = 'i !i 'i = 1 i
i
520
. .
(5 i s). ' 1 . I 1 !( $ . G ( 5 8 ;3,5]. C, , , !( ( 5 'i ).
2.
G , !. > $ , ( , ! $ & ! ). ' , , 6 ( , ) . I Aij , i j 2 1 m ( i j ), $ , Aij Aik Ajk ( , ! T1 : : : Tm & Aij = Ti Tj ! ). 1. + # (Aij ), i j 2 1 m, . + A1 : : : As # (Aij ), i j 2 1 m, . 2. 1 # % , . . !
. V Rn # S Aij V , i j 2 1 m, A = Aij . FA : A ! Rn+1, Aij V 1- Fij = (!ij r!ij ), A V 1- F = (! r!). ! "# X 'ij : V ! ;0 1] 'ij = 1 ( Aij ), "# X ! = 'ij !ij ( % 1 6 i < j 6 m).
. I 1 ( ), , 5 . (: Aij
521
- Ar Aij , 'r 'ij , 'r .) 1. I . a 2 Aij , b 2 Aik ( ( i). > a b Aij Aik Ajk ,
, 5 $ . a 2 Aij , b 2 Akl ( ). > a 2 Aij Aik Ajk . : 5 ( k Akl , . . ( . I . I p 2 1 s ! i1 : : : ip 2 1 s Bi1 :::ip , p Ai1 : : : Aip . C, T1 : : : Tm , Bi1 :::ip ( ). > T1 : : : Tm A = A1 : : :As , $ ! Ti Tj - Ar ( Ti Tj , 5 (Bi1 :::ip ), ! !( ). 7$ Aij = Ti Tj . 9 . 2. $ ! m = 3 4 : : :. O ! m > 3. , 5 m , , m+ 1. ' $ (Aij ), i j 2 1 m + 1, S ! FA & A = Aij !( $ Fij = (!ij r!ij ) Aij . 7 (Bij ), i j 2 1 m ( & A), Bij = Aim+1 Ajm+1 . >
Bij FA . (' , 1 m + 1 - k 6= i j m + 1. 73 A , . . 6= k, ! Bij . : ! , & FA .) 7$ ($ , (Bij ). 5 F = (! r!) . . , ! | !ij ( ), $ 5 ( ( Aij ), 'ij . G m + 1 . 7$ m = 3, . . . # ( / 0) 4, 3 2, 1. I ! , .
3. ! "
' !( 3 4 $ , 1- ( ( ! ).
522
. .
3. $ ! M V Rn C C > 0 "# : V ! R, 0 M > 0 M , V
> C2 kr k 6 C | M . . O /3 0 Rn , !( M. 5 $ , 3 ! M , . I 3 . . -! B Rn % ' ! " r # B ! 6 N0 ( N0 ' n), ( , ' ' # ( ( B . C Rn 3 = 4rn . . 5
B . > 3 r = 4n ( 2r ) 5 B. H 6 (8n + 1)n. ' , a 2r = 8n (8n+1)n ( ), 5 a ! (8n + 1)n 3. . M | V Rn. ( # N > 1
' R1 R2 : : : Rn r1 r2 : : :,
' R1 R2 : : : ! V n M ( M), ( ' ' # ( ( ! V n M .
R1 R2 : : : ( V n M)
6 N .
3ri 6 (x) 6 9ri 8i 8x 2 Ri , | M . 1 $ V n M /0 B1 B2 : : :, s s B = x 2 V 2 < (x) 6 2 1 s = sup (x): x V B (! ( 3 ( B ) 2s+2 ! 6 N0 . 7& 5 , R1 R2 : : :. ' , R | - 3 Ri r a, ! 4r < (a) 6 8r 5 3r < (x) < 9r 8x 2 R. 7! , 3 R R , r > r ! (. . r > 4r ), ! ( 9r < 3r). > , 3 0
0
;
2
0
0
0
0
523
B , , ! , , R1 R2 : : : ( V n M) ( ! 6 N = 2N0 ). n Q ( R Rn | 3
S: R ! R R r a) !( . '$
: R ! R ( ; t)
(t) = 02 t 6 0 (t) = (r ; (r t) + (t ; r2 ) t t > 0 ( | 5 / 0, 1 t 6 2r 0 t > r) S(x) = r2(kx ; ak): > S | , 0 3 R, r2 3 3 ! S 6 r2 krSk 6 4r ( jD j 6 r4 , ). . M | V Rn R1 R2 : : : | !
' , S1 S2 | ' RQ 1 RQ 2 : : :. "# X
= Si : V ! R 1
i=1
, 0 M > 0 V n M , ( V
> C2 kr k 6 C | M , C C > 0 |
. . R1 R2 : : : , V n M , $ 5 | X r = rSi: (1) 0
0
1
i=1
: r ( V n M) , , -, R1 R2 : : : 6 N, -, krSi k 6 4ri, , 3ri 6 3 Ri , kr k 6 4N (2) 3 : : ( V nM) , 3 3 Ri ! V n M, $ 3 Si = ri2, , 9ri > Ri ,
> 912 2 : (3)
524
. .
P P 7$ , M PSi , rSi ( -!), $ = Si 3 (1){(3) ! V n M, $ V . (8 , R1 R2 : : : 6 N Si 6 ri2, $ 3ri 6 3 Ri , 6 3N2 2 , , @ = 0 M. G , (2) 5 ! M , , 5 , ! V .) ' 3 . 4. M Rn | ! , U Rn | a 2 M f : U ! R | "#, f rf ! 0 M \ U . ' R # a "# f # jf(x)j 6 (x) ((x)) 8x 2 R | M , : ;0 1) ! ;0 1) | ! "#, 0 0. . ' $ 3 R a, RQ U, R | 3 3 . C , ! x 2 R M M = M \ R | . : ;0 1) ! ;0 1) | rf RQ (5 , 0 0). 7 F(t) = t(t) 8t 2 ;0 1), ! x y 2 R jf(x) ; f(y) ; hrf(y) x ; yij 6 F(kx ; yk): ' , x 2 R ! y 2 M jf(x)j 6 F(kx ; yk) , jf(x)j 6 yinfM F(kx ; yk) = F(yinfM kx ; yk) 0
0
0
0
0
0
0
2
0
2
0
( F ). : x M M !, 5 jf(x)j 6 F ((x)) (x)((x)): 9 . 0
4. $
F 5 .
( ). $ ! % ( % A1 A2 A3 V Rn, % , !
525
"# '1 '2 '3 : V ! ;0 1], '1 +'2 +'3 = 1, ! ! . / "# !1 !2 !3 : V ! R, !i !j Ai \ Aj , "# ! = '1 !1 + '2 !2 + '3!3 : V ! R Ai !i. . 1 . 7 A = S Ai, A0 = T Ai. ! Ai Aj Ak ( i j k), , A & $ !( | A0 $ (Ai \Aj )nA0. # ( | : A - Ai )6 A0 . 2 . : ( , Ai V . (. V , , - , AQi AQj AQk , 'i , AQi , Ai . C 3 , a 2 AQi \ AQj !i !j . : a Ai \ Aj , 5, , , ,
, a Ai \ Ak , Aj \ Ak , . . 5 !i !k, !j !k , !i !j .) 3 . 3, Ai ! ! i : V ! R, ! 0 Ai > 0 Ai , !
i > C2i kr k 6 C i i | Ai ( 5 3
! 8 ). , ,
= 1 + 2 + 3 : V ! R: O , , , 0 A0 > 0 A0 . 4 . 7 '1 '2 '3 : V ! R, 'i = 31 A0, A0 'i = 2 1 ( j + k ) ( i j k). O 'i 1 ! 0 21 , $ A n A0 ! 5 5 ( , (Ai \ Aj ) n A0 'i = 'j = 21 , 'k = 0). : V n A0 'i , , . 5 . O X ! = 'i !i : V ! R ! V @r !, r = 1 : : : n, $ A ! @r ! ! ($ !i). ' , A0 5 , !
0
526
. .
!i , !( A0 . J V n A0 5 , 5 ! | X X r! = 'i r!i + !i r'i (+) $ (Ai \ Aj ) n A0 ( 'i = 'j = 21 , 'k = 0), ( 0 ( r'i = 0, 0 21 | 5 'i ). 6 . 7$ ! V , 3 @r ! A0 . O , () a 2 A0 (+) ( V n A0 , (
! r!i a). : (+) ( r!i , !( Pa). 5 , a 0 !i r'i . H$, ! , ( 'i = 21 ( j + k ) ) 3
j : (!j ; !i) r
i 2 F j =2 3 1, , , a 2 A0 0 (!j ; !i ) r
i : 7 . 7 (! ! !j ; !i . C , 5 1- ( 0 Ai \ Aj , , 4, , a 2 A0 j!i ; !j j 6 max (max ) max | i , : ;0 1) ! ;0 1) | , 0 0. ' , ij Ai \ Aj . > 4 a j!i ; !j j 6 ij (ij ), ! i j, !( $ . C , max - $ ij ( i = min(ij ik ) & Ai \ Aj Ai \ Ak ). . j!i ; !j j 6 j!i ; !k j + j!k ; !j j, ! ( a) j!i ; !j j 6 2max (max ), $ ! , ! . 8 . 7$ , max a 0. 5 $ 7 6 , kr i k
max
527
. : 5 3 ( i 6 max , > 2max ). > . > ( 1. # $ 3 .
5.
8 !. D f : (Rn a) ! Rm , $ (= ) a 2 Rn,
Rm. a 2 Rn ': (Rn a) ! Rn, U 3 a, U 3 '(a) ' U U U . , , , 5 . f : A ! B f : A ! B , f f . ( .) a 2 Rn k n 1 : : : k : (Rn a) ! R: A , 5 ( a) p < n , ( ' a, /!( 0 ( a) i p ( , (! U U Rn, U 3 a, ': U ! U , i ' 1 : U ! R
n ; p ). 1 : i ( a) : (Rn a) ! Rp. (D ', = ('1 : : : 'p)6 ' , Rn ( n ; p , ! a.)
. ( ) , , , . . 7 ( 5 $,
!( ( 3 (Rn a) ! Rm , ! ). !( : q 6 k, q ? . , , p = 1 , p = 2 ( 0
0
0
0
0
0
0
;
0
528
. .
, ) . : p, ( r a (. . U = (1 : : : k ) a). r > p , , . G r = p : !( p ! ! ! , 3 5 p (. . 5 ). O !( p ! , r = p ; 1 ( r = p).
2. * % "# 1 : : : k : (Rn a) ! R a p ; 1
p + 1 "# "# p %, ( . 0
,
a !, ,
p ; 1 "#, % 1 : : : p 1 i j i j > p: : . 7 3 p + 1 , , . . : (x y z 2 ), (x y2 z 2 ), (x y2 + z 2 ) 3 ( 0 2 R ) ( ! ). 8 , r > p ; 1, . . 8 $ 1 : : : 4 : (R3 0) ! R, , . O 1 : : : 4 ( x y z) x < 0 x2 (1 + xy)2 x2 0 0 x > 0 0 0 x2(1 + xz)2 x2: G (R3 0) ! R2 $ ! !( : x < 0 x x(1 + xy) x x z z y y x > 0 x x x x(1 + xz) : z z y y ' , $ , (: x < 0 ! xy, x > 0 | xz, D, , D(0) . ;
529
: , , i j ( p ; 1 ). . 8 , , . ' $ 2 3 4 ( . 2 3 (R3 0) ! R, x x < 0 x(1 + xz) x > 0. 2 4
x. I 3 4 , x > 0 .
6. ' ( = 2 ( !( ). G , ! , !( (
a ( ( p- ). ' 5 , p (. . ),
- 5 !. G (! 1 !, 5 . 7 ( $ ). I p . 5. 1 2 : (Rn a) ! Rp ! a, "# U1 U2 : (Rn a) ! Rp , Ui ( a) i (U1 U2 ) ! 6 p. a % %, U1 U2 p, 1 2 !. . F 5 , . J) I n > p > 0 : Rn ! Rp : Rn ! Rn p (t1 : : : tn) 7! (t1 : : : tp ) (t1 : : : tn) 7! (tp+1 : : : tn) . G ( A Rn | A). : (Rn a) ! Rp | . A , p- L 3 a ! a, 5 Ker D(a) (. . !). W, ! , D(a) . A) ( ) R Rn : R ! Rp, $ . : $ R , $ 0
;
0
530
. .
. # : = ( ): R ! Rn R Y Z, Y = (R), Z = (R). (I /0 ! , $ ! : Y Z ! Y .) : 5 . ' R ( Z, Y ). 5 X ( ) ': Z ! Rp. H , , U: R ! Rm R , X U . (' 5 ! !( .) ') I , $ A, $ , ! A (. .
A). 7 , 5 $ R !( S R, . (' , S, & , Y: (S) ! (R). 7 = Y 1 .) =) ( ) Ri Rn i : Ri ! Rp, i = 1 2, $ , ! (! ! (R1) = (R2) = Z ( ) (! S = L \ R1 = L \ R2 ( L | - Rn, !( ). . ') , ! 5 i
!( S ( , i ). I) I ! 1 : : : k : (Rn a) ! Rp a, , ! a
Ri i ( ! S 3 a. ' , i | 5
i = (i ) a. ' ') , ( , , i = L 3 a. : i ! L ( a) Ri | 5 i 1 (K) K 3 a. H) % R1 Rn, i = 1 2, i : Ri ! Rp ! S , Ui : Ri ! Rp , Ui i ! R = R1 \ R2 (U1 U2): R ! R2p % p. , 1 2 ! S , ! W R % , U1 U2 p ( W , 1 2 ! W). I , X1 X2 1 2, ( x 2 W, ! ( 1 2 S 1(x) = 2 (x)). 0
0
0
0
0
0
;
0
0
;
531
F X = X1 \X2 Xi (X : Xi ! Z z 2 Z, '1 '2 : Z ! Rp X1 X2). G , X Xi . ' , Ui $ Xi , x 2 Xi , . . p. G, X W. : W , , x 2 X U1 , U2 (U1 U2) p. 5 x 5 (= ) 1 U1 U2 2, , 1 2. ' , x ! X1 X2. 7 - X 3 x Xi ! Xi, X1 = X2, . I (! , , I), a
1 2 H). 0
0
0
0
7. !* " 2 '$ U = (1 : : : k ) U0 = (1 : : : p 1) Ui = (U0 i ) Uij = (U0 i j ) ( i j > p). ! Uij ( a) ij : (Rn a) ! Rp. > ! : (Rn a) ! Rp, ( a) U. : ( , , ! ij = (U0 sij ) , , ! ( a ( 6 ). C V 3 a ( Uij ij ), Vij | , Uij p. 9 , Vij . (O , Vij Vil Vjl , , Uij p,
Ui Uj p l 5 , .) G , V , 5 Vij ij . (1 U1 U2 ! ( Ui : Vij Ui Uj p, $ ! , , ij .) ' ,
! 5 | sij . 5 1 ( , ! 1 $) ( s: V ! R, Vij sij . ;
532
. .
= (U0 s), Vij D = Dij . 7! , D(a) | 5 ( ,
U p ; 1, . . VQij a). 5 a , $ 5 : DU (. . , DU) ! DU0 , - ! DUij , Dij , . . ! D. > .
. 7 ij ( 5 5). 8 ij !- s^ij , a U0 (U0 s^ij ) (5 a 5 ij , ij ). I (U0 s^ij ) $
!- (! L 3 a a, ! ! ( 5 ). ' 5 a
Rij ( ! S = L \ Rij 3 a (. I)). : , ($ ( Rij ) 5 , S - (. =)). (U0 sij ), S, $ $ U0 , .
'
1] . . . 1. | .: , 1972. 2] . . ! "#$! % !% & ' ( // *+. | 1977. | . 355, . 3. | /. 323{325. 3] Whitney H. Analytic extensions of di1erentiable functions, de2ned in closed sets // Trans. Amer. Math. Soc. | 1934. | Vol. 36. | P. 63{89. 4] Lojasiewicz S. Sur le probleme de la division // Studia Math. | 1959. | Vol. 8. | P. 87{136. 5] 6% ' 7. 8 99 $:8; 9$ ! . | .: , 1968. ' ( ) 1997 .
. .
. . .
517.51
:
,
.
!"# $% & & "
" '
& !# & " ) ' . ! ")" ! !"
& " p *0 1]n , ! & !" ' $% %--. & . / 0 " !" !" " 0 . L
Abstract E. S. Smailov, On Paley-type theorems for multidimensional Fourier series on generalized Haar-type systems , Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 533{563.
In the paper we prove Paley-type theorems for multidimensional Fourier series on generalized Haar-type systems under the boundedness condition of their generating number sequences. Properties of base of product of generalized Haar-type systems in p *0 1]n are proved. Then, using them, the Paley-type theorems on Fourier coe7cients are obtained. Comparisons of our results with the known statements are also given. L
x
1.
L !0 1] p
n
1] . . fp g, . ! "#$ % &# '# $ 2,3]. %! '% *+ % $ "#$ % &# " '$ # . x 1 ' ! ' '% $ Lp 0 1]n, ' $ #' x 2 ' +../$ &#. , 2001, 7, 8 2, . 533{563. c 2001 !"#, $% &' (
534
. .
x 3 % $ '# '# Luo Cheng' 4], 3. . 4 5], 4. &. 5 6. 5$ 6]. *# ' ## #$ fp g, $ Q p0 = 1, p > 2 8 2 N. *# m = pi . 0 1] i=0 fp g: 1(t) = 1 0 1]. < k > 2, k = m + r(p +1 ; 1) + s, r = 0 1 2 : :: m ; 1, s = 1 2 : : : p +1 ; 1, = 0 1 2 : : : ( k ). >' A ' ml ' 0 1], / l , 0 6 l 6 m , = 0 1 2 : : :. < t 2 0 1] n A = B, ' +1 X t = m(t) 0 6 (t) 6 p ; 1: =1 5# ./ k (t) = (sr) (t) ': (p m exp(2is p +1+1(t) ) t 2 ( mr rm+1 ) \ B (s) (t) = r 0 t 2= ( mr rm+1 ) 0 6 r < m , 1 6 s 6 p +1 ; 1, = 0 1 2 : : :. B ./% (sr) (t) %%% !. 5 B 0 1], (sr) (t) ( mr rm+1 ). * +" $ ' ./ (sr) (t) ! #$ '! , /$ ' 0 1] | # '% '. 5 ', ./! fp g #. @ 1] L0 1] (. 2]) ' C0 1] (. 1]). *# k 2 N, k > 2 k = m + r(p +1 ; 1), r = 0 1 2 : : : m ; 1, s = 1 2 : : : p +1 ; 1, = 0 1 2 : : :. 5" k = r = ( mr rm+1 ), 1 = 00 =(0 1). A r '# " . +1 ( i ) *# p i i =0 , i = 1 : : : n, | '# ' ' # #$ , !, B % fp g. * + #% i (iD ti) +i1=1 , i = 1 : : : n, $ ' n Qn o = (iD t ) i , Et = (t1 : : : tn) 2 0 1]n, E = (1 : : : n) 2 Nn. F# i i=1 0 1]n | ! n-! , Nn = N | N {z: : : N}. 5 -
n
% #!B Z+n = f(1 : : : n): i 2 Z i = 1 : : : ng. * # !, $ #!B (. 7]). *# X | $ , X | " % . 1. + fxg X '% ! X, ' !! fxg X.
535
2. + fxg X '% #!,
X " " + x, hx xi = 0 % $ . 3. + fxg X '% '!, % " + x 2 X ! % x
+1 X
n=1
anxn an = an (x) 2 R n 2 N
$%!% x X.
1.1. 'k (t)+k=11 , k(t)+k=11 Lp 0 1], 1 < p < +1.
'k (t)m (t) (km)2N2 Lp 0 1]2. . " 'k(t)+k=11 2 Lp0 1], 1
0
Z1 Z1
5"
0 0
f(t y)'k (t)m (y) dt dy = 0 8k = 1 2 : : : 8m = 1 2 : : ::
Z1 Z1 0
0
f(t y)m (y) dy 'k (t) dt = 0
'# . m1 2 N k = 1 2 : : :. H # 'k (t) +k=1 , Bm 0 1], mes(Bm ) = 0 8t 2 0 1] n Bm
B=
+S1
m=1
Z1 0
f(t y)m (y) dy = 0:
Bm 0 1]. 5" mes(B) = 0 8t 2 0 1] n B
Z1 0
f(t y)m (y) dy = 0 8m 2 N:
1 Lp 0 1] # k (t) +k=1 8t 2 0 1] n B 9ct 0 1]: mes ct = 0 8y 2 0 1] n ct ) f(t y) = 0:
536
. .
5" , ", ', f(t y) 6= 0, % J = f(t y): t 2 0 1] n B y 2 ctg f(t y): t 2 0 1] y 2 ct mes(ct) = 0g: *+ mes(J) 6
R1 R dy dt = 0. 0 ct
1.2. ! =
Y n
i (ti D i)
i=1
2
N n
Lp 0 1]n
1 6 p < +1
. . K. A. M 2] ', % 1 (t) +=1 L1 0 1] !, f(t) 2 L1 0 1] R1 f(t) dy = 0 8 2 N, 0 1] f(t) = 0, . . 0 +1 (t) =1 # Lp 0 1], 1 6 p < +1. n nQ;1 o 5# , # Lp 0 1]n;1 i (ti D i) , i=1 i 2 N, i = 1 : : : n ; 1, ' =
Zn
i (ti D i)
i=1
*# f(t1 : : : tn) 2 Lp 0 1]n
n
N Lp0 1]
2 n
1 < p 6 +1:
0
Z1 Z1 0
5"
: : : f(t1 : : : tn)
i=1
0
Z1 Z1 Z1 0
0
Zn
: : : f(t1 : : : tn;1 tn) 0
nY ;1 i=1
i (ti D i) dt1 : : :dtn
= 0 8E 2 Nn:
i (ti D i) dt1 : : :dtn;1
n (nD tn) dtn
= 0:
" '# 9A 0 1]: mes1(A) = 0 8tn 2 0 1] n A
Z1 Z1
nY ;1
0
i=1
: : : f(t) 0
i (ti D i) dt1 : : :dtn;1
= 0 8(1 : : : n;1) 2 Nn;1:
" / 8tn 2 0 1] n A 9c(tn ) 0 1]n;1 : mes c(tn ) = 0 8(t1 : : : tn;1) 2 0 1]n;1 n c(tn ) f(t1 : : : tn) = 0:
537
5" supp f(t1 : : : tn) G = f(t1 : : : tn): tn 2 0 1] n A (t1 : : : tn;1) 2 c(tn )g f(t1 : : : tn): tn 2 0 1] (t1 : : : tn;1) 2 c(tn )g mesn (G) =
Z1 Z
c(tn )
0
Z
: : : dt1 : : :dtn;1 dtn = 0:
1.3. ! =
Y n
i=1
i (ti D i)
N
2 n
Lp 0 1]n p, 1 6 p < +1. . *# Np0 1]n |n ' !!n Lp 0 1] . , Np 0 1] | ' Lp 0 1]n. < Np 0 1]n 6= Lp 0 1]n, {K$ ./% f(t1 : : : tn) 2 Lp 0 1]n, p + p0 = pp0, % 1) kf kLp 01]n > 0 0
Z1
2)
0
0
Z1
: : : f(t1 : : : tn)(t1 : : : tn) dt1 : : :dtn = 0 0
% $ (t1 : : : tn) 2 Np 0 1]n.
Z1 Z1 0
: : : f(t1 : : : tn)
Qn
0
n Y i=1
, i (iD ti )dt1 : : :dtn
= 0 8E 2 Nn
n i (iD ti) 2 Np 0 1] . i=1 * ! # , kf kLp 01]n > 0. * ' # Np 0 1]n = Lp 0 1]n, ' Lp 0 1]n, 1 6 p < +1. nn o
1.4. = Q i (tiD i) 2Nn | i=1 ! # . kE = (k1 : : : kn) 2 Nn f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1,
kSk1 :::kn (fD )kLp 01]n 6 ap kf kLp 01]n 0
538
. .
Sk (fD t1 : : : tn) | # # $ ! . % ap > 0 kE
f(t1 : : : tn). *# m(ii) < ki 6 m(ii)+1 , i = 1 : : : nD I (ii)r (i) = h. i = mr(i()i) rm(i)(+1 i) , i = 1 : : : n. * i
i
Q r = I (1)1 r(1) I (2)2 r(2) : : : I (nn )r(n) :
>'
Dk1 :::kn (tED yE) =
k1 X 1 =1
:::
kn Y n X
( i (ti D i) i (yi D i))
n =1 i=1
' % R" % kE. " f i (ti D i)g 8ti yi 2 I (ii)r(i)
(i) (i) = r (i) r (+i) 1 i = 1 : : : n mi mi n n Y n Y Y Dk1 :::kn (tED yE) 6 m(ii)+1 6 ci m(ii) i=1
i=1 i=1
Dk1 :::kn (tED yE) = 0 % $ #$ Et = (t1 : : : tn), yE = (y1 : : : yn) 2 0 1]n. R Qn #, % ! Sk1 :::kn (fD y)= f(tE) Dki (ti D yi) dtE jSk j 6 C
n Y i=1
01]
Z
m(ii)
r
i=1
f(tE) dtE
# y = (y1 : : : yn) 2 Q r yi 6= mr((ii)) , r(i) = 0 1 : : : m(ii) ; 1, i i = 1 : : : n. *+ % $ y 2 Q r jSk (fD y)j 6 C
n Y
i=1
p1 1p Y n ( i ) ; 1 p : (m i ) jf(t)j dt i i =1 r
m(i)
Z
#, kSk (fD )kpLp 01]n
n p Y;
6 Cn
i=1
=
Z 01]n
Y n (i) p
mi
jSk (fD y)jp dy =
(1) ;1 mX 1
r(1) =0
(1) ;1 pp mX 1 (i) ;1
(m i )
i=1
0
0
r(1) =0
:::
:::
(1) ;1 mX n
Z
r(n) =0 r
(1) ;1 mX n
Z
r(n) =0 r
dy
jSk (fD y)jp dy 6
Z r
jf(t)jp dt
=
539
n p Y;
= Cn
= Cnp
Y n (i) p
mi
i=1
Z1 Z1 0
(m(ii) );1 i=1
(1) ;1 mX 1
p;1 Y n
(m(ii) );1 i=1 r(1) =0
:::
(1) ;1 mX n
Z
r(n) =0 r
jf(t)jp dt =
: : : jf(t1 : : : tn)jp dt1 : : :dtn: 0
5 '.
1.5. ! =
Y n
i=1
i (ti D i)
N
2 n
# Lp 0 1]n, 1 < p < +1. . *# f(t1 : : : tn) | '#! + Lp 0 1]n, 1 < p < +1. 5" + ( 1.3) % " " !! "" P(1") :::(n") (t1 : : : tn) = ! H, 8Ni
(1") X k1 =1
:::
(n") X kn =1
a(k"1):::kn
n Y i=1
ki (ti D i)
f ; P(") :::(n") ()Lp 01]n < ": 1
> (i") i = 1 : : : n N1 Nn n X X Y ::: ck1 :::kn (P ) P(1") :::(n") (t1 : : : tn) = ki (ti D i) k1 =1
" ck (P) =
Z 01]n
P(1") :::(n") (t)
n Y i=1
ki (ti D i) dt
kn =1
i=1
ki = 1 : : : Ni i = 1 : : : n:
I, #'% ! " ! ( 1.4) SN1 :::Nn (fD t1 : : : tn) , kf ; SN1 :::Nn (f)kLp 01]n 6 6 kf ; P(1") :::(n") kLp 01]n + kP(1") :::(n") () ; SN1 :::Nn (f)kLp 01]n 6 6 " + kSN1 :::Nn (f) ; P(1") :::(n") kLp01]n < < " + ap " = (1 + ap ) 8Ni > (i") i = 1 : : : n:
540
. .
@ ', % &# ' $ '#! ./ f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1, $% Lp 0 1]n, 1 < p < +1, ! . *# # % n n X Y X Y ak (t D i) b ki i k k2Nn i=1 k2Nn i=1
$%% ./ f(tE) 2 Lp 0 1]n. 5"
ki (ti D i)
Z
n Y
01]n
i=1
bk = f(t)
ki (ti D i)dt =
Z X
N
n 01]n 2
a
n Y i=1
Y n
ki (ti D i)
i=1
i (ti D i) dt = ak1 :::kn
. . ./% f(t1 : : : tn) 2 Lp 0 1]n '"% ! % &# '% $ " '$ #!. @ ', ' "% %%% ' Lp 0 1]n, 1 < p < +1. % % '% nn o 1.6. 1 < p < +1 Q r i (ti) 2Nn | i=1 & . ' ( # as s2Nn , Cp
+X 1
s1 =1
:::
+1 X
sn =1
21 2 as1 :::sn
p p1 Z X Y n 6 n as rsi (ti ) dt 6 01]n s2N i=1 X 12 +1 +1 X 0 2 6 Cp : : : as1 :::sn : s1 =1
sn =1
*# "(i) = "(ii) +i1=1 , "(ii) = 1, | '#% ## '. I% $ % &# ' $ T" (fD t) =
+ 1 X
1 =1
:::
+1 Y n X n
i=1
Y n
"(ii) c
i=1
i (ti D i)
t = (t1 : : : tn) 2 0 1]n f(t) 2 L10 1]n: . nn o
1.7. = Q i (tiD i) 2Nn | i=1 ! #
. n Qn (i) o
( i ) " = " i 2Nn, " i = 1, )(
i=1
541
f(t) 2 Lp 0 1]n, 1 < p < +1, a;p 1kf kLp 01]n 6 kT" (fD )kLp 01]n 6 ap kf kLp 01]n ap > 0 f(x) ". . ! ! % , ', %%% ' Lp 0 1], 1 < p < +1 (. 6, 5]). 5" " 1.10 7]
X N 9ap > 0: 8" = f"k g "k = 1 "k ck (f) k () 6 ap kf kLp 01] 8N 2 N: Lp 01] k=0
H, $% N ! +1, , kT" (fD )kLp 01] 6 ap kf kLp 01] : 5# , + % (n ; 1)-" % &# ! . T T" (fD t) % n-" % &# ! :
Z
01]n
jT" (fD t)jp dt
Z1 Z1 Z1 0
0
:::
0
Z1 Z1 Z1
= ::: 0
0
0
jT" (T" (fD t1 : : : tn;1)D tn )jp dt1 : : :dtn;1 jT" (T" (fD t1 : : : tn;1)D tn )jp dtn
dtn =
dt1 : : :dtn;1 6
(#' , ' B)
6 app
Z1 Z1 Z1 0
:::
0
0
jT" (f(t1 : : : tn;1D tn)D t1 : : : tn;1)jp dtn
dt1 : : :dtn;1 =
(#' /) = app
6 cpp
Z1 Z1 Z1 0Z 0
01]n
:::
0
jT" (f(t1 : : : tn;1D tn)D t1 : : : tn;1)jp dt1 : : :dtn;1
jf(t1 : : : tn)jp dt:
5 ', T" : Lp 0 1]n ! Lp 0 1]n | "! .
dtn 6
542
. .
5 T"2 (fD t1 : : : tn) = f(t1 : : : tn), # ' kf kLp 01]n = kT"2(fD )kLp 01]n 6 ap kT" (fD )kLp 01]n : 5 ' #. *# c =
Z
01]n
f(1 : : : n)
n Y
i=1
i (iD i ) d1 : : :dn
= (1 : : : n) 2 Nn |
+../ &# ' $ ./ f(x1 : : : xn). 5" ./ P(fD t1 : : : tn) =
X +1
1 =1
:::
+ 1 X
n =1
c2
1 ::: n
n Y
i=1
2
i (ti D i)
21
' ./! *+, t 2 0 1]n. 5#, #'% 1.6 1.7, % #!B . nn o
1.8. = Q i (tiD i) 2Nn | i=1 ! # . )(
f(t) = f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1, a0p kf kLp 01]n 6 kP (fD )kLp 01]n 6 ap kf kLp 01]n ap > 0, a0p > 0 f(t). . T r (x) = sign sin(2 x), x 2 0 1], | .+P 1 / T$. *# x = s 2;s | ' -/#s=1 " ' (0 1), s = s (x) 0 1. * + r (x) = (;1) (x) % " x 2 (0 1), x 6= 2ik , i k 2 N (. 7, . 30]). *# f(t) = f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1. 5" kf kpLp 01]n
=
Z
01]n
(#' 1.7)
kf kpLp 01]n dx 6
p Z X +1 +1 n n : : : X Y r i (xi)c 1 Y i (D i) dx = n L 0 1] p =1 =1 i =1 i =1 1 n 01]n Z X Y p p n n Y p 6 = cp c 1 r i (xi) dx i (D i) L 01]n n p 2 N i =1 i =1 n 01] 6 cpp
543
('# % 1.6)
X 21 p +1 + 1 Y n X 2 (D i) 6 app ::: c2 6 i Lp 01]n 1 =1 n =1 i=1 Z X Y p p n n Y p 6 aEp r i (xi )c i (D i) dxLp 01]n n i=1 01]n 2N i=1 p Z X Y n n Y aEpp r i (xi)c ( D i) dx 6 i n n L 0 1] p i =1 i =1 2 N 01]n
( ' % 1.7)
Z1 Z1
6 aEpp : : : 0
0
kf kpLp 01]n dx1 : : :dxn = Eapp kf kpLp 01]n :
1.9. ! =
Y n
i=1
i (ti D i)
N
2 n
# Lp 0 1]n, 1 < p < +1, #, . . Lp 0 1]n, 1 < p < +1,
Y n i=1
(i) ( i ) (ti
D (i)(
i ))
N
2 n
E = ((1) (1) (2)(2) : : : (n) (n))
= (i) (i) +i1=1 | # +1 i i=1 , i = 1 : : : n. . *# "(ii)+i1=1, "(ii) = 1, i = 1 : : : n, | '# # ' f(t1 : : : tn) | '#% ./% ' Lp 0 1]n, 1 < p < +1, % &# ' $ : n X Y f(t1 : : : tn) c (1) i (ti D i):
(i)
" 1.7
N
2 n
i=1
X Y N1 Nn Y n n X ( i ) ::: " i c i (D i) Lp 01]n 6 i=1 1 =l1 +1 n =ln +1 i=1 6 kSN1 :::Nn (f) ; Sl1 :::ln (f)kLp 01]n :
544
. .
* 1.5 %%% ' Lp 0 1]n, 1 < p < +1. *+ % Y n n X Y "(ii) c (2) i (ti D i)
N
2 n i=1
i=1
$% Lp 0 1]n $ '%$ ' "(ii) +i1=1 , "(ii) = 1, i = 1 : : : n. @ ', Lp 0 1]n, 1 < p < +1, $%% % n X 0 Y "c i (ti D i) i=1 2Nn
(3)
"0 1 ::: n 2Nn "0 1 ::: n 0 1. 5# , ! "$ % (1) ! % +1 X
(1) ( 1 )=1
:::
+1 X
(n) ( n )=1
c(1) ( 1 ):::(n) ( n )
n Y
i=1
(i) ( i ) (ti D i)
$% Lp 0 1]n. #, > 0 # #$ Nk(ii) +ki1=1 , Mk(ii) +ki1=1 , i = 1 : : : n, (i) 1) Nki 6 Mk(ii) < Nk(ii)+1 , i = 1 2 : : : nD 2) % ! E = (1 : : : n) 2 Nn (1) MX Mk(nn) n Y k1 : : : X c (1) (1) ( 1 )::: ( n ) (1) (n) i=1 1 =Nk1
1 =Nkn
> D (1) ( i ) (D i) n Lp 01]
3) A(kii) = maxf(i) (i): Nk(ii) 6 i 6 Mk(ii) g, Bk(ii) = minf(i) (i): N (ii) 6 6 i 6 Mk(ii) g, Bk(ii) < A(kii) < Bk(ii)+1 , i = 1 : : : n. * "0 1 ::: n = 1, i 2 5"
+ 1
f(i) (mi ): ki=1
Nk(ii) 6 mi 6 Mk(ii) g i = 1 : : : n:
(1) AX A(knn) n Y k1 : : : X "0 c i ( i) (1) Lp 01]n = ( n ) i =1 = B = B 1 k1 n kn (1) (n) MX MX k1 kn n Y ::: C(1) (m1 ):::(n) (mn ) =
m1 =Nk(1)1
mn =Nk(nn)
i=1
(i) (mi ) ( i)
Lp 01]n
> > 0
545
. . % f(t1 : : : tn) 2 Lp 0 1]n $%!% % (3). 3 + . $ % (2) $ '%$ ' % ! f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1. 5 ', . #, % ! ./ f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1, ! % &# ' $ ' "% $% Lp 0 1]n, 1 < p < +1, $ $ <# 'n Qn" "$. o ( i ) % ! (i) ( i ) (ti D (i )) 2Nn i=1 % 1.5.
x
2. %%&
' ( )
+ ". % %'# # " ./ 0 1]n # % # +../ &# . 6+../ &#{ ./! '# $ *. R. U#% 8], K. A. M 9], . . K 10]. *+. + % '# Luo Cheng' 4], 3. . 4 5], 4. &. 5 6. 5$ 6]. 2.1. * p > 0 # fakg (1) (n) mX Z mX n 1 +1 n +1 Y ::: a{ (1) (n)
01]n i1 =m 1 +1 in =m n +1 =1 (1) ;1 m(n) ;1 p(1) ;1 Z mX +1 1 n 1X X
=
:::
p i (t D ) dt =
:::
) ;1 p(nnX +1
a(s)r
n Y
i=1 rn =0 s1=1 sn =1 01]n r1 =0 (1) ;1 m(n) ;1 p Z mX n 1 n X Y ( s ) ( s ) j ::: a r j rj (tj D j) dt = rn =0 j =1 01]n r1 =0 (1) (n) ;1 n; 1 ;1 mX n Y p2 ;1 mX ( j ) a(s)r ::: = mj r1 =0 rn =0 j =1 sE = (s1 : : : sn), sj = 1 2 : : : p(jj)+1 ; 1, j = 1 : : : n.
. ! n = 1.
p
i ri (ti D i) dtD
(si )
546
. .
p Z1 mX;1 p X Z1 mX+1 +1 ;1 ai i (t) dt = a(sr) 0 i=m +1
=
j+1 mX ;1 Zm mX;1 p X +1 ;1
j =0 j m
r=0
s=1
Zm1 p X +1 ;1 = a(s0)
s=1
r
p dt =
a(s) (s) (t) r r
p Zm2 p X +1 ;1 (s) (t) dt + a(s1) 0
s=1
0
r=0
0
Z1 p X +1 ;1 a(sm) ;1 + s=1 1; m1
p dt =
(s) (t)
1 m
s=1
p
(s) (t) 1
dt + : : : +
p Z1 mX;1 p X +1 ;1 a(sr) m ;1(t) dt = 0 r=0
p dt:
(s) (t)
( s)
r
s=1
F# # " ' ! % $ " ./!: (sr) ps=1+1 ;1 , (sr) ps=1+1 ;1, r 6= r0 . 0
Z1 mX;1 a(sr) r=0
0
=
p mX;1 Zkm+1 mX;1 (s) (t) dt = a(sr) r
k+1 mX ;1 Zm
a(sk)
k=0 k m ;1 p mX
= m 2 ;1
k=0
r
r=0
k=0 k m
k+1
mX ;1 (s) p Zm (s) p a k k (t) dt = k=0
p dt =
(s) (t)
k m
p
k (t)
(s)
dt =
a(sk) p s = 1 2 : : : p +1 ; 1:
*# # n = l ; 1. (1) m(ll)+1 Z mX 1 +1 X Yl ::: a{ (1) (l)
01]l i1 =m 1 +1 Z1 Z
il =m l +1 m(1)1 +1
s=1
p is (tsD s) dt =
m(ll 1)1 +1 m(ll)+1 X X X = ::: a{ il (tl D l) 0 01]l 1 i1 =m(1)1 +1 il =m(ll 1)1 +1 il =m(ll) +1 p lY ;1 ij (tj D j) dt1 : : :dtl;1 dtl = ;
j =1
;
;
; ;
547
(1) ;1 m(l 1) ;1 p(1)+1 ;1 p(l 1)+1 ;1 m(l) ;1 p(l)+1 ;1 mX l 1 1X lX 1 1 l lX X X
Z1 Z
::: r =0 r =0 s =1 sl l 1 1 0 01]l 1 1 p lY ;1 ij (tj D j) dt1 : : :dtl;1 dtl = =
;
:::
;
j =1
rl =0
;1 =1
;
;
;
;
a(s)r (slrl)l (tl D l)
sl =1
(l 1) ;1 1 +1 X p lX X X = ::: : : : a(s)r r1 =0 rl 1 =0 0 rl =0 sl=1 s1 =1 sl 1 =1 01]l 1 p lY ;1 (sl ) (t D l) dt dt : : :dt (t D j) ij j 1 l;1 = l rl l l
m(ll 1)1 ;1 Z1 m(ll) ;1 p(ll)+1 ;1 p(1)1 +1 ;1
(1) ;1 Z mX 1
X ;
;
;
;
;
;
;
j =1
(#' ' % n=1 ) =
(1) ;1 Z mX 1
r1 =0
01]l;1
m(ll 1)1 ;1 m(ll) ;1 Z1 p(ll)+1 ;1 p(1)1 +1 ;1
X
X
;
:::
;
rl 1 =0 rl =0 0 ;
X
X
sl=1
p Yl (slj ) j rj (tj D j) dtl dt1 : : :dtl;1 = j =1 (1) ;1 m(l) ;1 p(1)+1 ;1 p(l)+1 ;1 Z mX 1 l 1X lX X Yl = ::: ::: a(s)r 01]l r1 =0
rl =0
s1 =1
sl =1
s1 =1
j =1
p(ll 1)1 +1 ;1
X
;
:::
;
sl 1 =1
a(s)r
;
p
j rj (tj D j) dt1 : : :dtl :
(sj )
5 ' /. *# # n = l ; 1. (1) ;1 m(l) ;1 Z mX Zl;1 1 l X ( s ) ::: a r
01]l
=
r1 =0
Z1 0
rl =0
(1) ;1 Zl;1 mX 1
01]
r1 =0
j =1 m(ll 1)1 ;1 m(ll) ;1
X
X
rl 1 =0
rl =0
;
:::
p
(sl ) j rj (tj D j) l rl (tl D l) dt =
(sj )
;
;
a(s)r (slrl)l (tl D l)
p lY ;1 ( s ) j (t D j) dt : : :dt dtl = j 1 l ; 1 j rj j =1 (1) ;1 m(l 1) ;1 m(l) ;1 Z1 lY l 1 X ;1 p ;1 mX 1 l X ::: = a(s)r m 2j ;
;
0
j =1
r1 =0
rl 1 =0 ;
rl =0
p
l rl (tl D l) dtl =
( sl )
548
. .
=
lY ;1 j =1
p m 2j;1
(1) ;1 mX 1
r1 =0
m(ll 1)1 ;1 Z1 m(ll) ;1
X ;
:::
;
rl 1 =0 0 ;
X (s) a r
p
lrl (tl D l) dtl =
(sl)
rl =0
(#' ' % n = 1 ) =
Yl
p m 2j;1
(1) ;1 mX 1
(s) p a r
rl =0 " sE = (s1 : : : sl ), sj = 1 2 : : : p(jj)+1 ; 1, j = 1 : : : l. j =1
r1 =0
:::
(l) ;1 mX l
5 ', # '. 2.2. 1 < p < +1 i (tiD i)+i1=1 | # (! i )+1 # p i i=1 , i = 1 : : : n. ( # a 2Nn , i = 1 : : : n, + (1) (n) mX mX N1 +1 Nn +1 n Y ::: a ( ) i Lp 01]n (1) (n ) 1 =mN1 +1
i=1
n =mNn +1
n Y j =1
(1) N1 +1 12 ; p1 ) mX ( (j )
mNj
1 =m(1) N1 +1
( n) mX Nn +1
:::
n =m(Nnn) +1
p p1 : a
. *%% 2.1 M# '-
p,
(1) (n) mX Z mX N1 +1 Nn +1 n Y ::: a{ (1) (n)
p
01]n i1 =mN1 +1 in =mNn +1 =1 (n) ;1 m(1) Z p(1) NX N1 ;1 mX Nn 1 +1 ;1 X
(t D ) dt =
=
6
:::
m(1) N1 ;1
(n) ;1 p(1) ;1 mNX NX n 1 +1
r1 =0 n; Y
rn =0 01]n p(Njj)+1 ; 1 p;1
j =1
Z
X
01]n r1 =0
=
n; Y j =1
:::
p(Njj)+1 ; 1
rn =0
s1 =1
s1=1
(1) ;1 N1 p;1 mX
r1 =0
:::
:::
:::
) ;1 p(NnnX +1
sn =1
s) a( {r
n Y j =1
) ;1 p(NnnX +1
sn =1
n (s) Y a {r
(1) ;1 (n) mX Nn ;1 pNX 1 +1
rn =0
s1=1
j =1
:::
p
ij rj (tj D ij ) dt 6 (sj )
p
ij rj j D ij ) dt = (sj ) (t
) ;1 p(NnnX +1
sn =1
n p (s) p Y mN2 ;j 1 = a{r j =1
549
=
n; Y
(1)
(n)
j =1
i1 =mN1 +1
in =mNn +1
mX N1 +1 Nn +1 p;1 p2 ;1 mX ( j ) a{ p : pNj +1 ; 1 mNj :::
5 # p(i) +1 , i = 1 : : : n, ", i
i =1
(1) (n) mX mX N1 +1 Nn +1 n Y ::: a{ 6 ij (D ij ) Lp 01]n (1) (n)
i1 =mN1 +1
in =mNn +1
j =1
6 Cp
(1) N1 +1 12 ; p1 ) mX ( (j )
n Y
mNj
j =1
i1 =m(1) N1 +1
:::
(n) mX Nn +1
in =m(Nnn) +1
p p1 : a{
5# " . *# 1 < p < 2. 5", %% 1.8 4", $ (1) (n ) mX mX N1 +1 Nn +1 n Y ::: a{ (1) (n)
i1 =mN1 +1
> Cp
n; Y j =1
> Cp
Z
in =mNn +1 p(1) N1 +1 ;1
X
s1=1
01]n
ij rj j D ij )
p(1) NX 1 +1 ;1
n; Y j =1
s1 =1 (sj )
:::
ij rj (tj D ij )
Lp 01]n
j =1
:::
2 p2
(sj ) (t
i (D ij )
) ;1 m(1) ;1 p(NnnX N1 +1 X
sn =1
p1
dt
) ;1 p(NnnX +1
sn =1
(n) ;1 mX Nn
rn =0
(s) 2 a{r
> (1) ;1 Z mX N1
01]n
p2 p2 21 2
r1 =0
:::
>
dt
r1 =0
:::
(n) ;1 mX Nn
rn =0
(s) 2 a{r
:
A#'% (1) ;1 m(n) ;1 mX N1 Nn n X s) Y ::: a( {r
r1 =0
rn =0
j =1
2 ij rj (tj D ij ) = m(1) N1 ;1 X (sj )
=
r1 =0
:::
(n) ;1 mX Nn
rn =0
n; (s) 2 Y a{r
2.1, #B
j =1
(sj ) (t
2
ij rj j D ij )
550
. .
m(1) N1 +1
X
> Cp
> ij (D ij ) Lp 01]n
n Y
a{ ( n ) in =mNn +1 j =1 (n ) p(1) N1 +1 ;1 pNn +1 ;1
i1 =m(1) N1 +1
:::
(n) mX Nn +1
X
s1 =1
:::
(1) ;1 m(n) ;1 Z mX N1 N n X s) ::: a( {r
X
sn =1
r1 =0
01]n
rn =0
n; Y p p2 21 (sj ) = ij rj (tj D ij ) dt j =1 ) ;1 m(1) ;1 p(1)1 +1 ;1 p(NnnX N1 +1 n X Y ( 1 ; 1 ) NX
= Cp
j =1
m(j ) 2 p Nj
:::
s1 =1
sn =1
r1 =0
:::
n) ;1 m(NX n
rn =0
(s) p p2 21 a{r :
*%% M# ' = 2p , + 0 = 0 , 0 = 2;2 p , 1 < p < 2, p(1) N1 +1 ;1
X
s1 =1
:::
) ;1 m(1) ;1 p(NnnX N1 +1 X
sn =1
r1 =0
:::
(n) ;1 mX Nn
(s) p a{r 6
rn =0 (1) (n) ;1 m(1) ;1 m(n) ;1 2 p N1 Nn n; 1 +1 ;1 pNX n +1 X X Y 1; p2 pNX (j ) a({sr) p p 2 : ::: ::: 6 pNj +1 ; 1 s1 =1 sn =1 r1 =0 rn =0 j =1
*# p(ii) +i1=1 , i = 1 : : : n, ". *+ p(1) NX 1 +1 ;1 s1 =1
:::
) ;1 m(1) ;1 p(NnnX N1 +1 X
sn =1
r1 =0
6 Cp
:::
n) ;1 m(NX n
rn =0 (1) pNX 1 +1 ;1 s1 =1
(s) p p1 a{r 6
:::
) ;1 m(1) ;1 p(NnnX N1 +1 X
r1 =0
sn =1
:::
n) ;1 m(NX n
rn =0
(s) p p2 21 a{r :
5" m(1) N1 +1
X
i1 =m(1) N1 +1
:::
(n) mX Nn +1
in =m(Nnn) +1
a{
n Y j =1
> ij () Lp 01]n
Y (1;1) > Cp0 m(Nj ) 2 p n
j =1
j
(1) mX N1 +1
i1 =m(1) N1 +1
:::
(n) mX Nn +1
in =m(Nnn) +1
ja{jp
p1
:
551
*# # p > 2. 5" #'% ! 1.8. 5 2p > 1, (1) (n) mX mX N1 +1 Nn +1 n Y p ::: ja{j > ij () Lp 01]n (1) (n)
i1 =mN1 +1
j =1
in =mNn +1
(1) (n) mX mX 12 N1 +1 Nn +1 n Y 2 2 > cp ::: a{ > ij () Lp 01]n (1) (n)
i1 =mN1 +1 in =mNn +1 j =1 (1) (n) mX Z mX p1 N1 +1 Nn +1 n Y p p > cp ::: ja{j j ij (tj D ij )j dt (n) +1 j =1 +1 i = m 01]n i1 =m(1) n N1 Nn (1) (n) mX 1p N1 +1 Nn +1 n ( 1 ; 1 ) mX Y 2 p ::: ja{jp : = cp mNj j =1 i1 =m(1) in =m(Nnn) +1 N1 +1
=
5 # '. R 2.1 2.2 % K. A. M 9], $ ' 11] . 5'. I% ' #'#% ' A = fkE = (k1 : : : kn): m(ii) + 1 6 ki 6 m(ii)+1 i = 1 : : : ng " E 2 Z+n . nn o
2.3. 1 < p < +1, = min(2 p), = Q j (tiD i) | i=1 ! ,
# . ' ( # a = a 2Nn Dp (a) =
+ 1 X
1 =;1
:::
+ 1 X
n Y
X
(m(ii) ) ( 12 ; 1p ) jak jp n =;1 i=1 k2A
p
< +1
)( f(t1 : : : tn) 2 Lp 0 1]n, # a = a 2Nn ( ,)) ( $ ! , kf kLp 01]n 6 Cp fDp (a)g Cp > 0 ( a. n . T % Pn a Q i (tiD i). SN1 :::Nn (t) = i=1 N1 N P Pn Qn (t D i) | " %2N = : : : a . i i 1=1
n
i=1
552
. .
*# 2 6 p < +1. * 1.8, 4", ' 2.2, Sm(1) (n) ; Sm(1) :::m(n) Lp 01]n 6 :::m N N l l 1
6 Cp
6 Cp
n
(1) mX N1
n
1
:::
(n) mX Nn
ja j2
1 =m(1) n =m(lnn) +1 l1 +1 NX NX 1 ;1 n ;1 Z X
i=1
ja j2
2 ( i (D i))2
n Y
D i))2
( ki (ti k i=1 k2A 2 12 n Y E 6 Cp ::: ak ( ki (D i))Lp 01]n 1=l1 n =ln k2A i=1 NX p2 12 NX n 1 ;1 n ;1 Y 2 X 6 CEp ::: (m(ii) )1; p jakjp 1=l1 n =ln i=1 k2A 1=l1 NX 1 ;1
:::
1
n Y
n =ln 01]n NX n ;1 X
Lp 01]n
p2 2p 21 dt
2 6 p < +1:
P
n
1
6
6
1 < p < 2 # 1.8, jk j p2 k 2.2 Sm(1) (n) ; Sm(1) :::m(n) Lp 01]n 6 :::m N N l l 1
6
p2 P 6 jk j k
n
(1) (n) mX mX 12 N1 Nn n Y 2 2 6 6 Cp ::: ja j ( i (D i)) Lp 01]n (1) (n)
6 Cp
1 =ml1 +1 Z NX 1 ;1
:::
n =mln +1 NX n ;1 X
i=1
jak j2
n Y
( ki (ti D i))2
i=1 n =ln k2A 01]n 1 =l1 X p1 NX NX n 1 ;1 n ;1 Y p ::: (m(ii) ) 2 ;1 6 CEp jak jp i =1 = l = l 1 1 n n k2A
p2 p1 dt
6
1 < p < 2:
5 ',
Sm(1) (n) ; Sm(1) :::m(n) Lp 01]n 6 :::m N1 Nn l1 ln NX p 1 NX n 1 ;1 n ;1 Y 12 ; p1 ) X
( p ( i ) E 6 Cp ::: (m i ) jak j (4) 1=l1 n =ln i=1 k2A
" = min(2 p), 1 < p < +1. % , Sm(1) (n) ; Sm(1) :::m(n) Lp 01]n ! 0 :::m N Nn l l 1
1
n
553
1
Pn a2 2 . *+ ./% jNE j jElj ! +1. F# jaEj = i i=1 f(t1 : : : tn) 2 Lp 0 1]n, 1 < p < +1, % f ; Sm(1) ! 0 (5) ( n ) N1 :::mNn Lp 01]n " jN j ! +1. R1 R1 Qn ( D i) d : : :d | +../*# ck1 :::kn (f) = : : : f(1 : : : n) ki i 1 n i=1 0 0 n &# ./! f(t1 : : : tn ) 2 Lp 0 1] ' $ , kE 2 Nn. # M# ' p > 1 (p + p0 = pp0 ) jak1:::kn ; ck1 :::kn (f)j 6 n Y 6 : : : jSm(1) (n) (t : : : tn) ; f(t1 : : : tn) ki (ti D i)dt1 : : :dtn 6 N1 :::mNn 1 i =1 0 0 Y n 6 f ; Sm(1) (n) ki (D i) N1 :::mNn Lp 01]n L 01]n Z1 Z1
(i)
% $ mNi > ki , i = 1 : : : n. 5 1
Z
i=1
p0
j ki (ti D i)jp
0
dt < +1
0 (1) ' (mN1 : : : m(Nnn) ), (5) # (k1 : : : kn) , jak1 :::kn ; ck1 :::kn (f)j = 0:
.
5# ' % . 5 m(;i)1 = 0 8i = 1 : : : n S0:::0(fD t) 0, # B% (4)
p 1 X +1 + 1 Y n X (i) ) ( 21 ; p1 ) X ja jp E Sm(1) : 6 C : : : (m ( n ) p k i N1 :::mNn Lp 01]n = ; 1 = ; 1 i =1 1 n k 2A n Qn o n " 1.5 = i (ti D i) 2Nn %%% ' Lp 0 1] i =1 (. 2]). *+ 1 kf kLp 01]n 6 Cp (Dp (a))
# '#. nn o
2.4. 1 < p < +1, = max(2 p), = Q i (tiD i) 2Nn | i=1 ! # . ' f(t1 : : : tn) 2 Lp 0 1]n, (
554
. .
,)) ( $
X p 1 +1 + 1 Y n X 1;1) X ( ( i ) p 2 p ::: (m i ) jak j 6 Cp kf kLp 01]n : = ; 1 = ; 1 i =1 1 n k 2A . *# 1 < p 6 2. *%% 1.8
4",
(1) (n) mX 12 N1 +1 mX Nn +1 n Y 2 2 ::: ja j = (n) (f) Lp 01]n > Cp i (D i) N1 +1 :::mNn +1 Lp 01]n i=1 1 =1 n =1 Z X 12 2 p2 1p N1 Nn X n X Y 2 2 = Cp ::: ja j dt > i (ti D i) i =1 k = ; 1 k = ; 1 2 A 1 n n k 01] X p2 p2 21 N1 Nn Z X n X Y 2 2 > Cp ::: ja j > i (ti D i) dt i=1 k1 =;1 kn =;1 01]n 2Ak
Sm(1)
( ' % 1.8 2.2)
2 X 21 N1 Nn X Y n X a > Cp0 ::: ( D i) i Lp 01]n > k1 =;1 kn =;1 2Ak i=1 2p 21 X N1 Nn Y n X 1;1) X 2( p 00 ( i ) 2 p ja j > Cp ::: (m i ) 2Ak k1 =;1 kn =;1 i=1 " Ni > 1, i = 1 : : : n. *# f(t1 1 : : : tn) 2 Lp 0 1]n, 1 < p 6 2, , P
n $% jNE j = N 2 2 ! +1, i=1
i
p2 21 X +1 +1 Y n X 12 ; p1 ) X ( i ) 2( p ja j kf kLp 01]n > Cp ::: (mki ) : 2Ak k1 =;1 kn =;1 i=1
T # ! 2 < p < +1. Sm(1) (n) (f)Lp 01]n > N +1 :::mNn +1 1
> Cp
(1) Z mX N1 +1
01]n
1=1
:::
(n) mX Nn +1 n =1
a2
n Y i=1
2
1.8 2.2
p2 1p
i (ti D i) dt
>
p2 p1 Z X n N1 Nn X Y X 2 2 a > Cp ::: dt > i (ti D i) 01]n k1 =;1 kn =;1 2Ak i=1
( 2 < p < +1
555
P p2 P p2 bk > bk , bk > 0 8k) k
k
Z X p2 p1 N1 Nn X Y n X 2 2 dt = > Cp ::: a i (ti D i) 2 A i =1 k = ; 1 k = ; 1 1 n n k 01] (1) (n) mX X p2 1p k1 +1 N1 Nn Z mX kn +1 n X Y 2 (t D i) dt > = Cp ::: ::: a2 i i ( n ) i =1 k1 =;1 kn =;1 01]n 1 =m(1) n =mkn +1 k1 +1 X p1 N1 Nn X Y n X p 0 > Cp ::: > i (D i) a Lp 01]n k1 =;1 kn =;1 2Ak i=1 X p1 N1 Nn Y n X 1 ; p1 ) X ( i ) p ( 00 p 2 > Cp ::: (mki ) ja j 2Ak k1 =;1 kn =;1 i=1 Ni > 1, i = 11 2 : : : n, 2 < p < +1. H, $% n P jNE j = N 2 2 ! +1, i=1
i
kf kLp 01]n
> Cp
X X p1 +1 +1 Y n X ::: (m(ii) )p( 12 ; 1p ) ja jp 2Ak 1=;1 n =;1 i=1
2 < p < +1. 5 ' #.
x
3. +
I% % 2.3 2.4 # '$ '#.
A (Luo Cheng). f(x) 2 Lp 0 1], 1 < p < +1, fan(f)g | ,)) ( $ ! . Cp
+X 1
n=1
kf kLp 01]
p1 p p ; 2 janj n
6 kf kLp 01] 1 < p 6 2
X p1 1 6 Cp0 janjp np;2 2 6 p < +1: n=1
B (!. ". #). -
+1 # vm +m1=1 , # P (vm (m+1));1 6 C0 < +1.
m=1
556
. .
1 . * 1 < p 6 2 )( f(x) C1 (p)
X +1
m=1
jam (f)jp (vm m) 2 ;1 p
p1
2
Lp 0 1]
X +1
6 kf kLp 01] 6 C2(p)
m=1
jam (f)jp m 2 ;1 p
1p
:
2 . * )( f(x) 2 Lp 0 1], 2 6 p < +1,
X +1
C1(p)
m=1
X +1
1 p ;1 p p 2 jam (f)j m
6 kf kp 6 C2 (p)
+1
m=1
1 p ;1 p p 2 jam (f)j (vm m)
am (f) m=1 | ,)) ( $ )( f(x) ! . 4. &. 5 6. 5$ ' " A % +../ &# ./ f(x) 2 Lp 0 1], 1 < p < +1, ! "! '! ##. 5# % % . 2.3 2.4 # .
2:3 . 1 < p < +1, = min(2 p), ak +k=11 | # , # 0
2X p +1 X 12 ; 1p ) k
(
p Dp (a) = 2 janj : k=0 n=2k+1 k+1
1 )( f(x) 2 Lp 0 1], # ak +k=1 ,)) ( $ ! kf kLp 01] 6 Cp (Dp (a) + ja1j): % Cp > 0 a.
2:4 . 1 < p < +1, = max(2 p). ' f(x) 2 Lp0 1], ,)) ( $ ! 0
ja1j +
X +1
k=0
2k( 12 ; p1 )
k+1 2X
n=2k +1
p 1 p janj
6 Cp0 kf kLp 01]:
5# 2:30 2:40 ! A Luo Cheng'. $% 3.1. 2:30 2:40 , # A. . *# 1 < p < 2. 5" = max(2 p) = 2. +1 X
n=1
janjp np;2 =
k+1 X +1 2X
k=0 n=2k+1
janjp np;2
+ ja1jp :
557
*# 1 < p < 2, M# ' = p2 > 1 k+1 +1 2X X
+1
2k+1
X k(p;2) X janjp np;2 6 2 janjp = k=0 n=2k +1 k=0 n=2k+1 2k+1 +1 X 12 ; 1p ) X 1 1 k p ( jan jp2k( 2 ; p )p 6 = 2
k=0
6
X +1 k=0
= Cp
n=2k +1
2k2( 12 ; p1 )
+X 1 k=0
k+1 2X
janjp
n=2k +1 2k+1
2k2( 21 ; p1 )
X
n=2k +1
p2 p2 X +1 k=0
2p ( 1 ; 1 ) ;p 2 p
2k 2
2 2p ;
=
p2 p2 p : janj
5# ' 2:40 '# Luo Cheng' 1 < p 6 2. *# # 2 < p < +1, = min(2 p) = 2. T % ' 2:30. + 1 X
k=0
2k2( 21 ; p1 )
k+1 2X
n=2k +1
p2 p janj
k+1 2X 2p 1 1 +1 X 2) k 2(1 ; p p jan j = 2 2k2( p ; 2 ) 6
k=0
n=2k +1
(% M# ' = 2p > 1)
6
X +1
k=0
= Cp
6 Cp
2kp(1; 2p )
X +1 k=0
2p X p 2 +1 2p ( 1 ; 1 ) p k p p 2 p 2 janj 2 k=0 n=2k +1 k+1 2X
2kp(1; p2 )
k+1 X +1 2X
k=0 n=2k +1
k+1 2X
n=2k+1
;
;
janjp
2 2) p p (1 ; p p janj n
=
6 = Cp
X +1 n=2
p2 p p ; 2 janj n :
5 ', ' 2:30 2 < p < +1 '# Luo Cheng'. 1 , *# # 2 < p < +1. T ## ak +k=1 % B%
(
k( p1 ; 12 ;) n = 2k+1 k = 0 1 2 : :: 2 an = n = 0 1 2 : :: 0 $ #$ %$,
" 0 < < 12 ; p1 .
558
. .
T% ' % 2:30
k+1 2 + 1 1 1 2X +1 +1 p X X X k 2( ; ) 2 p 2 = 2k2( 12 ; 1p ) 2k2( 1p ; 12 ;) = 2;k2 < +1
k=0
k=0
k=0
n=2k +1
$%. #, " 2:30 f0 (t) 2 Lp 0 1], 2 < p < < + 1, % an =
Z1 0
f0 (t) n(t) dt 8n 2 N
" Luo Cheng' 2 < p < +1 % +! # %%: 2N X
n=0
janjp np;2 =
NX ;1 k=0
2kp( p1 ; 21 ;)2(k+1)(p;2) =
NX ;1 p NX ;1 kp( 1 ; 1 ;) p ; 2 k ( ; 1 ; p ) p ; 2 2 =2 2 =2 2 2 p ! +1 k=0 k=0 1 1 N ! +1, 2 ; p ; > 0. I! ', 2:30 2 < p < +1
# %$, " Luo Cheng' . +P 1 *! 1 < p < 2. T % n; 12 n(t), t n=0 *# Sn (t) | " % . " 2:40 kS2N +1 kLp 01]
> Cp
X N
X N
k=0
1 2k2( 2 ; 1p )
2
0 1].
k+1 2X 2 1 p p 2 ; > n 2
n=2k +1
X N 2 C > Cp = C2p 1 = 2p (N + 1) 12 ! +1 k=0 k=0 N ! +1. #, ! % Lp 0 1], 1 < p < 2, $%, $% % 1 2 2
2k(1; p2 ) 2;(k+1)2k p + 1 X
k=0
" % Luo Cheng'
2k2( 21 ; p1 )
k+1 2X 2 p p ; n 2
n=2k +1
+1 p +1 p X X n; 2 np;2 = n 2 ;2
n=1
$%, 1 < p < 2.
1
n=1
559
5 ', 2:30 2:40 #, A Luo Cheng'. 5# 2:30 2:40 ! B 3. . 4. $% 3.2. 2:30 2:40 , # B. . *# 1 < p < 2 f(t) 2 Lp0 1]. 5" " 2:30 kf kLp 01]
6 Cp ja1j +
X +1
k=0
1 2kp( 2 ; p1 )
n=2k+1
janjp
p1
6
p1 2k+1 1 ; p1 )p X ( k +1)( p 2 2 janj 6 k=0 n=2k +1 k+1 X X p1 p1 +1 2X +1 p p 6 Cp0 ja1j + janjp n 2 ;1 = Cp0 janjp n 2 ;1 : n=1 k=0 n=2k +1 6 Cp ja1j + 2 p1 ; 12
X +1
k+1 2X
5 ', 1 < p < 2 3. . 4 ' 2:30. 1 | % ## #$ *# # vn +n=0 +P 1 1 $%. 6 , 1 < p < 2 , % % m=0 vm (m+1) f(t) 2 Lp 0 1], an (f) | +../ &# , n 2 N. +1 X
+1 2k+1
X X p p jan(f)jp (vn(n + 1)) 2 ;1 = janjp (vn (n + 1)) 2 ;1 6 n=2 k=0 n=2k+1 +1 p 2k+1 X p ;1 X ; 1 k 2 2 6 v2k (2 + 1) janjp 6
k=0
6 Cp
+X 1 k=0
n=2k+1
2k(1; p2 )
2 2p p2 p2 X +1 ; 1 p v2k janj k=0 n=2k +1
X
2k+1
;
6
k+1 +X 2 2p p2 p2 X 1 1 1 2X +1 1 k 2( ; ) 0 p 2 p 6 Cp 2 janj 6 n=1 vn (n + 1) k=0 n=2k +1 ( 2:40) 6 Cp00kf kLp 01] : ;
5 ', 3. . 4 1 < p 6 2 %%% 2:30 2:40.
560
. .
5# ! 2 < p < +1, f(t) 2 Lp 0 1]. N +1 2X
N 2k+1 p ;1 X X p p janj n 2 = janjp n 2 ;1 6 n=2 k=0 n=2k +1 N 2k+1 N 2k+1 X p ;1 X k( p ;1) X 1;1) X k p ( p 2 p 2 2 62 2 janj 6 Cp 2 janjp 6 k=0 k=0 n=2k +1 n=2k +1
( 2:40) 6 Cp00kf kLp 01] 8N 2 N: H % 3. . 4 2 < p < +1. *# fvm g | ## ' % B , , 2 < p < +1, f(t) 2 Lp 0 1]0 1], fang | ## +../ &#{. k+1 2X p2 N X 1 ; 1p ) k 2( p 2 janj 2 6
k=0
n=2k +1
(% M# ' = p2 > 1)
6
X N
(2k v2k )( p2 ;1)
k=0
p p2 2p X N ; 1 p v2k janj k=0 n=2k+1 k+1 2X
;
k+1 p2 N 2X p;2 X p p 6 C0 janjp (vn n) 2 ;1 k=0 n=2k +1
6
N +1 p;2 2X p 6C ja jp(v
0
n=2
n
n n) 2 ;1 p
p2
8N 2 N:
5 ', B 2 < p < +1, $% % k+1 2X 2p +1 X 1 ; p1 ) k 2( p 2 2 : jan j
k=0
n=2k +1
5" ' 2:30 " , kf kLp 01] 6 Cp
X +1
n=1
1 p ;1 p p janj (vn n) 2 :
5 ', B %%% 2:30 2:40. 5# , . @ 3.2 # '. * v = n, n 2 N, % +1 X 1 1 2k( p ; 2 ;) 2k+1 (t) t 2 0 1] 2 < p < +1 0 < < 21 ; 1p : k=0
< #
561
(
k( 1p ; 21 ;) n = 2k+1 k = 0 1 2 : : : 2 an = 0 $ #$ %$, % # fang % k+1 2X 2p +1 X 1 2k2( 2 ; 1p ) janjp
k=0
n=2k+1
$%, # % +! # 2:30 . 3. . 4 2 < p < +1 % %%: 2N X
2N
X p 2 p2 ;1 p janjp (vnn) 2 ;1 = janj (n ) = n=1 n=1 NX ;1 kp( 1 ; 1 ;) NX ;1 1 1 = 2 p 2 2(k+1)(p;2) = Cp 2kp( 2 ; p ;) ! +1 k=0 k=0 1 1 N ! +1, 2 ; p ; > 0. > # '#. *# # 1 < p < 2. T %
+1 X n; 12 n (t) t 2 0 1]:
n=1
# 3. . 4 +1 X 1 < 1: fng : n " +1 n n=1 n * '# % 3.1 ', ! % Lp 0 1], 1 < p < 2, $% 2:40 $% %, ! ' " +../, " % 3. . 4 + 1 X
$%.
n=1
n; 2 (n n) 2 ;1 = p
p
+ 1 p X n 2 ;2 n=1
$% 3.3. 2:30 #+ , #
2 < p < +1 # fang, # , . . Dp (a) = +1, Lp 0 1], 1 < p < +1, )(
, fang ,)) ( ${! . . r, 1 < r < p, Lr 0 1] )( f0 (t), fang ,)) ( ${! .
562
. .
. 1*# 2 < p < +1. T ## an +n=1 , % B% ( ;(k+1)( 1 ; 1 ) 2 p n = 2k+1 k = 0 1 2 : : : an = 2 n = 1 2 : : :: 0 $ #$ %$, I% 2:30 p. k+1 2X X N N X 2) 2 1 2 k (1 ; p p 2 janj = 2k(1; p ) 2;(k+1)2( 2 ; p ) = k=0
k=0 n=2k +1 N N X X = 2;(1; p1 ) 2k(1; p2 ) 2;k(1; p2 ) = 2 p1 ;1 1 = k=0 k=0 1 ;1 p = 2 (N + 1) ! +1 N ! +1:
1 2:30 5 ', % # an +n=1 2 < p < +1 %%. 5# r, 2 < r < p, 2:30 r. k+1 2X r2 X N N X 1 1 1;1) k 2( r 2 r 2 janj = 2k(1; 2r ) 2;(k+1)2( 2 ; p ) =
k=0
k=0 n=2k +1 N N X X = 2;(1; p2 ) 2k(1; r2 ) 2;k(1; p2 ) = 2 p2 ;1 2kp( p1 ; r1 ) < k=0 k=0
< 2 p2 ;1
+ 1 X
k=0
2k( 2p ; 2r ) < +1 8N 2 N:
*! % $% , p1 ; 1r < 0. #, # 1 # an +n=1 , " 2:30 % ./ f0(x) 2 Lr 0 1], % R1 ! an = f0 (t) n (t) dt 8n 2 N. 0 5# , f0 (t)
+1 X 2;(k+1)( 21 ; p1 )
k=0
2k+1 (t)
% Lp 0 1], 2 < p < +1. *# S2N +1 (t) | % +" %. " 2:40
563
kS2N +1 (t)kpLp 01] > Cp
X N k=0
2kp( 21 ; p1 ) 2;(k+1)p( 12 ; 1p )
=
X N 0 = Cp 1 = Cp0 (N + 1) ! +1 N ! +1: k=0
#, f0 (t) 2= Lp 0 1], 2 < p < +1. &'. 4. &. 5 6. 5$ ' " Luo Cheng' % % &# " '! #. 4 %, %$ 3.1 3.2, % 2.3 2.4. I '# % 3.3 '# B# 2.3 2.4, # '# 2k mk #'#% "# '! #. 5 ', 2.3 2.4 | '% | B, ' $ '#.
,
1] . . //
!, . # . | 1947. | (. 11. | . 363. 2] ,- .. . / // . . 0-. | 1968. | (. IX, 2 2. | . 297{314. 3] ,- .. ., !-45 . . // 6. . | 1966. | (. 71, 2 1. | . 96{113. 4] Luo Cheng. On Haar series // J. Handrou Univ. Natur. Sci. Ed. | 1982. | Vol. 9, no. 3. | P. 269{284. 5] 6 . . 899: ;-/ < 9- :5 Lp // 6. . | 1985. | (. 126, 2 4. | . 490{514. 6] ( 6. ;., (- >. 5 // ?. ( 1980, 2 4929-80. 7] >4 .. ., . . @/ . | 6.: - , 1984. 8] B/ D. F. < // 6. . | 1964. | (. 63, 2 3. | . 356{391. 9] ,- . . -#4 0 9- : Lp < B4 // 6. . | 1972. | (. 87 (129), 2 2. | . 254{274. 10] .# . . 899: ;-/ < // 6. . | 1969. | (. 80, 2 1. | . 97{116. 11] ( . (. 899: ;-/ < 9- :5 Lp // 9- :5 9- :/@ . | >@, 1988. | . 109{118. ) * 1997 .
{ . .
517.987.4
: , , ! " , # $!.
% &' ( )& # # & *+#{- ( ( ! /! ( ! ! ) ! '1 # $! &! 2 ! .
Abstract . . yukov, A proof of the Feynman formula for a solution of the Belavkin{Schrodinger stochastic dierential equation, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 565{581.
Representation of solution of Belavkin{Schr+odinger stochastic di6erential equation (with Brownian motion in in7nite-dimensional space) by Feynman path integral over trajectories in the phase space is constructed.
{ ( ) c !" #$
. $ ! !$ #& , (1], . + , , , , , , , ," -"&" , & , $ - " , ((2, 3], . (4]). 1 , - !" #& 2. 3! , . 4. +!&, 5. 6. 2 (5]. + , , (6]
!" #$ . , 2001, ! 7, 8 2, . 565{581. c 2001 ! " # $" " %&, '( )* +
566
. .
!
1! P = Q = Rm. 5 $ $ M(P ) -, $, P , , k k = R f(Q) | #& Q, = (1 + kpk2)j j(dp) < 1. 1! M P R
, (q) = eihqpi (dp), 2 M(P ), kk = k k. P 1! w1( ) | & $ M(P ), W1 ( ) = f(Q) = w~1 ( ) | & $ M !" P1 ( )(). 5 $ $ H2 $, pjf (p)j . W2 ( ) | & , #& P kf k = max p2P 1+kpk2 , H2, !" P2( )(). ,
B1 (q1 q2) =
Z
f(Q) M
'(q1 )'=(q2)P1 (1)(d')
Z
B2 (p1 p2) = '(p1)'(p2 )P2 (1)(d') H2
$," &, #&. 5 $ $ Fbi !" - , ! $ , fWi ( ): 2 (0 b]g, i = 1 2. !, Fb1 Fb2 $, b 2 (0 t]. 5 $ D1(q) = B1 (q q), D2 (p) = B2 (p p), f(Q) #H(p) = kpk2. 5 , H^ , W^ 2 ( ) D^2 #& $ M (H^ ())(q) = (W^ 2 ( )())(q) = (D^2 ())(q) =
Z
PZ PZ P
eihqpi H(p) (dp)
(1)
eihqpi W2 ( p) (dp)
(2)
eihqpi D2 (p) (dp):
(3)
f (Q). A$ A , (1) (2) " " M
jB2(p1 p2)j =
Z
H2
p
p
'(p1 )'(p2 )P2(1)(d') 6 1 + kp1 k2 1 + kp2k2 E fkW2(1)k2 g
(3).
(4)
567
1! EQ0 | ,, (0 t] Q, " $,, . EQ | EQ0 ! , kxkEQ = sup kx( )k. 1! FQ | 06 6t -, $ (0 t] $ Q, " " &". FQ |
kyQ kFQ = jyj((0 t]). 1 EP FP " . Rt # hxP yQ i = hyQ (d ) xP ( )i $ ! EP FQ . 0 5 $ E = EP EQ , F = FQ FP . C hEP FQ i, hEQ FP i $" ! hE Fi h(xP xQ) (yQ yP )i = hxP yQ i + hxQ yP i: ! !$ " D (. (1]). 5 $ Dn = f(t1 : : : tn): 0 6 tn 6 : : : 6 t1 6 tg,
n : Dn (Q P )n ! F (5) (t1 : : : tn (q1 p1) : : : (qn pn)) ! (q1 p1)t1 + : : : + (qn pn)tn : 1! BF | ! - F , - , ! $ F , n $ , n ! - , Dn (Q P )n . 5 $ $ FM(F E )
y ! y , y 2 F , y | - E , sup j y j(E ) < 1 " ,
y2F R $ #& E g(y) = eihxyi (x) y (dx) $ E ! BF . 1 $, #& F , , Z f (y) = eihxyi y (dx) (6) 0
E
y ! y FM(F E ), $ $ F(F ). 1! AF | ! - F ,
& ! hE Fi. 2 & !, -, BF & , " X 2 BF A 2 AF , A X (A n X ) = 0, $ $ M+ (F ). C #& (6), t0 2 (0 t] > 0 $
Rt
0
;i H(xP ( ))d ; 2
h(x()) = e (f )(y) =
Z Z
E E
0
Rt
0
e
R D (xP ( )) d t0 0
2
B2 (x0 ( )x00 ( )) d h(x0)h(x00 )e 0 P P
eihxyi
y (dx0) y (dx00):
(7)
568
. .
G , (f )(y) > 0. 2 kf kt0 = ( (f )) 12 (dy), F R 2 M+ (F ), $ " F (F ). 5 $ ex (y) = eihxyi = = eihx yi E x (dx0). H y ! E x FM(F E ), ex () 2 E 2 F(F ). 1! F(E ) | #& E , ,
(x) = ~(x) = (ex ) 2 (F(F ))0 . I #&
ex () F(F ) (. (1]). 1- ! ~ , $#$. G (F(F ))0 !" " ". " F(E ) , , ! ~ , $#$. 5 f ! f~ $ F(F )
(F(E ))0 # f~(~) = (f ). T : F ! E , T (yQ yP ) = (yP ((0 ]) yQ((0 ])). R 1! a(y) = hT y yi, ga (y) = eia(y) = eihxyi E T y (dx). H "RE , #& #& eihxyi (x)E T y (dx) = (T y)eihT yyi E ,, ga 2 F(RF ). g~a (~) $, D . ! g~a (~) = ~(x)J (dxP ( ) dxQ( )). R
0
E
" # 1! 0 = tn+1 6 tn 6 : : : 6 t1 6 t0 6 t | $ T $ (0 t0], K(T ) | $ . 5 $ T ( ) = (tk ) 2 (tk tk;1), k = 1 : : : n + 1. 1. : (0 t] ! Mf(Q) | .
T
ST () =
1
X
Z
k=n+1 P
eihqpi (W2 (tk;1 p) ; W2 (tk p)) (tk )(dp):
K ! 0. ! t0 R dW^ 2 ( )(( q)). 0
. 5 $ kkMft(Q) = sup k( )kMf(Q). 1! T1 20t]
T2 | $ $ (0 t0], T = T1 T2 . H E (jST1 () ; ST2 ()j)2 = = E (jST1 (T1 ) ; ST2 (T2 )j)2 = E (jST (T1 ) ; ST (T2 )j)2 = =
1
X
k=n+1
Z
2
E eihqpi (W2 (tk;1 p) ; W2 (tk p))(T1 ; T2 )(tk )(dp) 6 P
569
6
1
X
Z Z
k=n+1 P P
jB2(p1 p2)j
j(T1 ; T2 )j(tk )(dp1)j(T1 ; T2 )j(tk )(dp2 ) (tk;1 ; tk ) 6 (4)
6 E fkW2(1)k2 g
Z
max k=1:::n+1
P
2
(1 + p2 )j(T1 ; T2 )j(tk )(dp)
t0 =
= E fkW2(1)k2 gkT1 ; T2 k2M ft(Q)t0: H ( ) , $ (0 t0], k ; T kM ft(Q) ! 0
K(T ) ! 0. 1- " " > 0 > 0, kT1 ; T2 kMft (Q) < " K(T1 ) < K(T2 ) < . G, E (jST1 () ; ST2 ()j)2 < E fkW2 (1)k2g"2 t0: 1- , ST () K(T ) ! 0. I 1 $. t0 1. 3 R ( q) dW1( q). 0
2. x( ) 2 EP . " sT (x) =
1
X
(W2 (tk;1 x(tk )) ; W2 (tk x(tk)))
k=n+1
t
R0
K(T ) ! 0. ! W2 (d x( )). 0
. 1! xT ( ) = x(tk) 2 (tk tk;1), k = 1 : : : n + 1. $! $! " > 0. N K = fx 2 P : kx ; x( )k 6 1 2 (0 t]g . H B2 ,, $ , K K, (") > 0, " , h1 h2 2 K K, kh1 ; h2k < , jB2(h1 ) ; B2 (h2)j < ". O a 2 (0 t0], , kx(a + 0) ; x(a ; 0)k > (8) . C !, " E !! xn 2 E , xn $, xn ! x E . H kx(a + 0) ; x(a ; 0)k 6 kx(a + 0) ; xn(a + 0)k + kxn(a + 0) ; xn(a ; 0)k + + kxn(a ; 0) ; x(a ; 0)k 6 2kx ; xnk + kxn(a + 0) ; xn (a ; 0)k
570
. .
n > N ( ) xn " $, a. 1! $, xN () , a, , , (8), . 5 $ $ l( ). 1! T0 a, , , (8). H 0 < l(") , K(T0) < 0 kxT0 ; xk < . 1! T1 T2 | $ $ (0 t0] ! 0 . 1! T1 T2 T T a, , , (8). 5 $ xi = xTi , i = 1 2. H E jsT1 (x) ; sT2 (x)j2 = E jsT1 (xT1 ) ; sT2 (xT2 )j2 = = E jsT (x1) ; sT (x2 )j2 =
1
X
(B2(x1 (tk ) x1(tk )) + B2 (x2(tk ) x2(tk )) ;
k=n+1
; 2B2(x1 (tk ) x2(tk ))](tk;1 ; tk ) =
X0
X00
+ : P0 2 k, , tk , (8). H B2 K K, X0 6 M 0l( ) 6 M" k
M > 0. H !, k kxi(tk ) ; x(tk )k 6 6 kx(ts ) ; x(tk )k < , i = 1 2 ($ ! ts | tk $ Ti ), jB2(xi (tk ) xj (tk )) ; B2 (x(tk ) x(tk ))j 6 " i = 1 2 j = 1 2: G, E jsT1 (x) ; sT2 (x)j2 6 X0 X00 X 6 + jB2(xi (tk ) xj (tk )) ; B2 (x(tk ) x(tk ))j(tk;1 ; tk ) < M" + 4"t0 k
k
i=12 j =12
T1 T2, K(T1 ) < 0, K(T2 ) < 0 . 2 !, , fsT (x)g K(T ) ! 0. I 2 $. t0 2. 3 R W1(d xQ( )) 0 xQ ( ) 2 EQ . 5 $ $ (dp1 dp2) = E fw1(1)(dp1) w1(1)(dp2 )g P P . G , Z (1 + kp1k2)(1 + kp2k2 )jj(dp1 dp2) 6 P P
6E
Z
P P
(1 + kp1k2)(1 + kp2k2 )jw1(1)j(dp1)jw1(1)j(dp2) 6
6E
Z
P
(1 + kpk2)jw1(1)j(dp)
2
571
6 E kw1 (1)k2 < 1:
5 $ $ L $ , #& f ( p): (0 t] P ! C , Zt 2 2 kf kL = sup (1jf+(kppk)2j )2 d < 1: p2P 0
C #& f ( p) = f (tk p) 2 (tk tk;1), k = = 1 : : : n + 1, $ t
Z Z
0P
f ( p)w1 (d dp) =
nX +1 Z
f (tk p)(w1(tk;1)(dp) ; w1(tk )(dp)):
k=1 P
5 , #&
f ( ) !
t
Z Z
0 P
f ( p)w1 (d dp)
(9)
, , ,
E
t
2
Z Z
f ( p)w1 (d dp) =
0P
=
Z Z Z
0 t
P P
6 sup p2P
t
Z
0 t
t
Z Z Z
0 P P
f ( p1 )f=( p2 )(dp1 dp2) d =
f ( p1 )f=( p2 ) d f(1 + kp k2 )(1 + kp k2)(dp dp )g 6 2 1 2 1 (1 + kp1 k2)(1 + kp2k2 )
jf ( p)j2 d Z Z (1 + kp k2 )(1 + kp k2)(dp dp ) 6 1 2 1 2 (1 + kpk2)2 P P
2 6 sup (1jf+(kppk)j2)2 d E kw1 (1)k2: p2P
Z
0
1 (9) , L. 5 R B! B w1(d dp) | - 0t]P (0 t] P . 1! v 0 2 M(P ). 5 $ p 0(d dp) = ;iv (dp) d + 1w1 (d dp) ; 1 fE (w1(1) w1 (1))(dp)gd: 3. ! N (p) = ;iH(p) ; 2D2(p). 1 2 C , 2 2 R1, 2 > 0. "
572
. . 1 X
Z
n=0 P
Z
A Zt0Z
:::
0P
Pn N
eN (p)tn ek=1 p
e
(10)
p
0 (t0 A) = eN (p)t0 e n (t0 A) =
(1 + kpk2)eihqpi n (t0 dp)
;
tZn
2 W2 (t0p) 0 (dp)
;1Z
Z
A (p + p1 + : : : + pn )
0 P P n p p+ P pl (tk 1 ;tk ) 2
e
;
l=k
Pn
W2 tk 1 p+ P pl ;W2 tk p+ P pl
;
k=1
;
n
;
;
l=k
n
l=k
2 W2 (tn p) 0(dp) 0(dt1 dp1) : : : 0(dtn dpn)
(11)
% t0 2 (0 t]. . 5& n- (10): E
2
Z
(1 + kpk2)eihqpi n (t0 dp) 6
P
6E
t
Z 0Z
2n
:::
tZn
;1Z
e
p
2
(1 + kp1k2) : : : (1 + kpnk2)(1 + kpk2)
0 P 0 PP ; n P p+ pl (tk 1 ;tk ) Re N (p)tn l=k e
Pn Re N
ek=1
Z
Pn
;
W2 tk 1 p+ P pl ;W2 tk p+ P pl
;
;
k=1
j 0j(dt
n
;
l=k
;
n
l=k
n dpn)j0j(dp)
1 dp1
2
) : : : j 0j(dt
p W (t p) 2 2 n
e
6
+{
6E
t
Z 0Z
0 P
:::
tZn
(1 + kpk2)j 0j(d dp) n 0P n!
;1Z
Z
(1 + kp1k2) : : : (1 + kpn k2)(1 + kpk2)
0 P P ; Pn pl(tk 1;tk) 2 2 p+ l=k e;22 D2 (p)tn
Pn ;2 D
ek=1
t
; R0 R
4nt0 k0k
;
573
2p2
Pn
W2 tk 1 p+ P pl ;W2 tk p+ P pl
;
;
n
;
n
e e2 j 0j(dt1 dp1) : : : j 0j(dtn dpn)j0j(dp) 6 k=1
;
l=k
l=k
p
2 W2 (tn p)
& $,, Fb1 Fb2 b 2 (0 t] $,
6E
t
Z 0Z
0 P
t
(1 + kpk2)j 0j(d dp) n 0P n!
;R0 R
4nt0 k0k tZn
;1Z
:::
Z
(1 + kp1k2) : : : (1 + kpn k2)(1 + kpk2)
0 P P ; Pn pl(tk 1;tk) 2 2 p+ l=k e;22 D2 (p)tn
Pn ;2 D
ek=1
n
Y
(2p2 ) W2 tk 1 p+ P pl ;W2 tkp+ P pl ;
k=1
6E
t
Z 0Z
0 P
;
Ee
n
;
;
n
l=k
l=k
p
E fe2
;
2 W2 (tnp) gj 0j(dt1 dp1) : : : j 0j(dtn dpn)j0j(dp)
6
t
(1 + kpk2)j 0j(d dp) n 0P n!
;R0 R
4nt0 k0k
:::
tZn
;1Z
Z
0 P P
(1 + kp1k2) : : : (1 + kpn k2)(1 + kpk2)
j 0j(dt
1 dp1) : : : j 0j(dtn dpn)j0j(dp) 6 t
(1 + kpk2)j 0j(d dp) n 2 0P 6E : n! A$ , 0(d dp) ,
t
Z 0Z
0 P
;R0 R
2nt0 k0k
(1 + kpk2)j 0j(d dp) 6 p
6 t0 kv k + j1j(kw1 (t0)k) + 2t0 j1jE (kw1(1)k2) = p w1 (t0 ) = t0 kv k + j1jt0 pt + 2t0 j1jE (kw1 (1)k2): 0
574
. .
H $, 1 X
n=1
6 6
E
Z
P
2 1 2 2 i h qp i (1 + kpk )e n (t0 dp)
n 1 2 t0 k0k X n=1 1 X
;
E
2nt0 k0k n=1 n!
t
1 (1 + kpk2)j 0j(d dp) 2n 2 0P 6 n!
R0 R
p
E t0 kv k + j1jt0 1 X
6
1 ! wp1(t0 ) + 2t j jE (kw (1)k2) 2n 2 6 0 1 1 t0
2n32nt0 k0k n! n=1 p f(t0 kv k)2n + (2t0 j1jE kw1(1)k2)2n + ( j1jt0 )2nE (kw1(1)k2n)g 21 6 1 n X 6 18 tn0!k0k n=1 p p f(t0 kv k)n + (2t0j1 jE kw1(1)k2 )n + ( j1jt0)n E kw1(1)k2ng 6 6 t0 k0kfexp (18t0kv k) + exp (36t0j1jE (kw1(1)k2 )) + + exp(324j1jt0 ) + E (exp(kw1(1)k2 ))g < 1: 1- (10) . I 3 $.
6
1! Fb | ! - , ! $ , fWi ( ): 2 (0 b] i = 1 2g. f(Q) | , , ( ) $ 1! : (0 t] ! M ! F 2 (0 t]. H ( q) $, $ + { d(t0 ) = ;iH^ (t0 ) dt0 ; iV (q)(t0 ) dt0 ; 21 D1 (t0 ) dt0 ; 22 D^2 (t0 ) dt0 + p p + 1 ((t0 )) dW1 (t0 ) + 2 dW^ 2(t0 )((t0 )) (12) !, (0 q) = u(q), !
575
t
Z0
t
t0
0
0
Z0
Z (t0 )(q) = u(q) ; i H^ ( ) d ; iV (q) ( ) d ; 21 D1 ( ) d ;
; 22
0
t
Z0
0
t
Z0
p p D^2 ( ) d + 1 ( ) dW1 ( ) + 2
0
t
Z0
0
dW^ 2 ( )(( )):
1. u(q)= eihqpi 0(dp), V (q)= eihqpi v(dp), v 0 2M(P ). R
R
P
P
w1(t) |
& M(P ), W1( ) = w~1( ), W2 ( ) |
& H2. 1 2 C , 2 2 R1, 2 > 0. ! H^ , W^ 2 ( ) D^ 2 ' (1), (2) (3). " ( ) ( (12) c u(q) (t0 q) =
1 X
Z
n=0 P
eihqpi n (t0 dp):
(13)
2. 1. " ( ) ( * + {- (12) u(q) (t0 q) =
Rt
Z h
E
u(xQ (0) + q)e p
0
;i V (xQ ( )+q) d
e
Rt
0
Rt
0
Rt
0
;i H(xP ( )) d ;1 D1 (xQ ( )+q) d ;2 D2 (xP ( )) d
e
0
1
e
0
Rt W (dxQ ( )+q) 0
0
1
p
e
0
2 R W2 (dxP ( )) i t0 0
e
0
J2 (dxP ( ) dxQ( )): (14)
1. 1 n(t0 dp) = 0 n = ;1 ;2.
1 #e A
d
Z
P
=
eihqpi n (t0 dp)
;iH(p)dt0 ; 2 D2 (p)dt0 + 2 dW2(t0 p)+ 22 D2 (p)dt0 eihqpi n (t0 dp) +
Z
P
=
p
p
Z
+ (;iV (q) dt0 + 1 dW1(t0 ) ; 1 D1(q) dt0 ) eihqpi n;1(t0 dp) + Z + 21 D1 (q) dt0 eihqpi n;2(t0 dp):
P
P
576
. . 1 P
R
1 3 d eihqpi n (t0 dp) , (13) n=0 P h t0 2 (0 t]. 1- i 1 R 1 R R P P d eihqpi n (t0 dp) = d eihqpi n (t0 dp) . + , eihqpi n=0 P n=0 P P n (0 dp) = 0, n = 1 2 : : :, Z
Z
eihqpi 0 (0 dp) = eihqpi 0(dp) = u(q):
P
P
1 P
G, (t0 q) = eihqpi n (t0 dp) $ + n=0 P (12). H 1 $. 2. 1 1 (12) (13), n # (11). 5 $ (d dq dp) = 0 (dq) 0(d dp), | (0 t] Q P . H t
Z 0Z Z
n (t0 A) =
R
0 QP ;
k=1
l=k
p e 2 W2 (tn p) e
iP
e k=1
P qlpk
Z Z
A (p + p1 + : : : + pn)e;iH(p)tn
0 QP P (tk 1 ;tk ) ;2 D2 (p)tn ;2
Pn D
p
n n
;1Z
:::
n n ;i P H p+ P pl
e
tZn
2
;
Pn
k=1
;
;
e
W2 tk
;1
n p+ P pl l=k
e
;W2
k=1
p+ P pl (tk 1 ;tk)
;
2
n
;
l=k
n tk p+ P pl
;
l=k
n iP
e k=1
n qk p+ P pl l=k
(dt1 dq1 dp1) : : : (dtn dqn dpn)0(dp): 4. + - BF , '& f (y) Z
F
l=k
f (y) (dy) = = f (0) +
1 X
t
Z 0Z Z
:::
tZn
;1Z
Z
f ((q1 p1)t1 + : : : + (qn pn)tn )
n=1 0 Q P 0 QP (dt1 dq1 dq1) : : : (dtn dqn dpn) Z 2 E f (y) (dy) < 1
+
F
Rt
0
;i V (xQ ( )) d
~ (x()) = e
0
e
p
1 R W1 (dxQ ( )) ;1 R D1 (xQ ( )) d t0 0
e
t0 0
:
(15)
577
4. 5 $ t
Z 0Z Z
tZn
;1
Z Z
A (t1 : : : tn (q1 p1) : : : (qn pn)) 0 QP 0 QP (dt1 dq1 dq1) : : : (dtn dqn dpn): 1! n $ # (5), n | $ , n n . H n (A) =
E
Z
F
:::
2
(
t
; R0 R R
f (y) n (dy) 6 E (max jf (y)j2 ) 0 Q P y2F
j j(d dq dp) n !2 )
n!
= (max jf (y)j2)E y2F 1 P
t
; R0 R
1 P
0P
=
j 0j(d dp) n !2
n! R
:
2
1
5 $ $ = 0 + n . 1! E f (y) 2 n=1 n =1 F 2 R , E f (y) < 1. , $ F D! : Z
~ (x()) = eihxyi (dy) = = 1+
F Zt0Z 1 X
Z
:::
tZn
;1Z
Z
eihx(t1 )(q1 p1 )i : : :eihx(tn )(qn pn )i
n=1 0 Q P 0 QP (dt1 dq1 dp1) : : : (dtn dqn dpn) = n Zt0Z Z 1 X 1 i h x ( t ) ( q p ) i 1 1 1 = n! e (dt1 dq1 dp1) = n=0 0QP Zt0 Z n 1 X 1 = n! eihxQ (t1 )p1 i 0(dt1 dp1) = n=0 0 P Zt0 n Zt0 Zt0 1 X 1 p = n! ;i~v (xQ ( )) d + 1 w~1(d xQ ( )) ; 1 D1 (xQ ( )) d = n=0 0 0 0 t0 t0 p Rt0 R R ;i V (xQ ( )) d 1 W1 (dxQ ( )) ;1 D1 (xQ ( )) d
=e 0 e I 4 $.
0
e
0
:
578
. .
$! Z
f (y ) = e
Rt
0
Rt
p
0
;i H(yP (0 ])+p) d ;2 D2 (yP (0 ])+p) d
e
0
P
e
0
2 R W2 (dyP (0 ])+p) t0 0
i R hyQ (d )yP (0 ])+pi i R hyQ (0 ])yP (d )i ihqyP (0t0 ])+pi e 0 e0 e 0(dp): t0
t0
H n 2 N, 2 C , y0 2 F (t1 : : : tn (q1 p1) : : : (qn pn)) ! f ( n (t1 : : : tn (q1 p1) : : : (qn pn)) + y0 ) $ ! - , Dn (Q P )n , #& f (y) $ ! BF . 1- (12) $ , " : ZZ
R
t0
Rt
0
;i H(yP (0 ])+p) d ;2 D2 (yP (0 ])+p)) d
(t0 q)=
e
PF
e
0
0
p
e
2 R W2 (dyP (0 ])+p) t0 0
i R hy (d )y (0 ])+pi i R hyQ (0 ])yP (d )i ihqyP (0t0 ])+pi e 0 Q P e0 e (dy)0 (dp): t0
t0
: P ! F , (p) = (0 p0) 0 -" (0 ;1 ) BF & . 1- Z
R
t0
R
t0
;i H(yP (0 ])) d ;2 D2 (yP (0 ])) d
(t0 q) = e
e
0
F
0
e
2 R W2 (dyP (0 ])) t0
p
0
i R hyQ (d )yP (0 ])i i R hyQ (0 ])yP (d )i i h qy (0 t ]) i P 0 e e0 e0 (0 ;1 )(dy) =
=
Z
F
t0
Rt
t0
0
Rt
0
;i H(T2 y)d ;2 D2 (T2 y) d
e
e
0
0
p
e
2 R W2 (dT2 y) t0 0
eihqyP (0t0 ])i eihT1 yyP i eihyQ T2 yi (0 ;1 )(dy) T1(yQ yP )( ) = yQ ((0 ]) T2(yQ yP )( ) = yP ((0 ]). (t0 q) =
Z Z
F
E
tR0 Rt0 Rt0 ;i H(xP ( )) d ;2 D2 (xP ( )) d p2 W2 (dxP ( ))
e
e
0
e
0
eihqyP (0t])i (0 ;1 )(dy):
C #& f (y), (6),
(f )(y) = e E
eihxQ yP i eihxP yQ i E (T2 yT1 y) (dxP dxQ) Z
0
R
t0
R
t0
;i H(xP ( )) d ;2 D2 (xP ( )) d 0
e
0
e
p
2 R W2 (dxP ( )) ihxyi 0 e y (dx): t0
579
H (12) Z
(t0 q) = (ga )eihqyP (0t0])i (0 ;1 )(dy) E
Z
ga = eihxQ yP i+ihxP yQ i T2 yT1y (dx0P dx0Q): 0
E
H
Ee
p
0
t0 t0 2 R W2 (dxP ( )) p2 R W2 (dxP ( )) 0
00
e
0
0
=e
2 2
E j(f )(y)j2 = 1
Z Z
E E
R D (xP ( )) d t0 0
2
0
Rt
0
=
e
R
t 2 0 D 2
0
2
(xP ( )) d 2 R B2 (xP ( )xP ( )) d 00
e
t0 0
0
00
2 B2 (x0 ( )x00 ( )) d h(x0)h(x00)e 0 P P
y (dx0) y (dx00) = 2 (f )(y):
Z
(f ) = (f )eihqyP (0t0 ])i (0 ;1 )(dy): F
H
(16)
Z
E j (f )j 6 E j((f ))jE fj (0 ;1 )jg(dy) 6
6
Z
F Z
F
1
E j((f ))j2 2 E fj (0 ;1 )jg(dy) =
= (2 (f )(y)) 12 E fj (0 ;1 )jg(dy): F
2 f ;1 (A): A 2 AF g f n;1 (A): A 2 AF g " - P Dn (Q P )n . G, 0 ;1 n 2 M+ (F ), n = 1 2 : : :. 1- E j (0 ;1)j 2 M+ (F ). G, E j (f )j , . 1- j (f )j , ", () 2 F (F ). H " Z
(ga ) = g~a (~) = ~(x)J2 (dxP ( ) dxQ ( )): E
580
. .
5. (f ) ' (16), tR Rt ;i H(xP ( )) d ; D (xP ( )) d 0
~(x) = u(xQ (0) + q)e
e
e
0
2
0
0
2
tR0 R R R ;1 D1 (xQ ( )+q) d p1 W1 (dxQ ( )+q) p2 W2 (dxP ( )) ;i V (xQ ( )+q) d t0
t0
e
0
e
0
5. Rt Rt ;i H(xP ( )) d ; D (xP ( )) d
~(x) = (ex ) = e
0
0
t0
e
0
0
: (17)
2 R W2 (dxP ( ))
p
t0
eihxQ yP i eihxP yQ i eihqyP (0t0 ])i (0 ;1 )(dy):
0
Z
e
2
0
2
e
0
F
, , !$ # (14). Z
F
eihxQ yP i eihxP yQ i eihqyP (0t0])i (0 ;1 )(dy) = = =
Z Z
PZ F P
eihxQ yP +pi eihxP yQ i eihqyP (0t0])+pi (dy)0(dp) =
eihxQ (0)+qpi 0(dp)
Z
F
eihxP yQ i eihxQ yP i eihqyP (0t0])i (dy) =
Rt ;i V (xQ ( )+q) d 0
p
1 R W1 (dxQ ( )+q) ;1 R D1 (xQ ( )+q) d t0
t0
= u(xQ (0) + q)e e e 0 : G, ~(x) # (17). I 5 $. H $, # (14) $ (12). H 2 $. 3 5. 6. 2 $ $ . 0
0
$ 1] . . , . . . . | .: , 1990. 2] V. P. Belavkin. Nondemolition measurements, nonlinear $ltering and dynamic programming of quantum stochastic processes // Proc. Bellman Continuous Workshop, Sophia{Antipolis 1988. | LNCIS, vol. 121. | P. 245{265. 3] V. P. Belavkin. A new wave equation for a continuous nondemolition measurement // Phys. Lett. A. | 1989. | Vol. 140. | P. 355{358.
581
4] L. Diosi. Continious quantum measurement and Ito formalism // Phys. Lett. A. | 1988. | Vol. 129. | P. 419{423. 5] S. Albeverio, V. N. Kolokoltsov, O. G. Smolyanov. Representation des solutions de l'equation de Belavkin pour la quantique par une version rigoureuse de la formule d'integration fonctionnelle de Menski // C. R. Acad. Sci. Paris. | 1996. | Vol. 323, Serie 1. | P. 661{664. 6] . . / , . . . 012 3 1 41312 {0 2 // 56. | 1997. | . 52, 8. 4. 7] 9. :. 0 2 , . . . ; <= 8 2 , 1 1 >? 1 41312 > // @ 2 E.6. | 1998. , $- 1998 .
. .
. . .
517.984
: !"#$, &, '.
( ) * + + # (" * * "- + *) + # # $ # # + ). /* )) "* #. 0"*1) # 2 + "*#
"1- + . # , * !"#$ 2 * "1 ' (, #* # # + ").
Abstract I. A. Sheipak, Spectral problems associated with stability of uid motion in an annulus in a magnetic eld, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 583{596.
This paper investigates spectral and basis property of operator pencil connected with the problem of stability of an axisymmetrically perturbed 8uid motion in vertical annulus in the presence of vertical magnetic 9eld. It is proved that eigenfunctions of this pencil form a Bari basis in the corresponding Hilbert space.
1.
. ! "# & & # ! !" (+ : 96{01{01292). , 2001, 7, : 2, . 583{596. c 2001 !", #$ %& '
584
. .
. , , ( ), . * " # ! , " ! . + " # ! ,. - .1]. 1 +{3 # ! C02.a b] | " ! ! , .a b], a b | ! . + 5. 6. 7 .2], 9. 1. : * ;. < .3] ,. - , " ! W21 .a b]. > , +{3 >
" ! . : # ! W 12 (.apb]? px) L2 (.apb]? px). 1 W21 (.a b]? x) L2 (.a b]? x) # (u v)W21 ( ab]
p
x) =
Zb a
Zb
Zb
xu(x)v(x) dx + xu0 (x)v0 (x) dx a
(u v)L2 ( ab]px) = xu(x)v(x) dx: a
* W 12(.a b]? px) ! W21(.a b]? px), a b. : 6. 6. - >. B
.4], Ny(x) = Py(x) Uj (y) = 0 j = 1 2 : : : n N P | ! n p (n > p > 0), Uj | 6 n ; 1. 6 ! . * +{3 , 6. 6. - >. B
# ! W2sU s = 0 1 2 3 4, W2sU s = 2 3 4 9 W22U , W2sU | ! y(x) 2 W2s , 6 s ; 1.
585
.5] ,
>
, 1 9 W 2 (.a b]? px)L2 (.a b]? px) , " . D , .
2.
9 " ! R1 R2 (R1 < R2 ). B ! T0 . B0 = (0 0 B0) ! , B0 | , (r ' z ) | ! . : | h = (R2 ; R1)=2, | t = h2= , v | kvk = g T0h2= , | p = g T0 h, B | kBk = B0 , | , | , | ! g | . ! F (., , .6]) @ v + Gr(v r)v = ;rp + Iv + Ha 2 (B r)B + T k (1) m @t Gr Prm Prm @@tB = Gr Prm .(B r)v ; (v r)B] + IB (2) @T + Gr v (rT ) = 1 IT (3) @t Pr div v = 0 div B = 0 (4) v, B, T pm | " , , , " p pm = p + B2 =2. k = (0 0 1) | z . Gr = g T0 h3 = | ;, Ha = B0 h( = )1=2 | < , Pr = =k | * , Prm = 1= | * , | , k | . 1 : R1 r = 2R r = 2 r 6 r 6 r : R= R 2 1;R 1 2 1 1;R 2 K " B = (0 0 B0) v = (0 0 v(r)) T = T0(r) pm = p0(z): (5)
586
. .
* (5) (1){(4) 2 2 ; dp0 + d v0 + 1 dv0 + T = 0 d T0 + 1 dT0 = 0 dz
dr2
0
r dr
dr2
r dr
v0 (r1) = 0 v0 (r2 ) = 0 T0 (r1) = ;1 T0 (r2) = 1: :
Zr
2
r1
(7)
rv0 (r) dr = 0:
K , 2 2 r ; ln r1) ; (r22 ; r12 )(ln r ; ln r1) + v0 (r) = (r ; r22)(ln ln R 2 ln2 R 2 2 2 2 r ; ln r1) + A r ; r1 ; r2 ; r12 + A (r2 ; r14)(ln ln R 4 2 ln R 2 r T0 (r) = ; ln R r ; 1 1 4 2 4 4 2 2 2 22 A = 4r2 ln2 lnRR+(r(72 r;2 ;r2)3r.(1r;2 +4rr12r)2ln) lnRR++r24(;r2r2;] r1 ) : 2
(6)
1
1
2
2
1
3 p0 (z ) " (6).
. 5 , # " v0 + v, T0 + T , B0 + B p0 + p, v, T , B p , v = (vr (r z t) 0 vz(r z t)) B = (br (r z t) 0 bz(r z t)) T = T (r z t) p = p(r z t): ! (r z t), ! ! , 1 @ 1 @ 1 @ vr = ; r1 @ @z vz = r @r br = ; r @z bz = r @r : *" 8 (r z t) = '(r) exp(;t + ikz) >>< T (r z t) = (r) exp(;t + ikz ) (8) >: (r z t) = (r) exp(;t + ikz) p(r z t) = (r) exp(;t + ikz )
587
', , | , k | . * (8) (v, T0 , B0 , p0 ) (1){(4), (r) (r) Prm 1, ! : 3 3 2k2 k2Ha 2 2 iv 000 2 ' ; ' + ; 2k '00 ; ; '0 + k4 + '+ r r2 r3 r r 0 0 0 v ' ' 0 00 00 2 0 00 2 + ikGr ' v0 ; r ; v0 ' ; r ; k ' + r = ; ' ; r ; k '
(9) (10)
0 00 + 1 0 ; k2 = ikGr Pr v ; T0 ' ; Pr 0
r
r
'(rj ) = 0 '0(rj ) = 0 (rj ) = 0 j = 1 2: (11) K " , r = r + ii " . B , ! . 6 , , "# # ! N# (. .6]).
3.
9 ! : 3 3 3 2k2 2 iv 000 2 00 2 A' = ' ; ' + ; 2k ' ; ; 2k ; ; '0 + k4 '
1 r 0
r2
r2
r3
A; ' = r r '0 ; k2' A+ ' = 1r (r'0)0 ; k2'
r
(12)
D(A) = D(A; ) = y(x) 2 W24.r1 r2]? y(r1 ) = y(r2 ) = y0 (r1) = y0 (r2 ) = 0
D(A+ ) = y(x) 2 W22.r1 r2]? y(r1 ) = y(r2 ) = 0 : . A , A; L2 (.r1 r2]?pp1r ). A+ L (.r r ]? r). 2
1 2
588
. .
. 1 L2(.r1 r2]? p1r ) Zr 1 (f g) =
2
r1
r f (r)g(r) dr:
, ! ,
, A A; L2 (.r1 r2]? p1r ): Zr2 1 1 0 Zr2 1 0 2 (A y y) = r y (r) ; k y(r) y(r) dr = ; (jy0 (r)j2 + k2 jy(r)j2) dr ;
r1 Zr2
r
r
r1
r
0 0 0 0 (Ay y) = 1r r 1r r 1r y0 ; k2y ; k2 r r1 y0 ; k2y y dr = r Zr 1 02 2k2 4 = r r y0 + r jy0 j2 + kr jyj2 dr: 1
2
r1
: A+ (A+ y y)L2 ( r1 r2 ]pr) = Zr2 1 Zr2 0 0 2 = r (ry (r)) ; k y(r) y(r) dr = ; r(jy0 (r)j2 + k2jy(r)j2 ) dr: r1
r
r1
, # . 1"# A A+ . , A; (2 2) (. .7]). B , (9){(11) " A 0 ' B B ' A 0 ' 11 12 ; (13) 0 A+ + ikGr B21 B22 = ; 0 Pr B11 , B12, B21, B22 (13) : 0 2 2 v 00 0 B11 y = ;v0 A; y + v0 ; r y ; (ikGr );1 k Ha r D(B11 ) = D(A) B12 y = r1 dy (14) dr D(B12 ) = D(A+ ) 0 T B21 y = Pr r0 y D(B21 ) = D(A) B22 y = ;Pr v0 y D(B22 ) = D(A+ ):
589
9 "# O A; . Q , .8], D(A~; ) = fy 2 W22(r1 r2) y(r1 ) = y(r2 ) = 0g A~; | "# A; . 1" # "# A~; 2 ~=2 H = D(A~= ; ), D(A; ) | 2 A~= ; . H = L .r r ]? p1 H = fy 2 W 1(r r ) y(r ) = y(r ) = 0g: 0
2
1 2
r
1
2 1 2
1
2
(9){(11) ! (13), H0 H0. 1 , L2 (.r1 r2]? p1r ) L2 .r1 r2]. 1 ( r1 > > 0). > , , , A~; , , A+ . 7 (13) : A~;1A 0 ' A~;1B A~;1B ' ' ; ; 11 ; 12 + ik Gr = ; 1 A+ 1 B21 1 B22 : (15) 0 Pr
Pr
Pr
9 ~;1 ~;1 ~;1 A = A;0 A 1 0A+ B = ikGr A1; BB2111 A1; BB2212 Pr Pr Pr D(A) = D(B) = D(A) D(A+ ). N A B A B . 1. A
H1 H0. A : D(A) = D(A~;;1 A) D(A+ ), D(A~;;1 A) = fy 2 W23 (r1 ? r2) y(r1 ) = y(r2 ) = y0 (r1) = y0 (r2 ) = 0g. . B A~; "# H0,
"# A~;;1 A H1. 1 A~;;1A A : (A~;;1 Ay y)1 = (A~1;=2A~;;1 Ay A~1;=2 y)0 = (Ay y)0 ) y 2 D(A): ( ) H. 1"# " . * ", " . B .9] <(A~;;1 A ; I ) H1
590
. .
Re > 0. <(A), , A. T , ;
h 2 H1, h 6= 0, ((A~;1 A ; I )f h)1 = 0 f 2 D(A~;;1 A). * , ((A ; A; )f h)0 =0. 7 A1 ; A; H0 (. .10]), h = 0 H0, H1 . 6 " ";1 c Re < 0. *
, A~; A "# H1. 3 A~;;1A H1 A~;;1=2A H0. 3 , D(A~1;=2 ) = D(A1=4 ) = fy 2 W41(r1 r2) y(r1 ) = y(r2 ) = 0g ( ! . .11, 12]). * A~1;=2 A1=4 " " . 1 , A~;;1=2A1=4 " " H0 . B D(A~;;1=2 A) D(A3=4 ) (16) 3 = 4 3 0 0 D(A ) = fy 2 W2 (r1 r2) y(r1 ) = y(r2 ) = y (r1 ) = y (r2) = 0g (.11]). 1 , A~;;1=2A1=4 H0, "# A1=4A~;;1=2 H0 H0 ,
. . . 1 , (16) . B , A~;;1 A H1
, A, A~;;1 A = fy 2 W23 (r1 r2) y(r1 ) = y(r2 ) = y0 (r1) = y0 (r2 ) = 0g: 7 , " # (13) (A + B)f = f f 2 D(A) (17)
# 2. ! (13) " (17) , "#
$ (13)
% $ % (17) . . + , (f g) | - ! (13), ! (17) " . * A # A~;2 1 A1 ( A+ "# , , ). +
591
A~;2 1 A1 A1y = 2 y, 1 A~;2 1A1 H1 , A1 . * -
! (17) ! (13),
! .
4. " " #
F , S , H # T p (0 6 p < 1), D(S ) D(T ) b > 0, kSf k 6 bkTf kp kf k1;p f 2 D(T ): 3. B A p = 0. . , ! B , A~;;1 B11 H1, A~;;1 B12 " " , H0 H1=2. + , Pr1 B21 Pr1 B22 H1 H0 , " !. * y = (y1 y2 ) 2 D(A) !: kByk2 = jkGrj2kA~;;1 B11y1 + A~;;1 B12y2 k21 + Pr1 2 kB21 y1 + B22y2 k20 6 6 jkGrj2kA1;=2(A;;1 B11 y1 + A;;1 B12 y2 )k0 + C1ky1 k1 + C2ky2 k0 6 6 C (ky1k21 + ky0 k20 ) = C kyk2H1 H0 C1, C2, C | " , ! y. 4. & A %. '
. &
% 2n2 1 n+1 c1 2 2 'n (;1) ' (1) 2 n = (r ; r )2 ; (r ; r )2 + (r ; r )2 + (r ; r )2 + k + O n 2 1 2 1 2 1 2 1 '
cos ' = pa2a+ b2 I 0 (r ) K 0 (r ) I (r ) K (r ) a = I00 (r1) K00 (r1) + I0(r1 ) K0(r1 ) I0(r 2) K0(r 2) I0(r2) K0(r2) b = I00 (r21 ) K00 (r21 ) + I00 (r12 ) K00 (r12 ) : 0
0
0
0
592 ( c1
. .
p2 2 1 ; ') + e : c1 = c + dpsin( 2 a + b2
) c, d, e, # * % I (r ) K (r ) 2 I 0 (r ) K 0 (r ) ( r ; r ) 2 1 1 1 0 0 c = 8r r I00 (r2) K00 (r2) ; 3 I00(r12) K00(r12) 1 2 I (r ) K (r ) I (r ) K (r ) r ; r 2 1 0 2 0 2 d = 8r r (3r1 + r2 ) I 0 (r ) K 0 (r ) ; (r1 + 3r2) I00 (r1) K00 (r1) 1 2 0 1 0 1 0 2 0 2 c 4( r ; r ) e = r2 r 1 cos = p 2 2 : c +d 1 2 + " n
. &
% 2n2 1 1 2 (2) 2 n = Pr (r ; r )2 ; 8r (r ; r ) + k + O n2 : 2 1 2 2 1 O! I0 (x) K0 (x) | ! ! F ( ! F ) (., , .13]). . 3 A 2 : Ay1 = A; y1 (18) A+ y2 = y2 : (19) (19). O 00 + r1 0 ; k2 = ;Pr ! J0(!r) Y0 (!r). 3 !2 = Pr ; k2 . K (11), , (2) n " (. .7]): J (!r ) J (!r ) I(!) = Y00 (!r11 ) Y00(!r22 ) = 0: n- , (. .13]), 1 n 1 1 !n = r ; r ; 8r n + O n3 : 2 1 2
, " (2) n = Pr1 (!n2 + k2).
593
N (18), 2 0 'iv ; r2 '000 + r32 ; 2k2 '00 ; r33 ; 2rk '0 + k4' = ; '00 ; 'r ; k2'
' (11). : ! J0 (!r), Y0 (!r), I0 (r) K0 (r). 3 !2 = ; k2 , I0 (r) K0 (r) | ! ! F (. .13]). : " n !n, , (11), : J (!r ) Y (!r ) I (r ) K (r ) J0(!r1) Y0(!r1) I0(r1) K0(r1) I(!) = J00 (!r21 ) Y 00(!r21 ) I00 (r21) K00 (r21) = 0: J00 (!r ) Y00(!r ) I00 (r ) K00 (r ) 0 2 0 2 0 2 0 2 " ! jz j ! +1 (. .13]): r J0 (z ) = z2 cos z ; 4 + 81z sin z ; 4 + O z12 r 2 1 1 Y0 (z ) = z sin z ; 4 ; 8z cos z ; 4 + O z 2 r 2 3 1 0 J0 (z ) = z ; sin z ; 4 ; 8z cos z ; 4 + O z 2 r 2 3 1 0 Y0 (z ) = z cos z ; 4 ; 8z sin z ; 4 + O z 2
" #, ! W (J0 (z ) Y0(z )) = z2 W (K0 (z ) I0(z )) = z1 : 9 , ! . * ! ( ! ! +1): p2 2 1 p2 2 c + d e a + b sin(x + ') + x sin(x + ) + x = O x2 : (20)
x = !(r2 ; r1), a, b, c, d, e, ' 4. > "
xn = n ; ' + cn1 + O n12 :
594
. .
* " (20) c1. F 9 # ! (17) , , p- # "# (.14,15]). 9 "# A0 , , , " . * ! j > Cj " C . 9 " A = A0 + A1 , A1 p- # A0 (0 6 p < 1). B (.15]): 1) (1 ; p) = 1, # ! A 9 ? 2) (1 ; p) > 1, # ! A F . * (18) (19) 3, . 5. &
#
# $ % (9){(11) ( (17)) , H1 H0 . B , , ! ( # , . .14]), , (.14]), . +
$ (9){(11)
# #.
5. " " # #
6. &
$ (9){(11) , H1 H0 . . .14] , # - # . * = O(jn jp) n- # , p | # . 1 , " (18) ' 6= 0, " # n O(n), . . # . B p = 0, #
595
" n- (n +1)- # # O(n). (.14]) , " ! . + , ' 6= 0. : , 4 ' cos ' = p 2a 2 : a +b 1 , ' " , a > 0 b = 0. *", b < 0. , 4 b = I0(r2 )K00 (r1) ; K0 (r2 )I00 (r1) + I0 (r1)K00 (r2) ; K0 (r1)I00 (r2 ): F ! (.13]): 1) I0 (x) K0 (x) " ( x > 0), 2) I0 (x) , K0(x) ( x > 0). + , b < 0. B .
%
1] I. V. Schensted. Contributions to the theory of hydrodynamic stability. | Ph. D. Thesis, Univ. of Michigan. 2] . . . ! // # $$$%. | 1954. | ). 98. | $. 727{730. 3] R. C. Prima, G. J. Habetler. A completness theorem for nonselfadjoint eigenvalue problems in hydrodynamics stability // Arch. Rational Mech. and Anal. | Vol. 34, no. 3. | P. 218{227. 4] A. A. Shkalikov, C. Treter. Kamke's problem | properties of the eigenfunctions // Mathematische Nachrichten. | 1994. | Vol. 170. | P. 251{275. 5] 0. . 1 . 234 5 // . . | 1995. | ). 58, 6 5. | C. 790{794. 6] A. A. Kolyshkin, R8emi Vaillancourt. On the stability of convective motion in a tall verticall annulus in a magnetic 9eld // Canadian applied mathematics quarterley. | 1993. | Vol. 1, no. 1. | P. 3{21. 7] . . . : 224! . | .: 3, 1968. 8] . <. = . )> >? @ 3 5 B ?>. I // . . | 1947. | ). 20 (62). | C. 431{498. 9] . %, L. $ . 5 2. ). 2. < 5 . $ >?!. | .: , 1978. 10] Q. = . $5 224! 3> . | .: 3, 1976. 11] 0. #. W, X. W. $ . # 224! // #22. 3>. | 1973. | ). 9, 6 2. | $. 228{240.
596
. .
12] 0. #. W. > 224! Lp // . . | 1977. | ). 21, 6 4. | C. 509{518. 13] . 4. $5 4! 234> . | .: 1979. 14] . $. 3, Y. 0. 4. ? , >? 3 // 5 >. Y. 61. | =@: 14, 1981. | C. 104{129. 15] . $. 5. Z 24 // . . Y 5, L. [. =43 , . . $. .: 3, 1978. | C. 288{362. ( ) 1996 .
. . , . . -
,
510.52+514.112
: , ,
.
! "#$! %". ' " A B %" # n. () * | ' , - "! % . , $ # C , " AC n % ) " AB , ' !$ ( ) *# ( . ' ' AB "1 ). ( " ' ) ' ' ' " '#$ % " ' , # * ' ' "#, $ '"# '' '. & "1- '- # %$ ' . 2 %' % 3(n) '' ) , - "' ) %" "' *# ', % 34(n) | - "'- ) 1 *# ' . 5" % $ * ' " 6#* 3(n) 34(n). 2 %# % $ "#$!': #!#$ c1 c2 > 0, : ) c1 ln n 6 3(n) 6 c2 ln n, ) c1 ln ln n 6 34(n) 6 cln2 lnln nn . ( %# # * 6#* 34(n), " ) " %$ , ".
Abstract M. V. Alekhnovich, A. Ya. Belov, The complexity of algorithms of constructions by compass and straightedge, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 597{614.
The article deals with the following problem. Assume that there are two points A and B on the plane, and a natural number n is given. Our aim is to
598
. . , . . CS (n). Our main result is the following: there exist constants c1 c2 > 0 such that a) c1 ln n 6 C(n) 6 c2 ln n, b) c1 ln ln n 6 CS(n) 6 cln2 lnln nn . The most interesting result is obtained in connection with the lower bound of CS (n), where purely algebraic notions, such as the height of a number etc., arise quite unexpectedly.
1.
( , , . .). ! " ! #! # # " ( " , $ # n " . .). % #, $ P Q ( " $ P Q), & c > 0, $ ( # # P,
(& # " k , & (& # # Q, !
$ " c k , , ( # # Q & (& # P , $) #
! $
$ c ". * , f(x) | ,, $ " O(f(x)), !$, " $ ( , g(x), $ & c > 0, g(x) 6 c f(x) - x, $ O(1) " $ # $ $ . "
$ O(1) " $ 100. / xlim !1 g(x)=f(x) = 0, g(x) = o(f(x)). , " "
(& " ! , !. 1.1. O(1)
) , ,
) , , ) , , .
1.2.
;;1(n) = 1: lim n!1 lnlnlnnn
2 , $ ;(x) | # -, , !- $ - , (n ; 1)!, ;(x);1 | ,, ;(x).
599
2.
4" ( 5 {5 ), $ ( &( & (! " ( $ ). * " ! -: 1) $ $ ( $ , #
, ) # )8 2) $ $ - !-. : ( . ; " ) & | " !- $ . ; # " # <# $ (# $ - " ). 4 $ : - " , ) $ & $ . 2 XXI $ !
(& . : =(n) | $ , -!- $ " n " &( # , =>(n) | &( . * " , $ < =(n)==>(n) # $ . : ) ) < . $
2.1.
=(n) 6 O(1): 1 6 log 2n . : ( ! !- $ -, $) , ! - (. ? , $ $ $ $ . : =(n) > log2 n. 2 ! - " " O(1) , ! $ n " O(log2 n) ( $ $ " $ n). * < " $ ) " , $ &( ! " " ( 1.1). @ ", 2n ) n n (2 2 2 n =>(2 ) 6 O(n), # !, =(2 ) > 2 , (22n ) > O2(nn) , $ n ! 1 $ . A $ < .
3. : ) "$ ( . 5! , $ < =(n)==>(n) # $ . $ , n = 22k k ! 1 < $ . " : , $ $ & $ - n ! 1.
600
. . , . .
4! ,
lim =(n)
n!1 =>(n)
$ ? : =(n) ln n ( ( 2.1), $ "
3.1 ( ).
lnn : =>(n) 6 O lnln n . : ) # . : n , $ : n = a1 1! + a22! + : : : + a;;1 (n)] E;;1(n)]! (ai 6 i): % $ n : 1) $ 1 2 3 : : : E;;1(n)]8 E;;1(n)] 8 2) $ 1! 2! 3!: :: E;;1(n)]!8 E;;1(n)] 8 3) " $ ! $ , $ n. H E;;1(n)] E;;1(n)] . : ; & " O(1) ln n , # $ ( ( 1.1) ;;1(n) = O lnln n . ; ln(n) . ; "! , $4 , =>(n) = O ln(ln( n) . J , (& 3.2 ( ). c > 0, n ln n : =>(n) > cln2 ln n : $ " , < # (. ; , $ & (6n)! # ,
(&- " n < #, (6n)! " !- " , ! # ! $ 1 (6n)! + 1. , # ! .
3.3.
) ! n , n2 .
) ! n2 , " (n2 )3 " .
3.4. # n $ (n!)6 < (6n)!.
601 @ ) " 3.2. !< $ , ! # ! $ ! " n . 4- (6n)!. : # & k, < (6n)!, ! . H " $, $ $ " k " ! $ " n , # n = ;;1 (k)=6. 4 , ! $, $ $# !- $ k 2 N ! ;1 n =>(k) > ; 6(k) > c61 lnlnlnn # c1 | " ! 1.2. 4 , $ #- n ( K < L) ln n=ln ln n =>(n) & $< . @ !- K-<-L n ) $< . 2 , 3.5. ! n , =>(n) 6 O(lnln n): . : n = 2t. M $ " $ t: t = a0 + 2a1 + : : : + 2r ar # r = Elog2 n]: @# " r ! $ 1 2 : : : 2r &) " r ; 1 ( n = 2a0 4a1 : : : (2r )ar : ; ) " , $ r lnln n. 3.1. .
: !& "! , $ # . > # " #$ n = qk . 4 , !- n < c ln ln n . J ! $! $ ? & ( n, ! & ! ? ; "! , lnln n $. 4 $ 3.6 ( ). c > 0, n =>(n) > c lnln n: H | "
!. O ! &( (, $) "$ # $ . M " $ . , ) . . * $! . ; >(n) | $ , - " ! n. (& #$ 1.1.
602
. . , . .
3.7. % $ . & O(1) "
) , " , , - " "
) , " , , - " " . @ , $ !& $ , " # 3.1, 3.2, 3.5. 3.8.
ln nn .
) C, n >(n) 6 C lnln
) c, " n >(n) > c lnlnlnnn . ) ' k c(k), >(kq ) 6 6 c(k) lnln(kq ). @ ) " # # ! 3.6. $ 3.9. c > 0, n >(n) > c ln ln n. . )
" ! - " (&- $ $ . : $
" ) - ,, , " (& ) , $ | . ;$ , $ ! " ! $ $ !- $ " ,, ! - !- &( $ 30 " f+ ; =g. J #$, ! " ,, ! , -& $ " $ , $ " ! - $ $ " 30 " f+ ; =g. : $ $ ! $ (0 0) (0 1) (1 0)(1 1). / ! , $ " k , $ - " $ 0 1 ! $ $ , < $ 22k , " . A , $ $ , " (& <- -, !. ; ht(q) = ht( mn ) # $ q, # m=n jmj + jnj. @#
;1 m = ht 8 1) ht m n m mn 2) ht ; n = ht n 8 3) ht mn 1 mn 2 = jm1 m2 j + jn1 n2 j 6 1 2 6 (jm1 j + jn1j) (jm2j + jn2j) = ht mn 1 ht mn 2 8 1 2
603
m m 1 2 4) ht n + n = jm1 n2 + m2 n1 j + jn1 n2 j 6 1 2 m m 2 1 6 (jm1 j + jn1j) (jm2j + jn2j) = ht n ht n : 1 2 @ ", h | ! !- $ , ! ( ! !< h2 . H " $ , $ ! ! k , ! " !< 2 2 2 2k (((2 | ){z) : : :) } = 2 : k $%& * " ! 3.9 " < . : ) " ! 3.6. % , 3.9, " $ !- . A $ $ "!. !, , $ " $ # ( ( "! # $ - ,
# !, ! $ $ !- ! ( !- !- . $ , ( $ , &( p , ! $ " ! !. (: $ 3 2 ! ( $ " ! !, cos('=3) ! &( !- $ " cos('), " ! ! # , # " " <!.) : # $ - " $ -, " !- # $ < - " E1]. 4 , " ! " , $ "
n , $ - n " $ " $ , < mm , # m | . ; $ " $ . P " !& !, | K " L $ | , $ ) < ! . * # $ ! " , ! " (& # $ $ ! ,, . : " $ "! < ! < # " . / ! $ ! " | ,, # # #$ , ! $ . * , $ ! ! ! " ht( + ) ht( ) ( ht( )deg ht( )deg . 2 " , $ $ !- $ " n < # $ 2n . : $ < " # $ # . :
604
. . , . .
" , ) # " $ $ , ! $ " n < #, - 2n . # $ # $
< " $ # , . @ ", ! $ , # " n < # $ 2n )2n : : : = 2n2 (2 | {z } n $%& p $ " $ (( < ln lnn. ; ht( )deg ht( )deg $ ( &( - $ - #$ . J " $ , $, " , !
" ! $ # , ) # ! $ , < $ 22n , $ # < , $ # < , . :, $ ! < < , ! " $ . 3.2.
: k { , . . # $ - $ , " , $ - . (O "! , ! ,, .) 5! " ! k &( $ ! . : $ $ (&- ,
" ( | " . @ ", !
! ! K1 Mn . P #, ! # , $ . H " $, $ K1 Mn " , ! (. . , - (& ) " K1 ! $ . H #,"
" $ $ " F . 2 " $ # " ! A. - K1 & " " !, ! " (& ( " # !: ) # $ K2 , " , (& # A, . 4 , A, " " $ ! . : , < K1 #," F , $ ! A ! ! !. M K10 M2n , K10 ' K1 , # ! K1 " ! K10 (& ": X 7! ( X0 X0 ). ; " $ B = ( 01 A0 ). : B 2 = ( A0 A0 ). 2 K2 K10 B. 2 $ K2 | , (& < K10 . : #," F
605
p
" K2 ! $ , $ F(B) = F(A). ; , $ K1 & x, (& A, K2 ( ! ! ). : p p (x ; A)(x+ A) = 0. / " " , # " ( !, !- ! (), p ;px ; pA p x + A 2 = 0. @ $ , $ $ ! . $ $ " M1 Z. ; " $ # # $ ,
< < # , " $ . O ! , " ! , " , $ !- $ &( !-. 5!
(ApB)+(C D)p= (AD+BC BD), (A B) (C D) = (AC BD), (A B);1 = (B A) p (A B) = ( A B). @ ", " $ " " $ 4 " . ; " ! A ht(A) ,, ! A. A K L (A B) " ! A B. ! , , (& .
3.10.
) ht(A + B) 6 ht A + ht B.
) ! p A B 2 Mn ht(A B) 6 n ht A ht B. ) ht A = ht A. 4" ! 3.10 $
3.11.
) ! n , $ 4n .
) ! n , $ n (1+2+:::+2n ) 6 4n2n+1 6 55n : n2 2 2 4| n(: : :(4n((4 {z ) )) : : :)} = (4 ) n $%& 4 , ! $ A B ! ! $ 55n . @ < | ! FF ((BA)) . 2 , " # !. ! A "! #$ x, ! det(A ; xE) ( , ! ). E { $ . Q< "
$ * {,- . ! f(x) | B, f(B) = 0.
606
. . , . .
@ ,, ! - $ # #$ ! A, " n " !& !. 3.12. % A | Mn, ht(A) < h. & )** + f(x) = (;1)n xn + + an;1xn;1 + : : : + a0 jaij 6 (n!)2hn . . M ! , ! A ; xE, $ , &( n! "
(ai1 j1 ; x) (ai2 j2 ; x) : : : (ail;1 jl;1 ; x) ailjl : : : ain jn : 5 ,, - x " - # !- < $ ,, (& (x+h)n , ! ( $ < n! hn. ; ( $ , $ ,, - $ # #$ < (n!)2hn . 3.13. % f(x) | )** n, " )** $ m. % x | . &
) jxj 6 n m
) x , j x1 j 6 n m. . * $ ). : , $ x0 | x0 > n m. 2 jf(x0 )j = jan xn0 + + an;1xn0 ;1 + : : : + a0j > jan xn0 j ; n (m xn0 ;1) > (xn0 ;1) (x0 ; n m) > 0. :$ $ . ; ( ! ). * " ) $ " , $ x0 | #$ f(x), x;0 1 | #$ , ! $ , ! ,, ! f(x) . 3.3. 3.6
* , $ ! $ $ k " n . 2 "! <- " $ , $ ! $ (A B), ( $ k = FF ((BA)) , # F (X) | < #," " $ . ; " $ F(A) " a F(B) " b. ; a -. : f(x) | - $ #$ ! A. @# R {P f(A) = 0, " $ F(f(A)) =n f(F(A)) = f(a) = 0. : 3.11 ! ! A !< 55 ,
3.12 ,, f(x) < ! (n!)2 (55n )n = (n!)2 5n5n . n @ a | f(x), 3.13 $ k 6 n (n!)2 5n5 , n 6 $ $ # n < $ 6 . J #$ $ - b;1 < 66n < " , $ ! - $ # #$ , ( $.
607 4 , k < 66n 66n < 77n - n > n0 . * " ! 3.6 " < . T ! !# < . ; " # # !. 2 ! "
&, < , $! , R {P, . 3.14. @(, " ! - < # " , - " $ # , & $ . O ! xk = A1 xk;1 + : : : + Ak ( ) k " < # " $ x " 0 0 ::: 0 1 1 B 0 ::: 1 0 C B @ 0 1 : : : 0 CA : A1 A2 : : : Ak @ !# x | ( ) | " 1 x : : : xk;1. : 1 - x, x | x2,.. ., xk;1 | A1 xk;1 + : : : + Ak ( . E3]). ; ( "
! & : ! $ , $< # " n !- # $ - < , " !- $ #$ # $ ! # $ ! ,, , , < ttn , # t | . 3.15. : " ! ! "$ !- $!- # . ;< ( " " ) ! #,"! - # $ ! . : A | # # ! n n , (& n- V 8 a1 a2 : : :ak | ) "(& . @# V " # ( K !- L | VI = VI 1I 2 :::Ik , - $ aj ; Ij E | VI 1I 2 :::Ik . >( #," ': A ! F $ # $ # ! A ( & VI ), '(as ) = Is . 5 - #," # ! A "! ) " $ spec(A). ( ! & $ ( ! " $ - .)
4. #
$ ! , $ $ . ;
608
. . , . .
" $ " ($ , $ # < !- $ , "-" $ # ( ) $ ( $ $ . ; , $ , !< , $ !$ !. * , $ !$ " < ! "! K"L $, . H , " (& ". ./ 4.1. ) ! $ . 5! " ( ( $ ( $ O ( " $ !) R ( $, &( O R (. . $, ) ( O , < R). :
# $ , " " #, $ ! < O. 2 ") . # " . 5! " ( ( ( " $ () $ P ( ( " $ !) " $ " U" (P). J# $ , $! " " #, " $ $ . H ") . ;$ , $ &( # # "
! # " . : # ! # " , " ! &( !- $ # !- (=, = + ! # " , => +
! # " . .). : , ,, ! , - # " . , $ = +
! # " => +
! # " => + ! # " . 4" # " , $ ( ! < ( ! ) " $ , !< (& => < ". * , $, ! K"! L $ & # , #, $ ! ( $ $ . 4.2 (0 1 ). " , , " , " , , , $ O(1) . . A $ - $ $ | , ! ! , # $ $ - !-. - # # , $ ! ! , $ - $ " ) ( . E4, . 31{33]). H $ $ " !- !-.
609 " ($ , $ &( # ! ! "! - $ !-, < -, ! ! , . : ! , $ ! " " !- !- $ - $ # . * ! ! &(
# # " $ X, ) ( <- $ (" (&- ! ) $ - $ l, # < , # " $ . * ! ! < # < $ X " $ , " (&- ! . ; " < < # - !- <- $ l (. . < $ 2l < $ l=6).
4.3. = +
! # " => +
! # " . : , $ " $ ! $ $ # $ "! . >( # ( ) (&( . ./ 4.4. : $ ( $ ! $). A < # ! ( ! $ " #
# - , " , $ " , & # . % "!
. 4.5. => P . . : # ( ) # , " ! $ $ !- $ , . H , & # $ , , ! (& $ $ - (- !-, ) $ " - . # !, ( #
# & ! # . , &( => " " , $ ( " $ # . " # " , $ <
$ , ! - #
!- x1 x2 : : : xn. P xi ) | ! " Eai bi ] ( # " !) Eai +1] ( # "
!), ! ! " ) , ! $ ( $. J# !$ $ , ( #
" $ x1 : : :xn " < ! - " ) " ! $ .
610
. . , . .
(& " $ " K" " L. 4.6. % f(x1 xp2 : : : xn) | *, " " f+ ; g. & * g(x1 x2 : : : xn), " , f(x1 : : : xn) g(x1 : : : xn) = = P (x1 : : : xn), P | . ? , $ ! < ! f1 (x1 x2 :::xn ) , # f f | ! , "(& . : 4.6 1 2 f2 (x1 x2 :::xn ) " #, $ ! ff12 " ! !- xi 2 Eai bi], , $ ! | - " $ , !- p . - $ - ! , " f+ ; = g ! ? > # " " # $ ( $ ), # " , ( ) ! ( ( $ ! !). O ! " " $ # , ! ! ( C 2 . 5! , $ K ! L & K & !L . ; ) " , $ ! " & ! . 4.1.
! !
: !
C 2 . :! " ( ax+by+c = 0, # a b c | ! $ 8 | (x + a)2 +(y + b)2 = r2 , # a b r | ! $ . 5! & , " ! $ , $
. * # , & #, #
# # " ( ! " ! $ ( ! ,
! | ( $ fjz j > Rg). 4.7. (=> ) (P ! ) ( & ! ) (=> & ). . 5! ( & ! ) (=> & ). H (=>
) (P ! ) "! #$. @ ", " !- & !- . , $ z = x + iy & !- $ x y. J, $ ! $ ( , $ - & ! ! $ . 2 " $ # . * # "
611
p p p (& , : z = jz j (cos '2 + i sin( '2 )), # jz j = x2 + y2 , # #
' = arg(z), cos(') = jxzj , sin(') = qjzyj . P q 1;cos ' 1+cos ' ' ' ! ( , cos( 2 ) = 2 8 sin( 2 ) = 2 . 4" ! ! ( (& : & ! + ! # " P ! + ! # " , & ! +
! # " P ! +
! # " . ; , $ ! !
$ , &( & # " ! ! ! !. * , $ " $ $ # " # $ " $ " & !- $ , < " $ K # L(. . - cos( '3 ) cos(')). : , $ = =>. ;< $ ( " . 5! " , $ &( # " - $ $ - !- ( ). : , ! ! K $ ! L$ " " . P " , - ! "! $ < # $ , $ ! ! $ $ !- $ . & $
( ( K L - : " $ " # $ . : - ( ( K! L, " ! , !- ! < #. !- $ - - ) " $ # ! : # "!- $ , - " - # # $ K $ !-L ! ") . : ) " . 2 " (& . 4.8. % (0 0) (x 0) (y 0) (x y | ). & O(1) " (x y). 4.9. % P (x1 x2 : : : xn) | k, " . % A = fa1 a2 : : : ak ak+1g |
. & x1 : : : xn " A , P ) . . @ #$ P ! ) , &
" $ c1 c2 : : : cn, $ P & . U " $ , #, P #$ P (x1) < k. @#
x1 " $ c01 " A , $ P(x1) 6= 0. @ ! $
c01 c2 : : : cn, $ P & . * -
612
. . , . .
, $
" $ , & " A, $ P & .
4.10. % ( ) , , n x1 x2 : : : xn. & n
a1 a2 : : : an, +.
4.11. => + ! # " => +
! # " . . @ => + ! # " & ! + ! # " => +
! # " P ! +
! # " , $ " # " , (& # ! $ . * # ! K $ ! L ! , "
! # " , , $ ! " . $ 4.12. (= C 2 ) (=> C 2 ). . * , $ &( # $ - !-, " !- $ , " # " . : 4.2 & # , "(& # " ,
(& " 100 . : # ! n $ !- $ (x1 y1 ) (x2 y2) : : : (xn yn ). M (& . : ! $ $ $ (x y), # (x1 y1 : : : xn yn) y = f3 (x1 y1 : : : xn yn) : x = ff1 (x f4 (x1 y1 : : : xn yn) 2 1 y1 : : : xn yn) : f2 f4 g = P, # P | k. M A = f1 2 3 : : : k + 1g. : 4.9 ! x1 y1 : : : xn yn " $ " A , $ ! " ! . : 4.8 ! $ (xi yi ) " 200 (k+1) ( $ $ (1 0) (2 0) : : : (k + 1 0), (xi yi)). / ! # # " - ! $ !- $ , ! $ $ !- !-. J (
#$ "! , $ " $ . 5! " , $ = =>.
5. % & . %
! " $, " ! ( !$ . 2 < # ( ! $ - !-
613 " , " $ (, ! " "
# " ( " $ $ . M " !, " ! - 3.1, 3.2, 3.5 3.6, $ $ !. :$ & $ ( # ? * , $ !$ (&- !. :$) ! ! $< $ # # (. : !- # #. J # ! # , # "&!, . . ( ! . * < # " " $ , & # $ , ! ! $ <( E4]. 2 < | " $ $ " $ , ! ! ( < !- " . (n) # $ ? 4! , 1. , $ ( n) " $ & & K ! !$ L? 2. :" # " & !$ ? / "! K L, , $ ! " !- $ - $ & ! !#! !#!< ! # " $) #, $ ! $! ! "( " # " . 2 " # $ $ ! ! ? % & " $ : " !$ !- - . 3. 5! $! < . ; , , " ! 3.6, $ #$! " ! < <- ( . " $ 3.14). " ( ! !: ) ! $ " $ $ - & & & ! ( $ !$ !- $ )? , $ $ " !$ "!- , $ # #, & ! & !$ - "$!- $ ? 4. : $ xi " ( k fPj (~x) = 0g, # Pj (~x) = Pj (x1 : : : xk) | #$ n k !-, $) n k. 4 ! ! $ ! ! $ fxi g. 2 ! -, " ! $# , - CE~x]=id(fPj (~x)g). ! - " " $! ,, . M " k , # | " " R)
id(fPj (~x)g), ) #
#$ fPj (~x)g. * < # " , " (
# $ - !$ , $ E5].
614
. . , . .
M " !, " ! - 3.1, 3.2, 3.5, ! $ ! " . %. R <!. J! # ;. : " ( " 3.1.
' 1] . . . . | .: , 1976. 2] . %. . & . | .: , 1979. 3] (. % &. & . | .: , 1968. 4] . . +, -. . , /, 0 . | ( . 1/3 0 / , , , 3/. 29. 5] . . %,3 . +, , 0. (5,6 & &, . | .: .7, 1987.
) * + 1996 . ( | 1998 .).
, -
. . , . . , -
517.3 .
: , - !
" # $% # #&' ( # ' #& ) ( , ) % ) , #% . * &
&' ( +&' #, # &' & .
Abstract Yu. I. Babenko, A. I. Moshinskii, Logarithmic analog of Leibnitz series and some integrals connected with the Riemann zeta function, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 615{619.
A new expression for the analog of the Leibnitz series with alternating signs, which contains the multipliers depending on the logarithm of the term's number, is obtained. The values of some de4nite integrals connected with the above series are found. 1. . 1,2]
Z1
ln( ) ln2 (2) = ; (1) 1 + exp( ) 2 0 , , ! . $ (1) % ! & - ' ( ( ) & ) *, & (0) = ;1 2, 0 (0) = ; ln(2 ) 2 . , *- (1), %./- ! & - '. ( * Z1 Z1 ln( ) ln( ) 0 +( ) = exp( ) + 1 ; ( ) = exp( ) ; 1 J1
=
s
x dx
:
p
s
=
=
I
x dx
"
"
x
I
x dx
"
"
x
" >
, 2001, 7, 5 2, . 615{619. c 2001 ! " # $%&, '( )
:
616
. . , . .
1 ! ; ( ) ; + ( ) % ) ./ % : Z1
I
"
I
"
1
1
Z Z ln( ) ln( ) ; ( ) ; + ( ) = 2 exp(2 ) ; 1 = exp( ) ; 1 ; ln(2) exp( ) ; 1 = " 2" 2" = ; (2 ) + ln(2) ln1 ; exp(;2 )] 3%4&& ; ( ) ; ; (2 ), 5: I
"
I
x dx
"
x dx
x
x
I
I
"
I
dx
x
"
"
:
"
( )=
Z2"
I+ "
"
ln( ) exp( ) ; 1 ; ln(2) ln1 ; exp(;2 )] x dx
"
x
(2)
:
& (2) ! +0 * &&, "
Z2"
Z ln( ) ln( ) = exp( ) ; 1 "!+0 2"
x dx x
"
2 = ln(2) ln( ) + ln 2(2)
x dx
"
x
"
2 * 1 = "lim !+0 + ( ) = ; ln (2) 2. 6 - ) % ! ) & ) % (%/ ) * . 7 , J
I
Z1
J2
"
=
exp( )] = ln( ) exp( )] x
0
P
x
Q
x
dx
2 = ; ln ( 2 + 1) N
(3)
* ( ) ( ) &.& & P y
( )=
Q y
;
N X1
P y
( ; ) N
j =0
( )=
j
j y
N X
Q y
j
y
N
j =0
=1 2
(4)
: : ::
= 1 (1). , *- - * : '-, & - - '-, ! & 2, . 653] N
1
1 X
(;1)j = 1 Z s;1 exp( ) = 1 (2 + 1)s ;( ) exp(2 ) + 1 4s j =0 j
s
x
x dx
x
0
s
1 ; 4
s
3 4
(5)
* ;( ) | * - '& >- . * & & * * , ' & ! ) 5- 3] & - ' ! 0 * Z1 ;(1 4) ; ln(4) ; C ln( ) sh(2 ) = 2 ln ;(3 (6) 3 = 4) ch ( ) s
s
s
J
* C = 0 577215
x
0
:::
x
dx
x
| & & >- .
=
=
617
15 (1) & * . ,-!, * & * ! (1) & & exp(; ) & , 1,2] x
Z1
exp(; ) ln( ) x
x dx
= ; C + ln( )
0
Re( ) 0
>
(7)
./ - & @* * & A-%' B: 1 (;1)j ln( ) 2 X = C ln(2) ; ln 2(2) = 0 1598689037 (8) j =2 1, . 585] &! / ' (8) (-, - ), ) & - 5%-. 6& ! - & (8). 6, , 1 (;1)j +1 ln(2 + 1) C X (2 )1=2 ;(3 4) = + ln 2 +1 4 2 ;(1 4) j =1 % ! , , & * * - ' & $ ! 3, . 35], (5). 2. . 6! & (8) & ( & * !* & & & exp(; ) ) (7)) - * j
j
j
: : ::
=
j
=
x
( )=
Z1
J4 n
0
exp(; ) ln( ) 1 + exp( ) nx
x dx
x
=
n 2 j X + (;1)n+1 ln 2(2) + (;1) ln( ) (9) j =2 j =1 * > 0 | ' (@ B (9) = 0 = 1 * .& .). , (9) ) ln2(2) C ; ln(2) ; ln2(2) (1) = ; C + (2) = 4 4 2 2 = 2, % & (3), (4) * 1, . 587], 2, . 527] Z1 exp( ) ln( ) (2 )1=3 ;(2 3) = = ln 5 1 + exp( ) + exp(2 ) 31=2 ;(1 3)
= (;1)n C
n X (;1)j +1
j
j
j
n
n
J
n
J
:
N
x
J
0
x
x dx
x
=
=
618
. . , . .
./- ! : Z1 ln( ) ln2 (3) ; 5 = ; 6 = 1 + exp( ) + exp(2 ) 4 2 x dx
J
R1
!
0
Z1
0
P
exp( )]
x
0
x
(10)
:
exp( )] = ln( + 1), * !,
x
dx=Q
exp( )] ( ) = ln( ) exp( )]
J2
J
x
P
x
Q
x
dx
x
N
2 = ; ln ( 2 + 1) ; ln( ) ln( + 1) N
N
Re( ) 0
>
:
(11) A* %%/ .& * , / * . 7 , Z1 ln( ) sh(2 ) = 3 ; ln( ) Re( ) 0 3( ) = ch ( ) 0 J
x
x
dx
x
J
>
:
> % & & (1) % - - 2, . 532] Z1 0
exp( ) ln( ) = 1 hln ; Ci 1 + exp( )]2 2 2 x
x dx
x
&.& & * : '-, @ && ' B: Z1 ln(2) ln( ) + ln2(2) 2 Re( ) 0 ln( ) ( ) = = ; 1 1 + exp( ) J
x dx
x
0
( )=
Z1
J7
=
x dx
x
0
i 1 1 2 = 2 C ; ln 2 ; ln (2) ; ln(2) ; 2 ln( ) Z1 exp( ) ln( ) = ln(2) ; ln2 (2) 8= 1 + exp( )]2 2
x
0
( )=
J9
=
Z1 0
x
Z1
J8
0 x
ln( ) 1 + exp( )]2 =
h 1
J
>
x dx
exp( ) ln( ) = 1 + exp( )]2 x
x dx
x
Re( ) 0
J8
; ln(2) ln( ) Re( ) 0 2
>
exp( ) ln( ) = 1 hln(4) + C ; ln ; ln2 (2) ; 1i 1 + exp( )]3 4 2 x
x dx
x
>
x
x
619
( )=
Z1
J9
0
J10
=
Z1 0
x
exp( ) ln( ) = 1 + exp( )]3 x
x dx
J9
+ 1 ; ln(4)] ln( ) 4 =
2
x
sh( ) ln( ) sh(3 ) x
x dx
x
= 25 ; ln(2) 2 33=2 J
Re( ) 0
>
:
1] . ., . . , . | .: '#
, ! "# -
#, 1962.
2] + ,. +., -. /. ,., . 0. . !. | .: 1, 1981. 3] 4 5. ., 6 7. 1. 8
#. . 2. | .: '#
-
#, 1963.
" * " " 1997 .
, . .
, 514.762
: , , , , .
! " # " " $ n;m ) G_ m ), # * , + H^ (S (M~ nm $ # * ,, - $ # * , .# /, . !0#0 10 /1 : + " 0. 3 , 1 " 0 # * , + $ # * , 4m , .# $ - $ # * 4m . ! " 5 #1 /. N - . , 1 /. . , N > mn(n ; m + 1) + m(m ; 1)=2.
Abstract
S. I. Sokolovskaja, About connections induced on surfaces of the projective space by the Bortolotti clothing, Fundamentalnayai prikladnayamatematika, vol. 7 (2001), no. 2, pp. 621{625. The present paper introduces the notion of the Bortolotti connection in the prinn;m ) G_ m ), the notion of the pseudosurface, associated cipal 9ber space H^ (S (M~ nm with subsurface, and the Bortolotti clothing of a pseudosurface, which generates the described connection. The paper singles out a special case of the clothing, namely, the Bortolotti clothing in the proper sense. It is demonstrated that the Bortolotti clothing in the proper sense of the pseudosurface, associated with a subsurface 4m , induces the Bortolotti clothing of the subsurface 4m itself. The paper sets up and solves the problem of immersion of the Bortolotti connection in an N -dimensional projective space. It is proved that the immersion is possible, if N > mn(n ; m + 1) + m(m ; 1)=2. , , .
1933 $ %1].
$
$ ' ' ( -
%2{4]. ,$ , $- ,
, 2001, 7, : 2, . 621{625. c 2001 ! " ! ! #$, %
. .
622
' ( ' ' (. . ).
$1 -
- ' , , ' - ' | ' . $ ^( ( ~ ) _ ), $ -
n;m Gm H S Mnm
: ' ' .
$ $ , -
$-
', ( $ .
$-
: - ' . ,', $ , -
$ ' 7 ( $ 7
m
m,
$ -
%4]. ,
$ $- ' , ( $ ', $- ' .
8 $
N - . 9 , , N > mn(n ; m + 1) + m(m ; 1)=2.
1. n;m ) G_ m ), H^ (S (M~ nm n ; mn ; m ; 1 $ ! M~ mn ~ n;m . ; M mn
n;m M~ mn
S:
n;mn;m;1 Mmn ~
(
n;m M~ mn $
n ; m)-
- ', -
$
m-
n-
$ , $ ( ( | -
n ; m ; 1)-
' (
$
- .
,
( ~ $ 8
<
n;m Mmn
' , 8 ' $ , . =. > %5]. @ ^ ( ( ~ ) _ ) - - -
n;m Gm H S Mnm m $ (m ; 1)- '.
$ $ AAA B | $ $ AA - '
P Dm1 ,
, $
m-
- -
, $ A ', $ - .
, ' $ ^( ( ~ ) _ ) $
n;m Gm H S Mnm
1 , $ $ AA - ' . > $ -
,
623
: ' ' . @ ^ ( ( ~ ) _ ) $
n;m Gm H S Mnm
dC0 = C00 ^ C0 + C&0 ^ C& E }w C ^ C E dCu = C0u ^ C0 + Cvu ^ Cv + Cu ^ C + Ru& C&0 ^ C0 + Ru w 0 } v & & & dC = C ^ C& + R& C0 ^ C0 + R& C0 ^ Cv E dC00 = R00 C0 ^ C0 + R00}v C0 ^ Cv E & = 1 : : : mE u v w = m + 1 : : : nE 0 C0 + C = 0
(1)
$ A C
C A , A C0 C | A0 0 u
. G - 1 .
2. , , , - ' $ . H-
m- $ ' 7m n- S
Gn;mn E . H Gn;mn : P0 $-
$ ', -
n
7 , ( (
n ; m)- ', ' n P0 ' ' 7m $ P0 . @ E $ ( Gn;mn ' P ( (n ; m)- . m
7
(
7
$ 1, $ '
, ' $ - ' , $ ( .
I
- ' $ $ ', $
P = P0 .
H$ ', -
$ ', -
P N ; m)- ', $ ;1 (P ), ' ' (n ; m)- ' S 7m $ P0 $ ' ' , $ , $ $ : 1) (
8 ' 7
m
(( I
n ; m ; 1)- ', (n ; m)- S ;1 (P ) $ P0 (( II
), 2) (
. .
624
). K $ , -
$ ' 7
m ,
$ .
1. , 7m , , P
, P0 7m , P . ' $ $ $ : - ' .
2. , , 7m , " " # , P0 7m
, $ P0 . K , $ , -
$ ' 7 ( $ 7
m
.
m,
$-
, , $ $- ^( ( ) _ ) ' , $ (1), $- ^ ( ( ) _ )
H S Gn;mn Gm
' , $
H S Gn;mn Gm R00}&u = 0.
3. " # $ % ' $ ,
N
$ (1) L
d!IJ = !IK ^ !KJ (I J K = 0 : : : N ), !II = 0.
I $', , $' -
N
L
n-
,
m-
$ , $ ( $ , ', $- ( , ', $ (1). @ $ $
$:
)
!0 = 0 !0u = 0 ) !0 = C0 !u = Cu
$ $ ,
A,
,
)
! = C !00 = C00 !uu + ! = 0
625
A, , $ ( .
@ ' $ G( %6] $ $ ( '. 9
3. , n;m ) G_ m ), N - H^ (S (M~ nm , N > mn(n ; m + 1) + m(m ; 1)=2. M $ ' M. G.
, $ ' $
( .
&
1] Bortolotti E. Connessioni nelle varieta luogo di spazi // Rend. Semin. Fac. Sci. Univ. Cagliari. | 1933. | Vol. 3. | P. 81{89. 2] . . ! "# $# %%# '# // (). . * $. !. -. | 1965. | *. 177. | .. 6{42. 3] 0'$ 1. . 2$ ! ! $ '$ # // *. !. . - ). #. %. 32 ...4. | 1974. | *. 6. | .. 43{111. 4] 1. . 5 667 ''' // ! "# !68. | 9., 1978. | .. 47{54. 5] .' 3. 1. ;8 '8 7# !6# $8 // 56' !. *. 8. | 9.: 12*, 1977. | .. 25{46. 6] =$ .. 5. 9 ># % ? %%'@8 !. | 9.: ** , 1948. & 2000 .
. .
512.553.3
: , .
! - # $ R # ,
$ . %
& '. '. ( . ) * + , & # # + # .
Abstract S. V. Chegljakova, Injective modules over the ring of pseudo-rational numbers, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 627{629.
An element of a direct product of rings of p-adic integer over all prime numbers p belongs to a subring R of pseudo-rational numbers if almost all its components are equal to one rational number. The concept of such ring was introduced by A. A. Fomin. In this article the description of injective modules over the ring of pseudo-rational numbers is given.
1 (1]). , : 1) : M ! B ( im() | # )$ 2) # : A ! B # # ': A ! M # : ! , & ' = . b p Qb p )& * p-& . + Z * & , , - p-& - & p-& - & . 2. D , D = D b p. # # 2 Z . , & -& - . b p- . 1. Z , 2001, 7, 4 2, . 627{629. c 2001 , !" #$ %
628
. .
2. p- D -
D = Dp Ap Dp | Qb p, Ap | b p- . Z 3. p- p- . b p, # p * # 3 (3]). ) Qp Z - - & , 1 Y b m R = r = (p ) 2 Zp 9 n 2 Q np = m & - pg p , & , , ,, 1 . 2, R , , - & . 3 # r 2 R * & jrj = mn . 4* & & "p , R, # p- 1, b p | # 0. 6# "p | "p R = Z , R. 4 (3]). R- R- , # # * & rd = jrjd - d 2 M, r 2 R. 7 R- - R- - , R- , . 4. R- R- . . 8 #, & R- R- # , # & (93, 4.3]). b p- R- *# , : R ! Z b p. 2 Z 5. p- R- . . + D | p-& , R-, B | , R. = f : D ! B. f(D) = f("p D) "p B b p. 6 f(D) | Z b p-, # "p B | , Z f(D) | # "p B, "p B | # , f(D) # B. 6 * , D | R-.
629
6. D A ,
2. R- Q(D A ). R- , p p p . 6, & Qp (Dp Ap) , 5 #, & - . 4* , | R- , R-, # b p-, , "p | -& "p | Z . 6# "p = Dp Ap - Dp Ap ( Q 2). 2 R- , R- R- "p p Q (93, 4.7]), (Dp Ap ). + , p Q Q (Dp Ap ) = M N # N. 6# "p (Dp Ap ) = p p = DpQ Ap = "p M "p N. 4 , & " N = 0 p. + p Q N "p N, N = 0, M = (Dp Ap ). p
p
1] . .
. | .: , 1981. 2] . . ! " ##. $. 1. | .: , 1974. 3] A. A. Fomin. Some mixed abelian groups as modules over the ring of pseudo-rational numbers. | ) #*. & ' 1999 .
-
. .
517.9
: ,
.
! " " #$$% . #$$%" ! & '%! ( $ - $' $%& $ -
. !(" % &
$ % ( &
".
Abstract B. Ya. Steinberg, Noetherianness of convolution operators with coecients on quotient groups, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 2, pp. 631{634.
In the paper we study Noetherianness of convolution operators on the groups of slow growth with absolutelysummable kernel and coe1cients in a new class. The coe1cients are the superpositions of canonic quotient-homomorphisms and functions on quotient groups. The key step is the construction of a special compacti2cation of the topological group.
H |
. , H |
. , M !
" H " (M k ) = 1: lim k !1 (M k +1 ) '
,
, " (1]. Lp (H ), 1 < p < +1,
Z (A')(t) = a(s;1 t)'(s) d(s) (1) s;1 t |
" , H , a | , " H . - 3 4 3556 7 95{01{00403. , 2001, 7, 7 2, . 631{634. c 2001 , !" #$ %
632
. .
" End Lp (H ) " " Lp (H ), (1), Jp . " , f 2 L1 (H ): (Pf ')(t) = f (t)'(t). 2 " ( " " ") H K (H ). 3 , H . S (H ) | " " , f , "
" W D 2 K (H ) Z Z t!1
lim
W
(f (tx) ; f (ty)] dx dy = 0:
D
S (H ) | ! " " ,, " Jp (4,7]. 7(H ) | " " , f , "
" W 2 K (H ) Z
lim f (tx) dx = 0: t!1 W
7(H ) | ! " " ,, " A1 A2 Jp A1 Pf A2 " (
Rn ! , (5,6]). 9(H ) | "" " , f , " x 2 H (f (t) ; f (tx)] = 0: lim t!1 : , " (3]. " " 9, M, , H . ;
H (8, . 31] " M. = " H N = M n H . ; {? " 9 C (M) - ", (8, . 30], ! 3 "" , 9
M. 1. H | H0 | , - H=H0 . : H ! H=H0 : M(H ) n (H@ 0 \ N ) ! M(H=H0).
633
,
H " " , 3 3 . 1. A " H0 2 -
H=H0 . 2. = " H1 H2 2 H@ 1 \ H@ 2 \ N = . B . SH0 | , H f = g H0 , H 2 , H : H ! H=H0 | , g 2 S (H=H0 ). S | L1 (H ), SH0 , H0 . SH0 Jp (S Jp ) | End Lp (H ), Pf A APf , f 2 SH0 (f 2 S Jp ), A 2 Jp . 7H0 | , H f = g H0 , H 2 , H : H ! H=H0 | , g 2 7(H=H0). 7 | L1 (H ), 7H0 , H0 . 7H0 Jp (7 Jp ) | End Lp (H ), Pf A, f 2 7H0 (f 2 7 Jp ), A 2 Jp . 2 7H0 Jp 7 Jp . C " B1 B2 " ! " x (x 2 X ) (2, . 573], " (" > 0) U x, inf kPU (B1 ; B2) + T k < " infT k(B1 ; B2)PU + T k < ": T i
i
- T " . 2. B
S Jp , ! x 2 N n S H@ 0 " Bx 2 Jp , #H0 2 B x. $ ! x 2 N \ H@ 0 " Bx 2 SH0 Jp , # B x. % I + B & , ! x 2 N I + Bx . 3. H S B
7H0 Jp . ! x 2 N n H@ 0 " H0 2 Bx 2 Jp , ! A 2 Jp AB # ABx x. $ ! x 2 N \ H@ 0 " Bx 2 7H0 Jp , ! A 2 Jp AB # ABx x. % I + B & , ! x 2 N I + Bx .
B=I+
N X i
=1
Bi Bi 2 7H Jp Hi 2 i = 1 2 : : : N: i
634
. .
$ B & , i = 1 2 : : : N, H@ i \ N 6= (. . Hi ), I + Bi .
1] . . // ! . " . # $ %. &. 57. | ". 272. 2] " . +. , - % ! ! %! $! , 1 // / . , """0, . . | 1965. | &. 29, . 3. | ". 567{586. 3] Cordes H. O. On compactness of commutators of multiplications and convolutions and boundedness of pseudodi6erential operators // J. Funct. Anal. | 1975. | Vol. 18, no. 2. | P. 115{131. 4] 8 +. 9. : ! $ ! ! // # ; $ / < %. | 1981. | &. 15, . 3. | ". 95{96. 5] 8 +. 9. , $ ! = ; ; >- ! // "?@. | 1990. | &. 31, D 4. | ". 180{186. 6] 8 +. 9. $ /%>- % = ; $ ! ! // - ; $ ! < %. ?< / ! . | 0 --E , 1996. | ". 142{145. 7] 8 +. 9. : $ $ = ; $ ! ! // ? / . | 1985. | &. 38, . 2. | ". 278{292. 8] G &. 0 . | ?.: ? , 1973. & ' ( 1996 .