: . .
512.664.4
:
, , ,
, ,
, !.
" #
$ %.
Abstract B. V. Novikov, Semigroup cohomologies: a survey, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 1{18.
A survey of research in semigroup cohomologies and their applications is given.
: .
, ,
. ! "" #
$ " % "& % % , ' ( % " %
% ( (
(. )
(%("
( (
% (),
( %
,). -
| %
% , %& (
, % , ' ( /
% (. % % (, / ( % (
% , / ( ) " # : ( ( %, % % ( #
. ) % %"
. 0 " , #1 ( (, &
(% % 2. 0. 3
495]). ) ,
, , # ( # %
%-% % . , 2001, 7, , 1, . 1{18. c 2001 , !" #$ %
2
. .
! ( % ( %
( (% " (
440], ( ( )
47] 49]. ) ( ( % (
( 1 1 ( , 400:1A234 | 1 1A234 % >? % 2000 .) | ( | Mathematical Review. ) , "& % , (. )( S - ZS - % " | # (
(
#
( S . 2 2. ). , % # ( (, %
%$
% % . @& " & % 3. ! , ' (, @. 0 , ' ( ( .
1.
- , (
( 449]. - , , % ' : # ( & %
(. B ( ( #
%
/ ' % ( @. % 469] % , ( ( , ( , (). D 47]:
( S ( ) S - A n- %, H n (S A) = ExtnS (Z A), Z ( ZS - . ) ' ( %( /
{ (- ). ( &
% , ' % ( . G% C n(S A) % n- ( f : S| :{z: : S} ! A ( n- ( #)H (
Z
n
@ n : C n(S A) ! C n+1(S A) %, "& % : @ n f (x1 : : : xn+1) = x1f (x2 : : : xn+1) + +
n X
(;1)i f (x1 : : : xixi+1 : : : xn+1) + (;1)n+1 f (x1 : : : xn): (1)
i=1 n n ; 1 B @ @ = 0, . .
Im @ n;1 = B n (S A) ( n- ( #) Ker @ n = Z n (S A) ( n- ( # ) (
" H n(S A) = Z n (S A)=B n (S A).
:
3
0 ( 1 %
: 0 ;! A ;! B ;! C ;! 0 | (2) S - , n n n n+1 n n : : : ;! H n (S A) ;! H (S B ) ;! H (S C ) ;! H (S A) ;! : : : (3) H % n n # ( 1% . - , , ( ('
"
"& ( % %
% ( #H / . % 4) B
,
% , ( "&
. B ( : (
% ( ( ' "
, L 41], ("&
( %
(, , (
. / "& % ,
( 47]. 1.1. T | G. G T (. . G x;1y x y 2 T ), in : H n(G A) ! H n(T A), " i : T ! G, # #$ G- A. N
(
, % n- (
% % (. (
( ). ) n 6 2
1 #" %
& #.
D C %( 435], $ C 2 C $ R(C ) 2 D ( %(( D- $ C ) 1% (C ): C ! R(C ), " D 2 D C ;;;;! R(C ) ? ? y
D
%
1% % HomD (R(C ) D). ) ' C ( % "
. N S |
, 1 ( 1% & %
( R(S )- A S - # 1% n : H n(R(S ) A) ! H n(S A)
.
4
. .
1.2 (24]). S | , D | C, A | R(S ). A R(S ) D, 1 , 2 | . 3 " ( 1.2 " "& 1 ( : (,
(
(, 11 (
(. ) , D | , 1 2 % 441]. ) %& 1.1, ( , , (
1
( & . G L 445] % / "& % . 1.3. S | , #% $ , $ &. ' ( . ) S & #. 2 %
% . >
"
#". I |
( S . G % 1% "n : H n (S A) ! H n(I A), # ( " : I ! S ? Q , "0 % 1% , "1 | 1% . S
% ( 1 , 2 >11 438]
"& , ( ( % ( # !. U ' 442]. 1.4. I | S, #% " e. ' #$ S- A #$ n > 0 H n (S A) = H n(I A) = H n(I eA): @ &" / 1
, ( # R
. )
& ,
( "
, . ) , I | , ( ( H n(S A)
, 1 -
( > S=I . D ",
(, / . D - ,
,
% 0-
( S=I (. % 3). @% H n(S A) H n (I A)
, I % @' (. . ( , &). #" 3. ! 475,76]. S , %("&
( S % ( G , , Ext'( M , I S .
/ & ( , %
:
5
(, , "$ # ( 1% H n(S A) ! H n (G eA) n > 2 (e | # ( G). ( 1
" / % ,
"& %
S = I
(
. 1.5. S | , G | & $ , e | " G, A | S- . ' H n (S A) = H n(G eA) n > 3. D , 476]
, & H n(S A) H n(G eA) n 6 2. > &, "
%
(H % , 445], ('. (cd S )
( S # n, H n+1(S A) = 0 " S - A. G
& | R-
% cdR S (R | %
# ), " % " RS - R. (, , % cd S = cd S . ! 477] % " ( ") % gd S
# ZS (. . ( % S - ) , S . - ', # gd S % ( ( %# . - % ( "& % . 1.6. S = I1 I2 : : : In | " ( ) S.
(Ik ) = 0 1 2 , $ ZIk=ZIk+1 0) ## ", 1) ##, # # ", 2) , ". n P ($ j (S ) = (Ik ) n+1(S ) = 0. ) ", Gk | k=j $ 0- Ik =Ik+1 (1 6 k < n) Gn | $ In . ' gd S 6 1max (gd Gk + k+1 (S )): 6k6n
Z
) , S
(. . , ( (), # gd S ( ' 479]. 0
( % ( 1.6 (, cd S < 1. S / &% ( 1 ,
% ( . ) 478] ,
(
% ". S% 47],
% (,
( ( ) 1. )
6
. .
, , % % {X H ( ( @
{@ 41]. 0
# % : ' % %
& , (
, . / (
& .
471] % , % ( ( % ( )
" % 1. B (%
: cd S = 1 S & , S
. ) 420] ( % 482]
& ) ( %
1 %
: S | & , cd S = 1, S ( " .
( % 426] 427]. - ,
" 1 #"
: 422] % ,
, % 1 % 420] (, , "
),
" % 2. Y '
:
%
% Z ( 1 423]. EM-
411,12, 14,15,19,43,44, 47,48,74,85] ( ' ( % ().
2. D % 41], ( / ( ' ( G &" A, G- , (" N -
, H 2 (G A). - ' # ' , , % %
% ( '
. B ,
,
(
. @ " > 484] M %( S &" A, / # M (
" "& : ) M= = SH ) e = A (e | # M , e | / # , & eH ' , e = A)H ) - C & / u, " x 2 C ,, (, a(x) 2 A, x = a(x)u. (> 486] , A #(.) N
, ( A ( (
, % 1 " ), :
:
7
) " x 2 C , ( b(x) 2 A,
x = ub(x), | A & S - ' 1#" N -
H 2(S A) 430] ( 413] ' ,
"&
, , ). ) 429{34] 2. / ,
, A S -
(. . ( , S ),
"&
. 0 / n- ( # C n(S A), % 1, "
( @+n @;n : C n(S A) ! C n+1 (S A) "& % : @+n f (
@;n f ) (, & (1) % + (
;)H @ n = @+n ; @;n , A S - . 0 ,
n- ( # Z n (S A) = ff 2 C n(S A) j @+n f = @;n f g %, / #
n = f(f g) j 9h 2 Un;1 : f + @+n h = g + @;n hg (% Un | ( / C n(S A)). n- %( 1 - H n (S A) = Z n (S A)= n . ) & / ( " % % ( 1 (., , 433]
& ). /
(
' . S , % , (2)
, $ , "$ Im = ;1 (0)H B , % (b1 ) = (b2 ) (b1 b2 2 B ) b1 + (a1) = b2 + (a2) (a1 a2 2 A)H , B ' ( ' C &" A ( , % ' ). 2.1 (34]). (2) | * S- A S- , (3) ( ) H n (S A), H n (S B ), H n (S C ) , , Im n;1 ;n 1 (0). >% ( # ' ( ' 42,50,57, 64, 72, 73, 89, 90]H , ' ( '
. 493, 94]. ! # Y. S % 42{6], ( % , ( ( '
(" %
( . 0 ( '
"&
%(
% - % . > % # |
Q 465].
8
. .
0 S % D(S ) % , $ " / ( , 1% % u v | / % S (x u y), xuy = v. A | ( 1 % D(S) " Ab ( . B - $S A(S ) = A(u) - S -
u2S xay = A(x u y)a, x y u 2 S , a 2 A(u). n- !" A %( : S n ! A(S ), (x1 : : : xn) 2 A(x1 : : : xn ). n- ( # C n (S A)
( % & , ( @ n : C n(S A) ! C n+1(S A) 1 @ n (x1 : : : xn+1) = x1(x2 : : : xn+1) + +
n X i=1
(;1)i (x1 : : : xixi+1 : : : xn+1) + (;1)n+1 (x1 : : : xn)xn+1 : (4)
"& / ( # % , ', % H n (S A). @ (, (& % , T c % ( / 1% : T ! S
,
u 2 S % ( ( %
) ( A(u) ;1 u. (T ) % , # $" A, (
" "& : 1) % ( % ( (. .
"( x y 2 ;1 u & a 2 A(u), a x = y)H 2) "( u v 2 S , x 2 ;1 u, y 2 ;1 v, a 2 A(u), b 2 A(v) (a x)y = A(1 u v)a (xy) x(b y) = A(u v 1)b (xu): 2 ( ' Q 1 : T1 ! S 2 : T2 ! S ( &"
1 A) %(" % , & % 1% : T1 ! T2 , 1 = 2 "( u 2 S , x 2 ;1u, a 2 A(u) (a x) = a (x): B "& 2.2. +% $ H 2(S A)
$ * , %# A. 3/
496] ' #" Q . - % ,
Q (
( & (
U{U 440]. Z ' Q , & ( % ) H-' , . . ' , (
"& / # / X H (H- / #). 2 & H-'
:
9
"&
X 452]. ) 453] X
H-' (
. 0 ( ( , ()
H- / # " ( | / / #, % "& (. Q' 462] %
,
"& H-' (
. - ( H-' ,
%, / , , (
. >% ( Q' ( & ( Q 468] (
. @. 436,61,66,87]. ) % " %, &" % ( ( ' , ( &
% (. ) ' , ' . @ 492] ! 481].
3. N&, %
' ( ( ( %
() % . ( 1 / % , , #" 0-
416,21]. 0 %
( S , 0- S %( ( ) A, (S n 0) A ! A, "& s t 2 S n 0, a b 2 A "& : s(a + b) = sa + sb st 6= 0 ) s(ta) = (st)a:
n- 0- !" %( n- % S A, , (s1 : : : sn), s1 : : : sn 6= 0. D ( %,, N -
, 1 (1)H
"& /
% ( 416] 0- % " % H0n (S A). 0 0- # 0- #
%" % Z0n (S A) B0n (S A)
. Q ,
( S 0 = S 0 ' , ( , H0n (S 0 A) = H n(S A), 0-
& N -
. > % , ( ('. / % K %
, % K | . 1. n | 1 . G% Eij % n n-#, ( / (i j ) 1. Un |
( ), & % # #(.
S Un
10
. .
%( !, #( Eii. 0 , K0 S | &
( S (. . 1 - (
( KS , , ,
( S ). 3. D 446] ( (,
"& % K0 S % S n 0: (
s t = z (s t)st st 6= 0 0 st = 0 z | 1 # % K , , (s t),
st 6= 0, "& z (s t)z (st u) = z (s tu)z (t u) stu = 6 0. ! % % zK0 S . [ , z 2 Z02(S K ), K ( 0- S . ) % / D 0-
(
( 0- , . . ( ) zK0 S , S |
( # (%, N -
/ # % , ( "
( ,). B ( % : 3.1. S T | ". - $ zK0 S wK0 T , % S ! T, " 0- z w. 2. 0 (
L "
, . - '
, ( "& . 3.2 (17]). Y | S ( ). ' . M (S K ) S K Y $ H02(S=I K ), I 2 Y , K 0- S=I. 3. Y , Q @ 454{56,91], % %(( ( ( ( & # ( ( ), U/. K=L | ' X X G. ' 2- ! 491] f : G G ! K , "( ! 2 G
4f ( !)]f ( !) = f ( )f ( !) f (1 ) = f ( 1) = 1
:
11
( % , ( 2- # ( % 0
( (). ( 2- # ( ( % . 1 %# / / ( 2- # & (% Br(G K ), "&, L,
. U
, % % E
% Br(G K ) (. . ( # , "&
% 0 1),
: 3.3 (56]). Br(G K ) E $ Bre(G K ), e 2 E, Bre (G K )
$ 2-" , # , e. / , e 1, Bre(G K ) = H 2 (G K ) | 0 . -%( 425], / # 0-
. e 2 E . G / 0 G0 " #": ( x y = xy e(x y) = 1 0 e(x y) = 0 , , x 0 = 0 x = 0. - / # G0
, " ( % % Ge. - , % , ! G() ( G G0 # , x y
xy, 0, , 0 x = x 0 = 0. Q , ( ( 2- # 1# ( G &
. / K & 0- Ge Bre(G K ) = H02 (Ge K ). ) 425] % , / % 0-
%" &: ( U/ 0-
(, ( 1#,
. D #", %" 0-
, Q. - & 428] %
. -& 0-
% 416] 421]. 0 1 ( Sem
" Sem0 , $ "
( ,, 1% | ' : S n 0 ! T , '(xy) = '(x)'(y), xy 6= 0. B Sem " Sem0 , , / %( 1 . S |
,, R(S ) | , 1 , : S ! R(S ) | 1 ( 1%. D 0- S R(S ) % 1 (, , , (
# ( 1%( n : H n(R(S ) A) ! H0n(S A): )
& , / (
% 1 ( (
, 0-
( % ( 1 ). ' , 0 1 | % 1%(, 2 | 1%.
12
. .
3.4. S , n #$ n > 0.
. @ (, , &" ,, , ( 0-
0- (
, / % N -
418]. @ (, ( ( ( 0-
(, %
% N -
1 . S ( ( 420] %
|
%"& a b c d "&
' ab = cd, 1
( 6. 0 ( ( ( 419] 421]. ( 1
& :
, % # ( ,
S n 0, %
W S ? ) 482] % , / % "& ".
S W "&
' xy = z ( x y z 2 W . G% Wn % (x1 : : : xn), ( xi xi+1 : : : xj 2 W "( i j , 1 6 i 6 j 6 n. ) n- !" & W , W - !", % S - A %( " % Wn A. n- ( W - # %" C n(S W A).
" C 0(S W A) = A Wn = , C n(S W A) = 0. D ( %, 1 (1)H
"& ( ( W - ) % " % H n(S W A). - , W = S (
N -
. @] 0-
( (
:
H0n(S A) = H n (R(S ) (S n 0) A): ) { : W ! S # 1%( { n : H n (S A) ! H n(S W A)
(, n , " % 1% n 6 1 1% n = 2. @ & ( 3.4,
422]. % / 1
% (
(. G (
, 0-
, " N -
. ) 482] 422] ( "
. ) , %(, /
( % 1 ( " % "
" % (%, % ).
4.
:
13
Z ( ( (, "& ' % . D% 48]
& % # . ) 439] ( )
( ( # #) " ( )
CW - ( / ( )
( % > 3). X
( ) % ' ,
. B
,
( , H3)
%" % 459,60]. % (
H n (S W A) W ( . @ / % # " (, ( @
488] #1
( "& (). ) 458] 470] " 1#"&
. B ( %" %
. ) % " 1
% . 1. K0 S |
( S
K . ) , % gl: dim K0 S (47]H
| %% , , ) ' n,
H n(S K ) = 0? D 446] 1 /
( ( # (. % 4), % n = 2 , ". 2. ) ,
%
(
,
( & , (
? B
(. 0 ( / 445]. 3 (! 478]). T | ( 1 ( % & S , A | , ( S T . [ # ( 1% H n(T A) ! H n (S A) % 1% ? 0 n < 3 / . 4. (
( " N -
). D ( ? @& ' # ( % ? 5. D (, N -
( S
( % N -
, I 0-
1 -
( S=I . - / % , , H n (S A) ( 438],
( 416].
14
. .
6. D ( 0-
( (
? % , 1# ( ) ( X
$ ( ( / .
1] . . . .: , 1987. 84:1A352] 2] !" #. . $%"& // (). * +$. | 1964. | .. 33, / 2. | . 263{269. 65:1A207] 3] !" #. . $%"& " &23 // (). * +$. | 1965. | .. 39, / 1. | . 3{10. 65:11A225] 4] !" #. . $%"& " // (). * +$. | 1966. | .. 41, / 3. | . 513{520. 66:7A240] 5] !" #. . $%"& 44523 5"23 // (). * +$. | 1967. | .. 46, / 1. | . 11{18. 67:10A134] 6] !" #. . " 4 2" 5 2 6" 7 4 6" 7 "(2 3 ""& // .. .(. 4". -4 * +$. | 1975. | .. 48. 76:8A504] 7] 4 *., 97"(" . + 6"& "(. | .: :, 1960. 61:2A238] 8] 4 !" $. ;. < &3 5 // (). * +$. | 1985. | .. 117, / 3. | . 465{468. 86:1A492] 9] == *., >"4 +. * "(6"& 4" & . .. 1, 2. | .: , 1972. 64:10A191, 68:10A123] 10] >. ;. > 2 & // ?6. !. :+> . +"@". | 1971. | .. 404. | . 275{284. 71:12A163] 11] >. ;. <( ! =!" 7 // 5""& "(. B2. V. | :., 1976. | . 71{74. 77:10A249] 12] >. ;. + 6"& 6"& 34"4 ( ()" " 6"3 // !5. 5! 5. 4". | 1982. | / 5. | . 30{34. 82:9A340] 13] " .". < %" 5 // (). * +$. | 1976. | .. 83, / 1. | . 25{28. 77:5A279] 14] " .". < &3 5 // (). * +$. | 1977. | .. 85, / 3. | . 545{548. 77:12A424] 15] " .". < " 4 23 =4 23 5 7453 5 // (). * +$. | 1977. | .. 87, / 2. | . 281{284. 78:6A416] 16] 5 5 . B. < 0- &3 // ." . . 5 . ==. -7 "(. | "5: 5 , 1978. | . 185{188. 79:6A368] 17] 5 5 . B. < "4523 " 45"&3 // ; . * ?$, ". *. | 1979. | / 6. | . 474{478. 79:11A161] 18] 5 5 . B. 0- 5 " 0- 423 // B"4 #C.
. -4. | 1981. | B2. 46, / 221. | . 80{85. 82:6A356] 19] 5 5 . B. < 526" 7 " 4 23 // B"4 #C. . -4. | 1981. | B2. 46, / 221. | . 96. 82:6A357]
:
15
20] 5 5 . B. 4" 7 4"!" 46" // .. .(. 4. -4 * +$. | 1982. | .. 70. | . 52{55. 83:5A341] 21] 5 5 . B. <" "&D)" 4 %"& 0- 7 // ." & "" E. > 6. 2. > 2 " (! 57. | 4 5: ! -5 4 5. -4, 1983. | . 94{99. 83:11A213] 22] 5 5 . B. F462" 3 E"& // !5. 5! 5. 4". | 1988. | / 11. | . 25{32. 89:6A317] 23] 5 5 . B. 4452" 2 )"" !" 4 1 // 4". !"4. | 1990. | .. 48, / 1. | . 148{149. 90:12A363] 24] 5 5 . B. $"="452" 4" // ; 5i i * ?GH. | 1994. | / 8. | . 10{12. 25] 5 5 . B. < " I // 4". !"4. | 1995. | .. 57, / 4. | . 633{636. MR 96f:12005] 26] 5 5 . B. < 3 6" 7 !" 4 1 // ; 5i i * ?GH. | 1996. | / 8. | . 6{8. 27] 5 5 . B. <( (" 7 4"!" 46" // ; 5i i * ?GH. | 1998. | / 3. | . 26{27. 28] <) :. *. " 4 2" &4& ""& 4" "(""523 7 // .. . 4. (-5. | 1967. | .. 17. | . 45{88. 68:12A270] 29] >6 & *. . < %"&3 "7 // (). * +$. | 1976. | .. 84, / 3. | . 545{548. 77:10A248] 30] >6 & *. . $%"& "7 ) 5 3 6"& 34"4 // (). * +$. | 1977. | .. 86, / 1. | . 21{24. 78:1A372] 31] >6 & *. . & 5 I==@"4 5 &3 // (). * +$. | 1977. | .. 86, / 3. | . 546{548. 78:3A277] 32] >6 & *. . C2" %7" 52 %"& "7 // .. .(. 4". -4 * +$. | 1979. | .. 62. | . 76{90. 80:1A430] 33] >6 & *. . < !5 23 =4 3 =4 5 !6"& 5 4" "7 // .. .(. 4". -4 * +$. | 1986. | .. 83. | . 60{75. 87:4A437] 34] >6 & *. . < 3 // .. .(. 4". -4 * +$. | 1988. | .. 91. | . 36{43. 89:7A308] 35] J" . K., KC "7=" L. +. < 52 4" 4" 7. | .: , 1974. 75:3A379] 36] K&"5 B. . <( 5"23 3 2 G- // ; . * $. | 1970. | .. 14, / 9. | . 782{785. 71:4A142] 37] K&"5 B. . <( %" 5 " 5"23 // B"4 +?, cep. 1. | 1971. | / 1 (7). | . 15{21. 71:7A185] 38] Adams W. W., RiePel M. A. Adjoint functors and derived functors with an application to the cohomology of semigroups // J. Algebra. | 1967. | Vol. 7, no. 1. | P. 25{34. 68:4A266] 39] AguadTe J. Cohomology of binary systems // Arch. math. | 1981. | Vol. 36, no. 5. | P. 434{444. 82:1A486]
16
. .
40] Barr M., Beck J. Homology and standard construction // Lect. Notes in Math. | 1969. | Vol. 80. | P. 245{335. 72:7A312] 41] Barrat M. G. A note on the cohomology of semigroups // J. London Math. Soc. | 1961. | Vol. 36. | P. 496{498. 62:8A228] 42] Bernstein N. On the cohomology of semigroups // Dissert. Abstrs. | 1965. | Vol. 25, no. 1. | P. 6644{6645. 66:7A309] 43] Bernstein N. Standard cohomology of semigroups // Portugal. Math. | 1973. | Vol. 32, P. 21{23. MR 1974, vol. 47, N6813.] 44] Carbonne P. Cohomologie des semi-groupes d'entiers // J. Algebra. | 1983. | Vol. 84, no. 1. | P. 1{13. 84:4A396] 45] Cheng Charles Ching-an, Shapiro J. Cohomological dimension of an abelian monoid // Proc. Amer. Math. Soc. | 1980. | Vol. 80, no. 4. | P. 547{551. 81:7A377] 46] Clark W. E. Cohomology of semigroups via topology with an application to semigroup algebras // Commun. Algebra. | 1976. | Vol. 4. | P. 979{997. 77:7A387] 47] Cohen D. E. A monoid which is right FP1 but not left FP1 // Bull. London Math. Soc. | 1992. | Vol. 24, no. 4. | P. 340{342. 93:4A137] 48] Davidson T. M. K., Ebanks B. R. Cocycles on cancellative semigroups // Publ. Math. Debrecen. | 1995. | Vol. 46, no. 1{2. | P. 137{147. MR 96c:20116] 49] Eilenberg S., MacLane S. Homology theories for multiplicative systems // Trans. Amer. Math. Soc. | 1951. | Vol. 71, no. 2. | P. 294{330. MR 1952, vol. 13, p. 314.] 50] Grassmann H. On Schreier extention of |nite semigroups // Algebraic theory of semigroups. | Amsterdam e.a., 1979. | P. 219{224. 80:4A142] 51] Grillet P. A. Building semigroups from groups (and reduced semigroups) // Semigroup Forum. | 1972. | Vol. 4, no. 4. | P. 327{334. 73:2A151] 52] Grillet P. A. Left coset extensions // Semigroup Forum. | 1974. | Vol. 7. | P. 200{263. 74:9A182] 53] Grillet P. A. Commutative semigroup cohomology // Semigroup Forum. | 1991. | Vol. 43, no. 2. | P. 247{252. 92:2A313] 54] Haile D. E. On crossed product algebras arising from weak cocycles // J. Algebra. | 1982. | Vol. 74. | P. 270{279. 82:9A334] 55] Haile D. E. The Brauer monoid of a |eld // J. Algebra. | 1983. | Vol. 81, no. 2. | P. 521{539. 83:11A474] 56] Haile D. E., Larson R. G., Sweedler M. E. A new invariant for C over R: almost invertible cohomology theory and the classi|cation of idempotent cohomology classes and algebras by partially ordered sets with Galois group action // Amer. J. Math. | 1983. | Vol. 105, no. 3. | P. 689{814. 84:1A350] 57] Hancock V. R. Commutative Schreier semigroup extensions of a group // Acta Sci. Math. | 1964. | Vol. 25, no. 2. | P. 129{134. 65:2A312] 58] Hurwitz C. M. On the homotopy theory of monoids // J. Austral. Math. Soc., ser. A. | 1989. | Vol. 47, no. 2. | P. 171{185. 91:1A627] 59] Kobayashi Y. Complete rewriting systems and homology of monoid algebras // J. Pure and Appl. Algebra. | 1990. | Vol. 65, no. 3. | P. 263{275. 91:4A450]
:
17
60] Lafon Y. A new |nitness condition for monoids presented by complete rewriting systems (after C. C. Squier) // J. Pure and Appl. Algebra. | 1995. | Vol. 98, no. 3. | P. 229{244. MR 96c:20107] 61] Lausch H. Relative cohomology of groups // Lect. Notes Math. | 1977. | Vol. 573. | P. 66{72. 77:12A423] 62] Lausch H. Cohomology of inverse semigroups // J. Algebra. | 1975. | Vol. 35, no. 1{3. | P. 273{303. 76:1A430] 63] Leech J. E. Two papers: H -coextensions of monoids and The structure of a band of groups // Mem. Amer. Math. Soc. | 1975. | Vol. 157. 75:10A172] 64] Leech J. E. Extending group by monoids // J. Algebra. | 1982. | Vol. 74, no. 1. | P. 1{19. 82:9A335] 65] Leech J. E. Cohomology theory for monoid congruences // Houston J. Math. | 1985. | Vol. 11, no. 2. | P. 207{223. 86:1A491] 66] Loganathan M. Cohomology of inverse semigroups // J. Algebra. | 1981. | Vol. 70, no. 2. | P. 375{393. 82:1A483] 67] Loganathan M. Idempotent-separating extensions of regular semigroups with Abelian kernel // J. Austral. Math. Soc., ser. A. | 1982. | Vol. 32. | P. 104{113. 82:10A132] 68] Loganathan M. Cohomology and extensions of regular semigroups // J. Austral. Math. Soc., ser. A. | 1983. | Vol. 35, no. 2. | P. 178{193. 84:3A484] 69] MacLane S. Origins of the cohomology of groups // Monogr. Enseign. Math. | 1978. | No. 26. | P. 191{219. 79:4A439] 70] McDuP D. On the classifying spaces of discrete monoids // Topology. | 1979. | Vol. 18, no. 4. | P. 313{320. 80:6A572] 71] Mitchell B. On the dimension of objects and categories. I. Monoids // J. Algebra. | 1968. | Vol. 9, no. 3. | P. 314{340. 69:5A311] 72] Nguyen Huu Khang. Schreiersche Erweiterungen von Halbgruppen // Seminarber. Humboldt-Univ. Berlin: Sek. Math. | 1981. | No. 34. 82:3A139] 73] Nguyen Huu Khang. Schreier extensions of semigroups // Math. Nachr. | 1983. | Vol. 113. | P. 191{207. 84:6A125] 74] Nguyen Xuan Tuyen. On some exact sequences of cohomology of monoids // Bull. Acad. pol. sci. Ser. sci. math. | 1979{1980. | Vol. 27, no.. 7{8. | P. 521{523. 80:11A404] 75] Nico W. R. On the cohomology of |nite semigroups // Dissert. Abstrs. | 1967. | Vol. B28, no. 1. | P. 265. 68:6A341] 76] Nico W. R. On the cohomology of |nite semigroups // J. Algebra. | 1969. | Vol. 11, no. 4. | P. 598{612. 69:9A279] 77] Nico W. R. Homological dimension in semigroup algebras // J. Algebra. | 1971. | Vol. 18, no. 3. | P. 404{413. 72:4A440] 78] Nico W. R. A counterexample in the cohomology of monoids // Semigroup Forum. | 1972. | Vol. 4. | P. 93{94. 72:8A459] 79] Nico W. R. An improved upper bound for global dimension in semigroup algebras // Proc. Amer. Math. Soc. | 1972. | Vol. 35. | P. 34{36. 73:5A404] 80] Nico W. R. A property of projective ideals in semigroup algebras // Proc. Amer. Math. Soc. | 1973. | Vol. 37, no. 2. | P. 407{410. 73:10A244]
18
. .
81] Nico W. R. Wreath products and extension // Houston J. Math. | 1983. | Vol. 9. | P. 71{99. 83:11A299] 82] Novikov B. V. On partial cohomologies of semigroups // Semigroup Forum. | 1984. | Vol. 28, no. 1{3. | P. 355{364. 84:8A347] 83] Novikov B. V. On modi|cation of the Galois group // Filomat (Nis). | 1995. | Vol. 9, no. 3. | P. 867{872. 84] Redei L. Die Verallgemeinerung der Schreierschen Erweiterungstheorie // Acta Sci. Math. Szeged. | 1952. | Vol. 14. | P. 252{273. MR 1953, vol. 14, p. 614.] 85] RiePel M. A. A characterization of the group algebra of |nite groups // Pacif. J. Math. | 1966. | Vol. 16, no. 2. | P. 347{363. 67:3A149] 86] Rodrigez G. Sull'ampliamento di Schreier dei semigruppi // Rend. Ist. Lombardo. Acad. sci. e lett. | 1971. | Vol. A105, no. 5. | P. 859{883. 72:11A112] 87] Sribala S. Cohomology and extension of inverse semigroup // J. Algebra. | 1977. | Vol. 47, no. 1. | P. 1{17. 78:3A275] 88] Stallings J. R. The cohomology of pregroups // Lect. Notes Math. | 1973. | Vol. 319. | P. 169{182. 74:1A396] 89] Strecker R. Verallgemeinerte Schreiersche Halbgruppenerweiterungen // Monnats. Dtsch. Akad. Wiss. Berlin. | 1969. | B. 11, N. 5{6. | S. 325{328. 70:4A201] 90] Strecker R. UG ber kommutative Schreiersche Halbgruppenerweiterungen // Acta Math. Acad. Sci. Hung. | 1972. | B. 28, N. 1{2. | S. 33{44. 73:6A187] 91] Sweedler M. E. Weak cohomology // Contemp. Math. | 1982. | Vol. 13. | P. 109{119. 83:7A359] 92] Szendrei M. B. On an extension of semigroups // Acta Sci. Math. | 1977. | Vol. 39, no. 3{4. | P. 367{389. 78:7A218] 93] Takahashi M. Extensions of semimodules. I // Math. Semin. Notes, Kobe Univ. | 1982. | Vol. 10. | P. 563{592. 83:12A321] 94] Takahashi M. Extensions of semimodules. II // Math. Semin. Notes, Kobe Univ. | 1983. | Vol. 11. | P. 83{118. 84:9A250] 95] Wallace A. D. The structure of topological semigroups // Bull. Amer. Math. Soc. | 1955. | Vol. 61, no. 2. | P. 95{112. 57:7672] 96] Wells Ch. Extension theories for monoids // Semigroup Forum. | 1978. | Vol. 16, no. 1. | P. 13{35. 79:1A169] & ' 1997 .
. .
515.123
: , .
! , # . # ! $ ! ! % # . , & ' ' ( ' !, $
) # !. * ) ' ! .
Abstract B. G. Averbuh, On transformations of families of pseudometrics, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 19{32.
Arbitrary transformations of a family of pseudometrics are studied which result in uniform continuous pseudometrics again. Then their properties are applied for a descriptionof a quotient uniformstructure by means of pseudometrics on the initial space. It is proved that if a uniform structure on this space is subinvariant with respect to some given set of its transformations then the quotient uniform structure is subinvariant with respect to the induced transformations. The minimization for a given family of pseudometrics is considered in the last section.
1.
S = f g 2A | X . A Q R+, ! R+ | ! !S X X , !
!S (x1 x2) = !(f (x1 x2)g ), $ x1 x2 2 X . % & ' ( &( , !, &' !S &' X , ' , ! S . ) !, ! !, '! & . * $ &' & +1] , $ S . , 2001, 7, 1 1, . 19{32. c 2001 , !" #
20
. .
0 ! ( & , ' '( !: | !& $ X , ' , & !, $ ! X X !S > . , X 2 R. % & ' $ , ! ( S Y = X=R, ! ! $ UNIF ! . 3 & '. ! ' ! . F | & X X , (!( 2 R, X &' , &'( F . 4 $ Y & 2! & Y Y , F . 5 ( & , !$ ! . % ' ! : !& S S 0 , ! ! , S 0 $ & '( $
. 1. % 6 ! (
& . A | . 2 A R+ R+, $ '' !
, jx1 ; x2j. 7& RA+ Q R+ , &6 (( ) 2A . 0 r80 = fr0 g r800 = fr00 g RA+ & r80 6 r800 , r0 6 r00 ( 9 ' r81 r82 r83 2 RA+ & ' &! $ , ' ( ( ' ( $( ( ). 0 $ &( , &' $ R+ & ' ( !( . 1. % ! ! !, ! RA +, & ' & A, ! : : 1) !(8r ) > 0 !& $ r8 2 RA+, !(80) = 0, $ 80 | RA+ ' 9 : 2) ! ' 809 : 3) ' r81 r82 r83 &! $ RA+, !(8ri ) 6 6 !(8rj )+ !(8rk ), $ i j k 2 f19 29 3g, . . ! ( (
21
&! $ R+. : & 6 ! , !&'( r81 r82 2 RA+ r81 6 r82 !(8r1 ) 6 !(8r2 ). 0 !( ( & : 3) & !, &' !(8r1 + r82) 6 !(8r1 ) + !(8r2) &' !&'( r81 r82 2 RA+. 4 '! &' . . 1. A $ . 4 $ & !( : ( !c(x) = x 0 6 x 6 c $ c 2 R+9 c x > c !(x) = xp $ x 2 R+ 0 < p 6 19 8 x 0 6 x 6 2 > > <4 ; x 2 < x 6 3 !(x) = > >x ; 2 3 < x 6 4 : 2 x > 4: ', & & & ' . % ' R+ & , : 1) : 2). 2. A f g 2A | '( '( . 4 $ P!& $ c > 0 & !(r) = !c (r ), $ r8 = fr g 2 RA+. %' ( & . : 4) A RA+. . 0 $ " > 0 & U ' RA+, $ (80 8h) 2 U !(8h) < "2 , $ h8 2 RA+. : , U 6 ' jr0 ; r00 j < , $
> 0. (8r0 r800) 2 U . 7& r8 r = min(r0 r00), 2 A. 4 $ r8 6 r80 r800 ! ' 8h0 8h00 2 RA+, r8 + 8h0 = r80 , r8 + h8 00 = r800, 6 (8r 8h0 r80) (8r 8h00 r800) & $ . 7 , (80 8h0) (80 8h00) 2 U , !(8h0 ) !(8h00) < "2 . > : 3) !(8r ) ; !(8h0 ) 6 6 !(8r0 ) 6 !(8r) + !(8h0 ), !(8r ) ; !(8h00) 6 !(8r00 ) 6 !(8r) + !(8h00 ), j!(8r0) ; !(8r00 )j < ". : 5) A0 | A. 0 : RA+ ! R+A i0 : RA+ ! RA+
. ! ! | 0
0
22
. .
R
A, !0 = !ji ( A+ ) | A0 . ! !0 | A0 , !0 0 | A. @ $ , & ! A 2 A, A0 = A n fg ! = !0 0. > : 4) ,
& & 6 $ A. ! . # ! A $ 2 A, !ji ( +) %, i | R+ R+. . A ! , !ji( +) 0, & i (R+ ) 0 : RA+ ! RA+ , $ A0 = A nfg, 80. 0 & . r8 2 RA+ | '
, r80 = (i0 0 )(8r) r80 = (i )(8r), $ | RA+ R+ . 4 $ r8 = r80 + r80 r80 r80 6 r8, (8r r80 r80) & $ . B, !(8r0 ) ; !(8r0 ) 6 !(8r) 6 !(8r0 ) + !(8r0 ) !(8r) = !(8r0 ). : 6) & . ! $ %, . . ' !( '( fA g2B , f! g2B ( & ,
6 !& 2 B ! A , S & ! B . A A = A , '
''( Q RA+ = RA+ . & ! : RA+ ! R+ Q & RB+, !^ = ! ! , &! RA+ R+. , !^ & A. %' : 1) : 2) . 5 (8r1 r82 r83) RA+, &!! $ . 6 ' RA+ , 2 B , (8r1 r82 r83 ), &! $ . '( (! (8r1 ) ! (8r2 ) ! (8r3 )) (f! (8r1 )g f! (8r2 )g f! (8r3 )g ) RB+ & . & ! $ : 3), !^ . r81 r82 2 RA+ r81 6 r82. A r8i = fr8i g , $ i = 1 2, r8i 2 RA+ , r81 6 r82 , , ! (8r1 ) 6 ! (8r2 ) ( 2 B . 0
0
R R 0
23
B, f! (8r1 )g 6 f! (8r2 )g RB+, !^ (8r1) = !(f! (8r1 )g ) 6 6 !(f! (8r2 )g ) = !^ (8r2 ). : 7) r8 | $ RA+, r80 | $, r80 6 28r. % !
A !(8r0 ) 6 2!(8r). . 4 (8r0 r8 r8) & $ . 76 : 3). : 8) 5 ' ( & R+. ! | & , " > 0 h > 0 | , !(h) < ". 4 $ !(x) < 2" x 2 +0 2h]. 7! : h > 0, !(h) = 0, !(x) 0 R+. A, , !(x) !, "0 > 0, ( & 2( x !(x) > "0 . 0 < " < "0 fx : !(x) < "g $ . ' ! & 2 x, $ !(x) = "9 & $ ("). ) (") ! ", !. : 9) ! ! A ' r8 2 RA+, %' , %. . ( ' '2 & , r8 = = (i )(8r ). r8 6= 0 r8 6 r8, : 5) : 7) ! , !ji( +) !, . . ! $ A. J : 1). X | S = f g | '( X , ' A. $ $ & A ( ( , . . S - . K ! RA+ ! !S X X , ! !S (x1 x2) = !(f (x1 x2)g ), $ x1 x2 2 X . 5 ' $ . 1. ( !S X , )
! : 1), : 2), : 3). . L &( '( ', ' !& $ ( X S , '( !S . . , ! | & , !S | X . 7 ' & ! S . % ,
& 9 ,
R
24
. .
' $ : 3). , !S . U | RA+, !(8r ) < " r8 = fr g 2 U , $ " | 6 . : , U 6 r < , $ &$ A0 A, > 0 !& $ 2 A0 . 7& V ' X , (x1 x2) 2 V ( 2 A0 ! (x1 x2) < . 4 $, , (x1 x2) 2 V !S (x1 x2) < ". ( &( , : 3). (8r1 r82 r83) | RA+, &! $ . 2 A R2 $ P1 P2 P3 P1 P2 = r1 , P1 P3 = Qr2 , P2 P3 = r3 . X = R2 P1 = fP1 g, P2 = fP2 g, P3 = fP3 g | X . &' '( ( X R2 , 2 A, & . 4 $ (P1 P2) = = r1 , (P1 P3) = r2 , (P2 P3) = r3 ( 2 A,
S = f g, : !S (P1 P2) = !(8r1 ), !S (P1 P3) = !(8r2), !S (P2 P3) = !(8r3), &( : 3). L &( '( & $ . X = RA+. % R+ !, (0 r ) = r . A, '2, | & X S = f g, f (80 r8)g = r8 !S (80 r8) = !(8r ), ' & . 5 ' X , '( ' & . 5 1) B fA g2B f! g2B ! | , ) : 6), S = f g 2A , 2 B , | S X , A , S = S .
; Q ! ! S !, M = f(! )S g2B , %. .
S = f g 2A 2B &O $ & A ( X 9 S , A = A . M , ' B . . > :
Y
Y
! ! (x1 x2) = ! ! (f (x1 x2)g
S
2A 2B ) =
= !(f! (f (x1 x2)g 2A )g2B ) = !(f(! )S (x1 x2)g2B ) = ! (x1 x2) !&'( x1 x2 2 X .
25
5 2) * % % ! % S , ' , !S . . x1 x2 2 X x1 6= x2. 4 $ $
!S (x1 x2) = !(f (x1 x2)g) RA+
' . !S (x1 x2) 6= 0 : 9). 5 3) * % % ! , X !S , , S , $ A, !. . A0 | A, & , '( !, S 0 | S ,
A0 . 7& , '2, i0 RA+ RA+ !0 | $ !ji ( A+ ) . 4 $ $ , !S0 !S X !. > ' 1 , , !S , , 2, , S 0 . 0 & 2. 5 $ U ', S 0 . : , 6 < , $ &$ A00 A0 > 0. L 6 " > 0, $ ! f(x1 x2) 2 X X : !S (x1 x2) < "g U . 7& i R+ RA+ , $ 2 A00 . : & !0 ji( +) : 5) , : 8) " > 0, $ !0 ji( +) (x) < " " , (x1 x2) | , x < . " = 21 min 2A 0 0 X X , !S (x1 x2) = ! (f (x1 x2)g 2A ) < ". 7& r8 f (x1 x2)g 2A RA+ , r8 | $ ! ! i (R+ ), $ 2 A00. J $ $ ' ' !, ' , (x1 x2). 7 , r8 6 r8, !0 (8r ) 6 2!0(8r) < 2" 6 " (x1 x2) < A00. 5 4) &( ' ! . P &' $ , & S , ( ( ( S . 5 4) S1 S2 | X , S1 = S2 . % , %' ( , %' ) $ , . . 5 ' . 0 S = f g 2A $ !O $ & f : A ! S . %6 A 2 , 1 2 , f (1 ) = f (2 ), & A . 0
0
0
R
0
0
R
R
00
0
0
0
0
26
. .
A & & A ! S S ,
A . 0 , S S . $ , '& ! , A A, S | S . 4 $ & ! A & & ! A, . 5 !S = !S ', ' $ & S &' S . P &' & !, & Q $ a 2 A Q Qa $ & R+a R+ . 4 $ Qa 2a a2A '' (! Q Q RA+ RA+, '
R+ . 7& a2A 2a $ & D. 7$ D !& & ! A,
& ! A . 0 !&'( x1 x2 2 X ! f (x1 x2)g 2A 2 D, ', !S = !S . 3 & $ . 7& , S1 S2 ( & ! ' & . 5 5) | X , , S . ' %' !, , !S , % . . %'& S = f g 2A & 6
S 0 , &' $ ! S 0 . % 6 $ ( ! ! '( f"n g $ "n 6 '
& An A & T '( Qn = f g 2An , '( ! f(x1 x2) 2 X X : (x1 x2) < g
2An
f(x1 x2) 2 X X : (x1 x2) < "n g. 4 $ S 0 S 0
, A = An . n ! | ! & A, $ A0 . 5 3) ' . 4 & , , ! & 2, > 0, 2 A0 . 5 6) ' , , , ' %'
27
!, % X X
!S > .
. ' 5 1) !, $ S , & . @ , , 6 1. 5 ! R+, !
!^ (s) = sup (x1 x2)
(x1 x2 )6s
, &' !
& , . 7 , $ , !^ & ! : 1) 0 6 !^ (s) 6 1 !& $ s 2 R+9 2) !^ (0) = 09 3) !^ (s) 9 4) !^ (s) ' . % ! $ , , , , ! . 4 , ' ( !, $ $ ( ' ! & f(s t) 2 R2 : s 2 R+ 0 6 t 6 !^ (s)g ( ( ( $ '( ' '( ). % , ! ' ! $ , !& $ " > 0 k > 0, $ ' f(s t) 2 R2 : s 2 R+ 0 6 t 6 " + ksg, ! | !^ , & ! | 6 ' . 3 2 . % , !!$ $ ,
! : X Y | , 6 Y $ , f : X ! Y | ' &. 4 $ &
, X , $ & f ' . 7 , 5 6) &( . 6 6 $ $ . 7 $ RA+ ! ^(8r) = sup (x1 x2): f (x1 x2 )g6r
4 $ ! . 1. + !S , ) ^ % . 2. X | R | 2 . % '
28
. .
Y = X=R 6 ! ! (, '( ' & p : X ! Y . 7 & p ' $ ( & '() '( ( ''( & . Y $ $ , $ 6 & X . :' !, ( $ , !$ ( ! ! S , , ! ! Y . L 6 ' '( , $ $ 6 . A ,
' !& , . 6 ' (
& , & !& $ $ & , $ . * $ !( ( & . 5 4) , $ 6
. 5 !!, - & !, !. | X , y1 y2 | ' Y . R k , ! ' X , & ' !&! 2k-! Z = fx000 x01 x001 : : : x0k;1 x00k;1 x0kg X , !! ! : p(x000 ) = y1 , p(x0k ) = y2 , p(x0i) = p(x00i ) i = 1 : : : k ;1. 0 Z 6 Pk (Z ) = (x00i;1 x0i). 1 7 ^ Y , ^ (y1 y2 ) = Z(yinfy ) (Z ), 1 2 $ Z (y1 y2) & ( , !( y1 y2 . Y , ' & X , & ' ( (. 7 : 1) & & p Y , 9 2) ( , '( X ,
$ , $' 2 ' ( 9 3) X & . 5 $ S X & ' S^ Y , , ( ( S .
29
A Y ! , 6! ^ X , & p & '' . , Y 2, ( $ , 6'( S , . 3 !! ! Y & ' & , ! S . , S = f g 2A $ X ( , !( ( & ), ' ' Y !. , , | $ ( Y ) , | 6 & X . 4 $ S , ! . ( , S^, !! . 4 & , ! . 2. X | , R | , $ X S | X , %' . ) Y = X=R , %' S . K ' , $ X & , $ '( R. 7& F = ff g2B & X &. X 6 & $ , !&'( x1 x2 2 X , 2 B (f (x1) f (x2)) 6 (x1 x2). 5 ! X 6 & F , &' , &!( . , $ !$ $ & ! S = f g &'( F
& . % , : !S (f (x1) f (x2 )) = !(f (f (x1) f (x2 ))g ) 6 !(f (x1 x2)g) = = !S (x1 x2). 4 & , & &' ' ' !( ( & &'( . , F $ 2 R, . . (f f )(R) R !& $ 2 B . 4 $ - Y & F^ . , ' 2 ' ! . 2. ! X F , ) Y F^ .
30
. .
. y1 y2 | ' ' Y , Z | , ! ( X . A f^ | & F^ , f | ! $ & F , &' f , &!( Z , ! Z , !! f^ (y1 ) f^ (y2 ). S |
!( ( &
&'( F X . 4 $ &' &' 2 S , Z & 2 ' Z . B, ^ ^ (f^ (y1 ) f^ (y2 )) 6 ^ (y1 y2 ), . . & F^ . 76 , 2 ! Y . 3. 5 ( & $ $ . 6 ' (
& , ( $
& '( $ . 3. . . S , A. % S !! ! S = f0 1 : : :g, & . ! + 1 T = fT0 T1 : : :g S , ! ' 6 T ! : T1) 2 T > 9 T2) T | 9 T3) T \f : < g $ & '( T . 7 , T ' . , $ , T0 = S , T ' ( < 6 . A 2, , = + 1 $ & T n f g, T = T . A $ & , T = T n f g. %' T1), T2), T3) . T | ' . 7& $ P = T . < P & , $' T2) T3): P1) 2 P > 9 P2) P \ f : < g $ & '( P .
31
A P , T = P . A P
' , & Q S , , !( X ! , ! , ! P . Q < . , Q R , $ T = P R . $ , Q S . 5 ' Q ! !: Q = f0 1 : : :g, $ < 9 & . !! ! +1 fR0 R1 : : :g Q , !! ! : R 1) !& $ 6 ! R f : < g, 6
1 < 2 6 R2 \ f : < 1 g = R1 9 R 2) , X !& , , P R , < 9 2 R , ( , P f : < g9 R 3) (P R ) \f : < g $ & '( P R
!& 6 . % R0 6 . , , R ' < 6 , 2, , = + 1. 4 $ R = R , , X , , P R 9 R 1), R 2), R 3) ' '. A $ , $ R = R f g. 4 $ $
' R 1) R 2). 7& ! R3), , &' $
& P R , $ $ & , $ . % , , $ , X , &' , . 7' ' (P R ) \ f : < g $ &' ( & ! . 5 , S , , $ | ' . 7& $ R R . %' R1) R2) < $ , R 3). - (P R ) \ f : < g $ & $( P R . 4 $ P , , - '(, $ $ & $ &' &' Q , - '(, &' $ $ '
32
. .
P , &' P2). , , 2 R . 4 $ $ ' $ $ & $ P ( ! Q ). K $ , $ &' 0 Q , !( , &' ! R2), ' , ! , $ R , < , $ 0. $ &' $
& , $ ' $ P & 2! Q . 4 ' fR : 6 g . R = R , T = P R 9 T1), T2), T3) T ! P1), R2), R3) P R , ' .
1] ., . , // Math. Slovaca. | 1981. | Vol. 31, no. 1. | P. 3{12.
$ % & 1997 .
. . , . .
. . .
517.987.1+517.518.1+517.982.3
: , , {.
" #$% , &'( 1909{1914 ', : , ! . . 1952{1953 % / 0 0% 0 & / , &# , 1 . 20% % % 3 ( 0 / 1956 . 5. .. "%0 . . 1996{1997 % 0 '2 3 3 60% /, 0 $ , 3' , 7 . " 8 00 , "{" ? . , 7 60, 8 .
Abstract V. K. Zakharov, A. V. Mikhalev, Connections between the integral Radonean representations for locally compact and Hausdor% spaces, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 33{46.
After the fundamental papers of Riesz, Radon and Hausdor; in 1909{1914 the problem of general Radonean representation became actual: &nd for Hausdor% topological spaces a class of linear functionals isomorphically integrally representable by all Radon measures. In 1952{1953 the bijective solution of the problem of Radonean representation for locally compact spaces was obtained by Halmos, Hewitt, Edwards, etc. For bounded Radon measures on a Tychono; space the problem of isomorphic Radonean representationwas solved in 1956 by Yu. V. Prokhorov. In 1996{1997 the authors obtained one of possible solutions of the problem of general Radonean representation using the family of metasemicontinuous functions with compact supports and the class of thin functionals on it. ' ! , 2001, 7, < 1, . 33{46. c 2001 ( )*, + ! ,- .
34
. . , . .
After this the question if the theorem about general Radonean representation covers the Riesz{Radon theorem was still left open. In this paper the positive answer to this question is given.
1], 2] 3] 1909{1914 !"# . %" & '. ( ' )!' (T G ) ' - '# RMw0(T G )0 ."/ 0! !- ! ' 1 B(T G ) 0 1 R ]. 2.- ' . i d !' MI(T B(T G ) ) B(T G )-1''/ - '/ !3# f 1 T R. 4 ' ! !3/ i '. ' " ' !' T A(T ), .' !' UI(T ) (MI(T B(T G ) ) j 2 RMw0(T G )0 ) B(T G )- " !1/ ! ', !' ) 7! i jA(T) 1 '. RMw0 (T G )0 ! A(T ) #/ !3 A(T ) - -- 5! /'. 4 . - 1 1! (/) ''- ): ! - ! A(T ) !' A(T ) #/ !3 &' /" !/ (. . "1 '/) ' ! ! 0&)
A(T)4 , ! ) ."- )" (A(T)4 )+ ) '# ' A(T)rf0 fi jA(T ) j 2 RMw0(T G )0 g
."/ ! !3 A(T). 0 '/ ! - - )- !" !' ! / '0' 7], " ' 8] 9 ' 9] 1952{1953 1 !! { ('., ', 11] 12]). . (T G ) | Cc (T G ) | (T G ) . : 1) ! ! 7! i jCc(T G ) " RMw0 (T G )0 Cc (T G ) $ % 2) Cc (T G )rf0 ! ! & (Cc (T G ) )+
35
- ! Cc (T G ). ; 1 1'./ 0# '/ ! - )- 1 " / ' # " 1997 . ('. 14,15,39,40]). ( ). (T G ) | , S(T G ) |
( ) (T G ) Sc (T G ) | &( .
1) ! ! 7! i jSc (T G ) " RMw0 (T G )0 Sc (T G ) $ % 2) Sc (T G )rf0 ! ! & (Sc (T G )4 )+ - ! Sc (T G ). / !1/ # 14], 15], 39] 40] - !//' , { ? 4 # " &- ."/#
< : ' { 1 '/ ' !' ('. ' ). =- "- - -- /' .' " 39]. <' 1 ' '/' -' /!' '/ /' ! <# " ('. !. 40]). > , '/ .' '3
! " 39] !. '3 ! 3 # /. ? / /. " ?. 4. @! 1 ! ., ' 1 1" ! - " - .
6.
4 <' ! '/ !.', ) ' { - !" !' ! 1 '/ ' !' - . " T | !" !' ! ' | #/# ."/# !3 Cc (T), . . ' 2 (Cc (T) )+ . !.', ) !3 ' .- /' 1' # ." ! !3 Sc (T ), . . ' 2 (Sc (T )4 )+ . " A(T) | 1 " '. F(T ). ( '', ) !3 1 A(T ) R 1/ - !! , f = p-lim(fm j m 2 M) )& f = lim(fm j m 2 M) - !.# (fm 2 A(T ) j m 2 M) !.# !3 f 2 A(T). D A(T ) | 0&)
36
. . , . .
! , < # " !.' 1 # : 1) (fm 2 A(T)+ j m 2 M) # 0 F(T) )& (fm j m 2 M) # 0 RG 2) - f 2 A(T) (fm 2 A(T )+ j m 2 M) " f F(T ) ! (fm j m 2 M) " f R. ? )- "" - !! - "-' (fm 2 A(T) j m 2 M !). % - '' - -- ! ) # - "#0 .#. <' '/ ' & !1" ', - - -- 0 1 # ('. 12, 73D]). 1. ) ' Cc (T) . . " (fm 2 Cc (T)+ j m 2 M) # 0 F(T). J!' m0 2 M '' !3 g fm0 !' ! '. C clft 2 T j g(t) > 0g. =- C !3- h 2 Cc (T )+ , !- ) h > (C). 41"'&' " > 0. K #&- a > 0, ! ) a'(h) < ". '' !// '. Gm ft 2 T j fm (t) < ag. K! !! (fm j m 2 M) # 0, (Gm j m 2 M) " T . <' !) !/ (Gn j n 2 N M) '. C. L1 M , ) m 2 M, ! ) n 6 m - n 2 N. <' Gm Gn - n. J), C Gm . 41"'&' l 2 M, ! ) l > m0 l > m. K fl 6 g fl 6 fm . L1 , ) H coz fl C Gm , 1 , ) fl (t) 6 fm (t) < a = a (C)(t) 6 ah(t) # )! t 2 H. J), fl 6 ah )& 'fl 6 a'(h) < ". D k < l, 'fk 6 'fl < ". K!' 1', ('fm j m 2 M) # 0. M L "1- # ))# / !3 ' ' " . !/' &/' ' ' =-, /' 21]. '' '. Ybc )/ !3# !' !/' -' f 2 Fbc (T), ! ) f = sup(fm 2 Cc (T) j m 2 M) F(T) - !# (fm 2 Cc (T) j m 2 M) ". ? )/' 1' '' '. Zbc !3# f 2 Fbc (T ), ! ) f = inf(fm 2 Cc (T) j m 2 M) F(T ) - !# (fm 2 Cc (T ) j m 2 M) #. @, ) Cc (T) = Ybc \ Zbc . = ' ' " Y Z. 2. *! Y Z F(T ) & &( P : P 1) (ai gi j i 2 I) 2 Y (ai hi j i 2 I) 2 Z & (ai 2 R+ j i 2 I), (gi 2 Y j i 2 I) (hi 2 Z j i 2 I)% 2) inf(gi j i 2 I) 2 Y sup(hi j i 2 I) 2 Z & (gi 2 Y j i 2 I) (hi 2 Z j i 2 I)% 3) sup(gi j i 2 I) 2 Y inf(hi j i 2 I) 2 Z & (gi 2 Y j i 2 I) (hi 2 Z j i 2 I) & u v 2 Fbc (T), gi 6 u hi > v i%
37
4) g ^ 1 2 Y, g _ (;1) 2 Y, h ^ 1 2 Z h _ (;1) 2 Z & + g 2 Y h 2 Z% 5) ;Y Z ;Z Y, . . ;g 2 Z ;h 2 Y & g 2 Y h 2 Z% 6) Y = Cc (T ) + Y+ , . . & g 2 Y (& f 2 Cc (T) g0 2 Y+ fg 2 Y j g > 0g, g = f + g0 % 7) Z = Cc (T ) ; Y+ , . . & h 2 Z (& f 2 Cc(T ) h0 2 Y+ , h = f ; h0 . . % # 1){5) - - - /' -' 1 # / ). ' # 6). " g 2 Y, . . g = sup(fm j m 2 M) - !# (fm 2 Cc (T) j m 2 M) ". 41"'&' f fm0 '' gm (fm _ f) ; f 2 2 Cc (T)+ g0 g ; f. K! !! (gm j m 2 M) " g0 , g0 2 Y+ . J), g = f + g0 . ; . 1 1). % # 7) - ). M ; ' Y /# !3 ', - 'g supf'f j f 2 Cc (T ) ^ f 6 gg - !. g 2 Y. 9 !!. =# ", ! !! !3- g ) ' !' !/# ", !' ! '. C ) a > 0, ! ) g 6 a (C). <' g 6 a (C) 6 f0 - !# !3 f0 2 Cc (T ). 4 1" 'g 6 'f0 < 1. ? )/' 1' ' Z /# !3 ', - 'h inf f'f j f 2 Cc(T ) ^ f > hg - !. h 2 Z. @, ) ' ' - - - .-' '. % '" ''/ 2 !1/ 3. , g 2 Y (fm j m 2 M) " g (fm 2 Cc(T )+ j m 2 M), ('fm j m 2 M) " 'g. . K! !! fm 6 g, 'fm 6 'g b - m. '' ) a sup('fm j m 2 M) 6 b. 41"'&' 1 " !3 f 2 Cc (T )+ , ! ) f 6 g. K ((f ; fm )+ j m 2 M) # (f ; g)+ = 0 F(T). 4 ''/ 1 '/ )' inf('((f ; fm )+ ) j m 2 M) = 0. K! !! ' 1, '((f ; fm )+ ) > '(f ; fm ). <' 'f = 'f ; inf('((f ; fm )+ ) j m 2 M) = sup('f ; '((f ; fm )+ ) j m 2 M) 6 sup('f ; '(f ; fm ) j m 2 M) = = sup('fm j m 2 M) = a. ; , ) b 6 a. M 4. ) ' ! Y+ &( : 1) ' " % 2) '(ag) = a'g & a 2 R+ g 2 Y+ % 3) '(g0 + g00) = 'g0 + 'g00 & g0 g00 2 Y+ . . % # 1) 2) ) /. 3) '' / / '. M 0 ff 2 Cc(T )+ j f 6 g0 g M 00 ff 2 Cc (T)+ j f 6 g00g. 'g0 = sup('f 0 j
38
. . , . .
f 0 2 M 0) 'g00 = sup('f 00 j f 00 2 M 00). '' '. M M 0 M 00. K! !! g0 = sup(f 0 j f 0 2 M 0 ) g00 = sup(f 00 j f 00 2 M 00), g0 + g00 = sup(f 0 + f 00 j (f 0 f 00) 2 M). % ", (f 0 + f 00 j (f 0 f 00 ) 2 M) " (g0 + g00 ). ? )/' 1' ('f 0 + 'f 00 j (f 0 f 00 ) 2 M) " ('g0 + 'g00 ). '' 3 ('(f 0 + f 00 ) j (f 0 f 00 ) 2 M) " '(g0 + g00). L1 '' '(g0 + g00 ) = 'g0 + 'g00 . M 5. ) ' ! Y ' ! Z & &( : 1) ' ' " &% 2) '(f + g) = 'f + 'g '(f ; g) = 'f ; 'g & f 2 Cc (T) g 2 Y+P % P P '( (aigi j i 2 I)) = (ai 'gi j i 2 I) '( (ai hi j i 2 I)) = 3) P = (ai 'hi j i 2 I) & (ai 2 R+ j i 2 I), (gi 2 Y j i 2 I) (hi 2 Z j i 2 I)% 4) ('(gm ) j m 2 M) " 'g & (gm 2 Y j m 2 M) & g 2 Y, (gm j m 2 M) " g F(T )% 5) '(;g) = ;'(g) '(;h) = ;'(h) & g 2 Y h 2 Z% 6) 'v 6 'u 'u 6 'w & u 2 Y v w 2 Z, v 6 u 6 w. . % # 1) 1 #. 2) '(f + g) = supf'u j u 2 Cc (T ) ^ u 6 f + gg 'g = = supf'v j v 2 Cc (T )+ ^ v 6 gg. K! !! u 6 f + g, u ; f 6 g )& 'u ; 'f 6 'g, . . 'u 6 'f + 'g. % ", '(f + g) 6 'f + 'g. K! !! v 6 g, f + v 6 f + g )& 'f + 'v 6 '(f + g), . . 'v 6 '(f + g) ; 'f. % ", 'g 6 '(f + g) ; 'f, . . 'g + 'f 6 '(f +g). 4
-- ). % # 3) " 1 # 2), # 6) 7) ''/ 2 # 2) 3) ''/ 4. 4) '' / S '. Ll fu 2 Cc(T ) j u 6 gl g. '' '. P (fmg Lm j m 2 M). O -)' , (l u) 6 (m v), l 6 m u 6 v. D p (l u) q (m v) | 1 "/ <'/ 1 P , n 2 M, ! ) l 6 n m 6 n. K! !! u 6 gl 6 gn v 6 gm 6 gn , w u _ v 2 Ln . <' p 6 (n w) q 6 (n w). % ", '. P - -- /' . '' " (fp 2 Cc (T)+ j p 2 P), ! ) fp u - !. p (l u), u 2 Ll . " p = (l u), q = (m v) p 6 q. K u 6 v )& fp u 6 v fq . J), (fp j p 2 P ) ". " t 2 T " > 0. K g(t) ; "=2 < gl (t) - ! l 2 M. =, gl (t) ; "=2 < u(t) = fp (t) - ! u 2 Ll p (l u). % ", g(t) ; " < fp (t). K! !! " 1 ", g(t) = sup(fp (t) j t 2 P ). J), (fp j p 2 P ) " g. '' 3 ('fp j p 2 P) " 'g. " " > 0. K 'g ; " < 'fp - ! p (l u). K! !! fp = u 2 2 Ll , 'fp = 'u 6 'gl )& 'g ; " < 'gl . J), 'g = sup('gm j m 2 M).
39
% # 5) ) . 6) # ' 6) 7) ''/ 2 u = f 0 + g0 v = f 00 ; g00 - !/ 0 f f 00 2 Cc (T) g0 g00 2 Y+ . K! !! f 00 ; f 0 6 g0 + g00 2 Y, # 3) 'f 00 ; 'f 0 6 '(g0 + g00 ) = 'g0 + 'g00. K " # 2) 'v = 'f 00 ; 'g00 6 6 'f 0 + 'g0 = 'u. =, 'u = supf'f j f 2 Cc (T ) ^ f 6 ug 'w = inf f'f j f 2 Cc (T) ^ f > wg )& f 6 u 6 w 6 f. % ", 'f 6 'f. ; 'u 6 'f 'u 6 6 'w. M K " ' Fbc (T ) / !3/ 'e ': , 'ef inf f'g j g 2 Y ^ g > f g ': f supf'h j h 2 Z ^ h 6 f g - !.# !3 f 2 Fbc (T ). @, ) 'e - -- .' ', ': - - .' '. 1. ) 'e ': Fbc (T) & &( : 1) 'e ': " &% 2) ': f 6 'ef & f 2 Fbc (T)% 3) 'e(;f) = ;': f ': (;f) = ;'ef & f 2 Fbc (T)% 4) 'e(af) = a'ef ': (af) = a': f & a 2 R+ f 2 Fbc (T)% 5) 'e(f 0 +f 00 ) 6 'ef 0 + 'ef 00 ': (f 0 +f 00 ) > ': f 0 +': f 00 & f 0 f 00 2 Fbc (T)% 6) ('e(fn ) j n 2 N) " 'ef & (fn 2 Fbc (T ) j n 2 N) & f 2 Fbc (T), (fn j n 2 N) " f F(T ). . % # 1) ) . 2) ': f supf'h j h 2 Z ^ h 6 f g 'ef inf f'g j g 2 Y ^ ^ g > f g. K! !! h 6 f 6 g, # 6) ''/ 5 'h 6 'g. ; ': f 6 'g ': f 6 'ef. 3) K! !! 'e(;f) inf f'g j g 2 Y ^ g > ;f g, f > ;g 2 Z )& ': f > '(;g). # 5) ''/ 5 '(;g) = ;'g. <' ;': f 6 'g )& ;': f 6 'e(;f). % # /, ! !! ': f = supf'h j h 2 Z ^ h 6 f g, ;f 6 ;h 2 Y )& 'e(;f) 6 '(;h) = ;'h. <' ;'e(;f) > 'h )& ;'e(;f) > ': f. % # 4) 1 # 3) ''/ 5. 5) 'e(f 0 + f 00 ) inf f'g j g 2 Y ^ g > (f 0 + f 00 )g, 0 'ef inf f'g0 j g0 2 Y ^ g0 > f 0 g 'ef 00 inf f'g00 j g00 2 Y ^ g00 > f 00 g. K! !! g0 +g00 > f 0 +f 00 g0 +g00 2 Y, # 3) ''/ 5 'e(f 0 +f 00 ) 6 '(g0 +g00) = = 'g0 + 'g00. ; 'e(f 0 + f 00 ) ; 'g0 6 'g00 )& 'e(f 0 + f 00 ) ; 'g0 6 'ef 00 , 'e(f 0 + f 00 ) ; 'ef 00 6 'g0 )& 'e(f 0 + f 00 ) ; 'ef 00 6 'ef 0 . 6) K! !! ('efn j n 2 N) " 'efn 6 'ef b - n, a sup('efn j n 2 N) 6 b. P!' " > 0. K - !. n gn0 2 Y, ! ) gn0 > fn 'efn + "=2n > 'gn0 > 'efn . K! !! f 2 Fbc (T), f 6 u - ! u 2 Cc (T). '' gn00 gn0 ^ u 2 Y. # 3)
40
. . , . .
''/ 2 g 2 Y, ! ) g = sup(gn00 j n 2 N). K! !! gn00 6 gn0 ,
# 1) ''/ 5 'gn00 6 'gn0 < 'efn +"=2n . 2' , gn00 > fn ^ f = fn . '' gn sup(gi00 j i = 1 : : : n) 2 Y. K (gn j n 2 N) " g. # 4) ''/ 5 ('gn j n 2 N) " 'g. ' !3, ) 'gn 6 'efn + " ; "=2n . =- n = 1 'g1 = 'g100 6 'ef1 + "=2 = 'ef1 + " ; "=21. 1 ' # / ) gn + gn00+1 = gn ^ gn00+1 + gn _ gn00+1 . K! !! gn ^ gn00+1 > > gn00 ^ gn00+1 > fn ^ fn+1 = fn , '(gn ^ gn00+1 ) > 'efn . 2' , gn _ gn00+1 = = gn+1. 4 1" 'gn + 'gn00+1 = '(gn ^ gn00+1) + 'gn+1 > 'efn + 'gn+1 . % ", 'gn+1 6 ('gn ; 'efn )+'gn00+1 6 " ; "=2n +'gn00+1 < " ; 2"=2n+1 + + 'efn+1 + "=2n+1 = 'efn+1 + " ; "=2n+1. - ! !1' , )' 'g = lim('gn j n 2 N) 6 lim('efn +" ; "=2n j n 2 N) = lim('efn j n 2 N)+" ; lim("=2n j n 2 N) = = a + ". 2' , f = p-lim(fn j n 2 N) 6 p-lim(gn00 j n 2 N) 6 6 p-lim(gn j n 2 N) = g 2 Y )& b 'ef 6 'g. 4 1" b 6 a + ". K! !! " 1 ", b 6 a 6 b. M '' Fbc (T ) '. Xbc' ff 2 Fbc (T) j 'ef = ': f g. ; ' /# !3 '^ Xbc' , . 'f ^ 'ef = ': f. = ' ' " X' . % '" / .# !1/ - - '. 1. T | ' 2 2 (Cc (T ) )+ .
1) X' = ff 2 Fbc (T) j 8" > 0 9g 2 Y 9h 2 Z (h 6 f 6 g ^ 'g ; 'h < ")g% 2) X' | % 3) Y Z X' % 4) '^ ! ! '% 5) '^ - X' . . 1) ;1)' )" 1) )1 X. 'ef inf f'g j g 2 Y ^ g > f g ': f supf'h j h 2 Z ^ h 6 f g. =- f 2 Fbc (T ) " > 0 g 2 Y h 2 Z, ! ) h 6 f 6 g 'ef + "=2 > 'g ': f ; "=2 < 'h. D f 2 X' , 'g ; 'h < ('ef + "=2) ; ; (': f ; "=2) = " )& f 2 X. ;, f 2 X " > 0, 'ef 6 'g ': f > 'h ! 'ef 6 'g < 'h + " 6 ': f + ". J), 'ef 6 ': f. L "1 # 2) 1 .- 1, 1! )', ) 'ef = ': f, . . f 2 X' . 2) " f 2 X' a 2 R. K # 3) 1 .- 1 'e(;f) = ;': f = ;'ef = ': (;f). J), ;f 2 X' . D a > 0, 'e(af) = a'ef = a': f = ': (af). D a < 0, 'e(af) = = (;a)'e(;f) = (;a)': (;f) = ': ((;a)(;f)) = ': (af). J), af 2 X. " f 0 f 00 2 X' . K # ' 2) 5) 1 .- 1 ': (f 0 +f 00 ) 6 6 'e(f 0 +f 00 ) 6 'ef 0 + 'ef 00 = ': f 0 +': f 00 6 ': (f 0 +f 00). % ", f 0 +f 00 2 X' .
41
3) " g 2 Y. K 1 'g supf'f j f 2 Cc (T) ^ f 6 gg , ) - " > 0 f 2 Cc (T ) Z, ! ) f 6 g 6 g 'g ; " < 'f = 'f. J), g 2 X' . ? ), h 2 Z, 1 'h = inf f'f j f 2 Cc(T) ^ f 6 hg , ) - " f 2 Cc (T) Y, ! ) h 6 h 6 f 'h + " > 'f = 'f. J), h 2 X' . 4) " f 2 Cc (T) Y X' . K 'f ^ = 'ef = 'f = 'f. D f 2 X' f > 0, '^f 'ef > 'e0 = 0. " a 2 R f 2 X' . D a > 0, '(af) ^ = ': (af) = a': f = a'f. ^ D a < 0, '^(af) = 'e((;a)(;f)) = (;a)'e(;f) = a': f = a'f. ^ " f 0 f 00 2 X' . K 1 !1" # 2) , ) '(f ^ 0 + f 00 ) = ': (f 0 + f 00 ) = ': f 0 + ': f 00 = 'f ^ 0 + 'f ^ 00 . 5) K! !! '^ = 'ejX' , # 6) 1 .- 1 (fn 2 X' j n 2 N) " " f 2 X' )& ('f ^ n j n 2 N) " '^f. K! !! X' - -- !/' 0&)/' ', < # " ))# - / . M =!.' ", ) Sc(T) Xbc'. = )1 Gc ' 1)" '. !// !' !/ '. 1 T . 6. T | A 2 Ac (T G ). A = S(Ci \ Di j i 2 I) (Ci 2 C j i 2 I) (Di 2 Gc j i 2 I). . A = S(Fi \ Gi j i 2 I) C - !/ !)/ !!3# (Fi 2 F j i 2 I) (Gi 2 G j i 2 I) ! !' ! '. C. K! !! T !" !' !, !/ !' ! '. H, ! ) C H. <' Fi \ Gi = Fi \ Gi \ C \ H = (Fi \ C)S\ (Gi \ H). '' '. Ci Fi \ C Di Gi \ H. K A = (Ci \ Di j i 2 I). M 7. A 2 Ac (T G ). (A) 2 Xbc'. . D D | !/ !' ! '. , g (D) 2 Y X' . D C | !' ! '. , h (C) 2 Z X' . K! !! X' | 0&S!, (C \ D) = g ^ h 2 X' . '' 6 A = (Ci \ Di j i 2 I). <' (A) = sup( (Ci \ Di) j i 2 I) 2 2 X' . M 2. Sc (T) Xbc' . . " f 2 Sc (T). 41"'&' " > 0. !1" '/ 1 (II.4) 1 " 39] / , ) - " )- !3- u 2 St(T A(T G )), !- ) jf(t) ; u(t)j < "=4 - t 2 T. 41"'&' g0 u ; ("=4)1 h0 u + ("=4)1. K g0 (t) = (u(t) ; f(t)) + f(t) ; "=4 6 f(t) h0 (t) > (u(t) ; f(t)) + f(t) + "=4 > f(t).
42
. . , . .
% # /, g0(t) = (u(t) ; f(t)) + f(t) ; "=4 > f(t) ; "=2 0 h (t) = (u(t) ; f(t)) + f(t) + "=4 < f(t) + "=2. K! !! !3- f -
) !' !/' ', !' ! '. C ) a b, ! ) a (C) 6 f 6 b (C). ;1)' (C) )1 x '' )/ !3 !' !/' -' v (ax _ g0 ) ^ bx w (ax _ h0 ) ^ bx. K f(t) ; "=2 < v(t) 6 f(t) 6 w(t) < f(t)+"=2 - t 2 T 0 6 w ; v 6 "x. P K! !! v 2 St(T A(T G )), v = (ak (Ak ) j k 2 K) - !/ !)/ !!3# (ak 2 R j k 2 K) (Ak 2 A(T G ) j k 2 K). 4 , ) A(T G ) | , '. )", ) S '. Ak ! - ak )/ -. K (Ak j k 2 K) = coz v C. % ", !. '. Ak - -- !' !/'. '' 7 (Ak ) 2 X' . J), v 2 X' . ? )/' 1' w 2 X' . 41"'&' 1 " > 0. !1' /0 - " =(3'(x)) ^
&' v w 1 X' . 4 .- 1) 1 '/ 1 g0 g00 2 Y h0 h00 2 Z, ! ) h0 6 v 6 g0 , h00 6 w 6 g00 , 'g0 ; 'h0 < =3 'g00 ; 'h00 < =3. @, ) h0 6 f 6 g00 . 2' , 'g00 ; 'h0 = ('g00 ; 'h00 ) + ('h00 ; 'g0 ) + ('g0 ; 'h0 ) < 2=3 + 'h ^ 00 ; 'g ^06 6 2=3 + 'w ^ ; 'v ^ = 2=3 + '(w ^ ; v) 6 2=3 + "'x ^ = . % ", f 2 X' . M '' " #/# ."/# !3 '^ '. Sc (T) !.', ) <' '. - -- !'. 8. - & A 2 A(T G ) & " > 0 ( K 2 C , K A '^( (A n K)) < ". . " D | !/ !' ! '. g (D). K! !! g = supff 2 Cc (T )+ j f 6 gg, - " > 0 f 2 Cc (T)+ , ! ) f 6 g 'g ; "=2 < 'f. '' !/ '. D0 coz f !3 g0 (D0 ). K! !! 'f = 'f 6 'g0 , 'g ; "=2 < 'g0. '' 7 g g0 2 X' . <' 'g ^ ; '^g0 = 'eg ; 'eg0 = 0 = 'g ; 'g < "=2. '' 1'!/ '. Kn ft 2 T j f(t) > 1=ng D0 !3 hn (Kn ). @, ) !' !/. K! !! (Kn j n 2 N) " D0 , (hn j n 2 N) " g0 . 4 ))# - / !3 '^ '/ )' ('h ^ n j n 2 N) " 'g ^ 0 . <' n, ! ) 0 0 ^ n Kn )) = 'g ^ ; "=2 6 'h ^ n 6 'g ^ . 4 1" g ; hn = (D n Kn ) )& '( (D = '^g ; 'h ^ n 6 'g ^ ; 'g ^ 0 + "=2 < ". " " C | !' ! '. . =- '. D " > 0 ' /0 !' ! '. L, ! ) L D '( (D ^ n L)) < ". '' !' ! '. K C \ L C \ D. K )' '( (C ^ \ D n K)) = '^( (C \ (D n L))) 6 6 '^( (D n L)) < ". S (!3, " A 2 Ac (T G ). '' 6 A = (Ci \ Di j i = 1 : : : n). =- " > 0 !' !/ '. Ki , ! ) Ki Ci \ Di
S
43
'( (C ^ i \ Di n Ki )) < "=n. '' '. S Di n!' ! S K (Ki j i = 1 : : : n). K! !! A n K = (Ci \P K j i = 1 : : : n) (Ci \ Di n Ki j i =P 1 : : : n), '( (A ^ n K)) 6 '( ^ ( (Ci \ Di n Ki ) j i = 1 : : : n)) = = ('( (C ^ i \ Di n Ki )) j i = 1 : : : n) < ". M 2. T | ' 2 2 (Cc (T ) )+ . '^ Sc (T) ! . . , ! ! ' Sc (T). . " (An 2 Ac (T G ) j n 2 N) # 0 " > 0. '' 8 - An !' ! '. Ln, ! ) Ln TAn '( (A ^ n n Ln )) < "=2n+1 . ''S !' !/ '. KnS (Li j i = 1 : : : n) An . K! !! An n KnP= (An n Li j i = 1 : : : n)
P(Ai n Li j i = 1 : : : n), '^( (AnPn Kn )) 6 '( ^ ( (Ai n Li ) j i = 1 : : : n)) = = ('( (A ^ i n Li )) j i = 1 : : : n) < " (1=2i+1 j iT= 1 : : : n) 6 "=2. '' !' ! '. K (Kn j n 2 N) !3 h (K) hn (Kn ). K! !! (Kn j n 2 N) # K, (hn j n 2 N) # h. 4
))# - / !3 '^ )' ('h ^ n j n 2 N) # 'h. ^ % ", n, ! ) '^h + "=2 > '^hn. 4 1" ' (A ^ n n K) = ' (A ^ n ) ; 'h ^ < ' (A ^ n ) ; '^hn + "=2 = ' (A ^ n n Kn ) + "=2 6 ". J), !3 '^ - -- ."/' !' !/'. =, - # )! t 2 T !' !- !/!" D. '' !3 g (D) 2 X' . D f 2 X' ^ 6 '^g )& j'f ^ j 6 'g ^ < 1. J), '^ jf j 6 g, ;'g ^ = '( ^ ;g) 6 'f - -- !" )/'. (!3, # ))# - / 1 '/ 1. K!' 1', !3 '^ - -- !'. " " - -- #/' ."/' !' !3' Sc(T ), . ' !3 '. =!.', ) = '. ^ %) !.', ) (D) = ' (D) ^ - !' ! !/ '. D. K! !! - -- ."/' !' !/', - " > 0 !' ! '. C D, ! ) (D n C) < ". ;1)' (D) (C) )1 g h . % ", g < h + ". '' 1'! '. F T n D. K! !! T | ! '. C | !' !, / - !3- f T, !) 0 6 f 6 1, f(t) = 0 - t 2 F f(t) = 1 - t 2 C. @, ) g 6 f 6 h. <' g < h + " 6 f + " = 'f + ". J), g = supf'f j f 2 Cc (T ) ^ f 6 gg 'g = '^g. " " K | 1 " !' ! '. . K !' ! !/ '. D K. '' !' ! !/ '. E D n K. K! !! (K) = (D) ; (E), (K) = (D) ; (E) = ' (D) ^ ; ' (E) ^ = ' (K). ^
44
. . , . .
" " A 2 Ac (T G ). K! ., !! /0, - " > 0 !' ! '. K A, ! ) (A n K) < "=2. ? )/' 1', !' ! '. L A, ! ) ' (A ^ n L) < "=2. '' !' ! '. C K L A. K! !! '^ 1 , (A n C) < "=2 '^ (A n C) < "=2. % ", j (A) ; ' (A) ^ j 6 j (A) ; (C)j + j' (C) ^ ; ' (A) ^ j < ". K! !! " 1 ", (A) = ' (A). ^ (!3, " f 2 Sc (T). 41"'&' 1 " > 0 " =(x), x | !3- 1 !1" .- 2. =P " 1"'&' !3 v w 1 !1" .- 2. K v = (ak (Ak ) j k 2 K) G ) j k 2 K). % ", - !# !)# !!3 P P ^(Ak k2) Aj kc(T v = (ak (Ak ) j k 2 K) = (ak ' (A 2 K) = 'v. ^ ? )/' 1', w = 'w. ^ K! !! v 6 f 6 w 0 6 w ; v 6 "x, f 6 w 6 v + "x = = 'v ^ + 6 '^f + 'f ^ 6 '^w 6 'v ^ + "'x ^ = v + 6 f + . % ", jf ; 'f ^ j 6 . K! !! 1 ", f = 'f. ^ M % <# ' '/ '.' !! " . P0 1 (Cc (T) )+ (Sc (T )4 )+ , - P0' '^. # 1. T | . ! P0 " (Cc (T) )+ (Sc (T)4 )+ . . D '0 6= '00, , ) , '^0 =6 '^00. J), P0 5! . D 2 (Sc (T )4 )+ , !3 ' jCc (T) - -- #/' ."/'. '' . '. ^ ' 2 = '. ^ J), P0 ! . M K " '/ '.' !1" ' < !. 3 ( ). / " (
" . . " T | !" !' ! . ' 2 !3- P0 1 (Cc (T) )+ (Sc (T )4 )+ . ' 1 (II.5) 1 39] ' !' !3- V 1 (Sc (T)4 )+ RMw0(T)0 . >!3- V P0 & ' !
. M % 1 ! ' 2 '. 1)" )". 4. 0 ! P0 " " P " Cc (T) Sc (T )4 , P ' = P0('+ ) ; P0 (;'; ) ! ' 2 Cc (T) . . ' ), ) P0(a') = aP0' P0 ('0 + '00) = = P0'0 + P0 '00 - / a 2 R+ '0 '00 2 (Cc (T ) )+ .
45
R. )", ) a > 0. ;1)' a' )1 . 41"'&' / g 2 Y " > 0. '' '. Lg ff 2 Cc (T ) j f 6 gg. K 1 'g = sup('f j f 2 Lg ) g = sup(f j f 2 Lg ) , ) u v 2 Lg , ! ) 'g ; "=(2a) < 'u g ; "=2 < v. '' !3 w u _ v 2 Lg . K j(a')g ; gj 6 ja'g ; a'wj + jw ; gj < aj'g ; 'wj + + "=2 < ". L1 1 " " , ) (a')g = g. % 0 )/' 1' !1/ -, ) (a')h = h - h 2 Z. " " f 2 Sc (T ) " > 0. '' '. Zf fh 2 Z j ^ = sup(h j Zf ) ! ., !! h 6 f g. K 1 'f ^ = ': f = sup('h j h 2 Zf ) f ^ /0, , ) (a')f ^ = f. ;1)' '0 + '00 )1 . " g 2 Y " > 0. K 1 ' 0 g = = sup('0f j f 2 Lg ), ' 00g = sup('00 f j f 2 Lg ) g = sup(f j f 2 Lg ) , ) u v w 2 Lg , ! ) ' 0g ; "=3 < '0 u, ' 00 g ; "=3 < '00v g ; "=3 < w. '' !3 x u _ v _ w 2 Lg . K j(' 0 + ' 00)g ; gj 6 j' 0g ; '0xj + j' 00g ; '00 xj + jx ; gj < ". % ", (' 0 + ' 00 )g = g. ? )/' 1' !1/ -, ) ('0 +'00)h = h - h 2 Z. " " f 2 Sc (T ) " > 0. K '^0f = ': 0 f = sup('0h j h 2 Zf ), ^ = sup(h j h 2 Zf ). K! ., !! /0, '^00f = sup('00h j h 2 Zf ) f 0 00 ^ , ) ('^ + '^ )f = f. ' ", ) . P0 1 - / -! / 3/. " ' 6 . 41"'&' g 2 Y '' '. Lg ff 2 Cc(T) j f 6 gg. K 1 'g = sup('f j f 2 Lg ) g = sup(f j f 2 Lg ) , ) 'g 6 g. 41"'&' " f 2 Sc (T ) '' '. Yf fg 2 Y j ^ = inf(g j g 2 Yf ) , g > f g. K 1 'f ^ = 'ef = inf('g j g 2 Yf ) f ^ K!' 1', P0 - -- '/'. L1 ! P0 ) 'f ^ 6 f. " , ) P0 - -- 1/'. % ", P0 - / -! / 3/. 4 .- 3.6.1 1 16] . P0 ' 0 5! # P 1 A Cc (T) B Sc (T )4 , ! ) P' = P0('+ ) ; P0(;'; ). K! !! P0 - / -! / 3/, '1 ^ '2 = 0 )& P'1 ^ P'2 = P0 '1 ^ P0'2 = P0('1 ^ '2 ) = 0. # 14E(b) 1 12] P - -- 0&)/' #/' '. D 2 B, = + + ; . % 1 1 '/ 2 + = = P0'0 ;; = P0'00 - !/ '0 '00 2 A+ . '' !3 ' '0 ; '00 2 A. K = P0'0 ; P0 '00 = P '0 ; P'00 = P '. 9 1), ) P - -- 5! /'. K!' 1', P " ! /# 0&)/# #/# . <' P " '/# 1'1'. M
46
. . , . .
( ) 15] . ., . . ! " # // % !& '(. | 1998. | ,. 360, 0 1. | 1. 13{15. 39] . ., . . 3 ! 4 " # // 5" ! !. | 1997. | ,. 3, 0 4. | 1. 1135{1172. 40] . ., . . 9 ! 4 " # // 34 '(. 1. . | 1999. | ,. 63, 0 5. | 1. 37{82.
/ ! 0 2001 .
. .
. . .
510.643
: , ,
.
!! r , #! $ % % & !! r (F ) = (F ), (p) | & + + p. , L(r) r + L #! % ! L & $ , r, # & ! (,!) L1 ! L2 -. : L1 ,! L2 , L1 = L2 (r) + r. .+ ! 0! , 0 % ! + & ! + . 1 0 ! 2 !
+! !% % : !% +, % K, K4, T, S4, S5, GL, Grz, . 1! # !, -.% ! 0 + % 2 +! ! %.
Abstract
E. E. Zolin, Relative interpretability of modal logics, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 47{69.
This paper introduces the notion of modality as an operator r , de7ned on the set of propositional modal formulas by the equality r (F ) = (F ), where (p) is a formula of one variable p. De7ning the logic L(r) of modality r over logic L as the set of all provable in L formulas of the propositional language extended by the operator r, the notion of exact interpretability (,!) of a logic L1 in a logic L2 can be formalized as follows: L1 ,! L2 i8 L1 = L2 (r) for some modality r. The question about the number of logics, which are exactly interpretable in some 7xed logic, is considered in this paper. Answers to this question are obtained for the following family of known modal logics: logics of boolean modalities, normal logics K, K4, T, S4, S5, GL, Grz, logics of provability. A number of results concerning the absence of exact interpretability of some logics of this family in others are o8ered as well.
1.
. (p)
, 2001, 7, 9 1, . 47{69. c 2001 !, "# $% &
48
. .
p # r , r (F) = (F ):
& 3, : :p. ( ) * ) - L: 1) - . / L ), * , 0 L. 1* ) * 0 ) L. 2 ) , , 31, . 11], 32{4]. 2) - / . ), * , * , L - .. 7 *, r tr : tr (A) A ) B r(B). 1 L(r) r L # ) , r- ) L. - / . ) * , L ( # L). & ) : * *) L , M
( r, * L(r) = M) L. * , 0 ), 31, . 12]: 8 {9# GL ;, ;p = p ^ p, 8 * Grz, GL(;) = Grz. : *
310] L, , * * n > 1 L( n ) = L. , ) . : * ) ) K, K4, T, S4, KB, S5, GL, Grz 31], , # ) 35], * *) . = 0) . r
r
2.
7 L, *# ) ) p0 p1 : : :, ? ! -
49
. ? , > : ^ _ $ 3. ( Fm 0 * . & (p) | L p. . , (p), r ( r : Fm ! Fm), #
: r (F ) = (F). : , ) ? p, * ? ( ) . 1 , * ) : (i) ? | ( ) A (ii) ( ) | ( ) A (iii) r1 r2 | , r1 ! r2 | A (iv) r | , r | . / ( ) ! ? ( ) : : . * ( , ) - . ; = ( ) ^ , n , n > 1, / _ :. C r tr : Fm ! Fm : tr (A) * A ) r. 7 *: tr (?) = ?A tr (p) = p pA tr (A ! B) = tr (A) ! tr (B)A tr ( A) = r(tr (A)). ( ) L, * L ) : MP (modus ponens) A A ! B ` BA Sub ( ) A ` A3B=p]A RE ( 0 ) A $ B ` A $ B: D A3B=p] | , * A ) ) p B. H L ` A A 2 L. : *) ( ) ?) ). & L | * ( ), , X | . 1 L + X * * , * * L X * , LX | * , * L X, * , | MP. r
r
r
r
r
r
r
r
r
50
. .
. 9 L(r) r L # , r- ) L: L(r) = fA 2 Fm j L ` tr (A)g: J , * L(r) | . . : r1 r2 L, L ` r1 p $ r2 pA L, L(r1) = L(r2 ). ? 0 ) *: , L ` r1 p $ r2 p, L ` tr 1 (A) $ tr 2 (A) A. , # , ). # , (p), p ) . r
r
r
3.
0 15 , * * ) , * * L r L(r), 0 . , * , 0 L(r), *
r r L, r L. . , ) ) . f(x1 : : : xn): f? >gn ! f? >g
, 0 , C:JN 0 . J ) ) / ** : f 6 g , f(x y) ! g(x y) . . !
()..) r L # ) ) (x y), * (i) L ` (r? r>)A (ii) f(x y), * L ` f(r? r>) 6 f:
. : r ).. r / 0 FLr = ff(x y) j L ` f(r? r>)g
51
** 6, # / . 2 , * FLr O, , / 0 FLr O ) FLr. & r | , rp p : rp b(p Q1 : : : Qn), Qi | . N b p: L ` b(p Q1 : : : Qn) $ 3p ^ b(> Q1 : : : Qn) _ :p ^ b(? Q1 : : : Qn)] L ` rp $ (p ^ r> _ :p ^ r?). 1 ,
p $ ((p ^ >) _ (:p ^ ?)): () 3.1. L1 L2 |
, r1 r2 | , ri Li .. i , i = 1 2. L1 (r1) L2 (r2 ) , 2 6 1 : . U * Fi = FLiri . ( Fi f, ) f > i . &0 F1 F2 , 2 6 1. , * L1 (r1) L2 (r2) ) F1 F2 . U# . & F1 F2. # A(p) 2 L1 (r1), p = = (p1 : : : pn) | # ). () A 0 L1 (r1) b(p ? >) ) p ? >, *, b(p ? >) 2 L1 (r1). = 0 p # _ ;p ^ b( ? >) 2 L1(r1) 2f?>gn p p1 1 ^ : : : ^ pnn , pi ? :pi , pi > pi .
&0 b( ? >) 2 L1 (r1) 2 f? >gn, *, b( x y) F1 , F2 . & , * b(p ? >) 2 L2 (r2) () * A 2 L2 (r2). 3.2. 3.1 : L1 (r1) = L2 (r2 ) , 1 = 2 : J , * * 0 ) L
/ , 3.2 , * *) L ) * 15. : , 15 ) ), ) ?, ).. ? * . J L 4 0 )
: r0 = ?, r1 = ( ), r2 = :, r3 = >A * , * )
52
. .
).. L: ? = :x ^ :y () = :x ^ y : = x ^ :y > = x ^ y: &0 0) LA * ) * L? L() L: L> . ( ).. ) )A , ) / ) Lrj , j 2 f0 1 2 3g, 0 * # ) ? ( ) : >. U . 3.3. ! " (x y) 6 ? # , ! $ " . . & ? 6= J f0 1 2 3g. & , * T LJ = Lrj ).. C:JN: j 2J
J (x y) =
_ ;xrj ? ^ yrj >:
j 2J
C , Lrj ` J ( ? >) j 2 J. : : Lrj ` p $ rj p, 0 j- O * J ( ? >) 0 > Lrj . C , f < J , C:JN f(x y) j- O * j 2 J. J O * f( ? >), * , 0 ? Lrj . C , f( ? >) Lrj , * LJ . 1 , J / ) O) * , J | ).. LJ . U# , * (x y) 6 ? J J, * ? 6= J f0 1 2 3g. & 3.3 * * Lfrj jj 2J g A , J = f0 3g, LJ = L? \ L> = L?> . & # ) . U * * E . 3.4. % # : I: L? = E f p $ ?gA L() = E f p $ pgA L: = E f p $ :pgA L> = E f p $ >g: II: L?() = E f p $ (p ^ >)gA L?: = E f p $ (:p ^ ?)gA L?> = E f p $ ?gA L(): = E f p $ (p $ >)gA
53
L()> = E f p $ (p _ ?)gA L:> = E f p $ (:p _ >)g: III: L?(): = E f p $ ((p $ >) ^ (:p $ ?))gA L?()> = E f p $ ((p ^ >) _ ?)gA L?:> = E f p $ ((:p ^ ?) _ >)gA L():> = E f p $ ((p $ >) _ (:p $ ?))g: IV: L?():> = E f p $ ((p ^ >) _ (:p ^ ?))g:
3.4.1. p $ rp, r | , 0 * ) *) RE.
3.4.2. U * * kf k * f? >g2, ) f(x y) >. 1 3.3 , * * / , * N (N = I, II, III, IV) ).. , k k = N. . * () * . () I. N j 2 f0 1 2 3g * Ej = E f p $ rj pg. ? F , * F $ tr j (F) Ej , * Lrj . &0 F 2 Lrj , tr j (F ) 2 Lrj , , * | , , E Ej A , * F 2 Ej . II, III, IV. : F G ) ), E fF g \ E fGg = E fF _ Gg. 1 , * * , , L?() = L? \ L() = E f( p $ ?) _ ( q $ q)g, * , * A A ^ >, * . Y* ) . & L | . ? I , * r * L rj , j 2 f0 1 2 3g, r 0 rj L. I II LJ = E f p $ (p r)g, (p q) | , r | " ( 0 ? > 0 ) ? >. 7 , * (p q) LJ . 3.5. L r, (p q)
LJ I II, L( (( ) r)) = LJ . $ , L?> | ! ! L: L(r) = L?> . r
r
54
. .
# , , (p q) = p ^ q. 0 * ).. Q = (( ) r) L , * , (x y) = :x = J , J = f0 1g, *, L(Q) = LJ 3.3. : ) (p q) *. 3.6. ' !
" ! ( !. . & L | , L ` A(p q) ! C(q r), p = (p1 : : : pm ), q = (q1 : : : qn), r = (r1 : : : rk). () *, * A C | ) ? >, L ` A(p q ? >) ! C(q r ? >). & , * B(q ? >)
W;
_
2f?>gm
A( q ? >):
? L ` A $ p ^ A( q ? >) L ` A ! B. 1 L ` A( q ? >) ! C , L ` B ! C.
4. ! & * - L * 0 ) LA * * "(L). 33] 0 /# ) ) D D, ) / (! 6) (! 6) ( 33] - .). 31, . 11], 32, . 96, 106, 115, 138], 34] - .,
:. ( * ) ) , * *) L, * * (L). D (L), "(L) | * 1. D , * * L "(L) > 4 (L) > 4A , L RE (L) 6 "(L). 0 * ) "(L) (L) ) A , * * ) ) L = K, K4, T, S4, KB, GL, Grz 31] "(L) = 1 , * (L) = 1, , , "(S5) = (S5) = 16. 7 * (L) ) ( . 35]).
55
4.1. "(L) (L)
0 * * "(L) (L) ) , ) 3. J # 3.4 ) . . 9 M
" L ( * : M ,! L), # r, * M = L(r). U* , * * (L) * M, * ) L. 4.1.1. () N (N = I, II, III) $
! ! ! ) . . : N = I 0 * . N = II. L II r ( , ) * 0 ), 0 3.5 L0 II # (p q), * L( (( ) r)) = L0 . N = III. : , , * L?()> ,! L():> . J
L():> ).. x _ y, 0 ` ?_ >. 1 r, ).. :x _ y. J 0 , * , r ,
(p) (:p ^ : ?) _ (p ^ >), L():> ` r? $ : ?, ` r> $ >, *, ` :r? _ r>. &0 L():> (r) = L?()>. Y* III ).. , * kk = 3. 4.1.2. () N (N = I, II, III) $
! N 0 > N . . C* N = I * .
4.1.1 / ,! * N = II, III N, * - N 0 = N + 1. N = II. r = > L?(): , *, L?(): (r) = L?> 3.5. N = III. & L | III. & 3.4 : L = E f p $ rpg, *# r | . 9 , * ).. r r L?():> ).. L. & 3.2 * L?():> (r) = L. . Q1 Q2 L, ) , L, A , L ) * r , (p) (p ^ Q1) _ (:p ^ Q2), >.
56
. .
4.1.3. * N (N = II, III, IV) $ ! N 0 < N . . / ,! *
N 0 = N ; 1 * / ) . & N = II * . N = III. L?> 0 ( ) >, *, 3.5 L?> * / I II. N = IV. L?(): ) , *, , ).. ) >, 0 L?():> 6,! L?(): . 4.1.4. + L | N = I, II, III, IV, (L) = 4 10 14 15 "(L) = 4 16 64 256
. (L)
). L 0 b(( ) ? >)A 256 ) . # b1 b2 b (b1 $ b2). U* , * L ` b(p ? >) , b( x y) > (x y) 2 f? >g ) ) ( . 3). D*, L ` b1 $ b2 , b1(p x y) b2 (p x y) * / ) ) f( 0 1) 2 f? >g3 j (0 1) = ?g
2 (4 ; k k), *# k k = N ( . * 3.4.2). U "(L) = 256=22(4;N ) = 22N . 4.2.
0 * ) "(L) (L) ) * ) ) . . # ( . 31, c. 4])
, (A1) * L (A2) (A ! B) ! ( A ! B) ( ) MP, Sub Nec ( ) A ` A: ( * * K. J / , *
. 4.2.1. + ) L ) K
MP Sub,
L | ( L RE) , , L | ( L Nec).
57
0 * , K ) : (A3) p ! p ( ) (A4) p ! p () (A5) p ! 3p (
*) (A6) 3p ! 3p ( ) (A7) ( p ! p) ! p () 9# ) (A8) ( (p ! p) ! p) ! p () 8 *): J 31, . 5]: T = K + (A3)A K4 = K + (A4)A S4 = T + (A4)A KB = K + (A5)A S5 = S4 + (A5) = T + (A6)A GL = K + (A7) | 8 {9# A Grz = K + (A8) | 8 *. & 0) 31, . 5, 12], , * L 0 , S5, "(L) = 1, "(S5) = 16. 0 0 * (L). 4.2.2. + L | K L GL, "(L) = (L) = 1. . & "(L) > (L), * , *
(L) = 1. U : r1 = ( )A rn+1 = ( ) ^ 3rn n > 1: (1) & , * rn L *. & N > m > 1 | *, p1 : : : pN | * , N = f1 : : : N g. = : ANm
_ j 2N
pj !
_
J N jJ j=m
_ j 2J
pj :
4.2.3. + m > n, ANm 2 K(rn) N > m. . 31, . 5] K:
K ` A , A * ) *) /) . & (W R j=) |;
, x1 2 W. & W pj A 0 * , * x1 j= rn : ( j 2N * ) 0 x2 : : : xn 2 W, * x1 R x2 R : : : R xn, 8i = 1 : : : n 9j = j(i) 2 N xi j= pj . 1, ; W pj . J N , jJ j = m, * J fj(1) : : : j(n)g, * x1 j= rn j 2J
4.2.4. + m < n, ANm 2= GL(rn) N > n. . 9 GL *) -
) ) / 31, . 5]. = W = f1 : : : ng * < ) *)A
58
. .
i j= pj , i = j, 1 6 i 6 n, j 2 N . 1 (W < j=) GL 1 = 6j tr n (ANm ), * . ?
4.2.3 4.2.4 , * ANm 2 L(rn ) , m > n N > maxfm ng, *, L(rn) 6= L(rr ) n 6= r. * K K4 GL 31, . 1] , * (K4) = 1. = - . (. 31, . 10]), :, ::. 4.2.5. * ! GL $ , -, )# : . . 9 r m 3Q m : 3Q, m > 1, Q | . 1 GL ` m 3A $ m ?, r 0 GL m ? : m ?, *, GL(r) = L?> 3.5. 310], GL
: GL( n ) = GL n > 1. C , GL 7 *) - .: ( ) : : : 3 : . = , (A3). 2 ) 4.2.2A , ) (1) 0 ( ). U . 4.2.6. + L | K L Grz, "(L) = (L) = 1. . :* , * (L) = 1. # : r01 = ( )A r0n+1 = ( ) ^ 3(:( ) ^ 3r0n) n > 1: (2) & , * L(r0n ) *. 7 ANm , 4.2.2. 4.2.7. + m > n, ANm 2 K(r0n) N > m.
4.2.3 *# , ; W p * x1 j= r0n j * , * ( j 2N * ) 0 y2 x2 : : : yn xn 2 W , * x1 R y2 R x2 R : : : R yn R xn 8i = 1 : : : n 8j 2 N yi = 6j pj 8i = 1 : : : n 9j = j(i) 2 N xi j= pj : r
4.2.8. + m < n, ANm 2= Grz(r0n) N > n.
59
. , * Grz *) ) )
*) / 31, . 12]. J W = f1 : : : 2n ; 1g * 6 / j= : i j= pj , i = 2j ; 1, i 2 W, j 2 N . 1 (W 6 j=) | Grz 1 =6j tr n (ANm ). ? )
. 1 * K T S4 Grz ( . 31]), 4.2.6 (T) = (S4) = 1. KB rn (1) n > 1 0 r2 A * (2). 1 . 4.2.9. + L | K L KB, "(L) = (L) = 1. . 1 "(KB) = 1, "(L) = 1. = r00n, ) 00 00 00 1 (p) = p ^ 3pA n+1 (p) = p ^ 3(p ^ 3(:p ^ 3(:p ^ 3 n(p)))) n > 1 (3) ANm , 4.2.2. 9 , * m > 2n, ANm 2 K(r00n) N > m. & KB
*) / , , * m < 2n, ANm 2= KB(r00n) N > 2n. C , L(r00n ) * (L) = 1. J , S5. 2 / (W R) / R = W W. 4.2.10. "(S5) = (S5) = 16. . 9 S5 0 ) ( 0 )) : (i) r, :r, r:, :r:, r | 0 = ( ) ! A (ii) r, :r, r | 0 ( ) = ^ 3A (iii) r, :r, r | 0 ? = _ :. : * , * 0 ! . D /, * 0 0 ( ) , 0 0 ! * . & , * (S5) = 16. ( (iii) $ , ) ( S5) :p $ p. ( (ii) $ : ) :p $ : p. 9 ? > ( ) : * ) . r0
60
. .
: , ( p $ p) 2 S5(:) n S5()A p 2 S5() n S5(:). D*,
(ii) (iii) *. J * (i). 4.3.
!
D 35] . & T U | * , T * . = * , ) * , T . 1 ) , ) U ,
. ( 0) RE , *, / . &0 4.3 RE. J ) ) : D = GLf: ? ( p _ q) ! ( p _ q)g | : A S = GLf p ! pg | C . # * Fn n+1 ? ! n ?, n 2 ! = f0 1 : : :g. 36] , * * : GL = GLfFn j n 2 g D = D \ GL GL = GL
_
;
n=2
;
:Fn S = S \ GL ;
!, ! n *. _ ! n *, GL D S GL A , D! = D, S! = S, GL! = Fm. = * C S, ) * ) . U/ S, 37]. . ! M = (W j=) ( W | , |
** W ), 0 r %""
b, * (1) fx 2 W j r xg | * ( | / , / )A (2) fx 2 W j x rg * (! + 1) A (3) 0 W rA (4) b | / 0 WA ;
;
61
(5) ) *) fx 2 W j x rg. N A
M,
* : M b j= A. 4.3.1 (%7]). S ` A , A ! ! . & S, , * (2) 0 SA , "(S) = 1. 4.3.2. (S) = 1. . = (2) ANm , 4.2.2.
4.2.7, m > n, ANm 2 K(r0n ) S(r0n) N > m. & m < n. & ) M = (W j=),
tr n (ANm ) N > n. & W = fbg V , V = f: : : x;2 x;1 x0 x1 y2 x2 : : : yn xng, W * / (! +1) , 0 b | *, 0 ) V : : : : x;2 x;1 x0 x1 y2 x2 : : : yn xn . U / : b j= p1A x;i j= p1 ) i > 0A xi j= pi i = 1 : : : n. 1 M | ) ) 0 r = x1 , b = 6j tr n (ANm ). 4.3.3. + L | ( RE), $ K L S, "(L) = (L) = 1. 1 , L " 35], L S, "(L) = (L) = 1. ? 36] , * , S ( " 35]), * GL . & , * L "(L) < 1 (L) < 1. & k = 3k 1) = fn 2 ! j n > kg, k > 0. = * GLk = GLk . U* , * GLk = GLf k ?g. . & ) F # * , ) ) 0 ) F . H F (k) * , * F ) )
k ?. # * (r )(k) = r (k) . ' deg(r ) r # (p), deg(?) = deg( ( )) = 0A deg(r1 ! r2) = maxfdeg(r1 ) deg(r2)gA deg( r) = 1 + deg(r): r
r0
;
;
;
;
62
. .
4.3.4. GLk ` F $ F (k) ! F . . :* k , * GL ` k (k ) ;
`
? ! (F $ F ).
4.3.5. "(GLk ) < 1, (GLk ) < 1. . J GLk r 0 r(k), ;
;
;
/ * * 0 ) * , *, "(GLk ) < 1. : , 35] , * GLk Nec, *
4.2.1 RE, , *
(GLk ) 6 "(GLk ) < 1. # ! * . C k > 0, * (! n ) fn 2 ! j n < kg, 0 3k 1) GLk GL . C , "(GL ) 6 "(GLk ) < 1. U, , *, * (GL ) < < 1, GL , , RE. 1 , , * L = GL r * r(k). & A 2 L(r), L ` tr (A). 1 L GLk ,
4.3.4 L ` (tr (A))(k) . 9 ( A r), * (tr (A))(k) (tr (k) (A))(k) , L ` (tr (k) (A))(k) ,
4.3.4 L ` tr (k) (A), * A 2 L(r(k)). 2 , 0 L(r) = L(r(k)). 1 , (GL ) < 1. ;
;
;
;
;
;
;
;
;
;
;
;
r
r
r
r
r
r
;
5. #
0 , MP Sub. 4.1
(,!)
) A * 0 / ) . D 0 / ) ) ), * ) ) ) ( . ) 4.2 4.3). 7 ) ) * ) , * ) ) ). # * . . 9 M
" L, r, * M L(r). U/ , , 38] ) ) 9 ( * , * M L, 38] - L M- .).
63
5.1. () !
.
. & L | . ? , * ) 39], , * L ` : ?, L L() , * L L> . J L() L> * . C
5.2 5.4 )
, , * , ) * . 5.2. M L(r) L RE, 3M] L(r), 3M] | , )# M RE. 5.3. + 0 2 !, GL GL. . &
4.2.1 3GL] Nec, 0 : ? ( ? ! ?), GL 0 ?. D*, 3GL ] * GL. 5.4. + M L L ) !- L? L() L: L> , M ) ! . . _ L Lrj , j 2 f0 1 2 3g ( * . 3), L(r) Ltr j (r) . : * # 35] t(L) L. & (W ) | * r. (%5]). _ x | (W ), d(x) = 0A * d(x) = maxfd(y) j x yg. ( M = (W j=) # . ' A t(A) = fn 2 ! j M n r, * M r =6j Ag. ' t(L) S L O ) , ) L: t(L) = t(A). A2L = , ) GL. : L 0 : L L> , L 0 , 0 2= t(L)A , L L? L() L: . U . 5.5. + L M ) GL, 0 2= t(L) 0 2 t(M),
M L. . & L L> , M
L? L() L: L> . : * . r
64
. .
5.6. % # , $ M ,! L: (i) "(M) 6 "(L) (M) 6 (L). (ii) $ M $/ $ L. (iii) const(M) 6 const(L), const(L) $ 0 L. (iv) L RE, 0 ) M . 5.7.
(i) * $
! . (ii) + L RE ) > : ?, GL 6,! L. (iii) + L ) GL ) ! $
, GL 6,! L. (iv) GL $ , ! GL, ) , ! 3k 1), k > 0.
.
(i) C
5.6,(i) 4.3. (ii) L ) . (iii) ? 31, . 7], * GL 0 n ?, n 2 GL ` ` n ? $ n+1 ?, 0 const(GL ) < 1. D*, const(L) < 1, const(GL) = 1, 0 GL 6,! L
5.6,(iii). (iv) 35] , * Nec ( RE, *
4.2.1) GL GL , ) 3k 1) k > 0. . N A p, ) 0 A ) . N A # , A , A B. & p = (p1 : : : pn) | , A , ( * ) 0 : _ (p ^ B ) A$ (]) ;
2f?>gn
B | . . 7 , * L , A L ` A L ` B 2 f? >gn,
65
B | (]). : , L , ) ) . 5.8. L | , M | , )# $ (A5) p ! 3p, M L(r) ! r. L(r) ! L() , L> , L()>. . :* , * L()> L(r). = rp. _# (]) : rp $ ((p ^ Qp) _ (:p ^ Q0 p)): 9 M , *, L ` r(p ! q) ! (rp ! rq). & (]) 0 L, * : (a) L ` Q(p ! q) ! (Q0 p ! Q0q)A (b) L ` Q(p ! q) ! (Q0 p ! Qq)A (c) L ` Q0 (p ! q) ! (Qp ! Q0q)A (d) L ` Q(p ! q) ! (Qp ! Qq): Y* (p ! 3p) L ` (:Q0:p ^ Q:r:p) _ (Q0:p ^ Q0:r:p), 0 O ) ) ( :p p): (e) L ` Q0 p ! Q0:rpA (f) L ` Q0 p _ Q:rp: , M Nec, 0 r- M L (g) L ` A, L ` QA. 1 L ` Q(p ! p), , p q (b), * (h) L ` Q0 p ! Qp: (e) (f) (i) L ` Q0 :rp _ Q:rp (h) (j) L ` Q:rpA r 0 * (k) L ` Q((Qp ! :p) ^ (Q0p ! p)):
66
. .
? (d) (g) , * L(Q) , 0
: (l) L ` Q(A ^ B) ! QA , (k) * (m) L ` Q(Qp ! :p) (d) (n) L ` QQp ! Q:p: ? (m) (g) (o) L ` QQ(Qp ! :p)A 0 (n), * (p) L ` Q(p ^ Qp) (q) L ` Qp: 1 , (r) L ` rp $ (p _ Q0p) * (s) L ` r? $ Q0?: 1 (a) * L ` Q0p ! Q0 q, *, (t) L ` Q0 p $ Q0?: ` (s) (t) (r) (u) L ` rp $ (p _ r?) L()> ( . 3.4) * : L()> L(r). H * ) , . 5.9. ' GL . . = (]) - A. : GL 6 ` B 2 f? >gn,
67
GL 31, . 84] | * r, * r =6j B . ` r =6j B ) * r, 0 / j= 0 * , r j= pi , i = >. 1 r = 6j A, * GL 6 ` A.
5.10. + K 6 ` A, !/ ( (W R j=) 0 r 2 W , $ r =6j A # x 2 W , $ x R r. . & K 31, . 5] M = (W R j=), * r = 6j A r 2 W. & # M0 = (W 0 R0 j=0). & W 0 = W fr0g, r0 2= W. U/ R0 : 0 ) W n frg / R0 R, x y 2 W n frg, x R0 y , x R yA M0 r r0 * W n frg, * r ) , r R0 x , r0 R0 x , r R x x 2 W n frgA M0 0 r0 ) 0 W n frg, ) r ) , x R0 r0 , x R r x 2 W n frgA r R r, r R0 r0 R0 r0. U* , * x 2 W 0 x R0 r. & / j=0 / j= W 0 : r0 j=0 p , r j= p p. 1 , * F : r0 j=0 F , r j= F 8x 2 W (x j=0 F , x j= F): C , r =6j 0 A. 5.11. ' K K4 . ( *#
5.10, K4)
5.9. 5.12. + L | X | ) , LX | . . V : A LX ` A 0 , * L ` ; ! A * ; X. ? (]) A, *
^ _ p ^ ; ! B : ;!A $ 2f?>gn V V ? LX ` A L ` ; ! A, L ` ; ! B ^
2 f? >gn, *, LX ` B .
68
. .
5.13. 1 GL , D , GL , !, ! n $ . J * ; = ( ) ^ . 5.14. L ) , L(;) L L(;) L. L(;) = L + f p ! pg. . * () * . : * : L(;) L1 , L1 = L + f p ! pg. & L1 ` p $ ;p, L1 ` A $ tr; (A) A. & A 2 L(;), tr; (A) 2 L, tr; (A) 2 L1 , *, A 2 L1 . 31, . 12], GL(;) = Grz. ?
, * K(;) = T, K4(;) = S4. J B: B = T + (A5), (A5) |
*: p ! 3p. 5.15. ' KB, B, S5, ) 2 S5, )# L()> , $ K, T, K4, S4, Grz, GL , D , GL , !, ! n $ . . ? 5.8 , * ) , )
*, / , * ) ): 0 L() , L> L()> . : , 311] , * / S5 . &0 K, K4, GL , D GL ) . : T, S4 Grz / ,! , * T ,! K, S4 ,! K4 Grz ,! GL. & # , ) GL * . 5.16. GL ,! GL $ ) !. .
310] GL: GL( n ) = GL n > 1. # k > 1, *
30 k) = fn 2 ! j n < kg. = *. 0 2= . & , * GL( k ) = GL( k ). * () * . & A 2 GL ( k ), GL ` tr k (A). 1 t(tr k (A)) 30 k). U* , * GL- *) ,
/ * k, tr k (A) tr> (A) . J * * GL L> tr> (A) 0 ( , tr k (A)) . U GL ` tr k (A), *, A 2 GL( k ). 0 2 . 0 * , * GL ( k+1 ) = GL( k+1 ). D * V* (). U * F = Fn. U* , * GL ` B , GL ` F ! B. ;
;
;
n2
69
& A 2= GL( k+1 ), (W j=) r, * r = 6j tr k+1 (A). _ d(r) < k, / (W ) ) 0 xk xk;1 : : : xd(r) = r ( * d(xk ) = k) / j= , * *) xk r . 1 *) xk r tr k+1 (F ), * xk =6j tr k+1 (A). 1 , *, * d(r) > k, r j= F , t(F ) = 30 k). C , r = 6j F ! tr k+1 (A), *, GL 6 ` F ! tr k+1 (A) A 2= GL ( k+1 ). Y _. y. J 1. 9. {
) * .
1] Boolos G. Logic of Provability. | Cambridge: Cambridge University Press, 1993. 2] . . | ., 1974. 3] Makinson D. There are innitely many Diodorean modal functions // Journal of Symbolic Logic. | 1966. | Vol. 31, no. 4. | P. 406{408. 4] Sugihara T. The number of modalities in T supplemented by the axiom CL2 pL3 p // Journal of Symbolic Logic. | 1962. | Vol. 27, no. 4. | P. 407{408. 5] $%& '( ). *. + ',- -, '&.%/01- ./ '& // 2.(. $* ))). ) % '& '. | 1985. | 3. 49, 4 6. | ). 1123{1155. 6] 5 '6 ( 7. 8. + 9: ;%;.:,- ./ '& // 2.(. $* ))). ) % '& '. | 1989. | 3. 53, 4 5. | ). 915{943. 7] Visser A. The provability logics of recursively enumerable theories // Journal of Philosophical Logic. | 1984. | Vol. 13. | P. 97{113. 8] Zeman J. Modal systems in which necessity is
6. . $. )( &( & %&(& ( - ./ '& // 3 ., 8 ? 0.. 9. ; '&. . (, &. 1986. | ). 4. 11] Scroggs S. J. Extensions of the Lewis system S 5 // Journal of Symbolic Logic. | 1951. | Vol. 16, no. 2. | P. 407{408. ' ( ) 1997 .
. .
. . .
517.588+519.68
: , , !" " "# , $% "&.
'( ) *
* ) ) (" "!$ ( ( ( &" &+ ( !" " "# * (, %+* !() ! " "$
. , !" "$ &- % ( !& ) &"$. "
* ( "! * !"$(,
% (%+) & . ) " "%&* * (, " ( !( ! !. /, ! ("$ $ "
$ ( * . ), "!
* (
) !+* &* (, &(% (# !% " "# ) | ( " . ! !! ) ) * | ( # $ ( (
$% " "
* ( * &( ) & -" ) " ! .
Abstract A. W. Niukkanen, Analytical continuation formulas for multiple hypergeometric series, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 71{86.
Applying canonical forms of multiple hypergeometric series along with the use of the operator factorization method makes it possible to obtain, in explicit and most general form, the analytical continuation formulas directly applicable to arbitrary series having the Gaussian type (2==1) with respect to one or several arguments. The formulas help us to unify a great number of particular formulas scattered throughout the literature. Moreover they give us a complete set of relations for any non-standard series provided that it pertains to the Gaussian type with respect to at least one of its variables. Due to simplicity and universality of the basic relations /"# "( ), (
* &) () * (, ("% !"$(
) &, # , ("
) "$ ). !"!&"6
( "# ), "!" #! 7) ! "$ * "( ) ( 97{01{00317 01{01{00380). , 2001, 7, 9 1, . 71{86. c 2001 ! " # $%&, ' () *
72
. . there arises an importantpossibilityto implementcomputer-aided analysis of numerous repeated transformations with respect to di:erent arguments of the series and to join these transformations with other important types of transformations. This possibility may have signi;cance for mathematical analysis, mathematical physics, computer algebra and theoretical chemistry.
1.
1] 2{5] ! !"$ , & !'$$$ (2==1) ' . N F(x1 : : : xN ) ' xn $ ' $ "$ (p==q) ! Fqp, '"! N F ' $ N F $ &" xn . + $ & ' "$ ! ! !"$ . , ! $$"$ $$ ' -'$$ $$ $ ' ' $ $$ $'$ "$. $'" ! $$'& ' !& '& $ ! '& . .'$, ' "$ ! & $ &" $$ ". / ', ' "$ ! $
!! $ , &$ ! 6,7] ($'" ' ! !) 8] ($'" ' $
). ! 8] &$ !"$ $$ ! , $ $ ' "$ ! " 1. 2" "$ ! ' -'$$ F12 $ & 3$ ', $& '! $ '! 24 3 +' ! !"$ ! ' -'$$ 6, 7]. 5$ ' "$ !
F12 6,7] 1 6 z 1 + 6 1 2 0 2 ;2 1 2 2 0 z F = ; (;z) F 1 + + 0 1 02 21 1 1 + + ; 02 2 1 (;z);1 F 1 +1 0 16 z (1) 01 12 1 < ( , .. " $, &" !&"( &, %+* . "!
) $, ! ( . =9{15], #
( $). /"$! & " , "$! ( , "$ "# ( &* =9{11], " (
", ($ " ".$ ? 6.
...
73
!
j arg(;z)j <
; a b==c d] = ;(a);(b)=;(c);(d)
i| = i ; j :
(2)
;' "$ ! ! !"$ ! '" ! . < $ $$ , " $ $ ' "$ ! ! !"$ ( &! "$ ), & !'$$$ (2==1) '
. , $ $$ ! $ $ ($ ! ''&$ $ ) '$ , " ' "$ ! , ! , $ , G - . / '$ " ' $$ 3 N +1F N + 1 (x0 x1 : : : xN ) (x0 x), ! x0 ! '& . $ $ N +1F ' $ $ h jq mi, $ $$ = ( qi0 + m i) ( qi0 + m1 i1 + : : : + mN iN ), ! ( i) = ;( + 1)=;() | $ ,!, (i0 i1 : : : iN ) (i0 i) | $' N +1F (q m1 : : : mN ) (q m) | $ $ "$ . , "$ ' " , $$ , ". $ L " = L(i1 : : : iN ), $ ! $' i0 , "$ '& ' G ! ! !"$ ! N +1F, &! !'$$$ (2==1) ' x0, $
G = N +1F h1j1 m1i h2j1 m2i==h0j1 m0i L 6 x0 x]:
(3)
,$ ' $ ! !"$ , & (2==1) ' $ , &$ "$ $'" (3), & ! "$! , "$ & ' "$ ! , $ "$ $'" $$'&! "$ G . ?
$ & '$ $$& ! $ $ ' "$ ! "$ G $ $ & . / &"$ $ ! , "
@ ''& "$ '& $' ! "$ ! ! !"$ , $ = $$ $$ | =$"$ ' | , $ $ "$
! !"$ ' , $ "$ . .
74
. .
2. A$ ' "$ "$ ' $ ' "$ ! G , = (N + 1)- $ ! , ' $' $
' i0 , $$'&' !'' x0, 3 | $ $ i1 : : : iN . $' (3) ' $' '" ' -'$$ F12, $ i1 : : : iN . , = ' '' (1) ' ' '& B C $ B! C, ' '" "$ G $' ' , & ' (1) $'" ! "$ ($. '' (15)). D$ ' ! $$ , " $'$ $ '' (1), ' ! $, $ & ! ! $ E{F$ 6]. , = " $ ' @ ' "$ ! G $! =$"$ , $
. ,'$ ! $$ , " @ $ $3 (1) $ $ ' G , '" $3 (1) "$ "$! $'" $ '. G' $ , ' $ $ ' $3 $ H-= $3 ( & $3 f f1 = f f2 , ! | H-' 4], H-
$3& f1 = f2 ). $$ H-= $3 ' $3 $3, ' ! $ . / ' "$ ! G $ ' $3, & $$ ' "$ ! $! b = N +1F h2j1 m2i L 6 x0 x]. ? (1==0)
' x0 . 1. b b
(;x0 );2 N +1F h2j1 m2i L 6 x;0 1 (;x0);m2 x]:
(4)
. , ' b '' b = F01 26 ;x0d(s)] exp(;s) NF L6 (;x0);m2 xsm2 ]js=0 $ ' "$ (5) $3
(5)
...
75
F01 26 ;x0d(s)] exp(;s) , F01 26 ;x0d(s) + x0] (6) ;1 1 ;2 1 F0 26 ;x0d(s) + x0] (;x0 ) F0 26 d(s) + x0 ] (7) ;1 ;1 1 1 F0 26 d(s) + x0 ] , F0 26 d(s)] exp(x0 s) (8) ! ' (7) $ ! ' "$ ! F01 a6 x] (;x);a F01 a6 x;1] ! F01 a6 x] = (1 ; x);a , jxj < 1, '! & $$ $3 H-= $ ( & F1(s d(s)) F2(s d(s)) H-= '! '!', $ F1(s d(s))J(s)js=0 = F2 (s d(s))J(s)js=0 & J(s)6 $ ' $ F1 , F2). ' '& b '' (5) ( ! ! !"$ '), '" $3 (4), " 3 $ 1. 1. G (4) (7) $ !, " " ' " = ' B ""!C $ ' ' . / " x0 2 m2, b "$ (4) $$, b "$ (4) $$. D , $ $$ b "$ (4), b "$ (4) $$ $ B C ( ) " b $, ! @ " " $$. 2. b -
G G 2
; 0 1 2==1 0 2]C1G ; 0 2 1==2 0 1]C2G
(9) (9)
3 1 x m 1 2 0 C1G = (;x0 );2 F 4h1 + 2 0j1 m2 0i h2j1 m2i L 6 x0 (;1) xm 0 2 5 (10) h1 + 2 1j1 m2 1i 2 3 1 x m 2 1 0 C2G = (;x0 );1 F 4h1j1 m1i h1 + 1 0j1 m1 0i L 6 x0 (;1) xm 0 1 5 (11) h1 + 1 2j1 m1 2i ;-
(2). . , (4) x0 ! x0st, x ! xsm1 tm0 ,
"$ (4) Q F01 16 d(s)] F10 ==06 d(t)]js=t=0. G & ' ! ' ($. 4]) ' $ Q '& "$ (4) $ "$ G . / "$ "$ $ ' ! F d6 d(s)]s $3 H-= $ F d6 d(s)]s , (d )F d + 6 d(s)] (12)
76
. .
!" ! ' "$' $'"& = ', $$'&' " = n = 0 1 2 : ::. G & ' ! ' (12) G , H-= ' (4), '" G (;x0 );2 (1 ; 2)(0 ; 2);1 F01 1 ; 26 d(s)]F10 ==0 ; 26 d(t)] N +1F h2j1 m2i L 6 x0;1s;1 t;1 (;x0 );m2 xsm1 ;m2 tm0 ;m2 ]js=t=0: (13) , (13) '' ! !"$ ', L1 m1 2i h2j1 m2i L 6 x;0 1 (;xx0 )m2 ( h j 1 ; 2) N +1 1 2 ; 2 G (;x0 ) ( ; ) F (14) h0 2jL1 m0 2i 0 2 ! ( ) ;( + )=;() 1 2 = 1 ; 2 m1 2 = m1 ; m2 . . /' "$ (14) $ ( ;i) = (;1)i (1 ; i);1 (14) ' ' (9) 3 $ $ 2, $3, '"$'& ' ($. (9)), "$ !
$ 1 $ 2, m1 $ m2. 2. ;' (9) (9) !" ' (4) $$, " &$ B ""!C $ ' N +1F , = $$ " $ " ! x0 . , ! $ ' (4) $3 (9), (9) $ "$ ! G $ , " ' G $$. ,$ ' ' G & $ !" $ (9) (9), "&$ $ , $ ' $ G ($. (3)) $" $ $ , , " ($) ' "$ ! G $' ' , (9) (9), $ $ "$ '& " $$'& $ $ $ $ x0, '! $$ $ "$ . A @ 3 =$"$ "
1. G
C G = ; 0 1 2==1 0 2]C1G + ; 0 2 1==2 0 1]C2G (15) C1G C2G
(10) (11)
-
.
G
$'" x1 = x2 = : : : = xN = 0 ' (15) "$ $ $ ' (1). + ' "$ 3, '' (15) $
...
77
" =$"$ & $ & $ (1) $ $$'& G ($. " 2).
3. 24 ! "
3. M , @ ' (9) (9), $" $ x0 x1 : : : xN , ' C1G C2 G '& $$ ' L(F ) = 0, ' $ ' F = G. , ! $ 3 C1 F12 C2F12 $$"$ ! ' -'$$ 6, 7] &" , " ' C1G C2G &$ ' 3 $$ L(F) = 0 $$ " x0 = 1. ,$ ' & 3 $$ L(F) = 0 $ & ' 3 = $$, ' (15) $$ ' $, & ' & G , $ ' 3 $$ L(F) = 0 $$ " x0 = 0, " ' 3 $$ x0 = 1. / $ ' $ $" ! 3 $$ L(F) = 0, ' G , B C =' ' & $ & C1 C2, =$ ! L1 L2 ($. 1]) $ = . , ' , & ' ! BC, $'& '' (15), '" $ ' $, ! ' ', $$& $$' L(F) = 0. , ' ' G @ 24 " , &$ 6 !'
' , $$'& @ ' 3 ' -'$$ $$ $ " 0 1 1 8]. N 24 ! &$ ! 24 3 +' ! !"$ ! ' -'$$ ($. . 6.4 8] . 2.9 7]). $'" x1 = x2 = : : : = xN = 0 = "$ $ & $ 3 +'. M ' 3 ' -'$$ $$ " 0 1 1, " $ u 6] w 7], & (u1 w1 u5 w2 ), (u2 w3 u6 w4) (u3 w5 u4 w6 ). / " ! ! ' un wn ' $ $ $ Uni Wni , $ ', 6] 7], " " = & 6 ' , $ '! $ '! L1 L2 L0 L1 L2 $ & ! ! $ i = 1 2 3 4.
78
. .
2. 24 ! " , $ % 1. & % , % G % L1 L2 C1 C2,
! % (1.1){(1.24),
'. ( , % , $ ! % 1, ' % L1 L2 C1 C2 ! ) ! % . @&" 1
, " # $ % # G =G =F
"
#
h1 j1 m1 i h2 j1 m2 i L x0 x h0 j1 m0 i
U11
=
U12
= W12 = L0 G = (1 ; x0 ) 012 " # x h 01 j1 m01 i h02 j1 m02 i h1 j0 m1 i h2 j0 m2 i L x0 m 12 0 (1 ; x0 ) F h0 j1 m0 i h01 j0 m01 i h02 j0 m02 i
U13
U14
U51
U52
W11
= W13 = L2 G = (1 ; x0 ); 1 # " x0 ;m1 F h1 j1 m1 i h02 j1 m02 i h2 j0 m2 i L x0 ; 1 x(1 ; x0 ) h0 j1 m0 i h02 j0 m02 i = W14 = L1 G = (1 ; x0 ); 2 " # x0 h 01 j1 m01 i h2 j1 m2 i h1 j0 m1 i L x(1 ; x0 );m2 x0 ; 1 F h0 j1 m0 i h01 j0 m01 i = W21 = L2 C0 L1 G = L1 C0 L2 G = x10; 0 " # h 1 + 20 j1 m20 i h1 + 10 j1 m10 i L x0 xx;0 m0 F h2 ; 0 j1 ;m0 i h01 j0 m01 i
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
= W22 = L0 U51 = L1 C0 L1 G = L2 C0 L2 G = x10; 0 (1 ; x0 ) 012 2
m0 3 x x; 0 F 4h1 ; 2 j1 ;m2 i h1 ; 1 j1 ;m1 i h1 j0 m1 i h2 j0 m2 i L x0 (1 ; x0 )m120 5 h2 ; 0 j1 ;m0 i h01 j0 m01 i h02 j0 m02 i
(1.6)
79
... U53
U54
= W23 = L1 U51 = L0 C0 L1 G = C0 L2 G = x10; 0 (1 ; x0 ) 01 ;1 2
x0 x(;x0 );m0 3 h 1 ; j 1 ; m i h 1 + j 1 m i h j 0 m i L 2 2 2 2 1 0 1 0 F4 x0 ; 1 (1 ; x0 )m10 5 h2 ; 0 j1 ;m0 i h02 j0 m02 i
(1.7)
= W24 = L2 U51 = C0 L1 G = L0 C0 L2 G = x10; 0 (1 ; x0 ) 02 ;1
3 x ( ; x0 );m0 x0 h 1 + j 1 m i h 1 ; j 1 ; m i h j 0 m i L 1 1 1 1 20 20 F4 x0 ; 1 (1 ; x0 )m20 5 h2 ; 0 j1 ;m0 i h01 j0 m01 i 2
= L1 C1 L1 G = F
"
h1 j1 m1 i h2 j1 m2 i L 1 ; x0 (;1);m120 x h1 + 120 j1 m120 i h01 j0 m01 i h02 j0 m02 i
#
(1.8)
U21
=
U22
= W32 = L0 U21 = L2 C1 L1 G = x10; 0 " # h 1 + 20 j1 m20 i h1 + 10 j1 m10 i h1 j0 m1 i h2 j0 m2 i L 1 ; x0 (;xx)m0 0 F h1 + 120 j1 m120 i (1.10)
U23
= W33 = L2 U21 = L0 C1 L1 G = C2 L2 G = x;0 1 " 1 (;1);m2 xx;m1 # h 1 j1 m1 i h1 + 10 j1 m10 i h2 j0 m2 i L 1 ; 0 F x0 h1 + 120 j1 m120 i h02 j0 m02 i
U24
U61
U62
W31
= W34 = L1 U21 = C1 L1 G = L0 C2 L2 G = x;0 2 " # 1 ;m1 ;m2 F h1 + 20 j1 m20 i h2 j1 m2 i h1 j0 m1 i L 1 ; x0 (;1) xx0 h1 + 120 j1 m120 i h01 j0 m01 i = W41 = L2 C2 L1 G = (1 ; x0 ) 012 " # h 01 j1 m01 i h02 j1 m02 i L 1 ; x0 x(x0 ; 1)m012 F h1 + j1 m i h j0 m i h j0 m i 01 2 012 01 0 1 0 2 0 2
(1.9)
(1.11)
(1.12)
(1.13)
= W42 = L0 U61 = L1 C2 L1 G = x1; 0 (1 ; x0 ) 012
3 x (;x0 );m0 h 1 ; j 1 ; m i h 1 ; j 1 ; m i h j 0 m i h j 0 m i L 1 ; x 2 2 1 1 1 1 2 2 0 F4 (1 ; x0 )m120 5 h1 + 012 j1 m012 i 2
(1.14)
80 U63
. .
= W43 = L2 U61 = C2 L1 G = L0 C1 L2 G = x010 (1 ; x0 ) 012 2 h j1 m i h1 ; j1 ;m i h j0 m i L 1 ; 1 (;1)m02
F4 U64
01
01
1
1
1
1
h1 + 012 j1 m012 i h01 j0 m01 i
x0
(1.15)
= W44 = L1 U61 = L0 C2 L1 G = C1 L2 G = x020 (1 ; x0 ) 012 2 h1 ; j1 ;m i h j1 m i h j0 m i L 1 ; 1 (;1)m01
2 2 02 02 F4 h1 + 012 j1 m012 i h02 j0 m02 i
2
2
xxm0 10 3 (1 ; x0 )m120 5
x0
xxm0 20 3 (1 ; x0 )m120 5
2 U31
=
W51
= C2 G = (; )
x0 ; 1 F
(1.16)
1 (;1)m210 x 3 h j 1 m i h 1 + j 1 m i L 1 1 1 0 1 0 15 4 x0 xm 0 h1 + 12 j1 m12 i
(1.17)
U32
U33
U34
= W52 = L0 U31 = L0 C2 G = (;x0 ) 20 (1 ; x0 ) 012 2
3 2 0 1 xxm 0 h 1 ; j 1 ; m i h j 1 m i h j 0 m i h j 0 m i L 2 2 1 1 2 2 02 02 F4 x0 (x0 ; 1)m120 5 h1 + 12 j1 m12 i h01 j0 m01 i h02 j0 m02 i
= W53 = L2 U31 = L2 C2 G = (1 ; x0 ); 1 " x # ;1 m12 F h1 j1 m1 i h02 j1 m02 i L (1 ; x0 ) (;1) (1 ; x0 )m1 h1 + 12 j1 m12 i h01 j0 m01 i h02 j0 m02 i = W54 = L1 U31 = L1 C2 G = (;x0 )1; 0 (1 ; x0 ) 01 ;1 2
(1.18) (1.19)
3
1 xx;0 m0 h 1 ; 2 j1 ;m2 i h1 + 10 j1 m10 i h1 j0 m1 i h2 j0 m2 i L 4 F 1 ; x0 (1 ; x0 )m10 5 h1 + 12 j1 m12 i
(1.20)
U41
U42
= W61 = C1 G = (;x0 ); 2 2
1 (;1)m120 x 3 h 1 + j 1 m i h j 1 m i L 2 2 2 0 2 0 25 F4 x0 xm 0 h1 + 21 j1 m21 i
(1.21)
= W62 = L0 U41 = L0 C1 G = (;x0 ) 012
3 1 0 1 xxm 0 i L h j 1 m i h 1 ; j 1 ; m i h j 0 m i h j 0 m 1 1 1 1 2 2 F 4 01 01 x0 (x0 ; 1)m120 5 h1 + 21 j1 m21 i h01 j0 m01 i h02 j0 m02 i 2
(1.22)
... U43
U44
= W63 = L1 U41 = L1 C1 G = (1 ; x0 ); 2 " x # h 01 j1 m01 i h2 j1 m2 i L (1 ; x0 );1 (1 ; x0 )m2 F h1 + 21 j1 m21 i h01 j0 m01 i h02 j0 m02 i = W64 = L2 U41 = L2 C1 G = (;x0 )1; 0 2
F 4h1 + 20 j1 m20 i h1 ; 1 j1 ;m1 i h1 j0 m1 i h2 j0 m2 i L h1 + 21 j1 m21 i
81 (1.23)
3
;m0 1 ;1x (1x;xx0 )m20 5 0 0
(1.24)
2 $'$ " L1 L2 C1 C2. L1 L2 C1 C2 ' G "@ " ' U14 U13 U41 U31 $$. O$ B$3C Li Cj CiLj BC Li Lj CiCj , ! i j = 1 2. $ $3 ' U43 U44 U33 U23 U24 U63 U64 U34 ($. ' 1). A $ " = $' & I: L21 = L22 = C12 = C22 = I (16) $ " & " L0 C0, ''& '! $ '!: L0 L1 L2 = L2 L1 C0 C1 C2 = C2 C1 L0 C0 = C0 L0 : (17) , L0 $ G " ' U12 , C0 | ' , "&$ "! U51 A(0 ; 1): C0 G = A(0 ; 1)U51 A(a) xa0 (;x0 );a : (18) !'
: () $ L0 C0 6 () $ . A 8 (a) " C0L2 C0L1 L0C2 L0 C1 " ' U53 U54 U32 U42 $$, " '! $$ "$ 3 ' $ & $" $3 L1 C0 = A(0 ; 1)C0L2 L2 C0 = A(0 ; 1)C0L1 (19) C1L0 = L0 C2 C2L0 = L0 C1: (20) O$ (), & Li Cj Lk CiLj Ck (i j k = 1 2), '& $3
82
. .
B(0 i )CiLi Ci = Lj Cj Lj B(0 0 ; i)Ci Li Ci = Lj Cj Lj B(1 ; 0 1 + i ; 0 )CiLi Ci = Lj Cj Lj B(1 ; 0 1 ; i )CiLi Ci = Lj Cj Lj 0
0
0
0
0
0
0
(21) (22) (23) (24)
! i j = 1 2, i0 = 3 ; i, j 0 = 3 ; j, B(b c) | B(b c) = xb0(;x0 );b (1 ; x0 )c (x0 ; 1);c :
(25)
"$ "@ $ () , , L1 C1L1 , L2 C2L1 , L2 C1L1 L1 C2L1 , " ' U21 , U61, U22 U62 $$. Q&
'" , $ ' ' & $ Li Ci (i = 1 2). , " , $ () (), $ ' $ ! $3 (16){(22), ' , " L0 C0 L1 L2 C1C2 $ $ " , '$ & ' & 3! "$ $. ,& L0 C0 $$' " ' U52. D , $$ 5 $, $'$', $' $3 L0 C0 = C0 L0 " $ Li L0 = L0 Li = Li Ci C0 = C0 Ci = Ci 0
0
(i = 1 26 i0 = 3 ; i)
(26)
&! $ Li Ci & L0C0 ' &. / 23 ' ' 3 ' Uni $'& ' & U11 G , '" 24 ' , @ 1, " 3 $ 2.
4. # ! $ !, & ! ! G-
3. 12 , * ! % (U1 U5), (U2 U6) (U3 U4), , $ i % 2. Un
C1Uni , | 12 C2Uni .
83
...
@&" 2
& $ , % # % G
0 012 U 4 + ; 0 120 U63 01 02 2 1 2
U14
=;
U54
= ; 1 +2 ; 0 1+120 20 10
U24
120 1 ; 0 = ; 11 + + 20 1 + 10
U63
= ; 1 + 012 0 ; 1
U11
=;
U51
= ; 1 +2 ; 0 1;21 1 20
U31
= ; 1 + 12 0 ; 1
U41
21 1 ; 0 = ; 11 + + 20 1 ; 1
U22
= ; 1+ 112+0 21 2 20
U62
= ; 11+;012 12 2 02
U34
= ; 11+;12 012 2 02
U44
= ; 1+ 12+1 120 2 20
01
02
U63 + ;
U14 + ;
U54 + ;
(2.1)
2 ; 0 012 1 ; 1 1 ; 2
1 + 120 0 ; 1 1 2
(2.2)
U24
1 + 012 1 ; 0 1 ; 1 1 ; 2
U54
(2.3)
U14
(2.4)
0 12 U 1 + ; 0 21 U31 1 02 4 2 01
1
02
(2.5)
0 ei ( 0 ;1) U31 + ;
ei (1; 0
U11 + ;
ei
0
ei
0
2 ; 0 12 1 + 10 1 ; 2
1 + 21 0 ; 1
ei
1 + 120 12 3 +; 1 1 + 10
1U4
1 + 012 21 4 +; 1 ; 1 01
0 1U4
ei
1 0U2
1U2
(2.6)
U11
(2.7)
1 + 21 012 6 +; 1 ; 01
1
0
( 0 ;1) 1 U5
(2.8)
ei
1 + 12 120 2 +; 1 1 + 10
0
0 ei ( 0 ;1) U41
1 + 12 1 ; 0 5 +; 1 + 10 1 ; 2
0 )U 1
2 01
e;i
0
ei
(2.9)
2U4
0
4
0 2U4
0
ei
3
0
e;i
0
(2.10)
2 0U2
6
(2.11)
2U2
(2.12)
2
84
. .
. + 12 ', @ 2, $ ' $ ' (15) ' Uni , ' "$ '. R $! "$ '$$ $ & $ ! $, @ $
2, ', @ 1. / '" A B, 12 " ', , ! $ x0 ;x0. ? $ $ $ , &! !'& !" ' xa0 . $'" 0 1), ! = 1, ;x0 = exp(i0 )x0 0 = sgn Imx0] A (a) = exp(;i0 a): (27) 2 0 1) ', $ B-$, $ = 1, ;x0 = exp(i 0 )x0 0 = sgn Imx0] B (b c) = exp i 0 (c ; b)]: (28) D 3! $ ' (15) $ "@ U1i (i = 1 2 3 4) ' U1 ($. ' 1). $' $ ! $3 (20,) (15) $'" U11 U12 @ ' ' '' (2.5), $'" U13 U14 | '' (2.1). "$ (2.1) (2.5) & 4 ' U2 U6 U3 U4 , '$ 4 " $ ($. ' 1) @, ! $ $'" U1 , ' "$ ! . .' '& 8 $3 ($. (2.3), (2.4), (2.7){(2.12)) $ $'& '& ' & U5 . , ' (15) "@ $ = ' $ ' U2 U6 U3 U4 ($. (2.2) (2.6)) 3 $ $ 3. $'" x1 = x2 = : : : = xN = 0, = = ;1 $3 (2.1){(2.10) 2 $ & $ $$'& ', @ . 2.9 '$$ ! ! 6], ' (2.11), (2.12) "&$ $$'& 3" ' (38), (40) ! 6] $! "$.
5. )* + & O3 +$ '& ($. 8, $. 297]) $ $ , $@ ' & "$ ' "$ !
, "& = $, " B&$ $" $ $$"$ $$ $$'& $ ! ! !"$ C. $ $$
...
85
' "& $ ' &. E! '" ' "$ ! ( "$$, $ ', @ 8]), &$ $$ "$ $'" $ ' (15), ' ! = ' $ . ,$ , $ $ ' (15), "$ $ &" 3 . D , ! "$ ' ($. , ' $. 295, 297 ! 8]). ,'" 1] $ $ $ ', -', $" & $ $ $3 ' ! !"$ , !' $ - . ' $, '$ $ !"$$ $ $3 & ''& $' $$ ! ?E, ! $ " !"$ "$ $$ = $3. . % &'(, *+'+ * * ,,
' ( '& (- *&. . (
, * /( 0 12{5], ( 4( 19] /- 40 &*&/0 ' * ,( ( ( , * 6 ,() * ,( / . 7 * ' / , +8 * /(0 * /- ( G , / /& *' 6 . 9( ' ' ,(- (0 * - (/ ,(0 *: ' /( ** ( * * ;& ' 110]. < ,8 * ' , *'* 6 6 * ' ' /- & +(0 * * * * ' &(0 &*&/0 ' *4,8 *& /0 * - ' 7=> 111]. = '* 40 -(0 * - 11, 11] -'( * ,( -( * ,
(* 84 ' ?** F4 - @ H1 G2 112]. A 0 (/ ;
,(0 6- '( *( : * ' ( ' 6 * B +{@' 113]. A & /- & & * & * &*&/0 ' , 840 '(- * * 6' *(0 114]. * 4 /- /- '/ 9 * ' ' , ' '( *'0' * 6 , * C-; , * 84& ,
( , & ( 6' ', '84 4 - /- -, ;
* , , ; ' (/ ,(0 - 115].
,
11] ?. =. . Transformation theory of multiple hypergeometric series and com-
86 12] 13] 14] 15] 16] 17] 18] 19] 110] 111] 112] 113] 114] 115]
. .
puter aided symbolic calculations // Proceedings of the 9th International Conference FComputational ModelingG. | Dubna: JINR, 1997. | P. 219{223. ?. =. . Generalized hypergeometric series NF (x1 : : : xN ) arising in physical and quantum chemical applications // J. Phys. A: Math. Gen. | 1983. | Vol. 16. | P. 1813{1825. ?. =. . Generalized operator reduction formulae for multiple hypergeometric series NF (x1 : : : xN ) // J. Phys. A: Math. Gen. | 1984. | Vol. 17. | L731{L736. ?. =. . (- ' &*&/0 ' * ,(0 - /- // U*0 . . | 1988. | W. 43, (*. 3. | X. 191{192. ?. =. . (- *'0' &*&/0 ' * ,(0 - /- // >. . | 1991. | W. 50,
(*. 1. | X. 65{73. @. 9-, ?. 7'-. =(+ '( . W. 1. | >.: , 1973. Y. Z8. X* ,( / 0 **. >.: >, 1980. H. M. Srivastava, P. W. Karlsson. Multiple hypergeometric series. | Chichester: Ellis Hoorwood, 1985. ?. =. . A* ** &*&/ '( 4& ' // >. . | 2000. | W. 67, (*. 4. | X. 573{581. ?. =. . &*&/0 ' ** ( * , 0 *,8- &( // .'. * . . | 1999. | W. 5, (*. 3. | X. 717{745. A. W. Niukkanen, O. S. Paramonova. Computer generation of complicated transformations and reduction formulas for multiple hypergeometric series // Computer Physics Communications. | 2000. | Vol. 126. | P. 141{148. ?. =. . >' ( * ?** F4 - @ H1 G2 // U*0 . . | 1999. | W. 54. | X. 169{170. A. W. Niukkanen. Operator factorization method and addition formulas for hypergeometric functions // Integral transforms and special functions. | 2001. | Vol. 11. | P. 25{48. ?. =. , <. ?. . j& 0 &*&/0 ' &0 *(0 // <& . | 2001. | =(*. 1. | X. 41{48. A. W. Niukkanen, V. I. Perevozchikov, V. A. Lurie. A generalization of a classical relation between J +n (z ) J (z ) and J ;1 (z ) with comments on the modern state and trends in the theory of special functions // Fractional calculus and applied analysis. | 2000. | Vol. 3, no. 2. | P. 119{132. + ! # ! 1996 .
. .
. . .
512.533.8
:
, ,
,
, , !"
, #$
, #$#
.
&'( : Sub S ;! Sub T $ " * , ], ! " ,'
A S
A "$ " " * $ , $ ] $ T ! , A ' $ $ ,- $ $. , !# # #
# $ #" " " # $ $ '!
. .#" " ( $ $
! " $
#$#
. & '(", / ,- ! ( $ $ $ ! $ !)
$. 2 , ,' $ ! $ ! $ !
$ / " .
Abstract A. Ja. Ovsyannikov, Ideal lattice isomorphisms of semigroups, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 87{103.
A lattice isomorphism of a semigroup S upon a semigroup T is called an ideal lattice isomorphism if it induces a bijection of the set of ideals of S onto the corresponding set of T . Left and right ideal lattice isomorphisms are de6ned in a similar way. The order on idempotents and the property of being a subgroup are proved to retain under lattice isomorphisms of these kinds. The property of a semigroup of being decomposable in a semilattice of Archimedean semigroups is retained as well. Mappings that induce ideal lattice isomorphisms of idempotent semigroups are described. In particular, each left ideal or right ideal lattice isomorphism of an idempotent semigroup is induced by an isomorphism. 7' $ 8 $ 7 9. , 2001, 7, : 1, . 87{103. c 2001 ! " #" " , $ %& '
88 x
1.
. .
! " # $1] (
) $2]. + ,
S
T
Sub S
S
Sub T . - " " # S # T . .
/ ,
, ! , 0 1 # !
. 2 S T |
. + # : Sub S ;! Sub T $ , ],
A S
A $ , ] T , A ! . 5 ! $1, x 23] (. # $2, x 30]): , ,
S T ,
S . . - , ! , . + ! ! !
, ! $
] , $
]
. 8 1{5. 2 , $
]
. ; 3 ,
4 ( )
. + ", 5 $
]
. - $3] $4]. , # $5] $6]. x
2.
+ ! . > , ! $
-
89
]: "
/
# . ; # , !,
. -
S S
S@. A ", , , !
. 2 , ! , . 2
S T ! " . a e f 0 a0 e0 f 0 00 a 0 0 a 0 a0 00 00 a0 00 S: e 0 e 0 0 T : e0 a0 e0 00 00 : f 0 0 f 0 f 0 00 00 f 0 00 0 0 0 0 0 00 00 00 00 00 2 , S T
S 1 a = fa 0g S 1 e = fe 0g S 1 f = fa f 0g S 1 0 = f0g (1) 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 T a = fa 0 g T e = fe 0 g T f = fa f 0 g T 0 = f0 g: (2) 8 # '
S T , x x0 x 2 S , "
S T , (
) 1 '(xy) 2 h'(x) '(y)i ';1 ('(x)'(y)) 2 hx yi: (3) C
S T (1) (2)
. D , ' " " #
S ! #
T , # " #
S ! #
T , # E . ; , ' . 8 ' , , fe0 00g
fe 0g
S ,
T . F
, , . ; ,
. G , " '
S
T " , 1 ; $" $ ! , " ,'#
A S B T ( $ '(A) ';1 (B ) "$ ", "
$ T S $ $.
90
. .
/ x y 2 S 1 (3). +# ", "! ,
, " 0 x y z 2 S x = yz '(x) 2 h'(x) '(y)i1 0 2 T = ';1 () 2 h';1 ( ) ';1 ( )i1. 8
, !
. H
#
. I J (A) $ L(A)] $ ]
, #
# A. . A / a, J (fag) L(fag) , , J (a) L(a).
1.
S T : ( ) | $ ]
() ! A S
J (A) = J (A) $L(A) = L(A)] () !" x y 2 S hxi J (y) $hxi L(y)]
hxi J (hyi) $hxi L(hyi)].
( ). ( ) ) (). 2 | S T , A 2 2 Sub S , A 6= ?. ; A J (A), A J (A). 2 J (A) | , J (A) J (A). 2 # ;1 , ;1 J (A) J (A). J ,
S , # ! A, , / ,
J (A) = J (A). () ) ( ). 2 J (A) = J (A) A 2 Sub S , A 6= ?. H
I S . ; J (I ) = J (I ) = I , . . I T . K , ;1 K S K T . " () ) () () ) () # # . + , J - $L- ]
... J - $L- ].
#
. $ $ ]
S T % !% '. & ' " ' J $ L], . . !" a b 2 S
91
aJ b , '(a)J '(b) $aLb , '(a)L'(b)]: ) , ' " J - $L- ] %
J - $L- ] S J - $L- ] T.
L (. 24.1 24.2 $1, 2]
31.1 31.2 $2]),
S T " " ' # B / , ! , /
S
! # T , x 2 B
n h'(x)i = hxi '(xn ) = '(x)n . 5 # ' ", . F
J - , J - /
2. $ S | |
S T. & T + , + " S
" S
T. ) , ! (. . )
" . x
3. ! "# , %%
2
$ ], # xy = x $xy = y]. 2
, . 1. $ | $ ]
-
S T , ' | !% , % . & !" e f 2 ES e 6 f , '(e) 6 '(f ):
. - . H S T , e 6 f '(e) 6 '(f ). 2 e < f , . . ef = fe = e 6= f . 2 #, '(e) <6 '(f ), / # . M
#, '(e) J '(f ): (4) 5 / ,
h'(e) '(f )i = f'(e) '(f )g
,
92
. .
/ , # '(e) > '(f ). H (4) . H , , '(f ) 2 J ('(e)). H # e < f e 2 J (f ), # 1 '(e) 2 J ('(f )). ; '(f ) 2 J ('(e)), , (4) / . - F = J (e)=I (e)
S . 8 # e f 2.38 $5] 0-
. 2 e < f , F # 0-
. 2 #, F ! "
B = ha bi, f " ab = f , ba 6 e. ; eJ f , f = set s t 2 S . 2 e < f , ! # s t 2 fSf . f = se et, f 6= et se, f = ef = fe, # e < f . 2# a = se b = et. D , a b # "
B , ab = f , ba = etse 6 e. H $7] (. # $2, 41.8]) ' B " , / e 2= B (5) '(e) < '(f ). M , ba < e. F , '(f ) " '(B ). J , ea 2= B: (6) n m n m F , ea = b a e = ef = eab = b a b 2 B , (5). 2 , ea /
. F : n m (ea)n = (ea)n+m : (7) G , ba < e ae = (aba)e = a(ba)e = aba = a, . . ae = a: (8) n n + m H (8) (7) ea = ea . F # a (8), an = an+m , # "
B . ; , ea / , / '(ea). '(ea) 2 h'(e) '(a)i. H '(e) '(f ),
: f'(e) '(f )g |
'(e) < '(f ). 2 f'(e) '(f )g |
, ,
,
(
). ; '(f ) | " '(B ) '(f ) = '(f )'(e), '(a) = '(a)'(f ) = '(a)'(f )'(e) = '(a)'(e), . . '(a) = '(a)'(e). ; h'(a) '(e)i = h'(a)i h'(e)i '(e)h'(a)i. ; '(ea) 2= h'(a)i h'(e)i, '(ea) 2 '(e)h'(a)i, . . '(ea) = '(e)'(a)n n. F , '(f )'(ea) = '(f )'(e)'(a)n = '(f )'(a)n = '(a)n = '(an ), . .
93
an 2 hf eai. 2 e < f , , hf eai = hf i heai. 8 an 2 heai f = anbn 2 eS , . . ef = f , # e < f . 2 '(f ) < '(e). ; '(f ) | " '(B ), '(e)'(a) = = '(a)'(e) = '(a). ; , h'(e) '(a)i = h'(e)i h'(a)i '(ea) 2 2 h'(a)i, . . ea 2 hai B , (6). 2
. 2 | . L , , e f 2 ES e < f '(e) < '(f ). H , ef = e e 2 L(f ), # () # 1 '(e) 2 L('(f )), . . '(e)'(f ) = '(e). . '(e) <6 '(f ), , f'(e) '(f )g
, '(f )'(e) = '(f ) '(f ) 2 L('(e))
# () # 1 f 2 L(e), . . fe = f , # e < f . , '(e) < '(f ), . F . 2 #,
.
2. $ |
S
T . & G S , G T. . H S T , G
S , G
T . 2 G |
S .
- . + , / , / , , . H / 2 G #,
. F . ; / # 27.3 $1, 2], . # $2, # 34.3]. M ,
h i ! / Sub T , ;1 h i "
S 3.1 $1, 1] $2]. 2 ;1 h i = hgi g 2 G. ; g |
/ , L(g) = L(H )
H hgi. H # () # 1 L( ) = L( ), |
h i. ; = 2 T , . . = . M , |
/ . 2
. - ! .
1. $ A
+ a b g ,
G = hgi , B = ha bi !% %
94
. .
e = ab,
% G, ga 2 hgn ai
n. & gn
+ G. . 8 , e "
A. 2# C = hg ai. F #, G \ Ca = ?: (9) m H , g = ca m ! c 2 C , gm ba = caba = ca = gm , . . gm ba = gm , , #
g;m , ba = e, # . ; ga 2 hgn ai, ga = cgn ak gnr (10) c 2 hgn ai, k | , r | " " . - # r. 2 r = 0. ; (10) ga = cgn ak . . k > 1, g = ge = = gab = cgn ak b = cgn ak;1, . . g = cgn ak;1 2 Ca, (9). M , k = 1, . . ga = cgn a g = gab = cgn ab = cgn, . . g = cgn , , g 2 hc gni. c = g g;n 2 G, c 2 hgn ai, (9) , c 2 hgn i. M , g 2 hgn i gn # G. 2 r > 0. 2 #, / k = 1. 2 #, k > 1. 2 (10), : ga = = cgn;1(ga)ak;1 gnr = cgn;1 (cgn ak gnr )ak;1gnr = cgn;1cgn ak gnr;1(ga)ak;2 gnr = = cgn;1 cgn ak gnr;1 (cgn ak gnr )ak;2gnr . 2# , ga = cgn;1(cgn ak gnr;1 )k;2cgn ak gnr agnr. 2# d = cgn;1(cgn ak gnr;1 )k;2cgn . ; d 2 C ga = dak gnr agnr . F , ga = dak gnr;1(ga)gnr , ga = (dak gnr;1)m (ga)(gnr )m m. 2 jgj / g. 2 m = jgj ga = (dak gnr;1 )m ga = hgnr a, h = (dak gnr;1 )m;1 dak . 2 k > 1, , h 2 Ca. ga = hgnr a g = hgnr , h 2 hgi. J , h 2 Ca,
(9). A , k = 1 (10).
- (10) ga = cgn agnr : (11) n ; 1 nr n ; 1 m 2# m = jgj. (11) ga = cg (ga)g = (cg ) ga, . . ga = (cgn;1)m ga. F # bg;1, e = (cgn;1 )m . ; c 2 hgn ai, (9) c 2 hgn i. (11) , ga = gnl agnr ! l, a = gnl;1 agnr : (12) F #, n jgj / . 2 ! t, tn jgj gt 6= e. (12) a = (gnl;1 )ta(gnr )t = g;ta, g;t = e. 2
. G 2. 2 |
S T . G
95
G S . 8 , , G
. ; G !
/ . 2# hgi = ;1 h i. - , g 2 G. - J - Jg S J T Fg F , ! / J - . ; G Jg , G J . 2 F #
/ , # ",
h i F ( " 2 h i J ), , F #
, # 0-
. ; , F 0- , 0-
# . 2 1 Fg # # . D , Fg # 0- , 0-
. 2 e " G, h"i = hei. 2 2.54 $5] Fg "
B = ha bi " e, e = ab. 2# A = hg a bi #, A 1. ; h i, , ! / Sub T , , hgi ! / Sub S . 2 # hgi
,
g 2 G, , #
". M , ;1 h"i = hgn i n. 2 #, ga 2 hgn ai. H $7] B "
. 2# = '(a). 2 hgi \ hai = ?, ga 2= hgi hai ga 2 hg ain(hgi hai). M , hgai hg ain(h i hi), hgai h" in(h"i hi). ; , ga 2 hgn ai. H 1 A . , hgn i = hgi . 2
, 2. 8
. 1. , ! $ ]
S T !% ' + S n Gr S + T n Gr T, ! x 2 S
hxi = h'(x)i. $ !" x y 2 S n Gr S xJ y , '(x)J '(y) $xLy , '(x)L'(y)]: - , x 2 S n Gr S n | , xn 2= Gr S, '(xn ) = '(x)n + " : ) |
) S | ) ! x | !
, ! xk 2 Gr S, xk;1 2= Gr S , k 6= 4. . . x 2= Gr S, hxi ! / Sub S , . . hxi | ! / Sub T . 2 3.1 ) $1] $2] hxi = h i 2 T . H 2
96
. .
, 2= Gr T . > , # x 7! ". ; # 1. F # , x | / , '(xn ) = '(x)n 24.2 $1, 2], . # $2, 31.2]. . x | / , hxi\Gr S 6= ?. 2 k | , xk 2 Gr S . . k 6= 4, '(xn) = '(x)n $8]. 2 k = 4. ; $8] '(xn ) = '(x)n , '(x2 ) = '(x)3 '(x3) = '(x)2 . 2 #, # # ) ). A . , '(x2) = '(x)3 '(x3) = '(x)2 . 2 #, | . 8 , '(x)3 2 L('(x)2 ). 8 x2 2 L(x3 ), . . x2 = yx3 ! y 2 S . 2 e | hxi xm = e. ; x2 = yx3 = y x2 x = = ym x2 xm = ym x2e x2 = x2e, # x3 2= Gr S . 2
). 2 S |
| . ; '(x)3 2 J ('(x)2 ), x2 2 J (x3 ), . . x2 = yx3 z
! y z 2 S . H s , / z s , # z s = f . ; x2 = yx x2 z = (yx)s x2 z s = y1 x3f ! y1 2 S , , x2 = y1 x3 f , x2 f = x2 . 8 x3 f = x3 , . . x2 = y1 x3. L ! ",
, . 2. , ! $ ]
S T ! , !
|
.
x
4. , ( !
-
, #
. H $6, . 105]
AS-
. I S
/ "
S . 3. $ |
AS - S T. & T AS - , -
! " A S A " T + " " S
S=S T=T .
97
. L (., , $6, . 105]),
AS-
, / a b , a b , a2 bn ! n. 2 /
T . G 2 T ,
, . . 2 J (): (13) . 2 J (2), J () = J (2 ), : 2 J (2). 2 #, 2= J (2): (14) ; , , hi
, / hi ! / Sub T ;1 hi "
S , # C = ;1 hi = hai. 2 #, a 2= J (a2): (15) 2 # : a 2 J (a2 ). ; J (a) = J (a2 ), # 1 J () = J (ha2 i): (16) J , 2 ha2 i. F , 2= ha2 i, ha2 i hi, . . ha2 i J (2), (16) J () J (2 ), (14). F
C = ha2i, , C "
. 8 ,
D C J (C ) = J (D). H D = ;1 ha2 i, J (a) = J (C ) = J (;1 h2i), # 1 J () = J (2), # (14). 2# D = ;1 h i. (13) # 1 D J (C ). ; S AS-
,
, , D \ J (C 2 ) 6= ?. .! # 1, , h i\ J (C 2 ) 6= ?. 2 C 2 J (a2 ), (15) J (a2 ) J (2), h i \ J (2) 6= ?, . . 2 n ! n. , T AS-
. 2 A | S B = A. 2 #, B T . 2 2 B . J , T , . . # . ; ;1 hi ;1h i A, A ;1 h i \ J (;1 hi) 6= ?. 8 !
# 1 h i\ J () 6= ?. M , AC (x) AS-
, # ! / x, AC ( ) 6 AC (). 2 , AC () 6 AC ( ). M , AC () = AC ( ) B # C
T . 2 #
98
. .
;1 C , , # # S . ; , ;1 C A, , B = A, B = C . 2 #
# 2. 8
. + ,
#
, /
. 5 # A l S , A
S . I hhaii
, #
/ a
.
4. $ S |
, |
S
T. & T
, ! X S X T, Sub X
. . X | S, Sub X %
. / " S
T . . H 2 2
T . G X
S
#,
A l X , A l X: (17) 2 A l X . 8 M E S , X , N | # M X . P , M N | S , / M N l T .
2 #,
A l X , A M l S:
(18) 2 A l X , a 2 A M , s 2 S . J , sa 2 A M . . sa 2 M , . 2 sa 2= M . ; , a 2 N , # sa 2 N , . . sa 2 X . 8 , b 2 hhaii sb 2 X . 2 b | " hhaii, a = ba. sa = sba = (sb)a 2 A, A | X a 2 A. , sa 2 A M . 2 (A M ) l S , a 2 A, x 2 X . ; xa 2 X \(A M ) = A. J (18) . 2 (18) ,
(A M ) l T , 2 #,
A M l T:
99 (19)
B l X , B M l T: (20) 2 B l X , 2 B M , 2 T . J , 2 B M . .
2 M , . 2 2= M . ; , 2 N 2 L( ), a ;1 L( ) N , , 2 N , . . 2 X . . 2 M , L( ) M 2 M . M , 2 X , . . 2 B . 8 , 2 hh ii 2 X . 2 " | " hh ii, = " . = " = ( ") 2 B , B | X . , 2 B M .
8 " (20) #, (18). (19) (20) , A l X . H
S T # (17) . ; , X
. . X |
, !
, / # 31.1.2 $1], . # $2, 38.1.1]. . X |
, , X |
,
. . X |
, X |
. H 30.8 $1] (. # $2, 37.8]) X |
, . . X / . H
, # # . > ,
,
,
# 2.7 $1] $2],
, ! . , X |
.
, , Sub X / " . H
X
30.8 $1] Sub X " . 2
, # " . ; X |
T , # Y
T . J , ;1 Y
S T , , ;1 Y = X , . . X T . 2 # # 2 ,
S / !
T .
100 x
. .
5.
+ ,
S
T " ' # S T , x y 2 S '(xy) 2 f'(x)'(y) '(y)'(x)g: (21) + ' , x y 2 S f'(xy) '(yx)g = f'(x)'(y) '(y)'(x)g: (22) M! , ! . + , !
ha b j a2 = a b2 = b ab = ai
! . > , , # # . H / # ! # .
5. -+
%
. , ! S T !
, !" , !
S T. F # .
2. $ ' | !% , %
S T, X Y | S, '(X ) '(Y ) | T, X 6 Y '(X ) 6 '(Y ). . ' X
$
], !" x 2 X, y 2 Y '(xy) = '(x)'(y), '(yx) = '(y)'(x) $'(xy) = '(y)'(x), '(yx) = '(x)'(y)]. . F , ' X ,
#, '(xy) = '(x)'(y). H . P , X < Y . M '(X ) < '(Y ). ; x xy 2 X , '(x) = = '(x xy) = '(x)'(xy), . . '(x) = '(x)'(xy): (23) 2 #, (23) '(xy) = '(x) '(xy) = '(x)'(y):
(24)
101
; '(xy) 2 h'(x) '(y)i '(x) 2 '(X ), '(y) 2 '(Y ), '(X ) < '(Y ),
,
, #
/ '(x) '(y), ( ) / '(x) '(y) '(x)'(y) '(y)'(x) '(x)'(y)'(x) '(y)'(x)'(y) , '(xy) 2 f'(x) '(x)'(y) '(y)'(x) '(x)'(y)'(x) '(y)'(x)'(y)g: ; '(Y ) |
'(X ) < '(Y ), '(x)'(y)'(x) = '(x): (25) ; , '(xy) '(x) '(y) '(y), '(xy) = '(x)'(y),
'(x), , # '(xy) = w('(x) '(y))'(x)
'(x) (23) (25), '(xy) = '(x). J , (24) '(x)'(y) = '(x). H , '(xy) = '(x) xy = x, . . hx yi = fx y yxg. . '(x)'(y) 6= '(x), '(X ) < '(Y ) '(x)'(y) = '(yx), . . '(x)'(y) = '(yx x) = '(yx)'(x) '(x)'(y) = '(yx)'(x), '(x)'(y) = '(x)'(y)'(x) = '(x). 2
, '(xy) = '(x)'(y). F
, ' X , '(xy) = '(y)'(x) '(yx) = '(x)'(y).
3. $ ' | !% , %
S T , X Y | S, Z | " " S, '(X ) '(Y ) | T, '(Z ) | " " T. . ' Z
$
], !" x 2 X, y 2 Y '(xy) = '(x)'(y) '(yx) = '(y)'(x) $'(xy) = '(y)'(x) '(yx) = '(x)'(y)]. . 2 #, ' Z , #, '(xy) = '(x)'(y). H
. 2 2, '(xy) = '(x)'(xy) = = '(x)'(xy)'(y), . . '(xy) = '(x)'(xy)'(y). ; '(xy) 2 h'(x) '(y)i,
. F
, ' Z , '(xy) = '(y)'(x) '(yx) = '(x)'(y). F # 5 . 2 S |
, ' | # , "!
S
T . H 4 X
S '(X )
T , 'jX
102
. .
'
S . 2 2 3, # , ' . - # 5. F ! # .
4. )
S T %
S T. F # . 2 ' | " , "!
S T . H # 2 # S T . M 30.8 $1] ' S . ; , (22) # , x y # S , # X Y . H S T , # x y, (21). - ! . 2 X Y . -
#, X < Y ( Y < X
). ; # 2 '(X ) < '(Y ). F , ' X . ; '(xy) = '(x)'(y) 2. K 2 , ' X , '(xy) = '(y)'(x). 2 X Y . 2 Z | X Y
S . 2 #, ' Z . ;
# 2 '(X )'(Y ) '(Z ), 3 '(xy) = '(x)'(y). K 3 , '
X , '(xy) = '(y)'(x). F # 5 . ; , 5 . K # >. +. Q " .
*
1] . ., . . . ! 1. | #: %&- ( . - , 1990. ! 2. | #: %&- ( . - , 1991. 2] Shevrin L. N., Ovsyannikov A. J. Semigroups and their subsemigroup lattices. | Dordrecht: Kluwer Academic Publishers, 1996.
103
3] . . % ! . &/0&/ // 2! /3 0 4 5. #5. &. | 6 , 1993. | #. 242. 4] Ovsyannikov A. J. On ideal lattice isomorphisms of semigroups // Colloquium on Semigroups. Szeged, 15{19 August 1994. Abstracts. | P. 28. 5] 600 ., ;. 5 . . 2. 1. | <.: <, 1972. 6] . . // 5> 5 . 2. 2. | <.: , 1991. | #. 11{191. 7] Shevrin L. N. The bicyclic semigroup is determined by its subsemigroup lattice // Simon Stevin. | 1993. | Vol. 67. | P. 49{53. 8] . . &/0&/ // // %&. &. < / . | 1966. | ? 1. | #. 153{160.
( #) * 1996 . ( | 1997 .).
, , . .
. . .
517.51
: , , , , ! " , ! #{%! .
&
'( ' ( )! ! #{%! '( ! " . (C,1) , ! ! )! '( .
Abstract
A. N. Pavlikov, The Cesaro average for orthogonal-like decomposition systems with non-negative measure, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 105{119.
We prove that in case of orthogonal-like decomposition systems with non-negative measure the Abel{Poisson's method of summation is equivalent to positive Cesaro's methods for convergence almost everywhere. A criterion for summability of a sequence of partial integrals almost everywhere is given.
. . 1{3] !, # $ % #, & % # #. . % H | $%
R C , ( |
) # & % # # . * + fe! g!2 H % (. . ) , .# + y 2 H ! ! Z y = (y e! )e! d(!) 1
' 1223 ( 4 96{01{00332).
, 2001, 7, 4 1, . 105{119. c 2001 !, "# $% &
106
. .
$ $ !
#
# $ $ 2 & ) ! H, ) ) % ) f(k g1 k=1
( ( (k , (k (k+1 ! 1 S k 2 N, (k = (), ) 2 &! (y e! )e! $ $ (k k=1 Z Z ! ! y = (y e )e d(!) = klim (y e! )e! d(!): !1 k
3 !4 # & % ! 4. !
) % 4,5], .4 !
$ % ! ) . % ! ! .4 .
1 ( ). c(!) | ( y=
Z
c(!)e! d(!)
R
kyk2 6 jc(!)j2 d(!).
*. 1], 2], 3].
2 ( !. "). 1 PR
E k k=1 E E .
gk (x) > 0 gk (x) d < 1, gk (x) 1 P
k=1
*. 6, . 349{350].
x
1. (C,1)-
% ( |
) # & % # # ,
f(k g1 (, ) (k , k=1 | 2
) 1 S (0 = ?, (k (k+1 ! k 2 N, (k = (. k=1
.R %!c(!) | ) ! 2 &! (. % % 1
fsk gk=1 , $ sk = c(!)e d(!), $ $ !
k
( ),
R c(!)e! d(!).
-
1 $ % % fn g1 n=1, $ n = n (s1 + : : : + sn ) | % % (C,1)- ( 2 ) , ) 1 !) ! fsk g1 k=1.
107
. % % fsk g1k=11 !
(C,1)- S, % % fngn=1 ! S n ! 1. % fe! g!2 | ! !, c(!) | ) ! 2 &! (. " 1. n f n g1 n=1 +1 1 < q 6 n , 1 2 Z X q 2 ksn ; n k 6 q2 ; 1 jc(!)j2 d(!): (1) n=1 # . ; ! n , ) Z n Z X 1 ! sn ; n = c(!)e d(!) ; n c(!)e! d(!) = k=1 k n Z Z n n X k X X = c(!)e! d(!) ; n1 c(!)e! d(!) = k=1 m=1 m n m;1 k=1 k n k;1 Z Z n n X X c(!)e! d(!) = = c(!)e! d(!) ; n1 (n + 1 ; k) k=1 k n k;1 k=1 kn k;1 Z n X = n1 (k ; 1) c(!)e! d(!) k=1 kn k;1 X 2 Z n c(!)e! d(!) 6 ksn ; n k2 = 12 (k ; 1) n k=1 k n k;1 Z n X 6 12 (k ; 1)2 jc(!)j2 d(!) n k=1 k n k;1
1. $ Z n 1 1 X X X 1 2 2 ksn ; n k 6 2 (k ; 1) n=1
n=1 n k=1
6
X 1
jc(!)j2 d(!) 6
k n k;1
(k ; 1)2
k=1
Z k n k; 1
jc(!)j2 d(!)
; ! n+1 > q n 1 X 1 1 X 1 = q2 : ;2m = 1 q 6 2 2 k2 1 ; q12 k2(q2 ; 1) n >k n k m=0
X 1 2: n >k n
108
. .
= . 1 1 2 X X ksn ; n k2 6 q2q; 1 n=1
Z
k=1 k n k;1
jc(!)j2 d(!) =
q2 Z jc(!)j2 d(!): q2 ; 1
.
" 2. 1 X
n=1
nkn+1 ; nk2 6
1 Z jc(!)j2 d(!): 2
(2)
# . ; ! sk n sk =
Z
c(!)e! d(!) =
k
k X
Z
m=1 m n m;1
c(!)e! d(!)
n X n+1 ; n = n +1 1 sn+1 ; n(n1+ 1) sk k=1 Z Z n n k n X XX X sk = c(!)e! d(!) = (n + 1 ; k)
c(!)e! d(!)
k=1 m=1 m n m;1 k=1 k n k;1 Z Z n n n X X X 1 1 1 ! c(!)e d(!) ; n(n+1) k c(!)e! d(!) n(n+1) k=1 sk = n k=1 k=1 k n k;1 k n k;1 k=1
+
n 1 Z X 1 n+1 ; n = n + 1 sn+1 ; n c(!)e! d(!) ; k=1 kn k;1 Z Z n n X X c(!)e! d(!) = n1 c(!)e! d(!) + ; n(n1+ 1) k k=1 kn k;1 k=1 k n k;1 Z n nX +1 Z X + n(n1+ 1) k c(!)e! d(!) + n +1 1 c(!)e! d(!) = k=1 kn k;1 k=1 k n k;1 X Z n c(!)e! d(!)+ = n +1 1 ; n1 k=1 k n k;1 Z Z n X 1 1 ! + n(n + 1) k c(!)e! d(!) = c(!)e d(!) + n + 1 k=1 kn k;1
n n n;1
109
= n +1 1
Z n n n;1
= n(n1+ 1)
Z n X c(!)e! d(!) + n(n1+ 1) (k ; 1)
nX +1
Z
k=1
kn k;1
(k ; 1)
k=1
c(!)e! d(!) =
k n k;1
c(!)e! d(!):
kn+1 ; nk2 6 n2(n1+ 1)2
nX +1
Z
k=1
k n k;1
(k ; 1)2
jc(!)j2 d(!)
1. ; %! )
. & , Z 1 1 nX +1 X X nkn+1 ; nk2 6 n2 (nn+ 1)2 (k ; 1)2 jc(!)j2 d(!) 6 n=1 n=1 k=1 k n k ;1 Z n +1 1 X X jc(!)j2 d(!) = 6 n13 (k ; 1)2 n=1 k=1 k n k;1 Z nX +1 X = (k ; 1)2 jc(!)j2 d(!) m13 6 k=1 m>k k n k;1 Z Z 1 X 6 12 jc(!)j2 d(!) = 12 jc(!)j2 d(!) k=1
k n k;1
X 1 Z1 dt 1 3< 3 = 2(k ; 1)2 : m t m>k k;1
. % p q | !
: p > q, % .4! % % f n g1 n=1 !
(3) 1 < q 6 n +1 6 p: n
% % H = L2 (X) |
$ ) #
& % # # , 2 &! c(!) , ) Z jc(!)j2 d(!) < 1: (4)
3. ! (4). " ! ! (C,1) X , , ! # f n g,
110
. .
# (3) ! fsn (x)g .
# .
. % % % fn(x)g ! ) .
X. ; ! & (1), 1 Z 1 X X 2 jsn (x) ; n (x)j d = ksn (x) ; n (x)k2 6 n=1 X n=1 2 Z 6 q2q; 1 jc(!)j2 d(!) < 1: 1 P !! 2, ) % ) . ! jsn (x) ; n=1 ; n (x)j2, , ) ) . X nlim j s (x) ; n (x)j = 0, n !1 . . % % fsn (x)g ! ) .. . % fsn (x)g ! ) .. 3 (1) % % fn (x)g ! ) . X. ?
% k (x) ; n (x) ! n < k < n+1 : k X k (x) ; n (x) = (j (x) ; j ;1(x))
j =n+1
X 2 k jk(x) ; n (x)j2 = (j (x) ; j ;1(x)) 6 j =n +1 k p k 2 X X 1 pj j j(j (x) ; j ;1(x))j2 6 6
6
j =n +1 X n+1
X n+1
j =n +1
1 j jj (x) ; j ;1(x)j2 j j =n +1 j =n +1
@{A ! ${B &. D) !, ) n+1 6 p n , ) pn X pn n+1 16 X 1 6 Z dt = lnp: t j =n +1 j j =n +1 j n
= .
jk(x) ; n (x)j2 6 ln p
X n+1 j =n +1
j jj (x) ; j ;1(x)j2:
(5)
111
; %! & (2), ) 2 % ) . X 1 P ! njn(x) ; n;1(x)j2, ), (5) ! . ) n=1 . X, + % % fn(x)g1 k=1 !4 # ! ) . X. . 1 % 1. P jckj2 < 1, f'k(x)g1k=1 | k=1 1 P $ L2. " ! !% k 'k (x) k=1 X (C,1), , ! # f ng, # (3), fsn (x)g . # . 3 ! 3 (= N, (k = f1 2 : : : kg, 1 R P (!) 1, jc(!)j2 d(!) = jck j2. k=1
% 2 ( . &4, . 127]).
1 P
jck j2 < 1, f'k (x)g1 k=1 | k=1 1 P
$ L2 . " ! !% k 'k (x) k=1 X (C,1), , ! # f n g, # (3), fsn (x)g .
# . E
! 1, ) !, )
! !. ! ) )
& % # #, ) 2. x
2. (C )-
. F An = ;n+n ) n-# +22& %-
1 P
$ ! Ant = (1;t1)1+ ( 6= ;1 ;2 : : :), An | ) F ! . n=0 ; $ ! % +22& ! ( . n n P P 4, . 75]) , ) An;;k1 = An G An++1 = Ak An;k G An = n+ An;1 G k=0 k=1 An;1 = + n An . , ) An n . ! . ; ! An 1 n n X 1 X X log An = log 1 + k = k + O k2 : k=1 k=1 k=1
+, )! ) C !
. H# ,
112
. .
X 1 j logAn ; log nj 6 C + o(1) + O k12 < M k=1
$ M | . ! !
!G . 4 %
M1 M2 , ) n > 1 M1 < Ann < M2 : (6) = . ! An;;k1 =An ) & (n ; M + 1);1 1 An;;k1 = O = O (7) An n n :
. n() = sA(nn) , $ s(n) | ) ! ! , -
. + , . I 1 > 2, (C 1)
, ) (C 2), . . (C 2)- # $ (C 1). 3 ) n()(x) ! ) ) $ % Z n X 1 ( ) n (x) = A An;k c(!)e! (x) d(!): n k=1
k n k;1
E %, ) s(n) (x) ! ! ! n- +22&
$ ! 1 P sn (x)tn 1 X s(n) (x)tn = n=0 (1 ; t) : n=0
% > ;1, >10. $ s(n+) (x) ! ! ! n- +22& -
P sn(x)tn
! ! (1;t) (1;1t) , , n n P P ! , s(n+) (x) = An;;1k s(n) (x) = An;;1k Ak n()(x), n=0
k=0 k=0 n n X X s(n++1) (x) = s(k) (x)An;k n(+) (x) = 1+ An;;1k Akk() (x): An k=0 k=1 n ( ) 1 P = n()(x) = n+1 jk (x) ; k(;1)(x)j2. k=1 " 3. (4) > 21 lim () (x) = 0: n!1 n
(8)
113
# . ;
k() (x) ; k(;1)(x) = Z Z k k X X = A1 Ak;j c(!)e! (x) d(!) ; 1;1 Ak;;j1 c(!)e! (x) d(!) = A k j =1 k j =1 j n j;1 j n j ;1 Z k X = 1;1 Ak;j Ak ;1 ; Ak;;j1 Ak] c(!)e! (x) d(!) = Ak Ak j =1 j n j;1
Z k X ;1A;1 = = 1;1 A c(!)e! (x) d(!) +k ; j Ak;;j1Ak ;1 ; +k k ;j k Ak Ak j =1 n j j ;1 Z k X 1 ! = ;1 c(!)e (x) d(!) ; j Ak;;j1Ak;1 = Ak Ak j =1 j n j;1 Z k X 1 ;1 = A (;j)Ak;j c(!)e! (x) d(!) k j =1 j n j;1
% , 1 Z Z k X jk()(x) ; k(;1)(x)j2 d 6 2 (A1 )2 j 2 (Ak;;j1 )2 k j =1
X
Z X
jc(!)j2 d(!)
j n j;1
2(n )(x) d 6
Z 2n k X 1 X 1 ;1 2 jc(!)j2 d(!) = ( )2 (2n + 1) k=1 (Ak )2 j =1 j Ak;j j n j ;1 n Z 2 2n A;1 !2 X 2 X 1 k;j : 2 = 2(2n + 1) j jc(!)j d(!) A k j =1 k=j j n j;1
D) ! ! (6) (7), ) ;1 !2 2j A;1 !2 2n A;1 !2 X 1 X X Ak;j k;j k ;j 6 + 6 A A A
k k=2j +1 j 1 X C1 A 2 + X M2 k;1 2 6 (A1 )2 k j k=0 j k=2j +1 M1 k ) . ) %, > 12 , % ) k=j
k
k=j
k
114
. .
1 1 1 1 (j + 1) C1 M j 2 + M2 2 X M12 j 2 j 2 M1 k=2j +1 k2 6 2 2j 1 1 = C2 : 2 2 2 2 ; 2 6 M 2 j 2 C1 M2 j + M M1 2j j 1 , Z Z 2n X C 2 ( ) jc(!)j2 d(!) 2n (x) d 6 22n j j =1 X
j n j;1
1 Z X
Z 1 2n X X 1 ( ) 2n (x) d 6 C3 2n j n=1 X n=1 j =1 j n j;1 Z 1 X 2 6 C3 j j j =1
jc(!)j2 d(!) 6
jc(!)j2 d(!) = 2C3
Z
jc(!)j2 d(!) < 1:
j n j;1
;, nlim (n ) (x) = 0 ) .. !1 2 J! 2n < k 6 2n+1 : 1 ) (x) = 2(n+1 n +1 2 +1
> 21 k +1 1 > 21 k +1 1 k() (x)
n+1 2X
m=1 k X
n+1 2X
m=1
jm()(x) ; m(;1)(x)j2 >
jm()(x) ; m(;1)(x)j2 > jm()(x) ; m(;1)(x)j2 = 12 k() (x)
m=1 ( ) 22n+1 (x),
0 6 6
% ) . klim () (x) = 0, !1 k ) %. .
4. ! (4). R c(!)e! (x) d(!) E f(x) (C ) > 21 , E n 1X jf(x) ; k(;1) (x)j2 = 0 (9) lim n!1 n k=1 n 1X lim jf(x) ; k(;1) (x)j = 0: (10) n!1 n k=1 # . J ) (9). ;
115
n X k=1
jf(x) ; k(;1) (x)j2 =
n X
jf(x) ; k() (x) + k() (x) ; k(;1) (x)j2 6
k=1 n X
62
k=1
jf(x) ; k() (x)j2 + 2
n X k=1
jk() (x) ; k(;1) (x)j2:
!! 3 ! o(n), !! ! o(n) !. H
(9). n jf(x) ; (;1) (x)j X k 6 n k=1 X 12 X 1 n n n X 2 2 6 jf(x) ; k(;1) (x)j2 n12 = n1 jf(x) ; k(;1) (x)j k=1 k=1 k=1
@{A ! ${B &. = . n jf(x) ; (;1) (x)j2 21 n jf(x) ; (;1) (x)j X X k k 6 nlim = 0: lim !1 n!1 n n k=1 k=1 %..
5. (4) ! (C 1) & { !
E . # . R 1. % c(!)e! (x) d(!) ! (C,1) 2 & f(x), ) # ) . E. 3 % ! K ! p pX ;1 X k bk t = (b1 + : : : + bk )(tk ; tk+1 ) + (b1 + : : : + bp )tp = k=1 k=1 pX ;1 = (1 ; t) (b1 + : : : + bk )tk + (b1 + : : : + bp )tp : k=1
Z pX ;1 ! k c(!)e (x) d(!) = (1 ; t) sk (x)t + c(!)e! (x) d(!)tp = k=1 k n k;1 k=1 p p;2 X k 2 = (1 ; t) kk (x)t + (p ; 1)p;1 (x)tp;1 + sp (x)tp : k=1 ; jsp (x)j 6 pC1, jp;1(x)j 6 C2, Z p X k Ft(x) = plim t c(!)e! (x) d(!) = !1 k=1 k n k;1 p X
tk
Z
116
. .
pX ;2 2 k p ; 1 p = plim (1 ; t) kk (x)t + (p ; 1)p;1(x)t + sp (x)t = !1 k=1 1 X = (1 ; t)2 kk (x)tk : k=1
1 P @ $, ! t < 1 (1;1t)2 = ktk;1, k=1 1 1 X X jFt(x) ; s(x)j = (1 ; t)2 kk (x)tk ; (1 ; t)2 ks(x)tk;1 = k=1 k=1 1 X = (1 ; t)2 ktk;1(k (x)t ; s(x))] = k=1 N 1 X X 2 k ;1 2 k ;1 (kt (k (x)t ; s(x))): = (1 ; t) (kt (k (x)t ; s(x))) + (1 ; t)
k=1
k=N +1
3 N, 1 > t0 > 0, 1 > t1 > 0 ! % $ " > 0 , ) jk(x) ; s(x)j < "4 ! k > N, jk (x)t ; s(x)j < "2 ! k > N, t > t0 . N N P P (1 ; t)2 ktk;1jk (x)t ; s(x)j 6 (1 ; t)2 ktk;1C3 < (1 ; t)2 C3N 2 < "2 k=1 k=1 t > t1 (t1 ) 1). $ ! k > N, t > maxft0 t1g 1 1 X X ktk+1 2" < 2" + 2" (1 ; t)2 ktk+1 = 2" + 2" = ": jFt(x) ; s(x)j 6 2" + (1 ; t)2 k=N +1 k=1
* % , $ K !{
. R 2. % c(!)e! (x) d(!) ! K !{
) R . EG jc(!)j2 d(!) < 1. 1 P $ ! (n (x) ; n;1(x)) ) . E n=1 1 P . K + ) %. ! njn(x) ; n;1(x)j2 ( 1 n=1 P (3)) % ! (n(x) ; n;1(x)). * % , + ! n=1 R
! ) . E, $ c(!)e! (x) d(!) !
E ) . (C,1). %..
6. ! (4). R c(!)e! (x) d(!)
! & { E > 0, E (C ).
117
# . * ) , )
n 1X (r) (x)j2 = 0 r > ; 1 lim j k n!1 n 2 k=1
1
! " > 0 nlim n(r+ 2 +") (x) = 0. !1 3 , (6) , ) n n X X 1 1 1 s(nr+ 2 +") (x) = s(kr) (x)An;;2 k+" = s(kr) (x)Ark A;n;2 k+" = r+ 12 = ; 12 +": k=1
k=1
+ 1 n n; X (r+ 21 +") X 1 2 sn (x) 6 jk(r) (x)j2 Ark An;;2 k+" 2 6 k=1 k=1 v v v u u u n n n p X X u uX u ( r ) ;1+2" 2 r 2 t t jk (x)j K Ak An;k = K t jk(r) (x)j2 A2nr;1+2"+1 = 6 k=1 k=1 k=1 v u n p uX = K t jk(r) (x)j2 A2nr+2" = o(n1=2 )O(nr+" ) k=1
%. ; # 6, 5, $ ! (C,1) ) . E, ) 4 = 1 (9), . . n (0) 1 P jk (x) ; f(x)j2 = 0. ) . E nlim !1 n k=1
(0) ) . ! ; R? %! k (x) ; f(x) R
% c(!)e (x) d(!) ; f(x) + c(!)e! (x) d(!) + : : : % 1n 0 2n 1 ,
) % , r = 0. ), ) h ( 1 +") i 2 (x) ; f(x) = 0 lim n n!1 ) . E. ; %! 4 4 = 12 + ", ) .4# %: n 1 1X n(; 2 +") (x) ; f(x)2 = 0 lim n!1 n k=1 ) . E. = . 4%.
# .)%, ) lim (2")(x) ; f(x)] = 0 n!1 n ) . E.
118
. .
A ! % " = 2 , ) % . .
7. (4) R ! (C ) > 0 c(!)e! (x) d(!) ! % ! & { .
# .
1. J % % (C,1) (C ) ! 0 < < 1. ; (C ) (C,1)- %G 5
% K !{
G 6 (C )- %. 2. J % % (C,1) (C ) ! 1 < < 1. ; (C,1) (C )- %G % K !{
, % .$ (C )G 5 % (C,1). %.. % 3. " ! $ L2 ! (C ) > 0 ! % ! & { .
# . 3 ! 7 (= N, (k = f1 2 : : : kg, 1
R P (!) 1, jc(!)j2 d(!) = jck j2. k=1
% 4 ( . &5, . 219]). " ! $ L2 !
(C ) > 0 ! % ! & { .
# . D
4 $
! ) !,
$ 2. K $ 2
. . ,
# .
" # 1] . . , , " # # // % . - &. '. ()*. *. | ,*- -- :
/-* 0 0-%, 1996. |
3. 117{118. 2] . . *#* , // ' . . 3*. ) "# . * . | ' : '89, 1997. | 3. 105. 3] . . " // ' %* -. 3 % ., % . | 1997. | = 5.
4] ? @ 8. *. | %.:
119 / *
# , 1963. 5] 0@ 3., A # 8. *. | %.: 8/B%, 1958. 6] 0* ?. &., B 3. '. C ) "# ) " . | %.: &, 1989.
' ( ) 1997 .
SV- . . . . . 512.552
: , , V- , , , , , .
! " # $ SV- . % & SV- Soc (R) .
Abstract
V. N. Silaev, On right SV-rings, Fundamentalnaya i prikladnaya matematika,
vol. 7 (2001), no. 1, pp. 121{129.
In this paper we investigate the worst cases of SV-ring structure. We give two constructions of SV-rings with strong restriction on all Soc (R) of Loewy chain.
. R, x 2 R y 2 R, xyx = x. ! " #$ % & 1936 . ! + , ,, " , " , +, +$ -. . % /6]. 1 " , V- , , " 2. !% /7] 1964 . R, $ " R- . 5" " , ,. 6 +, " () "$ 9. -, " , " "+ , :. ; /5]. # ". 9+ = "+ " R- M, " " Soc (M) "
" : "$ Soc0 (M) = 0 $ " Soc +1 (M) " " Soc +1 (M)= Soc (M) = Soc(M= Soc (M)) (Soc(M) | M)A | " ,
, 2001, 7, - 1, . 121{129. c 2001 !, "# $% &
122
. .
S
"$ Soc (M) = Soc (M). 5 C < 6 jM j, Soc (M) = Soc+1 (M). D" 0 = Soc0(M) Soc1 (M) = Soc(M) Soc2 (M) : : : Soc (M) + ( ) M. E M + , Soc (M) = MA + M. - R + , RR ", " " , " ". F, "" % - , Soc (RR ) = Soc (R R), " " Soc (R) . 1C "+ " 10{15 " SV- , " " " V- , , + , " + . 6 , " /1,3,4], | /8]. 9 #$. 2 /2], $ "= , "+ " " : 1) " u- " SV- + 1A 2) " " SV- + 2, V- . -$ + , " , R , + % R= Soc (R). 2 + ", % J",K, "= " . 9 , " , " , SV- "+ +1 ( " $ " , . . " , ), < % R= Soc (R) " ( " +1 % - R= Soc (R)
"" " 9={L " "+ " , , " $ " ). 1 , " " . L " + , + %+ - , , "% L. 9. E,= %+ - , , "% #. 9. 5 + " + "+ $.
&C " " % " + #$. 2 /2]. M = , C +. 1 X | "+ $, D | . 5 + + CFMX (D) , X X D
SV-
123
$ . QC +, + " UD = D(X ) += +%+ CFMX (D) ' End(UD )A
, Soc(CFMX (D)) + , , . 2 $ D " , CFMX (D). 6 " , , + $ 8 6 " To Q CFMX (D) ", X, : 1) Q ' CFMX (D)A 2) Q Q 8 : < 6 A 3) Q \ Soc(Q ) = 0 8 : < 6 A 4) D Q 8: 6 A 5) Soc(Q ) Soc(Q ) Soc(Q ), = min( ). 5 "
" """ L Q1 : L0 = 0A L +1 =SL + Soc(Q +1 ) 8 < A L = L " 6 , < R = L + D " SV- + 1. 9 D " C $ " Q1 , "= ". 5" + . 1. # "+ > 0 " SV- R + 1, < % - R= Soc (R) " . . M " + 2. &"
+ /2] + "= " ". (2, lemma 4.1]). | X | , jX j = @ . < P X , 1) jY j = @ 8Y 2 P ! 2) 6 , P P . (2, proposition 4.2]). > 0 X | jX j = @ , D | Q = CFMX (D).
6 Q " # Q , $ Q 1) Q Q 8 6 6 ! 2) Q \ Soc(Q ) = 0 8 < 6 ! 3) D Q 8 6 . . # 6 " P | + X + . # $ Y 2 P
fY : @ ! Y + xYi = fY (i) $ i < @ .
124
. .
# $ x 2 X 9! Y (x) 2 P , i (x) < @ , x = xY (x)i (x) . L, < 6 , $ Z 2 P + @ $, "$, P , " S
gZ : @ ! P , Z = fgZ (j) j j < @ g, + YZj = gZ (j) 8j < @ . # Y 2 P 9! Z (Y ) 2 P , j (Y ) < @ , Y = YZ (Y )j (Y ) . # $ 6 " $: ' : CFMP (D) ! Q: (' (A)xy = i (x)i (y) AY (x)Y (y) A ' : CFMP (D) ! CFMP (D): (' (B)Y Y = j (Y )j (Y ) BZ (Y )Z (Y ) : : ", ' ' | %+ 8 < 6 ' = ' ' . # $ 6 Q = Im(' ). 1) 5 jP j = @ = jX j, Q ' Q. 2) 6+ ' = ' ' , Q Q 8 < 6 . 3) X 0 6= A 2 CFMP (D), , 9Z Z 2 P , AZZ 6= 0. F Y , Z = F Y , ' (A) 5 Z = Zj Z j YZj YZ j = AZZ 6= 0 8j < @ . j< j< F, ' (A) $ @ , . 1 Im(' ) \ Soc(CFMP (D)) = 0, Q \ Soc(Q ) = 0. Y, (Soc(Q )) 6 , """ Q Soc(Q ) \ Soc(Q ) = 0 " 6= A Soc(Q ) Soc(Q ) Soc(Q ) = minf g: # $ 6 " "
""" L Q1 : L0 = 0A L +1 =SL + Soc(Q +1 ) 8 < A L = L $ " 6 . < - R = L + D " SV- + 1. 9 D $ " Q1 , "= ". M " , +. !. 1 | , X | $ jX j = @0 . !" " DEMX (D) CFMX (D) = Q +: 0
0
0
0
0
0
@
0
0
0
@
DEMX (D) = = fA 2 Q j 9n = n(A) > 1 8i j : i > n j > 1 Aij = Ai+1 j +1 g: 5 DEMX (D) Soc(Q) Soc(DEMX (D)) = Soc(Q). X + A B 2 DEMX (D) 0
0
SV-
(
(
125
j = i + 1 B = 1 i = j + 1 Aij = 01 A ij 0 , A B = 1, B A 6= 1. - , DEMX (D)= Soc(Q) = D(x) | , " x, x = A mod Soc(Q), x 1 = B mod Soc(Q). [ "
2, P+1 , jP+1j = @0 . 9= + "$ + . !" " R( + 1) +: R( + 1) = L + '+1 (DEMP+1 (D)) jP+1 j = @0 : 5, '+1 (DEMX (D)) Q+1 Q 8 < + 1 | " " , Q Q 8 6 6 + 1, R( + 1) | " Q1 (L ) 6 L+1 = L + Soc(Q+1 ) L+2 = R( + 1) | + " R( + 1). # 6 L \ Q +1 = = 0, L | Q +1 + L . 5 L Q +1 + L '+1 (DEMX (D)) Q +1 , ", R( + 1)=L " (Q +1 +L )=L = Q +1 Soc(Q +1) = L +1 =L R( + 1)=L , , L +1 =L = Soc(R( + 1)=L ). #, R( + 1)=L+1 = '+1 (DEMX (D))= Soc(Q+1 ) = D(x) "", " (L ) 6+2 | " R( + 1), " ", + 2. # $, R( + 1)=L ". # = + 1 + 2 ". 1 6 . M % , $ X , a b 2 CFMX (D) + a Soc(CFMX (D)) b = 0 , a = 0 b = 0. # , b 6= 0 ) Im(b) 6= 0, a 6= 0 ) Ker(a) 6= UD = D(X ) , " x 2 Soc(CFMX (D)), " - + Im(b) + UD n Ker(a) , a x b 6= 0. 5" , " R( + 1)=L (Q +1 + L )=L = Q +1, x (R( + 1)=L ) y = 0 = x Soc(Q +1 ) y = 0, " + x = 0 y = 0, R( + 1)=L ". # $, fL j < + 1g | $ , R( + 1), $, L+1 . 1 I | R( + 1), L+1 6 I. = minf 6 + 1 j L 6 I g, , + 1 < + 1 L I. - R=L ", ""$ L 6= I, 0 6= (I=L ) (L+1 =L ) = (I \ L+1 )=L . M , Soc(R=L ) = L+1 =L | R=L , , L+1 I | ". # $ " , R( + 1) " V- . 9+ = " " R( + 1)- U. 5 UR(+1) = (R( + 1)=M)R(+1) " M R( + 1). X 0
0
0
0
0
0
0
;
0
126
. .
P = R( + 1) M = fr 2 R( + 1) j R( + 1) r M g $ L+1 , P = L+1 , L+1 | . X $ P 6 L+1 , " + P = L < + 1. 5 +, U " R( + 1)=L - ( " " P = Ann(U)). 1 U " R( + 1)=L - . 1 /2, theorem 2.5], R " " "+Q Q , Q = End(U )D , U | " D - ", ; L (D ) ; | Soc(Q ) R, " " R- . ; 9 C R( + 1)=L (
R( + 1)=L Q +1 ), " U R( + 1)=L - . & UR(+1) " + /6]. (6, lemma 6.17]). ': R ! S | $ #, A |
% S - . & R S | , A
% R- . $ (6, corollary 1.13]). ' # R , ( ) R- . 5 +, " R( + 1) | " SV- + 2 " (L ) 6+2 , R( + 1)=L " 6 + 1. 5" " | " . 9+ = D "+ " F M R = R( + 1) + F:
2
2
2
<
! " SV- , , +1. 1 R= Soc (R) " < . 9= + "$. (2, proposition 4.6]). (R ) | F - , F - M R = R + F 2
2
Q R. ( : 2
L
(1) Soc (RR ) = Soc((R )R )! (2) R , R sup + 1! (3) R | , u- , , V- #
, R . 2
2
127
SV-
1 + " " + . # $ " " ". 2. 1 n | , n > 2. 5 " SV- R n " 0 = Soc0 (R) Soc1(R) : : : Socn (R) % - R= Socm (R) m, 0 6 m 6 n;2, " .
. 3. X | " , R | # . ( -
$ h: CFMX (R) ! CFMX (CFMX (R)): &. X | =, "
X $ P = f(i j) j i j 2 Z 1 6 i < 1 1 6 j < 1g. !+ + p1 p2 : P ! N "
" " . 5 p1 (P) p2(P ) $ = , + " +%+ h : CFMP (R) ! CFMp1 (P ) (CFMp2 (P ) (R)): 1 A 2 CFMP (R), " $ h
h (A) = a 2 CFMp1 (P ) (CFMp2 (P ) (R)) ai1 i2 2 CFMp2 (P ) (R) (ai1 i2 )j1 j2 = A(i1 j1 )(i2j2 ) . !, h (1) = 1, h (A + B) = h (A) + h (B). h (AB). X (h (AB)i1 i2 )j1 j2 = (AB)(i1 j1 )(i2 j2 ) = A(i1 j1 )(kl) B(kl)(i2 j2 ) =
0
0
0
0
0
0
0
0
0
= =
(kl) : B(kl)(i2 j2 ) 6=0
X
(h (A)i1 k )j1 l (h (B)ki2 )lj2 = 0
kl : (h0 (B)ki2 )lj2 6=0
X
0
X
(h (A)i1 k )j1 l (h (B)ki2 )lj2 = ((h (A)h (B))i1 i2 )j1 j2 0
l: k: h (B)ki2 6=0 (h (B)ki2 )lj2 6=0
0
0
0
0
0
, h (AB) = h (A)h (B). 1 h | %+ . 9+ = A 6= 0. 9 (i1 j1) (i2 j2 ): A(i1 j1)(i2 j2 ) 6= 0, (h (A)i1 i2 )j1 j2 6= 0, h (A) 6= 0. 1 h . 1 a 2 CFMp1 (P ) (CFMp2 (P ) (R)). 5 ((h ) 1 (a))(i1 j1 )(i2 j2 ) =(ai1 i2 )j1 j2 . 1 h , +. 1 F | ". # n > 1 + + Qn CFM | X (CFM{zX (: : :CFMX }( F) : : :)): 0
0
0
0
0
0
0
0 ;
0
n
128
. .
9 Q0 + = F. $ 4. n $ hnn+1 : Qn ! Qn+1 : . Qn = CFMX (Qn 1), Qn+1 = CFMX (CFMX (Qn 1)). != " + 3. M +. !+ 8i > 0 Qi + 1i . 5" " " + Si Qi 8i > 1 +: Si = fa 2 Qi j 9N =N(a): 8l > N 8k > 1 alk = 0 8l 6 N 8k > 1 alk 2 F 1i 1g: X= " " DEMi Pi Qi 8i > 1 : DEMi = fa 2 Qi j 9M = M(a): 8l > M 8k > 1 alk = al+1k+1 2 F 1i 1 8l 6 M 8k > 1 alk 2 F 1i 1g Pi = fa 2 Qi j 8k l akl 2 F 1i 1 g: 5 Pi = CFMX (F), Si = Soc(Pi ) = Soc(DEMi ). !+ $ 8m n, 2 6 m < n, + hmn +%+ hn 1n : : :hm+1m+2 hmm+1 : Qm ! Qn . 5 hmn (Sm ) " + Qn, "= 8m m , 2 6 m < m < n, hmn (Sm ) \ hm n (Sm ) = 0, hmn (Sm ) hm n(Sm ) hmn (Sm ). "
+ , Sm = Soc(Pm ), hmm+1 (Sm ) \ Sm+1 = 0 hmm+1 (Pm ) Sm+1 " " hmm+1 + " Sm . L + , 8m n, 2 6 m < n, hmn (Sm ) \ DEMn = 0 hmn (Sm ) DEMn hmn (Sm ). 5" " " Rn Qn: Rn = h1n(S1 ) + h2n(S2 ) + : : : + hn 1n(Sn 1) + DEMn : 5 S1 | Q1 = CFMX (F ), , h1n(S1 ) | Qn A " Soc(Rn ) = h1n(S1 ) Rn= Soc(Rn) = h2n(S2 ) + : : : + hn 1n(Sn 1 ) + DEMn = Rn 1 h2n(S2 ) + : : : + hn 1n(Sn 1 ) + DEMn
" h2n(P2 ) = Qn 1 . !, Soc(DEM1 ) = S1 , DEM1 = Soc(DEM1) = F(x) | " , . 5 +, "
", Rn | " n + 1 " 0 Soc1(Rn) = h1n(S1 ) Soc2 (Rn) = h1n(S1 ) + h2n(S2 ) : : : Socn (Rn) = h1n(S1 ) + : : : + hn 1n(Sn 1) + Sn Socn+1(Rn) = Rn, "= Rn i, " " . 8i, i 6 n ; 1, Rn= Soci (Rn) = != + , Rn | " V- . !+ + R0 " F(x). 5 R0 | " V- . E "= " + "
" n. ;
;
;
;
;
;
;
0
0
0
0
0
;
;
;
;
;
;
;
;
;
;
0
;
SV-
129
1 Rn | " V- . # $, Rn+1 | $ " V- . 1 M | "+ " " Rn+1- . X M Soc(Rn+1) = 0, M | " " Rn- , " ""$
M " Rn- . 5 " C /6, 1.13] /6, 6.17] M $
" Rn+1 - . X M Soc(Rn+1 ) 6= 0, M Soc(Rn+1 ) = M , +, M % + Soc(Rn+1)Rn+1 . 5 Soc(Rn+1 )Rn+1 | "" , M +% " Soc(Rn+1)Rn+1 . 5 +, $ , M | " Rn+1 . Rn+1 Qn+1 = CFMX (F ), Qn+1 | " . 5 M Qn+1 = M Soc(Rn+1 ) Qn+1 = M Soc(Rn+1 ) = M (
Soc(Rn+1 ) = Soc(Qn+1 )), M | " Qn+1. 5 " /6, 9.2] M | " Qn+1- " /6, 6.17] M | " Rn+1- . [ + .
1] G. Baccella. Generalized V-rings and von Neumann regular rings // Rend. Sem. Mat. Univ. Padova. | Vol. 72. | 1984. | P. 117{133. 2] G. Baccella. Semiartinian V-rings and semiartinian von Neumann regular rings. 3] G. Baccella. Von Neumann regularity of V-rings with Artinian primitive factor rings // Proc. Amer. Math. Soc. | 1988. | Vol. 103, no. 3. | P. 747{749. 4] N. V. Dung, P. F. Smith. On semiartinian V-modules // J. Pure Appl. Algebra. | 1992. | Vol. 82, no. 1. | P. 27{37. 5] L. Fuchs. Torsion preradicals and ascending Loewy series of modules // J. Reine Angew. Math. | 1969. | Vol. 239/240. | P. 169{179. 6] K. R. Goodearl. Von Neumann Regular Rings. | London: Pitman, 1979. | Monographs and Textbooks in Mathematics. 7] B. L. Osofsky. Rings all of whose nitely generated modules are injective // Pacic J. Math. | 1964. | Vol. 14. | P. 645{650. 8] C. Nastasescu, N. Popescu. Anneaux semi-artiniens // Bull. Soc. Math. France. | 1968. | Vol. 96. | P. 357{368.
' ( ) 1997 .
.
. . .
515.146.34+514.764.227
: ,
", .
# $ %& ' (. & ) *+& ) ". , -&& & " ' ' &') " .
Abstract S. Terzic, Cohomology with real coecients of generalized symmetric spaces, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 131{157.
In the article we consider generalized symmetric spaces of the compact simple Lie groups. We give a classi2cation of these spaces and an explicit description of their algebras of cohomology with real coe3cients. In the case of such spaces of second category, the direct computation of their cohomology algebras is given.
. 1] !" # $
. %&
%$ . ' , !$" %% ), . *. +& 9]. - $ +, .
(rank U = rank G) +
, 2001, 7, 4 1, . 131{157. c 2001 !, "# $% &
132
.
( . 3]). - ,
, $
(rank U < rank G). 3 $ , " & U # %$ G ! G. $, 4 , +# $" % ! + . 5 ,
! $" !& H (BG ), +. 5 ,
G=G $, ! $ t g $ $ t g. - $! !" #
. , . . An , Dn E6. 6 % 7! 8. -.
x
1.
-! G | $ , ! H (G) | R. :# $ $ %$ H (G) = ^(x1 : : : xl ) ^(x1 : : : xl ) | # $ x1 : : : xl , ( . 6]). -! g | G t | g, v1 : : : vn. 3 t !& R . * WG 4 !& , ! !& , ! WG . ' !& $ $ Rv1 : : : vn]WG . -! R = rank G. <$ , Rv1 : : : vn]WG
R $" . = , " .
1 ( .
. ).
(a) G |
, WG t R (R = rank G) -
. ( ) k1 : : : kR | " , 2k1 ; 1 : : : 2kR ; 1 | " , H (G) .
133
> ki , , " $ G " " ( . 10]): g = An ki = 2 3 4 : : : n + 1C g = Bn ki = 2 4 6 : : : 2nC g = Cn ki = 2 4 6 : : : 2nC g = Dn ki = 2 4 6 : : : 2n ; 2 nC g = G2 ki = 2 6C g = F4 ki = 2 6 8 12C g = E6 ki = 2 5 6 8 912C g = E7 ki = 2 6 8 10 12 14 18C g = E8 ki = 2 8 12 14 18 202430: F $" Rt]WG $ G. 2. # G |
, $ Dl (l > 4), k1 : : : kR | % , 1 : : : n |
% . &
$ n
Iki =
X j =1
kj i (i = 1 2 : : : R)
Rt]WG.
- 4 G Al , Bl , Cl G2 6], G = F4 1], G = E6 | 10], G = E7 E8 | 7]. 7 Dn " !. - $" !& Rt]WG G. 3 fxig $" g. 1. g = An (n > 1). +!& Rt]WAn = S(x1 : : : xn+1) S(x1 : : : xn+1) !&
x1 : : : xn+1. 5 $" !& Rt]WAn " fi (x) = i (x1 : : : xn+1) 2 6 i 6 n + 1g i(x) $ i-" 4 "
" %&". 2. g = Bn (n > 2). Rt]WBn = S(x21 : : : x2n) fi(x2 ) = i (x21 : : : x2n) 1 6 i 6 ng:
134
.
3. g = Cn (n > 3).
Rt]WCn = S(x21 : : : x2n) fi(x2 ) = i (x21 : : : x2n) 1 6 i 6 ng:
4. g = Dn (n > 4). +!& Rt]WDn !& !& t, !& S(x21 : : : x2n) x1 : : :xn. < $" !& Rt]WDn " fi(x2 ) = i (x21 : : : x2n) 1 6 i 6 n ; 1 n(x) = x1 : : :xn g: 5. g = G2 . < $" !& Rt]WG2 " P2 = 2
3 X
j =1
x2j P2 = 2
3 X
j =1
x6j :
6. g = F4 . < $" !& Rt]WF4 " kl X X 1 Ikl = (xi )kl + ( x x x x ) 2 1 2 3 4 : 7. g = E6 . E6 , G2 F4, !$! 2, $" !& Rt]WE6 . ) ! # $ $" , $ 1]:
X 6 6 6 X X 1 k k k l l l Ikl = 2 ai + b i + cij i=1 i=1 ij =1
% ai , bi cij $" % ai = xi + 12 (x1 + x2 + x3 + x4 + x5 + x6) (1 6 i 6 6) bi = xi ; 32 (x1 + x2 + x3 + x4 + x5 + x6) (1 6 i 6 6) cij = ;xi ; xj + 21 (x1 + x2 + x3 + x4 + x5 + x6 ) (1 6 i j 6 6):
8. g = E7 . < $" Rt]WE7 " P2s = 2
X
2X s;1
i<j
i=1
(xi + xj )2s = (16 ; 22s)p2s +
P8 s | & , s > 0, pi = xia , Cmn = n!(mm;! n)! . a=1
C2i sp2s;ipi
9. g = E8 . < $" Rt]WE8 " P2s = 18(5 + 32s;3 ; 22s;1)p2s + + pi =
x
P9 xi , p = 0. a 1 a=1
2X s;1
i=1
C2i sp2s;i
135
pi (9 + (;1)i ; 2i ) +
i;1 1X j 3 j =1 Ci pi;j pj
2.
-! ^(u1 : : : uR) | # ( ) 4 u1 : : : uR deg u = 2k ; 1 ( = 1 2 : : : RC k | & & ! ). -! Rv1 : : : vr ] | ( ) 4 v1 : : : vr deg vi = 2li (i = 1 2 : : : rC li | & & ! ). 6 C = ^(u1 : : : uR) Rv1 : : : vr ]: 5 C
deg(u v) = deg u + deg v (u 2 ^(u1 : : : uR ), v 2 Rv1 : : : vr ]): X C = C s C s = fc 2 C deg c = sg: s>0
-! Rv1 : : : vr ] $ F1 : : : FR. = ! deg Fi = 2ki, i = 1 R ( 4 vi ). 6 C %% & d, d(ui 1) = 1 Fi d(1 vj ) = 0 i = 1 R j = 1 r:
136
.
< , d2 = 0. )%% &! R- C $ . 6 C k Z k = Ker d \ C k , B k = Imd \ C k , H k = Z k =B k L H (C d) = H k | !& C # " %k>0 % & d. <$ , F1 F2 : : : FR , 4 " H (C d) ( !" $ %$ ). 5 , : 3. ' F1 F2 : : : FR F~1 F~2 : : : F~R , Fi F~i mod (F1 : : : Fi;1 Fi+1 : : : FR ) (i = 1 R). & " ( ) , . .
H (C dF1F2 :::FR ) = H (C dF~1F~2 :::F~R ): )$ ! . 7]. 3 " . 4. ' F1 F2 : : : FR *, $ Fn+1 = Fn+2 = : : : = FR = 0. ' (C 0 d0) = ^(u1 u2 : : : un) Rv1 v2 : : : vr ]
&
d0 (ui 1) = 1 Fi i = 1 n d0(1 v) = 0 v 2 Rv1 : : : vr ]:
H (C dF1F2 :::FR ) = ^(un+1 : : : uR) H (C 0 d0): )$ ! . 7]. . < , Fn+1 : : : FR hF1 : : : Fni, . + C " , " $ # : M C = Ck Ck = fc 2 C : c = u1 ^ : : : ^ uk v v 2 Rv1 : : : vr ]g: k>0
< ! 4 d ! ;1. J ! Zk = Ker(dC L k), Bk = Im(dCk+1) Hk = Zk=Bk . L H = = H ((C d) R) = Hk $ +#. < , k>0 H0 = Rv1 : : : vr ]=hF1 : : : FRi, $ hF1 : : : FRi $ , 4 F1 : : : FR . <$ , ! + !" C. 5 , " .
137
5. H0(C d) | $ R = r, H (C d) H0(C d) ) .
)$ ! . 7]. 3# & ! | ! % &" G=U. <$ , j : Rt]WG ! Rs]WU , & j : U ! G, $ !" ! G=U " $ $ . 3, ! 3], % + $ " 4 % . M !" ! + . ) ! ! 3]. J 4%%& . -! BG | %&" G. 4%%& $ H (G) $ !" ! H (BG ). 5 , " ( . 3]). 6. # G |
. # *, $ H (G)
, " $% 2k1 ; 1 : : : 2kR ; 1. &
(a) H (G) x1 : : : xR (Dxi = 2ki ; 1) + ( ) H (BG ) ) $ Kp y1 : : : yR ]. , E(n G) " yi , * xi .
-! ! G=U E(n G) | ! G. 5 ! U. < $ $ (U G) %$ H (BG ) ! H (BU ), n " $ n %$ H (B(n G)) ! H (B(n U)), & & E(n G)=U E(n G)=G. 5 + ! % " $ ( . 3]). 7. # U |
G x1 : : : xR | H (G), y1 : : : yR | H (BG ), x1 : : : xR EG. & H (G=U) $ ) H (H (BU ) H (G)), H (BU ) H (G) * )) , H (BU ) d(1 xi ) = (yi ) 1 (i = 1 : : : R). 5 ! , +. > H (BU ), "
138
.
( . 3]).
1. T | G, ) (T G): H (BG ) ! H (BT ) , .
' $ , H (BG ) ! !
g, ! . > %$ (U G), "
3]. 2. # U |
G, S T | U G, t | T s | % ,
S . * H (BG ) H (BU ) $ t s , ")) , WG WU , ) (U G): H (BG ) ! H (BU ) * $ H (BG ) $ H (BU ). - ! U G ( . 7]) # " $ ! % ! + . 8. # U |
G (rank U = r), P1 : : : PR | Rt]WG. j (Pr+1 ) : : : j (PR ) * hj (P1 ) : : : j (Pr )i, j | * , ,
H (G=U) = fRs]WU =hj (P1 ) : : : j (Pr )ig ^(xr+1 : : : xR ): ! . N$ 7 , + G=U (L = H (BU ) H (G) d), d(u 1) = 0 d(1 xi ) = (U G)(yi ) 1 xi 2 H (G) u 2 H (BU ). -!$!
1 2, , H (BG ) = Rt]WG = RP1 : : : PR] H (BU ) = Rs]WU = RQ1 : : : Qr ]
(U G)Pi = j (Pi ) = Pi =s: <" , L = Rs]WU ^(x1 : : : xR) = RQ1 : : : Qr ] ^(x1 : : : xR ) d(Qi 1) = 0 d(1 xi) = j (Pi) 1: 5 j (Pr+1 ) : : : j (PR ) hj (P1) : : : j (Pr )i, $ 4 , H (L d) = H (L0 d0) ^(xr+1 : : : xR) () L0 = RQ1 : : : Qr ] ^(x1 : : : xr ) d0 (Qi 1) = 0 d0 (1 xi ) = j (Pi) 1:
139
5 , $ % H (L d) . -4 $ () ! H (L0 d0) , !, H0(L0 d0). 3 L0 R = r, 4 5 H (L0 d0) = H0(L0 d0) = RQ1 : : : Qr ]=hj (P1 ) : : : j (Pr )i: N, H (G=U) = H (L d) = fRs]WU =hj (P1 ) : : : j (Pr )ig ^(xr+1 : : : xR): 2 G=U, rank G = rank U, $ 5 , + H (G=U) = Rt]WU =h(Rt]WG )+ i (Rt]WG)+ $ !& !& Rt]WG, $ ! .
5 # !" " ( . 1]). 9. # G |
, U | %
, H (G) = ^(x1 : : : xR ) |
x1 : : : xR y1 : : : yR | H (BG ), x1 : : : xR . *
(U G)y1 : : : (U G)yr H (BU ) (U G)yr+1 = 0,. . . ,
(U G)yR = 0, H (G=U) = fH (BU )=h (U G)y1 : : : (U G)yr ig ^(xr+1 : : : xR): 1. F ,
(U G)yr+1 = 0 : : : (U G)yR = 0 $ ! O (U G)yr+1 : : : (U G)yR h (U G)y1 : : : (U G)yr iP. ) !, !$! 4, , H (G=U) = H (L0 d0) ^(xr+1 : : : xR) L0 = H (BU ) ^(x1 : : : xr ) d0(1 xi) = (U G)yi 1 i = 1 r d0(u 1) = 0 u 2 H (BU ): 5 (U G)yi , i = 1 r, " $ #
H (BU ), % H (L0 d0) = H (BU )=h (U G)y1 : : : (U G)yr i % () .
140
.
2. N$ G=U (rank G = R, rank U = r) ! H (BU )=h (U G)y1 : : : (U G)yR i. <" ,
(U G)y1 : : : (U G)yR $ ! r %&! $
. 3. 7] $, , ! , - " : R Yr ; t2ki ) Y P (G=UC t) = (1 (1 + t2kj ;1) 2li ) (1 ; t i=1 j =r+1 ki (li ) " $ G ( U).
x
3. ! " #
$ , "
, 4]. #$% 1. <
| 4 (G U Q), G | $ , U | $ Q | %$ G, G 0 U G G = fg 2 G: Q(g) = gg G 0 | & G . *,
(G U Q) m, Qm = id m ! !# & , " . 5 (G U Q) $
m ( ). J ! !
. - %&
%& %$ !" Aut(G). - , $ %$ S1 S2 G, Aut(G), . . S2 = S S1 S;1 S 2 Aut(G). 5 G(1 G(2 $ # G(2 = S(G(1 ): ' $ , (G G(1 S1) (G G(2 S2) $ %.
141
* , !$ %&, , %$ Q g $! $ %$ 4
, & %$
). - %&
!" # " 2]. 10. # g |
C | ) ) k (k = 1 2 3),
) - , L ~ g. # g = gi |
Zk - i . . * $ ) ~ g0 . # Xi Yi Hi (1 6 i 6 n) | / g0 , 1 : : : n T(g0 ). # ~0 | L(g ) ( 0 1), X0 6= 0 g1 , $ xX0 2 L(g0 )~ 0 . # (s0 : : : sn) | Pn $+ * m = k aisi , ai 0
L(g ), 0 , ~ = ( i 0) (1 6 i 6 n). &
(i) X0 X1 : : : Xn * g 2isj
Xj (0 6 i 6 n) $ ) m- g. 0 ) (s0 : : : snC k)+ (ii) i1 : : : it | , si1 = : : : = sit = 0. &
g0 (. . g0 ) ) (n ; t)- Q(Xj ) = e
m
, - g(k) , i1 : : : it + (iii) $ * ) g ) Q $ ) " m. 11. , $ Q | ) (s0 : : : snC k). &
(i) Q ) ,
k = 1+ (ii) Q0 | ) (s00 : : : s0nC k), ) Q Q0 * ) g, r = r0 s * s0
) g(k) .
5 $ , %$ g $ % +& g(k) $ k. - 4 %$ " +& g(1) , # %$ | +& g(2) g(3) .
142
.
N$ ( . 2]), ! An, Dn , E6 D4 " # %$ ( !" Aut(g)). -4
Bn , Cn , G2, F4 , E7 E8 " . -
. 1. g = A2n .
Pk
n; n g = t i=1 i Bn
2. g = A2n;1. g
n; P ni
=t
3. g = Dn+1 . g = t 4. g = E6 . dim (g ) = 0.
dim (g ) = 1.
dim (g ) = 2.
k
i=1
n; P ni k i=1
1
An2 : : : Ank;1 Cnk :
Dn1 An2 : : : Ank;1 Cnk : Bn1 An2 : : : Ank;1 Bnk : g = F4 g = A1 B3 g = A2 A2 g = A3 A1 g = C4
m = 2 m = 4 m = 6 m = 4 m = 2:
g = t1 B3 g = t1 A1 A2 g = t1 C3 g = t1 A1 A1 A1 g = t1 C2 A1 g = t1 A3
m = 6 m = 8 m = 4 m = 8 m = 6 m = 6:
g = t2 A2 m = 8 2 g = t A1 A1 m = 10 g = t2 C2 m = 8:
dim (g ) = 3. dim (g ) = 4. 5. g = D4 .
x
143
g = t3 A1 m = 12: g = t4 m = 18: g = G2 g = A2 g = A1 A1 g = t1 A1 g = t2
m = 3 m = 3 m = 6 m = 9 m = 12:
4.
-! G=U |
, & %$ Q. U Q | %$ , rank G = rank U, , $ 2, ! 4 # . - , !, $ !
, & # %$ . L , t t | , " g g , $ $ $ $ t $ t , , +. -, 4 ! An , Dn E6 . -! Xi Yi Hi (1 6 i 6 R) | $" V g 1 : : : R | 4 . 5 11 ) g +&{) g(k) (k = 2 k = 3), $ # % !
t ! , " g(k) . 1. g = A2n .
0 = n + n+1 1 i = 2 ( i + 2n;i+1) (1 6 i 6 n ; 1) n = ; 12 ( 1 + : : : + 2n) (1) X H0 = ;(H1 + : : : + H2n) HX i = Hi + H2n;i+1 (1 6 i 6 n ; 1) HX n = 2(Hn + Hn+1):
144
.
2. g = A2n;1.
0 = ; 21 ( 1 + 2n;1) + 2 + 2n;2 + : : : + n;1 + n+1 + n i = 12 ( i + 2n;i) (1 6 i 6 n ; 1) n = n (2) HX 0 = ;(H1 + H2n;1 + 2H2 + : : : + 2H2n;2) X Hi = Hi + H2n;i (1 6 i 6 n ; 1) HX n = Hn : 3. g = Dn+1 .
0 = ; 1 + 2 + : : : + n;1 + 12 ( n + n+1) i = i (1 6 i 6 n ; 1) n = 12 ( n + n+1) HX 0 = ;2(H1 + : : : + Hn;1) ; (Hn + Hn+1 ) X Hi = Hi (1 6 i 6 n ; 1) HX n = Hn + Hn+1: 4. g = E6 .
5. g = D4 .
(3)
0 = ; 6 + 2 3 + 32 ( 2 + 4) + 1 + 5 1 = 6 2 = 3 3 = 21 ( 2 + 4) 4 = 12 ( 1 + 5 ) HX 0 = ;(2H1 + 3H2 + 4H3 + 3H4 + 2H5 + 2H6) HX 1 = H6 HX 2 = H3 HX 3 = H2 + H4 HX 4 = H1 + H5 :
(4)
0 = ; 2 ; 32 ( 1 + 3 + 4) 1 = 31 ( 1 + 3 + 4) 2 = 2 HX 0 = ;3H2 ; 2(H1 + H3 + H4) HX 1 = H1 + H3 + H4 HX 2 = H2:
(5)
,
) # (2) % ! +&{) A(2) 2n , A2n;1, Dn(2)+1 , E6(2) D4(3) . . Y , 4 HXi (i 6= 0) " + t g | & %$ g, & %$ " ) ( . 8]).
145
-! Q | %$ g t | ! g . -!$! # 4 HXi , , ! $" t !" $" t. 6 $ t = (g ) + t0 (g ) | & g , t0 | !
g . 5 " . 12. # Q | ) g (m (s0 : : : sn ) k), fi1 : : : it g i1 : : : it, $ si1 = : : : = sit = 0. #, , H1 : : : HR, X1 : : : XR , Y1 : : : YR | / " , HX 1 : : : HX n | t g , $ H1 : : : HR ) (1){(5). & fHX i1 : : : HX it g t0 (g ) *
X HX j ; cjkHX ik j 6= i1 : : : it t
k=1
cjk )
Xt k=1
cjkail ik = ail j
")) ail ik 1 6 l k 6 t ( L(g ).
! . -! L(g ) | " g . + ! ~ L(g ) ! Pn ~ = ki ~i, f ~0 : : : ~ng | 0
Pn
L(g ). < , deg ~ = kisi . 5 ( . 2]) $ 0 %$ M g0 = L(g )~ : deg ~=0
Pt
U ~ > 0 (; ~ > 0), deg ~ = 0 ! , ~ = kir ~ ir . r=1 N$ ( . 5]), ~ > 0 L(g )~
ej1 : : : ejs ], ~ j1 + : : : + ~ js = ~ . 5 $ , , L L(g HX i, eir , fir " $" )~ . -4 deg ~=0 HX ir = eir fir ], eir , fir " $" g0 . - & (aik il )l6kl6t & + (aij ) L(g )
146
.
& +.
X HX j ; cjk HX ik (j 6= i1 : : : it) t
k=1 " & g0. N$ & , 4%%& cjk # t X cjkail ik = ail j : 2 k=1
x
-
5.
1. g = A2n .
7 +&{) A(2) 2n
::: . < , $ 10 A(2) 2n , " & # %$ A2n n. -! x1 : : : x2n+1 | g. -! HX i (0 6 i 6 n) | , (1). 5 xn+1 (HX i) = 0 0 6 i 6 n xj (HX i) = ;x2n;j +2(HX i ) 0 6 i 6 n 1 6 j 6 n: 5 & U G ! $ HX i (0 6 i 6 n), G " xn+1 = 0 xj = ;x2n;j +2: -4
(U G)2j +1 = 0 1 6 j 6 n
(U G)2j = (;1)j (U G)j (x21 : : : x2n) 1 6 j 6 n: 5 $ , , " & U # %$ A2n ! A2n . -4 $ 8 ( $ ")
+3
+3
147
13. 1 % $ A2n % ) H (A2n =U) = (H (BU )=h (U A2n)2j i) ^(z3 : : : z2n+1) = = (H (BU )=h (U A2n)j (x21 : : : x2n)i) ^(z3 : : : z2n+1) zi xi . '. - , ! , Ck Bn;k . 7& t = L(HX 0 : : : HX k;1) L(HX k+1 : : : HX n): -! y1 : : : yk | Ck , yk+1 : : : yn | Bn;k . + A2n t $" " $ : x1 ! ;yk xk+1 ! yk+1 x2 ! ;yk;1 xk+2 ! yk+2 :: :: : :: :: :: :: :: : :: :: :: :: : : : : xk ! ;y1 xn ! yn 4
(U G)2j (x1 : : : x2n+1) = (;1)j j (y12 : : : yn2 ) 1 6 j 6 n H (A2n =Ck Bn;k ) = = ((S(y12 : : : yk2 ) S(yk2+1 : : : yn2 ))=S + (y12 : : : yn2 )) ^(z3 : : : z2n+1): 2. g = A2n;1. 7 +&{) A(2) 2n;1
::: . + A2n, " & # %$ A2n;1 n. -! x1 : : : x2n | g. -! HX i (0 6 i 6 n) | , (2). 5 xj (HX i) = ;x2n;j +1(HX i ) 0 6 i 6 n 1 6 j 6 n: 5 & U G ! $ HX i (0 6 i 6 n), xj = ;x2n;j +1:
ks
148
.
-4 ,
(U G)2j +1 = 0 1 6 j 6 n ; 1
(U G)2j = (;1)j (U G)j (x21 : : : x2n) 1 6 j 6 n: + A2n, , " & U # %$ A2n;1 ! A2n;1. -4 " .
14. 1 % $ A2n;1 % )
H (A2n;1=U) = (H (BU )=h (U A2n;1)2j i) ^(z3 : : : z2n;1) = = (H (BU )=h (U A2n;1)j (x21 : : : x2n)i) ^(z3 : : : z2n;1) zi xi . '. - Dk Cn;k . 7& t = L(HX 0 : : : HX k;1) L(HX k+1 : : : HX n): -! y1 : : : yk | Dk , yk+1 : : : yn | Cn;k . + g $" " $ : x1 ! ;yk xk+1 ! yk+1 x2 ! ;yk;1 xk+2 ! yk+2 :: :: : :: :: :: :: :: : :: :: :: :: : : : : xk ! ;y1 xn ! yn 4
(U G)2j (x1 : : : x2n) = (;1)j j (y12 : : : yn2 ) 1 6 i 6 n: H (A2n;1=Dk Bn;k ) = = (hS(y12 : : : yk2 ) y1 : : : yk i S(yk2+1 : : : yn2 )=S + (y12 : : : yn2 )) ^(z3 : : : z2n;1): 3. g = Dn+1 . 7 +&{) Dn(2)+1 ::: . " & # %$ Dn+1 n. -! x1 : : : xn+1 | g. -! HX i (0 6 i 6 n) | , (3). 5 xn+1 (HX i) = 0 0 6 i 6 n: ks
+3
149
5 $ , , & U # %$ G
(U G)n+1 = 0: 7 !, & # %$ Dn+1 ! Dn+1 , A2n, " .
15. 1 % $ Dn+1 % )
H (Dn+1 =U) = (H (BU )=h (U Dn+1 )1 : : : (U Dn+1 )ni) ^(zn+1 ) zi xi . '. - Bk Bn;k (0 6 k 6 n, B0 = ?, B1 = A1 ). 5 , t = L(HX 0 : : : HX k;1) L(HX k+1 : : : HX n): -! y1 : : : yk | Bk , yk+1 : : : yn | Bn;k . + g $" " $ : x1 ! ;yk xk+1 ! yk+1 x2 ! ;yk;1 xk+2 ! yk+2 :: :: : :: :: :: :: :: : :: :: :: :: : : : : xk ! ;y1 xn ! yn 4
(U G)i(x21 : : : x2n+1) = i (y12 : : : yn2 ) 1 6 i 6 n H (n+1 =k Bn;k ) = = (S(y12 : : : yk2 ) S(yk2+1 : : : yn2 ))=S + (y12 : : : yn2 ) ^(zn+1 ): 4. g = D4 . 7 +&{) D4(3)
_ *4
. & D4 , & # %$ , 2. J& + D4(3) 0 2 ;1 01 @;3 2 ;1A : 0 ;1 2
150
.
-! x1 x2 x3 x4 | D4 HX i (0 6 i 6 3) | , (4). 5 x1(HX 1 ) = 1 x1(HX 2 ) = 0 x1 (HX 0) = ;2 x2(HX 1 ) = ;1 x2(HX 2 ) = 1 x2 (HX 0) = ;1 x3(HX 1 ) = 2 x3(HX 2 ) = ;1 x3 (HX 0) = ;1 x4(HX 1 ) = 0 x4(HX 2 ) = 0 x4 (HX 0) = 0: -! i(x21 x22 x23 x24), i 6 i 6 3, 4 = x1x2x3 x4 | $" Rt]WD4 . < , & U # %$ G x4 = 0 x1 = x2 + x3 : 5 $ , ,
(U G)4 = 0
(U G)1 = (U G)(2(x2 + x3)2 ; x2x3])
(U G)2 = 41 ( (U G)1)2
(U G)3 = (U G)((x2 + x3)2 x22x23) 4 & # %$ D4 ! D4 . - 8, "" .
16. 1 % $ D4 % )
H (D4 =U) = (H (BU )=h (U G)1 (U G)3i) ^(z2 z4 ): '(. - & U D4 .
1. g = A1 t1 . t =; L(HX 1 ) L(HX 2 ; c21HX 1), c21a11 = a12 ) c21 = ; 12 , t = L(HX 1 ) L HX 2 + 21 HX 1 . y1 , ;y1 | A1 , y2 | t1 , x2 ! ;y1 + 12 y2 x2 + x3 ! y1 + 12 y2 1 x3 ! 2y1 x2x3 ! 2y1 ;y1 + 2 y2
151
(A1 T 1 D4)1 = 3y12 + 41 y22 = J1 2
(A1 T 1 D4 )3 = 4y12 14 y22 ; y12 = J2 H (D4 =A1 T 1 ) = (Ry2] Sy12 ]=hJ1 J2i) ^(z2 z4): 2. g = A2 . t = L(HX 1 HX 0). y1 , y2 , y3 | t , x2 ! y3 ; y1 x2 + x3 ! y3 ; y2 x3 ! y1 ; y2 x2x3 ! (y3 ; y1 )(y1 ; y2 )
(A2 D4)1 = 2((y3 ; y2 )2 ; (y3 ; y1 )(y1 ; y2 )) = J1
(A2 D4)3 = (y3 ; y2 )2 (y3 ; y1 )2 (y1 ; y2 )2 = J2 H (D4 =A2) = (Sy1 y2 y3 ]=hJ1 J2i) ^(z2 z4): 3. g = g2. y1 y2 y3 | g2 , x2 ! ;y3 x3 ! ;y2
(G2 D4 )1 = 2(y12 + y22 + y33 ) = P1
(G2 D4 )3 = y12 y22 y33 = P2 H (D4 =G2) = ^(z2 z4 ): . & # %$ D4 g2 ( ! G(1) 2 ). 5. g = E6 . 7 +&{) E6(2)
ks
" & +: 0 2 ;1 0 0 01 B ;1 2 ;1 0 0C B C: B 0 ;1 2 ;1 0C B @ 0 0 ;2 2 ;1CA 0 0 0 ;1 2 . & E6, & # %$ , 4.
152
.
-! x1 : : : x6 | E6 Hi, 0 6 i 6 4, | , (5). F, (x1 + x6)(HX i ) = (x2 + x5 )(HX i) = (x3 + x4)(HX i ) i = 0X4 , ! t & %$ Q x1 + x6 = x2 + x5 = x3 + x4 : 5 $ , % ai, bi cij , 1, t " " : ai = xi + x1 + x6 bi = xi ; 2(x1 + x6) bi = ;a7;i cij = ;ai ; bj = ;ai + a7;j : -4 $ (U E6) " $ :
(U E6)(Iki ) =
6 X
i=1
(U E6)(ai )ki +
5 X
j =2
(U E6)(c1j )ki +
X
j =34
(U E6)(c2j )ki :
- 4 ,
(U E6)(I5 ) = (U E6)(I9 ) = 0 4 & # %$ E6 ! E6 . 5 $ , 8 ,
17. 1 % $ A2n % )
H (E6 =U) = = (H (BU )=h (U E6)I2 (U E6)I6 (U E6)I8 (U E6)I12 i) ^(z5 z9 ): '(. - & U E6 . 1. dim( (g )) = 3.
g = t3 A1 C i1 = 1, j = 2 3 4C t = t3 L(HX 1 )C t3 = L(HX j ; cj 1a11HX 1), cj 1a11 = a1j .
t = L HX 2 + 12 HX 1 HX 3 HX 4 L(HX 1):
153
1 2 3 | t , y1 , ;y1 | A1 . x1 ! 12 1 ; 13 3 + y1 x2 ! 12 1 ; 31 3 ; y1 x3 ! ;1 + 2 ; 13 3 x4 ! 1 ; 2 + 23 3 x5 ! ; 12 1 + 23 3 + y1 x6 ! ; 12 1 + 32 3 ; y1 x1 + x6 ! 13 3 a1 ! 21 1 c12 ! ;1 + 3 a2 ! 12 1 ; y1 c13 ! 12 1 ; 2 + 3 ; y1 a3 ! ;1 + 2 c14 ! ; 32 1 + 2 ; y1 a4 ! 1 ; 2 + 3 c15 ! ;2y1 1 a5 ! ; 2 1 + 3 + y1 c23 ! 12 1 ; 2 + 3 + y1 a6 ! ; 12 1 + 3 ; y1 c24 ! ; 32 1 + 2 + y1 : H (E6 =T 3 SU(2)) = = (R1 2 3 ] Ry12]=hq2 q6 q8 q12i) ^(z5 z9 ): 2. dim( (g )) = 2. g = t2 C2 C i1 = 2, i2 = 3, j = 1 4C t = t2 L(HX 2 HX 3)C P2 P2 t2 = L HX j ; cjk HX ik , cjk ailik = ailj , 1 6 l 6 2. k=1
k=1
t = L HX 1 + HX 2 + HX 3 HX 4 + 21 HX 2 + HX 3 L(HX 2 HX 3):
1 2 | t2 , y1 , y2 | C2. x1 ! 1 ; 13 2 x2 ! 61 2 + y1 x3 ! 16 2 + y2 x4 ! 16 2 ; y2 x5 ! 16 2 ; y1 x6 ! ;1 + 23 2 x1 + x6 ! 13 2
154
.
a1 ! 1 a2 ! 21 2 + y1 a3 ! 12 2 + y2 a4 ! 21 2 ; y2 a5 ! 21 2 + 3 ; y1 a6 ! ;1 + 2
c12 ! ;1 + 21 2 ; y1 c13 ! ;1 ; 2 + 21 2 ; y2 c14 ! ;1 + 12 2 + y2 c15 ! ;1 + 12 2 + y1 c23 ! ;y1 ; y2 c24 ! ;y1 + y2 :
H (E6 =T 2 SO(4)) = = (R1 2 ] S(y12 y22 )=hq2 q6 q8 q12i) ^(z5 z9 ): 3. dim( (g )) = 1. g = t1 A3 C i1 = 0, i2 = 1, i3 = 2, j = 3C t = t1 L(HX 0 HX 1 HX 2)C P3 P3 t1 = L HX 3 ; c3k HX ik , cjk ail ik = ail 3, 1 6 l 6 2. k=1
k=1 t = L(HX 4 ) L(HX 0 HX 1 HX 2):
1 | t1 , y1 , y2 , y3 , y4 | A3 , " HX 0, HX 1, HX 2. x2 ! ; 31 1 ; 13 y1 + y3 x1 ! ; 13 1 ; 13 y1 + y2 x3 ! ; 31 1 ; 43 y1 ; y2 ; y3 x4 ! 32 1 + 32 y1 + y2 + y3 x5 ! 23 1 ; 31 y1 ; y3 x6 ! 23 1 ; 31 y1 ; y2 x1 + x6 ! 13 1 ; 32 y1 a1 ! ;y1 + y2 c12 ! 1 ; y2 ; y3 a2 ! ;y1 + y3 c13 ! 1 + y1 + y3 a3 ! ;y1 + y4 c14 ! ;y2 + y4 a4 ! 1 + y2 + y3 c15 ! ;y2 + y3 a5 ! 1 ; y1 ; y3 c23 ! 1 + y1 + y2 a6 ! 1 ; y1 ; y2 c24 ! ;y3 + y4 : H (E6 =T 1 SU(4)) = = (R1] S(y1 y2 y3 y4)=hq2 q6 q8 q12i) ^(z5 z9 ):
155
4. dim( (g )) = 0. g = A1 B3 C i1 = 0, i2 = 2, i3 = 3, i4 = 4. t = L(HX 0 HX 2 HX 3 HX 4): y4 | A1 , y1 , y2 , y3 | B3 , " HX 2, HX 3, HX 4. 5 y3 (HX 4) = 0 y2 (HX 4) = ;1 y1 (HX 4) = 1 y3 (HX 3) = ;1 y2 (HX 3) = 1 y1 (HX 3) = 0 y3 (HX 2) = 2 y2 (HX 2) = 0 y1 (HX 3) = 0 x2 ! 16 y1 + 12 y2 + 21 y3 ; 31 y4 x1 ! ; 13 y1 ; 34 y4 x3 ! 16 y1 + 12 y2 ; 12 y3 ; 13 y4 x4 ! 16 y1 ; 12 y2 + 21 y3 ; 31 y4 x5 ! 16 y1 ; 12 y2 ; 12 y3 ; 13 y4 x6 ! 23 y1 + 23 y4 x1 + x6 ! 31 y1 ; 23 y4 a1 ! ;2y4 c12 ! 21 (y1 ; y2 ; y3 ) + y4 a2 ! 21 (y1 + y2 + y3 ) ; y4 c13 ! 12 (y1 ; y2 + y3 ) + y4 a3 ! 21 (y1 + y2 ; y3 ) ; y4 c14 ! 21 (y1 + y2 ; y3 ) + y4 a4 ! 12 (y1 ; y2 + y3 ) ; y4 c15 ! 21 (y1 + y2 + y3 ) + y4 a5 ! 12 (y1 ; y2 ; y3 ) ; y4 c23 ! ;y2 a6 ! y1 c24 ! ;y3 : H (E6 =SU(2) SO(7)) = = (Ry12] S(y12 y32 y42 )=hq2 q6 q8 q12i) ^(z5 z9 ): g = F4C i1 = 1, i2 = 2, i3 = 3, i4 = 4. t = L(HX 1 HX 2 HX 3 HX 4): y1 , y2 , y3 , y4 | F4, " HX 1, HX 2 , HX 3, HX 4 . 5 y4 (HX 1) = ;1 y3 (HX 1) = ;1 y2 (HX 1) = ;1 y1 (HX 1) = 1 y4 (HX 2) = 2 y3 (HX 2) = 0 y2 (HX 2) = 0 y1 (HX 2) = 0 y4 (HX 3) = 0 y3 (HX 3) = 1 y2 (HX 3) = 0 y1 (HX 3) = 0 y4 (HX 4) = 0 y3 (HX 4) = ;1 y2 (HX 4) = 1 y1 (HX 4) = 0
156
.
x1 ! 32 y1 ; 13 y2 x2 ! 16 y1 + 16 y2 + 21 y3 + 21 y4 x3 ! 16 y1 + 16 y2 + 12 y3 ; 12 y4 x4 ! 16 y1 + 16 y2 ; 21 y3 + 21 y4 x5 ! 16 y1 + 16 y2 ; 12 y3 ; 12 y4 x6 ! ; 13 y1 + 32 y2 x1 + x6 ! 13 (y1 + y2 ) a1 ! y1 c12 ! 21 (;y1 + y2 ; y3 ; y4 ) a2 ! 21 (y1 + y2 + y3 ; y4 ) c13 ! 12 (;y1 + y2 ; y3 + y4 ) a3 ! 21 (y1 + y2 + y3 ; y4 ) c14 ! 12 (;y1 + y2 + y3 ; y4 ) a4 ! 21 (y1 + y2 ; y3 + y4 ) c15 ! 12 (;y1 + y2 + y3 + y4 ) a5 ! 21 (y1 + y2 ; y3 ; y4 ) c23 ! ;y3 a6 ! y2 c24 ! y4 : 1] $, qk = (Ik ) " $" H (BF4 ), 4 H (E6=F4) = ^(z5 z9 ): . E6, & # %$ , F4 . ) C4 4 $ ! 1], ! 4 , ! # ) F4 +&{) E6. 3 , $ , -
, $
$ 3.
&
1] Takeuci M. On Pontrjagin classes of compact symmetric spaces // J. Fac. Sci. Univ. Tokyo Sec. I. | 1962. | Vol. 9. | P. 313{328. 2] Helgason S. Di erential Geometry, Lie groups and Symmetric spaces. | New York, London: Acad. Press, 1978. 3] . !" ##!!" $#%!#% &!&!" $#%!#% $%!" '$$ ( // )##!!" $#%!#% $+!. | ,.: -(, 1958. | /. 163{246. 4] 1 #2 . 334!!" #%5# $#%!#% . | ,.: ,, 1984.
157
5] 6!3 7. ., !4 . (. /! $ '$$ ( 35# '$$. | ,.: 8)//, 1995. 6] !4 . (. 9$ %!:% !" '$$ $3: !2. | ,., 1995. 7] ;! 1'!. <!" <'! $%!" &!&!" ! " $#%!#% # !$ &2 #%=!!2 '$$2 // 9. #. %. %!:. !. | 1968. | 6"$. 14. | /. 33{93. 8] 1= 6. #!5!!" 3" (. | ,.: ,, 1993. 9] 1= 6. %>:" !5! $& $'$#%" 3 ( // ?'!=. !: $. | 1969. | 9. 3, "$. 3. | /. 94{96. 10] Coxeter H. S. M. The product of the generators of a Bnite group generated by reEections // Duke Math. J. | 1951. | Vol. 18. | P. 765{782. ' ( 1998 .
( = 3, D = 3) . .
, . e-mail: [email protected]
519.172.2+519.173+519.177
: , -, ! "#.
$%& '% (%)& 3 (%)&# &)* +& 3 % &,- & &- .#%# -((. /%" & 0%)& +& &# '% 1!+. /%2& &,# - ( +&* '&,- , (%* *3# ! % "#, &*3- % &, , +& .
Abstract S. A. Tishchenko, Maximum size of a planar graph (4 = 3, D = 3), Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 159{171.
The problem of maximumsize of a graph of diameter 3 and maximumdegree 3 as a function of its Euler characteristics is studied. The negative solution of an Erd!os problem is obtained. A new approach to such problems is proposed which consists in counting the paths between di:erent pairs of vertices in a graph.
. D
, . ( , ) ! " #$. % $ '. ( " . , $ $ #$ . )
$
, $ | . +# , $: 3- 3, 12 11]? $ $ - 12{4], $ # $
$ . 6, D = 2, ' > 8 $ 15] " , , " 13'=2] + 1. ; $ 16] D = 3 19'=2] ; 3 $ ! " 8' + 12. >
" $" 17, 8], , 2001, 7, ; 1, . 159{171. c 2001 ! " # " " $, %& '
160
. .
" " ! . % " $ " , , ! $ +#,
,
" A "
" " , .
1.
G 3 3, , 12. # $ ! $ 3, A $
, , #$ " . B p l (jpj = l) l-#. C$ Vm (G) m (m 6 3), Pl (G) | l- (l 6 3). % , (G), , F(G ). B
m m- . C$ m- Fm (G ), " #$, ! "
3- 5- , E35(G ). % A " (G): (G) max fjV j ; jE j + jF()jg = jV j ; jE j + jF(max)j: (1) (G) D, , #$
A " , # . % , #$ . A ! ,
! #$ #$, ! " 4- . C$ P xy (G) " " , , " x y 2 V (G). C , 3 P xy (G) > 0 8x y. E # " " , , " . F , . ) # p q 2 P xy (G) , p = q. 3- (! ) " . $ !
# . ) $ , . . , - $ , " . 1 ( ). G p 2 P3(G), p = f 2 F3(G ), p . 2 ( ). G p q f 2 F(G ), p = q, jpj > jqj, p .
161
( = 3, D = 3)
3 ( ). G p q 2 P2(G), p q f 2 F4(G ), p = q, , $ $ ! , , $
, . 4 ( ). G p q 2 P3(G), p q f 2 F6(G ), p = q, , $ $ , . 5 ( ). G ( . . 1 )) a1a2a3 2 P3(G)
$ a1 6 f 2 F3(G ) a2a3 2 P2 (G), a2 a3 f (a2 a3 = a4 f, a1a2 a3 = a1a4 ), A . 6 ( ). G ( . . 1 $)) a1a2a3 a1a5a4 2 2 P3(G) $ a1 6 f 2 F4(G ) a2a3 a5a4 f, a2a3 = a5 a4, 3-, $ $ , . 7 ( ). G ( . . 1 )) $ a1 ! f g, f 2 F3 (G ), g 2 F5(G ), a3 a4 a5 a2a7 a6 2 P3 (G), a3a4 a5 = a2 a7 a6 $, ! f, " #$, ! " g, 3-, $ $ , .
u u uu u u u u u u u u u u u a1
a1
a2
a4
a3
a4
f
a5
a2
f a3
a1 g
f
a2
a3
a5
a6
a7
a4
$)
)
<. 1. =,2& 3-": ) %" 5> ') %" 6> ) %" 7
)
~ ) "
" , C$ P(G ~ ). P~ xy (G) | P xy (G) \ P(G
2. !
(, .
1. jV1(G)j = 0
2. x y 2 V2 (G) xy 2= E(G)
3. x 2 V2 (G) xy xz 2 E(G) yz 2= E(G)
4. x 2 V2 (G) f 2 F4 (G ) x 6 f .
,
,
,
.
.
,
,
.
162
. .
5.
6.
7.
8.
a 2 E(G) f g 2 F3 (G ) a f a 6 g a 2 E(G) a f 2 F3(G ) a 6 g 2 F4(G ) x 2 V (G) f g h 2 F4(G ) x 6 f \ g \ h x 2 V (G) f 2 F3 (G ) g h 2 F5(G ) ,
,
,
,
,
,
,
,
.
.
.
,
,
x 6 f \ g \ h ; A ( . . 2). ; "
" x $ $ 11 G, 12, . x .
u
u u u u
x
x
1.
u u uuuu u u u uuu u u u uu u u u u uu u u u u u u u u u y
x
)
f
x fa
)
f
g
y
$)
z )
x
g
a
f
g
)
)
g
x
h
x
h
f
)
<. 2. @3!&&, (&"(0
)
-
2 C ,
x y 2 V2(G), x y f 2 F(G ) ( . . 3). ; 2 xy 2= E(G). G , ,
$ xy. (" "
.
0
't $' $u' $ u % %u&
( = 3, D = 3)
x
x
?
163
?
f
f2
f1
-
y
y
<. 3. B&& "- +& & 2 '
", " x y , $ $ $ f f1 f2 .
(G ) , , (G ) > (G ) $ " G ! G , " (G ) > (G ). A jV (G )j = jV (G)j, (G ) = (G ), jE(G )j > jE(G)j, $ G . 0
0
0
00
00
0
000
0
0
0
000
0
0
0
3. " # $ % ! 2.
x y 2 V (G) jP xy(G) ; P~ xy (G )j > 0 8 C , , x y 2 V (G), P~ xy (G ) = P xy (G). jP~1(G )j = 0, jP1xy (G)j = 0. E A , jP2xy (G)j = 0, , , " 2-, $ $ ! , , , $ , $ . E , jP3xy (G)j = 0, , , " 3-, $
, $ , A $ . % jP xy(G)j = 0.
3.
.
.
jP j = 2jV2j + 21 2 jV3j:
(2)
~ )j 6 jV j(22 ; jV j) ; 17 jV2j 8: jP(G 2 2
(3)
jP1j = jE j = jV2j + 32 jV3j. I m m(m ; 1)=2 2-, A jP2j = jV2j + 3jV3j. I $, ! 2 ( 2 " #$ 2jV2j), " " 3-", " 23 jV3j ; jV2j #$
#" " 3-", A jP3j = 6jV3j. ( , (2).
4.
164
. .
; 2 " " ~ ), , (2) 3, : P(G) ; P(G ~ )j 6 2jV2j + 21 jV3j ; jV j(jV j ; 1) = jV j(22 ; jV j) ; 17 jV2 j: (4) jP(G 2 2 2 2 B , .
9. 2 !
""" #
#.
C , $ 2 " 1- , 2- 3-. jV j > 12, , 2 12 A " 14 .
10. 2 12
x 2 V2 (G), x f 2 F(G ). ; 3 4 f 2= F3(G ), f 2= F4(G ). G f 2 F5(G ), 2 3- , ", x. G f 2 F6(G ), 4 3-, ", x. , " , ", " 2, $ 12, 9. , $
11.
, % -
.
2 7 C ,
a1 a2 a3, ", x 2 V2 (G) ( . . 4). 2 3- a2 a7 a5 a3a4 a5, 5 3- a2a1 a6 a2a7a6 . ; " x, 9. x , "&#
,
u u u u u u
.
a1 f
a6
a2
a3
a7 g a5
a4
<. 4. /&& ( "2&* 11
~ )j. ; 1{7 # jP(G
5.
~ )j = 3jF6j + 5jF5j + 10jF4j + 12jF3j + jE35j: jP(G
(5)
( = 3, D = 3)
165
,
" " " , $
f1 2 F6(G ). $ ", #
p1 q1 2 P3(G), p1 q1 f1 , p1 = q1. 4 3- 6- .
,
" " , $
f2 2 F5 (G ). $ ", #
p2 2 P3 (G), q2 2 P2(G), p2 q2 f2 , p2 = q2. 2 3- 5- .
, , " #" , $
f3 2 F4 (G ). $ ",
#
p3 2 P3 (G), q3 2 P1 (G), p3 q3 f3 , p3 = q3. 2 3- 4- . 6
A #" ,
" . $ ", #
p4 q4 2 P2 (G), p4 q4 f3 , p4 = q4. 3 ,# 2- 4- .
, $
f4 2 2 F3(G ). $ ", #
p5 2 2 P2(G), q5 2 P1(G), p5 q5 f4 , p5 = q5. 2 2- 3- .
, , A . I p6 2 P3(G), p6 = f4 , , , A " , 1.
" pk qk fi , pk qk 6 fj 8j 6= i ( $ p 2 P2(G), ",
2, 3, 4 p 6 f 2 F3(G ) F4(G )), " . (
, , 1{4 3jF6j + 5jF5j + 6jF4j + 6jF3j " pk qk fi 2 F (G ).
, $
f4 2 F3(G ). ; 3 A 3. $ A " x y ( . . 5 )), #
a1a2 2 P2 (G), a3 2 P1 (G), a1a2 a3 f4 , a1a2 = a3. B$ A a1 a2 a3 $ a4 6 f4 . C , a1a2 a4 = a3a4 . J , a5a1 a2 = a5a3 , 5 3- 3- . a2 x a5 a5 x a3 y a4 a3 a1 a1 f4 f3 a6 a2 y a4 ) $)
u u u u u u u u u u u <. 5. =,2& 3-"# % 5 ()) 6 ('))
166
. .
, , ,
" #" , $
f3 2 F4 (G ). ; 4 A 3. $ A " x y ( . . 5 $)), #
a1 a2 a3a4 2 P2(G), a1 a2 a3a4 f3 , a1a2 = a3 a4. B$ A a1 a2 a4a3 $ a5 6 f3 . C , a1a2 a5 = a4 a3a5 . J , a6 a1a2 = a6a4 a3, 6 3- 4- . F , 5, 6 3- pk ,
fi 2 F3(G ) F4(G ), A
3- , $ " !
. ; 3, 4 "
2, A pk 6 fj 2 F (G ). 6
$ $ # $ ,
fi 2 F3 (G ) F4 (G ) ! $ a. ; 5, 6 $ 4- , # $ a
" . ) $
! #$ $ , ,# $ 4- ( a) ! 4- , 7.
f4 2 F3(G ) f2 2 F5 (G ), ! $ a ( . 1 )). 7 a3a4 a5 a2a7 a6 ,
$ $ , . ; 11 A p " 2, , p 6 fj 2 F(G ), 5, 6 8 #$ a4 a7 ! fi 2 F3(G ) F4 (G ) F5(G ), f2 , A
7 $ . " jE35j. K
3- 4- #$, ! 3- 5- , , 5{7 4jF4j + 6jF3j + jE35j pk 6 fj 2 F (G ). B$
pk fj 2 F(G ), (5).
4. # !
6.
21 6 jV j(192; jV j) + jF5(max )j ; jF4(max )j ; jE35(max )j ; jV2 j: (6) C , = jV j ; jE j + jF(max)j = (jV2 j + jV3j) ; jV2 j + 32 jV3j + X X + jFm (max )j = jFm (max )j ; 21 jV3j (7) m>3
m> 3
( = 3, D = 3)
X
m>3
mjFm j = 2jE j = 2jV2j + 3jV3j:
167 (8)
I$ (7) (8), " X 15 3 (21 ; 3m)jFm (max )j = 21 + 21 2 jV3j; 6jV2j; 9jV3 j = 21 ; 2 jV2j + 2 jV j: (9)
m>3
), , (3) 4 (5) 5, X X (21 ; 3m)jFm j = (21 ; 3m)jFm j + 3jF6j + 6jF5j + 9jF4j + 12jF3j 6 m>3
m>7
6 jP~ j ; jF4j + jF5j ; jE35j 6 jV j(222; jV j) ; 17 2 jV2 j + jF5j ; jF4j ; jE35j: (10) C$L (9) (10), (6).
M (6), , A " , jF5(max )j;jF4(max )j;jE35 (max )j;jV2 j, " ". 6, ,
, ! .
7.
jV j2 ; 21jV j + 50 6 0:
(11)
I$
X jF (max)j = jFm (max )j + jF5(max )j + jF4(max )j + jF3(max )j = 21 jV3j + m>6
2jE j =
X m>6
mjFm j + 5jF5j + 4jF4j + 3jF3j = 3jV3j + 2jV2 j
(12) (13)
" X (m ; 6)jFm (max )j;jF5(max )j; 2jF4(max )j; 3jF3(max )j 6 2jV2j; 6: (14) m>6
E 5, 6
(8) 6, X jE35j > 3jF3j ; mjFm j = 5jF5j + 4jF4j + 6jF3j ; 2jV2j ; 3jV3 j: m>6
(15)
C$L (14) (15), X 3jF5(max )j ; jE35(max )j + 2 (m ; 6)jFm (max )j 6 6jV2j + 3jV3j ; 12 ! m>6
! jF5(max )j ; jF4(max )j ; jE35(max )j ; jV2j 6 jV j ; 4: (16) (16) (6) 6 (11).
168
. .
8.
jV j2 ; 20jV j + 40 6 0:
(17)
jF5(max )j 6 jF (max)j = 21 jV j ; 12 jV2 j +
(18)
(6)
(17).
1.
' #
3
- "
3
-
"" (# # #:
= 2 jV j 6 12 ( )N = 1 jV j 6 16 ) jV j > 12 # # jV j
(11) 7. $) jV j > 16 # # jV j
(17) 8. % 1, " . B = 1 A , $
2 " 14 . ; = 2 , .
12. (G) = 2 f 2 F(G max) a 2 E(G) C ,
$ a , f " . C , , . . " , " A $ 3. $ a " $ 17 " " ( 1-, 2- ! 3-). C 3(jV j ; 3) > 30 " , . 2. 3 3 12 C , # (11) jV j = 13.
G 13. ; 1 f 2 F(G ) " $ 2. 2 " , " 2jV2j, 11 " $ 12jV2j.
. ( "
$ "
: 2jE j ; 12jV2j 6 3(jF j ; 2jV2j) ! 27 6 11jV2j (19) # # jV2j jV2 j = 1. )
(6) ) $)
$ * +
.
,
%&#
.
# %
, """ .
, -
( = 3, D = 3)
169
$ jF5j ; jF4j ; jE35j > 4: (20) O ", " 2
$ 26, # (20) 11 5-
" 4- . ) $ , A , jF4j = 0N jF3j > 2: (21) A jF5j 6 5,
(20) jE35j 6 1. ( , " $ g 2 F3(G ) $, " #$ 5- , . ., # 5, 6, # $ " fi 2= F3(G ) F4(G ) F5 (G ). ; (20){(21) "
$ ", A " " #$ g. ; 3 A , A " #$ a 2 E(G), 12. 6 . E, $ 3 3, , 12, . A #
. 6 3- 3 12 . ( , 1 = 2 $ $ " $ " 19].
u u u u uu u u uu
u u
uu u uu uu u uu u u
<. 6. /%( 3-"%&, , 3 12
3- " 3,
" # %#$ ( q = 1, = 1), . 7. I 1, 16 . ( 3- " 3 18 ( = ;1) 20 ( = ;2). ) . 8 " .
170 A B C D
uu uu
uu uu uu uu uu uu uu u u uu u u u u u uu uu uu uu u u u u v uu u u
uu uu u u uu uu u u u u u uu u u u u u u u u u u uu uu u u u uu u u uu u u u
. .
D A B C C B D A E
)
E D C B A
$)
<. 7. =%2& 3-"%&,- 14 ()) 16 (')) %!&(" D!'". G& (&, "&(
A
B
A
D
0
B
CC
C
CC
B
0
B
A
A
0
)
0
B
0
0
A
0
B
D C
0
A
0
B C
0
C D
B
0
A
A
0
0
0
D
$)
<. 8. =%2& 3-"%&,- 18 &&""* -&) q = 3, = ;1 ()) 20 &""* -&) p = 2, = ;2 (')). G& (&, "&(
5. ()* % (' = 3, D = 3) A " , # #
. C
,
. A $"
2 # (! )
" .
( = 3, D = 3)
171
J $ ;. J. D , J. >. ( D. >. O$ $ $.
+ !
1] M. Fellows. Three for money: The degree/diameter problem. | http://www.c3.lanl. gov/mega-math/workbk/graph/grthree.html. 2] J. C. Bermond, C. Delorme, G. Farhi. Large graphs with given degree and diameter II // J. Combin. Theory. | 1984. | B 36. | P. 32{48. 3] I. Alegre, M. A. Fiol, J. L. A. Yebra. Some large graphs with given degree and diameter // J. Graph Theory. | 1986. | V. 10. | P. 219{224. 4] F. R. K. Chung. Diameters of graphs: old problems and new results // Congressus Numerantium. | 1987. | V. 60. | P. 295{317. 5] P. Hell, K. Seyarth. Largest planar graphs of diameter two and xed maximum degree // Discrete Math. | 1993. | V. 111. | P. 313{332. 6] M. Fellows, P. Hell, K. Seyarth. Large planar graphs with given diameter and maximum degree // Discrete Appl. Math. | 1995. | V. 61. | P. 133{153. 7] F. Goebel, W. Kern. Planar regular graphs with prescribed diameter. | Univ. of Twente (The Netherlands) Applied Math. Memorandum. No. 1183, December 1993. 8] M. Fellows, P. Hell, K. Seyarth. Constructions of large planar networks with given degree and diameter // Networks. | 1998. | V. 32. | P. 275{281. 9] R. W. Pratt. The complete catalog of 3-regular, diameter-3 planar graphs. | http: //www.unc.edu/~rpratt/graphtheory.html. ( ) 1999 .
. .
. . .
515.16
:
, ,
.
!
" " # $
$ !% . "
& , . . '
"& Dk Dl ! Dk , & " &
", &"
$ ($
) (
@Dk Dl ! @Dk , Dk @Dl ! Dk @Dk @Dl ! @Dk ) &" " "" $
$ . , " , ( ! "
& $
$ ($ ) & " , . . "" "
" . - ,' "" " ( '. . , & ( ! ( &
! ," &
! ,.
Abstract
S. M. Tuleshev, Spaces of immersions of elementary bre bundles, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 173{197.
In the paper we consider immersions of elementary 5bre objects. For 5bre disk, i. e. a trivial 5bre bundle of type Dk Dl ! Dk , we give a de5nition of 5brewise immersion and for 5bre boundary spheres (5bre bundles @Dk Dl ! @Dk , Dk @Dl ! Dk and @Dk @Dl ! @Dk ) we de5ne the notion of framed 5brewise immersions. It is proved that the natural maps from the space of immersions of 5bre disk into spaces of framed immersions of 5bre boundary spheres satisfy the axiom of the covering homotopy, i. e. are Serre bundles. This result is an initial step in solving the problem on the homotopy description of space of immersions of one 5bre manifold into another 5bre manifold.
1] . ! , # E # $ Dk Rn # B - ! ( ( && 6778 9 96{01{00287{ .
, 2001, 7, 9 1, . 173{197. c 2001 !, "# $% &
174
. .
# $ $ ' S k;1 Rn, . . , ($ ( f : S k;1 ! Rn ( g: S k;1 ! Rn, $ # ' S k;1 f: g(x) 2= f (Tx (S k;1 )) Rn. ,( : E ! B, - Dk S k;1 , # # (. . , ( - . / 0 - , , , ((( # #- ' ( . 1( $ 2 , ( ( , $ 3 ), $ ( $ $ . 3 0 # 4 0 ((( - ( E B, $ , $ 0 $ 2 ( ' . 5 # , - -( -. 3# E | $ ( $ Dk Dl $ Rm k Rn, m. . $ (F f) F : Dk Dl ! Rm Rn, f : D ! R , ( $ - ( : Dk Dl ? ? y
F ;;;;! Rm ? Rn
? y
:
f Dk ;;;;! Rm . # 0$ $ # ( @Dk Dl , Dk @Dl @Dk @Dl ) ( - (, -( '' # #$ . - # B, C D. 7 ( # , ( E $ E ! B, E ! C , E ! D (- - (. 2).
1. (( ( $ 0 $ 2 (Dk Dl , @Dk Dl , Dk @Dl @Dk @Dl ) Rm+n = Rm Rn,
175
( ( $ 4(, # #( ( #. 3# k, l, m n | # , m > k, n > l. 3# Dr ((( r- Rr ( , . . Dr # (t x), t # ( 0 , x ((( ' @Dr Dr . ($ Dk Dl , @Dk Dl Dk @Dl (s x< t y), (x< t y) (s x< y) , s t 2 0 1], x 2 @Dk , y 2 @Dl . - 4: ( $ # #( ( . 1. 7 # ( Dk Dl ! Dk Rm Rn ! Rm (F f), F ((( C 1 - Dk Dl Rm+n, f | C 1 - Dk Rm, - Dk Dl ?? y
F ;;;;! Rm+n =?Rm Rn
? y
:
f ;;;;! Rm ln = E $ $ = Ekm k l k m D D ! D R Rn ! Rm. > E C 1- -
Dk
#-
((F 0 f 0 ) (F 00 f 00)) = maxf0 (F 0(X) F 00(X)) 0 (F 0 (V ) F 00(V )) j X 2 Dk Dl V 2 TX (Dk Dl ) kV k = 1g (F 0 f 0 ) (F 00 f 00) 2 E , 0 | Rm+n, Rm+n (( # TX (Dk Dl ) ((( # Dk Dl X. 2. 7 # ( @Dk Dl ! @Dk Rm Rn ! Rm G = ((G g) (G~ g~)), G g ((-( 1- ( @Dk Dl Rm+n @Dk Rm , ( $ G Rm+n @Dk Dl ;;;;! ? ? ? ? y y g @Dk ;;;;! Rm ~ ), G~ ((( C 1 - @Dk Dl Rm+n n f0g, G(Y Y 2 @Dk Dl , # Y
176
. .
G, . . G TY (@Dk Dl ), g~ | C 1- @Dk Rm nf0g, ( g~(y), y 2 @Dk , #
y g (=2 g Ty (@Dk )), G~ @Dk Dl ;;;;! Rm+n n f0g Rm+n ?? ? ? y y : @Dk
g~ ;;;;! Rm n f0g Rm
ln = B $ $ A Bkm # ( @Dk Dl ! @Dk Rm Rn ! Rm. > B -- : ( G 0 = ((G0 g0 ) (G~ 0 g~0)), G 00 = = ((G00 g00) (G~ 00 g~00)) 2 B #
~(G 0 G 00) = maxf0 (G0 (Y ) G00(Y )) 0 (G0 (V~ ) G00(V~ )) 0 (G~ 0(Y ) G~ 00(Y )) j Y 2 @Dk Dl V~ 2 TY (@Dk Dl ) kV~ k = 1g 0 | , 4. 3. 7 # , ($ ( Dk @Dl ! Dk RmRn ! Rm, B H f ((-( C 1 - ( Dk @Dl H = ((H f) H), m + n k m R D R , Dk @Dl ? ? y
H Rm+n ;;;;! ?
? y
f Dk ;;;;! Rm , HB ((( C 1- Dk @Dl Rm+n n f0g, B Z 2 Dk @Dl , # Z H(Z), H (=2 H TZ (Dk @Dl ))
H Rm+n n f0g Rm+n ;! Rm Dk @Dl ;! ( ( Rm+n = Rm Rn #, Dk @Dl 0 2 Rm. ln = C $ $ = Ckm # (, ($ Dk @Dl ! Dk Rm Rn ! Rm. . - C #- B(H0 H00) = maxf0 (H 0(Z) H 00 (Z)) 0 (H 0 (VB ) H 00(VB )) 0 (HB 0 (Z) HB 00(Z)) j Z 2 Dk @Dl VB 2 TZ (Dk @Dl ) kVB k = 1g:
177
= : E ! B - . 1( (F f) 2 E ~ g~)), G g ((-( # (F f) = ((G g) (G k l ~ t y) = rsF (1 x< t y), g~(x) = rsf(1 x) ( F @D D f @Dk , G(x< (# # 4 rs rt - '' s t ). C ^ : E ! C . 3# ( B H ((( (F f) 2 E ^ ( ' ^ (F f) = ((H f) H), k l B F D @D , H(s x< y) = rtF(s x< 1 y). E #, ^ . , , ( @Dk @Dl Rm+n. 4. 7 ( #$ 2- @Dk @Dl ! @Dk Rm Rn ! Rm ~ g~) G), B G g ((-( 1 - ( @Dk @Dl Rm+n G = ((G g) (G k m @D R , ( $ G Rm+n @Dk @Dl ;;;;! ? ? ? ? y y
g @Dk ;;;;! Rm 1 k l ~ G~ ((( C - @D @D Rm+n n f0g, ( G(Z), Z 2 @Dk @Dl , # Z G (=2 G TZ (@Dk @Dl )), g~ ((( C 1 - @Dk Rmnf0g, g~(y), y 2 @Dk , # y g (=2 g Ty (@Dk )), G~ @Dk @Dl ;;;;! Rm+n n f0g Rm+n ?? ? ? y y
g~ @Dk ;;;;! Rm n f0g Rm , GB ((( C 1- @Dk @Dl Rm+n nf0g, B G(Z), Z 2 @Dk @Dl , # Z G (=2 G TZ (@Dk @Dl )) G Rm+n n f0g Rm+n ;! Rm @Dk @Dl ;! @Dk @Dl 0 2 Rm. , ( , ~ G(Z), B G(Z) Z 2 @Dk @Dl , . ln A Dkm = D $ $ ( ( #$ 2- @Dk @Dl ! @Dk Rm Rn ! Rm. . - D #- - : ( G 0 = ((G0 g0) (G~ 0 g~0) GB 0), G 00 = ((G00 g00) (G~ 00 g~00) GB 00) # ^(G 0 G 00) = maxf0 (G0 (Z) G00(Z)) 0 (G0 (V^ ) G00(V^ )) 0 (G~ 0(Z) G~ 00(Z)) 0 (GB 0 (Z) GB 00(Z)) j Z 2 @Dk @Dl V^ 2 TZ (@Dk @Dl ) kV^ k = 1g:
178
. .
= ~ : C ! D , 4 B 2 C # : E ! B. 1( ((H f) H) B ~ B B ~ ((H f) H)) = ((G g) (G g~) G), G G ((-( ( H HB ~ y) = rsH(1 x< y), @Dk @Dl , g ((( f @Dk , G(x< g~(x) = rsf(1 x).
2.
G(, ( - , ((-( - (. 1.1 1]) ( $ .
.
(i) : E ! B (m > k, n > l) ^ : E ! C (m > k, n > l) . (ii) ~ ^ : E ! D (m > k, n > l) .
. (i) 1 # , ^ | (, # . 3# ( 0 P Gv : P ! B Hv : P ! C 0 6 v 6 1: ,$ # : ( p P Gv(p) = ((Gv (p) gv(p)) (G~ v(p) g~v(p))) Hv(p) = ((Hv(p) fv (p)) HB v(p)): H , # G0 H0 ( F F^ , . . - ( ^ f(p)) ^ F F^ : P ! E F (p) = (F(p) f(p)) F^(p) = (F(p) p 2 P ^ = f0 (p) p 2 P): G0 = F H0 = ^ F^ (f(p) > - Fv F^v : P ! E 0 6 v 6 1 F0 = F F^0 = F^ ( $ ( p P - Fv(p) = (Fv(p) fv (p)) F^v (p) = (F^v (p) f^v(p)) e Fv = Gv ^ F^v = Hv : ,$ # ( , 0 #, P | .
179
3# "1 (v p< x< t y) # ( G~ v (p)(x< t y) # Gv (p)] T(xty)(@Dk Dl ), # "1 = minf"1 (v p< x< t y) j 0 6 v 6 1 p 2 P (x< t y) 2 @Dk Dl g "2 = minfkrV Gv (p)(x< t y)k j 0 6 v 6 1 p 2 P (x< t y) 2 @Dk Dl V 2 T(xty) (@Dk Dl ) kV k = 1g " = (1=10) minf"1 "2 1g. rV - # ( V . C , # "^1 (v p< s x< y) (- HB v (p)(s x< y) Hv (p)] T(sxy) (Dk @Dl ) "^1 = minf"^1 (v p< s x< y) j 0 6 v 6 1 p 2 P (s x< y) 2 Dk @Dl g "^2 = minfkrV Hv (p)(s x< y)k j 0 6 v 6 1 p 2 P (s x< y) 2 Dk @Dl VB 2 T(sxy) (Dk @Dl ) kVB k = 1g "^ = (1=10) minf"^1 "^2 1g. 1( v v0 , $ # v ; v0 ( ( v ; v0 ), p 2 P Jvv0 (p)(x) x 2 @Dk Rm ( Kvv0 (p)(x< t y) Lvv0 (p)(s x< y) (x< t y) 2 @Dk Dl (s x< y) 2 Dk @Dl Rm+n - . 3# Mvv0 (p)(x) # ( # Rm, ( ( g~v0 (p)(x) g~v (p)(x), , vv0 (p)(x) | ( , ( Mvv0 (p)(x) ( (~gv0 (p)(x) g~v (p)(x)) # v ; v0 # , 0 6 vv0 (p)(x) < ). 3 0 M~ vv0 (p)(x< t y) MB vv0 (p)(s x< y) Rm+n, ( (~gv0 (p)(x) 0) (~gv(p)(x) 0) HB v0 (p)(s x< y) HB v (p)(s x< y) ( -), vv0 (p)(x< t y) (= vv0 (p)(x)) vv0 (p)(s x< y) | - ( , 0 6 vv0 (p)(s x< y) < ). A Jvv0 (p): @Dk ! SO(m R) Kvv0 (p): @Dk Dl ! SO(m + n R) Lvv0 (p): Dk @Dl ! SO(m + n R) (, - x, (x< t y) (s x< y) (- ( $ m ( ( m + n ( # , - Mvv0 (p)(x), M~ vv0 (p)(x< t y) MB vv0 (p)(s x< y) vv0 (p)(x), vv0 (p)(x< t y) vv0 (p)(s x< y) , | g~v0 (p)(x) g~v (p)(x),
180
. .
| (~gv0 (p)(x) 0) (~gv (p)(x) 0), | # HB v0 (p)(s x< y) HB v (p)(s x< y). O Mvv0 (p)(x) , Jvv0 (p)(x) # < , M~ vv0 (p)(x< t y) MB vv0 (p)(s x< y). > , ( Jvv0 (p): @Dk ! GL(m R) Kvv0 (p): @Dk Dl ! GL(m + n R) Lvv0 (p): Dk @Dl ! GL(m + n R) ' k J (p)(x) Jvv0 (p)(x) = kkg~g~v (p)(x) x 2 @Dk < v0 (p)(x)k vv0 k Kvv (p)(x< t y) Kvv0 (p)(x< t y) = kkg~g~v (p)(x) (x< t y) 2 @Dk Dl < 0 v0 (p)(x)k B v (p)(s x< y)k k l Lvv0 (p)(s x< y) = kkHH B v0 (p)(s x< y)k Lvv0 (p)(s x< y) (s x< y) 2 D @D : = , ( Jvv0 (p) Kvv0 (p) Lvv0 (p) ((-( C 1- # x (x< t y) (s x< y) . H , # v ; v0 , Pvv0 (p)(x< t y) p 2 P (x< t y) 2 @Dk Dl Rm+n. 3# M^ vv0 (p)(x< t y) # ( # Rm+n, ( ( Kvv0 (p)(x< t y)G~ v0 (p)(x< t y) G~ v (p)(x< t y), , vv0 (p)(x< t y) | ( , 0 6 vv0 (p)(x< t y) < ). = Pvv0 (p): @Dk Dl ! SO(m + n R) , (x< t y) @Dk Dl (- Rm+n, # M^ vv0 (p)(x< t y) vv0 (p)(x< t y), ( Kvv0 (p)(x< t y)G~ v0 (p)(x< t y) G~ v (p)(x< t y) ( M^ vv0 (p)(x< t y) , Pvv0 (p)(x< t y) # ). = Pvv0 (p): @Dk Dl ! GL(m + n R) ' kG~v (p)(x< t y)k Pvv0 (p)(x< t y) = kKvv0 (p)(x< t y)G~ v0 (p)(x< t y)k Pvv0 (p)(x< t y) (x< t y) 2 @Dk Dl . = , 0 ((( C 1 - # (x< t y).
181
E #, Pvv0 (p)(x< t y)Kvv0 (p)(x< t y)G~ v0 (p)(x< t y) = G~ v (p)(x< t y) Lvv0 (p)(s x< y)HB v0 (p)(s x< y) = HB v (p)(s x< y)
(1) (10 )
vv (p)(xty) m+n Rm?+n ;;;;;;;;;! R? 0
?y
!vv (p)(xty) m+n Rm?+n ;;;;;;;;;; ! R? 0
? y
? y
IdRm vv (p)(x) Rm ;;;;! Rm ;;;;;;;! Rm "vv (p)(sxy) m+n Rm?+n ;;;;;;;;;; ! R? 0
? y <
(2)
Rm
0
? y
Rm
IdRm ;;;;!
? y :
(20 )
Rm
1 # - 3]1. 1. m > k > 1, Gmk | k- !" Rm S m;1 | # $ % ! Rm. : Q ! Gmk , $ Q | !"
&$. '$ ( }: Q ! S m;1 , ! % $ q 2 Q
! }(q) ! (q). & C 1 -$!, ( C 1 -$! }.
3 1, ( Q 0 I P @Dk (v p< x) #, (- g~v (p)(x) #- # gv (p)] (Tx (@Dk )). 3 # (g0 (p) g~0(p)) ( f(p) Dk Rm , #, ( -. 3 }: I P @Dk ! S m;1 C 1 - x 2 @Dk , }(v p< x) # (v p< x). = R: I P @Dk Dl ! Gm+n k+l
( R(v p< x< t y) #, (- G~ v (p)(x< t y) #- # Gv (p)] (T(xty) (@Dk Dl )). . 1
. & , ' 10 .
182
. .
Gv (p) @Dk Dl ;;;;! Rm?+n ?? ?y y
G~ v (p) @Dk Dl ;;;;! Rm+n n f0g Rm+n
? ? y
? ? y
g~v (p) gv (p) @Dk ;;;;! Rm n f0g Rm @Dk ;;;;! Rm # (v p< x) ((( R(v p< x< t y) Rm+n = = Rm Rn ! Rm,
<(v p< x< t y) def= (}(v p< x) 0) 2 Rm+n
( R(v p< x< t y). 3 ( < : I P @Dk Dl ! Sm+n;1 C 1 - (x< t y) 2 @Dk Dl . 1 . m > k > 1, n > l > 1, Gkm++l!nkk+l | $ Gm+n k+l , ( ! (k + l)- !", ! !
Rm+n = Rmk+l!Rkn ! Rm $ k- ! . S: Q ! Gm+n k+l 0
. '$ ( = : Q ! S m+n;1 , ! % =(q) S(q) $ q 2 Q !
= Q ;! S m+n;1 Rm+n ;! Rm $ Q 0 2 Rm. ) S C 1 -$!, = C 1 -$! . !0 . 1 # 10 . 3# Vmk++ln!kk+1l+1 | ( T'( Vm+n k+l+1 #$ $ (k +l +1)- Rm+n, ( $ (R1 : : : Rk+l Rk+l+1 ) $ p(R1 ) : : : p(Rk+l), p: Rm+n ! Rm | (, k $ p(Rk+l+1 ) = 0. = !0 p~: Vmk++ln!kk+1l+1 ! Gkm++l!nkk+l -, (- (R1 : : : Rk+l Rk+l+1) # hR1 : : : Rk+l i, (- R1 : : : Rk+l. . !0 k Vmk++ln!kk+1l+1 , p~, ((( ( ) Gkm++l! n k+l !0 Vk+l k+l S n;l;1 . 1( ( S (Vmk++ln!kk+1l+1 )
!0 S (Vmk++ln!kk+1l+1 ) ??
yp~
0
# !0 ;;;;! Vmk++ln!kk+1l+1 ?
183
!
? yp~
:
# k Q ;;;;! Gkm++l! n k+l . S ( , S (Vmk++ln!kk+1l!+10) # , 0 !0 s: Q ! S (Vmk++ln!kk+1l+1 ): A !0 p^: Vmk++ln!kk+1l+1 ! Sm+n;1 -, (-- (R1 : : : Rk+l Rk+l+1) Rk+l+1 . = = : Q ! S m+n;1 = = p^ S! s. . =(q), q 2 Q, # S(q), p(=(q)) = 0. 2 = k S: I P Dk @Dl ! Gkm++l! n k+l (( (v p< s x< y) # S(v p< s x< y), (- HB v (p)(s x< y) #- # Hv (p)] (T(sxy) (Dk @Dl )). = S ( , (H0(p) HB 0(p)) ( F^ (p) Dk Dl Rm+n. 3 0 # 10. = : I P Dk @Dl ! Sm+n;1 C 1 - (s x< y) 2 Dk @Dl , =(v p< s x< y) S(v p< s x< y) = I P Dk @Dl ;! S m+n;1 Rm+n ;! Rm I P Dk @Dl 0 2 Rm. > 0 , ( v v0 , $ jv ; v0 j 6 , $ p 2 P (x< t y) 2 @Dk Dl V 2 T(xty) (@Dk Dl ), kV k = 1, - (. G g~v0 (p)(x) g~v (p)(x) #4 (0 # ( Jvv0 (p)(x) (3) Kvv0 (p)(x< t y)). G Kvv0 (p)(x< t y)G~ v0 (p)(x< t y) G~ v (p)(x< t y) #4 ( # ( - (4) ( Pvv0 (p)(x< t y)).
184
. .
kKvv (p)(x< t y)G~v (p)(x< t y) ; G~v (p)(x< t y)k < 20" : kG~ v(p)(x< t y) ; Kvv (p)(x< t y)G~v (p)(x< t y)k < " min 1 kKuu (p0 )(x0< t0 y0 )G~ u (p0 )(x0< t0 y0 )k < 20 kKuu (p0)(x0< t0 y0)k 0 6 u u0 6 1 p0 2 P (x0 < t0 y0 ) 2 @Dk Dl : k(~gv (p)(x) 0) ; (~gv (p)(x) 0)k < " minfk(~g (p0 )(x0) 0)k j 0 6 u 6 1 p0 2 P x0 2 @Dk g: < 20 u krV Gv (p)(x< t y) ; rV Gv (p)(x< t y)k < 10" : kGv(p)(x< t y) ; Gv (p)(x< t y)k < < ("=100)(1=(maxfkrV <(v0 p0< x0< t0 y0 )k j 0 6 v0 6 1 p0 2 P (x0< t0 y0 ) 2 @Dk Dl V 0 2 T(x t y ) (@Dk Dl ) kV 0 k = 1 )) 0
0
0
0
(5)
0
0
0
0
(6)
0
0
(7) (8)
0
0
(9) ( , 0 (). = , , Gv (p) F (p). 1 , ^ > 0 , ( v v0, $ jv ; v0 j 6 ^, $ p 2 P , (s x< y) 2 Dk @Dl VB 2 T(sxy) (Dk @Dl ), kVB k = 1, (# - (. G HB v0 (p)(s x< y) HB v (p)(s x< y) #4 ( # ( ( (30 ) Lvv0 (p)(s x< y)). kHB v(p)(s x< y) ; HB v0 (p)(s x< y)k < 10"^ minf1 kHB u(p0)(s0 x0< y0)k j 0 6 u 6 1 p0 2 P (s0 x0< y0 ) 2 Dk @Dl g: (40 ) krV Hv(p)(s x< y) ; rV Hv0 (p)(s x< y)k < 10"^ : (50 ) kHv(p)(s x< y) ; Hv0 (p)(s x< y)k < < (^"=100)(1=(maxfkrV =(v0 p0< s0 x0< y0 )k j 0 6 v0 6 1 p0 2 P (s0 x0< y0) 2 Dk @Dl VB 0 2 T(s x y ) (Dk @Dl ) kVB 0 k = 1g)) (60 ) ( , (). . ^ , Hv (p) F^ (p). , (5), (6) (7) , ( v 6 kG~ v(p)(x< t y) ; G~ 0(p)(x< t y)k < 10" (10) 0
0
0
0
0
0
0
kKv0(p)(x< t y) ; IdRm n k k(~g0(p)(x) 0)k = " k(~g (p)(x) 0)k = k(~gv (p)(x) 0) ; (~g0(p)(x) 0)k < 20 0 " kKv0(p)(x< t y) ; IdRm n k < 20 kPv0(p)(x< t y) ; IdRm n k kKv0(p)(x< t y)G~ 0(p)(x< t y)k = = kG~ v (p)(x< t y) ; Kv0(p)(x< t y)G~ 0(p)(x< t y)k < " kKv0(p)(x< t y)G~ 0(p)(x< t y)k < 20 kKv0(p)(x< t y)k 1 kPv0(p)(x< t y) ; IdRm n k < 20" kKv0(p)(x< t y)k kPv0(p)(x< t y)Kv0(p)(x< t y) ; Kv0(p)(x< t y)k < 20" :
185
+
+
+
+
3 0 (11) kPv0(p)(x< t y)Kv0(p)(x< t y) ; Id m+n k < 10" : , (40 ) , ( v 6 ^ kLv0(p)(s x< y) ; Id m+n k kHB 0(p)(s x< y)k = "^ kHB (p)(s x< y)k = kHB v (p)(s x< y) ; HB 0(p)(s x< y)k < 10 0 kLv0(p)(s x< y) ; Id m+n k < 10"^ : (70 ) - ( ( 2]. 2. ( s0, s0 < 1, ! % $ p 2 P s 2 s0 1], (x< t y) 2 @Dk Dl F (p)(s x< t y) ; F(p)(1 x< t y) 6 4 krsF(p)(1 x< t y)k: s0 ; 1 3 1( ( # # 0 . . 1 # 2. , (
F (p)(s x< t y) ; F(p)(1 x< t y) rsF(p)(1 x< t y) = slim !1 s;1 0 P , # s0 , s0 < 1, ( s 2 s0 1] F (p)(s x< t y) ; F(p)(1 x< t y) ; rsF (p)(1 x< t y) 6 1 krsF (p)(1 x< t y)k: s;1 3 3 # F (p)(s x< t y) ; F(p)(1 x< t y) 6 4 krsF(p)(1 x< t y)k: s;1 3
R
R R
186
. .
1( s0 6 s 6 1 F(p)(s x< t y) ; F(p)(1 x< t y) F(p)(s x< t y) ; F (p)(1 x< t y) 6 : s0 ; 1 s;1 G $ $ . 2 # 4 ( - 0 . 2 . ( t0, t0 < 1, ! % $ p 2 P t 2 t0 1], (s x< y) 2 Dk @Dl ^ ^ x< t y) ; F(p)(s x< 1 y) 6 4 kr F(p)(s F(p)(s x< 1 y)k: 3 t ^ t0 ; 1 = (# 2, s0 , 1=2 < s0 < 1, , ( $ v 6 , p 2 P, s 2 s0 1], (x< t y) 2 @Dk Dl , V 2 T(xty) (@Dk Dl ), kV k = 1, (# - (: F(p)(s x< t y) ; F (p)(1 x< t y) < 2krsF(p)(1 x< t y)k< (12) s0 ; 1 krsF (p)(s x< t y) ; rsF (p)(1 x< t y)k < 10" < (13) (14) krV F (p)(s x< t y) ; rV F(p)(1 x< t y)k < 10" < kF(p)(s x< t y) ; F (p)(1 x< t y)k < < ("=10)(1=(maxfkrV (Pv 0(p0 )(x0 < t0 y0 )Kv 0(p0 )(x0< t0 y0 ))k j 0 6 v0 6 1 p0 2 P (x0< t0 y0 ) 2 @Dk Dl V 0 2 T(x t y ) (@Dk Dl ) kV 0k = 1g)) (15) ( (15) , 0 (). = , # s0 . 3# s1 = s0 + (1=3)(1 ; s0 ). C , #( 20, # t0, 1=2 < t0 < 1, , ( $ v 6 ^, p 2 P , t 2 t0 1], (s x< y) 2 Dk @Dl , VB 2 T(sxy)(Dk @Dl ), kVB k =1, ( F(p)(s ^ ^ x< t y) ; F(p)(s x< 1 y) < 2kr F(p)(s x< 1 y)k< (80 ) t^ t0 ; 1 "^ < ^ ^ krtF(p)(s x< t y) ; rtF(p)(s x< 1 y)k < 10 (90 ) "^ < ^ ^ krV F(p)(s x< t y) ; rV F(p)(s x< 1 y)k < 10 (100) ^ ^ kF(p)(s x< t y) ; F(p)(s x< 1 y)k < < (^"=10)(1=(maxfkrV Lv 0 (p0)(s0 x0< y0 )k j 0 6 v0 6 1 p0 2 P (s0 x0< y0 ) 2 Dk @Dl VB 0 2 T(s x y ) (Dk @Dl ) kVB 0 k = 1g)) (110) ( , (). 0
0
0
0
0
0
0
0
0
0
0
0
187
= , t0 . 3# t1 = t0 + (1=3)(1 ; t0 ). 1 # C 1 - ' (s), (t), (s) (t) 0 1] , (# - (: (s) = 0 0 6 s 6 s1 < (16) (t) = 0 0 6 t 6 t1< (120) (1) = 1 0 (1) = 0< (17) (1) = 1 0 (1) = 0< (130) j(s)j 6 1 j 0(s)j < 1 ;2 s0 < (18) j(t)j 6 1 j0(t)j < 1 ;2 t0 < (140) (s) = 0 0 6 s 6 s0 < (19) (t) = 0 0 6 t 6 t0< (150) (1) = 0 (1) = 0< (20) (1) = 0(1) = 0< (160) j0(s)j > 10j 0(s)j s1 6 s 6 1< (21) 0 0 j (t)j > 10j (t)j t1 6 t 6 1< (170) j(s)j 6 20< (22) j(t)j 6 20: (180) ( M(v) = maxfkGv (p)(x< t y) ; G0(p)(x< t y)k j p 2 P (x< t y) 2 @Dk Dl g N(v) = maxfkHv (p)(s x< y) ; H0(p)(s x< y) j p 2 P (s x< y) 2 Dk @Dl g: , - Fv (p) = (Fv (p) fv (p)) F^v (p) = = (F^v (p) f^v (p)), p 2 P , ( v 6 v 6 ^ - : Fv (p)(s x< t y) = Id m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n )] (F (p)(s x< t y) ; F(p)(1 x< t y)) + (s)(Gv (p)(x< t y) ; G0(p)(x< t y)) + + (s)M(v)<(v p< x< t y) + F(p)(1 x< t y)< (23) fv (p)(s x) = Id m +(s)(Jv0 (p)(x) ; Id m)](f(p)(s x) ; f(p)(1 x)) + + (s)(gv (p)(x) ; g0(p)(x)) + (s)M(v)}(v p< x) + f(p)(1 x)< (24) F^v (p)(s x< t y) = Id m+n +(t)(Lv0 (p)(s x< y) ; Id m+n )] ^ (F^(p)(s x< t y) ; F(p)(s x< 1 y)) + (t)(Hv (p)(s x< y) ; H0(p)(s x< y)) + ^ + (t)N(v)=(v p< s x< y) + F(p)(s x< 1 y)< (190) f^v (p)(s x) = fv (p)(s x): (200)
R
R
R
R
R
R
188
. .
V , Fv (p) Dk Dl ;;;;! Rm+n ? ? ? ? y y
(25)
f v ( p) ;;;;! Rm F^v (p) Dk Dl ;;;;! Rm?+n ?
Dk ? y
? y :
^
(210)
f v ( p) Dk ;;;;! Rm 4 ( - : rsFv(p)(s x< t y) = 0(s)Pv0(p)(x< t y)Kv0(p)(x< t y) ; Id m+n] (F(p)(s x< t y) ; F(p)(1 x< t y)) + + Id m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n )] rsF(p)(s x< t y) + 0(s)(Gv (p)(x< t y) ; G0(p)(x< t y)) + + 0 (s)M(v)<(v p< x< t y)< rtF^v (p)(s x< t y) = 0(t)Lv0(p)(s x< y) ; Id m+n ] ^ (F^(p)(s x< t y) ; F(p)(s x< 1 y)) + + Id m+n +(t)(Lv0 (p)(s x< y) ; Id m+n )]rtF^ (p)(s x< t y) + + 0 (t)(Hv (p)(s x< y) ; H0(p)(s x< y)) + 0(t)N(v)=(v p< s x< y): 1( V 2 T(xty)(@Dk Dl ) rV Fv(p)(s x< t y) = (s)rV (Pv0(p)(x< t y)Kv0(p)(x< t y)) (F(p)(s x< t y) ; F (p)(1 x< t y)) + + Id m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n )] (rV F (p)(s x< t y) ; rV F(p)(1 x< t y)) + + (s)(rV Gv (p)(x< t y) ; rV G0(p)(x< t y)) + + (s)M(v)rV <(v p< x< t y) + rV F (p)(1 x< t y): 1( VB 2 T(sxy) (Dk @Dl ) rV F^v (p)(s x< t y) = (t)rV Lv0(p)(s x< y) ^ (F^(p)(s x< t y) ; F(p)(s x< 1 y)) + + Id m+n +(t)(Lv0(p)(s x< y) ; Id m+n )] ^ (rV F(p)(s x< t y) ; rV F^ (p)(s x< 1 y)) + + (t)(rV Hv (p)(s x< y) ; rV H0(p)(s x< y)) + ^ + (t)N(v)rV =(v p< s x< y) + rV F(p)(s x< 1 y):
R
R
R
R
R
R
R
(26)
(220)
R
R
(27)
R
(230)
189
1 , Fv (p) - : Fv (p)(s x< t y) ((( C 1 - (s x< t y)< (28) F0(p) = F(p)< (29) Fv (p)(1 x< t y) = Gv (p)(x< t y)< (30) rsFv (p)(1 x< t y) = G~v(p)(x< t y)< (31) Fv (p) ((( : (32) -$ , (28){(32) # (i) ( - , : E ! B | ). , (25) , fv (p) : fv (p)(s x) ((( C 1 - (s x)< (280) f0 (p) = f(p)< (290) fv (p)(1 x) = gv (p)(x)< (300) rsfv (p)(1 x) = g~v(p)(x): (310) 1] , fv (p) ((( . (320) (25), (28), (280 ), (32) (320 ) - # ( Fv : P ! E , 0 6 v 6 , ( ((( F (29), (290), (30), (300 ), (31) (310) -, Fv Gv . 3 # (28){(32). (28) , (, # Fv (p) (. ' (23)), ((-( C 1 - . (29) (( #- (23). (30) # (23), #( ( (17), (20), ' (t) (t), , G0(p)(x< t y) = F (p)(1 x< t y). (31) (26) # (17), (1), (20) rsF (p)(1 x< t y) = G~0(p)(x< t y). 1( # , Fv (p) ((( , #, rV Fv (p)(s x< t y) 6= 0, V 2 T(sxty)(Dk Dl ). V # V = Vs + V(xty) , V(xty) # ( V T(xty)(@Dk Dl ), Vs | ( V (-, # T(xty) (@Dk Dl ) T(sxty)(Dk Dl ). . rV Fv (p)(s x< t y) = srsFv (p)(s x< t y) + (xty)rW Fv(p)(s x< t y) (33) W = V(xty) =kV(xty)k, s (xty) | $ ( (. 3 0 s 6= 0, (xty) 6= 0. 3. ( ! B0 Rm+n, kB0k < " (" $ % $! ), !" % rW Fv (p)(s x< t y) = rW Gv (p)(x< t y) + B0:
190
. .
. 1 # 3. , (18) (15) k(s)rW (Pv0(p)(x< t y)Kv0(p)(x< t y)) (F(p)(s x< t y) ; F(p)(1 x< t y))k < 10" : , #( (18), (11) (14), kId m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n)] (rW F (p)(s x< t y) ; rW F(p)(1 x< t y))k < 2"10 : , (18) (8) , k(s)(rW Gv (p)(x< t y) ; rW G0(p)(x< t y))k < 10" : 1 , #( (22) (9), k(s)M(v)rW <(v p< x< t y)k < 102" , , , F(p)(1 x< t y) = G0 (p)(x< t y) (8) , krW F(p)(1 x< t y) ; rW Gv (p)(x< t y)k < 10" : G 3 (27) 0$ ( . 2 4. ( ! 0B, U U 0 Rm+n ! 0 0 X, X , ! % kB k < ", X > 10X , kU k = kU k = 1, ! U ! R(v p< x< t y)
rsFv (p)(s x< t y) = G~ v(p)(x< t y) + B + XU + X0U 0: . 1 # 4. , (26) , rsFv (p)(s x< t y) = 0(s)Pv0(p)(x< t y)Kv0(p)(x< t y) ; Id m+n] (F(p)(s x< t y) ; F(p)(1 x< t y)) + rsF(p)(1 x< t y) + + (s)Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n ]rsF(p)(1 x< t y) + + Id m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n )] (rsF(p)(s x< t y) ; rsF(p)(1 x< t y)) + + 0 (s)M~ (v p< x< t y)U 0 + 0 (s)M(v)U ~ p< x< t y) = kGv (p)(x< t y) ; G0 (p)(x< t y)k, U 0 = (Gv (p)(x< t y) ; M(v ~ p< x< t y), U = <(v p< x< t y). V , 0 6 M(v ~ p< x< t y) 6 ; G0(p)(x< t y))=M(v 6 M(v). , (18), (12), (1), (10) rsF(p)(1 x< t y) = G~ 0(p)(x< t y) , k 0(s)Pv0(p)(x< t y)Kv0(p)(x< t y) ; Id m+n] (F(p)(s x< t y) ; F(p)(1 x< t y))k < 104"
R
R
R
R
R
R
R
191
(10) , krsF (p)(1 x< t y) ; G~ v(p)(x< t y)k < 10" :
, #( (18), (1), (10) rs F(p)(1 x< t y) = G~ 0(p)(x< t y), k(s)Pv0(p)(x< t y)Kv0(p)(x< t y) ; Id m+n]rsF (p)(1 x< t y)k < 10"
R
(18), (11) (13) kId m+n +(s)(Pv0 (p)(x< t y)Kv0(p)(x< t y) ; Id m+n)] (rsF(p)(s x< t y) ; rsF(p)(1 x< t y))k < 102" :
R
R
> , #( (21) 4 (, ( 4. 2 - (. 1]). 5. A, B, U , U 0, A0 B0 | ! R0m+n, 0 X, X | !, $ ( $( : kB k kB k < < (1=10)0(A sA0 ) $ $" s, kB 0 k < (1=10)kA0k, kU k = 1, kU 0k = 1, X0 0> 10X0 0 0 ! U A A0. '$ ! A + B + + XU + X U A + B " . .#, #( , #, Fv (p) ((( . H (33), #, rsFv (p)(s x< t y) rW Fv(p)(s x< t y) . 3 , , 5, # 3 4 A = G~ v (p)(x< t y) A0 = rW Gv (p)(x< t y): 3 0 ( 5 (-(, #(, #( ". 3 4 ( #, < 1, #( F (p) F (p). 5 -- - ( v 6 2. 3 ( , -- - ( $ v 2 0 1]. 5 - # (i). 3 # . 1 , F^v (p)(s x< t y) ((( C 1 - (s x< t y)< (240) ^ F^0(p) = F(p)< (250) F^v (p)(s x< 1 y) = Hv (p)(s x< y)< (260) (270) rtF^v (p)(s x< 1 y) = HB v (p)(s x< y)< F^v (p) ((( . (280)
192
. .
, , (, # ' (190) ((-( C - , (240). (250) (( . , (190), #( (130) (160), , H0(p)(s x< y) = ^ = F(p)(s x< 1 y), # (260). ^ (270) (220 ), (130), (10), (160) rtF(p)(s x< 1 y) = B = H0(p)(s x< y). (280) # , rV F^v (p)(s x< t y) 6= 0 ( $ BV 2 T(sxty)(Dk Dl ). / 4 VB VB = VBt + VB(sxy) , VB(sxy) | ( VB T(sxy)(Dk @Dl ), VBt | ( VB (-, #- T(sxy) (Dk @Dl ) T(sxty) (Dk Dl ). . rV F^v(p)(s x< t y) = Bt rtF^v(p)(s x< t y) + B(sxy)rW F^v (p)(s x< t y) (290) WB = VB(sxy)=kVB(sxy) k, Bt B(sxy) | $ ( (,
$ -. 3 . ( ! BB0 Rm+n, kBB0k < "^, !" % rW F^v (p)(s x< t y) = rW Hv(p)(s x< y) + BB0 : . 1 # 30. , (140) (110) , "^ : ^ k(t)rW Lv0(p)(s x< y)(F^(p)(s x< t y) ; F(p)(s x< 1 y))k < 10 = kId m+n +(t)(Lv0(p)(s x< y) ; Id m+n)] 2^" ^ ^ (rW F(p)(s x< t y) ; rW F(p)(s x< 1 y))k < 10 (140 ), (70 ) (100). , #( (140) (50 ), k(t)(rW Hv(p)(s x< y) ; rW H0(p)(s x< y))k < 10"^ : , (180) (60) k(t)N(v)rW =(v p< s x< y)k < 102^" , , (50 ) F^ (p)(s x< 1 y) = H0(p)(s x< y) , krW F^ (p)(s x< 1 y) ; rW Hv(p)(s x< y)k < 10"^ : 3 0 (230 ) ( 30 . 2 4 . ( ! BB , UB , UB 0 Rm+n, ! BX, XB 0, ! % kBB k < "^, XB > 10XB 0, kUB k = kUB 0k = 1, ! UB ! S(v p< s x< y)
rtF^v(p)(s x< t y) = HB v (p)(s x< y) + BB + XB UB + XB 0UB 0: 1
0
R
R
0
193
. 1 # 40. , (220) , rtF^v(p)(s x< t y) = 0(t)Lv0(p)(s x< y) ; Id m+n] ^ ^ ^ (F(p)(s x< t y) ; F(p)(s x< 1 y)) + rtF(p)(s x< 1 y) + + (t)Lv0(p)(s x< y) ; Id m+n ]rtF^ (p)(s x< 1 y) + + Id m+n +(t)(Lv0 (p)(s x< y) ; Id m+n )] ^ ^ (rtF(p)(s x< t y) ; rtF(p)(s x< 1 y)) + 0 0 0 ~ B B + (t)N(v p< s x< y)U + (t)N(v)U
R
R
R
R
~ p< s x< y) = kHv (p)(s x< y) ; H0(p)(s x< y)k N(v ~ p< s x< y) UB 0 = (Hv (p)(s x< y) ; H0(p)(s x< y))=N(v UB = =(v p< s x< y): ~ p< s x< y) 6 N(v). = , 0 6 N(v ^ , #( (140 ), (80 ), (10 ), (40) rt F(p)(s x< 1 y) = = HB 0(p)(s x< y), , 4^" ^ k0(t)Lv0(p)(s x< y) ; Id m+n ](F(p)(s x< t y) ; F^ (p)(s x< 1 y))k < 10 (40) "^ : ^ krtF(p)(s x< 1 y) ; HB v (p)(s x< y)k < 10 , (140), (10 ), (40 ) , "^ ^ k(t)Lv0(p)(s x< y) ; Id m+n]rtF(p)(s x< 1 y)k < 10 (140), (70) (90 ) kId m+n +(t)(Lv0(p)(s x< y) ; Id m+n)] 2^" : ^ ^ (rtF(p)(s x< t y) ; rtF(p)(s x< 1 y))k < 10 G (170) $ 4 . 2 1 , F^v (p) ((( . 1( 0 #, rtF^v (p)(s x< t y) rW F^v (p)(s x< t y) (. (290)), 5, # 30 40 - ( A = HB v (p)(s x< y) A0 = rW Hv (p)(s x< y) B U 0 = UB 0 X = X B X0 = XB 0: B B 0 = BB 0 U = U B = B , #( "^, #(, ( 5 (-(.
R
R
R
R
194
. .
> , #( (210), (240 ){(280 ), , ^ : E ! C ((( . (210), (240), (280) - # ( F^v : P ! E , 0 6 v 6 ^, ( F^ ( (250)), (260) (270) -, F^v Hv . O ^ < 1, (, #( F^^(p) F^(p), -- - ( v 6 2^. 3 ( , -- - F^v (p) ( $ v 2 0 1]. , , (i) #- . 3 (ii) - (. (ii)0. ~ : C ! D (m > k, n > l)
.
1 # 0 ( #- ( # # (i), ( ( ( : E ! B. O , 0 C D # # (, ($, $ 0 B E . 3 0 , ( # , 4# 0 . 3# ( Gv : P ! D, 0 6 v 6 1, P | #
0, Gv (p) - 4 Gv (p) = ((Gv (p) gv(p)) (G~ v(p) g~v (p)) GB v(p)): 1 , # v = 0 Gv B H : P ! C H(p) = ((H(p) f(p)) H(p)) p 2 P . . G0 = ~ H. G , ~ ((( , , ( Hv : P ! C 0 6 v 6 1 Hv (p) = ((Hv(p) fv (p)) HB v(p)) p 2 P - ( Gv , . . ~ Hv = Gv , v = 0 H0 = H: 5 Hv (p) fv (p) Hv # ( Fv (p) fv (p) # (i). 3 - HB v (p). 7 -- $ $ , (- 0 Gv (p) Gv ( p P : (qGv (p)) (T(Rn))
\
(Gv(p)) (T(Rm+n)) ? l Id? l k k @D @D @D @D
T(@Dk
@Dl )
- q (T(Rn)) q- T(Rn) \ (Gv (p)) T(Rm+n) ?+n q- ?n Gv (p) m R R !
!
195
q: Rm+n = Rm Rn ! Rn ( # (, ( # $ ((-( (, ( ( ( (Gv (p))! '' ( Gv (p). 7 # (
T(@Dk @Dl ) ! @Dk @Dl (qGv (p)) (T(Rn)) ! @Dk @Dl @Dk @Dl ( l ; 1), 0 # 0$ , ((-( (qGv (p)) (T(Rn)) ! @Dk @Dl : , Pv (p)(@Dk @Dl ) ! @Dk @Dl # -. H , 0 . > , # # . C # Pv (p)(Dk @Dl ) ! Dk @Dl # (qHv (p)) (T(Rn)) ! Dk @Dl -
T(Dk @Dl ) ! Dk @Dl (qHv (p)) (T(Rn)) ! Dk @Dl : . Hv (p) Gv (p) ~ , ( Pv (p)(Dk @Dl ) ! Dk @Dl @Dk @Dl Pv (p)(@Dk @Dl ) ! @Dk @Dl : 1 , ( Gv (p) Hv (p) 0 6 v 6 1, v, # ( P(p)(I @Dk @Dl ) ! I @Dk @Dl P(p)(I Dk @Dl ) ! I Dk @Dl ( $ fvg @Dk @Dl fvg Dk @Dl - Pv (p)(@Dk @Dl ) ! @Dk @Dl Pv (p)(Dk @Dl ) ! Dk @Dl .
196
. .
> , P(p)(Dk @Dl 0@Dk@Dl I @Dk @Dl ) ! Dk @Dl 0@Dk@Dl I @Dk @Dl (( ( P0 (p)(Dk @Dl ) ! Dk @Dl P(p)(I @Dk @Dl ) ! I @Dk @Dl P0 (p)(@Dk @Dl ) ! @Dk @Dl : = , ((( ( P(p)(I Dk @Dl ) ! I Dk @Dl Dk @Dl f0g@Dk@Dl I @Dk @Dl . 3 -
v (p) m+n @Dk @Dl G;! R n f0g Rm+n ;! Rm @Dk @Dl 0 2 Rm, 0 #, GB v (p)(Z), Z 2 @Dk @Dl , ( (qGv (p)) (T(Rn)) ! @Dk @Dl Z. 1 , GB v (p)(Z) # Z Gv (p) (=2 (Gv (p)) TZ (@Dk @Dl )). 3 0 , -- Pv (p)(@Dk @Dl ) ! @Dk @Dl GB v (p) # 0 (. = 2B (( GB v (p), 0 6 v 6 1, v, G(p) ( P(p)(I @Dk @Dl ) ! I @Dk @Dl : C (, - - HB v (p), 0 6 v 6 1, # ( Pv (p)(Dk @Dl ) ! Dk @Dl : B ( = 2 ( HB v (p) v, H(p) P(p)(I Dk @Dl ) ! I Dk @Dl : B GB 0 (p), HB 0(p) G 0 (p) G(p) B ( HB 0(p) G(p) P(p)(Dk @Dl 0@Dk@Dl I @Dk @Dl ) ! Dk @Dl 0@Dk@Dl I @Dk @Dl : . I Dk @Dl ' ( Dk @Dl f0g@Dk@Dl I @Dk @Dl , B # ( H(p), B HB 0(p) G 0 (p) G(p) ( - - HB v (p). > 0 4 ( # . 2
!
197
1] S. Smale. The classication of immersions of spheres in Euclidean spaces // Ann. of Math. | 1959. | Vol. 69. | P. 327{344. 2] S. Smale. Regular curves on Riemannian manifolds // Trans. Amer. Math. Soc. | 1958. | Vol. 87. | P. 492{512. 3] S. Smale. A classication of immersions of two-sphere // Trans. Amer. Math. Soc. | 1958. | Vol. 90. | P. 281{290. ' ( ) 1997 .
.
. . .
517.977
: , , , !" , # .
$ "% &" ' "( '%( " ( &** ( " , ** ( # " ' " # * . & * " * ( ( ' "& # ' & " ' #. "& * ( " '% " # % ! . %"" "&.
Abstract R. Hildebrand, Classication of phase portraits of optimal syntheses, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 199{233.
The paper is devoted to the investigation of controllable oscillating systems of ordinary di1erential equations a2ne in scalar nonsymmetric control in a neighborhood of a singular point of focus or center type. Integrands in value functionals are quadratic in phase coordinates. We classify such systems in case of general position by arising optimal syntheses. The existence of optimal synthesis is proved and its structure is described.
1.
5]. !. H = H (u x ) | & , ( u 2 U R. ) * ! @H _ x_ = @H @ = ; @x : , 2001, 7, 3 1, . 199{233. c 2001 !, "# $% &
200
.
. x | / & X , | 01 , !(
T X . u !( 2 : u(x ) = argmax H (u x ): u2U
40 , &
H u 2 0 U . 5 u . 6 /, && / !, & * && u: H (u x ) = H0(x ) + uH1(x ). 8 , H1 0
. !(
! 2 ! . 6 , 2/ 2 . *2 2 0 q, 2 0 ! @ d 2q @H (u x ) 6= 0 @ d k @H (u x ) 0 8 k 6 2q ; 1: @u dt @u @u dt @u 5 :; 10] , 2 1 2 0 2 , ! . 5
, 2 0 / 2 0 1 2 , ! . < & 14]. > 7]. 5 :; , 2 0 u 0 0 / U . 6 2 2 0 , 0 0 U . 4 && ! && / !( . 4 & Z1 J = (F (x) + uG(x)) dt ! min (1) 0
x(t) = x~: (2) x_ = A(x) + B (x)u@ x 2 U R2 u 2 0 1] t!lim +1 5 2 0 & x~ 2 R2. U x~ . ,
u(t) | & t, A B &
F G 0 C 3. A
x~ 2 & : 2 @A @x (~x)
-01
201
2 A(~x) = 0. B U 0 . * 0
5 &
F x~ & , . . & F 1 x~ !. > G 0 x~. B
x(t) / U . B !
!( / ! & , Z1 x_ = y I = F (x) dt ! inf 0
y_ = ;x + u u 2 0 1]: 5 2 (0 0), 1 0 2 . . , 2 0 x y 0, u 0, 0 / . 1. C & 2 F (x) 1. D ,
, 201 . 1 . : a 0 1 (;1 0). < ! 1 0. : b 0 , 0 1, (1 0). < 2 0 @ , & u = 1 (0 0). : a b ! ! 2 . 6 2 , 0 / a b,
1. 6 2 / 0. y
a
6
y
u=0
u=0
M u=1
6
a
x
u=1 b
$. 1
-
6
x
9 b
202
.
2. C & , . . F (x) = 12 x2 . < 3]. F ,
!( . 6 (0 0) . D a ! 1 0. < / (0 0) . D 0 b ! 0 1. !( 1
! a, ! 0 ( . . 1 ). C 0 2 . 5 2 ,
! . 0 , / u = 0, 0 !. 5 2 , ;
, 2 . 5 ! ! 2 . 6 2 0 , (1), (2) 2( 0 & A B F G !( / 1 / . 5 I. G U , (
!( . H ! ! 1 0 2 0 , !( x~. ( , x~.
! 2 0 , ! x~. 5 II. G U , (
!( . H ! ! , 0 1
2, ! x~. 5
2 ! x~ 2 , ; 0 2 2 0 x~ !
. 4 ! ! 2 . 5 III. ( . ( / , / & J ;1. < 0, (1) 2 1 +1. 6 2 2 ! & ! / (1), (2). 4 & A B F G, / 0
5 ! x~. 5 &
! & 2( 0
. &
2! 0 2 , , 2 1 0 . D U x~. U , 0 / 5 !( / & 0 2 , ! . 5
, x~ & A B F G.
2.
203
C 0 1 (A B F G) & C 3, 1 / U 0 x~ 2 R2. ; A B | , F G | &
! !( : i) A(~x) = 0, ii) 2 A x~ | & , . . 1 tr @A (~x)2 ; det @A (~x) < 0 2 @x @x iii) B (~x) 6= 0, iv) F (~x) = G(~x) = 0, v) rF (~x) = 0, tr | . 2 ; 0 1 S . 0 2 ( . :0 ((A B F G) U ), ( 1 & (A B F G), 1 / U 0 !( / i){v), U U 0 , (1), (2) U . B , ( U x~, &
A B F G A0 B 0 F 0 G0 !. 5 ((A B F G) U ) ((A0 B 0 F 0 G0) U ) ! 0 (1), (2). , 0 U . 5 2 , 0 1 x~ & A B F G, !( / i){v), 1 (1), (2) , !( !2/ / !, !( ! U . 6 2 0 1 & (A B F G) 0 S !( (1), (2). 6 ; (1), (2). < S /
! 2
/ 2 . 6 , ; 2 2 ; ,
0 / !( 2 ; . 2 1 & (A B F G)
S , ( 2 ; . : 11] 2 !(
2 ; / : x_ = A(x) + uB (x) x_ 0 = A0 (x0) + uB 0 (x0) u 2 U
204
.
1 / V , V 0 , ! 2 ; , ( && & D : V ! V 0 , (
!2/ / / u(t). <
, && & D A A0 B B 0 , . . A0 (D(x)) = D (A(x)) B 0 (D(x)) = D (B (x)). . D 2 && D. 6 , A, B , A0, B 0 ! i){iii), 2 x~ 2! x~0 = D(~x). 82 2
, &
F G 0 /, . . F 0(D(x)) = F (x), G0(D(x)) = G(x). 6 2 2( 2 , x~ (0 0), 1 0 (! /(
. 2 && & C 4 U x~, !( / x~ 0, K. D 2 K D = @x @x | && D. . x0 = D(x) | &
. 5 1 (A B F G) 2 & 0 @x0 B (x) 0 0 A0(x0 (x)) = @x A ( x ) B ( x ( x )) = @x @x F 0(x0(x)) = F (x) G0 (x0(x)) = G(x): 2 L ! / / @i @j . < 2 L : U ! R2 C 3 , !( / x~: (~x) = 0, @x @xi j &
A B F G &
A0 B 0 F 0 G0 !( & : A0 = A B 0 = B F 0 = F + h Ai G0 = G + h B i: 0 , (1), (2) ; 2 L. * ; / 2 !( . C && ! ! Z k k X X x_ = f0 (x) + fi (x)ui I (x(t)) = 0(x) + i(x)ui dt ! inf 0
i=1
x 2 Rn
i=1
f0 fi 2 Rn
ui 2 R 0 i 2 R: : 13], & I 0 & (x), fi , i = 0 : : : k, . ; / fi i . Z I (x(t)) = (fi ) = i i = 0 : : : k: , & 0
Z Z k X = (f0 ) + (fi )ui dt: i=1
205
G & , . . = d!, &
. 6 , (
!, 1 & 0 . ; 2 && 0 ! & . G ;&& && & = h dxi,
Z Z (F 0 + G0u) dt = ((F + Gu) + h A + Bui) dt = Z Z Z Z = (F + Gu) dt + h dxi = (F + Gu) dt + : D / & , & F 0 G0 & F G. 1. 6 B ( , h B i = ;G. 2 G0 = 0, F 0 = F + h Ai, 0 (1) u. D 2( 0 C 2
0 L. 2. * 2 K L !
2 & T X . (1 2 0 S , ( / ; . H 2
2 ; , 8]. < 2 0 dt 0 ! & !, (! x. 2 N ! 0 / / & (x) C 3 U , R | ! 0 / ( / R+. ; 2 N r 2 R 1 (A B F G) !( 2 : A0 = A B 0 = B F 0 = F G0 = G@ A0 = A B 0 = B F 0 = rF G0 = rG: B ; (x) 2 N ! 2 , 0 ! && dt 0 (1x) . 5 && dx = (A + uB ) dt 0 (F + uG) dt ! , 2 N 2 ; 8]. D , 0 & F G 0 ! r 2 R . H, 2 K, L, N, R 2 ; . 2 G , 01 ! K, L, N, R. ) 0 G 0 2 . H G. 2 K, L,
206
.
N, R G1, G2, G3, G4. B
, 2 0 G , ! 20 . < G !, , 2 0 S
, , 20 U R2 R
. . 8 gi 2 Gi gj 2 Gj i j = 1 : : : 4 9 gi0 2 Gi gj0 2 Gj : gi gj = gj0 gi0 . B !2/ D 2 K, r 2 R, 2 N, 2 L
D r = r D, r = r, = D = 0 D 0 = D@ 0 T D = 0 D 0 = @x @x ( D)@ r = 00 r 00 = r : .
. @x @x | && && & D. ! , L N G. , !2/ D 2 K, r 2 R, 2 N, 2 L 0 00 2 L, 0 2 N, D = D 0 , D = D 0, r = r 00 . 2 . g2G g = g1 g2 g3 g4 gi 2 Gi i = 1 : : : 4 D ! 0 S 2( 0 , 0 / 5 & A B F G x~ ! . 6 ; !( 1 . . B 1 (A B F G) (A0 B 0 F 0 G0) 2 S
, @A (~x) = @A0 (~x) B (~x) = B 0 (~x) @ 2 F (~x) = @ 2 F 0 (~x) @G (~x) = @G0 (~x): @x @x @x2 @x2 @x @x ! p S : 2F @A @ @G p : (A B F G) 7! @x (~x) B (~x) @x2 (~x) @x (~x) 2 R11: 2 2 0 S 11- P . 40 P R11 ii), iii). B
2 @2F @A @x (~x) a, B (~x) b, @x2 (~x) f , - @G @x (~x) g. . G S P . (A B F G) 2 S , g 2 G g(A B F G) = = (A0 B 0 F 0 G0). D0 , p(A0 B 0 F 0 G0) = (a0 b0 f 0 g0 ) 0
-
,
,
.
.
207
p(A B F G) = (a b f g). 6 ! (a0 b0 f 0 g0)
, g ; 2!( / K, L, N, R. g = D 2 K. 2 M = @x @x (~x) 2 GL(2 R) && D x~. D , (a b f g) 2! !( 2 : a0 = MaM ;1 b0 = Mb f 0 = (M ;1)T fM ;1 g0 = gM ;1 : g = 2 L. ) A(~x) = 0, (~x) = 0 @ , @x T @ @ @ (~x): 0 0 0 a = a b = b f = f + @x (~x) a + @x (~x) a g0 = g + bT @x g = (x) 2 N. 5 a0 = (~x)a b0 = (~x)b f 0 = (~x)f g0 = (~x)g: , , g = r 2 R. 5 a0 = a b0 = b f 0 = rf g0 = rg: 5 G 0 ; / , 2( (a0 b0 f 0 g0) 0 (a b f g). R . 2 . , (a0 b0 f 0 g0) (a b f g). ; g 2 G D r ; K, L, N, R. 5 2 , ; g , @ 2 @x @x (~x), @x (~x), (~x), r. 6 @ @x / . 5 2 , G P 1 G GL(11). 2 ; GE . D 0 P ;&& & G=GE . 9- R . GE 0 . G 2 ;
2 , 2 ! / . : 0 !, ; . 6 11] 2/ , x_ = a0 (x) + a1 (x)u 2 ; x . & a1 adh (a0 )a1 ] = 0, h > 0, ad0 (a0 )a1 = a1 , adn+1(a0 )a1 = a0 adn(a0 )a1 ] n > 0. T ; / a0 a1, B A B ]] = 0 2/ . / 2 R && & /. 6 2(
; . 6 2] 2 ; x_ = A(x) 2 A. 6 ; 2 , 2 ;
2 , . B && & , ( !( 2 ! 0
0
208
.
; , C 1. D ,
/ && & ; 1 . H G=GE P 2
/ 2 . 1. q = (a b f g) 2 P g 2 G=GE g(q) = q^ = (^a ^b f^ g^) 2 P
1 1 ^ ^a = ;1 0 @ b = 0 @ f^12 = 0 f^112 + f^222 2 f0 1g@ g^ = 0: (3) a B . 4
. 2 0 / ; q^ 2 P , !( / (3), Q. 40 ; g 2 G=GE , q = (a b f g) q^ = (^a ^b f^ g^),
ptr a 1 1 ^ det a a^ = ;1 0 b = 0 f^12 = 0 g^ = 0 f^11 = bT fb ; 2gab (4) ^f22 = det a(bT (a;1 )T fa;1 b ; 2ga;1 b): (5) 6 f^11 = f^22 = 0 q^ 0 0 0 Q. 6 f^112 + f^222 6= 0 f^112 + f^222 /( ; R. 2 0 1 0 , 0 q 2 P ( q^ 2 Q, 0( 2 q G=GE . D 2 , q^ . ; ( 2 0 Q 0 2 P . G f^11 = f^22 = 0, / 0 (F + uG) dt & (1) & ! . 6 ;
2. 4 (1), (2), / f^112 + f^222 6= 0. !( 1 & (A B F G) / 2( 0
. 6 1 !( 2 : Q = fq^ 2 Q j f^112 + f^222 = 1g P = fq 2 P j 9 g 2 G=GE : g(q) 2 Q g: . Q R S 1 . B , q 2 Q a^11 f^11 f^22, f^112 + f^222 = 1.
.
, " "
!
-
# $ "
%
.
.
209
! S 1 , ii) a^)2 < 4 () ^a 2 (;2 2) a^211 = (tr = R: 2 11 det a^
D , ptrdeta a G. < / / A(x) & x~. 2
:
= ptr a : det a 1 0 S 2 , sin = f^11 ; cos = f^22 : 6
!( . 6
1 , 2 /( & & 0 2 & ! G , & F 0 C 2. ff^^1122 = ; tg 0 (4) (5) 0 q x~ &
F 0 B @A ;1 det @A @x ( @x ) B .
&
A1 B2 ; A2B1 , . . , A B . ) ! 2 G. 6 2! ! 0 P G=GE . 5
(1), (2) 2( 0 ; .
3. 6 (1), (2) ( & u(t), !( & (1). D , 2 , & J 2 2 . 6 ;
( . 6 ; , !( 2 2 inf J . 4 0 , 2 inf J ; ( ! H
l, (F + uG) dt . l
1. ! T > 0, " x 2 U %" u : 0 T ] ! 0 1], " " x_ (t) = A(x(t)) + B (x(t))u (t) x(0) = x
(6)
210
.
& "
U
x(T ) = x(0) = x
TR
(F + u G) dt < 0
.
0
.
(1), (2) " III, . . ! . !+ " ,
xn(t)
"
fun(t)g
fTn g,
"
x0 2 U
!
"+ -
xn(0) = x0
Z1 (F (xn(t)) + un(t)G(xn(t))) dt = ;1 nlim !1 0
xn(t) = x~ 8 t > Tn 6 2 6] B 1 & ! &/ . ; &
x~ & -/( / A B . D , U !(
0 . 1. TV x1 2 U 0 x 2U T < TV 2 1. 5 (6) H l, 2/ T . (F + u G) dt < 0. l fun(t)g !( 2 . 0 ! 1 ( , (! x0 x . ; . . n 21 l, u . D , x x~, . . 2 . 6 0 1 ; 0 0 . 6
Tn 0 . . Tn 2! !(! & H ! !. H
(F + u G) dt < 0, , &TRn l (F + uG) dt 2! 2!(! & ! ! TRn 0 lim n!1 0 (F + uG) dt = ;1. B t > Tn u(t) = 0. ; & 1 x~ F (~x) = G(~x) = 0 +R1 1 & . ; nlim (F + uG) dt = ;1. R 1 !1 0 . 2 6 2 0 . 2. x0 ( U) fun(t)g fTng xn(t)
.
-! "
& "
"
" "
"
, " "
" "- .
" , -
!
, "+ !+ "
"
xn(0) = x0
ZTn xn (Tn ) = x~ nlim (F (xn(t)) + un(t) G(xn (t))) dt = ;1: !1 0
! " , % "
l
S1
& "
!
H
l
u (t) l
% " & . "
l
211
(F + uG) dt < 0
, "-
+ "
.
. 62 n 2 N,
ZTn V (F + un G) dt < ; sup jF (x)j + sup jG(x)j T: x2U
0
x2U
. TV | 0 1. C !(
. D x0 un Tn / x~. . T , 0 1
TV, ( x~ x0 . H
TZn +T ZTn (F + uG) dt 6 (F + uG) dt + T sup jF (x)j + sup jG(x)j < 0: 0
0
x2U
x2U
l0 2( !( . D 0 0 , & S 1 , 0 , ( . :0 ; / 0 2 H , /(
Tn + T . 5 (F + uG) dt < 0, / l H 1 l, (F + uG) dt < 0. l R 2 . 2 0
4.
D &
(1), (2) 0 S / 2( 0 . 6 2 ; 2 ! (1), (2), !( / 1 & (A B F G), p(A B F G) / 0 0 Q . < 0 2 2 , & R S 1
2 (;2 2), 2 0 2). 6 2( 0 ; / / . R 1 , / ( .
212
.
1. & , (1), (2), $ " (A B F G) 2 S , p(A B F G) & & 3 ). inf J = ;1, Q . , " , 2 ( 2 ) 0 2 2 %"
! .
B 2 !( . 3. p(A B F G) 2 Q A B AB C3 AB x~ Ox2 x~ ; + ; AB AB AB AB x2 < 0 + A B AB x2 > 0 A B
"
.
& ", " +
" , "
+ "
" / "
"
" "
. /
. /
.
. .-
"
.
-
.
. 6 A B , dAB = A1 B2 ; A2B1 / !. <, ,
x~. 6 dAB x~: rdAB (~x) = ;(rA2 )B1 (~x) = (1 0):
: AB &
dAB . H &
, 0 C 3 x~ Ox2 . 1 0 ! @A @x2 (~x) > 0. 2 1. C ! AB !, ! &
F . AB x2 0 &
F ! AB 5 dF . 6 @ x~. dx @x2 2 AB , ;
d2F (0) = @ 2 F (~x) = ; cos < 0: dx22 @x22 , AB
F = ; cos2 x22 + O(x32 ). C ; 2 ! x~ xV AB
hABi u = ; hBBi 2 0 1]. 5 x_ = A + uB 2 . 6
&
F + uG & J xV. ) u AB
O(x2), & G | O(x22 ). ; xV
F + uG = ; cos2 x22 + O(x32 ) < 0. D ; , 1 . ; l 0 xV.
1 . 2 1 2 0 , / inf J = ;1. B ; 0 2 2 Q , !(
= ~( ) 2 ( 23 ). > ~ 1 ; !( :
213
q q p ~)2p+2 ctg ~ 2 2 ~ ~ (1 ; ctg ) + ctg + ctg ~ p1 2 +arcctg (1pctg 2 ctg ~ 4 4 q q = 0 ;e (1 ; ctg ~)2 + 2 ctg ~ ; ctg ~
6= 0@ q ~ ctg ~ 2 ~ ; ; arcctg ctgq ; 1 = 0 = 0: ctg ; 1 2 ctg ~ . arcctg (0 ). 40 , ; ! ~ ! ! & ! . 2. (1), (2) (A B F G) 2 S p(A B F G) Q 2 (~( ) 23 ] inf J = ;1 ;
;
;
& ,
%"
,
$ "
,
. , " ,
.
& & -
,
! .
B ; 2
2W1 , 8. 0 1. !( ! 0 , / (
, !(! I II,
. 3. (1), (2) (A B F G) 2 S p(A B F G) Q 2 ( 2 ) x~ & ,
%"
,
$ "
, .
. , " ,
"
& & -
" -
! ! " . 0
& ", | " "
u=1
"
u=0 x~
. 2 " & " "
, " "& & ". -! -
" "
x~
;
, !
" . 0 " " -
& " & "
) 4. (A B F G) 2 S Q x~
x~ (
. .
2
.
(1), (2) p(A B F G) 2 ( ~( ))
& ,
%"
.
, " ,
" "
.
" "
u=1
u=0 x~
" " "
x~
& & -
.
u=0
u=1
0 -
, |
2 " & -
, " &
x~ u=0 u=1
" "
" " "
$ "
! ! " .
" "
".
,
,
, ,
.
3
, " +
u=1
,
" " . , " +
u=0
, " %"
214
.
(
&
. .
2
)
.
x2 6 u=1
-Y y
6 3 u =-1 3 x2
-
-
-
x1
x1
u=0
u=0 $. 2
B 3 4 !( / /. B 3 ! / 2/ 0 , 4 0/ 20 F/ 0 . Q 2 ( . . 3): Q1 = ( ) 2 < < Q2 = f( ) j < < ~( )g h Q3 = ( ) 2 0 2 (~( ) 2) : S 2W Qi Q 2( 0 Q. i :0 q 2 Q 2 G=GE 0 P . 2 Pi P 2W 2 q 2 Qi , i = 1 2 3, Si S , i = 1 2 3, | 2 p;1Pi]. 40 Si , / 2W S . H 1{4 !( . 5. (1), (2) (A B F G) 2 S (A B F G) 2 S1 U u=1 u=0 x~ U 0 1 & ,
%"
,
$ "
.
4
, "
! -
! . 5 " " & , "! "
.
, " +
! " -
-
5 " , " "
"
x~
. 0 " " +-
& " & " & , "
x~
, ".
x~
. 2
215
2
6
1
Q3
0
Q1
Q2
Q3
-1
-2
2
0
-
2
3 2
$. 3 4
(A B F G) 2 S2
u=0
"
.
u=1 U
U u=1
, "
! . 5 " " , "! "
,
0
1
x~
!
u=0
!
-
" " " " ,
, " & ".
x~
. -
0 " ,
1
"
" ,
0
" %" & . 3 "
x~
"& "! " " .
x~ J ;1 2 6 / / / (1), (2) 0 S 2
0 / 5 & A B F G x~. D 2( 0 . 3. 2 Qi ! ; . <
!(! . 1 0
T X , !( 01 &
x. B ;
x~ !- . D ; ( (1 0 4
(A B F G) 2 S3
, "
, % %"
.
! -
216
.
, x~ - .
; / . < 2
! ! ! ; 2 Q.
5. #$ %
2 01 , !(
T X & ! X X . Z | . 8 DZ 2 ! hZ ri ! Z . !( . . D Rn | 0 , f w : D ! R | 20 . F , f w, 2 / f = (w), 1 c > 0, / s 2 D
jf (s)j < cjw(s)j. F 0 , f w, 2 / f = X(w), a > b > 0, / s 2 D
aw(s) 6 f (s) 6 bw(s) w 6 0@ aw(s) > f (s) > bw(s) w > 0: p : &
x1 x2 & r = x21 + x22 0 0 , ! ! / & . > (1), (2) && !, . . H = H0 + uH1. 5]
( u(x ) = argmax H (u x ) = argmax(H0(x ) + uH1(x )) = 0 H1 < 0 1 H1 > 0 u u2#01] H0 = ;F + h Ai H1 = ;G + h B i: (7) 6 1 ! . H 2 1 2. X _ = ; @H = r(F + uG) ; ( rA + rB u): (8) @x 4 , 0 R0 & !. B
&
F , ( 0 . ) & H = 0. ; 0 ;uH1 H0. D &
H1 /! ! T X . 2 M.
217
2. M | % . M+ M;, " T X fx j dAB (x) > 0g fx j dAB (x) < 0g . f(x ) j x = 0 1 = 0 2 < 0g f(x ) j x = 0 1 = 0 2 > 0g. 7 "
| " (x = 0 = 0). . 6 T X H0 H1. ) (7) , dAB ;&& !. 6 ;
B2 F ; A2 G + B2 H0 ; A2 H1 0+F = 1 = d 1 ;BB21 ;AA12 H H1 + G dAB ;B1 F + A1 G ; B1 H0 + A1 H1 AB (9)
fH0 = 0 H1 = 0g, !( M, ;
= d 1 ;BB2 FF;+AA2 GG : (10) , $ +
AB
1
1
) (10) 1 M+ M; . /
T X 2! fx = 0 1 = 0 2 6 0g fx = 0 1 = 0 2 > 0g . 6 dAB = 0 2 ;&& (7) , . . / : A1(G + H1) ; B1 (F + H0) = A1 (G + H1) ; B1 (F ; uH1) = 0: (11) A G H1 = 0, F = B11 (7). 6 x~ . 40 (7) x~ fx = 0 1 = 0g. ! 2 . 0 , / / AB . 6 3 ! AB 0 x2, / &
F AB x~
dxdF2 = 0, d2 F2 = @ 2F2 = ; cos . ! F = ; 1 cos x2 + (r3 ). 2 2 dx2 @x2 3 A G 3 1 , B1 = (r ). 5 2 ( 2 2 ),
cos < 0. , F ; AB11G = X(x22 ) 6= 0. ) 0 2 . 2 6 2
, 0( M. ( ( . 10]) 2/ 0 . &&
0 @H @u 0 1 . G &
H = H0 + uH1,
ux ) = 0 adh H , ad0 H = H , adn+1 H = fH adn H g. ( dtd )h @H (@u 1 1 H 1 H 1 H 1 H 8 f g 2 2 . B H_ 1
1 (7)
218
.
@B @A @G @F A @x ; B @x ; A @x + B @x : (12) H ! fx = 0 1 = 0g 2 M+ , M; . x = 0 1 = 0. A B G F / @A i = 2 = 0. / x~ (3) (12), H_ 1 = h ; @x 1 @F = 1 1 = dtd @x B && (12)
t
= 0, H 1 2 = u @@xF21 = u sin . H
sin 6= 0, ; 2 2 0 x~ 1. . u H1 1 = 0. ! u 0, , x x~, 0. 2 2 M+ , M; . 6 0 2
dAB 6= 0. (9) (12). &&
; A ; uB 2 2 _ dAB H1 = A1 + uB1 A B ] H1 +
B F ; A G 2 2 + ;B F + A G A B ] ; dAB DA G + dAB DB F 1 1 H1 . 2 C , A + uB | Q. D ,
;Q2 A B ] = d_ ; d tr @Q : AB AB @x Q1 6 @Q _ _ dAB H1 = dAB ; dAB tr @x H1 + C: (13) D M+ M;
H1 = 0. , ; / 2 / C , 2 0 C = 0. H_ 1 = dAB 3. C C2 ; C = 21 sin x21 + cos x22 + (x) (14) @ 2 2 = (r) = (r3 ) r = (r2 ) @x 2 ( 32 ) (14) C < 0 U n fx~g 2 ( 2 ) (14) C x~ C1 x~ x~ x~ C2 X H_ 1 = fH H1g = fH0 H1g =
8"
%
,
,
%" .
4
, "
. 4 &
" .
,
0
+ "!+ "
"
, "! "
.
,
%
+ "
& "
"-
"
" . 0 " -
"& % " &
+. 0 & "
.
219
B . 2 &
C , 0(! i- , Ci , i = 1 : : : 4. 0 ! 3 2 / M+ , M; 2 0 ( 2 ( 2 ). C ; . 6 0 2 Ci ! ^Ci M, i = 1 : : : 4. 6 ! ! H1 1 . (13) dAB && C , t. ) , H1 = 0 H_ 1 = dAB
! _AB _ d @Q d _ 1 + C_ ; C d2_AB = 1 H1 = dt d ; tr @x H1 + ddAB H_ 1 ; tr @Q H @x d d AB
AB
AB
AB
C_ : (15) + = ; dC tr @Q AB @x dAB D / ^Ci
C = 0, (15) (14) / H1 1 = Dd A C + u Dd B C = d 1 A1 sin x1 + A2 cos x2 + (r3 )+ u(sin x1 + (r2 ))]: AB AB AB :;&& u , 2 0
2 1. ) H1 1 = 0 u = ; DDBA CC = ; x1 ; x2 + + ctg x2 + (r2 ). H , 0 / 2 0 1]. 60 (14) !, ; ctg = ; xx221 + (r) u = ; x12 (x21 + x1x2 + x22) + (r2 ) < 1. 6 2 (;2 2)
, u > 0 x2 < 0. 5 2 , 2 0 ! ^C 3 ^C 4 . D
C 3 & 2 0 x~, C 4 | . 2 0 / 2 .
6. ' ) (11) 1 & ! H1 AB . C , ; AG e1 i = hBF ; AG V i : H1 = ;A1 GQ+ B1 F = hBFhQ (16) e1 i hA + uB V i 1 6 BF ; AG Q = A + uB e1 = (1 0) 0 !2 V , Q. 5 2 , (13) / AB ! 2 . C ; 2 u = 0. u = 0 2 (16) V = x? = (;x2 x1), H1
i H1(t) = ;G(t) + F (t) hhBx Ax i (t) + dAB (t)f (t). ; 0 (13), ?
?
220
.
0 / !( ! & ! f (t): rF i f_ + hr Aif + hx?F Ai2 hx? A ; Dx Ai + hhx x? Ai = 0:
2 s(t),
Zt ; Rt hrAi d ; x B + x B 2 1 1 2 H1(t) = ;G + F ;x A + x A + dAB ; e s( ) d ; 2 1 1 2 0
1 ;G + F ;x2B1 + x1B2 (0) : dAB (0) ;x2 A1 + x1A2 6 . H
dtd (;x2 A1 + x1 A2) = hr Ai(;x2A1 + x1A2 ) + Rt ; hrAi d
;e
0
tR2 hrAi d t
e1 = ((;;xx22 AA11 ++xx11 AA22 )()(tt21)) + (r). hx rF i = 2F + (r3 ). 5 2 , s = 2?F
: , A ; Dx A = (r2 ), hx Ai + (r). ,
+ (r3 )
Zt 1 H1(t) = ;x A + x A ;Fx2 + dAB ; 2F d ; ;dFx2 (0) + (r2 ): (17) 2 1 1 2 AB 0
C T X H0: X x_ = A _ = rF ; rA : (18)
(2), (8), u = 0. C ! ^ (t) (18), 0(! &
H0. 1
+ ; = X ^ AB AB t+ t; . 6 H1(t+ ), H1 (t; ). H0 = 0 (11), H1 = ;G + BA11F = ; cos2 x2 + (x22 ). . H1(t+ ) > 0 H1(t; ) < 0 2 6 1 U (dAB ), = ; xx12 . !, Ox2 . .& / . C 0 K = f(x1 x2) 2 U j ; xx12 2 ]g fx~g. G U , 0 K AB x~.
x~ 0 K 0 K+ = f(x1 x2) 2 K j dAB (x1 x2) > 0g, K; = f(x1 x2) 2 K j dAB (x1 x2) < 0g. D 0 / K+ K; (x1 x2) $ (dAB ) . x~
(dAB ) f0g ]. D , K x1 x2 &
dAB 0 C 3. ,
.
221
0 ! 2 0 K+ K; 2! 2 M+ M; T X . D ; / / (10) ! &
x , /, &
dAB . 4. (dAB ) f0g ] C2 . C 0 2
(10). : &
/ dAB 0 C 3 0 K
! (r2 ) = (d2AB ). ) 0 Y . 2 C 0 KV 2 M, (
0 K+ K; M (x = 0 = 0). 0 ! 4 1 & (dAB ) C 2. C X x_ = A + B _ = r(F + G) ; ( r(A + B )) (19) 8"
"
%" "
" & $ .
H0 + H1. u = 1 (2), (8). H
(19), /( 0 KV t = 0. <
0 &
H0 + H1 t. 6 && && / / x ; / ! & C 2 / dAB t. , H1 & dAB t ; / 0 0 C 2. & ! H~ 1(dAB t) !( 2 : H~ 1 = Ht1 t 6= 0 H~ 1 = H_ 1 t = 0. 6 , H1 = 0 t = 0,
Y & H~ 1 0 C 1 . 2 ] . 6 &
H~ 1 (dAB t) = (0 0). < / x . 6 ; H~ 1 = H_ 1 = 0. H
@ H~ 1 = lim H_ 1 (d 0) = lim C (d 0) = 1 (sin + cos 2) dAB !0 d2AB AB @dAB dAB !0 dAB AB 2 (20) ~ ~ @ H1 = 0 @ H1 = 1 H1 = 1 sin 6= 0: (21) @ @t 2 1 2 &
(dAB ) = (0 ) ( & t (dAB ), t (0 ) = 0 H~ 1(dAB t (dAB )) 0. < & 0 C 1. G1 ! @t 2 @t (22) @dAB (0 ) = ;1 ; ctg @ (0 ) = 0:
222
.
6 & t 0 K
t (dAB ) = dAB (;1 ; ctg 2 ) + (dAB ) (23) 1 2 C , dAB ! dAB ! 0.
7. ) 3
2 ( 2 ). 0 T X , !(
2 (2), (8). 6 2 2 ( 2/ 0 ^C 3 ^C 4 0 M.
C 3 / & 2 0 x~, C 4 | . 2 , / 2 0 ^C 3 . 0 , 2/ (2), (8), /( / 2 0 ^C 3 , 2 . x2 6 + 10 C 1 AB
z
z
u=1
;
3
-
z - >o I
x-1
o
C 3 $. 4
u=0 ; AB
C
, /( ^C 3 u = 1. H/
&! ! 2 0 C 3 ; , /( x~ ( . . 4). 0 ,
, /( / ^C 3 u = 0, ! ! U . ) (18) ! 0
u = 0. <! &
H1 (18) &
H0 (17).
223
p | ^C 3 , ^ (t) | (18), /( p t = 0. = X ^ ;
2 x~, x~ | & . ; t < 0. 2 AB t; , + AB | t+ . H H1 & !
^ . C = 0 C_ . 6 , C_ > 0, dAB < 0 (15), H1 1(0) = dAB p, H1 1(0) < 0, ( " > 0, H1(t) < 0 / t 2 (;" 0). tV = supft < 0 j H1 (t) > 0g. 6 6 tV > t+ . 5. t 2 t; 0) H1(t) < 0 . 0 , ( t0 2 (t; 0), H1(t0 ) > 0. F 2( 0 , H1(t0 ) = 0 H1 (t) < 0 / t 2 (t0 0). D C (t0) < 0, dAB (t0) < 0, C > 0. . 6 ; H_ 1(t0 ) = dAB . 2 5 2 ,
tV < t; . H1( tV) = 0 (17)
F = 12 (sin x21 ; cos x22) + (r3 ) = X(r2 ), dxAB2 (0) = X(1) dAB = x1 + (r2 ), 0 = ;X(r;2 )f;x2( tV)X(r2 )+ x1 ( tV)X(r2 )g + (r2 ) =) x2 ( Vt ) = X(1)x1 ( Vt ): (24) 5 2 , ( tV) 0 . (t)
^ C 1 C 4 t1 , t4 . 6. t 2 t1 t4] H1(t) = ;X(r) . D ^C 4
x2 = ;X(r), x1 = X(r). (17), H1(t4 ) = ;&(1r2 ) fX(r3 ) + X(r)X(r2 ) + X(r2 )]g + (r2 ) = ;X(r). t 2 t1 t4). C (13). 2 ;&& { = H1 { . Q = A, t t4]
dAB 2 _ 1 +(r ) ; tr @A = x2 + (r) = (1). D ; (13)
= ;A2 BdAB @x x1
2 , 0 H1(t)
{ R t { d Zt4 ; R dAB d C H1(t) = e t4 dAB ; e t4 d + H ( t ) 1 4 : dAB +
+
.
.
t
D t t4]
C > 0, ; / 2/ 0
(r). 5 H1(t4 ) = ;X(r), 2 ,
H1(t), ! ;X(r). 2 7. C ( Vt ) = ;X(r2 ) .
224
.
. 6 (24) ( Vt ) 0 Vt < t4 . Rt1 5 0 6 , tV < t1 , H_ 1(t) dt = H1(t1) = ; X(r). t' D H_ 1 = (r), ; t1 ; Vt = X(1). , C (t1 ) = 0, , (24)
C_ = X(r2 ) tV t1]. ! Rt1 C ( tV) = ; C_ (t) dt = ; X(r2 ). 2 't
8. 4 " p & ^C 3 , V) " " 10 " C 2, ! " ( t & " "! " x ~
C 3 ) 0 8
2 / && / . &
0 7. 5 (24). dx2 9. 10 x ! x~ dx1 . D , dx2 10 , dx 1 dx2 = x2 + (r) = X(1): (25) dx1 x1 , ! 10 0 x1 . Hd xx12 x2 1 x2 2 (25), dx1 = ( dx dx1 ; x1 ) x1 = (1). < , x1 & x1 , ,
x1 ! 0. D dx2 0
. 2 (25) dx 1 : C 3 , 10 x~ U 2 ( . . 4). 4 , 2 u = 0 0
/ 10 2
. 0 , 2 ! u = 1. C 2 /
; . p | 2 0 ^C 3 , ^ (t) | (19), /( p t = 0. 2 ! X ^
^ &! . H H1 & ! t
^ . 10. H1(t) > 0 t<0 ( ) U 2 t 0] . 0 , ( t0 < 0, H1(t0 ) 6 0 ( ) 0 U / 2 t0 0]. D ^C 3 C_ > 0, C_ < 0, dAB < 0. ; 2
H1 = H_ 1 = 0, H1 1 = dAB 2( 0 , H1(t0 ) = 0 H1(t) > 0 / "
.
"
/
, "
& "
.
+ "+
+
.
225
C < 0. t 2 (t0 0). D C ((t0)) > 0, dAB ((t0 )) < 0, ; H_ 1(t0 ) = dAB . 2 6 0 2 ! 10
^10 M+ . B , p | ^10 (x = 0 = 0), ^ (t) | (19), ^ (0) = p. 2 ! X ^ . H H1 & ! t
^ . 11. H1(t) > 0 t<0 ( ) U 2 t 0] . 6 1 dAB ( . : ! 10 0 dAB , ddxdAB 1 = = 1 + (x1 ). 5 2 , 10 1 & = (dAB ) C 2. D 2 , d ddAB , . .
(1). = dinf (dAB ), = sup (dAB ). 6 0 8 AB dAB . !, 1 ! 6. : 10 0 0 K+ . &
t 10 : t (dAB ) = t (dAB (dAB )). C ! ddtAB = = @d@tAB + @t@ d ddAB . H
d ddAB = (1), ; (22) d lim!0 ddtAB = AB = ; 1 ; ctg (d lim!0 (dAB ))2 . ( 0 AB 9. 6 0 3 7 &
C ! 10
: C2 = 1 ;sin + cos lim x222 = 1 ;sin + cos lim 2 (dAB ) < 0. B lim 2 2 x1 !0 x1 x1 !0 x1 dAB !0 dt 1 ; 2 sin < 0, d lim!0 dAB > 0. , t (dAB ) > 0 AB dAB > 0. D , / (19), /( / 0 KV t = 0, & H1(t) / 0 t . D H_ 1 < 0 ^10, ; ( " > 0, H1(t) > 0 t 2 (;" 0). 2 U . ) 0 11 . 2 4 U & ! (x), !(! ! :; 10] 2 0 0 10 11 | . 12. (x) U C 3 ; 10 x~ C 3 ; 10 . C ! & , (! C 3 , 10 x~. 6 0 3 9 0 PC 1 / x~. 6 (dAB ) 1 & (dAB ). D , /
, "
+ "+
& "
+
.
8"
"
%% , " "+
/ "+
,
-
"
+ .
.
226
.
& (dAB ) 0 C 2 dAB 6= 0, dAB = 0
. C ^ M, (
^C 3 , ^10
(x = 0 = 0). : ^ 1 (10) 0 4 . C & : d (dAB ) = (dAB (dAB )). H
d dd AB = @d@ AB + @ lim!0 @ @ ddAB . 6 dAB @ = 0, d = (1)
lim d = lim @ . < / d dAB dAB !0 d dAB dAB !0 @dAB ( !, ( ! d lim (dAB ),
AB !0 !. 4 , ^ | PC 1 / (x = = 0). H & (x) 1 (18), (19), /( ^ . B && && / /. 2 6 0 12 & (x) N T X . 13. (x) U !(x) C1 . 0 0 N , . . 1 & dx. C , N && . 6 && & dx / , / & @t@ . @v@ | . X @ @ @ @ d(dx) @t @v = (d ^ dx ) @t @v = X 1 @ @x @ @x = 2 @t @v ; @v @t = X @H @x @ @H 1 @H 1 = ;2 + @v @ = ; 2 @v = 0 @x @v N 0 H . D & d(dx) ! !2 , N . , ( & ! 2 C 2, d! = dx. 6 0 12 & (x)
!i , i = 1 2 3, 1 / 2/, 0 / 0 C 3 , ; , 10 . / , xlim ! = 0. 6 (x) &
!i 2! !x ~ i & ! ! 2 C 1(U ). 2 > !(x) U ! F . ; . > / 2 0 x~ 2 , 1 x_ 2 = (x2 ). 5 . 8"
"
.
8. ) 2 4
227
B & / 2 & ~. ~ : (;2 2) ! ( 32 ) !( : q q p ~)2p+2 ctg ~ (1 ; ctg ~)2 + 2 ctg ~ + ctg ~ p1 2 +arcctg (1pctg 2 ctg ~ 4 4 q ;e = 0 q 2 2 ~ ~ ~ (1 ; ctg ) + ctg ; ctg
6= 0@ q ~ ctg ~ 2 ~ ; ; arcctg ctgq ; 1 = 0 = 0: ctg ; 1 2 ctg ~ ;
;
;
. arcctg (0 ). ) ! ~ ! ! & ! . 4 0 ,
2 1,
4 0 T X & ! F . 2 ( 23 ). 5 0 3
C = ;X(r2 ). | 0 . !, ! 6. 2 0 K; , (! , K0 . 0 . 6 0 2 0 K0
K^ 0 2 M; . K0 K^ 0 dAB0 = dAB , 0 = . H 0 , ; ! 0 / K0 K^ 0. C
(19), /( t = 0 0 K^ 0. 0 &
H0 + H1 . ;
t, / | dAB0 0 . ! &
t
H1(dAB0 0 t (dAB0 0 )) 0. ; 0 f(dAB0 0 t (dAB0 0 ))g 2 / K^ 1 2
M. H ; /. p0 | 0 K0 , !( dAB0 0 .
p^0 2 K^ 0 | p0 M; , ^ (t) | (19), /( t = 0 p^0. 6 & dAB p^1 = ^ (t ) dAB0 0 . 2 / dAB1 1. 1 (23)
Rt Rt dAB1 = dAB0 + d_AB dt = dAB0 + (1 + (r)) dt = ; dAB0 (ctg 02) + (dAB0 0), 0 0 ! dAB ! 0. B
,
2 C 1 , dAB 0 0
Zt x2(t ) = x2(0) + x_ 2 dt = x2 (0) + (r2 ):
0
(26)
228
.
,
(0) + (r2 ) tg + o(1): 1 = ; xx2((tt )) = ; ;d x2(ctg = ; (27) 2 0 ) + o(r) 0 1 AB0 6 , tg > 0, t = X(r), dAB1 = X(r), 1 = ;X(1). , K1 / K^ 1 &! 0 C > 0, ; H1(t) > 0 . D / K^ 0
H_ 1 = dAB 0 / t 2 (0 t ). ^ (t) | (18), /( p^1 2 K^ 1 t = 0. Vt = C < 0, ; tV > 0. = inf ft > 0 j H1(t) > 0g. 6 p^1
H_ 1 = dAB 1 2 ! X ^
^ &! . 5 2 x~ . ; ; t; > 0 1 ! AB , + t+ > t; | ! AB . 6 6
tV < t+ . 14. Vt > t; B 0 5. H 0 14 , p^2 = ^ ( tV) 0 2
M; . 2 1 ! ( tV) p2 . 4 tV 1 H1( tV) = 0. > H1(t) (17). 0 2 ! Fx2( tV) + (r4 ) = dAB ( tV)(r2 ). F = x1 (r) ; 21 cos x22 + (r3 ), dAB = x1 + (r2 ), x32( tV) + (r4 ) = x1( tV)(r2 ). ! ; xx21 (( 't't )) = (1). dAB2 = dAB (x1( tV) x2( tV)), 2 = ; xx21 (( tt'')) . 4 20 P : (dAB0 0) 7! (dAB2 2 ) K^ 0 M; M;. D , dAB2 = X(dAB0 ). , lim d = 0. dAB !0 AB2 .
0
. 2 & P & f0g ]. >
dAB1 dAB2 0 1 . > ! 1(dAB0 0 ) 0 0 1 (0 0) = ; tg0 (27). , & 2 (dAB1 1) 0 0 . ! 0 . Z, 20 P && dAB0 < 0. AB2 2 ) , @@ ((ddAB 0 0 ) 0 0! f0g ]. ; @dAB2 = dAB2 + (r) = X(1), @2 = C (p0 ) + (r) = X(1). @dAB0 dAB0 @0 C (p2 ) 5 2 , & 2 , f0g ], && !( & 0. 6 (27) lim 1(0 0 ) = ;1, !0 0
229
lim (0 0) = 0. H (17) (dAB1 ! 0) () (dAB2 ! 0). !, 0 !1 1 d2 > 0, lim (d ) = ;1, lim (d ) = +1. d 1 1 !;1 2 AB1 1 1 !+1 2 AB1 1 5 2 ,
lim (0 0) = 2 max lim 2 (0 0) = ;1: 0 !+1 2 0 !0 . 2 max | ( . . 5). 2 6 2 6
2 max
2 max 2
q q
q
-
0 1 0 0 2
0
-
0
$. 5
4 0 , ( 0 20 0 7! 2 (0 0). 6 ; (0 ) | 0 20 P. 2 ,
1 T X . G & &
2 (0 0) 0 & 2 = 0 ( . . 5 ), 2 = (0 0) . G
0 , 2 = 2(0 0 ) > 0 , ( ! 2 = (0 0) ( . . 5 ). 6 , / / 0 ( . C & ! A2(x). G1 x~ (3) ;e1 = (;1 0). ; &
A2 2 ! C 3, /(! x~ !(! Ox2 . s | 0 , 0( ; . C ! x_ = A, /(! s t = 0. 6 (3) 2 x~ . H ! x2 & ! t. H
x_ 2(0) = A2 (s) = 0, x2 (0) = x2min . t+ = minft > 0 j A2 ((t)) = 0g, t; = maxft < 0 j A2((t)) = 0g, x2max = min(x2(t+ ) x2(t; )). , x2max > 0 > x2min , 0 x^2 2 (x2min x2max) ( ! + 2 (0 t+ ), ; 2 (t; 0), x2( + ) = x2 ( ; ) = x^2. 6 1 2 x+1 = x1(( + )), x;1 = x1(( ; )).
230
.
R + C I (^x2 ) = F ((t)) dt
& ! x^2. H
I (x2min ) = 0. x^2
;
dI = d + F ( + ) ; d ; F ( ;) = F ( + ) ; F ( ; ) = dx^2 dx^2 dx^2 A2 A2 + ; 2 2 2 3 2 3 = 12 sin (x1 ) ;+ cos x2^2 + (r ) ; sin (x1 ) ;; cos x2^2 + (r ) : ;x1 + (r ) ;x1 + (r ) dI = D &
A2
F =X(r2), , x^ !lim 2 x2min dx^2 dI = +1. x^2 = 0
dI = 1 sin (x; ; x+ + (r2 )) = = x^ !lim 1 1 dx^2 2 2 x2max dx^2 dI = ; X(r) < 0. dx^2 & I (^x2 )
(x2min 0) , (0 x2max) | . 6 ;
ddIx^2 = AF2 ( + ) ; AF2 ( ; ) = 0.
0/ 2 x^ (28) ; tg = x^;2 +2 + (r): x1 x1 2 I (^x2 ) Imin . 0 , Imin , (
. . Imin = ;X(r2 ) 1 . I (^x2 ) = Imin = ;X(r2 ). W l, H 0 2 , 2 , (F + uG) dt < 0. C ! l x_ = A + B , /(! ( + ). ; u = 1 X(r) ;
, 1 ! (Vx1 xV2). 6 x_ 2 = (r)
xV2 = x^2 + (r2 ), , xV1 = x;1 + (r2 ). 6 (Vx1 xV2) ! u = 0 1
( + ). H
; 4
I
(F + uG) dt =
('xZ1 x'2 )
(xZ1 x^2) ;
(F + G) dt +
.
(x+1 x^2 ) F dx + Z F dt = A2 2
('x1 x'2 ) (x1 x^2) 2 2 = X(r)(r ) + (r )(r) + Imin = ;X(r2 ) < 0: 2 2 4 Imin = +X(r ), ! -
(x+1 x^2)
15.
,
;
4 . I (^x2 ) = Imin = +X(r2 ). 0 , ( 0 , 2 = 2 (0 0 ) > 0 .
.
231
. , ( + ) ( ; ) 0
x_ = A. ; ; / x~
(x;1 )2 + x^22 = X((x+1 )2 + x^22 ). : 2 ; (28), ; xx^+12 = X(1). ; ( + ) 0 ! 0 K0 !, 1 ! ; . 0 p0 = ( + ) , 20 P ( + ). H,
x1 (p0) = x+1 , x2(p0 ) = x^2. H (26) x2(p1 ) = x^2 + (r2 ), (27) (28) | x1(p1 ) = x;1 + o(r). 5 2 , 0 p1, ( ; )
: d(p1 ( ; )) = o(r). o() / s ! x~, s &
A2 x~. C
(t) (t) x_ = A, /( t = ; p1 ( ; ) . :;&&
/ ; , ; (t) (t) t 2 ( ; + ) 1 (1 ! , !(! o(r). 5 2 ,
F , / : R+ R+ F ((t)) dt = F ((t)) dt + o(r2 ) = Imin + o(r2 ) = X(r2 ). : ,
0 = AF2 (( + )) ; AF2 (( ; )) = AF2 (( + )) ; AF2 (p1) + o(r). D A2 = ;dAB + (r2 ), ; dFxAB2 (( + )) ; dFxAB2 (p1 ) = o(r2 ). ; (17), !(
& ! H1(t)
, H1( + ) = Z + 1 Fx 2 + + = ;A x + A x ;F x^2( ) + dAB ( ) ; 2F dt + d (p1 ) + (r2 ) = 1 2 2 1 AB = ; X(1r2 ) f;2dAB (( + ))(X(r2 ) + o(r2 ))g + (r2 ) = ;X(r): ! ( + ) . . 2 = ( tV) H1(2 ) = 0. H
H1( + ) = R2 H_ 1 R2 (r) + =; d = ; _ &(1) d = ; X(r). ! 2 = ( ) + X(1). ( + ) ( + ) C 0 p0 = ( + ) ( + )
o(r), ; ( + ) = 0 + o(1). ! 2 = 0 + X(1). D , 0 2 s ! x~ 0 , 2 . , 2 = 2(0 0 ) > 0 . 5 2 , ( ! 0 1 , 0 2 2(0 0 ) = 0 , 1 0 < 0 < 0 2 ( . . 5). 5 (0 01 ) (0 02 ) | 0 20 P. .& 0 = 01 . C dAB2 (dAB0 01 ) & ! dAB0 . H/ 01 < 0 , , ;
;
;
232
.
( c < 1, ;c dAB0 > ;dAB2 . 0 = 02 ;dAB0 < ; dAB2 , c < 1. d2AB0 @dAB2 = @2 = 6 (0 0 1)
@ > c12 > 1, @d lim d 0 AB0 dAB0 !0 2AB2 @d d AB2 6 c < 1, AB2 = 0. 6 (0 2 ) | @2 < 1, = d lim!0 dAB 0 @0 @0 0 AB0 @dAB2 > 1. !, , , (0 ) =
2 0 0 @dAB0 1 2
, 0 0 . 5 2 , 0 (0 0 1) 2 . 2 / 2 / 2 0 , ., , 12]. ) f0g ]. D 0 & = (dAB ) C 1 . 5 2 , 2 && ! !, ! 20 P !(! ! 0 1. 2 ; ! 01, 1 M; | ^01. G p^0 2 ! ^01 , p^1 2 ! ! ^10 , p^2 | ^01. 10 ^10 ! 1 0. 5
^ (18), (19), !( ^01 ^10 , 2! T X
2 (2), (8). 0 PC 1 / / ^01 ^10 . D , , ; 2 ! (x = 0 = 0), N T X . 5 x~ !- ;
. B 0 N &
F ! 0 13. 5 2 , , N , . , 4, !. ) 0 15 . 2 B 2 4 !(
0 . 2 ( ~( )) . 2 (~( ) 23 ] Imin = ;X(r2 ) 2 Imin = +X(r ) B Imin . 6 0 . 5 2 ,
2 (0 0) = 0
0 , !( 1. 5 . 4. . 02 , x~ - . 4
.
,
. 4
,
233
Y 2 & 4. H. . (, ; 2.
+
1] . . . | .: , 1975. 2] #$ %. . 1 -' ( ) ( ) *( '+ '( ,- ,**' // / - 0 $ ,1. | 1977. | 2. 11, 3 1. | 4. 57{58. 3] 8 . ., 8 9. /., : %. *),'' ,') $ *'0 $ ** ,') ( 0 + // 2 . | 2000. 4] ='$ 9. 4. . | .: >*. 0 . 0.-)'. '., 1961. 5] ='$ 9. 4., #'*- . >., >) 0 %. ., @ A. /. ')'+* ' ,') ( ,**. | .: , 1969. 6] Davydov A. A. Qualitative theory of Control Systems. | Providence, RI, 1991. | Translations of Mathematical Monographs, vol. 141. 7] Fuller A. T. Constant-ratio trajectories in optimal control systems // Internat. J. Control. | 1993. | Vol. 58, no. 6. | P. 1409{1435. 8] Jakubczyk B., Respondek W. Feedback classiGcation of analytic control systems in the plane // Analysis of controlled dynamical systems (Lyon, 1990). | P. 263{273N Progr. Systems Control Theory, vol. 8. | Boston: BirkhOauser Boston, 1991. 9] Kelley H. J. A second variation test for singular extremals // AIAA J. 2. | 1964. | No. 8. | P. 1380{1382. 10] Kelley H. J., Kopp R. E., Moyer M. G. Singular extremals // Topics in optimization. | N.Y.: Acad. Press, 1967. | P. 63{101. 11] Krener A. J. Approximate linearization by state feedback and coordinate change // Systems Control Lett. | 1984. | Vol. 5, no. 3. | P. 181{185. 12] Nitecki Z. Di^erentiable dynamics. | Cambridge: M.I.T. Press, 1971. 13] Zelikin M. I. On the singular arcs // Problems of Control and Information Theory. | 1985. | Vol. 14, no. 2. 14] Zelikin M. I., Borisov V. F. Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering. | Boston: BirkhOauser, 1994. ' ( 2000 .
. .
. . . 512.5+511
: , , , .
! " # $ " & " ' # # " $ $ ( # ) . * "+ & # $ , ,- " , " .
Abstract A. A. Chilikov, Taylor power series of algebraic functions over elds of positive characteristics, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 235{256. In this work we show algorithmical solvability for the problem of calculation of the Taylor power series for an algebraic function over a 5eld of positive characteristics. An e6cient algorithm for construction of a 5nite automaton solving this problem is given.
1. , , , . !
! , " , | ! $ . % & !
' , "
$ . ! , , ! $ . ( ! ) )
! ' ( ) ! $ ! $ !). %
& ! " , , . , 2001, 7, 7 1, . 235{256. c 2001 !, "# $% &
236
. .
0 , $ $ $ )
!$ (" , $), "$ $ $ ! $ ! . 1 1$. 1$ !$ , " , ! ! ! C . , & ! !)$ p. 2 & 3 ! & 1$, , ! , " "$ & ! ! . 4 ! ! : ! , "$ x = ! (1) x | !$ , = (1 : : : n) | , x | & ! #11 #nn , ! | !$ & !. 8 , & ! & , ! . 9 "$ 1$ $ ! !)$ . 3 ) ! , " (1) ! !)$ . ( ! " ! ! p. ! )$ $ (1), ! ! $ . : " ! " " !3 $
)$ $ ! ! p. ;, ! $ ! ! ! $.
2. ! " ( F | !, char F = p > 0. R F=#1 : : : #n], R | ! F==#1 : : : #n]]. ?
0
i6s X i=0
ai ti = 0
(2)
ai R. @ | t(#1 : : : #n). A$ !$ x R 1$ t, (2). B ! , !
2
2
0
237
1 1 : : : n, #nn . ? x !P # ! #1
x # , x F. B, ! F ! ) L! , x = !. 2.1. ! F L! | .
$ $ !3$ . 2
2
2
3. $ " )$ !$, ! , ! !!. D !
$ !!. 3.1. ) " ! F ,
" 1) x y F "(x + y) = "(x) + "(y) ( ), 2) x y F "(xp y) = x"(y) (p- $ ). 3.1. x F 0, , ! 0. 8
2
8
2
2
.
) ; $ . ) B ! ! & x0 ! $ !!. ?
! F $ ! !! F , " & xp . ( !$
F x0 + Z. ( x = f p x0 + z, z Z. ! ) "(x) = f. G ), , $. :$ 2) ) ! . 1 , " !!$ ! x0 1. G . 0
0
2
4. ! ; 3 2.1 ! ! ! p. 4.1. 2 !!, ) ! 3 $ ! !. ! $ $ &$ , ! $, ! ) ) $, !. ( F = Zp. 9 $ ) !!.
238
. .
4.1. ( k | p. 3 ) ": k k, " : 1) "(x + y) = "(x) + "(y) ( ), 2) "(xp y) = x"(y) (p- ). 2
!! R = = F=#1 : : : #n]P R = F==#1 : : : #n]]. ( x = x # . ( 0 + p , 0 = (10 : : : n0) | , "$ ! p- $ ! " & . 2 & X X X x = x 0 +p # 0 #p = # 0 x 0+p #p : !
0
0
0
0
0
0
0
0
! " !!: X 0 X "(x) = "(# ) x 0+p # 0
0
0
0
, ! "(# ) a 0 , X X "(x) = a 0 ) x 0+p # : 0
0
0
0
0
1 , !! R R ! ! a 0 # 0 . 4.2. (! " , " " (# 0 ) = 0 , 3 ( 0 | ,). B , !! R R ! $$ !! ) ( & R R ). 1!
= (1 : : : n) ! & p- $ ! : i = ik : : :i0. (1j : : : nj ) j . 4 ) ! $ ! k : : : 0 p- ! . ?
! x(k), !3 " : x(0) = " 0 (x), x(k) = " 0 (x(k 1)) ! k > 1. ; ) , & x x ! x(k). G , x = ! ) !! , , ) & !!. D ) ! )$. I 3 3
, ! ) $ ! ) ) !!. :$ ) ! ). 0
0
0
;
239
B | "3 ) 4.3. ( k | (R R ), ! X | ) & k. "- ) X 3 ) , )" X !$ ) !!. 2 $ "- X X. 4.1. x | " # # $%& ! , "- x . 0
f
.
g
& ) B$ ,
x . x0 = x x1 : : : xN . 2! X xi = "p (xi)# : f g
2 ) xi !! ! " (xi) = xj ( i) j = j( i). 1 , X xi = aij xpj f
g
j P ! aij = # . 2 & ! ! j =j ( i) i i p p2 : : : pN 2 1 , ) ! ) xp1 : : : xpN N2 N2 xp1 : : : xpN . 2 & ) ! : 2 x(i) = A(i) x(N) : i i D x(i) !$ xp1 : : : xpN . % $$ , N 2 + 1 N N $ , . .
" & k , , X (k)
k aij = 0 k ! i j. D a(ijk) | & A(k) . ! X N2 X k 0 = k a(ijk)xpj = k xpi : jk k j
;
1 , ! , x ( ) & "-). ) , ! x '(x) =
s X i=0
ai xi = 0
240
. .
' | $ x. 1 x ) s 1 X
x = i xpi (3) ;
i=0
! . () &. ?
$ $ x 1 xp x2p : : : x(s 1)p. L s + 1 !$ x $ . 1 , ! (3) ! 0 : : : s 1. !, = 0. (!) ! ! !! . ( s 1 X 0 = " ( i )xi : ;
;
6
;
i=0
, ! s, " ( i ) . ; i ! i. ;$ ! . B ! (3). &
" ! s 1 X
k xk = kixpi ;
0
i=0
! k < p. B & (3) ! k, ! !" 'p (x) = 0 !$ xpi. B ) ! s;1
X
p 1 xk = kixpi ;
(4)
i=0
) k < s. (B k < p & ! "$ ! , !$ ) ) 3 "
! xp.) 1! ) ! .
%
sP ;1 sP ;1 tixpi . " p " (u) = t0i xpi. ' i=0 i=0
% N , deg ti < N 0 N 0 > N , deg t0i < N 0. . ( !! ) p u !-
4.1. '%! p u =
" (u) =
s 1 X xi " (ti ): i=0 ;
B) & p 1 ! ! xk . % ;
p " (u) =
s 1 s 1 s 1 s 1 X s 1 X X X X
p 1 xj " (tj ) = " (tj ) jixpi = xpi ji" (tj ): j =0 j =0 i=0 i=0 j =0 ;
;
;
;
;
;
sP ;1
241
ti
ji " (tj ), ! . 1! j =0 ! tj : deg ti 6 deg ji + p1 deg ti 6 C + p1 deg ti C ji. L , ! ! N > C p p 1 . 1!, ! , , x 3 ! N. ; & !! ( )
) 3 . :, N ) & R , "
! ) "- x . !, ) . ; & . 2 , &sP1 p u = Q, Q = Qi | xp i=0
! s 1. ,& Qi | ! (Zp) $ ! ( N) ! (#1 : : : #n). 1 , & ( , ) | . D , " & u | ) . G ! ). D, ! " &! ! ) ) !! x, ! & ! . B$ , ) ) !! ( ) ) ! " $ p u = Q. ,& Q !! & ! & !!, | ! . @ ! & Q,
" u, , )$ ! ( , !!) , " u = " (u). : ), . G , x. 1 , ! . , ) , & , "$ = (k) : : : (0), !
"$ ($) !!. (& , $ !. 1 , " ! $ ! $ !!. B $ ! $ ! !!. 1 , " ( ! ) ! , " 4.1. 0
0
0
;
0
f g ;
;
0
242
. .
( u p u = Q(xp ) ! Q. L , & $ u ! & x ! ! deg & Q. 1 , ! u ! & Q !3 x. G & ) ! . 1 ) ! $ $ ( $) !! x, , ! $ x = !.
5. ' ( ($3 !
) . ( ! F | ! $ Zp ! 1 : : : m , , , ! Zp ! m 1 : : : m . 9 2.1 & . 4 !-!) ! R R ! F . 2 ! ! !! F, R R . 2 ! !, ! 4.1 ! " . 5.1. ( k | p. 3 ) ": k k, " : 1) "(x + y) = "(x) + "(y) ( ), 2) "(xp y) = x"(y) (p- ). 1! P !! ! ) !!. ( x = x # . 2 , ! )$ x
P x = f . 2 & ! !! " : 0
0
!
"(x) =
X
f "( # ):
B, ! 0 +p 0 +p !! ! 0 0, ! 0
"(x) =
XX
0
0
0
0
f0 +p 0 +p # 0
0
0
0
"( 0 # 0 ):
0
1 , !! !
0 # 0 . ! ! !!, "
243
" ( 0 # 0 ) = 0 : , , 5.1. ( x % ! , %. 2" p- $ ! = k : : : 0 = k : : :0 , " (x) !! & x ! i i (i = 0 : : : k). I) , & $ " (x) " (x ). ( &, , !, p- $ ! ! ( & , ) ! ! $ ). : " &! ! " , )
! !! & , !! . , ) " (x) , ) $ !! " (x ), ) ! $ & x . 1! ), , ! "-. 5.2. ( k | (R R ), ! X | ) & k. "- ) X 3 ) , )" X !$ ) !!. : 5.2. x | " # # $%& ! , "- x . 0
0
f
.
g
) B ) MN ! !3 ! " &!. ) ?
! ). : $ , 3 ! !. ) " ! | , ! $ 4.1 ! !! ) . D , ) ! , ! "$ $ ( )), $ ( ! ). (& ! $ $. 1 ). () ! s X '(x) = ai xi = 0 i=0
( ' | $ x). , , !3
244
. .
x =
s 1 X ;
i=0
i xpi :
(5)
P "$ & !$ ( $ #1 : : : #n). (! ! " s 1
X i xpi:
x = (6) P i=0 1! ) ! " ! : s 1 X
k xk = Pkik xpi: (7) i=0 S , S(p 1) > s, ! s 1
X S ( p 1) k (8)
x = PS (pki 1) xpi : ;
00
;
;
;
;
;
i=0
! & F. 5.3. ( u R X
Sp u = PtSi p xpi : 2
0
i
1 l(u) & u 3 !$ deg ti ! 1 : : : m . 1! ) $ $ . 5.1. '%! u R % Sp u = P tixpi 1Sp i ti. " u = " (u) P ! % Sp u = i tixpi 1Sp ti . ' #% N0 M0 ( ! ! % ), N > N0 , M > M0 deg ti 6 N l(ti ) 6 M deg ti 6 N , l(ti ) 6 M . . B ! (8). , !, !! !$ x. ( s 1 X
Sp u = tj xpj P1Sp j =0 u = " u. 1 s 1 X
Sp u = " (tj ) S (p 1) xj P1S : j =0 0
2
0
0
0
0
0
0
;
0
;
0
;
(8)
s; 1 X s;1 X Sp 0
u = xpi " i=0 j =0
245
ki : (tj ) P Sp
1! ! ) !!: deg u 6 maxdeg ki + 1p deg u l(u ) 6 maxdeg ki + p1 l(u) 0
0
! deg f ! ! f ! ( 1 : : : m ). 1! M0 N0 , " . ( 5.1 $ ). B$ , ti $ ! ) !& ) $ P & u,
" p u = tixpi 1p , deg ti 6 N, l(ti ) 6 M. i ; x (! !" M N), 5.1 !! ( ) ) . :, x . B ), ) !$ ! $ x = !. ) !
! , ) ! $ !! " "$ & x . B & !! " ! ) . & ! p- $ ! . 2 )
" &$ ) . ($ ":
X 1 : z = # = 1 1# 1 #n 1 2 & & 1. 1! ! x = y + !z. ( y. B & ! , !"$ y = 0 ( ! 3 !)). 8 , & & x = !. 1! ! , !"$ x = 0. G ! "$ , ) ) !! " (x). B , 0. 1 )
! " &!. L , & ! ! & x. f
g
;
;
246
. .
%, ! ) !!. ; ) , )" $ & x. :, ! , ) S ) S , )" ) !! & s S ! ( ): S = s s = " (s) s S : A ) , $ & 0. !3 ! , !$ x = !. 1 , ) ! ! !
. 2$ ! ! ) !! $ !$ !.
0
2
0
f
0
j
0
2
g
6. * ( ( ! F | ! Zp. @ ) ! Zp( 1 : : : m )=], 1 : : : m | , | $ $ !$ & Zp( 1 : : : m). Q ! ! , ! ! !!. 1 F | ! Zp( 1 : : : m),
!! & !! !! !) F. , , , ! ! p- $ $ , !" $ !!. , ! & $ 3 ) ! !! . 6.1. ) , Zp( 1 : : : m ) ! ! . . ( '() =
k X i=0
i i = 0
' | $ . 4 " )
, k = 1, . . ;
k = 1 $ i
2
kX ;1 i=0
Zp( 1 : : : m ),
=
i i :
kX ;1 i=0
i pi
(9)
247
$$ . (), = 0. B$ , = 0, 6
() =
kX ;1 i=0
i pi = 0:
& p. 2 ) , ' | $ & , , ! 3 p. :, deg > p deg ' ( | !$ &). ( . 2 & ) , = 1 =
k 1 X ;
i=0
i ip :
(10)
, $ & u ! F ) !
i pi , ! 3 ! . () X X "(u) = " i ip = "(i ) i : , !3 ) $ . 1! ! p- $ . 2 ) !$ p- $ ! Zp( 1 : : : m) ! "(xp y) = x"(y) x = y = r , . . "( p+r ) = "( r ): B) . B &, ! , ! r r = r+p
|
kX ;1 i=0
ri ip
kX ;1 r + p = r+pi ip : i=0 ri r+pi ) $ -
4 , & . ;$3 . L , r+p =
kX1 ;
i=0
i=0
? ! : r+p =
k ;1
X ri ip p = ri (i+1)p :
kX ;1 i=1
ri 1 ip + rk 1 kp: ;
;
248
. .
1! ! (9) ( ! ! p) ! ! : kp = 2
r +p
=
kX ;1 i=0
i ip :
kX ;1
(ri 1 + rk 1i ip ) ip : ;
i=1
;
r+pi = ri 1 + rk 1 i ip : ;
;
kP ;1
(11)
1! ) p- $ . ( ! "( r+p ) = "(r+pi ) i , i=0 kP1 "( r ) = "(ri ) i . ;
i=0
"( r ) =
k 1 X ;
i=0
"(ri ) i+1 =
k 1 X ;
i=1
("(ri 1 ) i ) + "(rk 1 ) k : ;
;
( ! ! !" (9), "( r ) =
kX ;1 i=0
("(ri 1 ) + rk 1i ip ) i : ;
;
;, ! ! !" $ (11) "( r ) =
kX ;1 i=0
"(r+pi ) i = "( r+p ):
1 , ! !! ! F. 1! ) !) F ) !3 Zp= 1 : : : m ] !!. : 6.1. ( x F 0 ! , 0. : "$ $ !
)$ (, , 5.1), !3 ! " &!, $ ! F. B & ! ! F ! ) &. 2 ! , 3 '(x) =
s X i=0
ai xi = 0
249
( ' | $ x). ! " &!
x =
s 1 X ;
i=0
i xpi :
( & " ) , Zp= 1 : : : m ], . . ) ! . kP1 ( )$ i
i = il pl ! !l=0 " : X
x =
il pl xpi : 2
;
06i6s 1 06l6k 1 ;
;
1! 3 (10) , =
kX ;1 i=0
i pi :
( B | "$ i $
1 : : : m. 1 ! Bj =
kX ;1 i=0
ji pi
ji 1 : : : m . S , S(p 1) > s, K | , K(p 1) > k. ! " &! X B K (p 1) S (p 1) xj =
jil xpi pl (12)
;
;
;
;
06i6s 1 06l6k 1 ;
;
! jil . 1! ! X B Kp Sp u = til xpi pl
06i6s 1 06l6k 1 til | 1 : : : m. ! ) l(u) & u 2 F !$ til & ! . 1! ;
;
.
6.2. '%! u R % 2
0
B Kp Sp u =
X
06i6s 1 06l6k 1 ;
til xpi pl
;
til . " u = " (u) ! % X B Kp Sp u = t il xpi pl 0
0
0
06i6s 1 06l6k 1 ;
;
250
. .
t il . ' #% N0 M0 ( ! ! % ), N > N0 , M > M0 deg ti 6 N , l(ti ) 6 M deg ti 6 N , l(ti ) 6 M . . B &$ ! , !3 ! Zp= 1 : : : m ]. B, ! , ), , ! $ $ x = !. 0
0
0
7. * 7.1.
( ! ! ! 1$ $. @ , $ ! !. (& !! , ! . ( ! $ !, !3$ . 1. ( x2 = 1 + # (13) ! Z3. D ! , "$ & 3 1$. B & !3 (1 + #)2x3 = (1 + #)3 x (14) ! !!. % (1 + #)"i (x) = "i ((1 + #)2 )x (1 + #)"i (x) = ai x a0 = a2 = 1, a1 = 1. ! y (1 + #)y = x: (15) , y = "0 (x) = "2 (x) = "1 (x): 2 ! !! y. ; ) , ! (1 + #)x3 = (1 + #)3 y: % , (1 + #)"i (y) = "i (1 + #)x ;
;
251
(1 + #)"i (x) = ai x & , "0 (x) = "1 (x) = y "2 (y) = 0: 1 , ) ( ) !! x ! : x y y 0. 3 ! )
& !!. , , (13) , " . 2 , $ 1. 1, ! $ x 1, $ y ) 1 (y = "0 (x)). : $ y 1. 1 , ! ! . , , ! . 1.
a0 = a1 = 1, a2 = 0.
;
t
;
;
1
# # r r "! "! r # "! A
A A A1 A A
0, 2
1 A
0,1
A U A
0,1
2
-
A A
2A
A A A U A
2
0
-
0,1,2
8. 1
%, !3$ ! , " 1$ $ $ !. ! , " , ) 3 (" , & !), ! ! ). , ,
" , " $ ! & . 2 " !3 ! ! Z2.
252
. .
Z
7.2. 2
; ) , , ! p, ) !! xp , ! " $ $ x. % !3$ "$ "$ | x ( ) xp . ;
! & ) 3 ) ! $ ! . 2 & | $ ! $ ! ) x xp . ( &$ p = 2 ! !
! ) . %, ! i6s X i=0
ai xi = 0
(16)
& Z2 ! #1 : : : #m . ( 3 , )" x 3$ !, ! . ( iX 6 2s 2 i x a2i+1 x = a2ix2i: i=0 i=0 iX 6 2s
:"3 ) ! & xP (x2 #) = Q(x2 #): (17) S) P(x2 #), ! xP 2(x2 #) = P(x2 #)Q(x2 #): G | ! x. 1! ) ! !! ! : "i (x)P (x2 #) = Q i (x #) Q i (x #) = "i (P(x2 #)Q(x2 #)). B ) ! ! "i (x). B & ) P(x2 #): "i (x)P 2(x2 #) = Q i (x #)P(x2 #) ! (17). 2 ! "i (x)P 2(x2 #) = Q i (x2 #) Q i (x2 #). 1 ) ) !, 0
0
0
00
00
253
!! x "i (x)P 2(x2 #) = Ri(x2 #) ! R. 1 !! | & "$ (! , ) ! & ! , !
$ !! !) ! ). 1 , )$ !! " $ R, ) ! . ( ! . 2. ( x7 + ax3 + bx2 + cx + 1 = 0
(18)
Z2. G 3 ": x8 + ax4 + cx2 = x(bx2 + 1):
(19)
S) bx2 + 1, ! bx10 + x8 + abx6 + (a + bc)x4 + cx2 = x(bx2 + 1)2 : 1! ) ! !!. 2 xi = ui(bx2 + 1) (20) ui | !!, 1 6 i 6 6 ( i !!). 2 ) bx2 + 1, ! bxi+2 + xi = u(bx2 + 1)2 : @ i 3, !! (20). @ ) i 3, ! (19): u(bx2 + 1)2 = (bx3 + x)xi 1 = (x8 + ax4 + cx2)xi 1 : ;
;
! !! (20). 1 ,
" ) | x, ui ( $ (20)) 0. B )
& $. , , ! . 2. 1 $ . 1
254
. .
# "! r r r r # r"! # r"! r 6
-
@ I @
1
; ; B@ 6 I @ M B @ B@ @ ; @ B @ @ ; R; @ @ B @ 1 BM 1 B ;
; B B; ; B B ; ; 1 ; B B ; B ; ;@ B B; ; @ B B @ B ; ; 1? 1 ; RBNB? @ B ; B ;@ @ I @ @ B @ 6 6; @ @B ; @ @ R @ B? 1 ; @ @ ; R @
?
8. 2
7.3.
D $ ! ) ! , " 1$ )$ , , " 3 . 3. ; 3
& ! ! |
$. %, ! f g " Gf Gg . ( h = f + g. D ! Gh , "$ 1$ h. B & , $ !! ( ) !! h
$ " !! f g. :, ) Gh ! Gf Gg ! ! " ! : Gf A D 3 , ) , (A C) (B D) , .
255
; | ! Gf Gg . 2 , "$ ! (A B), !
, " A B. L
, $ $ 1$ h. 4. : "$ )$ ! | ! g = #i f. ( Gf f. L
, !! $ f g " 1 ::: i ::: m (g) = " 1 ::: i 1::: m (f) (21) ! i = 0 " 1 :::0::: m (g) = " 1 ::: i 1::: m (f): (22) !!. 1 , ) )$ ! , " $ !! 3 ! #i . B )
, (21) (22). 1) , . (
| ! ) , Gf , | . G g. 5. 1! ! , ! ! $. ( f g " Gf Gg . ( h = fg. B !! h !! f g: X (23) " (h) = # " (f)" (g): ;
6
;
0
00
0
+ = +p 00
% & $ , !! h )
!$ !! f g, ) # (! & ! i 0 1). I)
, , !! ( ). Q & , ! (23) !! # fg: X " (# fg) = #" (f)" (g): (24) 0
+ = +p 00
0
00
0
@ (24) i 6 1, i 6 1. 1 , ! )
!! !$ Gf Gg , ) # (i 6 1). ( &, ! (24),
. 6. ;, ! ! $ h = f g. ( Gh . % X h = f g = (" f) gp g : 0
0
0
0
256
. .
? & , ! X X h = (" f) g(#p ) (" g )(#p )#
0
0
0
h=
X
#
X
(" f) g(#p )(" g )(#p ):
0
0
0
X " h = (" f) g(#p )(" g )(#p ): 0
0
(25)
0
A (25) ! ! Gh Gf Gg Gg2 : : : Ggp 1 . G ) , , ! !$ $. ;
,
1] A. J. van der Poorten. Some facts should be better known, especially about rational functions. 2] A. J. van der Poorten. Rational functions, diagonals, automata and arithmetic. 3] .
. . | .: , 1986. 4] . &'. '( . | .: , 1968. 5] *. + (,. p- ./ / , p- ./0 . -,. | .: , 1982. 6] 1. 2. /. 3/ 4 ( 5( . | .: * , 1993. 7] A. J. Belov, V. V. Borisenko, V. N. Latyshev. Monomial algebras. | NY: Plenum. ' ( ) 2000 .
T- . .
. . .
519.48
: , T-, , -
! ".
# $ ! % &' T- ". ( " ! " T- 2(3), "! )$ $ ! "". *+ % )! " + $ % +" " 1, 1 2 ] 2 , % 1 , 2 | "!, 1, 2 | ", " / $ T-,
!$ " ! 0 "/ 0 ". T
w
x x
w
x
x
w
w
Abstract V. V. Shchigolev, On leading monomials of some T-ideals, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 257{266.
In this paper some analogs of the Gr'obner base for T-ideals are considered. A sequence of normal monomials of the T-ideal 2(3) is built so that the monomials are independent w.r.t. the operation of monotonous substitution and the insertion operation. Also a theorem is proved stating that for algebras without 1 a multilinear identity of the form 1 , 1 2 ] 2 , where 1 , 2 are variables and 1 , 2 are monomials, belongs to every T-ideal that is 8nitely based w.r.t. the inclusion relation of the leading monomials. T
w
x x
w
x
x
w
w
x 1.
1] T- . ". #. $ 2] & '
. ( ) * & , *, . ( - * * * * , & ,* . * T- . / * (. 0. 1 . 2 & K | , x1 : : : xn : : : | . ( ' ), *: xi < xj , 2001, 7, 9 1, . 257{266. c 2001 !, "# $% &
258
. .
i < j. 7 ' * - , & * , ) * - . 2 & S | x1 : : : xn : : :, , S (n) | , *, n, S0(n) | x(1) : : :x(n) , 2 Sn , Sn | *
n. (2 9 ' S.) 1 K, * ' S0(n) , P (n). ( ) jwj w , & w , ** * w. 7 u , u = u1xi u2xj u3 , i < j. < S0n x1 : : :xn . 2 x 2 v, x | v. =* ) c() ), , & '
, x1 : : : xn : : :, * ) i degxi = degxi c(). ( * S ), : xi1 : : :xin xj1 : : :xjm & , & & i1 : : : in ** * & &) & j1 : : : jm . > v u, , v * u (u v). 2 , * S, , v u, v | u. 0 S ' ), : xi1 : : :xin xj1 : : :xjn , t fi1 : : : ing fj1 : : : jng, t(ik ) = jk , k = 1 : : : n, . ? t - F1 F2 F, fxi1 : : : xin g fxj1 : : : xjn g . > f1 2 F1 , f2 2 F2 f1
f2 ' -, , f1 f2 . 2 & F = K hx1 : : : xn : : :i | * * 1. =* f 2 F f@ f, * ) I F I@ = ff@: f 2 I g. 7 , , I@, & I. = , S(I) = S \ I@. 2* & S= ), : * ' B1 B2 B1 B2 ( B1 B2 ), , ) u1 2 B1 u2 2 B2 , u1 u2 ( u1 u2). 2 & (A 6) | * . / a 2 A (A 6)- & fa1 : : : ang A, , ai, ai 6 a. < (A 6) , , ) a1 : : : an 2 A, ) ' a 2 A (A 6)- & fa1 : : : ang.
259
T-
( ) * * (S(I)= ) (S(I)= ) , I ** * T- . 7 u 2 S (T- ) & ff1 : : : fk g F , u ** * (S )- ((S )- ) & ff@1 : : : f@k g. B Tk(3) T- F, x1 x2 x3] : : :x3k;2 x3k;1 x3k ]. 2 & T (3) = T1(3) . ? ; S, ) xk xj xi xk xi xj (1) (3) i < j < k. 1 &, S n S(T ) ;. ( ), & : , & & w1 : : :wn : : : S n S(T2(3) ), * i 6= j wi wj - ) D & I | T- F ( 1), * (S(I)= ) . E I
w1 x1 x2]w2, w1 w2 | .
x 2.
1 &, ) u 2 ; * * r Q u = ui , ) ui vi xki , xki & ) i=1 vi vi , i < j ) * ui & ) uj , ui , juij = 1. 2 & & (u1 : : : ur ) u. 1. ; T (3). . 2 . E w = r Q = ui 2 ; ** * f 2 T (3) , i=1 (u1 : : : ur ) | . 2 & ui = vi xli . > ui , vi , , . > ui , ui . 2 ) * i = 1 : : : r. E * w0 f 0 ,
), * f . = &, & w0 < w w0 | f, w00 | , w0 . 2 & w0 = xl 0 , w = xm , tQ ;1 l < m. ? ) , , t, = ui u0t , i=1
260
. .
Q r
= u00t ui , u0txm u00t = ut . H * * i=t+1 , xl ut+1 : : : ur . 7 , xl . 7 &, xl u00t . 2' ), *: ju00t j > 2 ju00t j = 1. 2 & * .E u00t , & xm , & ** u00t . ? ) u00t = vt00 xsxl , s > m. 2 xm u00t xsxl , xl 0 | xl 00 . ? ) w00 < w0 . 2 & * . E u00t = xl , xm u00t *, xl 0 xl 00 . ? ) w00 < w0 . E T (3) , & & , f 0 2 T (3). 7 w0 s Q w0 = (xli xmi ), xli > xmi (xl1 xm1 : : : xls xms ) | i=1 . r Q > & v 2 P (n) | & , v = vi , i=1 (v1 : : :vr ) | v. > &, , ) i1 < : : : < is , jvik j > 2 k = 1 : : : s, w0 v v & & . 2' &, , ) 1 6 i1 < : : : < is;1 6 r, i 2= fi1 : : : is;1g jvi j = 1. = , , P (n) * jv1j : : : jvr j. H &* ' - , & & P (n). ?, r 6 n. =* i1 < : : : < is;1 * Cns;1 . ? * & & * jvi1 j : : : jvis;1 j. E jvi j 6 n * i = 1 : : : r, ' ns;1. ( Cns;1ns;1 & P (n). / , dn = dim(P (n) j P (n) \ T (3) ) T (3) , , , , 3]. 1 . E , 1. ; = S n S(T (3) ). ( * T (3) (. 0. 1 4]. 2 & I1 , I2 | F. E F I2 + +I1 F | F F. 7 F F
* u v, u v | F . 7 , u2 v2 > u1 v1, u2 > u1 u2 = u1 v2 > v1. =* f 2 F F f@ f. 0 u v & & L F F , * ) f 2 L u v 6= f.@ 7 ), * 2. u v 2 F F , u v | I1 I2 . u v | F I2 + I1 F .
T-
261
. 2 . E , f 2 2 F I2 + I1 F, f@ = u v. 2 f ), : f=
n X i=1
u i fi +
m X j =1
gj vj
(2)
* ) i j 0 6= fi 2 I2 , 0 6= gj 2 I1 , ui vj | , ui > uj vi > vj i > j. < &, ' vj & & I2 . = &, & vj ,
I2 l | & j, * vj |
I2 . E vl = f@0 * f0 2 I2 . H n0 m0 X X 0 0 f = ui fi + gl f0 + gj vj + gl (vl ; f0 ) = ui fi + gj0 vj0 i=1 j =1 i=1 j =1 j= 6 l & vj0 , & I2 , &, vl . n X
m X
2 ** ' , & * *. 2 , , i, ui > u. 7 ui f@i & (2). E f@ > ui f@i > u v, . 2' * i = 1 : : : n ui 6 u. 2 & ui0 = u, ui0 f@i0 & (2). 2' f@i0 6 v. E v &, f@i0 < v fi0 & v. 7 &, u v (2). 2 & & vj0 = v. > g@j0 > u, , , , i, ui = g@j0 . ( ' g@j0 v
& (2). E f@ > g@j0 v > u v, . 2' g@j0 6 u, u & & I1 , g@j0 < u gj0 & u. ? ) , u v (2) , (2) | . 1 . . H &, u1 : : : un 2 F : : : F & & I1 F : : :F +F I2 F : : :F +: : : + + F : : : F In & , u1 : : : un & & I1 : : : In , w1 : : : wn > v1 : : : vn * , , i = 1 : : : n, wl = vl l < i wi > vi . 2 ' E- . 2 & w = uv 2 P (n). ( & Iuv , * ), ), : 1) yx, y 2 v x 2 u, 2) u1u2 u3 u4]u5v1, c(u1u2 u3u4u5 ) = c(u), c(v1 ) = c(v), 3) u1v1 v2 v3 v4 ]v5, c(v1 v2 v3 v4v5 ) = c(v), c(u1 ) = c(u). 3. T2(3) \ P (n) Iuv \ P (n).
262
. .
. 2 &
f = tt1 t2 t3]r1 r2 r3]r
tt1t2 t3 r1r2r3 r 2 P (n). 2 & w1 = t, w2 = t1t2 t3 , w3 = r1r2r3 , w4 = r. > , )
i j = 1 : : : 4, i < j wi v, wj
u, f 2 Iuv 1). 7 &, &, , l = 1 : : : 4, i < l c(wi ) | c(u) i > l c(wi ) | c(v). ( &, l > 3. Em P f = i tt1 t2 t3]i , i | r1 r2 r3 r i=1
*. > i ' 1), i = 0i 00i , c(0i ) c(u) (00i ) = c(v). ? ) t11 t2 t3]i 2 Iuv . 1 . 4. u v | T (3) w = uv 2 ( n 2 P ). w | Iuv , T2(3) ,
3. . 2 , & w = f,@ f 2 Iuv \ P (n). 2 & V0 | K, * P (n), , 1), V1 | , * , , 1). E P (n) = V0 V1 . L , Iuv \ P (n) & ' . E w 2 V1 , w = f@0 , f0 f V0 . H f0 2 Iuv . 2 f0 f0 =
n X i=1
uifi +
m X j =1
gj vj
* ) i j c(ui) = c(u), c(vj ) = c(v), ui fi | 3), gj vj |
2) * ) 1 2 fi gj c(1 ) = c(v) c(2 ) = c(u). M , fi 2 T (3) gj 2 T (3) . E u v | n
m
i=1
j =1
X X f 0 = ui fi + gj vj
F T (3) + T (3) F . 2 2 * u v | T (3), ). 1 . ? ) 4. u v 2 ; uv 2 S . uv | (3) T- T2 . 1. w1 : : :wn : : :
S n S(T2(3) ), i 6= j wi wj - .
263
T-
. B ;0 w 2 S, ),
w = uv, u v 2 ;. 2 & D |
w = uv 2 ;0, u v 2 ;. B wD , uD vD , w, u v xi ! 1, xi 2 D. 1 &, w0 = u0v0 , u0 v0 2 ;, w0 2 ;0 w0 w (mod ), u0 u (mod ) v0 v (mod ). = &, w0 w (mod ), * D w0 wD . 2 , , ) u0 v0 , u0 uD , v0 vD u0 v0 = w0 . E u0 v0 2 ;,
u0 = u0 v0 = v0 . ? ) u0 uD , v0 vD u0 u (mod ), v0 v (mod ). H * ' - * 4, * &,
& & wn =
nY ;1 k=0
x4k+6x4k+3 x4n+5x4n+6x4n+3x2x4 x1
** * . E .
nY ;1 k=0
x4k+8x4k+5 n 2 N
x 3.
# & * T- I , * * (S(I)= ) . ( NH & 0 { ( . 5]). 2. I | ! T- ! F 1, ! " (S(I)= ) . I " !! w1x1 x2]w2, w1 w2 | . . ( ), , & * ' & : x, y, z, , & . 2 & 0 6= f 2 I \ P (d) . 2 ) , ) f1 : : : fN 2 F, * ) g 2 I * i g0, g0 fi g@0 g@. (3) 0 2 & m = maxfdeg fi : i = 1 : : : N g. 7 f , ), * f xk ! wk = xk x(k;1)m+d+1 : : :xkm+d , k = 1 : : : d, ** * w1 : : :wd . H (3) , , S(I) m : 1) u, 2) uyv, uv , y & uv. ( xm 2 I F=I & NH.
264
. .
# . H h(x y 1 : : : n1 1 : : : n2 ) = uyv ;
n1 X i=0
uiyhi 2 I \ P (m)
(4)
1 : : : n1 x = u, 1 : : : n2 = v, juij = i 6 n1 = juj ; 1 ui | u. 2 un1+1 = u uyv h(x y 1 : : : n1 1 : : : n2 ). ? r & i = 0 : : : n1, '-- hi 0, , ) , ;1 . # r = ;1. M x1 : : : xm x1. E (4) * '-- hi xm1 2 I, NH * & & & F=I. # & , r . H jur+1 j 6 juj. 2 ur+1 ur+1 = ur xt. M & xt 6= y. B h0 h0i &
xt ! xm+1 xt h hi , i = 0 : : : r. > r = 0, h00 = xm+1 h h00i = xm+1 hi , r > 1, h00 h00i & r ! r xm+1 h hi , i = 1 : : : r ; 1. rP ;1 H h00 ; h0 = ur (xm+1 yhr ; yh0r ) + uiy(h00i ; h0i ). 2* i=0 x1 : : : xm+1 , y, x, y, ),
I:
xr+1 yxs ; xr yxs+1 s = n1 + n2 ; r + 1 6= 0, '-- hr . 2 i < r h0i h00i &, y. > 6= , F=I & NH. > = , (5) xr y x]xs 2 I jr + sj 6 m ; 1. H (5) , xp y x]xq 2 I, p = m + 2r, q = m + r + 2s. E char K = 0, (x + z)p y x + z](x + z)q
I. ( , pX ;1 qX ;1 xp;i;1zxi y x]xq + xpy x]xj zxq;j ;1 + xpy z]xq 2 I: i=0 j =0
(6)
2 , (6) I. 2 i > r xp;i;1zxiy x]xq 2 I - (5). 2 & & i < r. . g1 = h(zxi y x]xs x : : : x) g10 = = xn1 zxi y x]xs+n2 . E i < r, p ; n1 ; i ; 1 > r, &, xp;n1;i;1 (g1 ; g10 )xq;s;n2 2 I. ? ) xp;n1;i;1 g10 xq;s;n2 =xp;i;1zxi y x]xq 2 2 I.
T-
265
" , j > s, xp y x]xj zxq;j ;1 2 I - (5). 2 &
& j < s. . g2 = h(y x] xj zxr x : : : x) g20 = xn1 y x]xj zxr+n2 . E j < s, q ; j ; 1 ; r ; n2 > s xp;n1 (g2 ; g20 )xq;j ;1;r;n2 2 I. ? ) xp;n1g20 xq;j ;1;r;n2 =xpy x]xj zxq;j ;1 2 2 I. E , (6) I, & xp z y]xq 2 I: (7) s 0 n n + 1 2 . g3 =h( z y]x x : : : x) g3 =x z y]x s , , &, p ; n1 > 2r > r, xp;n1 (g3 ; g30 )xq;n2 ;s 2 I: (8) p ; n 0 q ; n ; s p q 2' x 1 g3x 2 = x z y]x 2 I. H * xp 1 z y] 2 xq 2 I: (9) B F0 F 1, ) - . 2 & & f 2 F, , (7), (8), (9), f0p+q+1 2 I, f0 | & ' F0
f. H NH , , t, F0t I , , x1 x2]x3x4 x5]x6 : : :x3(t;1)x3(t;1)+1 x3(t;1)+2] 2 I. 2 & wk = wk0 x(k+1)(m+1) xm+k(m+1) * k = 0 : : : t ; 1, wk0 = = x1+k(m+1) : : : xm;1+k(m+1) . E w0 : : :wt;1 ** * tQ ;1
wk0 x(k+1)(m+1) xm+k(m+1) ] I. k=0 2 (3) , S(I) m : 1) , 2) uxyv, uxv uyv y & x. ( F=I & NH. ( uxyv = t0 P = iuyvi , c(uxyv) = c(uyvi ) * i. 2 ** x 0 i=1 t P v, uxyxk = uyxk+1, = i. > 6= 1, * & i=1 F=I & NH. > = 1, ux y]xk 2 I: (10) ( ux + z y](x + z)3k I. ( , 3X k ;1 ux y]xizx3k;i;1 + uy z]x3k: (11) i=0
> i > k, ux y]xizx3k;i;1 2 I (10). > i < k, I 3 ux y]xiz xk]x2k;i;1 = ux y]xizx3k;i;1 ; ux y]xi+kzx2k;i;1, (10) ux y]xizx3k;i;1 2 I, 2k ; i ; 1 > k. H (11) uy z]x3k 2 I. 0 M *, uy z] x3k 2 I, ** NH, u1y z]u2 2 I \ P (s ) * & s0 . E .
266
. .
M , (S(I)= ) , F=I , (4). = * ,*, jw1j jw2j > 1. = &, & I | T- F , x1 : : :xk xk+1 xk+2]xk+3 : : :xk+3+l x1 x2]x3 x4], k l > 1. 2 , (S(I)= ) m | & * & ' . 7 x2x1x3 : : :xm xm+2 xm+1 ** * x2 x1]x3 : : :xm xm+2 xm+1] I. ( * , ** * I, x2x1x3 : : :xm x3 : : :xm xm+2 xm+1 | I. E n xn 2 I, * * x y]xm;2 = 0 xm;2 x y] = 0. H * . ( W K, * fxiyxm;i;1 : i = 0 : : : m ; 1g. 2 W0 W , * fxiyxm;i;1 : i = 1 : : : m ; 1g. 1 &, u1u2 u3]u4 2 W0 u1 u2]u3 u4] 2 W0, & u1u2 u3u4 2 W , ju1j > k, ju4j > l u1 u2u3 u4 2 W . 7 , &, x y]xm;2 2= W0 . / , x y]xm;2 2= I, ) (S(I)= ). " (. H. 1 *.
!
1] W. Specht. Gesetze in Ringen // Math. Z. | 1950. | Vol. 52, no. 5. | P. 557{589. 2] . . . !"# $#%& '( // '( '(). | 1987. | * 5. | +. 597{641. 3] . . . /% (, ( 0% ) 0!"% PI-'(%. | 2.. . . )". 3.-. ). | /#), 1981. 4] 4. /. 5%6#. 7 #% % # " T-"' // +89. | 1963. | :. 4, * 5. | +. 1122{1127. 5] G. Higman. On a conjecture of Nagata // Proc. Cambrige Philos. Soc. | 1956. | Vol. 52, no. 1. | P. 1{4. ' ( ) 1998 .
; y v ; z w + z + x = 4t
; x u y
. .
. . . 511.3
: , .
,
$ $ . x y z t u v w
; x u
y
+
; y v
z
+
; z w
x
= 4 ! "t
Abstract M. Z. Garaev, On the diophantine equation ; xy u + ; zy v + ; xz w = 4 , Funda-
mentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 267{270. It is proved that the equation positive integers . x y z t u v w
x
; x u
y
+
; y v
z
+
; z w
x
t
= 4 has no solutions in t
1.
1] , n n2 +3n+9 n ; 3 3k + 2, x+ y + z =n (1) y z x
$% & & x y z. ( )% (1) $ n = ;6 (. (. +,, n = 1 | (.. . +. / & n 2 f;1 5g | 2. (. 3. 2] , $ (1) & n, 4& 3. 3] (1) ,& & x y z. 5 , n 2 f4k 8k ; 1 22m+1(2k ; 1) + 3g, k m , , (1) $% ,& & x y z. 8 , 4% 4 ..
, 2001, 7, , 1, . 267{270. c 2001 , !" #$ %
268
. .
1.
xu + yv + z w = 4t xyz (2) x y z t u v w (x y z) = 1. . n1 n2 n3 | , n = n1 + n2 + n3, xn +yn +z n = 4t xn1 yn2 z n3 x y z t. 2. x u + y v + z w = 4t (3) y z x
x y z t u v w. x
2. 1
( , 9 : ;. < , , x y z t u v w , (2) (x y z) = 1. . , a) uvw 9 b) 9. 8 % a) uvw | 9 . = 4 . ,, u | 9 . > xu + yv 0 (mod z(4t xy ; z w;1 )) , v | 9 . @, w | . 9 . / , y, z | 9 . < ,, , z | 9 . A y = 2k y1 , k | , , y1 | 9 , . < , u 9, vw 9, xu = ;yv (mod (4t xy ; z w;1)) % B , v k t xy1 ; z w;1 ; y 4 2 1 ;1 2 1 = 4t xy ; z w;1 = ;(;1) = y1 ;1 = ;1: 1 ;1 2 = ;(;1) y y
y
1
< a). 8 , % b) uvw | 9 . + x y z 9& 9 . = ,, z 9, xy 9. A xy = 2k y1 , k | ,, y1 | 9 . 5 xu ;yv (mod z(4t xy ; z w;1))
; x u y
+
; y v z
+
; z w x
= 4t
269
a) , w;1 k ;1 = ;1: 1 = 4t xy;;xyz w;1 = ; 4 2k ty2 y;1 z w;1 = ;(;1) 12 ;zy 1 1 < b). 5 1 . y
x
3. 2
( , )% . 9 : ;. < , , x y z t u v w , (3). A, . , (x y z) = 1. A (y z) = d1 (z x) = d2 (x y) = d3: 5 (x y z) = 1 , 4 , x1 y1 z1, x = d2d3x1 y = d1d3y1 z = d1 d2z1 : (4) < ) (d2x1 d1y1 ) = (d3x1 d1z1 ) = (d3 y1 d2z1 ) = 1: (5) < (5) (3) 9 d2x1 u + d3y1 v + d1z1 w = 4t: (6) d1y1 d2z1 d3 x1 B, (d2 z1 )v (d3x1)w 0 (mod du1 ) (d1 y1 )u (d3x1)w 0 (mod z1v ): + 9 (5) z1v 0 (mod du1 ) du1 0 (mod z1v ) du1 = z1v : @ dw3 = y1u dv2 = xw1 :
270
. .
< $ , 4 , X Y Z, x1 = X ( ) d2 = X ( ) y1 = Y ( ) d3 = Y ( ) z1 = Z ( ) d1 = Z ( ) : < (6), , + + + + + + X ( ) + Y ( ) + Z ( ) = 4t X ( ) Y ( ) Z ( ) : / , (5) , (X Y Z) = 1. 3 $ % 1, 2. . > , 2 , x u + y v + z w = 2t y z x uv
vw wu vw
uv
vw wu wu
v vw
w vw
w wu
u wu
u uv
v uv
uv
vw wu uv
vw vw
wu wu
uv uv
x y z t u v w | , , 9 u 6 v 6 w, u = v = 1. D ) w = 1, ) , $% ,& & x y z t (. 3]). < & 49 & w $? A ) .
. , F . G. H 4, .
1] Erik Dofs. On some classes of homogeneous ternary cubic Diophantine equations // Ark. Mat. | 1975. | V. 13. | P. 29{72. P; 2] Maurice Craig. Integer values of xyz2 // J. Number Theory. | 1978. | V. 10. | P. 62{63. 3] . . . ! "# // $% &'(. | 1997. | $. 218. | ). 99{108.
& ' ( 1998 .
. .
517.5
: , , , , .
! " # "! # " $% , & # .
Abstract
V. V. Dubrovskii, On the asymptotics of spectral function for ordinary dierential selfadjoint operator, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 271{274.
In this paper the author investigated the asymptotics of spectral function for ordinary di-erential selfadjoint operator de.ned by regular boundary conditions.
+ ,
!0 1]. & i | ,
!0 1], i
( ) i( ) |
2 !0 1]
, ,- i , . . | - ,, i = i i , ( i j ) = ij ) - , !0 1] , ( )) i | + , ( ) i( ) | 2!0 1]
+ , ,- i , . . ( + ) i = i i , R1 ( i j ) = i /j = ij . 0 0
, (. !1]) 02 ; 4 1 ;1 6= 0 j i ; i;1 j > const n;1 0) j i ( )j 6 const 8 2 !0 ] = 1 1 T
P
n
v
L
Tv
x
T
v
v v
P
T
u
T
u u
p x
x
L
P
u u dx
P
T
v
x
i
x
i
>
:
, 2001, 7, / 1, . 271{274. c 2001 , !" #$ %
P u
u
272
. .
0 ( N X
i (x)ui(y) ;
N X
u
i=1
i (x)vi (y):
v
i=1
0 , -
X i ( ) i( ) u
i 6
x u
x
(1), (1)
, T ( ) T +P ( ) + . 0
, o
K
T
T
K
O
x y
K
x y
P
T +P (x y )
=
T (x y ) ;
Z1
K
K
T (x z )p(z )KT +P (z y ) dz
(1)
0
K
T (x y )
T +P (
K
=
1 v (x)v (y) X i i
)=
x y
i;
i=1
1 u (x)u (y) X i i i=1
i;
, ( 1 (0 1). & (1) ;1 N = f j j j = ( N + N +1 )2 g
( (1) , ;N = f j Re = ( N + N +1 )2;1g ( , (1) j j;2) , L
K
N X
i(x)ui (y)
u
i=1
=
N X
1 Z i( ) i( ) + p 2 ;1
v
i=1
x v
y
Z1 K
T (x z )p(z )KT +P (z y ) dz d:
;N 0
5, 6 (. !2]), , 1 1 Z Z p KT (x z )p(z )KT +P (z y ) d dz = 2 ;1 p 0 ;N Z1 Z p 1=p 1 = 2 KT (x z )p(z )KT +P (z y ) d dz 6 0 ;N
273
6 21
Z Z1
j T( K
;N
T +P (
) jp
1=p
z y dz
0
Z
d
1=p
k(T ; E );1 kp k(T + P ; E );1 kp d
6 const
1
;N Z1
6 const 1
)()
x z p z K
;1
(j j +
d
1=p
(1)
;1)2"p
o
n;1)(1;")2p;p
N(
Ci
6
6
= ( ;n+2 ) o N
= Im
0, . 1. 02 ; 4 1 ;1 6= 0 > 2 > " >
p. 1
1) 2)
N X
u
i=1
n
i (x)ui (y)
=
i (x)ui (y)
=
u
i=1 N X
N X v
i (x)vi (y) + o(N
v
i (x)vi (y) +
i=1 N X i=1
;n+2))
+ 1 ( ) + 2 ( ) + + k ( ) + ( ;(n;1)(k+1)+1) 1( ) 2( ) k( ) | , (1) . 8 !6] 2.
N
N
N : : :
N X
i=1
N
:::
N
o N
N
i=
N X
i+
N X
i=1
(
i
i) + o(N
pv v
i=1
;n+2 ):
3. & - !6]. 4. : !3{5] 6 !2] .
1] . . . | .: , 1969. 2] ! ". "., # $. %., & ". #'#. | .: "(( , 1948. 3] $,#' -. -. ' ' , #. .
// $ #1. | 1990. | 3. 26,
4 3. | 5. 533{534.
274
. .
lp M
4] $,#' -. -. 8 ' ' 9 # # 5. 69{75.
(
) // $ #1. | 1992. | 3. 28, 4 1. |
5] $,#' -. -., &=# . 5. 8 ' ' ''1>9 '#9 # // $ #1. | 1993. | 3. 29, 4 5. | 5. 852{858. 6] "'# . ". ? ' @' ','#9 @= #9 ''1>9 # // $ 555A. | 1963. | 3. 150, 4 6. | 5. 1202{1205.
& ' 1997 .
0 2 ] L2
. .
. . .
517.51
: , .
, ! " $!" 2 %0 2 ]. L
Abstract
M. G. Esmaganbetov, Minimization of exact constants in Jackson type inequalities and diameters of functions belonging to L2 %0 2], Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 275{280.
We obtain a series of results related to minimization of exact constans in Jackson type inequalities as well as the diameters of functions belonging to 2 %0 2 ]. L
L2 | 2- 12 Z2 1 2 kf k2 = jf(x)j dx 0
" # 1 X f k cos(kx + ') (0 0): k=1
& L2 ' , ) " *+" f () 2 L2 (L02 L2 f 0 f): ,+ Sn;1 (f () - x) | ( > 0)- " " n ; 1 " #
f () (x), , . ,
+. + '
f () 2 L2 + Tn . n ; 1 kf () (x) ; Tn (x)k = En;1(f () ) = E(f () - K2Tn;1) = inf Tn 21 1 X ( ) ( ) 2 2 = kf (x) ; Sn;1 (f - x)k = k k (1) k=n
, 2001, 7, - 1, . 275{280. c 2001 !"#, $% &' (
276
. .
K2Tn;1 | (2n ; 1)- + L2 . N- 2 + , + + H L2 3 +3) + : dN dN (H L2 ) = inf sup inf kf ; uk KN f 2H u2KN
N N (H L2) = inf
inf
sup kf ; Af k
N N (H L2) = inf
inf
sup kf ; Af k
KN A2L(L2 KN ) f 2H
KN A2L1 (L2 KN ) f 2H
L(L2 KN ) | ' + L2 N- KN , L1 (L2 KN ) | ' L(L2 KN ), . . + A + " KN , Af = f +" f 2 KN . X 1 r r k !r (f- ) = sup k5h f(x)k = sup (;1) k f(x + (r ; k)h) | 06h6 06h6 k=0 + + " r > 0
f(x). 2 2 ( ) r & Wr (f - ) !rr (f () - t) 60 ] cos 2t , +""
0 R 1r ( ) r B 0 !r (f - t) cos 2 t dt CC Wr (f () - ) = B B@ R CA : cos t dt 2
2
0
2
Hr(!( )) | ' f 2 L(2) , Wr (f () - ) 6 !( ) 8. 9. & 61] + + 3 ' En;1(f) !1(f () - t) 60 n ] sin nt. : ) .+ ; ' . *. < 62,3], 8. >++ 64], *. *. @ + 65], B. C. , 66] . c(r) | + ' + " , ") " r. < c(r)!r (f () - ) 6 Wr (f () - ) 6 !r (f () - ) + Hr() + " +
HD r(!) = f!r (f () - ) 6 !( )g + " + . + Hr(!), E Wr (f () - ) , - , + +"
+. + '
.
277
...
F +
+ HD r(!) + G. H. G '
+ ' 1975 . . 2 +. + E 62{6] + + + " ' !( ) + + + +" . 8 + " + Hr (!( )) + + + ' !( ). 2 , +" 8. . 2 67], . +
+ KNT ) XrN (L2 L2 KN ) = sup WE(f (2) f 2L2 f 6=const r (f () - ) N, . . + + " + (2) KN L2 N (8r > 1, > 0, N = 1 2 3 : : :): KNT ) XrN (L2 L2) = inf sup WE(f (3) ( KN f 2L2 f 6=const r (f ) - ) , + (3) 3 + Hr (!( )) 0 < !( ) < 1. : , r = 1, = 0 1 2 : ::, 0 < 6 n , N = 2n ; 1, n = 1 2 : : : (2) . 64]. 1. r > 1, > 0, 0 < 6 n , N = 2n ; 1 N = 2n ( sin n )2 ; 2( n)2 r2 1 !( ): (4) dN = N = N = n 4 2 2; 4( n)2 Sn;1 (f- x).
. < r > 1, , ""
Zb X n a
0 < p 6 1,
Z X 1 0
>
k=n
1 X
k=n
k=m
p p X n Zb
juk (x)j dx
1
>
k=m a
juk jp dx
2r r
2 sin kt2 k22k cos t dt 2 >
k22k
p 1
1
Z 0
2 r X Z r 1 2 sin kt2 cos 2
t dt = k22k 2(1 ; cos kt) cos 2 t dt : k=n
K +, 64], 0 < 6 n "
Z t dt '(y) = cos yt cos 2
0
0
278
. .
y. E +
2r kh 2 sin 2 k22k
1
X k5rh f () k2 = k=1
,
Z
(5)
r X Z r 1 2 2 ! (f - t) cos 2 t dt > k k 2(1 cos nt) cos 2 t dt : k=n 0 0 :3 (1) + 2
rr
()
3r 2 R ( ) r 6 !r (f - t) cos 2 t dt 77 kf ; Sn;1(f)k 6 n1 664 0R ; 75 2 nt cos t dt 2 sin 2
2
0
2
; +"" +" f(x) = cos nx: < Sn;1 (Tn;1(x)) = Tn;1(x) +" Tn;1 (x) 2 KnT;1 Sn;1 (f- x) 2 K2Tn;1 +" +3 f 2 L2 , +" + Hr(!( ))
2 R 3r 66 0 cos 2 t dt 77 !( ) 2n 6 2n;1 6 sup kf ; Sn;1(f)k 6 n 64 R ; 75 : (6) f 2Lr 2 sin nt2 2 cos 2 t dt 2
2
0
* + dN 6 N 6 N (6) + +" :
2 R cos t dt 3 r 77 66 2 0 dN 6 N 6 N 6 !( ) 75 : 6 n 4 R ; nt 2 2 sin 2 cos 2 t dt 2
(7)
0
& , .
2 R 3r 66 0 cos 2 t dt 77 T R = !( ) 75 U2n+1 = n 64 R ; nt 2 2 sin cos 2 t dt 0 8 2 R 3r 9 > > > > t dt cos n < = 6 7 2 X !( ) 6 7 0 = >Tn(x) = ck cos(kx + 'k ): kTn k 6 n 64 R ; 7 5> k=1 > 2 sin nt 2 cos 2 t dt > : 2
2
0
279
...
(2n + 1)- K2Tn+1 - + . ', Tn 2 Hr (!( )). * + (7) 0 6 kt2 6 nt2 6 2
2 R 3r () r 66 0 !r (Tn - t) cos 2 t dt 77 64 R cos t dt 75 = 2 3r 2 0 Pn ; r R 2 r 2 sin kh2 k2c2k cos 2 t dt 77 66 06sup h 6 t k =1 0 77 6 = 66 R cos d dt 4 5 2 0 2 R ; 3r 2 nt r 6 n 2 sin 2 cos 2 t dt 77 6 664 0 R 75 kTnk 6 !( ): cos d dt 2
2
1
2
2
2
0
2
E R Hr(!( )). < . (. 67, . 347]) + 3 r2 2 R 66 0 2 cos 2 t dt 77 !( ) d2n;1 > d2n > n 64 R ; 75 : 2 sin nt cos 2 d dt 0
:3 + (7) + 1. 2. > 0, r > 0, N = 1 2 3 : ::, 0 < ! 6 1. XrN (L2 L2) = dN (Hr(!( ))- L2 ): (8) ( )
. L2 Wr (f - ) = u > 0. ,+ f1 (x) = () ; 1 = u !( )f(x), Wr (f1 - ) = !( ), . . f1 2 Hr (!( )). M " + ' +3 + E(f- KN )
Wr (f () - ) KN ) 6 sup E(f- K ): sup WE(fN ( (f f 2L2 r ) - ) f 2Hr " ' " KN L2 N, + Xrn (L2 L2 ) 6 dN (Hr (!( ))- L2 ): (9)
280
. .
G , +" +3
f 2 Hr(!( )) + + " +
Hr(!( )) KN ) E(f- KN ) 6 WE(f( (f ) - ) r
E +" ' KN , 3 + , (9). < (8) . 9 1 2 + . r > 1, > 0, 0 < 6 n , 0 6 !( ) 6 1, N = 2n ; 1 N = 2n ; n 2 ; 2( n)2 ; r2 XrN (L2 L2) = n1 4 sin2 2; 4( n)2 !( ):
1] . . " L2 0 2] // &. '. | 1967. | ,. 2, . 5. | 0. 513{522. 2] ," 3. 4. " " L2 // &. '. | 1977. | ,. 22, . 4. | 0. 535{542. 3] ," 3. 4. 0 " ' L2 // &. '. | 1979. | ,. 25, . 2. | 0. 217{223. 4] 6" . "
" L2
// 7 8
. 0 ". | 9
'
"
-
" ",
1986. | 0. 3{10. 5] ;" 4. 4. " L2 " , < < " " <" // =. . . | 1991. | ,. 43, . 1. | 0. 125{129. 6] > " &. ?. " L2 " // &< < @A8 ", < <, 'B, "
) * + 1997 .
t-
. .
, . 517.986
: p- , p- , f - , f -.
! t- , " # $ f - , # %# $& '( ) $ 1. * + % & $ $ $$& (f - ) ") % $ & $.$ + ! t- .
Abstract L. B. Luchishina, The properties of the t-adic integers, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 281{284. In the article we introduce the t-adic algebra depending on certain f -type, generalizing usual Baer type for groups of rank 1. We consider the characteristics of invariants of the constructed algebra (f -characteristics) and study some characteristics of the divisibility relations of the t-adic integers.
^ p, Q^ p Z, Zpm , Q, Z , pm , , p- , p- , p | , m | ^ px], Q^ px] . Zx], Qx], Zpm x], Z ! " "
, , pm , p- , p- . f 2 Qx] . # Q^ px] f = r1 r2 : : : rs , % rj (j = 1 s) , . ) rj Ip (f ), ! , SIp (f ) = = fr 2 Q^ px] j rjf r g 1]. I (f ) = Ip (f ). p # 1] ** f - f - , + + ,- * ! ! 1. 1. " fkr j r 2 I (f )g 1 * f - ", kr = 1 * ^ px]. f - * (kr ) 1]. *! r 2= Z , 2001, + 7, 3 1, . 281{284. c 2001 !, "#
$% &
282
. .
2. 1 (kr ) (lr ) * - , * kr = 1 ! ! , ! lr = 1 1]. 3. 2 - (kr )] f - (kr ) * f - 1]. f - t u : : :. # 2] * ! - * *! ,- . ! ! Qft t- * *! f - t. 3 " f - t = (mr )], * ! ! Zft = Q ^ px] + (r))=(r), mr = 1, Kr = Z ^ px]=(pmr r), = Kr , ! Kr = (Z r2I (f ) mr < 1. 5 * * r = x + (r), , ! , r(r ) = 0, Kr ^ pr ] mr = 1 r 2 Z ^ px]. Z ^ px]. Q^ pr ] mr = 1 r 2= Z Zpmr r ] mr < 1: 7 * 8 , * p ! r 2 I (f ) p- -88, B = fr 2 I (f ) j r 2 ^ px] n Z ^ px]g. 2Q g = (gr )r2I (f ) 2 Zft = Q Kr . 9! r- gr r2I (f ) gr = a0 + a1 r + : : : + an;1nr ;1 (1) ! n = deg r(x), -88 ai (i = 1 n) | p- mr = 1 - Zpmr , mr < 1. 4. gr | r- - g = (gr )r2I(f ) p | , + r. : ;" kr , " pkr -88 a0 a1 : : : an;1 (1) % r-" - g. 5. : (kr ), +" r- ! - g 2 Zft * ! r 2 I (f ), " - g 2 Zft H (g) = (kr ). 1. < H (g) f - . ^ px], Z ^ pr ] = Q^ pr ] *** , 1", r 2 Q^ px] n Z - * kr = 1. B = fr1 r2 : : : rsg, ! ! Kr1 Kr2 : : : Krs Zft , " Btf = L Kr . 2. g
, H (g) = (mr ).
2 Zft ,
r2B
t = (mr )]. g 2 Btf
t-
283
. g 2 Btf g = (gr ). 9! r 2 B
^ pr ] *** kr (gr ) = 1. r 2= B gr = 0 Z
kr = mr . 9 , H (g) - g f - " (mr ). ) , H (g) = (mr ) g = (gr )r2I (f ) , kr (gr ) = mr * ! r 2 I (f ). 1 , gr = 0 * ! r 2= B . 1", r 2= B , - , -88 ! gr ** pmr , , mr < 1?, ! p, , mr = 1. 9 , -88 gr = 0. 3. g h 2 Zft, t = (mr )]. H (g h) = = (H (g) + H (h)) ^ (mr ). . g = (gr )r2I(f ) , h = (hr )r2I(f ) . ) H (g) = = (kr ), H (h) = (lr ) H (gh) = (sr ). ? 8 ! r = r(x) 2 I (f ). , mr = 1, ! kr lr ! (
1). @ kr = lr = 1, gr hr 2 Q^ pr ] gr = hr = 0. 9! A sr = kr + lr . @ kr < 1, lr = 1, sr = 1, ^ pr ] sr = kr + lr . @ kr < 1, lr < 1, gr hr 2 Z A sr = kr + lr . , , mr < 1. # - kr < mr , lr < mr . - gr = pkr gr0 hr = plr h0r , ! gr0 h0r | ! . 9! ( kr +lr 0 0 gr hr kr + lr < mr gr hr = p 0 kr + lr > mr : * , H (g h) = (H (g) + H (h)) ^ (mr ). 4. g 2 Zft. g = (gr )r2I(f )nB Zft , H (g) = 0. g = (gr )r2B g 6= 0, g Zft . . ) , H (g) = 0 ! ! , ! r- - g = (gr )r2I (f )nB " ! . @ gr = a0 + a1 r + : : :+ an;1 nr ;1 | " ! Kr , + ur = b0 + b1r + : : : + bn;1nr ;1, " ur gr = 1 Kr . 1", ! g r Q^ px] ! ! , ! + ^ px], u1 g + v1 r = 1. 1 u1 v1 2 Q ^ px] *+ ; p, Z u g + v r = p : (2) p, uB gB + vB rB = 0 Zpx], % rB * r. 9! rBjuBgB , , rBjuB rBjgB. # ^ px]. 5 " ! g r rBjuB, u = rs + pl, ! r s l 2 Z * " * (2), (rs + pl) g + v r = p ,
284
. .
r(s g + v) + p l g = p . r , r s0 + l g = p ;1, ! ! . ^ px] , * r- , ur gr = 1 Kr , 9! u g + v r = 1 Z g = (gr )r2I (f )nB . @ g = (gr )r2B g = 6 0, g Zft . 5. g h 2 Zft, t = (mr )]. g h , H (g) 6 H (h). . @ g h, h = g u, ! H (h) = H (g u) = = (H (g) + H (u)) ^ (mr ), , , H (g) 6 H (h). ) , H (g) = H (h), H (g) = (lr ) = (kr ) = H (h), kr = lr * r 2 I (f ). r- ! * ! p ! ! : gr = pkr gr0 , hr = plr h0r . 9! hr = plr h0r = pkr h0r = gr (gr0 );1 h0r . ? pkr = gr (gr0 );1 ! gr0 . @ H (g) < H (h), kr < lr * r 2 I (f ). 9! hr = plr h0r = = pkr +sr h0r = pkr h0r psr = gr (gr0 );1 h0r psr . # * ! h * ! g. 5 * 5 ** + *. 1. t- g1 g2 : : : gs 1 ! d, " # H (d) = H (g ) ^ H (g2) ^ : : : ^ ^ H (gs ). 2. t- g1 g2 : : : gs 1 ! v, " # H (v) = H (g ) _ H (g2 ) _ : : : _ _ H (gs ).
1] A. Fomin, O. Mutzbauer. Torsion-free abelian -irredusible groups of nite rank // Comm. Alg. | 1994. | Vol. 22. | P. 3741{3754. 2] . . . ! -"!# $ %& // " $". | 1989. | (. 28, ) 1. |*. 83{104. ' ( 1999 .
. .
514.762
: , , ! " .
# $ %& & ' &( %) ) $! , ! " , ' &( ( )& ( ! " & * $! ! " 4.
Abstract
Yu. F. Pastukhov, Necessary conditions in the inverse variational problem, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 285{288.
In the paper the inverse variational problem in strati0ed speed spaces of arbitrary order is invariantly formulated, Lagrange cut is de0ned, and an analytic reformulation of the problem is given. We give a necessary condition of a system of ODE of even order not less than 4 to be a Lagrangian system. Tk Xm |
k
Xm , kl : Tl Xm Tk Xm , l > k > 0, |
( k = 0 | |
Xm ). , Xm |
. U (v0 2xn;1) | v0 2xn;1 T2n;1Xm . 1. # $ f : TkXm Tl Xm (0 6 k < l)
!
!
% , &' : f - Tl Xm Tk Xm
Qid Qs
+ l k
Tk Xm 2.
f T2nXm , f = f (U ) = fvx2n 2 T2nXm j vx2n = f (vx2n;1 ) vx2n;1 2 U (v0 2xn;1)g
% ( )
, $
% f : T2n;1Xm U (v0 x2n;1) ! T2nXm : , 2001, & 7, 1 1, . 285{288. c 2001 , ! "# !! $
286
. .
3.
"L = "L (U ) = fvx2n 2 T2nXm j "(x)L(vx2n ) = 0 2 Rmg T2nXm L : n2n;1U ! R | % $
+ , L(x x_ : : : x(n)) |
(x), % $ %
U (v0 2xn;1) T2n;1Xm , , - &, % % $ %
"L T2n Xm . . "(x)L : 22nn;1U ! R | + ,
(x) Xm T2nXm n (n) X "(x) L (x x_ : : : x(2n)) = (;1)k Dkt @L(x@x: :(k: ) x ) i = 1 m: k=0 i
i
0 11],
% %3
(x) Xm
T2nXm . 4 &' 11,2]: f : T2n;1Xm U (v0 2xn;1) ! T2nXm | . 4' & U~ (v0 2xn;1) U (v02xn;1) % $
+ L : n2n;1U~ ! R, f (U~ ) = "L (U~ ). 4.n # + L : Tn Xm ! R % % n $
vx 2 T Xm ,
(x) Xm 2L det @x(n@) @x (x x_ : : : x(n)) 6= 0 (n) L(x x_ : : : x(n)) |
+ L : Tn Xm ! R
(x). 0 11],
% %3
Xm . ( ). f : T2n;1Xm U (v0 2xn;1) ! T2nXm | , U~ (v0 2xn;1) U (v0 2xn;1) | v0 2xn;1 2 2 T2n;1Xm , L : n2n;1U~ ! R |
. f (U~ ) = "L (U~ ) , "(x)L f jU~ (v0 2 ;1 ) : T2n;1Xm U (v0 2xn;1) ! Rm 0 2 Rm
U~ (v0 2xn;1). k
n x
i
287
5. f : T2n;1Xm U (v02xn;12)n;!1 T22nn;2n1;X1m | -
,
v0x 2 T Xm . 4 f
% $ % v0 2xn;1, ' U~ (v0 2xn;1) U (v0 2xn;1) % $
+ L : n2n;1U~ ! R, f (U~ ) = "L (U~ ). 7, +
%8 (
%3 3 ) %3
3 ' % $
% 0 {: $, 8 & 83 %3, $ ;<=
&. >
% : ' & $ % %
%
%3 ++ %3 ? ;% , n > 1 ' % 3 % . . x(2n) = fi(xk0 x_ k1 : : : x(2n;1)k2 ;1 ), i kl = 1 m, | (x) Xm f : T2n;1Xm U (v0 2xn;1) ! T2nXm n > 1 ! U~ (v0 2xn;1) U (v02xn;1) (U~ (v02xn;1) '), ' : U~ ! R2mn | '(U~ (v02xn;1)) = U~(x) (x0 : : : x(20 n;1)) R2mn '(vx2n;1 ) = (xi0 x_ i1 : : : x(2n;1)i2 ;1 ) il = 1 m l = 0 2n ; 1: n X X :::j (x : : : x(n))x(k1) j1 : : : x(k ) j fi (x x_ : : : x2n;1) = Ckij11:::k n
i
n
r=1 n+16k1 :::k r 6rn;1 n r(n+1)6 P ki 6(r+1)n
r r
r
r
i=1
:::jr (x x
Ckij11:::k _ : : : x(n)) | n2n;1(U~(x) ), r 2 n ; 1 2 mn n : R Rm(n+1) | : n2n;1(xk0 x_ k1 : : : x(2n;1)k2n;1 ) = (xk0 x_ k1 : : : x(n)kn ):
!
. .
fi (x : : : x2n;1) = ('0 ij (x : : : x(n)) + '1 ijp(x : : : x(n))x(n+1) p ) x(2n;1)j + + gi(x : : : x(2n;2))
'0 ij (x : : : x(n)) '1 ijp(x : : : x(n)), i j p = 1 m, | n2n;1U~ (x), n2n;1 : R2mn ! Rm(n+1) | , gi(x : : : x(2n;2)) | 22nn;;21U~(x) ,
288 22nn;;21 :
. .
R2mn ! Rm(2n;1) | :
22nn;;21(xk0 : : : x(2n;1)k2 ;1 ) = (xk0 : : : x(2n;2)k2 ;2 ): n
n
1] . . .
. | !. "#$, & 1328-"-96. 2] . -. . / 0012 2. | 3.: 3, 1989.
% ! & 1998 .
- . .
517.929
: - , , ! ", # , $% , % &' .
-" '" # # ' %( # ' ! ".
Abstract L. E. Rossovskii, Strongly elliptic dierence-dierential operators in semibounded cylinder, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 289{293.
In the paper we consider di/erence-di/erential operator in semibounded cylinder and obtain necessary and su0cient conditions for a G1arding-type inequality using a symbol of the operator.
- X AR = DR D jjjj6m
Q = f(x1 x0) 2 Rn : x1 > 0 x0 2 Gg G ; Rn;1 | P ( @G 2 C 1 n > 3), 1 ; 1 @ n 1 @ D = i @x1 : : : i @xn , R u(x) = aj u(x1 + j x0), aj 2 C . %0 j j j 6 J u(x1 + j x ) = 0 x1 + j 6 0. &' AR () Q* , + u 2 C_ 1 (Q) (1) Re(AR u u)L2(Q) > c1kuk2W m (Q) ; c2kuk2L2 (Q) 2%
34 24" ' # ( , " 5 95{01{00247. , 2001, # 7, 5 1, . 289{293. c 2001 , !" #$ %
290
. .
c1 > 0, c2 u. 0 W n (Q) 1 ) , 23+ L2 (Q) P 3' ) m )4 , kuk2W m (Q) = kD uk2L2(Q) . jj6m 5
- + + 6. 7. 1) ) 81]. : )) + , ) ( , 3 + . ; + ) , . ; , (0 d) G + , d 2= Z. % + ) + ( )
- (. )2 82], 3 + < )( ) -
+ 2 2 ' ).
1.
% R : L2 (Rn) ! L2 (Rn) : X Ru(x) = aj u(x1 + j x0) aj 2 C : jj j6J
(2)
= >k = f(x1 x0) 2 Rn : k ; 1 < x1 < kg. ? ) S N
u 2 L2 >k (N = 1 2 : : :) 2 ' Rn, k=1 (2) )) ' S S N N R : L2 >k ! L2 >k . k=1
k=1
; ' UN : L2
S N
k=1
>k ! LN2 (>1 ),
(UN u)k (x) = u(x1 + k ; 1 x ) (x 2 >1 @ k = 1 : : : N ): = RN ) N N ( ( (RN )km = am;k jm ; kj 6 J 0 jm ; kj > J: 0
S N
S N
(3)
A R : L2 >k ! L2 >k () k=1 k=1 2 RN )- ) LN2 (>1 ): R = UN;1RN UN : (4)
-
5 , (2) (3) (UN Ru)k = =
X
jj j6J
N X
aj u(x1 + j + k ; 1 x0) =
X jm;kj6J m=1:::N
291
am;k u(x1 + m ; 1 x0) =
(RN )km (UN u)m (x) = (RN UN u)k (x) (x 2 >1@ k = 1 : : : N ):
m=1
1. RN + RN (RN ) N = 1 2 : : :. (R + R ): L2 (Rn) ! L2 (Rn) . . ;' 4 4 ) 4 u 2 L2(Rn0). 5 )+ h 2 R N ) uh , uh (x) = u(x1 + h x ), S N >k . % (4), 2 L2 k=1
Re(Ru u)L2(
Rn = Re(Ruh uh)L )
2
;S N
k=1
k
=
= Re(UN Ruh UN uh )LN2 (1 ) = 21 ((RN + RN )UN uh UN uh )LN2 (1 ) > > ckUN uh k2LN2 (1) = ckuk2 ; SN = ckuk2L2( n) L2
k=1
k
R
c > 0 N = 1 2 : : :. ; L2 (Rn) 2 + ) 4 u 2 L2(Rn). 7 ) . %+ ) 4 C, Re(Ru u)L2( n) = (Re r( )~u u~)L2 ( n) P r( ) = r(1 ) = aj eij1 | . = ,
R
R
jj j6J
2 ' (R + R ): L2 (Rn) ! L2 (Rn) () 2 . =4 1 2. + RN P RNij aj e 1 > 0 (1 2 R). N = 1 2 : : :. Re jj j6J
2. !
. AR ! Q* ,
292
. .
Re
X
X
jjjj=m jj j6J
aj eij + > 0 ( 2 R 0 6= 2 Rn):
. & + . = Qk = Q \ >k
) N
S N 4 ) 4 u 2 C_ 1 Qk . A k=1 V = Un u | )- ) C_ 1N (Q1 ). E (4), X Re(AR u u)L2(Q) = Re (R D u Du) SN =
= Re = Re
k )
(
jjjj6m
X
k=1
jjjj6m
(UN R D u UN D u)LN2 (1 ) =
X
jjjj6m
(RN D V DV )LN2 (1 ) = Re
X
(RN D V DV )LN2 (Q1 ) :
jjjj6m
6 , kukL2(Q) = kV kLN2 (Q1 ) , kukW m (Q) = kV k2W mN (Q1 ) . A) , ) (1) X Re (RN D V D V )LN2 (Q1 ) > c1 kV k2W mN (Q1 ) ; c2 kV k2LN2 (Q1 ) 2
2
2
jjjj6m
) c1 > 0, c2 N V 2 C_ 1N (Q1). % P 4 ( Q* 1
+ D RN D , ) (. jjjj6m
P
81{3]), (RN + RN ) + 0 6= 2 Rn 2 jjjj=m ) , 3 N . ; 2 X Re r ( ) + > 0 ( 2 R 0 6= 2 Rn): jjjj=m
5 . % u 2 C_ 1 (Q). E % <, Re
X
jjjj=m
DR D u u
% 4 X
k1 > 0.
jjjj=m
L2 (Q)
X
=
Rn :
(Re r(1 ) u~ u~)L2 (
jjjj=m
Re r ( ) + > k1jxij2m ( 2 R 2 Rn)
; 2 = 1 . A
X
jjjj=m
Re r(1 ) + u~ u~
R > k kjj u~kL Rn :
L2 ( n)
1
m
2
2(
)
)
-
293
1 % <, )2 () + m + W (Q), Re
X jjjj=m
D R D u u
L2 (Q)
> k1kuk2W m (Q) :
= ) <+ ' Re(AR u u)L2(Q) > k1 kuk2W m (Q) ; k2kukW m (Q) kukW m;1 (Q) : =4 + tkukW m;1 (Q) 6 c(kukW m (Q) + tm kukL2(Q) ) p1p2 6 t;m p21 + tm p22 (p1 p2 2 R@ t > 0) , Re(AR u u)L2(Q) > (k1 ; k3t;1 )kuk2W m (Q) ; k4 t2m;1kuk2L2(Q) : ; t > 0 ), (k1 ; k3t;1 ) > 0, (1). A ) . ;
- | ) , | + +: 2 Rn, 43
, 2 R, 43 (. 82]). E ), 2 ) , ) 4 , 2') ( ) = 1 ), ) + ( .
"
1] Skubachevskii A. L. The rst boundary value problem for strongly elliptic dierential-dierence equations // J. Dierential Equations. | 1986. | Vol. 63, no. 3. | P. 332{361. 2] . . !"#$ -%!!&&#$ '( "#& // )#. *#+&. | 1996. | ,. 59, . 1. | /. 103{113. 3] 12 ). 3. 4 $ $$56&( &+#( %!!&&#$ '( "#& // )#&+. 7. | 1951. | ,. 29, . 3. | /. 615{676. & ' 1998 .
, . . 517.9
: , , , , .
!!" $!!" , $ $!!" % & '.
Abstract
Y. T. Silchenko, Linear dierential equation with non-densely dened operator coecient, generating a non-analytical semigroup, Fundamentalnaya i prikladnaya matematika, vol. 7 (2001), no. 1, pp. 295{300.
The solvability of the Cauchy problem for the linear di.erential equation with operator coe/cient is established when this coe/cient is not densely de0ned and generates a semigroup with a singularity.
1. (1) v0 + Av = f(t) (0 < t 6 1) v(0) = v0 "# E. % A | ' ' "( D(A) = D, (* ' "' A;1 , f(t) | ' t > 0 E v0 | ' + E. (1) ' '
,0 1] , v0 (t) Av(t) * ( '' (0 1] ' ' (1). , ,1], "' ' ' ' " . % (1) '# '# . . , t > 0 * - U(t) = exp(;tA), " (*
1 & 1223 ( 4 01{01{00408). , 2001, 7, 4 1, . 295{300. c 2001 ! "#$, %& '( )
296
. .
1) U(t) | ' ' E D (t > 0)2 2) U(t + ) = U(t)U() (t > 0)2 3) t!+0 lim U(t)v = v v 2 D2 4) U(t) U 0(t) = ;AU(t)2 5) U(t) A D2 6) ' ' kU(t)k 6 Mt; exp(;!t) kU 0(t)k 6 Mt; exp(;!t) (2) '# ! > 0, > 1, > 1. 6 7 - U(t) ' ,2] A( ). 8 , + A " . 8 1. 1) A;1 2) U(t) A( ), A, (2) ! > 0, 0 6 < 1, + 1 6 3) kf(t + 9t) ; f(t)k 6 ct; j9tj" " 2 ( ;;1 1], 2 ,0 1) 4) v0 2 D(A ) 2 ( 1],
D: = E , v0 2 D(A ) 2 (minf2 ;;1 g 1],
D: 6= E ( A ,2]). ! (1) " , ! # Zt
v(t) = U(t)v0 + U(t ; s)f(s) ds:
(3)
0
% (1) ,3]. 8 , A (D: = E), = 1 = 0. ; " A ,4]. < + " , j arg j < , j j > R > 0 A * (A + I);1 k(A + I);1 k 6 cj j;r (4) r = 1. = ( = 0, = 1. < " ,5] ,
A * ( > ) (4) ' r 2 (0 1]. < + = 1 ; r, 2 ,0 1), = 1 + , " 2 ( 1], 2 ,0 1 ; ), = 1. < ,6] ' (4) " f : Re > ;c(1 + j Im j)r1 g c > 0 r 6 r1 : @ r = r1 = 1r ; 1, = 2 + 1 (1) , r 2 ( 23 1], 2 ,0 21 ), " 2 (2 1], = 1, = 0.
...
297
8 , ' #'( 1. 8 > , '# "# ' r, ' ' . 8 ,2] ' ' ,
'# + ' ' >7 " ( ,2]
' ' + , < 2). < 1 ' + | > "' ("' , 1 +. < 1 (
' A, v0 2 D(A ) 6 1. = 1 ,3{6]. 2. @ 7 ' 1. 8 (*# .
1. U(t) A( ), A.
" ! ,
# (3). . @ v(t) | (1). 6 ' > v0 (s) + Av(s) = f(s). @ -( U(t ; s), s # x t ; y (0 < x < t ; y < t). <'
' + ( 4) '), U(y)v(t ; y) ; U(t ; x)v(x) =
Zt;y
x
U(t ; s)f(s) ds:
(5)
@ Av(t ; y), U(t ; x) ' t > 0 '# x y, , 3) ', > ( ,
(5) x y ! +0. @+ *
' (3). C (3) . Rt (3) g(t) = U(t ; s)f(s) ds.
2.
g(t) 2 D
0
# f(t) $ 3) 1.
kAg(t)k 6 ct;; kf k"
kf k" kf kC0" = kf kC0 +
sup
06t
kf(t + 9t) ; f(t)k t;
kf kC0 = sup kt f(t)k: 06t61
(6) 9t"
; ,3], ( g(t) ; g(t) = ,dD(s)]'(s), D(s) = A;1 U(t(1 ; s)), '(s) = f(ts). 6 . R1 0
298
. .
g(t) > '# Sn =
2n X
k=1
k k ; 1 D 2n ; D 2n ' 2kn :
; '
j kA,D(s + 9s) ; D(s)]k 6 c t(;1)+(1;j9s )(1 ; s)+(1;)
(" 2 ,0 1]
k'(s + 9s) ; '(s)k 6 ct";s; j9sj": <'" 1 ; " < < 1;; . 6 kA(Sn+1 ; Sn )k 6 ct; 2;(n+1)(+";1) n = 0 1 : : :: F , kAS0 k 6 ct;;kf kC0 , Ag(t) = limASn (6).
3.
t > 0
% 2 # g(t) ##
g0 (t) = f(t) ; Ag(t): (7) . @ f(t) ' t > 0. 6 ( g(t) > Zt
g(t) = A f(t) ; U(t)A f(0) ; U(t ; s)A;1 f 0 (s) ds: ;1
;1
0
C + g(t) t > 0 (7). @ f(t) ( G7 . < 7 ' t+1=n
(
Z Z f (s) ds = f t + ns ds f (t) = f(t) 0 6 t 6 1 fn (t) = n f(1) t > 1 t 0 1
Zt
gn(t) = U(t ; s)fn (s) ds: C0" ,
0
@ + f (t) 2 kfnk" 6 kf k" , fn (t) ! f(t), gn (t) ! g(t) E t > > 0. H fn (t) ' ' t > 0, + + > " ( gn(t) gn0 (t) = fn (t) ; Agn (t). @> , '# gn0 (t) > # ( t > > 0). J +
299
...
G7 " =" kf k" 6 ckf k"" =" kf k1; C0 0 < "0 < " 6 1. @ + fn (t) ; f(t), ,
> > C0" , ;;1 < "0 < " ( (6)): 0
0
0
0
Zt A U(t ; s),fn (s) ; f(s)] ds 6 ct;; kfn ; f k"0 0
6
" =" 6 ct;;kfn ; f k"" =" kfn ; f k1; C0 : 0
0
@ kfn ; f k" 6 2kf k" , # , Agn(t) ! Ag(t) E t > > 0. @+ gn0 (t) ! f(t) ; Ag(t) ' t > 0. 8( > '. v1 (t) = U(t)v0 (3). H v1 (t)
(* (1). < ,2] , + ' t > 0, v0 2 D(A ), 4) ' 1. @+ v(t) (3) (1). = ' 1. 3. 6 1 - ' ' ' . @v + (;1)m @ 2m v = f(t x) t 2 (0 1] x 2 ,0 1] (8) @t @x2m v(n ) (0) + v(n ) (1) + T v = 0 = 1 2 : : : 2m ; r (9) Z1 0
'k (x)v(x) dx = 0 k = 1 2 : : : r
(10)
v(0 x) = v0 (x) x 2 ,0 1]: (11) % | ' , j j + j j 6= 0, 0 6 n1 6 : : : 6 n 6 6 n +1 6 : : : 6 2m ; 1, T | ' ' ' Wpk ;1(0 1) p 2 ,1 1), = 1 2 : : : 2m ; r, 0 6 r 6 2m, f'k (x)g | ''# '# ,0 1]. 8 , (9){(10) ( ' ,5]. K( " 2m Lp (0 1). < 7 + A = (;1)m dxd 2m "( D, * v(x) Wp2m (0 1), (*# (9){(10) (+ > Lp ). 6 (8){(11) 7 " (1). ,7] , A " j arg j < ; , j j > R > 0 > 0 * , '1 (4) r = 1 + 2mp ; 2nm ( n
300
. .
'k (x)). @+ ,5, . 3, x 1] A > A( ) = 1 ; r, = 2 ; r. L n 2 , p1 1p + 2m), 2 ,0 1), " ' ' ' 1. @+ 2. $ : 1) n, (. ,7]), p1 6 n < p1 + 2m 2) # f(t x) $ ' t Lp ( x) kf(t + 9t x) ; f(t x)k 6 cj9tj"t; 1 1] 2 ,0 1) " 2 ( 2nm ; 2mp 3) v0 (x) 2 D. !2m(8){(11) " v = v(t x), @ v #
@v @t @x2m t > 0 Lp .
1] . . . | !.: #$, 1967. 2] *$ +. ,., $ -. .. /01 0* 1 23 4 0 $2 , 536 4 3 // $ . 5. | 1986. | ,. 27, 9 4. | . 93{104. 3] $ -. .. > 4 * , 536 *$ 4 // ?@# /. | 1968. | ,. 183, 9 2. | . 292{295. 4] Da Prato G., Sinestrati E. DiBerential operators with non dense domain // Annali della scuola normale superiore. Di Pisa. | 1987. | Vol. 14. | P. 285{344. 5] F$ . F. { 5 . | H$: I, 1985. 6] Favini A., Yagi A. Abstract second order diBerential equations with applications // Funkcialaj Ekvacioj. | 1995. | Vol. 38. | P. 81{99. 7] *$ +. ,. > 4 4 * // K0 0. ! $. | 1997. | 9 6 (421). | . 32{36. * ! + 1998 .
. . . , . . . ... !. . " 1 (5 1999 .). . ., . ., . . : "#, $ %, %. , , ,
. ,
, . ! "# " . $
() . , ,
# ( ' , # ), ( ) {+ "# .
2 (12 1999 .). '. . (( . )*). + " $$*,. 3 (19 1999 .). * . '. .
$. ( ,. -. . /0 /0 "# ( , "# "# " # 1 . 1 ,
2 (" #( 3 ),
, # , ( , , ( , ' . 4 ( ,
.
302
4 (2 $ 1999 .). 0%1 2. 3. 4 # , * # % 56 #. 8
( , # . )
# . 9 ! # 4 ( ( ). $ 3 ( ,
, . 9 , 4 ( :, , # .
5 (9 $ 1999 .). 7# 3. 7. ' 8* , % 9% # # . 8 "# , # . ; #
3 , "#, . 4 ( ' ( . ) # ( 3 ( ( "# . (
"#, . ( < : , 1 , (
# 0 2, ' "# # ( # . 9
"# , . . "#, ( #( ! .
6 (16 $ 1999 .). . . 8 " $ "% $ < , " *6= . 9 ( -
303 ( ( ) , ' , 3( . ) ! "# "# . ; ( , 3 , . . 3 . - (
( ( 3 , . . , "# . , "# , , , ( . - , "# /0 .
7 (30 $ 1999 .). . . $# "*", *% # " 9 . ; ( , ", ( # ), , " . 8 . 9 #
( "" #( ,
,
"" #( " 1- ' .
8 (7 1999 .). . . "*= $ 59 $ 5 $ # . '
( ( , '
, "#. " : -9 ,
( . 9 ) '
) .
9 (24 1999 .) 9* , ADynamical Systems Modelling and Stability InvestigationB.
304
1. 3 C. 3. (( . )*). 46, 8 % # # $ $ 8 , . 2 (# (;@),
, 3 # . 9 ;@
!""# ,
( . ; # , " #, , 3 ( ! #( . )'
'
#, #( . ; ! #
,
# ;@, '
4!.
2. 5 . +. (( . )*). 2 , # 8# $ 1 . 4
# 3 , 3 ( " ( . 8 - . 9 ": , , .
3. . . 3" $ 6= 1 - * . $( ( , ( ( , . ) ( , # . 9 ( 3 , , # # , , . 9 , ( , !#, # # ( . 4
,
, (- -) ' . )
305 3 , , "# .
4. . ., . ., . . ' % $# $ $% $ ,. 8 . 9 #
( "" #( ,
,
"" #( " 1- ' . B , 1-", a
a. B ", (
, ,
3 " ! . 9
" , , "# ! ". ; ,
" , ( , ' " # #( . , ,
" " # #( . C
" , 3 $.
5. . ., 8 1 . . 7 % "# ,5 . 9 (
"" #( . ! ' "# . 9 , ' !
, . :" . $ ! 3 , , " ( # !- , 3 , 3 , ( ( .
306
10 (17 8 1999 .). 2 '. . ' , 8 * # , *,% . 4 #
(
##
),
. ) , ( ( ( #) ("). 8 "#
, , # ! ".
11 (24 8 1999 .). 2* 3. . *% 9 .
9 , , ( #
( 3 . ; (,
# " (
.
12 (15 8 1999 .). . . 2# % * . ; ( # '
<. ; ( <.
13 (22 8 1999 .). C# 3. 3. E 5 9 8 5 " * . 4 ( / 0 | ( , '
( , , , ( . #
, ! . :, # p # , ' ( #
( . 9 ! . , (. ) ( ( " .
307
14 (29 8 1999 .) 9* , A+ % % 8 " * * , " # ". .9, F. G. ($ # * ). # $ % *5 $ . 4 ( , ( " #. 9 < "" #( , . )( u1 u2 | 3 u' = f (t)u. -Pn " # y = ciui1 un2 ;i 3 i=1 "" #( k +1 . 9 !""# ! A1 3 k O, k 2 N. : ( ( . 4 < ( I. Katsugu),
4.
15 (12 8 1999 .). 3 C. 3. (( . )*). '8 * # % , 8 $ 9. 8 ( , , , #( #
( ). : ( " # < , # " .
16 (19 8 1999 .). . . C #% % *$ * $ ,. ;
' #, ( $( , + {J, 1 , . ). 3 !""# ) 3 . 4
3 (1=8 ). 43 , -# ( !""# ) . 9 ,
, ! "
'
.
308
17 (26 8 1999 .). C 3. . ( $ 9 * % * ). H" 8 8 * # 1 * "*=<% $ < . 4 , '
. ) / #0, /(30, 3 ! . )
( '
.
18 (3 8 1999 .). ) < +. . , . . H1 "# ,5 . ( ' "# . 9 , ' ! , , , . ;' 3
"" #( . :" . ) , ( .
19 (17 8 1999 .). H8 .. J. (( . )*). )* ,% 9 * "# 9 < 9 . 9 "#
< ( ( ' .
20 (24 8 1999 .). . ., '$ . 3. ' *" "$ # $*$ . 4 # # ,
' #
( #. ) # ! # .
309 ) ,
(3 1=2 ( . 9 #( ( # ' , ( , .
21 (18 2000 .). + 3. +. (+K H37). , " = % . 22 (25 2000 .). . . + * 5 "# 9 # % < < $ 6= . 4 ( ' , , # ( " #
,
) " # . 9
(, ' , " ( ) . )
(' ) , ! : | , | " | # . (, (, (, ' , " ( ) . ' ' , / 0, (
.
23 (10 2000 .). 7 . 3. (( . )*). H1 "# $
"9 *6= % A -$ #B $ # . 8
/-0 ) 3 '
,
. 4 " # , |
! #( , (
! " .
310 ) /-0
.
24 (17 2000 .). C* *" . 3. ' % $ 8 #.
$ , " # @
"" #( . 1 ( " # @ . ) ' " # K. S. Miller 9. Ros, ! I. 4odlubny. ) " # @ 3 "" #(
!""# ( ' ! " # . ; " # @ ,
" # @ , ' .
25 (7 $ 2000 .). L*1 H. C. (2" (). # 9< *$ * # $ . 26 (14 $ 2000 .). 3 . . . # "# ,5 . 9 3 3 "" #( | . 9 # .
27 (21 $ 1999 .) XXII 9* , % *#% . C5 . . ( .(). '88=<- * # " $N 61 H. 3. (( . )*). C-$ 5 $ 5 5 88=< * N C 2. H. K * 8 " % # N 2 7. . E 5 % $ # "# < N ) O. 3. 2 # # * % 8 $*$ % 8 F.
311
28 (5 2000 .). K * H. H., . . ' " 8P< # $ $, A *% B. 9 " # ,
# / 0. - ' , . ) , , ( , ( " #, ( " 2'.
29 (2 6 2000 .). *6 . . '% $ 9 . 9 # ", . ) ! ( ( ! . 9 (#) ' "( . 9 ( ( , /(0, "( 2 $ . O 3 .
30 (22 8 2000 .). F C. . ( # 5 % #% # $ 8% $ * " . 4 ( ,
. $ , ( ( , + | " ( ,
. P . 9 / Q0, . B 3( 3 ( ) , 3( . 3 ( ), ( ' , ! ( . 9
! /0, !"" #
312 ( , . ; . .
31 (29 8 2000 .). 3 C. 3. (( . )*). '8 * # , % % # . 8 ( # ,
, , #( #
. 1#,
, # < . 9 , # .
32 (20 8 2000 .). 5 . +. (( . )*). 7* # 5 $ F$** $ "*1 $ .
( T)1-.. | 1996. | U 5. | :. 29{35]
< " : Cx (CyI + Cx ) + Cy (Cy ; CxI ) < 0: (1) ( Cx Cy | # !""# 2' , /I 0 . ; , / 0 (
(1)) ,
! " @!{; -@ CyI + Cx < 0, ( (@! | #, ; -@ | ). , ( (1) ! ( 3
! Q,@8 . . B. W.
33 (26 8 2000 .) +7++. # * A B. '8*9 $ 8, "% ", $ # * % H.
313
34 (27 8 2000 .). . 3. . (+. H37), . . 2" , 9 8 " 9 . 8
2' 3 #. 43 . , ", ( #, ( , ( " # , ( (
. ; , , ( # . 9 ! ( . 43 ( O("3 + "2 + 2"). : .
35 (3 8 2000 .). 2 * J. .. (+7++ H37). ,5% %$*% . 9 ( # . . )( | 4 ( X . - h, "" # ,. 9. :, h , "" # : kd hk kh ; k > 2 ; 2e 2 : ) ! X = Rn "" # : ""
, ( ( <.
36 (17 8 2000 .). C. 3. (+7++ H37). Q ", # $ 6# E 5% *$ % *$ % : ,% $ . ; # !( , #
x = f (x u) x 2 M u 2 U (1) M | n- ,
Rn, U |
Rn, f ( u), u 2 U , | M ,
314 u 2 U , ; U " # a; : M U Rm ! R, 2 Rm, x 2 M ( w (
; @ 2 f (x u) ( w) = a (x u ) @f (x u) w: ; @u2 @u ,
, ( #
, t~, ~t 2 (0 T ), | !( u(t), 0 6 t 6 T , u~ 2 U ; U , (t~) u~) w = 0 (t~) @f (x@u w | ( (
;, x(t), 0 6 t 6 T , (t), 0 6 t 6 T , | (1) 3 '
( # ) )
. ) ! " # (t) u~) w = 0 0 6 t 6 T s;u = (t) @f (x@u
" # , ;, u~ 2 U . 1 " # !( u(t), 0 6 t 6 T . 4 ( 2,
,
, U | , ,. ,. ,' 1 < {P ( ( . 8
( ( ) Journal of Mathematical Sciences.
37 (24 8 2000 .). + 3. C. (( . )*). '$ 8 8 % $56 % 8P % 5 $. 9 , ( (-1)) | ( . ;( # ", ( ", ( 2, , 2 ( . ;' ( -1) . ) 3 :
315 2 3- ", , ". 0- , ( (3 , , ! . , ! . 4 . 9 " ( (
, ( , ' .
38 (1 8 2000 .). .1 O. . (( . )*). + *% *# "# 2 $ * 1 . 39 (8 8 2000 .), $=< $ $ J. . F8 (1953{1998). . ., . . ' < $9 # Rn. n-
' , . 9 (n ; 2)- (2n ; 4)- #. ) , ' ! , (n ; 2)- ! , ' (/
0 #) . ) Rn, n = 4.
40 (22 8 2000 .). 8#< . +. ' $" . 4 ( - . ;' +{). !"" . 9
@ .
316
41 (29 8 2000 .). 8%1 C. 3. % ", $ 5 96= 8 9. 4 ( ( () C N - Ti : U ! Rn, i 2 Z, U Rn 0 Rn. ) : 1) / 0 / 0 Ji = dTi (0) ! , 2) ( ( # N ,
3 Ji ), 3)
( Ti C N - . )
( ) # C N , 3 # 1. @ ,. $ (Math. Res. Letters. | 1998. | V. 5, no. 1{2. | P. 149{163). )
, , " # ( . 9 ( P. : (Amer. J. Math. | 1957. | V. 79, no. 4. | P. 809{824) # .